code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import tensorflow as tf import numpy as np def img2mse(x, y): return tf.reduce_mean(tf.square(x - y)) def mse2psnr(x): return -10.*tf.math.log(x)/tf.math.log(10.) def variance_weighted_loss(tof, gt, c=1.): tof = outputs['tof_map'] tof_std = tof[..., -1:] tof = tof[..., :2] gt = gt[..., :2] mse = tf.reduce_mean(tf.square(tof - gt) / (2 * tf.square(tof_std))) return (mse + c * tf.reduce_mean(tf.math.log(tof_std))) def tof_loss_variance(target_tof, outputs, tof_weight): img_loss = variance_weighted_loss(outputs['tof_map'], target_tof) * tof_weight img_loss0 = 0.0 if 'tof_map0' in outputs: img_loss0 = variance_weighted_loss(outputs['tof_map0'], target_tof) * tof_weight return img_loss, img_loss0 def tof_loss_default(target_tof, outputs, tof_weight): img_loss = img2mse(outputs['tof_map'][..., :2], target_tof[..., :2]) * tof_weight img_loss0 = 0.0 if 'tof_map0' in outputs: img_loss0 = img2mse(outputs['tof_map0'][..., :2], target_tof[..., :2]) * tof_weight return img_loss, img_loss0 def color_loss_default(target_color, outputs, color_weight): img_loss = img2mse(outputs['color_map'], target_color) * color_weight img_loss0 = 0.0 if 'color_map0' in outputs: img_loss0 = img2mse(outputs['color_map0'], target_color) * color_weight return img_loss, img_loss0 def disparity_loss_default(target_depth, outputs, disp_weight, near, far): target_disp = 1. / np.clip(target_depth, near, far) target img_loss = img2mse(outputs['disp_map'], target_disp) * disp_weight img_loss0 = 0.0 if 'disp_map0' in outputs: img_loss0 = img2mse(outputs['disp_map0'], target_disp) * disp_weight return img_loss, img_loss0 def depth_loss_default(target_depth, outputs, depth_weight): img_loss = img2mse(outputs['depth_map'], target_depth) * depth_weight img_loss0 = 0.0 if 'depth_map0' in outputs: img_loss0 = img2mse(outputs['depth_map0'], target_depth) * depth_weight return img_loss, img_loss0 def empty_space_loss(outputs): loss = tf.reduce_mean(tf.abs(outputs['acc_map'])) if 'acc_map0' in outputs: loss += tf.reduce_mean(tf.abs(outputs['acc_map0'])) return loss def make_pose_loss(model, key): def loss_fn(_): return tf.reduce_mean(tf.square( tf.abs(model.poses[key][1:] - model.poses[key][:-1]) )) return loss_fn
[ "tensorflow.math.log", "tensorflow.abs", "numpy.clip", "tensorflow.square" ]
[((89, 105), 'tensorflow.square', 'tf.square', (['(x - y)'], {}), '(x - y)\n', (98, 105), True, 'import tensorflow as tf\n'), ((156, 173), 'tensorflow.math.log', 'tf.math.log', (['(10.0)'], {}), '(10.0)\n', (167, 173), True, 'import tensorflow as tf\n'), ((1490, 1522), 'numpy.clip', 'np.clip', (['target_depth', 'near', 'far'], {}), '(target_depth, near, far)\n', (1497, 1522), True, 'import numpy as np\n'), ((2134, 2160), 'tensorflow.abs', 'tf.abs', (["outputs['acc_map']"], {}), "(outputs['acc_map'])\n", (2140, 2160), True, 'import tensorflow as tf\n'), ((141, 155), 'tensorflow.math.log', 'tf.math.log', (['x'], {}), '(x)\n', (152, 155), True, 'import tensorflow as tf\n'), ((345, 364), 'tensorflow.square', 'tf.square', (['(tof - gt)'], {}), '(tof - gt)\n', (354, 364), True, 'import tensorflow as tf\n'), ((2224, 2251), 'tensorflow.abs', 'tf.abs', (["outputs['acc_map0']"], {}), "(outputs['acc_map0'])\n", (2230, 2251), True, 'import tensorflow as tf\n'), ((372, 390), 'tensorflow.square', 'tf.square', (['tof_std'], {}), '(tof_std)\n', (381, 390), True, 'import tensorflow as tf\n'), ((430, 450), 'tensorflow.math.log', 'tf.math.log', (['tof_std'], {}), '(tof_std)\n', (441, 450), True, 'import tensorflow as tf\n'), ((2376, 2428), 'tensorflow.abs', 'tf.abs', (['(model.poses[key][1:] - model.poses[key][:-1])'], {}), '(model.poses[key][1:] - model.poses[key][:-1])\n', (2382, 2428), True, 'import tensorflow as tf\n')]
''' Title: Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders Authors: <NAME>, <NAME>, <NAME> International Conference on Machine Learning (ICML) 2020 Last Updated Date: July 20th 2020 Code Author: <NAME> (<EMAIL>) ''' import logging logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) logging.getLogger().setLevel(logging.INFO) import numpy as np import keras from tqdm import tqdm import tensorflow as tf from tensorflow.contrib.rnn import LSTMCell, DropoutWrapper from tensorflow.python.ops import rnn from utils.predictive_checks_utils import compute_test_statistic_all_timesteps from utils.rnn_utils import AutoregressiveLSTMCell, compute_sequence_length class FactorModel: def __init__(self, params, hyperparams): self.num_treatments = params['num_treatments'] self.num_covariates = params['num_covariates'] self.num_confounders = params['num_confounders'] self.max_sequence_length = params['max_sequence_length'] self.num_epochs = params['num_epochs'] self.rnn_hidden_units = hyperparams['rnn_hidden_units'] self.fc_hidden_units = hyperparams['fc_hidden_units'] self.learning_rate = hyperparams['learning_rate'] self.batch_size = hyperparams['batch_size'] self.rnn_keep_prob = hyperparams['rnn_keep_prob'] tf.compat.v1.reset_default_graph() self.previous_covariates = tf.compat.v1.placeholder(tf.float32, [None, self.max_sequence_length - 1, self.num_covariates]) self.previous_treatments = tf.compat.v1.placeholder(tf.float32, [None, self.max_sequence_length - 1, self.num_treatments]) self.trainable_init_input = tf.compat.v1.get_variable(name='trainable_init_input', shape=[self.batch_size, 1, self.num_covariates + self.num_treatments], trainable=True) self.current_covariates = tf.placeholder(tf.float32, [None, self.max_sequence_length, self.num_covariates]) self.target_treatments = tf.placeholder(tf.float32, [None, self.max_sequence_length, self.num_treatments]) def build_confounders(self, trainable_state=True): previous_covariates_and_treatments = tf.concat([self.previous_covariates, self.previous_treatments], axis=-1) self.rnn_input = tf.concat([self.trainable_init_input, previous_covariates_and_treatments], axis=1) self.sequence_length = compute_sequence_length(self.rnn_input) rnn_cell = DropoutWrapper(LSTMCell(self.rnn_hidden_units, state_is_tuple=False), output_keep_prob=self.rnn_keep_prob, state_keep_prob=self.rnn_keep_prob, variational_recurrent=True, dtype=tf.float32) autoregressive_cell = AutoregressiveLSTMCell(rnn_cell, self.num_confounders) if trainable_state: init_state = tf.get_variable(name='init_cell', shape=[self.batch_size, autoregressive_cell.state_size], trainable=True) else: init_state = autoregressive_cell.zero_state(self.batch_size, dtype=tf.float32) rnn_output, _ = rnn.dynamic_rnn( autoregressive_cell, self.rnn_input, initial_state=init_state, dtype=tf.float32, sequence_length=self.sequence_length) # Flatten to apply same weights to all time steps. rnn_output = tf.reshape(rnn_output, [-1, self.num_confounders]) hidden_confounders = rnn_output covariates = tf.reshape(self.current_covariates, [-1, self.num_covariates]) self.multitask_input = tf.concat([covariates, hidden_confounders], axis=-1) self.hidden_confounders = tf.reshape(hidden_confounders, [-1, self.max_sequence_length, self.num_confounders]) def build_treatment_assignments(self): self.treatment_prob_predictions = dict() for treatment in range(self.num_treatments): treatment_network_layer = tf.layers.dense(self.multitask_input, self.fc_hidden_units, name='treatment_network_%s' % str(treatment), activation=tf.nn.leaky_relu) treatment_output = tf.layers.dense(treatment_network_layer, 1, activation=tf.nn.sigmoid, name='treatment_output_%s' % str(treatment)) self.treatment_prob_predictions[treatment] = treatment_output self.treatment_prob_predictions = tf.concat(list(self.treatment_prob_predictions.values()), axis=-1) return self.treatment_prob_predictions def build_network(self): self.build_confounders() self.treatment_prob_predictions = self.build_treatment_assignments() return self.treatment_prob_predictions def gen_epoch(self, dataset): dataset_size = dataset['previous_covariates'].shape[0] num_batches = int(dataset_size / self.batch_size) + 1 for i in range(num_batches): if (i == num_batches - 1): batch_samples = range(dataset_size - self.batch_size, dataset_size) else: batch_samples = range(i * self.batch_size, (i + 1) * self.batch_size) batch_previous_covariates = dataset['previous_covariates'][batch_samples, :, :] batch_previous_treatments = dataset['previous_treatments'][batch_samples, :, :] batch_current_covariates = dataset['covariates'][batch_samples, :, :] batch_target_treatments = dataset['treatments'][batch_samples, :, :].astype(np.int32) yield (batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) def eval_network(self, dataset): validation_losses = [] for (batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) in self.gen_epoch(dataset): feed_dict = self.build_feed_dictionary(batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) validation_loss= self.sess.run([self.loss], feed_dict=feed_dict) validation_losses.append(validation_loss) validation_loss = np.mean(np.array(validation_losses)) return validation_loss def compute_test_statistic(self, num_samples, target_treatments, feed_dict, predicted_mask): test_statistic = np.zeros(shape=(self.max_sequence_length,)) for sample_idx in range(num_samples): [treatment_probability] = self.sess.run( [self.treatment_prob_predictions], feed_dict=feed_dict) treatment_probability = np.reshape(treatment_probability, newshape=( self.batch_size, self.max_sequence_length, self.num_treatments)) test_statistic_sequence = compute_test_statistic_all_timesteps(target_treatments, treatment_probability, self.max_sequence_length, predicted_mask) test_statistic += test_statistic_sequence test_statistic = test_statistic / num_samples return test_statistic def eval_predictive_checks(self, dataset): num_replications = 50 num_samples = 50 p_values_over_time = np.zeros(shape=(self.max_sequence_length,)) steps = 0 for (batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) in self.gen_epoch(dataset): feed_dict = self.build_feed_dictionary(batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) mask = tf.sign(tf.reduce_max(tf.abs(self.rnn_input), axis=2)) [seq_lenghts, predicted_mask] = self.sess.run([self.sequence_length, mask], feed_dict=feed_dict) steps = steps + 1 """ Compute test statistics for replicas """ test_statistic_replicas = np.zeros(shape=(num_replications, self.max_sequence_length)) for replication_idx in range(num_replications): [treatment_replica, treatment_prob_pred] = self.sess.run( [self.treatment_realizations, self.treatment_prob_predictions], feed_dict=feed_dict) treatment_replica = np.reshape(treatment_replica, newshape=( self.batch_size, self.max_sequence_length, self.num_treatments)) test_statistic_replicas[replication_idx] = self.compute_test_statistic(num_samples, treatment_replica, feed_dict, predicted_mask) """ Compute test statistic for target """ test_statistic_target = self.compute_test_statistic(num_samples, batch_target_treatments, feed_dict, predicted_mask) probability = np.mean(np.less(test_statistic_replicas, test_statistic_target).astype(np.int32), axis=0) p_values_over_time += probability p_values_over_time = p_values_over_time / steps return p_values_over_time def train(self, dataset_train, dataset_val, verbose=False): self.treatment_prob_predictions = self.build_network() self.treatment_realizations = tf.distributions.Bernoulli(probs=self.treatment_prob_predictions).sample() self.loss = self.compute_loss(self.target_treatments, self.treatment_prob_predictions) optimizer = self.get_optimizer() # Setup tensorflow tf_device = 'gpu' if tf_device == "cpu": tf_config = tf.compat.v1.ConfigProto(log_device_placement=False, device_count={'GPU': 0}) else: tf_config = tf.compat.v1.ConfigProto(log_device_placement=False, device_count={'GPU': 1}) tf_config.gpu_options.allow_growth = True self.sess = tf.compat.v1.Session(config=tf_config) self.sess.run(tf.compat.v1.global_variables_initializer()) self.sess.run(tf.compat.v1.local_variables_initializer()) for epoch in tqdm(range(self.num_epochs)): for (batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) in self.gen_epoch(dataset_train): feed_dict = self.build_feed_dictionary(batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) _, training_loss = self.sess.run([optimizer, self.loss], feed_dict=feed_dict) if (verbose): logging.info( "Epoch {} out of {}: Summary| Training loss = {}".format( (epoch + 1), self.num_epochs, training_loss)) if ((epoch + 1) % 100 == 0): validation_loss = self.eval_network(dataset_val) logging.info( "Epoch {} out of {}: Summary| Validation loss = {}".format(epoch, self.num_epochs, validation_loss)) def build_feed_dictionary(self, batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments): feed_dict = {self.previous_covariates: batch_previous_covariates, self.previous_treatments: batch_previous_treatments, self.current_covariates: batch_current_covariates, self.target_treatments: batch_target_treatments} return feed_dict def compute_loss(self, target_treatments, treatment_predictions): target_treatments_reshape = tf.reshape(target_treatments, [-1, self.num_treatments]) mask = tf.sign(tf.reduce_max(tf.abs(self.rnn_input), axis=2)) flat_mask = tf.reshape(mask, [-1, 1]) cross_entropy = - tf.reduce_sum((target_treatments_reshape * tf.math.log( tf.clip_by_value(treatment_predictions, 1e-10, 1.0)) + (1 - target_treatments_reshape) * (tf.math.log( tf.clip_by_value(1 - treatment_predictions, 1e-10, 1.0)))) * flat_mask, axis=0) self.mask = mask cross_entropy /= tf.reduce_sum(tf.cast(self.sequence_length, tf.float32), axis=0) return tf.reduce_mean(cross_entropy) def get_optimizer(self): optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss) return optimizer def compute_hidden_confounders(self, dataset): dataset_size = dataset['covariates'].shape[0] hidden_confounders = np.zeros( shape=(dataset_size, self.max_sequence_length, self.num_confounders)) num_batches = int(dataset_size / self.batch_size) + 1 batch_id = 0 num_samples = 50 for (batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) in self.gen_epoch(dataset): feed_dict = self.build_feed_dictionary(batch_previous_covariates, batch_previous_treatments, batch_current_covariates, batch_target_treatments) total_predicted_hidden_confounders = np.zeros( shape=(self.batch_size, self.max_sequence_length, self.num_confounders)) for sample in range(num_samples): predicted_hidden_confounders, predicted_treatment_probs = self.sess.run( [self.hidden_confounders, self.treatment_prob_predictions], feed_dict=feed_dict) total_predicted_hidden_confounders += predicted_hidden_confounders total_predicted_hidden_confounders /= num_samples if (batch_id == num_batches - 1): batch_samples = range(dataset_size - self.batch_size, dataset_size) else: batch_samples = range(batch_id * self.batch_size, (batch_id + 1) * self.batch_size) batch_id += 1 hidden_confounders[batch_samples] = total_predicted_hidden_confounders return hidden_confounders
[ "tensorflow.clip_by_value", "tensorflow.distributions.Bernoulli", "tensorflow.reshape", "tensorflow.get_variable", "tensorflow.compat.v1.global_variables_initializer", "tensorflow.abs", "utils.predictive_checks_utils.compute_test_statistic_all_timesteps", "tensorflow.compat.v1.placeholder", "tensorflow.concat", "tensorflow.placeholder", "tensorflow.compat.v1.Session", "tensorflow.cast", "numpy.reshape", "numpy.less", "tensorflow.compat.v1.get_variable", "tensorflow.reduce_mean", "tensorflow.compat.v1.ConfigProto", "tensorflow.python.ops.rnn.dynamic_rnn", "utils.rnn_utils.AutoregressiveLSTMCell", "logging.basicConfig", "utils.rnn_utils.compute_sequence_length", "numpy.zeros", "tensorflow.compat.v1.local_variables_initializer", "numpy.array", "tensorflow.compat.v1.reset_default_graph", "tensorflow.contrib.rnn.LSTMCell", "tensorflow.train.AdamOptimizer", "logging.getLogger" ]
[((287, 362), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(levelname)s:%(message)s"""', 'level': 'logging.INFO'}), "(format='%(levelname)s:%(message)s', level=logging.INFO)\n", (306, 362), False, 'import logging\n'), ((363, 382), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (380, 382), False, 'import logging\n'), ((1387, 1421), 'tensorflow.compat.v1.reset_default_graph', 'tf.compat.v1.reset_default_graph', ([], {}), '()\n', (1419, 1421), True, 'import tensorflow as tf\n'), ((1457, 1556), 'tensorflow.compat.v1.placeholder', 'tf.compat.v1.placeholder', (['tf.float32', '[None, self.max_sequence_length - 1, self.num_covariates]'], {}), '(tf.float32, [None, self.max_sequence_length - 1,\n self.num_covariates])\n', (1481, 1556), True, 'import tensorflow as tf\n'), ((1588, 1687), 'tensorflow.compat.v1.placeholder', 'tf.compat.v1.placeholder', (['tf.float32', '[None, self.max_sequence_length - 1, self.num_treatments]'], {}), '(tf.float32, [None, self.max_sequence_length - 1,\n self.num_treatments])\n', (1612, 1687), True, 'import tensorflow as tf\n'), ((1720, 1866), 'tensorflow.compat.v1.get_variable', 'tf.compat.v1.get_variable', ([], {'name': '"""trainable_init_input"""', 'shape': '[self.batch_size, 1, self.num_covariates + self.num_treatments]', 'trainable': '(True)'}), "(name='trainable_init_input', shape=[self.\n batch_size, 1, self.num_covariates + self.num_treatments], trainable=True)\n", (1745, 1866), True, 'import tensorflow as tf\n'), ((2008, 2094), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, self.max_sequence_length, self.num_covariates]'], {}), '(tf.float32, [None, self.max_sequence_length, self.\n num_covariates])\n', (2022, 2094), True, 'import tensorflow as tf\n'), ((2123, 2209), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, self.max_sequence_length, self.num_treatments]'], {}), '(tf.float32, [None, self.max_sequence_length, self.\n num_treatments])\n', (2137, 2209), True, 'import tensorflow as tf\n'), ((2306, 2378), 'tensorflow.concat', 'tf.concat', (['[self.previous_covariates, self.previous_treatments]'], {'axis': '(-1)'}), '([self.previous_covariates, self.previous_treatments], axis=-1)\n', (2315, 2378), True, 'import tensorflow as tf\n'), ((2459, 2545), 'tensorflow.concat', 'tf.concat', (['[self.trainable_init_input, previous_covariates_and_treatments]'], {'axis': '(1)'}), '([self.trainable_init_input, previous_covariates_and_treatments],\n axis=1)\n', (2468, 2545), True, 'import tensorflow as tf\n'), ((2573, 2612), 'utils.rnn_utils.compute_sequence_length', 'compute_sequence_length', (['self.rnn_input'], {}), '(self.rnn_input)\n', (2596, 2612), False, 'from utils.rnn_utils import AutoregressiveLSTMCell, compute_sequence_length\n'), ((2955, 3009), 'utils.rnn_utils.AutoregressiveLSTMCell', 'AutoregressiveLSTMCell', (['rnn_cell', 'self.num_confounders'], {}), '(rnn_cell, self.num_confounders)\n', (2977, 3009), False, 'from utils.rnn_utils import AutoregressiveLSTMCell, compute_sequence_length\n'), ((3384, 3523), 'tensorflow.python.ops.rnn.dynamic_rnn', 'rnn.dynamic_rnn', (['autoregressive_cell', 'self.rnn_input'], {'initial_state': 'init_state', 'dtype': 'tf.float32', 'sequence_length': 'self.sequence_length'}), '(autoregressive_cell, self.rnn_input, initial_state=\n init_state, dtype=tf.float32, sequence_length=self.sequence_length)\n', (3399, 3523), False, 'from tensorflow.python.ops import rnn\n'), ((3661, 3711), 'tensorflow.reshape', 'tf.reshape', (['rnn_output', '[-1, self.num_confounders]'], {}), '(rnn_output, [-1, self.num_confounders])\n', (3671, 3711), True, 'import tensorflow as tf\n'), ((3774, 3836), 'tensorflow.reshape', 'tf.reshape', (['self.current_covariates', '[-1, self.num_covariates]'], {}), '(self.current_covariates, [-1, self.num_covariates])\n', (3784, 3836), True, 'import tensorflow as tf\n'), ((3868, 3920), 'tensorflow.concat', 'tf.concat', (['[covariates, hidden_confounders]'], {'axis': '(-1)'}), '([covariates, hidden_confounders], axis=-1)\n', (3877, 3920), True, 'import tensorflow as tf\n'), ((3956, 4045), 'tensorflow.reshape', 'tf.reshape', (['hidden_confounders', '[-1, self.max_sequence_length, self.num_confounders]'], {}), '(hidden_confounders, [-1, self.max_sequence_length, self.\n num_confounders])\n', (3966, 4045), True, 'import tensorflow as tf\n'), ((6847, 6890), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.max_sequence_length,)'}), '(shape=(self.max_sequence_length,))\n', (6855, 6890), True, 'import numpy as np\n'), ((7809, 7852), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.max_sequence_length,)'}), '(shape=(self.max_sequence_length,))\n', (7817, 7852), True, 'import numpy as np\n'), ((10504, 10542), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {'config': 'tf_config'}), '(config=tf_config)\n', (10524, 10542), True, 'import tensorflow as tf\n'), ((12285, 12341), 'tensorflow.reshape', 'tf.reshape', (['target_treatments', '[-1, self.num_treatments]'], {}), '(target_treatments, [-1, self.num_treatments])\n', (12295, 12341), True, 'import tensorflow as tf\n'), ((12433, 12458), 'tensorflow.reshape', 'tf.reshape', (['mask', '[-1, 1]'], {}), '(mask, [-1, 1])\n', (12443, 12458), True, 'import tensorflow as tf\n'), ((12881, 12910), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cross_entropy'], {}), '(cross_entropy)\n', (12895, 12910), True, 'import tensorflow as tf\n'), ((13185, 13263), 'numpy.zeros', 'np.zeros', ([], {'shape': '(dataset_size, self.max_sequence_length, self.num_confounders)'}), '(shape=(dataset_size, self.max_sequence_length, self.num_confounders))\n', (13193, 13263), True, 'import numpy as np\n'), ((2648, 2701), 'tensorflow.contrib.rnn.LSTMCell', 'LSTMCell', (['self.rnn_hidden_units'], {'state_is_tuple': '(False)'}), '(self.rnn_hidden_units, state_is_tuple=False)\n', (2656, 2701), False, 'from tensorflow.contrib.rnn import LSTMCell, DropoutWrapper\n'), ((3064, 3174), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""init_cell"""', 'shape': '[self.batch_size, autoregressive_cell.state_size]', 'trainable': '(True)'}), "(name='init_cell', shape=[self.batch_size,\n autoregressive_cell.state_size], trainable=True)\n", (3079, 3174), True, 'import tensorflow as tf\n'), ((6663, 6690), 'numpy.array', 'np.array', (['validation_losses'], {}), '(validation_losses)\n', (6671, 6690), True, 'import numpy as np\n'), ((7100, 7213), 'numpy.reshape', 'np.reshape', (['treatment_probability'], {'newshape': '(self.batch_size, self.max_sequence_length, self.num_treatments)'}), '(treatment_probability, newshape=(self.batch_size, self.\n max_sequence_length, self.num_treatments))\n', (7110, 7213), True, 'import numpy as np\n'), ((7265, 7389), 'utils.predictive_checks_utils.compute_test_statistic_all_timesteps', 'compute_test_statistic_all_timesteps', (['target_treatments', 'treatment_probability', 'self.max_sequence_length', 'predicted_mask'], {}), '(target_treatments,\n treatment_probability, self.max_sequence_length, predicted_mask)\n', (7301, 7389), False, 'from utils.predictive_checks_utils import compute_test_statistic_all_timesteps\n'), ((8549, 8609), 'numpy.zeros', 'np.zeros', ([], {'shape': '(num_replications, self.max_sequence_length)'}), '(shape=(num_replications, self.max_sequence_length))\n', (8557, 8609), True, 'import numpy as np\n'), ((10235, 10312), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {'log_device_placement': '(False)', 'device_count': "{'GPU': 0}"}), "(log_device_placement=False, device_count={'GPU': 0})\n", (10259, 10312), True, 'import tensorflow as tf\n'), ((10351, 10428), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {'log_device_placement': '(False)', 'device_count': "{'GPU': 1}"}), "(log_device_placement=False, device_count={'GPU': 1})\n", (10375, 10428), True, 'import tensorflow as tf\n'), ((10565, 10608), 'tensorflow.compat.v1.global_variables_initializer', 'tf.compat.v1.global_variables_initializer', ([], {}), '()\n', (10606, 10608), True, 'import tensorflow as tf\n'), ((10632, 10674), 'tensorflow.compat.v1.local_variables_initializer', 'tf.compat.v1.local_variables_initializer', ([], {}), '()\n', (10672, 10674), True, 'import tensorflow as tf\n'), ((12814, 12855), 'tensorflow.cast', 'tf.cast', (['self.sequence_length', 'tf.float32'], {}), '(self.sequence_length, tf.float32)\n', (12821, 12855), True, 'import tensorflow as tf\n'), ((13802, 13888), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.batch_size, self.max_sequence_length, self.num_confounders)'}), '(shape=(self.batch_size, self.max_sequence_length, self.\n num_confounders))\n', (13810, 13888), True, 'import numpy as np\n'), ((8886, 8995), 'numpy.reshape', 'np.reshape', (['treatment_replica'], {'newshape': '(self.batch_size, self.max_sequence_length, self.num_treatments)'}), '(treatment_replica, newshape=(self.batch_size, self.\n max_sequence_length, self.num_treatments))\n', (8896, 8995), True, 'import numpy as np\n'), ((9914, 9979), 'tensorflow.distributions.Bernoulli', 'tf.distributions.Bernoulli', ([], {'probs': 'self.treatment_prob_predictions'}), '(probs=self.treatment_prob_predictions)\n', (9940, 9979), True, 'import tensorflow as tf\n'), ((12380, 12402), 'tensorflow.abs', 'tf.abs', (['self.rnn_input'], {}), '(self.rnn_input)\n', (12386, 12402), True, 'import tensorflow as tf\n'), ((12961, 13003), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['self.learning_rate'], {}), '(self.learning_rate)\n', (12983, 13003), True, 'import tensorflow as tf\n'), ((8281, 8303), 'tensorflow.abs', 'tf.abs', (['self.rnn_input'], {}), '(self.rnn_input)\n', (8287, 8303), True, 'import tensorflow as tf\n'), ((9529, 9584), 'numpy.less', 'np.less', (['test_statistic_replicas', 'test_statistic_target'], {}), '(test_statistic_replicas, test_statistic_target)\n', (9536, 9584), True, 'import numpy as np\n'), ((12554, 12605), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['treatment_predictions', '(1e-10)', '(1.0)'], {}), '(treatment_predictions, 1e-10, 1.0)\n', (12570, 12605), True, 'import tensorflow as tf\n'), ((12669, 12724), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['(1 - treatment_predictions)', '(1e-10)', '(1.0)'], {}), '(1 - treatment_predictions, 1e-10, 1.0)\n', (12685, 12724), True, 'import tensorflow as tf\n')]
from collections import namedtuple from datasets import VUPDataset, NUPDataset, MLMDataset import numpy as np from data_utils import read_dataset from models.VUPScorer import VUPScorer from models.NUPScorer import NUPScorer from models.MLMScorer import MLMScorer import argparse import json from tqdm.auto import tqdm import torch from torch.utils.data import DataLoader import pytorch_lightning as pl device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def calc_minmax(model, X_data): scores = [] with torch.no_grad(): for x in tqdm(X_data): score = model.predict(x) scores.append(score) score_dict = {} keys = scores[0].keys() for k in keys: arr = [] for score in scores: arr.append(score[k]) # score of each metric # min_s = min(arr) # max_s = max(arr) min_s = np.quantile(arr, 0.25).item() max_s = np.quantile(arr, 0.75).item() score_dict[k] = { 'min': min_s, 'max': max_s } return score_dict if __name__ == "__main__": parser = argparse.ArgumentParser(description='Calculating min and max of MLM for normalizatiion') parser.add_argument('--weight-path', type=str, default='./checkpoints', help='Path to directory that stores the weight') parser.add_argument('--data-path', type=str, required=True, help='Path to the directory of training set') parser.add_argument('--output-path', type=str, default='mlm_minmax_score.json', help='Output path for the min max values') args = parser.parse_args() xdata = read_dataset(args.data_path) model = MLMScorer.load_from_checkpoint(checkpoint_path=args.weight_path).to(device) model.eval() print ('[!] loading model complete') scores = calc_minmax(model, xdata) print ('[!] normalizing complete') with open(args.output_path, 'w') as f: f.write(json.dumps(scores, indent=4)) f.close() print ('[!] complete')
[ "numpy.quantile", "argparse.ArgumentParser", "data_utils.read_dataset", "models.MLMScorer.MLMScorer.load_from_checkpoint", "json.dumps", "tqdm.auto.tqdm", "torch.cuda.is_available", "torch.no_grad" ]
[((1130, 1223), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Calculating min and max of MLM for normalizatiion"""'}), "(description=\n 'Calculating min and max of MLM for normalizatiion')\n", (1153, 1223), False, 'import argparse\n'), ((1625, 1653), 'data_utils.read_dataset', 'read_dataset', (['args.data_path'], {}), '(args.data_path)\n', (1637, 1653), False, 'from data_utils import read_dataset\n'), ((437, 462), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (460, 462), False, 'import torch\n'), ((534, 549), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (547, 549), False, 'import torch\n'), ((568, 580), 'tqdm.auto.tqdm', 'tqdm', (['X_data'], {}), '(X_data)\n', (572, 580), False, 'from tqdm.auto import tqdm\n'), ((1667, 1731), 'models.MLMScorer.MLMScorer.load_from_checkpoint', 'MLMScorer.load_from_checkpoint', ([], {'checkpoint_path': 'args.weight_path'}), '(checkpoint_path=args.weight_path)\n', (1697, 1731), False, 'from models.MLMScorer import MLMScorer\n'), ((1940, 1968), 'json.dumps', 'json.dumps', (['scores'], {'indent': '(4)'}), '(scores, indent=4)\n', (1950, 1968), False, 'import json\n'), ((900, 922), 'numpy.quantile', 'np.quantile', (['arr', '(0.25)'], {}), '(arr, 0.25)\n', (911, 922), True, 'import numpy as np\n'), ((946, 968), 'numpy.quantile', 'np.quantile', (['arr', '(0.75)'], {}), '(arr, 0.75)\n', (957, 968), True, 'import numpy as np\n')]
#!/usr/bin/env python from __future__ import print_function, division from glob import glob import astropy.io.fits as pyfits import sys, os from os import path, remove from astropy import log from astropy.table import Table from subprocess import check_call import argparse import re import numpy as np # from nicer.values import * # Array of DET_IDs that are used IDS = np.array( [ 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, ] ) import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser( description="Compute deadtime correction to an EXPOSURE defined by a GTI extension, for a single OBSID." ) parser.add_argument("obsdir", help="Directory containing the raw data for this OBSID") parser.add_argument( "gtifile", help="FITS file containing a GTI extension to be used. Can be an event file, PHA file or any FITS file with a 'GTI' extension.", ) parser.add_argument( "--mask", help="Mask particular FPMs", nargs="+", type=int, default=[] ) parser.add_argument("--plot", help="Plot deadtime per FPM", action="store_true") args = parser.parse_args() # The GTI file is assumed to apply to all FPMs. This is normally the case since the user # is operating on a merged event file whose GTI is the AND of all the individual MPU GTIs # then they may make additional GTI selections that are more restrictive than that. # So, we can go over each MPU file and apply the GTI before counting up the deadtime. # Get the names of all the individual MPU files gstr = path.join(args.obsdir, "xti/event_uf/ni*mpu?_uf.evt*") log.debug("Glob string {}".format(gstr)) ufiles = glob(gstr) ufiles.sort() log.info( "Reading unfiltered events from these files :\n\t{}".format("\n\t".join(ufiles)) ) if len(ufiles) != 7: log.error("Did not find 7 MPU files!") fpm_deadtime = np.zeros(len(IDS)) t_mpu = -1 log.info("Mask {}".format(args.mask)) for i, det_id in enumerate(IDS): if det_id in args.mask: continue mpu = det_id // 10 log.debug("{} DET_ID {} MPU {} File {}".format(i, det_id, mpu, ufiles[mpu])) # Only read the raw MPU file once per MPU since all the FPMs for this MPU are in this file if mpu != t_mpu: cmd = "niextract-events {0} eventsout={1} timefile='{2}[GTI]' clobber=yes".format( ufiles[mpu], "tmp.evt", args.gtifile ) st = check_call(cmd, shell=True) if st != 0: log.error("niextract-events failed!") t = Table.read("tmp.evt", hdu=1) t_mpu = mpu dets = t["DET_ID"] if not np.any(dets == det_id): fpm_deadtime[i] = 0.0 else: fpm_deadtime[i] = (t["DEADTIME"][dets == det_id]).sum() gtitable = Table.read("{}".format(args.gtifile), hdu="GTI") exp = (gtitable["STOP"] - gtitable["START"]).sum() log.debug("exp {}".format(exp)) active = np.where(fpm_deadtime > 0)[0] if not np.any(fpm_deadtime > 0): deadtime = 0.0 mindead = 0.0 maxdead = 0.0 stddead = 0.0 else: deadtime = fpm_deadtime[active].mean() mindead = fpm_deadtime[active].min() maxdead = fpm_deadtime[active].max() stddead = fpm_deadtime[active].std() if args.plot: if exp > 0: plt.plot(IDS, 100 * fpm_deadtime / exp, "s") plt.xlabel("DET_ID") plt.ylabel("Deadtime %") plt.title(t.meta["OBS_ID"]) # plt.savefig("deadtimeplots/{0}_deadtimes.png".format(t.meta["OBS_ID"])) plt.show() if exp == 0.0: percent_frac = 0.0 else: percent_frac = 100.0 * deadtime / exp print( "\nFile {} Exposure {:12.5f}, Mean Deadtime {:12.5f} ({:.3f} %) -> Livetime {:12.5f}".format( args.gtifile, exp, deadtime, percent_frac, exp - deadtime ) ) print( "Deadtime Statistics for {} FPM: Min {:12.5f} Max {:12.5f} Std {:12.5f}".format( len(active), mindead, maxdead, stddead ) )
[ "matplotlib.pyplot.title", "astropy.table.Table.read", "matplotlib.pyplot.show", "argparse.ArgumentParser", "matplotlib.pyplot.plot", "numpy.any", "numpy.where", "numpy.array", "astropy.log.error", "glob.glob", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "os.path.join", "subprocess.check_call" ]
[((372, 611), 'numpy.array', 'np.array', (['[0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24,\n 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46,\n 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, \n 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43,\n 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65,\n 66, 67])\n', (380, 611), True, 'import numpy as np\n'), ((1119, 1258), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compute deadtime correction to an EXPOSURE defined by a GTI extension, for a single OBSID."""'}), "(description=\n 'Compute deadtime correction to an EXPOSURE defined by a GTI extension, for a single OBSID.'\n )\n", (1142, 1258), False, 'import argparse\n'), ((2125, 2179), 'os.path.join', 'path.join', (['args.obsdir', '"""xti/event_uf/ni*mpu?_uf.evt*"""'], {}), "(args.obsdir, 'xti/event_uf/ni*mpu?_uf.evt*')\n", (2134, 2179), False, 'from os import path, remove\n'), ((2230, 2240), 'glob.glob', 'glob', (['gstr'], {}), '(gstr)\n', (2234, 2240), False, 'from glob import glob\n'), ((2377, 2415), 'astropy.log.error', 'log.error', (['"""Did not find 7 MPU files!"""'], {}), "('Did not find 7 MPU files!')\n", (2386, 2415), False, 'from astropy import log\n'), ((3434, 3460), 'numpy.where', 'np.where', (['(fpm_deadtime > 0)'], {}), '(fpm_deadtime > 0)\n', (3442, 3460), True, 'import numpy as np\n'), ((3471, 3495), 'numpy.any', 'np.any', (['(fpm_deadtime > 0)'], {}), '(fpm_deadtime > 0)\n', (3477, 3495), True, 'import numpy as np\n'), ((3829, 3849), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""DET_ID"""'], {}), "('DET_ID')\n", (3839, 3849), True, 'import matplotlib.pyplot as plt\n'), ((3854, 3878), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Deadtime %"""'], {}), "('Deadtime %')\n", (3864, 3878), True, 'import matplotlib.pyplot as plt\n'), ((3883, 3910), 'matplotlib.pyplot.title', 'plt.title', (["t.meta['OBS_ID']"], {}), "(t.meta['OBS_ID'])\n", (3892, 3910), True, 'import matplotlib.pyplot as plt\n'), ((3993, 4003), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4001, 4003), True, 'import matplotlib.pyplot as plt\n'), ((2960, 2987), 'subprocess.check_call', 'check_call', (['cmd'], {'shell': '(True)'}), '(cmd, shell=True)\n', (2970, 2987), False, 'from subprocess import check_call\n'), ((3070, 3098), 'astropy.table.Table.read', 'Table.read', (['"""tmp.evt"""'], {'hdu': '(1)'}), "('tmp.evt', hdu=1)\n", (3080, 3098), False, 'from astropy.table import Table\n'), ((3153, 3175), 'numpy.any', 'np.any', (['(dets == det_id)'], {}), '(dets == det_id)\n', (3159, 3175), True, 'import numpy as np\n'), ((3780, 3824), 'matplotlib.pyplot.plot', 'plt.plot', (['IDS', '(100 * fpm_deadtime / exp)', '"""s"""'], {}), "(IDS, 100 * fpm_deadtime / exp, 's')\n", (3788, 3824), True, 'import matplotlib.pyplot as plt\n'), ((3020, 3057), 'astropy.log.error', 'log.error', (['"""niextract-events failed!"""'], {}), "('niextract-events failed!')\n", (3029, 3057), False, 'from astropy import log\n')]
import tensorflow as tf import numpy as np from PIL import Image from PIL import ImageDraw from PIL import ImageColor import cv2 import time from styx_msgs.msg import TrafficLight class TLClassifier(object): def __init__(self): self.current_light = TrafficLight.UNKNOWN SSD_GRAPH_FILE = './frozen_inference_graph.pb' self.detection_graph = self.load_graph(SSD_GRAPH_FILE) # The input placeholder for the image. # `get_tensor_by_name` returns the Tensor with the associated name in the Graph. self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') # The classification of the object (integer id). self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') def load_graph(self,graph_file): """Loads a frozen inference graph""" graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(graph_file, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return graph def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ #TODO implement light color prediction image_np = np.expand_dims(np.asarray(image, dtype=np.uint8), 0) with tf.Session(graph=self.detection_graph) as sess: # Actual detection. (boxes, scores, classes) = sess.run([self.detection_boxes, self.detection_scores, self.detection_classes], feed_dict={self.image_tensor: image_np}) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) # confidence_cutoff = 0.8 # # Filter boxes with a confidence score less than `confidence_cutoff` # boxes, scores, classes = filter_boxes(confidence_cutoff, boxes, scores, classes) min_score_thresh = .5 count = 0 count1 = 0 # print(scores) for i in range(boxes.shape[0]): if scores is None or scores[i] > min_score_thresh: count1 += 1 class_name = self.category_index[classes[i]]['name'] # Traffic light thing if class_name == 'Red': count += 1 # print(count) if count < count1 - count: self.current_light = TrafficLight.GREEN else: self.current_light = TrafficLight.RED return self.current_light
[ "numpy.asarray", "tensorflow.Session", "tensorflow.gfile.GFile", "tensorflow.Graph", "numpy.squeeze", "tensorflow.import_graph_def", "tensorflow.GraphDef" ]
[((1342, 1352), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1350, 1352), True, 'import tensorflow as tf\n'), ((1413, 1426), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (1424, 1426), True, 'import tensorflow as tf\n'), ((2063, 2096), 'numpy.asarray', 'np.asarray', (['image'], {'dtype': 'np.uint8'}), '(image, dtype=np.uint8)\n', (2073, 2096), True, 'import numpy as np\n'), ((2114, 2152), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'self.detection_graph'}), '(graph=self.detection_graph)\n', (2124, 2152), True, 'import tensorflow as tf\n'), ((2484, 2501), 'numpy.squeeze', 'np.squeeze', (['boxes'], {}), '(boxes)\n', (2494, 2501), True, 'import numpy as np\n'), ((2523, 2541), 'numpy.squeeze', 'np.squeeze', (['scores'], {}), '(scores)\n', (2533, 2541), True, 'import numpy as np\n'), ((2564, 2583), 'numpy.squeeze', 'np.squeeze', (['classes'], {}), '(classes)\n', (2574, 2583), True, 'import numpy as np\n'), ((1444, 1476), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['graph_file', '"""rb"""'], {}), "(graph_file, 'rb')\n", (1458, 1476), True, 'import tensorflow as tf\n'), ((1610, 1652), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['od_graph_def'], {'name': '""""""'}), "(od_graph_def, name='')\n", (1629, 1652), True, 'import tensorflow as tf\n')]
''' Created on Feb. 25, 2020 @author: cefect helper functions w/ Qgis api ''' #============================================================================== # imports------------ #============================================================================== #python import os, configparser, logging, inspect, copy, datetime, re import pandas as pd import numpy as np #qgis from qgis.core import * from qgis.analysis import QgsNativeAlgorithms from qgis.gui import QgisInterface from PyQt5.QtCore import QVariant, QMetaType from PyQt5.QtWidgets import QProgressBar """throws depceciationWarning""" import processing #============================================================================== # customs #============================================================================== mod_logger = logging.getLogger('Q') #get the root logger from hlpr.exceptions import QError as Error import hlpr.basic as basic from hlpr.basic import get_valid_filename #============================================================================== # globals #============================================================================== fieldn_max_d = {'SpatiaLite':50, 'ESRI Shapefile':10, 'Memory storage':50, 'GPKG':50} npc_pytype_d = {'?':bool, 'b':int, 'd':float, 'e':float, 'f':float, 'q':int, 'h':int, 'l':int, 'i':int, 'g':float, 'U':str, 'B':int, 'L':int, 'Q':int, 'H':int, 'I':int, 'O':str, #this is the catchall 'object' } type_qvar_py_d = {10:str, 2:int, 135:float, 6:float, 4:int, 1:bool, 16:datetime.datetime, 12:str} #QVariant.types to pythonic types #parameters for lots of statistic algos stat_pars_d = {'First': 0, 'Last': 1, 'Count': 2, 'Sum': 3, 'Mean': 4, 'Median': 5, 'St dev (pop)': 6, 'Minimum': 7, 'Maximum': 8, 'Range': 9, 'Minority': 10, 'Majority': 11, 'Variety': 12, 'Q1': 13, 'Q3': 14, 'IQR': 15} #============================================================================== # classes ------------- #============================================================================== class Qcoms(basic.ComWrkr): #baseclass for working w/ pyqgis outside the native console driverName = 'SpatiaLite' #default data creation driver type out_dName = driverName #default output driver/file type q_hndls = ['crs', 'crsid', 'algo_init', 'qap', 'vlay_drivers'] algo_init = False #flag indicating whether the algos have been initialized qap = None mstore = None def __init__(self, feedback=None, #init controls init_q_d = {}, #container of initilzied objects crsid = 'EPSG:4326', #default crsID if no init_q_d is passed **kwargs ): """" #======================================================================= # plugin use #======================================================================= QprojPlugs don't execute super cascade #======================================================================= # Qgis inheritance #======================================================================= for single standalone runs all the handles will be generated and Qgis instanced for console runs handles should be passed to avoid re-instancing Qgis for session standalone runs handles passed for swapping crs run set_crs() on the session prior to spawning the child """ #======================================================================= # defaults #======================================================================= if feedback is None: """by default, building our own feedbacker passed to ComWrkr.setup_feedback() """ feedback = MyFeedBackQ() #======================================================================= # cascade #======================================================================= super().__init__( feedback = feedback, **kwargs) #initilzie teh baseclass log = self.logger #======================================================================= # attachments #======================================================================= self.fieldn_max_d=fieldn_max_d self.crsid=crsid #======================================================================= # Qgis setup COMMON #======================================================================= """both Plugin and StandAlone runs should call these""" self.qproj = QgsProject.instance() """ each worker will have their own store used to wipe any intermediate layers """ self.mstore = QgsMapLayerStore() #build a new map store #do your own init (standalone r uns) if len(init_q_d) == 0: self._init_standalone() else: #check everything is there miss_l = set(self.q_hndls).difference(init_q_d.keys()) assert len(miss_l)==0, 'init_q_d missing handles: %s'%miss_l #set the handles for k,v in init_q_d.items(): setattr(self, k, v) self._upd_qd() self.proj_checks() #======================================================================= # attach inputs #======================================================================= self.logger.debug('Qcoms.__init__ finished w/ out_dir: \n %s'%self.out_dir) return #========================================================================== # standalone methods----------- #========================================================================== def _init_standalone(self, #setup for qgis runs crsid = None, ): """ WARNING! do not call twice (phantom crash) """ log = self.logger.getChild('_init_standalone') if crsid is None: crsid = self.crsid #======================================================================= # #crs #======================================================================= crs = QgsCoordinateReferenceSystem(crsid) assert isinstance(crs, QgsCoordinateReferenceSystem), 'bad crs type' assert crs.isValid() self.crs = crs self.qproj.setCrs(crs) log.info('crs set to \'%s\''%self.crs.authid()) #======================================================================= # setup qgis #======================================================================= self.qap = self.init_qgis() self.algo_init = self.init_algos() self.set_vdrivers() #======================================================================= # wrap #======================================================================= self._upd_qd() log.debug('Qproj._init_standalone finished') return def _upd_qd(self): #set a fresh parameter set self.init_q_d = {k:getattr(self, k) for k in self.q_hndls} def init_qgis(self, #instantiate qgis gui = False): """ WARNING: need to hold this app somewhere. call in the module you're working in (scripts) """ log = self.logger.getChild('init_qgis') try: QgsApplication.setPrefixPath(r'C:/OSGeo4W64/apps/qgis-ltr', True) app = QgsApplication([], gui) # Update prefix path #app.setPrefixPath(r"C:\OSGeo4W64\apps\qgis", True) app.initQgis() #logging.debug(QgsApplication.showSettings()) """ was throwing unicode error""" log.info(u' QgsApplication.initQgis. version: %s, release: %s'%( Qgis.QGIS_VERSION.encode('utf-8'), Qgis.QGIS_RELEASE_NAME.encode('utf-8'))) return app except: raise Error('QGIS failed to initiate') def init_algos(self): #initiilize processing and add providers """ crashing without raising an Exception """ log = self.logger.getChild('init_algos') if not isinstance(self.qap, QgsApplication): raise Error('qgis has not been properly initlized yet') from processing.core.Processing import Processing Processing.initialize() #crashing without raising an Exception QgsApplication.processingRegistry().addProvider(QgsNativeAlgorithms()) assert not self.feedback is None, 'instance needs a feedback method for algos to work' log.info('processing initilzied w/ feedback: \'%s\''%(type(self.feedback).__name__)) return True def set_vdrivers(self): log = self.logger.getChild('set_vdrivers') #build vector drivers list by extension """couldnt find a good built-in to link extensions with drivers""" vlay_drivers = {'SpatiaLite':'sqlite', 'OGR':'shp'} #vlay_drivers = {'sqlite':'SpatiaLite', 'shp':'OGR','csv':'delimitedtext'} for ext in QgsVectorFileWriter.supportedFormatExtensions(): dname = QgsVectorFileWriter.driverForExtension(ext) if not dname in vlay_drivers.keys(): vlay_drivers[dname] = ext #add in missing/duplicated for vdriver in QgsVectorFileWriter.ogrDriverList(): if not vdriver.driverName in vlay_drivers.keys(): vlay_drivers[vdriver.driverName] ='?' self.vlay_drivers = vlay_drivers log.debug('built driver:extensions dict: \n %s'%vlay_drivers) return def set_crs(self, #load, build, and set the project crs crsid = None, #integer crs = None, #QgsCoordinateReferenceSystem logger=None, ): #======================================================================= # setup and defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('set_crs') if crsid is None: crsid = self.crsid #======================================================================= # if not isinstance(crsid, int): # raise IOError('expected integer for crs') #======================================================================= #======================================================================= # build it #======================================================================= if crs is None: crs = QgsCoordinateReferenceSystem(crsid) assert isinstance(crs, QgsCoordinateReferenceSystem) self.crs=crs #overwrite if not self.crs.isValid(): raise IOError('CRS built from %i is invalid'%self.crs.authid()) #======================================================================= # attach to project #======================================================================= self.qproj.setCrs(self.crs) self.crsid = self.crs.authid() if not self.qproj.crs().description() == self.crs.description(): raise Error('qproj crs does not match sessions') log.info('crs set to EPSG: %s, \'%s\''%(self.crs.authid(), self.crs.description())) self._upd_qd() self.proj_checks(logger=log) return self.crs def proj_checks(self, logger=None): #log = self.logger.getChild('proj_checks') if not self.driverName in self.vlay_drivers: raise Error('unrecognized driver name') if not self.out_dName in self.vlay_drivers: raise Error('unrecognized driver name') assert self.algo_init assert not self.feedback is None assert not self.progressBar is None #======================================================================= # crs checks #======================================================================= assert isinstance(self.crs, QgsCoordinateReferenceSystem) assert self.crs.isValid() assert self.crs.authid()==self.qproj.crs().authid(), 'crs mismatch' assert self.crs.authid() == self.crsid, 'crs mismatch' assert not self.crs.authid()=='', 'got empty CRS!' #======================================================================= # handle checks #======================================================================= assert isinstance(self.init_q_d, dict) miss_l = set(self.q_hndls).difference(self.init_q_d.keys()) assert len(miss_l)==0, 'init_q_d missing handles: %s'%miss_l for k,v in self.init_q_d.items(): assert getattr(self, k) == v, k #log.info('project passed all checks') return def print_qt_version(self): import inspect from PyQt5 import Qt vers = ['%s = %s' % (k,v) for k,v in vars(Qt).items() if k.lower().find('version') >= 0 and not inspect.isbuiltin(v)] print('\n'.join(sorted(vers))) #=========================================================================== # LOAD/WRITE LAYERS----------- #=========================================================================== def load_vlay(self, fp, logger=None, providerLib='ogr', aoi_vlay = None, allow_none=True, #control check in saveselectedfeastures addSpatialIndex=True, ): assert os.path.exists(fp), 'requested file does not exist: %s'%fp if logger is None: logger = self.logger log = logger.getChild('load_vlay') basefn = os.path.splitext(os.path.split(fp)[1])[0] log.debug('loading from %s'%fp) vlay_raw = QgsVectorLayer(fp,basefn,providerLib) #======================================================================= # # checks #======================================================================= if not isinstance(vlay_raw, QgsVectorLayer): raise IOError #check if this is valid if not vlay_raw.isValid(): raise Error('loaded vlay \'%s\' is not valid. \n \n did you initilize?'%vlay_raw.name()) #check if it has geometry if vlay_raw.wkbType() == 100: raise Error('loaded vlay has NoGeometry') assert isinstance(self.mstore, QgsMapLayerStore) """only add intermediate layers to store self.mstore.addMapLayer(vlay_raw)""" if not vlay_raw.crs()==self.qproj.crs(): log.warning('crs mismatch: \n %s\n %s'%( vlay_raw.crs(), self.qproj.crs())) #======================================================================= # aoi slice #======================================================================= if isinstance(aoi_vlay, QgsVectorLayer): log.info('slicing by aoi %s'%aoi_vlay.name()) vlay = self.selectbylocation(vlay_raw, aoi_vlay, allow_none=allow_none, logger=log, result_type='layer') #check for no selection if vlay is None: return None vlay.setName(vlay_raw.name()) #reset the name #clear original from memory self.mstore.addMapLayer(vlay_raw) self.mstore.removeMapLayers([vlay_raw]) else: vlay = vlay_raw #======================================================================= # clean------ #======================================================================= #spatial index if addSpatialIndex and (not vlay_raw.hasSpatialIndex()==QgsFeatureSource.SpatialIndexPresent): self.createspatialindex(vlay_raw, logger=log) #======================================================================= # wrap #======================================================================= dp = vlay.dataProvider() log.info('loaded vlay \'%s\' as \'%s\' %s geo with %i feats from file: \n %s' %(vlay.name(), dp.storageType(), QgsWkbTypes().displayString(vlay.wkbType()), dp.featureCount(), fp)) return vlay def load_rlay(self, fp, aoi_vlay = None, logger=None): if logger is None: logger = self.logger log = logger.getChild('load_rlay') assert os.path.exists(fp), 'requested file does not exist: %s'%fp assert QgsRasterLayer.isValidRasterFileName(fp), \ 'requested file is not a valid raster file type: %s'%fp basefn = os.path.splitext(os.path.split(fp)[1])[0] #Import a Raster Layer log.debug('QgsRasterLayer(%s, %s)'%(fp, basefn)) rlayer = QgsRasterLayer(fp, basefn) """ hanging for some reason... QgsRasterLayer(C:\LS\03_TOOLS\CanFlood\_git\tutorials\1\haz_rast\haz_1000.tif, haz_1000) """ #======================================================================= # rlayer = QgsRasterLayer(r'C:\LS\03_TOOLS\CanFlood\_git\tutorials\1\haz_rast\haz_1000.tif', # 'haz_1000') #======================================================================= #=========================================================================== # check #=========================================================================== assert isinstance(rlayer, QgsRasterLayer), 'failed to get a QgsRasterLayer' assert rlayer.isValid(), "Layer failed to load!" if not rlayer.crs() == self.qproj.crs(): log.warning('loaded layer \'%s\' crs mismatch!'%rlayer.name()) log.debug('loaded \'%s\' from \n %s'%(rlayer.name(), fp)) #======================================================================= # aoi #======================================================================= if not aoi_vlay is None: log.debug('clipping w/ %s'%aoi_vlay.name()) assert isinstance(aoi_vlay, QgsVectorLayer) rlay2 = self.cliprasterwithpolygon(rlayer,aoi_vlay, logger=log, layname=rlayer.name()) #clean up mstore = QgsMapLayerStore() #build a new store mstore.addMapLayers([rlayer]) #add the layers to the store mstore.removeAllMapLayers() #remove all the layers else: rlay2 = rlayer return rlay2 def write_rlay(self, #make a local copy of the passed raster layer rlayer, #raster layer to make a local copy of extent = 'layer', #write extent control #'layer': use the current extent (default) #'mapCanvas': use the current map Canvas #QgsRectangle: use passed extents resolution = 'raw', #resolution for output opts = ["COMPRESS=LZW"], #QgsRasterFileWriter.setCreateOptions out_dir = None, #directory for puts newLayerName = None, logger=None, ): """ because processing tools only work on local copies #======================================================================= # coordinate transformation #======================================================================= NO CONVERSION HERE! can't get native API to work. use gdal_warp instead """ #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger if out_dir is None: out_dir = self.out_dir if newLayerName is None: newLayerName = rlayer.name() newFn = get_valid_filename('%s.tif'%newLayerName) #clean it out_fp = os.path.join(out_dir, newFn) log = logger.getChild('write_rlay') log.debug('on \'%s\' w/ \n crs:%s \n extents:%s\n xUnits:%.4f'%( rlayer.name(), rlayer.crs(), rlayer.extent(), rlayer.rasterUnitsPerPixelX())) #======================================================================= # precheck #======================================================================= assert isinstance(rlayer, QgsRasterLayer) assert os.path.exists(out_dir) if os.path.exists(out_fp): msg = 'requested file already exists! and overwrite=%s \n %s'%( self.overwrite, out_fp) if self.overwrite: log.warning(msg) else: raise Error(msg) #======================================================================= # extract info from layer #======================================================================= """consider loading the layer and duplicating the renderer? renderer = rlayer.renderer()""" provider = rlayer.dataProvider() #build projector projector = QgsRasterProjector() #projector.setCrs(provider.crs(), provider.crs()) #build and configure pipe pipe = QgsRasterPipe() if not pipe.set(provider.clone()): #Insert a new known interface in default place raise Error("Cannot set pipe provider") if not pipe.insert(2, projector): #insert interface at specified index and connect raise Error("Cannot set pipe projector") #pipe = rlayer.pipe() #coordinate transformation """see note""" transformContext = self.qproj.transformContext() #======================================================================= # extents #======================================================================= if extent == 'layer': extent = rlayer.extent() elif extent=='mapCanvas': assert isinstance(self.iface, QgisInterface), 'bad key for StandAlone?' #get the extent, transformed to the current CRS extent = QgsCoordinateTransform( self.qproj.crs(), rlayer.crs(), transformContext ).transformBoundingBox(self.iface.mapCanvas().extent()) assert isinstance(extent, QgsRectangle), 'expected extent=QgsRectangle. got \"%s\''%extent #expect the requested extent to be LESS THAN what we have in the raw raster assert rlayer.extent().width()>=extent.width(), 'passed extents too wide' assert rlayer.extent().height()>=extent.height(), 'passed extents too tall' #======================================================================= # resolution #======================================================================= #use the resolution of the raw file if resolution == 'raw': """this respects the calculated extents""" nRows = int(extent.height()/rlayer.rasterUnitsPerPixelY()) nCols = int(extent.width()/rlayer.rasterUnitsPerPixelX()) else: """dont think theres any decent API support for the GUI behavior""" raise Error('not implemented') #======================================================================= # #build file writer #======================================================================= file_writer = QgsRasterFileWriter(out_fp) #file_writer.Mode(1) #??? if not opts is None: file_writer.setCreateOptions(opts) log.debug('writing to file w/ \n %s'%( {'nCols':nCols, 'nRows':nRows, 'extent':extent, 'crs':rlayer.crs()})) #execute write error = file_writer.writeRaster( pipe, nCols, nRows, extent, rlayer.crs(), transformContext) log.info('wrote to file \n %s'%out_fp) #======================================================================= # wrap #======================================================================= if not error == QgsRasterFileWriter.NoError: raise Error(error) assert os.path.exists(out_fp) assert QgsRasterLayer.isValidRasterFileName(out_fp), \ 'requested file is not a valid raster file type: %s'%out_fp return out_fp def vlay_write(self, #write a VectorLayer vlay, out_fp=None, driverName='GPKG', fileEncoding = "CP1250", opts = QgsVectorFileWriter.SaveVectorOptions(), #empty options object overwrite=None, logger=None): """ help(QgsVectorFileWriter.SaveVectorOptions) QgsVectorFileWriter.SaveVectorOptions.driverName='GPKG' opt2 = QgsVectorFileWriter.BoolOption(QgsVectorFileWriter.CreateOrOverwriteFile) help(QgsVectorFileWriter) """ #========================================================================== # defaults #========================================================================== if logger is None: logger=self.logger log = logger.getChild('vlay_write') if overwrite is None: overwrite=self.overwrite if out_fp is None: out_fp = os.path.join(self.out_dir, '%s.gpkg'%vlay.name()) #=========================================================================== # assemble options #=========================================================================== opts.driverName = driverName opts.fileEncoding = fileEncoding #=========================================================================== # checks #=========================================================================== #file extension fhead, ext = os.path.splitext(out_fp) if not 'gpkg' in ext: raise Error('unexpected extension: %s'%ext) if os.path.exists(out_fp): msg = 'requested file path already exists!. overwrite=%s \n %s'%( overwrite, out_fp) if overwrite: log.warning(msg) os.remove(out_fp) #workaround... should be away to overwrite with the QgsVectorFileWriter else: raise Error(msg) if vlay.dataProvider().featureCount() == 0: raise Error('\'%s\' has no features!'%( vlay.name())) if not vlay.isValid(): Error('passed invalid layer') #======================================================================= # write #======================================================================= error = QgsVectorFileWriter.writeAsVectorFormatV2( vlay, out_fp, QgsCoordinateTransformContext(), opts, ) #======================================================================= # wrap and check #======================================================================= if error[0] == QgsVectorFileWriter.NoError: log.info('layer \' %s \' written to: \n %s'%(vlay.name(),out_fp)) return out_fp raise Error('FAILURE on writing layer \' %s \' with code:\n %s \n %s'%(vlay.name(),error, out_fp)) def load_dtm(self, #convienece loader for assining the correct attribute fp, logger=None, **kwargs): if logger is None: logger=self.logger log=logger.getChild('load_dtm') self.dtm_rlay = self.load_rlay(fp, logger=log, **kwargs) return self.dtm_rlay #========================================================================== # GENERIC METHODS----------------- #========================================================================== def vlay_new_df2(self, #build a vlay from a df df_raw, geo_d = None, #container of geometry objects {fid: QgsGeometry} crs=None, gkey = None, #data field linking with geo_d (if None.. uses df index) layname='df', index = False, #whether to include the index as a field logger=None, ): """ performance enhancement over vlay_new_df simpler, clearer although less versatile """ #======================================================================= # setup #======================================================================= if crs is None: crs = self.qproj.crs() if logger is None: logger = self.logger log = logger.getChild('vlay_new_df') #======================================================================= # index fix #======================================================================= df = df_raw.copy() if index: if not df.index.name is None: coln = df.index.name df.index.name = None else: coln = 'index' df[coln] = df.index #======================================================================= # precheck #======================================================================= #make sure none of hte field names execeed the driver limitations max_len = self.fieldn_max_d[self.driverName] #check lengths boolcol = df_raw.columns.str.len() >= max_len if np.any(boolcol): log.warning('passed %i columns which exeed the max length=%i for driver \'%s\'.. truncating: \n %s'%( boolcol.sum(), max_len, self.driverName, df_raw.columns[boolcol].tolist())) df.columns = df.columns.str.slice(start=0, stop=max_len-1) #make sure the columns are unique assert df.columns.is_unique, 'got duplicated column names: \n %s'%(df.columns.tolist()) #check datatypes assert np.array_equal(df.columns, df.columns.astype(str)), 'got non-string column names' #check the geometry if not geo_d is None: assert isinstance(geo_d, dict) if not gkey is None: assert gkey in df_raw.columns #assert 'int' in df_raw[gkey].dtype.name #check gkey match l = set(df_raw[gkey].drop_duplicates()).difference(geo_d.keys()) assert len(l)==0, 'missing %i \'%s\' keys in geo_d: %s'%(len(l), gkey, l) #against index else: #check gkey match l = set(df_raw.index).difference(geo_d.keys()) assert len(l)==0, 'missing %i (of %i) fid keys in geo_d: %s'%(len(l), len(df_raw), l) #=========================================================================== # assemble the fields #=========================================================================== #column name and python type fields_d = {coln:np_to_pytype(col.dtype) for coln, col in df.items()} #fields container qfields = fields_build_new(fields_d = fields_d, logger=log) #======================================================================= # assemble the features #======================================================================= #convert form of data feats_d = dict() for fid, row in df.iterrows(): feat = QgsFeature(qfields, fid) #loop and add data for fieldn, value in row.items(): #skip null values if pd.isnull(value): continue #get the index for this field findx = feat.fieldNameIndex(fieldn) #get the qfield qfield = feat.fields().at(findx) #make the type match ndata = qtype_to_pytype(value, qfield.type(), logger=log) #set the attribute if not feat.setAttribute(findx, ndata): raise Error('failed to setAttribute') #setgeometry if not geo_d is None: if gkey is None: gobj = geo_d[fid] else: gobj = geo_d[row[gkey]] feat.setGeometry(gobj) #stor eit feats_d[fid]=feat log.debug('built %i \'%s\' features'%( len(feats_d), QgsWkbTypes.geometryDisplayString(feat.geometry().type()), )) #======================================================================= # get the geo type #=======================================================================\ if not geo_d is None: gtype = QgsWkbTypes().displayString(next(iter(geo_d.values())).wkbType()) else: gtype='None' #=========================================================================== # buidl the new layer #=========================================================================== vlay = vlay_new_mlay(gtype, crs, layname, qfields, list(feats_d.values()), logger=log, ) self.createspatialindex(vlay, logger=log) #======================================================================= # post check #======================================================================= if not geo_d is None: if vlay.wkbType() == 100: raise Error('constructed layer has NoGeometry') return vlay def check_aoi(self, #special c hecks for AOI layers vlay): assert isinstance(vlay, QgsVectorLayer) assert 'Polygon' in QgsWkbTypes().displayString(vlay.wkbType()) assert vlay.dataProvider().featureCount()==1 assert vlay.crs() == self.qproj.crs(), 'aoi CRS (%s) does not match project (%s)'%(vlay.crs(), self.qproj.crs()) return #========================================================================== # ALGOS-------------- #========================================================================== def deletecolumn(self, in_vlay, fieldn_l, #list of field names invert=False, #whether to invert selected field names layname = None, logger=None, ): #======================================================================= # presets #======================================================================= algo_nm = 'qgis:deletecolumn' if logger is None: logger=self.logger log = logger.getChild('deletecolumn') self.vlay = in_vlay #======================================================================= # field manipulations #======================================================================= fieldn_l = self._field_handlr(in_vlay, fieldn_l, invert=invert, logger=log) if len(fieldn_l) == 0: log.debug('no fields requsted to drop... skipping') return self.vlay #======================================================================= # assemble pars #======================================================================= #assemble pars ins_d = { 'COLUMN' : fieldn_l, 'INPUT' : in_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT'} log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] #=========================================================================== # post formatting #=========================================================================== if layname is None: layname = '%s_delf'%self.vlay.name() res_vlay.setName(layname) #reset the name return res_vlay def joinattributesbylocation(self, #data definitions vlay, join_vlay, #layer from which to extract attribue values onto th ebottom vlay jlay_fieldn_l, #list of field names to extract from the join_vlay selected_only = False, jvlay_selected_only = False, #only consider selected features on the join layer #algo controls prefix = '', method=0, #one-to-many predicate_l = ['intersects'],#list of geometric serach predicates discard_nomatch = False, #Discard records which could not be joined #data expectations join_nullvs = True, #allow null values on jlay_fieldn_l on join_vlay join_df = None, #if join_nullvs=FALSE, data to check for nulls (skips making a vlay_get_fdf) allow_field_rename = False, #allow joiner fields to be renamed when mapped onto the main allow_none = False, #geometry expectations expect_all_hits = False, #wheter every main feature intersects a join feature expect_j_overlap = False, #wheter to expect the join_vlay to beoverlapping expect_m_overlap = False, #wheter to expect the mainvlay to have overlaps logger=None, ): """ TODO: really need to clean this up... discard_nomatch: TRUE: two resulting layers have no features in common FALSE: in layer retains all non matchers, out layer only has the non-matchers? METHOD: Join type - 0: Create separate feature for each located feature (one-to-many) - 1: Take attributes of the first located feature only (one-to-one) """ #======================================================================= # presets #======================================================================= if logger is None: logger=self.logger log = logger.getChild('joinattributesbylocation') self.vlay = vlay algo_nm = 'qgis:joinattributesbylocation' predicate_d = {'intersects':0,'contains':1,'equals':2,'touches':3,'overlaps':4,'within':5, 'crosses':6} jlay_fieldn_l = self._field_handlr(join_vlay, jlay_fieldn_l, invert=False) #======================================================================= # jgeot = vlay_get_bgeo_type(join_vlay) # mgeot = vlay_get_bgeo_type(self.vlay) #======================================================================= mfcnt = self.vlay.dataProvider().featureCount() #jfcnt = join_vlay.dataProvider().featureCount() mfnl = vlay_fieldnl(self.vlay) expect_overlaps = expect_j_overlap or expect_m_overlap #======================================================================= # geometry expectation prechecks #======================================================================= """should take any geo if not (jgeot == 'polygon' or mgeot == 'polygon'): raise Error('one of the layres has to be a polygon') if not jgeot=='polygon': if expect_j_overlap: raise Error('join vlay is not a polygon, expect_j_overlap should =False') if not mgeot=='polygon': if expect_m_overlap: raise Error('main vlay is not a polygon, expect_m_overlap should =False') if expect_all_hits: if discard_nomatch: raise Error('discard_nomatch should =FALSE if you expect all hits') if allow_none: raise Error('expect_all_hits=TRUE and allow_none=TRUE') #method checks if method==0: if not jgeot == 'polygon': raise Error('passed method 1:m but jgeot != polygon') if not expect_j_overlap: if not method==0: raise Error('for expect_j_overlap=False, method must = 0 (1:m) for validation') """ #======================================================================= # data expectation checks #======================================================================= #make sure none of the joiner fields are already on the layer if len(mfnl)>0: #see if there are any fields on the main l = basic.linr(jlay_fieldn_l, mfnl, result_type='matching') if len(l) > 0: #w/a prefix if not prefix=='': log.debug('%i fields on the joiner \'%s\' are already on \'%s\'... prefixing w/ \'%s\': \n %s'%( len(l), join_vlay.name(), self.vlay.name(), prefix, l)) else: log.debug('%i fields on the joiner \'%s\' are already on \'%s\'...renameing w/ auto-sufix: \n %s'%( len(l), join_vlay.name(), self.vlay.name(), l)) if not allow_field_rename: raise Error('%i field names overlap: %s'%(len(l), l)) #make sure that the joiner attributes are not null if not join_nullvs: if jvlay_selected_only: raise Error('not implmeneted') #pull thedata if join_df is None: join_df = vlay_get_fdf(join_vlay, fieldn_l=jlay_fieldn_l, db_f=self.db_f, logger=log) #slice to the columns of interest join_df = join_df.loc[:, jlay_fieldn_l] #check for nulls booldf = join_df.isna() if np.any(booldf): raise Error('got %i nulls on \'%s\' field %s data'%( booldf.sum().sum(), join_vlay.name(), jlay_fieldn_l)) #======================================================================= # assemble pars #======================================================================= #convert predicate to code pred_code_l = [predicate_d[name] for name in predicate_l] #selection flags if selected_only: """WARNING! This will limit the output to only these features (despite the DISCARD_NONMATCHING flag)""" main_input = self._get_sel_obj(self.vlay) else: main_input = self.vlay if jvlay_selected_only: join_input = self._get_sel_obj(join_vlay) else: join_input = join_vlay #assemble pars ins_d = { 'DISCARD_NONMATCHING' : discard_nomatch, 'INPUT' : main_input, 'JOIN' : join_input, 'JOIN_FIELDS' : jlay_fieldn_l, 'METHOD' : method, 'OUTPUT' : 'TEMPORARY_OUTPUT', #'NON_MATCHING' : 'TEMPORARY_OUTPUT', #not working as expected. see get_misses 'PREDICATE' : pred_code_l, 'PREFIX' : prefix} log.info('extracting %i fields from %i feats from \'%s\' to \'%s\' join fields: %s'% (len(jlay_fieldn_l), join_vlay.dataProvider().featureCount(), join_vlay.name(), self.vlay.name(), jlay_fieldn_l)) log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay, join_cnt = res_d['OUTPUT'], res_d['JOINED_COUNT'] log.debug('got results: \n %s'%res_d) #=========================================================================== # post checks #=========================================================================== hit_fcnt = res_vlay.dataProvider().featureCount() if not expect_overlaps: if not discard_nomatch: if not hit_fcnt == mfcnt: raise Error('in and out fcnts dont match') else: pass #log.debug('expect_overlaps=False, unable to check fcnts') #all misses if join_cnt == 0: log.warning('got no joins from \'%s\' to \'%s\''%( self.vlay.name(), join_vlay.name())) if not allow_none: raise Error('got no joins!') if discard_nomatch: if not hit_fcnt == 0: raise Error('no joins but got some hits') #some hits else: #check there are no nulls if discard_nomatch and not join_nullvs: #get data on first joiner fid_val_ser = vlay_get_fdata(res_vlay, jlay_fieldn_l[0], logger=log, fmt='ser') if np.any(fid_val_ser.isna()): raise Error('discard=True and join null=FALSe but got %i (of %i) null \'%s\' values in the reuslt'%( fid_val_ser.isna().sum(), len(fid_val_ser), fid_val_ser.name )) #======================================================================= # get the new field names #======================================================================= new_fn_l = set(vlay_fieldnl(res_vlay)).difference(vlay_fieldnl(self.vlay)) #======================================================================= # wrap #======================================================================= log.debug('finished joining %i fields from %i (of %i) feats from \'%s\' to \'%s\' join fields: %s'% (len(new_fn_l), join_cnt, self.vlay.dataProvider().featureCount(), join_vlay.name(), self.vlay.name(), new_fn_l)) return res_vlay, new_fn_l, join_cnt def joinbylocationsummary(self, vlay, #polygon layer to sample from join_vlay, #layer from which to extract attribue values onto th ebottom vlay jlay_fieldn_l, #list of field names to extract from the join_vlay jvlay_selected_only = False, #only consider selected features on the join layer predicate_l = ['intersects'],#list of geometric serach predicates smry_l = ['sum'], #data summaries to apply discard_nomatch = False, #Discard records which could not be joined use_raw_fn=False, #whether to convert names back to the originals layname=None, ): """ WARNING: This ressets the fids discard_nomatch: TRUE: two resulting layers have no features in common FALSE: in layer retains all non matchers, out layer only has the non-matchers? """ """ view(join_vlay) """ #======================================================================= # presets #======================================================================= algo_nm = 'qgis:joinbylocationsummary' predicate_d = {'intersects':0,'contains':1,'equals':2,'touches':3,'overlaps':4,'within':5, 'crosses':6} summaries_d = {'count':0, 'unique':1, 'min':2, 'max':3, 'range':4, 'sum':5, 'mean':6} log = self.logger.getChild('joinbylocationsummary') #======================================================================= # defaults #======================================================================= if isinstance(jlay_fieldn_l, set): jlay_fieldn_l = list(jlay_fieldn_l) #convert predicate to code pred_code_l = [predicate_d[pred_name] for pred_name in predicate_l] #convert summaries to code sum_code_l = [summaries_d[smry_str] for smry_str in smry_l] if layname is None: layname = '%s_jsmry'%vlay.name() #======================================================================= # prechecks #======================================================================= if not isinstance(jlay_fieldn_l, list): raise Error('expected a list') #check requested join fields fn_l = [f.name() for f in join_vlay.fields()] s = set(jlay_fieldn_l).difference(fn_l) assert len(s)==0, 'requested join fields not on layer: %s'%s #check crs assert join_vlay.crs().authid() == vlay.crs().authid() #======================================================================= # assemble pars #======================================================================= main_input=vlay if jvlay_selected_only: join_input = self._get_sel_obj(join_vlay) else: join_input = join_vlay #assemble pars ins_d = { 'DISCARD_NONMATCHING' : discard_nomatch, 'INPUT' : main_input, 'JOIN' : join_input, 'JOIN_FIELDS' : jlay_fieldn_l, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREDICATE' : pred_code_l, 'SUMMARIES' : sum_code_l, } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] #=========================================================================== # post formatting #=========================================================================== res_vlay.setName(layname) #reset the name #get new field names nfn_l = set([f.name() for f in res_vlay.fields()]).difference([f.name() for f in vlay.fields()]) """ view(res_vlay) """ #======================================================================= # post check #======================================================================= for fn in nfn_l: rser = vlay_get_fdata(res_vlay, fieldn=fn, logger=log, fmt='ser') if rser.isna().all().all(): log.warning('%s \'%s\' got all nulls'%(vlay.name(), fn)) #======================================================================= # rename fields #======================================================================= if use_raw_fn: assert len(smry_l)==1, 'rename only allowed for single sample stat' rnm_d = {s:s.replace('_%s'%smry_l[0],'') for s in nfn_l} s = set(rnm_d.values()).symmetric_difference(jlay_fieldn_l) assert len(s)==0, 'failed to convert field names' res_vlay = vlay_rename_fields(res_vlay, rnm_d, logger=log) nfn_l = jlay_fieldn_l log.info('sampled \'%s\' w/ \'%s\' (%i hits) and \'%s\'to get %i new fields \n %s'%( join_vlay.name(), vlay.name(), res_vlay.dataProvider().featureCount(), smry_l, len(nfn_l), nfn_l)) return res_vlay, nfn_l def joinattributestable(self, #join csv edata to a vector layer vlay, table_fp, fieldNm, method = 1, #join type #- 0: Create separate feature for each matching feature (one-to-many) #- 1: Take attributes of the first matching feature only (one-to-one) csv_params = {'encoding':'System', 'type':'csv', 'maxFields':'10000', 'detectTypes':'yes', 'geomType':'none', 'subsetIndex':'no', 'watchFile':'no'}, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger if layname is None: layname = '%s_j'%vlay.name() algo_nm = 'native:joinattributestable' log = self.logger.getChild('joinattributestable') #======================================================================= # prechecks #======================================================================= assert isinstance(vlay, QgsVectorLayer) assert os.path.exists(table_fp) assert fieldNm in [f.name() for f in vlay.fields()], 'vlay missing link field %s'%fieldNm #======================================================================= # setup table layer #======================================================================= uriW = QgsDataSourceUri() for pName, pValue in csv_params.items(): uriW.setParam(pName, pValue) table_uri = r'file:///' + table_fp.replace('\\','/') +'?'+ str(uriW.encodedUri(), 'utf-8') table_vlay = QgsVectorLayer(table_uri,'table',"delimitedtext") assert fieldNm in [f.name() for f in table_vlay.fields()], 'table missing link field %s'%fieldNm #======================================================================= # assemble p ars #======================================================================= ins_d = { 'DISCARD_NONMATCHING' : True, 'FIELD' : 'xid', 'FIELDS_TO_COPY' : [], 'FIELD_2' : 'xid', 'INPUT' : vlay, 'INPUT_2' : table_vlay, 'METHOD' : method, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREFIX' : '' } #======================================================================= # execute #======================================================================= log.debug('executing \'native:buffer\' with ins_d: \n %s'%ins_d) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] res_vlay.setName(layname) #reset the name log.debug('finished w/ %i feats'%res_vlay.dataProvider().featureCount()) return res_vlay def cliprasterwithpolygon(self, rlay_raw, poly_vlay, layname = None, #output = 'TEMPORARY_OUTPUT', logger = None, ): """ clipping a raster layer with a polygon mask using gdalwarp """ #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('cliprasterwithpolygon') if layname is None: layname = '%s_clipd'%rlay_raw.name() algo_nm = 'gdal:cliprasterbymasklayer' #======================================================================= # precheck #======================================================================= assert isinstance(rlay_raw, QgsRasterLayer) assert isinstance(poly_vlay, QgsVectorLayer) assert 'Poly' in QgsWkbTypes().displayString(poly_vlay.wkbType()) assert rlay_raw.crs() == poly_vlay.crs() #======================================================================= # run algo #======================================================================= ins_d = { 'ALPHA_BAND' : False, 'CROP_TO_CUTLINE' : True, 'DATA_TYPE' : 0, 'EXTRA' : '', 'INPUT' : rlay_raw, 'KEEP_RESOLUTION' : True, 'MASK' : poly_vlay, 'MULTITHREADING' : False, 'NODATA' : None, 'OPTIONS' : '', 'OUTPUT' : 'TEMPORARY_OUTPUT', 'SET_RESOLUTION' : False, 'SOURCE_CRS' : None, 'TARGET_CRS' : None, 'X_RESOLUTION' : None, 'Y_RESOLUTION' : None, } log.debug('executing \'%s\' with ins_d: \n %s \n\n'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['OUTPUT']): """failing intermittently""" raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def cliprasterwithpolygon2(self, #with saga rlay_raw, poly_vlay, ofp = None, layname = None, #output = 'TEMPORARY_OUTPUT', logger = None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('cliprasterwithpolygon') if layname is None: if not ofp is None: layname = os.path.splitext(os.path.split(ofp)[1])[0] else: layname = '%s_clipd'%rlay_raw.name() if ofp is None: ofp = os.path.join(self.out_dir,layname+'.sdat') if os.path.exists(ofp): msg = 'requseted filepath exists: %s'%ofp if self.overwrite: log.warning('DELETING'+msg) os.remove(ofp) else: raise Error(msg) algo_nm = 'saga:cliprasterwithpolygon' #======================================================================= # precheck #======================================================================= if os.path.exists(ofp): msg = 'requested filepath exists: %s'%ofp if self.overwrite: log.warning(msg) else: raise Error(msg) if not os.path.exists(os.path.dirname(ofp)): os.makedirs(os.path.dirname(ofp)) #assert QgsRasterLayer.isValidRasterFileName(ofp), 'invalid filename: %s'%ofp assert 'Poly' in QgsWkbTypes().displayString(poly_vlay.wkbType()) assert rlay_raw.crs() == poly_vlay.crs() #======================================================================= # run algo #======================================================================= ins_d = { 'INPUT' : rlay_raw, 'OUTPUT' : ofp, 'POLYGONS' : poly_vlay } log.debug('executing \'%s\' with ins_d: \n %s \n\n'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['OUTPUT']): """failing intermittently""" raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def srastercalculator(self, formula, rlay_d, #container of raster layers to perform calculations on logger=None, layname=None, ofp=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('srastercalculator') assert 'a' in rlay_d if layname is None: if not ofp is None: layname = os.path.splitext(os.path.split(ofp)[1])[0] else: layname = '%s_calc'%rlay_d['a'].name() if ofp is None: ofp = os.path.join(self.out_dir, layname+'.sdat') if not os.path.exists(os.path.dirname(ofp)): log.info('building basedir: %s'%os.path.dirname(ofp)) os.makedirs(os.path.dirname(ofp)) if os.path.exists(ofp): msg = 'requseted filepath exists: %s'%ofp if self.overwrite: log.warning(msg) os.remove(ofp) else: raise Error(msg) #======================================================================= # execute #======================================================================= algo_nm = 'saga:rastercalculator' ins_d = { 'FORMULA' : formula, 'GRIDS' : rlay_d.pop('a'), 'RESAMPLING' : 3, 'RESULT' : ofp, 'TYPE' : 7, 'USE_NODATA' : False, 'XGRIDS' : list(rlay_d.values())} log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['RESULT']): raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['RESULT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def grastercalculator(self, #GDAL raster calculator formula, rlay_d, #container of raster layers to perform calculations on nodata=0, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('grastercalculator') algo_nm = 'gdal:rastercalculator' if layname is None: layname = '%s_calc'%rlay_d['a'].name() #======================================================================= # prechecks #======================================================================= assert 'A' in rlay_d #======================================================================= # populate #======================================================================= for rtag in ('A', 'B', 'C', 'D', 'E', 'F'): #set dummy placeholders for missing rasters if not rtag in rlay_d: rlay_d[rtag] = None #check what the usre pasased else: assert isinstance(rlay_d[rtag], QgsRasterLayer), 'passed bad %s'%rtag assert rtag in formula, 'formula is missing a reference to \'%s\''%rtag #======================================================================= # execute #======================================================================= ins_d = { 'BAND_A' : 1, 'BAND_B' : -1, 'BAND_C' : -1, 'BAND_D' : -1, 'BAND_E' : -1, 'BAND_F' : -1, 'EXTRA' : '', 'FORMULA' : formula, 'INPUT_A' : rlay_d['A'], 'INPUT_B' : rlay_d['B'], 'INPUT_C' : rlay_d['C'], 'INPUT_D' : rlay_d['D'], 'INPUT_E' : rlay_d['E'], 'INPUT_F' : rlay_d['F'], 'NO_DATA' : nodata, 'OPTIONS' : '', 'OUTPUT' : 'TEMPORARY_OUTPUT', 'RTYPE' : 5 } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) assert os.path.exists(res_d['OUTPUT']), 'failed to get result' res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def qrastercalculator(self, #QGIS native raster calculator formula, ref_layer = None, #reference layer logger=None, layname=None, ): """executes the algorhithim... better to use the constructor directly QgsRasterCalculator""" #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('qrastercalculator') algo_nm = 'qgis:rastercalculator' if layname is None: if ref_layer is None: layname = 'qrastercalculator' else: layname = '%s_calc'%ref_layer.name() #======================================================================= # execute #======================================================================= """ formula = '\'haz_100yr_cT2@1\'-\'dtm_cT1@1\'' """ ins_d = { 'CELLSIZE' : 0, 'CRS' : None, 'EXPRESSION' : formula, 'EXTENT' : None, 'LAYERS' : [ref_layer], #referecnce layer 'OUTPUT' : 'TEMPORARY_OUTPUT' } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['RESULT']): raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['RESULT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def addgeometrycolumns(self, #add geometry data as columns vlay, layname=None, logger=None, ): if logger is None: logger=self.logger log = logger.getChild('addgeometrycolumns') algo_nm = 'qgis:exportaddgeometrycolumns' #======================================================================= # assemble pars #======================================================================= #assemble pars ins_d = { 'CALC_METHOD' : 0, #use layer's crs 'INPUT' : vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT'} log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] #=========================================================================== # post formatting #=========================================================================== if layname is None: layname = '%s_gcol'%self.vlay.name() res_vlay.setName(layname) #reset the name return res_vlay def buffer(self, vlay, distance, #buffer distance to apply dissolve = False, end_cap_style = 0, join_style = 0, miter_limit = 2, segments = 5, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger if layname is None: layname = '%s_buf'%vlay.name() algo_nm = 'native:buffer' log = self.logger.getChild('buffer') distance = float(distance) #======================================================================= # prechecks #======================================================================= if distance==0 or np.isnan(distance): raise Error('got no buffer!') #======================================================================= # build ins #======================================================================= """ distance = 3.0 dcopoy = copy.copy(distance) """ ins_d = { 'INPUT': vlay, 'DISSOLVE' : dissolve, 'DISTANCE' : distance, 'END_CAP_STYLE' : end_cap_style, 'JOIN_STYLE' : join_style, 'MITER_LIMIT' : miter_limit, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'SEGMENTS' : segments} #======================================================================= # execute #======================================================================= log.debug('executing \'native:buffer\' with ins_d: \n %s'%ins_d) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] res_vlay.setName(layname) #reset the name log.debug('finished') return res_vlay def selectbylocation(self, #select features (from main laye) by geoemtric relation with comp_vlay vlay, #vlay to select features from comp_vlay, #vlay to compare result_type = 'select', method= 'new', #Modify current selection by pred_l = ['intersect'], #list of geometry predicate names #expectations allow_none = False, logger = None, ): #======================================================================= # setups and defaults #======================================================================= if logger is None: logger=self.logger algo_nm = 'native:selectbylocation' log = logger.getChild('selectbylocation') #=========================================================================== # #set parameter translation dictoinaries #=========================================================================== meth_d = {'new':0} pred_d = { 'are within':6, 'intersect':0, 'overlap':5, } #predicate (name to value) pred_l = [pred_d[pred_nm] for pred_nm in pred_l] #======================================================================= # setup #======================================================================= ins_d = { 'INPUT' : vlay, 'INTERSECT' : comp_vlay, 'METHOD' : meth_d[method], 'PREDICATE' : pred_l } log.debug('executing \'%s\' on \'%s\' with: \n %s' %(algo_nm, vlay.name(), ins_d)) #=========================================================================== # #execute #=========================================================================== _ = processing.run(algo_nm, ins_d, feedback=self.feedback) #======================================================================= # check #======================================================================= fcnt = vlay.selectedFeatureCount() if fcnt == 0: msg = 'No features selected!' if allow_none: log.warning(msg) else: raise Error(msg) #======================================================================= # wrap #======================================================================= log.debug('selected %i (of %i) features from %s' %(vlay.selectedFeatureCount(),vlay.dataProvider().featureCount(), vlay.name())) return self._get_sel_res(vlay, result_type=result_type, logger=log, allow_none=allow_none) def saveselectedfeatures(self,#generate a memory layer from the current selection vlay, logger=None, allow_none = False, layname=None): #=========================================================================== # setups and defaults #=========================================================================== if logger is None: logger = self.logger log = logger.getChild('saveselectedfeatures') algo_nm = 'native:saveselectedfeatures' if layname is None: layname = '%s_sel'%vlay.name() #======================================================================= # precheck #======================================================================= fcnt = vlay.selectedFeatureCount() if fcnt == 0: msg = 'No features selected!' if allow_none: log.warning(msg) return None else: raise Error(msg) log.debug('on \'%s\' with %i feats selected'%( vlay.name(), vlay.selectedFeatureCount())) #======================================================================= # # build inputs #======================================================================= ins_d = {'INPUT' : vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT'} log.debug('\'native:saveselectedfeatures\' on \'%s\' with: \n %s' %(vlay.name(), ins_d)) #execute res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] assert isinstance(res_vlay, QgsVectorLayer) #=========================================================================== # wrap #=========================================================================== res_vlay.setName(layname) #reset the name return res_vlay def polygonfromlayerextent(self, vlay, round_to=0, #adds a buffer to the result? logger=None, layname=None): """ This algorithm takes a map layer and generates a new vector layer with the minimum bounding box (rectangle polygon with N-S orientation) that covers the input layer. Optionally, the extent can be enlarged to a rounded value. """ #=========================================================================== # setups and defaults #=========================================================================== if logger is None: logger = self.logger log = logger.getChild('polygonfromlayerextent') algo_nm = 'qgis:polygonfromlayerextent' if layname is None: layname = '%s_exts'%vlay.name() #======================================================================= # precheck #======================================================================= #======================================================================= # # build inputs #======================================================================= ins_d = {'INPUT' : vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'ROUND_TO':round_to} log.debug('\'%s\' on \'%s\' with: \n %s' %(algo_nm, vlay.name(), ins_d)) #execute res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] assert isinstance(res_vlay, QgsVectorLayer) #=========================================================================== # wrap #=========================================================================== res_vlay.setName(layname) #reset the name return res_vlay def fixgeometries(self, vlay, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger if layname is None: layname = '%s_fix'%vlay.name() algo_nm = 'native:fixgeometries' log = self.logger.getChild('fixgeometries') #======================================================================= # build ins #======================================================================= """ distance = 3.0 dcopoy = copy.copy(distance) """ ins_d = { 'INPUT': vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', } #======================================================================= # execute #======================================================================= log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] res_vlay.setName(layname) #reset the name log.debug('finished') return res_vlay def createspatialindex(self, in_vlay, logger=None, ): #======================================================================= # presets #======================================================================= algo_nm = 'qgis:createspatialindex' if logger is None: logger=self.logger log = self.logger.getChild('createspatialindex') in_vlay #======================================================================= # assemble pars #======================================================================= #assemble pars ins_d = { 'INPUT' : in_vlay } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) #=========================================================================== # post formatting #=========================================================================== #======================================================================= # if layname is None: # layname = '%s_si'%self.vlay.name() # # res_vlay.setName(layname) #reset the name #======================================================================= return def warpreproject(self, #repojrect a raster rlay_raw, crsOut = None, #crs to re-project to layname = None, options = 'COMPRESS=DEFLATE|PREDICTOR=2|ZLEVEL=9', output = 'TEMPORARY_OUTPUT', logger = None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('warpreproject') if layname is None: layname = '%s_rproj'%rlay_raw.name() algo_nm = 'gdal:warpreproject' if crsOut is None: crsOut = self.crs #just take the project's #======================================================================= # precheck #======================================================================= """the algo accepts 'None'... but not sure why we'd want to do this""" assert isinstance(crsOut, QgsCoordinateReferenceSystem), 'bad crs type' assert isinstance(rlay_raw, QgsRasterLayer) assert rlay_raw.crs() != crsOut, 'layer already on this CRS!' #======================================================================= # run algo #======================================================================= ins_d = { 'DATA_TYPE' : 0, 'EXTRA' : '', 'INPUT' : rlay_raw, 'MULTITHREADING' : False, 'NODATA' : None, 'OPTIONS' : options, 'OUTPUT' : output, 'RESAMPLING' : 0, 'SOURCE_CRS' : None, 'TARGET_CRS' : crsOut, 'TARGET_EXTENT' : None, 'TARGET_EXTENT_CRS' : None, 'TARGET_RESOLUTION' : None, } log.debug('executing \'%s\' with ins_d: \n %s \n\n'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['OUTPUT']): """failing intermittently""" raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() assert rlay_raw.bandCount()==res_rlay.bandCount(), 'band count mismatch' res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay #=========================================================================== # ALGOS - CUSTOM-------- #=========================================================================== def vlay_pts_dist(self, #get the distance between points in a given order vlay_raw, ifn = 'fid', #fieldName to index by request = None, result = 'vlay_append', #result type logger=None): #=========================================================================== # defaults #=========================================================================== if logger is None: logger=self.logger log = logger.getChild('vlay_pts_dist') if request is None: request = QgsFeatureRequest( ).addOrderBy(ifn, ascending=True ).setSubsetOfAttributes([ifn], vlay_raw.fields()) #=========================================================================== # precheck #=========================================================================== assert 'Point' in QgsWkbTypes().displayString(vlay_raw.wkbType()), 'passed bad geo type' #see if indexer is unique ifn_d = vlay_get_fdata(vlay_raw, fieldn=ifn, logger=log) assert len(set(ifn_d.values()))==len(ifn_d) #=========================================================================== # loop and calc #=========================================================================== d = dict() first, geo_prev = True, None for i, feat in enumerate(vlay_raw.getFeatures(request)): assert not feat.attribute(ifn) in d, 'indexer is not unique!' geo = feat.geometry() if first: first=False else: d[feat.attribute(ifn)] = geo.distance(geo_prev) geo_prev = geo log.info('got %i distances using \"%s\''%(len(d), ifn)) #=========================================================================== # check #=========================================================================== assert len(d) == (vlay_raw.dataProvider().featureCount() -1) #=========================================================================== # results typing #=========================================================================== if result == 'dict': return d elif result == 'vlay_append': #data manip ncoln = '%s_dist'%ifn df_raw = vlay_get_fdf(vlay_raw, logger=log) df = df_raw.join(pd.Series(d, name=ncoln), on=ifn) assert df[ncoln].isna().sum()==1, 'expected 1 null' #reassemble geo_d = vlay_get_fdata(vlay_raw, geo_obj=True, logger=log) return self.vlay_new_df2(df, geo_d=geo_d, logger=log, layname='%s_%s'%(vlay_raw.name(), ncoln)) #========================================================================== # privates---------- #========================================================================== def _field_handlr(self, #common handling for fields vlay, #layer to check for field presence fieldn_l, #list of fields to handle invert = False, logger=None, ): if logger is None: logger=self.logger log = logger.getChild('_field_handlr') #======================================================================= # all flag #======================================================================= if isinstance(fieldn_l, str): if fieldn_l == 'all': fieldn_l = vlay_fieldnl(vlay) log.debug('user passed \'all\', retrieved %i fields: \n %s'%( len(fieldn_l), fieldn_l)) else: raise Error('unrecognized fieldn_l\'%s\''%fieldn_l) #======================================================================= # type setting #======================================================================= if isinstance(fieldn_l, tuple) or isinstance(fieldn_l, np.ndarray) or isinstance(fieldn_l, set): fieldn_l = list(fieldn_l) #======================================================================= # checking #======================================================================= if not isinstance(fieldn_l, list): raise Error('expected a list for fields, instead got \n %s'%fieldn_l) #vlay_check(vlay, exp_fieldns=fieldn_l) #======================================================================= # #handle inversions #======================================================================= if invert: big_fn_s = set(vlay_fieldnl(vlay)) #get all the fields #get the difference fieldn_l = list(big_fn_s.difference(set(fieldn_l))) log.debug('inverted selection from %i to %i fields'% (len(big_fn_s), len(fieldn_l))) return fieldn_l def _get_sel_obj(self, vlay): #get the processing object for algos with selections log = self.logger.getChild('_get_sel_obj') assert isinstance(vlay, QgsVectorLayer) if vlay.selectedFeatureCount() == 0: raise Error('Nothing selected on \'%s\'. exepects some pre selection'%(vlay.name())) #handle project layer store if self.qproj.mapLayer(vlay.id()) is None: #layer not on project yet. add it if self.qproj.addMapLayer(vlay, False) is None: raise Error('failed to add map layer \'%s\''%vlay.name()) log.debug('based on %i selected features from \'%s\''%(len(vlay.selectedFeatureIds()), vlay.name())) return QgsProcessingFeatureSourceDefinition(source=vlay.id(), selectedFeaturesOnly=True, featureLimit=-1, geometryCheck=QgsFeatureRequest.GeometryAbortOnInvalid) def _get_sel_res(self, #handler for returning selection like results vlay, #result layer (with selection on it result_type='select', #expectiions allow_none = False, logger=None ): #======================================================================= # setup #======================================================================= if logger is None: logger = self.logger log = logger.getChild('_get_sel_res') #======================================================================= # precheck #======================================================================= if vlay.selectedFeatureCount() == 0: if not allow_none: raise Error('nothing selected') return None #log.debug('user specified \'%s\' for result_type'%result_type) #======================================================================= # by handles #======================================================================= if result_type == 'select': #log.debug('user specified \'select\', doing nothing with %i selected'%vlay.selectedFeatureCount()) result = None elif result_type == 'fids': result = vlay.selectedFeatureIds() #get teh selected feature ids elif result_type == 'feats': result = {feat.id(): feat for feat in vlay.getSelectedFeatures()} elif result_type == 'layer': result = self.saveselectedfeatures(vlay, logger=log) else: raise Error('unexpected result_type kwarg') return result def _in_out_checking(self,res_vlay, ): """placeholder""" def __exit__(self, #destructor *args,**kwargs): self.mstore.removeAllMapLayers() super().__exit__(*args,**kwargs) #initilzie teh baseclass class MyFeedBackQ(QgsProcessingFeedback): """ wrapper for easier reporting and extended progress Dialogs: built by QprojPlug.qproj_setup() Qworkers: built by Qcoms.__init__() """ def __init__(self, logger=mod_logger): self.logger=logger.getChild('FeedBack') super().__init__() def setProgressText(self, text): self.logger.debug(text) def pushInfo(self, info): self.logger.info(info) def pushCommandInfo(self, info): self.logger.info(info) def pushDebugInfo(self, info): self.logger.info(info) def pushConsoleInfo(self, info): self.logger.info(info) def reportError(self, error, fatalError=False): self.logger.error(error) def upd_prog(self, #advanced progress handling prog_raw, #pass None to reset method='raw', #whether to append value to the progress ): #======================================================================= # defaults #======================================================================= #get the current progress progress = self.progress() #=================================================================== # prechecks #=================================================================== #make sure we have some slots connected """not sure how to do this""" #======================================================================= # reseting #======================================================================= if prog_raw is None: """ would be nice to reset the progressBar.. .but that would be complicated """ self.setProgress(0) return #======================================================================= # setting #======================================================================= if method=='append': prog = min(progress + prog_raw, 100) elif method=='raw': prog = prog_raw elif method == 'portion': rem_prog = 100-progress prog = progress + rem_prog*(prog_raw/100) assert prog<=100 #=================================================================== # emit signalling #=================================================================== self.setProgress(prog) #============================================================================== # FUNCTIONS---------- #============================================================================== def init_q(gui=False): try: QgsApplication.setPrefixPath(r'C:/OSGeo4W64/apps/qgis-ltr', True) app = QgsApplication([], gui) # Update prefix path #app.setPrefixPath(r"C:\OSGeo4W64\apps\qgis", True) app.initQgis() #logging.debug(QgsApplication.showSettings()) """ was throwing unicode error""" print(u' QgsApplication.initQgis. version: %s, release: %s'%( Qgis.QGIS_VERSION.encode('utf-8'), Qgis.QGIS_RELEASE_NAME.encode('utf-8'))) return app except: raise Error('QGIS failed to initiate') def vlay_check( #helper to check various expectations on the layer vlay, exp_fieldns = None, #raise error if these field names are OUT uexp_fieldns = None, #raise error if these field names are IN real_atts = None, #list of field names to check if attribute value are all real bgeot = None, #basic geo type checking fcnt = None, #feature count checking. accepts INT or QgsVectorLayer fkey = None, #optional secondary key to check mlay = False, #check if its a memory layer or not chk_valid = False, #check layer validty logger = mod_logger, db_f = False, ): #======================================================================= # prechecks #======================================================================= if vlay is None: raise Error('got passed an empty vlay') if not isinstance(vlay, QgsVectorLayer): raise Error('unexpected type: %s'%type(vlay)) log = logger.getChild('vlay_check') checks_l = [] #======================================================================= # expected field names #======================================================================= if not basic.is_null(exp_fieldns): #robust null checking skip=False if isinstance(exp_fieldns, str): if exp_fieldns=='all': skip=True if not skip: fnl = basic.linr(exp_fieldns, vlay_fieldnl(vlay), 'expected field names', vlay.name(), result_type='missing', logger=log, fancy_log=db_f) if len(fnl)>0: raise Error('%s missing expected fields: %s'%( vlay.name(), fnl)) checks_l.append('exp_fieldns=%i'%len(exp_fieldns)) #======================================================================= # unexpected field names #======================================================================= if not basic.is_null(uexp_fieldns): #robust null checking #fields on the layer if len(vlay_fieldnl(vlay))>0: fnl = basic.linr(uexp_fieldns, vlay_fieldnl(vlay), 'un expected field names', vlay.name(), result_type='matching', logger=log, fancy_log=db_f) if len(fnl)>0: raise Error('%s contains unexpected fields: %s'%( vlay.name(), fnl)) #no fields on the layer else: pass checks_l.append('uexp_fieldns=%i'%len(uexp_fieldns)) #======================================================================= # null value check #======================================================================= #========================================================================== # if not real_atts is None: # # #pull this data # df = vlay_get_fdf(vlay, fieldn_l = real_atts, logger=log) # # #check for nulls # if np.any(df.isna()): # raise Error('%s got %i nulls on %i expected real fields: %s'%( # vlay.name(), df.isna().sum().sum(), len(real_atts), real_atts)) # # # checks_l.append('real_atts=%i'%len(real_atts)) #========================================================================== #======================================================================= # basic geometry type #======================================================================= #========================================================================== # if not bgeot is None: # bgeot_lay = vlay_get_bgeo_type(vlay) # # if not bgeot == bgeot_lay: # raise Error('basic geometry type expectation \'%s\' does not match layers \'%s\''%( # bgeot, bgeot_lay)) # # checks_l.append('bgeot=%s'%bgeot) #========================================================================== #======================================================================= # feature count #======================================================================= if not fcnt is None: if isinstance(fcnt, QgsVectorLayer): fcnt=fcnt.dataProvider().featureCount() if not fcnt == vlay.dataProvider().featureCount(): raise Error('\'%s\'s feature count (%i) does not match %i'%( vlay.name(), vlay.dataProvider().featureCount(), fcnt)) checks_l.append('fcnt=%i'%fcnt) #======================================================================= # fkey #======================================================================= #============================================================================== # if isinstance(fkey, str): # fnl = vlay_fieldnl(vlay) # # if not fkey in fnl: # raise Error('fkey \'%s\' not in the fields'%fkey) # # fkeys_ser = vlay_get_fdata(vlay, fkey, logger=log, fmt='ser').sort_values() # # if not np.issubdtype(fkeys_ser.dtype, np.number): # raise Error('keys are non-numeric. type: %s'%fkeys_ser.dtype) # # if not fkeys_ser.is_unique: # raise Error('\'%s\' keys are not unique'%fkey) # # if not fkeys_ser.is_monotonic: # raise Error('fkeys are not monotonic') # # if np.any(fkeys_ser.isna()): # raise Error('fkeys have nulls') # # checks_l.append('fkey \'%s\'=%i'%(fkey, len(fkeys_ser))) #============================================================================== #======================================================================= # storage type #======================================================================= if mlay: if not 'Memory' in vlay.dataProvider().storageType(): raise Error('\"%s\' unexpected storage type: %s'%( vlay.name(), vlay.dataProvider().storageType())) checks_l.append('mlay') #======================================================================= # validty #======================================================================= #========================================================================== # if chk_valid: # vlay_chk_validty(vlay, chk_geo=True) # # checks_l.append('validity') #========================================================================== #======================================================================= # wrap #======================================================================= log.debug('\'%s\' passed %i checks: %s'%( vlay.name(), len(checks_l), checks_l)) return def load_vlay( #load a layer from a file fp, providerLib='ogr', logger=mod_logger): """ what are we using this for? see instanc emethod """ log = logger.getChild('load_vlay') assert os.path.exists(fp), 'requested file does not exist: %s'%fp basefn = os.path.splitext(os.path.split(fp)[1])[0] #Import a Raster Layer vlay_raw = QgsVectorLayer(fp,basefn,providerLib) #check if this is valid if not vlay_raw.isValid(): log.error('loaded vlay \'%s\' is not valid. \n \n did you initilize?'%vlay_raw.name()) raise Error('vlay loading produced an invalid layer') #check if it has geometry if vlay_raw.wkbType() == 100: log.error('loaded vlay has NoGeometry') raise Error('no geo') #========================================================================== # report #========================================================================== vlay = vlay_raw dp = vlay.dataProvider() log.info('loaded vlay \'%s\' as \'%s\' %s geo with %i feats from file: \n %s' %(vlay.name(), dp.storageType(), QgsWkbTypes().displayString(vlay.wkbType()), dp.featureCount(), fp)) return vlay def vlay_write( #write a VectorLayer vlay, out_fp, driverName='GPKG', fileEncoding = "CP1250", opts = QgsVectorFileWriter.SaveVectorOptions(), #empty options object overwrite=False, logger=mod_logger): """ help(QgsVectorFileWriter.SaveVectorOptions) QgsVectorFileWriter.SaveVectorOptions.driverName='GPKG' opt2 = QgsVectorFileWriter.BoolOption(QgsVectorFileWriter.CreateOrOverwriteFile) help(QgsVectorFileWriter) TODO: Move this back onto Qcoms """ #========================================================================== # defaults #========================================================================== log = logger.getChild('vlay_write') #=========================================================================== # assemble options #=========================================================================== opts.driverName = driverName opts.fileEncoding = fileEncoding #=========================================================================== # checks #=========================================================================== #file extension fhead, ext = os.path.splitext(out_fp) if not 'gpkg' in ext: raise Error('unexpected extension: %s'%ext) if os.path.exists(out_fp): msg = 'requested file path already exists!. overwrite=%s \n %s'%( overwrite, out_fp) if overwrite: log.warning(msg) os.remove(out_fp) #workaround... should be away to overwrite with the QgsVectorFileWriter else: raise Error(msg) if vlay.dataProvider().featureCount() == 0: raise Error('\'%s\' has no features!'%( vlay.name())) if not vlay.isValid(): Error('passed invalid layer') error = QgsVectorFileWriter.writeAsVectorFormatV2( vlay, out_fp, QgsCoordinateTransformContext(), opts, ) #======================================================================= # wrap and check #======================================================================= if error[0] == QgsVectorFileWriter.NoError: log.info('layer \' %s \' written to: \n %s'%(vlay.name(),out_fp)) return out_fp raise Error('FAILURE on writing layer \' %s \' with code:\n %s \n %s'%(vlay.name(),error, out_fp)) def vlay_get_fdf( #pull all the feature data and place into a df vlay, fmt='df', #result fomrat key. #dict: {fid:{fieldname:value}} #df: index=fids, columns=fieldnames #limiters request = None, #request to pull data. for more customized requestes. fieldn_l = None, #or field name list. for generic requests #modifiers reindex = None, #optinal field name to reindex df by #expectations expect_all_real = False, #whether to expect all real results allow_none = False, db_f = False, logger=mod_logger, feedback=MyFeedBackQ()): """ performance improvement Warning: requests with getFeatures arent working as expected for memory layers this could be combined with vlay_get_feats() also see vlay_get_fdata() (for a single column) RETURNS a dictionary in the Qgis attribute dictionary format: key: generally feat.id() value: a dictionary of {field name: attribute value} """ #=========================================================================== # setups and defaults #=========================================================================== log = logger.getChild('vlay_get_fdf') assert isinstance(vlay, QgsVectorLayer) all_fnl = [fieldn.name() for fieldn in vlay.fields().toList()] if fieldn_l is None: #use all the fields fieldn_l = all_fnl else: vlay_check(vlay, fieldn_l, logger=logger, db_f=db_f) if allow_none: if expect_all_real: raise Error('cant allow none and expect all reals') #=========================================================================== # prechecks #=========================================================================== if not reindex is None: if not reindex in fieldn_l: raise Error('requested reindexer \'%s\' is not a field name'%reindex) if not vlay.dataProvider().featureCount()>0: raise Error('no features!') if len(fieldn_l) == 0: raise Error('no fields!') if fmt=='dict' and not (len(fieldn_l)==len(all_fnl)): raise Error('dict results dont respect field slicing') assert hasattr(feedback, 'setProgress') #=========================================================================== # build the request #=========================================================================== feedback.setProgress(2) if request is None: """WARNING: this doesnt seem to be slicing the fields. see Alg().deletecolumns() but this will re-key things request = QgsFeatureRequest().setSubsetOfAttributes(fieldn_l,vlay.fields())""" request = QgsFeatureRequest() #never want geometry request = request.setFlags(QgsFeatureRequest.NoGeometry) log.debug('extracting data from \'%s\' on fields: %s'%(vlay.name(), fieldn_l)) #=========================================================================== # loop through each feature and extract the data #=========================================================================== fid_attvs = dict() #{fid : {fieldn:value}} fcnt = vlay.dataProvider().featureCount() for indxr, feat in enumerate(vlay.getFeatures(request)): #zip values fid_attvs[feat.id()] = feat.attributes() feedback.setProgress((indxr/fcnt)*90) #=========================================================================== # post checks #=========================================================================== if not len(fid_attvs) == vlay.dataProvider().featureCount(): log.debug('data result length does not match feature count') if not request.filterType()==3: #check if a filter fids was passed """todo: add check to see if the fiter request length matches tresult""" raise Error('no filter and data length mismatch') #check the field lengthes if not len(all_fnl) == len(feat.attributes()): raise Error('field length mismatch') #empty check 1 if len(fid_attvs) == 0: log.warning('failed to get any data on layer \'%s\' with request'%vlay.name()) if not allow_none: raise Error('no data found!') else: if fmt == 'dict': return dict() elif fmt == 'df': return pd.DataFrame() else: raise Error('unexpected fmt type') #=========================================================================== # result formatting #=========================================================================== log.debug('got %i data elements for \'%s\''%( len(fid_attvs), vlay.name())) if fmt == 'dict': return fid_attvs elif fmt=='df': #build the dict df_raw = pd.DataFrame.from_dict(fid_attvs, orient='index', columns=all_fnl) #handle column slicing and Qnulls """if the requester worked... we probably wouldnt have to do this""" df = df_raw.loc[:, tuple(fieldn_l)].replace(NULL, np.nan) feedback.setProgress(95) if isinstance(reindex, str): """ reindex='zid' view(df) """ #try and add the index (fids) as a data column try: df = df.join(pd.Series(df.index,index=df.index, name='fid')) except: log.debug('failed to preserve the fids.. column already there?') #re-index by the passed key... should copy the fids over to 'index df = df.set_index(reindex, drop=True) log.debug('reindexed data by \'%s\''%reindex) return df else: raise Error('unrecognized fmt kwarg') def vlay_get_fdata( #get data for a single field from all the features vlay, fieldn = None, #get a field name. 'None' returns a dictionary of np.nan geopropn = None, #get a geometry property geo_obj = False, #whether to just get the geometry object request = None, #additional requester (limiting fids). fieldn still required. additional flags added selected= False, #whether to limit data to just those selected features fmt = 'dict', #format to return results in #'singleton' expect and aprovide a unitary value rekey = None, #field name to rekey dictionary like results by expect_all_real = False, #whether to expect all real results dropna = False, #whether to drop nulls from the results allow_none = False, logger = mod_logger, db_f=False): """ TODO: combine this with vlay_get_fdatas consider combining with vlay_get_feats I'm not sure how this will handle requests w/ expressions """ log = logger.getChild('vlay_get_fdata') if request is None: request = QgsFeatureRequest() #=========================================================================== # prechecks #=========================================================================== if geo_obj: if fmt == 'df': raise IOError if not geopropn is None: raise IOError if dropna: if expect_all_real: raise Error('cant expect_all_reals AND dropna') if allow_none: if expect_all_real: raise Error('cant allow none and expect all reals') vlay_check(vlay, exp_fieldns=[fieldn], logger=log, db_f=db_f) #=========================================================================== # build the request #=========================================================================== #no geometry if (geopropn is None) and (not geo_obj): if fieldn is None: raise Error('no field name provided') request = request.setFlags(QgsFeatureRequest.NoGeometry) request = request.setSubsetOfAttributes([fieldn],vlay.fields()) else: request = request.setNoAttributes() #dont get any attributes #=========================================================================== # selection limited #=========================================================================== if selected: """ todo: check if there is already a fid filter placed on the reuqester """ log.debug('limiting data pull to %i selected features on \'%s\''%( vlay.selectedFeatureCount(), vlay.name())) sfids = vlay.selectedFeatureIds() request = request.setFilterFids(sfids) #=========================================================================== # loop through and collect hte data #=========================================================================== #if db_f: req_log(request, logger=log) d = dict() #empty container for results for feat in vlay.getFeatures(request): #======================================================================= # get geometry #======================================================================= if geo_obj: d[feat.id()] = feat.geometry() #======================================================================= # get a geometry property #======================================================================= elif not geopropn is None: geo = feat.geometry() func = getattr(geo, geopropn) #get the method d[feat.id()] = func() #call the method and store #======================================================================= # field request #======================================================================= else: #empty shortcut if qisnull(feat.attribute(fieldn)): d[feat.id()] = np.nan else: #pull real data d[feat.id()] = feat.attribute(fieldn) log.debug('retrieved %i attributes from features on \'%s\''%( len(d), vlay.name())) #=========================================================================== # null handling #=========================================================================== if selected: if not len(d) == vlay.selectedFeatureCount(): raise Error('failed to get data matching %i selected features'%( vlay.selectedFeatureCount())) if expect_all_real: boolar = pd.isnull(np.array(list(d.values()))) if np.any(boolar): raise Error('got %i nulls'%boolar.sum()) if dropna: """faster to use dfs?""" log.debug('dropping nulls from %i'%len(d)) d2 = dict() for k, v in d.items(): if np.isnan(v): continue d2[k] = v d = d2 #reset #=========================================================================== # post checks #=========================================================================== if len(d) == 0: log.warning('got no results! from \'%s\''%( vlay.name())) if not allow_none: raise Error('allow_none=FALSE and no results') """ view(vlay) """ #=========================================================================== # rekey #=========================================================================== if isinstance(rekey, str): assert fmt=='dict' d, _ = vlay_key_convert(vlay, d, rekey, id1_type='fid', logger=log) #=========================================================================== # results #=========================================================================== if fmt == 'dict': return d elif fmt == 'df': return pd.DataFrame(pd.Series(d, name=fieldn)) elif fmt == 'singleton': if not len(d)==1: raise Error('expected singleton') return next(iter(d.values())) elif fmt == 'ser': return pd.Series(d, name=fieldn) else: raise IOError def vlay_new_mlay(#create a new mlay gtype, #"Point", "LineString", "Polygon", "MultiPoint", "MultiLineString", or "MultiPolygon". crs, layname, qfields, feats_l, logger=mod_logger, ): #======================================================================= # defaults #======================================================================= log = logger.getChild('vlay_new_mlay') #======================================================================= # prechecks #======================================================================= if not isinstance(layname, str): raise Error('expected a string for layname, isntead got %s'%type(layname)) if gtype=='None': log.warning('constructing mlay w/ \'None\' type') #======================================================================= # assemble into new layer #======================================================================= #initilzie the layer EPSG_code=int(crs.authid().split(":")[1]) #get teh coordinate reference system of input_layer uri = gtype+'?crs=epsg:'+str(EPSG_code)+'&index=yes' vlaym = QgsVectorLayer(uri, layname, "memory") # add fields if not vlaym.dataProvider().addAttributes(qfields): raise Error('failed to add fields') vlaym.updateFields() #add feats if not vlaym.dataProvider().addFeatures(feats_l): raise Error('failed to addFeatures') vlaym.updateExtents() #======================================================================= # checks #======================================================================= if vlaym.wkbType() == 100: msg = 'constructed layer \'%s\' has NoGeometry'%vlaym.name() if gtype == 'None': log.debug(msg) else: raise Error(msg) log.debug('constructed \'%s\''%vlaym.name()) return vlaym def vlay_new_df(#build a vlay from a df df_raw, crs, geo_d = None, #container of geometry objects {fid: QgsGeometry} geo_fn_tup = None, #if geo_d=None, tuple of field names to search for coordinate data layname='df_layer', allow_fid_mismatch = False, infer_dtypes = True, #whether to referesh the dtyping in the df driverName = 'GPKG', #expectations expect_unique_colns = True, logger=mod_logger, db_f = False, ): """ todo: migrate off this """ #======================================================================= # setup #======================================================================= log = logger.getChild('vlay_new_df') log.warning('Depcreciate me') #======================================================================= # precheck #======================================================================= df = df_raw.copy() max_len=50 #check lengths boolcol = df_raw.columns.str.len() >= max_len if np.any(boolcol): log.warning('passed %i columns which exeed the max length %i for driver \'%s\'.. truncating: \n %s'%( boolcol.sum(), max_len, driverName, df_raw.columns.values[boolcol])) df.columns = df.columns.str.slice(start=0, stop=max_len-1) #make sure the columns are unique if not df.columns.is_unique: """ this can happen especially when some field names are super long and have their unique parts truncated """ boolcol = df.columns.duplicated(keep='first') log.warning('got %i duplicated columns: \n %s'%( boolcol.sum(), df.columns[boolcol].values)) if expect_unique_colns: raise Error('got non unique columns') #drop the duplicates log.warning('dropping second duplicate column') df = df.loc[:, ~boolcol] #=========================================================================== # assemble the features #=========================================================================== """this does its own index check""" feats_d = feats_build(df, logger=log, geo_d = geo_d,infer_dtypes=infer_dtypes, geo_fn_tup = geo_fn_tup, allow_fid_mismatch=allow_fid_mismatch, db_f=db_f) #======================================================================= # get the geo type #======================================================================= if not geo_d is None: #pull geometry type from first feature gtype = QgsWkbTypes().displayString(next(iter(geo_d.values())).wkbType()) elif not geo_fn_tup is None: gtype = 'Point' else: gtype = 'None' #=========================================================================== # buidl the new layer #=========================================================================== vlay = vlay_new_mlay(gtype, #no geo crs, layname, list(feats_d.values())[0].fields(), list(feats_d.values()), logger=log, ) #======================================================================= # post check #======================================================================= if db_f: if vlay.wkbType() == 100: raise Error('constructed layer has NoGeometry') #vlay_chk_validty(vlay, chk_geo=True, logger=log) return vlay def vlay_fieldnl(vlay): return [field.name() for field in vlay.fields()] def feats_build( #build a set of features from teh passed data data, #data from which to build features from (either df or qvlayd) geo_d = None, #container of geometry objects {fid: QgsGeometry} geo_fn_tup = None, #if geo_d=None, tuple of field names to search for coordinate data allow_fid_mismatch = False, #whether to raise an error if the fids set on the layer dont match the data infer_dtypes = True, #whether to referesh the dtyping in the df logger=mod_logger, db_f=False): log = logger.getChild('feats_build') #=========================================================================== # precheck #=========================================================================== #geometry input logic if (not geo_d is None) and (not geo_fn_tup is None): raise Error('todo: implement non geo layers') #index match if isinstance(geo_d, dict): #get the data fid_l if isinstance(data, pd.DataFrame): dfid_l = data.index.tolist() elif isinstance(data, dict): dfid_l = list(data.keys()) else: raise Error('unexpected type') if not basic.linr(dfid_l, list(geo_d.keys()),'feat_data', 'geo_d', sort_values=True, result_type='exact', logger=log): raise Error('passed geo_d and data indexes dont match') #overrides if geo_fn_tup: geofn_hits = 0 sub_field_match = False #dropping geometry fields else: sub_field_match = True log.debug('for %i data type %s'%( len(data), type(data))) #=========================================================================== # data conversion #=========================================================================== if isinstance(data, pd.DataFrame): #check the index (this will be the fids) if not data.index.dtype.char == 'q': raise Error('expected integer index') fid_ar = data.index.values #infer types if infer_dtypes: data = data.infer_objects() #convert the data qvlayd = df_to_qvlayd(data) #======================================================================= # build fields container from data #======================================================================= """we need to convert numpy types to pytypes. these are later convert to Qtypes""" fields_d = dict() for coln, col in data.items(): if not geo_fn_tup is None: if coln in geo_fn_tup: geofn_hits +=1 continue #skip this one #set the type for this name fields_d[coln] = np_to_pytype(col.dtype, logger=log) qfields = fields_build_new(fields_d = fields_d, logger=log) #======================================================================= # some checks #======================================================================= if db_f: #calc hte expectation if geo_fn_tup is None: exp_cnt= len(data.columns) else: exp_cnt = len(data.columns) - len(geo_fn_tup) if not exp_cnt == len(fields_d): raise Error('only generated %i fields from %i columns'%( len(data.columns), len(fields_d))) #check we got them all if not exp_cnt == len(qfields): raise Error('failed to create all the fields') """ for field in qfields: print(field) qfields.toList() new_qfield = QgsField(fname, qtype, typeName=QMetaType.typeName(QgsField(fname, qtype).type())) """ else: fid_ar = np.array(list(data.keys())) #set the data qvlayd = data #=========================================================================== # build fields container from data #=========================================================================== #slice out geometry data if there sub_d1 = list(qvlayd.values())[0] #just get the first sub_d2 = dict() for fname, value in sub_d1.items(): if not geo_fn_tup is None: if fname in geo_fn_tup: geofn_hits +=1 continue #skip this one sub_d2[fname] = value #build the fields from this sample data qfields = fields_build_new(samp_d = sub_d2, logger=log) #check for geometry field names if not geo_fn_tup is None: if not geofn_hits == len(geo_fn_tup): log.error('missing some geometry field names form the data') raise IOError #=========================================================================== # extract geometry #=========================================================================== if geo_d is None: #check for nulls if db_f: chk_df= pd.DataFrame.from_dict(qvlayd, orient='index') if chk_df.loc[:, geo_fn_tup].isna().any().any(): raise Error('got some nulls on the geometry fields: %s'%geo_fn_tup) geo_d = dict() for fid, sub_d in copy.copy(qvlayd).items(): #get the xy xval, yval = sub_d.pop(geo_fn_tup[0]), sub_d.pop(geo_fn_tup[1]) #build the geometry geo_d[fid] = QgsGeometry.fromPointXY(QgsPointXY(xval,yval)) #add the cleaned data back in qvlayd[fid] = sub_d #=========================================================================== # check geometry #=========================================================================== if db_f: #precheck geometry validty for fid, geo in geo_d.items(): if not geo.isGeosValid(): raise Error('got invalid geometry on %i'%fid) #=========================================================================== # loop through adn build features #=========================================================================== feats_d = dict() for fid, sub_d in qvlayd.items(): #======================================================================= # #log.debug('assembling feature %i'%fid) # #======================================================================= # # assmble geometry data # #======================================================================= # if isinstance(geo_d, dict): # geo = geo_d[fid] # # elif not geo_fn_tup is None: # xval = sub_d[geo_fn_tup[0]] # yval = sub_d[geo_fn_tup[1]] # # if pd.isnull(xval) or pd.isnull(yval): # log.error('got null geometry values') # raise IOError # # geo = QgsGeometry.fromPointXY(QgsPointXY(xval,yval)) # #Point(xval, yval) #make the point geometry # # else: # geo = None #======================================================================= #======================================================================= # buidl the feature #======================================================================= #======================================================================= # feats_d[fid] = feat_build(fid, sub_d, qfields=qfields, geometry=geo, # sub_field_match = sub_field_match, #because we are excluding the geometry from the fields # logger=log, db_f=db_f) #======================================================================= feat = QgsFeature(qfields, fid) for fieldn, value in sub_d.items(): """ cut out feat_build() for simplicity """ #skip null values if pd.isnull(value): continue #get the index for this field findx = feat.fieldNameIndex(fieldn) #get the qfield qfield = feat.fields().at(findx) #make the type match ndata = qtype_to_pytype(value, qfield.type(), logger=log) #set the attribute if not feat.setAttribute(findx, ndata): raise Error('failed to setAttribute') #setgeometry feat.setGeometry(geo_d[fid]) #stor eit feats_d[fid]=feat #=========================================================================== # checks #=========================================================================== if db_f: #fid match nfid_ar = np.array(list(feats_d.keys())) if not np.array_equal(nfid_ar, fid_ar): log.warning('fid mismatch') if not allow_fid_mismatch: raise Error('fid mismatch') #feature validty for fid, feat in feats_d.items(): if not feat.isValid(): raise Error('invalid feat %i'%feat.id()) if not feat.geometry().isGeosValid(): raise Error('got invalid geometry on feat \'%s\''%(feat.id())) """ feat.geometry().type() """ log.debug('built %i \'%s\' features'%( len(feats_d), QgsWkbTypes.geometryDisplayString(feat.geometry().type()), )) return feats_d def fields_build_new( #build qfields from different data containers samp_d = None, #sample data from which to build qfields {fname: value} fields_d = None, #direct data from which to build qfields {fname: pytype} fields_l = None, #list of QgsField objects logger=mod_logger): log = logger.getChild('fields_build_new') #=========================================================================== # buidl the fields_d #=========================================================================== if (fields_d is None) and (fields_l is None): #only if we have nothign better to start with if samp_d is None: log.error('got no data to build fields on!') raise IOError fields_l = [] for fname, value in samp_d.items(): if pd.isnull(value): log.error('for field \'%s\' got null value') raise IOError elif inspect.isclass(value): raise IOError fields_l.append(field_new(fname, pytype=type(value))) log.debug('built %i fields from sample data'%len(fields_l)) #=========================================================================== # buidl the fields set #=========================================================================== elif fields_l is None: fields_l = [] for fname, ftype in fields_d.items(): fields_l.append(field_new(fname, pytype=ftype)) log.debug('built %i fields from explicit name/type'%len(fields_l)) #check it if not len(fields_l) == len(fields_d): raise Error('length mismatch') elif fields_d is None: #check we have the other raise IOError #=========================================================================== # build the Qfields #=========================================================================== Qfields = QgsFields() fail_msg_d = dict() for indx, field in enumerate(fields_l): if not Qfields.append(field): fail_msg_d[indx] = ('%i failed to append field \'%s\''%(indx, field.name()), field) #report if len(fail_msg_d)>0: for indx, (msg, field) in fail_msg_d.items(): log.error(msg) raise Error('failed to write %i fields'%len(fail_msg_d)) """ field.name() field.constraints().constraintDescription() field.length() """ #check it if not len(Qfields) == len(fields_l): raise Error('length mismatch') return Qfields def field_new(fname, pytype=str, driverName = 'SpatiaLite', #desired driver (to check for field name length limitations) fname_trunc = True, #whether to truncate field names tha texceed the limit logger=mod_logger): #build a QgsField #=========================================================================== # precheck #=========================================================================== if not isinstance(fname, str): raise IOError('expected string for fname') #vector layer field name lim itation max_len = fieldn_max_d[driverName] """ fname = 'somereallylongname' """ if len(fname) >max_len: log = logger.getChild('field_new') log.warning('got %i (>%i)characters for passed field name \'%s\'. truncating'%(len(fname), max_len, fname)) if fname_trunc: fname = fname[:max_len] else: raise Error('field name too long') qtype = ptype_to_qtype(pytype) """ #check this type QMetaType.typeName(QgsField(fname, qtype).type()) QVariant.String QVariant.Int QMetaType.typeName(new_qfield.type()) """ #new_qfield = QgsField(fname, qtype) new_qfield = QgsField(fname, qtype, typeName=QMetaType.typeName(QgsField(fname, qtype).type())) return new_qfield def vlay_get_bgeo_type(vlay, match_flags=re.IGNORECASE, ): gstr = QgsWkbTypes().displayString(vlay.wkbType()).lower() for gtype in ('polygon', 'point', 'line'): if re.search(gtype, gstr, flags=match_flags): return gtype raise Error('failed to match') def vlay_rename_fields( vlay_raw, rnm_d, #field name conversions to apply {old FieldName:newFieldName} logger=None, feedback=None, ): """ todo: replace with coms.hp.Qproj.vlay_rename_fields """ if logger is None: logger=mod_logger log=logger.getChild('vlay_rename_fields') #get a working layer vlay_raw.selectAll() vlay = processing.run('native:saveselectedfeatures', {'INPUT' : vlay_raw, 'OUTPUT' : 'TEMPORARY_OUTPUT'}, feedback=feedback)['OUTPUT'] #get fieldname index conversion for layer fni_d = {f.name():vlay.dataProvider().fieldNameIndex(f.name()) for f in vlay.fields()} #check it for k in rnm_d.keys(): assert k in fni_d.keys(), 'requested field \'%s\' not on layer'%k #re-index rename request fiRn_d = {fni_d[k]:v for k,v in rnm_d.items()} #apply renames if not vlay.dataProvider().renameAttributes(fiRn_d): raise Error('failed to rename') vlay.updateFields() #check it fn_l = [f.name() for f in vlay.fields()] s = set(rnm_d.values()).difference(fn_l) assert len(s)==0, 'failed to rename %i fields: %s'%(len(s), s) vlay.setName(vlay_raw.name()) log.debug('applied renames to \'%s\' \n %s'%(vlay.name(), rnm_d)) return vlay def vlay_key_convert(#convert a list of ids in one form to another vlay, id1_objs, #list of ids (or dict keyed b y ids) to get conversion of id_fieldn, #field name for field type ids id1_type = 'field', #type of ids passed in the id_l (result will return a dict of th eopposit etype) #'field': keys in id1_objs are values from some field (on the vlay) #'fid': keys in id1_objs are fids (on the vlay) fid_fval_d = None, #optional pre-calced data (for performance improvement) logger=mod_logger, db_f = False, #extra checks ): log = logger.getChild('vlay_key_convert') #=========================================================================== # handle variable inputs #=========================================================================== if isinstance(id1_objs, dict): id1_l = list(id1_objs.keys()) elif isinstance(id1_objs, list): id1_l = id1_objs else: raise Error('unrecognized id1_objs type') #=========================================================================== # extract the fid to fval conversion #=========================================================================== if fid_fval_d is None: #limit the pull by id1s if id1_type == 'fid': request = QgsFeatureRequest().setFilterFids(id1_l) log.debug('pulling \'fid_fval_d\' from %i fids'%(len(id1_l))) #by field values elif id1_type == 'field': #limit by field value raise Error(' not implemented') #build an expression so we only query features with values matching the id1_l #=================================================================== # qexp = exp_vals_in_field(id1_l, id_fieldn, qfields = vlay.fields(), logger=log) # request = QgsFeatureRequest(qexp) # # log.debug('pulling \'fid_fval_d\' from %i \'%s\' fvals'%( # len(id1_l), id_fieldn)) #=================================================================== else: raise Error('unrecognized id1_type') fid_fval_d = vlay_get_fdata(vlay, fieldn=id_fieldn, request =request, logger=log, expect_all_real=True, fmt='dict') #no need else: log.debug('using passed \'fid_fval_d\' with %i'%len(fid_fval_d)) #check them if db_f: #log.debug('\'fid_fval_d\': \n %s'%fid_fval_d) for dname, l in ( ('keys', list(fid_fval_d.keys())), ('values', list(fid_fval_d.values())) ): if not len(np.unique(np.array(l))) == len(l): raise Error('got non unique \'%s\' on fid_fval_d'%dname) #=========================================================================== # swap keys #=========================================================================== if id1_type == 'fid': id1_id2_d = fid_fval_d #o flip necessary elif id1_type == 'field': #limit by field value log.debug('swapping keys') id1_id2_d = dict(zip( fid_fval_d.values(), fid_fval_d.keys() )) else: raise Error('unrecognized id1_type') #======================================================================= # #make conversion #======================================================================= #for dictionaries if isinstance(id1_objs, dict): res_objs = dict() for id1, val in id1_objs.items(): res_objs[id1_id2_d[id1]] = val log.debug('got converted DICT results with %i'%len(res_objs)) #for lists elif isinstance(id1_objs, list): res_objs = [id1_id2_d[id1] for id1 in id1_objs] log.debug('got converted LIST results with %i'%len(res_objs)) else: raise Error('unrecognized id1_objs type') return res_objs, fid_fval_d #converted objects, conversion dict ONLY FOR THSE OBJECTS! #============================================================================== # type checks----------------- #============================================================================== def qisnull(obj): if obj is None: return True if isinstance(obj, QVariant): if obj.isNull(): return True else: return False if pd.isnull(obj): return True else: return False def is_qtype_match(obj, qtype_code, logger=mod_logger): #check if the object matches the qtype code log = logger.getChild('is_qtype_match') #get pythonic type for this code try: py_type = type_qvar_py_d[qtype_code] except: if not qtype_code in type_qvar_py_d.keys(): log.error('passed qtype_code \'%s\' not in dict from \'%s\''%(qtype_code, type(obj))) raise IOError if not isinstance(obj, py_type): #log.debug('passed object of type \'%s\' does not match Qvariant.type \'%s\''%(type(obj), QMetaType.typeName(qtype_code))) return False else: return True #============================================================================== # type conversions---------------- #============================================================================== def np_to_pytype(npdobj, logger=mod_logger): if not isinstance(npdobj, np.dtype): raise Error('not passed a numpy type') try: return npc_pytype_d[npdobj.char] except Exception as e: log = logger.getChild('np_to_pytype') if not npdobj.char in npc_pytype_d.keys(): log.error('passed npdtype \'%s\' not found in the conversion dictionary'%npdobj.name) raise Error('failed oto convert w/ \n %s'%e) def qtype_to_pytype( #convert object to the pythonic type taht matches the passed qtype code obj, qtype_code, #qtupe code (qfield.type()) logger=mod_logger): if is_qtype_match(obj, qtype_code): #no conversion needed return obj #=========================================================================== # shortcut for nulls #=========================================================================== if qisnull(obj): return None #get pythonic type for this code py_type = type_qvar_py_d[qtype_code] try: return py_type(obj) except: #datetime if qtype_code == 16: return obj.toPyDateTime() log = logger.getChild('qtype_to_pytype') if obj is None: log.error('got NONE type') elif isinstance(obj, QVariant): log.error('got a Qvariant object') else: log.error('unable to map object \'%s\' of type \'%s\' to type \'%s\'' %(obj, type(obj), py_type)) """ QMetaType.typeName(obj) """ raise IOError def ptype_to_qtype(py_type, logger=mod_logger): #get the qtype corresponding to the passed pytype """useful for buildign Qt objects really, this is a reverse py_type=str """ if not inspect.isclass(py_type): logger.error('got unexpected type \'%s\''%type(py_type)) raise Error('bad type') #build a QVariant object from this python type class, then return its type try: qv = QVariant(py_type()) except: logger.error('failed to build QVariant from \'%s\''%type(py_type)) raise IOError """ #get the type QMetaType.typeName(qv.type()) """ return qv.type() def df_to_qvlayd( #convert a data frame into the layer data structure (keeyd by index) df, #data to convert. df index should match fid index logger=mod_logger): log = logger.getChild('df_to_qvlayd') d = dict() #data dictionary in qgis structure #prechecks if not df.index.is_unique: log.error('got passed non-unique index') raise IOError #=========================================================================== # loop and fill #=========================================================================== for fid, row in df.iterrows(): #======================================================================= # build sub data #======================================================================= sub_d = dict() #sub data structure for fieldn, value in row.items(): sub_d[fieldn] = value #======================================================================= # add the sub into the main #======================================================================= d[fid] = sub_d if not len(df) == len(d): log.error('got length mismatch') raise IOError log.debug('converted df %s into qvlayd'%str(df.shape)) return d def view(#view the vector data (or just a df) as a html frame obj, logger=mod_logger, #**gfd_kwargs, #kwaqrgs to pass to vlay_get_fdatas() 'doesnt work well with the requester' ): if isinstance(obj, pd.DataFrame) or isinstance(obj, pd.Series): df = obj elif isinstance(obj, QgsVectorLayer): """this will index the viewed frame by fid""" df = vlay_get_fdf(obj) else: raise Error('got unexpected object type: %s'%type(obj)) basic.view(df) logger.info('viewer closed') return if __name__ == '__main__': print('???')
