code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# -*- coding: utf-8 -*- # @Time : 23.03.21 14:42 # @Author : sing_sd import numpy as np import matplotlib.pyplot as plt import numpy as np from rdp import rdp import pickle import src.clustering.COStransforms as ct from frechetdist import frdist ref = {'lon': 12.0, 'lat': 54.35, 'ECEF': ct.WGS84toECEF(12.0, 54.35)} colour_array = ["r", "g", "b", "y", "c", "m", "#9475FC", "k"] # an extra k # pylab.ion() # pylab.clf() ########## A Graph associatiation method by frdist distance def assign_to_graph(data1): ENUcoord, nodes, edges = get_data_nodes_edges(data1) data = ENUcoord.tolist() assignments = np.zeros(shape=(len(data), 1), dtype=int) idx_start = 0 EPSILON = 1000 idx_end = idx_start + data1.shape[0] ENUcoord_mmsi = ENUcoord[idx_start:idx_end, :] ENUcoord_subset = rdp(ENUcoord_mmsi, EPSILON) rdpNodes = np.array(ENUcoord_subset) cost_matrix = np.zeros((len(rdpNodes) - 1, len(edges))) start = idx_start for i in range(1, len(rdpNodes)): ends = np.where((ENUcoord_mmsi == rdpNodes[i, :]).all(axis=1))[0] end = ends[np.argmax(ends > start)] + idx_start for e_idx, e in enumerate(edges): cost_matrix[i-1, e_idx] = frdist([rdpNodes[i-1, :], rdpNodes[i, :]], [nodes[e[0],:], nodes[e[1],:]]) e_idx = np.argmin(cost_matrix[i-1, :]) # edge id if min(cost_matrix[i-1, :]) > 25000: e_idx = len(edges) # ensures color as black assignments[start:end, 0] = e_idx start = end assignments[end, 0] = assignments[end-1, 0] return assignments #np.array(assignments[:, 0]).reshape(len(assignments),1) def get_data_nodes_edges(data1): clm_idx = 0 data1 = np.array(data1) nData1 = data1.shape[0] lon = np.array(data1[:, clm_idx], dtype=float).reshape([1, nData1]) lat = np.array(data1[:, clm_idx + 1], dtype=float).reshape([1, nData1]) ENUcoord = ct.WGS84toENU(lon, lat, ref) ENUcoord = np.transpose(ENUcoord) ENUcoord = np.delete(ENUcoord, np.s_[2], axis=1) with open("../resources/graph_nodes_refined.pkl", 'rb') as f: nodesWGS = pickle.load(f) nodes = ct.WGS84toENU(nodesWGS[:, 0].T, nodesWGS[:, 1].T, ref) nodes = np.transpose(nodes) nodes = np.delete(nodes, np.s_[2], axis=1) with open("../resources/graph_edges_refined.pkl", 'rb') as f: edges = pickle.load(f) # i. e., now same as before edges = [[1, 2], [0, 1], [0, 3], [0, 4], [1, 4], [4, 6], [0, 5]] return ENUcoord, nodes, edges def point2edge(point, edge_start, edge_end): line_vec = np.subtract(edge_end, edge_start) pnt_vec = np.subtract(point, edge_start) line_len = np.linalg.norm(line_vec) line_unitvec = line_vec / np.linalg.norm(line_vec) pnt_vec_scaled = np.multiply(pnt_vec, 1.0 / line_len) t = np.dot(line_unitvec, pnt_vec_scaled) if t < 0.0: t = 0.0 elif t > 1.0: t = 1.0 nearest = np.multiply(line_vec, t) distance = np.linalg.norm(np.subtract(nearest, pnt_vec)) return distance def cosine_angle(a, b, c): # angle at b return np.dot(a-b, c-b) / (np.linalg.norm(a-b) * np.linalg.norm(c-b)) def get_slope_edges(edges, nodes): n_edges = len(edges) slope_edges = [0.0]*(n_edges+1) # +1 for outlier edge for e in range(n_edges): slope_edges[e] = (nodes[edges[e][0]][1] - nodes[edges[e][1]][1]) / (nodes[edges[e][0]][0] - nodes[edges[e][1]][0]) return np.array(slope_edges) def get_assignment(data1): DIST_THR = 7000 ENUcoord, nodes, edges = get_data_nodes_edges(data1) data = ENUcoord.tolist() cost_matrix = np.zeros((len(data), len(edges)+1)) cost_matrix[:, len(edges)] = DIST_THR + 1 assignments = [] for ii, points in enumerate(data): for jj, items in enumerate(edges): start = nodes[edges[jj][0]][0:2] end = nodes[edges[jj][1]][0:2] cost_matrix[ii, jj] = point2edge(points, start, end) e_idx = np.argmin(cost_matrix[ii, :]) # edge id if min(cost_matrix[ii, :]) > DIST_THR: # 5000: e_idx = len(edges) # ensures color as black assignments.append((ii, e_idx)) assignments = np.array(assignments) EPSILON = 500 #1000 if data1.shape[1] == 2: idx_start = 0 idx_end = data1.shape[0] ENUcoord_mmsi = ENUcoord[idx_start:idx_end, :] ENUcoord_subset = rdp(ENUcoord_mmsi, EPSILON) rdpNodes = np.array(ENUcoord_subset) start = idx_start slope_edges = get_slope_edges(edges, nodes) for i in range(1, len(rdpNodes)): ends = np.where((ENUcoord_mmsi == rdpNodes[i, :]).all(axis=1))[0] end = ends[np.argmax(ends > start)] + idx_start unique_labels = np.unique(assignments[start:end, 1]) # numpy unique does not preserve order max_num = np.inf slope_rdpnodes = (rdpNodes[i, 1] - rdpNodes[i - 1, 1]) / (rdpNodes[i, 0] - rdpNodes[i - 1, 0]) label = unique_labels[np.argmin(np.abs(slope_rdpnodes - slope_edges[unique_labels]))] # unique_labels[0] for j in unique_labels: if max(cost_matrix[start,j], cost_matrix[end, j]) < DIST_THR: if abs(slope_rdpnodes - slope_edges[j]) < max_num: # and not (-0.8 < slope_edges[j]*slope_rdpnodes < -1.2): label = j max_num = abs(slope_rdpnodes - slope_edges[j]) assignments[start:end, 1] = label start = end assignments[end, 1] = assignments[end - 1, 1] # assign the cluster number to last point else: print("need to be updated like single vessel data code in Else loop") exit(0) angle_thr = 0.2 # mmsi_index = data1.columns.get_loc("mmsi") for mmsi in data1.mmsi.unique(): idx_start = np.argmax(data1["mmsi"] == mmsi) idx_end = idx_start + np.sum(data1["mmsi"] == mmsi) ENUcoord_mmsi = ENUcoord[idx_start:idx_end, :] ENUcoord_subset = rdp(ENUcoord_mmsi, EPSILON) rdpNodes = np.array(ENUcoord_subset) start = idx_start for i in range(1, len(rdpNodes)): ends = np.where((ENUcoord_mmsi == rdpNodes[i, :]).all(axis=1))[0] end = ends[np.argmax(ends>start)] + idx_start unique_labels = np.unique(assignments[start:end, 1]) label = unique_labels[0] max_num = 0 for j in unique_labels: if max_num < sum(assignments[start:end, 1] == j): label = j max_num = sum(assignments[start:end, 1] == j) # if label != len(edges) and \ # (-angle_thr < cosine_angle(rdpNodes[i-1, :], nodes[edges[label][0]][0:2], # rdpNodes[i, :]) < angle_thr and \ # -angle_thr < cosine_angle(rdpNodes[i-1, :], nodes[edges[label][1]][0:2], # rdpNodes[i, :]) < angle_thr): # label = len(edges) assignments[start:end, 1] = label start = end assignments[end, 1] = assignments[end - 1, 1] print('data associated') return assignments[:, 1] #np.array(assignments[:, 1]).reshape(len(assignments),1)
[ "src.clustering.COStransforms.WGS84toECEF", "frechetdist.frdist", "numpy.multiply", "numpy.subtract", "numpy.sum", "numpy.argmax", "numpy.abs", "src.clustering.COStransforms.WGS84toENU", "numpy.transpose", "rdp.rdp", "numpy.argmin", "pickle.load", "numpy.array", "numpy.linalg.norm", "numpy.dot", "numpy.delete", "numpy.unique" ]
[((294, 321), 'src.clustering.COStransforms.WGS84toECEF', 'ct.WGS84toECEF', (['(12.0)', '(54.35)'], {}), '(12.0, 54.35)\n', (308, 321), True, 'import src.clustering.COStransforms as ct\n'), ((813, 840), 'rdp.rdp', 'rdp', (['ENUcoord_mmsi', 'EPSILON'], {}), '(ENUcoord_mmsi, EPSILON)\n', (816, 840), False, 'from rdp import rdp\n'), ((856, 881), 'numpy.array', 'np.array', (['ENUcoord_subset'], {}), '(ENUcoord_subset)\n', (864, 881), True, 'import numpy as np\n'), ((1702, 1717), 'numpy.array', 'np.array', (['data1'], {}), '(data1)\n', (1710, 1717), True, 'import numpy as np\n'), ((1910, 1938), 'src.clustering.COStransforms.WGS84toENU', 'ct.WGS84toENU', (['lon', 'lat', 'ref'], {}), '(lon, lat, ref)\n', (1923, 1938), True, 'import src.clustering.COStransforms as ct\n'), ((1954, 1976), 'numpy.transpose', 'np.transpose', (['ENUcoord'], {}), '(ENUcoord)\n', (1966, 1976), True, 'import numpy as np\n'), ((1992, 2029), 'numpy.delete', 'np.delete', (['ENUcoord', 'np.s_[2]'], {'axis': '(1)'}), '(ENUcoord, np.s_[2], axis=1)\n', (2001, 2029), True, 'import numpy as np\n'), ((2143, 2197), 'src.clustering.COStransforms.WGS84toENU', 'ct.WGS84toENU', (['nodesWGS[:, 0].T', 'nodesWGS[:, 1].T', 'ref'], {}), '(nodesWGS[:, 0].T, nodesWGS[:, 1].T, ref)\n', (2156, 2197), True, 'import src.clustering.COStransforms as ct\n'), ((2210, 2229), 'numpy.transpose', 'np.transpose', (['nodes'], {}), '(nodes)\n', (2222, 2229), True, 'import numpy as np\n'), ((2242, 2276), 'numpy.delete', 'np.delete', (['nodes', 'np.s_[2]'], {'axis': '(1)'}), '(nodes, np.s_[2], axis=1)\n', (2251, 2276), True, 'import numpy as np\n'), ((2572, 2605), 'numpy.subtract', 'np.subtract', (['edge_end', 'edge_start'], {}), '(edge_end, edge_start)\n', (2583, 2605), True, 'import numpy as np\n'), ((2620, 2650), 'numpy.subtract', 'np.subtract', (['point', 'edge_start'], {}), '(point, edge_start)\n', (2631, 2650), True, 'import numpy as np\n'), ((2666, 2690), 'numpy.linalg.norm', 'np.linalg.norm', (['line_vec'], {}), '(line_vec)\n', (2680, 2690), True, 'import numpy as np\n'), ((2767, 2803), 'numpy.multiply', 'np.multiply', (['pnt_vec', '(1.0 / line_len)'], {}), '(pnt_vec, 1.0 / line_len)\n', (2778, 2803), True, 'import numpy as np\n'), ((2812, 2848), 'numpy.dot', 'np.dot', (['line_unitvec', 'pnt_vec_scaled'], {}), '(line_unitvec, pnt_vec_scaled)\n', (2818, 2848), True, 'import numpy as np\n'), ((2929, 2953), 'numpy.multiply', 'np.multiply', (['line_vec', 't'], {}), '(line_vec, t)\n', (2940, 2953), True, 'import numpy as np\n'), ((3434, 3455), 'numpy.array', 'np.array', (['slope_edges'], {}), '(slope_edges)\n', (3442, 3455), True, 'import numpy as np\n'), ((4175, 4196), 'numpy.array', 'np.array', (['assignments'], {}), '(assignments)\n', (4183, 4196), True, 'import numpy as np\n'), ((1304, 1336), 'numpy.argmin', 'np.argmin', (['cost_matrix[i - 1, :]'], {}), '(cost_matrix[i - 1, :])\n', (1313, 1336), True, 'import numpy as np\n'), ((2116, 2130), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2127, 2130), False, 'import pickle\n'), ((2360, 2374), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2371, 2374), False, 'import pickle\n'), ((2721, 2745), 'numpy.linalg.norm', 'np.linalg.norm', (['line_vec'], {}), '(line_vec)\n', (2735, 2745), True, 'import numpy as np\n'), ((2984, 3013), 'numpy.subtract', 'np.subtract', (['nearest', 'pnt_vec'], {}), '(nearest, pnt_vec)\n', (2995, 3013), True, 'import numpy as np\n'), ((3088, 3108), 'numpy.dot', 'np.dot', (['(a - b)', '(c - b)'], {}), '(a - b, c - b)\n', (3094, 3108), True, 'import numpy as np\n'), ((3963, 3992), 'numpy.argmin', 'np.argmin', (['cost_matrix[ii, :]'], {}), '(cost_matrix[ii, :])\n', (3972, 3992), True, 'import numpy as np\n'), ((4387, 4414), 'rdp.rdp', 'rdp', (['ENUcoord_mmsi', 'EPSILON'], {}), '(ENUcoord_mmsi, EPSILON)\n', (4390, 4414), False, 'from rdp import rdp\n'), ((4434, 4459), 'numpy.array', 'np.array', (['ENUcoord_subset'], {}), '(ENUcoord_subset)\n', (4442, 4459), True, 'import numpy as np\n'), ((1212, 1290), 'frechetdist.frdist', 'frdist', (['[rdpNodes[i - 1, :], rdpNodes[i, :]]', '[nodes[e[0], :], nodes[e[1], :]]'], {}), '([rdpNodes[i - 1, :], rdpNodes[i, :]], [nodes[e[0], :], nodes[e[1], :]])\n', (1218, 1290), False, 'from frechetdist import frdist\n'), ((1756, 1796), 'numpy.array', 'np.array', (['data1[:, clm_idx]'], {'dtype': 'float'}), '(data1[:, clm_idx], dtype=float)\n', (1764, 1796), True, 'import numpy as np\n'), ((1828, 1872), 'numpy.array', 'np.array', (['data1[:, clm_idx + 1]'], {'dtype': 'float'}), '(data1[:, clm_idx + 1], dtype=float)\n', (1836, 1872), True, 'import numpy as np\n'), ((3108, 3129), 'numpy.linalg.norm', 'np.linalg.norm', (['(a - b)'], {}), '(a - b)\n', (3122, 3129), True, 'import numpy as np\n'), ((3130, 3151), 'numpy.linalg.norm', 'np.linalg.norm', (['(c - b)'], {}), '(c - b)\n', (3144, 3151), True, 'import numpy as np\n'), ((4746, 4782), 'numpy.unique', 'np.unique', (['assignments[start:end, 1]'], {}), '(assignments[start:end, 1])\n', (4755, 4782), True, 'import numpy as np\n'), ((5858, 5890), 'numpy.argmax', 'np.argmax', (["(data1['mmsi'] == mmsi)"], {}), "(data1['mmsi'] == mmsi)\n", (5867, 5890), True, 'import numpy as np\n'), ((6044, 6071), 'rdp.rdp', 'rdp', (['ENUcoord_mmsi', 'EPSILON'], {}), '(ENUcoord_mmsi, EPSILON)\n', (6047, 6071), False, 'from rdp import rdp\n'), ((6095, 6120), 'numpy.array', 'np.array', (['ENUcoord_subset'], {}), '(ENUcoord_subset)\n', (6103, 6120), True, 'import numpy as np\n'), ((1095, 1118), 'numpy.argmax', 'np.argmax', (['(ends > start)'], {}), '(ends > start)\n', (1104, 1118), True, 'import numpy as np\n'), ((5925, 5954), 'numpy.sum', 'np.sum', (["(data1['mmsi'] == mmsi)"], {}), "(data1['mmsi'] == mmsi)\n", (5931, 5954), True, 'import numpy as np\n'), ((6374, 6410), 'numpy.unique', 'np.unique', (['assignments[start:end, 1]'], {}), '(assignments[start:end, 1])\n', (6383, 6410), True, 'import numpy as np\n'), ((4681, 4704), 'numpy.argmax', 'np.argmax', (['(ends > start)'], {}), '(ends > start)\n', (4690, 4704), True, 'import numpy as np\n'), ((5002, 5053), 'numpy.abs', 'np.abs', (['(slope_rdpnodes - slope_edges[unique_labels])'], {}), '(slope_rdpnodes - slope_edges[unique_labels])\n', (5008, 5053), True, 'import numpy as np\n'), ((6307, 6330), 'numpy.argmax', 'np.argmax', (['(ends > start)'], {}), '(ends > start)\n', (6316, 6330), True, 'import numpy as np\n')]
import math from typing import Tuple import numpy as np import open3d as o3d import open3d.core as o3c import pytest from dq3d import quat, dualquat import nnrt import nnrt.geometry as nnrt_geom from image_processing import compute_normals from image_processing.numba_cuda.preprocessing import cuda_compute_normal from image_processing.numpy_cpu.preprocessing import cpu_compute_normal def generate_xy_plane_depth_image(resolution: Tuple[int, int], depth: int) -> np.ndarray: image = np.ones(resolution, dtype=np.uint16) * depth return image def generate_xy_plane_color_image(resolution: Tuple[int, int], value: Tuple[int, int, int]) -> np.ndarray: image = np.ndarray((resolution[0], resolution[1], 3), dtype=np.uint8) image[:, :] = value return image def construct_intrinsic_matrix1_3x3(): intrinsics = np.eye(3, dtype=np.float32) intrinsics[0, 0] = 100.0 intrinsics[1, 1] = 100.0 intrinsics[0, 2] = 50.0 intrinsics[1, 2] = 50.0 return intrinsics def construct_intrinsic_matrix1_4x4(): intrinsics = np.eye(4, dtype=np.float32) intrinsics[0, 0] = 100.0 intrinsics[1, 1] = 100.0 intrinsics[0, 2] = 50.0 intrinsics[1, 2] = 50.0 return intrinsics def construct_test_volume1(device=o3d.core.Device('cuda:0')): # initialize volume voxel_size = 0.01 # 1 cm voxel size sdf_truncation_distance = 0.02 # truncation distance = 2cm block_resolution = 8 # 8^3 voxel blocks initial_block_count = 128 # initially allocated number of voxel blocks volume = nnrt.geometry.WarpableTSDFVoxelGrid( { 'tsdf': o3d.core.Dtype.Float32, 'weight': o3d.core.Dtype.UInt16, 'color': o3d.core.Dtype.UInt16 }, voxel_size=voxel_size, sdf_trunc=sdf_truncation_distance, block_resolution=block_resolution, block_count=initial_block_count, device=device) # generate image image_width = 100 image_height = 100 image_resolution = (image_width, image_height) depth = 50 # mm depth_image = generate_xy_plane_depth_image(image_resolution, depth) depth_image_gpu = o3d.t.geometry.Image(o3c.Tensor(depth_image, device=device)) value = (100, 100, 100) color_image = generate_xy_plane_color_image(image_resolution, value) color_image_gpu = o3d.t.geometry.Image(o3c.Tensor(color_image, device=device)) # set up matrix parameters intrinsics = construct_intrinsic_matrix1_3x3() intrinsics_open3d_gpu = o3c.Tensor(intrinsics, device=device) extrinsics_open3d_gpu = o3c.Tensor(np.eye(4, dtype=np.float32), device=device) # integrate volume volume.integrate(depth_image_gpu, color_image_gpu, intrinsics_open3d_gpu, extrinsics_open3d_gpu, 1000.0, 3.0) return volume @pytest.mark.parametrize("device", [o3d.core.Device('cuda:0'), o3d.core.Device('cpu:0')]) def test_integrate_warped_simple_motion_dq(device): camera_rotation = np.ascontiguousarray(np.eye(3, dtype=np.float32)) camera_translation = np.ascontiguousarray(np.zeros(3, dtype=np.float32)) # we need at least four nodes this time, otherwise psdf computation will consider voxel invalid and produce "NaN". # Make it five. nodes = np.array([[0.0, 0.0, 0.05], [0.02, 0.0, 0.05], [-0.02, 0.0, 0.05], [0.00, 0.02, 0.05], [0.00, -0.02, 0.05]], dtype=np.float32) volume = construct_test_volume1(device) voxel_tsdf_and_weights: o3c.Tensor = volume.extract_tsdf_values_and_weights() voxel_tsdf_and_weights_np_originals = voxel_tsdf_and_weights.cpu().numpy() # the first node moves 1 cm along the negative z axis (towards the camera). node_dual_quaternions_dq3d = [dualquat(quat.identity(), quat(1.0, 0.0, 0.0, -0.005))] + [dualquat(quat.identity())] * (len(nodes) - 1) node_dual_quaternions = np.array([np.concatenate((dq.real.data, dq.dual.data)) for dq in node_dual_quaternions_dq3d]) depth = 50 # mm image_width = 100 image_height = 100 image_resolution = (image_width, image_height) depth_image = generate_xy_plane_depth_image(image_resolution, depth) # let's imagine that the central surface point is 1 cm closer to the camera as well, so we alter the depth # to 40 mm there. Make the motion cease at the other four nodes, e.g. their depth should remain at 50. # We can make a radial "pinch" in the center of the depth image. # For our predefined camera, 1 px = 0.005 m, and the nodes are around the 0.002 m radius, # which puts our pixel radius at 0.002 / 0.0005 = 40 px pinch_diameter = 40 pinch_radius = pinch_diameter // 2 pinch_height = 10 y_coordinates = np.linspace(-1, 1, pinch_diameter)[None, :] * pinch_height x_coordinates = np.linspace(-1, 1, pinch_diameter)[:, None] * pinch_height delta = -pinch_height + np.sqrt(x_coordinates ** 2 + y_coordinates ** 2) half_image_width = image_width // 2 half_image_height = image_height // 2 # @formatter:off depth_image[half_image_height - pinch_radius:half_image_height + pinch_radius, half_image_width - pinch_radius:half_image_width + pinch_radius] += np.round(delta).astype(np.uint16) # @formatter:on # ---- compute normals ---- intrinsic_matrix = construct_intrinsic_matrix1_3x3() fx, fy, cx, cy = intrinsic_matrix[0, 0], intrinsic_matrix[1, 1], intrinsic_matrix[0, 2], intrinsic_matrix[1, 2] point_image = nnrt.backproject_depth_ushort(depth_image, fx, fy, cx, cy, 1000.0) normals = compute_normals(device, point_image) # ---- compute updates ---- truncation_distance = 0.02 # same value as in construct_test_volume1 node_coverage = 0.05 depth_image_o3d = o3d.t.geometry.Image.from_legacy_image(o3d.geometry.Image(depth_image), device=device) normals_o3d = o3c.Tensor(normals, dtype=o3c.Dtype.Float32, device=device) intrinsic_matrix_o3d = o3c.Tensor(intrinsic_matrix, dtype=o3c.Dtype.Float32, device=device) extrinsic_matrix_o3d = o3c.Tensor.eye(4, dtype=o3c.Dtype.Float32, device=device) node_dual_quaternions_o3d = o3c.Tensor(node_dual_quaternions, dtype=o3c.Dtype.Float32, device=device) nodes_o3d = o3c.Tensor(nodes, dtype=o3c.Dtype.Float32, device=device) node_edges_o3d = o3c.Tensor((1, 1)) cos_voxel_ray_to_normal = volume.integrate_warped_dq( depth_image_o3d, normals_o3d, intrinsic_matrix_o3d, extrinsic_matrix_o3d, nodes_o3d, node_edges_o3d, node_dual_quaternions_o3d, node_coverage, anchor_count=4, minimum_valid_anchor_count=3, depth_scale=1000.0, depth_max=3.0, compute_anchors_using=nnrt_geom.AnchorComputationMethod.EUCLIDEAN, use_node_distance_thresholding=False) cos_voxel_ray_to_normal = np.squeeze(cos_voxel_ray_to_normal.cpu().numpy()) voxel_tsdf_and_weights: o3c.Tensor = volume.extract_tsdf_values_and_weights() voxel_tsdf_and_weights_np = voxel_tsdf_and_weights.cpu().numpy() # voxel in the center of the plane is at 0, 0, 0.05, # which should coincide with the first and only node # voxel global position is (0, 0, 5) (in voxels) # voxel is, presumably, in block 3 # voxel's index in block 0 is 5 * (8*8) = 320 # each block holds 512 voxels center_plane_voxel_index = 512 + 512 + 512 + 320 indices_to_test = [center_plane_voxel_index, center_plane_voxel_index + 1, center_plane_voxel_index + 8, center_plane_voxel_index + 16, center_plane_voxel_index + 64] # generated using the above function. # Note: if anything about the reference implementation changes, these residuals need to be re-computed. # each array row contains: # u, v, cosine, tsdf, weight ground_truth_data = np.array([ [50, 50, 0.4970065653324127, 0.0, 0.0], [71, 50, 0.9784621335214618, 0.06499883711342021, 2.0], [50, 71, 0.9784621335214618, 0.06499883711342021, 2.0], [50, 92, 0.9215041958391356, 0.06362117264804237, 2.0], [50, 50, 0.4970065653324127, 0.0, 0.0] ]) def check_voxel_at(index, ground_truth): assert math.isclose(cos_voxel_ray_to_normal[int(ground_truth[0]), int(ground_truth[1])], ground_truth[2], abs_tol=1e-7) if ground_truth[2] > 0.5: assert np.allclose(voxel_tsdf_and_weights_np[index], ground_truth[3:]) for index, ground_truth in zip(indices_to_test, ground_truth_data): check_voxel_at(index, ground_truth) @pytest.mark.parametrize("device", [o3d.core.Device('cuda:0'), o3d.core.Device('cpu:0')]) def test_integrate_warped_simple_motion_mat(device): camera_rotation = np.ascontiguousarray(np.eye(3, dtype=np.float32)) camera_translation = np.ascontiguousarray(np.zeros(3, dtype=np.float32)) # we need at least four nodes this time, otherwise psdf computation will consider voxel invalid and produce "NaN". # Make it five. nodes = np.array([[0.0, 0.0, 0.05], [0.02, 0.0, 0.05], [-0.02, 0.0, 0.05], [0.00, 0.02, 0.05], [0.00, -0.02, 0.05]], dtype=np.float32) # voxel size = 0.01 m volume = construct_test_volume1(device) voxel_tsdf_and_weights: o3c.Tensor = volume.extract_tsdf_values_and_weights() voxel_tsdf_and_weights_np_originals = voxel_tsdf_and_weights.cpu().numpy() # the first node moves 1 cm along the negative z axis (towards the camera). node_dual_quaternions_dq3d = [dualquat(quat.identity(), quat(1.0, 0.0, 0.0, -0.005))] + [dualquat(quat.identity())] * (len(nodes) - 1) node_rotations_mat = np.array([dq.rotation().to_rotation_matrix().astype(np.float32) for dq in node_dual_quaternions_dq3d]) node_translations_vec = np.array([dq.translation().astype(np.float32) for dq in node_dual_quaternions_dq3d]) depth = 50 # mm image_width = 100 image_height = 100 image_resolution = (image_width, image_height) depth_image = generate_xy_plane_depth_image(image_resolution, depth) color_image = np.zeros((image_height, image_width, 3), dtype=np.uint8) # let's imagine that the central surface point is 1 cm closer to the camera as well, so we alter the depth # to 40 mm there. Make the motion cease at the other four nodes, e.g. their depth should remain at 50. # We can make a radial "pinch" in the center of the depth image. # For our predefined camera, 1 px = 0.005 m, and the nodes are around the 0.002 m radius, # which puts our pixel radius at 0.002 / 0.0005 = 40 px pinch_diameter = 40 pinch_radius = pinch_diameter // 2 pinch_height = 10 y_coordinates = np.linspace(-1, 1, pinch_diameter)[None, :] * pinch_height x_coordinates = np.linspace(-1, 1, pinch_diameter)[:, None] * pinch_height delta = -pinch_height + np.sqrt(x_coordinates ** 2 + y_coordinates ** 2) half_image_width = image_width // 2 half_image_height = image_height // 2 # @formatter:off depth_image[half_image_height - pinch_radius:half_image_height + pinch_radius, half_image_width - pinch_radius:half_image_width + pinch_radius] += np.round(delta).astype(np.uint16) # @formatter:on # ---- compute normals ---- intrinsic_matrix = construct_intrinsic_matrix1_3x3() fx, fy, cx, cy = intrinsic_matrix[0, 0], intrinsic_matrix[1, 1], intrinsic_matrix[0, 2], intrinsic_matrix[1, 2] point_image = nnrt.backproject_depth_ushort(depth_image, fx, fy, cx, cy, 1000.0) normals = compute_normals(device, point_image) # ---- compute updates ---- node_coverage = 0.05 depth_image_o3d = o3d.t.geometry.Image.from_legacy_image(o3d.geometry.Image(depth_image), device=device) color_image_o3d = o3d.t.geometry.Image.from_legacy_image(o3d.geometry.Image(color_image), device=device) normals_o3d = o3c.Tensor(normals, dtype=o3c.Dtype.Float32, device=device) intrinsic_matrix_o3d = o3c.Tensor(intrinsic_matrix, dtype=o3c.Dtype.Float32, device=device) extrinsic_matrix_o3d = o3c.Tensor.eye(4, dtype=o3c.Dtype.Float32, device=device) node_rotations_o3d = o3c.Tensor(node_rotations_mat, dtype=o3c.Dtype.Float32, device=device) node_translations_o3d = o3c.Tensor(node_translations_vec, dtype=o3c.Dtype.Float32, device=device) nodes_o3d = o3c.Tensor(nodes, dtype=o3c.Dtype.Float32, device=device) edges_o3d = o3c.Tensor((1, 1)) cos_voxel_ray_to_normal = volume.integrate_warped_mat( depth_image_o3d, color_image_o3d, normals_o3d, intrinsic_matrix_o3d, extrinsic_matrix_o3d, nodes_o3d, edges_o3d, node_rotations_o3d, node_translations_o3d, node_coverage, anchor_count=4, minimum_valid_anchor_count=3, depth_scale=1000.0, depth_max=3.0, compute_anchors_using=nnrt_geom.AnchorComputationMethod.EUCLIDEAN, use_node_distance_thresholding=False) cos_voxel_ray_to_normal = np.squeeze(cos_voxel_ray_to_normal.cpu().numpy()) voxel_tsdf_and_weights: o3c.Tensor = volume.extract_tsdf_values_and_weights() voxel_tsdf_and_weights_np = voxel_tsdf_and_weights.cpu().numpy() # voxel in the center of the plane is at 0, 0, 0.05, # which should coincide with the first and only node # voxel global position is (0, 0, 5) (in voxels) # voxel is, presumably, in block 3 # voxel's index in block 0 is 5 * (8*8) = 320 # each block holds 512 voxels center_plane_voxel_index = 512 + 512 + 512 + 320 indices_to_test = [center_plane_voxel_index, center_plane_voxel_index + 1, # x + 1 center_plane_voxel_index + 8, # y + 1 center_plane_voxel_index + 16, # y + 2 center_plane_voxel_index + 64] # z + 1 # generated using the above function. # Note: if anything about the reference implementation changes, these residuals need to be re-computed. # each array row contains: # v, u, cosine, tsdf, weight ground_truth_data = np.array([ [50, 50, 0.4970065653324127, 0.0, 0.0], [71, 50, 0.9784621335214618, 0.06499883711342021, 2.0], [50, 71, 0.9784621335214618, 0.06499883711342021, 2.0], [50, 92, 0.9215041958391356, 0.06362117264804237, 2.0], [50, 50, 0.4970065653324127, 0.0, 0.0] ]) def check_voxel_at(index, ground_truth): assert math.isclose(cos_voxel_ray_to_normal[int(ground_truth[0]), int(ground_truth[1])], ground_truth[2], abs_tol=1e-7) if ground_truth[2] > 0.5: assert np.allclose(voxel_tsdf_and_weights_np[index], ground_truth[3:]) for index, ground_truth in zip(indices_to_test, ground_truth_data): check_voxel_at(index, ground_truth)
[ "numpy.allclose", "numpy.ones", "numpy.round", "numpy.ndarray", "open3d.core.Device", "open3d.geometry.Image", "image_processing.compute_normals", "dq3d.quat", "numpy.linspace", "nnrt.backproject_depth_ushort", "open3d.core.Tensor.eye", "open3d.core.Tensor", "dq3d.quat.identity", "numpy.concatenate", "numpy.zeros", "numpy.array", "numpy.eye", "nnrt.geometry.WarpableTSDFVoxelGrid", "numpy.sqrt" ]
[((676, 737), 'numpy.ndarray', 'np.ndarray', (['(resolution[0], resolution[1], 3)'], {'dtype': 'np.uint8'}), '((resolution[0], resolution[1], 3), dtype=np.uint8)\n', (686, 737), True, 'import numpy as np\n'), ((837, 864), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (843, 864), True, 'import numpy as np\n'), ((1059, 1086), 'numpy.eye', 'np.eye', (['(4)'], {'dtype': 'np.float32'}), '(4, dtype=np.float32)\n', (1065, 1086), True, 'import numpy as np\n'), ((1259, 1284), 'open3d.core.Device', 'o3d.core.Device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (1274, 1284), True, 'import open3d as o3d\n'), ((1551, 1842), 'nnrt.geometry.WarpableTSDFVoxelGrid', 'nnrt.geometry.WarpableTSDFVoxelGrid', (["{'tsdf': o3d.core.Dtype.Float32, 'weight': o3d.core.Dtype.UInt16, 'color':\n o3d.core.Dtype.UInt16}"], {'voxel_size': 'voxel_size', 'sdf_trunc': 'sdf_truncation_distance', 'block_resolution': 'block_resolution', 'block_count': 'initial_block_count', 'device': 'device'}), "({'tsdf': o3d.core.Dtype.Float32,\n 'weight': o3d.core.Dtype.UInt16, 'color': o3d.core.Dtype.UInt16},\n voxel_size=voxel_size, sdf_trunc=sdf_truncation_distance,\n block_resolution=block_resolution, block_count=initial_block_count,\n device=device)\n", (1586, 1842), False, 'import nnrt\n'), ((2512, 2549), 'open3d.core.Tensor', 'o3c.Tensor', (['intrinsics'], {'device': 'device'}), '(intrinsics, device=device)\n', (2522, 2549), True, 'import open3d.core as o3c\n'), ((3233, 3362), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.05], [0.02, 0.0, 0.05], [-0.02, 0.0, 0.05], [0.0, 0.02, 0.05],\n [0.0, -0.02, 0.05]]'], {'dtype': 'np.float32'}), '([[0.0, 0.0, 0.05], [0.02, 0.0, 0.05], [-0.02, 0.0, 0.05], [0.0, \n 0.02, 0.05], [0.0, -0.02, 0.05]], dtype=np.float32)\n', (3241, 3362), True, 'import numpy as np\n'), ((5507, 5573), 'nnrt.backproject_depth_ushort', 'nnrt.backproject_depth_ushort', (['depth_image', 'fx', 'fy', 'cx', 'cy', '(1000.0)'], {}), '(depth_image, fx, fy, cx, cy, 1000.0)\n', (5536, 5573), False, 'import nnrt\n'), ((5588, 5624), 'image_processing.compute_normals', 'compute_normals', (['device', 'point_image'], {}), '(device, point_image)\n', (5603, 5624), False, 'from image_processing import compute_normals\n'), ((5884, 5943), 'open3d.core.Tensor', 'o3c.Tensor', (['normals'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(normals, dtype=o3c.Dtype.Float32, device=device)\n', (5894, 5943), True, 'import open3d.core as o3c\n'), ((5971, 6039), 'open3d.core.Tensor', 'o3c.Tensor', (['intrinsic_matrix'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(intrinsic_matrix, dtype=o3c.Dtype.Float32, device=device)\n', (5981, 6039), True, 'import open3d.core as o3c\n'), ((6067, 6124), 'open3d.core.Tensor.eye', 'o3c.Tensor.eye', (['(4)'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(4, dtype=o3c.Dtype.Float32, device=device)\n', (6081, 6124), True, 'import open3d.core as o3c\n'), ((6157, 6230), 'open3d.core.Tensor', 'o3c.Tensor', (['node_dual_quaternions'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(node_dual_quaternions, dtype=o3c.Dtype.Float32, device=device)\n', (6167, 6230), True, 'import open3d.core as o3c\n'), ((6247, 6304), 'open3d.core.Tensor', 'o3c.Tensor', (['nodes'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(nodes, dtype=o3c.Dtype.Float32, device=device)\n', (6257, 6304), True, 'import open3d.core as o3c\n'), ((6326, 6344), 'open3d.core.Tensor', 'o3c.Tensor', (['(1, 1)'], {}), '((1, 1))\n', (6336, 6344), True, 'import open3d.core as o3c\n'), ((7846, 8124), 'numpy.array', 'np.array', (['[[50, 50, 0.4970065653324127, 0.0, 0.0], [71, 50, 0.9784621335214618, \n 0.06499883711342021, 2.0], [50, 71, 0.9784621335214618, \n 0.06499883711342021, 2.0], [50, 92, 0.9215041958391356, \n 0.06362117264804237, 2.0], [50, 50, 0.4970065653324127, 0.0, 0.0]]'], {}), '([[50, 50, 0.4970065653324127, 0.0, 0.0], [71, 50, \n 0.9784621335214618, 0.06499883711342021, 2.0], [50, 71, \n 0.9784621335214618, 0.06499883711342021, 2.0], [50, 92, \n 0.9215041958391356, 0.06362117264804237, 2.0], [50, 50, \n 0.4970065653324127, 0.0, 0.0]])\n', (7854, 8124), True, 'import numpy as np\n'), ((9004, 9133), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.05], [0.02, 0.0, 0.05], [-0.02, 0.0, 0.05], [0.0, 0.02, 0.05],\n [0.0, -0.02, 0.05]]'], {'dtype': 'np.float32'}), '([[0.0, 0.0, 0.05], [0.02, 0.0, 0.05], [-0.02, 0.0, 0.05], [0.0, \n 0.02, 0.05], [0.0, -0.02, 0.05]], dtype=np.float32)\n', (9012, 9133), True, 'import numpy as np\n'), ((10142, 10198), 'numpy.zeros', 'np.zeros', (['(image_height, image_width, 3)'], {'dtype': 'np.uint8'}), '((image_height, image_width, 3), dtype=np.uint8)\n', (10150, 10198), True, 'import numpy as np\n'), ((11510, 11576), 'nnrt.backproject_depth_ushort', 'nnrt.backproject_depth_ushort', (['depth_image', 'fx', 'fy', 'cx', 'cy', '(1000.0)'], {}), '(depth_image, fx, fy, cx, cy, 1000.0)\n', (11539, 11576), False, 'import nnrt\n'), ((11591, 11627), 'image_processing.compute_normals', 'compute_normals', (['device', 'point_image'], {}), '(device, point_image)\n', (11606, 11627), False, 'from image_processing import compute_normals\n'), ((11922, 11981), 'open3d.core.Tensor', 'o3c.Tensor', (['normals'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(normals, dtype=o3c.Dtype.Float32, device=device)\n', (11932, 11981), True, 'import open3d.core as o3c\n'), ((12009, 12077), 'open3d.core.Tensor', 'o3c.Tensor', (['intrinsic_matrix'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(intrinsic_matrix, dtype=o3c.Dtype.Float32, device=device)\n', (12019, 12077), True, 'import open3d.core as o3c\n'), ((12105, 12162), 'open3d.core.Tensor.eye', 'o3c.Tensor.eye', (['(4)'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(4, dtype=o3c.Dtype.Float32, device=device)\n', (12119, 12162), True, 'import open3d.core as o3c\n'), ((12188, 12258), 'open3d.core.Tensor', 'o3c.Tensor', (['node_rotations_mat'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(node_rotations_mat, dtype=o3c.Dtype.Float32, device=device)\n', (12198, 12258), True, 'import open3d.core as o3c\n'), ((12287, 12360), 'open3d.core.Tensor', 'o3c.Tensor', (['node_translations_vec'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(node_translations_vec, dtype=o3c.Dtype.Float32, device=device)\n', (12297, 12360), True, 'import open3d.core as o3c\n'), ((12377, 12434), 'open3d.core.Tensor', 'o3c.Tensor', (['nodes'], {'dtype': 'o3c.Dtype.Float32', 'device': 'device'}), '(nodes, dtype=o3c.Dtype.Float32, device=device)\n', (12387, 12434), True, 'import open3d.core as o3c\n'), ((12451, 12469), 'open3d.core.Tensor', 'o3c.Tensor', (['(1, 1)'], {}), '((1, 1))\n', (12461, 12469), True, 'import open3d.core as o3c\n'), ((14036, 14314), 'numpy.array', 'np.array', (['[[50, 50, 0.4970065653324127, 0.0, 0.0], [71, 50, 0.9784621335214618, \n 0.06499883711342021, 2.0], [50, 71, 0.9784621335214618, \n 0.06499883711342021, 2.0], [50, 92, 0.9215041958391356, \n 0.06362117264804237, 2.0], [50, 50, 0.4970065653324127, 0.0, 0.0]]'], {}), '([[50, 50, 0.4970065653324127, 0.0, 0.0], [71, 50, \n 0.9784621335214618, 0.06499883711342021, 2.0], [50, 71, \n 0.9784621335214618, 0.06499883711342021, 2.0], [50, 92, \n 0.9215041958391356, 0.06362117264804237, 2.0], [50, 50, \n 0.4970065653324127, 0.0, 0.0]])\n', (14044, 14314), True, 'import numpy as np\n'), ((493, 529), 'numpy.ones', 'np.ones', (['resolution'], {'dtype': 'np.uint16'}), '(resolution, dtype=np.uint16)\n', (500, 529), True, 'import numpy as np\n'), ((2177, 2215), 'open3d.core.Tensor', 'o3c.Tensor', (['depth_image'], {'device': 'device'}), '(depth_image, device=device)\n', (2187, 2215), True, 'import open3d.core as o3c\n'), ((2361, 2399), 'open3d.core.Tensor', 'o3c.Tensor', (['color_image'], {'device': 'device'}), '(color_image, device=device)\n', (2371, 2399), True, 'import open3d.core as o3c\n'), ((2589, 2616), 'numpy.eye', 'np.eye', (['(4)'], {'dtype': 'np.float32'}), '(4, dtype=np.float32)\n', (2595, 2616), True, 'import numpy as np\n'), ((2976, 3003), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (2982, 3003), True, 'import numpy as np\n'), ((3051, 3080), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (3059, 3080), True, 'import numpy as np\n'), ((4921, 4969), 'numpy.sqrt', 'np.sqrt', (['(x_coordinates ** 2 + y_coordinates ** 2)'], {}), '(x_coordinates ** 2 + y_coordinates ** 2)\n', (4928, 4969), True, 'import numpy as np\n'), ((5818, 5849), 'open3d.geometry.Image', 'o3d.geometry.Image', (['depth_image'], {}), '(depth_image)\n', (5836, 5849), True, 'import open3d as o3d\n'), ((2827, 2852), 'open3d.core.Device', 'o3d.core.Device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (2842, 2852), True, 'import open3d as o3d\n'), ((2854, 2878), 'open3d.core.Device', 'o3d.core.Device', (['"""cpu:0"""'], {}), "('cpu:0')\n", (2869, 2878), True, 'import open3d as o3d\n'), ((8747, 8774), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (8753, 8774), True, 'import numpy as np\n'), ((8822, 8851), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (8830, 8851), True, 'import numpy as np\n'), ((10912, 10960), 'numpy.sqrt', 'np.sqrt', (['(x_coordinates ** 2 + y_coordinates ** 2)'], {}), '(x_coordinates ** 2 + y_coordinates ** 2)\n', (10919, 10960), True, 'import numpy as np\n'), ((11747, 11778), 'open3d.geometry.Image', 'o3d.geometry.Image', (['depth_image'], {}), '(depth_image)\n', (11765, 11778), True, 'import open3d as o3d\n'), ((11856, 11887), 'open3d.geometry.Image', 'o3d.geometry.Image', (['color_image'], {}), '(color_image)\n', (11874, 11887), True, 'import open3d as o3d\n'), ((8597, 8622), 'open3d.core.Device', 'o3d.core.Device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (8612, 8622), True, 'import open3d as o3d\n'), ((8624, 8648), 'open3d.core.Device', 'o3d.core.Device', (['"""cpu:0"""'], {}), "('cpu:0')\n", (8639, 8648), True, 'import open3d as o3d\n'), ((3933, 3977), 'numpy.concatenate', 'np.concatenate', (['(dq.real.data, dq.dual.data)'], {}), '((dq.real.data, dq.dual.data))\n', (3947, 3977), True, 'import numpy as np\n'), ((4755, 4789), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'pinch_diameter'], {}), '(-1, 1, pinch_diameter)\n', (4766, 4789), True, 'import numpy as np\n'), ((4834, 4868), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'pinch_diameter'], {}), '(-1, 1, pinch_diameter)\n', (4845, 4868), True, 'import numpy as np\n'), ((5228, 5243), 'numpy.round', 'np.round', (['delta'], {}), '(delta)\n', (5236, 5243), True, 'import numpy as np\n'), ((8378, 8441), 'numpy.allclose', 'np.allclose', (['voxel_tsdf_and_weights_np[index]', 'ground_truth[3:]'], {}), '(voxel_tsdf_and_weights_np[index], ground_truth[3:])\n', (8389, 8441), True, 'import numpy as np\n'), ((10746, 10780), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'pinch_diameter'], {}), '(-1, 1, pinch_diameter)\n', (10757, 10780), True, 'import numpy as np\n'), ((10825, 10859), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'pinch_diameter'], {}), '(-1, 1, pinch_diameter)\n', (10836, 10859), True, 'import numpy as np\n'), ((11231, 11246), 'numpy.round', 'np.round', (['delta'], {}), '(delta)\n', (11239, 11246), True, 'import numpy as np\n'), ((14568, 14631), 'numpy.allclose', 'np.allclose', (['voxel_tsdf_and_weights_np[index]', 'ground_truth[3:]'], {}), '(voxel_tsdf_and_weights_np[index], ground_truth[3:])\n', (14579, 14631), True, 'import numpy as np\n'), ((3799, 3814), 'dq3d.quat.identity', 'quat.identity', ([], {}), '()\n', (3812, 3814), False, 'from dq3d import quat, dualquat\n'), ((3816, 3843), 'dq3d.quat', 'quat', (['(1.0)', '(0.0)', '(0.0)', '(-0.005)'], {}), '(1.0, 0.0, 0.0, -0.005)\n', (3820, 3843), False, 'from dq3d import quat, dualquat\n'), ((9596, 9611), 'dq3d.quat.identity', 'quat.identity', ([], {}), '()\n', (9609, 9611), False, 'from dq3d import quat, dualquat\n'), ((9613, 9640), 'dq3d.quat', 'quat', (['(1.0)', '(0.0)', '(0.0)', '(-0.005)'], {}), '(1.0, 0.0, 0.0, -0.005)\n', (9617, 9640), False, 'from dq3d import quat, dualquat\n'), ((3858, 3873), 'dq3d.quat.identity', 'quat.identity', ([], {}), '()\n', (3871, 3873), False, 'from dq3d import quat, dualquat\n'), ((9655, 9670), 'dq3d.quat.identity', 'quat.identity', ([], {}), '()\n', (9668, 9670), False, 'from dq3d import quat, dualquat\n')]
############################################################################## # # Copyright (c) 2016, <NAME> # # This file is part of arlpy which is released under Simplified BSD License. # See file LICENSE or go to http://www.opensource.org/licenses/BSD-3-Clause # for full license details. # ############################################################################## """DTLA support toolbox.""" import os as _os import numpy as _np from scipy import signal as _sig _fs = 1/(1.6e-6*26) _framelen = 2*26 _channels = 24 _magic = 0xc0de def check(filename): """Check if a file is likely to be a valid DTLA datafile.""" statinfo = _os.stat(filename) if statinfo.st_size >= 2*2*_channels: with open(filename, 'rb') as f: data = _np.fromfile(f, dtype=_np.uint16, count=_framelen/2) if data[0] == _magic & data[1] == _magic: return True return False def get_sampling_rate(filename=None): """Get the sampling rate in Hz.""" return _fs def get_channels(filename=None): """Get the number of available data channels.""" return _channels def get_data_length(filename): """Get the length of the datafile in samples.""" statinfo = _os.stat(filename) return statinfo.st_size//_framelen def get_data(filename, channel=None, start=0, length=None, detrend='linear'): """Load selected data from DTLA recording. :param filename: name of the datafile :param channel: list of channels to read (base 0, None to read all channels) :param start: sample index to start from :param length: number of samples to read (None means read all available samples) :param detrend: processing to be applied to each channel to remove offset/bias (supported values: ``'linear'``, ``'constant'``, ``None``) """ if channel is None: channel = range(_channels) elif isinstance(channel, int): channel = [channel] if length is None: length = get_data_length(filename)-start with open(filename, 'rb') as f: f.seek(start*_framelen, _os.SEEK_SET) data = _np.fromfile(f, dtype=_np.uint16, count=_framelen//2*length) data = _np.reshape(data, [length,_framelen//2]) data = data[:,2:] data = _np.take(data, channel, axis=1).astype(_np.float) if len(channel) == 1: data = data.ravel() data = 5*data/65536-2.5 if detrend is not None: data = _sig.detrend(data, axis=0, type=detrend) return data
[ "os.stat", "numpy.fromfile", "numpy.take", "numpy.reshape", "scipy.signal.detrend" ]
[((645, 663), 'os.stat', '_os.stat', (['filename'], {}), '(filename)\n', (653, 663), True, 'import os as _os\n'), ((1210, 1228), 'os.stat', '_os.stat', (['filename'], {}), '(filename)\n', (1218, 1228), True, 'import os as _os\n'), ((2181, 2224), 'numpy.reshape', '_np.reshape', (['data', '[length, _framelen // 2]'], {}), '(data, [length, _framelen // 2])\n', (2192, 2224), True, 'import numpy as _np\n'), ((2109, 2173), 'numpy.fromfile', '_np.fromfile', (['f'], {'dtype': '_np.uint16', 'count': '(_framelen // 2 * length)'}), '(f, dtype=_np.uint16, count=_framelen // 2 * length)\n', (2121, 2173), True, 'import numpy as _np\n'), ((2430, 2470), 'scipy.signal.detrend', '_sig.detrend', (['data'], {'axis': '(0)', 'type': 'detrend'}), '(data, axis=0, type=detrend)\n', (2442, 2470), True, 'from scipy import signal as _sig\n'), ((765, 819), 'numpy.fromfile', '_np.fromfile', (['f'], {'dtype': '_np.uint16', 'count': '(_framelen / 2)'}), '(f, dtype=_np.uint16, count=_framelen / 2)\n', (777, 819), True, 'import numpy as _np\n'), ((2255, 2286), 'numpy.take', '_np.take', (['data', 'channel'], {'axis': '(1)'}), '(data, channel, axis=1)\n', (2263, 2286), True, 'import numpy as _np\n')]
from typing import Collection, Dict, List, Sequence, Type, TypeVar import numpy as np import pandas as pd from athenian.api.controllers.features.metric import Metric, MetricInt from athenian.api.controllers.features.metric_calculator import AnyMetricCalculator, \ BinnedMetricCalculator, \ MetricCalculator, MetricCalculatorEnsemble, SumMetricCalculator from athenian.api.controllers.miners.github.developer import developer_changed_lines_column, \ developer_identity_column, DeveloperTopic from athenian.api.controllers.miners.github.pull_request import ReviewResolution from athenian.api.models.metadata.github import PullRequest, PullRequestComment, \ PullRequestReview, PullRequestReviewComment, PushCommit, \ Release metric_calculators: Dict[str, Type[MetricCalculator]] = {} T = TypeVar("T") def register_metric(topic: DeveloperTopic): """Keep track of the developer metric calculators.""" assert isinstance(topic, DeveloperTopic) def register_with_name(cls: Type[MetricCalculator]): metric_calculators[topic.value] = cls return cls return register_with_name class DeveloperMetricCalculatorEnsemble(MetricCalculatorEnsemble): """MetricCalculatorEnsemble adapted for developers.""" def __init__(self, *metrics: str, quantiles: Sequence[float], quantile_stride: int): """Initialize a new instance of ReleaseMetricCalculatorEnsemble class.""" super().__init__(*metrics, quantiles=quantiles, quantile_stride=quantile_stride, class_mapping=metric_calculators) class DeveloperBinnedMetricCalculator(BinnedMetricCalculator): """BinnedMetricCalculator adapted for developers.""" ensemble_class = DeveloperMetricCalculatorEnsemble class DeveloperTopicCounter(SumMetricCalculator[int]): """Count all `topic` events in each time interval.""" may_have_negative_values = False metric = MetricInt timestamp_column: str def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: result = np.full((len(min_times), len(facts)), self.nan, self.dtype) column = facts[self.timestamp_column].astype(min_times.dtype, copy=False).values column_in_range = (min_times[:, None] <= column) & (column < max_times[:, None]) result[column_in_range] = 1 return result class DeveloperTopicSummator(SumMetricCalculator[int]): """Sum all `topic` events in each time interval.""" may_have_negative_values = False metric = MetricInt topic_column: str timestamp_column: str def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: result = np.full((len(min_times), len(facts)), self.nan, self.dtype) topic_column = facts[self.topic_column].values ts_column = facts[self.timestamp_column].values column_in_range = (min_times[:, None] <= ts_column) & (ts_column < max_times[:, None]) for result_dim, column_in_range_dim in zip(result, column_in_range): result_dim[column_in_range_dim] = topic_column[column_in_range_dim] return result @register_metric(DeveloperTopic.commits_pushed) class CommitsPushedCounter(DeveloperTopicCounter): """Calculate "dev-commits-pushed" metric.""" timestamp_column = PushCommit.committed_date.name @register_metric(DeveloperTopic.lines_changed) class LinesChangedCounter(DeveloperTopicSummator): """Calculate "dev-lines-changed" metric.""" topic_column = developer_changed_lines_column timestamp_column = PushCommit.committed_date.name @register_metric(DeveloperTopic.active) class ActiveCounter(MetricCalculator[int]): """Calculate "dev-active" metric.""" ACTIVITY_DAYS_THRESHOLD_DENSITY = 0.2 may_have_negative_values = False metric = MetricInt def _value(self, samples: np.ndarray) -> Metric[int]: if len(samples) > 0: days = samples[0] % 1000000 active = len(np.unique(samples // 1000000)) else: days = 1 active = 0 assert days > 0 value = int(active / days > self.ACTIVITY_DAYS_THRESHOLD_DENSITY) return self.metric.from_fields(True, value, None, None) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: column = facts[PushCommit.committed_date.name].dt.floor(freq="D").values column_in_range = (min_times[:, None] <= column) & (column < max_times[:, None]) timestamps = np.repeat(column[None, :], len(min_times), axis=0) result = timestamps.view(int) lengths = (max_times - min_times).astype("timedelta64[D]").view(int) result += lengths[:, None] result[~column_in_range] = self.nan return result @register_metric(DeveloperTopic.active0) class Active0Counter(AnyMetricCalculator[int]): """Calculate "dev-active0" metric.""" deps = (ActiveCounter,) may_have_negative_values = False metric = MetricInt def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: return self._calcs[0].peek @register_metric(DeveloperTopic.prs_created) class PRsCreatedCounter(DeveloperTopicCounter): """Calculate "dev-prs-created" metric.""" timestamp_column = PullRequest.created_at.name @register_metric(DeveloperTopic.prs_merged) class PRsMergedCounter(DeveloperTopicCounter): """Calculate "dev-prs-merged" metric.""" timestamp_column = PullRequest.merged_at.name @register_metric(DeveloperTopic.releases) class ReleasesCounter(DeveloperTopicCounter): """Calculate "dev-releases" metric.""" timestamp_column = Release.published_at.name @register_metric(DeveloperTopic.regular_pr_comments) class RegularPRCommentsCounter(DeveloperTopicCounter): """Calculate "dev-regular-pr-comments" metric.""" timestamp_column = PullRequestComment.created_at.name @register_metric(DeveloperTopic.review_pr_comments) class ReviewPRCommentsCounter(DeveloperTopicCounter): """Calculate "dev-review-pr-comments" metric.""" timestamp_column = PullRequestReviewComment.created_at.name @register_metric(DeveloperTopic.pr_comments) class PRCommentsCounter(DeveloperTopicCounter): """Calculate "dev-pr-comments" metric.""" timestamp_column = "created_at" @register_metric(DeveloperTopic.prs_reviewed) class PRReviewedCounter(SumMetricCalculator[int]): """Calculate "dev-prs-reviewed" metric.""" may_have_negative_values = False metric = MetricInt def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: result = np.full((len(min_times), len(facts)), self.nan, self.dtype) column = facts[PullRequestReview.submitted_at.name].values column_in_range = (min_times[:, None] <= column) & (column < max_times[:, None]) duplicated = facts.duplicated([ PullRequestReview.pull_request_node_id.name, developer_identity_column, ]).values column_in_range[np.broadcast_to(duplicated[None, :], result.shape)] = False result[column_in_range] = 1 return result @register_metric(DeveloperTopic.reviews) class ReviewsCounter(DeveloperTopicCounter): """Calculate "dev-reviews" metric.""" timestamp_column = PullRequestReview.submitted_at.name class ReviewStatesCounter(SumMetricCalculator[int]): """Count reviews with the specified outcome in `state`.""" may_have_negative_values = False metric = MetricInt state = None def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: result = np.full((len(min_times), len(facts)), self.nan, self.dtype) column = facts[PullRequestReview.submitted_at.name].values column_in_range = (min_times[:, None] <= column) & (column < max_times[:, None]) wrong_state = facts[PullRequestReview.state.name].values != self.state.value column_in_range[np.broadcast_to(wrong_state[None, :], result.shape)] = False result[column_in_range] = 1 return result @register_metric(DeveloperTopic.review_approvals) class ApprovalsCounter(ReviewStatesCounter): """Calculate "dev-review-approved" metric.""" state = ReviewResolution.APPROVED @register_metric(DeveloperTopic.review_rejections) class RejectionsCounter(ReviewStatesCounter): """Calculate "dev-review-rejected" metric.""" state = ReviewResolution.CHANGES_REQUESTED @register_metric(DeveloperTopic.review_neutrals) class NeutralReviewsCounter(ReviewStatesCounter): """Calculate "dev-review-neutrals" metric.""" state = ReviewResolution.COMMENTED @register_metric(DeveloperTopic.worked) class WorkedCounter(AnyMetricCalculator[int]): """Calculate "dev-worked" metric.""" deps = ( PRsCreatedCounter, PRsMergedCounter, ReleasesCounter, CommitsPushedCounter, ReviewsCounter, RegularPRCommentsCounter, ) may_have_negative_values = False metric = MetricInt def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.array: result = np.full((len(min_times), len(facts)), 0, self.dtype) for calc in self._calcs: result |= calc.peek > 0 result[result == 0] = self.nan return result def group_actions_by_developers(devs: Sequence[Collection[str]], df: pd.DataFrame, ) -> List[np.ndarray]: """Group developer actions by developer groups.""" indexes = [] identities = df[developer_identity_column].values.astype("S") for group in devs: if len(group) == 1: dev = next(iter(group)) indexes.append(np.nonzero(identities == dev.encode())[0]) continue if isinstance(group, set): group = list(group) indexes.append(np.nonzero(np.in1d(identities, np.array(group, dtype="S")))[0]) return indexes
[ "typing.TypeVar", "numpy.broadcast_to", "numpy.array", "numpy.unique" ]
[((808, 820), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (815, 820), False, 'from typing import Collection, Dict, List, Sequence, Type, TypeVar\n'), ((7516, 7566), 'numpy.broadcast_to', 'np.broadcast_to', (['duplicated[None, :]', 'result.shape'], {}), '(duplicated[None, :], result.shape)\n', (7531, 7566), True, 'import numpy as np\n'), ((8544, 8595), 'numpy.broadcast_to', 'np.broadcast_to', (['wrong_state[None, :]', 'result.shape'], {}), '(wrong_state[None, :], result.shape)\n', (8559, 8595), True, 'import numpy as np\n'), ((4206, 4235), 'numpy.unique', 'np.unique', (['(samples // 1000000)'], {}), '(samples // 1000000)\n', (4215, 4235), True, 'import numpy as np\n'), ((10604, 10630), 'numpy.array', 'np.array', (['group'], {'dtype': '"""S"""'}), "(group, dtype='S')\n", (10612, 10630), True, 'import numpy as np\n')]
''' Test the FFT functions ''' import numpy as np from .. import LombScargle as LS import matplotlib.pyplot as plt import matplotlib.colors as colors from mpl_toolkits.axes_grid1 import make_axes_locatable from ..Tools.mode import mode from ..Tools.DetectGaps import DetectGaps from ..Spectrogram.SpectrogramPlotter import SpectrogramPlotter def Spectrum(): #pick two frequencies f0 = 0.002 f1 = 0.005 #amplitudes A0 = 2.0 A1 = 1.5 #phases p0 = np.pi/2.0 p1 = 0.0 #time series t = np.arange(1000.0) dt = np.random.rand(t.size)*5 t = t + dt t.sort() v0 = A0*np.cos(2*np.pi*f0*t + p0) v1 = A1*np.cos(2*np.pi*f1*t + p1) v = v0 + v1 #frequencies freq = np.arange(2000,dtype='float32')/(np.float32(4000*1.0)) print(freq.max()) #spectrum power,A,phase,fr,fi = LS.LombScargle(t,v,freq) #figure fig = plt fig.figure(figsize=(8,11)) ax0 = fig.subplot2grid((2,1),(0,0)) ax1 = fig.subplot2grid((2,1),(1,0)) ax0.plot(t,v0,color='red',linestyle='--') ax0.plot(t,v1,color='orange',linestyle='--') ax0.plot(t,v,color='black',linestyle='-') ax1.plot(freq*1000.0,power,color='blue') ax0.set_xlabel('$t$ (s)') ax1.set_ylabel('Power') ax1.set_xlabel('Frequency (mHz)') fmx = np.min([freq.max(),1.5*np.max([f0,f1])]) ax1.set_xlim(0,fmx*1000) def Spectrogram(): #pick two frequencies f0 = 0.002 f1 = 0.005 #amplitudes A0 = 2.0 A1 = 1.5 #phases p0 = np.pi/2.0 p1 = 0.0 #time series t = np.arange(10800.0) dt = np.random.rand(t.size)*5 t = t + dt t.sort() v0 = A0*np.cos(2*np.pi*f0*t + p0) v1 = A1*np.cos(2*np.pi*f1*t + p1) v = v0 + v1 wind = 1800 slip = 200 #frequencies freq = np.arange(900,dtype='float32')/(np.float32(1800*1.0)) #figure fig = plt fig.figure(figsize=(8,11)) ax0 = fig.subplot2grid((2,1),(0,0)) ax1 = fig.subplot2grid((2,1),(1,0)) ax0.plot(t,v0,color='red',linestyle='--') ax0.plot(t,v1,color='orange',linestyle='--') ax0.plot(t,v,color='black',linestyle='-') ax0.set_xlabel('Time (s)') #spectrogram ax1,Nw,Freq,Spec = LS.PlotSpectrogram(t,v,wind,slip,Freq=freq,FreqAxisUnits='mHz',fig=fig,maps=[1,2,0,1]) fmx = np.min([Freq.max(),1.5*np.max([f0,f1])]) ax1.set_ylim(0,fmx*1000) def Spectrogram2(): #pick two frequencies f0 = 0.002 f1 = 0.005 #amplitudes A0 = 2.0 A1 = 1.5 #phases p0 = np.pi/2.0 p1 = 0.0 #time series t = np.arange(10800.0) dt = np.random.rand(t.size)*5 t = t + dt t.sort() v0 = A0*np.cos(2*np.pi*f0*t + p0) v1 = A1*np.cos(2*np.pi*f1*t + p1) v = v0 + v1 wind = 1800 slip = 200 #frequencies freq = np.arange(900,dtype='float32')/(np.float32(1800*1.0)) #figure fig = plt fig.figure(figsize=(8,11)) ax0 = fig.subplot2grid((2,1),(0,0)) ax1 = fig.subplot2grid((2,1),(1,0)) ax0.plot(t,v0,color='red',linestyle='--') ax0.plot(t,v1,color='orange',linestyle='--') ax0.plot(t,v,color='black',linestyle='-') ax0.set_xlabel('Time (s)') Nw,Freq,Spec = LS.Spectrogram(t,v,wind,slip,Freq=freq) #spectrogram ax1,Nw,Freq,Spec = LS.PlotSpectrogram(Freq,Spec,FreqAxisUnits='mHz',fig=fig,maps=[1,2,0,1]) fmx = np.min([Freq.max(),1.5*np.max([f0,f1])]) ax1.set_ylim(0,fmx*1000) def Spectrogram3(): #pick two frequencies f0 = 0.002 f1 = 0.005 #amplitudes A0 = 2.0 A1 = 1.5 #phases p0 = np.pi/2.0 p1 = 0.0 #time series t = np.arange(10800.0) dt = np.random.rand(t.size)*5 t = t + dt t.sort() v0 = A0*np.cos(2*np.pi*f0*t + p0) v1 = A1*np.cos(2*np.pi*f1*t + p1) v = v0 + v1 wind = 1800 slip = 200 #frequencies freq = np.arange(900,dtype='float32')/(np.float32(1800*1.0)) #figure fig = plt fig.figure(figsize=(8,11)) ax0 = fig.subplot2grid((2,1),(0,0)) ax1 = fig.subplot2grid((2,1),(1,0)) ax0.plot(t,v0,color='red',linestyle='--') ax0.plot(t,v1,color='orange',linestyle='--') ax0.plot(t,v,color='black',linestyle='-') ax0.set_xlabel('Time (s)') Nw,Freq,Spec = LS.Spectrogram(t,v,wind,slip,Freq=freq) #spectrogram ax1 = SpectrogramPlotter(Spec.Tspec,Freq*1000,Spec.Pow,fig=fig,maps=[1,2,0,1]) fmx = np.min([Freq.max(),1.5*np.max([f0,f1])]) ax1.set_ylim(0,fmx*1000) def Spectrogram3D(): #pick some frequencies fx0 = 0.002 fx1 = 0.007 fy0 = 0.007 fy1 = 0.010 #amplitudes A0 = 2.0 A1 = 1.5 #phases p0 = np.pi/2.0 p1 = 0.0 #time series t = np.arange(10800.0) dt = np.random.rand(t.size)*5 t = t + dt t.sort() x0 = A0*np.cos(2*np.pi*fx0*t + p0) x1 = A1*np.cos(2*np.pi*fx1*t + p1) x = x0 + x1 y0 = A0*np.cos(2*np.pi*fy0*t + p0) y1 = A1*np.cos(2*np.pi*fy1*t + p1) y = y0 + y1 z = np.zeros(t.size,dtype='float32') #frequencies freq = np.arange(900,dtype='float32')/(np.float32(1800*1.0)) #spectrogram wind = 1800 slip = 200 Nw,Freq,Spec = LS.Spectrogram3D(t,x,y,z,wind,slip,Freq=freq,CombineComps=True) Nf = Freq.size - 1 S = Spec.xyPow f = Freq[:Nf+1]*1000.0 ts = Spec.Tspec xlabel = 'Time (s)' dt = mode(ts[1:] - ts[:-1])/2.0 scale = [np.nanmin(S),np.nanmax(S)] norm = colors.Normalize(vmin=scale[0],vmax=scale[1]) cmap = plt.cm.get_cmap('gnuplot') #find gaps gaps = np.where(np.isfinite(S[:,1]) == False)[0] ngd,T0,T1 = DetectGaps(S[:,1]) #figure fig = plt fig.figure(figsize=(8,11)) ax0 = fig.subplot2grid((2,1),(0,0)) ax1 = fig.subplot2grid((2,1),(1,0)) ax0.plot(t,x,color='red') ax0.plot(t,y,color='orange') sm = None for i in range(0,ngd): #select the good portion of the use = np.arange(T0[i],T1[i]+1) tax = np.append(ts[use]-dt,ts[use[-1]]+dt) Stmp = S[use] #mesh the axes tm,fm = np.meshgrid(tax,f) #plot the section sm = ax1.pcolormesh(tm.T,fm.T,Stmp,cmap=cmap,norm=norm) #colour bar fig.subplots_adjust(right=0.8) box = ax1.get_position() if not sm is None: cax = plt.axes([0.05*box.width + box.x1,box.y0+0.1*box.height,box.width*0.025,box.height*0.8]) cbar = fig.colorbar(sm,cax=cax) cbar.set_label('Power') #axis labels ax1.set_xlabel(xlabel) ax1.set_ylabel('$f$ (mHz)') fmx = np.min([Freq.max(),1.5*np.max([fx0,fx1,fy0,fy1])]) ax1.set_ylim(0,fmx*1000) return Spec
[ "numpy.meshgrid", "matplotlib.colors.Normalize", "matplotlib.pyplot.axes", "numpy.float32", "numpy.zeros", "numpy.isfinite", "numpy.nanmin", "numpy.append", "numpy.max", "numpy.arange", "numpy.cos", "numpy.random.rand", "matplotlib.pyplot.cm.get_cmap", "numpy.nanmax" ]
[((502, 519), 'numpy.arange', 'np.arange', (['(1000.0)'], {}), '(1000.0)\n', (511, 519), True, 'import numpy as np\n'), ((1455, 1473), 'numpy.arange', 'np.arange', (['(10800.0)'], {}), '(10800.0)\n', (1464, 1473), True, 'import numpy as np\n'), ((2364, 2382), 'numpy.arange', 'np.arange', (['(10800.0)'], {}), '(10800.0)\n', (2373, 2382), True, 'import numpy as np\n'), ((3320, 3338), 'numpy.arange', 'np.arange', (['(10800.0)'], {}), '(10800.0)\n', (3329, 3338), True, 'import numpy as np\n'), ((4292, 4310), 'numpy.arange', 'np.arange', (['(10800.0)'], {}), '(10800.0)\n', (4301, 4310), True, 'import numpy as np\n'), ((4541, 4574), 'numpy.zeros', 'np.zeros', (['t.size'], {'dtype': '"""float32"""'}), "(t.size, dtype='float32')\n", (4549, 4574), True, 'import numpy as np\n'), ((4949, 4995), 'matplotlib.colors.Normalize', 'colors.Normalize', ([], {'vmin': 'scale[0]', 'vmax': 'scale[1]'}), '(vmin=scale[0], vmax=scale[1])\n', (4965, 4995), True, 'import matplotlib.colors as colors\n'), ((5004, 5030), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', (['"""gnuplot"""'], {}), "('gnuplot')\n", (5019, 5030), True, 'import matplotlib.pyplot as plt\n'), ((526, 548), 'numpy.random.rand', 'np.random.rand', (['t.size'], {}), '(t.size)\n', (540, 548), True, 'import numpy as np\n'), ((584, 615), 'numpy.cos', 'np.cos', (['(2 * np.pi * f0 * t + p0)'], {}), '(2 * np.pi * f0 * t + p0)\n', (590, 615), True, 'import numpy as np\n'), ((619, 650), 'numpy.cos', 'np.cos', (['(2 * np.pi * f1 * t + p1)'], {}), '(2 * np.pi * f1 * t + p1)\n', (625, 650), True, 'import numpy as np\n'), ((682, 714), 'numpy.arange', 'np.arange', (['(2000)'], {'dtype': '"""float32"""'}), "(2000, dtype='float32')\n", (691, 714), True, 'import numpy as np\n'), ((715, 737), 'numpy.float32', 'np.float32', (['(4000 * 1.0)'], {}), '(4000 * 1.0)\n', (725, 737), True, 'import numpy as np\n'), ((1480, 1502), 'numpy.random.rand', 'np.random.rand', (['t.size'], {}), '(t.size)\n', (1494, 1502), True, 'import numpy as np\n'), ((1537, 1568), 'numpy.cos', 'np.cos', (['(2 * np.pi * f0 * t + p0)'], {}), '(2 * np.pi * f0 * t + p0)\n', (1543, 1568), True, 'import numpy as np\n'), ((1572, 1603), 'numpy.cos', 'np.cos', (['(2 * np.pi * f1 * t + p1)'], {}), '(2 * np.pi * f1 * t + p1)\n', (1578, 1603), True, 'import numpy as np\n'), ((1661, 1692), 'numpy.arange', 'np.arange', (['(900)'], {'dtype': '"""float32"""'}), "(900, dtype='float32')\n", (1670, 1692), True, 'import numpy as np\n'), ((1693, 1715), 'numpy.float32', 'np.float32', (['(1800 * 1.0)'], {}), '(1800 * 1.0)\n', (1703, 1715), True, 'import numpy as np\n'), ((2389, 2411), 'numpy.random.rand', 'np.random.rand', (['t.size'], {}), '(t.size)\n', (2403, 2411), True, 'import numpy as np\n'), ((2446, 2477), 'numpy.cos', 'np.cos', (['(2 * np.pi * f0 * t + p0)'], {}), '(2 * np.pi * f0 * t + p0)\n', (2452, 2477), True, 'import numpy as np\n'), ((2481, 2512), 'numpy.cos', 'np.cos', (['(2 * np.pi * f1 * t + p1)'], {}), '(2 * np.pi * f1 * t + p1)\n', (2487, 2512), True, 'import numpy as np\n'), ((2570, 2601), 'numpy.arange', 'np.arange', (['(900)'], {'dtype': '"""float32"""'}), "(900, dtype='float32')\n", (2579, 2601), True, 'import numpy as np\n'), ((2602, 2624), 'numpy.float32', 'np.float32', (['(1800 * 1.0)'], {}), '(1800 * 1.0)\n', (2612, 2624), True, 'import numpy as np\n'), ((3345, 3367), 'numpy.random.rand', 'np.random.rand', (['t.size'], {}), '(t.size)\n', (3359, 3367), True, 'import numpy as np\n'), ((3402, 3433), 'numpy.cos', 'np.cos', (['(2 * np.pi * f0 * t + p0)'], {}), '(2 * np.pi * f0 * t + p0)\n', (3408, 3433), True, 'import numpy as np\n'), ((3437, 3468), 'numpy.cos', 'np.cos', (['(2 * np.pi * f1 * t + p1)'], {}), '(2 * np.pi * f1 * t + p1)\n', (3443, 3468), True, 'import numpy as np\n'), ((3526, 3557), 'numpy.arange', 'np.arange', (['(900)'], {'dtype': '"""float32"""'}), "(900, dtype='float32')\n", (3535, 3557), True, 'import numpy as np\n'), ((3558, 3580), 'numpy.float32', 'np.float32', (['(1800 * 1.0)'], {}), '(1800 * 1.0)\n', (3568, 3580), True, 'import numpy as np\n'), ((4317, 4339), 'numpy.random.rand', 'np.random.rand', (['t.size'], {}), '(t.size)\n', (4331, 4339), True, 'import numpy as np\n'), ((4375, 4407), 'numpy.cos', 'np.cos', (['(2 * np.pi * fx0 * t + p0)'], {}), '(2 * np.pi * fx0 * t + p0)\n', (4381, 4407), True, 'import numpy as np\n'), ((4411, 4443), 'numpy.cos', 'np.cos', (['(2 * np.pi * fx1 * t + p1)'], {}), '(2 * np.pi * fx1 * t + p1)\n', (4417, 4443), True, 'import numpy as np\n'), ((4460, 4492), 'numpy.cos', 'np.cos', (['(2 * np.pi * fy0 * t + p0)'], {}), '(2 * np.pi * fy0 * t + p0)\n', (4466, 4492), True, 'import numpy as np\n'), ((4496, 4528), 'numpy.cos', 'np.cos', (['(2 * np.pi * fy1 * t + p1)'], {}), '(2 * np.pi * fy1 * t + p1)\n', (4502, 4528), True, 'import numpy as np\n'), ((4597, 4628), 'numpy.arange', 'np.arange', (['(900)'], {'dtype': '"""float32"""'}), "(900, dtype='float32')\n", (4606, 4628), True, 'import numpy as np\n'), ((4629, 4651), 'numpy.float32', 'np.float32', (['(1800 * 1.0)'], {}), '(1800 * 1.0)\n', (4639, 4651), True, 'import numpy as np\n'), ((4914, 4926), 'numpy.nanmin', 'np.nanmin', (['S'], {}), '(S)\n', (4923, 4926), True, 'import numpy as np\n'), ((4927, 4939), 'numpy.nanmax', 'np.nanmax', (['S'], {}), '(S)\n', (4936, 4939), True, 'import numpy as np\n'), ((5391, 5418), 'numpy.arange', 'np.arange', (['T0[i]', '(T1[i] + 1)'], {}), '(T0[i], T1[i] + 1)\n', (5400, 5418), True, 'import numpy as np\n'), ((5424, 5465), 'numpy.append', 'np.append', (['(ts[use] - dt)', '(ts[use[-1]] + dt)'], {}), '(ts[use] - dt, ts[use[-1]] + dt)\n', (5433, 5465), True, 'import numpy as np\n'), ((5510, 5529), 'numpy.meshgrid', 'np.meshgrid', (['tax', 'f'], {}), '(tax, f)\n', (5521, 5529), True, 'import numpy as np\n'), ((5708, 5813), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.05 * box.width + box.x1, box.y0 + 0.1 * box.height, box.width * 0.025, \n box.height * 0.8]'], {}), '([0.05 * box.width + box.x1, box.y0 + 0.1 * box.height, box.width *\n 0.025, box.height * 0.8])\n', (5716, 5813), True, 'import matplotlib.pyplot as plt\n'), ((1247, 1263), 'numpy.max', 'np.max', (['[f0, f1]'], {}), '([f0, f1])\n', (1253, 1263), True, 'import numpy as np\n'), ((2157, 2173), 'numpy.max', 'np.max', (['[f0, f1]'], {}), '([f0, f1])\n', (2163, 2173), True, 'import numpy as np\n'), ((3111, 3127), 'numpy.max', 'np.max', (['[f0, f1]'], {}), '([f0, f1])\n', (3117, 3127), True, 'import numpy as np\n'), ((4054, 4070), 'numpy.max', 'np.max', (['[f0, f1]'], {}), '([f0, f1])\n', (4060, 4070), True, 'import numpy as np\n'), ((5061, 5081), 'numpy.isfinite', 'np.isfinite', (['S[:, 1]'], {}), '(S[:, 1])\n', (5072, 5081), True, 'import numpy as np\n'), ((5960, 5988), 'numpy.max', 'np.max', (['[fx0, fx1, fy0, fy1]'], {}), '([fx0, fx1, fy0, fy1])\n', (5966, 5988), True, 'import numpy as np\n')]
import numpy as np from unittest import TestCase from diffprivlib.mechanisms import Exponential from diffprivlib.utils import global_seed class TestExponential(TestCase): def setup_method(self, method): if method.__name__ .endswith("prob"): global_seed(314159) self.mech = Exponential() def teardown_method(self, method): del self.mech def test_not_none(self): self.assertIsNotNone(self.mech) def test_class(self): from diffprivlib.mechanisms import DPMechanism self.assertTrue(issubclass(Exponential, DPMechanism)) def test_no_params(self): with self.assertRaises(ValueError): self.mech.randomise("A") def test_no_epsilon(self): utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ] self.mech.set_utility(utility_list) with self.assertRaises(ValueError): self.mech.randomise("A") def test_inf_epsilon(self): utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ] self.mech.set_utility(utility_list).set_epsilon(float("inf")) # print(_mech.randomise("A")) for i in range(1000): self.assertEqual(self.mech.randomise("A"), "A") def test_neg_epsilon(self): with self.assertRaises(ValueError): self.mech.set_epsilon(-1) def test_complex_epsilon(self): with self.assertRaises(TypeError): self.mech.set_epsilon(1+2j) def test_string_epsilon(self): with self.assertRaises(TypeError): self.mech.set_epsilon("Two") def test_non_zero_delta(self): with self.assertRaises(ValueError): self.mech.set_epsilon_delta(1, 0.5) def test_no_utility(self): self.mech.set_epsilon(1) with self.assertRaises(ValueError): self.mech.randomise("1") def test_hierarchy_first(self): utility_list = [ ["A", "B", 1], ["A", "2", 2], ["B", "2", 2] ] self.mech.set_utility(utility_list) self.assertIsNotNone(self.mech) def test_non_string_hierarchy(self): utility_list = [ ["A", "B", 1], ["A", 2, 2], ["B", 2, 2] ] with self.assertRaises(TypeError): self.mech.set_utility(utility_list) def test_missing_utilities(self): utility_list = [ ["A", "B", 1], ["A", "C", 2] ] with self.assertRaises(ValueError): self.mech.set_utility(utility_list) def test_wrong_utilities(self): utility_list = ( ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ) with self.assertRaises(TypeError): self.mech.set_utility(utility_list) utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", "2"] ] with self.assertRaises(TypeError): self.mech.set_utility(utility_list) utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", -2] ] with self.assertRaises(ValueError): self.mech.set_utility(utility_list) def test_non_string_input(self): utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ] self.mech.set_epsilon(1).set_utility(utility_list) with self.assertRaises(TypeError): self.mech.randomise(2) def test_outside_domain(self): utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ] self.mech.set_epsilon(1).set_utility(utility_list) with self.assertRaises(ValueError): self.mech.randomise("D") def test_get_utility_list(self): self.assertIsNone(self.mech.get_utility_list()) utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ] self.mech.set_epsilon(1).set_utility(utility_list) _utility_list = self.mech.get_utility_list() self.assertEqual(len(_utility_list), len(utility_list)) def test_self_in_utility(self): utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2], ["A", "A", 5] ] self.mech.set_epsilon(1).set_utility(utility_list) _utility_list = self.mech.get_utility_list() self.assertEqual(len(_utility_list) + 1, len(utility_list)) self.assertEqual(self.mech._get_utility("A", "A"), 0) def test_distrib_prob(self): epsilon = np.log(2) runs = 20000 utility_list = [ ["A", "B", 1], ["A", "C", 2], ["B", "C", 2] ] self.mech.set_epsilon(epsilon).set_utility(utility_list) count = [0, 0, 0] for i in range(runs): val = self.mech.randomise("A") if val == "A": count[0] += 1 elif val == "B": count[1] += 1 elif val == "C": count[2] += 1 # print("A: %d, B: %d, C: %d" % (count[0], count[1], count[2])) self.assertLessEqual(count[0] / runs, np.exp(epsilon) * count[2] / runs + 0.05) self.assertAlmostEqual(count[0] / count[1], count[1] / count[2], delta=0.1) def test_repr(self): repr_ = repr(self.mech.set_epsilon(1)) self.assertIn(".Exponential(", repr_)
[ "diffprivlib.utils.global_seed", "numpy.exp", "diffprivlib.mechanisms.Exponential", "numpy.log" ]
[((309, 322), 'diffprivlib.mechanisms.Exponential', 'Exponential', ([], {}), '()\n', (320, 322), False, 'from diffprivlib.mechanisms import Exponential\n'), ((4765, 4774), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (4771, 4774), True, 'import numpy as np\n'), ((268, 287), 'diffprivlib.utils.global_seed', 'global_seed', (['(314159)'], {}), '(314159)\n', (279, 287), False, 'from diffprivlib.utils import global_seed\n'), ((5370, 5385), 'numpy.exp', 'np.exp', (['epsilon'], {}), '(epsilon)\n', (5376, 5385), True, 'import numpy as np\n')]
""" ShakeDrop-ResNet for CIFAR/SVHN, implemented in Gluon. Original paper: 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. """ __all__ = ['CIFARShakeDropResNet', 'shakedropresnet20_cifar10', 'shakedropresnet20_cifar100', 'shakedropresnet20_svhn'] import os import numpy as np import mxnet as mx from mxnet import cpu from mxnet.gluon import nn, HybridBlock from .common import conv1x1_block, conv3x3_block from .resnet import ResBlock, ResBottleneck class ShakeDrop(mx.autograd.Function): """ ShakeDrop function. Parameters: ---------- p : float ShakeDrop specific probability (of life) for Bernoulli random variable. """ def __init__(self, p): super(ShakeDrop, self).__init__() self.p = p def forward(self, x): if mx.autograd.is_training(): b = np.random.binomial(n=1, p=self.p) alpha = mx.nd.random.uniform_like(x.slice(begin=(None, 0, 0, 0), end=(None, 1, 1, 1)), low=-1.0, high=1.0) y = mx.nd.broadcast_mul(b + alpha - b * alpha, x) self.save_for_backward(b) else: y = self.p * x return y def backward(self, dy): b, = self.saved_tensors beta = mx.nd.random.uniform_like(dy.slice(begin=(None, 0, 0, 0), end=(None, 1, 1, 1)), low=0.0, high=1.0) return mx.nd.broadcast_mul(b + beta - b * beta, dy) class ShakeDropResUnit(HybridBlock): """ ShakeDrop-ResNet unit with residual connection. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the convolution. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bottleneck : bool Whether to use a bottleneck or simple block in units. life_prob : float Residual branch life probability. """ def __init__(self, in_channels, out_channels, strides, bn_use_global_stats, bottleneck, life_prob, **kwargs): super(ShakeDropResUnit, self).__init__(**kwargs) self.life_prob = life_prob self.resize_identity = (in_channels != out_channels) or (strides != 1) body_class = ResBottleneck if bottleneck else ResBlock with self.name_scope(): self.body = body_class( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats) if self.resize_identity: self.identity_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, activation=None) self.activ = nn.Activation("relu") # self.shake_drop = ShakeDrop(self.life_prob) def hybrid_forward(self, F, x): if self.resize_identity: identity = self.identity_conv(x) else: identity = x x = self.body(x) x = ShakeDrop(self.life_prob)(x) + identity # x = self.shake_drop(x) + identity x = self.activ(x) return x class CIFARShakeDropResNet(HybridBlock): """ ShakeDrop-ResNet model for CIFAR from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. life_probs : list of float Residual branch life probability for each unit. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. Useful for fine-tuning. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (32, 32) Spatial size of the expected input image. classes : int, default 10 Number of classification classes. """ def __init__(self, channels, init_block_channels, bottleneck, life_probs, bn_use_global_stats=False, in_channels=3, in_size=(32, 32), classes=10, **kwargs): super(CIFARShakeDropResNet, self).__init__(**kwargs) self.in_size = in_size self.classes = classes with self.name_scope(): self.features = nn.HybridSequential(prefix="") self.features.add(conv3x3_block( in_channels=in_channels, out_channels=init_block_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = init_block_channels k = 0 for i, channels_per_stage in enumerate(channels): stage = nn.HybridSequential(prefix="stage{}_".format(i + 1)) with stage.name_scope(): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 stage.add(ShakeDropResUnit( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, bottleneck=bottleneck, life_prob=life_probs[k])) in_channels = out_channels k += 1 self.features.add(stage) self.features.add(nn.AvgPool2D( pool_size=8, strides=1)) self.output = nn.HybridSequential(prefix="") self.output.add(nn.Flatten()) self.output.add(nn.Dense( units=classes, in_units=in_channels)) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x def get_shakedropresnet_cifar(classes, blocks, bottleneck, model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): """ Create ShakeDrop-ResNet model for CIFAR with specific parameters. Parameters: ---------- classes : int Number of classification classes. blocks : int Number of blocks. bottleneck : bool Whether to use a bottleneck or simple block in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ assert (classes in [10, 100]) if bottleneck: assert ((blocks - 2) % 9 == 0) layers = [(blocks - 2) // 9] * 3 else: assert ((blocks - 2) % 6 == 0) layers = [(blocks - 2) // 6] * 3 init_block_channels = 16 channels_per_layers = [16, 32, 64] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] if bottleneck: channels = [[cij * 4 for cij in ci] for ci in channels] total_layers = sum(layers) final_death_prob = 0.5 life_probs = [1.0 - float(i + 1) / float(total_layers) * final_death_prob for i in range(total_layers)] net = CIFARShakeDropResNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, life_probs=life_probs, classes=classes, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx) return net def shakedropresnet20_cifar10(classes=10, **kwargs): """ ShakeDrop-ResNet-20 model for CIFAR-10 from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_shakedropresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="shakedropresnet20_cifar10", **kwargs) def shakedropresnet20_cifar100(classes=100, **kwargs): """ ShakeDrop-ResNet-20 model for CIFAR-100 from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_shakedropresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="shakedropresnet20_cifar100", **kwargs) def shakedropresnet20_svhn(classes=10, **kwargs): """ ShakeDrop-ResNet-20 model for SVHN from 'ShakeDrop Regularization for Deep Residual Learning,' https://arxiv.org/abs/1802.02375. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_shakedropresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="shakedropresnet20_svhn", **kwargs) def _test(): import numpy as np import mxnet as mx pretrained = False models = [ (shakedropresnet20_cifar10, 10), (shakedropresnet20_cifar100, 100), (shakedropresnet20_svhn, 10), ] for model, classes in models: net = model(pretrained=pretrained) ctx = mx.cpu() if not pretrained: net.initialize(ctx=ctx) # net.hybridize() net_params = net.collect_params() weight_count = 0 for param in net_params.values(): if (param.shape is None) or (not param._differentiable): continue weight_count += np.prod(param.shape) print("m={}, {}".format(model.__name__, weight_count)) assert (model != shakedropresnet20_cifar10 or weight_count == 272474) assert (model != shakedropresnet20_cifar100 or weight_count == 278324) assert (model != shakedropresnet20_svhn or weight_count == 272474) x = mx.nd.zeros((14, 3, 32, 32), ctx=ctx) # y = net(x) with mx.autograd.record(): y = net(x) y.backward() assert (y.shape == (14, classes)) if __name__ == "__main__": _test()
[ "numpy.random.binomial", "mxnet.autograd.is_training", "mxnet.autograd.record", "mxnet.gluon.nn.HybridSequential", "mxnet.gluon.nn.Dense", "mxnet.gluon.nn.Activation", "mxnet.nd.zeros", "mxnet.nd.broadcast_mul", "mxnet.cpu", "mxnet.gluon.nn.AvgPool2D", "os.path.join", "mxnet.gluon.nn.Flatten", "numpy.prod" ]
[((6743, 6748), 'mxnet.cpu', 'cpu', ([], {}), '()\n', (6746, 6748), False, 'from mxnet import cpu\n'), ((6785, 6822), 'os.path.join', 'os.path.join', (['"""~"""', '""".mxnet"""', '"""models"""'], {}), "('~', '.mxnet', 'models')\n", (6797, 6822), False, 'import os\n'), ((834, 859), 'mxnet.autograd.is_training', 'mx.autograd.is_training', ([], {}), '()\n', (857, 859), True, 'import mxnet as mx\n'), ((1378, 1422), 'mxnet.nd.broadcast_mul', 'mx.nd.broadcast_mul', (['(b + beta - b * beta)', 'dy'], {}), '(b + beta - b * beta, dy)\n', (1397, 1422), True, 'import mxnet as mx\n'), ((11422, 11430), 'mxnet.cpu', 'mx.cpu', ([], {}), '()\n', (11428, 11430), True, 'import mxnet as mx\n'), ((12081, 12118), 'mxnet.nd.zeros', 'mx.nd.zeros', (['(14, 3, 32, 32)'], {'ctx': 'ctx'}), '((14, 3, 32, 32), ctx=ctx)\n', (12092, 12118), True, 'import mxnet as mx\n'), ((877, 910), 'numpy.random.binomial', 'np.random.binomial', ([], {'n': '(1)', 'p': 'self.p'}), '(n=1, p=self.p)\n', (895, 910), True, 'import numpy as np\n'), ((1046, 1091), 'mxnet.nd.broadcast_mul', 'mx.nd.broadcast_mul', (['(b + alpha - b * alpha)', 'x'], {}), '(b + alpha - b * alpha, x)\n', (1065, 1091), True, 'import mxnet as mx\n'), ((3082, 3103), 'mxnet.gluon.nn.Activation', 'nn.Activation', (['"""relu"""'], {}), "('relu')\n", (3095, 3103), False, 'from mxnet.gluon import nn, HybridBlock\n'), ((4961, 4991), 'mxnet.gluon.nn.HybridSequential', 'nn.HybridSequential', ([], {'prefix': '""""""'}), "(prefix='')\n", (4980, 4991), False, 'from mxnet.gluon import nn, HybridBlock\n'), ((6202, 6232), 'mxnet.gluon.nn.HybridSequential', 'nn.HybridSequential', ([], {'prefix': '""""""'}), "(prefix='')\n", (6221, 6232), False, 'from mxnet.gluon import nn, HybridBlock\n'), ((11752, 11772), 'numpy.prod', 'np.prod', (['param.shape'], {}), '(param.shape)\n', (11759, 11772), True, 'import numpy as np\n'), ((12153, 12173), 'mxnet.autograd.record', 'mx.autograd.record', ([], {}), '()\n', (12171, 12173), True, 'import mxnet as mx\n'), ((6104, 6140), 'mxnet.gluon.nn.AvgPool2D', 'nn.AvgPool2D', ([], {'pool_size': '(8)', 'strides': '(1)'}), '(pool_size=8, strides=1)\n', (6116, 6140), False, 'from mxnet.gluon import nn, HybridBlock\n'), ((6261, 6273), 'mxnet.gluon.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (6271, 6273), False, 'from mxnet.gluon import nn, HybridBlock\n'), ((6303, 6348), 'mxnet.gluon.nn.Dense', 'nn.Dense', ([], {'units': 'classes', 'in_units': 'in_channels'}), '(units=classes, in_units=in_channels)\n', (6311, 6348), False, 'from mxnet.gluon import nn, HybridBlock\n')]
import numpy as np import pandas as pd import pulp from laptimize.curve_approximation import CurveApproximator from laptimize.log import LogFactory class LAPModel(object): """solve the linear approximated LP problem and sub problems""" def __init__(self, name='nlp_problem'): self.logger = LogFactory.get_logger() self.lp_variables = dict() self.segment = pd.DataFrame() self.curve = pd.DataFrame() self.lp_slack = pulp.LpVariable.dict('p_%s', ['p1'], lowBound=0) self.model = pulp.LpProblem(name, pulp.LpMinimize) self.objective_expressions = [] self.constraint_expression = [] def initialize(self, segment=pd.DataFrame(), curve=pd.DataFrame(), name='nlp_sub_problem'): """ initialize variables for branching sub problems Parameters ---------- lp_variables: dict linear problem related variables segment: pandas data frame updated piecewise segment for decision variables curve: pandas data frame function values of objective and constraints function for each segment values name: string problem name Returns ------- self """ self.lp_variables = dict() self.segment = segment self.curve = curve self.model = pulp.LpProblem(name, pulp.LpMinimize) self.objective_expressions = [] self.constraint_expression = [] return self def generate_variable_names(self, no_of_segments, node_name): """ generate weight variables names for approximated lp problem Parameters --------- no_of_segments: int no of piecewise linear segment node_name: string non-linear decision variable name Returns ------ variable_names: list weight variable names ex:[x1_1,x1_2,x1_3] """ variable_names = [] for i in range(0, no_of_segments): variable_names.append("%s_%s" % (node_name, i)) return variable_names def define_weights_for_segment(self, variable_names, name): """ create linear problem related variables using piece wise variables Parameters --------- variable_names: list piece wise variable list name: string decision variable name Returns ------- self.lp_variable : dict update lp_variable dictionary with weight linear problem variables """ self.lp_variables[name] = pulp.LpVariable.dict('l_%s', variable_names, lowBound=0, upBound=1) return self.lp_variables[name] def fill_constraint_objective_arrays(self, lp_allocation, constraint): """ update objective and constraints expression lists for linear problem Parameters --------- lp_allocation: dict linear problem variables constraint: pandas data frame problem data frame Returns ------- weights: dict weights constraints expression problem_expressions: dict collection of objective and constraints expression """ try: problem_expressions = pd.DataFrame() for index in constraint.index: constraint_expression = [] weights = [] for key in lp_allocation: constraint_expression.append(lp_allocation[key] * self.curve.loc[key][index]) weights.append(lp_allocation[key]) problem_expressions[index] = list(constraint_expression) return weights, problem_expressions except Exception as err: self.logger.info('fill_constraint_objective_arrays method ended with error ') self.logger.error(str(err)) raise def add_sub_problem(self, segment_key, k): """ add sub problem constraint related to the weight variable Parameters ---------- segment_key: string branching variable key k: list branching sub variables key ex : [x1_1, x1_2] Returns ------- self """ # adding a sub problem for key in self.lp_variables[segment_key]: if key in k: continue else: self.model += self.lp_variables[segment_key][key] == 0 self.segment = self.segment.drop([key]) self.curve = self.curve.drop([key]) def add_weights_sum_constraint_to_model(self, weights): self.model += pulp.lpSum(weights) == 1 def add_model_constraint_and_objective(self, constraints, values): """ add constraint and objective function to the pulp lp problem Parameters ---------- constraints: pandas data frame problem data frame values: pandas series right side values for the constraints Returns ------- self """ try: # Add objective function to model. self.model += pulp.lpSum(constraints.objective) + self.lp_slack['p1'] constraints = constraints.drop(['objective'], axis=1) for constraint_expression in constraints: self.model += (pulp.lpSum(constraints[constraint_expression]) + self.lp_slack['p1']) <= values[ constraint_expression] except Exception as err: self.logger.info('add_model_constraint_and_objective method ended with error ') self.logger.error(str(err)) raise def solve_model(self): """ problem solve method for lp problems """ try: solver = pulp.PULP_CBC_CMD(msg=0) self.model.solve(solver) except Exception as err: self.logger.info('solve_model method ended with error ') self.logger.error(str(err)) raise def model_solver(self, constraints_df, partition_len): """ solve the initial lp problem with piecewise linear variables(weights) Parameters ---------- constraints_df: pandas data frame which include problem related details,data frame version of problem dictionary Returns ------- lp_variables: dict pulp solution for the lp weight variables lp_slack: dict value of the lp slack variable segment: pandas data frame segment values for each decision variable curve: pandas data frame function values of objective and constraints function for each segment values """ try: constraint_values = pd.DataFrame() constraints = constraints_df.drop(['value']) # Iterate over constrains and build model. for _, constraint in constraints.iterrows(): # piecewise linear segments. x_array = np.append(np.arange(constraint.capacity[0], constraint.capacity[1], partition_len), constraint.capacity[1]) no_of_segments = len(x_array) constraint = constraint.drop(['capacity']) variable_names = self.generate_variable_names(no_of_segments, constraint.name) # lp variable. lp_allocation = self.define_weights_for_segment(variable_names, constraint.name) # segment value. segment = pd.DataFrame({'key': [constraint.name] * len(x_array), 'segment': x_array}) segment.index = variable_names self.segment = pd.concat([self.segment, segment]) # curve approximation for each segment. curve = pd.DataFrame(CurveApproximator().get_curve_approximation(constraint, x_array)) curve.index = variable_names self.curve = pd.concat([self.curve, curve]) weights, problem_values = self.fill_constraint_objective_arrays(lp_allocation, constraint) constraint_values = pd.concat([constraint_values, problem_values], axis=0) self.add_weights_sum_constraint_to_model(weights) self.add_model_constraint_and_objective(constraint_values, constraints_df.loc['value']) self.solve_model() return self.lp_variables, self.segment, self.curve except Exception as err: self.logger.info('model_solver method ended with error ') self.logger.error(str(err)) raise def global_solver(self, segment_key, k, constraints_df): """ solve the given sub lp problem with branching rule Parameters ---------- segment_key: str branching variable key ex: x1 k: list branching sub variables key ex : [x1_1, x1-2] constraints_df: pandas data frame which include problem related details,data frame version of problem dictionary Returns ------- lp_variables: dict pulp solution for the lp weight variables lp_slack: dict value of the lp slack variable segment: pandas data frame segment values for each decision variable curve: pandas data frame function values of objective and constraints functions for each segment values """ # Iterate over constrains and build model. try: constraint_values = pd.DataFrame() constraints = constraints_df.drop(['value']) for _, constraint in constraints.iterrows(): constraint = constraint.drop(['capacity']) segment = self.segment[self.segment.key == constraint.name]['segment'].to_dict() variable_names = list(segment.keys()) lp_allocation = self.define_weights_for_segment(variable_names, constraint.name) weights, problem_values = self.fill_constraint_objective_arrays(lp_allocation, constraint) constraint_values = pd.concat([constraint_values, problem_values], axis=0) self.add_weights_sum_constraint_to_model(weights) # adding sub problem self.add_sub_problem(segment_key, k) self.add_model_constraint_and_objective(constraint_values, constraints_df.loc['value']) self.solve_model() return self.lp_variables, self.segment, self.curve except Exception as err: self.logger.info('global_solver method ended with error ') self.logger.error(str(err)) raise
[ "pandas.DataFrame", "pulp.lpSum", "laptimize.curve_approximation.CurveApproximator", "pulp.LpVariable.dict", "numpy.arange", "pulp.LpProblem", "pulp.PULP_CBC_CMD", "pandas.concat", "laptimize.log.LogFactory.get_logger" ]
[((310, 333), 'laptimize.log.LogFactory.get_logger', 'LogFactory.get_logger', ([], {}), '()\n', (331, 333), False, 'from laptimize.log import LogFactory\n'), ((392, 406), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (404, 406), True, 'import pandas as pd\n'), ((428, 442), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (440, 442), True, 'import pandas as pd\n'), ((467, 515), 'pulp.LpVariable.dict', 'pulp.LpVariable.dict', (['"""p_%s"""', "['p1']"], {'lowBound': '(0)'}), "('p_%s', ['p1'], lowBound=0)\n", (487, 515), False, 'import pulp\n'), ((537, 574), 'pulp.LpProblem', 'pulp.LpProblem', (['name', 'pulp.LpMinimize'], {}), '(name, pulp.LpMinimize)\n', (551, 574), False, 'import pulp\n'), ((689, 703), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (701, 703), True, 'import pandas as pd\n'), ((711, 725), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (723, 725), True, 'import pandas as pd\n'), ((1368, 1405), 'pulp.LpProblem', 'pulp.LpProblem', (['name', 'pulp.LpMinimize'], {}), '(name, pulp.LpMinimize)\n', (1382, 1405), False, 'import pulp\n'), ((2636, 2703), 'pulp.LpVariable.dict', 'pulp.LpVariable.dict', (['"""l_%s"""', 'variable_names'], {'lowBound': '(0)', 'upBound': '(1)'}), "('l_%s', variable_names, lowBound=0, upBound=1)\n", (2656, 2703), False, 'import pulp\n'), ((3334, 3348), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3346, 3348), True, 'import pandas as pd\n'), ((4733, 4752), 'pulp.lpSum', 'pulp.lpSum', (['weights'], {}), '(weights)\n', (4743, 4752), False, 'import pulp\n'), ((5893, 5917), 'pulp.PULP_CBC_CMD', 'pulp.PULP_CBC_CMD', ([], {'msg': '(0)'}), '(msg=0)\n', (5910, 5917), False, 'import pulp\n'), ((6885, 6899), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6897, 6899), True, 'import pandas as pd\n'), ((9694, 9708), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (9706, 9708), True, 'import pandas as pd\n'), ((5247, 5280), 'pulp.lpSum', 'pulp.lpSum', (['constraints.objective'], {}), '(constraints.objective)\n', (5257, 5280), False, 'import pulp\n'), ((7826, 7860), 'pandas.concat', 'pd.concat', (['[self.segment, segment]'], {}), '([self.segment, segment])\n', (7835, 7860), True, 'import pandas as pd\n'), ((8094, 8124), 'pandas.concat', 'pd.concat', (['[self.curve, curve]'], {}), '([self.curve, curve])\n', (8103, 8124), True, 'import pandas as pd\n'), ((8269, 8323), 'pandas.concat', 'pd.concat', (['[constraint_values, problem_values]'], {'axis': '(0)'}), '([constraint_values, problem_values], axis=0)\n', (8278, 8323), True, 'import pandas as pd\n'), ((10273, 10327), 'pandas.concat', 'pd.concat', (['[constraint_values, problem_values]'], {'axis': '(0)'}), '([constraint_values, problem_values], axis=0)\n', (10282, 10327), True, 'import pandas as pd\n'), ((7150, 7222), 'numpy.arange', 'np.arange', (['constraint.capacity[0]', 'constraint.capacity[1]', 'partition_len'], {}), '(constraint.capacity[0], constraint.capacity[1], partition_len)\n', (7159, 7222), True, 'import numpy as np\n'), ((5454, 5500), 'pulp.lpSum', 'pulp.lpSum', (['constraints[constraint_expression]'], {}), '(constraints[constraint_expression])\n', (5464, 5500), False, 'import pulp\n'), ((7954, 7973), 'laptimize.curve_approximation.CurveApproximator', 'CurveApproximator', ([], {}), '()\n', (7971, 7973), False, 'from laptimize.curve_approximation import CurveApproximator\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `simu_linear` package.""" import pytest import numpy as np from thermo.chemical import Chemical from pandangas import simu_linear as sim from pandangas import topology as top from fixtures import simple_network def test_solve(): # 3 * x0 + x1 = 9 and x0 + 2 * x1 = 8 <=> x0 = 2, x1 = 3 a = np.array([[3, 1], [1, 2]]) b = np.array([9, 8]) assert np.array_equal(sim.solve(a, b), np.array([2.0, 3.0])) def test_weird(): a = np.array([1, 0, 0, 1, 0, 1]) waited = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]]) assert np.array_equal(sim.weird(a), waited) def test_create_a(simple_network): gas = Chemical("natural gas", T=10 + 273.15, P=1.022e5) net = simple_network g = top.graphs_by_level_as_dict(net) graph = g["BP"] a = sim.create_a(graph, gas) assert a.shape == (20, 20) def test_create_k(simple_network): gas = Chemical("natural gas", T=10 + 273.15, P=1.022e5) net = simple_network g = top.graphs_by_level_as_dict(net) graph = g["BP"] k = sim.create_k(graph, gas) assert k.shape == (len(graph.edges),) for ik in k: assert int(ik) == 49975 def test_create_b(simple_network): net = simple_network loads = sim._scaled_loads_as_dict(net) p_ops = sim._operating_pressures_as_dict(net) g = top.graphs_by_level_as_dict(net) graph = g["BP"] b = sim.create_b(graph, loads, p_ops) assert b.shape == (20,) def test_run_one_level_BP_shape(simple_network): net = simple_network g = top.graphs_by_level_as_dict(net) graph = g["BP"] p_nodes, m_dot_pipes, m_dot_nodes, gas = sim.run_one_level(net, "BP") assert p_nodes.shape == (len(graph.nodes),) assert m_dot_pipes.shape == (len(graph.edges),) assert m_dot_nodes.shape == (len(graph.nodes),) def test_run_one_level_BP_values(simple_network): net = simple_network g = top.graphs_by_level_as_dict(net) graph = g["BP"] p_nodes, m_dot_pipes, m_dot_nodes, gas = sim.run_one_level(net, "BP") assert p_nodes.round().tolist() == [102200.0, 102190.0, 102188.0, 102193.0, 102190.0, 102200.0] assert m_dot_pipes.round(5).tolist() == [2.1e-04, 2.4e-04, 3.0e-05, 7.0e-05, -1.4e-04, 7.0e-05, -2.0e-04, 1.0e-05] assert m_dot_nodes.round(5).tolist() == [-0.00045, 0.00026, 0.00026, 0.0, 0.00026, -0.00034]
[ "pandangas.simu_linear.create_b", "pandangas.simu_linear.solve", "pandangas.simu_linear.create_a", "pandangas.simu_linear.run_one_level", "pandangas.simu_linear._operating_pressures_as_dict", "numpy.array", "pandangas.topology.graphs_by_level_as_dict", "thermo.chemical.Chemical", "pandangas.simu_linear._scaled_loads_as_dict", "pandangas.simu_linear.create_k", "pandangas.simu_linear.weird" ]
[((363, 389), 'numpy.array', 'np.array', (['[[3, 1], [1, 2]]'], {}), '([[3, 1], [1, 2]])\n', (371, 389), True, 'import numpy as np\n'), ((398, 414), 'numpy.array', 'np.array', (['[9, 8]'], {}), '([9, 8])\n', (406, 414), True, 'import numpy as np\n'), ((508, 536), 'numpy.array', 'np.array', (['[1, 0, 0, 1, 0, 1]'], {}), '([1, 0, 0, 1, 0, 1])\n', (516, 536), True, 'import numpy as np\n'), ((550, 620), 'numpy.array', 'np.array', (['[[1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]])\n', (558, 620), True, 'import numpy as np\n'), ((716, 766), 'thermo.chemical.Chemical', 'Chemical', (['"""natural gas"""'], {'T': '(10 + 273.15)', 'P': '(102200.0)'}), "('natural gas', T=10 + 273.15, P=102200.0)\n", (724, 766), False, 'from thermo.chemical import Chemical\n'), ((799, 831), 'pandangas.topology.graphs_by_level_as_dict', 'top.graphs_by_level_as_dict', (['net'], {}), '(net)\n', (826, 831), True, 'from pandangas import topology as top\n'), ((860, 884), 'pandangas.simu_linear.create_a', 'sim.create_a', (['graph', 'gas'], {}), '(graph, gas)\n', (872, 884), True, 'from pandangas import simu_linear as sim\n'), ((963, 1013), 'thermo.chemical.Chemical', 'Chemical', (['"""natural gas"""'], {'T': '(10 + 273.15)', 'P': '(102200.0)'}), "('natural gas', T=10 + 273.15, P=102200.0)\n", (971, 1013), False, 'from thermo.chemical import Chemical\n'), ((1046, 1078), 'pandangas.topology.graphs_by_level_as_dict', 'top.graphs_by_level_as_dict', (['net'], {}), '(net)\n', (1073, 1078), True, 'from pandangas import topology as top\n'), ((1107, 1131), 'pandangas.simu_linear.create_k', 'sim.create_k', (['graph', 'gas'], {}), '(graph, gas)\n', (1119, 1131), True, 'from pandangas import simu_linear as sim\n'), ((1297, 1327), 'pandangas.simu_linear._scaled_loads_as_dict', 'sim._scaled_loads_as_dict', (['net'], {}), '(net)\n', (1322, 1327), True, 'from pandangas import simu_linear as sim\n'), ((1340, 1377), 'pandangas.simu_linear._operating_pressures_as_dict', 'sim._operating_pressures_as_dict', (['net'], {}), '(net)\n', (1372, 1377), True, 'from pandangas import simu_linear as sim\n'), ((1386, 1418), 'pandangas.topology.graphs_by_level_as_dict', 'top.graphs_by_level_as_dict', (['net'], {}), '(net)\n', (1413, 1418), True, 'from pandangas import topology as top\n'), ((1447, 1480), 'pandangas.simu_linear.create_b', 'sim.create_b', (['graph', 'loads', 'p_ops'], {}), '(graph, loads, p_ops)\n', (1459, 1480), True, 'from pandangas import simu_linear as sim\n'), ((1593, 1625), 'pandangas.topology.graphs_by_level_as_dict', 'top.graphs_by_level_as_dict', (['net'], {}), '(net)\n', (1620, 1625), True, 'from pandangas import topology as top\n'), ((1691, 1719), 'pandangas.simu_linear.run_one_level', 'sim.run_one_level', (['net', '"""BP"""'], {}), "(net, 'BP')\n", (1708, 1719), True, 'from pandangas import simu_linear as sim\n'), ((1957, 1989), 'pandangas.topology.graphs_by_level_as_dict', 'top.graphs_by_level_as_dict', (['net'], {}), '(net)\n', (1984, 1989), True, 'from pandangas import topology as top\n'), ((2055, 2083), 'pandangas.simu_linear.run_one_level', 'sim.run_one_level', (['net', '"""BP"""'], {}), "(net, 'BP')\n", (2072, 2083), True, 'from pandangas import simu_linear as sim\n'), ((441, 456), 'pandangas.simu_linear.solve', 'sim.solve', (['a', 'b'], {}), '(a, b)\n', (450, 456), True, 'from pandangas import simu_linear as sim\n'), ((458, 478), 'numpy.array', 'np.array', (['[2.0, 3.0]'], {}), '([2.0, 3.0])\n', (466, 478), True, 'import numpy as np\n'), ((647, 659), 'pandangas.simu_linear.weird', 'sim.weird', (['a'], {}), '(a)\n', (656, 659), True, 'from pandangas import simu_linear as sim\n')]
# Copyright 2019 NeuroData (http://neurodata.io) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from sklearn.utils.validation import check_is_fitted from ..utils import import_graph, is_almost_symmetric from .base import BaseEmbedMulti from .svd import select_dimension, selectSVD class MultipleASE(BaseEmbedMulti): r""" Multiple Adjacency Spectral Embedding (MASE) embeds arbitrary number of input graphs with matched vertex sets. For a population of undirected graphs, MASE assumes that the population of graphs is sampled from :math:`VR^{(i)}V^T` where :math:`V \in \mathbb{R}^{n\times d}` and :math:`R^{(i)} \in \mathbb{R}^{d\times d}`. Score matrices, :math:`R^{(i)}`, are allowed to vary for each graph, but are symmetric. All graphs share a common a latent position matrix :math:`V`. For a population of directed graphs, MASE assumes that the population is sampled from :math:`UR^{(i)}V^T` where :math:`U \in \mathbb{R}^{n\times d_1}`, :math:`V \in \mathbb{R}^{n\times d_2}`, and :math:`R^{(i)} \in \mathbb{R}^{d_1\times d_2}`. In this case, score matrices :math:`R^{(i)}` can be assymetric and non-square, but all graphs still share a common latent position matrices :math:`U` and :math:`V`. Parameters ---------- n_components : int or None, default = None Desired dimensionality of output data. If "full", n_components must be <= min(X.shape). Otherwise, n_components must be < min(X.shape). If None, then optimal dimensions will be chosen by :func:`~graspy.embed.select_dimension` using ``n_elbows`` argument. n_elbows : int, optional, default: 2 If ``n_components=None``, then compute the optimal embedding dimension using :func:`~graspy.embed.select_dimension`. Otherwise, ignored. algorithm : {'randomized' (default), 'full', 'truncated'}, optional SVD solver to use: - 'randomized' Computes randomized svd using :func:`sklearn.utils.extmath.randomized_svd` - 'full' Computes full svd using :func:`scipy.linalg.svd` - 'truncated' Computes truncated svd using :func:`scipy.sparse.linalg.svds` n_iter : int, optional (default = 5) Number of iterations for randomized SVD solver. Not used by 'full' or 'truncated'. The default is larger than the default in randomized_svd to handle sparse matrices that may have large slowly decaying spectrum. scaled : bool, optional (default=False) Whether to scale individual eigenvectors with eigenvalues in first embedding stage. Attributes ---------- n_graphs_ : int Number of graphs n_vertices_ : int Number of vertices in each graph latent_left_ : array, shape (n_samples, n_components) Estimated left latent positions of the graph. latent_right_ : array, shape (n_samples, n_components), or None Estimated right latent positions of the graph. Only computed when the an input graph is directed, or adjacency matrix is assymetric. Otherwise, None. scores_ : array, shape (n_samples, n_components, n_components) Estimated :math:`\hat{R}` matrices for each input graph. Notes ----- When an input graph is directed, `n_components` of `latent_left_` may not be equal to `n_components` of `latent_right_`. """ def __init__( self, n_components=None, n_elbows=2, algorithm="randomized", n_iter=5, scaled=False, ): if not isinstance(scaled, bool): msg = "scaled must be a boolean, not {}".format(scaled) raise TypeError(msg) super().__init__( n_components=n_components, n_elbows=n_elbows, algorithm=algorithm, n_iter=n_iter, ) self.scaled = scaled def _reduce_dim(self, graphs): # first embed into log2(n_vertices) for each graph n_components = int(np.ceil(np.log2(np.min(self.n_vertices_)))) # embed individual graphs embeddings = [ selectSVD( graph, n_components=n_components, algorithm=self.algorithm, n_iter=self.n_iter, ) for graph in graphs ] Us, Ds, Vs = zip(*embeddings) # Choose the best embedding dimension for each graphs if self.n_components is None: embedding_dimensions = [] for D in Ds: elbows, _ = select_dimension(D, n_elbows=self.n_elbows) embedding_dimensions.append(elbows[-1]) # Choose the max of all of best embedding dimension of all graphs best_dimension = int(np.ceil(np.max(embedding_dimensions))) else: best_dimension = self.n_components if not self.scaled: Us = np.hstack([U[:, :best_dimension] for U in Us]) Vs = np.hstack([V.T[:, :best_dimension] for V in Vs]) else: # Equivalent to ASE Us = np.hstack( [ U[:, :best_dimension] @ np.diag(np.sqrt(D[:best_dimension])) for U, D in zip(Us, Ds) ] ) Vs = np.hstack( [ V.T[:, :best_dimension] @ np.diag(np.sqrt(D[:best_dimension])) for V, D in zip(Vs, Ds) ] ) # Second SVD for vertices # The notation is slightly different than the paper Uhat, _, _ = selectSVD( Us, n_components=self.n_components, n_elbows=self.n_elbows, algorithm=self.algorithm, n_iter=self.n_iter, ) Vhat, _, _ = selectSVD( Vs, n_components=self.n_components, n_elbows=self.n_elbows, algorithm=self.algorithm, n_iter=self.n_iter, ) return Uhat, Vhat def fit(self, graphs, y=None): """ Fit the model with graphs. Parameters ---------- graphs : list of nx.Graph or ndarray, or ndarray If list of nx.Graph, each Graph must contain same number of nodes. If list of ndarray, each array must have shape (n_vertices, n_vertices). If ndarray, then array must have shape (n_graphs, n_vertices, n_vertices). Returns ------- self : object Returns an instance of self. """ graphs = self._check_input_graphs(graphs) # Check if undirected undirected = all(is_almost_symmetric(g) for g in graphs) # embed Uhat, Vhat = self._reduce_dim(graphs) self.latent_left_ = Uhat if not undirected: self.latent_right_ = Vhat self.scores_ = Uhat.T @ graphs @ Vhat else: self.latent_right_ = None self.scores_ = Uhat.T @ graphs @ Uhat return self def fit_transform(self, graphs, y=None): """ Fit the model with graphs and apply the embedding on graphs. n_components is either automatically determined or based on user input. Parameters ---------- graphs : list of nx.Graph or ndarray, or ndarray If list of nx.Graph, each Graph must contain same number of nodes. If list of ndarray, each array must have shape (n_vertices, n_vertices). If ndarray, then array must have shape (n_graphs, n_vertices, n_vertices). Returns ------- out : array-like, shape (n_vertices, n_components) if input graphs were symmetric. If graphs were directed, returns tuple of two arrays (same shape as above) where the first corresponds to the left latent positions, and the right to the right latent positions """ return self._fit_transform(graphs)
[ "numpy.min", "numpy.sqrt", "numpy.max", "numpy.hstack" ]
[((5492, 5538), 'numpy.hstack', 'np.hstack', (['[U[:, :best_dimension] for U in Us]'], {}), '([U[:, :best_dimension] for U in Us])\n', (5501, 5538), True, 'import numpy as np\n'), ((5556, 5604), 'numpy.hstack', 'np.hstack', (['[V.T[:, :best_dimension] for V in Vs]'], {}), '([V.T[:, :best_dimension] for V in Vs])\n', (5565, 5604), True, 'import numpy as np\n'), ((4595, 4619), 'numpy.min', 'np.min', (['self.n_vertices_'], {}), '(self.n_vertices_)\n', (4601, 4619), True, 'import numpy as np\n'), ((5354, 5382), 'numpy.max', 'np.max', (['embedding_dimensions'], {}), '(embedding_dimensions)\n', (5360, 5382), True, 'import numpy as np\n'), ((5749, 5776), 'numpy.sqrt', 'np.sqrt', (['D[:best_dimension]'], {}), '(D[:best_dimension])\n', (5756, 5776), True, 'import numpy as np\n'), ((5954, 5981), 'numpy.sqrt', 'np.sqrt', (['D[:best_dimension]'], {}), '(D[:best_dimension])\n', (5961, 5981), True, 'import numpy as np\n')]
import numpy as np from numpy.core.function_base import linspace EPS = 1e-9 class CameraSensor: """ Defines the camera sensor properties """ def __init__(self, image_size, pitch, RGB=False, name=None, bayer_pattern=None): self.img_size = np.array([image_size[0], image_size[1]]) # image height, width (in pixels) self.img_cntr = np.array([int(image_size[0]/2), int(image_size[1]/2)]) if RGB: self.type = 'RGB' self.C = 3 # number of channels if bayer_pattern is not None: self.bayer_pattern = bayer_pattern else: self.bayer_pattern = 'RGGB' else: self.type = 'Mono' self.C = 1 if len(pitch)==1: self.px_size = np.array([pitch, pitch]) # should be in meters else: self.px_size = np.array([pitch[0], pitch[1]]) # should be in meters self.name = name # name of camera sensor (optional) # create coordinate system for image plane dh, dw = self.px_size[0], self.px_size[1] h , w = dh*self.img_size[0], dw*self.img_size[1] self.x_sensor = np.linspace( -w/2 + dw/2 , +w/2 - dw/2 + EPS, self.img_size[1]) self.y_sensor = np.linspace( -h/2 + dh/2 , +h/2 - dh/2 + EPS, self.img_size[0]) self.X_sensor, self.Y_sensor = np.meshgrid(self.x_sensor, self.y_sensor) def get_physical_sensor_size(self): """ Returns the physical sensor size (in units of mm x mm) """ height_mm = np.float(self.px_size[0]*self.img_size[0])*1000 width_mm = np.float(self.px_size[1]*self.img_size[1])*1000 return height_mm, width_mm class Lens: def __init__(self, f, D=None): self.f = f self.D = D # D is set to None if its value is irrelevant class Mask: """ Class for creating an amplitude/phase mask. """ def __init__(self, mask_pattern, mask_size): """ mask_pattern (numpy.ndarray): 2D array of values (real or complex) mask_size (list or numpy.array): Physical size of mask (h x w). Units of meters mask_pattern array values should have magnitude should be between [0, 1] for realistic mask patterns. """ self.mask = mask_pattern # mask pattern can be a complex-valued as well (numpy 2D array) self.mask_size = np.array([mask_size[0], mask_size[1]]) self.mask_pitch = np.array([mask_size[0]/mask_pattern.shape[0], mask_size[1]/mask_pattern.shape[1]]) # create coordinate system on mask-plane h, w = self.mask_size[0], self.mask_size[1] dh, dw = self.mask_pitch[0], self.mask_pitch[1] self.x_mask = np.linspace( -w/2 + dw/2 , +w/2 - dw/2 + EPS, num=self.mask.shape[1]) self.y_mask = np.linspace( -h/2 + dh/2 , +h/2 - dh/2 + EPS, num=self.mask.shape[0]) self.X_mask, self.Y_mask = np.meshgrid(self.x_mask, self.y_mask)
[ "numpy.meshgrid", "numpy.array", "numpy.float", "numpy.linspace" ]
[((264, 304), 'numpy.array', 'np.array', (['[image_size[0], image_size[1]]'], {}), '([image_size[0], image_size[1]])\n', (272, 304), True, 'import numpy as np\n'), ((1217, 1286), 'numpy.linspace', 'np.linspace', (['(-w / 2 + dw / 2)', '(+w / 2 - dw / 2 + EPS)', 'self.img_size[1]'], {}), '(-w / 2 + dw / 2, +w / 2 - dw / 2 + EPS, self.img_size[1])\n', (1228, 1286), True, 'import numpy as np\n'), ((1305, 1374), 'numpy.linspace', 'np.linspace', (['(-h / 2 + dh / 2)', '(+h / 2 - dh / 2 + EPS)', 'self.img_size[0]'], {}), '(-h / 2 + dh / 2, +h / 2 - dh / 2 + EPS, self.img_size[0])\n', (1316, 1374), True, 'import numpy as np\n'), ((1408, 1449), 'numpy.meshgrid', 'np.meshgrid', (['self.x_sensor', 'self.y_sensor'], {}), '(self.x_sensor, self.y_sensor)\n', (1419, 1449), True, 'import numpy as np\n'), ((2438, 2476), 'numpy.array', 'np.array', (['[mask_size[0], mask_size[1]]'], {}), '([mask_size[0], mask_size[1]])\n', (2446, 2476), True, 'import numpy as np\n'), ((2503, 2594), 'numpy.array', 'np.array', (['[mask_size[0] / mask_pattern.shape[0], mask_size[1] / mask_pattern.shape[1]]'], {}), '([mask_size[0] / mask_pattern.shape[0], mask_size[1] / mask_pattern\n .shape[1]])\n', (2511, 2594), True, 'import numpy as np\n'), ((2765, 2840), 'numpy.linspace', 'np.linspace', (['(-w / 2 + dw / 2)', '(+w / 2 - dw / 2 + EPS)'], {'num': 'self.mask.shape[1]'}), '(-w / 2 + dw / 2, +w / 2 - dw / 2 + EPS, num=self.mask.shape[1])\n', (2776, 2840), True, 'import numpy as np\n'), ((2857, 2932), 'numpy.linspace', 'np.linspace', (['(-h / 2 + dh / 2)', '(+h / 2 - dh / 2 + EPS)'], {'num': 'self.mask.shape[0]'}), '(-h / 2 + dh / 2, +h / 2 - dh / 2 + EPS, num=self.mask.shape[0])\n', (2868, 2932), True, 'import numpy as np\n'), ((2962, 2999), 'numpy.meshgrid', 'np.meshgrid', (['self.x_mask', 'self.y_mask'], {}), '(self.x_mask, self.y_mask)\n', (2973, 2999), True, 'import numpy as np\n'), ((788, 812), 'numpy.array', 'np.array', (['[pitch, pitch]'], {}), '([pitch, pitch])\n', (796, 812), True, 'import numpy as np\n'), ((884, 914), 'numpy.array', 'np.array', (['[pitch[0], pitch[1]]'], {}), '([pitch[0], pitch[1]])\n', (892, 914), True, 'import numpy as np\n'), ((1602, 1646), 'numpy.float', 'np.float', (['(self.px_size[0] * self.img_size[0])'], {}), '(self.px_size[0] * self.img_size[0])\n', (1610, 1646), True, 'import numpy as np\n'), ((1669, 1713), 'numpy.float', 'np.float', (['(self.px_size[1] * self.img_size[1])'], {}), '(self.px_size[1] * self.img_size[1])\n', (1677, 1713), True, 'import numpy as np\n')]
#!/usr/bin/env python """ Segmentation methods to find regions of interest in the time and frequency domain. """ # # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: New BSD License # ============================================================================= # Load the modules # ============================================================================= # Import external modules import numpy as np from scipy.stats import iqr from skimage import measure import pandas as pd import sys _MIN_ = sys.float_info.min # Import internal modules from maad.util import (plot2d, rand_cmap) #%% #**************************************************************************** # private functions #**************************************************************************** def _double_threshold_rel (im, bin_std=6, bin_per=0.5, verbose=False, display=False, savefig=None, **kwargs): """ Binarize an image based on a double relative threshold. The values used for the thresholding depends on the values found in the image. => relative threshold Parameters ---------- im : 2d ndarray of scalars Spectrogram (or image) bin_std : scalar, optional, default is 6 Set the first threshold. This threshold is not an absolute value but depends on values that are similar to 75th percentile (pseudo_mean) and a sort of std value of the image. threshold1 = "pseudo_mean" + "std" * bin_std Value higher than threshold1 are set to 1, they are the seeds for the second step. The others are set to 0. bin_per: scalar, optional, defautl is 0.5 Set how much the second threshold is lower than the first threshold value. From 0 to 1. ex: 0.1 = 10 %. threshold2 = threshold1 (1-bin_per) Value higher than threshold2 and connected (directly or not) to the seeds are set to 1, the other remains 0 verbose : boolean, optional, default is False print messages display : boolean, optional, default is False Display the signal if True savefig : string, optional, default is None Root filename (with full path) is required to save the figures. Postfix is added to the root filename. \*\*kwargs, optional. This parameter is used by plt.plot and savefig functions - savefilename : str, optional, default :'_spectro_after_noise_subtraction.png' Postfix of the figure filename - figsize : tuple of integers, optional, default: (4,10) width, height in inches. - title : string, optional, default : 'Spectrogram' title of the figure - xlabel : string, optional, default : 'Time [s]' label of the horizontal axis - ylabel : string, optional, default : 'Amplitude [AU]' label of the vertical axis - cmap : string or Colormap object, optional, default is 'gray' See https://matplotlib.org/examples/color/colormaps_reference.html in order to get all the existing colormaps examples: 'hsv', 'hot', 'bone', 'tab20c', 'jet', 'seismic', 'viridis'... - vmin, vmax : scalar, optional, default: None `vmin` and `vmax` are used in conjunction with norm to normalize luminance data. Note if you pass a `norm` instance, your settings for `vmin` and `vmax` will be ignored. - extent : scalars (left, right, bottom, top), optional, default: None The location, in data-coordinates, of the lower-left and upper-right corners. If `None`, the image is positioned such that the pixel centers fall on zero-based (row, column) indices. - dpi : integer, optional, default is 96 Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast - format : string, optional, default is 'png' Format to save the figure ... and more, see matplotlib Returns ------- im_out: binary image References ---------- .. [1] from MATLAB: Threshold estimation (from Oliveira et al, 2015) Adapted by <NAME> Dec 12, 2017 """ # test if im is full of zeros if not im.any() : im_out = np.zeros(im.shape) else: # Compute the qth percentile of the data along the specified axis val1 = np.percentile(im[np.where(im>0)],75) # value corresponding to the limit between the 75% lowest value and 25% largest value # The interquartile range (IQR) is the difference between the 75th and # 25th percentile of the data. It is a measure of the dispersion similar # to standard deviation or variance, but is much more robust against outliers val2 = iqr(im[np.where(im>0)])*bin_std # Threshold : qth percentile + sort of std h_th = val1 + val2 # Low threshold limit l_th = (h_th-h_th*bin_per) if verbose : print(72 * '_') print('Double thresholding with values relative to the image...') print ('**********************************************************') print (' high threshold value %.2f | low threshold value %.2f' % (h_th, l_th)) print ('**********************************************************') # binarisation im_t1 = im > h_th # mask1 im_t2 = im > l_th # mask2 im_t3 = im * im_t1 # selected parts of the image #find index of regions which meet the criteria conncomp_t2 = measure.label(im_t2) #Find connected components in binary image rprops = measure.regionprops(conncomp_t2,im_t3) rprops_mean_intensity = [region['mean_intensity'] for region in rprops] rprops_mean_intensity = np.asarray(rprops_mean_intensity) rprops_label = [region['label'] for region in rprops] rprops_label = np.asarray(rprops_label) [ind]=np.where(rprops_mean_intensity>0) im_out = np.isin(conncomp_t2, rprops_label[ind]) # test if the indice is in the matrix of indices im_out =im_out*1 # boolean to 0,1 conversion # Display if display : ylabel =kwargs.pop('ylabel','Frequency [Hz]') xlabel =kwargs.pop('xlabel','Time [sec]') title =kwargs.pop('title','binary image => MASK') cmap =kwargs.pop('cmap','gray') vmin=kwargs.pop('vmin',0) vmax=kwargs.pop('vmax',1) extent=kwargs.pop('extent',None) if extent is None : xlabel = 'pseudotime [points]' ylabel = 'pseudofrequency [points]' _, fig = plot2d (im_out, extent = extent, title = title, ylabel = ylabel, xlabel = xlabel, vmin = vmin, vmax = vmax, cmap = cmap, **kwargs) # SAVE FIGURE if savefig is not None : dpi =kwargs.pop('dpi',96) format=kwargs.pop('format','png') filename=kwargs.pop('filename','_spectro_binary') filename = savefig+filename+'.'+format if verbose : print('\n''save figure : %s' %filename) fig.savefig(filename, bbox_inches='tight', dpi=dpi, format=format, **kwargs) return im_out #%% def _double_threshold_abs(im, bin_h=0.7, bin_l=0.2, verbose=False,display=False, savefig=None, **kwargs): """ Binarize an image based on a double relative threshold. The values used for the thresholding are independent of the values in the image => absolute threshold Parameters ---------- im : 2d ndarray of scalars Spectrogram (or image) bin_h : scalar, optional, default is 0.7 Set the first threshold. Value higher than this value are set to 1, the others are set to 0. They are the seeds for the second step bin_l: scalar, optional, defautl is 0.2 Set the second threshold. Value higher than this value and connected to the seeds or to other pixels connected to the seeds are set to 1, the other remains 0 verbose : boolean, optional, default is False print messages display : boolean, optional, default is False Display the signal if True savefig : string, optional, default is None Root filename (with full path) is required to save the figures. Postfix is added to the root filename. \*\*kwargs, optional. This parameter is used by plt.plot and savefig functions - savefilename : str, optional, default :'_spectro_after_noise_subtraction.png' Postfix of the figure filename - figsize : tuple of integers, optional, default: (4,10) width, height in inches. - title : string, optional, default : 'Spectrogram' title of the figure - xlabel : string, optional, default : 'Time [s]' label of the horizontal axis - ylabel : string, optional, default : 'Amplitude [AU]' label of the vertical axis - cmap : string or Colormap object, optional, default is 'gray' See https://matplotlib.org/examples/color/colormaps_reference.html in order to get all the existing colormaps examples: 'hsv', 'hot', 'bone', 'tab20c', 'jet', 'seismic', 'viridis'... - vmin, vmax : scalar, optional, default: None `vmin` and `vmax` are used in conjunction with norm to normalize luminance data. Note if you pass a `norm` instance, your settings for `vmin` and `vmax` will be ignored. - extent : scalars (left, right, bottom, top), optional, default: None The location, in data-coordinates, of the lower-left and upper-right corners. If `None`, the image is positioned such that the pixel centers fall on zero-based (row, column) indices. - dpi : integer, optional, default is 96 Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast - format : string, optional, default is 'png' Format to save the figure ... and more, see matplotlib Returns ------- im_out: binary image References ---------- .. [1] <NAME>. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986; vol. 8, pp.679-698. `DOI: 10.1109/TPAMI.1986.4767851 <https://doi.org/10.1109/TPAMI.1986.4767851>`_ """ # binarisation im_t1 = im > bin_h # mask1 im_t2 = im > bin_l # mask2 im_t3 = im * im_t1 # selected parts of the image #find index of regions which meet the criteria conncomp_t2 = measure.label(im_t2) #Find connected components in binary image rprops = measure.regionprops(conncomp_t2,im_t3) rprops_mean_intensity = [region['mean_intensity'] for region in rprops] rprops_mean_intensity = np.asarray(rprops_mean_intensity) rprops_label = [region['label'] for region in rprops] rprops_label = np.asarray(rprops_label) [ind]=np.where(rprops_mean_intensity>0) im_out = np.isin(conncomp_t2, rprops_label[ind]) # test if the indice is in the maxtrix of indices im_out =im_out*1 # boolean to 0,1 conversion if verbose : print(72 * '_') print('Double thresholding with absolute values...') print ('**********************************************************') print (' Number of rois %.2f | Rois cover %.2f%' % (len(rprops_label), sum(im_out)/(im_out.shape[1]*im_out.shape[0])*100)) print ('**********************************************************') # Display if display : ylabel =kwargs.pop('ylabel','Frequency [Hz]') xlabel =kwargs.pop('xlabel','Time [sec]') title =kwargs.pop('title','binary image => MASK') cmap =kwargs.pop('cmap','gray') vmin=kwargs.pop('vmin',0) vmax=kwargs.pop('vmax',1) extent=kwargs.pop('extent',None) if extent is None : xlabel = 'pseudotime [points]' ylabel = 'pseudofrequency [points]' _, fig = plot2d (im_out, extent = extent, title = title, ylabel = ylabel, xlabel = xlabel, vmin = vmin, vmax = vmax, cmap = cmap, **kwargs) # SAVE FIGURE if savefig is not None : dpi =kwargs.pop('dpi',96) format=kwargs.pop('format','png') filename=kwargs.pop('filename','_spectro_binary') filename = savefig+filename+'.'+format if verbose : print('\n''save figure : %s' %filename) fig.savefig(filename, bbox_inches='tight', dpi=dpi, format=format, **kwargs) return im_out #%% # ============================================================================= # public functions # ============================================================================= def create_mask(im, mode_bin = 'relative', verbose= False, display = False, savefig = None, **kwargs): """ Binarize an image based on a double threshold. Parameters ---------- im : 2d ndarray of scalars Spectrogram (or image) mode_bin : string in {'relative', 'absolute'}, optional, default is 'relative' if 'absolute' [1]_ , a double threshold with absolute value is performed with two parameters (see \*\*kwargs section) if 'relative' [2]_, a relative double threshold is performed with two parameters (see \*\*kwargs section) verbose : boolean, optional, default is False print messages display : boolean, optional, default is False Display the signal if True savefig : string, optional, default is None Root filename (with full path) is required to save the figures. Postfix is added to the root filename. \*\*kwargs, optional. This parameter is used by the maad functions as well as the plt.plot and savefig functions. All the input arguments required or optional in the signature of the functions above can be passed as kwargs : if 'absolute' [1]_ - bin_h : scalar, optional, default is 0.7 Set the first threshold. Value higher than this value are set to 1, the others are set to 0. They are the seeds for the second step - bin_l: scalar, optional, defautl is 0.2 Set the second threshold. Value higher than this value and connected to the seeds or to other pixels connected to the seeds (6-connectivity) are set to 1, the other remains 0 if 'relative' [2]_ : - bin_std : scalar, optional, default is 6 bin_std is needed to compute the threshold1. This threshold is not an absolute value but depends on values that are similar to 75th percentile (pseudo_mean) and a sort of std value of the image. threshold1 = "pseudo_mean" + "std" * bin_std Value higher than threshold1 are set to 1, they are the seeds for the second step. The others are set to 0. - bin_per: scalar, optional, defautl is 0.5 Set how much the second threshold is lower than the first threshold value. From 0 to 1. ex: 0.1 = 10 %. threshold2 = threshold1 (1-bin_per) Value higher than threshold2 and connected (6-connectivity) to the seeds are set to 1, the other remains 0 ... and more, see matplotlib Returns ------- im_bin: binary image References ---------- .. [1] <NAME>. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986; vol. 8, pp.679-698. `DOI: 10.1109/TPAMI.1986.4767851 <https://doi.org/10.1109/TPAMI.1986.4767851>`_ .. [2] from MATLAB: Threshold estimation (Oliveira et al, 2015) Examples -------- Load audio recording and convert it into spectrogram >>> s, fs = maad.sound.load('../data/cold_forest_daylight.wav') >>> Sxx,tn,fn,ext = maad.sound.spectrogram (s, fs, fcrop=(0,10000)) Convert linear spectrogram into dB >>> Sxx_dB = maad.util.power2dB(Sxx) +96 Smooth the spectrogram >>> Sxx_dB_blurred = maad.rois.smooth(Sxx_dB) Detection of the acoustic signature => creation of a mask >>> im_bin = maad.rois.create_mask(Sxx_dB_blurred, bin_std=1.5, bin_per=0.25, mode='relative') Plot spectrograms >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(2, 1) >>> maad.util.plot2d(Sxx_dB, ax=ax1, extent=ext, title='original', vmin=10, vmax=70) >>> maad.util.plot2d(im_bin, ax=ax2, extent=ext, title='mask)') >>> fig.set_size_inches(13,8) >>> fig.tight_layout() """ if mode_bin == 'relative': bin_std=kwargs.pop('bin_std', 6) bin_per=kwargs.pop('bin_per', 0.5) im_bin = _double_threshold_rel(im, bin_std, bin_per, verbose, display, savefig, **kwargs) elif mode_bin == 'absolute': bin_h=kwargs.pop('bin_h', 0.7) bin_l=kwargs.pop('bin_l', 0.3) im_bin = _double_threshold_abs(im, bin_h, bin_l, verbose, display, savefig, **kwargs) return im_bin #%% def select_rois(im_bin, min_roi=None ,max_roi=None, verbose=False, display=False, savefig = None, **kwargs): """ Select regions of interest based on its dimensions. The input is a binary mask, and the output is an image with labelled pixels. Parameters ---------- im : 2d ndarray of scalars Spectrogram (or image) min_roi, max_roi : scalars, optional, default : None Define the minimum and the maximum area possible for an ROI. If None, the minimum ROI area is 1 pixel and the maximum ROI area is the area of the image verbose : boolean, optional, default is False print messages display : boolean, optional, default is False Display the signal if True savefig : string, optional, default is None Root filename (with full path) is required to save the figures. Postfix is added to the root filename. \*\*kwargs, optional. This parameter is used by plt.plot and savefig functions - savefilename : str, optional, default :'_spectro_after_noise_subtraction.png' Postfix of the figure filename - figsize : tuple of integers, optional, default: (4,10) width, height in inches. - title : string, optional, default : 'Spectrogram' title of the figure - xlabel : string, optional, default : 'Time [s]' label of the horizontal axis - ylabel : string, optional, default : 'Amplitude [AU]' label of the vertical axis - cmap : string or Colormap object, optional, default is 'gray' See https://matplotlib.org/examples/color/colormaps_reference.html in order to get all the existing colormaps examples: 'hsv', 'hot', 'bone', 'tab20c', 'jet', 'seismic', 'viridis'... - vmin, vmax : scalar, optional, default: None `vmin` and `vmax` are used in conjunction with norm to normalize luminance data. Note if you pass a `norm` instance, your settings for `vmin` and `vmax` will be ignored. - extent : scalars (left, right, bottom, top), optional, default: None The location, in data-coordinates, of the lower-left and upper-right corners. If `None`, the image is positioned such that the pixel centers fall on zero-based (row, column) indices. - dpi : integer, optional, default is 96 Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast - format : string, optional, default is 'png' Format to save the figure ... and more, see matplotlib Returns ------- im_rois: 2d ndarray image with labels as values rois: pandas DataFrame Regions of interest with future descriptors will be computed. Array have column names: ``labelID``, ``label``, ``min_y``, ``min_x``, ``max_y``, ``max_x``, Use the function ``maad.util.format_features`` before using centroid_features to format of the ``rois`` DataFrame correctly. Examples -------- Load audio recording compute the spectrogram in dB. >>> s, fs = maad.sound.load('../data/cold_forest_daylight.wav') >>> Sxx,tn,fn,ext = maad.sound.spectrogram (s, fs, fcrop=(0,20000), display=True) >>> Sxx_dB = maad.util.power2dB(Sxx) +96 Smooth the spectrogram >>> Sxx_dB_blurred = maad.sound.smooth(Sxx_dB) Using image binarization, detect isolated region in the time-frequency domain with high density of energy, i.e. regions of interest (ROIs). >>> im_bin = maad.rois.create_mask(Sxx_dB_blurred, bin_std=1.5, bin_per=0.5, mode='relative') Select ROIs from the binary mask. >>> im_rois, df_rois = maad.rois.select_rois(im_bin, display=True) We detected the background noise as a ROI, and that multiple ROIs are mixed in a single region. To have better results, it is adviced to preprocess the spectrogram to remove the background noise before creating the mask. >>> Sxx_noNoise = maad.sound.median_equalizer(Sxx) >>> Sxx_noNoise_dB = maad.util.power2dB(Sxx_noNoise) >>> Sxx_noNoise_dB_blurred = maad.sound.smooth(Sxx_noNoise_dB) >>> im_bin2 = maad.rois.create_mask(Sxx_noNoise_dB_blurred, bin_std=6, bin_per=0.5, mode='relative') >>> im_rois2, df_rois2 = maad.rois.select_rois(im_bin2, display=True) """ # test if max_roi and min_roi are defined if max_roi is None: # the maximum ROI is set to the aera of the image max_roi=im_bin.shape[0]*im_bin.shape[1] if min_roi is None: # the min ROI area is set to 1 pixel min_roi = 1 if verbose : print(72 * '_') print('Automatic ROIs selection in progress...') print ('**********************************************************') print (' Min ROI area %d pix² | Max ROI area %d pix²' % (min_roi, max_roi)) print ('**********************************************************') labels = measure.label(im_bin) #Find connected components in binary image rprops = measure.regionprops(labels) rois_bbox = [] rois_label = [] for roi in rprops: # select the rois depending on their size if (roi.area >= min_roi) & (roi.area <= max_roi): # get the label rois_label.append(roi.label) # get rectangle coordonates rois_bbox.append (roi.bbox) im_rois = np.isin(labels, rois_label) # test if the indice is in the matrix of indices im_rois = im_rois* labels # create a list with labelID and labelName (None in this case) rois_label = list(zip(rois_label,['unknown']*len(rois_label))) # test if there is a roi if len(rois_label)>0 : # create a dataframe rois containing the coordonates and the label rois = np.concatenate((np.asarray(rois_label), np.asarray(rois_bbox)), axis=1) rois = pd.DataFrame(rois, columns = ['labelID', 'label', 'min_y','min_x','max_y', 'max_x']) # force type to integer rois = rois.astype({'label': str,'min_y':int,'min_x':int,'max_y':int, 'max_x':int}) # compensate half-open interval of bbox from skimage rois.max_y -= 1 rois.max_x -= 1 else : rois = [] rois = pd.DataFrame(rois, columns = ['labelID', 'label', 'min_y','min_x','max_y', 'max_x']) rois = rois.astype({'label': str,'min_y':int,'min_x':int,'max_y':int, 'max_x':int}) # Display if display : ylabel =kwargs.pop('ylabel','Frequency [Hz]') xlabel =kwargs.pop('xlabel','Time [sec]') title =kwargs.pop('title','Selected ROIs') extent=kwargs.pop('extent',None) if extent is None : xlabel = 'pseudotime [points]' ylabel = 'pseudofrequency [points]' # randcmap = rand_cmap(len(rois_label)) # cmap =kwargs.pop('cmap',randcmap) cmap =kwargs.pop('cmap','tab20') _, fig = plot2d (im_rois, extent = extent, title = title, ylabel = ylabel, xlabel = xlabel, cmap = cmap, **kwargs) # SAVE FIGURE if savefig is not None : dpi =kwargs.pop('dpi',96) format=kwargs.pop('format','png') filename=kwargs.pop('filename','_spectro_selectrois') filename = savefig+filename+'.'+format fig.savefig(filename, bbox_inches='tight', dpi=dpi, format=format, **kwargs) return im_rois, rois #%% def rois_to_imblobs(im_zeros, rois): """ Take a matrix full of zeros and add ones in delimited regions defined by rois. Parameters ---------- im_zeros : ndarray matrix full of zeros with the size to the image where the rois come from. rois : DataFrame rois must have the columns names:((min_y, min_x, max_y, max_x) which correspond to the bounding box coordinates Returns ------- im_blobs : ndarray matrix with 1 corresponding to the rois and 0 elsewhere Examples -------- >>> from maad import rois, util >>> import pandas as pd >>> import numpy as np >>> im_zeros = np.zeros((100,300)) >>> df_rois = pd.DataFrame({'min_y': [10, 40], 'min_x': [10, 200], 'max_y': [60, 80], 'max_x': [110, 250]}) >>> im_blobs = rois.rois_to_imblobs(im_zeros, df_rois) >>> util.plot2d(im_blobs) """ # Check format of the input data if type(rois) is not pd.core.frame.DataFrame : raise TypeError('Rois must be of type pandas DataFrame') if not(('min_y' and 'min_x' and 'max_y' and 'max_x') in rois) : raise TypeError('Array must be a Pandas DataFrame with column names:((min_y, min_x, max_y, max_x). Check example in documentation.') # select the columns rois_bbox = rois[['min_y', 'min_x', 'max_y', 'max_x']] # roi to image blob for min_y, min_x, max_y, max_x in rois_bbox.values: im_zeros[int(min_y):int(max_y+1), int(min_x):int(max_x+1)] = 1 im_blobs = im_zeros.astype(int) return im_blobs
[ "pandas.DataFrame", "numpy.isin", "numpy.asarray", "numpy.zeros", "maad.util.plot2d", "skimage.measure.label", "numpy.where", "skimage.measure.regionprops" ]
[((12272, 12292), 'skimage.measure.label', 'measure.label', (['im_t2'], {}), '(im_t2)\n', (12285, 12292), False, 'from skimage import measure\n'), ((12354, 12393), 'skimage.measure.regionprops', 'measure.regionprops', (['conncomp_t2', 'im_t3'], {}), '(conncomp_t2, im_t3)\n', (12373, 12393), False, 'from skimage import measure\n'), ((12511, 12544), 'numpy.asarray', 'np.asarray', (['rprops_mean_intensity'], {}), '(rprops_mean_intensity)\n', (12521, 12544), True, 'import numpy as np\n'), ((12634, 12658), 'numpy.asarray', 'np.asarray', (['rprops_label'], {}), '(rprops_label)\n', (12644, 12658), True, 'import numpy as np\n'), ((12682, 12717), 'numpy.where', 'np.where', (['(rprops_mean_intensity > 0)'], {}), '(rprops_mean_intensity > 0)\n', (12690, 12717), True, 'import numpy as np\n'), ((12738, 12777), 'numpy.isin', 'np.isin', (['conncomp_t2', 'rprops_label[ind]'], {}), '(conncomp_t2, rprops_label[ind])\n', (12745, 12777), True, 'import numpy as np\n'), ((25235, 25256), 'skimage.measure.label', 'measure.label', (['im_bin'], {}), '(im_bin)\n', (25248, 25256), False, 'from skimage import measure\n'), ((25318, 25345), 'skimage.measure.regionprops', 'measure.regionprops', (['labels'], {}), '(labels)\n', (25337, 25345), False, 'from skimage import measure\n'), ((25759, 25786), 'numpy.isin', 'np.isin', (['labels', 'rois_label'], {}), '(labels, rois_label)\n', (25766, 25786), True, 'import numpy as np\n'), ((4785, 4803), 'numpy.zeros', 'np.zeros', (['im.shape'], {}), '(im.shape)\n', (4793, 4803), True, 'import numpy as np\n'), ((6188, 6208), 'skimage.measure.label', 'measure.label', (['im_t2'], {}), '(im_t2)\n', (6201, 6208), False, 'from skimage import measure\n'), ((6274, 6313), 'skimage.measure.regionprops', 'measure.regionprops', (['conncomp_t2', 'im_t3'], {}), '(conncomp_t2, im_t3)\n', (6293, 6313), False, 'from skimage import measure\n'), ((6443, 6476), 'numpy.asarray', 'np.asarray', (['rprops_mean_intensity'], {}), '(rprops_mean_intensity)\n', (6453, 6476), True, 'import numpy as np\n'), ((6578, 6602), 'numpy.asarray', 'np.asarray', (['rprops_label'], {}), '(rprops_label)\n', (6588, 6602), True, 'import numpy as np\n'), ((6634, 6669), 'numpy.where', 'np.where', (['(rprops_mean_intensity > 0)'], {}), '(rprops_mean_intensity > 0)\n', (6642, 6669), True, 'import numpy as np\n'), ((6698, 6737), 'numpy.isin', 'np.isin', (['conncomp_t2', 'rprops_label[ind]'], {}), '(conncomp_t2, rprops_label[ind])\n', (6705, 6737), True, 'import numpy as np\n'), ((13912, 14031), 'maad.util.plot2d', 'plot2d', (['im_out'], {'extent': 'extent', 'title': 'title', 'ylabel': 'ylabel', 'xlabel': 'xlabel', 'vmin': 'vmin', 'vmax': 'vmax', 'cmap': 'cmap'}), '(im_out, extent=extent, title=title, ylabel=ylabel, xlabel=xlabel,\n vmin=vmin, vmax=vmax, cmap=cmap, **kwargs)\n', (13918, 14031), False, 'from maad.util import plot2d, rand_cmap\n'), ((26263, 26351), 'pandas.DataFrame', 'pd.DataFrame', (['rois'], {'columns': "['labelID', 'label', 'min_y', 'min_x', 'max_y', 'max_x']"}), "(rois, columns=['labelID', 'label', 'min_y', 'min_x', 'max_y',\n 'max_x'])\n", (26275, 26351), True, 'import pandas as pd\n'), ((26653, 26741), 'pandas.DataFrame', 'pd.DataFrame', (['rois'], {'columns': "['labelID', 'label', 'min_y', 'min_x', 'max_y', 'max_x']"}), "(rois, columns=['labelID', 'label', 'min_y', 'min_x', 'max_y',\n 'max_x'])\n", (26665, 26741), True, 'import pandas as pd\n'), ((27407, 27505), 'maad.util.plot2d', 'plot2d', (['im_rois'], {'extent': 'extent', 'title': 'title', 'ylabel': 'ylabel', 'xlabel': 'xlabel', 'cmap': 'cmap'}), '(im_rois, extent=extent, title=title, ylabel=ylabel, xlabel=xlabel,\n cmap=cmap, **kwargs)\n', (27413, 27505), False, 'from maad.util import plot2d, rand_cmap\n'), ((7466, 7585), 'maad.util.plot2d', 'plot2d', (['im_out'], {'extent': 'extent', 'title': 'title', 'ylabel': 'ylabel', 'xlabel': 'xlabel', 'vmin': 'vmin', 'vmax': 'vmax', 'cmap': 'cmap'}), '(im_out, extent=extent, title=title, ylabel=ylabel, xlabel=xlabel,\n vmin=vmin, vmax=vmax, cmap=cmap, **kwargs)\n', (7472, 7585), False, 'from maad.util import plot2d, rand_cmap\n'), ((4933, 4949), 'numpy.where', 'np.where', (['(im > 0)'], {}), '(im > 0)\n', (4941, 4949), True, 'import numpy as np\n'), ((26190, 26212), 'numpy.asarray', 'np.asarray', (['rois_label'], {}), '(rois_label)\n', (26200, 26212), True, 'import numpy as np\n'), ((26214, 26235), 'numpy.asarray', 'np.asarray', (['rois_bbox'], {}), '(rois_bbox)\n', (26224, 26235), True, 'import numpy as np\n'), ((5330, 5346), 'numpy.where', 'np.where', (['(im > 0)'], {}), '(im > 0)\n', (5338, 5346), True, 'import numpy as np\n')]
import logging import os import numpy as np import argparse import open3d as o3d from urllib.request import urlretrieve from util.visualization import get_colored_point_cloud_feature from util.misc import extract_features from model.resunet import ResUNetBN2C import torch if not os.path.isfile('ResUNetBN2C-16feat-3conv.pth'): print('Downloading weights...') urlretrieve( "https://node1.chrischoy.org/data/publications/fcgf/2019-09-18_14-15-59.pth", 'ResUNetBN2C-16feat-3conv.pth') if not os.path.isfile('redkitchen-20.ply'): print('Downloading a mesh...') urlretrieve("https://node1.chrischoy.org/data/publications/fcgf/redkitchen-20.ply", 'redkitchen-20.ply') def demo(config): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') checkpoint = torch.load(config.model) model = ResUNetBN2C(1, 16, normalize_feature=True, conv1_kernel_size=3, D=3) model.load_state_dict(checkpoint['state_dict']) model.eval() model = model.to(device) pcd = o3d.io.read_point_cloud(config.input) xyz_down, feature = extract_features( model, xyz=np.array(pcd.points), voxel_size=config.voxel_size, device=device, skip_check=True) vis_pcd = o3d.geometry.PointCloud() vis_pcd.points = o3d.utility.Vector3dVector(xyz_down) vis_pcd = get_colored_point_cloud_feature(vis_pcd, feature.detach().cpu().numpy(), config.voxel_size) #o3d.visualization.draw_geometries([vis_pcd]) #o3d.io.write_triangle_mesh('/home/curnis/result/fcgf/mesh.obj', vis_pcd) print(type(vis_pcd)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-i', '--input', default='redkitchen-20.ply', type=str, help='path to a pointcloud file') parser.add_argument( '-m', '--model', default='ResUNetBN2C-16feat-3conv.pth', type=str, help='path to latest checkpoint (default: None)') parser.add_argument( '--voxel_size', default=0.025, type=float, help='voxel size to preprocess point cloud') config = parser.parse_args() demo(config)
[ "argparse.ArgumentParser", "torch.load", "open3d.io.read_point_cloud", "open3d.geometry.PointCloud", "model.resunet.ResUNetBN2C", "urllib.request.urlretrieve", "os.path.isfile", "torch.cuda.is_available", "numpy.array", "open3d.utility.Vector3dVector" ]
[((283, 329), 'os.path.isfile', 'os.path.isfile', (['"""ResUNetBN2C-16feat-3conv.pth"""'], {}), "('ResUNetBN2C-16feat-3conv.pth')\n", (297, 329), False, 'import os\n'), ((367, 498), 'urllib.request.urlretrieve', 'urlretrieve', (['"""https://node1.chrischoy.org/data/publications/fcgf/2019-09-18_14-15-59.pth"""', '"""ResUNetBN2C-16feat-3conv.pth"""'], {}), "(\n 'https://node1.chrischoy.org/data/publications/fcgf/2019-09-18_14-15-59.pth'\n , 'ResUNetBN2C-16feat-3conv.pth')\n", (378, 498), False, 'from urllib.request import urlretrieve\n'), ((510, 545), 'os.path.isfile', 'os.path.isfile', (['"""redkitchen-20.ply"""'], {}), "('redkitchen-20.ply')\n", (524, 545), False, 'import os\n'), ((582, 695), 'urllib.request.urlretrieve', 'urlretrieve', (['"""https://node1.chrischoy.org/data/publications/fcgf/redkitchen-20.ply"""', '"""redkitchen-20.ply"""'], {}), "(\n 'https://node1.chrischoy.org/data/publications/fcgf/redkitchen-20.ply',\n 'redkitchen-20.ply')\n", (593, 695), False, 'from urllib.request import urlretrieve\n'), ((809, 833), 'torch.load', 'torch.load', (['config.model'], {}), '(config.model)\n', (819, 833), False, 'import torch\n'), ((844, 912), 'model.resunet.ResUNetBN2C', 'ResUNetBN2C', (['(1)', '(16)'], {'normalize_feature': '(True)', 'conv1_kernel_size': '(3)', 'D': '(3)'}), '(1, 16, normalize_feature=True, conv1_kernel_size=3, D=3)\n', (855, 912), False, 'from model.resunet import ResUNetBN2C\n'), ((1015, 1052), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['config.input'], {}), '(config.input)\n', (1038, 1052), True, 'import open3d as o3d\n'), ((1231, 1256), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (1254, 1256), True, 'import open3d as o3d\n'), ((1276, 1312), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['xyz_down'], {}), '(xyz_down)\n', (1302, 1312), True, 'import open3d as o3d\n'), ((1693, 1718), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1716, 1718), False, 'import argparse\n'), ((755, 780), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (778, 780), False, 'import torch\n'), ((1116, 1136), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (1124, 1136), True, 'import numpy as np\n')]
import numpy as np import sys import os, psutil from collections import deque def mem() : process = psutil.Process(os.getpid()) print(process.memory_info().rss / 1000000, "Mb", file=sys.stderr) class Graph: def neighbors(self, node): return self.neighbors_array[self.index[node]:self.index[node]+self.deg[node]] # thanks to great implementation of numpy, this is a view and not a copy def __init__(self, left, right, number_nodes): self.nb_nodes = number_nodes self.nb_edges = len(left) self.deg = np.zeros(self.nb_nodes, dtype = np.int32) uniques,counts = np.unique(np.concatenate((l1,l2)), return_counts=True) self.deg = np.zeros(maxIdx+1, dtype = np.int32) for unique, count in zip(uniques,counts): self.deg[unique] = count self.index = np.zeros(self.nb_nodes, dtype = np.int32) for i in range(1, self.nb_nodes): self.index[i] = self.index[i-1]+self.deg[i-1] mutable_index = np.copy(self.index) self.neighbors_array = np.zeros(self.index[self.nb_nodes-1]+self.deg[self.nb_nodes-1], dtype = np.int32) # memory of size sum number of degrees for a, b in zip(left, right): self.neighbors_array[mutable_index[a]] = b self.neighbors_array[mutable_index[b]] = a mutable_index[a]+=1 mutable_index[b]+=1 if __name__ == "__main__": argv = sys.argv[1:] estimNbAretes = int(argv[1]) #lecture du fichier et constitution du tableau des arêtes l1 = np.zeros(estimNbAretes, dtype=np.int32) l2 = np.zeros(estimNbAretes, dtype=np.int32) with open(argv[0], 'r') as f: count=0 for line in f: if line[0]!='#': newline=line.split() a = int(newline[0],10) b = int(newline[1],10) l1[count]=a l2[count]=b count+=1 maxIdx = max(np.max(l1),np.max(l2)) l1 = l1[:count] l2 = l2[:count] G = Graph(l1, l2, maxIdx+1) del l1 del l2 mem() #on peut retourner le nombre de sommets et d'arêtes print("n="+str(G.nb_nodes)) print("m="+str(G.nb_edges)) #calcul et retour du degré max degMax=np.max(G.deg) print("degmax="+str(degMax)) #calcul et retour de las distance entre u et v u=int(argv[2]) v=int(argv[3]) res = -1 #on procède à un BFS partant de u en utilisant une file pour la visite (to_visit) et en retenant les noeuds vus (seen) et leur distance if u==v: res = 0 else: seen=np.zeros(maxIdx+1, dtype=np.int32) dist=np.zeros(maxIdx+1, dtype=np.int32) seen[u]=1 to_visit=deque([]) for w in G.neighbors(u): seen[w]=1 dist[w]=1 to_visit.append(w) while to_visit: w=to_visit.popleft() if w==v: res = dist[w] break else: for z in G.neighbors(w): if not seen[z]: to_visit.append(z) seen[z]=1 dist[z]=dist[w]+1 mem() if res == -1: print("dist="+str(float('inf'))) else: print("dist="+str(res))
[ "os.getpid", "numpy.concatenate", "numpy.copy", "numpy.zeros", "numpy.max", "collections.deque" ]
[((1543, 1582), 'numpy.zeros', 'np.zeros', (['estimNbAretes'], {'dtype': 'np.int32'}), '(estimNbAretes, dtype=np.int32)\n', (1551, 1582), True, 'import numpy as np\n'), ((1592, 1631), 'numpy.zeros', 'np.zeros', (['estimNbAretes'], {'dtype': 'np.int32'}), '(estimNbAretes, dtype=np.int32)\n', (1600, 1631), True, 'import numpy as np\n'), ((2238, 2251), 'numpy.max', 'np.max', (['G.deg'], {}), '(G.deg)\n', (2244, 2251), True, 'import numpy as np\n'), ((118, 129), 'os.getpid', 'os.getpid', ([], {}), '()\n', (127, 129), False, 'import os, psutil\n'), ((545, 584), 'numpy.zeros', 'np.zeros', (['self.nb_nodes'], {'dtype': 'np.int32'}), '(self.nb_nodes, dtype=np.int32)\n', (553, 584), True, 'import numpy as np\n'), ((686, 722), 'numpy.zeros', 'np.zeros', (['(maxIdx + 1)'], {'dtype': 'np.int32'}), '(maxIdx + 1, dtype=np.int32)\n', (694, 722), True, 'import numpy as np\n'), ((831, 870), 'numpy.zeros', 'np.zeros', (['self.nb_nodes'], {'dtype': 'np.int32'}), '(self.nb_nodes, dtype=np.int32)\n', (839, 870), True, 'import numpy as np\n'), ((997, 1016), 'numpy.copy', 'np.copy', (['self.index'], {}), '(self.index)\n', (1004, 1016), True, 'import numpy as np\n'), ((1048, 1138), 'numpy.zeros', 'np.zeros', (['(self.index[self.nb_nodes - 1] + self.deg[self.nb_nodes - 1])'], {'dtype': 'np.int32'}), '(self.index[self.nb_nodes - 1] + self.deg[self.nb_nodes - 1], dtype\n =np.int32)\n', (1056, 1138), True, 'import numpy as np\n'), ((1947, 1957), 'numpy.max', 'np.max', (['l1'], {}), '(l1)\n', (1953, 1957), True, 'import numpy as np\n'), ((1958, 1968), 'numpy.max', 'np.max', (['l2'], {}), '(l2)\n', (1964, 1968), True, 'import numpy as np\n'), ((2575, 2611), 'numpy.zeros', 'np.zeros', (['(maxIdx + 1)'], {'dtype': 'np.int32'}), '(maxIdx + 1, dtype=np.int32)\n', (2583, 2611), True, 'import numpy as np\n'), ((2621, 2657), 'numpy.zeros', 'np.zeros', (['(maxIdx + 1)'], {'dtype': 'np.int32'}), '(maxIdx + 1, dtype=np.int32)\n', (2629, 2657), True, 'import numpy as np\n'), ((2688, 2697), 'collections.deque', 'deque', (['[]'], {}), '([])\n', (2693, 2697), False, 'from collections import deque\n'), ((622, 646), 'numpy.concatenate', 'np.concatenate', (['(l1, l2)'], {}), '((l1, l2))\n', (636, 646), True, 'import numpy as np\n')]