[ "os.remove", "hlpr.exceptions.QError", "processing.run", "numpy.isnan", "hlpr.basic.linr", "os.path.join", "pandas.DataFrame", "hlpr.basic.view", "processing.core.Processing.Processing.initialize", "inspect.isclass", "os.path.dirname", "os.path.exists", "inspect.isbuiltin", "hlpr.basic.is_null", "re.search", "pandas.DataFrame.from_dict", "hlpr.basic.get_valid_filename", "qgis.analysis.QgsNativeAlgorithms", "pandas.Series", "copy.copy", "pandas.isnull", "numpy.any", "numpy.array", "os.path.splitext", "numpy.array_equal", "os.path.split", "logging.getLogger" ]
[((816, 838), 'logging.getLogger', 'logging.getLogger', (['"""Q"""'], {}), "('Q')\n", (833, 838), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((110896, 110914), 'os.path.exists', 'os.path.exists', (['fp'], {}), '(fp)\n', (110910, 110914), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((113188, 113212), 'os.path.splitext', 'os.path.splitext', (['out_fp'], {}), '(out_fp)\n', (113204, 113212), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((113308, 113330), 'os.path.exists', 'os.path.exists', (['out_fp'], {}), '(out_fp)\n', (113322, 113330), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((131175, 131190), 'numpy.any', 'np.any', (['boolcol'], {}), '(boolcol)\n', (131181, 131190), True, 'import numpy as np\n'), ((149062, 149086), 'hlpr.exceptions.QError', 'Error', (['"""failed to match"""'], {}), "('failed to match')\n", (149067, 149086), True, 'from hlpr.exceptions import QError as Error\n'), ((155113, 155127), 'pandas.isnull', 'pd.isnull', (['obj'], {}), '(obj)\n', (155122, 155127), True, 'import pandas as pd\n'), ((160390, 160404), 'hlpr.basic.view', 'basic.view', (['df'], {}), '(df)\n', (160400, 160404), True, 'import hlpr.basic as basic\n'), ((9318, 9341), 'processing.core.Processing.Processing.initialize', 'Processing.initialize', ([], {}), '()\n', (9339, 9341), False, 'from processing.core.Processing import Processing\n'), ((14988, 15006), 'os.path.exists', 'os.path.exists', (['fp'], {}), '(fp)\n', (15002, 15006), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((18180, 18198), 'os.path.exists', 'os.path.exists', (['fp'], {}), '(fp)\n', (18194, 18198), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((21880, 21923), 'hlpr.basic.get_valid_filename', 'get_valid_filename', (["('%s.tif' % newLayerName)"], {}), "('%s.tif' % newLayerName)\n", (21898, 21923), False, 'from hlpr.basic import get_valid_filename\n'), ((21958, 21986), 'os.path.join', 'os.path.join', (['out_dir', 'newFn'], {}), '(out_dir, newFn)\n', (21970, 21986), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((22477, 22500), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (22491, 22500), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((22521, 22543), 'os.path.exists', 'os.path.exists', (['out_fp'], {}), '(out_fp)\n', (22535, 22543), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((26497, 26519), 'os.path.exists', 'os.path.exists', (['out_fp'], {}), '(out_fp)\n', (26511, 26519), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((28222, 28246), 'os.path.splitext', 'os.path.splitext', (['out_fp'], {}), '(out_fp)\n', (28238, 28246), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((28362, 28384), 'os.path.exists', 'os.path.exists', (['out_fp'], {}), '(out_fp)\n', (28376, 28384), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((32229, 32244), 'numpy.any', 'np.any', (['boolcol'], {}), '(boolcol)\n', (32235, 32244), True, 'import numpy as np\n'), ((38884, 38938), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (38898, 38938), False, 'import processing\n'), ((47656, 47710), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (47670, 47710), False, 'import processing\n'), ((54019, 54073), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (54033, 54073), False, 'import processing\n'), ((57463, 57487), 'os.path.exists', 'os.path.exists', (['table_fp'], {}), '(table_fp)\n', (57477, 57487), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((59020, 59074), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (59034, 59074), False, 'import processing\n'), ((61586, 61640), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (61600, 61640), False, 'import processing\n'), ((63362, 63381), 'os.path.exists', 'os.path.exists', (['ofp'], {}), '(ofp)\n', (63376, 63381), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((63869, 63888), 'os.path.exists', 'os.path.exists', (['ofp'], {}), '(ofp)\n', (63883, 63888), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((64860, 64914), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (64874, 64914), False, 'import processing\n'), ((66819, 66838), 'os.path.exists', 'os.path.exists', (['ofp'], {}), '(ofp)\n', (66833, 66838), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((67699, 67753), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (67713, 67753), False, 'import processing\n'), ((71038, 71092), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (71052, 71092), False, 'import processing\n'), ((71174, 71205), 'os.path.exists', 'os.path.exists', (["res_d['OUTPUT']"], {}), "(res_d['OUTPUT'])\n", (71188, 71205), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((73371, 73425), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (73385, 73425), False, 'import processing\n'), ((74982, 75036), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (74996, 75036), False, 'import processing\n'), ((77481, 77535), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (77495, 77535), False, 'import processing\n'), ((79779, 79833), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (79793, 79833), False, 'import processing\n'), ((82420, 82474), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (82434, 82474), False, 'import processing\n'), ((84455, 84509), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (84469, 84509), False, 'import processing\n'), ((86125, 86179), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (86139, 86179), False, 'import processing\n'), ((87160, 87214), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (87174, 87214), False, 'import processing\n'), ((90006, 90060), 'processing.run', 'processing.run', (['algo_nm', 'ins_d'], {'feedback': 'self.feedback'}), '(algo_nm, ins_d, feedback=self.feedback)\n', (90020, 90060), False, 'import processing\n'), ((104352, 104385), 'hlpr.exceptions.QError', 'Error', (['"""got passed an empty vlay"""'], {}), "('got passed an empty vlay')\n", (104357, 104385), True, 'from hlpr.exceptions import QError as Error\n'), ((104751, 104777), 'hlpr.basic.is_null', 'basic.is_null', (['exp_fieldns'], {}), '(exp_fieldns)\n', (104764, 104777), True, 'import hlpr.basic as basic\n'), ((105634, 105661), 'hlpr.basic.is_null', 'basic.is_null', (['uexp_fieldns'], {}), '(uexp_fieldns)\n', (105647, 105661), True, 'import hlpr.basic as basic\n'), ((111275, 111322), 'hlpr.exceptions.QError', 'Error', (['"""vlay loading produced an invalid layer"""'], {}), "('vlay loading produced an invalid layer')\n", (111280, 111322), True, 'from hlpr.exceptions import QError as Error\n'), ((111454, 111469), 'hlpr.exceptions.QError', 'Error', (['"""no geo"""'], {}), "('no geo')\n", (111459, 111469), True, 'from hlpr.exceptions import QError as Error\n'), ((113258, 113297), 'hlpr.exceptions.QError', 'Error', (["('unexpected extension: %s' % ext)"], {}), "('unexpected extension: %s' % ext)\n", (113263, 113297), True, 'from hlpr.exceptions import QError as Error\n'), ((113816, 113845), 'hlpr.exceptions.QError', 'Error', (['"""passed invalid layer"""'], {}), "('passed invalid layer')\n", (113821, 113845), True, 'from hlpr.exceptions import QError as Error\n'), ((116861, 116882), 'hlpr.exceptions.QError', 'Error', (['"""no features!"""'], {}), "('no features!')\n", (116866, 116882), True, 'from hlpr.exceptions import QError as Error\n'), ((116925, 116944), 'hlpr.exceptions.QError', 'Error', (['"""no fields!"""'], {}), "('no fields!')\n", (116930, 116944), True, 'from hlpr.exceptions import QError as Error\n'), ((117022, 117070), 'hlpr.exceptions.QError', 'Error', (['"""dict results dont respect field slicing"""'], {}), "('dict results dont respect field slicing')\n", (117027, 117070), True, 'from hlpr.exceptions import QError as Error\n'), ((118984, 119014), 'hlpr.exceptions.QError', 'Error', (['"""field length mismatch"""'], {}), "('field length mismatch')\n", (118989, 119014), True, 'from hlpr.exceptions import QError as Error\n'), ((125870, 125884), 'numpy.any', 'np.any', (['boolar'], {}), '(boolar)\n', (125876, 125884), True, 'import numpy as np\n'), ((129086, 129115), 'hlpr.exceptions.QError', 'Error', (['"""failed to add fields"""'], {}), "('failed to add fields')\n", (129091, 129115), True, 'from hlpr.exceptions import QError as Error\n'), ((129258, 129288), 'hlpr.exceptions.QError', 'Error', (['"""failed to addFeatures"""'], {}), "('failed to addFeatures')\n", (129263, 129288), True, 'from hlpr.exceptions import QError as Error\n'), ((135177, 135216), 'hlpr.exceptions.QError', 'Error', (['"""todo: implement non geo layers"""'], {}), "('todo: implement non geo layers')\n", (135182, 135216), True, 'from hlpr.exceptions import QError as Error\n'), ((147271, 147295), 'hlpr.exceptions.QError', 'Error', (['"""length mismatch"""'], {}), "('length mismatch')\n", (147276, 147295), True, 'from hlpr.exceptions import QError as Error\n'), ((148974, 149015), 're.search', 're.search', (['gtype', 'gstr'], {'flags': 'match_flags'}), '(gtype, gstr, flags=match_flags)\n', (148983, 149015), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((149499, 149618), 'processing.run', 'processing.run', (['"""native:saveselectedfeatures"""', "{'INPUT': vlay_raw, 'OUTPUT': 'TEMPORARY_OUTPUT'}"], {'feedback': 'feedback'}), "('native:saveselectedfeatures', {'INPUT': vlay_raw, 'OUTPUT':\n 'TEMPORARY_OUTPUT'}, feedback=feedback)\n", (149513, 149618), False, 'import processing\n'), ((150091, 150116), 'hlpr.exceptions.QError', 'Error', (['"""failed to rename"""'], {}), "('failed to rename')\n", (150096, 150116), True, 'from hlpr.exceptions import QError as Error\n'), ((156141, 156173), 'hlpr.exceptions.QError', 'Error', (['"""not passed a numpy type"""'], {}), "('not passed a numpy type')\n", (156146, 156173), True, 'from hlpr.exceptions import QError as Error\n'), ((158023, 158047), 'inspect.isclass', 'inspect.isclass', (['py_type'], {}), '(py_type)\n', (158038, 158047), False, 'import inspect\n'), ((158128, 158145), 'hlpr.exceptions.QError', 'Error', (['"""bad type"""'], {}), "('bad type')\n", (158133, 158145), True, 'from hlpr.exceptions import QError as Error\n'), ((9188, 9237), 'hlpr.exceptions.QError', 'Error', (['"""qgis has not been properly initlized yet"""'], {}), "('qgis has not been properly initlized yet')\n", (9193, 9237), True, 'from hlpr.exceptions import QError as Error\n'), ((9442, 9463), 'qgis.analysis.QgsNativeAlgorithms', 'QgsNativeAlgorithms', ([], {}), '()\n', (9461, 9463), False, 'from qgis.analysis import QgsNativeAlgorithms\n'), ((12404, 12446), 'hlpr.exceptions.QError', 'Error', (['"""qproj crs does not match sessions"""'], {}), "('qproj crs does not match sessions')\n", (12409, 12446), True, 'from hlpr.exceptions import QError as Error\n'), ((12844, 12877), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized driver name"""'], {}), "('unrecognized driver name')\n", (12849, 12877), True, 'from hlpr.exceptions import QError as Error\n'), ((12957, 12990), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized driver name"""'], {}), "('unrecognized driver name')\n", (12962, 12990), True, 'from hlpr.exceptions import QError as Error\n'), ((15895, 15930), 'hlpr.exceptions.QError', 'Error', (['"""loaded vlay has NoGeometry"""'], {}), "('loaded vlay has NoGeometry')\n", (15900, 15930), True, 'from hlpr.exceptions import QError as Error\n'), ((23450, 23483), 'hlpr.exceptions.QError', 'Error', (['"""Cannot set pipe provider"""'], {}), "('Cannot set pipe provider')\n", (23455, 23483), True, 'from hlpr.exceptions import QError as Error\n'), ((23607, 23641), 'hlpr.exceptions.QError', 'Error', (['"""Cannot set pipe projector"""'], {}), "('Cannot set pipe projector')\n", (23612, 23641), True, 'from hlpr.exceptions import QError as Error\n'), ((25473, 25497), 'hlpr.exceptions.QError', 'Error', (['"""not implemented"""'], {}), "('not implemented')\n", (25478, 25497), True, 'from hlpr.exceptions import QError as Error\n'), ((26460, 26472), 'hlpr.exceptions.QError', 'Error', (['error'], {}), '(error)\n', (26465, 26472), True, 'from hlpr.exceptions import QError as Error\n'), ((28304, 28343), 'hlpr.exceptions.QError', 'Error', (["('unexpected extension: %s' % ext)"], {}), "('unexpected extension: %s' % ext)\n", (28309, 28343), True, 'from hlpr.exceptions import QError as Error\n'), ((28930, 28959), 'hlpr.exceptions.QError', 'Error', (['"""passed invalid layer"""'], {}), "('passed invalid layer')\n", (28935, 28959), True, 'from hlpr.exceptions import QError as Error\n'), ((44563, 44618), 'hlpr.basic.linr', 'basic.linr', (['jlay_fieldn_l', 'mfnl'], {'result_type': '"""matching"""'}), "(jlay_fieldn_l, mfnl, result_type='matching')\n", (44573, 44618), True, 'import hlpr.basic as basic\n'), ((45887, 45901), 'numpy.any', 'np.any', (['booldf'], {}), '(booldf)\n', (45893, 45901), True, 'import numpy as np\n'), ((52846, 52870), 'hlpr.exceptions.QError', 'Error', (['"""expected a list"""'], {}), "('expected a list')\n", (52851, 52870), True, 'from hlpr.exceptions import QError as Error\n'), ((61722, 61753), 'os.path.exists', 'os.path.exists', (["res_d['OUTPUT']"], {}), "(res_d['OUTPUT'])\n", (61736, 61753), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((61814, 61845), 'hlpr.exceptions.QError', 'Error', (['"""failed to get a result"""'], {}), "('failed to get a result')\n", (61819, 61845), True, 'from hlpr.exceptions import QError as Error\n'), ((63295, 63340), 'os.path.join', 'os.path.join', (['self.out_dir', "(layname + '.sdat')"], {}), "(self.out_dir, layname + '.sdat')\n", (63307, 63340), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((64996, 65027), 'os.path.exists', 'os.path.exists', (["res_d['OUTPUT']"], {}), "(res_d['OUTPUT'])\n", (65010, 65027), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((65088, 65119), 'hlpr.exceptions.QError', 'Error', (['"""failed to get a result"""'], {}), "('failed to get a result')\n", (65093, 65119), True, 'from hlpr.exceptions import QError as Error\n'), ((66573, 66618), 'os.path.join', 'os.path.join', (['self.out_dir', "(layname + '.sdat')"], {}), "(self.out_dir, layname + '.sdat')\n", (66585, 66618), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((67835, 67866), 'os.path.exists', 'os.path.exists', (["res_d['RESULT']"], {}), "(res_d['RESULT'])\n", (67849, 67866), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((67886, 67917), 'hlpr.exceptions.QError', 'Error', (['"""failed to get a result"""'], {}), "('failed to get a result')\n", (67891, 67917), True, 'from hlpr.exceptions import QError as Error\n'), ((73507, 73538), 'os.path.exists', 'os.path.exists', (["res_d['RESULT']"], {}), "(res_d['RESULT'])\n", (73521, 73538), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((73558, 73589), 'hlpr.exceptions.QError', 'Error', (['"""failed to get a result"""'], {}), "('failed to get a result')\n", (73563, 73589), True, 'from hlpr.exceptions import QError as Error\n'), ((76502, 76520), 'numpy.isnan', 'np.isnan', (['distance'], {}), '(distance)\n', (76510, 76520), True, 'import numpy as np\n'), ((76540, 76563), 'hlpr.exceptions.QError', 'Error', (['"""got no buffer!"""'], {}), "('got no buffer!')\n", (76545, 76563), True, 'from hlpr.exceptions import QError as Error\n'), ((90142, 90173), 'os.path.exists', 'os.path.exists', (["res_d['OUTPUT']"], {}), "(res_d['OUTPUT'])\n", (90156, 90173), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((90234, 90265), 'hlpr.exceptions.QError', 'Error', (['"""failed to get a result"""'], {}), "('failed to get a result')\n", (90239, 90265), True, 'from hlpr.exceptions import QError as Error\n'), ((95755, 95826), 'hlpr.exceptions.QError', 'Error', (['("""expected a list for fields, instead got \n %s""" % fieldn_l)'], {}), '("""expected a list for fields, instead got \n %s""" % fieldn_l)\n', (95760, 95826), True, 'from hlpr.exceptions import QError as Error\n'), ((103305, 103337), 'hlpr.exceptions.QError', 'Error', (['"""QGIS failed to initiate"""'], {}), "('QGIS failed to initiate')\n", (103310, 103337), True, 'from hlpr.exceptions import QError as Error\n'), ((113503, 113520), 'os.remove', 'os.remove', (['out_fp'], {}), '(out_fp)\n', (113512, 113520), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((113625, 113635), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (113630, 113635), True, 'from hlpr.exceptions import QError as Error\n'), ((116409, 116454), 'hlpr.exceptions.QError', 'Error', (['"""cant allow none and expect all reals"""'], {}), "('cant allow none and expect all reals')\n", (116414, 116454), True, 'from hlpr.exceptions import QError as Error\n'), ((116729, 116792), 'hlpr.exceptions.QError', 'Error', (['("requested reindexer \'%s\' is not a field name" % reindex)'], {}), '("requested reindexer \'%s\' is not a field name" % reindex)\n', (116734, 116792), True, 'from hlpr.exceptions import QError as Error\n'), ((118836, 118879), 'hlpr.exceptions.QError', 'Error', (['"""no filter and data length mismatch"""'], {}), "('no filter and data length mismatch')\n", (118841, 118879), True, 'from hlpr.exceptions import QError as Error\n'), ((119195, 119218), 'hlpr.exceptions.QError', 'Error', (['"""no data found!"""'], {}), "('no data found!')\n", (119200, 119218), True, 'from hlpr.exceptions import QError as Error\n'), ((119864, 119930), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['fid_attvs'], {'orient': '"""index"""', 'columns': 'all_fnl'}), "(fid_attvs, orient='index', columns=all_fnl)\n", (119886, 119930), True, 'import pandas as pd\n'), ((120829, 120860), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized fmt kwarg"""'], {}), "('unrecognized fmt kwarg')\n", (120834, 120860), True, 'from hlpr.exceptions import QError as Error\n'), ((122471, 122512), 'hlpr.exceptions.QError', 'Error', (['"""cant expect_all_reals AND dropna"""'], {}), "('cant expect_all_reals AND dropna')\n", (122476, 122512), True, 'from hlpr.exceptions import QError as Error\n'), ((122583, 122628), 'hlpr.exceptions.QError', 'Error', (['"""cant allow none and expect all reals"""'], {}), "('cant allow none and expect all reals')\n", (122588, 122628), True, 'from hlpr.exceptions import QError as Error\n'), ((123013, 123044), 'hlpr.exceptions.QError', 'Error', (['"""no field name provided"""'], {}), "('no field name provided')\n", (123018, 123044), True, 'from hlpr.exceptions import QError as Error\n'), ((126131, 126142), 'numpy.isnan', 'np.isnan', (['v'], {}), '(v)\n', (126139, 126142), True, 'import numpy as np\n'), ((126558, 126598), 'hlpr.exceptions.QError', 'Error', (['"""allow_none=FALSE and no results"""'], {}), "('allow_none=FALSE and no results')\n", (126563, 126598), True, 'from hlpr.exceptions import QError as Error\n'), ((129737, 129747), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (129742, 129747), True, 'from hlpr.exceptions import QError as Error\n'), ((131992, 132023), 'hlpr.exceptions.QError', 'Error', (['"""got non unique columns"""'], {}), "('got non unique columns')\n", (131997, 132023), True, 'from hlpr.exceptions import QError as Error\n'), ((133969, 134010), 'hlpr.exceptions.QError', 'Error', (['"""constructed layer has NoGeometry"""'], {}), "('constructed layer has NoGeometry')\n", (133974, 134010), True, 'from hlpr.exceptions import QError as Error\n'), ((135699, 135748), 'hlpr.exceptions.QError', 'Error', (['"""passed geo_d and data indexes dont match"""'], {}), "('passed geo_d and data indexes dont match')\n", (135704, 135748), True, 'from hlpr.exceptions import QError as Error\n'), ((136337, 136368), 'hlpr.exceptions.QError', 'Error', (['"""expected integer index"""'], {}), "('expected integer index')\n", (136342, 136368), True, 'from hlpr.exceptions import QError as Error\n'), ((139700, 139746), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['qvlayd'], {'orient': '"""index"""'}), "(qvlayd, orient='index')\n", (139722, 139746), True, 'import pandas as pd\n'), ((142812, 142828), 'pandas.isnull', 'pd.isnull', (['value'], {}), '(value)\n', (142821, 142828), True, 'import pandas as pd\n'), ((143742, 143773), 'numpy.array_equal', 'np.array_equal', (['nfid_ar', 'fid_ar'], {}), '(nfid_ar, fid_ar)\n', (143756, 143773), True, 'import numpy as np\n'), ((145411, 145427), 'pandas.isnull', 'pd.isnull', (['value'], {}), '(value)\n', (145420, 145427), True, 'import pandas as pd\n'), ((148300, 148328), 'hlpr.exceptions.QError', 'Error', (['"""field name too long"""'], {}), "('field name too long')\n", (148305, 148328), True, 'from hlpr.exceptions import QError as Error\n'), ((151481, 151516), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized id1_objs type"""'], {}), "('unrecognized id1_objs type')\n", (151486, 151516), True, 'from hlpr.exceptions import QError as Error\n'), ((153854, 153884), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized id1_type"""'], {}), "('unrecognized id1_type')\n", (153859, 153884), True, 'from hlpr.exceptions import QError as Error\n'), ((154560, 154595), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized id1_objs type"""'], {}), "('unrecognized id1_objs type')\n", (154565, 154595), True, 'from hlpr.exceptions import QError as Error\n'), ((156488, 156534), 'hlpr.exceptions.QError', 'Error', (['("""failed oto convert w/ \n %s""" % e)'], {}), '("""failed oto convert w/ \n %s""" % e)\n', (156493, 156534), True, 'from hlpr.exceptions import QError as Error\n'), ((8870, 8902), 'hlpr.exceptions.QError', 'Error', (['"""QGIS failed to initiate"""'], {}), "('QGIS failed to initiate')\n", (8875, 8902), True, 'from hlpr.exceptions import QError as Error\n'), ((22768, 22778), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (22773, 22778), True, 'from hlpr.exceptions import QError as Error\n'), ((28577, 28594), 'os.remove', 'os.remove', (['out_fp'], {}), '(out_fp)\n', (28586, 28594), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((28707, 28717), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (28712, 28717), True, 'from hlpr.exceptions import QError as Error\n'), ((34513, 34529), 'pandas.isnull', 'pd.isnull', (['value'], {}), '(value)\n', (34522, 34529), True, 'import pandas as pd\n'), ((36710, 36751), 'hlpr.exceptions.QError', 'Error', (['"""constructed layer has NoGeometry"""'], {}), "('constructed layer has NoGeometry')\n", (36715, 36751), True, 'from hlpr.exceptions import QError as Error\n'), ((45464, 45488), 'hlpr.exceptions.QError', 'Error', (['"""not implmeneted"""'], {}), "('not implmeneted')\n", (45469, 45488), True, 'from hlpr.exceptions import QError as Error\n'), ((48631, 48653), 'hlpr.exceptions.QError', 'Error', (['"""got no joins!"""'], {}), "('got no joins!')\n", (48636, 48653), True, 'from hlpr.exceptions import QError as Error\n'), ((63528, 63542), 'os.remove', 'os.remove', (['ofp'], {}), '(ofp)\n', (63537, 63542), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((63583, 63593), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (63588, 63593), True, 'from hlpr.exceptions import QError as Error\n'), ((64048, 64058), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (64053, 64058), True, 'from hlpr.exceptions import QError as Error\n'), ((64102, 64122), 'os.path.dirname', 'os.path.dirname', (['ofp'], {}), '(ofp)\n', (64117, 64122), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((64149, 64169), 'os.path.dirname', 'os.path.dirname', (['ofp'], {}), '(ofp)\n', (64164, 64169), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((66660, 66680), 'os.path.dirname', 'os.path.dirname', (['ofp'], {}), '(ofp)\n', (66675, 66680), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((66773, 66793), 'os.path.dirname', 'os.path.dirname', (['ofp'], {}), '(ofp)\n', (66788, 66793), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((66974, 66988), 'os.remove', 'os.remove', (['ofp'], {}), '(ofp)\n', (66983, 66988), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((67029, 67039), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (67034, 67039), True, 'from hlpr.exceptions import QError as Error\n'), ((80247, 80257), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (80252, 80257), True, 'from hlpr.exceptions import QError as Error\n'), ((81860, 81870), 'hlpr.exceptions.QError', 'Error', (['msg'], {}), '(msg)\n', (81865, 81870), True, 'from hlpr.exceptions import QError as Error\n'), ((95113, 95158), 'hlpr.exceptions.QError', 'Error', (['("unrecognized fieldn_l\'%s\'" % fieldn_l)'], {}), '("unrecognized fieldn_l\'%s\'" % fieldn_l)\n', (95118, 95158), True, 'from hlpr.exceptions import QError as Error\n'), ((98522, 98547), 'hlpr.exceptions.QError', 'Error', (['"""nothing selected"""'], {}), "('nothing selected')\n", (98527, 98547), True, 'from hlpr.exceptions import QError as Error\n'), ((110991, 111008), 'os.path.split', 'os.path.split', (['fp'], {}), '(fp)\n', (111004, 111008), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((127276, 127301), 'pandas.Series', 'pd.Series', (['d'], {'name': 'fieldn'}), '(d, name=fieldn)\n', (127285, 127301), True, 'import pandas as pd\n'), ((135491, 135515), 'hlpr.exceptions.QError', 'Error', (['"""unexpected type"""'], {}), "('unexpected type')\n", (135496, 135515), True, 'from hlpr.exceptions import QError as Error\n'), ((138059, 138099), 'hlpr.exceptions.QError', 'Error', (['"""failed to create all the fields"""'], {}), "('failed to create all the fields')\n", (138064, 138099), True, 'from hlpr.exceptions import QError as Error\n'), ((139843, 139906), 'hlpr.exceptions.QError', 'Error', (["('got some nulls on the geometry fields: %s' % geo_fn_tup)"], {}), "('got some nulls on the geometry fields: %s' % geo_fn_tup)\n", (139848, 139906), True, 'from hlpr.exceptions import QError as Error\n'), ((139977, 139994), 'copy.copy', 'copy.copy', (['qvlayd'], {}), '(qvlayd)\n', (139986, 139994), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((140651, 140692), 'hlpr.exceptions.QError', 'Error', (["('got invalid geometry on %i' % fid)"], {}), "('got invalid geometry on %i' % fid)\n", (140656, 140692), True, 'from hlpr.exceptions import QError as Error\n'), ((143263, 143294), 'hlpr.exceptions.QError', 'Error', (['"""failed to setAttribute"""'], {}), "('failed to setAttribute')\n", (143268, 143294), True, 'from hlpr.exceptions import QError as Error\n'), ((143889, 143910), 'hlpr.exceptions.QError', 'Error', (['"""fid mismatch"""'], {}), "('fid mismatch')\n", (143894, 143910), True, 'from hlpr.exceptions import QError as Error\n'), ((145550, 145572), 'inspect.isclass', 'inspect.isclass', (['value'], {}), '(value)\n', (145565, 145572), False, 'import inspect\n'), ((146312, 146336), 'hlpr.exceptions.QError', 'Error', (['"""length mismatch"""'], {}), "('length mismatch')\n", (146317, 146336), True, 'from hlpr.exceptions import QError as Error\n'), ((152063, 152088), 'hlpr.exceptions.QError', 'Error', (['""" not implemented"""'], {}), "(' not implemented')\n", (152068, 152088), True, 'from hlpr.exceptions import QError as Error\n'), ((152646, 152676), 'hlpr.exceptions.QError', 'Error', (['"""unrecognized id1_type"""'], {}), "('unrecognized id1_type')\n", (152651, 152676), True, 'from hlpr.exceptions import QError as Error\n'), ((153309, 153359), 'hlpr.exceptions.QError', 'Error', (['("got non unique \'%s\' on fid_fval_d" % dname)'], {}), '("got non unique \'%s\' on fid_fval_d" % dname)\n', (153314, 153359), True, 'from hlpr.exceptions import QError as Error\n'), ((15190, 15207), 'os.path.split', 'os.path.split', (['fp'], {}), '(fp)\n', (15203, 15207), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((18410, 18427), 'os.path.split', 'os.path.split', (['fp'], {}), '(fp)\n', (18423, 18427), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((35016, 35047), 'hlpr.exceptions.QError', 'Error', (['"""failed to setAttribute"""'], {}), "('failed to setAttribute')\n", (35021, 35047), True, 'from hlpr.exceptions import QError as Error\n'), ((48260, 48296), 'hlpr.exceptions.QError', 'Error', (['"""in and out fcnts dont match"""'], {}), "('in and out fcnts dont match')\n", (48265, 48296), True, 'from hlpr.exceptions import QError as Error\n'), ((48763, 48798), 'hlpr.exceptions.QError', 'Error', (['"""no joins but got some hits"""'], {}), "('no joins but got some hits')\n", (48768, 48798), True, 'from hlpr.exceptions import QError as Error\n'), ((66727, 66747), 'os.path.dirname', 'os.path.dirname', (['ofp'], {}), '(ofp)\n', (66742, 66747), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((93665, 93689), 'pandas.Series', 'pd.Series', (['d'], {'name': 'ncoln'}), '(d, name=ncoln)\n', (93674, 93689), True, 'import pandas as pd\n'), ((119348, 119362), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (119360, 119362), True, 'import pandas as pd\n'), ((119403, 119431), 'hlpr.exceptions.QError', 'Error', (['"""unexpected fmt type"""'], {}), "('unexpected fmt type')\n", (119408, 119431), True, 'from hlpr.exceptions import QError as Error\n'), ((127376, 127403), 'hlpr.exceptions.QError', 'Error', (['"""expected singleton"""'], {}), "('expected singleton')\n", (127381, 127403), True, 'from hlpr.exceptions import QError as Error\n'), ((127486, 127511), 'pandas.Series', 'pd.Series', (['d'], {'name': 'fieldn'}), '(d, name=fieldn)\n', (127495, 127511), True, 'import pandas as pd\n'), ((14408, 14428), 'inspect.isbuiltin', 'inspect.isbuiltin', (['v'], {}), '(v)\n', (14425, 14428), False, 'import inspect\n'), ((99505, 99542), 'hlpr.exceptions.QError', 'Error', (['"""unexpected result_type kwarg"""'], {}), "('unexpected result_type kwarg')\n", (99510, 99542), True, 'from hlpr.exceptions import QError as Error\n'), ((120407, 120454), 'pandas.Series', 'pd.Series', (['df.index'], {'index': 'df.index', 'name': '"""fid"""'}), "(df.index, index=df.index, name='fid')\n", (120416, 120454), True, 'import pandas as pd\n'), ((63142, 63160), 'os.path.split', 'os.path.split', (['ofp'], {}), '(ofp)\n', (63155, 63160), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((66418, 66436), 'os.path.split', 'os.path.split', (['ofp'], {}), '(ofp)\n', (66431, 66436), False, 'import os, configparser, logging, inspect, copy, datetime, re\n'), ((153262, 153273), 'numpy.array', 'np.array', (['l'], {}), '(l)\n', (153270, 153273), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # 6a-render-model3.py - investigate delauney triangulation for # individual image surface mesh generation. # for all the images in the fitted group, generate a 2d polygon # surface fit. Then project the individual images onto this surface # and generate an AC3D model. # # Note: insufficient image overlap (or long linear image match chains) # are not good. Ideally we would have a nice mesh of match pairs for # best results. # # this script can also project onto the SRTM surface, or a flat ground # elevation plane. import argparse import cv2 import pickle import math import numpy as np import os.path import scipy.spatial from props import getNode from lib import groups from lib import panda3d from lib import project from lib import srtm from lib import transformations mesh_steps = 8 # 1 = corners only r2d = 180 / math.pi tolerance = 0.5 parser = argparse.ArgumentParser(description='Set the initial camera poses.') parser.add_argument('project', help='project directory') parser.add_argument('--group', type=int, default=0, help='group index') parser.add_argument('--texture-resolution', type=int, default=512, help='texture resolution (should be 2**n, so numbers like 256, 512, 1024, etc.') parser.add_argument('--srtm', action='store_true', help='use srtm elevation') parser.add_argument('--ground', type=float, help='force ground elevation in meters') parser.add_argument('--direct', action='store_true', help='use direct pose') args = parser.parse_args() proj = project.ProjectMgr(args.project) proj.load_images_info() # lookup ned reference ref_node = getNode("/config/ned_reference", True) ref = [ ref_node.getFloat('lat_deg'), ref_node.getFloat('lon_deg'), ref_node.getFloat('alt_m') ] # setup SRTM ground interpolator srtm.initialize( ref, 6000, 6000, 30 ) width, height = proj.cam.get_image_params() print("Loading optimized match points ...") matches = pickle.load( open( os.path.join(proj.analysis_dir, "matches_grouped"), "rb" ) ) # load the group connections within the image set group_list = groups.load(proj.analysis_dir) # initialize temporary structures for vanity stats for image in proj.image_list: image.sum_values = 0.0 image.sum_count = 0.0 image.max_z = -9999.0 image.min_z = 9999.0 image.pool_xy = [] image.pool_z = [] image.pool_uv = [] image.fit_xy = [] image.fit_z = [] image.fit_uv = [] image.fit_edge = [] # sort through points to build a global list of feature coordinates # and a per-image list of feature coordinates print('Reading feature locations from optimized match points ...') raw_points = [] raw_values = [] for match in matches: if match[1] == args.group and len(match[2:]) > 2: # used by current group ned = match[0] raw_points.append( [ned[1], ned[0]] ) raw_values.append( ned[2] ) for m in match[2:]: if proj.image_list[m[0]].name in group_list[args.group]: image = proj.image_list[ m[0] ] image.pool_xy.append( [ned[1], ned[0]] ) image.pool_z.append( -ned[2] ) image.pool_uv.append( m[1] ) z = -ned[2] image.sum_values += z image.sum_count += 1 if z < image.min_z: image.min_z = z #print(min_z, match) if z > image.max_z: image.max_z = z #print(max_z, match) K = proj.cam.get_K(optimized=True) dist_coeffs = np.array(proj.cam.get_dist_coeffs(optimized=True)) def undistort(uv_orig): # convert the point into the proper format for opencv uv_raw = np.zeros((1,1,2), dtype=np.float32) uv_raw[0][0] = (uv_orig[0], uv_orig[1]) # do the actual undistort uv_new = cv2.undistortPoints(uv_raw, K, dist_coeffs, P=K) # print(uv_orig, type(uv_new), uv_new) return uv_new[0][0] # cull points from the per-image pool that project outside the grid boundaries for image in proj.image_list: size = len(image.pool_uv) for i in reversed(range(len(image.pool_uv))): # iterate in reverse order uv_new = undistort(image.pool_uv[i]) if uv_new[0] < 0 or uv_new[0] >= width or uv_new[1] < 0 or uv_new[1] >= height: print("out of range") print('Generating Delaunay mesh and interpolator ...') print(len(raw_points)) global_tri_list = scipy.spatial.Delaunay(np.array(raw_points)) interp = scipy.interpolate.LinearNDInterpolator(global_tri_list, raw_values) def intersect2d(ned, v, avg_ground): p = ned[:] # copy # sanity check (always assume camera pose is above ground!) if v[2] <= 0.0: return p eps = 0.01 count = 0 #print("start:", p) #print("vec:", v) #print("ned:", ned) tmp = interp([p[1], p[0]])[0] if not np.isnan(tmp): surface = tmp else: print("Notice: starting vector intersect with avg ground elev:", avg_ground) surface = avg_ground error = abs(p[2] - surface) #print("p=%s surface=%s error=%s" % (p, surface, error)) while error > eps and count < 25: d_proj = -(ned[2] - surface) factor = d_proj / v[2] n_proj = v[0] * factor e_proj = v[1] * factor #print(" proj = %s %s" % (n_proj, e_proj)) p = [ ned[0] + n_proj, ned[1] + e_proj, ned[2] + d_proj ] #print(" new p:", p) tmp = interp([p[1], p[0]])[0] if not np.isnan(tmp): surface = tmp error = abs(p[2] - surface) #print(" p=%s surface=%.2f error = %.3f" % (p, surface, error)) count += 1 #print("surface:", surface) #if np.isnan(surface): # #print(" returning nans") # return [np.nan, np.nan, np.nan] dy = ned[0] - p[0] dx = ned[1] - p[1] dz = ned[2] - p[2] dist = math.sqrt(dx*dx+dy*dy) angle = math.atan2(-dz, dist) * r2d # relative to horizon if angle < 30: print(" returning high angle nans:", angle) return [np.nan, np.nan, np.nan] else: return p def intersect_vectors(ned, v_list, avg_ground): pt_list = [] for v in v_list: p = intersect2d(ned, v.flatten(), avg_ground) pt_list.append(p) return pt_list for image in proj.image_list: if image.sum_count > 0: image.z_avg = image.sum_values / float(image.sum_count) # print(image.name, 'avg elev:', image.z_avg) else: image.z_avg = 0 # compute the uv grid for each image and project each point out into # ned space, then intersect each vector with the srtm / ground / # delauney surface. #for group in group_list: if True: group = group_list[args.group] #if len(group) < 3: # continue for name in group: image = proj.findImageByName(name) print(image.name, image.z_avg) # scale the K matrix if we have scaled the images K = proj.cam.get_K(optimized=True) IK = np.linalg.inv(K) grid_list = [] u_list = np.linspace(0, width, mesh_steps + 1) v_list = np.linspace(0, height, mesh_steps + 1) # horizontal edges for u in u_list: grid_list.append( [u, 0] ) grid_list.append( [u, height] ) # vertical edges (minus corners) for v in v_list[1:-1]: grid_list.append( [0, v] ) grid_list.append( [width, v] ) #print('grid_list:', grid_list) distorted_uv = proj.redistort(grid_list, optimized=True) distorted_uv = grid_list if args.direct: proj_list = project.projectVectors( IK, image.get_body2ned(), image.get_cam2body(), grid_list ) else: #print(image.get_body2ned(opt=True)) proj_list = project.projectVectors( IK, image.get_body2ned(opt=True), image.get_cam2body(), grid_list ) #print 'proj_list:', proj_list if args.direct: ned, ypr, quat = image.get_camera_pose() else: ned, ypr, quat = image.get_camera_pose(opt=True) #print('cam orig:', image.camera_pose['ned'], 'optimized:', ned) if args.ground: pts_ned = project.intersectVectorsWithGroundPlane(ned, args.ground, proj_list) elif args.srtm: pts_ned = srtm.interpolate_vectors(ned, proj_list) else: # intersect with our polygon surface approximation pts_ned = intersect_vectors(ned, proj_list, -image.z_avg) #print(image.name, "pts_3d (ned):\n", pts_ned) # convert ned to xyz and stash the result for each image image.grid_list = [] for p in pts_ned: image.fit_xy.append([p[1], p[0]]) image.fit_z.append(-p[2]) image.fit_edge.append(True) image.fit_uv = distorted_uv print('len:', len(image.fit_xy), len(image.fit_z), len(image.fit_uv)) # Triangle fit algorithm group = group_list[args.group] #if len(group) < 3: # continue for name in group: image = proj.findImageByName(name) print(image.name, image.z_avg) done = False dist_uv = [] while not done: tri_list = scipy.spatial.Delaunay(np.array(image.fit_xy)) interp = scipy.interpolate.LinearNDInterpolator(tri_list, image.fit_z) # find the point in the pool furthest from the triangulated surface next_index = None max_error = 0.0 for i, pt in enumerate(image.pool_xy): z = interp(image.pool_xy[i])[0] if not np.isnan(z): error = abs(z - image.pool_z[i]) if error > max_error: max_error = error next_index = i if max_error > tolerance: print("adding index:", next_index, "error:", max_error) image.fit_xy.append(image.pool_xy[next_index]) image.fit_z.append(image.pool_z[next_index]) image.fit_uv.append(image.pool_uv[next_index]) image.fit_edge.append(False) del image.pool_xy[next_index] del image.pool_z[next_index] del image.pool_uv[next_index] else: print("finished") done = True image.fit_uv.extend(proj.undistort_uvlist(image, dist_uv)) print(name, 'len:', len(image.fit_xy), len(image.fit_z), len(image.fit_uv)) # generate the panda3d egg models dir_node = getNode('/config/directories', True) img_src_dir = dir_node.getString('images_source') panda3d.generate_from_fit(proj, group_list[args.group], src_dir=img_src_dir, analysis_dir=proj.analysis_dir, resolution=args.texture_resolution)
[ "lib.project.intersectVectorsWithGroundPlane", "cv2.undistortPoints", "argparse.ArgumentParser", "math.sqrt", "math.atan2", "lib.srtm.interpolate_vectors", "lib.panda3d.generate_from_fit", "lib.groups.load", "numpy.zeros", "numpy.isnan", "lib.project.ProjectMgr", "numpy.array", "numpy.linalg.inv", "numpy.linspace", "props.getNode", "lib.srtm.initialize" ]
[((905, 973), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Set the initial camera poses."""'}), "(description='Set the initial camera poses.')\n", (928, 973), False, 'import argparse\n'), ((1527, 1559), 'lib.project.ProjectMgr', 'project.ProjectMgr', (['args.project'], {}), '(args.project)\n', (1545, 1559), False, 'from lib import project\n'), ((1619, 1657), 'props.getNode', 'getNode', (['"""/config/ned_reference"""', '(True)'], {}), "('/config/ned_reference', True)\n", (1626, 1657), False, 'from props import getNode\n'), ((1807, 1843), 'lib.srtm.initialize', 'srtm.initialize', (['ref', '(6000)', '(6000)', '(30)'], {}), '(ref, 6000, 6000, 30)\n', (1822, 1843), False, 'from lib import srtm\n'), ((2090, 2120), 'lib.groups.load', 'groups.load', (['proj.analysis_dir'], {}), '(proj.analysis_dir)\n', (2101, 2120), False, 'from lib import groups\n'), ((10779, 10815), 'props.getNode', 'getNode', (['"""/config/directories"""', '(True)'], {}), "('/config/directories', True)\n", (10786, 10815), False, 'from props import getNode\n'), ((10866, 11014), 'lib.panda3d.generate_from_fit', 'panda3d.generate_from_fit', (['proj', 'group_list[args.group]'], {'src_dir': 'img_src_dir', 'analysis_dir': 'proj.analysis_dir', 'resolution': 'args.texture_resolution'}), '(proj, group_list[args.group], src_dir=img_src_dir,\n analysis_dir=proj.analysis_dir, resolution=args.texture_resolution)\n', (10891, 11014), False, 'from lib import panda3d\n'), ((3703, 3740), 'numpy.zeros', 'np.zeros', (['(1, 1, 2)'], {'dtype': 'np.float32'}), '((1, 1, 2), dtype=np.float32)\n', (3711, 3740), True, 'import numpy as np\n'), ((3826, 3874), 'cv2.undistortPoints', 'cv2.undistortPoints', (['uv_raw', 'K', 'dist_coeffs'], {'P': 'K'}), '(uv_raw, K, dist_coeffs, P=K)\n', (3845, 3874), False, 'import cv2\n'), ((4450, 4470), 'numpy.array', 'np.array', (['raw_points'], {}), '(raw_points)\n', (4458, 4470), True, 'import numpy as np\n'), ((5861, 5889), 'math.sqrt', 'math.sqrt', (['(dx * dx + dy * dy)'], {}), '(dx * dx + dy * dy)\n', (5870, 5889), False, 'import math\n'), ((4856, 4869), 'numpy.isnan', 'np.isnan', (['tmp'], {}), '(tmp)\n', (4864, 4869), True, 'import numpy as np\n'), ((5896, 5917), 'math.atan2', 'math.atan2', (['(-dz)', 'dist'], {}), '(-dz, dist)\n', (5906, 5917), False, 'import math\n'), ((6976, 6992), 'numpy.linalg.inv', 'np.linalg.inv', (['K'], {}), '(K)\n', (6989, 6992), True, 'import numpy as np\n'), ((7034, 7071), 'numpy.linspace', 'np.linspace', (['(0)', 'width', '(mesh_steps + 1)'], {}), '(0, width, mesh_steps + 1)\n', (7045, 7071), True, 'import numpy as np\n'), ((7089, 7127), 'numpy.linspace', 'np.linspace', (['(0)', 'height', '(mesh_steps + 1)'], {}), '(0, height, mesh_steps + 1)\n', (7100, 7127), True, 'import numpy as np\n'), ((5477, 5490), 'numpy.isnan', 'np.isnan', (['tmp'], {}), '(tmp)\n', (5485, 5490), True, 'import numpy as np\n'), ((8427, 8495), 'lib.project.intersectVectorsWithGroundPlane', 'project.intersectVectorsWithGroundPlane', (['ned', 'args.ground', 'proj_list'], {}), '(ned, args.ground, proj_list)\n', (8466, 8495), False, 'from lib import project\n'), ((9561, 9583), 'numpy.array', 'np.array', (['image.fit_xy'], {}), '(image.fit_xy)\n', (9569, 9583), True, 'import numpy as np\n'), ((8666, 8706), 'lib.srtm.interpolate_vectors', 'srtm.interpolate_vectors', (['ned', 'proj_list'], {}), '(ned, proj_list)\n', (8690, 8706), False, 'from lib import srtm\n'), ((9900, 9911), 'numpy.isnan', 'np.isnan', (['z'], {}), '(z)\n', (9908, 9911), True, 'import numpy as np\n')]
import numpy as np def sherman_morrison_row(e, inv, vec): ratio = np.einsum("ij,ij->i", vec, inv[:, :, e]) tmp = np.einsum("ek,ekj->ej", vec, inv) invnew = ( inv - np.einsum("ki,kj->kij", inv[:, :, e], tmp) / ratio[:, np.newaxis, np.newaxis] ) invnew[:, :, e] = inv[:, :, e] / ratio[:, np.newaxis] return ratio, invnew class PySCFSlaterUHF: """A wave function object has a state defined by a reference configuration of electrons. The functions recompute() and updateinternals() change the state of the object, and the rest compute and return values from that state. """ def __init__(self, mol, mf): self.occ = np.asarray(mf.mo_occ > 0.9) self.parameters = {} # Determine if we're initializing from an RHF or UHF object... if len(mf.mo_occ.shape) == 2: self.parameters["mo_coeff_alpha"] = mf.mo_coeff[0][:, self.occ[0]] self.parameters["mo_coeff_beta"] = mf.mo_coeff[1][:, self.occ[1]] else: self.parameters["mo_coeff_alpha"] = mf.mo_coeff[ :, np.asarray(mf.mo_occ > 0.9) ] self.parameters["mo_coeff_beta"] = mf.mo_coeff[ :, np.asarray(mf.mo_occ > 1.1) ] self._coefflookup = ("mo_coeff_alpha", "mo_coeff_beta") self._mol = mol self._nelec = tuple(mol.nelec) def recompute(self, configs): """This computes the value from scratch. Returns the logarithm of the wave function as (phase,logdet). If the wf is real, phase will be +/- 1.""" mycoords = configs.reshape( (configs.shape[0] * configs.shape[1], configs.shape[2]) ) ao = self._mol.eval_gto("GTOval_sph", mycoords).reshape( (configs.shape[0], configs.shape[1], -1) ) self._aovals = ao self._dets = [] self._inverse = [] for s in [0, 1]: if s == 0: mo = ao[:, 0 : self._nelec[0], :].dot( self.parameters[self._coefflookup[s]] ) else: mo = ao[:, self._nelec[0] : self._nelec[0] + self._nelec[1], :].dot( self.parameters[self._coefflookup[s]] ) # This could be done faster; we are doubling our effort here. self._dets.append(np.linalg.slogdet(mo)) self._inverse.append(np.linalg.inv(mo)) return self.value() def updateinternals(self, e, epos, mask=None): """Update any internals given that electron e moved to epos. mask is a Boolean array which allows us to update only certain walkers""" s = int(e >= self._nelec[0]) if mask is None: mask = [True] * epos.shape[0] eeff = e - s * self._nelec[0] ao = self._mol.eval_gto("GTOval_sph", epos) mo = ao.dot(self.parameters[self._coefflookup[s]]) ratio, self._inverse[s][mask, :, :] = sherman_morrison_row( eeff, self._inverse[s][mask, :, :], mo[mask, :] ) self._updateval(ratio, s, mask) ### not state-changing functions def value(self): """Return logarithm of the wave function as noted in recompute()""" return self._dets[0][0] * self._dets[1][0], self._dets[0][1] + self._dets[1][1] def _updateval(self, ratio, s, mask): self._dets[s][0][mask] *= np.sign(ratio) # will not work for complex! self._dets[s][1][mask] += np.log(np.abs(ratio)) def _testrow(self, e, vec): """vec is a nconfig,nmo vector which replaces row e""" s = int(e >= self._nelec[0]) ratio = np.einsum( "ij,ij->i", vec, self._inverse[s][:, :, e - s * self._nelec[0]] ) return ratio def _testcol(self, i, s, vec): """vec is a nconfig,nmo vector which replaces column i""" ratio = np.einsum("ij,ij->i", vec, self._inverse[s][:, i, :]) return ratio def gradient(self, e, epos): """ Compute the gradient of the log wave function Note that this can be called even if the internals have not been updated for electron e, if epos differs from the current position of electron e.""" s = int(e >= self._nelec[0]) aograd = self._mol.eval_gto("GTOval_ip_sph", epos) mograd = aograd.dot(self.parameters[self._coefflookup[s]]) ratios = [self._testrow(e, x) for x in mograd] return np.asarray(ratios) / self.testvalue(e, epos)[np.newaxis, :] def laplacian(self, e, epos): """ Compute the laplacian Psi/ Psi. """ s = int(e >= self._nelec[0]) # aograd=self._mol.eval_gto('GTOval_sph_deriv2',epos) aolap = np.sum(self._mol.eval_gto("GTOval_sph_deriv2", epos)[[4, 7, 9]], axis=0) molap = aolap.dot(self.parameters[self._coefflookup[s]]) ratios = self._testrow(e, molap) return ratios / self.testvalue(e, epos) def testvalue(self, e, epos): """ return the ratio between the current wave function and the wave function if electron e's position is replaced by epos""" s = int(e >= self._nelec[0]) ao = self._mol.eval_gto("GTOval_sph", epos) mo = ao.dot(self.parameters[self._coefflookup[s]]) return self._testrow(e, mo) def pgradient(self): """Compute the parameter gradient of Psi. Returns d_p \Psi/\Psi as a dictionary of numpy arrays, which correspond to the parameter dictionary. """ d = {} for parm in self.parameters: s = 0 if "beta" in parm: s = 1 # Get AOs for our spin channel only ao = self._aovals[ :, s * self._nelec[0] : self._nelec[s] + s * self._nelec[0], : ] # (config, electron, ao) pgrad_shape = (ao.shape[0],) + self.parameters[parm].shape pgrad = np.zeros(pgrad_shape) # Compute derivatives w.r.t MO coefficients for i in range(self._nelec[s]): # MO loop for j in range(ao.shape[2]): # AO loop vec = ao[:, :, j] pgrad[:, j, i] = self._testcol(i, s, vec) # nconfig d[parm] = np.array(pgrad) # Returns config, coeff return d def test(): from pyscf import lib, gto, scf import pyqmc.testwf as testwf mol = gto.M(atom="Li 0. 0. 0.; H 0. 0. 1.5", basis="cc-pvtz", unit="bohr", spin=0) for mf in [scf.RHF(mol).run(), scf.ROHF(mol).run(), scf.UHF(mol).run()]: print("") nconf = 10 nelec = np.sum(mol.nelec) slater = PySCFSlaterUHF(mol, mf) configs = np.random.randn(nconf, nelec, 3) print("testing internals:", testwf.test_updateinternals(slater, configs)) for delta in [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]: print( "delta", delta, "Testing gradient", testwf.test_wf_gradient(slater, configs, delta=delta), ) print( "delta", delta, "Testing laplacian", testwf.test_wf_laplacian(slater, configs, delta=delta), ) print( "delta", delta, "Testing pgradient", testwf.test_wf_pgradient(slater, configs, delta=delta), ) if __name__ == "__main__": test()
[ "numpy.sum", "numpy.abs", "numpy.random.randn", "numpy.asarray", "numpy.einsum", "numpy.zeros", "pyqmc.testwf.test_updateinternals", "pyqmc.testwf.test_wf_gradient", "pyscf.gto.M", "pyscf.scf.RHF", "numpy.array", "numpy.linalg.slogdet", "numpy.linalg.inv", "numpy.sign", "pyscf.scf.ROHF", "pyscf.scf.UHF", "pyqmc.testwf.test_wf_pgradient", "pyqmc.testwf.test_wf_laplacian" ]
[((76, 116), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'vec', 'inv[:, :, e]'], {}), "('ij,ij->i', vec, inv[:, :, e])\n", (85, 116), True, 'import numpy as np\n'), ((128, 161), 'numpy.einsum', 'np.einsum', (['"""ek,ekj->ej"""', 'vec', 'inv'], {}), "('ek,ekj->ej', vec, inv)\n", (137, 161), True, 'import numpy as np\n'), ((6563, 6639), 'pyscf.gto.M', 'gto.M', ([], {'atom': '"""Li 0. 0. 0.; H 0. 0. 1.5"""', 'basis': '"""cc-pvtz"""', 'unit': '"""bohr"""', 'spin': '(0)'}), "(atom='Li 0. 0. 0.; H 0. 0. 1.5', basis='cc-pvtz', unit='bohr', spin=0)\n", (6568, 6639), False, 'from pyscf import lib, gto, scf\n'), ((700, 727), 'numpy.asarray', 'np.asarray', (['(mf.mo_occ > 0.9)'], {}), '(mf.mo_occ > 0.9)\n', (710, 727), True, 'import numpy as np\n'), ((3496, 3510), 'numpy.sign', 'np.sign', (['ratio'], {}), '(ratio)\n', (3503, 3510), True, 'import numpy as np\n'), ((3752, 3826), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'vec', 'self._inverse[s][:, :, e - s * self._nelec[0]]'], {}), "('ij,ij->i', vec, self._inverse[s][:, :, e - s * self._nelec[0]])\n", (3761, 3826), True, 'import numpy as np\n'), ((3995, 4048), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'vec', 'self._inverse[s][:, i, :]'], {}), "('ij,ij->i', vec, self._inverse[s][:, i, :])\n", (4004, 4048), True, 'import numpy as np\n'), ((6774, 6791), 'numpy.sum', 'np.sum', (['mol.nelec'], {}), '(mol.nelec)\n', (6780, 6791), True, 'import numpy as np\n'), ((6853, 6885), 'numpy.random.randn', 'np.random.randn', (['nconf', 'nelec', '(3)'], {}), '(nconf, nelec, 3)\n', (6868, 6885), True, 'import numpy as np\n'), ((202, 244), 'numpy.einsum', 'np.einsum', (['"""ki,kj->kij"""', 'inv[:, :, e]', 'tmp'], {}), "('ki,kj->kij', inv[:, :, e], tmp)\n", (211, 244), True, 'import numpy as np\n'), ((3583, 3596), 'numpy.abs', 'np.abs', (['ratio'], {}), '(ratio)\n', (3589, 3596), True, 'import numpy as np\n'), ((4572, 4590), 'numpy.asarray', 'np.asarray', (['ratios'], {}), '(ratios)\n', (4582, 4590), True, 'import numpy as np\n'), ((6074, 6095), 'numpy.zeros', 'np.zeros', (['pgrad_shape'], {}), '(pgrad_shape)\n', (6082, 6095), True, 'import numpy as np\n'), ((6402, 6417), 'numpy.array', 'np.array', (['pgrad'], {}), '(pgrad)\n', (6410, 6417), True, 'import numpy as np\n'), ((6923, 6967), 'pyqmc.testwf.test_updateinternals', 'testwf.test_updateinternals', (['slater', 'configs'], {}), '(slater, configs)\n', (6950, 6967), True, 'import pyqmc.testwf as testwf\n'), ((2430, 2451), 'numpy.linalg.slogdet', 'np.linalg.slogdet', (['mo'], {}), '(mo)\n', (2447, 2451), True, 'import numpy as np\n'), ((2487, 2504), 'numpy.linalg.inv', 'np.linalg.inv', (['mo'], {}), '(mo)\n', (2500, 2504), True, 'import numpy as np\n'), ((6656, 6668), 'pyscf.scf.RHF', 'scf.RHF', (['mol'], {}), '(mol)\n', (6663, 6668), False, 'from pyscf import lib, gto, scf\n'), ((6676, 6689), 'pyscf.scf.ROHF', 'scf.ROHF', (['mol'], {}), '(mol)\n', (6684, 6689), False, 'from pyscf import lib, gto, scf\n'), ((6697, 6709), 'pyscf.scf.UHF', 'scf.UHF', (['mol'], {}), '(mol)\n', (6704, 6709), False, 'from pyscf import lib, gto, scf\n'), ((7147, 7200), 'pyqmc.testwf.test_wf_gradient', 'testwf.test_wf_gradient', (['slater', 'configs'], {'delta': 'delta'}), '(slater, configs, delta=delta)\n', (7170, 7200), True, 'import pyqmc.testwf as testwf\n'), ((7342, 7396), 'pyqmc.testwf.test_wf_laplacian', 'testwf.test_wf_laplacian', (['slater', 'configs'], {'delta': 'delta'}), '(slater, configs, delta=delta)\n', (7366, 7396), True, 'import pyqmc.testwf as testwf\n'), ((7538, 7592), 'pyqmc.testwf.test_wf_pgradient', 'testwf.test_wf_pgradient', (['slater', 'configs'], {'delta': 'delta'}), '(slater, configs, delta=delta)\n', (7562, 7592), True, 'import pyqmc.testwf as testwf\n'), ((1127, 1154), 'numpy.asarray', 'np.asarray', (['(mf.mo_occ > 0.9)'], {}), '(mf.mo_occ > 0.9)\n', (1137, 1154), True, 'import numpy as np\n'), ((1251, 1278), 'numpy.asarray', 'np.asarray', (['(mf.mo_occ > 1.1)'], {}), '(mf.mo_occ > 1.1)\n', (1261, 1278), True, 'import numpy as np\n')]
import numpy as np from pmesh.pm import ParticleMesh from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog,\ BigFileMesh, FFTPower from nbodykit import setup_logging from mpi4py import MPI import HImodels # enable logging, we have some clue what's going on. setup_logging('info') # #Global, fixed things scratchyf = '/global/cscratch1/sd/yfeng1/m3127/' scratchcm = '/global/cscratch1/sd/chmodi/m3127/H1mass/' project = '/project/projectdirs/m3127/H1mass/' cosmodef = {'omegam':0.309167, 'h':0.677, 'omegab':0.048} alist = [0.1429,0.1538,0.1667,0.1818,0.2000,0.2222,0.2500,0.2857,0.3333] #Parameters, box size, number of mesh cells, simulation, ... bs, nc, ncsim, sim, prefix = 256, 512, 2560, 'highres/%d-9100-fixed'%2560, 'highres' #bs,nc,ncsim, sim, prefic = 1024, 1024, 10240, 'highres/%d-9100-fixed'%ncsim, 'highres' # It's useful to have my rank for printing... pm = ParticleMesh(BoxSize=bs, Nmesh=[nc, nc, nc]) rank = pm.comm.rank comm = pm.comm #Which model to use HImodel = HImodels.ModelA ofolder = '../data/outputs/' def calc_bias(aa,h1mesh,suff): '''Compute the bias(es) for the HI''' if rank==0: print("Processing a={:.4f}...".format(aa)) print('Reading DM mesh...') if ncsim == 10240: dm = BigFileMesh(scratchyf+sim+'/fastpm_%0.4f/'%aa+\ '/1-mesh/N%04d'%nc,'').paint() else: dm = BigFileMesh(project+sim+'/fastpm_%0.4f/'%aa+\ '/dmesh_N%04d/1/'%nc,'').paint() dm /= dm.cmean() if rank==0: print('Computing DM P(k)...') pkmm = FFTPower(dm,mode='1d').power k,pkmm= pkmm['k'],pkmm['power'] # Ignore shotnoise. if rank==0: print('Done.') # pkh1h1 = FFTPower(h1mesh,mode='1d').power pkh1h1 = pkh1h1['power']-pkh1h1.attrs['shotnoise'] pkh1mm = FFTPower(h1mesh,second=dm,mode='1d').power['power'] if rank==0: print('Done.') # Compute the biases. b1x = np.abs(pkh1mm/(pkmm+1e-10)) b1a = np.abs(pkh1h1/(pkmm+1e-10))**0.5 if rank==0: print("Finishing processing a={:.4f}.".format(aa)) return(k,b1x,b1a,np.abs(pkmm)) # if __name__=="__main__": #satsuff='-m1_5p0min-alpha_0p8-16node' suff='-m1_00p3mh-alpha-0p8-subvol' outfolder = ofolder + suff[1:] + "/modelA/" try: os.makedirs(outfolder) except : pass if rank==0: print('Starting') for aa in alist: if rank == 0: print('\n ############## Redshift = %0.2f ############## \n'%(1/aa-1)) halocat = BigFileCatalog(scratchyf + sim+ '/fastpm_%0.4f//'%aa, dataset='LL-0.200') mp = halocat.attrs['MassTable'][1]*1e10## halocat['Mass'] = halocat['Length'].compute() * mp cencat = BigFileCatalog(scratchcm + sim+'/fastpm_%0.4f/cencat'%aa+suff) satcat = BigFileCatalog(scratchcm + sim+'/fastpm_%0.4f/satcat'%aa+suff) rsdfac = read_conversions(scratchyf + sim+'/fastpm_%0.4f/'%aa) # HImodelz = HImodel(aa) los = [0,0,1] halocat['HImass'], cencat['HImass'], satcat['HImass'] = HImodelz.assignHI(halocat, cencat, satcat) halocat['RSDpos'], cencat['RSDpos'], satcat['RSDpos'] = HImodelz.assignrsd(rsdfac, halocat, cencat, satcat, los=los) h1mesh = HImodelz.createmesh(bs, nc, halocat, cencat, satcat, mode='galaxies', position='RSDpos', weight='HImass') kk,b1x,b1a,pkmm = calc_bias(aa,h1mesh,suff) # if rank==0: fout = open(outfolder + "HI_bias_{:6.4f}.txt".format(aa),"w") fout.write("# Mcut={:12.4e}Msun/h.\n".format(mcut)) fout.write("# {:>8s} {:>10s} {:>10s} {:>15s}\n".\ format("k","b1_x","b1_a","Pkmm")) for i in range(1,kk.size): fout.write("{:10.5f} {:10.5f} {:10.5f} {:15.5e}\n".\ format(kk[i],b1x[i],b1a[i],pkmm[i])) fout.close() #
[ "nbodykit.lab.BigFileCatalog", "numpy.abs", "nbodykit.setup_logging", "nbodykit.lab.FFTPower", "pmesh.pm.ParticleMesh", "nbodykit.lab.BigFileMesh" ]
[((308, 329), 'nbodykit.setup_logging', 'setup_logging', (['"""info"""'], {}), "('info')\n", (321, 329), False, 'from nbodykit import setup_logging\n'), ((933, 977), 'pmesh.pm.ParticleMesh', 'ParticleMesh', ([], {'BoxSize': 'bs', 'Nmesh': '[nc, nc, nc]'}), '(BoxSize=bs, Nmesh=[nc, nc, nc])\n', (945, 977), False, 'from pmesh.pm import ParticleMesh\n'), ((1983, 2014), 'numpy.abs', 'np.abs', (['(pkh1mm / (pkmm + 1e-10))'], {}), '(pkh1mm / (pkmm + 1e-10))\n', (1989, 2014), True, 'import numpy as np\n'), ((1626, 1649), 'nbodykit.lab.FFTPower', 'FFTPower', (['dm'], {'mode': '"""1d"""'}), "(dm, mode='1d')\n", (1634, 1649), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((1763, 1790), 'nbodykit.lab.FFTPower', 'FFTPower', (['h1mesh'], {'mode': '"""1d"""'}), "(h1mesh, mode='1d')\n", (1771, 1790), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((2021, 2052), 'numpy.abs', 'np.abs', (['(pkh1h1 / (pkmm + 1e-10))'], {}), '(pkh1h1 / (pkmm + 1e-10))\n', (2027, 2052), True, 'import numpy as np\n'), ((2142, 2154), 'numpy.abs', 'np.abs', (['pkmm'], {}), '(pkmm)\n', (2148, 2154), True, 'import numpy as np\n'), ((2558, 2634), 'nbodykit.lab.BigFileCatalog', 'BigFileCatalog', (["(scratchyf + sim + '/fastpm_%0.4f//' % aa)"], {'dataset': '"""LL-0.200"""'}), "(scratchyf + sim + '/fastpm_%0.4f//' % aa, dataset='LL-0.200')\n", (2572, 2634), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((2758, 2826), 'nbodykit.lab.BigFileCatalog', 'BigFileCatalog', (["(scratchcm + sim + '/fastpm_%0.4f/cencat' % aa + suff)"], {}), "(scratchcm + sim + '/fastpm_%0.4f/cencat' % aa + suff)\n", (2772, 2826), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((2838, 2906), 'nbodykit.lab.BigFileCatalog', 'BigFileCatalog', (["(scratchcm + sim + '/fastpm_%0.4f/satcat' % aa + suff)"], {}), "(scratchcm + sim + '/fastpm_%0.4f/satcat' % aa + suff)\n", (2852, 2906), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((1864, 1902), 'nbodykit.lab.FFTPower', 'FFTPower', (['h1mesh'], {'second': 'dm', 'mode': '"""1d"""'}), "(h1mesh, second=dm, mode='1d')\n", (1872, 1902), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((1309, 1388), 'nbodykit.lab.BigFileMesh', 'BigFileMesh', (["(scratchyf + sim + '/fastpm_%0.4f/' % aa + '/1-mesh/N%04d' % nc)", '""""""'], {}), "(scratchyf + sim + '/fastpm_%0.4f/' % aa + '/1-mesh/N%04d' % nc, '')\n", (1320, 1388), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n'), ((1442, 1521), 'nbodykit.lab.BigFileMesh', 'BigFileMesh', (["(project + sim + '/fastpm_%0.4f/' % aa + '/dmesh_N%04d/1/' % nc)", '""""""'], {}), "(project + sim + '/fastpm_%0.4f/' % aa + '/dmesh_N%04d/1/' % nc, '')\n", (1453, 1521), False, 'from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog, BigFileMesh, FFTPower\n')]
import torch import argparse import os import random import numpy as np from tensorboardX import SummaryWriter from misc.utils import set_log, visualize from torch.optim import SGD, Adam from torch.nn.modules.loss import MSELoss from inner_loop import InnerLoop from omniglot_net import OmniglotNet from score import * from misc.batch_sampler import BatchSampler from misc.replay_buffer import ReplayBuffer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class MetaLearner(object): def __init__(self, log, tb_writer, args): super(self.__class__, self).__init__() self.log = log self.tb_writer = tb_writer self.args = args self.loss_fn = MSELoss() self.net = OmniglotNet(self.loss_fn, args).to(device) self.fast_net = InnerLoop(self.loss_fn, args).to(device) self.opt = Adam(self.net.parameters(), lr=args.meta_lr) self.sampler = BatchSampler(args) self.memory = ReplayBuffer() def meta_update(self, episode_i, ls): in_ = episode_i.observations[:, :, 0] target = episode_i.rewards[:, :, 0] # We use a dummy forward / backward pass to get the correct grads into self.net loss, out = forward_pass(self.net, in_, target) # Unpack the list of grad dicts gradients = {k: sum(d[k] for d in ls) for k in ls[0].keys()} # Register a hook on each parameter in the net that replaces the current dummy grad # with our grads accumulated across the meta-batch hooks = [] for (k, v) in self.net.named_parameters(): def get_closure(): key = k def replace_grad(grad): return gradients[key] return replace_grad hooks.append(v.register_hook(get_closure())) # Compute grads for current step, replace with summed gradients as defined by hook self.opt.zero_grad() loss.backward() # Update the net parameters with the accumulated gradient according to optimizer self.opt.step() # Remove the hooks before next training phase for h in hooks: h.remove() def test(self, i_task, episode_i_): predictions_ = [] for i_agent in range(self.args.n_agent): test_net = OmniglotNet(self.loss_fn, self.args).to(device) # Make a test net with same parameters as our current net test_net.copy_weights(self.net) test_opt = SGD(test_net.parameters(), lr=self.args.fast_lr) episode_i = self.memory.storage[i_task - 1] # Train on the train examples, using the same number of updates as in training for i in range(self.args.fast_num_update): in_ = episode_i.observations[:, :, i_agent] target = episode_i.rewards[:, :, i_agent] loss, _ = forward_pass(test_net, in_, target) print("loss {} at {}".format(loss, i_task)) test_opt.zero_grad() loss.backward() test_opt.step() # Evaluate the trained model on train and val examples tloss, _ = evaluate(test_net, episode_i, i_agent) vloss, prediction_ = evaluate(test_net, episode_i_, i_agent) mtr_loss = tloss / 10. mval_loss = vloss / 10. print('-------------------------') print('Meta train:', mtr_loss) print('Meta val:', mval_loss) print('-------------------------') del test_net predictions_.append(prediction_) visualize(episode_i, episode_i_, predictions_, i_task, self.args) def train(self): for i_task in range(10000): # Sample episode from current task self.sampler.reset_task(i_task) episodes = self.sampler.sample() # Add to memory self.memory.add(i_task, episodes) # Evaluate on test tasks if len(self.memory) > 1: self.test(i_task, episodes) # Collect a meta batch update if len(self.memory) > 2: meta_grads = [] for i in range(self.args.meta_batch_size): if i == 0: episodes_i = self.memory.storage[i_task - 1] episodes_i_ = self.memory.storage[i_task] else: episodes_i, episodes_i_ = self.memory.sample() self.fast_net.copy_weights(self.net) for i_agent in range(self.args.n_agent): meta_grad = self.fast_net.forward(episodes_i, episodes_i_, i_agent) meta_grads.append(meta_grad) # Perform the meta update self.meta_update(episodes_i, meta_grads) def main(args): # Create dir if not os.path.exists("./logs"): os.makedirs("./logs") if not os.path.exists("./pytorch_models"): os.makedirs("./pytorch_models") # Set logs tb_writer = SummaryWriter('./logs/tb_{0}'.format(args.log_name)) log = set_log(args) # Set seeds random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if device == torch.device("cuda"): torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) # Set the gpu learner = MetaLearner(log, tb_writer, args) learner.train() if __name__ == "__main__": parser = argparse.ArgumentParser(description="") # General parser.add_argument( "--policy-type", type=str, choices=["discrete", "continuous", "normal"], help="Policy type available only for discrete, normal, and continuous") parser.add_argument( "--learner-type", type=str, choices=["meta", "finetune"], help="Learner type available only for meta, finetune") parser.add_argument( "--n-hidden", default=64, type=int, help="Number of hidden units") parser.add_argument( "--n-traj", default=1, type=int, help="Number of trajectory to collect from each task") # Meta-learning parser.add_argument( "--meta-batch-size", default=25, type=int, help="Number of tasks to sample for meta parameter update") parser.add_argument( "--fast-num-update", default=5, type=int, help="Number of updates for adaptation") parser.add_argument( "--meta-lr", default=0.03, type=float, help="Meta learning rate") parser.add_argument( "--fast-lr", default=10.0, type=float, help="Adaptation learning rate") parser.add_argument( "--first-order", action="store_true", help="Adaptation learning rate") # Env parser.add_argument( "--env-name", default="", type=str, help="OpenAI gym environment name") parser.add_argument( "--ep-max-timesteps", default=10, type=int, help="Episode is terminated when max timestep is reached.") parser.add_argument( "--n-agent", default=1, type=int, help="Number of agents in the environment") # Misc parser.add_argument( "--seed", default=0, type=int, help="Sets Gym, PyTorch and Numpy seeds") parser.add_argument( "--prefix", default="", type=str, help="Prefix for tb_writer and logging") args = parser.parse_args() # Set log name args.log_name = \ "env::%s_seed::%s_learner_type::%s_meta_batch_size::%s_meta_lr::%s_fast_num_update::%s_" \ "fast_lr::%s_prefix::%s_log" % ( args.env_name, str(args.seed), args.learner_type, args.meta_batch_size, args.meta_lr, args.fast_num_update, args.fast_lr, args.prefix) main(args=args)
[ "numpy.random.seed", "argparse.ArgumentParser", "torch.nn.modules.loss.MSELoss", "os.makedirs", "torch.manual_seed", "inner_loop.InnerLoop", "misc.utils.set_log", "os.path.exists", "torch.cuda.manual_seed", "omniglot_net.OmniglotNet", "torch.cuda.manual_seed_all", "misc.replay_buffer.ReplayBuffer", "random.seed", "torch.cuda.is_available", "misc.batch_sampler.BatchSampler", "torch.device", "misc.utils.visualize" ]
[((5202, 5215), 'misc.utils.set_log', 'set_log', (['args'], {}), '(args)\n', (5209, 5215), False, 'from misc.utils import set_log, visualize\n'), ((5241, 5263), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (5252, 5263), False, 'import random\n'), ((5268, 5293), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (5282, 5293), True, 'import numpy as np\n'), ((5298, 5326), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (5315, 5326), False, 'import torch\n'), ((5587, 5626), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (5610, 5626), False, 'import argparse\n'), ((440, 465), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (463, 465), False, 'import torch\n'), ((706, 715), 'torch.nn.modules.loss.MSELoss', 'MSELoss', ([], {}), '()\n', (713, 715), False, 'from torch.nn.modules.loss import MSELoss\n'), ((942, 960), 'misc.batch_sampler.BatchSampler', 'BatchSampler', (['args'], {}), '(args)\n', (954, 960), False, 'from misc.batch_sampler import BatchSampler\n'), ((983, 997), 'misc.replay_buffer.ReplayBuffer', 'ReplayBuffer', ([], {}), '()\n', (995, 997), False, 'from misc.replay_buffer import ReplayBuffer\n'), ((3653, 3718), 'misc.utils.visualize', 'visualize', (['episode_i', 'episode_i_', 'predictions_', 'i_task', 'self.args'], {}), '(episode_i, episode_i_, predictions_, i_task, self.args)\n', (3662, 3718), False, 'from misc.utils import set_log, visualize\n'), ((4964, 4988), 'os.path.exists', 'os.path.exists', (['"""./logs"""'], {}), "('./logs')\n", (4978, 4988), False, 'import os\n'), ((4998, 5019), 'os.makedirs', 'os.makedirs', (['"""./logs"""'], {}), "('./logs')\n", (5009, 5019), False, 'import os\n'), ((5031, 5065), 'os.path.exists', 'os.path.exists', (['"""./pytorch_models"""'], {}), "('./pytorch_models')\n", (5045, 5065), False, 'import os\n'), ((5075, 5106), 'os.makedirs', 'os.makedirs', (['"""./pytorch_models"""'], {}), "('./pytorch_models')\n", (5086, 5106), False, 'import os\n'), ((5344, 5364), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (5356, 5364), False, 'import torch\n'), ((5374, 5407), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (5396, 5407), False, 'import torch\n'), ((5416, 5453), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (5442, 5453), False, 'import torch\n'), ((745, 776), 'omniglot_net.OmniglotNet', 'OmniglotNet', (['self.loss_fn', 'args'], {}), '(self.loss_fn, args)\n', (756, 776), False, 'from omniglot_net import OmniglotNet\n'), ((813, 842), 'inner_loop.InnerLoop', 'InnerLoop', (['self.loss_fn', 'args'], {}), '(self.loss_fn, args)\n', (822, 842), False, 'from inner_loop import InnerLoop\n'), ((2339, 2375), 'omniglot_net.OmniglotNet', 'OmniglotNet', (['self.loss_fn', 'self.args'], {}), '(self.loss_fn, self.args)\n', (2350, 2375), False, 'from omniglot_net import OmniglotNet\n')]
import numpy as np from pandas import ( DataFrame, IndexSlice, ) class Render: params = [[12, 24, 36], [12, 120]] param_names = ["cols", "rows"] def setup(self, cols, rows): self.df = DataFrame( np.random.randn(rows, cols), columns=[f"float_{i+1}" for i in range(cols)], index=[f"row_{i+1}" for i in range(rows)], ) def time_apply_render(self, cols, rows): self._style_apply() self.st._render_html(True, True) def peakmem_apply_render(self, cols, rows): self._style_apply() self.st._render_html(True, True) def time_classes_render(self, cols, rows): self._style_classes() self.st._render_html(True, True) def peakmem_classes_render(self, cols, rows): self._style_classes() self.st._render_html(True, True) def time_tooltips_render(self, cols, rows): self._style_tooltips() self.st._render_html(True, True) def peakmem_tooltips_render(self, cols, rows): self._style_tooltips() self.st._render_html(True, True) def time_format_render(self, cols, rows): self._style_format() self.st._render_html(True, True) def peakmem_format_render(self, cols, rows): self._style_format() self.st._render_html(True, True) def time_apply_format_hide_render(self, cols, rows): self._style_apply_format_hide() self.st._render_html(True, True) def peakmem_apply_format_hide_render(self, cols, rows): self._style_apply_format_hide() self.st._render_html(True, True) def _style_apply(self): def _apply_func(s): return [ "background-color: lightcyan" if s.name == "row_1" else "" for v in s ] self.st = self.df.style.apply(_apply_func, axis=1) def _style_classes(self): classes = self.df.applymap(lambda v: ("cls-1" if v > 0 else "")) classes.index, classes.columns = self.df.index, self.df.columns self.st = self.df.style.set_td_classes(classes) def _style_format(self): ic = int(len(self.df.columns) / 4 * 3) ir = int(len(self.df.index) / 4 * 3) # apply a formatting function # subset is flexible but hinders vectorised solutions self.st = self.df.style.format( "{:,.3f}", subset=IndexSlice["row_1":f"row_{ir}", "float_1":f"float_{ic}"] ) def _style_apply_format_hide(self): self.st = self.df.style.applymap(lambda v: "color: red;") self.st.format("{:.3f}") self.st.hide_index(self.st.index[1:]) self.st.hide_columns(self.st.columns[1:]) def _style_tooltips(self): ttips = DataFrame("abc", index=self.df.index[::2], columns=self.df.columns[::2]) self.st = self.df.style.set_tooltips(ttips) self.st.hide_index(self.st.index[12:]) self.st.hide_columns(self.st.columns[12:])
[ "pandas.DataFrame", "numpy.random.randn" ]
[((2743, 2815), 'pandas.DataFrame', 'DataFrame', (['"""abc"""'], {'index': 'self.df.index[::2]', 'columns': 'self.df.columns[::2]'}), "('abc', index=self.df.index[::2], columns=self.df.columns[::2])\n", (2752, 2815), False, 'from pandas import DataFrame, IndexSlice\n'), ((240, 267), 'numpy.random.randn', 'np.random.randn', (['rows', 'cols'], {}), '(rows, cols)\n', (255, 267), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List from unittest.mock import patch from unittest import TestCase import genty import numpy as np from . import core @genty.genty class BenchmarkTests(TestCase): @genty.genty_dataset( # type: ignore bragg=("bragg", [2.93, 2.18, 2.35, 2.12, 31.53, 15.98, 226.69, 193.11]), morpho=("morpho", [280.36, 52.96, 208.16, 72.69, 89.92, 60.37, 226.69, 193.11]), chirped=("chirped", [280.36, 52.96, 104.08, 36.34, 31.53, 15.98, 226.69, 193.11]), ) def test_photonics_transforms(self, pb: str, expected: List[float]) -> None: np.random.seed(24) with patch("shutil.which", return_value="here"): func = core.Photonics(pb, 16) # should be 8... but it is actually not allowed. Nevermind here x = np.random.normal(0, 1, size=8) output = func.transform(x) np.testing.assert_almost_equal(output, expected, decimal=2) np.random.seed(24) x2 = np.random.normal(0, 1, size=8) np.testing.assert_almost_equal(x, x2, decimal=2, err_msg="x was modified in the process") def test_tanh_crop() -> None: output = core.tanh_crop([-1e9, 1e9, 0], -12, 16) np.testing.assert_almost_equal(output, [-12, 16, 2]) def test_morpho_transform_constraints() -> None: with patch("shutil.which", return_value="here"): func = core.Photonics("morpho", 60) x = np.random.normal(0, 5, size=60) # std 5 to play with boundaries output = func.transform(x) assert np.all(output >= 0) q = len(x) // 4 assert np.all(output[:q] <= 300) assert np.all(output[q: 3 * q] <= 600) assert np.all(output[2 * q: 3 * q] >= 30) assert np.all(output[3 * q:] <= 300) def test_photonics() -> None: with patch("shutil.which", return_value="here"): photo = core.Photonics("bragg", 16) with patch("nevergrad.instrumentation.utils.CommandFunction.__call__", return_value="line1\n12\n"): with patch("nevergrad.instrumentation.utils.CommandFunction.__call__", return_value="line1\n12\n"): output = photo(np.zeros(16)) np.testing.assert_equal(output, 12) # check error with patch("nevergrad.instrumentation.utils.CommandFunction.__call__", return_value="line1\n"): np.testing.assert_raises(RuntimeError, photo, np.zeros(16).tolist()) np.testing.assert_raises(AssertionError, photo, np.zeros(12).tolist())
[ "numpy.random.seed", "genty.genty_dataset", "numpy.testing.assert_almost_equal", "numpy.zeros", "unittest.mock.patch", "numpy.testing.assert_equal", "numpy.random.normal", "numpy.all" ]
[((389, 660), 'genty.genty_dataset', 'genty.genty_dataset', ([], {'bragg': "('bragg', [2.93, 2.18, 2.35, 2.12, 31.53, 15.98, 226.69, 193.11])", 'morpho': "('morpho', [280.36, 52.96, 208.16, 72.69, 89.92, 60.37, 226.69, 193.11])", 'chirped': "('chirped', [280.36, 52.96, 104.08, 36.34, 31.53, 15.98, 226.69, 193.11])"}), "(bragg=('bragg', [2.93, 2.18, 2.35, 2.12, 31.53, 15.98, \n 226.69, 193.11]), morpho=('morpho', [280.36, 52.96, 208.16, 72.69, \n 89.92, 60.37, 226.69, 193.11]), chirped=('chirped', [280.36, 52.96, \n 104.08, 36.34, 31.53, 15.98, 226.69, 193.11]))\n", (408, 660), False, 'import genty\n'), ((1369, 1421), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['output', '[-12, 16, 2]'], {}), '(output, [-12, 16, 2])\n', (1399, 1421), True, 'import numpy as np\n'), ((1578, 1609), 'numpy.random.normal', 'np.random.normal', (['(0)', '(5)'], {'size': '(60)'}), '(0, 5, size=60)\n', (1594, 1609), True, 'import numpy as np\n'), ((1685, 1704), 'numpy.all', 'np.all', (['(output >= 0)'], {}), '(output >= 0)\n', (1691, 1704), True, 'import numpy as np\n'), ((1736, 1761), 'numpy.all', 'np.all', (['(output[:q] <= 300)'], {}), '(output[:q] <= 300)\n', (1742, 1761), True, 'import numpy as np\n'), ((1773, 1803), 'numpy.all', 'np.all', (['(output[q:3 * q] <= 600)'], {}), '(output[q:3 * q] <= 600)\n', (1779, 1803), True, 'import numpy as np\n'), ((1816, 1849), 'numpy.all', 'np.all', (['(output[2 * q:3 * q] >= 30)'], {}), '(output[2 * q:3 * q] >= 30)\n', (1822, 1849), True, 'import numpy as np\n'), ((1862, 1891), 'numpy.all', 'np.all', (['(output[3 * q:] <= 300)'], {}), '(output[3 * q:] <= 300)\n', (1868, 1891), True, 'import numpy as np\n'), ((2278, 2313), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['output', '(12)'], {}), '(output, 12)\n', (2301, 2313), True, 'import numpy as np\n'), ((782, 800), 'numpy.random.seed', 'np.random.seed', (['(24)'], {}), '(24)\n', (796, 800), True, 'import numpy as np\n'), ((977, 1007), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(8)'}), '(0, 1, size=8)\n', (993, 1007), True, 'import numpy as np\n'), ((1051, 1110), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['output', 'expected'], {'decimal': '(2)'}), '(output, expected, decimal=2)\n', (1081, 1110), True, 'import numpy as np\n'), ((1119, 1137), 'numpy.random.seed', 'np.random.seed', (['(24)'], {}), '(24)\n', (1133, 1137), True, 'import numpy as np\n'), ((1151, 1181), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(8)'}), '(0, 1, size=8)\n', (1167, 1181), True, 'import numpy as np\n'), ((1190, 1284), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['x', 'x2'], {'decimal': '(2)', 'err_msg': '"""x was modified in the process"""'}), "(x, x2, decimal=2, err_msg=\n 'x was modified in the process')\n", (1220, 1284), True, 'import numpy as np\n'), ((1482, 1524), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': '"""here"""'}), "('shutil.which', return_value='here')\n", (1487, 1524), False, 'from unittest.mock import patch\n'), ((1933, 1975), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': '"""here"""'}), "('shutil.which', return_value='here')\n", (1938, 1975), False, 'from unittest.mock import patch\n'), ((2030, 2127), 'unittest.mock.patch', 'patch', (['"""nevergrad.instrumentation.utils.CommandFunction.__call__"""'], {'return_value': '"""line1\n12\n"""'}), "('nevergrad.instrumentation.utils.CommandFunction.__call__',\n return_value='line1\\n12\\n')\n", (2035, 2127), False, 'from unittest.mock import patch\n'), ((2341, 2434), 'unittest.mock.patch', 'patch', (['"""nevergrad.instrumentation.utils.CommandFunction.__call__"""'], {'return_value': '"""line1\n"""'}), "('nevergrad.instrumentation.utils.CommandFunction.__call__',\n return_value='line1\\n')\n", (2346, 2434), False, 'from unittest.mock import patch\n'), ((814, 856), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': '"""here"""'}), "('shutil.which', return_value='here')\n", (819, 856), False, 'from unittest.mock import patch\n'), ((2138, 2235), 'unittest.mock.patch', 'patch', (['"""nevergrad.instrumentation.utils.CommandFunction.__call__"""'], {'return_value': '"""line1\n12\n"""'}), "('nevergrad.instrumentation.utils.CommandFunction.__call__',\n return_value='line1\\n12\\n')\n", (2143, 2235), False, 'from unittest.mock import patch\n'), ((2260, 2272), 'numpy.zeros', 'np.zeros', (['(16)'], {}), '(16)\n', (2268, 2272), True, 'import numpy as np\n'), ((2561, 2573), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (2569, 2573), True, 'import numpy as np\n'), ((2486, 2498), 'numpy.zeros', 'np.zeros', (['(16)'], {}), '(16)\n', (2494, 2498), True, 'import numpy as np\n')]
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : functional.py # Author : <NAME> # Email : <EMAIL> # Date : 03/03/2018 # # This file is part of Jacinle. # Distributed under terms of the MIT license. import math from PIL import Image import numpy as np import torchvision.transforms.functional as TF import jactorch.transforms.image.functional as jac_tf from jacinle.utils.argument import get_2dshape def normalize_coor(img, coor): coor = coor.copy() coor[:, 0] /= img.width coor[:, 1] /= img.height return img, coor def denormalize_coor(img, coor): coor = coor.copy() coor[:, 0] *= img.width coor[:, 1] *= img.height return img, coor def crop(img, coor, i, j, h, w): coor = coor.copy() coor[:, 0] = (coor[:, 0] - j / img.width) * (img.width / w) coor[:, 1] = (coor[:, 1] - i / img.height) * (img.height / h) return TF.crop(img, i, j, h, w), coor def center_crop(img, coor, output_size): output_size = get_2dshape(output_size) w, h = img.size th, tw = output_size i = int(round((h - th) / 2.)) j = int(round((w - tw) / 2.)) return crop(img, coor, i, j, th, tw) def pad(img, coor, padding, mode='constant', fill=0): if isinstance(padding, int): padding = (padding, padding, padding, padding) elif len(padding) == 2: padding = (padding[0], padding[1], padding[0], padding[1]) else: assert len(padding) == 4 img_new = jac_tf.pad(img, padding, mode=mode, fill=fill) coor = coor.copy() coor[:, 0] = (coor[:, 0] + padding[0] / img.width) * (img.width / img_new.width) coor[:, 1] = (coor[:, 1] + padding[1] / img.height) * (img.height/ img_new.height) return img_new, coor def hflip(img, coor): coor = coor.copy() coor[:, 0] = 1 - coor[:, 0] return TF.hflip(img), coor def vflip(img, coor): coor = coor.copy() coor[:, 1] = 1 - coor[:, 1] return TF.vflip(img), coor def resize(img, coor, size, interpolation=Image.BILINEAR): # Assuming coordinates are 0/1-normalized. return TF.resize(img, size, interpolation=interpolation), coor def resized_crop(img, coor, i, j, h, w, size, interpolation=Image.BILINEAR): img, coor = crop(img, coor, i, j, h, w) img, coor = resize(img, coor, size, interpolation) return img, coor def refresh_valid(img, coor, force=False): if coor.shape[1] == 2: if force: coor = np.concatenate([coor, np.ones_like(coor[:, 0])], axis=1) else: return img, coor assert coor.shape[1] == 3, 'Support only (x, y, valid) or (x, y) typed coordinates.' out = [] for x, y, v in coor: valid = (v == 1) and (x >= 0) and (x < img.width) and (y >= 0) and (y < img.height) if valid: out.append((x, y, v)) else: out.append((0., 0., 0.)) return img, np.array(out, dtype='float32') def rotate(img, coor, angle, resample, crop_, expand, center=None, translate=None): assert translate is None img_new = TF.rotate(img, angle, resample=resample, expand=expand, center=center) matrix, extra_crop = get_rotation_matrix(img, angle, crop_, expand, center, translate) _, coor = denormalize_coor(img, coor) for i in range(coor.shape[0]): coor[i, :2] = apply_affine_transform(*coor[i, :2], matrix) _, coor = normalize_coor(img_new, coor) if extra_crop is not None: img_new, coor = crop(img_new, coor, *extra_crop) return img_new, coor def pad_multiple_of(img, coor, multiple, mode='constant', fill=0): h, w = img.height, img.width hh = h - h % multiple + multiple * int(h % multiple != 0) ww = w - w % multiple + multiple * int(w % multiple != 0) if h != hh or w != ww: return pad(img, coor, (0, 0, ww - w, hh - h), mode=mode, fill=fill) return img, coor def get_rotation_matrix(image, angle, crop, expand, center, translate): w, h = image.size if translate is None: translate = (0, 0) if center is None: center = (w / 2.0, h / 2.0) angle = math.radians(angle % 360) matrix = [ round(math.cos(angle), 15), round(math.sin(angle), 15), 0.0, round(-math.sin(angle), 15), round(math.cos(angle), 15), 0.0 ] matrix[2], matrix[5] = apply_affine_transform(-center[0], -center[1], matrix) matrix[2] += center[0] + translate[0] matrix[5] += center[1] + translate[1] # print('debug', angle, translate, center, matrix, apply_affine_transform(0.5, 0.5, matrix)) if crop or expand: xx = [] yy = [] for x, y in ((0, 0), (w, 0), (w, h), (0, h)): x, y = apply_affine_transform(x, y, matrix) xx.append(x) yy.append(y) xx.sort() yy.sort() extra_crop = None if crop: assert not expand, 'Cannot use both expand and crop.' nw = int(math.ceil(xx[2]) - math.floor(xx[1])) nh = int(math.ceil(yy[2]) - math.floor(yy[1])) # CAUSION! extra_crop is of format (dy, dx, h, w) extra_crop = ((h - nh) // 2, (w - nw) // 2, nh, nw) if expand: nw = int(math.ceil(xx[3]) - math.floor(xx[0])) nh = int(math.ceil(yy[3]) - math.floor(yy[0])) matrix[2] += (nw - w) / 2. matrix[5] += (nh - h) / 2. return matrix, extra_crop def apply_affine_transform(x, y, matrix): (a, b, c, d, e, f) = matrix return a*x + b*y + c, d*x + e*y + f
[ "numpy.ones_like", "torchvision.transforms.functional.rotate", "torchvision.transforms.functional.hflip", "math.radians", "math.ceil", "jactorch.transforms.image.functional.pad", "torchvision.transforms.functional.resize", "math.floor", "math.sin", "torchvision.transforms.functional.crop", "numpy.array", "torchvision.transforms.functional.vflip", "math.cos", "jacinle.utils.argument.get_2dshape" ]
[((978, 1002), 'jacinle.utils.argument.get_2dshape', 'get_2dshape', (['output_size'], {}), '(output_size)\n', (989, 1002), False, 'from jacinle.utils.argument import get_2dshape\n'), ((1454, 1500), 'jactorch.transforms.image.functional.pad', 'jac_tf.pad', (['img', 'padding'], {'mode': 'mode', 'fill': 'fill'}), '(img, padding, mode=mode, fill=fill)\n', (1464, 1500), True, 'import jactorch.transforms.image.functional as jac_tf\n'), ((3023, 3093), 'torchvision.transforms.functional.rotate', 'TF.rotate', (['img', 'angle'], {'resample': 'resample', 'expand': 'expand', 'center': 'center'}), '(img, angle, resample=resample, expand=expand, center=center)\n', (3032, 3093), True, 'import torchvision.transforms.functional as TF\n'), ((4059, 4084), 'math.radians', 'math.radians', (['(angle % 360)'], {}), '(angle % 360)\n', (4071, 4084), False, 'import math\n'), ((886, 910), 'torchvision.transforms.functional.crop', 'TF.crop', (['img', 'i', 'j', 'h', 'w'], {}), '(img, i, j, h, w)\n', (893, 910), True, 'import torchvision.transforms.functional as TF\n'), ((1812, 1825), 'torchvision.transforms.functional.hflip', 'TF.hflip', (['img'], {}), '(img)\n', (1820, 1825), True, 'import torchvision.transforms.functional as TF\n'), ((1922, 1935), 'torchvision.transforms.functional.vflip', 'TF.vflip', (['img'], {}), '(img)\n', (1930, 1935), True, 'import torchvision.transforms.functional as TF\n'), ((2061, 2110), 'torchvision.transforms.functional.resize', 'TF.resize', (['img', 'size'], {'interpolation': 'interpolation'}), '(img, size, interpolation=interpolation)\n', (2070, 2110), True, 'import torchvision.transforms.functional as TF\n'), ((2863, 2893), 'numpy.array', 'np.array', (['out'], {'dtype': '"""float32"""'}), "(out, dtype='float32')\n", (2871, 2893), True, 'import numpy as np\n'), ((4115, 4130), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (4123, 4130), False, 'import math\n'), ((4143, 4158), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (4151, 4158), False, 'import math\n'), ((4213, 4228), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (4221, 4228), False, 'import math\n'), ((4185, 4200), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (4193, 4200), False, 'import math\n'), ((4879, 4895), 'math.ceil', 'math.ceil', (['xx[2]'], {}), '(xx[2])\n', (4888, 4895), False, 'import math\n'), ((4898, 4915), 'math.floor', 'math.floor', (['xx[1]'], {}), '(xx[1])\n', (4908, 4915), False, 'import math\n'), ((4934, 4950), 'math.ceil', 'math.ceil', (['yy[2]'], {}), '(yy[2])\n', (4943, 4950), False, 'import math\n'), ((4953, 4970), 'math.floor', 'math.floor', (['yy[1]'], {}), '(yy[1])\n', (4963, 4970), False, 'import math\n'), ((5124, 5140), 'math.ceil', 'math.ceil', (['xx[3]'], {}), '(xx[3])\n', (5133, 5140), False, 'import math\n'), ((5143, 5160), 'math.floor', 'math.floor', (['xx[0]'], {}), '(xx[0])\n', (5153, 5160), False, 'import math\n'), ((5179, 5195), 'math.ceil', 'math.ceil', (['yy[3]'], {}), '(yy[3])\n', (5188, 5195), False, 'import math\n'), ((5198, 5215), 'math.floor', 'math.floor', (['yy[0]'], {}), '(yy[0])\n', (5208, 5215), False, 'import math\n'), ((2447, 2471), 'numpy.ones_like', 'np.ones_like', (['coor[:, 0]'], {}), '(coor[:, 0])\n', (2459, 2471), True, 'import numpy as np\n')]
from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import numpy as np def cross_val(estimator, X_train, y_train, nfolds): ''' Takes an instantiated model (estimator) and returns the average mean square error (mse) and coefficient of determination (r2) from kfold cross-validation. Parameters: estimator: model object X_train: 2d numpy array y_train: 1d numpy array nfolds: the number of folds in the kfold cross-validation Returns: mse: average mean_square_error of model over number of folds r2: average coefficient of determination over number of folds There are many possible values for scoring parameter in cross_val_score. http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter kfold is easily parallelizable, so set n_jobs = -1 in cross_val_score ''' mse = cross_val_score(estimator, X_train, y_train, scoring='neg_mean_squared_error', cv=nfolds, n_jobs=-1) * -1 # mse multiplied by -1 to make positive mean_mse = np.sqrt(mse.mean()) name = estimator.__class__.__name__ print("{0:<25s} Train CV | RMSLE: {1:0.3f} ".format(name, mean_mse)) return mean_mse def stage_score_plot(estimator, X_train, y_train, X_test, y_test): ''' Parameters: estimator: GradientBoostingRegressor or AdaBoostRegressor X_train: 2d numpy array y_train: 1d numpy array X_test: 2d numpy array y_test: 1d numpy array Returns: A plot of the number of iterations vs the MSE for the model for both the training set and test set. ''' estimator.fit(X_train, y_train) name = estimator.__class__.__name__.replace('Regressor', '') learn_rate = estimator.learning_rate # initialize train_scores = np.zeros((estimator.n_estimators,), dtype=np.float64) test_scores = np.zeros((estimator.n_estimators,), dtype=np.float64) # Get train score from each boost for i, y_train_pred in enumerate(estimator.staged_predict(X_train)): train_scores[i] = mean_squared_error(y_train, y_train_pred) # Get test score from each boost for i, y_test_pred in enumerate(estimator.staged_predict(X_test)): test_scores[i] = mean_squared_error(y_test, y_test_pred) fig, ax = plt.subplots(figsize = (8,10)) plt.plot(np.sqrt(train_scores), alpha=.5, label="{0} Train - learning rate {1}".format( name, learn_rate)) plt.plot(np.sqrt(test_scores), alpha=.5, label="{0} Test - learning rate {1}".format( name, learn_rate), ls='--') plt.title(name, fontsize=16, fontweight='bold') plt.ylabel('RMSLE', fontsize=14) plt.xlabel('Iterations', fontsize=14) return def rf_score_plot(randforest, X_train, y_train, X_test, y_test): ''' Parameters: randforest: RandomForestRegressor X_train: 2d numpy array y_train: 1d numpy array X_test: 2d numpy array y_test: 1d numpy array Returns: The prediction of a random forest regressor on the test set ''' randforest.fit(X_train, y_train) y_test_pred = randforest.predict(X_test) test_score = np.sqrt(mean_squared_error(y_test, y_test_pred)) plt.axhline(test_score, alpha = 0.7, c = 'grey', lw=1, ls='-.', label = 'Random Forest Test') def gridsearch_with_output(estimator, parameter_grid, X_train, y_train): ''' Parameters: estimator: the type of model (e.g. RandomForestRegressor()) paramter_grid: dictionary defining the gridsearch parameters X_train: 2d numpy array y_train: 1d numpy array Returns: best parameters and model fit with those parameters ''' model_gridsearch = GridSearchCV(estimator, parameter_grid, verbose=True, n_jobs=-1, scoring='neg_mean_squared_error') model_gridsearch.fit(X_train, y_train) best_params = model_gridsearch.best_params_ model_best = model_gridsearch.best_estimator_ print("\nResult of gridsearch:") print("{0:<20s} | {1:<8s} | {2}".format("Parameter", "Optimal", "Gridsearch values")) print("-" * 55) for param, vals in parameter_grid.items(): print("{0:<20s} | {1:<8s} | {2}".format(str(param), str(best_params[param]), str(vals))) return best_params, model_best def display_default_and_gsearch_model_results(model_default, model_gridsearch, X_test, y_test): ''' Parameters: model_default: fit model using initial parameters model_gridsearch: fit model using parameters from gridsearch X_test: 2d numpy array y_test: 1d numpy array Return: None, but prints out mse and r2 for the default and model with gridsearched parameters ''' name = model_default.__class__.__name__.replace('Regressor', '') # for printing y_test_pred = model_gridsearch.predict(X_test) mse = np.sqrt(mean_squared_error(y_test, y_test_pred)) print("Results for {0}".format(name)) print("Gridsearched model rmlse: {0:0.3f})".format(mse)) y_test_pred = model_default.predict(X_test) mse = np.sqrt(mean_squared_error(y_test, y_test_pred)) print(" Default model rmsle: {0:0.3f}".format(mse))
[ "matplotlib.pyplot.title", "matplotlib.pyplot.axhline", "sklearn.model_selection.GridSearchCV", "sklearn.model_selection.cross_val_score", "numpy.zeros", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "sklearn.metrics.mean_squared_error", "numpy.sqrt" ]
[((2361, 2414), 'numpy.zeros', 'np.zeros', (['(estimator.n_estimators,)'], {'dtype': 'np.float64'}), '((estimator.n_estimators,), dtype=np.float64)\n', (2369, 2414), True, 'import numpy as np\n'), ((2433, 2486), 'numpy.zeros', 'np.zeros', (['(estimator.n_estimators,)'], {'dtype': 'np.float64'}), '((estimator.n_estimators,), dtype=np.float64)\n', (2441, 2486), True, 'import numpy as np\n'), ((2858, 2887), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 10)'}), '(figsize=(8, 10))\n', (2870, 2887), True, 'import matplotlib.pyplot as plt\n'), ((3241, 3288), 'matplotlib.pyplot.title', 'plt.title', (['name'], {'fontsize': '(16)', 'fontweight': '"""bold"""'}), "(name, fontsize=16, fontweight='bold')\n", (3250, 3288), True, 'import matplotlib.pyplot as plt\n'), ((3293, 3325), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""RMSLE"""'], {'fontsize': '(14)'}), "('RMSLE', fontsize=14)\n", (3303, 3325), True, 'import matplotlib.pyplot as plt\n'), ((3330, 3367), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iterations"""'], {'fontsize': '(14)'}), "('Iterations', fontsize=14)\n", (3340, 3367), True, 'import matplotlib.pyplot as plt\n'), ((3924, 4016), 'matplotlib.pyplot.axhline', 'plt.axhline', (['test_score'], {'alpha': '(0.7)', 'c': '"""grey"""', 'lw': '(1)', 'ls': '"""-."""', 'label': '"""Random Forest Test"""'}), "(test_score, alpha=0.7, c='grey', lw=1, ls='-.', label=\n 'Random Forest Test')\n", (3935, 4016), True, 'import matplotlib.pyplot as plt\n'), ((4507, 4610), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', (['estimator', 'parameter_grid'], {'verbose': '(True)', 'n_jobs': '(-1)', 'scoring': '"""neg_mean_squared_error"""'}), "(estimator, parameter_grid, verbose=True, n_jobs=-1, scoring=\n 'neg_mean_squared_error')\n", (4519, 4610), False, 'from sklearn.model_selection import GridSearchCV\n'), ((1289, 1394), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['estimator', 'X_train', 'y_train'], {'scoring': '"""neg_mean_squared_error"""', 'cv': 'nfolds', 'n_jobs': '(-1)'}), "(estimator, X_train, y_train, scoring=\n 'neg_mean_squared_error', cv=nfolds, n_jobs=-1)\n", (1304, 1394), False, 'from sklearn.model_selection import train_test_split, cross_val_score\n'), ((2624, 2665), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_train', 'y_train_pred'], {}), '(y_train, y_train_pred)\n', (2642, 2665), False, 'from sklearn.metrics import mean_squared_error\n'), ((2799, 2838), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_test_pred'], {}), '(y_test, y_test_pred)\n', (2817, 2838), False, 'from sklearn.metrics import mean_squared_error\n'), ((2902, 2923), 'numpy.sqrt', 'np.sqrt', (['train_scores'], {}), '(train_scores)\n', (2909, 2923), True, 'import numpy as np\n'), ((3077, 3097), 'numpy.sqrt', 'np.sqrt', (['test_scores'], {}), '(test_scores)\n', (3084, 3097), True, 'import numpy as np\n'), ((3879, 3918), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_test_pred'], {}), '(y_test, y_test_pred)\n', (3897, 3918), False, 'from sklearn.metrics import mean_squared_error\n'), ((5986, 6025), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_test_pred'], {}), '(y_test, y_test_pred)\n', (6004, 6025), False, 'from sklearn.metrics import mean_squared_error\n'), ((6197, 6236), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_test_pred'], {}), '(y_test, y_test_pred)\n', (6215, 6236), False, 'from sklearn.metrics import mean_squared_error\n')]