from keras import backend as K from keras import optimizers from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda,Dropout from keras.models import Model from models.common import sse, bce, mmd, sampling, kl_regu from keras.losses import mean_squared_error,binary_crossentropy import numpy as np from tensorflow import set_random_seed class XVAE: def __init__(self, args): self.args = args self.vae = None self.encoder = None def build_model(self): np.random.seed(42) set_random_seed(42) # Build the encoder network # ------------ Input ----------------- s1_inp = Input(shape=(self.args.s1_input_size,)) s2_inp = Input(shape=(self.args.s2_input_size,)) inputs = [s1_inp, s2_inp] # ------------ Concat Layer ----------------- x1 = Dense(self.args.ds, activation=self.args.act)(s1_inp) x1 = BN()(x1) x2 = Dense(self.args.ds, activation=self.args.act)(s2_inp) x2 = BN()(x2) x = Concatenate(axis=-1)([x1, x2]) x = Dense(self.args.ds, activation=self.args.act)(x) x = BN()(x) # ------------ Embedding Layer -------------- z_mean = Dense(self.args.ls, name='z_mean')(x) z_log_sigma = Dense(self.args.ls, name='z_log_sigma', kernel_initializer='zeros')(x) z = Lambda(sampling, output_shape=(self.args.ls,), name='z')([z_mean, z_log_sigma]) self.encoder = Model(inputs, [z_mean, z_log_sigma, z], name='encoder') self.encoder.summary() # Build the decoder network # ------------ Dense out ----------------- latent_inputs = Input(shape=(self.args.ls,), name='z_sampling') x = latent_inputs x = Dense(self.args.ds, activation=self.args.act)(x) x = BN()(x) x=Dropout(self.args.dropout)(x) # ------------ Dense branches ------------ x1 = Dense(self.args.ds, activation=self.args.act)(x) x1 = BN()(x1) x2 = Dense(self.args.ds, activation=self.args.act)(x) x2 = BN()(x2) # ------------ Out ----------------------- s1_out = Dense(self.args.s1_input_size, activation='sigmoid')(x1) if self.args.integration == 'Clin+CNA': s2_out = Dense(self.args.s2_input_size,activation='sigmoid')(x2) else: s2_out = Dense(self.args.s2_input_size)(x2) decoder = Model(latent_inputs, [s1_out, s2_out], name='decoder') decoder.summary() outputs = decoder(self.encoder(inputs)[2]) self.vae = Model(inputs, outputs, name='vae_x') if self.args.distance == "mmd": true_samples = K.random_normal(K.stack([self.args.bs, self.args.ls])) distance = mmd(true_samples, z) if self.args.distance == "kl": distance = kl_regu(z_mean,z_log_sigma) s1_loss= binary_crossentropy(inputs[0], outputs[0]) if self.args.integration == 'Clin+CNA': s2_loss =binary_crossentropy(inputs[1], outputs[1]) else: s2_loss =mean_squared_error(inputs[1], outputs[1]) reconstruction_loss = s1_loss+s2_loss vae_loss = K.mean(reconstruction_loss + self.args.beta * distance) self.vae.add_loss(vae_loss) adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, amsgrad=False, decay=0.001) self.vae.compile(optimizer=adam, metrics=[mean_squared_error, mean_squared_error]) self.vae.summary() def train(self, s1_train, s2_train, s1_test, s2_test): self.vae.fit([s1_train, s2_train], epochs=self.args.epochs, batch_size=self.args.bs, shuffle=True, validation_data=([s1_test, s2_test], None)) if self.args.save_model: self.vae.save_weights('./models/vae_xvae.h5') def predict(self, s1_data, s2_data): return self.encoder.predict([s1_data, s2_data], batch_size=self.args.bs)[0]
[ "keras.backend.stack", "numpy.random.seed", "keras.losses.binary_crossentropy", "keras.layers.Dropout", "keras.optimizers.Adam", "keras.models.Model", "tensorflow.set_random_seed", "keras.layers.Concatenate", "keras.layers.Dense", "keras.backend.mean", "keras.layers.Lambda", "models.common.kl_regu", "keras.layers.Input", "models.common.mmd", "keras.layers.BatchNormalization", "keras.losses.mean_squared_error" ]
[((531, 549), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (545, 549), True, 'import numpy as np\n'), ((558, 577), 'tensorflow.set_random_seed', 'set_random_seed', (['(42)'], {}), '(42)\n', (573, 577), False, 'from tensorflow import set_random_seed\n'), ((678, 717), 'keras.layers.Input', 'Input', ([], {'shape': '(self.args.s1_input_size,)'}), '(shape=(self.args.s1_input_size,))\n', (683, 717), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((735, 774), 'keras.layers.Input', 'Input', ([], {'shape': '(self.args.s2_input_size,)'}), '(shape=(self.args.s2_input_size,))\n', (740, 774), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1488, 1543), 'keras.models.Model', 'Model', (['inputs', '[z_mean, z_log_sigma, z]'], {'name': '"""encoder"""'}), "(inputs, [z_mean, z_log_sigma, z], name='encoder')\n", (1493, 1543), False, 'from keras.models import Model\n'), ((1687, 1734), 'keras.layers.Input', 'Input', ([], {'shape': '(self.args.ls,)', 'name': '"""z_sampling"""'}), "(shape=(self.args.ls,), name='z_sampling')\n", (1692, 1734), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2459, 2513), 'keras.models.Model', 'Model', (['latent_inputs', '[s1_out, s2_out]'], {'name': '"""decoder"""'}), "(latent_inputs, [s1_out, s2_out], name='decoder')\n", (2464, 2513), False, 'from keras.models import Model\n'), ((2611, 2647), 'keras.models.Model', 'Model', (['inputs', 'outputs'], {'name': '"""vae_x"""'}), "(inputs, outputs, name='vae_x')\n", (2616, 2647), False, 'from keras.models import Model\n'), ((2951, 2993), 'keras.losses.binary_crossentropy', 'binary_crossentropy', (['inputs[0]', 'outputs[0]'], {}), '(inputs[0], outputs[0])\n', (2970, 2993), False, 'from keras.losses import mean_squared_error, binary_crossentropy\n'), ((3267, 3322), 'keras.backend.mean', 'K.mean', (['(reconstruction_loss + self.args.beta * distance)'], {}), '(reconstruction_loss + self.args.beta * distance)\n', (3273, 3322), True, 'from keras import backend as K\n'), ((3375, 3473), 'keras.optimizers.Adam', 'optimizers.Adam', ([], {'lr': '(0.001)', 'beta_1': '(0.9)', 'beta_2': '(0.999)', 'epsilon': 'None', 'amsgrad': '(False)', 'decay': '(0.001)'}), '(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, amsgrad=\n False, decay=0.001)\n', (3390, 3473), False, 'from keras import optimizers\n'), ((877, 922), 'keras.layers.Dense', 'Dense', (['self.args.ds'], {'activation': 'self.args.act'}), '(self.args.ds, activation=self.args.act)\n', (882, 922), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((944, 948), 'keras.layers.BatchNormalization', 'BN', ([], {}), '()\n', (946, 948), True, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((967, 1012), 'keras.layers.Dense', 'Dense', (['self.args.ds'], {'activation': 'self.args.act'}), '(self.args.ds, activation=self.args.act)\n', (972, 1012), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1034, 1038), 'keras.layers.BatchNormalization', 'BN', ([], {}), '()\n', (1036, 1038), True, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1056, 1076), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(-1)'}), '(axis=-1)\n', (1067, 1076), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1100, 1145), 'keras.layers.Dense', 'Dense', (['self.args.ds'], {'activation': 'self.args.act'}), '(self.args.ds, activation=self.args.act)\n', (1105, 1145), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1161, 1165), 'keras.layers.BatchNormalization', 'BN', ([], {}), '()\n', (1163, 1165), True, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1241, 1275), 'keras.layers.Dense', 'Dense', (['self.args.ls'], {'name': '"""z_mean"""'}), "(self.args.ls, name='z_mean')\n", (1246, 1275), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1301, 1368), 'keras.layers.Dense', 'Dense', (['self.args.ls'], {'name': '"""z_log_sigma"""', 'kernel_initializer': '"""zeros"""'}), "(self.args.ls, name='z_log_sigma', kernel_initializer='zeros')\n", (1306, 1368), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1384, 1440), 'keras.layers.Lambda', 'Lambda', (['sampling'], {'output_shape': '(self.args.ls,)', 'name': '"""z"""'}), "(sampling, output_shape=(self.args.ls,), name='z')\n", (1390, 1440), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1773, 1818), 'keras.layers.Dense', 'Dense', (['self.args.ds'], {'activation': 'self.args.act'}), '(self.args.ds, activation=self.args.act)\n', (1778, 1818), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1834, 1838), 'keras.layers.BatchNormalization', 'BN', ([], {}), '()\n', (1836, 1838), True, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1861, 1887), 'keras.layers.Dropout', 'Dropout', (['self.args.dropout'], {}), '(self.args.dropout)\n', (1868, 1887), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((1955, 2000), 'keras.layers.Dense', 'Dense', (['self.args.ds'], {'activation': 'self.args.act'}), '(self.args.ds, activation=self.args.act)\n', (1960, 2000), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2017, 2021), 'keras.layers.BatchNormalization', 'BN', ([], {}), '()\n', (2019, 2021), True, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2039, 2084), 'keras.layers.Dense', 'Dense', (['self.args.ds'], {'activation': 'self.args.act'}), '(self.args.ds, activation=self.args.act)\n', (2044, 2084), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2101, 2105), 'keras.layers.BatchNormalization', 'BN', ([], {}), '()\n', (2103, 2105), True, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2179, 2231), 'keras.layers.Dense', 'Dense', (['self.args.s1_input_size'], {'activation': '"""sigmoid"""'}), "(self.args.s1_input_size, activation='sigmoid')\n", (2184, 2231), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2794, 2814), 'models.common.mmd', 'mmd', (['true_samples', 'z'], {}), '(true_samples, z)\n', (2797, 2814), False, 'from models.common import sse, bce, mmd, sampling, kl_regu\n'), ((2877, 2905), 'models.common.kl_regu', 'kl_regu', (['z_mean', 'z_log_sigma'], {}), '(z_mean, z_log_sigma)\n', (2884, 2905), False, 'from models.common import sse, bce, mmd, sampling, kl_regu\n'), ((3064, 3106), 'keras.losses.binary_crossentropy', 'binary_crossentropy', (['inputs[1]', 'outputs[1]'], {}), '(inputs[1], outputs[1])\n', (3083, 3106), False, 'from keras.losses import mean_squared_error, binary_crossentropy\n'), ((3142, 3183), 'keras.losses.mean_squared_error', 'mean_squared_error', (['inputs[1]', 'outputs[1]'], {}), '(inputs[1], outputs[1])\n', (3160, 3183), False, 'from keras.losses import mean_squared_error, binary_crossentropy\n'), ((2314, 2366), 'keras.layers.Dense', 'Dense', (['self.args.s2_input_size'], {'activation': '"""sigmoid"""'}), "(self.args.s2_input_size, activation='sigmoid')\n", (2319, 2366), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2405, 2435), 'keras.layers.Dense', 'Dense', (['self.args.s2_input_size'], {}), '(self.args.s2_input_size)\n', (2410, 2435), False, 'from keras.layers import BatchNormalization as BN, Concatenate, Dense, Input, Lambda, Dropout\n'), ((2732, 2769), 'keras.backend.stack', 'K.stack', (['[self.args.bs, self.args.ls]'], {}), '([self.args.bs, self.args.ls])\n', (2739, 2769), True, 'from keras import backend as K\n')]
# -*- coding: utf-8 -*- import numpy as np from DictLearner import DictLearner import scipy.sparse.linalg """The inference code was adapted from <NAME>'s sparsenet implementation, available on github.""" class FISTALearner(DictLearner): def __init__(self, data, learnrate, nunits, lam = 0.4, niter=100, **kwargs): self.lam = 0.4 self.niter = niter super().__init__(data, learnrate, nunits, **kwargs) def infer(self, data, max_iterations=None, display=False): """ FISTA Inference for Lasso (l1) Problem data: Batches of data (dim x batch) Phi: Dictionary (dictionary element x dim) (nparray or sparse array) lambdav: Sparsity penalty max_iterations: Maximum number of iterations """ lambdav=self.lam def proxOp(x,t): """ L1 Proximal Operator """ return np.fmax(x-t, 0) + np.fmin(x+t, 0) x = np.zeros((self.Q.shape[0], data.shape[1])) c = self.Q.dot(self.Q.T) b = -2*self.Q.dot(data) L = scipy.sparse.linalg.eigsh(2*c, 1, which='LM')[0] invL = 1/float(L) y = x t = 1 max_iterations = max_iterations or self.niter for i in range(max_iterations): g = 2*c.dot(y) + b x2 = proxOp(y-invL*g,invL*lambdav) t2 = (1+np.sqrt(1+4*(t**2)))/2.0 y = x2 + ((t-1)/t2)*(x2-x) x = x2 t = t2 if display == True: print ("L1 Objective " + str(np.sum((data-self.Q.T.dot(x2))**2) + lambdav*np.sum(np.abs(x2)))) return x2, 0, 0
[ "numpy.fmin", "numpy.fmax", "numpy.abs", "numpy.zeros", "numpy.sqrt" ]
[((940, 982), 'numpy.zeros', 'np.zeros', (['(self.Q.shape[0], data.shape[1])'], {}), '((self.Q.shape[0], data.shape[1]))\n', (948, 982), True, 'import numpy as np\n'), ((889, 906), 'numpy.fmax', 'np.fmax', (['(x - t)', '(0)'], {}), '(x - t, 0)\n', (896, 906), True, 'import numpy as np\n'), ((907, 924), 'numpy.fmin', 'np.fmin', (['(x + t)', '(0)'], {}), '(x + t, 0)\n', (914, 924), True, 'import numpy as np\n'), ((1356, 1379), 'numpy.sqrt', 'np.sqrt', (['(1 + 4 * t ** 2)'], {}), '(1 + 4 * t ** 2)\n', (1363, 1379), True, 'import numpy as np\n'), ((1571, 1581), 'numpy.abs', 'np.abs', (['x2'], {}), '(x2)\n', (1577, 1581), True, 'import numpy as np\n')]
#!/usr/bin/env python import rospy from math import cos, sin, atan, pi import numpy as np import yaml import sys from sensor_msgs.msg import LaserScan from std_msgs.msg import Float64 import pdb pub = rospy.Publisher('pid_error', Float64, queue_size=10) # You can define constants in Python as uppercase global names like these. MIN_DISTANCE = 0.1 MAX_DISTANCE = 30.0 MIN_ANGLE = -45.0 MAX_ANGLE = 225.0 a = 0.0 b = 0.0 al = 0.0 bl = 0.0 ar = 0.0 br = 0.0 # data: single message from topic /scan # angle: between -45 to 225 degrees, where 0 degrees is directly to the right # Outputs length in meters to object with angle in lidar scan field of view def getRange(data, angle): # TODO: implement ranges = np.asarray(data.ranges) angle_index = (angle + 45) * 4 # hokuyo ust-10lx fen bian lv 0.25du output_range = ranges[angle_index] return output_range # data: single message from topic /scan # desired_distance: desired distance to the left wall [meters] # Outputs the PID error required to make the car follow the left wall. def followLeft(data, desired_distance): # TODO: implement global a, b L = 0.015 #old: 0.025 desired_distance = desired_distance a = getRange(data, 135) b = getRange(data, 180) theta = 45 * pi / 180 alpha = atan((a * cos(theta) - b) / (a * sin(theta))) current_dist = b * cos(alpha) next_dist = current_dist + L * sin(alpha) error_t = -(current_dist - desired_distance + L * sin(alpha)) # pass the error_t term into some function and output the next_angle and velocity return error_t # data: single message from topic /scan # desired_distance: desired distance to the right wall [meters] # Outputs the PID error required to make the car follow the right wall. def followRight(data, desired_distance): # TODO: implement global a, b L = 0.025 desired_distance = desired_distance a = getRange(data, 45) b = getRange(data, 0) theta = 45 * pi / 180 alpha = atan((a * cos(theta) - b) / (a * sin(theta))) current_dist = b * cos(alpha) next_dist = current_dist + L * sin(alpha) error_t = -(current_dist - desired_distance + L * sin(alpha)) # pass the error_t term into some function and output the next_angle and velocity return error_t # data: single message from topic /scan # Outputs the PID error required to make the car drive in the middle # of the hallway. def followCenter(data): # TODO: implement global al, bl, ar, br L = 0.025 al = getRange(data, 135) bl = getRange(data, 180) ar = getRange(data, 0) br = getRange(data, 45) theta = 45 * pi / 180 alpha_l = atan((al * cos(theta) - bl) / (al * sin(theta))) alpha_r = atan((ar * cos(theta) - br) / (ar * sin(theta))) left_dist = bl * cos(alpha_l) right_dist = br * cos(alpha_r) desired_distance = (left_dist + right_dist) / 2.0 error_t = -(right_dist - desired_distance + L * sin(alpha_r)) # pass the error_t term into some function and output the next_angle and velocity return error_t # Callback for receiving LIDAR data on the /scan topic. # data: the LIDAR data, published as a list of distances to the wall. def scan_callback(data): error = followCenter(data) # TODO: replace with followLeft, followRight, or followCenter msg = Float64() msg.data = error pub.publish(msg) # Boilerplate code to start this ROS node. # DO NOT MODIFY! if __name__ == '__main__': rospy.init_node('pid_error_node', anonymous = True) rospy.Subscriber("scan", LaserScan, scan_callback) rospy.spin()
[ "rospy.Subscriber", "numpy.asarray", "rospy.Publisher", "math.sin", "std_msgs.msg.Float64", "rospy.init_node", "math.cos", "rospy.spin" ]
[((203, 255), 'rospy.Publisher', 'rospy.Publisher', (['"""pid_error"""', 'Float64'], {'queue_size': '(10)'}), "('pid_error', Float64, queue_size=10)\n", (218, 255), False, 'import rospy\n'), ((712, 735), 'numpy.asarray', 'np.asarray', (['data.ranges'], {}), '(data.ranges)\n', (722, 735), True, 'import numpy as np\n'), ((3221, 3230), 'std_msgs.msg.Float64', 'Float64', ([], {}), '()\n', (3228, 3230), False, 'from std_msgs.msg import Float64\n'), ((3358, 3407), 'rospy.init_node', 'rospy.init_node', (['"""pid_error_node"""'], {'anonymous': '(True)'}), "('pid_error_node', anonymous=True)\n", (3373, 3407), False, 'import rospy\n'), ((3411, 3461), 'rospy.Subscriber', 'rospy.Subscriber', (['"""scan"""', 'LaserScan', 'scan_callback'], {}), "('scan', LaserScan, scan_callback)\n", (3427, 3461), False, 'import rospy\n'), ((3463, 3475), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (3473, 3475), False, 'import rospy\n'), ((1330, 1340), 'math.cos', 'cos', (['alpha'], {}), '(alpha)\n', (1333, 1340), False, 'from math import cos, sin, atan, pi\n'), ((2004, 2014), 'math.cos', 'cos', (['alpha'], {}), '(alpha)\n', (2007, 2014), False, 'from math import cos, sin, atan, pi\n'), ((2704, 2716), 'math.cos', 'cos', (['alpha_l'], {}), '(alpha_l)\n', (2707, 2716), False, 'from math import cos, sin, atan, pi\n'), ((2737, 2749), 'math.cos', 'cos', (['alpha_r'], {}), '(alpha_r)\n', (2740, 2749), False, 'from math import cos, sin, atan, pi\n'), ((1374, 1384), 'math.sin', 'sin', (['alpha'], {}), '(alpha)\n', (1377, 1384), False, 'from math import cos, sin, atan, pi\n'), ((2048, 2058), 'math.sin', 'sin', (['alpha'], {}), '(alpha)\n', (2051, 2058), False, 'from math import cos, sin, atan, pi\n'), ((1296, 1306), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (1299, 1306), False, 'from math import cos, sin, atan, pi\n'), ((1437, 1447), 'math.sin', 'sin', (['alpha'], {}), '(alpha)\n', (1440, 1447), False, 'from math import cos, sin, atan, pi\n'), ((1970, 1980), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (1973, 1980), False, 'from math import cos, sin, atan, pi\n'), ((2111, 2121), 'math.sin', 'sin', (['alpha'], {}), '(alpha)\n', (2114, 2121), False, 'from math import cos, sin, atan, pi\n'), ((2611, 2621), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (2614, 2621), False, 'from math import cos, sin, atan, pi\n'), ((2672, 2682), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (2675, 2682), False, 'from math import cos, sin, atan, pi\n'), ((2852, 2864), 'math.sin', 'sin', (['alpha_r'], {}), '(alpha_r)\n', (2855, 2864), False, 'from math import cos, sin, atan, pi\n'), ((1273, 1283), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (1276, 1283), False, 'from math import cos, sin, atan, pi\n'), ((1947, 1957), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (1950, 1957), False, 'from math import cos, sin, atan, pi\n'), ((2586, 2596), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (2589, 2596), False, 'from math import cos, sin, atan, pi\n'), ((2647, 2657), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (2650, 2657), False, 'from math import cos, sin, atan, pi\n')]
from inferelator import amusr_workflow from inferelator import workflow from inferelator.regression.base_regression import _RegressionWorkflowMixin from inferelator.postprocessing.results_processor import ResultsProcessor from inferelator.tests.artifacts.test_data import TestDataSingleCellLike, TEST_DATA, TEST_DATA_SPARSE from inferelator.utils import InferelatorData import pandas as pd import numpy as np class NoOutputRP(ResultsProcessor): def summarize_network(self, output_dir, gold_standard, priors): return super(NoOutputRP, self).summarize_network(None, gold_standard, priors) # Factory method to spit out a puppet workflow def create_puppet_workflow(regression_class=_RegressionWorkflowMixin, base_class=workflow.WorkflowBase, result_processor_class=NoOutputRP): puppet_parent = workflow._factory_build_inferelator(regression=regression_class, workflow=base_class) class PuppetClass(puppet_parent): """ Standard workflow except it takes all the data as references to __init__ instead of as filenames on disk or as environment variables, and returns the model AUPR and edge counts without writing files (unless told to) """ write_network = True network_file_name = None pr_curve_file_name = None initialize_mp = False def __init__(self, data, prior_data, gs_data): self.data = data self.priors_data = prior_data self.gold_standard = gs_data super(PuppetClass, self).__init__() def startup_run(self): # Skip all of the data loading self.process_priors_and_gold_standard() def create_output_dir(self, *args, **kwargs): pass return PuppetClass class TaskDataStub(amusr_workflow.create_task_data_class(workflow_class="single-cell")): priors_data = TestDataSingleCellLike.priors_data tf_names = TestDataSingleCellLike.tf_names meta_data_task_column = "Condition" tasks_from_metadata = True task_name = "TestStub" task_workflow_type = "single-cell" def __init__(self, sparse=False): self.data = TEST_DATA.copy() if not sparse else TEST_DATA_SPARSE.copy() super(TaskDataStub, self).__init__() def get_data(self): if self.tasks_from_metadata: return self.separate_tasks_by_metadata() else: return [self] class FakeDRD: def __init__(self, *args, **kwargs): pass def run(self, expr, meta): return expr, expr, expr def validate_run(self, meta): return True class FakeWriter(object): def writerow(self, *args, **kwargs): pass class FakeRegressionMixin(_RegressionWorkflowMixin): def run_regression(self): beta = [pd.DataFrame(np.array([[0, 1], [0.5, 0.05]]), index=['gene1', 'gene2'], columns=['tf1', 'tf2'])] beta_resc = [pd.DataFrame(np.array([[0, 1], [1, 0.05]]), index=['gene1', 'gene2'], columns=['tf1', 'tf2'])] return beta, beta_resc def run_bootstrap(self, bootstrap): return True class FakeResultProcessor: network_data = None def __init__(self, *args, **kwargs): pass def summarize_network(self, *args, **kwargs): return 1, 0, 0
[ "inferelator.amusr_workflow.create_task_data_class", "inferelator.tests.artifacts.test_data.TEST_DATA_SPARSE.copy", "inferelator.tests.artifacts.test_data.TEST_DATA.copy", "numpy.array", "inferelator.workflow._factory_build_inferelator" ]
[((1835, 1902), 'inferelator.amusr_workflow.create_task_data_class', 'amusr_workflow.create_task_data_class', ([], {'workflow_class': '"""single-cell"""'}), "(workflow_class='single-cell')\n", (1872, 1902), False, 'from inferelator import amusr_workflow\n'), ((867, 957), 'inferelator.workflow._factory_build_inferelator', 'workflow._factory_build_inferelator', ([], {'regression': 'regression_class', 'workflow': 'base_class'}), '(regression=regression_class, workflow=\n base_class)\n', (902, 957), False, 'from inferelator import workflow\n'), ((2203, 2219), 'inferelator.tests.artifacts.test_data.TEST_DATA.copy', 'TEST_DATA.copy', ([], {}), '()\n', (2217, 2219), False, 'from inferelator.tests.artifacts.test_data import TestDataSingleCellLike, TEST_DATA, TEST_DATA_SPARSE\n'), ((2239, 2262), 'inferelator.tests.artifacts.test_data.TEST_DATA_SPARSE.copy', 'TEST_DATA_SPARSE.copy', ([], {}), '()\n', (2260, 2262), False, 'from inferelator.tests.artifacts.test_data import TestDataSingleCellLike, TEST_DATA, TEST_DATA_SPARSE\n'), ((2850, 2881), 'numpy.array', 'np.array', (['[[0, 1], [0.5, 0.05]]'], {}), '([[0, 1], [0.5, 0.05]])\n', (2858, 2881), True, 'import numpy as np\n'), ((2968, 2997), 'numpy.array', 'np.array', (['[[0, 1], [1, 0.05]]'], {}), '([[0, 1], [1, 0.05]])\n', (2976, 2997), True, 'import numpy as np\n')]
from solvers.rigidity_solver.models import * import numpy as np _scale = lambda arr: arr * 15 v = lambda x, y, z: np.array([x, y, z], dtype=np.double) p = lambda x, y, z: (_scale(np.array([x, y, z], dtype=np.double))) def lerp(p, q, weight): return p + (q - p) * weight def define(stage): _p = { "a": p(0, 0, 0), "b": p(1, 0, 0), "c": p(1 / 2, np.sqrt(3) / 2, 0), "A-u": p(3 / 2, np.sqrt(3) / 2, 1), "A-d": p(3 / 2, np.sqrt(3) / 2, -1), "B-u": p(-1 / 2, np.sqrt(3) / 2, 1), "B-d": p(-1 / 2, np.sqrt(3) / 2, -1), "C-u": p(1 / 2, -np.sqrt(3) / 2, 1), "C-d": p(1 / 2, -np.sqrt(3) / 2, -1), } _p.update({ "ab-mid": lerp(_p["A-u"], _p["B-u"], 0.5), "bc-mid": lerp(_p["B-u"], _p["C-u"], 0.5), "ca-mid": lerp(_p["C-u"], _p["A-u"], 0.5), "ab-0.1": lerp(_p["A-u"], _p["B-u"], 0.1), "bc-0.1": lerp(_p["B-u"], _p["C-u"], 0.1), "ca-0.1": lerp(_p["C-u"], _p["A-u"], 0.1), "ba-0.1": lerp(_p["B-u"], _p["A-u"], 0.1), "cb-0.1": lerp(_p["C-u"], _p["B-u"], 0.1), "ac-0.1": lerp(_p["A-u"], _p["C-u"], 0.1), "ab-0.9": lerp(_p["A-u"], _p["B-u"], 0.9), "bc-0.9": lerp(_p["B-u"], _p["C-u"], 0.9), "ca-0.9": lerp(_p["C-u"], _p["A-u"], 0.9), "ba-0.9": lerp(_p["B-u"], _p["A-u"], 0.9), "cb-0.9": lerp(_p["C-u"], _p["B-u"], 0.9), "ac-0.9": lerp(_p["A-u"], _p["C-u"], 0.9), }) def beam_init(p, q, density=0.5): return Beam.tetra(p, q, density=density, thickness=1) stage_2_frac = 0.25 stage_3_frac = 0.7 normalize = lambda x: x / np.linalg.norm(x) _da = normalize(_p["c"] - _p["b"]) _db = normalize(_p["a"] - _p["c"]) _dc = normalize(_p["b"] - _p["a"]) _dz = v(0, 0, 1) model = Model() _bmap = { "top-A": beam_init(_p["B-u"], _p["C-u"]), "top-B": beam_init(_p["C-u"], _p["A-u"]), "top-C": beam_init(_p["A-u"], _p["B-u"]), # "top-ab-bc": beam_init(_p["ab-mid"], _p["bc-mid"]), # "top-bc-ca": beam_init(_p["bc-mid"], _p["ca-mid"]), # "top-ca-ab": beam_init(_p["ca-mid"], _p["ab-mid"]), # # "core-ab": beam_init(_p['a'], _p["b"]), # "core-bc": beam_init(_p["b"], _p["c"]), # "core-ca": beam_init(_p["c"], _p["a"]), # "A-c": beam_init(_p["ca-0.9"], _p["C-d"]), "A-b": beam_init(_p["ab-0.1"], _p["B-d"]), "B-a": beam_init(_p["ab-0.9"], _p["A-d"]), "B-c": beam_init(_p["bc-0.1"], _p["C-d"]), "C-b": beam_init(_p["bc-0.9"], _p["B-d"]), "C-a": beam_init(_p["ca-0.1"], _p["A-d"]), } joints = [ Joint(_bmap["B-a"], _bmap["C-a"], pivot=_p["A-d"], rotation_axes=_da), Joint(_bmap["C-b"], _bmap["A-b"], pivot=_p["B-d"], rotation_axes=_db), Joint(_bmap["A-c"], _bmap["B-c"], pivot=_p["C-d"], rotation_axes=_dc), Joint(_bmap["top-C"], _bmap["top-A"], pivot=_p["B-u"], rotation_axes=-v(0, 0, 1)), Joint(_bmap["top-A"], _bmap["top-B"], pivot=_p["C-u"], rotation_axes=-v(0, 0, 1)), Joint(_bmap["top-B"], _bmap["top-C"], pivot=_p["A-u"], rotation_axes=-v(0, 0, 1)), Joint(_bmap["top-B"], _bmap["A-b"], pivot=_p["ab-0.1"], rotation_axes=_da), Joint(_bmap["top-C"], _bmap["A-c"], pivot=_p["ca-0.9"], rotation_axes=_da), Joint(_bmap["top-C"], _bmap["B-c"], pivot=_p["bc-0.1"], rotation_axes=_db), Joint(_bmap["top-A"], _bmap["B-a"], pivot=_p["ab-0.9"], rotation_axes=_db), Joint(_bmap["top-A"], _bmap["C-a"], pivot=_p["ca-0.1"], rotation_axes=_dc), Joint(_bmap["top-B"], _bmap["C-b"], pivot=_p["bc-0.9"], rotation_axes=_dc), Joint(_bmap["A-b"], _bmap["B-a"], pivot=(_p["ab-0.1"] + _p["ab-0.9"] + _p["A-d"] + _p["B-d"]) / 4, rotation_axes=np.cross(_dc, _dz)), Joint(_bmap["B-c"], _bmap["C-b"], pivot=(_p["bc-0.1"] + _p["bc-0.9"] + _p["B-d"] + _p["C-d"]) / 4, rotation_axes=np.cross(_da, _dz)), Joint(_bmap["C-a"], _bmap["A-c"], pivot=(_p["ca-0.1"] + _p["ca-0.9"] + _p["C-d"] + _p["A-d"]) / 4, rotation_axes=np.cross(_db, _dz)), ] ax_z = v(0, 0, 1) if stage >= 2: _stage_2_points = { f"{a}-u-{b}-d-{stage_2_frac}": lerp(_p[f"{a.lower()}{b.lower()}-0.1"], _p[f"{b}-d"], stage_2_frac) for a in "ABC" for b in "ABC" if a != b } _p.update(_stage_2_points) _stage_2_beam = { f"s2-{a}{b}": beam_init(_p[f"{a}-u-{b}-d-{stage_2_frac}"], _p[f"{b}-u-{a}-d-{stage_2_frac}"]) for a, b in ("AB", "BC", "CA") } _bmap.update(_stage_2_beam) _stage_2_joint = [ Joint(_bmap[f"s2-{a}{b}"], _bmap[f"{a}-{b.lower()}"], pivot=_p[f"{a}-u-{b}-d-{stage_2_frac}"], rotation_axes=ax_z) for a, b in ("AB", "BC", "CA") ] + [ Joint(_bmap[f"s2-{a}{b}"], _bmap[f"{b}-{a.lower()}"], pivot=_p[f"{b}-u-{a}-d-{stage_2_frac}"], rotation_axes=ax_z) for a, b in ("AB", "BC", "CA") ] joints.extend(_stage_2_joint) if stage >= 3: _stage_3_points = { f"{a}-u-{b}-d-{stage_3_frac}": lerp(_p[f"{a}-u"], _p[f"{b}-d"], stage_3_frac) for a in "ABC" for b in "ABC" if a != b } _p.update(_stage_3_points) _stage_3_beam = { f"s3-{a}{b}": beam_init(_p[f"{a}-u-{b}-d-{stage_3_frac}"], _p[f"{b}-u-{a}-d-{stage_3_frac}"]) for a, b in ("AB", "BC", "CA") } _bmap.update(_stage_3_beam) _stage_3_joint = [ Joint(_bmap[f"s3-{a}{b}"], _bmap[f"{a}-{b.lower()}"], pivot=_p[f"{a}-u-{b}-d-{stage_3_frac}"], rotation_axes=ax_z) for a, b in ("AB", "BC", "CA") ] + [ Joint(_bmap[f"s3-{a}{b}"], _bmap[f"{b}-{a.lower()}"], pivot=_p[f"{b}-u-{a}-d-{stage_3_frac}"], rotation_axes=ax_z) for a, b in ("AB", "BC", "CA") ] joints.extend(_stage_3_joint) if stage >= 4: _indices = ["AB", "BC", "CA"] _stage_4_points = { f"s4-{_indices[i % 3]}": lerp(_p[f"{a}-u-{b}-d-{stage_2_frac}"], _p[f"{b}-u-{a}-d-{stage_2_frac}"], 0.5) for i, (a, b) in enumerate(_indices) } _p.update(_stage_4_points) _stage_4_beam = { f"s4-{_indices[i % 3]}": beam_init(_p[f"s4-{_indices[i]}"], _p[f"{a.lower()}{b.lower()}-mid"]) for i, (a, b) in enumerate(_indices) } _bmap.update(_stage_4_beam) _stage_4_joint = [ Joint(_bmap[f"s4-{_indices[i % 3]}"], _bmap[f"s2-{_indices[i % 3]}"], pivot=_p[f"s4-{_indices[i]}"], rotation_axes=np.cross((_dc, _da, _db)[i], v(0, 0, 1)) ) for i, (a, b) in enumerate(_indices) ] + [ Joint(_bmap[f"s4-{_indices[i % 3]}"], _bmap[f"top-{'CAB'[i]}"], pivot=_p[f"{a.lower()}{b.lower()}-mid"], rotation_axes=np.cross((_dc, _da, _db)[i], v(0, 0, 1)) ) for i, (a, b) in enumerate(_indices) ] joints.extend(_stage_4_joint) beams = list(_bmap.values()) model.add_beams(beams) model.add_joints(joints) return locals() if __name__ == "__main__": model = define(1)["model"] model.visualize(show_hinge=True) points = model.point_matrix() edges = model.edge_matrix() stiffness = spring_energy_matrix_accelerate_3D(points, edges, abstract_edges=[]), constraints = model.constraint_matrix() new_stiffness, B = generalized_courant_fischer( stiffness, constraints ) pairs = model.eigen_solve(num_pairs=20) print([e for e, v in pairs]) for stage in range(1, 4 + 1): model = define(stage)["model"] model.save_json(f"output/table-stage{stage}.json")
[ "numpy.linalg.norm", "numpy.cross", "numpy.array", "numpy.sqrt" ]
[((115, 151), 'numpy.array', 'np.array', (['[x, y, z]'], {'dtype': 'np.double'}), '([x, y, z], dtype=np.double)\n', (123, 151), True, 'import numpy as np\n'), ((180, 216), 'numpy.array', 'np.array', (['[x, y, z]'], {'dtype': 'np.double'}), '([x, y, z], dtype=np.double)\n', (188, 216), True, 'import numpy as np\n'), ((1649, 1666), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {}), '(x)\n', (1663, 1666), True, 'import numpy as np\n'), ((379, 389), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (386, 389), True, 'import numpy as np\n'), ((424, 434), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (431, 434), True, 'import numpy as np\n'), ((468, 478), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (475, 478), True, 'import numpy as np\n'), ((515, 525), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (522, 525), True, 'import numpy as np\n'), ((560, 570), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (567, 570), True, 'import numpy as np\n'), ((3840, 3858), 'numpy.cross', 'np.cross', (['_dc', '_dz'], {}), '(_dc, _dz)\n', (3848, 3858), True, 'import numpy as np\n'), ((4010, 4028), 'numpy.cross', 'np.cross', (['_da', '_dz'], {}), '(_da, _dz)\n', (4018, 4028), True, 'import numpy as np\n'), ((4180, 4198), 'numpy.cross', 'np.cross', (['_db', '_dz'], {}), '(_db, _dz)\n', (4188, 4198), True, 'import numpy as np\n'), ((607, 617), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (614, 617), True, 'import numpy as np\n'), ((652, 662), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (659, 662), True, 'import numpy as np\n')]
import autoCorrection import numpy as np import unittest class TestEndToEnd(unittest.TestCase): def test_end_to_end(self): counts = np.random.negative_binomial(n=20, p=0.2, size=(10, 8)) sf = np.ones((10, 8)) corrector = autoCorrection.correctors.AECorrector() correction = corrector.correct(counts=counts, size_factors=sf) self.assertEqual(counts.shape, correction.shape) class TestSavingAndLoading(unittest.TestCase): def test_loading(self): self.test_saving() counts = np.random.negative_binomial(n=20, p=0.2, size=(10, 8)) sf = np.ones((10, 8)) corrector = autoCorrection.correctors.AECorrector(model_name='test1', model_directory=".") correction = corrector.correct(counts, sf, only_predict=True) self.assertEqual(counts.shape, correction.shape) def test_saving(self): counts = np.random.negative_binomial(n=20, p=0.2, size=(10, 8)) sf = np.ones((10, 8)) corrector = autoCorrection.correctors.AECorrector(model_name='test1', model_directory=".", save_model=True) correction = corrector.correct(counts, sf) self.assertEqual(counts.shape, correction.shape) class TestSetSeed(unittest.TestCase): def test_setSeed(self): # generate data nsamples = 15 ngenes = 20 counts = np.random.negative_binomial(n=20, p=0.2, size=(ngenes, nsamples)) sf = np.random.uniform(0.8, 1.2, size=(ngenes, nsamples)) # run the autocorrection 2 times with seed and one without. it should deviate ac = autoCorrection.correctors correct1 = ac.AECorrector(model_name='test1', model_directory=".", save_model=True, verbose=0).correct(counts, sf) correct2 = ac.AECorrector(model_name='test1', model_directory=".", save_model=True, verbose=0, seed=42).correct(counts, sf) correct3 = ac.AECorrector(model_name='test1', model_directory=".", save_model=True, verbose=0, seed=42).correct(counts, sf) # check if the results are similar. Due to randomness in the numbers we still have little changes #self.assertTrue(sum(sum(np.round(correct2) == np.round(correct3))) > 0.9 * nsamples * ngenes) self.assertTrue(sum(sum(np.round(correct1) == np.round(correct2))) < 0.3 * nsamples * ngenes) self.assertTrue(sum(sum(np.round(correct1) == np.round(correct3))) < 0.3 * nsamples * ngenes) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.random.uniform", "numpy.random.negative_binomial", "numpy.ones", "autoCorrection.correctors.AECorrector", "numpy.round" ]
[((2475, 2490), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2488, 2490), False, 'import unittest\n'), ((147, 201), 'numpy.random.negative_binomial', 'np.random.negative_binomial', ([], {'n': '(20)', 'p': '(0.2)', 'size': '(10, 8)'}), '(n=20, p=0.2, size=(10, 8))\n', (174, 201), True, 'import numpy as np\n'), ((215, 231), 'numpy.ones', 'np.ones', (['(10, 8)'], {}), '((10, 8))\n', (222, 231), True, 'import numpy as np\n'), ((252, 291), 'autoCorrection.correctors.AECorrector', 'autoCorrection.correctors.AECorrector', ([], {}), '()\n', (289, 291), False, 'import autoCorrection\n'), ((542, 596), 'numpy.random.negative_binomial', 'np.random.negative_binomial', ([], {'n': '(20)', 'p': '(0.2)', 'size': '(10, 8)'}), '(n=20, p=0.2, size=(10, 8))\n', (569, 596), True, 'import numpy as np\n'), ((610, 626), 'numpy.ones', 'np.ones', (['(10, 8)'], {}), '((10, 8))\n', (617, 626), True, 'import numpy as np\n'), ((647, 725), 'autoCorrection.correctors.AECorrector', 'autoCorrection.correctors.AECorrector', ([], {'model_name': '"""test1"""', 'model_directory': '"""."""'}), "(model_name='test1', model_directory='.')\n", (684, 725), False, 'import autoCorrection\n'), ((898, 952), 'numpy.random.negative_binomial', 'np.random.negative_binomial', ([], {'n': '(20)', 'p': '(0.2)', 'size': '(10, 8)'}), '(n=20, p=0.2, size=(10, 8))\n', (925, 952), True, 'import numpy as np\n'), ((966, 982), 'numpy.ones', 'np.ones', (['(10, 8)'], {}), '((10, 8))\n', (973, 982), True, 'import numpy as np\n'), ((1003, 1103), 'autoCorrection.correctors.AECorrector', 'autoCorrection.correctors.AECorrector', ([], {'model_name': '"""test1"""', 'model_directory': '"""."""', 'save_model': '(True)'}), "(model_name='test1', model_directory=\n '.', save_model=True)\n", (1040, 1103), False, 'import autoCorrection\n'), ((1371, 1436), 'numpy.random.negative_binomial', 'np.random.negative_binomial', ([], {'n': '(20)', 'p': '(0.2)', 'size': '(ngenes, nsamples)'}), '(n=20, p=0.2, size=(ngenes, nsamples))\n', (1398, 1436), True, 'import numpy as np\n'), ((1450, 1502), 'numpy.random.uniform', 'np.random.uniform', (['(0.8)', '(1.2)'], {'size': '(ngenes, nsamples)'}), '(0.8, 1.2, size=(ngenes, nsamples))\n', (1467, 1502), True, 'import numpy as np\n'), ((2266, 2284), 'numpy.round', 'np.round', (['correct1'], {}), '(correct1)\n', (2274, 2284), True, 'import numpy as np\n'), ((2288, 2306), 'numpy.round', 'np.round', (['correct2'], {}), '(correct2)\n', (2296, 2306), True, 'import numpy as np\n'), ((2368, 2386), 'numpy.round', 'np.round', (['correct1'], {}), '(correct1)\n', (2376, 2386), True, 'import numpy as np\n'), ((2390, 2408), 'numpy.round', 'np.round', (['correct3'], {}), '(correct3)\n', (2398, 2408), True, 'import numpy as np\n')]
# Import all packages required # Type annotation imports from typing import Union from typing import Tuple # Other imports import os import glob import h5py from datetime import datetime from datetime import timedelta from datetime import timezone import numpy as np import pandas as pd from scipy import interpolate #-------------------------------------------------------------------------------------------------------# # CREAM Data Utility class. Please refer to the docstring for details! #-------------------------------------------------------------------------------------------------------# class CREAM_Day(): """ A class representing one particular day of the CREAM dataset. The CREAM dataset has the following file structure: |-CREAM |------- 2018-08-23  | |--------- *.hdf5 | |--------- *.hdf5 | |--------- *.hdf5 | |--------- ...... | |------- 2018-08-24 ....... This class corresponds to one of the subfolders, i.e. of the folders representing a particular day, such as, for example, the first folder "2018-08-23". You have to create one CREAM_Day object per day folder in order to use the data of the full dataset. During initialization, the following attributes are set. files_metadata_df (pandas.DataFrame): columns: Start_timestamp, End_timestamp, Filename to store start end times of each file in this day files (list): full path to every file in this day minimum_request_timestamp (datetime.datetime): First timestamp of the day maximum_request_timestamp (datetime.datetime): Last timestamp of the day file_cache (dict): file cache for buffering already loaded files day_date (datetime.datetime): day and date of the current object This class also provides convenience functions to load the files of the CREAM dataset. To load an arbitrary CREAM file, use the load_file method. To load an arbitrary data window, based on the start_timestamp of the window to load, use the load_time_frame method. To load the maintenance or product events as a pandas.DataFrame, use the load_machine_events method. Via a parameter, one can also load the raw files that were generated by the coffee maker (they can be found in the raw_coffee_maker_logs subfolder of the CREAM dataset). To load the component events as a pandas.DataFrame, use the load_component_events_method. To load information whether a specific day is a working day (German working day in the dataset), use the get_weekday_ information method. Other self-explaining convenience functions are: - get_datetime_from_filepath - get_index_from_timestamp - get_timestamp_from_index Functions starting with an "_" underscore are private functions and are not intended for user usage. """ def __init__(self, cream_day_location: str, use_buffer : bool =False, buffer_size_files : int =5): """ Initialize the CREAM_Day object Parameters ---------- cream_day_location (str): location of the root folder of the respective day in the CREAM dataset. Specify a path to the respective day, not to the root of the overall CREAM datset! use_buffer (boolean): default=False. In case it is set to True, files loaded via the load_file, or load_time_frame method are stored in the cache of the CREAM_Day object. This speeds up streaming the dataset. In case no buffer_size_file is provide, a default buffer_size_files of 5 is used. Hence, the recent 5 files are stored in the cache. Old files are automatically removed from the cache in case the buffer_size_files limit is exceeded. buffer_size_files (int): Size of the file cache of the CREAM_Day object. Functionality of the cache is documented in the use_buffer parameter description right above. """ self.dataset_location = cream_day_location self.use_buffer = use_buffer self.buffer_size_files = buffer_size_files if self.buffer_size_files == 5 and use_buffer is True: raise Warning("Buffer size was specified with size 5 (default value): a minimum buffer size of 5 files was set therefore") # Initiate the file buffer dictionary self.file_cache = {} # Get all the files of the respective day self.files = glob.glob(os.path.join(self.dataset_location, "*.hdf5")) self.files.sort() # We use the first file and the timestamps in the filenames in the dataset (of this day) to get the metadata information # Get the timezone information from the filename timestamp # Load Metadata from the first file of the respective device --> same for all of the device --> STATIC METADATA with h5py.File(self.files[0], 'r', driver='core') as f: self.sampling_rate = int(f.attrs['frequency']) # get the sampling rate self.samples_per_file = len(f["voltage"]) # get the length of the signal # get the start timestamp‚ start_timestamp = datetime( year=int(f.attrs['year']), month=int(f.attrs['month']), day=int(f.attrs['day']), hour=int(f.attrs['hours']), minute=int(f.attrs['minutes']), second=int(f.attrs['seconds']), microsecond=int(f.attrs['microseconds']), tzinfo=timezone(timedelta(hours=int(f.attrs['timezone'][1:4]), minutes=int(f.attrs['timezone'][4:])))) self.file_duration_sec = 60 * 60 # each file, one hour --> seconds per file self.number_of_files = len(self.files) # Some file metadata for every file file_start_times = [self.get_datetime_from_filepath(f) for f in self.files] file_end_times = [timedelta(seconds=self.file_duration_sec) + ts for ts in file_start_times] self.files_metadata_df = pd.DataFrame({"Start_timestamp": file_start_times, "Filename": self.files, "End_timestamp": file_end_times}) self.dataset_name = "CREAM" # Compute the minimum and maximum time for this day, and the respective differences to the day before self.minimum_request_timestamp = self.files_metadata_df.iloc[0].Start_timestamp self.maximum_request_timestamp = self.files_metadata_df.iloc[-1].Start_timestamp + timedelta(seconds=self.file_duration_sec) # Find the day of the dataset folder_path = os.path.basename(os.path.normpath(self.dataset_location)) # name of the folder date = folder_path.split("-") self.day_date = datetime(year=int(date[0]), month=int(date[1]), day=int(date[2])) # Initialize weekday information self.weekday_information_df = None def load_machine_events(self, file_path: str = None, filter_day : bool = False, raw_file=True) -> pd.DataFrame: """ Load the maintenance event file. The events are sorted by the time they occur. Parameters ---------- file_path (str): path to the component events file (.csv) file filter_day (boolean): default=False. If set to True, the DataFrame is filtered for the events belonging to the CREAM_Day object raw_file (boolean): default=True. If set to True, the user has to provide the path to the raw events file that were generated by the coffee maker. They can be found in the raw_coffee_maker_logs subfolder of the dataset. Returns ------- data (pd.DataFrame): if raw_file=True: pd.DataFrame with columns "Timestamp", "Activity" (maintenance file) or "Timestamp", "Product" (product file) If raw_file=False: pd.DataFrame with columns 'Start_Timestamp', 'Automatic_Timestamp', 'Event_Type', 'End_Timestamp', 'Event_Duration_Seconds', 'Date', Sorted descending by 'Start_Timestamp'. """ if file_path is None: raise ValueError("Specify a file_path, containing the events file.") if raw_file is True and "raw" not in file_path: raise ValueError("In case you intend to load a raw_file, you also need to pass a path to a raw file to the " "function!") data = pd.read_csv(file_path) # The timezone of the timestamps need to be from the same type # We use the first file of the day_object to get timezone = self.get_datetime_from_filepath(self.files[0]).tzinfo if raw_file is True: # In case the raw product file is used data.Timestamp = pd.to_datetime(data.Timestamp) data = self._convert_timezone(data, "Timestamp", target_timezone=timezone) data.sort_values("Timestamp", inplace=True) data["Date"] = data.Timestamp.apply(lambda x: x.date()) else: # the manually adjusted and pre-processed product file is used for column in data.columns: # Convert all timestamp columns if "Timestamp" in column: data[column] = pd.to_datetime(data[column]) data = self._convert_timezone(data, column, target_timezone=timezone) data["Date"] = data.End_Timestamp.apply(lambda x: x.date()) data.sort_values("Start_Timestamp", inplace=True) if filter_day is True: # only return the event of the corresponding CREAM day data = data[data["Date"] == self.day_date.date()] return data def load_component_events(self, file_path: str = None, filter_day : bool = False) -> pd.DataFrame: """ Load the labeled electrical events, i.e. the components events, file. The events are sorted by the time they occur. Parameters ---------- file_path (str): path to the component events file (.csv) file filter_day (boolean): default=False, if set to True, the DataFrame is filtered for the events belonging to the CREAM_Day object Returns ------- data (pd.DataFrame): pd.DataFrame with columns: 'Start_Timestamp', 'Automatic_Timestamp', 'Event_Type', 'End_Timestamp', 'Event_Duration_Seconds', 'Date', Sorted descending by 'Start_Timestamp'. """ if file_path is None: raise ValueError("Specify a file_path, containing the events file.") data = pd.read_csv(file_path) # The timezone of the timestamps need to be from the same type # We use the first file of the day_object to get timezone = self.get_datetime_from_filepath(self.files[0]).tzinfo for column in data.columns: # Convert all timestamp columns if "Timestamp" in column: data[column] = pd.to_datetime(data[column]) data = self._convert_timezone(data, column, target_timezone=timezone) data["Date"] = data.Timestamp.apply(lambda x: x.date()) data.sort_values("Timestamp", inplace=True) if filter_day is True: # only return the event of the corresponding CREAM day data = data[data["Date"] == self.day_date.date()] return data def load_file(self, file_path: str, return_noise: bool = False) -> Tuple[np.ndarray, np.ndarray]: """ Load a file of the CREAM dataset If return_noise is specified, the noise channel is also returned. The current is 2-dimensional then. The signals get pre-processed before they are returned by this function: 1. y-direction calibration: we center the signal around zero 2. calibration_factor: we calibrate the signal by the measurement device specific calibration_factor. This calibration_factor is included in the metadata of the files. Parameters ---------- file_path (string): path to the file to be loaded return_noise (boolean): default=False. If set to True, the current of the noise socket is also returned. Returns ------- voltage (ndarray): voltage signal with shape=(1, file_length,). In case of an empty file None is returned. current (ndarray): current signal either with shape (1, file_length) or (2, file_length) In case of an empty file None is returned """ voltage = None current = None # Check if the file is already in the file cache if self.use_buffer is True and file_path in self.file_cache: voltage = self.file_cache[file_path]["voltage"] current = self.file_cache[file_path]["current"] return voltage, current else: # Check if the file is empty (zero bytes): if so return and empty current and voltage array if os.stat(file_path).st_size > 0: # if not empty with h5py.File(file_path, 'r', driver='core') as f: voltage_offset, current_offset = self._adjust_amplitude_offset(f) # y value offset adjustment for name in list(f): signal = f[name][:] * 1.0 if name == 'voltage' and voltage_offset is not None: # the voltage signal voltage = signal - voltage_offset calibration_factor = f[name].attrs['calibration_factor'] voltage = np.multiply(voltage, calibration_factor) elif "current1" in name and current_offset is not None: # the current signal of the coffee maker current = signal - current_offset calibration_factor = f[name].attrs['calibration_factor'] current = np.multiply(current, calibration_factor) elif return_noise == True and "current6" in name and current_offset is not None: # the current signal of the noise channel current_noise = signal - current_offset calibration_factor = f[name].attrs['calibration_factor'] current_noise = np.multiply(current_noise, calibration_factor) if return_noise is True: current = np.array([current, current_noise]) voltage = np.array(voltage) else: current = np.array(current) voltage = np.array(voltage) # Before returning, check if we store the file in the cache and if we need to delete one instead from the cache if self.use_buffer is True: if len(self.file_cache) < self.buffer_size_files: self.file_cache[file_path] = {"voltage" : np.array(voltage), "current": np.array(current)} else: sorted_filenames = list(self.file_cache.keys()) sorted_filenames.sort() del self.file_cache[sorted_filenames[0]] #delete the oldest file return np.array(voltage), np.array(current) else: # if empty return None, None def load_file_metadata(self, file_path: str, attribute_list: list = []) -> dict: """ Load the file metadata for a specifc files. The metadata is stored in the HDF5 attributes, details are documented in the data descriptor. The following attributes are available: ["name", "first_trigger_id", "last_trigger_id", "sequence", "frequency", "year", "month", "day", "hours", "minutes", "seconds", "microseconds", "timezone", "calibration_factor", "removed_offset"] Parameters ---------- file_path (str): path to the file to be loaded. Needs to be the full-path, as provide by the "files" attribute of the CREAM_Day object. attribute_list (list): default=[], specify specifc attribute names to be loaded. If no dedicated attributes are specified, all attributes are returned Returns ------- attributes_dict (dict): dictionary with all HDF5 attributes of a specifc file. """ if file_path is None: raise ValueError("Specify a file path!") all_attributes = ["name", "first_trigger_id", "last_trigger_id", "sequence", "frequency", "year", "month", "day", "hours", "minutes", "seconds", "microseconds", "timezone", "calibration_factor", "removed_offset"] if len(attribute_list) == 0: #use all attributes if non is specified attribute_list = all_attributes else: # Check if user specified attributes exist in the metadata for attr in attribute_list: if attr not in all_attributes: raise ValueError("The atttribute %s is not available!") attributes_dict = {} with h5py.File(file_path, 'r', driver='core') as f: for attr in attribute_list: if attr in ["calibration_factor", "removed_offset"]: #not in the attribute root of the hdf5 file attributes_dict[attr] = f["voltage"].attrs[attr] else: #attributes in the root of the hdf5 file attributes_dict[attr] = f.attrs[attr] return attributes_dict def load_time_frame(self, start_datetime: datetime, duration : float, return_noise: bool = False) -> Tuple[np.ndarray, np.ndarray]: """ Loads an arbitrary time-frame of the CREAM dataset. Can be also used for streaming the data fast: in case the caching parameter is enabled in the CREAM_Day object. Otherwise, the files will be reloaded every time this method is called, thus, slowing down the data retrieval. Parameters ---------- start_datetime (datetime.datetime): start timestamp of the window to load duration (float): duration of the window to load (window size) in seconds. ATTENTION: if not provided in seconds, wrong results are returned! return_noise (boolean): default: False. If set to True, also returns the signal of the noise channel recorded in CREAM dataset (from socket 6) Returns ------- voltage (numpy.ndarray): voltage signal of the window current (numpy.ndarray): curent signal of the window. One dimensional if return_noise=False, two dimensional if if return_noise=True. The first element is the coffee-maker signal, the second element the noise signal. """ # Perform initial checks if start_datetime < self.minimum_request_timestamp: raise ValueError( "The requested Time window is smaller then the minimum_request_timestamp of the day object") end_datetime = start_datetime + timedelta(seconds=duration) if end_datetime > self.maximum_request_timestamp: raise ValueError("The requested Time window is bigger then the maximum_request_timestamp of the day object") # determine all the files that are relevant for the requested time window # The index of the first relevant_file: i.e. the last file that is smaller then the start_datetime first_file_idx = self.files_metadata_df[self.files_metadata_df.Start_timestamp <= start_datetime].index[-1] # The last relevant_file: i.e. the first file that has and End_timestamp that is bigger then the one we need last_file_idx = self.files_metadata_df[self.files_metadata_df.End_timestamp >= end_datetime].index[0] # Get all the files in between the first and the last file needed relevant_files_df = self.files_metadata_df.loc[first_file_idx:last_file_idx] if len(relevant_files_df) == 0: raise ValueError("The timeframe requested does not lie within the current day!") relevant_voltage = [] relevant_current = [] relevant_current_noise = [] for i, row in relevant_files_df.iterrows(): voltage, current = self.load_file(row.Filename, return_noise=return_noise) relevant_voltage.append(voltage) relevant_current.append(current) if return_noise is True: relevant_current.append(current[0]) relevant_current_noise.append(current[1]) # now stack together the relevant signals relevant_voltage = np.concatenate(relevant_voltage, axis=-1) relevant_current = np.concatenate(relevant_current, axis=-1) if return_noise is True and len(relevant_current_noise) > 0: relevant_current_noise = np.concatenate(relevant_current_noise, axis=-1) # Compute the start_index # 1.1 Compute the offset in the first file start_index = int(self.get_index_from_timestamp(relevant_files_df.iloc[0].Start_timestamp, start_datetime)) end_index = int(self.get_index_from_timestamp(relevant_files_df.iloc[0].Start_timestamp, end_datetime)) # Get the voltage and current window voltage = relevant_voltage[start_index:end_index] #there is only one voltage channel if return_noise is True and len(relevant_current_noise) > 0: current = [relevant_current[start_index:end_index], relevant_current_noise[start_index:end_index]] else: current = relevant_current[start_index:end_index] voltage = np.array(voltage) current = np.array(current) return voltage, current def compute_average_sampling_rate(self) -> float: """ Estimate the average sampling rate per day. Load the metadata of every file of the current day. Per file (one hour files), we compute the actual sampling rate. We then average this number over all files of this day, resulting in the average sampling rate. Calculate the difference between the first and last sample of a day based on the timestamps of the files. Sets the average_sampling_rate attribute of the CREAM_Day object. One can compare the average_sampling_rate to the nominal one of 6400. Parameters ---------- Returns ------- average_sampling_rate (float): average sampling rate per day (computed over the files) """ FILE_LENGTH_SEC = 60 * 60 #one hour files actual_sampling_rates = [] for file in self.files: voltage, current = self.load_file(file_path=file) samples_per_file = len(voltage) actual_sampling_rate = samples_per_file / FILE_LENGTH_SEC actual_sampling_rates.append(actual_sampling_rate) self.average_sampling_rate = np.mean(actual_sampling_rates) return self.average_sampling_rate def get_datetime_from_filepath(self, filepath: str) -> datetime: """ Extracts the datetime from a filename of a CREAM file. Parameters ---------- filepath (str): path to a CREAM file Returns ------- start_timestamp (datetime): start timestamp of the file, extracted from the filename """ filename = os.path.basename(filepath) # get the filename string_timestamp = "-".join(filename.split("-")[2:-1]) datetime_object = datetime.strptime(string_timestamp, '%Y-%m-%dT%H-%M-%S.%fT%z') # string parse time return datetime_object def get_index_from_timestamp(self, start_timestamp: datetime, event_timestamp: datetime) -> int: """ Returns the index of the event, represented by the event_timestamp, relativ to the start_timestamp (i.e. start timestamp of the file of interest e.g.) Parameters ---------- start_timestamp (datetime.datetime): start timestamp of the window the event is located at event_timestamp (datetime.datetime): timestamp of the event of interest Returns ------- event_index (int): The resulting event index """ sec_since_start = event_timestamp - start_timestamp event_index = sec_since_start.total_seconds() * (self.sampling_rate) # and # multiply by samples per second return int(event_index) def get_timestamp_from_index(self, start_timestamp: datetime, event_index: int) -> datetime: """ Returns the timestamp for an event index. The event index has to be relative to a start_timestamp of a window. Parameters ---------- start_timestamp (datetime.datetime): start timestamp of the window. event_index (int): Index of the event of interest, has to be relative to the start_timestamp provided. Returns ------- event_timestamp (datetime.datetime): The resulting timestamp """ seconds_per_sample = 1 / self.sampling_rate # 1 second / samples = seconds per sample time_since_start = event_index * seconds_per_sample event_ts = start_timestamp + timedelta(seconds=time_since_start) return event_ts def _adjust_amplitude_offset(self, file: h5py.File) -> Tuple[int, int]: """ Resembles the pre-processing functionality in the BLOND repository (one_second_data_summary_functions.py) by <NAME>. Computes the mean per period to get an estimate for the offset in each period. This is done for the voltage signal. The period length is computed using the nominal sampling rate. Tthis can deviate from the actual period length. Therefore, we zero pad the voltage signal to get full periods again before computing the mean. Then we use the estimate per period, to linearly interpolate the mean values per period, to get an offset value per sample point in the signal. We then use the offset of the voltage to compute the offset of the current by multiplying it by the crest-coefficient of 1/sqrt(2), i.e., approx. 0.7 . Parameters ---------- file (h5py.File): a h5py CREAM file. Returns ------- voltage_offset (int): the voltage offset to adjust for current_offset (int): the current offset to adjust for """ length = len(file['voltage']) # Compute the average period_length, using the nominal sampling rate period_length = round(self.sampling_rate / 50) # Get the missing samples, opposed to the optimal number of periods in the signal remainder = divmod(length, period_length)[1] voltage = np.pad(file['voltage'][:], (0, period_length - remainder), 'constant', constant_values=0) # zero padding voltage = voltage.reshape(-1, period_length) # the single periods, period wise reshape mean_values_per_period = voltage.mean(axis=1) # compute the mean per period # Create x values for the interpolation x_per_period = np.linspace(1, length, len(mean_values_per_period), dtype=np.int) # number of periods x_original = np.linspace(1, length, length, dtype=np.int) # build a linear interpolation, that interpolates for each period witch offset it should have # for each of the datapoints, interpolate the offset voltage_offset = interpolate.interp1d(x_per_period, mean_values_per_period)(x_original) current_offset = voltage_offset * 1 / np.sqrt(2) # roughly * 0.7 return voltage_offset, current_offset def _convert_timezone(self, dataframe: pd.DataFrame, column_name : str, target_timezone:str) -> pd.DataFrame: """ Converts timezone in column_name column in dataframe to target_timezone Parameters ---------- dataframe (pandas.DataFrame): DataFrame object, containing some time columns column_name (str): Name of the column of interest, i.e. the name of a time column target_timezone (str): datetime.datetime.tzinfo timezone information as a string. This is the target timezone. Returns ------- dataframe (pandas.DataFrame): DataFrame object, with the column_name column converted to the target_timezone """ ts_array = [] for i, row in dataframe.iterrows(): ts = row[column_name].tz_convert(target_timezone) ts_array.append(ts) dataframe[column_name] = ts_array return dataframe def get_weekday_information(self, date : Union[list, np.ndarray], file_path : str = None) -> pd.DataFrame: """ For a certain date, get the day related information from the file provided with the dataset. Parameters ---------- date (list, np.ndarray): list of string dates to be checked, format: year-month-day file_path (string): default=None if path is not provided, the default location of the file is assumed Returns ------- day_information_df (pd.DataFrame): DataFrame with columns: Date (string, date format year-month-day), WorkingDay (boolean), Weekday (string) """ if file_path is None: file_path = os.path.abspath(self.dataset_location + "/../" + "day_information.csv") day_information_df = None if self.weekday_information_df is None: # if not initialized yet self.weekday_information_df = pd.read_csv(file_path) if type(date) in [list, np.ndarray]: if not all(isinstance(n, str) for n in date): # if not all dates are strings, convert them date = [str(n) for n in date] day_information_df = self.weekday_information_df[self.weekday_information_df.Date.isin(date)] day_information_df.Date = day_information_df.Date.apply(lambda x: pd.to_datetime(x, format='%Y-%m-%d')).dt.date return day_information_df
[ "pandas.read_csv", "numpy.mean", "scipy.interpolate.interp1d", "os.path.join", "pandas.DataFrame", "numpy.pad", "os.path.abspath", "numpy.multiply", "datetime.timedelta", "os.path.normpath", "numpy.linspace", "h5py.File", "os.stat", "os.path.basename", "datetime.datetime.strptime", "pandas.to_datetime", "numpy.concatenate", "numpy.array", "numpy.sqrt" ]
[((6149, 6261), 'pandas.DataFrame', 'pd.DataFrame', (["{'Start_timestamp': file_start_times, 'Filename': self.files,\n 'End_timestamp': file_end_times}"], {}), "({'Start_timestamp': file_start_times, 'Filename': self.files,\n 'End_timestamp': file_end_times})\n", (6161, 6261), True, 'import pandas as pd\n'), ((8696, 8718), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {}), '(file_path)\n', (8707, 8718), True, 'import pandas as pd\n'), ((10855, 10877), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {}), '(file_path)\n', (10866, 10877), True, 'import pandas as pd\n'), ((21013, 21054), 'numpy.concatenate', 'np.concatenate', (['relevant_voltage'], {'axis': '(-1)'}), '(relevant_voltage, axis=-1)\n', (21027, 21054), True, 'import numpy as np\n'), ((21082, 21123), 'numpy.concatenate', 'np.concatenate', (['relevant_current'], {'axis': '(-1)'}), '(relevant_current, axis=-1)\n', (21096, 21123), True, 'import numpy as np\n'), ((22009, 22026), 'numpy.array', 'np.array', (['voltage'], {}), '(voltage)\n', (22017, 22026), True, 'import numpy as np\n'), ((22045, 22062), 'numpy.array', 'np.array', (['current'], {}), '(current)\n', (22053, 22062), True, 'import numpy as np\n'), ((23299, 23329), 'numpy.mean', 'np.mean', (['actual_sampling_rates'], {}), '(actual_sampling_rates)\n', (23306, 23329), True, 'import numpy as np\n'), ((23759, 23785), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (23775, 23785), False, 'import os\n'), ((23896, 23958), 'datetime.datetime.strptime', 'datetime.strptime', (['string_timestamp', '"""%Y-%m-%dT%H-%M-%S.%fT%z"""'], {}), "(string_timestamp, '%Y-%m-%dT%H-%M-%S.%fT%z')\n", (23913, 23958), False, 'from datetime import datetime\n'), ((27131, 27224), 'numpy.pad', 'np.pad', (["file['voltage'][:]", '(0, period_length - remainder)', '"""constant"""'], {'constant_values': '(0)'}), "(file['voltage'][:], (0, period_length - remainder), 'constant',\n constant_values=0)\n", (27137, 27224), True, 'import numpy as np\n'), ((27628, 27672), 'numpy.linspace', 'np.linspace', (['(1)', 'length', 'length'], {'dtype': 'np.int'}), '(1, length, length, dtype=np.int)\n', (27639, 27672), True, 'import numpy as np\n'), ((4593, 4638), 'os.path.join', 'os.path.join', (['self.dataset_location', '"""*.hdf5"""'], {}), "(self.dataset_location, '*.hdf5')\n", (4605, 4638), False, 'import os\n'), ((4997, 5041), 'h5py.File', 'h5py.File', (['self.files[0]', '"""r"""'], {'driver': '"""core"""'}), "(self.files[0], 'r', driver='core')\n", (5006, 5041), False, 'import h5py\n'), ((6681, 6722), 'datetime.timedelta', 'timedelta', ([], {'seconds': 'self.file_duration_sec'}), '(seconds=self.file_duration_sec)\n', (6690, 6722), False, 'from datetime import timedelta\n'), ((6801, 6840), 'os.path.normpath', 'os.path.normpath', (['self.dataset_location'], {}), '(self.dataset_location)\n', (6817, 6840), False, 'import os\n'), ((9021, 9051), 'pandas.to_datetime', 'pd.to_datetime', (['data.Timestamp'], {}), '(data.Timestamp)\n', (9035, 9051), True, 'import pandas as pd\n'), ((17398, 17438), 'h5py.File', 'h5py.File', (['file_path', '"""r"""'], {'driver': '"""core"""'}), "(file_path, 'r', driver='core')\n", (17407, 17438), False, 'import h5py\n'), ((19419, 19446), 'datetime.timedelta', 'timedelta', ([], {'seconds': 'duration'}), '(seconds=duration)\n', (19428, 19446), False, 'from datetime import timedelta\n'), ((21231, 21278), 'numpy.concatenate', 'np.concatenate', (['relevant_current_noise'], {'axis': '(-1)'}), '(relevant_current_noise, axis=-1)\n', (21245, 21278), True, 'import numpy as np\n'), ((25572, 25607), 'datetime.timedelta', 'timedelta', ([], {'seconds': 'time_since_start'}), '(seconds=time_since_start)\n', (25581, 25607), False, 'from datetime import timedelta\n'), ((27862, 27920), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['x_per_period', 'mean_values_per_period'], {}), '(x_per_period, mean_values_per_period)\n', (27882, 27920), False, 'from scipy import interpolate\n'), ((27979, 27989), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (27986, 27989), True, 'import numpy as np\n'), ((29719, 29790), 'os.path.abspath', 'os.path.abspath', (["(self.dataset_location + '/../' + 'day_information.csv')"], {}), "(self.dataset_location + '/../' + 'day_information.csv')\n", (29734, 29790), False, 'import os\n'), ((29942, 29964), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {}), '(file_path)\n', (29953, 29964), True, 'import pandas as pd\n'), ((6041, 6082), 'datetime.timedelta', 'timedelta', ([], {'seconds': 'self.file_duration_sec'}), '(seconds=self.file_duration_sec)\n', (6050, 6082), False, 'from datetime import timedelta\n'), ((11230, 11258), 'pandas.to_datetime', 'pd.to_datetime', (['data[column]'], {}), '(data[column])\n', (11244, 11258), True, 'import pandas as pd\n'), ((9512, 9540), 'pandas.to_datetime', 'pd.to_datetime', (['data[column]'], {}), '(data[column])\n', (9526, 9540), True, 'import pandas as pd\n'), ((13240, 13258), 'os.stat', 'os.stat', (['file_path'], {}), '(file_path)\n', (13247, 13258), False, 'import os\n'), ((13310, 13350), 'h5py.File', 'h5py.File', (['file_path', '"""r"""'], {'driver': '"""core"""'}), "(file_path, 'r', driver='core')\n", (13319, 13350), False, 'import h5py\n'), ((14707, 14741), 'numpy.array', 'np.array', (['[current, current_noise]'], {}), '([current, current_noise])\n', (14715, 14741), True, 'import numpy as np\n'), ((14772, 14789), 'numpy.array', 'np.array', (['voltage'], {}), '(voltage)\n', (14780, 14789), True, 'import numpy as np\n'), ((14842, 14859), 'numpy.array', 'np.array', (['current'], {}), '(current)\n', (14850, 14859), True, 'import numpy as np\n'), ((14890, 14907), 'numpy.array', 'np.array', (['voltage'], {}), '(voltage)\n', (14898, 14907), True, 'import numpy as np\n'), ((15526, 15543), 'numpy.array', 'np.array', (['voltage'], {}), '(voltage)\n', (15534, 15543), True, 'import numpy as np\n'), ((15545, 15562), 'numpy.array', 'np.array', (['current'], {}), '(current)\n', (15553, 15562), True, 'import numpy as np\n'), ((13850, 13890), 'numpy.multiply', 'np.multiply', (['voltage', 'calibration_factor'], {}), '(voltage, calibration_factor)\n', (13861, 13890), True, 'import numpy as np\n'), ((15217, 15234), 'numpy.array', 'np.array', (['voltage'], {}), '(voltage)\n', (15225, 15234), True, 'import numpy as np\n'), ((15247, 15264), 'numpy.array', 'np.array', (['current'], {}), '(current)\n', (15255, 15264), True, 'import numpy as np\n'), ((30345, 30381), 'pandas.to_datetime', 'pd.to_datetime', (['x'], {'format': '"""%Y-%m-%d"""'}), "(x, format='%Y-%m-%d')\n", (30359, 30381), True, 'import pandas as pd\n'), ((14200, 14240), 'numpy.multiply', 'np.multiply', (['current', 'calibration_factor'], {}), '(current, calibration_factor)\n', (14211, 14240), True, 'import numpy as np\n'), ((14588, 14634), 'numpy.multiply', 'np.multiply', (['current_noise', 'calibration_factor'], {}), '(current_noise, calibration_factor)\n', (14599, 14634), True, 'import numpy as np\n')]
import json import coreapi import coreschema from django.db.utils import IntegrityError from django.shortcuts import get_object_or_404 from django.utils.datastructures import MultiValueDictKeyError from numpydoc import docscrape from rest_framework import status, schemas from rest_framework.generics import ListAPIView, RetrieveAPIView, \ ListCreateAPIView from rest_framework.response import Response from rest_framework.views import APIView from AnyTimeGridSearchCV.grids.anytime_search import ESTIMATORS_DICT, \ _convert_clf_param, ATGridSearchCV from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, \ CVResultScore from AnyTimeGridSearchCV.grids.serializers import GridSearchSerializer, \ CVResultSerializer, DatasetSerializer class EstimatorsListView(APIView): """ Returns a list of all available scikit-learn classifiers. """ def get(self, request, *args, **kwargs): return Response(list(ESTIMATORS_DICT.keys()), status=status.HTTP_200_OK) class EstimatorDetailView(APIView): """ Returns a detailed view of a scikit-learn classifier - all available arguments for the classifier. """ schema = schemas.AutoSchema(manual_fields=[ coreapi.Field( 'clf', required=True, location='path', schema=coreschema.String( description='scikit-learn Estimator name' ) ), ]) def get(self, request, *args, **kwargs): try: clf = ESTIMATORS_DICT[kwargs.get('clf', 'Not a valid scikit-learn estimator name')] except KeyError: return Response({'name': '', 'type': '', 'desc': ''}, status=status.HTTP_200_OK) return Response([{'name': arg_name, 'type': arg_type, 'desc': arg_desc} for arg_name, arg_type, arg_desc in docscrape.ClassDoc(clf)['Parameters']], status=status.HTTP_200_OK) class GridsListView(ListCreateAPIView): """ get: Returns a list of all available grid searches. post: Creates a new grid search. """ queryset = GridSearch.objects.all() serializer_class = GridSearchSerializer def post(self, request, *args, **kwargs): return ListCreateAPIView.post(self, request, *args, **kwargs) class GridDetailView(RetrieveAPIView): """ Returns the specified grid (uuid, dataset name and scikit-learn classifier name). """ queryset = GridSearch.objects.all() serializer_class = GridSearchSerializer lookup_field = 'uuid' class GridResultsListSchema(schemas.AutoSchema): def get_manual_fields(self, path, method): manual_fields = schemas.AutoSchema.get_manual_fields(self, path, method) if method == 'GET': return manual_fields elif method == 'POST': return manual_fields + [coreapi.Field('cv_data', required=True, location='form', schema=coreschema.Object(description='Cross validation result'))] class GridResultsList(ListCreateAPIView): """ get: Returns a list of all the results (CV classifications) for given grid. post: Creates a new result instance for specified grid. """ queryset = CVResult.objects.all() serializer_class = CVResultSerializer schema = GridResultsListSchema(manual_fields=[ coreapi.Field( 'uuid', required=True, location='path', schema=coreschema.String( description='GridSearch UUID' ) ), ]) def get_queryset(self): _gs = get_object_or_404(GridSearch, uuid=self.kwargs['uuid']) return _gs.results.all() def post(self, request, *args, **kwargs): import numpy _gs = get_object_or_404(GridSearch, uuid=self.kwargs['uuid']) multimetric_scores = json.loads(request.data['cv_data']) scorers = set(map(lambda j: j.split('_')[-1], filter(lambda i: i != 'fit_time' and i != 'score_time', multimetric_scores))) cv_result, _ = CVResult.objects.get_or_create(gridsearch=_gs, params=json.loads(request.data['params'])) cv_result.fit_time = multimetric_scores['fit_time'] cv_result.score_time = multimetric_scores['score_time'] cv_result.save() CVResultScore.objects.bulk_create([CVResultScore(scorer=scorer, train_scores=multimetric_scores['train_%s' % scorer], test_scores=multimetric_scores['test_%s' % scorer], score=round(numpy.array(multimetric_scores[ 'test_%s' % scorer]).mean(), 6), cv_result=cv_result) for scorer in scorers]) return Response(CVResultSerializer(cv_result).data, status=status.HTTP_201_CREATED) class DataSetsList(ListCreateAPIView): """ get: Returns a list of all the existing Datasets. post: Creates a new Dataset instance. """ queryset = DataSet.objects.all() serializer_class = DatasetSerializer def post(self, request, *args, **kwargs): import numpy try: name = request.data['name'] except MultiValueDictKeyError: return Response('Missing dataset name', status=status.HTTP_400_BAD_REQUEST) if not name: return Response('Missing dataset name', status=status.HTTP_400_BAD_REQUEST) try: examples, labels = request.FILES['examples'], request.FILES['labels'] except MultiValueDictKeyError: return Response('Missing dataset files', status=status.HTTP_400_BAD_REQUEST) if examples.name != 'examples.csv': return Response('Bad name of examples file', status=status.HTTP_400_BAD_REQUEST) if labels.name != 'labels.csv': return Response('Bad name of labels file', status=status.HTTP_400_BAD_REQUEST) if len(numpy.genfromtxt(examples, delimiter=',')) != len(numpy.genfromtxt(labels, delimiter=',')): return Response('Examples and labels are not the same length', status=status.HTTP_400_BAD_REQUEST) try: return Response(DatasetSerializer(DataSet.objects.create(name=name, examples=examples, labels=labels)).data, status=status.HTTP_201_CREATED) except IntegrityError: return Response('Name already exists', status=status.HTTP_400_BAD_REQUEST) class DataSetGridsListView(ListAPIView): """ Returns all grid searches on the given Dataset. """ queryset = GridSearch.objects.all() serializer_class = GridSearchSerializer schema = schemas.AutoSchema(manual_fields=[ coreapi.Field( 'name', required=True, location='path', schema=coreschema.String( description='Dataset name' ) ), ]) def get_queryset(self): _ds = get_object_or_404(DataSet, name=self.kwargs['name']) return _ds.grid_searches.all() class ATGridSearchCreateView(APIView): """ Creates a new ATGridSearch instance (with the grid specified in the request) and starts it. """ schema = schemas.AutoSchema(manual_fields=[ coreapi.Field( 'dataset', required=True, location='form', schema=coreschema.String(description='Dataset name') ), coreapi.Field( 'clf', required=True, location='form', schema=coreschema.String(description='scikit-learn estimator name') ), coreapi.Field( 'args', required=True, location='form', schema=coreschema.Object(description='Grid to search'), ), ]) def post(self, request, *args, **kwargs): try: ds = DataSet.objects.get(name=request.data['dataset']) except DataSet.DoesNotExist: return Response('No DataSet named {}'.format(request.data['dataset']), status=status.HTTP_400_BAD_REQUEST) try: classifier = ESTIMATORS_DICT[request.data['clf']] except KeyError: return Response('No sklearn classifier named {}'.format(request.data['clf']), status=status.HTTP_400_BAD_REQUEST) clf_params = {k: _convert_clf_param(v) for k, v in request.data['args'].items()} gs = ATGridSearchCV(classifier(), clf_params, dataset=ds.pk) gs.fit() return Response(gs._uuid, status=status.HTTP_201_CREATED)
[ "AnyTimeGridSearchCV.grids.models.DataSet.objects.get", "json.loads", "AnyTimeGridSearchCV.grids.models.GridSearch.objects.all", "AnyTimeGridSearchCV.grids.anytime_search._convert_clf_param", "AnyTimeGridSearchCV.grids.anytime_search.ESTIMATORS_DICT.keys", "numpydoc.docscrape.ClassDoc", "AnyTimeGridSearchCV.grids.models.DataSet.objects.create", "AnyTimeGridSearchCV.grids.serializers.CVResultSerializer", "numpy.genfromtxt", "AnyTimeGridSearchCV.grids.models.CVResult.objects.all", "rest_framework.generics.ListCreateAPIView.post", "django.shortcuts.get_object_or_404", "rest_framework.response.Response", "numpy.array", "coreschema.Object", "AnyTimeGridSearchCV.grids.models.DataSet.objects.all", "rest_framework.schemas.AutoSchema.get_manual_fields", "coreschema.String" ]
[((2201, 2225), 'AnyTimeGridSearchCV.grids.models.GridSearch.objects.all', 'GridSearch.objects.all', ([], {}), '()\n', (2223, 2225), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((2546, 2570), 'AnyTimeGridSearchCV.grids.models.GridSearch.objects.all', 'GridSearch.objects.all', ([], {}), '()\n', (2568, 2570), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((3347, 3369), 'AnyTimeGridSearchCV.grids.models.CVResult.objects.all', 'CVResult.objects.all', ([], {}), '()\n', (3367, 3369), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((5331, 5352), 'AnyTimeGridSearchCV.grids.models.DataSet.objects.all', 'DataSet.objects.all', ([], {}), '()\n', (5350, 5352), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((7037, 7061), 'AnyTimeGridSearchCV.grids.models.GridSearch.objects.all', 'GridSearch.objects.all', ([], {}), '()\n', (7059, 7061), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((2332, 2386), 'rest_framework.generics.ListCreateAPIView.post', 'ListCreateAPIView.post', (['self', 'request', '*args'], {}), '(self, request, *args, **kwargs)\n', (2354, 2386), False, 'from rest_framework.generics import ListAPIView, RetrieveAPIView, ListCreateAPIView\n'), ((2764, 2820), 'rest_framework.schemas.AutoSchema.get_manual_fields', 'schemas.AutoSchema.get_manual_fields', (['self', 'path', 'method'], {}), '(self, path, method)\n', (2800, 2820), False, 'from rest_framework import status, schemas\n'), ((3722, 3777), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['GridSearch'], {'uuid': "self.kwargs['uuid']"}), "(GridSearch, uuid=self.kwargs['uuid'])\n", (3739, 3777), False, 'from django.shortcuts import get_object_or_404\n'), ((3893, 3948), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['GridSearch'], {'uuid': "self.kwargs['uuid']"}), "(GridSearch, uuid=self.kwargs['uuid'])\n", (3910, 3948), False, 'from django.shortcuts import get_object_or_404\n'), ((3978, 4013), 'json.loads', 'json.loads', (["request.data['cv_data']"], {}), "(request.data['cv_data'])\n", (3988, 4013), False, 'import json\n'), ((7410, 7462), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['DataSet'], {'name': "self.kwargs['name']"}), "(DataSet, name=self.kwargs['name'])\n", (7427, 7462), False, 'from django.shortcuts import get_object_or_404\n'), ((8956, 9006), 'rest_framework.response.Response', 'Response', (['gs._uuid'], {'status': 'status.HTTP_201_CREATED'}), '(gs._uuid, status=status.HTTP_201_CREATED)\n', (8964, 9006), False, 'from rest_framework.response import Response\n'), ((5682, 5750), 'rest_framework.response.Response', 'Response', (['"""Missing dataset name"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Missing dataset name', status=status.HTTP_400_BAD_REQUEST)\n", (5690, 5750), False, 'from rest_framework.response import Response\n'), ((6037, 6110), 'rest_framework.response.Response', 'Response', (['"""Bad name of examples file"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Bad name of examples file', status=status.HTTP_400_BAD_REQUEST)\n", (6045, 6110), False, 'from rest_framework.response import Response\n'), ((6170, 6241), 'rest_framework.response.Response', 'Response', (['"""Bad name of labels file"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Bad name of labels file', status=status.HTTP_400_BAD_REQUEST)\n", (6178, 6241), False, 'from rest_framework.response import Response\n'), ((6368, 6464), 'rest_framework.response.Response', 'Response', (['"""Examples and labels are not the same length"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Examples and labels are not the same length', status=status.\n HTTP_400_BAD_REQUEST)\n", (6376, 6464), False, 'from rest_framework.response import Response\n'), ((8334, 8383), 'AnyTimeGridSearchCV.grids.models.DataSet.objects.get', 'DataSet.objects.get', ([], {'name': "request.data['dataset']"}), "(name=request.data['dataset'])\n", (8353, 8383), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((8791, 8812), 'AnyTimeGridSearchCV.grids.anytime_search._convert_clf_param', '_convert_clf_param', (['v'], {}), '(v)\n', (8809, 8812), False, 'from AnyTimeGridSearchCV.grids.anytime_search import ESTIMATORS_DICT, _convert_clf_param, ATGridSearchCV\n'), ((963, 985), 'AnyTimeGridSearchCV.grids.anytime_search.ESTIMATORS_DICT.keys', 'ESTIMATORS_DICT.keys', ([], {}), '()\n', (983, 985), False, 'from AnyTimeGridSearchCV.grids.anytime_search import ESTIMATORS_DICT, _convert_clf_param, ATGridSearchCV\n'), ((1691, 1764), 'rest_framework.response.Response', 'Response', (["{'name': '', 'type': '', 'desc': ''}"], {'status': 'status.HTTP_200_OK'}), "({'name': '', 'type': '', 'desc': ''}, status=status.HTTP_200_OK)\n", (1699, 1764), False, 'from rest_framework.response import Response\n'), ((4336, 4370), 'json.loads', 'json.loads', (["request.data['params']"], {}), "(request.data['params'])\n", (4346, 4370), False, 'import json\n'), ((5085, 5114), 'AnyTimeGridSearchCV.grids.serializers.CVResultSerializer', 'CVResultSerializer', (['cv_result'], {}), '(cv_result)\n', (5103, 5114), False, 'from AnyTimeGridSearchCV.grids.serializers import GridSearchSerializer, CVResultSerializer, DatasetSerializer\n'), ((5573, 5641), 'rest_framework.response.Response', 'Response', (['"""Missing dataset name"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Missing dataset name', status=status.HTTP_400_BAD_REQUEST)\n", (5581, 5641), False, 'from rest_framework.response import Response\n'), ((5904, 5973), 'rest_framework.response.Response', 'Response', (['"""Missing dataset files"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Missing dataset files', status=status.HTTP_400_BAD_REQUEST)\n", (5912, 5973), False, 'from rest_framework.response import Response\n'), ((6257, 6298), 'numpy.genfromtxt', 'numpy.genfromtxt', (['examples'], {'delimiter': '""","""'}), "(examples, delimiter=',')\n", (6273, 6298), False, 'import numpy\n'), ((6307, 6346), 'numpy.genfromtxt', 'numpy.genfromtxt', (['labels'], {'delimiter': '""","""'}), "(labels, delimiter=',')\n", (6323, 6346), False, 'import numpy\n'), ((6842, 6909), 'rest_framework.response.Response', 'Response', (['"""Name already exists"""'], {'status': 'status.HTTP_400_BAD_REQUEST'}), "('Name already exists', status=status.HTTP_400_BAD_REQUEST)\n", (6850, 6909), False, 'from rest_framework.response import Response\n'), ((1338, 1398), 'coreschema.String', 'coreschema.String', ([], {'description': '"""scikit-learn Estimator name"""'}), "(description='scikit-learn Estimator name')\n", (1355, 1398), False, 'import coreschema\n'), ((1934, 1957), 'numpydoc.docscrape.ClassDoc', 'docscrape.ClassDoc', (['clf'], {}), '(clf)\n', (1952, 1957), False, 'from numpydoc import docscrape\n'), ((3582, 3630), 'coreschema.String', 'coreschema.String', ([], {'description': '"""GridSearch UUID"""'}), "(description='GridSearch UUID')\n", (3599, 3630), False, 'import coreschema\n'), ((6519, 6586), 'AnyTimeGridSearchCV.grids.models.DataSet.objects.create', 'DataSet.objects.create', ([], {'name': 'name', 'examples': 'examples', 'labels': 'labels'}), '(name=name, examples=examples, labels=labels)\n', (6541, 6586), False, 'from AnyTimeGridSearchCV.grids.models import GridSearch, CVResult, DataSet, CVResultScore\n'), ((7273, 7318), 'coreschema.String', 'coreschema.String', ([], {'description': '"""Dataset name"""'}), "(description='Dataset name')\n", (7290, 7318), False, 'import coreschema\n'), ((7825, 7870), 'coreschema.String', 'coreschema.String', ([], {'description': '"""Dataset name"""'}), "(description='Dataset name')\n", (7842, 7870), False, 'import coreschema\n'), ((7999, 8059), 'coreschema.String', 'coreschema.String', ([], {'description': '"""scikit-learn estimator name"""'}), "(description='scikit-learn estimator name')\n", (8016, 8059), False, 'import coreschema\n'), ((8189, 8236), 'coreschema.Object', 'coreschema.Object', ([], {'description': '"""Grid to search"""'}), "(description='Grid to search')\n", (8206, 8236), False, 'import coreschema\n'), ((3063, 3119), 'coreschema.Object', 'coreschema.Object', ([], {'description': '"""Cross validation result"""'}), "(description='Cross validation result')\n", (3080, 3119), False, 'import coreschema\n'), ((4825, 4876), 'numpy.array', 'numpy.array', (["multimetric_scores['test_%s' % scorer]"], {}), "(multimetric_scores['test_%s' % scorer])\n", (4836, 4876), False, 'import numpy\n')]
import os import sys import json import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.distributions as D import models import worlds class Executor(object): STOP = 0 def __init__(self, config): self.config = config self.device = config.device self.vocab = config.vocab self.world = worlds.load(config) model_config = config.executor.model model_config.device = config.device model_config.vocab_size = len(self.vocab) model_config.loc_embed_size = config.world.loc_embed_size model_config.max_instruction_length = config.executor.max_instruction_length model_config.pad_idx = self.vocab['<PAD>'] self.model = models.load(model_config).to(self.device) logging.info('model: ' + str(self.model)) self.optim = torch.optim.Adam( self.model.parameters(), lr=model_config.learning_rate) if hasattr(model_config, 'load_from'): self.load(model_config.load_from) self.loss_fn = nn.CrossEntropyLoss(ignore_index=-1) self.max_instruction_length = config.executor.max_instruction_length def _to_tensor(self, x): return torch.tensor(x).to(self.device) def _to_tensor_from_numpy(self, x): return torch.from_numpy(x).to(self.device) def _index_and_pad(self, xs, vocab, reverse=True): encodings = [] masks = [] for x in xs: x = x[:self.max_instruction_length] + ['<EOS>'] encodings.append([vocab[w] for w in x]) if reverse: encodings[-1] = list(reversed(encodings[-1])) masks.append([0] * len(encodings[-1])) # Padding max_len = max([len(encoding) for encoding in encodings]) for i, encoding in enumerate(encodings): encoding.extend([vocab['<PAD>']] * (max_len - len(encoding))) for mask in masks: mask.extend([1] * (max_len - len(mask))) encodings = self._to_tensor(encodings).long() masks = self._to_tensor(masks).bool() return encodings, masks def _nav_action_variable(self, states): max_num_a = max(len(state.adj_loc_list) for state in states) invalid = np.zeros((self.batch_size, max_num_a), np.uint8) action_embed_size = states[0].action_embeddings.shape[-1] action_embeds = np.zeros( (self.batch_size, max_num_a, action_embed_size), dtype=np.float32) for i, state in enumerate(states): num_a = len(state.adj_loc_list) invalid[i, num_a:] = 1 action_embeds[i, :num_a, :] = state.action_embeddings action_embeds = self._to_tensor_from_numpy(action_embeds).float() invalid = self._to_tensor_from_numpy(invalid).bool() return action_embeds, invalid def init(self, init_poses, instructions, is_eval): if is_eval: self.model.eval() else: self.model.train() self.is_eval = is_eval self.batch_size = len(instructions) self.state_seqs = [] self.pred_action_seqs = [[] for _ in range(self.batch_size)] self.teacher_action_seqs = [] self.action_logit_seqs = [] self.logit_mask_seqs = [] self.terminated = [False] * self.batch_size instr_encodings, instr_masks = self._index_and_pad( instructions, self.vocab) self.text_dec_h, self.state_dec_h, self.dec_time, self.instructions = \ self.model.encode(instr_encodings, instr_masks) self.instruction_masks = instr_masks self.prev_action_embeds = self.model.init_action(self.batch_size) self.timer = self.config.executor.max_timesteps init_states = self.world.init(init_poses) return init_states def act(self, states, teacher_actions=None, bc=False): curr_view_features = [state.curr_view_features for state in states] curr_view_features = self._to_tensor_from_numpy( np.stack(curr_view_features)) all_action_embeds, logit_masks = self._nav_action_variable(states) self.text_dec_h, self.state_dec_h, self.dec_time, action_logits = \ self.model.decode( self.text_dec_h, self.state_dec_h, self.dec_time, self.prev_action_embeds, all_action_embeds, self.instructions, self.instruction_masks, curr_view_features, logit_masks ) self.action_logit_seqs.append(action_logits) self.logit_mask_seqs.append(logit_masks) self.state_seqs.append(states) if self.is_eval: pred_actions = action_logits.max(dim=1)[1].tolist() self.prev_actions = pred_actions for i in range(self.batch_size): if not self.terminated[i]: self.pred_action_seqs[i].append(pred_actions[i]) else: if bc: pred_actions = teacher_actions else: pred_actions = D.Categorical(logits=action_logits).sample().tolist() self.prev_actions = pred_actions teacher_actions = self._to_tensor(teacher_actions).long() for i in range(self.batch_size): if self.terminated[i]: teacher_actions[i] = -1 self.teacher_action_seqs.append(teacher_actions) self.timer -= 1 for i in range(self.batch_size): self.terminated[i] |= self.timer <= 0 self.terminated[i] |= self.prev_actions[i] == self.STOP self.prev_action_embeds = all_action_embeds[np.arange(self.batch_size), pred_actions, :].detach() return self.prev_actions def has_terminated(self): return all(self.terminated) def get_action_seqs(self): return self.pred_action_seqs def predict(self, init_poses, instructions): with torch.no_grad(): states = self.init(init_poses, instructions, True) paths = [[state.viewpoint] for state in states] poses = [[pose] for pose in init_poses] while not self.has_terminated(): pred_actions = self.act(states) states = states.step(pred_actions) for i, state in enumerate(states): pose = (state.scan, state.viewpoint, state.heading, state.elevation) if not self.terminated[i]: poses[i].append(pose) if state.viewpoint != paths[i][-1]: paths[i].append(states[i].viewpoint) return paths, poses def compute_loss(self): assert len(self.teacher_action_seqs) == len(self.action_logit_seqs) loss = 0 zipped_info = zip(self.action_logit_seqs, self.teacher_action_seqs) for logits, refs in zipped_info: loss += self.loss_fn(logits, refs) return loss def learn(self): loss = self.compute_loss() self.optim.zero_grad() loss.backward() self.optim.step() return loss.item() / len(self.teacher_action_seqs) def save(self, name, trajectories=None): file_path = os.path.join(self.config.experiment_dir, name + '.ckpt') ckpt = { 'model_state_dict': self.model.state_dict(), 'optim_state_dict': self.optim.state_dict() } torch.save(ckpt, file_path) logging.info('Saved %s model to %s' % (name, file_path)) def load(self, file_path): ckpt = torch.load(file_path, map_location=self.device) self.model.load_state_dict(ckpt['model_state_dict']) self.optim.load_state_dict(ckpt['optim_state_dict']) logging.info('Loaded model from %s' % file_path)
[ "numpy.stack", "torch.distributions.Categorical", "torch.load", "torch.nn.CrossEntropyLoss", "numpy.zeros", "models.load", "torch.save", "logging.info", "worlds.load", "numpy.arange", "torch.no_grad", "os.path.join", "torch.tensor", "torch.from_numpy" ]
[((391, 410), 'worlds.load', 'worlds.load', (['config'], {}), '(config)\n', (402, 410), False, 'import worlds\n'), ((1095, 1131), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'ignore_index': '(-1)'}), '(ignore_index=-1)\n', (1114, 1131), True, 'import torch.nn as nn\n'), ((2302, 2350), 'numpy.zeros', 'np.zeros', (['(self.batch_size, max_num_a)', 'np.uint8'], {}), '((self.batch_size, max_num_a), np.uint8)\n', (2310, 2350), True, 'import numpy as np\n'), ((2441, 2516), 'numpy.zeros', 'np.zeros', (['(self.batch_size, max_num_a, action_embed_size)'], {'dtype': 'np.float32'}), '((self.batch_size, max_num_a, action_embed_size), dtype=np.float32)\n', (2449, 2516), True, 'import numpy as np\n'), ((7367, 7423), 'os.path.join', 'os.path.join', (['self.config.experiment_dir', "(name + '.ckpt')"], {}), "(self.config.experiment_dir, name + '.ckpt')\n", (7379, 7423), False, 'import os\n'), ((7557, 7584), 'torch.save', 'torch.save', (['ckpt', 'file_path'], {}), '(ckpt, file_path)\n', (7567, 7584), False, 'import torch\n'), ((7593, 7649), 'logging.info', 'logging.info', (["('Saved %s model to %s' % (name, file_path))"], {}), "('Saved %s model to %s' % (name, file_path))\n", (7605, 7649), False, 'import logging\n'), ((7697, 7744), 'torch.load', 'torch.load', (['file_path'], {'map_location': 'self.device'}), '(file_path, map_location=self.device)\n', (7707, 7744), False, 'import torch\n'), ((7875, 7923), 'logging.info', 'logging.info', (["('Loaded model from %s' % file_path)"], {}), "('Loaded model from %s' % file_path)\n", (7887, 7923), False, 'import logging\n'), ((4080, 4108), 'numpy.stack', 'np.stack', (['curr_view_features'], {}), '(curr_view_features)\n', (4088, 4108), True, 'import numpy as np\n'), ((6068, 6083), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6081, 6083), False, 'import torch\n'), ((776, 801), 'models.load', 'models.load', (['model_config'], {}), '(model_config)\n', (787, 801), False, 'import models\n'), ((1254, 1269), 'torch.tensor', 'torch.tensor', (['x'], {}), '(x)\n', (1266, 1269), False, 'import torch\n'), ((1342, 1361), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (1358, 1361), False, 'import torch\n'), ((5780, 5806), 'numpy.arange', 'np.arange', (['self.batch_size'], {}), '(self.batch_size)\n', (5789, 5806), True, 'import numpy as np\n'), ((5184, 5219), 'torch.distributions.Categorical', 'D.Categorical', ([], {'logits': 'action_logits'}), '(logits=action_logits)\n', (5197, 5219), True, 'import torch.distributions as D\n')]
from typing import Protocol, Union import dataclasses import numpy as np class Motion(Protocol): """Protocol of a 1D motion.""" """Shift of motion along time axis.""" offset: float def at(self, t: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """Returns the position at time(s).""" ... def d_at(self, t: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """Returns the velocity at time(s).""" ... @dataclasses.dataclass class PolynomialMotion(Motion): """One-dimensional motion represented by a polynomial of degree N. Args: offset: Global time offset of this motion coeffs: N+1 polynomial coefficients starting with the highest term. """ offset: float coeffs: np.ndarray degree: int = dataclasses.field(init=False) def __post_init__(self): self.degree = len(self.coeffs) - 1 self.coeffs = np.asarray(self.coeffs).reshape(-1, 1) def at(self, t: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """Returns the position at time(s).""" scalar = np.isscalar(t) t = np.atleast_1d(t) v = np.vander(t - self.offset, self.degree + 1) # Nx(D+1) x = v @ self.coeffs # Nx1 if scalar: return x.item() else: return x.squeeze(-1) def d_at(self, t: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """Returns the velocity at time(s).""" scalar = np.isscalar(t) t = np.atleast_1d(t) - self.offset dv = np.array( [i * t ** (i - 1) for i in reversed(range(1, self.degree + 1))] ) # NxD dx = dv.T @ self.coeffs[:-1] if scalar: return dx.item() else: return dx.squeeze(-1) def poly_blend_3(m1: Motion, m2: Motion, tnow: float, h: float) -> PolynomialMotion: """Returns a third-degree polynomial function that blends two motions. Args: m1: First motion m2: Second motion tnow: Start of blend h: Horizon of blend Returns: mblend: Polynomial motion blending m1 and m2 in segment [tnow, tnow+h]. """ if h <= 0.0: raise ValueError("Horizon has to be > 0.0") A = np.zeros((4, 4)) b = np.zeros(4) # Position at start (tnow) should match m1 # Note, the offset (shift) of blended motion will be tnow A[0, 0] = 0 A[0, 1] = 0 A[0, 2] = 0 A[0, 3] = 1 b[0] = m1.at(tnow) # Position at end of horizon should match m2 A[1, 0] = h ** 3 A[1, 1] = h ** 2 A[1, 2] = h A[1, 3] = 1 b[1] = m2.at(tnow + h) # Velocity at start should match m1 A[2, 0] = 0 A[2, 1] = 0 A[2, 2] = 1 A[2, 3] = 0 b[2] = m1.d_at(tnow) # Velocity at end should match m2 A[3, 0] = 3 * h ** 2 A[3, 1] = 2 * h A[3, 2] = 1 A[3, 3] = 0 b[3] = m2.d_at(tnow + h) coeffs = np.linalg.solve(A, b) # TODO: handle singularities return PolynomialMotion(tnow, coeffs) @dataclasses.dataclass class PolynomialMotionBlend(Motion): """A piecewise blended motion with C1 smoothness. The blended motion consists of three pieces - m1 when t < start - blend when start <= t <= end of blending - m2 when end < t At joint points the positions and first order derivatives match up. If `flatten` is True, m1 and m2 will be simplified assuming that t is monotonically increasing and values of `t < start` are not of interest. Otherwise, recursive blending may lead to memory overflow. """ m1: Motion m2: Motion offset: float horizon: float blend: Motion = dataclasses.field(init=False) flatten: dataclasses.InitVar[bool] = False def __post_init__(self, flatten: bool): if flatten: self.m1 = _flatten(self.m1, self.offset) self.m2 = _flatten(self.m2, self.offset) self.blend = poly_blend_3(self.m1, self.m2, self.offset, self.horizon) def at(self, t: Union[float, np.ndarray]) -> Union[float, np.ndarray]: return self._compute(t, "at") def d_at(self, t: Union[float, np.ndarray]) -> Union[float, np.ndarray]: return self._compute(t, "d_at") @property def range(self): return (self.offset, self.offset + self.horizon) def _compute( self, t: Union[float, np.ndarray], attr: str ) -> Union[float, np.ndarray]: scalar = np.isscalar(t) t = np.atleast_1d(t) low, high = self.range x = np.empty_like(t) mask = t < low x[mask] = getattr(self.m1, attr)(t[mask]) mask = t > high x[mask] = getattr(self.m2, attr)(t[mask]) mask = np.logical_and(t >= low, t <= high) x[mask] = getattr(self.blend, attr)(t[mask]) if scalar: return x.item() else: return x def _flatten(m: Motion, offset: float) -> Motion: """Recursively simplify older motions to avoid stacking of blends. The resulting motion is identical fo `t>=offset`, but may change for values less than offset. """ if isinstance(m, PolynomialMotionBlend): if m.range[1] < offset: return m.m2 elif m.range[0] < offset: return m.blend else: return _flatten(m.m1, offset) else: return m
[ "numpy.vander", "numpy.logical_and", "numpy.isscalar", "numpy.asarray", "numpy.zeros", "numpy.empty_like", "dataclasses.field", "numpy.atleast_1d", "numpy.linalg.solve" ]
[((802, 831), 'dataclasses.field', 'dataclasses.field', ([], {'init': '(False)'}), '(init=False)\n', (819, 831), False, 'import dataclasses\n'), ((2260, 2276), 'numpy.zeros', 'np.zeros', (['(4, 4)'], {}), '((4, 4))\n', (2268, 2276), True, 'import numpy as np\n'), ((2285, 2296), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (2293, 2296), True, 'import numpy as np\n'), ((2934, 2955), 'numpy.linalg.solve', 'np.linalg.solve', (['A', 'b'], {}), '(A, b)\n', (2949, 2955), True, 'import numpy as np\n'), ((3672, 3701), 'dataclasses.field', 'dataclasses.field', ([], {'init': '(False)'}), '(init=False)\n', (3689, 3701), False, 'import dataclasses\n'), ((1106, 1120), 'numpy.isscalar', 'np.isscalar', (['t'], {}), '(t)\n', (1117, 1120), True, 'import numpy as np\n'), ((1133, 1149), 'numpy.atleast_1d', 'np.atleast_1d', (['t'], {}), '(t)\n', (1146, 1149), True, 'import numpy as np\n'), ((1163, 1206), 'numpy.vander', 'np.vander', (['(t - self.offset)', '(self.degree + 1)'], {}), '(t - self.offset, self.degree + 1)\n', (1172, 1206), True, 'import numpy as np\n'), ((1490, 1504), 'numpy.isscalar', 'np.isscalar', (['t'], {}), '(t)\n', (1501, 1504), True, 'import numpy as np\n'), ((4448, 4462), 'numpy.isscalar', 'np.isscalar', (['t'], {}), '(t)\n', (4459, 4462), True, 'import numpy as np\n'), ((4475, 4491), 'numpy.atleast_1d', 'np.atleast_1d', (['t'], {}), '(t)\n', (4488, 4491), True, 'import numpy as np\n'), ((4536, 4552), 'numpy.empty_like', 'np.empty_like', (['t'], {}), '(t)\n', (4549, 4552), True, 'import numpy as np\n'), ((4715, 4750), 'numpy.logical_and', 'np.logical_and', (['(t >= low)', '(t <= high)'], {}), '(t >= low, t <= high)\n', (4729, 4750), True, 'import numpy as np\n'), ((1517, 1533), 'numpy.atleast_1d', 'np.atleast_1d', (['t'], {}), '(t)\n', (1530, 1533), True, 'import numpy as np\n'), ((927, 950), 'numpy.asarray', 'np.asarray', (['self.coeffs'], {}), '(self.coeffs)\n', (937, 950), True, 'import numpy as np\n')]
import scipy.sparse as sp import pandas as pd import numpy as np import torch import h5py def get_adj(num_rows, num_cols, row_idx, col_idx, device): adj = torch.zeros((num_rows, num_cols), dtype=torch.float32, device=device) adj[row_idx, col_idx] = 1. adj = adj / adj.sum(dim=1, keepdim=True) adj.masked_fill_(torch.isnan(adj), 0) return adj def load_matlab_file(path_file, name_field): db = h5py.File(path_file, 'r') ds = db[name_field] try: if 'ir' in ds.keys(): data = np.asarray(ds['data']) ir = np.asarray(ds['ir']) jc = np.asarray(ds['jc']) out = sp.csc_matrix((data, ir, jc)) except AttributeError: out = np.asarray(ds).T db.close() return out.astype(np.int) def matrix2data(matrix, rating): idx = np.argwhere(matrix > 0) rows = idx[:, 0] columns = idx[:, 1] ratings = rating[rows, columns].reshape(-1, 1) data = np.concatenate([idx, ratings], axis=1) data = pd.DataFrame(data, columns=('user', 'movie', 'rating')) return data
[ "pandas.DataFrame", "h5py.File", "numpy.asarray", "numpy.argwhere", "scipy.sparse.csc_matrix", "torch.zeros", "torch.isnan", "numpy.concatenate" ]
[((162, 231), 'torch.zeros', 'torch.zeros', (['(num_rows, num_cols)'], {'dtype': 'torch.float32', 'device': 'device'}), '((num_rows, num_cols), dtype=torch.float32, device=device)\n', (173, 231), False, 'import torch\n'), ((424, 449), 'h5py.File', 'h5py.File', (['path_file', '"""r"""'], {}), "(path_file, 'r')\n", (433, 449), False, 'import h5py\n'), ((831, 854), 'numpy.argwhere', 'np.argwhere', (['(matrix > 0)'], {}), '(matrix > 0)\n', (842, 854), True, 'import numpy as np\n'), ((964, 1002), 'numpy.concatenate', 'np.concatenate', (['[idx, ratings]'], {'axis': '(1)'}), '([idx, ratings], axis=1)\n', (978, 1002), True, 'import numpy as np\n'), ((1014, 1069), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': "('user', 'movie', 'rating')"}), "(data, columns=('user', 'movie', 'rating'))\n", (1026, 1069), True, 'import pandas as pd\n'), ((330, 346), 'torch.isnan', 'torch.isnan', (['adj'], {}), '(adj)\n', (341, 346), False, 'import torch\n'), ((533, 555), 'numpy.asarray', 'np.asarray', (["ds['data']"], {}), "(ds['data'])\n", (543, 555), True, 'import numpy as np\n'), ((573, 593), 'numpy.asarray', 'np.asarray', (["ds['ir']"], {}), "(ds['ir'])\n", (583, 593), True, 'import numpy as np\n'), ((611, 631), 'numpy.asarray', 'np.asarray', (["ds['jc']"], {}), "(ds['jc'])\n", (621, 631), True, 'import numpy as np\n'), ((650, 679), 'scipy.sparse.csc_matrix', 'sp.csc_matrix', (['(data, ir, jc)'], {}), '((data, ir, jc))\n', (663, 679), True, 'import scipy.sparse as sp\n'), ((721, 735), 'numpy.asarray', 'np.asarray', (['ds'], {}), '(ds)\n', (731, 735), True, 'import numpy as np\n')]
import numpy as np from ...dimensions.dim_linear import DimLinear from ...dimensions.dim_angular import DimAngular from ...dimensions import DimRadian from ..cross_sect_base import CrossSectBase, CrossSectToken __all__ = ['CrossSectParallelogram'] class CrossSectParallelogram(CrossSectBase): def __init__(self, **kwargs: any) -> None: ''' Intialization function for Parallelogram class. This function takes in arguments and saves the information passed to private variable to make them read-only Parameters ---------- **kwargs : any DESCRIPTION. Keyword arguments provided to the initialization function. The following argument names have to be included in order for the code to execute: name, dim_l, dim_t, dim_theta, location. Returns ------- None ''' self._create_attr(kwargs) super()._validate_attr() self._validate_attr() @property def dim_l(self): return self._dim_l @property def dim_t(self): return self._dim_t @property def dim_theta(self): return self._dim_theta def draw(self, drawer): l = self.dim_l # height of the parallelogram t = self.dim_t # width of the parallelogram theta = DimRadian(self.dim_theta) # angle of the parallelogram x = [0, l * np.cos(theta), l * np.cos(theta) + t / np.sin(theta), t / np.sin(theta)] y = [0, l * np.sin(theta), l * np.sin(theta), 0]; z = np.array([x, y]) coords = np.transpose(z) points = self.location.transform_coords(coords) # draw parallelogram side_1 = drawer.draw_line(points[0], points[1]) side_2 = drawer.draw_line(points[1], points[2]) side_3 = drawer.draw_line(points[2], points[3]) side_4 = drawer.draw_line(points[3], points[0]) x_coord = (l * np.cos(theta) + t / np.sin(theta)) / 2 y_coord = l * np.sin(theta) / 2 ic = np.array([[x_coord, y_coord]]) inner_coord = self.location.transform_coords(ic) segments = [side_1, side_2, side_3, side_4] cs_token = CrossSectToken(inner_coord[0], segments) return cs_token def _validate_attr(self): if not isinstance(self._dim_l, DimLinear): raise TypeError('dim_l is not of DimLinear') if not isinstance(self._dim_t, DimLinear): raise TypeError('dim_t is not of DimLinear') if not isinstance(self._dim_theta, DimAngular): raise TypeError('dim_theta is not of DimAngular')
[ "numpy.transpose", "numpy.sin", "numpy.array", "numpy.cos" ]
[((1556, 1572), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (1564, 1572), True, 'import numpy as np\n'), ((1591, 1606), 'numpy.transpose', 'np.transpose', (['z'], {}), '(z)\n', (1603, 1606), True, 'import numpy as np\n'), ((2036, 2066), 'numpy.array', 'np.array', (['[[x_coord, y_coord]]'], {}), '([[x_coord, y_coord]])\n', (2044, 2066), True, 'import numpy as np\n'), ((1411, 1424), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1417, 1424), True, 'import numpy as np\n'), ((1469, 1482), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1475, 1482), True, 'import numpy as np\n'), ((1505, 1518), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1511, 1518), True, 'import numpy as np\n'), ((1524, 1537), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1530, 1537), True, 'import numpy as np\n'), ((2004, 2017), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2010, 2017), True, 'import numpy as np\n'), ((1430, 1443), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1436, 1443), True, 'import numpy as np\n'), ((1450, 1463), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1456, 1463), True, 'import numpy as np\n'), ((1943, 1956), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1949, 1956), True, 'import numpy as np\n'), ((1963, 1976), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1969, 1976), True, 'import numpy as np\n')]
from pyraf import iraf import glob, os import numpy as np import pylab as py import math, datetime import pyfits from gcwork import objects from . import dar def diffDarOnOff(cleanDir1, cleanDir2): files1tmp = glob.glob(cleanDir1 + '/c????.fits') files2tmp = glob.glob(cleanDir2 + '/c????.fits') for f1 in files1tmp: cname1 = f1.split('/')[-1] for f2 in files2tmp: cname2 = f2.split('/')[-1] if (cname1 == cname2): outname = cname1.replace('c', 'diff') print('IMARITH: %s - %s = %s' % (cname1, cname2, outname)) if (os.path.exists(outname)): iraf.imdelete(outname) iraf.imarith(f1, '-', f2, outname) def plotScalePosangOverNight(alignRoot, imgDir): # Read in the list of images used in the alignment listFile = open(alignRoot+'.list', 'r') parang = [] for line in listFile: _data = line.split() lisFile = _data[0].split('/')[-1] if (lisFile.startswith('mag')): continue fitsFile = imgDir + lisFile.split('_')[0] + '.fits' # Get header info hdr = pyfits.getheader( fitsFile ) parang.append( hdr['PARANG'] ) parang = np.array(parang) numEpochs = len(parang) # Load scales/angles scale = np.zeros(numEpochs, float) angle = np.zeros(numEpochs, float) sgrax = np.zeros(numEpochs, float) sgray = np.zeros(numEpochs, float) scaleErr = np.zeros(numEpochs, float) angleErr = np.zeros(numEpochs, float) sgraxErr = np.zeros(numEpochs, float) sgrayErr = np.zeros(numEpochs, float) imgPA = np.zeros(numEpochs, float) for e in range(numEpochs): trans = objects.Transform() trans.loadFromAbsolute(root='./', align=alignRoot + '.trans', idx=e+1) trans.linearToSpherical(silent=1, override=False) scale[e] = trans.scale angle[e] = math.degrees(trans.angle) scale *= 9.96 py.clf() py.subplot(2, 1, 1) py.plot(parang, scale, 'k.') py.ylabel('Plate Scale (mas/pix)') py.xlabel('Parallactic Angle (deg)') py.title('Relative Transformation') py.subplot(2, 1, 2) py.plot(parang, angle, 'k.') py.ylabel('Position Angle (deg)') py.xlabel('Parallactic Angle (deg)') py.savefig('plots/scale_pa_vs_parang.png') def plotDarCoeffsVsZenith(): effWave = 2.12 # microns utc = datetime.datetime(2008, 6, 15, 0, 0, 0) utc2hst = datetime.timedelta(hours=-10) hst = utc + utc2hst (refA, refB) = dar.keckDARcoeffs(effWave, hst.year, hst.month, hst.day, hst.hour, hst.minute) elevation = np.arange(30.0, 90.0, 1.0) tanz = np.tan((90.0 - elevation) * math.pi / 180.0) tmp = 1.0 + tanz**2 darCoeffL = tmp * (refA + 3.0 * refB * tanz**2) darCoeffQ = -tmp * (refA*tanz + 3.0 * refB * (tanz + 2.0*tanz**3)) # Convert DAR coefficients for use with arcseconds darCoeffL *= 1.0 darCoeffQ *= 1.0 / 206265.0 # 1" sep linear1 = darCoeffL * 1.0 * 10**3 # in mas quadra1 = darCoeffQ * 1.0**2 * 10**3 # in mas # 10" sep linear2 = darCoeffL * 10.0 * 10**3 # in mas quadra2 = darCoeffQ * 10.0**2 * 10**3 # in mas # 60" sep linear3 = darCoeffL * 60.0 * 10**3 # in mas quadra3 = darCoeffQ * 60.0**2 * 10**3 # in mas print(' Linear(mas) Quardatic(mas)') print('1" sep %12.7f %12.7f' % (linear1.mean(), quadra1.mean())) print('10" sep %12.7f %12.7f' % (linear2.mean(), quadra2.mean())) print('60" sep %12.7f %12.7f' % (linear3.mean(), quadra3.mean())) py.clf() py.semilogy(elevation, linear1, 'r-') py.semilogy(elevation, -quadra1, 'r--') py.semilogy(elevation, linear2, 'b-') py.semilogy(elevation, -quadra2, 'b--') py.semilogy(elevation, linear3, 'g-') py.semilogy(elevation, -quadra3, 'g--') py.legend(('1" lin', '1" quad', '10" lin', '10" quad', '60" lin', '60" quad'), loc='lower left') py.xlabel('Elevation (deg)') py.ylabel('Delta-R (mas)') py.savefig('dar_linear_vs_quad_terms.png') py.savefig('dar_linear_vs_quad_terms.eps')
[ "pyraf.iraf.imarith", "numpy.arange", "glob.glob", "pylab.title", "pylab.ylabel", "os.path.exists", "numpy.tan", "datetime.timedelta", "pylab.xlabel", "pylab.legend", "gcwork.objects.Transform", "datetime.datetime", "pylab.subplot", "pylab.savefig", "math.degrees", "pyraf.iraf.imdelete", "pylab.semilogy", "numpy.zeros", "pyfits.getheader", "numpy.array", "pylab.clf", "pylab.plot" ]
[((215, 251), 'glob.glob', 'glob.glob', (["(cleanDir1 + '/c????.fits')"], {}), "(cleanDir1 + '/c????.fits')\n", (224, 251), False, 'import glob, os\n'), ((268, 304), 'glob.glob', 'glob.glob', (["(cleanDir2 + '/c????.fits')"], {}), "(cleanDir2 + '/c????.fits')\n", (277, 304), False, 'import glob, os\n'), ((1292, 1308), 'numpy.array', 'np.array', (['parang'], {}), '(parang)\n', (1300, 1308), True, 'import numpy as np\n'), ((1375, 1401), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1383, 1401), True, 'import numpy as np\n'), ((1414, 1440), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1422, 1440), True, 'import numpy as np\n'), ((1453, 1479), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1461, 1479), True, 'import numpy as np\n'), ((1492, 1518), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1500, 1518), True, 'import numpy as np\n'), ((1534, 1560), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1542, 1560), True, 'import numpy as np\n'), ((1576, 1602), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1584, 1602), True, 'import numpy as np\n'), ((1618, 1644), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1626, 1644), True, 'import numpy as np\n'), ((1660, 1686), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1668, 1686), True, 'import numpy as np\n'), ((1699, 1725), 'numpy.zeros', 'np.zeros', (['numEpochs', 'float'], {}), '(numEpochs, float)\n', (1707, 1725), True, 'import numpy as np\n'), ((2044, 2052), 'pylab.clf', 'py.clf', ([], {}), '()\n', (2050, 2052), True, 'import pylab as py\n'), ((2057, 2076), 'pylab.subplot', 'py.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (2067, 2076), True, 'import pylab as py\n'), ((2081, 2109), 'pylab.plot', 'py.plot', (['parang', 'scale', '"""k."""'], {}), "(parang, scale, 'k.')\n", (2088, 2109), True, 'import pylab as py\n'), ((2114, 2148), 'pylab.ylabel', 'py.ylabel', (['"""Plate Scale (mas/pix)"""'], {}), "('Plate Scale (mas/pix)')\n", (2123, 2148), True, 'import pylab as py\n'), ((2153, 2189), 'pylab.xlabel', 'py.xlabel', (['"""Parallactic Angle (deg)"""'], {}), "('Parallactic Angle (deg)')\n", (2162, 2189), True, 'import pylab as py\n'), ((2194, 2229), 'pylab.title', 'py.title', (['"""Relative Transformation"""'], {}), "('Relative Transformation')\n", (2202, 2229), True, 'import pylab as py\n'), ((2235, 2254), 'pylab.subplot', 'py.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (2245, 2254), True, 'import pylab as py\n'), ((2259, 2287), 'pylab.plot', 'py.plot', (['parang', 'angle', '"""k."""'], {}), "(parang, angle, 'k.')\n", (2266, 2287), True, 'import pylab as py\n'), ((2292, 2325), 'pylab.ylabel', 'py.ylabel', (['"""Position Angle (deg)"""'], {}), "('Position Angle (deg)')\n", (2301, 2325), True, 'import pylab as py\n'), ((2330, 2366), 'pylab.xlabel', 'py.xlabel', (['"""Parallactic Angle (deg)"""'], {}), "('Parallactic Angle (deg)')\n", (2339, 2366), True, 'import pylab as py\n'), ((2372, 2414), 'pylab.savefig', 'py.savefig', (['"""plots/scale_pa_vs_parang.png"""'], {}), "('plots/scale_pa_vs_parang.png')\n", (2382, 2414), True, 'import pylab as py\n'), ((2485, 2524), 'datetime.datetime', 'datetime.datetime', (['(2008)', '(6)', '(15)', '(0)', '(0)', '(0)'], {}), '(2008, 6, 15, 0, 0, 0)\n', (2502, 2524), False, 'import math, datetime\n'), ((2539, 2568), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': '(-10)'}), '(hours=-10)\n', (2557, 2568), False, 'import math, datetime\n'), ((2746, 2772), 'numpy.arange', 'np.arange', (['(30.0)', '(90.0)', '(1.0)'], {}), '(30.0, 90.0, 1.0)\n', (2755, 2772), True, 'import numpy as np\n'), ((2784, 2828), 'numpy.tan', 'np.tan', (['((90.0 - elevation) * math.pi / 180.0)'], {}), '((90.0 - elevation) * math.pi / 180.0)\n', (2790, 2828), True, 'import numpy as np\n'), ((3753, 3761), 'pylab.clf', 'py.clf', ([], {}), '()\n', (3759, 3761), True, 'import pylab as py\n'), ((3766, 3803), 'pylab.semilogy', 'py.semilogy', (['elevation', 'linear1', '"""r-"""'], {}), "(elevation, linear1, 'r-')\n", (3777, 3803), True, 'import pylab as py\n'), ((3808, 3847), 'pylab.semilogy', 'py.semilogy', (['elevation', '(-quadra1)', '"""r--"""'], {}), "(elevation, -quadra1, 'r--')\n", (3819, 3847), True, 'import pylab as py\n'), ((3853, 3890), 'pylab.semilogy', 'py.semilogy', (['elevation', 'linear2', '"""b-"""'], {}), "(elevation, linear2, 'b-')\n", (3864, 3890), True, 'import pylab as py\n'), ((3895, 3934), 'pylab.semilogy', 'py.semilogy', (['elevation', '(-quadra2)', '"""b--"""'], {}), "(elevation, -quadra2, 'b--')\n", (3906, 3934), True, 'import pylab as py\n'), ((3940, 3977), 'pylab.semilogy', 'py.semilogy', (['elevation', 'linear3', '"""g-"""'], {}), "(elevation, linear3, 'g-')\n", (3951, 3977), True, 'import pylab as py\n'), ((3982, 4021), 'pylab.semilogy', 'py.semilogy', (['elevation', '(-quadra3)', '"""g--"""'], {}), "(elevation, -quadra3, 'g--')\n", (3993, 4021), True, 'import pylab as py\n'), ((4027, 4127), 'pylab.legend', 'py.legend', (['(\'1" lin\', \'1" quad\', \'10" lin\', \'10" quad\', \'60" lin\', \'60" quad\')'], {'loc': '"""lower left"""'}), '((\'1" lin\', \'1" quad\', \'10" lin\', \'10" quad\', \'60" lin\',\n \'60" quad\'), loc=\'lower left\')\n', (4036, 4127), True, 'import pylab as py\n'), ((4144, 4172), 'pylab.xlabel', 'py.xlabel', (['"""Elevation (deg)"""'], {}), "('Elevation (deg)')\n", (4153, 4172), True, 'import pylab as py\n'), ((4177, 4203), 'pylab.ylabel', 'py.ylabel', (['"""Delta-R (mas)"""'], {}), "('Delta-R (mas)')\n", (4186, 4203), True, 'import pylab as py\n'), ((4209, 4251), 'pylab.savefig', 'py.savefig', (['"""dar_linear_vs_quad_terms.png"""'], {}), "('dar_linear_vs_quad_terms.png')\n", (4219, 4251), True, 'import pylab as py\n'), ((4256, 4298), 'pylab.savefig', 'py.savefig', (['"""dar_linear_vs_quad_terms.eps"""'], {}), "('dar_linear_vs_quad_terms.eps')\n", (4266, 4298), True, 'import pylab as py\n'), ((1210, 1236), 'pyfits.getheader', 'pyfits.getheader', (['fitsFile'], {}), '(fitsFile)\n', (1226, 1236), False, 'import pyfits\n'), ((1774, 1793), 'gcwork.objects.Transform', 'objects.Transform', ([], {}), '()\n', (1791, 1793), False, 'from gcwork import objects\n'), ((1994, 2019), 'math.degrees', 'math.degrees', (['trans.angle'], {}), '(trans.angle)\n', (2006, 2019), False, 'import math, datetime\n'), ((621, 644), 'os.path.exists', 'os.path.exists', (['outname'], {}), '(outname)\n', (635, 644), False, 'import glob, os\n'), ((706, 740), 'pyraf.iraf.imarith', 'iraf.imarith', (['f1', '"""-"""', 'f2', 'outname'], {}), "(f1, '-', f2, outname)\n", (718, 740), False, 'from pyraf import iraf\n'), ((667, 689), 'pyraf.iraf.imdelete', 'iraf.imdelete', (['outname'], {}), '(outname)\n', (680, 689), False, 'from pyraf import iraf\n')]
from jupyterthemes import jtplot import numpy as np import os import matplotlib.pyplot as plt from pathlib import Path from scipy.ndimage import filters from textwrap import wrap import torch import vectorized_agents as va import vectorized_env as ve jtplot.style() DEVICE = torch.device('cuda') if DEVICE == torch.device('cpu'): os.environ['OMP_NUM_THREADS'] = '4' n_envs = 50 else: os.environ['OMP_NUM_THREADS'] = '8' n_envs = 200 ENV_KWARGS = dict( n_envs=n_envs, env_device=DEVICE, out_device=DEVICE, reward_type=ve.EVERY_STEP_EV_ZEROSUM ) all_ensemble_names = ['a3c_agent_small_8_32', 'awac_agent_small_8_64_32_1_norm', 'a3c_agent_small_8_64_32_2'] PLAYER_1s = [ #va.SavedRLAgentMultiObsEnsemble(all_ensemble_names[:2], weight_logits=False, deterministic_policy=True), #va.SavedRLAgentMultiObsEnsemble([all_ensemble_names[0], all_ensemble_names[2]], weight_logits=False, deterministic_policy=True), #va.SavedRLAgentMultiObsEnsemble(all_ensemble_names[-2:], weight_logits=False, deterministic_policy=True), va.SavedRLAgentMultiObsEnsemble(all_ensemble_names, weight_logits=False, deterministic_policy=True), #va.SavedRLAgentMultiObsEnsemble(all_ensemble_names[:2], weight_logits=True, deterministic_policy=True), #va.SavedRLAgentMultiObsEnsemble([all_ensemble_names[0], all_ensemble_names[2]], weight_logits=True, deterministic_policy=True), ### LEFT OFF HERE: #va.SavedRLAgentMultiObsEnsemble(all_ensemble_names[-2:], weight_logits=True, deterministic_policy=True), va.SavedRLAgentMultiObsEnsemble(all_ensemble_names, weight_logits=True, deterministic_policy=True), # va.SavedRLAgentEnsemble('a3c_agent_small_8_64_32_2', weight_logits=True, device=DEVICE, deterministic_policy=True), # va.SavedRLAgentEnsemble('awac_agent_small_8_64_32_1_norm', weight_logits=False, device=DEVICE, deterministic_policy=True), # va.SavedRLAgentEnsemble('a3c_agent_small_8_32', weight_logits=True, device=DEVICE, deterministic_policy=True), # va.SavedRLAgent('awac_agent_small_8_64_32_1_norm_v1-230', device=DEVICE, deterministic_policy=True), # va.SavedRLAgent('a3c_agent_small_8_32-790', device=DEVICE, deterministic_policy=True), # va.SavedRLAgent('a3c_agent_small_8_64_32_2_v2-30', device=DEVICE, deterministic_policy=False) ] PLAYER_2s = [ va.BasicThompsonSampling(), va.PullVegasSlotMachines(), va.PullVegasSlotMachinesImproved(), va.SavedRLAgent('a3c_agent_small_8_32-790', device=DEVICE, deterministic_policy=True), va.SavedRLAgent('awac_agent_small_8_64_32_1_norm_v1-230', deterministic_policy=True), va.SavedRLAgent('a3c_agent_small_8_64_32_2_v2-30', device=DEVICE, deterministic_policy=False), #va.SavedRLAgentEnsemble('a3c_agent_small_8_32', weight_logits=True, device=DEVICE, deterministic_policy=True), va.SavedRLAgentEnsemble('a3c_agent_small_8_64_32_2', weight_logits=True, device=DEVICE, deterministic_policy=True), #va.SavedRLAgentEnsemble('awac_agent_small_8_64_32_1_norm', weight_logits=False, device=DEVICE, deterministic_policy=True), ] def wrap_title(title): return '\n'.join(wrap(title, 55, break_long_words=True)) if __name__ == '__main__': for player_1 in PLAYER_1s: for player_2 in PLAYER_2s: if player_1 == player_2: continue p1_score, rewards_over_time = va.run_vectorized_vs(player_1, player_2, display_out=True, **ENV_KWARGS) rewards_over_time = rewards_over_time.cpu().numpy().squeeze() cumulative_ymax = 10 expected_ymax = 0.10 q = np.linspace(0., 100., 11) colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] n_rows = 2 n_cols = 2 fig, axes = plt.subplots(n_rows, n_cols, figsize=(8 * n_cols, 8 * n_rows)) fig_title = (f'{player_1.name} -vs- {player_2.name}\n' f'{p1_score * 100.:.2f}% winrate over {rewards_over_time.shape[1]} games') fig.suptitle(wrap_title(fig_title)) axes = axes.ravel() axes[0].plot(np.cumsum(rewards_over_time.mean(axis=1))) axes[0].set_ylim((-cumulative_ymax, cumulative_ymax)) axes[0].set_title(wrap_title(f"{player_1.name} cumulative expected advantage")) window_size = 50 axes[1].plot(filters.uniform_filter1d(rewards_over_time.mean(axis=1), window_size, mode='constant')) axes[1].set_ylim((-expected_ymax, expected_ymax)) axes[1].set_title(wrap_title(f"{player_1.name} per-step expected advantage")) for i, quantile, val in zip( range(len(q)), q, np.percentile(np.cumsum(rewards_over_time, axis=0), q, axis=1)): color_idx = int(abs((len(q) - 1.) / 2. - i)) axes[2].plot(val, label=f'Percentile: {quantile:.0f}', color=colors[color_idx], alpha=1. / (color_idx + 1), # linewidth=3./(color_idx+1) ) axes[2].set_ylim((-cumulative_ymax * 5, cumulative_ymax * 5)) if len(q) <= 5: axes[2].legend() axes[2].set_title(wrap_title(f"{player_1.name} cumulative expected advantage (percentiles)")) for i, quantile, val in zip( range(len(q)), q, np.percentile(filters.uniform_filter1d(rewards_over_time, window_size * 5, mode='reflect', axis=0), q, axis=1)): color_idx = int(abs((len(q) - 1.) / 2. - i)) axes[3].plot(val, label=f'Percentile: {quantile:.0f}', color=colors[color_idx], alpha=1. / (color_idx + 1), # linewidth=3./(color_idx+1) ) axes[3].set_ylim((-expected_ymax, expected_ymax)) if len(q) <= 5: axes[3].legend() axes[3].set_title(wrap_title(f"{player_1.name} per-step expected advantage over time (percentiles)")) plt.tight_layout(rect=[0., 0., 1., 0.9]) p_names_abbrev = [] for p in (player_1, player_2): if type(p) == va.SavedRLAgent: p_names_abbrev.append(p.agent_name) if p.name.endswith('_deterministic'): p_names_abbrev[-1] += '_deterministic' else: p_names_abbrev[-1] += '_stochastic' elif type(p) in (va.SavedRLAgentEnsemble, va.SavedRLAgentMultiObsEnsemble): if type(p) == va.SavedRLAgentEnsemble: p_names_abbrev.append(f'ensemble_{p.ensemble_name}') else: p_names_abbrev.append(f'multiObsEnsemble_{p.ensemble_name}') if p.ensemble_model.weight_logits: p_names_abbrev[-1] += '_weight_logits' else: p_names_abbrev[-1] += '_weight_probs' if p.name.endswith('_deterministic'): p_names_abbrev[-1] += '_deterministic' else: p_names_abbrev[-1] += '_stochastic' else: p_names_abbrev.append(p.name) save_fig_title = f'{p_names_abbrev[0]}__{p_names_abbrev[1]}' if type(player_1) in (va.SavedRLAgent, va.SavedRLAgentEnsemble, va.SavedRLAgentMultiObsEnsemble): save_fig_folder = f'saved_figures/{p_names_abbrev[0]}' else: save_fig_folder = 'saved_figures' Path(save_fig_folder).mkdir(exist_ok=True) fig.savefig(f'{save_fig_folder}/{save_fig_title}.png', dpi=100) plt.close(fig)
[ "matplotlib.pyplot.tight_layout", "jupyterthemes.jtplot.style", "vectorized_agents.SavedRLAgent", "textwrap.wrap", "vectorized_agents.run_vectorized_vs", "matplotlib.pyplot.close", "vectorized_agents.PullVegasSlotMachines", "matplotlib.pyplot.subplots", "numpy.cumsum", "pathlib.Path", "scipy.ndimage.filters.uniform_filter1d", "vectorized_agents.SavedRLAgentMultiObsEnsemble", "torch.device", "numpy.linspace", "vectorized_agents.SavedRLAgentEnsemble", "vectorized_agents.PullVegasSlotMachinesImproved", "vectorized_agents.BasicThompsonSampling" ]
[((253, 267), 'jupyterthemes.jtplot.style', 'jtplot.style', ([], {}), '()\n', (265, 267), False, 'from jupyterthemes import jtplot\n'), ((278, 298), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (290, 298), False, 'import torch\n'), ((312, 331), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (324, 331), False, 'import torch\n'), ((1064, 1167), 'vectorized_agents.SavedRLAgentMultiObsEnsemble', 'va.SavedRLAgentMultiObsEnsemble', (['all_ensemble_names'], {'weight_logits': '(False)', 'deterministic_policy': '(True)'}), '(all_ensemble_names, weight_logits=False,\n deterministic_policy=True)\n', (1095, 1167), True, 'import vectorized_agents as va\n'), ((1545, 1647), 'vectorized_agents.SavedRLAgentMultiObsEnsemble', 'va.SavedRLAgentMultiObsEnsemble', (['all_ensemble_names'], {'weight_logits': '(True)', 'deterministic_policy': '(True)'}), '(all_ensemble_names, weight_logits=True,\n deterministic_policy=True)\n', (1576, 1647), True, 'import vectorized_agents as va\n'), ((2333, 2359), 'vectorized_agents.BasicThompsonSampling', 'va.BasicThompsonSampling', ([], {}), '()\n', (2357, 2359), True, 'import vectorized_agents as va\n'), ((2365, 2391), 'vectorized_agents.PullVegasSlotMachines', 'va.PullVegasSlotMachines', ([], {}), '()\n', (2389, 2391), True, 'import vectorized_agents as va\n'), ((2397, 2431), 'vectorized_agents.PullVegasSlotMachinesImproved', 'va.PullVegasSlotMachinesImproved', ([], {}), '()\n', (2429, 2431), True, 'import vectorized_agents as va\n'), ((2437, 2526), 'vectorized_agents.SavedRLAgent', 'va.SavedRLAgent', (['"""a3c_agent_small_8_32-790"""'], {'device': 'DEVICE', 'deterministic_policy': '(True)'}), "('a3c_agent_small_8_32-790', device=DEVICE,\n deterministic_policy=True)\n", (2452, 2526), True, 'import vectorized_agents as va\n'), ((2528, 2616), 'vectorized_agents.SavedRLAgent', 'va.SavedRLAgent', (['"""awac_agent_small_8_64_32_1_norm_v1-230"""'], {'deterministic_policy': '(True)'}), "('awac_agent_small_8_64_32_1_norm_v1-230',\n deterministic_policy=True)\n", (2543, 2616), True, 'import vectorized_agents as va\n'), ((2618, 2715), 'vectorized_agents.SavedRLAgent', 'va.SavedRLAgent', (['"""a3c_agent_small_8_64_32_2_v2-30"""'], {'device': 'DEVICE', 'deterministic_policy': '(False)'}), "('a3c_agent_small_8_64_32_2_v2-30', device=DEVICE,\n deterministic_policy=False)\n", (2633, 2715), True, 'import vectorized_agents as va\n'), ((2833, 2951), 'vectorized_agents.SavedRLAgentEnsemble', 'va.SavedRLAgentEnsemble', (['"""a3c_agent_small_8_64_32_2"""'], {'weight_logits': '(True)', 'device': 'DEVICE', 'deterministic_policy': '(True)'}), "('a3c_agent_small_8_64_32_2', weight_logits=True,\n device=DEVICE, deterministic_policy=True)\n", (2856, 2951), True, 'import vectorized_agents as va\n'), ((3125, 3163), 'textwrap.wrap', 'wrap', (['title', '(55)'], {'break_long_words': '(True)'}), '(title, 55, break_long_words=True)\n', (3129, 3163), False, 'from textwrap import wrap\n'), ((3364, 3436), 'vectorized_agents.run_vectorized_vs', 'va.run_vectorized_vs', (['player_1', 'player_2'], {'display_out': '(True)'}), '(player_1, player_2, display_out=True, **ENV_KWARGS)\n', (3384, 3436), True, 'import vectorized_agents as va\n'), ((3594, 3621), 'numpy.linspace', 'np.linspace', (['(0.0)', '(100.0)', '(11)'], {}), '(0.0, 100.0, 11)\n', (3605, 3621), True, 'import numpy as np\n'), ((3762, 3824), 'matplotlib.pyplot.subplots', 'plt.subplots', (['n_rows', 'n_cols'], {'figsize': '(8 * n_cols, 8 * n_rows)'}), '(n_rows, n_cols, figsize=(8 * n_cols, 8 * n_rows))\n', (3774, 3824), True, 'import matplotlib.pyplot as plt\n'), ((6456, 6499), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'rect': '[0.0, 0.0, 1.0, 0.9]'}), '(rect=[0.0, 0.0, 1.0, 0.9])\n', (6472, 6499), True, 'import matplotlib.pyplot as plt\n'), ((8172, 8186), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (8181, 8186), True, 'import matplotlib.pyplot as plt\n'), ((4728, 4764), 'numpy.cumsum', 'np.cumsum', (['rewards_over_time'], {'axis': '(0)'}), '(rewards_over_time, axis=0)\n', (4737, 4764), True, 'import numpy as np\n'), ((5564, 5652), 'scipy.ndimage.filters.uniform_filter1d', 'filters.uniform_filter1d', (['rewards_over_time', '(window_size * 5)'], {'mode': '"""reflect"""', 'axis': '(0)'}), "(rewards_over_time, window_size * 5, mode='reflect',\n axis=0)\n", (5588, 5652), False, 'from scipy.ndimage import filters\n'), ((8041, 8062), 'pathlib.Path', 'Path', (['save_fig_folder'], {}), '(save_fig_folder)\n', (8045, 8062), False, 'from pathlib import Path\n')]
from unittest import TestCase import numpy as np import xarray as xr from xarray.testing import assert_equal, assert_allclose import numpy.testing as npt from sklearn_xarray import wrap from sklearn.base import clone from sklearn.preprocessing import StandardScaler, KernelCenterer from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.svm import SVC from tests.mocks import ( DummyEstimator, DummyTransformer, ReshapingEstimator, ) class EstimatorWrapperTests(TestCase): def setUp(self): self.X = xr.Dataset( { "var_2d": (["sample", "feat_1"], np.random.random((100, 10))), "var_3d": ( ["sample", "feat_1", "feat_2"], np.random.random((100, 10, 10)), ), }, { "sample": range(100), "feat_1": range(10), "feat_2": range(10), "dummy": (["sample", "feat_1"], np.random.random((100, 10))), }, ) def test_update_restore_dims(self): estimator = wrap( ReshapingEstimator(new_shape=(-1, 0, 5)), reshapes={"feature": ["feat_1", "feat_2"]}, ) X = self.X.var_3d estimator.fit(X) X_out = estimator.estimator_.transform(X.values) dims_new = estimator._update_dims(X, X_out) Xt = xr.DataArray(X_out, dims=dims_new) assert dims_new == ["sample", "feature"] Xr_out = estimator.estimator_.inverse_transform(X_out) dims_old = estimator._restore_dims(Xt, Xr_out) assert dims_old == ["sample", "feat_1", "feat_2"] def test_update_coords(self): pass def test_params(self): estimator = StandardScaler(with_mean=False) params = estimator.get_params() params.update( {"estimator": estimator, "reshapes": None, "sample_dim": None} ) # check params set in constructor wrapper = wrap(estimator) self.assertEqual(wrapper.get_params(), params) self.assertEqual(wrapper.with_mean, False) # check params set by attribute wrapper.with_std = False params.update({"with_std": False}) self.assertEqual(wrapper.get_params(), params) # check params set with set_params wrapper.set_params(copy=False) params.update({"copy": False}) self.assertEqual(wrapper.get_params(), params) def test_attributes(self): estimator = wrap(StandardScaler()) # check pass-through wrapper estimator.fit(self.X.var_2d.values) npt.assert_allclose(estimator.mean_, estimator.estimator_.mean_) # check DataArray wrapper estimator.fit(self.X.var_2d) npt.assert_allclose(estimator.mean_, estimator.estimator_.mean_) # check Dataset wrapper estimator.fit(self.X.var_2d.to_dataset()) npt.assert_allclose( estimator.mean_["var_2d"], estimator.estimator_dict_["var_2d"].mean_, ) class PublicInterfaceTests(TestCase): def setUp(self): self.X = xr.Dataset( { "var_2d": (["sample", "feat_1"], np.random.random((100, 10))), "var_3d": ( ["sample", "feat_1", "feat_2"], np.random.random((100, 10, 10)), ), }, { "sample": range(100), "feat_1": range(10), "feat_2": range(10), "dummy": (["sample", "feat_1"], np.random.random((100, 10))), }, ) def test_dummy_estimator(self): estimator = wrap(DummyEstimator()) # test DataArray X_da = self.X.var_2d estimator.fit(X_da) yp = estimator.predict(X_da) assert_equal(yp, X_da) # test Dataset X_ds = self.X estimator.fit(X_ds) yp = estimator.predict(X_ds) assert_equal(yp, X_ds) def test_dummy_transformer(self): estimator = wrap(DummyTransformer()) # test DataArray X_da = self.X.var_2d estimator.fit(X_da) yp = estimator.transform(X_da) assert_equal(yp, X_da) # test Dataset X_ds = self.X estimator.fit(X_ds) yp = estimator.transform(X_ds) assert_equal(yp, X_ds) def test_wrapped_transformer(self): estimator = wrap(StandardScaler()) # test DataArray X_da = self.X.var_2d estimator.partial_fit(X_da) assert_allclose( X_da, estimator.inverse_transform(estimator.transform(X_da)) ) # test Dataset X_ds = self.X.var_2d.to_dataset() estimator.fit(X_ds) assert_allclose( X_ds, estimator.inverse_transform(estimator.transform(X_ds)) ) def test_ndim_dummy_estimator(self): estimator = wrap(DummyEstimator()) # test DataArray X_da = self.X.var_3d estimator.fit(X_da) yp = estimator.predict(X_da) assert_equal(yp, X_da) # test Dataset X_ds = self.X estimator.fit(X_ds) yp = estimator.predict(X_ds) assert_equal(yp, X_ds) def test_reshaping_estimator(self): estimator = wrap( ReshapingEstimator(new_shape=(-1, 2)), reshapes="feat_1" ) # test DataArray X_da = self.X.var_2d y = X_da[:, :2].drop("feat_1") y["dummy"] = y.dummy[:, 0] estimator.fit(X_da) yp = estimator.predict(X_da) assert_allclose(yp, y) # test Dataset X_ds = self.X.var_2d.to_dataset() y = X_ds.var_2d[:, :2].drop("feat_1") y["dummy"] = y.dummy[:, 0] estimator.fit(X_ds) yp = estimator.predict(X_ds).var_2d assert_allclose(yp, y) def test_reshaping_transformer(self): estimator = wrap( ReshapingEstimator(new_shape=(-1, 2)), reshapes="feat_1" ) # test DataArray X_da = self.X.var_3d y = X_da[:, :2].drop("feat_1") y["dummy"] = y.dummy[:, 0] estimator.fit(X_da) yp = estimator.transform(X_da) assert_allclose(yp, y) # test Dataset X_ds = self.X.var_2d.to_dataset() y = X_ds.var_2d[:, :2].drop("feat_1") y["dummy"] = y.dummy[:, 0] estimator.fit(X_ds) yp = estimator.transform(X_ds).var_2d assert_allclose(yp, y) def test_reshaping_estimator_singleton(self): estimator = wrap( ReshapingEstimator(new_shape=(-1, 0)), reshapes="feat_1" ) # test DataArray X_da = self.X.var_2d y = X_da[:, 0].drop("feat_1") estimator.fit(X_da) yp = estimator.predict(X_da) assert_allclose(yp, y) # test Dataset X_ds = self.X y = X_ds.var_2d[:, 0].drop("feat_1") estimator.fit(X_ds) yp = estimator.predict(X_ds).var_2d assert_allclose(yp, y) def test_ndim_reshaping_estimator(self): estimator = wrap( ReshapingEstimator(new_shape=(-1, 5, 0)), reshapes={"feature": ["feat_1", "feat_2"]}, ) # test DataArray X_da = self.X.var_3d Xt = ( X_da[:, :5, 0] .drop(["feat_1", "feat_2"]) .rename({"feat_1": "feature"}) ) Xt["dummy"] = Xt.dummy[:, 0] estimator.fit(X_da) Xt_da = estimator.transform(X_da) estimator.inverse_transform(Xt_da) assert_allclose(Xt_da, Xt) # test Dataset X_ds = self.X.var_3d.to_dataset() y = X_ds.var_3d[:, :5, 0].drop(["feat_1", "feat_2"]) y = y.rename({"feat_1": "feature"}) y["dummy"] = y.dummy[:, 0] estimator.fit(X_ds) yp = estimator.predict(X_ds).var_3d assert_allclose(yp, y) def test_sample_dim(self): from sklearn.decomposition import PCA estimator = wrap( PCA(n_components=5), reshapes="feat_1", sample_dim="sample" ) # test DataArray X_da = self.X.var_2d Xt_da = estimator.fit_transform(X_da) Xr_da = estimator.inverse_transform(Xt_da) npt.assert_equal(Xt_da.shape, (100, 5)) npt.assert_equal(Xr_da.shape, (100, 10)) # test Dataset X_ds = self.X.var_2d.to_dataset() Xt = estimator.fit_transform(X_ds) npt.assert_equal(Xt.var_2d.shape, (100, 5)) def test_score(self): from sklearn.linear_model import LinearRegression estimator = wrap(LinearRegression, reshapes="feat_1") # test DataArray X_da = self.X.var_2d y = np.random.random(100) estimator.fit(X_da, y) estimator.score(X_da, y) # test Dataset X_ds = self.X.var_2d.to_dataset() wrapper = estimator.fit(X_ds, y) wrapper.score(X_ds, y) def test_partial_fit(self): estimator = wrap(StandardScaler()) # check pass-through wrapper estimator.partial_fit(self.X.var_2d.values) assert hasattr(estimator, "mean_") with self.assertRaises(ValueError): estimator.partial_fit(self.X.var_2d) with self.assertRaises(ValueError): estimator.partial_fit(self.X) # check DataArray wrapper estimator = clone(estimator) estimator.partial_fit(self.X.var_2d) with self.assertRaises(ValueError): estimator.partial_fit(self.X.var_2d.values) with self.assertRaises(ValueError): estimator.partial_fit(self.X) assert hasattr(estimator, "mean_") # check Dataset wrapper estimator = clone(estimator) estimator.partial_fit(self.X.var_2d.to_dataset()) with self.assertRaises(ValueError): estimator.partial_fit(self.X.var_2d.values) with self.assertRaises(ValueError): estimator.partial_fit(self.X.var_2d) assert hasattr(estimator, "mean_") def test_classifier(): lr = wrap(LogisticRegression) # wrappers don't pass check_estimator anymore because estimators # "should not set any attribute apart from parameters during init" assert hasattr(lr, "predict") assert hasattr(lr, "decision_function") lr = wrap(LogisticRegression) assert hasattr(lr, "C") svc_proba = wrap(SVC(probability=True)) # check_estimator(svc_proba) fails because the wrapper is not excluded # from tests that are known to fail for SVC... assert hasattr(svc_proba, "predict_proba") assert hasattr(svc_proba, "predict_log_proba") def test_regressor(): lr = wrap(LinearRegression, compat=True) assert hasattr(lr, "predict") assert hasattr(lr, "score") lr = wrap(LinearRegression) assert hasattr(lr, "normalize") def test_transformer(): wrap(KernelCenterer, compat=True) tr = wrap(KernelCenterer) assert hasattr(tr, "transform") ss = wrap(StandardScaler) # check_estimator(ss) fails because the wrapper is not excluded # from tests that are known to fail for StandardScaler... assert hasattr(ss, "partial_fit") assert hasattr(ss, "inverse_transform") assert hasattr(ss, "fit_transform")
[ "sklearn.base.clone", "xarray.testing.assert_equal", "sklearn.preprocessing.StandardScaler", "tests.mocks.ReshapingEstimator", "tests.mocks.DummyEstimator", "xarray.testing.assert_allclose", "numpy.random.random", "xarray.DataArray", "numpy.testing.assert_equal", "sklearn.svm.SVC", "sklearn.decomposition.PCA", "numpy.testing.assert_allclose", "tests.mocks.DummyTransformer", "sklearn_xarray.wrap" ]
[((10179, 10203), 'sklearn_xarray.wrap', 'wrap', (['LogisticRegression'], {}), '(LogisticRegression)\n', (10183, 10203), False, 'from sklearn_xarray import wrap\n'), ((10432, 10456), 'sklearn_xarray.wrap', 'wrap', (['LogisticRegression'], {}), '(LogisticRegression)\n', (10436, 10456), False, 'from sklearn_xarray import wrap\n'), ((10788, 10823), 'sklearn_xarray.wrap', 'wrap', (['LinearRegression'], {'compat': '(True)'}), '(LinearRegression, compat=True)\n', (10792, 10823), False, 'from sklearn_xarray import wrap\n'), ((10900, 10922), 'sklearn_xarray.wrap', 'wrap', (['LinearRegression'], {}), '(LinearRegression)\n', (10904, 10922), False, 'from sklearn_xarray import wrap\n'), ((10990, 11023), 'sklearn_xarray.wrap', 'wrap', (['KernelCenterer'], {'compat': '(True)'}), '(KernelCenterer, compat=True)\n', (10994, 11023), False, 'from sklearn_xarray import wrap\n'), ((11034, 11054), 'sklearn_xarray.wrap', 'wrap', (['KernelCenterer'], {}), '(KernelCenterer)\n', (11038, 11054), False, 'from sklearn_xarray import wrap\n'), ((11101, 11121), 'sklearn_xarray.wrap', 'wrap', (['StandardScaler'], {}), '(StandardScaler)\n', (11105, 11121), False, 'from sklearn_xarray import wrap\n'), ((1423, 1457), 'xarray.DataArray', 'xr.DataArray', (['X_out'], {'dims': 'dims_new'}), '(X_out, dims=dims_new)\n', (1435, 1457), True, 'import xarray as xr\n'), ((1784, 1815), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {'with_mean': '(False)'}), '(with_mean=False)\n', (1798, 1815), False, 'from sklearn.preprocessing import StandardScaler, KernelCenterer\n'), ((2025, 2040), 'sklearn_xarray.wrap', 'wrap', (['estimator'], {}), '(estimator)\n', (2029, 2040), False, 'from sklearn_xarray import wrap\n'), ((2662, 2726), 'numpy.testing.assert_allclose', 'npt.assert_allclose', (['estimator.mean_', 'estimator.estimator_.mean_'], {}), '(estimator.mean_, estimator.estimator_.mean_)\n', (2681, 2726), True, 'import numpy.testing as npt\n'), ((2807, 2871), 'numpy.testing.assert_allclose', 'npt.assert_allclose', (['estimator.mean_', 'estimator.estimator_.mean_'], {}), '(estimator.mean_, estimator.estimator_.mean_)\n', (2826, 2871), True, 'import numpy.testing as npt\n'), ((2963, 3057), 'numpy.testing.assert_allclose', 'npt.assert_allclose', (["estimator.mean_['var_2d']", "estimator.estimator_dict_['var_2d'].mean_"], {}), "(estimator.mean_['var_2d'], estimator.estimator_dict_[\n 'var_2d'].mean_)\n", (2982, 3057), True, 'import numpy.testing as npt\n'), ((3879, 3901), 'xarray.testing.assert_equal', 'assert_equal', (['yp', 'X_da'], {}), '(yp, X_da)\n', (3891, 3901), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((4023, 4045), 'xarray.testing.assert_equal', 'assert_equal', (['yp', 'X_ds'], {}), '(yp, X_ds)\n', (4035, 4045), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((4263, 4285), 'xarray.testing.assert_equal', 'assert_equal', (['yp', 'X_da'], {}), '(yp, X_da)\n', (4275, 4285), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((4409, 4431), 'xarray.testing.assert_equal', 'assert_equal', (['yp', 'X_ds'], {}), '(yp, X_ds)\n', (4421, 4431), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((5138, 5160), 'xarray.testing.assert_equal', 'assert_equal', (['yp', 'X_da'], {}), '(yp, X_da)\n', (5150, 5160), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((5282, 5304), 'xarray.testing.assert_equal', 'assert_equal', (['yp', 'X_ds'], {}), '(yp, X_ds)\n', (5294, 5304), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((5657, 5679), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (5672, 5679), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((5910, 5932), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (5925, 5932), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((6289, 6311), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (6304, 6311), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((6544, 6566), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (6559, 6566), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((6892, 6914), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (6907, 6914), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((7089, 7111), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (7104, 7111), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((7656, 7682), 'xarray.testing.assert_allclose', 'assert_allclose', (['Xt_da', 'Xt'], {}), '(Xt_da, Xt)\n', (7671, 7682), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((7972, 7994), 'xarray.testing.assert_allclose', 'assert_allclose', (['yp', 'y'], {}), '(yp, y)\n', (7987, 7994), False, 'from xarray.testing import assert_equal, assert_allclose\n'), ((8345, 8384), 'numpy.testing.assert_equal', 'npt.assert_equal', (['Xt_da.shape', '(100, 5)'], {}), '(Xt_da.shape, (100, 5))\n', (8361, 8384), True, 'import numpy.testing as npt\n'), ((8393, 8433), 'numpy.testing.assert_equal', 'npt.assert_equal', (['Xr_da.shape', '(100, 10)'], {}), '(Xr_da.shape, (100, 10))\n', (8409, 8433), True, 'import numpy.testing as npt\n'), ((8553, 8596), 'numpy.testing.assert_equal', 'npt.assert_equal', (['Xt.var_2d.shape', '(100, 5)'], {}), '(Xt.var_2d.shape, (100, 5))\n', (8569, 8596), True, 'import numpy.testing as npt\n'), ((8704, 8745), 'sklearn_xarray.wrap', 'wrap', (['LinearRegression'], {'reshapes': '"""feat_1"""'}), "(LinearRegression, reshapes='feat_1')\n", (8708, 8745), False, 'from sklearn_xarray import wrap\n'), ((8814, 8835), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (8830, 8835), True, 'import numpy as np\n'), ((9487, 9503), 'sklearn.base.clone', 'clone', (['estimator'], {}), '(estimator)\n', (9492, 9503), False, 'from sklearn.base import clone\n'), ((9832, 9848), 'sklearn.base.clone', 'clone', (['estimator'], {}), '(estimator)\n', (9837, 9848), False, 'from sklearn.base import clone\n'), ((10507, 10528), 'sklearn.svm.SVC', 'SVC', ([], {'probability': '(True)'}), '(probability=True)\n', (10510, 10528), False, 'from sklearn.svm import SVC\n'), ((1139, 1179), 'tests.mocks.ReshapingEstimator', 'ReshapingEstimator', ([], {'new_shape': '(-1, 0, 5)'}), '(new_shape=(-1, 0, 5))\n', (1157, 1179), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((2554, 2570), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (2568, 2570), False, 'from sklearn.preprocessing import StandardScaler, KernelCenterer\n'), ((3731, 3747), 'tests.mocks.DummyEstimator', 'DummyEstimator', ([], {}), '()\n', (3745, 3747), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((4111, 4129), 'tests.mocks.DummyTransformer', 'DummyTransformer', ([], {}), '()\n', (4127, 4129), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((4499, 4515), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (4513, 4515), False, 'from sklearn.preprocessing import StandardScaler, KernelCenterer\n'), ((4990, 5006), 'tests.mocks.DummyEstimator', 'DummyEstimator', ([], {}), '()\n', (5004, 5006), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((5385, 5422), 'tests.mocks.ReshapingEstimator', 'ReshapingEstimator', ([], {'new_shape': '(-1, 2)'}), '(new_shape=(-1, 2))\n', (5403, 5422), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((6015, 6052), 'tests.mocks.ReshapingEstimator', 'ReshapingEstimator', ([], {'new_shape': '(-1, 2)'}), '(new_shape=(-1, 2))\n', (6033, 6052), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((6657, 6694), 'tests.mocks.ReshapingEstimator', 'ReshapingEstimator', ([], {'new_shape': '(-1, 0)'}), '(new_shape=(-1, 0))\n', (6675, 6694), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((7197, 7237), 'tests.mocks.ReshapingEstimator', 'ReshapingEstimator', ([], {'new_shape': '(-1, 5, 0)'}), '(new_shape=(-1, 5, 0))\n', (7215, 7237), False, 'from tests.mocks import DummyEstimator, DummyTransformer, ReshapingEstimator\n'), ((8113, 8132), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(5)'}), '(n_components=5)\n', (8116, 8132), False, 'from sklearn.decomposition import PCA\n'), ((9101, 9117), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (9115, 9117), False, 'from sklearn.preprocessing import StandardScaler, KernelCenterer\n'), ((633, 660), 'numpy.random.random', 'np.random.random', (['(100, 10)'], {}), '((100, 10))\n', (649, 660), True, 'import numpy as np\n'), ((763, 794), 'numpy.random.random', 'np.random.random', (['(100, 10, 10)'], {}), '((100, 10, 10))\n', (779, 794), True, 'import numpy as np\n'), ((1004, 1031), 'numpy.random.random', 'np.random.random', (['(100, 10)'], {}), '((100, 10))\n', (1020, 1031), True, 'import numpy as np\n'), ((3242, 3269), 'numpy.random.random', 'np.random.random', (['(100, 10)'], {}), '((100, 10))\n', (3258, 3269), True, 'import numpy as np\n'), ((3372, 3403), 'numpy.random.random', 'np.random.random', (['(100, 10, 10)'], {}), '((100, 10, 10))\n', (3388, 3403), True, 'import numpy as np\n'), ((3613, 3640), 'numpy.random.random', 'np.random.random', (['(100, 10)'], {}), '((100, 10))\n', (3629, 3640), True, 'import numpy as np\n')]
#!/usr/bin/env pythonw import numpy as np from astropy.visualization import stretch, interval from astropy.io import fits from astropy import wcs from reproject import reproject_interp from matplotlib import pyplot as plt def scaleImage(image, a=1, stretch_type='asinh'): reagon = interval.AsymmetricPercentileInterval(10., 99.95) vmin, vmax = reagon.get_limits(image) if stretch_type == 'log': scale = stretch.LogStretch(a=a) elif stretch_type == 'asinh': scale = stretch.AsinhStretch(a=a) elif stretch_type == 'sqrt': scale = stretch.SqrtStretch() image_scaled = (scale + reagon)(image) return image_scaled def removeNaN(data): bdx = ~np.isfinite(data) data[bdx] = 0 def make_images(base, index_cut=1300, filters='gri', gzip=False, **kwargs): hdus = [] images_scaled = [] for fdx, filt in enumerate(filters): file_name = '{0}-{1}.fits'.format(base, filt) if gzip: file_name += '.gz' hdu = fits.open(file_name) w = wcs.WCS(hdu[0].header) newf = fits.PrimaryHDU() newf.data = hdu[0].data[index_cut:-index_cut, index_cut:-index_cut] newf.header = hdu[0].header newf.header.update(w[index_cut:-index_cut, index_cut:-index_cut].to_header()) hdus.append(newf) if fdx > 0: scidata, footprint = reproject_interp(newf, hdus[0].header) scidata = newf.data scidata[scidata < 0] = 0 image = scaleImage(scidata, **kwargs) removeNaN(image) images_scaled.append(image) plt.imsave('{0}_{1}_{2}.png'.format(base, filt, kwargs.get('stretch_type', 'asinh')), image, cmap='Greys_r', origin='lower') RGB_image = np.zeros([images_scaled[0].shape[0], images_scaled[0].shape[1], 3]) RGB_image[:, :, 0] = images_scaled[2] RGB_image[:, :, 1] = images_scaled[1] RGB_image[:, :, 2] = images_scaled[0] RGB_image[RGB_image > 1] = 1 RGB_image[RGB_image < 0] = 0 plt.imsave('{0}_{1}_{2}.png'.format(base, filters, kwargs.get('stretch_type', 'asinh')), RGB_image, origin='lower') if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Create single band and false color images from fits files' ) parser.add_argument( 'base_name', type=str, help='the base name of the fits files (note: all files must be named `{base_name}-{filter_letter}`)' ) parser.add_argument( '-c', '--crop', type=int, default=1, help='an integer used to corp the fits images (by index of array)' ) parser.add_argument( '-f', '--filters', type=str, default='gri', choices=['gri', 'rbi', 'ugr'], help='a three letter string representing the filters contained in each fits file' ) parser.add_argument( '-a', type=float, default=0.1, help='the `a` parameter used in the streact function' ) parser.add_argument( '-s', '--stretch', type=str, default='asinh', choices=['asinh', 'log', 'sqrt'], help='the type of stretch to use for the fits image' ) parser.add_argument( '-g', '--gzip', action='store_true', help='use this flag if the input files are gzipped' ) args = parser.parse_args() make_images( args.base_name, index_cut=args.crop, filters=args.filters, gzip=args.gzip, a=args.a, stretch_type=args.stretch )
[ "astropy.visualization.stretch.LogStretch", "astropy.visualization.interval.AsymmetricPercentileInterval", "argparse.ArgumentParser", "astropy.io.fits.PrimaryHDU", "numpy.zeros", "numpy.isfinite", "astropy.visualization.stretch.AsinhStretch", "astropy.wcs.WCS", "reproject.reproject_interp", "astropy.io.fits.open", "astropy.visualization.stretch.SqrtStretch" ]
[((288, 338), 'astropy.visualization.interval.AsymmetricPercentileInterval', 'interval.AsymmetricPercentileInterval', (['(10.0)', '(99.95)'], {}), '(10.0, 99.95)\n', (325, 338), False, 'from astropy.visualization import stretch, interval\n'), ((1729, 1796), 'numpy.zeros', 'np.zeros', (['[images_scaled[0].shape[0], images_scaled[0].shape[1], 3]'], {}), '([images_scaled[0].shape[0], images_scaled[0].shape[1], 3])\n', (1737, 1796), True, 'import numpy as np\n'), ((2171, 2272), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Create single band and false color images from fits files"""'}), "(description=\n 'Create single band and false color images from fits files')\n", (2194, 2272), False, 'import argparse\n'), ((426, 449), 'astropy.visualization.stretch.LogStretch', 'stretch.LogStretch', ([], {'a': 'a'}), '(a=a)\n', (444, 449), False, 'from astropy.visualization import stretch, interval\n'), ((698, 715), 'numpy.isfinite', 'np.isfinite', (['data'], {}), '(data)\n', (709, 715), True, 'import numpy as np\n'), ((1006, 1026), 'astropy.io.fits.open', 'fits.open', (['file_name'], {}), '(file_name)\n', (1015, 1026), False, 'from astropy.io import fits\n'), ((1039, 1061), 'astropy.wcs.WCS', 'wcs.WCS', (['hdu[0].header'], {}), '(hdu[0].header)\n', (1046, 1061), False, 'from astropy import wcs\n'), ((1077, 1094), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', ([], {}), '()\n', (1092, 1094), False, 'from astropy.io import fits\n'), ((500, 525), 'astropy.visualization.stretch.AsinhStretch', 'stretch.AsinhStretch', ([], {'a': 'a'}), '(a=a)\n', (520, 525), False, 'from astropy.visualization import stretch, interval\n'), ((1372, 1410), 'reproject.reproject_interp', 'reproject_interp', (['newf', 'hdus[0].header'], {}), '(newf, hdus[0].header)\n', (1388, 1410), False, 'from reproject import reproject_interp\n'), ((575, 596), 'astropy.visualization.stretch.SqrtStretch', 'stretch.SqrtStretch', ([], {}), '()\n', (594, 596), False, 'from astropy.visualization import stretch, interval\n')]
import math import pytz import sys import time from datetime import date from . import wait_times, util, arrival_history, trip_times, errors, constants, timetables, routeconfig import pandas as pd import numpy as np # Represents a range of days with a time range within each day. # RouteMetrics can calculate various statistics over a range. class Range: def __init__(self, dates: list, start_time_str: str, end_time_str: str, tz: pytz.timezone): self.dates = dates # list of datetime.date objects self.start_time_str = start_time_str # if None, no start time filter self.end_time_str = end_time_str # if None, no end time filter self.tz = tz # RouteMetrics allows computing various metrics for a particular route, # such as headways, wait times, and trip times, # including over various date and time ranges. # # It caches the arrival history and data frames so that the different # metrics calculations can reuse the same arrivals data without # needing to reload it from disk each time. # class RouteMetrics: def __init__(self, agency_id, route_id): self.agency_id = agency_id self.route_id = route_id self.arrival_histories = {} self.data_frames = {} self.timetables = {} def get_arrival_history(self, d): if d in self.arrival_histories: return self.arrival_histories[d] print(f'loading arrival history for route {self.route_id} on {d}', file=sys.stderr) try: self.arrival_histories[d] = history = arrival_history.get_by_date(self.agency_id, self.route_id, d) except FileNotFoundError as ex: print(f'Arrival history not found for route {self.route_id} on {d}', file=sys.stderr) history = arrival_history.ArrivalHistory(self.agency_id, self.route_id, {}); return history def get_history_data_frame(self, d, direction_id=None, stop_id=None): key = f'history_{str(d)}_{stop_id}_{direction_id}' if key in self.data_frames: return self.data_frames[key] history = self.get_arrival_history(d) print(f'loading data frame {key} for route {self.route_id}', file=sys.stderr) df = history.get_data_frame(stop_id=stop_id, direction_id=direction_id) self.data_frames[key] = df return df def get_timetable(self, d): if d not in self.timetables.keys(): self.timetables[d] = timetables.get_by_date(self.agency_id, self.route_id, d) return self.timetables[d] def get_timetable_data_frame(self, d, direction_id=None, stop_id=None): timetable = self.get_timetable(d) timetable_key = f'timetable_{str(d)}_{stop_id}_{direction_id}' if timetable_key not in self.data_frames: self.data_frames[timetable_key] = timetable.get_data_frame(stop_id=stop_id, direction_id=direction_id) return self.data_frames[timetable_key] def get_wait_time_stats(self, direction_id, stop_id, rng: Range): return self._get_wait_time_stats(direction_id, stop_id, rng, self.get_history_data_frame) def get_scheduled_wait_time_stats(self, direction_id, stop_id, rng: Range): return self._get_wait_time_stats(direction_id, stop_id, rng, self.get_timetable_data_frame) def _get_wait_time_stats(self, direction_id, stop_id, rng: Range, get_data_frame): wait_stats_arr = [] for d in rng.dates: start_time = util.get_timestamp_or_none(d, rng.start_time_str, rng.tz) end_time = util.get_timestamp_or_none(d, rng.end_time_str, rng.tz) df = get_data_frame(d, stop_id=stop_id, direction_id=direction_id) departure_time_values = np.sort(df['DEPARTURE_TIME'].values) wait_stats = wait_times.get_stats(departure_time_values, start_time, end_time) wait_stats_arr.append(wait_stats) if len(wait_stats_arr) == 1: return wait_stats_arr[0] else: return wait_times.combine_stats(wait_stats_arr) def get_arrivals(self, direction_id, stop_id, rng: Range): return self._get_count(direction_id, stop_id, rng, self.get_history_data_frame, 'TIME') def get_departures(self, direction_id, stop_id, rng: Range): return self._get_count(direction_id, stop_id, rng, self.get_history_data_frame, 'DEPARTURE_TIME') def get_scheduled_arrivals(self, direction_id, stop_id, rng: Range): return self._get_count(direction_id, stop_id, rng, self.get_timetable_data_frame, 'TIME') def get_scheduled_departures(self, direction_id, stop_id, rng: Range): return self._get_count(direction_id, stop_id, rng, self.get_timetable_data_frame, 'DEPARTURE_TIME') def _get_count(self, direction_id, stop_id, rng: Range, get_data_frame, time_field): if stop_id is None: return None count = 0 for d in rng.dates: df = get_data_frame(d, direction_id=direction_id, stop_id=stop_id) start_time = util.get_timestamp_or_none(d, rng.start_time_str, rng.tz) end_time = util.get_timestamp_or_none(d, rng.end_time_str, rng.tz) if start_time is not None: df = df[df[time_field] >= start_time] if end_time is not None: df = df[df[time_field] < end_time] count += len(df) return count def get_departure_schedule_adherence(self, direction_id, stop_id, early_sec, late_sec, rng: Range): return self._get_schedule_adherence(direction_id, stop_id, early_sec, late_sec, rng, 'DEPARTURE_TIME') def get_arrival_schedule_adherence(self, direction_id, stop_id, early_sec, late_sec, rng: Range): return self._get_schedule_adherence(direction_id, stop_id, early_sec, late_sec, rng, 'TIME') def _get_schedule_adherence(self, direction_id, stop_id, early_sec, late_sec, rng: Range, time_field): if stop_id is None: return None compared_timetable_arr = [] now = time.time() for d in rng.dates: stop_timetable = self.get_timetable_data_frame(d, direction_id=direction_id, stop_id=stop_id) stop_arrivals = self.get_history_data_frame(d, direction_id=direction_id, stop_id=stop_id) scheduled_time_values = np.sort(stop_timetable[time_field].values) actual_time_values = np.sort(stop_arrivals[time_field].values) comparison_df = timetables.match_schedule_to_actual_times( scheduled_time_values, actual_time_values, early_sec = early_sec, late_sec = late_sec, ) comparison_df[time_field] = scheduled_time_values if len(comparison_df) and comparison_df[time_field].iloc[-1] >= now: comparison_df = comparison_df[comparison_df[time_field] < now] start_time = util.get_timestamp_or_none(d, rng.start_time_str, rng.tz) end_time = util.get_timestamp_or_none(d, rng.end_time_str, rng.tz) if start_time is not None: comparison_df = comparison_df[comparison_df[time_field] >= start_time] if end_time is not None: comparison_df = comparison_df[comparison_df[time_field] < end_time] compared_timetable_arr.append(comparison_df) return pd.concat(compared_timetable_arr) def get_headway_schedule_deltas(self, direction_id, stop_id, rng: Range): headway_delta_arr = [] now = time.time() for d in rng.dates: timetable_df = self.get_timetable_data_frame(d, direction_id=direction_id, stop_id=stop_id) history_df = self.get_history_data_frame(d, direction_id=direction_id, stop_id=stop_id) departure_time_values = np.sort(history_df['DEPARTURE_TIME'].values) scheduled_departure_time_values = np.sort(timetable_df['DEPARTURE_TIME'].values) comparison_df = timetables.match_actual_times_to_schedule( departure_time_values, scheduled_departure_time_values ) comparison_df['DEPARTURE_TIME'] = departure_time_values comparison_df['headway'] = np.r_[np.nan, compute_headway_minutes(departure_time_values)] comparison_df = comparison_df[np.isfinite(comparison_df['headway'].values) & np.isfinite(comparison_df['closest_scheduled_headway'].values)] if len(comparison_df) and comparison_df['DEPARTURE_TIME'].iloc[-1] >= now: comparison_df = comparison_df[comparison_df['DEPARTURE_TIME'] < now] start_time = util.get_timestamp_or_none(d, rng.start_time_str, rng.tz) end_time = util.get_timestamp_or_none(d, rng.end_time_str, rng.tz) if start_time is not None: comparison_df = comparison_df[comparison_df['DEPARTURE_TIME'] >= start_time] if end_time is not None: comparison_df = comparison_df[comparison_df['DEPARTURE_TIME'] < end_time] headway_delta = comparison_df['headway'].values - comparison_df['closest_scheduled_headway'].values headway_delta_arr.append(headway_delta) return np.concatenate(headway_delta_arr) def get_scheduled_trip_times(self, direction_id, start_stop_id, end_stop_id, rng: Range): return self._get_trip_times(direction_id, start_stop_id, end_stop_id, rng, self.get_timetable_data_frame) def get_trip_times(self, direction_id, start_stop_id, end_stop_id, rng: Range): return self._get_trip_times(direction_id, start_stop_id, end_stop_id, rng, self.get_history_data_frame) def _get_trip_times(self, direction_id, start_stop_id, end_stop_id, rng: Range, get_data_frame): completed_trips_arr = [] if end_stop_id is None: return None is_loop = False route_config = routeconfig.get_route_config(self.agency_id, self.route_id) if route_config is not None: if direction_id is not None: dir_info = route_config.get_direction_info(direction_id) else: direction_ids = route_config.get_directions_for_stop(start_stop_id) dir_info = route_config.get_direction_info(direction_ids[0]) if len(direction_ids) > 0 else None if dir_info is not None: is_loop = dir_info.is_loop() for d in rng.dates: s1_df = get_data_frame(d, stop_id=start_stop_id, direction_id=direction_id) s2_df = get_data_frame(d, stop_id=end_stop_id, direction_id=direction_id) start_time = util.get_timestamp_or_none(d, rng.start_time_str, rng.tz) end_time = util.get_timestamp_or_none(d, rng.end_time_str, rng.tz) if start_time is not None: s1_df = s1_df[s1_df['DEPARTURE_TIME'] >= start_time] if end_time is not None: s1_df = s1_df[s1_df['DEPARTURE_TIME'] < end_time] completed_trip_times = trip_times.get_completed_trip_times( s1_df['TRIP'].values, s1_df['DEPARTURE_TIME'].values, s2_df['TRIP'].values, s2_df['TIME'].values, is_loop = is_loop ) completed_trips_arr.append(completed_trip_times) return np.concatenate(completed_trips_arr) def get_headways(self, direction_id, stop_id, rng: Range): return self._get_headways(direction_id, stop_id, rng, self.get_history_data_frame) def get_scheduled_headways(self, direction_id, stop_id, rng: Range): return self._get_headways(direction_id, stop_id, rng, self.get_timetable_data_frame) def _get_headways(self, direction_id, stop_id, rng: Range, get_data_frame): headway_min_arr = [] for d in rng.dates: df = get_data_frame(d, direction_id=direction_id, stop_id=stop_id) start_time = util.get_timestamp_or_none(d, rng.start_time_str, rng.tz) end_time = util.get_timestamp_or_none(d, rng.end_time_str, rng.tz) departure_time_values = np.sort(df['DEPARTURE_TIME'].values) headway_min = compute_headway_minutes(departure_time_values, start_time, end_time) headway_min_arr.append(headway_min) return np.concatenate(headway_min_arr) def compute_headway_minutes(time_values, start_time=None, end_time=None): if start_time is not None: start_index = np.searchsorted(time_values, start_time, 'left') else: start_index = 0 if end_time is not None: end_index = np.searchsorted(time_values, end_time, 'left') else: end_index = len(time_values) if start_index == 0: start_index = 1 if start_index > end_index: end_index = start_index return (time_values[start_index:end_index] - time_values[start_index - 1 : end_index - 1]) / 60
[ "numpy.searchsorted", "numpy.isfinite", "time.time", "numpy.sort", "pandas.concat", "numpy.concatenate" ]
[((6056, 6067), 'time.time', 'time.time', ([], {}), '()\n', (6065, 6067), False, 'import time\n'), ((7407, 7440), 'pandas.concat', 'pd.concat', (['compared_timetable_arr'], {}), '(compared_timetable_arr)\n', (7416, 7440), True, 'import pandas as pd\n'), ((7567, 7578), 'time.time', 'time.time', ([], {}), '()\n', (7576, 7578), False, 'import time\n'), ((9264, 9297), 'numpy.concatenate', 'np.concatenate', (['headway_delta_arr'], {}), '(headway_delta_arr)\n', (9278, 9297), True, 'import numpy as np\n'), ((11392, 11427), 'numpy.concatenate', 'np.concatenate', (['completed_trips_arr'], {}), '(completed_trips_arr)\n', (11406, 11427), True, 'import numpy as np\n'), ((12366, 12397), 'numpy.concatenate', 'np.concatenate', (['headway_min_arr'], {}), '(headway_min_arr)\n', (12380, 12397), True, 'import numpy as np\n'), ((12526, 12574), 'numpy.searchsorted', 'np.searchsorted', (['time_values', 'start_time', '"""left"""'], {}), "(time_values, start_time, 'left')\n", (12541, 12574), True, 'import numpy as np\n'), ((12659, 12705), 'numpy.searchsorted', 'np.searchsorted', (['time_values', 'end_time', '"""left"""'], {}), "(time_values, end_time, 'left')\n", (12674, 12705), True, 'import numpy as np\n'), ((3744, 3780), 'numpy.sort', 'np.sort', (["df['DEPARTURE_TIME'].values"], {}), "(df['DEPARTURE_TIME'].values)\n", (3751, 3780), True, 'import numpy as np\n'), ((6343, 6385), 'numpy.sort', 'np.sort', (['stop_timetable[time_field].values'], {}), '(stop_timetable[time_field].values)\n', (6350, 6385), True, 'import numpy as np\n'), ((6419, 6460), 'numpy.sort', 'np.sort', (['stop_arrivals[time_field].values'], {}), '(stop_arrivals[time_field].values)\n', (6426, 6460), True, 'import numpy as np\n'), ((7849, 7893), 'numpy.sort', 'np.sort', (["history_df['DEPARTURE_TIME'].values"], {}), "(history_df['DEPARTURE_TIME'].values)\n", (7856, 7893), True, 'import numpy as np\n'), ((7941, 7987), 'numpy.sort', 'np.sort', (["timetable_df['DEPARTURE_TIME'].values"], {}), "(timetable_df['DEPARTURE_TIME'].values)\n", (7948, 7987), True, 'import numpy as np\n'), ((12168, 12204), 'numpy.sort', 'np.sort', (["df['DEPARTURE_TIME'].values"], {}), "(df['DEPARTURE_TIME'].values)\n", (12175, 12204), True, 'import numpy as np\n'), ((8374, 8418), 'numpy.isfinite', 'np.isfinite', (["comparison_df['headway'].values"], {}), "(comparison_df['headway'].values)\n", (8385, 8418), True, 'import numpy as np\n'), ((8421, 8483), 'numpy.isfinite', 'np.isfinite', (["comparison_df['closest_scheduled_headway'].values"], {}), "(comparison_df['closest_scheduled_headway'].values)\n", (8432, 8483), True, 'import numpy as np\n')]
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import numpy as np PRECISION = 8 # in signs after dot def objective_file_name(output_prefix, input_basename, module_basename): return output_prefix + input_basename + "_F_" + module_basename + ".txt" def jacobian_file_name(output_prefix, input_basename, module_basename): return output_prefix + input_basename + "_J_" + module_basename + ".txt" def time_to_string(objective_time, derivative_time): obj_time_str = np.format_float_scientific( objective_time, unique=False, precision=PRECISION ) der_time_str = np.format_float_scientific( derivative_time, unique=False, precision=PRECISION ) return f"{obj_time_str}\n{der_time_str}" def save_time_to_file(filepath, objective_time, derivative_time): # open file in write mode or create new one if it does not exist out = open(filepath,"w") out.write(time_to_string(objective_time, derivative_time)) out.close() def value_to_string(value): return np.format_float_scientific(value, unique=False, precision=PRECISION) def save_value_to_file(filepath, value): out = open(filepath,"w") out.write(value_to_string(value)) out.close() def save_vector_to_file(filepath, gradient): out = open(filepath,"w") for value in gradient: out.write(value_to_string(value) + '\n') out.close() def save_jacobian_to_file(filepath, jacobian): out = open(filepath,"w") # output row-major matrix for row in jacobian: out.write(value_to_string(row[0])) for value in row[1:]: out.write('\t' + value_to_string(value)) out.write('\n') out.close() def save_errors_to_file(filepath, reprojection_error, zach_weight_error): out = open(filepath,"w") out.write("Reprojection error:\n") for value in reprojection_error: out.write(value_to_string(value) + '\n') out.write("Zach weight error:\n") for value in zach_weight_error: out.write(value_to_string(value) + '\n') out.close() def save_sparse_j_to_file(filepath, J): out = open(filepath,"w") out.write(f"{J.nrows} {J.ncols}\n") out.write(f"{len(J.rows)}\n") for row in J.rows: out.write(f"{row} ") out.write('\n') out.write(f"{len(J.cols)}\n") for column in J.cols: out.write(f"{column} ") out.write('\n') for value in J.vals: out.write(value_to_string(value) + ' ') out.close()
[ "numpy.format_float_scientific" ]
[((507, 584), 'numpy.format_float_scientific', 'np.format_float_scientific', (['objective_time'], {'unique': '(False)', 'precision': 'PRECISION'}), '(objective_time, unique=False, precision=PRECISION)\n', (533, 584), True, 'import numpy as np\n'), ((635, 713), 'numpy.format_float_scientific', 'np.format_float_scientific', (['derivative_time'], {'unique': '(False)', 'precision': 'PRECISION'}), '(derivative_time, unique=False, precision=PRECISION)\n', (661, 713), True, 'import numpy as np\n'), ((1080, 1148), 'numpy.format_float_scientific', 'np.format_float_scientific', (['value'], {'unique': '(False)', 'precision': 'PRECISION'}), '(value, unique=False, precision=PRECISION)\n', (1106, 1148), True, 'import numpy as np\n')]
#%% import numpy as np import sys sys.path.append('..') from utils.tester import Tester import pickle import os import matplotlib.pyplot as plt import math import networkx as nx import random city_name = 'Phoenix' save_file_name = '2021-04-23_14-02-29' seed = 45 # city_name = 'Seattle' # save_file_name = '2021-03-21_23-18-05' # seed = 10 # city_name = 'Dallas' # save_file_name = '2021-04-09_21-11-28' fontsize = 20 legend_fontsize = 20 # %% # Load results data base_directory = os.getcwd() base_directory = base_directory[0:base_directory.find('src')+3] file_path = os.path.join(base_directory, 'optimization', 'save', save_file_name) with open(file_path,'rb') as f: tester = pickle.load(f) if city_name == 'Phoenix': data_folder_name = 'Phoenix' if city_name == 'Seattle': data_folder_name = 'IntercityFlow_Seattle' if city_name == 'Dallas': data_folder_name = 'Intercity_Dallas' # Load city data city_data_file_path = os.path.join(base_directory, '..', 'data', data_folder_name, 'data_processing_outputs', 'city_data.p') with open(city_data_file_path,'rb') as f: city_data = pickle.load(f) city_list = list(city_data.keys()) num_cities = len(city_list) num_city = tester.params['m'] num_time = tester.params['n'] num_entity = tester.params['num_entity'] phi_val = np.array(tester.results['phi_best']) scale_frac = tester.params['scale_frac'] phi_average = np.zeros((num_city, num_city), dtype=np.float) for i in range(num_city): for j in range(num_city): if not (i == j) and np.average(phi_val[:,i,j]) > 0.0: phi_average[i,j] = np.average(phi_val[:, i, j]) for city_ind in range(num_city): phi_average[city_ind,:] = phi_average[city_ind,:] * tester.problem_data['Ntot'][city_ind] * scale_frac phi_average[:,:] = np.log(phi_average[:,:]+1e-3) max_val = np.max(phi_average[:,:]) phi_average = phi_average / max_val # print(phi_average) # %% edge_weight_list = [] # Visualize the resulting adjacency matrix G = nx.DiGraph() for i in range(num_cities): G.add_node(city_list[i]) for j in range(num_cities): if phi_average[i,j] > 0.0: G.add_edge(city_list[i], city_list[j], weight=phi_average[i,j]) edge_weight_list.append(phi_average[i,j]) if city_name == 'Dallas': city_data['Johnson']['y_loc'] = 32.385655 city_data['Johnson']['x_loc'] = -97.335191 city_data['Ellis']['y_loc'] = 32.362181 city_data['Ellis']['x_loc'] = -96.803901 city_data['Kaufman']['y_loc'] = 32.613997 city_data['Kaufman']['x_loc'] = -96.283543 city_data['Parker']['y_loc'] = 32.783855 city_data['Parker']['x_loc'] = -97.802077 city_data['Rockwall']['y_loc'] = 32.900920 city_data['Rockwall']['x_loc'] = -96.404271 city_data['Collin']['y_loc'] = 33.20671 city_data['Collin']['x_loc'] = -96.587485 city_data['Denton']['y_loc'] = 33.199884 city_data['Denton']['x_loc'] = -97.089478 city_data['Wise']['y_loc'] = 33.219515 city_data['Wise']['x_loc'] = -97.647529 city_data['Tarrant']['y_loc'] = 32.770195 city_data['Tarrant']['x_loc'] = -97.264026 city_data['Dallas']['y_loc'] = 32.77 city_data['Dallas']['x_loc'] = -96.79 pos = dict() for i in range(num_cities): city = city_list[i] x_loc = city_data[city]['x_loc'] y_loc = city_data[city]['y_loc'] pos[city] = np.array([x_loc, y_loc]) edge_width_list = np.array(edge_weight_list) edge_width_list = np.exp(edge_width_list) edge_width_list = edge_width_list / np.max(edge_width_list) edge_width_list = edge_width_list * 5 options = { "node_color": "#A0CBE2", "edge_color": edge_weight_list, "node_size": tester.problem_data['Ntot'], "width": edge_width_list, "edge_cmap": plt.cm.Blues, "with_labels": False, "edge_vmin": 0.0, # "edge_vmax": 100.0 } print(phi_average[1,:]) print(edge_weight_list) random.seed(seed) np.random.seed(seed=seed) pos = nx.spring_layout(G) # pos = nx.spectral_layout(G) #print(city_data['Dallas']['population']) # %% plt.figure(figsize=(20,10)) # nx.draw_networkx_nodes(G, pos) nx.draw_networkx_labels(G, pos) # nx.draw_networkx_edges(G_fully_connected, pos, edge_color='red') nx.draw(G, pos, **options) save_location = os.path.join(base_directory, 'plotting', city_name, 'saved_plots') filename = os.path.join(save_location, '{}scale_cost_by_pop_phi_graph.png'.format(save_file_name)) plt.savefig(filename, bbox_inches='tight') plt.show() #plt.title('Adjacency Matrix with Scaled Demand Threshold {},\n Total Number of Edges: {}'.format(0.02, np.sum(adj_mat)), fontsize=15) # %%
[ "numpy.random.seed", "matplotlib.pyplot.figure", "pickle.load", "numpy.exp", "networkx.draw_networkx_labels", "os.path.join", "sys.path.append", "numpy.max", "random.seed", "matplotlib.pyplot.show", "numpy.average", "networkx.draw", "networkx.DiGraph", "numpy.log", "os.getcwd", "numpy.zeros", "networkx.spring_layout", "numpy.array", "matplotlib.pyplot.savefig" ]
[((34, 55), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (49, 55), False, 'import sys\n'), ((488, 499), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (497, 499), False, 'import os\n'), ((577, 645), 'os.path.join', 'os.path.join', (['base_directory', '"""optimization"""', '"""save"""', 'save_file_name'], {}), "(base_directory, 'optimization', 'save', save_file_name)\n", (589, 645), False, 'import os\n'), ((949, 1055), 'os.path.join', 'os.path.join', (['base_directory', '""".."""', '"""data"""', 'data_folder_name', '"""data_processing_outputs"""', '"""city_data.p"""'], {}), "(base_directory, '..', 'data', data_folder_name,\n 'data_processing_outputs', 'city_data.p')\n", (961, 1055), False, 'import os\n'), ((1300, 1336), 'numpy.array', 'np.array', (["tester.results['phi_best']"], {}), "(tester.results['phi_best'])\n", (1308, 1336), True, 'import numpy as np\n'), ((1393, 1439), 'numpy.zeros', 'np.zeros', (['(num_city, num_city)'], {'dtype': 'np.float'}), '((num_city, num_city), dtype=np.float)\n', (1401, 1439), True, 'import numpy as np\n'), ((1779, 1812), 'numpy.log', 'np.log', (['(phi_average[:, :] + 0.001)'], {}), '(phi_average[:, :] + 0.001)\n', (1785, 1812), True, 'import numpy as np\n'), ((1820, 1845), 'numpy.max', 'np.max', (['phi_average[:, :]'], {}), '(phi_average[:, :])\n', (1826, 1845), True, 'import numpy as np\n'), ((1978, 1990), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (1988, 1990), True, 'import networkx as nx\n'), ((3377, 3403), 'numpy.array', 'np.array', (['edge_weight_list'], {}), '(edge_weight_list)\n', (3385, 3403), True, 'import numpy as np\n'), ((3422, 3445), 'numpy.exp', 'np.exp', (['edge_width_list'], {}), '(edge_width_list)\n', (3428, 3445), True, 'import numpy as np\n'), ((3855, 3872), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (3866, 3872), False, 'import random\n'), ((3873, 3898), 'numpy.random.seed', 'np.random.seed', ([], {'seed': 'seed'}), '(seed=seed)\n', (3887, 3898), True, 'import numpy as np\n'), ((3905, 3924), 'networkx.spring_layout', 'nx.spring_layout', (['G'], {}), '(G)\n', (3921, 3924), True, 'import networkx as nx\n'), ((4005, 4033), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 10)'}), '(figsize=(20, 10))\n', (4015, 4033), True, 'import matplotlib.pyplot as plt\n'), ((4066, 4097), 'networkx.draw_networkx_labels', 'nx.draw_networkx_labels', (['G', 'pos'], {}), '(G, pos)\n', (4089, 4097), True, 'import networkx as nx\n'), ((4165, 4191), 'networkx.draw', 'nx.draw', (['G', 'pos'], {}), '(G, pos, **options)\n', (4172, 4191), True, 'import networkx as nx\n'), ((4209, 4275), 'os.path.join', 'os.path.join', (['base_directory', '"""plotting"""', 'city_name', '"""saved_plots"""'], {}), "(base_directory, 'plotting', city_name, 'saved_plots')\n", (4221, 4275), False, 'import os\n'), ((4375, 4417), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {'bbox_inches': '"""tight"""'}), "(filename, bbox_inches='tight')\n", (4386, 4417), True, 'import matplotlib.pyplot as plt\n'), ((4418, 4428), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4426, 4428), True, 'import matplotlib.pyplot as plt\n'), ((691, 705), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (702, 705), False, 'import pickle\n'), ((1110, 1124), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1121, 1124), False, 'import pickle\n'), ((3333, 3357), 'numpy.array', 'np.array', (['[x_loc, y_loc]'], {}), '([x_loc, y_loc])\n', (3341, 3357), True, 'import numpy as np\n'), ((3482, 3505), 'numpy.max', 'np.max', (['edge_width_list'], {}), '(edge_width_list)\n', (3488, 3505), True, 'import numpy as np\n'), ((1589, 1617), 'numpy.average', 'np.average', (['phi_val[:, i, j]'], {}), '(phi_val[:, i, j])\n', (1599, 1617), True, 'import numpy as np\n'), ((1524, 1552), 'numpy.average', 'np.average', (['phi_val[:, i, j]'], {}), '(phi_val[:, i, j])\n', (1534, 1552), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import pickle import tensorflow as tf import random import math import os import time from sklearn.metrics import average_precision_score # ------------------------------------------------------ loading libraries ---- # --- setting random seed ----------------------------------------------------- seed_n = 42 np.random.seed(seed_n) random.seed(seed_n) tf.random.set_seed(seed_n) combination = 3057 # loading model model = tf.keras.models.load_model('/project/M-ABeICU176709/delirium/data/outputs/models/{:06d}/model.hdf5'.format(combination)) # loading data X_adm_val = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/X_adm5y_validation.pickle', 'rb')) X_temp_val = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/X_temp_validation.pickle', 'rb')) y_12h_val = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/y_12h_validation.pickle', 'rb')) y_24h_val = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/y_24h_validation.pickle', 'rb')) # loading data X_adm_train = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/X_adm5y_train.pickle', 'rb')) X_temp_train = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/X_temp_train.pickle', 'rb')) y_12h_train = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/y_12h_train.pickle', 'rb')) y_24h_train = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/y_24h_train.pickle', 'rb')) # ----------------------------------------------------------------------------- for set in [('train', X_adm_train, X_temp_train, y_12h_train, y_24h_train), ('validation', X_adm_val, X_temp_val, y_12h_val, y_24h_val)]: # Predicting y_12h and y_24h results = model.predict(x = [set[1], set[2]], verbose = 0) y_12h_hat = results[0] y_24h_hat = results[1] AUPRC_12h = average_precision_score(set[3], y_12h_hat) AUPRC_24h = average_precision_score(set[4], y_24h_hat) AUPRC_mean = (AUPRC_12h + AUPRC_24h) / 2 print(f'set: {set[0]}, AUPRC_12h: {AUPRC_12h}, AUPRC_24h: {AUPRC_24h}, AUPRC_mean: {AUPRC_mean}')
[ "tensorflow.random.set_seed", "sklearn.metrics.average_precision_score", "random.seed", "numpy.random.seed" ]
[((353, 375), 'numpy.random.seed', 'np.random.seed', (['seed_n'], {}), '(seed_n)\n', (367, 375), True, 'import numpy as np\n'), ((376, 395), 'random.seed', 'random.seed', (['seed_n'], {}), '(seed_n)\n', (387, 395), False, 'import random\n'), ((396, 422), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed_n'], {}), '(seed_n)\n', (414, 422), True, 'import tensorflow as tf\n'), ((2012, 2054), 'sklearn.metrics.average_precision_score', 'average_precision_score', (['set[3]', 'y_12h_hat'], {}), '(set[3], y_12h_hat)\n', (2035, 2054), False, 'from sklearn.metrics import average_precision_score\n'), ((2071, 2113), 'sklearn.metrics.average_precision_score', 'average_precision_score', (['set[4]', 'y_24h_hat'], {}), '(set[4], y_24h_hat)\n', (2094, 2113), False, 'from sklearn.metrics import average_precision_score\n')]
import numpy as np def quotient(rri): rri = np.array(rri) L = len(rri) - 1 indices = np.where((rri[:L - 1] / rri[1:L] < 0.8) | (rri[:L - 1] / rri[1:L] > 1.2) | (rri[1:L] / rri[:L - 1] < 0.8) | (rri[1:L] / rri[:L - 1] > 1.2)) return np.delete(rri, indices) def moving_average(rri, order=3): return _moving_function(rri, order, np.mean) def moving_median(rri, order=3): return _moving_function(rri, order, np.median) def _moving_function(rri, order, func): offset = int(order / 2) filt_rri = np.array(rri.copy(), dtype=np.float64) for i in range(offset, len(rri) - offset, 1): filt_rri[i] = func(rri[i - offset:i + offset + 1]) return filt_rri
[ "numpy.where", "numpy.array", "numpy.delete" ]
[((50, 63), 'numpy.array', 'np.array', (['rri'], {}), '(rri)\n', (58, 63), True, 'import numpy as np\n'), ((100, 243), 'numpy.where', 'np.where', (['((rri[:L - 1] / rri[1:L] < 0.8) | (rri[:L - 1] / rri[1:L] > 1.2) | (rri[1:L\n ] / rri[:L - 1] < 0.8) | (rri[1:L] / rri[:L - 1] > 1.2))'], {}), '((rri[:L - 1] / rri[1:L] < 0.8) | (rri[:L - 1] / rri[1:L] > 1.2) |\n (rri[1:L] / rri[:L - 1] < 0.8) | (rri[1:L] / rri[:L - 1] > 1.2))\n', (108, 243), True, 'import numpy as np\n'), ((321, 344), 'numpy.delete', 'np.delete', (['rri', 'indices'], {}), '(rri, indices)\n', (330, 344), True, 'import numpy as np\n')]
import itertools import os import re import sys # scans files to construct an empirical prior from bifs import BIFS # numpy >= 1.17 from numpy.random import Generator, PCG64 import numpy as np class RunningMean: """Accepts values one at a time and computes the mean and sd of all values seen so far. The inputs are arrays, which must all have the same shape. Mean and sd are accumulated separately for each cell in the array. """ def __init__(self, sd=True): """If sd is false do not accumulate second moment. Clients should not request information related to the sd in that case. """ self.n = 0 self._second = sd # as in second moment def observation(self, x): "x is an array-like object which is considered a single observation" self.n += 1 if self.n == 1: self._mns = x if self._second: # ss will turn into a matrix later self._ss = 0.0 else: lastdelta = x-self._mns self._mns += (lastdelta)/self.n if self._second: # element by element multiplication in next line self._ss += lastdelta*(x-self._mns) def mean(self): "return array of means so far" return self._mns def sd(self): "return array of sd so far" # element by element square root return np.sqrt(self._ss/(self.n-1)) class AbstractEmpiricalScanner: """ This class consumes a list of images and computes statistics on them. Each statistic is computed separately for each voxel, i.e. the result in the (2, 5) cell refers to all the (2, 5) cells in all the images (or their Fourier counterparts). All images must have the same dimensions, and they should be aligned with each other for the results to be meaningful. The mean and sd of the modulus is always accumulated; values for the phase can be requested as well, as can the correlations between the phase and modulus (again, at each point in Fourier space). Finally, one can request a sample of the original voxels in image space. Concrete classes provide particular ways to get images. They then pass the images to _statsAccumulate and, optionally, _voxAccumulate (possibly different images for each) and call _post when done. At that point, and only that point, are results available from self.modulus() and, if requested, self.phase(), self.corr(), and self.voxels(). For backward compatility, self.mns, self.sds, and self.vox accessor return the mean and sd of self.modulus() and the voxels. Don't rely on that in new code. image_mask optionally indicates which areas of the image to ignore. It must be a boolean array with the same shape as image files. All voxels selected by image_mask are set to zero before doing BIFS processing. The mask applies to the original image NOT to the fourier space version, which will generally have non-0 values in the image_mask region. It is the subclass responsibility to implement these semantics. Note the "mask" here is not a mask in the numpy sense of a masked array, which concerns missing values. voxel sampling only considers the non-ignored regions, but the number sampled will be based on the total voxel count before masking. """ def __init__(self, sampleFraction=0, seed=85792359, image_mask=None, phase=False, corr=False): """Setup for scan of images if sampleFraction is >0 (and it should be <=1) then that fraction of the image voxels will be retained. In that case, seed is used to set the random number generator. If phase is true, accumulate statistics on the phase as well as the modulus. If corr is true, accumulate statistics on the phase and its covariance with the modulus. Covariance is on a cell by cell basis. """ self.sampleFraction = sampleFraction self._modulus = RunningMean() if phase or corr: self._getPhase = True self._phase = RunningMean() if corr: self._getcorr = True self._xy = RunningMean(sd=False) if sampleFraction>0: self._voxels = [] self._rg = Generator(PCG64(seed)) self.masking = (image_mask is not None) if self.masking: self.image_mask = image_mask self.image_keep = np.logical_not(image_mask) self._benchmarkHdr = None # checks for consistent headers self._mismatch = set() # holds keys that had a mismatch self._bifs = BIFS() def modulus(self)->RunningMean: return self._modulus def phase(self)->RunningMean: return self._phase def corr(self): "Note we return the correlation matrix itself, not an accumulator" return (self._xy.mean()-self._modulus.mean()*self._phase.mean())/ \ (self._modulus.sd()*self._phase.sd()) def voxels(self): "return 1-d array sorted by intensity" return self._voxels def __getattr__(self, name): ## backward compatibility only if name == "mns": return self.modulus().mean() if name == "sds": return self.modulus().sd() if name == "vox": return self.voxels() raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, name)) def _do_one(self, file): "file is a path-like object. Read it in and accumulate information" self._bifs.load_image_file(file) if self.masking: # dirty trick. But doesn't invalidate anything else in _bifs. self._bifs._init_image[self.image_mask] = 0.0 self._modulus.observation(self._bifs.mod_image()) if self._getPhase: self._phase.observation(self._bifs.phase_image()) if self._getcorr: # next multiplication is element by element self._xy.observation(self._bifs.phase_image()*self._bifs.mod_image()) if self.sampleFraction>0: self._voxAccumulate(self._bifs.init_image()) hdr = self._bifs.read_imfile.header if not self._benchmarkHdr: # first header encountered self._benchmarkHdr = hdr # could not delete the following key # it actually doesn't appear in the objects attributes #del benchmarkHdr.__dict__['db_name'] # differences expected and no concern else: for key in self._benchmarkHdr: if key == 'db_name': continue if key.startswith("scl_"): # values were array(nan, dtype=float32) and I had no luck testing for them # in various ways continue v1 = self._benchmarkHdr[key] v2 = hdr[key] if (v1 != v2).any(): self._mismatch.add(key) def _voxAccumulate(self, m): """accumulate voxel values. In the most likely case, the voxels are from image space while the empirical prior is from k-space. So we provide seperate functions for the 2 values. Calling this is pointless unless sampleFraction>0. """ # always base number sampled on the complete image size nSamp = int(m.size*self.sampleFraction) if self.masking: self._voxels.append(self._rg.choice(m[self.image_keep], nSamp)) else: # m.ravel is not an acceptable first argument to choice # actually, it should have been np.ravel(m) # m.flatten and the mask selection above both create copies, unfortunately self._voxels.append(self._rg.choice(m.flatten(), nSamp)) def _statsPost(self): """ Finalize computation of voxel by voxel statistics for all images. Call after all images have been seen. Results returned as arrays self.mns and self.sds. """ # currently handled by RunningMean instances automatically pass def _voxPost(self): """ Finalize accumulated voxels. """ if self.sampleFraction>0: self._voxels = np.concatenate(self._voxels) self._voxels.sort() def _post(self): "wrap up all processing" self._statsPost() self._voxPost() def nImages(self) -> int: "number of images processed so far = number of files read unless error" return self._modulus.n class EmpiricalScanner(AbstractEmpiricalScanner): """Scan selected images on disk, ensuring they are alll compatible. topDir path like object indicating where in the file system the scan should start all subdirectories will be scanned recursively unless they are excluded. matchFile <String> regular expression for the file name of image files we want. Matching is on the file name only, not its full path. exclude <String> optional regular expression. Any directory matching this pattern is excluded. Any file that satisfies matchFile is excluded if it also matches exclude. ostr A stream-like object that will receive routines notices of skipped files and statistics. See AbstractEmpiricalScanner for sampleFraction, seed and image_mask. The files are read in and converted to k-space. We compute the mean and sd of the k-space images, and optionally accumulate voxels from the original image. We also check that the headers are consistent. This works for .nii files, and may or may not for others. """ def __init__(self, sampleFraction=0, seed=85792359, topDir=".", matchFile="", exclude=None, image_mask=None, phase=False, corr=False, ostr=sys.stdout): super().__init__(sampleFraction, seed, image_mask, phase, corr) self._topDir = topDir self._matchRE = re.compile(matchFile, re.I) if exclude: self._excludeRE = re.compile(exclude, re.I) else: self._excludeRE = None self.go(ostr=ostr) def go(self, ostr=sys.stdout): """Actually perform the scan. Note this is triggered by object initialization. Repeated calls may not work. ostr is an output stream """ for root, dirs, files in os.walk(self._topDir): if self._excludeRE: # avoid directories with our target case for whom we are trying to predict iKill = [ i for i, d in zip(itertools.count(), dirs) if self._excludeRE.search(d)] if iKill: nKill = 0 for i in iKill: i -= nKill print("Skipping {}".format(dirs[i]), file=ostr) del dirs[i-nKill] nKill += 1 # look for files to import if files: for f in files: if not self._matchRE.search(f): continue if self._excludeRE: if self._excludeRE.search(f): print("Skipping {}".format(f), file=ostr) continue self._do_one(os.path.join(root, f)) self._post() class FeedScanner(AbstractEmpiricalScanner): """A scanner that accepts anything iterable as a list of file names to scan""" def __init__(self, files, sampleFraction=0, seed=85792359, image_mask=None, phase=False, corr=False, ostr=sys.stdout): super().__init__(sampleFraction, seed, image_mask, phase, corr) self._files = files self.go(ostr=ostr) def go(self): for f in self._files: self._do_one(f) self._post()
[ "numpy.random.PCG64", "numpy.logical_not", "os.walk", "itertools.count", "bifs.BIFS", "numpy.sqrt", "os.path.join", "numpy.concatenate", "re.compile" ]
[((1426, 1458), 'numpy.sqrt', 'np.sqrt', (['(self._ss / (self.n - 1))'], {}), '(self._ss / (self.n - 1))\n', (1433, 1458), True, 'import numpy as np\n'), ((4677, 4683), 'bifs.BIFS', 'BIFS', ([], {}), '()\n', (4681, 4683), False, 'from bifs import BIFS\n'), ((10015, 10042), 're.compile', 're.compile', (['matchFile', 're.I'], {}), '(matchFile, re.I)\n', (10025, 10042), False, 'import re\n'), ((10442, 10463), 'os.walk', 'os.walk', (['self._topDir'], {}), '(self._topDir)\n', (10449, 10463), False, 'import os\n'), ((4497, 4523), 'numpy.logical_not', 'np.logical_not', (['image_mask'], {}), '(image_mask)\n', (4511, 4523), True, 'import numpy as np\n'), ((8336, 8364), 'numpy.concatenate', 'np.concatenate', (['self._voxels'], {}), '(self._voxels)\n', (8350, 8364), True, 'import numpy as np\n'), ((10093, 10118), 're.compile', 're.compile', (['exclude', 're.I'], {}), '(exclude, re.I)\n', (10103, 10118), False, 'import re\n'), ((4340, 4351), 'numpy.random.PCG64', 'PCG64', (['seed'], {}), '(seed)\n', (4345, 4351), False, 'from numpy.random import Generator, PCG64\n'), ((11376, 11397), 'os.path.join', 'os.path.join', (['root', 'f'], {}), '(root, f)\n', (11388, 11397), False, 'import os\n'), ((10632, 10649), 'itertools.count', 'itertools.count', ([], {}), '()\n', (10647, 10649), False, 'import itertools\n')]
# -*- coding: utf-8 -*- import cv2 import numpy as np import sys import os from autoaim import helpers class Camera(): def __init__(self, source): self.source = source self.capture = cv2.VideoCapture(source) if type(source) is int: self.__camera = True def snapshot(self, start, stop, interval, save_to, width=1024, height=768): ''' start: "hour:minute:second" stop : "hour:minute:second" interval: 1000(ms) save_to: url ''' capture = self.capture if self.__camera: capture.set(cv2.CAP_PROP_FPS, 30) capture.set(3, width) capture.set(4, height) start = self.__parse_time(start) stop = self.__parse_time(stop) for i in range(int((stop-start)*1000/interval)): success, img = capture.read() if success: helpers.showoff(img, timeout=interval, update=True) cv2.imwrite(save_to+str(i)+'.jpeg', img) else: fps = round(capture.get(cv2.CAP_PROP_FPS)) start = self.__parse_time(start) * fps stop = self.__parse_time(stop) * fps step = int(interval / 1000 * fps) for i in range(start, stop, step): capture.set(cv2.CAP_PROP_POS_FRAMES, i) success, img = capture.read() if success: helpers.showoff(img, timeout=interval, update=True) cv2.imwrite(save_to+str(i)+'.jpeg', img) def release(self): self.capture.release() def __parse_time(self, str): t = np.array([int(x) for x in str.split(':')]) w = np.array([3600, 60, 1]) return t.dot(w).item(0) if __name__ == '__main__': cam = Camera(0) cam.snapshot('00:00:00', '00:01:00', 200, 'data/capture/')
[ "cv2.VideoCapture", "autoaim.helpers.showoff", "numpy.array" ]
[((205, 229), 'cv2.VideoCapture', 'cv2.VideoCapture', (['source'], {}), '(source)\n', (221, 229), False, 'import cv2\n'), ((1730, 1753), 'numpy.array', 'np.array', (['[3600, 60, 1]'], {}), '([3600, 60, 1])\n', (1738, 1753), True, 'import numpy as np\n'), ((936, 987), 'autoaim.helpers.showoff', 'helpers.showoff', (['img'], {'timeout': 'interval', 'update': '(True)'}), '(img, timeout=interval, update=True)\n', (951, 987), False, 'from autoaim import helpers\n'), ((1461, 1512), 'autoaim.helpers.showoff', 'helpers.showoff', (['img'], {'timeout': 'interval', 'update': '(True)'}), '(img, timeout=interval, update=True)\n', (1476, 1512), False, 'from autoaim import helpers\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ model.py: A custom model for CityPersons. """ import numpy as np import torch import torch.utils.data import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from engine import train_one_epoch, evaluate import utils import transforms as T import data def get_model(): ''' Returns the model a pretrained model for finetunning on CityPersons. ''' # load a model pre-trained pre-trained on COCO model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # replace the classifier with a new one, that has # num_classes which is user-defined num_classes = 2 # 1 class (person) + background # get number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model def get_transform(train): ''' Converts a PIL image into PyTorch tensor. ''' transforms = [] transforms.append(T.ToTensor()) if train: # during training, randomly flip the training images # and ground-truth for data augmentation transforms.append(T.RandomHorizontalFlip(0.5)) return T.Compose(transforms) def save_model(model, path="./models/entire_model.pt"): torch.save(model, path) print('Model saved to ' + path) def load_model(path="./models/entire_model.pt"): if torch.cuda.is_available(): return torch.load(path) else: return torch.load(path, map_location=torch.device('cpu')) def convert(img, img_raw): ''' Converts the image from dataset back to the raw format: * rescales it from [0,1] back to [0,255] range; * flips the channels back to [height,width,3] format; * converts from tensor to numpy array; * converts from numpy array to PIL Image; * checks if the image was augmented - flipped horizontally ''' img = Image.fromarray(img.mul(255).permute(1, 2, 0).byte().numpy()) img = np.array(img) print('img shape: %d x %d x %d' % img.shape) img = Image.fromarray(np.uint8(img)).convert('RGB') img_flipped = np.array(img.transpose(Image.FLIP_LEFT_RIGHT)) img_raw = np.array(img_raw) img_was_flipped = np.sum(img_flipped.flatten() == img_raw.flatten()) == img_flipped.shape[0] * img_flipped.shape[1] * img_flipped.shape[2] print('Image was flipped: %r' % img_was_flipped) return img ## testing on images from Hambrug if __name__ == "__main__": img_path = './datasets/citypersons/hamburg/' anno_path = './datasets/citypersons/CityPersons/annotations/' # split dataset into train and test dataset = data.HamburgDataset(img_path, anno_dict, get_transform(train=True)) dataset_test = data.HamburgDataset(img_path, anno_dict, get_transform(train=False)) # permute the indices torch.manual_seed(1) indices = torch.randperm(len(dataset)).tolist() # train: 248 - 50 examples # test: 50 examples dataset = torch.utils.data.Subset(dataset, indices[:-50]) dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:]) if train: # define training and validation data loaders data_loader = torch.utils.data.DataLoader( dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=utils.collate_fn) data_loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=1, shuffle=False, num_workers=4, collate_fn=utils.collate_fn) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') print(device) model = get_model() model.to(device) # construct an optimizer params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) # and a learning rate scheduler which decreases the learning rate by # 10x every 3 epochs lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) # Let's train the model for 10 epochs, evaluating at the end of every epoch. for epoch in range(num_epochs): # train for one epoch, printing every 10 iterations train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10) # update the learning rate lr_scheduler.step() # evaluate on the test dataset evaluate(model, data_loader_test, device=device) save(model) else: model = load_model() ## error analysis # raw image img_raw = Image.open(img_path + imgs[0]) anno_raw = anno_dict[imgs[0]] # same image from the dataset idx = indices.index(0) img, anno = dataset[idx] img = convert_back(img, img_raw) # put the model in evaluation mode model.eval() with torch.no_grad(): prediction = model([img.to(device)])[0] preds = prediction['boxes'] # predicted bboxes preds = preds.cpu().data.numpy() # to numpy array scores = prediction['scores'] # scores of predicted bboxes scores = scores.cpu().data.numpy() # keep only bboxes where score > threshold: threshold = .3 highs = list(np.where(scores > threshold)[0]) # transform the bboxes from tensor to list and back to [x, y, w, h] format bboxes_x0x1y0y1 = [] for high in highs: bboxes_x0x1y0y1.append(list(preds[high])) bboxes = [] for bbox in bboxes_x0x1y0y1: bbox = list(bbox) x0, y0 = bbox[0], bbox[1] x1, y1 = bbox[2], bbox[3] bboxes.append([x0, y0, x1 - x0, y1 - y0]) # draw the predicted bounding boxes # TODO: add ground truth bboxes in green plt.rcParams['figure.figsize'] = [12, 8] fig, ax = plt.subplots() ax.imshow(img); for bbox in bboxes: rect = patches.Rectangle( (bbox[0], bbox[1]), bbox[2], bbox[3], linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) plt.title(img_name) plt.show()
[ "torchvision.models.detection.faster_rcnn.FastRCNNPredictor", "torch.optim.lr_scheduler.StepLR", "torch.device", "torch.no_grad", "torch.utils.data.DataLoader", "torch.load", "torchvision.models.detection.fasterrcnn_resnet50_fpn", "engine.train_one_epoch", "numpy.uint8", "torch.manual_seed", "transforms.RandomHorizontalFlip", "torch.cuda.is_available", "torch.utils.data.Subset", "torch.save", "engine.evaluate", "transforms.Compose", "numpy.where", "numpy.array", "transforms.ToTensor", "torch.optim.SGD" ]
[((496, 565), 'torchvision.models.detection.fasterrcnn_resnet50_fpn', 'torchvision.models.detection.fasterrcnn_resnet50_fpn', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (548, 565), False, 'import torchvision\n'), ((926, 969), 'torchvision.models.detection.faster_rcnn.FastRCNNPredictor', 'FastRCNNPredictor', (['in_features', 'num_classes'], {}), '(in_features, num_classes)\n', (943, 969), False, 'from torchvision.models.detection.faster_rcnn import FastRCNNPredictor\n'), ((1317, 1338), 'transforms.Compose', 'T.Compose', (['transforms'], {}), '(transforms)\n', (1326, 1338), True, 'import transforms as T\n'), ((1400, 1423), 'torch.save', 'torch.save', (['model', 'path'], {}), '(model, path)\n', (1410, 1423), False, 'import torch\n'), ((1517, 1542), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1540, 1542), False, 'import torch\n'), ((2107, 2120), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2115, 2120), True, 'import numpy as np\n'), ((2306, 2323), 'numpy.array', 'np.array', (['img_raw'], {}), '(img_raw)\n', (2314, 2323), True, 'import numpy as np\n'), ((2955, 2975), 'torch.manual_seed', 'torch.manual_seed', (['(1)'], {}), '(1)\n', (2972, 2975), False, 'import torch\n'), ((3098, 3145), 'torch.utils.data.Subset', 'torch.utils.data.Subset', (['dataset', 'indices[:-50]'], {}), '(dataset, indices[:-50])\n', (3121, 3145), False, 'import torch\n'), ((3165, 3217), 'torch.utils.data.Subset', 'torch.utils.data.Subset', (['dataset_test', 'indices[-50:]'], {}), '(dataset_test, indices[-50:])\n', (3188, 3217), False, 'import torch\n'), ((1112, 1124), 'transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (1122, 1124), True, 'import transforms as T\n'), ((1559, 1575), 'torch.load', 'torch.load', (['path'], {}), '(path)\n', (1569, 1575), False, 'import torch\n'), ((3309, 3421), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset'], {'batch_size': '(2)', 'shuffle': '(True)', 'num_workers': '(4)', 'collate_fn': 'utils.collate_fn'}), '(dataset, batch_size=2, shuffle=True,\n num_workers=4, collate_fn=utils.collate_fn)\n', (3336, 3421), False, 'import torch\n'), ((3471, 3589), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset_test'], {'batch_size': '(1)', 'shuffle': '(False)', 'num_workers': '(4)', 'collate_fn': 'utils.collate_fn'}), '(dataset_test, batch_size=1, shuffle=False,\n num_workers=4, collate_fn=utils.collate_fn)\n', (3498, 3589), False, 'import torch\n'), ((3901, 3969), 'torch.optim.SGD', 'torch.optim.SGD', (['params'], {'lr': '(0.005)', 'momentum': '(0.9)', 'weight_decay': '(0.0005)'}), '(params, lr=0.005, momentum=0.9, weight_decay=0.0005)\n', (3916, 3969), False, 'import torch\n'), ((4135, 4201), 'torch.optim.lr_scheduler.StepLR', 'torch.optim.lr_scheduler.StepLR', (['optimizer'], {'step_size': '(3)', 'gamma': '(0.1)'}), '(optimizer, step_size=3, gamma=0.1)\n', (4166, 4201), False, 'import torch\n'), ((5138, 5153), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5151, 5153), False, 'import torch\n'), ((1276, 1303), 'transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', (['(0.5)'], {}), '(0.5)\n', (1298, 1303), True, 'import transforms as T\n'), ((3653, 3678), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3676, 3678), False, 'import torch\n'), ((3629, 3649), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (3641, 3649), False, 'import torch\n'), ((3684, 3703), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (3696, 3703), False, 'import torch\n'), ((4514, 4590), 'engine.train_one_epoch', 'train_one_epoch', (['model', 'optimizer', 'data_loader', 'device', 'epoch'], {'print_freq': '(10)'}), '(model, optimizer, data_loader, device, epoch, print_freq=10)\n', (4529, 4590), False, 'from engine import train_one_epoch, evaluate\n'), ((4717, 4765), 'engine.evaluate', 'evaluate', (['model', 'data_loader_test'], {'device': 'device'}), '(model, data_loader_test, device=device)\n', (4725, 4765), False, 'from engine import train_one_epoch, evaluate\n'), ((5497, 5525), 'numpy.where', 'np.where', (['(scores > threshold)'], {}), '(scores > threshold)\n', (5505, 5525), True, 'import numpy as np\n'), ((1631, 1650), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (1643, 1650), False, 'import torch\n'), ((2196, 2209), 'numpy.uint8', 'np.uint8', (['img'], {}), '(img)\n', (2204, 2209), True, 'import numpy as np\n')]
# Code adapted from https://github.com/ClementPinard/SfmLearner-Pytorch/blob/master/inverse_warp.py from __future__ import division from pytorch3d.ops.knn import knn_points import torch import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt import numpy as np from PIL import Image import helper_functions FLOAT_EPS = np.finfo(np.float).eps pixel_coords = None import kornia from scipy.spatial.transform import Rotation as R def preprocess_depth_output_2_point_cloud_all(depth_maps, masks, intrinsics): ''' Pre process data for pose network Function mean subtracts the point cloud to bring it to origin and downsamples it to 2048 points ''' batch_size, num_views, height, width = depth_maps.size() depth_maps = helper_functions.sigmoid_2_depth(depth_maps) point_cloud_list_all_views = [] rotated_point_cloud_list_all_views = [] for view in range(num_views): src_camera_coords = pixel2cam(depth_maps[:, view].unsqueeze(0), intrinsics.inverse()) src_camera_coords = src_camera_coords.reshape(batch_size, 3, height*width) # [B 3 H*W] if torch.cuda.is_available(): random_rotation = torch.from_numpy(R.random(batch_size, random_state=1024).as_matrix()).cuda().float() # [B 3 3] else: random_rotation = torch.from_numpy(R.random(batch_size, random_state=1024).as_matrix()).float() # [B 3 3] point_cloud_list = [] rotated_point_cloud_list = [] masks_batch = masks[:, view] for i in range(batch_size): src_camera_coords_view = src_camera_coords[i] # [3 H*W] mask = masks_batch[i] # [H W] mask = mask.reshape(1, -1).squeeze() # [H*W] # Extracting the points only within mask region src_camera_coords_view = src_camera_coords_view[:, (mask == 1.0)] # Mean center value src_camera_coords_view = src_camera_coords_view - src_camera_coords_view.mean(axis = 1).unsqueeze(1).repeat(1, src_camera_coords_view.size(1)) #[3 masksize] # Downsample to 2048 points src_camera_coords_view = torch.nn.functional.interpolate(src_camera_coords_view.unsqueeze(0), size = 2048).squeeze(0) point_cloud_list.append(src_camera_coords_view) src_camera_coords_downsampled = torch.stack(point_cloud_list) # [B 3 2048] rot_src_camera_coords = random_rotation @ src_camera_coords_downsampled # [B 3 2048] point_cloud_list_all_views.append(src_camera_coords_downsampled) rotated_point_cloud_list_all_views.append(rot_src_camera_coords) camera_point_clouds_downsampled = torch.stack(point_cloud_list_all_views, dim = 1) # [B views 2048] rotated_camera_point_clouds_downsampled = torch.stack(rotated_point_cloud_list_all_views, dim = 1) # [B views 2048] return camera_point_clouds_downsampled, rotated_camera_point_clouds_downsampled def preprocess_depth_output_2_point_cloud(depth_maps, masks_batch, intrinsics): ''' Pre process data for pose network Function mean subtracts the point cloud to bring it to origin and downsamples it to 2048 points ''' batch_size, _, height, width = depth_maps.size() depth_maps = helper_functions.sigmoid_2_depth(depth_maps) src_camera_coords = pixel2cam(depth_maps[:, 0].unsqueeze(0), intrinsics.inverse()) src_camera_coords = src_camera_coords.reshape(batch_size, 3, height*width) # [B 3 H*W] if torch.cuda.is_available(): random_rotation = torch.from_numpy(R.random(batch_size, random_state=1024).as_matrix()).cuda().float() # [B 3 3] else: random_rotation = torch.from_numpy(R.random(batch_size, random_state=1024).as_matrix()).float() # [B 3 3] point_cloud_list = [] rotated_point_cloud_list = [] for i in range(batch_size): src_camera_coords_view = src_camera_coords[i] # [3 H*W] mask = masks_batch[i] # [H W] mask = mask.reshape(1, -1).squeeze() # [H*W] # Extracting the points only within mask region src_camera_coords_view = src_camera_coords_view[:, (mask == 1.0)] # mean center value src_camera_coords_view = src_camera_coords_view - src_camera_coords_view.mean(axis = 1).unsqueeze(1).repeat(1, src_camera_coords_view.size(1)) #[3 masksize] # Downsample to 2048 points src_camera_coords_view = torch.nn.functional.interpolate(src_camera_coords_view.unsqueeze(0), size = 2048).squeeze(0) point_cloud_list.append(src_camera_coords_view) src_camera_coords_downsampled = torch.stack(point_cloud_list) # [B 3 2048] rot_src_camera_coords = random_rotation @ src_camera_coords_downsampled # [B 3 2048] return src_camera_coords_downsampled, rot_src_camera_coords def depth_decode(depth_image): # # first 16 bits (first 2 channels) are 16-bit depth # R is the 8 LSB and G are the others depth_image_16 = depth_image[:,:,[1, 0]] # B are 8-bit version depth_image_8 = depth_image[:,:,2] # last 8 are empty depth_single_channel = np.zeros((depth_image_16.shape[0], depth_image_16.shape[1])) # convert 16 bit to actual depth values for i in range(depth_single_channel.shape[0]): for j in range(depth_single_channel.shape[1]): bit_str = '{0:08b}'.format(depth_image_16[i, j, 0]) + '{0:08b}'.format(depth_image_16[i, j, 1]) depth_single_channel[i, j] = int(bit_str, 2) return depth_single_channel def set_id_grid(depth): global pixel_coords b, _, h, w = depth.size() i_range = torch.arange(0, h).view(1, h, 1).expand(1,h,w).type_as(depth) # [1, H, W] j_range = torch.arange(0, w).view(1, 1, w).expand(1,h,w).type_as(depth) # [1, H, W] ones = torch.ones(1,h,w).type_as(depth) #print("i_range",i_range.device) #print("j_range",j_range.device) #print("ones",ones.device) pixel_coords = torch.stack((j_range, i_range, ones), dim=1).type_as(depth) # [1, 3, H, W] pixel_coords.to(depth.device) def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr): b, _, h, w = cam_coords.size() cam_coords_flat = cam_coords.reshape(b, 3, -1) # [B, 3, H*W] if proj_c2p_rot is not None: pcoords = proj_c2p_rot.float() @ cam_coords_flat else: pcoords = cam_coords_flat if proj_c2p_tr is not None: pcoords = pcoords + proj_c2p_tr.float() # [B, 3, H*W] X = pcoords[:, 0] Y = pcoords[:, 1] Z = pcoords[:, 2].clamp(min=1e-4) X_norm = 2*(X / Z)/(w-1) - 1 # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W] Y_norm = 2*(Y / Z)/(h-1) - 1 # Idem [B, H*W] pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2] # print(pixel_coords.reshape(b,h,w,2).shape) return pixel_coords.reshape(b,h,w,2) def pixel2cam(depth, intrinsics_inv): global pixel_coords b, _, h, w = depth.size() if (pixel_coords is None) or pixel_coords.size(2) < h: set_id_grid(depth) pixel_coords = pixel_coords.to(depth.device) current_pixel_coords = pixel_coords[:,:,:h,:w].expand(b,3,h,w).reshape(b, 3, -1) # [B, 3, H*W] #print("-"*10) #print("Pixel", pixel_coords.device) #print("Depth", depth.device) #print("intrinsics_inv",intrinsics_inv.device) #print("current_pixel_coords",current_pixel_coords.device) #print("-"*10) cam_coords = (intrinsics_inv.float() @ current_pixel_coords.float()) cam_coords = cam_coords.reshape(b, 3, h, w) return cam_coords * depth.clamp(min=1e-1) def quat2mat(quat): x, y, z, w = quat[:,0], quat[:,1], quat[:,2], quat[:,3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) n = w2 + x2 + y2 + z2 x = x / n y = y / n z = z / n w = w / n w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w*x, w*y, w*z xy, xz, yz = x*y, x*z, y*z rotMat = torch.stack([1 - 2*y2 - 2*z2, 2*xy - 2*wz, 2*wy + 2*xz, 2*wz + 2*xy, 1 - 2*x2 - 2*z2, 2*yz - 2*wx, 2*xz - 2*wy, 2*wx + 2*yz, 1 - 2*x2 - 2*y2], dim=1).reshape(B, 3, 3) return rotMat def pose_vec2mat(vec): size_list = list(vec.size()) if len(size_list) == 3: # if dimension is [B 4 4] for multiview blender dataset return vec else: # If dimension is [B 7] for multiview nocs dataset b = vec.size(0) translation = vec[:, :3].unsqueeze(-1) # [B, 3, 1] rot = vec[:,3:] rot_mat = quat2mat(rot) # [B, 3, 3] invert_mat = torch.eye(4) invert_mat[0, 0] *= -1 invert_mat[1, 1] *= -1 # Adding 0.5 offset for dataset transform_mat = torch.cat([rot_mat, (translation) + 0.5], dim=2) # [B, 3, 4] transform_mat = torch.cat([transform_mat, torch.tensor([[0,0,0,1]]).unsqueeze(0).expand(1,1,4).type_as(transform_mat).repeat(b, 1, 1)], dim=1) # [B, 4, 4] return transform_mat @ invert_mat.type_as(transform_mat) def inverse_warp(tgt_image, depth, intrinsics, src_pose, tgt_pose): src_camera_coords = pixel2cam(depth, intrinsics.inverse()) src_pose_mat = pose_vec2mat(src_pose) tgt_pose_mat = pose_vec2mat(tgt_pose) src_cam_to_tgt_cam = tgt_pose_mat.inverse() @ src_pose_mat tgt_cam_2_proj = intrinsics @ src_cam_to_tgt_cam[:, :3, :] # Bx3x3 Bx3x4 rot, tr = tgt_cam_2_proj[:,:,:3], tgt_cam_2_proj[:,:,-1:] tgt_pix_coords = cam2pixel(src_camera_coords, rot, tr) tgt_image = tgt_image.type_as(tgt_pix_coords) projected_img = F.grid_sample(tgt_image, tgt_pix_coords, padding_mode='zeros', align_corners=False) valid_points = tgt_pix_coords.abs().max(dim=-1)[0] <= 1 return projected_img, valid_points def inverse_warp_2(tgt_image, depth, intrinsics, src_pose, tgt_pose): ''' Inverse warp function using Kornia ''' src_pose_mat = pose_vec2mat(src_pose) tgt_pose_mat = pose_vec2mat(tgt_pose) b = tgt_image.size(0) h = torch.tensor(tgt_image.size(2)).repeat(b) w = torch.tensor(tgt_image.size(3)).repeat(b) intrinsics = torch.cat([intrinsics.float(), torch.tensor([[0, 0, 0]]).unsqueeze(2).expand(1, 3, 1).type_as(intrinsics).repeat(b, 1, 1).float()], dim = 2) intrinsics = torch.cat([intrinsics, torch.tensor([[0, 0, 0, 1]]).expand(1, 1, 4).type_as(intrinsics).repeat(b, 1, 1).float() ], dim = 1) pinhole_tgt = kornia.geometry.PinholeCamera(intrinsics, tgt_pose_mat.float(), h, w) pinhole_src = kornia.geometry.PinholeCamera(intrinsics, src_pose_mat.float(), h, w) image_src = kornia.geometry.depth_warp(pinhole_tgt, pinhole_src, depth.float(), tgt_image.float(), tgt_image.size(2), tgt_image.size(3)) return image_src, image_src def project_depth_point_cloud(depth, intrinsics, src_pose, tgt_pose): ''' Project point cloud from src to tgt pose ''' src_camera_coords = pixel2cam(depth, intrinsics.inverse()) # [B, 3, H, W] b, _, h, w = src_camera_coords.size() src_pose_mat = pose_vec2mat(src_pose) tgt_pose_mat = pose_vec2mat(tgt_pose) # source camera coordinates src_camera_coords = src_camera_coords.reshape(b, 3, h*w) src_cam_to_tgt_cam = tgt_pose_mat.inverse() @ src_pose_mat ones = torch.ones((b, 1, h*w), device=src_camera_coords.device) #print("ones",ones.device) #print("src_camera_coords",src_camera_coords.device) src_camera_coords_homogeneous = torch.cat([src_camera_coords, ones], dim = 1) # [B, 4, H*W] # destination camera coordinates projected_coords = src_cam_to_tgt_cam.float() @ src_camera_coords_homogeneous.float() # [B, 4, H*W] projected_coords = projected_coords[:, :3, :] return src_camera_coords, projected_coords def NOCS_map_2_point_cloud(nocs_image_tensor, mask): ''' Convert NOCS maps to point cloud Input: nocs_image_tensor - [B, 3, H, W] - torch tensor mask - [B, H, W] - torch tensor Returns: nocs_point_cloud_list - B element list - [3, masked dims] indices_list - B element list - [2, masked dims] ''' indices_list = [] nocs_point_cloud_list = [] B, views, H, W = nocs_image_tensor.shape for i in range(nocs_image_tensor.shape[0]): ind = torch.from_numpy(((mask[i, :, :] > 0.5).nonzero().cpu()).numpy()) h = ind[:, 0] w = ind[:, 1] #torch.sigmoid((mask[i, :, :] - 0.5)* 100) #h = h.detach() #w = w.detach() #print(h.max(), w.max(), h.min(), w.min()) nocs_point_cloud = nocs_image_tensor[i, :, h, w] # [3, mask] nocs_point_cloud.detach_() nocs_point_cloud_list.append(nocs_point_cloud) indices_list.append(torch.stack([h, w]).detach()) # [2, mask] return nocs_point_cloud_list, indices_list def get_NOCS_correspondences(nocs_image_tensor_source, mask_source, nocs_image_tensor_target, mask_target): ''' Get NOCS correspondences Input: nocs_image_tensor_source - [B, 3, H, W] mask_source - [B, H, W] nocs_image_tensor_target - [B, 3, H, W] mask_target - [B, H, W] Returns: indices_depth_list - list of tensors with indices of shape [2, masked_dim] ''' B, views, H, W = nocs_image_tensor_source.shape indices_depth_list_target = [] indices_depth_list_source = [] for i in range(B): nocs_point_cloud_list_source, indices_list_source = NOCS_map_2_point_cloud(nocs_image_tensor_source[i, :, :, :].unsqueeze(0), mask_source[i, 0, :, :].unsqueeze(0)) nocs_point_cloud_list_target, indices_list_target = NOCS_map_2_point_cloud(nocs_image_tensor_target[i, :, :, :].unsqueeze(0), mask_target[i, 0, :, :].unsqueeze(0)) pc_1, ind_1 = nocs_point_cloud_list_source[0], indices_list_source[0] # [3, mask_size], [2, mask_size] pc_2, ind_2 = nocs_point_cloud_list_target[0], indices_list_target[0] # [3, mask_size] # Perform NOCS KNN matching out = knn_points(pc_1.transpose(0, 1).unsqueeze(0), pc_2.transpose(0, 1).unsqueeze(0)) # [1, masked_dim, 3] corresponding_idx = out.idx[0, :, 0] # [masked_dim] corresponding_idx = ind_2[:, corresponding_idx] indices_depth_list_source.append(ind_1) indices_depth_list_target.append(corresponding_idx) return indices_depth_list_source, indices_depth_list_target if __name__ == "__main__": src_pose = torch.tensor([[1663.45703125, 46.258087158203128, -2127.346435546875, 0.008096654899418354, -0.3257482051849365, 0.0027897413820028307, 0.9454177618026733]]) tgt_pose = torch.tensor([[1889.214599609375, 221.49795532226563, -1699.667724609375, 0.039696164429187778, -0.4065377712249756, 0.01768353208899498, 0.9125999212265015]]) src_pose_2 = torch.tensor([[2011.62060546875, 374.8108215332031, -1255.8643798828125,0.06847226619720459, -0.48349833488464358, 0.03797297552227974, 0.8718366026878357]]) depth = Image.open('./test-images/depth.png') depth = np.array(depth) depth = depth_decode(depth) depth = torch.tensor(depth).unsqueeze(0).unsqueeze(1).float() # print(depth) # plt.imshow(depth[0][0]) # plt.show() tgt_image = cv2.imread('./test-images/rgb.png') tgt_image = torch.tensor(tgt_image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 intrinsics = torch.tensor([ [617.1,0.0,320.0], [0.0,617.1,240.0], [0.0,0.0,1.0], ]) scale_factor = 1 src_pose[0, :3] = src_pose[0, :3] / scale_factor tgt_pose[0, :3] = tgt_pose[0, :3] / scale_factor src_pose_2[0, :3] = src_pose_2[0, :3] / scale_factor x_factor = -1 src_pose[0, 0] = src_pose[0, 0] * x_factor tgt_pose[0, 0] = tgt_pose[0, 0] * x_factor src_pose_2[0, 0] = src_pose_2[0, 0] * x_factor src_pose[0, 4:6] = src_pose[0, 4:6] * -1 tgt_pose[0, 4:6] = tgt_pose[0, 4:6] * -1 src_pose_2[0, 4:6] = src_pose_2[0, 4:6] * -1 intrinsics = intrinsics.unsqueeze(0) warp=inverse_warp(tgt_image, depth, intrinsics, tgt_pose, src_pose) warp=warp[0].permute(0,2,3,1) plt.imshow(warp[0]) plt.show()
[ "torch.ones", "matplotlib.pyplot.show", "torch.stack", "torch.nn.functional.grid_sample", "torch.eye", "matplotlib.pyplot.imshow", "numpy.zeros", "torch.cat", "scipy.spatial.transform.Rotation.random", "PIL.Image.open", "helper_functions.sigmoid_2_depth", "numpy.finfo", "cv2.imread", "torch.cuda.is_available", "numpy.array", "torch.arange", "torch.tensor" ]
[((339, 357), 'numpy.finfo', 'np.finfo', (['np.float'], {}), '(np.float)\n', (347, 357), True, 'import numpy as np\n'), ((762, 806), 'helper_functions.sigmoid_2_depth', 'helper_functions.sigmoid_2_depth', (['depth_maps'], {}), '(depth_maps)\n', (794, 806), False, 'import helper_functions\n'), ((2657, 2703), 'torch.stack', 'torch.stack', (['point_cloud_list_all_views'], {'dim': '(1)'}), '(point_cloud_list_all_views, dim=1)\n', (2668, 2703), False, 'import torch\n'), ((2769, 2823), 'torch.stack', 'torch.stack', (['rotated_point_cloud_list_all_views'], {'dim': '(1)'}), '(rotated_point_cloud_list_all_views, dim=1)\n', (2780, 2823), False, 'import torch\n'), ((3238, 3282), 'helper_functions.sigmoid_2_depth', 'helper_functions.sigmoid_2_depth', (['depth_maps'], {}), '(depth_maps)\n', (3270, 3282), False, 'import helper_functions\n'), ((3469, 3494), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3492, 3494), False, 'import torch\n'), ((4573, 4602), 'torch.stack', 'torch.stack', (['point_cloud_list'], {}), '(point_cloud_list)\n', (4584, 4602), False, 'import torch\n'), ((5065, 5125), 'numpy.zeros', 'np.zeros', (['(depth_image_16.shape[0], depth_image_16.shape[1])'], {}), '((depth_image_16.shape[0], depth_image_16.shape[1]))\n', (5073, 5125), True, 'import numpy as np\n'), ((6664, 6700), 'torch.stack', 'torch.stack', (['[X_norm, Y_norm]'], {'dim': '(2)'}), '([X_norm, Y_norm], dim=2)\n', (6675, 6700), False, 'import torch\n'), ((9546, 9633), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['tgt_image', 'tgt_pix_coords'], {'padding_mode': '"""zeros"""', 'align_corners': '(False)'}), "(tgt_image, tgt_pix_coords, padding_mode='zeros',\n align_corners=False)\n", (9559, 9633), True, 'import torch.nn.functional as F\n'), ((11230, 11288), 'torch.ones', 'torch.ones', (['(b, 1, h * w)'], {'device': 'src_camera_coords.device'}), '((b, 1, h * w), device=src_camera_coords.device)\n', (11240, 11288), False, 'import torch\n'), ((11411, 11454), 'torch.cat', 'torch.cat', (['[src_camera_coords, ones]'], {'dim': '(1)'}), '([src_camera_coords, ones], dim=1)\n', (11420, 11454), False, 'import torch\n'), ((14435, 14602), 'torch.tensor', 'torch.tensor', (['[[1663.45703125, 46.258087158203125, -2127.346435546875, \n 0.008096654899418354, -0.3257482051849365, 0.0027897413820028305, \n 0.9454177618026733]]'], {}), '([[1663.45703125, 46.258087158203125, -2127.346435546875, \n 0.008096654899418354, -0.3257482051849365, 0.0027897413820028305, \n 0.9454177618026733]])\n', (14447, 14602), False, 'import torch\n'), ((14608, 14777), 'torch.tensor', 'torch.tensor', (['[[1889.214599609375, 221.49795532226562, -1699.667724609375, \n 0.039696164429187775, -0.4065377712249756, 0.01768353208899498, \n 0.9125999212265015]]'], {}), '([[1889.214599609375, 221.49795532226562, -1699.667724609375, \n 0.039696164429187775, -0.4065377712249756, 0.01768353208899498, \n 0.9125999212265015]])\n', (14620, 14777), False, 'import torch\n'), ((14785, 14953), 'torch.tensor', 'torch.tensor', (['[[2011.62060546875, 374.8108215332031, -1255.8643798828125, \n 0.06847226619720459, -0.48349833488464355, 0.03797297552227974, \n 0.8718366026878357]]'], {}), '([[2011.62060546875, 374.8108215332031, -1255.8643798828125, \n 0.06847226619720459, -0.48349833488464355, 0.03797297552227974, \n 0.8718366026878357]])\n', (14797, 14953), False, 'import torch\n'), ((14957, 14994), 'PIL.Image.open', 'Image.open', (['"""./test-images/depth.png"""'], {}), "('./test-images/depth.png')\n", (14967, 14994), False, 'from PIL import Image\n'), ((15007, 15022), 'numpy.array', 'np.array', (['depth'], {}), '(depth)\n', (15015, 15022), True, 'import numpy as np\n'), ((15205, 15240), 'cv2.imread', 'cv2.imread', (['"""./test-images/rgb.png"""'], {}), "('./test-images/rgb.png')\n", (15215, 15240), False, 'import cv2\n'), ((15347, 15420), 'torch.tensor', 'torch.tensor', (['[[617.1, 0.0, 320.0], [0.0, 617.1, 240.0], [0.0, 0.0, 1.0]]'], {}), '([[617.1, 0.0, 320.0], [0.0, 617.1, 240.0], [0.0, 0.0, 1.0]])\n', (15359, 15420), False, 'import torch\n'), ((16089, 16108), 'matplotlib.pyplot.imshow', 'plt.imshow', (['warp[0]'], {}), '(warp[0])\n', (16099, 16108), True, 'import matplotlib.pyplot as plt\n'), ((16113, 16123), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16121, 16123), True, 'import matplotlib.pyplot as plt\n'), ((1125, 1150), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1148, 1150), False, 'import torch\n'), ((2335, 2364), 'torch.stack', 'torch.stack', (['point_cloud_list'], {}), '(point_cloud_list)\n', (2346, 2364), False, 'import torch\n'), ((8564, 8576), 'torch.eye', 'torch.eye', (['(4)'], {}), '(4)\n', (8573, 8576), False, 'import torch\n'), ((8704, 8750), 'torch.cat', 'torch.cat', (['[rot_mat, translation + 0.5]'], {'dim': '(2)'}), '([rot_mat, translation + 0.5], dim=2)\n', (8713, 8750), False, 'import torch\n'), ((5742, 5761), 'torch.ones', 'torch.ones', (['(1)', 'h', 'w'], {}), '(1, h, w)\n', (5752, 5761), False, 'import torch\n'), ((5900, 5944), 'torch.stack', 'torch.stack', (['(j_range, i_range, ones)'], {'dim': '(1)'}), '((j_range, i_range, ones), dim=1)\n', (5911, 5944), False, 'import torch\n'), ((7911, 8104), 'torch.stack', 'torch.stack', (['[1 - 2 * y2 - 2 * z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, 1 -\n 2 * x2 - 2 * z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, 1 -\n 2 * x2 - 2 * y2]'], {'dim': '(1)'}), '([1 - 2 * y2 - 2 * z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz +\n 2 * xy, 1 - 2 * x2 - 2 * z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx +\n 2 * yz, 1 - 2 * x2 - 2 * y2], dim=1)\n', (7922, 8104), False, 'import torch\n'), ((12701, 12720), 'torch.stack', 'torch.stack', (['[h, w]'], {}), '([h, w])\n', (12712, 12720), False, 'import torch\n'), ((3670, 3709), 'scipy.spatial.transform.Rotation.random', 'R.random', (['batch_size'], {'random_state': '(1024)'}), '(batch_size, random_state=1024)\n', (3678, 3709), True, 'from scipy.spatial.transform import Rotation as R\n'), ((5567, 5585), 'torch.arange', 'torch.arange', (['(0)', 'h'], {}), '(0, h)\n', (5579, 5585), False, 'import torch\n'), ((5656, 5674), 'torch.arange', 'torch.arange', (['(0)', 'w'], {}), '(0, w)\n', (5668, 5674), False, 'import torch\n'), ((15068, 15087), 'torch.tensor', 'torch.tensor', (['depth'], {}), '(depth)\n', (15080, 15087), False, 'import torch\n'), ((1338, 1377), 'scipy.spatial.transform.Rotation.random', 'R.random', (['batch_size'], {'random_state': '(1024)'}), '(batch_size, random_state=1024)\n', (1346, 1377), True, 'from scipy.spatial.transform import Rotation as R\n'), ((15257, 15280), 'torch.tensor', 'torch.tensor', (['tgt_image'], {}), '(tgt_image)\n', (15269, 15280), False, 'import torch\n'), ((3539, 3578), 'scipy.spatial.transform.Rotation.random', 'R.random', (['batch_size'], {'random_state': '(1024)'}), '(batch_size, random_state=1024)\n', (3547, 3578), True, 'from scipy.spatial.transform import Rotation as R\n'), ((1199, 1238), 'scipy.spatial.transform.Rotation.random', 'R.random', (['batch_size'], {'random_state': '(1024)'}), '(batch_size, random_state=1024)\n', (1207, 1238), True, 'from scipy.spatial.transform import Rotation as R\n'), ((10268, 10296), 'torch.tensor', 'torch.tensor', (['[[0, 0, 0, 1]]'], {}), '([[0, 0, 0, 1]])\n', (10280, 10296), False, 'import torch\n'), ((8818, 8846), 'torch.tensor', 'torch.tensor', (['[[0, 0, 0, 1]]'], {}), '([[0, 0, 0, 1]])\n', (8830, 8846), False, 'import torch\n'), ((10118, 10143), 'torch.tensor', 'torch.tensor', (['[[0, 0, 0]]'], {}), '([[0, 0, 0]])\n', (10130, 10143), False, 'import torch\n')]
import numpy as np import tensorflow as tf from tensorflow.keras import layers import matplotlib.pyplot as plt def many2many(n_gestures=2, n_frames=300, n_features=21, rnn_units=32): """Model for predicting labels for a sequence of multiple gestures Arguments: n_gestures -- int, size of gesture vocabulary n_frames -- int, number of frames per training example n_features -- int, number of features rnn_units -- int, size of LSTM hidden state Note: Not bidirectional """ inputs = tf.keras.Input(shape=(n_frames,n_features)) # x = layers.Bidirectional(layers.LSTM(rnn_units, return_sequences=False))(x) # x = layers.BatchNormalization()(x) x = layers.LSTM(rnn_units, return_sequences=True)(inputs) x = layers.Dense(n_gestures, activation='softmax')(x) outputs = x model = tf.keras.Model(inputs=inputs, outputs=outputs, name='many2one') model.summary() return model def many2one_model(n_gestures=2, n_frames=35, n_features=21, rnn_units=4, bidirectional=True, n_lstm_layers=1, n_dense_layers=1, dense_size=4, recurrent_dropout=0.0): """Model for predicting labels for a single gesture Arguments: n_gestures -- int, size of gesture vocabulary. 2 indicates gesture/non gesture only n_frames -- int, number of frames per training example n_features -- int, number of features rnn_units -- int, size of LSTM hidden state layers -- int, number of LSTM layers Note: Bidirectional """ inputs = tf.keras.Input(shape=(n_frames,n_features)) x = inputs for i in range(n_lstm_layers): if bidirectional == True: if i == n_lstm_layers - 1: # check whether or not this is the last layer of LSTMs # if this is the last layer, the return sequences should be false x = layers.Bidirectional(layers.LSTM(rnn_units, return_sequences=False, recurrent_dropout=recurrent_dropout))(x) else: x = layers.Bidirectional(layers.LSTM(rnn_units, return_sequences=True, recurrent_dropout=recurrent_dropout))(x) else: if i == n_lstm_layers - 1: # check whether or not this is the last layer of LSTMs x = layers.LSTM(rnn_units, return_sequences=False, stateful=False, recurrent_dropout=recurrent_dropout)(x) else: x = layers.LSTM(rnn_units, return_sequences=True, stateful=False, recurrent_dropout=recurrent_dropout)(x) for i in range(n_dense_layers - 1): x = layers.Dense(dense_size, activation='relu')(x) x = layers.Dense(n_gestures, activation='softmax')(x) outputs = x model = tf.keras.Model(inputs=inputs, outputs=outputs, name='many2one') model.summary() return model def plt_metric(history, metric='loss'): """plots metrics from the history of a model Arguments: history -- history of a keras model metric -- str, metric to be plotted """ plt.plot(history.history[metric]) plt.plot(history.history['val_' + metric]) plt.title('model ' + metric) plt.ylabel(metric) plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') def plt_pred(y, pred): """Plots truth labels vs predicted labels for an example""" labels = np.argmax(np.squeeze(pred), axis=-1) plt.plot(labels) plt.plot(y) plt.title('predicted vs labels') plt.ylabel('label') plt.xlabel('time step') plt.legend(['predicted', 'labels'], loc='upper left')
[ "matplotlib.pyplot.title", "matplotlib.pyplot.plot", "tensorflow.keras.layers.Dense", "tensorflow.keras.Input", "matplotlib.pyplot.legend", "tensorflow.keras.Model", "tensorflow.keras.layers.LSTM", "numpy.squeeze", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((526, 570), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': '(n_frames, n_features)'}), '(shape=(n_frames, n_features))\n', (540, 570), True, 'import tensorflow as tf\n'), ((847, 910), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'inputs', 'outputs': 'outputs', 'name': '"""many2one"""'}), "(inputs=inputs, outputs=outputs, name='many2one')\n", (861, 910), True, 'import tensorflow as tf\n'), ((1520, 1564), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': '(n_frames, n_features)'}), '(shape=(n_frames, n_features))\n', (1534, 1564), True, 'import tensorflow as tf\n'), ((2672, 2735), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'inputs', 'outputs': 'outputs', 'name': '"""many2one"""'}), "(inputs=inputs, outputs=outputs, name='many2one')\n", (2686, 2735), True, 'import tensorflow as tf\n'), ((2988, 3021), 'matplotlib.pyplot.plot', 'plt.plot', (['history.history[metric]'], {}), '(history.history[metric])\n', (2996, 3021), True, 'import matplotlib.pyplot as plt\n'), ((3026, 3068), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['val_' + metric]"], {}), "(history.history['val_' + metric])\n", (3034, 3068), True, 'import matplotlib.pyplot as plt\n'), ((3073, 3101), 'matplotlib.pyplot.title', 'plt.title', (["('model ' + metric)"], {}), "('model ' + metric)\n", (3082, 3101), True, 'import matplotlib.pyplot as plt\n'), ((3106, 3124), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['metric'], {}), '(metric)\n', (3116, 3124), True, 'import matplotlib.pyplot as plt\n'), ((3129, 3148), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (3139, 3148), True, 'import matplotlib.pyplot as plt\n'), ((3153, 3200), 'matplotlib.pyplot.legend', 'plt.legend', (["['train', 'test']"], {'loc': '"""upper left"""'}), "(['train', 'test'], loc='upper left')\n", (3163, 3200), True, 'import matplotlib.pyplot as plt\n'), ((3344, 3360), 'matplotlib.pyplot.plot', 'plt.plot', (['labels'], {}), '(labels)\n', (3352, 3360), True, 'import matplotlib.pyplot as plt\n'), ((3365, 3376), 'matplotlib.pyplot.plot', 'plt.plot', (['y'], {}), '(y)\n', (3373, 3376), True, 'import matplotlib.pyplot as plt\n'), ((3381, 3413), 'matplotlib.pyplot.title', 'plt.title', (['"""predicted vs labels"""'], {}), "('predicted vs labels')\n", (3390, 3413), True, 'import matplotlib.pyplot as plt\n'), ((3418, 3437), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""label"""'], {}), "('label')\n", (3428, 3437), True, 'import matplotlib.pyplot as plt\n'), ((3442, 3465), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time step"""'], {}), "('time step')\n", (3452, 3465), True, 'import matplotlib.pyplot as plt\n'), ((3470, 3523), 'matplotlib.pyplot.legend', 'plt.legend', (["['predicted', 'labels']"], {'loc': '"""upper left"""'}), "(['predicted', 'labels'], loc='upper left')\n", (3480, 3523), True, 'import matplotlib.pyplot as plt\n'), ((701, 746), 'tensorflow.keras.layers.LSTM', 'layers.LSTM', (['rnn_units'], {'return_sequences': '(True)'}), '(rnn_units, return_sequences=True)\n', (712, 746), False, 'from tensorflow.keras import layers\n'), ((763, 809), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['n_gestures'], {'activation': '"""softmax"""'}), "(n_gestures, activation='softmax')\n", (775, 809), False, 'from tensorflow.keras import layers\n'), ((2588, 2634), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['n_gestures'], {'activation': '"""softmax"""'}), "(n_gestures, activation='softmax')\n", (2600, 2634), False, 'from tensorflow.keras import layers\n'), ((3313, 3329), 'numpy.squeeze', 'np.squeeze', (['pred'], {}), '(pred)\n', (3323, 3329), True, 'import numpy as np\n'), ((2527, 2570), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['dense_size'], {'activation': '"""relu"""'}), "(dense_size, activation='relu')\n", (2539, 2570), False, 'from tensorflow.keras import layers\n'), ((2227, 2330), 'tensorflow.keras.layers.LSTM', 'layers.LSTM', (['rnn_units'], {'return_sequences': '(False)', 'stateful': '(False)', 'recurrent_dropout': 'recurrent_dropout'}), '(rnn_units, return_sequences=False, stateful=False,\n recurrent_dropout=recurrent_dropout)\n', (2238, 2330), False, 'from tensorflow.keras import layers\n'), ((2368, 2470), 'tensorflow.keras.layers.LSTM', 'layers.LSTM', (['rnn_units'], {'return_sequences': '(True)', 'stateful': '(False)', 'recurrent_dropout': 'recurrent_dropout'}), '(rnn_units, return_sequences=True, stateful=False,\n recurrent_dropout=recurrent_dropout)\n', (2379, 2470), False, 'from tensorflow.keras import layers\n'), ((1865, 1953), 'tensorflow.keras.layers.LSTM', 'layers.LSTM', (['rnn_units'], {'return_sequences': '(False)', 'recurrent_dropout': 'recurrent_dropout'}), '(rnn_units, return_sequences=False, recurrent_dropout=\n recurrent_dropout)\n', (1876, 1953), False, 'from tensorflow.keras import layers\n'), ((2012, 2099), 'tensorflow.keras.layers.LSTM', 'layers.LSTM', (['rnn_units'], {'return_sequences': '(True)', 'recurrent_dropout': 'recurrent_dropout'}), '(rnn_units, return_sequences=True, recurrent_dropout=\n recurrent_dropout)\n', (2023, 2099), False, 'from tensorflow.keras import layers\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on 26/04/2016 Versão 1.0 @author: Ricieri (ELP) Python 3.4.4 """ """ Reviewed on 15/10/2020 Versão 1.0 rev.A - rounded printing values to 3 decimal places and displays '°C' instead of 'ºC'. @author: Marcelo (ELP) Python 3.8.6 """ """ Reviewed on 06/05/2021 Versão 1.0 rev.B - Added FAC_DCDC_EMA variables. @author: Marcelo (ELT) Python 3.9.5 """ import struct import glob import serial import time import csv import math import numpy as np import matplotlib.pyplot as plt import os from datetime import datetime ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Listas de Entidades BSMP A posição da entidade na lista corresponde ao seu ID BSMP ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' UDC_FIRMWARE_VERSION = "0.42 2021-05-06" ListVar = ['iLoad1','iLoad2','iMod1','iMod2','iMod3','iMod4','vLoad', 'vDCMod1','vDCMod2','vDCMod3','vDCMod4','vOutMod1','vOutMod2', 'vOutMod3','vOutMod4','temp1','temp2','temp3','temp4','ps_OnOff', 'ps_OpMode','ps_Remote','ps_OpenLoop','ps_SoftInterlocks', 'ps_HardInterlocks','iRef','wfmRef_Gain','wfmRef_Offset','sigGen_Enable','sigGen_Type', 'sigGen_Ncycles','sigGenPhaseStart','sigGen_PhaseEnd','sigGen_Freq', 'sigGen_Amplitude','sigGen_Offset','sigGen_Aux','dp_ID','dp_Class','dp_Coeffs','ps_Model', 'wfmRef_PtrBufferStart','wfmRef_PtrBufferEnd','wfmRef_PtrBufferK','wfmRef_SyncMode'] ListCurv = ['wfmRef_Curve','sigGen_SweepAmp','samplesBuffer','fullwfmRef_Curve','wfmRef_Blocks','samplesBuffer_blocks'] ListFunc = ['TurnOn','TurnOff','OpenLoop','ClosedLoop','OpMode','RemoteInterface', 'SetISlowRef','ConfigWfmRef','ConfigSigGen', 'EnableSigGen', 'DisableSigGen','ConfigDPModule','WfmRefUpdate','ResetInterlocks','ConfigPSModel', 'ConfigHRADC','ConfigHRADCOpMode','EnableHRADCSampling','DisableHRADCSampling','ResetWfmRef', 'SetRSAddress','EnableSamplesBuffer','DisableSamplesBuffer','SetISlowRefx4','SelectHRADCBoard','SelectTestSource', 'ResetHRADCBoards','Config_nHRADC','ReadHRADC_UFM','WriteHRADC_UFM','EraseHRADC_UFM','ReadHRADC_BoardData'] ListTestFunc = ['UdcIoExpanderTest', 'UdcLedTest', 'UdcBuzzerTest', 'UdcEepromTest', 'UdcFlashTest', 'UdcRamTest', 'UdcRtcTest', 'UdcSensorTempTest', 'UdcIsoPlaneTest', 'UdcAdcTest', 'UdcUartTest', 'UdcLoopBackTest', 'UdcComTest', 'UdcI2cIsoTest'] ListHRADCInputType = ['Vin_bipolar','Vin_unipolar_p','Vin_unipolar_n','Iin_bipolar','Iin_unipolar_p', 'Iin_unipolar_n','Vref_bipolar_p','Vref_bipolar_n','GND','Vref_unipolar_p', 'Vref_unipolar_n','GND_unipolar','Temp','Reserved0','Reserved1','Reserved2'] ListPSModels = ['FBP_100kHz', 'FBP_Parallel_100kHz', 'FAC_ACDC_10kHz', 'FAC_DCDC_20kHz', 'FAC_Full_ACDC_10kHz', 'FAC_Full_DCDC_20kHz', 'FAP_ACDC', 'FAP_DCDC_20kHz', 'TEST_HRPWM', 'TEST_HRADC', 'JIGA_HRADC', 'FAP_DCDC_15kHz_225A', 'FBPx4_100kHz', 'FAP_6U_DCDC_20kHz', 'JIGA_BASTIDOR'] ListPSModels_v2_1 = ['Empty','FBP','FBP_DCLink','FAC_ACDC','FAC_DCDC', 'FAC_2S_ACDC','FAC_2S_DCDC','FAC_2P4S_ACDC','FAC_2P4S_DCDC', 'FAP','FAP_4P','FAC_DCDC_EMA','FAP_2P2S','FAP_IMAS', 'FAC_2P_ACDC_IMAS','FAC_2P_DCDC_IMAS','Invalid','Invalid', 'Invalid','Invalid','Invalid','Invalid','Invalid','Invalid', 'Invalid','Invalid','Invalid','Invalid','Invalid','Invalid', 'Invalid','Uninitialized'] ListVar_v2_1 = ['ps_status','ps_setpoint','ps_reference','firmware_version', 'counter_set_slowref','counter_sync_pulse','siggen_enable', 'siggen_type','siggen_num_cycles','siggen_n','siggen_freq', 'siggen_amplitude','siggen_offset','siggen_aux_param', 'wfmref_selected','wfmref_sync_mode','wfmref_gain', 'wfmref_offset','p_wfmref_start','p_wfmref_end','p_wfmref_idx'] #ListCurv_v2_1 = ['wfmref','buf_samples_ctom','buf_samples_mtoc'] ListCurv_v2_1 = ['wfmref_data_0','wfmref_data_1','buf_samples_ctom'] ListFunc_v2_1 = ['turn_on','turn_off','open_loop','closed_loop','select_op_mode', 'reset_interlocks','set_command_interface', 'set_serial_termination','unlock_udc','lock_udc', 'cfg_source_scope','cfg_freq_scope','cfg_duration_scope', 'enable_scope','disable_scope','sync_pulse','set_slowref', 'set_slowref_fbp','set_slowref_readback_mon', 'set_slowref_fbp_readback_mon','set_slowref_readback_ref', 'set_slowref_fbp_readback_ref','reset_counters','cfg_wfmref', 'select_wfmref','get_wfmref_size','reset_wfmref','cfg_siggen', 'set_siggen','enable_siggen','disable_siggen','set_param','get_param', 'save_param_eeprom','load_param_eeprom', 'save_param_bank', 'load_param_bank','set_dsp_coeffs','get_dsp_coeff', 'save_dsp_coeffs_eeprom', 'load_dsp_coeffs_eeprom', 'save_dsp_modules_eeprom', 'load_dsp_modules_eeprom','reset_udc'] ListOpMode_v2_1 = ['Off','Interlock','Initializing','SlowRef','SlowRefSync', 'Cycle','RmpWfm','MigWfm','FastRef'] ListSigGenTypes_v2_1 = ['Sine','DampedSine','Trapezoidal','DampedSquaredSine', 'Square'] ListParameters = ['PS_Name','PS_Model','Num_PS_Modules','Command_Interface', 'RS485_Baudrate','RS485_Address','RS485_Termination', 'UDCNet_Address','Ethernet_IP','Ethernet_Subnet_Mask', 'Buzzer_Volume','Freq_ISR_Controller','Freq_TimeSlicer', 'Control_Loop_State','Max_Ref','Min_Ref','Max_Ref_OpenLoop', 'Min_Ref_OpenLoop', 'PWM_Freq','PWM_DeadTime','PWM_Max_Duty','PWM_Min_Duty', 'PWM_Max_Duty_OpenLoop','PWM_Min_Duty_OpenLoop', 'PWM_Lim_Duty_Share','HRADC_Num_Boards','HRADC_Freq_SPICLK', 'HRADC_Freq_Sampling','HRADC_Enable_Heater', 'HRADC_Enable_Monitor','HRADC_Type_Transducer', 'HRADC_Gain_Transducer','HRADC_Offset_Transducer','SigGen_Type', 'SigGen_Num_Cycles','SigGen_Freq','SigGen_Amplitude', 'SigGen_Offset','SigGen_Aux_Param','WfmRef_ID_WfmRef', 'WfmRef_SyncMode','WfmRef_Frequency','WfmRef_Gain', 'WfmRef_Offset','Analog_Var_Max','Analog_Var_Min', 'Hard_Interlocks_Debounce_Time','Hard_Interlocks_Reset_Time', 'Soft_Interlocks_Debounce_Time','Soft_Interlocks_Reset_Time', 'Scope_Sampling_Frequency','Scope_Source','','','','','','', '','','','','Password','Enable_Onboard_EEPROM'] ListBCBFunc = ['ClearPof', 'SetPof', 'ReadPof', 'EnableBuzzer', 'DisableBuzzer', 'SendUartData', 'GetUartData', 'SendCanData', 'GetCanData', 'GetI2cData'] typeFormat = {'uint8_t': 'BBHBB', 'uint16_t': 'BBHHB', 'uint32_t': 'BBHIB', 'float': 'BBHfB'} bytesFormat = {'Uint16': 'H', 'Uint32': 'L', 'Uint64': 'Q', 'float': 'f'} typeSize = {'uint8_t': 6, 'uint16_t': 7, 'uint32_t': 9, 'float': 9} num_blocks_curves_fbp = [4, 4, 4] num_blocks_curves_fax = [16, 16, 16] size_curve_block = [1024, 1024, 1024] ufmOffset = {'serial': 0, 'calibdate': 4, 'variant': 9, 'rburden': 10, 'calibtemp': 12, 'vin_gain': 14, 'vin_offset': 16, 'iin_gain': 18, 'iin_offset': 20, 'vref_p': 22, 'vref_n': 24, 'gnd': 26} hradcVariant = ['HRADC-FBP','HRADC-FAX-A','HRADC-FAX-B','HRADC-FAX-C','HRADC-FAX-D'] hradcInputTypes = ['GND', 'Vref_bipolar_p', 'Vref_bipolar_n', 'Temp', 'Vin_bipolar_p', 'Vin_bipolar_n', 'Iin_bipolar_p','Iin_bipolar_n'] NUM_MAX_COEFFS_DSP = 12 num_dsp_classes = 7 num_dsp_modules = [4, 4, 4, 6, 8, 4, 2, 2] num_coeffs_dsp_modules = [0, 1, 1, 4, 8, 16, 2] dsp_classes_names = ["DSP_Error", "DSP_SRLim", "DSP_LPF","DSP_PI", "DSP_IIR_2P2Z", "DSP_IIR_3P3Z", "DSP_VdcLink_FeedForward", "DSP_Vect_Product"] # FBP list_fbp_soft_interlocks = ['Heat-Sink Overtemperature'] list_fbp_hard_interlocks = ['Load Overcurrent', 'Load Overvoltage', 'DCLink Overvoltage', 'DCLink Undervoltage', 'DCLink Relay Fault', 'DCLink Fuse Fault', 'MOSFETs Driver Fault', 'Welded Relay Fault'] # FBP DC-Link list_fbp_dclink_hard_interlocks = ['Power_Module_1_Fault', 'Power_Module_2_Fault', 'Power_Module_3_Fault', 'Total_Output_Overvoltage', 'Power_Module_1_Overvoltage', 'Power_Module_2_Overvoltage', 'Power_Module_3_Overvoltage', 'Total_Output_Undervoltage', 'Power_Module_1_Undervoltage', 'Power_Module_2_Undervoltage', 'Power_Module_3_Undervoltage', 'Smoke_Detector','External_Interlock'] # FAC ACDC list_fac_acdc_soft_interlocks = [] list_fac_acdc_hard_interlocks = ['CapBank Overvoltage', 'Rectifier Overvoltage', 'Rectifier Undervoltage', 'Rectifier Overcurrent', 'Welded Contactor Fault', 'Opened Contactor Fault', 'IIB Input Stage Interlock', 'IIB Command Interlock'] list_fac_acdc_iib_is_interlocks = ['Rectifier Overvoltage', 'Input Overcurrent', 'IGBT Overtemperature', 'IGBT Overtemperature HW', 'Driver Overvoltage', 'Driver Overcurrent', 'Top Driver Error', 'Bottom Driver Error', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'Board IIB Overtemperature', 'Module Overhumidity'] list_fac_acdc_iib_is_alarms = ['Rectifier Overvoltage', 'Input Overcurrent', 'IGBT Overtemperature', 'Driver Overvoltage', 'Driver Overcurrent', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'Board IIB Overtemperature', 'Module Overhumidity'] list_fac_acdc_iib_cmd_interlocks = ['Capbank Overvoltage', 'Output Overvoltage', 'External Boards Overvoltage', 'Auxiliary Board Overcurrent', 'IDB Board Overcurrent', 'Rectifier Inductor Overtemperature', 'Rectifier Heat-Sink Overtemperature', 'AC Mains Overcurrent', 'Emergency Button', 'AC Mains Undervoltage', 'AC Mains Overvoltage', 'Ground Leakage Overcurrent', 'Board IIB Overtemperature', 'Module Overhumidity'] list_fac_acdc_iib_cmd_alarms = ['Capbank Overvoltage', 'Output Overvoltage', 'External Boards Overvoltage', 'Auxiliary Board Overcurrent', 'IDB Board Overcurrent', 'Rectifier Inductor Overtemperature', 'Rectifier Heat-Sink Overtemperature', 'Ground Leakage Overcurrent', 'Board IIB Overtemperature', 'Module Overhumidity'] # FAC DCDC list_fac_dcdc_soft_interlocks = ['DCCT 1 Fault', 'DCCT 2 Fault', 'DCCT High Difference', 'Load Feedback 1 Fault', 'Load Feedback 2 Fault'] list_fac_dcdc_hard_interlocks = ['Load Overcurrent', 'CapBank Overvoltage', 'CapBank Undervoltage', 'IIB Interlock', 'External Interlock', 'Rack Interlock'] list_fac_dcdc_iib_interlocks = ['Input Overvoltage', 'Input Overcurrent', 'Output Overcurrent', 'IGBT 1 Overtemperature', 'IGBT 1 Overtemperature HW', 'IGBT 2 Overtemperature', 'IGBT 2 Overtemperature HW', 'Driver Overvoltage', 'Driver 1 Overcurrent', 'Driver 2 Overcurrent', 'Top Driver 1 Error', 'Bottom Driver 1 Error', 'Top Driver 2 Error', 'Bottom Driver 2 Error', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'Ground Leakage Overcurrent', 'Board IIB Overtemperature', 'Module Overhumidity'] list_fac_dcdc_iib_alarms = ['Input Overvoltage', 'Input Overcurrent', 'Output Overcurrent', 'IGBT 1 Overtemperature', 'IGBT 2 Overtemperature', 'Driver Overvoltage', 'Driver 1 Overcurrent', 'Driver 2 Overcurrent', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'Ground Leakage Overcurrent', 'Board IIB Overtemperature', 'Module Overhumidity'] # FAC-2S AC/DC list_fac_2s_acdc_hard_interlocks = ['CapBank Overvoltage', 'Rectifier Overvoltage', 'Rectifier Undervoltage', 'Rectifier Overcurrent', 'Welded Contactor Fault', 'Opened Contactor Fault', 'IIB Input Stage Interlock', 'IIB Command Interlock'] list_fac_2s_acdc_iib_is_interlocks = list_fac_acdc_iib_is_interlocks list_fac_2s_acdc_iib_cmd_interlocks = list_fac_acdc_iib_cmd_interlocks list_fac_2s_acdc_iib_is_alarms = list_fac_acdc_iib_is_alarms list_fac_2s_acdc_iib_cmd_alarms = list_fac_acdc_iib_cmd_alarms # FAC-2S DC/DC list_fac_2s_dcdc_soft_interlocks = ['DCCT 1 Fault', 'DCCT 2 Fault', 'DCCT High Difference', 'Load Feedback 1 Fault', 'Load Feedback 2 Fault'] list_fac_2s_dcdc_hard_interlocks = ['Load Overcurrent', 'Module 1 CapBank Overvoltage', 'Module 2 CapBank Overvoltage', 'Module 1 CapBank Undervoltage', 'Module 2 CapBank Undervoltage', 'IIB Mod 1 Itlk', 'IIB Mod 2 Itlk', 'External Interlock', 'Rack Interlock'] list_fac_2s_dcdc_iib_interlocks = list_fac_dcdc_iib_interlocks list_fac_2s_dcdc_iib_alarms = list_fac_dcdc_iib_alarms # FAC-2P4S AC/DC list_fac_2p4s_acdc_hard_interlocks = ['CapBank Overvoltage', 'Rectifier Overvoltage', 'Rectifier Undervoltage', 'Rectifier Overcurrent', 'Welded Contactor Fault', 'Opened Contactor Fault', 'IIB Input Stage Interlock', 'IIB Command Interlock'] list_fac_2p4s_acdc_iib_is_interlocks = list_fac_acdc_iib_is_interlocks list_fac_2p4s_acdc_iib_cmd_interlocks = list_fac_acdc_iib_cmd_interlocks list_fac_2p4s_acdc_iib_is_alarms = list_fac_acdc_iib_is_alarms list_fac_2p4s_acdc_iib_cmd_alarms = list_fac_acdc_iib_cmd_alarms # FAC-2P4S DC/DC list_fac_2p4s_dcdc_soft_interlocks = ['DCCT 1 Fault', 'DCCT 2 Fault', 'DCCT High Difference', 'Load Feedback 1 Fault', 'Load Feedback 2 Fault', 'Arm 1 Overcurrent', 'Arm 2 Overcurrent', 'Arms High Difference', 'Complementary PS Interlock'] list_fac_2p4s_dcdc_hard_interlocks = ['Load Overcurrent', 'Module 1 CapBank Overvoltage', 'Module 2 CapBank Overvoltage', 'Module 3 CapBank Overvoltage', 'Module 4 CapBank Overvoltage', 'Module 5 CapBank Overvoltage', 'Module 6 CapBank Overvoltage', 'Module 7 CapBank Overvoltage', 'Module 8 CapBank Overvoltage', 'Module 1 CapBank Undervoltage', 'Module 2 CapBank Undervoltage', 'Module 3 CapBank Undervoltage', 'Module 4 CapBank Undervoltage', 'Module 5 CapBank Undervoltage', 'Module 6 CapBank Undervoltage', 'Module 7 CapBank Undervoltage', 'Module 8 CapBank Undervoltage', 'IIB 1 Itlk', 'IIB 2 Itlk', 'IIB 3 Itlk', 'IIB 4 Itlk', 'IIB 5 Itlk', 'IIB 6 Itlk', 'IIB 7 Itlk', 'IIB 8 Itlk'] list_fac_2p4s_dcdc_iib_interlocks = list_fac_dcdc_iib_interlocks list_fac_2p4s_dcdc_iib_alarms = list_fac_dcdc_iib_alarms # FAP list_fap_soft_interlocks = ['DCCT 1 Fault', 'DCCT 2 Fault', 'DCCT High Difference', 'Load Feedback 1 Fault', 'Load Feedback 2 Fault', 'IGBTs Current High Difference'] list_fap_hard_interlocks = ['Load Overcurrent', 'Load Overvoltage', 'DCLink Overvoltage', 'DCLink Undervoltage', 'Welded Contactor Fault', 'Opened Contactor Fault', 'IGBT 1 Overcurrent', 'IGBT 2 Overcurrent', 'IIB Itlk'] list_fap_iib_interlocks = ['Input Overvoltage', 'Output Overvoltage', 'IGBT 1 Overcurrent', 'IGBT 2 Overcurrent', 'IGBT 1 Overtemperature', 'IGBT 2 Overtemperature', 'Driver Overvoltage', 'Driver 1 Overcurrent', 'Driver 2 Overcurrent', 'Driver 1 Error', 'Driver 2 Error', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'DCLink Contactor Fault', 'Contact Sticking of Contactor', 'External Interlock', 'Rack Interlock', 'High Leakage Current', 'Board IIB Overtemperature', 'Module Overhumidity'] list_fap_iib_alarms = ['Input Overvoltage', 'Output Overvoltage', 'IGBT 1 Overcurrent', 'IGBT 2 Overcurrent', 'IGBT 1 Overtemperature', 'IGBT 2 Overtemperature', 'Driver Overvoltage', 'Driver 1 Overcurrent', 'Driver 2 Overcurrent', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'High Leakage Current', 'Board IIB Overtemperature', 'Module Overhumidity'] # FAP-4P list_fap_4p_soft_interlocks = ['DCCT 1 Fault', 'DCCT 2 Fault', 'DCCT High Difference', 'Load Feedback 1 Fault', 'Load Feedback 2 Fault', 'IGBTs Current High Difference'] list_fap_4p_hard_interlocks = ['Load Overcurrent', 'Load Overvoltage', 'IGBT 1 Mod 1 Overcurrent', 'IGBT 2 Mod 1 Overcurrent', 'IGBT 1 Mod 2 Overcurrent', 'IGBT 2 Mod 2 Overcurrent', 'IGBT 1 Mod 3 Overcurrent', 'IGBT 2 Mod 3 Overcurrent', 'IGBT 1 Mod 4 Overcurrent', 'IGBT 2 Mod 4 Overcurrent', 'Welded Contactor Mod 1 Fault', 'Welded Contactor Mod 2 Fault', 'Welded Contactor Mod 3 Fault', 'Welded Contactor Mod 4 Fault', 'Opened Contactor Mod 1 Fault', 'Opened Contactor Mod 2 Fault', 'Opened Contactor Mod 3 Fault', 'Opened Contactor Mod 4 Fault', 'DCLink Mod 1 Overvoltage', 'DCLink Mod 2 Overvoltage', 'DCLink Mod 3 Overvoltage', 'DCLink Mod 4 Overvoltage', 'DCLink Mod 1 Undervoltage', 'DCLink Mod 2 Undervoltage', 'DCLink Mod 3 Undervoltage', 'DCLink Mod 4 Undervoltage', 'IIB Mod 1 Itlk', 'IIB Mod 2 Itlk', 'IIB Mod 3 Itlk', 'IIB Mod 4 Itlk'] list_fap_4p_iib_interlocks = list_fap_iib_interlocks list_fap_4p_iib_alarms = list_fap_iib_alarms # FAC DCDC EMA list_fac_dcdc_ema_soft_interlocks = ['DCCT Fault', 'Load Feedback Fault'] list_fac_dcdc_ema_hard_interlocks = ['Load Overcurrent', 'DCLink Overvoltage', 'DCLink Undervoltage', 'Emergency Button', 'Load Waterflow', 'Load Overtemperature', 'IIB Itlk'] list_fac_dcdc_ema_iib_interlocks = ['Input Overvoltage', 'Input Overcurrent', 'Output Overcurrent', 'IGBT 1 Overtemperature', 'IGBT 1 Overtemperature HW', 'IGBT 2 Overtemperature', 'IGBT 2 Overtemperature HW', 'Driver Overvoltage', 'Driver 1 Overcurrent', 'Driver 2 Overcurrent', 'Top Driver 1 Error', 'Bottom Driver 1 Error', 'Top Driver 2 Error', 'Bottom Driver 2 Error', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'Ground Leakage Overcurrent', 'Board IIB Overtemperature', 'Module Overhumidity'] list_fac_dcdc_ema_iib_alarms = ['Input Overvoltage', 'Input Overcurrent', 'Output Overcurrent', 'IGBT 1 Overtemperature', 'IGBT 2 Overtemperature', 'Driver Overvoltage', 'Driver 1 Overcurrent', 'Driver 2 Overcurrent', 'Inductors Overtemperature', 'Heat-Sink Overtemperature', 'Ground Leakage Overcurrent', 'Board IIB Overtemperature', 'Module Overhumidity'] # FAP-2P2S list_fap_2p2s_soft_interlocks = ['DCCT 1 Fault', 'DCCT 2 Fault', 'DCCT High Difference', 'Load Feedback 1 Fault', 'Load Feedback 2 Fault', 'Arms High Difference', 'IGBTs Current High Difference', 'Complementary PS Interlock'] list_fap_2p2s_hard_interlocks = ['Load Overcurrent', 'IGBT 1 Mod 1 Overcurrent', 'IGBT 2 Mod 1 Overcurrent', 'IGBT 1 Mod 2 Overcurrent', 'IGBT 2 Mod 2 Overcurrent', 'IGBT 1 Mod 3 Overcurrent', 'IGBT 2 Mod 3 Overcurrent', 'IGBT 1 Mod 4 Overcurrent', 'IGBT 2 Mod 4 Overcurrent', 'Welded Contactor Mod 1 Fault', 'Welded Contactor Mod 2 Fault', 'Welded Contactor Mod 3 Fault', 'Welded Contactor Mod 4 Fault', 'Opened Contactor Mod 1 Fault', 'Opened Contactor Mod 2 Fault', 'Opened Contactor Mod 3 Fault', 'Opened Contactor Mod 4 Fault', 'DCLink Mod 1 Overvoltage', 'DCLink Mod 2 Overvoltage', 'DCLink Mod 3 Overvoltage', 'DCLink Mod 4 Overvoltage', 'DCLink Mod 1 Undervoltage', 'DCLink Mod 2 Undervoltage', 'DCLink Mod 3 Undervoltage', 'DCLink Mod 4 Undervoltage', 'IIB Mod 1 Itlk', 'IIB Mod 2 Itlk', 'IIB Mod 3 Itlk', 'IIB Mod 4 Itlk', 'Arm 1 Overcurrent', 'Arm 2 Overcurrent'] list_fap_2p2s_iib_interlocks = list_fap_iib_interlocks list_fap_2p2s_iib_alarms = list_fap_iib_alarms # FAP 225A list_fap_225A_soft_interlocks = ['IGBTs Current High Difference'] list_fap_225A_hard_interlocks = ['Load Overcurrent', 'DCLink Contactor Fault', 'IGBT 1 Overcurrent', 'IGBT 2 Overcurrent'] # FAC-2P ACDC list_fac_2p_acdc_imas_soft_interlocks = [] list_fac_2p_acdc_imas_hard_interlocks = ['CapBank Overvoltage', 'Rectifier Overcurrent', 'AC Mains Contactor Fault', 'Module A Interlock', 'Module B Interlock', 'DCDC Interlock'] # FAC-2P DCDC list_fac_2p_dcdc_imas_soft_interlocks = [] list_fac_2p_dcdc_imas_hard_interlocks = ['Load Overcurrent', 'Module 1 CapBank_Overvoltage', 'Module 2 CapBank_Overvoltage', 'Module 1 CapBank_Undervoltage', 'Module 2 CapBank_Undervoltage', 'Arm 1 Overcurrent', 'Arm 2 Overcurrent', 'Arms High_Difference', 'ACDC Interlock'] class SerialDRS(object): ser = serial.Serial() def __init__(self): #self.ser=serial.Serial() self.MasterAdd = '\x00' self.SlaveAdd = '\x01' self.BCastAdd = '\xFF' self.ComWriteVar = '\x20' self.WriteFloatSizePayload = '\x00\x05' self.WriteDoubleSizePayload = '\x00\x03' self.ComReadVar = '\x10\x00\x01' self.ComRequestCurve = '\x40' self.ComSendWfmRef = '\x41' self.ComFunction = '\x50' self.DP_MODULE_MAX_COEFF = 16 self.ListDPClass = ['ELP_Error','ELP_SRLim','ELP_LPF','ELP_PI_dawu','ELP_IIR_2P2Z','ELP_IIR_3P3Z', 'DCL_PID','DCL_PI','DCL_DF13','DCL_DF22','DCL_23'] self.ListHardInterlocks = ['Sobrecorrente', 'Interlock Externo', 'Falha AC', 'Falha ACDC', 'Falha DCDC','Sobretensao','Falha Resistor Precarga','Falha Carga Capacitores Saída', 'Botão de Emergência', 'OUT_OVERVOLTAGE', 'IN_OVERVOLTAGE','ARM1_OVERCURRENT','ARM2_OVERCURRENT', 'IN_OVERCURRENT','DRIVER1_FAULT','DRIVER2_FAULT','OUT1_OVERCURRENT','OUT2_OVERCURRENT','OUT1_OVERVOLTAGE', 'OUT2_OVERVOLTAGE','LEAKAGE_OVERCURRENT','AC_OVERCURRENT'] self.ListSoftInterlocks = ['IGBT1_OVERTEMP','IGBT2_OVERTEMP','L1_OVERTEMP','L2_OVERTEMP','HEATSINK_OVERTEMP','WATER_OVERTEMP', 'RECTFIER1_OVERTEMP','RECTFIER2_OVERTEMP','AC_TRANSF_OVERTEMP','WATER_FLUX_FAULT','OVER_HUMIDITY_FAULT'] print("\n pyDRS - compatible UDC firmware version: " + UDC_FIRMWARE_VERSION + "\n") ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Funções Internas da Classe ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' # Converte float para hexadecimal def float_to_hex(self, value): hex_value = struct.pack('f', value) return hex_value.decode('ISO-8859-1') # Converte lista de float para hexadecimal def float_list_to_hex(self, value_list): hex_list = b'' for value in value_list: hex_list = hex_list + struct.pack('f', value) return hex_list.decode('ISO-8859-1') def format_list_size(self, in_list, max_size): out_list = in_list[0:max_size] if max_size > len(in_list): for i in range(max_size - len(in_list)): out_list.append(0) return out_list # Converte double para hexadecimal def double_to_hex(self,value): hex_value = struct.pack('H',value) return hex_value.decode('ISO-8859-1') # Converte unsigned int para hexadecimal def uint32_to_hex(self,value): hex_value = struct.pack('I',value) return hex_value.decode('ISO-8859-1') # Converte indice para hexadecimal def index_to_hex(self,value): hex_value = struct.pack('B',value) return hex_value.decode('ISO-8859-1') # Converte payload_size para hexadecimal def size_to_hex(self,value): hex_value = struct.pack('>H',value) return hex_value.decode('ISO-8859-1') # Função Checksum def checksum(self, packet): b=bytearray(packet.encode('ISO-8859-1')) csum =(256-sum(b))%256 hcsum = struct.pack('B',csum) send_msg = packet + hcsum.decode(encoding='ISO-8859-1') return send_msg # Função de leitura de variável def read_var(self,var_id): send_msg = self.checksum(self.SlaveAdd+self.ComReadVar+var_id) self.ser.reset_input_buffer() self.ser.write(send_msg.encode('ISO-8859-1')) def is_open(self): return self.ser.isOpen() def _convertToUint16List(self, val, format): val_16 = [] val_b = struct.pack(bytesFormat[format],val) print(val_b) for i in range(0,len(val_b),2): val_16.append(struct.unpack('H',val_b[i:i+2])[0]) print(val_16) return val_16 ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Métodos de Chamada de Entidades Funções BSMP O retorno do método são os bytes de retorno da mensagem ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def TurnOn_FAx(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('TurnOn')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def TurnOn(self,ps_modules): payload_size = self.size_to_hex(1+2) #Payload: ID + ps_modules hex_modules = self.double_to_hex(ps_modules) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('TurnOn'))+hex_modules send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def turn_on(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('turn_on')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def TurnOff_FAx(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('TurnOff')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def TurnOff(self,ps_modules): payload_size = self.size_to_hex(1+2) #Payload: ID + ps_modules hex_modules = self.double_to_hex(ps_modules) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('TurnOff'))+hex_modules send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def turn_off(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('turn_off')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def open_loop(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('open_loop')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def closed_loop(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('closed_loop')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def OpenLoop(self,ps_modules): payload_size = self.size_to_hex(1+2) #Payload: ID + ps_modules hex_modules = self.double_to_hex(ps_modules) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('OpenLoop'))+hex_modules send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ClosedLoop(self,ps_modules): payload_size = self.size_to_hex(1+2) #Payload: ID + ps_modules hex_modules = self.double_to_hex(ps_modules) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ClosedLoop'))+hex_modules send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def OpenLoop_FAx(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('OpenLoop')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ClosedLoop_FAx(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ClosedLoop')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def OpMode(self,op_mode): payload_size = self.size_to_hex(1+2) #Payload: ID + ps_opmode hex_opmode = self.double_to_hex(op_mode) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('OpMode'))+hex_opmode send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def RemoteInterface(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('RemoteInterface')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SetISlowRef(self,setpoint): payload_size = self.size_to_hex(1+4) #Payload: ID + iSlowRef hex_setpoint = self.float_to_hex(setpoint) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('SetISlowRef'))+hex_setpoint send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigWfmRef(self,gain,offset): payload_size = self.size_to_hex(1+4+4) #Payload: ID + gain + offset hex_gain = self.float_to_hex(gain) hex_offset = self.float_to_hex(offset) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ConfigWfmRef'))+hex_gain+hex_offset send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigSigGen(self,sigType,nCycles,phaseStart,phaseEnd): payload_size = self.size_to_hex(1+2+2+4+4) #Payload: ID + type + nCycles + phaseStart + phaseEnd hex_sigType = self.double_to_hex(sigType) hex_nCycles = self.double_to_hex(nCycles) hex_phaseStart = self.float_to_hex(phaseStart) hex_phaseEnd = self.float_to_hex(phaseEnd) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ConfigSigGen'))+hex_sigType+hex_nCycles+hex_phaseStart+hex_phaseEnd send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def EnableSigGen(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('EnableSigGen')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def DisableSigGen(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('DisableSigGen')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigDPModule(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ConfigDPModule')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigDPModuleFull(self,dp_id,dp_class,dp_coeffs): self.Write_dp_ID(dp_id) self.Write_dp_Class(dp_class) self.Write_dp_Coeffs(dp_coeffs) self.ConfigDPModule() def WfmRefUpdate(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('WfmRefUpdate')) send_msg = self.checksum(self.BCastAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) def ResetInterlocks(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ResetInterlocks')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def reset_interlocks(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('reset_interlocks')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigPSModel(self,ps_model): payload_size = self.size_to_hex(1+2) #Payload: ID + ps_Model hex_model = self.double_to_hex(ps_model) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ConfigPSModel'))+hex_model send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigHRADC(self,hradcID,freqSampling,inputType,enableHeater,enableMonitor): payload_size = self.size_to_hex(1+2+4+2+2+2) #Payload: ID + hradcID + freqSampling + inputType + enableHeater + enableMonitor hex_hradcID = self.double_to_hex(hradcID) hex_freq = self.float_to_hex(freqSampling) hex_type = self.double_to_hex(ListHRADCInputType.index(inputType)) hex_enHeater = self.double_to_hex(enableHeater) hex_enMonitor = self.double_to_hex(enableMonitor) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ConfigHRADC'))+hex_hradcID+hex_freq+hex_type+hex_enHeater+hex_enMonitor send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ConfigHRADCOpMode(self,hradcID,opMode): payload_size = self.size_to_hex(1+2+2) #Payload: ID + hradcID + opMode hex_hradcID = self.double_to_hex(hradcID) hex_opMode = self.double_to_hex(opMode) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ConfigHRADCOpMode'))+hex_hradcID+hex_opMode send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def EnableHRADCSampling(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('EnableHRADCSampling')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def DisableHRADCSampling(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('DisableHRADCSampling')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ResetWfmRef(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ResetWfmRef')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SetRSAddress(self,rs_address): payload_size = self.size_to_hex(1+2) #Payload: ID + rs_address hex_add = self.double_to_hex(rs_address) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('SetRSAddress'))+hex_add send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def EnableSamplesBuffer(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('EnableSamplesBuffer')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def DisableSamplesBuffer(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('DisableSamplesBuffer')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SelectHRADCBoard(self,hradcID): payload_size = self.size_to_hex(1+2) #Payload: ID hex_hradcID = self.double_to_hex(hradcID) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('SelectHRADCBoard'))+hex_hradcID send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SelectTestSource(self,inputType): payload_size = self.size_to_hex(1+2) #Payload: inputType hex_type = self.double_to_hex(ListHRADCInputType.index(inputType)) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('SelectTestSource'))+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ResetHRADCBoards(self, enable): payload_size = self.size_to_hex(1+2) #Payload: ID+enable(2) hex_enable = self.double_to_hex(enable) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ResetHRADCBoards'))+hex_enable send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def Config_nHRADC(self,nHRADC): payload_size = self.size_to_hex(1+2) #Payload: nHRADC hex_nhradc = self.double_to_hex(nHRADC) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('Config_nHRADC'))+hex_nhradc send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ReadHRADC_UFM(self,hradcID,ufmadd): payload_size = self.size_to_hex(1+2+2) #Payload: ID + hradcID + ufmadd hex_hradcID = self.double_to_hex(hradcID) hex_ufmadd = self.double_to_hex(ufmadd) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ReadHRADC_UFM'))+hex_hradcID+hex_ufmadd send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def WriteHRADC_UFM(self,hradcID,ufmadd,ufmdata): payload_size = self.size_to_hex(1+2+2+2) #Payload: ID + hradcID + ufmadd + ufmdata hex_hradcID = self.double_to_hex(hradcID) hex_ufmadd = self.double_to_hex(ufmadd) hex_ufmdata = self.double_to_hex(ufmdata) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('WriteHRADC_UFM'))+hex_hradcID+hex_ufmadd+hex_ufmdata send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def EraseHRADC_UFM(self,hradcID): payload_size = self.size_to_hex(1+2) #Payload: ID + hradcID hex_hradcID = self.double_to_hex(hradcID) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('EraseHRADC_UFM'))+hex_hradcID send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def InitHRADC_BoardData(self, serial = 12345678, day = 1, mon = 1, year = 2017, hour = 12, minutes = 30, variant = 'HRADC-FBP', rburden = 20, calibtemp = 40, vin_gain = 1, vin_offset = 0, iin_gain = 1, iin_offset = 0, vref_p = 5, vref_n = -5, gnd = 0): boardData = {'serial': serial, 'variant': variant, 'rburden': rburden, 'tm_mday': day, 'tm_mon': mon, 'tm_year': year, 'tm_hour': hour, 'tm_min': minutes, 'calibtemp': calibtemp, 'vin_gain': vin_gain, 'vin_offset': vin_offset, 'iin_gain': iin_gain, 'iin_offset': iin_offset, 'vref_p': vref_p, 'vref_n': vref_n, 'gnd': gnd} return boardData def WriteHRADC_BoardData(self,hradcID,boardData): print('Configurando placa em UFM mode...') self.ConfigHRADCOpMode(hradcID,1) time.sleep(0.5) print('\nEnviando serial number...') ufmdata_16 = self._convertToUint16List(boardData['serial'],'Uint64') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['serial'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando variante...') ufmdata_16 = self._convertToUint16List(hradcVariant.index(boardData['variant']),'Uint16') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['variant'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando rburden...') ufmdata_16 = self._convertToUint16List(boardData['rburden'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['rburden'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando calibdate...') ufmdata_16 = self._convertToUint16List(boardData['tm_mday'],'Uint16') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['calibdate'],ufmdata_16[i]) time.sleep(0.1) # Month ufmdata_16 = self._convertToUint16List(boardData['tm_mon'],'Uint16') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['calibdate']+1,ufmdata_16[i]) time.sleep(0.1) # Year ufmdata_16 = self._convertToUint16List(boardData['tm_year'],'Uint16') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['calibdate']+2,ufmdata_16[i]) time.sleep(0.1) # Hour ufmdata_16 = self._convertToUint16List(boardData['tm_hour'],'Uint16') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['calibdate']+3,ufmdata_16[i]) time.sleep(0.1) # Minutes ufmdata_16 = self._convertToUint16List(boardData['tm_min'],'Uint16') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['calibdate']+4,ufmdata_16[i]) time.sleep(0.1) print('\nEnviando calibtemp...') ufmdata_16 = self._convertToUint16List(boardData['calibtemp'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['calibtemp'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando vin_gain...') ufmdata_16 = self._convertToUint16List(boardData['vin_gain'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['vin_gain'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando vin_offset...') ufmdata_16 = self._convertToUint16List(boardData['vin_offset'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['vin_offset'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando iin_gain...') ufmdata_16 = self._convertToUint16List(boardData['iin_gain'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['iin_gain'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando iin_offset...') ufmdata_16 = self._convertToUint16List(boardData['iin_offset'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['iin_offset'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando vref_p...') ufmdata_16 = self._convertToUint16List(boardData['vref_p'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['vref_p'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando vref_n...') ufmdata_16 = self._convertToUint16List(boardData['vref_n'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['vref_n'],ufmdata_16[i]) time.sleep(0.1) print('\nEnviando gnd...') ufmdata_16 = self._convertToUint16List(boardData['gnd'],'float') for i in range(len(ufmdata_16)): self.WriteHRADC_UFM(hradcID,i+ufmOffset['gnd'],ufmdata_16[i]) time.sleep(0.1) print('Colocando a placa em Sampling mode...') self.ConfigHRADCOpMode(hradcID,0) def ReadHRADC_BoardData(self,hradcID): print('Configurando placa em UFM mode...') print(self.ConfigHRADCOpMode(hradcID,1)) time.sleep(0.5) print('Extraindo dados da placa...') payload_size = self.size_to_hex(1+2) #Payload: ID + hradcID hex_hradcID = self.double_to_hex(hradcID) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('ReadHRADC_BoardData'))+hex_hradcID send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) print(self.ser.read(6)) print('Lendo dados da placa...') self.read_var(self.index_to_hex(50+hradcID)) reply_msg = self.ser.read(1+1+2+56+1) print(reply_msg) print(len(reply_msg)) val = struct.unpack('BBHLLHHHHHHfffffffffB',reply_msg) try: boardData = self.InitHRADC_BoardData(val[3]+val[4]*pow(2,32),val[5], val[6],val[7],val[8],val[9], hradcVariant[val[10]],val[11], val[12],val[13],val[14],val[15], val[16],val[17],val[18],val[19]) except: print('\n### Placa não inicializada ###\n') boardData = self.InitHRADC_BoardData(serial = int(input('Digite o S/N: '))) print('\n') print('Colocando a placa em Sampling mode...') print(self.ConfigHRADCOpMode(hradcID,0)) time.sleep(0.5) return boardData def UpdateHRADC_BoardData(self,hradcID): variant = len(hradcVariant) while variant >= len(hradcVariant) or variant < 0: variant = int(input("Enter HRADC variant number:\n 0: HRADC-FBP\n 1: HRADC-FAX-A\n 2: HRADC-FAX-B\n 3: HRADC-FAX-C\n 4: HRADC-FAX-D\n\n>>> ")) variant = hradcVariant[variant] boardData = self.ReadHRADC_BoardData(hradcID) boardData['variant'] = variant boardData['vin_offset'] = np.float32(0) boardData['iin_offset'] = np.float32(0) if variant == 'HRADC-FBP': boardData['rburden'] = np.float32(20) boardData['vin_gain'] = np.float32(1) boardData['iin_gain'] = np.float32(1) print(boardData['vin_gain']) print(boardData['variant']) elif variant == 'HRADC-FAX-A': boardData['rburden'] = np.float32(0) boardData['vin_gain'] = np.float32(6.0/5.0) boardData['iin_gain'] = np.float32(6.0/5.0) print(boardData['vin_gain']) print(boardData['variant']) elif variant == 'HRADC-FAX-B': boardData['rburden'] = np.float32(0) boardData['vin_gain'] = np.float32(1) boardData['iin_gain'] = np.float32(1) print(boardData['vin_gain']) print(boardData['variant']) elif variant == 'HRADC-FAX-C': boardData['rburden'] = np.float32(5) boardData['vin_gain'] = np.float32(1) boardData['iin_gain'] = np.float32(1) print(boardData['vin_gain']) print(boardData['variant']) elif variant == 'HRADC-FAX-D': boardData['rburden'] = np.float32(1) boardData['vin_gain'] = np.float32(1) boardData['iin_gain'] = np.float32(1) print(boardData['vin_gain']) print(boardData['variant']) print('\n\nBoard data from HRADC of slot #' + str(hradcID) + ' is about to be overwritten by the following data:') print(boardData) i = input('\n Do you want to proceed? [y/n]: ') if i is 'Y' or i is 'y': self.ConfigHRADCOpMode(hradcID,1) time.sleep(0.1) self.EraseHRADC_UFM(hradcID) time.sleep(0.5) self.ResetHRADCBoards(1) time.sleep(0.5) self.ResetHRADCBoards(0) time.sleep(1.5) self.WriteHRADC_BoardData(hradcID,boardData) boardData_new = self.ReadHRADC_BoardData(hradcID) print(boardData_new) print(boardData) if boardData_new == boardData: print('\n\n ### Operation was successful !!! ### \n\n') else: print('\n\n ### Operation failed !!! ### \n\n') return [boardData, boardData_new] def GetHRADCs_BoardData(self,numHRADC): boardData_list = [] for i in range(numHRADC): boardData_list.append(self.ReadHRADC_BoardData(i)) return boardData_list def UdcEepromTest(self, rw, data=None): if data is not None: payload_size = self.size_to_hex(12) hex_rw = self.double_to_hex(rw) hex_byte_0 = self.double_to_hex(data[0]) hex_byte_1 = self.double_to_hex(data[1]) hex_byte_2 = self.double_to_hex(data[2]) hex_byte_3 = self.double_to_hex(data[3]) hex_byte_4 = self.double_to_hex(data[4]) hex_byte_5 = self.double_to_hex(data[5]) hex_byte_6 = self.double_to_hex(data[6]) hex_byte_7 = self.double_to_hex(data[7]) hex_byte_8 = self.double_to_hex(data[8]) hex_byte_9 = self.double_to_hex(data[9]) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcEepromTest'))+hex_rw[0]+ \ hex_byte_0[0] + hex_byte_1[0] + hex_byte_2[0] + hex_byte_3[0] + hex_byte_4[0] + hex_byte_5[0]+ \ hex_byte_6[0] + hex_byte_7[0] + hex_byte_8[0] + hex_byte_9[0] print(send_packet.encode('ISO-8859-1')) self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(15) def UdcFlashTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcFlashTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcRamTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcRamTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcAdcTest(self, rw, channel): payload_size = self.size_to_hex(3) hex_rw = self.double_to_hex(rw) hex_channel = self.double_to_hex(channel) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcAdcTest'))+hex_rw[0]+hex_channel[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcSensorTempTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcSensorTempTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcRtcTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcRtcTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcUartTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcUartTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcIoExpanderTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcIoExpanderTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) # def UdcEthernetTest(self, rw): # payload_size = self.size_to_hex(2) # hex_rw = self.double_to_hex(rw) # send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcEthernetTest'))+hex_rw # self.ser.write(send_packet.encode('ISO-8859-1')) # return self.ser.read() def UdcIsoPlaneTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcIsoPlaneTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcLoopBackTest(self, rw, channel): payload_size = self.size_to_hex(3) hex_rw = self.double_to_hex(rw) hex_channel = self.double_to_hex(channel) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcLoopBackTest'))+hex_rw[0]+hex_channel[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcLedTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcLedTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcBuzzerTest(self, rw): payload_size = self.size_to_hex(2) hex_rw = self.double_to_hex(rw) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcBuzzerTest'))+hex_rw[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def UdcComTest(self, rw, val): payload_size = self.size_to_hex(3) hex_rw = self.double_to_hex(rw) hex_value = self.double_to_hex(val) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcComTest'))+hex_rw[0]+hex_value[0] self.ser.write(send_packet.encode('ISO-8859-1')) time.sleep(0.2) return self.ser.read(6) def UdcI2cIsoTest(self, rw, val): payload_size = self.size_to_hex(3) hex_rw = self.double_to_hex(rw) hex_value = self.double_to_hex(val) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListTestFunc.index('UdcI2cIsoTest'))+hex_rw[0]+hex_value[0] self.ser.write(send_packet.encode('ISO-8859-1')) return self.ser.read(6) def SetISlowRefx4(self, iRef1 = 0, iRef2 = 0, iRef3 = 0, iRef4 = 0): payload_size = self.size_to_hex(1+4*4) #Payload: ID + 4*iRef hex_iRef1 = self.float_to_hex(iRef1) hex_iRef2 = self.float_to_hex(iRef2) hex_iRef3 = self.float_to_hex(iRef3) hex_iRef4 = self.float_to_hex(iRef4) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc.index('SetISlowRefx4'))+hex_iRef1+hex_iRef2+hex_iRef3+hex_iRef4 send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SetPof(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('SetPof')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ClearPof(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('ClearPof')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def ReadPof(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('ReadPof')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def EnableBuzzer(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('EnableBuzzer')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def DisableBuzzer(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('DisableBuzzer')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SendUartData(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('SendUartData')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def GetUartData(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('GetUartData')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def SendCanData(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('SendCanData')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def GetCanData(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('GetCanData')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def GetI2cData(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListBCBFunc.index('GetI2cData')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def read_ps_status(self): self.read_var(self.index_to_hex(ListVar_v2_1.index('ps_status'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) status = {} status['state'] = ListOpMode_v2_1[(val[3] & 0b0000000000001111)] status['open_loop'] = (val[3] & 0b0000000000010000) >> 4 status['interface'] = (val[3] & 0b0000000001100000) >> 5 status['active'] = (val[3] & 0b0000000010000000) >> 7 status['model'] = ListPSModels_v2_1[(val[3] & 0b0001111100000000) >> 8] status['unlocked'] = (val[3] & 0b0010000000000000) >> 13 #print(status) return status def set_ps_name(self,ps_name): if type(ps_name) == str: for n in range(len(ps_name)): self.set_param('PS_Name', n, float(ord(ps_name[n]))) for i in range(n+1,64): self.set_param('PS_Name', i, float(ord(" "))) def get_ps_name(self): ps_name = "" for n in range(64): ps_name = ps_name + chr(int(self.get_param('PS_Name', n))) if ps_name[-3:] == ' ': ps_name = ps_name[:n-2] break return ps_name def set_slowref(self,setpoint): payload_size = self.size_to_hex(1+4) #Payload: ID + iSlowRef hex_setpoint = self.float_to_hex(setpoint) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_slowref'))+hex_setpoint send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def set_slowref_fbp(self, iRef1 = 0, iRef2 = 0, iRef3 = 0, iRef4 = 0): payload_size = self.size_to_hex(1+4*4) #Payload: ID + 4*iRef hex_iRef1 = self.float_to_hex(iRef1) hex_iRef2 = self.float_to_hex(iRef2) hex_iRef3 = self.float_to_hex(iRef3) hex_iRef4 = self.float_to_hex(iRef4) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_slowref_fbp'))+hex_iRef1+hex_iRef2+hex_iRef3+hex_iRef4 send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def set_slowref_readback_mon(self,setpoint): payload_size = self.size_to_hex(1+4) #Payload: ID + iSlowRef hex_setpoint = self.float_to_hex(setpoint) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_slowref_readback_mon'))+hex_setpoint send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def set_slowref_fbp_readback_mon(self, iRef1 = 0, iRef2 = 0, iRef3 = 0, iRef4 = 0): payload_size = self.size_to_hex(1+4*4) #Payload: ID + 4*iRef hex_iRef1 = self.float_to_hex(iRef1) hex_iRef2 = self.float_to_hex(iRef2) hex_iRef3 = self.float_to_hex(iRef3) hex_iRef4 = self.float_to_hex(iRef4) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_slowref_fbp_readback_mon'))+hex_iRef1+hex_iRef2+hex_iRef3+hex_iRef4 send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(21) if(len(reply_msg) == 6): return reply_msg else: val = struct.unpack('BBHffffB',reply_msg) return [val[3],val[4],val[5],val[6]] def set_slowref_readback_ref(self,setpoint): payload_size = self.size_to_hex(1+4) #Payload: ID + iSlowRef hex_setpoint = self.float_to_hex(setpoint) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_slowref_readback_ref'))+hex_setpoint send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def set_slowref_fbp_readback_ref(self, iRef1 = 0, iRef2 = 0, iRef3 = 0, iRef4 = 0): payload_size = self.size_to_hex(1+4*4) #Payload: ID + 4*iRef hex_iRef1 = self.float_to_hex(iRef1) hex_iRef2 = self.float_to_hex(iRef2) hex_iRef3 = self.float_to_hex(iRef3) hex_iRef4 = self.float_to_hex(iRef4) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_slowref_fbp_readback_ref'))+hex_iRef1+hex_iRef2+hex_iRef3+hex_iRef4 send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(21) if(len(reply_msg) == 6): return reply_msg else: val = struct.unpack('BBHffffB',reply_msg) return [val[3],val[4],val[5],val[6]] def set_param(self, param_id, n, value): payload_size = self.size_to_hex(1+2+2+4) #Payload: ID + param id + [n] + value if type(param_id) == str: hex_id = self.double_to_hex(ListParameters.index(param_id)) if type(param_id) == int: hex_id = self.double_to_hex(param_id) hex_n = self.double_to_hex(n) hex_value = self.float_to_hex(value) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_param'))+hex_id+hex_n+hex_value send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(6) if reply_msg[4] == 8: print('Invalid parameter') return reply_msg def get_param(self, param_id, n = 0): payload_size = self.size_to_hex(1+2+2) #Payload: ID + param id + [n] if type(param_id) == str: hex_id = self.double_to_hex(ListParameters.index(param_id)) if type(param_id) == int: hex_id = self.double_to_hex(param_id) hex_n = self.double_to_hex(n) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('get_param'))+hex_id+hex_n send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.reset_input_buffer() self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(9) if len(reply_msg) == 9: val = struct.unpack('BBHfB',reply_msg) return val[3] else: #print('Invalid parameter') return float('nan') def save_param_eeprom(self, param_id, n = 0, type_memory = 2): payload_size = self.size_to_hex(1+2+2+2) #Payload: ID + param id + [n] + memory type if type(param_id) == str: hex_id = self.double_to_hex(ListParameters.index(param_id)) if type(param_id) == int: hex_id = self.double_to_hex(param_id) hex_n = self.double_to_hex(n) hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('save_param_eeprom'))+hex_id+hex_n+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(6) if reply_msg[4] == 8: print('Invalid parameter') return reply_msg def load_param_eeprom(self, param_id, n = 0, type_memory = 2): payload_size = self.size_to_hex(1+2+2+2) #Payload: ID + param id + [n] + memory type if type(param_id) == str: hex_id = self.double_to_hex(ListParameters.index(param_id)) if type(param_id) == int: hex_id = self.double_to_hex(param_id) hex_n = self.double_to_hex(n) hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('load_param_eeprom'))+hex_id+hex_n+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(6) if reply_msg[4] == 8: print('Invalid parameter') return reply_msg def save_param_bank(self, type_memory = 2): payload_size = self.size_to_hex(1+2) #Payload: ID + memory type hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('save_param_bank'))+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def load_param_bank(self, type_memory = 2): payload_size = self.size_to_hex(1+2) #Payload: ID + memory type hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('load_param_bank'))+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def set_param_bank(self, param_file): fbp_param_list = [] with open(param_file,newline='') as f: reader = csv.reader(f) for row in reader: fbp_param_list.append(row) for param in fbp_param_list: if str(param[0]) == 'PS_Name': print(str(param[0]) + "[0]: " + str(param[1])) print(self.set_ps_name(str(param[1]))) else: for n in range(64): try: print(str(param[0]) + "["+ str(n) + "]: " + str(param[n+1])) print(self.set_param(str(param[0]),n,float(param[n+1]))) except: break #self.save_param_bank() def get_param_bank(self, list_param = ListParameters, timeout = 0.5, print_modules = True): timeout_old = self.ser.timeout #self.ser.timeout = 0.05 param_bank = [] for param_name in list_param: param_row = [param_name] for n in range(64): if param_name == 'PS_Name': p = self.get_ps_name() param_row.append(p) #if(print_modules): #print('PS_Name: ' + p) self.ser.timeout = timeout break else: p = self.get_param(param_name,n) if math.isnan(p): break param_row.append(p) #if(print_modules): #print(param_name + "[" + str(n) + "]: " + str(p)) if(print_modules): print(param_row) param_bank.append(param_row) self.ser.timeout = timeout_old return param_bank def store_param_bank_csv(self, bank): filename = input('Digite o nome do arquivo: ') with open( filename + '.csv', 'w', newline='') as f: writer = csv.writer(f, delimiter=',') for param_row in bank: writer.writerow(param_row) def enable_onboard_eeprom(self): self.set_param('Enable_Onboard_EEPROM',0,0) self.save_param_eeprom('Enable_Onboard_EEPROM',0,2) def disable_onboard_eeprom(self): self.set_param('Enable_Onboard_EEPROM',0,1) self.save_param_eeprom('Enable_Onboard_EEPROM',0,2) def set_dsp_coeffs(self, dsp_class, dsp_id, coeffs_list = [0,0,0,0,0,0,0,0,0,0,0,0]): coeffs_list_full = self.format_list_size(coeffs_list, NUM_MAX_COEFFS_DSP) payload_size = self.size_to_hex(1+2+2+4*NUM_MAX_COEFFS_DSP) hex_dsp_class= self.double_to_hex(dsp_class) hex_dsp_id = self.double_to_hex(dsp_id) hex_coeffs = self.float_list_to_hex(coeffs_list_full) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_dsp_coeffs'))+hex_dsp_class+hex_dsp_id+hex_coeffs send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def get_dsp_coeff(self, dsp_class, dsp_id, coeff): payload_size = self.size_to_hex(1+2+2+2) hex_dsp_class= self.double_to_hex(dsp_class) hex_dsp_id = self.double_to_hex(dsp_id) hex_coeff = self.double_to_hex(coeff) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('get_dsp_coeff'))+hex_dsp_class+hex_dsp_id+hex_coeff send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.reset_input_buffer() self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(9) #print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def save_dsp_coeffs_eeprom(self, dsp_class, dsp_id, type_memory = 2): payload_size = self.size_to_hex(1+2+2+2) hex_dsp_class= self.double_to_hex(dsp_class) hex_dsp_id = self.double_to_hex(dsp_id) hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('save_dsp_coeffs_eeprom'))+hex_dsp_class+hex_dsp_id+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def load_dsp_coeffs_eeprom(self, dsp_class, dsp_id, type_memory = 2): payload_size = self.size_to_hex(1+2+2+2) hex_dsp_class= self.double_to_hex(dsp_class) hex_dsp_id = self.double_to_hex(dsp_id) hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('load_dsp_coeffs_eeprom'))+hex_dsp_class+hex_dsp_id+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def save_dsp_modules_eeprom(self, type_memory = 2): payload_size = self.size_to_hex(1+2) #Payload: ID + memory type hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('save_dsp_modules_eeprom'))+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def load_dsp_modules_eeprom(self, type_memory = 2): payload_size = self.size_to_hex(1+2) #Payload: ID + memory type hex_type = self.double_to_hex(type_memory) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('load_dsp_modules_eeprom'))+hex_type send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def reset_udc(self): reply = input('\nEste comando realiza o reset do firmware da placa UDC, e por isso, so e executado caso a fonte esteja desligada. \nCaso deseje apenas resetar interlocks, utilize o comando reset_interlocks(). \n\nTem certeza que deseja prosseguir? [Y/N]: ') if reply == 'Y' or reply == 'y': payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('reset_udc')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) def run_bsmp_func(self,id_func,print_msg = 0): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(id_func) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) reply_msg = self.ser.read(6) if print_msg: print(reply_msg) return reply_msg def run_bsmp_func_all_ps(self,p_func,add_list,arg = None,delay = 0.5, print_reply = 1): old_add = self.GetSlaveAdd() for add in add_list: self.SetSlaveAdd(add) if arg == None: r = p_func() else: r = p_func(arg) if print_reply: print('\n Add ' + str(add)) print(r) time.sleep(delay) self.SetSlaveAdd(old_add) def cfg_source_scope(self,p_source): payload_size = self.size_to_hex(1+4) #Payload: ID + p_source hex_op_mode = self.uint32_to_hex(p_source) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('cfg_source_scope'))+hex_op_mode send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def cfg_freq_scope(self,freq): payload_size = self.size_to_hex(1+4) #Payload: ID + freq hex_op_mode = self.float_to_hex(freq) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('cfg_freq_scope'))+hex_op_mode send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def cfg_duration_scope(self,duration): payload_size = self.size_to_hex(1+4) #Payload: ID + duration hex_op_mode = self.float_to_hex(duration) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('cfg_duration_scope'))+hex_op_mode send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def enable_scope(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('enable_scope')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def disable_scope(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('disable_scope')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def get_scope_vars(self): print('\n### Scope Variables ###\n') print('Frequency: ' + str((round(self.read_bsmp_variable(25,'float'),3)))) print('Duration: ' + str((round(self.read_bsmp_variable(26,'float'),3)))) print('Source Data: ' + str((round(self.read_bsmp_variable(27,'uint32_t'),3)))) def sync_pulse(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('sync_pulse')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def select_op_mode(self,op_mode): payload_size = self.size_to_hex(1+2) #Payload: ID + enable hex_op_mode = self.double_to_hex(ListOpMode_v2_1.index(op_mode)) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('select_op_mode'))+hex_op_mode send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def set_serial_termination(self,term_enable): payload_size = self.size_to_hex(1+2) #Payload: ID + enable hex_enable = self.double_to_hex(term_enable) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_serial_termination'))+hex_enable send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def set_command_interface(self,interface): payload_size = self.size_to_hex(1+2) #Payload: ID + enable hex_interface = self.double_to_hex(interface) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('set_command_interface'))+hex_interface send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def unlock_udc(self,password): payload_size = self.size_to_hex(1+2) #Payload: ID + password hex_password = self.double_to_hex(password) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('unlock_udc'))+hex_password send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def lock_udc(self,password): payload_size = self.size_to_hex(1+2) #Payload: ID + password hex_password = self.double_to_hex(password) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('lock_udc'))+hex_password send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def reset_counters(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('reset_counters')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def cfg_siggen(self,sig_type,num_cycles,freq,amplitude,offset,aux0,aux1,aux2,aux3): payload_size = self.size_to_hex(1+2+2+4+4+4+4*4) hex_sig_type = self.double_to_hex(ListSigGenTypes_v2_1.index(sig_type)) hex_num_cycles = self.double_to_hex(num_cycles) hex_freq = self.float_to_hex(freq) hex_amplitude = self.float_to_hex(amplitude) hex_offset = self.float_to_hex(offset) hex_aux0 = self.float_to_hex(aux0) hex_aux1 = self.float_to_hex(aux1) hex_aux2 = self.float_to_hex(aux2) hex_aux3 = self.float_to_hex(aux3) send_packet = self.ComFunction + payload_size + self.index_to_hex(ListFunc_v2_1.index('cfg_siggen')) + hex_sig_type + hex_num_cycles + hex_freq + hex_amplitude + hex_offset + hex_aux0 + hex_aux1 + hex_aux2 + hex_aux3 send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def set_siggen(self,freq,amplitude,offset): payload_size = self.size_to_hex(1+4+4+4) hex_freq = self.float_to_hex(freq) hex_amplitude = self.float_to_hex(amplitude) hex_offset = self.float_to_hex(offset) send_packet = self.ComFunction + payload_size + self.index_to_hex(ListFunc_v2_1.index('set_siggen')) + hex_freq + hex_amplitude + hex_offset send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def enable_siggen(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size + self.index_to_hex(ListFunc_v2_1.index('enable_siggen')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def disable_siggen(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size + self.index_to_hex(ListFunc_v2_1.index('disable_siggen')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def cfg_wfmref(self, idx, sync_mode, frequency, gain = 1, offset = 0): payload_size = self.size_to_hex(1+2+2+4+4+4) #Payload: ID + idx + sync_mode + frequency + gain + offset hex_idx = self.double_to_hex(idx) hex_mode = self.double_to_hex(sync_mode) hex_freq = self.float_to_hex(frequency) hex_gain = self.float_to_hex(gain) hex_offset = self.float_to_hex(offset) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('cfg_wfmref'))+hex_idx+hex_mode+hex_freq+hex_gain+hex_offset send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def select_wfmref(self,idx): payload_size = self.size_to_hex(1+2) #Payload: ID + idx hex_idx = self.double_to_hex(idx) send_packet = self.ComFunction+payload_size+self.index_to_hex(ListFunc_v2_1.index('select_wfmref'))+hex_idx send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def reset_wfmref(self): payload_size = self.size_to_hex(1) #Payload: ID send_packet = self.ComFunction+payload_size + self.index_to_hex(ListFunc_v2_1.index('reset_wfmref')) send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(6) def get_wfmref_vars(self,curve_id): print('\n### WfmRef ' + str(curve_id) + ' Variables ###\n') print('Length: ' + str((round(self.read_bsmp_variable(20+curve_id*3,'uint32_t'),3)-round(self.read_bsmp_variable(19+curve_id*3,'uint32_t'),3))/2+1)) print('Index: ' + str((round(self.read_bsmp_variable(21+curve_id*3,'uint32_t'),3)-round(self.read_bsmp_variable(19+curve_id*3,'uint32_t'),3))/2+1)) print('WfmRef Selected: ' + str(round(self.read_bsmp_variable(14,'uint16_t'),3))) print('Sync Mode: ' + str(round(self.read_bsmp_variable(15,'uint16_t'),3))) print('Frequency: ' + str(round(self.read_bsmp_variable(16,'float'),3)) + " Hz") print('Gain: ' + str(round(self.read_bsmp_variable(17,'float'),3))) print('Offset: ' + str(round(self.read_bsmp_variable(18,'float'),3))) def read_csv_file(self,filename, type = 'float'): csv_list = [] with open(filename, newline = '') as f: reader = csv.reader(f) for row in reader: if type == 'float': row_converted = float(row[0]) elif type == 'string' or type == 'str': row_converted = str(row[0]) csv_list.append(row_converted) print('Length of list: ' + str(len(csv_list)) + '\n') return csv_list ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Métodos de Leitura de Valores das Variáveis BSMP O retorno do método são os valores double/float da respectiva variavel ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def read_bsmp_variable(self,id_var,type_var,print_msg = 0): self.read_var(self.index_to_hex(id_var)) reply_msg = self.ser.read(typeSize[type_var]) if print_msg: print(reply_msg) val = struct.unpack(typeFormat[type_var],reply_msg) return val[3] def read_bsmp_variable_gen(self,id_var,size_bytes,print_msg = 0): self.read_var(self.index_to_hex(id_var)) reply_msg = self.ser.read(size_bytes+5) if print_msg: print(reply_msg) return reply_msg def read_udc_arm_version(self): self.read_var(self.index_to_hex(3)) reply_msg = self.ser.read(133) val = struct.unpack('16s',reply_msg[4:20]) return val[0].decode('utf-8') def read_udc_c28_version(self): self.read_var(self.index_to_hex(3)) reply_msg = self.ser.read(133) val = struct.unpack('16s',reply_msg[20:36]) return val[0].decode('utf-8') def read_udc_version(self): print('\n ARM: ' + self.read_udc_arm_version()) print(' C28: ' + self.read_udc_c28_version()) def Read_iLoad1(self): self.read_var(self.index_to_hex(ListVar.index('iLoad1'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iLoad2(self): self.read_var(self.index_to_hex(ListVar.index('iLoad2'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iMod1(self): self.read_var(self.index_to_hex(ListVar.index('iMod1'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iMod2(self): self.read_var(self.index_to_hex(ListVar.index('iMod2'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iMod3(self): self.read_var(self.index_to_hex(ListVar.index('iMod3'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iMod4(self): self.read_var(self.index_to_hex(ListVar.index('iMod4'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vLoad(self): self.read_var(self.index_to_hex(ListVar.index('vLoad'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vDCMod1(self): self.read_var(self.index_to_hex(ListVar.index('vDCMod1'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vDCMod2(self): self.read_var(self.index_to_hex(ListVar.index('vDCMod2'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vDCMod3(self): self.read_var(self.index_to_hex(ListVar.index('vDCMod3'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vDCMod4(self): self.read_var(self.index_to_hex(ListVar.index('vDCMod4'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vOutMod1(self): self.read_var(self.index_to_hex(ListVar.index('vOutMod1'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vOutMod2(self): self.read_var(self.index_to_hex(ListVar.index('vOutMod2'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vOutMod3(self): self.read_var(self.index_to_hex(ListVar.index('vOutMod3'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_vOutMod4(self): self.read_var(self.index_to_hex(ListVar.index('vOutMod4'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_temp1(self): self.read_var(self.index_to_hex(ListVar.index('temp1'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_temp2(self): self.read_var(self.index_to_hex(ListVar.index('temp2'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_temp3(self): self.read_var(self.index_to_hex(ListVar.index('temp3'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_temp4(self): self.read_var(self.index_to_hex(ListVar.index('temp4'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_ps_OnOff(self): self.read_var(self.index_to_hex(ListVar.index('ps_OnOff'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_ps_OpMode(self): self.read_var(self.index_to_hex(ListVar.index('ps_OpMode'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_ps_Remote(self): self.read_var(self.index_to_hex(ListVar.index('ps_Remote'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_ps_OpenLoop(self): self.read_var(self.index_to_hex(ListVar.index('ps_OpenLoop'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_ps_SoftInterlocks(self): op_bin = 1 ActiveSoftInterlocks = [] SoftInterlocksList = ['N/A', 'Sobre-tensao na carga 1', 'N/A',\ 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A',\ 'Sobre-tensao na carga 2', 'N/A', \ 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A',\ 'Sobre-tensao na carga 3', 'N/A', \ 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A',\ 'Sobre-tensao na carga 4', 'N/A', \ 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A'] self.read_var(self.index_to_hex(ListVar.index('ps_SoftInterlocks'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHIB',reply_msg) print('Soft Interlocks ativos:') for i in range(len('{0:b}'.format(val[3]))): if (val[3] & (op_bin << i)) == 2**i: ActiveSoftInterlocks.append(SoftInterlocksList[i]) print(SoftInterlocksList[i]) print('---------------------------------------------------------------') return val[3] def Read_ps_HardInterlocks(self): op_bin = 1 ActiveHardInterlocks = [] HardInterlocksList = ['Sobre-corrente na carga 1', 'N/A', \ 'Sobre-tensao no DC-Link do modulo 1', \ 'Sub-tensao no DC-Link do modulo 1', \ 'Falha no rele de entrada do DC-Link do modulo 1', \ 'Falha no fusivel de entrada do DC-Link do modulo 1', \ 'Falha nos drivers do modulo 1', \ 'Sobre-temperatura no modulo 1', \ 'Sobre-corrente na carga 2', 'N/A', \ 'Sobre-tensao no DC-Link do modulo 2', \ 'Sub-tensao no DC-Link do modulo 2', \ 'Falha no rele de entrada do DC-Link do modulo 2', \ 'Falha no fusivel de entrada do DC-Link do modulo 2', \ 'Falha nos drivers do modulo 2', \ 'Sobre-temperatura no modulo 2', \ 'Sobre-corrente na carga 3', 'N\A', \ 'Sobre-tensao no DC-Link do modulo 3', \ 'Sub-tensao no DC-Link do modulo 3', \ 'Falha no rele de entrada no DC-Link do modulo 3', \ 'Falha no fusivel de entrada do DC-Link do modulo 3', \ 'Falha nos drivers do modulo 3', \ 'Sobre-temperatura no modulo 3', \ 'Sobre-corrente na carga 4', 'N/A', \ 'Sobre-tensao no DC-Link do modulo 4', \ 'Sub-tensao no DC-Link do modulo 4', \ 'Falha no rele de entrada do DC-Link do modulo 4', \ 'Falha no fusivel de entrada do DC-Link do modulo 4', \ 'Falha nos drivers do modulo 4', \ 'Sobre-temperatura no modulo 4'] self.read_var(self.index_to_hex(ListVar.index('ps_HardInterlocks'))) reply_msg = self.ser.read(9) print(reply_msg) val = struct.unpack('BBHIB',reply_msg) print('Hard Interlocks ativos:') for i in range(len('{0:b}'.format(val[3]))): if (val[3] & (op_bin << i)) == 2**i: ActiveHardInterlocks.append(HardInterlocksList[i]) print(HardInterlocksList[i]) print('---------------------------------------------------------------') return val[3] def Read_iRef(self): self.read_var(self.index_to_hex(ListVar.index('iRef'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_wfmRef_Gain(self): self.read_var(self.index_to_hex(ListVar.index('wfmRef_Gain'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_wfmRef_Offset(self): self.read_var(self.index_to_hex(ListVar.index('wfmRef_Offset'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_sigGen_Enable(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Enable'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_sigGen_Type(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Type'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_sigGen_Ncycles(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Ncycles'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_sigGen_PhaseStart(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_PhaseStart'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_sigGen_PhaseEnd(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_PhaseEnd'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_sigGen_Freq(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Freq'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_sigGen_Amplitude(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Amplitude'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_sigGen_Offset(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Offset'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_sigGen_Aux(self): self.read_var(self.index_to_hex(ListVar.index('sigGen_Aux'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_dp_ID(self): self.read_var(self.index_to_hex(ListVar.index('dp_ID'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_dp_Class(self): self.read_var(self.index_to_hex(ListVar.index('dp_Class'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_dp_Coeffs(self): self.read_var(self.index_to_hex(ListVar.index('dp_Coeffs'))) reply_msg = self.ser.read(69) val = struct.unpack('BBHffffffffffffffffB',reply_msg) return [val[3],val[4],val[5],val[6],val[7],val[8],val[9],val[10],val[11],val[12],val[13],val[14],val[15],val[16],val[17],val[18]] def Read_ps_Model(self): self.read_var(self.index_to_hex(ListVar.index('ps_Model'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val def read_ps_model(self): reply_msg = self.Read_ps_Model() return ListPSModels[reply_msg[3]] def Read_wfmRef_PtrBufferStart(self): self.read_var(self.index_to_hex(ListVar.index('wfmRef_PtrBufferStart'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHIB',reply_msg) return val[3] def Read_wfmRef_PtrBufferEnd(self): self.read_var(self.index_to_hex(ListVar.index('wfmRef_PtrBufferEnd'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHIB',reply_msg) return val[3] def Read_wfmRef_PtrBufferK(self): self.read_var(self.index_to_hex(ListVar.index('wfmRef_PtrBufferK'))) reply_msg = self.ser.read(9) val = struct.unpack('BBHIB',reply_msg) return val[3] def Read_wfmRef_SyncMode(self): self.read_var(self.index_to_hex(ListVar.index('wfmRef_SyncMode'))) reply_msg = self.ser.read(7) val = struct.unpack('BBHHB',reply_msg) return val[3] def Read_iRef1(self): self.read_var(self.index_to_hex(45)) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iRef2(self): self.read_var(self.index_to_hex(46)) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iRef3(self): self.read_var(self.index_to_hex(47)) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_iRef4(self): self.read_var(self.index_to_hex(48)) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] def Read_counterSetISlowRefx4(self): self.read_var(self.index_to_hex(49)) reply_msg = self.ser.read(9) val = struct.unpack('BBHfB',reply_msg) return val[3] ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Métodos de Escrita de Valores das Variáveis BSMP O retorno do método são os bytes de retorno da mensagem ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def Write_sigGen_Freq(self,float_value): hex_float = self.float_to_hex(float_value) send_packet = self.ComWriteVar+self.WriteFloatSizePayload+self.index_to_hex(ListVar.index('sigGen_Freq'))+hex_float send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Write_sigGen_Amplitude(self,float_value): hex_float = self.float_to_hex(float_value) send_packet = self.ComWriteVar+self.WriteFloatSizePayload+self.index_to_hex(ListVar.index('sigGen_Amplitude'))+hex_float send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Write_sigGen_Offset(self,float_value): hex_float = self.float_to_hex(float_value) send_packet = self.ComWriteVar+self.WriteFloatSizePayload+self.index_to_hex(ListVar.index('sigGen_Offset'))+hex_float send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Write_sigGen_Aux(self,float_value): hex_float = self.float_to_hex(float_value) send_packet = self.ComWriteVar+self.WriteFloatSizePayload+self.index_to_hex(ListVar.index('sigGen_Aux'))+hex_float send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Write_dp_ID(self,double_value): hex_double = self.double_to_hex(double_value) send_packet = self.ComWriteVar+self.WriteDoubleSizePayload+self.index_to_hex(ListVar.index('dp_ID'))+hex_double send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Write_dp_Class(self,double_value): hex_double = self.double_to_hex(double_value) send_packet = self.ComWriteVar+self.WriteDoubleSizePayload+self.index_to_hex(ListVar.index('dp_Class'))+hex_double send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Write_dp_Coeffs(self,list_float): hex_float_list = [] #list_full = list_float[:] #while(len(list_full) < self.DP_MODULE_MAX_COEFF): # list_full.append(0) list_full = [0 for i in range(self.DP_MODULE_MAX_COEFF)] list_full[:len(list_float)] = list_float[:] for float_value in list_full: hex_float = self.float_to_hex(float(float_value)) hex_float_list.append(hex_float) str_float_list = ''.join(hex_float_list) payload_size = self.size_to_hex(1+4*self.DP_MODULE_MAX_COEFF) #Payload: ID + 16floats send_packet = self.ComWriteVar+payload_size+self.index_to_hex(ListVar.index('dp_Coeffs'))+str_float_list send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Métodos de Escrita de Curvas BSMP O retorno do método são os bytes de retorno da mensagem ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def Send_wfmRef_Curve(self,block_idx,data): block_hex = struct.pack('>H',block_idx).decode('ISO-8859-1') val = [] for k in range(0,len(data)): val.append(self.float_to_hex(float(data[k]))) payload_size = struct.pack('>H', (len(val)*4)+3).decode('ISO-8859-1') curva_hex = ''.join(val) send_packet = self.ComSendWfmRef+payload_size+self.index_to_hex(ListCurv.index('wfmRef_Curve'))+block_hex+curva_hex send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Recv_wfmRef_Curve(self,block_idx): block_hex = struct.pack('>H',block_idx).decode('ISO-8859-1') payload_size = self.size_to_hex(1+2) #Payload: ID+Block_index send_packet = self.ComRequestCurve+payload_size+self.index_to_hex(ListCurv.index('wfmRef_Curve'))+block_hex send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) recv_msg = self.ser.read(1+1+2+1+2+8192+1) #Address+Command+Size+ID+Block_idx+data+checksum val = [] for k in range(7,len(recv_msg)-1,4): val.append(struct.unpack('f',recv_msg[k:k+4])) return val def Recv_samplesBuffer(self): block_hex = struct.pack('>H',0).decode('ISO-8859-1') payload_size = self.size_to_hex(1+2) #Payload: ID+Block_index send_packet = self.ComRequestCurve+payload_size+self.index_to_hex(ListCurv.index('samplesBuffer'))+block_hex send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) recv_msg = self.ser.read(1+1+2+1+2+16384+1) #Address+Command+Size+ID+Block_idx+data+checksum val = [] try: for k in range(7,len(recv_msg)-1,4): val.extend(struct.unpack('f',recv_msg[k:k+4])) except: pass return val def Send_fullwfmRef_Curve(self,block_idx,data): block_hex = struct.pack('>H',block_idx).decode('ISO-8859-1') val = [] for k in range(0,len(data)): val.append(self.float_to_hex(float(data[k]))) payload_size = struct.pack('>H', (len(val)*4)+3).decode('ISO-8859-1') curva_hex = ''.join(val) send_packet = self.ComSendWfmRef+payload_size+self.index_to_hex(ListCurv.index('fullwfmRef_Curve'))+block_hex+curva_hex send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def Recv_fullwfmRef_Curve(self,block_idx): block_hex = struct.pack('>H',block_idx).decode('ISO-8859-1') payload_size = self.size_to_hex(1+2) #Payload: ID+Block_index send_packet = self.ComRequestCurve+payload_size+self.index_to_hex(ListCurv.index('fullwfmRef_Curve'))+block_hex send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) recv_msg = self.ser.read(1+1+2+1+2+16384+1) #Address+Command+Size+ID+Block_idx+data+checksum val = [] for k in range(7,len(recv_msg)-1,4): val.append(struct.unpack('f',recv_msg[k:k+4])) return val def Recv_samplesBuffer_blocks(self,block_idx): block_hex = struct.pack('>H',block_idx).decode('ISO-8859-1') payload_size = self.size_to_hex(1+2) #Payload: ID+Block_index send_packet = self.ComRequestCurve+payload_size+self.index_to_hex(ListCurv.index('samplesBuffer_blocks'))+block_hex send_msg = self.checksum(self.SlaveAdd+send_packet) #t0 = time.time() self.ser.write(send_msg.encode('ISO-8859-1')) recv_msg = self.ser.read(1+1+2+1+2+1024+1) #Address+Command+Size+ID+Block_idx+data+checksum #print(time.time()-t0) #print(recv_msg) val = [] for k in range(7,len(recv_msg)-1,4): val.extend(struct.unpack('f',recv_msg[k:k+4])) return val def Recv_samplesBuffer_allblocks(self): buff = [] #self.DisableSamplesBuffer() for i in range(0,16): #t0 = time.time() buff.extend(self.Recv_samplesBuffer_blocks(i)) #print(time.time()-t0) #self.EnableSamplesBuffer() return buff def read_curve_block(self,curve_id,block_id): block_hex = struct.pack('>H',block_id).decode('ISO-8859-1') payload_size = self.size_to_hex(1+2) #Payload: curve_id + block_id send_packet = self.ComRequestCurve+payload_size+self.index_to_hex(curve_id)+block_hex send_msg = self.checksum(self.SlaveAdd+send_packet) #t0 = time.time() self.ser.reset_input_buffer() self.ser.write(send_msg.encode('ISO-8859-1')) recv_msg = self.ser.read(1+1+2+1+2+size_curve_block[curve_id]+1) #Address+Command+Size+ID+Block_idx+data+checksum #print(time.time()-t0) #print(recv_msg) val = [] for k in range(7,len(recv_msg)-1,4): val.extend(struct.unpack('f',recv_msg[k:k+4])) return val def write_curve_block(self,curve_id,block_id,data): block_hex = struct.pack('>H',block_id).decode('ISO-8859-1') val = [] for k in range(0,len(data)): val.append(self.float_to_hex(float(data[k]))) payload_size = struct.pack('>H', (len(val)*4)+3).decode('ISO-8859-1') curva_hex = ''.join(val) send_packet = self.ComSendWfmRef+payload_size+self.index_to_hex(curve_id)+block_hex+curva_hex send_msg = self.checksum(self.SlaveAdd+send_packet) self.ser.write(send_msg.encode('ISO-8859-1')) return self.ser.read(5) def write_wfmref(self,curve,data): #curve = ListCurv_v2_1.index('wfmref') block_size = int(size_curve_block[curve]/4) print(block_size) blocks = [data[x:x+block_size] for x in range(0, len(data), block_size)] ps_status = self.read_ps_status() wfmref_selected = self.read_bsmp_variable(14,'uint16_t') if( (wfmref_selected == curve) and (ps_status['state'] == 'RmpWfm' or ps_status['state'] == 'MigWfm') ): print("\n The specified curve ID is currently selected and PS is on " + ps_status['state'] + " state. Choose a different curve ID to proceed.