""" Name: SampleEvent breif: Samples events for particles provided in a phase space for MCDC-TNT Author: <NAME> (OR State Univ - <EMAIL>) CEMeNT Date: Dec 2nd 2021 """ import numpy as np import pykokkos as pk @pk.workload class SampleEvent: def __init__(self, p_mesh_cell, p_alive, mesh_cap_xsec, mesh_scat_xsec, mesh_fis_xsec, scatter_event_index, capture_event_index, fission_event_index, num_part, nu_new_neutrons, rands, clever_out): self.p_mesh_cell: pk.View1D[int] = p_mesh_cell self.p_alive: pk.View1D[int] = p_alive self.mesh_cap_xsec: pk.View1D[pk.double] = mesh_cap_xsec self.mesh_scat_xsec: pk.View1D[pk.double] = mesh_scat_xsec self.mesh_fis_xsec: pk.View1D[pk.double] = mesh_fis_xsec self.scatter_event_index: pk.View1D[int] = scatter_event_index self.capture_event_index: pk.View1D[int] = capture_event_index self.fission_event_index: pk.View1D[int] = fission_event_index self.num_part: int = num_part self.nu_new_neutrons: int = num_part self.rands: pk.View1D[pk.double] = rands self.fissions_to_add: int = 0 self.scat_count: int = 0 self.cap_count: int = 0 self.fis_count: int = 0 self.killed: int = 0 self.clever_out: pk.View1D[int] = clever_out #print('made it through init!') @pk.main def run(self): for i in range(self.num_part): #normalize cross sections in each mesh cell total_scat_xsec: pk.double = self.mesh_scat_xsec[self.p_mesh_cell[i]] + self.mesh_cap_xsec[self.p_mesh_cell[i]] + self.mesh_fis_xsec[self.p_mesh_cell[i]] mesh_scat_xsec_temp: pk.double = self.mesh_scat_xsec[self.p_mesh_cell[i]] / total_scat_xsec mesh_cap_xsec_temp: pk.double = self.mesh_cap_xsec[self.p_mesh_cell[i]] / total_scat_xsec mesh_fis_xsec_temp: pk.double = self.mesh_fis_xsec[self.p_mesh_cell[i]] / total_scat_xsec #pk.printf('%d %d %d\n ',self.scat_count, self.cap_count, self.fis_count) if self.p_alive[i] == 1: event_rand:pk.double = self.rands[i] #scatter? if event_rand < mesh_scat_xsec_temp: self.scatter_event_index[self.scat_count] = i self.scat_count += 1 #pk.printf('had a scatter! %d\n', self.scat_count) #capture? elif mesh_scat_xsec_temp < event_rand and event_rand < mesh_scat_xsec_temp + mesh_cap_xsec_temp: self.p_alive[i] = 0 self.killed += 1 self.capture_event_index[self.cap_count] = i self.cap_count +=1 #pk.printf('had a capture! %d\n', self.cap_count) #fission? elif mesh_scat_xsec_temp + mesh_cap_xsec_temp < event_rand and event_rand < mesh_scat_xsec_temp + mesh_cap_xsec_temp + mesh_fis_xsec_temp: self.p_alive[i] = 0 self.killed += 1 self.fissions_to_add += self.nu_new_neutrons self.fission_event_index[self.fis_count] = i self.fis_count += 1 #pk.printf('had a fission! %d\n', self.fis_count) else: pk.printf('Well shoot dang') self.clever_out[0] = self.scat_count self.clever_out[1] = self.cap_count self.clever_out[2] = self.fis_count def test_SampleEvent(): p_mesh_cell = np.array([0,1,0,5], dtype=np.int32) p_alive = np.array([1,1,1,0], dtype=np.int32) mesh_cap_xsec = 1/3*np.ones(2, dtype=float) mesh_scat_xsec = 1/3*np.ones(2, dtype=float) mesh_fis_xsec = 1/2*np.ones(2, dtype=float) scatter_event_index = np.zeros(3, dtype=np.int32) capture_event_index = np.zeros(3, dtype=np.int32) fission_event_index = np.zeros(3, dtype=np.int32) controled_rands = np.array([.2, .4, .8], dtype=float) nu = 2 num_part = 3 p_mesh_cell = pk.from_numpy(p_mesh_cell) p_alive = pk.from_numpy(p_alive) mesh_cap_xsec = pk.from_numpy(mesh_cap_xsec) mesh_scat_xsec = pk.from_numpy(mesh_scat_xsec) mesh_fis_xsec = pk.from_numpy(mesh_fis_xsec) scatter_event_index = pk.from_numpy(scatter_event_index) capture_event_index = pk.from_numpy(capture_event_index) fission_event_index = pk.from_numpy(fission_event_index) controled_rands = pk.from_numpy(controled_rands) clever_out = np.zeros(3, dtype=np.int32) clever_out = pk.from_numpy(clever_out) print("Running!") pk.execute(pk.ExecutionSpace.OpenMP, SampleEvent(p_mesh_cell, p_alive, mesh_cap_xsec, mesh_scat_xsec, mesh_fis_xsec, scatter_event_index, capture_event_index, fission_event_index, num_part, nu, controled_rands, clever_out)) print('Made it through') scat_count = clever_out[0] cap_count = clever_out[1] fis_count = clever_out[2] print(scat_count) assert (fis_count == 1) assert (scat_count == 1) assert (cap_count == 1) assert (capture_event_index[0] == 1) assert (fission_event_index[0] == 2) assert (scatter_event_index[0] == 0) if __name__ == '__main__': test_SampleEvent()
[ "pykokkos.printf", "numpy.zeros", "numpy.ones", "pykokkos.from_numpy", "numpy.array" ]
[((3753, 3791), 'numpy.array', 'np.array', (['[0, 1, 0, 5]'], {'dtype': 'np.int32'}), '([0, 1, 0, 5], dtype=np.int32)\n', (3761, 3791), True, 'import numpy as np\n'), ((3807, 3845), 'numpy.array', 'np.array', (['[1, 1, 1, 0]'], {'dtype': 'np.int32'}), '([1, 1, 1, 0], dtype=np.int32)\n', (3815, 3845), True, 'import numpy as np\n'), ((4048, 4075), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'np.int32'}), '(3, dtype=np.int32)\n', (4056, 4075), True, 'import numpy as np\n'), ((4106, 4133), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'np.int32'}), '(3, dtype=np.int32)\n', (4114, 4133), True, 'import numpy as np\n'), ((4164, 4191), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'np.int32'}), '(3, dtype=np.int32)\n', (4172, 4191), True, 'import numpy as np\n'), ((4246, 4284), 'numpy.array', 'np.array', (['[0.2, 0.4, 0.8]'], {'dtype': 'float'}), '([0.2, 0.4, 0.8], dtype=float)\n', (4254, 4284), True, 'import numpy as np\n'), ((4358, 4384), 'pykokkos.from_numpy', 'pk.from_numpy', (['p_mesh_cell'], {}), '(p_mesh_cell)\n', (4371, 4384), True, 'import pykokkos as pk\n'), ((4403, 4425), 'pykokkos.from_numpy', 'pk.from_numpy', (['p_alive'], {}), '(p_alive)\n', (4416, 4425), True, 'import pykokkos as pk\n'), ((4459, 4487), 'pykokkos.from_numpy', 'pk.from_numpy', (['mesh_cap_xsec'], {}), '(mesh_cap_xsec)\n', (4472, 4487), True, 'import pykokkos as pk\n'), ((4513, 4542), 'pykokkos.from_numpy', 'pk.from_numpy', (['mesh_scat_xsec'], {}), '(mesh_scat_xsec)\n', (4526, 4542), True, 'import pykokkos as pk\n'), ((4567, 4595), 'pykokkos.from_numpy', 'pk.from_numpy', (['mesh_fis_xsec'], {}), '(mesh_fis_xsec)\n', (4580, 4595), True, 'import pykokkos as pk\n'), ((4635, 4669), 'pykokkos.from_numpy', 'pk.from_numpy', (['scatter_event_index'], {}), '(scatter_event_index)\n', (4648, 4669), True, 'import pykokkos as pk\n'), ((4700, 4734), 'pykokkos.from_numpy', 'pk.from_numpy', (['capture_event_index'], {}), '(capture_event_index)\n', (4713, 4734), True, 'import pykokkos as pk\n'), ((4765, 4799), 'pykokkos.from_numpy', 'pk.from_numpy', (['fission_event_index'], {}), '(fission_event_index)\n', (4778, 4799), True, 'import pykokkos as pk\n'), ((4835, 4865), 'pykokkos.from_numpy', 'pk.from_numpy', (['controled_rands'], {}), '(controled_rands)\n', (4848, 4865), True, 'import pykokkos as pk\n'), ((4896, 4923), 'numpy.zeros', 'np.zeros', (['(3)'], {'dtype': 'np.int32'}), '(3, dtype=np.int32)\n', (4904, 4923), True, 'import numpy as np\n'), ((4946, 4971), 'pykokkos.from_numpy', 'pk.from_numpy', (['clever_out'], {}), '(clever_out)\n', (4959, 4971), True, 'import pykokkos as pk\n'), ((3880, 3903), 'numpy.ones', 'np.ones', (['(2)'], {'dtype': 'float'}), '(2, dtype=float)\n', (3887, 3903), True, 'import numpy as np\n'), ((3933, 3956), 'numpy.ones', 'np.ones', (['(2)'], {'dtype': 'float'}), '(2, dtype=float)\n', (3940, 3956), True, 'import numpy as np\n'), ((3985, 4008), 'numpy.ones', 'np.ones', (['(2)'], {'dtype': 'float'}), '(2, dtype=float)\n', (3992, 4008), True, 'import numpy as np\n'), ((3509, 3537), 'pykokkos.printf', 'pk.printf', (['"""Well shoot dang"""'], {}), "('Well shoot dang')\n", (3518, 3537), True, 'import pykokkos as pk\n')]
import logging import numpy as np from .dataset import DataSet from .markers import markers_to_events def sliding_window_indices(window_size, window_step, sig_len): '''Returns indices for a sliding window with shape [nwindows x window_size]''' nwindows = int(np.floor((sig_len - window_size + window_step) / float(window_step))) print(nwindows) starts = np.arange(nwindows).reshape(nwindows, 1) * window_step return starts + np.arange(window_size) def sliding_window(signal, window_size, window_step, win_func=None): '''Apply a sliding window to a 1D signal. Returns [#windows x window_size].''' signal = np.asarray(signal) if signal.ndim != 1: raise ValueError('Sliding window works on 1D arrays only!') if win_func is not None: if win_func.size != window_size: raise ValueError('window_size (%d) does not match win_func.size (%d)' % ( window_size, win_func.size)) indices = sliding_window_indices(window_size, window_step, signal.shape[0]) windows = signal.take(indices=indices) if win_func is not None: windows = windows * win_func # broadcasting matches from last dim return windows def stft(signal, nfft, stepsize): '''Calculate the short-time Fourier transform (STFT). Returns [windows x FFT coefficients]''' wins = sliding_window(signal, nfft, stepsize, win_func=np.hanning(nfft)) return np.fft.rfft(wins, axis=1) def spectrogram(signal, nfft, stepsize): ''' Calculate a spectrogram using STFT. Returns [windows x frequencies], in units related to power. Equivalent to power spectral density. ''' spec = stft(signal, nfft, stepsize) # convert to power. The abs() is the magnitude of a complex number spec = np.abs(spec) ** 2 / nfft # compensate for missing negative frequencies spec[:, 1:-1] *= 2 # correct for window spec /= np.mean(np.abs(np.hanning(nfft)) ** 2) # compensate for overlapping windows nwins = spec.shape[0] overlap = stepsize / float(nfft) spec *= (1 + (nwins - 1) * overlap) / nwins return spec def get_samplerate(d, axis=1): ''' Derive the sample rate from the timestamps given in either ``feat_lab`` or ``d.ids``. The median of the difference between consecutive time stamps is takes to be the sample rate. Parameters ---------- d : :class:`psychic.DataSet` The data to estimate the sample rate of. Must contain time stamps in ``d.ids`` axis : int (default 1) The axis along which time samples are stored. If the last axis is specified here, time stamps are taken from the ``ids`` property, otherwise they are taken from the corresponding index of ``feat_lab``. Returns ------- sample_rate : float The estimated samplerate. ''' assert axis < d.data.ndim, 'Invalid axis specified' if axis == d.data.ndim - 1: return np.round(1./np.median(np.diff(d.ids[0]))) else: return np.round(1./np.median(np.diff([float(x) for x in d.feat_lab[axis]]))) def find_segments(events, event_indices, start_mark, end_mark): '''Helper to find matching start/end markers in an event array''' events, event_indices = np.asarray(events), np.asarray(event_indices) assert events.size == event_indices.size mask = (events==start_mark) | (events==end_mark) sevents, sevent_ids = events[mask], event_indices[mask] stack, result = [], [] for si in range(sevent_ids.size): if sevents[si] == start_mark: stack.append(sevent_ids[si]) else: assert stack != [], 'Missing start marker' result.append((stack.pop(), sevent_ids[si])) if not stack == []: logging.getLogger('psychic.utils.find_segments').warning( 'Did not end start marker(s) at %s' % repr(stack)) return result def cut_segments(d, marker_tuples, offsets=[0, 0]): ''' Cut a dataset into segments using (start_marker, end_marker) tuples. Parameters ---------- d : :class:`psychic.DataSet` Continuous data to cut into segments. marker_tuples : list of tuples A list of (start_marker, end_marker) marker codes delimiting each type of segment. Returns ------- data : list of :class:`psychic.DataSet` A list with datasets. ''' start_off, end_off = offsets segments = [] e, ei, _ = markers_to_events(d.labels.flat) for (sm, em) in marker_tuples: segments.extend(find_segments(e, ei, sm, em)) segments.sort() return [d[s + start_off:e + end_off] for (s, e) in segments] def wolpaw_bitr(N, P): assert 0 <= P <= 1 assert 2 <= N result = np.log2(N) if P > 0: result += P * np.log2(P) if P < 1: result += (1 - P) * np.log2((1 - P)/(N - 1.)) return result def split_in_bins(d, order, n, legend=lambda i,b: 'slice %d' % i, ascending=True): idx = np.argsort(order) if not ascending: idx = idx[::-1] bin_size = int(len(order) / float(n)) bins = [idx[i*bin_size:(i+1)*bin_size] for i in range(n)] labels = np.zeros((n, d.ninstances), dtype=np.bool) for i,b in enumerate(bins): labels[i, b] = True cl_lab = [legend(i, bins[i]) for i in range(n)] return (bins, DataSet(labels=labels, cl_lab=cl_lab, default=d))
[ "numpy.fft.rfft", "numpy.abs", "numpy.log2", "numpy.asarray", "numpy.zeros", "numpy.argsort", "numpy.diff", "numpy.arange", "numpy.hanning", "logging.getLogger" ]
[((627, 645), 'numpy.asarray', 'np.asarray', (['signal'], {}), '(signal)\n', (637, 645), True, 'import numpy as np\n'), ((1364, 1389), 'numpy.fft.rfft', 'np.fft.rfft', (['wins'], {'axis': '(1)'}), '(wins, axis=1)\n', (1375, 1389), True, 'import numpy as np\n'), ((4481, 4491), 'numpy.log2', 'np.log2', (['N'], {}), '(N)\n', (4488, 4491), True, 'import numpy as np\n'), ((4704, 4721), 'numpy.argsort', 'np.argsort', (['order'], {}), '(order)\n', (4714, 4721), True, 'import numpy as np\n'), ((4879, 4921), 'numpy.zeros', 'np.zeros', (['(n, d.ninstances)'], {'dtype': 'np.bool'}), '((n, d.ninstances), dtype=np.bool)\n', (4887, 4921), True, 'import numpy as np\n'), ((442, 464), 'numpy.arange', 'np.arange', (['window_size'], {}), '(window_size)\n', (451, 464), True, 'import numpy as np\n'), ((3108, 3126), 'numpy.asarray', 'np.asarray', (['events'], {}), '(events)\n', (3118, 3126), True, 'import numpy as np\n'), ((3128, 3153), 'numpy.asarray', 'np.asarray', (['event_indices'], {}), '(event_indices)\n', (3138, 3153), True, 'import numpy as np\n'), ((1337, 1353), 'numpy.hanning', 'np.hanning', (['nfft'], {}), '(nfft)\n', (1347, 1353), True, 'import numpy as np\n'), ((1702, 1714), 'numpy.abs', 'np.abs', (['spec'], {}), '(spec)\n', (1708, 1714), True, 'import numpy as np\n'), ((4523, 4533), 'numpy.log2', 'np.log2', (['P'], {}), '(P)\n', (4530, 4533), True, 'import numpy as np\n'), ((4570, 4598), 'numpy.log2', 'np.log2', (['((1 - P) / (N - 1.0))'], {}), '((1 - P) / (N - 1.0))\n', (4577, 4598), True, 'import numpy as np\n'), ((369, 388), 'numpy.arange', 'np.arange', (['nwindows'], {}), '(nwindows)\n', (378, 388), True, 'import numpy as np\n'), ((1847, 1863), 'numpy.hanning', 'np.hanning', (['nfft'], {}), '(nfft)\n', (1857, 1863), True, 'import numpy as np\n'), ((3572, 3620), 'logging.getLogger', 'logging.getLogger', (['"""psychic.utils.find_segments"""'], {}), "('psychic.utils.find_segments')\n", (3589, 3620), False, 'import logging\n'), ((2838, 2855), 'numpy.diff', 'np.diff', (['d.ids[0]'], {}), '(d.ids[0])\n', (2845, 2855), True, 'import numpy as np\n')]
import pandas as pd import numpy as np from GPfates import GPfates etpm = pd.read_table('tapio_tcell_tpm.txt', index_col=0) etpm = etpm[(etpm > 2).sum(1) > 2] logexp = np.log10(etpm + 1) tcells = pd.read_csv('tcells_rebuttal.csv', index_col=0) m = GPfates.GPfates(tcells, logexp) # m.dimensionality_reduction() # # m.store_dr() # # m.infer_pseudotime(priors=m.s.day_int, s_columns=['bgplvm_0', 'bgplvm_1']) # m.infer_pseudotime(priors=m.s.day_int, s_columns=['bgplvm_2d_0', 'bgplvm_2d_1']) # GPfates.plt.scatter(m.s.scaled_pseudotime, m.s.pseudotime); GPfates.plt.show() # m.model_fates(X=['bgplvm_1']) m.model_fates(X=['bgplvm_2d_1']) # p = m.identify_bifurcation_point() # print(p) # m.calculate_bifurcation_statistics() # m.fate_model.plot(); GPfates.plt.show() m.make_fates_viz(['bgplvm_2d_0', 'bgplvm_2d_1']) m.fates_viz.plot(); GPfates.plt.show()
[ "pandas.read_csv", "GPfates.GPfates.GPfates", "GPfates.GPfates.plt.show", "pandas.read_table", "numpy.log10" ]
[((76, 125), 'pandas.read_table', 'pd.read_table', (['"""tapio_tcell_tpm.txt"""'], {'index_col': '(0)'}), "('tapio_tcell_tpm.txt', index_col=0)\n", (89, 125), True, 'import pandas as pd\n'), ((170, 188), 'numpy.log10', 'np.log10', (['(etpm + 1)'], {}), '(etpm + 1)\n', (178, 188), True, 'import numpy as np\n'), ((199, 246), 'pandas.read_csv', 'pd.read_csv', (['"""tcells_rebuttal.csv"""'], {'index_col': '(0)'}), "('tcells_rebuttal.csv', index_col=0)\n", (210, 246), True, 'import pandas as pd\n'), ((252, 283), 'GPfates.GPfates.GPfates', 'GPfates.GPfates', (['tcells', 'logexp'], {}), '(tcells, logexp)\n', (267, 283), False, 'from GPfates import GPfates\n'), ((849, 867), 'GPfates.GPfates.plt.show', 'GPfates.plt.show', ([], {}), '()\n', (865, 867), False, 'from GPfates import GPfates\n')]
# $Id$ # # Copyright (C) 2003 <NAME> and Rational Discovery LLC # All Rights Reserved # """ functionality to allow adjusting composite model contents """ from __future__ import print_function import copy import numpy def BalanceComposite(model, set1, set2, weight, targetSize, names1=None, names2=None): """ adjusts the contents of the composite model so as to maximize the weighted classification accuracty across the two data sets. The resulting composite model, with _targetSize_ models, is returned. **Notes**: - if _names1_ and _names2_ are not provided, _set1_ and _set2_ should have the same ordering of columns and _model_ should have already have had _SetInputOrder()_ called. """ # # adjust the weights to be proportional to the size of the two data sets # The normalization we do here assures that a perfect model contributes # a score of S1+S2 to the final # S1 = len(set1) S2 = len(set2) weight1 = float(S1 + S2) * (1 - weight) / S1 weight2 = float(S1 + S2) * weight / S2 # print('\t:::', S1, S2, weight1, weight2) # print('nModels:', len(model)) # start with a copy so that we get all the additional schnick-schnack res = copy.copy(model) res.modelList = [] res.errList = [] res.countList = [] res.quantizationRequirements = [] startSize = len(model) scores = numpy.zeros(startSize, numpy.float) actQuantBounds = model.GetActivityQuantBounds() if names1 is not None: model.SetInputOrder(names1) for pt in set1: pred, conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i] == ans: scores[i] += weight1 if names2 is not None: model.SetInputOrder(names2) for pt in set2: pred, conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i] == ans: scores[i] += weight2 # normalize the scores nPts = S1 + S2 scores /= nPts # sort them: bestOrder = list(numpy.argsort(scores)) bestOrder.reverse() print('\tTAKE:', bestOrder[:targetSize]) # and now take the best set: for i in range(targetSize): idx = bestOrder[i] mdl = model.modelList[idx] res.modelList.append(mdl) res.errList.append(1. - scores[idx]) res.countList.append(1) # FIX: this should probably be more general: res.quantizationRequirements.append(0) return res
[ "numpy.zeros", "numpy.argsort", "copy.copy" ]
[((1217, 1233), 'copy.copy', 'copy.copy', (['model'], {}), '(model)\n', (1226, 1233), False, 'import copy\n'), ((1368, 1403), 'numpy.zeros', 'numpy.zeros', (['startSize', 'numpy.float'], {}), '(startSize, numpy.float)\n', (1379, 1403), False, 'import numpy\n'), ((2215, 2236), 'numpy.argsort', 'numpy.argsort', (['scores'], {}), '(scores)\n', (2228, 2236), False, 'import numpy\n')]
''' Reference: <NAME>, et al., "IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models." SIGIR 2017. @author: <NAME> ''' from neurec.model.AbstractRecommender import AbstractRecommender import tensorflow as tf import pickle import numpy as np from concurrent.futures import ThreadPoolExecutor from neurec.util import data_gen, reader from neurec.evaluation import Evaluate from neurec.util.properties import Properties class GEN(object): def __init__(self, itemNum, userNum, emb_dim, lamda, param=None, initdelta=0.05, learning_rate=0.05): self.itemNum = itemNum self.userNum = userNum self.emb_dim = emb_dim self.lamda = lamda # regularization parameters self.param = param self.initdelta = initdelta self.learning_rate = learning_rate self.g_params = [] with tf.variable_scope('generator'): if self.param == None: self.user_embeddings = tf.Variable( tf.random_uniform([self.userNum, self.emb_dim], minval=-self.initdelta, maxval=self.initdelta, dtype=tf.float32)) self.item_embeddings = tf.Variable( tf.random_uniform([self.itemNum, self.emb_dim], minval=-self.initdelta, maxval=self.initdelta, dtype=tf.float32)) self.item_bias = tf.Variable(tf.zeros([self.itemNum])) else: self.user_embeddings = tf.Variable(self.param[0]) self.item_embeddings = tf.Variable(self.param[1]) self.item_bias = tf.Variable(param[2]) self.g_params = [self.user_embeddings, self.item_embeddings, self.item_bias] self.u = tf.placeholder(tf.int32) self.i = tf.placeholder(tf.int32) self.reward = tf.placeholder(tf.float32) self.u_embedding = tf.nn.embedding_lookup(self.user_embeddings, self.u) self.i_embedding = tf.nn.embedding_lookup(self.item_embeddings, self.i) self.i_bias = tf.gather(self.item_bias, self.i) self.all_logits = tf.reduce_sum(tf.multiply(self.u_embedding, self.item_embeddings), 1) + self.item_bias self.i_prob = tf.gather( tf.reshape(tf.nn.softmax(tf.reshape(self.all_logits, [1, -1])), [-1]), self.i) self.gan_loss = -tf.reduce_mean(tf.log(self.i_prob) * self.reward) + self.lamda * ( tf.nn.l2_loss(self.u_embedding) + tf.nn.l2_loss(self.i_embedding) + tf.nn.l2_loss(self.i_bias)) g_opt = tf.train.GradientDescentOptimizer(self.learning_rate) self.gan_updates = g_opt.minimize(self.gan_loss, var_list=self.g_params) # for test stage, self.u: [batch_size] self.all_rating = tf.matmul(self.u_embedding, self.item_embeddings, transpose_a=False, transpose_b=True) + self.item_bias class DIS(object): def __init__(self, itemNum, userNum, emb_dim, lamda, param=None, initdelta=0.05, learning_rate=0.05): self.itemNum = itemNum self.userNum = userNum self.emb_dim = emb_dim self.lamda = lamda # regularization parameters self.param = param self.initdelta = initdelta self.learning_rate = learning_rate self.d_params = [] with tf.variable_scope('discriminator'): if self.param == None: self.user_embeddings = tf.Variable( tf.random_uniform([self.userNum, self.emb_dim], minval=-self.initdelta, maxval=self.initdelta, dtype=tf.float32)) self.item_embeddings = tf.Variable( tf.random_uniform([self.itemNum, self.emb_dim], minval=-self.initdelta, maxval=self.initdelta, dtype=tf.float32)) self.item_bias = tf.Variable(tf.zeros([self.itemNum])) else: self.user_embeddings = tf.Variable(self.param[0]) self.item_embeddings = tf.Variable(self.param[1]) self.item_bias = tf.Variable(self.param[2]) self.d_params = [self.user_embeddings, self.item_embeddings, self.item_bias] # placeholder definition self.u = tf.placeholder(tf.int32) self.i = tf.placeholder(tf.int32) self.label = tf.placeholder(tf.float32) self.u_embedding = tf.nn.embedding_lookup(self.user_embeddings, self.u) self.i_embedding = tf.nn.embedding_lookup(self.item_embeddings, self.i) self.i_bias = tf.gather(self.item_bias, self.i) self.pre_logits = tf.reduce_sum(tf.multiply(self.u_embedding, self.i_embedding), 1) + self.i_bias self.pre_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=self.label, logits=self.pre_logits) + self.lamda * ( tf.nn.l2_loss(self.u_embedding) + tf.nn.l2_loss(self.i_embedding) + tf.nn.l2_loss(self.i_bias) ) d_opt = tf.train.GradientDescentOptimizer(self.learning_rate) self.d_updates = d_opt.minimize(self.pre_loss, var_list=self.d_params) self.reward_logits = tf.reduce_sum(tf.multiply(self.u_embedding, self.i_embedding), 1) + self.i_bias self.reward = 2 * (tf.sigmoid(self.reward_logits) - 0.5) # for test stage, self.u: [batch_size] self.all_rating = tf.matmul(self.u_embedding, self.item_embeddings, transpose_a=False, transpose_b=True) + self.item_bias self.all_logits = tf.reduce_sum(tf.multiply(self.u_embedding, self.item_embeddings), 1) + self.item_bias self.NLL = -tf.reduce_mean(tf.log( tf.gather(tf.reshape(tf.nn.softmax(tf.reshape(self.all_logits, [1, -1])), [-1]), self.i)) ) # for dns sample self.dns_rating = tf.reduce_sum(tf.multiply(self.u_embedding, self.item_embeddings), 1) + self.item_bias class IRGAN(AbstractRecommender): properties = [ "factors_num", "lr", "g_reg", "d_reg", "epochs", "g_epoch", "d_epoch", "batch_size", "d_tau", "topk", "pretrain_file" ] def __init__(self, sess, dataset): # super(IRGAN, self).__init__() super().__init__(**kwds) train_matrix = dataset.trainMatrix.tocsr() self.num_users, self.num_items = train_matrix.shape self.factors_num = self.conf["factors_num"] self.lr = self.conf["lr"] self.g_reg = self.conf["g_reg"] self.d_reg = self.conf["d_reg"] self.epochs = self.conf["epochs"] self.g_epoch = self.conf["g_epoch"] self.d_epoch = self.conf["d_epoch"] self.batch_size = self.conf["batch_size"] self.d_tau = self.conf["d_tau"] self.topK = self.conf["topk"] self.pretrain_file = self.conf["pretrain_file"] self.loss_function = "None" idx_value_dict = {} for idx, value in enumerate(train_matrix): if any(value.indices): idx_value_dict[idx] = value.indices self.user_pos_train = idx_value_dict self.num_users, self.num_items = dataset.num_users, dataset.num_items self.all_items = np.arange(self.num_items) def build_graph(self): file = reader.lines(self.pretrain_file) pretrain_params = pickle.load(file, encoding="latin") self.generator = GEN(self.num_items, self.num_users, self.factors_num, self.g_reg, param=pretrain_params, learning_rate=self.lr) self.discriminator = DIS(self.num_items, self.num_users, self.factors_num, self.d_reg, param=None, learning_rate=self.lr) def get_train_data(self): users_list, items_list, labels_list = [], [], [] train_users = list(self.user_pos_train.keys()) with ThreadPoolExecutor() as executor: data = executor.map(self.get_train_data_one_user, train_users) data = list(data) for users, items, labels in data: users_list.extend(users) items_list.extend(items) labels_list.extend(labels) return users_list, items_list, labels_list def get_train_data_one_user(self, user): user_list, items_list, label_list = [], [], [] pos = self.user_pos_train[user] rating = self.sess.run(self.generator.all_rating, {self.generator.u: [user]}) rating = np.reshape(rating, [-1]) rating = np.array(rating) / self.d_tau # Temperature exp_rating = np.exp(rating) prob = exp_rating / np.sum(exp_rating) neg = np.random.choice(self.all_items, size=len(pos), p=prob) for i, j in zip(pos, neg): user_list.append(user) items_list.append(i) label_list.append(1.0) user_list.append(user) items_list.append(j) label_list.append(0.0) return (user_list, items_list, label_list) def train_model(self): for _ in range(self.epochs): for _ in range(self.d_epoch): users_list, items_list, labels_list = self.get_train_data() self.training_discriminator(users_list, items_list, labels_list) for _ in range(self.g_epoch): self.training_generator() Evaluate.test_model(self, self.dataset) def training_discriminator(self, user, item, label): num_training_instances = len(user) for num_batch in np.arange(int(num_training_instances / self.batch_size)): bat_users, bat_items, bat_lables = \ data_gen._get_pointwise_batch_data(user, item, label, num_batch, self.batch_size) feed = {self.discriminator.u: bat_users, self.discriminator.i: bat_items, self.discriminator.label: bat_lables} self.sess.run(self.discriminator.d_updates, feed_dict=feed) def training_generator(self): for user, pos in self.user_pos_train.items(): sample_lambda = 0.2 rating = self.sess.run(self.generator.all_logits, {self.generator.u: user}) exp_rating = np.exp(rating) prob = exp_rating / np.sum(exp_rating) # prob is generator distribution p_\theta pn = (1 - sample_lambda) * prob pn[pos] += sample_lambda * 1.0 / len(pos) # Now, pn is the Pn in importance sampling, prob is generator distribution p_\theta sample = np.random.choice(self.all_items, 2 * len(pos), p=pn) ########################################################################### # Get reward and adapt it with importance sampling ########################################################################### feed = {self.discriminator.u: user, self.discriminator.i: sample} reward = self.sess.run(self.discriminator.reward, feed_dict=feed) reward = reward * prob[sample] / pn[sample] ########################################################################### # Update G ########################################################################### feed = {self.generator.u: user, self.generator.i: sample, self.generator.reward: reward} self.sess.run(self.generator.gan_updates, feed_dict=feed) def predict(self, user_id, items): user_embedding, item_embedding, item_bias = self.sess.run(self.generator.g_params) u_embedding = user_embedding[user_id] item_embedding = item_embedding[items] item_bias = item_bias[items] ratings = np.matmul(u_embedding, item_embedding.T) + item_bias return ratings
[ "numpy.sum", "tensorflow.reshape", "tensorflow.nn.sigmoid_cross_entropy_with_logits", "tensorflow.multiply", "tensorflow.matmul", "pickle.load", "numpy.arange", "numpy.exp", "tensorflow.Variable", "neurec.util.data_gen._get_pointwise_batch_data", "tensorflow.gather", "tensorflow.variable_scope", "tensorflow.placeholder", "numpy.reshape", "neurec.evaluation.Evaluate.test_model", "concurrent.futures.ThreadPoolExecutor", "tensorflow.nn.embedding_lookup", "tensorflow.log", "tensorflow.train.GradientDescentOptimizer", "tensorflow.random_uniform", "neurec.util.reader.lines", "tensorflow.zeros", "numpy.array", "numpy.matmul", "tensorflow.nn.l2_loss", "tensorflow.sigmoid" ]
[((1778, 1802), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {}), '(tf.int32)\n', (1792, 1802), True, 'import tensorflow as tf\n'), ((1820, 1844), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {}), '(tf.int32)\n', (1834, 1844), True, 'import tensorflow as tf\n'), ((1867, 1893), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (1881, 1893), True, 'import tensorflow as tf\n'), ((1922, 1974), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['self.user_embeddings', 'self.u'], {}), '(self.user_embeddings, self.u)\n', (1944, 1974), True, 'import tensorflow as tf\n'), ((2002, 2054), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['self.item_embeddings', 'self.i'], {}), '(self.item_embeddings, self.i)\n', (2024, 2054), True, 'import tensorflow as tf\n'), ((2077, 2110), 'tensorflow.gather', 'tf.gather', (['self.item_bias', 'self.i'], {}), '(self.item_bias, self.i)\n', (2086, 2110), True, 'import tensorflow as tf\n'), ((2579, 2632), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['self.learning_rate'], {}), '(self.learning_rate)\n', (2612, 2632), True, 'import tensorflow as tf\n'), ((4287, 4311), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {}), '(tf.int32)\n', (4301, 4311), True, 'import tensorflow as tf\n'), ((4329, 4353), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {}), '(tf.int32)\n', (4343, 4353), True, 'import tensorflow as tf\n'), ((4375, 4401), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (4389, 4401), True, 'import tensorflow as tf\n'), ((4430, 4482), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['self.user_embeddings', 'self.u'], {}), '(self.user_embeddings, self.u)\n', (4452, 4482), True, 'import tensorflow as tf\n'), ((4510, 4562), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['self.item_embeddings', 'self.i'], {}), '(self.item_embeddings, self.i)\n', (4532, 4562), True, 'import tensorflow as tf\n'), ((4585, 4618), 'tensorflow.gather', 'tf.gather', (['self.item_bias', 'self.i'], {}), '(self.item_bias, self.i)\n', (4594, 4618), True, 'import tensorflow as tf\n'), ((5048, 5101), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['self.learning_rate'], {}), '(self.learning_rate)\n', (5081, 5101), True, 'import tensorflow as tf\n'), ((7348, 7373), 'numpy.arange', 'np.arange', (['self.num_items'], {}), '(self.num_items)\n', (7357, 7373), True, 'import numpy as np\n'), ((7417, 7449), 'neurec.util.reader.lines', 'reader.lines', (['self.pretrain_file'], {}), '(self.pretrain_file)\n', (7429, 7449), False, 'from neurec.util import data_gen, reader\n'), ((7476, 7511), 'pickle.load', 'pickle.load', (['file'], {'encoding': '"""latin"""'}), "(file, encoding='latin')\n", (7487, 7511), False, 'import pickle\n'), ((8584, 8608), 'numpy.reshape', 'np.reshape', (['rating', '[-1]'], {}), '(rating, [-1])\n', (8594, 8608), True, 'import numpy as np\n'), ((8692, 8706), 'numpy.exp', 'np.exp', (['rating'], {}), '(rating)\n', (8698, 8706), True, 'import numpy as np\n'), ((879, 909), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""generator"""'], {}), "('generator')\n", (896, 909), True, 'import tensorflow as tf\n'), ((2788, 2878), 'tensorflow.matmul', 'tf.matmul', (['self.u_embedding', 'self.item_embeddings'], {'transpose_a': '(False)', 'transpose_b': '(True)'}), '(self.u_embedding, self.item_embeddings, transpose_a=False,\n transpose_b=True)\n', (2797, 2878), True, 'import tensorflow as tf\n'), ((3350, 3384), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""discriminator"""'], {}), "('discriminator')\n", (3367, 3384), True, 'import tensorflow as tf\n'), ((4750, 4837), 'tensorflow.nn.sigmoid_cross_entropy_with_logits', 'tf.nn.sigmoid_cross_entropy_with_logits', ([], {'labels': 'self.label', 'logits': 'self.pre_logits'}), '(labels=self.label, logits=self.\n pre_logits)\n', (4789, 4837), True, 'import tensorflow as tf\n'), ((5473, 5563), 'tensorflow.matmul', 'tf.matmul', (['self.u_embedding', 'self.item_embeddings'], {'transpose_a': '(False)', 'transpose_b': '(True)'}), '(self.u_embedding, self.item_embeddings, transpose_a=False,\n transpose_b=True)\n', (5482, 5563), True, 'import tensorflow as tf\n'), ((7997, 8017), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {}), '()\n', (8015, 8017), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((8626, 8642), 'numpy.array', 'np.array', (['rating'], {}), '(rating)\n', (8634, 8642), True, 'import numpy as np\n'), ((8735, 8753), 'numpy.sum', 'np.sum', (['exp_rating'], {}), '(exp_rating)\n', (8741, 8753), True, 'import numpy as np\n'), ((9770, 9856), 'neurec.util.data_gen._get_pointwise_batch_data', 'data_gen._get_pointwise_batch_data', (['user', 'item', 'label', 'num_batch', 'self.batch_size'], {}), '(user, item, label, num_batch, self.\n batch_size)\n', (9804, 9856), False, 'from neurec.util import data_gen, reader\n'), ((10323, 10337), 'numpy.exp', 'np.exp', (['rating'], {}), '(rating)\n', (10329, 10337), True, 'import numpy as np\n'), ((11803, 11843), 'numpy.matmul', 'np.matmul', (['u_embedding', 'item_embedding.T'], {}), '(u_embedding, item_embedding.T)\n', (11812, 11843), True, 'import numpy as np\n'), ((1522, 1548), 'tensorflow.Variable', 'tf.Variable', (['self.param[0]'], {}), '(self.param[0])\n', (1533, 1548), True, 'import tensorflow as tf\n'), ((1588, 1614), 'tensorflow.Variable', 'tf.Variable', (['self.param[1]'], {}), '(self.param[1])\n', (1599, 1614), True, 'import tensorflow as tf\n'), ((1648, 1669), 'tensorflow.Variable', 'tf.Variable', (['param[2]'], {}), '(param[2])\n', (1659, 1669), True, 'import tensorflow as tf\n'), ((2152, 2203), 'tensorflow.multiply', 'tf.multiply', (['self.u_embedding', 'self.item_embeddings'], {}), '(self.u_embedding, self.item_embeddings)\n', (2163, 2203), True, 'import tensorflow as tf\n'), ((3997, 4023), 'tensorflow.Variable', 'tf.Variable', (['self.param[0]'], {}), '(self.param[0])\n', (4008, 4023), True, 'import tensorflow as tf\n'), ((4063, 4089), 'tensorflow.Variable', 'tf.Variable', (['self.param[1]'], {}), '(self.param[1])\n', (4074, 4089), True, 'import tensorflow as tf\n'), ((4123, 4149), 'tensorflow.Variable', 'tf.Variable', (['self.param[2]'], {}), '(self.param[2])\n', (4134, 4149), True, 'import tensorflow as tf\n'), ((4660, 4707), 'tensorflow.multiply', 'tf.multiply', (['self.u_embedding', 'self.i_embedding'], {}), '(self.u_embedding, self.i_embedding)\n', (4671, 4707), True, 'import tensorflow as tf\n'), ((5225, 5272), 'tensorflow.multiply', 'tf.multiply', (['self.u_embedding', 'self.i_embedding'], {}), '(self.u_embedding, self.i_embedding)\n', (5236, 5272), True, 'import tensorflow as tf\n'), ((5361, 5391), 'tensorflow.sigmoid', 'tf.sigmoid', (['self.reward_logits'], {}), '(self.reward_logits)\n', (5371, 5391), True, 'import tensorflow as tf\n'), ((5654, 5705), 'tensorflow.multiply', 'tf.multiply', (['self.u_embedding', 'self.item_embeddings'], {}), '(self.u_embedding, self.item_embeddings)\n', (5665, 5705), True, 'import tensorflow as tf\n'), ((5947, 5998), 'tensorflow.multiply', 'tf.multiply', (['self.u_embedding', 'self.item_embeddings'], {}), '(self.u_embedding, self.item_embeddings)\n', (5958, 5998), True, 'import tensorflow as tf\n'), ((9481, 9520), 'neurec.evaluation.Evaluate.test_model', 'Evaluate.test_model', (['self', 'self.dataset'], {}), '(self, self.dataset)\n', (9500, 9520), False, 'from neurec.evaluation import Evaluate\n'), ((10370, 10388), 'numpy.sum', 'np.sum', (['exp_rating'], {}), '(exp_rating)\n', (10376, 10388), True, 'import numpy as np\n'), ((1018, 1134), 'tensorflow.random_uniform', 'tf.random_uniform', (['[self.userNum, self.emb_dim]'], {'minval': '(-self.initdelta)', 'maxval': 'self.initdelta', 'dtype': 'tf.float32'}), '([self.userNum, self.emb_dim], minval=-self.initdelta,\n maxval=self.initdelta, dtype=tf.float32)\n', (1035, 1134), True, 'import tensorflow as tf\n'), ((1242, 1358), 'tensorflow.random_uniform', 'tf.random_uniform', (['[self.itemNum, self.emb_dim]'], {'minval': '(-self.initdelta)', 'maxval': 'self.initdelta', 'dtype': 'tf.float32'}), '([self.itemNum, self.emb_dim], minval=-self.initdelta,\n maxval=self.initdelta, dtype=tf.float32)\n', (1259, 1358), True, 'import tensorflow as tf\n'), ((1439, 1463), 'tensorflow.zeros', 'tf.zeros', (['[self.itemNum]'], {}), '([self.itemNum])\n', (1447, 1463), True, 'import tensorflow as tf\n'), ((2295, 2331), 'tensorflow.reshape', 'tf.reshape', (['self.all_logits', '[1, -1]'], {}), '(self.all_logits, [1, -1])\n', (2305, 2331), True, 'import tensorflow as tf\n'), ((2534, 2560), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['self.i_bias'], {}), '(self.i_bias)\n', (2547, 2560), True, 'import tensorflow as tf\n'), ((3493, 3609), 'tensorflow.random_uniform', 'tf.random_uniform', (['[self.userNum, self.emb_dim]'], {'minval': '(-self.initdelta)', 'maxval': 'self.initdelta', 'dtype': 'tf.float32'}), '([self.userNum, self.emb_dim], minval=-self.initdelta,\n maxval=self.initdelta, dtype=tf.float32)\n', (3510, 3609), True, 'import tensorflow as tf\n'), ((3717, 3833), 'tensorflow.random_uniform', 'tf.random_uniform', (['[self.itemNum, self.emb_dim]'], {'minval': '(-self.initdelta)', 'maxval': 'self.initdelta', 'dtype': 'tf.float32'}), '([self.itemNum, self.emb_dim], minval=-self.initdelta,\n maxval=self.initdelta, dtype=tf.float32)\n', (3734, 3833), True, 'import tensorflow as tf\n'), ((3914, 3938), 'tensorflow.zeros', 'tf.zeros', (['[self.itemNum]'], {}), '([self.itemNum])\n', (3922, 3938), True, 'import tensorflow as tf\n'), ((4994, 5020), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['self.i_bias'], {}), '(self.i_bias)\n', (5007, 5020), True, 'import tensorflow as tf\n'), ((2402, 2421), 'tensorflow.log', 'tf.log', (['self.i_prob'], {}), '(self.i_prob)\n', (2408, 2421), True, 'import tensorflow as tf\n'), ((2466, 2497), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['self.u_embedding'], {}), '(self.u_embedding)\n', (2479, 2497), True, 'import tensorflow as tf\n'), ((2500, 2531), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['self.i_embedding'], {}), '(self.i_embedding)\n', (2513, 2531), True, 'import tensorflow as tf\n'), ((4926, 4957), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['self.u_embedding'], {}), '(self.u_embedding)\n', (4939, 4957), True, 'import tensorflow as tf\n'), ((4960, 4991), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['self.i_embedding'], {}), '(self.i_embedding)\n', (4973, 4991), True, 'import tensorflow as tf\n'), ((5817, 5853), 'tensorflow.reshape', 'tf.reshape', (['self.all_logits', '[1, -1]'], {}), '(self.all_logits, [1, -1])\n', (5827, 5853), True, 'import tensorflow as tf\n')]
import tensorflow as tf from tensorflow import keras from utils import data_utils, argmanager from utils.loss import multinomial_nll import numpy as np import os import json import scipy import sklearn.metrics import scipy.stats from collections import OrderedDict def softmax(x, temp=1): norm_x = x - np.mean(x,axis=1, keepdims=True) return np.exp(temp*norm_x)/np.sum(np.exp(temp*norm_x), axis=1, keepdims=True) def get_jsd(preds, cts, min_tot_cts=10): return np.array([scipy.spatial.distance.jensenshannon(x,y) for x,y in zip(preds, cts) \ if y.sum()>min_tot_cts]) def main(): args = argmanager.fetch_metrics_args() print(args) # load model with keras.utils.CustomObjectScope({'multinomial_nll':multinomial_nll, 'tf':tf}): model = keras.models.load_model(args.model) inputlen = int(model.input_shape[1]) outputlen = int(model.output_shape[0][1]) # load data test_peaks_seqs, test_peaks_cts, \ test_nonpeaks_seqs, test_nonpeaks_cts = data_utils.load_test_data( args.peaks, args.nonpeaks, args.genome, args.bigwig, args.test_chr, inputlen, outputlen ) # predict on peaks and nonpeaks test_peaks_pred_logits, test_peaks_pred_logcts = \ model.predict(test_peaks_seqs, batch_size=args.batch_size, verbose=True) test_nonpeaks_pred_logits, test_nonpeaks_pred_logcts = \ model.predict(test_nonpeaks_seqs, batch_size=args.batch_size, verbose=True) metrics = OrderedDict() # counts metrics all_test_logcts = np.log(1 + np.vstack([test_peaks_cts, test_nonpeaks_cts]).sum(-1)) cur_pair = (all_test_logcts, np.vstack([test_peaks_pred_logcts, test_nonpeaks_pred_logcts]).ravel()) metrics['bpnet_cts_pearson_peaks_nonpeaks'] = scipy.stats.pearsonr(*cur_pair)[0] metrics['bpnet_cts_spearman_peaks_nonpeaks'] = scipy.stats.spearmanr(*cur_pair)[0] cur_pair = ([1]*len(test_peaks_pred_logcts) + [0]*len(test_nonpeaks_pred_logcts), np.vstack([test_peaks_pred_logcts, test_nonpeaks_pred_logcts]).ravel()) metrics['binary_auc'] = sklearn.metrics.roc_auc_score(*cur_pair) peaks_test_logcts = np.log(1 + test_peaks_cts.sum(-1)) cur_pair = (peaks_test_logcts, test_peaks_pred_logcts.ravel()) metrics['bpnet_cts_pearson_peaks'] = scipy.stats.pearsonr(*cur_pair)[0] metrics['bpnet_cts_spearman_peaks'] = scipy.stats.spearmanr(*cur_pair)[0] # profile metrics (all within peaks) cur_pair = (softmax(test_peaks_pred_logits), test_peaks_cts) metrics['bpnet_profile_median_jsd_peaks'] = np.median(get_jsd(*cur_pair)) cur_pair = (softmax(test_peaks_pred_logits), test_peaks_cts[:, np.random.permutation(test_peaks_cts.shape[1])]) metrics['bpnet_profile_median_jsd_peaks_randomized'] = np.median(get_jsd(*cur_pair)) with open(args.output_prefix + ".metrics.json", "w") as f: json.dump(metrics, f, ensure_ascii=False, indent=4) if __name__=="__main__": main()
[ "json.dump", "tensorflow.keras.utils.CustomObjectScope", "tensorflow.keras.models.load_model", "scipy.spatial.distance.jensenshannon", "utils.argmanager.fetch_metrics_args", "scipy.stats.spearmanr", "scipy.stats.pearsonr", "numpy.mean", "numpy.exp", "utils.data_utils.load_test_data", "numpy.random.permutation", "collections.OrderedDict", "numpy.vstack" ]
[((629, 660), 'utils.argmanager.fetch_metrics_args', 'argmanager.fetch_metrics_args', ([], {}), '()\n', (658, 660), False, 'from utils import data_utils, argmanager\n'), ((1020, 1139), 'utils.data_utils.load_test_data', 'data_utils.load_test_data', (['args.peaks', 'args.nonpeaks', 'args.genome', 'args.bigwig', 'args.test_chr', 'inputlen', 'outputlen'], {}), '(args.peaks, args.nonpeaks, args.genome, args.\n bigwig, args.test_chr, inputlen, outputlen)\n', (1045, 1139), False, 'from utils import data_utils, argmanager\n'), ((1667, 1680), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1678, 1680), False, 'from collections import OrderedDict\n'), ((308, 341), 'numpy.mean', 'np.mean', (['x'], {'axis': '(1)', 'keepdims': '(True)'}), '(x, axis=1, keepdims=True)\n', (315, 341), True, 'import numpy as np\n'), ((352, 373), 'numpy.exp', 'np.exp', (['(temp * norm_x)'], {}), '(temp * norm_x)\n', (358, 373), True, 'import numpy as np\n'), ((704, 781), 'tensorflow.keras.utils.CustomObjectScope', 'keras.utils.CustomObjectScope', (["{'multinomial_nll': multinomial_nll, 'tf': tf}"], {}), "({'multinomial_nll': multinomial_nll, 'tf': tf})\n", (733, 781), False, 'from tensorflow import keras\n'), ((797, 832), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['args.model'], {}), '(args.model)\n', (820, 832), False, 'from tensorflow import keras\n'), ((1990, 2021), 'scipy.stats.pearsonr', 'scipy.stats.pearsonr', (['*cur_pair'], {}), '(*cur_pair)\n', (2010, 2021), False, 'import scipy\n'), ((2076, 2108), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['*cur_pair'], {}), '(*cur_pair)\n', (2097, 2108), False, 'import scipy\n'), ((2581, 2612), 'scipy.stats.pearsonr', 'scipy.stats.pearsonr', (['*cur_pair'], {}), '(*cur_pair)\n', (2601, 2612), False, 'import scipy\n'), ((2658, 2690), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['*cur_pair'], {}), '(*cur_pair)\n', (2679, 2690), False, 'import scipy\n'), ((3175, 3226), 'json.dump', 'json.dump', (['metrics', 'f'], {'ensure_ascii': '(False)', 'indent': '(4)'}), '(metrics, f, ensure_ascii=False, indent=4)\n', (3184, 3226), False, 'import json\n'), ((379, 400), 'numpy.exp', 'np.exp', (['(temp * norm_x)'], {}), '(temp * norm_x)\n', (385, 400), True, 'import numpy as np\n'), ((487, 529), 'scipy.spatial.distance.jensenshannon', 'scipy.spatial.distance.jensenshannon', (['x', 'y'], {}), '(x, y)\n', (523, 529), False, 'import scipy\n'), ((1841, 1903), 'numpy.vstack', 'np.vstack', (['[test_peaks_pred_logcts, test_nonpeaks_pred_logcts]'], {}), '([test_peaks_pred_logcts, test_nonpeaks_pred_logcts])\n', (1850, 1903), True, 'import numpy as np\n'), ((2217, 2279), 'numpy.vstack', 'np.vstack', (['[test_peaks_pred_logcts, test_nonpeaks_pred_logcts]'], {}), '([test_peaks_pred_logcts, test_nonpeaks_pred_logcts])\n', (2226, 2279), True, 'import numpy as np\n'), ((2965, 3011), 'numpy.random.permutation', 'np.random.permutation', (['test_peaks_cts.shape[1]'], {}), '(test_peaks_cts.shape[1])\n', (2986, 3011), True, 'import numpy as np\n'), ((1736, 1782), 'numpy.vstack', 'np.vstack', (['[test_peaks_cts, test_nonpeaks_cts]'], {}), '([test_peaks_cts, test_nonpeaks_cts])\n', (1745, 1782), True, 'import numpy as np\n')]
#!/usr/bin/env python """ """ import numpy as np from scipy.odr import Model from scipy.optimize import leastsq from scipy import ndimage from scipy.ndimage import gaussian_gradient_magnitude from scipy.ndimage import map_coordinates from common import PIX_ERR from features import line_profile def contour(img, A0, R0, phi1=-np.pi/2, phi2=np.pi/2, dphi=np.pi/180, DR=0.2, sigma=3): #this is just a rough draft not intended to be working y0, x0 = A0 phi = np.arange(phi1, phi2, dphi) x1 = x0+R0*(1-DR)*np.cos(phi) y1 = y0+R0*(1-DR)*np.sin(phi) x2 = x0+R0*(1+DR)*np.cos(phi) y2 = y0+R0*(1+DR)*np.sin(phi) rim=[] Nphi, = phi.shape for i in range(Nphi): A1 = np.asarray(((y1[i],x1[i]),(PIX_ERR, PIX_ERR))) A2 = np.asarray(((y2[i],x2[i]),(PIX_ERR, PIX_ERR))) metrics, metrics_err, profile = line_profile(img, A1[i], A2[i]) rel_rim = find_rim(profile, sigma)*metrics real_rim = A1 + rel_rim rim.append(real_rim) return rim def find_rim(profile, sigma=3): grad = ndimage.gaussian_gradient_magnitude( ndimage.gaussian_filter1d(profile,sigma) , sigma) return np.argmax(grad) def line_from_points(point1, point2): """ @param point1: array in numpy order = (y,x) @param point2: """ k = (point2 - point1)[0] / (point2 - point1)[1] b = point1[0] - k * point1[1] return k, b def line_perpendicular(k,b,x): """ @param k: y=kx+b @param b: y=kx+b @param x: where the perpendicular has to intersect the line """ # y = k*x+b k_perp = -1./k b_perp = (k - k_perp) * x + b return k_perp, b_perp def circle_fcn(B, x, y): return B[0]**2 - (B[1]-x)**2 - (B[2]-y)**2 def _circle_fjacb(B,x,y): fjacb = np.empty((x.shape[0],3)) fjacb[:,0] = 2*B[0] fjacb[:,1] = -2*(B[1]-x) fjacb[:,2] = -2*(B[2]-y) return fjacb def _circle_fjacd(B,x,y): fjacd = np.empty((x.shape[0],2)) fjacd[:,0] = 2*(B[1]-x) fjacd[:,1] = 2*(B[1]-y) return fjacd def _circle_est(x,y): return np.mean((x.ptp(), y.ptp()))/2.0, x.mean(), y.mean() def _circle_meta(): return {'name':'Equation of a circle'} circle_model = Model(circle_fcn, estimate=_circle_est, fjacb=_circle_fjacb, fjacd=_circle_fjacd, meta=_circle_meta, implicit=True) def FitCircle(x,y): ''' leastsq without errors ''' return leastsq(circle_fcn, _circle_est(x,y), (x, y), Dfun=_circle_fjacb, full_output=1) def section_profile(img, point1, point2): '''define the brightness profile along the line defined by 2 points coordinates of points with their errors are supplied as numpy arrays in notation array((y,x),(dy,dx))! might as well submit other options to map_coordinates function it is assumed that pipette is more or less horizontal so that axis intersects left and right image sides ''' # define the line going though 2 points y1,x1,dy1,dx1 = point1.flatten() y2,x2,dy2,dx2 = point2.flatten() k = (y2 - y1) / (x2 - x1) dk = np.sqrt(dy1*dy1 + dy2*dy2 + k*k*(dx1*dx1+dx2*dx2) )/np.fabs(x2-x1) # number of points for profile # it is assumed that pipette is more or less horizontal # so that axis intersects left and right image sides nPoints = int(max(np.fabs(y2-y1), np.fabs(x2-x1))) #coordinates of points in the profile x = np.linspace(x1, x2, nPoints) y = np.linspace(y1, y2, nPoints) #calculate profile metric - coefficient for lengths in profile vs pixels if np.fabs(k) <=1: metric = np.sqrt(1 + k*k) metric_err = np.fabs(k)*dk/metric else: metric = np.sqrt(1 + 1/(k*k)) metric_err = dk/np.fabs(metric * k*k*k) #output interpolated values at points of profile and profile metric return metric, metric_err, map_coordinates(img, [y, x], output = float) def CircleFunc(r, N=100): phi = np.linspace(0,2*np.pi,N) return r*np.cos(phi), r*np.sin(phi) def VesicleEdge_phc(img, x0, y0, r0, N=100, phi1=0, phi2=2*np.pi, sigma=1): Xedge = np.empty(N) Yedge = np.empty(N) for i, phi in enumerate(np.linspace(phi1, phi2, N)): x = x0+r0*np.cos(phi) y = y0+r0*np.sin(phi) if x < 0: x = 0 y = y0+(x-x0)*np.tan(phi) elif x > img.shape[1]-1: x = img.shape[1]-1 y = y0+(x-x0)*np.tan(phi) if y < 0: y = 0 x = x0+(y-y0)/np.tan(phi) elif y > img.shape[0]-1: y = img.shape[1]-1 x = x0+(y-y0)/np.tan(phi) point1 = np.asarray(((y0,x0),(PIX_ERR, PIX_ERR))) point2 = np.asarray(((y,x),(PIX_ERR, PIX_ERR))) metric, metric_err, line = section_profile(img, point1, point2) grad = gaussian_gradient_magnitude(line,sigma) pos = np.argmax(grad) Xedge[i] = x0+pos*np.cos(phi)*metric Yedge[i] = y0+pos*np.sin(phi)*metric return Xedge, Yedge
[ "scipy.ndimage.gaussian_filter1d", "numpy.argmax", "scipy.odr.Model", "numpy.empty", "numpy.asarray", "features.line_profile", "scipy.ndimage.gaussian_gradient_magnitude", "numpy.fabs", "numpy.arange", "numpy.sin", "numpy.linspace", "numpy.cos", "numpy.tan", "scipy.ndimage.map_coordinates", "numpy.sqrt" ]
[((2221, 2341), 'scipy.odr.Model', 'Model', (['circle_fcn'], {'estimate': '_circle_est', 'fjacb': '_circle_fjacb', 'fjacd': '_circle_fjacd', 'meta': '_circle_meta', 'implicit': '(True)'}), '(circle_fcn, estimate=_circle_est, fjacb=_circle_fjacb, fjacd=\n _circle_fjacd, meta=_circle_meta, implicit=True)\n', (2226, 2341), False, 'from scipy.odr import Model\n'), ((479, 506), 'numpy.arange', 'np.arange', (['phi1', 'phi2', 'dphi'], {}), '(phi1, phi2, dphi)\n', (488, 506), True, 'import numpy as np\n'), ((1184, 1199), 'numpy.argmax', 'np.argmax', (['grad'], {}), '(grad)\n', (1193, 1199), True, 'import numpy as np\n'), ((1794, 1819), 'numpy.empty', 'np.empty', (['(x.shape[0], 3)'], {}), '((x.shape[0], 3))\n', (1802, 1819), True, 'import numpy as np\n'), ((1957, 1982), 'numpy.empty', 'np.empty', (['(x.shape[0], 2)'], {}), '((x.shape[0], 2))\n', (1965, 1982), True, 'import numpy as np\n'), ((3442, 3470), 'numpy.linspace', 'np.linspace', (['x1', 'x2', 'nPoints'], {}), '(x1, x2, nPoints)\n', (3453, 3470), True, 'import numpy as np\n'), ((3479, 3507), 'numpy.linspace', 'np.linspace', (['y1', 'y2', 'nPoints'], {}), '(y1, y2, nPoints)\n', (3490, 3507), True, 'import numpy as np\n'), ((3966, 3994), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', 'N'], {}), '(0, 2 * np.pi, N)\n', (3977, 3994), True, 'import numpy as np\n'), ((4124, 4135), 'numpy.empty', 'np.empty', (['N'], {}), '(N)\n', (4132, 4135), True, 'import numpy as np\n'), ((4148, 4159), 'numpy.empty', 'np.empty', (['N'], {}), '(N)\n', (4156, 4159), True, 'import numpy as np\n'), ((719, 767), 'numpy.asarray', 'np.asarray', (['((y1[i], x1[i]), (PIX_ERR, PIX_ERR))'], {}), '(((y1[i], x1[i]), (PIX_ERR, PIX_ERR)))\n', (729, 767), True, 'import numpy as np\n'), ((779, 827), 'numpy.asarray', 'np.asarray', (['((y2[i], x2[i]), (PIX_ERR, PIX_ERR))'], {}), '(((y2[i], x2[i]), (PIX_ERR, PIX_ERR)))\n', (789, 827), True, 'import numpy as np\n'), ((866, 897), 'features.line_profile', 'line_profile', (['img', 'A1[i]', 'A2[i]'], {}), '(img, A1[i], A2[i])\n', (878, 897), False, 'from features import line_profile\n'), ((1123, 1164), 'scipy.ndimage.gaussian_filter1d', 'ndimage.gaussian_filter1d', (['profile', 'sigma'], {}), '(profile, sigma)\n', (1148, 1164), False, 'from scipy import ndimage\n'), ((3116, 3180), 'numpy.sqrt', 'np.sqrt', (['(dy1 * dy1 + dy2 * dy2 + k * k * (dx1 * dx1 + dx2 * dx2))'], {}), '(dy1 * dy1 + dy2 * dy2 + k * k * (dx1 * dx1 + dx2 * dx2))\n', (3123, 3180), True, 'import numpy as np\n'), ((3168, 3184), 'numpy.fabs', 'np.fabs', (['(x2 - x1)'], {}), '(x2 - x1)\n', (3175, 3184), True, 'import numpy as np\n'), ((3593, 3603), 'numpy.fabs', 'np.fabs', (['k'], {}), '(k)\n', (3600, 3603), True, 'import numpy as np\n'), ((3626, 3644), 'numpy.sqrt', 'np.sqrt', (['(1 + k * k)'], {}), '(1 + k * k)\n', (3633, 3644), True, 'import numpy as np\n'), ((3712, 3736), 'numpy.sqrt', 'np.sqrt', (['(1 + 1 / (k * k))'], {}), '(1 + 1 / (k * k))\n', (3719, 3736), True, 'import numpy as np\n'), ((3884, 3926), 'scipy.ndimage.map_coordinates', 'map_coordinates', (['img', '[y, x]'], {'output': 'float'}), '(img, [y, x], output=float)\n', (3899, 3926), False, 'from scipy.ndimage import map_coordinates\n'), ((4188, 4214), 'numpy.linspace', 'np.linspace', (['phi1', 'phi2', 'N'], {}), '(phi1, phi2, N)\n', (4199, 4214), True, 'import numpy as np\n'), ((4655, 4697), 'numpy.asarray', 'np.asarray', (['((y0, x0), (PIX_ERR, PIX_ERR))'], {}), '(((y0, x0), (PIX_ERR, PIX_ERR)))\n', (4665, 4697), True, 'import numpy as np\n'), ((4713, 4753), 'numpy.asarray', 'np.asarray', (['((y, x), (PIX_ERR, PIX_ERR))'], {}), '(((y, x), (PIX_ERR, PIX_ERR)))\n', (4723, 4753), True, 'import numpy as np\n'), ((4839, 4879), 'scipy.ndimage.gaussian_gradient_magnitude', 'gaussian_gradient_magnitude', (['line', 'sigma'], {}), '(line, sigma)\n', (4866, 4879), False, 'from scipy.ndimage import gaussian_gradient_magnitude\n'), ((4893, 4908), 'numpy.argmax', 'np.argmax', (['grad'], {}), '(grad)\n', (4902, 4908), True, 'import numpy as np\n'), ((530, 541), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (536, 541), True, 'import numpy as np\n'), ((565, 576), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (571, 576), True, 'import numpy as np\n'), ((600, 611), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (606, 611), True, 'import numpy as np\n'), ((635, 646), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (641, 646), True, 'import numpy as np\n'), ((3358, 3374), 'numpy.fabs', 'np.fabs', (['(y2 - y1)'], {}), '(y2 - y1)\n', (3365, 3374), True, 'import numpy as np\n'), ((3374, 3390), 'numpy.fabs', 'np.fabs', (['(x2 - x1)'], {}), '(x2 - x1)\n', (3381, 3390), True, 'import numpy as np\n'), ((3757, 3784), 'numpy.fabs', 'np.fabs', (['(metric * k * k * k)'], {}), '(metric * k * k * k)\n', (3764, 3784), True, 'import numpy as np\n'), ((4004, 4015), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (4010, 4015), True, 'import numpy as np\n'), ((4019, 4030), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (4025, 4030), True, 'import numpy as np\n'), ((3664, 3674), 'numpy.fabs', 'np.fabs', (['k'], {}), '(k)\n', (3671, 3674), True, 'import numpy as np\n'), ((4235, 4246), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (4241, 4246), True, 'import numpy as np\n'), ((4265, 4276), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (4271, 4276), True, 'import numpy as np\n'), ((4339, 4350), 'numpy.tan', 'np.tan', (['phi'], {}), '(phi)\n', (4345, 4350), True, 'import numpy as np\n'), ((4515, 4526), 'numpy.tan', 'np.tan', (['phi'], {}), '(phi)\n', (4521, 4526), True, 'import numpy as np\n'), ((4935, 4946), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (4941, 4946), True, 'import numpy as np\n'), ((4980, 4991), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (4986, 4991), True, 'import numpy as np\n'), ((4441, 4452), 'numpy.tan', 'np.tan', (['phi'], {}), '(phi)\n', (4447, 4452), True, 'import numpy as np\n'), ((4617, 4628), 'numpy.tan', 'np.tan', (['phi'], {}), '(phi)\n', (4623, 4628), True, 'import numpy as np\n')]
import ignore import tensorflow as tf import numpy as np char_arr = [c for c in 'SEPabcdefghijklmnopqrstuvwxyz단어나무놀이소녀키스사랑'] num_dic = {n: i for i, n in enumerate(char_arr)} dic_len = len(num_dic) seq_data = [['word', '단어'], ['wood', '나무'], ['game', '놀이'], ['girl', '소녀'], ['kiss', '키스'], ['love', '사랑']] def make_batch(seq_data): input_batch = [] output_batch = [] target_batch = [] for seq in seq_data: input = [num_dic[n] for n in seq[0]] output = [num_dic[n] for n in ('S' + seq[1])] target = [num_dic[n] for n in (seq[1] + 'E')] input_batch.append(np.eye(dic_len)[input]) output_batch.append(np.eye(dic_len)[output]) target_batch.append(target) return input_batch, output_batch, target_batch # 옵션 설정 learning_rate = 0.01 n_hidden = 128 total_epoch = 100 n_class = n_input = dic_len # 신경망 모델 구성 enc_input = tf.placeholder(tf.float32, [None, None, n_input]) dec_input = tf.placeholder(tf.float32, [None, None, n_input]) targets = tf.placeholder(tf.int64, [None, None]) with tf.variable_scope('encode'): enc_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden) enc_cell = tf.nn.rnn_cell.DropoutWrapper(enc_cell, output_keep_prob=0.5) outputs, enc_states = tf.nn.dynamic_rnn(enc_cell, enc_input, dtype=tf.float32) with tf.variable_scope('decode'): dec_cell = tf.nn.rnn_cell.BasicRNNCell(n_hidden) dec_cell = tf.nn.rnn_cell.DropoutWrapper(dec_cell, output_keep_prob=0.5) outputs, dec_states = tf.nn.dynamic_rnn(dec_cell, dec_input, initial_state=enc_states, dtype=tf.float32) model = tf.layers.dense(outputs, n_class, activation=None) cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model, labels=targets)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # 신경망 모델 학습 sess = tf.Session() sess.run(tf.global_variables_initializer()) input_batch, output_batch, target_batch = make_batch(seq_data) for epoch in range(total_epoch): _, loss = sess.run([optimizer, cost], feed_dict={enc_input: input_batch, dec_input: output_batch, targets: target_batch}) print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6}'.format(loss)) print('최적화 완료!') # 번역 테스트 def translate(word): seq_data = [word, 'P' * len(word)] input_batch, output_batch, target_batch = make_batch([seq_data]) prediction = tf.argmax(model, 2) result = sess.run(prediction, feed_dict={enc_input: input_batch, dec_input: output_batch, targets: target_batch}) decoded = [char_arr[i] for i in result[0]] end = decoded.index('E') translated = ''.join(decoded[:end]) return translated print('\n=== 번역 테스트 ===') print('word ->', translate('word')) print('wodr ->', translate('wodr')) print('love ->', translate('love')) print('loev ->', translate('loev')) print('abcd ->', translate('abcd'))
[ "tensorflow.nn.rnn_cell.BasicRNNCell", "tensorflow.nn.dynamic_rnn", "tensorflow.global_variables_initializer", "tensorflow.argmax", "tensorflow.layers.dense", "tensorflow.Session", "tensorflow.variable_scope", "tensorflow.nn.rnn_cell.DropoutWrapper", "tensorflow.placeholder", "numpy.eye", "tensorflow.train.AdamOptimizer", "tensorflow.nn.sparse_softmax_cross_entropy_with_logits" ]
[((912, 961), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, None, n_input]'], {}), '(tf.float32, [None, None, n_input])\n', (926, 961), True, 'import tensorflow as tf\n'), ((974, 1023), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, None, n_input]'], {}), '(tf.float32, [None, None, n_input])\n', (988, 1023), True, 'import tensorflow as tf\n'), ((1034, 1072), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int64', '[None, None]'], {}), '(tf.int64, [None, None])\n', (1048, 1072), True, 'import tensorflow as tf\n'), ((1606, 1656), 'tensorflow.layers.dense', 'tf.layers.dense', (['outputs', 'n_class'], {'activation': 'None'}), '(outputs, n_class, activation=None)\n', (1621, 1656), True, 'import tensorflow as tf\n'), ((1842, 1854), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1852, 1854), True, 'import tensorflow as tf\n'), ((1079, 1106), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""encode"""'], {}), "('encode')\n", (1096, 1106), True, 'import tensorflow as tf\n'), ((1123, 1160), 'tensorflow.nn.rnn_cell.BasicRNNCell', 'tf.nn.rnn_cell.BasicRNNCell', (['n_hidden'], {}), '(n_hidden)\n', (1150, 1160), True, 'import tensorflow as tf\n'), ((1176, 1237), 'tensorflow.nn.rnn_cell.DropoutWrapper', 'tf.nn.rnn_cell.DropoutWrapper', (['enc_cell'], {'output_keep_prob': '(0.5)'}), '(enc_cell, output_keep_prob=0.5)\n', (1205, 1237), True, 'import tensorflow as tf\n'), ((1265, 1321), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', (['enc_cell', 'enc_input'], {'dtype': 'tf.float32'}), '(enc_cell, enc_input, dtype=tf.float32)\n', (1282, 1321), True, 'import tensorflow as tf\n'), ((1328, 1355), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""decode"""'], {}), "('decode')\n", (1345, 1355), True, 'import tensorflow as tf\n'), ((1372, 1409), 'tensorflow.nn.rnn_cell.BasicRNNCell', 'tf.nn.rnn_cell.BasicRNNCell', (['n_hidden'], {}), '(n_hidden)\n', (1399, 1409), True, 'import tensorflow as tf\n'), ((1425, 1486), 'tensorflow.nn.rnn_cell.DropoutWrapper', 'tf.nn.rnn_cell.DropoutWrapper', (['dec_cell'], {'output_keep_prob': '(0.5)'}), '(dec_cell, output_keep_prob=0.5)\n', (1454, 1486), True, 'import tensorflow as tf\n'), ((1514, 1601), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', (['dec_cell', 'dec_input'], {'initial_state': 'enc_states', 'dtype': 'tf.float32'}), '(dec_cell, dec_input, initial_state=enc_states, dtype=tf.\n float32)\n', (1531, 1601), True, 'import tensorflow as tf\n'), ((1679, 1755), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'model', 'labels': 'targets'}), '(logits=model, labels=targets)\n', (1725, 1755), True, 'import tensorflow as tf\n'), ((1864, 1897), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1895, 1897), True, 'import tensorflow as tf\n'), ((2374, 2393), 'tensorflow.argmax', 'tf.argmax', (['model', '(2)'], {}), '(model, 2)\n', (2383, 2393), True, 'import tensorflow as tf\n'), ((1769, 1806), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learning_rate'], {}), '(learning_rate)\n', (1791, 1806), True, 'import tensorflow as tf\n'), ((630, 645), 'numpy.eye', 'np.eye', (['dic_len'], {}), '(dic_len)\n', (636, 645), True, 'import numpy as np\n'), ((682, 697), 'numpy.eye', 'np.eye', (['dic_len'], {}), '(dic_len)\n', (688, 697), True, 'import numpy as np\n')]
import ipywidgets as widgets import cartopy.crs as ccrs import geoviews as gv import holoviews as hv import numpy as np import panel as pn import param from shapely.geometry import Polygon as sPolygon, LineString as sLineString from .interface import EDRInterface from .lookup import CRS_LOOKUP class EDRExplorer(param.Parameterized): """ A `Panel` dashboard from which you can explore the data presented by an EDR Server. """ # Metadata widgets. coll_uri = widgets.Text(placeholder='Specify an EDR Server...', description='Server') coll = widgets.Dropdown(options=[], description='Collections', disabled=True) locations = widgets.Dropdown(options=[], description='Locations', disabled=True) datasets = widgets.SelectMultiple(options=[], description="Datasets", disabled=True) start_time = widgets.Dropdown(options=[], description='Start Date', disabled=True) end_time = widgets.Dropdown(options=[], description='End Date', disabled=True) start_z = widgets.Dropdown(options=[], description='Z Lower', disabled=True) end_z = widgets.Dropdown(options=[], description='Z Upper', disabled=True) # Error display widgets. connect_error_box = widgets.HTML("", layout=widgets.Layout(display="none")) data_error_box = widgets.HTML("", layout=widgets.Layout(display="none")) # Plot control widgets. pc_times = widgets.SelectionSlider(options=[""], description="Timestep", disabled=True) pc_zs = widgets.SelectionSlider(options=[""], description="Z Level", disabled=True) pc_params = widgets.Dropdown(options=[], description="Parameter", disabled=True) use_colours = pn.widgets.Checkbox(name="Use supplied colours", disabled=True) use_levels = pn.widgets.Checkbox(name="Use supplied levels", disabled=True) # Parameters for triggering plot updates. _data_key = param.String("") _colours = param.Boolean(use_colours.value) _levels = param.Boolean(use_levels.value) cmap = param.String("viridis") alpha = param.Magnitude(0.85) # Buttons. connect_button = widgets.Button(description="Connect") submit_button = widgets.Button(description="Submit", disabled=True) dataset_button = widgets.Button( description="Get Dataset", disabled=True, layout=widgets.Layout(top="-0.5rem") ) # Lists and boxes aggregating multiple widgets. wlist = [coll, locations, datasets, start_time, end_time, start_z, end_z] # Metadata widgets. pwlist = [pc_times, pc_zs, pc_params] # Plot widgets. pchecklist = [use_colours, use_levels] wbox = widgets.VBox(wlist) pwbox = pn.Row(pn.Column(*pwlist[:2]), pwlist[-1], pn.Column(*pchecklist)) # Map projection code web_mercator_epsg = "EPSG:3857" def __init__(self, server_address=None): """ Set up a new `Panel` dashboard to use to explore the data presented by an EDR Server. This constructs an instance of `.interface.EDRInterface` to submit requests to the EDR Server on the dashboard's behalf and displays results from these requests in the dashboard. Optionally pass the hostname of an EDR server via `server_address`. If specified, this value will pre-populate the `Server` field of the interface. """ self.server_address = server_address if self.server_address is not None: self.coll_uri.value = self.server_address super().__init__() # Class properties. self._edr_interface = None self._dataset = None self._no_t = "No t values in collection" self._no_z = "No z values in collection" # Plot. self.plot = gv.DynamicMap(self.make_plot) # Button click bindings. self.connect_button.on_click(self._load_collections) self.submit_button.on_click(self._request_plot_data) self.dataset_button.on_click(self._get_dataset) # Watches on widgets. self.coll.observe(self._populate_contents_callback, names='value') self.start_time.observe(self._filter_end_time, names='value') self.start_z.observe(self._filter_end_z, names='value') self.pc_times.observe(self._plot_change, names='value') self.pc_zs.observe(self._plot_change, names='value') self.pc_params.observe(self._plot_change, names='value') self.use_colours.param.watch(self._checkbox_change, "value", onlychanged=True) self.use_levels.param.watch(self._checkbox_change, "value", onlychanged=True) # Items for geometry-based queries. self._area_poly = None self._corridor_path = None self._area_stream = None self._corridor_stream = None self._query_tools() @property def edr_interface(self): """The instance of `.interface.EDRInterface` used to handle requests to the EDR Server.""" return self._edr_interface @edr_interface.setter def edr_interface(self, value): """Set the instance of `.interface.EDRInterface` used to handle requests to the EDR Server.""" self._edr_interface = value @property def dataset(self): """ A well-known Python data object containing all the data represented by the current state of select widgets on the dashboard. """ return self._dataset @dataset.setter def dataset(self, value): self._dataset = value @property def layout(self): """ Construct a layout of `Panel` objects to produce the EDR explorer dashboard. To view the dashboard: explorer = EDRExplorer() explorer.layout The layout is composed of two main elements: * a set of selector widgets in a column on the left that define the values passed in queries to the EDR Server via the `.interface.EDRInterface` instance * a plot on the right that displays graphical results from queries submitted to the EDR Server via the `.interface.EDRInterface` instance There are some extra elements too: * the widgets column on the left contains three buttons: * one to connect to the server at the URI specified in the `Server` text field widget, * one to submit a query to the EDR Server via the `.interface.EDRInterface` instance based on the values set in the selector widgets, and * one to request and return to the user all the data referenced by the current state of the dashboard's select widgets as a well-known Python data object (such as an Iris cube). * the widgets column on the left also contains two fields for displaying error messages when connecting to or retrieving data from the EDR Server. These are hidden by default and are made visible when there is a relevant error message to display. Once the error has been resolved the field will become hidden again. * the plot area on the right contains two plot control widgets to select specific data from queries submitted to the EDR Server to show on the plot. * the plot areas on the right also contains two checkboxes to select whether or not to show data on the plot rendered using colours and levels supplied in the query response. """ connect_row = pn.Row( pn.Column(self.coll_uri, self.connect_error_box), self.connect_button ) control_widgets = pn.Column(self.wbox, self.data_error_box) buttons = pn.Column(self.submit_button, self.dataset_button) control_row = pn.Row(control_widgets, buttons, align=("end", "start")) control_col = pn.Column(connect_row, control_row) tiles = gv.tile_sources.Wikipedia.opts(width=800, height=600) plot = tiles * self.plot plot_col = pn.Column(plot, self.pwbox) return pn.Row(control_col, plot_col).servable() def _populate_error_box(self, error_box_ref, errors): error_box = getattr(self, error_box_ref) good_layout = widgets.Layout( display="none", visibility="hidden", border="none", ) bad_layout = widgets.Layout( border="2px solid #dc3545", padding="0.05rem 0.5rem", margin="0 0.25rem 0 5.625rem", width="70%", overflow="auto", display="flex", ) error_box.value = errors error_box.layout = good_layout if errors == "" else bad_layout def _load_collections(self, event): """ Callback when the `connect` button is clicked. Set up the EDR interface instance and connect to the server's collections. """ self._clear_controls() server_loc = self.coll_uri.value self.edr_interface = EDRInterface(server_loc) error_box = "connect_error_box" if self.edr_interface.errors is None: # Independent check to see if we can clear the error box. self._populate_error_box(error_box, "") if self.edr_interface.json is not None and self.edr_interface.errors is None: # The only state in which the controls can be populated and enabled. self.coll.options = [(ct, cid) for (cid, ct) in zip(self.edr_interface.collection_ids, self.edr_interface.collection_titles)] self.coll.value = self.edr_interface.collection_ids[0] self._enable_controls() elif self.edr_interface.errors is not None: # We have known errors to show. self._populate_error_box(error_box, self.edr_interface.errors) else: # Something else has gone wrong, which we need to show. self._populate_error_box(error_box, "UnspecifiedError") def _enable_controls(self): """Enable query control widgets in the left column.""" for widget in self.wlist: widget.disabled = False self.submit_button.disabled = False def _clear_controls(self): """Clear state of all control and error display widgets and disable them.""" for widget in self.wlist + self.pwlist: widget.disabled = True if isinstance(widget, widgets.SelectMultiple): widget.options = ("",) widget.value = ("",) elif isinstance(widget, widgets.SelectionSlider): widget.options = ("",) widget.value = "" else: widget.options = [] widget.value = None for box in self.pchecklist: box.value = False box.disabled = True self.submit_button.disabled = True self.dataset_button.disabled = True self._populate_error_box("connect_error_box", "") self._populate_error_box("data_error_box", "") def _check_enable_checkboxes(self): """ Check if we can enable the checkboxes to specify the plot should use colours and levels specified in the data JSON. This is only possible if this information is present in the data JSON. """ box_disabled = self.edr_interface.data_handler.get_colours(self.pc_params.value) is None for box in self.pchecklist: box.disabled = box_disabled def _checkbox_change(self, event): """ Bind a change in a checkbox to the relevant param object to trigger a plot update. """ name = event.obj.name if "colour" in name: self._colours = event.new elif "level" in name: self._levels = event.new def _enable_plot_controls(self): """Enable plot control widgets for updating the specific data shown on the plot.""" for widget in self.pwlist: widget.disabled = False self.dataset_button.disabled = False self._check_enable_checkboxes() def _populate_contents_callback(self, change): """ Populate the options and values attributes of all the left column query control widgets when a collection provided by the EDR Server is specified. """ collection_id = change["new"] if collection_id is not None: # Parameters and locations. self._populate_params(collection_id) locs = self.edr_interface.get_locations(collection_id) self.locations.options = locs # Times. if self.edr_interface.has_temporal_extent(collection_id): times = self.edr_interface.get_temporal_extent(collection_id) else: times = [self._no_t] self.start_time.options = times self.end_time.options = times # Vertical levels. if self.edr_interface.has_vertical_extent(collection_id): zs = self.edr_interface.get_vertical_extent(collection_id) else: zs = [self._no_z] self.start_z.options = zs self.end_z.options = zs def _populate_params(self, collection_id): """ Populate the `Datasets` widget with a descriptive list (names and units) of the parameters provided by the selected collection. """ params_dict = self.edr_interface.get_collection_parameters(collection_id) options = [] for k, v in params_dict.items(): choice = f'{v["label"].replace("_", " ").title()} ({v["units"]})' options.append((choice, k)) self.datasets.options = options def _filter_end_time(self, change): """ Only show end datetimes in the `End Date` widget that are later than the value selected in the `Start Date` widget. """ start_time_selected = change["new"] if start_time_selected is not None: # Avoid errors when clearing widget state. times = self.start_time.options sel_idx = times.index(start_time_selected) self.end_time.options = times[sel_idx:] def _filter_end_z(self, change): """ Only show end vertical values in the `End Z` widget that are greater than the value selected in the `Start Z` widget. """ start_z_selected = change["new"] if start_z_selected is not None: # Avoid errors when clearing widget state. zs = self.start_z.options sel_idx = zs.index(start_z_selected) self.end_z.options = zs[sel_idx:] def _get_dataset(self, _): """ Callback when the `get dataset` button is clicked. Request from the EDR Server all data represented by the current states of the select widgets and provide this data as a well-known Python data object (such as an Iris Cube). """ # XXX somewhere we should check if the server supports `Cube` queries, # and preferentially use that if available. from .dataset import make_dataset collection_id = self.coll.value params = self.edr_interface.get_collection_parameters(collection_id) keys = self.datasets.value names_dict = {k: v["label"] for k, v in params.items() if k in keys} dataset = make_dataset(self.edr_interface.data_handler, names_dict) self.dataset = dataset def _geometry_stream_data(self, query_name): """ Return the data attribute of the holoviews stream referenced by `query_name`. """ ref = f"_{query_name}_stream" geom_stream = getattr(self, ref) return geom_stream.data def _geometry_query_is_defined(self, query_name): """ Determine whether a geometry specified by `query_name` has been defined. We determine this by checking if all the values in its x and y coords are 0 - if they are, we assume it's in its default state and thus undefined. """ data = self._geometry_stream_data(query_name) return all(data["xs"][0]) and all(data["ys"][0]) def _hv_stream_to_wkt(self, query_name): """ Convert the data points in the geometry specified by `query_name` to the appropriate Shapely geometry, and return the WKT string representation of the geometry. """ constructor = sPolygon if query_name == "area" else sLineString data = self._geometry_stream_data(query_name) xpoints, ypoints = np.array(data["xs"][0]), np.array(data["ys"][0]) wgs84_points = ccrs.PlateCarree().transform_points( ccrs.Mercator(), xpoints, ypoints ) result = None errors = None try: geom = constructor(wgs84_points) except ValueError: errors = f"Invalid {query_name!r} geometry provided" else: result = geom.wkt return result, errors def _request_plot_data(self, _): """ Callback when the `submit` button is clicked. This makes a get data request to the EDR Server via the `.interface.EDRInterface` instance. """ # Get selection widgets state for request. coll_id = self.coll.value param_names = self.datasets.value locations = self.locations.value start_date = self.start_time.value end_date = self.end_time.value start_z = self.start_z.value end_z = self.end_z.value # Define common query parameters. query_params = {"crs": "EPSG:4326"} if start_date != self._no_t: query_params["datetime"] = "/".join([start_date, end_date]) if start_z != self._no_z: query_params["z"] = [start_z, end_z] # Set query type. query_type = None errors = None query_types = ["area", "corridor"] for qtype in query_types: if self._geometry_query_is_defined(qtype): print(f"Query type: {qtype}") query_type = qtype coords, errors = self._hv_stream_to_wkt(query_type) if coords is not None: query_params["coords"] = coords if query_type is None: query_type = "locations" query_params["loc_id"] = locations # Request dataset. self.edr_interface.query(coll_id, query_type, param_names, **query_params) # Collect coords and query errors, if present. all_errors = [] if errors is not None: all_errors.append(errors) if self.edr_interface.errors is not None: all_errors.append(self.edr_interface.errors) if len(all_errors): self.edr_interface.errors = "\n".join(all_errors) error_box = "data_error_box" if self.edr_interface.errors is None: # Independent check to see if we can clear the error box. self._populate_error_box(error_box, "") if self.edr_interface.data_handler is not None and self.edr_interface.errors is None: # Generate and enable the plot controls. if self.edr_interface.has_temporal_extent(coll_id): plot_control_times = list(self.edr_interface.data_handler.coords["t"]) else: plot_control_times = [self._no_t] self.pc_times.options = plot_control_times self.pc_times.value = plot_control_times[0] if self.edr_interface.has_vertical_extent(coll_id): plot_control_zs = list(self.edr_interface.data_handler.coords["z"]) else: plot_control_zs = [self._no_z] self.pc_zs.options = plot_control_zs self.pc_zs.value = plot_control_zs[0] plot_control_params = list(param_names) self.pc_params.options = list(filter(lambda o: o[1] in plot_control_params, self.datasets.options)) self.pc_params.value = plot_control_params[0] self._enable_plot_controls() elif self.edr_interface.errors is not None: self._populate_error_box(error_box, self.edr_interface.errors) else: self._populate_error_box(error_box, "Uncaught error (data retrieval)") def _plot_change(self, _): """ Helper function to capture changes from either plot control widget and trigger an update of the plot. """ param = self.pc_params.value t = self.pc_times.value z = self.pc_zs.value can_request_data = False self._check_enable_checkboxes() value_dict = {} if t not in (None, "", self._no_t): value_dict.update({"t": t}) can_request_data = True if z not in (None, "", self._no_z): value_dict.update({"z": z}) can_request_data = True if param is not None and can_request_data: self._data_key = self.edr_interface.data_handler.make_key(param, value_dict) def _query_tools(self): self._area_poly = hv.Polygons( [[(0, 0), (0, 0)]] ).opts( line_color="gray", line_width=1.5, line_alpha=0.75, fill_color="gray", fill_alpha=0.3, ) self._corridor_path = hv.Path( [[(0, 0), (0, 0)]] ).opts( color="gray", line_width=2, line_alpha=0.75, ) self._area_stream = hv.streams.PolyDraw( source=self._area_poly, num_objects=1, tooltip="Area Query Tool" ) self._corridor_stream = hv.streams.PolyDraw( source=self._corridor_path, num_objects=1, tooltip="Corridor Query Tool" ) @param.depends('_data_key', '_colours', '_levels', 'cmap', 'alpha') def make_plot(self): """Show data from a data request to the EDR Server on the plot.""" showable = gv.Image( ([-8, -1], [53, 58], [[0, 0], [0, 0]]), # Approximate UK extent. crs=CRS_LOOKUP["WGS_1984"], ).opts(alpha=0.0) if self._data_key != "": dataset = self.edr_interface.data_handler[self._data_key] opts = {"cmap": self.cmap, "alpha": self.alpha, "colorbar": True} colours = self.edr_interface.data_handler.get_colours(self.pc_params.value) if colours is not None: opts.update({"clim": (colours["vmin"], colours["vmax"])}) if self.use_colours.value: opts["cmap"] = colours["colours"] if self.use_levels.value: opts["color_levels"] = colours["values"] error_box = "data_error_box" if self.edr_interface.data_handler.errors is None: # Independent check to see if we can clear the data error box. self._populate_error_box(error_box, "") if dataset is not None and self.edr_interface.data_handler.errors is None: showable = dataset.to(gv.Image, ['longitude', 'latitude']).opts(**opts) elif self.edr_interface.data_handler.errors is not None: self._populate_error_box( error_box, self.edr_interface.data_handler.errors ) else: self._populate_error_box( error_box, "Unspecified error (plotting)" ) return showable * self._area_poly * self._corridor_path
[ "param.Magnitude", "cartopy.crs.Mercator", "holoviews.Polygons", "geoviews.Image", "ipywidgets.Text", "geoviews.tile_sources.Wikipedia.opts", "panel.widgets.Checkbox", "panel.Row", "param.String", "ipywidgets.SelectionSlider", "ipywidgets.Button", "geoviews.DynamicMap", "param.Boolean", "ipywidgets.Dropdown", "ipywidgets.SelectMultiple", "panel.Column", "ipywidgets.Layout", "holoviews.Path", "ipywidgets.VBox", "param.depends", "numpy.array", "cartopy.crs.PlateCarree", "holoviews.streams.PolyDraw" ]
[((483, 557), 'ipywidgets.Text', 'widgets.Text', ([], {'placeholder': '"""Specify an EDR Server..."""', 'description': '"""Server"""'}), "(placeholder='Specify an EDR Server...', description='Server')\n", (495, 557), True, 'import ipywidgets as widgets\n'), ((569, 639), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""Collections"""', 'disabled': '(True)'}), "(options=[], description='Collections', disabled=True)\n", (585, 639), True, 'import ipywidgets as widgets\n'), ((656, 724), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""Locations"""', 'disabled': '(True)'}), "(options=[], description='Locations', disabled=True)\n", (672, 724), True, 'import ipywidgets as widgets\n'), ((740, 813), 'ipywidgets.SelectMultiple', 'widgets.SelectMultiple', ([], {'options': '[]', 'description': '"""Datasets"""', 'disabled': '(True)'}), "(options=[], description='Datasets', disabled=True)\n", (762, 813), True, 'import ipywidgets as widgets\n'), ((831, 900), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""Start Date"""', 'disabled': '(True)'}), "(options=[], description='Start Date', disabled=True)\n", (847, 900), True, 'import ipywidgets as widgets\n'), ((916, 983), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""End Date"""', 'disabled': '(True)'}), "(options=[], description='End Date', disabled=True)\n", (932, 983), True, 'import ipywidgets as widgets\n'), ((998, 1064), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""Z Lower"""', 'disabled': '(True)'}), "(options=[], description='Z Lower', disabled=True)\n", (1014, 1064), True, 'import ipywidgets as widgets\n'), ((1077, 1143), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""Z Upper"""', 'disabled': '(True)'}), "(options=[], description='Z Upper', disabled=True)\n", (1093, 1143), True, 'import ipywidgets as widgets\n'), ((1375, 1451), 'ipywidgets.SelectionSlider', 'widgets.SelectionSlider', ([], {'options': "['']", 'description': '"""Timestep"""', 'disabled': '(True)'}), "(options=[''], description='Timestep', disabled=True)\n", (1398, 1451), True, 'import ipywidgets as widgets\n'), ((1464, 1539), 'ipywidgets.SelectionSlider', 'widgets.SelectionSlider', ([], {'options': "['']", 'description': '"""Z Level"""', 'disabled': '(True)'}), "(options=[''], description='Z Level', disabled=True)\n", (1487, 1539), True, 'import ipywidgets as widgets\n'), ((1556, 1624), 'ipywidgets.Dropdown', 'widgets.Dropdown', ([], {'options': '[]', 'description': '"""Parameter"""', 'disabled': '(True)'}), "(options=[], description='Parameter', disabled=True)\n", (1572, 1624), True, 'import ipywidgets as widgets\n'), ((1643, 1706), 'panel.widgets.Checkbox', 'pn.widgets.Checkbox', ([], {'name': '"""Use supplied colours"""', 'disabled': '(True)'}), "(name='Use supplied colours', disabled=True)\n", (1662, 1706), True, 'import panel as pn\n'), ((1724, 1786), 'panel.widgets.Checkbox', 'pn.widgets.Checkbox', ([], {'name': '"""Use supplied levels"""', 'disabled': '(True)'}), "(name='Use supplied levels', disabled=True)\n", (1743, 1786), True, 'import panel as pn\n'), ((1850, 1866), 'param.String', 'param.String', (['""""""'], {}), "('')\n", (1862, 1866), False, 'import param\n'), ((1882, 1914), 'param.Boolean', 'param.Boolean', (['use_colours.value'], {}), '(use_colours.value)\n', (1895, 1914), False, 'import param\n'), ((1929, 1960), 'param.Boolean', 'param.Boolean', (['use_levels.value'], {}), '(use_levels.value)\n', (1942, 1960), False, 'import param\n'), ((1972, 1995), 'param.String', 'param.String', (['"""viridis"""'], {}), "('viridis')\n", (1984, 1995), False, 'import param\n'), ((2008, 2029), 'param.Magnitude', 'param.Magnitude', (['(0.85)'], {}), '(0.85)\n', (2023, 2029), False, 'import param\n'), ((2067, 2104), 'ipywidgets.Button', 'widgets.Button', ([], {'description': '"""Connect"""'}), "(description='Connect')\n", (2081, 2104), True, 'import ipywidgets as widgets\n'), ((2125, 2176), 'ipywidgets.Button', 'widgets.Button', ([], {'description': '"""Submit"""', 'disabled': '(True)'}), "(description='Submit', disabled=True)\n", (2139, 2176), True, 'import ipywidgets as widgets\n'), ((2588, 2607), 'ipywidgets.VBox', 'widgets.VBox', (['wlist'], {}), '(wlist)\n', (2600, 2607), True, 'import ipywidgets as widgets\n'), ((21809, 21875), 'param.depends', 'param.depends', (['"""_data_key"""', '"""_colours"""', '"""_levels"""', '"""cmap"""', '"""alpha"""'], {}), "('_data_key', '_colours', '_levels', 'cmap', 'alpha')\n", (21822, 21875), False, 'import param\n'), ((2627, 2649), 'panel.Column', 'pn.Column', (['*pwlist[:2]'], {}), '(*pwlist[:2])\n', (2636, 2649), True, 'import panel as pn\n'), ((2663, 2685), 'panel.Column', 'pn.Column', (['*pchecklist'], {}), '(*pchecklist)\n', (2672, 2685), True, 'import panel as pn\n'), ((3682, 3711), 'geoviews.DynamicMap', 'gv.DynamicMap', (['self.make_plot'], {}), '(self.make_plot)\n', (3695, 3711), True, 'import geoviews as gv\n'), ((7541, 7582), 'panel.Column', 'pn.Column', (['self.wbox', 'self.data_error_box'], {}), '(self.wbox, self.data_error_box)\n', (7550, 7582), True, 'import panel as pn\n'), ((7601, 7651), 'panel.Column', 'pn.Column', (['self.submit_button', 'self.dataset_button'], {}), '(self.submit_button, self.dataset_button)\n', (7610, 7651), True, 'import panel as pn\n'), ((7674, 7730), 'panel.Row', 'pn.Row', (['control_widgets', 'buttons'], {'align': "('end', 'start')"}), "(control_widgets, buttons, align=('end', 'start'))\n", (7680, 7730), True, 'import panel as pn\n'), ((7753, 7788), 'panel.Column', 'pn.Column', (['connect_row', 'control_row'], {}), '(connect_row, control_row)\n', (7762, 7788), True, 'import panel as pn\n'), ((7806, 7859), 'geoviews.tile_sources.Wikipedia.opts', 'gv.tile_sources.Wikipedia.opts', ([], {'width': '(800)', 'height': '(600)'}), '(width=800, height=600)\n', (7836, 7859), True, 'import geoviews as gv\n'), ((7912, 7939), 'panel.Column', 'pn.Column', (['plot', 'self.pwbox'], {}), '(plot, self.pwbox)\n', (7921, 7939), True, 'import panel as pn\n'), ((8126, 8192), 'ipywidgets.Layout', 'widgets.Layout', ([], {'display': '"""none"""', 'visibility': '"""hidden"""', 'border': '"""none"""'}), "(display='none', visibility='hidden', border='none')\n", (8140, 8192), True, 'import ipywidgets as widgets\n'), ((8261, 8411), 'ipywidgets.Layout', 'widgets.Layout', ([], {'border': '"""2px solid #dc3545"""', 'padding': '"""0.05rem 0.5rem"""', 'margin': '"""0 0.25rem 0 5.625rem"""', 'width': '"""70%"""', 'overflow': '"""auto"""', 'display': '"""flex"""'}), "(border='2px solid #dc3545', padding='0.05rem 0.5rem', margin\n ='0 0.25rem 0 5.625rem', width='70%', overflow='auto', display='flex')\n", (8275, 8411), True, 'import ipywidgets as widgets\n'), ((21499, 21589), 'holoviews.streams.PolyDraw', 'hv.streams.PolyDraw', ([], {'source': 'self._area_poly', 'num_objects': '(1)', 'tooltip': '"""Area Query Tool"""'}), "(source=self._area_poly, num_objects=1, tooltip=\n 'Area Query Tool')\n", (21518, 21589), True, 'import holoviews as hv\n'), ((21663, 21761), 'holoviews.streams.PolyDraw', 'hv.streams.PolyDraw', ([], {'source': 'self._corridor_path', 'num_objects': '(1)', 'tooltip': '"""Corridor Query Tool"""'}), "(source=self._corridor_path, num_objects=1, tooltip=\n 'Corridor Query Tool')\n", (21682, 21761), True, 'import holoviews as hv\n'), ((1222, 1252), 'ipywidgets.Layout', 'widgets.Layout', ([], {'display': '"""none"""'}), "(display='none')\n", (1236, 1252), True, 'import ipywidgets as widgets\n'), ((1299, 1329), 'ipywidgets.Layout', 'widgets.Layout', ([], {'display': '"""none"""'}), "(display='none')\n", (1313, 1329), True, 'import ipywidgets as widgets\n'), ((2287, 2316), 'ipywidgets.Layout', 'widgets.Layout', ([], {'top': '"""-0.5rem"""'}), "(top='-0.5rem')\n", (2301, 2316), True, 'import ipywidgets as widgets\n'), ((7423, 7471), 'panel.Column', 'pn.Column', (['self.coll_uri', 'self.connect_error_box'], {}), '(self.coll_uri, self.connect_error_box)\n', (7432, 7471), True, 'import panel as pn\n'), ((16568, 16591), 'numpy.array', 'np.array', (["data['xs'][0]"], {}), "(data['xs'][0])\n", (16576, 16591), True, 'import numpy as np\n'), ((16593, 16616), 'numpy.array', 'np.array', (["data['ys'][0]"], {}), "(data['ys'][0])\n", (16601, 16616), True, 'import numpy as np\n'), ((16689, 16704), 'cartopy.crs.Mercator', 'ccrs.Mercator', ([], {}), '()\n', (16702, 16704), True, 'import cartopy.crs as ccrs\n'), ((7955, 7984), 'panel.Row', 'pn.Row', (['control_col', 'plot_col'], {}), '(control_col, plot_col)\n', (7961, 7984), True, 'import panel as pn\n'), ((16640, 16658), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (16656, 16658), True, 'import cartopy.crs as ccrs\n'), ((21137, 21168), 'holoviews.Polygons', 'hv.Polygons', (['[[(0, 0), (0, 0)]]'], {}), '([[(0, 0), (0, 0)]])\n', (21148, 21168), True, 'import holoviews as hv\n'), ((21348, 21375), 'holoviews.Path', 'hv.Path', (['[[(0, 0), (0, 0)]]'], {}), '([[(0, 0), (0, 0)]])\n', (21355, 21375), True, 'import holoviews as hv\n'), ((21995, 22071), 'geoviews.Image', 'gv.Image', (['([-8, -1], [53, 58], [[0, 0], [0, 0]])'], {'crs': "CRS_LOOKUP['WGS_1984']"}), "(([-8, -1], [53, 58], [[0, 0], [0, 0]]), crs=CRS_LOOKUP['WGS_1984'])\n", (22003, 22071), True, 'import geoviews as gv\n')]
# -*- coding: utf-8 -*- """ Created on Fri Aug 27 10:35:53 2021 @author: Peace4Lv """ from pyecharts.components import Image from pyecharts.options import ComponentTitleOpts from os import path import matplotlib.pyplot as plt import numpy as np from datetime import datetime, timedelta plt.rcParams['font.sans-serif'] = ['KaiTi'] plt.rcParams['axes.unicode_minus'] = False def DrawImage(imgUrl="../html/pic/horizontalLine.png", **kw): image = Image() # check file exists if not path.isfile(imgUrl): imgUrl = r"https://gitee.com/RiskyJR/pic-bed/raw/master/comm-timeline-graphic-1024x380.png" image.add( src=imgUrl, # image align center should modify outside style_opts={ "style": "margin-top: 20px;text-align: center;width:1800px;height:900px;"}, ) image.set_global_opts( title_opts=ComponentTitleOpts(title="Time Line") ) image.render("../html/imageTest.html") print("horizontal line image finished...\n") return image def UpdateTimeLineImage(startTick_x=['2021-08-09 09:00:00', '2021-08-09 09:45:00', '2021-08-09 11:11:00', '2021-08-09 14:30:00', '2021-08-09 15:18:00', '2021-08-09 16:40:00', '2021-08-09 17:19:00'], eventName_x=['开会', '发票', 'visual-code', '舆情分析', 'AOA-Paper', 'AOA-Paper', 'visual-code'], eventLast_x=[30, 78, 33, 47, 69, 39, 15], *k, **kw): colors = ['#E5562D', '#E0A459', '#CFBE65', '#A8CF65', '#6FD67D', '#68D5AE' '#6FD0DB', '#5294D0', '#595CD0', '#9E59D0', '#D05994'] # datetime-str→datetime→baseline→gap # Create the base bar from 5am to 1am startTick_t = [datetime.strptime(x, "%Y-%m-%d %H:%M:%S") for x in startTick_x] zeroTick_t = datetime.strptime(datetime.strftime( startTick_t[1], "%Y-%m-%d")+" 05:00:00", "%Y-%m-%d %H:%M:%S") endTick_t = zeroTick_t+timedelta(hours=19) eventName = eventName_x eventLast = eventLast_x levels = np.array([-5, 5, -3, 3, -1, 1]) fig, ax = plt.subplots(figsize=(36, 36*0.5625), facecolor='#D6D7C5', dpi=500) baseGapMin = (endTick_t-zeroTick_t).total_seconds()/60 ax.set(facecolor="#D6D7C5") ax.broken_barh( [(0, baseGapMin)], (-1/2, 1), alpha=.5, facecolors='#ace9e8', edgecolors='white', lw=4, capstyle='round') ax.set_ylim(-8, 8) # set as page background image no need title # ax.set_title('Daily Time Line', fontsize=60, color='white') for ii, (iname, itick, ieventLast) in enumerate(zip(eventName, startTick_t, eventLast)): barhColor = colors[ii % 4] level = levels[ii % 6] vert = 'top' if level < 0 else 'bottom' # tickTemp = datetime.strptime(itick, "%Y-%m-%d %H:%M:%S") curPointX = (itick-zeroTick_t).total_seconds()/60 curPointX_M = curPointX + ieventLast/2 ax.scatter(curPointX_M, 0, s=100, facecolor='w', edgecolor=barhColor, zorder=9999) # a line up to the text ax.plot((curPointX_M, curPointX_M), (0, level), c='white', alpha=.5) # text itickStr = datetime.strftime(itick, "%m-%d %H:%M") itext = iname+"\n"+itickStr+"|"+str(ieventLast) textInstance = ax.text( curPointX_M, level, itext, horizontalalignment='center', verticalalignment=vert, fontsize=20, fontfamily='Microsoft YaHei') textInstance.set_bbox( dict(boxstyle="round", alpha=0.5, color='#C3EAE9')) # broken_bar ax.broken_barh([(curPointX, ieventLast)], (-1/2, 1), facecolors=barhColor, edgecolors='white', lw=4) # Remove components for a cleaner look plt.setp((ax.get_yticklabels() + ax.get_yticklines() + list(ax.spines.values())), visible=False) plt.setp((ax.get_xticklabels() + ax.get_xticklines() + list(ax.spines.values())), visible=False) plt.xlabel(startTick_t[int(len(startTick_t)/2)].strftime("%Y-%m-%d")+' Time Line', loc='left', fontsize=30, fontfamily='Microsoft YaHei', color='white') plt.ylabel('Update:'+datetime.now().strftime("%Y-%m-%d"), loc='bottom', fontsize=30, fontfamily='Microsoft YaHei', color='white') if True: imageFile = r'../html/pic/timeline.jpg' plt.savefig(imageFile,dpi=400, bbox_inches='tight') print('image generated', imageFile) return imageFile else: plt.show() if __name__ == "__main__": UpdateTimeLineImage() # DrawImage()
[ "datetime.datetime.strftime", "pyecharts.components.Image", "matplotlib.pyplot.show", "pyecharts.options.ComponentTitleOpts", "datetime.datetime.now", "datetime.datetime.strptime", "os.path.isfile", "numpy.array", "datetime.timedelta", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((452, 459), 'pyecharts.components.Image', 'Image', ([], {}), '()\n', (457, 459), False, 'from pyecharts.components import Image\n'), ((2129, 2160), 'numpy.array', 'np.array', (['[-5, 5, -3, 3, -1, 1]'], {}), '([-5, 5, -3, 3, -1, 1])\n', (2137, 2160), True, 'import numpy as np\n'), ((2175, 2244), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(36, 36 * 0.5625)', 'facecolor': '"""#D6D7C5"""', 'dpi': '(500)'}), "(figsize=(36, 36 * 0.5625), facecolor='#D6D7C5', dpi=500)\n", (2187, 2244), True, 'import matplotlib.pyplot as plt\n'), ((495, 514), 'os.path.isfile', 'path.isfile', (['imgUrl'], {}), '(imgUrl)\n', (506, 514), False, 'from os import path\n'), ((1806, 1847), 'datetime.datetime.strptime', 'datetime.strptime', (['x', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(x, '%Y-%m-%d %H:%M:%S')\n", (1823, 1847), False, 'from datetime import datetime, timedelta\n'), ((2040, 2059), 'datetime.timedelta', 'timedelta', ([], {'hours': '(19)'}), '(hours=19)\n', (2049, 2059), False, 'from datetime import datetime, timedelta\n'), ((3274, 3313), 'datetime.datetime.strftime', 'datetime.strftime', (['itick', '"""%m-%d %H:%M"""'], {}), "(itick, '%m-%d %H:%M')\n", (3291, 3313), False, 'from datetime import datetime, timedelta\n'), ((4474, 4526), 'matplotlib.pyplot.savefig', 'plt.savefig', (['imageFile'], {'dpi': '(400)', 'bbox_inches': '"""tight"""'}), "(imageFile, dpi=400, bbox_inches='tight')\n", (4485, 4526), True, 'import matplotlib.pyplot as plt\n'), ((4613, 4623), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4621, 4623), True, 'import matplotlib.pyplot as plt\n'), ((863, 900), 'pyecharts.options.ComponentTitleOpts', 'ComponentTitleOpts', ([], {'title': '"""Time Line"""'}), "(title='Time Line')\n", (881, 900), False, 'from pyecharts.options import ComponentTitleOpts\n'), ((1924, 1969), 'datetime.datetime.strftime', 'datetime.strftime', (['startTick_t[1]', '"""%Y-%m-%d"""'], {}), "(startTick_t[1], '%Y-%m-%d')\n", (1941, 1969), False, 'from datetime import datetime, timedelta\n'), ((4281, 4295), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4293, 4295), False, 'from datetime import datetime, timedelta\n')]