\n") else: for block_id in range(len(blocks)): self.write_curve_block(curve, block_id, blocks[block_id]) print(blocks[block_id]) def read_buf_samples_ctom(self): buf = [] curve_id = ListCurv_v2_1.index('buf_samples_ctom') ps_status = self.read_ps_status() if ps_status['model'] == 'FBP': for i in range(num_blocks_curves_fbp[curve_id]): buf.extend(self.read_curve_block(curve_id,i)) else: for i in range(num_blocks_curves_fax[curve_id]): buf.extend(self.read_curve_block(curve_id,i)) return buf ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Funções Serial ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def Connect(self,port='COM2',baud=6000000): try: SerialDRS.ser = serial.Serial(port,baud,timeout=1) #port format should be 'COM'+number return True except: return False def Disconnect(self): if (self.ser.isOpen()): try: self.ser.close() return True except: return False def SetSlaveAdd(self,address): self.SlaveAdd = struct.pack('B',address).decode('ISO-8859-1') def GetSlaveAdd(self): return struct.unpack('B',self.SlaveAdd.encode())[0] ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ====================================================================== Funções auxiliares ====================================================================== ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def read_vars_common(self, print_all = False): loop_state = ["Closed Loop","Open Loop"] ps_status = self.read_ps_status() if ps_status['open_loop'] == 0: if (ps_status['model'] == 'FAC_ACDC') or (ps_status['model'] == 'FAC_2S_ACDC') or (ps_status['model'] == 'FAC_2P4S_ACDC'): setpoint_unit = " V" else: setpoint_unit = " A" else: setpoint_unit = " %" print("\nPS Model: " + ps_status['model']) print("State: " + ps_status['state']) print("Loop State: " + loop_state[ps_status['open_loop']]) print("\nSetpoint: " + str(round(self.read_bsmp_variable(1,'float'),3)) + setpoint_unit) print("Reference: " + str(round(self.read_bsmp_variable(2,'float'),3)) + setpoint_unit) if print_all: print(self.read_ps_status()) print("\nCounter set_slowref: " + str(round(self.read_bsmp_variable(4,'uint32_t'),3))) print("Counter sync pulse: " + str(round(self.read_bsmp_variable(5,'uint32_t'),3))) self.get_siggen_vars() self.get_wfmref_vars(0) self.get_wfmref_vars(1) self.get_scope_vars() def decode_interlocks(self,reg_interlocks,list_interlocks): active_interlocks = [] for i in range(32): if(reg_interlocks & (1 << i)): active_interlocks.append(list_interlocks[i]) print('\t' + list_interlocks[i]) return active_interlocks def read_vars_fbp(self, n = 1, dt = 0.5): try: for i in range(n): print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fbp_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fbp_hard_interlocks) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("Load Voltage: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " V") print("Load Resistance: " + str(abs(round(self.read_bsmp_variable(34,'float') / self.read_bsmp_variable(33,'float'),3))) + " Ohm") print("Load Power: " + str(abs(round(self.read_bsmp_variable(34,'float') * self.read_bsmp_variable(33,'float'),3))) + " W") print("DC-Link Voltage: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " V") print("Heat-Sink Temp: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " °C") print("Duty-Cycle: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " %") time.sleep(dt) except: pass def read_vars_fbp_dclink(self, n = 1, dt = 0.5): try: for i in range(n): print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("\nHard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fbp_dclink_hard_interlocks) print("\nModules status: " + str(round(self.read_bsmp_variable(33,'uint32_t'),3))) print("DC-Link Voltage: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " V") print("PS1 Voltage: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " V") print("PS2 Voltage: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("PS3 Voltage: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " V") print("Dig Pot Tap: " + str(round(self.read_bsmp_variable(38,'uint8_t'),3))) time.sleep(dt) except: pass def read_vars_fac_acdc(self, n = 1, dt = 0.5, iib = 1): #try: for i in range(n): print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_acdc_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_acdc_hard_interlocks) iib_is_itlks = self.read_bsmp_variable(45,'uint32_t') print("\nIIB IS Interlocks: " + str(iib_is_itlks)) if(iib_is_itlks): self.decode_interlocks(iib_is_itlks, list_fac_acdc_iib_is_interlocks) iib_is_alarms = self.read_bsmp_variable(46,'uint32_t') print("IIB IS Alarms: " + str(iib_is_alarms)) if(iib_is_alarms): self.decode_interlocks(iib_is_alarms, list_fac_acdc_iib_is_alarms) iib_cmd_itlks = self.read_bsmp_variable(57,'uint32_t') print("\nIIB Cmd Interlocks: " + str(iib_cmd_itlks)) if(iib_cmd_itlks): self.decode_interlocks(iib_cmd_itlks, list_fac_acdc_iib_cmd_interlocks) iib_cmd_alarms = self.read_bsmp_variable(58,'uint32_t') print("IIB Cmd Alarms: " + str(iib_cmd_alarms)) if(iib_cmd_alarms): self.decode_interlocks(iib_cmd_alarms, list_fac_acdc_iib_cmd_alarms) print("\nCapBank Voltage: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " V") print("Rectifier Current: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Duty-Cycle: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " %") if(iib): print("\nIIB IS Input Current: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " A") print("IIB IS Input Voltage: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " V") print("IIB IS IGBT Temp: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " °C") print("IIB IS Driver Voltage: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " V") print("IIB IS Driver Current: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " A") print("IIB IS Inductor Temp: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " °C") print("IIB IS Heat-Sink Temp: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " °C") print("IIB IS Board Temp: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " °C") print("IIB IS Board RH: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " %") print("IIB IS Interlocks: " + str(round(self.read_bsmp_variable(45,'uint32_t'),3))) print("IIB IS Alarms: " + str(round(self.read_bsmp_variable(46,'uint32_t'),3))) print("\nIIB Cmd Load Voltage: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " V") print("IIB Cmd CapBank Voltage: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " V") print("IIB Cmd Rectifier Inductor Temp: " + str(round(self.read_bsmp_variable(49,'float'),3)) + " °C") print("IIB Cmd Rectifier Heat-Sink Temp: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " °C") print("IIB Cmd External Boards Voltage: " + str(round(self.read_bsmp_variable(51,'float'),3)) + " V") print("IIB Cmd Auxiliary Board Current: " + str(round(self.read_bsmp_variable(52,'float'),3)) + " A") print("IIB Cmd IDB Board Current: " + str(round(self.read_bsmp_variable(53,'float'),3)) + " A") print("IIB Cmd Ground Leakage Current: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " A") print("IIB Cmd Board Temp: " + str(round(self.read_bsmp_variable(55,'float'),3)) + " °C") print("IIB Cmd Board RH: " + str(round(self.read_bsmp_variable(56,'float'),3)) + " %") print("IIB Cmd Interlocks: " + str(round(self.read_bsmp_variable(57,'uint32_t'),3))) print("IIB Cmd Alarms: " + str(round(self.read_bsmp_variable(58,'uint32_t'),3))) time.sleep(dt) #except: # pass def read_vars_fac_dcdc(self, n = 1, dt = 0.5, iib = 1): try: for i in range(n): print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() print("\nSync Pulse Counter: " + str(round(self.read_bsmp_variable(5,'uint32_t'),3))) print("WfmRef Index: " + str( (round(self.read_bsmp_variable(20,'uint32_t'),3) - round(self.read_bsmp_variable(18,'uint32_t'),3))/2 + 1)) soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_dcdc_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_dcdc_hard_interlocks) iib_itlks = self.read_bsmp_variable(51,'uint32_t') print("\nIIB Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fac_dcdc_iib_interlocks) iib_alarms = self.read_bsmp_variable(52,'uint32_t') print("IIB Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fac_dcdc_iib_alarms) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("Load Current DCCT 1: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Load Current DCCT 2: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " A") print("\nCapBank Voltage: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("\nDuty-Cycle: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " %") if(iib): print("\nIIB CapBank Voltage: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " V") print("IIB Input Current: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " A") print("IIB Output Current: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " A") print("IIB IGBT Leg 1 Temp: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " °C") print("IIB IGBT Leg 2 Temp: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " °C") print("IIB Inductor Temp: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " °C") print("IIB Heat-Sink Temp: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " °C") print("IIB Driver Voltage: " + str(round(self.read_bsmp_variable(45,'float'),3)) + " V") print("IIB Driver Current 1: " + str(round(self.read_bsmp_variable(46,'float'),3)) + " A") print("IIB Driver Current 2: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " A") print("IIB Ground Leakage Current: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " A") print("IIB Board Temp: " + str(round(self.read_bsmp_variable(49,'float'),3)) + " °C") print("IIB Board RH: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " %") print("IIB Interlocks: " + str(round(self.read_bsmp_variable(51,'uint32_t'),3))) print("IIB Alarms: " + str(round(self.read_bsmp_variable(52,'uint32_t'),3))) time.sleep(dt) except: pass def read_vars_fac_dcdc_ema(self, n = 1, dt = 0.5, iib = 0): try: for i in range(n): print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_dcdc_ema_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_dcdc_ema_hard_interlocks) iib_itlks = self.read_bsmp_variable(49,'uint32_t') print("IIB Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fac_dcdc_ema_iib_interlocks) iib_alarms = self.read_bsmp_variable(50,'uint32_t') print("IIB Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fac_dcdc_ema_iib_alarms) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3))) print("DC-Link Voltage: " + str(round(self.read_bsmp_variable(34,'float'),3))) print("\nDuty-Cycle: " + str(round(self.read_bsmp_variable(35,'float'),3))) if(iib): print("\nIIB Input Voltage: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("IIB Input Current: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " A") print("IIB Output Current: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " A") print("IIB IGBT 1 Temp: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " °C") print("IIB IGBT 2 Temp: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " °C") print("IIB Inductor Temp: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " °C") print("IIB Heat-Sink Temp: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " °C") print("IIB Driver Voltage: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " V") print("IIB Driver Current 1: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " A") print("IIB Driver Current 2: " + str(round(self.read_bsmp_variable(45,'float'),3)) + " A") print("IIB Ground Leakage Current: " + str(round(self.read_bsmp_variable(46,'float'),3)) + " A") print("IIB Board Temp: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " °C") print("IIB Board RH: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " %") print("IIB Interlocks: " + str(round(self.read_bsmp_variable(49,'uint32_t'),3))) print("IIB Alarms: " + str(round(self.read_bsmp_variable(50,'uint32_t'),3))) time.sleep(dt) except: pass def read_vars_fac_2s_acdc(self, n = 1, add_mod_a = 2, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(add_mod_a) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() print('\n *** MODULE A ***') soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2s_acdc_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2s_acdc_hard_interlocks) iib_is_itlks = self.read_bsmp_variable(45,'uint32_t') print("\nIIB IS Interlocks: " + str(iib_is_itlks)) if(iib_is_itlks): self.decode_interlocks(iib_is_itlks, list_fac_2s_acdc_iib_is_interlocks) iib_is_alarms = self.read_bsmp_variable(46,'uint32_t') print("IIB IS Alarms: " + str(iib_is_alarms)) if(iib_is_alarms): self.decode_interlocks(iib_is_alarms, list_fac_2s_acdc_iib_is_alarms) iib_cmd_itlks = self.read_bsmp_variable(57,'uint32_t') print("\nIIB Cmd Interlocks: " + str(iib_cmd_itlks)) if(iib_cmd_itlks): self.decode_interlocks(iib_cmd_itlks, list_fac_2s_acdc_iib_cmd_interlocks) iib_cmd_alarms = self.read_bsmp_variable(58,'uint32_t') print("IIB Cmd Alarms: " + str(iib_cmd_alarms)) if(iib_cmd_alarms): self.decode_interlocks(iib_cmd_alarms, list_fac_2s_acdc_iib_cmd_alarms) print("\nCapBank Voltage: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " V") print("Rectifier Current: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Duty-Cycle: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " %") if(iib): print("\nIIB IS Input Current: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " A") print("IIB IS Input Voltage: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " V") print("IIB IS IGBT Temp: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " °C") print("IIB IS Driver Voltage: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " V") print("IIB IS Driver Current: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " A") print("IIB IS Inductor Temp: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " °C") print("IIB IS Heat-Sink Temp: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " °C") print("IIB IS Board Temp: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " °C") print("IIB IS Board RH: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " %") print("IIB IS Interlocks: " + str(round(self.read_bsmp_variable(45,'uint32_t'),3))) print("IIB IS Alarms: " + str(round(self.read_bsmp_variable(46,'uint32_t'),3))) print("\nIIB Cmd Load Voltage: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " V") print("IIB Cmd CapBank Voltage: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " V") print("IIB Cmd Rectifier Inductor Temp: " + str(round(self.read_bsmp_variable(49,'float'),3)) + " °C") print("IIB Cmd Rectifier Heat-Sink Temp: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " °C") print("IIB Cmd External Boards Voltage: " + str(round(self.read_bsmp_variable(51,'float'),3)) + " V") print("IIB Cmd Auxiliary Board Current: " + str(round(self.read_bsmp_variable(52,'float'),3)) + " A") print("IIB Cmd IDB Board Current: " + str(round(self.read_bsmp_variable(53,'float'),3)) + " A") print("IIB Cmd Ground Leakage Current: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " A") print("IIB Cmd Board Temp: " + str(round(self.read_bsmp_variable(55,'float'),3)) + " °C") print("IIB Cmd Board RH: " + str(round(self.read_bsmp_variable(56,'float'),3)) + " %") print("IIB Cmd Interlocks: " + str(round(self.read_bsmp_variable(57,'uint32_t'),3))) print("IIB Cmd Alarms: " + str(round(self.read_bsmp_variable(58,'uint32_t'),3))) self.SetSlaveAdd(add_mod_a+1) print('\n *** MODULE B ***') soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2s_acdc_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2s_acdc_hard_interlocks) iib_is_itlks = self.read_bsmp_variable(45,'uint32_t') print("\nIIB IS Interlocks: " + str(iib_is_itlks)) if(iib_is_itlks): self.decode_interlocks(iib_is_itlks, list_fac_2s_acdc_iib_is_interlocks) iib_is_alarms = self.read_bsmp_variable(46,'uint32_t') print("IIB IS Alarms: " + str(iib_is_alarms)) if(iib_is_alarms): self.decode_interlocks(iib_is_alarms, list_fac_2s_acdc_iib_is_alarms) iib_cmd_itlks = self.read_bsmp_variable(57,'uint32_t') print("\nIIB Cmd Interlocks: " + str(iib_cmd_itlks)) if(iib_cmd_itlks): self.decode_interlocks(iib_cmd_itlks, list_fac_2s_acdc_iib_cmd_interlocks) iib_cmd_alarms = self.read_bsmp_variable(58,'uint32_t') print("IIB Cmd Alarms: " + str(iib_cmd_alarms)) if(iib_cmd_alarms): self.decode_interlocks(iib_cmd_alarms, list_fac_2s_acdc_iib_cmd_alarms) print("\nCapBank Voltage: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " V") print("Rectifier Current: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Duty-Cycle: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " %") if(iib): print("\nIIB IS Input Current: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " A") print("IIB IS Input Voltage: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " V") print("IIB IS IGBT Temp: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " °C") print("IIB IS Driver Voltage: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " V") print("IIB IS Driver Current: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " A") print("IIB IS Inductor Temp: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " °C") print("IIB IS Heat-Sink Temp: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " °C") print("IIB IS Board Temp: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " °C") print("IIB IS Board RH: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " %") print("IIB IS Interlocks: " + str(round(self.read_bsmp_variable(45,'uint32_t'),3))) print("IIB IS Alarms: " + str(round(self.read_bsmp_variable(46,'uint32_t'),3))) print("\nIIB Cmd Load Voltage: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " V") print("IIB Cmd CapBank Voltage: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " V") print("IIB Cmd Rectifier Inductor Temp: " + str(round(self.read_bsmp_variable(49,'float'),3)) + " °C") print("IIB Cmd Rectifier Heat-Sink Temp: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " °C") print("IIB Cmd External Boards Voltage: " + str(round(self.read_bsmp_variable(51,'float'),3)) + " V") print("IIB Cmd Auxiliary Board Current: " + str(round(self.read_bsmp_variable(52,'float'),3)) + " A") print("IIB Cmd IDB Board Current: " + str(round(self.read_bsmp_variable(53,'float'),3)) + " A") print("IIB Cmd Ground Leakage Current: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " A") print("IIB Cmd Board Temp: " + str(round(self.read_bsmp_variable(55,'float'),3)) + " °C") print("IIB Cmd Board RH: " + str(round(self.read_bsmp_variable(56,'float'),3)) + " %") print("IIB Cmd Interlocks: " + str(round(self.read_bsmp_variable(57,'uint32_t'),3))) print("IIB Cmd Alarms: " + str(round(self.read_bsmp_variable(58,'uint32_t'),3))) time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def read_vars_fac_2s_dcdc(self, n = 1, com_add = 1, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() iib_offset = 14*(iib-1) try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() print("\nSync Pulse Counter: " + str(round(self.read_bsmp_variable(5,'uint32_t'),3))) soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2s_dcdc_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2s_dcdc_hard_interlocks) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("Load Current DCCT 1: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Load Current DCCT 2: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " A") print("\nCapBank Voltage 1: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("CapBank Voltage 2: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " V") print("\nDuty-Cycle 1: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " %") print("Duty-Cycle 2: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " %") if(iib): print("\nIIB CapBank Voltage: " + str(round(self.read_bsmp_variable(40 + iib_offset,'float'),3)) + " V") print("IIB Input Current: " + str(round(self.read_bsmp_variable(41 + iib_offset,'float'),3)) + " A") print("IIB Output Current: " + str(round(self.read_bsmp_variable(42 + iib_offset,'float'),3)) + " A") print("IIB IGBT Leg 1 Temp: " + str(round(self.read_bsmp_variable(43 + iib_offset,'float'),3)) + " °C") print("IIB IGBT Leg 2 Temp: " + str(round(self.read_bsmp_variable(44 + iib_offset,'float'),3)) + " °C") print("IIB Inductor Temp: " + str(round(self.read_bsmp_variable(45 + iib_offset,'float'),3)) + " °C") print("IIB Heat-Sink Temp: " + str(round(self.read_bsmp_variable(46 + iib_offset,'float'),3)) + " °C") print("IIB Driver Voltage: " + str(round(self.read_bsmp_variable(47 + iib_offset,'float'),3)) + " V") print("IIB Driver Current 1: " + str(round(self.read_bsmp_variable(48 + iib_offset,'float'),3)) + " A") print("IIB Driver Current 2: " + str(round(self.read_bsmp_variable(49 + iib_offset,'float'),3)) + " A") print("IIB Board Temp: " + str(round(self.read_bsmp_variable(50 + iib_offset,'float'),3)) + " °C") print("IIB Board RH: " + str(round(self.read_bsmp_variable(51 + iib_offset,'float'),3)) + " %") iib_itlks = self.read_bsmp_variable(52 + iib_offset,'uint32_t') print("\nIIB Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fac_2s_dcdc_iib_interlocks) iib_alarms = self.read_bsmp_variable(53 + iib_offset,'uint32_t') print("IIB Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fac_2s_dcdc_iib_alarms) time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def read_vars_fac_2p4s_acdc(self, n = 1, add_mod_a = 1, dt = 0.5, iib = 0): self.read_vars_fac_2s_acdc(n, add_mod_a, dt, iib) def read_vars_fac_2p4s_dcdc(self, n = 1, com_add = 1, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() print("\nSync Pulse Counter: " + str(round(self.read_bsmp_variable(5,'uint32_t'),3))) soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2p4s_dcdc_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2p4s_dcdc_hard_interlocks) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3))) print("Load Current DCCT 1: " + str(round(self.read_bsmp_variable(34,'float'),3))) print("Load Current DCCT 2: " + str(round(self.read_bsmp_variable(35,'float'),3))) print("\nArm Current 1: " + str(round(self.read_bsmp_variable(36,'float'),3))) print("Arm Current 2: " + str(round(self.read_bsmp_variable(37,'float'),3))) print("\nCapBank Voltage 1: " + str(round(self.read_bsmp_variable(38,'float'),3))) print("CapBank Voltage 2: " + str(round(self.read_bsmp_variable(39,'float'),3))) print("CapBank Voltage 3: " + str(round(self.read_bsmp_variable(40,'float'),3))) print("CapBank Voltage 4: " + str(round(self.read_bsmp_variable(41,'float'),3))) print("CapBank Voltage 5: " + str(round(self.read_bsmp_variable(42,'float'),3))) print("CapBank Voltage 6: " + str(round(self.read_bsmp_variable(43,'float'),3))) print("CapBank Voltage 7: " + str(round(self.read_bsmp_variable(44,'float'),3))) print("CapBank Voltage 8: " + str(round(self.read_bsmp_variable(45,'float'),3))) print("\nDuty-Cycle 1: " + str(round(self.read_bsmp_variable(46,'float'),3))) print("Duty-Cycle 2: " + str(round(self.read_bsmp_variable(47,'float'),3))) print("Duty-Cycle 3: " + str(round(self.read_bsmp_variable(48,'float'),3))) print("Duty-Cycle 4: " + str(round(self.read_bsmp_variable(49,'float'),3))) print("Duty-Cycle 5: " + str(round(self.read_bsmp_variable(50,'float'),3))) print("Duty-Cycle 6: " + str(round(self.read_bsmp_variable(51,'float'),3))) print("Duty-Cycle 7: " + str(round(self.read_bsmp_variable(52,'float'),3))) print("Duty-Cycle 8: " + str(round(self.read_bsmp_variable(53,'float'),3))) if(iib): print("\nIIB CapBank Voltage: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " V") print("IIB Input Current: " + str(round(self.read_bsmp_variable(55, 'float'),3)) + " A") print("IIB Output Current: " + str(round(self.read_bsmp_variable(56,'float'),3)) + " A") print("IIB IGBT Leg 1 Temp: " + str(round(self.read_bsmp_variable(57,'float'),3)) + " °C") print("IIB IGBT Leg 2 Temp: " + str(round(self.read_bsmp_variable(58,'float'),3)) + " °C") print("IIB Inductor Temp: " + str(round(self.read_bsmp_variable(59,'float'),3)) + " °C") print("IIB Heat-Sink Temp: " + str(round(self.read_bsmp_variable(60,'float'),3)) + " °C") print("IIB Driver Voltage: " + str(round(self.read_bsmp_variable(61,'float'),3)) + " V") print("IIB Driver Current 1: " + str(round(self.read_bsmp_variable(62,'float'),3)) + " A") print("IIB Driver Current 2: " + str(round(self.read_bsmp_variable(63,'float'),3)) + " A") print("IIB Board Temp: " + str(round(self.read_bsmp_variable(64,'float'),3)) + " °C") print("IIB Board RH: " + str(round(self.read_bsmp_variable(65,'float'),3)) + " %") iib_itlks = self.read_bsmp_variable(66,'uint32_t') print("\nIIB Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fac_2p4s_dcdc_iib_interlocks) iib_alarms = self.read_bsmp_variable(67,'uint32_t') print("IIB Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fac_2p4s_dcdc_iib_alarms) print("\nIIB CapBank Voltage: " + str(round(self.read_bsmp_variable(68,'float'),3)) + " V") print("IIB Input Current: " + str(round(self.read_bsmp_variable(69,'float'),3)) + " A") print("IIB Output Current: " + str(round(self.read_bsmp_variable(70,'float'),3)) + " A") print("IIB IGBT Leg 1 Temp: " + str(round(self.read_bsmp_variable(71,'float'),3)) + " °C") print("IIB IGBT Leg 2 Temp: " + str(round(self.read_bsmp_variable(72,'float'),3)) + " °C") print("IIB Inductor Temp: " + str(round(self.read_bsmp_variable(73,'float'),3)) + " °C") print("IIB Heat-Sink Temp: " + str(round(self.read_bsmp_variable(74,'float'),3)) + " °C") print("IIB Driver Voltage: " + str(round(self.read_bsmp_variable(75,'float'),3)) + " V") print("IIB Driver Current 1: " + str(round(self.read_bsmp_variable(76,'float'),3)) + " A") print("IIB Driver Current 2: " + str(round(self.read_bsmp_variable(77,'float'),3)) + " A") print("IIB Board Temp: " + str(round(self.read_bsmp_variable(78,'float'),3)) + " °C") print("IIB Board RH: " + str(round(self.read_bsmp_variable(79,'float'),3)) + " %") iib_itlks = self.read_bsmp_variable(80,'uint32_t') print("\nIIB Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fac_2p4s_dcdc_iib_interlocks) iib_alarms = self.read_bsmp_variable(81,'uint32_t') print("IIB Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fac_2p4s_dcdc_iib_alarms) time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def read_vars_fap(self, n = 1, com_add = 1, dt = 0.5, iib = 1): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fap_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fap_hard_interlocks) iib_itlks = self.read_bsmp_variable(56,'uint32_t') print("\nIIB Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fap_iib_interlocks) iib_alarms = self.read_bsmp_variable(57,'uint32_t') print("\nIIB Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fap_iib_alarms) iload = self.read_bsmp_variable(33,'float') print("\nLoad Current: " + str(round(iload,3)) + " A") print("Load Current DCCT 1: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Load Current DCCT 2: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " A") if not iload == 0: print("\nLoad Resistance: " + str(abs(round(self.read_bsmp_variable(43,'float') / iload ,3))) + " Ohm") else: print("\nLoad Resistance: 0 Ohm") print("Load Power: " + str(abs(round(self.read_bsmp_variable(43,'float') * self.read_bsmp_variable(33,'float'),3))) + " W") print("\nDC-Link Voltage: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("\nIGBT 1 Current: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " A") print("IGBT 2 Current: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " A") print("\nIGBT 1 Duty-Cycle: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " %") print("IGBT 2 Duty-Cycle: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " %") print("Differential Duty-Cycle: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " %") if(iib): print("\nIIB Input Voltage: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " V") print("IIB Output Voltage: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " V") print("IIB IGBT 1 Current: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " A") print("IIB IGBT 2 Current: " + str(round(self.read_bsmp_variable(45,'float'),3)) + " A") print("IIB IGBT 1 Temp: " + str(round(self.read_bsmp_variable(46,'float'),3)) + " °C") print("IIB IGBT 2 Temp: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " °C") print("IIB Driver Voltage: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " V") print("IIB Driver Current 1: " + str(round(self.read_bsmp_variable(49,'float'),3)) + " A") print("IIB Driver Current 2: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " A") print("IIB Inductor Temp: " + str(round(self.read_bsmp_variable(51,'float'),3)) + " °C") print("IIB Heat-Sink Temp: " + str(round(self.read_bsmp_variable(52,'float'),3)) + " °C") print("IIB Ground Leakage Current: " + str(round(self.read_bsmp_variable(53,'float'),3)) + " A") print("IIB Board Temp: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " °C") print("IIB Board RH: " + str(round(self.read_bsmp_variable(55,'float'),3)) + " %") print("IIB Interlocks: " + str(round(self.read_bsmp_variable(56,'uint32_t'),3))) print("IIB Alarms: " + str(round(self.read_bsmp_variable(57,'uint32_t'),3))) time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def read_vars_fap_4p(self, n = 1, com_add = 1, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() iib_offset = 16*(iib-1) try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fap_4p_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fap_4p_hard_interlocks) for j in range(4): iib_itlks = self.read_bsmp_variable(72 + j*16,'uint32_t') print("\nIIB " + str(j+1) + " Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fap_4p_iib_interlocks) iib_alarms = self.read_bsmp_variable(73 + j*16,'uint32_t') print("IIB " + str(j+1) + " Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fap_4p_iib_alarms) print("\n Mean Load Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("Load Current 1: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Load Current 2: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " A") print("Load Voltage: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("\nIGBT 1 Current Mod 1: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " A") print("IGBT 2 Current Mod 1: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " A") print("IGBT 1 Current Mod 2: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " A") print("IGBT 2 Current Mod 2: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " A") print("IGBT 1 Current Mod 3: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " A") print("IGBT 2 Current Mod 3: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " A") print("IGBT 1 Current Mod 4: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " A") print("IGBT 2 Current Mod 4: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " A") print("\nDC-Link Voltage Mod 1: " + str(round(self.read_bsmp_variable(45,'float'),3)) + " V") print("DC-Link Voltage Mod 2: " + str(round(self.read_bsmp_variable(46,'float'),3)) + " V") print("DC-Link Voltage Mod 3: " + str(round(self.read_bsmp_variable(47,'float'),3)) + " V") print("DC-Link Voltage Mod 4: " + str(round(self.read_bsmp_variable(48,'float'),3)) + " V") print("\nMean Duty-Cycle: " + str(round(self.read_bsmp_variable(49,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 1: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 1: " + str(round(self.read_bsmp_variable(51,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 2: " + str(round(self.read_bsmp_variable(52,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 2: " + str(round(self.read_bsmp_variable(53,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 3: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 3: " + str(round(self.read_bsmp_variable(55,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 4: " + str(round(self.read_bsmp_variable(56,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 4: " + str(round(self.read_bsmp_variable(57,'float'),3)) + " %") if not iib == 0: print("\nIIB " + str(iib) + " Input Voltage: " + str(round(self.read_bsmp_variable(58 + iib_offset,'float'),3)) + " V") print("IIB " + str(iib) + " Output Voltage: " + str(round(self.read_bsmp_variable(59 + iib_offset,'float'),3)) + " V") print("IIB " + str(iib) + " IGBT 1 Current: " + str(round(self.read_bsmp_variable(60 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " IGBT 2 Current: " + str(round(self.read_bsmp_variable(61 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " IGBT 1 Temp: " + str(round(self.read_bsmp_variable(62 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " IGBT 2 Temp: " + str(round(self.read_bsmp_variable(63 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Driver Voltage: " + str(round(self.read_bsmp_variable(64 + iib_offset,'float'),3)) + " V") print("IIB " + str(iib) + " Driver Current 1: " + str(round(self.read_bsmp_variable(65 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " Driver Current 2: " + str(round(self.read_bsmp_variable(66 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " Inductor Temp: " + str(round(self.read_bsmp_variable(67 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Heat-Sink Temp: " + str(round(self.read_bsmp_variable(68 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Ground Leakage Current: " + str(round(self.read_bsmp_variable(69 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " Board Temp: " + str(round(self.read_bsmp_variable(70 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Board RH: " + str(round(self.read_bsmp_variable(71 + iib_offset,'float'),3)) + " %") print("IIB " + str(iib) + " Interlocks: " + str(round(self.read_bsmp_variable(72 + iib_offset,'uint32_t'),3))) print("IIB " + str(iib) + " Alarms: " + str(round(self.read_bsmp_variable(73 + iib_offset,'uint32_t'),3))) time.sleep(dt) self.SetSlaveAdd(old_add) except Exception as e: print(e) self.SetSlaveAdd(old_add) def read_vars_fap_2p2s(self, n = 1, com_add = 1, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() iib_offset = 16*(iib-1) try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fap_2p2s_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fap_2p2s_hard_interlocks) for j in range(4): iib_itlks = self.read_bsmp_variable(78 + j*16,'uint32_t') print("\nIIB " + str(j+1) + " Interlocks: " + str(iib_itlks)) if(iib_itlks): self.decode_interlocks(iib_itlks, list_fap_4p_iib_interlocks) iib_alarms = self.read_bsmp_variable(79 + j*16,'uint32_t') print("IIB " + str(j+1) + " Alarms: " + str(iib_alarms)) if(iib_alarms): self.decode_interlocks(iib_alarms, list_fap_4p_iib_alarms) print("\nMean Load Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("Load Current 1: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Load Current 2: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " A") print("\nArm Current 1: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " A") print("Arm Current 2: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " A") print("\nIGBT 1 Current Mod 1: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " A") print("IGBT 2 Current Mod 1: " + str(round(self.read_bsmp_variable(39,'float'),3)) + " A") print("IGBT 1 Current Mod 2: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " A") print("IGBT 2 Current Mod 2: " + str(round(self.read_bsmp_variable(41,'float'),3)) + " A") print("IGBT 1 Current Mod 3: " + str(round(self.read_bsmp_variable(42,'float'),3)) + " A") print("IGBT 2 Current Mod 3: " + str(round(self.read_bsmp_variable(43,'float'),3)) + " A") print("IGBT 1 Current Mod 4: " + str(round(self.read_bsmp_variable(44,'float'),3)) + " A") print("IGBT 2 Current Mod 4: " + str(round(self.read_bsmp_variable(45,'float'),3)) + " A") print("\nDC-Link Voltage Mod 1: " + str(round(self.read_bsmp_variable(50,'float'),3)) + " V") print("DC-Link Voltage Mod 2: " + str(round(self.read_bsmp_variable(51,'float'),3)) + " V") print("DC-Link Voltage Mod 3: " + str(round(self.read_bsmp_variable(52,'float'),3)) + " V") print("DC-Link Voltage Mod 4: " + str(round(self.read_bsmp_variable(53,'float'),3)) + " V") print("\nMean Duty-Cycle: " + str(round(self.read_bsmp_variable(54,'float'),3)) + " %") print("Differential Duty-Cycle: " + str(round(self.read_bsmp_variable(55,'float'),3)) + " %") print("\nIGBT 1 Duty-Cycle Mod 1: " + str(round(self.read_bsmp_variable(56,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 1: " + str(round(self.read_bsmp_variable(57,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 2: " + str(round(self.read_bsmp_variable(58,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 2: " + str(round(self.read_bsmp_variable(59,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 3: " + str(round(self.read_bsmp_variable(60,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 3: " + str(round(self.read_bsmp_variable(61,'float'),3)) + " %") print("IGBT 1 Duty-Cycle Mod 4: " + str(round(self.read_bsmp_variable(62,'float'),3)) + " %") print("IGBT 2 Duty-Cycle Mod 4: " + str(round(self.read_bsmp_variable(63,'float'),3)) + " %") if not iib == 0: print("\nIIB " + str(iib) + " Input Voltage: " + str(round(self.read_bsmp_variable(64 + iib_offset,'float'),3)) + " V") print("IIB " + str(iib) + " Output Voltage: " + str(round(self.read_bsmp_variable(65 + iib_offset,'float'),3)) + " V") print("IIB " + str(iib) + " IGBT 1 Current: " + str(round(self.read_bsmp_variable(66 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " IGBT 2 Current: " + str(round(self.read_bsmp_variable(67 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " IGBT 1 Temp: " + str(round(self.read_bsmp_variable(68 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " IGBT 2 Temp: " + str(round(self.read_bsmp_variable(69 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Driver Voltage: " + str(round(self.read_bsmp_variable(70 + iib_offset,'float'),3)) + " V") print("IIB " + str(iib) + " Driver Current 1: " + str(round(self.read_bsmp_variable(71 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " Driver Current 2: " + str(round(self.read_bsmp_variable(72 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " Inductor Temp: " + str(round(self.read_bsmp_variable(73 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Heat-Sink Temp: " + str(round(self.read_bsmp_variable(74 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Ground Leakage Current: " + str(round(self.read_bsmp_variable(75 + iib_offset,'float'),3)) + " A") print("IIB " + str(iib) + " Board Temp: " + str(round(self.read_bsmp_variable(76 + iib_offset,'float'),3)) + " °C") print("IIB " + str(iib) + " Board RH: " + str(round(self.read_bsmp_variable(77 + iib_offset,'float'),3)) + " %") print("IIB " + str(iib) + " Interlocks: " + str(round(self.read_bsmp_variable(78 + iib_offset,'uint32_t'),3))) print("IIB " + str(iib) + " Alarms: " + str(round(self.read_bsmp_variable(79 + iib_offset,'uint32_t'),3))) time.sleep(dt) self.SetSlaveAdd(old_add) except Exception as e: print(e) self.SetSlaveAdd(old_add) def read_vars_fap_225A(self, n = 1, com_add = 1, dt = 0.5): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fap_225A_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fap_225A_hard_interlocks) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("\nIGBT 1 Current: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("IGBT 2 Current: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " A") print("\nIGBT 1 Duty-Cycle: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " %") print("IGBT 2 Duty-Cycle: " + str(round(self.read_bsmp_variable(37,'float'),3)) + " %") print("Differential Duty-Cycle: " + str(round(self.read_bsmp_variable(38,'float'),3)) + " %") time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def read_vars_fbp_2s_ufjf(self, n = 1, com_add = 1, dt = 0.5): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fbp_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fbp_hard_interlocks) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " A") print("Load Error: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("\nMod 1 Load Voltage: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " V") print("Mod 3 Load Voltage: " + str(round(self.read_bsmp_variable(40,'float'),3)) + " V") #print("\nMod 1 DC-Link Voltage: " + str(round(self.read_bsmp_variable(29,'float'),3)) + " V") #print("Mod 1 Temperature: " + str(round(self.read_bsmp_variable(31,'float'),3)) + " °C") #print("\nMod 3 DC-Link Voltage: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " V") #print("Mod 3 Temperature: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " °C") print("\nMod 1 Duty-Cycle: " + str(round(self.read_bsmp_variable(32,'float'),3)) + " %") print("Mod 3 Duty-Cycle: " + str(round(self.read_bsmp_variable(36,'float'),3)) + " %") time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def read_vars_fac_2p_acdc_imas(self, n = 1, add_mod_a = 2, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(add_mod_a) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() print('\n *** MODULE A ***') soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2p_acdc_imas_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2p_acdc_imas_hard_interlocks) print("\nCapBank Voltage: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " V") print("Rectifier Current: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Duty-Cycle: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " %") self.SetSlaveAdd(add_mod_a+1) print('\n *** MODULE B ***') soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2p_acdc_imas_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2p_acdc_imas_hard_interlocks) print("\nCapBank Voltage: " + str(round(self.read_bsmp_variable(33,'float'),3)) + " V") print("Rectifier Current: " + str(round(self.read_bsmp_variable(34,'float'),3)) + " A") print("Duty-Cycle: " + str(round(self.read_bsmp_variable(35,'float'),3)) + " %") time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) raise def read_vars_fac_2p_dcdc_imas(self, n = 1, com_add = 1, dt = 0.5, iib = 0): old_add = self.GetSlaveAdd() try: for i in range(n): self.SetSlaveAdd(com_add) print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.read_vars_common() print("\nSync Pulse Counter: " + str(round(self.read_bsmp_variable(5,'uint32_t'),3))) soft_itlks = self.read_bsmp_variable(31,'uint32_t') print("\nSoft Interlocks: " + str(soft_itlks)) if(soft_itlks): self.decode_interlocks(soft_itlks, list_fac_2p_dcdc_imas_soft_interlocks) print('') hard_itlks = self.read_bsmp_variable(32,'uint32_t') print("Hard Interlocks: " + str(hard_itlks)) if(hard_itlks): self.decode_interlocks(hard_itlks, list_fac_2p_dcdc_imas_hard_interlocks) print("\nLoad Current: " + str(round(self.read_bsmp_variable(33,'float'),3)) + ' A') print("Load Current Error: " + str(round(self.read_bsmp_variable(34,'float'),3)) + ' A') print("\nArm 1 Current: " + str(round(self.read_bsmp_variable(35,'float'),3)) + ' A') print("Arm 2 Current: " + str(round(self.read_bsmp_variable(36,'float'),3)) + ' A') print("Arms Current Diff: " + str(round(self.read_bsmp_variable(37,'float'),3)) + ' A') print("\nCapBank Voltage 1: " + str(round(self.read_bsmp_variable(38,'float'),3)) + ' V') print("CapBank Voltage 2: " + str(round(self.read_bsmp_variable(39,'float'),3)) + ' V') print("\nDuty-Cycle 1: " + str(round(self.read_bsmp_variable(40,'float'),3)) + ' %') print("Duty-Cycle 2: " + str(round(self.read_bsmp_variable(41,'float'),3)) + ' %') print("Differential Duty-Cycle: " + str(round(self.read_bsmp_variable(42,'float'),3)) + ' %') time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) raise def check_param_bank(self, param_file): fbp_param_list = [] max_sampling_freq = 600000 c28_sysclk = 150e6 with open(param_file,newline='') as f: reader = csv.reader(f) for row in reader: fbp_param_list.append(row) for param in fbp_param_list: if str(param[0]) == 'Num_PS_Modules' and param[1] > 4: print("Invalid " + str(param[0]) + ": " + str(param[1]) + ". Maximum is 4") elif str(param[0]) == 'Freq_ISR_Controller' and param[1] > 6000000: print("Invalid " + str(param[0]) + ": " + str(param[1]) + ". Maximum is 4" ) else: for n in range(64): try: print(str(param[0]) + "["+ str(n) + "]: " + str(param[n+1])) print(self.set_param(str(param[0]),n,float(param[n+1]))) except: break def set_param_bank(self, param_file): fbp_param_list = [] with open(param_file,newline='') as f: reader = csv.reader(f) for row in reader: fbp_param_list.append(row) for param in fbp_param_list: if str(param[0]) == 'PS_Name': print(str(param[0]) + "[0]: " + str(param[1])) print(self.set_ps_name(str(param[1]))) else: for n in range(64): try: print(str(param[0]) + "["+ str(n) + "]: " + str(param[n+1])) print(self.set_param(str(param[0]),n,float(param[n+1]))) except: break #self.save_param_bank() def get_default_ramp_waveform(self, interval=500, nrpts=4000, ti=None, fi=None, forms=None): from siriuspy.magnet.util import get_default_ramp_waveform return get_default_ramp_waveform(interval, nrpts, ti, fi, forms) def save_ramp_waveform(self, ramp): filename = input('Digite o nome do arquivo: ') with open( filename + '.csv', 'w', newline='') as f: writer = csv.writer(f, delimiter=';') writer.writerow(ramp) def save_ramp_waveform_col(self, ramp): filename = input('Digite o nome do arquivo: ') with open( filename + '.csv', 'w', newline='') as f: writer = csv.writer(f) for val in ramp: writer.writerow([val]) def read_vars_fac_n(self, n = 1, dt = 0.5): old_add = self.GetSlaveAdd() try: for i in range(n): print('\n--- Measurement #' + str(i+1) + ' ------------------------------------------\n') self.SetSlaveAdd(1) self.read_vars_fac_dcdc() print('\n-----------------------\n') self.SetSlaveAdd(2) self.read_vars_fac_acdc() time.sleep(dt) self.SetSlaveAdd(old_add) except: self.SetSlaveAdd(old_add) def get_step_buffer_fbp_ufjf(self, net1, net2, i_0, i_f, dly): self.set_param('Analog_Var_Max',4,net1) self.set_param('Analog_Var_Max',5,net2) self.set_slowref(i_0) time.sleep(0.5) self.enable_buf_samples() time.sleep(dly) self.set_slowref(i_f) self.disable_buf_samples() buf = self.read_buf_samples_ctom() buf1 = buf[0:4096:2] buf2 = buf[1:4096:2] fig = plt.figure() ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) ax1.plot(buf1) ax1.grid() ax2.plot(buf2) ax2.grid() fig.show() return [buf1,buf2] def set_buf_samples_freq(self, fs): self.set_param('Freq_TimeSlicer',1,fs) self.save_param_eeprom('Freq_TimeSlicer',1) self.reset_udc() def calc_pi(self, r_load, l_load, f_bw, v_dclink, send_drs = 0, dsp_id = 0): kp = 2*3.1415*f_bw*l_load/v_dclink ki = kp*r_load/l_load print('\n Kp = ' + str(kp)) print(' Ki = ' + str(ki) + '\n') if send_drs: self.set_dsp_coeffs(3,dsp_id,[kp,ki,0.95,-0.95]) return [kp,ki] def config_dsp_modules_drs_fap_tests(self): kp_load = 0 ki_load = 20.95 kp_share = 0.000032117 ki_share = 0.0012 drs.set_dsp_coeffs(3,0,[kp_load,ki_load,0.6,0]) drs.set_dsp_coeffs(3,1,[kp_share,ki_share,0.0015,-0.0015]) drs.save_dsp_modules_eeprom() def set_prbs_sampling_freq(self,freq, type_memory): self.set_param('Freq_TimeSlicer',0,freq) self.set_param('Freq_TimeSlicer',1,freq) self.save_param_bank(type_memory) def get_dsp_modules_bank(self, list_dsp_classes = [1,2,3,4,5,6], print_modules = 1): dsp_modules_bank = [] for dsp_class in list_dsp_classes: for dsp_id in range(num_dsp_modules[dsp_class]): dsp_module = [dsp_classes_names[dsp_class], dsp_class, dsp_id] for dsp_coeff in range(num_coeffs_dsp_modules[dsp_class]): try: coeff = self.get_dsp_coeff(dsp_class,dsp_id,dsp_coeff) if dsp_class == 3 and dsp_coeff == 1: coeff *= self.get_param('Freq_ISR_Controller',0) dsp_module.append(coeff) except: dsp_module.append('nan') dsp_modules_bank.append(dsp_module) if(print_modules): print(dsp_module) return dsp_modules_bank def store_dsp_modules_bank_csv(self, bank): filename = input('Digite o nome do arquivo: ') with open( filename + '.csv', 'w', newline='') as f: writer = csv.writer(f, delimiter=',') for dsp_module in bank: writer.writerow(dsp_module) def set_dsp_modules_bank(self, dsp_modules_file, save_eeprom = 0): dsp_modules_row = [] with open(dsp_modules_file,newline='') as f: reader = csv.reader(f) for dsp_module in reader: if not dsp_module == []: if not dsp_module[0][0] == '#': list_coeffs = [] for coeff in dsp_module[3:3+num_coeffs_dsp_modules[int(dsp_module[1])]]: list_coeffs.append(float(coeff)) print(str(int(dsp_module[1])) + ' ' + str(int(dsp_module[2])) + ' ' + str(list_coeffs)) self.set_dsp_coeffs(int(dsp_module[1]),int(dsp_module[2]),list_coeffs) if(save_eeprom): self.save_dsp_modules_eeprom() else: print('\n *** Aviso: Os coeficientes configurados não foram salvos na memória EEPROM. Caso deseje salvar, utilize o argumento save_eeprom = 1') def set_param_bank(self, param_file): fbp_param_list = [] with open(param_file,newline='') as f: reader = csv.reader(f) for row in reader: fbp_param_list.append(row) for param in fbp_param_list: if str(param[0]) == 'PS_Name': print(str(param[0]) + "[0]: " + str(param[1])) print(self.set_ps_name(str(param[1]))) else: for n in range(64): try: print(str(param[0]) + "["+ str(n) + "]: " + str(param[n+1])) print(self.set_param(str(param[0]),n,float(param[n+1]))) except: break #self.save_param_bank() def select_param_bank(self, cfg_dsp_modules = 0): add = int(input('\n Digite o endereco serial atual do controlador a ser configurado: ')) oldadd = self.GetSlaveAdd() self.SetSlaveAdd(add) areas = ['IA','LA','PA'] ps_models = ['fbp','fbp_dclink','fap','fap_4p','fap_2p4s','fac','fac_2s'] ps_folders = ['fbp','fbp_dclink','fap','fap',] la_fap = ['TB-Fam:PS-B','TS-01:PS-QF1A','TS-01:PS-QF1B','TS-02:PS-QD2', 'TS-02:PS-QF2','TS-03:PS-QF3','TS-04:PS-QD4A','TS-04:PS-QD4B', 'TS-04:PS-QF4'] print('\n Selecione area: \n') print(' 0: Sala de racks') print(' 1: Linhas de transporte') print(' 2: Sala de fontes\n') area = int(input(' Digite o numero correspondente: ')) if area == 0: sector = input('\n Digite o setor da sala de racks [1 a 20]: ') if int(sector) < 10: sector = '0' + sector rack = input('\n Escolha o rack em que a fonte se encontra [1/2/3]: ') #if (rack != '1') and (rack != '2'): if not ((rack == '1') or (rack == '2') or (sector == '09' and rack == '3')): print(' \n *** RACK INEXISTENTE ***\n') return print('\n Escolha o tipo de fonte: \n') print(' 0: FBP') print(' 1: FBP-DCLink\n') ps_model = int(input(' Digite o numero correspondente: ')) if ps_model == 0: crate = '_crate_' + input('\n Digite a posicao do bastidor, de cima para baixo. Leve em conta os bastidores que ainda nao foram instalados : ') elif ps_model == 1: crate = '' else: print(' \n *** TIPO DE FONTE INEXISTENTE ***\n') return file_dir = '../ps_parameters/IA-' + sector + '/' + ps_models[ps_model] + '/' file_name = 'parameters_' + ps_models[ps_model] + '_IA-' + sector + 'RaPS0' + rack + crate + '.csv' file_path = file_dir + file_name print('\n Banco de parametros a ser utilizado: ' + file_path) elif area == 1: print('\n Escolha o tipo de fonte: \n') print(' 0: FBP') print(' 1: FBP-DCLink') print(' 2: FAP\n') ps_model = int(input(' Digite o numero correspondente: ')) if ps_model == 0 or ps_model == 1: crate = input('\n Digite a posicao do bastidor, de cima para baixo. Leve em conta os bastidores que ainda nao foram instalados : ') ps_name = '_LA-RaPS06_crate_' + crate file_dir = '../ps_parameters/LA/' + ps_models[ps_model] + '/' file_name = 'parameters_' + ps_models[ps_model] + ps_name + '.csv' file_path = file_dir + file_name elif ps_model == 2: ps_list = [] file_dir = '../ps_parameters/LA/fap/' for entry in os.listdir(file_dir): if os.path.isfile(os.path.join(file_dir, entry)): ps_list.append(entry) print('\n ### Lista de fontes FAP da linha de transporte ### \n') for idx, ps in enumerate(ps_list): print(' ' + str(idx) + ': ' + ps) ps_idx = int(input('\n Escolha o índice da fonte correspondente: ')) file_path = file_dir + ps_list[ps_idx] else: print(' \n *** TIPO DE FONTE INEXISTENTE ***\n') return print('\n Banco de parametros a ser utilizado: ' + file_path) elif area == 2: print('\n Escolha o tipo de fonte: \n') print(' 0: FAC') print(' 1: FAP\n') ps_model = int(input(' Digite o numero correspondente: ')) if ps_model == 0: ps_list = [] file_dir = '../ps_parameters/PA/fac/' for entry in os.listdir(file_dir): if os.path.isfile(os.path.join(file_dir, entry)): ps_list.append(entry) print('\n ### Lista de bastidores de controle FAC da sala de fontes ### \n') for idx, ps in enumerate(ps_list): print(' ', idx, ': ', ps) ps_idx = int(input('\n Escolha o índice da fonte correspondente: ')) file_path = file_dir + ps_list[ps_idx] elif ps_model == 1: ps_list = [] file_dir = '../ps_parameters/PA/fap/' for entry in os.listdir(file_dir): if os.path.isfile(os.path.join(file_dir, entry)): ps_list.append(entry) print('\n ### Lista de bastidores de controle FAP da sala de fontes ### \n') for idx, ps in enumerate(ps_list): print(' ', idx, ': ', ps) ps_idx = int(input('\n Escolha o índice da fonte correspondente: ')) file_path = file_dir + ps_list[ps_idx] else: print(' \n *** TIPO DE FONTE INEXISTENTE ***\n') return print('\n Banco de parametros a ser utilizado: ' + file_path) else: print(' \n *** SALA INEXISTENTE ***\n') return r = input('\n Tem certeza que deseja prosseguir? [Y/N]: ') if (r != 'Y') and (r != 'y'): print(' \n *** OPERAÇÃO CANCELADA ***\n') return self.SetSlaveAdd(add) if ps_model == 0 and cfg_dsp_modules == 1: print('\n Enviando parametros de controle para controlador ...') dsp_file_dir = '../dsp_parameters/IA-' + sector + '/' + ps_models[ps_model] + '/' dsp_file_name = 'dsp_parameters_' + ps_models[ps_model] + '_IA-' + sector + 'RaPS0' + rack + crate + '.csv' dsp_file_path = dsp_file_dir + dsp_file_name self.set_dsp_modules_bank(dsp_file_path) print('\n Gravando parametros de controle na memoria ...') time.sleep(1) self.save_dsp_modules_eeprom() print('\n Enviando parametros de operacao para controlador ...\n') time.sleep(1) self.set_param_bank(file_path) print('\n Gravando parametros de operacao na memoria EEPROM onboard ...') self.save_param_bank(2) time.sleep(5) print('\n Resetando UDC ...') self.reset_udc() time.sleep(2) print('\n Pronto! Não se esqueça de utilizar o novo endereço serial para se comunicar com esta fonte! :)\n') self.SetSlaveAdd(oldadd) def get_siggen_vars(self): print('\n### SigGen Variables ###\n') print('Enable: ' + str((round(self.read_bsmp_variable(6,'uint16_t'),3)))) print('Type: ' + ListSigGenTypes_v2_1[int(round(self.read_bsmp_variable(7,'uint16_t'),3))]) print('Num Cycles: ' + str(round(self.read_bsmp_variable(8,'uint16_t'),3))) print('Index: ' + str(round(self.read_bsmp_variable(9,'float'),3))) print('Frequency: ' + str(round(self.read_bsmp_variable(10,'float'),3))) print('Amplitude: ' + str(round(self.read_bsmp_variable(11,'float'),3))) print('Offset: ' + str(round(self.read_bsmp_variable(12,'float'),3))) self.read_var(self.index_to_hex(13)) reply_msg = self.ser.read(21) val = struct.unpack('BBHffffB',reply_msg) print('Aux Param 0: ' + str(val[3])) print('Aux Param 1: ' + str(val[4])) print('Aux Param 2: ' + str(val[5])) print('Aux Param 3: ' + str(val[6])) def firmware_initialization(self): print("\n ### Inicialização de firmware ### \n") print("\n Lendo status...") print(self.read_ps_status()) print("\n Lendo versão de firmware...") self.read_udc_version() print("\n Desbloqueando UDC...") print(self.unlock_udc(0xFFFF)) print("\n Habilitando EEPROM onboard...") self.enable_onboard_eeprom() print("\n Alterando senha...") print(self.set_param('Password',0,0xCAFE)) print(self.save_param_eeprom('Password',0,2)) print("\n Configurando banco de parâmetros...") self.select_param_bank() print("\n ### Fim da inicialização de firmware ### \n") def cfg_hensys_ps_model(self): list_files = ['fbp_dclink/parameters_fbp_dclink_hensys.csv', 'fac/parameters_fac_acdc_hensys.csv', 'fac/parameters_fac_dcdc_hensys.csv', 'fac/parameters_fac_2s_acdc_hensys.csv', 'fac/parameters_fac_2s_dcdc_hensys.csv', 'fac/parameters_fac_2p4s_acdc_hensys.csv', 'fac/parameters_fac_2p4s_dcdc_hensys.csv', 'fap/parameters_fap_hensys.csv', 'fap/parameters_fap_2p2s_hensys.csv', 'fap/parameters_fap_4p_hensys.csv'] print('\n Desbloqueando UDC ...') print(self.unlock_udc(0xCAFE)) print('\n *** Escolha o modelo de fonte a ser configurado ***\n') print(' 0: FBP-DClink') print(' 1: FAC-ACDC') print(' 2: FAC-DCDC') print(' 3: FAC-2S-ACDC') print(' 4: FAC-2S-DCDC') print(' 5: FAC-2P4S-ACDC') print(' 6: FAC-2P4S-DCDC') print(' 7: FAP') print(' 8: FAP-2P2S') print(' 9: FAP-4P') model_idx = int(input('\n Digite o índice correspondente: ')) file_path = '../ps_parameters/development/' + list_files[model_idx] print('\n Banco de parametros a ser utilizado: ' + file_path) r = input('\n Tem certeza que deseja prosseguir? [Y/N]: ') if (r != 'Y') and (r != 'y'): print(' \n *** OPERAÇÃO CANCELADA ***\n') return print('\n Enviando parametros de operacao para controlador ...\n') time.sleep(1) self.set_param_bank(file_path) print('\n Gravando parametros de operacao na memoria EEPROM onboard ...') self.save_param_bank(2) time.sleep(5) print('\n Resetando UDC ...') self.reset_udc() time.sleep(2) print('\n Pronto! Nao se esqueca de utilizar o novo endereco serial para se comunicar com esta fonte! :)\n') def test_bid_board(self, password): r = input("\n Antes de iniciar, certifique-se que o bastidor foi energizado sem a placa BID.\n Para prosseguir, conecte a placa BID a ser testada e pressione qualquer tecla... ") print("\n Desbloqueando UDC ...") print(self.unlock_udc(password)) print("\n Carregando banco de parametros da memoria onboard ...") print(self.load_param_bank(type_memory = 2)) print("\n Banco de parametros da memoria onboard:\n") max_param = ListParameters.index('Scope_Source') param_bank_onboard = [] for param in ListParameters[0:max_param]: val = self.get_param(param,0) print(param + ':',val) param_bank_onboard.append(val) print("\n Salvando banco de parametros na memoria offboard ...") print(self.save_param_bank(type_memory = 1)) time.sleep(5) print("\n Resetando UDC ...") self.reset_udc() time.sleep(3) self.read_ps_status() print("\n Desbloqueando UDC ...") print(self.unlock_udc(password)) print("\n Carregando banco de parametros da memoria offboard ...") print(self.load_param_bank(type_memory = 1)) self.read_ps_status() print("\n Verificando banco de parametros offboard apos reset ... \n") try: param_bank_offboard = [] for param in ListParameters[0:max_param]: val = self.get_param(param,0) print(param, val) param_bank_offboard.append(val) if param_bank_onboard == param_bank_offboard: print("\n Placa BID aprovada!\n") else: print("\n Placa BID reprovada!\n") except: print(" Placa BID reprovada!\n") def upload_parameters_bid(self, password): print("\n Desbloqueando UDC ...") print(self.unlock_udc(password)) print("\n Carregando banco de parametros da memoria offboard ...") print(self.load_param_bank(type_memory = 1)) time.sleep(1) print("\n Salvando banco de parametros na memoria onboard ...") print(self.save_param_bank(type_memory = 2)) time.sleep(5) print("\n Carregando coeficientes de controle da memoria offboard ...") print(self.load_dsp_modules_eeprom(type_memory = 1)) time.sleep(1) print("\n Salvando coeficientes de controle na memoria onboard ...\n") print(self.save_dsp_modules_eeprom(type_memory = 2)) def download_parameters_bid(self,password): print("\n Desbloqueando UDC ...") print(self.unlock_udc(password)) print("\n Carregando banco de parametros da memoria onboard ...") print(self.load_param_bank(type_memory = 2)) time.sleep(1) print("\n Salvando banco de parametros na memoria offboard ...") print(self.save_param_bank(type_memory = 1)) time.sleep(5) print("\n Carregando coeficientes de controle da memoria onboard ...") print(self.load_dsp_modules_eeprom(type_memory = 2)) time.sleep(1) print("\n Salvando coeficientes de controle na memoria offboard ...") print(self.save_dsp_modules_eeprom(type_memory = 1))
[ "serial.Serial", "siriuspy.magnet.util.get_default_ramp_waveform", "math.isnan", "csv.reader", "csv.writer", "numpy.float32", "struct.unpack", "struct.pack", "time.sleep", "matplotlib.pyplot.figure", "os.path.join", "os.listdir" ]
[((31867, 31882), 'serial.Serial', 'serial.Serial', ([], {}), '()\n', (31880, 31882), False, 'import serial\n'), ((34022, 34045), 'struct.pack', 'struct.pack', (['"""f"""', 'value'], {}), "('f', value)\n", (34033, 34045), False, 'import struct\n'), ((34679, 34702), 'struct.pack', 'struct.pack', (['"""H"""', 'value'], {}), "('H', value)\n", (34690, 34702), False, 'import struct\n'), ((34850, 34873), 'struct.pack', 'struct.pack', (['"""I"""', 'value'], {}), "('I', value)\n", (34861, 34873), False, 'import struct\n'), ((35013, 35036), 'struct.pack', 'struct.pack', (['"""B"""', 'value'], {}), "('B', value)\n", (35024, 35036), False, 'import struct\n'), ((35181, 35205), 'struct.pack', 'struct.pack', (['""">H"""', 'value'], {}), "('>H', value)\n", (35192, 35205), False, 'import struct\n'), ((35402, 35424), 'struct.pack', 'struct.pack', (['"""B"""', 'csum'], {}), "('B', csum)\n", (35413, 35424), False, 'import struct\n'), ((35886, 35923), 'struct.pack', 'struct.pack', (['bytesFormat[format]', 'val'], {}), '(bytesFormat[format], val)\n', (35897, 35923), False, 'import struct\n'), ((53741, 53756), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (53751, 53756), False, 'import time\n'), ((58197, 58212), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (58207, 58212), False, 'import time\n'), ((58868, 58917), 'struct.unpack', 'struct.unpack', (['"""BBHLLHHHHHHfffffffffB"""', 'reply_msg'], {}), "('BBHLLHHHHHHfffffffffB', reply_msg)\n", (58881, 58917), False, 'import struct\n'), ((59626, 59641), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (59636, 59641), False, 'import time\n'), ((60145, 60158), 'numpy.float32', 'np.float32', (['(0)'], {}), '(0)\n', (60155, 60158), True, 'import numpy as np\n'), ((60193, 60206), 'numpy.float32', 'np.float32', (['(0)'], {}), '(0)\n', (60203, 60206), True, 'import numpy as np\n'), ((68649, 68664), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (68659, 68664), False, 'import time\n'), ((73319, 73352), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (73332, 73352), False, 'import struct\n'), ((75957, 75990), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (75970, 75990), False, 'import struct\n'), ((77353, 77386), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (77366, 77386), False, 'import struct\n'), ((86458, 86491), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (86471, 86491), False, 'import struct\n'), ((101204, 101250), 'struct.unpack', 'struct.unpack', (['typeFormat[type_var]', 'reply_msg'], {}), '(typeFormat[type_var], reply_msg)\n', (101217, 101250), False, 'import struct\n'), ((101650, 101687), 'struct.unpack', 'struct.unpack', (['"""16s"""', 'reply_msg[4:20]'], {}), "('16s', reply_msg[4:20])\n", (101663, 101687), False, 'import struct\n'), ((101859, 101897), 'struct.unpack', 'struct.unpack', (['"""16s"""', 'reply_msg[20:36]'], {}), "('16s', reply_msg[20:36])\n", (101872, 101897), False, 'import struct\n'), ((102252, 102285), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (102265, 102285), False, 'import struct\n'), ((102452, 102485), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (102465, 102485), False, 'import struct\n'), ((102650, 102683), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (102663, 102683), False, 'import struct\n'), ((102848, 102881), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (102861, 102881), False, 'import struct\n'), ((103046, 103079), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (103059, 103079), False, 'import struct\n'), ((103244, 103277), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (103257, 103277), False, 'import struct\n'), ((103442, 103475), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (103455, 103475), False, 'import struct\n'), ((103669, 103702), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (103682, 103702), False, 'import struct\n'), ((103896, 103929), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (103909, 103929), False, 'import struct\n'), ((104123, 104156), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (104136, 104156), False, 'import struct\n'), ((104350, 104383), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (104363, 104383), False, 'import struct\n'), ((104579, 104612), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (104592, 104612), False, 'import struct\n'), ((104808, 104841), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (104821, 104841), False, 'import struct\n'), ((105037, 105070), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (105050, 105070), False, 'import struct\n'), ((105266, 105299), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (105279, 105299), False, 'import struct\n'), ((105464, 105497), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (105477, 105497), False, 'import struct\n'), ((105662, 105695), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (105675, 105695), False, 'import struct\n'), ((105860, 105893), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (105873, 105893), False, 'import struct\n'), ((106058, 106091), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (106071, 106091), False, 'import struct\n'), ((106262, 106295), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (106275, 106295), False, 'import struct\n'), ((106468, 106501), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (106481, 106501), False, 'import struct\n'), ((106674, 106707), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (106687, 106707), False, 'import struct\n'), ((106884, 106917), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (106897, 106917), False, 'import struct\n'), ((107761, 107794), 'struct.unpack', 'struct.unpack', (['"""BBHIB"""', 'reply_msg'], {}), "('BBHIB', reply_msg)\n", (107774, 107794), False, 'import struct\n'), ((110757, 110790), 'struct.unpack', 'struct.unpack', (['"""BBHIB"""', 'reply_msg'], {}), "('BBHIB', reply_msg)\n", (110770, 110790), False, 'import struct\n'), ((111290, 111323), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (111303, 111323), False, 'import struct\n'), ((111500, 111533), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (111513, 111533), False, 'import struct\n'), ((111714, 111747), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (111727, 111747), False, 'import struct\n'), ((111928, 111961), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (111941, 111961), False, 'import struct\n'), ((112138, 112171), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (112151, 112171), False, 'import struct\n'), ((112354, 112387), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (112367, 112387), False, 'import struct\n'), ((112576, 112609), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (112589, 112609), False, 'import struct\n'), ((112794, 112827), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (112807, 112827), False, 'import struct\n'), ((113004, 113037), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (113017, 113037), False, 'import struct\n'), ((113224, 113257), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (113237, 113257), False, 'import struct\n'), ((113438, 113471), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (113451, 113471), False, 'import struct\n'), ((113646, 113679), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (113659, 113679), False, 'import struct\n'), ((113844, 113877), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (113857, 113877), False, 'import struct\n'), ((114048, 114081), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (114061, 114081), False, 'import struct\n'), ((114255, 114303), 'struct.unpack', 'struct.unpack', (['"""BBHffffffffffffffffB"""', 'reply_msg'], {}), "('BBHffffffffffffffffB', reply_msg)\n", (114268, 114303), False, 'import struct\n'), ((114590, 114623), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (114603, 114623), False, 'import struct\n'), ((114930, 114963), 'struct.unpack', 'struct.unpack', (['"""BBHIB"""', 'reply_msg'], {}), "('BBHIB', reply_msg)\n", (114943, 114963), False, 'import struct\n'), ((115156, 115189), 'struct.unpack', 'struct.unpack', (['"""BBHIB"""', 'reply_msg'], {}), "('BBHIB', reply_msg)\n", (115169, 115189), False, 'import struct\n'), ((115378, 115411), 'struct.unpack', 'struct.unpack', (['"""BBHIB"""', 'reply_msg'], {}), "('BBHIB', reply_msg)\n", (115391, 115411), False, 'import struct\n'), ((115596, 115629), 'struct.unpack', 'struct.unpack', (['"""BBHHB"""', 'reply_msg'], {}), "('BBHHB', reply_msg)\n", (115609, 115629), False, 'import struct\n'), ((115774, 115807), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (115787, 115807), False, 'import struct\n'), ((115952, 115985), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (115965, 115985), False, 'import struct\n'), ((116130, 116163), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (116143, 116163), False, 'import struct\n'), ((116308, 116341), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (116321, 116341), False, 'import struct\n'), ((116501, 116534), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (116514, 116534), False, 'import struct\n'), ((196523, 196580), 'siriuspy.magnet.util.get_default_ramp_waveform', 'get_default_ramp_waveform', (['interval', 'nrpts', 'ti', 'fi', 'forms'], {}), '(interval, nrpts, ti, fi, forms)\n', (196548, 196580), False, 'from siriuspy.magnet.util import get_default_ramp_waveform\n'), ((197888, 197903), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (197898, 197903), False, 'import time\n'), ((197946, 197961), 'time.sleep', 'time.sleep', (['dly'], {}), '(dly)\n', (197956, 197961), False, 'import time\n'), ((198142, 198154), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (198152, 198154), True, 'import matplotlib.pyplot as plt\n'), ((209448, 209461), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (209458, 209461), False, 'import time\n'), ((209623, 209636), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (209633, 209636), False, 'import time\n'), ((209718, 209731), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (209728, 209731), False, 'import time\n'), ((210666, 210702), 'struct.unpack', 'struct.unpack', (['"""BBHffffB"""', 'reply_msg'], {}), "('BBHffffB', reply_msg)\n", (210679, 210702), False, 'import struct\n'), ((213327, 213340), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (213337, 213340), False, 'import time\n'), ((213511, 213524), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (213521, 213524), False, 'import time\n'), ((213605, 213618), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (213615, 213618), False, 'import time\n'), ((214706, 214719), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (214716, 214719), False, 'import time\n'), ((214809, 214822), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (214819, 214822), False, 'import time\n'), ((216003, 216016), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (216013, 216016), False, 'import time\n'), ((216159, 216172), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (216169, 216172), False, 'import time\n'), ((216331, 216344), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (216341, 216344), False, 'import time\n'), ((216778, 216791), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (216788, 216791), False, 'import time\n'), ((216935, 216948), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (216945, 216948), False, 'import time\n'), ((217106, 217119), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (217116, 217119), False, 'import time\n'), ((54010, 54025), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (54020, 54025), False, 'import time\n'), ((54296, 54311), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (54306, 54311), False, 'import time\n'), ((54560, 54575), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (54570, 54575), False, 'import time\n'), ((54829, 54844), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (54839, 54844), False, 'import time\n'), ((55073, 55088), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (55083, 55088), False, 'import time\n'), ((55317, 55332), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (55327, 55332), False, 'import time\n'), ((55561, 55576), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (55571, 55576), False, 'import time\n'), ((55807, 55822), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (55817, 55822), False, 'import time\n'), ((56077, 56092), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (56087, 56092), False, 'import time\n'), ((56344, 56359), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (56354, 56359), False, 'import time\n'), ((56617, 56632), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (56627, 56632), False, 'import time\n'), ((56884, 56899), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (56894, 56899), False, 'import time\n'), ((57157, 57172), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (57167, 57172), False, 'import time\n'), ((57418, 57433), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (57428, 57433), False, 'import time\n'), ((57679, 57694), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (57689, 57694), False, 'import time\n'), ((57931, 57946), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (57941, 57946), False, 'import time\n'), ((60286, 60300), 'numpy.float32', 'np.float32', (['(20)'], {}), '(20)\n', (60296, 60300), True, 'import numpy as np\n'), ((60337, 60350), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (60347, 60350), True, 'import numpy as np\n'), ((60387, 60400), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (60397, 60400), True, 'import numpy as np\n'), ((61932, 61947), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (61942, 61947), False, 'import time\n'), ((62001, 62016), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (62011, 62016), False, 'import time\n'), ((62066, 62081), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (62076, 62081), False, 'import time\n'), ((62131, 62146), 'time.sleep', 'time.sleep', (['(1.5)'], {}), '(1.5)\n', (62141, 62146), False, 'import time\n'), ((76776, 76812), 'struct.unpack', 'struct.unpack', (['"""BBHffffB"""', 'reply_msg'], {}), "('BBHffffB', reply_msg)\n", (76789, 76812), False, 'import struct\n'), ((78172, 78208), 'struct.unpack', 'struct.unpack', (['"""BBHffffB"""', 'reply_msg'], {}), "('BBHffffB', reply_msg)\n", (78185, 78208), False, 'import struct\n'), ((79790, 79823), 'struct.unpack', 'struct.unpack', (['"""BBHfB"""', 'reply_msg'], {}), "('BBHfB', reply_msg)\n", (79803, 79823), False, 'import struct\n'), ((82684, 82697), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (82694, 82697), False, 'import csv\n'), ((84703, 84731), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""","""'}), "(f, delimiter=',')\n", (84713, 84731), False, 'import csv\n'), ((90091, 90108), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (90101, 90108), False, 'import time\n'), ((100152, 100165), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (100162, 100165), False, 'import csv\n'), ((128091, 128127), 'serial.Serial', 'serial.Serial', (['port', 'baud'], {'timeout': '(1)'}), '(port, baud, timeout=1)\n', (128104, 128127), False, 'import serial\n'), ((138194, 138208), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (138204, 138208), False, 'import time\n'), ((194755, 194768), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (194765, 194768), False, 'import csv\n'), ((195713, 195726), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (195723, 195726), False, 'import csv\n'), ((196763, 196791), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""";"""'}), "(f, delimiter=';')\n", (196773, 196791), False, 'import csv\n'), ((197020, 197033), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (197030, 197033), False, 'import csv\n'), ((200531, 200559), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""","""'}), "(f, delimiter=',')\n", (200541, 200559), False, 'import csv\n'), ((200831, 200844), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (200841, 200844), False, 'import csv\n'), ((201842, 201855), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (201852, 201855), False, 'import csv\n'), ((209295, 209308), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (209305, 209308), False, 'import time\n'), ((34276, 34299), 'struct.pack', 'struct.pack', (['"""f"""', 'value'], {}), "('f', value)\n", (34287, 34299), False, 'import struct\n'), ((60565, 60578), 'numpy.float32', 'np.float32', (['(0)'], {}), '(0)\n', (60575, 60578), True, 'import numpy as np\n'), ((60615, 60636), 'numpy.float32', 'np.float32', (['(6.0 / 5.0)'], {}), '(6.0 / 5.0)\n', (60625, 60636), True, 'import numpy as np\n'), ((60671, 60692), 'numpy.float32', 'np.float32', (['(6.0 / 5.0)'], {}), '(6.0 / 5.0)\n', (60681, 60692), True, 'import numpy as np\n'), ((120611, 120639), 'struct.pack', 'struct.pack', (['""">H"""', 'block_idx'], {}), "('>H', block_idx)\n", (120622, 120639), False, 'import struct\n'), ((121233, 121261), 'struct.pack', 'struct.pack', (['""">H"""', 'block_idx'], {}), "('>H', block_idx)\n", (121244, 121261), False, 'import struct\n'), ((121772, 121809), 'struct.unpack', 'struct.unpack', (['"""f"""', 'recv_msg[k:k + 4]'], {}), "('f', recv_msg[k:k + 4])\n", (121785, 121809), False, 'import struct\n'), ((121885, 121905), 'struct.pack', 'struct.pack', (['""">H"""', '(0)'], {}), "('>H', 0)\n", (121896, 121905), False, 'import struct\n'), ((122600, 122628), 'struct.pack', 'struct.pack', (['""">H"""', 'block_idx'], {}), "('>H', block_idx)\n", (122611, 122628), False, 'import struct\n'), ((123230, 123258), 'struct.pack', 'struct.pack', (['""">H"""', 'block_idx'], {}), "('>H', block_idx)\n", (123241, 123258), False, 'import struct\n'), ((123774, 123811), 'struct.unpack', 'struct.unpack', (['"""f"""', 'recv_msg[k:k + 4]'], {}), "('f', recv_msg[k:k + 4])\n", (123787, 123811), False, 'import struct\n'), ((123904, 123932), 'struct.pack', 'struct.pack', (['""">H"""', 'block_idx'], {}), "('>H', block_idx)\n", (123915, 123932), False, 'import struct\n'), ((124533, 124570), 'struct.unpack', 'struct.unpack', (['"""f"""', 'recv_msg[k:k + 4]'], {}), "('f', recv_msg[k:k + 4])\n", (124546, 124570), False, 'import struct\n'), ((124972, 124999), 'struct.pack', 'struct.pack', (['""">H"""', 'block_id'], {}), "('>H', block_id)\n", (124983, 124999), False, 'import struct\n'), ((125635, 125672), 'struct.unpack', 'struct.unpack', (['"""f"""', 'recv_msg[k:k + 4]'], {}), "('f', recv_msg[k:k + 4])\n", (125648, 125672), False, 'import struct\n'), ((125775, 125802), 'struct.pack', 'struct.pack', (['""">H"""', 'block_id'], {}), "('>H', block_id)\n", (125786, 125802), False, 'import struct\n'), ((128473, 128498), 'struct.pack', 'struct.pack', (['"""B"""', 'address'], {}), "('B', address)\n", (128484, 128498), False, 'import struct\n'), ((132213, 132227), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (132223, 132227), False, 'import time\n'), ((133450, 133464), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (133460, 133464), False, 'import time\n'), ((142148, 142162), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (142158, 142162), False, 'import time\n'), ((145538, 145552), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (145548, 145552), False, 'import time\n'), ((155491, 155505), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (155501, 155505), False, 'import time\n'), ((159636, 159650), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (159646, 159650), False, 'import time\n'), ((166918, 166932), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (166928, 166932), False, 'import time\n'), ((171657, 171671), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (171667, 171671), False, 'import time\n'), ((178404, 178418), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (178414, 178418), False, 'import time\n'), ((185441, 185455), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (185451, 185455), False, 'import time\n'), ((187216, 187230), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (187226, 187230), False, 'import time\n'), ((189443, 189457), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (189453, 189457), False, 'import time\n'), ((191974, 191988), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (191984, 191988), False, 'import time\n'), ((194368, 194382), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (194378, 194382), False, 'import time\n'), ((197567, 197581), 'time.sleep', 'time.sleep', (['dt'], {}), '(dt)\n', (197577, 197581), False, 'import time\n'), ((36010, 36044), 'struct.unpack', 'struct.unpack', (['"""H"""', 'val_b[i:i + 2]'], {}), "('H', val_b[i:i + 2])\n", (36023, 36044), False, 'import struct\n'), ((60859, 60872), 'numpy.float32', 'np.float32', (['(0)'], {}), '(0)\n', (60869, 60872), True, 'import numpy as np\n'), ((60909, 60922), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (60919, 60922), True, 'import numpy as np\n'), ((60959, 60972), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (60969, 60972), True, 'import numpy as np\n'), ((84085, 84098), 'math.isnan', 'math.isnan', (['p'], {}), '(p)\n', (84095, 84098), False, 'import math\n'), ((122439, 122476), 'struct.unpack', 'struct.unpack', (['"""f"""', 'recv_msg[k:k + 4]'], {}), "('f', recv_msg[k:k + 4])\n", (122452, 122476), False, 'import struct\n'), ((61129, 61142), 'numpy.float32', 'np.float32', (['(5)'], {}), '(5)\n', (61139, 61142), True, 'import numpy as np\n'), ((61179, 61192), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (61189, 61192), True, 'import numpy as np\n'), ((61229, 61242), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (61239, 61242), True, 'import numpy as np\n'), ((205777, 205797), 'os.listdir', 'os.listdir', (['file_dir'], {}), '(file_dir)\n', (205787, 205797), False, 'import os\n'), ((206922, 206942), 'os.listdir', 'os.listdir', (['file_dir'], {}), '(file_dir)\n', (206932, 206942), False, 'import os\n'), ((61411, 61424), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (61421, 61424), True, 'import numpy as np\n'), ((61461, 61474), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (61471, 61474), True, 'import numpy as np\n'), ((61511, 61524), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (61521, 61524), True, 'import numpy as np\n'), ((207630, 207650), 'os.listdir', 'os.listdir', (['file_dir'], {}), '(file_dir)\n', (207640, 207650), False, 'import os\n'), ((205837, 205866), 'os.path.join', 'os.path.join', (['file_dir', 'entry'], {}), '(file_dir, entry)\n', (205849, 205866), False, 'import os\n'), ((206982, 207011), 'os.path.join', 'os.path.join', (['file_dir', 'entry'], {}), '(file_dir, entry)\n', (206994, 207011), False, 'import os\n'), ((207690, 207719), 'os.path.join', 'os.path.join', (['file_dir', 'entry'], {}), '(file_dir, entry)\n', (207702, 207719), False, 'import os\n')]
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import irispy.iris_tools as iris_tools import numpy as np import numpy.testing as np_test source_data = np.array([[ 0.563, 1.132, -1.343], [-0.719, 1.441, 1.566]]) source_data1 = np.array([[1, 2, 3], [4, 5, 6]]) def test_convert_DN_to_photons_NUV(): """ """ expected_output = np.array([[ 10.134, 20.376, -24.174], [-12.942, 25.938, 28.188]]) photons_count = iris_tools.convert_DN_to_photons(source_data, 'NUV') np_test.assert_allclose(photons_count, expected_output) def test_convert_DN_to_photons_FUV(): """ """ expected_output = np.array([[ 2.252, 4.528, -5.372], [-2.876, 5.764, 6.264]]) photons_count = iris_tools.convert_DN_to_photons(source_data, 'FUV') np_test.assert_allclose(photons_count, expected_output) def test_convert_DN_to_photons_SJI(): """ """ expected_output = np.array( [[18, 36, 54], [72, 90, 108]]) photons_count = iris_tools.convert_DN_to_photons(source_data1, 'SJI') np_test.assert_allclose(photons_count, expected_output) def test_convert_photons_to_DN_NUV(): """ """ expected_output = np.array([[ 0.05555556, 0.11111111, 0.16666667], [ 0.22222222, 0.27777778, 0.33333333]]) DN = iris_tools.convert_photons_to_DN(source_data1, 'NUV') np_test.assert_allclose(DN, expected_output) def test_convert_photons_to_DN_FUV(): """ """ expected_output = np.array([[ 0.25, 0.5 , 0.75], [ 1. , 1.25, 1.5 ]]) DN = iris_tools.convert_photons_to_DN(source_data1, 'FUV') np_test.assert_allclose(DN, expected_output) def test_convert_photons_to_DN_SJI(): """ """ expected_output = np.array( [[ 0.05555556, 0.11111111, 0.16666667], [ 0.22222222, 0.27777778, 0.33333333]]) photons_count = iris_tools.convert_photons_to_DN(source_data1, 'SJI') np_test.assert_allclose(photons_count, expected_output) def test_calculate_intensity_fractional_uncertainty_photons_NUV(): """ """ expected_output = np.array([[21.62313576, 10.82312339, 7.223111057], [5.423098745, 4.34308646, 3.623074202]]) calculated_intensity = iris_tools.calculate_intensity_fractional_uncertainty(source_data1, 'photons', 'NUV') np_test.assert_allclose(expected_output, calculated_intensity) def test_calculate_intensity_fractional_uncertainty_photons_FUV(): """ """ expected_output = np.array([[ 12.44025723, 6.240192305 , 4.173461127], [ 3.140063694, 2.52 , 2.106603375]]) calculated_intensity = iris_tools.calculate_intensity_fractional_uncertainty(source_data1, 'photons', 'FUV') np_test.assert_allclose(expected_output, calculated_intensity) def test_calculate_intensity_fractional_uncertainty_photons_SJI(): """ """ expected_output = np.array([[21.62313576, 10.82312339, 7.223111057], [5.423098745, 4.34308646, 3.623074202]]) calculated_intensity = iris_tools.calculate_intensity_fractional_uncertainty(source_data1, 'photons', 'SJI') np_test.assert_allclose(expected_output, calculated_intensity) def test_calculate_intensity_fractional_uncertainty_data_not_recognised(): """ """ assert pytest.raises(ValueError, iris_tools.calculate_intensity_fractional_uncertainty, source_data1, None, 'FUV') def test_get_iris_response_response_version(): """ """ assert pytest.raises(ValueError, iris_tools.get_iris_response, response_version=4) def test_get_iris_response_not_equal_to_one(): """ """ assert pytest.raises(ValueError, iris_tools.get_iris_response, pre_launch=True, response_version=3) def test_get_iris_response_response_file(): """ """ assert pytest.raises(KeyError, iris_tools.get_iris_response, response_file="hello.py") # def test_get_iris_response(): # """ # """ # def test_gaussian1d_on_linear_bg(): # """ # """ # def test_calculate_orbital_wavelength_variation(): # """ # """
[ "irispy.iris_tools.calculate_intensity_fractional_uncertainty", "pytest.raises", "irispy.iris_tools.convert_DN_to_photons", "numpy.array", "irispy.iris_tools.convert_photons_to_DN", "numpy.testing.assert_allclose" ]
[((181, 239), 'numpy.array', 'np.array', (['[[0.563, 1.132, -1.343], [-0.719, 1.441, 1.566]]'], {}), '([[0.563, 1.132, -1.343], [-0.719, 1.441, 1.566]])\n', (189, 239), True, 'import numpy as np\n'), ((265, 297), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6]]'], {}), '([[1, 2, 3], [4, 5, 6]])\n', (273, 297), True, 'import numpy as np\n'), ((372, 436), 'numpy.array', 'np.array', (['[[10.134, 20.376, -24.174], [-12.942, 25.938, 28.188]]'], {}), '([[10.134, 20.376, -24.174], [-12.942, 25.938, 28.188]])\n', (380, 436), True, 'import numpy as np\n'), ((471, 523), 'irispy.iris_tools.convert_DN_to_photons', 'iris_tools.convert_DN_to_photons', (['source_data', '"""NUV"""'], {}), "(source_data, 'NUV')\n", (503, 523), True, 'import irispy.iris_tools as iris_tools\n'), ((526, 581), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['photons_count', 'expected_output'], {}), '(photons_count, expected_output)\n', (549, 581), True, 'import numpy.testing as np_test\n'), ((651, 709), 'numpy.array', 'np.array', (['[[2.252, 4.528, -5.372], [-2.876, 5.764, 6.264]]'], {}), '([[2.252, 4.528, -5.372], [-2.876, 5.764, 6.264]])\n', (659, 709), True, 'import numpy as np\n'), ((744, 796), 'irispy.iris_tools.convert_DN_to_photons', 'iris_tools.convert_DN_to_photons', (['source_data', '"""FUV"""'], {}), "(source_data, 'FUV')\n", (776, 796), True, 'import irispy.iris_tools as iris_tools\n'), ((799, 854), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['photons_count', 'expected_output'], {}), '(photons_count, expected_output)\n', (822, 854), True, 'import numpy.testing as np_test\n'), ((924, 963), 'numpy.array', 'np.array', (['[[18, 36, 54], [72, 90, 108]]'], {}), '([[18, 36, 54], [72, 90, 108]])\n', (932, 963), True, 'import numpy as np\n'), ((990, 1043), 'irispy.iris_tools.convert_DN_to_photons', 'iris_tools.convert_DN_to_photons', (['source_data1', '"""SJI"""'], {}), "(source_data1, 'SJI')\n", (1022, 1043), True, 'import irispy.iris_tools as iris_tools\n'), ((1046, 1101), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['photons_count', 'expected_output'], {}), '(photons_count, expected_output)\n', (1069, 1101), True, 'import numpy.testing as np_test\n'), ((1170, 1261), 'numpy.array', 'np.array', (['[[0.05555556, 0.11111111, 0.16666667], [0.22222222, 0.27777778, 0.33333333]]'], {}), '([[0.05555556, 0.11111111, 0.16666667], [0.22222222, 0.27777778, \n 0.33333333]])\n', (1178, 1261), True, 'import numpy as np\n'), ((1280, 1333), 'irispy.iris_tools.convert_photons_to_DN', 'iris_tools.convert_photons_to_DN', (['source_data1', '"""NUV"""'], {}), "(source_data1, 'NUV')\n", (1312, 1333), True, 'import irispy.iris_tools as iris_tools\n'), ((1336, 1380), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['DN', 'expected_output'], {}), '(DN, expected_output)\n', (1359, 1380), True, 'import numpy.testing as np_test\n'), ((1450, 1497), 'numpy.array', 'np.array', (['[[0.25, 0.5, 0.75], [1.0, 1.25, 1.5]]'], {}), '([[0.25, 0.5, 0.75], [1.0, 1.25, 1.5]])\n', (1458, 1497), True, 'import numpy as np\n'), ((1528, 1581), 'irispy.iris_tools.convert_photons_to_DN', 'iris_tools.convert_photons_to_DN', (['source_data1', '"""FUV"""'], {}), "(source_data1, 'FUV')\n", (1560, 1581), True, 'import irispy.iris_tools as iris_tools\n'), ((1584, 1628), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['DN', 'expected_output'], {}), '(DN, expected_output)\n', (1607, 1628), True, 'import numpy.testing as np_test\n'), ((1698, 1789), 'numpy.array', 'np.array', (['[[0.05555556, 0.11111111, 0.16666667], [0.22222222, 0.27777778, 0.33333333]]'], {}), '([[0.05555556, 0.11111111, 0.16666667], [0.22222222, 0.27777778, \n 0.33333333]])\n', (1706, 1789), True, 'import numpy as np\n'), ((1819, 1872), 'irispy.iris_tools.convert_photons_to_DN', 'iris_tools.convert_photons_to_DN', (['source_data1', '"""SJI"""'], {}), "(source_data1, 'SJI')\n", (1851, 1872), True, 'import irispy.iris_tools as iris_tools\n'), ((1875, 1930), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['photons_count', 'expected_output'], {}), '(photons_count, expected_output)\n', (1898, 1930), True, 'import numpy.testing as np_test\n'), ((2029, 2124), 'numpy.array', 'np.array', (['[[21.62313576, 10.82312339, 7.223111057], [5.423098745, 4.34308646, \n 3.623074202]]'], {}), '([[21.62313576, 10.82312339, 7.223111057], [5.423098745, 4.34308646,\n 3.623074202]])\n', (2037, 2124), True, 'import numpy as np\n'), ((2154, 2243), 'irispy.iris_tools.calculate_intensity_fractional_uncertainty', 'iris_tools.calculate_intensity_fractional_uncertainty', (['source_data1', '"""photons"""', '"""NUV"""'], {}), "(source_data1,\n 'photons', 'NUV')\n", (2207, 2243), True, 'import irispy.iris_tools as iris_tools\n'), ((2241, 2303), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['expected_output', 'calculated_intensity'], {}), '(expected_output, calculated_intensity)\n', (2264, 2303), True, 'import numpy.testing as np_test\n'), ((2401, 2491), 'numpy.array', 'np.array', (['[[12.44025723, 6.240192305, 4.173461127], [3.140063694, 2.52, 2.106603375]]'], {}), '([[12.44025723, 6.240192305, 4.173461127], [3.140063694, 2.52, \n 2.106603375]])\n', (2409, 2491), True, 'import numpy as np\n'), ((2544, 2633), 'irispy.iris_tools.calculate_intensity_fractional_uncertainty', 'iris_tools.calculate_intensity_fractional_uncertainty', (['source_data1', '"""photons"""', '"""FUV"""'], {}), "(source_data1,\n 'photons', 'FUV')\n", (2597, 2633), True, 'import irispy.iris_tools as iris_tools\n'), ((2631, 2693), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['expected_output', 'calculated_intensity'], {}), '(expected_output, calculated_intensity)\n', (2654, 2693), True, 'import numpy.testing as np_test\n'), ((2791, 2886), 'numpy.array', 'np.array', (['[[21.62313576, 10.82312339, 7.223111057], [5.423098745, 4.34308646, \n 3.623074202]]'], {}), '([[21.62313576, 10.82312339, 7.223111057], [5.423098745, 4.34308646,\n 3.623074202]])\n', (2799, 2886), True, 'import numpy as np\n'), ((2916, 3005), 'irispy.iris_tools.calculate_intensity_fractional_uncertainty', 'iris_tools.calculate_intensity_fractional_uncertainty', (['source_data1', '"""photons"""', '"""SJI"""'], {}), "(source_data1,\n 'photons', 'SJI')\n", (2969, 3005), True, 'import irispy.iris_tools as iris_tools\n'), ((3003, 3065), 'numpy.testing.assert_allclose', 'np_test.assert_allclose', (['expected_output', 'calculated_intensity'], {}), '(expected_output, calculated_intensity)\n', (3026, 3065), True, 'import numpy.testing as np_test\n'), ((3161, 3273), 'pytest.raises', 'pytest.raises', (['ValueError', 'iris_tools.calculate_intensity_fractional_uncertainty', 'source_data1', 'None', '"""FUV"""'], {}), "(ValueError, iris_tools.\n calculate_intensity_fractional_uncertainty, source_data1, None, 'FUV')\n", (3174, 3273), False, 'import pytest\n'), ((3336, 3411), 'pytest.raises', 'pytest.raises', (['ValueError', 'iris_tools.get_iris_response'], {'response_version': '(4)'}), '(ValueError, iris_tools.get_iris_response, response_version=4)\n', (3349, 3411), False, 'import pytest\n'), ((3479, 3575), 'pytest.raises', 'pytest.raises', (['ValueError', 'iris_tools.get_iris_response'], {'pre_launch': '(True)', 'response_version': '(3)'}), '(ValueError, iris_tools.get_iris_response, pre_launch=True,\n response_version=3)\n', (3492, 3575), False, 'import pytest\n'), ((3636, 3715), 'pytest.raises', 'pytest.raises', (['KeyError', 'iris_tools.get_iris_response'], {'response_file': '"""hello.py"""'}), "(KeyError, iris_tools.get_iris_response, response_file='hello.py')\n", (3649, 3715), False, 'import pytest\n')]
""" Copyright (C) 2020, <NAME>, https://www.gagolewski.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import scipy.stats def load_data(fname, preprocess): """ Loads the data matrix and preprocesses it, see benchmark() for more details. """ X = np.loadtxt(fname, ndmin=2) X = X[:, X.var(axis=0) > 0] # remove all columns of 0 variance # add a tiny bit of white noise: X += np.random.normal(0.0, X.std(ddof=1)*1e-6, size=X.shape) if preprocess == "scale_standard": # mean/sd s = X.std(axis=0, ddof=1) X = (X-X.mean(axis=0))/s elif preprocess == "scale_robust": # median/(1.4826*MAD) s = np.median(np.abs(X-np.median(X, axis=0)), axis=0) s = s/scipy.stats.norm().ppf(0.75) # i.e., s*1.4826 s[s<1e-12] = 1.0 # don't scale columns of zero MAD X = (X-np.median(X, axis=0))/s elif preprocess == "original": s = X.std(axis=None, ddof=1) # scale all columns proportionally X = (X-X.mean(axis=0))/s else: raise Exception("unknown `preprocess`") X = X.astype(np.float32, order="C", copy=False) # work with float32 return X
[ "numpy.median", "numpy.loadtxt" ]
[((1269, 1295), 'numpy.loadtxt', 'np.loadtxt', (['fname'], {'ndmin': '(2)'}), '(fname, ndmin=2)\n', (1279, 1295), True, 'import numpy as np\n'), ((1840, 1860), 'numpy.median', 'np.median', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1849, 1860), True, 'import numpy as np\n'), ((1675, 1695), 'numpy.median', 'np.median', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1684, 1695), True, 'import numpy as np\n')]
import numpy as np import random class ExperienceMemory(object): def __init__(self, capacity, stateLength): self.__capacity = capacity self.__usedCapacity = 0 self.__stateLength = stateLength self.__writePosition = 0 self.__writePositionReseted = False self.__ids = np.zeros((self.__capacity), dtype='uint64') self.__states = np.zeros((self.__capacity, self.__stateLength), dtype='float32') self.__actions = np.zeros((self.__capacity), dtype='uint8') self.__rewards = np.zeros((self.__capacity), dtype='float32') self.__nextStates = np.zeros((self.__capacity, self.__stateLength), dtype='float32') self.__nextStateIsTerminalStates = np.zeros((self.__capacity), dtype='bool') self.__sampleCounter = 0 def store(self, state, action, reward, nextState, nextStateIsTerminalState): experienceId = self.__sampleCounter self.__ids[self.__writePosition] = experienceId self.__states[self.__writePosition] = state self.__actions[self.__writePosition] = action self.__rewards[self.__writePosition] = reward self.__nextStates[self.__writePosition] = nextState self.__nextStateIsTerminalStates[self.__writePosition] = nextStateIsTerminalState self.__writePosition += 1 self.__sampleCounter += 1 if not self.__writePositionReseted: self.__usedCapacity += 1 if self.__writePosition == self.__capacity: self.__writePosition = 0 self.__writePositionReseted = True return experienceId def size(self): return self.__usedCapacity def sample(self, numberOfSamples): if self.__usedCapacity < numberOfSamples: return None, None, None, None, None, None sampleIndex = random.sample(range(self.__usedCapacity), numberOfSamples) return self.__ids[sampleIndex], self.__states[sampleIndex], self.__actions[sampleIndex], self.__rewards[sampleIndex], self.__nextStates[sampleIndex], self.__nextStateIsTerminalStates[sampleIndex]
[ "numpy.zeros" ]
[((320, 361), 'numpy.zeros', 'np.zeros', (['self.__capacity'], {'dtype': '"""uint64"""'}), "(self.__capacity, dtype='uint64')\n", (328, 361), True, 'import numpy as np\n'), ((388, 452), 'numpy.zeros', 'np.zeros', (['(self.__capacity, self.__stateLength)'], {'dtype': '"""float32"""'}), "((self.__capacity, self.__stateLength), dtype='float32')\n", (396, 452), True, 'import numpy as np\n'), ((478, 518), 'numpy.zeros', 'np.zeros', (['self.__capacity'], {'dtype': '"""uint8"""'}), "(self.__capacity, dtype='uint8')\n", (486, 518), True, 'import numpy as np\n'), ((546, 588), 'numpy.zeros', 'np.zeros', (['self.__capacity'], {'dtype': '"""float32"""'}), "(self.__capacity, dtype='float32')\n", (554, 588), True, 'import numpy as np\n'), ((619, 683), 'numpy.zeros', 'np.zeros', (['(self.__capacity, self.__stateLength)'], {'dtype': '"""float32"""'}), "((self.__capacity, self.__stateLength), dtype='float32')\n", (627, 683), True, 'import numpy as np\n'), ((727, 766), 'numpy.zeros', 'np.zeros', (['self.__capacity'], {'dtype': '"""bool"""'}), "(self.__capacity, dtype='bool')\n", (735, 766), True, 'import numpy as np\n')]
#!/usr/bin/env python import argparse import sys from typing import List, Optional import bdfparser import numpy as np DRAWING_CHARS = "8,10,176-223" def main(): args = parse_args() font = bdfparser.Font(args.bdf_file) # Choose glyphs from font and convert them to bitmaps bitmaps = [get_bitmap_for_character(font, i) for i in range(256)] # Make sure we're settled on the desired glyph height height = args.height if not height: height = max(len(b) for b in bitmaps if b is not None) # Make sure we have bitmaps for all the characters fallback_bitmap = np.zeros((height, 8), dtype=np.uint8) for i in range(len(bitmaps)): if bitmaps[i] is None: print(f"Warning: no glyph for char {i}", file=sys.stderr) bitmaps[i] = fallback_bitmap # Make the bitmaps all the same size for i in range(len(bitmaps)): bitmaps[i] = resize(bitmaps[i], 8, height, i in args.extend_chars) # Write them to disk with open(args.output_file, "wb") as f: f.write(b"".join(to_bytes(b) for b in bitmaps)) def parse_args(): parser = argparse.ArgumentParser( description="A tool for converting BDF fonts into DOS font format" ) parser.add_argument( "bdf_file", type=str, metavar="BDF-FILE", help="BDF font file to convert" ) parser.add_argument( "output_file", type=str, metavar="OUTPUT-FILE", help="Filename of resulting DOS font file" ) parser.add_argument( "--height", type=int, metavar="ROWS", help="Target height. Glyphs that are too short will be padded to fit." ) parser.add_argument( "--extend-chars", "-x", type=parse_byte_ranges, metavar="CHARS", default=DRAWING_CHARS, help=f""" For the given character codes, enlarge the glyphs so that they touch the edges of the bounding box. Only has an effect if the bounding box is larger than the glyph size. If flag is not present, defaults to "{DRAWING_CHARS}" (mostly CP437's box/line chars). """ ) return parser.parse_args() def parse_byte_ranges(s): """Parses strings like "1,3-5" into set(1,3,4,5).""" result = set() for term in s.split(","): parts = [int(p) for p in term.split("-")] if len(parts) == 1: hi = parts[0] lo = parts[0] elif len(parts) == 2: lo, hi = min(parts), max(parts) else: raise ValueError( f"""Couldn't parse "{term}" as byte or as a range of bytes""" ) if lo < 0: raise ValueError(f"Value out of range: {lo}") elif hi > 255: raise ValueError(f"Value out of range: {hi}") result.update(range(lo, hi + 1)) return result def get_bitmap_for_character( font: bdfparser.Font, char: int ) -> Optional[np.array]: """Returns a bitmap from the font that can represent the given CP437 code. If no suitable glyph can be found, returns None. """ codepoints = get_codepoints_for_cp437(char) available = font.glyphs.keys() for codepoint in codepoints: if codepoint in available: glyph = font.glyphbycp(codepoint) bitmap = to_bitmap(glyph) return bitmap return None def get_codepoints_for_cp437(x) -> List[int]: """Returns possible Unicode codepoints for the given CP437 character. This function returns a list because that allows for potential fallback codepoints if the font does not have complete coverage. Currently, though, this implementation only returns 1 codepoint for each character. """ # Handle printable ASCII chars if x >= 32 and x <= 126: return [x] # Handle control chars, extended ASCII LOWER = " ☺☻♥♦♣♠•◘○◙♂♀♪♫☼►◄↕‼¶§▬↨↑↓→←∟↔▲▼" UPPER = "⌂" \ "ÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÿÖÜ¢£¥₧ƒ" \ "áíóúñѪº¿⌐¬½¼¡«»░▒▓│┤╡╢╖╕╣║╗╝╜╛┐" \ "└┴┬├─┼╞╟╚╔╩╦╠═╬╧╨╤╥╙╘╒╓╫╪┘┌█▄▌▐▀" \ "αßΓπΣσµτΦϴΩδ∞∅∈∩≡±≥≤⌠⌡÷≈°∙·√ⁿ²■ " if x < 32: code = ord(LOWER[x]) else: code = ord(UPPER[x - 127]) return [code] def to_bitmap(glyph: bdfparser.Glyph) -> np.array: """Converts a Glyph into a 2D array of zeros and ones.""" lines = glyph.draw().todata() # Array of strings like "10101" return np.array( [[int(bit) for bit in line] for line in lines], dtype=np.uint8 ) def resize(bitmap: np.array, new_width, new_height, extend=False): height, width = bitmap.shape def split(diff): x = diff//2 y = diff - x return (x, y) add_top, add_bottom = split(new_height - height) add_left, add_right = split(new_width - width) for add_lines in [add_left, add_top, add_right, add_bottom]: bitmap = np.rot90(bitmap) if add_lines < 0: # Delete lines from base of array bitmap = bitmap[:add_lines] elif add_lines > 0: # Add lines to base of array _, current_width = bitmap.shape new_lines_shape = (add_lines, current_width) if extend: pattern_length = max(get_pattern_length(bitmap), 1) pattern = bitmap[-pattern_length:] new_lines = np.resize(pattern, new_lines_shape) else: new_lines = np.zeros(new_lines_shape, dtype=np.uint8) bitmap = np.concatenate([bitmap, new_lines]) return bitmap def get_pattern_length(bitmap: np.array, max_length=4): """Measure the length of any repeating pattern at the bottom of the array. For example, if the bottom rows were of the form ...ABCDECDE, this function would return 3, because the three rows CDE repeat. This function returns the length of the longest pattern it finds, not to surpass max_length. Returns 0 if no repeating pattern is found. """ height, _ = bitmap.shape max_length = min(max_length, height//2) for length in range(max_length, 1, -1): a = bitmap[-length:] b = bitmap[-2*length:-length] if np.array_equal(a, b): return length return 0 def to_bytes(bitmap: np.array): height, width = bitmap.shape assert(1 <= height <= 32) assert(width == 8) def to_byte(row): result = 0 for bit in row: result = (result << 1) + bit return result return bytes(to_byte(row) for row in bitmap) if __name__ == "__main__": main()
[ "argparse.ArgumentParser", "numpy.resize", "numpy.zeros", "numpy.rot90", "bdfparser.Font", "numpy.array_equal", "numpy.concatenate" ]
[((201, 230), 'bdfparser.Font', 'bdfparser.Font', (['args.bdf_file'], {}), '(args.bdf_file)\n', (215, 230), False, 'import bdfparser\n'), ((604, 641), 'numpy.zeros', 'np.zeros', (['(height, 8)'], {'dtype': 'np.uint8'}), '((height, 8), dtype=np.uint8)\n', (612, 641), True, 'import numpy as np\n'), ((1128, 1224), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""A tool for converting BDF fonts into DOS font format"""'}), "(description=\n 'A tool for converting BDF fonts into DOS font format')\n", (1151, 1224), False, 'import argparse\n'), ((4864, 4880), 'numpy.rot90', 'np.rot90', (['bitmap'], {}), '(bitmap)\n', (4872, 4880), True, 'import numpy as np\n'), ((6156, 6176), 'numpy.array_equal', 'np.array_equal', (['a', 'b'], {}), '(a, b)\n', (6170, 6176), True, 'import numpy as np\n'), ((5478, 5513), 'numpy.concatenate', 'np.concatenate', (['[bitmap, new_lines]'], {}), '([bitmap, new_lines])\n', (5492, 5513), True, 'import numpy as np\n'), ((5333, 5368), 'numpy.resize', 'np.resize', (['pattern', 'new_lines_shape'], {}), '(pattern, new_lines_shape)\n', (5342, 5368), True, 'import numpy as np\n'), ((5415, 5456), 'numpy.zeros', 'np.zeros', (['new_lines_shape'], {'dtype': 'np.uint8'}), '(new_lines_shape, dtype=np.uint8)\n', (5423, 5456), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np import math class Position_Encoder(object): def __init__(self, emb_size, max_len=5000): self.emb_size = emb_size self.max_len = max_len pe = np.zeros([max_len, emb_size], np.float32) position = np.expand_dims(np.arange(0, max_len), 1).astype(np.float32) div_term = np.exp(np.arange(0 ,emb_size, 2).astype(np.float32) * -(math.log(10000.0) / emb_size)) pe[:, 0::2] = np.sin(position * div_term) pe[:, 1::2] = np.cos(position * div_term) pe = np.expand_dims(pe, 1) self.pe = tf.Variable(pe, trainable=False) def __call__(self, inputs, seq_length): with tf.variable_scope('position_encoder'): embs = tf.transpose(inputs, [1, 0, 2]) max_time = tf.shape(embs)[0] batch_size = tf.shape(embs)[1] embs = embs * tf.sqrt(float(self.emb_size)) embs_ta = tf.TensorArray(dtype=tf.float32, size=max_time) embs_ta = embs_ta.unstack(embs) output_ta = tf.TensorArray(dtype=tf.float32, dynamic_size=True, size=0) t0 = tf.constant(0, dtype=tf.int32) f0 = tf.zeros([batch_size], dtype=tf.bool) mask = tf.expand_dims(tf.cast(tf.sequence_mask(seq_length), tf.float32), -1) def loop_fn(t, output_ta, f): cur_emb = embs_ta.read(t) output = tf.concat([cur_emb, tf.tile(self.pe[t], [batch_size, 1])], -1) output_ta = output_ta.write(t, output) f = tf.greater_equal(t + 1, seq_length) return t + 1, output_ta, f _, output_ta, _ = tf.while_loop( cond=lambda _1, _2, f: tf.logical_not(tf.reduce_all(f)), body=loop_fn, loop_vars=(t0, output_ta, f0) ) embs = tf.transpose(output_ta.stack(), [1, 0, 2]) embs *= mask return embs class Cnn_extractor(object): def __init__(self, hidden_dim): self.hidden_dim = hidden_dim self.sw0 = tf.layers.Conv1D(self.hidden_dim, 1, padding='same') self.bn0 = tf.layers.BatchNormalization() self.sw1 = tf.layers.Conv1D(self.hidden_dim, 1, padding='same') self.bn1 = tf.layers.BatchNormalization() self.sw2 = tf.layers.Conv1D(self.hidden_dim, 2, padding='same') self.bn2 = tf.layers.BatchNormalization() self.sw2_2 = tf.layers.Conv1D(self.hidden_dim, 2, padding='same') self.bn2_2 = tf.layers.BatchNormalization() self.sw3 = tf.layers.Conv1D(self.hidden_dim, 3, padding='same') self.bn3 = tf.layers.BatchNormalization() self.sw3_2 = tf.layers.Conv1D(self.hidden_dim, 3, padding='same') self.bn3_2 = tf.layers.BatchNormalization() self.sw3_3 = tf.layers.Conv1D(self.hidden_dim, 3, padding='same') self.bn3_3 = tf.layers.BatchNormalization() def __call__(self, input): with tf.variable_scope('cnn_extractor'): input = self.sw0(input) input = tf.nn.selu(input) input = self.bn0(input) sw1 = self.sw1(input) sw1 = tf.nn.selu(sw1) sw1 = self.bn1(sw1) sw2 = self.sw2(input) sw2 = tf.nn.selu(sw2) sw2 = self.bn2(sw2) sw2 = self.sw2_2(sw2) sw2 = tf.nn.selu(sw2) sw2 = self.bn2_2(sw2) sw3 = self.sw3(input) sw3 = tf.nn.selu(sw3) sw3 = self.bn3(sw3) sw3 = self.sw3_2(sw3) sw3 = tf.nn.selu(sw3) sw3 = self.bn3_2(sw3) sw3 = self.sw3_3(sw3) sw3 = tf.nn.selu(sw3) sw3 = self.bn3_3(sw3) cnn_output = tf.concat([sw1, sw2, sw3], -1) cnn_output = tf.layers.dense(cnn_output, self.hidden_dim, activation=tf.nn.selu) return tf.nn.dropout(cnn_output, keep_prob=0.5) class Attention(object): def __init__(self, hidden_dim, num_tags): super(Attention, self).__init__() self.hidden_dim = hidden_dim self.num_tags = num_tags self.attn_dense = tf.layers.Dense(self.hidden_dim, use_bias=False, kernel_initializer=tf.contrib.layers.xavier_initializer()) self.attn_linear = tf.layers.Dense(self.hidden_dim, use_bias=True, activation=tf.nn.tanh, kernel_initializer=tf.contrib.layers.xavier_initializer(), bias_initializer=tf.zeros_initializer()) self.__init_embs() def __init_embs(self): with tf.variable_scope('tag_embedding'): self._tag_embeddings = tf.get_variable(name='_tag_embeddings', shape=[self.num_tags, 25], dtype=tf.float32) def __call__(self, input, sequence_lengths): with tf.variable_scope('attention'): tag_embeddings = tf.nn.embedding_lookup(params=self._tag_embeddings, ids=tf.constant(list(range(self.num_tags)), dtype=tf.int32), name='tag_embeddings') query = tf.transpose(input, [1, 0, 2]) max_time = tf.shape(query)[0] batch_size = tf.shape(query)[1] context = tf.tile(tf.expand_dims(tag_embeddings, 0), [batch_size, 1, 1]) query_ta = tf.TensorArray(dtype=tf.float32, size=max_time) query_ta = query_ta.unstack(query) attn_ta = tf.TensorArray(dtype=tf.float32, dynamic_size=True, size=0) output_ta = tf.TensorArray(dtype=tf.float32, dynamic_size=True, size=0) t0 = tf.constant(0, dtype=tf.int32) f0 = tf.zeros([batch_size], dtype=tf.bool) def loop_fn(t, attn_ta, output_ta, f): cur_q = query_ta.read(t) gamma_h = self.attn_dense(context) gamma_h = tf.squeeze(tf.matmul(gamma_h, tf.expand_dims(cur_q, -1)), -1) weights = tf.nn.softmax(gamma_h, -1) c_t = tf.squeeze(tf.matmul(tf.expand_dims(weights, 1), context), 1) output = self.attn_linear(tf.concat([c_t, cur_q], -1)) attn_ta = attn_ta.write(t, gamma_h) output_ta = output_ta.write(t, output) f = tf.greater_equal(t + 1, sequence_lengths) return t + 1, attn_ta, output_ta, f _, attn_ta, output_ta, _ = tf.while_loop( cond=lambda _1, _2, _3, f: tf.logical_not(tf.reduce_all(f)), body=loop_fn, loop_vars=(t0, attn_ta, output_ta, f0) ) self.attn_cnn_outputs = tf.transpose(output_ta.stack(), [1, 0, 2]) attn_weights = tf.transpose(attn_ta.stack(), [1, 0, 2]) return attn_weights, self.attn_cnn_outputs
[ "tensorflow.contrib.layers.xavier_initializer", "tensorflow.reduce_all", "tensorflow.Variable", "numpy.sin", "numpy.arange", "tensorflow.greater_equal", "tensorflow.get_variable", "tensorflow.nn.softmax", "tensorflow.variable_scope", "tensorflow.concat", "tensorflow.nn.selu", "math.log", "tensorflow.layers.BatchNormalization", "tensorflow.constant", "tensorflow.transpose", "tensorflow.tile", "numpy.cos", "tensorflow.sequence_mask", "tensorflow.layers.Conv1D", "tensorflow.zeros_initializer", "tensorflow.expand_dims", "tensorflow.layers.dense", "numpy.zeros", "numpy.expand_dims", "tensorflow.shape", "tensorflow.zeros", "tensorflow.TensorArray", "tensorflow.nn.dropout" ]
[((213, 254), 'numpy.zeros', 'np.zeros', (['[max_len, emb_size]', 'np.float32'], {}), '([max_len, emb_size], np.float32)\n', (221, 254), True, 'import numpy as np\n'), ((462, 489), 'numpy.sin', 'np.sin', (['(position * div_term)'], {}), '(position * div_term)\n', (468, 489), True, 'import numpy as np\n'), ((512, 539), 'numpy.cos', 'np.cos', (['(position * div_term)'], {}), '(position * div_term)\n', (518, 539), True, 'import numpy as np\n'), ((553, 574), 'numpy.expand_dims', 'np.expand_dims', (['pe', '(1)'], {}), '(pe, 1)\n', (567, 574), True, 'import numpy as np\n'), ((593, 625), 'tensorflow.Variable', 'tf.Variable', (['pe'], {'trainable': '(False)'}), '(pe, trainable=False)\n', (604, 625), True, 'import tensorflow as tf\n'), ((2073, 2125), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(1)'], {'padding': '"""same"""'}), "(self.hidden_dim, 1, padding='same')\n", (2089, 2125), True, 'import tensorflow as tf\n'), ((2145, 2175), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2173, 2175), True, 'import tensorflow as tf\n'), ((2195, 2247), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(1)'], {'padding': '"""same"""'}), "(self.hidden_dim, 1, padding='same')\n", (2211, 2247), True, 'import tensorflow as tf\n'), ((2267, 2297), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2295, 2297), True, 'import tensorflow as tf\n'), ((2317, 2369), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(2)'], {'padding': '"""same"""'}), "(self.hidden_dim, 2, padding='same')\n", (2333, 2369), True, 'import tensorflow as tf\n'), ((2389, 2419), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2417, 2419), True, 'import tensorflow as tf\n'), ((2441, 2493), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(2)'], {'padding': '"""same"""'}), "(self.hidden_dim, 2, padding='same')\n", (2457, 2493), True, 'import tensorflow as tf\n'), ((2515, 2545), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2543, 2545), True, 'import tensorflow as tf\n'), ((2565, 2617), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(3)'], {'padding': '"""same"""'}), "(self.hidden_dim, 3, padding='same')\n", (2581, 2617), True, 'import tensorflow as tf\n'), ((2637, 2667), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2665, 2667), True, 'import tensorflow as tf\n'), ((2689, 2741), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(3)'], {'padding': '"""same"""'}), "(self.hidden_dim, 3, padding='same')\n", (2705, 2741), True, 'import tensorflow as tf\n'), ((2763, 2793), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2791, 2793), True, 'import tensorflow as tf\n'), ((2815, 2867), 'tensorflow.layers.Conv1D', 'tf.layers.Conv1D', (['self.hidden_dim', '(3)'], {'padding': '"""same"""'}), "(self.hidden_dim, 3, padding='same')\n", (2831, 2867), True, 'import tensorflow as tf\n'), ((2889, 2919), 'tensorflow.layers.BatchNormalization', 'tf.layers.BatchNormalization', ([], {}), '()\n', (2917, 2919), True, 'import tensorflow as tf\n'), ((684, 721), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""position_encoder"""'], {}), "('position_encoder')\n", (701, 721), True, 'import tensorflow as tf\n'), ((742, 773), 'tensorflow.transpose', 'tf.transpose', (['inputs', '[1, 0, 2]'], {}), '(inputs, [1, 0, 2])\n', (754, 773), True, 'import tensorflow as tf\n'), ((936, 983), 'tensorflow.TensorArray', 'tf.TensorArray', ([], {'dtype': 'tf.float32', 'size': 'max_time'}), '(dtype=tf.float32, size=max_time)\n', (950, 983), True, 'import tensorflow as tf\n'), ((1052, 1111), 'tensorflow.TensorArray', 'tf.TensorArray', ([], {'dtype': 'tf.float32', 'dynamic_size': '(True)', 'size': '(0)'}), '(dtype=tf.float32, dynamic_size=True, size=0)\n', (1066, 1111), True, 'import tensorflow as tf\n'), ((1129, 1159), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.int32'}), '(0, dtype=tf.int32)\n', (1140, 1159), True, 'import tensorflow as tf\n'), ((1177, 1214), 'tensorflow.zeros', 'tf.zeros', (['[batch_size]'], {'dtype': 'tf.bool'}), '([batch_size], dtype=tf.bool)\n', (1185, 1214), True, 'import tensorflow as tf\n'), ((2965, 2999), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""cnn_extractor"""'], {}), "('cnn_extractor')\n", (2982, 2999), True, 'import tensorflow as tf\n'), ((3057, 3074), 'tensorflow.nn.selu', 'tf.nn.selu', (['input'], {}), '(input)\n', (3067, 3074), True, 'import tensorflow as tf\n'), ((3163, 3178), 'tensorflow.nn.selu', 'tf.nn.selu', (['sw1'], {}), '(sw1)\n', (3173, 3178), True, 'import tensorflow as tf\n'), ((3263, 3278), 'tensorflow.nn.selu', 'tf.nn.selu', (['sw2'], {}), '(sw2)\n', (3273, 3278), True, 'import tensorflow as tf\n'), ((3363, 3378), 'tensorflow.nn.selu', 'tf.nn.selu', (['sw2'], {}), '(sw2)\n', (3373, 3378), True, 'import tensorflow as tf\n'), ((3465, 3480), 'tensorflow.nn.selu', 'tf.nn.selu', (['sw3'], {}), '(sw3)\n', (3475, 3480), True, 'import tensorflow as tf\n'), ((3565, 3580), 'tensorflow.nn.selu', 'tf.nn.selu', (['sw3'], {}), '(sw3)\n', (3575, 3580), True, 'import tensorflow as tf\n'), ((3667, 3682), 'tensorflow.nn.selu', 'tf.nn.selu', (['sw3'], {}), '(sw3)\n', (3677, 3682), True, 'import tensorflow as tf\n'), ((3755, 3785), 'tensorflow.concat', 'tf.concat', (['[sw1, sw2, sw3]', '(-1)'], {}), '([sw1, sw2, sw3], -1)\n', (3764, 3785), True, 'import tensorflow as tf\n'), ((3811, 3878), 'tensorflow.layers.dense', 'tf.layers.dense', (['cnn_output', 'self.hidden_dim'], {'activation': 'tf.nn.selu'}), '(cnn_output, self.hidden_dim, activation=tf.nn.selu)\n', (3826, 3878), True, 'import tensorflow as tf\n'), ((3898, 3938), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['cnn_output'], {'keep_prob': '(0.5)'}), '(cnn_output, keep_prob=0.5)\n', (3911, 3938), True, 'import tensorflow as tf\n'), ((4653, 4687), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""tag_embedding"""'], {}), "('tag_embedding')\n", (4670, 4687), True, 'import tensorflow as tf\n'), ((4724, 4813), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""_tag_embeddings"""', 'shape': '[self.num_tags, 25]', 'dtype': 'tf.float32'}), "(name='_tag_embeddings', shape=[self.num_tags, 25], dtype=tf\n .float32)\n", (4739, 4813), True, 'import tensorflow as tf\n'), ((4873, 4903), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""attention"""'], {}), "('attention')\n", (4890, 4903), True, 'import tensorflow as tf\n'), ((5204, 5234), 'tensorflow.transpose', 'tf.transpose', (['input', '[1, 0, 2]'], {}), '(input, [1, 0, 2])\n', (5216, 5234), True, 'import tensorflow as tf\n'), ((5459, 5506), 'tensorflow.TensorArray', 'tf.TensorArray', ([], {'dtype': 'tf.float32', 'size': 'max_time'}), '(dtype=tf.float32, size=max_time)\n', (5473, 5506), True, 'import tensorflow as tf\n'), ((5576, 5635), 'tensorflow.TensorArray', 'tf.TensorArray', ([], {'dtype': 'tf.float32', 'dynamic_size': '(True)', 'size': '(0)'}), '(dtype=tf.float32, dynamic_size=True, size=0)\n', (5590, 5635), True, 'import tensorflow as tf\n'), ((5660, 5719), 'tensorflow.TensorArray', 'tf.TensorArray', ([], {'dtype': 'tf.float32', 'dynamic_size': '(True)', 'size': '(0)'}), '(dtype=tf.float32, dynamic_size=True, size=0)\n', (5674, 5719), True, 'import tensorflow as tf\n'), ((5737, 5767), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.int32'}), '(0, dtype=tf.int32)\n', (5748, 5767), True, 'import tensorflow as tf\n'), ((5785, 5822), 'tensorflow.zeros', 'tf.zeros', (['[batch_size]'], {'dtype': 'tf.bool'}), '([batch_size], dtype=tf.bool)\n', (5793, 5822), True, 'import tensorflow as tf\n'), ((797, 811), 'tensorflow.shape', 'tf.shape', (['embs'], {}), '(embs)\n', (805, 811), True, 'import tensorflow as tf\n'), ((840, 854), 'tensorflow.shape', 'tf.shape', (['embs'], {}), '(embs)\n', (848, 854), True, 'import tensorflow as tf\n'), ((1551, 1586), 'tensorflow.greater_equal', 'tf.greater_equal', (['(t + 1)', 'seq_length'], {}), '(t + 1, seq_length)\n', (1567, 1586), True, 'import tensorflow as tf\n'), ((4261, 4299), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (4297, 4299), True, 'import tensorflow as tf\n'), ((4461, 4499), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (4497, 4499), True, 'import tensorflow as tf\n'), ((4561, 4583), 'tensorflow.zeros_initializer', 'tf.zeros_initializer', ([], {}), '()\n', (4581, 4583), True, 'import tensorflow as tf\n'), ((5258, 5273), 'tensorflow.shape', 'tf.shape', (['query'], {}), '(query)\n', (5266, 5273), True, 'import tensorflow as tf\n'), ((5302, 5317), 'tensorflow.shape', 'tf.shape', (['query'], {}), '(query)\n', (5310, 5317), True, 'import tensorflow as tf\n'), ((5351, 5384), 'tensorflow.expand_dims', 'tf.expand_dims', (['tag_embeddings', '(0)'], {}), '(tag_embeddings, 0)\n', (5365, 5384), True, 'import tensorflow as tf\n'), ((6081, 6107), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['gamma_h', '(-1)'], {}), '(gamma_h, -1)\n', (6094, 6107), True, 'import tensorflow as tf\n'), ((6390, 6431), 'tensorflow.greater_equal', 'tf.greater_equal', (['(t + 1)', 'sequence_lengths'], {}), '(t + 1, sequence_lengths)\n', (6406, 6431), True, 'import tensorflow as tf\n'), ((289, 310), 'numpy.arange', 'np.arange', (['(0)', 'max_len'], {}), '(0, max_len)\n', (298, 310), True, 'import numpy as np\n'), ((1257, 1285), 'tensorflow.sequence_mask', 'tf.sequence_mask', (['seq_length'], {}), '(seq_length)\n', (1273, 1285), True, 'import tensorflow as tf\n'), ((6234, 6261), 'tensorflow.concat', 'tf.concat', (['[c_t, cur_q]', '(-1)'], {}), '([c_t, cur_q], -1)\n', (6243, 6261), True, 'import tensorflow as tf\n'), ((360, 385), 'numpy.arange', 'np.arange', (['(0)', 'emb_size', '(2)'], {}), '(0, emb_size, 2)\n', (369, 385), True, 'import numpy as np\n'), ((409, 426), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (417, 426), False, 'import math\n'), ((1433, 1469), 'tensorflow.tile', 'tf.tile', (['self.pe[t]', '[batch_size, 1]'], {}), '(self.pe[t], [batch_size, 1])\n', (1440, 1469), True, 'import tensorflow as tf\n'), ((6023, 6048), 'tensorflow.expand_dims', 'tf.expand_dims', (['cur_q', '(-1)'], {}), '(cur_q, -1)\n', (6037, 6048), True, 'import tensorflow as tf\n'), ((6151, 6177), 'tensorflow.expand_dims', 'tf.expand_dims', (['weights', '(1)'], {}), '(weights, 1)\n', (6165, 6177), True, 'import tensorflow as tf\n'), ((1730, 1746), 'tensorflow.reduce_all', 'tf.reduce_all', (['f'], {}), '(f)\n', (1743, 1746), True, 'import tensorflow as tf\n'), ((6597, 6613), 'tensorflow.reduce_all', 'tf.reduce_all', (['f'], {}), '(f)\n', (6610, 6613), True, 'import tensorflow as tf\n')]
import os import unittest import numpy as np import numpy.random as rnd import tensorflow as tf from pymanopt.function import TensorFlow from . import _backend_tests os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" class TestUnaryFunction(_backend_tests.TestUnaryFunction): def setUp(self): super().setUp() x = tf.Variable(tf.zeros(self.n, dtype=np.float64), name="x") @TensorFlow(x) def cost(x): return tf.reduce_sum(x ** 2) self.cost = cost class TestNaryFunction(_backend_tests.TestNaryFunction): def setUp(self): super().setUp() n = self.n x = tf.Variable(tf.zeros(n, dtype=np.float64), name="x") y = tf.Variable(tf.zeros(n, dtype=np.float64), name="y") @TensorFlow(x, y) def cost(x, y): return tf.tensordot(x, y, axes=1) self.cost = cost class TestNaryParameterGrouping(_backend_tests.TestNaryParameterGrouping): def setUp(self): super().setUp() n = self.n x = tf.Variable(tf.zeros(n, dtype=np.float64), name="x") y = tf.Variable(tf.zeros(n, dtype=np.float64), name="y") z = tf.Variable(tf.zeros(n, dtype=np.float64), name="z") @TensorFlow(x, y, z) def cost(x, y, z): return tf.reduce_sum(x ** 2 + y + z ** 3) self.cost = cost class TestVector(_backend_tests.TestVector): def setUp(self): super().setUp() n = self.n X = tf.Variable(tf.zeros(n, dtype=np.float64)) @TensorFlow(X) def cost(X): return tf.exp(tf.reduce_sum(X ** 2)) self.cost = cost class TestMatrix(_backend_tests.TestMatrix): def setUp(self): super().setUp() m = self.m n = self.n X = tf.Variable(tf.zeros((m, n), dtype=np.float64)) @TensorFlow(X) def cost(X): return tf.exp(tf.reduce_sum(X ** 2)) self.cost = cost class TestTensor3(_backend_tests.TestTensor3): def setUp(self): super().setUp() n1 = self.n1 n2 = self.n2 n3 = self.n3 X = tf.Variable(tf.zeros([n1, n2, n3], dtype=np.float64)) @TensorFlow(X) def cost(X): return tf.exp(tf.reduce_sum(X ** 2)) self.cost = cost class TestMixed(_backend_tests.TestMixed): def setUp(self): super().setUp() n1 = self.n1 n2 = self.n2 n3 = self.n3 n4 = self.n4 n5 = self.n5 n6 = self.n6 x = tf.Variable(tf.zeros(n1, dtype=np.float64)) y = tf.Variable(tf.zeros([n2, n3], dtype=np.float64)) z = tf.Variable(tf.zeros([n4, n5, n6], dtype=np.float64)) @TensorFlow(x, y, z) def cost(x, y, z): return (tf.exp(tf.reduce_sum(x ** 2)) + tf.exp(tf.reduce_sum(y ** 2)) + tf.exp(tf.reduce_sum(z ** 2))) self.cost = cost class TestUserProvidedSession(unittest.TestCase): def test_user_session(self): class MockSession: def run(*args, **kwargs): raise RuntimeError n = 10 x = tf.Variable(tf.zeros(n, dtype=tf.float64), name="x") @TensorFlow(x, session=MockSession()) def cost(x): return tf.reduce_sum(x) with self.assertRaises(RuntimeError): cost(rnd.randn(n))
[ "tensorflow.reduce_sum", "numpy.random.randn", "pymanopt.function.TensorFlow", "tensorflow.zeros", "tensorflow.tensordot" ]
[((397, 410), 'pymanopt.function.TensorFlow', 'TensorFlow', (['x'], {}), '(x)\n', (407, 410), False, 'from pymanopt.function import TensorFlow\n'), ((764, 780), 'pymanopt.function.TensorFlow', 'TensorFlow', (['x', 'y'], {}), '(x, y)\n', (774, 780), False, 'from pymanopt.function import TensorFlow\n'), ((1225, 1244), 'pymanopt.function.TensorFlow', 'TensorFlow', (['x', 'y', 'z'], {}), '(x, y, z)\n', (1235, 1244), False, 'from pymanopt.function import TensorFlow\n'), ((1530, 1543), 'pymanopt.function.TensorFlow', 'TensorFlow', (['X'], {}), '(X)\n', (1540, 1543), False, 'from pymanopt.function import TensorFlow\n'), ((1842, 1855), 'pymanopt.function.TensorFlow', 'TensorFlow', (['X'], {}), '(X)\n', (1852, 1855), False, 'from pymanopt.function import TensorFlow\n'), ((2187, 2200), 'pymanopt.function.TensorFlow', 'TensorFlow', (['X'], {}), '(X)\n', (2197, 2200), False, 'from pymanopt.function import TensorFlow\n'), ((2709, 2728), 'pymanopt.function.TensorFlow', 'TensorFlow', (['x', 'y', 'z'], {}), '(x, y, z)\n', (2719, 2728), False, 'from pymanopt.function import TensorFlow\n'), ((341, 375), 'tensorflow.zeros', 'tf.zeros', (['self.n'], {'dtype': 'np.float64'}), '(self.n, dtype=np.float64)\n', (349, 375), True, 'import tensorflow as tf\n'), ((451, 472), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(x ** 2)'], {}), '(x ** 2)\n', (464, 472), True, 'import tensorflow as tf\n'), ((648, 677), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'np.float64'}), '(n, dtype=np.float64)\n', (656, 677), True, 'import tensorflow as tf\n'), ((713, 742), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'np.float64'}), '(n, dtype=np.float64)\n', (721, 742), True, 'import tensorflow as tf\n'), ((824, 850), 'tensorflow.tensordot', 'tf.tensordot', (['x', 'y'], {'axes': '(1)'}), '(x, y, axes=1)\n', (836, 850), True, 'import tensorflow as tf\n'), ((1044, 1073), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'np.float64'}), '(n, dtype=np.float64)\n', (1052, 1073), True, 'import tensorflow as tf\n'), ((1109, 1138), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'np.float64'}), '(n, dtype=np.float64)\n', (1117, 1138), True, 'import tensorflow as tf\n'), ((1174, 1203), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'np.float64'}), '(n, dtype=np.float64)\n', (1182, 1203), True, 'import tensorflow as tf\n'), ((1291, 1325), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(x ** 2 + y + z ** 3)'], {}), '(x ** 2 + y + z ** 3)\n', (1304, 1325), True, 'import tensorflow as tf\n'), ((1489, 1518), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'np.float64'}), '(n, dtype=np.float64)\n', (1497, 1518), True, 'import tensorflow as tf\n'), ((1796, 1830), 'tensorflow.zeros', 'tf.zeros', (['(m, n)'], {'dtype': 'np.float64'}), '((m, n), dtype=np.float64)\n', (1804, 1830), True, 'import tensorflow as tf\n'), ((2135, 2175), 'tensorflow.zeros', 'tf.zeros', (['[n1, n2, n3]'], {'dtype': 'np.float64'}), '([n1, n2, n3], dtype=np.float64)\n', (2143, 2175), True, 'import tensorflow as tf\n'), ((2539, 2569), 'tensorflow.zeros', 'tf.zeros', (['n1'], {'dtype': 'np.float64'}), '(n1, dtype=np.float64)\n', (2547, 2569), True, 'import tensorflow as tf\n'), ((2595, 2631), 'tensorflow.zeros', 'tf.zeros', (['[n2, n3]'], {'dtype': 'np.float64'}), '([n2, n3], dtype=np.float64)\n', (2603, 2631), True, 'import tensorflow as tf\n'), ((2657, 2697), 'tensorflow.zeros', 'tf.zeros', (['[n4, n5, n6]'], {'dtype': 'np.float64'}), '([n4, n5, n6], dtype=np.float64)\n', (2665, 2697), True, 'import tensorflow as tf\n'), ((3163, 3192), 'tensorflow.zeros', 'tf.zeros', (['n'], {'dtype': 'tf.float64'}), '(n, dtype=tf.float64)\n', (3171, 3192), True, 'import tensorflow as tf\n'), ((3291, 3307), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['x'], {}), '(x)\n', (3304, 3307), True, 'import tensorflow as tf\n'), ((1591, 1612), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(X ** 2)'], {}), '(X ** 2)\n', (1604, 1612), True, 'import tensorflow as tf\n'), ((1903, 1924), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(X ** 2)'], {}), '(X ** 2)\n', (1916, 1924), True, 'import tensorflow as tf\n'), ((2248, 2269), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(X ** 2)'], {}), '(X ** 2)\n', (2261, 2269), True, 'import tensorflow as tf\n'), ((3372, 3384), 'numpy.random.randn', 'rnd.randn', (['n'], {}), '(n)\n', (3381, 3384), True, 'import numpy.random as rnd\n'), ((2887, 2908), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(z ** 2)'], {}), '(z ** 2)\n', (2900, 2908), True, 'import tensorflow as tf\n'), ((2783, 2804), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(x ** 2)'], {}), '(x ** 2)\n', (2796, 2804), True, 'import tensorflow as tf\n'), ((2835, 2856), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(y ** 2)'], {}), '(y ** 2)\n', (2848, 2856), True, 'import tensorflow as tf\n')]
import numpy as np import robodk import time import queue from scipy.spatial.transform import Rotation, Slerp from PIL import Image from robolink import * from matplotlib import pyplot as plt import multiprocessing from constants import BELT_VELOCITY BOX_RANDOM_ANGLE = np.pi / 8.0 BOX_X_RANDOM = 50.0 GRAVITY = -9.81 class SimulationLoop: CONVEYOR_BELT_END = 100.0 def __init__(self, queue, lock): self.sleep_for = 1.0 / 60.0 self.link = Robolink() self.box_velocity = np.array([0.0, -BELT_VELOCITY, 0.0]) self.paused = False self.done = False self.previous_sim_time = None self.queue = queue self.box = self.link.Item('Box') self.write_lock = lock def run(self): self.link.setSimulationSpeed(1.0) self.previous_sim_time = self.link.SimulationTime() while not self.done: self._read_queue() if self.paused: time.sleep(0.05) continue self._step_simulation() time.sleep(self.sleep_for) def _read_queue(self): try: msg = self.queue.get(False) try: self.write_lock.acquire() getattr(self, msg[0])(*msg[1:]) finally: self.write_lock.release() except queue.Empty: pass def _step_simulation(self): current_time = self.link.SimulationTime() diff = current_time - self.previous_sim_time try: self.write_lock.acquire() self.previous_sim_time = current_time if self.box.Parent().Name() != 'picking_setup': # Box is in the robot's hand. Don't do anything. return current_pose = np.array(self.box.Pose().Rows()) if current_pose[1, 3] < self.CONVEYOR_BELT_END: self.reset_box() return if self.box.Parent().Name() == "picking_setup": # On conveyor belt. Let's move it. current_pose[:3, 3] += diff * self.box_velocity * 1000.0 # Pose is in millimeters. if current_pose[2, 3] > 5.0: z = current_pose[2, 3] current_pose[2, 3] = max(0.0, z + diff * GRAVITY * 1000.0) self.box.setPose(robodk.Mat(current_pose.tolist())) finally: self.write_lock.release() def reset_box(self): gripper = self.link.Item('Gripper') gripper.DetachAll() try: box = self.link.Item('Box') if box.Name() == "Box": box.Delete() except Exception as e: print(e) box_template = self.link.Item('BoxTemplate') box_template.Copy() self.box = self.link.Paste(self.link.Item('picking_setup')) self.box.setName("Box") self.box.setParent(self.link.Item('picking_setup')) box_pose = np.array(self.box.Pose().Rows()) box_pose[:3, :3] = Rotation.from_rotvec([0.0, 0.0, -np.pi / 2.0 + np.random.uniform(-BOX_RANDOM_ANGLE, BOX_RANDOM_ANGLE) ]).as_matrix() box_pose[0, 3] = 200.0 + np.random.uniform(-BOX_X_RANDOM, BOX_X_RANDOM) box_pose[1, 3] = 1800.0 box_pose[2, 3] = 0.0 self.box.setPose(robodk.Mat(box_pose.tolist())) self.box.Scale(np.random.uniform(np.array([0.7, 0.7, 0.1]), np.ones(3)).tolist()) def pause(self, value): self.paused = value if not self.paused: self.previous_sim_time = self.link.SimulationTime() def close(self): self.done = True def simulation_loop(queue, lock): loop = SimulationLoop(queue, lock).run() class Simulation: def __init__(self): self.queue = multiprocessing.Queue() self.write_lock = multiprocessing.Lock() self.background_thread = multiprocessing.Process(target=simulation_loop, args=(self.queue, self.write_lock), daemon=True) self.background_thread.start() def reset_box(self): self.queue.put(('reset_box',)) def pause(self, value): self.queue.put(('pause', value)) def close(self): self.queue.put(('close',))
[ "numpy.random.uniform", "multiprocessing.Lock", "numpy.ones", "time.sleep", "numpy.array", "multiprocessing.Queue", "multiprocessing.Process" ]
[((504, 540), 'numpy.array', 'np.array', (['[0.0, -BELT_VELOCITY, 0.0]'], {}), '([0.0, -BELT_VELOCITY, 0.0])\n', (512, 540), True, 'import numpy as np\n'), ((3787, 3810), 'multiprocessing.Queue', 'multiprocessing.Queue', ([], {}), '()\n', (3808, 3810), False, 'import multiprocessing\n'), ((3837, 3859), 'multiprocessing.Lock', 'multiprocessing.Lock', ([], {}), '()\n', (3857, 3859), False, 'import multiprocessing\n'), ((3893, 3994), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'simulation_loop', 'args': '(self.queue, self.write_lock)', 'daemon': '(True)'}), '(target=simulation_loop, args=(self.queue, self.\n write_lock), daemon=True)\n', (3916, 3994), False, 'import multiprocessing\n'), ((1048, 1074), 'time.sleep', 'time.sleep', (['self.sleep_for'], {}), '(self.sleep_for)\n', (1058, 1074), False, 'import time\n'), ((3193, 3239), 'numpy.random.uniform', 'np.random.uniform', (['(-BOX_X_RANDOM)', 'BOX_X_RANDOM'], {}), '(-BOX_X_RANDOM, BOX_X_RANDOM)\n', (3210, 3239), True, 'import numpy as np\n'), ((958, 974), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (968, 974), False, 'import time\n'), ((3398, 3423), 'numpy.array', 'np.array', (['[0.7, 0.7, 0.1]'], {}), '([0.7, 0.7, 0.1])\n', (3406, 3423), True, 'import numpy as np\n'), ((3425, 3435), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (3432, 3435), True, 'import numpy as np\n'), ((3082, 3136), 'numpy.random.uniform', 'np.random.uniform', (['(-BOX_RANDOM_ANGLE)', 'BOX_RANDOM_ANGLE'], {}), '(-BOX_RANDOM_ANGLE, BOX_RANDOM_ANGLE)\n', (3099, 3136), True, 'import numpy as np\n')]
# # 为 GUI 封装的函数 不可直接运行 # Author: Xiaohei # Updatetime: 2021-12-01 # import cv2 import os import numpy import pickle from enhance import image_enhance def get_descriptors(img): clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) img = clahe.apply(img) img = image_enhance.image_enhance(img) img = numpy.array(img, dtype=numpy.uint8) # Threshold ret, img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # Normalize to 0 and 1 range img[img == 255] = 1 # Harris corners harris_corners = cv2.cornerHarris(img, 3, 3, 0.04) harris_normalized = cv2.normalize(harris_corners, 0, 255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32FC1) threshold_harris = 125 # Extract keypoints keypoints = [] for x in range(0, harris_normalized.shape[0]): for y in range(0, harris_normalized.shape[1]): if harris_normalized[x][y] > threshold_harris: keypoints.append(cv2.KeyPoint(y, x, 1)) # Define descriptor orb = cv2.ORB_create() # Compute descriptors _, des = orb.compute(img, keypoints) return keypoints, des def match(des1, path, name_lst): avg_lst = [] if name_lst: for name in name_lst: with open("{}/{}".format(path, name), "rb+") as f: des2 = pickle.load(f) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = sorted(bf.match(des1, des2), key=lambda match: match.distance) score = 0 for match in matches: score += match.distance avg = score / len(matches) avg_lst.append(avg) return avg_lst else: return None def run_app(image_path, data_path): img1 = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) if img1 is not None: img1 = cv2.resize(img1, dsize=(256, 364)) kp1, des1 = get_descriptors(img1) else: raise Exception("Invalid image path!") address_lst = [name for name in os.listdir(data_path) if os.path.isfile(os.path.join(data_path, name))] name_lst = list(address_lst) avgs = match(des1, data_path, name_lst) score_threshold = 40 if avgs is not None: if min(avgs) < score_threshold: flag = True name = name_lst[avgs.index(min(avgs))] else: flag = False name = name_lst[avgs.index(min(avgs))] name1 = image_path.replace("\\", "/").split("/")[-1].split(".")[0] # name1 = input("Input a name to save the fingerprint: ") if name1: with open("{}/{}".format(data_path, name1), "wb+") as f: pickle.dump(des1, f) else: flag = False name = "None" name1 = image_path.replace("\\", "/").split("/")[-1].split(".")[0] # name1 = input("Input a name to save the fingerprint: ") if name1: with open("{}/{}".format(data_path, name1), "wb+") as f: pickle.dump(des1, f) return flag, name
[ "os.listdir", "pickle.dump", "enhance.image_enhance.image_enhance", "cv2.threshold", "cv2.BFMatcher", "cv2.normalize", "cv2.imread", "pickle.load", "numpy.array", "cv2.ORB_create", "cv2.KeyPoint", "cv2.createCLAHE", "os.path.join", "cv2.cornerHarris", "cv2.resize" ]
[((191, 242), 'cv2.createCLAHE', 'cv2.createCLAHE', ([], {'clipLimit': '(2.0)', 'tileGridSize': '(8, 8)'}), '(clipLimit=2.0, tileGridSize=(8, 8))\n', (206, 242), False, 'import cv2\n'), ((280, 312), 'enhance.image_enhance.image_enhance', 'image_enhance.image_enhance', (['img'], {}), '(img)\n', (307, 312), False, 'from enhance import image_enhance\n'), ((323, 358), 'numpy.array', 'numpy.array', (['img'], {'dtype': 'numpy.uint8'}), '(img, dtype=numpy.uint8)\n', (334, 358), False, 'import numpy\n'), ((391, 460), 'cv2.threshold', 'cv2.threshold', (['img', '(127)', '(255)', '(cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)'], {}), '(img, 127, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)\n', (404, 460), False, 'import cv2\n'), ((562, 595), 'cv2.cornerHarris', 'cv2.cornerHarris', (['img', '(3)', '(3)', '(0.04)'], {}), '(img, 3, 3, 0.04)\n', (578, 595), False, 'import cv2\n'), ((620, 709), 'cv2.normalize', 'cv2.normalize', (['harris_corners', '(0)', '(255)'], {'norm_type': 'cv2.NORM_MINMAX', 'dtype': 'cv2.CV_32FC1'}), '(harris_corners, 0, 255, norm_type=cv2.NORM_MINMAX, dtype=cv2.\n CV_32FC1)\n', (633, 709), False, 'import cv2\n'), ((1032, 1048), 'cv2.ORB_create', 'cv2.ORB_create', ([], {}), '()\n', (1046, 1048), False, 'import cv2\n'), ((1769, 1813), 'cv2.imread', 'cv2.imread', (['image_path', 'cv2.IMREAD_GRAYSCALE'], {}), '(image_path, cv2.IMREAD_GRAYSCALE)\n', (1779, 1813), False, 'import cv2\n'), ((1855, 1889), 'cv2.resize', 'cv2.resize', (['img1'], {'dsize': '(256, 364)'}), '(img1, dsize=(256, 364))\n', (1865, 1889), False, 'import cv2\n'), ((1362, 1410), 'cv2.BFMatcher', 'cv2.BFMatcher', (['cv2.NORM_HAMMING'], {'crossCheck': '(True)'}), '(cv2.NORM_HAMMING, crossCheck=True)\n', (1375, 1410), False, 'import cv2\n'), ((2026, 2047), 'os.listdir', 'os.listdir', (['data_path'], {}), '(data_path)\n', (2036, 2047), False, 'import os\n'), ((1330, 1344), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1341, 1344), False, 'import pickle\n'), ((2066, 2095), 'os.path.join', 'os.path.join', (['data_path', 'name'], {}), '(data_path, name)\n', (2078, 2095), False, 'import os\n'), ((3014, 3034), 'pickle.dump', 'pickle.dump', (['des1', 'f'], {}), '(des1, f)\n', (3025, 3034), False, 'import pickle\n'), ((974, 995), 'cv2.KeyPoint', 'cv2.KeyPoint', (['y', 'x', '(1)'], {}), '(y, x, 1)\n', (986, 995), False, 'import cv2\n'), ((2696, 2716), 'pickle.dump', 'pickle.dump', (['des1', 'f'], {}), '(des1, f)\n', (2707, 2716), False, 'import pickle\n')]
__author__ = 'aymgal' # implementations of proximal operators adapted to sparsity import numpy as np from slitronomy.Util import util def prox_sparsity_wavelets(coeffs_input, step, level_const=None, level_pixels=None, l_norm=1): """ Apply soft or hard threshold on all wavelets scales excepts the last one (the coarse scale) """ if l_norm not in [0, 1]: raise ValueError("Sparsity proximal operator only defined with l0- and l1-norms") if step == 0: return coeffs_input coeffs = np.copy(coeffs_input) n_scales = coeffs.shape[0] # apply threshold operation to all starlet scales except the coarsest for s in range(n_scales-1): thresh = step if level_const is not None: thresh *= level_const[s] if level_pixels is not None: thresh *= level_pixels[s, :, :] if l_norm == 0: coeffs[s, :, :] = util.hard_threshold(coeffs[s, :, :], thresh) else: coeffs[s, :, :] = util.soft_threshold(coeffs[s, :, :], thresh) return coeffs def prox_positivity(image_input): image = np.copy(image_input) image[image < 0] = 0. return image def full_prox_sparsity_positivity(image, transform, inverse_transform, weights, noise_levels, thresh, thresh_increm, n_scales, l_norm, formulation, force_positivity): """ returns the proximal operator of the regularisation term g = lambda * |Phi^T HG|_0 or g = lambda * |Phi^T HG|_1 """ level_const = thresh * np.ones(n_scales) level_const[0] += thresh_increm # possibly a stronger threshold for first decomposition levels (small scales features) level_pixels = weights * noise_levels if formulation == 'analysis': coeffs = transform(image) elif formulation == 'synthesis': coeffs = image # apply proximal operator step = 1 # because threshold is already expressed in data units coeffs_proxed = prox_sparsity_wavelets(coeffs, step=step, level_const=level_const, level_pixels=level_pixels, l_norm=l_norm) if formulation == 'analysis': image_proxed = inverse_transform(coeffs_proxed) elif formulation == 'synthesis': image_proxed = coeffs_proxed if force_positivity and formulation == 'analysis': image_proxed = prox_positivity(image_proxed) # TODO: apply positivity also in 'synthesis' formulation (i.e. to coeffs in starlet space?) return image_proxed
[ "slitronomy.Util.util.soft_threshold", "slitronomy.Util.util.hard_threshold", "numpy.ones", "numpy.copy" ]
[((526, 547), 'numpy.copy', 'np.copy', (['coeffs_input'], {}), '(coeffs_input)\n', (533, 547), True, 'import numpy as np\n'), ((1118, 1138), 'numpy.copy', 'np.copy', (['image_input'], {}), '(image_input)\n', (1125, 1138), True, 'import numpy as np\n'), ((1599, 1616), 'numpy.ones', 'np.ones', (['n_scales'], {}), '(n_scales)\n', (1606, 1616), True, 'import numpy as np\n'), ((917, 961), 'slitronomy.Util.util.hard_threshold', 'util.hard_threshold', (['coeffs[s, :, :]', 'thresh'], {}), '(coeffs[s, :, :], thresh)\n', (936, 961), False, 'from slitronomy.Util import util\n'), ((1006, 1050), 'slitronomy.Util.util.soft_threshold', 'util.soft_threshold', (['coeffs[s, :, :]', 'thresh'], {}), '(coeffs[s, :, :], thresh)\n', (1025, 1050), False, 'from slitronomy.Util import util\n')]
# # キャプチャー画像を推定する # キャプチャー画像を100x100にリサイズする # #--------------------------------------------------------- #import keras import tensorflow as tf from tensorflow.python.keras.models import Model from tensorflow.python.keras.layers import * from tensorflow.python.keras.models import load_model import numpy as np import os import serial import time from PIL import Image import cv2 # 学習済みモデルのロード model = load_model("./original_img.h5") model.summary() #['c', 'p', 'g', 'b']-> [0, 1, 2, 3] # 動作確認用 img_arr = [] image = Image.open('./img/g/0.png') image = image.convert("RGB") image = image.resize((100, 100)) data = np.asarray(image) img_arr.append(data) img_arr = np.array(img_arr) img_arr = img_arr.astype('float32')/255 img_arr.shape[:] y_pred = model.predict(img_arr) print(y_pred) #['c', 'p', 'g', 'b']-> [0, 1, 2, 3] # ビデオ初期化 #img_cap = cv2.VideoCapture(0) img_cap = cv2.VideoCapture(1) #with serial.Serial('/dev/cu.usbmodem14301', timeout=0.1) as ser: while True: # ビデオ画像の処理 img_arr = [] ret, img_base = img_cap.read() xp = int(img_base.shape[1]) #1920 yp = int(img_base.shape[0]) #1080 cx = int(xp/2) cy = int(yp/2) #print(xp, " + ", yp) resize = 100 img_crop = cv2.resize(img_base[cy-500:cy+500, cx-500:cx+500], (resize, resize)) cv2.imshow('Images for CNN', img_crop) imgCV_RGB = img_crop[:, :, ::-1] img_pil = Image.fromarray(imgCV_RGB) data = np.asarray(img_pil) img_arr.append(data) img_arr = np.array(img_arr) img_arr = img_arr.astype('float32')/255 img_arr.shape[:] # 予測 #['c', 'p', 'g', 'b']-> [0, 1, 2, 3] y_pred = model.predict(img_arr) #print(y_pred) # 結果の表示 if y_pred[0].argmax() == 0: if (y_pred[0][0] > 0.7): print("") elif y_pred[0].argmax() == 1: if (y_pred[0][1] > 0.7): print("グー!!") elif y_pred[0].argmax() == 2: if (y_pred[0][2] > 0.7): print("チョキ!!") elif y_pred[0].argmax() == 3: if (y_pred[0][3] > 0.7): print("パー!!") if cv2.waitKey(10) == 27: break # ビデオ開放 cv2.destroyAllWindows()
[ "tensorflow.python.keras.models.load_model", "cv2.waitKey", "numpy.asarray", "cv2.imshow", "PIL.Image.open", "cv2.VideoCapture", "numpy.array", "PIL.Image.fromarray", "cv2.destroyAllWindows", "cv2.resize" ]
[((405, 436), 'tensorflow.python.keras.models.load_model', 'load_model', (['"""./original_img.h5"""'], {}), "('./original_img.h5')\n", (415, 436), False, 'from tensorflow.python.keras.models import load_model\n'), ((520, 547), 'PIL.Image.open', 'Image.open', (['"""./img/g/0.png"""'], {}), "('./img/g/0.png')\n", (530, 547), False, 'from PIL import Image\n'), ((617, 634), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (627, 634), True, 'import numpy as np\n'), ((666, 683), 'numpy.array', 'np.array', (['img_arr'], {}), '(img_arr)\n', (674, 683), True, 'import numpy as np\n'), ((879, 898), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(1)'], {}), '(1)\n', (895, 898), False, 'import cv2\n'), ((2113, 2136), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2134, 2136), False, 'import cv2\n'), ((1223, 1299), 'cv2.resize', 'cv2.resize', (['img_base[cy - 500:cy + 500, cx - 500:cx + 500]', '(resize, resize)'], {}), '(img_base[cy - 500:cy + 500, cx - 500:cx + 500], (resize, resize))\n', (1233, 1299), False, 'import cv2\n'), ((1296, 1334), 'cv2.imshow', 'cv2.imshow', (['"""Images for CNN"""', 'img_crop'], {}), "('Images for CNN', img_crop)\n", (1306, 1334), False, 'import cv2\n'), ((1387, 1413), 'PIL.Image.fromarray', 'Image.fromarray', (['imgCV_RGB'], {}), '(imgCV_RGB)\n', (1402, 1413), False, 'from PIL import Image\n'), ((1426, 1445), 'numpy.asarray', 'np.asarray', (['img_pil'], {}), '(img_pil)\n', (1436, 1445), True, 'import numpy as np\n'), ((1485, 1502), 'numpy.array', 'np.array', (['img_arr'], {}), '(img_arr)\n', (1493, 1502), True, 'import numpy as np\n'), ((2067, 2082), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (2078, 2082), False, 'import cv2\n')]
import os import logging os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' logging.getLogger('tensorflow').disabled = True import numpy as np import tensorflow as tf import tensorflow_addons as tfa from tqdm import tqdm, tqdm_notebook from augment import CTAugment from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops import math from error import test_error import logging class OurCosineDecay(tf.keras.experimental.CosineDecay): def __call__(self, step): with ops.name_scope_v2(self.name or "CosineDecay"): initial_learning_rate = ops.convert_to_tensor_v2( self.initial_learning_rate, name="initial_learning_rate") dtype = initial_learning_rate.dtype decay_steps = math_ops.cast(self.decay_steps, dtype) global_step_recomp = math_ops.cast(step, dtype) global_step_recomp = math_ops.minimum(global_step_recomp, decay_steps) completed_fraction = global_step_recomp / decay_steps cosine_decayed = math_ops.cos( constant_op.constant(7 / 16 * math.pi) * completed_fraction) decayed = (1 - self.alpha) * cosine_decayed + self.alpha return math_ops.multiply(initial_learning_rate, decayed) def training(model, full_x_l, full_x_u, full_y_l, hparams, n_classes, file_name, log_interval=200): def weak_transformation(x): x = tf.image.random_flip_left_right(x) max_shift = tf.cast(x.shape[1] * 0.125, dtype=tf.dtypes.int32) shift = tf.random.uniform([x.shape[0], 2], minval=-max_shift, maxval=max_shift, dtype=tf.dtypes.int32) return tfa.image.translate(x, tf.cast(shift, tf.dtypes.float32)) def pseudolabel(class_dist): argmax = tf.math.argmax(class_dist, axis=1) return tf.one_hot(argmax, class_dist.shape[1]) def threshold_gate(one_hot, logits, threshold): max_probs = tf.math.multiply(one_hot, tf.nn.softmax(logits)) return tf.cast(max_probs > threshold, max_probs.dtype) # * max_probs def sample_labeled_data(ds=full_x_l, y=full_y_l, batch_size=hparams['B']): total_samples = ds.shape[0] if total_samples >= batch_size: choices = np.random.choice(np.arange(total_samples), batch_size, replace=False) else: choices = np.random.choice(np.arange(total_samples), batch_size, replace=True) x_l = ds[choices, :, :, :] y_l = y[choices] return x_l, y_l def step(x_l, y_l, x_u): with tf.GradientTape() as tape: # labeled data x_l_weak = weak_transformation(x_l) output_l_weak = model(x_l_weak, True) loss_l = loss_fn_l(y_l, output_l_weak) # update CTAugment weights x_l_strong, choices, bins = cta.augment_batch(x_l) output_l_strong = model(x_l_strong, True) cta.update_weights_batch(y_l, output_l_strong, choices, bins) # unlabeled data x_u_weak = weak_transformation(x_u) output_u_weak = model(x_u_weak, True) y_u = pseudolabel(output_u_weak) y_u = threshold_gate(y_u, output_u_weak, hparams['tau']) x_u_strong, choices, bins = cta.augment_batch(x_u) output_u_strong = model(x_u_strong, True) loss_u = loss_fn_u(y_u, output_u_strong) # add losses together loss = loss_l + hparams['lamda'] * loss_u gradients = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) schedule = OurCosineDecay(hparams['eta'], hparams['K']) #optimizer = tf.keras.optimizers.SGD(schedule, momentum=hparams['beta'], nesterov=hparams['nesterov']) optimizer = tfa.optimizers.SGDW(hparams['weight_decay'], schedule, momentum=hparams['beta'], nesterov=hparams['nesterov']) loss_fn_u = tf.keras.losses.CategoricalCrossentropy(from_logits=True) loss_fn_l = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_fn_u = tf.keras.losses.CategoricalCrossentropy(from_logits=True) loss_fn_l = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) cta = CTAugment(hparams['cta_classes'], hparams['cta_decay'], hparams['cta_threshold'], hparams['cta_depth']) # ds_l = tf.data.Dataset.from_tensor_slices((full_x_l, full_y_l)) ds_u = tf.data.Dataset.from_tensor_slices(full_x_u) # split into batches # ds_l = ds_l.batch(hparams['B']).prefetch(-1) ds_u = ds_u.batch(int(hparams['mu'] * hparams['B'])).prefetch(-1) # if type casting needed: x = tf.cast(x, tf.float32) training_step = 0 epoch = 0 best_training_accuracy = 0 # for epoch in range(hparams['epochs']): # for (x_l, y_l), x_u in tqdm(zip(ds_l, ds_u), desc='epoch {}/{}'.format(epoch + 1, hparams['epochs']), # total=val_interval, ncols=100, ascii=True): # training_step += 1 # step(x_l, y_l, x_u) #for epoch in range(hparams['epochs']): while training_step < hparams['K']: epoch += 1 for x_u in tqdm(ds_u, desc='epoch {}'.format(epoch), total=hparams['total'], ncols=100, ascii=True): training_step += 1 x_l, y_l = sample_labeled_data() step(x_l, y_l, x_u) if training_step >= hparams['K']: break err = test_error(model, full_x_l, full_y_l) logging.info('epoch: {}, labeled accuracy: {}'.format(epoch, err)) if err > best_training_accuracy: best_training_accuracy = err tf.keras.models.save_model(model, filepath=file_name) return model
[ "tensorflow.python.framework.constant_op.constant", "tensorflow.keras.losses.CategoricalCrossentropy", "numpy.arange", "error.test_error", "tensorflow.keras.losses.SparseCategoricalCrossentropy", "tensorflow.nn.softmax", "tensorflow.one_hot", "tensorflow.random.uniform", "tensorflow.python.ops.math_ops.minimum", "tensorflow.cast", "tensorflow.python.ops.math_ops.cast", "tensorflow.python.framework.ops.convert_to_tensor_v2", "tensorflow.python.framework.ops.name_scope_v2", "tensorflow.image.random_flip_left_right", "augment.CTAugment", "tensorflow.math.argmax", "tensorflow_addons.optimizers.SGDW", "tensorflow.data.Dataset.from_tensor_slices", "tensorflow.python.ops.math_ops.multiply", "tensorflow.keras.models.save_model", "tensorflow.GradientTape", "logging.getLogger" ]
[((67, 98), 'logging.getLogger', 'logging.getLogger', (['"""tensorflow"""'], {}), "('tensorflow')\n", (84, 98), False, 'import logging\n'), ((3844, 3959), 'tensorflow_addons.optimizers.SGDW', 'tfa.optimizers.SGDW', (["hparams['weight_decay']", 'schedule'], {'momentum': "hparams['beta']", 'nesterov': "hparams['nesterov']"}), "(hparams['weight_decay'], schedule, momentum=hparams[\n 'beta'], nesterov=hparams['nesterov'])\n", (3863, 3959), True, 'import tensorflow_addons as tfa\n'), ((4044, 4101), 'tensorflow.keras.losses.CategoricalCrossentropy', 'tf.keras.losses.CategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (4083, 4101), True, 'import tensorflow as tf\n'), ((4118, 4181), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (4163, 4181), True, 'import tensorflow as tf\n'), ((4199, 4256), 'tensorflow.keras.losses.CategoricalCrossentropy', 'tf.keras.losses.CategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (4238, 4256), True, 'import tensorflow as tf\n'), ((4273, 4336), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (4318, 4336), True, 'import tensorflow as tf\n'), ((4348, 4456), 'augment.CTAugment', 'CTAugment', (["hparams['cta_classes']", "hparams['cta_decay']", "hparams['cta_threshold']", "hparams['cta_depth']"], {}), "(hparams['cta_classes'], hparams['cta_decay'], hparams[\n 'cta_threshold'], hparams['cta_depth'])\n", (4357, 4456), False, 'from augment import CTAugment\n'), ((4534, 4578), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['full_x_u'], {}), '(full_x_u)\n', (4568, 4578), True, 'import tensorflow as tf\n'), ((1469, 1503), 'tensorflow.image.random_flip_left_right', 'tf.image.random_flip_left_right', (['x'], {}), '(x)\n', (1500, 1503), True, 'import tensorflow as tf\n'), ((1524, 1574), 'tensorflow.cast', 'tf.cast', (['(x.shape[1] * 0.125)'], {'dtype': 'tf.dtypes.int32'}), '(x.shape[1] * 0.125, dtype=tf.dtypes.int32)\n', (1531, 1574), True, 'import tensorflow as tf\n'), ((1591, 1689), 'tensorflow.random.uniform', 'tf.random.uniform', (['[x.shape[0], 2]'], {'minval': '(-max_shift)', 'maxval': 'max_shift', 'dtype': 'tf.dtypes.int32'}), '([x.shape[0], 2], minval=-max_shift, maxval=max_shift,\n dtype=tf.dtypes.int32)\n', (1608, 1689), True, 'import tensorflow as tf\n'), ((1810, 1844), 'tensorflow.math.argmax', 'tf.math.argmax', (['class_dist'], {'axis': '(1)'}), '(class_dist, axis=1)\n', (1824, 1844), True, 'import tensorflow as tf\n'), ((1860, 1899), 'tensorflow.one_hot', 'tf.one_hot', (['argmax', 'class_dist.shape[1]'], {}), '(argmax, class_dist.shape[1])\n', (1870, 1899), True, 'import tensorflow as tf\n'), ((2037, 2084), 'tensorflow.cast', 'tf.cast', (['(max_probs > threshold)', 'max_probs.dtype'], {}), '(max_probs > threshold, max_probs.dtype)\n', (2044, 2084), True, 'import tensorflow as tf\n'), ((5651, 5688), 'error.test_error', 'test_error', (['model', 'full_x_l', 'full_y_l'], {}), '(model, full_x_l, full_y_l)\n', (5661, 5688), False, 'from error import test_error\n'), ((557, 602), 'tensorflow.python.framework.ops.name_scope_v2', 'ops.name_scope_v2', (["(self.name or 'CosineDecay')"], {}), "(self.name or 'CosineDecay')\n", (574, 602), False, 'from tensorflow.python.framework import ops\n'), ((640, 727), 'tensorflow.python.framework.ops.convert_to_tensor_v2', 'ops.convert_to_tensor_v2', (['self.initial_learning_rate'], {'name': '"""initial_learning_rate"""'}), "(self.initial_learning_rate, name=\n 'initial_learning_rate')\n", (664, 727), False, 'from tensorflow.python.framework import ops\n'), ((814, 852), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['self.decay_steps', 'dtype'], {}), '(self.decay_steps, dtype)\n', (827, 852), False, 'from tensorflow.python.ops import math_ops\n'), ((887, 913), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['step', 'dtype'], {}), '(step, dtype)\n', (900, 913), False, 'from tensorflow.python.ops import math_ops\n'), ((947, 996), 'tensorflow.python.ops.math_ops.minimum', 'math_ops.minimum', (['global_step_recomp', 'decay_steps'], {}), '(global_step_recomp, decay_steps)\n', (963, 996), False, 'from tensorflow.python.ops import math_ops\n'), ((1272, 1321), 'tensorflow.python.ops.math_ops.multiply', 'math_ops.multiply', (['initial_learning_rate', 'decayed'], {}), '(initial_learning_rate, decayed)\n', (1289, 1321), False, 'from tensorflow.python.ops import math_ops\n'), ((1724, 1757), 'tensorflow.cast', 'tf.cast', (['shift', 'tf.dtypes.float32'], {}), '(shift, tf.dtypes.float32)\n', (1731, 1757), True, 'import tensorflow as tf\n'), ((1999, 2020), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (2012, 2020), True, 'import tensorflow as tf\n'), ((2582, 2599), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (2597, 2599), True, 'import tensorflow as tf\n'), ((5875, 5928), 'tensorflow.keras.models.save_model', 'tf.keras.models.save_model', (['model'], {'filepath': 'file_name'}), '(model, filepath=file_name)\n', (5901, 5928), True, 'import tensorflow as tf\n'), ((2295, 2319), 'numpy.arange', 'np.arange', (['total_samples'], {}), '(total_samples)\n', (2304, 2319), True, 'import numpy as np\n'), ((2401, 2425), 'numpy.arange', 'np.arange', (['total_samples'], {}), '(total_samples)\n', (2410, 2425), True, 'import numpy as np\n'), ((1122, 1160), 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['(7 / 16 * math.pi)'], {}), '(7 / 16 * math.pi)\n', (1142, 1160), False, 'from tensorflow.python.framework import constant_op\n')]
import cv2 import numpy def colorDetection(image): #Converts image HSV type image hsvImage = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) testImage = image #Ranges for color detection lowerYellow = numpy.array([20, 100, 100]) upperYellow = numpy.array([30,255, 255]) lowerBlue = numpy.array([85,100,100]) upperBlue = numpy.array([124,255,255]) lowerRed = numpy.array([0,100,100]) upperRed = numpy.array([19,255,255]) #Ranges applied to the hsvImage yMask = cv2.inRange(hsvImage, lowerYellow, upperYellow) bMask = cv2.inRange(hsvImage, lowerBlue, upperBlue) rMask = cv2.inRange(hsvImage, lowerRed, upperRed) #Finding the contours on the image yContours, yHierarchy = cv2.findContours(yMask, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE) bContours, bHierarchy = cv2.findContours(bMask, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE) rContours, rHierarchy = cv2.findContours(rMask, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE) #Given at least one yellow contour if len(yContours) > 0: # Find the index of the largest contour yAreas = [cv2.contourArea(i) for i in yContours] yMaxIndex = numpy.argmax(yAreas) yCnt = yContours[yMaxIndex] #Find coordinate for boundary rectangle yx,yy,yw,yh = cv2.boundingRect(yCnt) #Draw rectangle cv2.rectangle(testImage,(yx-15,yy-15),(yx+yw+15,yy+yh+15),(0,255,255),0) #Given at least one blue contour if len(bContours) > 0: # Find the index of the largest contour bAreas = [cv2.contourArea(i) for i in bContours] bMaxIndex = numpy.argmax(bAreas) bCnt = bContours[bMaxIndex] #Find coordinate for boundary rectangle bx,by,bw,bh = cv2.boundingRect(bCnt) #Draw rectangle cv2.rectangle(testImage,(bx-15,by-15),(bx+bw+15,by+bh+15),(255,0,0),0) #Given at least one red contour if len(rContours) > 0: # Find the index of the largest contour rAreas = [cv2.contourArea(i) for i in rContours] rMaxIndex = numpy.argmax(rAreas) rCnt = rContours[rMaxIndex] #Find coordinate for boundary rectangle rx,ry,rw,rh = cv2.boundingRect(rCnt) #Draw rectangle cv2.rectangle(testImage,(rx-15,ry-15),(rx+rw+15,ry+rh+15),(0,0,255),0) # #Displaying the masks individually and the final image # cv2.imshow('Yellow Mask', yMask) # cv2.imshow('Blue Mask', bMask) # cv2.imshow('Red Mask', rMask) # cv2.imshow('Altered image', testImage) return testImage def main(): #Default Camera (cv2.videocapture(-1) the parameter indexes your cameras) camera = cv2.VideoCapture(-1) while camera.isOpened(): _, image = camera.read() cv2.imshow('Original', image) rectImg = colorDetection(image) cv2.imshow('Color Detector', rectImg) cv2.waitKey(5) if __name__ == '__main__': main()
[ "cv2.contourArea", "numpy.argmax", "cv2.cvtColor", "cv2.waitKey", "cv2.imshow", "cv2.VideoCapture", "numpy.array", "cv2.rectangle", "cv2.boundingRect", "cv2.inRange", "cv2.findContours" ]
[((103, 141), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2HSV'], {}), '(image, cv2.COLOR_BGR2HSV)\n', (115, 141), False, 'import cv2\n'), ((214, 241), 'numpy.array', 'numpy.array', (['[20, 100, 100]'], {}), '([20, 100, 100])\n', (225, 241), False, 'import numpy\n'), ((260, 287), 'numpy.array', 'numpy.array', (['[30, 255, 255]'], {}), '([30, 255, 255])\n', (271, 287), False, 'import numpy\n'), ((303, 330), 'numpy.array', 'numpy.array', (['[85, 100, 100]'], {}), '([85, 100, 100])\n', (314, 330), False, 'import numpy\n'), ((345, 373), 'numpy.array', 'numpy.array', (['[124, 255, 255]'], {}), '([124, 255, 255])\n', (356, 373), False, 'import numpy\n'), ((387, 413), 'numpy.array', 'numpy.array', (['[0, 100, 100]'], {}), '([0, 100, 100])\n', (398, 413), False, 'import numpy\n'), ((427, 454), 'numpy.array', 'numpy.array', (['[19, 255, 255]'], {}), '([19, 255, 255])\n', (438, 454), False, 'import numpy\n'), ((502, 549), 'cv2.inRange', 'cv2.inRange', (['hsvImage', 'lowerYellow', 'upperYellow'], {}), '(hsvImage, lowerYellow, upperYellow)\n', (513, 549), False, 'import cv2\n'), ((562, 605), 'cv2.inRange', 'cv2.inRange', (['hsvImage', 'lowerBlue', 'upperBlue'], {}), '(hsvImage, lowerBlue, upperBlue)\n', (573, 605), False, 'import cv2\n'), ((618, 659), 'cv2.inRange', 'cv2.inRange', (['hsvImage', 'lowerRed', 'upperRed'], {}), '(hsvImage, lowerRed, upperRed)\n', (629, 659), False, 'import cv2\n'), ((728, 803), 'cv2.findContours', 'cv2.findContours', (['yMask', 'cv2.cv.CV_RETR_TREE', 'cv2.cv.CV_CHAIN_APPROX_SIMPLE'], {}), '(yMask, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE)\n', (744, 803), False, 'import cv2\n'), ((864, 939), 'cv2.findContours', 'cv2.findContours', (['bMask', 'cv2.cv.CV_RETR_TREE', 'cv2.cv.CV_CHAIN_APPROX_SIMPLE'], {}), '(bMask, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE)\n', (880, 939), False, 'import cv2\n'), ((1000, 1075), 'cv2.findContours', 'cv2.findContours', (['rMask', 'cv2.cv.CV_RETR_TREE', 'cv2.cv.CV_CHAIN_APPROX_SIMPLE'], {}), '(rMask, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE)\n', (1016, 1075), False, 'import cv2\n'), ((2787, 2807), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(-1)'], {}), '(-1)\n', (2803, 2807), False, 'import cv2\n'), ((1300, 1320), 'numpy.argmax', 'numpy.argmax', (['yAreas'], {}), '(yAreas)\n', (1312, 1320), False, 'import numpy\n'), ((1427, 1449), 'cv2.boundingRect', 'cv2.boundingRect', (['yCnt'], {}), '(yCnt)\n', (1443, 1449), False, 'import cv2\n'), ((1482, 1578), 'cv2.rectangle', 'cv2.rectangle', (['testImage', '(yx - 15, yy - 15)', '(yx + yw + 15, yy + yh + 15)', '(0, 255, 255)', '(0)'], {}), '(testImage, (yx - 15, yy - 15), (yx + yw + 15, yy + yh + 15),\n (0, 255, 255), 0)\n', (1495, 1578), False, 'import cv2\n'), ((1745, 1765), 'numpy.argmax', 'numpy.argmax', (['bAreas'], {}), '(bAreas)\n', (1757, 1765), False, 'import numpy\n'), ((1872, 1894), 'cv2.boundingRect', 'cv2.boundingRect', (['bCnt'], {}), '(bCnt)\n', (1888, 1894), False, 'import cv2\n'), ((1927, 2021), 'cv2.rectangle', 'cv2.rectangle', (['testImage', '(bx - 15, by - 15)', '(bx + bw + 15, by + bh + 15)', '(255, 0, 0)', '(0)'], {}), '(testImage, (bx - 15, by - 15), (bx + bw + 15, by + bh + 15),\n (255, 0, 0), 0)\n', (1940, 2021), False, 'import cv2\n'), ((2187, 2207), 'numpy.argmax', 'numpy.argmax', (['rAreas'], {}), '(rAreas)\n', (2199, 2207), False, 'import numpy\n'), ((2314, 2336), 'cv2.boundingRect', 'cv2.boundingRect', (['rCnt'], {}), '(rCnt)\n', (2330, 2336), False, 'import cv2\n'), ((2369, 2463), 'cv2.rectangle', 'cv2.rectangle', (['testImage', '(rx - 15, ry - 15)', '(rx + rw + 15, ry + rh + 15)', '(0, 0, 255)', '(0)'], {}), '(testImage, (rx - 15, ry - 15), (rx + rw + 15, ry + rh + 15),\n (0, 0, 255), 0)\n', (2382, 2463), False, 'import cv2\n'), ((2879, 2908), 'cv2.imshow', 'cv2.imshow', (['"""Original"""', 'image'], {}), "('Original', image)\n", (2889, 2908), False, 'import cv2\n'), ((2958, 2995), 'cv2.imshow', 'cv2.imshow', (['"""Color Detector"""', 'rectImg'], {}), "('Color Detector', rectImg)\n", (2968, 2995), False, 'import cv2\n'), ((3004, 3018), 'cv2.waitKey', 'cv2.waitKey', (['(5)'], {}), '(5)\n', (3015, 3018), False, 'import cv2\n'), ((1241, 1259), 'cv2.contourArea', 'cv2.contourArea', (['i'], {}), '(i)\n', (1256, 1259), False, 'import cv2\n'), ((1686, 1704), 'cv2.contourArea', 'cv2.contourArea', (['i'], {}), '(i)\n', (1701, 1704), False, 'import cv2\n'), ((2128, 2146), 'cv2.contourArea', 'cv2.contourArea', (['i'], {}), '(i)\n', (2143, 2146), False, 'import cv2\n')]
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import contextlib import itertools import math import os import statistics import time import numpy as np import torch from . import FairseqDataset import fairseq.data.batch_C_v0p5 import fairseq.data.batch_C_v0p5_better import fairseq.data.batch_C_v0p6 import sys def infer_language_pair(path): """Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" src, dst = None, None print('Infer language pair from filename...') for filename in os.listdir(path): print('filename:', filename) parts = filename.split('.') if len(parts) >= 3 and len(parts[1].split('-')) == 2: return parts[1].split('-') return src, dst class ShardedIterator(object): """A sharded wrapper around an iterable (padded to length).""" def __init__(self, iterable, num_shards, shard_id, fill_value=None): if shard_id < 0 or shard_id >= num_shards: raise ValueError('shard_id must be between 0 and num_shards') self._sharded_len = len(iterable) // num_shards if len(iterable) % num_shards > 0: self._sharded_len += 1 self.itr = itertools.zip_longest( range(self._sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ) def __len__(self): return self._sharded_len def __iter__(self): return self def __next__(self): return next(self.itr)[1] class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count.""" def __init__(self, iterable): self.iterable = iterable self.count = 0 self.itr = iter(self) def __len__(self): return len(self.iterable) def __iter__(self): for x in self.iterable: self.count += 1 yield x def __next__(self): return next(self.itr) def has_next(self): return self.count < len(self) def skip(self, num_to_skip): next(itertools.islice(self.itr, num_to_skip, num_to_skip), None) return self def collate_tokens(values, pad_idx, eos_idx, left_pad, move_eos_to_beginning=False, n_seq_per_batch_multiple=8, seq_len_multiple=1): """ Convert a list of 1d tensors into a padded 2d tensor. Args: values: Python list where each element is a PyT 1d tensor pad_idx: The index into the translation dictionary for the pad token (typically refer to 'dict.pad()') eos_idx: The index into the translation dictionary for the eos token (typically refer to 'dict.eos()') left_pad: Bool, left- or right-padding (true: left, false: right) move_eos_to_beginning: Reverse order of sequence of tokens (true: reverse, false:leave in original order) n_seq_per_batch_multiple: The number of sequences per batch to round down to seq_len_multiple: The number of tokens per sequence to round up to """ size_of_seq_dim = max(v.size(0) for v in values) # Unpadded size n_seq_in_batch = len(values) if n_seq_per_batch_multiple % seq_len_multiple == 0: n_seq_multiple = n_seq_per_batch_multiple / seq_len_multiple else: n_seq_multiple = n_seq_per_batch_multiple if n_seq_in_batch < n_seq_multiple or n_seq_in_batch % n_seq_multiple > 0: seq_len_multiple = n_seq_per_batch_multiple size_of_seq_dim = (size_of_seq_dim + seq_len_multiple - 1) // seq_len_multiple * seq_len_multiple # Padded seq len, rounded up to next multiple padded_2d_tensor = values[0].new(len(values), size_of_seq_dim).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: assert src[-1] == eos_idx dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) if left_pad: for idx, val in enumerate(values): copy_tensor(val, padded_2d_tensor[idx][size_of_seq_dim - len(val):]) else: for idx, val in enumerate(values): copy_tensor(val, padded_2d_tensor[idx][:len(val)]) return padded_2d_tensor class EpochBatchIterator(object): """Iterate over a FairseqDataset and yield batches bucketed by size. Batches may contain sequences of different lengths. This iterator can be reused across multiple epochs with the next_epoch_itr() method. Args: dataset: a FairseqDataset max_tokens: max number of tokens in each batch max_sentences: max number of sentences in each batch max_positions: max sentence length supported by the model ignore_invalid_inputs: don't raise Exception for sentences that are too long required_batch_size_multiple: require batch size to be a multiple of N seeds: seeds for random number generator for reproducibility (1 seed for each training epoch) num_shards: shard the data iterator into N shards shard_id: which shard of the data iterator to return """ def __init__( self, dataset, dataloader_num_workers=1, dataloader_pin_memory=False, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seeds=[1], num_shards=1, shard_id=0, epoch=0, bucket_growth_factor=1.1, seq_len_multiple=1, batching_scheme='v0p5', batch_multiple_strategy='multiple_of_sequences', ): assert isinstance(dataset, FairseqDataset) self.dataset = dataset self.max_tokens = max_tokens if max_tokens is not None else float('Inf') self.max_sentences = max_sentences if max_sentences is not None else float('Inf') self.dataloader_num_workers = dataloader_num_workers self.dataloader_pin_memory = dataloader_pin_memory assert len(max_positions) == 2, "Max positions contains source and target lengths!" max_src_pos,max_tgt_pos = max_positions self.max_positions = max_positions self.max_positions_num = min(max_src_pos, max_tgt_pos) self.ignore_invalid_inputs = ignore_invalid_inputs self.bsz_mult = required_batch_size_multiple self.seeds = seeds self.num_shards = num_shards self.shard_id = shard_id self.seq_len_multiple = seq_len_multiple self.batching_scheme = batching_scheme self.batch_multiple_strategy = batch_multiple_strategy self.epoch = epoch self._cur_epoch_itr = None self._next_epoch_itr = None with numpy_seed(self.seeds[0]): import time start = time.time() indices = self.dataset.ordered_indices(self.seeds[self.epoch]) #need integer, rather than float('Inf') values max_sentences = max_sentences if max_sentences is not None else sys.maxsize max_tokens = max_tokens if max_tokens is not None else sys.maxsize if self.batching_scheme == 'v0p5' : batches = fairseq.data.batch_C_v0p5.make_batches_v0p5(self.dataset.src_sizes, self.dataset.tgt_sizes, indices, max_tokens, max_sentences, self.bsz_mult, self.max_positions_num) elif self.batching_scheme == 'v0p5_better' : print('self.dataset.src_sizes', self.dataset.src_sizes.size) print('self.dataset.tgt_sizes', self.dataset.tgt_sizes.size) batches = fairseq.data.batch_C_v0p5_better.make_batches_v0p5_better(self.dataset.src_sizes, self.dataset.tgt_sizes, indices, max_tokens, max_sentences, self.max_positions_num, self.bsz_mult, self.seq_len_multiple) elif self.batching_scheme == 'v0p6': batch_strategy = 2 if self.batch_multiple_strategy == 'mult_of_sequences': batch_strategy = 0 elif self.batch_multiple_strategy == 'pad_sequence_to_mult': batch_strategy = 1 elif self.batch_multiple_strategy == 'dynamic': batch_strategy = 2 else: assert False, "Unknown batch multiple strategy!" bucket_specify_min_boundary = 8 use_efficient_last_pack = False #batch_strategy = 2 batches = fairseq.data.batch_C_v0p6.make_batches_v0p6(self.dataset.src_sizes, self.dataset.tgt_sizes, indices, max_tokens, max_sentences, self.bsz_mult, self.max_positions_num, bucket_specify_min_boundary, bucket_growth_factor, batch_strategy, use_efficient_last_pack) else : # reference def roundup(x, multiple): return (x + multiple - 1) // multiple * multiple def rounddown(x, multiple): return x // multiple * multiple def create_bucket_bounds_lists(max_allowable_seq_length, bucket_specify_min_boundary, bucket_specify_growth_scale): bucket_boundaries = [] x = bucket_specify_min_boundary while x < max_allowable_seq_length: bucket_boundaries.append(x) x = max(x + 1, int(x * bucket_specify_growth_scale)) if use_efficient_last_pack: buckets_min_list = [0] + [i+1 for i in bucket_boundaries] buckets_max_list = bucket_boundaries + [max_allowable_seq_length] else: buckets_min_list = [0] + bucket_boundaries buckets_max_list = bucket_boundaries + [max_allowable_seq_length + 1] return buckets_min_list, buckets_max_list def create_seq_to_bucket_id_list_and_n_seq_per_batch(n_tok_per_seq, max_allowable_seq_length, max_sentences, pad_seq_per_batch_to_multiple_of, pad_tok_per_seq_to_multiple_of, bucket_specify_min_boundary, bucket_specify_growth_scale): bucket_interval_min, bucket_interval_max = create_bucket_bounds_lists(max_allowable_seq_length, bucket_specify_min_boundary, bucket_specify_growth_scale) if do_seq_len_padding_to_multiple: n_seq_per_batch = [max_tokens // roundup(x, pad_tok_per_seq_to_multiple_of) for x in bucket_interval_max] elif do_batch_size_rounding_down_to_multiple: n_seq_per_batch = [rounddown(max_tokens // x, pad_seq_per_batch_to_multiple_of) for x in bucket_interval_max] elif do_dynamic_batch_size_choice: n_seq_per_batch_based_on_seq_len = [max_tokens // roundup(x, pad_tok_per_seq_to_multiple_of) for x in bucket_interval_max] n_seq_per_batch_based_on_n_seq = [rounddown(max_tokens // x, pad_seq_per_batch_to_multiple_of) for x in bucket_interval_max] n_seq_per_batch = [max(a,b) for a, b in zip(n_seq_per_batch_based_on_seq_len, n_seq_per_batch_based_on_n_seq)] else: n_seq_per_batch = [max_tokens // x for x in bucket_interval_max] n_seq_per_batch = [min(max_sentences, i) if max_sentences is not None else i for i in n_seq_per_batch] for a, b, c in zip(bucket_interval_min, bucket_interval_max, n_seq_per_batch): print('bucket:', a, b, c) token_length_2_bucket_id = {} for x in range(max_allowable_seq_length+1): for bucket_id, payload in enumerate(zip(bucket_interval_min, bucket_interval_max)): bmin, bmax = payload if (bmin <= x and x <= bmax and use_efficient_last_pack) or (bmin <= x and x < bmax): token_length_2_bucket_id[x] = bucket_id break return ([token_length_2_bucket_id[x] if x <= max_allowable_seq_length else -1 for x in n_tok_per_seq], n_seq_per_batch, len(bucket_interval_min)) # Make adjustments to tuneable parameters here pad_seq_per_batch_to_multiple_of = self.bsz_mult pad_tok_per_seq_to_multiple_of = self.bsz_mult max_allowable_seq_length = self.max_positions_num bucket_specify_min_boundary = 8 bucket_specify_growth_scale = bucket_growth_factor ##1.035 do_seq_len_padding_to_multiple = False do_batch_size_rounding_down_to_multiple = False do_dynamic_batch_size_choice = True use_efficient_last_pack = False batches = [] src_token_counts = [] dst_token_counts = [] seq_counts = [] padded_token_counts = [] batch_max_padded_seq_len = 0 batch_seq_count = 0 batches.append([]) src_batch_token_count = 0 dst_batch_token_count = 0 curr_batch_padded_token_count = 0 batch_n_seq = 0 bucket_id = 0 longest_in_batch = [] print('### max_tokens:', max_tokens) print('### max_sentences:', max_sentences) pairwise_max_seq_len = [max(a,b) for a, b in zip(dataset.src_sizes, dataset.tgt_sizes)] bucket_ids, n_seq_per_batch, n_buckets = create_seq_to_bucket_id_list_and_n_seq_per_batch(pairwise_max_seq_len, max_allowable_seq_length, max_sentences, pad_seq_per_batch_to_multiple_of, pad_tok_per_seq_to_multiple_of, bucket_specify_min_boundary, bucket_specify_growth_scale) buckets = [] for i in range(n_buckets): buckets.append([]) n_rejected_sequences = 0 for idx, bidx in enumerate(bucket_ids): if bidx >= 0: buckets[bidx].append(idx) else: n_rejected_sequences += 1 # Remove empty buckets (causes blow-up in eval code). buckets = [i for i in buckets if len(i) > 0] print(n_rejected_sequences, 'were omitted due to containing over 256 tokens.') batch_seq_count = 0 #count = 0 seq_len_tracker = 0 for bucket, nspb in zip(buckets, n_seq_per_batch): for item in bucket: if batch_n_seq < nspb: batches[-1].append(item) src_batch_token_count += dataset.src_sizes[item] dst_batch_token_count += dataset.tgt_sizes[item] seq_len_tracker = max(seq_len_tracker, dst_batch_token_count) batch_n_seq += 1 else: batches.append([item]) src_token_counts.append(src_batch_token_count) dst_token_counts.append(dst_batch_token_count) src_batch_token_count = dataset.src_sizes[item] dst_batch_token_count = dataset.tgt_sizes[item] seq_counts.append(batch_n_seq) batch_n_seq = 1 batches.append([]) batch_n_seq = 0 seq_counts.append(batch_n_seq) src_batch_token_count = 0 dst_batch_token_count = 0 src_token_counts.append(src_batch_token_count) dst_token_counts.append(dst_batch_token_count) seq_cnt2 = [] for batch in batches: seq_len_tracker = 0 nseqbucket = 0 for item in batch: a = dataset.src_sizes[item] b = dataset.tgt_sizes[item] seq_len_tracker = max(seq_len_tracker, max(a, b)) nseqbucket += 1 longest_in_batch.append(seq_len_tracker) seq_cnt2.append(nseqbucket) # In the unlucky case, remove a newly created but empty last batch if not batches[-1]: del batches[-1] del seq_counts[-1] del src_token_counts[-1] del dst_token_counts[-1] tmp_batches = batches batches = [] for b in tmp_batches: if b: batches.append(b) #padded_token_counts = src_token_counts #padded_token_counts = [x*0 for x in src_token_counts] # Setting to zero until this is actually implemented #print('split dataset length:', len(dataset.src)) #print('mean src tokens per batch =', statistics.mean(src_token_counts), statistics.mean(padded_token_counts)) #print('median src tokens per batch =', statistics.median(src_token_counts), statistics.median(padded_token_counts)) #print('stdev src tokens per batch =', statistics.stdev(src_token_counts), statistics.stdev(padded_token_counts)) #print('min src tokens per batch =', min(src_token_counts), min(padded_token_counts)) #print('max src tokens per batch =', max(src_token_counts), max(padded_token_counts)) #print('mean tgt tokens per batch =', statistics.mean(dst_token_counts), statistics.mean(padded_token_counts)) #print('median tgt tokens per batch =', statistics.median(dst_token_counts), statistics.mean(padded_token_counts)) #print('stdev tgt tokens per batch =', statistics.stdev(dst_token_counts), statistics.stdev(padded_token_counts)) #print('min tgt tokens per batch =', min(dst_token_counts), min(padded_token_counts)) #print('max tgt tokens per batch =', max(dst_token_counts), max(padded_token_counts)) #print('mean seq per batch =', statistics.mean(seq_counts), statistics.mean(padded_token_counts)) #print('median seq per batch =', statistics.median(seq_counts), statistics.median(padded_token_counts)) #print('stdev seq per batch =', statistics.stdev(seq_counts), statistics.stdev(padded_token_counts)) #print('min seq per batch =', min(seq_counts), min(padded_token_counts)) #print('max seq per batch =', max(seq_counts), max(padded_token_counts)) #print('pad inc: mean tgt tokens per batch =', statistics.mean(np.array(seq_cnt2) * np.array(longest_in_batch)), longest_in_batch[:3], seq_cnt2[:3]) #print('pad inc: median tgt tokens per batch =', statistics.median(np.array(seq_cnt2) * np.array(longest_in_batch)), longest_in_batch[:3], seq_cnt2[:3]) self.frozen_batches = tuple(batches) # self.frozen_batches = tuple(self._batch_generator()) print("generated %d batches in %fs" % (len(batches), time.time() - start)) def __len__(self): return len(self.frozen_batches) def next_epoch_itr(self, shuffle=True): """Shuffle batches and return a new iterator over the dataset.""" if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: self.epoch += 1 self._cur_epoch_itr = self._get_iterator_for_epoch(self.epoch, shuffle) return self._cur_epoch_itr def end_of_epoch(self): return not self._cur_epoch_itr.has_next() @property def iterations_in_epoch(self): if self._cur_epoch_itr is not None: return self._cur_epoch_itr.count elif self._next_epoch_itr is not None: return self._next_epoch_itr.count return 0 def state_dict(self): return { 'epoch': self.epoch, 'iterations_in_epoch': self.iterations_in_epoch, } def load_state_dict(self, state_dict): self.epoch = state_dict['epoch'] itr_pos = state_dict.get('iterations_in_epoch', 0) if itr_pos > 0: # fast-forward epoch iterator itr = self._get_iterator_for_epoch(self.epoch, state_dict.get('shuffle', True)) if itr_pos < len(itr): self._next_epoch_itr = itr.skip(itr_pos) def _get_iterator_for_epoch(self, epoch, shuffle): if shuffle: # set seed based on the seed and epoch number so that we get # reproducible results when resuming from checkpoints with numpy_seed(self.seeds[epoch]): batches = list(self.frozen_batches) # copy np.random.shuffle(batches) else: batches = self.frozen_batches return CountingIterator(torch.utils.data.DataLoader( self.dataset, collate_fn=self.dataset.collater, num_workers=self.dataloader_num_workers, pin_memory=self.dataloader_pin_memory, batch_sampler=ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]), )) def _batch_generator(self): batch = [] def is_batch_full(num_tokens): if len(batch) == 0: return False if len(batch) == self.max_sentences: return True if num_tokens > self.max_tokens: return True return False sample_len = 0 sample_lens = [] ignored = [] for idx in self.dataset.ordered_indices(self.seeds[self.epoch]): if not self.dataset.valid_size(idx, self.max_positions): if self.ignore_invalid_inputs: ignored.append(idx) continue raise Exception(( 'Size of sample #{} is invalid, max_positions={}, skip this example with --skip-invalid-size-inputs-valid-test' ).format(idx, self.max_positions)) sample_lens.append(self.dataset.num_tokens(idx)) sample_len = max(sample_len, sample_lens[-1]) num_tokens = (len(batch) + 1) * sample_len if is_batch_full(num_tokens): mod_len = max(self.bsz_mult * (len(batch) // self.bsz_mult), len(batch) % self.bsz_mult,) yield batch[:mod_len] batch = batch[mod_len:] sample_lens = sample_lens[mod_len:] sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 batch.append(idx) if len(batch) > 0: yield batch if len(ignored) > 0: print(( '| WARNING: {} samples have invalid sizes and will be skipped, max_positions={}, first few sample ids={}' ).format(len(ignored), self.max_positions, ignored[:10])) @contextlib.contextmanager def numpy_seed(seed): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state)
[ "numpy.random.seed", "numpy.random.get_state", "numpy.random.set_state", "time.time", "itertools.islice", "os.listdir", "numpy.random.shuffle" ]
[((761, 777), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (771, 777), False, 'import os\n'), ((24225, 24246), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (24244, 24246), True, 'import numpy as np\n'), ((24251, 24271), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (24265, 24271), True, 'import numpy as np\n'), ((24317, 24343), 'numpy.random.set_state', 'np.random.set_state', (['state'], {}), '(state)\n', (24336, 24343), True, 'import numpy as np\n'), ((2325, 2377), 'itertools.islice', 'itertools.islice', (['self.itr', 'num_to_skip', 'num_to_skip'], {}), '(self.itr, num_to_skip, num_to_skip)\n', (2341, 2377), False, 'import itertools\n'), ((6920, 6931), 'time.time', 'time.time', ([], {}), '()\n', (6929, 6931), False, 'import time\n'), ((21844, 21870), 'numpy.random.shuffle', 'np.random.shuffle', (['batches'], {}), '(batches)\n', (21861, 21870), True, 'import numpy as np\n'), ((20129, 20140), 'time.time', 'time.time', ([], {}), '()\n', (20138, 20140), False, 'import time\n')]
#!/usr/bin/env python import os import roslib; roslib.load_manifest('freemovr_engine') import rosbag import sensor_msgs.msg import geometry_msgs.msg import pymvg import numpy as np def test_bag(): for i in range(1000): bagout = rosbag.Bag('/tmp/testbag.bag', 'w') topic = '/tf' extrinsics = geometry_msgs.msg.Transform() bagout.write(topic, extrinsics) topic = '/camera_info' intrinsics = sensor_msgs.msg.CameraInfo() intrinsics.distortion_model = ','*i intrinsics.K = list(np.random.rand(3,3).flatten()) bagout.write(topic, intrinsics) bagout.close() c = pymvg.CameraModel.load_camera_simple() c.save_to_bagfile('/tmp/testbag.bag') fname = '/home/stowers/.ros/camera_info/Basler_21220788.yaml' assert os.path.exists(fname) c = pymvg.CameraModel.load_camera_from_file(fname) c.get_intrinsics_as_msg() c.save_to_bagfile('/tmp/testbag.bag') c = pymvg.CameraModel.load_camera_from_file('/tmp/testbag.bag') c.get_intrinsics_as_msg()
[ "rosbag.Bag", "pymvg.CameraModel.load_camera_from_file", "pymvg.CameraModel.load_camera_simple", "os.path.exists", "numpy.random.rand", "roslib.load_manifest" ]
[((48, 87), 'roslib.load_manifest', 'roslib.load_manifest', (['"""freemovr_engine"""'], {}), "('freemovr_engine')\n", (68, 87), False, 'import roslib\n'), ((650, 688), 'pymvg.CameraModel.load_camera_simple', 'pymvg.CameraModel.load_camera_simple', ([], {}), '()\n', (686, 688), False, 'import pymvg\n'), ((809, 830), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (823, 830), False, 'import os\n'), ((839, 885), 'pymvg.CameraModel.load_camera_from_file', 'pymvg.CameraModel.load_camera_from_file', (['fname'], {}), '(fname)\n', (878, 885), False, 'import pymvg\n'), ((967, 1026), 'pymvg.CameraModel.load_camera_from_file', 'pymvg.CameraModel.load_camera_from_file', (['"""/tmp/testbag.bag"""'], {}), "('/tmp/testbag.bag')\n", (1006, 1026), False, 'import pymvg\n'), ((245, 280), 'rosbag.Bag', 'rosbag.Bag', (['"""/tmp/testbag.bag"""', '"""w"""'], {}), "('/tmp/testbag.bag', 'w')\n", (255, 280), False, 'import rosbag\n'), ((547, 567), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (561, 567), True, 'import numpy as np\n')]
from firebase import firebase from datetime import date from datetime import datetime import numpy as np import cv2 import imghdr import base64 import json ''' Stucture of Our Main Object Note that a unique id will be created when we save it for the first time in db, its not show currently. We will use this id for all transcations object = { "userName":'', "ubid":'', "faceEncoding":[] "dayAndTime":[{ 'day':'', 'startTime':'', 'endTime':''}] } ''' today = date.today() date1= today.strftime("%d/%m/%Y") now = datetime.now() start_time = now.strftime("%H:%M:%S") class Database: def __init__(self): self.firebase = firebase.FirebaseApplication('https://cvip-a44cd.firebaseio.com/', None) ''' To save the first data object Pass it to a dictionary consisting of following parameters:name,ubid,feature vector Structure of the dictionary eg - {"name":'Gerald',"ubid":5033999,"faceEncoding":[1,2,3,4,5]} It will automatically insert date and start time in the main object ''' def postData(self,d): data={ "userName":d['name'], "dayAndTime":[{ "day": date1, "startTime":"", "endTime":" " }], "ubid":d['ubid'], "faceEncoding":d['faceEncoding']} print("Posting data in DB") result = self.firebase.post('/timeclock/',data) uid = dict(result) return uid['name'] #This method will retrieve all the data from database ''' Sample of a single object returned from database obj = {'-M5VP8cUF8UehCDc8fV4': {'dayAndTime': [{ 'day': '22/04/2020', 'endTime': ' ', 'startTime': '01:42:21'}], 'faceEncoding': [1, 2, 3, 4, 5], 'ubid': 5033, ' userName': 'Gerald'}} ''' def getData(self): result = self.firebase.get('/timeclock/', '') print(result) return result #Pass the Unique Key to Get That Particular Data def getSingleData(self,key): result = self.firebase.get('/timeclock/', key) #print(result) return result #To update a single object, pass it the unique key and updated data object def updateSingleData(self,id,data): rs=self.firebase.patch('/timeclock/'+id, data) print('updated') def clockInUser(self,id): data = self.getSingleData(id) x = data['dayAndTime'] for dict1 in x: if (dict1['day'] == date1): dict1['startTime'] = start_time data['dayAndTime'] = x rs = self.firebase.patch('/timeclock/' + id, data) return data def clockOutUser(self,id): data=self.getSingleData(id) x=data['dayAndTime'] for dict1 in x: if(dict1['day'] == date1): dict1['endTime']=start_time data['dayAndTime']=x rs=self.firebase.patch('/timeclock/'+id, data) return data #check if user is clocked in or out def checkClockedStatus(self,id): data=self.getSingleData(id) x=data['dayAndTime'] status = True for dict1 in x: if(dict1['day'] == date1): if(dict1['startTime'] == ''): status=False return status def getNameAndFeatureVector(self): res = self.firebase.get('/timeclock/', '') if(res != None): name=[] featureVector=[] uid=[] ubid=[] for obj1 in res: uid.append(obj1) obj2=res[str(obj1)] name.append(obj2['userName']) featureVector.append(np.array(obj2['faceEncoding'])) ubid.append(obj2['ubid']) return name,featureVector,uid,ubid else: return [],[],[],[] def dayAndDateValues(self): day = today.strftime("%d") month = today.strftime("%m") year = today.strftime("%Y") hours = now.strftime("%H") seconds = now.strftime("%S") minutes = now.strftime("%M") return day,month,year,hours,seconds,minutes def getUbidStatus(self,ubid): data = self.firebase.get('/ubidDb/', None) out = None ubid = str(ubid) ubid = ubid.replace(" ","") for dict1 in data: x=(data[dict1]) if(str(ubid) == x['ubid']): out = x['name'] break return out ''' a=Database() d1={"name":'Gautam',"ubid":5033,"faceEncoding":[1,2,3,4,5]} #a.updateSingleData(a.getSingleData()) c=a.getData() f=list(c.keys()) print(f) res=a.getSingleData(f[0]) #print(res) #res['userName'] = 'gautam' res['dayAndTime'].append({'day':'24/04/2019'}) #print(res) #a.updateSingleData(str(f[0]),res) img=cv2.imread('3.png') imgType= imghdr.what('3.png') print(imgType) img_str = cv2.imencode('.png',img)[1].tostring() print(type(img_str)) a=Database() d1={"name":'Gautam111',"ubid":5033,"faceEncoding":[1,2,3,4,5]} img=cv2.imread('3.png') with open("3.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) a.postData(d1, encoded_string) #cv2.imwrite('F:/CV/Final/data/3.png', img) ''' # # a = Database() # a.getUbidStatus("1111") # firebase = firebase.FirebaseApplication('https://cvip-a44cd.firebaseio.com/', None) # result = firebase.get('/ubidDb', None) # for dict1 in result: # x=(result[dict1]) # print(x['ubid']) # a.clockInUser('-M5tqBEF89MM-FIi1XBl') # print(a.checkClockedStatus('-M5tqBEF89MM-FIi1XBl')) # # known_face_names, known_face_encodings, uniqueID, ubid = a.getNameAndFeatureVector() # # print(known_face_names) # known_face_names, known_face_encodings, uniqueID, ubid = a.getNameAndFeatureVector() # print(ubid)
[ "firebase.firebase.FirebaseApplication", "datetime.datetime.now", "datetime.date.today", "numpy.array" ]
[((541, 553), 'datetime.date.today', 'date.today', ([], {}), '()\n', (551, 553), False, 'from datetime import date\n'), ((606, 620), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (618, 620), False, 'from datetime import datetime\n'), ((739, 811), 'firebase.firebase.FirebaseApplication', 'firebase.FirebaseApplication', (['"""https://cvip-a44cd.firebaseio.com/"""', 'None'], {}), "('https://cvip-a44cd.firebaseio.com/', None)\n", (767, 811), False, 'from firebase import firebase\n'), ((4346, 4376), 'numpy.array', 'np.array', (["obj2['faceEncoding']"], {}), "(obj2['faceEncoding'])\n", (4354, 4376), True, 'import numpy as np\n')]
import numpy as np import scipy import scipy.sparse import matplotlib.pyplot as plt # part 2 - read sparse matrix from csv file def read_coo(fname): Y = np.loadtxt(fname, delimiter=',') rows = np.array(Y[:, 0], int) cols = np.array(Y[:, 1], int) V = Y[:, 2] return scipy.sparse.coo_matrix((np.array(V), (rows, cols))) A = read_coo("../sbm.csv") # part 3 - create sparse + Rank-1 class class sparse_rank1(object): def __init__(self, S, alpha, u, v): self.S = S self.alpha = alpha self.u = u self.v = v self.shape = S.shape def dot(self, x): return self.S.dot(x) + self.alpha*self.u*self.v.dot(x) # part 4 - power method # compute power method # tol is a key-word argument for convergence tolerance def power_method(A, tol=1e-8): # rayleigh quotient # returns v^T*Av def rq(v, A): return v.dot(A.dot(v)) n = A.shape[1] # generate random vector with unit length v = np.random.normal(0, 1, n) v /= np.linalg.norm(v) rqs = [] # keep track of rayleigh quotients as we progress rqs.append(rq(v, A)) while True: # v <- A*v v = A.dot(v) # normalize v v /= np.linalg.norm(v) rqs.append(rq(v, A)) # check if rayleigh quotient has converged if np.abs(rqs[-1] - rqs[-2]) < tol: break # set eigenvalue lam = rqs[-1] return v, lam # part 5 - spectral embedding v, lam = power_method(A) B = sparse_rank1(A, -lam, v, v) v2, lam2 = power_method(B) fig, ax = plt.subplots(1, 1, figsize=(10, 8)) ax.scatter(v, v2) ax.set_xlabel(r'$v_1$') ax.set_ylabel(r'$v_2$') ax.set_title("Spectral Embedding") plt.savefig('sbm.png') plt.show()
[ "matplotlib.pyplot.show", "numpy.abs", "numpy.array", "numpy.loadtxt", "numpy.random.normal", "numpy.linalg.norm", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((1567, 1602), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(10, 8)'}), '(1, 1, figsize=(10, 8))\n', (1579, 1602), True, 'import matplotlib.pyplot as plt\n'), ((1707, 1729), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""sbm.png"""'], {}), "('sbm.png')\n", (1718, 1729), True, 'import matplotlib.pyplot as plt\n'), ((1730, 1740), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1738, 1740), True, 'import matplotlib.pyplot as plt\n'), ((159, 191), 'numpy.loadtxt', 'np.loadtxt', (['fname'], {'delimiter': '""","""'}), "(fname, delimiter=',')\n", (169, 191), True, 'import numpy as np\n'), ((203, 225), 'numpy.array', 'np.array', (['Y[:, 0]', 'int'], {}), '(Y[:, 0], int)\n', (211, 225), True, 'import numpy as np\n'), ((237, 259), 'numpy.array', 'np.array', (['Y[:, 1]', 'int'], {}), '(Y[:, 1], int)\n', (245, 259), True, 'import numpy as np\n'), ((983, 1008), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', 'n'], {}), '(0, 1, n)\n', (999, 1008), True, 'import numpy as np\n'), ((1018, 1035), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (1032, 1035), True, 'import numpy as np\n'), ((1219, 1236), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (1233, 1236), True, 'import numpy as np\n'), ((312, 323), 'numpy.array', 'np.array', (['V'], {}), '(V)\n', (320, 323), True, 'import numpy as np\n'), ((1329, 1354), 'numpy.abs', 'np.abs', (['(rqs[-1] - rqs[-2])'], {}), '(rqs[-1] - rqs[-2])\n', (1335, 1354), True, 'import numpy as np\n')]
# Thanks to KKiller on Kaggle for designing this model. from torch.utils.data import Dataset, DataLoader from abc import ABC from pathlib import Path from numcodecs import blosc import pandas as pd, numpy as np import bisect import itertools as it from tqdm import tqdm import logzero import json import torch from torch import nn, optim import torch.nn.functional as F from torch.autograd import Variable from pytorch_lightning import Trainer from pytorch_lightning import LightningModule from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger import pickle, copy, re, time, datetime, random, warnings, gc import zarr with open('parameters.json') as json_file: JSON_PARAMETERS = json.load(json_file) DATA_ROOT = Path("/data/lyft-motion-prediction-autonomous-vehicles") TRAIN_ZARR = JSON_PARAMETERS["TRAIN_ZARR"] VALID_ZARR = JSON_PARAMETERS["VALID_ZARR"] HBACKWARD = JSON_PARAMETERS["HBACKWARD"] HFORWARD = JSON_PARAMETERS["HFORWARD"] NFRAMES = JSON_PARAMETERS["NFRAMES"] FRAME_STRIDE = JSON_PARAMETERS["FRAME_STRIDE"] AGENT_FEATURE_DIM = JSON_PARAMETERS["AGENT_FEATURE_DIM"] MAX_AGENTS = JSON_PARAMETERS["MAX_AGENTS"] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") NUM_WORKERS = JSON_PARAMETERS["NUM_WORKERS"] BATCH_SIZE = JSON_PARAMETERS["BATCH_SIZE"] EPOCHS=JSON_PARAMETERS["EPOCHS"] GRADIENT_CLIP_VAL = JSON_PARAMETERS["GRADIENT_CLIP_VAL"] LIMIT_VAL_BATCHES = JSON_PARAMETERS["LIMIT_VAL_BATCHES"] ROOT = JSON_PARAMETERS["ROOT"] Path(ROOT).mkdir(exist_ok=True, parents=True) def get_utc(): TIME_FORMAT = r"%Y-%m-%dT%H:%M:%S%Z" return datetime.datetime.now(datetime.timezone.utc).strftime(TIME_FORMAT) PERCEPTION_LABELS = JSON_PARAMETERS["PERCEPTION_LABELS"] KEPT_PERCEPTION_LABELS = JSON_PARAMETERS["KEPT_PERCEPTION_LABELS"] KEPT_PERCEPTION_LABELS_DICT = {label:PERCEPTION_LABELS.index(label) for label in KEPT_PERCEPTION_LABELS} KEPT_PERCEPTION_KEYS = sorted(KEPT_PERCEPTION_LABELS_DICT.values()) class LabelEncoder: def __init__(self, max_size=500, default_val=-1): self.max_size = max_size self.labels = {} self.default_val = default_val @property def nlabels(self): return len(self.labels) def reset(self): self.labels = {} def partial_fit(self, keys): nlabels = self.nlabels available = self.max_size - nlabels if available < 1: return keys = set(keys) new_keys = list(keys - set(self.labels)) if not len(new_keys): return self.labels.update(dict(zip(new_keys, range(nlabels, nlabels + available) ))) def fit(self, keys): self.reset() self.partial_fit(keys) def get(self, key): return self.labels.get(key, self.default_val) def transform(self, keys): return np.array(list(map(self.get, keys))) def fit_transform(self, keys, partial=True): self.partial_fit(keys) if partial else self.fit(keys) return self.transform(keys) class CustomLyftDataset(Dataset): feature_mins = np.array([-17.336, -27.137, 0. , 0., 0. , -3.142, -37.833, -65.583], dtype="float32")[None,None, None] feature_maxs = np.array([17.114, 20.787, 42.854, 42.138, 7.079, 3.142, 29.802, 35.722], dtype="float32")[None,None, None] def __init__(self, zdataset, scenes=None, nframes=10, frame_stride=15, hbackward=10, hforward=50, max_agents=150, agent_feature_dim=8): """ Custom Lyft dataset reader. Parmeters: ---------- zdataset: zarr dataset The root dataset, containing scenes, frames and agents nframes: int Number of frames per scene frame_stride: int The stride when reading the **nframes** frames from a scene hbackward: int Number of backward frames from current frame hforward: int Number forward frames from current frame max_agents: int Max number of agents to read for each target frame. Note that, this also include the backward agents but not the forward ones. """ super().__init__() self.zdataset = zdataset self.scenes = scenes if scenes is not None else [] self.nframes = nframes self.frame_stride = frame_stride self.hbackward = hbackward self.hforward = hforward self.max_agents = max_agents self.nread_frames = (nframes-1)*frame_stride + hbackward + hforward self.frame_fields = ['timestamp', 'agent_index_interval'] self.agent_feature_dim = agent_feature_dim self.filter_scenes() def __len__(self): return len(self.scenes) def filter_scenes(self): self.scenes = [scene for scene in self.scenes if self.get_nframes(scene) > self.nread_frames] def __getitem__(self, index): return self.read_frames(scene=self.scenes[index]) def get_nframes(self, scene, start=None): frame_start = scene["frame_index_interval"][0] frame_end = scene["frame_index_interval"][1] nframes = (frame_end - frame_start) if start is None else ( frame_end - max(frame_start, start) ) return nframes def _read_frames(self, scene, start=None): nframes = self.get_nframes(scene, start=start) assert nframes >= self.nread_frames frame_start = scene["frame_index_interval"][0] start = start or frame_start + np.random.choice(nframes-self.nread_frames) frames = self.zdataset.frames.get_basic_selection( selection=slice(start, start+self.nread_frames), fields=self.frame_fields, ) return frames def parse_frame(self, frame): return frame def parse_agent(self, agent): return agent def read_frames(self, scene, start=None, white_tracks=None, encoder=False): white_tracks = white_tracks or [] frames = self._read_frames(scene=scene, start=start) agent_start = frames[0]["agent_index_interval"][0] agent_end = frames[-1]["agent_index_interval"][1] agents = self.zdataset.agents[agent_start:agent_end] X = np.zeros((self.nframes, self.max_agents, self.hbackward, self.agent_feature_dim), dtype=np.float32) target = np.zeros((self.nframes, self.max_agents, self.hforward, 2), dtype=np.float32) target_availability = np.zeros((self.nframes, self.max_agents, self.hforward), dtype=np.uint8) X_availability = np.zeros((self.nframes, self.max_agents, self.hbackward), dtype=np.uint8) for f in range(self.nframes): backward_frame_start = f*self.frame_stride forward_frame_start = f*self.frame_stride+self.hbackward backward_frames = frames[backward_frame_start:backward_frame_start+self.hbackward] forward_frames = frames[forward_frame_start:forward_frame_start+self.hforward] backward_agent_start = backward_frames[-1]["agent_index_interval"][0] - agent_start backward_agent_end = backward_frames[-1]["agent_index_interval"][1] - agent_start backward_agents = agents[backward_agent_start:backward_agent_end] le = LabelEncoder(max_size=self.max_agents) le.fit(white_tracks) le.partial_fit(backward_agents["track_id"]) for iframe, frame in enumerate(backward_frames): backward_agent_start = frame["agent_index_interval"][0] - agent_start backward_agent_end = frame["agent_index_interval"][1] - agent_start backward_agents = agents[backward_agent_start:backward_agent_end] track_ids = le.transform(backward_agents["track_id"]) mask = (track_ids != le.default_val) mask_agents = backward_agents[mask] mask_ids = track_ids[mask] X[f, mask_ids, iframe, :2] = mask_agents["centroid"] X[f, mask_ids, iframe, 2:5] = mask_agents["extent"] X[f, mask_ids, iframe, 5] = mask_agents["yaw"] X[f, mask_ids, iframe, 6:8] = mask_agents["velocity"] X_availability[f, mask_ids, iframe] = 1 for iframe, frame in enumerate(forward_frames): forward_agent_start = frame["agent_index_interval"][0] - agent_start forward_agent_end = frame["agent_index_interval"][1] - agent_start forward_agents = agents[forward_agent_start:forward_agent_end] track_ids = le.transform(forward_agents["track_id"]) mask = track_ids != le.default_val target[f, track_ids[mask], iframe] = forward_agents[mask]["centroid"] target_availability[f, track_ids[mask], iframe] = 1 target -= X[:,:,[-1], :2] target *= target_availability[:,:,:,None] X[:,:,:, :2] -= X[:,:,[-1], :2] X *= X_availability[:,:,:,None] X -= self.feature_mins X /= (self.feature_maxs - self.feature_mins) if encoder: return X, target, target_availability, le return X, target, target_availability def collate(x): x = map(np.concatenate, zip(*x)) x = map(torch.from_numpy, x) return x def shapefy( xy_pred, xy, xy_av): NDIM = 3 xy_pred = xy_pred.view(-1, HFORWARD, NDIM, 2) xy = xy.view(-1, HFORWARD, 2)[:,:,None] xy_av = xy_av.view(-1, HFORWARD)[:,:,None] return xy_pred, xy, xy_av def LyftLoss(c, xy_pred, xy, xy_av): c = c.view(-1, c.shape[-1]) xy_pred, xy, xy_av = shapefy(xy_pred, xy, xy_av) c = torch.softmax(c, dim=1) l = torch.sum(torch.mean(torch.square(xy_pred-xy), dim=3)*xy_av, dim=1) # The LogSumExp trick for better numerical stability # https://en.wikipedia.org/wiki/LogSumExp m = l.min(dim=1).values l = torch.exp(m[:, None]-l) l = m - torch.log(torch.sum(l*c, dim=1)) denom = xy_av.max(2).values.max(1).values l = torch.sum(l*denom)/denom.sum() return 3*l # I found that my loss is usually 3 times smaller than the LB score def MSE(xy_pred, xy, xy_av): xy_pred, xy, xy_av = shapefy(xy_pred, xy, xy_av) return 9*torch.mean(torch.sum(torch.mean(torch.square(xy_pred-xy), 3)*xy_av, dim=1)) def MAE(xy_pred, xy, xy_av): xy_pred, xy, xy_av = shapefy(xy_pred, xy, xy_av) return 9*torch.mean(torch.sum(torch.mean(torch.abs(xy_pred-xy), 3)*xy_av, dim=1)) class BaseNet(LightningModule): def __init__(self, batch_size=32, lr=5e-4, weight_decay=1e-8, num_workers=0, criterion=LyftLoss, data_root=DATA_ROOT, epochs=1): super().__init__() self.save_hyperparameters( dict( HBACKWARD = HBACKWARD, HFORWARD = HFORWARD, NFRAMES = NFRAMES, FRAME_STRIDE = FRAME_STRIDE, AGENT_FEATURE_DIM = AGENT_FEATURE_DIM, MAX_AGENTS = MAX_AGENTS, TRAIN_ZARR = TRAIN_ZARR, VALID_ZARR = VALID_ZARR, batch_size = batch_size, lr=lr, weight_decay=weight_decay, num_workers=num_workers, criterion=criterion, epochs=epochs, ) ) self._train_data = None self._collate_fn = None self._train_loader = None self.batch_size = batch_size self.num_workers = num_workers self.lr = lr self.epochs=epochs self.weight_decay = weight_decay self.criterion = criterion self.data_root = data_root def train_dataloader(self): z = zarr.open(self.data_root.joinpath(TRAIN_ZARR).as_posix(), "r") scenes = z.scenes.get_basic_selection(slice(None), fields= ["frame_index_interval"]) train_data = CustomLyftDataset( z, scenes = scenes, nframes=NFRAMES, frame_stride=FRAME_STRIDE, hbackward=HBACKWARD, hforward=HFORWARD, max_agents=MAX_AGENTS, agent_feature_dim=AGENT_FEATURE_DIM, ) train_loader = DataLoader(train_data, batch_size = self.batch_size,collate_fn=collate, pin_memory=True, num_workers = self.num_workers, shuffle=True) self._train_data = train_data self._train_loader = train_loader return train_loader def val_dataloader(self): z = zarr.open(self.data_root.joinpath(VALID_ZARR).as_posix(), "r") scenes = z.scenes.get_basic_selection(slice(None), fields=["frame_index_interval"]) val_data = CustomLyftDataset( z, scenes = scenes, nframes=NFRAMES, frame_stride=FRAME_STRIDE, hbackward=HBACKWARD, hforward=HFORWARD, max_agents=MAX_AGENTS, agent_feature_dim=AGENT_FEATURE_DIM, ) val_loader = DataLoader(val_data, batch_size = self.batch_size, collate_fn=collate, pin_memory=True, num_workers = self.num_workers, shuffle=True) self._val_data = val_data self._val_loader = val_loader return val_loader def validation_epoch_end(self, outputs): avg_loss = torch.mean(torch.tensor([x['val_loss'] for x in outputs])) avg_mse = torch.mean(torch.tensor([x['val_mse'] for x in outputs])) avg_mae = torch.mean(torch.tensor([x['val_mae'] for x in outputs])) tensorboard_logs = {'val_loss': avg_loss, "val_rmse": torch.sqrt(avg_mse), "val_mae": avg_mae} torch.cuda.empty_cache() gc.collect() return { 'val_loss': avg_loss, 'log': tensorboard_logs, "progress_bar": {"val_ll": tensorboard_logs["val_loss"], "val_rmse": tensorboard_logs["val_rmse"]} } def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr= self.lr, betas= (0.9,0.999), weight_decay= self.weight_decay, amsgrad=False) scheduler = optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=self.epochs, eta_min=1e-5, ) return [optimizer], [scheduler] class STNkd(nn.Module): def __init__(self, k=64): super(STNkd, self).__init__() self.conv = nn.Sequential( nn.Conv1d(k, 256, kernel_size=1), nn.ReLU(), nn.Conv1d(256, 256, kernel_size=1), nn.ReLU(), nn.Conv1d(256, 512, kernel_size=1), nn.ReLU(), ) self.fc = nn.Sequential( nn.Linear(512, k*k),nn.ReLU(), ) self.k = k def forward(self, x): batchsize = x.size()[0] x = self.conv(x) x = torch.max(x, 2)[0] x = self.fc(x) iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1, self.k*self.k).repeat(batchsize,1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, self.k, self.k) return x class PointNetfeat(nn.Module): def __init__(self, global_feat = False, feature_transform = False, stn1_dim = 120, stn2_dim = 64): super(PointNetfeat, self).__init__() self.global_feat = global_feat self.feature_transform = feature_transform self.stn1_dim = stn1_dim self.stn2_dim = stn2_dim self.stn = STNkd(k=stn1_dim) self.conv1 = nn.Sequential( nn.Conv1d(stn1_dim, 256, kernel_size=1), nn.ReLU(), ) self.conv2 = nn.Sequential( nn.Conv1d(256, 256, kernel_size=1), nn.ReLU(), nn.Conv1d(256, 1024, kernel_size=1), nn.ReLU(), nn.Conv1d(1024, 2048, kernel_size=1), nn.ReLU(), ) if self.feature_transform: self.fstn = STNkd(k=stn2_dim) def forward(self, x): n_pts = x.size()[2] trans = self.stn(x) x = x.transpose(2, 1) x = torch.bmm(x, trans) x = x.transpose(2, 1) x = self.conv1(x) if self.feature_transform: trans_feat = self.fstn(x) x = x.transpose(2,1) x = torch.bmm(x, trans_feat) x = x.transpose(2,1) else: trans_feat = None pointfeat = x x = self.conv2(x) x = torch.max(x, 2)[0] if self.global_feat: return x, trans, trans_feat else: x = x[:,:,None].repeat(1, 1, n_pts) return torch.cat([x, pointfeat], 1), trans, trans_feat class LyftNet(BaseNet): def __init__(self, **kwargs): super().__init__(**kwargs) self.pnet = PointNetfeat() self.fc0 = nn.Sequential( nn.Linear(2048+256, 1024), nn.ReLU(), ) self.fc = nn.Sequential( nn.Linear(1024, 300), ) self.c_net = nn.Sequential( nn.Linear(1024, 3), ) def forward(self, x): bsize, npoints, hb, nf = x.shape # Push points to the last dim x = x.transpose(1, 3) # Merge time with features x = x.reshape(bsize, hb*nf, npoints) x, trans, trans_feat = self.pnet(x) # Push featuresxtime to the last dim x = x.transpose(1,2) x = self.fc0(x) c = self.c_net(x) x = self.fc(x) return c,x def training_step(self, batch, batch_idx): x, y, y_av = [b.to(device) for b in batch] c, preds = self(x) loss = self.criterion(c,preds,y, y_av) with torch.no_grad(): logs = { 'loss': loss, "mse": MSE(preds, y, y_av), "mae": MAE(preds, y, y_av), } return {'loss': loss, 'log': logs, "progress_bar": {"rmse":torch.sqrt(logs["mse"]) }} @torch.no_grad() def validation_step(self, batch, batch_idx): x, y, y_av = [b.to(device) for b in batch] c,preds = self(x) loss = self.criterion(c, preds, y, y_av) val_logs = { 'val_loss': loss, "val_mse": MSE(preds, y, y_av), "val_mae": MAE(preds, y, y_av), } return val_logs def get_last_checkpoint(root): res = None mtime = -1 for model_name in Path(root).glob("lyfnet*.ckpt"): e = model_name.stat().st_ctime if e > mtime: mtime=e res = model_name return res def get_last_version(root): last_version = 0 for model_name in Path(root).glob("version_*"): version = int(model_name.as_posix().split("_")[-1]) if version > last_version: last_version = version return last_version
[ "torch.bmm", "torch.sqrt", "torch.cat", "gc.collect", "pathlib.Path", "torch.no_grad", "torch.square", "torch.utils.data.DataLoader", "torch.nn.Conv1d", "torch.softmax", "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.exp", "torch.nn.Linear", "numpy.random.choice", "datetime.datetime.now", "torch.cuda.is_available", "torch.max", "torch.sum", "json.load", "torch.nn.ReLU", "numpy.zeros", "numpy.array", "torch.cuda.empty_cache", "numpy.eye", "torch.abs", "torch.tensor" ]
[((782, 838), 'pathlib.Path', 'Path', (['"""/data/lyft-motion-prediction-autonomous-vehicles"""'], {}), "('/data/lyft-motion-prediction-autonomous-vehicles')\n", (786, 838), False, 'from pathlib import Path\n'), ((748, 768), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (757, 768), False, 'import json\n'), ((9802, 9825), 'torch.softmax', 'torch.softmax', (['c'], {'dim': '(1)'}), '(c, dim=1)\n', (9815, 9825), False, 'import torch\n'), ((10051, 10076), 'torch.exp', 'torch.exp', (['(m[:, None] - l)'], {}), '(m[:, None] - l)\n', (10060, 10076), False, 'import torch\n'), ((18488, 18503), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18501, 18503), False, 'import torch\n'), ((1223, 1248), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1246, 1248), False, 'import torch\n'), ((1529, 1539), 'pathlib.Path', 'Path', (['ROOT'], {}), '(ROOT)\n', (1533, 1539), False, 'from pathlib import Path\n'), ((3124, 3215), 'numpy.array', 'np.array', (['[-17.336, -27.137, 0.0, 0.0, 0.0, -3.142, -37.833, -65.583]'], {'dtype': '"""float32"""'}), "([-17.336, -27.137, 0.0, 0.0, 0.0, -3.142, -37.833, -65.583], dtype\n ='float32')\n", (3132, 3215), True, 'import pandas as pd, numpy as np\n'), ((3251, 3344), 'numpy.array', 'np.array', (['[17.114, 20.787, 42.854, 42.138, 7.079, 3.142, 29.802, 35.722]'], {'dtype': '"""float32"""'}), "([17.114, 20.787, 42.854, 42.138, 7.079, 3.142, 29.802, 35.722],\n dtype='float32')\n", (3259, 3344), True, 'import pandas as pd, numpy as np\n'), ((6353, 6457), 'numpy.zeros', 'np.zeros', (['(self.nframes, self.max_agents, self.hbackward, self.agent_feature_dim)'], {'dtype': 'np.float32'}), '((self.nframes, self.max_agents, self.hbackward, self.\n agent_feature_dim), dtype=np.float32)\n', (6361, 6457), True, 'import pandas as pd, numpy as np\n'), ((6470, 6547), 'numpy.zeros', 'np.zeros', (['(self.nframes, self.max_agents, self.hforward, 2)'], {'dtype': 'np.float32'}), '((self.nframes, self.max_agents, self.hforward, 2), dtype=np.float32)\n', (6478, 6547), True, 'import pandas as pd, numpy as np\n'), ((6579, 6651), 'numpy.zeros', 'np.zeros', (['(self.nframes, self.max_agents, self.hforward)'], {'dtype': 'np.uint8'}), '((self.nframes, self.max_agents, self.hforward), dtype=np.uint8)\n', (6587, 6651), True, 'import pandas as pd, numpy as np\n'), ((6677, 6750), 'numpy.zeros', 'np.zeros', (['(self.nframes, self.max_agents, self.hbackward)'], {'dtype': 'np.uint8'}), '((self.nframes, self.max_agents, self.hbackward), dtype=np.uint8)\n', (6685, 6750), True, 'import pandas as pd, numpy as np\n'), ((10179, 10199), 'torch.sum', 'torch.sum', (['(l * denom)'], {}), '(l * denom)\n', (10188, 10199), False, 'import torch\n'), ((12485, 12620), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'batch_size': 'self.batch_size', 'collate_fn': 'collate', 'pin_memory': '(True)', 'num_workers': 'self.num_workers', 'shuffle': '(True)'}), '(train_data, batch_size=self.batch_size, collate_fn=collate,\n pin_memory=True, num_workers=self.num_workers, shuffle=True)\n', (12495, 12620), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((13378, 13511), 'torch.utils.data.DataLoader', 'DataLoader', (['val_data'], {'batch_size': 'self.batch_size', 'collate_fn': 'collate', 'pin_memory': '(True)', 'num_workers': 'self.num_workers', 'shuffle': '(True)'}), '(val_data, batch_size=self.batch_size, collate_fn=collate,\n pin_memory=True, num_workers=self.num_workers, shuffle=True)\n', (13388, 13511), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((14039, 14063), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (14061, 14063), False, 'import torch\n'), ((14072, 14084), 'gc.collect', 'gc.collect', ([], {}), '()\n', (14082, 14084), False, 'import pickle, copy, re, time, datetime, random, warnings, gc\n'), ((14516, 14602), 'torch.optim.lr_scheduler.CosineAnnealingLR', 'optim.lr_scheduler.CosineAnnealingLR', (['optimizer'], {'T_max': 'self.epochs', 'eta_min': '(1e-05)'}), '(optimizer, T_max=self.epochs, eta_min=\n 1e-05)\n', (14552, 14602), False, 'from torch import nn, optim\n'), ((16569, 16588), 'torch.bmm', 'torch.bmm', (['x', 'trans'], {}), '(x, trans)\n', (16578, 16588), False, 'import torch\n'), ((1643, 1687), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (1664, 1687), False, 'import pickle, copy, re, time, datetime, random, warnings, gc\n'), ((10102, 10125), 'torch.sum', 'torch.sum', (['(l * c)'], {'dim': '(1)'}), '(l * c, dim=1)\n', (10111, 10125), False, 'import torch\n'), ((13718, 13764), 'torch.tensor', 'torch.tensor', (["[x['val_loss'] for x in outputs]"], {}), "([x['val_loss'] for x in outputs])\n", (13730, 13764), False, 'import torch\n'), ((13795, 13840), 'torch.tensor', 'torch.tensor', (["[x['val_mse'] for x in outputs]"], {}), "([x['val_mse'] for x in outputs])\n", (13807, 13840), False, 'import torch\n'), ((13871, 13916), 'torch.tensor', 'torch.tensor', (["[x['val_mae'] for x in outputs]"], {}), "([x['val_mae'] for x in outputs])\n", (13883, 13916), False, 'import torch\n'), ((13989, 14008), 'torch.sqrt', 'torch.sqrt', (['avg_mse'], {}), '(avg_mse)\n', (13999, 14008), False, 'import torch\n'), ((14834, 14866), 'torch.nn.Conv1d', 'nn.Conv1d', (['k', '(256)'], {'kernel_size': '(1)'}), '(k, 256, kernel_size=1)\n', (14843, 14866), False, 'from torch import nn, optim\n'), ((14868, 14877), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (14875, 14877), False, 'from torch import nn, optim\n'), ((14891, 14925), 'torch.nn.Conv1d', 'nn.Conv1d', (['(256)', '(256)'], {'kernel_size': '(1)'}), '(256, 256, kernel_size=1)\n', (14900, 14925), False, 'from torch import nn, optim\n'), ((14927, 14936), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (14934, 14936), False, 'from torch import nn, optim\n'), ((14950, 14984), 'torch.nn.Conv1d', 'nn.Conv1d', (['(256)', '(512)'], {'kernel_size': '(1)'}), '(256, 512, kernel_size=1)\n', (14959, 14984), False, 'from torch import nn, optim\n'), ((14986, 14995), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (14993, 14995), False, 'from torch import nn, optim\n'), ((15061, 15082), 'torch.nn.Linear', 'nn.Linear', (['(512)', '(k * k)'], {}), '(512, k * k)\n', (15070, 15082), False, 'from torch import nn, optim\n'), ((15081, 15090), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (15088, 15090), False, 'from torch import nn, optim\n'), ((15217, 15232), 'torch.max', 'torch.max', (['x', '(2)'], {}), '(x, 2)\n', (15226, 15232), False, 'import torch\n'), ((16061, 16100), 'torch.nn.Conv1d', 'nn.Conv1d', (['stn1_dim', '(256)'], {'kernel_size': '(1)'}), '(stn1_dim, 256, kernel_size=1)\n', (16070, 16100), False, 'from torch import nn, optim\n'), ((16102, 16111), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (16109, 16111), False, 'from torch import nn, optim\n'), ((16180, 16214), 'torch.nn.Conv1d', 'nn.Conv1d', (['(256)', '(256)'], {'kernel_size': '(1)'}), '(256, 256, kernel_size=1)\n', (16189, 16214), False, 'from torch import nn, optim\n'), ((16216, 16225), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (16223, 16225), False, 'from torch import nn, optim\n'), ((16239, 16274), 'torch.nn.Conv1d', 'nn.Conv1d', (['(256)', '(1024)'], {'kernel_size': '(1)'}), '(256, 1024, kernel_size=1)\n', (16248, 16274), False, 'from torch import nn, optim\n'), ((16276, 16285), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (16283, 16285), False, 'from torch import nn, optim\n'), ((16299, 16335), 'torch.nn.Conv1d', 'nn.Conv1d', (['(1024)', '(2048)'], {'kernel_size': '(1)'}), '(1024, 2048, kernel_size=1)\n', (16308, 16335), False, 'from torch import nn, optim\n'), ((16337, 16346), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (16344, 16346), False, 'from torch import nn, optim\n'), ((16777, 16801), 'torch.bmm', 'torch.bmm', (['x', 'trans_feat'], {}), '(x, trans_feat)\n', (16786, 16801), False, 'import torch\n'), ((16949, 16964), 'torch.max', 'torch.max', (['x', '(2)'], {}), '(x, 2)\n', (16958, 16964), False, 'import torch\n'), ((17354, 17381), 'torch.nn.Linear', 'nn.Linear', (['(2048 + 256)', '(1024)'], {}), '(2048 + 256, 1024)\n', (17363, 17381), False, 'from torch import nn, optim\n'), ((17381, 17390), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (17388, 17390), False, 'from torch import nn, optim\n'), ((17448, 17468), 'torch.nn.Linear', 'nn.Linear', (['(1024)', '(300)'], {}), '(1024, 300)\n', (17457, 17468), False, 'from torch import nn, optim\n'), ((17529, 17547), 'torch.nn.Linear', 'nn.Linear', (['(1024)', '(3)'], {}), '(1024, 3)\n', (17538, 17547), False, 'from torch import nn, optim\n'), ((18214, 18229), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18227, 18229), False, 'import torch\n'), ((18955, 18965), 'pathlib.Path', 'Path', (['root'], {}), '(root)\n', (18959, 18965), False, 'from pathlib import Path\n'), ((19186, 19196), 'pathlib.Path', 'Path', (['root'], {}), '(root)\n', (19190, 19196), False, 'from pathlib import Path\n'), ((5619, 5664), 'numpy.random.choice', 'np.random.choice', (['(nframes - self.nread_frames)'], {}), '(nframes - self.nread_frames)\n', (5635, 5664), True, 'import pandas as pd, numpy as np\n'), ((9860, 9886), 'torch.square', 'torch.square', (['(xy_pred - xy)'], {}), '(xy_pred - xy)\n', (9872, 9886), False, 'import torch\n'), ((17118, 17146), 'torch.cat', 'torch.cat', (['[x, pointfeat]', '(1)'], {}), '([x, pointfeat], 1)\n', (17127, 17146), False, 'import torch\n'), ((18451, 18474), 'torch.sqrt', 'torch.sqrt', (["logs['mse']"], {}), "(logs['mse'])\n", (18461, 18474), False, 'import torch\n'), ((10421, 10447), 'torch.square', 'torch.square', (['(xy_pred - xy)'], {}), '(xy_pred - xy)\n', (10433, 10447), False, 'import torch\n'), ((10593, 10616), 'torch.abs', 'torch.abs', (['(xy_pred - xy)'], {}), '(xy_pred - xy)\n', (10602, 10616), False, 'import torch\n'), ((15301, 15315), 'numpy.eye', 'np.eye', (['self.k'], {}), '(self.k)\n', (15307, 15315), True, 'import pandas as pd, numpy as np\n')]
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import numpy as np from ..sine_wave_generator import SineWaveChannelConfig, SineWaveGenerator def test_generate_sinusoid() -> None: """ Tests that the samples generated from each channel matches the parameters specified in their configuration. """ test_clock_frequency = 100 # hz test_duration = 300 # sec # test configurations shape = (2,) amplitudes = np.array([5.0, 3.0]) frequencies = np.array([5, 10]) phase_shifts = np.array([1.0, 5.0]) midlines = np.array([3.0, -2.5]) sample_rate = test_clock_frequency config = SineWaveChannelConfig( shape, amplitudes, frequencies, phase_shifts, midlines, sample_rate ) # The generator generator = SineWaveGenerator(config) # Generate expected values t_s = np.arange(0, test_duration, 1 / test_clock_frequency) angles = np.expand_dims(frequencies, 1) * np.expand_dims(2 * np.pi * t_s, 0) angles = angles + np.expand_dims(phase_shifts, 1) expected = np.expand_dims(amplitudes, 1) * np.sin(angles) + np.expand_dims( midlines, 1 ) values = [generator.next_sample().data for t in t_s] values = np.array(values).T np.testing.assert_almost_equal(values, expected) if __name__ == "__main__": test_generate_sinusoid()
[ "numpy.testing.assert_almost_equal", "numpy.expand_dims", "numpy.sin", "numpy.array", "numpy.arange" ]
[((477, 497), 'numpy.array', 'np.array', (['[5.0, 3.0]'], {}), '([5.0, 3.0])\n', (485, 497), True, 'import numpy as np\n'), ((516, 533), 'numpy.array', 'np.array', (['[5, 10]'], {}), '([5, 10])\n', (524, 533), True, 'import numpy as np\n'), ((553, 573), 'numpy.array', 'np.array', (['[1.0, 5.0]'], {}), '([1.0, 5.0])\n', (561, 573), True, 'import numpy as np\n'), ((589, 610), 'numpy.array', 'np.array', (['[3.0, -2.5]'], {}), '([3.0, -2.5])\n', (597, 610), True, 'import numpy as np\n'), ((874, 927), 'numpy.arange', 'np.arange', (['(0)', 'test_duration', '(1 / test_clock_frequency)'], {}), '(0, test_duration, 1 / test_clock_frequency)\n', (883, 927), True, 'import numpy as np\n'), ((1263, 1311), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['values', 'expected'], {}), '(values, expected)\n', (1293, 1311), True, 'import numpy as np\n'), ((941, 971), 'numpy.expand_dims', 'np.expand_dims', (['frequencies', '(1)'], {}), '(frequencies, 1)\n', (955, 971), True, 'import numpy as np\n'), ((974, 1008), 'numpy.expand_dims', 'np.expand_dims', (['(2 * np.pi * t_s)', '(0)'], {}), '(2 * np.pi * t_s, 0)\n', (988, 1008), True, 'import numpy as np\n'), ((1031, 1062), 'numpy.expand_dims', 'np.expand_dims', (['phase_shifts', '(1)'], {}), '(phase_shifts, 1)\n', (1045, 1062), True, 'import numpy as np\n'), ((1127, 1154), 'numpy.expand_dims', 'np.expand_dims', (['midlines', '(1)'], {}), '(midlines, 1)\n', (1141, 1154), True, 'import numpy as np\n'), ((1240, 1256), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (1248, 1256), True, 'import numpy as np\n'), ((1078, 1107), 'numpy.expand_dims', 'np.expand_dims', (['amplitudes', '(1)'], {}), '(amplitudes, 1)\n', (1092, 1107), True, 'import numpy as np\n'), ((1110, 1124), 'numpy.sin', 'np.sin', (['angles'], {}), '(angles)\n', (1116, 1124), True, 'import numpy as np\n')]
# coding: utf-8 # --- # @File: model.py # @description: 模型类 # @Author: <NAME> # @E-mail: <EMAIL> # @Time: 3月18, 2019 # --- import tensorflow as tf from PIL import Image import scipy.misc import os from linear_3d_layer import Linear3DLayer class Model_X(tf.keras.Model): """ 继承自基类 tf.keras.Model """ def __init__(self, rnn_units, num_class): super(Model_X, self).__init__() self.rnn_units = rnn_units self.num_class = num_class self.i = 0 # 线性层 self.lcl1 = Linear3DLayer(filters=8, kernel_size=[1, 3, 75, 6], activate_size=[3, 1, 2], activate_stride=[3, 1, 1]) self.lcl2 = Linear3DLayer(filters=8, kernel_size=[8, 3, 36, 3], activate_size=[3, 1, 2], activate_stride=[3, 1, 1]) self.lcl3 = Linear3DLayer(filters=8, kernel_size=[8, 3, 17, 2], activate_size=[3, 1, 1], activate_stride=[3, 1, 1]) # 池化层 self.pooling1 = tf.keras.layers.MaxPool3D(pool_size=[2, 2, 2], strides=[2, 2, 2], padding='same', data_format='channels_first') self.pooling2 = tf.keras.layers.MaxPool3D(pool_size=[2, 2, 2], strides=[2, 2, 2], padding='same', data_format='channels_first') self.pooling3 = tf.keras.layers.MaxPool3D(pool_size=[2, 2, 2], strides=[2, 2, 2], padding='same', data_format='channels_first') # 3DCNN # self.conv3d1 = tf.keras.layers.Conv3D(filters=32, kernel_size=[3, 78, 6], strides=[1, 1, 6], # use_bias=True, # activation=tf.nn.leaky_relu, padding='same', # kernel_initializer=tf.keras.initializers.he_normal(), # bias_initializer=tf.zeros_initializer(), # data_format='channels_first') # self.conv3d2 = tf.keras.layers.Conv3D(filters=16, kernel_size=[3, 38, 3], strides=[1, 1, 3], # use_bias=True, # activation=tf.nn.leaky_relu, padding='same', # kernel_initializer=tf.keras.initializers.he_normal(), # bias_initializer=tf.zeros_initializer(), # data_format='channels_first') # self.conv3d3 = tf.keras.layers.Conv3D(filters=8, kernel_size=[3, 19, 2], strides=[1, 1, 2], # use_bias=True, # activation=tf.nn.leaky_relu, padding='same', # kernel_initializer=tf.keras.initializers.he_normal(), # bias_initializer=tf.zeros_initializer(), # data_format='channels_first') # GRU 网络 self.cell1 = tf.keras.layers.GRU(units=self.rnn_units, return_sequences=True) self.cell2 = tf.keras.layers.GRU(units=self.num_class) # BatchNormal self.bn1 = tf.keras.layers.BatchNormalization() self.bn2 = tf.keras.layers.BatchNormalization() self.bn3 = tf.keras.layers.BatchNormalization() # self.pooling_a = tf.keras.layers.AveragePooling2D(pool_size=[1, 1, 2], strides=[1, 1, 2], padding='same', # data_format='channels_first') # drop = tf.keras.layers.Dropout(rate=drop_rate) # FC # self.fla = tf.keras.layers.Flatten(data_format='channels_last') # self.fc1 = tf.keras.layers.Dense(units=128, use_bias=True, activation=None, # kernel_initializer=tf.keras.initializers.he_normal(), # bias_initializer=tf.constant_initializer) # self.fc2 = tf.keras.layers.Dense(units=num_class, use_bias=True, activation=None, # kernel_initializer=tf.keras.initializers.he_normal(), # bias_initializer=tf.constant_initializer) def call(self, inputs, drop_rate=0.3, **kwargs): """ 组织了三层时频帧线性层,两层GRU,然后输出GRU的最后一个时间状态作为logits,其中串联了 BatchNormal :param drop_rate: Dropout的比例=0.3,这个超参数没用到 :param inputs: [?, 1, 200, 80, 4] :return: logits """ is_training = tf.equal(drop_rate, 0.3) # print('inputs ', np.shape(inputs)) lc1 = self.lcl1(inputs) # print('conv1: ', sc1.get_shape().as_list()) lc1 = self.bn1(lc1, training=is_training) pool1 = self.pooling1(lc1) # (?, filters, 99, 39, 4) # print('pool1: ', pool1.get_shape().as_list()) lc2 = self.lcl2(pool1) lc2 = self.bn2(lc2, training=is_training) pool2 = self.pooling2(lc2) # (?, filters, 49, 19, 2) # print('pool2: ', pool2.get_shape().as_list()) lc3 = self.lcl3(pool2) lc3 = self.bn3(lc3, training=is_training) pool3 = self.pooling3(lc3) # (?, filters, 24, 9, 1) # pool3 = self.pooling_a(pool3) pool3 = tf.squeeze(pool3, axis=-1) # [?, filters, 24, 9] # print('pool3: ', pool3.get_shape().as_list()) # x_rnn = tf.squeeze(pool3, axis=2) # (?, 8, 2, 10, 5) # x_rnns = tf.unstack(pool3, axis=2) # 展开帧维度 2*[?, 8, 10, 5] # x_rnn = tf.concat(x_rnns, axis=3) # 合并到行维度 [?, 8, 10, 10] if not is_training: # self.draw_hid_features(inputs, pool3) pass ################################################################## x_rnns = tf.unstack(pool3, axis=1) # 展开通道维度 filters*[?, 17, 10] x_rnn = tf.concat(x_rnns, axis=2) # 合并到列维度 [?, 17, filters*10=80] # x_rnn = tf.transpose(x_rnn, [0, 2, 1]) # [?, 10, 80] # rnn_output = [] # for i in range(self.num_class): # name = "ltsm_" + str(i) # cell = tf.keras.layers.CuDNNLSTM(units=self.rnn_units, name=name) # fc = tf.keras.layers.Dense(units=1, use_bias=True, activation=None, # kernel_initializer=tf.keras.initializers.he_normal(), # bias_initializer=tf.constant_initializer()) # drop = tf.keras.layers.Dropout(rate=drop_rate) # # item_out = cell(inputs=x_rnn) # [?, 64] # fc_out = drop(item_out) # fc_out2 = fc(fc_out) # [?, 1] # cell = None # drop = None # fc = None # # rnn_output.append(fc_out2) # [4, ?, 1] # rnn_output = tf.squeeze(rnn_output) # [4, ?] # logits = tf.transpose(rnn_output) # [?, 4] #################################################################### # rnn_output = [] # for _index in range(4): # name = "gru_" + str(_index) # cell = tf.keras.layers.CuDNNLSTM(units=32, name=name) # item_out = cell(inputs=x_rnns[_index]) # [?, 25, rnn_units] # cell = None # # rnn_output.append(item_out) # # output = tf.concat(rnn_output, 1) # [?, self.rnn_units*4] # drop = tf.keras.layers.Dropout(rate=drop_rate)(output) # logits = self.fc2(drop) #################################################################### # drop = tf.keras.layers.Dropout(rate=drop_rate) # fla = self.fla(x_rnn) # fc1 = self.fc1(fla) # fc1 = drop(fc1) # logits = self.fc2(fc1) #################################################################### cell_out1 = self.cell1(x_rnn) logits = self.cell2(cell_out1) return logits def draw_hid_features(self, inputs, batch): """ 绘制中间层的特征图,保存在本地/hid_pic,第120-121行调用 :param inputs: [?, 1, 100, 80, 6] :param batch: [?, 8, 13, 10] """ import numpy inputs = numpy.squeeze(inputs) # [?, 100, 80, 6] batch = batch.numpy() index_sample = 0 for sample in batch: # [8, 13, 10] index_channel = 0 yuan_tus = inputs[index_sample] yuan_tu = numpy.hstack(yuan_tus) save_dir = 'hid_pic' + '/batch_' + str(self.i) + '/' + str(index_sample) if not os.path.exists(save_dir): os.makedirs(save_dir) Image.fromarray(yuan_tu).convert('RGB').save(save_dir + '/' + 'yuan_tu.jpg') for feature in sample: # [13, 10] save_path = save_dir + '/' + str(index_channel) + '.jpg' scipy.misc.imsave(save_path, feature.T) # Image.fromarray(feature).convert('RGB').save(save_path) index_channel += 1 index_sample += 1 self.i += 1 ############ # 8 16 8
[ "tensorflow.keras.layers.BatchNormalization", "tensorflow.unstack", "os.makedirs", "tensorflow.keras.layers.GRU", "os.path.exists", "tensorflow.concat", "linear_3d_layer.Linear3DLayer", "numpy.hstack", "PIL.Image.fromarray", "tensorflow.squeeze", "numpy.squeeze", "tensorflow.keras.layers.MaxPool3D", "tensorflow.equal" ]
[((525, 632), 'linear_3d_layer.Linear3DLayer', 'Linear3DLayer', ([], {'filters': '(8)', 'kernel_size': '[1, 3, 75, 6]', 'activate_size': '[3, 1, 2]', 'activate_stride': '[3, 1, 1]'}), '(filters=8, kernel_size=[1, 3, 75, 6], activate_size=[3, 1, 2],\n activate_stride=[3, 1, 1])\n', (538, 632), False, 'from linear_3d_layer import Linear3DLayer\n'), ((683, 790), 'linear_3d_layer.Linear3DLayer', 'Linear3DLayer', ([], {'filters': '(8)', 'kernel_size': '[8, 3, 36, 3]', 'activate_size': '[3, 1, 2]', 'activate_stride': '[3, 1, 1]'}), '(filters=8, kernel_size=[8, 3, 36, 3], activate_size=[3, 1, 2],\n activate_stride=[3, 1, 1])\n', (696, 790), False, 'from linear_3d_layer import Linear3DLayer\n'), ((841, 948), 'linear_3d_layer.Linear3DLayer', 'Linear3DLayer', ([], {'filters': '(8)', 'kernel_size': '[8, 3, 17, 2]', 'activate_size': '[3, 1, 1]', 'activate_stride': '[3, 1, 1]'}), '(filters=8, kernel_size=[8, 3, 17, 2], activate_size=[3, 1, 1],\n activate_stride=[3, 1, 1])\n', (854, 948), False, 'from linear_3d_layer import Linear3DLayer\n'), ((1018, 1134), 'tensorflow.keras.layers.MaxPool3D', 'tf.keras.layers.MaxPool3D', ([], {'pool_size': '[2, 2, 2]', 'strides': '[2, 2, 2]', 'padding': '"""same"""', 'data_format': '"""channels_first"""'}), "(pool_size=[2, 2, 2], strides=[2, 2, 2], padding=\n 'same', data_format='channels_first')\n", (1043, 1134), True, 'import tensorflow as tf\n'), ((1204, 1320), 'tensorflow.keras.layers.MaxPool3D', 'tf.keras.layers.MaxPool3D', ([], {'pool_size': '[2, 2, 2]', 'strides': '[2, 2, 2]', 'padding': '"""same"""', 'data_format': '"""channels_first"""'}), "(pool_size=[2, 2, 2], strides=[2, 2, 2], padding=\n 'same', data_format='channels_first')\n", (1229, 1320), True, 'import tensorflow as tf\n'), ((1390, 1506), 'tensorflow.keras.layers.MaxPool3D', 'tf.keras.layers.MaxPool3D', ([], {'pool_size': '[2, 2, 2]', 'strides': '[2, 2, 2]', 'padding': '"""same"""', 'data_format': '"""channels_first"""'}), "(pool_size=[2, 2, 2], strides=[2, 2, 2], padding=\n 'same', data_format='channels_first')\n", (1415, 1506), True, 'import tensorflow as tf\n'), ((3193, 3257), 'tensorflow.keras.layers.GRU', 'tf.keras.layers.GRU', ([], {'units': 'self.rnn_units', 'return_sequences': '(True)'}), '(units=self.rnn_units, return_sequences=True)\n', (3212, 3257), True, 'import tensorflow as tf\n'), ((3279, 3320), 'tensorflow.keras.layers.GRU', 'tf.keras.layers.GRU', ([], {'units': 'self.num_class'}), '(units=self.num_class)\n', (3298, 3320), True, 'import tensorflow as tf\n'), ((3363, 3399), 'tensorflow.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {}), '()\n', (3397, 3399), True, 'import tensorflow as tf\n'), ((3419, 3455), 'tensorflow.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {}), '()\n', (3453, 3455), True, 'import tensorflow as tf\n'), ((3475, 3511), 'tensorflow.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {}), '()\n', (3509, 3511), True, 'import tensorflow as tf\n'), ((4691, 4715), 'tensorflow.equal', 'tf.equal', (['drop_rate', '(0.3)'], {}), '(drop_rate, 0.3)\n', (4699, 4715), True, 'import tensorflow as tf\n'), ((5415, 5441), 'tensorflow.squeeze', 'tf.squeeze', (['pool3'], {'axis': '(-1)'}), '(pool3, axis=-1)\n', (5425, 5441), True, 'import tensorflow as tf\n'), ((5917, 5942), 'tensorflow.unstack', 'tf.unstack', (['pool3'], {'axis': '(1)'}), '(pool3, axis=1)\n', (5927, 5942), True, 'import tensorflow as tf\n'), ((5990, 6015), 'tensorflow.concat', 'tf.concat', (['x_rnns'], {'axis': '(2)'}), '(x_rnns, axis=2)\n', (5999, 6015), True, 'import tensorflow as tf\n'), ((8268, 8289), 'numpy.squeeze', 'numpy.squeeze', (['inputs'], {}), '(inputs)\n', (8281, 8289), False, 'import numpy\n'), ((8517, 8539), 'numpy.hstack', 'numpy.hstack', (['yuan_tus'], {}), '(yuan_tus)\n', (8529, 8539), False, 'import numpy\n'), ((8645, 8669), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (8659, 8669), False, 'import os\n'), ((8687, 8708), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (8698, 8708), False, 'import os\n'), ((8721, 8745), 'PIL.Image.fromarray', 'Image.fromarray', (['yuan_tu'], {}), '(yuan_tu)\n', (8736, 8745), False, 'from PIL import Image\n')]
import argparse import numpy as np import time from datetime import datetime import os from copy import deepcopy import functools import typing import pickle from .. import Chem from .. import chemutils import rdkit from rdkit.Chem import Draw import rdkit.RDLogger import torch from ..chemutils import get_mol, get_smiles, get_smiles_2D from .. import vocabulary from .. import data_utils from .. import action, molecule_representation as mr, model as mo from .. import molecule_edit as me from ..molecule_models import joint_network from ..molecule_models import action_representation as ar from ..molecule_models._train_utils import replace_sparse_tensor, load_cuda_async, cast_numpy_to_torch from ._data import SampleResult SIZE_CAP = 25 class GibbsSampler: """Runs a Gibbs chain that alternates between a provided corruption distribution and reconstruction model. """ def __init__(self, model, expected_corruption_steps=5, action_encoder=None, device=None): """ Parameters ---------- model: a Pytorch network that takes as input a molecular graph (x_tilde) and returns logits over all possible actions.` expected_corruption_steps: the expected length of the corruption sequence, used to determine the geometric distribution parameter. action_encoder: used to specify the vocab size and possible actions (of default type action_representation.VocabInsertEncoder) """ self.model = model self.expected_corruption_steps = expected_corruption_steps self.vocab = vocabulary.Vocabulary() if action_encoder is None: action_encoder = ar.VocabInsertEncoder(canonical=True) self.action_encoder = action_encoder self.device = device def corrupter(self, mol, rng=np.random, return_seq=False): """Corrupts the input (of type rdkit Mol) via the default random insert & delete operations in molecule_edit.py. """ seq = [mol] acts = [] ori_mol = deepcopy(mol) number_of_steps = rng.geometric(1 / (1 + self.expected_corruption_steps)) - 1 for _ in range(number_of_steps): if rng.uniform() < 0.5 and len(me.get_leaves(mol)) >= 2: mol, this_act = me.delete_random_leaf(mol, rng=rng, return_action=True) else: mol, this_act = me.insert_random_node(mol, self.vocab, rng=rng, return_action=True) seq.append(mol) acts.append(this_act) # Size cap if mol.GetNumAtoms() > SIZE_CAP: return self.corrupter(ori_mol, rng=rng, return_seq=return_seq) # Avoid splits (rare) if '.' in get_smiles_2D(mol): return self.corrupter(ori_mol, rng=rng, return_seq=return_seq) if not return_seq: return mol else: return mol, seq def _reconstruct_single_step(self, x_tilde): """ Runs a single step of the reconstruction process. Parameters ---------- x_tilde: the input molecule to the reconstructor Returns ------- A tuple of two elements. mol: Either the one-step action applied to the denoiser, if it was valid, or None if the sampled actions were invalid. act: The action that was sampled for the molecule. """ x_tilde_graph = mr.combine_mol_graph( [mr.mol2graph_single(x_tilde, include_leaves=True, include_rings=True, normalization='sqrt')], return_namedtuple=True, cast_tensor=cast_numpy_to_torch) x_tilde_graph = load_cuda_async(x_tilde_graph, device=self.device) x_tilde_graph = mr.GraphInfo.from_sequence(x_tilde_graph) x_tilde_graph = replace_sparse_tensor(x_tilde_graph) logits_and_scopes = self.model(x_tilde_graph) predictions, cand_act_idxs = mo.classification.multi_classification_prediction( logits_and_scopes, predict=True, num_samples=5) for i, act_idx in enumerate(cand_act_idxs.cpu()[0]): act_idx = act_idx.item() # Get corresponding action object and try executing it lengths = ar.compute_action_lengths(x_tilde, self.action_encoder) act = ar.integer_to_action(act_idx, lengths, self.action_encoder) try: result = me.compute_action(x_tilde, act, vocab=self.vocab) break except ValueError: pass else: # No valid action sampled. result = None return result, act def reconstruct(self, actual_x_tilde, return_seq=False): """ Runs the reconstructor on the given molecule. Parameters ---------- actual_x_tilde: the corrupted molecule return_seq: if True, returns the denoising sequence, otherwise, only return the last denoised value. """ # Reconstruct x = None if return_seq: seq = [actual_x_tilde] x_tilde = deepcopy(actual_x_tilde) num_steps_taken = 0 visited_smiles = {get_smiles_2D(actual_x_tilde): 0} is_revisit = False while True: x_tilde, act = self._reconstruct_single_step(x_tilde) if x_tilde is None: print('Did not sample valid action. Returning to previous mol.') break num_steps_taken += 1 this_smiles = get_smiles_2D(x_tilde) is_revisit = False if this_smiles in visited_smiles: # print('Revisited on step %i' % visited_smiles[this_smiles]) is_revisit = True else: visited_smiles[this_smiles] = num_steps_taken if is_revisit or isinstance(act, action.Stop): if x_tilde.GetNumAtoms() > SIZE_CAP: # print('Mol too large. Returning to previous mol.') pass elif '.' in get_smiles_2D(x_tilde): # Avoid splits (rare). Leaving this as return to previous # print('Broke mol. Returning to previous mol.') pass else: x = x_tilde break if not return_seq: return x, num_steps_taken, is_revisit else: return x, seq, num_steps_taken, is_revisit def _apply_corrupter(self, x, rng, check_substructure): while True: try: actual_x_tilde, seq = self.corrupter(x, rng=rng, return_seq=True) if check_substructure(actual_x_tilde): break except ValueError: print('Corruption failed. Retrying corruption.') pass return actual_x_tilde, len(seq) def run_chain(self, init_smiles=None, num_transitions=1000, sample_freq=1, seed=None, substructure=None): """ Parameters ---------- init_smiles: the SMILES string with which to initialize the chain. If not provided, a random string from the ZINC validation set will be used. num_transitions: total number of chain transitions to run. sample_freq: frequency to print chain's state. seed: seed for numpy.random. """ if not seed: seed = np.random.randint(2**31 - 1) rng = np.random.RandomState(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.autograd.set_grad_enabled(False) # Initialize chain if substructure is not None: init_smiles = substructure elif not init_smiles: path = '../data/zinc/train.txt' with open(path, 'r') as f: data = [line.strip("\r\n ").split()[0] for line in f] init_smiles = rng.choice(data) init_smiles = get_smiles_2D(get_mol(init_smiles)) x = get_mol(init_smiles) if substructure is not None: for atom in x.GetAtoms(): atom.SetAtomMapNum(42) num_marked = x.GetNumAtoms() def check_sub_intact(mol): num_here = len([atom for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 42]) if num_here == num_marked: return True else: return False else: def check_sub_intact(mol): return True # Run chain collected_x_tilde = [] collected_x = [init_smiles] print('init_x: %s' % init_smiles) num_steps_reconstruct_chain = [] num_steps_corrupt_chain = [] revisit_chain = [] transition_attempts_chain = [] for t in range(num_transitions): transition_attempts = 0 while True: actual_x_tilde, num_steps_corrupt = self._apply_corrupter(x, rng, check_sub_intact) # Reconstruct for _ in range(10): # Attempt 10 possible reconstruction transitions from the given corruption. transition_attempts += 1 potential_x, num_steps_reconstruct, revisit = self.reconstruct(actual_x_tilde) if potential_x is not None and check_sub_intact(potential_x): # If the proposed x is valid, record it, and move to next transition. x = potential_x break else: # If none of the proposed reconstructions are valid after 10 steps, # we retry the entire transition (including sampling the corruption). continue # Break out of the loop to validate a single transition. break if (t + 1) % sample_freq == 0: # Print current state collected_x_tilde.append(get_smiles_2D(actual_x_tilde)) collected_x.append(get_smiles_2D(x)) num_steps_corrupt_chain.append(num_steps_corrupt) num_steps_reconstruct_chain.append(num_steps_reconstruct) revisit_chain.append(revisit) transition_attempts_chain.append(transition_attempts) print('Iteration: %i' % (t + 1)) print('x_tilde: %s, x: %s' % (get_smiles_2D(actual_x_tilde), get_smiles_2D(x))) return SampleResult( seed, self.expected_corruption_steps, collected_x, collected_x_tilde, num_steps_corrupt_chain, num_steps_reconstruct_chain, transition_attempts_chain, revisit_chain, {}) def save_result(result: SampleResult, parameters=None): if parameters is None: parameters = {} path = parameters.get('output_path') if path is None: savedir = parameters.get('save_dir') else: savedir = os.path.dirname(path) if savedir is None: savedir = '../output/' if path is None: for i in range(1000): path = os.path.join(savedir, 'result_{0}.pkl'.format(i)) if not os.path.exists(path): break else: raise ValueError("All paths exist.") os.makedirs(savedir, exist_ok=True) result = result._replace(meta={ **result.meta, 'model_path': parameters.get('model_path', "Model path unknown.") }) print('Saving result in path {0}'.format(os.path.abspath(path))) with open(path, 'wb') as f: pickle.dump(result, f, protocol=pickle.HIGHEST_PROTOCOL) def main(): # Set rdkit logging level lg = rdkit.RDLogger.logger() lg.setLevel(rdkit.RDLogger.CRITICAL) parser = argparse.ArgumentParser() parser.add_argument('--model_path', default=None) parser.add_argument('--seed', default=None, type=int) parser.add_argument('--expected_corruption_steps', default=5, type=int) parser.add_argument('--num_transitions', default=1000, type=int) parser.add_argument('--sample_freq', default=1, type=int) parser.add_argument('--substructure', default=None) parser.add_argument('--device', default='cpu') parser.add_argument('--save_dir', default=None) args = parser.parse_args() if not args.model_path: raise ValueError('Please specify a model path.') # Load model action_encoder = ar.VocabInsertEncoder(canonical=True) config = joint_network.JointClassificationNetworkConfiguration( action_encoder.get_num_atom_insert_locations(), action_encoder.num_insert_bond_locations, hidden_size=384) model = joint_network.JointClassificationNetwork(1, config) model.load_state_dict(torch.load(args.model_path, map_location='cpu')) device = torch.device(args.device) model = model.to(device=device) model.eval() # Run chain sampler = GibbsSampler(model, args.expected_corruption_steps, action_encoder, device) result = sampler.run_chain(seed=args.seed, num_transitions=args.num_transitions, sample_freq=args.sample_freq, substructure=args.substructure) save_result(result, vars(args)) if __name__ == '__main__': main()
[ "copy.deepcopy", "pickle.dump", "os.path.abspath", "os.makedirs", "argparse.ArgumentParser", "torch.manual_seed", "os.path.dirname", "torch.load", "os.path.exists", "numpy.random.RandomState", "rdkit.RDLogger.logger", "torch.autograd.set_grad_enabled", "numpy.random.randint", "torch.device" ]
[((11356, 11391), 'os.makedirs', 'os.makedirs', (['savedir'], {'exist_ok': '(True)'}), '(savedir, exist_ok=True)\n', (11367, 11391), False, 'import os\n'), ((11751, 11774), 'rdkit.RDLogger.logger', 'rdkit.RDLogger.logger', ([], {}), '()\n', (11772, 11774), False, 'import rdkit\n'), ((11830, 11855), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (11853, 11855), False, 'import argparse\n'), ((12880, 12905), 'torch.device', 'torch.device', (['args.device'], {}), '(args.device)\n', (12892, 12905), False, 'import torch\n'), ((2055, 2068), 'copy.deepcopy', 'deepcopy', (['mol'], {}), '(mol)\n', (2063, 2068), False, 'from copy import deepcopy\n'), ((5082, 5106), 'copy.deepcopy', 'deepcopy', (['actual_x_tilde'], {}), '(actual_x_tilde)\n', (5090, 5106), False, 'from copy import deepcopy\n'), ((7452, 7479), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (7473, 7479), True, 'import numpy as np\n'), ((7488, 7511), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (7505, 7511), False, 'import torch\n'), ((7617, 7655), 'torch.autograd.set_grad_enabled', 'torch.autograd.set_grad_enabled', (['(False)'], {}), '(False)\n', (7648, 7655), False, 'import torch\n'), ((11026, 11047), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (11041, 11047), False, 'import os\n'), ((11641, 11697), 'pickle.dump', 'pickle.dump', (['result', 'f'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(result, f, protocol=pickle.HIGHEST_PROTOCOL)\n', (11652, 11697), False, 'import pickle\n'), ((12817, 12864), 'torch.load', 'torch.load', (['args.model_path'], {'map_location': '"""cpu"""'}), "(args.model_path, map_location='cpu')\n", (12827, 12864), False, 'import torch\n'), ((7409, 7439), 'numpy.random.randint', 'np.random.randint', (['(2 ** 31 - 1)'], {}), '(2 ** 31 - 1)\n', (7426, 7439), True, 'import numpy as np\n'), ((11577, 11598), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (11592, 11598), False, 'import os\n'), ((11244, 11264), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (11258, 11264), False, 'import os\n')]
import copy import pylab import numpy as np from environment import Env from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential from keras import backend as K EPISODES = 2500 class ReinforceAgent: def __init__(self): self.render = False self.load_model = False self.action_space = [0, 1, 2, 3, 4] self.action_size = len(self.action_space) self.state_size = 15 self.discount_factor = 0.99 # decay rate self.learning_rate = 0.001 self.model = self.build_model() self.optimizer = self.optimizer() self.states, self.actions, self.rewards = [], [], [] if self.load_model: self.model.load_weights('./save_model/reinforce_trained.h5') def build_model(self): model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='softmax')) model.summary() return model def optimizer(self): action = K.placeholder(shape=[None, 5]) discounted_rewards = K.placeholder(shape=[None, ]) good_prob = K.sum(action * self.model.output, axis=1) eligibility = K.log(good_prob) * K.stop_gradient(discounted_rewards) loss = -K.sum(eligibility) optimizer = Adam(lr=self.learning_rate) updates = optimizer.get_updates(self.model.trainable_weights,[], loss) train = K.function([self.model.input, action, discounted_rewards], [], updates=updates) return train def get_action(self, state): policy = self.model.predict(state)[0] return np.random.choice(self.action_size, 1, p=policy)[0] def discount_rewards(self, rewards): discounted_rewards = np.zeros_like(rewards) running_add = 0 for t in reversed(range(0, len(rewards))): running_add = running_add * self.discount_factor + rewards[t] discounted_rewards[t] = running_add return discounted_rewards def remember_episode(self, state, action, reward): self.states.append(state[0]) self.rewards.append(reward) act = np.zeros(self.action_size) act[action] = 1 self.actions.append(act) def train_model(self): discounted_rewards = np.float32(self.discount_rewards(self.rewards)) discounted_rewards -= np.mean(discounted_rewards) discounted_rewards /= np.std(discounted_rewards) self.optimizer([self.states, self.actions, discounted_rewards]) self.states, self.actions, self.rewards = [], [], [] if __name__ == "__main__": env = Env() agent = ReinforceAgent() global_step = 0 scores, episodes = [], [] for e in range(EPISODES): done = False score = 0 state = env.reset() state = np.reshape(state, [1, 15]) while not done: if agent.render: env.render() global_step += 1 action = agent.get_action(state) next_state, reward, done = env.step(action) next_state = np.reshape(next_state, [1, 15]) agent.remember_episode(state, action, reward) score += reward state = copy.deepcopy(next_state) if done: agent.train_model() scores.append(score) episodes.append(e) score = round(score,2) print("episode:", e, " score:", score, " time_step:", global_step) if e % 100 == 0: pylab.plot(episodes, scores, 'b') pylab.savefig("./save_graph/reinforce.png") agent.model.save_weights("./save_model/reinforce.h5") if e == 501: break print('game over') env.destroy()
[ "keras.backend.placeholder", "numpy.random.choice", "numpy.zeros_like", "copy.deepcopy", "numpy.std", "keras.backend.function", "keras.backend.sum", "keras.optimizers.Adam", "numpy.zeros", "pylab.savefig", "keras.backend.log", "numpy.mean", "environment.Env", "numpy.reshape", "keras.layers.Dense", "keras.backend.stop_gradient", "keras.models.Sequential", "pylab.plot" ]
[((2784, 2789), 'environment.Env', 'Env', ([], {}), '()\n', (2787, 2789), False, 'from environment import Env\n'), ((827, 839), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (837, 839), False, 'from keras.models import Sequential\n'), ((1116, 1146), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '[None, 5]'}), '(shape=[None, 5])\n', (1129, 1146), True, 'from keras import backend as K\n'), ((1176, 1203), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '[None]'}), '(shape=[None])\n', (1189, 1203), True, 'from keras import backend as K\n'), ((1226, 1267), 'keras.backend.sum', 'K.sum', (['(action * self.model.output)'], {'axis': '(1)'}), '(action * self.model.output, axis=1)\n', (1231, 1267), True, 'from keras import backend as K\n'), ((1401, 1428), 'keras.optimizers.Adam', 'Adam', ([], {'lr': 'self.learning_rate'}), '(lr=self.learning_rate)\n', (1405, 1428), False, 'from keras.optimizers import Adam\n'), ((1564, 1643), 'keras.backend.function', 'K.function', (['[self.model.input, action, discounted_rewards]', '[]'], {'updates': 'updates'}), '([self.model.input, action, discounted_rewards], [], updates=updates)\n', (1574, 1643), True, 'from keras import backend as K\n'), ((1910, 1932), 'numpy.zeros_like', 'np.zeros_like', (['rewards'], {}), '(rewards)\n', (1923, 1932), True, 'import numpy as np\n'), ((2307, 2333), 'numpy.zeros', 'np.zeros', (['self.action_size'], {}), '(self.action_size)\n', (2315, 2333), True, 'import numpy as np\n'), ((2526, 2553), 'numpy.mean', 'np.mean', (['discounted_rewards'], {}), '(discounted_rewards)\n', (2533, 2553), True, 'import numpy as np\n'), ((2584, 2610), 'numpy.std', 'np.std', (['discounted_rewards'], {}), '(discounted_rewards)\n', (2590, 2610), True, 'import numpy as np\n'), ((2984, 3010), 'numpy.reshape', 'np.reshape', (['state', '[1, 15]'], {}), '(state, [1, 15])\n', (2994, 3010), True, 'import numpy as np\n'), ((858, 913), 'keras.layers.Dense', 'Dense', (['(24)'], {'input_dim': 'self.state_size', 'activation': '"""relu"""'}), "(24, input_dim=self.state_size, activation='relu')\n", (863, 913), False, 'from keras.layers import Dense\n'), ((933, 961), 'keras.layers.Dense', 'Dense', (['(24)'], {'activation': '"""relu"""'}), "(24, activation='relu')\n", (938, 961), False, 'from keras.layers import Dense\n'), ((981, 1026), 'keras.layers.Dense', 'Dense', (['self.action_size'], {'activation': '"""softmax"""'}), "(self.action_size, activation='softmax')\n", (986, 1026), False, 'from keras.layers import Dense\n'), ((1290, 1306), 'keras.backend.log', 'K.log', (['good_prob'], {}), '(good_prob)\n', (1295, 1306), True, 'from keras import backend as K\n'), ((1309, 1344), 'keras.backend.stop_gradient', 'K.stop_gradient', (['discounted_rewards'], {}), '(discounted_rewards)\n', (1324, 1344), True, 'from keras import backend as K\n'), ((1361, 1379), 'keras.backend.sum', 'K.sum', (['eligibility'], {}), '(eligibility)\n', (1366, 1379), True, 'from keras import backend as K\n'), ((1788, 1835), 'numpy.random.choice', 'np.random.choice', (['self.action_size', '(1)'], {'p': 'policy'}), '(self.action_size, 1, p=policy)\n', (1804, 1835), True, 'import numpy as np\n'), ((3250, 3281), 'numpy.reshape', 'np.reshape', (['next_state', '[1, 15]'], {}), '(next_state, [1, 15])\n', (3260, 3281), True, 'import numpy as np\n'), ((3389, 3414), 'copy.deepcopy', 'copy.deepcopy', (['next_state'], {}), '(next_state)\n', (3402, 3414), False, 'import copy\n'), ((3729, 3762), 'pylab.plot', 'pylab.plot', (['episodes', 'scores', '"""b"""'], {}), "(episodes, scores, 'b')\n", (3739, 3762), False, 'import pylab\n'), ((3775, 3818), 'pylab.savefig', 'pylab.savefig', (['"""./save_graph/reinforce.png"""'], {}), "('./save_graph/reinforce.png')\n", (3788, 3818), False, 'import pylab\n')]
from pickle import load from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means def load_expt_result(path): with open(path, 'rb') as f: result = load(f) return result import matplotlib.pyplot as plt import numpy as np expt_dataset = np.load('expt_dataset.npz') expt_means = expt_dataset['expt_means'] def rmse(predictions, inds): pred_kcal_mol = unreduce(predictions[inds]) expt_kcal_mol = unreduce(expt_means[inds]) rmse = np.sqrt(np.mean((pred_kcal_mol - expt_kcal_mol) ** 2)) return rmse def train_test_rmse(predictions, split=0): train_inds, test_inds = train_test_split(split) train_rmse = rmse(predictions, train_inds) test_rmse = rmse(predictions, test_inds) return train_rmse, test_rmse def compute_train_test_rmse_traj(prediction_traj, cv_fold=0): train_rmses = np.zeros(len(prediction_traj)) test_rmses = np.zeros(len(prediction_traj)) print(np.array(prediction_traj).shape) for i in range(len(prediction_traj)): train_rmses[i], test_rmses[i] = train_test_rmse(prediction_traj[i], cv_fold) return train_rmses, test_rmses if __name__ == '__main__': plt.figure(figsize=(8,4)) train_color = 'blue' test_color = 'green' result = load_expt_result('ll=student_t,k=1,hash(theta0)=9203586750394740867.pkl') train_rmses, test_rmses = compute_train_test_rmse_traj(result['prediction_traj'], result['experiment'].cv_fold) train_label = 'train' test_label = 'test' plt.plot(train_rmses, label=train_label, c=train_color, alpha=0.5) plt.plot(test_rmses, label=test_label, c=test_color, linestyle='--', alpha=0.5) plt.xlabel('iteration') plt.ylabel('RMSE (kcal/mol)') plt.savefig('train_test_rmses_0.png', dpi=300) plt.close() from glob import glob ll = 'gaussian' fnames = glob('july_26_results/ll={}*'.format(ll)) def plot_scatter(path): result = load_expt_result(path) initial_pred = result['prediction_traj'][0] pred_kcalmol = unreduce(initial_pred) expt_kcalmol = unreduce(expt_means) plt.figure() plt.scatter(pred_kcalmol, expt_kcalmol) plt.savefig('scatter.png', dpi=300) plt.close() plot_scatter(fnames[0]) def plot_result(ax, ll='gaussian'): fnames = glob('july_27_28_results/ll={}*'.format(ll)) for i, fname in enumerate(fnames): result = load_expt_result(fname) train_rmses, test_rmses = compute_train_test_rmse_traj(result['prediction_traj'], result['experiment'].cv_fold) if i == 0: train_label = 'train' test_label = 'test' else: train_label = None test_label = None ax.plot(train_rmses, label=train_label, c=train_color, alpha=0.5) ax.plot(test_rmses, label=test_label, c=test_color, linestyle='--', alpha=0.5) ax.set_xlabel('iteration') ax.set_ylabel('RMSE (kcal/mol)') plt.legend(title='10-fold CV') ax = plt.subplot(1,2,1) plot_result(ax, 'gaussian') plt.title('gaussian likelihood') ax1 = plt.subplot(1,2,2, sharey=ax) plot_result(ax1, 'student_t') plt.title('student-t likelihood') plt.tight_layout() plt.savefig('train_test_rmses.png', dpi=300, bbox_inches='tight') plt.close()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "numpy.load", "bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.train_test_split", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.train_test_rmse", "matplotlib.pyplot.figure", "pickle.load", "numpy.mean", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.unreduce", "matplotlib.pyplot.savefig" ]
[((387, 414), 'numpy.load', 'np.load', (['"""expt_dataset.npz"""'], {}), "('expt_dataset.npz')\n", (394, 414), True, 'import numpy as np\n'), ((505, 532), 'bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.unreduce', 'unreduce', (['predictions[inds]'], {}), '(predictions[inds])\n', (513, 532), False, 'from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means\n'), ((553, 579), 'bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.unreduce', 'unreduce', (['expt_means[inds]'], {}), '(expt_means[inds])\n', (561, 579), False, 'from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means\n'), ((736, 759), 'bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.train_test_split', 'train_test_split', (['split'], {}), '(split)\n', (752, 759), False, 'from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means\n'), ((1286, 1312), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 4)'}), '(figsize=(8, 4))\n', (1296, 1312), True, 'import matplotlib.pyplot as plt\n'), ((1623, 1689), 'matplotlib.pyplot.plot', 'plt.plot', (['train_rmses'], {'label': 'train_label', 'c': 'train_color', 'alpha': '(0.5)'}), '(train_rmses, label=train_label, c=train_color, alpha=0.5)\n', (1631, 1689), True, 'import matplotlib.pyplot as plt\n'), ((1694, 1773), 'matplotlib.pyplot.plot', 'plt.plot', (['test_rmses'], {'label': 'test_label', 'c': 'test_color', 'linestyle': '"""--"""', 'alpha': '(0.5)'}), "(test_rmses, label=test_label, c=test_color, linestyle='--', alpha=0.5)\n", (1702, 1773), True, 'import matplotlib.pyplot as plt\n'), ((1780, 1803), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""iteration"""'], {}), "('iteration')\n", (1790, 1803), True, 'import matplotlib.pyplot as plt\n'), ((1808, 1837), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""RMSE (kcal/mol)"""'], {}), "('RMSE (kcal/mol)')\n", (1818, 1837), True, 'import matplotlib.pyplot as plt\n'), ((1843, 1889), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""train_test_rmses_0.png"""'], {'dpi': '(300)'}), "('train_test_rmses_0.png', dpi=300)\n", (1854, 1889), True, 'import matplotlib.pyplot as plt\n'), ((1894, 1905), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1903, 1905), True, 'import matplotlib.pyplot as plt\n'), ((3179, 3199), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (3190, 3199), True, 'import matplotlib.pyplot as plt\n'), ((3234, 3266), 'matplotlib.pyplot.title', 'plt.title', (['"""gaussian likelihood"""'], {}), "('gaussian likelihood')\n", (3243, 3266), True, 'import matplotlib.pyplot as plt\n'), ((3278, 3309), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {'sharey': 'ax'}), '(1, 2, 2, sharey=ax)\n', (3289, 3309), True, 'import matplotlib.pyplot as plt\n'), ((3346, 3379), 'matplotlib.pyplot.title', 'plt.title', (['"""student-t likelihood"""'], {}), "('student-t likelihood')\n", (3355, 3379), True, 'import matplotlib.pyplot as plt\n'), ((3385, 3403), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3401, 3403), True, 'import matplotlib.pyplot as plt\n'), ((3408, 3473), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""train_test_rmses.png"""'], {'dpi': '(300)', 'bbox_inches': '"""tight"""'}), "('train_test_rmses.png', dpi=300, bbox_inches='tight')\n", (3419, 3473), True, 'import matplotlib.pyplot as plt\n'), ((3478, 3489), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3487, 3489), True, 'import matplotlib.pyplot as plt\n'), ((292, 299), 'pickle.load', 'load', (['f'], {}), '(f)\n', (296, 299), False, 'from pickle import load\n'), ((600, 645), 'numpy.mean', 'np.mean', (['((pred_kcal_mol - expt_kcal_mol) ** 2)'], {}), '((pred_kcal_mol - expt_kcal_mol) ** 2)\n', (607, 645), True, 'import numpy as np\n'), ((1172, 1216), 'bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.train_test_rmse', 'train_test_rmse', (['prediction_traj[i]', 'cv_fold'], {}), '(prediction_traj[i], cv_fold)\n', (1187, 1216), False, 'from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means\n'), ((2152, 2174), 'bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.unreduce', 'unreduce', (['initial_pred'], {}), '(initial_pred)\n', (2160, 2174), False, 'from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means\n'), ((2198, 2218), 'bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment.unreduce', 'unreduce', (['expt_means'], {}), '(expt_means)\n', (2206, 2218), False, 'from bayes_implicit_solvent.continuous_parameter_experiments.gd_vs_langevin.autograd_based_experiment import Experiment, experiments, train_test_split, train_test_rmse, unreduce, expt_means\n'), ((2227, 2239), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2237, 2239), True, 'import matplotlib.pyplot as plt\n'), ((2248, 2287), 'matplotlib.pyplot.scatter', 'plt.scatter', (['pred_kcalmol', 'expt_kcalmol'], {}), '(pred_kcalmol, expt_kcalmol)\n', (2259, 2287), True, 'import matplotlib.pyplot as plt\n'), ((2296, 2331), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""scatter.png"""'], {'dpi': '(300)'}), "('scatter.png', dpi=300)\n", (2307, 2331), True, 'import matplotlib.pyplot as plt\n'), ((2340, 2351), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2349, 2351), True, 'import matplotlib.pyplot as plt\n'), ((3138, 3168), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'title': '"""10-fold CV"""'}), "(title='10-fold CV')\n", (3148, 3168), True, 'import matplotlib.pyplot as plt\n'), ((1056, 1081), 'numpy.array', 'np.array', (['prediction_traj'], {}), '(prediction_traj)\n', (1064, 1081), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from samplics.sae.eblup_unit_model import EblupUnitModel cornsoybean = pd.read_csv("./tests/sae/cornsoybean.csv") cornsoybean_mean = pd.read_csv("./tests/sae/cornsoybeanmeans.csv") cornsoybean = cornsoybean.sample(frac=1) # shuffle the data to remove the # print(cornsoybean) areas = cornsoybean["County"] areas_list = np.unique(areas) ys = cornsoybean["CornHec"] Xs = cornsoybean[["CornPix", "SoyBeansPix"]] Xmean = cornsoybean_mean[["MeanCornPixPerSeg", "MeanSoyBeansPixPerSeg"]] # print(Xmean) samp_size = np.array([1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6]) pop_size = np.array([545, 566, 394, 424, 564, 570, 402, 567, 687, 569, 965, 556]) """REML Method""" eblup_bhf_reml = EblupUnitModel() eblup_bhf_reml.fit( ys, Xs, areas, ) eblup_bhf_reml.predict(Xmean, areas_list) def test_eblup_bhf_reml(): assert eblup_bhf_reml.method == "REML" def test_fixed_effects_bhf_reml(): assert np.isclose( eblup_bhf_reml.fixed_effects, np.array([17.96398, 0.3663352, -0.0303638]), atol=1e-6, ).all() def test_fe_std_bhf_reml(): assert np.isclose( eblup_bhf_reml.fe_std, np.array([30.986801, 0.065101, 0.067583]), atol=1e-6, ).all() def test_gamma_bhf_reml(): assert np.isclose( np.array(list(eblup_bhf_reml.gamma.values())), np.array( [ 0.17537405, 0.17537405, 0.17537405, 0.29841402, 0.38950426, 0.38950426, 0.38950426, 0.38950426, 0.45965927, 0.51535245, 0.51535245, 0.56063774, ] ), atol=1e-6, ).all() def test_random_effects_bhf_reml(): assert np.isclose( eblup_bhf_reml.random_effects, np.array( [ 2.184574, 1.475118, -4.730863, -2.764825, 8.370915, 4.274827, -2.705540, 1.156682, 5.026852, -2.883398, -8.652532, -0.751808, ] ), atol=1e-6, ).all() def test_re_std_bhf_reml(): assert np.isclose(eblup_bhf_reml.re_std ** 2, 63.3149, atol=1e-6) def test_error_var_bhf_reml(): assert np.isclose(eblup_bhf_reml.error_std ** 2, 297.7128, atol=1e-6) def test_goodness_of_fit_bhf_reml(): assert np.isclose(eblup_bhf_reml.goodness["loglike"], -161.005759) assert np.isclose(eblup_bhf_reml.goodness["AIC"], 326.011518) assert np.isclose(eblup_bhf_reml.goodness["BIC"], 329.064239) def test_convergence_bhf_reml(): assert eblup_bhf_reml.convergence["achieved"] == True assert eblup_bhf_reml.convergence["iterations"] == 4 def test_area_estimate_bhf_reml(): assert np.isclose( np.array(list(eblup_bhf_reml.area_est.values())), np.array( [ 122.56367092, 123.51515946, 113.09071900, 115.02074400, 137.19621212, 108.94543201, 116.51553231, 122.76148230, 111.53048000, 124.18034553, 112.50472697, 131.25788283, ] ), atol=1e-6, ).all() # @pytest.mark.skip(reason="to be fixed") def test_area_mse_bhf_reml(): assert np.isclose( np.array(list(eblup_bhf_reml.area_mse.values())), np.array( [ 85.495399459, 85.648949504, 85.004705566, 83.235995880, 72.017014455, 73.356967955, 72.007536645, 73.580035237, 65.299062174, 58.426265442, 57.518251822, 53.876770532, ] ), atol=1e-6, ).all() eblup_bhf_reml_fpc = EblupUnitModel() eblup_bhf_reml_fpc.fit(ys, Xs, areas) eblup_bhf_reml_fpc.predict(Xmean, areas_list, pop_size) def test_y_predicted_bhf_reml_fpc(): assert np.isclose( np.array(list(eblup_bhf_reml_fpc.area_est.values())), np.array( [ 122.582519, 123.527414, 113.034260, 114.990082, 137.266001, 108.980696, 116.483886, 122.771075, 111.564754, 124.156518, 112.462566, 131.251525, ] ), atol=1e-6, ).all() def test_bhf_reml_to_dataframe_default(): df = eblup_bhf_reml.to_dataframe() assert df.shape[1] == 4 assert (df.columns == ["_parameter", "_area", "_estimate", "_mse"]).all() def test_bhf_reml_to_dataframe_not_default(): df = eblup_bhf_reml.to_dataframe( col_names=["parameter", "small_area", "modelled_estimate", "taylor_mse"] ) assert df.shape[1] == 4 assert (df.columns == ["parameter", "small_area", "modelled_estimate", "taylor_mse"]).all() # Bootstrap with REML eblup_bhf_reml_boot = EblupUnitModel() eblup_bhf_reml_boot.fit( ys, Xs, areas, ) eblup_bhf_reml_boot.predict(Xmean, areas_list) eblup_bhf_reml_boot.bootstrap_mse(number_reps=5, show_progress=False) df1_reml = eblup_bhf_reml_boot.to_dataframe() def test_bhf_reml_to_dataframe_boot_default(): assert df1_reml.shape[1] == 5 assert (df1_reml.columns == ["_parameter", "_area", "_estimate", "_mse", "_mse_boot"]).all() df2_reml = eblup_bhf_reml_boot.to_dataframe( col_names=["parameter", "small_area", "modelled_estimate", "taylor_mse", "boot_mse"] ) def test_bhf_reml_to_dataframe_boot_not_default(): assert df2_reml.shape[1] == 5 assert ( df2_reml.columns == ["parameter", "small_area", "modelled_estimate", "taylor_mse", "boot_mse"] ).all() # Shorter output np.random.seed(123) samp_size_short = np.array([3, 3, 3, 4, 5, 5, 6]) pop_size_short = np.array([570, 402, 567, 687, 569, 965, 556]) pop_area_short = np.linspace(6, 12, 7).astype(int) Xp_mean_short = Xmean.loc[5:12, :] eblup_bhf_reml_short = EblupUnitModel() eblup_bhf_reml_short.fit(ys, Xs, areas, intercept=True) eblup_bhf_reml_short.predict(Xp_mean_short, pop_area_short, pop_size_short) def test_area_estimate_bhf_reml_short(): assert np.isclose( np.array(list(eblup_bhf_reml_short.area_est.values())), np.array( [ 108.98069631, 116.48388625, 122.77107460, 111.56475375, 124.15651773, 112.46256629, 131.25152478, ] ), atol=1e-6, ).all() # @pytest.mark.skip(reason="to be fixed") def test_area_mse_bhf_reml_short(): assert np.isclose( np.array(list(eblup_bhf_reml_short.area_mse.values())), np.array( [ 78.70883983, 78.02323786, 78.87309307, 70.04040931, 64.11261351, 61.87654547, 59.81982861, ] ), atol=1e-6, ).all() """ML Method""" eblup_bhf_ml = EblupUnitModel(method="ml") eblup_bhf_ml.fit(ys, Xs, areas) eblup_bhf_ml.predict(Xmean, areas_list) def test_eblup_bhf_ml(): assert eblup_bhf_ml.method == "ML" def test_fixed_effects_bhf_ml(): assert np.isclose( eblup_bhf_ml.fixed_effects, np.array([18.08888, 0.36566, -0.03017]), atol=1e-5, ).all() def test_fe_std_bhf_ml(): assert np.isclose( eblup_bhf_ml.fe_std, np.array([29.82724469, 0.06262676, 0.06506189]), atol=1e-5, ).all() def test_gamma_bhf_ml(): assert np.isclose( np.array(list(eblup_bhf_ml.gamma.values())), np.array( [ 0.14570573, 0.14570573, 0.14570573, 0.25435106, 0.33848019, 0.33848019, 0.33848019, 0.33848019, 0.40555003, 0.46027174, 0.46027174, 0.50576795, ] ), atol=1e-6, ).all() def test_random_effects_bhf_ml(): assert np.isclose( eblup_bhf_ml.random_effects, np.array( [ 1.8322323, 1.2218437, -3.9308431, -2.3261989, 7.2988558, 3.7065346, -2.3371090, 1.0315879, 4.4367420, -2.5647926, -7.7046350, -0.6642178, ] ), atol=1e-6, ).all() def test_re_std_bhf_ml(): assert np.isclose(eblup_bhf_ml.re_std ** 2, 47.79559, atol=1e-4) def test_error_var_bhf_ml(): assert np.isclose(eblup_bhf_ml.error_std ** 2, 280.2311, atol=1e-4) def test_goodness_of_fit_bhf_ml(): assert np.isclose(eblup_bhf_ml.goodness["loglike"], -159.1981) assert np.isclose(eblup_bhf_ml.goodness["AIC"], 328.4, atol=0.1) assert np.isclose(eblup_bhf_ml.goodness["BIC"], 336.5, atol=0.1) def test_convergence_bhf_ml(): assert eblup_bhf_ml.convergence["achieved"] == True assert eblup_bhf_ml.convergence["iterations"] == 3 def test_area_estimate_bhf_ml(): assert np.isclose( np.array(list(eblup_bhf_ml.area_est.values())), np.array( [ 122.17284832, 123.22129485, 113.85918468, 115.42994973, 136.06978025, 108.37573030, 116.84704244, 122.60003878, 110.93542654, 124.44934607, 113.41480260, 131.28369873, ] ), atol=1e-6, ).all() def test_area_mse_bhf_ml(): assert np.isclose( np.array(list(eblup_bhf_ml.area_mse.values())), np.array( [ 70.03789330, 70.14078955, 69.75891524, 71.50874622, 64.73862949, 66.13552266, 64.77099780, 66.09246929, 60.71287515, 55.31330901, 54.52024143, 51.85801645, ] ), atol=1e-4, ).all() eblup_bhf_ml_fpc = EblupUnitModel(method="ML") eblup_bhf_ml_fpc.fit(ys, Xs, areas) eblup_bhf_ml_fpc.predict(Xmean, areas_list, pop_size) def test_area_est_bhf_ml_fpc(): assert np.isclose( np.array(list(eblup_bhf_ml_fpc.area_est.values())), np.array( [ 122.1926, 123.2340, 113.8007, 115.3978, 136.1457, 108.4139, 116.8129, 122.6107, 110.9733, 124.4229, 113.3680, 131.2767, ] ), atol=1e-4, ).all() # Bootstrap with ML eblup_bhf_ml_boot = EblupUnitModel(method="ML") eblup_bhf_ml_boot.fit( ys, Xs, areas, ) eblup_bhf_ml_boot.predict(Xmean, areas_list) eblup_bhf_ml_boot.bootstrap_mse(number_reps=5, show_progress=False) df1_ml = eblup_bhf_ml_boot.to_dataframe() def test_bhf_ml_to_dataframe_boot_default(): assert df1_ml.shape[1] == 5 assert (df1_ml.columns == ["_parameter", "_area", "_estimate", "_mse", "_mse_boot"]).all() df2_ml = eblup_bhf_ml_boot.to_dataframe( col_names=["parameter", "small_area", "modelled_estimate", "taylor_mse", "boot_mse"] ) def test_bhf_ml_to_dataframe_boot_not_default(): assert df2_ml.shape[1] == 5 assert ( df2_ml.columns == ["parameter", "small_area", "modelled_estimate", "taylor_mse", "boot_mse"] ).all() # Shorter output eblup_bhf_ml_short = EblupUnitModel(method="ML") eblup_bhf_ml_short.fit(ys, Xs, areas, intercept=True) eblup_bhf_ml_short.predict(Xp_mean_short, pop_area_short, pop_size_short) def test_area_estimate_bhf_ml_short(): assert np.isclose( np.array(list(eblup_bhf_ml_short.area_est.values())), np.array( [ 108.41385641, 116.81295596, 122.61070603, 110.97329145, 124.42291775, 113.36799091, 131.27669442, ] ), atol=1e-6, ).all() # @pytest.mark.skip(reason="to be fixed") def test_area_mse_bhf_ml_short(): assert np.isclose( np.array(list(eblup_bhf_ml_short.area_mse.values())), np.array( [ 71.07422316, 70.52276075, 71.03548298, 65.27922762, 60.93670432, 58.91938558, 57.87424555, ] ), atol=1e-6, ).all()