import numpy as np import unittest import ray from ray.rllib.evaluation.postprocessing import adjust_nstep, discount_cumsum from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.test_utils import check class TestPostprocessing(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_n_step_3(self): """Tests, whether n-step adjustments of trajectories work.""" # n-step = 3 gamma = 0.9 obs = [1, 2, 3, 4, 5, 6, 7] actions = ["ac1", "ac2", "ac1", "ac1", "ac1", "ac2", "ac1"] rewards = [10.0, 0.0, 100.0, 100.0, 100.0, 100.0, 100.0] dones = [0, 0, 0, 0, 0, 0, 1] next_obs = [2, 3, 4, 5, 6, 7, 8] batch = SampleBatch( { SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS: rewards, SampleBatch.DONES: dones, SampleBatch.NEXT_OBS: next_obs, } ) adjust_nstep(3, gamma, batch) check(batch[SampleBatch.OBS], [1, 2, 3, 4, 5, 6, 7]) check( batch[SampleBatch.ACTIONS], ["ac1", "ac2", "ac1", "ac1", "ac1", "ac2", "ac1"], ) check(batch[SampleBatch.NEXT_OBS], [4, 5, 6, 7, 8, 8, 8]) check(batch[SampleBatch.DONES], [0, 0, 0, 0, 1, 1, 1]) check( batch[SampleBatch.REWARDS], [91.0, 171.0, 271.0, 271.0, 271.0, 190.0, 100.0] ) def test_n_step_4(self): """Tests, whether n-step adjustments of trajectories work.""" # n-step = 4 gamma = 0.99 obs = np.arange(0, 7) actions = np.random.randint(-1, 3, size=(7,)) check_actions = actions.copy() rewards = [10.0, 0.0, 100.0, 50.0, 60.0, 10.0, 100.0] dones = [False, False, False, False, False, False, True] next_obs = np.arange(1, 8) batch = SampleBatch( { SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS: rewards, SampleBatch.DONES: dones, SampleBatch.NEXT_OBS: next_obs, } ) adjust_nstep(4, gamma, batch) check(batch[SampleBatch.OBS], [0, 1, 2, 3, 4, 5, 6]) check(batch[SampleBatch.ACTIONS], check_actions) check(batch[SampleBatch.NEXT_OBS], [4, 5, 6, 7, 7, 7, 7]) check(batch[SampleBatch.DONES], [False, False, False, True, True, True, True]) check( batch[SampleBatch.REWARDS], [ discount_cumsum(np.array(rewards[0:4]), gamma)[0], discount_cumsum(np.array(rewards[1:5]), gamma)[0], discount_cumsum(np.array(rewards[2:6]), gamma)[0], discount_cumsum(np.array(rewards[3:7]), gamma)[0], discount_cumsum(np.array(rewards[4:]), gamma)[0], discount_cumsum(np.array(rewards[5:]), gamma)[0], discount_cumsum(np.array(rewards[6:]), gamma)[0], ], ) def test_n_step_malformed_dones(self): # Test bad input (trajectory has dones in middle). # Re-use same batch, but change dones. gamma = 1.0 obs = np.arange(0, 7) actions = np.random.randint(-1, 3, size=(7,)) rewards = [10.0, 0.0, 100.0, 50.0, 60.0, 10.0, 100.0] next_obs = np.arange(1, 8) batch = SampleBatch( { SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS: rewards, SampleBatch.DONES: [False, False, True, False, False, False, True], SampleBatch.NEXT_OBS: next_obs, } ) self.assertRaisesRegex( AssertionError, "Unexpected done in middle", lambda: adjust_nstep(5, gamma, batch), ) def test_n_step_very_short_trajectory(self): """Tests, whether n-step also works for very small trajectories.""" gamma = 1.0 obs = np.arange(0, 2) actions = np.random.randint(-100, 300, size=(2,)) check_actions = actions.copy() rewards = [10.0, 100.0] next_obs = np.arange(1, 3) batch = SampleBatch( { SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS: rewards, SampleBatch.DONES: [False, False], SampleBatch.NEXT_OBS: next_obs, } ) adjust_nstep(3, gamma, batch) check(batch[SampleBatch.OBS], [0, 1]) check(batch[SampleBatch.ACTIONS], check_actions) check(batch[SampleBatch.DONES], [False, False]) check(batch[SampleBatch.REWARDS], [10.0 + gamma * 100.0, 100.0]) check(batch[SampleBatch.NEXT_OBS], [2, 2]) def test_n_step_from_same_obs_source_array(self): """Tests, whether n-step also works on a shared obs/new-obs array.""" gamma = 0.99 # The underlying observation data. Both obs and next_obs will # be references into that same np.array. underlying_obs = np.arange(0, 8) obs = underlying_obs[:7] next_obs = underlying_obs[1:] actions = np.random.randint(-1, 3, size=(7,)) check_actions = actions.copy() rewards = [10.0, 0.0, 100.0, 50.0, 60.0, 10.0, 100.0] dones = [False, False, False, False, False, False, True] batch = SampleBatch( { SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS: rewards, SampleBatch.DONES: dones, SampleBatch.NEXT_OBS: next_obs, } ) adjust_nstep(4, gamma, batch) check(batch[SampleBatch.OBS], [0, 1, 2, 3, 4, 5, 6]) check(batch[SampleBatch.ACTIONS], check_actions) check(batch[SampleBatch.NEXT_OBS], [4, 5, 6, 7, 7, 7, 7]) check(batch[SampleBatch.DONES], [False, False, False, True, True, True, True]) check( batch[SampleBatch.REWARDS], [ discount_cumsum(np.array(rewards[0:4]), gamma)[0], discount_cumsum(np.array(rewards[1:5]), gamma)[0], discount_cumsum(np.array(rewards[2:6]), gamma)[0], discount_cumsum(np.array(rewards[3:7]), gamma)[0], discount_cumsum(np.array(rewards[4:]), gamma)[0], discount_cumsum(np.array(rewards[5:]), gamma)[0], discount_cumsum(np.array(rewards[6:]), gamma)[0], ], ) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))
[ "ray.init", "ray.rllib.policy.sample_batch.SampleBatch", "ray.rllib.utils.test_utils.check", "pytest.main", "numpy.random.randint", "ray.shutdown", "numpy.arange", "ray.rllib.evaluation.postprocessing.adjust_nstep", "numpy.array" ]
[((329, 339), 'ray.init', 'ray.init', ([], {}), '()\n', (337, 339), False, 'import ray\n'), ((402, 416), 'ray.shutdown', 'ray.shutdown', ([], {}), '()\n', (414, 416), False, 'import ray\n'), ((822, 984), 'ray.rllib.policy.sample_batch.SampleBatch', 'SampleBatch', (['{SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS:\n rewards, SampleBatch.DONES: dones, SampleBatch.NEXT_OBS: next_obs}'], {}), '({SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions,\n SampleBatch.REWARDS: rewards, SampleBatch.DONES: dones, SampleBatch.\n NEXT_OBS: next_obs})\n', (833, 984), False, 'from ray.rllib.policy.sample_batch import SampleBatch\n'), ((1101, 1130), 'ray.rllib.evaluation.postprocessing.adjust_nstep', 'adjust_nstep', (['(3)', 'gamma', 'batch'], {}), '(3, gamma, batch)\n', (1113, 1130), False, 'from ray.rllib.evaluation.postprocessing import adjust_nstep, discount_cumsum\n'), ((1139, 1191), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.OBS]', '[1, 2, 3, 4, 5, 6, 7]'], {}), '(batch[SampleBatch.OBS], [1, 2, 3, 4, 5, 6, 7])\n', (1144, 1191), False, 'from ray.rllib.utils.test_utils import check\n'), ((1200, 1288), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.ACTIONS]', "['ac1', 'ac2', 'ac1', 'ac1', 'ac1', 'ac2', 'ac1']"], {}), "(batch[SampleBatch.ACTIONS], ['ac1', 'ac2', 'ac1', 'ac1', 'ac1', 'ac2',\n 'ac1'])\n", (1205, 1288), False, 'from ray.rllib.utils.test_utils import check\n'), ((1328, 1385), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.NEXT_OBS]', '[4, 5, 6, 7, 8, 8, 8]'], {}), '(batch[SampleBatch.NEXT_OBS], [4, 5, 6, 7, 8, 8, 8])\n', (1333, 1385), False, 'from ray.rllib.utils.test_utils import check\n'), ((1394, 1448), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.DONES]', '[0, 0, 0, 0, 1, 1, 1]'], {}), '(batch[SampleBatch.DONES], [0, 0, 0, 0, 1, 1, 1])\n', (1399, 1448), False, 'from ray.rllib.utils.test_utils import check\n'), ((1457, 1544), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.REWARDS]', '[91.0, 171.0, 271.0, 271.0, 271.0, 190.0, 100.0]'], {}), '(batch[SampleBatch.REWARDS], [91.0, 171.0, 271.0, 271.0, 271.0, 190.0,\n 100.0])\n', (1462, 1544), False, 'from ray.rllib.utils.test_utils import check\n'), ((1719, 1734), 'numpy.arange', 'np.arange', (['(0)', '(7)'], {}), '(0, 7)\n', (1728, 1734), True, 'import numpy as np\n'), ((1753, 1788), 'numpy.random.randint', 'np.random.randint', (['(-1)', '(3)'], {'size': '(7,)'}), '(-1, 3, size=(7,))\n', (1770, 1788), True, 'import numpy as np\n'), ((1974, 1989), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (1983, 1989), True, 'import numpy as np\n'), ((2006, 2168), 'ray.rllib.policy.sample_batch.SampleBatch', 'SampleBatch', (['{SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS:\n rewards, SampleBatch.DONES: dones, SampleBatch.NEXT_OBS: next_obs}'], {}), '({SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions,\n SampleBatch.REWARDS: rewards, SampleBatch.DONES: dones, SampleBatch.\n NEXT_OBS: next_obs})\n', (2017, 2168), False, 'from ray.rllib.policy.sample_batch import SampleBatch\n'), ((2285, 2314), 'ray.rllib.evaluation.postprocessing.adjust_nstep', 'adjust_nstep', (['(4)', 'gamma', 'batch'], {}), '(4, gamma, batch)\n', (2297, 2314), False, 'from ray.rllib.evaluation.postprocessing import adjust_nstep, discount_cumsum\n'), ((2323, 2375), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.OBS]', '[0, 1, 2, 3, 4, 5, 6]'], {}), '(batch[SampleBatch.OBS], [0, 1, 2, 3, 4, 5, 6])\n', (2328, 2375), False, 'from ray.rllib.utils.test_utils import check\n'), ((2384, 2432), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.ACTIONS]', 'check_actions'], {}), '(batch[SampleBatch.ACTIONS], check_actions)\n', (2389, 2432), False, 'from ray.rllib.utils.test_utils import check\n'), ((2441, 2498), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.NEXT_OBS]', '[4, 5, 6, 7, 7, 7, 7]'], {}), '(batch[SampleBatch.NEXT_OBS], [4, 5, 6, 7, 7, 7, 7])\n', (2446, 2498), False, 'from ray.rllib.utils.test_utils import check\n'), ((2507, 2585), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.DONES]', '[False, False, False, True, True, True, True]'], {}), '(batch[SampleBatch.DONES], [False, False, False, True, True, True, True])\n', (2512, 2585), False, 'from ray.rllib.utils.test_utils import check\n'), ((3330, 3345), 'numpy.arange', 'np.arange', (['(0)', '(7)'], {}), '(0, 7)\n', (3339, 3345), True, 'import numpy as np\n'), ((3364, 3399), 'numpy.random.randint', 'np.random.randint', (['(-1)', '(3)'], {'size': '(7,)'}), '(-1, 3, size=(7,))\n', (3381, 3399), True, 'import numpy as np\n'), ((3481, 3496), 'numpy.arange', 'np.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (3490, 3496), True, 'import numpy as np\n'), ((3513, 3717), 'ray.rllib.policy.sample_batch.SampleBatch', 'SampleBatch', (['{SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS:\n rewards, SampleBatch.DONES: [False, False, True, False, False, False, \n True], SampleBatch.NEXT_OBS: next_obs}'], {}), '({SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions,\n SampleBatch.REWARDS: rewards, SampleBatch.DONES: [False, False, True, \n False, False, False, True], SampleBatch.NEXT_OBS: next_obs})\n', (3524, 3717), False, 'from ray.rllib.policy.sample_batch import SampleBatch\n'), ((4148, 4163), 'numpy.arange', 'np.arange', (['(0)', '(2)'], {}), '(0, 2)\n', (4157, 4163), True, 'import numpy as np\n'), ((4182, 4221), 'numpy.random.randint', 'np.random.randint', (['(-100)', '(300)'], {'size': '(2,)'}), '(-100, 300, size=(2,))\n', (4199, 4221), True, 'import numpy as np\n'), ((4312, 4327), 'numpy.arange', 'np.arange', (['(1)', '(3)'], {}), '(1, 3)\n', (4321, 4327), True, 'import numpy as np\n'), ((4344, 4514), 'ray.rllib.policy.sample_batch.SampleBatch', 'SampleBatch', (['{SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS:\n rewards, SampleBatch.DONES: [False, False], SampleBatch.NEXT_OBS: next_obs}'], {}), '({SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions,\n SampleBatch.REWARDS: rewards, SampleBatch.DONES: [False, False],\n SampleBatch.NEXT_OBS: next_obs})\n', (4355, 4514), False, 'from ray.rllib.policy.sample_batch import SampleBatch\n'), ((4632, 4661), 'ray.rllib.evaluation.postprocessing.adjust_nstep', 'adjust_nstep', (['(3)', 'gamma', 'batch'], {}), '(3, gamma, batch)\n', (4644, 4661), False, 'from ray.rllib.evaluation.postprocessing import adjust_nstep, discount_cumsum\n'), ((4670, 4707), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.OBS]', '[0, 1]'], {}), '(batch[SampleBatch.OBS], [0, 1])\n', (4675, 4707), False, 'from ray.rllib.utils.test_utils import check\n'), ((4716, 4764), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.ACTIONS]', 'check_actions'], {}), '(batch[SampleBatch.ACTIONS], check_actions)\n', (4721, 4764), False, 'from ray.rllib.utils.test_utils import check\n'), ((4773, 4820), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.DONES]', '[False, False]'], {}), '(batch[SampleBatch.DONES], [False, False])\n', (4778, 4820), False, 'from ray.rllib.utils.test_utils import check\n'), ((4829, 4893), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.REWARDS]', '[10.0 + gamma * 100.0, 100.0]'], {}), '(batch[SampleBatch.REWARDS], [10.0 + gamma * 100.0, 100.0])\n', (4834, 4893), False, 'from ray.rllib.utils.test_utils import check\n'), ((4902, 4944), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.NEXT_OBS]', '[2, 2]'], {}), '(batch[SampleBatch.NEXT_OBS], [2, 2])\n', (4907, 4944), False, 'from ray.rllib.utils.test_utils import check\n'), ((5243, 5258), 'numpy.arange', 'np.arange', (['(0)', '(8)'], {}), '(0, 8)\n', (5252, 5258), True, 'import numpy as np\n'), ((5349, 5384), 'numpy.random.randint', 'np.random.randint', (['(-1)', '(3)'], {'size': '(7,)'}), '(-1, 3, size=(7,))\n', (5366, 5384), True, 'import numpy as np\n'), ((5568, 5730), 'ray.rllib.policy.sample_batch.SampleBatch', 'SampleBatch', (['{SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions, SampleBatch.REWARDS:\n rewards, SampleBatch.DONES: dones, SampleBatch.NEXT_OBS: next_obs}'], {}), '({SampleBatch.OBS: obs, SampleBatch.ACTIONS: actions,\n SampleBatch.REWARDS: rewards, SampleBatch.DONES: dones, SampleBatch.\n NEXT_OBS: next_obs})\n', (5579, 5730), False, 'from ray.rllib.policy.sample_batch import SampleBatch\n'), ((5847, 5876), 'ray.rllib.evaluation.postprocessing.adjust_nstep', 'adjust_nstep', (['(4)', 'gamma', 'batch'], {}), '(4, gamma, batch)\n', (5859, 5876), False, 'from ray.rllib.evaluation.postprocessing import adjust_nstep, discount_cumsum\n'), ((5886, 5938), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.OBS]', '[0, 1, 2, 3, 4, 5, 6]'], {}), '(batch[SampleBatch.OBS], [0, 1, 2, 3, 4, 5, 6])\n', (5891, 5938), False, 'from ray.rllib.utils.test_utils import check\n'), ((5947, 5995), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.ACTIONS]', 'check_actions'], {}), '(batch[SampleBatch.ACTIONS], check_actions)\n', (5952, 5995), False, 'from ray.rllib.utils.test_utils import check\n'), ((6004, 6061), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.NEXT_OBS]', '[4, 5, 6, 7, 7, 7, 7]'], {}), '(batch[SampleBatch.NEXT_OBS], [4, 5, 6, 7, 7, 7, 7])\n', (6009, 6061), False, 'from ray.rllib.utils.test_utils import check\n'), ((6070, 6148), 'ray.rllib.utils.test_utils.check', 'check', (['batch[SampleBatch.DONES]', '[False, False, False, True, True, True, True]'], {}), '(batch[SampleBatch.DONES], [False, False, False, True, True, True, True])\n', (6075, 6148), False, 'from ray.rllib.utils.test_utils import check\n'), ((6785, 6814), 'pytest.main', 'pytest.main', (["['-v', __file__]"], {}), "(['-v', __file__])\n", (6796, 6814), False, 'import pytest\n'), ((3947, 3976), 'ray.rllib.evaluation.postprocessing.adjust_nstep', 'adjust_nstep', (['(5)', 'gamma', 'batch'], {}), '(5, gamma, batch)\n', (3959, 3976), False, 'from ray.rllib.evaluation.postprocessing import adjust_nstep, discount_cumsum\n'), ((2687, 2709), 'numpy.array', 'np.array', (['rewards[0:4]'], {}), '(rewards[0:4])\n', (2695, 2709), True, 'import numpy as np\n'), ((2754, 2776), 'numpy.array', 'np.array', (['rewards[1:5]'], {}), '(rewards[1:5])\n', (2762, 2776), True, 'import numpy as np\n'), ((2821, 2843), 'numpy.array', 'np.array', (['rewards[2:6]'], {}), '(rewards[2:6])\n', (2829, 2843), True, 'import numpy as np\n'), ((2888, 2910), 'numpy.array', 'np.array', (['rewards[3:7]'], {}), '(rewards[3:7])\n', (2896, 2910), True, 'import numpy as np\n'), ((2955, 2976), 'numpy.array', 'np.array', (['rewards[4:]'], {}), '(rewards[4:])\n', (2963, 2976), True, 'import numpy as np\n'), ((3021, 3042), 'numpy.array', 'np.array', (['rewards[5:]'], {}), '(rewards[5:])\n', (3029, 3042), True, 'import numpy as np\n'), ((3087, 3108), 'numpy.array', 'np.array', (['rewards[6:]'], {}), '(rewards[6:])\n', (3095, 3108), True, 'import numpy as np\n'), ((6250, 6272), 'numpy.array', 'np.array', (['rewards[0:4]'], {}), '(rewards[0:4])\n', (6258, 6272), True, 'import numpy as np\n'), ((6317, 6339), 'numpy.array', 'np.array', (['rewards[1:5]'], {}), '(rewards[1:5])\n', (6325, 6339), True, 'import numpy as np\n'), ((6384, 6406), 'numpy.array', 'np.array', (['rewards[2:6]'], {}), '(rewards[2:6])\n', (6392, 6406), True, 'import numpy as np\n'), ((6451, 6473), 'numpy.array', 'np.array', (['rewards[3:7]'], {}), '(rewards[3:7])\n', (6459, 6473), True, 'import numpy as np\n'), ((6518, 6539), 'numpy.array', 'np.array', (['rewards[4:]'], {}), '(rewards[4:])\n', (6526, 6539), True, 'import numpy as np\n'), ((6584, 6605), 'numpy.array', 'np.array', (['rewards[5:]'], {}), '(rewards[5:])\n', (6592, 6605), True, 'import numpy as np\n'), ((6650, 6671), 'numpy.array', 'np.array', (['rewards[6:]'], {}), '(rewards[6:])\n', (6658, 6671), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Thu Mar 12 14:27:05 2020 @author: ricardoguimaraes """ import numpy as np import pandas as pd import geopandas as gpd from gdf_heatmap import gdf_heatmap from array_to_tiff import array_to_tiff if '__main__' == __name__ : from shapely.geometry import Point import matplotlib.pyplot as plt df = pd.DataFrame({'x': np.random.normal(-45, 8, size=(100)), 'y': np.random.normal(-4, 8, size=(100)), 'z': np.random.normal(-40, 4, size=(100))} ) df['geometry'] = df.apply(lambda x: Point(x['x'], x['y']), axis=1) gdf = gpd.GeoDataFrame(df) Result = gdf_heatmap(gdf, df_column ='z', dx=0.5, dy=0.5, verbose=True, smooth=0.3, function='gaussian') array_to_tiff(Result['array'], Result['x'], Result['y'],Result['dx'], Result['dy'], to_file=r'C:\Users\lealp\Downloads\Temp\My_tiff') input('Press any to close') plt.close('all') del Result del gdf
[ "shapely.geometry.Point", "matplotlib.pyplot.close", "geopandas.GeoDataFrame", "numpy.random.normal", "gdf_heatmap.gdf_heatmap", "array_to_tiff.array_to_tiff" ]
[((665, 685), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (['df'], {}), '(df)\n', (681, 685), True, 'import geopandas as gpd\n'), ((704, 802), 'gdf_heatmap.gdf_heatmap', 'gdf_heatmap', (['gdf'], {'df_column': '"""z"""', 'dx': '(0.5)', 'dy': '(0.5)', 'verbose': '(True)', 'smooth': '(0.3)', 'function': '"""gaussian"""'}), "(gdf, df_column='z', dx=0.5, dy=0.5, verbose=True, smooth=0.3,\n function='gaussian')\n", (715, 802), False, 'from gdf_heatmap import gdf_heatmap\n'), ((862, 1004), 'array_to_tiff.array_to_tiff', 'array_to_tiff', (["Result['array']", "Result['x']", "Result['y']", "Result['dx']", "Result['dy']"], {'to_file': '"""C:\\\\Users\\\\lealp\\\\Downloads\\\\Temp\\\\My_tiff"""'}), "(Result['array'], Result['x'], Result['y'], Result['dx'],\n Result['dy'], to_file='C:\\\\Users\\\\lealp\\\\Downloads\\\\Temp\\\\My_tiff')\n", (875, 1004), False, 'from array_to_tiff import array_to_tiff\n'), ((1068, 1084), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (1077, 1084), True, 'import matplotlib.pyplot as plt\n'), ((380, 414), 'numpy.random.normal', 'np.random.normal', (['(-45)', '(8)'], {'size': '(100)'}), '(-45, 8, size=100)\n', (396, 414), True, 'import numpy as np\n'), ((447, 480), 'numpy.random.normal', 'np.random.normal', (['(-4)', '(8)'], {'size': '(100)'}), '(-4, 8, size=100)\n', (463, 480), True, 'import numpy as np\n'), ((513, 547), 'numpy.random.normal', 'np.random.normal', (['(-40)', '(4)'], {'size': '(100)'}), '(-40, 4, size=100)\n', (529, 547), True, 'import numpy as np\n'), ((619, 640), 'shapely.geometry.Point', 'Point', (["x['x']", "x['y']"], {}), "(x['x'], x['y'])\n", (624, 640), False, 'from shapely.geometry import Point\n')]
import numpy as np from scipy.integrate import quad import pandas as pd # calculate the k-corrention in erg.s-1.cm-2: def NE(E,Epeak,alpha,beita): if (alpha-beita)*Epeak/(2+alpha)>=E: NE=(E/100)**alpha*np.exp(-E*(2+alpha)/Epeak) return NE elif (alpha-beita)*Epeak/(2+alpha)<=E: NE=(((alpha-beita)*Epeak/(100*(2+alpha)))**(alpha-beita)*np.exp(beita-alpha)*(E/100)**beita) return NE def k(Epeak,Z,alpha,beita,bandmin,bandmax): a1=quad(lambda E:E*NE(E,Epeak,alpha,beita),1/(1+Z),10**4/(1+Z)) a2=quad(lambda E:E*NE(E,Epeak,alpha,beita),bandmin,bandmax) k=a1[0]/a2[0] return k # calculate the k-corrention in photons.s-1.cm-2: def nk(Epeak,Z,alpha,beita,bandmin,bandmax): a1=quad(lambda E:E*NE(E,Epeak,alpha,beita),1/(1+Z),10**4/(1+Z)) a2=quad(lambda E:NE(E,Epeak,alpha,beita),bandmin,bandmax) k=a1[0]/a2[0] # return k return k*1.6*10**(-9) #transform kev to erg # calculate the luminosity distance omegal=0.734 omegam=0.266 h=0.71 H0=1/(3.09*10**17) H0yr=1/(9.78*10**9) # H0=70*10**5 c=2.99792458*10**8 def dl(Z): integrateportion=quad(lambda x:1/np.sqrt(omegam*(1+x)**3+omegal),0,Z) dl=c*(1+Z)/(h*H0)*integrateportion[0] # dl =c/H0*integrateportion[0] return dl*10**2 # transform m to cm #Calculate the opening angle def seita(z,ep,s,alpha,beita,bandmin,bandmax): eiso=4*np.pi*dl(z)**2*s*k(ep,z,alpha,beita,bandmin,bandmax)/(1+z) Egama=(ep*(1+z)/10**2.57)**(1/0.61)*3.8*10**50 seitaradian=np.arccos(1-Egama/eiso) seita=seitaradian/(2*np.pi)*360 return seita # calculate seita for photons.s-1.cm-2 def pseita(z,ep,s,alpha,beita,bandmin,bandmax): eiso=4*np.pi*dl(z)**2*s*nk(ep,z,alpha,beita,bandmin,bandmax)/(1+z) Egama=(ep*(1+z)/10**2.57)**(1/0.61)*3.8*10**50 seitaradian=np.arccos(1-Egama/eiso) seita=seitaradian/(2*np.pi)*360 return seita #Calculate the Egamma def egamma(z,ep): Egama = (ep * (1 + z) / 10 ** 2.57) ** (1 / 0.61) * 3.8 * 10 ** 50 return Egama #Calculate the Eiso def eiso(z,ep,s,alpha,beita,bandmin,bandmax): eiso=4*np.pi*dl(z)**2*s*k(ep,z,alpha,beita,bandmin,bandmax)/(1+z) return eiso #Define a new spectrum calculate method @2018.6.20 [the cases only contain 'alpha'] def alphaNE(E,Epeak,alpha): NE=(E/100)**alpha*np.exp(-(2+alpha)*E/Epeak) return NE def alphaek(Epeak,alpha,Z,bandmin,bandmax): a1=quad(lambda E:E*alphaNE(E,Epeak,alpha),1/(1+Z),10**4/(1+Z)) a2=quad(lambda E:E*alphaNE(E,Epeak,alpha),bandmin, bandmax) k=a1[0]/a2[0] return k def alphapk(Epeak,alpha,Z,bandmin,bandmax): a1=quad(lambda E:E*alphaNE(E,Epeak,alpha),1/(1+Z),10**4/(1+Z)) a2=quad(lambda E:alphaNE(E,Epeak,alpha),bandmin,bandmax) k=a1[0]/a2[0] return k*1.6*10**(-9) def seitaerg6_20(z,ep,s,alpha,bandmin,bandmax): eiso=4*np.pi*dl(z)**2*s*alphaek(ep,alpha,z,bandmin,bandmax)/(1+z) Egama=(ep*(1+z)/10**2.57)**(1/0.61)*3.8*10**50 seitaradian=np.arccos(1-Egama/eiso) seita=seitaradian/(2*np.pi)*360 # k = alphaek(ep,alpha,z,bandmin, bandmax) return seita,z,Egama def seitaphoton6_20(z,ep,s,alpha,bandmin,bandmax): eiso=4*np.pi*dl(z)**2*s*alphapk(ep,alpha,z,bandmin,bandmax)/(1+z) Egama=(ep*(1+z)/10**2.57)**(1/0.61)*3.8*10**50 seitaradian=np.arccos(1-Egama/eiso) seita=seitaradian/(2*np.pi)*360 # k=alphapk(ep,alpha,z,bandmin,bandmax)*(1/1.6)*10**(9) return seita,z,Egama #refer the 6.11 work: def erg6_11(): df = pd.read_excel("/Users/dingding/Desktop/calculate/6.9/erg.xlsx") ebandmin = df['bandmin'] ebandmax=df['bandmax'] egrbname=df['GRB'] ez=df['z'] eep=df['ep'] ealpha=df['alpha'] ebeta=df['beta'] efluence=df['fluence'] i=0 seita1=[] eegamma=[] for i in range(len(egrbname)): seita1=np.append(seita1,seita(ez[i],eep[i],efluence[i],ealpha[i],ebeta[i],ebandmin[i],ebandmax[i])) eegamma=np.append(eegamma,egamma(ez[i],eep[i])) return seita1,ez,eegamma def photon6_11(): dp = pd.read_excel("/Users/dingding/Desktop/calculate/6.9/photons.xlsx") pbandmin = dp['bandmin'] pbandmax=dp['bandmax'] pgrbname=dp['GRB'] pz=dp['z'] pep=dp['ep'] palpha=dp['alpha'] pbeta=dp['beta'] pfluence=dp['fluence'] i=0 seita2=[] pegamma=[] for i in range(len(pgrbname)): seita2=np.append(seita2,pseita(pz[i],pep[i],pfluence[i],palpha[i],pbeta[i],pbandmin[i],pbandmax[i])) pegamma=np.append(pegamma,egamma(pz[i],pep[i])) return seita2,pz,pegamma #Calculate the Linear regression equation: def linearregressionEQ(series1,series2): up=[] down=[] xmean=np.mean(series1) ymean=np.mean(series2) for i in range(len(series1)): up=np.append(up,series1[i]*series2[i]-len(series1)*xmean*ymean) down=np.append(down,series1[i]**2-len(series1)*xmean**2) u=np.sum(up) d=np.sum(down) b=u/d a=ymean-b*xmean return a,b def linearnew(series1,series2): up1=[] up2=[] up3=[] up4=[] down1=[] down2=[] for i in range(len(series1)): up1=np.append(up1,series1[i]**2) up2=np.append(up2,series2[i]) up3=np.append(up3,series1[i]) up4=np.append(up4,series1[i]*series2[i]) down1=np.append(down1,series1[i]**2) down2=np.append(down2,series1[i]) up1=np.sum(up1) up2=np.sum(up2) up3=np.sum(up3) up4=np.sum(up4) down1=np.sum(down1) down2=np.sum(down2) up=up1*up2-up3*up4 down=down1*len(series1)-down2**2 a0=up/down up=len(series1)*up4-up3*up2 down=len(series1)*down1-down2**2 a1=up/down return a0,a1 # 8.31 # Define a model to describe the distribution of GRB with redshift z # define the complete gamma function: def comGammaFunc(v): gamma=quad(lambda t:t**(v-1)*np.e**(-t),0,float("inf")) return gamma[0] #define the incomplete gamma function: def incomGammaFunc(v,z): sgamma=quad(lambda u:u**(v-1)*np.e**(-u),0,z)[0] bgamma=quad(lambda u:u**(v-1)*np.e**(-u),z,float('inf'))[0] return bgamma,sgamma #and define the Seitafunction: def SeitaFunc(eps,z,alpha,beta): Seita1=incomGammaFunc(alpha+2,eps**beta*10**(0.15*beta*z))[1] Seita2=comGammaFunc(alpha+2) Seita=Seita1/Seita2 return Seita # define the star formation rate segment function: def RSFR(z): zpeak=1 if z<=zpeak: Rsfr=(1+z)**(3.44) return Rsfr elif z>=zpeak: Rsfr=(1+zpeak)**(3.44) return Rsfr # define the grb rate function: def RGRB(z,eps,alpha,beta,rho): A=1/(33.30270146296203) RGRB=A*rho*RSFR(z)*SeitaFunc(eps,z,alpha,beta) return RGRB #define a number calculate function without duration T def N(z,eps,alpha,beta,rho,zmax): convertfactor=c*3600*24*365*10**2*3.26164*10**9 dlgpc=dl(z)/convertfactor E=np.sqrt(omegam*(1+z)**3+omegal) n=RGRB(z,eps,alpha,beta,rho)/(1+z)*4*np.pi*c*dlgpc**2/(H0yr*(1+z)**2*E) N=quad(lambda z:n,z,zmax) return N[0] import matplotlib.pyplot as plt import matplotlib import random # 9.6 # Here during the defination, normalized constant A_{L} is ellipsis: def Luminosityfunction(L_gamma): L_critical=10**(49.69) #unit is erg sigma_L=0.4 A_L=1/(1.7235434382660358e+50) luminosityfunc=A_L*np.exp(-(np.log10(L_gamma)-np.log10( L_critical))**2/(2*sigma_L**2))/(np.sqrt(2*np.pi)*sigma_L) return luminosityfunc # Define the angle distribution as log-normal distribution: def thetalogdistri(theta_jet): theta_critical=10**(-1.27) sigema_theta=0.6 A_theta=1/0.32112249370542306 Psi=A_theta*np.exp(-(np.log10(theta_jet)-np.log10(theta_critical))**2/ (2*sigema_theta**2))/(np.sqrt(2*np.pi)*sigema_theta) return Psi-0.22039824379156006-0.688381515339374 #-0.22039824379156006 # def Ntheta(thetamin,thetamax): # N=quad(lambda theta_jet:thetalogdistri(theta_jet),thetamin,thetamax) # return N[0] # Define peak flux P: def P(z,L_gamma,theta_jet): L=L_gamma/(1-np.cos(theta_jet/180*np.pi)) C=random.uniform(0.1,1) ep=200*(L/10**52)**0.5/C/(1+z) P=L/(4*np.pi*dl(z)**2*nk(ep,z,-1.1,-2.2,15,150)) #15-150 kev of swift/BAT return P # BAT trigger probability: def eta_t(P): if P<0.45: eta_t=P**2 return eta_t/0.67 #noamalize the probability of p-detectable elif P>=0.45: eta_t=0.67*(1.0-0.4/P)**0.52 return eta_t/0.67 #noamalize the probability of p-detectable # weak dependence of probability on the observed peak flux: def eta_z(P): eta_z=0.26+0.032*np.e**(1.61*np.log10(P)) return eta_z # the probability of alignment for a GRB with jet opening angle theta_{j}: def eta_a(theta_jet): # eta_a=1.4*(1-np.cos(theta_jet))/(4*np.pi) #where 1.4 sr is instrument solid angle normal=1-np.cos(theta_jet) return normal # def Nluminus(z,theta_jet,Luminusmin,Luminusmax): # N=quad(lambda L_gamma:eta_a(theta_jet)*eta_t(P(z,L_gamma,theta_jet) # )*eta_z(P(z,L_gamma,theta_jet))*Luminosityfunction(L_gamma), # Luminusmin,Luminusmax) # return N[0] def luminosity(z,s,t90): l=4*np.pi*dl(z)**2*s*k(80,z,-1,-2.5,15,150)*(1+z)/t90 return l def P_obseved(z,s,t90): l=luminosity(z,s,t90) p=l/(4*np.pi*dl(z)**2*nk(80,z,-1,-2.5,15,150)) return p def pdflog(series,down,up,num): step=(up-down)/num pdf=[] for i in range(num): counter=0 for j in range(len(series)): if 10**(down+i*step)<series[j]<10**(down+(i+1)*step): counter=counter+1 pdf=np.append(pdf,counter) pdf=pdf/np.sum(pdf) return pdf # #Define a operation to delete the 'nan' element: # def deletenan(series1,series2): # series=np.append(series1,series2) # a=series[:len(series):3] # b=series[1:len(series):3] # c=series[2:len(series):3] # a=np.nan_to_num(a) # itemindex=np.argwhere(a==0) # a=np.delete(a,itemindex,axis=0) # b=np.delete(b,itemindex,axis=0) # c=np.delete(c,itemindex,axis=0) # return a,b,c
[ "numpy.sum", "scipy.integrate.quad", "random.uniform", "pandas.read_excel", "numpy.append", "numpy.mean", "numpy.exp", "numpy.cos", "numpy.log10", "numpy.arccos", "numpy.sqrt" ]
[((1513, 1540), 'numpy.arccos', 'np.arccos', (['(1 - Egama / eiso)'], {}), '(1 - Egama / eiso)\n', (1522, 1540), True, 'import numpy as np\n'), ((1816, 1843), 'numpy.arccos', 'np.arccos', (['(1 - Egama / eiso)'], {}), '(1 - Egama / eiso)\n', (1825, 1843), True, 'import numpy as np\n'), ((2965, 2992), 'numpy.arccos', 'np.arccos', (['(1 - Egama / eiso)'], {}), '(1 - Egama / eiso)\n', (2974, 2992), True, 'import numpy as np\n'), ((3286, 3313), 'numpy.arccos', 'np.arccos', (['(1 - Egama / eiso)'], {}), '(1 - Egama / eiso)\n', (3295, 3313), True, 'import numpy as np\n'), ((3478, 3541), 'pandas.read_excel', 'pd.read_excel', (['"""/Users/dingding/Desktop/calculate/6.9/erg.xlsx"""'], {}), "('/Users/dingding/Desktop/calculate/6.9/erg.xlsx')\n", (3491, 3541), True, 'import pandas as pd\n'), ((4017, 4084), 'pandas.read_excel', 'pd.read_excel', (['"""/Users/dingding/Desktop/calculate/6.9/photons.xlsx"""'], {}), "('/Users/dingding/Desktop/calculate/6.9/photons.xlsx')\n", (4030, 4084), True, 'import pandas as pd\n'), ((4651, 4667), 'numpy.mean', 'np.mean', (['series1'], {}), '(series1)\n', (4658, 4667), True, 'import numpy as np\n'), ((4678, 4694), 'numpy.mean', 'np.mean', (['series2'], {}), '(series2)\n', (4685, 4694), True, 'import numpy as np\n'), ((4872, 4882), 'numpy.sum', 'np.sum', (['up'], {}), '(up)\n', (4878, 4882), True, 'import numpy as np\n'), ((4889, 4901), 'numpy.sum', 'np.sum', (['down'], {}), '(down)\n', (4895, 4901), True, 'import numpy as np\n'), ((5345, 5356), 'numpy.sum', 'np.sum', (['up1'], {}), '(up1)\n', (5351, 5356), True, 'import numpy as np\n'), ((5365, 5376), 'numpy.sum', 'np.sum', (['up2'], {}), '(up2)\n', (5371, 5376), True, 'import numpy as np\n'), ((5385, 5396), 'numpy.sum', 'np.sum', (['up3'], {}), '(up3)\n', (5391, 5396), True, 'import numpy as np\n'), ((5405, 5416), 'numpy.sum', 'np.sum', (['up4'], {}), '(up4)\n', (5411, 5416), True, 'import numpy as np\n'), ((5427, 5440), 'numpy.sum', 'np.sum', (['down1'], {}), '(down1)\n', (5433, 5440), True, 'import numpy as np\n'), ((5451, 5464), 'numpy.sum', 'np.sum', (['down2'], {}), '(down2)\n', (5457, 5464), True, 'import numpy as np\n'), ((6845, 6884), 'numpy.sqrt', 'np.sqrt', (['(omegam * (1 + z) ** 3 + omegal)'], {}), '(omegam * (1 + z) ** 3 + omegal)\n', (6852, 6884), True, 'import numpy as np\n'), ((6959, 6985), 'scipy.integrate.quad', 'quad', (['(lambda z: n)', 'z', 'zmax'], {}), '(lambda z: n, z, zmax)\n', (6963, 6985), False, 'from scipy.integrate import quad\n'), ((8051, 8073), 'random.uniform', 'random.uniform', (['(0.1)', '(1)'], {}), '(0.1, 1)\n', (8065, 8073), False, 'import random\n'), ((2314, 2346), 'numpy.exp', 'np.exp', (['(-(2 + alpha) * E / Epeak)'], {}), '(-(2 + alpha) * E / Epeak)\n', (2320, 2346), True, 'import numpy as np\n'), ((5096, 5127), 'numpy.append', 'np.append', (['up1', '(series1[i] ** 2)'], {}), '(up1, series1[i] ** 2)\n', (5105, 5127), True, 'import numpy as np\n'), ((5137, 5163), 'numpy.append', 'np.append', (['up2', 'series2[i]'], {}), '(up2, series2[i])\n', (5146, 5163), True, 'import numpy as np\n'), ((5175, 5201), 'numpy.append', 'np.append', (['up3', 'series1[i]'], {}), '(up3, series1[i])\n', (5184, 5201), True, 'import numpy as np\n'), ((5213, 5252), 'numpy.append', 'np.append', (['up4', '(series1[i] * series2[i])'], {}), '(up4, series1[i] * series2[i])\n', (5222, 5252), True, 'import numpy as np\n'), ((5264, 5297), 'numpy.append', 'np.append', (['down1', '(series1[i] ** 2)'], {}), '(down1, series1[i] ** 2)\n', (5273, 5297), True, 'import numpy as np\n'), ((5309, 5337), 'numpy.append', 'np.append', (['down2', 'series1[i]'], {}), '(down2, series1[i])\n', (5318, 5337), True, 'import numpy as np\n'), ((5947, 5994), 'scipy.integrate.quad', 'quad', (['(lambda u: u ** (v - 1) * np.e ** -u)', '(0)', 'z'], {}), '(lambda u: u ** (v - 1) * np.e ** -u, 0, z)\n', (5951, 5994), False, 'from scipy.integrate import quad\n'), ((8833, 8850), 'numpy.cos', 'np.cos', (['theta_jet'], {}), '(theta_jet)\n', (8839, 8850), True, 'import numpy as np\n'), ((9602, 9625), 'numpy.append', 'np.append', (['pdf', 'counter'], {}), '(pdf, counter)\n', (9611, 9625), True, 'import numpy as np\n'), ((9637, 9648), 'numpy.sum', 'np.sum', (['pdf'], {}), '(pdf)\n', (9643, 9648), True, 'import numpy as np\n'), ((216, 248), 'numpy.exp', 'np.exp', (['(-E * (2 + alpha) / Epeak)'], {}), '(-E * (2 + alpha) / Epeak)\n', (222, 248), True, 'import numpy as np\n'), ((7376, 7394), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (7383, 7394), True, 'import numpy as np\n'), ((7717, 7735), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (7724, 7735), True, 'import numpy as np\n'), ((8016, 8047), 'numpy.cos', 'np.cos', (['(theta_jet / 180 * np.pi)'], {}), '(theta_jet / 180 * np.pi)\n', (8022, 8047), True, 'import numpy as np\n'), ((1138, 1177), 'numpy.sqrt', 'np.sqrt', (['(omegam * (1 + x) ** 3 + omegal)'], {}), '(omegam * (1 + x) ** 3 + omegal)\n', (1145, 1177), True, 'import numpy as np\n'), ((369, 390), 'numpy.exp', 'np.exp', (['(beita - alpha)'], {}), '(beita - alpha)\n', (375, 390), True, 'import numpy as np\n'), ((8600, 8611), 'numpy.log10', 'np.log10', (['P'], {}), '(P)\n', (8608, 8611), True, 'import numpy as np\n'), ((7307, 7324), 'numpy.log10', 'np.log10', (['L_gamma'], {}), '(L_gamma)\n', (7315, 7324), True, 'import numpy as np\n'), ((7325, 7345), 'numpy.log10', 'np.log10', (['L_critical'], {}), '(L_critical)\n', (7333, 7345), True, 'import numpy as np\n'), ((7630, 7649), 'numpy.log10', 'np.log10', (['theta_jet'], {}), '(theta_jet)\n', (7638, 7649), True, 'import numpy as np\n'), ((7650, 7674), 'numpy.log10', 'np.log10', (['theta_critical'], {}), '(theta_critical)\n', (7658, 7674), True, 'import numpy as np\n')]
""" Fixed Maximum Cost (FMC) baseline """ import logging from collections import defaultdict from typing import Tuple, List import time import numpy as np from pup.algorithms import privacy_helper from pup.algorithms.uniform_prior import cal_prob_dists_num_users_for_grid from pup.algorithms.util import get_linear_profit_fixed_cost from pup.common.datatypes import CheckinDataset from pup.common.enums import MethodType from pup.common.grid import Grid from pup.config import Config from pup.experiment import exp_util from pup.io import dataio logger = logging.getLogger(__name__) def exe_fixed_maximum_cost(data: CheckinDataset, grid: Grid) -> Tuple[List[List], float, np.ndarray, float]: """ Execute Fixed Maximum Cost method Parameters ---------- data check-in dataset grid the grid for experiment evaluation Returns ------- typing.List[typing.List] the matrix of probability distributions of the number of users for each grid cell total_cost: float total cost spent on buying data costs: numpy.ndarray costs of each region exe_time: float execution time """ s_time = time.time() logger.info('Starting FIXED MAXIMUM COST method') # Load config price_from_noise_rate = Config.price_from_noise_func_rate std_from_noise_initial_value = Config.standard_deviation_from_noise_func_initial_value std_from_noise_rate = Config.standard_deviation_from_noise_func_rate final_probs_filter_type = Config.final_probs_filter_type budget_per_region = get_fmc_budget() # START FMC --------------------- logger.info('Budget = {}'.format(budget_per_region)) noisy_data, remain_budget_per_region = buy_data_with_budget( budget_per_region, data, price_from_noise_rate, std_from_noise_initial_value, std_from_noise_rate) logger.info('Prepare {} noisy data point with normal random variables'.format(len(noisy_data))) num_regions = np.prod(grid.get_shape()) cost = budget_per_region - remain_budget_per_region costs = np.zeros(grid.get_shape()) costs.fill(cost) total_cost = cost * num_regions logger.info('Total cost spent on buying data = {}'.format(total_cost)) # Run experiment on the entire grid. One can run on single region by using 1x1 grid # Calculate the probability distributions of the number of each grid cell dists_of_num_users = cal_prob_dists_num_users_for_grid(grid, noisy_data, final_probs_filter_type) exe_time = time.time() - s_time return dists_of_num_users, total_cost, costs, exe_time # END FMC --------------------- def get_fmc_budget() -> float: """ Get budget for FMC - First, get based on given percentage - Second, get based on probing costs if percentage is not given - Third, get based on a fixed budget if others are not available Returns ------- float budget """ fmc_budget_from_cost_percentage = Config.fmc_budget_from_cost_percentage if fmc_budget_from_cost_percentage <= 0: # we will not get budget from percentage of the fixed cost fmc_budget_from_probing = Config.fmc_budget_from_probing if fmc_budget_from_probing: # we get budget from costs of SIP costs = dataio.read_costs(MethodType.PROBING) budget = int(np.average(costs)) + 1 else: # we used a fixed budget budget = Config.budget # prepare budget else: # get budget from the percentage of the fixed cost budget = get_linear_profit_fixed_cost() * fmc_budget_from_cost_percentage / 100.0 return budget def buy_data_with_budget(budget: float, data: CheckinDataset, price_from_noise_rate: float, std_from_noise_initial_value: float, std_from_noise_rate: float) -> Tuple[CheckinDataset, float]: """ Buy data points with a given total budget. Each data point would be given the same amount of budget. For a particular data point, the budget may be more than enough to buy it without perturbation. So there can be some budget left. This budget is not used for other data points. Parameters ---------- budget maximum budget data the dataset to buy data from price_from_noise_rate rate of price from noise exponential function std_from_noise_initial_value initial value of standard deviation from noise exponential function, i.e. when input values is approx 0 std_from_noise_rate rate of standard deviation from noise exponential function Returns ------- noisy_data: CheckinDataset noisy data bought remain_budget: float remain budget """ # calculate the price to pay for each data point num_data_points = exp_util.cal_num_data_points(data) price_per_data_point = budget / float(num_data_points) logger.info('Price per data point = {}'.format(price_per_data_point)) # buy noisy data remain_budget = 0 noisy_data = defaultdict(defaultdict) for user, checkins in data.items(): for c_id, c in checkins.items(): noisy_c = privacy_helper.buy_data_at_price( c, price_per_data_point, price_from_noise_rate, std_from_noise_initial_value, std_from_noise_rate) noisy_data[user][c_id] = noisy_c if c.combined_privacy_value < price_per_data_point: remain_budget += price_per_data_point - c.combined_privacy_value logger.info('Remain budget for region = {}'.format(remain_budget)) return noisy_data, remain_budget
[ "numpy.average", "pup.io.dataio.read_costs", "pup.algorithms.util.get_linear_profit_fixed_cost", "pup.algorithms.privacy_helper.buy_data_at_price", "pup.algorithms.uniform_prior.cal_prob_dists_num_users_for_grid", "time.time", "pup.experiment.exp_util.cal_num_data_points", "collections.defaultdict", "logging.getLogger" ]
[((559, 586), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (576, 586), False, 'import logging\n'), ((1185, 1196), 'time.time', 'time.time', ([], {}), '()\n', (1194, 1196), False, 'import time\n'), ((2441, 2517), 'pup.algorithms.uniform_prior.cal_prob_dists_num_users_for_grid', 'cal_prob_dists_num_users_for_grid', (['grid', 'noisy_data', 'final_probs_filter_type'], {}), '(grid, noisy_data, final_probs_filter_type)\n', (2474, 2517), False, 'from pup.algorithms.uniform_prior import cal_prob_dists_num_users_for_grid\n'), ((4879, 4913), 'pup.experiment.exp_util.cal_num_data_points', 'exp_util.cal_num_data_points', (['data'], {}), '(data)\n', (4907, 4913), False, 'from pup.experiment import exp_util\n'), ((5108, 5132), 'collections.defaultdict', 'defaultdict', (['defaultdict'], {}), '(defaultdict)\n', (5119, 5132), False, 'from collections import defaultdict\n'), ((2534, 2545), 'time.time', 'time.time', ([], {}), '()\n', (2543, 2545), False, 'import time\n'), ((3307, 3344), 'pup.io.dataio.read_costs', 'dataio.read_costs', (['MethodType.PROBING'], {}), '(MethodType.PROBING)\n', (3324, 3344), False, 'from pup.io import dataio\n'), ((5236, 5371), 'pup.algorithms.privacy_helper.buy_data_at_price', 'privacy_helper.buy_data_at_price', (['c', 'price_per_data_point', 'price_from_noise_rate', 'std_from_noise_initial_value', 'std_from_noise_rate'], {}), '(c, price_per_data_point,\n price_from_noise_rate, std_from_noise_initial_value, std_from_noise_rate)\n', (5268, 5371), False, 'from pup.algorithms import privacy_helper\n'), ((3583, 3613), 'pup.algorithms.util.get_linear_profit_fixed_cost', 'get_linear_profit_fixed_cost', ([], {}), '()\n', (3611, 3613), False, 'from pup.algorithms.util import get_linear_profit_fixed_cost\n'), ((3370, 3387), 'numpy.average', 'np.average', (['costs'], {}), '(costs)\n', (3380, 3387), True, 'import numpy as np\n')]
from Genome.NN.Layer import Layer import numpy as np import pickle class Brain: def __init__(self, brain_structure): self.brain_structure = brain_structure self.layers = [] self.id = 0 # First layer added here ids = [] genes = [] for i in range(brain_structure[0]): ids.append(self.id) self.id += 1 genes.append([np.random.rand(brain_structure[1]), np.random.rand(brain_structure[1]), np.random.rand(brain_structure[1])]) layer = Layer(ids) layer.set_genes(genes) self.layers.append(layer) for i in range(1, len(brain_structure)): if i == (len(brain_structure) - 1): self.add_last_layer(brain_structure[-1]) else: self.add_random_layer(brain_structure[i], brain_structure[i + 1]) def add_random_layer(self, node_count, next_node_count): ids = [] genes = [] for i in range(node_count): ids.append(self.id) self.id += 1 genes.append([np.random.rand(next_node_count), np.random.rand(next_node_count), np.random.rand(next_node_count)]) layer = Layer(ids) layer.set_genes(genes) self.layers[-1].add_layer_connections(layer) self.layers.append(layer) def add_last_layer(self, node_count): ids = [] for i in range(node_count): ids.append(self.id) self.id += 1 layer = Layer(ids) self.layers[-1].add_layer_connections(layer) self.layers.append(layer) def set_data(self, data): self.layers[0].set_layer_input(data) def feed_forward(self): for l in range(len(self.layers)): if l != 0: self.layers[l].normalize() self.layers[l].feed_forward() def make_bebe(self, partner, mutation_rate): bebe = Brain(self.brain_structure) for i in range(len(self.layers)): bebe.layers[i] = self.layers[i].make_bebe(partner.layers[i], bebe.layers[i], mutation_rate) return bebe def get_answer(self): return self.layers[-1].get_layer_input() def save_model(self, file): with open(file, 'wb') as config_dictionary_file: pickle.dump(self, config_dictionary_file) @staticmethod def load_model(file): with open(file, 'rb') as config_dictionary_file: brain = pickle.load(config_dictionary_file) return brain def print_genes(self): print("The genes od the brain") for layer in self.layers: print(layer.get_genes()) # # brain = Brain(16, 32) # brain.add_random_layer(32, 32) # brain.add_random_layer(32, 48) # brain.add_last_layer(2) # brain.save_model("../Models/first_baby") # brain = Brain.load_model("../Models/first_baby") # print(len(brain.layers)) # brain.print_genes() # # brain.set_data(list(range(0, 16))) # brain.feed_forward() # print(brain.get_answer())
[ "numpy.random.rand", "pickle.dump", "pickle.load", "Genome.NN.Layer.Layer" ]
[((537, 547), 'Genome.NN.Layer.Layer', 'Layer', (['ids'], {}), '(ids)\n', (542, 547), False, 'from Genome.NN.Layer import Layer\n'), ((1202, 1212), 'Genome.NN.Layer.Layer', 'Layer', (['ids'], {}), '(ids)\n', (1207, 1212), False, 'from Genome.NN.Layer import Layer\n'), ((1500, 1510), 'Genome.NN.Layer.Layer', 'Layer', (['ids'], {}), '(ids)\n', (1505, 1510), False, 'from Genome.NN.Layer import Layer\n'), ((2290, 2331), 'pickle.dump', 'pickle.dump', (['self', 'config_dictionary_file'], {}), '(self, config_dictionary_file)\n', (2301, 2331), False, 'import pickle\n'), ((2454, 2489), 'pickle.load', 'pickle.load', (['config_dictionary_file'], {}), '(config_dictionary_file)\n', (2465, 2489), False, 'import pickle\n'), ((412, 446), 'numpy.random.rand', 'np.random.rand', (['brain_structure[1]'], {}), '(brain_structure[1])\n', (426, 446), True, 'import numpy as np\n'), ((448, 482), 'numpy.random.rand', 'np.random.rand', (['brain_structure[1]'], {}), '(brain_structure[1])\n', (462, 482), True, 'import numpy as np\n'), ((484, 518), 'numpy.random.rand', 'np.random.rand', (['brain_structure[1]'], {}), '(brain_structure[1])\n', (498, 518), True, 'import numpy as np\n'), ((1086, 1117), 'numpy.random.rand', 'np.random.rand', (['next_node_count'], {}), '(next_node_count)\n', (1100, 1117), True, 'import numpy as np\n'), ((1119, 1150), 'numpy.random.rand', 'np.random.rand', (['next_node_count'], {}), '(next_node_count)\n', (1133, 1150), True, 'import numpy as np\n'), ((1152, 1183), 'numpy.random.rand', 'np.random.rand', (['next_node_count'], {}), '(next_node_count)\n', (1166, 1183), True, 'import numpy as np\n')]
# !/usr/bin/python3 # coding: utf-8 # Copyright 2015-2018 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import cv2 import numpy as np from PIL import Image from pytesseract import pytesseract from wand.image import Image as WandImage from scipy.ndimage import interpolation as inter from receipt_parser_core import Receipt from receipt_parser_core.config import read_config BASE_PATH = os.getcwd() INPUT_FOLDER = os.path.join(BASE_PATH, "data/img") TMP_FOLDER = os.path.join(BASE_PATH, "data/tmp") OUTPUT_FOLDER = os.path.join(BASE_PATH, "data/txt") ORANGE = '\033[33m' RESET = '\033[0m' def prepare_folders(): """ :return: void Creates necessary folders """ for folder in [ INPUT_FOLDER, TMP_FOLDER, OUTPUT_FOLDER ]: if not os.path.exists(folder): os.makedirs(folder) def find_images(folder): """ :param folder: str Path to folder to search :return: generator of str List of images in folder """ for file in os.listdir(folder): full_path = os.path.join(folder, file) if os.path.isfile(full_path): try: _ = Image.open(full_path) # if constructor succeeds yield file except: pass def rotate_image(input_file, output_file, angle=90): """ :param input_file: str Path to image to rotate :param output_file: str Path to output image :param angle: float Angle to rotate :return: void Rotates image and saves result """ with WandImage(filename=input_file) as img: width, height = img.size if width < height: angle = 0 print(ORANGE + '\t~: ' + RESET + 'Rotate image by: ' + str(angle) + "°" + RESET) with img.clone() as rotated: rotated.rotate(angle) rotated.save(filename=output_file) def deskew_image(image, delta=1, limit=5): def determine_score(arr, angle): data = inter.rotate(arr, angle, reshape=False, order=0) histogram = np.sum(data, axis=1) score = np.sum((histogram[1:] - histogram[:-1]) ** 2) return histogram, score gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] scores = [] angles = np.arange(-limit, limit + delta, delta) for angle in angles: histogram, score = determine_score(thresh, angle) scores.append(score) best_angle = angles[scores.index(max(scores))] (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, best_angle, 1.0) print(ORANGE + '\t~: ' + RESET + 'Deskew image by: ' + str(best_angle) + ' angle' + RESET) rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, \ borderMode=cv2.BORDER_REPLICATE) return rotated def run_tesseract(input_file, output_file, language="deu"): """ :param input_file: str Path to image to OCR :param output_file: str Path to output file :return: void Runs tesseract on image and saves result """ print(ORANGE + '\t~: ' + RESET + 'Parse image using pytesseract' + RESET) print(ORANGE + '\t~: ' + RESET + 'Parse image at: ' + input_file + RESET) print(ORANGE + '\t~: ' + RESET + 'Write result to: ' + output_file + RESET) with io.BytesIO() as transfer: with WandImage(filename=input_file) as img: img.save(transfer) with Image.open(transfer) as img: image_data = pytesseract.image_to_string(img, lang=language, timeout=60, config="--psm 6") out = open(output_file, "w", encoding='utf-8') out.write(image_data) out.close() def rescale_image(img): print(ORANGE + '\t~: ' + RESET + 'Rescale image' + RESET) img = cv2.resize(img, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC) return img def grayscale_image(img): print(ORANGE + '\t~: ' + RESET + 'Grayscale image' + RESET) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img def remove_noise(img): kernel = np.ones((1, 1), np.uint8) img = cv2.dilate(img, kernel, iterations=1) img = cv2.erode(img, kernel, iterations=1) print(ORANGE + '\t~: ' + RESET + 'Applying gaussianBlur and medianBlur' + RESET) img = cv2.threshold(cv2.GaussianBlur(img, (5, 5), 0), 150, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] img = cv2.threshold(cv2.bilateralFilter(img, 5, 75, 75), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] img = cv2.adaptiveThreshold(cv2.bilateralFilter(img, 9, 75, 75), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2) return img def remove_shadows(img): rgb_planes = cv2.split(img) result_planes = [] result_norm_planes = [] for plane in rgb_planes: dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8)) bg_img = cv2.medianBlur(dilated_img, 21) diff_img = 255 - cv2.absdiff(plane, bg_img) norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1) result_planes.append(diff_img) result_norm_planes.append(norm_img) result = cv2.merge(result_planes) return result def detect_orientation(image): coords = np.column_stack(np.where(image > 0)) angle = cv2.minAreaRect(coords)[-1] print(ORANGE + '\t~: ' + RESET + 'Get rotation angle:' + str(angle) + RESET) return image def enhance_image(img, tmp_path ,high_contrast=True, gaussian_blur=True, rotate=True): img = rescale_image(img) if rotate: cv2.imwrite(tmp_path, img) rotate_image(tmp_path, tmp_path) img = cv2.imread(tmp_path) img = deskew_image(img) img = remove_shadows(img) if high_contrast: img = grayscale_image(img) if gaussian_blur: img = remove_noise(img) return img def process_receipt(config, filename, rotate=True, grayscale=True, gaussian_blur=True): input_path = INPUT_FOLDER + "/" + filename output_path = OUTPUT_FOLDER + "/" + filename.split(".")[0] + ".txt" print(ORANGE + '~: ' + RESET + 'Process image: ' + ORANGE + input_path + RESET) prepare_folders() try: img = cv2.imread(input_path) except FileNotFoundError: return Receipt(config=config, raw="") tmp_path = os.path.join( TMP_FOLDER, filename ) img = enhance_image(img, tmp_path,grayscale, gaussian_blur) print(ORANGE + '~: ' + RESET + 'Temporary store image at: ' + ORANGE + tmp_path + RESET) cv2.imwrite(tmp_path, img) run_tesseract(tmp_path, output_path, config.language) print(ORANGE + '~: ' + RESET + 'Store parsed text at: ' + ORANGE + output_path + RESET) raw = open(output_path, 'r').readlines() return Receipt(config=config, raw=raw) def main(): prepare_folders() dir_path = os.getcwd() config = read_config(config=dir_path + "/config.yml") images = list(find_images(INPUT_FOLDER)) print(ORANGE + '~: ' + RESET + 'Found: ' + ORANGE + str(len(images)), RESET + ' images in: ' + ORANGE + INPUT_FOLDER + RESET) i = 1 for image in images: input_path = os.path.join( INPUT_FOLDER, image ) tmp_path = os.path.join( TMP_FOLDER, image ) out_path = os.path.join( OUTPUT_FOLDER, image + ".txt" ) if i != 1: print() print(ORANGE + '~: ' + RESET + 'Process image (' + ORANGE + str(i) + '/' + str( len(images)) + RESET + ') : ' + input_path + RESET) img = cv2.imread(input_path) img = enhance_image(img, tmp_path) cv2.imwrite(tmp_path, img) run_tesseract(tmp_path, out_path, config.language) i = i + 1 if __name__ == '__main__': main()
[ "cv2.GaussianBlur", "numpy.sum", "cv2.medianBlur", "numpy.ones", "cv2.bilateralFilter", "cv2.warpAffine", "os.path.isfile", "numpy.arange", "cv2.minAreaRect", "cv2.normalize", "cv2.erode", "cv2.absdiff", "wand.image.Image", "cv2.getRotationMatrix2D", "os.path.join", "cv2.dilate", "cv2.cvtColor", "cv2.imwrite", "os.path.exists", "cv2.split", "cv2.resize", "io.BytesIO", "receipt_parser_core.config.read_config", "cv2.merge", "os.listdir", "pytesseract.pytesseract.image_to_string", "receipt_parser_core.Receipt", "os.makedirs", "os.getcwd", "cv2.threshold", "scipy.ndimage.interpolation.rotate", "PIL.Image.open", "cv2.imread", "numpy.where" ]
[((906, 917), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (915, 917), False, 'import os\n'), ((933, 968), 'os.path.join', 'os.path.join', (['BASE_PATH', '"""data/img"""'], {}), "(BASE_PATH, 'data/img')\n", (945, 968), False, 'import os\n'), ((982, 1017), 'os.path.join', 'os.path.join', (['BASE_PATH', '"""data/tmp"""'], {}), "(BASE_PATH, 'data/tmp')\n", (994, 1017), False, 'import os\n'), ((1034, 1069), 'os.path.join', 'os.path.join', (['BASE_PATH', '"""data/txt"""'], {}), "(BASE_PATH, 'data/txt')\n", (1046, 1069), False, 'import os\n'), ((1528, 1546), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (1538, 1546), False, 'import os\n'), ((2709, 2748), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (2721, 2748), False, 'import cv2\n'), ((2865, 2904), 'numpy.arange', 'np.arange', (['(-limit)', '(limit + delta)', 'delta'], {}), '(-limit, limit + delta, delta)\n', (2874, 2904), True, 'import numpy as np\n'), ((3137, 3185), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['center', 'best_angle', '(1.0)'], {}), '(center, best_angle, 1.0)\n', (3160, 3185), False, 'import cv2\n'), ((3297, 3390), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'M', '(w, h)'], {'flags': 'cv2.INTER_CUBIC', 'borderMode': 'cv2.BORDER_REPLICATE'}), '(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.\n BORDER_REPLICATE)\n', (3311, 3390), False, 'import cv2\n'), ((4396, 4464), 'cv2.resize', 'cv2.resize', (['img', 'None'], {'fx': '(1.2)', 'fy': '(1.2)', 'interpolation': 'cv2.INTER_CUBIC'}), '(img, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC)\n', (4406, 4464), False, 'import cv2\n'), ((4582, 4619), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (4594, 4619), False, 'import cv2\n'), ((4673, 4698), 'numpy.ones', 'np.ones', (['(1, 1)', 'np.uint8'], {}), '((1, 1), np.uint8)\n', (4680, 4698), True, 'import numpy as np\n'), ((4709, 4746), 'cv2.dilate', 'cv2.dilate', (['img', 'kernel'], {'iterations': '(1)'}), '(img, kernel, iterations=1)\n', (4719, 4746), False, 'import cv2\n'), ((4757, 4793), 'cv2.erode', 'cv2.erode', (['img', 'kernel'], {'iterations': '(1)'}), '(img, kernel, iterations=1)\n', (4766, 4793), False, 'import cv2\n'), ((5322, 5336), 'cv2.split', 'cv2.split', (['img'], {}), '(img)\n', (5331, 5336), False, 'import cv2\n'), ((5795, 5819), 'cv2.merge', 'cv2.merge', (['result_planes'], {}), '(result_planes)\n', (5804, 5819), False, 'import cv2\n'), ((6951, 6985), 'os.path.join', 'os.path.join', (['TMP_FOLDER', 'filename'], {}), '(TMP_FOLDER, filename)\n', (6963, 6985), False, 'import os\n'), ((7163, 7189), 'cv2.imwrite', 'cv2.imwrite', (['tmp_path', 'img'], {}), '(tmp_path, img)\n', (7174, 7189), False, 'import cv2\n'), ((7398, 7429), 'receipt_parser_core.Receipt', 'Receipt', ([], {'config': 'config', 'raw': 'raw'}), '(config=config, raw=raw)\n', (7405, 7429), False, 'from receipt_parser_core import Receipt\n'), ((7482, 7493), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7491, 7493), False, 'import os\n'), ((7507, 7551), 'receipt_parser_core.config.read_config', 'read_config', ([], {'config': "(dir_path + '/config.yml')"}), "(config=dir_path + '/config.yml')\n", (7518, 7551), False, 'from receipt_parser_core.config import read_config\n'), ((1568, 1594), 'os.path.join', 'os.path.join', (['folder', 'file'], {}), '(folder, file)\n', (1580, 1594), False, 'import os\n'), ((1606, 1631), 'os.path.isfile', 'os.path.isfile', (['full_path'], {}), '(full_path)\n', (1620, 1631), False, 'import os\n'), ((2088, 2118), 'wand.image.Image', 'WandImage', ([], {'filename': 'input_file'}), '(filename=input_file)\n', (2097, 2118), True, 'from wand.image import Image as WandImage\n'), ((2513, 2561), 'scipy.ndimage.interpolation.rotate', 'inter.rotate', (['arr', 'angle'], {'reshape': '(False)', 'order': '(0)'}), '(arr, angle, reshape=False, order=0)\n', (2525, 2561), True, 'from scipy.ndimage import interpolation as inter\n'), ((2582, 2602), 'numpy.sum', 'np.sum', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (2588, 2602), True, 'import numpy as np\n'), ((2619, 2664), 'numpy.sum', 'np.sum', (['((histogram[1:] - histogram[:-1]) ** 2)'], {}), '((histogram[1:] - histogram[:-1]) ** 2)\n', (2625, 2664), True, 'import numpy as np\n'), ((2762, 2830), 'cv2.threshold', 'cv2.threshold', (['gray', '(0)', '(255)', '(cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)'], {}), '(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)\n', (2775, 2830), False, 'import cv2\n'), ((3925, 3937), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3935, 3937), False, 'import io\n'), ((5130, 5165), 'cv2.bilateralFilter', 'cv2.bilateralFilter', (['img', '(9)', '(75)', '(75)'], {}), '(img, 9, 75, 75)\n', (5149, 5165), False, 'import cv2\n'), ((5501, 5532), 'cv2.medianBlur', 'cv2.medianBlur', (['dilated_img', '(21)'], {}), '(dilated_img, 21)\n', (5515, 5532), False, 'import cv2\n'), ((5604, 5702), 'cv2.normalize', 'cv2.normalize', (['diff_img', 'None'], {'alpha': '(0)', 'beta': '(255)', 'norm_type': 'cv2.NORM_MINMAX', 'dtype': 'cv2.CV_8UC1'}), '(diff_img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX,\n dtype=cv2.CV_8UC1)\n', (5617, 5702), False, 'import cv2\n'), ((5901, 5920), 'numpy.where', 'np.where', (['(image > 0)'], {}), '(image > 0)\n', (5909, 5920), True, 'import numpy as np\n'), ((5934, 5957), 'cv2.minAreaRect', 'cv2.minAreaRect', (['coords'], {}), '(coords)\n', (5949, 5957), False, 'import cv2\n'), ((6204, 6230), 'cv2.imwrite', 'cv2.imwrite', (['tmp_path', 'img'], {}), '(tmp_path, img)\n', (6215, 6230), False, 'import cv2\n'), ((6286, 6306), 'cv2.imread', 'cv2.imread', (['tmp_path'], {}), '(tmp_path)\n', (6296, 6306), False, 'import cv2\n'), ((6836, 6858), 'cv2.imread', 'cv2.imread', (['input_path'], {}), '(input_path)\n', (6846, 6858), False, 'import cv2\n'), ((7795, 7828), 'os.path.join', 'os.path.join', (['INPUT_FOLDER', 'image'], {}), '(INPUT_FOLDER, image)\n', (7807, 7828), False, 'import os\n'), ((7882, 7913), 'os.path.join', 'os.path.join', (['TMP_FOLDER', 'image'], {}), '(TMP_FOLDER, image)\n', (7894, 7913), False, 'import os\n'), ((7968, 8011), 'os.path.join', 'os.path.join', (['OUTPUT_FOLDER', "(image + '.txt')"], {}), "(OUTPUT_FOLDER, image + '.txt')\n", (7980, 8011), False, 'import os\n'), ((8241, 8263), 'cv2.imread', 'cv2.imread', (['input_path'], {}), '(input_path)\n', (8251, 8263), False, 'import cv2\n'), ((8315, 8341), 'cv2.imwrite', 'cv2.imwrite', (['tmp_path', 'img'], {}), '(tmp_path, img)\n', (8326, 8341), False, 'import cv2\n'), ((1293, 1315), 'os.path.exists', 'os.path.exists', (['folder'], {}), '(folder)\n', (1307, 1315), False, 'import os\n'), ((1329, 1348), 'os.makedirs', 'os.makedirs', (['folder'], {}), '(folder)\n', (1340, 1348), False, 'import os\n'), ((3964, 3994), 'wand.image.Image', 'WandImage', ([], {'filename': 'input_file'}), '(filename=input_file)\n', (3973, 3994), True, 'from wand.image import Image as WandImage\n'), ((4048, 4068), 'PIL.Image.open', 'Image.open', (['transfer'], {}), '(transfer)\n', (4058, 4068), False, 'from PIL import Image\n'), ((4102, 4179), 'pytesseract.pytesseract.image_to_string', 'pytesseract.image_to_string', (['img'], {'lang': 'language', 'timeout': '(60)', 'config': '"""--psm 6"""'}), "(img, lang=language, timeout=60, config='--psm 6')\n", (4129, 4179), False, 'from pytesseract import pytesseract\n'), ((4905, 4937), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(5, 5)', '(0)'], {}), '(img, (5, 5), 0)\n', (4921, 4937), False, 'import cv2\n'), ((5013, 5048), 'cv2.bilateralFilter', 'cv2.bilateralFilter', (['img', '(5)', '(75)', '(75)'], {}), '(img, 5, 75, 75)\n', (5032, 5048), False, 'import cv2\n'), ((5458, 5483), 'numpy.ones', 'np.ones', (['(7, 7)', 'np.uint8'], {}), '((7, 7), np.uint8)\n', (5465, 5483), True, 'import numpy as np\n'), ((5558, 5584), 'cv2.absdiff', 'cv2.absdiff', (['plane', 'bg_img'], {}), '(plane, bg_img)\n', (5569, 5584), False, 'import cv2\n'), ((6904, 6934), 'receipt_parser_core.Receipt', 'Receipt', ([], {'config': 'config', 'raw': '""""""'}), "(config=config, raw='')\n", (6911, 6934), False, 'from receipt_parser_core import Receipt\n'), ((1670, 1691), 'PIL.Image.open', 'Image.open', (['full_path'], {}), '(full_path)\n', (1680, 1691), False, 'from PIL import Image\n')]
import re import keras.backend as keras_backend from keras.layers import DepthwiseConv2D import numpy as np from traits.api import Float, HasStrictTraits, Instance, Int, Tuple, Property from blusky.wavelets.i_wavelet_2d import IWavelet2D class ApplyFatherWavlet2D(HasStrictTraits): """ Provides a "convolution" method that will apply a father wavelet to the endpoints of a cascade. Be sure to first apply layers to remove any of the padding. Assuming the input to the cascade is a power of 2 in shape, the result will be a set of scattering coefficients at all orders of the transform sampled regularly throughout the image. You can imagine that every set of coefficients will be computed at the center of a tile, the shape of which is determined by the "J" parameter. The degree to which these tiles over lap is controlled by the "overlap_log_2". For interpretation, consider values of "J" to give a tile of shape (2**(J+2), 2**(J+2)), over which the texture of the image can be considered stationary. The tiles can overlap by a factor of "M", however if you use the default decimation, you must ensure that you have oversampled enough to properly represent the stride at all scales of the transform. With default decimation, oversamples=1, overlap_log_2 can be upto J - 1. For each unit of overlap, you need to pay the cost of an additional unit of oversampling. """ #: (J) This is the "J" scale parameter of the father wavelet used in the # transform. J = Int(2) #: (M) This is defines the overlap of the tiles, so overlap_log_2 = 0 # would be no overlap, overlap_log_2 = 1 would be 50% overlap, # overlap_log_2 = 2 would be 75% etc. overlap_log_2 = Int(0) #: Size of the image input to the Cascade_2d. This needs to be padded to a # power of "2" to ensure that the coefficients are consistent. img_size = Tuple #: The sample rate of the input data sample_rate = Float #: Wavelet to use in convolution wavelet = Instance(IWavelet2D) #: Equivalent tile size derived from the log scale J # J = round(log2(min(tile_size))) - 2 _tile_size = Property(Int, depends_on="J") def _get__tile_size(self): size = 2 ** (self.J + 2) if size > self.img_size[0] or size > self.img_size[1]: mn = min(self.img_size) msg = "For image {} by {}, max J is {}".format( self.img_size[0], self.img_size[1], np.log2(mn) - 2 ) raise RuntimeError(msg) return (2 ** (self.J + 2), 2 ** (self.J + 2)) def _convolve(self, input_layer, trainable=False): """ The concept here is to first derive the applied decimation from the shape of the input layer, then pad the layer and apply the a convolution with the father wavelet. The padding and strideof the convolution is designed to return set of coefficients for a collections of regular (optionally overlapping) tiles. This will be the case provided the size of the original input to the transform are a power of 2. Parameters ---------- input_layer - Keras Layer A layer to apply the father wavelet to. The applied wavelet is derived from the shape of the layer and knowlege of the input image shape. trainable - Bool (optional) Toggle setting the convolution to be trainable. Either way it is initialized with a gabor wavelet. Returns ------- conv - Keras Layer A Keras layer applying the convolution to the input """ # create a convenient name name = re.sub("[_/].*", "", input_layer.name) name += "phi" _, nh, nw, _ = input_layer.shape nh = nh nw = nw # amount of decimation to here. factor_1 = self.img_size[0] // nh factor_2 = self.img_size[1] // nw # how much to decimate the wavelet to required bandwidth wavelet_stride = min(factor_1, factor_2) # need to guarantee this, ideally crop the wavelet to a # power of "2" wav = self.wavelet.kernel( 0.0, shape=(2 ** (self.J + 2) - 1, 2 ** (self.J + 2) - 1) ) # wav = wav[::wavelet_stride, ::wavelet_stride] # needs to be real if np.iscomplexobj(wav): wav = wav.real # define a little helper to intialize the weights. def init_weights(shape, **kwargs): dtype = np.float32 weights = np.zeros(shape, dtype=dtype) for ichan in range(shape[2]): weights[:, :, ichan, 0] = wav.astype(dtype) return keras_backend.variable(value=weights, dtype=dtype) # use the father wavelet scale here instead of the default: conv_stride = ( max( 2 ** (-self.overlap_log_2) * self._tile_size[0] // factor_1, 1 ), max( 2 ** (-self.overlap_log_2) * self._tile_size[1] // factor_2, 1 ), ) conv_stride = (int(conv_stride[0]), int(conv_stride[0])) conv = DepthwiseConv2D( name=name, kernel_size=wav.shape, depth_multiplier=1, data_format="channels_last", padding="valid", strides=conv_stride, trainable=trainable, depthwise_initializer=init_weights, ) return conv(input_layer) def convolve(self, end_points): """ Apply father wavelet convolution. Parameters ---------- end_points - List(Keras Layers) Typically this would be the multiple end-points of the 2-D Cascade. Returns ------- scattering_transform - List(Keras Layers) The father wavelet applied to each end-point. The stride and padding of the convolution produces a consistent set of coefficients at each scale, provided the shape of the original image is a power of 2. For example, img.shape = (128, 256). """ scattering_transform = [self._convolve(i) for i in end_points] return scattering_transform
[ "traits.api.Instance", "numpy.iscomplexobj", "traits.api.Property", "keras.layers.DepthwiseConv2D", "keras.backend.variable", "traits.api.Int", "numpy.log2", "numpy.zeros", "re.sub" ]
[((1557, 1563), 'traits.api.Int', 'Int', (['(2)'], {}), '(2)\n', (1560, 1563), False, 'from traits.api import Float, HasStrictTraits, Instance, Int, Tuple, Property\n'), ((1770, 1776), 'traits.api.Int', 'Int', (['(0)'], {}), '(0)\n', (1773, 1776), False, 'from traits.api import Float, HasStrictTraits, Instance, Int, Tuple, Property\n'), ((2063, 2083), 'traits.api.Instance', 'Instance', (['IWavelet2D'], {}), '(IWavelet2D)\n', (2071, 2083), False, 'from traits.api import Float, HasStrictTraits, Instance, Int, Tuple, Property\n'), ((2202, 2231), 'traits.api.Property', 'Property', (['Int'], {'depends_on': '"""J"""'}), "(Int, depends_on='J')\n", (2210, 2231), False, 'from traits.api import Float, HasStrictTraits, Instance, Int, Tuple, Property\n'), ((3753, 3791), 're.sub', 're.sub', (['"""[_/].*"""', '""""""', 'input_layer.name'], {}), "('[_/].*', '', input_layer.name)\n", (3759, 3791), False, 'import re\n'), ((4435, 4455), 'numpy.iscomplexobj', 'np.iscomplexobj', (['wav'], {}), '(wav)\n', (4450, 4455), True, 'import numpy as np\n'), ((5258, 5459), 'keras.layers.DepthwiseConv2D', 'DepthwiseConv2D', ([], {'name': 'name', 'kernel_size': 'wav.shape', 'depth_multiplier': '(1)', 'data_format': '"""channels_last"""', 'padding': '"""valid"""', 'strides': 'conv_stride', 'trainable': 'trainable', 'depthwise_initializer': 'init_weights'}), "(name=name, kernel_size=wav.shape, depth_multiplier=1,\n data_format='channels_last', padding='valid', strides=conv_stride,\n trainable=trainable, depthwise_initializer=init_weights)\n", (5273, 5459), False, 'from keras.layers import DepthwiseConv2D\n'), ((4641, 4669), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'dtype'}), '(shape, dtype=dtype)\n', (4649, 4669), True, 'import numpy as np\n'), ((4793, 4843), 'keras.backend.variable', 'keras_backend.variable', ([], {'value': 'weights', 'dtype': 'dtype'}), '(value=weights, dtype=dtype)\n', (4815, 4843), True, 'import keras.backend as keras_backend\n'), ((2508, 2519), 'numpy.log2', 'np.log2', (['mn'], {}), '(mn)\n', (2515, 2519), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Import modules import pytest import numpy as np # Import from package from pyswarms.discrete import BinaryPSO @pytest.mark.parametrize( "options", [ {"c2": 0.7, "w": 0.5, "k": 2, "p": 2}, {"c1": 0.5, "w": 0.5, "k": 2, "p": 2}, {"c1": 0.5, "c2": 0.7, "k": 2, "p": 2}, {"c1": 0.5, "c2": 0.7, "w": 0.5, "p": 2}, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2}, ], ) def test_keyword_exception(options): """Tests if exceptions are thrown when keywords are missing""" with pytest.raises(KeyError): BinaryPSO(5, 2, options) @pytest.mark.parametrize( "options", [ {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": -1, "p": 2}, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 6, "p": 2}, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2, "p": 5}, ], ) def test_invalid_k_or_p_values(options): """Tests if exception is thrown when passing an invalid value for k or p""" with pytest.raises(ValueError): BinaryPSO(5, 2, options) @pytest.mark.parametrize("velocity_clamp", [[1, 3], np.array([1, 3])]) def test_vclamp_type_exception(velocity_clamp, options): """Tests if exception is raised when velocity_clamp type is not a tuple""" with pytest.raises(TypeError): BinaryPSO(5, 2, velocity_clamp=velocity_clamp, options=options) @pytest.mark.parametrize("velocity_clamp", [(1, 1, 1), (2, 3, 1)]) def test_vclamp_shape_exception(velocity_clamp, options): """Tests if exception is raised when velocity_clamp's size is not equal to 2""" with pytest.raises(IndexError): BinaryPSO(5, 2, velocity_clamp=velocity_clamp, options=options) @pytest.mark.parametrize("velocity_clamp", [(3, 2), (10, 8)]) def test_vclamp_maxmin_exception(velocity_clamp, options): """Tests if the max velocity_clamp is less than min velocity_clamp and vice-versa""" with pytest.raises(ValueError): BinaryPSO(5, 2, velocity_clamp=velocity_clamp, options=options) def test_reset_default_values(binary_reset): """Tests if best cost and best pos are set properly when the reset() method is called""" assert binary_reset.swarm.best_cost == np.inf assert set(binary_reset.swarm.best_pos) == set(np.array([])) @pytest.mark.parametrize( "history, expected_shape", [ ("cost_history", (1000,)), ("mean_pbest_history", (1000,)), ("mean_neighbor_history", (1000,)), ("pos_history", (1000, 10, 2)), ("velocity_history", (1000, 10, 2)), ], ) def test_training_history_shape(binary_history, history, expected_shape): """Test if training histories are of expected shape""" pso = vars(binary_history) assert np.array(pso[history]).shape == expected_shape
[ "pytest.mark.parametrize", "pytest.raises", "numpy.array", "pyswarms.discrete.BinaryPSO" ]
[((163, 414), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""options"""', "[{'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2}, {'c1': 0.5, 'w': 0.5, 'k': 2, 'p': \n 2}, {'c1': 0.5, 'c2': 0.7, 'k': 2, 'p': 2}, {'c1': 0.5, 'c2': 0.7, 'w':\n 0.5, 'p': 2}, {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2}]"], {}), "('options', [{'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2},\n {'c1': 0.5, 'w': 0.5, 'k': 2, 'p': 2}, {'c1': 0.5, 'c2': 0.7, 'k': 2,\n 'p': 2}, {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'p': 2}, {'c1': 0.5, 'c2': \n 0.7, 'w': 0.5, 'k': 2}])\n", (186, 414), False, 'import pytest\n'), ((634, 831), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""options"""', "[{'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': -1, 'p': 2}, {'c1': 0.5, 'c2': 0.7,\n 'w': 0.5, 'k': 6, 'p': 2}, {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 5}\n ]"], {}), "('options', [{'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': -\n 1, 'p': 2}, {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 6, 'p': 2}, {'c1': \n 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 5}])\n", (657, 831), False, 'import pytest\n'), ((1381, 1446), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""velocity_clamp"""', '[(1, 1, 1), (2, 3, 1)]'], {}), "('velocity_clamp', [(1, 1, 1), (2, 3, 1)])\n", (1404, 1446), False, 'import pytest\n'), ((1704, 1764), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""velocity_clamp"""', '[(3, 2), (10, 8)]'], {}), "('velocity_clamp', [(3, 2), (10, 8)])\n", (1727, 1764), False, 'import pytest\n'), ((2287, 2513), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""history, expected_shape"""', "[('cost_history', (1000,)), ('mean_pbest_history', (1000,)), (\n 'mean_neighbor_history', (1000,)), ('pos_history', (1000, 10, 2)), (\n 'velocity_history', (1000, 10, 2))]"], {}), "('history, expected_shape', [('cost_history', (1000,\n )), ('mean_pbest_history', (1000,)), ('mean_neighbor_history', (1000,)),\n ('pos_history', (1000, 10, 2)), ('velocity_history', (1000, 10, 2))])\n", (2310, 2513), False, 'import pytest\n'), ((573, 596), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (586, 596), False, 'import pytest\n'), ((606, 630), 'pyswarms.discrete.BinaryPSO', 'BinaryPSO', (['(5)', '(2)', 'options'], {}), '(5, 2, options)\n', (615, 630), False, 'from pyswarms.discrete import BinaryPSO\n'), ((998, 1023), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1011, 1023), False, 'import pytest\n'), ((1033, 1057), 'pyswarms.discrete.BinaryPSO', 'BinaryPSO', (['(5)', '(2)', 'options'], {}), '(5, 2, options)\n', (1042, 1057), False, 'from pyswarms.discrete import BinaryPSO\n'), ((1280, 1304), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1293, 1304), False, 'import pytest\n'), ((1314, 1377), 'pyswarms.discrete.BinaryPSO', 'BinaryPSO', (['(5)', '(2)'], {'velocity_clamp': 'velocity_clamp', 'options': 'options'}), '(5, 2, velocity_clamp=velocity_clamp, options=options)\n', (1323, 1377), False, 'from pyswarms.discrete import BinaryPSO\n'), ((1112, 1128), 'numpy.array', 'np.array', (['[1, 3]'], {}), '([1, 3])\n', (1120, 1128), True, 'import numpy as np\n'), ((1602, 1627), 'pytest.raises', 'pytest.raises', (['IndexError'], {}), '(IndexError)\n', (1615, 1627), False, 'import pytest\n'), ((1637, 1700), 'pyswarms.discrete.BinaryPSO', 'BinaryPSO', (['(5)', '(2)'], {'velocity_clamp': 'velocity_clamp', 'options': 'options'}), '(5, 2, velocity_clamp=velocity_clamp, options=options)\n', (1646, 1700), False, 'from pyswarms.discrete import BinaryPSO\n'), ((1926, 1951), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1939, 1951), False, 'import pytest\n'), ((1961, 2024), 'pyswarms.discrete.BinaryPSO', 'BinaryPSO', (['(5)', '(2)'], {'velocity_clamp': 'velocity_clamp', 'options': 'options'}), '(5, 2, velocity_clamp=velocity_clamp, options=options)\n', (1970, 2024), False, 'from pyswarms.discrete import BinaryPSO\n'), ((2270, 2282), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2278, 2282), True, 'import numpy as np\n'), ((2738, 2760), 'numpy.array', 'np.array', (['pso[history]'], {}), '(pso[history])\n', (2746, 2760), True, 'import numpy as np\n')]
import MulensModel as mm import Functions as mc import random import numpy as np import matplotlib.pyplot as plt from matplotlib import rc import matplotlib from scipy.stats import truncnorm, loguniform, uniform #plt.style.use('ggplot') print(plt.style.available) #print(plt.rcParams["font.family"].available) #print(matplotlib.get_cachedir()) #rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) #rc('font',**{'family':'serif','serif':['Times New Roman']}) #rc('text', usetex=True) #plt.rcParams["font.family"] = "serif" #print(plt.rcParams.keys()) #plt.rcParams['font.size'] = 12 s_pi = mc.logUniDist(0.2, 5) q_pi = mc.logUniDist(10e-6, 1) alpha_pi = mc.uniDist(0, 360) u0_pi = mc.uniDist(0, 2) t0_pi = mc.uniDist(0, 72) tE_pi = mc.truncatedLogNormDist(1, 100, 10**1.15, 10**0.45) rho_pi = mc.logUniDist(10**-4, 10**-2) distr = tE_pi y=[] x=np.linspace(1, 100, 1000) mu=0 for i in x: mu+=np.exp(distr.log_PDF(i))*i y.append(np.exp(distr.log_PDF(i))) print(mu/len(x)) #print(y) plt.rcParams["font.family"] = "serif" plt.rcParams['font.size'] = 12 plt.style.use('seaborn-bright') plt.rcParams["legend.edgecolor"] = '0' plt.rcParams["legend.framealpha"] = 1 plt.rcParams["legend.title_fontsize"] = 10 plt.rcParams["legend.fontsize"] = 9 plt.rcParams["grid.linestyle"] = 'dashed' plt.rcParams["grid.alpha"] = 0.25 plt.plot(x, y, label='Probability\nDensity') plt.xlabel(r'Parameter [$\chi$]') plt.ylabel(r'Probability Density [$\rho$]') plt.title('Probability Density Function') plt.legend(title='Entries')#, framealpha=1.0, edgecolor='0.0') # #plt.axis('scaled') plt.tight_layout() plt.grid() plt.savefig('Plots/pdf-test.png') def centre_offsets_pointilism(supset_model, subset_model, symbols, name = '', dpi = 100): supset_offsets = (supset_model.sampled.states_array(scaled = True) - supset_model.centre.scaled[:, np.newaxis]) subset_offsets = (subset_model.sampled.states_array(scaled = True) - subset_model.centre.scaled[:, np.newaxis]) n_dim = subset_model.D style() # construct shape with corner figure = corner.corner(subset_offsets.T) # font/visibility plt.rcParams['font.size'] = 8 plt.rcParams['axes.titlesize'] = 14 plt.rcParams['axes.labelsize'] = 14 # extract the axes axes = np.array(figure.axes).reshape((n_dim, n_dim)) # Loop over the diagonal to remove from plot for i in range(n_dim): ax = axes[i, i] ax.cla() ax.patch.set_alpha(0.0) ax.axis('off') ax.axes.get_xaxis().set_ticklabels([]) ax.axes.get_yaxis().set_ticklabels([]) # loop over lower triangle for yi in range(n_dim): for xi in range(yi): ax = axes[yi, xi] ax.cla() # overlay points ax.scatter(subset_offsets[xi, :], subset_offsets[yi, :], c = np.linspace(0.0, 1.0, subset_model.sampled.n), cmap = 'winter', alpha = 0.15, marker = ".", s = 20, linewidth = 0.0) ax.scatter(supset_offsets[xi, :], supset_offsets[yi, :], c = np.linspace(0.0, 1.0, supset_model.sampled.n), cmap = 'spring', alpha = 0.15, marker = ".", s = 20, linewidth = 0.0) if yi == n_dim - 1: # last row ax.set_xlabel(symbols[xi]) ax.tick_params(axis = 'x', labelrotation = 45) else: ax.axes.get_xaxis().set_ticklabels([]) if xi == 0: # first column ax.set_ylabel(symbols[yi]) ax.tick_params(axis = 'y', labelrotation = 45) else: ax.axes.get_yaxis().set_ticklabels([]) figure.savefig('results/' + name + '-centreed-pointilism.png', bbox_inches = "tight", dpi = dpi, transparent=True) figure.clf() return
[ "matplotlib.pyplot.title", "Functions.truncatedLogNormDist", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "Functions.uniDist", "matplotlib.pyplot.style.use", "numpy.array", "numpy.linspace", "Functions.logUniDist", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig", "matplotlib.pyplot.grid" ]
[((613, 634), 'Functions.logUniDist', 'mc.logUniDist', (['(0.2)', '(5)'], {}), '(0.2, 5)\n', (626, 634), True, 'import Functions as mc\n'), ((642, 665), 'Functions.logUniDist', 'mc.logUniDist', (['(1e-05)', '(1)'], {}), '(1e-05, 1)\n', (655, 665), True, 'import Functions as mc\n'), ((677, 695), 'Functions.uniDist', 'mc.uniDist', (['(0)', '(360)'], {}), '(0, 360)\n', (687, 695), True, 'import Functions as mc\n'), ((704, 720), 'Functions.uniDist', 'mc.uniDist', (['(0)', '(2)'], {}), '(0, 2)\n', (714, 720), True, 'import Functions as mc\n'), ((729, 746), 'Functions.uniDist', 'mc.uniDist', (['(0)', '(72)'], {}), '(0, 72)\n', (739, 746), True, 'import Functions as mc\n'), ((755, 810), 'Functions.truncatedLogNormDist', 'mc.truncatedLogNormDist', (['(1)', '(100)', '(10 ** 1.15)', '(10 ** 0.45)'], {}), '(1, 100, 10 ** 1.15, 10 ** 0.45)\n', (778, 810), True, 'import Functions as mc\n'), ((817, 850), 'Functions.logUniDist', 'mc.logUniDist', (['(10 ** -4)', '(10 ** -2)'], {}), '(10 ** -4, 10 ** -2)\n', (830, 850), True, 'import Functions as mc\n'), ((870, 895), 'numpy.linspace', 'np.linspace', (['(1)', '(100)', '(1000)'], {}), '(1, 100, 1000)\n', (881, 895), True, 'import numpy as np\n'), ((1085, 1116), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-bright"""'], {}), "('seaborn-bright')\n", (1098, 1116), True, 'import matplotlib.pyplot as plt\n'), ((1356, 1403), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'label': '"""Probability\nDensity"""'}), '(x, y, label="""Probability\nDensity""")\n', (1364, 1403), True, 'import matplotlib.pyplot as plt\n'), ((1401, 1434), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Parameter [$\\\\chi$]"""'], {}), "('Parameter [$\\\\chi$]')\n", (1411, 1434), True, 'import matplotlib.pyplot as plt\n'), ((1435, 1478), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Probability Density [$\\\\rho$]"""'], {}), "('Probability Density [$\\\\rho$]')\n", (1445, 1478), True, 'import matplotlib.pyplot as plt\n'), ((1479, 1520), 'matplotlib.pyplot.title', 'plt.title', (['"""Probability Density Function"""'], {}), "('Probability Density Function')\n", (1488, 1520), True, 'import matplotlib.pyplot as plt\n'), ((1521, 1548), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'title': '"""Entries"""'}), "(title='Entries')\n", (1531, 1548), True, 'import matplotlib.pyplot as plt\n'), ((1608, 1626), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1624, 1626), True, 'import matplotlib.pyplot as plt\n'), ((1627, 1637), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1635, 1637), True, 'import matplotlib.pyplot as plt\n'), ((1638, 1671), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Plots/pdf-test.png"""'], {}), "('Plots/pdf-test.png')\n", (1649, 1671), True, 'import matplotlib.pyplot as plt\n'), ((2291, 2312), 'numpy.array', 'np.array', (['figure.axes'], {}), '(figure.axes)\n', (2299, 2312), True, 'import numpy as np\n'), ((2869, 2914), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'subset_model.sampled.n'], {}), '(0.0, 1.0, subset_model.sampled.n)\n', (2880, 2914), True, 'import numpy as np\n'), ((3059, 3104), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'supset_model.sampled.n'], {}), '(0.0, 1.0, supset_model.sampled.n)\n', (3070, 3104), True, 'import numpy as np\n')]
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from ase import Atoms from ase.constraints import dict2constraint import copy import importlib import numpy as np from pyiron_atomistics.atomistics.job.interactive import GenericInteractive from pyiron_atomistics.atomistics.structure.atoms import pyiron_to_ase, Atoms as PAtoms try: from ase.cell import Cell except ImportError: Cell = None __author__ = "<NAME>" __copyright__ = ( "Copyright 2021, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "development" __date__ = "Sep 1, 2018" def ase_structure_todict(structure): atoms_dict = { "symbols": structure.get_chemical_symbols(), "positions": structure.get_positions(), "pbc": structure.get_pbc(), "celldisp": structure.get_celldisp(), "constraint": [c.todict() for c in structure.constraints], "info": copy.deepcopy(structure.info), } if Cell is not None: atoms_dict["cell"] = structure.get_cell().todict() else: atoms_dict["cell"] = structure.get_cell() if structure.has("tags"): atoms_dict["tags"] = structure.get_tags() if structure.has("masses"): atoms_dict["masses"] = structure.get_masses() if structure.has("momenta"): atoms_dict["momenta"] = structure.get_momenta() if structure.has("initial_magmoms"): atoms_dict["magmoms"] = structure.get_initial_magnetic_moments() if structure.has("initial_charges"): atoms_dict["charges"] = structure.get_initial_charges() if structure.calc is not None: calculator_dict = structure.calc.todict() calculator_dict["calculator_class"] = ( str(structure.calc.__class__).replace("'", " ").split()[1] ) calculator_dict["label"] = structure.calc.label atoms_dict["calculator"] = calculator_dict return atoms_dict def ase_calculator_fromdict(class_path, class_dict): module_loaded = importlib.import_module(".".join(class_path.split(".")[:-1])) module_class = getattr(module_loaded, class_path.split(".")[-1]) return module_class(**class_dict) def ase_structure_fromdict(atoms_dict): def cell_fromdict(celldict): celldict.pop("pbc", None) if Cell is not None: return Cell(**celldict) else: return celldict atoms_dict_copy = copy.deepcopy(atoms_dict) if "calculator" in atoms_dict_copy.keys(): calculator_dict = atoms_dict_copy["calculator"] calculator_class = calculator_dict["calculator_class"] del calculator_dict["calculator_class"] atoms_dict_copy["calculator"] = ase_calculator_fromdict( calculator_class, calculator_dict ) if "constraint" in atoms_dict_copy.keys(): atoms_dict_copy["constraint"] = [ dict2constraint(const_dict) for const_dict in atoms_dict_copy["constraint"] ] atoms_dict_copy["cell"] = cell_fromdict(celldict=atoms_dict_copy["cell"]) atoms = Atoms(**atoms_dict_copy) if atoms.calc is not None: atoms.calc.read(atoms.calc.label) return atoms class AseJob(GenericInteractive): def __init__(self, project, job_name): super(AseJob, self).__init__(project, job_name) self.__name__ = "AseJob" self.__version__ = ( None # Reset the version number to the executable is set automatically ) @property def structure(self): return GenericInteractive.structure.fget(self) @structure.setter def structure(self, structure): if isinstance(structure, PAtoms): structure = pyiron_to_ase(structure) GenericInteractive.structure.fset(self, structure) def to_hdf(self, hdf=None, group_name=None): super(AseJob, self).to_hdf(hdf=hdf, group_name=group_name) with self.project_hdf5.open("input") as hdf_input: hdf_input["structure"] = ase_structure_todict(self._structure) def from_hdf(self, hdf=None, group_name=None): super(AseJob, self).from_hdf(hdf=hdf, group_name=group_name) with self.project_hdf5.open("input") as hdf_input: self.structure = ase_structure_fromdict(hdf_input["structure"]) def run_static(self): pre_run_mode = self.server.run_mode self.server.run_mode.interactive = True self.run_if_interactive() self.interactive_close() self.server.run_mode = pre_run_mode def run_if_interactive(self): if self.structure.calc is None: self.set_calculator() super(AseJob, self).run_if_interactive() self.interactive_collect() def set_calculator(self): raise NotImplementedError( "The _set_calculator function is not implemented for this code." ) def interactive_structure_setter(self, structure): self.structure.calc.calculate(structure) def interactive_positions_setter(self, positions): self.structure.positions = positions def interactive_initialize_interface(self): self.status.running = True self._structure.calc.set_label(self.working_directory + "/") self._interactive_library = True def interactive_close(self): if self.interactive_is_activated(): super(AseJob, self).interactive_close() with self.project_hdf5.open("output") as h5: if "interactive" in h5.list_groups(): for key in h5["interactive"].list_nodes(): h5["generic/" + key] = h5["interactive/" + key] def interactive_forces_getter(self): return self.structure.get_forces() def interactive_pressures_getter(self): return -self.structure.get_stress(voigt=False) def interactive_energy_pot_getter(self): return self.structure.get_potential_energy() def interactive_energy_tot_getter(self): return self.structure.get_potential_energy() def interactive_indices_getter(self): element_lst = sorted(list(set(self.structure.get_chemical_symbols()))) return np.array( [element_lst.index(el) for el in self.structure.get_chemical_symbols()] ) def interactive_positions_getter(self): return self.structure.positions.copy() def interactive_steps_getter(self): return len(self.interactive_cache[list(self.interactive_cache.keys())[0]]) def interactive_time_getter(self): return self.interactive_steps_getter() def interactive_volume_getter(self): return self.structure.get_volume() def interactive_cells_getter(self): return self.structure.cell.copy() def write_input(self): pass def collect_output(self): pass def run_if_scheduler(self): self._create_working_directory() super(AseJob, self).run_if_scheduler() def interactive_index_organizer(self): index_merge_lst = self._interactive_species_lst.tolist() + list( np.unique(self._structure_current.get_chemical_symbols()) ) el_lst = sorted(set(index_merge_lst), key=index_merge_lst.index) current_structure_index = [ el_lst.index(el) for el in self._structure_current.get_chemical_symbols() ] previous_structure_index = [ el_lst.index(el) for el in self._structure_previous.get_chemical_symbols() ] if not np.array_equal( np.array(current_structure_index), np.array(previous_structure_index), ): self._logger.debug("Generic library: indices changed!") self.interactive_indices_setter(self._structure_current.indices) def _get_structure(self, frame=-1, wrap_atoms=True): if ( self.server.run_mode.interactive or self.server.run_mode.interactive_non_modal ): # Warning: We only copy symbols, positions and cell information - no tags. if self.output.indices is not None and len(self.output.indices) != 0: indices = self.output.indices[frame] else: return None if len(self._interactive_species_lst) == 0: el_lst = list(np.unique(self._structure_current.get_chemical_symbols())) else: el_lst = self._interactive_species_lst.tolist() if indices is not None: if wrap_atoms: positions = self.output.positions[frame] else: if len(self.output.unwrapped_positions) > max([frame, 0]): positions = self.output.unwrapped_positions[frame] else: positions = ( self.output.positions[frame] + self.output.total_displacements[frame] ) atoms = Atoms( symbols=np.array([el_lst[el] for el in indices]), positions=positions, cell=self.output.cells[frame], pbc=self.structure.pbc, ) # Update indicies to match the indicies in the cache. atoms.indices = indices return atoms else: return None else: if ( self.get("output/generic/cells") is not None and len(self.get("output/generic/cells")) != 0 ): return super()._get_structure(frame=frame, wrap_atoms=wrap_atoms) else: return None class AseAdapter(object): def __init__(self, ham, fast_mode=False): self._ham = ham self._fast_mode = fast_mode if self._ham.server.run_mode.interactive and fast_mode: self.interactive_cache = { "velocities": [], "energy_kin": [], "momenta": [], "positions": [], "energy_tot": [], "energy_pot": [], } self._ham.run() self._ham.interactive_cache = {} elif self._ham.server.run_mode.interactive: self.interactive_cache = {"velocities": [], "energy_kin": [], "momenta": []} self.constraints = [] try: self.arrays = { "positions": self._ham.structure.positions.copy(), "numbers": self._ham.structure.numbers, } except AttributeError: self.arrays = { "positions": self._ham.structure.positions.copy(), "numbers": self._ham.structure.get_atomic_numbers(), } @property def communicator(self): return None def get_masses(self): return np.array(self._ham.structure.get_masses()) def get_positions(self): return self.arrays["positions"] def set_positions(self, positions): self.arrays["positions"] = positions def get_forces(self, md=True): if self._fast_mode: self._ham.interactive_positions_setter(self.arrays["positions"]) self.interactive_cache["positions"].append(self.arrays["positions"]) self._ham.interactive_execute() self.interactive_cache["energy_pot"].append( self._ham.interactive_energy_pot_getter() ) return np.array(self._ham.interactive_forces_getter()) else: self._ham.structure.positions = self.arrays["positions"] if self._ham.server.run_mode.interactive: self._ham.run() else: self._ham.run(delete_existing_job=True) return self._ham.output.forces[-1] def interactive_close(self): self._ham.interactive_store_in_cache( "velocities", self.interactive_cache["velocities"] ) self._ham.interactive_store_in_cache( "energy_kin", self.interactive_cache["energy_kin"] ) if self._fast_mode: self._ham.interactive_store_in_cache( "positions", self.interactive_cache["positions"] ) self._ham.interactive_store_in_cache( "energy_pot", self.interactive_cache["energy_pot"][::2] ) self._ham.interactive_store_in_cache( "energy_tot", ( np.array(self.interactive_cache["energy_pot"][::2]) + np.array(self.interactive_cache["energy_kin"]) ).tolist(), ) else: self._ham.interactive_store_in_cache( "energy_tot", ( np.array(self._ham.output.energy_pot)[::2] + np.array(self.interactive_cache["energy_kin"]) ).tolist(), ) self._ham.interactive_close() def get_number_of_atoms(self): return self._ham.structure.get_number_of_atoms() # ASE functions def get_kinetic_energy(self): """Get the kinetic energy.""" momenta = self.arrays.get("momenta") if momenta is None: return 0.0 return 0.5 * np.vdot(momenta, self.get_velocities()) def set_momenta(self, momenta, apply_constraint=True): """Set momenta.""" if apply_constraint and len(self.constraints) > 0 and momenta is not None: momenta = np.array(momenta) # modify a copy for constraint in self.constraints: if hasattr(constraint, "adjust_momenta"): constraint.adjust_momenta(self, momenta) self.set_array("momenta", momenta, float, (3,)) self.interactive_cache["velocities"].append(self.get_velocities()) self.interactive_cache["energy_kin"].append(self.get_kinetic_energy()) def set_velocities(self, velocities): """Set the momenta by specifying the velocities.""" self.set_momenta(self.get_masses()[:, np.newaxis] * velocities) def get_momenta(self): """Get array of momenta.""" if "momenta" in self.arrays: return self.arrays["momenta"].copy() else: return np.zeros((len(self), 3)) def set_array(self, name, a, dtype=None, shape=None): """Update array. If *shape* is not *None*, the shape of *a* will be checked. If *a* is *None*, then the array is deleted.""" b = self.arrays.get(name) if b is None: if a is not None: self.new_array(name, a, dtype, shape) else: if a is None: del self.arrays[name] else: a = np.asarray(a) if a.shape != b.shape: raise ValueError( "Array has wrong shape %s != %s." % (a.shape, b.shape) ) b[:] = a def get_angular_momentum(self): """Get total angular momentum with respect to the center of mass.""" com = self.get_center_of_mass() positions = self.get_positions() positions -= com # translate center of mass to origin return np.cross(positions, self.get_momenta()).sum(0) def new_array(self, name, a, dtype=None, shape=None): """Add new array. If *shape* is not *None*, the shape of *a* will be checked.""" if dtype is not None: a = np.array(a, dtype, order="C") if len(a) == 0 and shape is not None: a.shape = (-1,) + shape else: if not a.flags["C_CONTIGUOUS"]: a = np.ascontiguousarray(a) else: a = a.copy() if name in self.arrays: raise RuntimeError for b in self.arrays.values(): if len(a) != len(b): raise ValueError("Array has wrong length: %d != %d." % (len(a), len(b))) break if shape is not None and a.shape[1:] != shape: raise ValueError( "Array has wrong shape %s != %s." % (a.shape, (a.shape[0:1] + shape)) ) self.arrays[name] = a def has(self, name): """Check for existence of array. name must be one of: 'tags', 'momenta', 'masses', 'initial_magmoms', 'initial_charges'.""" # XXX extend has to calculator properties return name in self.arrays def get_center_of_mass(self, scaled=False): """Get the center of mass. If scaled=True the center of mass in scaled coordinates is returned.""" m = self.get_masses() com = np.dot(m, self.arrays["positions"]) / m.sum() if scaled: if self._fast_mode: return np.linalg.solve(self._ham.structure.cells[-1].T, com) else: return np.linalg.solve(self._ham.output.cells[-1].T, com) else: return com def get_velocities(self): """Get array of velocities.""" momenta = self.arrays.get("momenta") if momenta is None: return None m = self.get_masses() # m = self.arrays.get('masses') # if m is None: # m = atomic_masses[self.arrays['numbers']] return momenta / m.reshape(-1, 1) def __len__(self): return len(self._ham.structure)