[ "numpy.random.seed", "pandas.read_csv", "numpy.isclose", "numpy.array", "numpy.linspace", "samplics.sae.eblup_unit_model.EblupUnitModel", "numpy.unique" ]
[((113, 155), 'pandas.read_csv', 'pd.read_csv', (['"""./tests/sae/cornsoybean.csv"""'], {}), "('./tests/sae/cornsoybean.csv')\n", (124, 155), True, 'import pandas as pd\n'), ((175, 222), 'pandas.read_csv', 'pd.read_csv', (['"""./tests/sae/cornsoybeanmeans.csv"""'], {}), "('./tests/sae/cornsoybeanmeans.csv')\n", (186, 222), True, 'import pandas as pd\n'), ((364, 380), 'numpy.unique', 'np.unique', (['areas'], {}), '(areas)\n', (373, 380), True, 'import numpy as np\n'), ((557, 603), 'numpy.array', 'np.array', (['[1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6]'], {}), '([1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6])\n', (565, 603), True, 'import numpy as np\n'), ((615, 685), 'numpy.array', 'np.array', (['[545, 566, 394, 424, 564, 570, 402, 567, 687, 569, 965, 556]'], {}), '([545, 566, 394, 424, 564, 570, 402, 567, 687, 569, 965, 556])\n', (623, 685), True, 'import numpy as np\n'), ((722, 738), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {}), '()\n', (736, 738), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((4079, 4095), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {}), '()\n', (4093, 4095), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((5271, 5287), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {}), '()\n', (5285, 5287), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((6066, 6085), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (6080, 6085), True, 'import numpy as np\n'), ((6105, 6136), 'numpy.array', 'np.array', (['[3, 3, 3, 4, 5, 5, 6]'], {}), '([3, 3, 3, 4, 5, 5, 6])\n', (6113, 6136), True, 'import numpy as np\n'), ((6154, 6199), 'numpy.array', 'np.array', (['[570, 402, 567, 687, 569, 965, 556]'], {}), '([570, 402, 567, 687, 569, 965, 556])\n', (6162, 6199), True, 'import numpy as np\n'), ((6310, 6326), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {}), '()\n', (6324, 6326), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((7378, 7405), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {'method': '"""ml"""'}), "(method='ml')\n", (7392, 7405), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((10642, 10669), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {'method': '"""ML"""'}), "(method='ML')\n", (10656, 10669), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((11320, 11347), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {'method': '"""ML"""'}), "(method='ML')\n", (11334, 11347), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((12121, 12148), 'samplics.sae.eblup_unit_model.EblupUnitModel', 'EblupUnitModel', ([], {'method': '"""ML"""'}), "(method='ML')\n", (12135, 12148), False, 'from samplics.sae.eblup_unit_model import EblupUnitModel\n'), ((2329, 2388), 'numpy.isclose', 'np.isclose', (['(eblup_bhf_reml.re_std ** 2)', '(63.3149)'], {'atol': '(1e-06)'}), '(eblup_bhf_reml.re_std ** 2, 63.3149, atol=1e-06)\n', (2339, 2388), True, 'import numpy as np\n'), ((2432, 2495), 'numpy.isclose', 'np.isclose', (['(eblup_bhf_reml.error_std ** 2)', '(297.7128)'], {'atol': '(1e-06)'}), '(eblup_bhf_reml.error_std ** 2, 297.7128, atol=1e-06)\n', (2442, 2495), True, 'import numpy as np\n'), ((2545, 2604), 'numpy.isclose', 'np.isclose', (["eblup_bhf_reml.goodness['loglike']", '(-161.005759)'], {}), "(eblup_bhf_reml.goodness['loglike'], -161.005759)\n", (2555, 2604), True, 'import numpy as np\n'), ((2616, 2670), 'numpy.isclose', 'np.isclose', (["eblup_bhf_reml.goodness['AIC']", '(326.011518)'], {}), "(eblup_bhf_reml.goodness['AIC'], 326.011518)\n", (2626, 2670), True, 'import numpy as np\n'), ((2682, 2736), 'numpy.isclose', 'np.isclose', (["eblup_bhf_reml.goodness['BIC']", '(329.064239)'], {}), "(eblup_bhf_reml.goodness['BIC'], 329.064239)\n", (2692, 2736), True, 'import numpy as np\n'), ((8967, 9026), 'numpy.isclose', 'np.isclose', (['(eblup_bhf_ml.re_std ** 2)', '(47.79559)'], {'atol': '(0.0001)'}), '(eblup_bhf_ml.re_std ** 2, 47.79559, atol=0.0001)\n', (8977, 9026), True, 'import numpy as np\n'), ((9067, 9129), 'numpy.isclose', 'np.isclose', (['(eblup_bhf_ml.error_std ** 2)', '(280.2311)'], {'atol': '(0.0001)'}), '(eblup_bhf_ml.error_std ** 2, 280.2311, atol=0.0001)\n', (9077, 9129), True, 'import numpy as np\n'), ((9176, 9231), 'numpy.isclose', 'np.isclose', (["eblup_bhf_ml.goodness['loglike']", '(-159.1981)'], {}), "(eblup_bhf_ml.goodness['loglike'], -159.1981)\n", (9186, 9231), True, 'import numpy as np\n'), ((9243, 9300), 'numpy.isclose', 'np.isclose', (["eblup_bhf_ml.goodness['AIC']", '(328.4)'], {'atol': '(0.1)'}), "(eblup_bhf_ml.goodness['AIC'], 328.4, atol=0.1)\n", (9253, 9300), True, 'import numpy as np\n'), ((9312, 9369), 'numpy.isclose', 'np.isclose', (["eblup_bhf_ml.goodness['BIC']", '(336.5)'], {'atol': '(0.1)'}), "(eblup_bhf_ml.goodness['BIC'], 336.5, atol=0.1)\n", (9322, 9369), True, 'import numpy as np\n'), ((6217, 6238), 'numpy.linspace', 'np.linspace', (['(6)', '(12)', '(7)'], {}), '(6, 12, 7)\n', (6228, 6238), True, 'import numpy as np\n'), ((1009, 1052), 'numpy.array', 'np.array', (['[17.96398, 0.3663352, -0.0303638]'], {}), '([17.96398, 0.3663352, -0.0303638])\n', (1017, 1052), True, 'import numpy as np\n'), ((1177, 1218), 'numpy.array', 'np.array', (['[30.986801, 0.065101, 0.067583]'], {}), '([30.986801, 0.065101, 0.067583])\n', (1185, 1218), True, 'import numpy as np\n'), ((1366, 1529), 'numpy.array', 'np.array', (['[0.17537405, 0.17537405, 0.17537405, 0.29841402, 0.38950426, 0.38950426, \n 0.38950426, 0.38950426, 0.45965927, 0.51535245, 0.51535245, 0.56063774]'], {}), '([0.17537405, 0.17537405, 0.17537405, 0.29841402, 0.38950426, \n 0.38950426, 0.38950426, 0.38950426, 0.45965927, 0.51535245, 0.51535245,\n 0.56063774])\n', (1374, 1529), True, 'import numpy as np\n'), ((1890, 2030), 'numpy.array', 'np.array', (['[2.184574, 1.475118, -4.730863, -2.764825, 8.370915, 4.274827, -2.70554, \n 1.156682, 5.026852, -2.883398, -8.652532, -0.751808]'], {}), '([2.184574, 1.475118, -4.730863, -2.764825, 8.370915, 4.274827, -\n 2.70554, 1.156682, 5.026852, -2.883398, -8.652532, -0.751808])\n', (1898, 2030), True, 'import numpy as np\n'), ((3013, 3192), 'numpy.array', 'np.array', (['[122.56367092, 123.51515946, 113.090719, 115.020744, 137.19621212, \n 108.94543201, 116.51553231, 122.7614823, 111.53048, 124.18034553, \n 112.50472697, 131.25788283]'], {}), '([122.56367092, 123.51515946, 113.090719, 115.020744, 137.19621212,\n 108.94543201, 116.51553231, 122.7614823, 111.53048, 124.18034553, \n 112.50472697, 131.25788283])\n', (3021, 3192), True, 'import numpy as np\n'), ((3616, 3803), 'numpy.array', 'np.array', (['[85.495399459, 85.648949504, 85.004705566, 83.23599588, 72.017014455, \n 73.356967955, 72.007536645, 73.580035237, 65.299062174, 58.426265442, \n 57.518251822, 53.876770532]'], {}), '([85.495399459, 85.648949504, 85.004705566, 83.23599588, \n 72.017014455, 73.356967955, 72.007536645, 73.580035237, 65.299062174, \n 58.426265442, 57.518251822, 53.876770532])\n', (3624, 3803), True, 'import numpy as np\n'), ((4323, 4485), 'numpy.array', 'np.array', (['[122.582519, 123.527414, 113.03426, 114.990082, 137.266001, 108.980696, \n 116.483886, 122.771075, 111.564754, 124.156518, 112.462566, 131.251525]'], {}), '([122.582519, 123.527414, 113.03426, 114.990082, 137.266001, \n 108.980696, 116.483886, 122.771075, 111.564754, 124.156518, 112.462566,\n 131.251525])\n', (4331, 4485), True, 'import numpy as np\n'), ((6597, 6709), 'numpy.array', 'np.array', (['[108.98069631, 116.48388625, 122.7710746, 111.56475375, 124.15651773, \n 112.46256629, 131.25152478]'], {}), '([108.98069631, 116.48388625, 122.7710746, 111.56475375, \n 124.15651773, 112.46256629, 131.25152478])\n', (6605, 6709), True, 'import numpy as np\n'), ((7062, 7168), 'numpy.array', 'np.array', (['[78.70883983, 78.02323786, 78.87309307, 70.04040931, 64.11261351, \n 61.87654547, 59.81982861]'], {}), '([78.70883983, 78.02323786, 78.87309307, 70.04040931, 64.11261351, \n 61.87654547, 59.81982861])\n', (7070, 7168), True, 'import numpy as np\n'), ((7647, 7686), 'numpy.array', 'np.array', (['[18.08888, 0.36566, -0.03017]'], {}), '([18.08888, 0.36566, -0.03017])\n', (7655, 7686), True, 'import numpy as np\n'), ((7807, 7854), 'numpy.array', 'np.array', (['[29.82724469, 0.06262676, 0.06506189]'], {}), '([29.82724469, 0.06262676, 0.06506189])\n', (7815, 7854), True, 'import numpy as np\n'), ((7998, 8161), 'numpy.array', 'np.array', (['[0.14570573, 0.14570573, 0.14570573, 0.25435106, 0.33848019, 0.33848019, \n 0.33848019, 0.33848019, 0.40555003, 0.46027174, 0.46027174, 0.50576795]'], {}), '([0.14570573, 0.14570573, 0.14570573, 0.25435106, 0.33848019, \n 0.33848019, 0.33848019, 0.33848019, 0.40555003, 0.46027174, 0.46027174,\n 0.50576795])\n', (8006, 8161), True, 'import numpy as np\n'), ((8518, 8673), 'numpy.array', 'np.array', (['[1.8322323, 1.2218437, -3.9308431, -2.3261989, 7.2988558, 3.7065346, -\n 2.337109, 1.0315879, 4.436742, -2.5647926, -7.704635, -0.6642178]'], {}), '([1.8322323, 1.2218437, -3.9308431, -2.3261989, 7.2988558, \n 3.7065346, -2.337109, 1.0315879, 4.436742, -2.5647926, -7.704635, -\n 0.6642178])\n', (8526, 8673), True, 'import numpy as np\n'), ((9636, 9822), 'numpy.array', 'np.array', (['[122.17284832, 123.22129485, 113.85918468, 115.42994973, 136.06978025, \n 108.3757303, 116.84704244, 122.60003878, 110.93542654, 124.44934607, \n 113.4148026, 131.28369873]'], {}), '([122.17284832, 123.22129485, 113.85918468, 115.42994973, \n 136.06978025, 108.3757303, 116.84704244, 122.60003878, 110.93542654, \n 124.44934607, 113.4148026, 131.28369873])\n', (9644, 9822), True, 'import numpy as np\n'), ((10193, 10367), 'numpy.array', 'np.array', (['[70.0378933, 70.14078955, 69.75891524, 71.50874622, 64.73862949, \n 66.13552266, 64.7709978, 66.09246929, 60.71287515, 55.31330901, \n 54.52024143, 51.85801645]'], {}), '([70.0378933, 70.14078955, 69.75891524, 71.50874622, 64.73862949, \n 66.13552266, 64.7709978, 66.09246929, 60.71287515, 55.31330901, \n 54.52024143, 51.85801645])\n', (10201, 10367), True, 'import numpy as np\n'), ((10886, 11019), 'numpy.array', 'np.array', (['[122.1926, 123.234, 113.8007, 115.3978, 136.1457, 108.4139, 116.8129, \n 122.6107, 110.9733, 124.4229, 113.368, 131.2767]'], {}), '([122.1926, 123.234, 113.8007, 115.3978, 136.1457, 108.4139, \n 116.8129, 122.6107, 110.9733, 124.4229, 113.368, 131.2767])\n', (10894, 11019), True, 'import numpy as np\n'), ((12411, 12524), 'numpy.array', 'np.array', (['[108.41385641, 116.81295596, 122.61070603, 110.97329145, 124.42291775, \n 113.36799091, 131.27669442]'], {}), '([108.41385641, 116.81295596, 122.61070603, 110.97329145, \n 124.42291775, 113.36799091, 131.27669442])\n', (12419, 12524), True, 'import numpy as np\n'), ((12872, 12978), 'numpy.array', 'np.array', (['[71.07422316, 70.52276075, 71.03548298, 65.27922762, 60.93670432, \n 58.91938558, 57.87424555]'], {}), '([71.07422316, 70.52276075, 71.03548298, 65.27922762, 60.93670432, \n 58.91938558, 57.87424555])\n', (12880, 12978), True, 'import numpy as np\n')]
''' This file implements the detection algorithms (message passing) on markov random field of graphs generated by ER model. The algorithms defined in this file would be imported by bin/varying_loopy.py For the specifics about the algorithms, please see the description in manuscript/amp.pdf. ''' import numpy as np import itertools import factorgraph as fg import maxsum import alphaBP from scipy.stats import multivariate_normal ###################################################################### class ML(object): def __init__(self, hparam): self.hparam = hparam self.constellation = hparam.constellation pass def detect(self, S, b): proposals = list( itertools.product(self.constellation, repeat=self.hparam.num_tx) ) threshold = np.inf solution = None for x in proposals: tmp = np.matmul(np.array(x), S).dot(np.array(x)) + b.dot(x) if tmp < threshold: threshold = tmp solution = x return solution class Marginal(object): """Compute all the marginals for a given distributions""" def __init__(self, hparam): self.hparam = hparam self.constellation = hparam.constellation pass def detect(self, S, b): proposals = list( itertools.product(self.constellation, repeat=S.shape[0]) ) array_proposals = np.array(proposals) prob = [] for x in proposals: tmp = np.matmul(np.array(x), S).dot(np.array(x)) + b.dot(x) prob.append(np.exp(-tmp)) prob = np.array(prob) marginals = [] for i in range(b.shape[0]): this_marginal = [] for code in self.constellation: subset_idx = array_proposals[:, i]==code this_marginal.append(np.sum( prob[subset_idx])) # normalize the marginal this_marginal = np.array(this_marginal) this_marginal = this_marginal/this_marginal.sum() marginals.append( this_marginal) return np.array(marginals) class LoopyBP(object): def __init__(self, noise_var, hparam): # get the constellation self.constellation = hparam.constellation self.hparam = hparam # set the graph self.graph = fg.Graph() # add the discrete random variables to graph self.n_symbol = hparam.num_tx for idx in range(hparam.num_tx): self.graph.rv("x{}".format(idx), len(self.constellation)) def set_potential(self, S, b): s = S for var_idx in range(self.hparam.num_tx): # set the first type of potentials, the standalone potentials f_x_i = np.exp( - s[var_idx, var_idx] * np.power(self.constellation, 2) - b[var_idx] * np.array(self.constellation)) self.graph.factor(["x{}".format(var_idx)], potential=f_x_i) for var_idx in range(self.hparam.num_tx): for var_jdx in range(var_idx + 1, self.hparam.num_tx): # set the cross potentials if s[var_idx, var_jdx] > 0: t_ij = np.exp(-2* np.array(self.constellation)[None,:].T * s[var_idx, var_jdx] * np.array(self.constellation)) self.graph.factor(["x{}".format(var_jdx), "x{}".format(var_idx)], potential=t_ij) def fit(self, S, b, stop_iter=10): """ set potentials and run message passing""" self.set_potential(S, b) # run BP iters, converged = self.graph.lbp(normalize=True,max_iters=stop_iter) def detect_signal_by_mean(self): estimated_signal = [] rv_marginals = dict(self.graph.rv_marginals()) for idx in range(self.n_symbol): x_marginal = rv_marginals["x{}".format(idx)] estimated_signal.append(self.constellation[x_marginal.argmax()]) return estimated_signal def marginals(self): marginal_prob = [] rv_marginals = dict(self.graph.rv_marginals()) for idx in range(self.n_symbol): x_marginal = rv_marginals["x{}".format(idx)] x_marginal = np.array(x_marginal) x_marginal = x_marginal/x_marginal.sum() marginal_prob.append(x_marginal) return np.array(marginal_prob) class AlphaBP(LoopyBP): def __init__(self, noise_var, hparam): self.hparam = hparam # get the constellation self.constellation = hparam.constellation self.n_symbol = hparam.num_tx # set the graph self.graph = alphaBP.alphaGraph(alpha=hparam.alpha) # add the discrete random variables to graph for idx in range(hparam.num_tx ): self.graph.rv("x{}".format(idx), len(self.constellation)) class MMSEalphaBP(AlphaBP): def set_potential(self, S, b): s = S inv = np.linalg.inv(np.eye(s.shape[0]) + 2 * s ) prior_u = inv.dot(b) for var_idx in range(s.shape[1]): # set the first type of potentials, the standalone potentials f_x_i = np.exp( - s[var_idx, var_idx] * np.power(self.constellation, 2) - b[var_idx] * np.array(self.constellation)) prior_i = np.exp(-0.5 * np.power(self.constellation - prior_u[var_idx], 2) \ / (inv[var_idx, var_idx]) ) self.graph.factor(["x{}".format(var_idx)], potential=f_x_i * prior_i) for var_idx in range(s.shape[1]): for var_jdx in range(var_idx + 1, s.shape[1]): # set the cross potentials if s[var_idx, var_jdx] > 0: t_ij = np.exp(- 2 * np.array(self.constellation)[None,:].T * s[var_idx, var_jdx] * np.array(self.constellation)) self.graph.factor(["x{}".format(var_jdx), "x{}".format(var_idx)], potential=t_ij)
[ "factorgraph.Graph", "numpy.sum", "numpy.power", "numpy.array", "numpy.exp", "itertools.product", "alphaBP.alphaGraph", "numpy.eye" ]
[((1426, 1445), 'numpy.array', 'np.array', (['proposals'], {}), '(proposals)\n', (1434, 1445), True, 'import numpy as np\n'), ((1630, 1644), 'numpy.array', 'np.array', (['prob'], {}), '(prob)\n', (1638, 1644), True, 'import numpy as np\n'), ((2155, 2174), 'numpy.array', 'np.array', (['marginals'], {}), '(marginals)\n', (2163, 2174), True, 'import numpy as np\n'), ((2400, 2410), 'factorgraph.Graph', 'fg.Graph', ([], {}), '()\n', (2408, 2410), True, 'import factorgraph as fg\n'), ((4539, 4562), 'numpy.array', 'np.array', (['marginal_prob'], {}), '(marginal_prob)\n', (4547, 4562), True, 'import numpy as np\n'), ((4838, 4876), 'alphaBP.alphaGraph', 'alphaBP.alphaGraph', ([], {'alpha': 'hparam.alpha'}), '(alpha=hparam.alpha)\n', (4856, 4876), False, 'import alphaBP\n'), ((725, 789), 'itertools.product', 'itertools.product', (['self.constellation'], {'repeat': 'self.hparam.num_tx'}), '(self.constellation, repeat=self.hparam.num_tx)\n', (742, 789), False, 'import itertools\n'), ((1341, 1397), 'itertools.product', 'itertools.product', (['self.constellation'], {'repeat': 'S.shape[0]'}), '(self.constellation, repeat=S.shape[0])\n', (1358, 1397), False, 'import itertools\n'), ((1987, 2010), 'numpy.array', 'np.array', (['this_marginal'], {}), '(this_marginal)\n', (1995, 2010), True, 'import numpy as np\n'), ((4405, 4425), 'numpy.array', 'np.array', (['x_marginal'], {}), '(x_marginal)\n', (4413, 4425), True, 'import numpy as np\n'), ((1588, 1600), 'numpy.exp', 'np.exp', (['(-tmp)'], {}), '(-tmp)\n', (1594, 1600), True, 'import numpy as np\n'), ((5158, 5176), 'numpy.eye', 'np.eye', (['s.shape[0]'], {}), '(s.shape[0])\n', (5164, 5176), True, 'import numpy as np\n'), ((920, 931), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (928, 931), True, 'import numpy as np\n'), ((1540, 1551), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1548, 1551), True, 'import numpy as np\n'), ((1882, 1906), 'numpy.sum', 'np.sum', (['prob[subset_idx]'], {}), '(prob[subset_idx])\n', (1888, 1906), True, 'import numpy as np\n'), ((2840, 2871), 'numpy.power', 'np.power', (['self.constellation', '(2)'], {}), '(self.constellation, 2)\n', (2848, 2871), True, 'import numpy as np\n'), ((2916, 2944), 'numpy.array', 'np.array', (['self.constellation'], {}), '(self.constellation)\n', (2924, 2944), True, 'import numpy as np\n'), ((5409, 5440), 'numpy.power', 'np.power', (['self.constellation', '(2)'], {}), '(self.constellation, 2)\n', (5417, 5440), True, 'import numpy as np\n'), ((5485, 5513), 'numpy.array', 'np.array', (['self.constellation'], {}), '(self.constellation)\n', (5493, 5513), True, 'import numpy as np\n'), ((5564, 5614), 'numpy.power', 'np.power', (['(self.constellation - prior_u[var_idx])', '(2)'], {}), '(self.constellation - prior_u[var_idx], 2)\n', (5572, 5614), True, 'import numpy as np\n'), ((900, 911), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (908, 911), True, 'import numpy as np\n'), ((1520, 1531), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1528, 1531), True, 'import numpy as np\n'), ((3411, 3439), 'numpy.array', 'np.array', (['self.constellation'], {}), '(self.constellation)\n', (3419, 3439), True, 'import numpy as np\n'), ((6135, 6163), 'numpy.array', 'np.array', (['self.constellation'], {}), '(self.constellation)\n', (6143, 6163), True, 'import numpy as np\n'), ((3314, 3342), 'numpy.array', 'np.array', (['self.constellation'], {}), '(self.constellation)\n', (3322, 3342), True, 'import numpy as np\n'), ((6038, 6066), 'numpy.array', 'np.array', (['self.constellation'], {}), '(self.constellation)\n', (6046, 6066), True, 'import numpy as np\n')]
import torch import torch.nn as nn import numpy as np import json import shutil import sys import torch.nn.functional as F from torch.autograd import Variable from os import path as op from matplotlib import pyplot, patches MAX_LEN = 140 # Lenth of a tweet BATCH_SIZE = 512 EPOCH = 250 # With epoch 0, we will run until interrupted LR = 1e-4 # LR 1e-4 seems to give stable learning without big oscillation CONTINUE = True # Attempts to continue from previous checkpoint DEBUG = False CUDA = True TEST_WITH_VALIDATION = False # Only test with validation data DATA_SLICE = 40000 CHECKPOINT_PATH = op.join(op.dirname(__file__), "..", "..", "checkpoint.pt") MODEL_PATH = op.join(op.dirname(__file__), "..", "..", "model.pt") def parseFromSemEval(file): # TODO Move to utils # TODO Remove dependency on Pandas import pandas f = pandas.read_csv(file, sep=",", encoding="utf-8", index_col=0) return f[["text", "semantic"]].as_matrix() def _convert_with_vocab(data, vocab_table): # Convert according to VOCAB # TODO Might not work if shape is only 1-d. CONVERTED = np.zeros((data.shape[0], 140)) for i in range(data.shape[0]): txt = data[i,0] for j in range(min(len(txt), 140)): try: CONVERTED[i,j] = vocab_table[txt[j]] except KeyError: # Keep as 0 pass return CONVERTED def _loadSemEvalData(fname): """ Load data from predefined SemEval sources. Returns: (Training-data, Training-labels, Validation-data, Validation-labels) """ DATADIR = op.join(op.dirname(__file__), "..", "..", "data") # Test if files exist if not op.exists(fname): # Check alternative path if not op.exists(op.join(DATADIR, fname)): print("Could not find {} file. Please run download_data.py from data directory".format(op.join(DATADIR, fname))) return 0 else: fname = op.join(DATADIR, fname) data = parseFromSemEval(fname) return data def _loadCharacterEmbedding(): """ Load character-embedding indexes. Returns: dict(character, index) """ # Path to unpacked file # TODO For packaging use path to site VOCAB = op.join(op.dirname(__file__), "..", "..", "assets", "embeddings", "reactionrnn_vocab.json") if not op.exists(VOCAB): print("Fatal error") print("Could not find {} file. Has it been deleted?\nCan be downloaded from https://github.com/Manezki/TwitMine/blob/master/assets/embeddings/reactionrnn_vocab.json".format(VOCAB)) sys.exit(-1) CONVERT_TABLE = json.load(open(VOCAB)) return CONVERT_TABLE def batch(tensor, batch_size): # TODO Move to utils # TODO Change to be more concervative with memory tensor_list = [] length = tensor.shape[0] i = 0 while True: if (i+1) * batch_size >= length: tensor_list.append(tensor[i * batch_size: length]) return tensor_list tensor_list.append(tensor[i * batch_size: (i+1) * batch_size]) i += 1 def save_checkpoint(state, is_best, filename=CHECKPOINT_PATH): torch.save(state, filename) if is_best: shutil.copyfile(filename, MODEL_PATH) def plot_progress(training, validation, loss=False): # TODO move to utils # BUG argmin line is skewed, x-points wrong? xaxis = np.linspace(1, 1+len(training), num=len(training)) pl1 = pyplot.plot(xaxis, training, color='orange') pl2 = pyplot.plot(xaxis, validation, color='blue') if not loss: pyplot.title("Training vs Validation accuracy") pyplot.xlabel("Epoch") pyplot.ylabel("Accuracy (%)") orange = patches.Patch(color='orange', label="Training accuracy") blue = patches.Patch(color='blue', label="Validation accuracy") else: minIdx = np.argmin(validation) miny = np.min(training) pyplot.plot([minIdx, minIdx+1], [miny, validation[minIdx]], color="red") pyplot.title("Training vs Validation loss") pyplot.xlabel("Epoch") pyplot.ylabel("Loss") orange = patches.Patch(color='orange', label="Training loss") blue = patches.Patch(color='blue', label="Validation loss") pyplot.legend(handles=[orange, blue]) pyplot.show() class Estimator(object): ## Based on woderfull Gist https://gist.github.com/kenzotakahashi/ed9631f151710c6bd898499fcf938425 def __init__(self, model): self.model = model def compile(self, optimizer, loss): self.optimizer = optimizer self.loss_f = loss def _fit(self, X_list, y_list): """ train one epoch """ loss_list = [] acc_list = [] for X, y in zip(X_list, y_list): if CUDA: X_v = Variable(torch.from_numpy(X).long(), requires_grad=False).cuda() y_v = Variable(torch.from_numpy(y + 1).long(), requires_grad=False).cuda() init_hidden = self.model.initHidden(X.shape[0], 100).cuda() else: X_v = Variable(torch.from_numpy(X).long(), requires_grad=False) y_v = Variable(torch.from_numpy(y + 1).long(), requires_grad=False) init_hidden = self.model.initHidden(X.shape[0], 100) self.optimizer.zero_grad() # Original y_pred = self.model(X, self.model.initHidden(X.size()[1])) # Init hidden 100, as we perform embedding in the GRU y_pred, hidden = self.model(X_v, init_hidden) loss = self.loss_f(y_pred, y_v) loss.backward() self.optimizer.step() ## for log loss_list.append(loss.data[0]) classes = torch.topk(y_pred, 1)[1].cpu().data.numpy().flatten() #comp = np.hstack((classes.reshape(-1,1), (y+1).reshape(-1,1))) #print(comp) acc = self._accuracy(classes, y+1) acc_list.append(acc) return sum(loss_list) / len(loss_list), sum(acc_list) / len(acc_list) def fit(self, X, y, batch_size=32, nb_epoch=10, validation_data=()): # TODO keep track of the best model state and return it when finished X_list = batch(X, batch_size) y_list = batch(y, batch_size) self.training_cost = [] self.training_acc = [] self.validation_cost = [] self.validation_acc = [] for t in range(1, nb_epoch + 1): loss, acc = self._fit(X_list, y_list) self.training_cost.append(loss) self.training_acc.append(acc) val_log = '' if validation_data: val_loss, val_acc = self.evaluate(validation_data[0], validation_data[1], batch_size) val_log = "- val_loss: %06.4f - val_acc: %06.4f" % (val_loss, val_acc) self.validation_cost.append(val_loss) self.validation_acc.append(val_acc) print("Epoch %s/%s loss: %06.4f - acc: %06.4f %s" % (t, nb_epoch, loss, acc, val_log)) def evaluate(self, X, y, batch_size=32): y_pred, hidden = self.predict(X) if CUDA: y_v = Variable(torch.from_numpy(y + 1).long(), requires_grad=False).cuda() else: y_v = Variable(torch.from_numpy(y + 1).long(), requires_grad=False) loss = self.loss_f(y_pred, y_v) classes = torch.topk(y_pred, 1)[1].cpu().data.numpy().flatten() acc = self._accuracy(classes, y+1) _, gt = np.unique(y + 1, return_counts=True) gt = gt.astype(float) / len(y) _, pr = np.unique(classes, return_counts=True) pr = pr.astype(float) / len(y) if len(gt) == 3 and len(pr) == 3: print("Distribution Grund truth: NEG {}, NEU {}, POS {}".format(gt[0], gt[1], gt[2])) print("Distribution predictions: NEG {}, NEU {}, POS {}".format(pr[0], pr[1], pr[2])) return loss.data[0], acc def _accuracy(self, y_pred, y): return sum(y_pred == y) / y.shape[0] def predict(self, X): if CUDA: X = Variable(torch.from_numpy(X).long()).cuda() init_hidden = self.model.initHidden(X.shape[0], 100).cuda() else: X = Variable(torch.from_numpy(X).long()) init_hidden = self.model.initHidden(X.shape[0], 100) y_pred = self.model(X, init_hidden) return y_pred def predict_classes(self, X): return torch.topk(self.predict(X), 1)[1].cpu().data.numpy().flatten() ############# class RNN(nn.Module): def __init__(self, input_size, embed_size, hidden_size, output_size, state_dict=None, dict_path=None): super(RNN, self).__init__() self.hidden_size = hidden_size self.embed = nn.Embedding(401,embed_size, padding_idx=0) self.rnn = nn.GRU(embed_size, hidden_size, bias=True, dropout=0.5) self.output = nn.Linear(hidden_size, output_size) self._create_weight_tensors(input_size, hidden_size, output_size) if state_dict is not None: self._load_weights(state_dict) else: self._init_weights(nn.init.kaiming_normal) self.softmax = nn.LogSoftmax(dim=1) def _load_weights(self, state_dict): pretrained = torch.load(state_dict) self.load_state_dict(pretrained['state_dict']) def _create_weight_tensors(self, input_size, hidden_size, output_size): self.embed.weight = nn.Parameter(torch.zeros(401, 100)) self.rnn.weight_ih = nn.Parameter(torch.zeros(3*hidden_size, 100)) self.rnn.weight_hh = nn.Parameter(torch.zeros(3*hidden_size, hidden_size)) self.rnn.bias_ih = nn.Parameter(torch.zeros(3*hidden_size)) self.rnn.bias_hh = nn.Parameter(torch.zeros(3*hidden_size)) self.output.weight = nn.Parameter(torch.zeros(3, 256)) self.output.bias_ih = nn.Parameter(torch.zeros(3, 256)) def _init_weights(self, method): method(self.embed.weight) method(self.rnn.weight_ih) method(self.rnn.weight_hh) method(self.output.weight) # Bias already 0s def forward(self, input, hidden): embedded = self.embed(input) embedded.transpose_(0,1) out, hidden = self.rnn(embedded, hidden) lin = F.relu(self.output(out[MAX_LEN-1,:,:])) return lin, hidden def initHidden(self, batch_size, input_size): return Variable(torch.zeros(1, batch_size, self.hidden_size)) def main(): training = _loadSemEvalData("dataset_training.csv") validation = _loadSemEvalData("dataset_validation.csv") # This line prevents running if the data was not loaded, refrase the check for more specific use. # Training and Validation should be int only when bad loading if isinstance(training, int) and isinstance(validation, int): sys.exit(-1) # If DATASLICE is smaller than data amount, take a subset. training = training[:DATA_SLICE, :] validation = validation[:DATA_SLICE, :] # Convert text column to embedding indexes CONVERT_TABLE = _loadCharacterEmbedding() training_data = _convert_with_vocab(training, CONVERT_TABLE) validation_data = _convert_with_vocab(validation, CONVERT_TABLE) training_labels = training[:, 1].astype(int) validation_labels = validation[:, 1].astype(int) # Split the training data to test and training set. # Holdout-method is used, and no further cross validation is performed. # TODO Change naming convention from Training, test, validation(unseen data) to Training, validation, test X_train = training_data[:int(training_data.shape[0]*0.8), :] X_test = training_data[int(training_data.shape[0]*0.8):, :] y_train = training_labels[:int(training_labels.shape[0]*0.8)] y_test = training_labels[int(training_labels.shape[0]*0.8):] epoch = 0 best_prec = 0.0 training_cost = [] training_acc = [] validation_cost = [] validation_acc = [] model = RNN(140, 100, 256, 3, state_dict=op.join(op.dirname(__file__), "..", "..", "assets", "weights", "RNN.pt")) if torch.cuda.is_available() and CUDA: model.cuda() criterion = nn.CrossEntropyLoss().cuda() else: criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=LR) if op.exists(MODEL_PATH) and CONTINUE: # TODO, cannot continue if was trained on CPU and continues on GPU and vice versa print("Continuying with the previous model") checkpoint = torch.load(MODEL_PATH) epoch = checkpoint["epoch"] best_prec = checkpoint["best_prec"] optimizer.load_state_dict(checkpoint["optimizer"]) for paramGroup in optimizer.param_groups: paramGroup['lr'] = LR training_cost = checkpoint["train_cost"] training_acc = checkpoint["train_hist"] validation_cost = checkpoint['valid_cost'] validation_acc = checkpoint["valid_hist"] print("=> loaded checkpoint (epoch {})" .format(checkpoint['epoch'])) print(model) def fit_and_log(epoch): clf.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=epoch, validation_data=(X_test, y_test)) [training_cost.append(i) for i in clf.training_cost] [training_acc.append(i) for i in clf.training_acc] [validation_acc.append(i) for i in clf.validation_acc] [validation_cost.append(i) for i in clf.validation_cost] clf = Estimator(model) clf.compile(optimizer, loss=nn.CrossEntropyLoss()) #loss=nn.CrossEntropyLoss(weight=torch.cuda.FloatTensor([2,1,1.5]))) if TEST_WITH_VALIDATION: _, VAL_ACC = clf.evaluate(validation_data, validation_labels, BATCH_SIZE) print("Validation accuracy on the unseen validation data {}".format(VAL_ACC)) plot_progress(training_acc, validation_acc) plot_progress(training_cost, validation_cost, loss=True) return -1 try: if EPOCH == 0: c = 0 while True: # TODO only saves after finished, should keep tract of the best weights. print("Training epoch: {} from current run".format(c)) fit_and_log(1) c+=1 epoch += 1 else: fit_and_log(EPOCH) epoch += EPOCH except (KeyboardInterrupt, SystemExit): # Save the model if len(validation_acc) != 0: is_best = validation_acc[-1] > best_prec best_prec = max(validation_acc[-1], best_prec) save_checkpoint({ 'epoch': epoch, 'state_dict': model.state_dict(), 'best_prec': best_prec, 'optimizer': optimizer.state_dict(), 'train_cost': training_cost, 'train_hist': training_acc, 'valid_cost': valid_cost, 'valid_hist': validation_acc }, is_best) print("Saved model after interrupt") raise score, acc = clf.evaluate(X_test, y_test) print('Test score:', score) print('Test accuracy:', acc) # Save the model is_best = acc > best_prec best_prec = max(acc, best_prec) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec': best_prec, 'optimizer': optimizer.state_dict(), 'train_cost': training_cost, 'train_hist': training_acc, 'valid_cost': validation_cost, 'valid_hist': validation_acc }, is_best) _, VAL_ACC = clf.evaluate(validation_data, validation_labels, BATCH_SIZE) print("Validation accuracy on the unseen validation data {}".format(VAL_ACC)) plot_progress(training_acc, validation_acc) plot_progress(training_cost, validation_cost, loss=True) if __name__ == "__main__": main()
[ "matplotlib.pyplot.title", "pandas.read_csv", "torch.nn.Embedding", "numpy.argmin", "matplotlib.patches.Patch", "os.path.join", "numpy.unique", "os.path.dirname", "torch.load", "os.path.exists", "torch.nn.Linear", "shutil.copyfile", "torch.zeros", "torch.nn.GRU", "matplotlib.pyplot.show", "torch.topk", "torch.nn.LogSoftmax", "matplotlib.pyplot.legend", "numpy.min", "torch.cuda.is_available", "matplotlib.pyplot.ylabel", "sys.exit", "torch.from_numpy", "matplotlib.pyplot.plot", "numpy.zeros", "torch.nn.CrossEntropyLoss", "torch.save", "matplotlib.pyplot.xlabel" ]
[((636, 656), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (646, 656), True, 'from os import path as op\n'), ((708, 728), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (718, 728), True, 'from os import path as op\n'), ((879, 940), 'pandas.read_csv', 'pandas.read_csv', (['file'], {'sep': '""","""', 'encoding': '"""utf-8"""', 'index_col': '(0)'}), "(file, sep=',', encoding='utf-8', index_col=0)\n", (894, 940), False, 'import pandas\n'), ((1130, 1160), 'numpy.zeros', 'np.zeros', (['(data.shape[0], 140)'], {}), '((data.shape[0], 140))\n', (1138, 1160), True, 'import numpy as np\n'), ((3205, 3232), 'torch.save', 'torch.save', (['state', 'filename'], {}), '(state, filename)\n', (3215, 3232), False, 'import torch\n'), ((3497, 3541), 'matplotlib.pyplot.plot', 'pyplot.plot', (['xaxis', 'training'], {'color': '"""orange"""'}), "(xaxis, training, color='orange')\n", (3508, 3541), False, 'from matplotlib import pyplot, patches\n'), ((3552, 3596), 'matplotlib.pyplot.plot', 'pyplot.plot', (['xaxis', 'validation'], {'color': '"""blue"""'}), "(xaxis, validation, color='blue')\n", (3563, 3596), False, 'from matplotlib import pyplot, patches\n'), ((4302, 4339), 'matplotlib.pyplot.legend', 'pyplot.legend', ([], {'handles': '[orange, blue]'}), '(handles=[orange, blue])\n', (4315, 4339), False, 'from matplotlib import pyplot, patches\n'), ((4344, 4357), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (4355, 4357), False, 'from matplotlib import pyplot, patches\n'), ((1644, 1664), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (1654, 1664), True, 'from os import path as op\n'), ((1724, 1740), 'os.path.exists', 'op.exists', (['fname'], {}), '(fname)\n', (1733, 1740), True, 'from os import path as op\n'), ((2307, 2327), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (2317, 2327), True, 'from os import path as op\n'), ((2403, 2419), 'os.path.exists', 'op.exists', (['VOCAB'], {}), '(VOCAB)\n', (2412, 2419), True, 'from os import path as op\n'), ((2647, 2659), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (2655, 2659), False, 'import sys\n'), ((3257, 3294), 'shutil.copyfile', 'shutil.copyfile', (['filename', 'MODEL_PATH'], {}), '(filename, MODEL_PATH)\n', (3272, 3294), False, 'import shutil\n'), ((3622, 3669), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Training vs Validation accuracy"""'], {}), "('Training vs Validation accuracy')\n", (3634, 3669), False, 'from matplotlib import pyplot, patches\n'), ((3678, 3700), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (3691, 3700), False, 'from matplotlib import pyplot, patches\n'), ((3709, 3738), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""Accuracy (%)"""'], {}), "('Accuracy (%)')\n", (3722, 3738), False, 'from matplotlib import pyplot, patches\n'), ((3756, 3812), 'matplotlib.patches.Patch', 'patches.Patch', ([], {'color': '"""orange"""', 'label': '"""Training accuracy"""'}), "(color='orange', label='Training accuracy')\n", (3769, 3812), False, 'from matplotlib import pyplot, patches\n'), ((3828, 3884), 'matplotlib.patches.Patch', 'patches.Patch', ([], {'color': '"""blue"""', 'label': '"""Validation accuracy"""'}), "(color='blue', label='Validation accuracy')\n", (3841, 3884), False, 'from matplotlib import pyplot, patches\n'), ((3912, 3933), 'numpy.argmin', 'np.argmin', (['validation'], {}), '(validation)\n', (3921, 3933), True, 'import numpy as np\n'), ((3949, 3965), 'numpy.min', 'np.min', (['training'], {}), '(training)\n', (3955, 3965), True, 'import numpy as np\n'), ((3974, 4048), 'matplotlib.pyplot.plot', 'pyplot.plot', (['[minIdx, minIdx + 1]', '[miny, validation[minIdx]]'], {'color': '"""red"""'}), "([minIdx, minIdx + 1], [miny, validation[minIdx]], color='red')\n", (3985, 4048), False, 'from matplotlib import pyplot, patches\n'), ((4055, 4098), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Training vs Validation loss"""'], {}), "('Training vs Validation loss')\n", (4067, 4098), False, 'from matplotlib import pyplot, patches\n'), ((4107, 4129), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (4120, 4129), False, 'from matplotlib import pyplot, patches\n'), ((4138, 4159), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (4151, 4159), False, 'from matplotlib import pyplot, patches\n'), ((4177, 4229), 'matplotlib.patches.Patch', 'patches.Patch', ([], {'color': '"""orange"""', 'label': '"""Training loss"""'}), "(color='orange', label='Training loss')\n", (4190, 4229), False, 'from matplotlib import pyplot, patches\n'), ((4245, 4297), 'matplotlib.patches.Patch', 'patches.Patch', ([], {'color': '"""blue"""', 'label': '"""Validation loss"""'}), "(color='blue', label='Validation loss')\n", (4258, 4297), False, 'from matplotlib import pyplot, patches\n'), ((7596, 7632), 'numpy.unique', 'np.unique', (['(y + 1)'], {'return_counts': '(True)'}), '(y + 1, return_counts=True)\n', (7605, 7632), True, 'import numpy as np\n'), ((7688, 7726), 'numpy.unique', 'np.unique', (['classes'], {'return_counts': '(True)'}), '(classes, return_counts=True)\n', (7697, 7726), True, 'import numpy as np\n'), ((8852, 8896), 'torch.nn.Embedding', 'nn.Embedding', (['(401)', 'embed_size'], {'padding_idx': '(0)'}), '(401, embed_size, padding_idx=0)\n', (8864, 8896), True, 'import torch.nn as nn\n'), ((8916, 8971), 'torch.nn.GRU', 'nn.GRU', (['embed_size', 'hidden_size'], {'bias': '(True)', 'dropout': '(0.5)'}), '(embed_size, hidden_size, bias=True, dropout=0.5)\n', (8922, 8971), True, 'import torch.nn as nn\n'), ((8994, 9029), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (9003, 9029), True, 'import torch.nn as nn\n'), ((9277, 9297), 'torch.nn.LogSoftmax', 'nn.LogSoftmax', ([], {'dim': '(1)'}), '(dim=1)\n', (9290, 9297), True, 'import torch.nn as nn\n'), ((9361, 9383), 'torch.load', 'torch.load', (['state_dict'], {}), '(state_dict)\n', (9371, 9383), False, 'import torch\n'), ((10941, 10953), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (10949, 10953), False, 'import sys\n'), ((12201, 12226), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (12224, 12226), False, 'import torch\n'), ((12337, 12358), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (12356, 12358), True, 'import torch.nn as nn\n'), ((12470, 12491), 'os.path.exists', 'op.exists', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (12479, 12491), True, 'from os import path as op\n'), ((12670, 12692), 'torch.load', 'torch.load', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (12680, 12692), False, 'import torch\n'), ((2006, 2029), 'os.path.join', 'op.join', (['DATADIR', 'fname'], {}), '(DATADIR, fname)\n', (2013, 2029), True, 'from os import path as op\n'), ((9557, 9578), 'torch.zeros', 'torch.zeros', (['(401)', '(100)'], {}), '(401, 100)\n', (9568, 9578), False, 'import torch\n'), ((9622, 9655), 'torch.zeros', 'torch.zeros', (['(3 * hidden_size)', '(100)'], {}), '(3 * hidden_size, 100)\n', (9633, 9655), False, 'import torch\n'), ((9697, 9738), 'torch.zeros', 'torch.zeros', (['(3 * hidden_size)', 'hidden_size'], {}), '(3 * hidden_size, hidden_size)\n', (9708, 9738), False, 'import torch\n'), ((9778, 9806), 'torch.zeros', 'torch.zeros', (['(3 * hidden_size)'], {}), '(3 * hidden_size)\n', (9789, 9806), False, 'import torch\n'), ((9846, 9874), 'torch.zeros', 'torch.zeros', (['(3 * hidden_size)'], {}), '(3 * hidden_size)\n', (9857, 9874), False, 'import torch\n'), ((9916, 9935), 'torch.zeros', 'torch.zeros', (['(3)', '(256)'], {}), '(3, 256)\n', (9927, 9935), False, 'import torch\n'), ((9980, 9999), 'torch.zeros', 'torch.zeros', (['(3)', '(256)'], {}), '(3, 256)\n', (9991, 9999), False, 'import torch\n'), ((10520, 10564), 'torch.zeros', 'torch.zeros', (['(1)', 'batch_size', 'self.hidden_size'], {}), '(1, batch_size, self.hidden_size)\n', (10531, 10564), False, 'import torch\n'), ((13702, 13723), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (13721, 13723), True, 'import torch.nn as nn\n'), ((1800, 1823), 'os.path.join', 'op.join', (['DATADIR', 'fname'], {}), '(DATADIR, fname)\n', (1807, 1823), True, 'from os import path as op\n'), ((12128, 12148), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (12138, 12148), True, 'from os import path as op\n'), ((12278, 12299), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (12297, 12299), True, 'import torch.nn as nn\n'), ((1925, 1948), 'os.path.join', 'op.join', (['DATADIR', 'fname'], {}), '(DATADIR, fname)\n', (1932, 1948), True, 'from os import path as op\n'), ((7362, 7385), 'torch.from_numpy', 'torch.from_numpy', (['(y + 1)'], {}), '(y + 1)\n', (7378, 7385), False, 'import torch\n'), ((8335, 8354), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (8351, 8354), False, 'import torch\n'), ((5146, 5165), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (5162, 5165), False, 'import torch\n'), ((5226, 5249), 'torch.from_numpy', 'torch.from_numpy', (['(y + 1)'], {}), '(y + 1)\n', (5242, 5249), False, 'import torch\n'), ((7261, 7284), 'torch.from_numpy', 'torch.from_numpy', (['(y + 1)'], {}), '(y + 1)\n', (7277, 7284), False, 'import torch\n'), ((8189, 8208), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (8205, 8208), False, 'import torch\n'), ((4874, 4893), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (4890, 4893), False, 'import torch\n'), ((4961, 4984), 'torch.from_numpy', 'torch.from_numpy', (['(y + 1)'], {}), '(y + 1)\n', (4977, 4984), False, 'import torch\n'), ((7474, 7495), 'torch.topk', 'torch.topk', (['y_pred', '(1)'], {}), '(y_pred, 1)\n', (7484, 7495), False, 'import torch\n'), ((5802, 5823), 'torch.topk', 'torch.topk', (['y_pred', '(1)'], {}), '(y_pred, 1)\n', (5812, 5823), False, 'import torch\n')]
# Python related libraries import numpy as np import random # ROS2 msgs from autonomous_exploration_msgs.msg import PointGroup class PointsGroup: """ Class similar to the one used in unity, created to handle each area in the interactive map """ def __init__(self, pG : PointGroup) -> None: # Store the map related data self.mapOrigin = pG.map_origin self.mapDims = pG.map_dims self.mapResolution = pG.map_resolution self.associated_file = pG.associated_file # Store the group related data self.groupID = pG.group_id self.numOfPoints = int(0.5 * len(pG.map_pos)) self.mapPos = np.zeros([self.numOfPoints, 2]) for i in range(self.numOfPoints): self.mapPos[i, 0] = pG.map_pos[2 * i] self.mapPos[i, 1] = pG.map_pos[2 * i + 1] # Generate the convexHull # Check if there are enough points in the group before generating the convex hull self.convexHullPoints = [] if self.numOfPoints > 3: self.GenerateConvexHull() def GenerateConvexHull(self) -> None: """ Generate the convex hull using the points of the interactive area Same code as the one used in the unity package """ vertices = list(self.mapPos.copy()) vertices = [list(tmp) for tmp in vertices] # Step 1: Find the vertex with the smallest x coordinate startPos = vertices[0] for vert in vertices: if ( vert[0] < startPos[0]): startPos = vert #print(startPos) #print(vertices) self.convexHullPoints.append(startPos) vertices.remove(startPos) # Step2 : Loop to generate the convex hull currPos = self.convexHullPoints[0] cnt = 0 while True: # After 2 iterations we have to add the start position again so we can terminate the algorithm if (cnt == 2): vertices.append(self.convexHullPoints[0]) # Check if there are no more points if (len(vertices) == 0): break # Pick the next point randomly nextPos = vertices[random.randint(0, len(vertices) - 1)] a = currPos b = nextPos # Check if there's a point to the left of ab, if so then it's the new b for vert in vertices: # Skip the point picked randomly if vert == nextPos: continue # Compare the point and the line # To the left = better point, so pick it as next point on the convex hull if self.CompareLinePoint(a, b, vert) > 0: nextPos = vert b = vert # Update the convexHull self.convexHullPoints.append(nextPos) currPos = nextPos # Check if we found again the first point of the convexhull if currPos == self.convexHullPoints[0]: del self.convexHullPoints[-1] break cnt += 1 @staticmethod def CompareLinePoint(a : np.array, b : np.array, c : np.array) -> int: """ Return the position of a point relative to a line """ # Where is c in relation to a-b ? # < 0 -> to the right # = 0 -> on the line # > 0 -> to the left relation = (a[0] - c[0]) * (b[1] - c[1]) - (b[0] - c[0]) * (a[1] - c[1]) return relation def InConvexHull(self, c : list) -> bool: """ Check if the point is inside the convex hull """ # Check if there are enough points to create the convex Hull if (self.numOfPoints < 3): return False inConvexHull = True # if the point is on the left of all the line segments # of the convexHull then it's on the outside for i in range(len(self.convexHullPoints) - 1): a = self.convexHullPoints[i] b = self.convexHullPoints[i + 1] #print(a, b, c, self.groupID, self.CompareLinePoint(a, b, c)) # Check if it's left or right of the line ab if (self.CompareLinePoint(a, b, c) > 0): inConvexHull = False break # Check for the last line segment a = self.convexHullPoints[-1] b = self.convexHullPoints[0] if (self.CompareLinePoint(a, b, c) > 0): inConvexHull = False return inConvexHull
[ "numpy.zeros" ]
[((698, 729), 'numpy.zeros', 'np.zeros', (['[self.numOfPoints, 2]'], {}), '([self.numOfPoints, 2])\n', (706, 729), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from numpy import exp, arcsin, tan, cos, sqrt, sin def comp_surface(self): """Compute the surface of the Hole Parameters ---------- self : HoleMLSRPM A HoleMLSRPM object Returns ------- S: float Surface of the Magnet. [m**2] """ Rbo = self.get_Rbo() # Z1 delta1 = arcsin((self.R1 + self.W2) / (self.R1 + self.R3)) alpha1 = self.W1 - delta1 Z1 = self.R3 * exp(-1j * alpha1) x1 = Z1.real y1 = Z1.imag # Zc1 Zc1 = (self.R3 + self.R1) * exp(-1j * alpha1) xc1 = (self.R3 + self.R1) * cos(alpha1) yc1 = -(self.R3 + self.R1) * sin(alpha1) # Z2 x2 = (-1 / tan(self.W1) * xc1 + yc1 - self.W2 / cos(self.W1)) / -( tan(self.W1) + 1 / tan(self.W1) ) y2 = -tan(self.W1) * x2 + self.W2 / cos(self.W1) Z2 = x2 + 1j * y2 # Z3 a3 = 1 + tan(self.W1) ** 2 b3 = -2 * tan(self.W1) * self.W2 / cos(self.W1) c3 = (self.W2 / cos(self.W1)) ** 2 - self.R2 ** 2 x3 = (-b3 + sqrt(b3 ** 2 - 4 * a3 * c3)) / (2 * a3) y3 = -tan(self.W1) * x3 + self.W2 / cos(self.W1) Z3 = x3 + 1j * y3 # Z5 x5 = Rbo - self.H1 y5 = -self.W0 / 2 Z5 = x5 + 1j * y5 # Zc2 xc2 = Rbo - self.H1 - self.R1 yc2 = -self.W0 / 2 Zc2 = xc2 + 1j * yc2 # Z4 a4 = (xc2 - x3) ** 2 - self.R1 ** 2 b4 = 2 * (xc2 - x3) * (y3 - yc2) c4 = (y3 - yc2) ** 2 - self.R1 ** 2 alpha2 = (-b4 - sqrt(b4 ** 2 - 4 * a4 * c4)) / (2 * a4) x4 = (xc2 / alpha2 + yc2 + alpha2 * x3 - y3) / (alpha2 + 1 / alpha2) y4 = alpha2 * (x4 - x3) + y3 Z4 = x4 + 1j * y4 # symmetry Z6 = Z5.conjugate() x6 = Z6.real y6 = Z6.imag Z7 = Z4.conjugate() x7 = Z7.real y7 = Z7.imag Z8 = Z3.conjugate() x8 = Z8.real y8 = Z8.imag Z9 = Z2.conjugate() x9 = Z9.real y9 = Z9.imag Z10 = Z1.conjugate() x10 = Z10.real y10 = Z10.imag S_magnet_1 = ( x1 * y2 + x2 * y3 + x3 * y4 + x4 * y5 + x5 * y6 + x6 * y7 + x7 * y8 + x8 * y9 + x9 * y10 + x10 * y1 ) S_magnet_2 = ( x1 * y10 + x2 * y1 + x3 * y2 + x4 * y3 + x5 * y4 + x6 * y5 + x7 * y6 + x8 * y7 + x9 * y8 + x10 * y9 ) S_magnet = 0.5 * abs(S_magnet_1 - S_magnet_2) return S_magnet
[ "numpy.arcsin", "numpy.tan", "numpy.sin", "numpy.exp", "numpy.cos", "numpy.sqrt" ]
[((355, 404), 'numpy.arcsin', 'arcsin', (['((self.R1 + self.W2) / (self.R1 + self.R3))'], {}), '((self.R1 + self.W2) / (self.R1 + self.R3))\n', (361, 404), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((454, 473), 'numpy.exp', 'exp', (['(-1.0j * alpha1)'], {}), '(-1.0j * alpha1)\n', (457, 473), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((549, 568), 'numpy.exp', 'exp', (['(-1.0j * alpha1)'], {}), '(-1.0j * alpha1)\n', (552, 568), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((599, 610), 'numpy.cos', 'cos', (['alpha1'], {}), '(alpha1)\n', (602, 610), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((644, 655), 'numpy.sin', 'sin', (['alpha1'], {}), '(alpha1)\n', (647, 655), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((938, 950), 'numpy.cos', 'cos', (['self.W1'], {}), '(self.W1)\n', (941, 950), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((823, 835), 'numpy.cos', 'cos', (['self.W1'], {}), '(self.W1)\n', (826, 835), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((881, 893), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (884, 893), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((1022, 1049), 'numpy.sqrt', 'sqrt', (['(b3 ** 2 - 4 * a3 * c3)'], {}), '(b3 ** 2 - 4 * a3 * c3)\n', (1026, 1049), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((1102, 1114), 'numpy.cos', 'cos', (['self.W1'], {}), '(self.W1)\n', (1105, 1114), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((1451, 1478), 'numpy.sqrt', 'sqrt', (['(b4 ** 2 - 4 * a4 * c4)'], {}), '(b4 ** 2 - 4 * a4 * c4)\n', (1455, 1478), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((718, 730), 'numpy.cos', 'cos', (['self.W1'], {}), '(self.W1)\n', (721, 730), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((745, 757), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (748, 757), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((793, 805), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (796, 805), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((913, 925), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (916, 925), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((971, 983), 'numpy.cos', 'cos', (['self.W1'], {}), '(self.W1)\n', (974, 983), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((1072, 1084), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (1075, 1084), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((764, 776), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (767, 776), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n'), ((681, 693), 'numpy.tan', 'tan', (['self.W1'], {}), '(self.W1)\n', (684, 693), False, 'from numpy import exp, arcsin, tan, cos, sqrt, sin\n')]
import numpy as np import matplotlib.patches class Roi(): """A class to represent a ROI """ def __init__(self, axis:int, first_slice:int, last_slice:int, roi_number:int, type_number:int, list_point:list, volume_dimension:tuple): """constructor Args: axis (int): [1 for axial, 2 for coronal, 3 for saggital] first_slice (int): [slice number where ROI begin] last_slice (int): [slice number where ROI end] roi_number (int): [roi number] type_number (int): [0 for nifti, 1 for axial polygone, 11 for axial ellipse, 2 for coronal polygone, 12 for coronal ellipse, 3 for saggital polygone, 13 for saggital ellipse] list_point (list): [list of [x,y] coordonates of polygone or ellipse / list of [x,y,z] coordonates of nifti] volume_dimension (tuple): [(shape x, shape y, shape z)] """ self.axis = axis self.first_slice = first_slice self.last_slice = last_slice self.roi_number = roi_number self.type_number = type_number self.list_point = list_point self.list_point_np = np.asarray(self.list_point) self.x = volume_dimension[0] self.y = volume_dimension[1] self.z = volume_dimension[2] def __get_min_max_of_roi(self) -> tuple: """Compute extrema of ROI in which we will loop to find included voxel Arguments: point_list {np.ndarray} -- numpy point list Returns: [tuple] -- X/Y extremas """ points_array = self.list_point_np all_x = points_array[:][:,0] all_y = points_array[:][:,1] if (self.type_number == 1 or self.type_number == 2 or self.type_number == 3) : #POLYGONE xmin = min(all_x) xmax = max(all_x) ymin = min(all_y) ymax = max(all_y) return xmin , xmax , ymin , ymax else : #ELLIPSE height = abs(all_x[0] - all_x[1]) width = abs(all_y[0] - all_y[2]) xmin = all_x[0] - height xmax = all_x[0] + height ymin = all_y[0] - width ymax = all_y[0] + width return xmin , xmax , ymin, ymax def mask_roi_in_slice(self, patch:matplotlib.patches) -> list: """get ROI x and y limits in which we will loop, to gather [x,y] pixel which are in the patch Args: patch (matplotlib.patches): [polygon or ellipse]] Returns: [list]: [list of [x,y] coordonates] """ points = [] xmin, xmax, ymin, ymax = self.__get_min_max_of_roi() for x in range(xmin, xmax + 1): for y in range(ymin, ymax + 1) : if patch.contains_point([x,y], radius = -1e-9) : points.append([x,y]) return points def get_empty_np_array(self) -> np.ndarray: """Return numpy array to fill given the current dimension and axis Returns: [np.ndarray] -- zero filled numpy array """ return (np.zeros((self.x, self.y, self.z))) def coronal_to_axial(self, np_array_3D:np.ndarray) -> np.ndarray: """transform coronal 3d ndarray to 3d axial ndarray Args: np_array_3D (np.ndarray): [ROI ndarray]] Returns: [np.ndarray]: [return axial ndarray] """ return np.transpose(np_array_3D, (2,1,0)) def sagittal_to_axial(self, np_array_3D:np.ndarray) -> np.ndarray: """transform saggital 3d ndarray to 3d axial ndarray Args: np_array_3D (np.ndarray): [ROI ndarray]] Returns: [np.ndarray]: [return axial ndarray] """ return np.transpose(np_array_3D, (0,2,1)) def get_mask(self, list_points:list) -> np.ndarray : #list_points = [[x,y,z], [x,y,z], ...] """generate an empty ndarray and fill up with ROI coordonates Args: list_points (list): [ [[x,y,z], [x,y,z], [x,y,z], ...] ] Returns: [np.ndarray]: [return binary ndarray of the ROI] """ np_array_3D = self.get_empty_np_array() for point in list_points: np_array_3D[point[1], point[0] , point[2]] = 1 return np_array_3D.astype(np.uint8)
[ "numpy.asarray", "numpy.zeros", "numpy.transpose" ]
[((1146, 1173), 'numpy.asarray', 'np.asarray', (['self.list_point'], {}), '(self.list_point)\n', (1156, 1173), True, 'import numpy as np\n'), ((3103, 3137), 'numpy.zeros', 'np.zeros', (['(self.x, self.y, self.z)'], {}), '((self.x, self.y, self.z))\n', (3111, 3137), True, 'import numpy as np\n'), ((3432, 3468), 'numpy.transpose', 'np.transpose', (['np_array_3D', '(2, 1, 0)'], {}), '(np_array_3D, (2, 1, 0))\n', (3444, 3468), True, 'import numpy as np\n'), ((3762, 3798), 'numpy.transpose', 'np.transpose', (['np_array_3D', '(0, 2, 1)'], {}), '(np_array_3D, (0, 2, 1))\n', (3774, 3798), True, 'import numpy as np\n')]
# coding: utf-8 # In[ ]: from __future__ import print_function import numpy as np import tensorflow as tf from autoencoder import model import pickle import os # In[ ]: DEBUG = False PLOTTING_SUPPORT = True RUN_AS_PY_SCRIPT = False SET_EULER_PARAMS = False SET_MARMOT_PARAMS = False # Handle arguments (When executed as .py script) import sys argv = sys.argv[:] if len(argv) > 1: script_path = argv.pop(0) if "--euler" in argv: import sys sys.stdout = open('stdout.txt', 'w') RUN_AS_PY_SCRIPT = True PLOTTING_SUPPORT = False SET_EULER_PARAMS = True print("Parameters set for execution on euler cluster") argv.remove("--euler") if "--marmot" in argv: RUN_AS_PY_SCRIPT = True PLOTTING_SUPPORT = False SET_MARMOT_PARAMS = True print("Parameters set for execution on marmot cluster") argv.remove("--marmot") if "--script" in argv: RUN_AS_PY_SCRIPT = True PLOTTING_SUPPORT = False print("Running as script") argv.remove("--script") # In[ ]: if not RUN_AS_PY_SCRIPT: get_ipython().magic('load_ext autoreload') get_ipython().magic('autoreload 2') from IPython.display import clear_output if PLOTTING_SUPPORT: get_ipython().magic('matplotlib notebook') from matplotlib import pyplot as plt # ## Parameters # In[ ]: BATCH_SIZE = 10 VOXEL_SIDE = 24 MAX_STEPS = 10000 VAL_EXAMPLES = 200 N_ROTATION_ANGLES = 12 ROTATION_OFFSET = 0 VAL_EVERY_N_STEPS = 1 VAL_STEP_TOLERANCE = 3 TRAIN_TWINS = False MP = model.ModelParams() MP.INPUT_SHAPE = [VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE, 1] HOME_DIR = os.path.expanduser('~') DATA_DIR = "./database/" RUN_NAME = "kitti18" RESTORE_MODEL = True SAVE_DIR = HOME_DIR + "/Desktop/autoencoder/" SAVE_FILE = "model.checkpoint" MP_FILENAME = "model_params.pckl" TENSORBOARD_DIR = HOME_DIR + "/tensorboard" SAVE_UNVALIDATED = False CREATE_VISUALS = False DETAILED_STEP_TIMES = False EXPORT_FEATURES = False # In[ ]: if SET_EULER_PARAMS: DATA_DIR = "/cluster/home/dugasd/database/" SAVE_DIR = "/cluster/home/dugasd/autoencoder-euler/" TENSORBOARD_DIR = None CREATE_VISUALS = False MAX_STEPS = 1000000 VAL_STEP_TOLERANCE = 5 if SET_MARMOT_PARAMS: DATA_DIR = "/home/daniel/database/" RUN_NAME = "kitti18-20-27" SAVE_DIR = "/home/daniel/autoencoder-marmot/" TENSORBOARD_DIR = None CREATE_VISUALS = False MAX_STEPS = 1000000 VAL_STEP_TOLERANCE = 10 N_ROTATION_ANGLES = 36 if not RUN_AS_PY_SCRIPT: #MP.CONVOLUTION_LAYERS = [{'type': 'conv3d', 'filter': [5, 5, 5, 1, 10], 'downsampling': {'type': 'max_pool3d', 'k': 2}}] MP.CONVOLUTION_LAYERS = [] #MP.LATENT_SHAPE = [2] N_ROTATION_ANGLES = 6 CREATE_VISUALS = True TRAIN_TWINS = True # In[ ]: if RUN_AS_PY_SCRIPT: while argv: arg = argv.pop(0) if arg == "-RUN_NAME": RUN_NAME = argv.pop(0) print("RUN_NAME set to " + RUN_NAME) elif arg == "-SAVE_DIR": SAVE_DIR = argv.pop(0) print("SAVE_DIR set to " + SAVE_DIR) elif arg == "--noconv": MP.CONVOLUTION_LAYERS = [] print("CONVOLUTION LAYERS REMOVED") elif arg == "--twins": TRAIN_TWINS = True print("Training twins.") elif arg == "-LEARNING_RATE": MP.LEARNING_RATE = float(argv.pop(0)) print("LEARNING_RATE set to " + str(MP.LEARNING_RATE)) elif arg == "-LATENT_SHAPE": MP.LATENT_SHAPE = [int(argv.pop(0))] print("LATENT_SHAPE set to " + str(MP.LATENT_SHAPE)) elif arg == "-VAL_STEP_TOLERANCE": VAL_STEP_TOLERANCE = int(argv.pop(0)) print("VAL_STEP_TOLERANCE set to " + str(VAL_STEP_TOLERANCE)) elif arg == "-N_ROTATION_ANGLES": N_ROTATION_ANGLES = int(argv.pop(0)) print("N_ROTATION_ANGLES set to " + str(N_ROTATION_ANGLES)) elif arg == "-ROTATION_OFFSET": frac = list(map(float, argv.pop(0).split('/'))) + [1.0] ROTATION_OFFSET = frac[0]/frac[1] print("ROTATION_OFFSET set to " + str(ROTATION_OFFSET)) elif arg == "--float64": MP.FLOAT_TYPE = tf.float64 print("MP.FLOAT_TYPE set to " + str(MP.FLOAT_TYPE)) else: print("Unknown argument: " + arg) raise NotImplementedError # In[ ]: SAVE_PATH = SAVE_DIR+SAVE_FILE if SAVE_UNVALIDATED: SAVE_DIR_NOVAL = SAVE_DIR+"unvalidated/" SAVE_PATH_NOVAL = SAVE_DIR_NOVAL+SAVE_FILE # ## Load Segments and Features # In[ ]: import utilities run_names, runs = utilities.list_runs(DATA_DIR) try: run_names.remove(RUN_NAME) run_names = [RUN_NAME] + run_names except: print(RUN_NAME + " not found in runs.") print(run_names) # In[ ]: if not RUN_AS_PY_SCRIPT: from ipywidgets import widgets run_dropdown = widgets.Dropdown(description="Run to import : ", options=run_names) button = widgets.Button(description="import") # Interaction functions def import_run_data(btn): display.clear_output() print("Loading segments, features, matches, classes for run") global segments, features, fnames, matches, classes, ids, classes_set # 'output' variables segments, features, fnames, matches, classes, ids = utilities.import_run(run_dropdown.value, folder=DATA_DIR) classes_set = sorted(list(set(classes))) button.on_click(import_run_data) # Display widgets from IPython import display display.display(run_dropdown) display.display(button) import_run_data(button) else: segments, features, fnames, matches, classes, ids = utilities.import_run(RUN_NAME, folder=DATA_DIR) classes_set = sorted(list(set(classes))) # ## Create Autoencoder # In[ ]: if not RUN_AS_PY_SCRIPT: try: stored_MP = pickle.load(open(SAVE_DIR+MP_FILENAME, 'rb')) if MP != stored_MP: print("WARNING: Setting params for compatibility with stored model.") print("Stored model: "); print(stored_MP); print("New model: "); print(MP) MP = stored_MP except FileNotFoundError: print("No stored model found. Creating a new model.") # In[ ]: vae = model.Autoencoder(MP) if TRAIN_TWINS: vae.build_twin_graph() # In[ ]: summary_writer = None if TENSORBOARD_DIR != None: summary_writer = tf.train.SummaryWriter(TENSORBOARD_DIR, vae.sess.graph) # In[ ]: if RESTORE_MODEL: try: vae.saver.restore(vae.sess, SAVE_PATH) print("Model restored.") print(MP.CONVOLUTION_LAYERS) except Exception as err: print("Could not load model: ", end="") try: stored_MP = pickle.load(open(SAVE_DIR+MP_FILENAME, 'rb')) print("ERROR: mismatch between model params.") print("Stored model: "); print(stored_MP); print("New model: "); print(MP) raise err except: print("no model folder.") # ## Create Voxelized Segment Dataset - With Rotated Copies # In[ ]: ## Split into training and val data split_at = min(VAL_EXAMPLES, int(0.2 * len(ids))) val = segments[:split_at] train = segments[split_at:] # In[ ]: if not TRAIN_TWINS: print("Rotating segments") from voxelize import create_rotations train = create_rotations(train, N_ROTATION_ANGLES, ROTATION_OFFSET) val = create_rotations(val, 12, ROTATION_OFFSET) print("Voxelizing training data") from voxelize import voxelize train_vox, _ = voxelize(train,VOXEL_SIDE) val_vox, _ = voxelize(val ,VOXEL_SIDE) train_twins_vox = None val_twins_vox = None if train_vox[0].shape != MP.INPUT_SHAPE: print("Reshaping") train_vox=[np.reshape(vox, MP.INPUT_SHAPE) for vox in train_vox] val_vox=[np.reshape(vox, MP.INPUT_SHAPE) for vox in val_vox] del train # Save some memory else: from voxelize import create_twins val, val_twins = create_twins(val) train, train_twins = create_twins(train) print("Voxelizing training data") from voxelize import voxelize train_vox, _ = voxelize(train,VOXEL_SIDE) val_vox, _ = voxelize(val ,VOXEL_SIDE) train_twins_vox, _ = voxelize(train_twins,VOXEL_SIDE) val_twins_vox, _ = voxelize(val_twins ,VOXEL_SIDE) del train_twins # In[ ]: import os import psutil process = psutil.Process(os.getpid()) print("Using " + str(process.memory_info().rss/(1024.0*1024.0)) + "mB of memory") # ## Train Autoencoder ( Computationally Intensive ) # In[ ]: from timeit import default_timer as timer from autoencoder.batchmaker import Batchmaker, progress_bar total_step_cost = None step_cost_log = [] total_val_cost = 0 val_steps_since_last_improvement = 0 step_start = timer() try: val_cost_log = list(np.loadtxt(SAVE_DIR+"val_cost_log.txt")) print("Previous cost log found.") except: val_cost_log = [] # single step for step in range(MAX_STEPS): if TRAIN_TWINS: val, val_twins = create_twins(val) train, train_twins = create_twins(train) print("Voxelizing training data") from voxelize import voxelize train_vox, _ = voxelize(train,VOXEL_SIDE) val_vox, _ = voxelize(val ,VOXEL_SIDE) train_twins_vox, _ = voxelize(train_twins,VOXEL_SIDE) val_twins_vox, _ = voxelize(val_twins ,VOXEL_SIDE) del train_twins # Validation val_batchmaker = Batchmaker(val_vox, val_twins_vox, BATCH_SIZE, MP) if np.mod(step, VAL_EVERY_N_STEPS) == 0: total_val_cost = 0 while True: if val_batchmaker.is_depleted(): break else: batch_input_values, batch_twin_values = val_batchmaker.next_batch() cost_value = vae.cost_on_single_batch(batch_input_values, batch_twin_values) total_val_cost += cost_value if PLOTTING_SUPPORT: progress_bar(val_batchmaker) print("Validation cost: "+str(total_val_cost)+" (Training cost: "+str(total_step_cost)+")", end="") try: print(" Step Time: " + str(step_end-step_start)) if DETAILED_STEP_TIMES: print(step_times) except: print(" ") val_cost_log.append(total_val_cost) # Training Monitor if len(val_cost_log) > 1: # Save cost log. import os if not os.path.exists(SAVE_DIR): os.makedirs(SAVE_DIR) if SAVE_UNVALIDATED: os.makedirs(SAVE_DIR_NOVAL) print("Created directory: %s" % SAVE_DIR) with open(SAVE_DIR+MP_FILENAME, 'wb') as file: pickle.dump(MP, file, protocol=2) np.savetxt(SAVE_DIR+"val_cost_log.txt", val_cost_log) # Save if cost has improved. Otherwise increment counter. if val_cost_log[-1] < min(val_cost_log[:-1]): val_steps_since_last_improvement = 0 # save model to disk print("Saving ... ", end='') save_path = vae.saver.save(vae.sess, SAVE_PATH) print("Model saved in file: %s" % save_path) else: val_steps_since_last_improvement += 1 # Stop training if val_cost hasn't improved in VAL_STEP_TOLERANCE steps if val_steps_since_last_improvement > VAL_STEP_TOLERANCE: if SAVE_UNVALIDATED: print("Saving ... ", end='') save_path = vae.saver.save(vae.sess, SAVE_PATH_NOVAL) print("Unvalidated model saved in file: %s" % save_path) print("Training stopped by validation monitor.") break # Train on batches step_start = timer() zero = timer() - timer() step_times = {'batchmaking': zero, 'training': zero, 'plotting': zero} total_step_cost = 0 training_batchmaker = Batchmaker(train_vox, train_twins_vox, BATCH_SIZE, MP) while True: if training_batchmaker.is_depleted(): break else: t_a = timer() batch_input_values, batch_twin_values = training_batchmaker.next_batch() t_b = timer() # Train over 1 batch. cost_value = vae.train_on_single_batch(batch_input_values, batch_twin_values, summary_writer=summary_writer) total_step_cost += cost_value t_c = timer() if PLOTTING_SUPPORT: progress_bar(training_batchmaker) t_d = timer() step_times['batchmaking'] += t_b - t_a step_times['training'] += t_c - t_b step_times['plotting'] += t_d - t_c step_cost_log.append(total_step_cost) step_end = timer() print("Training ended.") # ## Visualize Autoencoder Performance # In[ ]: if PLOTTING_SUPPORT: # Plot a few random samples import matplotlib.pyplot as plt get_ipython().magic('matplotlib notebook') plt.ion() n_samples = 5 import random x_samples = random.sample(val_vox, 5) x_samples = [np.reshape(sample, MP.INPUT_SHAPE) for sample in x_samples] x_reconstruct = vae.encode_decode(x_samples) plt.figure(figsize=(8, 12)) for i in range(n_samples): plt.subplot(n_samples*2, 1, 2*i + 1) plt.imshow(x_samples[i].reshape(VOXEL_SIDE, VOXEL_SIDE*VOXEL_SIDE), vmin=0, vmax=1, cmap='spectral') plt.title("Top: val input - Bottom: Reconstruction") plt.subplot(n_samples*2, 1, 2*i + 2) plt.imshow(x_reconstruct[i].reshape(VOXEL_SIDE, VOXEL_SIDE*VOXEL_SIDE), vmin=0, vmax=1, cmap='spectral') plt.tight_layout() # In[ ]: if PLOTTING_SUPPORT: nx = ny = 4 nz = 1 dim1 = 0 dim2 = 1 dim3 = 0 x_values = np.linspace(-3, 3, nx) y_values = np.linspace(-3, 3, ny) z_values = np.linspace(-3, 3, nz) canvas = np.empty((VOXEL_SIDE*ny, VOXEL_SIDE*nx, VOXEL_SIDE*nz)) for i, yi in enumerate(x_values): for j, xi in enumerate(y_values): for k, zi in enumerate(z_values): # we can only visualize 3 dimensions, in this case the first 3 latent_sample = np.zeros([1]+MP.LATENT_SHAPE) latent_sample.flat[dim1] = xi latent_sample.flat[dim2] = yi latent_sample.flat[dim3] = zi x_mean = vae.decode(latent_sample) canvas[(nx-i-1)*VOXEL_SIDE:(nx-i)*VOXEL_SIDE, j*VOXEL_SIDE:(j+1)*VOXEL_SIDE, k*VOXEL_SIDE:(k+1)*VOXEL_SIDE] \ = x_mean[0].reshape(VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE) from mpl_toolkits.mplot3d import Axes3D threshold = 0.7 X,Y,Z = np.where(canvas > (threshold*np.max(canvas))) fig = plt.figure() plt.cla() ax = Axes3D(fig) ax.scatter(X, Y, Z) # ## Compute Autoencoder Features for Segments # In[ ]: if not RUN_AS_PY_SCRIPT: print("Voxelizing segments") from voxelize import voxelize segments_vox, features_voxel_scale = voxelize(segments, VOXEL_SIDE) # In[ ]: if not RUN_AS_PY_SCRIPT: print("Computing Eigenvalue Features") from eigenvalues import eigenvalue_features features_eig = eigenvalue_features(segments) features_eig[np.where(np.isnan(features_eig))] = 0 F = features_eig C = classes # In[ ]: if not RUN_AS_PY_SCRIPT: print("Computing Features for Segments") features_nn, confusion_nn = vae.batch_encode([np.reshape(sample, MP.INPUT_SHAPE) for sample in segments_vox]) fnames_nn = ['autoencoder_feature'+str(i+1) for i, _ in enumerate(features_nn[0])] F = features_nn C = classes # In[ ]: if not RUN_AS_PY_SCRIPT: print("Rotating segments") from voxelize import create_rotations rotated_segments, rotated_classes = create_rotations(segments, N_ROTATION_ANGLES, classes=classes) if False: # walls_vs_cars print("Removing unknowns") rotated_segments = [segment for segment, class_ in zip(rotated_segments, rotated_classes) if class_ != "unknown"] rotated_classes = [class_ for class_ in rotated_classes if class_ != "unknown"] print("Voxelizing rotations") from voxelize import voxelize rotated_segments_vox, rotated_segments_scale = voxelize(rotated_segments, VOXEL_SIDE) print("Computing Features for rotations") rotated_features, _ = vae.batch_encode([np.reshape(sample, MP.INPUT_SHAPE) for sample in rotated_segments_vox]) F = rotated_features C = rotated_classes # ## T-SNE # In[ ]: if not RUN_AS_PY_SCRIPT: print("T-SNE") dir_ = "/tmp/online_matcher/visuals/" import os if not os.path.exists(dir_): os.makedirs(dir_) if MP.LATENT_SHAPE[0] == 2: F2 = F else: from tools.tsne import tsne F2 = tsne(F, err_threshold=1.0) from itertools import cycle cnames = ['dodgerblue', 'gold', 'silver', 'tomato', 'plum', 'lemonchiffon', 'grey', 'orchid', 'lime', 'palegreen'] from matplotlib import pyplot as plt plt.figure(figsize=(12,7)) for c_, name in zip(cycle(cnames), classes_set): x = [values[0] for values, class_ in zip(F2, C) if class_ == name] y = [values[1] for values, class_ in zip(F2, C) if class_ == name] plt.scatter(x, y, c=c_, alpha=0.8, lw = 0) box = plt.gca().get_position() plt.gca().set_position([box.x0, box.y0, box.width * 0.8, box.height]) ncol = 2 if len(classes_set) > 10 else 1 plt.legend(classes_set, loc='center left', bbox_to_anchor=(1, 0.5), ncol=ncol) plt.title('T-SNE') plt.xlabel('x_dim') plt.ylabel('y_dim') plt.show() try: plt.gcf().savefig(dir_+"t-sne.png") except: print("not saved.") if len(matches) > 0: print("Adding matches") # Dim all points plt.cla() for c_, name in zip(cycle(cnames), classes_set): x = [values[0] for values, class_ in zip(F2, C) if class_ == name] y = [values[1] for values, class_ in zip(F2, C) if class_ == name] plt.scatter(x, y, c=c_, alpha=0.2, lw = 0) plt.legend(classes_set, loc='center left', bbox_to_anchor=(1, 0.5), ncol=ncol) plt.title('T-SNE') plt.xlabel('x_dim') plt.ylabel('y_dim') # Bring out matched points matched_ids = [id_ for match in matches for id_ in match] for c_, name in zip(cycle(cnames), classes_set): x = [values[0] for values, class_, id_ in zip(F2, C, ids) if class_ == name and id_ in matched_ids] y = [values[1] for values, class_, id_ in zip(F2, C, ids) if class_ == name and id_ in matched_ids] plt.scatter(x, y, c=c_, s=30, lw = 1) # Show matches as lines for match in matches: line_x = [ F2[ids.index(match[0])][0], F2[ids.index(match[1])][0] ] line_y = [ F2[ids.index(match[0])][1], F2[ids.index(match[1])][1] ] plt.plot(line_x, line_y, 'black', linewidth=1) try: plt.gcf().savefig(dir_+"t-sne_matches.png") except: print("not saved.") # ## Reconstructions # In[ ]: RC_CONFIDENCE = 0.2 ONEVIEW = True # In[ ]: # Reconstructions if not RUN_AS_PY_SCRIPT: N = 400 SV_ = segments_vox[:N] S_ = segments[:N] I_ = ids[:N] reconstruction_vox = vae.batch_encode_decode([np.reshape(sample, MP.INPUT_SHAPE) for sample in SV_]) reconstruction_vox = [np.reshape(vox, [VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE]) for vox in reconstruction_vox] from voxelize import unvoxelize reconstruction = [unvoxelize(vox > RC_CONFIDENCE) for vox in reconstruction_vox] reconstruction = [segment*scale for (segment, scale) in zip(reconstruction, features_voxel_scale)] if CREATE_VISUALS: dir_ = "/tmp/online_matcher/visuals/reconstructions/" from visuals import visuals_of_matches reconstruction_ids = [id_+max(I_)+1 for id_ in I_] one_to_one_matches = [[id1, id2] for id1, id2 in zip(I_, reconstruction_ids)] visuals_of_matches(one_to_one_matches, S_+reconstruction, I_+reconstruction_ids, directory=dir_, oneview=ONEVIEW) clear_output() # In[ ]: # Reconstructions of rotations for one object if CREATE_VISUALS: dir_ = "/tmp/online_matcher/visuals/rotations/" class_name = "car" class_ids = [np.random.choice([id_ for id_, class_ in zip(ids, classes) if class_ == class_name])] class_indices = [ids.index(id_) for id_ in class_ids] class_segments = np.array(segments)[class_indices] from voxelize import create_rotations class_rotated_segments = np.array(list(class_segments) + list(create_rotations(class_segments, N_ROTATION_ANGLES))) from voxelize import voxelize class_segments_vox, class_voxel_scale = voxelize(class_rotated_segments, VOXEL_SIDE) if CREATE_VISUALS: class_reconstruction_vox = vae.batch_encode_decode([np.reshape(vox, MP.INPUT_SHAPE) for vox in class_segments_vox]) class_reconstruction_vox = [np.reshape(vox, [VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE]) for vox in class_reconstruction_vox] from voxelize import unvoxelize class_reconstruction = [unvoxelize(vox > RC_CONFIDENCE) for vox in class_reconstruction_vox] class_reconstruction = [segment*scale for (segment, scale) in zip(class_reconstruction, class_voxel_scale)] from visuals import visuals_of_matches fake_ids = list(range(len(class_reconstruction))) fake_reconstruction_ids = [id_+max(fake_ids)+1 for id_ in fake_ids] one_to_one_matches = [[id1, id2] for id1, id2 in zip(fake_ids, fake_reconstruction_ids)] visuals_of_matches(one_to_one_matches, list(class_rotated_segments)+class_reconstruction, fake_ids+fake_reconstruction_ids, directory=dir_, oneview=ONEVIEW) clear_output() class_features, confusion = vae.batch_encode([np.reshape(vox, MP.INPUT_SHAPE) for vox in class_segments_vox]) class_features = np.array(class_features) print(class_name) print("Id: "+str(class_ids[0])) from matplotlib import pyplot as plt plt.figure() plt.step(range(len(class_features.T)), class_features.T, color='k', alpha=0.2, where='mid') plt.plot(np.sqrt(np.exp(confusion)).T, 'r') plt.show() plt.gcf().savefig(dir_+"signature.png") # In[ ]: #Gifs id_ = np.random.choice(ids) print(id_) segment = segments[ids.index(id_)] import visuals visuals.single_segment_as_gif(segment) visuals.single_segment_reconstruction_as_gif(segment, vae, confidence=0.3) visuals.single_segment_rotations_reconstruction_as_gif(segment, vae, confidence=0.3) visuals.single_segment_degeneration_as_gif(segment, vae, confidence=0.3) visuals.single_segment_confidence_as_gif(segment, vae) # ## Class Signatures # In[ ]: if PLOTTING_SUPPORT: dir_ = "/tmp/online_matcher/visuals/reconstructions/" for class_name in classes_set: print(class_name) class_ids = [id_ for id_, class_ in zip(ids, classes) if class_ == class_name] class_indices = [ids.index(id_) for id_ in class_ids] class_segments = np.array(segments)[class_indices] class_features = np.array(features_nn)[class_indices] class_confusion = np.array(confusion_nn)[class_indices] from matplotlib import pyplot as plt plt.figure() plt.step(range(len(class_features.T)), class_features.T, color='k', alpha=0.2, where='mid') plt.plot(np.sqrt(np.exp(class_confusion)).T, 'r') plt.show() plt.gcf().savefig(dir_+class_name+"_signature.png") # In[ ]: if PLOTTING_SUPPORT: # Include Rotated segments for class_name in classes_set: print(class_name) class_ids = [id_ for id_, class_ in zip(ids, classes) if class_ == class_name] class_indices = [ids.index(id_) for id_ in class_ids] class_segments = np.array(segments)[class_indices] from voxelize import create_rotations class_rotated_segments = np.array(list(class_segments) + list(create_rotations(class_segments, N_ROTATION_ANGLES))) from voxelize import voxelize class_segments_vox, _ = voxelize(class_rotated_segments, VOXEL_SIDE) class_features, confusion = vae.batch_encode([np.reshape(vox, MP.INPUT_SHAPE) for vox in class_segments_vox]) class_features = np.array(class_features) from matplotlib import pyplot as plt plt.figure() plt.step(range(len(class_features.T)), class_features.T, color='k', alpha=0.2, where='mid') plt.plot(np.sqrt(np.exp(confusion)).T, 'r') plt.show() plt.gcf().savefig(dir_+class_name+"_rotations_signature.png") # In[ ]: if PLOTTING_SUPPORT: from itertools import cycle colors = cycle(['dodgerblue', 'gold', 'silver', 'tomato']) plt.figure() plt.title("Average absolute value of features, per class") plt.xlabel('feature #') plt.ylabel('avg(abs(feature))') for class_name, color_ in zip(classes_set, colors): class_ids = [id_ for id_, class_ in zip(ids, classes) if class_ == class_name] class_indices = [ids.index(id_) for id_ in class_ids] class_features = np.array(features_nn)[class_indices] plt.plot(np.mean(np.abs(class_features), axis=0), marker='_', color=color_, label=class_name) plt.hlines(np.mean(np.abs(class_features)),0,len(class_features[0])-1, linestyle='--', color=color_) plt.show() plt.legend() plt.figure() plt.title("Average confusion, per class") plt.xlabel('feature #') plt.ylabel('sigma^2') for class_name, color_ in zip(classes_set, colors): class_ids = [id_ for id_, class_ in zip(ids, classes) if class_ == class_name] class_indices = [ids.index(id_) for id_ in class_ids] class_confusion = np.array(confusion_nn)[class_indices] plt.plot(np.mean(np.exp(class_confusion), axis=0), marker='_', color=color_, label=class_name) plt.hlines(np.mean(np.exp(class_confusion)),0,len(class_features[0])-1, linestyle='--', color=color_) plt.show() plt.legend() print("") # ## Export Features # In[ ]: def remove_features(fnames_to_remove, fnames, features): # Remove the autencoder features from the imported features if they already exist for fname_to_remove in fnames_to_remove: if fname_to_remove in fnames: print(" Removing pre-existing feature " + fname_to_remove) for j, values in enumerate(features): features[j] = np.delete(values, fnames.index(fname_to_remove)) fnames.remove(fname_to_remove) assert len(fnames) == len(features[0]) def update_features(fnames_to_update, features_to_update, fnames, features): assert len(fnames_to_update) == len(features_to_update[0]) # Remove the selected features if they already exist remove_features(fnames_to_update, fnames, features) # Add in the selected features for fname in fnames_to_update: print(" Adding feature " + fname) for i, [f, ftu] in enumerate(zip(features, features_to_update)): features[i] = np.concatenate([f, ftu]) fnames += fnames_to_update # Create copies of the original features # In[ ]: if EXPORT_FEATURES: updated_fnames = fnames[:] updated_features = features[:] print(fnames) print(features[0]) # Add/overwrite autoencoder features # In[ ]: if EXPORT_FEATURES: # AE features fnames_nn = ['autoencoder_feature'+str(i+1) for i in range(features_nn[0].shape[0])] update_features(fnames_nn, features_nn, updated_fnames, updated_features) # Scale features sc_fnames = ['x_scale', 'y_scale', 'z_scale'] update_features(sc_fnames, features_voxel_scale, updated_fnames, updated_features) # In[ ]: if EXPORT_FEATURES: from load_segments import write_features write_features(ids, updated_features, updated_fnames, filename=runs[run_index][features_file_index]) # ## Evaluate Features # In[ ]: # Features if CREATE_VISUALS: from visuals import visuals_of_segments visuals_of_segments(segments, ids, features=features_nn) clear_output() # In[ ]: # Matches if CREATE_VISUALS: from visuals import visuals_of_matches visuals_of_matches(matches, segments, ids, features=features_nn) clear_output() # ## Save or Convert Model # In[ ]: CONVERT_VARIABLE_NAMES = False name_to_var_dict = {} if CONVERT_VARIABLE_NAMES: for var in vae.variables: # Modify a few names if 'LatentLayerWeights/' in var.name: name = var.name.replace('LatentLayerWeights/', '') elif 'ReconstructionLayerWeights/' in var.name: name = var.name.replace('ReconstructionLayerWeights/', '') # Leave other names unchanged else: name = var.name name_to_var_dict[name] = var temp_saver = tf.train.Saver(name_to_var_dict) temp_saver.restore(vae.sess, SAVE_PATH) name_to_var_dict # In[ ]: # Save model and params if False: vae.saver.save(vae.sess, SAVE_PATH) with open(SAVE_DIR+MP_FILENAME, 'wb') as file: pickle.dump(MP, file, protocol=2) # In[ ]:
[ "matplotlib.pyplot.title", "visuals.visuals_of_matches", "pickle.dump", "numpy.abs", "random.sample", "numpy.empty", "voxelize.create_twins", "ipywidgets.widgets.Dropdown", "numpy.isnan", "matplotlib.pyplot.figure", "numpy.exp", "matplotlib.pyplot.gca", "voxelize.create_rotations", "itertools.cycle", "utilities.import_run", "visuals.single_segment_reconstruction_as_gif", "matplotlib.pyplot.tight_layout", "numpy.savetxt", "os.path.exists", "IPython.display.display", "autoencoder.model.ModelParams", "numpy.max", "matplotlib.pyplot.cla", "numpy.loadtxt", "numpy.linspace", "numpy.random.choice", "numpy.reshape", "load_segments.write_features", "voxelize.unvoxelize", "voxelize.voxelize", "autoencoder.batchmaker.progress_bar", "matplotlib.pyplot.show", "mpl_toolkits.mplot3d.Axes3D", "tensorflow.train.Saver", "matplotlib.pyplot.legend", "numpy.mod", "ipywidgets.widgets.Button", "visuals.single_segment_rotations_reconstruction_as_gif", "matplotlib.pyplot.ion", "visuals.visuals_of_segments", "matplotlib.pyplot.ylabel", "tools.tsne.tsne", "IPython.display.clear_output", "visuals.single_segment_as_gif", "matplotlib.pyplot.gcf", "numpy.concatenate", "matplotlib.pyplot.subplot", "os.getpid", "autoencoder.model.Autoencoder", "visuals.single_segment_confidence_as_gif", "eigenvalues.eigenvalue_features", "os.makedirs", "timeit.default_timer", "visuals.single_segment_degeneration_as_gif", "tensorflow.train.SummaryWriter", "matplotlib.pyplot.scatter", "utilities.list_runs", "matplotlib.pyplot.plot", "numpy.zeros", "autoencoder.batchmaker.Batchmaker", "numpy.array", "matplotlib.pyplot.xlabel", "os.path.expanduser" ]
[((1498, 1517), 'autoencoder.model.ModelParams', 'model.ModelParams', ([], {}), '()\n', (1515, 1517), False, 'from autoencoder import model\n'), ((1587, 1610), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (1605, 1610), False, 'import os\n'), ((4489, 4518), 'utilities.list_runs', 'utilities.list_runs', (['DATA_DIR'], {}), '(DATA_DIR)\n', (4508, 4518), False, 'import utilities\n'), ((6026, 6047), 'autoencoder.model.Autoencoder', 'model.Autoencoder', (['MP'], {}), '(MP)\n', (6043, 6047), False, 'from autoencoder import model\n'), ((8425, 8432), 'timeit.default_timer', 'timer', ([], {}), '()\n', (8430, 8432), True, 'from timeit import default_timer as timer\n'), ((21278, 21299), 'numpy.random.choice', 'np.random.choice', (['ids'], {}), '(ids)\n', (21294, 21299), True, 'import numpy as np\n'), ((21361, 21399), 'visuals.single_segment_as_gif', 'visuals.single_segment_as_gif', (['segment'], {}), '(segment)\n', (21390, 21399), False, 'import visuals\n'), ((21400, 21474), 'visuals.single_segment_reconstruction_as_gif', 'visuals.single_segment_reconstruction_as_gif', (['segment', 'vae'], {'confidence': '(0.3)'}), '(segment, vae, confidence=0.3)\n', (21444, 21474), False, 'import visuals\n'), ((21475, 21563), 'visuals.single_segment_rotations_reconstruction_as_gif', 'visuals.single_segment_rotations_reconstruction_as_gif', (['segment', 'vae'], {'confidence': '(0.3)'}), '(segment, vae,\n confidence=0.3)\n', (21529, 21563), False, 'import visuals\n'), ((21560, 21632), 'visuals.single_segment_degeneration_as_gif', 'visuals.single_segment_degeneration_as_gif', (['segment', 'vae'], {'confidence': '(0.3)'}), '(segment, vae, confidence=0.3)\n', (21602, 21632), False, 'import visuals\n'), ((21633, 21687), 'visuals.single_segment_confidence_as_gif', 'visuals.single_segment_confidence_as_gif', (['segment', 'vae'], {}), '(segment, vae)\n', (21673, 21687), False, 'import visuals\n'), ((24792, 24802), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (24800, 24802), True, 'from matplotlib import pyplot as plt\n'), ((24803, 24815), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (24813, 24815), True, 'from matplotlib import pyplot as plt\n'), ((4744, 4811), 'ipywidgets.widgets.Dropdown', 'widgets.Dropdown', ([], {'description': '"""Run to import : """', 'options': 'run_names'}), "(description='Run to import : ', options=run_names)\n", (4760, 4811), False, 'from ipywidgets import widgets\n'), ((4823, 4859), 'ipywidgets.widgets.Button', 'widgets.Button', ([], {'description': '"""import"""'}), "(description='import')\n", (4837, 4859), False, 'from ipywidgets import widgets\n'), ((5352, 5381), 'IPython.display.display', 'display.display', (['run_dropdown'], {}), '(run_dropdown)\n', (5367, 5381), False, 'from IPython import display\n'), ((5384, 5407), 'IPython.display.display', 'display.display', (['button'], {}), '(button)\n', (5399, 5407), False, 'from IPython import display\n'), ((5495, 5542), 'utilities.import_run', 'utilities.import_run', (['RUN_NAME'], {'folder': 'DATA_DIR'}), '(RUN_NAME, folder=DATA_DIR)\n', (5515, 5542), False, 'import utilities\n'), ((6168, 6223), 'tensorflow.train.SummaryWriter', 'tf.train.SummaryWriter', (['TENSORBOARD_DIR', 'vae.sess.graph'], {}), '(TENSORBOARD_DIR, vae.sess.graph)\n', (6190, 6223), True, 'import tensorflow as tf\n'), ((7028, 7087), 'voxelize.create_rotations', 'create_rotations', (['train', 'N_ROTATION_ANGLES', 'ROTATION_OFFSET'], {}), '(train, N_ROTATION_ANGLES, ROTATION_OFFSET)\n', (7044, 7087), False, 'from voxelize import create_rotations\n'), ((7096, 7138), 'voxelize.create_rotations', 'create_rotations', (['val', '(12)', 'ROTATION_OFFSET'], {}), '(val, 12, ROTATION_OFFSET)\n', (7112, 7138), False, 'from voxelize import create_rotations\n'), ((7225, 7252), 'voxelize.voxelize', 'voxelize', (['train', 'VOXEL_SIDE'], {}), '(train, VOXEL_SIDE)\n', (7233, 7252), False, 'from voxelize import voxelize\n'), ((7269, 7294), 'voxelize.voxelize', 'voxelize', (['val', 'VOXEL_SIDE'], {}), '(val, VOXEL_SIDE)\n', (7277, 7294), False, 'from voxelize import voxelize\n'), ((7640, 7657), 'voxelize.create_twins', 'create_twins', (['val'], {}), '(val)\n', (7652, 7657), False, 'from voxelize import create_twins\n'), ((7681, 7700), 'voxelize.create_twins', 'create_twins', (['train'], {}), '(train)\n', (7693, 7700), False, 'from voxelize import create_twins\n'), ((7787, 7814), 'voxelize.voxelize', 'voxelize', (['train', 'VOXEL_SIDE'], {}), '(train, VOXEL_SIDE)\n', (7795, 7814), False, 'from voxelize import voxelize\n'), ((7831, 7856), 'voxelize.voxelize', 'voxelize', (['val', 'VOXEL_SIDE'], {}), '(val, VOXEL_SIDE)\n', (7839, 7856), False, 'from voxelize import voxelize\n'), ((7880, 7913), 'voxelize.voxelize', 'voxelize', (['train_twins', 'VOXEL_SIDE'], {}), '(train_twins, VOXEL_SIDE)\n', (7888, 7913), False, 'from voxelize import voxelize\n'), ((7936, 7967), 'voxelize.voxelize', 'voxelize', (['val_twins', 'VOXEL_SIDE'], {}), '(val_twins, VOXEL_SIDE)\n', (7944, 7967), False, 'from voxelize import voxelize\n'), ((8050, 8061), 'os.getpid', 'os.getpid', ([], {}), '()\n', (8059, 8061), False, 'import os\n'), ((9074, 9124), 'autoencoder.batchmaker.Batchmaker', 'Batchmaker', (['val_vox', 'val_twins_vox', 'BATCH_SIZE', 'MP'], {}), '(val_vox, val_twins_vox, BATCH_SIZE, MP)\n', (9084, 9124), False, 'from autoencoder.batchmaker import Batchmaker, progress_bar\n'), ((11196, 11203), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11201, 11203), True, 'from timeit import default_timer as timer\n'), ((11350, 11404), 'autoencoder.batchmaker.Batchmaker', 'Batchmaker', (['train_vox', 'train_twins_vox', 'BATCH_SIZE', 'MP'], {}), '(train_vox, train_twins_vox, BATCH_SIZE, MP)\n', (11360, 11404), False, 'from autoencoder.batchmaker import Batchmaker, progress_bar\n'), ((12080, 12087), 'timeit.default_timer', 'timer', ([], {}), '()\n', (12085, 12087), True, 'from timeit import default_timer as timer\n'), ((12299, 12308), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (12306, 12308), True, 'from matplotlib import pyplot as plt\n'), ((12355, 12380), 'random.sample', 'random.sample', (['val_vox', '(5)'], {}), '(val_vox, 5)\n', (12368, 12380), False, 'import random\n'), ((12505, 12532), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 12)'}), '(figsize=(8, 12))\n', (12515, 12532), True, 'from matplotlib import pyplot as plt\n'), ((12917, 12935), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (12933, 12935), True, 'from matplotlib import pyplot as plt\n'), ((13038, 13060), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', 'nx'], {}), '(-3, 3, nx)\n', (13049, 13060), True, 'import numpy as np\n'), ((13074, 13096), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', 'ny'], {}), '(-3, 3, ny)\n', (13085, 13096), True, 'import numpy as np\n'), ((13110, 13132), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', 'nz'], {}), '(-3, 3, nz)\n', (13121, 13132), True, 'import numpy as np\n'), ((13144, 13205), 'numpy.empty', 'np.empty', (['(VOXEL_SIDE * ny, VOXEL_SIDE * nx, VOXEL_SIDE * nz)'], {}), '((VOXEL_SIDE * ny, VOXEL_SIDE * nx, VOXEL_SIDE * nz))\n', (13152, 13205), True, 'import numpy as np\n'), ((14003, 14015), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (14013, 14015), True, 'from matplotlib import pyplot as plt\n'), ((14018, 14027), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (14025, 14027), True, 'from matplotlib import pyplot as plt\n'), ((14035, 14046), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (14041, 14046), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((14256, 14286), 'voxelize.voxelize', 'voxelize', (['segments', 'VOXEL_SIDE'], {}), '(segments, VOXEL_SIDE)\n', (14264, 14286), False, 'from voxelize import voxelize\n'), ((14434, 14463), 'eigenvalues.eigenvalue_features', 'eigenvalue_features', (['segments'], {}), '(segments)\n', (14453, 14463), False, 'from eigenvalues import eigenvalue_features\n'), ((15009, 15071), 'voxelize.create_rotations', 'create_rotations', (['segments', 'N_ROTATION_ANGLES'], {'classes': 'classes'}), '(segments, N_ROTATION_ANGLES, classes=classes)\n', (15025, 15071), False, 'from voxelize import create_rotations\n'), ((15446, 15484), 'voxelize.voxelize', 'voxelize', (['rotated_segments', 'VOXEL_SIDE'], {}), '(rotated_segments, VOXEL_SIDE)\n', (15454, 15484), False, 'from voxelize import voxelize\n'), ((16177, 16204), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (16187, 16204), True, 'from matplotlib import pyplot as plt\n'), ((16595, 16673), 'matplotlib.pyplot.legend', 'plt.legend', (['classes_set'], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)', 'ncol': 'ncol'}), "(classes_set, loc='center left', bbox_to_anchor=(1, 0.5), ncol=ncol)\n", (16605, 16673), True, 'from matplotlib import pyplot as plt\n'), ((16676, 16694), 'matplotlib.pyplot.title', 'plt.title', (['"""T-SNE"""'], {}), "('T-SNE')\n", (16685, 16694), True, 'from matplotlib import pyplot as plt\n'), ((16697, 16716), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x_dim"""'], {}), "('x_dim')\n", (16707, 16716), True, 'from matplotlib import pyplot as plt\n'), ((16719, 16738), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y_dim"""'], {}), "('y_dim')\n", (16729, 16738), True, 'from matplotlib import pyplot as plt\n'), ((16741, 16751), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16749, 16751), True, 'from matplotlib import pyplot as plt\n'), ((19729, 19773), 'voxelize.voxelize', 'voxelize', (['class_rotated_segments', 'VOXEL_SIDE'], {}), '(class_rotated_segments, VOXEL_SIDE)\n', (19737, 19773), False, 'from voxelize import voxelize\n'), ((20926, 20950), 'numpy.array', 'np.array', (['class_features'], {}), '(class_features)\n', (20934, 20950), True, 'import numpy as np\n'), ((21046, 21058), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (21056, 21058), True, 'from matplotlib import pyplot as plt\n'), ((21201, 21211), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (21209, 21211), True, 'from matplotlib import pyplot as plt\n'), ((23550, 23599), 'itertools.cycle', 'cycle', (["['dodgerblue', 'gold', 'silver', 'tomato']"], {}), "(['dodgerblue', 'gold', 'silver', 'tomato'])\n", (23555, 23599), False, 'from itertools import cycle\n'), ((23602, 23614), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (23612, 23614), True, 'from matplotlib import pyplot as plt\n'), ((23617, 23675), 'matplotlib.pyplot.title', 'plt.title', (['"""Average absolute value of features, per class"""'], {}), "('Average absolute value of features, per class')\n", (23626, 23675), True, 'from matplotlib import pyplot as plt\n'), ((23678, 23701), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""feature #"""'], {}), "('feature #')\n", (23688, 23701), True, 'from matplotlib import pyplot as plt\n'), ((23704, 23735), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""avg(abs(feature))"""'], {}), "('avg(abs(feature))')\n", (23714, 23735), True, 'from matplotlib import pyplot as plt\n'), ((24194, 24204), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (24202, 24204), True, 'from matplotlib import pyplot as plt\n'), ((24207, 24219), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (24217, 24219), True, 'from matplotlib import pyplot as plt\n'), ((24225, 24237), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (24235, 24237), True, 'from matplotlib import pyplot as plt\n'), ((24240, 24281), 'matplotlib.pyplot.title', 'plt.title', (['"""Average confusion, per class"""'], {}), "('Average confusion, per class')\n", (24249, 24281), True, 'from matplotlib import pyplot as plt\n'), ((24284, 24307), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""feature #"""'], {}), "('feature #')\n", (24294, 24307), True, 'from matplotlib import pyplot as plt\n'), ((24310, 24331), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""sigma^2"""'], {}), "('sigma^2')\n", (24320, 24331), True, 'from matplotlib import pyplot as plt\n'), ((26537, 26642), 'load_segments.write_features', 'write_features', (['ids', 'updated_features', 'updated_fnames'], {'filename': 'runs[run_index][features_file_index]'}), '(ids, updated_features, updated_fnames, filename=runs[\n run_index][features_file_index])\n', (26551, 26642), False, 'from load_segments import write_features\n'), ((26748, 26804), 'visuals.visuals_of_segments', 'visuals_of_segments', (['segments', 'ids'], {'features': 'features_nn'}), '(segments, ids, features=features_nn)\n', (26767, 26804), False, 'from visuals import visuals_of_segments\n'), ((26807, 26821), 'IPython.display.clear_output', 'clear_output', ([], {}), '()\n', (26819, 26821), False, 'from IPython.display import clear_output\n'), ((26906, 26970), 'visuals.visuals_of_matches', 'visuals_of_matches', (['matches', 'segments', 'ids'], {'features': 'features_nn'}), '(matches, segments, ids, features=features_nn)\n', (26924, 26970), False, 'from visuals import visuals_of_matches\n'), ((26973, 26987), 'IPython.display.clear_output', 'clear_output', ([], {}), '()\n', (26985, 26987), False, 'from IPython.display import clear_output\n'), ((27491, 27523), 'tensorflow.train.Saver', 'tf.train.Saver', (['name_to_var_dict'], {}), '(name_to_var_dict)\n', (27505, 27523), True, 'import tensorflow as tf\n'), ((4919, 4941), 'IPython.display.clear_output', 'display.clear_output', ([], {}), '()\n', (4939, 4941), False, 'from IPython import display\n'), ((5159, 5216), 'utilities.import_run', 'utilities.import_run', (['run_dropdown.value'], {'folder': 'DATA_DIR'}), '(run_dropdown.value, folder=DATA_DIR)\n', (5179, 5216), False, 'import utilities\n'), ((8463, 8504), 'numpy.loadtxt', 'np.loadtxt', (["(SAVE_DIR + 'val_cost_log.txt')"], {}), "(SAVE_DIR + 'val_cost_log.txt')\n", (8473, 8504), True, 'import numpy as np\n'), ((8662, 8679), 'voxelize.create_twins', 'create_twins', (['val'], {}), '(val)\n', (8674, 8679), False, 'from voxelize import create_twins\n'), ((8707, 8726), 'voxelize.create_twins', 'create_twins', (['train'], {}), '(train)\n', (8719, 8726), False, 'from voxelize import create_twins\n'), ((8824, 8851), 'voxelize.voxelize', 'voxelize', (['train', 'VOXEL_SIDE'], {}), '(train, VOXEL_SIDE)\n', (8832, 8851), False, 'from voxelize import voxelize\n'), ((8872, 8897), 'voxelize.voxelize', 'voxelize', (['val', 'VOXEL_SIDE'], {}), '(val, VOXEL_SIDE)\n', (8880, 8897), False, 'from voxelize import voxelize\n'), ((8925, 8958), 'voxelize.voxelize', 'voxelize', (['train_twins', 'VOXEL_SIDE'], {}), '(train_twins, VOXEL_SIDE)\n', (8933, 8958), False, 'from voxelize import voxelize\n'), ((8985, 9016), 'voxelize.voxelize', 'voxelize', (['val_twins', 'VOXEL_SIDE'], {}), '(val_twins, VOXEL_SIDE)\n', (8993, 9016), False, 'from voxelize import voxelize\n'), ((9130, 9161), 'numpy.mod', 'np.mod', (['step', 'VAL_EVERY_N_STEPS'], {}), '(step, VAL_EVERY_N_STEPS)\n', (9136, 9161), True, 'import numpy as np\n'), ((11213, 11220), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11218, 11220), True, 'from timeit import default_timer as timer\n'), ((11223, 11230), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11228, 11230), True, 'from timeit import default_timer as timer\n'), ((12396, 12430), 'numpy.reshape', 'np.reshape', (['sample', 'MP.INPUT_SHAPE'], {}), '(sample, MP.INPUT_SHAPE)\n', (12406, 12430), True, 'import numpy as np\n'), ((12566, 12606), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(n_samples * 2)', '(1)', '(2 * i + 1)'], {}), '(n_samples * 2, 1, 2 * i + 1)\n', (12577, 12606), True, 'from matplotlib import pyplot as plt\n'), ((12712, 12764), 'matplotlib.pyplot.title', 'plt.title', (['"""Top: val input - Bottom: Reconstruction"""'], {}), "('Top: val input - Bottom: Reconstruction')\n", (12721, 12764), True, 'from matplotlib import pyplot as plt\n'), ((12769, 12809), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(n_samples * 2)', '(1)', '(2 * i + 2)'], {}), '(n_samples * 2, 1, 2 * i + 2)\n', (12780, 12809), True, 'from matplotlib import pyplot as plt\n'), ((15815, 15835), 'os.path.exists', 'os.path.exists', (['dir_'], {}), '(dir_)\n', (15829, 15835), False, 'import os\n'), ((15841, 15858), 'os.makedirs', 'os.makedirs', (['dir_'], {}), '(dir_)\n', (15852, 15858), False, 'import os\n'), ((15949, 15975), 'tools.tsne.tsne', 'tsne', (['F'], {'err_threshold': '(1.0)'}), '(F, err_threshold=1.0)\n', (15953, 15975), False, 'from tools.tsne import tsne\n'), ((16226, 16239), 'itertools.cycle', 'cycle', (['cnames'], {}), '(cnames)\n', (16231, 16239), False, 'from itertools import cycle\n'), ((16401, 16441), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'c': 'c_', 'alpha': '(0.8)', 'lw': '(0)'}), '(x, y, c=c_, alpha=0.8, lw=0)\n', (16412, 16441), True, 'from matplotlib import pyplot as plt\n'), ((16909, 16918), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (16916, 16918), True, 'from matplotlib import pyplot as plt\n'), ((17172, 17250), 'matplotlib.pyplot.legend', 'plt.legend', (['classes_set'], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)', 'ncol': 'ncol'}), "(classes_set, loc='center left', bbox_to_anchor=(1, 0.5), ncol=ncol)\n", (17182, 17250), True, 'from matplotlib import pyplot as plt\n'), ((17255, 17273), 'matplotlib.pyplot.title', 'plt.title', (['"""T-SNE"""'], {}), "('T-SNE')\n", (17264, 17273), True, 'from matplotlib import pyplot as plt\n'), ((17278, 17297), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x_dim"""'], {}), "('x_dim')\n", (17288, 17297), True, 'from matplotlib import pyplot as plt\n'), ((17302, 17321), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y_dim"""'], {}), "('y_dim')\n", (17312, 17321), True, 'from matplotlib import pyplot as plt\n'), ((18424, 18477), 'numpy.reshape', 'np.reshape', (['vox', '[VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE]'], {}), '(vox, [VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE])\n', (18434, 18477), True, 'import numpy as np\n'), ((18563, 18594), 'voxelize.unvoxelize', 'unvoxelize', (['(vox > RC_CONFIDENCE)'], {}), '(vox > RC_CONFIDENCE)\n', (18573, 18594), False, 'from voxelize import unvoxelize\n'), ((19003, 19124), 'visuals.visuals_of_matches', 'visuals_of_matches', (['one_to_one_matches', '(S_ + reconstruction)', '(I_ + reconstruction_ids)'], {'directory': 'dir_', 'oneview': 'ONEVIEW'}), '(one_to_one_matches, S_ + reconstruction, I_ +\n reconstruction_ids, directory=dir_, oneview=ONEVIEW)\n', (19021, 19124), False, 'from visuals import visuals_of_matches\n'), ((19121, 19135), 'IPython.display.clear_output', 'clear_output', ([], {}), '()\n', (19133, 19135), False, 'from IPython.display import clear_output\n'), ((19460, 19478), 'numpy.array', 'np.array', (['segments'], {}), '(segments)\n', (19468, 19478), True, 'import numpy as np\n'), ((20780, 20794), 'IPython.display.clear_output', 'clear_output', ([], {}), '()\n', (20792, 20794), False, 'from IPython.display import clear_output\n'), ((22214, 22226), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (22224, 22226), True, 'from matplotlib import pyplot as plt\n'), ((22381, 22391), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22389, 22391), True, 'from matplotlib import pyplot as plt\n'), ((22988, 23032), 'voxelize.voxelize', 'voxelize', (['class_rotated_segments', 'VOXEL_SIDE'], {}), '(class_rotated_segments, VOXEL_SIDE)\n', (22996, 23032), False, 'from voxelize import voxelize\n'), ((23168, 23192), 'numpy.array', 'np.array', (['class_features'], {}), '(class_features)\n', (23176, 23192), True, 'import numpy as np\n'), ((23238, 23250), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (23248, 23250), True, 'from matplotlib import pyplot as plt\n'), ((23399, 23409), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (23407, 23409), True, 'from matplotlib import pyplot as plt\n'), ((25828, 25852), 'numpy.concatenate', 'np.concatenate', (['[f, ftu]'], {}), '([f, ftu])\n', (25842, 25852), True, 'import numpy as np\n'), ((27720, 27753), 'pickle.dump', 'pickle.dump', (['MP', 'file'], {'protocol': '(2)'}), '(MP, file, protocol=2)\n', (27731, 27753), False, 'import pickle\n'), ((7428, 7459), 'numpy.reshape', 'np.reshape', (['vox', 'MP.INPUT_SHAPE'], {}), '(vox, MP.INPUT_SHAPE)\n', (7438, 7459), True, 'import numpy as np\n'), ((7495, 7526), 'numpy.reshape', 'np.reshape', (['vox', 'MP.INPUT_SHAPE'], {}), '(vox, MP.INPUT_SHAPE)\n', (7505, 7526), True, 'import numpy as np\n'), ((10246, 10301), 'numpy.savetxt', 'np.savetxt', (["(SAVE_DIR + 'val_cost_log.txt')", 'val_cost_log'], {}), "(SAVE_DIR + 'val_cost_log.txt', val_cost_log)\n", (10256, 10301), True, 'import numpy as np\n'), ((11495, 11502), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11500, 11502), True, 'from timeit import default_timer as timer\n'), ((11596, 11603), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11601, 11603), True, 'from timeit import default_timer as timer\n'), ((11795, 11802), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11800, 11802), True, 'from timeit import default_timer as timer\n'), ((11884, 11891), 'timeit.default_timer', 'timer', ([], {}), '()\n', (11889, 11891), True, 'from timeit import default_timer as timer\n'), ((14490, 14512), 'numpy.isnan', 'np.isnan', (['features_eig'], {}), '(features_eig)\n', (14498, 14512), True, 'import numpy as np\n'), ((14684, 14718), 'numpy.reshape', 'np.reshape', (['sample', 'MP.INPUT_SHAPE'], {}), '(sample, MP.INPUT_SHAPE)\n', (14694, 14718), True, 'import numpy as np\n'), ((15571, 15605), 'numpy.reshape', 'np.reshape', (['sample', 'MP.INPUT_SHAPE'], {}), '(sample, MP.INPUT_SHAPE)\n', (15581, 15605), True, 'import numpy as np\n'), ((16453, 16462), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (16460, 16462), True, 'from matplotlib import pyplot as plt\n'), ((16480, 16489), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (16487, 16489), True, 'from matplotlib import pyplot as plt\n'), ((16943, 16956), 'itertools.cycle', 'cycle', (['cnames'], {}), '(cnames)\n', (16948, 16956), False, 'from itertools import cycle\n'), ((17124, 17164), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'c': 'c_', 'alpha': '(0.2)', 'lw': '(0)'}), '(x, y, c=c_, alpha=0.2, lw=0)\n', (17135, 17164), True, 'from matplotlib import pyplot as plt\n'), ((17439, 17452), 'itertools.cycle', 'cycle', (['cnames'], {}), '(cnames)\n', (17444, 17452), False, 'from itertools import cycle\n'), ((17686, 17721), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'c': 'c_', 's': '(30)', 'lw': '(1)'}), '(x, y, c=c_, s=30, lw=1)\n', (17697, 17721), True, 'from matplotlib import pyplot as plt\n'), ((17938, 17984), 'matplotlib.pyplot.plot', 'plt.plot', (['line_x', 'line_y', '"""black"""'], {'linewidth': '(1)'}), "(line_x, line_y, 'black', linewidth=1)\n", (17946, 17984), True, 'from matplotlib import pyplot as plt\n'), ((18345, 18379), 'numpy.reshape', 'np.reshape', (['sample', 'MP.INPUT_SHAPE'], {}), '(sample, MP.INPUT_SHAPE)\n', (18355, 18379), True, 'import numpy as np\n'), ((19947, 20000), 'numpy.reshape', 'np.reshape', (['vox', '[VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE]'], {}), '(vox, [VOXEL_SIDE, VOXEL_SIDE, VOXEL_SIDE])\n', (19957, 20000), True, 'import numpy as np\n'), ((20102, 20133), 'voxelize.unvoxelize', 'unvoxelize', (['(vox > RC_CONFIDENCE)'], {}), '(vox > RC_CONFIDENCE)\n', (20112, 20133), False, 'from voxelize import unvoxelize\n'), ((20843, 20874), 'numpy.reshape', 'np.reshape', (['vox', 'MP.INPUT_SHAPE'], {}), '(vox, MP.INPUT_SHAPE)\n', (20853, 20874), True, 'import numpy as np\n'), ((21214, 21223), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (21221, 21223), True, 'from matplotlib import pyplot as plt\n'), ((22017, 22035), 'numpy.array', 'np.array', (['segments'], {}), '(segments)\n', (22025, 22035), True, 'import numpy as np\n'), ((22072, 22093), 'numpy.array', 'np.array', (['features_nn'], {}), '(features_nn)\n', (22080, 22093), True, 'import numpy as np\n'), ((22131, 22153), 'numpy.array', 'np.array', (['confusion_nn'], {}), '(confusion_nn)\n', (22139, 22153), True, 'import numpy as np\n'), ((22727, 22745), 'numpy.array', 'np.array', (['segments'], {}), '(segments)\n', (22735, 22745), True, 'import numpy as np\n'), ((23952, 23973), 'numpy.array', 'np.array', (['features_nn'], {}), '(features_nn)\n', (23960, 23973), True, 'import numpy as np\n'), ((24549, 24571), 'numpy.array', 'np.array', (['confusion_nn'], {}), '(confusion_nn)\n', (24557, 24571), True, 'import numpy as np\n'), ((9956, 9980), 'os.path.exists', 'os.path.exists', (['SAVE_DIR'], {}), '(SAVE_DIR)\n', (9970, 9980), False, 'import os\n'), ((9994, 10015), 'os.makedirs', 'os.makedirs', (['SAVE_DIR'], {}), '(SAVE_DIR)\n', (10005, 10015), False, 'import os\n'), ((11838, 11871), 'autoencoder.batchmaker.progress_bar', 'progress_bar', (['training_batchmaker'], {}), '(training_batchmaker)\n', (11850, 11871), False, 'from autoencoder.batchmaker import Batchmaker, progress_bar\n'), ((13427, 13458), 'numpy.zeros', 'np.zeros', (['([1] + MP.LATENT_SHAPE)'], {}), '([1] + MP.LATENT_SHAPE)\n', (13435, 13458), True, 'import numpy as np\n'), ((13978, 13992), 'numpy.max', 'np.max', (['canvas'], {}), '(canvas)\n', (13984, 13992), True, 'import numpy as np\n'), ((16763, 16772), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (16770, 16772), True, 'from matplotlib import pyplot as plt\n'), ((19601, 19652), 'voxelize.create_rotations', 'create_rotations', (['class_segments', 'N_ROTATION_ANGLES'], {}), '(class_segments, N_ROTATION_ANGLES)\n', (19617, 19652), False, 'from voxelize import create_rotations\n'), ((19851, 19882), 'numpy.reshape', 'np.reshape', (['vox', 'MP.INPUT_SHAPE'], {}), '(vox, MP.INPUT_SHAPE)\n', (19861, 19882), True, 'import numpy as np\n'), ((21172, 21189), 'numpy.exp', 'np.exp', (['confusion'], {}), '(confusion)\n', (21178, 21189), True, 'import numpy as np\n'), ((22396, 22405), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (22403, 22405), True, 'from matplotlib import pyplot as plt\n'), ((23083, 23114), 'numpy.reshape', 'np.reshape', (['vox', 'MP.INPUT_SHAPE'], {}), '(vox, MP.INPUT_SHAPE)\n', (23093, 23114), True, 'import numpy as np\n'), ((23414, 23423), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (23421, 23423), True, 'from matplotlib import pyplot as plt\n'), ((24010, 24032), 'numpy.abs', 'np.abs', (['class_features'], {}), '(class_features)\n', (24016, 24032), True, 'import numpy as np\n'), ((24110, 24132), 'numpy.abs', 'np.abs', (['class_features'], {}), '(class_features)\n', (24116, 24132), True, 'import numpy as np\n'), ((24608, 24631), 'numpy.exp', 'np.exp', (['class_confusion'], {}), '(class_confusion)\n', (24614, 24631), True, 'import numpy as np\n'), ((24709, 24732), 'numpy.exp', 'np.exp', (['class_confusion'], {}), '(class_confusion)\n', (24715, 24732), True, 'import numpy as np\n'), ((9509, 9537), 'autoencoder.batchmaker.progress_bar', 'progress_bar', (['val_batchmaker'], {}), '(val_batchmaker)\n', (9521, 9537), False, 'from autoencoder.batchmaker import Batchmaker, progress_bar\n'), ((10049, 10076), 'os.makedirs', 'os.makedirs', (['SAVE_DIR_NOVAL'], {}), '(SAVE_DIR_NOVAL)\n', (10060, 10076), False, 'import os\n'), ((10204, 10237), 'pickle.dump', 'pickle.dump', (['MP', 'file'], {'protocol': '(2)'}), '(MP, file, protocol=2)\n', (10215, 10237), False, 'import pickle\n'), ((22344, 22367), 'numpy.exp', 'np.exp', (['class_confusion'], {}), '(class_confusion)\n', (22350, 22367), True, 'import numpy as np\n'), ((22872, 22923), 'voxelize.create_rotations', 'create_rotations', (['class_segments', 'N_ROTATION_ANGLES'], {}), '(class_segments, N_ROTATION_ANGLES)\n', (22888, 22923), False, 'from voxelize import create_rotations\n'), ((23368, 23385), 'numpy.exp', 'np.exp', (['confusion'], {}), '(confusion)\n', (23374, 23385), True, 'import numpy as np\n'), ((18010, 18019), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (18017, 18019), True, 'from matplotlib import pyplot as plt\n')]
import numpy as np from rllab.core.serializable import Serializable from .replay_buffer import ReplayBuffer class SimpleReplayBuffer(ReplayBuffer, Serializable): def __init__(self, env_spec, max_replay_buffer_size): super(SimpleReplayBuffer, self).__init__() Serializable.quick_init(self, locals()) max_replay_buffer_size = int(max_replay_buffer_size) self._env_spec = env_spec self._observation_dim = env_spec.observation_space.flat_dim self._action_dim = env_spec.action_space.flat_dim self._max_buffer_size = max_replay_buffer_size self._observations = np.zeros((max_replay_buffer_size, self._observation_dim)) # It's a bit memory inefficient to save the observations twice, # but it makes the code *much* easier since you no longer have to # worry about termination conditions. self._next_obs = np.zeros((max_replay_buffer_size, self._observation_dim)) self._actions = np.zeros((max_replay_buffer_size, self._action_dim)) self._rewards = np.zeros(max_replay_buffer_size) # self._terminals[i] = a terminal was received at time i self._terminals = np.zeros(max_replay_buffer_size, dtype='uint8') self._top = 0 self._size = 0 def add_sample(self, observation, action, reward, terminal, next_observation, **kwargs): self._observations[self._top] = observation self._actions[self._top] = action self._rewards[self._top] = reward self._terminals[self._top] = terminal self._next_obs[self._top] = next_observation self._advance() def terminate_episode(self): pass def _advance(self): self._top = (self._top + 1) % self._max_buffer_size if self._size < self._max_buffer_size: self._size += 1 def random_batch(self, batch_size): indices = np.random.randint(0, self._size, batch_size) return { 'observations': self._observations[indices], 'actions': self._actions[indices], 'rewards': self._rewards[indices], 'terminals': self._terminals[indices], 'next_observations': self._next_obs[indices] } @property def size(self): return self._size def __getstate__(self): buffer_state = super(SimpleReplayBuffer, self).__getstate__() buffer_state.update({ 'observations': self._observations.tobytes(), 'actions': self._actions.tobytes(), 'rewards': self._rewards.tobytes(), 'terminals': self._terminals.tobytes(), 'next_observations': self._next_obs.tobytes(), 'top': self._top, 'size': self._size, }) return buffer_state def __setstate__(self, buffer_state): super(SimpleReplayBuffer, self).__setstate__(buffer_state) flat_obs = np.fromstring(buffer_state['observations']) flat_next_obs = np.fromstring(buffer_state['next_observations']) flat_actions = np.fromstring(buffer_state['actions']) flat_reward = np.fromstring(buffer_state['rewards']) flat_terminals = np.fromstring( buffer_state['terminals'], dtype=np.uint8) self._observations = flat_obs.reshape(self._max_buffer_size, -1) self._next_obs = flat_next_obs.reshape(self._max_buffer_size, -1) self._actions = flat_actions.reshape(self._max_buffer_size, -1) self._rewards = flat_reward.reshape(self._max_buffer_size) self._terminals = flat_terminals.reshape(self._max_buffer_size) self._top = buffer_state['top'] self._size = buffer_state['size']
[ "numpy.random.randint", "numpy.zeros", "numpy.fromstring" ]
[((630, 687), 'numpy.zeros', 'np.zeros', (['(max_replay_buffer_size, self._observation_dim)'], {}), '((max_replay_buffer_size, self._observation_dim))\n', (638, 687), True, 'import numpy as np\n'), ((944, 1001), 'numpy.zeros', 'np.zeros', (['(max_replay_buffer_size, self._observation_dim)'], {}), '((max_replay_buffer_size, self._observation_dim))\n', (952, 1001), True, 'import numpy as np\n'), ((1061, 1113), 'numpy.zeros', 'np.zeros', (['(max_replay_buffer_size, self._action_dim)'], {}), '((max_replay_buffer_size, self._action_dim))\n', (1069, 1113), True, 'import numpy as np\n'), ((1138, 1170), 'numpy.zeros', 'np.zeros', (['max_replay_buffer_size'], {}), '(max_replay_buffer_size)\n', (1146, 1170), True, 'import numpy as np\n'), ((1262, 1309), 'numpy.zeros', 'np.zeros', (['max_replay_buffer_size'], {'dtype': '"""uint8"""'}), "(max_replay_buffer_size, dtype='uint8')\n", (1270, 1309), True, 'import numpy as np\n'), ((1994, 2038), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self._size', 'batch_size'], {}), '(0, self._size, batch_size)\n', (2011, 2038), True, 'import numpy as np\n'), ((3011, 3054), 'numpy.fromstring', 'np.fromstring', (["buffer_state['observations']"], {}), "(buffer_state['observations'])\n", (3024, 3054), True, 'import numpy as np\n'), ((3079, 3127), 'numpy.fromstring', 'np.fromstring', (["buffer_state['next_observations']"], {}), "(buffer_state['next_observations'])\n", (3092, 3127), True, 'import numpy as np\n'), ((3151, 3189), 'numpy.fromstring', 'np.fromstring', (["buffer_state['actions']"], {}), "(buffer_state['actions'])\n", (3164, 3189), True, 'import numpy as np\n'), ((3212, 3250), 'numpy.fromstring', 'np.fromstring', (["buffer_state['rewards']"], {}), "(buffer_state['rewards'])\n", (3225, 3250), True, 'import numpy as np\n'), ((3276, 3332), 'numpy.fromstring', 'np.fromstring', (["buffer_state['terminals']"], {'dtype': 'np.uint8'}), "(buffer_state['terminals'], dtype=np.uint8)\n", (3289, 3332), True, 'import numpy as np\n')]
import tensorflow as tf import os import sklearn.metrics import numpy as np import sys import time def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads class re_model: """Basic model class, which contains data input and tensorflow graphs, should be inherited""" def __init__(self, train_data_loader, batch_size, max_length=120): """ class construction funciton, model initialization Args: train_data_loader: a `file_data_loader object`, which could be `npy_data_loader` or `json_file_data_loader` batch_size: how many scopes/instances are included in one batch max_length: max sentence length, divide sentences into the same length (working part should be finished in `data_loader`) Returns: None """ self.word = tf.placeholder(dtype=tf.int32, shape=[None, max_length], name='word') self.pos1 = tf.placeholder(dtype=tf.int32, shape=[None, max_length], name='pos1') self.pos2 = tf.placeholder(dtype=tf.int32, shape=[None, max_length], name='pos2') self.label = tf.placeholder(dtype=tf.int32, shape=[batch_size], name='label') self.ins_label = tf.placeholder(dtype=tf.int32, shape=[None], name='ins_label') self.length = tf.placeholder(dtype=tf.int32, shape=[None], name='length') self.scope = tf.placeholder(dtype=tf.int32, shape=[batch_size, 2], name='scope') self.train_data_loader = train_data_loader self.rel_tot = train_data_loader.rel_tot self.word_vec_mat = train_data_loader.word_vec_mat def loss(self): """training loss, should be overrided in the subclasses""" raise NotImplementedError def train_logit(self): """training logit, should be overrided in the subclasses""" raise NotImplementedError def test_logit(self): """test logit, should be overrided in the subclasses""" raise NotImplementedError class re_framework: """the basic training framework, does all the training and test staffs""" MODE_BAG = 0 # Train and test the model at bag level. MODE_INS = 1 # Train and test the model at instance level def __init__(self, train_data_loader, test_data_loader, max_length=120, batch_size=160): """ class construction funciton, framework initialization Args: train_data_loader: a `file_data_loader object`, which could be `npy_data_loader` or `json_file_data_loader` test_data_loader: similar as the `train_data_loader` max_length: max sentence length, divide sentences into the same length (working part should be finished in `data_loader`) batch_size: how many scopes/instances are included in one batch Returns: None """ self.train_data_loader = train_data_loader self.test_data_loader = test_data_loader self.sess = None # default graph session def one_step_multi_models(self, sess, models, batch_data_gen, run_array, return_label=True): """ run models and multi running tasks via session Args: sess: tf.Session() that is going to run models: a list. this function support multi-model training batch_data_gen: `data_loader` to generate batch data run_array: a list, contains all the running models or arrays return_label: boolean argument. if it is `True`, then the training label will be returned either Returns: result: a tuple/list contains the result """ feed_dict = {} batch_label = [] for model in models: batch_data = batch_data_gen.next_batch(batch_data_gen.batch_size // len(models)) feed_dict.update({ model.word: batch_data['word'], model.pos1: batch_data['pos1'], model.pos2: batch_data['pos2'], model.label: batch_data['rel'], model.ins_label: batch_data['ins_rel'], model.scope: batch_data['scope'], model.length: batch_data['length'], }) if 'mask' in batch_data and hasattr(model, "mask"): # mask data is used in PCNN models feed_dict.update({model.mask: batch_data['mask']}) batch_label.append(batch_data['rel']) result = sess.run(run_array, feed_dict) batch_label = np.concatenate(batch_label) if return_label: result += [batch_label] return result def one_step(self, sess, model, batch_data, run_array): """ run one model and multi running tasks via session, usually used in test operation Args: sess: tf.Session() that is going to run model: one model, inherited from `re_model` batch_data: a dict contains the batch data run_array: a list, contains all the running models or arrays Returns: result: a tuple/list contains the result """ feed_dict = { model.word: batch_data['word'], model.pos1: batch_data['pos1'], model.pos2: batch_data['pos2'], model.label: batch_data['rel'], model.ins_label: batch_data['ins_rel'], model.scope: batch_data['scope'], model.length: batch_data['length'], } if 'mask' in batch_data and hasattr(model, "mask"): feed_dict.update({model.mask: batch_data['mask']}) result = sess.run(run_array, feed_dict) return result def train(self, model, model_name, ckpt_dir='./checkpoint', summary_dir='./summary', test_result_dir='./test_result', learning_rate=0.5, max_epoch=60, pretrain_model=None, test_epoch=1, optimizer=tf.train.GradientDescentOptimizer, gpu_nums=1, not_best_stop=20): """ training function Args: model: `re_model` that is going to train model_name: a string, to identify models, affecting checkpoint saving ckpt_dir: checkpoint saving directory summary_dir: for tensorboard use, to save summary files test_result_dir: directory to store the final results learning_rate: learning rate of optimizer max_epoch: how many epochs you want to train pretrain_model: a string, containing the checkpoint model path and model name e.g. ./checkpoint/nyt_pcnn_one test_epoch: when do you want to test the model. default is `1`, which means test the result after every training epoch optimizer: training optimizer, default is `tf.train.GradientDescentOptimizer` gpu_nums: how many gpus you want to use when training not_best_stop: if there is `not_best_stop` epochs that not excel at the model result, the training will be stopped Returns: None """ assert(self.train_data_loader.batch_size % gpu_nums == 0) print("Start training...") # Init config = tf.ConfigProto(allow_soft_placement=True) # allow cpu computing if there is no gpu available self.sess = tf.Session(config=config) optimizer = optimizer(learning_rate) # Multi GPUs tower_grads = [] tower_models = [] for gpu_id in range(gpu_nums): with tf.device("/gpu:%d" % gpu_id): with tf.name_scope("gpu_%d" % gpu_id): cur_model = model(self.train_data_loader, self.train_data_loader.batch_size // gpu_nums, self.train_data_loader.max_length) tower_grads.append(optimizer.compute_gradients(cur_model.loss())) tower_models.append(cur_model) tf.add_to_collection("loss", cur_model.loss()) tf.add_to_collection("train_logit", cur_model.train_logit()) loss_collection = tf.get_collection("loss") loss = tf.add_n(loss_collection) / len(loss_collection) train_logit_collection = tf.get_collection("train_logit") train_logit = tf.concat(train_logit_collection, 0) grads = average_gradients(tower_grads) train_op = optimizer.apply_gradients(grads) summary_writer = tf.summary.FileWriter(summary_dir, self.sess.graph) """supporting check the scalars on tensorboard""" _output = tf.cast(tf.argmax(train_logit, -1), tf.int32) # predicted output _tot_acc = tf.reduce_mean(tf.cast(tf.equal(_output, tower_models[0].label), tf.float32)) # accuracy including N/A relations _not_na_acc = tf.reduce_mean(tf.cast(tf.logical_and(tf.equal(_output, tower_models[0].label), tf.not_equal(tower_models[0].label, 0)), tf.float32)) # accuracy not including N/A relations tf.summary.scalar('tot_acc', _tot_acc) tf.summary.scalar('not_na_acc', _not_na_acc) # Saver saver = tf.train.Saver(max_to_keep=None) if pretrain_model is None: self.sess.run(tf.global_variables_initializer()) else: saver.restore(self.sess, pretrain_model) # Training merged_summary = tf.summary.merge_all() # merge all scalars and histograms best_metric = 0 best_prec = None best_recall = None not_best_count = 0 # Stop training after several epochs without improvement. global_cnt = 0 # for record summary steps for epoch in range(max_epoch): print('###### Epoch ' + str(epoch) + ' ######') tot_correct = 0 tot_not_na_correct = 0 tot = 0 tot_not_na = 0 i = 0 time_sum = 0 while True: time_start = time.time() try: summa, iter_loss, iter_logit, _train_op, iter_label = self.one_step_multi_models(self.sess, tower_models, self.train_data_loader, [merged_summary, loss, train_logit, train_op]) except StopIteration: break summary_writer.add_summary(summa, global_cnt) time_end = time.time() t = time_end - time_start time_sum += t iter_output = iter_logit.argmax(-1) iter_correct = (iter_output == iter_label).sum() iter_not_na_correct = np.logical_and(iter_output == iter_label, iter_label != 0).sum() tot_correct += iter_correct tot_not_na_correct += iter_not_na_correct tot += iter_label.shape[0] tot_not_na += (iter_label != 0).sum() if tot_not_na > 0: sys.stdout.write("epoch %d step %d time %.2f | loss: %f, not NA accuracy: %f, accuracy: %f\r" % (epoch, i, t, iter_loss, float(tot_not_na_correct) / tot_not_na, float(tot_correct) / tot)) sys.stdout.flush() i += 1 print("\nAverage iteration time: %f" % (time_sum / i)) if (epoch + 1) % test_epoch == 0: metric = self.test(model) if metric > best_metric: best_metric = metric best_prec = self.cur_prec best_recall = self.cur_recall print("Best model, storing...") if not os.path.isdir(ckpt_dir): os.mkdir(ckpt_dir) path = saver.save(self.sess, os.path.join(ckpt_dir, model_name)) print("Finish storing") not_best_count = 0 else: not_best_count += 1 if not_best_count >= not_best_stop: break global_cnt += 1 print("######") print("Finish training " + model_name) print("Best epoch auc = %f" % (best_metric)) if (not best_prec is None) and (not best_recall is None): if not os.path.isdir(test_result_dir): os.mkdir(test_result_dir) np.save(os.path.join(test_result_dir, model_name + "_x.npy"), best_recall) np.save(os.path.join(test_result_dir, model_name + "_y.npy"), best_prec) def test(self, model, ckpt=None, return_result=False, mode=MODE_BAG): """ test function, to evaluate model Args: model: a `re_model` which has not been instantiated ckpt: whether there is a pretained checkpoing model return_result: if True, the predicted result will be returned, either mode: basically it is at the bag level Returns: auc: if return_result is True, return AUC and predicted labels, else return AUC only """ if mode == re_framework.MODE_BAG: return self.__test_bag__(model, ckpt=ckpt, return_result=return_result) elif mode == re_framework.MODE_INS: raise NotImplementedError else: raise NotImplementedError def __test_bag__(self, model, ckpt=None, return_result=False): """ test function at bag level Args: model: a `re_model` which has not been instantiated ckpt: whether there is a pretained checkpoing model return_result: if True, the predicted result will be returned, either Returns: auc: if return_result is True, return AUC and predicted labels, else return AUC only """ print("Testing...") if self.sess == None: self.sess = tf.Session() model = model(self.test_data_loader, self.test_data_loader.batch_size, self.test_data_loader.max_length) if not ckpt is None: saver = tf.train.Saver() saver.restore(self.sess, ckpt) tot_correct = 0 tot_not_na_correct = 0 tot = 0 tot_not_na = 0 entpair_tot = 0 test_result = [] pred_result = [] for i, batch_data in enumerate(self.test_data_loader): iter_logit = self.one_step(self.sess, model, batch_data, [model.test_logit()])[0] iter_output = iter_logit.argmax(-1) iter_correct = (iter_output == batch_data['rel']).sum() iter_not_na_correct = np.logical_and(iter_output == batch_data['rel'], batch_data['rel'] != 0).sum() tot_correct += iter_correct tot_not_na_correct += iter_not_na_correct tot += batch_data['rel'].shape[0] tot_not_na += (batch_data['rel'] != 0).sum() if tot_not_na > 0: sys.stdout.write("[TEST] step %d | not NA accuracy: %f, accuracy: %f\r" % (i, float(tot_not_na_correct) / tot_not_na, float(tot_correct) / tot)) sys.stdout.flush() for idx in range(len(iter_logit)): for rel in range(1, self.test_data_loader.rel_tot): test_result.append({'score': iter_logit[idx][rel], 'flag': batch_data['multi_rel'][idx][rel]}) if batch_data['entpair'][idx] != "None#None": pred_result.append({'score': float(iter_logit[idx][rel]), 'entpair': batch_data['entpair'][idx].encode('utf-8'), 'relation': rel}) entpair_tot += 1 sorted_test_result = sorted(test_result, key=lambda x: x['score']) prec = [] recall = [] correct = 0 for i, item in enumerate(sorted_test_result[::-1]): correct += item['flag'] prec.append(float(correct) / (i + 1)) recall.append(float(correct) / self.test_data_loader.relfact_tot) auc = sklearn.metrics.auc(x=recall, y=prec) print("\n[TEST] auc: {}".format(auc)) print("Finish testing") self.cur_prec = prec self.cur_recall = recall if not return_result: return auc else: return (auc, pred_result)
[ "os.mkdir", "tensorflow.get_collection", "tensorflow.ConfigProto", "sys.stdout.flush", "os.path.join", "tensorflow.add_n", "tensorflow.not_equal", "tensorflow.concat", "tensorflow.placeholder", "tensorflow.summary.FileWriter", "tensorflow.name_scope", "tensorflow.summary.merge_all", "tensorflow.equal", "tensorflow.summary.scalar", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.reduce_mean", "tensorflow.Session", "tensorflow.expand_dims", "numpy.concatenate", "numpy.logical_and", "tensorflow.argmax", "os.path.isdir", "tensorflow.device", "time.time" ]
[((1196, 1227), 'tensorflow.concat', 'tf.concat', ([], {'axis': '(0)', 'values': 'grads'}), '(axis=0, values=grads)\n', (1205, 1227), True, 'import tensorflow as tf\n'), ((1243, 1266), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['grad', '(0)'], {}), '(grad, 0)\n', (1257, 1266), True, 'import tensorflow as tf\n'), ((2308, 2377), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None, max_length]', 'name': '"""word"""'}), "(dtype=tf.int32, shape=[None, max_length], name='word')\n", (2322, 2377), True, 'import tensorflow as tf\n'), ((2398, 2467), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None, max_length]', 'name': '"""pos1"""'}), "(dtype=tf.int32, shape=[None, max_length], name='pos1')\n", (2412, 2467), True, 'import tensorflow as tf\n'), ((2488, 2557), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None, max_length]', 'name': '"""pos2"""'}), "(dtype=tf.int32, shape=[None, max_length], name='pos2')\n", (2502, 2557), True, 'import tensorflow as tf\n'), ((2579, 2643), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[batch_size]', 'name': '"""label"""'}), "(dtype=tf.int32, shape=[batch_size], name='label')\n", (2593, 2643), True, 'import tensorflow as tf\n'), ((2669, 2731), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""ins_label"""'}), "(dtype=tf.int32, shape=[None], name='ins_label')\n", (2683, 2731), True, 'import tensorflow as tf\n'), ((2754, 2813), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""length"""'}), "(dtype=tf.int32, shape=[None], name='length')\n", (2768, 2813), True, 'import tensorflow as tf\n'), ((2835, 2902), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[batch_size, 2]', 'name': '"""scope"""'}), "(dtype=tf.int32, shape=[batch_size, 2], name='scope')\n", (2849, 2902), True, 'import tensorflow as tf\n'), ((6006, 6033), 'numpy.concatenate', 'np.concatenate', (['batch_label'], {}), '(batch_label)\n', (6020, 6033), True, 'import numpy as np\n'), ((8766, 8807), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (8780, 8807), True, 'import tensorflow as tf\n'), ((8880, 8905), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (8890, 8905), True, 'import tensorflow as tf\n'), ((9630, 9655), 'tensorflow.get_collection', 'tf.get_collection', (['"""loss"""'], {}), "('loss')\n", (9647, 9655), True, 'import tensorflow as tf\n'), ((9753, 9785), 'tensorflow.get_collection', 'tf.get_collection', (['"""train_logit"""'], {}), "('train_logit')\n", (9770, 9785), True, 'import tensorflow as tf\n'), ((9808, 9844), 'tensorflow.concat', 'tf.concat', (['train_logit_collection', '(0)'], {}), '(train_logit_collection, 0)\n', (9817, 9844), True, 'import tensorflow as tf\n'), ((9970, 10021), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['summary_dir', 'self.sess.graph'], {}), '(summary_dir, self.sess.graph)\n', (9991, 10021), True, 'import tensorflow as tf\n'), ((10500, 10538), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""tot_acc"""', '_tot_acc'], {}), "('tot_acc', _tot_acc)\n", (10517, 10538), True, 'import tensorflow as tf\n'), ((10547, 10591), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""not_na_acc"""', '_not_na_acc'], {}), "('not_na_acc', _not_na_acc)\n", (10564, 10591), True, 'import tensorflow as tf\n'), ((10633, 10665), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': 'None'}), '(max_to_keep=None)\n', (10647, 10665), True, 'import tensorflow as tf\n'), ((10874, 10896), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (10894, 10896), True, 'import tensorflow as tf\n'), ((997, 1017), 'tensorflow.expand_dims', 'tf.expand_dims', (['g', '(0)'], {}), '(g, 0)\n', (1011, 1017), True, 'import tensorflow as tf\n'), ((9671, 9696), 'tensorflow.add_n', 'tf.add_n', (['loss_collection'], {}), '(loss_collection)\n', (9679, 9696), True, 'import tensorflow as tf\n'), ((10107, 10133), 'tensorflow.argmax', 'tf.argmax', (['train_logit', '(-1)'], {}), '(train_logit, -1)\n', (10116, 10133), True, 'import tensorflow as tf\n'), ((15307, 15319), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (15317, 15319), True, 'import tensorflow as tf\n'), ((15482, 15498), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (15496, 15498), True, 'import tensorflow as tf\n'), ((9088, 9117), 'tensorflow.device', 'tf.device', (["('/gpu:%d' % gpu_id)"], {}), "('/gpu:%d' % gpu_id)\n", (9097, 9117), True, 'import tensorflow as tf\n'), ((10206, 10246), 'tensorflow.equal', 'tf.equal', (['_output', 'tower_models[0].label'], {}), '(_output, tower_models[0].label)\n', (10214, 10246), True, 'import tensorflow as tf\n'), ((10727, 10760), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (10758, 10760), True, 'import tensorflow as tf\n'), ((11449, 11460), 'time.time', 'time.time', ([], {}), '()\n', (11458, 11460), False, 'import time\n'), ((11832, 11843), 'time.time', 'time.time', ([], {}), '()\n', (11841, 11843), False, 'import time\n'), ((13661, 13691), 'os.path.isdir', 'os.path.isdir', (['test_result_dir'], {}), '(test_result_dir)\n', (13674, 13691), False, 'import os\n'), ((13709, 13734), 'os.mkdir', 'os.mkdir', (['test_result_dir'], {}), '(test_result_dir)\n', (13717, 13734), False, 'import os\n'), ((13755, 13807), 'os.path.join', 'os.path.join', (['test_result_dir', "(model_name + '_x.npy')"], {}), "(test_result_dir, model_name + '_x.npy')\n", (13767, 13807), False, 'import os\n'), ((13842, 13894), 'os.path.join', 'os.path.join', (['test_result_dir', "(model_name + '_y.npy')"], {}), "(test_result_dir, model_name + '_y.npy')\n", (13854, 13894), False, 'import os\n'), ((16511, 16529), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (16527, 16529), False, 'import sys\n'), ((9140, 9172), 'tensorflow.name_scope', 'tf.name_scope', (["('gpu_%d' % gpu_id)"], {}), "('gpu_%d' % gpu_id)\n", (9153, 9172), True, 'import tensorflow as tf\n'), ((10356, 10396), 'tensorflow.equal', 'tf.equal', (['_output', 'tower_models[0].label'], {}), '(_output, tower_models[0].label)\n', (10364, 10396), True, 'import tensorflow as tf\n'), ((10398, 10436), 'tensorflow.not_equal', 'tf.not_equal', (['tower_models[0].label', '(0)'], {}), '(tower_models[0].label, 0)\n', (10410, 10436), True, 'import tensorflow as tf\n'), ((12598, 12616), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (12614, 12616), False, 'import sys\n'), ((16027, 16099), 'numpy.logical_and', 'np.logical_and', (["(iter_output == batch_data['rel'])", "(batch_data['rel'] != 0)"], {}), "(iter_output == batch_data['rel'], batch_data['rel'] != 0)\n", (16041, 16099), True, 'import numpy as np\n'), ((12071, 12129), 'numpy.logical_and', 'np.logical_and', (['(iter_output == iter_label)', '(iter_label != 0)'], {}), '(iter_output == iter_label, iter_label != 0)\n', (12085, 12129), True, 'import numpy as np\n'), ((13053, 13076), 'os.path.isdir', 'os.path.isdir', (['ckpt_dir'], {}), '(ckpt_dir)\n', (13066, 13076), False, 'import os\n'), ((13102, 13120), 'os.mkdir', 'os.mkdir', (['ckpt_dir'], {}), '(ckpt_dir)\n', (13110, 13120), False, 'import os\n'), ((13170, 13204), 'os.path.join', 'os.path.join', (['ckpt_dir', 'model_name'], {}), '(ckpt_dir, model_name)\n', (13182, 13204), False, 'import os\n')]
import argparse import cv2 import glog import json import numpy as np import os from tqdm import tqdm from pycocotools import coco as coco_loader def parse_args(): """Parse arguments of command line""" parser = argparse.ArgumentParser( description='Merge annotations in COCO representation into one' ) parser.add_argument( '--input-dir', required=True, help='directory with input annotations in *.json format' ) parser.add_argument( '--output', required=True, help='output annotation file' ) parser.add_argument( '--images-map', required=True, help='file with map of datasets and its images path (json format)' ) parser.add_argument( '--draw', default=None, help='directory to save images with its segments. By default is disabled' ) return parser.parse_args() def draw_bboxes_and_masks(img, annotations, input_dir): """ Draw bounding boxes and contours of masks on image and save it. :param img: file name of image (is getting from the same field in annotation) :param annotations: list of bonding boxes and segments on the image :param input_dir: base directory to save images """ input_file = os.path.join(input_dir, img['file_name']) save_path = os.path.join(os.path.dirname(input_file), 'draw') if not os.path.exists(save_path): os.makedirs(save_path) output_file = os.path.join(save_path, os.path.basename(input_file)) img = cv2.imread(input_file) yellow = (0, 255, 255) red = (0, 0, 255) for ann in annotations: cat_id = str(ann['category_id']) bbox = [int(ann['bbox'][0]), int(ann['bbox'][1]), int(ann['bbox'][0] + ann['bbox'][2]), int(ann['bbox'][1] + ann['bbox'][3])] masks = ann['segmentation'] for mask in masks: i = 0 points = [] while i < len(mask): x = int(mask[i]) y = int(mask[i + 1]) points.append([x, y]) i += 2 img = cv2.polylines(img, np.int32([points]), True, yellow, 1) img = cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), red, 1) x = bbox[0] + (bbox[2] - bbox[0]) // 4 y = bbox[1] + (bbox[3] - bbox[1]) // 2 cv2.putText(img, cat_id, (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, red, 1) cv2.imwrite(output_file, img) def is_json_file(filename): """ Check if file has a *.json type (just check an extension) :param filename: name of file :return: True if file has a *.json type """ return True if filename.lower().endswith('.json') else False def get_anno_list(directory): """ Get list of files in directory :param directory: directory to parse :return: list of files in the directory in format [name1.ext, name2.ext, ...] """ files = [] for file in os.listdir(directory): if is_json_file(file): files.append(file) return files def pretty_string(name_list): """ Make a string from list of some names :param name_list: list of names [name#0, name#1, ...] :return: string in format: -name#0 -name#1 """ output_string = '' for s in name_list: output_string += '\n -' + s return output_string def common_path_images(images_map): """ Define which part of paths to images is common for all of them :param images_map: dictionary of matched datasets and its images paths. Format: { 'dataset1.json': '/path/to/images/for/dataset1', 'dataset2.json': '/path/to/images/for/dataset2', ... } :return: string with a common part of the images paths """ paths = [path for _, path in images_map.items()] return os.path.commonpath(paths) def merge_annotations(directory, anno_list, images_map): """ Merge several annotations in COCO representation into one :param directory: base directory where is saved all datasets which is needed to merge :param anno_list: list of annotations to merge. [dataset1.json, dataset2.json, ...] :param images_map: dictionary of matched datasets and its images paths :return: merged annotation, list of used annotations and list of skipped annotations """ merged_anno = None first_step = True reference_classes = None common_path = common_path_images(images_map) valid_annos = [] skipped_annos = [] for anno_file in tqdm(anno_list, 'Parsing annotations...'): if anno_file not in images_map: glog.warning('Dataset <{}> is absent in \'images-map\' file and will be ignored!'.format(anno_file)) skipped_annos.append(anno_file) continue img_prefix = images_map[anno_file].replace(common_path, '') if img_prefix[0] == '/': img_prefix = img_prefix.replace('/', '', 1) with open(os.path.join(directory, anno_file)) as f: data = json.load(f) for img in data['images']: img['file_name'] = os.path.join(img_prefix, img['file_name']) if first_step: merged_anno = data reference_classes = data['categories'] first_step = False else: classes = data['categories'] if classes != reference_classes: glog.warning('Categories field in dataset <{}> has another classes and will be ignored!' .format(anno_file)) skipped_annos.append(anno_file) continue add_img_id = len(merged_anno['images']) add_obj_id = len(merged_anno['annotations']) for img in data['images']: img['id'] += add_img_id for ann in data['annotations']: ann['id'] += add_obj_id ann['image_id'] += add_img_id merged_anno['images'].extend(data['images']) merged_anno['annotations'].extend(data['annotations']) valid_annos.append(anno_file) return merged_anno, valid_annos, skipped_annos def main(): args = parse_args() anno_list = get_anno_list(args.input_dir) with open(args.images_map) as f: images_map = json.load(f) result_annotation, valid_annos, skipped_annos = merge_annotations(args.input_dir, anno_list, images_map) assert len(valid_annos) > 0, 'The result annotation is empty! Please check parameters and your \'images_map\' file.' # Save created annotation glog.info('Saving annotation...') with open(args.output, 'w') as outfile: json.dump(result_annotation, outfile) glog.info('Annotation was saved in <{}> successfully'.format(args.output)) # Try to load created annotation via cocoapi try: glog.info('Trying to load annotation <{}> via cocoapi...'.format(args.output)) coco_loader.COCO(args.output) except: raise else: glog.info('Annotation in COCO representation <{}> successfully created from: {}' .format(args.output, pretty_string(valid_annos))) if len(skipped_annos) > 0: glog.info('The next annotations were skipped: {}'.format(pretty_string(skipped_annos))) if args.draw: for img in tqdm(result_annotation['images'], 'Drawing and saving images...'): ann_for_img = [] for ann in result_annotation['annotations']: if ann['image_id'] == img['id']: ann_for_img.append(ann) draw_bboxes_and_masks(img, ann_for_img, args.draw) if __name__ == "__main__": main()
[ "json.dump", "tqdm.tqdm", "json.load", "cv2.putText", "argparse.ArgumentParser", "os.makedirs", "os.path.basename", "os.path.commonpath", "cv2.imwrite", "glog.info", "os.path.dirname", "os.path.exists", "cv2.imread", "pycocotools.coco.COCO", "numpy.int32", "cv2.rectangle", "os.path.join", "os.listdir" ]
[((223, 316), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Merge annotations in COCO representation into one"""'}), "(description=\n 'Merge annotations in COCO representation into one')\n", (246, 316), False, 'import argparse\n'), ((1246, 1287), 'os.path.join', 'os.path.join', (['input_dir', "img['file_name']"], {}), "(input_dir, img['file_name'])\n", (1258, 1287), False, 'import os\n'), ((1506, 1528), 'cv2.imread', 'cv2.imread', (['input_file'], {}), '(input_file)\n', (1516, 1528), False, 'import cv2\n'), ((2407, 2436), 'cv2.imwrite', 'cv2.imwrite', (['output_file', 'img'], {}), '(output_file, img)\n', (2418, 2436), False, 'import cv2\n'), ((2917, 2938), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (2927, 2938), False, 'import os\n'), ((3905, 3930), 'os.path.commonpath', 'os.path.commonpath', (['paths'], {}), '(paths)\n', (3923, 3930), False, 'import os\n'), ((4594, 4635), 'tqdm.tqdm', 'tqdm', (['anno_list', '"""Parsing annotations..."""'], {}), "(anno_list, 'Parsing annotations...')\n", (4598, 4635), False, 'from tqdm import tqdm\n'), ((6717, 6750), 'glog.info', 'glog.info', (['"""Saving annotation..."""'], {}), "('Saving annotation...')\n", (6726, 6750), False, 'import glog\n'), ((1317, 1344), 'os.path.dirname', 'os.path.dirname', (['input_file'], {}), '(input_file)\n', (1332, 1344), False, 'import os\n'), ((1365, 1390), 'os.path.exists', 'os.path.exists', (['save_path'], {}), '(save_path)\n', (1379, 1390), False, 'import os\n'), ((1400, 1422), 'os.makedirs', 'os.makedirs', (['save_path'], {}), '(save_path)\n', (1411, 1422), False, 'import os\n'), ((1465, 1493), 'os.path.basename', 'os.path.basename', (['input_file'], {}), '(input_file)\n', (1481, 1493), False, 'import os\n'), ((2158, 2224), 'cv2.rectangle', 'cv2.rectangle', (['img', '(bbox[0], bbox[1])', '(bbox[2], bbox[3])', 'red', '(1)'], {}), '(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), red, 1)\n', (2171, 2224), False, 'import cv2\n'), ((2327, 2402), 'cv2.putText', 'cv2.putText', (['img', 'cat_id', '(x, y)', 'cv2.FONT_HERSHEY_COMPLEX_SMALL', '(1)', 'red', '(1)'], {}), '(img, cat_id, (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, red, 1)\n', (2338, 2402), False, 'import cv2\n'), ((6437, 6449), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6446, 6449), False, 'import json\n'), ((6803, 6840), 'json.dump', 'json.dump', (['result_annotation', 'outfile'], {}), '(result_annotation, outfile)\n', (6812, 6840), False, 'import json\n'), ((7074, 7103), 'pycocotools.coco.COCO', 'coco_loader.COCO', (['args.output'], {}), '(args.output)\n', (7090, 7103), True, 'from pycocotools import coco as coco_loader\n'), ((7470, 7535), 'tqdm.tqdm', 'tqdm', (["result_annotation['images']", '"""Drawing and saving images..."""'], {}), "(result_annotation['images'], 'Drawing and saving images...')\n", (7474, 7535), False, 'from tqdm import tqdm\n'), ((5091, 5103), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5100, 5103), False, 'import json\n'), ((2106, 2124), 'numpy.int32', 'np.int32', (['[points]'], {}), '([points])\n', (2114, 2124), True, 'import numpy as np\n'), ((5030, 5064), 'os.path.join', 'os.path.join', (['directory', 'anno_file'], {}), '(directory, anno_file)\n', (5042, 5064), False, 'import os\n'), ((5178, 5220), 'os.path.join', 'os.path.join', (['img_prefix', "img['file_name']"], {}), "(img_prefix, img['file_name'])\n", (5190, 5220), False, 'import os\n')]