[ "ase.constraints.dict2constraint", "copy.deepcopy", "ase.cell.Cell", "numpy.asarray", "pyiron_atomistics.atomistics.job.interactive.GenericInteractive.structure.fset", "numpy.array", "pyiron_atomistics.atomistics.structure.atoms.pyiron_to_ase", "pyiron_atomistics.atomistics.job.interactive.GenericInteractive.structure.fget", "numpy.linalg.solve", "numpy.dot", "numpy.ascontiguousarray", "ase.Atoms" ]
[((2640, 2665), 'copy.deepcopy', 'copy.deepcopy', (['atoms_dict'], {}), '(atoms_dict)\n', (2653, 2665), False, 'import copy\n'), ((3278, 3302), 'ase.Atoms', 'Atoms', ([], {}), '(**atoms_dict_copy)\n', (3283, 3302), False, 'from ase import Atoms\n'), ((1159, 1188), 'copy.deepcopy', 'copy.deepcopy', (['structure.info'], {}), '(structure.info)\n', (1172, 1188), False, 'import copy\n'), ((3739, 3778), 'pyiron_atomistics.atomistics.job.interactive.GenericInteractive.structure.fget', 'GenericInteractive.structure.fget', (['self'], {}), '(self)\n', (3772, 3778), False, 'from pyiron_atomistics.atomistics.job.interactive import GenericInteractive\n'), ((3937, 3987), 'pyiron_atomistics.atomistics.job.interactive.GenericInteractive.structure.fset', 'GenericInteractive.structure.fset', (['self', 'structure'], {}), '(self, structure)\n', (3970, 3987), False, 'from pyiron_atomistics.atomistics.job.interactive import GenericInteractive\n'), ((2558, 2574), 'ase.cell.Cell', 'Cell', ([], {}), '(**celldict)\n', (2562, 2574), False, 'from ase.cell import Cell\n'), ((3102, 3129), 'ase.constraints.dict2constraint', 'dict2constraint', (['const_dict'], {}), '(const_dict)\n', (3117, 3129), False, 'from ase.constraints import dict2constraint\n'), ((3904, 3928), 'pyiron_atomistics.atomistics.structure.atoms.pyiron_to_ase', 'pyiron_to_ase', (['structure'], {}), '(structure)\n', (3917, 3928), False, 'from pyiron_atomistics.atomistics.structure.atoms import pyiron_to_ase, Atoms as PAtoms\n'), ((13747, 13764), 'numpy.array', 'np.array', (['momenta'], {}), '(momenta)\n', (13755, 13764), True, 'import numpy as np\n'), ((15749, 15778), 'numpy.array', 'np.array', (['a', 'dtype'], {'order': '"""C"""'}), "(a, dtype, order='C')\n", (15757, 15778), True, 'import numpy as np\n'), ((16956, 16991), 'numpy.dot', 'np.dot', (['m', "self.arrays['positions']"], {}), "(m, self.arrays['positions'])\n", (16962, 16991), True, 'import numpy as np\n'), ((7727, 7760), 'numpy.array', 'np.array', (['current_structure_index'], {}), '(current_structure_index)\n', (7735, 7760), True, 'import numpy as np\n'), ((7774, 7808), 'numpy.array', 'np.array', (['previous_structure_index'], {}), '(previous_structure_index)\n', (7782, 7808), True, 'import numpy as np\n'), ((15008, 15021), 'numpy.asarray', 'np.asarray', (['a'], {}), '(a)\n', (15018, 15021), True, 'import numpy as np\n'), ((15947, 15970), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['a'], {}), '(a)\n', (15967, 15970), True, 'import numpy as np\n'), ((17076, 17129), 'numpy.linalg.solve', 'np.linalg.solve', (['self._ham.structure.cells[-1].T', 'com'], {}), '(self._ham.structure.cells[-1].T, com)\n', (17091, 17129), True, 'import numpy as np\n'), ((17171, 17221), 'numpy.linalg.solve', 'np.linalg.solve', (['self._ham.output.cells[-1].T', 'com'], {}), '(self._ham.output.cells[-1].T, com)\n', (17186, 17221), True, 'import numpy as np\n'), ((9225, 9265), 'numpy.array', 'np.array', (['[el_lst[el] for el in indices]'], {}), '([el_lst[el] for el in indices])\n', (9233, 9265), True, 'import numpy as np\n'), ((12725, 12776), 'numpy.array', 'np.array', (["self.interactive_cache['energy_pot'][::2]"], {}), "(self.interactive_cache['energy_pot'][::2])\n", (12733, 12776), True, 'import numpy as np\n'), ((12799, 12845), 'numpy.array', 'np.array', (["self.interactive_cache['energy_kin']"], {}), "(self.interactive_cache['energy_kin'])\n", (12807, 12845), True, 'import numpy as np\n'), ((13085, 13131), 'numpy.array', 'np.array', (["self.interactive_cache['energy_kin']"], {}), "(self.interactive_cache['energy_kin'])\n", (13093, 13131), True, 'import numpy as np\n'), ((13020, 13057), 'numpy.array', 'np.array', (['self._ham.output.energy_pot'], {}), '(self._ham.output.energy_pot)\n', (13028, 13057), True, 'import numpy as np\n')]
import numpy as np from logistic_regression import logistic_kernel_regression, compute_label from kernel_creation import convert_spectral_kernel_quad, convert_spectral_kernel_quint, convert_spectral_kernel_trig from kernel_creation import convert_acid_kernel, convert_acid_quad, convert_mismatch_lev, convert_lect_trig, get_mismatch_dict from kernel_creation import get_correspondances, convert_mismatch_dico, get_full_corres, convert_encode from kernel_creation import compute_test_matrix, compute_K_matrix, convert_lect_acid, compute_K_gaussian from read_fn import read_csv_file_label, read_csv_file_data, save_label, save_data_converted from SVM import SVM, svm_compute_label list_letters = ["A", "C", "G", "T"] list_trig = [a + b + c for a in list_letters for b in list_letters for c in list_letters] list_quad = [a + b + c + d for a in list_letters for b in list_letters for c in list_letters for d in list_letters] list_quint = [a + b + c + d + e for a in list_letters for b in list_letters for c in list_letters for d in list_letters for e in list_letters] list_six = [a + b + c + d + e + f for a in list_letters for b in list_letters for c in list_letters for d in list_letters for e in list_letters for f in list_letters] dico_acid = {'Alanine': [ 'GCU', 'GCC', 'GCA', 'GCG'], 'Arginine': ['CGU', 'CGC', 'CGA', 'CGG' , 'AGA', 'AGG'], 'Asparagine': ['AAU', 'AAC'], 'Acide aspartique': ['GAU', 'GAC'], 'Cysteine': ['UGU', 'UGC'], 'Glutamine': ['CAA', 'CAG'], 'Acide glutamique':['GAA', 'GAG'], 'Glycine':['GGU', 'GGC', 'GGA', 'GGG'], 'Histidine': ['CAU', 'CAC'], 'Isoleucine': ['AUU', 'AUC', 'AUA'], 'Leucine': ['UUA', 'UUG' , 'CUU', 'CUC', 'CUA', 'CUG'], 'Lysine': ['AAA', 'AAG'], 'Methionine': ['AUG'], 'Phenylalanine':['UUU', 'UUC'], 'Proline' :['CCU', 'CCC', 'CCA', 'CCG'], 'Pyrrolysine': ['UAG'], 'Selenocysteine':['UGA'], 'Serine':['UCU', 'UCC', 'UCA', 'UCG' , 'AGU', 'AGC'], 'Threonine':['ACU', 'ACC', 'ACA', 'ACG'], 'Tryptophane':['UGG'], 'Tyrosine':['UAU', 'UAC'], 'Valine':['GUU', 'GUC', 'GUA', 'GUG'], 'Initiation': ['AUG'], 'Terminaison': ['UAG', 'UAA', 'UGA']} def is_pos_def(x): return np.all(np.linalg.eigvals(x) > 0) ## Parameters lamb_log = 0.0000001 lamb_svm = 0.00001 sigma = 0.8 add_param = 10.**(-10) list_seq_id = list_six mis_lev = False if mis_lev: dict_mismatch = get_mismatch_dict(list_seq_id) mis_dic = False size_seq = 6 nb_mis = 0 beg = 0 if mis_dic: dict_corres = get_correspondances(list_seq_id, nb_mis, list_letters) list_mis_corres = dict_corres.keys() print(list_mis_corres) mis_dic_full = False if mis_dic_full: dict_corres = get_full_corres(list_seq_id, nb_mis, list_letters) list_mis_corres = dict_corres.keys() ## list_labels_log = [] list_labels_svm = [] for name in [ "0", "1","2"]: print ("beginning loading of the data") # Training data sequences = read_csv_file_data("data/Xtr"+ name+ ".csv") #list_converted = convert_spectral_kernel_trig(sequences, list_seq_id) #list_converted = convert_spectral_kernel_quad(sequences, list_quad) list_converted = convert_spectral_kernel_quint(sequences, list_quint) #list_converted = convert_spectral_kernel_quint(sequences, list_quint) #list_converted = convert_acid_kernel(sequences, dico_acid) #list_converted = convert_acid_quad(sequences, dico_acid, list_quad #list_converted = convert_mismatch_lev(sequences, list_seq_id, dict_mismatch, size_seq, nb_mis) #list_converted = convert_lect_trig(sequences, list_seq_id, beg) #list_converted = convert_lect_acid(sequences, dico_acid, beg) #list_converted = convert_mismatch_dico(sequences, dict_corres,list_mis_corres, list_seq_id) #list_converted = convert_encode(sequences, list_letters) training = np.asarray(list_converted, dtype = float) # to avoid huge values and to save time for the logistic regression : sm = np.sum(training, axis= 1) training = training/sm[0] mean = np.mean(training, axis= 0) training = training - mean #vst = np.std(training, axis= 0) #training = training / vst #save_data_converted("spectral_kernel/Xtr"+ name+ ".csv", training) # label training data label = read_csv_file_label("data/Ytr"+ name+ ".csv") label= np.asarray(label).reshape((len(label), )) # select what will be the test for training size_test = int(training.shape[0]/10) test_train = training[0:size_test] label_test_train = label[0:size_test] print( label_test_train.shape) size_total = training.shape[0] training = training[size_test:size_total] label_train = label[size_test:size_total] print (label_train.shape) # Test data sequences_test = read_csv_file_data("data/Xte"+ name+ ".csv") #list_converted_test = convert_spectral_kernel_trig(sequences_test, list_seq_id) #list_converted_test = convert_spectral_kernel_quad(sequences_test, list_quad) list_converted_test = convert_spectral_kernel_quint(sequences_test, list_quint) #list_converted_test = convert_acid_kernel(sequences_test, dico_acid) #list_converted_test = convert_acid_quad(sequences_test, dico_acid, list_quad) #list_converted_test = convert_mismatch_lev(sequences_test, list_seq_id, dict_mismatch, size_seq, nb_mis) #list_converted_test = convert_lect_trig(sequences_test, list_seq_id, beg ) #list_converted_test = convert_lect_acid(sequences_test, dico_acid, beg) #list_converted_test = convert_mismatch_dico(sequences_test, dict_corres,list_mis_corres, list_seq_id) #list_converted_test = convert_encode(sequences, list_letters) testing = np.asarray(list_converted_test, dtype = float) # to avoid huge values and to save time for the logistic regression : testing = testing/sm[0] testing = testing - mean #testing = testing/ vst # param for each dataset: """if name=="0": lamb_svm = 0.000008 add_param = 10. ** (-10) if name=="1": lamb_svm = 0.00001 add_param = 10.**(-10) if name == "2": lamb_svm = 0.000005 add_param=10.**(-9)""" if name=="2": add_param = 10**(-9) print ("data loaded") # Computing the kernel print ("beginning computing K") K = compute_K_matrix(training) add = add_param*np.identity(K.shape[0]) K_add = K + add # to make it positive definite #K = compute_K_gaussian(training, sigma) #K_add = K print(K) print("K shape", K.shape) print(is_pos_def(K_add)) K_test_train = compute_test_matrix(training, test_train) print (K_test_train.shape) print ("K computed") """#Training : kernel logistic regression alpha = logistic_kernel_regression(K, label_train, lamb_log, 15, K_test_train, label_test_train) # Testing : kernel logistic regression Ktest = compute_test_matrix(training, testing) labels_test = compute_label(Ktest, alpha) list_labels_log = list_labels_log + labels_test""" # Training : SVM alpha = SVM(K_add, label_train, lamb_svm, K_test_train, label_test_train) print(alpha) # Testing : kernel logistic regression Ktest = compute_test_matrix(training, testing) labels_test = svm_compute_label(Ktest, alpha) list_labels_svm = list_labels_svm + labels_test save_label(0, list_labels_svm,"results/SVM-quint-centered-mixed.csv" )
[ "read_fn.save_label", "kernel_creation.get_mismatch_dict", "kernel_creation.compute_test_matrix", "numpy.sum", "numpy.linalg.eigvals", "SVM.SVM", "numpy.asarray", "numpy.identity", "read_fn.read_csv_file_label", "kernel_creation.compute_K_matrix", "SVM.svm_compute_label", "numpy.mean", "kernel_creation.convert_spectral_kernel_quint", "kernel_creation.get_full_corres", "kernel_creation.get_correspondances", "read_fn.read_csv_file_data" ]
[((7342, 7412), 'read_fn.save_label', 'save_label', (['(0)', 'list_labels_svm', '"""results/SVM-quint-centered-mixed.csv"""'], {}), "(0, list_labels_svm, 'results/SVM-quint-centered-mixed.csv')\n", (7352, 7412), False, 'from read_fn import read_csv_file_label, read_csv_file_data, save_label, save_data_converted\n'), ((2416, 2446), 'kernel_creation.get_mismatch_dict', 'get_mismatch_dict', (['list_seq_id'], {}), '(list_seq_id)\n', (2433, 2446), False, 'from kernel_creation import convert_acid_kernel, convert_acid_quad, convert_mismatch_lev, convert_lect_trig, get_mismatch_dict\n'), ((2527, 2581), 'kernel_creation.get_correspondances', 'get_correspondances', (['list_seq_id', 'nb_mis', 'list_letters'], {}), '(list_seq_id, nb_mis, list_letters)\n', (2546, 2581), False, 'from kernel_creation import get_correspondances, convert_mismatch_dico, get_full_corres, convert_encode\n'), ((2706, 2756), 'kernel_creation.get_full_corres', 'get_full_corres', (['list_seq_id', 'nb_mis', 'list_letters'], {}), '(list_seq_id, nb_mis, list_letters)\n', (2721, 2756), False, 'from kernel_creation import get_correspondances, convert_mismatch_dico, get_full_corres, convert_encode\n'), ((2953, 2999), 'read_fn.read_csv_file_data', 'read_csv_file_data', (["('data/Xtr' + name + '.csv')"], {}), "('data/Xtr' + name + '.csv')\n", (2971, 2999), False, 'from read_fn import read_csv_file_label, read_csv_file_data, save_label, save_data_converted\n'), ((3167, 3219), 'kernel_creation.convert_spectral_kernel_quint', 'convert_spectral_kernel_quint', (['sequences', 'list_quint'], {}), '(sequences, list_quint)\n', (3196, 3219), False, 'from kernel_creation import convert_spectral_kernel_quad, convert_spectral_kernel_quint, convert_spectral_kernel_trig\n'), ((3844, 3883), 'numpy.asarray', 'np.asarray', (['list_converted'], {'dtype': 'float'}), '(list_converted, dtype=float)\n', (3854, 3883), True, 'import numpy as np\n'), ((3970, 3994), 'numpy.sum', 'np.sum', (['training'], {'axis': '(1)'}), '(training, axis=1)\n', (3976, 3994), True, 'import numpy as np\n'), ((4038, 4063), 'numpy.mean', 'np.mean', (['training'], {'axis': '(0)'}), '(training, axis=0)\n', (4045, 4063), True, 'import numpy as np\n'), ((4277, 4324), 'read_fn.read_csv_file_label', 'read_csv_file_label', (["('data/Ytr' + name + '.csv')"], {}), "('data/Ytr' + name + '.csv')\n", (4296, 4324), False, 'from read_fn import read_csv_file_label, read_csv_file_data, save_label, save_data_converted\n'), ((4778, 4824), 'read_fn.read_csv_file_data', 'read_csv_file_data', (["('data/Xte' + name + '.csv')"], {}), "('data/Xte' + name + '.csv')\n", (4796, 4824), False, 'from read_fn import read_csv_file_label, read_csv_file_data, save_label, save_data_converted\n'), ((5017, 5074), 'kernel_creation.convert_spectral_kernel_quint', 'convert_spectral_kernel_quint', (['sequences_test', 'list_quint'], {}), '(sequences_test, list_quint)\n', (5046, 5074), False, 'from kernel_creation import convert_spectral_kernel_quad, convert_spectral_kernel_quint, convert_spectral_kernel_trig\n'), ((5687, 5731), 'numpy.asarray', 'np.asarray', (['list_converted_test'], {'dtype': 'float'}), '(list_converted_test, dtype=float)\n', (5697, 5731), True, 'import numpy as np\n'), ((6311, 6337), 'kernel_creation.compute_K_matrix', 'compute_K_matrix', (['training'], {}), '(training)\n', (6327, 6337), False, 'from kernel_creation import compute_test_matrix, compute_K_matrix, convert_lect_acid, compute_K_gaussian\n'), ((6584, 6625), 'kernel_creation.compute_test_matrix', 'compute_test_matrix', (['training', 'test_train'], {}), '(training, test_train)\n', (6603, 6625), False, 'from kernel_creation import compute_test_matrix, compute_K_matrix, convert_lect_acid, compute_K_gaussian\n'), ((7061, 7126), 'SVM.SVM', 'SVM', (['K_add', 'label_train', 'lamb_svm', 'K_test_train', 'label_test_train'], {}), '(K_add, label_train, lamb_svm, K_test_train, label_test_train)\n', (7064, 7126), False, 'from SVM import SVM, svm_compute_label\n'), ((7199, 7237), 'kernel_creation.compute_test_matrix', 'compute_test_matrix', (['training', 'testing'], {}), '(training, testing)\n', (7218, 7237), False, 'from kernel_creation import compute_test_matrix, compute_K_matrix, convert_lect_acid, compute_K_gaussian\n'), ((7256, 7287), 'SVM.svm_compute_label', 'svm_compute_label', (['Ktest', 'alpha'], {}), '(Ktest, alpha)\n', (7273, 7287), False, 'from SVM import SVM, svm_compute_label\n'), ((6358, 6381), 'numpy.identity', 'np.identity', (['K.shape[0]'], {}), '(K.shape[0])\n', (6369, 6381), True, 'import numpy as np\n'), ((2229, 2249), 'numpy.linalg.eigvals', 'np.linalg.eigvals', (['x'], {}), '(x)\n', (2246, 2249), True, 'import numpy as np\n'), ((4334, 4351), 'numpy.asarray', 'np.asarray', (['label'], {}), '(label)\n', (4344, 4351), True, 'import numpy as np\n')]
# Script wh helps to plot Figures 3A and 3B import matplotlib.pyplot as plt import pandas as pd import numpy as np # Include all GENES, those containing Indels and SNVS (that's why I repeat this step of loading "alleles" dataframe) This prevents badly groupping in 20210105_plotStacked...INDELS.py alleles = pd.read_csv('/path/to/Alleles_20201228.csv',sep='\t') #alleles['actionable'].loc[(alleles['SYMBOL'] == 'CYP4F2') & (alleles['allele'] == '*2')] = 'Yes' alleles = alleles.loc[(alleles['count_carrier_ids'].astype(str) != 'nan') & (alleles['actionable'] == 'Yes')].copy() GENES = list(set(list(alleles['SYMBOL']))) dff = pd.read_csv('/path/to/phenotypes_20210107.csv',sep='\t') mask = (dff['N_alleles'] != 0) & (dff['Phenotype_G6PD'] != 'G6PD_Normal') dff_valid = dff[mask] dff['N_phenotypes'] = 0 dff['Phenotype'] = dff['Phenotype'].apply(lambda x: ','.join([i for i in x.split(',') if i != 'G6PD_Normal'])) dff.loc[mask, 'N_phenotypes'] = dff_valid['Phenotype'].apply(lambda x: len(x.split(','))) gf = dff.groupby('N_phenotypes')['sample'].count() GF = {'Nr. phenotypes': list(gf.index), 'Count':100*(gf.values / gf.sum()), 'Group':['(N=5001)']*len(gf)} GF = pd.DataFrame(GF) tf = GF.iloc[0:4] d = {'Nr. phenotypes':'[4,7]', 'Count':sum(GF['Count'].iloc[4:]), 'Group':'(N=5001)'} tf = tf.append(d, ignore_index=True) bottom = 0 f, ax1 = plt.subplots(figsize=(2,4)) f.set_size_inches(2.7, 4.0) for i,j, in zip(list(tf['Count'].values), list(tf['Nr. phenotypes'])): ax1.bar('N=5001',i,label=j, bottom = bottom, edgecolor = 'black') bottom = bottom + i handles, labels = ax1.get_legend_handles_labels() ax1.legend(handles[::-1], labels[::-1], loc='center left',bbox_to_anchor=(1.0, 0.5), title='Nr.alleles', fontsize=14,title_fontsize=14) # title = TITLE, plt.ylabel('%',fontsize=14) plt.yticks(np.arange(0, 100,10 )) plt.subplots_adjust(left=0.23, bottom=0.1, right=0.5, top=0.95, wspace=0.14, hspace=0.24) plt.savefig('/path/to/Figures/Figure_3A_nrphenotypes.png',format = 'png', dpi = 500) plt.show() ####################################### FIGURE 3B import matplotlib.pyplot as plt import pandas as pd import numpy as np # Include all GENES, those containing Indels and SNVS (that's why I repeat this step of loading "alleles" dataframe) This prevents badly groupping in 20210105_plotStacked...INDELS.py alleles = pd.read_csv('/path/to/Alleles_20201228.csv',sep='\t') #alleles['actionable'].loc[(alleles['SYMBOL'] == 'CYP4F2') & (alleles['allele'] == '*2')] = 'Yes' alleles = alleles.loc[(alleles['count_carrier_ids'].astype(str) != 'nan') & (alleles['actionable'] == 'Yes')].copy() GENES = list(set(list(alleles['SYMBOL']))) dff = pd.read_csv('/path/to/phenotypes_20210107.csv',sep='\t') #dff = dff.loc[dff['from'] == 'ESPAÑA'] mask = (dff['N_alleles'] != 0) & (dff['Phenotype_G6PD'] != 'G6PD_Normal') dff_valid = dff[mask] dff['N_phenotypes'] = 0 dff['Phenotype'] = dff['Phenotype'].apply(lambda x: ','.join([i for i in x.split(',') if i != 'G6PD_Normal'])) dff.loc[mask, 'N_phenotypes'] = dff_valid['Phenotype'].apply(lambda x: len(x.split(','))) GENES.sort() pct_phenot = list() for gene in GENES: pct_phenot.append(100*(dff.groupby('Phenotype_' + gene)['sample'].count().values.sum() / len(dff))) f, ax1 = plt.subplots(figsize=(6,3.5)) plt.grid(axis='x') plt.barh(GENES, [100]*len(GENES), align='center', height=.35, color='tab:grey',label='Actionable phenotype') plt.barh(GENES, pct_phenot, align='center', height=.35, color='tab:red',label='Actionable phenotype',edgecolor = 'k') plt.xlim([0,100]) plt.xlabel('% population with pharmacogenetic phenotype (n=5001)', fontsize=12) plt.subplots_adjust(left=0.130, bottom=0.140, right=0.945, top=0.97, wspace=0.14, hspace=0.24) #plt.savefig('/path/to/Figures/Fig3B.png',format = 'png', dpi = 500) plt.savefig('Fig3B.png',format = 'png', dpi = 500) plt.show() '''### Figure 2A cols = ['N_alleles','SNV_N_alleles','INDELS_N_alleles'] gf = df.groupby(cols[0])['sample'].count().reset_index() gf = gf.rename(columns={'sample':cols[0] + '_all'}) dgf = dict(zip(list(df.groupby(cols[1])['sample'].count().index), list(df.groupby(cols[1])['sample'].count().values))) plt.subplots_adjust(left=0.10, bottom=0.08, right=0.85, top=0.90, wspace=0.14, hspace=0.24) plt.xticks(rotation=0) plt.ylim(0,100) plt.xlabel('') plt.show() plt.xticks(rotation=90) plt.ylim(0,100) plt.ylabel('%') plt.show()'''
[ "pandas.DataFrame", "matplotlib.pyplot.xlim", "matplotlib.pyplot.show", "pandas.read_csv", "matplotlib.pyplot.barh", "numpy.arange", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig", "matplotlib.pyplot.grid" ]
[((309, 363), 'pandas.read_csv', 'pd.read_csv', (['"""/path/to/Alleles_20201228.csv"""'], {'sep': '"""\t"""'}), "('/path/to/Alleles_20201228.csv', sep='\\t')\n", (320, 363), True, 'import pandas as pd\n'), ((629, 686), 'pandas.read_csv', 'pd.read_csv', (['"""/path/to/phenotypes_20210107.csv"""'], {'sep': '"""\t"""'}), "('/path/to/phenotypes_20210107.csv', sep='\\t')\n", (640, 686), True, 'import pandas as pd\n'), ((1170, 1186), 'pandas.DataFrame', 'pd.DataFrame', (['GF'], {}), '(GF)\n', (1182, 1186), True, 'import pandas as pd\n'), ((1350, 1378), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(2, 4)'}), '(figsize=(2, 4))\n', (1362, 1378), True, 'import matplotlib.pyplot as plt\n'), ((1774, 1802), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""%"""'], {'fontsize': '(14)'}), "('%', fontsize=14)\n", (1784, 1802), True, 'import matplotlib.pyplot as plt\n'), ((1836, 1929), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.23)', 'bottom': '(0.1)', 'right': '(0.5)', 'top': '(0.95)', 'wspace': '(0.14)', 'hspace': '(0.24)'}), '(left=0.23, bottom=0.1, right=0.5, top=0.95, wspace=0.14,\n hspace=0.24)\n', (1855, 1929), True, 'import matplotlib.pyplot as plt\n'), ((1926, 2011), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""/path/to/Figures/Figure_3A_nrphenotypes.png"""'], {'format': '"""png"""', 'dpi': '(500)'}), "('/path/to/Figures/Figure_3A_nrphenotypes.png', format='png',\n dpi=500)\n", (1937, 2011), True, 'import matplotlib.pyplot as plt\n'), ((2011, 2021), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2019, 2021), True, 'import matplotlib.pyplot as plt\n'), ((2338, 2392), 'pandas.read_csv', 'pd.read_csv', (['"""/path/to/Alleles_20201228.csv"""'], {'sep': '"""\t"""'}), "('/path/to/Alleles_20201228.csv', sep='\\t')\n", (2349, 2392), True, 'import pandas as pd\n'), ((2657, 2714), 'pandas.read_csv', 'pd.read_csv', (['"""/path/to/phenotypes_20210107.csv"""'], {'sep': '"""\t"""'}), "('/path/to/phenotypes_20210107.csv', sep='\\t')\n", (2668, 2714), True, 'import pandas as pd\n'), ((3242, 3272), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(6, 3.5)'}), '(figsize=(6, 3.5))\n', (3254, 3272), True, 'import matplotlib.pyplot as plt\n'), ((3272, 3290), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'axis': '"""x"""'}), "(axis='x')\n", (3280, 3290), True, 'import matplotlib.pyplot as plt\n'), ((3400, 3522), 'matplotlib.pyplot.barh', 'plt.barh', (['GENES', 'pct_phenot'], {'align': '"""center"""', 'height': '(0.35)', 'color': '"""tab:red"""', 'label': '"""Actionable phenotype"""', 'edgecolor': '"""k"""'}), "(GENES, pct_phenot, align='center', height=0.35, color='tab:red',\n label='Actionable phenotype', edgecolor='k')\n", (3408, 3522), True, 'import matplotlib.pyplot as plt\n'), ((3518, 3536), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 100]'], {}), '([0, 100])\n', (3526, 3536), True, 'import matplotlib.pyplot as plt\n'), ((3536, 3615), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""% population with pharmacogenetic phenotype (n=5001)"""'], {'fontsize': '(12)'}), "('% population with pharmacogenetic phenotype (n=5001)', fontsize=12)\n", (3546, 3615), True, 'import matplotlib.pyplot as plt\n'), ((3616, 3713), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.13)', 'bottom': '(0.14)', 'right': '(0.945)', 'top': '(0.97)', 'wspace': '(0.14)', 'hspace': '(0.24)'}), '(left=0.13, bottom=0.14, right=0.945, top=0.97, wspace=\n 0.14, hspace=0.24)\n', (3635, 3713), True, 'import matplotlib.pyplot as plt\n'), ((3780, 3827), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Fig3B.png"""'], {'format': '"""png"""', 'dpi': '(500)'}), "('Fig3B.png', format='png', dpi=500)\n", (3791, 3827), True, 'import matplotlib.pyplot as plt\n'), ((3832, 3842), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3840, 3842), True, 'import matplotlib.pyplot as plt\n'), ((1813, 1834), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(10)'], {}), '(0, 100, 10)\n', (1822, 1834), True, 'import numpy as np\n')]
import numpy as np import os from astropy.io import fits from astropy.stats import sigma_clip, sigma_clipped_stats from specklepy.logging import logger from specklepy.reduction.subwindow import SubWindow from specklepy.utils.time import default_time_stamp class MasterDark(object): extensions = {'variance': 'VAR', 'mask': 'MASK'} def __init__(self, file_list, file_name='MasterDark.fits', file_path=None, out_dir=None, setup=None, sub_window=None, new=True): self.files = file_list self.file_name = self.insert_setup_to_file_name(file_name=file_name, setup=setup) self.file_path = file_path if file_path is not None else '' self.out_dir = out_dir if out_dir is not None else '' # Store sub-window if isinstance(sub_window, str): self.sub_window = sub_window else: self.sub_window = np.unique(sub_window)[0] # Initialize maps self.image = None self.var = None self.mask = None @classmethod def from_file(cls, file_path): # Create object from path information out_dir, file_name = os.path.split(file_path) obj = cls(file_list=None, file_name=file_name, out_dir=out_dir, setup=None) # Load data from file obj.image = fits.getdata(obj.path) try: obj.var = fits.getdata(obj.path, obj.extensions.get('variance')) except KeyError: logger.debug(f"Loading MasterDark from file {obj.path!r} without {obj.extensions.get('variance')!r} " f"extension") try: obj.mask = fits.getdata(obj.path, obj.extensions.get('mask')).astype(bool) except KeyError: logger.debug(f"Loading MasterDark from file {obj.path!r} without {obj.extensions.get('mask')!r} " f"extension") obj.sub_window = fits.getheader(obj.path)["HIERARCH SPECKLEPY REDUCTION SUBWIN"] return obj @property def path(self): return os.path.join(self.out_dir, self.file_name) @staticmethod def insert_setup_to_file_name(file_name, setup=None): if setup is None: return file_name else: base, ext = os.path.splitext(file_name) return f"{base}_{setup}{ext}" def combine(self, max_number_frames=None, rejection_threshold=10): logger.info("Combining master dark frame...") # if max_number_frames is not None: # logger.debug(f"Using only the first {max_number_frames} frames of each cube") means = [] vars = [] number_frames = [] # Iterate through files for file in self.files: logger.info(f"Reading DARK frames from file {file!r}...") path = os.path.join(self.file_path, file) with fits.open(path) as hdu_list: data = hdu_list[0].data.squeeze() if data.ndim == 2: means.append(data) vars.append(np.zeros(data.shape)) # self.combine_mask(np.zeros(data.shape, dtype=bool)) number_frames.append(1) elif data.ndim == 3: logger.info("Computing statistics of data cube...") clipped_mean, _, clipped_std = sigma_clipped_stats(data=data, sigma=rejection_threshold, axis=0) # mean = np.mean(data, axis=0) # std = np.std(data, axis=0) # # # Identify outliers based on sigma-clipping # mean_mask = sigma_clip(mean, sigma=rejection_threshold, masked=True).mask # std_mask = sigma_clip(std, sigma=rejection_threshold, masked=True).mask # mask = np.logical_or(mean_mask, std_mask) # mask_indexes = np.array(np.where(mask)).transpose() # # # Re-compute the identified pixels # logger.info(f"Re-measuring {len(mask_indexes)} outliers...") # for mask_index in mask_indexes: # # Extract t-series for the masked pixel # arr = data[:, mask_index[0], mask_index[1]] # # # Compute sigma-clipped statistics for this pixel # arr_mean, _, arr_std = sigma_clipped_stats(arr, sigma=rejection_threshold) # mean[mask_index[0], mask_index[1]] = arr_mean # std[mask_index[0], mask_index[1]] = arr_std # # mean = sigma_clip(mean, sigma=rejection_threshold, masked=True) # std = sigma_clip(std, sigma=rejection_threshold, masked=True) # Store results into lists means.append(clipped_mean) vars.append(np.square(clipped_std)) # self.combine_mask(np.logical_or(mean.mask, std.mask)) number_frames.append(data.shape[0]) else: raise ValueError(f"Shape of data {data.shape} is not understood. Data must be either 2 or " f"3-dimensional!") # Cast list of arrays into 3-dim arrays means = np.array(means) vars = np.array(vars) # Combine variances if (vars == 0).all(): # catch case, where all frames have no variance self.var = np.var(means, axis=0) else: self.var = np.average(vars, axis=0, weights=number_frames) # Build mask based on variances bpm = self.var == 0 # Bad pixel mask if bpm.all(): # Catch case, where all frames have no variance bpm = np.zeros(bpm.shape, dtype=bool) gpm = ~bpm # Good pixel mask # Build weights based on variance, and combine images weights = np.multiply(np.reciprocal(self.var, where=gpm), np.expand_dims(number_frames, (1, 2))) self.image = np.average(means, axis=0, weights=weights) # Combine mask self.mask = bpm # def combine_var(self, new_var): # if self.var is None: # self.var = new_var # else: # self.var = np.add(self.var, new_var) # # def combine_mask(self, new_mask): # if self.mask is None: # self.mask = new_mask # else: # self.mask = np.logical_or(self.mask, new_mask) def write(self, overwrite=True): # Build primary HDU header = fits.Header() for index, file in enumerate(self.files): header.set(f"HIERARCH SPECKLEPY SOURCE FILE{index:04} NAME", os.path.basename(file)) header.set("HIERARCH SPECKLEPY REDUCTION SUBWIN", self.sub_window) primary = fits.PrimaryHDU(data=self.image, header=header) # Build HDU list hdu_list = fits.HDUList([primary]) # Build variance HDU if self.var is not None: var_hdu = fits.ImageHDU(data=self.var, name=self.extensions.get('variance')) hdu_list.append(var_hdu) # Build mask HDU if self.mask is not None: mask_hdu = fits.ImageHDU(data=self.mask.astype(np.int16), name=self.extensions.get('mask')) hdu_list.append(mask_hdu) # Write HDU list to file logger.info(f"Writing master dark frame to file {self.path!r}") hdu_list.writeto(self.path, overwrite=overwrite) def subtract(self, file_path, extension=None, sub_window=None, sub_window_order='xy'): """Subtract the master dark from a file containing image data. The master dark is subtracted from the image or each frame in a data cube. Then uncertainties are propagated. Arguments: file_path (str): Path to the file, containing image data. extension (str, optional): Classifier for the image data extension. sub_window (str, optional): Sub-window string to initialize sub-windows from. sub_window_order (str, optional): Order of axis in the sub-window strings. """ logger.info(f"Subtracting master dark {self.file_name!r} from file at {file_path!r}") # Construct sub-window sub_window = SubWindow.from_str(sub_window, full=self.sub_window, order=sub_window_order) # Construct good pixel mask if self.mask is None: gpm = np.ones(sub_window(self.image).shape, dtype=bool) else: gpm = sub_window(~self.mask) # Load image data data = fits.getdata(file_path, extension) # Subtract if data.ndim == 2: data = np.subtract(data, sub_window(self.image), where=gpm) elif data.ndim == 3: for f, frame in enumerate(data): data[f] = np.subtract(frame, sub_window(self.image), where=gpm) # Propagate variances try: var = fits.getdata(file_path, self.extensions.get('variance')) has_var_hdu = True var = np.add(var, sub_window(self.var), where=gpm) except KeyError: has_var_hdu = False var = sub_window(self.var) # Propagate mask try: mask = fits.getdata(file_path, self.extensions.get('mask')).astype(bool) has_mask_hdu = True mask = np.logical_or(mask, sub_window(self.mask)) except KeyError: has_mask_hdu = False mask = sub_window(self.mask) # Store data to cube with fits.open(file_path, mode='update') as hdu_list: # Update header hdu_list[0].header.set('HIERARCH SPECKLEPY REDUCTION DARKCORR', default_time_stamp()) # Image data hdu_list[0].data = data # Variance data if has_var_hdu: hdu_list[self.extensions.get('variance')].data = var else: var_hdu = fits.ImageHDU(data=var, name=self.extensions.get('variance')) hdu_list.append(var_hdu) # Mask data if has_mask_hdu: hdu_list[self.extensions.get('mask')].data = mask.astype(np.int16) else: mask_hdu = fits.ImageHDU(data=mask.astype(np.int16), name=self.extensions.get('mask')) hdu_list.append(mask_hdu) # Write HDU list to file logger.info(f"Updating dark subtraction in file {file_path!r}") hdu_list.flush()
[ "astropy.stats.sigma_clipped_stats", "astropy.io.fits.PrimaryHDU", "numpy.reciprocal", "astropy.io.fits.Header", "astropy.io.fits.HDUList", "os.path.join", "numpy.unique", "specklepy.reduction.subwindow.SubWindow.from_str", "astropy.io.fits.getdata", "numpy.var", "specklepy.utils.time.default_time_stamp", "numpy.average", "os.path.basename", "specklepy.logging.logger.info", "numpy.square", "astropy.io.fits.open", "numpy.zeros", "numpy.expand_dims", "astropy.io.fits.getheader", "numpy.array", "os.path.splitext", "os.path.split" ]
[((1150, 1174), 'os.path.split', 'os.path.split', (['file_path'], {}), '(file_path)\n', (1163, 1174), False, 'import os\n'), ((1310, 1332), 'astropy.io.fits.getdata', 'fits.getdata', (['obj.path'], {}), '(obj.path)\n', (1322, 1332), False, 'from astropy.io import fits\n'), ((2034, 2076), 'os.path.join', 'os.path.join', (['self.out_dir', 'self.file_name'], {}), '(self.out_dir, self.file_name)\n', (2046, 2076), False, 'import os\n'), ((2397, 2442), 'specklepy.logging.logger.info', 'logger.info', (['"""Combining master dark frame..."""'], {}), "('Combining master dark frame...')\n", (2408, 2442), False, 'from specklepy.logging import logger\n'), ((5342, 5357), 'numpy.array', 'np.array', (['means'], {}), '(means)\n', (5350, 5357), True, 'import numpy as np\n'), ((5373, 5387), 'numpy.array', 'np.array', (['vars'], {}), '(vars)\n', (5381, 5387), True, 'import numpy as np\n'), ((6061, 6103), 'numpy.average', 'np.average', (['means'], {'axis': '(0)', 'weights': 'weights'}), '(means, axis=0, weights=weights)\n', (6071, 6103), True, 'import numpy as np\n'), ((6596, 6609), 'astropy.io.fits.Header', 'fits.Header', ([], {}), '()\n', (6607, 6609), False, 'from astropy.io import fits\n'), ((6850, 6897), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', ([], {'data': 'self.image', 'header': 'header'}), '(data=self.image, header=header)\n', (6865, 6897), False, 'from astropy.io import fits\n'), ((6943, 6966), 'astropy.io.fits.HDUList', 'fits.HDUList', (['[primary]'], {}), '([primary])\n', (6955, 6966), False, 'from astropy.io import fits\n'), ((7400, 7463), 'specklepy.logging.logger.info', 'logger.info', (['f"""Writing master dark frame to file {self.path!r}"""'], {}), "(f'Writing master dark frame to file {self.path!r}')\n", (7411, 7463), False, 'from specklepy.logging import logger\n'), ((8235, 8325), 'specklepy.logging.logger.info', 'logger.info', (['f"""Subtracting master dark {self.file_name!r} from file at {file_path!r}"""'], {}), "(\n f'Subtracting master dark {self.file_name!r} from file at {file_path!r}')\n", (8246, 8325), False, 'from specklepy.logging import logger\n'), ((8374, 8450), 'specklepy.reduction.subwindow.SubWindow.from_str', 'SubWindow.from_str', (['sub_window'], {'full': 'self.sub_window', 'order': 'sub_window_order'}), '(sub_window, full=self.sub_window, order=sub_window_order)\n', (8392, 8450), False, 'from specklepy.reduction.subwindow import SubWindow\n'), ((8683, 8717), 'astropy.io.fits.getdata', 'fits.getdata', (['file_path', 'extension'], {}), '(file_path, extension)\n', (8695, 8717), False, 'from astropy.io import fits\n'), ((1900, 1924), 'astropy.io.fits.getheader', 'fits.getheader', (['obj.path'], {}), '(obj.path)\n', (1914, 1924), False, 'from astropy.io import fits\n'), ((2247, 2274), 'os.path.splitext', 'os.path.splitext', (['file_name'], {}), '(file_name)\n', (2263, 2274), False, 'import os\n'), ((2720, 2777), 'specklepy.logging.logger.info', 'logger.info', (['f"""Reading DARK frames from file {file!r}..."""'], {}), "(f'Reading DARK frames from file {file!r}...')\n", (2731, 2777), False, 'from specklepy.logging import logger\n'), ((2797, 2831), 'os.path.join', 'os.path.join', (['self.file_path', 'file'], {}), '(self.file_path, file)\n', (2809, 2831), False, 'import os\n'), ((5519, 5540), 'numpy.var', 'np.var', (['means'], {'axis': '(0)'}), '(means, axis=0)\n', (5525, 5540), True, 'import numpy as np\n'), ((5578, 5625), 'numpy.average', 'np.average', (['vars'], {'axis': '(0)', 'weights': 'number_frames'}), '(vars, axis=0, weights=number_frames)\n', (5588, 5625), True, 'import numpy as np\n'), ((5802, 5833), 'numpy.zeros', 'np.zeros', (['bpm.shape'], {'dtype': 'bool'}), '(bpm.shape, dtype=bool)\n', (5810, 5833), True, 'import numpy as np\n'), ((5965, 5999), 'numpy.reciprocal', 'np.reciprocal', (['self.var'], {'where': 'gpm'}), '(self.var, where=gpm)\n', (5978, 5999), True, 'import numpy as np\n'), ((6001, 6038), 'numpy.expand_dims', 'np.expand_dims', (['number_frames', '(1, 2)'], {}), '(number_frames, (1, 2))\n', (6015, 6038), True, 'import numpy as np\n'), ((9660, 9695), 'astropy.io.fits.open', 'fits.open', (['file_path'], {'mode': '"""update"""'}), "(file_path, mode='update')\n", (9669, 9695), False, 'from astropy.io import fits\n'), ((10520, 10583), 'specklepy.logging.logger.info', 'logger.info', (['f"""Updating dark subtraction in file {file_path!r}"""'], {}), "(f'Updating dark subtraction in file {file_path!r}')\n", (10531, 10583), False, 'from specklepy.logging import logger\n'), ((895, 916), 'numpy.unique', 'np.unique', (['sub_window'], {}), '(sub_window)\n', (904, 916), True, 'import numpy as np\n'), ((2849, 2864), 'astropy.io.fits.open', 'fits.open', (['path'], {}), '(path)\n', (2858, 2864), False, 'from astropy.io import fits\n'), ((6733, 6755), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (6749, 6755), False, 'import os\n'), ((9813, 9833), 'specklepy.utils.time.default_time_stamp', 'default_time_stamp', ([], {}), '()\n', (9831, 9833), False, 'from specklepy.utils.time import default_time_stamp\n'), ((3035, 3055), 'numpy.zeros', 'np.zeros', (['data.shape'], {}), '(data.shape)\n', (3043, 3055), True, 'import numpy as np\n'), ((3233, 3284), 'specklepy.logging.logger.info', 'logger.info', (['"""Computing statistics of data cube..."""'], {}), "('Computing statistics of data cube...')\n", (3244, 3284), False, 'from specklepy.logging import logger\n'), ((3336, 3401), 'astropy.stats.sigma_clipped_stats', 'sigma_clipped_stats', ([], {'data': 'data', 'sigma': 'rejection_threshold', 'axis': '(0)'}), '(data=data, sigma=rejection_threshold, axis=0)\n', (3355, 3401), False, 'from astropy.stats import sigma_clip, sigma_clipped_stats\n'), ((4930, 4952), 'numpy.square', 'np.square', (['clipped_std'], {}), '(clipped_std)\n', (4939, 4952), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # coding: utf-8 # Contains common methods frequently used across.... # The example reference at the below matplotlib is helpful in choosing an # appropriate colormap for the output plot # https://matplotlib.org/examples/color/colormaps_reference.html # import the necessary packages import numpy as np import matplotlib.pyplot as plt def create_meshgrid(x, y, margin=1, step=0.02): """Create a numoy rectangular meshgrid out of an array of x values and an array of y values @ref https://stackoverflow.com/questions/36013063 /what-is-the-purpose-of-meshgrid-in-python-numpy :x: array-like point x :y: array-like point y :margin: (int) boundary :step: (float) stepping the values, default = 0.02 Examples -------- x = np.array([0, 1, 2, 3, 4]) y = np.array([0, 1, 2, 3, 4]) xx,yy=np.meshgrid(x,y) plt.plot(xx,yy, marker='.', color='k',linestyle='none') """ x_min, x_max = x.min() - margin, x.max() + margin y_min, y_max = y.min() - margin, y.max() + margin # define the mesh grid, with xx and yy holding the grid of # points where the function will be evaluated xx, yy = np.meshgrid( np.arange(x_min, x_max, step), np.arange(y_min, y_max, step)) return xx, yy def draw_decision_boundary(x, y, classifier, margin=1, step=0.02, alpha=0.8, cmap=plt.cm.coolwarm): """Draw decision boundary separating the collections Parameters ---------- x: {array-like}, shape = [n_samples, n_features] y: array-like, shape = [n_samples] margin: margin for the min and max step_size: float This would be the buffer for clarity This is spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i] alpha: float color alpha value cmap: color map """ # set-up the marker generator and color map for plotting markers = ('s', 'o', 'x', '^', 'v') # for data, first set-up a grid for plotting. X0, X1 = x[:, 0], x[:, 1] xx, yy = create_meshgrid(X0, X1, margin, step) mesh = np.array([xx.ravel(), yy.ravel()]) print("np.array: {}", format(mesh)) # compute the classifiers output Z = classifier.predict(mesh.T) Z = Z.reshape(xx.shape) # now plot the contour plt.contourf(xx, yy, Z, alpha=alpha, cmap=cmap) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) for idx, cl in enumerate(np.unique(y)): print("cl: ", cl) plt.scatter( x=x[y == cl, 0], y=x[y == cl, 1], alpha=alpha, marker=markers[idx], label=cl, edgecolor='yellow') def plot_classifier(X, y, classifier, margin=1.0, step_size=0.01, alpha=0.8, test_idx=None, cmap=plt.cm.Paired): """Draw the datapoints and boundaries Parameters ---------- x: {array-like}, shape = [n_samples, n_features] y: array-like, shape = [n_samples] margin: margin for the min and max step_size: float This is spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i] alpha: float blending value to decide transparency - 0 (transparent) and 1 (opaque) test_idx: list cmap: object color map for the output colors of objects """ # set-up the marker generator for plotting markers = ('s', 'o', 'x', '*', 'v') # setup and define a range for plotting the data X0, X1 = X[:, 0], X[:, 1] xx, yy = create_meshgrid(X0, X1, margin=margin, step=step_size) # compute the output of the classifier mesh = np.c_[xx.ravel(), yy.ravel()] mesh_output = classifier.predict(mesh) # reshape the array mesh_output = mesh_output.reshape(xx.shape) # draw and fill contour lines plt.contourf(xx, yy, mesh_output, alpha=0.4, cmap=cmap) # now overlay the training coordinates over the plot # set boundaries plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks((np.arange(int(min(X[:, 0]) - 1), int(max(X[:, 0]) + 1), 1.0))) plt.yticks((np.arange(int(min(X[:, 1]) - 1), int(max(X[:, 1]) + 1), 1.0))) # use a separate marker for each training label for (i, cl) in enumerate(np.unique(y)): plt.scatter( x=X[y == cl, 0], y=X[y == cl, 1], alpha=alpha, marker=markers[i], label=cl, edgecolors='purple') # plotting and highlighting the test samples if test_idx: # x_test, y_test = X[test_idx, :], y[test_idx] x_test = X[test_idx, :] plt.scatter( x_test[:, 0], x_test[:, 1], c='', edgecolors='purple', alpha=alpha, linewidths=1, marker='o', s=100, label='Test Data')
[ "matplotlib.pyplot.scatter", "matplotlib.pyplot.contourf", "numpy.arange", "numpy.unique" ]
[((2481, 2528), 'matplotlib.pyplot.contourf', 'plt.contourf', (['xx', 'yy', 'Z'], {'alpha': 'alpha', 'cmap': 'cmap'}), '(xx, yy, Z, alpha=alpha, cmap=cmap)\n', (2493, 2528), True, 'import matplotlib.pyplot as plt\n'), ((4126, 4181), 'matplotlib.pyplot.contourf', 'plt.contourf', (['xx', 'yy', 'mesh_output'], {'alpha': '(0.4)', 'cmap': 'cmap'}), '(xx, yy, mesh_output, alpha=0.4, cmap=cmap)\n', (4138, 4181), True, 'import matplotlib.pyplot as plt\n'), ((1214, 1243), 'numpy.arange', 'np.arange', (['x_min', 'x_max', 'step'], {}), '(x_min, x_max, step)\n', (1223, 1243), True, 'import numpy as np\n'), ((1245, 1274), 'numpy.arange', 'np.arange', (['y_min', 'y_max', 'step'], {}), '(y_min, y_max, step)\n', (1254, 1274), True, 'import numpy as np\n'), ((2625, 2637), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (2634, 2637), True, 'import numpy as np\n'), ((2674, 2788), 'matplotlib.pyplot.scatter', 'plt.scatter', ([], {'x': 'x[y == cl, 0]', 'y': 'x[y == cl, 1]', 'alpha': 'alpha', 'marker': 'markers[idx]', 'label': 'cl', 'edgecolor': '"""yellow"""'}), "(x=x[y == cl, 0], y=x[y == cl, 1], alpha=alpha, marker=markers[\n idx], label=cl, edgecolor='yellow')\n", (2685, 2788), True, 'import matplotlib.pyplot as plt\n'), ((4567, 4579), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (4576, 4579), True, 'import numpy as np\n'), ((4590, 4703), 'matplotlib.pyplot.scatter', 'plt.scatter', ([], {'x': 'X[y == cl, 0]', 'y': 'X[y == cl, 1]', 'alpha': 'alpha', 'marker': 'markers[i]', 'label': 'cl', 'edgecolors': '"""purple"""'}), "(x=X[y == cl, 0], y=X[y == cl, 1], alpha=alpha, marker=markers[i\n ], label=cl, edgecolors='purple')\n", (4601, 4703), True, 'import matplotlib.pyplot as plt\n'), ((4934, 5070), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_test[:, 0]', 'x_test[:, 1]'], {'c': '""""""', 'edgecolors': '"""purple"""', 'alpha': 'alpha', 'linewidths': '(1)', 'marker': '"""o"""', 's': '(100)', 'label': '"""Test Data"""'}), "(x_test[:, 0], x_test[:, 1], c='', edgecolors='purple', alpha=\n alpha, linewidths=1, marker='o', s=100, label='Test Data')\n", (4945, 5070), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np import seaborn as sns def p_x_given_y(y, mus, sigmas): mu = mus[0] + sigmas[1, 0] / sigmas[0, 0] * (y - mus[1]) sigma = sigmas[0, 0] - sigmas[1, 0] / sigmas[1, 1] * sigmas[1, 0] return np.random.normal(mu, sigma) def p_y_given_x(x, mus, sigmas): mu = mus[1] + sigmas[0, 1] / sigmas[1, 1] * (x - mus[0]) sigma = sigmas[1, 1] - sigmas[0, 1] / sigmas[0, 0] * sigmas[0, 1] return np.random.normal(mu, sigma) def gibbs_sampling(mus, sigmas, iter=10000): samples = np.zeros((iter, 2)) y = np.random.rand() * 10 for i in range(iter): x = p_x_given_y(y, mus, sigmas) y = p_y_given_x(x, mus, sigmas) samples[i, :] = [x, y] return samples if __name__ == "__main__": mus = np.array([5, 5]) sigmas = np.array([[1, 0.9], [0.9, 1]]) samples = gibbs_sampling(mus, sigmas) sns.jointplot(samples[:, 0], samples[:, 1])
[ "numpy.zeros", "numpy.array", "numpy.random.normal", "seaborn.jointplot", "numpy.random.rand" ]
[((218, 245), 'numpy.random.normal', 'np.random.normal', (['mu', 'sigma'], {}), '(mu, sigma)\n', (234, 245), True, 'import numpy as np\n'), ((423, 450), 'numpy.random.normal', 'np.random.normal', (['mu', 'sigma'], {}), '(mu, sigma)\n', (439, 450), True, 'import numpy as np\n'), ((512, 531), 'numpy.zeros', 'np.zeros', (['(iter, 2)'], {}), '((iter, 2))\n', (520, 531), True, 'import numpy as np\n'), ((759, 775), 'numpy.array', 'np.array', (['[5, 5]'], {}), '([5, 5])\n', (767, 775), True, 'import numpy as np\n'), ((789, 819), 'numpy.array', 'np.array', (['[[1, 0.9], [0.9, 1]]'], {}), '([[1, 0.9], [0.9, 1]])\n', (797, 819), True, 'import numpy as np\n'), ((867, 910), 'seaborn.jointplot', 'sns.jointplot', (['samples[:, 0]', 'samples[:, 1]'], {}), '(samples[:, 0], samples[:, 1])\n', (880, 910), True, 'import seaborn as sns\n'), ((540, 556), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (554, 556), True, 'import numpy as np\n')]
# coding: utf-8 # Creates: # * cachito_fe_vel_comp.pdf # In[1]: import os import numpy as np import yaml from astropy.io import ascii as asc from astropy.time import Time import astropy.units as u import astropy.constants as c from astropy.modeling import models, fitting from matplotlib import pyplot as plt #get_ipython().run_line_magic('matplotlib', 'inline') from utilities_az import supernova # In[2]: plt.style.use(['seaborn-paper', 'az-paper-onecol']) # In[3]: TEST_FILE_DIR = '../../data/line_info/testing/' FIG_DIR = './' DATA_DIR = '../../data/line_info' # In[4]: HA = 6563.0 SiII = 6355.0 FeII = 5169.0 IR_dates = Time(['2015-09-05','2015-10-05', '2015-10-10']) # In[5]: sn15oz = supernova.LightCurve2('asassn-15oz') texpl = Time(sn15oz.jdexpl, format='jd') # In[6]: new_fit_cachito = asc.read(os.path.join(TEST_FILE_DIR, 'cachito.tab')) # In[7]: def calc_velocity(obs_wl, rest_wl): velocity = c.c*(obs_wl/rest_wl - 1) return velocity # In[8]: phase_cachito = (Time(new_fit_cachito['date'])-texpl).value velocity_cachito = -1*calc_velocity(new_fit_cachito['vel0'], HA).to(u.km/u.s).value # In[9]: #tbdata_feII = asc.read(os.path.join(DATA_DIR, 'FeII_multi.tab')) #tbdata_feII.remove_columns(['vel1', 'vel_err_left_1', 'vel_err_right_1', 'vel_pew_1', 'vel_pew_err1']) tbdata_feII = asc.read(os.path.join(DATA_DIR, 'FeII_5169.tab')) tbdata_feII.rename_column('vel0', 'velocity') tbdata_feII.rename_column('vel_err_left_0', 'vel_err_left') tbdata_feII.rename_column('vel_err_right_0', 'vel_err_right') tbdata_feII.rename_column('vel_pew_0', 'pew') tbdata_feII.rename_column('vel_pew_err0', 'pew_err') # In[10]: phase_feII = (Time(tbdata_feII['date'])-texpl).value velocity_feII = -1*calc_velocity(tbdata_feII['velocity'], FeII).to(u.km/u.s) # In[15]: fig = plt.figure() fig.subplotpars.update(left=.17, bottom=0.23) ax_Fe = fig.add_subplot(1,1,1) ax_Fe.plot((Time(new_fit_cachito['date'])-texpl).value, -1*calc_velocity(new_fit_cachito['vel0'], SiII).to(u.km/u.s)/1000, '^', label='Cachito (as SiII 6533)') ax_Fe.plot(phase_feII, velocity_feII/1000, 'o', label='FeII (5169)') ax_Fe.set_xticks(np.arange(0, 90, 10)) ax_Fe.legend() ax_Fe.set_ylim(5, 11) ax_Fe.set_xlim(0, 40) ax_Fe.set_xlabel('Phase (day)') ax_Fe.set_ylabel('Velocity (1000 km/s)') plt.savefig(os.path.join(FIG_DIR, 'cachito_fe_vel_comp.pdf'))
[ "astropy.time.Time", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "numpy.arange", "utilities_az.supernova.LightCurve2", "os.path.join" ]
[((426, 477), 'matplotlib.pyplot.style.use', 'plt.style.use', (["['seaborn-paper', 'az-paper-onecol']"], {}), "(['seaborn-paper', 'az-paper-onecol'])\n", (439, 477), True, 'from matplotlib import pyplot as plt\n'), ((660, 708), 'astropy.time.Time', 'Time', (["['2015-09-05', '2015-10-05', '2015-10-10']"], {}), "(['2015-09-05', '2015-10-05', '2015-10-10'])\n", (664, 708), False, 'from astropy.time import Time\n'), ((734, 770), 'utilities_az.supernova.LightCurve2', 'supernova.LightCurve2', (['"""asassn-15oz"""'], {}), "('asassn-15oz')\n", (755, 770), False, 'from utilities_az import supernova\n'), ((779, 811), 'astropy.time.Time', 'Time', (['sn15oz.jdexpl'], {'format': '"""jd"""'}), "(sn15oz.jdexpl, format='jd')\n", (783, 811), False, 'from astropy.time import Time\n'), ((1864, 1876), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1874, 1876), True, 'from matplotlib import pyplot as plt\n'), ((856, 898), 'os.path.join', 'os.path.join', (['TEST_FILE_DIR', '"""cachito.tab"""'], {}), "(TEST_FILE_DIR, 'cachito.tab')\n", (868, 898), False, 'import os\n'), ((1384, 1423), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""FeII_5169.tab"""'], {}), "(DATA_DIR, 'FeII_5169.tab')\n", (1396, 1423), False, 'import os\n'), ((2203, 2223), 'numpy.arange', 'np.arange', (['(0)', '(90)', '(10)'], {}), '(0, 90, 10)\n', (2212, 2223), True, 'import numpy as np\n'), ((2369, 2417), 'os.path.join', 'os.path.join', (['FIG_DIR', '"""cachito_fe_vel_comp.pdf"""'], {}), "(FIG_DIR, 'cachito_fe_vel_comp.pdf')\n", (2381, 2417), False, 'import os\n'), ((1047, 1076), 'astropy.time.Time', 'Time', (["new_fit_cachito['date']"], {}), "(new_fit_cachito['date'])\n", (1051, 1076), False, 'from astropy.time import Time\n'), ((1724, 1749), 'astropy.time.Time', 'Time', (["tbdata_feII['date']"], {}), "(tbdata_feII['date'])\n", (1728, 1749), False, 'from astropy.time import Time\n'), ((1967, 1996), 'astropy.time.Time', 'Time', (["new_fit_cachito['date']"], {}), "(new_fit_cachito['date'])\n", (1971, 1996), False, 'from astropy.time import Time\n')]
import numpy as np from sklearn.metrics import roc_auc_score,jaccard_score import cv2 from torch import nn import torch.nn.functional as F import math from functools import wraps import warnings import weakref from torch.optim.optimizer import Optimizer class WeightedBCE(nn.Module): def __init__(self, weights=[0.4, 0.6]): super(WeightedBCE, self).__init__() self.weights = weights def forward(self, logit_pixel, truth_pixel): # print("====",logit_pixel.size()) logit = logit_pixel.view(-1) truth = truth_pixel.view(-1) assert(logit.shape==truth.shape) loss = F.binary_cross_entropy(logit, truth, reduction='none') pos = (truth>0.5).float() neg = (truth<0.5).float() pos_weight = pos.sum().item() + 1e-12 neg_weight = neg.sum().item() + 1e-12 loss = (self.weights[0]*pos*loss/pos_weight + self.weights[1]*neg*loss/neg_weight).sum() return loss class WeightedDiceLoss(nn.Module): def __init__(self, weights=[0.5, 0.5]): # W_pos=0.8, W_neg=0.2 super(WeightedDiceLoss, self).__init__() self.weights = weights def forward(self, logit, truth, smooth=1e-5): batch_size = len(logit) logit = logit.view(batch_size,-1) truth = truth.view(batch_size,-1) assert(logit.shape==truth.shape) p = logit.view(batch_size,-1) t = truth.view(batch_size,-1) w = truth.detach() w = w*(self.weights[1]-self.weights[0])+self.weights[0] # p = w*(p*2-1) #convert to [0,1] --> [-1, 1] # t = w*(t*2-1) p = w*(p) t = w*(t) intersection = (p * t).sum(-1) union = (p * p).sum(-1) + (t * t).sum(-1) dice = 1 - (2*intersection + smooth) / (union +smooth) # print "------",dice.data loss = dice.mean() return loss class WeightedDiceBCE(nn.Module): def __init__(self,dice_weight=1,BCE_weight=1): super(WeightedDiceBCE, self).__init__() self.BCE_loss = WeightedBCE(weights=[0.5, 0.5]) self.dice_loss = WeightedDiceLoss(weights=[0.5, 0.5]) self.BCE_weight = BCE_weight self.dice_weight = dice_weight def _show_dice(self, inputs, targets): inputs[inputs>=0.5] = 1 inputs[inputs<0.5] = 0 # print("2",np.sum(tmp)) targets[targets>0] = 1 targets[targets<=0] = 0 hard_dice_coeff = 1.0 - self.dice_loss(inputs, targets) return hard_dice_coeff def forward(self, inputs, targets): # inputs = inputs.contiguous().view(-1) # targets = targets.contiguous().view(-1) # print "dice_loss", self.dice_loss(inputs, targets) # print "focal_loss", self.focal_loss(inputs, targets) dice = self.dice_loss(inputs, targets) BCE = self.BCE_loss(inputs, targets) # print "dice",dice # print "focal",focal dice_BCE_loss = self.dice_weight * dice + self.BCE_weight * BCE return dice_BCE_loss def auc_on_batch(masks, pred): '''Computes the mean Area Under ROC Curve over a batch during training''' aucs = [] for i in range(pred.shape[1]): prediction = pred[i][0].cpu().detach().numpy() # print("www",np.max(prediction), np.min(prediction)) mask = masks[i].cpu().detach().numpy() # print("rrr",np.max(mask), np.min(mask)) aucs.append(roc_auc_score(mask.reshape(-1), prediction.reshape(-1))) return np.mean(aucs) def iou_on_batch(masks, pred): '''Computes the mean Area Under ROC Curve over a batch during training''' ious = [] for i in range(pred.shape[0]): pred_tmp = pred[i][0].cpu().detach().numpy() # print("www",np.max(prediction), np.min(prediction)) mask_tmp = masks[i].cpu().detach().numpy() pred_tmp[pred_tmp>=0.5] = 1 pred_tmp[pred_tmp<0.5] = 0 # print("2",np.sum(tmp)) mask_tmp[mask_tmp>0] = 1 mask_tmp[mask_tmp<=0] = 0 # print("rrr",np.max(mask), np.min(mask)) ious.append(jaccard_score(mask_tmp.reshape(-1), pred_tmp.reshape(-1))) return np.mean(ious) def dice_coef(y_true, y_pred): smooth = 1e-5 y_true_f = y_true.flatten() y_pred_f = y_pred.flatten() intersection = np.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth) def dice_on_batch(masks, pred): '''Computes the mean Area Under ROC Curve over a batch during training''' dices = [] for i in range(pred.shape[0]): pred_tmp = pred[i][0].cpu().detach().numpy() # print("www",np.max(prediction), np.min(prediction)) mask_tmp = masks[i].cpu().detach().numpy() pred_tmp[pred_tmp>=0.5] = 1 pred_tmp[pred_tmp<0.5] = 0 # print("2",np.sum(tmp)) mask_tmp[mask_tmp>0] = 1 mask_tmp[mask_tmp<=0] = 0 # print("rrr",np.max(mask), np.min(mask)) dices.append(dice_coef(mask_tmp, pred_tmp)) return np.mean(dices) def save_on_batch(images1, masks, pred, names, vis_path): '''Computes the mean Area Under ROC Curve over a batch during training''' for i in range(pred.shape[0]): pred_tmp = pred[i][0].cpu().detach().numpy() mask_tmp = masks[i].cpu().detach().numpy() pred_tmp[pred_tmp>=0.5] = 255 pred_tmp[pred_tmp<0.5] = 0 mask_tmp[mask_tmp>0] = 255 mask_tmp[mask_tmp<=0] = 0 cv2.imwrite(vis_path+ names[i][:-4]+"_pred.jpg", pred_tmp) cv2.imwrite(vis_path+names[i][:-4]+"_gt.jpg", mask_tmp) class _LRScheduler(object): def __init__(self, optimizer, last_epoch=-1): # Attach optimizer if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer # Initialize epoch and base learning rates if last_epoch == -1: for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) else: for i, group in enumerate(optimizer.param_groups): if 'initial_lr' not in group: raise KeyError("param 'initial_lr' is not specified " "in param_groups[{}] when resuming an optimizer".format(i)) self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) self.last_epoch = last_epoch # Following https://github.com/pytorch/pytorch/issues/20124 # We would like to ensure that `lr_scheduler.step()` is called after # `optimizer.step()` def with_counter(method): if getattr(method, '_with_counter', False): # `optimizer.step()` has already been replaced, return. return method # Keep a weak reference to the optimizer instance to prevent # cyclic references. instance_ref = weakref.ref(method.__self__) # Get the unbound method for the same purpose. func = method.__func__ cls = instance_ref().__class__ del method @wraps(func) def wrapper(*args, **kwargs): instance = instance_ref() instance._step_count += 1 wrapped = func.__get__(instance, cls) return wrapped(*args, **kwargs) # Note that the returned function here is no longer a bound method, # so attributes like `__func__` and `__self__` no longer exist. wrapper._with_counter = True return wrapper self.optimizer.step = with_counter(self.optimizer.step) self.optimizer._step_count = 0 self._step_count = 0 self.step() def state_dict(self): """Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. """ return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): """Loads the schedulers state. Arguments: state_dict (dict): scheduler state. Should be an object returned from a call to :meth:`state_dict`. """ self.__dict__.update(state_dict) def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ return self._last_lr def get_lr(self): # Compute learning rate using chainable form of the scheduler raise NotImplementedError def step(self, epoch=None): # Raise a warning if old pattern is detected # https://github.com/pytorch/pytorch/issues/20124 if self._step_count == 1: if not hasattr(self.optimizer.step, "_with_counter"): warnings.warn("Seems like `optimizer.step()` has been overridden after learning rate scheduler " "initialization. Please, make sure to call `optimizer.step()` before " "`lr_scheduler.step()`. See more details at " "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning) # Just check if there were two first lr_scheduler.step() calls before optimizer.step() elif self.optimizer._step_count < 1: warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " "In PyTorch 1.1.0 and later, you should call them in the opposite order: " "`optimizer.step()` before `lr_scheduler.step()`. Failure to do this " "will result in PyTorch skipping the first value of the learning rate schedule. " "See more details at " "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning) self._step_count += 1 class _enable_get_lr_call: def __init__(self, o): self.o = o def __enter__(self): self.o._get_lr_called_within_step = True return self def __exit__(self, type, value, traceback): self.o._get_lr_called_within_step = False return self with _enable_get_lr_call(self): if epoch is None: self.last_epoch += 1 values = self.get_lr() else: self.last_epoch = epoch if hasattr(self, "_get_closed_form_lr"): values = self._get_closed_form_lr() else: values = self.get_lr() for param_group, lr in zip(self.optimizer.param_groups, values): param_group['lr'] = lr self._last_lr = [group['lr'] for group in self.optimizer.param_groups] class CosineAnnealingWarmRestarts(_LRScheduler): r"""Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr, :math:`T_{cur}` is the number of epochs since the last restart and :math:`T_{i}` is the number of epochs between two warm restarts in SGDR: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right) When :math:`T_{cur}=T_{i}`, set :math:`\eta_t = \eta_{min}`. When :math:`T_{cur}=0` after restart, set :math:`\eta_t=\eta_{max}`. It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Args: optimizer (Optimizer): Wrapped optimizer. T_0 (int): Number of iterations for the first restart. T_mult (int, optional): A factor increases :math:`T_{i}` after a restart. Default: 1. eta_min (float, optional): Minimum learning rate. Default: 0. last_epoch (int, optional): The index of last epoch. Default: -1. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 """ def __init__(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1): if T_0 <= 0 or not isinstance(T_0, int): raise ValueError("Expected positive integer T_0, but got {}".format(T_0)) if T_mult < 1 or not isinstance(T_mult, int): raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult)) self.T_0 = T_0 self.T_i = T_0 self.T_mult = T_mult self.eta_min = eta_min super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch) self.T_cur = self.last_epoch def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", DeprecationWarning) return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.T_cur / self.T_i)) / 2 for base_lr in self.base_lrs] def step(self, epoch=None): """Step could be called after every batch update Example: >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> iters = len(dataloader) >>> for epoch in range(20): >>> for i, sample in enumerate(dataloader): >>> inputs, labels = sample['inputs'], sample['labels'] >>> scheduler.step(epoch + i / iters) >>> optimizer.zero_grad() >>> outputs = net(inputs) >>> loss = criterion(outputs, labels) >>> loss.backward() >>> optimizer.step() This function can be called in an interleaved way. Example: >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> for epoch in range(20): >>> scheduler.step() >>> scheduler.step(26) >>> scheduler.step() # scheduler.step(27), instead of scheduler(20) """ if epoch is None and self.last_epoch < 0: epoch = 0 if epoch is None: epoch = self.last_epoch + 1 self.T_cur = self.T_cur + 1 if self.T_cur >= self.T_i: self.T_cur = self.T_cur - self.T_i self.T_i = self.T_i * self.T_mult else: if epoch < 0: raise ValueError("Expected non-negative epoch, but got {}".format(epoch)) if epoch >= self.T_0: if self.T_mult == 1: self.T_cur = epoch % self.T_0 else: n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult)) self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1) self.T_i = self.T_0 * self.T_mult ** (n) else: self.T_i = self.T_0 self.T_cur = epoch self.last_epoch = math.floor(epoch) class _enable_get_lr_call: def __init__(self, o): self.o = o def __enter__(self): self.o._get_lr_called_within_step = True return self def __exit__(self, type, value, traceback): self.o._get_lr_called_within_step = False return self with _enable_get_lr_call(self): for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
[ "torch.nn.functional.binary_cross_entropy", "numpy.sum", "cv2.imwrite", "math.floor", "numpy.mean", "math.cos", "functools.wraps", "warnings.warn", "math.log", "weakref.ref" ]
[((3473, 3486), 'numpy.mean', 'np.mean', (['aucs'], {}), '(aucs)\n', (3480, 3486), True, 'import numpy as np\n'), ((4124, 4137), 'numpy.mean', 'np.mean', (['ious'], {}), '(ious)\n', (4131, 4137), True, 'import numpy as np\n'), ((4271, 4298), 'numpy.sum', 'np.sum', (['(y_true_f * y_pred_f)'], {}), '(y_true_f * y_pred_f)\n', (4277, 4298), True, 'import numpy as np\n'), ((5000, 5014), 'numpy.mean', 'np.mean', (['dices'], {}), '(dices)\n', (5007, 5014), True, 'import numpy as np\n'), ((628, 682), 'torch.nn.functional.binary_cross_entropy', 'F.binary_cross_entropy', (['logit', 'truth'], {'reduction': '"""none"""'}), "(logit, truth, reduction='none')\n", (650, 682), True, 'import torch.nn.functional as F\n'), ((5442, 5503), 'cv2.imwrite', 'cv2.imwrite', (["(vis_path + names[i][:-4] + '_pred.jpg')", 'pred_tmp'], {}), "(vis_path + names[i][:-4] + '_pred.jpg', pred_tmp)\n", (5453, 5503), False, 'import cv2\n'), ((5509, 5568), 'cv2.imwrite', 'cv2.imwrite', (["(vis_path + names[i][:-4] + '_gt.jpg')", 'mask_tmp'], {}), "(vis_path + names[i][:-4] + '_gt.jpg', mask_tmp)\n", (5520, 5568), False, 'import cv2\n'), ((15174, 15191), 'math.floor', 'math.floor', (['epoch'], {}), '(epoch)\n', (15184, 15191), False, 'import math\n'), ((6976, 7004), 'weakref.ref', 'weakref.ref', (['method.__self__'], {}), '(method.__self__)\n', (6987, 7004), False, 'import weakref\n'), ((7179, 7190), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (7184, 7190), False, 'from functools import wraps\n'), ((12852, 12983), 'warnings.warn', 'warnings.warn', (['"""To get the last learning rate computed by the scheduler, please use `get_last_lr()`."""', 'DeprecationWarning'], {}), "(\n 'To get the last learning rate computed by the scheduler, please use `get_last_lr()`.'\n , DeprecationWarning)\n", (12865, 12983), False, 'import warnings\n'), ((4342, 4358), 'numpy.sum', 'np.sum', (['y_true_f'], {}), '(y_true_f)\n', (4348, 4358), True, 'import numpy as np\n'), ((4361, 4377), 'numpy.sum', 'np.sum', (['y_pred_f'], {}), '(y_pred_f)\n', (4367, 4377), True, 'import numpy as np\n'), ((8904, 9205), 'warnings.warn', 'warnings.warn', (['"""Seems like `optimizer.step()` has been overridden after learning rate scheduler initialization. Please, make sure to call `optimizer.step()` before `lr_scheduler.step()`. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate"""', 'UserWarning'], {}), "(\n 'Seems like `optimizer.step()` has been overridden after learning rate scheduler initialization. Please, make sure to call `optimizer.step()` before `lr_scheduler.step()`. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate'\n , UserWarning)\n", (8917, 9205), False, 'import warnings\n'), ((9460, 9876), 'warnings.warn', 'warnings.warn', (['"""Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate"""', 'UserWarning'], {}), "(\n 'Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate'\n , UserWarning)\n", (9473, 9876), False, 'import warnings\n'), ((14836, 14899), 'math.log', 'math.log', (['(epoch / self.T_0 * (self.T_mult - 1) + 1)', 'self.T_mult'], {}), '(epoch / self.T_0 * (self.T_mult - 1) + 1, self.T_mult)\n', (14844, 14899), False, 'import math\n'), ((13067, 13108), 'math.cos', 'math.cos', (['(math.pi * self.T_cur / self.T_i)'], {}), '(math.pi * self.T_cur / self.T_i)\n', (13075, 13108), False, 'import math\n')]
import unittest import numpy as np from scipy.optimize import root from scipy.interpolate import interp1d from scipy.stats import entropy, poisson import warnings from epipack.numeric_epi_models import ( DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel, ) from epipack.integrators import time_leap_ivp, time_leap_newton from epipack.stochastic_epi_models import StochasticEpiModel class EpiTest(unittest.TestCase): def test_compartments(self): epi = EpiModel(list("SEIR")) assert(all([ i == epi.get_compartment_id(C) for i, C in enumerate("SEIR") ])) assert(epi.get_compartment_id("E") == 1) assert(epi.get_compartment(1) == "E") def test_linear_rates(self): epi = EpiModel(list("SEIR")) epi.add_transition_processes([ ("E", 1.0, "I"), ("I", 1.0, "R"), ]) linear_rates = [ ConstantLinearRate(1.0,1), ConstantLinearRate(1.0,2) ] linear_events = [ np.array([0,-1,+1,0]), np.array([0,0,-1,+1.]) ] for r0, r1 in zip(linear_rates, epi.linear_rate_functions): assert(r0(0,[0.1,0.2,0.3,0.4,0.5]) == r1(0, [0.1,0.2,0.3,0.4,0.5])) for e0, e1 in zip(linear_events, epi.linear_event_updates): assert(all([_e0==_e1 for _e0, _e1 in zip(e0, e1)])) epi = EpiModel(list("SEIR")) _r0 = lambda t, y: 2+np.cos(t) _r1 = lambda t, y: 2+np.sin(t) epi.add_transition_processes([ ("E", _r0, "I"), ("I", _r1, "R"), ]) linear_rates = [ DynamicLinearRate(_r0,1), DynamicLinearRate(_r1,2) ] linear_events = [ np.array([0,-1,+1,0]), np.array([0,0,-1,+1.]) ] for r0, r1 in zip(linear_rates, epi.linear_rate_functions): assert(r0(0,[0.1,0.2,0.3,0.4,0.5]) == r1(0, [0.1,0.2,0.3,0.4,0.5])) for e0, e1 in zip(linear_events, epi.linear_event_updates): assert(all([_e0==_e1 for _e0, _e1 in zip(e0, e1)])) def test_adding_linear_rates(self): epi = EpiModel(list("SEIR")) epi.set_processes([ ("E", 1.0, "I"), ]) epi.add_transition_processes([ ("I", 1.0, "R"), ]) linear_rates = [ ConstantLinearRate(1.0,1), ConstantLinearRate(1.0,2) ] linear_events = [ np.array([0,-1,+1,0]), np.array([0,0,-1,+1.]) ] for r0, r1 in zip(linear_rates, epi.linear_rate_functions): assert(r0(0,[0.1,0.2,0.3,0.4,0.5]) == r1(0, [0.1,0.2,0.3,0.4,0.5])) for e0, e1 in zip(linear_events, epi.linear_event_updates): assert(all([_e0==_e1 for _e0, _e1 in zip(e0, e1)])) def test_quadratic_processes(self): epi = EpiModel(list("SEIAR")) quadratic_rates = [ ConstantQuadraticRate(1.0,2,0)] quadratic_events = [ np.array([-1,+1,0,0,0.])] epi.add_transmission_processes([ ("S", "I", 1.0, "I", "E"), ]) for r0, r1 in zip(quadratic_rates, epi.quadratic_rate_functions): assert(r0(0,[0.1,0.2,0.3,0.4,0.5]) == r1(0, [0.1,0.2,0.3,0.4,0.5])) for e0, e1 in zip(quadratic_events, epi.quadratic_event_updates): assert(all([_e0==_e1 for _e0, _e1 in zip(e0, e1)])) def test_adding_quadratic_processes(self): epi = EpiModel(list("SEIAR")) quadratic_rates = [ ConstantQuadraticRate(1.0,2,0), ConstantQuadraticRate(1.0,3,0) ] quadratic_events = [ np.array([-1,+1,0,0,0.]), np.array([-1,+1,0,0,0.]) ] epi.set_processes([ ("S", "I", 1.0, "I", "E"), ]) epi.add_transmission_processes([ ("S", "A", 1.0, "A", "E"), ]) for r0, r1 in zip(quadratic_rates, epi.quadratic_rate_functions): assert(r0(0,[0.1,0.2,0.3,0.4,0.5]) == r1(0, [0.1,0.2,0.3,0.4,0.5])) for e0, e1 in zip(quadratic_events, epi.quadratic_event_updates): assert(all([_e0==_e1 for _e0, _e1 in zip(e0, e1)])) def test_SIS_with_simulation_restart_and_euler(self): N = 100 epi = SISModel(infection_rate=2,recovery_rate=1,initial_population_size=N) epi.set_initial_conditions({'S':0.99*N,'I':0.01*N}) tt = np.linspace(0,100,2) result = epi.integrate(tt,['S']) assert(np.isclose(result['S'][-1],N/2)) tt = np.linspace(0,100,1000) result = epi.integrate_and_return_by_index(tt,['S'],integrator='euler') assert(np.isclose(result[0,-1],N/2)) def test_repeated_simulation(self): N = 100 epi = SISModel(infection_rate=2,recovery_rate=1,initial_population_size=N) epi.set_initial_conditions({'S':0.99*N,'I':0.01*N}) tt = np.linspace(0,100,100) old_t = tt[0] for it, t in enumerate(tt[1:]): result = epi.integrate_and_return_by_index([old_t,t],integrator='euler',adopt_final_state=True) old_t = t assert(np.isclose(result[0,-1],N/2)) def test_birth_death(self): epi = EpiModel(list("SIR")) R0 = 2 rho = 1 mu = 0.2 eta = R0 * rho with self.assertWarns(UserWarning): epi.set_processes([ ("S", "I", eta, "I", "I"), ("I", rho, "R"), (None, mu, "S"), ("S", mu, None), ("R", mu, None), ("I", mu, None), ]) epi.set_initial_conditions({'S': 0.8, 'I':0.2 }) t = [0,1000] res = epi.integrate(t) assert(np.isclose(res['S'][-1],(mu+rho)/eta)) assert(np.isclose(res['I'][-1],mu/eta*(eta-mu-rho)/(mu+rho))) def test_dynamic_birth(self): A = "A" epi = EpiModel([A]) epi.set_initial_conditions({A:1}) with self.assertWarns(UserWarning): epi.set_processes([ (None, lambda t, y: 2*t, A), ]) res = epi.integrate([0,5]) assert(np.isclose(res[A][-1],5**2+1)) def test_correcting_for_declining_pop_size(self): A, B = list("AB") epi = EpiModel([A, B],10,correct_for_dynamical_population_size=True) epi.add_transition_processes([ #(None, 0.1, A), ]) epi.add_fusion_processes([ (A, B, 1, B), ]) epi.set_initial_conditions({B:4, A:6}) tt = np.linspace(0,30) result = epi.integrate(tt) #from matplotlib import pyplot as pl #pl.plot(tt, result[A], label=A) #pl.plot(tt, result[B], label=B) epi.correct_for_dynamical_population_size = False result = epi.integrate(tt) #pl.plot(tt, result[A], label=A) #pl.plot(tt, result[B], label=B) #pl.legend() #pl.show() def test_fusion_and_adding_rates(self): A, B, C = list("ABC") epi = EpiModel(list("ABC")) # this should not raise a warning that rates do not sum to zero # as it will be actively suppressed epi.add_fusion_processes([ (A, B, 1, C), ]) with self.assertWarns(UserWarning): # this should raise a warning that rates do not sum to zero epi.add_quadratic_events([ ((A, B), 1, [(C, -1),(A, +1)]), ]) # now rates should sum to zero epi.add_quadratic_events([ ((A, B), 1, [(B, +1)]), ]) with self.assertWarns(UserWarning): # this should raise a warning that rates do not sum to zero epi.add_linear_events([ ((A,), 1, [(B,-1)]) ]) def test_initial_condition_warnings(self): A, B, C = list("ABC") epi = EpiModel(list("ABC")) with self.assertWarns(UserWarning): # this should raise a warning that rates do not sum to zero epi.set_initial_conditions({A:0.1,B:0.2}) with self.assertWarns(UserWarning): # this should raise a warning that initial conditions were set twice epi.set_initial_conditions([(A,0.1),(A,0.2)]) def test_custom_models(self): S, I, R = list("SIR") eta = 1 epi = SIModel(eta) epi.set_initial_conditions({"S":0.99, "I":0.01}) epi.integrate([0,1000],adopt_final_state=True) assert(np.isclose(epi.y0[0],0)) eta = 2 rho = 1 epi = SIRModel(eta,rho) S0 = 0.99 epi.set_initial_conditions({S:S0, I:1-S0}) R0 = eta/rho Rinf = lambda x: 1-x-S0*np.exp(-x*R0) res = epi.integrate([0,100]) SIR_theory = root(Rinf,0.5).x[0] assert(np.isclose(res[R][-1],SIR_theory)) omega = 1 epi = SEIRModel(eta,rho,omega) epi.set_initial_conditions({S:S0, I:1-S0}) res = epi.integrate([0,100]) assert(np.isclose(res[R][-1],SIR_theory)) #====================== epi = SISModel(eta, rho, initial_population_size=100) epi.set_initial_conditions({S: 99, I:1 }) tt = np.linspace(0,1000,2) result = epi.integrate(tt) assert(np.isclose(result[S][-1],50)) epi = SIRSModel(eta, rho, omega) epi.set_initial_conditions({S: 0.99, I:0.01 }) tt = np.linspace(0,1000,2) result = epi.integrate(tt) assert(np.isclose(result[R][-1],(1-rho/eta)/(1+omega/rho))) def test_inference_of_temporal_dependence(self,plot=False): data = np.array([ (1.0, 2.00), (10000.0, 2.00), (10001.0, -2.00), ]) times, rates = data[:,0], data[:,1] f = interp1d(times, rates, kind='linear') def infection_rate(t,y): return f(t) S, I = list("SI") N = 100 rec = 1 model = EpiModel([S,I], N) # first, initialize the time to t0 = 1, so # column sum tests do not fail model.set_initial_conditions({S:99,I:1},initial_time=1) # Here, the function will fail to evaluate time dependence # but will warn the user that there were errors in time # evaluation. self.assertWarns(UserWarning,model.set_processes, [ (S, I, infection_rate, I, I), (I, infection_rate, S), ], ) assert(not model.rates_have_explicit_time_dependence) assert(model.rates_have_functional_dependence) # this should warn the user that rates are functionally dependent # but that no temporal dependence could be inferred, to in case # they know that there's a time dependence, they have to state # that explicitly self.assertWarns(UserWarning,model.simulate,tmax=2) model.set_initial_conditions({S:99,I:1},initial_time=1) # here, the time dependence is given explicitly and so # the warning will not be shown model.simulate(tmax=2,rates_have_explicit_time_dependence=True) def test_temporal_gillespie(self,plot=False): scl = 40 def R0(t,y=None): return 4+np.cos(t*scl) S, I = list("SI") N = 100 rec = 1 model = EpiModel([S,I], N) model.set_processes([ (S, I, R0, I, I), (I, rec, S), ]) I0 = 1 S0 = N - I0 model.set_initial_conditions({ S: S0, I: I0, }) taus = [] N_sample = 10000 for sample in range(N_sample): tau, _ = model.get_time_leap_and_proposed_compartment_changes(0) taus.append(tau) I = lambda t: (4*t + 1/scl*np.sin(t*scl)) I2 = lambda t: I(t)*S0*I0/N+I0*rec*t pdf = lambda t: (R0(t)*S0*I0/N + I0*rec) * np.exp(-I2(t)) measured, bins = np.histogram(taus,bins=100,density=True) theory = [ np.exp(-I2(bins[i-1]))-np.exp(-I2(bins[i])) for i in range(1,len(bins)) if measured[i-1] > 0] experi = [ measured[i-1] for i in range(1,len(bins)) if measured[i-1] > 0] # make sure the kullback-leibler divergence is below some threshold if plot: # pragma: no cover import matplotlib.pyplot as pl pl.figure() pl.hist(taus,bins=100,density=True) tt = np.linspace(0,1,100) pl.plot(tt, pdf(tt)) pl.yscale('log') pl.figure() pl.hist(taus,bins=100,density=True) tt = np.linspace(0,1,100) pl.plot(tt, pdf(tt)) pl.show() assert(entropy(theory, experi) < 0.01) def test_temporal_gillespie_repeated_simulation(self,plot=False): scl = 40 def R0(t,y=None): return 4+np.cos(t*scl) S, I = list("SI") N = 100 rec = 1 model = EpiModel([S,I], N) model.set_processes([ (S, I, R0, I, I), (I, rec, S), ]) I0 = 1 S0 = N - I0 model.set_initial_conditions({ S: S0, I: I0, }) taus = [] N_sample = 10000 if plot: from tqdm import tqdm else: tqdm = lambda x: x tt = np.linspace(0,1,100) for sample in tqdm(range(N_sample)): tau = None model.set_initial_conditions({ S: S0, I: I0, }) for _t in tt[1:]: time, result = model.simulate(_t,adopt_final_state=True) #print(time, result['I']) if result['I'][-1] != I0: tau = time[1] break #print() if tau is not None: taus.append(tau) I = lambda t: (4*t + 1/scl*np.sin(t*scl)) I2 = lambda t: I(t)*S0*I0/N+I0*rec*t pdf = lambda t: (R0(t)*S0*I0/N + I0*rec) * np.exp(-I2(t)) measured, bins = np.histogram(taus,bins=100,density=True) theory = [ np.exp(-I2(bins[i-1]))-np.exp(-I2(bins[i])) for i in range(1,len(bins)) if measured[i-1] > 0] experi = [ measured[i-1] for i in range(1,len(bins)) if measured[i-1] > 0] # make sure the kullback-leibler divergence is below some threshold if plot: import matplotlib.pyplot as pl pl.figure() pl.hist(taus,bins=100,density=True) tt = np.linspace(0,1,100) pl.plot(tt, pdf(tt)) pl.yscale('log') pl.figure() pl.hist(taus,bins=100,density=True) tt = np.linspace(0,1,100) pl.plot(tt, pdf(tt)) pl.show() assert(entropy(theory, experi) < 0.01) def test_stochastic_well_mixed(self): S, E, I, R = list("SEIR") N = 75000 tmax = 100 model = EpiModel([S,E,I,R],N) model.set_processes([ ( S, I, 2, E, I ), ( I, 1, R), ( E, 1, I), ]) model.set_initial_conditions({S: N-100, I: 100}) tt = np.linspace(0,tmax,10000) result_int = model.integrate(tt) t, result_sim = model.simulate(tmax,sampling_dt=1,return_compartments=[S, R]) model = StochasticEpiModel([S,E,I,R],N) model.set_link_transmission_processes([ ( I, S, 2, I, E ), ]) model.set_node_transition_processes([ ( I, 1, R), ( E, 1, I), ]) model.set_random_initial_conditions({S: N-100, I: 100}) t, result_sim2 = model.simulate(tmax,sampling_dt=1,return_compartments=[S, R]) for c, res in result_sim2.items(): #print(c, np.abs(1-res[-1]/result_int[c][-1])) #print(c, np.abs(1-res[-1]/result_sim[c][-1])) assert(np.abs(1-res[-1]/result_int[c][-1]) < 0.05) assert(np.abs(1-res[-1]/result_sim[c][-1]) < 0.05) def test_stochastic_fission(self): A, B, C = list("ABC") N = 10 epi = EpiModel([A,B,C],N,correct_for_dynamical_population_size=True) epi.add_fusion_processes([ (A, B, 1.0, C), ]) epi.set_initial_conditions({ A: 5, B: 5}) t, res = epi.simulate(1e9) assert(res[C][-1] == 5) def test_birth_stochastics(self): A, B, C = list("ABC") epi = EpiModel([A,B,C],10,correct_for_dynamical_population_size=True) epi.set_initial_conditions({A:5, B:5}) epi.set_processes([ (None, 1, A), (A, 1, B), (B, 1, None), ],allow_nonzero_column_sums=True) _, res = epi.simulate(200,sampling_dt=0.05) vals = np.concatenate([res[A][_>10], res[B][_>10]]) rv = poisson(vals.mean()) measured, bins = np.histogram(vals,bins=np.arange(10)-0.5,density=True) theory = [ rv.pmf(i) for i in range(0,len(bins)-1) if measured[i] > 0] experi = [ measured[i] for i in range(0,len(bins)-1) if measured[i] > 0] # make sure the kullback-leibler divergence is below some threshold #for a, b in zip(theory, experi): # print(a,b) assert(entropy(theory, experi) < 1e-2) assert(np.median(res[A]) == 1) def test_sampling_callback(self): epi = SIModel(infection_rate=5.0,initial_population_size=100) epi.set_initial_conditions({"S":90,"I":10}) self.assertRaises(ValueError,epi.simulate,1,sampling_callback=lambda x: x) i = 0 samples = [] def sampled(): samples.append(epi.y0[0]) t, res = epi.simulate(10,sampling_dt=0.1,sampling_callback=sampled) assert(all([a==b for a, b in zip(res['S'], samples)])) def test_integral_solvers(self): def get_event_rates(t, y): return y * (0.05 + 0.03 * np.array([ np.cos(t), np.sin(t), np.cos(t)**2, np.sin(t)**2 ])) rand = 0.834053 t0 = 1.0 y0 = np.array([0.1,0.2,0.3,0.4]) t_nwt = time_leap_newton(t0, y0, get_event_rates, rand) t_ivp = time_leap_ivp(t0, y0, get_event_rates, rand) expected = 30.76 numeric = np.array([t_nwt, t_ivp]) assert(np.all( np.abs(numeric-expected)/numeric < 1e-3) ) def test_integrate_until(self): N = 100 epi = SIModel(infection_rate=5.0,initial_population_size=N) epi.set_initial_conditions({"S":90,"I":10}) thresh = 0.5 iS = epi.get_compartment_id("S") stop_condition = lambda t, y: thresh*N - y[iS] t, res = epi.integrate_until(0,stop_condition,return_compartments=['S']) assert(np.isclose(thresh*N,res['S'][-1])) if __name__ == "__main__": import sys T = EpiTest() T.test_fusion_and_adding_rates() T.test_inference_of_temporal_dependence() #T.test_integrate_until() #T.test_integral_solvers() #T.test_temporal_gillespie_repeated_simulation() #T.test_sampling_callback() #T.test_birth_stochastics() #T.test_stochastic_fission() #T.test_correcting_for_declining_pop_size() #T.test_dynamic_birth() #T.test_stochastic_well_mixed() #T.test_temporal_gillespie() #T.test_compartments() #T.test_linear_rates() #T.test_adding_linear_rates() #T.test_quadratic_processes() #T.test_adding_quadratic_processes() #T.test_SIS_with_simulation_restart_and_euler() #T.test_repeated_simulation() #T.test_custom_models() #T.test_birth_death() #T.test_initial_condition_warnings()
[ "matplotlib.pyplot.yscale", "numpy.abs", "numpy.isclose", "numpy.histogram", "matplotlib.pyplot.figure", "epipack.numeric_epi_models.ConstantLinearRate", "numpy.sin", "numpy.exp", "numpy.arange", "scipy.interpolate.interp1d", "epipack.numeric_epi_models.ConstantQuadraticRate", "numpy.linspace", "epipack.numeric_epi_models.DynamicLinearRate", "epipack.numeric_epi_models.SISModel", "epipack.numeric_epi_models.SIRSModel", "epipack.stochastic_epi_models.StochasticEpiModel", "matplotlib.pyplot.show", "numpy.median", "epipack.integrators.time_leap_newton", "numpy.cos", "scipy.optimize.root", "numpy.concatenate", "epipack.numeric_epi_models.EpiModel", "epipack.numeric_epi_models.SIModel", "matplotlib.pyplot.hist", "scipy.stats.entropy", "epipack.numeric_epi_models.SEIRModel", "numpy.array", "epipack.integrators.time_leap_ivp", "epipack.numeric_epi_models.SIRModel" ]
[((4359, 4429), 'epipack.numeric_epi_models.SISModel', 'SISModel', ([], {'infection_rate': '(2)', 'recovery_rate': '(1)', 'initial_population_size': 'N'}), '(infection_rate=2, recovery_rate=1, initial_population_size=N)\n', (4367, 4429), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((4501, 4523), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(2)'], {}), '(0, 100, 2)\n', (4512, 4523), True, 'import numpy as np\n'), ((4578, 4612), 'numpy.isclose', 'np.isclose', (["result['S'][-1]", '(N / 2)'], {}), "(result['S'][-1], N / 2)\n", (4588, 4612), True, 'import numpy as np\n'), ((4625, 4650), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(1000)'], {}), '(0, 100, 1000)\n', (4636, 4650), True, 'import numpy as np\n'), ((4744, 4776), 'numpy.isclose', 'np.isclose', (['result[0, -1]', '(N / 2)'], {}), '(result[0, -1], N / 2)\n', (4754, 4776), True, 'import numpy as np\n'), ((4846, 4916), 'epipack.numeric_epi_models.SISModel', 'SISModel', ([], {'infection_rate': '(2)', 'recovery_rate': '(1)', 'initial_population_size': 'N'}), '(infection_rate=2, recovery_rate=1, initial_population_size=N)\n', (4854, 4916), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((4988, 5012), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(100)'], {}), '(0, 100, 100)\n', (4999, 5012), True, 'import numpy as np\n'), ((5220, 5252), 'numpy.isclose', 'np.isclose', (['result[0, -1]', '(N / 2)'], {}), '(result[0, -1], N / 2)\n', (5230, 5252), True, 'import numpy as np\n'), ((5845, 5887), 'numpy.isclose', 'np.isclose', (["res['S'][-1]", '((mu + rho) / eta)'], {}), "(res['S'][-1], (mu + rho) / eta)\n", (5855, 5887), True, 'import numpy as np\n'), ((5899, 5965), 'numpy.isclose', 'np.isclose', (["res['I'][-1]", '(mu / eta * (eta - mu - rho) / (mu + rho))'], {}), "(res['I'][-1], mu / eta * (eta - mu - rho) / (mu + rho))\n", (5909, 5965), True, 'import numpy as np\n'), ((6020, 6033), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[A]'], {}), '([A])\n', (6028, 6033), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((6270, 6304), 'numpy.isclose', 'np.isclose', (['res[A][-1]', '(5 ** 2 + 1)'], {}), '(res[A][-1], 5 ** 2 + 1)\n', (6280, 6304), True, 'import numpy as np\n'), ((6397, 6461), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[A, B]', '(10)'], {'correct_for_dynamical_population_size': '(True)'}), '([A, B], 10, correct_for_dynamical_population_size=True)\n', (6405, 6461), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((6687, 6705), 'numpy.linspace', 'np.linspace', (['(0)', '(30)'], {}), '(0, 30)\n', (6698, 6705), True, 'import numpy as np\n'), ((8545, 8557), 'epipack.numeric_epi_models.SIModel', 'SIModel', (['eta'], {}), '(eta)\n', (8552, 8557), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((8685, 8709), 'numpy.isclose', 'np.isclose', (['epi.y0[0]', '(0)'], {}), '(epi.y0[0], 0)\n', (8695, 8709), True, 'import numpy as np\n'), ((8758, 8776), 'epipack.numeric_epi_models.SIRModel', 'SIRModel', (['eta', 'rho'], {}), '(eta, rho)\n', (8766, 8776), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((9006, 9040), 'numpy.isclose', 'np.isclose', (['res[R][-1]', 'SIR_theory'], {}), '(res[R][-1], SIR_theory)\n', (9016, 9040), True, 'import numpy as np\n'), ((9075, 9101), 'epipack.numeric_epi_models.SEIRModel', 'SEIRModel', (['eta', 'rho', 'omega'], {}), '(eta, rho, omega)\n', (9084, 9101), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((9203, 9237), 'numpy.isclose', 'np.isclose', (['res[R][-1]', 'SIR_theory'], {}), '(res[R][-1], SIR_theory)\n', (9213, 9237), True, 'import numpy as np\n'), ((9286, 9333), 'epipack.numeric_epi_models.SISModel', 'SISModel', (['eta', 'rho'], {'initial_population_size': '(100)'}), '(eta, rho, initial_population_size=100)\n', (9294, 9333), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((9399, 9422), 'numpy.linspace', 'np.linspace', (['(0)', '(1000)', '(2)'], {}), '(0, 1000, 2)\n', (9410, 9422), True, 'import numpy as np\n'), ((9471, 9500), 'numpy.isclose', 'np.isclose', (['result[S][-1]', '(50)'], {}), '(result[S][-1], 50)\n', (9481, 9500), True, 'import numpy as np\n'), ((9516, 9542), 'epipack.numeric_epi_models.SIRSModel', 'SIRSModel', (['eta', 'rho', 'omega'], {}), '(eta, rho, omega)\n', (9525, 9542), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((9613, 9636), 'numpy.linspace', 'np.linspace', (['(0)', '(1000)', '(2)'], {}), '(0, 1000, 2)\n', (9624, 9636), True, 'import numpy as np\n'), ((9685, 9747), 'numpy.isclose', 'np.isclose', (['result[R][-1]', '((1 - rho / eta) / (1 + omega / rho))'], {}), '(result[R][-1], (1 - rho / eta) / (1 + omega / rho))\n', (9695, 9747), True, 'import numpy as np\n'), ((9819, 9874), 'numpy.array', 'np.array', (['[(1.0, 2.0), (10000.0, 2.0), (10001.0, -2.0)]'], {}), '([(1.0, 2.0), (10000.0, 2.0), (10001.0, -2.0)])\n', (9827, 9874), True, 'import numpy as np\n'), ((9982, 10019), 'scipy.interpolate.interp1d', 'interp1d', (['times', 'rates'], {'kind': '"""linear"""'}), "(times, rates, kind='linear')\n", (9990, 10019), False, 'from scipy.interpolate import interp1d\n'), ((10153, 10172), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[S, I]', 'N'], {}), '([S, I], N)\n', (10161, 10172), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((11611, 11630), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[S, I]', 'N'], {}), '([S, I], N)\n', (11619, 11630), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((12249, 12291), 'numpy.histogram', 'np.histogram', (['taus'], {'bins': '(100)', 'density': '(True)'}), '(taus, bins=100, density=True)\n', (12261, 12291), True, 'import numpy as np\n'), ((13250, 13269), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[S, I]', 'N'], {}), '([S, I], N)\n', (13258, 13269), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((13665, 13687), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (13676, 13687), True, 'import numpy as np\n'), ((14391, 14433), 'numpy.histogram', 'np.histogram', (['taus'], {'bins': '(100)', 'density': '(True)'}), '(taus, bins=100, density=True)\n', (14403, 14433), True, 'import numpy as np\n'), ((15280, 15305), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[S, E, I, R]', 'N'], {}), '([S, E, I, R], N)\n', (15288, 15305), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((15509, 15536), 'numpy.linspace', 'np.linspace', (['(0)', 'tmax', '(10000)'], {}), '(0, tmax, 10000)\n', (15520, 15536), True, 'import numpy as np\n'), ((15680, 15715), 'epipack.stochastic_epi_models.StochasticEpiModel', 'StochasticEpiModel', (['[S, E, I, R]', 'N'], {}), '([S, E, I, R], N)\n', (15698, 15715), False, 'from epipack.stochastic_epi_models import StochasticEpiModel\n'), ((16469, 16535), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[A, B, C]', 'N'], {'correct_for_dynamical_population_size': '(True)'}), '([A, B, C], N, correct_for_dynamical_population_size=True)\n', (16477, 16535), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((16818, 16885), 'epipack.numeric_epi_models.EpiModel', 'EpiModel', (['[A, B, C]', '(10)'], {'correct_for_dynamical_population_size': '(True)'}), '([A, B, C], 10, correct_for_dynamical_population_size=True)\n', (16826, 16885), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((17160, 17208), 'numpy.concatenate', 'np.concatenate', (['[res[A][_ > 10], res[B][_ > 10]]'], {}), '([res[A][_ > 10], res[B][_ > 10]])\n', (17174, 17208), True, 'import numpy as np\n'), ((17760, 17816), 'epipack.numeric_epi_models.SIModel', 'SIModel', ([], {'infection_rate': '(5.0)', 'initial_population_size': '(100)'}), '(infection_rate=5.0, initial_population_size=100)\n', (17767, 17816), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((18421, 18451), 'numpy.array', 'np.array', (['[0.1, 0.2, 0.3, 0.4]'], {}), '([0.1, 0.2, 0.3, 0.4])\n', (18429, 18451), True, 'import numpy as np\n'), ((18465, 18512), 'epipack.integrators.time_leap_newton', 'time_leap_newton', (['t0', 'y0', 'get_event_rates', 'rand'], {}), '(t0, y0, get_event_rates, rand)\n', (18481, 18512), False, 'from epipack.integrators import time_leap_ivp, time_leap_newton\n'), ((18529, 18573), 'epipack.integrators.time_leap_ivp', 'time_leap_ivp', (['t0', 'y0', 'get_event_rates', 'rand'], {}), '(t0, y0, get_event_rates, rand)\n', (18542, 18573), False, 'from epipack.integrators import time_leap_ivp, time_leap_newton\n'), ((18617, 18641), 'numpy.array', 'np.array', (['[t_nwt, t_ivp]'], {}), '([t_nwt, t_ivp])\n', (18625, 18641), True, 'import numpy as np\n'), ((18776, 18830), 'epipack.numeric_epi_models.SIModel', 'SIModel', ([], {'infection_rate': '(5.0)', 'initial_population_size': 'N'}), '(infection_rate=5.0, initial_population_size=N)\n', (18783, 18830), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((19098, 19134), 'numpy.isclose', 'np.isclose', (['(thresh * N)', "res['S'][-1]"], {}), "(thresh * N, res['S'][-1])\n", (19108, 19134), True, 'import numpy as np\n'), ((1173, 1199), 'epipack.numeric_epi_models.ConstantLinearRate', 'ConstantLinearRate', (['(1.0)', '(1)'], {}), '(1.0, 1)\n', (1191, 1199), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((1200, 1226), 'epipack.numeric_epi_models.ConstantLinearRate', 'ConstantLinearRate', (['(1.0)', '(2)'], {}), '(1.0, 2)\n', (1218, 1226), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((1254, 1278), 'numpy.array', 'np.array', (['[0, -1, +1, 0]'], {}), '([0, -1, +1, 0])\n', (1262, 1278), True, 'import numpy as np\n'), ((1277, 1303), 'numpy.array', 'np.array', (['[0, 0, -1, +1.0]'], {}), '([0, 0, -1, +1.0])\n', (1285, 1303), True, 'import numpy as np\n'), ((1845, 1870), 'epipack.numeric_epi_models.DynamicLinearRate', 'DynamicLinearRate', (['_r0', '(1)'], {}), '(_r0, 1)\n', (1862, 1870), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((1871, 1896), 'epipack.numeric_epi_models.DynamicLinearRate', 'DynamicLinearRate', (['_r1', '(2)'], {}), '(_r1, 2)\n', (1888, 1896), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((1924, 1948), 'numpy.array', 'np.array', (['[0, -1, +1, 0]'], {}), '([0, -1, +1, 0])\n', (1932, 1948), True, 'import numpy as np\n'), ((1947, 1973), 'numpy.array', 'np.array', (['[0, 0, -1, +1.0]'], {}), '([0, 0, -1, +1.0])\n', (1955, 1973), True, 'import numpy as np\n'), ((2531, 2557), 'epipack.numeric_epi_models.ConstantLinearRate', 'ConstantLinearRate', (['(1.0)', '(1)'], {}), '(1.0, 1)\n', (2549, 2557), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((2558, 2584), 'epipack.numeric_epi_models.ConstantLinearRate', 'ConstantLinearRate', (['(1.0)', '(2)'], {}), '(1.0, 2)\n', (2576, 2584), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((2612, 2636), 'numpy.array', 'np.array', (['[0, -1, +1, 0]'], {}), '([0, -1, +1, 0])\n', (2620, 2636), True, 'import numpy as np\n'), ((2635, 2661), 'numpy.array', 'np.array', (['[0, 0, -1, +1.0]'], {}), '([0, 0, -1, +1.0])\n', (2643, 2661), True, 'import numpy as np\n'), ((3048, 3080), 'epipack.numeric_epi_models.ConstantQuadraticRate', 'ConstantQuadraticRate', (['(1.0)', '(2)', '(0)'], {}), '(1.0, 2, 0)\n', (3069, 3080), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((3109, 3138), 'numpy.array', 'np.array', (['[-1, +1, 0, 0, 0.0]'], {}), '([-1, +1, 0, 0, 0.0])\n', (3117, 3138), True, 'import numpy as np\n'), ((3643, 3675), 'epipack.numeric_epi_models.ConstantQuadraticRate', 'ConstantQuadraticRate', (['(1.0)', '(2)', '(0)'], {}), '(1.0, 2, 0)\n', (3664, 3675), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((3675, 3707), 'epipack.numeric_epi_models.ConstantQuadraticRate', 'ConstantQuadraticRate', (['(1.0)', '(3)', '(0)'], {}), '(1.0, 3, 0)\n', (3696, 3707), False, 'from epipack.numeric_epi_models import DynamicBirthRate, ConstantBirthRate, DynamicLinearRate, ConstantLinearRate, DynamicQuadraticRate, ConstantQuadraticRate, EpiModel, SISModel, SIModel, SIRModel, SEIRModel, SIRSModel\n'), ((3737, 3766), 'numpy.array', 'np.array', (['[-1, +1, 0, 0, 0.0]'], {}), '([-1, +1, 0, 0, 0.0])\n', (3745, 3766), True, 'import numpy as np\n'), ((3763, 3792), 'numpy.array', 'np.array', (['[-1, +1, 0, 0, 0.0]'], {}), '([-1, +1, 0, 0, 0.0])\n', (3771, 3792), True, 'import numpy as np\n'), ((12653, 12664), 'matplotlib.pyplot.figure', 'pl.figure', ([], {}), '()\n', (12662, 12664), True, 'import matplotlib.pyplot as pl\n'), ((12677, 12714), 'matplotlib.pyplot.hist', 'pl.hist', (['taus'], {'bins': '(100)', 'density': '(True)'}), '(taus, bins=100, density=True)\n', (12684, 12714), True, 'import matplotlib.pyplot as pl\n'), ((12730, 12752), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (12741, 12752), True, 'import numpy as np\n'), ((12796, 12812), 'matplotlib.pyplot.yscale', 'pl.yscale', (['"""log"""'], {}), "('log')\n", (12805, 12812), True, 'import matplotlib.pyplot as pl\n'), ((12825, 12836), 'matplotlib.pyplot.figure', 'pl.figure', ([], {}), '()\n', (12834, 12836), True, 'import matplotlib.pyplot as pl\n'), ((12849, 12886), 'matplotlib.pyplot.hist', 'pl.hist', (['taus'], {'bins': '(100)', 'density': '(True)'}), '(taus, bins=100, density=True)\n', (12856, 12886), True, 'import matplotlib.pyplot as pl\n'), ((12902, 12924), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (12913, 12924), True, 'import numpy as np\n'), ((12968, 12977), 'matplotlib.pyplot.show', 'pl.show', ([], {}), '()\n', (12975, 12977), True, 'import matplotlib.pyplot as pl\n'), ((12993, 13016), 'scipy.stats.entropy', 'entropy', (['theory', 'experi'], {}), '(theory, experi)\n', (13000, 13016), False, 'from scipy.stats import entropy, poisson\n'), ((14776, 14787), 'matplotlib.pyplot.figure', 'pl.figure', ([], {}), '()\n', (14785, 14787), True, 'import matplotlib.pyplot as pl\n'), ((14800, 14837), 'matplotlib.pyplot.hist', 'pl.hist', (['taus'], {'bins': '(100)', 'density': '(True)'}), '(taus, bins=100, density=True)\n', (14807, 14837), True, 'import matplotlib.pyplot as pl\n'), ((14853, 14875), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (14864, 14875), True, 'import numpy as np\n'), ((14919, 14935), 'matplotlib.pyplot.yscale', 'pl.yscale', (['"""log"""'], {}), "('log')\n", (14928, 14935), True, 'import matplotlib.pyplot as pl\n'), ((14948, 14959), 'matplotlib.pyplot.figure', 'pl.figure', ([], {}), '()\n', (14957, 14959), True, 'import matplotlib.pyplot as pl\n'), ((14972, 15009), 'matplotlib.pyplot.hist', 'pl.hist', (['taus'], {'bins': '(100)', 'density': '(True)'}), '(taus, bins=100, density=True)\n', (14979, 15009), True, 'import matplotlib.pyplot as pl\n'), ((15025, 15047), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (15036, 15047), True, 'import numpy as np\n'), ((15091, 15100), 'matplotlib.pyplot.show', 'pl.show', ([], {}), '()\n', (15098, 15100), True, 'import matplotlib.pyplot as pl\n'), ((15116, 15139), 'scipy.stats.entropy', 'entropy', (['theory', 'experi'], {}), '(theory, experi)\n', (15123, 15139), False, 'from scipy.stats import entropy, poisson\n'), ((17636, 17659), 'scipy.stats.entropy', 'entropy', (['theory', 'experi'], {}), '(theory, experi)\n', (17643, 17659), False, 'from scipy.stats import entropy, poisson\n'), ((17683, 17700), 'numpy.median', 'np.median', (['res[A]'], {}), '(res[A])\n', (17692, 17700), True, 'import numpy as np\n'), ((1649, 1658), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (1655, 1658), True, 'import numpy as np\n'), ((1688, 1697), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (1694, 1697), True, 'import numpy as np\n'), ((8971, 8986), 'scipy.optimize.root', 'root', (['Rinf', '(0.5)'], {}), '(Rinf, 0.5)\n', (8975, 8986), False, 'from scipy.optimize import root\n'), ((11522, 11537), 'numpy.cos', 'np.cos', (['(t * scl)'], {}), '(t * scl)\n', (11528, 11537), True, 'import numpy as np\n'), ((13161, 13176), 'numpy.cos', 'np.cos', (['(t * scl)'], {}), '(t * scl)\n', (13167, 13176), True, 'import numpy as np\n'), ((16260, 16299), 'numpy.abs', 'np.abs', (['(1 - res[-1] / result_int[c][-1])'], {}), '(1 - res[-1] / result_int[c][-1])\n', (16266, 16299), True, 'import numpy as np\n'), ((16323, 16362), 'numpy.abs', 'np.abs', (['(1 - res[-1] / result_sim[c][-1])'], {}), '(1 - res[-1] / result_sim[c][-1])\n', (16329, 16362), True, 'import numpy as np\n'), ((8898, 8913), 'numpy.exp', 'np.exp', (['(-x * R0)'], {}), '(-x * R0)\n', (8904, 8913), True, 'import numpy as np\n'), ((12098, 12113), 'numpy.sin', 'np.sin', (['(t * scl)'], {}), '(t * scl)\n', (12104, 12113), True, 'import numpy as np\n'), ((14240, 14255), 'numpy.sin', 'np.sin', (['(t * scl)'], {}), '(t * scl)\n', (14246, 14255), True, 'import numpy as np\n'), ((17287, 17300), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (17296, 17300), True, 'import numpy as np\n'), ((18665, 18691), 'numpy.abs', 'np.abs', (['(numeric - expected)'], {}), '(numeric - expected)\n', (18671, 18691), True, 'import numpy as np\n'), ((18313, 18322), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (18319, 18322), True, 'import numpy as np\n'), ((18324, 18333), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (18330, 18333), True, 'import numpy as np\n'), ((18335, 18344), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (18341, 18344), True, 'import numpy as np\n'), ((18349, 18358), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (18355, 18358), True, 'import numpy as np\n')]