from TexGen.Core import * import numpy as np from os import path def export_weave_vtu(filename, weave, domain, max_dim_nvox, round_vox_up=True, export_orientation=True): """ Exporting weave to vtu, to be read by pumapy :param filename: filepath and name :type filename: string :param weave: weave object, as defined in TexGen :type weave: CTextile or child class of CTextile :param domain: domain size object, as defined in TexGen :type domain: CDomainPlanes :param max_dim_nvox: number of voxels to add in the largest domain dimension :type max_dim_nvox: int :param round_vox_up: for the shorter dimensions, round number of voxels up (for +/-1 vox) :type round_vox_up: bool :param export_orientation: specify whether to export orientation :type export_orientation: bool :return: filename of weave exported (input filename + dimensions) :rtype: string """ if not isinstance(domain, CDomainPlanes): raise Exception("Domain needs to be of CDomainPlanes type.") if not isinstance(filename, str): raise Exception("Filename has to be a string.") if not path.exists(path.split(filename)[0]): raise Exception("Directory " + path.split(filename)[0] + " not found.") min_bounds = XYZ() max_bounds = XYZ() domain.GetBoxLimits(min_bounds, max_bounds) weave.AssignDomain(CDomainPlanes(min_bounds, max_bounds)) lengths = np.array([max_bounds.x - min_bounds.x, max_bounds.y - min_bounds.y, max_bounds.z - min_bounds.z]) max_len = np.max(lengths) mask = np.zeros(3, dtype=bool) mask[lengths == max_len] = True voxel_length = max_len / float(max_dim_nvox) nvox = np.zeros(3, dtype=int) nvox[mask] = max_dim_nvox nvox[~mask] = (lengths[~mask] / voxel_length).astype(int) # truncates rem = np.zeros(3, dtype=float) rem[~mask] = lengths[~mask] - voxel_length * nvox[~mask] if round_vox_up: rem[~mask] = voxel_length - rem[~mask] max_bounds = XYZ(max_bounds.x + rem[0], max_bounds.y + rem[1], max_bounds.z + rem[2]) nvox[~mask] += 1 else: max_bounds = XYZ(max_bounds.x - rem[0], max_bounds.y - rem[1], max_bounds.z - rem[2]) weave.AssignDomain(CDomainPlanes(min_bounds, max_bounds)) mesh = CRectangularVoxelMesh() print("Exporting " + filename + ".vtu ... ", end='') filename += "_" + str(nvox[0]) + "_" + str(nvox[1]) + "_" + str(nvox[2]) mesh.SaveVoxelMesh(weave, filename, int(nvox[0]), int(nvox[1]), int(nvox[2]), False, export_orientation, MATERIAL_CONTINUUM, 0, VTU_EXPORT) print("Done") return filename
[ "numpy.zeros", "numpy.max", "os.path.split", "numpy.array" ]
[((1491, 1593), 'numpy.array', 'np.array', (['[max_bounds.x - min_bounds.x, max_bounds.y - min_bounds.y, max_bounds.z -\n min_bounds.z]'], {}), '([max_bounds.x - min_bounds.x, max_bounds.y - min_bounds.y, \n max_bounds.z - min_bounds.z])\n', (1499, 1593), True, 'import numpy as np\n'), ((1603, 1618), 'numpy.max', 'np.max', (['lengths'], {}), '(lengths)\n', (1609, 1618), True, 'import numpy as np\n'), ((1631, 1654), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'bool'}), '(3, dtype=bool)\n', (1639, 1654), True, 'import numpy as np\n'), ((1753, 1775), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'int'}), '(3, dtype=int)\n', (1761, 1775), True, 'import numpy as np\n'), ((1892, 1916), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'float'}), '(3, dtype=float)\n', (1900, 1916), True, 'import numpy as np\n'), ((1212, 1232), 'os.path.split', 'path.split', (['filename'], {}), '(filename)\n', (1222, 1232), False, 'from os import path\n'), ((1277, 1297), 'os.path.split', 'path.split', (['filename'], {}), '(filename)\n', (1287, 1297), False, 'from os import path\n')]
import cv2 import numpy as np #script que simula o jogo, pra testar um frame #se apertar esc ele fecha, se apertar espaço alterna entre uma tela preta e um frame print("Aperte espaço para mudar frame/tela preta") print("Pressione uma tecla pra selecionar a resolução:") print("A->1280x720 zoom = 75%") print("B->1280x720 zoom = 80%") print("C->1280x720 zoom = 85%") print("D->1280x720 zoom = 90%") print("E->1280x720 zoom = 95%") print("F->1280x720 zoom = 100%") print("G->1280x720 zoom = 125%") print("H->1752x712 zoom = 75%") print("I->1752x712 zoom = 80%") print("J->1752x712 zoom = 85%") print("K->1752x712 zoom = 90%") print("L->1752x712 zoom = 95%") print("M->1752x712 zoom = 100%") print("N->1752x712 zoom = 105%") print("O->1752x712 zoom = 110%") print("P->1752x712 zoom = 115%") print("Q->1752x712 zoom = 120%") print("R->1752x712 zoom = 125%") print("S->1920x1080 zoom = 90%") cv2.imshow('Stardew Valley', np.zeros([20,20])) k = cv2.waitKey() if k == 65 or k == 97: # letra a img = cv2.imread('1280x720_zoom75.png') img2 = np.zeros(img.shape) dsp = img if k == 66 or k == 98: # letra b img = cv2.imread('1280x720_zoom80.png') img2 = np.zeros(img.shape) dsp = img if k == 67 or k == 99: # letra c img = cv2.imread('1280x720_zoom85.png') img2 = np.zeros(img.shape) dsp = img if k == 68 or k == 100: # letra d img = cv2.imread('1280x720_zoom90.png') img2 = np.zeros(img.shape) dsp = img if k == 69 or k == 101: # letra e img = cv2.imread('1280x720_zoom95.png') img2 = np.zeros(img.shape) dsp = img if k == 70 or k == 102: # letra f img = cv2.imread('1280x720_zoom100.png') img2 = np.zeros(img.shape) dsp = img if k == 71 or k == 103: # letra g img = cv2.imread('1280x720_zoom125.png') img2 = np.zeros(img.shape) dsp = img if k == 72 or k == 104: # letra h img = cv2.imread('1752x712_zoom75.png') img2 = np.zeros(img.shape) dsp = img if k == 73 or k == 105: # letra i img = cv2.imread('1752x712_zoom80.png') img2 = np.zeros(img.shape) dsp = img if k == 74 or k == 106: # letra j img = cv2.imread('1752x712_zoom85.png') img2 = np.zeros(img.shape) dsp = img if k == 75 or k == 107: # letra k img = cv2.imread('1752x712_zoom90.png') img2 = np.zeros(img.shape) dsp = img if k == 76 or k == 108: # letra l img = cv2.imread('1752x712_zoom95.png') img2 = np.zeros(img.shape) dsp = img if k == 77 or k == 109: # letra m img = cv2.imread('1752x712_zoom100.png') img2 = np.zeros(img.shape) dsp = img if k == 78 or k == 110: # letra n img = cv2.imread('1752x712_zoom105.png') img2 = np.zeros(img.shape) dsp = img if k == 79 or k == 111: # letra o img = cv2.imread('1752x712_zoom110.png') img2 = np.zeros(img.shape) dsp = img if k == 80 or k == 112: # letra p img = cv2.imread('1752x712_zoom115.png') img2 = np.zeros(img.shape) dsp = img if k == 81 or k == 113: # letra q img = cv2.imread('1752x712_zoom120.png') img2 = np.zeros(img.shape) dsp = img if k == 82 or k == 114: # letra r img = cv2.imread('1752x712_zoom125.png') img2 = np.zeros(img.shape) dsp = img if k == 83 or k == 115: # letra s img = cv2.imread('1920x1080_zoom90.png') img2 = np.zeros(img.shape) dsp = img cv2.imshow('Stardew Valley', img) while True: k = cv2.waitKey(0) if k == 32: if dsp is img: dsp = img2 elif dsp is img2: dsp = img cv2.imshow('Stardew Valley', dsp) elif k == 27: cv2.destroyAllWindows() break
[ "cv2.waitKey", "cv2.destroyAllWindows", "numpy.zeros", "cv2.imread", "cv2.imshow" ]
[((939, 952), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (950, 952), False, 'import cv2\n'), ((3298, 3331), 'cv2.imshow', 'cv2.imshow', (['"""Stardew Valley"""', 'img'], {}), "('Stardew Valley', img)\n", (3308, 3331), False, 'import cv2\n'), ((916, 934), 'numpy.zeros', 'np.zeros', (['[20, 20]'], {}), '([20, 20])\n', (924, 934), True, 'import numpy as np\n'), ((996, 1029), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom75.png"""'], {}), "('1280x720_zoom75.png')\n", (1006, 1029), False, 'import cv2\n'), ((1041, 1060), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1049, 1060), True, 'import numpy as np\n'), ((1118, 1151), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom80.png"""'], {}), "('1280x720_zoom80.png')\n", (1128, 1151), False, 'import cv2\n'), ((1163, 1182), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1171, 1182), True, 'import numpy as np\n'), ((1240, 1273), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom85.png"""'], {}), "('1280x720_zoom85.png')\n", (1250, 1273), False, 'import cv2\n'), ((1285, 1304), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1293, 1304), True, 'import numpy as np\n'), ((1363, 1396), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom90.png"""'], {}), "('1280x720_zoom90.png')\n", (1373, 1396), False, 'import cv2\n'), ((1408, 1427), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1416, 1427), True, 'import numpy as np\n'), ((1486, 1519), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom95.png"""'], {}), "('1280x720_zoom95.png')\n", (1496, 1519), False, 'import cv2\n'), ((1531, 1550), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1539, 1550), True, 'import numpy as np\n'), ((1609, 1643), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom100.png"""'], {}), "('1280x720_zoom100.png')\n", (1619, 1643), False, 'import cv2\n'), ((1655, 1674), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1663, 1674), True, 'import numpy as np\n'), ((1733, 1767), 'cv2.imread', 'cv2.imread', (['"""1280x720_zoom125.png"""'], {}), "('1280x720_zoom125.png')\n", (1743, 1767), False, 'import cv2\n'), ((1779, 1798), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1787, 1798), True, 'import numpy as np\n'), ((1857, 1890), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom75.png"""'], {}), "('1752x712_zoom75.png')\n", (1867, 1890), False, 'import cv2\n'), ((1902, 1921), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (1910, 1921), True, 'import numpy as np\n'), ((1980, 2013), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom80.png"""'], {}), "('1752x712_zoom80.png')\n", (1990, 2013), False, 'import cv2\n'), ((2025, 2044), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2033, 2044), True, 'import numpy as np\n'), ((2103, 2136), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom85.png"""'], {}), "('1752x712_zoom85.png')\n", (2113, 2136), False, 'import cv2\n'), ((2148, 2167), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2156, 2167), True, 'import numpy as np\n'), ((2226, 2259), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom90.png"""'], {}), "('1752x712_zoom90.png')\n", (2236, 2259), False, 'import cv2\n'), ((2271, 2290), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2279, 2290), True, 'import numpy as np\n'), ((2349, 2382), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom95.png"""'], {}), "('1752x712_zoom95.png')\n", (2359, 2382), False, 'import cv2\n'), ((2394, 2413), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2402, 2413), True, 'import numpy as np\n'), ((2472, 2506), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom100.png"""'], {}), "('1752x712_zoom100.png')\n", (2482, 2506), False, 'import cv2\n'), ((2518, 2537), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2526, 2537), True, 'import numpy as np\n'), ((2596, 2630), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom105.png"""'], {}), "('1752x712_zoom105.png')\n", (2606, 2630), False, 'import cv2\n'), ((2642, 2661), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2650, 2661), True, 'import numpy as np\n'), ((2720, 2754), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom110.png"""'], {}), "('1752x712_zoom110.png')\n", (2730, 2754), False, 'import cv2\n'), ((2766, 2785), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2774, 2785), True, 'import numpy as np\n'), ((2844, 2878), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom115.png"""'], {}), "('1752x712_zoom115.png')\n", (2854, 2878), False, 'import cv2\n'), ((2890, 2909), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (2898, 2909), True, 'import numpy as np\n'), ((2968, 3002), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom120.png"""'], {}), "('1752x712_zoom120.png')\n", (2978, 3002), False, 'import cv2\n'), ((3014, 3033), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (3022, 3033), True, 'import numpy as np\n'), ((3092, 3126), 'cv2.imread', 'cv2.imread', (['"""1752x712_zoom125.png"""'], {}), "('1752x712_zoom125.png')\n", (3102, 3126), False, 'import cv2\n'), ((3138, 3157), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (3146, 3157), True, 'import numpy as np\n'), ((3216, 3250), 'cv2.imread', 'cv2.imread', (['"""1920x1080_zoom90.png"""'], {}), "('1920x1080_zoom90.png')\n", (3226, 3250), False, 'import cv2\n'), ((3262, 3281), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (3270, 3281), True, 'import numpy as np\n'), ((3352, 3366), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (3363, 3366), False, 'import cv2\n'), ((3485, 3518), 'cv2.imshow', 'cv2.imshow', (['"""Stardew Valley"""', 'dsp'], {}), "('Stardew Valley', dsp)\n", (3495, 3518), False, 'import cv2\n'), ((3545, 3568), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3566, 3568), False, 'import cv2\n')]
import numpy as np def conv(f, g): def h(x): """Input x has to be equidistant! """ # If the support of f or g extends outside x, # we have to evaluate the functions also outside x # to get the values of the convolution for all x. n = len(x) d = x[1] - x[0] x_ext = np.concatenate([x[-n:] - n * d, x, x[:n] + n * d]) m = len(x_ext) x_ext_tiled = np.tile(x_ext, (m, 1)) distance_matrix = x_ext_tiled - x_ext_tiled.T res = np.sum(g(-distance_matrix) * np.tile(f(x_ext), (m, 1)), axis=1) * d return res[n:-n] return h from scipy.signal import fftconvolve def fconv(f, g): def h(x): """Input x has to be equidistant! """ # Do some trickery to evaluate the convolution at the desired x-values. n = len(x) d = x[1] - x[0] x_ext = np.concatenate([x[-n // 2 :] - n * d, x, x[: n // 2] + n * d]) res = fftconvolve(f(x_ext), g(x_ext), mode="full") * (x_ext[1] - x_ext[0]) return np.interp(x, x_ext * 2, res[::2]) return h
[ "numpy.interp", "numpy.tile", "numpy.concatenate" ]
[((336, 386), 'numpy.concatenate', 'np.concatenate', (['[x[-n:] - n * d, x, x[:n] + n * d]'], {}), '([x[-n:] - n * d, x, x[:n] + n * d])\n', (350, 386), True, 'import numpy as np\n'), ((433, 455), 'numpy.tile', 'np.tile', (['x_ext', '(m, 1)'], {}), '(x_ext, (m, 1))\n', (440, 455), True, 'import numpy as np\n'), ((898, 958), 'numpy.concatenate', 'np.concatenate', (['[x[-n // 2:] - n * d, x, x[:n // 2] + n * d]'], {}), '([x[-n // 2:] - n * d, x, x[:n // 2] + n * d])\n', (912, 958), True, 'import numpy as np\n'), ((1059, 1092), 'numpy.interp', 'np.interp', (['x', '(x_ext * 2)', 'res[::2]'], {}), '(x, x_ext * 2, res[::2])\n', (1068, 1092), True, 'import numpy as np\n')]
#!/usr/bin/env python import numpy as np import rospy import time from sensor_msgs.msg import LaserScan from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry from geometry_msgs.msg import PoseWithCovarianceStamped, PointStamped from tutoriales_basicos.msg import Histogram from tf.transformations import euler_from_quaternion, quaternion_from_euler from std_msgs.msg import Int16 from std_msgs.msg import Float32 BURGER_MAX_LIN_VEL = 0.22*.7 BURGER_MAX_ANG_VEL = 2.84 #import matplotlib.pyplot as plt def min(c1,c2): s = 4 return(np.amin([(c1 - c2),(c1 - c2 - s),(c1 - c2 + s)])) class LaserSub: def __init__(self): self.sub_l_0 = rospy.Subscriber("/tb3_0/scan", LaserScan, self.scan_callback, queue_size=1) self.pub_H = rospy.Publisher("/tb3_0/Histogram", Histogram, queue_size=10) self.r = 0.3 self.s = 0.3 self.alfa = 4 #tamano del sector 4 grados. self.a = 5 self.b = 1 self.H = np.zeros(90) self.Hp = list() #def steeringCallback(self,data): # if self.Hp[int(data.steering/4)] < 1: # twist = Twist() # twist.linear.x = BURGER_MAX_LIN_VEL; twist.linear.y = 0.0; twist.linear.z = 0.0 # #print(twist.linear.x) # twist.angular.x = 0.0; twist.angular.y = 0.0; twist.angular.z = data.steering*Kp # self.pub.publish(twist) # else: # for k in range(90): # if self.Hp[k] < 1: # if k == 0: # gmin = 5*min(k,int(data.steering/4)) + 2*min(k,int(data.yaw/4)) # gpast = gmin # orientation = k # else: # gmin = 5*min(k,int(data.steering/4)) + 2*min(k,int(data.yaw/4)) # if gmin < gpast: # gpast = gmin # orientation = k def scan_callback(self,data): # Guardar datos en histograma #print(data.ranges) self.H = np.zeros(90)#Crear vector de 90 elementos size = np.size(data.ranges) #Obtiene el tamano de los datos (360) for beta in range(size): #For hasta 360 #print(data.ranges[beta]) if data.ranges[beta] > 2: #Si la distancia es mayor a 2 d = 0 #d=0 #print(beta, d) else: d = data.ranges[beta] #Si no guarda la distancia #print(beta, d) k = int((beta)/self.alfa) # k_alfa es el sector actualmente en calculo if beta<120 or (beta>240 and beta<360): #if beta>(beta - np.arcsin((self.r + self.s)/d)) and beta<(beta + np.arcsin((self.r + self.s)/d)): previus = self.H[k] self.H[k]=(previus + (15*(self.a-self.b*d*d))) msg_to_send = Histogram() msg_to_send.Histogram = self.H self.pub_H.publish(msg_to_send) def main(): try: rospy.init_node('LaseSub') LaserSub() # constructor creates publishers / subscribers rospy.spin() except rospy.ROSInterruptException: pass if __name__=="__main__": main()
[ "numpy.size", "rospy.Subscriber", "numpy.amin", "tutoriales_basicos.msg.Histogram", "numpy.zeros", "rospy.Publisher", "rospy.init_node", "rospy.spin" ]
[((558, 602), 'numpy.amin', 'np.amin', (['[c1 - c2, c1 - c2 - s, c1 - c2 + s]'], {}), '([c1 - c2, c1 - c2 - s, c1 - c2 + s])\n', (565, 602), True, 'import numpy as np\n'), ((673, 749), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/tb3_0/scan"""', 'LaserScan', 'self.scan_callback'], {'queue_size': '(1)'}), "('/tb3_0/scan', LaserScan, self.scan_callback, queue_size=1)\n", (689, 749), False, 'import rospy\n'), ((771, 832), 'rospy.Publisher', 'rospy.Publisher', (['"""/tb3_0/Histogram"""', 'Histogram'], {'queue_size': '(10)'}), "('/tb3_0/Histogram', Histogram, queue_size=10)\n", (786, 832), False, 'import rospy\n'), ((981, 993), 'numpy.zeros', 'np.zeros', (['(90)'], {}), '(90)\n', (989, 993), True, 'import numpy as np\n'), ((2040, 2052), 'numpy.zeros', 'np.zeros', (['(90)'], {}), '(90)\n', (2048, 2052), True, 'import numpy as np\n'), ((2097, 2117), 'numpy.size', 'np.size', (['data.ranges'], {}), '(data.ranges)\n', (2104, 2117), True, 'import numpy as np\n'), ((2875, 2886), 'tutoriales_basicos.msg.Histogram', 'Histogram', ([], {}), '()\n', (2884, 2886), False, 'from tutoriales_basicos.msg import Histogram\n'), ((3000, 3026), 'rospy.init_node', 'rospy.init_node', (['"""LaseSub"""'], {}), "('LaseSub')\n", (3015, 3026), False, 'import rospy\n'), ((3102, 3114), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (3112, 3114), False, 'import rospy\n')]
import numpy as np from collections import deque import gym import os import gym.spaces as spaces import cv2 import datalib.trajectories as trajectories cv2.ocl.setUseOpenCL(False) class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condtion for a few frames # so its important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8) self._skip = skip def reset(self): return self.env.reset() def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class SavedClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) self._flat_reward = 0 def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" self._flat_reward = reward return np.sign(reward) class SavedPositiveClippedRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) self._flat_reward = 0 def reward(self, reward): """Bin reward to {+1, 0} by its sign.""" self._flat_reward = reward return max(np.sign(reward), 0) class WarpFrame(gym.ObservationWrapper): def __init__(self, env, is_monte, is_pong): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.width = 84 self.height = 84 self.is_monte = is_monte self.is_pong = is_pong self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) def observation(self, frame): if self.is_monte: frame[0:23, ...] = 0 if self.is_pong: frame[0:23, :] = [144, 72, 17] frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) return frame[:, :, None] class PenalizeDying(gym.Wrapper): """ {'ale.lives': 6} """ def __init__(self, env, penalty): gym.Wrapper.__init__(self, env) self.lives = 6 self.penalty = penalty def reset(self): ob = self.env.reset() self.lives = 6 return ob def step(self, action): ob, reward, done, info = self.env.step(action) new_lives = info['ale.lives'] if new_lives < self.lives: self.lives = new_lives reward -= self.penalty # done = True return ob, reward, done, info class StepPenalty(gym.Wrapper): def __init__(self, env, step_penalty): gym.Wrapper.__init__(self, env) self.env = env self.step_penalty = step_penalty def reset(self, **kwargs): self.env.reset(**kwargs) def step(self, action): ob, reward, done, info = self.env.step(action) reward = reward - self.step_penalty return ob, reward, done, info class LimitLength(gym.Wrapper): def __init__(self, env, k, timeout_penalty): gym.Wrapper.__init__(self, env) self.k = k self.timeout_penalty = timeout_penalty def reset(self): # This assumes that reset() will really reset the env. # If the underlying env tries to be smart about reset # (e.g. end-of-life), the assumption doesn't hold. ob = self.env.reset() self.cnt = 0 return ob def step(self, action): ob, r, done, info = self.env.step(action) self.cnt += 1 if self.cnt == self.k: done = True r -= self.timeout_penalty return ob, r, done, info class FrameStack(gym.Wrapper): def __init__(self, env, k): """Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return LazyFrames(list(self.frames)) class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return np.array(observation).astype(np.float32) / 255.0 class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=2) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i] class RandomStartingWrapper(gym.Wrapper): def __init__(self, env, config): super(RandomStartingWrapper, self).__init__(env) self.config = config self.df = trajectories.load_trajectories_by_score( trajectory_dir=config['traj_dir'], max_score_cutoff=config['max_score_cutoff'], min_score_cutoff=config['min_score_cutoff'], project_level_gamma=config['gamma'], clip_rewards=config['clip_rewards'], frameskip=config['frameskip'], process_lost_lifes=config['process_lost_lifes'], ) self.random_state = None def seed(self, seed=None): self.env.seed(seed) if seed is None: raise ValueError("Seed cannot be None in case of random starting env wrapper") self.random_state = np.random.RandomState(seed) def reset(self, **kwargs): super(RandomStartingWrapper, self).reset(**kwargs) wrapped_env = self.env.env if self.random_state is None: raise ValueError("Uninitialized random state") idx = self.random_state.randint(1, len(self.df)) # We have to kick out the first frame, because we don't have observation before it while self.df.iloc[idx].frame == 0: idx = self.random_state.randint(1, len(self.df)) # print("Will restore state no = {}".format(idx)) traj = self.df.iloc[idx].trajectory state_idx = self.df.iloc[idx].frame state_fname = os.path.join(self.config['stat_dir'], "{}/{:07d}.npy".format(traj, state_idx)) state = np.load(state_fname) img_fname = os.path.join(self.config['img_dir'], "{}/{:07d}.png".format(traj, state_idx - 1)) img = cv2.imread(img_fname, cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) wrapped_env.restore_full_state(state) # wrapped_env._get_obs() returns observation before state change, so we have to fix it ourselves # https://github.com/openai/gym/issues/715 return img class DoomMyWayHomeActionWrapper(gym.ActionWrapper): """ Doom my way home env (see doom.env.doom_my_way_home). has action space: actions = [0] * 43 actions[13] = 0 # MOVE_FORWARD actions[14] = 1 # TURN_RIGHT actions[15] = 0 # TURN_LEFT We need to change that to match the scheme I have implemnted while gathering data (and to much the stoachastic policy reinforecement learning formulation). We want to map e.g.: 7 -> [1, 1, 1] 5 -> [1, 0, 1] (but ofc the relevant array starts from place 13) """ def __init__(self, env): super(DoomMyWayHomeActionWrapper, self).__init__(env) self.action_space = gym.spaces.Discrete(8) def action(self, action): a = action move_fwd = a % 2 a = a // 2 turn_right = a % 2 a = a // 2 turn_left = a % 2 a = a // 2 assert a == 0 out = [0] * 43 out[0] = move_fwd out[1] = turn_right out[2] = turn_left return out def make_state_restoring_atari(env_id, config): env = gym.make(env_id) assert 'NoFrameskip' in env.spec.id env = RandomStartingWrapper(env, config) env = MaxAndSkipEnv(env, skip=4) return env def make_atari(env_id): env = gym.make(env_id) assert 'NoFrameskip' in env.spec.id env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) return env def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False, is_monte=False, is_pong=False, save_original_reward=False, only_positive_rewards=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env, is_monte, is_pong) if scale: env = ScaledFloatFrame(env) if only_positive_rewards: env = SavedPositiveClippedRewardEnv(env) elif clip_rewards: if save_original_reward: env = SavedClipRewardEnv(env) else: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env def wrap_doom_deepmind_like(env, clip_rewards=True, frame_stack=False, scale=False, save_original_reward=False): env = WarpFrame(env, is_monte=False, is_pong=False) env = DoomMyWayHomeActionWrapper(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: if save_original_reward: env = SavedClipRewardEnv(env) else: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env
[ "gym.Wrapper.__init__", "datalib.trajectories.load_trajectories_by_score", "numpy.load", "gym.make", "gym.RewardWrapper.__init__", "numpy.concatenate", "cv2.cvtColor", "collections.deque", "numpy.zeros", "cv2.ocl.setUseOpenCL", "numpy.random.RandomState", "gym.ObservationWrapper.__init__", "gym.spaces.Discrete", "cv2.imread", "numpy.array", "gym.spaces.Box", "numpy.sign", "cv2.resize" ]
[((155, 182), 'cv2.ocl.setUseOpenCL', 'cv2.ocl.setUseOpenCL', (['(False)'], {}), '(False)\n', (175, 182), False, 'import cv2\n'), ((13187, 13203), 'gym.make', 'gym.make', (['env_id'], {}), '(env_id)\n', (13195, 13203), False, 'import gym\n'), ((13377, 13393), 'gym.make', 'gym.make', (['env_id'], {}), '(env_id)\n', (13385, 13393), False, 'import gym\n'), ((397, 428), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (417, 428), False, 'import gym\n'), ((1368, 1399), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (1388, 1399), False, 'import gym\n'), ((2106, 2137), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (2126, 2137), False, 'import gym\n'), ((3456, 3487), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (3476, 3487), False, 'import gym\n'), ((3590, 3650), 'numpy.zeros', 'np.zeros', (['((2,) + env.observation_space.shape)'], {'dtype': 'np.uint8'}), '((2,) + env.observation_space.shape, dtype=np.uint8)\n', (3598, 3650), True, 'import numpy as np\n'), ((4517, 4554), 'gym.RewardWrapper.__init__', 'gym.RewardWrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (4543, 4554), False, 'import gym\n'), ((4654, 4669), 'numpy.sign', 'np.sign', (['reward'], {}), '(reward)\n', (4661, 4669), True, 'import numpy as np\n'), ((4753, 4790), 'gym.RewardWrapper.__init__', 'gym.RewardWrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (4779, 4790), False, 'import gym\n'), ((4955, 4970), 'numpy.sign', 'np.sign', (['reward'], {}), '(reward)\n', (4962, 4970), True, 'import numpy as np\n'), ((5065, 5102), 'gym.RewardWrapper.__init__', 'gym.RewardWrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (5091, 5102), False, 'import gym\n'), ((5464, 5506), 'gym.ObservationWrapper.__init__', 'gym.ObservationWrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (5495, 5506), False, 'import gym\n'), ((5653, 5732), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(0)', 'high': '(255)', 'shape': '(self.height, self.width, 1)', 'dtype': 'np.uint8'}), '(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8)\n', (5663, 5732), True, 'import gym.spaces as spaces\n'), ((5923, 5962), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_RGB2GRAY'], {}), '(frame, cv2.COLOR_RGB2GRAY)\n', (5935, 5962), False, 'import cv2\n'), ((5979, 6053), 'cv2.resize', 'cv2.resize', (['frame', '(self.width, self.height)'], {'interpolation': 'cv2.INTER_AREA'}), '(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)\n', (5989, 6053), False, 'import cv2\n'), ((6206, 6237), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (6226, 6237), False, 'import gym\n'), ((6764, 6795), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (6784, 6795), False, 'import gym\n'), ((7183, 7214), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (7203, 7214), False, 'import gym\n'), ((8052, 8083), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (8072, 8083), False, 'import gym\n'), ((8125, 8144), 'collections.deque', 'deque', (['[]'], {'maxlen': 'k'}), '([], maxlen=k)\n', (8130, 8144), False, 'from collections import deque\n'), ((8220, 8299), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(0)', 'high': '(255)', 'shape': '(shp[0], shp[1], shp[2] * k)', 'dtype': 'np.uint8'}), '(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8)\n', (8230, 8299), True, 'import gym.spaces as spaces\n'), ((8811, 8853), 'gym.ObservationWrapper.__init__', 'gym.ObservationWrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (8842, 8853), False, 'import gym\n'), ((10180, 10516), 'datalib.trajectories.load_trajectories_by_score', 'trajectories.load_trajectories_by_score', ([], {'trajectory_dir': "config['traj_dir']", 'max_score_cutoff': "config['max_score_cutoff']", 'min_score_cutoff': "config['min_score_cutoff']", 'project_level_gamma': "config['gamma']", 'clip_rewards': "config['clip_rewards']", 'frameskip': "config['frameskip']", 'process_lost_lifes': "config['process_lost_lifes']"}), "(trajectory_dir=config['traj_dir'],\n max_score_cutoff=config['max_score_cutoff'], min_score_cutoff=config[\n 'min_score_cutoff'], project_level_gamma=config['gamma'], clip_rewards=\n config['clip_rewards'], frameskip=config['frameskip'],\n process_lost_lifes=config['process_lost_lifes'])\n", (10219, 10516), True, 'import datalib.trajectories as trajectories\n'), ((10834, 10861), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (10855, 10861), True, 'import numpy as np\n'), ((11607, 11627), 'numpy.load', 'np.load', (['state_fname'], {}), '(state_fname)\n', (11614, 11627), True, 'import numpy as np\n'), ((11745, 11784), 'cv2.imread', 'cv2.imread', (['img_fname', 'cv2.IMREAD_COLOR'], {}), '(img_fname, cv2.IMREAD_COLOR)\n', (11755, 11784), False, 'import cv2\n'), ((11799, 11835), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (11811, 11835), False, 'import cv2\n'), ((12772, 12794), 'gym.spaces.Discrete', 'gym.spaces.Discrete', (['(8)'], {}), '(8)\n', (12791, 12794), False, 'import gym\n'), ((5267, 5282), 'numpy.sign', 'np.sign', (['reward'], {}), '(reward)\n', (5274, 5282), True, 'import numpy as np\n'), ((9627, 9663), 'numpy.concatenate', 'np.concatenate', (['self._frames'], {'axis': '(2)'}), '(self._frames, axis=2)\n', (9641, 9663), True, 'import numpy as np\n'), ((9014, 9035), 'numpy.array', 'np.array', (['observation'], {}), '(observation)\n', (9022, 9035), True, 'import numpy as np\n')]
#!/usr/bin/python #-*- coding: utf-8 -*- from SpeakerNet import * from utils import * from DatasetLoader import loadWAV import sys, time, os, argparse, socket import yaml import numpy import pdb import torch import glob import zipfile import datetime import os import random import subprocess import torch.distributed as dist import torch.multiprocessing as mp import numpy as np import torch.nn.functional as F from werkzeug.utils import secure_filename from flask import Flask, request, jsonify # ## ===== ===== ===== ===== ===== ===== ===== ===== # ## Parse arguments # ## ===== ===== ===== ===== ===== ===== ===== ===== parser = argparse.ArgumentParser(description = 'Prepare Data'); ## Data loader parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training'); parser.add_argument('--eval_frames', type=int, default=400, help='Input length to the network for testing; 0 uses the whole files'); ## Training details parser.add_argument('--trainfunc', type=str, default='softmaxproto', help='Loss function'); ## Optimizer parser.add_argument('--optimizer', type=str, default='adam', help='sgd or adam'); ## Loss functions parser.add_argument('--hard_prob', type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions'); parser.add_argument('--hard_rank', type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions'); parser.add_argument('--margin', type=float, default=0.1, help='Loss margin, only for some loss functions'); parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions'); parser.add_argument('--nPerSpeaker', type=int, default=2, help='Number of utterances per speaker per batch, only for metric learning based losses'); parser.add_argument('--nClasses', type=int, default=400, help='Number of speakers in the softmax layer, only for softmax-based losses'); ## Load parser.add_argument('--model_path', type=str, default='model000000500.model', help='Path for model and logs'); ## Model definition parser.add_argument('--n_mels', type=int, default=64, help='Number of mel filterbanks'); parser.add_argument('--log_input', type=bool, default=True, help='Log input features') parser.add_argument('--model', type=str, default='ResNetSE34V2', help='Name of model definition'); parser.add_argument('--encoder_type', type=str, default='ASP', help='Type of encoder'); parser.add_argument('--nOut', type=int, default=512, help='Embedding size in the last FC layer'); ##Server 's params parser.add_argument('--gpu', dest='gpu', action='store_true', help='Use GPU'); parser.add_argument('--threshold', type=float, default=-1.0831763744354248, help='Threshold'); parser.add_argument('--feats_path', type=str, default='feats.npy', help='Path for feats file'); args = parser.parse_args(); ## Load models if args.gpu == True: s = SpeakerNet(**vars(args)); s = WrappedModel(s).cuda(0) else: s = SpeakerNetCPU(**vars(args)); s = WrappedModel(s).cpu() ## Load model weights try: loadParameters(args.model_path, s, args.gpu); except: raise Exception('Model path is wrong!') print('Model %s loaded from previous state!'%args.model_path); feats = np.load(args.feats_path, allow_pickle=True)[()] def main_worker(file_path): data = create_data(file_path, args.eval_frames) feature_vector = s(data).detach().cpu() normalized_vector = F.normalize(feature_vector, p=2, dim=1) max_score = args.threshold speaker = '' for key, value in feats.items(): dist = F.pairwise_distance(normalized_vector.unsqueeze(-1), value.unsqueeze(-1).transpose(0,2)).detach().cpu().numpy(); score = -1 * np.mean(dist); if score >= max_score: max_score = score speaker = key.split('/')[-2] return speaker app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): audio_file = request.files['file'] file_name_1 = str(random.randint(0, 100000)) + '.' + secure_filename(audio_file.filename).split('.')[-1] audio_file.save(file_name_1) file_name_2 = str(random.randint(0, 100000)) + '.wav' out = subprocess.call('ffmpeg -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s >/dev/null 2>/dev/null' %(file_name_1, file_name_2), shell=True) if out != 0: return 'Invalid format!' speaker = main_worker(file_name_2) os.remove(file_name_1) os.remove(file_name_2) result = {'speaker': speaker} return jsonify(result) if __name__ == '__main__': app.run(host='0.0.0.0', port='8080', debug=False)
[ "numpy.load", "os.remove", "argparse.ArgumentParser", "random.randint", "flask.Flask", "werkzeug.utils.secure_filename", "flask.jsonify", "numpy.mean", "subprocess.call", "torch.nn.functional.normalize" ]
[((638, 689), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Prepare Data"""'}), "(description='Prepare Data')\n", (661, 689), False, 'import sys, time, os, argparse, socket\n'), ((4073, 4088), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (4078, 4088), False, 'from flask import Flask, request, jsonify\n'), ((3455, 3498), 'numpy.load', 'np.load', (['args.feats_path'], {'allow_pickle': '(True)'}), '(args.feats_path, allow_pickle=True)\n', (3462, 3498), True, 'import numpy as np\n'), ((3653, 3692), 'torch.nn.functional.normalize', 'F.normalize', (['feature_vector'], {'p': '(2)', 'dim': '(1)'}), '(feature_vector, p=2, dim=1)\n', (3664, 3692), True, 'import torch.nn.functional as F\n'), ((4396, 4545), 'subprocess.call', 'subprocess.call', (["('ffmpeg -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s >/dev/null 2>/dev/null'\n % (file_name_1, file_name_2))"], {'shell': '(True)'}), "(\n 'ffmpeg -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s >/dev/null 2>/dev/null'\n % (file_name_1, file_name_2), shell=True)\n", (4411, 4545), False, 'import subprocess\n'), ((4629, 4651), 'os.remove', 'os.remove', (['file_name_1'], {}), '(file_name_1)\n', (4638, 4651), False, 'import os\n'), ((4656, 4678), 'os.remove', 'os.remove', (['file_name_2'], {}), '(file_name_2)\n', (4665, 4678), False, 'import os\n'), ((4725, 4740), 'flask.jsonify', 'jsonify', (['result'], {}), '(result)\n', (4732, 4740), False, 'from flask import Flask, request, jsonify\n'), ((3928, 3941), 'numpy.mean', 'np.mean', (['dist'], {}), '(dist)\n', (3935, 3941), True, 'import numpy as np\n'), ((4350, 4375), 'random.randint', 'random.randint', (['(0)', '(100000)'], {}), '(0, 100000)\n', (4364, 4375), False, 'import random\n'), ((4207, 4232), 'random.randint', 'random.randint', (['(0)', '(100000)'], {}), '(0, 100000)\n', (4221, 4232), False, 'import random\n'), ((4242, 4278), 'werkzeug.utils.secure_filename', 'secure_filename', (['audio_file.filename'], {}), '(audio_file.filename)\n', (4257, 4278), False, 'from werkzeug.utils import secure_filename\n')]
from functools import singledispatch import json import fsspec from toolz import groupby from loguru import logger from typing import Any, List, Union from pydantic.datetime_parse import datetime_re from pydantic.validators import parse_datetime import numpy as np from ..types import Interval from ..indexes import Index, InterpolatingIndex, IntervalIndex, MultiIndex from ..utils import jsonable, singledispatchmethod, hashable_doc, unhashable_doc from .base import BaseDataQuery, DatasourceInterface class JsonBaseQuery(BaseDataQuery): def __init__(self, index, data, field: str, label: Any) -> None: self.index = index self.data = data self.field = field self.label = label @property def labels(self): return {self.field: self.label} def filter(self, record: dict): raise NotImplementedError def apply_selection(self, records): return list(filter(self.filter, records)) def execute(self, limit: int = None, skip: int = None, sort=None): logger.debug("Applying pandas dataframe selection") if not self.data: return [] if sort is None: data = self.data else: if isinstance(sort, str): sort = [sort] data = [hashable_doc(d) for d in self.data] data = sorted(data, key=lambda d: tuple(d[s] for s in sort)) data = [unhashable_doc(d) for d in data] docs = self.apply_selection(data) if limit is not None: start = skip * self.index.DOCS_PER_LABEL if skip is not None else 0 limit = start + limit * self.index.DOCS_PER_LABEL docs = docs[start:limit] docs = self.index.reduce(docs, self.labels) docs = from_json(docs) logger.debug(f"Done. Found {len(docs)} documents.") return docs def min(self, fields: Union[str, List[str]]): if isinstance(fields, str): fields = [fields] docs = self.apply_selection(self.data) results = {} for field in fields: values = [d[field] for d in docs] results[field] = min(values) results = from_json(results) if len(fields) == 1: return results[fields[0]] return results def max(self, fields: Union[str, List[str]]): if isinstance(fields, str): fields = [fields] docs = self.apply_selection(self.data) results = {} for field in fields: values = [d[field] for d in docs] results[field] = max(values) results = from_json(results) if len(fields) == 1: return results[fields[0]] return results def unique(self, fields: Union[str, List[str]]): if isinstance(fields, str): fields = [fields] docs = self.apply_selection(self.data) results = {} for field in fields: values = [doc[field] for doc in docs] values = set([hashable_doc(v) for v in values]) values = [unhashable_doc(v) for v in values] results[field] = values results = from_json(results) if len(fields) == 1: return results[fields[0]] return results def count(self): docs = self.apply_selection(self.data) return len(docs) class JsonSimpleQuery(JsonBaseQuery): def filter(self, record: dict): if self.label is None: return True if self.field not in record: raise KeyError(self.field) label = self.label if isinstance(label, slice): if label.step is None: ge = record[self.field] >= label.start lt = record[self.field] < label.stop return ge and lt else: label = list(range(label.start, label.stop, label.step)) if isinstance(label, list): return record[self.field] in label else: return record[self.field] == label class JsonIntervalQuery(JsonBaseQuery): def filter(self, record: dict): if self.label is None: return record if self.field not in record: raise KeyError(self.field) interval = self.label if isinstance(interval, tuple): left, right = interval elif isinstance(interval, dict): left, right = interval["left"], interval["right"] elif isinstance(interval, slice): left, right = interval.start, interval.stop elif hasattr(interval, "left") and hasattr(interval, "right"): left, right = interval.left, interval.right else: left = right = interval left, right = to_json(left), to_json(right) return (record[self.field]["left"] < right) and ( record[self.field]["right"] > left ) class JsonInterpolationQuery(JsonBaseQuery): def apply_selection(self, records, limit=1): if self.label is None: return records if not all(self.field in record for record in records): raise KeyError(self.field) field_values = np.array([record[self.field] for record in records]) before_mask = field_values <= self.label before_values = field_values[before_mask] after_mask = field_values > self.label after_values = field_values[after_mask] before_idxs = np.argsort(np.abs(before_values) - self.label)[:limit] before_records = [records[i] for i in np.flatnonzero(before_mask)] before_values = [before_records[i] for i in before_idxs] after_idxs = np.argsort(np.abs(after_values) - self.label)[:limit] after_records = [records[i] for i in np.flatnonzero(after_mask)] after_values = [after_records[i] for i in after_idxs] return before_values + after_values class JsonMultiQuery(JsonBaseQuery): def __init__(self, index, data, queries: List[JsonBaseQuery]) -> None: self.index = index self.data = data self.queries = queries @property def labels(self): return {query.field: query.label for query in self.queries} def apply_selection(self, records): if len(self.queries) == 1: return self.queries[0].apply_selection(records) for query in self.queries: if isinstance(query, JsonInterpolationQuery): selections = [] others = [q.field for q in self.queries if q is not query] if not others: records = query.apply_selection(records) continue for _, docs in groupby(others, records): selection = query.apply_selection(docs).reset_index() selections.extend(selection) if selections: records = selections else: records = [] else: records = query.apply_selection(records) return records @DatasourceInterface.register_interface(list) class JsonInterface(DatasourceInterface): @classmethod def from_url(cls, url: str, jsonpath="", **kwargs): if url.endswith(".json"): with fsspec.open(url, **kwargs) as f: data = json.load(f) for p in jsonpath.split("."): data = data[p] if p else data if not isinstance(data, list): raise ValueError("JSON file must contain a list of documents") return cls(data) raise NotImplementedError @singledispatchmethod def compile_query(self, index, label): raise NotImplementedError( f"{self.__class__.__name__} does not support {type(index)} indexes." ) @compile_query.register(Index) @compile_query.register(str) def simple_query(self, index, label): if isinstance(index, str): index, name = Index(), index index.name = name label = to_json(label) return JsonSimpleQuery(index, self.source, index.name, label) @compile_query.register(IntervalIndex) def interval_query(self, index, label): label = to_json(label) return JsonIntervalQuery(index, self.source, index.name, label) @compile_query.register(InterpolatingIndex) def interpolating_query(self, index, label): label = to_json(label) return JsonInterpolationQuery(index, self.source, index.name, label) @compile_query.register(list) @compile_query.register(tuple) @compile_query.register(MultiIndex) def multi_query(self, index, labels): if not isinstance(index, MultiIndex): index = MultiIndex(*index) queries = [self.compile_query(idx, labels[idx.name]) for idx in index.indexes] return JsonMultiQuery(index, self.source, queries) def _find(self, doc): for i, d in enumerate(self.source): if doc.same_index(doc.__class__(**d)): return i else: raise KeyError(doc.index_labels) def insert(self, doc): doc = to_json(doc.dict()) self.source.append(doc) def update(self, doc): for i, d in enumerate(self.source): if doc.same_index(doc.__class__(**d)): self.source[i] = to_json(doc.dict()) break else: from rframe.schema import UpdateError raise UpdateError(f"No document with index {doc.index} found.") def delete(self, doc): del self.source[self._find(doc)] def to_json(obj): return jsonable(obj) @singledispatch def from_json(obj): return obj @from_json.register(str) def from_json_str(obj): match = datetime_re.match(obj) # type: ignore if match is None: return obj return parse_datetime(obj) @from_json.register(list) def from_json_list(obj): return [from_json(v) for v in obj] @from_json.register(tuple) def from_json_tuple(obj): return tuple(from_json(v) for v in obj) @from_json.register(dict) def from_json_dict(obj): if len(obj) == 2 and "left" in obj and "right" in obj: left, right = from_json((obj["left"], obj["right"])) return Interval[left, right] return {k: from_json(v) for k, v in obj.items()}
[ "pydantic.datetime_parse.datetime_re.match", "loguru.logger.debug", "json.load", "numpy.abs", "numpy.flatnonzero", "toolz.groupby", "numpy.array", "rframe.schema.UpdateError", "pydantic.validators.parse_datetime", "fsspec.open" ]
[((9844, 9866), 'pydantic.datetime_parse.datetime_re.match', 'datetime_re.match', (['obj'], {}), '(obj)\n', (9861, 9866), False, 'from pydantic.datetime_parse import datetime_re\n'), ((9935, 9954), 'pydantic.validators.parse_datetime', 'parse_datetime', (['obj'], {}), '(obj)\n', (9949, 9954), False, 'from pydantic.validators import parse_datetime\n'), ((1039, 1090), 'loguru.logger.debug', 'logger.debug', (['"""Applying pandas dataframe selection"""'], {}), "('Applying pandas dataframe selection')\n", (1051, 1090), False, 'from loguru import logger\n'), ((5214, 5266), 'numpy.array', 'np.array', (['[record[self.field] for record in records]'], {}), '([record[self.field] for record in records])\n', (5222, 5266), True, 'import numpy as np\n'), ((9556, 9613), 'rframe.schema.UpdateError', 'UpdateError', (['f"""No document with index {doc.index} found."""'], {}), "(f'No document with index {doc.index} found.')\n", (9567, 9613), False, 'from rframe.schema import UpdateError\n'), ((5586, 5613), 'numpy.flatnonzero', 'np.flatnonzero', (['before_mask'], {}), '(before_mask)\n', (5600, 5613), True, 'import numpy as np\n'), ((5801, 5827), 'numpy.flatnonzero', 'np.flatnonzero', (['after_mask'], {}), '(after_mask)\n', (5815, 5827), True, 'import numpy as np\n'), ((6727, 6751), 'toolz.groupby', 'groupby', (['others', 'records'], {}), '(others, records)\n', (6734, 6751), False, 'from toolz import groupby\n'), ((7317, 7343), 'fsspec.open', 'fsspec.open', (['url'], {}), '(url, **kwargs)\n', (7328, 7343), False, 'import fsspec\n'), ((7373, 7385), 'json.load', 'json.load', (['f'], {}), '(f)\n', (7382, 7385), False, 'import json\n'), ((5496, 5517), 'numpy.abs', 'np.abs', (['before_values'], {}), '(before_values)\n', (5502, 5517), True, 'import numpy as np\n'), ((5713, 5733), 'numpy.abs', 'np.abs', (['after_values'], {}), '(after_values)\n', (5719, 5733), True, 'import numpy as np\n')]
from __future__ import absolute_import, division import cv2 import numpy as np import time from ..utils.viz import show_frame class Tracker(object): def __init__(self, name): self.name = name def init(self, image, init_rect): raise NotImplementedError() def update(self, image): raise NotImplementedError() def track(self, img_files, init_rect, visualize=False): frame_num = len(img_files) bndboxes = np.zeros((frame_num, 4)) bndboxes[0, :] = init_rect speed_fps = np.zeros(frame_num) for f, img_file in enumerate(img_files): image = cv2.imread(img_file) if image.ndim == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) elif image.ndim == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) start_time = time.time() if f == 0: self.init(image, init_rect) else: bndboxes[f, :] = self.update(image) elapsed_time = time.time() - start_time speed_fps[f] = 1. / elapsed_time if visualize: show_frame(image, bndboxes[f, :], fig_n=1) return bndboxes, speed_fps from .siamfc import TrackerSiamFC from .goturn import TrackerGOTURN from .csk import TrackerCSK from .kcf import TrackerKCF from .dcf import TrackerDCF from .dcfnet import TrackerDCFNet from .mosse import TrackerMOSSE from .dsst import TrackerDSST
[ "cv2.cvtColor", "cv2.imread", "numpy.zeros", "time.time" ]
[((465, 489), 'numpy.zeros', 'np.zeros', (['(frame_num, 4)'], {}), '((frame_num, 4))\n', (473, 489), True, 'import numpy as np\n'), ((545, 564), 'numpy.zeros', 'np.zeros', (['frame_num'], {}), '(frame_num)\n', (553, 564), True, 'import numpy as np\n'), ((635, 655), 'cv2.imread', 'cv2.imread', (['img_file'], {}), '(img_file)\n', (645, 655), False, 'import cv2\n'), ((875, 886), 'time.time', 'time.time', ([], {}), '()\n', (884, 886), False, 'import time\n'), ((712, 751), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_GRAY2RGB'], {}), '(image, cv2.COLOR_GRAY2RGB)\n', (724, 751), False, 'import cv2\n'), ((1051, 1062), 'time.time', 'time.time', ([], {}), '()\n', (1060, 1062), False, 'import time\n'), ((810, 848), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (822, 848), False, 'import cv2\n')]
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.batch_norm.""" import os from absl.testing import absltest from haiku._src import batch_norm from haiku._src import test_utils from haiku._src import transform import jax import jax.numpy as jnp import numpy as np class BatchNormTest(absltest.TestCase): @test_utils.transform_and_run def test_basic(self): data = jnp.arange(2 * 3 * 4, dtype=jnp.float32).reshape([2, 3, 4]) norm = batch_norm.BatchNorm(True, True, 0.9) result = norm(data, is_training=True) result_0_replicated = jnp.broadcast_to(result[:, :, :1], result.shape) # Input data is symmetrical variance per-channel. np.testing.assert_allclose(result, result_0_replicated) # Running through again in test mode produces same output. np.testing.assert_allclose(norm(data, is_training=False), result, rtol=2e-2) @test_utils.transform_and_run def test_simple_training(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9) inputs = np.ones([2, 3, 3, 5]) scale = np.full((5,), 0.5) offset = np.full((5,), 2.0) result = layer(inputs, True, scale=scale, offset=offset) np.testing.assert_equal(result, np.full(inputs.shape, 2.0)) @test_utils.transform_and_run def test_simple_training_nchw(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, data_format="NCHW") inputs = np.ones([2, 5, 3, 3]) scale = np.full((5, 1, 1), 0.5) offset = np.full((5, 1, 1), 2.0) result = layer(inputs, True, scale=scale, offset=offset) np.testing.assert_equal(result, np.full(inputs.shape, 2.0)) @test_utils.transform_and_run def test_simple_training_normalized_axes(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, axis=[0, 2, 3]) # Not the second axis. # This differs only in the second axis. inputs = np.stack([2.0 * np.ones([5, 3, 3]), np.ones([5, 3, 3])], 1) result = layer(inputs, True) # Despite not all values being identical, treating slices from the first # axis separately leads to a fully normalized = equal array. np.testing.assert_equal(result, np.zeros(inputs.shape)) def test_simple_training_cross_replica_axis(self): ldc = jax.local_device_count() def f(x, is_training=True): return batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, cross_replica_axis="i", )(x, is_training=is_training) f = transform.transform_with_state(f) inputs = np.arange(ldc * 4).reshape(ldc, 4) key = np.broadcast_to(jax.random.PRNGKey(42), (ldc, 2)) params, state = jax.pmap(f.init, axis_name="i")(key, inputs) result, _ = jax.pmap(f.apply, axis_name="i")(params, state, key, inputs) mean = np.mean(inputs, axis=0) std = np.std(inputs, axis=0) + 1e-10 expected = (inputs - mean) / std np.testing.assert_array_almost_equal(result, expected) def test_simple_training_cross_replica_axis_index_groups(self): ldc = jax.local_device_count() if ldc < 2: self.skipTest("Cross-replica test requires at least 2 devices.") num_groups = ldc // 2 num_group_devices = ldc // num_groups # for 8 devices this produces [[0, 1], [2, 3], [4, 5], [6, 7]] groups. groups = np.arange(ldc).reshape(num_groups, num_group_devices).tolist() def f(x, is_training=True): return batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9, cross_replica_axis="i", cross_replica_axis_index_groups=groups, )(x, is_training=is_training) f = transform.transform_with_state(f) inputs = np.arange(ldc * 4).reshape(ldc, 4).astype(np.float32) key = np.broadcast_to(jax.random.PRNGKey(42), (ldc, 2)) params, state = jax.pmap(f.init, axis_name="i")(key, inputs) result, _ = jax.pmap(f.apply, axis_name="i")(params, state, key, inputs) expected = np.empty_like(inputs) for g in range(num_groups): group_inputs = inputs[num_group_devices*g:num_group_devices*(g + 1)] group_mean = np.mean(group_inputs, axis=0) group_std = np.std(group_inputs, axis=0) + 1e-10 group_inputs = (group_inputs - group_mean) / group_std expected[num_group_devices*g:num_group_devices*(g + 1)] = group_inputs np.testing.assert_array_almost_equal(result, expected) @test_utils.transform_and_run def test_no_scale_and_offset(self): layer = batch_norm.BatchNorm( create_scale=False, create_offset=False, decay_rate=0.9) inputs = jnp.ones([2, 5, 3, 3, 3]) result = layer(inputs, True) np.testing.assert_equal(result, np.zeros_like(inputs)) @test_utils.transform_and_run def test_no_scale_and_init_provided(self): with self.assertRaisesRegex( ValueError, "Cannot set `scale_init` if `create_scale=False`"): batch_norm.BatchNorm( create_scale=False, create_offset=True, decay_rate=0.9, scale_init=jnp.ones) @test_utils.transform_and_run def test_no_offset_beta_init_provided(self): with self.assertRaisesRegex( ValueError, "Cannot set `offset_init` if `create_offset=False`"): batch_norm.BatchNorm( create_scale=True, create_offset=False, decay_rate=0.9, offset_init=jnp.zeros) def test_eps_cast_to_var_dtype(self): # See https://github.com/google/jax/issues/4718 for more info. In the # context of this test we need to assert NumPy bf16 params/state and a # Python float for eps preserve bf16 output. def f(x, is_training): return batch_norm.BatchNorm(True, True, 0.9, eps=0.1)(x, is_training) f = transform.transform_with_state(f) x = np.ones([], jnp.bfloat16) key = jax.random.PRNGKey(42) params, state = jax.device_get(f.init(key, x, True)) y, _ = f.apply(params, state, None, x, False) self.assertEqual(y.dtype, jnp.bfloat16) if __name__ == "__main__": _xla_flags = os.environ.get("XLA_FLAGS", "") os.environ["XLA_FLAGS"] = (_xla_flags + " --xla_force_host_platform_device_count=8") absltest.main() os.environ["XLA_FLAGS"] = _xla_flags
[ "absl.testing.absltest.main", "numpy.ones", "jax.random.PRNGKey", "numpy.mean", "numpy.arange", "numpy.testing.assert_array_almost_equal", "numpy.full", "numpy.zeros_like", "numpy.std", "jax.local_device_count", "numpy.empty_like", "haiku._src.batch_norm.BatchNorm", "numpy.testing.assert_allclose", "haiku._src.transform.transform_with_state", "jax.numpy.broadcast_to", "jax.pmap", "jax.numpy.ones", "jax.numpy.arange", "numpy.zeros", "os.environ.get" ]
[((6809, 6840), 'os.environ.get', 'os.environ.get', (['"""XLA_FLAGS"""', '""""""'], {}), "('XLA_FLAGS', '')\n", (6823, 6840), False, 'import os\n'), ((6960, 6975), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (6973, 6975), False, 'from absl.testing import absltest\n'), ((1117, 1154), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', (['(True)', '(True)', '(0.9)'], {}), '(True, True, 0.9)\n', (1137, 1154), False, 'from haiku._src import batch_norm\n'), ((1223, 1271), 'jax.numpy.broadcast_to', 'jnp.broadcast_to', (['result[:, :, :1]', 'result.shape'], {}), '(result[:, :, :1], result.shape)\n', (1239, 1271), True, 'import jax.numpy as jnp\n'), ((1330, 1385), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['result', 'result_0_replicated'], {}), '(result, result_0_replicated)\n', (1356, 1385), True, 'import numpy as np\n'), ((1609, 1686), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(False)', 'decay_rate': '(0.9)'}), '(create_scale=False, create_offset=False, decay_rate=0.9)\n', (1629, 1686), False, 'from haiku._src import batch_norm\n'), ((1710, 1731), 'numpy.ones', 'np.ones', (['[2, 3, 3, 5]'], {}), '([2, 3, 3, 5])\n', (1717, 1731), True, 'import numpy as np\n'), ((1744, 1762), 'numpy.full', 'np.full', (['(5,)', '(0.5)'], {}), '((5,), 0.5)\n', (1751, 1762), True, 'import numpy as np\n'), ((1776, 1794), 'numpy.full', 'np.full', (['(5,)', '(2.0)'], {}), '((5,), 2.0)\n', (1783, 1794), True, 'import numpy as np\n'), ((2005, 2107), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(False)', 'decay_rate': '(0.9)', 'data_format': '"""NCHW"""'}), "(create_scale=False, create_offset=False, decay_rate=\n 0.9, data_format='NCHW')\n", (2025, 2107), False, 'from haiku._src import batch_norm\n'), ((2150, 2171), 'numpy.ones', 'np.ones', (['[2, 5, 3, 3]'], {}), '([2, 5, 3, 3])\n', (2157, 2171), True, 'import numpy as np\n'), ((2184, 2207), 'numpy.full', 'np.full', (['(5, 1, 1)', '(0.5)'], {}), '((5, 1, 1), 0.5)\n', (2191, 2207), True, 'import numpy as np\n'), ((2221, 2244), 'numpy.full', 'np.full', (['(5, 1, 1)', '(2.0)'], {}), '((5, 1, 1), 2.0)\n', (2228, 2244), True, 'import numpy as np\n'), ((2466, 2564), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(False)', 'decay_rate': '(0.9)', 'axis': '[0, 2, 3]'}), '(create_scale=False, create_offset=False, decay_rate=\n 0.9, axis=[0, 2, 3])\n', (2486, 2564), False, 'from haiku._src import batch_norm\n'), ((3036, 3060), 'jax.local_device_count', 'jax.local_device_count', ([], {}), '()\n', (3058, 3060), False, 'import jax\n'), ((3295, 3328), 'haiku._src.transform.transform_with_state', 'transform.transform_with_state', (['f'], {}), '(f)\n', (3325, 3328), False, 'from haiku._src import transform\n'), ((3592, 3615), 'numpy.mean', 'np.mean', (['inputs'], {'axis': '(0)'}), '(inputs, axis=0)\n', (3599, 3615), True, 'import numpy as np\n'), ((3699, 3753), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['result', 'expected'], {}), '(result, expected)\n', (3735, 3753), True, 'import numpy as np\n'), ((3831, 3855), 'jax.local_device_count', 'jax.local_device_count', ([], {}), '()\n', (3853, 3855), False, 'import jax\n'), ((4446, 4479), 'haiku._src.transform.transform_with_state', 'transform.transform_with_state', (['f'], {}), '(f)\n', (4476, 4479), False, 'from haiku._src import transform\n'), ((4766, 4787), 'numpy.empty_like', 'np.empty_like', (['inputs'], {}), '(inputs)\n', (4779, 4787), True, 'import numpy as np\n'), ((5142, 5196), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['result', 'expected'], {}), '(result, expected)\n', (5178, 5196), True, 'import numpy as np\n'), ((5280, 5357), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(False)', 'decay_rate': '(0.9)'}), '(create_scale=False, create_offset=False, decay_rate=0.9)\n', (5300, 5357), False, 'from haiku._src import batch_norm\n'), ((5381, 5406), 'jax.numpy.ones', 'jnp.ones', (['[2, 5, 3, 3, 3]'], {}), '([2, 5, 3, 3, 3])\n', (5389, 5406), True, 'import jax.numpy as jnp\n'), ((6513, 6546), 'haiku._src.transform.transform_with_state', 'transform.transform_with_state', (['f'], {}), '(f)\n', (6543, 6546), False, 'from haiku._src import transform\n'), ((6556, 6581), 'numpy.ones', 'np.ones', (['[]', 'jnp.bfloat16'], {}), '([], jnp.bfloat16)\n', (6563, 6581), True, 'import numpy as np\n'), ((6592, 6614), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(42)'], {}), '(42)\n', (6610, 6614), False, 'import jax\n'), ((1893, 1919), 'numpy.full', 'np.full', (['inputs.shape', '(2.0)'], {}), '(inputs.shape, 2.0)\n', (1900, 1919), True, 'import numpy as np\n'), ((2343, 2369), 'numpy.full', 'np.full', (['inputs.shape', '(2.0)'], {}), '(inputs.shape, 2.0)\n', (2350, 2369), True, 'import numpy as np\n'), ((2948, 2970), 'numpy.zeros', 'np.zeros', (['inputs.shape'], {}), '(inputs.shape)\n', (2956, 2970), True, 'import numpy as np\n'), ((3404, 3426), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(42)'], {}), '(42)\n', (3422, 3426), False, 'import jax\n'), ((3458, 3489), 'jax.pmap', 'jax.pmap', (['f.init'], {'axis_name': '"""i"""'}), "(f.init, axis_name='i')\n", (3466, 3489), False, 'import jax\n'), ((3519, 3551), 'jax.pmap', 'jax.pmap', (['f.apply'], {'axis_name': '"""i"""'}), "(f.apply, axis_name='i')\n", (3527, 3551), False, 'import jax\n'), ((3626, 3648), 'numpy.std', 'np.std', (['inputs'], {'axis': '(0)'}), '(inputs, axis=0)\n', (3632, 3648), True, 'import numpy as np\n'), ((4574, 4596), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(42)'], {}), '(42)\n', (4592, 4596), False, 'import jax\n'), ((4628, 4659), 'jax.pmap', 'jax.pmap', (['f.init'], {'axis_name': '"""i"""'}), "(f.init, axis_name='i')\n", (4636, 4659), False, 'import jax\n'), ((4689, 4721), 'jax.pmap', 'jax.pmap', (['f.apply'], {'axis_name': '"""i"""'}), "(f.apply, axis_name='i')\n", (4697, 4721), False, 'import jax\n'), ((4914, 4943), 'numpy.mean', 'np.mean', (['group_inputs'], {'axis': '(0)'}), '(group_inputs, axis=0)\n', (4921, 4943), True, 'import numpy as np\n'), ((5476, 5497), 'numpy.zeros_like', 'np.zeros_like', (['inputs'], {}), '(inputs)\n', (5489, 5497), True, 'import numpy as np\n'), ((5688, 5789), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(True)', 'decay_rate': '(0.9)', 'scale_init': 'jnp.ones'}), '(create_scale=False, create_offset=True, decay_rate=0.9,\n scale_init=jnp.ones)\n', (5708, 5789), False, 'from haiku._src import batch_norm\n'), ((6020, 6123), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(True)', 'create_offset': '(False)', 'decay_rate': '(0.9)', 'offset_init': 'jnp.zeros'}), '(create_scale=True, create_offset=False, decay_rate=0.9,\n offset_init=jnp.zeros)\n', (6040, 6123), False, 'from haiku._src import batch_norm\n'), ((1045, 1085), 'jax.numpy.arange', 'jnp.arange', (['(2 * 3 * 4)'], {'dtype': 'jnp.float32'}), '(2 * 3 * 4, dtype=jnp.float32)\n', (1055, 1085), True, 'import jax.numpy as jnp\n'), ((2711, 2729), 'numpy.ones', 'np.ones', (['[5, 3, 3]'], {}), '([5, 3, 3])\n', (2718, 2729), True, 'import numpy as np\n'), ((3107, 3213), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(False)', 'decay_rate': '(0.9)', 'cross_replica_axis': '"""i"""'}), "(create_scale=False, create_offset=False, decay_rate=\n 0.9, cross_replica_axis='i')\n", (3127, 3213), False, 'from haiku._src import batch_norm\n'), ((3343, 3361), 'numpy.arange', 'np.arange', (['(ldc * 4)'], {}), '(ldc * 4)\n', (3352, 3361), True, 'import numpy as np\n'), ((4208, 4354), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', ([], {'create_scale': '(False)', 'create_offset': '(False)', 'decay_rate': '(0.9)', 'cross_replica_axis': '"""i"""', 'cross_replica_axis_index_groups': 'groups'}), "(create_scale=False, create_offset=False, decay_rate=\n 0.9, cross_replica_axis='i', cross_replica_axis_index_groups=groups)\n", (4228, 4354), False, 'from haiku._src import batch_norm\n'), ((4962, 4990), 'numpy.std', 'np.std', (['group_inputs'], {'axis': '(0)'}), '(group_inputs, axis=0)\n', (4968, 4990), True, 'import numpy as np\n'), ((6441, 6487), 'haiku._src.batch_norm.BatchNorm', 'batch_norm.BatchNorm', (['(True)', '(True)', '(0.9)'], {'eps': '(0.1)'}), '(True, True, 0.9, eps=0.1)\n', (6461, 6487), False, 'from haiku._src import batch_norm\n'), ((2691, 2709), 'numpy.ones', 'np.ones', (['[5, 3, 3]'], {}), '([5, 3, 3])\n', (2698, 2709), True, 'import numpy as np\n'), ((4099, 4113), 'numpy.arange', 'np.arange', (['ldc'], {}), '(ldc)\n', (4108, 4113), True, 'import numpy as np\n'), ((4494, 4512), 'numpy.arange', 'np.arange', (['(ldc * 4)'], {}), '(ldc * 4)\n', (4503, 4512), True, 'import numpy as np\n')]
import cv2 import numpy as np def canny(image): gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY) blur = cv2.GaussianBlur(gray, (5, 5), 0) canny = cv2.Canny(blur, 50, 150) return canny def display_lines(image, lines): line_image = np.zeros_like(image) if lines is not None: for line in lines: #print(line) x1, y1, x2, y2 = line.reshape(4) cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 10) return line_image def region_of_interest(image): height = image.shape[0] triangle = np.array([[(200, height), (1100, height), (550, 250)]]) mask = np.zeros_like(image) cv2.fillPoly(mask, triangle, 255) masked_image = cv2.bitwise_and(image, mask) return masked_image image = cv2.imread('test_image.jpg') lane_image = np.copy(image) canny = canny(lane_image) cropped_image = region_of_interest(canny) lines = cv2.HoughLinesP(cropped_image, 2, np.pi/180, 100, np.array([]), minLineLength=40, maxLineGap=5) line_image = display_lines(lane_image, lines) combo_image = cv2.addWeighted(lane_image, 0.8, line_image, 1, 1) cv2.imshow('result', combo_image) cv2.waitKey(0)
[ "cv2.line", "cv2.GaussianBlur", "cv2.Canny", "numpy.zeros_like", "numpy.copy", "cv2.bitwise_and", "cv2.waitKey", "cv2.cvtColor", "cv2.addWeighted", "cv2.fillPoly", "cv2.imread", "numpy.array", "cv2.imshow" ]
[((776, 804), 'cv2.imread', 'cv2.imread', (['"""test_image.jpg"""'], {}), "('test_image.jpg')\n", (786, 804), False, 'import cv2\n'), ((818, 832), 'numpy.copy', 'np.copy', (['image'], {}), '(image)\n', (825, 832), True, 'import numpy as np\n'), ((1065, 1115), 'cv2.addWeighted', 'cv2.addWeighted', (['lane_image', '(0.8)', 'line_image', '(1)', '(1)'], {}), '(lane_image, 0.8, line_image, 1, 1)\n', (1080, 1115), False, 'import cv2\n'), ((1116, 1149), 'cv2.imshow', 'cv2.imshow', (['"""result"""', 'combo_image'], {}), "('result', combo_image)\n", (1126, 1149), False, 'import cv2\n'), ((1150, 1164), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1161, 1164), False, 'import cv2\n'), ((61, 105), 'cv2.cvtColor', 'cv2.cvtColor', (['lane_image', 'cv2.COLOR_RGB2GRAY'], {}), '(lane_image, cv2.COLOR_RGB2GRAY)\n', (73, 105), False, 'import cv2\n'), ((117, 150), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['gray', '(5, 5)', '(0)'], {}), '(gray, (5, 5), 0)\n', (133, 150), False, 'import cv2\n'), ((163, 187), 'cv2.Canny', 'cv2.Canny', (['blur', '(50)', '(150)'], {}), '(blur, 50, 150)\n', (172, 187), False, 'import cv2\n'), ((257, 277), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (270, 277), True, 'import numpy as np\n'), ((569, 624), 'numpy.array', 'np.array', (['[[(200, height), (1100, height), (550, 250)]]'], {}), '([[(200, height), (1100, height), (550, 250)]])\n', (577, 624), True, 'import numpy as np\n'), ((636, 656), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (649, 656), True, 'import numpy as np\n'), ((661, 694), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', 'triangle', '(255)'], {}), '(mask, triangle, 255)\n', (673, 694), False, 'import cv2\n'), ((714, 742), 'cv2.bitwise_and', 'cv2.bitwise_and', (['image', 'mask'], {}), '(image, mask)\n', (729, 742), False, 'import cv2\n'), ((959, 971), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (967, 971), True, 'import numpy as np\n'), ((413, 470), 'cv2.line', 'cv2.line', (['line_image', '(x1, y1)', '(x2, y2)', '(255, 0, 0)', '(10)'], {}), '(line_image, (x1, y1), (x2, y2), (255, 0, 0), 10)\n', (421, 470), False, 'import cv2\n')]
# -*- coding: UTF-8 -*- """ 此脚本用于展示如何利用神经网络解决分类问题 """ import os from mlp import ANN import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs, make_circles, make_moons from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler, OneHotEncoder def generateData(n): """ """ np.random.seed(12046) blobs = make_blobs(n_samples=n, centers = [[-2, -2], [2, 2]]) circles = make_circles(n_samples=n, factor=.4, noise=.05) moons = make_moons(n_samples=n, noise=.05) blocks = np.random.rand(n, 2) - 0.5 y = (blocks[:, 0] * blocks[:, 1] < 0) + 0 blocks = (blocks, y) # 由于神经网络对数据的线性变换不稳定,因此将数据做归一化处理 scaler = StandardScaler() blobs = (scaler.fit_transform(blobs[0]), blobs[1]) circles = (scaler.fit_transform(circles[0]), circles[1]) moons = (scaler.fit_transform(moons[0]), moons[1]) blocks = (scaler.fit_transform(blocks[0]), blocks[1]) return blobs, circles, moons, blocks def drawData(ax, data): """ 将数据可视化 """ X, y = data label1 = X[y>0] ax.scatter(label1[:, 0], label1[:, 1], marker="o") label0 = X[y==0] ax.scatter(label0[:, 0], label0[:, 1], marker="^", color="k") return ax def drawModel(ax, model): """ 将模型的分离超平面可视化 """ x1 = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 100) x2 = np.linspace(ax.get_ylim()[0], ax.get_ylim()[1], 100) X1, X2 = np.meshgrid(x1, x2) Y = model.predict_proba(np.c_[X1.ravel(), X2.ravel()])[:, 1] Y = Y.reshape(X1.shape) ax.contourf(X1, X2, Y, levels=[0, 0.5], colors=["gray"], alpha=0.4) return ax def trainLogit(data): """ """ X, y = data model = LogisticRegression() model.fit(X, y) return model def trainANN(data, logPath): """ """ X, y = data enc = OneHotEncoder() y = enc.fit_transform(y.reshape(-1, 1)).toarray() model = ANN([4, 4, 2], logPath) model.fit(X, y) return model def visualize(data): """ """ # 创建一个图形框 fig = plt.figure(figsize=(10, 10), dpi=80) fig1 = plt.figure(figsize=(10, 10), dpi=80) # 在图形框里画四幅图 for i in range(len(data)): ax = fig.add_subplot(2, 2, i+1) ax1 = fig1.add_subplot(2, 2, i+1) drawData(ax, data[i]) # Windows下的存储路径与Linux并不相同 if os.name == "nt": drawModel(ax, trainANN(data[i], "logs\\data_%s" % (i+1))) else: drawModel(ax, trainANN(data[i], "logs/data_%s" % (i+1))) drawData(ax1, data[i]) drawModel(ax1, trainLogit(data[i])) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax1.get_xaxis().set_visible(False) ax1.get_yaxis().set_visible(False) plt.show() if __name__ == "__main__": data = generateData(200) visualize(data)
[ "sklearn.datasets.make_circles", "numpy.meshgrid", "sklearn.preprocessing.StandardScaler", "numpy.random.seed", "matplotlib.pyplot.show", "mlp.ANN", "sklearn.preprocessing.OneHotEncoder", "sklearn.datasets.make_blobs", "sklearn.datasets.make_moons", "sklearn.linear_model.LogisticRegression", "matplotlib.pyplot.figure", "numpy.random.rand" ]
[((366, 387), 'numpy.random.seed', 'np.random.seed', (['(12046)'], {}), '(12046)\n', (380, 387), True, 'import numpy as np\n'), ((400, 451), 'sklearn.datasets.make_blobs', 'make_blobs', ([], {'n_samples': 'n', 'centers': '[[-2, -2], [2, 2]]'}), '(n_samples=n, centers=[[-2, -2], [2, 2]])\n', (410, 451), False, 'from sklearn.datasets import make_blobs, make_circles, make_moons\n'), ((468, 517), 'sklearn.datasets.make_circles', 'make_circles', ([], {'n_samples': 'n', 'factor': '(0.4)', 'noise': '(0.05)'}), '(n_samples=n, factor=0.4, noise=0.05)\n', (480, 517), False, 'from sklearn.datasets import make_blobs, make_circles, make_moons\n'), ((528, 563), 'sklearn.datasets.make_moons', 'make_moons', ([], {'n_samples': 'n', 'noise': '(0.05)'}), '(n_samples=n, noise=0.05)\n', (538, 563), False, 'from sklearn.datasets import make_blobs, make_circles, make_moons\n'), ((723, 739), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (737, 739), False, 'from sklearn.preprocessing import StandardScaler, OneHotEncoder\n'), ((1453, 1472), 'numpy.meshgrid', 'np.meshgrid', (['x1', 'x2'], {}), '(x1, x2)\n', (1464, 1472), True, 'import numpy as np\n'), ((1720, 1740), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1738, 1740), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1851, 1866), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {}), '()\n', (1864, 1866), False, 'from sklearn.preprocessing import StandardScaler, OneHotEncoder\n'), ((1933, 1956), 'mlp.ANN', 'ANN', (['[4, 4, 2]', 'logPath'], {}), '([4, 4, 2], logPath)\n', (1936, 1956), False, 'from mlp import ANN\n'), ((2057, 2093), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)', 'dpi': '(80)'}), '(figsize=(10, 10), dpi=80)\n', (2067, 2093), True, 'import matplotlib.pyplot as plt\n'), ((2105, 2141), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)', 'dpi': '(80)'}), '(figsize=(10, 10), dpi=80)\n', (2115, 2141), True, 'import matplotlib.pyplot as plt\n'), ((2765, 2775), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2773, 2775), True, 'import matplotlib.pyplot as plt\n'), ((576, 596), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (590, 596), True, 'import numpy as np\n')]
import numpy as np import cv2 import tensorflow as tf import argparse import time from PIL import Image import tf1st if __name__ == "__main__": # Argument parse parser = argparse.ArgumentParser(description='Neural Style Transfer with OpenCV and Tensorflow') parser.add_argument('--input-image', default="./images/federer.jpg", type=str, help='image to style') parser.add_argument('--style-image', default="./images/vangogh.jpg", type=str, help='styling image') parser.add_argument('--content-weight', default=1000, type=float, help='weight of the content image') parser.add_argument('--style-weight', default=0.01, type=float, help='weight of the styling image') parser.add_argument('--iterations', default=1000, type=int, help='number of iterations') parser.add_argument('--result-image', default="./images/result.jpg", type=str, help='resulting image') args = parser.parse_args() # Enable eager execution for tensorflow tf.enable_eager_execution() print("Eager execution: {}".format(tf.executing_eagerly())) model = tf1st.get_model() for layer in model.layers: layer.trainable = False # Get the style and content feature representations (from our specified intermediate layers) style_features, content_features = tf1st.get_feature_representations(model, args.input_image, args.style_image) gram_style_features = [tf1st.gram_matrix(style_feature) for style_feature in style_features] # Set initial image init_image = tf1st.load_and_process_img(args.input_image) init_image = tf.Variable(init_image, dtype=tf.float32) # Create our optimizer opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1) # Store our best result best_loss, best_img = float('inf'), None # Create a nice config loss_weights = (args.style_weight, args.content_weight) cfg = { 'model': model, 'loss_weights': loss_weights, 'init_image': init_image, 'gram_style_features': gram_style_features, 'content_features': content_features } # For displaying num_rows = 2 num_cols = 5 display_interval = args.iterations/(num_rows*num_cols) start_time = time.time() global_start = time.time() norm_means = np.array([103.939, 116.779, 123.68]) min_vals = -norm_means max_vals = 255 - norm_means imgs = [] for i in range(args.iterations): grads, all_loss = tf1st.compute_grads(cfg) loss, style_score, content_score = all_loss opt.apply_gradients([(grads, init_image)]) clipped = tf.clip_by_value(init_image, min_vals, max_vals) init_image.assign(clipped) end_time = time.time() if loss < best_loss: # Update best loss and best image from total loss. best_loss = loss best_img = tf1st.deprocess_img(init_image.numpy()) start_time = time.time() # Use the .numpy() method to get the concrete numpy array plot_img = init_image.numpy() plot_img = tf1st.deprocess_img(plot_img) imgs.append(plot_img) final_img = cv2.cvtColor(np.array(Image.fromarray(plot_img)), cv2.COLOR_BGR2RGB) cv2.imshow('Actual Styled Image', final_img) cv2.imwrite(args.result_image, final_img) cv2.waitKey(1) print('Iteration: {}'.format(i)) print('Total loss: {:.4e}, ' 'style loss: {:.4e}, ' 'content loss: {:.4e}, ' 'time: {:.4f}s'.format(loss, style_score, content_score, time.time() - start_time)) print('Total time: {:.4f}s'.format(time.time() - global_start)) time.sleep(5) print('Done')
[ "argparse.ArgumentParser", "tensorflow.clip_by_value", "tf1st.gram_matrix", "tensorflow.executing_eagerly", "tensorflow.Variable", "tf1st.get_model", "cv2.imshow", "cv2.imwrite", "cv2.waitKey", "time.sleep", "tensorflow.enable_eager_execution", "tf1st.load_and_process_img", "tf1st.deprocess_img", "time.time", "numpy.array", "tf1st.get_feature_representations", "PIL.Image.fromarray", "tensorflow.train.AdamOptimizer", "tf1st.compute_grads" ]
[((176, 268), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Neural Style Transfer with OpenCV and Tensorflow"""'}), "(description=\n 'Neural Style Transfer with OpenCV and Tensorflow')\n", (199, 268), False, 'import argparse\n'), ((947, 974), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (972, 974), True, 'import tensorflow as tf\n'), ((1048, 1065), 'tf1st.get_model', 'tf1st.get_model', ([], {}), '()\n', (1063, 1065), False, 'import tf1st\n'), ((1260, 1336), 'tf1st.get_feature_representations', 'tf1st.get_feature_representations', (['model', 'args.input_image', 'args.style_image'], {}), '(model, args.input_image, args.style_image)\n', (1293, 1336), False, 'import tf1st\n'), ((1472, 1516), 'tf1st.load_and_process_img', 'tf1st.load_and_process_img', (['args.input_image'], {}), '(args.input_image)\n', (1498, 1516), False, 'import tf1st\n'), ((1532, 1573), 'tensorflow.Variable', 'tf.Variable', (['init_image'], {'dtype': 'tf.float32'}), '(init_image, dtype=tf.float32)\n', (1543, 1573), True, 'import tensorflow as tf\n'), ((1607, 1671), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(5)', 'beta1': '(0.99)', 'epsilon': '(0.1)'}), '(learning_rate=5, beta1=0.99, epsilon=0.1)\n', (1629, 1671), True, 'import tensorflow as tf\n'), ((2149, 2160), 'time.time', 'time.time', ([], {}), '()\n', (2158, 2160), False, 'import time\n'), ((2178, 2189), 'time.time', 'time.time', ([], {}), '()\n', (2187, 2189), False, 'import time\n'), ((2208, 2244), 'numpy.array', 'np.array', (['[103.939, 116.779, 123.68]'], {}), '([103.939, 116.779, 123.68])\n', (2216, 2244), True, 'import numpy as np\n'), ((3503, 3516), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (3513, 3516), False, 'import time\n'), ((1362, 1394), 'tf1st.gram_matrix', 'tf1st.gram_matrix', (['style_feature'], {}), '(style_feature)\n', (1379, 1394), False, 'import tf1st\n'), ((2375, 2399), 'tf1st.compute_grads', 'tf1st.compute_grads', (['cfg'], {}), '(cfg)\n', (2394, 2399), False, 'import tf1st\n'), ((2509, 2557), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['init_image', 'min_vals', 'max_vals'], {}), '(init_image, min_vals, max_vals)\n', (2525, 2557), True, 'import tensorflow as tf\n'), ((2604, 2615), 'time.time', 'time.time', ([], {}), '()\n', (2613, 2615), False, 'import time\n'), ((2807, 2818), 'time.time', 'time.time', ([], {}), '()\n', (2816, 2818), False, 'import time\n'), ((2932, 2961), 'tf1st.deprocess_img', 'tf1st.deprocess_img', (['plot_img'], {}), '(plot_img)\n', (2951, 2961), False, 'import tf1st\n'), ((3077, 3121), 'cv2.imshow', 'cv2.imshow', (['"""Actual Styled Image"""', 'final_img'], {}), "('Actual Styled Image', final_img)\n", (3087, 3121), False, 'import cv2\n'), ((3126, 3167), 'cv2.imwrite', 'cv2.imwrite', (['args.result_image', 'final_img'], {}), '(args.result_image, final_img)\n', (3137, 3167), False, 'import cv2\n'), ((3172, 3186), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3183, 3186), False, 'import cv2\n'), ((1012, 1034), 'tensorflow.executing_eagerly', 'tf.executing_eagerly', ([], {}), '()\n', (1032, 1034), True, 'import tensorflow as tf\n'), ((3026, 3051), 'PIL.Image.fromarray', 'Image.fromarray', (['plot_img'], {}), '(plot_img)\n', (3041, 3051), False, 'from PIL import Image\n'), ((3401, 3412), 'time.time', 'time.time', ([], {}), '()\n', (3410, 3412), False, 'import time\n'), ((3467, 3478), 'time.time', 'time.time', ([], {}), '()\n', (3476, 3478), False, 'import time\n')]
from functools import partial import importlib import pytest from pathlib import Path import zarr import dask.array as dsa import dask import dask.core import xarray import numpy from rechunker import api _DIMENSION_KEY = "_ARRAY_DIMENSIONS" def requires_import(module, *args): try: importlib.import_module(module) except ImportError: skip = True else: skip = False mark = pytest.mark.skipif(skip, reason=f"requires {module}") return pytest.param(*args, marks=mark) requires_beam = partial(requires_import, "apache_beam") requires_prefect = partial(requires_import, "prefect") requires_pywren = partial(requires_import, "pywren_ibm_cloud") @pytest.fixture(params=[(8000, 200), {"y": 8000, "x": 200}]) def target_chunks(request): return request.param def test_invalid_executor(): with pytest.raises(ValueError, match="unrecognized executor"): api._get_executor("unknown") @pytest.mark.parametrize("shape", [(100, 50)]) @pytest.mark.parametrize("source_chunks", [(10, 50)]) @pytest.mark.parametrize("target_chunks", [(20, 10)]) @pytest.mark.parametrize("max_mem", ["10MB"]) @pytest.mark.parametrize("executor", ["dask"]) def test_rechunk_dataset( tmp_path, shape, source_chunks, target_chunks, max_mem, executor ): target_store = str(tmp_path / "target.zarr") temp_store = str(tmp_path / "temp.zarr") a = numpy.arange(numpy.prod(shape)).reshape(shape).astype("f4") a[-1] = numpy.nan ds = xarray.Dataset( dict( a=xarray.DataArray( a, dims=["x", "y"], attrs={"a1": 1, "a2": [1, 2, 3], "a3": "x"} ), b=xarray.DataArray(numpy.ones(shape[0]), dims=["x"]), c=xarray.DataArray(numpy.ones(shape[1]), dims=["y"]), ), coords=dict( cx=xarray.DataArray(numpy.ones(shape[0]), dims=["x"]), cy=xarray.DataArray(numpy.ones(shape[1]), dims=["y"]), ), attrs={"a1": 1, "a2": [1, 2, 3], "a3": "x"}, ) ds = ds.chunk(chunks=dict(zip(["x", "y"], source_chunks))) options = dict( a=dict( compressor=zarr.Blosc(cname="zstd"), dtype="int32", scale_factor=0.1, _FillValue=-9999, ) ) rechunked = api.rechunk( ds, target_chunks=dict(a=target_chunks, b=target_chunks[:1]), max_mem=max_mem, target_store=target_store, target_options=options, temp_store=temp_store, executor=executor, ) assert isinstance(rechunked, api.Rechunked) rechunked.execute() # Validate encoded variables dst = xarray.open_zarr(target_store, decode_cf=False) assert dst.a.dtype == options["a"]["dtype"] assert all(dst.a.values[-1] == options["a"]["_FillValue"]) assert dst.a.encoding["compressor"] is not None # Validate decoded variables dst = xarray.open_zarr(target_store, decode_cf=True) assert dst.a.data.chunksize == target_chunks assert dst.b.data.chunksize == target_chunks[:1] assert dst.c.data.chunksize == source_chunks[1:] xarray.testing.assert_equal(ds.compute(), dst.compute()) assert ds.attrs == dst.attrs @pytest.mark.parametrize("shape", [(8000, 8000)]) @pytest.mark.parametrize("source_chunks", [(200, 8000)]) @pytest.mark.parametrize("dtype", ["f4"]) @pytest.mark.parametrize("max_mem", [25600000, "25.6MB"]) @pytest.mark.parametrize( "executor", [ "dask", "python", requires_beam("beam"), requires_prefect("prefect"), requires_pywren("pywren"), ], ) @pytest.mark.parametrize( "dims,target_chunks", [ (None, (8000, 200)), # would be nice to support this syntax eventually pytest.param(None, (-1, 200), marks=pytest.mark.xfail), (["y", "x"], (8000, 200)), (["y", "x"], {"y": 8000, "x": 200}), # can't infer missing dimension chunk specification pytest.param(["y", "x"], {"x": 200}, marks=pytest.mark.xfail), # can't use dict syntax without array dims pytest.param(None, {"y": 8000, "x": 200}, marks=pytest.mark.xfail), ], ) def test_rechunk_array( tmp_path, shape, source_chunks, dtype, dims, target_chunks, max_mem, executor ): ### Create source array ### store_source = str(tmp_path / "source.zarr") source_array = zarr.ones( shape, chunks=source_chunks, dtype=dtype, store=store_source ) # add some attributes source_array.attrs["foo"] = "bar" if dims: source_array.attrs[_DIMENSION_KEY] = dims ### Create targets ### target_store = str(tmp_path / "target.zarr") temp_store = str(tmp_path / "temp.zarr") rechunked = api.rechunk( source_array, target_chunks, max_mem, target_store, temp_store=temp_store, executor=executor, ) assert isinstance(rechunked, api.Rechunked) target_array = zarr.open(target_store) if isinstance(target_chunks, dict): target_chunks_list = [target_chunks[d] for d in dims] else: target_chunks_list = target_chunks assert target_array.chunks == tuple(target_chunks_list) assert dict(source_array.attrs) == dict(target_array.attrs) result = rechunked.execute() assert isinstance(result, zarr.Array) a_tar = dsa.from_zarr(target_array) assert dsa.equal(a_tar, 1).all().compute() @pytest.mark.parametrize("shape", [(8000, 8000)]) @pytest.mark.parametrize("source_chunks", [(200, 8000), (800, 8000)]) @pytest.mark.parametrize("dtype", ["f4"]) @pytest.mark.parametrize("max_mem", [25600000]) @pytest.mark.parametrize( "target_chunks", [(200, 8000), (800, 8000), (8000, 200), (400, 8000),], ) def test_rechunk_dask_array( tmp_path, shape, source_chunks, dtype, target_chunks, max_mem ): ### Create source array ### source_array = dsa.ones(shape, chunks=source_chunks, dtype=dtype) ### Create targets ### target_store = str(tmp_path / "target.zarr") temp_store = str(tmp_path / "temp.zarr") rechunked = api.rechunk( source_array, target_chunks, max_mem, target_store, temp_store=temp_store ) assert isinstance(rechunked, api.Rechunked) target_array = zarr.open(target_store) assert target_array.chunks == tuple(target_chunks) result = rechunked.execute() assert isinstance(result, zarr.Array) a_tar = dsa.from_zarr(target_array) assert dsa.equal(a_tar, 1).all().compute() @pytest.mark.parametrize( "executor", [ "dask", "python", requires_beam("beam"), requires_prefect("prefect"), requires_pywren("pywren"), ], ) def test_rechunk_group(tmp_path, executor): store_source = str(tmp_path / "source.zarr") group = zarr.group(store_source) group.attrs["foo"] = "bar" # 800 byte chunks a = group.ones("a", shape=(5, 10, 20), chunks=(1, 10, 20), dtype="f4") a.attrs["foo"] = "bar" b = group.ones("b", shape=(20,), chunks=(10,), dtype="f4") b.attrs["foo"] = "bar" target_store = str(tmp_path / "target.zarr") temp_store = str(tmp_path / "temp.zarr") max_mem = 1600 # should force a two-step plan for a target_chunks = {"a": (5, 10, 4), "b": (20,)} rechunked = api.rechunk( group, target_chunks, max_mem, target_store, temp_store=temp_store, executor=executor, ) assert isinstance(rechunked, api.Rechunked) target_group = zarr.open(target_store) assert "a" in target_group assert "b" in target_group assert dict(group.attrs) == dict(target_group.attrs) rechunked.execute() for aname in target_chunks: assert target_group[aname].chunks == target_chunks[aname] a_tar = dsa.from_zarr(target_group[aname]) assert dsa.equal(a_tar, 1).all().compute() def sample_xarray_dataset(): return xarray.Dataset( dict( a=xarray.DataArray( dsa.ones(shape=(10, 20, 40), chunks=(5, 10, 4), dtype="f4"), dims=("x", "y", "z"), attrs={"foo": "bar"}, ), b=xarray.DataArray( dsa.ones(shape=(8000,), chunks=(200,), dtype="f4"), dims="w", attrs={"foo": "bar"}, ), ), attrs={"foo": "bar"}, ) def sample_zarr_group(tmp_path): path = str(tmp_path / "source.zarr") group = zarr.group(path) group.attrs["foo"] = "bar" # 800 byte chunks a = group.ones("a", shape=(10, 20, 40), chunks=(5, 10, 4), dtype="f4") a.attrs["foo"] = "bar" b = group.ones("b", shape=(8000,), chunks=(200,), dtype="f4") b.attrs["foo"] = "bar" return group def sample_zarr_array(tmp_path): shape = (8000, 8000) source_chunks = (200, 8000) dtype = "f4" dims = None path = str(tmp_path / "source.zarr") array = zarr.ones(shape, chunks=source_chunks, dtype=dtype, store=path) # add some attributes array.attrs["foo"] = "bar" if dims: array.attrs[_DIMENSION_KEY] = dims return array @pytest.fixture(params=["Array", "Group", "Dataset"]) def rechunk_args(tmp_path, request): target_store = str(tmp_path / "target.zarr") temp_store = str(tmp_path / "temp.zarr") max_mem = 1600 # should force a two-step plan for a and b target_chunks = {"a": (10, 5, 4), "b": (100,)} args = dict( target_chunks=target_chunks, max_mem=max_mem, target_store=target_store, temp_store=temp_store, ) if request.param == "Dataset": ds = sample_xarray_dataset() args.update({"source": ds}) elif request.param == "Group": group = sample_zarr_group(tmp_path) args.update({"source": group}) else: array = sample_zarr_array(tmp_path) max_mem = 25600000 target_chunks = (8000, 200) args.update( {"source": array, "target_chunks": target_chunks, "max_mem": max_mem,} ) return args @pytest.fixture() def rechunked(rechunk_args): return api.rechunk(**rechunk_args) def test_repr(rechunked): assert isinstance(rechunked, api.Rechunked) repr_str = repr(rechunked) assert repr_str.startswith("<Rechunked>") assert all(thing in repr_str for thing in ["Source", "Intermediate", "Target"]) def test_repr_html(rechunked): rechunked._repr_html_() # no exceptions def _is_collection(source): assert isinstance( source, (dask.array.Array, zarr.core.Array, zarr.hierarchy.Group, xarray.Dataset), ) return isinstance(source, (zarr.hierarchy.Group, xarray.Dataset)) def _wrap_options(source, options): if _is_collection(source): options = {v: options for v in source} return options def test_rechunk_option_overwrite(rechunk_args): api.rechunk(**rechunk_args).execute() # TODO: make this match more reliable based on outcome of # https://github.com/zarr-developers/zarr-python/issues/605 with pytest.raises(ValueError, match=r"path .* contains an array"): api.rechunk(**rechunk_args).execute() options = _wrap_options(rechunk_args["source"], dict(overwrite=True)) api.rechunk(**rechunk_args, target_options=options).execute() def test_rechunk_passthrough(rechunk_args): # Verify that no errors are raised when the target chunks == source chunks if _is_collection(rechunk_args["source"]): rechunk_args["target_chunks"] = {v: None for v in rechunk_args["source"]} else: rechunk_args["target_chunks"] = None api.rechunk(**rechunk_args).execute() def test_rechunk_no_temp_dir_provided_error(rechunk_args): # Verify that the correct error is raised when no temp_store is given # and the chunks to write differ from the chunks to read args = {k: v for k, v in rechunk_args.items() if k != "temp_store"} with pytest.raises(ValueError, match="A temporary store location must be provided"): api.rechunk(**args).execute() def test_rechunk_option_compression(rechunk_args): def rechunk(compressor): options = _wrap_options( rechunk_args["source"], dict(overwrite=True, compressor=compressor) ) rechunked = api.rechunk(**rechunk_args, target_options=options) rechunked.execute() return sum( file.stat().st_size for file in Path(rechunked._target.store.path).rglob("*") ) size_uncompressed = rechunk(None) size_compressed = rechunk( zarr.Blosc(cname="zstd", clevel=9, shuffle=zarr.Blosc.SHUFFLE) ) assert size_compressed < size_uncompressed def test_rechunk_invalid_option(rechunk_args): if isinstance(rechunk_args["source"], xarray.Dataset): # Options are essentially unbounded for Xarray (for CF encoding params), # so check only options with special error cases options = _wrap_options(rechunk_args["source"], {"chunks": 10}) with pytest.raises( ValueError, match="Chunks must be provided in ``target_chunks`` rather than options", ): api.rechunk(**rechunk_args, target_options=options) else: for o in ["shape", "chunks", "dtype", "store", "name", "unknown"]: options = _wrap_options(rechunk_args["source"], {o: True}) with pytest.raises(ValueError, match=f"Zarr options must not include {o}"): api.rechunk(**rechunk_args, temp_options=options) with pytest.raises(ValueError, match=f"Zarr options must not include {o}"): api.rechunk(**rechunk_args, target_options=options) def test_rechunk_bad_target_chunks(rechunk_args): if not _is_collection(rechunk_args["source"]): return rechunk_args = dict(rechunk_args) rechunk_args["target_chunks"] = (10, 10) with pytest.raises( ValueError, match="You must specify ``target-chunks`` as a dict" ): api.rechunk(**rechunk_args) def test_rechunk_invalid_source(tmp_path): with pytest.raises( ValueError, match="Source must be a Zarr Array, Zarr Group, Dask Array or Xarray Dataset", ): api.rechunk( [[1, 2], [3, 4]], target_chunks=(10, 10), max_mem=100, target_store=tmp_path ) @pytest.mark.parametrize( "source,target_chunks", [ (sample_xarray_dataset(), {"a": (10, 5, 4), "b": (100,)}), (dsa.ones((20, 10), chunks=(5, 5)), (10, 10)), ], ) @pytest.mark.parametrize( "executor", [ "python", requires_beam("beam"), requires_prefect("prefect"), requires_pywren("pywren"), ], ) def test_unsupported_executor(tmp_path, source, target_chunks, executor): with pytest.raises( NotImplementedError, match="Executor type .* not supported for source", ): api.rechunk( source, target_chunks=target_chunks, max_mem=1600, target_store=str(tmp_path / "target.zarr"), temp_store=str(tmp_path / "temp.zarr"), executor=executor, ) def test_rechunk_no_target_chunks(rechunk_args): rechunk_args = dict(rechunk_args) if _is_collection(rechunk_args["source"]): rechunk_args["target_chunks"] = {v: None for v in rechunk_args["source"]} else: rechunk_args["target_chunks"] = None api.rechunk(**rechunk_args) def test_no_intermediate(): a = zarr.ones((4, 4), chunks=(2, 2)) b = zarr.ones((4, 4), chunks=(4, 1)) rechunked = api.Rechunked(None, None, source=a, intermediate=None, target=b) assert "Intermediate" not in repr(rechunked) rechunked._repr_html_() def test_no_intermediate_fused(tmp_path): shape = (8000, 8000) source_chunks = (200, 8000) dtype = "f4" max_mem = 25600000 target_chunks = (400, 8000) store_source = str(tmp_path / "source.zarr") source_array = zarr.ones( shape, chunks=source_chunks, dtype=dtype, store=store_source ) target_store = str(tmp_path / "target.zarr") rechunked = api.rechunk(source_array, target_chunks, max_mem, target_store) num_tasks = len([v for v in rechunked.plan.dask.values() if dask.core.istask(v)]) assert num_tasks < 20 # less than if no fuse def test_pywren_function_executor(tmp_path): pytest.importorskip("pywren_ibm_cloud") from rechunker.executors.pywren import ( pywren_local_function_executor, PywrenExecutor, ) # Create a Pywren function exectutor that we manage ourselves # and pass in to rechunker's PywrenExecutor with pywren_local_function_executor() as function_executor: executor = PywrenExecutor(function_executor) shape = (8000, 8000) source_chunks = (200, 8000) dtype = "f4" max_mem = 25600000 target_chunks = (400, 8000) ### Create source array ### store_source = str(tmp_path / "source.zarr") source_array = zarr.ones( shape, chunks=source_chunks, dtype=dtype, store=store_source ) ### Create targets ### target_store = str(tmp_path / "target.zarr") temp_store = str(tmp_path / "temp.zarr") rechunked = api.rechunk( source_array, target_chunks, max_mem, target_store, temp_store=temp_store, executor=executor, ) assert isinstance(rechunked, api.Rechunked) target_array = zarr.open(target_store) assert target_array.chunks == tuple(target_chunks) result = rechunked.execute() assert isinstance(result, zarr.Array) a_tar = dsa.from_zarr(target_array) assert dsa.equal(a_tar, 1).all().compute()
[ "dask.array.equal", "rechunker.api.rechunk", "numpy.ones", "pathlib.Path", "pytest.mark.skipif", "rechunker.executors.pywren.pywren_local_function_executor", "dask.core.istask", "pytest.mark.parametrize", "zarr.Blosc", "numpy.prod", "rechunker.api._get_executor", "zarr.open", "dask.array.ones", "zarr.ones", "pytest.raises", "rechunker.api.Rechunked", "functools.partial", "importlib.import_module", "pytest.fixture", "zarr.group", "dask.array.from_zarr", "pytest.importorskip", "pytest.param", "xarray.DataArray", "xarray.open_zarr", "rechunker.executors.pywren.PywrenExecutor" ]
[((534, 573), 'functools.partial', 'partial', (['requires_import', '"""apache_beam"""'], {}), "(requires_import, 'apache_beam')\n", (541, 573), False, 'from functools import partial\n'), ((593, 628), 'functools.partial', 'partial', (['requires_import', '"""prefect"""'], {}), "(requires_import, 'prefect')\n", (600, 628), False, 'from functools import partial\n'), ((647, 691), 'functools.partial', 'partial', (['requires_import', '"""pywren_ibm_cloud"""'], {}), "(requires_import, 'pywren_ibm_cloud')\n", (654, 691), False, 'from functools import partial\n'), ((695, 754), 'pytest.fixture', 'pytest.fixture', ([], {'params': "[(8000, 200), {'y': 8000, 'x': 200}]"}), "(params=[(8000, 200), {'y': 8000, 'x': 200}])\n", (709, 754), False, 'import pytest\n'), ((946, 991), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(100, 50)]'], {}), "('shape', [(100, 50)])\n", (969, 991), False, 'import pytest\n'), ((993, 1045), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""source_chunks"""', '[(10, 50)]'], {}), "('source_chunks', [(10, 50)])\n", (1016, 1045), False, 'import pytest\n'), ((1047, 1099), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""target_chunks"""', '[(20, 10)]'], {}), "('target_chunks', [(20, 10)])\n", (1070, 1099), False, 'import pytest\n'), ((1101, 1145), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""max_mem"""', "['10MB']"], {}), "('max_mem', ['10MB'])\n", (1124, 1145), False, 'import pytest\n'), ((1147, 1192), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""executor"""', "['dask']"], {}), "('executor', ['dask'])\n", (1170, 1192), False, 'import pytest\n'), ((3194, 3242), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(8000, 8000)]'], {}), "('shape', [(8000, 8000)])\n", (3217, 3242), False, 'import pytest\n'), ((3244, 3299), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""source_chunks"""', '[(200, 8000)]'], {}), "('source_chunks', [(200, 8000)])\n", (3267, 3299), False, 'import pytest\n'), ((3301, 3341), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['f4']"], {}), "('dtype', ['f4'])\n", (3324, 3341), False, 'import pytest\n'), ((3343, 3399), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""max_mem"""', "[25600000, '25.6MB']"], {}), "('max_mem', [25600000, '25.6MB'])\n", (3366, 3399), False, 'import pytest\n'), ((5411, 5459), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(8000, 8000)]'], {}), "('shape', [(8000, 8000)])\n", (5434, 5459), False, 'import pytest\n'), ((5461, 5529), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""source_chunks"""', '[(200, 8000), (800, 8000)]'], {}), "('source_chunks', [(200, 8000), (800, 8000)])\n", (5484, 5529), False, 'import pytest\n'), ((5531, 5571), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['f4']"], {}), "('dtype', ['f4'])\n", (5554, 5571), False, 'import pytest\n'), ((5573, 5619), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""max_mem"""', '[25600000]'], {}), "('max_mem', [25600000])\n", (5596, 5619), False, 'import pytest\n'), ((5621, 5720), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""target_chunks"""', '[(200, 8000), (800, 8000), (8000, 200), (400, 8000)]'], {}), "('target_chunks', [(200, 8000), (800, 8000), (8000, \n 200), (400, 8000)])\n", (5644, 5720), False, 'import pytest\n'), ((9101, 9153), 'pytest.fixture', 'pytest.fixture', ([], {'params': "['Array', 'Group', 'Dataset']"}), "(params=['Array', 'Group', 'Dataset'])\n", (9115, 9153), False, 'import pytest\n'), ((10028, 10044), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (10042, 10044), False, 'import pytest\n'), ((419, 472), 'pytest.mark.skipif', 'pytest.mark.skipif', (['skip'], {'reason': 'f"""requires {module}"""'}), "(skip, reason=f'requires {module}')\n", (437, 472), False, 'import pytest\n'), ((484, 515), 'pytest.param', 'pytest.param', (['*args'], {'marks': 'mark'}), '(*args, marks=mark)\n', (496, 515), False, 'import pytest\n'), ((2640, 2687), 'xarray.open_zarr', 'xarray.open_zarr', (['target_store'], {'decode_cf': '(False)'}), '(target_store, decode_cf=False)\n', (2656, 2687), False, 'import xarray\n'), ((2895, 2941), 'xarray.open_zarr', 'xarray.open_zarr', (['target_store'], {'decode_cf': '(True)'}), '(target_store, decode_cf=True)\n', (2911, 2941), False, 'import xarray\n'), ((4360, 4431), 'zarr.ones', 'zarr.ones', (['shape'], {'chunks': 'source_chunks', 'dtype': 'dtype', 'store': 'store_source'}), '(shape, chunks=source_chunks, dtype=dtype, store=store_source)\n', (4369, 4431), False, 'import zarr\n'), ((4712, 4822), 'rechunker.api.rechunk', 'api.rechunk', (['source_array', 'target_chunks', 'max_mem', 'target_store'], {'temp_store': 'temp_store', 'executor': 'executor'}), '(source_array, target_chunks, max_mem, target_store, temp_store=\n temp_store, executor=executor)\n', (4723, 4822), False, 'from rechunker import api\n'), ((4941, 4964), 'zarr.open', 'zarr.open', (['target_store'], {}), '(target_store)\n', (4950, 4964), False, 'import zarr\n'), ((5333, 5360), 'dask.array.from_zarr', 'dsa.from_zarr', (['target_array'], {}), '(target_array)\n', (5346, 5360), True, 'import dask.array as dsa\n'), ((5874, 5924), 'dask.array.ones', 'dsa.ones', (['shape'], {'chunks': 'source_chunks', 'dtype': 'dtype'}), '(shape, chunks=source_chunks, dtype=dtype)\n', (5882, 5924), True, 'import dask.array as dsa\n'), ((6064, 6155), 'rechunker.api.rechunk', 'api.rechunk', (['source_array', 'target_chunks', 'max_mem', 'target_store'], {'temp_store': 'temp_store'}), '(source_array, target_chunks, max_mem, target_store, temp_store=\n temp_store)\n', (6075, 6155), False, 'from rechunker import api\n'), ((6233, 6256), 'zarr.open', 'zarr.open', (['target_store'], {}), '(target_store)\n', (6242, 6256), False, 'import zarr\n'), ((6401, 6428), 'dask.array.from_zarr', 'dsa.from_zarr', (['target_array'], {}), '(target_array)\n', (6414, 6428), True, 'import dask.array as dsa\n'), ((6777, 6801), 'zarr.group', 'zarr.group', (['store_source'], {}), '(store_source)\n', (6787, 6801), False, 'import zarr\n'), ((7267, 7370), 'rechunker.api.rechunk', 'api.rechunk', (['group', 'target_chunks', 'max_mem', 'target_store'], {'temp_store': 'temp_store', 'executor': 'executor'}), '(group, target_chunks, max_mem, target_store, temp_store=\n temp_store, executor=executor)\n', (7278, 7370), False, 'from rechunker import api\n'), ((7489, 7512), 'zarr.open', 'zarr.open', (['target_store'], {}), '(target_store)\n', (7498, 7512), False, 'import zarr\n'), ((8443, 8459), 'zarr.group', 'zarr.group', (['path'], {}), '(path)\n', (8453, 8459), False, 'import zarr\n'), ((8904, 8967), 'zarr.ones', 'zarr.ones', (['shape'], {'chunks': 'source_chunks', 'dtype': 'dtype', 'store': 'path'}), '(shape, chunks=source_chunks, dtype=dtype, store=path)\n', (8913, 8967), False, 'import zarr\n'), ((10085, 10112), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**rechunk_args)\n', (10096, 10112), False, 'from rechunker import api\n'), ((15377, 15404), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**rechunk_args)\n', (15388, 15404), False, 'from rechunker import api\n'), ((15443, 15475), 'zarr.ones', 'zarr.ones', (['(4, 4)'], {'chunks': '(2, 2)'}), '((4, 4), chunks=(2, 2))\n', (15452, 15475), False, 'import zarr\n'), ((15484, 15516), 'zarr.ones', 'zarr.ones', (['(4, 4)'], {'chunks': '(4, 1)'}), '((4, 4), chunks=(4, 1))\n', (15493, 15516), False, 'import zarr\n'), ((15533, 15597), 'rechunker.api.Rechunked', 'api.Rechunked', (['None', 'None'], {'source': 'a', 'intermediate': 'None', 'target': 'b'}), '(None, None, source=a, intermediate=None, target=b)\n', (15546, 15597), False, 'from rechunker import api\n'), ((15917, 15988), 'zarr.ones', 'zarr.ones', (['shape'], {'chunks': 'source_chunks', 'dtype': 'dtype', 'store': 'store_source'}), '(shape, chunks=source_chunks, dtype=dtype, store=store_source)\n', (15926, 15988), False, 'import zarr\n'), ((16070, 16133), 'rechunker.api.rechunk', 'api.rechunk', (['source_array', 'target_chunks', 'max_mem', 'target_store'], {}), '(source_array, target_chunks, max_mem, target_store)\n', (16081, 16133), False, 'from rechunker import api\n'), ((16322, 16361), 'pytest.importorskip', 'pytest.importorskip', (['"""pywren_ibm_cloud"""'], {}), "('pywren_ibm_cloud')\n", (16341, 16361), False, 'import pytest\n'), ((301, 332), 'importlib.import_module', 'importlib.import_module', (['module'], {}), '(module)\n', (324, 332), False, 'import importlib\n'), ((848, 904), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""unrecognized executor"""'}), "(ValueError, match='unrecognized executor')\n", (861, 904), False, 'import pytest\n'), ((914, 942), 'rechunker.api._get_executor', 'api._get_executor', (['"""unknown"""'], {}), "('unknown')\n", (931, 942), False, 'from rechunker import api\n'), ((3747, 3801), 'pytest.param', 'pytest.param', (['None', '(-1, 200)'], {'marks': 'pytest.mark.xfail'}), '(None, (-1, 200), marks=pytest.mark.xfail)\n', (3759, 3801), False, 'import pytest\n'), ((3951, 4012), 'pytest.param', 'pytest.param', (["['y', 'x']", "{'x': 200}"], {'marks': 'pytest.mark.xfail'}), "(['y', 'x'], {'x': 200}, marks=pytest.mark.xfail)\n", (3963, 4012), False, 'import pytest\n'), ((4073, 4139), 'pytest.param', 'pytest.param', (['None', "{'y': 8000, 'x': 200}"], {'marks': 'pytest.mark.xfail'}), "(None, {'y': 8000, 'x': 200}, marks=pytest.mark.xfail)\n", (4085, 4139), False, 'import pytest\n'), ((7771, 7805), 'dask.array.from_zarr', 'dsa.from_zarr', (['target_group[aname]'], {}), '(target_group[aname])\n', (7784, 7805), True, 'import dask.array as dsa\n'), ((11020, 11080), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""path .* contains an array"""'}), "(ValueError, match='path .* contains an array')\n", (11033, 11080), False, 'import pytest\n'), ((11897, 11975), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""A temporary store location must be provided"""'}), "(ValueError, match='A temporary store location must be provided')\n", (11910, 11975), False, 'import pytest\n'), ((12240, 12291), 'rechunker.api.rechunk', 'api.rechunk', ([], {'target_options': 'options'}), '(**rechunk_args, target_options=options)\n', (12251, 12291), False, 'from rechunker import api\n'), ((12530, 12592), 'zarr.Blosc', 'zarr.Blosc', ([], {'cname': '"""zstd"""', 'clevel': '(9)', 'shuffle': 'zarr.Blosc.SHUFFLE'}), "(cname='zstd', clevel=9, shuffle=zarr.Blosc.SHUFFLE)\n", (12540, 12592), False, 'import zarr\n'), ((13853, 13932), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""You must specify ``target-chunks`` as a dict"""'}), "(ValueError, match='You must specify ``target-chunks`` as a dict')\n", (13866, 13932), False, 'import pytest\n'), ((13956, 13983), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**rechunk_args)\n', (13967, 13983), False, 'from rechunker import api\n'), ((14038, 14147), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Source must be a Zarr Array, Zarr Group, Dask Array or Xarray Dataset"""'}), "(ValueError, match=\n 'Source must be a Zarr Array, Zarr Group, Dask Array or Xarray Dataset')\n", (14051, 14147), False, 'import pytest\n'), ((14175, 14268), 'rechunker.api.rechunk', 'api.rechunk', (['[[1, 2], [3, 4]]'], {'target_chunks': '(10, 10)', 'max_mem': '(100)', 'target_store': 'tmp_path'}), '([[1, 2], [3, 4]], target_chunks=(10, 10), max_mem=100,\n target_store=tmp_path)\n', (14186, 14268), False, 'from rechunker import api\n'), ((14741, 14831), 'pytest.raises', 'pytest.raises', (['NotImplementedError'], {'match': '"""Executor type .* not supported for source"""'}), "(NotImplementedError, match=\n 'Executor type .* not supported for source')\n", (14754, 14831), False, 'import pytest\n'), ((16601, 16633), 'rechunker.executors.pywren.pywren_local_function_executor', 'pywren_local_function_executor', ([], {}), '()\n', (16631, 16633), False, 'from rechunker.executors.pywren import pywren_local_function_executor, PywrenExecutor\n'), ((16676, 16709), 'rechunker.executors.pywren.PywrenExecutor', 'PywrenExecutor', (['function_executor'], {}), '(function_executor)\n', (16690, 16709), False, 'from rechunker.executors.pywren import pywren_local_function_executor, PywrenExecutor\n'), ((16973, 17044), 'zarr.ones', 'zarr.ones', (['shape'], {'chunks': 'source_chunks', 'dtype': 'dtype', 'store': 'store_source'}), '(shape, chunks=source_chunks, dtype=dtype, store=store_source)\n', (16982, 17044), False, 'import zarr\n'), ((17222, 17332), 'rechunker.api.rechunk', 'api.rechunk', (['source_array', 'target_chunks', 'max_mem', 'target_store'], {'temp_store': 'temp_store', 'executor': 'executor'}), '(source_array, target_chunks, max_mem, target_store, temp_store=\n temp_store, executor=executor)\n', (17233, 17332), False, 'from rechunker import api\n'), ((17487, 17510), 'zarr.open', 'zarr.open', (['target_store'], {}), '(target_store)\n', (17496, 17510), False, 'import zarr\n'), ((17671, 17698), 'dask.array.from_zarr', 'dsa.from_zarr', (['target_array'], {}), '(target_array)\n', (17684, 17698), True, 'import dask.array as dsa\n'), ((10847, 10874), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**rechunk_args)\n', (10858, 10874), False, 'from rechunker import api\n'), ((11207, 11258), 'rechunker.api.rechunk', 'api.rechunk', ([], {'target_options': 'options'}), '(**rechunk_args, target_options=options)\n', (11218, 11258), False, 'from rechunker import api\n'), ((11582, 11609), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**rechunk_args)\n', (11593, 11609), False, 'from rechunker import api\n'), ((12977, 13081), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Chunks must be provided in ``target_chunks`` rather than options"""'}), "(ValueError, match=\n 'Chunks must be provided in ``target_chunks`` rather than options')\n", (12990, 13081), False, 'import pytest\n'), ((13125, 13176), 'rechunker.api.rechunk', 'api.rechunk', ([], {'target_options': 'options'}), '(**rechunk_args, target_options=options)\n', (13136, 13176), False, 'from rechunker import api\n'), ((14425, 14458), 'dask.array.ones', 'dsa.ones', (['(20, 10)'], {'chunks': '(5, 5)'}), '((20, 10), chunks=(5, 5))\n', (14433, 14458), True, 'import dask.array as dsa\n'), ((1529, 1614), 'xarray.DataArray', 'xarray.DataArray', (['a'], {'dims': "['x', 'y']", 'attrs': "{'a1': 1, 'a2': [1, 2, 3], 'a3': 'x'}"}), "(a, dims=['x', 'y'], attrs={'a1': 1, 'a2': [1, 2, 3], 'a3':\n 'x'})\n", (1545, 1614), False, 'import xarray\n'), ((11091, 11118), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**rechunk_args)\n', (11102, 11118), False, 'from rechunker import api\n'), ((11985, 12004), 'rechunker.api.rechunk', 'api.rechunk', ([], {}), '(**args)\n', (11996, 12004), False, 'from rechunker import api\n'), ((13350, 13419), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""Zarr options must not include {o}"""'}), "(ValueError, match=f'Zarr options must not include {o}')\n", (13363, 13419), False, 'import pytest\n'), ((13437, 13486), 'rechunker.api.rechunk', 'api.rechunk', ([], {'temp_options': 'options'}), '(**rechunk_args, temp_options=options)\n', (13448, 13486), False, 'from rechunker import api\n'), ((13504, 13573), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""Zarr options must not include {o}"""'}), "(ValueError, match=f'Zarr options must not include {o}')\n", (13517, 13573), False, 'import pytest\n'), ((13591, 13642), 'rechunker.api.rechunk', 'api.rechunk', ([], {'target_options': 'options'}), '(**rechunk_args, target_options=options)\n', (13602, 13642), False, 'from rechunker import api\n'), ((16199, 16218), 'dask.core.istask', 'dask.core.istask', (['v'], {}), '(v)\n', (16215, 16218), False, 'import dask\n'), ((1673, 1693), 'numpy.ones', 'numpy.ones', (['shape[0]'], {}), '(shape[0])\n', (1683, 1693), False, 'import numpy\n'), ((1739, 1759), 'numpy.ones', 'numpy.ones', (['shape[1]'], {}), '(shape[1])\n', (1749, 1759), False, 'import numpy\n'), ((2132, 2156), 'zarr.Blosc', 'zarr.Blosc', ([], {'cname': '"""zstd"""'}), "(cname='zstd')\n", (2142, 2156), False, 'import zarr\n'), ((5372, 5391), 'dask.array.equal', 'dsa.equal', (['a_tar', '(1)'], {}), '(a_tar, 1)\n', (5381, 5391), True, 'import dask.array as dsa\n'), ((6440, 6459), 'dask.array.equal', 'dsa.equal', (['a_tar', '(1)'], {}), '(a_tar, 1)\n', (6449, 6459), True, 'import dask.array as dsa\n'), ((7977, 8036), 'dask.array.ones', 'dsa.ones', ([], {'shape': '(10, 20, 40)', 'chunks': '(5, 10, 4)', 'dtype': '"""f4"""'}), "(shape=(10, 20, 40), chunks=(5, 10, 4), dtype='f4')\n", (7985, 8036), True, 'import dask.array as dsa\n'), ((8177, 8227), 'dask.array.ones', 'dsa.ones', ([], {'shape': '(8000,)', 'chunks': '(200,)', 'dtype': '"""f4"""'}), "(shape=(8000,), chunks=(200,), dtype='f4')\n", (8185, 8227), True, 'import dask.array as dsa\n'), ((1407, 1424), 'numpy.prod', 'numpy.prod', (['shape'], {}), '(shape)\n', (1417, 1424), False, 'import numpy\n'), ((1838, 1858), 'numpy.ones', 'numpy.ones', (['shape[0]'], {}), '(shape[0])\n', (1848, 1858), False, 'import numpy\n'), ((1905, 1925), 'numpy.ones', 'numpy.ones', (['shape[1]'], {}), '(shape[1])\n', (1915, 1925), False, 'import numpy\n'), ((7821, 7840), 'dask.array.equal', 'dsa.equal', (['a_tar', '(1)'], {}), '(a_tar, 1)\n', (7830, 7840), True, 'import dask.array as dsa\n'), ((17714, 17733), 'dask.array.equal', 'dsa.equal', (['a_tar', '(1)'], {}), '(a_tar, 1)\n', (17723, 17733), True, 'import dask.array as dsa\n'), ((12396, 12430), 'pathlib.Path', 'Path', (['rechunked._target.store.path'], {}), '(rechunked._target.store.path)\n', (12400, 12430), False, 'from pathlib import Path\n')]
#!/usr/bin/env python3 """The main entry point to the PDP trainer/tester/predictor.""" # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file # in the project root for full license information. import numpy as np import torch import torch.optim as optim import logging import argparse, os, yaml, csv from pdp.generator import * from pdp.trainer import SatFactorGraphTrainer ########################################################################################################################## def write_to_csv(result_list, file_path): with open(file_path, mode = 'w', newline = '') as f: writer = csv.writer(f, delimiter = ',', quotechar = '"', quoting = csv.QUOTE_MINIMAL) for row in result_list: writer.writerow([row[0], row[1][1, 0]]) def write_to_csv_time(result_list, file_path): with open(file_path, mode = 'w', newline = '') as f: writer = csv.writer(f, delimiter = ',', quotechar = '"', quoting = csv.QUOTE_MINIMAL) for row in result_list: writer.writerow([row[0], row[2]]) def run(random_seed, config_file, is_training, load_model, cpu, reset_step, use_generator, batch_replication): """Runs the train/test/predict procedures.""" if not use_generator: np.random.seed(random_seed) torch.manual_seed(random_seed) # Set the configurations (from either JSON or YAML file) with open(config_file, 'r') as f: config = yaml.load(f) config['train_path'] = [os.path.abspath(p) for p in config['train_path']] config['validation_path'] = [os.path.abspath(p) for p in config['train_path']] config['model_path'] = os.path.abspath(config['model_path']) # Set the logger format = '[%(levelname)s] %(asctime)s - %(name)s: %(message)s' logging.basicConfig(level = logging.DEBUG, format = format) logger = logging.getLogger(config['model_name'] + ' (' + config['version'] + ')') # Check if the input path is a list or on if not isinstance(config['train_path'], list): config['train_path'] = [os.path.join(config['train_path'], f) for f in os.listdir(config['train_path']) if os.path.isfile(os.path.join(config['train_path'], f)) and f.endswith('.json')] if not isinstance(config['validation_path'], list): config['validation_path'] = [os.path.join(config['validation_path'], f) for f in os.listdir(config['validation_path']) if os.path.isfile(os.path.join(config['validation_path'], f)) and f.endswith('.json')] if config['verbose']: if use_generator: logger.info("Generating training examples via %s generator." % config['generator']) else: logger.info("Training file(s): %s" % config['train_path']) logger.info("Validation file(s): %s" % config['validation_path']) best_model_path_base = os.path.join(os.path.relpath(config['model_path']), config['model_name'], config['version'], "best") last_model_path_base = os.path.join(os.path.relpath(config['model_path']), config['model_name'], config['version'], "last") if not os.path.exists(best_model_path_base): os.makedirs(best_model_path_base) if not os.path.exists(last_model_path_base): os.makedirs(last_model_path_base) trainer = SatFactorGraphTrainer(config = config, use_cuda = not cpu, logger = logger) # Training if is_training: if config['verbose']: logger.info("Starting the training phase...") generator = None if use_generator: if config['generator'] == 'modular': generator = ModularCNFGenerator(config['min_k'], config['min_n'], config['max_n'], config['min_q'], config['max_q'], config['min_c'], config['max_c'], config['min_alpha'], config['max_alpha']) elif config['generator'] == 'v-modular': generator = VariableModularCNFGenerator(config['min_k'], config['max_k'], config['min_n'], config['max_n'], config['min_q'], config['max_q'], config['min_c'], config['max_c'], config['min_alpha'], config['max_alpha']) else: generator = UniformCNFGenerator(config['min_n'], config['max_n'], config['min_k'], config['max_k'], config['min_alpha'], config['max_alpha']) model_list, errors, losses = trainer.train(train_list = config['train_path'], validation_list = config['validation_path'], optimizer = optim.Adam(trainer.get_parameter_list(), lr = config['learning_rate'], weight_decay = config['weight_decay']), last_export_path_base = last_model_path_base, best_export_path_base = best_model_path_base, metric_index = config['metric_index'], load_model = load_model, reset_step = reset_step, generator = generator, train_epoch_size = config['train_epoch_size']) if config['verbose']: logger.info("Starting the test phase...") for test_files in config['test_path']: if config['verbose']: logger.info("Testing " + test_files) if load_model == "last": import_path_base = last_model_path_base elif load_model == "best": import_path_base = best_model_path_base else: import_path_base = None result = trainer.test(test_list = test_files, import_path_base = import_path_base, batch_replication = batch_replication) if config['verbose']: for row in result: filename, errors, _ = row print('Dataset: ' + filename) print("Accuracy: \t%s" % (1 - errors[0])) print("Recall: \t%s" % (1 - errors[1])) if os.path.isdir(test_files): write_to_csv(result, os.path.join(test_files, config['model_type'] + '_' + config['model_name'] + '_' + config['version'] + '-results.csv')) write_to_csv_time(result, os.path.join(test_files, config['model_type'] + '_' + config['model_name'] + '_' + config['version'] + '-results-time.csv')) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('config', help = 'The configuration JSON file') parser.add_argument('-t', '--test', help = 'The test mode', action = 'store_true') parser.add_argument('-l', '--load_model', help = 'Load the previous model') parser.add_argument('-c', '--cpu_mode', help = 'Run on CPU', action = 'store_true') parser.add_argument('-r', '--reset', help = 'Reset the global step', action = 'store_true') parser.add_argument('-g', '--use_generator', help = 'Reset the global step', action = 'store_true') parser.add_argument('-b', '--batch_replication', help = 'Batch replication factor', type = int, default = 1) args = parser.parse_args() run(0, args.config, not args.test, args.load_model, args.cpu_mode, args.reset, args.use_generator, args.batch_replication)
[ "yaml.load", "os.path.abspath", "numpy.random.seed", "csv.writer", "argparse.ArgumentParser", "logging.basicConfig", "os.makedirs", "torch.manual_seed", "os.path.isdir", "os.path.exists", "os.path.relpath", "pdp.trainer.SatFactorGraphTrainer", "os.path.join", "os.listdir", "logging.getLogger" ]
[((1884, 1939), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG', 'format': 'format'}), '(level=logging.DEBUG, format=format)\n', (1903, 1939), False, 'import logging\n'), ((1958, 2030), 'logging.getLogger', 'logging.getLogger', (["(config['model_name'] + ' (' + config['version'] + ')')"], {}), "(config['model_name'] + ' (' + config['version'] + ')')\n", (1975, 2030), False, 'import logging\n'), ((3456, 3525), 'pdp.trainer.SatFactorGraphTrainer', 'SatFactorGraphTrainer', ([], {'config': 'config', 'use_cuda': '(not cpu)', 'logger': 'logger'}), '(config=config, use_cuda=not cpu, logger=logger)\n', (3477, 3525), False, 'from pdp.trainer import SatFactorGraphTrainer\n'), ((6471, 6496), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6494, 6496), False, 'import argparse, os, yaml, csv\n'), ((687, 757), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_MINIMAL'}), '(f, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_MINIMAL)\n', (697, 757), False, 'import argparse, os, yaml, csv\n'), ((980, 1050), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_MINIMAL'}), '(f, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_MINIMAL)\n', (990, 1050), False, 'import argparse, os, yaml, csv\n'), ((1344, 1371), 'numpy.random.seed', 'np.random.seed', (['random_seed'], {}), '(random_seed)\n', (1358, 1371), True, 'import numpy as np\n'), ((1381, 1411), 'torch.manual_seed', 'torch.manual_seed', (['random_seed'], {}), '(random_seed)\n', (1398, 1411), False, 'import torch\n'), ((1533, 1545), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (1542, 1545), False, 'import argparse, os, yaml, csv\n'), ((1749, 1786), 'os.path.abspath', 'os.path.abspath', (["config['model_path']"], {}), "(config['model_path'])\n", (1764, 1786), False, 'import argparse, os, yaml, csv\n'), ((3030, 3067), 'os.path.relpath', 'os.path.relpath', (["config['model_path']"], {}), "(config['model_path'])\n", (3045, 3067), False, 'import argparse, os, yaml, csv\n'), ((3161, 3198), 'os.path.relpath', 'os.path.relpath', (["config['model_path']"], {}), "(config['model_path'])\n", (3176, 3198), False, 'import argparse, os, yaml, csv\n'), ((3263, 3299), 'os.path.exists', 'os.path.exists', (['best_model_path_base'], {}), '(best_model_path_base)\n', (3277, 3299), False, 'import argparse, os, yaml, csv\n'), ((3310, 3343), 'os.makedirs', 'os.makedirs', (['best_model_path_base'], {}), '(best_model_path_base)\n', (3321, 3343), False, 'import argparse, os, yaml, csv\n'), ((3358, 3394), 'os.path.exists', 'os.path.exists', (['last_model_path_base'], {}), '(last_model_path_base)\n', (3372, 3394), False, 'import argparse, os, yaml, csv\n'), ((3405, 3438), 'os.makedirs', 'os.makedirs', (['last_model_path_base'], {}), '(last_model_path_base)\n', (3416, 3438), False, 'import argparse, os, yaml, csv\n'), ((6002, 6027), 'os.path.isdir', 'os.path.isdir', (['test_files'], {}), '(test_files)\n', (6015, 6027), False, 'import argparse, os, yaml, csv\n'), ((1579, 1597), 'os.path.abspath', 'os.path.abspath', (['p'], {}), '(p)\n', (1594, 1597), False, 'import argparse, os, yaml, csv\n'), ((1667, 1685), 'os.path.abspath', 'os.path.abspath', (['p'], {}), '(p)\n', (1682, 1685), False, 'import argparse, os, yaml, csv\n'), ((2165, 2202), 'os.path.join', 'os.path.join', (["config['train_path']", 'f'], {}), "(config['train_path'], f)\n", (2177, 2202), False, 'import argparse, os, yaml, csv\n'), ((2457, 2499), 'os.path.join', 'os.path.join', (["config['validation_path']", 'f'], {}), "(config['validation_path'], f)\n", (2469, 2499), False, 'import argparse, os, yaml, csv\n'), ((2212, 2244), 'os.listdir', 'os.listdir', (["config['train_path']"], {}), "(config['train_path'])\n", (2222, 2244), False, 'import argparse, os, yaml, csv\n'), ((2509, 2546), 'os.listdir', 'os.listdir', (["config['validation_path']"], {}), "(config['validation_path'])\n", (2519, 2546), False, 'import argparse, os, yaml, csv\n'), ((6089, 6211), 'os.path.join', 'os.path.join', (['test_files', "(config['model_type'] + '_' + config['model_name'] + '_' + config['version'\n ] + '-results.csv')"], {}), "(test_files, config['model_type'] + '_' + config['model_name'] +\n '_' + config['version'] + '-results.csv')\n", (6101, 6211), False, 'import argparse, os, yaml, csv\n'), ((6248, 6375), 'os.path.join', 'os.path.join', (['test_files', "(config['model_type'] + '_' + config['model_name'] + '_' + config['version'\n ] + '-results-time.csv')"], {}), "(test_files, config['model_type'] + '_' + config['model_name'] +\n '_' + config['version'] + '-results-time.csv')\n", (6260, 6375), False, 'import argparse, os, yaml, csv\n'), ((2296, 2333), 'os.path.join', 'os.path.join', (["config['train_path']", 'f'], {}), "(config['train_path'], f)\n", (2308, 2333), False, 'import argparse, os, yaml, csv\n'), ((2603, 2645), 'os.path.join', 'os.path.join', (["config['validation_path']", 'f'], {}), "(config['validation_path'], f)\n", (2615, 2645), False, 'import argparse, os, yaml, csv\n')]
# -*- coding: utf-8 -*- """ Created on Mon Aug 29 10:58:31 2016 @author: <EMAIL> """ import numpy as np import scipy import matplotlib.pyplot as plt import seaborn as sns from matplotlib.patches import Ellipse def plot_cov_ellipse(cov, pos, nstd=2, ax=None, **kwargs): """ Plots an `nstd` sigma error ellipse based on the specified covariance matrix (`cov`). Additional keyword arguments are passed on to the ellipse patch artist. Parameters ---------- cov : The 2x2 covariance matrix to base the ellipse on pos : The location of the center of the ellipse. Expects a 2-element sequence of [x0, y0]. nstd : The radius of the ellipse in numbers of standard deviations. Defaults to 2 standard deviations. ax : The axis that the ellipse will be plotted on. Defaults to the current axis. Additional keyword arguments are pass on to the ellipse patch. Returns ------- A matplotlib ellipse artist """ def eigsorted(cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:,order] if ax is None: ax = plt.gca() vals, vecs = eigsorted(cov) theta = np.degrees(np.arctan2(*vecs[:,0][::-1])) # Width and height are "full" widths, not radius width, height = 2 * nstd * np.sqrt(vals) ellip = Ellipse(xy=pos, width=width, height=height, angle=theta, **kwargs) ax.add_artist(ellip) return ellip
[ "numpy.arctan2", "numpy.linalg.eigh", "matplotlib.pyplot.gca", "matplotlib.patches.Ellipse", "numpy.sqrt" ]
[((1407, 1473), 'matplotlib.patches.Ellipse', 'Ellipse', ([], {'xy': 'pos', 'width': 'width', 'height': 'height', 'angle': 'theta'}), '(xy=pos, width=width, height=height, angle=theta, **kwargs)\n', (1414, 1473), False, 'from matplotlib.patches import Ellipse\n'), ((1068, 1087), 'numpy.linalg.eigh', 'np.linalg.eigh', (['cov'], {}), '(cov)\n', (1082, 1087), True, 'import numpy as np\n'), ((1200, 1209), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1207, 1209), True, 'import matplotlib.pyplot as plt\n'), ((1266, 1295), 'numpy.arctan2', 'np.arctan2', (['*vecs[:, 0][::-1]'], {}), '(*vecs[:, 0][::-1])\n', (1276, 1295), True, 'import numpy as np\n'), ((1381, 1394), 'numpy.sqrt', 'np.sqrt', (['vals'], {}), '(vals)\n', (1388, 1394), True, 'import numpy as np\n')]
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the BC agent.""" from absl.testing import absltest from absl.testing import parameterized from acme import specs from acme import types from acme.agents.jax import bc from acme.jax import networks as networks_lib from acme.jax import utils from acme.testing import fakes import chex import haiku as hk import jax import jax.numpy as jnp from jax.scipy import special import numpy as np import optax def make_networks( spec: specs.EnvironmentSpec, discrete_actions: bool = False) -> networks_lib.FeedForwardNetwork: """Creates networks used by the agent.""" if discrete_actions: final_layer_size = spec.actions.num_values else: final_layer_size = np.prod(spec.actions.shape, dtype=int) def _actor_fn(obs, is_training=False, key=None): # is_training and key allows to defined train/test dependant modules # like dropout. del is_training del key if discrete_actions: network = hk.nets.MLP([64, 64, final_layer_size]) else: network = hk.Sequential([ networks_lib.LayerNormMLP([64, 64], activate_final=True), networks_lib.NormalTanhDistribution(final_layer_size), ]) return network(obs) policy = hk.without_apply_rng(hk.transform(_actor_fn)) # Create dummy observations and actions to create network parameters. dummy_obs = utils.zeros_like(spec.observations) dummy_obs = utils.add_batch_dim(dummy_obs) network = networks_lib.FeedForwardNetwork( lambda key: policy.init(key, dummy_obs), policy.apply) return network class BCTest(parameterized.TestCase): @parameterized.parameters( ('logp',), ('mse',), ('peerbc',) ) def test_continuous_actions(self, loss_name): with chex.fake_pmap_and_jit(): num_sgd_steps_per_step = 1 num_steps = 5 # Create a fake environment to test with. environment = fakes.ContinuousEnvironment( episode_length=10, bounded=True, action_dim=6) spec = specs.make_environment_spec(environment) dataset_demonstration = fakes.transition_dataset(environment) dataset_demonstration = dataset_demonstration.map( lambda sample: types.Transition(*sample.data)) dataset_demonstration = dataset_demonstration.batch(8).as_numpy_iterator() # Construct the agent. network = make_networks(spec) if loss_name == 'logp': loss_fn = bc.logp( logp_fn=lambda dist_params, actions: dist_params.log_prob(actions)) elif loss_name == 'mse': loss_fn = bc.mse( sample_fn=lambda dist_params, key: dist_params.sample(seed=key)) elif loss_name == 'peerbc': base_loss_fn = bc.logp( logp_fn=lambda dist_params, actions: dist_params.log_prob(actions)) loss_fn = bc.peerbc(base_loss_fn, zeta=0.1) else: raise ValueError learner = bc.BCLearner( network=network, random_key=jax.random.PRNGKey(0), loss_fn=loss_fn, optimizer=optax.adam(0.01), demonstrations=dataset_demonstration, num_sgd_steps_per_step=num_sgd_steps_per_step) # Train the agent for _ in range(num_steps): learner.step() @parameterized.parameters( ('logp',), ('rcal',)) def test_discrete_actions(self, loss_name): with chex.fake_pmap_and_jit(): num_sgd_steps_per_step = 1 num_steps = 5 # Create a fake environment to test with. environment = fakes.DiscreteEnvironment( num_actions=10, num_observations=100, obs_shape=(10,), obs_dtype=np.float32) spec = specs.make_environment_spec(environment) dataset_demonstration = fakes.transition_dataset(environment) dataset_demonstration = dataset_demonstration.map( lambda sample: types.Transition(*sample.data)) dataset_demonstration = dataset_demonstration.batch(8).as_numpy_iterator() # Construct the agent. network = make_networks(spec, discrete_actions=True) def logp_fn(logits, actions): max_logits = jnp.max(logits, axis=-1, keepdims=True) logits = logits - max_logits logits_actions = jnp.sum( jax.nn.one_hot(actions, spec.actions.num_values) * logits, axis=-1) log_prob = logits_actions - special.logsumexp(logits, axis=-1) return log_prob if loss_name == 'logp': loss_fn = bc.logp(logp_fn=logp_fn) elif loss_name == 'rcal': base_loss_fn = bc.logp(logp_fn=logp_fn) loss_fn = bc.rcal(base_loss_fn, discount=0.99, alpha=0.1) else: raise ValueError learner = bc.BCLearner( network=network, random_key=jax.random.PRNGKey(0), loss_fn=loss_fn, optimizer=optax.adam(0.01), demonstrations=dataset_demonstration, num_sgd_steps_per_step=num_sgd_steps_per_step) # Train the agent for _ in range(num_steps): learner.step() if __name__ == '__main__': absltest.main()
[ "absl.testing.absltest.main", "chex.fake_pmap_and_jit", "optax.adam", "acme.types.Transition", "acme.jax.networks.NormalTanhDistribution", "jax.random.PRNGKey", "jax.nn.one_hot", "acme.testing.fakes.transition_dataset", "numpy.prod", "acme.testing.fakes.DiscreteEnvironment", "acme.agents.jax.bc.peerbc", "haiku.nets.MLP", "acme.jax.utils.zeros_like", "acme.jax.utils.add_batch_dim", "haiku.transform", "jax.scipy.special.logsumexp", "acme.agents.jax.bc.logp", "acme.specs.make_environment_spec", "acme.testing.fakes.ContinuousEnvironment", "acme.agents.jax.bc.rcal", "jax.numpy.max", "absl.testing.parameterized.parameters", "acme.jax.networks.LayerNormMLP" ]
[((1951, 1986), 'acme.jax.utils.zeros_like', 'utils.zeros_like', (['spec.observations'], {}), '(spec.observations)\n', (1967, 1986), False, 'from acme.jax import utils\n'), ((2001, 2031), 'acme.jax.utils.add_batch_dim', 'utils.add_batch_dim', (['dummy_obs'], {}), '(dummy_obs)\n', (2020, 2031), False, 'from acme.jax import utils\n'), ((2199, 2257), 'absl.testing.parameterized.parameters', 'parameterized.parameters', (["('logp',)", "('mse',)", "('peerbc',)"], {}), "(('logp',), ('mse',), ('peerbc',))\n", (2223, 2257), False, 'from absl.testing import parameterized\n'), ((3823, 3869), 'absl.testing.parameterized.parameters', 'parameterized.parameters', (["('logp',)", "('rcal',)"], {}), "(('logp',), ('rcal',))\n", (3847, 3869), False, 'from absl.testing import parameterized\n'), ((5606, 5621), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (5619, 5621), False, 'from absl.testing import absltest\n'), ((1301, 1339), 'numpy.prod', 'np.prod', (['spec.actions.shape'], {'dtype': 'int'}), '(spec.actions.shape, dtype=int)\n', (1308, 1339), True, 'import numpy as np\n'), ((1839, 1862), 'haiku.transform', 'hk.transform', (['_actor_fn'], {}), '(_actor_fn)\n', (1851, 1862), True, 'import haiku as hk\n'), ((1558, 1597), 'haiku.nets.MLP', 'hk.nets.MLP', (['[64, 64, final_layer_size]'], {}), '([64, 64, final_layer_size])\n', (1569, 1597), True, 'import haiku as hk\n'), ((2341, 2365), 'chex.fake_pmap_and_jit', 'chex.fake_pmap_and_jit', ([], {}), '()\n', (2363, 2365), False, 'import chex\n'), ((2489, 2563), 'acme.testing.fakes.ContinuousEnvironment', 'fakes.ContinuousEnvironment', ([], {'episode_length': '(10)', 'bounded': '(True)', 'action_dim': '(6)'}), '(episode_length=10, bounded=True, action_dim=6)\n', (2516, 2563), False, 'from acme.testing import fakes\n'), ((2589, 2629), 'acme.specs.make_environment_spec', 'specs.make_environment_spec', (['environment'], {}), '(environment)\n', (2616, 2629), False, 'from acme import specs\n'), ((2660, 2697), 'acme.testing.fakes.transition_dataset', 'fakes.transition_dataset', (['environment'], {}), '(environment)\n', (2684, 2697), False, 'from acme.testing import fakes\n'), ((3938, 3962), 'chex.fake_pmap_and_jit', 'chex.fake_pmap_and_jit', ([], {}), '()\n', (3960, 3962), False, 'import chex\n'), ((4087, 4194), 'acme.testing.fakes.DiscreteEnvironment', 'fakes.DiscreteEnvironment', ([], {'num_actions': '(10)', 'num_observations': '(100)', 'obs_shape': '(10,)', 'obs_dtype': 'np.float32'}), '(num_actions=10, num_observations=100, obs_shape=(\n 10,), obs_dtype=np.float32)\n', (4112, 4194), False, 'from acme.testing import fakes\n'), ((4225, 4265), 'acme.specs.make_environment_spec', 'specs.make_environment_spec', (['environment'], {}), '(environment)\n', (4252, 4265), False, 'from acme import specs\n'), ((4296, 4333), 'acme.testing.fakes.transition_dataset', 'fakes.transition_dataset', (['environment'], {}), '(environment)\n', (4320, 4333), False, 'from acme.testing import fakes\n'), ((4676, 4715), 'jax.numpy.max', 'jnp.max', (['logits'], {'axis': '(-1)', 'keepdims': '(True)'}), '(logits, axis=-1, keepdims=True)\n', (4683, 4715), True, 'import jax.numpy as jnp\n'), ((5012, 5036), 'acme.agents.jax.bc.logp', 'bc.logp', ([], {'logp_fn': 'logp_fn'}), '(logp_fn=logp_fn)\n', (5019, 5036), False, 'from acme.agents.jax import bc\n'), ((1650, 1706), 'acme.jax.networks.LayerNormMLP', 'networks_lib.LayerNormMLP', (['[64, 64]'], {'activate_final': '(True)'}), '([64, 64], activate_final=True)\n', (1675, 1706), True, 'from acme.jax import networks as networks_lib\n'), ((1718, 1771), 'acme.jax.networks.NormalTanhDistribution', 'networks_lib.NormalTanhDistribution', (['final_layer_size'], {}), '(final_layer_size)\n', (1753, 1771), True, 'from acme.jax import networks as networks_lib\n'), ((2780, 2810), 'acme.types.Transition', 'types.Transition', (['*sample.data'], {}), '(*sample.data)\n', (2796, 2810), False, 'from acme import types\n'), ((3545, 3566), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(0)'], {}), '(0)\n', (3563, 3566), False, 'import jax\n'), ((3615, 3631), 'optax.adam', 'optax.adam', (['(0.01)'], {}), '(0.01)\n', (3625, 3631), False, 'import optax\n'), ((4416, 4446), 'acme.types.Transition', 'types.Transition', (['*sample.data'], {}), '(*sample.data)\n', (4432, 4446), False, 'from acme import types\n'), ((4904, 4938), 'jax.scipy.special.logsumexp', 'special.logsumexp', (['logits'], {'axis': '(-1)'}), '(logits, axis=-1)\n', (4921, 4938), False, 'from jax.scipy import special\n'), ((5093, 5117), 'acme.agents.jax.bc.logp', 'bc.logp', ([], {'logp_fn': 'logp_fn'}), '(logp_fn=logp_fn)\n', (5100, 5117), False, 'from acme.agents.jax import bc\n'), ((5136, 5183), 'acme.agents.jax.bc.rcal', 'bc.rcal', (['base_loss_fn'], {'discount': '(0.99)', 'alpha': '(0.1)'}), '(base_loss_fn, discount=0.99, alpha=0.1)\n', (5143, 5183), False, 'from acme.agents.jax import bc\n'), ((5301, 5322), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(0)'], {}), '(0)\n', (5319, 5322), False, 'import jax\n'), ((5371, 5387), 'optax.adam', 'optax.adam', (['(0.01)'], {}), '(0.01)\n', (5381, 5387), False, 'import optax\n'), ((3395, 3428), 'acme.agents.jax.bc.peerbc', 'bc.peerbc', (['base_loss_fn'], {'zeta': '(0.1)'}), '(base_loss_fn, zeta=0.1)\n', (3404, 3428), False, 'from acme.agents.jax import bc\n'), ((4799, 4847), 'jax.nn.one_hot', 'jax.nn.one_hot', (['actions', 'spec.actions.num_values'], {}), '(actions, spec.actions.num_values)\n', (4813, 4847), False, 'import jax\n')]
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import cv2 import numpy as np import StringIO import datetime import pytz import angus import angus_display as ad import stats as st def f(stream_index, width, height): camera = cv2.VideoCapture(stream_index) camera.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, int(width)) camera.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, int(height)) camera.set(cv2.cv.CV_CAP_PROP_FPS, 10) if not camera.isOpened(): print("Cannot open stream of index {}".format(stream_index)) exit(1) print("Video stream is of resolution {} x {}".format(camera.get(3), camera.get(4))) stats = st.Stats("stats.json") animation = [] engaged = [] conn = angus.connect() service = conn.services.get_service("scene_analysis", version=1) service.enable_session() while camera.isOpened(): ret, frame = camera.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) ret, buff = cv2.imencode(".jpg", gray, [cv2.IMWRITE_JPEG_QUALITY, 80]) buff = StringIO.StringIO(np.array(buff).tostring()) t = datetime.datetime.now(pytz.utc) job = service.process({"image": buff, "timestamp" : t.isoformat(), "camera_position": "facing", "sensitivity": { "appearance": 0.7, "disappearance": 0.7, "age_estimated": 0.4, "gender_estimated": 0.5, "focus_locked": 0.9, "emotion_detected": 0.4, "direction_estimated": 0.8 } }) res = job.result events = res["events"] entities = res["entities"] for idx, h in entities.iteritems(): pt = ad.displayAge(frame, idx, h, 0.50, 0.35) ch = ad.displayHair(frame, idx, h) ad.displayAvatar(frame, h, pt, ch) ad.displayEmotion(frame, h, pt) ad.displayGender(frame, h, pt) ad.displayGaze(frame, idx, h, pt, 0.50) panel = ((width - 180, 40), (width-20, height - 40)) ad.blur(frame, panel[0], panel[1], (255, 255, 255), 2) ad.computeConversion(res, events, entities, engaged, stats, animation, 0.5, 500) ad.displayConversion(frame, stats, (width - 100, int(0.3*height))) ad.displayAnimation(frame, animation) ad.display_logo(frame, 20, height - 60) cv2.imshow('window', frame) if cv2.waitKey(1) & 0xFF == ord('q'): stats.save() break service.disable_session() camera.release() cv2.destroyAllWindows() if __name__ == '__main__': ### Web cam index might be different from 0 on your setup. ### To grab a given video file instead of the host computer cam, try: ### main("/path/to/myvideo.avi") f(0, 640, 480)
[ "angus_display.blur", "angus_display.displayHair", "cv2.imencode", "cv2.imshow", "angus_display.displayAnimation", "angus_display.displayAge", "angus_display.displayGaze", "cv2.cvtColor", "angus_display.displayAvatar", "angus_display.display_logo", "cv2.destroyAllWindows", "datetime.datetime.now", "angus_display.displayEmotion", "cv2.waitKey", "angus_display.displayGender", "cv2.VideoCapture", "stats.Stats", "numpy.array", "angus.connect", "angus_display.computeConversion" ]
[((995, 1025), 'cv2.VideoCapture', 'cv2.VideoCapture', (['stream_index'], {}), '(stream_index)\n', (1011, 1025), False, 'import cv2\n'), ((1407, 1429), 'stats.Stats', 'st.Stats', (['"""stats.json"""'], {}), "('stats.json')\n", (1415, 1429), True, 'import stats as st\n'), ((1478, 1493), 'angus.connect', 'angus.connect', ([], {}), '()\n', (1491, 1493), False, 'import angus\n'), ((3597, 3620), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3618, 3620), False, 'import cv2\n'), ((1712, 1751), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (1724, 1751), False, 'import cv2\n'), ((1772, 1830), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'gray', '[cv2.IMWRITE_JPEG_QUALITY, 80]'], {}), "('.jpg', gray, [cv2.IMWRITE_JPEG_QUALITY, 80])\n", (1784, 1830), False, 'import cv2\n'), ((1905, 1936), 'datetime.datetime.now', 'datetime.datetime.now', (['pytz.utc'], {}), '(pytz.utc)\n', (1926, 1936), False, 'import datetime\n'), ((3100, 3154), 'angus_display.blur', 'ad.blur', (['frame', 'panel[0]', 'panel[1]', '(255, 255, 255)', '(2)'], {}), '(frame, panel[0], panel[1], (255, 255, 255), 2)\n', (3107, 3154), True, 'import angus_display as ad\n'), ((3163, 3248), 'angus_display.computeConversion', 'ad.computeConversion', (['res', 'events', 'entities', 'engaged', 'stats', 'animation', '(0.5)', '(500)'], {}), '(res, events, entities, engaged, stats, animation, 0.5, 500\n )\n', (3183, 3248), True, 'import angus_display as ad\n'), ((3327, 3364), 'angus_display.displayAnimation', 'ad.displayAnimation', (['frame', 'animation'], {}), '(frame, animation)\n', (3346, 3364), True, 'import angus_display as ad\n'), ((3373, 3412), 'angus_display.display_logo', 'ad.display_logo', (['frame', '(20)', '(height - 60)'], {}), '(frame, 20, height - 60)\n', (3388, 3412), True, 'import angus_display as ad\n'), ((3422, 3449), 'cv2.imshow', 'cv2.imshow', (['"""window"""', 'frame'], {}), "('window', frame)\n", (3432, 3449), False, 'import cv2\n'), ((2756, 2795), 'angus_display.displayAge', 'ad.displayAge', (['frame', 'idx', 'h', '(0.5)', '(0.35)'], {}), '(frame, idx, h, 0.5, 0.35)\n', (2769, 2795), True, 'import angus_display as ad\n'), ((2814, 2843), 'angus_display.displayHair', 'ad.displayHair', (['frame', 'idx', 'h'], {}), '(frame, idx, h)\n', (2828, 2843), True, 'import angus_display as ad\n'), ((2856, 2890), 'angus_display.displayAvatar', 'ad.displayAvatar', (['frame', 'h', 'pt', 'ch'], {}), '(frame, h, pt, ch)\n', (2872, 2890), True, 'import angus_display as ad\n'), ((2903, 2934), 'angus_display.displayEmotion', 'ad.displayEmotion', (['frame', 'h', 'pt'], {}), '(frame, h, pt)\n', (2920, 2934), True, 'import angus_display as ad\n'), ((2947, 2977), 'angus_display.displayGender', 'ad.displayGender', (['frame', 'h', 'pt'], {}), '(frame, h, pt)\n', (2963, 2977), True, 'import angus_display as ad\n'), ((2990, 3028), 'angus_display.displayGaze', 'ad.displayGaze', (['frame', 'idx', 'h', 'pt', '(0.5)'], {}), '(frame, idx, h, pt, 0.5)\n', (3004, 3028), True, 'import angus_display as ad\n'), ((3462, 3476), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3473, 3476), False, 'import cv2\n'), ((1865, 1879), 'numpy.array', 'np.array', (['buff'], {}), '(buff)\n', (1873, 1879), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import logging import numpy as np import gensim from .common import MultiprocModelsRunner, MultiprocModelsWorkerABC, MultiprocEvaluationRunner, \ MultiprocEvaluationWorkerABC, dtm_to_gensim_corpus from .eval_metrics import metric_cao_juan_2009 AVAILABLE_METRICS = ( 'perplexity', # 'cross_validation', 'cao_juan_2009', # 'arun_2010', ) logger = logging.getLogger('tmtoolkit') def get_model_perplexity(model, eval_corpus): n_words = sum(cnt for document in eval_corpus for _, cnt in document) bound = model.bound(eval_corpus) perwordbound = bound / n_words return np.exp2(-perwordbound) class MultiprocModelsWorkerGensim(MultiprocModelsWorkerABC): package_name = 'gensim' def fit_model(self, data, params, return_data=False): data = dtm_to_gensim_corpus(data.tocsr()) model = gensim.models.ldamodel.LdaModel(data, **params) if return_data: return model, data else: return model class MultiprocEvaluationWorkerGensim(MultiprocEvaluationWorkerABC, MultiprocModelsWorkerGensim): def fit_model(self, data, params, return_data=False): model, data = super(MultiprocEvaluationWorkerGensim, self).fit_model(data, params, return_data=True) results = {} if self.return_models: results['model'] = model for metric in self.eval_metric: # if metric == 'cross_validation': continue if metric == 'cao_juan_2009': res = metric_cao_juan_2009(model.state.get_lambda()) # elif metric == 'arun_2010': # TODO: fix this (get document topic distr. from gensim model) # results = metric_arun_2010(train_model.state.get_lambda(), train_model[corpus_train], data.sum(axis=1)) else: # default: perplexity res = get_model_perplexity(model, data) logger.info('> evaluation result with metric "%s": %f' % (metric, res)) results[metric] = res return results def compute_models_parallel(data, varying_parameters=None, constant_parameters=None, n_max_processes=None): """ Compute several Topic Models in parallel using the "gensim" package. Use a single or multiple document term matrices `data` and optionally a list of varying parameters `varying_parameters`. Pass parameters in `constant_parameters` dict to each model calculation. Use at maximum `n_max_processes` processors or use all available processors if None is passed. `data` can be either a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix) or a dict with document ID -> Document-Term-Matrix mapping when calculating models for multiple corpora (named multiple documents). If `data` is a dict of named documents, this function will return a dict with document ID -> result list. Otherwise it will only return a result list. A result list always is a list containing tuples `(parameter_set, model)` where `parameter_set` is a dict of the used parameters. """ mp_models = MultiprocModelsRunner(MultiprocModelsWorkerGensim, data, varying_parameters, constant_parameters, n_max_processes=n_max_processes) return mp_models.run() def evaluate_topic_models(data, varying_parameters, constant_parameters=None, n_max_processes=None, return_models=False, metric=None, **metric_kwargs): """ Compute several Topic Models in parallel using the "gensim" package. Calculate the models using a list of varying parameters `varying_parameters` on a single Document-Term-Matrix `data`. Pass parameters in `constant_parameters` dict to each model calculation. Use at maximum `n_max_processes` processors or use all available processors if None is passed. `data` must be a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix). Will return a list of size `len(varying_parameters)` containing tuples `(parameter_set, eval_results)` where `parameter_set` is a dict of the used parameters and `eval_results` is a dict of metric names -> metric results. """ mp_eval = MultiprocEvaluationRunner(MultiprocEvaluationWorkerGensim, AVAILABLE_METRICS, data, varying_parameters, constant_parameters, metric=metric, metric_options=metric_kwargs, n_max_processes=n_max_processes, return_models=return_models) return mp_eval.run()
[ "numpy.exp2", "gensim.models.ldamodel.LdaModel", "logging.getLogger" ]