import random import ctypes import sys import wgpu.backends.rs # noqa import numpy as np from pytest import skip from testutils import run_tests, get_default_device from testutils import can_use_wgpu_lib, is_ci from renderutils import render_to_texture, render_to_screen # noqa if not can_use_wgpu_lib: skip("Skipping tests that need the wgpu lib", allow_module_level=True) elif is_ci and sys.platform == "win32": skip("These tests fail on dx12 for some reason", allow_module_level=True) # %% 1D def test_compute_tex_1d_rgba8uint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_1d<u32>; [[group(0), binding(1)]] var r_tex2: texture_storage_1d<rgba8uint,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i: i32 = i32(index.x); let color1 = vec4<i32>(textureLoad(r_tex1, i, 0)); let color2 = vec4<i32>(color1.x + i, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, vec4<u32>(color2)); } """ # Generate data nx, ny, nz, nc = 64, 1, 1, 4 data1 = (ctypes.c_uint8 * nc * nx)() for x in range(nx): for c in range(nc): data1[x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.rgba8uint, wgpu.TextureDimension.d1, (nx, ny, nz, nc), data1, ) def test_compute_tex_1d_rgba16sint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_1d<i32>; [[group(0), binding(1)]] var r_tex2: texture_storage_1d<rgba16sint,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i: i32 = i32(index.x); let color1 : vec4<i32> = textureLoad(r_tex1, i, 0); let color2 = vec4<i32>(color1.x + i, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 128, 1, 1, 4 data1 = (ctypes.c_int16 * nc * nx)() for x in range(nx): for c in range(nc): data1[x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.rgba16sint, wgpu.TextureDimension.d1, (nx, ny, nz, nc), data1, ) def test_compute_tex_1d_r32sint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_1d<i32>; [[group(0), binding(1)]] var r_tex2: texture_storage_1d<r32sint, write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i: i32 = i32(index.x); let color1 : vec4<i32> = textureLoad(r_tex1, i, 0); let color2 = vec4<i32>(color1.x + i, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 256, 1, 1, 1 data1 = (ctypes.c_int32 * nc * nx)() for x in range(nx): for c in range(nc): data1[x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.r32sint, wgpu.TextureDimension.d1, (nx, ny, nz, nc), data1, ) def test_compute_tex_1d_r32float(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_1d<f32>; [[group(0), binding(1)]] var r_tex2: texture_storage_1d<r32float,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i: i32 = i32(index.x); let color1 : vec4<f32> = textureLoad(r_tex1, i, 0); let color2 = vec4<f32>(color1.x + f32(i), color1.y + 1.0, color1.z * 2.0, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 256, 1, 1, 1 data1 = (ctypes.c_float * nc * nx)() for x in range(nx): for c in range(nc): data1[x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.r32float, wgpu.TextureDimension.d1, (nx, ny, nz, nc), data1, ) # %% 2D def test_compute_tex_2d_rgba8uint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_2d<u32>; [[group(0), binding(1)]] var r_tex2: texture_storage_2d<rgba8uint,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec2<i32>(index.xy); let color1 = vec4<i32>(textureLoad(r_tex1, i, 0)); let color2 = vec4<i32>(color1.x + i.x, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, vec4<u32>(color2)); } """ # Generate data nx, ny, nz, nc = 64, 8, 1, 4 data1 = (ctypes.c_uint8 * nc * nx * ny)() for y in range(ny): for x in range(nx): for c in range(nc): data1[y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.rgba8uint, wgpu.TextureDimension.d2, (nx, ny, nz, nc), data1, ) def test_compute_tex_2d_rgba16sint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_2d<i32>; [[group(0), binding(1)]] var r_tex2: texture_storage_2d<rgba16sint, write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec2<i32>(index.xy); let color1: vec4<i32> = textureLoad(r_tex1, i, 0); let color2 = vec4<i32>(color1.x + i.x, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 128, 8, 1, 4 data1 = (ctypes.c_int16 * nc * nx * ny)() for y in range(ny): for x in range(nx): for c in range(nc): data1[y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.rgba16sint, wgpu.TextureDimension.d2, (nx, ny, nz, nc), data1, ) def test_compute_tex_2d_r32sint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_2d<i32>; [[group(0), binding(1)]] var r_tex2: texture_storage_2d<r32sint, write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec2<i32>(index.xy); let color1: vec4<i32> = textureLoad(r_tex1, i, 0); let color2 = vec4<i32>(color1.x + i.x, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 256, 8, 1, 1 data1 = (ctypes.c_int32 * nc * nx * ny)() for y in range(ny): for x in range(nx): for c in range(nc): data1[y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.r32sint, wgpu.TextureDimension.d2, (nx, ny, nz, nc), data1, ) def test_compute_tex_2d_r32float(): compute_shader = """ [[group(0), binding(0)]] var r_tex1:texture_2d<f32>; [[group(0), binding(1)]] var r_tex2: texture_storage_2d<r32float, write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec2<i32>(index.xy); let color1: vec4<f32> = textureLoad(r_tex1, i, 0); let color2 = vec4<f32>(color1.x + f32(i.x), color1.y + 1.0, color1.z * 2.0, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 256, 8, 1, 1 data1 = (ctypes.c_float * nc * nx * ny)() for y in range(ny): for x in range(nx): for c in range(nc): data1[y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.r32float, wgpu.TextureDimension.d2, (nx, ny, nz, nc), data1, ) # %% 3D def test_compute_tex_3d_rgba8uint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_3d<u32>; [[group(0), binding(1)]] var r_tex2: texture_storage_3d<rgba8uint,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec3<i32>(index); let color1 = vec4<i32>(textureLoad(r_tex1, i, 0)); let color2 = vec4<i32>(color1.x + i.x, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, vec4<u32>(color2)); } """ # Generate data nx, ny, nz, nc = 64, 8, 6, 4 data1 = (ctypes.c_uint8 * nc * nx * ny * nz)() for z in range(nz): for y in range(ny): for x in range(nx): for c in range(nc): data1[z][y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.rgba8uint, wgpu.TextureDimension.d3, (nx, ny, nz, nc), data1, ) def test_compute_tex_3d_rgba16sint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_3d<i32>; [[group(0), binding(1)]] var r_tex2: texture_storage_3d<rgba16sint,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec3<i32>(index); let color1: vec4<i32> = textureLoad(r_tex1, i, 0); let color2 = vec4<i32>(color1.x + i.x, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 128, 8, 6, 4 data1 = (ctypes.c_int16 * nc * nx * ny * nz)() for z in range(nz): for y in range(ny): for x in range(nx): for c in range(nc): data1[z][y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.rgba16sint, wgpu.TextureDimension.d3, (nx, ny, nz, nc), data1, ) def test_compute_tex_3d_r32sint(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_3d<i32>; [[group(0), binding(1)]] var r_tex2: texture_storage_3d<r32sint,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec3<i32>(index); let color1: vec4<i32> = textureLoad(r_tex1, i, 0); let color2 = vec4<i32>(color1.x + i.x, color1.y + 1, color1.z * 2, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 256, 8, 6, 1 data1 = (ctypes.c_int32 * nc * nx * ny * nz)() for z in range(nz): for y in range(ny): for x in range(nx): for c in range(nc): data1[z][y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.r32sint, wgpu.TextureDimension.d3, (nx, ny, nz, nc), data1, ) def test_compute_tex_3d_r32float(): compute_shader = """ [[group(0), binding(0)]] var r_tex1: texture_3d<f32>; [[group(0), binding(1)]] var r_tex2: texture_storage_3d<r32float,write>; [[stage(compute), workgroup_size(1)]] fn main([[builtin(global_invocation_id)]] index: vec3<u32>) { let i = vec3<i32>(index); let color1: vec4<f32> = textureLoad(r_tex1, i, 0); let color2 = vec4<f32>(color1.x + f32(i.x), color1.y + 1.0, color1.z * 2.0, color1.a); textureStore(r_tex2, i, color2); } """ # Generate data nx, ny, nz, nc = 64, 8, 6, 1 data1 = (ctypes.c_float * nc * nx * ny * nz)() for z in range(nz): for y in range(ny): for x in range(nx): for c in range(nc): data1[z][y][x][c] = random.randint(0, 20) # Compute and validate _compute_texture( compute_shader, wgpu.TextureFormat.r32float, wgpu.TextureDimension.d3, (nx, ny, nz, nc), data1, ) # %% def _compute_texture(compute_shader, texture_format, texture_dim, texture_size, data1): """ Apply a computation on a texture and validate the result. The shader should: * Add the x-coordinate to the red channel. * Add 1 to the green channel. * Multiply the blue channel by 2. * The alpha channel must remain equal. """ nx, ny, nz, nc = texture_size nbytes = ctypes.sizeof(data1) bpp = nbytes // (nx * ny * nz) # bytes per pixel device = get_default_device() cshader = device.create_shader_module(code=compute_shader) # Create textures and views texture1 = device.create_texture( size=(nx, ny, nz), dimension=texture_dim, format=texture_format, usage=wgpu.TextureUsage.TEXTURE_BINDING | wgpu.TextureUsage.COPY_DST, ) texture2 = device.create_texture( size=(nx, ny, nz), dimension=texture_dim, format=texture_format, usage=wgpu.TextureUsage.STORAGE_BINDING | wgpu.TextureUsage.COPY_SRC, ) texture_view1 = texture1.create_view() texture_view2 = texture2.create_view() # Create buffer that we need to upload the data buffer_usage = wgpu.BufferUsage.COPY_SRC | wgpu.BufferUsage.COPY_DST buffer = device.create_buffer_with_data(data=data1, usage=buffer_usage) assert buffer.usage == buffer_usage texture_sample_type = "float" if "uint" in texture_format: texture_sample_type = "uint" elif "sint" in texture_format: texture_sample_type = "sint" # Define bindings # One can see here why we need 2 textures: one is readonly, one writeonly bindings = [ {"binding": 0, "resource": texture_view1}, {"binding": 1, "resource": texture_view2}, ] binding_layouts = [ { "binding": 0, "visibility": wgpu.ShaderStage.COMPUTE, "texture": { "sample_type": texture_sample_type, "view_dimension": texture_dim, }, }, { "binding": 1, "visibility": wgpu.ShaderStage.COMPUTE, "storage_texture": { "access": wgpu.StorageTextureAccess.write_only, "format": texture_format, "view_dimension": texture_dim, }, }, ] bind_group_layout = device.create_bind_group_layout(entries=binding_layouts) pipeline_layout = device.create_pipeline_layout( bind_group_layouts=[bind_group_layout] ) bind_group = device.create_bind_group(layout=bind_group_layout, entries=bindings) # Create a pipeline and run it compute_pipeline = device.create_compute_pipeline( layout=pipeline_layout, compute={"module": cshader, "entry_point": "main"}, ) assert compute_pipeline.get_bind_group_layout(0) is bind_group_layout command_encoder = device.create_command_encoder() command_encoder.copy_buffer_to_texture( { "buffer": buffer, "offset": 0, "bytes_per_row": bpp * nx, "rows_per_image": ny, }, {"texture": texture1, "mip_level": 0, "origin": (0, 0, 0)}, (nx, ny, nz), ) compute_pass = command_encoder.begin_compute_pass() compute_pass.push_debug_group("foo") compute_pass.insert_debug_marker("setting pipeline") compute_pass.set_pipeline(compute_pipeline) compute_pass.insert_debug_marker("setting bind group") compute_pass.set_bind_group( 0, bind_group, [], 0, 999999 ) # last 2 elements not used compute_pass.insert_debug_marker("dispatch!") compute_pass.dispatch(nx, ny, nz) compute_pass.pop_debug_group() compute_pass.end_pass() command_encoder.copy_texture_to_buffer( {"texture": texture2, "mip_level": 0, "origin": (0, 0, 0)}, { "buffer": buffer, "offset": 0, "bytes_per_row": bpp * nx, "rows_per_image": ny, }, (nx, ny, nz), ) device.queue.submit([command_encoder.finish()]) # Read the current data of the output buffer data2 = data1.__class__.from_buffer(device.queue.read_buffer(buffer)) # Numpy arrays are easier to work with a1 = np.ctypeslib.as_array(data1).reshape(nz, ny, nx, nc) a2 = np.ctypeslib.as_array(data2).reshape(nz, ny, nx, nc) # Validate! for x in range(nx): assert np.all(a2[:, :, x, 0] == a1[:, :, x, 0] + x) if nc >= 2: assert np.all(a2[:, :, :, 1] == a1[:, :, :, 1] + 1) if nc >= 3: assert np.all(a2[:, :, :, 2] == a1[:, :, :, 2] * 2) if nc >= 4: assert np.all(a2[:, :, :, 3] == a1[:, :, :, 3]) if __name__ == "__main__": run_tests(globals())
[ "random.randint", "ctypes.sizeof", "testutils.get_default_device", "pytest.skip", "numpy.ctypeslib.as_array", "numpy.all" ]
[((313, 383), 'pytest.skip', 'skip', (['"""Skipping tests that need the wgpu lib"""'], {'allow_module_level': '(True)'}), "('Skipping tests that need the wgpu lib', allow_module_level=True)\n", (317, 383), False, 'from pytest import skip\n'), ((13362, 13382), 'ctypes.sizeof', 'ctypes.sizeof', (['data1'], {}), '(data1)\n', (13375, 13382), False, 'import ctypes\n'), ((13451, 13471), 'testutils.get_default_device', 'get_default_device', ([], {}), '()\n', (13469, 13471), False, 'from testutils import run_tests, get_default_device\n'), ((428, 501), 'pytest.skip', 'skip', (['"""These tests fail on dx12 for some reason"""'], {'allow_module_level': '(True)'}), "('These tests fail on dx12 for some reason', allow_module_level=True)\n", (432, 501), False, 'from pytest import skip\n'), ((17373, 17417), 'numpy.all', 'np.all', (['(a2[:, :, x, 0] == a1[:, :, x, 0] + x)'], {}), '(a2[:, :, x, 0] == a1[:, :, x, 0] + x)\n', (17379, 17417), True, 'import numpy as np\n'), ((17449, 17493), 'numpy.all', 'np.all', (['(a2[:, :, :, 1] == a1[:, :, :, 1] + 1)'], {}), '(a2[:, :, :, 1] == a1[:, :, :, 1] + 1)\n', (17455, 17493), True, 'import numpy as np\n'), ((17525, 17569), 'numpy.all', 'np.all', (['(a2[:, :, :, 2] == a1[:, :, :, 2] * 2)'], {}), '(a2[:, :, :, 2] == a1[:, :, :, 2] * 2)\n', (17531, 17569), True, 'import numpy as np\n'), ((17601, 17641), 'numpy.all', 'np.all', (['(a2[:, :, :, 3] == a1[:, :, :, 3])'], {}), '(a2[:, :, :, 3] == a1[:, :, :, 3])\n', (17607, 17641), True, 'import numpy as np\n'), ((1291, 1312), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (1305, 1312), False, 'import random\n'), ((2279, 2300), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (2293, 2300), False, 'import random\n'), ((3263, 3284), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (3277, 3284), False, 'import random\n'), ((4254, 4275), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (4268, 4275), False, 'import random\n'), ((17202, 17230), 'numpy.ctypeslib.as_array', 'np.ctypeslib.as_array', (['data1'], {}), '(data1)\n', (17223, 17230), True, 'import numpy as np\n'), ((17264, 17292), 'numpy.ctypeslib.as_array', 'np.ctypeslib.as_array', (['data2'], {}), '(data2)\n', (17285, 17292), True, 'import numpy as np\n'), ((5306, 5327), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (5320, 5327), False, 'import random\n'), ((6342, 6363), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (6356, 6363), False, 'import random\n'), ((7372, 7393), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (7386, 7393), False, 'import random\n'), ((8410, 8431), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (8424, 8431), False, 'import random\n'), ((9507, 9528), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (9521, 9528), False, 'import random\n'), ((10587, 10608), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (10601, 10608), False, 'import random\n'), ((11662, 11683), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (11676, 11683), False, 'import random\n'), ((12744, 12765), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (12758, 12765), False, 'import random\n')]
# Note: model title and parameter table are inserted automatically r""" This model provides the scattering intensity, $I(q)$, for a lyotropic lamellar phase where a random distribution in solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region. Definition ---------- The scattering intensity $I(q)$ is .. math:: I(q) = 2\pi\frac{\text{scale}}{2(\delta_H + \delta_T)} P(q) \frac{1}{q^2} The form factor $P(q)$ is .. math:: P(q) = \frac{4}{q^2} \left\lbrace \Delta \rho_H \left[\sin[q(\delta_H + \delta_T)\ - \sin(q\delta_T)\right] + \Delta\rho_T\sin(q\delta_T) \right\rbrace^2 where $\delta_T$ is *length_tail*, $\delta_H$ is *length_head*, $\Delta\rho_H$ is the head contrast (*sld_head* $-$ *sld_solvent*), and $\Delta\rho_T$ is tail contrast (*sld* $-$ *sld_solvent*). The total thickness of the lamellar sheet is a_H + \delta_T + \delta_T + \delta_H$. Note that in a non aqueous solvent the chemical "head" group may be the "Tail region" and vice-versa. The 2D scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- #. <NAME>, <NAME>, and <NAME>, *J. Phys. II France*, 3, (1993) 487-502 #. <NAME>, <NAME>, <NAME>, <NAME>, *J. Phys. Chem. B*, 105, (2001) 11081-11088 Authorship and Verification ---------------------------- * **Author:** * **Last Modified by:** * **Last Reviewed by:** <NAME> and <NAME> **Date** April 17, 2014 """ import numpy as np from numpy import inf name = "lamellar_hg" title = "Random lamellar phase with Head and Tail Groups" description = """\ [Random lamellar phase with Head and Tail Groups] I(q)= 2*pi*P(q)/(2(H+T)*q^(2)), where P(q)= see manual layer thickness =(H+T+T+H) = 2(Head+Tail) sld = Tail scattering length density sld_head = Head scattering length density sld_solvent = solvent scattering length density background = incoherent background scale = scale factor """ category = "shape:lamellae" # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type","description"], parameters = [["length_tail", "Ang", 15, [0, inf], "volume", "Tail thickness ( total = H+T+T+H)"], ["length_head", "Ang", 10, [0, inf], "volume", "Head thickness"], ["sld", "1e-6/Ang^2", 0.4, [-inf,inf], "sld", "Tail scattering length density"], ["sld_head", "1e-6/Ang^2", 3.0, [-inf,inf], "sld", "Head scattering length density"], ["sld_solvent", "1e-6/Ang^2", 6, [-inf,inf], "sld", "Solvent scattering length density"]] # pylint: enable=bad-whitespace, line-too-long # No volume normalization despite having a volume parameter # This should perhaps be volume normalized? form_volume = """ return 1.0; """ Iq = """ const double qsq = q*q; const double drh = sld_head - sld_solvent; const double drt = sld - sld_solvent; //correction 13FEB06 by L.Porcar const double qT = q*length_tail; double Pq, inten; Pq = drh*(sin(q*(length_head+length_tail))-sin(qT)) + drt*sin(qT); Pq *= Pq; Pq *= 4.0/(qsq); inten = 2.0e-4*M_PI*Pq/qsq; // normalize by the bilayer thickness inten /= 2.0*(length_head+length_tail); return inten; """ def random(): """Return a random parameter set for the model.""" thickness = 10**np.random.uniform(1, 4) length_head = thickness * np.random.uniform(0, 1) length_tail = thickness - length_head pars = dict( length_head=length_head, length_tail=length_tail, ) return pars # tests = [ [{'scale': 1.0, 'background': 0.0, 'length_tail': 15.0, 'length_head': 10.0, 'sld': 0.4, 'sld_head': 3.0, 'sld_solvent': 6.0}, [0.001], [653143.9209]], ] # ADDED by: RKH ON: 18Mar2016 converted from sasview previously, now renaming everything & sorting the docs
[ "numpy.random.uniform" ]
[((3537, 3560), 'numpy.random.uniform', 'np.random.uniform', (['(1)', '(4)'], {}), '(1, 4)\n', (3554, 3560), True, 'import numpy as np\n'), ((3591, 3614), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (3608, 3614), True, 'import numpy as np\n')]
# %% # line printer def printer(info): print('\n\n================================= {} =================================================\n\n'.format(info)) # %% import itertools # to get a counter starting from 0 to infinte counter = itertools.count() # return type is the iterator and count will start from 0 and you can use it with for loop # or next() command # if you want to get a counter starting from certain number start = 10 counter = itertools.count(start=start, step=-5) # step function is optional and can be negative # itertools.count() can be used with zip function like counter = itertools.count(start=start, step=-5) l = [100, 200, 300, 400] zipped = zip(counter, l) print(list(zipped)) # %% from itertools import zip_longest # zip is used to map two list and shortest list length will be considered, Iteration continues until the longest # iterable is exhausted l1 = ['sanket', 'sanchita', 'rohan', 'devi', 'adarsh', 'vishnu', 'prashant', 'chirag'] l2 = [1, 2, 3, 4, 5, 6] print(list(zip(l1, l2))) print(list(zip_longest(l1, l2))) # %% from itertools import cycle # cycle is used as circular linked list where we can iterate through certain value over and over again # it can be use with list, tuple, string counter = cycle([1, 2, 3, 4]) counter = cycle(('On', 'Off')) counter = cycle('san') # it will repeat 's' 'a' and 'n' print(next(counter)) print(next(counter)) print(next(counter)) print(next(counter)) print(next(counter)) print(next(counter)) # %% from itertools import repeat # repeat can be used to repeat single value multiple time counter = repeat(2, times=3) # repeat 2, 3 times-- times is optional element and if not provided repeat many times print(next(counter)) print(next(counter)) print(next(counter)) # example squares = map(pow, range(1, 10), repeat(2, times=3)) print(list(squares)) # %% from itertools import starmap ''' def starmap(function, iterable): # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000 for args in iterable: yield function(*args) ''' def power(x, y): return x ** y # the above example in repeat can be used with starmap as squares = starmap(power, [(0, 2), (1, 3), (2, 2), (3, 3), (4, 2), (9, 3)]) print(list(squares)) # how *args work # for k in [(0, 2), (1, 3), (2, 2), (3, 3), (4, 2), (9, 3)]: # print(*k) # %% from itertools import combinations, permutations # used for getting all the possible combination letters = ['a', 'b', 'c', 'd', 'e'] number = [0, 1, 2, 3] names = ['sanket', 'raj'] result = combinations(letters, 3) # produce the combination where (a,b) and (b,a) is same so only one will be mentioned print(list(result)) # if order matters the use permutations result = permutations(letters, 3) print(list(result)) # for example if we want to craete 4 digit code using number where combiantion can also include same number multiple # time from itertools import product # computes the cartesion product # product(iterable, repeat=n) this is permutation with replacement # for solution see https://www.hackerrank.com/challenges/itertools-product/problem result = product(number, repeat=3) # arrange numbers in group of 3 print(list(result)) # in product function we have to provide repeat argumnt, the similar function that can be used is # combinations_with_replacement from itertools import combinations_with_replacement result = combinations_with_replacement(number, 4) # arrange number in a group of 4 where each number can be used # multiple times print(list(result)) # for permutations with replacement use below link for solution # https://stackoverflow.com/questions/46255220/how-to-produce-permutations-with-replacement-in-python ''' import itertools choices = [-1, 1] n = 3 l = [choices] * n list(itertools.product(*l)) ''' # %% letters = ['a', 'b', 'c', 'd', 'e'] number = [0, 1, 2, 3] names = ['sanket', 'raj'] # if you want to iter through all letters, number, names you first have to craete a list add all those to a single list # and then iter through new list, this can be solved using chain from itertools import chain iterator = chain(letters, number, names) print(iterator) # object of iterator # print(list(iterator)) # print the complete list # %% # islice is used to slice the iterable object which is memory efficient letters = ['a', 'b', 'c', 'd', 'e'] number = [0, 1, 2, 3] names = ['sanket', 'raj'] import itertools from itertools import islice result = islice(letters, 1, 3) print(list(result)) result = itertools.islice(range(10), 1, 5) # islice take (iterable, start, stop) or (iterable, stop) # islice is used when , suppose you have a very long iterator which is hard to load into memory and then slicing, it can # be costly, lets, suppose we have a file import os with open('collections_module/islice_text', 'r') as file: # file object is an iterator header = islice(file, 3) for line in header: print(line, end='') # # %% import numpy as np np.random.seed(42) # seeding is done for pseudo number generator selectors = np.random.randint(1, 10000, 50) ''' letters = np.array(['a', 'b', 'c', 'd', 'e']) print(selectors) print(letters[selectors]) ''' # filterfalse work as same as filter instead of returning true value it returns false values from itertools import filterfalse result = filterfalse(lambda x: x > 5000, selectors) # return an iterator print(list(result)) # %% # dropwhile can be used when you want to filter until the condition is met for the first time # similar to dropwhile is takewhile but the opposite of the former import numpy as np np.random.seed(42) selectors = np.random.randint(1, 10000, 50) print(selectors) from itertools import dropwhile result = dropwhile(lambda x: x > 500, selectors) print(len(list(result))) # %% # accumulate -- it is used to work on the iterable and is used to perform cumulative operations import numpy as np np.random.seed(42) selectors = np.random.randint(1, 10, 10) print(selectors) from itertools import accumulate import operator result = accumulate(selectors, operator.mul) print(list(result)) printer('string work') # working with the string selectors = np.random.choice(['a', 'b', 'c', 'f', 'g'], size=10) print(selectors) result = accumulate(selectors, lambda x, y: x + y) print(list(result)) #%% # groupby work as same as pandas.groupby people = [ { 'name': '<NAME>', 'city': 'Gotham', 'state': 'NY' }, { 'name': '<NAME>', 'city': 'Kings Landing', 'state': 'NY' }, { 'name': '<NAME>', 'city': 'Boulder', 'state': 'CO' }, { 'name': '<NAME>', 'city': 'Denver', 'state': 'CO' }, { 'name': '<NAME>', 'city': 'Hinton', 'state': 'WV' }, { 'name': '<NAME>', 'city': 'Rand', 'state': 'WV' }, { 'name': '<NAME>', 'city': 'Asheville', 'state': 'NC' }, { 'name': '<NAME>', 'city': 'Charlotte', 'state': 'NC' }, { 'name': '<NAME>', 'city': 'Faketown', 'state': 'NC' } ] def get_state(person): return person['state'] # for groupby to work efficiently, the key has to be sorted else it will not work as expected from itertools import groupby result = groupby(people, get_state) for key, group in result: # here group is an iterator # for g in group: print(key,' ', g) #%% # in order to create multiple copies of iterator you can use tee import numpy as np np.random.seed(42) # seeding is done for pseudo number generator selectors = np.random.randint(1, 10000, 50) from itertools import filterfalse from itertools import tee result = filterfalse(lambda x: x < 500, selectors) copy1, copy2 = tee(result) # don't use the original result iterator print(list(copy1)) print(list(copy2))
[ "numpy.random.seed", "numpy.random.randint", "itertools.cycle", "itertools.permutations", "itertools.zip_longest", "numpy.random.choice", "itertools.product", "itertools.chain", "itertools.filterfalse", "itertools.accumulate", "itertools.count", "itertools.combinations", "itertools.islice", "itertools.tee", "itertools.groupby", "itertools.repeat", "itertools.starmap", "itertools.combinations_with_replacement", "itertools.dropwhile" ]
[((244, 261), 'itertools.count', 'itertools.count', ([], {}), '()\n', (259, 261), False, 'import itertools\n'), ((456, 493), 'itertools.count', 'itertools.count', ([], {'start': 'start', 'step': '(-5)'}), '(start=start, step=-5)\n', (471, 493), False, 'import itertools\n'), ((609, 646), 'itertools.count', 'itertools.count', ([], {'start': 'start', 'step': '(-5)'}), '(start=start, step=-5)\n', (624, 646), False, 'import itertools\n'), ((1257, 1276), 'itertools.cycle', 'cycle', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (1262, 1276), False, 'from itertools import cycle\n'), ((1287, 1307), 'itertools.cycle', 'cycle', (["('On', 'Off')"], {}), "(('On', 'Off'))\n", (1292, 1307), False, 'from itertools import cycle\n'), ((1318, 1330), 'itertools.cycle', 'cycle', (['"""san"""'], {}), "('san')\n", (1323, 1330), False, 'from itertools import cycle\n'), ((1595, 1613), 'itertools.repeat', 'repeat', (['(2)'], {'times': '(3)'}), '(2, times=3)\n', (1601, 1613), False, 'from itertools import repeat\n'), ((2147, 2211), 'itertools.starmap', 'starmap', (['power', '[(0, 2), (1, 3), (2, 2), (3, 3), (4, 2), (9, 3)]'], {}), '(power, [(0, 2), (1, 3), (2, 2), (3, 3), (4, 2), (9, 3)])\n', (2154, 2211), False, 'from itertools import starmap\n'), ((2528, 2552), 'itertools.combinations', 'combinations', (['letters', '(3)'], {}), '(letters, 3)\n', (2540, 2552), False, 'from itertools import combinations, permutations\n'), ((2710, 2734), 'itertools.permutations', 'permutations', (['letters', '(3)'], {}), '(letters, 3)\n', (2722, 2734), False, 'from itertools import combinations, permutations\n'), ((3103, 3128), 'itertools.product', 'product', (['number'], {'repeat': '(3)'}), '(number, repeat=3)\n', (3110, 3128), False, 'from itertools import product\n'), ((3376, 3416), 'itertools.combinations_with_replacement', 'combinations_with_replacement', (['number', '(4)'], {}), '(number, 4)\n', (3405, 3416), False, 'from itertools import combinations_with_replacement\n'), ((4117, 4146), 'itertools.chain', 'chain', (['letters', 'number', 'names'], {}), '(letters, number, names)\n', (4122, 4146), False, 'from itertools import chain\n'), ((4456, 4477), 'itertools.islice', 'islice', (['letters', '(1)', '(3)'], {}), '(letters, 1, 3)\n', (4462, 4477), False, 'from itertools import islice\n'), ((4979, 4997), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (4993, 4997), True, 'import numpy as np\n'), ((5057, 5088), 'numpy.random.randint', 'np.random.randint', (['(1)', '(10000)', '(50)'], {}), '(1, 10000, 50)\n', (5074, 5088), True, 'import numpy as np\n'), ((5326, 5368), 'itertools.filterfalse', 'filterfalse', (['(lambda x: x > 5000)', 'selectors'], {}), '(lambda x: x > 5000, selectors)\n', (5337, 5368), False, 'from itertools import filterfalse\n'), ((5600, 5618), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (5614, 5618), True, 'import numpy as np\n'), ((5631, 5662), 'numpy.random.randint', 'np.random.randint', (['(1)', '(10000)', '(50)'], {}), '(1, 10000, 50)\n', (5648, 5662), True, 'import numpy as np\n'), ((5723, 5762), 'itertools.dropwhile', 'dropwhile', (['(lambda x: x > 500)', 'selectors'], {}), '(lambda x: x > 500, selectors)\n', (5732, 5762), False, 'from itertools import dropwhile\n'), ((5911, 5929), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (5925, 5929), True, 'import numpy as np\n'), ((5942, 5970), 'numpy.random.randint', 'np.random.randint', (['(1)', '(10)', '(10)'], {}), '(1, 10, 10)\n', (5959, 5970), True, 'import numpy as np\n'), ((6048, 6083), 'itertools.accumulate', 'accumulate', (['selectors', 'operator.mul'], {}), '(selectors, operator.mul)\n', (6058, 6083), False, 'from itertools import accumulate\n'), ((6167, 6219), 'numpy.random.choice', 'np.random.choice', (["['a', 'b', 'c', 'f', 'g']"], {'size': '(10)'}), "(['a', 'b', 'c', 'f', 'g'], size=10)\n", (6183, 6219), True, 'import numpy as np\n'), ((6246, 6287), 'itertools.accumulate', 'accumulate', (['selectors', '(lambda x, y: x + y)'], {}), '(selectors, lambda x, y: x + y)\n', (6256, 6287), False, 'from itertools import accumulate\n'), ((7351, 7377), 'itertools.groupby', 'groupby', (['people', 'get_state'], {}), '(people, get_state)\n', (7358, 7377), False, 'from itertools import groupby\n'), ((7580, 7598), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (7594, 7598), True, 'import numpy as np\n'), ((7658, 7689), 'numpy.random.randint', 'np.random.randint', (['(1)', '(10000)', '(50)'], {}), '(1, 10000, 50)\n', (7675, 7689), True, 'import numpy as np\n'), ((7761, 7802), 'itertools.filterfalse', 'filterfalse', (['(lambda x: x < 500)', 'selectors'], {}), '(lambda x: x < 500, selectors)\n', (7772, 7802), False, 'from itertools import filterfalse\n'), ((7819, 7830), 'itertools.tee', 'tee', (['result'], {}), '(result)\n', (7822, 7830), False, 'from itertools import tee\n'), ((1808, 1826), 'itertools.repeat', 'repeat', (['(2)'], {'times': '(3)'}), '(2, times=3)\n', (1814, 1826), False, 'from itertools import repeat\n'), ((4881, 4896), 'itertools.islice', 'islice', (['file', '(3)'], {}), '(file, 3)\n', (4887, 4896), False, 'from itertools import islice\n'), ((1044, 1063), 'itertools.zip_longest', 'zip_longest', (['l1', 'l2'], {}), '(l1, l2)\n', (1055, 1063), False, 'from itertools import zip_longest\n')]
from functools import wraps import numpy as np import torch from mani_skill_learn.utils.data import split_in_dict_array, concat_list_of_array def disable_gradients(network): for param in network.parameters(): param.requires_grad = False def worker_init_fn(worker_id): """The function is designed for pytorch multi-process dataloader. Note that we use the pytorch random generator to generate a base_seed. Please try to be consistent. References: https://pytorch.org/docs/stable/notes/faq.html#dataloader-workers-random-seed """ base_seed = torch.IntTensor(1).random_().item() # print(worker_id, base_seed) np.random.seed(base_seed + worker_id) def no_grad(f): wraps(f) def wrapper(*args, **kwargs): with torch.no_grad(): return f(*args, **kwargs) return wrapper def run_with_mini_batch(function, data, batch_size): """ Run a pytorch function with mini-batch when the batch size of dat is very large. :param function: the function :param data: the input data which should be in dict array structure :param batch_size: the batch_size of the mini-batch :return: all the outputs. """ data_list = split_in_dict_array(data, batch_size, axis=0) ans = [] for data_i in data_list: ans_i = function(data_i) ans.append(ans_i) return concat_list_of_array(ans, axis=0)
[ "numpy.random.seed", "torch.IntTensor", "functools.wraps", "torch.no_grad", "mani_skill_learn.utils.data.concat_list_of_array", "mani_skill_learn.utils.data.split_in_dict_array" ]
[((658, 695), 'numpy.random.seed', 'np.random.seed', (['(base_seed + worker_id)'], {}), '(base_seed + worker_id)\n', (672, 695), True, 'import numpy as np\n'), ((718, 726), 'functools.wraps', 'wraps', (['f'], {}), '(f)\n', (723, 726), False, 'from functools import wraps\n'), ((1214, 1259), 'mani_skill_learn.utils.data.split_in_dict_array', 'split_in_dict_array', (['data', 'batch_size'], {'axis': '(0)'}), '(data, batch_size, axis=0)\n', (1233, 1259), False, 'from mani_skill_learn.utils.data import split_in_dict_array, concat_list_of_array\n'), ((1372, 1405), 'mani_skill_learn.utils.data.concat_list_of_array', 'concat_list_of_array', (['ans'], {'axis': '(0)'}), '(ans, axis=0)\n', (1392, 1405), False, 'from mani_skill_learn.utils.data import split_in_dict_array, concat_list_of_array\n'), ((775, 790), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (788, 790), False, 'import torch\n'), ((584, 602), 'torch.IntTensor', 'torch.IntTensor', (['(1)'], {}), '(1)\n', (599, 602), False, 'import torch\n')]
""" test melange.propagators """ from jax import random from jax import vmap import jax.numpy as jnp from melange.propagators import * from melange.tests.utils import checker_function, get_nondefault_potential_initializer import tqdm import numpy as np from jax.config import config; config.update("jax_enable_x64", True) def test_1D_ULA_propagator(key = random.PRNGKey(0), num_runs=1000): """ take a batch of 1000 particles distributed according to N(0,2), run dynamics with ULA for 1000 steps with dt=0.01 on a potential whose invariant is N(0,2) and assert that the mean and variance is unchanged within a tolerance """ key, genkey = random.split(key) potential, (mu, cov), dG = get_nondefault_potential_initializer(1) x_ula_starter = random.multivariate_normal(key = genkey, mean = mu, cov = cov, shape=[num_runs]) dt=1e-2 batch_ula_move = vmap(ULA_move, in_axes=(0, None, None, 0, None)) potential_parameter = jnp.array([0.]) for i in tqdm.trange(100): key, ula_keygen = random.split(key, 2) ula_keys = random.split(ula_keygen, num_runs) x_ULA = batch_ula_move(x_ula_starter, potential, dt, ula_keys, potential_parameter) x_ula_starter = x_ULA ula_mean, ula_std = x_ula_starter.mean(), x_ula_starter.std() assert checker_function(ula_mean,0.2) assert checker_function(ula_std - jnp.sqrt(2), 0.2) def test_1D_driven_propagator(key = random.PRNGKey(0), num_runs=1000): """ take a batch of 1000 particles distributed according to N(0,2), run dynamics with driven langevin algorithm for 1000 steps with dt=0.01 on a potential whose invariant is N(0,2) and assert that the mean and variance is unchanged within a tolerance. """ key, genkey = random.split(key) potential, (mu, cov), dG = get_nondefault_potential_initializer(1) x_driven_starter = random.multivariate_normal(key = genkey, mean = mu, cov = cov, shape=[num_runs]) dt=1e-2 #make dummy A and b functions def A(x, a_param): return jnp.zeros((x.shape[0], x.shape[0])) def b(x, b_param): return jnp.zeros(x.shape[0]) batch_driver_move = vmap(driven_Langevin_move, in_axes=(0,None,None,None,None,None,None,None,0)) potential_parameter = jnp.array([0.]) for i in tqdm.trange(100): key, drive_keygen = random.split(key, 2) drive_keys = random.split(drive_keygen, num_runs) x_drive = batch_driver_move(x_driven_starter, potential, dt, A, b, potential_parameter, jnp.array([0.]), jnp.array([0.]), drive_keys) x_driven_starter = x_drive driven_mean, driven_std = x_driven_starter.mean(), x_driven_starter.std() assert checker_function(driven_mean,0.2) assert checker_function(driven_std - jnp.sqrt(2), 0.2) def test_1d_kernel_consistency(key = random.PRNGKey(0)): """ with a 'dummy' driven forward kernel, assert that the log forward probability is equal to that of the ULA propagator in one dimension """ from melange.propagators import generate_Euler_Maruyama_propagators, generate_driven_Langevin_propagators, Euler_Maruyama_log_proposal_ratio, driven_Langevin_log_proposal_ratio dt=0.1 forward_potential_parameters= jnp.array([0.]) backward_potential_parameters = jnp.array([0.]) #make dummy A and b functions def A(x, a_param): return jnp.zeros((x.shape[0], x.shape[0])) def b(x, b_param): return jnp.zeros(x.shape[0]) potential, (mu, cov), dG = get_nondefault_potential_initializer(1) xs = random.multivariate_normal(key = key, mean = jnp.array([1.]), cov = jnp.array([[1.]]), shape=[2]) EM_propagator, EM_kernel = generate_Euler_Maruyama_propagators() driven_propagator, driven_kernel = generate_driven_Langevin_propagators() EM_logp_ratio = Euler_Maruyama_log_proposal_ratio(xs[0], xs[1], potential, forward_potential_parameters, dt, potential, backward_potential_parameters, dt) driven_logp_ratio = driven_Langevin_log_proposal_ratio(xs[0], xs[1], potential, potential, dt, dt, A, b, forward_potential_parameters, backward_potential_parameters, A_parameter = forward_potential_parameters, b_parameter = forward_potential_parameters) assert np.isclose(EM_logp_ratio, driven_logp_ratio) def test_forward_ULA_driven_samplers(key = random.PRNGKey(0)): """ given a randomization key, execute `forward_ULA_sampler` and `forward_driven_diffusion_sampler` with a time-independent potential that has the same mean and variance as the distribution of (5000) initial samples. We only assert that the statistics of the post-propagated samples obey the same statistics (within a tolerance). """ from melange.propagators import forward_ULA_sampler, forward_driven_diffusion_sampler dt=0.1 potential_parameters= jnp.zeros((100,1)) A_parameters = potential_parameters b_parameters = potential_parameters #make dummy A and b functions def A(x, a_param): return jnp.zeros((x.shape[0], x.shape[0])) def b(x, b_param): return jnp.zeros(x.shape[0]) potential, (mu, cov), dG = get_nondefault_potential_initializer(1) xs = random.multivariate_normal(key = key, mean = mu, cov = cov, shape=[5000]) og_mean, og_variance = xs.mean(), xs.var() #print(og_mean, og_variance) ULA_trajs = forward_ULA_sampler(xs, potential, jnp.array([dt]*len(potential_parameters)), key, potential_parameters) #print(ULA_trajs[-1].mean(), ULA_trajs[-1].var()) driven_trajs = forward_driven_diffusion_sampler(xs, potential, dt, key, A, b, potential_parameters, A_parameters, b_parameters) #print(driven_trajs[-1].mean(), driven_trajs[-1].var()) mean_tolerance = 0.2 assert checker_function(ULA_trajs[-1].mean(), mean_tolerance) assert checker_function(driven_trajs[-1].mean(), mean_tolerance) variance_tolerance = 0.2 assert checker_function(ULA_trajs[-1].var() - 2., variance_tolerance) assert checker_function(driven_trajs[-1].var()-2., variance_tolerance)
[ "jax.config.config.update", "jax.numpy.array", "melange.propagators.generate_Euler_Maruyama_propagators", "jax.vmap", "tqdm.trange", "melange.propagators.driven_Langevin_log_proposal_ratio", "jax.random.PRNGKey", "jax.random.multivariate_normal", "melange.propagators.generate_driven_Langevin_propagators", "melange.tests.utils.get_nondefault_potential_initializer", "numpy.isclose", "melange.propagators.forward_driven_diffusion_sampler", "jax.numpy.zeros", "melange.propagators.Euler_Maruyama_log_proposal_ratio", "melange.tests.utils.checker_function", "jax.numpy.sqrt", "jax.random.split" ]
[((284, 321), 'jax.config.config.update', 'config.update', (['"""jax_enable_x64"""', '(True)'], {}), "('jax_enable_x64', True)\n", (297, 321), False, 'from jax.config import config\n'), ((356, 373), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (370, 373), False, 'from jax import random\n'), ((658, 675), 'jax.random.split', 'random.split', (['key'], {}), '(key)\n', (670, 675), False, 'from jax import random\n'), ((707, 746), 'melange.tests.utils.get_nondefault_potential_initializer', 'get_nondefault_potential_initializer', (['(1)'], {}), '(1)\n', (743, 746), False, 'from melange.tests.utils import checker_function, get_nondefault_potential_initializer\n'), ((767, 841), 'jax.random.multivariate_normal', 'random.multivariate_normal', ([], {'key': 'genkey', 'mean': 'mu', 'cov': 'cov', 'shape': '[num_runs]'}), '(key=genkey, mean=mu, cov=cov, shape=[num_runs])\n', (793, 841), False, 'from jax import random\n'), ((881, 929), 'jax.vmap', 'vmap', (['ULA_move'], {'in_axes': '(0, None, None, 0, None)'}), '(ULA_move, in_axes=(0, None, None, 0, None))\n', (885, 929), False, 'from jax import vmap\n'), ((956, 972), 'jax.numpy.array', 'jnp.array', (['[0.0]'], {}), '([0.0])\n', (965, 972), True, 'import jax.numpy as jnp\n'), ((986, 1002), 'tqdm.trange', 'tqdm.trange', (['(100)'], {}), '(100)\n', (997, 1002), False, 'import tqdm\n'), ((1306, 1337), 'melange.tests.utils.checker_function', 'checker_function', (['ula_mean', '(0.2)'], {}), '(ula_mean, 0.2)\n', (1322, 1337), False, 'from melange.tests.utils import checker_function, get_nondefault_potential_initializer\n'), ((1430, 1447), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (1444, 1447), False, 'from jax import random\n'), ((1755, 1772), 'jax.random.split', 'random.split', (['key'], {}), '(key)\n', (1767, 1772), False, 'from jax import random\n'), ((1804, 1843), 'melange.tests.utils.get_nondefault_potential_initializer', 'get_nondefault_potential_initializer', (['(1)'], {}), '(1)\n', (1840, 1843), False, 'from melange.tests.utils import checker_function, get_nondefault_potential_initializer\n'), ((1867, 1941), 'jax.random.multivariate_normal', 'random.multivariate_normal', ([], {'key': 'genkey', 'mean': 'mu', 'cov': 'cov', 'shape': '[num_runs]'}), '(key=genkey, mean=mu, cov=cov, shape=[num_runs])\n', (1893, 1941), False, 'from jax import random\n'), ((2136, 2224), 'jax.vmap', 'vmap', (['driven_Langevin_move'], {'in_axes': '(0, None, None, None, None, None, None, None, 0)'}), '(driven_Langevin_move, in_axes=(0, None, None, None, None, None, None,\n None, 0))\n', (2140, 2224), False, 'from jax import vmap\n'), ((2239, 2255), 'jax.numpy.array', 'jnp.array', (['[0.0]'], {}), '([0.0])\n', (2248, 2255), True, 'import jax.numpy as jnp\n'), ((2269, 2285), 'tqdm.trange', 'tqdm.trange', (['(100)'], {}), '(100)\n', (2280, 2285), False, 'import tqdm\n'), ((2934, 2968), 'melange.tests.utils.checker_function', 'checker_function', (['driven_mean', '(0.2)'], {}), '(driven_mean, 0.2)\n', (2950, 2968), False, 'from melange.tests.utils import checker_function, get_nondefault_potential_initializer\n'), ((3065, 3082), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (3079, 3082), False, 'from jax import random\n'), ((3470, 3486), 'jax.numpy.array', 'jnp.array', (['[0.0]'], {}), '([0.0])\n', (3479, 3486), True, 'import jax.numpy as jnp\n'), ((3522, 3538), 'jax.numpy.array', 'jnp.array', (['[0.0]'], {}), '([0.0])\n', (3531, 3538), True, 'import jax.numpy as jnp\n'), ((3723, 3762), 'melange.tests.utils.get_nondefault_potential_initializer', 'get_nondefault_potential_initializer', (['(1)'], {}), '(1)\n', (3759, 3762), False, 'from melange.tests.utils import checker_function, get_nondefault_potential_initializer\n'), ((3902, 3939), 'melange.propagators.generate_Euler_Maruyama_propagators', 'generate_Euler_Maruyama_propagators', ([], {}), '()\n', (3937, 3939), False, 'from melange.propagators import generate_Euler_Maruyama_propagators, generate_driven_Langevin_propagators, Euler_Maruyama_log_proposal_ratio, driven_Langevin_log_proposal_ratio\n'), ((3979, 4017), 'melange.propagators.generate_driven_Langevin_propagators', 'generate_driven_Langevin_propagators', ([], {}), '()\n', (4015, 4017), False, 'from melange.propagators import generate_Euler_Maruyama_propagators, generate_driven_Langevin_propagators, Euler_Maruyama_log_proposal_ratio, driven_Langevin_log_proposal_ratio\n'), ((4039, 4185), 'melange.propagators.Euler_Maruyama_log_proposal_ratio', 'Euler_Maruyama_log_proposal_ratio', (['xs[0]', 'xs[1]', 'potential', 'forward_potential_parameters', 'dt', 'potential', 'backward_potential_parameters', 'dt'], {}), '(xs[0], xs[1], potential,\n forward_potential_parameters, dt, potential,\n backward_potential_parameters, dt)\n', (4072, 4185), False, 'from melange.propagators import generate_Euler_Maruyama_propagators, generate_driven_Langevin_propagators, Euler_Maruyama_log_proposal_ratio, driven_Langevin_log_proposal_ratio\n'), ((4202, 4444), 'melange.propagators.driven_Langevin_log_proposal_ratio', 'driven_Langevin_log_proposal_ratio', (['xs[0]', 'xs[1]', 'potential', 'potential', 'dt', 'dt', 'A', 'b', 'forward_potential_parameters', 'backward_potential_parameters'], {'A_parameter': 'forward_potential_parameters', 'b_parameter': 'forward_potential_parameters'}), '(xs[0], xs[1], potential, potential, dt,\n dt, A, b, forward_potential_parameters, backward_potential_parameters,\n A_parameter=forward_potential_parameters, b_parameter=\n forward_potential_parameters)\n', (4236, 4444), False, 'from melange.propagators import generate_Euler_Maruyama_propagators, generate_driven_Langevin_propagators, Euler_Maruyama_log_proposal_ratio, driven_Langevin_log_proposal_ratio\n'), ((4865, 4909), 'numpy.isclose', 'np.isclose', (['EM_logp_ratio', 'driven_logp_ratio'], {}), '(EM_logp_ratio, driven_logp_ratio)\n', (4875, 4909), True, 'import numpy as np\n'), ((4954, 4971), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (4968, 4971), False, 'from jax import random\n'), ((5440, 5459), 'jax.numpy.zeros', 'jnp.zeros', (['(100, 1)'], {}), '((100, 1))\n', (5449, 5459), True, 'import jax.numpy as jnp\n'), ((5712, 5751), 'melange.tests.utils.get_nondefault_potential_initializer', 'get_nondefault_potential_initializer', (['(1)'], {}), '(1)\n', (5748, 5751), False, 'from melange.tests.utils import checker_function, get_nondefault_potential_initializer\n'), ((5759, 5826), 'jax.random.multivariate_normal', 'random.multivariate_normal', ([], {'key': 'key', 'mean': 'mu', 'cov': 'cov', 'shape': '[5000]'}), '(key=key, mean=mu, cov=cov, shape=[5000])\n', (5785, 5826), False, 'from jax import random\n'), ((6099, 6215), 'melange.propagators.forward_driven_diffusion_sampler', 'forward_driven_diffusion_sampler', (['xs', 'potential', 'dt', 'key', 'A', 'b', 'potential_parameters', 'A_parameters', 'b_parameters'], {}), '(xs, potential, dt, key, A, b,\n potential_parameters, A_parameters, b_parameters)\n', (6131, 6215), False, 'from melange.propagators import forward_ULA_sampler, forward_driven_diffusion_sampler\n'), ((1030, 1050), 'jax.random.split', 'random.split', (['key', '(2)'], {}), '(key, 2)\n', (1042, 1050), False, 'from jax import random\n'), ((1070, 1104), 'jax.random.split', 'random.split', (['ula_keygen', 'num_runs'], {}), '(ula_keygen, num_runs)\n', (1082, 1104), False, 'from jax import random\n'), ((2024, 2059), 'jax.numpy.zeros', 'jnp.zeros', (['(x.shape[0], x.shape[0])'], {}), '((x.shape[0], x.shape[0]))\n', (2033, 2059), True, 'import jax.numpy as jnp\n'), ((2090, 2111), 'jax.numpy.zeros', 'jnp.zeros', (['x.shape[0]'], {}), '(x.shape[0])\n', (2099, 2111), True, 'import jax.numpy as jnp\n'), ((2315, 2335), 'jax.random.split', 'random.split', (['key', '(2)'], {}), '(key, 2)\n', (2327, 2335), False, 'from jax import random\n'), ((2357, 2393), 'jax.random.split', 'random.split', (['drive_keygen', 'num_runs'], {}), '(drive_keygen, num_runs)\n', (2369, 2393), False, 'from jax import random\n'), ((3603, 3638), 'jax.numpy.zeros', 'jnp.zeros', (['(x.shape[0], x.shape[0])'], {}), '((x.shape[0], x.shape[0]))\n', (3612, 3638), True, 'import jax.numpy as jnp\n'), ((3669, 3690), 'jax.numpy.zeros', 'jnp.zeros', (['x.shape[0]'], {}), '(x.shape[0])\n', (3678, 3690), True, 'import jax.numpy as jnp\n'), ((5596, 5631), 'jax.numpy.zeros', 'jnp.zeros', (['(x.shape[0], x.shape[0])'], {}), '((x.shape[0], x.shape[0]))\n', (5605, 5631), True, 'import jax.numpy as jnp\n'), ((5660, 5681), 'jax.numpy.zeros', 'jnp.zeros', (['x.shape[0]'], {}), '(x.shape[0])\n', (5669, 5681), True, 'import jax.numpy as jnp\n'), ((1375, 1386), 'jax.numpy.sqrt', 'jnp.sqrt', (['(2)'], {}), '(2)\n', (1383, 1386), True, 'import jax.numpy as jnp\n'), ((2694, 2710), 'jax.numpy.array', 'jnp.array', (['[0.0]'], {}), '([0.0])\n', (2703, 2710), True, 'import jax.numpy as jnp\n'), ((2745, 2761), 'jax.numpy.array', 'jnp.array', (['[0.0]'], {}), '([0.0])\n', (2754, 2761), True, 'import jax.numpy as jnp\n'), ((3009, 3020), 'jax.numpy.sqrt', 'jnp.sqrt', (['(2)'], {}), '(2)\n', (3017, 3020), True, 'import jax.numpy as jnp\n'), ((3817, 3833), 'jax.numpy.array', 'jnp.array', (['[1.0]'], {}), '([1.0])\n', (3826, 3833), True, 'import jax.numpy as jnp\n'), ((3840, 3858), 'jax.numpy.array', 'jnp.array', (['[[1.0]]'], {}), '([[1.0]])\n', (3849, 3858), True, 'import jax.numpy as jnp\n')]
# -*- coding: utf-8 -*- """ Created on Fri Apr 24 13:50:54 2020 This is the load to load data based on occupancy maps @author: cheng """ import numpy as np import time import os from augmentation import rotation from maps import Maps from occupancy import circle_group_grid def loaddata(dataset_list, args, datatype="train"): # Store the data across datasets # All the datasets are merged for training if datatype=="train" or datatype=="test": offsets = np.empty((0, args.obs_seq+args.pred_seq-1, 8)) traj_data = np.empty((0, args.obs_seq+args.pred_seq, 4)) occupancy = np.empty((0, args.obs_seq+args.pred_seq-1, args.enviro_pdim[0], args.enviro_pdim[1], 3)) if dataset_list[0] == "train_merged": # ToDo change this to make compatible with linus data = np.load("../processed_data/train/%s.npz"%(dataset_list[0])) _offsets, _traj_data, _occupancy = data["offsets"], data["traj_data"], data["occupancy"] print(dataset_list[0], "contains %.0f trajectories"%len(_offsets)) offsets = np.concatenate((offsets, _offsets), axis=0) traj_data = np.concatenate((traj_data, _traj_data), axis=0) occupancy = np.concatenate((occupancy, _occupancy), axis=0) else: for i, dataset in enumerate(dataset_list): # Only take the orinal data # ToDo, here needs to be test if augumentation will boost the performance if dataset != "train_merged": # ToDo change this to make compatible with linus data = np.load("../processed_data/train/%s.npz"%(dataset)) _offsets, _traj_data, _occupancy = data["offsets"], data["traj_data"], data["occupancy"] print(dataset, "contains %.0f trajectories"%len(_offsets)) offsets = np.concatenate((offsets, _offsets), axis=0) traj_data = np.concatenate((traj_data, _traj_data), axis=0) occupancy = np.concatenate((occupancy, _occupancy), axis=0) # NOTE: When load the challenge data, there is no need to merge them # The submission requires each challenge data set (in total 20) to be separated # Hence, each time only one challenge data set is called elif datatype == "challenge": offsets = np.empty((0, args.obs_seq-1, 8)) traj_data = np.empty((0, args.obs_seq, 4)) occupancy = np.empty((0, args.obs_seq-1, args.enviro_pdim[0], args.enviro_pdim[1], 3)) for dataset in dataset_list: # ToDo change this to make compatible with linus data = np.load("../processed_data/challenge/%s.npz"%(dataset)) _offsets, _traj_data, _occupancy = data["offsets"], data["traj_data"], data["occupancy"] offsets = np.concatenate((offsets, _offsets), axis=0) traj_data = np.concatenate((traj_data, _traj_data), axis=0) occupancy = np.concatenate((occupancy, _occupancy), axis=0) elif datatype=="test": assert len(dataset_list)==1, print("Only one untouched dataset is left fot testing!") elif datatype=="challenge": assert len(dataset_list)==1, print("predict one by one") if datatype=="train": # ToDo change this to make compatible with linus if not os.path.exists("../processed_data/train/train_merged.npz"): # Save the merged training data # ToDo change this to make compatible with linus np.savez("../processed_data/train/train_merged.npz", offsets=offsets, traj_data = traj_data, occupancy = occupancy) return offsets, traj_data, occupancy def preprocess_data(seq_length, size, dirname, path=None, data=None, aug_num=1, save=True): ''' Parameters ---------- seq_length : int This is the complete length of each trajectory offset and occupancy, Note: one-step difference for the offset and occupancy and traj_data. size : [height, width, channels] The occupancy grid size and channels: orientation, speed and position for the neighbors in the vicinity dirname : string "train" or "challenge" path : string, optional only for extract offsets, traj_data, and occupancy from the original data files data : numpy, optional it is the predicted complete trajectories after the first prediction, it is used to calculate the occupancy in the predicted time. aug_num : int, optional the number for augmenting the data by rotation. save : boolen, optional Only save the processed training data. The default is True. Returns ------- offsets : numpy array [frameId, userId, x, y, delta_x, delta_y, theata, velocity]. traj_data : numpy array [frameId, userId, x, y] Note: this is one-step longer occupancy : numpy array [height, width, channels]. ''' start = time.time() if np.all(data)==None: data = np.genfromtxt(path, delimiter='') # challenge dataset have nan for prediction time steps data = data[~np.isnan(data).any(axis=1)] dataname = path.split('\\')[-1].split('.')[0] print("process data %s ..."%dataname) for r in range(aug_num): # Agument the data by orientating if the agumentation number if more than one if r > 0: data[:, 2:4] = rotation(data[:, 2:4], r/aug_num) # Get the environment maps maps = Maps(data) traj_map = maps.trajectory_map() orient_map, speed_map = maps.motion_map(max_speed=10) map_info = [traj_map, orient_map, speed_map] enviro_maps = concat_maps(map_info) print("enviro_maps shape", enviro_maps.shape) offsets = np.reshape(maps.offsets, (-1,seq_length,8)) print("offsets shape", offsets.shape) traj_data = np.reshape(maps.sorted_data, (-1, seq_length+1, 4)) print("traj_data shape", traj_data.shape) occupancy = circle_group_grid(offsets, maps.sorted_data, size) print("occupancy shape", occupancy.shape) if save: if r == 0: # Save the original one np.savez("../processed_data/%s/%s"%(dirname, dataname), offsets=offsets, traj_data = traj_data, occupancy = occupancy) end = time.time() else: # Save the rotated one(s) np.savez("../processed_data/%s/%s_%.0f"%(dirname, dataname, r), offsets=offsets, traj_data = traj_data, occupancy = occupancy) end = time.time() print("It takes ", round(end-start, 2), "seconds!\n") else: return offsets, traj_data, occupancy def concat_maps(map_info): # save the map information into different channels enviro_maps = np.empty((map_info[0].shape[0], map_info[0].shape[1], len(map_info))) for i, map in enumerate(map_info): enviro_maps[:, :, i] = map return enviro_maps
[ "numpy.load", "numpy.concatenate", "occupancy.circle_group_grid", "numpy.empty", "os.path.exists", "numpy.genfromtxt", "numpy.isnan", "time.time", "augmentation.rotation", "numpy.reshape", "maps.Maps", "numpy.savez", "numpy.all" ]
[((5232, 5243), 'time.time', 'time.time', ([], {}), '()\n', (5241, 5243), False, 'import time\n'), ((483, 533), 'numpy.empty', 'np.empty', (['(0, args.obs_seq + args.pred_seq - 1, 8)'], {}), '((0, args.obs_seq + args.pred_seq - 1, 8))\n', (491, 533), True, 'import numpy as np\n'), ((550, 596), 'numpy.empty', 'np.empty', (['(0, args.obs_seq + args.pred_seq, 4)'], {}), '((0, args.obs_seq + args.pred_seq, 4))\n', (558, 596), True, 'import numpy as np\n'), ((615, 712), 'numpy.empty', 'np.empty', (['(0, args.obs_seq + args.pred_seq - 1, args.enviro_pdim[0], args.enviro_pdim\n [1], 3)'], {}), '((0, args.obs_seq + args.pred_seq - 1, args.enviro_pdim[0], args.\n enviro_pdim[1], 3))\n', (623, 712), True, 'import numpy as np\n'), ((5251, 5263), 'numpy.all', 'np.all', (['data'], {}), '(data)\n', (5257, 5263), True, 'import numpy as np\n'), ((5286, 5319), 'numpy.genfromtxt', 'np.genfromtxt', (['path'], {'delimiter': '""""""'}), "(path, delimiter='')\n", (5299, 5319), True, 'import numpy as np\n'), ((5837, 5847), 'maps.Maps', 'Maps', (['data'], {}), '(data)\n', (5841, 5847), False, 'from maps import Maps\n'), ((6140, 6185), 'numpy.reshape', 'np.reshape', (['maps.offsets', '(-1, seq_length, 8)'], {}), '(maps.offsets, (-1, seq_length, 8))\n', (6150, 6185), True, 'import numpy as np\n'), ((6250, 6303), 'numpy.reshape', 'np.reshape', (['maps.sorted_data', '(-1, seq_length + 1, 4)'], {}), '(maps.sorted_data, (-1, seq_length + 1, 4))\n', (6260, 6303), True, 'import numpy as np\n'), ((6373, 6423), 'occupancy.circle_group_grid', 'circle_group_grid', (['offsets', 'maps.sorted_data', 'size'], {}), '(offsets, maps.sorted_data, size)\n', (6390, 6423), False, 'from occupancy import circle_group_grid\n'), ((839, 898), 'numpy.load', 'np.load', (["('../processed_data/train/%s.npz' % dataset_list[0])"], {}), "('../processed_data/train/%s.npz' % dataset_list[0])\n", (846, 898), True, 'import numpy as np\n'), ((1118, 1161), 'numpy.concatenate', 'np.concatenate', (['(offsets, _offsets)'], {'axis': '(0)'}), '((offsets, _offsets), axis=0)\n', (1132, 1161), True, 'import numpy as np\n'), ((1186, 1233), 'numpy.concatenate', 'np.concatenate', (['(traj_data, _traj_data)'], {'axis': '(0)'}), '((traj_data, _traj_data), axis=0)\n', (1200, 1233), True, 'import numpy as np\n'), ((1258, 1305), 'numpy.concatenate', 'np.concatenate', (['(occupancy, _occupancy)'], {'axis': '(0)'}), '((occupancy, _occupancy), axis=0)\n', (1272, 1305), True, 'import numpy as np\n'), ((2485, 2519), 'numpy.empty', 'np.empty', (['(0, args.obs_seq - 1, 8)'], {}), '((0, args.obs_seq - 1, 8))\n', (2493, 2519), True, 'import numpy as np\n'), ((2538, 2568), 'numpy.empty', 'np.empty', (['(0, args.obs_seq, 4)'], {}), '((0, args.obs_seq, 4))\n', (2546, 2568), True, 'import numpy as np\n'), ((2589, 2665), 'numpy.empty', 'np.empty', (['(0, args.obs_seq - 1, args.enviro_pdim[0], args.enviro_pdim[1], 3)'], {}), '((0, args.obs_seq - 1, args.enviro_pdim[0], args.enviro_pdim[1], 3))\n', (2597, 2665), True, 'import numpy as np\n'), ((3530, 3588), 'os.path.exists', 'os.path.exists', (['"""../processed_data/train/train_merged.npz"""'], {}), "('../processed_data/train/train_merged.npz')\n", (3544, 3588), False, 'import os\n'), ((3707, 3822), 'numpy.savez', 'np.savez', (['"""../processed_data/train/train_merged.npz"""'], {'offsets': 'offsets', 'traj_data': 'traj_data', 'occupancy': 'occupancy'}), "('../processed_data/train/train_merged.npz', offsets=offsets,\n traj_data=traj_data, occupancy=occupancy)\n", (3715, 3822), True, 'import numpy as np\n'), ((5736, 5771), 'augmentation.rotation', 'rotation', (['data[:, 2:4]', '(r / aug_num)'], {}), '(data[:, 2:4], r / aug_num)\n', (5744, 5771), False, 'from augmentation import rotation\n'), ((2789, 2844), 'numpy.load', 'np.load', (["('../processed_data/challenge/%s.npz' % dataset)"], {}), "('../processed_data/challenge/%s.npz' % dataset)\n", (2796, 2844), True, 'import numpy as np\n'), ((2968, 3011), 'numpy.concatenate', 'np.concatenate', (['(offsets, _offsets)'], {'axis': '(0)'}), '((offsets, _offsets), axis=0)\n', (2982, 3011), True, 'import numpy as np\n'), ((3036, 3083), 'numpy.concatenate', 'np.concatenate', (['(traj_data, _traj_data)'], {'axis': '(0)'}), '((traj_data, _traj_data), axis=0)\n', (3050, 3083), True, 'import numpy as np\n'), ((3108, 3155), 'numpy.concatenate', 'np.concatenate', (['(occupancy, _occupancy)'], {'axis': '(0)'}), '((occupancy, _occupancy), axis=0)\n', (3122, 3155), True, 'import numpy as np\n'), ((6585, 6705), 'numpy.savez', 'np.savez', (["('../processed_data/%s/%s' % (dirname, dataname))"], {'offsets': 'offsets', 'traj_data': 'traj_data', 'occupancy': 'occupancy'}), "('../processed_data/%s/%s' % (dirname, dataname), offsets=offsets,\n traj_data=traj_data, occupancy=occupancy)\n", (6593, 6705), True, 'import numpy as np\n'), ((6802, 6813), 'time.time', 'time.time', ([], {}), '()\n', (6811, 6813), False, 'import time\n'), ((6908, 7037), 'numpy.savez', 'np.savez', (["('../processed_data/%s/%s_%.0f' % (dirname, dataname, r))"], {'offsets': 'offsets', 'traj_data': 'traj_data', 'occupancy': 'occupancy'}), "('../processed_data/%s/%s_%.0f' % (dirname, dataname, r), offsets=\n offsets, traj_data=traj_data, occupancy=occupancy)\n", (6916, 7037), True, 'import numpy as np\n'), ((7133, 7144), 'time.time', 'time.time', ([], {}), '()\n', (7142, 7144), False, 'import time\n'), ((1661, 1712), 'numpy.load', 'np.load', (["('../processed_data/train/%s.npz' % dataset)"], {}), "('../processed_data/train/%s.npz' % dataset)\n", (1668, 1712), True, 'import numpy as np\n'), ((1956, 1999), 'numpy.concatenate', 'np.concatenate', (['(offsets, _offsets)'], {'axis': '(0)'}), '((offsets, _offsets), axis=0)\n', (1970, 1999), True, 'import numpy as np\n'), ((2032, 2079), 'numpy.concatenate', 'np.concatenate', (['(traj_data, _traj_data)'], {'axis': '(0)'}), '((traj_data, _traj_data), axis=0)\n', (2046, 2079), True, 'import numpy as np\n'), ((2112, 2159), 'numpy.concatenate', 'np.concatenate', (['(occupancy, _occupancy)'], {'axis': '(0)'}), '((occupancy, _occupancy), axis=0)\n', (2126, 2159), True, 'import numpy as np\n'), ((5412, 5426), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (5420, 5426), True, 'import numpy as np\n')]
# Copyright 2017 Google Inc. and Skytruth Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from collections import namedtuple import logging import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim import tensorflow.contrib.metrics as metrics import utility class ModelBase(object): __metaclass__ = abc.ABCMeta @property def number_of_steps(self): """Number of training examples to use""" return 500000 @property def use_ranges_for_training(self): """Choose features overlapping with provided ranges during training""" return False @property def batch_size(self): return 64 @property def max_window_duration_seconds(self): """ Window max duration in seconds. A value of zero indicates that we would instead like to choose a fixed-length window. """ return None # We often allocate a much smaller buffer than would fit the specified time # sampled at 5 mins intervals, on the basis that the sample is almost # always much more sparse. @property def window_max_points(self): return None @property def min_viable_timeslice_length(self): return 500 @property def max_replication_factor(self): return 100.0 def __init__(self, num_feature_dimensions, vessel_metadata): self.num_feature_dimensions = num_feature_dimensions if vessel_metadata: self.vessel_metadata = vessel_metadata self.fishing_ranges_map = vessel_metadata.fishing_ranges_map else: self.vessel_metadata = None self.fishing_ranges_map = None self.training_objectives = None def build_training_file_list(self, base_feature_path, split): boundary = 1 if (split == utility.TRAINING_SPLIT) else self.batch_size random_state = np.random.RandomState() training_mmsis = self.vessel_metadata.weighted_training_list( random_state, split, self.max_replication_factor, boundary=boundary) return [ '%s/%s.tfrecord' % (base_feature_path, mmsi) for mmsi in training_mmsis ] @staticmethod def read_metadata(all_available_mmsis, metadata_file, fishing_ranges, fishing_upweight=1.0): return utility.read_vessel_multiclass_metadata( all_available_mmsis, metadata_file, fishing_ranges, fishing_upweight) @abc.abstractmethod def build_training_net(self, features, timestamps, mmsis): """Build net suitable for training model Args: features : features to feed into net timestamps: a list of timestamps, one for each feature point. mmsis: a list of mmsis, one for each batch element. Returns: TrainNetInfo """ optimizer = trainers = None return optimizer, trainers @abc.abstractmethod def build_inference_net(self, features, timestamps, mmsis): """Build net suitable for running inference on model Args: features : features to feed into net timestamps: a list of timestamps, one for each feature point. mmsis: a list of mmsis, one for each batch element. Returns: A list of objects derived from EvaluationBase providing functionality to log evaluation statistics as well as to return the results of inference as JSON. """ return []
[ "utility.read_vessel_multiclass_metadata", "numpy.random.RandomState" ]
[((2400, 2423), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (2421, 2423), True, 'import numpy as np\n'), ((2931, 3044), 'utility.read_vessel_multiclass_metadata', 'utility.read_vessel_multiclass_metadata', (['all_available_mmsis', 'metadata_file', 'fishing_ranges', 'fishing_upweight'], {}), '(all_available_mmsis, metadata_file,\n fishing_ranges, fishing_upweight)\n', (2970, 3044), False, 'import utility\n')]
# cluster_features.py # # Based on snippets here: # http://scikit-learn.org/dev/auto_examples/cluster/plot_cluster_iris.html#sphx-glr-auto-examples-cluster-plot-cluster-iris-py from __future__ import print_function import time import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from sklearn.decomposition import PCA def get_payment_data(csv_filename): df = pd.read_csv(csv_filename, header = 0) # put the original column names in a python list feature_names = list(df.columns.values) # create a numpy array with the numeric values for input into scikit-learn numpy_array = df.as_matrix() Y = numpy_array[:,24] X = numpy_array[:, [i for i in xrange(np.shape(numpy_array)[1]-1)]] return (X, Y, feature_names) if __name__ == "__main__": (X, Y, feature_names) = get_payment_data("default_on_payment.csv") print('Shape of the inputs: %s, shape of the labels: %s' % (str(X.shape), str(Y.shape))) # split into a training and testing set # Training instances: 22,500 # Test instances: 7500 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=42) print('Train set inputs: %s' % (str(X_train.shape))) print('Test set inputs %s' % (str(X_test.shape))) print('Train set labels: %s' % (str(Y_train.shape))) print('Test set labels: %s' % (str(Y_test.shape))) # --------------------------------------------------------------------------- # Scaling # ---------------------------------------------------------------------------- scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # --------------------------------------------------------------------------- # PCA Transformation of Features # ---------------------------------------------------------------------------- pca = PCA(n_components=3) X_train_new = pca.fit_transform(X_train, y=None) fig = plt.figure(1) ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) #ax.scatter(X_train_new[:, 0], X_train_new[:, 1], X_train_new[:, 2],c=labels.astype(np.float)) ax.scatter(X_train_new[:, 0], X_train_new[:, 1], X_train_new[:, 2]) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('PC0') ax.set_ylabel('PC1') ax.set_zlabel('PC2') plt.show() # --------------------------------------------------------------------------- # K-Means Clustering # ---------------------------------------------------------------------------- num_clusters = 2 classifier_KMC = KMeans(n_clusters = num_clusters, n_jobs=-1, random_state=1) start_time = time.time() classifier_KMC.fit(X_train, y=None) end_time = time.time() labels1 = classifier_KMC.labels_ # Classify the train and test set vectors train_labels = classifier_KMC.predict(X_train) test_labels = classifier_KMC.predict(X_test) # Returns 68.9% on training set accuracy_KMC_train = accuracy_score(Y_train, train_labels) accuracy_KMC_test = accuracy_score(Y_test, test_labels) # Plotting fig = plt.figure(1) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() classifier_KMC.fit(X_train) labels = classifier_KMC.labels_ #ax.scatter(X_train[:, 1], X_train[:, 2], X_train[:, 3], X_train[:, 3],c=labels.astype(np.float)) ax.scatter(X_train[:, 0], X_train[:, 1],c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('F0') ax.set_ylabel('F1') ax.set_zlabel('F2') plt.show() ## Plot the ground truth #fig = plt.figure(1) #plt.clf() #ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) #plt.cla() # predictions_KMC = classifier_KMC.predict(X_test)
[ "sklearn.cross_validation.train_test_split", "sklearn.preprocessing.StandardScaler", "mpl_toolkits.mplot3d.Axes3D", "matplotlib.pyplot.show", "matplotlib.pyplot.clf", "pandas.read_csv", "sklearn.cluster.KMeans", "sklearn.metrics.accuracy_score", "time.time", "numpy.shape", "matplotlib.pyplot.figure", "sklearn.decomposition.PCA", "matplotlib.pyplot.cla" ]
[((695, 730), 'pandas.read_csv', 'pd.read_csv', (['csv_filename'], {'header': '(0)'}), '(csv_filename, header=0)\n', (706, 730), True, 'import pandas as pd\n'), ((1418, 1473), 'sklearn.cross_validation.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': '(0.25)', 'random_state': '(42)'}), '(X, Y, test_size=0.25, random_state=42)\n', (1434, 1473), False, 'from sklearn.cross_validation import train_test_split\n'), ((1894, 1910), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1908, 1910), False, 'from sklearn.preprocessing import StandardScaler\n'), ((2231, 2250), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(3)'}), '(n_components=3)\n', (2234, 2250), False, 'from sklearn.decomposition import PCA\n'), ((2319, 2332), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (2329, 2332), True, 'import matplotlib.pyplot as plt\n'), ((2342, 2394), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {'rect': '[0, 0, 0.95, 1]', 'elev': '(48)', 'azim': '(134)'}), '(fig, rect=[0, 0, 0.95, 1], elev=48, azim=134)\n', (2348, 2394), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((2749, 2759), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2757, 2759), True, 'import matplotlib.pyplot as plt\n'), ((2994, 3052), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'num_clusters', 'n_jobs': '(-1)', 'random_state': '(1)'}), '(n_clusters=num_clusters, n_jobs=-1, random_state=1)\n', (3000, 3052), False, 'from sklearn.cluster import KMeans\n'), ((3073, 3084), 'time.time', 'time.time', ([], {}), '()\n', (3082, 3084), False, 'import time\n'), ((3140, 3151), 'time.time', 'time.time', ([], {}), '()\n', (3149, 3151), False, 'import time\n'), ((3399, 3436), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_train', 'train_labels'], {}), '(Y_train, train_labels)\n', (3413, 3436), False, 'from sklearn.metrics import accuracy_score\n'), ((3461, 3496), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_test', 'test_labels'], {}), '(Y_test, test_labels)\n', (3475, 3496), False, 'from sklearn.metrics import accuracy_score\n'), ((3526, 3539), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (3536, 3539), True, 'import matplotlib.pyplot as plt\n'), ((3544, 3553), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (3551, 3553), True, 'import matplotlib.pyplot as plt\n'), ((3563, 3615), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {'rect': '[0, 0, 0.95, 1]', 'elev': '(48)', 'azim': '(134)'}), '(fig, rect=[0, 0, 0.95, 1], elev=48, azim=134)\n', (3569, 3615), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((3619, 3628), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (3626, 3628), True, 'import matplotlib.pyplot as plt\n'), ((4051, 4061), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4059, 4061), True, 'import matplotlib.pyplot as plt\n'), ((1013, 1034), 'numpy.shape', 'np.shape', (['numpy_array'], {}), '(numpy_array)\n', (1021, 1034), True, 'import numpy as np\n')]
import numpy as np from numba import jit import pyflann from petsc4py import PETSc from mpi4py import MPI from speclus4py.types import DataObject, DataType, GraphType, OperatorType, OperatorContainer @jit(nopython=True) def get_global_index(x, y, ydim): return y + x * ydim @jit(nopython=True) def get_global_index_volumetric(x, y, z, xdim, ydim): return x + xdim * (y + z * ydim) @jit(nopython=True) def compute_gradient(v1, v2, sigma: float): abs = np.abs(v1 - v2) return np.exp(-abs * abs / (2. * sigma * sigma)) @jit(nopython=True) def compute_gradient_norm(v1, v2, sigma: float): norm = np.linalg.norm(v1 - v2) return np.exp(-norm * norm / (2. * sigma * sigma)) class OperatorAssembler(DataObject, OperatorContainer): def __init__(self, comm=MPI.COMM_WORLD, verbose=False): DataObject.__init__(self, comm, verbose) OperatorContainer.__init__(self) self.__graph_type = GraphType.DIRECTED @property def graph_type(self) -> GraphType: return self.__graph_type @graph_type.setter def graph_type(self, t: GraphType): self.__graph_type = t def setSimilarityFunc(self, fn, params): self.__similarity_measure_fn = fn self.__similarity_measure_params = params def reset(self): OperatorContainer.reset(self) def __construct_adjacency_matrix_general_data(self): data = self.getData()[0] # determine dimension of a problem N = data.shape[0] # building index (FLANN - Fast Library for Approximate Nearest Neighbors) pyflann.set_distance_type('euclidean') flann = pyflann.FLANN() flann.build_index(data) # create matrix object self.mat_adj = PETSc.Mat() self.mat_adj.create(self.comm) self.mat_adj.setSizes([N, N]) self.mat_adj.setType(self.mat_type) if self.graph_type == GraphType.DIRECTED: self.__construct_adjacency_matrix_general_data_directed_graph(flann) else: self.__construct_adjacency_matrix_general_data_undirected_graph(flann) # finalizing assembly of adjacency matrix self.mat_adj.assemble() del flann def __construct_adjacency_matrix_general_data_directed_graph(self, flann): self.mat_adj.setPreallocationNNZ(self.connectivity) self.mat_adj.setFromOptions() self.mat_adj.setUp() # Get function for measuring similarity and its parameters sim_func, sim_func_params = self.getSimilarityMeasure() if sim_func is None: sim_func = compute_gradient_norm if sim_func_params == PETSc.DEFAULT: sim_func_params = 0.5 data = self.getData()[0] # building adjacency matrix of similarity graph i_start, i_end = self.mat_adj.getOwnershipRange() for I in range(i_start, i_end): v1 = data[I] # find nearest neighbours to sample v1 # sometimes self-adjoint vertex is included, thus finding n+1 nearest neighbours result, dist = flann.nn_index(v1, self.connectivity + 1) used_nn = 0 for J in range(0, self.connectivity + 1): idx = result[0, J] if idx != I and used_nn < self.connectivity: v2 = data[result[0, J]] g = sim_func(v1, v2, sim_func_params) if g > 0.: self.mat_adj[I, idx] = g used_nn += 1 elif used_nn >= self.connectivity: break def __construct_adjacency_matrix_general_data_undirected_graph(self, flann): self.mat_adj.setFromOptions() self.mat_adj.setUp() # Get function for measuring similarity and its parameters sim_func, sim_func_params = self.getSimilarityMeasure() if sim_func is None: sim_func = compute_gradient_norm if sim_func_params == PETSc.DEFAULT: sim_func_params = 0.5 data = self.getData()[0] # building adjacency matrix of similarity graph i_start, i_end = self.mat_adj.getOwnershipRange() for I in range(i_start, i_end): v1 = data[I] # find nearest neighbours to sample v1 # sometimes self-adjoint vertex is included, thus finding n+1 nearest neighbours result, dist = flann.nn_index(v1, self.connectivity + 1) for J in range(0, self.connectivity + 1): idx = result[0, J] if idx != I: v2 = data[result[0, J]] g = sim_func(v1, v2, sim_func_params) if g > 0.: self.mat_adj[I, idx] = g self.mat_adj[idx, I] = g def __construct_adjacency_matrix_vol_img(self): if self.connectivity != 6 and self.connectivity != 18 and self.connectivity != 26: raise Exception('Connectivity (con) must be set to 6, 18, or 26') # Get function for measuring similarity and its parameters sim_func, sim_func_params = self.getSimilarityMeasure() if sim_func is None: sim_func = compute_gradient if sim_func_params == PETSc.DEFAULT: sim_func_params = 0.5 data = self.getData()[0] # determine dimension of a problem dims = data.GetDimensions() dim_x = dims[0] - 1 dim_y = dims[1] - 1 dim_z = dims[2] - 1 N = dim_x * dim_y * dim_z # create matrix object self.mat_adj = PETSc.Mat() self.mat_adj.create(self.comm) self.mat_adj.setSizes([N, N]) self.mat_adj.setType(self.mat_type) self.mat_adj.setPreallocationNNZ(self.connectivity) self.mat_adj.setFromOptions() self.mat_adj.setUp() # compute local derivatives on structured non-uniform grid that is determined using sigma and # connectivity of derivatives (6, 18, or 26) data_scalars = data.GetCellData().GetScalars() i_start, i_end = self.mat_adj.getOwnershipRange() for I in range(i_start, i_end): # determine (x, y, z)-coordinates z = I // (dim_x * dim_y) i = I - z * dim_x * dim_y y = i // dim_x x = i - y * dim_x p1 = get_global_index_volumetric(x, y, z, dim_x, dim_y) v1 = data_scalars.GetTuple1(p1) / 255. if z > 0: if self.connectivity > 6 and y > 0: if self.connectivity == 26 and x > 0: p2 = get_global_index_volumetric(x - 1, y - 1, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y - 1, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity == 26 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y - 1, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and x > 0: p2 = get_global_index_volumetric(x - 1, y, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and y < dim_y - 1: if self.connectivity == 26 and x > 0: p2 = get_global_index_volumetric(x - 1, y + 1, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y + 1, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity == 26 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y + 1, z - 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if y > 0: if self.connectivity > 6 and x > 0: p2 = get_global_index_volumetric(x - 1, y - 1, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y - 1, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y - 1, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if x > 0: p2 = get_global_index_volumetric(x - 1, y, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if y < dim_y - 1: if self.connectivity > 6 and x > 0: p2 = get_global_index_volumetric(x - 1, y + 1, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y + 1, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y + 1, z, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if z < dim_z - 1: if self.connectivity > 6 and y > 0: if self.connectivity == 26 and x > 0: p2 = get_global_index_volumetric(x - 1, y - 1, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y - 1, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity == 26 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y - 1, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and x > 0: p2 = get_global_index_volumetric(x - 1, y, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity > 6 and y < dim_y - 1: if self.connectivity == 26 and x > 0: p2 = get_global_index_volumetric(x - 1, y + 1, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g p2 = get_global_index_volumetric(x, y + 1, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g if self.connectivity == 26 and x < dim_x - 1: p2 = get_global_index_volumetric(x + 1, y + 1, z + 1, dim_x, dim_y) v2 = data_scalars.GetTuple1(p2) / 255. g = sim_func(v1, v2, sim_func_params) self.mat_adj[p1, p2] = g # finalizing assembly of adjacency matrix self.mat_adj.assemble() def __construct_adjacency_matrix_img(self): if self.connectivity != 4 and self.connectivity != 8: PETSc.Sys.Print('Connectivity (con) must be set to 4 or 8') raise PETSc.Error(62) rows = self.data.shape[0] cols = self.data.shape[1] N = rows * cols # Get function for measuring similarity and its parameters sim_func, sim_func_params = self.getSimilarityMeasure() if sim_func is None: if len(self.data.shape) == 3: sim_func = compute_gradient_norm else: sim_func = compute_gradient if sim_func_params == PETSc.DEFAULT: sim_func_params = 0.5 data = self.getData()[0] # create matrix object self.mat_adj = PETSc.Mat() self.mat_adj.create(self.comm) self.mat_adj.setSizes([N, N]) self.mat_adj.setType(self.mat_type) self.mat_adj.setPreallocationNNZ(self.connectivity) self.mat_adj.setFromOptions() self.mat_adj.setUp() i_start, i_end = self.mat_adj.getOwnershipRange() for I in range(i_start, i_end): # determine (x, y) coordinates x = I // cols y = I - x * cols p1 = I v1 = self.data[x, y] / 255. if x > 0: if y > 0 and self.connectivity == 8: p2 = get_global_index(x - 1, y - 1, cols) v2 = data[x - 1, y - 1] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) p2 = get_global_index(x - 1, y, cols) v2 = data[x - 1, y] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) if y < cols - 1 and self.connectivity == 8: p2 = get_global_index(x - 1, y + 1, cols) v2 = data[x - 1, y + 1] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) if y > 0: p2 = get_global_index(x, y - 1, cols) v2 = data[x, y - 1] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) if y < cols - 1: p2 = get_global_index(x, y + 1, cols) v2 = data[x, y + 1] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) if x < rows - 1: if y > 0 and self.connectivity == 8: p2 = get_global_index(x + 1, y - 1, cols) v2 = data[x + 1, y - 1] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) p2 = get_global_index(x + 1, y, cols) v2 = data[x + 1, y] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) if y < cols - 1 and self.connectivity == 8: p2 = get_global_index(x + 1, y + 1, cols) v2 = data[x + 1, y + 1] / 255. self.mat_adj[p1, p2] = sim_func(v1, v2, sim_func_params) # finalizing assembly of adjacency matrix self.mat_adj.assemble() def assembly(self): self.reset() data_type = self.getData()[1] if self.fn_similarity_params is not None and self.verbose: if type(self.fn_similarity_params) == float: str_params = ', param=%.2f' % self.fn_similarity_params else: str_params = ', params=[' str_params += ''.join('{}, '.format(k) for k in self.fn_similarity_params) str_params = str_params[:-2] + ']' else: str_params = '' if data_type == DataType.IMG: if self.connectivity == PETSc.DEFAULT: self.connectivity = 4 if self.verbose: s = 'Construct operator (%s, GRAPH_%s) for image: connectivity=%d' v = (self.operator_type.name, GraphType.UNDIRECTED.name, self.connectivity) PETSc.Sys.Print(s % v + str_params) self.__construct_adjacency_matrix_img() elif data_type == DataType.VOL_IMG: if self.connectivity == PETSc.DEFAULT: self.connectivity = 6 if self.verbose: s = 'Construct operator (%s, GRAPH_%s) for volumetric image: connectivity=%d' v = (self.operator_type.name, self.graph_type.name, self.connectivity) PETSc.Sys.Print(s % v + str_params) self.__construct_adjacency_matrix_vol_img() else: if self.connectivity == PETSc.DEFAULT: self.connectivity = 3 if self.verbose: s = 'Construct operator (%s, GRAPH_%s) for general data: connectivity=%d' v = (self.operator_type.name, self.graph_type.name, self.connectivity) PETSc.Sys.Print(s % v + str_params) self.__construct_adjacency_matrix_general_data() # if data_type == DataType.IMG: # if self.connectivity == PETSc.DEFAULT: # self.connectivity = 4 # # if self.verbose: # PETSc.Sys.Print( # 'Construct operator (%s) for image: connectivity=%d, sigma=%2g' # % (self.operator_type.name, self.connectivity, self.sigma) # ) # # self.__construct_adjacency_matrix_img() # elif data_type == DataType.VOL_IMG: # volumetric image # if self.connectivity == PETSc.DEFAULT: # self.connectivity = 6 # # if self.verbose: # if self.fn_similarity_params is not None: # s = 'Construct operator (%s, GRAPH_ %s) for volumetric image: connectivity=%d, ' # v = (self.operator_type.name, self.graph_type.name, self.connectivity) # sv = s % v # if type(self.fn_similarity_params) == float: # sp = 'param=%.2f' % self.fn_similarity_params # else: # sp = 'params=(' # sp += ''.join('{}, '.format(k) for k in self.fn_similarity_params) # sp = sp[:-2] + ')' # sv += sp # else: # s = 'Construct operator (%s, GRAPH_%s) for volumetric image: connectivity=%d params=None' # v = (self.operator_type.name, self.graph_type.name, self.connectivity) # sv = s % v # PETSc.Sys.Print(sv) # # exit(-1) # # self.__construct_adjacency_matrix_vol_img() # else: # if self.connectivity == PETSc.DEFAULT: # self.connectivity = 6 # # if self.verbose: # PETSc.Sys.Print( # 'Construct operator (%s) for general data: connectivity=%d, params=%2g' # % (self.operator_type.name, self.connectivity, self.__similarity_measure_params) # ) # # self.__construct_adjacency_matrix_general_data() N = self.mat_adj.getSize()[0] # compute degree matrix D_i = deg(v_i) self.vec_diag = self.mat_adj.createVecLeft() self.mat_adj.getRowSum(self.vec_diag) if self.operator_type != OperatorType.MARKOV_1 or self.operator_type != OperatorType.MARKOV_2: self.mat_op = PETSc.Mat().createAIJ((N, N), comm=self.comm) self.mat_op.setPreallocationNNZ(self.connectivity + 1) self.mat_op.setFromOptions() self.mat_op.setUp() self.mat_op.setDiagonal(self.vec_diag) self.mat_op.assemble() # L = D - A self.mat_op.axpy(-1., self.mat_adj) else: # P = D^-1 A (MARKOV_1) or Ng, Weiss (MARKOV_2) self.mat_op = self.mat_adj.duplicate() self.mat_op.setFromOptions() self.mat_op.setType(self.mat_type) self.mat_op.setUp() self.mat_op.copy(self.mat_op) if self.operator_type != OperatorType.LAPLACIAN_UNNORMALIZED: tmp_vec = self.vec_diag.duplicate() self.vec_diag.copy(tmp_vec) if self.operator_type == OperatorType.LAPLACIAN_NORMALIZED or self.operator_type == OperatorType.MARKOV_2: tmp_vec.sqrtabs() tmp_vec.reciprocal() self.mat_op.diagonalScale(tmp_vec, tmp_vec) elif self.operator_type == OperatorType.MARKOV_1: tmp_vec.reciprocal() self.mat_op.diagonalScale(tmp_vec) else: # L_rw tmp_vec.reciprocal() self.mat_op.diagonalScale(tmp_vec) # left diagonal scale del tmp_vec self.mat_op.assemble()
[ "petsc4py.PETSc.Mat", "speclus4py.types.DataObject.__init__", "speclus4py.types.OperatorContainer.__init__", "numpy.abs", "speclus4py.types.OperatorContainer.reset", "petsc4py.PETSc.Sys.Print", "numba.jit", "numpy.exp", "numpy.linalg.norm", "pyflann.FLANN", "pyflann.set_distance_type", "petsc4py.PETSc.Error" ]
[((205, 223), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (208, 223), False, 'from numba import jit\n'), ((285, 303), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (288, 303), False, 'from numba import jit\n'), ((398, 416), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (401, 416), False, 'from numba import jit\n'), ((543, 561), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (546, 561), False, 'from numba import jit\n'), ((471, 486), 'numpy.abs', 'np.abs', (['(v1 - v2)'], {}), '(v1 - v2)\n', (477, 486), True, 'import numpy as np\n'), ((498, 540), 'numpy.exp', 'np.exp', (['(-abs * abs / (2.0 * sigma * sigma))'], {}), '(-abs * abs / (2.0 * sigma * sigma))\n', (504, 540), True, 'import numpy as np\n'), ((622, 645), 'numpy.linalg.norm', 'np.linalg.norm', (['(v1 - v2)'], {}), '(v1 - v2)\n', (636, 645), True, 'import numpy as np\n'), ((657, 701), 'numpy.exp', 'np.exp', (['(-norm * norm / (2.0 * sigma * sigma))'], {}), '(-norm * norm / (2.0 * sigma * sigma))\n', (663, 701), True, 'import numpy as np\n'), ((827, 867), 'speclus4py.types.DataObject.__init__', 'DataObject.__init__', (['self', 'comm', 'verbose'], {}), '(self, comm, verbose)\n', (846, 867), False, 'from speclus4py.types import DataObject, DataType, GraphType, OperatorType, OperatorContainer\n'), ((876, 908), 'speclus4py.types.OperatorContainer.__init__', 'OperatorContainer.__init__', (['self'], {}), '(self)\n', (902, 908), False, 'from speclus4py.types import DataObject, DataType, GraphType, OperatorType, OperatorContainer\n'), ((1306, 1335), 'speclus4py.types.OperatorContainer.reset', 'OperatorContainer.reset', (['self'], {}), '(self)\n', (1329, 1335), False, 'from speclus4py.types import DataObject, DataType, GraphType, OperatorType, OperatorContainer\n'), ((1587, 1625), 'pyflann.set_distance_type', 'pyflann.set_distance_type', (['"""euclidean"""'], {}), "('euclidean')\n", (1612, 1625), False, 'import pyflann\n'), ((1642, 1657), 'pyflann.FLANN', 'pyflann.FLANN', ([], {}), '()\n', (1655, 1657), False, 'import pyflann\n'), ((1745, 1756), 'petsc4py.PETSc.Mat', 'PETSc.Mat', ([], {}), '()\n', (1754, 1756), False, 'from petsc4py import PETSc\n'), ((5595, 5606), 'petsc4py.PETSc.Mat', 'PETSc.Mat', ([], {}), '()\n', (5604, 5606), False, 'from petsc4py import PETSc\n'), ((15149, 15160), 'petsc4py.PETSc.Mat', 'PETSc.Mat', ([], {}), '()\n', (15158, 15160), False, 'from petsc4py import PETSc\n'), ((14480, 14539), 'petsc4py.PETSc.Sys.Print', 'PETSc.Sys.Print', (['"""Connectivity (con) must be set to 4 or 8"""'], {}), "('Connectivity (con) must be set to 4 or 8')\n", (14495, 14539), False, 'from petsc4py import PETSc\n'), ((14558, 14573), 'petsc4py.PETSc.Error', 'PETSc.Error', (['(62)'], {}), '(62)\n', (14569, 14573), False, 'from petsc4py import PETSc\n'), ((18402, 18437), 'petsc4py.PETSc.Sys.Print', 'PETSc.Sys.Print', (['(s % v + str_params)'], {}), '(s % v + str_params)\n', (18417, 18437), False, 'from petsc4py import PETSc\n'), ((18853, 18888), 'petsc4py.PETSc.Sys.Print', 'PETSc.Sys.Print', (['(s % v + str_params)'], {}), '(s % v + str_params)\n', (18868, 18888), False, 'from petsc4py import PETSc\n'), ((19275, 19310), 'petsc4py.PETSc.Sys.Print', 'PETSc.Sys.Print', (['(s % v + str_params)'], {}), '(s % v + str_params)\n', (19290, 19310), False, 'from petsc4py import PETSc\n'), ((21894, 21905), 'petsc4py.PETSc.Mat', 'PETSc.Mat', ([], {}), '()\n', (21903, 21905), False, 'from petsc4py import PETSc\n')]
from matplotlib.colors import Normalize import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import pandas as pd import numpy as np from math import pi, log from scipy.stats import rankdata from argparse import ArgumentParser if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("fp", type=str) parser.add_argument( "bounds", type=float, nargs=4, help="lowerbound x, upperbound x, lb y, ub y" ) args = parser.parse_args() filepath = args.fp dims = args.bounds # === setup problem space, either real or Karpathy toy problem for validation === # pspace = np.loadtxt("golf_course_zoom_s1024.txt") pspace = np.loadtxt(filepath) # uncomment this line if you want smooth toy-problem # pspace = G print(dims) lbp, ubp, lbb, ubb = dims # ******************** PLOTTING **************************************** # ======== establish figs ================= fig = plt.figure() ax = fig.gca() # ============= plot problem space bg images ==== cmap = plt.cm.viridis colors = Normalize(min(pspace.flatten()), max(pspace.flatten()))(pspace) colors = cmap(colors) plt.axis('equal') plt.imshow( colors, vmin=min(pspace.flatten()), vmax=max(pspace.flatten()), extent=[lbb, ubb,lbp, ubp], aspect="auto", interpolation="none", origin="lower", ) ax.set_xlabel("burnDv") ax.set_ylabel("position") plt.colorbar() plt.show()
[ "matplotlib.pyplot.show", "argparse.ArgumentParser", "matplotlib.pyplot.axis", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.figure", "numpy.loadtxt" ]
[((330, 346), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (344, 346), False, 'from argparse import ArgumentParser\n'), ((736, 756), 'numpy.loadtxt', 'np.loadtxt', (['filepath'], {}), '(filepath)\n', (746, 756), True, 'import numpy as np\n'), ((1013, 1025), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1023, 1025), True, 'import matplotlib.pyplot as plt\n'), ((1233, 1250), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (1241, 1250), True, 'import matplotlib.pyplot as plt\n'), ((1538, 1552), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1550, 1552), True, 'import matplotlib.pyplot as plt\n'), ((1558, 1568), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1566, 1568), True, 'import matplotlib.pyplot as plt\n')]
"""Classes to run register functions at certain timepoints and run asynchronously""" import threading import time from typing import Any, Callable, Iterable, NoReturn, Union import numpy as np import sc3nb from sc3nb.osc.osc_communication import Bundler, OSCCommunication, OSCMessage class Event: """Stores a timestamp, function and arguments for that function. Long running functions can be wrapped inside an own thread Parameters ---------- timestamp : float Time event should be executed function : Callable[..., None] Function to be executed args : Iterable[Any] Arguments for function spawn : bool, optional if True, create new thread for function, by default False """ def __init__( self, timestamp: float, function: Callable[..., None], args: Iterable[Any], spawn: bool = False, ) -> None: if spawn: thread = threading.Thread(target=function, args=args) function = thread.start args = () self.timestamp = timestamp self.function = function self.args = args def execute(self) -> None: """Executes function""" self.function(*self.args) def __eq__(self, other): return self.timestamp == other.timestamp def __lt__(self, other): return self.timestamp < other.timestamp def __le__(self, other): return self.timestamp <= other.timestamp def __repr__(self): return "%s: %s" % (self.timestamp, self.function.__name__) class TimedQueue: """Accumulates events as timestamps and functions. Executes given functions according to the timestamps Parameters ---------- relative_time : bool, optional If True, use relative time, by default False thread_sleep_time : float, optional Sleep time in seconds for worker thread, by default 0.001 drop_time_threshold : float, optional Threshold for execution time of events in seconds. If this is exceeded the event will be dropped, by default 0.5 """ def __init__( self, relative_time: bool = False, thread_sleep_time: float = 0.001, drop_time_threshold: float = 0.5, ) -> None: self.drop_time_thr = drop_time_threshold self.start = time.time() if relative_time else 0 self.onset_idx = np.empty((0, 2)) self.event_list = [] self.close_event = threading.Event() self.lock = threading.Lock() self.thread = threading.Thread( target=self.__worker, args=(thread_sleep_time, self.close_event) ) # , daemon=True) self.thread.start() def close(self) -> None: """Closes event processing without waiting for pending events""" self.close_event.set() self.thread.join() def join(self) -> None: """Closes event processing after waiting for pending events""" self.complete() self.close_event.set() self.thread.join() def complete(self) -> None: """Blocks until all pending events have completed""" while self.event_list: time.sleep(0.01) def put( self, timestamp: float, function: Callable[..., None], args: Iterable[Any] = (), spawn: bool = False, ) -> None: """Adds event to queue Parameters ---------- timestamp : float Time (POSIX) when event should be executed function : Callable[..., None] Function to be executed args : Iterable[Any], optional Arguments to be passed to function, by default () spawn : bool, optional if True, create new sub-thread for function, by default False Raises ------ TypeError raised if function is not callable """ if not callable(function): raise TypeError("function argument cannot be called") if not isinstance(args, tuple): args = (args,) new_event = Event(timestamp, function, args, spawn) with self.lock: self.event_list.append(new_event) evlen = len(self.event_list) if not self.onset_idx.any(): idx = 0 else: idx = np.searchsorted(self.onset_idx[:, 0], timestamp) self.onset_idx = np.insert( self.onset_idx, idx, [timestamp, evlen - 1], axis=0 ) def get(self) -> Event: """Get latest event from queue and remove event Returns ------- Event Latest event """ event = self.peek() self.pop() return event def peek(self) -> Event: """Look up latest event from queue Returns ------- Event Latest event """ with self.lock: return self.event_list[int(self.onset_idx[0][1])] def empty(self) -> bool: """Checks if queue is empty Returns ------- bool True if queue if empty """ with self.lock: return bool(self.event_list) def pop(self) -> None: """Removes latest event from queue""" with self.lock: event_idx = int(self.onset_idx[0][1]) self.onset_idx = self.onset_idx[1:] # remove 1 from all idcs after popped event self.onset_idx[:, 1][self.onset_idx[:, 1] > event_idx] -= 1 del self.event_list[event_idx] def __worker(self, sleep_time: float, close_event: threading.Event) -> NoReturn: """Worker function to process events""" while True: if close_event.is_set(): break if self.event_list: event = self.peek() if event.timestamp <= time.time() - self.start: # execute only if not too old if event.timestamp > time.time() - self.start - self.drop_time_thr: event.execute() self.pop() # sleep_time = event_list[0].timestamp - (time.time() - self.start) - 0.001 time.sleep(sleep_time) def __repr__(self): return f"<TimedQueue {self.event_list.__repr__()}>" def elapse(self, time_delta: float) -> None: """Add time delta to the current queue time. Parameters ---------- time_delta : float Additional time """ self.start += time_delta class TimedQueueSC(TimedQueue): """Timed queue with OSC communication. Parameters ---------- server : OSCCommunication, optional OSC server to handle the bundlers and messsages, by default None relative_time : bool, optional If True, use relative time, by default False thread_sleep_time : float, optional Sleep time in seconds for worker thread, by default 0.001 """ def __init__( self, server: OSCCommunication = None, relative_time: bool = False, thread_sleep_time: float = 0.001, ): super().__init__(relative_time, thread_sleep_time) self.server = server or sc3nb.SC.get_default().server def put_bundler(self, onset: float, bundler: Bundler) -> None: """Add a Bundler to queue Parameters ---------- onset : float Sending timetag of the Bundler bundler : Bundler Bundler that will be sent """ self.put(onset, bundler.send) def put_msg( self, onset: float, msg: Union[OSCMessage, str], msg_params: Iterable[Any] ) -> None: """Add a message to queue Parameters ---------- onset : float Sending timetag of the message msg : Union[OSCMessage, str] OSCMessage or OSC address msg_params : Iterable[Any] If msg is str, this will be the parameters of the created OSCMessage """ if isinstance(msg, str): self.put(onset, self.server.msg, args=(msg, msg_params)) else: self.put(onset, self.server.send, args=(msg,))
[ "threading.Thread", "numpy.empty", "numpy.searchsorted", "sc3nb.SC.get_default", "time.time", "threading.Lock", "time.sleep", "numpy.insert", "threading.Event" ]
[((2418, 2434), 'numpy.empty', 'np.empty', (['(0, 2)'], {}), '((0, 2))\n', (2426, 2434), True, 'import numpy as np\n'), ((2491, 2508), 'threading.Event', 'threading.Event', ([], {}), '()\n', (2506, 2508), False, 'import threading\n'), ((2530, 2546), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (2544, 2546), False, 'import threading\n'), ((2570, 2657), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.__worker', 'args': '(thread_sleep_time, self.close_event)'}), '(target=self.__worker, args=(thread_sleep_time, self.\n close_event))\n', (2586, 2657), False, 'import threading\n'), ((959, 1003), 'threading.Thread', 'threading.Thread', ([], {'target': 'function', 'args': 'args'}), '(target=function, args=args)\n', (975, 1003), False, 'import threading\n'), ((2357, 2368), 'time.time', 'time.time', ([], {}), '()\n', (2366, 2368), False, 'import time\n'), ((3202, 3218), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (3212, 3218), False, 'import time\n'), ((4453, 4515), 'numpy.insert', 'np.insert', (['self.onset_idx', 'idx', '[timestamp, evlen - 1]'], {'axis': '(0)'}), '(self.onset_idx, idx, [timestamp, evlen - 1], axis=0)\n', (4462, 4515), True, 'import numpy as np\n'), ((6275, 6297), 'time.sleep', 'time.sleep', (['sleep_time'], {}), '(sleep_time)\n', (6285, 6297), False, 'import time\n'), ((4375, 4423), 'numpy.searchsorted', 'np.searchsorted', (['self.onset_idx[:, 0]', 'timestamp'], {}), '(self.onset_idx[:, 0], timestamp)\n', (4390, 4423), True, 'import numpy as np\n'), ((7299, 7321), 'sc3nb.SC.get_default', 'sc3nb.SC.get_default', ([], {}), '()\n', (7319, 7321), False, 'import sc3nb\n'), ((5936, 5947), 'time.time', 'time.time', ([], {}), '()\n', (5945, 5947), False, 'import time\n'), ((6053, 6064), 'time.time', 'time.time', ([], {}), '()\n', (6062, 6064), False, 'import time\n')]
""" Unit and regression test for the kissim.encoding.features.sitealign.SiteAlignFeature class. """ from pathlib import Path import pytest import numpy as np import pandas as pd from opencadd.databases.klifs import setup_local from kissim.io import PocketBioPython from kissim.encoding.features import SiteAlignFeature PATH_TEST_DATA = Path(__name__).parent / "kissim" / "tests" / "data" LOCAL = setup_local(PATH_TEST_DATA / "KLIFS_download") class TestsSiteAlignFeature: """ Test SiteAlignFeature class methods. """ @pytest.mark.parametrize( "structure_klifs_id, klifs_session, feature_name", [ (12347, LOCAL, "hba"), (12347, LOCAL, "hbd"), (12347, LOCAL, "size"), (12347, LOCAL, "charge"), (12347, LOCAL, "aliphatic"), (12347, LOCAL, "aromatic"), ], ) def test_from_pocket(self, structure_klifs_id, klifs_session, feature_name): """ Test if SiteAlignFeature can be set from a Pocket object. Test object attribues. """ pocket = PocketBioPython.from_structure_klifs_id( structure_klifs_id, klifs_session=klifs_session ) feature = SiteAlignFeature.from_pocket(pocket, feature_name) assert isinstance(feature, SiteAlignFeature) # Test class attributes assert feature.name == structure_klifs_id for residue_id, residue_ix, residue_name, category in zip( feature._residue_ids, feature._residue_ixs, feature._residue_names, feature._categories ): if residue_id is not None: assert isinstance(residue_id, int) assert isinstance(residue_ix, int) assert isinstance(feature_name, str) assert isinstance(category, float) @pytest.mark.parametrize( "structure_klifs_id, klifs_session, feature_name", [(12347, LOCAL, "xxx")], ) def test_from_pocket_raises(self, structure_klifs_id, klifs_session, feature_name): """ Test if SiteAlignFeature raises error when passed an invalid feature name. """ with pytest.raises(KeyError): pocket = PocketBioPython.from_structure_klifs_id( structure_klifs_id, klifs_session=klifs_session ) SiteAlignFeature.from_pocket(pocket, feature_name) @pytest.mark.parametrize( "structure_klifs_id, klifs_session", [(12347, LOCAL)], ) def test_values(self, structure_klifs_id, klifs_session): """ Test class property: values. """ pocket = PocketBioPython.from_structure_klifs_id( structure_klifs_id, klifs_session=klifs_session ) # Use example feature type feature = SiteAlignFeature.from_pocket(pocket, feature_name="hba") assert isinstance(feature.values, list) for value in feature.values: assert isinstance(value, float) @pytest.mark.parametrize( "structure_klifs_id, klifs_session", [(12347, LOCAL)], ) def test_details(self, structure_klifs_id, klifs_session): """ Test class property: details. """ pocket = PocketBioPython.from_structure_klifs_id( structure_klifs_id, klifs_session=klifs_session ) # Use example feature type feature = SiteAlignFeature.from_pocket(pocket, feature_name="hba") assert isinstance(feature.details, pd.DataFrame) assert feature.details.columns.to_list() == [ "residue.id", "residue.name", "sitealign.category", ] @pytest.mark.parametrize( "residue_name, feature_name, value", [ ("ALA", "size", 1.0), # Size ("ASN", "size", 2.0), ("ARG", "size", 3.0), ("PTR", "size", 3.0), # Converted non-standard ("MSE", "size", 2.0), # Converted non-standard ("XXX", "size", np.nan), # Non-convertable non-standard ("ALA", "hbd", 0.0), ("ASN", "hbd", 1.0), ("ARG", "hbd", 3.0), ("XXX", "hbd", np.nan), ("ALA", "hba", 0.0), ("ASN", "hba", 1.0), ("ASP", "hba", 2.0), ("XXX", "hba", np.nan), ("ALA", "charge", 0.0), ("ARG", "charge", 1.0), ("ASP", "charge", -1.0), ("XXX", "charge", np.nan), ("ALA", "aromatic", 0.0), ("HIS", "aromatic", 1.0), ("XXX", "aromatic", np.nan), ("ARG", "aliphatic", 0.0), ("ALA", "aliphatic", 1.0), ("XXX", "aliphatic", np.nan), ], ) def test_residue_to_value(self, residue_name, feature_name, value): """ Test function for retrieval of residue's size and pharmacophoric features (i.e. number of hydrogen bond donor, hydrogen bond acceptors, charge features, aromatic features or aliphatic features ) Parameters ---------- residue_name : str Three-letter code for residue. feature_name : str Feature type name. value : float or None Feature value. """ feature = SiteAlignFeature() # Call feature from residue function value_calculated = feature._residue_to_value(residue_name, feature_name) if value_calculated: # If not None assert isinstance(value_calculated, float) # Note: Cannot use == to compare np.nan values if np.isnan(value): assert np.isnan(value_calculated) else: assert value_calculated == value @pytest.mark.parametrize( "feature_name", [("XXX"), (1)], ) def test_raise_invalid_feature_name(self, feature_name): """ Test if KeyError is raised if user passes an incorrect SiteAlign feature string. """ feature = SiteAlignFeature() with pytest.raises(KeyError): feature._raise_invalid_feature_name(feature_name) @pytest.mark.parametrize( "residue_name, residue_name_converted", [ ("MSE", "MET"), ("ALA", None), ("XXX", None), ], ) def test_convert_modified_residue(self, residue_name, residue_name_converted): """ Test if modified residues are converted into standard residues correctly. If conversion is not possible, test if None is returned. """ feature = SiteAlignFeature() assert feature._convert_modified_residue(residue_name) == residue_name_converted
[ "kissim.io.PocketBioPython.from_structure_klifs_id", "opencadd.databases.klifs.setup_local", "numpy.isnan", "pytest.raises", "pathlib.Path", "kissim.encoding.features.SiteAlignFeature", "kissim.encoding.features.SiteAlignFeature.from_pocket", "pytest.mark.parametrize" ]
[((400, 446), 'opencadd.databases.klifs.setup_local', 'setup_local', (["(PATH_TEST_DATA / 'KLIFS_download')"], {}), "(PATH_TEST_DATA / 'KLIFS_download')\n", (411, 446), False, 'from opencadd.databases.klifs import setup_local\n'), ((541, 782), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""structure_klifs_id, klifs_session, feature_name"""', "[(12347, LOCAL, 'hba'), (12347, LOCAL, 'hbd'), (12347, LOCAL, 'size'), (\n 12347, LOCAL, 'charge'), (12347, LOCAL, 'aliphatic'), (12347, LOCAL,\n 'aromatic')]"], {}), "('structure_klifs_id, klifs_session, feature_name',\n [(12347, LOCAL, 'hba'), (12347, LOCAL, 'hbd'), (12347, LOCAL, 'size'),\n (12347, LOCAL, 'charge'), (12347, LOCAL, 'aliphatic'), (12347, LOCAL,\n 'aromatic')])\n", (564, 782), False, 'import pytest\n'), ((1829, 1932), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""structure_klifs_id, klifs_session, feature_name"""', "[(12347, LOCAL, 'xxx')]"], {}), "('structure_klifs_id, klifs_session, feature_name',\n [(12347, LOCAL, 'xxx')])\n", (1852, 1932), False, 'import pytest\n'), ((2394, 2472), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""structure_klifs_id, klifs_session"""', '[(12347, LOCAL)]'], {}), "('structure_klifs_id, klifs_session', [(12347, LOCAL)])\n", (2417, 2472), False, 'import pytest\n'), ((2993, 3071), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""structure_klifs_id, klifs_session"""', '[(12347, LOCAL)]'], {}), "('structure_klifs_id, klifs_session', [(12347, LOCAL)])\n", (3016, 3071), False, 'import pytest\n'), ((3674, 4347), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""residue_name, feature_name, value"""', "[('ALA', 'size', 1.0), ('ASN', 'size', 2.0), ('ARG', 'size', 3.0), ('PTR',\n 'size', 3.0), ('MSE', 'size', 2.0), ('XXX', 'size', np.nan), ('ALA',\n 'hbd', 0.0), ('ASN', 'hbd', 1.0), ('ARG', 'hbd', 3.0), ('XXX', 'hbd',\n np.nan), ('ALA', 'hba', 0.0), ('ASN', 'hba', 1.0), ('ASP', 'hba', 2.0),\n ('XXX', 'hba', np.nan), ('ALA', 'charge', 0.0), ('ARG', 'charge', 1.0),\n ('ASP', 'charge', -1.0), ('XXX', 'charge', np.nan), ('ALA', 'aromatic',\n 0.0), ('HIS', 'aromatic', 1.0), ('XXX', 'aromatic', np.nan), ('ARG',\n 'aliphatic', 0.0), ('ALA', 'aliphatic', 1.0), ('XXX', 'aliphatic', np.nan)]"], {}), "('residue_name, feature_name, value', [('ALA',\n 'size', 1.0), ('ASN', 'size', 2.0), ('ARG', 'size', 3.0), ('PTR',\n 'size', 3.0), ('MSE', 'size', 2.0), ('XXX', 'size', np.nan), ('ALA',\n 'hbd', 0.0), ('ASN', 'hbd', 1.0), ('ARG', 'hbd', 3.0), ('XXX', 'hbd',\n np.nan), ('ALA', 'hba', 0.0), ('ASN', 'hba', 1.0), ('ASP', 'hba', 2.0),\n ('XXX', 'hba', np.nan), ('ALA', 'charge', 0.0), ('ARG', 'charge', 1.0),\n ('ASP', 'charge', -1.0), ('XXX', 'charge', np.nan), ('ALA', 'aromatic',\n 0.0), ('HIS', 'aromatic', 1.0), ('XXX', 'aromatic', np.nan), ('ARG',\n 'aliphatic', 0.0), ('ALA', 'aliphatic', 1.0), ('XXX', 'aliphatic', np.nan)]\n )\n", (3697, 4347), False, 'import pytest\n'), ((5722, 5773), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""feature_name"""', "['XXX', 1]"], {}), "('feature_name', ['XXX', 1])\n", (5745, 5773), False, 'import pytest\n'), ((6120, 6235), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""residue_name, residue_name_converted"""', "[('MSE', 'MET'), ('ALA', None), ('XXX', None)]"], {}), "('residue_name, residue_name_converted', [('MSE',\n 'MET'), ('ALA', None), ('XXX', None)])\n", (6143, 6235), False, 'import pytest\n'), ((1096, 1189), 'kissim.io.PocketBioPython.from_structure_klifs_id', 'PocketBioPython.from_structure_klifs_id', (['structure_klifs_id'], {'klifs_session': 'klifs_session'}), '(structure_klifs_id, klifs_session=\n klifs_session)\n', (1135, 1189), False, 'from kissim.io import PocketBioPython\n'), ((1225, 1275), 'kissim.encoding.features.SiteAlignFeature.from_pocket', 'SiteAlignFeature.from_pocket', (['pocket', 'feature_name'], {}), '(pocket, feature_name)\n', (1253, 1275), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((2636, 2729), 'kissim.io.PocketBioPython.from_structure_klifs_id', 'PocketBioPython.from_structure_klifs_id', (['structure_klifs_id'], {'klifs_session': 'klifs_session'}), '(structure_klifs_id, klifs_session=\n klifs_session)\n', (2675, 2729), False, 'from kissim.io import PocketBioPython\n'), ((2800, 2856), 'kissim.encoding.features.SiteAlignFeature.from_pocket', 'SiteAlignFeature.from_pocket', (['pocket'], {'feature_name': '"""hba"""'}), "(pocket, feature_name='hba')\n", (2828, 2856), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((3237, 3330), 'kissim.io.PocketBioPython.from_structure_klifs_id', 'PocketBioPython.from_structure_klifs_id', (['structure_klifs_id'], {'klifs_session': 'klifs_session'}), '(structure_klifs_id, klifs_session=\n klifs_session)\n', (3276, 3330), False, 'from kissim.io import PocketBioPython\n'), ((3401, 3457), 'kissim.encoding.features.SiteAlignFeature.from_pocket', 'SiteAlignFeature.from_pocket', (['pocket'], {'feature_name': '"""hba"""'}), "(pocket, feature_name='hba')\n", (3429, 3457), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((5283, 5301), 'kissim.encoding.features.SiteAlignFeature', 'SiteAlignFeature', ([], {}), '()\n', (5299, 5301), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((5594, 5609), 'numpy.isnan', 'np.isnan', (['value'], {}), '(value)\n', (5602, 5609), True, 'import numpy as np\n'), ((5994, 6012), 'kissim.encoding.features.SiteAlignFeature', 'SiteAlignFeature', ([], {}), '()\n', (6010, 6012), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((6575, 6593), 'kissim.encoding.features.SiteAlignFeature', 'SiteAlignFeature', ([], {}), '()\n', (6591, 6593), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((2160, 2183), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (2173, 2183), False, 'import pytest\n'), ((2206, 2299), 'kissim.io.PocketBioPython.from_structure_klifs_id', 'PocketBioPython.from_structure_klifs_id', (['structure_klifs_id'], {'klifs_session': 'klifs_session'}), '(structure_klifs_id, klifs_session=\n klifs_session)\n', (2245, 2299), False, 'from kissim.io import PocketBioPython\n'), ((2337, 2387), 'kissim.encoding.features.SiteAlignFeature.from_pocket', 'SiteAlignFeature.from_pocket', (['pocket', 'feature_name'], {}), '(pocket, feature_name)\n', (2365, 2387), False, 'from kissim.encoding.features import SiteAlignFeature\n'), ((5630, 5656), 'numpy.isnan', 'np.isnan', (['value_calculated'], {}), '(value_calculated)\n', (5638, 5656), True, 'import numpy as np\n'), ((6027, 6050), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (6040, 6050), False, 'import pytest\n'), ((340, 354), 'pathlib.Path', 'Path', (['__name__'], {}), '(__name__)\n', (344, 354), False, 'from pathlib import Path\n')]
"""Test for the snakemake workflow distributed with region_set_profiler""" import json import subprocess import os import pandas as pd import numpy as np tmpdir = "/icgc/dkfzlsdf/analysis/hs_ontogeny/temp" # TODO: gtfanno result has weird index gtfanno_result: pd.DataFrame = pd.read_pickle( "/icgc/dkfzlsdf/analysis/hs_ontogeny/results/wgbs/cohort_results/analyses/hierarchy/annotation/hierarchy-dmrs/v1/hierarchy-dmrs-anno_primary-annotations.p" ) # all_regions_annotated = pd.read_pickle('/icgc/dkfzlsdf/analysis/hs_ontogeny/results/wgbs/cohort_results/analyses/hierarchy/annotation/hierarchy-dmrs/v1/hierarchy-dmrs-anno_all-annotations.p') # all_regions_annotated.loc[all_regions_annotated.feat_class == 'intergenic', 'feature_rank'] = 'primary' # gtfanno_result_temp = '/home/kraemers/temp/gtfanno-temp.p' # primary_annotations.to_pickle(gtfanno_result_temp) # gtfanno_result = primary_annotations gene_annos = gtfanno_result.groupby(["Chromosome", "Start", "End", "gtfanno_uid"])[ "gene_name" ].aggregate(lambda ser: ser.str.cat(sep=",")) assert ( gene_annos.index.get_level_values("gtfanno_uid") == np.arange(gene_annos.shape[0]) ).all() gene_annos.index = gene_annos.index.droplevel(3) clustered_gene_anno_fp = tmpdir + "clustered-gene-annos.p" gene_annos.to_pickle(clustered_gene_anno_fp) # Code to merge DMRs which are closer than merging_distance bp # This should be moved elsewhere # merging could also be achieved with pyranges: # 1. slop all intervals with merging_distance on both sides # 2. Cluster all intervals # 3. Use the clustered intervals to find groups of intervals within the clustered intervals and compute the group annotations merging_distance = 500 gtfanno_result = gtfanno_result.query('feat_class == "Promoter"') distance_to_next_region = ( gtfanno_result.Start.iloc[1:].values - gtfanno_result.End.iloc[0:-1].values ) # we iterate over the regions # whenever the distance to the next region is > merging_distance, we begin a new cluster of regions # In vectorized form: region_cluster_ids = np.concatenate( [[1], 1 + np.cumsum(distance_to_next_region > merging_distance)], axis=0 ) # Compress to gene anno series for the merged DMRs gene_annos = gtfanno_result.groupby(region_cluster_ids)["gene_name"].apply( lambda ser: ser.str.cat(sep=",") ) gene_annos.to_pickle(clustered_gene_anno_fp) gtfanno_result["gene_name"].to_pickle(clustered_gene_anno_fp) config = { "tasks": { "cluster_ids": { "no-basos/beta-value_zscores/metric-euclidean/linkage-ward/enrichments/min-gap_0.25": ( "min-gap_0.25", "/icgc/dkfzlsdf/analysis/hs_ontogeny/results/wgbs/cohort_results/analyses/hierarchy/clustering/full-hierarchy/method-selection/no-basos/beta-value_zscores/metric-euclidean/linkage-ward/cutree-all.p", ), # 'no-basos/beta-value_zscores/metric-euclidean/linkage-ward/enrichments/min-gap_0.12': ('min-gap_0.12', # '/icgc/dkfzlsdf/analysis/hs_ontogeny/results/wgbs/cohort_results/analyses/hierarchy/clustering/full-hierarchy/method-selection/no-basos/beta-value_zscores/metric-euclidean/linkage-ward/cutree-all.p') }, "metadata_tables": { "codex": "/icgc/dkfzlsdf/analysis/hs_ontogeny/databases/enrichment_databases/lola_chipseq_2018-04-12/mm10/codex/regions/codex_annotations.csv", "msigdb_canonical_pathways": "/icgc/dkfzlsdf/analysis/hs_ontogeny/databases/region_set_profiler_databases/msigdb_gmts/canonical-pathways.gmt", }, "gene_annotations": {"promoters_500-bp-clusters": clustered_gene_anno_fp}, }, "output_dir": "/icgc/dkfzlsdf/analysis/hs_ontogeny/temp/rsp-tests", "tmpdir": tmpdir, "chromosomes": [ "1", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "2", "3", "4", "5", "6", "7", "8", "9", ], } config_fp = os.path.expanduser("~/temp/rsp-config.json") with open(config_fp, "w") as fout: json.dump(config, fout) subprocess.run( f""" snakemake \ --snakefile {os.path.expanduser('~/projects/region_set_profiler/src/region_set_profiler/region_set_profiler.smk')} \ --configfile {config_fp} \ --cores 24 \ --keep-going \ --forcerun /icgc/dkfzlsdf/analysis/hs_ontogeny/temp/rsp-tests/no-basos/beta-value_zscores/metric-euclidean/linkage-ward/enrichments/min-gap_0.25/msigdb_canonical_pathways:promoters_500-bp-clusters/msigdb_canonical_pathways:promoters_500-bp-clusters.done """, shell=True, executable="/bin/bash", ) # --dryrun \
[ "json.dump", "numpy.cumsum", "numpy.arange", "pandas.read_pickle", "os.path.expanduser" ]
[((279, 460), 'pandas.read_pickle', 'pd.read_pickle', (['"""/icgc/dkfzlsdf/analysis/hs_ontogeny/results/wgbs/cohort_results/analyses/hierarchy/annotation/hierarchy-dmrs/v1/hierarchy-dmrs-anno_primary-annotations.p"""'], {}), "(\n '/icgc/dkfzlsdf/analysis/hs_ontogeny/results/wgbs/cohort_results/analyses/hierarchy/annotation/hierarchy-dmrs/v1/hierarchy-dmrs-anno_primary-annotations.p'\n )\n", (293, 460), True, 'import pandas as pd\n'), ((4090, 4134), 'os.path.expanduser', 'os.path.expanduser', (['"""~/temp/rsp-config.json"""'], {}), "('~/temp/rsp-config.json')\n", (4108, 4134), False, 'import os\n'), ((4174, 4197), 'json.dump', 'json.dump', (['config', 'fout'], {}), '(config, fout)\n', (4183, 4197), False, 'import json\n'), ((1122, 1152), 'numpy.arange', 'np.arange', (['gene_annos.shape[0]'], {}), '(gene_annos.shape[0])\n', (1131, 1152), True, 'import numpy as np\n'), ((2074, 2127), 'numpy.cumsum', 'np.cumsum', (['(distance_to_next_region > merging_distance)'], {}), '(distance_to_next_region > merging_distance)\n', (2083, 2127), True, 'import numpy as np\n'), ((4256, 4366), 'os.path.expanduser', 'os.path.expanduser', (['"""~/projects/region_set_profiler/src/region_set_profiler/region_set_profiler.smk"""'], {}), "(\n '~/projects/region_set_profiler/src/region_set_profiler/region_set_profiler.smk'\n )\n", (4274, 4366), False, 'import os\n')]
import sys sys.path.append("../../") import unittest import paddle import numpy as np from paddleslim import UnstructuredPruner from paddle.vision.models import mobilenet_v1 class TestUnstructuredPruner(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestUnstructuredPruner, self).__init__(*args, **kwargs) paddle.disable_static() self._gen_model() def _gen_model(self): self.net = mobilenet_v1(num_classes=10, pretrained=False) self.pruner = UnstructuredPruner( self.net, mode='ratio', ratio=0.98, threshold=0.0) def test_prune(self): ori_density = UnstructuredPruner.total_sparse(self.net) ori_threshold = self.pruner.threshold self.pruner.step() self.net( paddle.to_tensor( np.random.uniform(0, 1, [16, 3, 32, 32]), dtype='float32')) cur_density = UnstructuredPruner.total_sparse(self.net) cur_threshold = self.pruner.threshold print("Original threshold: {}".format(ori_threshold)) print("Current threshold: {}".format(cur_threshold)) print("Original density: {}".format(ori_density)) print("Current density: {}".format(cur_density)) self.assertLessEqual(ori_threshold, cur_threshold) self.assertLessEqual(cur_density, ori_density) self.pruner.update_params() self.assertEqual(cur_density, UnstructuredPruner.total_sparse(self.net)) def test_summarize_weights(self): max_value = -float("inf") threshold = self.pruner.summarize_weights(self.net, 1.0) for name, sub_layer in self.net.named_sublayers(): if not self.pruner._should_prune_layer(sub_layer): continue for param in sub_layer.parameters(include_sublayers=False): max_value = max( max_value, np.max(np.abs(np.array(param.value().get_tensor())))) print("The returned threshold is {}.".format(threshold)) print("The max_value is {}.".format(max_value)) self.assertEqual(max_value, threshold) if __name__ == "__main__": unittest.main()
[ "sys.path.append", "unittest.main", "numpy.random.uniform", "paddleslim.UnstructuredPruner", "paddle.disable_static", "paddleslim.UnstructuredPruner.total_sparse", "paddle.vision.models.mobilenet_v1" ]
[((11, 36), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (26, 36), False, 'import sys\n'), ((2156, 2171), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2169, 2171), False, 'import unittest\n'), ((344, 367), 'paddle.disable_static', 'paddle.disable_static', ([], {}), '()\n', (365, 367), False, 'import paddle\n'), ((440, 486), 'paddle.vision.models.mobilenet_v1', 'mobilenet_v1', ([], {'num_classes': '(10)', 'pretrained': '(False)'}), '(num_classes=10, pretrained=False)\n', (452, 486), False, 'from paddle.vision.models import mobilenet_v1\n'), ((509, 578), 'paddleslim.UnstructuredPruner', 'UnstructuredPruner', (['self.net'], {'mode': '"""ratio"""', 'ratio': '(0.98)', 'threshold': '(0.0)'}), "(self.net, mode='ratio', ratio=0.98, threshold=0.0)\n", (527, 578), False, 'from paddleslim import UnstructuredPruner\n'), ((641, 682), 'paddleslim.UnstructuredPruner.total_sparse', 'UnstructuredPruner.total_sparse', (['self.net'], {}), '(self.net)\n', (672, 682), False, 'from paddleslim import UnstructuredPruner\n'), ((902, 943), 'paddleslim.UnstructuredPruner.total_sparse', 'UnstructuredPruner.total_sparse', (['self.net'], {}), '(self.net)\n', (933, 943), False, 'from paddleslim import UnstructuredPruner\n'), ((1417, 1458), 'paddleslim.UnstructuredPruner.total_sparse', 'UnstructuredPruner.total_sparse', (['self.net'], {}), '(self.net)\n', (1448, 1458), False, 'from paddleslim import UnstructuredPruner\n'), ((820, 860), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', '[16, 3, 32, 32]'], {}), '(0, 1, [16, 3, 32, 32])\n', (837, 860), True, 'import numpy as np\n')]
# BSD 2-CLAUSE LICENSE # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # #ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # original author: <NAME>, <NAME>, <NAME>, <NAME> """Functions to generate derived time features useful in forecasting, such as growth, seasonality, holidays. """ import inspect import math import warnings from datetime import datetime import fbprophet.hdays as fbholidays import holidays import numpy as np import pandas as pd from scipy.special import expit from greykite.common import constants as cst def convert_date_to_continuous_time(dt): """Converts date to continuous time. Each year is one unit. Parameters ---------- dt : datetime object the date to convert Returns ------- conti_date : `float` the date represented in years """ year_length = datetime(dt.year, 12, 31).timetuple().tm_yday tt = dt.timetuple() return (dt.year + (tt.tm_yday - 1 + dt.hour / 24 + dt.minute / (24 * 60) + dt.second / (24 * 3600)) / float(year_length)) def get_default_origin_for_time_vars(df, time_col): """Sets default value for origin_for_time_vars Parameters ---------- df : `pandas.DataFrame` Training data. A data frame which includes the timestamp and value columns time_col : `str` The column name in `df` representing time for the time series data. Returns ------- dt_continuous_time : `float` The time origin used to create continuous variables for time """ date = pd.to_datetime(df[time_col][0]) return convert_date_to_continuous_time(date) def build_time_features_df(dt, conti_year_origin): """This function gets a datetime-like vector and creates new columns containing temporal features useful for time series analysis and forecasting e.g. year, week of year, etc. Parameters ---------- dt : array-like (1-dimensional) A vector of datetime-like values conti_year_origin : float The origin used for creating continuous time. Returns ------- time_features_df : `pandas.DataFrame` Dataframe with the following time features. * "datetime": `datetime.datetime` object, a combination of date and a time * "date": `datetime.date` object, date with the format (year, month, day) * "year": integer, year of the date e.g. 2018 * "year_length": integer, number of days in the year e.g. 365 or 366 * "quarter": integer, quarter of the date, 1, 2, 3, 4 * "quarter_start": `pandas.DatetimeIndex`, date of beginning of the current quarter * "quarter_length": integer, number of days in the quarter, 90/91 for Q1, 91 for Q2, 92 for Q3 and Q4 * "month": integer, month of the year, January=1, February=2, ..., December=12 * "month_length": integer, number of days in the month, 28/ 29/ 30/ 31 * "woy": integer, ISO 8601 week of the year where a week starts from Monday, 1, 2, ..., 53 * "doy": integer, ordinal day of the year, 1, 2, ..., year_length * "doq": integer, ordinal day of the quarter, 1, 2, ..., quarter_length * "dom": integer, ordinal day of the month, 1, 2, ..., month_length * "dow": integer, day of the week, Monday=1, Tuesday=2, ..., Sunday=7 * "str_dow": string, day of the week as a string e.g. "1-Mon", "2-Tue", ..., "7-Sun" * "str_doy": string, day of the year e.g. "2020-03-20" for March 20, 2020 * "hour": integer, discrete hours of the datetime, 0, 1, ..., 23 * "minute": integer, minutes of the datetime, 0, 1, ..., 59 * "second": integer, seconds of the datetime, 0, 1, ..., 3599 * "year_month": string, (year, month) e.g. "2020-03" for March 2020 * "year_woy": string, (year, week of year) e.g. "2020_42" for 42nd week of 2020 * "month_dom": string, (month, day of month) e.g. "02/20" for February 20th * "year_woy_dow": string, (year, week of year, day of week) e.g. "2020_03_6" for Saturday of 3rd week in 2020 * "woy_dow": string, (week of year, day of week) e.g. "03_6" for Saturday of 3rd week * "dow_hr": string, (day of week, hour) e.g. "4_09" for 9am on Thursday * "dow_hr_min": string, (day of week, hour, minute) e.g. "4_09_10" for 9:10am on Thursday * "tod": float, time of day, continuous, 0.0 to 24.0 * "tow": float, time of week, continuous, 0.0 to 7.0 * "tom": float, standardized time of month, continuous, 0.0 to 1.0 * "toq": float, time of quarter, continuous, 0.0 to 1.0 * "toy": float, standardized time of year, continuous, 0.0 to 1.0 * "conti_year": float, year in continuous time, eg 2018.5 means middle of the year 2018 * "is_weekend": boolean, weekend indicator, True for weekend, else False * "dow_grouped": string, Monday-Thursday=1234-MTuWTh, Friday=5-Fri, Saturday=6-Sat, Sunday=7-Sun * "ct1": float, linear growth based on conti_year_origin, -infinity to infinity * "ct2": float, signed quadratic growth, -infinity to infinity * "ct3": float, signed cubic growth, -infinity to infinity * "ct_sqrt": float, signed square root growth, -infinity to infinity * "ct_root3": float, signed cubic root growth, -infinity to infinity """ dt = pd.DatetimeIndex(dt) if len(dt) == 0: raise ValueError("Length of dt cannot be zero.") # basic time features date = dt.date year = dt.year year_length = (365.0 + dt.is_leap_year) quarter = dt.quarter month = dt.month month_length = dt.days_in_month # finds first day of quarter quarter_start = pd.DatetimeIndex( dt.year.map(str) + "-" + (3 * quarter - 2).map(int).map(str) + "-01") next_quarter_start = dt + pd.tseries.offsets.QuarterBegin(startingMonth=1) quarter_length = (next_quarter_start - quarter_start).days # finds offset from first day of quarter (rounds down to nearest day) doq = ((dt - quarter_start) / pd.to_timedelta("1D") + 1).astype(int) # week of year, "woy", follows ISO 8601: # - Week 01 is the week with the year's first Thursday in it. # - A week begins with Monday and ends with Sunday. # So the week number of the week that overlaps both years, is 1, 52, or 53, # depending on whether it has more days in the previous year or new year. # - e.g. Jan 1st, 2018 is Monday. woy of first 8 days = [1, 1, 1, 1, 1, 1, 1, 2] # - e.g. Jan 1st, 2019 is Tuesday. woy of first 8 days = [1, 1, 1, 1, 1, 1, 2, 2] # - e.g. Jan 1st, 2020 is Wednesday. woy of first 8 days = [1, 1, 1, 1, 1, 2, 2, 2] # - e.g. Jan 1st, 2015 is Thursday. woy of first 8 days = [1, 1, 1, 1, 2, 2, 2, 2] # - e.g. Jan 1st, 2021 is Friday. woy of first 8 days = [53, 53, 53, 1, 1, 1, 1, 1] # - e.g. Jan 1st, 2022 is Saturday. woy of first 8 days = [52, 52, 1, 1, 1, 1, 1, 1] # - e.g. Jan 1st, 2023 is Sunday. woy of first 8 days = [52, 1, 1, 1, 1, 1, 1, 1] woy = dt.strftime("%V").astype(int) doy = dt.dayofyear dom = dt.day dow = dt.strftime("%u").astype(int) str_dow = dt.strftime("%u-%a") # e.g. 1-Mon, 2-Tue, ..., 7-Sun hour = dt.hour minute = dt.minute second = dt.second # grouped time feature str_doy = dt.strftime("%Y-%m-%d") # e.g. 2020-03-20 for March 20, 2020 year_month = dt.strftime("%Y-%m") # e.g. 2020-03 for March 2020 month_dom = dt.strftime("%m/%d") # e.g. 02/20 for February 20th year_woy = dt.strftime("%Y_%V") # e.g. 2020_42 for 42nd week of 2020 year_woy_dow = dt.strftime("%Y_%V_%u") # e.g. 2020_03_6 for Saturday of 3rd week in 2020 woy_dow = dt.strftime("%W_%u") # e.g. 03_6 for Saturday of 3rd week dow_hr = dt.strftime("%u_%H") # e.g. 4_09 for 9am on Thursday dow_hr_min = dt.strftime("%u_%H_%M") # e.g. 4_09_10 for 9:10am on Thursday # derived time features tod = hour + (minute / 60.0) + (second / 3600.0) tow = dow - 1 + (tod / 24.0) tom = (dom - 1 + (tod / 24.0)) / month_length toq = (doq - 1 + (tod / 24.0)) / quarter_length # time of year, continuous, 0.0 to 1.0. e.g. Jan 1, 12 am = 0/365, Jan 2, 12 am = 1/365, ... # To handle leap years, Feb 28 = 58/365 - 59/365, Feb 29 = 59/365, Mar 1 = 59/365 - 60/365 # offset term is nonzero only in leap years # doy_offset reduces doy by 1 from from Mar 1st (doy > 60) doy_offset = (year_length == 366) * 1.0 * (doy > 60) # tod_offset sets tod to 0 on Feb 29th (doy == 60) tod_offset = 1 - (year_length == 366) * 1.0 * (doy == 60) toy = (doy - 1 - doy_offset + (tod / 24.0) * tod_offset) / 365.0 # year of date in continuous time, eg 2018.5 means middle of year 2018 # this is useful for modeling features that do not care about leap year e.g. environmental variables conti_year = year + (doy - 1 + (tod / 24.0)) / year_length is_weekend = pd.Series(dow).apply(lambda x: x in [6, 7]).values # weekend indicator # categorical var with levels (Mon-Thu, Fri, Sat, Sun), could help when training data are sparse. dow_grouped = pd.Series(str_dow).apply(lambda x: "1234-MTuWTh" if (x in ["1-Mon", "2-Tue", "3-Wed", "4-Thu"]) else x).values # growth terms ct1 = conti_year - conti_year_origin ct2 = signed_pow(ct1, 2) ct3 = signed_pow(ct1, 3) ct_sqrt = signed_pow(ct1, 1/2) ct_root3 = signed_pow(ct1, 1/3) # All keys must be added to constants. features_dict = { "datetime": dt, "date": date, "year": year, "year_length": year_length, "quarter": quarter, "quarter_start": quarter_start, "quarter_length": quarter_length, "month": month, "month_length": month_length, "woy": woy, "doy": doy, "doq": doq, "dom": dom, "dow": dow, "str_dow": str_dow, "str_doy": str_doy, "hour": hour, "minute": minute, "second": second, "year_month": year_month, "year_woy": year_woy, "month_dom": month_dom, "year_woy_dow": year_woy_dow, "woy_dow": woy_dow, "dow_hr": dow_hr, "dow_hr_min": dow_hr_min, "tod": tod, "tow": tow, "tom": tom, "toq": toq, "toy": toy, "conti_year": conti_year, "is_weekend": is_weekend, "dow_grouped": dow_grouped, "ct1": ct1, "ct2": ct2, "ct3": ct3, "ct_sqrt": ct_sqrt, "ct_root3": ct_root3, } df = pd.DataFrame(features_dict) return df def add_time_features_df(df, time_col, conti_year_origin): """Adds a time feature data frame to a data frame :param df: the input data frame :param time_col: the name of the time column of interest :param conti_year_origin: the origin of time for the continuous time variable :return: the same data frame (df) augmented with new columns """ df = df.reset_index(drop=True) time_df = build_time_features_df( dt=df[time_col], conti_year_origin=conti_year_origin) time_df = time_df.reset_index(drop=True) return pd.concat([df, time_df], axis=1) def get_holidays(countries, year_start, year_end): """This function extracts a holiday data frame for the period of interest [year_start to year_end] for the given countries. This is done using the holidays libraries in pypi:fbprophet and pypi:holidays Implementation resembles that of `~fbprophet.make_holidays.make_holidays_df` Parameters ---------- countries : `list` [`str`] countries for which we need holidays year_start : `int` first year of interest, inclusive year_end : `int` last year of interest, inclusive Returns ------- holiday_df_dict : `dict` [`str`, `pandas.DataFrame`] - key: country name - value: data frame with holidays for that country Each data frame has two columns: EVENT_DF_DATE_COL, EVENT_DF_LABEL_COL """ country_holiday_dict = {} year_list = list(range(year_start, year_end + 1)) for country in countries: try: # Fetch the holidays from fbprophet holiday set # Suppress the following warning for India: # "We only support Diwali and Holi holidays from 2010 to 2025" if country in ["India", "IN"]: with warnings.catch_warnings(): warnings.simplefilter("ignore") country_holidays = getattr(fbholidays, country)(years=year_list) else: country_holidays = getattr(fbholidays, country)(years=year_list) except AttributeError: # Fetch the holidays from pypi:holidays set try: country_holidays = getattr(holidays, country)(years=year_list) except AttributeError: raise AttributeError(f"Holidays in {country} are not currently supported!") country_df = pd.DataFrame({ cst.EVENT_DF_DATE_COL: list(country_holidays.keys()), cst.EVENT_DF_LABEL_COL: list(country_holidays.values())}) country_df[cst.EVENT_DF_DATE_COL] = pd.to_datetime(country_df[cst.EVENT_DF_DATE_COL]) country_holiday_dict[country] = country_df return country_holiday_dict def get_available_holiday_lookup_countries(countries=None): """Returns list of available countries for modeling holidays :param countries: List[str] only look for available countries in this set :return: List[str] list of available countries for modeling holidays """ fb_countries = [ name for name, obj in inspect.getmembers(fbholidays) if inspect.isclass(obj) and obj.__module__ == fbholidays.__name__] holidays_countries = [ name for name, obj in inspect.getmembers(holidays) if inspect.isclass(obj) and obj.__module__ == holidays.__name__] all_countries = set(fb_countries + holidays_countries) if countries is not None: countries = set(countries) found_countries = all_countries.intersection(countries) else: found_countries = all_countries found_countries.discard("HolidayBase") # edge case, remove if found return sorted(list(found_countries)) def get_available_holidays_in_countries( countries, year_start, year_end): """Returns a dictionary mapping each country to its holidays between the years specified. :param countries: List[str] countries for which we need holidays :param year_start: int first year of interest :param year_end: int last year of interest :return: Dict[str, List[str]] key: country name value: list of holidays in that country between [year_start, year_end] """ country_holiday_dict = get_holidays(countries, year_start, year_end) country_holiday_list = {country: list(sorted(set(df[cst.EVENT_DF_LABEL_COL].values))) for country, df in country_holiday_dict.items()} return country_holiday_list def get_available_holidays_across_countries( countries, year_start, year_end): """Returns a list of holidays that occur any of the countries between the years specified. :param countries: List[str] countries for which we need holidays :param year_start: int first year of interest :param year_end: int last year of interest :return: List[str] names of holidays in any of the countries between [year_start, year_end] """ country_holiday_list = get_available_holidays_in_countries( countries=countries, year_start=year_start, year_end=year_end) holiday_across_countries = { holiday for country, holiday_list in country_holiday_list.items() for holiday in holiday_list} return list(sorted(holiday_across_countries)) def add_daily_events( df, event_df_dict, date_col=cst.EVENT_DF_DATE_COL, regular_day_label=cst.EVENT_DEFAULT): """For each key of event_df_dict, it adds a new column to a data frame (df) with a date column (date_col). Each new column will represent the events given for that key. Notes ----- As a side effect, the columns in ``event_df_dict`` are renamed. Parameters ---------- df : `pandas.DataFrame` The data frame which has a date column. event_df_dict : `dict` [`str`, `pandas.DataFrame`] A dictionary of data frames, each representing events data for the corresponding key. Values are DataFrames with two columns: - The first column contains the date. Must be at the same frequency as ``df[date_col]`` for proper join. Must be in a format recognized by `pandas.to_datetime`. - The second column contains the event label for each date date_col : `str` Column name in ``df`` that contains the dates for joining against the events in ``event_df_dict``. regular_day_label : `str` The label used for regular days which are not "events". Returns ------- df_daily_events : `pandas.DataFrame` An augmented data frame version of df with new label columns -- one for each key of ``event_df_dict``. """ df[date_col] = pd.to_datetime(df[date_col]) for label, event_df in event_df_dict.items(): event_df = event_df.copy() new_col = f"{cst.EVENT_PREFIX}_{label}" event_df.columns = [date_col, new_col] event_df[date_col] = pd.to_datetime(event_df[date_col]) df = df.merge(event_df, on=date_col, how="left") df[new_col] = df[new_col].fillna(regular_day_label) return df def add_event_window( df, time_col, label_col, time_delta="1D", pre_num=1, post_num=1, events_name=""): """For a data frame of events with a time_col and label_col it adds shifted events prior and after the given events For example if the event data frame includes the row '2019-12-25, Christmas' the function will produce dataframes with the events: '2019-12-24, Christmas' and '2019-12-26, Christmas' if pre_num and post_num are 1 or more. :param df: pd.DataFrame the events data frame with two columns 'time_col' and 'label_col' :param time_col: str The column with the timestamp of the events. This can be daily but does not have to :param label_col: str the column with labels for the events :param time_delta: str the amount of the shift for each unit specified by a string e.g. "1D" stands for one day delta :param pre_num: int the number of events to be added prior to the given event for each event in df :param post_num: int the number of events to be added after to the given event for each event in df :param events_name: str for each shift, we generate a new data frame and those data frames will be stored in a dictionary with appropriate keys. Each key starts with "events_name" and follow up with: "_minus_1", "_minus_2", "_plus_1", "_plus_2", ... depending on pre_num and post_num :return: dict[key: pd.Dataframe] A dictionary of dataframes for each needed shift. For example if pre_num=2 and post_num=3. 2 + 3 = 5 data frames will be stored in the return dictionary. """ df_dict = {} pd_time_delta = pd.to_timedelta(time_delta) for num in range(pre_num): df0 = pd.DataFrame() df0[time_col] = df[time_col] - (num + 1) * pd_time_delta df0[label_col] = df[label_col] df_dict[events_name + "_minus_" + f"{(num + 1):.0f}"] = df0 for num in range(post_num): df0 = pd.DataFrame() df0[time_col] = df[time_col] + (num + 1) * pd_time_delta df0[label_col] = df[label_col] df_dict[events_name + "_plus_" + f"{(num + 1):.0f}"] = df0 return df_dict def get_evenly_spaced_changepoints_values( df, continuous_time_col="ct1", n_changepoints=2): """Partitions interval into n_changepoints + 1 segments, placing a changepoint at left endpoint of each segment. The left most segment doesn't get a changepoint. Changepoints should be determined from training data. :param df: pd.DataFrame training dataset. contains continuous_time_col :param continuous_time_col: str name of continuous time column (e.g. conti_year, ct1) :param n_changepoints: int number of changepoints requested :return: np.array values of df[continuous_time_col] at the changepoints """ if not n_changepoints > 0: raise ValueError("n_changepoints must be > 0") n = df.shape[0] n_steps = n_changepoints + 1 step_size = n / n_steps indices = np.floor(np.arange(start=1, stop=n_steps) * step_size) return df[continuous_time_col][indices].values def get_evenly_spaced_changepoints_dates( df, time_col, n_changepoints): """Partitions interval into n_changepoints + 1 segments, placing a changepoint at left endpoint of each segment. The left most segment doesn't get a changepoint. Changepoints should be determined from training data. :param df: pd.DataFrame training dataset. contains continuous_time_col :param time_col: str name of time column :param n_changepoints: int number of changepoints requested :return: pd.Series values of df[time_col] at the changepoints """ if not n_changepoints >= 0: raise ValueError("n_changepoints must be >= 0") changepoint_indices = np.floor(np.arange(start=1, stop=n_changepoints + 1) * (df.shape[0] / (n_changepoints + 1))) changepoint_indices = df.index[np.concatenate([[0], changepoint_indices.astype(int)])] return df.loc[changepoint_indices, time_col] def get_custom_changepoints_values( df, changepoint_dates, time_col=cst.TIME_COL, continuous_time_col="ct1"): """Returns the values of continuous_time_col at the requested changepoint_dates. :param df: pd.DataFrame training dataset. contains continuous_time_col and time_col :param changepoint_dates: Iterable[Union[int, float, str, datetime]] Changepoint dates, interpreted by pd.to_datetime. Changepoints are set at the closest time on or after these dates in the dataset :param time_col: str The column name in `df` representing time for the time series data The time column can be anything that can be parsed by pandas DatetimeIndex :param continuous_time_col: str name of continuous time column (e.g. conti_year, ct1) :return: np.array values of df[continuous_time_col] at the changepoints """ ts = pd.to_datetime(df[time_col]) changepoint_dates = pd.to_datetime(changepoint_dates) # maps each changepoint to first date >= changepoint in the dataframe # if there is no such date, the changepoint is dropped (it would not be useful anyway) changepoint_ts = [ts[ts >= date].min() for date in changepoint_dates if any(ts >= date)] indices = ts.isin(changepoint_ts) changepoints = df[indices][continuous_time_col].values if changepoints.shape[0] == 0: changepoints = None return changepoints def get_changepoint_string(changepoint_dates): """Gets proper formatted strings for changepoint dates. The default format is "_%Y_%m_%d_%H". When necessary, it appends "_%M" or "_%M_%S". Parameters ---------- changepoint_dates : `list` List of changepoint dates, parsable by `pandas.to_datetime`. Returns ------- date_strings : `list[`str`]` List of string formatted changepoint dates. """ changepoint_dates = list(pd.to_datetime(changepoint_dates)) time_format = "_%Y_%m_%d_%H" if any([stamp.second != 0 for stamp in changepoint_dates]): time_format += "_%M_%S" elif any([stamp.minute != 0 for stamp in changepoint_dates]): time_format += "_%M" date_strings = [date.strftime(time_format) for date in changepoint_dates] return date_strings def get_changepoint_features( df, changepoint_values, continuous_time_col="ct1", growth_func=None, changepoint_dates=None): """Returns features for growth terms with continuous time origins at the changepoint_values (locations) specified Generates a time series feature for each changepoint: Let t = continuous_time value, c = changepoint value Then the changepoint feature value at time point t is `growth_func(t - c) * I(t >= c)`, where I is the indicator function This represents growth as a function of time, where the time origin is the changepoint In the typical case where growth_func(0) = 0 (has origin at 0), the total effect of the changepoints is continuous in time. If `growth_func` is the identity function, and `continuous_time` represents the year in continuous time, these terms form the basis for a continuous, piecewise linear curve to the growth trend. Fitting these terms with linear model, the coefficents represent slope change at each changepoint Intended usage ---------- To make predictions (on test set) Allow growth term as a function of time to change at these points. Parameters ---------- :param df: pd.Dataframe The dataset to make predictions. Contains column continuous_time_col. :param changepoint_values: array-like List of changepoint values (on same scale as df[continuous_time_col]). Should be determined from training data :param continuous_time_col: Optional[str] Name of continuous time column in df growth_func is applied to this column to generate growth term If None, uses "ct1", linear growth :param growth_func: Optional[callable] Growth function for defining changepoints (scalar -> scalar). If None, uses identity function to use continuous_time_col directly as growth term :param changepoint_dates: Optional[list] List of change point dates, parsable by `pandas.to_datetime`. :return: pd.DataFrame, shape (df.shape[0], len(changepoints)) Changepoint features, 0-indexed """ if continuous_time_col is None: continuous_time_col = "ct1" if growth_func is None: def growth_func(x): return x if changepoint_dates is not None: time_postfixes = get_changepoint_string(changepoint_dates) else: time_postfixes = [""] * len(changepoint_values) changepoint_df = pd.DataFrame() for i, changepoint in enumerate(changepoint_values): time_feature = np.array(df[continuous_time_col]) - changepoint # shifted time column (t - c_i) growth_term = np.array([growth_func(max(x, 0)) for x in time_feature]) # growth as a function of time time_feature_ind = time_feature >= 0 # Indicator(t >= c_i), lets changepoint take effect starting at c_i new_col = growth_term * time_feature_ind new_changepoint = pd.Series(new_col, name=f"{cst.CHANGEPOINT_COL_PREFIX}{i}{time_postfixes[i]}") changepoint_df = pd.concat([changepoint_df, new_changepoint], axis=1) return changepoint_df def get_changepoint_values_from_config( changepoints_dict, time_features_df, time_col=cst.TIME_COL): """Applies the changepoint method specified in `changepoints_dict` to return the changepoint values :param changepoints_dict: Optional[Dict[str, any]] Specifies the changepoint configuration. "method": str The method to locate changepoints. Valid options: "uniform". Places n_changepoints evenly spaced changepoints to allow growth to change. "custom". Places changepoints at the specified dates. Additional keys to provide parameters for each particular method are described below. "continuous_time_col": Optional[str] Column to apply `growth_func` to, to generate changepoint features Typically, this should match the growth term in the model "growth_func": Optional[func] Growth function (scalar -> scalar). Changepoint features are created by applying `growth_func` to "continuous_time_col" with offsets. If None, uses identity function to use `continuous_time_col` directly as growth term If changepoints_dict["method"] == "uniform", this other key is required: "n_changepoints": int number of changepoints to evenly space across training period If changepoints_dict["method"] == "custom", this other key is required: "dates": Iterable[Union[int, float, str, datetime]] Changepoint dates. Must be parsable by pd.to_datetime. Changepoints are set at the closest time on or after these dates in the dataset. :param time_features_df: pd.Dataframe training dataset. contains column "continuous_time_col" :param time_col: str The column name in `time_features_df` representing time for the time series data The time column can be anything that can be parsed by pandas DatetimeIndex Used only in the "custom" method. :return: np.array values of df[continuous_time_col] at the changepoints """ changepoint_values = None if changepoints_dict is not None: valid_changepoint_methods = ["uniform", "custom"] changepoint_method = changepoints_dict.get("method") continuous_time_col = changepoints_dict.get("continuous_time_col") if changepoint_method is None: raise Exception("changepoint method must be specified") if changepoint_method not in valid_changepoint_methods: raise NotImplementedError( f"changepoint method {changepoint_method} not recognized. " f"Must be one of {valid_changepoint_methods}") if changepoint_method == "uniform": if changepoints_dict["n_changepoints"] > 0: params = {"continuous_time_col": continuous_time_col} if continuous_time_col is not None else {} changepoint_values = get_evenly_spaced_changepoints_values( df=time_features_df, n_changepoints=changepoints_dict["n_changepoints"], **params) elif changepoint_method == "custom": params = {} if time_col is not None: params["time_col"] = time_col if continuous_time_col is not None: params["continuous_time_col"] = continuous_time_col changepoint_values = get_custom_changepoints_values( df=time_features_df, changepoint_dates=changepoints_dict["dates"], **params) return changepoint_values def get_changepoint_features_and_values_from_config( df, time_col, changepoints_dict=None, origin_for_time_vars=None): """Extracts changepoints from changepoint configuration and input data :param df: pd.DataFrame Training data. A data frame which includes the timestamp and value columns :param time_col: str The column name in `df` representing time for the time series data The time column can be anything that can be parsed by pandas DatetimeIndex :param changepoints_dict: Optional[Dict[str, any]] Specifies the changepoint configuration. "method": str The method to locate changepoints. Valid options: "uniform". Places n_changepoints evenly spaced changepoints to allow growth to change. "custom". Places changepoints at the specified dates. Additional keys to provide parameters for each particular method are described below. "continuous_time_col": Optional[str] Column to apply `growth_func` to, to generate changepoint features Typically, this should match the growth term in the model "growth_func": Optional[func] Growth function (scalar -> scalar). Changepoint features are created by applying `growth_func` to "continuous_time_col" with offsets. If None, uses identity function to use `continuous_time_col` directly as growth term If changepoints_dict["method"] == "uniform", this other key is required: "n_changepoints": int number of changepoints to evenly space across training period If changepoints_dict["method"] == "custom", this other key is required: "dates": Iterable[Union[int, float, str, datetime]] Changepoint dates. Must be parsable by pd.to_datetime. Changepoints are set at the closest time on or after these dates in the dataset. :param origin_for_time_vars: Optional[float] The time origin used to create continuous variables for time :return: Dict[str, any] Dictionary with the requested changepoints and associated information changepoint_df: pd.DataFrame, shape (df.shape[0], len(changepoints)) Changepoint features for modeling the training data changepoint_values: array-like List of changepoint values (on same scale as df[continuous_time_col]) Can be used to generate changepoints for prediction. continuous_time_col: Optional[str] Name of continuous time column in df growth_func is applied to this column to generate growth term. If None, uses "ct1", linear growth Can be used to generate changepoints for prediction. growth_func: Optional[callable] Growth function for defining changepoints (scalar -> scalar). If None, uses identity function to use continuous_time_col directly as growth term. Can be used to generate changepoints for prediction. changepoint_cols: List[str] Names of the changepoint columns for modeling """ # extracts changepoint values if changepoints_dict is None: changepoint_values = None continuous_time_col = None growth_func = None else: if origin_for_time_vars is None: origin_for_time_vars = get_default_origin_for_time_vars(df, time_col) time_features_df = build_time_features_df( df[time_col], conti_year_origin=origin_for_time_vars) changepoint_values = get_changepoint_values_from_config( changepoints_dict=changepoints_dict, time_features_df=time_features_df, time_col="datetime") # datetime column generated by `build_time_features_df` continuous_time_col = changepoints_dict.get("continuous_time_col") growth_func = changepoints_dict.get("growth_func") # extracts changepoint column names if changepoint_values is None: changepoint_df = None changepoint_cols = [] else: if changepoints_dict is None: changepoint_dates = None elif changepoints_dict["method"] == "custom": changepoint_dates = list(pd.to_datetime(changepoints_dict["dates"])) elif changepoints_dict["method"] == "uniform": changepoint_dates = get_evenly_spaced_changepoints_dates( df=df, time_col=time_col, n_changepoints=changepoints_dict["n_changepoints"] ).tolist()[1:] # the changepoint features does not include the growth term else: changepoint_dates = None changepoint_df = get_changepoint_features( df=time_features_df, changepoint_values=changepoint_values, continuous_time_col=continuous_time_col, growth_func=growth_func, changepoint_dates=changepoint_dates) changepoint_cols = list(changepoint_df.columns) return { "changepoint_df": changepoint_df, "changepoint_values": changepoint_values, "continuous_time_col": continuous_time_col, "growth_func": growth_func, "changepoint_cols": changepoint_cols } def get_changepoint_dates_from_changepoints_dict( changepoints_dict, df=None, time_col=None): """Gets the changepoint dates from ``changepoints_dict`` Parameters ---------- changepoints_dict : `dict` or `None` The ``changepoints_dict`` which is compatible with `~greykite.algo.forecast.silverkite.forecast_silverkite.SilverkiteForecast.forecast` df : `pandas.DataFrame` or `None`, default `None` The data df to put changepoints on. time_col : `str` or `None`, default `None` The column name of time column in ``df``. Returns ------- changepoint_dates : `list` List of changepoint dates. """ if (changepoints_dict is None or "method" not in changepoints_dict.keys() or changepoints_dict["method"] not in ["auto", "uniform", "custom"]): return None method = changepoints_dict["method"] if method == "custom": # changepoints_dict["dates"] is `Iterable`, converts to list changepoint_dates = list(changepoints_dict["dates"]) elif method == "uniform": if df is None or time_col is None: raise ValueError("When the method of ``changepoints_dict`` is 'uniform', ``df`` and " "``time_col`` must be provided.") changepoint_dates = get_evenly_spaced_changepoints_dates( df=df, time_col=time_col, n_changepoints=changepoints_dict["n_changepoints"] ) # the output is `pandas.Series`, converts to list changepoint_dates = changepoint_dates.tolist()[1:] else: raise ValueError("The method of ``changepoints_dict`` can not be 'auto'. " "Please specify or detect change points first.") return changepoint_dates def add_event_window_multi( event_df_dict, time_col, label_col, time_delta="1D", pre_num=1, post_num=1, pre_post_num_dict=None): """For a given dictionary of events data frames with a time_col and label_col it adds shifted events prior and after the given events For example if the event data frame includes the row '2019-12-25, Christmas' as a row the function will produce dataframes with the events '2019-12-24, Christmas' and '2019-12-26, Christmas' if pre_num and post_num are 1 or more. Parameters ---------- event_df_dict: `dict` [`str`, `pandas.DataFrame`] A dictionary of events data frames with each having two columns: ``time_col`` and ``label_col``. time_col: `str` The column with the timestamp of the events. This can be daily but does not have to be. label_col : `str` The column with labels for the events. time_delta : `str`, default "1D" The amount of the shift for each unit specified by a string e.g. '1D' stands for one day delta pre_num : `int`, default 1 The number of events to be added prior to the given event for each event in df. post_num: `int`, default 1 The number of events to be added after to the given event for each event in df. pre_post_num_dict : `dict` [`str`, (`int`, `int`)] or None, default None Optionally override ``pre_num`` and ``post_num`` for each key in ``event_df_dict``. For example, if ``event_df_dict`` has keys "US" and "India", this parameter can be set to ``pre_post_num_dict = {"US": [1, 3], "India": [1, 2]}``, denoting that the "US" ``pre_num`` is 1 and ``post_num`` is 3, and "India" ``pre_num`` is 1 and ``post_num`` is 2. Keys not specified by ``pre_post_num_dict`` use the default given by ``pre_num`` and ``post_num``. Returns ------- df : `dict` [`str`, `pandas.DataFrame`] A dictionary of dataframes for each needed shift. For example if pre_num=2 and post_num=3. 2 + 3 = 5 data frames will be stored in the return dictionary. """ if pre_post_num_dict is None: pre_post_num_dict = {} shifted_df_dict = {} for event_df_key, event_df in event_df_dict.items(): if event_df_key in pre_post_num_dict.keys(): pre_num0 = pre_post_num_dict[event_df_key][0] post_num0 = pre_post_num_dict[event_df_key][1] else: pre_num0 = pre_num post_num0 = post_num df_dict0 = add_event_window( df=event_df, time_col=time_col, label_col=label_col, time_delta=time_delta, pre_num=pre_num0, post_num=post_num0, events_name=event_df_key) shifted_df_dict.update(df_dict0) return shifted_df_dict def get_fourier_col_name(k, col_name, function_name="sin", seas_name=None): """Returns column name corresponding to a particular fourier term, as returned by fourier_series_fcn :param k: int fourier term :param col_name: str column in the dataframe used to generate fourier series :param function_name: str sin or cos :param seas_name: strcols_interact appended to new column names added for fourier terms :return: str column name in DataFrame returned by fourier_series_fcn """ # patsy doesn't allow "." in formula term. Replace "." with "_" rather than quoting "Q()" all fourier terms name = f"{function_name}{k:.0f}_{col_name}" if seas_name is not None: name = f"{name}_{seas_name}" return name def fourier_series_fcn(col_name, period=1.0, order=1, seas_name=None): """Generates a function which creates fourier series matrix for a column of an input df :param col_name: str is the column name in the dataframe which is to be used for generating fourier series. It needs to be a continuous variable. :param period: float the period of the fourier series :param order: int the order of the fourier series :param seas_name: Optional[str] appended to new column names added for fourier terms. Useful to distinguish multiple fourier series on same col_name with different periods. :return: callable a function which can be applied to any data.frame df with a column name being equal to col_name """ def fs_func(df): out_df = pd.DataFrame() out_cols = [] if col_name not in df.columns: raise ValueError("The data frame does not have the column: " + col_name) x = df[col_name] x = np.array(x) for i in range(order): k = i + 1 sin_col_name = get_fourier_col_name( k, col_name, function_name="sin", seas_name=seas_name) cos_col_name = get_fourier_col_name( k, col_name, function_name="cos", seas_name=seas_name) out_cols.append(sin_col_name) out_cols.append(cos_col_name) omega = 2 * math.pi / period u = omega * k * x out_df[sin_col_name] = np.sin(u) out_df[cos_col_name] = np.cos(u) return {"df": out_df, "cols": out_cols} return fs_func def fourier_series_multi_fcn( col_names, periods=None, orders=None, seas_names=None): """Generates a func which adds multiple fourier series with multiple periods. Parameters ---------- col_names : `list` [`str`] the column names which are to be used to generate Fourier series. Each column can have its own period and order. periods: `list` [`float`] or None the periods corresponding to each column given in col_names orders : `list` [`int`] or None the orders for each of the Fourier series seas_names : `list` [`str`] or None Appended to the Fourier series name. If not provided (None) col_names will be used directly. """ k = len(col_names) if periods is None: periods = [1.0] * k if orders is None: orders = [1] * k if len(periods) != len(orders): raise ValueError("periods and orders must have the same length.") def fs_multi_func(df): out_df = None out_cols = [] for i in range(k): col_name = col_names[i] period = periods[i] order = orders[i] seas_name = None if seas_names is not None: seas_name = seas_names[i] func0 = fourier_series_fcn( col_name=col_name, period=period, order=order, seas_name=seas_name) res = func0(df) fs_df = res["df"] fs_cols = res["cols"] out_df = pd.concat([out_df, fs_df], axis=1) out_cols = out_cols + fs_cols return {"df": out_df, "cols": out_cols} return fs_multi_func def signed_pow(x, y): """ Takes the absolute value of x and raises it to power of y. Then it multiplies the result by sign of x. This guarantees this function is non-decreasing. This is useful in many contexts e.g. statistical modeling. :param x: the base number which can be any real number :param y: the power which can be any real number :return: returns abs(x) to power of y multiplied by sign of x """ return np.sign(x) * np.power(np.abs(x), y) def signed_pow_fcn(y): return lambda x: signed_pow(x, y) signed_sqrt = signed_pow_fcn(1 / 2) signed_sq = signed_pow_fcn(2) def logistic(x, growth_rate=1.0, capacity=1.0, floor=0.0, inflection_point=0.0): """Evaluates the logistic function at x with the specified growth rate, capacity, floor, and inflection point. :param x: value to evaluate the logistic function :type x: float :param growth_rate: growth rate :type growth_rate: float :param capacity: max value (carrying capacity) :type capacity: float :param floor: min value (lower bound) :type floor: float :param inflection_point: the t value of the inflection point :type inflection_point: float :return: value of the logistic function at t :rtype: float """ return floor + capacity * expit(growth_rate * (x - inflection_point)) def get_logistic_func(growth_rate=1.0, capacity=1.0, floor=0.0, inflection_point=0.0): """Returns a function that evaluates the logistic function at t with the specified growth rate, capacity, floor, and inflection point. f(x) = floor + capacity / (1 + exp(-growth_rate * (x - inflection_point))) :param growth_rate: growth rate :type growth_rate: float :param capacity: max value (carrying capacity) :type capacity: float :param floor: min value (lower bound) :type floor: float :param inflection_point: the t value of the inflection point :type inflection_point: float :return: the logistic function with specified parameters :rtype: callable """ return lambda t: logistic(t, growth_rate, capacity, floor, inflection_point)
[ "numpy.abs", "pandas.DatetimeIndex", "numpy.sin", "numpy.arange", "inspect.getmembers", "pandas.DataFrame", "warnings.simplefilter", "inspect.isclass", "warnings.catch_warnings", "pandas.concat", "datetime.datetime", "scipy.special.expit", "pandas.to_timedelta", "pandas.to_datetime", "pandas.Series", "numpy.cos", "numpy.array", "pandas.tseries.offsets.QuarterBegin", "numpy.sign" ]
[((2738, 2769), 'pandas.to_datetime', 'pd.to_datetime', (['df[time_col][0]'], {}), '(df[time_col][0])\n', (2752, 2769), True, 'import pandas as pd\n'), ((6696, 6716), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['dt'], {}), '(dt)\n', (6712, 6716), True, 'import pandas as pd\n'), ((11951, 11978), 'pandas.DataFrame', 'pd.DataFrame', (['features_dict'], {}), '(features_dict)\n', (11963, 11978), True, 'import pandas as pd\n'), ((12559, 12591), 'pandas.concat', 'pd.concat', (['[df, time_df]'], {'axis': '(1)'}), '([df, time_df], axis=1)\n', (12568, 12591), True, 'import pandas as pd\n'), ((18829, 18857), 'pandas.to_datetime', 'pd.to_datetime', (['df[date_col]'], {}), '(df[date_col])\n', (18843, 18857), True, 'import pandas as pd\n'), ((21067, 21094), 'pandas.to_timedelta', 'pd.to_timedelta', (['time_delta'], {}), '(time_delta)\n', (21082, 21094), True, 'import pandas as pd\n'), ((24501, 24529), 'pandas.to_datetime', 'pd.to_datetime', (['df[time_col]'], {}), '(df[time_col])\n', (24515, 24529), True, 'import pandas as pd\n'), ((24554, 24587), 'pandas.to_datetime', 'pd.to_datetime', (['changepoint_dates'], {}), '(changepoint_dates)\n', (24568, 24587), True, 'import pandas as pd\n'), ((28436, 28450), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (28448, 28450), True, 'import pandas as pd\n'), ((7166, 7214), 'pandas.tseries.offsets.QuarterBegin', 'pd.tseries.offsets.QuarterBegin', ([], {'startingMonth': '(1)'}), '(startingMonth=1)\n', (7197, 7214), True, 'import pandas as pd\n'), ((14607, 14656), 'pandas.to_datetime', 'pd.to_datetime', (['country_df[cst.EVENT_DF_DATE_COL]'], {}), '(country_df[cst.EVENT_DF_DATE_COL])\n', (14621, 14656), True, 'import pandas as pd\n'), ((19067, 19101), 'pandas.to_datetime', 'pd.to_datetime', (['event_df[date_col]'], {}), '(event_df[date_col])\n', (19081, 19101), True, 'import pandas as pd\n'), ((21140, 21154), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (21152, 21154), True, 'import pandas as pd\n'), ((21374, 21388), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (21386, 21388), True, 'import pandas as pd\n'), ((25506, 25539), 'pandas.to_datetime', 'pd.to_datetime', (['changepoint_dates'], {}), '(changepoint_dates)\n', (25520, 25539), True, 'import pandas as pd\n'), ((28912, 28990), 'pandas.Series', 'pd.Series', (['new_col'], {'name': 'f"""{cst.CHANGEPOINT_COL_PREFIX}{i}{time_postfixes[i]}"""'}), "(new_col, name=f'{cst.CHANGEPOINT_COL_PREFIX}{i}{time_postfixes[i]}')\n", (28921, 28990), True, 'import pandas as pd\n'), ((29016, 29068), 'pandas.concat', 'pd.concat', (['[changepoint_df, new_changepoint]'], {'axis': '(1)'}), '([changepoint_df, new_changepoint], axis=1)\n', (29025, 29068), True, 'import pandas as pd\n'), ((44484, 44498), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (44496, 44498), True, 'import pandas as pd\n'), ((44683, 44694), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (44691, 44694), True, 'import numpy as np\n'), ((47575, 47585), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (47582, 47585), True, 'import numpy as np\n'), ((15095, 15125), 'inspect.getmembers', 'inspect.getmembers', (['fbholidays'], {}), '(fbholidays)\n', (15113, 15125), False, 'import inspect\n'), ((15258, 15286), 'inspect.getmembers', 'inspect.getmembers', (['holidays'], {}), '(holidays)\n', (15276, 15286), False, 'import inspect\n'), ((22480, 22512), 'numpy.arange', 'np.arange', ([], {'start': '(1)', 'stop': 'n_steps'}), '(start=1, stop=n_steps)\n', (22489, 22512), True, 'import numpy as np\n'), ((23334, 23377), 'numpy.arange', 'np.arange', ([], {'start': '(1)', 'stop': '(n_changepoints + 1)'}), '(start=1, stop=n_changepoints + 1)\n', (23343, 23377), True, 'import numpy as np\n'), ((28531, 28564), 'numpy.array', 'np.array', (['df[continuous_time_col]'], {}), '(df[continuous_time_col])\n', (28539, 28564), True, 'import numpy as np\n'), ((45275, 45284), 'numpy.sin', 'np.sin', (['u'], {}), '(u)\n', (45281, 45284), True, 'import numpy as np\n'), ((45320, 45329), 'numpy.cos', 'np.cos', (['u'], {}), '(u)\n', (45326, 45329), True, 'import numpy as np\n'), ((46971, 47005), 'pandas.concat', 'pd.concat', (['[out_df, fs_df]'], {'axis': '(1)'}), '([out_df, fs_df], axis=1)\n', (46980, 47005), True, 'import pandas as pd\n'), ((47597, 47606), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (47603, 47606), True, 'import numpy as np\n'), ((48433, 48476), 'scipy.special.expit', 'expit', (['(growth_rate * (x - inflection_point))'], {}), '(growth_rate * (x - inflection_point))\n', (48438, 48476), False, 'from scipy.special import expit\n'), ((2000, 2025), 'datetime.datetime', 'datetime', (['dt.year', '(12)', '(31)'], {}), '(dt.year, 12, 31)\n', (2008, 2025), False, 'from datetime import datetime\n'), ((10327, 10341), 'pandas.Series', 'pd.Series', (['dow'], {}), '(dow)\n', (10336, 10341), True, 'import pandas as pd\n'), ((10519, 10537), 'pandas.Series', 'pd.Series', (['str_dow'], {}), '(str_dow)\n', (10528, 10537), True, 'import pandas as pd\n'), ((15137, 15157), 'inspect.isclass', 'inspect.isclass', (['obj'], {}), '(obj)\n', (15152, 15157), False, 'import inspect\n'), ((15298, 15318), 'inspect.isclass', 'inspect.isclass', (['obj'], {}), '(obj)\n', (15313, 15318), False, 'import inspect\n'), ((7386, 7407), 'pandas.to_timedelta', 'pd.to_timedelta', (['"""1D"""'], {}), "('1D')\n", (7401, 7407), True, 'import pandas as pd\n'), ((13817, 13842), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (13840, 13842), False, 'import warnings\n'), ((13864, 13895), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (13885, 13895), False, 'import warnings\n'), ((37123, 37165), 'pandas.to_datetime', 'pd.to_datetime', (["changepoints_dict['dates']"], {}), "(changepoints_dict['dates'])\n", (37137, 37165), True, 'import pandas as pd\n')]
# coding: utf-8 # In[2]: #start of code #importing packages import numpy as np import scipy.signal as sp import matplotlib.pyplot as plt # In[3]: def time_domain_output(f,H,t_start,t_end): t = np.linspace(t_start,t_end,10*(t_end-t_start)) t2,y,svec=sp.lsim(H,f,t) return y # In[4]: t_start = 0 t_end = 100 t = np.linspace(t_start,t_end,10*(t_end-t_start)) f1 = np.cos(1.5*t) * np.exp(-0.5*t) #d2y + 2.25y = x H=sp.lti([1],[1,0,2.25]) # In[5]: y1 = time_domain_output(f1,H,t_start,t_end) # In[14]: plt.plot(t,y1) plt.xlabel(r"t ---------->",size=15) plt.ylabel(r"x ---------->",size=15) plt.title(r"System with decay = 0.5",size=20) plt.show() # In[16]: f2 = np.cos(1.5*t) * np.exp(-0.05*t) # In[17]: y2 = time_domain_output(f2,H,t_start,t_end) # In[18]: plt.plot(t,y2) plt.xlabel(r"t ---------->",size=15) plt.ylabel(r"x ---------->",size=15) plt.title(r"System with decay = 0.05",size=20) plt.show() # In[19]: def input(freq,damp_fac): t = np.linspace(0,100,1000) return np.cos(freq*t) * np.exp(-damp_fac*t) # In[25]: n=5 t = np.linspace(0,100,1000) freq_range =np.linspace(1.4,1.6,n) for freq in freq_range: plt.plot(t,time_domain_output(input(freq,0.05),H,0,100)) plt.xlabel("t -------->",size=15) plt.ylabel("x -------->",size =15) plt.title(r"System response with Different Frequencies",size=15) plt.legend(["Freq = ${:.2f}$".format(f) for f in freq_range]) plt.show() # In[62]: w,S,phi=H.bode() plt.semilogx(w,S) plt.plot(1.5,28,"ro",label=r"Resonance Frequency") plt.title(r"Magnitude Bode plot with resonance freq = 1.5",size=14) plt.xlabel(r"Freq in rad/s log(w) -------->",size=15) plt.ylabel("Mag in dB -------->",size =15) plt.legend() plt.show() plt.semilogx(w,phi) #plt.plot(1.5,28,"ro",label=r"Resonance Frequency") plt.title(r"Phase Bode plot with resonance freq = 1.5",size=14) plt.xlabel(r"Freq in rad/s log(w) -------->",size=15) plt.ylabel("Phase in degrees -------->",size =15) plt.show() # In[11]: #eqn1 -- dx2 + x-y = 0 #Eqn2 --dy2 + 2(y-x) = 0 # In[52]: #form eqn1 y = dx2 + x #eq2 -- dx4+3dx2=0 xs = sp.lti([1,0,2],[1,0,3,0]) ys = sp.lti([2],[1,0,3,0]) # In[53]: t = np.linspace(0,20,200) # In[54]: t1,x = sp.impulse(xs,None,t) t2,y = sp.impulse(ys,None,t) # In[72]: plt.plot(t1,x,label=r"x(t)") plt.plot(t2,y,label=r"y(t)") plt.legend() plt.xlabel("t ---------------->",size=15) plt.title("Coupled Equation Response",size=15) plt.show() # In[77]: H_circ1 = sp.lti(np.poly1d([10**12]),np.poly1d([1,10**8,10**12])) w1,S1,phi1=H_circ1.bode() plt.semilogx(w1,S1) plt.xlabel("Frequency in rad/s",size=15) plt.ylabel("Magnitude in dB",size=15) plt.title("Magnitude plot",size=15) plt.grid(True) plt.show() plt.semilogx(w1,phi1) plt.xlabel("Frequency in rad/s",size=15) plt.ylabel("Phase in degrees",size=15) plt.title("Phase plot",size=15) plt.grid(True) plt.show() # In[79]: t_steady = np.linspace(0,10**-2,10**5) in_steady = np.cos(10**3 * t_steady) - np.cos(10**6 * t_steady) # In[80]: t1,y_steady,svec1=sp.lsim(H_circ1,in_steady,t_steady) # In[91]: plt.plot(t1,y_steady) plt.title("Steady state Response") plt.ylabel(r"$V_{o}(t) --->$",size=15) plt.xlabel(r"$t --->$",size=15) plt.show() # In[93]: t_trans = np.linspace(0,35*10**-6,30*10**2+1) in_trans = np.cos(10**3 * t_trans) - np.cos(10**6 * t_trans) # In[94]: t2,y_trans,svec2 = sp.lsim(H_circ1,in_trans,t_trans) # In[95]: plt.plot(t2,y_trans) plt.title("Transient Response") plt.ylabel(r"$V_{o}(t) --->$",size=15) plt.xlabel(r"$t --->$",size=15) plt.show()
[ "matplotlib.pyplot.title", "numpy.poly1d", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.signal.impulse", "matplotlib.pyplot.legend", "scipy.signal.lsim", "matplotlib.pyplot.grid", "numpy.exp", "numpy.linspace", "numpy.cos", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.semilogx", "scipy.signal.lti" ]
[((340, 391), 'numpy.linspace', 'np.linspace', (['t_start', 't_end', '(10 * (t_end - t_start))'], {}), '(t_start, t_end, 10 * (t_end - t_start))\n', (351, 391), True, 'import numpy as np\n'), ((441, 466), 'scipy.signal.lti', 'sp.lti', (['[1]', '[1, 0, 2.25]'], {}), '([1], [1, 0, 2.25])\n', (447, 466), True, 'import scipy.signal as sp\n'), ((535, 550), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'y1'], {}), '(t, y1)\n', (543, 550), True, 'import matplotlib.pyplot as plt\n'), ((550, 596), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t ---------->"""'], {'size': '(15)'}), "('t ---------->', size=15)\n", (560, 596), True, 'import matplotlib.pyplot as plt\n'), ((597, 644), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""x ---------->"""'], {'size': '(15)'}), "('x ---------->', size=15)\n", (607, 644), True, 'import matplotlib.pyplot as plt\n'), ((645, 690), 'matplotlib.pyplot.title', 'plt.title', (['"""System with decay = 0.5"""'], {'size': '(20)'}), "('System with decay = 0.5', size=20)\n", (654, 690), True, 'import matplotlib.pyplot as plt\n'), ((691, 701), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (699, 701), True, 'import matplotlib.pyplot as plt\n'), ((825, 840), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'y2'], {}), '(t, y2)\n', (833, 840), True, 'import matplotlib.pyplot as plt\n'), ((840, 886), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t ---------->"""'], {'size': '(15)'}), "('t ---------->', size=15)\n", (850, 886), True, 'import matplotlib.pyplot as plt\n'), ((887, 934), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""x ---------->"""'], {'size': '(15)'}), "('x ---------->', size=15)\n", (897, 934), True, 'import matplotlib.pyplot as plt\n'), ((935, 981), 'matplotlib.pyplot.title', 'plt.title', (['"""System with decay = 0.05"""'], {'size': '(20)'}), "('System with decay = 0.05', size=20)\n", (944, 981), True, 'import matplotlib.pyplot as plt\n'), ((982, 992), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (990, 992), True, 'import matplotlib.pyplot as plt\n'), ((1136, 1161), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(1000)'], {}), '(0, 100, 1000)\n', (1147, 1161), True, 'import numpy as np\n'), ((1172, 1196), 'numpy.linspace', 'np.linspace', (['(1.4)', '(1.6)', 'n'], {}), '(1.4, 1.6, n)\n', (1183, 1196), True, 'import numpy as np\n'), ((1280, 1320), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t -------->"""'], {'size': '(15)'}), "('t -------->', size=15)\n", (1290, 1320), True, 'import matplotlib.pyplot as plt\n'), ((1320, 1360), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""x -------->"""'], {'size': '(15)'}), "('x -------->', size=15)\n", (1330, 1360), True, 'import matplotlib.pyplot as plt\n'), ((1361, 1425), 'matplotlib.pyplot.title', 'plt.title', (['"""System response with Different Frequencies"""'], {'size': '(15)'}), "('System response with Different Frequencies', size=15)\n", (1370, 1425), True, 'import matplotlib.pyplot as plt\n'), ((1488, 1498), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1496, 1498), True, 'import matplotlib.pyplot as plt\n'), ((1530, 1548), 'matplotlib.pyplot.semilogx', 'plt.semilogx', (['w', 'S'], {}), '(w, S)\n', (1542, 1548), True, 'import matplotlib.pyplot as plt\n'), ((1548, 1600), 'matplotlib.pyplot.plot', 'plt.plot', (['(1.5)', '(28)', '"""ro"""'], {'label': '"""Resonance Frequency"""'}), "(1.5, 28, 'ro', label='Resonance Frequency')\n", (1556, 1600), True, 'import matplotlib.pyplot as plt\n'), ((1599, 1666), 'matplotlib.pyplot.title', 'plt.title', (['"""Magnitude Bode plot with resonance freq = 1.5"""'], {'size': '(14)'}), "('Magnitude Bode plot with resonance freq = 1.5', size=14)\n", (1608, 1666), True, 'import matplotlib.pyplot as plt\n'), ((1667, 1726), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Freq in rad/s log(w) -------->"""'], {'size': '(15)'}), "('Freq in rad/s log(w) -------->', size=15)\n", (1677, 1726), True, 'import matplotlib.pyplot as plt\n'), ((1727, 1775), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mag in dB -------->"""'], {'size': '(15)'}), "('Mag in dB -------->', size=15)\n", (1737, 1775), True, 'import matplotlib.pyplot as plt\n'), ((1776, 1788), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1786, 1788), True, 'import matplotlib.pyplot as plt\n'), ((1789, 1799), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1797, 1799), True, 'import matplotlib.pyplot as plt\n'), ((1800, 1820), 'matplotlib.pyplot.semilogx', 'plt.semilogx', (['w', 'phi'], {}), '(w, phi)\n', (1812, 1820), True, 'import matplotlib.pyplot as plt\n'), ((1872, 1935), 'matplotlib.pyplot.title', 'plt.title', (['"""Phase Bode plot with resonance freq = 1.5"""'], {'size': '(14)'}), "('Phase Bode plot with resonance freq = 1.5', size=14)\n", (1881, 1935), True, 'import matplotlib.pyplot as plt\n'), ((1936, 1995), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Freq in rad/s log(w) -------->"""'], {'size': '(15)'}), "('Freq in rad/s log(w) -------->', size=15)\n", (1946, 1995), True, 'import matplotlib.pyplot as plt\n'), ((1996, 2051), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Phase in degrees -------->"""'], {'size': '(15)'}), "('Phase in degrees -------->', size=15)\n", (2006, 2051), True, 'import matplotlib.pyplot as plt\n'), ((2052, 2062), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2060, 2062), True, 'import matplotlib.pyplot as plt\n'), ((2186, 2217), 'scipy.signal.lti', 'sp.lti', (['[1, 0, 2]', '[1, 0, 3, 0]'], {}), '([1, 0, 2], [1, 0, 3, 0])\n', (2192, 2217), True, 'import scipy.signal as sp\n'), ((2217, 2242), 'scipy.signal.lti', 'sp.lti', (['[2]', '[1, 0, 3, 0]'], {}), '([2], [1, 0, 3, 0])\n', (2223, 2242), True, 'import scipy.signal as sp\n'), ((2257, 2280), 'numpy.linspace', 'np.linspace', (['(0)', '(20)', '(200)'], {}), '(0, 20, 200)\n', (2268, 2280), True, 'import numpy as np\n'), ((2300, 2323), 'scipy.signal.impulse', 'sp.impulse', (['xs', 'None', 't'], {}), '(xs, None, t)\n', (2310, 2323), True, 'import scipy.signal as sp\n'), ((2329, 2352), 'scipy.signal.impulse', 'sp.impulse', (['ys', 'None', 't'], {}), '(ys, None, t)\n', (2339, 2352), True, 'import scipy.signal as sp\n'), ((2365, 2394), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 'x'], {'label': '"""x(t)"""'}), "(t1, x, label='x(t)')\n", (2373, 2394), True, 'import matplotlib.pyplot as plt\n'), ((2394, 2423), 'matplotlib.pyplot.plot', 'plt.plot', (['t2', 'y'], {'label': '"""y(t)"""'}), "(t2, y, label='y(t)')\n", (2402, 2423), True, 'import matplotlib.pyplot as plt\n'), ((2423, 2435), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2433, 2435), True, 'import matplotlib.pyplot as plt\n'), ((2436, 2495), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t ---------------->"""'], {'size': '(15)'}), "('t ---------------->', size=15)\n", (2446, 2495), True, 'import matplotlib.pyplot as plt\n'), ((2495, 2542), 'matplotlib.pyplot.title', 'plt.title', (['"""Coupled Equation Response"""'], {'size': '(15)'}), "('Coupled Equation Response', size=15)\n", (2504, 2542), True, 'import matplotlib.pyplot as plt\n'), ((2542, 2552), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2550, 2552), True, 'import matplotlib.pyplot as plt\n'), ((2659, 2679), 'matplotlib.pyplot.semilogx', 'plt.semilogx', (['w1', 'S1'], {}), '(w1, S1)\n', (2671, 2679), True, 'import matplotlib.pyplot as plt\n'), ((2679, 2720), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency in rad/s"""'], {'size': '(15)'}), "('Frequency in rad/s', size=15)\n", (2689, 2720), True, 'import matplotlib.pyplot as plt\n'), ((2720, 2758), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude in dB"""'], {'size': '(15)'}), "('Magnitude in dB', size=15)\n", (2730, 2758), True, 'import matplotlib.pyplot as plt\n'), ((2758, 2794), 'matplotlib.pyplot.title', 'plt.title', (['"""Magnitude plot"""'], {'size': '(15)'}), "('Magnitude plot', size=15)\n", (2767, 2794), True, 'import matplotlib.pyplot as plt\n'), ((2794, 2808), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2802, 2808), True, 'import matplotlib.pyplot as plt\n'), ((2809, 2819), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2817, 2819), True, 'import matplotlib.pyplot as plt\n'), ((2820, 2842), 'matplotlib.pyplot.semilogx', 'plt.semilogx', (['w1', 'phi1'], {}), '(w1, phi1)\n', (2832, 2842), True, 'import matplotlib.pyplot as plt\n'), ((2842, 2883), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency in rad/s"""'], {'size': '(15)'}), "('Frequency in rad/s', size=15)\n", (2852, 2883), True, 'import matplotlib.pyplot as plt\n'), ((2883, 2922), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Phase in degrees"""'], {'size': '(15)'}), "('Phase in degrees', size=15)\n", (2893, 2922), True, 'import matplotlib.pyplot as plt\n'), ((2922, 2954), 'matplotlib.pyplot.title', 'plt.title', (['"""Phase plot"""'], {'size': '(15)'}), "('Phase plot', size=15)\n", (2931, 2954), True, 'import matplotlib.pyplot as plt\n'), ((2954, 2968), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2962, 2968), True, 'import matplotlib.pyplot as plt\n'), ((2969, 2979), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2977, 2979), True, 'import matplotlib.pyplot as plt\n'), ((3005, 3038), 'numpy.linspace', 'np.linspace', (['(0)', '(10 ** -2)', '(10 ** 5)'], {}), '(0, 10 ** -2, 10 ** 5)\n', (3016, 3038), True, 'import numpy as np\n'), ((3129, 3166), 'scipy.signal.lsim', 'sp.lsim', (['H_circ1', 'in_steady', 't_steady'], {}), '(H_circ1, in_steady, t_steady)\n', (3136, 3166), True, 'import scipy.signal as sp\n'), ((3179, 3201), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 'y_steady'], {}), '(t1, y_steady)\n', (3187, 3201), True, 'import matplotlib.pyplot as plt\n'), ((3201, 3235), 'matplotlib.pyplot.title', 'plt.title', (['"""Steady state Response"""'], {}), "('Steady state Response')\n", (3210, 3235), True, 'import matplotlib.pyplot as plt\n'), ((3236, 3276), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$V_{o}(t) --->$"""'], {'size': '(15)'}), "('$V_{o}(t) --->$', size=15)\n", (3246, 3276), True, 'import matplotlib.pyplot as plt\n'), ((3277, 3309), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t --->$"""'], {'size': '(15)'}), "('$t --->$', size=15)\n", (3287, 3309), True, 'import matplotlib.pyplot as plt\n'), ((3310, 3320), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3318, 3320), True, 'import matplotlib.pyplot as plt\n'), ((3345, 3392), 'numpy.linspace', 'np.linspace', (['(0)', '(35 * 10 ** -6)', '(30 * 10 ** 2 + 1)'], {}), '(0, 35 * 10 ** -6, 30 * 10 ** 2 + 1)\n', (3356, 3392), True, 'import numpy as np\n'), ((3475, 3510), 'scipy.signal.lsim', 'sp.lsim', (['H_circ1', 'in_trans', 't_trans'], {}), '(H_circ1, in_trans, t_trans)\n', (3482, 3510), True, 'import scipy.signal as sp\n'), ((3523, 3544), 'matplotlib.pyplot.plot', 'plt.plot', (['t2', 'y_trans'], {}), '(t2, y_trans)\n', (3531, 3544), True, 'import matplotlib.pyplot as plt\n'), ((3544, 3575), 'matplotlib.pyplot.title', 'plt.title', (['"""Transient Response"""'], {}), "('Transient Response')\n", (3553, 3575), True, 'import matplotlib.pyplot as plt\n'), ((3576, 3616), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$V_{o}(t) --->$"""'], {'size': '(15)'}), "('$V_{o}(t) --->$', size=15)\n", (3586, 3616), True, 'import matplotlib.pyplot as plt\n'), ((3617, 3649), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t --->$"""'], {'size': '(15)'}), "('$t --->$', size=15)\n", (3627, 3649), True, 'import matplotlib.pyplot as plt\n'), ((3650, 3660), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3658, 3660), True, 'import matplotlib.pyplot as plt\n'), ((206, 257), 'numpy.linspace', 'np.linspace', (['t_start', 't_end', '(10 * (t_end - t_start))'], {}), '(t_start, t_end, 10 * (t_end - t_start))\n', (217, 257), True, 'import numpy as np\n'), ((266, 282), 'scipy.signal.lsim', 'sp.lsim', (['H', 'f', 't'], {}), '(H, f, t)\n', (273, 282), True, 'import scipy.signal as sp\n'), ((391, 406), 'numpy.cos', 'np.cos', (['(1.5 * t)'], {}), '(1.5 * t)\n', (397, 406), True, 'import numpy as np\n'), ((407, 423), 'numpy.exp', 'np.exp', (['(-0.5 * t)'], {}), '(-0.5 * t)\n', (413, 423), True, 'import numpy as np\n'), ((721, 736), 'numpy.cos', 'np.cos', (['(1.5 * t)'], {}), '(1.5 * t)\n', (727, 736), True, 'import numpy as np\n'), ((737, 754), 'numpy.exp', 'np.exp', (['(-0.05 * t)'], {}), '(-0.05 * t)\n', (743, 754), True, 'import numpy as np\n'), ((1041, 1066), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(1000)'], {}), '(0, 100, 1000)\n', (1052, 1066), True, 'import numpy as np\n'), ((2584, 2605), 'numpy.poly1d', 'np.poly1d', (['[10 ** 12]'], {}), '([10 ** 12])\n', (2593, 2605), True, 'import numpy as np\n'), ((2604, 2637), 'numpy.poly1d', 'np.poly1d', (['[1, 10 ** 8, 10 ** 12]'], {}), '([1, 10 ** 8, 10 ** 12])\n', (2613, 2637), True, 'import numpy as np\n'), ((3045, 3071), 'numpy.cos', 'np.cos', (['(10 ** 3 * t_steady)'], {}), '(10 ** 3 * t_steady)\n', (3051, 3071), True, 'import numpy as np\n'), ((3072, 3098), 'numpy.cos', 'np.cos', (['(10 ** 6 * t_steady)'], {}), '(10 ** 6 * t_steady)\n', (3078, 3098), True, 'import numpy as np\n'), ((3392, 3417), 'numpy.cos', 'np.cos', (['(10 ** 3 * t_trans)'], {}), '(10 ** 3 * t_trans)\n', (3398, 3417), True, 'import numpy as np\n'), ((3418, 3443), 'numpy.cos', 'np.cos', (['(10 ** 6 * t_trans)'], {}), '(10 ** 6 * t_trans)\n', (3424, 3443), True, 'import numpy as np\n'), ((1077, 1093), 'numpy.cos', 'np.cos', (['(freq * t)'], {}), '(freq * t)\n', (1083, 1093), True, 'import numpy as np\n'), ((1094, 1115), 'numpy.exp', 'np.exp', (['(-damp_fac * t)'], {}), '(-damp_fac * t)\n', (1100, 1115), True, 'import numpy as np\n')]