[((393, 423), 'logging.getLogger', 'logging.getLogger', (['"""tmtoolkit"""'], {}), "('tmtoolkit')\n", (410, 423), False, 'import logging\n'), ((630, 652), 'numpy.exp2', 'np.exp2', (['(-perwordbound)'], {}), '(-perwordbound)\n', (637, 652), True, 'import numpy as np\n'), ((869, 916), 'gensim.models.ldamodel.LdaModel', 'gensim.models.ldamodel.LdaModel', (['data'], {}), '(data, **params)\n', (900, 916), False, 'import gensim\n')]
# -*- coding: utf-8 -*- import warnings import numpy as np import pandas as pd import pytest with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) import xarray as xr from snl_d3d_cec_verify.cases import CaseStudy from snl_d3d_cec_verify.result.faces import (_check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces) def test_check_case_study_error(): case = CaseStudy(dx=[1, 2, 3]) with pytest.raises(ValueError) as excinfo: _check_case_study(case) assert "case study must have length one" in str(excinfo) @pytest.fixture def faces_frame_fm(data_dir): csv_path = data_dir / "output" / "faces_frame_fm.csv" frame = pd.read_csv(csv_path, parse_dates=["time"]) times = frame.time.unique() return frame[frame.time == times[-1]] @pytest.fixture def faces_frame_structured(data_dir): csv_path = data_dir / "output" / "faces_frame_structured.csv" frame = pd.read_csv(csv_path, parse_dates=["time"]) times = frame.time.unique() return frame[frame.time == times[-1]] def test_faces_frame_to_slice_sigma(faces_frame_fm): ts = pd.Timestamp("2001-01-01 01:00:00") sigma = -0.5 ds = _faces_frame_to_slice(faces_frame_fm, ts, "sigma", sigma) assert isinstance(ds, xr.Dataset) assert len(ds["$x$"]) == 18 assert len(ds["$y$"]) == 4 assert np.isclose(ds["$x$"].min(), 0.5) assert np.isclose(ds["$x$"].max(), 17.5) assert np.isclose(ds["$y$"].min(), 1.5) assert np.isclose(ds["$y$"].max(), 4.5) assert ds[r"$\sigma$"].values.take(0) == sigma assert ds.time.values.take(0) == ts assert ds["$z$"].min() > -1.0012 assert ds["$z$"].max() < -1 # Same bounds as the frame assert ds["$u$"].min() >= faces_frame_fm["u"].min() assert ds["$u$"].max() <= faces_frame_fm["u"].max() assert ds["$v$"].min() >= faces_frame_fm["v"].min() assert ds["$v$"].max() <= faces_frame_fm["v"].max() assert ds["$w$"].min() >= faces_frame_fm["w"].min() assert ds["$w$"].max() <= faces_frame_fm["w"].max() def test_faces_frame_structured_to_slice_sigma(faces_frame_structured): ts = pd.Timestamp("2001-01-01 01:00:00") sigma = -0.75 ds = _faces_frame_to_slice(faces_frame_structured, ts, "sigma", sigma) assert isinstance(ds, xr.Dataset) assert len(ds["$x$"]) == 18 assert len(ds["$y$"]) == 4 assert np.isclose(ds["$x$"].min(), 0.5) assert np.isclose(ds["$x$"].max(), 17.5) assert np.isclose(ds["$y$"].min(), 1.5) assert np.isclose(ds["$y$"].max(), 4.5) assert ds[r"$\sigma$"].values.take(0) == sigma assert ds.time.values.take(0) == ts assert ds["$z$"].min() > -1.504 assert ds["$z$"].max() < -1.5 # Same bounds as the frame assert ds["$u$"].min() >= faces_frame_structured["u"].min() assert ds["$u$"].max() <= faces_frame_structured["u"].max() assert ds["$v$"].min() >= faces_frame_structured["v"].min() assert ds["$v$"].max() <= faces_frame_structured["v"].max() assert ds["$w$"].min() >= faces_frame_structured["w"].min() assert ds["$w$"].max() <= faces_frame_structured["w"].max() assert ds["$k$"].min() >= 0 assert ds["$k$"].min() >= faces_frame_structured["tke"].min() assert ds["$k$"].max() <= faces_frame_structured["tke"].max() def test_faces_frame_to_slice_sigma_extrapolate_forward(faces_frame_fm): ts = pd.Timestamp("2001-01-01 01:00:00") sigma = 0.1 ds = _faces_frame_to_slice(faces_frame_fm, ts, "sigma", sigma) assert ds["$z$"].min() > 0.2 assert ds["$z$"].max() < 0.2003 def test_faces_frame_to_slice_sigma_extrapolate_backward(faces_frame_fm): ts = pd.Timestamp("2001-01-01 01:00:00") sigma = -1.1 ds = _faces_frame_to_slice(faces_frame_fm, ts, "sigma", sigma) assert ds["$z$"].min() > -2.203 assert ds["$z$"].max() < -2.2 def test_faces_frame_to_slice_z(faces_frame_fm): ts = pd.Timestamp("2001-01-01 01:00:00") z = -1 ds = _faces_frame_to_slice(faces_frame_fm, ts, "z", z) assert isinstance(ds, xr.Dataset) assert len(ds["$x$"]) == 18 assert len(ds["$y$"]) == 4 assert np.isclose(ds["$x$"].min(), 0.5) assert np.isclose(ds["$x$"].max(), 17.5) assert np.isclose(ds["$y$"].min(), 1.5) assert np.isclose(ds["$y$"].max(), 4.5) assert ds["$z$"].values.take(0) == z assert ds.time.values.take(0) == ts assert ds[r"$\sigma$"].values.min() >= -1 assert ds["$z$"].max() < 1.002 # Same bounds as the frame assert ds["$u$"].min() >= faces_frame_fm["u"].min() assert ds["$u$"].max() <= faces_frame_fm["u"].max() assert ds["$v$"].min() >= faces_frame_fm["v"].min() assert ds["$v$"].max() <= faces_frame_fm["v"].max() assert ds["$w$"].min() >= faces_frame_fm["w"].min() assert ds["$w$"].max() <= faces_frame_fm["w"].max() def test_faces_frame_to_slice_error(): with pytest.raises(RuntimeError) as excinfo: _faces_frame_to_slice("mock", "mock", "mock", "mock") assert "Given key is not valid" in str(excinfo) def test_faces_frame_to_depth(faces_frame_fm): ts = pd.Timestamp("2001-01-01 01:00:00") da = _faces_frame_to_depth(faces_frame_fm, ts) assert isinstance(da, xr.DataArray) assert len(da["$x$"]) == 18 assert len(da["$y$"]) == 4 assert da.time.values.take(0) == ts # Same bounds as the frame assert da.min() >= faces_frame_fm["depth"].min() assert da.max() <= faces_frame_fm["depth"].max() def test_faces_frame_structured_to_depth(faces_frame_structured): ts = pd.Timestamp("2001-01-01 01:00:00") da = _faces_frame_to_depth(faces_frame_structured, ts) assert isinstance(da, xr.DataArray) assert len(da["$x$"]) == 18 assert len(da["$y$"]) == 4 assert da.time.values.take(0) == ts # Same bounds as the frame assert da.min() >= faces_frame_structured["depth"].min() assert da.max() <= faces_frame_structured["depth"].max() def test_faces_load_t_step_first(faces): t_step = -1 expected_t_step = faces._resolve_t_step(t_step) faces._load_t_step(t_step) assert len(faces._frame) == 18 * 4 * 7 assert expected_t_step in faces._t_steps assert faces._t_steps[expected_t_step] == \ pd.Timestamp('2001-01-01 01:00:00') def test_faces_load_t_step_second(faces): faces._load_t_step(-1) faces._load_t_step(0) assert len(faces._frame) == 18 * 4 * 7 * 2 assert len(faces._t_steps) == 2 assert set(faces._frame["time"]) == set([ pd.Timestamp('2001-01-01 01:00:00'), pd.Timestamp('2001-01-01')]) def test_faces_load_t_step_no_repeat(faces): faces._load_t_step(-1) faces._load_t_step(1) assert len(faces._frame) == 18 * 4 * 7 assert len(faces._t_steps) == 1 def test_faces_extract_depth(mocker, faces): mock = mocker.patch('snl_d3d_cec_verify.result.faces.' '_faces_frame_to_depth') faces.extract_depth(-1) mock.assert_called() def test_faces_extract_sigma(mocker, faces): mock = mocker.patch('snl_d3d_cec_verify.result.faces.' '_faces_frame_to_slice') faces.extract_sigma(-1, 0) mock.assert_called() assert 'sigma' in mock.call_args.args[2] def test_faces_extract_sigma_interp(faces): t_step = -1 sigma = -0.5 x = 1 y = 3 ds = faces.extract_sigma(t_step, sigma, x, y) t_step = faces._resolve_t_step(t_step) ts = faces._t_steps[t_step] assert isinstance(ds, xr.Dataset) assert ds[r"$\sigma$"].values.take(0) == sigma assert ds.time.values.take(0) == ts assert ds["$x$"].values.take(0) == x assert ds["$y$"].values.take(0) == y assert np.isclose(ds["$z$"].values, -1.00114767) # Same bounds as the frame assert (faces._frame["u"].min() <= ds["$u$"].values.take(0) <= faces._frame["u"].max()) assert (faces._frame["v"].min() <= ds["$v$"].values.take(0) <= faces._frame["v"].max()) assert (faces._frame["w"].min() <= ds["$w$"].values.take(0) <= faces._frame["w"].max()) def test_faces_extract_z(mocker, faces): mock = mocker.patch('snl_d3d_cec_verify.result.faces.' '_faces_frame_to_slice') faces.extract_z(-1, -1) mock.assert_called() assert 'z' in mock.call_args.args[2] def test_faces_extract_z_interp(faces): t_step = -1 z = -1 x = 1 y = 3 ds = faces.extract_z(t_step, z, x, y) t_step = faces._resolve_t_step(t_step) ts = faces._t_steps[t_step] assert isinstance(ds, xr.Dataset) assert ds["$z$"].values.take(0) == z assert ds.time.values.take(0) == ts assert ds["$x$"].values.take(0) == x assert ds["$y$"].values.take(0) == y assert np.isclose(ds[r"$\sigma$"].values, -0.49942682) # Same bounds as the frame assert (faces._frame["u"].min() <= ds["$u$"].values.take(0) <= faces._frame["u"].max()) assert (faces._frame["v"].min() <= ds["$v$"].values.take(0) <= faces._frame["v"].max()) assert (faces._frame["w"].min() <= ds["$w$"].values.take(0) <= faces._frame["w"].max()) @pytest.mark.parametrize("x, y", [ ("mock", None), (None, "mock")]) def test_faces_extract_interp_error(faces, x, y): with pytest.raises(RuntimeError) as excinfo: faces.extract_z("mock", "mock", x, y) assert "x and y must both be set" in str(excinfo) def test_faces_extract_turbine_z(mocker, faces): case = CaseStudy() offset_z = 0.5 t_step = -1 mock = mocker.patch.object(faces, 'extract_z') faces.extract_turbine_z(t_step, case, offset_z) mock.assert_called_with(t_step, case.turb_pos_z + offset_z) def test_faces_extract_turbine_centreline(mocker, faces): case = CaseStudy() t_step = -1 x_step = 0.5 offset_x = 0.5 offset_y = 0.5 offset_z = 0.5 mock = mocker.patch.object(faces, 'extract_z') faces.extract_turbine_centreline(t_step, case, x_step, offset_x, offset_y, offset_z) mock.assert_called() assert mock.call_args.args[0] == t_step assert mock.call_args.args[1] == case.turb_pos_z + offset_z x = mock.call_args.args[2] y = mock.call_args.args[3] assert min(x) == case.turb_pos_x + offset_x assert max(x) <= faces.xmax assert np.unique(np.diff(x)).take(0) == x_step assert set(y) == set([case.turb_pos_y + offset_y]) def test_faces_extract_turbine_centre(mocker, faces): case = CaseStudy() t_step = -1 offset_x = 0.5 offset_y = 0.5 offset_z = 0.5 mock = mocker.patch.object(faces, 'extract_z') faces.extract_turbine_centre(t_step, case, offset_x, offset_y, offset_z) mock.assert_called() assert mock.call_args.args[0] == t_step assert mock.call_args.args[1] == case.turb_pos_z + offset_z x = mock.call_args.args[2] y = mock.call_args.args[3] assert len(x) == 1 assert len(y) == 1 assert x[0] == case.turb_pos_x + offset_x assert y[0] == case.turb_pos_y + offset_y def test_map_to_faces_frame_with_tke(data_dir): map_path = data_dir / "output" / "FlowFM_map.nc" faces_frame = _map_to_faces_frame_with_tke(map_path, -1) assert isinstance(faces_frame, pd.DataFrame) assert len(faces_frame) == 18 * 4 * 7 assert faces_frame.columns.to_list() == ["x", "y", "z", "sigma", "time", "depth", "u", "v", "w", "tke"] assert np.isclose(faces_frame["x"].min(), 0.5) assert np.isclose(faces_frame["x"].max(), 17.5) assert np.isclose(faces_frame["y"].min(), 1.5) assert np.isclose(faces_frame["y"].max(), 4.5) assert -2.003 < faces_frame["z"].min() < -4 / 3 assert -2 / 3 < faces_frame["z"].max() <= 0 assert np.isclose(faces_frame["sigma"].unique(), [-1., -0.83333333, -0.66666667, -0.5, -0.33333333, -0.16666667, 0.]).all() assert set(faces_frame["time"]) == set([ pd.Timestamp('2001-01-01 01:00:00')]) assert faces_frame["depth"].min() > 2 assert faces_frame["depth"].max() < 2.003 assert faces_frame["u"].min() > 0.57 assert faces_frame["u"].max() < 0.9 assert faces_frame["v"].min() > -1e-15 assert faces_frame["v"].max() < 1e-15 assert faces_frame["w"].min() > -0.02 assert faces_frame["w"].max() < 0.02 assert faces_frame["tke"].min() > 0 assert faces_frame["tke"].max() < 0.0089 sigma_slice = _faces_frame_to_slice(faces_frame, pd.Timestamp('2001-01-01 01:00:00'), "sigma", -0.75) assert np.isclose(sigma_slice["$z$"].values.mean(), -1.5009617997833038) assert round(sigma_slice["$k$"].values.mean(), 5) == 0.00627 def test_map_to_faces_frame_with_tke_none(data_dir): map_path = data_dir / "output" / "FlowFM_map.nc" faces_frame = _map_to_faces_frame_with_tke(map_path) assert isinstance(faces_frame, pd.DataFrame) assert len(faces_frame) == 18 * 4 * 7 * 2 assert faces_frame.columns.to_list() == ["x", "y", "z", "sigma", "time", "depth", "u", "v", "w", "tke"] assert np.isclose(faces_frame["x"].min(), 0.5) assert np.isclose(faces_frame["x"].max(), 17.5) assert np.isclose(faces_frame["y"].min(), 1.5) assert np.isclose(faces_frame["y"].max(), 4.5) assert -2.003 < faces_frame["z"].min() < -4 / 3 assert -2 / 3 < faces_frame["z"].max() <= 0 assert np.isclose(faces_frame["sigma"].unique(), [-1., -0.83333333, -0.66666667, -0.5, -0.33333333, -0.16666667, 0.]).all() assert set(faces_frame["time"]) == set([ pd.Timestamp('2001-01-01 00:00:00'), pd.Timestamp('2001-01-01 01:00:00')]) assert faces_frame["depth"].min() > 1.998 assert faces_frame["depth"].max() < 2.003 assert faces_frame["u"].min() >= 0 assert faces_frame["u"].max() < 0.9 assert faces_frame["v"].min() > -1e-15 assert faces_frame["v"].max() < 1e-15 assert faces_frame["w"].min() > -0.02 assert faces_frame["w"].max() < 0.02 assert faces_frame["tke"].min() > 0 assert faces_frame["tke"].max() < 0.0089 def test_map_to_faces_frame(data_dir): map_path = data_dir / "output" / "FlowFM_map.nc" faces_frame = _map_to_faces_frame(map_path, -1) assert isinstance(faces_frame, pd.DataFrame) assert len(faces_frame) == 216 assert faces_frame.columns.to_list() == ["x", "y", "z", "sigma", "time", "depth", "u", "v", "w"] assert np.isclose(faces_frame["x"].min(), 0.5) assert np.isclose(faces_frame["x"].max(), 17.5) assert np.isclose(faces_frame["y"].min(), 1.5) assert np.isclose(faces_frame["y"].max(), 4.5) assert -2 < faces_frame["z"].min() < -4 / 3 assert -2 / 3 < faces_frame["z"].max() < 0 assert (faces_frame["sigma"].unique() == (-0.8333333333333334, -0.5, -0.16666666666666669)).all() assert set(faces_frame["time"]) == set([ pd.Timestamp('2001-01-01 01:00:00')]) assert faces_frame["depth"].min() > 2 assert faces_frame["depth"].max() < 2.003 assert faces_frame["u"].min() > 0.6 assert faces_frame["u"].max() < 0.9 assert faces_frame["v"].min() > -1e-15 assert faces_frame["v"].max() < 1e-15 assert faces_frame["w"].min() > -0.02 assert faces_frame["w"].max() < 0.02 sigma_slice = _faces_frame_to_slice(faces_frame, pd.Timestamp('2001-01-01 01:00:00'), "sigma", -0.75) assert np.isclose(sigma_slice["$z$"].values.mean(), -1.5009617997833038) def test_map_to_faces_frame_none(data_dir): map_path = data_dir / "output" / "FlowFM_map.nc" faces_frame = _map_to_faces_frame(map_path) assert isinstance(faces_frame, pd.DataFrame) assert len(faces_frame) == 432 assert faces_frame.columns.to_list() == ["x", "y", "z", "sigma", "time", "depth", "u", "v", "w"] assert np.isclose(faces_frame["x"].min(), 0.5) assert np.isclose(faces_frame["x"].max(), 17.5) assert np.isclose(faces_frame["y"].min(), 1.5) assert np.isclose(faces_frame["y"].max(), 4.5) assert -2 < faces_frame["z"].min() < -4 / 3 assert -2 / 3 < faces_frame["z"].max() < 0 assert (faces_frame["sigma"].unique() == (-0.8333333333333334, -0.5, -0.16666666666666669)).all() assert set(faces_frame["time"]) == set([ pd.Timestamp('2001-01-01 00:00:00'), pd.Timestamp('2001-01-01 01:00:00')]) assert faces_frame["depth"].min() >= 2 assert faces_frame["depth"].max() < 2.003 assert faces_frame["u"].min() >= 0. assert faces_frame["u"].max() < 0.9 assert faces_frame["v"].min() > -1e-15 assert faces_frame["v"].max() < 1e-15 assert faces_frame["w"].min() > -0.02 assert faces_frame["w"].max() < 0.02 def test_get_quadrilateral_centre(): densities = np.array([0, 0, 1, 1]) result = _get_quadrilateral_centre(densities) assert result == 0.5 def test_FMFaces(mocker): mock = mocker.patch( 'snl_d3d_cec_verify.result.faces._map_to_faces_frame_with_tke', autospec=True) path = "mock" tstep = 0 test = _FMFaces(path, 2, 18) test._get_faces_frame(tstep) mock.assert_called_with(path, tstep) def test_trim_to_faces_frame(data_dir): trim_path = data_dir / "output" / "trim-D3D.nc" faces_frame = _trim_to_faces_frame(trim_path, -1) assert isinstance(faces_frame, pd.DataFrame) assert len(faces_frame) == 216 assert faces_frame.columns.to_list() == ["x", "y", "z", "sigma", "time", "depth", "u", "v", "w", "tke"] assert np.isclose(faces_frame["x"].min(), 0.5) assert np.isclose(faces_frame["x"].max(), 17.5) assert np.isclose(faces_frame["y"].min(), 1.5) assert np.isclose(faces_frame["y"].max(), 4.5) assert -2 < faces_frame["z"].min() < -4 / 3 assert -2 / 3 < faces_frame["z"].max() < 0 assert np.isclose(faces_frame["sigma"].unique(), (-0.16666667, -0.5, -0.83333331)).all() assert set(faces_frame["time"]) == set([ pd.Timestamp('2001-01-01 01:00:00')]) assert faces_frame["depth"].min() > 2 assert faces_frame["depth"].max() < 2.005 assert faces_frame["u"].min() > 0.6 assert faces_frame["u"].max() < 0.9 assert faces_frame["v"].min() > -1e-2 assert faces_frame["v"].max() < 1e-2 assert faces_frame["w"].min() > -0.03 assert faces_frame["w"].max() < 0.02 assert faces_frame["tke"].min() > 0 assert faces_frame["tke"].max() < 0.004 def test_trim_to_faces_frame_none(data_dir): trim_path = data_dir / "output" / "trim-D3D.nc" faces_frame = _trim_to_faces_frame(trim_path) assert isinstance(faces_frame, pd.DataFrame) assert len(faces_frame) == 432 assert faces_frame.columns.to_list() == ["x", "y", "z", "sigma", "time", "depth", "u", "v", "w", "tke"] assert np.isclose(faces_frame["x"].min(), 0.5) assert np.isclose(faces_frame["x"].max(), 17.5) assert np.isclose(faces_frame["y"].min(), 1.5) assert np.isclose(faces_frame["y"].max(), 4.5) assert -2 < faces_frame["z"].min() < -4 / 3 assert -2 / 3 < faces_frame["z"].max() < 0 assert np.isclose(faces_frame["sigma"].unique(), (-0.16666667, -0.5, -0.83333331)).all() assert set(faces_frame["time"]) == set([ pd.Timestamp('2001-01-01 00:00:00'), pd.Timestamp('2001-01-01 01:00:00')]) assert faces_frame["depth"].min() >= 2 assert faces_frame["depth"].max() < 2.005 assert faces_frame["u"].min() >= 0. assert faces_frame["u"].max() < 0.9 assert faces_frame["v"].min() > -1e-2 assert faces_frame["v"].max() < 1e-2 assert faces_frame["w"].min() > -0.03 assert faces_frame["w"].max() < 0.02 assert faces_frame["tke"].min() > 0 assert faces_frame["tke"].max() < 0.004 def test_StructuredFaces(mocker): mock = mocker.patch('snl_d3d_cec_verify.result.faces._trim_to_faces_frame', autospec=True) path = "mock" tstep = 0 test = _StructuredFaces(path, 2, 18) test._get_faces_frame(tstep) mock.assert_called_with(path, tstep)
[ "snl_d3d_cec_verify.result.faces._get_quadrilateral_centre", "pandas.read_csv", "numpy.isclose", "snl_d3d_cec_verify.result.faces._faces_frame_to_slice", "snl_d3d_cec_verify.result.faces._trim_to_faces_frame", "pytest.mark.parametrize", "pytest.raises", "warnings.catch_warnings", "snl_d3d_cec_verify.result.faces._FMFaces", "snl_d3d_cec_verify.result.faces._check_case_study", "snl_d3d_cec_verify.result.faces._map_to_faces_frame_with_tke", "snl_d3d_cec_verify.result.faces._faces_frame_to_depth", "snl_d3d_cec_verify.cases.CaseStudy", "pandas.Timestamp", "warnings.filterwarnings", "numpy.diff", "numpy.array", "snl_d3d_cec_verify.result.faces._StructuredFaces", "snl_d3d_cec_verify.result.faces._map_to_faces_frame" ]
[((10168, 10233), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""x, y"""', "[('mock', None), (None, 'mock')]"], {}), "('x, y', [('mock', None), (None, 'mock')])\n", (10191, 10233), False, 'import pytest\n'), ((101, 126), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (124, 126), False, 'import warnings\n'), ((132, 194), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'DeprecationWarning'}), "('ignore', category=DeprecationWarning)\n", (155, 194), False, 'import warnings\n'), ((918, 941), 'snl_d3d_cec_verify.cases.CaseStudy', 'CaseStudy', ([], {'dx': '[1, 2, 3]'}), '(dx=[1, 2, 3])\n', (927, 941), False, 'from snl_d3d_cec_verify.cases import CaseStudy\n'), ((1210, 1253), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {'parse_dates': "['time']"}), "(csv_path, parse_dates=['time'])\n", (1221, 1253), True, 'import pandas as pd\n'), ((1462, 1505), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {'parse_dates': "['time']"}), "(csv_path, parse_dates=['time'])\n", (1473, 1505), True, 'import pandas as pd\n'), ((1649, 1684), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (1661, 1684), True, 'import pandas as pd\n'), ((1711, 1768), 'snl_d3d_cec_verify.result.faces._faces_frame_to_slice', '_faces_frame_to_slice', (['faces_frame_fm', 'ts', '"""sigma"""', 'sigma'], {}), "(faces_frame_fm, ts, 'sigma', sigma)\n", (1732, 1768), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((2692, 2727), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (2704, 2727), True, 'import pandas as pd\n'), ((2755, 2820), 'snl_d3d_cec_verify.result.faces._faces_frame_to_slice', '_faces_frame_to_slice', (['faces_frame_structured', 'ts', '"""sigma"""', 'sigma'], {}), "(faces_frame_structured, ts, 'sigma', sigma)\n", (2776, 2820), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((3958, 3993), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (3970, 3993), True, 'import pandas as pd\n'), ((4019, 4076), 'snl_d3d_cec_verify.result.faces._faces_frame_to_slice', '_faces_frame_to_slice', (['faces_frame_fm', 'ts', '"""sigma"""', 'sigma'], {}), "(faces_frame_fm, ts, 'sigma', sigma)\n", (4040, 4076), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((4241, 4276), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (4253, 4276), True, 'import pandas as pd\n'), ((4303, 4360), 'snl_d3d_cec_verify.result.faces._faces_frame_to_slice', '_faces_frame_to_slice', (['faces_frame_fm', 'ts', '"""sigma"""', 'sigma'], {}), "(faces_frame_fm, ts, 'sigma', sigma)\n", (4324, 4360), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((4501, 4536), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (4513, 4536), True, 'import pandas as pd\n'), ((4557, 4606), 'snl_d3d_cec_verify.result.faces._faces_frame_to_slice', '_faces_frame_to_slice', (['faces_frame_fm', 'ts', '"""z"""', 'z'], {}), "(faces_frame_fm, ts, 'z', z)\n", (4578, 4606), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((5721, 5756), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (5733, 5756), True, 'import pandas as pd\n'), ((5766, 5807), 'snl_d3d_cec_verify.result.faces._faces_frame_to_depth', '_faces_frame_to_depth', (['faces_frame_fm', 'ts'], {}), '(faces_frame_fm, ts)\n', (5787, 5807), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((6185, 6220), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (6197, 6220), True, 'import pandas as pd\n'), ((6230, 6279), 'snl_d3d_cec_verify.result.faces._faces_frame_to_depth', '_faces_frame_to_depth', (['faces_frame_structured', 'ts'], {}), '(faces_frame_structured, ts)\n', (6251, 6279), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((8456, 8497), 'numpy.isclose', 'np.isclose', (["ds['$z$'].values", '(-1.00114767)'], {}), "(ds['$z$'].values, -1.00114767)\n", (8466, 8497), True, 'import numpy as np\n'), ((9649, 9696), 'numpy.isclose', 'np.isclose', (["ds['$\\\\sigma$'].values", '(-0.49942682)'], {}), "(ds['$\\\\sigma$'].values, -0.49942682)\n", (9659, 9696), True, 'import numpy as np\n'), ((10567, 10578), 'snl_d3d_cec_verify.cases.CaseStudy', 'CaseStudy', ([], {}), '()\n', (10576, 10578), False, 'from snl_d3d_cec_verify.cases import CaseStudy\n'), ((10862, 10873), 'snl_d3d_cec_verify.cases.CaseStudy', 'CaseStudy', ([], {}), '()\n', (10871, 10873), False, 'from snl_d3d_cec_verify.cases import CaseStudy\n'), ((11762, 11773), 'snl_d3d_cec_verify.cases.CaseStudy', 'CaseStudy', ([], {}), '()\n', (11771, 11773), False, 'from snl_d3d_cec_verify.cases import CaseStudy\n'), ((12586, 12628), 'snl_d3d_cec_verify.result.faces._map_to_faces_frame_with_tke', '_map_to_faces_frame_with_tke', (['map_path', '(-1)'], {}), '(map_path, -1)\n', (12614, 12628), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((14902, 14940), 'snl_d3d_cec_verify.result.faces._map_to_faces_frame_with_tke', '_map_to_faces_frame_with_tke', (['map_path'], {}), '(map_path)\n', (14930, 14940), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((16904, 16937), 'snl_d3d_cec_verify.result.faces._map_to_faces_frame', '_map_to_faces_frame', (['map_path', '(-1)'], {}), '(map_path, -1)\n', (16923, 16937), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((18892, 18921), 'snl_d3d_cec_verify.result.faces._map_to_faces_frame', '_map_to_faces_frame', (['map_path'], {}), '(map_path)\n', (18911, 18921), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((20573, 20595), 'numpy.array', 'np.array', (['[0, 0, 1, 1]'], {}), '([0, 0, 1, 1])\n', (20581, 20595), True, 'import numpy as np\n'), ((20609, 20645), 'snl_d3d_cec_verify.result.faces._get_quadrilateral_centre', '_get_quadrilateral_centre', (['densities'], {}), '(densities)\n', (20634, 20645), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((20893, 20914), 'snl_d3d_cec_verify.result.faces._FMFaces', '_FMFaces', (['path', '(2)', '(18)'], {}), '(path, 2, 18)\n', (20901, 20914), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((21111, 21146), 'snl_d3d_cec_verify.result.faces._trim_to_faces_frame', '_trim_to_faces_frame', (['trim_path', '(-1)'], {}), '(trim_path, -1)\n', (21131, 21146), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((22842, 22873), 'snl_d3d_cec_verify.result.faces._trim_to_faces_frame', '_trim_to_faces_frame', (['trim_path'], {}), '(trim_path)\n', (22862, 22873), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((24738, 24767), 'snl_d3d_cec_verify.result.faces._StructuredFaces', '_StructuredFaces', (['path', '(2)', '(18)'], {}), '(path, 2, 18)\n', (24754, 24767), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((956, 981), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (969, 981), False, 'import pytest\n'), ((1002, 1025), 'snl_d3d_cec_verify.result.faces._check_case_study', '_check_case_study', (['case'], {}), '(case)\n', (1019, 1025), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((5499, 5526), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (5512, 5526), False, 'import pytest\n'), ((5547, 5600), 'snl_d3d_cec_verify.result.faces._faces_frame_to_slice', '_faces_frame_to_slice', (['"""mock"""', '"""mock"""', '"""mock"""', '"""mock"""'], {}), "('mock', 'mock', 'mock', 'mock')\n", (5568, 5600), False, 'from snl_d3d_cec_verify.result.faces import _check_case_study, _faces_frame_to_slice, _faces_frame_to_depth, _map_to_faces_frame_with_tke, _map_to_faces_frame, _get_quadrilateral_centre, _FMFaces, _trim_to_faces_frame, _StructuredFaces\n'), ((6919, 6954), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (6931, 6954), True, 'import pandas as pd\n'), ((10355, 10382), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (10368, 10382), False, 'import pytest\n'), ((14490, 14525), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (14502, 14525), True, 'import pandas as pd\n'), ((18554, 18589), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (18566, 18589), True, 'import pandas as pd\n'), ((7231, 7266), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (7243, 7266), True, 'import pandas as pd\n'), ((7308, 7334), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01"""'], {}), "('2001-01-01')\n", (7320, 7334), True, 'import pandas as pd\n'), ((13927, 13962), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (13939, 13962), True, 'import pandas as pd\n'), ((16243, 16278), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 00:00:00"""'], {}), "('2001-01-01 00:00:00')\n", (16255, 16278), True, 'import pandas as pd\n'), ((16320, 16355), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (16332, 16355), True, 'import pandas as pd\n'), ((18077, 18112), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (18089, 18112), True, 'import pandas as pd\n'), ((20061, 20096), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 00:00:00"""'], {}), "('2001-01-01 00:00:00')\n", (20073, 20096), True, 'import pandas as pd\n'), ((20138, 20173), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (20150, 20173), True, 'import pandas as pd\n'), ((22259, 22294), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (22271, 22294), True, 'import pandas as pd\n'), ((23986, 24021), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 00:00:00"""'], {}), "('2001-01-01 00:00:00')\n", (23998, 24021), True, 'import pandas as pd\n'), ((24063, 24098), 'pandas.Timestamp', 'pd.Timestamp', (['"""2001-01-01 01:00:00"""'], {}), "('2001-01-01 01:00:00')\n", (24075, 24098), True, 'import pandas as pd\n'), ((11605, 11615), 'numpy.diff', 'np.diff', (['x'], {}), '(x)\n', (11612, 11615), True, 'import numpy as np\n')]
import colorsys import math import os import random from decimal import Decimal import hpbandster.core.result as hpres import matplotlib.pyplot as plt import numpy as np # smallest value is best -> reverse_loss = True # largest value is best -> reverse_loss = False REVERSE_LOSS = True EXP_LOSS = 1 OUTLIER_PERC_WORST = 0.5 OUTLIER_PERC_BEST = 0.0 def analyze_bohb(log_dir, title): # load the example run from the log files result = hpres.logged_results_to_HBS_result(log_dir) # get all executed runs all_runs = result.get_all_runs() # get the 'dict' that translates config ids to the actual configurations id2conf = result.get_id2config_mapping() # Here is how you get he incumbent (best configuration) inc_id = result.get_incumbent_id() # let's grab the run on the highest budget inc_runs = result.get_runs_by_id(inc_id) inc_run = inc_runs[-1] # We have access to all information: the config, the loss observed during # optimization, and all the additional information inc_valid_score = inc_run.loss inc_config = id2conf[inc_id]['config'] inc_info = inc_run['info'] print('Best found configuration :' + str(inc_config)) print('Score: ' + str(inc_valid_score)) print('Info: ' + str(inc_info)) # print('It achieved accuracies of %f (validation) and %f (test).' % (-inc_valid_score, inc_test_score)) # # Let's plot the observed losses grouped by budget, # hpvis.losses_over_time(all_runs) # # # the number of concurent runs, # hpvis.concurrent_runs_over_time(all_runs) # # # and the number of finished runs. # hpvis.finished_runs_over_time(all_runs) # # # This one visualizes the spearman rank correlation coefficients of the losses # # between different budgets. # hpvis.correlation_across_budgets(result) # # # For model based optimizers, one might wonder how much the model actually helped. # # The next plot compares the performance of configs picked by the model vs. random ones # hpvis.performance_histogram_model_vs_random(all_runs, id2conf) result = remove_outliers(result) # result = filter_values(result) # print_configs_sorted_by_loss(result) # print_stats_per_value(result) # plot_accuracy_over_budget(result) plot_parallel_scatter(result) plt.title(title) plt.show() file_name = str(title).strip().replace(' ', '_').lower() plt.savefig(os.path.join("../experiments/automl_plots/", file_name + ".png")) def print_configs_sorted_by_loss(result): lst = [] for k1, v1 in result.data.items(): for k2, v2 in v1.results.items(): loss = v2['loss'] config = v1.config lst.append((loss, config)) lst.sort(key=lambda x: x[0]) for elem in lst: print(elem) def print_stats_per_value(result): # get all possible keys min_epoch = float('Inf') config_params = {} for value in result.data.values(): for config_param, config_param_val in value.config.items(): for epoch, epoch_result in value.results.items(): try: loss = epoch_result["loss"] min_epoch = min(min_epoch, epoch) if config_param in config_params.keys(): config_params[config_param].append((config_param_val, epoch, loss)) else: config_params[config_param] = [(config_param_val, epoch, loss)] except: print('Error in get_avg_per_value, continuing') for config_param, data in (dict(sorted(config_params.items()))).items(): print(config_param) # get all unique possible values for each config parameter values = set(elem[0] for elem in data) values = sorted(list(values)) if len(values) > 20: continue for value in values: losses = [] for elem in data: val, epoch, loss = elem if val == value and epoch == min_epoch: losses.append(loss) print('{} {} {} {}'.format(value, np.mean(losses), np.std(losses), len(losses))) def remove_outliers(result): lut = [] for key, value1 in result.data.items(): for value2 in value1.results.values(): if value2 == None: loss = float('nan') else: loss = value2['loss'] lut.append([loss, key]) filtered_lut = [x for x in lut if math.isfinite(x[0])] worst_loss = sorted(filtered_lut, reverse=REVERSE_LOSS)[0][0] if REVERSE_LOSS: worst_loss += 0.01 * abs(worst_loss) else: worst_loss -= 0.01 * abs(worst_loss) # remove NaN's for i in range(len(lut)): if not math.isfinite(lut[i][0]) or lut[i][0] == 0: lut[i][0] = worst_loss for key in result.data[lut[i][1]].results.keys(): # hacky but sometimes some budgets are missing (presumably when terminating ongoing runs) if result.data[lut[i][1]].results[key] is None: continue else: result.data[lut[i][1]].results[key]['loss'] = worst_loss # result.data.pop(elem[1], None) lut.sort(key=lambda x: x[0], reverse=REVERSE_LOSS) n_remove_worst = math.ceil(len(lut) * OUTLIER_PERC_WORST) n_remove_best = math.ceil(len(lut) * OUTLIER_PERC_BEST) # remove percentage of worst values for i in range(n_remove_worst): elem = lut.pop(0) result.data.pop(elem[1], None) # remove percentage of best values for i in range(n_remove_best): elem = lut.pop() result.data.pop(elem[1], None) return result def filter_values(result): del_list = [] for key, value1 in result.data.items(): id = key config = value1.config rep_env_num = config['rep_env_num'] ddqn_dropout = config['ddqn_dropout'] # if not ddqn_dropout == 0: # del_list.append(id) # if not rep_env_num == 5: # del_list.append(id) for id in del_list: result.data.pop(id, None) return result def plot_accuracy_over_budget(result): fig, ax = plt.subplots() # plot hyperband plot index = None color = None for key, value1 in result.data.items(): if key[0] is not index: index = key[0] color = get_bright_random_color() try: x = [] y = [] for key2, value2 in value1.results.items(): x.append(key2) y.append(value2["loss"]) plt.semilogx(x, y, color=color) except: print('Error in plot_accuracy_over_budget, continuing') ax.set_title('Score for different configurations') ax.set_xlabel('epochs') ax.set_ylabel('score') def plot_parallel_scatter(result): plt.subplots(dpi=300, figsize=(8, 4)) ep_m = 1e9 ep_M = -1e9 loss_m = 1e9 loss_M = -1e9 # get all possible keys config_params = {} for value in result.data.values(): for config_param, config_param_val in value.config.items(): for epoch, epoch_result in value.results.items(): try: loss = epoch_result["loss"] ep_m = min(ep_m, epoch) ep_M = max(ep_M, epoch) loss_m = min(loss_m, loss) loss_M = max(loss_M, loss) if config_param in config_params.keys(): config_params[config_param].append((config_param_val, epoch, loss)) else: config_params[config_param] = [(config_param_val, epoch, loss)] except: print('Error in plot_parallel_scatter, continuing') x_dev = 0.2 r_min = 3 r_max = 4 alpha = 0.4 text_x_offset = -0.1 text_y_offset = -0.1 size_text = 6 index = 0 for config_param, data in (dict(sorted(config_params.items()))).items(): # get all unique possible values for each config parameter values = set(elem[0] for elem in data) values = sorted(list(values)) n = len(data) xs = np.zeros(n) ys = np.zeros(n) rads = np.zeros(n) colors = np.zeros([n, 3]) # extract common features for i in range(len(values)): for k in range(len(data)): if data[k][0] == values[i]: ep = data[k][1] acc = map_to_zero_one_range(data[k][2], loss_m, loss_M) # test: # loss_b = -1233125.5410615604 # loss_a = -5233125.5410615604 #(we minimize the negative reward) # print(loss_b, "->", map_to_zero_one_range(loss_b, loss_m, loss_M)) # print(loss_a, "->", map_to_zero_one_range(loss_a, loss_m, loss_M)) rads[k] = linear_interpolation(np.log(ep), np.log(ep_m), np.log(ep_M), r_min, r_max) ** 2 colors[k, :] = get_color(acc) # check for type (categorical,int,float,log) if type(values[0]) is bool: y_dev = x_dev / 2 for i in range(len(values)): plt.text(index + text_x_offset, values[i] + text_y_offset, str(values[i]), rotation=90, size=size_text) for k in range(len(data)): if data[k][0] == values[i]: xs[k] = index + np.random.uniform(-x_dev, x_dev) ys[k] = values[i] + np.random.uniform(-y_dev, y_dev) elif type(values[0]) is str: y_dev = min(1 / len(values) / 2.5, x_dev / 2) for i in range(len(values)): plt.text(index + text_x_offset, i / (max(len(values) - 1, 1)) + text_y_offset, values[i], rotation=90, size=size_text) for k in range(len(data)): if data[k][0] == values[i]: xs[k] = index + np.random.uniform(-x_dev, x_dev) ys[k] = i / (max(len(values) - 1, 1)) + np.random.uniform(-y_dev, y_dev) elif type(values[0]) is int: y_dev = min(1 / len(values) / 2.5, x_dev / 2) plotAllStr = len(values) < 20 if not plotAllStr: min_val = min(values) max_val = max(values) plt.text(index + text_x_offset, 0 + text_y_offset, str(f"{Decimal(min_val):.1E}"), rotation=90, size=size_text) plt.text(index + text_x_offset, 1 + text_y_offset, str(f"{Decimal(max_val):.1E}"), rotation=90, size=size_text) for i in range(len(values)): if plotAllStr: plt.text(index + text_x_offset, i / (max(len(values) - 1, 1)), str(values[i]), rotation=90, size=size_text) for k in range(len(data)): if data[k][0] == values[i]: xs[k] = index + np.random.uniform(-x_dev, x_dev) ys[k] = i / (max(len(values) - 1, 1)) + np.random.uniform(-y_dev, y_dev) else: # float min_val = min(values) max_val = max(values) # log scale if min/max value differs to much if max_val / min_val > 100: val050 = np.exp((np.log(min_val) + np.log(max_val)) / 2) for i in range(len(values)): for k in range(len(data)): if data[k][0] == values[i]: xs[k] = index + np.random.uniform(-x_dev, x_dev) ys[k] = linear_interpolation(np.log(data[k][0]), np.log(min_val), np.log(max_val), 0, 1) # linear scale else: val050 = linear_interpolation(0.50, 0, 1, min_val, max_val) for i in range(len(values)): for k in range(len(data)): if data[k][0] == values[i]: xs[k] = index + np.random.uniform(-x_dev, x_dev) ys[k] = linear_interpolation(data[k][0], min_val, max_val, 0, 1) plt.text(index + text_x_offset, 0 + text_y_offset, str(f"{Decimal(min_val):.1E}"), rotation=90, size=size_text) plt.text(index + text_x_offset, 0.5 + text_y_offset, str(f"{Decimal(val050):.1E}"), rotation=90, size=size_text) plt.text(index + text_x_offset, 1 + text_y_offset, str(f"{Decimal(max_val):.1E}"), rotation=90, size=size_text) plt.scatter(xs, ys, s=rads, c=colors, alpha=alpha, edgecolors='none') index += 1 plt.yticks([], []) plt.xticks(np.arange(index), (tuple(sorted(config_params.keys()))), rotation=90, fontsize=size_text) plt.subplots_adjust(bottom=0.25) def linear_interpolation(x, x0, x1, y0, y1): # linearly interpolate between two x/y values for a given x value return y0 + (y1 - y0) * (x - x0) / (x1 - x0 + 1e-9) def map_to_zero_one_range(loss, loss_m, loss_M): if loss_M < 1 and loss_m > 0 and REVERSE_LOSS == False: # if we have already a loss in the [0,1] range, there is no need to normalize anything acc = loss elif loss_M < 0 and loss_m > -1 and REVERSE_LOSS == True: # if we have a loss in the [-1,0] range, simply revert its sign acc = -loss else: # normalize loss to the 0 (bad) - 1(good) range acc = (loss - loss_m) / (loss_M - loss_m + 1e-9) if REVERSE_LOSS: acc = 1 - acc acc = acc ** EXP_LOSS return acc def get_color(acc): # print("acc: ", acc) if acc <= 0: # print("color: ", np.array([[1, 0, 0]])) return np.array([[1, 0, 0]]) elif acc <= 0.5: # print("color: ", np.array([[1, 0, 0]]) + 2 * acc * np.array([[0, 1, 0]])) return np.array([[1, 0, 0]]) + 2 * acc * np.array([[0, 1, 0]]) elif acc <= 1: # print("color: ", np.array([[1, 1, 0]]) + 2 * (acc - 0.5) * np.array([[-1, 0, 0]])) return np.array([[1, 1, 0]]) + 2 * (acc - 0.5) * np.array([[-1, 0, 0]]) else: # print("color: ", np.array([[0, 1, 0]])) return np.array([[0, 1, 0]]) def get_bright_random_color(): h, s, l = random.random(), 1, 0.5 return colorsys.hls_to_rgb(h, l, s) if __name__ == '__main__': # log_dir = '../results/bohb_params_DDQN_ICM_cartpole_2021-03-04-09' # log_dir = '../results/bohb_params_ql_cb_cliff_2021-03-04-16' # log_dir = '../results/bohb_params_td3_icm_cmc_2021-03-04-17' # log_dir = '../results/bohb_params_ql_cb_cliff_2021-03-04-20' # log_dir = '../results/bohb_params_DDQN_ICM_cartpole_2021-03-04-22' # log_dir = '../results/bohb_params_td3_icm_cmc_2021-03-04-22' # log_dir = '../results/bohb_params_td3_icm_cmc_2021-03-05-13' # log_dir = '../results/bohb_params_DDQN_ICM_cartpole_2021-03-05-13' # log_dir = '../results/bohb_params_DDQN_ICM_cartpole_2021-03-06-00' # log_dir = '../results/bohb_params_td3_icm_cmc_2021-03-06-00' # log_dir = '../results/bohb_params_td3_icm_cmc_2021-03-06-10' # log_dir = '../results/bohb_params_DDQN_ICM_cartpole_2021-03-06-10' # title = "DDQN ICM on CartPole" # log_dir = '../results/bohb_params_td3_icm_hc_2021-03-08-20' # title = "TD3 ICM on HC" # log_dir = '../results/bohb_params_td3_icm_cmc_2021-03-08-22' # title = "TD3 ICM on CMC" # log_dir = '../results/bohb_params_TD3_discrete_gumbel_temp_annealing_2021-03-11-14' # title = "Discrete TD3 with annealed temp on CartPole" # log_dir = '../results/bohb_params_TD3_discrete_gumbel_temp_annealing_on_syn_env_2_2021-03-11-23' # title = "Discrete TD3 with annealed temp on CartPole Syn Env Model 2" # log_dir = '../results/bohb_params_ppo_hc_2021-03-13-23' # title = "PPO on HC" # log_dir = '../results/bohb_params_td3_icm_cmc_max_reward_2021-03-16-00' # title = "TD3 ICM on CMC max. reward" # log_dir = '../results/bohb_params_td3_icm_hc_max_reward_2021-03-16-00' # title = "TD3 ICM on HC max. reward" # log_dir = '../results/bohb_params_ppo_hc_icm_1e-3_ent_coef_1e-1_action_std_2021-03-19-20' # title = "PPO ICM on HC max. reward" # log_dir = '../results/halfcheetah_td3_bohb_params_se_prep_2021-06-11-11' # title = "TD3 HC max. reward" # log_dir = '../results/halfcheetah_td3_bohb_params_se_prep_2021-06-13-17' # title = "TD3 HC max. reward" # # log_dir = '../results/SE_evaluate_cmc_se_params_2021-07-27-11' # title = "SE CMC HPO" log_dir = "/home/ferreira/Projects/learning_environments/results/SE_evaluate_cmc_se_params_2021-07-30-10" title = "SE CMC HPO" analyze_bohb(log_dir, title=title)
[ "matplotlib.pyplot.title", "numpy.mean", "numpy.arange", "colorsys.hls_to_rgb", "os.path.join", "numpy.std", "matplotlib.pyplot.yticks", "matplotlib.pyplot.subplots", "hpbandster.core.result.logged_results_to_HBS_result", "matplotlib.pyplot.show", "random.random", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.semilogx", "numpy.random.uniform", "numpy.log", "decimal.Decimal", "matplotlib.pyplot.scatter", "numpy.zeros", "numpy.array", "math.isfinite" ]
[((445, 488), 'hpbandster.core.result.logged_results_to_HBS_result', 'hpres.logged_results_to_HBS_result', (['log_dir'], {}), '(log_dir)\n', (479, 488), True, 'import hpbandster.core.result as hpres\n'), ((2340, 2356), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (2349, 2356), True, 'import matplotlib.pyplot as plt\n'), ((2361, 2371), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2369, 2371), True, 'import matplotlib.pyplot as plt\n'), ((6298, 6312), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6310, 6312), True, 'import matplotlib.pyplot as plt\n'), ((6984, 7021), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(300)', 'figsize': '(8, 4)'}), '(dpi=300, figsize=(8, 4))\n', (6996, 7021), True, 'import matplotlib.pyplot as plt\n'), ((12817, 12835), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]', '[]'], {}), '([], [])\n', (12827, 12835), True, 'import matplotlib.pyplot as plt\n'), ((12945, 12977), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.25)'}), '(bottom=0.25)\n', (12964, 12977), True, 'import matplotlib.pyplot as plt\n'), ((14447, 14475), 'colorsys.hls_to_rgb', 'colorsys.hls_to_rgb', (['h', 'l', 's'], {}), '(h, l, s)\n', (14466, 14475), False, 'import colorsys\n'), ((2449, 2513), 'os.path.join', 'os.path.join', (['"""../experiments/automl_plots/"""', "(file_name + '.png')"], {}), "('../experiments/automl_plots/', file_name + '.png')\n", (2461, 2513), False, 'import os\n'), ((8334, 8345), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (8342, 8345), True, 'import numpy as np\n'), ((8359, 8370), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (8367, 8370), True, 'import numpy as np\n'), ((8386, 8397), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (8394, 8397), True, 'import numpy as np\n'), ((8415, 8431), 'numpy.zeros', 'np.zeros', (['[n, 3]'], {}), '([n, 3])\n', (8423, 8431), True, 'import numpy as np\n'), ((12723, 12792), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xs', 'ys'], {'s': 'rads', 'c': 'colors', 'alpha': 'alpha', 'edgecolors': '"""none"""'}), "(xs, ys, s=rads, c=colors, alpha=alpha, edgecolors='none')\n", (12734, 12792), True, 'import matplotlib.pyplot as plt\n'), ((12851, 12867), 'numpy.arange', 'np.arange', (['index'], {}), '(index)\n', (12860, 12867), True, 'import numpy as np\n'), ((13878, 13899), 'numpy.array', 'np.array', (['[[1, 0, 0]]'], {}), '([[1, 0, 0]])\n', (13886, 13899), True, 'import numpy as np\n'), ((14412, 14427), 'random.random', 'random.random', ([], {}), '()\n', (14425, 14427), False, 'import random\n'), ((4560, 4579), 'math.isfinite', 'math.isfinite', (['x[0]'], {}), '(x[0])\n', (4573, 4579), False, 'import math\n'), ((6716, 6747), 'matplotlib.pyplot.semilogx', 'plt.semilogx', (['x', 'y'], {'color': 'color'}), '(x, y, color=color)\n', (6728, 6747), True, 'import matplotlib.pyplot as plt\n'), ((4834, 4858), 'math.isfinite', 'math.isfinite', (['lut[i][0]'], {}), '(lut[i][0])\n', (4847, 4858), False, 'import math\n'), ((14020, 14041), 'numpy.array', 'np.array', (['[[1, 0, 0]]'], {}), '([[1, 0, 0]])\n', (14028, 14041), True, 'import numpy as np\n'), ((14343, 14364), 'numpy.array', 'np.array', (['[[0, 1, 0]]'], {}), '([[0, 1, 0]])\n', (14351, 14364), True, 'import numpy as np\n'), ((4180, 4195), 'numpy.mean', 'np.mean', (['losses'], {}), '(losses)\n', (4187, 4195), True, 'import numpy as np\n'), ((4197, 4211), 'numpy.std', 'np.std', (['losses'], {}), '(losses)\n', (4203, 4211), True, 'import numpy as np\n'), ((14054, 14075), 'numpy.array', 'np.array', (['[[0, 1, 0]]'], {}), '([[0, 1, 0]])\n', (14062, 14075), True, 'import numpy as np\n'), ((14203, 14224), 'numpy.array', 'np.array', (['[[1, 1, 0]]'], {}), '([[1, 1, 0]])\n', (14211, 14224), True, 'import numpy as np\n'), ((14245, 14267), 'numpy.array', 'np.array', (['[[-1, 0, 0]]'], {}), '([[-1, 0, 0]])\n', (14253, 14267), True, 'import numpy as np\n'), ((9095, 9105), 'numpy.log', 'np.log', (['ep'], {}), '(ep)\n', (9101, 9105), True, 'import numpy as np\n'), ((9107, 9119), 'numpy.log', 'np.log', (['ep_m'], {}), '(ep_m)\n', (9113, 9119), True, 'import numpy as np\n'), ((9121, 9133), 'numpy.log', 'np.log', (['ep_M'], {}), '(ep_M)\n', (9127, 9133), True, 'import numpy as np\n'), ((9641, 9673), 'numpy.random.uniform', 'np.random.uniform', (['(-x_dev)', 'x_dev'], {}), '(-x_dev, x_dev)\n', (9658, 9673), True, 'import numpy as np\n'), ((9718, 9750), 'numpy.random.uniform', 'np.random.uniform', (['(-y_dev)', 'y_dev'], {}), '(-y_dev, y_dev)\n', (9735, 9750), True, 'import numpy as np\n'), ((10179, 10211), 'numpy.random.uniform', 'np.random.uniform', (['(-x_dev)', 'x_dev'], {}), '(-x_dev, x_dev)\n', (10196, 10211), True, 'import numpy as np\n'), ((10276, 10308), 'numpy.random.uniform', 'np.random.uniform', (['(-y_dev)', 'y_dev'], {}), '(-y_dev, y_dev)\n', (10293, 10308), True, 'import numpy as np\n'), ((11173, 11205), 'numpy.random.uniform', 'np.random.uniform', (['(-x_dev)', 'x_dev'], {}), '(-x_dev, x_dev)\n', (11190, 11205), True, 'import numpy as np\n'), ((11270, 11302), 'numpy.random.uniform', 'np.random.uniform', (['(-y_dev)', 'y_dev'], {}), '(-y_dev, y_dev)\n', (11287, 11302), True, 'import numpy as np\n'), ((11526, 11541), 'numpy.log', 'np.log', (['min_val'], {}), '(min_val)\n', (11532, 11541), True, 'import numpy as np\n'), ((11544, 11559), 'numpy.log', 'np.log', (['max_val'], {}), '(max_val)\n', (11550, 11559), True, 'import numpy as np\n'), ((12411, 12427), 'decimal.Decimal', 'Decimal', (['min_val'], {}), '(min_val)\n', (12418, 12427), False, 'from decimal import Decimal\n'), ((12537, 12552), 'decimal.Decimal', 'Decimal', (['val050'], {}), '(val050)\n', (12544, 12552), False, 'from decimal import Decimal\n'), ((12660, 12676), 'decimal.Decimal', 'Decimal', (['max_val'], {}), '(max_val)\n', (12667, 12676), False, 'from decimal import Decimal\n'), ((10630, 10646), 'decimal.Decimal', 'Decimal', (['min_val'], {}), '(min_val)\n', (10637, 10646), False, 'from decimal import Decimal\n'), ((10758, 10774), 'decimal.Decimal', 'Decimal', (['max_val'], {}), '(max_val)\n', (10765, 10774), False, 'from decimal import Decimal\n'), ((11754, 11786), 'numpy.random.uniform', 'np.random.uniform', (['(-x_dev)', 'x_dev'], {}), '(-x_dev, x_dev)\n', (11771, 11786), True, 'import numpy as np\n'), ((11844, 11862), 'numpy.log', 'np.log', (['data[k][0]'], {}), '(data[k][0])\n', (11850, 11862), True, 'import numpy as np\n'), ((11864, 11879), 'numpy.log', 'np.log', (['min_val'], {}), '(min_val)\n', (11870, 11879), True, 'import numpy as np\n'), ((11881, 11896), 'numpy.log', 'np.log', (['max_val'], {}), '(max_val)\n', (11887, 11896), True, 'import numpy as np\n'), ((12214, 12246), 'numpy.random.uniform', 'np.random.uniform', (['(-x_dev)', 'x_dev'], {}), '(-x_dev, x_dev)\n', (12231, 12246), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from pytest import approx from lenskit.topn import precision from lenskit.util.test import demo_recs from lenskit import topn def _test_prec(items, rel, **k): recs = pd.DataFrame({'item': items}) truth = pd.DataFrame({'item': rel}).set_index('item') return precision(recs, truth, **k) def test_precision_empty_none(): prec = _test_prec([], [1, 3]) assert prec is None def test_precision_simple_cases(): prec = _test_prec([1, 3], [1, 3]) assert prec == approx(1.0) prec = _test_prec([1], [1, 3]) assert prec == approx(1.0) prec = _test_prec([1, 2, 3, 4], [1, 3]) assert prec == approx(0.5) prec = _test_prec([1, 2, 3, 4], [1, 3, 5]) assert prec == approx(0.5) prec = _test_prec([1, 2, 3, 4], range(5, 10)) assert prec == approx(0.0) prec = _test_prec([1, 2, 3, 4], range(4, 10)) assert prec == approx(0.25) def test_precision_series(): prec = _test_prec(pd.Series([1, 3]), pd.Series([1, 3])) assert prec == approx(1.0) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Series([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Series(range(4, 10))) assert prec == approx(0.25) def test_precision_series_set(): prec = _test_prec(pd.Series([1, 2, 3, 4]), [1, 3, 5]) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), range(4, 10)) assert prec == approx(0.25) def test_precision_series_index(): prec = _test_prec(pd.Series([1, 3]), pd.Index([1, 3])) assert prec == approx(1.0) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Index([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), pd.Index(range(4, 10))) assert prec == approx(0.25) def test_precision_series_array(): prec = _test_prec(pd.Series([1, 3]), np.array([1, 3])) assert prec == approx(1.0) prec = _test_prec(pd.Series([1, 2, 3, 4]), np.array([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(pd.Series([1, 2, 3, 4]), np.arange(4, 10, 1, 'u4')) assert prec == approx(0.25) def test_precision_array(): prec = _test_prec(np.array([1, 3]), np.array([1, 3])) assert prec == approx(1.0) prec = _test_prec(np.array([1, 2, 3, 4]), np.array([1, 3, 5])) assert prec == approx(0.5) prec = _test_prec(np.array([1, 2, 3, 4]), np.arange(4, 10, 1, 'u4')) assert prec == approx(0.25) def test_prec_long_rel(): rel = np.arange(100) items = [1, 0, 150, 3, 10] r = _test_prec(items, rel, k=5) assert r == approx(0.8) def test_prec_long_items(): rel = np.arange(100) items = [1, 0, 150, 3, 10, 30, 120, 4, 17] r = _test_prec(items, rel, k=5) assert r == approx(0.8) def test_prec_short_items(): rel = np.arange(100) items = [1, 0, 150] r = _test_prec(items, rel, k=5) assert r == approx(2 / 3) def test_recall_bulk_k(demo_recs): "bulk and normal match" train, test, recs = demo_recs assert test['user'].value_counts().max() > 5 rla = topn.RecListAnalysis() rla.add_metric(precision, name='pk', k=5) rla.add_metric(precision) # metric without the bulk capabilities rla.add_metric(lambda *a, **k: precision(*a, **k), name='ind_pk', k=5) rla.add_metric(lambda *a: precision(*a), name='ind_p') res = rla.compute(recs, test) assert res.precision.values == approx(res.ind_p.values) assert res.pk.values == approx(res.ind_pk.values)
[ "pandas.DataFrame", "pandas.Index", "numpy.arange", "pandas.Series", "numpy.array", "lenskit.topn.precision", "lenskit.topn.RecListAnalysis", "pytest.approx" ]
[((213, 242), 'pandas.DataFrame', 'pd.DataFrame', (["{'item': items}"], {}), "({'item': items})\n", (225, 242), True, 'import pandas as pd\n'), ((312, 339), 'lenskit.topn.precision', 'precision', (['recs', 'truth'], {}), '(recs, truth, **k)\n', (321, 339), False, 'from lenskit.topn import precision\n'), ((2499, 2513), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (2508, 2513), True, 'import numpy as np\n'), ((2650, 2664), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (2659, 2664), True, 'import numpy as np\n'), ((2818, 2832), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (2827, 2832), True, 'import numpy as np\n'), ((3083, 3105), 'lenskit.topn.RecListAnalysis', 'topn.RecListAnalysis', ([], {}), '()\n', (3103, 3105), False, 'from lenskit import topn\n'), ((527, 538), 'pytest.approx', 'approx', (['(1.0)'], {}), '(1.0)\n', (533, 538), False, 'from pytest import approx\n'), ((594, 605), 'pytest.approx', 'approx', (['(1.0)'], {}), '(1.0)\n', (600, 605), False, 'from pytest import approx\n'), ((670, 681), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (676, 681), False, 'from pytest import approx\n'), ((749, 760), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (755, 760), False, 'from pytest import approx\n'), ((831, 842), 'pytest.approx', 'approx', (['(0.0)'], {}), '(0.0)\n', (837, 842), False, 'from pytest import approx\n'), ((913, 925), 'pytest.approx', 'approx', (['(0.25)'], {}), '(0.25)\n', (919, 925), False, 'from pytest import approx\n'), ((979, 996), 'pandas.Series', 'pd.Series', (['[1, 3]'], {}), '([1, 3])\n', (988, 996), True, 'import pandas as pd\n'), ((998, 1015), 'pandas.Series', 'pd.Series', (['[1, 3]'], {}), '([1, 3])\n', (1007, 1015), True, 'import pandas as pd\n'), ((1036, 1047), 'pytest.approx', 'approx', (['(1.0)'], {}), '(1.0)\n', (1042, 1047), False, 'from pytest import approx\n'), ((1071, 1094), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1080, 1094), True, 'import pandas as pd\n'), ((1096, 1116), 'pandas.Series', 'pd.Series', (['[1, 3, 5]'], {}), '([1, 3, 5])\n', (1105, 1116), True, 'import pandas as pd\n'), ((1137, 1148), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (1143, 1148), False, 'from pytest import approx\n'), ((1172, 1195), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1181, 1195), True, 'import pandas as pd\n'), ((1241, 1253), 'pytest.approx', 'approx', (['(0.25)'], {}), '(0.25)\n', (1247, 1253), False, 'from pytest import approx\n'), ((1311, 1334), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1320, 1334), True, 'import pandas as pd\n'), ((1366, 1377), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (1372, 1377), False, 'from pytest import approx\n'), ((1401, 1424), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1410, 1424), True, 'import pandas as pd\n'), ((1459, 1471), 'pytest.approx', 'approx', (['(0.25)'], {}), '(0.25)\n', (1465, 1471), False, 'from pytest import approx\n'), ((1531, 1548), 'pandas.Series', 'pd.Series', (['[1, 3]'], {}), '([1, 3])\n', (1540, 1548), True, 'import pandas as pd\n'), ((1550, 1566), 'pandas.Index', 'pd.Index', (['[1, 3]'], {}), '([1, 3])\n', (1558, 1566), True, 'import pandas as pd\n'), ((1587, 1598), 'pytest.approx', 'approx', (['(1.0)'], {}), '(1.0)\n', (1593, 1598), False, 'from pytest import approx\n'), ((1622, 1645), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1631, 1645), True, 'import pandas as pd\n'), ((1647, 1666), 'pandas.Index', 'pd.Index', (['[1, 3, 5]'], {}), '([1, 3, 5])\n', (1655, 1666), True, 'import pandas as pd\n'), ((1687, 1698), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (1693, 1698), False, 'from pytest import approx\n'), ((1722, 1745), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1731, 1745), True, 'import pandas as pd\n'), ((1790, 1802), 'pytest.approx', 'approx', (['(0.25)'], {}), '(0.25)\n', (1796, 1802), False, 'from pytest import approx\n'), ((1862, 1879), 'pandas.Series', 'pd.Series', (['[1, 3]'], {}), '([1, 3])\n', (1871, 1879), True, 'import pandas as pd\n'), ((1881, 1897), 'numpy.array', 'np.array', (['[1, 3]'], {}), '([1, 3])\n', (1889, 1897), True, 'import numpy as np\n'), ((1918, 1929), 'pytest.approx', 'approx', (['(1.0)'], {}), '(1.0)\n', (1924, 1929), False, 'from pytest import approx\n'), ((1953, 1976), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1962, 1976), True, 'import pandas as pd\n'), ((1978, 1997), 'numpy.array', 'np.array', (['[1, 3, 5]'], {}), '([1, 3, 5])\n', (1986, 1997), True, 'import numpy as np\n'), ((2018, 2029), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (2024, 2029), False, 'from pytest import approx\n'), ((2053, 2076), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (2062, 2076), True, 'import pandas as pd\n'), ((2078, 2103), 'numpy.arange', 'np.arange', (['(4)', '(10)', '(1)', '"""u4"""'], {}), "(4, 10, 1, 'u4')\n", (2087, 2103), True, 'import numpy as np\n'), ((2124, 2136), 'pytest.approx', 'approx', (['(0.25)'], {}), '(0.25)\n', (2130, 2136), False, 'from pytest import approx\n'), ((2189, 2205), 'numpy.array', 'np.array', (['[1, 3]'], {}), '([1, 3])\n', (2197, 2205), True, 'import numpy as np\n'), ((2207, 2223), 'numpy.array', 'np.array', (['[1, 3]'], {}), '([1, 3])\n', (2215, 2223), True, 'import numpy as np\n'), ((2244, 2255), 'pytest.approx', 'approx', (['(1.0)'], {}), '(1.0)\n', (2250, 2255), False, 'from pytest import approx\n'), ((2279, 2301), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (2287, 2301), True, 'import numpy as np\n'), ((2303, 2322), 'numpy.array', 'np.array', (['[1, 3, 5]'], {}), '([1, 3, 5])\n', (2311, 2322), True, 'import numpy as np\n'), ((2343, 2354), 'pytest.approx', 'approx', (['(0.5)'], {}), '(0.5)\n', (2349, 2354), False, 'from pytest import approx\n'), ((2378, 2400), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (2386, 2400), True, 'import numpy as np\n'), ((2402, 2427), 'numpy.arange', 'np.arange', (['(4)', '(10)', '(1)', '"""u4"""'], {}), "(4, 10, 1, 'u4')\n", (2411, 2427), True, 'import numpy as np\n'), ((2448, 2460), 'pytest.approx', 'approx', (['(0.25)'], {}), '(0.25)\n', (2454, 2460), False, 'from pytest import approx\n'), ((2598, 2609), 'pytest.approx', 'approx', (['(0.8)'], {}), '(0.8)\n', (2604, 2609), False, 'from pytest import approx\n'), ((2765, 2776), 'pytest.approx', 'approx', (['(0.8)'], {}), '(0.8)\n', (2771, 2776), False, 'from pytest import approx\n'), ((2910, 2923), 'pytest.approx', 'approx', (['(2 / 3)'], {}), '(2 / 3)\n', (2916, 2923), False, 'from pytest import approx\n'), ((3429, 3453), 'pytest.approx', 'approx', (['res.ind_p.values'], {}), '(res.ind_p.values)\n', (3435, 3453), False, 'from pytest import approx\n'), ((3482, 3507), 'pytest.approx', 'approx', (['res.ind_pk.values'], {}), '(res.ind_pk.values)\n', (3488, 3507), False, 'from pytest import approx\n'), ((255, 282), 'pandas.DataFrame', 'pd.DataFrame', (["{'item': rel}"], {}), "({'item': rel})\n", (267, 282), True, 'import pandas as pd\n'), ((3260, 3278), 'lenskit.topn.precision', 'precision', (['*a'], {}), '(*a, **k)\n', (3269, 3278), False, 'from lenskit.topn import precision\n'), ((3330, 3343), 'lenskit.topn.precision', 'precision', (['*a'], {}), '(*a)\n', (3339, 3343), False, 'from lenskit.topn import precision\n')]
import numpy as np from skmultiflow.trees.nodes import ActiveLearningNodePerceptron from skmultiflow.trees.attribute_observer import NominalAttributeRegressionObserver from skmultiflow.trees.attribute_observer import NumericAttributeRegressionObserver from skmultiflow.utils import get_dimensions class RandomLearningNodePerceptron(ActiveLearningNodePerceptron): """ Learning Node for regression tasks that always use a linear perceptron model to provide responses. Parameters ---------- initial_class_observations: dict In regression tasks this dictionary carries the sufficient statistics to perform online variance calculation. They refer to the number of observations (key '0'), the sum of the target values (key '1'), and the sum of the squared target values (key '2'). max_features: int Number of attributes per subset for each node split. parent_node: RandomLearningNodePerceptron (default=None) A node containing statistics about observed data. random_state: int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ def __init__(self, initial_class_observations, max_features, parent_node=None, random_state=None): super().__init__(initial_class_observations, parent_node, random_state) self.max_features = max_features self.list_attributes = np.array([]) def learn_from_instance(self, X, y, weight, rht): """Update the node with the provided instance. Parameters ---------- X: numpy.ndarray of length equal to the number of features. Instance attributes for updating the node. y: float Instance target value. weight: float Instance weight. rht: HoeffdingTreeRegressor Regression Hoeffding Tree to update. """ # In regression, the self._observed_class_distribution dictionary keeps three statistics: # [0] sum of sample seen by the node # [1] sum of target values # [2] sum of squared target values # These statistics are useful to calculate the mean and to calculate the variance reduction if self.perceptron_weight is None: self.perceptron_weight = self.random_state.uniform(-1, 1, len(X)+1) try: self._observed_class_distribution[0] += weight self._observed_class_distribution[1] += y * weight self._observed_class_distribution[2] += y * y * weight except KeyError: self._observed_class_distribution[0] = weight self._observed_class_distribution[1] = y * weight self._observed_class_distribution[2] = y * y * weight # Update perceptron self.samples_seen = self._observed_class_distribution[0] if rht.learning_ratio_const: learning_ratio = rht.learning_ratio_perceptron else: learning_ratio = rht.learning_ratio_perceptron / \ (1 + self.samples_seen * rht.learning_ratio_decay) # Loop for compatibility with bagging methods for i in range(int(weight)): self.update_weights(X, y, learning_ratio, rht) if self.list_attributes.size == 0: self.list_attributes = self._sample_features(get_dimensions(X)[1]) for i in self.list_attributes: try: obs = self._attribute_observers[i] except KeyError: if rht.nominal_attributes is not None and i in rht.nominal_attributes: obs = NominalAttributeRegressionObserver() else: obs = NumericAttributeRegressionObserver() self._attribute_observers[i] = obs obs.observe_attribute_class(X[i], y, weight) def _sample_features(self, n_features): return self.random_state.choice( n_features, size=self.max_features, replace=False )
[ "skmultiflow.trees.attribute_observer.NominalAttributeRegressionObserver", "skmultiflow.trees.attribute_observer.NumericAttributeRegressionObserver", "skmultiflow.utils.get_dimensions", "numpy.array" ]
[((1649, 1661), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1657, 1661), True, 'import numpy as np\n'), ((3595, 3612), 'skmultiflow.utils.get_dimensions', 'get_dimensions', (['X'], {}), '(X)\n', (3609, 3612), False, 'from skmultiflow.utils import get_dimensions\n'), ((3867, 3903), 'skmultiflow.trees.attribute_observer.NominalAttributeRegressionObserver', 'NominalAttributeRegressionObserver', ([], {}), '()\n', (3901, 3903), False, 'from skmultiflow.trees.attribute_observer import NominalAttributeRegressionObserver\n'), ((3952, 3988), 'skmultiflow.trees.attribute_observer.NumericAttributeRegressionObserver', 'NumericAttributeRegressionObserver', ([], {}), '()\n', (3986, 3988), False, 'from skmultiflow.trees.attribute_observer import NumericAttributeRegressionObserver\n')]
import numpy as np import theano import lasagne ## ALIASES ## L = lasagne.layers T = theano.tensor get_output = L.get_output get_all_params = L.get_all_params cross_entropy = lasagne.objectives.categorical_crossentropy get_layers = L.get_all_layers class Network(object): """ Wrapper for neural networks for MNK that automates network compilation and provides some conveninece functions for freezing, saving, and loading params Things to consider doing: mod save/load to use named layers add self.reinitialize(layers) """ def __init__(self, architecture): self.architecture = architecture self.input_var = T.tensor4('inputs') self.target_var = T.ivector('targets') self.update_algo = lasagne.updates.adam # just a default self.build() self.objectives() self.compile_functions() self.val_trace = np.zeros(500) self.train_trace = np.zeros(500) self.trace_loc = 0 def build(self): """ Generates network graph, grabs params and output symbols """ self.net = self.architecture(self.input_var) self.prediction = get_output(self.net) self.test_prediction = get_output(self.net, deterministic=True) self.params = get_all_params(self.net, trainable=True) self.value_layer = get_layers(self.net)[-4] self.value_prediction = get_output(self.value_layer) return None def objectives(self): """ Adds loss and accuracy nodes """ self.loss = cross_entropy(self.prediction, self.target_var) self.loss = self.loss.mean() self.itemized_loss = cross_entropy(self.test_prediction, self.target_var) self.test_loss = self.itemized_loss.mean() self.test_acc = T.mean( T.eq(T.argmax(self.test_prediction, axis=1), self.target_var), dtype=theano.config.floatX ) self.updates = self.update_algo(self.loss, self.params) return None def compile_functions(self): """ Compiles theano functions for computing output, losses, etc """ self.output_fn = theano.function([self.input_var], self.test_prediction) self.value_fn = theano.function([self.input_var], self.value_prediction) self.train_fn = theano.function( [self.input_var, self.target_var], self.loss, updates=self.updates ) self.test_fn = theano.function( [self.input_var, self.target_var], [self.test_loss, self.test_acc] ) self.itemized_test_fn = theano.function( [self.input_var, self.target_var], self.itemized_loss ) return None def update_traces(self): """ Saves traces for plotting """ self.val_trace[self.trace_loc] = self.val_err self.train_trace[self.trace_loc] = self.train_err self.trace_loc += 1 # so hacky return None def freeze_params(self, net=None, exclude=None): """ Sets params to be untrainable Excludes layers in optional arg exclude (tuple or list) """ if net is None: net = self.net layers = get_layers(net) num_layers = len(layers) exclude = [i if i >= 0 else num_layers + i for i in exclude] if exclude is not None: layers = [layer for l, layer in enumerate(layers) if not (l in exclude)] for layer in layers: for param in layer.params: layer.params[param].remove('trainable') self.params = get_all_params(net, trainable=True) # CAUTION: needs rewritten to not throw errors as autoencoders develop return None def unfreeze_params(self): """ Sets all parameters back to trainable """ for layer in L.get_all_layers(self.net): for param in layer.params: layer.params[param].add('trainable') self.params = L.get_all_params(self.net, trainable=True) return None def save_params(self, param_file): """ Save parameters for reuse later """ all_params = L.get_all_param_values(self.net) np.savez(param_file, *all_params) return None def load_params(self, paramsfile): """ Loads parameters from npz files """ with np.load(paramsfile) as loaded: params_list = [(i[0], i[1]) for i in loaded.items()] params_order = np.array([i[0][4:6] for i in params_list]).astype(int) params_list = [params_list[i] for i in params_order.argsort()] L.set_all_param_values(self.net, [i[1] for i in params_list]) return None class Autoencoder(Network): """ Wrapper for training and testing transfer learning with an autoencoder. Almost as cool as it sounds. Later, use super() to cut down bloat inside functions """ def __init__(self, architecture): self.architecture = architecture self.input_var = T.tensor4('inputs') self.target_var = T.ivector('targets') self.ae_target_var = T.tensor4('ae inputs') self.update_algo = lasagne.updates.adam self.val_trace = [] self.train_trace = [] self.build() self.objectives() self.compile_functions() def build(self): """Generates graph, caches params, output symbols""" self.autoencoder, self.value_layer, self.net = self.architecture(self.input_var) self.prediction = get_output(self.net) self.test_prediction = get_output(self.net, deterministic=True) self.value_prediction = get_output(self.value_layer) self.image = get_output(self.autoencoder) self.test_image = get_output(self.autoencoder, deterministic=True) self.params = get_all_params(self.net) self.ae_params = get_all_params(self.autoencoder) return None def objectives(self): """Loss functions, etc""" self.loss = cross_entropy(self.prediction, self.target_var).mean() self.itemized_test_loss = cross_entropy(self.test_prediction, self.target_var) self.test_loss = self.itemized_test_loss.mean() self.test_acc = T.mean( T.eq(T.argmax(self.test_prediction, axis=1), self.target_var), dtype=theano.config.floatX ) self.updates = self.update_algo(self.loss, self.params) self.ae_loss = T.mean((self.ae_target_var - self.image)**2, dtype=theano.config.floatX) self.ae_test_loss = T.mean((self.ae_target_var - self.test_image)**2, dtype=theano.config.floatX) self.ae_updates = self.update_algo(self.ae_loss, self.ae_params) return None def compile_functions(self): """Compile theano functions""" self.output_fn = theano.function([self.input_var], self.test_prediction) self.value_fn = theano.function([self.input_var], self.value_prediction) self.train_fn = theano.function( [self.input_var, self.target_var], self.loss, updates = self.updates ) self.test_fn = theano.function( [self.input_var, self.target_var], [self.test_loss, self.test_acc] ) self.itemized_test_fn = theano.function( [self.input_var, self.target_var], self.itemized_test_loss ) self.ae_output_fn = theano.function([self.input_var], self.test_image) self.ae_train_fn = theano.function( [self.input_var, self.ae_target_var], self.ae_loss, updates=self.ae_updates ) self.ae_test_fn = theano.function( [self.input_var, self.ae_target_var], self.ae_test_loss ) return None
[ "numpy.load", "theano.function", "numpy.zeros", "numpy.array", "numpy.savez" ]
[((904, 917), 'numpy.zeros', 'np.zeros', (['(500)'], {}), '(500)\n', (912, 917), True, 'import numpy as np\n'), ((945, 958), 'numpy.zeros', 'np.zeros', (['(500)'], {}), '(500)\n', (953, 958), True, 'import numpy as np\n'), ((2183, 2238), 'theano.function', 'theano.function', (['[self.input_var]', 'self.test_prediction'], {}), '([self.input_var], self.test_prediction)\n', (2198, 2238), False, 'import theano\n'), ((2263, 2319), 'theano.function', 'theano.function', (['[self.input_var]', 'self.value_prediction'], {}), '([self.input_var], self.value_prediction)\n', (2278, 2319), False, 'import theano\n'), ((2344, 2432), 'theano.function', 'theano.function', (['[self.input_var, self.target_var]', 'self.loss'], {'updates': 'self.updates'}), '([self.input_var, self.target_var], self.loss, updates=self.\n updates)\n', (2359, 2432), False, 'import theano\n'), ((2485, 2573), 'theano.function', 'theano.function', (['[self.input_var, self.target_var]', '[self.test_loss, self.test_acc]'], {}), '([self.input_var, self.target_var], [self.test_loss, self.\n test_acc])\n', (2500, 2573), False, 'import theano\n'), ((2635, 2705), 'theano.function', 'theano.function', (['[self.input_var, self.target_var]', 'self.itemized_loss'], {}), '([self.input_var, self.target_var], self.itemized_loss)\n', (2650, 2705), False, 'import theano\n'), ((4281, 4314), 'numpy.savez', 'np.savez', (['param_file', '*all_params'], {}), '(param_file, *all_params)\n', (4289, 4314), True, 'import numpy as np\n'), ((6921, 6976), 'theano.function', 'theano.function', (['[self.input_var]', 'self.test_prediction'], {}), '([self.input_var], self.test_prediction)\n', (6936, 6976), False, 'import theano\n'), ((7001, 7057), 'theano.function', 'theano.function', (['[self.input_var]', 'self.value_prediction'], {}), '([self.input_var], self.value_prediction)\n', (7016, 7057), False, 'import theano\n'), ((7082, 7170), 'theano.function', 'theano.function', (['[self.input_var, self.target_var]', 'self.loss'], {'updates': 'self.updates'}), '([self.input_var, self.target_var], self.loss, updates=self.\n updates)\n', (7097, 7170), False, 'import theano\n'), ((7238, 7326), 'theano.function', 'theano.function', (['[self.input_var, self.target_var]', '[self.test_loss, self.test_acc]'], {}), '([self.input_var, self.target_var], [self.test_loss, self.\n test_acc])\n', (7253, 7326), False, 'import theano\n'), ((7389, 7464), 'theano.function', 'theano.function', (['[self.input_var, self.target_var]', 'self.itemized_test_loss'], {}), '([self.input_var, self.target_var], self.itemized_test_loss)\n', (7404, 7464), False, 'import theano\n'), ((7528, 7578), 'theano.function', 'theano.function', (['[self.input_var]', 'self.test_image'], {}), '([self.input_var], self.test_image)\n', (7543, 7578), False, 'import theano\n'), ((7606, 7703), 'theano.function', 'theano.function', (['[self.input_var, self.ae_target_var]', 'self.ae_loss'], {'updates': 'self.ae_updates'}), '([self.input_var, self.ae_target_var], self.ae_loss, updates\n =self.ae_updates)\n', (7621, 7703), False, 'import theano\n'), ((7772, 7844), 'theano.function', 'theano.function', (['[self.input_var, self.ae_target_var]', 'self.ae_test_loss'], {}), '([self.input_var, self.ae_target_var], self.ae_test_loss)\n', (7787, 7844), False, 'import theano\n'), ((4452, 4471), 'numpy.load', 'np.load', (['paramsfile'], {}), '(paramsfile)\n', (4459, 4471), True, 'import numpy as np\n'), ((4575, 4617), 'numpy.array', 'np.array', (['[i[0][4:6] for i in params_list]'], {}), '([i[0][4:6] for i in params_list])\n', (4583, 4617), True, 'import numpy as np\n')]
# Copyright 2019 Graphcore Ltd. """ Dataset reader from Datalogue keras-attention tutorial. References: https://github.com/datalogue/keras-attention https://medium.com/datalogue """ import json import csv import random import numpy as np # from keras.utils.np_utils import to_categorical INPUT_PADDING = 50 OUTPUT_PADDING = 100 class Vocabulary(object): def __init__(self, vocabulary_file, padding=None): """ Creates a vocabulary from a file :param vocabulary_file: the path to the vocabulary """ self.vocabulary_file = vocabulary_file with open(vocabulary_file, 'r') as f: self.vocabulary = json.load(f) self.padding = padding self.reverse_vocabulary = {v: k for k, v in self.vocabulary.items()} def start_id(self): return self.vocabulary['<sot>'] def end_id(self): return self.vocabulary['<eot>'] def size(self): """ Gets the size of the vocabulary """ return len(self.vocabulary.keys()) def string_to_int(self, text): """ Converts a string into it's character integer representation :param text: text to convert """ characters = list(text) integers = [] if self.padding and len(characters) >= self.padding: # truncate if too long characters = characters[:self.padding-1] characters.append('<eot>') for c in characters: if c in self.vocabulary: integers.append(self.vocabulary[c]) else: integers.append(self.vocabulary['<unk>']) # pad: if self.padding and len(integers) < self.padding: integers.extend( [self.vocabulary['<unk>']] * (self.padding - len(integers)) ) if len(integers) != self.padding: print(text) raise AttributeError('Length of text was not padding.') return integers def int_to_string(self, integers): """ Decodes a list of integers into it's string representation """ characters = [] for i in integers: characters.append(self.reverse_vocabulary[i]) return characters class Data(object): def __init__(self, file_name, input_vocabulary, output_vocabulary): """ Creates an object that gets data from a file :param file_name: name of the file to read from :param vocabulary: the Vocabulary object to use :param batch_size: the number of datapoints to return :param padding: the amount of padding to apply to a short string """ self.input_vocabulary = input_vocabulary self.output_vocabulary = output_vocabulary self.file_name = file_name def load(self): """ Loads data from a file """ self.inputs = [] self.targets = [] with open(self.file_name, 'r') as f: reader = csv.reader(f) for row in reader: self.inputs.append(row[0]) self.targets.append(row[1]) def transform(self): """ Transforms the data as necessary """ # @TODO: use `pool.map_async` here? self.inputs = np.array(list( map(self.input_vocabulary.string_to_int, self.inputs))) self.targets = np.array(list( map(self.output_vocabulary.string_to_int, self.targets))) assert len(self.inputs.shape) == 2, 'Inputs could not properly be encoded' assert len(self.targets.shape) == 2, 'Targets could not properly be encoded' def generator(self, batch_size): """ Creates a generator that can be used in `model.fit_generator()` Batches are generated randomly. :param batch_size: the number of instances to include per batch """ instance_id = range(len(self.inputs)) while True: try: batch_ids = random.sample(instance_id, batch_size) yield (np.array(self.inputs[batch_ids], dtype=int), np.array(self.targets[batch_ids])) except Exception as e: print('EXCEPTION OMG') print(e) yield None, None if __name__ == '__main__': input_vocab = Vocabulary('../data/human_vocab.json', padding=50) output_vocab = Vocabulary('../data/machine_vocab.json', padding=12) ds = Data('../data/fake.csv', input_vocab, output_vocab) ds.load() ds.transform() print(ds.inputs.shape) print(ds.targets.shape) g = ds.generator(32) print(ds.inputs[[5, 10, 12]].shape) print(ds.targets[[5, 10, 12]].shape)
[ "random.sample", "json.load", "csv.reader", "numpy.array" ]
[((683, 695), 'json.load', 'json.load', (['f'], {}), '(f)\n', (692, 695), False, 'import json\n'), ((3124, 3137), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (3134, 3137), False, 'import csv\n'), ((4146, 4184), 'random.sample', 'random.sample', (['instance_id', 'batch_size'], {}), '(instance_id, batch_size)\n', (4159, 4184), False, 'import random\n'), ((4208, 4251), 'numpy.array', 'np.array', (['self.inputs[batch_ids]'], {'dtype': 'int'}), '(self.inputs[batch_ids], dtype=int)\n', (4216, 4251), True, 'import numpy as np\n'), ((4276, 4309), 'numpy.array', 'np.array', (['self.targets[batch_ids]'], {}), '(self.targets[batch_ids])\n', (4284, 4309), True, 'import numpy as np\n')]
import pytest import mxnet as mx import numpy as np from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples from mxfusion.components.distributions import Laplace from mxfusion.util.testutils import numpy_array_reshape, plot_univariate from mxfusion.util.testutils import MockMXNetRandomGenerator from scipy.stats import laplace @pytest.mark.usefixtures("set_seed") class TestLaplaceDistribution(object): @pytest.mark.parametrize( "dtype, location, location_is_samples, scale, scale_is_samples, rv, rv_is_samples, num_samples", [ (np.float64, np.random.rand(5,3,2), True, np.random.rand(3,2)+0.1, False, np.random.rand(5,3,2), True, 5), (np.float64, np.random.rand(3,2), False, np.random.rand(5,3,2)+0.1, True, np.random.rand(5,3,2), True, 5), (np.float64, np.random.rand(3,2), False, np.random.rand(3,2)+0.1, False, np.random.rand(5,3,2), True, 5), (np.float64, np.random.rand(3,2), False, np.random.rand(3,2)+0.1, False, np.random.rand(3,2), False, 1), (np.float32, np.random.rand(5,3,2), True, np.random.rand(3,2)+0.1, False, np.random.rand(5,3,2), True, 5), ]) def test_log_pdf(self, dtype, location, location_is_samples, scale, scale_is_samples, rv, rv_is_samples, num_samples): is_samples_any = any([location_is_samples, scale_is_samples, rv_is_samples]) rv_shape = rv.shape[1:] if rv_is_samples else rv.shape n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape) location_np = numpy_array_reshape(location, location_is_samples, n_dim) scale_np = numpy_array_reshape(scale, scale_is_samples, n_dim) rv_np = numpy_array_reshape(rv, rv_is_samples, n_dim) log_pdf_np = laplace.logpdf(rv_np, location_np, scale_np) var = Laplace.define_variable(shape=rv_shape, dtype=dtype).factor location_mx = mx.nd.array(location, dtype=dtype) if not location_is_samples: location_mx = add_sample_dimension(mx.nd, location_mx) var_mx = mx.nd.array(scale, dtype=dtype) if not scale_is_samples: var_mx = add_sample_dimension(mx.nd, var_mx) rv_mx = mx.nd.array(rv, dtype=dtype) if not rv_is_samples: rv_mx = add_sample_dimension(mx.nd, rv_mx) variables = {var.location.uuid: location_mx, var.scale.uuid: var_mx, var.random_variable.uuid: rv_mx} log_pdf_rt = var.log_pdf(F=mx.nd, variables=variables) assert np.issubdtype(log_pdf_rt.dtype, dtype) assert array_has_samples(mx.nd, log_pdf_rt) == is_samples_any if is_samples_any: assert get_num_samples(mx.nd, log_pdf_rt) == num_samples if np.issubdtype(dtype, np.float64): rtol, atol = 1e-7, 1e-10 else: rtol, atol = 1e-4, 1e-5 assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy(), rtol=rtol, atol=atol) @pytest.mark.parametrize( "dtype, location, location_is_samples, scale, scale_is_samples, rv_shape, num_samples", [ (np.float64, np.random.rand(5,3,2), True, np.random.rand(3,2)+0.1, False, (3,2), 5), (np.float64, np.random.rand(3,2), False, np.random.rand(5,3,2)+0.1, True, (3,2), 5), (np.float64, np.random.rand(3,2), False, np.random.rand(3,2)+0.1, False, (3,2), 5), (np.float64, np.random.rand(5,3,2), True, np.random.rand(5,3,2)+0.1, True, (3,2), 5), (np.float32, np.random.rand(5,3,2), True, np.random.rand(3,2)+0.1, False, (3,2), 5), ]) def test_draw_samples(self, dtype, location, location_is_samples, scale, scale_is_samples, rv_shape, num_samples): n_dim = 1 + len(rv_shape) location_np = numpy_array_reshape(location, location_is_samples, n_dim) scale_np = numpy_array_reshape(scale, scale_is_samples, n_dim) rand = np.random.laplace(size=(num_samples,) + rv_shape) rv_samples_np = location_np + rand * scale_np rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype)) var = Laplace.define_variable(shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor location_mx = mx.nd.array(location, dtype=dtype) if not location_is_samples: location_mx = add_sample_dimension(mx.nd, location_mx) scale_mx = mx.nd.array(scale, dtype=dtype) if not scale_is_samples: scale_mx = add_sample_dimension(mx.nd, scale_mx) variables = {var.location.uuid: location_mx, var.scale.uuid: scale_mx} rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples) assert np.issubdtype(rv_samples_rt.dtype, dtype) assert array_has_samples(mx.nd, rv_samples_rt) assert get_num_samples(mx.nd, rv_samples_rt) == num_samples if np.issubdtype(dtype, np.float64): rtol, atol = 1e-7, 1e-10 else: rtol, atol = 1e-4, 1e-5 assert np.allclose(rv_samples_np, rv_samples_rt.asnumpy(), rtol=rtol, atol=atol) def test_draw_samples_non_mock(self, plot=False): # Also make sure the non-mock sampler works dtype = np.float32 num_samples = 100000 location = np.array([0.5]) scale = np.array([2]) rv_shape = (1,) location_mx = add_sample_dimension(mx.nd, mx.nd.array(location, dtype=dtype)) scale_mx = add_sample_dimension(mx.nd, mx.nd.array(scale, dtype=dtype)) rand_gen = None var = Laplace.define_variable(shape=rv_shape, rand_gen=rand_gen, dtype=dtype).factor variables = {var.location.uuid: location_mx, var.scale.uuid: scale_mx} rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples) assert array_has_samples(mx.nd, rv_samples_rt) assert get_num_samples(mx.nd, rv_samples_rt) == num_samples assert rv_samples_rt.dtype == dtype if plot: plot_univariate(samples=rv_samples_rt, dist=laplace, loc=location[0], scale=scale[0]) location_est, scale_est = laplace.fit(rv_samples_rt.asnumpy().ravel()) location_tol = 1e-2 scale_tol = 1e-2 assert np.abs(location[0] - location_est) < location_tol assert np.abs(scale[0] - scale_est) < scale_tol
[ "numpy.abs", "mxfusion.util.testutils.plot_univariate", "numpy.random.laplace", "mxfusion.components.variables.runtime_variable.array_has_samples", "numpy.random.rand", "mxfusion.components.distributions.Laplace.define_variable", "scipy.stats.laplace.logpdf", "numpy.array", "mxnet.nd.array", "mxfusion.components.variables.runtime_variable.add_sample_dimension", "mxfusion.util.testutils.numpy_array_reshape", "pytest.mark.usefixtures", "mxfusion.components.variables.runtime_variable.get_num_samples", "numpy.issubdtype" ]
[((391, 426), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""set_seed"""'], {}), "('set_seed')\n", (414, 426), False, 'import pytest\n'), ((1594, 1651), 'mxfusion.util.testutils.numpy_array_reshape', 'numpy_array_reshape', (['location', 'location_is_samples', 'n_dim'], {}), '(location, location_is_samples, n_dim)\n', (1613, 1651), False, 'from mxfusion.util.testutils import numpy_array_reshape, plot_univariate\n'), ((1671, 1722), 'mxfusion.util.testutils.numpy_array_reshape', 'numpy_array_reshape', (['scale', 'scale_is_samples', 'n_dim'], {}), '(scale, scale_is_samples, n_dim)\n', (1690, 1722), False, 'from mxfusion.util.testutils import numpy_array_reshape, plot_univariate\n'), ((1739, 1784), 'mxfusion.util.testutils.numpy_array_reshape', 'numpy_array_reshape', (['rv', 'rv_is_samples', 'n_dim'], {}), '(rv, rv_is_samples, n_dim)\n', (1758, 1784), False, 'from mxfusion.util.testutils import numpy_array_reshape, plot_univariate\n'), ((1807, 1851), 'scipy.stats.laplace.logpdf', 'laplace.logpdf', (['rv_np', 'location_np', 'scale_np'], {}), '(rv_np, location_np, scale_np)\n', (1821, 1851), False, 'from scipy.stats import laplace\n'), ((1949, 1983), 'mxnet.nd.array', 'mx.nd.array', (['location'], {'dtype': 'dtype'}), '(location, dtype=dtype)\n', (1960, 1983), True, 'import mxnet as mx\n'), ((2104, 2135), 'mxnet.nd.array', 'mx.nd.array', (['scale'], {'dtype': 'dtype'}), '(scale, dtype=dtype)\n', (2115, 2135), True, 'import mxnet as mx\n'), ((2242, 2270), 'mxnet.nd.array', 'mx.nd.array', (['rv'], {'dtype': 'dtype'}), '(rv, dtype=dtype)\n', (2253, 2270), True, 'import mxnet as mx\n'), ((2545, 2583), 'numpy.issubdtype', 'np.issubdtype', (['log_pdf_rt.dtype', 'dtype'], {}), '(log_pdf_rt.dtype, dtype)\n', (2558, 2583), True, 'import numpy as np\n'), ((2761, 2793), 'numpy.issubdtype', 'np.issubdtype', (['dtype', 'np.float64'], {}), '(dtype, np.float64)\n', (2774, 2793), True, 'import numpy as np\n'), ((3771, 3828), 'mxfusion.util.testutils.numpy_array_reshape', 'numpy_array_reshape', (['location', 'location_is_samples', 'n_dim'], {}), '(location, location_is_samples, n_dim)\n', (3790, 3828), False, 'from mxfusion.util.testutils import numpy_array_reshape, plot_univariate\n'), ((3848, 3899), 'mxfusion.util.testutils.numpy_array_reshape', 'numpy_array_reshape', (['scale', 'scale_is_samples', 'n_dim'], {}), '(scale, scale_is_samples, n_dim)\n', (3867, 3899), False, 'from mxfusion.util.testutils import numpy_array_reshape, plot_univariate\n'), ((3916, 3965), 'numpy.random.laplace', 'np.random.laplace', ([], {'size': '((num_samples,) + rv_shape)'}), '(size=(num_samples,) + rv_shape)\n', (3933, 3965), True, 'import numpy as np\n'), ((4223, 4257), 'mxnet.nd.array', 'mx.nd.array', (['location'], {'dtype': 'dtype'}), '(location, dtype=dtype)\n', (4234, 4257), True, 'import mxnet as mx\n'), ((4380, 4411), 'mxnet.nd.array', 'mx.nd.array', (['scale'], {'dtype': 'dtype'}), '(scale, dtype=dtype)\n', (4391, 4411), True, 'import mxnet as mx\n'), ((4698, 4739), 'numpy.issubdtype', 'np.issubdtype', (['rv_samples_rt.dtype', 'dtype'], {}), '(rv_samples_rt.dtype, dtype)\n', (4711, 4739), True, 'import numpy as np\n'), ((4755, 4794), 'mxfusion.components.variables.runtime_variable.array_has_samples', 'array_has_samples', (['mx.nd', 'rv_samples_rt'], {}), '(mx.nd, rv_samples_rt)\n', (4772, 4794), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((4875, 4907), 'numpy.issubdtype', 'np.issubdtype', (['dtype', 'np.float64'], {}), '(dtype, np.float64)\n', (4888, 4907), True, 'import numpy as np\n'), ((5268, 5283), 'numpy.array', 'np.array', (['[0.5]'], {}), '([0.5])\n', (5276, 5283), True, 'import numpy as np\n'), ((5300, 5313), 'numpy.array', 'np.array', (['[2]'], {}), '([2])\n', (5308, 5313), True, 'import numpy as np\n'), ((5815, 5854), 'mxfusion.components.variables.runtime_variable.array_has_samples', 'array_has_samples', (['mx.nd', 'rv_samples_rt'], {}), '(mx.nd, rv_samples_rt)\n', (5832, 5854), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((1866, 1918), 'mxfusion.components.distributions.Laplace.define_variable', 'Laplace.define_variable', ([], {'shape': 'rv_shape', 'dtype': 'dtype'}), '(shape=rv_shape, dtype=dtype)\n', (1889, 1918), False, 'from mxfusion.components.distributions import Laplace\n'), ((2046, 2086), 'mxfusion.components.variables.runtime_variable.add_sample_dimension', 'add_sample_dimension', (['mx.nd', 'location_mx'], {}), '(mx.nd, location_mx)\n', (2066, 2086), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((2190, 2225), 'mxfusion.components.variables.runtime_variable.add_sample_dimension', 'add_sample_dimension', (['mx.nd', 'var_mx'], {}), '(mx.nd, var_mx)\n', (2210, 2225), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((2321, 2355), 'mxfusion.components.variables.runtime_variable.add_sample_dimension', 'add_sample_dimension', (['mx.nd', 'rv_mx'], {}), '(mx.nd, rv_mx)\n', (2341, 2355), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((2599, 2635), 'mxfusion.components.variables.runtime_variable.array_has_samples', 'array_has_samples', (['mx.nd', 'log_pdf_rt'], {}), '(mx.nd, log_pdf_rt)\n', (2616, 2635), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((4122, 4193), 'mxfusion.components.distributions.Laplace.define_variable', 'Laplace.define_variable', ([], {'shape': 'rv_shape', 'dtype': 'dtype', 'rand_gen': 'rand_gen'}), '(shape=rv_shape, dtype=dtype, rand_gen=rand_gen)\n', (4145, 4193), False, 'from mxfusion.components.distributions import Laplace\n'), ((4320, 4360), 'mxfusion.components.variables.runtime_variable.add_sample_dimension', 'add_sample_dimension', (['mx.nd', 'location_mx'], {}), '(mx.nd, location_mx)\n', (4340, 4360), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((4468, 4505), 'mxfusion.components.variables.runtime_variable.add_sample_dimension', 'add_sample_dimension', (['mx.nd', 'scale_mx'], {}), '(mx.nd, scale_mx)\n', (4488, 4505), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((4810, 4847), 'mxfusion.components.variables.runtime_variable.get_num_samples', 'get_num_samples', (['mx.nd', 'rv_samples_rt'], {}), '(mx.nd, rv_samples_rt)\n', (4825, 4847), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((5390, 5424), 'mxnet.nd.array', 'mx.nd.array', (['location'], {'dtype': 'dtype'}), '(location, dtype=dtype)\n', (5401, 5424), True, 'import mxnet as mx\n'), ((5473, 5504), 'mxnet.nd.array', 'mx.nd.array', (['scale'], {'dtype': 'dtype'}), '(scale, dtype=dtype)\n', (5484, 5504), True, 'import mxnet as mx\n'), ((5545, 5616), 'mxfusion.components.distributions.Laplace.define_variable', 'Laplace.define_variable', ([], {'shape': 'rv_shape', 'rand_gen': 'rand_gen', 'dtype': 'dtype'}), '(shape=rv_shape, rand_gen=rand_gen, dtype=dtype)\n', (5568, 5616), False, 'from mxfusion.components.distributions import Laplace\n'), ((5870, 5907), 'mxfusion.components.variables.runtime_variable.get_num_samples', 'get_num_samples', (['mx.nd', 'rv_samples_rt'], {}), '(mx.nd, rv_samples_rt)\n', (5885, 5907), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((5997, 6087), 'mxfusion.util.testutils.plot_univariate', 'plot_univariate', ([], {'samples': 'rv_samples_rt', 'dist': 'laplace', 'loc': 'location[0]', 'scale': 'scale[0]'}), '(samples=rv_samples_rt, dist=laplace, loc=location[0], scale\n =scale[0])\n', (6012, 6087), False, 'from mxfusion.util.testutils import numpy_array_reshape, plot_univariate\n'), ((6231, 6265), 'numpy.abs', 'np.abs', (['(location[0] - location_est)'], {}), '(location[0] - location_est)\n', (6237, 6265), True, 'import numpy as np\n'), ((6296, 6324), 'numpy.abs', 'np.abs', (['(scale[0] - scale_est)'], {}), '(scale[0] - scale_est)\n', (6302, 6324), True, 'import numpy as np\n'), ((2700, 2734), 'mxfusion.components.variables.runtime_variable.get_num_samples', 'get_num_samples', (['mx.nd', 'log_pdf_rt'], {}), '(mx.nd, log_pdf_rt)\n', (2715, 2734), False, 'from mxfusion.components.variables.runtime_variable import add_sample_dimension, array_has_samples, get_num_samples\n'), ((625, 648), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (639, 648), True, 'import numpy as np\n'), ((686, 709), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (700, 709), True, 'import numpy as np\n'), ((740, 760), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (754, 760), True, 'import numpy as np\n'), ((801, 824), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (815, 824), True, 'import numpy as np\n'), ((855, 875), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (869, 875), True, 'import numpy as np\n'), ((915, 938), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (929, 938), True, 'import numpy as np\n'), ((969, 989), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (983, 989), True, 'import numpy as np\n'), ((1029, 1049), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (1043, 1049), True, 'import numpy as np\n'), ((1082, 1105), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (1096, 1105), True, 'import numpy as np\n'), ((1143, 1166), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (1157, 1166), True, 'import numpy as np\n'), ((3115, 3138), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (3129, 3138), True, 'import numpy as np\n'), ((3208, 3228), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (3222, 3228), True, 'import numpy as np\n'), ((3301, 3321), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (3315, 3321), True, 'import numpy as np\n'), ((3393, 3416), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (3407, 3416), True, 'import numpy as np\n'), ((3487, 3510), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (3501, 3510), True, 'import numpy as np\n'), ((654, 674), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (668, 674), True, 'import numpy as np\n'), ((768, 791), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (782, 791), True, 'import numpy as np\n'), ((883, 903), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (897, 903), True, 'import numpy as np\n'), ((997, 1017), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (1011, 1017), True, 'import numpy as np\n'), ((1111, 1131), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (1125, 1131), True, 'import numpy as np\n'), ((3144, 3164), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (3158, 3164), True, 'import numpy as np\n'), ((3236, 3259), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (3250, 3259), True, 'import numpy as np\n'), ((3329, 3349), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (3343, 3349), True, 'import numpy as np\n'), ((3422, 3445), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)', '(2)'], {}), '(5, 3, 2)\n', (3436, 3445), True, 'import numpy as np\n'), ((3516, 3536), 'numpy.random.rand', 'np.random.rand', (['(3)', '(2)'], {}), '(3, 2)\n', (3530, 3536), True, 'import numpy as np\n')]
from __future__ import print_function import argparse import logging import sys import os import numpy as np import matplotlib.pyplot as plt from .config import EXT from .fileio import read_binned_sfh from .utils import convertz, parse_pipeline, float2sci logger = logging.getLogger() def mh2z(num): return 0.02 * 10 ** num def quadriture(x): return np.sqrt(np.sum(x * x)) class SFH(object): ''' load the match sfh solution as a class with attributes set by the best fits from the sfh file. ''' def __init__(self, filename, hmc_file=None, meta_file=None): """ Parameters ---------- filename : str data file hmc_file : str data file from which to overwite uncertainties meta_file : str data file to only read bestfit line. """ self.base, self.name = os.path.split(filename) self.data = read_binned_sfh(filename, hmc_file) if meta_file is None: meta_file = filename self.load_match_header(meta_file) def load_match_header(self, filename): ''' assumes header is from line 0 to 6 and sets footer to be the final line of the file header formatting is important: Line # format requirement first Ends with "= %f (%s)" N is the string "Best fit:\n" N+1 has ',' separated strings of "%s=%f+%f-%f" last is formatted "%s %f %f %f" ''' def set_value_err_attr(key, attr, pattr, mattr): ''' set attributes [key], [key]_perr, [key]_merr to attr, pattr, mattr (must be floats) ''' self.__setattr__(key, float(attr)) self.__setattr__(key + '_perr', float(pattr)) self.__setattr__(key + '_merr', float(mattr)) with open(filename, 'r') as infile: lines = infile.readlines() if len(lines) == 0: print('empty file: %s' % filename) self.header = [] self.footer = [] self.bestfit = np.nan self.match_out = '' self.data = np.array([]) return self.header = lines[0:6] self.footer = lines[-1] try: bestfit, fout = \ self.header[0].replace(' ', '').split('=')[1].split('(') self.bestfit = float(bestfit) self.match_out = fout.split(')')[0] try: iline = self.header.index('Best fit:\n') + 1 except ValueError: print('Need Best fit line to assign attributes') raise ValueError line = self.header[iline].strip().replace(' ', '').split(',') for i in line: key, attrs = i.split('=') attr, pmattr = attrs.split('+') pattr, mattr = pmattr.split('-') set_value_err_attr(key, attr, pattr, mattr) # the final line has totalSF key, attr, pattr, mattr = self.header[-1].strip().split() set_value_err_attr(key, attr, pattr, mattr) except: # zcmerge files: the first line has totalSF self.header = lines[0] self.footer = [''] try: key, attr, pattr, mattr = self.header.strip().split() set_value_err_attr(key, attr, pattr, mattr) except: # no header pass self.flag = None if np.sum(np.diff(self.data.mh)) == 0: self.flag = 'setz' if len(np.nonzero(np.diff(self.data.mh) >= 0)[0]) == len(self.data.mh): self.flag = 'zinc' return def mh2z(self, num): """nore really [M/H] """ return 0.02 * 10 ** num def plot_bins(self, val='sfr', err=False, convertz=False, offset=1.): '''make SFH bins for plotting''' if isinstance(val, str): if err: valm = self.data['%s_errm' % val] * offset valp = self.data['%s_errp' % val] * offset val = self.data[val] * offset if convertz: val = mh2z(val) if err: valm = mh2z(valm) valp = mh2z(valp) lagei = self.data.lagei lagef = self.data.lagef # double up value # lagei_i, lagef_i, lagei_i+1, lagef_i+1 ... lages = np.ravel([(lagei[i], lagef[i]) for i in range(len(lagei))]) vals = np.ravel([(val[i], val[i]) for i in range(len(val))]) if err: valm = np.ravel([(valm[i], valm[i]) for i in range(len(val))]) valp = np.ravel([(valp[i], valp[i]) for i in range(len(val))]) data = (vals, valm, valp) else: data = vals return lages, data def age_plot(self, val='sfr', ax=None, plt_kw={}, errors=True, convertz=False, xlabel=None, ylabel=None, sfr_offset=1e3): plt_kw = dict({'lw': 3, 'color': 'black'}, **plt_kw) eplt_kw = plt_kw.copy() eplt_kw.update({'linestyle': 'None'}) lages, sfrs = self.plot_bins(offset=sfr_offset) rlages, (rsfrs, sfr_merrs, sfr_perrs) = \ self.plot_bins(err=True, offset=sfr_offset) rlages = np.append(self.data['lagei'], self.data['lagef'][-1]) rlages = rlages[:-1] + np.diff(rlages) / 2. rsfrs = self.data['sfr'] * sfr_offset rsfr_merrs = self.data['sfr_errm'] * sfr_offset rsfr_perrs = self.data['sfr_errp'] * sfr_offset lages = 10 ** (lages - 9.) rlages = 10 ** (rlages - 9.) if val != 'sfr': lages, vals = self.plot_bins(val=val, convertz=convertz) # mask values with no SF isfr, = np.nonzero(sfrs == 0) vals[isfr] = np.nan if self.flag != 'setz': rlages, (rvals, val_merrs, val_perrs) = \ self.plot_bins(val=val, err=True) # mask values with no SF irsfr, = np.nonzero(rsfrs == 0) val_merrs[irsfr] = 0. val_perrs[irsfr] = 0. if np.sum(val_merrs) == 0 or np.sum(val_perrs) == 0: errors = False else: errors = False if 'mh' in val: if ylabel is not None: ylabel = r'$\rm{[M/H]}$' if convertz: ylabel = r'$Z$' else: ylabel = r'$SFR\ %s\ (\rm{M_\odot/yr})$' % \ float2sci(1. / sfr_offset).replace('$', '') vals = sfrs rvals = rsfrs val_merrs = rsfr_merrs val_perrs = rsfr_perrs if ax is None: _, ax = plt.subplots() xlabel = r'$\log Age\ \rm{(yr)}$' ax.plot(lages, vals, **plt_kw) if errors: ax.errorbar(rlages, rvals, yerr=[val_merrs, val_perrs], **eplt_kw) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=20) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=20) return ax def plot_csfr(self, ax=None, errors=True, plt_kw={}, fill_between_kw={}, xlim=None, ylim=(-0.01, 1.01), data=True): '''cumulative sfr plot from match''' one_off = False if ax is None: fig, ax = plt.subplots(figsize=(8, 8)) plt.subplots_adjust(right=0.95, left=0.1, bottom=0.1, top=0.95) ax.tick_params(direction='in') one_off = True fill_between_kw = dict({'alpha': 1, 'color': 'gray'}, **fill_between_kw) plt_kw = dict({'lw': 3}, **plt_kw) # lages, (csfh, csfh_errm, csfh_errp) = self.plot_bins(val='csfr', # err=True) lages = self.data['lagei'] csfh = self.data['csfr'] csfh_errm = self.data['csfr_errm'] csfh_errp = self.data['csfr_errp'] age = 10 ** (lages - 9.) # age = lages age = np.append(age, 10 ** (self.data['lagef'][-1] - 9)) csfh = np.append(csfh, 0) csfh_errm = np.append(csfh_errm, 0) csfh_errp = np.append(csfh_errp, 0) if errors: ax.fill_between(age, csfh - csfh_errm, csfh + csfh_errp, **fill_between_kw) if data: ax.plot(age, csfh, **plt_kw) if xlim is not None: ax.set_xlim(xlim) ax.set_ylim(ylim) # ax.set_xscale('log') # ax.xaxis.set_major_locator(LogNLocator) if one_off: ax.set_xlabel('$\\rm{Star\ Formation\ Time\ (Gyr)}$', fontsize=20) ax.set_ylabel('$\\rm{Culmulative\ Star\ Formation}$', fontsize=20) plt.legend(loc=0, frameon=False) if 'label' in plt_kw.keys(): outfile = \ '{}_csfr'.format(plt_kw['label'].replace('$', '').lower(), EXT) else: outfile = \ '{}_csfr{}'.format(os.path.join(self.base, self.name), EXT) plt.savefig(outfile) print('wrote {}'.format(outfile)) return ax def sf_weighted_metallicity(self): agebins = (10 ** self.data.lagef - 10 ** self.data.lagei) totalsf = np.sum(self.data.sfr * agebins) fracsf = (self.data.sfr * agebins) / totalsf feh = np.array([convertz(z=0.02 * 10 ** m)[-2] for m in self.data.mh]) return np.sum(fracsf * feh) def param_table(self, angst=True, agesplit=[1e9, 3e9], target='', filters=['', '']): try: dic = {'bestfit': self.bestfit, 'Av': self.Av, 'dmod': self.dmod} except: print('No bestfit info') dic = {'bestfit': np.nan, 'Av': np.nan, 'dmod': np.nan} dic['header'] = \ (r'Galaxy & Optical Filters & A$_V$ & $(m\!-\!M)_0$ &' r'$\% \frac{{\rm{{SF}}}}{{\rm{{SF_{{TOT}}}}}}$ &' r'$\langle \mbox{{[Fe/H]}} \rangle$ &' r'$\% \frac{{\rm{{SF}}}}{{\rm{{SF_{{TOT}}}}}}$ &' r'$\langle \mbox{{[Fe/H]}} \rangle$ & $bestfit$ \\ & & & & ' r'\multicolumn{{2}}{{c}}{{$<{0}\rm{{Gyr}}$}} & ' r'\multicolumn{{2}}{{c}}{{${0}-{1}\rm{{Gyr}}$}} & \\ \hline' '\n'.format(*agesplit)) dic['target'] = target if angst: try: dic['target'], filters = parse_pipeline(self.name) except: pass dic['filters'] = ','.join(filters) fyng, fyng_errp, fyng_errm = self.mass_fraction(0, agesplit[0]) fint, fint_errp, fint_errm = self.mass_fraction(agesplit[0], agesplit[1]) # logZ = 0 if there is no SF, that will add error to mean Fe/H iyng = self.nearest_age(agesplit[0], i=False) iint = self.nearest_age(agesplit[1], i=False) iyngs, = np.nonzero(self.data.mh[:iyng + 1] != 0) iints, = np.nonzero(self.data.mh[:iint + 1] != 0) iints = list(set(iints) - set(iyngs)) feh_yng = convertz(z=mh2z(np.mean(self.data.mh[iyngs])))[-2] feh_int = convertz(z=mh2z(np.mean(self.data.mh[iints])))[-2] feh_yng_errp = \ convertz(z=mh2z(quadriture(self.data.mh_errp[iyngs])))[-2] feh_yng_errm = \ convertz(z=mh2z(quadriture(self.data.mh_errm[iyngs])))[-2] feh_int_errp = \ convertz(z=mh2z(quadriture(self.data.mh_errp[iints])))[-2] feh_int_errm = \ convertz(z=mh2z(quadriture(self.data.mh_errm[iints])))[-2] maf = '${0: .2f}^{{+{1: .2f}}}_{{-{2: .2f}}}$' dic['fyng'], dic['fint'] = \ [maf.format(v, p, m) for v, p, m in zip([fyng, fint], [fyng_errp, fint_errp], [fyng_errm, fint_errm])] dic['feh_yng'], dic['feh_int'] = \ [maf.format(v, p, m) for v, p, m in zip([feh_yng, feh_int], [feh_yng_errp, feh_int_errp], [feh_yng_errm, feh_int_errm])] line = ['{target}', '{filters}', '{Av: .2f}', '{dmod: .2f}', '{fyng}', '{feh_yng}', '{fint}', '{feh_int}'] dic['fmt'] = '%s \\\\ \n' % (' & '.join(line)) return dic def nearest_age(self, lage, i=True): if lage > 10.15: lage = np.log10(lage) logger.warning('converting input age to log age') age_arr = self.data.lagef msg = 'lagef' if i: age_arr = self.data.lagei msg = 'lagei' # min age bin size, will trigger warning if ages requested are # higher than the min binsize. tol = np.min(np.diff(age_arr)) # find closest age bin to lage idx = np.argmin(np.abs(age_arr - lage)) difi = np.abs(age_arr[idx] - lage) if difi > tol: logger.warning(('input {}={} not found. ', 'Using {}').format(msg, lage, age_arr[idx])) return idx def mass_fraction(self, lagei, lagef): """ Return the fraction of total mass formed between lagei and lagef. lage[] units can be log yr or yr. Multiply by self.totalSF to obtain the mass formed. """ agebins = (10 ** self.data.lagef - 10 ** self.data.lagei) if lagef-lagei < np.min(np.diff(self.data.lagei)): logger.error('Age difference smaller than bin sizes (or negative)') return 0, 0, 0 # higher precision than self.totalSF totalsf = np.sum(self.data.sfr * agebins) idxi = self.nearest_age(lagei) # +1 is to include final bin idxf = self.nearest_age(lagef, i=False) + 1 fracsfr = np.sum(self.data.sfr[idxi:idxf] * agebins[idxi:idxf]) / totalsf fracsfr_errp = quadriture(self.data.sfr_errp[idxi:idxf] * agebins[idxi:idxf]) / totalsf fracsfr_errm = quadriture(self.data.sfr_errm[idxi:idxf] * agebins[idxi:idxf]) / totalsf return fracsfr, fracsfr_errp, fracsfr_errm def sfh_plot(self): from matplotlib.ticker import NullFormatter _, (ax1, ax2) = plt.subplots(nrows=2) self.age_plot(ax=ax1) self.age_plot(val='mh', convertz=False, ax=ax2) ax1.xaxis.set_major_formatter(NullFormatter()) plt.subplots_adjust(hspace=0.1) figname = os.path.join(self.base, self.name + EXT) print('wrote {}'.format(figname)) plt.savefig(figname) plt.close() def main(argv): """ Main function for sfh.py plot sfh output from calcsfh, zcombine, or zcmerge """ parser = argparse.ArgumentParser(description="Plot match sfh") parser.add_argument('sfh_files', nargs='*', type=str, help='ssp output(s) or formated output(s)') args = parser.parse_args(argv) for sfh_file in args.sfh_files: msfh = SFH(sfh_file) if len(msfh.data) != 0: msfh.sfh_plot() msfh.plot_csfr() # dic = msfh.param_table() # print(dic['fmt'].format(**dic)) if __name__ == '__main__': main(sys.argv[1:])
[ "matplotlib.pyplot.savefig", "numpy.sum", "argparse.ArgumentParser", "numpy.abs", "os.path.join", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "numpy.nonzero", "numpy.append", "numpy.diff", "numpy.array", "matplotlib.ticker.NullFormatter", "numpy.mean", "matplotlib.pyplot.subplots_adjust", "numpy.log10", "os.path.split", "matplotlib.pyplot.subplots", "logging.getLogger" ]
[((268, 287), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (285, 287), False, 'import logging\n'), ((14995, 15048), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Plot match sfh"""'}), "(description='Plot match sfh')\n", (15018, 15048), False, 'import argparse\n'), ((373, 386), 'numpy.sum', 'np.sum', (['(x * x)'], {}), '(x * x)\n', (379, 386), True, 'import numpy as np\n'), ((887, 910), 'os.path.split', 'os.path.split', (['filename'], {}), '(filename)\n', (900, 910), False, 'import os\n'), ((5345, 5398), 'numpy.append', 'np.append', (["self.data['lagei']", "self.data['lagef'][-1]"], {}), "(self.data['lagei'], self.data['lagef'][-1])\n", (5354, 5398), True, 'import numpy as np\n'), ((8162, 8212), 'numpy.append', 'np.append', (['age', "(10 ** (self.data['lagef'][-1] - 9))"], {}), "(age, 10 ** (self.data['lagef'][-1] - 9))\n", (8171, 8212), True, 'import numpy as np\n'), ((8228, 8246), 'numpy.append', 'np.append', (['csfh', '(0)'], {}), '(csfh, 0)\n', (8237, 8246), True, 'import numpy as np\n'), ((8267, 8290), 'numpy.append', 'np.append', (['csfh_errm', '(0)'], {}), '(csfh_errm, 0)\n', (8276, 8290), True, 'import numpy as np\n'), ((8311, 8334), 'numpy.append', 'np.append', (['csfh_errp', '(0)'], {}), '(csfh_errp, 0)\n', (8320, 8334), True, 'import numpy as np\n'), ((9456, 9487), 'numpy.sum', 'np.sum', (['(self.data.sfr * agebins)'], {}), '(self.data.sfr * agebins)\n', (9462, 9487), True, 'import numpy as np\n'), ((9635, 9655), 'numpy.sum', 'np.sum', (['(fracsf * feh)'], {}), '(fracsf * feh)\n', (9641, 9655), True, 'import numpy as np\n'), ((11125, 11165), 'numpy.nonzero', 'np.nonzero', (['(self.data.mh[:iyng + 1] != 0)'], {}), '(self.data.mh[:iyng + 1] != 0)\n', (11135, 11165), True, 'import numpy as np\n'), ((11183, 11223), 'numpy.nonzero', 'np.nonzero', (['(self.data.mh[:iint + 1] != 0)'], {}), '(self.data.mh[:iint + 1] != 0)\n', (11193, 11223), True, 'import numpy as np\n'), ((13096, 13123), 'numpy.abs', 'np.abs', (['(age_arr[idx] - lage)'], {}), '(age_arr[idx] - lage)\n', (13102, 13123), True, 'import numpy as np\n'), ((13834, 13865), 'numpy.sum', 'np.sum', (['(self.data.sfr * agebins)'], {}), '(self.data.sfr * agebins)\n', (13840, 13865), True, 'import numpy as np\n'), ((14515, 14536), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)'}), '(nrows=2)\n', (14527, 14536), True, 'import matplotlib.pyplot as plt\n'), ((14686, 14717), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.1)'}), '(hspace=0.1)\n', (14705, 14717), True, 'import matplotlib.pyplot as plt\n'), ((14736, 14776), 'os.path.join', 'os.path.join', (['self.base', '(self.name + EXT)'], {}), '(self.base, self.name + EXT)\n', (14748, 14776), False, 'import os\n'), ((14827, 14847), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figname'], {}), '(figname)\n', (14838, 14847), True, 'import matplotlib.pyplot as plt\n'), ((14856, 14867), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (14865, 14867), True, 'import matplotlib.pyplot as plt\n'), ((2164, 2176), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2172, 2176), True, 'import numpy as np\n'), ((5834, 5855), 'numpy.nonzero', 'np.nonzero', (['(sfrs == 0)'], {}), '(sfrs == 0)\n', (5844, 5855), True, 'import numpy as np\n'), ((6830, 6844), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6842, 6844), True, 'import matplotlib.pyplot as plt\n'), ((7457, 7485), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (7469, 7485), True, 'import matplotlib.pyplot as plt\n'), ((7498, 7561), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'right': '(0.95)', 'left': '(0.1)', 'bottom': '(0.1)', 'top': '(0.95)'}), '(right=0.95, left=0.1, bottom=0.1, top=0.95)\n', (7517, 7561), True, 'import matplotlib.pyplot as plt\n'), ((8886, 8918), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0)', 'frameon': '(False)'}), '(loc=0, frameon=False)\n', (8896, 8918), True, 'import matplotlib.pyplot as plt\n'), ((9247, 9267), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outfile'], {}), '(outfile)\n', (9258, 9267), True, 'import matplotlib.pyplot as plt\n'), ((12631, 12645), 'numpy.log10', 'np.log10', (['lage'], {}), '(lage)\n', (12639, 12645), True, 'import numpy as np\n'), ((12974, 12990), 'numpy.diff', 'np.diff', (['age_arr'], {}), '(age_arr)\n', (12981, 12990), True, 'import numpy as np\n'), ((13057, 13079), 'numpy.abs', 'np.abs', (['(age_arr - lage)'], {}), '(age_arr - lage)\n', (13063, 13079), True, 'import numpy as np\n'), ((14013, 14066), 'numpy.sum', 'np.sum', (['(self.data.sfr[idxi:idxf] * agebins[idxi:idxf])'], {}), '(self.data.sfr[idxi:idxf] * agebins[idxi:idxf])\n', (14019, 14066), True, 'import numpy as np\n'), ((14661, 14676), 'matplotlib.ticker.NullFormatter', 'NullFormatter', ([], {}), '()\n', (14674, 14676), False, 'from matplotlib.ticker import NullFormatter\n'), ((3542, 3563), 'numpy.diff', 'np.diff', (['self.data.mh'], {}), '(self.data.mh)\n', (3549, 3563), True, 'import numpy as np\n'), ((5430, 5445), 'numpy.diff', 'np.diff', (['rlages'], {}), '(rlages)\n', (5437, 5445), True, 'import numpy as np\n'), ((6102, 6124), 'numpy.nonzero', 'np.nonzero', (['(rsfrs == 0)'], {}), '(rsfrs == 0)\n', (6112, 6124), True, 'import numpy as np\n'), ((13636, 13660), 'numpy.diff', 'np.diff', (['self.data.lagei'], {}), '(self.data.lagei)\n', (13643, 13660), True, 'import numpy as np\n'), ((9194, 9228), 'os.path.join', 'os.path.join', (['self.base', 'self.name'], {}), '(self.base, self.name)\n', (9206, 9228), False, 'import os\n'), ((6220, 6237), 'numpy.sum', 'np.sum', (['val_merrs'], {}), '(val_merrs)\n', (6226, 6237), True, 'import numpy as np\n'), ((6246, 6263), 'numpy.sum', 'np.sum', (['val_perrs'], {}), '(val_perrs)\n', (6252, 6263), True, 'import numpy as np\n'), ((11305, 11333), 'numpy.mean', 'np.mean', (['self.data.mh[iyngs]'], {}), '(self.data.mh[iyngs])\n', (11312, 11333), True, 'import numpy as np\n'), ((11374, 11402), 'numpy.mean', 'np.mean', (['self.data.mh[iints]'], {}), '(self.data.mh[iints])\n', (11381, 11402), True, 'import numpy as np\n'), ((3628, 3649), 'numpy.diff', 'np.diff', (['self.data.mh'], {}), '(self.data.mh)\n', (3635, 3649), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 18 10:12:42 2020 @author: shlomi """ from PW_paths import work_yuval ims_path = work_yuval / 'IMS_T' gis_path = work_yuval / 'gis' awd_path = work_yuval/'AW3D30' def interpolate_var_ds_at_multiple_dts(var_ds, geo_var_df, predict_df, time_dim='time', dem_path=awd_path, H_constant=None): import pandas as pd times_df = var_ds[time_dim].to_pandas() df = pd.DataFrame() for dt in times_df: print('interpolating on datetime: {}.'.format(dt)) hdf = slice_var_ds_at_dt_and_convert_to_dataframe(var_ds, geo_var_df, dt=dt.strftime('%Y-%m-%dT%H:%M:%S')) # if H is None: # # estimate scale height H by using all stations' data: if H_constant is not None: H = H_constant else: H = get_var_lapse_rate(hdf, model='LR', plot=False) print('scale height is: {} meters.'.format(H)) new_hdf = apply_lapse_rate_change(hdf, H) df_inter = interpolate_at_one_dt(new_hdf, H, predict_df=predict_df, dem_path=dem_path, ppd=50) df_inter['datetime'] = dt df_inter['H'] = H df = df.append(df_inter) df['name'] = df.index df['datetime'] = pd.to_datetime(df['datetime']) df.set_index('datetime', inplace=True) df.index.name = 'time' return df def slice_var_ds_at_dt_and_convert_to_dataframe(var_ds, df, dt='2018-04-15T22:00:00'): """ slice the var dataset (PWV) with specific datetime and add lat, lon and alt from df Parameters ---------- var_ds : Xarray Dataset containing variable such as PWV vs. time. df : Pandas DataFrame containing lat, lon and alt cols, indexed by var_ds data_vars. dt : datetime string, optional DESCRIPTION. The default is '2018-04-15T22:00:00'. Returns ------- hdf : pandas dataframe sliced var indexed by alt. """ time_dim = list(set(var_ds.dims))[0] var_dt = var_ds.sel({time_dim: dt}).expand_dims(time_dim) hdf = var_dt.to_dataframe().T hdf = hdf.join(df[['lat', 'lon', 'alt']]) hdf = hdf.set_index('alt') hdf = hdf.sort_index().dropna() return hdf def get_pressure_lapse_rate(path=ims_path, model='LR', plot=False): from aux_gps import linear_fit_using_scipy_da_ts import matplotlib.pyplot as plt import xarray as xr from aux_gps import keep_iqr bp = xr.load_dataset(ims_path / 'IMS_BP_israeli_10mins.nc') bps = [keep_iqr(bp[x]) for x in bp] bp = xr.merge(bps) mean_p = bp.mean('time').to_array('alt') mean_p.name = 'mean_pressure' alts = [bp[x].attrs['station_alt'] for x in bp.data_vars] mean_p['alt'] = alts _, results = linear_fit_using_scipy_da_ts(mean_p, model=model, slope_factor=1, not_time=True) slope = results['slope'] inter = results['intercept'] modeled_var = slope * mean_p['alt'] + inter if plot: fig, ax = plt.subplots() modeled_var.plot(ax=ax, color='r') mean_p.plot.line(linewidth=0., marker='o', ax=ax, color='b') # lr = 1000 * abs(slope) textstr = 'Pressure lapse rate: {:.1f} hPa/km'.format(1000 * slope) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords ax.text(0.5, 0.95, textstr, transform=ax.transAxes, fontsize=12, verticalalignment='top', bbox=props) ax.set_xlabel('Height a.s.l [m]') ax.set_ylabel('Mean Pressure [hPa]') return results def get_var_lapse_rate(hdf, model='LR', plot=False): from aux_gps import linear_fit_using_scipy_da_ts import matplotlib.pyplot as plt import numpy as np hda = hdf.iloc[:, 0].to_xarray() dt = hda.name.strftime('%Y-%m-%d %H:%M') hda.name = '' log_hda = np.log(hda) # assume pwv = pwv0*exp(-h/H) # H is the water vapor scale height _, results = linear_fit_using_scipy_da_ts(log_hda, model=model, slope_factor=1, not_time=True) H = -1.0 / results['slope'] a0 = np.exp(results['intercept']) modeled_var = a0 * np.exp(-hda['alt'] / H) if plot: fig, ax = plt.subplots() modeled_var.plot(ax=ax, color='r') hda.plot.line(linewidth=0., marker='o', ax=ax, color='b') # lr = 1000 * abs(slope) ax.set_title(dt) textstr = 'WV scale height: {:.1f} m'.format(H) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords ax.text(0.5, 0.95, textstr, transform=ax.transAxes, fontsize=12, verticalalignment='top', bbox=props) ax.set_xlabel('Height a.s.l [m]') ax.set_ylabel('PWV [mm]') return H def apply_lapse_rate_change(hdf, H): import numpy as np # make sure lapse rate is negative: assert H > 0 new_hdf = hdf.copy() new_hdf.iloc[:, 0] = hdf.iloc[:, 0] * np.exp(hdf.index / H) return new_hdf def interpolate_at_one_dt(new_hdf, H, predict_df=None, dem_path=awd_path, ppd=50): from aux_gps import coarse_dem import numpy as np from pykrige.rk import Krige """ interpolate to Israel grid the values in new_hdf (already removed the lapse rate) with ppd being the map resolution. if predict_df is not None, interpolate only to df's locations and altitudes. predict_df should have lat, lon and alt columns""" # create mesh and load DEM: da = create_lat_lon_mesh(points_per_degree=ppd) # 500? # populate the empty mesh grid with stations data: for i, row in new_hdf.iterrows(): lat = da.sel(lat=row['lat'], method='nearest').lat.values lon = da.sel(lon=row['lon'], method='nearest').lon.values da.loc[{'lat': lat, 'lon': lon}] = row.iloc[0] c = np.linspace(min(da.lat.values), max(da.lat.values), da.shape[0]) r = np.linspace(min(da.lon.values), max(da.lon.values), da.shape[1]) rr, cc = np.meshgrid(r, c) vals = ~np.isnan(da.values) X = np.column_stack([rr[vals], cc[vals]]) rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()]) # y = da_scaled.values[vals] y = da.values[vals] model = Krige(method='ordinary', variogram_model='spherical', verbose=True) model.fit(X, y) if predict_df is None: # i.e., interpolate to all map coords: interpolated = model.predict(rr_cc_as_cols).reshape(da.values.shape) da_inter = da.copy(data=interpolated) awd = coarse_dem(da, dem_path=dem_path) assert H > 0 da_inter *= np.exp(-1.0 * awd / H) return da_inter else: predict_lats = np.linspace(predict_df.lat.min( ), predict_df.lat.max(), predict_df.lat.values.shape[0]) predict_lons = np.linspace(predict_df.lon.min( ), predict_df.lon.max(), predict_df.lon.values.shape[0]) predict_lons_lats_as_cols = np.column_stack( [predict_lons, predict_lats]) interpolated = model.predict( predict_lons_lats_as_cols).reshape((predict_lats.shape)) df_inter = predict_df.copy() df_inter['interpolated'] = interpolated # fix for lapse rate: assert H > 0 df_inter['interpolated_lr_fixed'] = df_inter['interpolated'] * np.exp(-1.0 * df_inter['alt'] / H) return df_inter def create_lat_lon_mesh(lats=[29.5, 33.5], lons=[34, 36], points_per_degree=1000): import xarray as xr import numpy as np lat = np.arange(lats[0], lats[1], 1.0 / points_per_degree) lon = np.arange(lons[0], lons[1], 1.0 / points_per_degree) nans = np.nan * np.ones((len(lat), len(lon))) da = xr.DataArray(nans, dims=['lat', 'lon']) da['lat'] = lat da['lon'] = lon return da def Interpolating_models_ims(time='2013-10-19T22:00:00', var='TD', plot=True, gis_path=gis_path, method='okrig', dem_path=work_yuval / 'AW3D30', lapse_rate=5., cv=None, rms=None, gridsearch=False): """main 2d_interpolation from stations to map""" # cv usage is {'kfold': 5} or {'rkfold': [2, 3]} # TODO: try 1d modeling first, like T=f(lat) from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.neighbors import KNeighborsRegressor from pykrige.rk import Krige import numpy as np from sklearn.svm import SVR from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from scipy.spatial import Delaunay from scipy.interpolate import griddata from sklearn.metrics import mean_squared_error from aux_gps import coarse_dem import seaborn as sns import matplotlib.pyplot as plt import pyproj from sklearn.utils.estimator_checks import check_estimator from pykrige.compat import GridSearchCV lla = pyproj.Proj(proj='latlong', ellps='WGS84', datum='WGS84') ecef = pyproj.Proj(proj='geocent', ellps='WGS84', datum='WGS84') def parse_cv(cv): from sklearn.model_selection import KFold from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import LeaveOneOut """input:cv number or string""" # check for integer: if 'kfold' in cv.keys(): n_splits = cv['kfold'] print('CV is KFold with n_splits={}'.format(n_splits)) return KFold(n_splits=n_splits) if 'rkfold' in cv.keys(): n_splits = cv['rkfold'][0] n_repeats = cv['rkfold'][1] print('CV is ReapetedKFold with n_splits={},'.format(n_splits) + ' n_repeates={}'.format(n_repeats)) return RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=42) if 'loo' in cv.keys(): return LeaveOneOut() # from aux_gps import scale_xr da = create_lat_lon_mesh(points_per_degree=250) # 500? awd = coarse_dem(da) awd = awd.values geo_snap = geo_pandas_time_snapshot(var=var, datetime=time, plot=False) if var == 'TD': [a, b] = np.polyfit(geo_snap['alt'].values, geo_snap['TD'].values, 1) if lapse_rate == 'auto': lapse_rate = np.abs(a) * 1000 fig, ax_lapse = plt.subplots(figsize=(10, 6)) sns.regplot(data=geo_snap, x='alt', y='TD', color='r', scatter_kws={'color': 'b'}, ax=ax_lapse) suptitle = time.replace('T', ' ') ax_lapse.set_xlabel('Altitude [m]') ax_lapse.set_ylabel('Temperature [degC]') ax_lapse.text(0.5, 0.95, 'Lapse_rate: {:.2f} degC/km'.format(lapse_rate), horizontalalignment='center', verticalalignment='center', transform=ax_lapse.transAxes, fontsize=12, color='k', fontweight='bold') ax_lapse.grid() ax_lapse.set_title(suptitle, fontsize=14, fontweight='bold') # fig.suptitle(suptitle, fontsize=14, fontweight='bold') alts = [] for i, row in geo_snap.iterrows(): lat = da.sel(lat=row['lat'], method='nearest').lat.values lon = da.sel(lon=row['lon'], method='nearest').lon.values alt = row['alt'] if lapse_rate is not None and var == 'TD': da.loc[{'lat': lat, 'lon': lon}] = row[var] + \ lapse_rate * alt / 1000.0 alts.append(alt) elif lapse_rate is None or var != 'TD': da.loc[{'lat': lat, 'lon': lon}] = row[var] alts.append(alt) # da_scaled = scale_xr(da) c = np.linspace(min(da.lat.values), max(da.lat.values), da.shape[0]) r = np.linspace(min(da.lon.values), max(da.lon.values), da.shape[1]) rr, cc = np.meshgrid(r, c) vals = ~np.isnan(da.values) if lapse_rate is None: Xrr, Ycc, Z = pyproj.transform( lla, ecef, rr[vals], cc[vals], np.array(alts), radians=False) X = np.column_stack([Xrr, Ycc, Z]) XX, YY, ZZ = pyproj.transform(lla, ecef, rr, cc, awd.values, radians=False) rr_cc_as_cols = np.column_stack([XX.flatten(), YY.flatten(), ZZ.flatten()]) else: X = np.column_stack([rr[vals], cc[vals]]) rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()]) # y = da_scaled.values[vals] y = da.values[vals] if method == 'gp-rbf': from sklearn.gaussian_process.kernels import RBF from sklearn.gaussian_process.kernels import WhiteKernel kernel = 1.0 * RBF(length_scale=0.25, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=0.01, noise_level_bounds=(1e-10, 1e+1)) # kernel = None model = GaussianProcessRegressor(alpha=0.0, kernel=kernel, n_restarts_optimizer=5, random_state=42, normalize_y=True) elif method == 'gp-qr': from sklearn.gaussian_process.kernels import RationalQuadratic from sklearn.gaussian_process.kernels import WhiteKernel kernel = RationalQuadratic(length_scale=100.0) \ + WhiteKernel(noise_level=0.01, noise_level_bounds=(1e-10, 1e+1)) model = GaussianProcessRegressor(alpha=0.0, kernel=kernel, n_restarts_optimizer=5, random_state=42, normalize_y=True) elif method == 'knn': model = KNeighborsRegressor(n_neighbors=5, weights='distance') elif method == 'svr': model = SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) elif method == 'okrig': model = Krige(method='ordinary', variogram_model='spherical', verbose=True) elif method == 'ukrig': model = Krige(method='universal', variogram_model='linear', verbose=True) # elif method == 'okrig3d': # # don't bother - MemoryError... # model = OrdinaryKriging3D(rr[vals], cc[vals], np.array(alts), # da.values[vals], variogram_model='linear', # verbose=True) # awd = coarse_dem(da) # interpolated, ss = model.execute('grid', r, c, awd['data'].values) # elif method == 'rkrig': # # est = LinearRegression() # est = RandomForestRegressor() # model = RegressionKriging(regression_model=est, n_closest_points=5, # verbose=True) # p = np.array(alts).reshape(-1, 1) # model.fit(p, X, y) # P = awd.flatten().reshape(-1, 1) # interpolated = model.predict(P, rr_cc_as_cols).reshape(da.values.shape) # try: # u = check_estimator(model) # except TypeError: # u = False # pass if cv is not None and not gridsearch: # and u is None): # from sklearn.model_selection import cross_validate from sklearn import metrics cv = parse_cv(cv) ytests = [] ypreds = [] for train_idx, test_idx in cv.split(X): X_train, X_test = X[train_idx], X[test_idx] # requires arrays y_train, y_test = y[train_idx], y[test_idx] model.fit(X_train, y_train) y_pred = model.predict(X_test) # there is only one y-test and y-pred per iteration over the loo.split, # so to get a proper graph, we append them to respective lists. ytests += list(y_test) ypreds += list(y_pred) true_vals = np.array(ytests) predicted = np.array(ypreds) r2 = metrics.r2_score(ytests, ypreds) ms_error = metrics.mean_squared_error(ytests, ypreds) print("R^2: {:.5f}%, MSE: {:.5f}".format(r2*100, ms_error)) if gridsearch: cv = parse_cv(cv) param_dict = {"method": ["ordinary", "universal"], "variogram_model": ["linear", "power", "gaussian", "spherical"], # "nlags": [4, 6, 8], # "weight": [True, False] } estimator = GridSearchCV(Krige(), param_dict, verbose=True, cv=cv, scoring='neg_mean_absolute_error', return_train_score=True, n_jobs=1) estimator.fit(X, y) if hasattr(estimator, 'best_score_'): print('best_score = {:.3f}'.format(estimator.best_score_)) print('best_params = ', estimator.best_params_) return estimator # if (cv is not None and not u): # from sklearn import metrics # cv = parse_cv(cv) # ytests = [] # ypreds = [] # for train_idx, test_idx in cv.split(X): # X_train, X_test = X[train_idx], X[test_idx] # requires arrays # y_train, y_test = y[train_idx], y[test_idx] ## model = UniversalKriging(X_train[:, 0], X_train[:, 1], y_train, ## variogram_model='linear', verbose=False, ## enable_plotting=False) # model.X_ORIG = X_train[:, 0] # model.X_ADJUSTED = model.X_ORIG # model.Y_ORIG = X_train[:, 1] # model.Y_ADJUSTED = model.Y_ORIG # model.Z = y_train # y_pred, ss = model.execute('points', X_test[0, 0], # X_test[0, 1]) # # there is only one y-test and y-pred per iteration over the loo.split, # # so to get a proper graph, we append them to respective lists. # ytests += list(y_test) cmap = plt.get_cmap('spring', 10) Q = ax.quiver(isr['X'], isr['Y'], isr['U'], isr['V'], isr['cm_per_year'], cmap=cmap) fig.colorbar(Q, extend='max') # ypreds += list(y_pred) # true_vals = np.array(ytests) # predicted = np.array(ypreds) # r2 = metrics.r2_score(ytests, ypreds) # ms_error = metrics.mean_squared_error(ytests, ypreds) # print("R^2: {:.5f}%, MSE: {:.5f}".format(r2*100, ms_error)) # cv_results = cross_validate(gp, X, y, cv=cv, scoring='mean_squared_error', # return_train_score=True, n_jobs=-1) # test = xr.DataArray(cv_results['test_score'], dims=['kfold']) # train = xr.DataArray(cv_results['train_score'], dims=['kfold']) # train.name = 'train' # cds = test.to_dataset(name='test') # cds['train'] = train # cds['kfold'] = np.arange(len(cv_results['test_score'])) + 1 # cds['mean_train'] = cds.train.mean('kfold') # cds['mean_test'] = cds.test.mean('kfold') # interpolated=griddata(X, y, (rr, cc), method='nearest') model.fit(X, y) interpolated = model.predict(rr_cc_as_cols).reshape(da.values.shape) da_inter = da.copy(data=interpolated) if lapse_rate is not None and var == 'TD': da_inter -= lapse_rate * awd / 1000.0 if (rms is not None and cv is None): # or (rms is not None and not u): predicted = [] true_vals = [] for i, row in geo_snap.iterrows(): lat = da.sel(lat=row['lat'], method='nearest').lat.values lon = da.sel(lon=row['lon'], method='nearest').lon.values pred = da_inter.loc[{'lat': lat, 'lon': lon}].values.item() true = row[var] predicted.append(pred) true_vals.append(true) predicted = np.array(predicted) true_vals = np.array(true_vals) ms_error = mean_squared_error(true_vals, predicted) print("MSE: {:.5f}".format(ms_error)) if plot: import salem from salem import DataLevels, Map import cartopy.crs as ccrs # import cartopy.io.shapereader as shpreader import matplotlib.pyplot as plt # fname = gis_path / 'ne_10m_admin_0_sovereignty.shp' # fname = gis_path / 'gadm36_ISR_0.shp' # ax = plt.axes(projection=ccrs.PlateCarree()) f, ax = plt.subplots(figsize=(6, 10)) # shdf = salem.read_shapefile(salem.get_demo_file('world_borders.shp')) shdf = salem.read_shapefile(gis_path / 'Israel_and_Yosh.shp') # shdf = shdf.loc[shdf['CNTRY_NAME'] == 'Israel'] # remove other countries shdf.crs = {'init': 'epsg:4326'} dsr = da_inter.salem.roi(shape=shdf) grid = dsr.salem.grid grid = da_inter.salem.grid sm = Map(grid) # sm.set_shapefile(gis_path / 'Israel_and_Yosh.shp') # sm = dsr.salem.quick_map(ax=ax) # sm2 = salem.Map(grid, factor=1) # sm2.set_shapefile(gis_path/'gis_osm_water_a_free_1.shp', # edgecolor='k') sm.set_data(dsr) # sm.set_nlevels(7) # sm.visualize(ax=ax, title='Israel {} interpolated temperature from IMS'.format(method), # cbar_title='degC') sm.set_shapefile(gis_path/'gis_osm_water_a_free_1.shp', edgecolor='k') # , facecolor='aqua') # sm.set_topography(awd.values, crs=awd.crs) # sm.set_rgb(crs=shdf.crs, natural_earth='hr') # ad # lakes = salem.read_shapefile(gis_path/'gis_osm_water_a_free_1.shp') sm.set_cmap(cm='rainbow') sm.visualize(ax=ax, title='Israel {} interpolated temperature from IMS'.format(method), cbar_title='degC') dl = DataLevels(geo_snap[var], levels=sm.levels) dl.set_cmap(sm.cmap) x, y = sm.grid.transform(geo_snap.lon.values, geo_snap.lat.values) ax.scatter(x, y, color=dl.to_rgb(), s=20, edgecolors='k', linewidths=0.5) suptitle = time.replace('T', ' ') f.suptitle(suptitle, fontsize=14, fontweight='bold') if (rms is not None or cv is not None) and (not gridsearch): import seaborn as sns f, ax = plt.subplots(1, 2, figsize=(12, 6)) sns.scatterplot(x=true_vals, y=predicted, ax=ax[0], marker='.', s=100) resid = predicted - true_vals sns.distplot(resid, bins=5, color='c', label='residuals', ax=ax[1]) rmean = np.mean(resid) rstd = np.std(resid) rmedian = np.median(resid) rmse = np.sqrt(mean_squared_error(true_vals, predicted)) plt.axvline(rmean, color='r', linestyle='dashed', linewidth=1) _, max_ = plt.ylim() plt.text(rmean + rmean / 10, max_ - max_ / 10, 'Mean: {:.2f}, RMSE: {:.2f}'.format(rmean, rmse)) f.tight_layout() # lakes.plot(ax=ax, color='b', edgecolor='k') # lake_borders = gpd.overlay(countries, capitals, how='difference') # adm1_shapes = list(shpreader.Reader(fname).geometries()) # ax = plt.axes(projection=ccrs.PlateCarree()) # ax.coastlines(resolution='10m') # ax.add_geometries(adm1_shapes, ccrs.PlateCarree(), # edgecolor='black', facecolor='gray', alpha=0.5) # da_inter.plot.pcolormesh('lon', 'lat', ax=ax) #geo_snap.plot(ax=ax, column=var, cmap='viridis', edgecolor='black', # legend=False) return da_inter
[ "numpy.abs", "numpy.polyfit", "sklearn.metrics.r2_score", "numpy.isnan", "seaborn.regplot", "numpy.mean", "numpy.arange", "numpy.exp", "aux_gps.coarse_dem", "salem.read_shapefile", "sklearn.model_selection.RepeatedKFold", "pandas.DataFrame", "matplotlib.pyplot.axvline", "numpy.meshgrid", "numpy.std", "xarray.merge", "matplotlib.pyplot.subplots", "sklearn.gaussian_process.GaussianProcessRegressor", "sklearn.metrics.mean_squared_error", "salem.Map", "aux_gps.keep_iqr", "seaborn.scatterplot", "numpy.median", "matplotlib.pyplot.ylim", "sklearn.gaussian_process.kernels.RBF", "sklearn.gaussian_process.kernels.RationalQuadratic", "pandas.to_datetime", "aux_gps.linear_fit_using_scipy_da_ts", "sklearn.gaussian_process.kernels.WhiteKernel", "sklearn.svm.SVR", "sklearn.neighbors.KNeighborsRegressor", "numpy.log", "sklearn.model_selection.KFold", "sklearn.model_selection.LeaveOneOut", "pykrige.rk.Krige", "pyproj.Proj", "xarray.DataArray", "numpy.array", "numpy.column_stack", "seaborn.distplot", "salem.DataLevels", "pyproj.transform", "xarray.load_dataset" ]
[((515, 529), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (527, 529), True, 'import pandas as pd\n'), ((1408, 1438), 'pandas.to_datetime', 'pd.to_datetime', (["df['datetime']"], {}), "(df['datetime'])\n", (1422, 1438), True, 'import pandas as pd\n'), ((2602, 2656), 'xarray.load_dataset', 'xr.load_dataset', (["(ims_path / 'IMS_BP_israeli_10mins.nc')"], {}), "(ims_path / 'IMS_BP_israeli_10mins.nc')\n", (2617, 2656), True, 'import xarray as xr\n'), ((2706, 2719), 'xarray.merge', 'xr.merge', (['bps'], {}), '(bps)\n', (2714, 2719), True, 'import xarray as xr\n'), ((2903, 2988), 'aux_gps.linear_fit_using_scipy_da_ts', 'linear_fit_using_scipy_da_ts', (['mean_p'], {'model': 'model', 'slope_factor': '(1)', 'not_time': '(True)'}), '(mean_p, model=model, slope_factor=1, not_time=True\n )\n', (2931, 2988), False, 'from aux_gps import linear_fit_using_scipy_da_ts\n'), ((3999, 4010), 'numpy.log', 'np.log', (['hda'], {}), '(hda)\n', (4005, 4010), True, 'import numpy as np\n'), ((4102, 4188), 'aux_gps.linear_fit_using_scipy_da_ts', 'linear_fit_using_scipy_da_ts', (['log_hda'], {'model': 'model', 'slope_factor': '(1)', 'not_time': '(True)'}), '(log_hda, model=model, slope_factor=1, not_time\n =True)\n', (4130, 4188), False, 'from aux_gps import linear_fit_using_scipy_da_ts\n'), ((4225, 4253), 'numpy.exp', 'np.exp', (["results['intercept']"], {}), "(results['intercept'])\n", (4231, 4253), True, 'import numpy as np\n'), ((6132, 6149), 'numpy.meshgrid', 'np.meshgrid', (['r', 'c'], {}), '(r, c)\n', (6143, 6149), True, 'import numpy as np\n'), ((6190, 6227), 'numpy.column_stack', 'np.column_stack', (['[rr[vals], cc[vals]]'], {}), '([rr[vals], cc[vals]])\n', (6205, 6227), True, 'import numpy as np\n'), ((6363, 6430), 'pykrige.rk.Krige', 'Krige', ([], {'method': '"""ordinary"""', 'variogram_model': '"""spherical"""', 'verbose': '(True)'}), "(method='ordinary', variogram_model='spherical', verbose=True)\n", (6368, 6430), False, 'from pykrige.rk import Krige\n'), ((7682, 7734), 'numpy.arange', 'np.arange', (['lats[0]', 'lats[1]', '(1.0 / points_per_degree)'], {}), '(lats[0], lats[1], 1.0 / points_per_degree)\n', (7691, 7734), True, 'import numpy as np\n'), ((7745, 7797), 'numpy.arange', 'np.arange', (['lons[0]', 'lons[1]', '(1.0 / points_per_degree)'], {}), '(lons[0], lons[1], 1.0 / points_per_degree)\n', (7754, 7797), True, 'import numpy as np\n'), ((7857, 7896), 'xarray.DataArray', 'xr.DataArray', (['nans'], {'dims': "['lat', 'lon']"}), "(nans, dims=['lat', 'lon'])\n", (7869, 7896), True, 'import xarray as xr\n'), ((9074, 9131), 'pyproj.Proj', 'pyproj.Proj', ([], {'proj': '"""latlong"""', 'ellps': '"""WGS84"""', 'datum': '"""WGS84"""'}), "(proj='latlong', ellps='WGS84', datum='WGS84')\n", (9085, 9131), False, 'import pyproj\n'), ((9143, 9200), 'pyproj.Proj', 'pyproj.Proj', ([], {'proj': '"""geocent"""', 'ellps': '"""WGS84"""', 'datum': '"""WGS84"""'}), "(proj='geocent', ellps='WGS84', datum='WGS84')\n", (9154, 9200), False, 'import pyproj\n'), ((10172, 10186), 'aux_gps.coarse_dem', 'coarse_dem', (['da'], {}), '(da)\n', (10182, 10186), False, 'from aux_gps import coarse_dem\n'), ((11919, 11936), 'numpy.meshgrid', 'np.meshgrid', (['r', 'c'], {}), '(r, c)\n', (11930, 11936), True, 'import numpy as np\n'), ((2668, 2683), 'aux_gps.keep_iqr', 'keep_iqr', (['bp[x]'], {}), '(bp[x])\n', (2676, 2683), False, 'from aux_gps import keep_iqr\n'), ((3125, 3139), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3137, 3139), True, 'import matplotlib.pyplot as plt\n'), ((4277, 4300), 'numpy.exp', 'np.exp', (["(-hda['alt'] / H)"], {}), "(-hda['alt'] / H)\n", (4283, 4300), True, 'import numpy as np\n'), ((4332, 4346), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4344, 4346), True, 'import matplotlib.pyplot as plt\n'), ((5096, 5117), 'numpy.exp', 'np.exp', (['(hdf.index / H)'], {}), '(hdf.index / H)\n', (5102, 5117), True, 'import numpy as np\n'), ((6162, 6181), 'numpy.isnan', 'np.isnan', (['da.values'], {}), '(da.values)\n', (6170, 6181), True, 'import numpy as np\n'), ((6680, 6713), 'aux_gps.coarse_dem', 'coarse_dem', (['da'], {'dem_path': 'dem_path'}), '(da, dem_path=dem_path)\n', (6690, 6713), False, 'from aux_gps import coarse_dem\n'), ((6755, 6777), 'numpy.exp', 'np.exp', (['(-1.0 * awd / H)'], {}), '(-1.0 * awd / H)\n', (6761, 6777), True, 'import numpy as np\n'), ((7088, 7133), 'numpy.column_stack', 'np.column_stack', (['[predict_lons, predict_lats]'], {}), '([predict_lons, predict_lats])\n', (7103, 7133), True, 'import numpy as np\n'), ((10321, 10381), 'numpy.polyfit', 'np.polyfit', (["geo_snap['alt'].values", "geo_snap['TD'].values", '(1)'], {}), "(geo_snap['alt'].values, geo_snap['TD'].values, 1)\n", (10331, 10381), True, 'import numpy as np\n'), ((10481, 10510), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (10493, 10510), True, 'import matplotlib.pyplot as plt\n'), ((10519, 10618), 'seaborn.regplot', 'sns.regplot', ([], {'data': 'geo_snap', 'x': '"""alt"""', 'y': '"""TD"""', 'color': '"""r"""', 'scatter_kws': "{'color': 'b'}", 'ax': 'ax_lapse'}), "(data=geo_snap, x='alt', y='TD', color='r', scatter_kws={'color':\n 'b'}, ax=ax_lapse)\n", (10530, 10618), True, 'import seaborn as sns\n'), ((11949, 11968), 'numpy.isnan', 'np.isnan', (['da.values'], {}), '(da.values)\n', (11957, 11968), True, 'import numpy as np\n'), ((12126, 12156), 'numpy.column_stack', 'np.column_stack', (['[Xrr, Ycc, Z]'], {}), '([Xrr, Ycc, Z])\n', (12141, 12156), True, 'import numpy as np\n'), ((12178, 12240), 'pyproj.transform', 'pyproj.transform', (['lla', 'ecef', 'rr', 'cc', 'awd.values'], {'radians': '(False)'}), '(lla, ecef, rr, cc, awd.values, radians=False)\n', (12194, 12240), False, 'import pyproj\n'), ((12385, 12422), 'numpy.column_stack', 'np.column_stack', (['[rr[vals], cc[vals]]'], {}), '([rr[vals], cc[vals]])\n', (12400, 12422), True, 'import numpy as np\n'), ((12897, 13010), 'sklearn.gaussian_process.GaussianProcessRegressor', 'GaussianProcessRegressor', ([], {'alpha': '(0.0)', 'kernel': 'kernel', 'n_restarts_optimizer': '(5)', 'random_state': '(42)', 'normalize_y': '(True)'}), '(alpha=0.0, kernel=kernel, n_restarts_optimizer=5,\n random_state=42, normalize_y=True)\n', (12921, 13010), False, 'from sklearn.gaussian_process import GaussianProcessRegressor\n'), ((15835, 15851), 'numpy.array', 'np.array', (['ytests'], {}), '(ytests)\n', (15843, 15851), True, 'import numpy as np\n'), ((15872, 15888), 'numpy.array', 'np.array', (['ypreds'], {}), '(ypreds)\n', (15880, 15888), True, 'import numpy as np\n'), ((15902, 15934), 'sklearn.metrics.r2_score', 'metrics.r2_score', (['ytests', 'ypreds'], {}), '(ytests, ypreds)\n', (15918, 15934), False, 'from sklearn import metrics\n'), ((15954, 15996), 'sklearn.metrics.mean_squared_error', 'metrics.mean_squared_error', (['ytests', 'ypreds'], {}), '(ytests, ypreds)\n', (15980, 15996), False, 'from sklearn import metrics\n'), ((19777, 19796), 'numpy.array', 'np.array', (['predicted'], {}), '(predicted)\n', (19785, 19796), True, 'import numpy as np\n'), ((19817, 19836), 'numpy.array', 'np.array', (['true_vals'], {}), '(true_vals)\n', (19825, 19836), True, 'import numpy as np\n'), ((19856, 19896), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['true_vals', 'predicted'], {}), '(true_vals, predicted)\n', (19874, 19896), False, 'from sklearn.metrics import mean_squared_error\n'), ((20328, 20357), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(6, 10)'}), '(figsize=(6, 10))\n', (20340, 20357), True, 'import matplotlib.pyplot as plt\n'), ((20453, 20507), 'salem.read_shapefile', 'salem.read_shapefile', (["(gis_path / 'Israel_and_Yosh.shp')"], {}), "(gis_path / 'Israel_and_Yosh.shp')\n", (20473, 20507), False, 'import salem\n'), ((20756, 20765), 'salem.Map', 'Map', (['grid'], {}), '(grid)\n', (20759, 20765), False, 'from salem import DataLevels, Map\n'), ((21712, 21755), 'salem.DataLevels', 'DataLevels', (['geo_snap[var]'], {'levels': 'sm.levels'}), '(geo_snap[var], levels=sm.levels)\n', (21722, 21755), False, 'from salem import DataLevels, Map\n'), ((7461, 7495), 'numpy.exp', 'np.exp', (["(-1.0 * df_inter['alt'] / H)"], {}), "(-1.0 * df_inter['alt'] / H)\n", (7467, 7495), True, 'import numpy as np\n'), ((9611, 9635), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'n_splits'}), '(n_splits=n_splits)\n', (9616, 9635), False, 'from sklearn.model_selection import KFold\n'), ((9899, 9969), 'sklearn.model_selection.RepeatedKFold', 'RepeatedKFold', ([], {'n_splits': 'n_splits', 'n_repeats': 'n_repeats', 'random_state': '(42)'}), '(n_splits=n_splits, n_repeats=n_repeats, random_state=42)\n', (9912, 9969), False, 'from sklearn.model_selection import RepeatedKFold\n'), ((10053, 10066), 'sklearn.model_selection.LeaveOneOut', 'LeaveOneOut', ([], {}), '()\n', (10064, 10066), False, 'from sklearn.model_selection import LeaveOneOut\n'), ((12083, 12097), 'numpy.array', 'np.array', (['alts'], {}), '(alts)\n', (12091, 12097), True, 'import numpy as np\n'), ((12794, 12857), 'sklearn.gaussian_process.kernels.WhiteKernel', 'WhiteKernel', ([], {'noise_level': '(0.01)', 'noise_level_bounds': '(1e-10, 10.0)'}), '(noise_level=0.01, noise_level_bounds=(1e-10, 10.0))\n', (12805, 12857), False, 'from sklearn.gaussian_process.kernels import WhiteKernel\n'), ((13405, 13518), 'sklearn.gaussian_process.GaussianProcessRegressor', 'GaussianProcessRegressor', ([], {'alpha': '(0.0)', 'kernel': 'kernel', 'n_restarts_optimizer': '(5)', 'random_state': '(42)', 'normalize_y': '(True)'}), '(alpha=0.0, kernel=kernel, n_restarts_optimizer=5,\n random_state=42, normalize_y=True)\n', (13429, 13518), False, 'from sklearn.gaussian_process import GaussianProcessRegressor\n'), ((16447, 16454), 'pykrige.rk.Krige', 'Krige', ([], {}), '()\n', (16452, 16454), False, 'from pykrige.rk import Krige\n'), ((22168, 22203), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(12, 6)'}), '(1, 2, figsize=(12, 6))\n', (22180, 22203), True, 'import matplotlib.pyplot as plt\n'), ((22216, 22286), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': 'true_vals', 'y': 'predicted', 'ax': 'ax[0]', 'marker': '"""."""', 's': '(100)'}), "(x=true_vals, y=predicted, ax=ax[0], marker='.', s=100)\n", (22231, 22286), True, 'import seaborn as sns\n'), ((22369, 22436), 'seaborn.distplot', 'sns.distplot', (['resid'], {'bins': '(5)', 'color': '"""c"""', 'label': '"""residuals"""', 'ax': 'ax[1]'}), "(resid, bins=5, color='c', label='residuals', ax=ax[1])\n", (22381, 22436), True, 'import seaborn as sns\n'), ((22482, 22496), 'numpy.mean', 'np.mean', (['resid'], {}), '(resid)\n', (22489, 22496), True, 'import numpy as np\n'), ((22516, 22529), 'numpy.std', 'np.std', (['resid'], {}), '(resid)\n', (22522, 22529), True, 'import numpy as np\n'), ((22552, 22568), 'numpy.median', 'np.median', (['resid'], {}), '(resid)\n', (22561, 22568), True, 'import numpy as np\n'), ((22650, 22712), 'matplotlib.pyplot.axvline', 'plt.axvline', (['rmean'], {'color': '"""r"""', 'linestyle': '"""dashed"""', 'linewidth': '(1)'}), "(rmean, color='r', linestyle='dashed', linewidth=1)\n", (22661, 22712), True, 'import matplotlib.pyplot as plt\n'), ((22735, 22745), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (22743, 22745), True, 'import matplotlib.pyplot as plt\n'), ((10440, 10449), 'numpy.abs', 'np.abs', (['a'], {}), '(a)\n', (10446, 10449), True, 'import numpy as np\n'), ((12722, 12780), 'sklearn.gaussian_process.kernels.RBF', 'RBF', ([], {'length_scale': '(0.25)', 'length_scale_bounds': '(0.01, 1000.0)'}), '(length_scale=0.25, length_scale_bounds=(0.01, 1000.0))\n', (12725, 12780), False, 'from sklearn.gaussian_process.kernels import RBF\n'), ((13271, 13308), 'sklearn.gaussian_process.kernels.RationalQuadratic', 'RationalQuadratic', ([], {'length_scale': '(100.0)'}), '(length_scale=100.0)\n', (13288, 13308), False, 'from sklearn.gaussian_process.kernels import RationalQuadratic\n'), ((13325, 13388), 'sklearn.gaussian_process.kernels.WhiteKernel', 'WhiteKernel', ([], {'noise_level': '(0.01)', 'noise_level_bounds': '(1e-10, 10.0)'}), '(noise_level=0.01, noise_level_bounds=(1e-10, 10.0))\n', (13336, 13388), False, 'from sklearn.gaussian_process.kernels import WhiteKernel\n'), ((13639, 13693), 'sklearn.neighbors.KNeighborsRegressor', 'KNeighborsRegressor', ([], {'n_neighbors': '(5)', 'weights': '"""distance"""'}), "(n_neighbors=5, weights='distance')\n", (13658, 13693), False, 'from sklearn.neighbors import KNeighborsRegressor\n'), ((22596, 22636), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['true_vals', 'predicted'], {}), '(true_vals, predicted)\n', (22614, 22636), False, 'from sklearn.metrics import mean_squared_error\n'), ((13736, 13899), 'sklearn.svm.SVR', 'SVR', ([], {'C': '(1.0)', 'cache_size': '(200)', 'coef0': '(0.0)', 'degree': '(3)', 'epsilon': '(0.1)', 'gamma': '"""auto_deprecated"""', 'kernel': '"""rbf"""', 'max_iter': '(-1)', 'shrinking': '(True)', 'tol': '(0.001)', 'verbose': '(False)'}), "(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=\n 'auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001,\n verbose=False)\n", (13739, 13899), False, 'from sklearn.svm import SVR\n'), ((13975, 14042), 'pykrige.rk.Krige', 'Krige', ([], {'method': '"""ordinary"""', 'variogram_model': '"""spherical"""', 'verbose': '(True)'}), "(method='ordinary', variogram_model='spherical', verbose=True)\n", (13980, 14042), False, 'from pykrige.rk import Krige\n'), ((14109, 14174), 'pykrige.rk.Krige', 'Krige', ([], {'method': '"""universal"""', 'variogram_model': '"""linear"""', 'verbose': '(True)'}), "(method='universal', variogram_model='linear', verbose=True)\n", (14114, 14174), False, 'from pykrige.rk import Krige\n')]