import sys, time, os, json import numpy as np import matplotlib.pylab as plt from PIL import Image from keras.models import * from keras.layers import * from keras.optimizers import * from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization from google.colab import drive def Unet(img_shape): def conv2d(x, filters): x = Conv2D(filters, 4, strides=2, padding='same')(x) x = LeakyReLU(0.2)(x) x = InstanceNormalization()(x) return x def deconv2d(x, contracting_path, filters, drop_rate=0): x = UpSampling2D(2)(x) x = Conv2D(filters, 4, padding='same', activation='relu')(x) if drop_rate: x = Dropout(drop_rate)(x) x = InstanceNormalization()(x) return Concatenate()([x, contracting_path]) img = Input(img_shape) #エンコーダー c1 = conv2d(img, 32) c2 = conv2d(c1, 64) c3 = conv2d(c2, 128) #中間層 x = conv2d(c3, 256) #デコーダー x = deconv2d(x, c3, 128) x = deconv2d(x, c2, 64) x = deconv2d(x, c1, 32) #元サイズ出力 x = UpSampling2D(2)(x) x = Conv2D(img_shape[-1], 4, padding='same', activation='tanh')(x) return Model(img, x) def Discriminator(img_shape): def d_layer(x, filters, bn=True): x = Conv2D(filters, 4, strides=2, padding='same')(x) x = LeakyReLU(0.2)(x) if bn: x = InstanceNormalization()(x) return x img = Input(img_shape) #PatchGANのサイズまで畳み込み x = d_layer(img, 64, False) x = d_layer(x, 128) x = d_layer(x, 256) x = d_layer(x, 512) #0〜1ラベル出力 x = Conv2D(1, 4, padding='same')(x) return Model(img, x) def CycleGAN(gen_AB, gen_BA, disc_A, disc_B, img_shape): img_A = Input(img_shape) img_B = Input(img_shape) fake_B = gen_AB(img_A) fake_A = gen_BA(img_B) reconstr_A = gen_BA(fake_B) reconstr_B = gen_AB(fake_A) img_A_id = gen_BA(img_A) img_B_id = gen_AB(img_B) valid_A = disc_A(fake_A) valid_B = disc_B(fake_B) return Model([img_A, img_B], [valid_A, valid_B, reconstr_A, reconstr_B, img_A_id, img_B_id]) def load_datasets(path, train_num, img_shape): return np.memmap(path, dtype=np.uint8, mode="r", shape=(train_num,)+img_shape) def get_json(json_name, init_func): if os.path.isfile(json_name): with open(json_name) as f: return json.load(f) else: return init_func() def train(): #ドライブをマウントしてフォルダ作成 drive_root = '/content/drive' drive.mount(drive_root) datasets_dir = "%s/My Drive/datasets"%drive_root train_dir = "%s/My Drive/train/cycle128"%drive_root imgs_dir = "%s/imgs"%train_dir os.makedirs(imgs_dir, exist_ok=True) #教師データ train_num = 30000 test_num = 6000 img_size = 128 data_num = train_num + test_num img_shape = (img_size,img_size,3) train_A = load_datasets("%s/color%d_%d.npy"%(datasets_dir,img_size,data_num), data_num, img_shape) train_B = load_datasets("%s/gray%d_%d.npy"%(datasets_dir,img_size,data_num), data_num, (img_size,img_size)) #訓練回数 epochs = 200 batch_size = 100 batch_num = train_num // batch_size #前回までの訓練情報 info_path = "%s/info.json"%train_dir info = get_json(info_path, lambda: {"epoch":0}) last_epoch = info["epoch"] #PatchGAN patch_shape = (img_size//16, img_size//16, 1) real = np.ones((batch_size,) + patch_shape) fake = np.zeros((batch_size,) + patch_shape) #モデル lambda_cycle = 10.0 lambda_id = 0.1 * lambda_cycle opt = Adam(0.0002, 0.5) gen_AB_path = "%s/gen_AB.h5"%train_dir gen_BA_path = "%s/gen_BA.h5"%train_dir disc_A_path = "%s/disc_A.h5"%train_dir disc_B_path = "%s/disc_B.h5"%train_dir if os.path.isfile(disc_B_path): gen_AB = load_model(gen_AB_path, custom_objects={'InstanceNormalization': InstanceNormalization}) gen_BA = load_model(gen_BA_path, custom_objects={'InstanceNormalization': InstanceNormalization}) disc_A = load_model(disc_A_path, custom_objects={'InstanceNormalization': InstanceNormalization}) disc_B = load_model(disc_B_path, custom_objects={'InstanceNormalization': InstanceNormalization}) print_img(last_epoch, gen_BA, train_A, train_B, 0, train_num, "train", img_size) print_img(last_epoch, gen_BA, train_A, train_B, train_num, test_num, "test", img_size) else: gen_AB = Unet(img_shape) gen_BA = Unet(img_shape) disc_A = Discriminator(img_shape) disc_B = Discriminator(img_shape) disc_A.compile(loss='mse', optimizer=opt, metrics=['accuracy']) disc_B.compile(loss='mse', optimizer=opt, metrics=['accuracy']) disc_A.trainable = False disc_B.trainable = False cycle_gan = CycleGAN(gen_AB, gen_BA, disc_A, disc_B, img_shape) cycle_gan.compile(loss=['mse', 'mse', 'mae', 'mae', 'mae', 'mae'], loss_weights=[1, 1, lambda_cycle, lambda_cycle, lambda_id, lambda_id], optimizer=opt) #エポック for e in range(last_epoch, epochs): start = time.time() #ミニバッチ for i in range(batch_num): #バッチ範囲をランダム選択 idx = np.random.choice(train_num, batch_size, replace=False) imgs_A = train_A[idx].astype(np.float32) / 255 idx = np.random.choice(train_num, batch_size, replace=False) imgs_B = convert_rgb(train_B[idx]).astype(np.float32) / 255 #識別訓練 fake_B = gen_AB.predict(imgs_A) fake_A = gen_BA.predict(imgs_B) d_loss_real = disc_A.train_on_batch(imgs_A, real) d_loss_fake = disc_A.train_on_batch(fake_A, fake) d_loss_A = np.add(d_loss_real, d_loss_fake) * 0.5 d_loss_real = disc_B.train_on_batch(imgs_B, real) d_loss_fake = disc_B.train_on_batch(fake_B, fake) d_loss_B = np.add(d_loss_real, d_loss_fake) * 0.5 d_loss = np.add(d_loss_A, d_loss_B) * 0.5 #生成訓練 g_loss = cycle_gan.train_on_batch([imgs_A, imgs_B], [real, real, imgs_A, imgs_B, imgs_A, imgs_B]) #ログ print("\repoch:%d/%d batch:%d/%d %ds d_loss:%s g_loss:%s" % (e+1,epochs, (i+1),batch_num, (time.time()-start), d_loss[0], g_loss[0]), end="") sys.stdout.flush() print() #画像生成テスト if (e+1) % 10 == 0 or e == 0: print_img(e+1, gen_BA, train_A, train_B, 0, train_num, "train", img_size) print_img(e+1, gen_BA, train_A, train_B, train_num, test_num, "test", img_size) #重みの保存 gen_AB.save(gen_AB_path) gen_BA.save(gen_BA_path) disc_A.save(disc_A_path) disc_B.save(disc_B_path) info["epoch"] += 1 with open(info_path, "w") as f: json.dump(info, f) def convert_rgb(train_B): return np.array([np.asarray(Image.fromarray(x).convert("RGB")) for x in train_B]) def print_img(epoch, gen, train_A, train_B, offset, limit, title, img_size): #データをランダム選択 num = 10 idx = np.random.choice(limit, num, replace=False) + offset imgs_A = train_A[idx] imgs_B = convert_rgb(train_B[idx]) #生成してみる fake_A = gen.predict(imgs_B.astype(np.float32) / 255) fake_A = (fake_A * 255).clip(0).astype(np.uint8) #繋げる imgs_A = np.concatenate(imgs_A, axis=1) imgs_B = np.concatenate(imgs_B, axis=1) fake_A = np.concatenate(fake_A, axis=1) imgs = np.concatenate((imgs_B,imgs_A,fake_A), axis=0) #プロット plt.figure(figsize=(20, 6)) plt.title(title) plt.imshow(imgs) plt.axis('off') plt.show() #保存 Image.fromarray(imgs).save("%s/cycle%d_%d_%s.png"%(imgs_dir,img_size,epoch,title)) #実行 train()
[ "matplotlib.pylab.imshow", "numpy.ones", "matplotlib.pylab.axis", "os.path.isfile", "sys.stdout.flush", "matplotlib.pylab.title", "matplotlib.pylab.show", "matplotlib.pylab.figure", "numpy.random.choice", "numpy.add", "json.dump", "google.colab.drive.mount", "numpy.memmap", "numpy.concatenate", "json.load", "os.makedirs", "numpy.zeros", "time.time", "keras_contrib.layers.normalization.instancenormalization.InstanceNormalization", "PIL.Image.fromarray" ]
[((2246, 2319), 'numpy.memmap', 'np.memmap', (['path'], {'dtype': 'np.uint8', 'mode': '"""r"""', 'shape': '((train_num,) + img_shape)'}), "(path, dtype=np.uint8, mode='r', shape=(train_num,) + img_shape)\n", (2255, 2319), True, 'import numpy as np\n'), ((2365, 2390), 'os.path.isfile', 'os.path.isfile', (['json_name'], {}), '(json_name)\n', (2379, 2390), False, 'import sys, time, os, json\n'), ((2581, 2604), 'google.colab.drive.mount', 'drive.mount', (['drive_root'], {}), '(drive_root)\n', (2592, 2604), False, 'from google.colab import drive\n'), ((2757, 2793), 'os.makedirs', 'os.makedirs', (['imgs_dir'], {'exist_ok': '(True)'}), '(imgs_dir, exist_ok=True)\n', (2768, 2793), False, 'import sys, time, os, json\n'), ((3476, 3512), 'numpy.ones', 'np.ones', (['((batch_size,) + patch_shape)'], {}), '((batch_size,) + patch_shape)\n', (3483, 3512), True, 'import numpy as np\n'), ((3525, 3562), 'numpy.zeros', 'np.zeros', (['((batch_size,) + patch_shape)'], {}), '((batch_size,) + patch_shape)\n', (3533, 3562), True, 'import numpy as np\n'), ((3847, 3874), 'os.path.isfile', 'os.path.isfile', (['disc_B_path'], {}), '(disc_B_path)\n', (3861, 3874), False, 'import sys, time, os, json\n'), ((7463, 7493), 'numpy.concatenate', 'np.concatenate', (['imgs_A'], {'axis': '(1)'}), '(imgs_A, axis=1)\n', (7477, 7493), True, 'import numpy as np\n'), ((7508, 7538), 'numpy.concatenate', 'np.concatenate', (['imgs_B'], {'axis': '(1)'}), '(imgs_B, axis=1)\n', (7522, 7538), True, 'import numpy as np\n'), ((7553, 7583), 'numpy.concatenate', 'np.concatenate', (['fake_A'], {'axis': '(1)'}), '(fake_A, axis=1)\n', (7567, 7583), True, 'import numpy as np\n'), ((7596, 7644), 'numpy.concatenate', 'np.concatenate', (['(imgs_B, imgs_A, fake_A)'], {'axis': '(0)'}), '((imgs_B, imgs_A, fake_A), axis=0)\n', (7610, 7644), True, 'import numpy as np\n'), ((7659, 7686), 'matplotlib.pylab.figure', 'plt.figure', ([], {'figsize': '(20, 6)'}), '(figsize=(20, 6))\n', (7669, 7686), True, 'import matplotlib.pylab as plt\n'), ((7692, 7708), 'matplotlib.pylab.title', 'plt.title', (['title'], {}), '(title)\n', (7701, 7708), True, 'import matplotlib.pylab as plt\n'), ((7714, 7730), 'matplotlib.pylab.imshow', 'plt.imshow', (['imgs'], {}), '(imgs)\n', (7724, 7730), True, 'import matplotlib.pylab as plt\n'), ((7736, 7751), 'matplotlib.pylab.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (7744, 7751), True, 'import matplotlib.pylab as plt\n'), ((7757, 7767), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (7765, 7767), True, 'import matplotlib.pylab as plt\n'), ((5166, 5177), 'time.time', 'time.time', ([], {}), '()\n', (5175, 5177), False, 'import sys, time, os, json\n'), ((7193, 7236), 'numpy.random.choice', 'np.random.choice', (['limit', 'num'], {'replace': '(False)'}), '(limit, num, replace=False)\n', (7209, 7236), True, 'import numpy as np\n'), ((473, 496), 'keras_contrib.layers.normalization.instancenormalization.InstanceNormalization', 'InstanceNormalization', ([], {}), '()\n', (494, 496), False, 'from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization\n'), ((757, 780), 'keras_contrib.layers.normalization.instancenormalization.InstanceNormalization', 'InstanceNormalization', ([], {}), '()\n', (778, 780), False, 'from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization\n'), ((2448, 2460), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2457, 2460), False, 'import sys, time, os, json\n'), ((5276, 5330), 'numpy.random.choice', 'np.random.choice', (['train_num', 'batch_size'], {'replace': '(False)'}), '(train_num, batch_size, replace=False)\n', (5292, 5330), True, 'import numpy as np\n'), ((5410, 5464), 'numpy.random.choice', 'np.random.choice', (['train_num', 'batch_size'], {'replace': '(False)'}), '(train_num, batch_size, replace=False)\n', (5426, 5464), True, 'import numpy as np\n'), ((6429, 6447), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6445, 6447), False, 'import sys, time, os, json\n'), ((6936, 6954), 'json.dump', 'json.dump', (['info', 'f'], {}), '(info, f)\n', (6945, 6954), False, 'import sys, time, os, json\n'), ((7782, 7803), 'PIL.Image.fromarray', 'Image.fromarray', (['imgs'], {}), '(imgs)\n', (7797, 7803), False, 'from PIL import Image\n'), ((1427, 1450), 'keras_contrib.layers.normalization.instancenormalization.InstanceNormalization', 'InstanceNormalization', ([], {}), '()\n', (1448, 1450), False, 'from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization\n'), ((5797, 5829), 'numpy.add', 'np.add', (['d_loss_real', 'd_loss_fake'], {}), '(d_loss_real, d_loss_fake)\n', (5803, 5829), True, 'import numpy as np\n'), ((5986, 6018), 'numpy.add', 'np.add', (['d_loss_real', 'd_loss_fake'], {}), '(d_loss_real, d_loss_fake)\n', (5992, 6018), True, 'import numpy as np\n'), ((6047, 6073), 'numpy.add', 'np.add', (['d_loss_A', 'd_loss_B'], {}), '(d_loss_A, d_loss_B)\n', (6053, 6073), True, 'import numpy as np\n'), ((7017, 7035), 'PIL.Image.fromarray', 'Image.fromarray', (['x'], {}), '(x)\n', (7032, 7035), False, 'from PIL import Image\n'), ((6365, 6376), 'time.time', 'time.time', ([], {}), '()\n', (6374, 6376), False, 'import sys, time, os, json\n')]
import argparse import os import sys import cv2 import numpy as np from matplotlib import pyplot as plt from functools import cmp_to_key from fhi_lib.geometry import Point, Line class DistanceEstimator(): def __init__(self, img): self.img = img self.panel_length = 2235 self.scale_length = 100 def initialize(self): self.__find_scales() self.__form_reference_points() self.__shift_accessory_coordinate_init() print('Estimator initialized') def initialize_with_pt(self, pt): self.__find_scales() self.__form_reference_points() self.vertical_pt2 = Point(pt) self.__shift_accessory_coordinate_init() print('Estimator initialized') def display_reference_pts(self, img): img = cv2.circle(img, self.origin.get_point_tuple(), 20, (0,0,0), 3) img = cv2.circle(img, self.horizontal_pt.get_point_tuple(), 20, (0,255,0), 3) img = cv2.circle(img, self.vertical_pt.get_point_tuple(), 20, (255,0,0), 3) img = cv2.circle(img, self.vertical_pt2.get_point_tuple(), 20, (255,0,0), 3) img = cv2.circle(img, self.origin.get_point_tuple(), 0, (0,0,255), 3) img = cv2.circle(img, self.horizontal_pt.get_point_tuple(), 0, (0,0,255), 3) img = cv2.circle(img, self.vertical_pt.get_point_tuple(), 0, (0,0,255), 3) img = cv2.circle(img, self.vertical_pt2.get_point_tuple(), 0, (0,0,255), 3) return img def estimate(self, pt_itr): img_intersection = self.__shift_accessory_coordinate(pt_itr) dist = self.__cross_ratio(img_intersection) caption = '{}\n'.format(int(dist)) return caption def __find_scales(self): ### Image Processing, convert rgb to hsv and find the scale by its color ### blur = cv2.GaussianBlur(self.img, (5,5), 0) img_hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV) img_threshold = cv2.inRange(img_hsv, (45,20,230), (90,220,255)) morphology_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) dilation = cv2.dilate(img_threshold, morphology_kernel, iterations=3) thresh = cv2.erode(dilation, morphology_kernel, iterations=3) ''' compare_img = np.hstack((img_threshold,thresh)) plt.imshow(compare_img) plt.show() ''' ### Crop the image as we know the scale is always on the left half of the image ### cropped_thresh = thresh[:, 0:int(thresh.shape[1]/2)] contours, _ = cv2.findContours(image=cropped_thresh, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE) ### Discard contours that are not quadrilaterals and smaller than 4000 pixels### result_contours = {} epsilon = 30 minimal_area = 1000 for contour in contours: contour_area = cv2.contourArea(contour) if contour_area > minimal_area: hull = cv2.convexHull(contour) approxCurve = cv2.approxPolyDP(hull, epsilon, True) if len(approxCurve) == 4: result_contours.update({contour_area : [approxCurve, contour]}) self.__verify_shape(result_contours) # sort the dictionary based on the size of the area result_contours = sorted(result_contours.items()) # pick the contour with the largest area as near scale, and the second as far scale self.near_scale = result_contours[1] self.far_scale = result_contours[0] def __verify_shape(self, result_contours): # For a parallel shape, the length of the two opposite sides should be approximately the same. tolerance = 0.55 remove_keys = [] for key in result_contours.keys(): pts = result_contours[key][0] pts = pts[:,0,:] pt1 = Point(pts[0]) pt2 = Point(pts[1]) pt3 = Point(pts[2]) pt4 = Point(pts[3]) dist1_2 = pt1.get_distance(pt2).astype(np.int) dist3_4 = pt3.get_distance(pt4).astype(np.int) dist1_4 = pt1.get_distance(pt4).astype(np.int) dist2_3 = pt2.get_distance(pt3).astype(np.int) if np.absolute(dist1_2 - dist3_4) / np.min([dist1_2, dist3_4])> tolerance: remove_keys.append(key) continue elif np.absolute(dist1_4 - dist2_3) / np.min([dist1_4, dist2_3])> tolerance: remove_keys.append(key) continue for remove_key in remove_keys: del result_contours[remove_key] def __form_reference_points(self): self.near_scale[1][0] = self.near_scale[1][0][:,0,:] self.far_scale[1][0] = self.far_scale[1][0][:,0,:] self.far_scale[1][0] = self.__set_orientation_hull(self.far_scale[1][0]) self.near_scale[1][0] = self.__set_orientation_hull(self.near_scale[1][0]) self.origin = Point(self.near_scale[1][0][1]) self.vertical_pt = Point(self.near_scale[1][0][0]) self.horizontal_pt = Point(self.near_scale[1][0][3]) self.vertical_pt2 = Point(self.far_scale[1][0][0]) def __set_orientation_hull(self, scale): # Assuming the scale is placed on the left half of the image. # The first vertex should be top left. If it's not the case, then reorder the verticies. order = scale[:,0].argsort() if order[0].astype(int) == 0: ## 1 2 ## ## 0 3 ## # The first vertex is at bottom left instead of top left. Reorder the verticies. scale = scale[[1,0,3,2]] elif order[0].astype(int) == 1: ## 2 3 ## ## 1 0 ## # The first vertex is at bottom left instead of top left. Reorder the verticies. scale = scale[[2,1,0,3]] elif order[0].astype(int) == 2: ## 3 0 ## ## 2 1 ## scale = scale[[3,2,1,0]] elif order[0].astype(int) == 3: ## 0 1 ## ## 3 2 ## scale = scale[[0,3,2,1]] return scale def __shift_accessory_coordinate_init(self): math_origin = self.origin.switch_coordinate_system(self.img) math_horizontal_pt = self.horizontal_pt.switch_coordinate_system(self.img) math_vertical_pt2 = self.vertical_pt2.switch_coordinate_system(self.img) math_vertical_pt = self.vertical_pt.switch_coordinate_system(self.img) self.vertical_reference_line = Line(math_origin, math_vertical_pt2) self.horizontal_reference_line = Line(math_vertical_pt, math_horizontal_pt) def __shift_accessory_coordinate(self, pt): math_pt = pt.switch_coordinate_system(self.img) slope_proj, intercept_proj = math_pt.get_projected_line(self.horizontal_reference_line.get_slope()) math_intersection = self.vertical_reference_line.calculate_intersection(slope_proj, intercept_proj) img_intersection = math_intersection.switch_coordinate_system(self.img) return img_intersection def __cross_ratio(self, intersection): ### AC*BD/(CD*AB) = A'C'*B'D'/(C'D'*A'B') ### # Image cross ratio # AB(scale_length): origin to vertical_pt (scale_pixel_dist) # CD: accessory_pt to vertical_pt2 # BD: vertical_pt to vertical_pt2 # AC(interested_length): origin to accessory_pt AB = self.origin.get_distance(self.vertical_pt.get_point()) CD = intersection.get_distance(self.vertical_pt2.get_point()) BD = self.vertical_pt.get_distance(self.vertical_pt2.get_point()) AC = self.origin.get_distance(intersection.get_point()) image_ratio = AC*BD/CD/AB # World cross ratio ABw = self.scale_length ADw = self.panel_length BDw = self.panel_length - self.scale_length ACw = image_ratio*ABw*ADw/(BDw+image_ratio*ABw) return ACw
[ "cv2.GaussianBlur", "cv2.contourArea", "numpy.absolute", "cv2.dilate", "cv2.cvtColor", "cv2.getStructuringElement", "cv2.approxPolyDP", "fhi_lib.geometry.Line", "numpy.min", "fhi_lib.geometry.Point", "cv2.convexHull", "cv2.erode", "cv2.inRange", "cv2.findContours" ]
[((574, 583), 'fhi_lib.geometry.Point', 'Point', (['pt'], {}), '(pt)\n', (579, 583), False, 'from fhi_lib.geometry import Point, Line\n'), ((1635, 1672), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['self.img', '(5, 5)', '(0)'], {}), '(self.img, (5, 5), 0)\n', (1651, 1672), False, 'import cv2\n'), ((1684, 1721), 'cv2.cvtColor', 'cv2.cvtColor', (['blur', 'cv2.COLOR_BGR2HSV'], {}), '(blur, cv2.COLOR_BGR2HSV)\n', (1696, 1721), False, 'import cv2\n'), ((1741, 1792), 'cv2.inRange', 'cv2.inRange', (['img_hsv', '(45, 20, 230)', '(90, 220, 255)'], {}), '(img_hsv, (45, 20, 230), (90, 220, 255))\n', (1752, 1792), False, 'import cv2\n'), ((1812, 1861), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(5, 5)'], {}), '(cv2.MORPH_RECT, (5, 5))\n', (1837, 1861), False, 'import cv2\n'), ((1874, 1932), 'cv2.dilate', 'cv2.dilate', (['img_threshold', 'morphology_kernel'], {'iterations': '(3)'}), '(img_threshold, morphology_kernel, iterations=3)\n', (1884, 1932), False, 'import cv2\n'), ((1944, 1996), 'cv2.erode', 'cv2.erode', (['dilation', 'morphology_kernel'], {'iterations': '(3)'}), '(dilation, morphology_kernel, iterations=3)\n', (1953, 1996), False, 'import cv2\n'), ((2257, 2356), 'cv2.findContours', 'cv2.findContours', ([], {'image': 'cropped_thresh', 'mode': 'cv2.RETR_EXTERNAL', 'method': 'cv2.CHAIN_APPROX_SIMPLE'}), '(image=cropped_thresh, mode=cv2.RETR_EXTERNAL, method=cv2.\n CHAIN_APPROX_SIMPLE)\n', (2273, 2356), False, 'import cv2\n'), ((4327, 4358), 'fhi_lib.geometry.Point', 'Point', (['self.near_scale[1][0][1]'], {}), '(self.near_scale[1][0][1])\n', (4332, 4358), False, 'from fhi_lib.geometry import Point, Line\n'), ((4380, 4411), 'fhi_lib.geometry.Point', 'Point', (['self.near_scale[1][0][0]'], {}), '(self.near_scale[1][0][0])\n', (4385, 4411), False, 'from fhi_lib.geometry import Point, Line\n'), ((4435, 4466), 'fhi_lib.geometry.Point', 'Point', (['self.near_scale[1][0][3]'], {}), '(self.near_scale[1][0][3])\n', (4440, 4466), False, 'from fhi_lib.geometry import Point, Line\n'), ((4489, 4519), 'fhi_lib.geometry.Point', 'Point', (['self.far_scale[1][0][0]'], {}), '(self.far_scale[1][0][0])\n', (4494, 4519), False, 'from fhi_lib.geometry import Point, Line\n'), ((5652, 5688), 'fhi_lib.geometry.Line', 'Line', (['math_origin', 'math_vertical_pt2'], {}), '(math_origin, math_vertical_pt2)\n', (5656, 5688), False, 'from fhi_lib.geometry import Point, Line\n'), ((5726, 5768), 'fhi_lib.geometry.Line', 'Line', (['math_vertical_pt', 'math_horizontal_pt'], {}), '(math_vertical_pt, math_horizontal_pt)\n', (5730, 5768), False, 'from fhi_lib.geometry import Point, Line\n'), ((2565, 2589), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (2580, 2589), False, 'import cv2\n'), ((3414, 3427), 'fhi_lib.geometry.Point', 'Point', (['pts[0]'], {}), '(pts[0])\n', (3419, 3427), False, 'from fhi_lib.geometry import Point, Line\n'), ((3437, 3450), 'fhi_lib.geometry.Point', 'Point', (['pts[1]'], {}), '(pts[1])\n', (3442, 3450), False, 'from fhi_lib.geometry import Point, Line\n'), ((3460, 3473), 'fhi_lib.geometry.Point', 'Point', (['pts[2]'], {}), '(pts[2])\n', (3465, 3473), False, 'from fhi_lib.geometry import Point, Line\n'), ((3483, 3496), 'fhi_lib.geometry.Point', 'Point', (['pts[3]'], {}), '(pts[3])\n', (3488, 3496), False, 'from fhi_lib.geometry import Point, Line\n'), ((2636, 2659), 'cv2.convexHull', 'cv2.convexHull', (['contour'], {}), '(contour)\n', (2650, 2659), False, 'import cv2\n'), ((2678, 2715), 'cv2.approxPolyDP', 'cv2.approxPolyDP', (['hull', 'epsilon', '(True)'], {}), '(hull, epsilon, True)\n', (2694, 2715), False, 'import cv2\n'), ((3705, 3735), 'numpy.absolute', 'np.absolute', (['(dist1_2 - dist3_4)'], {}), '(dist1_2 - dist3_4)\n', (3716, 3735), True, 'import numpy as np\n'), ((3738, 3764), 'numpy.min', 'np.min', (['[dist1_2, dist3_4]'], {}), '([dist1_2, dist3_4])\n', (3744, 3764), True, 'import numpy as np\n'), ((3826, 3856), 'numpy.absolute', 'np.absolute', (['(dist1_4 - dist2_3)'], {}), '(dist1_4 - dist2_3)\n', (3837, 3856), True, 'import numpy as np\n'), ((3859, 3885), 'numpy.min', 'np.min', (['[dist1_4, dist2_3]'], {}), '([dist1_4, dist2_3])\n', (3865, 3885), True, 'import numpy as np\n')]
from distutils.core import setup, Extension import glob import numpy import config import sys import os from config import ROOT includes = [os.path.join(ROOT,"Include"),os.path.join(ROOT,"PrivateInclude"),os.path.join("cmsisdsp_pkg","src")] if sys.platform == 'win32': cflags = ["-DWIN",config.cflags,"-DUNALIGNED_SUPPORT_DISABLE"] # Custom because a customized arm_math.h is required to build on windows # since the visual compiler and the win platform are # not supported by default in arm_math.h else: cflags = ["-Wno-unused-variable","-Wno-implicit-function-declaration",config.cflags,"-D__GNUC_PYTHON__"] transform = glob.glob(os.path.join(ROOT,"Source","TransformFunctions","*.c")) #transform.remove(os.path.join(ROOT,"Source","TransformFunctions","arm_dct4_init_q15.c")) #transform.remove(os.path.join(ROOT,"Source","TransformFunctions","arm_rfft_init_q15.c")) transform.remove(os.path.join(ROOT,"Source","TransformFunctions","TransformFunctions.c")) support = glob.glob(os.path.join(ROOT,"Source","SupportFunctions","*.c")) support.remove(os.path.join(ROOT,"Source","SupportFunctions","SupportFunctions.c")) fastmath = glob.glob(os.path.join(ROOT,"Source","FastMathFunctions","*.c")) fastmath.remove(os.path.join(ROOT,"Source","FastMathFunctions","FastMathFunctions.c")) filtering = glob.glob(os.path.join(ROOT,"Source","FilteringFunctions","*.c")) filtering.remove(os.path.join(ROOT,"Source","FilteringFunctions","FilteringFunctions.c")) matrix = glob.glob(os.path.join(ROOT,"Source","MatrixFunctions","*.c")) matrix.remove(os.path.join(ROOT,"Source","MatrixFunctions","MatrixFunctions.c")) statistics = glob.glob(os.path.join(ROOT,"Source","StatisticsFunctions","*.c")) statistics.remove(os.path.join(ROOT,"Source","StatisticsFunctions","StatisticsFunctions.c")) complexf = glob.glob(os.path.join(ROOT,"Source","ComplexMathFunctions","*.c")) complexf.remove(os.path.join(ROOT,"Source","ComplexMathFunctions","ComplexMathFunctions.c")) basic = glob.glob(os.path.join(ROOT,"Source","BasicMathFunctions","*.c")) basic.remove(os.path.join(ROOT,"Source","BasicMathFunctions","BasicMathFunctions.c")) controller = glob.glob(os.path.join(ROOT,"Source","ControllerFunctions","*.c")) controller.remove(os.path.join(ROOT,"Source","ControllerFunctions","ControllerFunctions.c")) common = glob.glob(os.path.join(ROOT,"Source","CommonTables","*.c")) common.remove(os.path.join(ROOT,"Source","CommonTables","CommonTables.c")) #modulesrc = glob.glob(os.path.join("cmsisdsp_pkg","src","*.c")) modulesrc = [] modulesrc.append(os.path.join("cmsisdsp_pkg","src","cmsismodule.c")) module1 = Extension(config.extensionName, sources = (support + fastmath + filtering + matrix + statistics + complexf + basic + controller + transform + modulesrc + common ) , include_dirs = includes + [numpy.get_include()], #extra_compile_args = ["-Wno-unused-variable","-Wno-implicit-function-declaration",config.cflags] extra_compile_args = cflags ) setup (name = config.setupName, version = '0.0.1', description = config.setupDescription, ext_modules = [module1], author = 'Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.', url="https://github.com/ARM-software/CMSIS_5", classifiers=[ "Programming Language :: Python", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ])
[ "numpy.get_include", "os.path.join", "distutils.core.setup" ]
[((3420, 3826), 'distutils.core.setup', 'setup', ([], {'name': 'config.setupName', 'version': '"""0.0.1"""', 'description': 'config.setupDescription', 'ext_modules': '[module1]', 'author': '"""Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved."""', 'url': '"""https://github.com/ARM-software/CMSIS_5"""', 'classifiers': "['Programming Language :: Python',\n 'License :: OSI Approved :: Apache Software License',\n 'Operating System :: OS Independent']"}), "(name=config.setupName, version='0.0.1', description=config.\n setupDescription, ext_modules=[module1], author=\n 'Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.'\n , url='https://github.com/ARM-software/CMSIS_5', classifiers=[\n 'Programming Language :: Python',\n 'License :: OSI Approved :: Apache Software License',\n 'Operating System :: OS Independent'])\n", (3425, 3826), False, 'from distutils.core import setup, Extension\n'), ((141, 170), 'os.path.join', 'os.path.join', (['ROOT', '"""Include"""'], {}), "(ROOT, 'Include')\n", (153, 170), False, 'import os\n'), ((170, 206), 'os.path.join', 'os.path.join', (['ROOT', '"""PrivateInclude"""'], {}), "(ROOT, 'PrivateInclude')\n", (182, 206), False, 'import os\n'), ((206, 241), 'os.path.join', 'os.path.join', (['"""cmsisdsp_pkg"""', '"""src"""'], {}), "('cmsisdsp_pkg', 'src')\n", (218, 241), False, 'import os\n'), ((646, 703), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""TransformFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'TransformFunctions', '*.c')\n", (658, 703), False, 'import os\n'), ((899, 973), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""TransformFunctions"""', '"""TransformFunctions.c"""'], {}), "(ROOT, 'Source', 'TransformFunctions', 'TransformFunctions.c')\n", (911, 973), False, 'import os\n'), ((993, 1048), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""SupportFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'SupportFunctions', '*.c')\n", (1005, 1048), False, 'import os\n'), ((1062, 1132), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""SupportFunctions"""', '"""SupportFunctions.c"""'], {}), "(ROOT, 'Source', 'SupportFunctions', 'SupportFunctions.c')\n", (1074, 1132), False, 'import os\n'), ((1153, 1209), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""FastMathFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'FastMathFunctions', '*.c')\n", (1165, 1209), False, 'import os\n'), ((1224, 1296), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""FastMathFunctions"""', '"""FastMathFunctions.c"""'], {}), "(ROOT, 'Source', 'FastMathFunctions', 'FastMathFunctions.c')\n", (1236, 1296), False, 'import os\n'), ((1318, 1375), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""FilteringFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'FilteringFunctions', '*.c')\n", (1330, 1375), False, 'import os\n'), ((1391, 1465), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""FilteringFunctions"""', '"""FilteringFunctions.c"""'], {}), "(ROOT, 'Source', 'FilteringFunctions', 'FilteringFunctions.c')\n", (1403, 1465), False, 'import os\n'), ((1484, 1538), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""MatrixFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'MatrixFunctions', '*.c')\n", (1496, 1538), False, 'import os\n'), ((1551, 1619), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""MatrixFunctions"""', '"""MatrixFunctions.c"""'], {}), "(ROOT, 'Source', 'MatrixFunctions', 'MatrixFunctions.c')\n", (1563, 1619), False, 'import os\n'), ((1642, 1700), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""StatisticsFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'StatisticsFunctions', '*.c')\n", (1654, 1700), False, 'import os\n'), ((1717, 1793), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""StatisticsFunctions"""', '"""StatisticsFunctions.c"""'], {}), "(ROOT, 'Source', 'StatisticsFunctions', 'StatisticsFunctions.c')\n", (1729, 1793), False, 'import os\n'), ((1814, 1873), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""ComplexMathFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'ComplexMathFunctions', '*.c')\n", (1826, 1873), False, 'import os\n'), ((1888, 1966), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""ComplexMathFunctions"""', '"""ComplexMathFunctions.c"""'], {}), "(ROOT, 'Source', 'ComplexMathFunctions', 'ComplexMathFunctions.c')\n", (1900, 1966), False, 'import os\n'), ((1984, 2041), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""BasicMathFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'BasicMathFunctions', '*.c')\n", (1996, 2041), False, 'import os\n'), ((2053, 2127), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""BasicMathFunctions"""', '"""BasicMathFunctions.c"""'], {}), "(ROOT, 'Source', 'BasicMathFunctions', 'BasicMathFunctions.c')\n", (2065, 2127), False, 'import os\n'), ((2150, 2208), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""ControllerFunctions"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'ControllerFunctions', '*.c')\n", (2162, 2208), False, 'import os\n'), ((2225, 2301), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""ControllerFunctions"""', '"""ControllerFunctions.c"""'], {}), "(ROOT, 'Source', 'ControllerFunctions', 'ControllerFunctions.c')\n", (2237, 2301), False, 'import os\n'), ((2320, 2371), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""CommonTables"""', '"""*.c"""'], {}), "(ROOT, 'Source', 'CommonTables', '*.c')\n", (2332, 2371), False, 'import os\n'), ((2384, 2446), 'os.path.join', 'os.path.join', (['ROOT', '"""Source"""', '"""CommonTables"""', '"""CommonTables.c"""'], {}), "(ROOT, 'Source', 'CommonTables', 'CommonTables.c')\n", (2396, 2446), False, 'import os\n'), ((2543, 2595), 'os.path.join', 'os.path.join', (['"""cmsisdsp_pkg"""', '"""src"""', '"""cmsismodule.c"""'], {}), "('cmsisdsp_pkg', 'src', 'cmsismodule.c')\n", (2555, 2595), False, 'import os\n'), ((3199, 3218), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (3216, 3218), False, 'import numpy\n')]
# Copyright 2021, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow_privacy.privacy.keras_models import dp_keras_model def get_data(): # Data is for hidden weights of [3, 1] and bias of 2. # With mean squared loss, we expect loss = 15^2 = 225, gradients of # weights = [90, 120], and gradient of bias = 30. data = np.array([[3, 4]]) labels = np.matmul(data, [[3], [1]]) + 2 return data, labels class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase): def testBaseline(self): """Tests that DPSequential works when DP-SGD has no effect.""" train_data, train_labels = get_data() # Simple linear model returns w * x + b. model = dp_keras_model.DPSequential( l2_norm_clip=1.0e9, noise_multiplier=0.0, layers=[ tf.keras.layers.InputLayer(input_shape=(2,)), tf.keras.layers.Dense( 1, kernel_initializer='zeros', bias_initializer='zeros') ]) optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) loss = tf.keras.losses.MeanSquaredError() model.compile(optimizer=optimizer, loss=loss) model.fit(train_data, train_labels, epochs=1, batch_size=1) model_weights = model.get_weights() # Check parameters are as expected, taking into account the learning rate. self.assertAllClose(model_weights[0], [[0.90], [1.20]]) self.assertAllClose(model_weights[1], [0.30]) @parameterized.named_parameters( ('l2_norm_clip 10.0', 10.0), ('l2_norm_clip 40.0', 40.0), ('l2_norm_clip 200.0', 200.0), ) def testClippingNorm(self, l2_norm_clip): """Tests that clipping norm works.""" train_data, train_labels = get_data() # Simple linear model returns w * x + b. model = dp_keras_model.DPSequential( l2_norm_clip=l2_norm_clip, noise_multiplier=0.0, layers=[ tf.keras.layers.InputLayer(input_shape=(2,)), tf.keras.layers.Dense( 1, kernel_initializer='zeros', bias_initializer='zeros') ]) learning_rate = 0.01 optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate) loss = tf.keras.losses.MeanSquaredError() model.compile(optimizer=optimizer, loss=loss) model.fit(train_data, train_labels, epochs=1, batch_size=1) model_weights = model.get_weights() unclipped_gradient = np.sqrt(90**2 + 120**2 + 30**2) scale = min(1.0, l2_norm_clip / unclipped_gradient) expected_weights = np.array([[90], [120]]) * scale * learning_rate expected_bias = np.array([30]) * scale * learning_rate # Check parameters are as expected, taking into account the learning rate. self.assertAllClose(model_weights[0], expected_weights) self.assertAllClose(model_weights[1], expected_bias) def _compute_expected_gradients(self, data, labels, w, l2_norm_clip, num_microbatches): batch_size = data.shape[0] if num_microbatches is None: num_microbatches = batch_size preds = np.matmul(data, w) grads = 2 * data * (labels - preds)[:, np.newaxis] grads = np.reshape(grads, [num_microbatches, batch_size // num_microbatches, -1]) mb_grads = np.mean(grads, axis=1) mb_grad_norms = np.linalg.norm(mb_grads, axis=1) scale = np.minimum(l2_norm_clip / mb_grad_norms, 1.0) mb_grads = mb_grads * scale[:, np.newaxis] final_grads = np.mean(mb_grads, axis=0) return final_grads @parameterized.named_parameters( ('mb_test 0', 1.0, None), ('mb_test 1', 1.0, 1), ('mb_test 2', 1.0, 2), ('mb_test 4', 1.0, 4), ) def testMicrobatches(self, l2_norm_clip, num_microbatches): train_data = np.array([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]) w = np.zeros((2)) train_labels = np.array([1.0, 3.0, -2.0, -4.0]) learning_rate = 1.0 expected_grads = self._compute_expected_gradients(train_data, train_labels, w, l2_norm_clip, num_microbatches) expected_weights = np.squeeze(learning_rate * expected_grads) optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate) loss = tf.keras.losses.MeanSquaredError() # Simple linear model returns w * x + b. model = dp_keras_model.DPSequential( l2_norm_clip=l2_norm_clip, noise_multiplier=0.0, num_microbatches=num_microbatches, layers=[ tf.keras.layers.InputLayer(input_shape=(2,)), tf.keras.layers.Dense( 1, use_bias=False, kernel_initializer='zeros') ]) model.compile(optimizer=optimizer, loss=loss) model.fit(train_data, train_labels, epochs=1, batch_size=4, shuffle=False) model_weights = np.squeeze(model.get_weights()) self.assertAllClose(model_weights, expected_weights) @parameterized.named_parameters( ('noise_multiplier 3 2 1', 3.0, 2.0, 1), ('noise_multiplier 5 4 1', 5.0, 4.0, 1), ('noise_multiplier 3 2 2', 3.0, 2.0, 2), ('noise_multiplier 5 4 2', 5.0, 4.0, 2), ('noise_multiplier 3 2 4', 3.0, 2.0, 4), ('noise_multiplier 5 4 4', 5.0, 4.0, 4), ) def testNoiseMultiplier(self, l2_norm_clip, noise_multiplier, num_microbatches): # The idea behind this test is to start with a model whose parameters # are set to zero. We then run one step of a model that produces # an un-noised gradient of zero, and then compute the standard deviation # of the resulting weights to see if it matches the expected standard # deviation. # Data is one example of length 1000, set to zero, with label zero. train_data = np.zeros((4, 1000)) train_labels = np.array([0.0, 0.0, 0.0, 0.0]) learning_rate = 1.0 optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate) loss = tf.keras.losses.MeanSquaredError() # Simple linear model returns w * x + b. model = dp_keras_model.DPSequential( l2_norm_clip=l2_norm_clip, noise_multiplier=noise_multiplier, num_microbatches=num_microbatches, layers=[ tf.keras.layers.InputLayer(input_shape=(1000,)), tf.keras.layers.Dense( 1, kernel_initializer='zeros', bias_initializer='zeros') ]) model.compile(optimizer=optimizer, loss=loss) model.fit(train_data, train_labels, epochs=1, batch_size=4) model_weights = model.get_weights() measured_std = np.std(model_weights[0]) expected_std = l2_norm_clip * noise_multiplier / num_microbatches # Test standard deviation is close to l2_norm_clip * noise_multiplier. self.assertNear(measured_std, expected_std, 0.1 * expected_std) # Simple check to make sure dimensions are correct when output has # dimension > 1. @parameterized.named_parameters( ('mb_test None 1', None, 1), ('mb_test 1 2', 1, 2), ('mb_test 2 2', 2, 2), ('mb_test 4 4', 4, 4), ) def testMultiDimensionalOutput(self, num_microbatches, output_dimension): train_data = np.array([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]) train_labels = np.array([0, 1, 1, 0]) learning_rate = 1.0 optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model = dp_keras_model.DPSequential( l2_norm_clip=1.0e9, noise_multiplier=0.0, num_microbatches=num_microbatches, layers=[ tf.keras.layers.InputLayer(input_shape=(2,)), tf.keras.layers.Dense( output_dimension, use_bias=False, kernel_initializer='zeros') ]) model.compile(optimizer=optimizer, loss=loss_fn) model.fit(train_data, train_labels, epochs=1, batch_size=4, shuffle=False) # Checks that calls to earlier API using `use_xla` as a positional argument # raise an exception. @parameterized.named_parameters( ('earlier API True', True), ('earlier API False', False), ) def testEarlierAPIFails(self, use_xla): with self.assertRaises(ValueError): _ = dp_keras_model.DPSequential( 1.0e9, 0.0, use_xla, layers=[ tf.keras.layers.InputLayer(input_shape=(2,)), tf.keras.layers.Dense( 2, use_bias=False, kernel_initializer='zeros') ]) if __name__ == '__main__': tf.test.main()
[ "tensorflow.test.main", "tensorflow.keras.losses.SparseCategoricalCrossentropy", "numpy.minimum", "tensorflow.keras.losses.MeanSquaredError", "tensorflow.keras.layers.Dense", "numpy.std", "tensorflow.keras.optimizers.SGD", "numpy.zeros", "tensorflow.keras.layers.InputLayer", "numpy.mean", "numpy.array", "numpy.reshape", "numpy.matmul", "numpy.linalg.norm", "numpy.squeeze", "absl.testing.parameterized.named_parameters", "numpy.sqrt" ]
[((946, 964), 'numpy.array', 'np.array', (['[[3, 4]]'], {}), '([[3, 4]])\n', (954, 964), True, 'import numpy as np\n'), ((2029, 2153), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('l2_norm_clip 10.0', 10.0)", "('l2_norm_clip 40.0', 40.0)", "('l2_norm_clip 200.0', 200.0)"], {}), "(('l2_norm_clip 10.0', 10.0), (\n 'l2_norm_clip 40.0', 40.0), ('l2_norm_clip 200.0', 200.0))\n", (2059, 2153), False, 'from absl.testing import parameterized\n'), ((4076, 4205), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('mb_test 0', 1.0, None)", "('mb_test 1', 1.0, 1)", "('mb_test 2', 1.0, 2)", "('mb_test 4', 1.0, 4)"], {}), "(('mb_test 0', 1.0, None), ('mb_test 1', 1.0,\n 1), ('mb_test 2', 1.0, 2), ('mb_test 4', 1.0, 4))\n", (4106, 4205), False, 'from absl.testing import parameterized\n'), ((5495, 5789), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('noise_multiplier 3 2 1', 3.0, 2.0, 1)", "('noise_multiplier 5 4 1', 5.0, 4.0, 1)", "('noise_multiplier 3 2 2', 3.0, 2.0, 2)", "('noise_multiplier 5 4 2', 5.0, 4.0, 2)", "('noise_multiplier 3 2 4', 3.0, 2.0, 4)", "('noise_multiplier 5 4 4', 5.0, 4.0, 4)"], {}), "(('noise_multiplier 3 2 1', 3.0, 2.0, 1), (\n 'noise_multiplier 5 4 1', 5.0, 4.0, 1), ('noise_multiplier 3 2 2', 3.0,\n 2.0, 2), ('noise_multiplier 5 4 2', 5.0, 4.0, 2), (\n 'noise_multiplier 3 2 4', 3.0, 2.0, 4), ('noise_multiplier 5 4 4', 5.0,\n 4.0, 4))\n", (5525, 5789), False, 'from absl.testing import parameterized\n'), ((7443, 7575), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('mb_test None 1', None, 1)", "('mb_test 1 2', 1, 2)", "('mb_test 2 2', 2, 2)", "('mb_test 4 4', 4, 4)"], {}), "(('mb_test None 1', None, 1), ('mb_test 1 2',\n 1, 2), ('mb_test 2 2', 2, 2), ('mb_test 4 4', 4, 4))\n", (7473, 7575), False, 'from absl.testing import parameterized\n'), ((8547, 8640), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('earlier API True', True)", "('earlier API False', False)"], {}), "(('earlier API True', True), (\n 'earlier API False', False))\n", (8577, 8640), False, 'from absl.testing import parameterized\n'), ((9049, 9063), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (9061, 9063), True, 'import tensorflow as tf\n'), ((976, 1003), 'numpy.matmul', 'np.matmul', (['data', '[[3], [1]]'], {}), '(data, [[3], [1]])\n', (985, 1003), True, 'import numpy as np\n'), ((1589, 1632), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'learning_rate': '(0.01)'}), '(learning_rate=0.01)\n', (1612, 1632), True, 'import tensorflow as tf\n'), ((1644, 1678), 'tensorflow.keras.losses.MeanSquaredError', 'tf.keras.losses.MeanSquaredError', ([], {}), '()\n', (1676, 1678), True, 'import tensorflow as tf\n'), ((2687, 2739), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (2710, 2739), True, 'import tensorflow as tf\n'), ((2751, 2785), 'tensorflow.keras.losses.MeanSquaredError', 'tf.keras.losses.MeanSquaredError', ([], {}), '()\n', (2783, 2785), True, 'import tensorflow as tf\n'), ((2968, 3005), 'numpy.sqrt', 'np.sqrt', (['(90 ** 2 + 120 ** 2 + 30 ** 2)'], {}), '(90 ** 2 + 120 ** 2 + 30 ** 2)\n', (2975, 3005), True, 'import numpy as np\n'), ((3621, 3639), 'numpy.matmul', 'np.matmul', (['data', 'w'], {}), '(data, w)\n', (3630, 3639), True, 'import numpy as np\n'), ((3708, 3781), 'numpy.reshape', 'np.reshape', (['grads', '[num_microbatches, batch_size // num_microbatches, -1]'], {}), '(grads, [num_microbatches, batch_size // num_microbatches, -1])\n', (3718, 3781), True, 'import numpy as np\n'), ((3821, 3843), 'numpy.mean', 'np.mean', (['grads'], {'axis': '(1)'}), '(grads, axis=1)\n', (3828, 3843), True, 'import numpy as np\n'), ((3864, 3896), 'numpy.linalg.norm', 'np.linalg.norm', (['mb_grads'], {'axis': '(1)'}), '(mb_grads, axis=1)\n', (3878, 3896), True, 'import numpy as np\n'), ((3910, 3955), 'numpy.minimum', 'np.minimum', (['(l2_norm_clip / mb_grad_norms)', '(1.0)'], {}), '(l2_norm_clip / mb_grad_norms, 1.0)\n', (3920, 3955), True, 'import numpy as np\n'), ((4023, 4048), 'numpy.mean', 'np.mean', (['mb_grads'], {'axis': '(0)'}), '(mb_grads, axis=0)\n', (4030, 4048), True, 'import numpy as np\n'), ((4310, 4368), 'numpy.array', 'np.array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]'], {}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])\n', (4318, 4368), True, 'import numpy as np\n'), ((4377, 4388), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (4385, 4388), True, 'import numpy as np\n'), ((4410, 4442), 'numpy.array', 'np.array', (['[1.0, 3.0, -2.0, -4.0]'], {}), '([1.0, 3.0, -2.0, -4.0])\n', (4418, 4442), True, 'import numpy as np\n'), ((4714, 4756), 'numpy.squeeze', 'np.squeeze', (['(learning_rate * expected_grads)'], {}), '(learning_rate * expected_grads)\n', (4724, 4756), True, 'import numpy as np\n'), ((4774, 4826), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (4797, 4826), True, 'import tensorflow as tf\n'), ((4838, 4872), 'tensorflow.keras.losses.MeanSquaredError', 'tf.keras.losses.MeanSquaredError', ([], {}), '()\n', (4870, 4872), True, 'import tensorflow as tf\n'), ((6323, 6342), 'numpy.zeros', 'np.zeros', (['(4, 1000)'], {}), '((4, 1000))\n', (6331, 6342), True, 'import numpy as np\n'), ((6362, 6392), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0, 0.0])\n', (6370, 6392), True, 'import numpy as np\n'), ((6434, 6486), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (6457, 6486), True, 'import tensorflow as tf\n'), ((6498, 6532), 'tensorflow.keras.losses.MeanSquaredError', 'tf.keras.losses.MeanSquaredError', ([], {}), '()\n', (6530, 6532), True, 'import tensorflow as tf\n'), ((7112, 7136), 'numpy.std', 'np.std', (['model_weights[0]'], {}), '(model_weights[0])\n', (7118, 7136), True, 'import numpy as np\n'), ((7694, 7752), 'numpy.array', 'np.array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]'], {}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])\n', (7702, 7752), True, 'import numpy as np\n'), ((7772, 7794), 'numpy.array', 'np.array', (['[0, 1, 1, 0]'], {}), '([0, 1, 1, 0])\n', (7780, 7794), True, 'import numpy as np\n'), ((7836, 7888), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (7859, 7888), True, 'import tensorflow as tf\n'), ((7903, 7966), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (7948, 7966), True, 'import tensorflow as tf\n'), ((3079, 3102), 'numpy.array', 'np.array', (['[[90], [120]]'], {}), '([[90], [120]])\n', (3087, 3102), True, 'import numpy as np\n'), ((3147, 3161), 'numpy.array', 'np.array', (['[30]'], {}), '([30])\n', (3155, 3161), True, 'import numpy as np\n'), ((1408, 1452), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': '(2,)'}), '(input_shape=(2,))\n', (1434, 1452), True, 'import tensorflow as tf\n'), ((1466, 1544), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {'kernel_initializer': '"""zeros"""', 'bias_initializer': '"""zeros"""'}), "(1, kernel_initializer='zeros', bias_initializer='zeros')\n", (1487, 1544), True, 'import tensorflow as tf\n'), ((2481, 2525), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': '(2,)'}), '(input_shape=(2,))\n', (2507, 2525), True, 'import tensorflow as tf\n'), ((2539, 2617), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {'kernel_initializer': '"""zeros"""', 'bias_initializer': '"""zeros"""'}), "(1, kernel_initializer='zeros', bias_initializer='zeros')\n", (2560, 2617), True, 'import tensorflow as tf\n'), ((5097, 5141), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': '(2,)'}), '(input_shape=(2,))\n', (5123, 5141), True, 'import tensorflow as tf\n'), ((5155, 5223), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {'use_bias': '(False)', 'kernel_initializer': '"""zeros"""'}), "(1, use_bias=False, kernel_initializer='zeros')\n", (5176, 5223), True, 'import tensorflow as tf\n'), ((6770, 6817), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': '(1000,)'}), '(input_shape=(1000,))\n', (6796, 6817), True, 'import tensorflow as tf\n'), ((6831, 6909), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {'kernel_initializer': '"""zeros"""', 'bias_initializer': '"""zeros"""'}), "(1, kernel_initializer='zeros', bias_initializer='zeros')\n", (6852, 6909), True, 'import tensorflow as tf\n'), ((8139, 8183), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': '(2,)'}), '(input_shape=(2,))\n', (8165, 8183), True, 'import tensorflow as tf\n'), ((8197, 8285), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['output_dimension'], {'use_bias': '(False)', 'kernel_initializer': '"""zeros"""'}), "(output_dimension, use_bias=False, kernel_initializer=\n 'zeros')\n", (8218, 8285), True, 'import tensorflow as tf\n'), ((8858, 8902), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': '(2,)'}), '(input_shape=(2,))\n', (8884, 8902), True, 'import tensorflow as tf\n'), ((8918, 8986), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(2)'], {'use_bias': '(False)', 'kernel_initializer': '"""zeros"""'}), "(2, use_bias=False, kernel_initializer='zeros')\n", (8939, 8986), True, 'import tensorflow as tf\n')]
""" Here I am going to convert array to image from it's pixel value and put those images in their respective directory for both in train and test set. train set -------> [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] test set -------> [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z] """ # Import required packages import os import numpy as np import cv2 word_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', 17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'} def test_images_creation(): # Open file of test.csv in read mode file = open('test.csv', 'r') count = 0 labels = [] # Directory where test image save parent_dir = os.path.join(os.getcwd(), 'test') while True: # read line of file line = file.readline() # Break if line not found if not line: break # Split line on ',' and create list of row values row = line.split(',') # extract label and pixel value from row # label = str(row[0]) --orignal lab_num = int(row[0]) label = word_dict.get(lab_num) pixel = row[1:] # Convert pixel in numpy array of 28 x 28 pixel = np.asarray(pixel, dtype=np.uint8).reshape((28, 28, 1)) # join path of directories path = os.path.join(parent_dir, label) # count line number and use with image name count += 1 # list of contents(directory and file both) in directory labels = os.listdir(parent_dir) if label in labels: # save image in its directory cv2.imwrite(f'{path}/image_{count}.png', pixel) print(f"{count} - not created directory only image add") else: try: os.mkdir(path) except OSError as error: print(error) # save image in its directory cv2.imwrite(f'{path}/image_{count}.png', pixel) print(f"{count} - created directory and image add") file.close() test_images_creation() def train_images_creation(): # Open file of train.csv in read mode file = open('train.csv', 'r') count = 0 labels = [] # Directory where train image save parent_dir = os.path.join(os.getcwd(), 'train') while True: # read line of file line = file.readline() # Break if line not found if not line: break # Split line on ',' and create list of row values row = line.split(',') # extract label and pixel value from row # label = str(row[0]) --orignal lab_num = int(row[0]) label = word_dict.get(lab_num) pixel = row[1:] # Convert pixel in numpy array of 28 x 28 pixel = np.asarray(pixel, dtype=np.uint8).reshape((28, 28, 1)) # join path of directories path = os.path.join(parent_dir, label) # count line number and use with image name count += 1 # list of contents(directory and file both) in directory labels = os.listdir(parent_dir) if label in labels: # save image in its directory cv2.imwrite(f'{path}/image_{count}.png', pixel) print(f"{count} - not created directory only image add") else: try: os.mkdir(path) except OSError as error: print(error) # save image in its directory cv2.imwrite(f'{path}/image_{count}.png', pixel) print(f"{count} - created directory and image add") file.close() # train_images_creation()
[ "os.mkdir", "os.getcwd", "cv2.imwrite", "numpy.asarray", "os.path.join", "os.listdir" ]
[((841, 852), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (850, 852), False, 'import os\n'), ((1457, 1488), 'os.path.join', 'os.path.join', (['parent_dir', 'label'], {}), '(parent_dir, label)\n', (1469, 1488), False, 'import os\n'), ((1644, 1666), 'os.listdir', 'os.listdir', (['parent_dir'], {}), '(parent_dir)\n', (1654, 1666), False, 'import os\n'), ((2411, 2422), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2420, 2422), False, 'import os\n'), ((3028, 3059), 'os.path.join', 'os.path.join', (['parent_dir', 'label'], {}), '(parent_dir, label)\n', (3040, 3059), False, 'import os\n'), ((3215, 3237), 'os.listdir', 'os.listdir', (['parent_dir'], {}), '(parent_dir)\n', (3225, 3237), False, 'import os\n'), ((1750, 1797), 'cv2.imwrite', 'cv2.imwrite', (['f"""{path}/image_{count}.png"""', 'pixel'], {}), "(f'{path}/image_{count}.png', pixel)\n", (1761, 1797), False, 'import cv2\n'), ((2049, 2096), 'cv2.imwrite', 'cv2.imwrite', (['f"""{path}/image_{count}.png"""', 'pixel'], {}), "(f'{path}/image_{count}.png', pixel)\n", (2060, 2096), False, 'import cv2\n'), ((3321, 3368), 'cv2.imwrite', 'cv2.imwrite', (['f"""{path}/image_{count}.png"""', 'pixel'], {}), "(f'{path}/image_{count}.png', pixel)\n", (3332, 3368), False, 'import cv2\n'), ((3620, 3667), 'cv2.imwrite', 'cv2.imwrite', (['f"""{path}/image_{count}.png"""', 'pixel'], {}), "(f'{path}/image_{count}.png', pixel)\n", (3631, 3667), False, 'import cv2\n'), ((1351, 1384), 'numpy.asarray', 'np.asarray', (['pixel'], {'dtype': 'np.uint8'}), '(pixel, dtype=np.uint8)\n', (1361, 1384), True, 'import numpy as np\n'), ((1914, 1928), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (1922, 1928), False, 'import os\n'), ((2922, 2955), 'numpy.asarray', 'np.asarray', (['pixel'], {'dtype': 'np.uint8'}), '(pixel, dtype=np.uint8)\n', (2932, 2955), True, 'import numpy as np\n'), ((3485, 3499), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (3493, 3499), False, 'import os\n')]
import argparse import numpy as np from astropy.io import fits from numba import jit class DragonPedestal: n_pixels = 7 roisize = 40 size4drs = 4*1024 high_gain = 0 low_gain = 1 def __init__(self): self.first_capacitor = np.zeros((2, 8)) self.meanped = np.zeros((2, self.n_pixels, self.size4drs)) self.numped = np.zeros((2, self.n_pixels, self.size4drs)) def fill_pedestal_event(self, event, nr): first_cap = event.lst.tel[0].evt.first_capacitor_id[nr * 8:(nr + 1) * 8] for i, j in zip([0, 1, 2, 3, 4, 5, 6], [0, 0, 1, 1, 2, 2, 3]): self.first_capacitor[self.high_gain, i] = first_cap[j] for i, j in zip([0, 1, 2, 3, 4, 5, 6], [4, 4, 5, 5, 6, 6, 7]): self.first_capacitor[self.low_gain, i] = first_cap[j] waveform = event.r0.tel[0].waveform[:, :, :] expected_pixel_id = event.lst.tel[0].svc.pixel_ids self._fill_pedestal_event_jit(nr, waveform, expected_pixel_id, self.first_capacitor, self.meanped, self.numped) @staticmethod @jit(parallel=True) def _fill_pedestal_event_jit(nr, waveform, expected_pixel_id, first_cap, meanped, numped): size4drs = 4096 roisize = 40 for i in range(0, 2): for j in range(0, 7): fc = int(first_cap[i, j]) pixel = expected_pixel_id[nr*7 + j] posads0 = int((2+fc)%size4drs) if posads0 + 40 < 4096: meanped[i, j, posads0:(posads0+36)] += waveform[i, pixel, 2:38] numped[i, j, posads0:(posads0 + 36)] += 1 else: for k in range(2, roisize-2): posads = int((k+fc)%size4drs) val = waveform[i, pixel, k] meanped[i, j, posads] += val numped[i, j, posads] += 1 def finalize_pedestal(self): try: self.meanped = self.meanped/self.numped except Exception as err: print("Not enough events to coverage all capacitor. Please use more events to create pedestal file.") print(err) def get_first_capacitor(event, nr): hg = 0 lg = 1 fc = np.zeros((2, 8)) first_cap = event.lst.tel[0].evt.first_capacitor_id[nr * 8:(nr + 1) * 8] # First capacitor order according Dragon v5 board data format for i, j in zip([0, 1, 2, 3, 4, 5, 6], [0, 0, 1, 1, 2, 2, 3]): fc[hg, i] = first_cap[j] for i, j in zip([0, 1, 2, 3, 4, 5, 6], [4, 4, 5, 5, 6, 6, 7]): fc[lg, i] = first_cap[j] return fc
[ "numpy.zeros", "numba.jit" ]
[((1068, 1086), 'numba.jit', 'jit', ([], {'parallel': '(True)'}), '(parallel=True)\n', (1071, 1086), False, 'from numba import jit\n'), ((2238, 2254), 'numpy.zeros', 'np.zeros', (['(2, 8)'], {}), '((2, 8))\n', (2246, 2254), True, 'import numpy as np\n'), ((256, 272), 'numpy.zeros', 'np.zeros', (['(2, 8)'], {}), '((2, 8))\n', (264, 272), True, 'import numpy as np\n'), ((296, 339), 'numpy.zeros', 'np.zeros', (['(2, self.n_pixels, self.size4drs)'], {}), '((2, self.n_pixels, self.size4drs))\n', (304, 339), True, 'import numpy as np\n'), ((362, 405), 'numpy.zeros', 'np.zeros', (['(2, self.n_pixels, self.size4drs)'], {}), '((2, self.n_pixels, self.size4drs))\n', (370, 405), True, 'import numpy as np\n')]
#TODO: move this to pioneer.das.acquisition from pioneer.das.api import platform try: import folium #pip3 install folium except: pass import math import matplotlib.pyplot as plt import numpy as np import os import tqdm import utm def easting_northing_from_lat_long(latitude, longitude): easting, northing, _, _ = utm.from_latlon(latitude, longitude) return easting, northing def distance_traj_step(easting, northing, t=None): d_e = np.diff(easting) d_n = np.diff(northing) if t is not None: d_t = np.diff(t) return (d_e**2 + d_n**2)**0.5/d_t def get_trajectory(pfsynch:platform.Synchronized, ref_ts_sensor:str='flir_bfc_img', imu_nav:str='sbgekinox_bcc_navposvel'): '''simple: return easting, northing, points list, and time of the trajectory following the timestamps of ref_ts_sensor ''' n = len(pfsynch) easting, northing, ts = [], [], [] points = [] for mu in tqdm.tqdm(range(n)): ref_ts = pfsynch[mu][ref_ts_sensor].timestamp imu = pfsynch.platform[imu_nav].get_at_timestamp(ref_ts).raw lati, longi = imu['latitude'], imu['longitude'] eg, ng = easting_northing_from_lat_long(lati, longi) easting.append(eg) northing.append(ng) ts.append(ref_ts/1e6) points.append([lati, longi]) return np.array(easting, dtype=np.float64), np.array(northing, dtype=np.float64), points, np.array(ts, dtype=np.float64)-ts[0] def compute_neighbour_step_ratio(xt, yt, t, min_epsilon_precision=1e-5): step_ratio_norm = [] step_ratio_norm.append(0) for i in range(1,len(xt)-1): d_t_l = np.abs(t[i-1]-t[i]) d_t_r = np.abs(t[i+1]-t[i]) d_xt_l = np.maximum(np.abs(xt[i-1]-xt[i])/d_t_l, min_epsilon_precision) d_xt_r = np.maximum(np.abs(xt[i+1]-xt[i])/d_t_r, min_epsilon_precision) d_yt_l = np.maximum(np.abs(yt[i-1]-yt[i])/d_t_l, min_epsilon_precision) d_yt_r = np.maximum(np.abs(yt[i+1]-yt[i])/d_t_r, min_epsilon_precision) step_ratio_xt = np.maximum(d_xt_l, d_xt_r) / np.minimum(d_xt_l, d_xt_r) step_ratio_yt = np.maximum(d_yt_l, d_yt_r) / np.minimum(d_yt_l, d_yt_r) step_ratio_norm.append((step_ratio_xt**2 + step_ratio_yt**2)**0.5) step_ratio_norm.append(0) return np.array(step_ratio_norm, dtype=np.float) def compute_standard_score(x, seq_memory: int=200, start_at_zero: bool=True, outliers_threshold: float=100.0): '''return the standard score based on a memory sequence of certain length. ''' m = len(x) epsilon_ = 1e-4 # 0.1 mm precision z_score = [] z_score.append(0) flag_outliers = np.zeros_like(x, dtype=bool) for mu in tqdm.tqdm(range(1, m)): a, b = np.maximum(mu - seq_memory, 0), mu if mu < seq_memory and not start_at_zero: z_score.append(0) continue window_seq = x[a:b][~flag_outliers[a:b]] # if mu > seq_memory and len(window_seq) < 0.25*seq_memory: # z_score.append(0) # continue seq_mean = np.mean(window_seq) seq_std = np.std(window_seq) z_ = np.abs((x[mu] - seq_mean)/(seq_std + epsilon_)) if z_ > outliers_threshold: flag_outliers[mu] = 1 z_score.append(np.copy(z_)) return np.array(z_score) def get_trajectory_standard_score(pfsynch:platform.Synchronized, ref_ts_sensor:str='flir_bfc_img', imu_nav:str='sbgekinox_bcc_navposvel', traj_seq_memory:int=200): '''estimation of the smoothness of a trajectory based on the standard score. ''' easting, northing, _, t = get_trajectory(pfsynch, ref_ts_sensor, imu_nav) traj_step = distance_traj_step(easting, northing, t) z_scores = np.zeros_like(easting) z_scores[1:] = compute_standard_score(traj_step, traj_seq_memory-1, False) return z_scores def get_trajectory_step_ratio(pfsynch:platform.Synchronized, ref_ts_sensor:str='flir_bfc_img', imu_nav:str='sbgekinox_bcc_navposvel', traj_min_epsilon_precision:float=1e-6): '''estimation of the smoothness of the trajectory based on the ratio of left-right epsilons step ''' easting, northing, _, t = get_trajectory(pfsynch, ref_ts_sensor, imu_nav) return compute_neighbour_step_ratio(easting, northing, t, traj_min_epsilon_precision) def find_trajectory_jump(pfsynch:platform.Synchronized, ref_ts_sensor:str='flir_bfc_img', imu_nav:str='sbgekinox_bcc_navposvel', traj_seq_memory:int=200, traj_jump_threshold:float=15.5, show_result:bool=True): '''Compute the list of ranges of intervall from pfsynch which are smooth according to traj_jump_threshold. ''' print('Computing trajectory') easting, northing, points, t = get_trajectory(pfsynch, ref_ts_sensor, imu_nav) traj_step = distance_traj_step(easting, northing) print('Validate trajectory') z_scores = np.zeros_like(easting) z_scores[1:] = compute_standard_score(traj_step, traj_seq_memory-1, False) jump_flag = (z_scores > traj_jump_threshold).astype(bool) list_intervals = [] ids = np.arange(len(jump_flag))[jump_flag] for mu in range(len(ids)): if mu == 0: list_intervals.append([0 , ids[mu]-1]) continue if ids[mu]-ids[mu-1] >= traj_seq_memory: list_intervals.append([ids[mu-1], ids[mu]-1]) if show_result: t = np.arange(len(easting)) fig, ax = plt.subplots(2, 1, figsize=(9,10)) fig.suptitle('Trajectory positions and jumps') ax[0].scatter(t, easting) ax[0].scatter(t[jump_flag], easting[jump_flag], label='jump flags') ax[0].legend() ax[0].set_xlabel('Frame number') ax[0].set_ylabel('Easting') ax[1].scatter(t, northing) ax[1].scatter(t[jump_flag], northing[jump_flag], label='jump flags') ax[1].legend() ax[1].set_xlabel('Frame number') ax[1].set_ylabel('Northing') plt.show() my_map = folium.Map(location=points[0], zoom_start=15) folium.PolyLine(points).add_to(my_map) for mu in ids: folium.CircleMarker( location=points[mu], radius=5.5, popup='IMU jump: '+ str(mu), color='red', fill=True, fill_color='red' ).add_to(my_map) return jump_flag, list_intervals, my_map return jump_flag, list_intervals if __name__ == '__main__': #example of use: #see this dataset: _dataset = '/nas/pixset/exportedDataset/20200610_195655_rec_dataset_quartier_pierre_exported' _ignore = ['radarTI_bfc'] pf = platform.Platform(_dataset, ignore=_ignore) # get the platform synchronized: sync_labels = ['*ech*', '*_img*', '*_trr*', '*_trf*',' *_ftrr*', '*xyzit-*'] interp_labels = ['*_xyzit', 'sbgekinox_*', 'peakcan_*', '*temp', '*_pos*', '*_agc*'] synch = pf.synchronized(sync_labels=sync_labels, interp_labels=interp_labels, tolerance_us=1e3) flags, inters, my_map = find_trajectory_jump(synch, ref_ts_sensor='flir_bfc_img', imu_nav='sbgekinox_bcc_navposvel', traj_seq_memory=200, traj_jump_threshold=4.0, show_result=True) print('Intervals:', inters)
[ "utm.from_latlon", "numpy.zeros_like", "numpy.abs", "matplotlib.pyplot.show", "numpy.maximum", "numpy.minimum", "numpy.std", "numpy.copy", "pioneer.das.api.platform.Platform", "numpy.diff", "numpy.array", "numpy.mean", "folium.Map", "folium.PolyLine", "matplotlib.pyplot.subplots" ]
[((327, 363), 'utm.from_latlon', 'utm.from_latlon', (['latitude', 'longitude'], {}), '(latitude, longitude)\n', (342, 363), False, 'import utm\n'), ((455, 471), 'numpy.diff', 'np.diff', (['easting'], {}), '(easting)\n', (462, 471), True, 'import numpy as np\n'), ((482, 499), 'numpy.diff', 'np.diff', (['northing'], {}), '(northing)\n', (489, 499), True, 'import numpy as np\n'), ((2351, 2392), 'numpy.array', 'np.array', (['step_ratio_norm'], {'dtype': 'np.float'}), '(step_ratio_norm, dtype=np.float)\n', (2359, 2392), True, 'import numpy as np\n'), ((2708, 2736), 'numpy.zeros_like', 'np.zeros_like', (['x'], {'dtype': 'bool'}), '(x, dtype=bool)\n', (2721, 2736), True, 'import numpy as np\n'), ((3396, 3413), 'numpy.array', 'np.array', (['z_score'], {}), '(z_score)\n', (3404, 3413), True, 'import numpy as np\n'), ((3933, 3955), 'numpy.zeros_like', 'np.zeros_like', (['easting'], {}), '(easting)\n', (3946, 3955), True, 'import numpy as np\n'), ((5306, 5328), 'numpy.zeros_like', 'np.zeros_like', (['easting'], {}), '(easting)\n', (5319, 5328), True, 'import numpy as np\n'), ((7117, 7160), 'pioneer.das.api.platform.Platform', 'platform.Platform', (['_dataset'], {'ignore': '_ignore'}), '(_dataset, ignore=_ignore)\n', (7134, 7160), False, 'from pioneer.das.api import platform\n'), ((536, 546), 'numpy.diff', 'np.diff', (['t'], {}), '(t)\n', (543, 546), True, 'import numpy as np\n'), ((1375, 1410), 'numpy.array', 'np.array', (['easting'], {'dtype': 'np.float64'}), '(easting, dtype=np.float64)\n', (1383, 1410), True, 'import numpy as np\n'), ((1412, 1448), 'numpy.array', 'np.array', (['northing'], {'dtype': 'np.float64'}), '(northing, dtype=np.float64)\n', (1420, 1448), True, 'import numpy as np\n'), ((1674, 1697), 'numpy.abs', 'np.abs', (['(t[i - 1] - t[i])'], {}), '(t[i - 1] - t[i])\n', (1680, 1697), True, 'import numpy as np\n'), ((1710, 1733), 'numpy.abs', 'np.abs', (['(t[i + 1] - t[i])'], {}), '(t[i + 1] - t[i])\n', (1716, 1733), True, 'import numpy as np\n'), ((3153, 3172), 'numpy.mean', 'np.mean', (['window_seq'], {}), '(window_seq)\n', (3160, 3172), True, 'import numpy as np\n'), ((3191, 3209), 'numpy.std', 'np.std', (['window_seq'], {}), '(window_seq)\n', (3197, 3209), True, 'import numpy as np\n'), ((3224, 3273), 'numpy.abs', 'np.abs', (['((x[mu] - seq_mean) / (seq_std + epsilon_))'], {}), '((x[mu] - seq_mean) / (seq_std + epsilon_))\n', (3230, 3273), True, 'import numpy as np\n'), ((5855, 5890), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'figsize': '(9, 10)'}), '(2, 1, figsize=(9, 10))\n', (5867, 5890), True, 'import matplotlib.pyplot as plt\n'), ((6377, 6387), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6385, 6387), True, 'import matplotlib.pyplot as plt\n'), ((6406, 6451), 'folium.Map', 'folium.Map', ([], {'location': 'points[0]', 'zoom_start': '(15)'}), '(location=points[0], zoom_start=15)\n', (6416, 6451), False, 'import folium\n'), ((1458, 1488), 'numpy.array', 'np.array', (['ts'], {'dtype': 'np.float64'}), '(ts, dtype=np.float64)\n', (1466, 1488), True, 'import numpy as np\n'), ((2085, 2111), 'numpy.maximum', 'np.maximum', (['d_xt_l', 'd_xt_r'], {}), '(d_xt_l, d_xt_r)\n', (2095, 2111), True, 'import numpy as np\n'), ((2114, 2140), 'numpy.minimum', 'np.minimum', (['d_xt_l', 'd_xt_r'], {}), '(d_xt_l, d_xt_r)\n', (2124, 2140), True, 'import numpy as np\n'), ((2165, 2191), 'numpy.maximum', 'np.maximum', (['d_yt_l', 'd_yt_r'], {}), '(d_yt_l, d_yt_r)\n', (2175, 2191), True, 'import numpy as np\n'), ((2194, 2220), 'numpy.minimum', 'np.minimum', (['d_yt_l', 'd_yt_r'], {}), '(d_yt_l, d_yt_r)\n', (2204, 2220), True, 'import numpy as np\n'), ((2790, 2820), 'numpy.maximum', 'np.maximum', (['(mu - seq_memory)', '(0)'], {}), '(mu - seq_memory, 0)\n', (2800, 2820), True, 'import numpy as np\n'), ((3367, 3378), 'numpy.copy', 'np.copy', (['z_'], {}), '(z_)\n', (3374, 3378), True, 'import numpy as np\n'), ((1759, 1784), 'numpy.abs', 'np.abs', (['(xt[i - 1] - xt[i])'], {}), '(xt[i - 1] - xt[i])\n', (1765, 1784), True, 'import numpy as np\n'), ((1839, 1864), 'numpy.abs', 'np.abs', (['(xt[i + 1] - xt[i])'], {}), '(xt[i + 1] - xt[i])\n', (1845, 1864), True, 'import numpy as np\n'), ((1928, 1953), 'numpy.abs', 'np.abs', (['(yt[i - 1] - yt[i])'], {}), '(yt[i - 1] - yt[i])\n', (1934, 1953), True, 'import numpy as np\n'), ((2008, 2033), 'numpy.abs', 'np.abs', (['(yt[i + 1] - yt[i])'], {}), '(yt[i + 1] - yt[i])\n', (2014, 2033), True, 'import numpy as np\n'), ((6461, 6484), 'folium.PolyLine', 'folium.PolyLine', (['points'], {}), '(points)\n', (6476, 6484), False, 'import folium\n')]
import os.path as osp import numpy as np import mmcv from . import XMLDataset from .builder import DATASETS import xml.etree.ElementTree as ET from PIL import Image @DATASETS.register_module() class LogosDataset(XMLDataset): def load_annotations(self, ann_file): """Load annotation from XML style ann_file. Args: ann_file (str): Path of XML file. Returns: list[dict]: Annotation info from XML file. """ if not self.CLASSES: self.CLASSES = set() data_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = f'JPEGImages/{img_id}.jpg' xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() # Get image size data size = root.find('size') if size is not None: width = int(size.find('width').text) height = int(size.find('height').text) else: img_path = osp.join(self.img_prefix, 'JPEGImages', '{}.jpg'.format(img_id)) img = Image.open(img_path) width, height = img.size # Get object classes self.CLASSES |= {x.text for x in tree.findall("object/name")} data_infos.append( dict(id=img_id, filename=filename, width=width, height=height)) self.CLASSES = sorted(list(self.CLASSES)) return data_infos def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=np.arange(0.5, 0.96, 0.05)): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float]): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. Default: np.arange(0.5, 0.96, 0.05). Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') return dict()
[ "xml.etree.ElementTree.parse", "PIL.Image.open", "numpy.arange", "mmcv.list_from_file", "os.path.join" ]
[((578, 607), 'mmcv.list_from_file', 'mmcv.list_from_file', (['ann_file'], {}), '(ann_file)\n', (597, 607), False, 'import mmcv\n'), ((1875, 1901), 'numpy.arange', 'np.arange', (['(0.5)', '(0.96)', '(0.05)'], {}), '(0.5, 0.96, 0.05)\n', (1884, 1901), True, 'import numpy as np\n'), ((712, 769), 'os.path.join', 'osp.join', (['self.img_prefix', '"""Annotations"""', 'f"""{img_id}.xml"""'], {}), "(self.img_prefix, 'Annotations', f'{img_id}.xml')\n", (720, 769), True, 'import os.path as osp\n'), ((821, 839), 'xml.etree.ElementTree.parse', 'ET.parse', (['xml_path'], {}), '(xml_path)\n', (829, 839), True, 'import xml.etree.ElementTree as ET\n'), ((1255, 1275), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1265, 1275), False, 'from PIL import Image\n')]
import csv import os import sys import time import numpy as np import matplotlib.pyplot as plt #from sklearn.neighbors import NearestNeighbors from path import Path from vector_math import * from find_matches import * import search_matches #******************** #**** this compares two sets of angles to see how close the two paths are #******************** #@profile def compare_two_sets_of_angles(path1, path2): match_comparison = [] max_distance = 0 if len(path2.angles>0): angles2 = path2.angles[:,0] distances1_2 = path2.angles[:,1] distances2_2 = path2.angles[:,2] path2_angles = path2.angles[:,0:3] path2_angles_test = path2.angles[:,0:3].tolist() else: return # if we don't have any angles then break out of the loop and go to the next path if len(path1.angles>0): path1_angles = path1.angles[:,0:3] path1_angles_test = path1.angles[:,0:3].tolist() else: return # if we don't have any angles then break out of the loop and go to the next path angle_tolerance = 4.2 distance_tolerance = 18.0 #cdef int cnt2 matching_angles, num_matched = search_matches.match_angles(path1_angles, path2_angles, angle_tolerance, distance_tolerance) match_comparison = matching_angles[0:num_matched,:] ## path1 is being compared against path 2 #for cnt in xrange (0, len(path1.angles)): # angle1 = path1.angles[cnt,0] # matches = np.where( (abs(path2_angles[:,0]-angle1) <= angle_tolerance) & ( abs(path2_angles[:,1]-path1_angles[cnt,1]) <= 16) & ( abs(path2_angles[:,2]-path1_angles[cnt,2]) <= 16) ) # if (len(matches[0]) > 0): # match_score = [1, cnt, matches[0][0], 1.0, angle1] # remember this angle # match_comparison.append(match_score) # # ##while( path1_angles_test and path2_angles_test ): # look for matches and pop from the list ## if ( path1_angles_test[-1][0] > path2_angles_test[-1][0] ): # pop the highest angle ## path1_angles_test.pop() ## else: ## path2_angles_test.pop() # #for cnt, match_check in enumerate(match_comparison): # if ( abs(match_check[0]-matching_angles[cnt,0]) > .01 ): # print("here 1",abs(match_check[0]-matching_angles[cnt,0]) ) # print(0,cnt, match_check[0], matching_angles[cnt,0]) # sys.exit(0) # if ( match_check[1] != matching_angles[cnt,1] ): # print(1,cnt, match_check[1], matching_angles[cnt,1]) # sys.exit(0) # if ( match_check[2] != matching_angles[cnt,2] ): # print(2, cnt, match_check[2], matching_angles[cnt,2]) # sys.exit(0) # if ( match_check[3] != matching_angles[cnt,3] ): # print(3, cnt, match_check[3], matching_angles[cnt,3]) # sys.exit(0) # if ( abs(match_check[4] - matching_angles[cnt,4]) > .01 ): # print(4, cnt, match_check[4], matching_angles[cnt,4]) # sys.exit(0) # # # exact_match_cnt = 0 matched_points1 = [] matched_points2 = [] for cnt, match_score in enumerate(match_comparison): if (match_score[0] ==1): exact_match_cnt += 1 loc1 = match_score[1] loc2 = match_score[2] # remember all of the matching points matched_points1.append( match_score[1]) matched_points2.append( match_score[2]) match_found =0 if ( exact_match_cnt >= 2 ): path1_matching = [path2.routeid, 1, loc1] for match_point in matched_points1: path1_matching.append(match_point) path2_matching = [path1.routeid, 1, loc2] for match_point in matched_points2: path2_matching.append(match_point) path1_matching_angle_list = path1_matching[3:] path2_matching_angle_list = path2_matching[3:] if ( exact_match_cnt >= 3 ): # we need at least 3 points to check for an exact match # loop through each of the angles that was a good match and see how many of the points line up match_found = 0 for cnt, angle1 in enumerate(path1_matching_angle_list): angle2 = path2_matching_angle_list[cnt] if (match_found ==0): #print #print #print match_found = align_and_score_two_paths(path1, path2, angle1, angle2, path1_matching_angle_list, path2_matching_angle_list ) #path1, path2, match_found = align_and_score_two_paths(path1, path2, angle1, angle2, path1_matching_angle_list, path2_matching_angle_list ) #print #print #print #if (match_found != match_found2): # print("***************** no match*******************",match_found,match_found2) if (match_found == 1): path1.comparison.append( path1_matching ) # remember that we matched and remember which RDP points had a good match path2.comparison.append( path2_matching ) if (path1.matched<0): path1.matched=0 if (path2.matched<0): path2.matched = 0 path1.matched += 1 path2.matched += 1 path1.print_flag = 1 # if we don't have a match, check 2 points to see if we have anything resembling a match if ( (path1.matched < 0 or path2.matched < 0) and exact_match_cnt >=2): #if (match_found ==1): if (len(path1_matching_angle_list) < 5): pass # find the distances between each of these angles and see if we can get any matching pairs for cnt1 in range(0,len(path1_matching_angle_list)-1): for cnt2 in range(cnt1+1,len(path1_matching_angle_list)): angle_id_1_1 = path1_matching_angle_list[cnt1] angle_id_1_2 = path1_matching_angle_list[cnt2] angle_id_2_1 = path2_matching_angle_list[cnt1] angle_id_2_2 = path2_matching_angle_list[cnt2] distance1 = path1.angle_distances[angle_id_1_1, angle_id_1_2] distance2 = path2.angle_distances[angle_id_2_1, angle_id_2_2] #if( abs(distance1-distance2) < 30): # if these angles are the same distance, count it # print ("here 1") if(distance1 != 0 and distance2 != 0 and abs(distance1-distance2) < 30): # if these angles are the same distance, count it if (path1.matched < 0): path1.matched = 0 # these could be a match, so move them off of the definitely not matched list if (path2.matched < 0): path2.matched = 0 # these could be match return #******************** #**** end this compares two sets of angles to see how close the two paths are #******************** #************************************************************************************** #***** this gets the x, y, location of an rdp point #************************************************************************************** def get_RDP_xy(path, RDP_point): #x = path.route[path.feature_loc[RDP_point,2], 0] #y = path.route[path.feature_loc[RDP_point,2], 1] # saves time to not assign them to another variable return path.route[path.feature_loc[RDP_point,2], 0], path.route[path.feature_loc[RDP_point,2], 1] # **************************************************************************** # This returns 3 RDP points for each angle # ******************************************************************** def get_RDP_point_from_angle(path, angle_num): #path_rdp1 = path.angles[angle_num, 3] # the is the before point #path_rdp2 = path.angles[angle_num, 4] # center point #path_rdp3 = path.angles[angle_num, 5] # after point #return path_rdp1, path_rdp2, path_rdp3 return path.angles[angle_num, 3], path.angles[angle_num, 4], path.angles[angle_num, 5] # **************************************************************************** # This returns 3 RDP points for each angle # ******************************************************************** def get_one_RDP_point_from_angle(path, angle_num): #path_rdp1 = path.angles[angle_num, 3] # the is the before point #path_rdp2 = path.angles[angle_num, 4] # center point #path_rdp3 = path.angles[angle_num, 5] # after point #return path_rdp1, path_rdp2, path_rdp3 return path.angles[angle_num, 4] #******************** #**** this aligns two paths and gives a score of that alignment #******************** #@profile def align_and_score_two_paths(path1, path2, angle1, angle2, path1_matching_angle_list, path2_matching_angle_list ): # assign criteria for how closely we have to match teh vector and distance depending on how close the angle is matching_criteria = [ [2.0, 4.5, 30.0], [3.0, 3.0, 20.0], [4.0, 2.5, 17.0], [15.0, 2.0, 15.0] ] # find out which feature to center on for point 1 path1_rdp2 = get_one_RDP_point_from_angle(path1, angle1) # find out which feature to center on for point 2 path2_rdp2 = get_one_RDP_point_from_angle(path2, angle2) path1_rdp2_x, path1_rdp2_y = get_RDP_xy(path1, path1_rdp2) path2_rdp2_x, path2_rdp2_y = get_RDP_xy(path2, path2_rdp2) # center the path1 index_array = np.array([path1_rdp2_x, path1_rdp2_y]) path1.route = np.subtract(path1.route, index_array) # center the path2 index_array = np.array([path2_rdp2_x, path2_rdp2_y]) path2.route = np.subtract(path2.route, index_array) path1_rdp2_x, path1_rdp2_y = get_RDP_xy(path1, path1_rdp2) path2_rdp2_x, path2_rdp2_y = get_RDP_xy(path2, path2_rdp2) match_found = 0 # try aligning with the other RDP points for cnt3, path1_aligning_angle in enumerate(path1_matching_angle_list): good_angle_found_2 = 0 good_distance = 1 if (match_found ==0): path2_aligning_angle = path2_matching_angle_list[cnt3] # find the MSE error between all of our points # find out which feature to center on for point 1 path1_aligning_rdp2 = get_one_RDP_point_from_angle(path1, path1_aligning_angle) # find out which feature to center on for point 2 path2_aligning_rdp2 = get_one_RDP_point_from_angle(path2, path2_aligning_angle) path1_aligning_rdp2_x, path1_aligning_rdp2_y = get_RDP_xy(path1, path1_aligning_rdp2) # path2_aligning_rdp2_x, path2_aligning_rdp2_y = get_RDP_xy(path2, path2_aligning_rdp2) # distance1 = get_distance(path1_rdp2_x, path1_rdp2_y, path1_aligning_rdp2_x, path1_aligning_rdp2_y) distance2 = get_distance(path2_rdp2_x, path2_rdp2_y, path2_aligning_rdp2_x, path2_aligning_rdp2_y) if (match_found == 0 and abs(distance1 - distance2) < matching_criteria[0][2]+5 and path1_rdp2 != path1_aligning_rdp2 and path2_rdp2 != path2_aligning_rdp2 and path1_rdp2_x != path1_aligning_rdp2_x and path2_rdp2_x != path2_aligning_rdp2_x ): path1_angle = np.arctan( (path1_rdp2_y-path1_aligning_rdp2_y) / (path1_rdp2_x-path1_aligning_rdp2_x) ) path2_angle = np.arctan( (path2_rdp2_y-path2_aligning_rdp2_y) / (path2_rdp2_x-path2_aligning_rdp2_x) ) path1.rotate_path(path1_angle) path2.rotate_path(path2_angle) # rotate the paths to the same angle path1_aligning_rdp2_x, path1_aligning_rdp2_y = get_RDP_xy(path1, path1_aligning_rdp2) # path2_aligning_rdp2_x, path2_aligning_rdp2_y = get_RDP_xy(path2, path2_aligning_rdp2) # # if the x signs values of our aligning points don't match, flip the x of number 2 if ( np.sign(path1_aligning_rdp2_x) != np.sign(path2_aligning_rdp2_x) ): path2.flip_x_coords() for rotation in range(0,2): if ( rotation== 1 or rotation== 3): # on the second loop, flip the y coordinates of the second path path2.flip_y_coords() close_count = 0 good_angle_found = 0 close_list = [] close_list2 = [] close_list3 = [] for cnt, path1_angle in enumerate(path1_matching_angle_list): path2_angle = path2_matching_angle_list[cnt] # find the MSE error between all of our points path1_angle_degrees = path1.angles[path1_angle][0] path2_angle_degrees = path2.angles[path2_angle][0] angle_diff = abs(path1_angle_degrees - path2_angle_degrees) distance_criteria = 30.0 # initially assume it needs to be within 10 meters vector_criteria = 6.0 # assume it needs to be within 1 degrees for criteria in matching_criteria: if (angle_diff <= criteria[0]): # if the angle is less than the criteria, assign the distance and vector criteria vector_criteria = criteria[1] distance_criteria = criteria[2] break path1_test_rdp1, path1_test_rdp2, path1_test_rdp3 = get_RDP_point_from_angle(path1, path1_angle) path2_test_rdp1, path2_test_rdp2, path2_test_rdp3 = get_RDP_point_from_angle(path2, path2_angle) # get the location of the center points of the angle path1_test_rdp2_x, path1_test_rdp2_y = get_RDP_xy(path1, path1_test_rdp2) path2_test_rdp2_x, path2_test_rdp2_y = get_RDP_xy(path2, path2_test_rdp2) # see how close the center points are distance_off = get_distance(path1_test_rdp2_x, path1_test_rdp2_y, path2_test_rdp2_x, path2_test_rdp2_y) # see how many points are close to matching, but make sure not to double count any if ( distance_off < distance_criteria and path1_test_rdp2 not in close_list and path2_test_rdp2 not in close_list2): if (path1_test_rdp1 < path1_test_rdp2): path1_test_rdp1 = path1_test_rdp2 - 1 path1_test_rdp3 = path1_test_rdp2 + 1 else: path1_test_rdp1 = path1_test_rdp2 + 1 path1_test_rdp3 = path1_test_rdp2 - 1 if (path2_test_rdp1 < path2_test_rdp2): path2_test_rdp1 = path2_test_rdp2 - 1 path2_test_rdp3 = path2_test_rdp2 + 1 else: path2_test_rdp1 = path2_test_rdp2 + 1 path2_test_rdp3 = path2_test_rdp2 - 1 # the the location of the rdp points adjacent to the center for each angle, to calculate vectors path1_test_rdp1_x, path1_test_rdp1_y = get_RDP_xy(path1, path1_test_rdp1) path1_test_rdp3_x, path1_test_rdp3_y = get_RDP_xy(path1, path1_test_rdp3) path2_test_rdp1_x, path2_test_rdp1_y = get_RDP_xy(path2, path2_test_rdp1) path2_test_rdp3_x, path2_test_rdp3_y = get_RDP_xy(path2, path2_test_rdp3) # get the unit vectors for the path path1_vector1 = [ path1_test_rdp2_x - path1_test_rdp1_x, path1_test_rdp2_y - path1_test_rdp1_y] path1_vector2 = [ path1_test_rdp2_x - path1_test_rdp3_x, path1_test_rdp2_y - path1_test_rdp3_y] path2_vector1 = [ path2_test_rdp2_x - path2_test_rdp1_x, path2_test_rdp2_y - path2_test_rdp1_y] path2_vector2 = [ path2_test_rdp2_x - path2_test_rdp3_x, path2_test_rdp2_y - path2_test_rdp3_y] # get the angle between path1 vector1 and path2 vector1 and 2 # and the angle between path2 vector2 and path2 vector1 and 2 angle1_1 = angle_between(path1_vector1, path2_vector1) * 57.2957795130823 # the angle of the angle in degrees angle2_1 = angle_between(path1_vector2, path2_vector1) * 57.2957795130823 # the angle of the angle in degrees angle1_2 = angle_between(path1_vector1, path2_vector2) * 57.2957795130823 # the angle of the angle in degrees angle2_2 = angle_between(path1_vector2, path2_vector2) * 57.2957795130823 # the angle of the angle in degrees not_a_match=1 # see if the first vector and the vector from path 2 are mostly aligned if ( angle1_1 < vector_criteria or angle1_1 > (180-vector_criteria) or angle1_2 < vector_criteria or angle1_2 > (180-vector_criteria)): # see if the second vector from path1 is mostly aligned with a vector from path 1 if ( angle2_1 < vector_criteria or angle2_1 > (180-vector_criteria) or angle2_2 < vector_criteria or angle2_2 > (180-vector_criteria)): not_a_match=0 # this is a good enough match to continue if (not_a_match ==0): # if the vectors are properly aligned close_count += 1 close_list.append( path1_test_rdp2) close_list2.append( path2_test_rdp2) close_list3.append( [path1_test_rdp2, path2_test_rdp2] ) if (path1_angle_degrees < 135): # look for angles that aren't completely flat good_angle_found =1 #if (path1_angle_degrees < 160): # look for angles that aren't completely flat # good_angle_found_2 = 1 #if ( angle1_1 > 6 and angle1_1 < (180-6) and angle1_2 > 6 and angle1_2 < (180-6)): # good_distance = 0 if ( close_count >= 3): # hold onto the lowest error case #close_list3.sort() #matching_distance_count = 0 #for rdp_cnt in range(0,len(close_list3)-1): # rdp1_1 = close_list3[rdp_cnt][0] # get the path distance betwee these points # rdp1_2 = close_list3[rdp_cnt+1][0] # # rdp2_1 = close_list3[rdp_cnt][1] # rdp2_2 = close_list3[rdp_cnt+1][1] # # route_distance1 = path1.get_route_distance(int(path1.feature_loc[rdp1_1,2]), int(path1.feature_loc[rdp1_2,2])) # route_distance2 = path2.get_route_distance(int(path2.feature_loc[rdp2_1,2]), int(path2.feature_loc[rdp2_2,2])) # # max_distance = max(route_distance1,route_distance2) # min_distance = min(route_distance1,route_distance2) # # if (max_distance/min_distance < 1.25 or max_distance-min_distance < 20): # matching_distance_count+=1 # #if (matching_distance_count < 2): # path1.print_flag = 1 matching_distance_count = 0 diff1 = max(close_list) - min(close_list) diff2 = max(close_list2) - min(close_list2) if (close_count >=5 or good_angle_found==1 or diff1 > 5 or diff2>5): close_list3.sort() matching_distance_count = 0 #print(path1.routeid, path2.routeid) for rdp_cnt in range(0,len(close_list3)-1): rdp1_1 = close_list3[rdp_cnt][0] # get the path distance betwee these points rdp1_2 = close_list3[rdp_cnt+1][0] rdp2_1 = close_list3[rdp_cnt][1] rdp2_2 = close_list3[rdp_cnt+1][1] #route_distance1 = path1.get_route_distance(int(path1.feature_loc[rdp1_1,2]), int(path1.feature_loc[rdp1_2,2])) #route_distance2 = path2.get_route_distance(int(path2.feature_loc[rdp2_1,2]), int(path2.feature_loc[rdp2_2,2])) path1_segment_start = int(path1.feature_loc[rdp1_1,2]) path1_segment_end = int(path1.feature_loc[rdp1_2,2]) path2_segment_start = int(path2.feature_loc[rdp2_1,2]) path2_segment_end = int(path2.feature_loc[rdp2_2,2]) max_distance = 0 max_distance = search_matches.max_distance_between_segments(path1.route, path2.route, path1_segment_start, path1_segment_end, \ path2_segment_start, path2_segment_end) #print("Max distance is ",max_distance) if ( max_distance < 18): matching_distance_count+=1 #if (matching_distance_count < 2): # path1.print_flag = 1 if (matching_distance_count >= 2): # the current RDP has a problem with matching up gentle curves # to combat this, we will look for either, 4 matching points, or 1 point with a sharp enough turn # which I am starting to SWAG at 145 degrees, or that the three matching RDP points aren't all in a row # for either path1 or path2 if (close_count >=5 or good_angle_found==1): # if we have at least 4 matches, or 1 of them was a good angle, count it match_found = 1 #if (good_distance ==0): # path1.print_flag = 1 # #print("here1") return match_found else: diff1 = max(close_list) - min(close_list) diff2 = max(close_list2) - min(close_list2) if (diff1 > 5 or diff2>5): # if all of the RDP points aren't sequential then count it match_found = 1 #if (good_distance ==0): # path1.print_flag = 1 # #print("here2") return match_found return match_found #******************** #**** this aligns and orients two matching paths the same before plotting and saving them two a file for viewing #******************** def align_two_paths(path1, path2,driver_id,rdp_tolerance): path1_matching_angle_list = path1.comparison[-1][3:] path2_matching_angle_list = path2.comparison[-1][3:] # loop through each of the angles that was a good match, and see which one makes the lowest error when they are aligned match_found = 0 for cnt, angle1 in enumerate(path1_matching_angle_list): angle2 = path2_matching_angle_list[cnt] if (match_found ==0): match_found = align_and_score_two_paths(path1, path2, angle1, angle2, path1_matching_angle_list, path2_matching_angle_list ) #print ("here2") #print("match_found is ",match_found) if (match_found == 1): # if one path is a lot longer than the other, zoom in on the shorter one #if (path1.distance < path2.distance / 5.0 or path2.distance < path1.distance / 5.0): x1_max = np.amax ( path1.route[:,0] ) x1_min = np.amin ( path1.route[:,0] ) x2_max = np.amax ( path2.route[:,0] ) x2_min = np.amin ( path2.route[:,0] ) y1_max = np.amax ( path1.route[:,1] ) y1_min = np.amin ( path1.route[:,1] ) y2_max = np.amax ( path2.route[:,1] ) y2_min = np.amin ( path2.route[:,1] ) x_upper_bound = min( x1_max, x2_max) + 500 x_lower_bound = max( x1_min, x2_min) - 500 y_upper_bound = min( y1_max, y2_max) + 500 y_lower_bound = max( y1_min, y2_min) - 500 x_upper_bound2 = min( x1_max + 250, x2_max + 250, 1000) x_lower_bound2 = max( x1_min - 250, x2_min - 250, -1000) y_upper_bound2 = min( y1_max + 250, y2_max + 250, 1000) y_lower_bound2 = max( y1_min - 250, y2_min - 250, -1000) plt.figure() plt.plot(path1.route[:,0],path1.route[:,1],markersize=2.0) plt.plot(path2.route[:,0],path2.route[:,1],markersize=2.0) feature_list1 = [] feature_list2 = [] for cnt, path1_angle in enumerate(path1_matching_angle_list): path2_angle = path2_matching_angle_list[cnt] # find the MSE error between all of our points path1_test_rdp1, path1_test_rdp2, path1_test_rdp3 = get_RDP_point_from_angle(path1, path1_angle) path2_test_rdp1, path2_test_rdp2, path2_test_rdp3 = get_RDP_point_from_angle(path2, path2_angle) path1_test_rdp2_x, path1_test_rdp2_y = get_RDP_xy(path1, path1_test_rdp2) path2_test_rdp2_x, path2_test_rdp2_y = get_RDP_xy(path2, path2_test_rdp2) feature_list1.append( [path1_test_rdp2_x, path1_test_rdp2_y] ) feature_list2.append( [path2_test_rdp2_x, path2_test_rdp2_y] ) # #* Temporary path1.update_feature_loc() path2.update_feature_loc() path1_features = path1.feature_loc[:,0:2] path2_features = path2.feature_loc[:,0:2] #plt.scatter(path1_features[:,0],path1_features[:,1]) #plt.scatter(path2_features[:,0],path2_features[:,1]) # #* Temporary #file1 = open("test1.csv",'wb') #file1_csv = csv.writer(file1) #for angle in path1.angles: # file1_csv.writerow(angle) #file1.close() #file2 = open("test2.csv",'wb') #file2_csv = csv.writer(file2) #for angle in path2.angles: # file2_csv.writerow(angle) #file2.close() feature_list1 = np.array(feature_list1) plt.scatter(feature_list1[:,0],feature_list1[:,1],c='red') feature_list2 = np.array(feature_list2) plt.scatter(feature_list2[:,0],feature_list2[:,1],c='red') plt.show() #print ("here 3") # if one path is a lot longer than the other, zoom in on the shorter one if (path1.distance < path2.distance / 5.0 or path2.distance < path1.distance / 5.0): plt.axis( (x_lower_bound, x_upper_bound, y_lower_bound, y_upper_bound) ) #else: # plt.axis( (x_lower_bound2, x_upper_bound2, y_lower_bound2, y_upper_bound2) ) #plt.show() plt.savefig("Test_Set\\Driver_" + str(driver_id)+"_" + str(path1.routeid) + "__" + str(path2.routeid) +"__"+ str(rdp_tolerance)+"m.png") #plt.savefig("Test_Set\\Driver_1_" + str(path2.routeid) + "__" + str(path1.routeid) +".png") plt.close() return #******************** #**** end aligns and orients two matching paths the same before plotting and saving them two a file for viewing #********************
[ "search_matches.match_angles", "matplotlib.pyplot.show", "numpy.amin", "numpy.subtract", "matplotlib.pyplot.plot", "matplotlib.pyplot.scatter", "matplotlib.pyplot.close", "matplotlib.pyplot.axis", "numpy.amax", "matplotlib.pyplot.figure", "search_matches.max_distance_between_segments", "numpy.array", "numpy.sign", "numpy.arctan" ]
[((1257, 1353), 'search_matches.match_angles', 'search_matches.match_angles', (['path1_angles', 'path2_angles', 'angle_tolerance', 'distance_tolerance'], {}), '(path1_angles, path2_angles, angle_tolerance,\n distance_tolerance)\n', (1284, 1353), False, 'import search_matches\n'), ((9746, 9784), 'numpy.array', 'np.array', (['[path1_rdp2_x, path1_rdp2_y]'], {}), '([path1_rdp2_x, path1_rdp2_y])\n', (9754, 9784), True, 'import numpy as np\n'), ((9803, 9840), 'numpy.subtract', 'np.subtract', (['path1.route', 'index_array'], {}), '(path1.route, index_array)\n', (9814, 9840), True, 'import numpy as np\n'), ((9884, 9922), 'numpy.array', 'np.array', (['[path2_rdp2_x, path2_rdp2_y]'], {}), '([path2_rdp2_x, path2_rdp2_y])\n', (9892, 9922), True, 'import numpy as np\n'), ((9941, 9978), 'numpy.subtract', 'np.subtract', (['path2.route', 'index_array'], {}), '(path2.route, index_array)\n', (9952, 9978), True, 'import numpy as np\n'), ((24342, 24368), 'numpy.amax', 'np.amax', (['path1.route[:, 0]'], {}), '(path1.route[:, 0])\n', (24349, 24368), True, 'import numpy as np\n'), ((24387, 24413), 'numpy.amin', 'np.amin', (['path1.route[:, 0]'], {}), '(path1.route[:, 0])\n', (24394, 24413), True, 'import numpy as np\n'), ((24432, 24458), 'numpy.amax', 'np.amax', (['path2.route[:, 0]'], {}), '(path2.route[:, 0])\n', (24439, 24458), True, 'import numpy as np\n'), ((24477, 24503), 'numpy.amin', 'np.amin', (['path2.route[:, 0]'], {}), '(path2.route[:, 0])\n', (24484, 24503), True, 'import numpy as np\n'), ((24531, 24557), 'numpy.amax', 'np.amax', (['path1.route[:, 1]'], {}), '(path1.route[:, 1])\n', (24538, 24557), True, 'import numpy as np\n'), ((24576, 24602), 'numpy.amin', 'np.amin', (['path1.route[:, 1]'], {}), '(path1.route[:, 1])\n', (24583, 24602), True, 'import numpy as np\n'), ((24621, 24647), 'numpy.amax', 'np.amax', (['path2.route[:, 1]'], {}), '(path2.route[:, 1])\n', (24628, 24647), True, 'import numpy as np\n'), ((24666, 24692), 'numpy.amin', 'np.amin', (['path2.route[:, 1]'], {}), '(path2.route[:, 1])\n', (24673, 24692), True, 'import numpy as np\n'), ((25220, 25232), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (25230, 25232), True, 'import matplotlib.pyplot as plt\n'), ((25240, 25302), 'matplotlib.pyplot.plot', 'plt.plot', (['path1.route[:, 0]', 'path1.route[:, 1]'], {'markersize': '(2.0)'}), '(path1.route[:, 0], path1.route[:, 1], markersize=2.0)\n', (25248, 25302), True, 'import matplotlib.pyplot as plt\n'), ((25306, 25368), 'matplotlib.pyplot.plot', 'plt.plot', (['path2.route[:, 0]', 'path2.route[:, 1]'], {'markersize': '(2.0)'}), '(path2.route[:, 0], path2.route[:, 1], markersize=2.0)\n', (25314, 25368), True, 'import matplotlib.pyplot as plt\n'), ((26892, 26915), 'numpy.array', 'np.array', (['feature_list1'], {}), '(feature_list1)\n', (26900, 26915), True, 'import numpy as np\n'), ((26923, 26985), 'matplotlib.pyplot.scatter', 'plt.scatter', (['feature_list1[:, 0]', 'feature_list1[:, 1]'], {'c': '"""red"""'}), "(feature_list1[:, 0], feature_list1[:, 1], c='red')\n", (26934, 26985), True, 'import matplotlib.pyplot as plt\n'), ((27013, 27036), 'numpy.array', 'np.array', (['feature_list2'], {}), '(feature_list2)\n', (27021, 27036), True, 'import numpy as np\n'), ((27044, 27106), 'matplotlib.pyplot.scatter', 'plt.scatter', (['feature_list2[:, 0]', 'feature_list2[:, 1]'], {'c': '"""red"""'}), "(feature_list2[:, 0], feature_list2[:, 1], c='red')\n", (27055, 27106), True, 'import matplotlib.pyplot as plt\n'), ((27115, 27125), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27123, 27125), True, 'import matplotlib.pyplot as plt\n'), ((27817, 27828), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (27826, 27828), True, 'import matplotlib.pyplot as plt\n'), ((11578, 11672), 'numpy.arctan', 'np.arctan', (['((path1_rdp2_y - path1_aligning_rdp2_y) / (path1_rdp2_x -\n path1_aligning_rdp2_x))'], {}), '((path1_rdp2_y - path1_aligning_rdp2_y) / (path1_rdp2_x -\n path1_aligning_rdp2_x))\n', (11587, 11672), True, 'import numpy as np\n'), ((11691, 11785), 'numpy.arctan', 'np.arctan', (['((path2_rdp2_y - path2_aligning_rdp2_y) / (path2_rdp2_x -\n path2_aligning_rdp2_x))'], {}), '((path2_rdp2_y - path2_aligning_rdp2_y) / (path2_rdp2_x -\n path2_aligning_rdp2_x))\n', (11700, 11785), True, 'import numpy as np\n'), ((27355, 27425), 'matplotlib.pyplot.axis', 'plt.axis', (['(x_lower_bound, x_upper_bound, y_lower_bound, y_upper_bound)'], {}), '((x_lower_bound, x_upper_bound, y_lower_bound, y_upper_bound))\n', (27363, 27425), True, 'import matplotlib.pyplot as plt\n'), ((12251, 12281), 'numpy.sign', 'np.sign', (['path1_aligning_rdp2_x'], {}), '(path1_aligning_rdp2_x)\n', (12258, 12281), True, 'import numpy as np\n'), ((12285, 12315), 'numpy.sign', 'np.sign', (['path2_aligning_rdp2_x'], {}), '(path2_aligning_rdp2_x)\n', (12292, 12315), True, 'import numpy as np\n'), ((21339, 21497), 'search_matches.max_distance_between_segments', 'search_matches.max_distance_between_segments', (['path1.route', 'path2.route', 'path1_segment_start', 'path1_segment_end', 'path2_segment_start', 'path2_segment_end'], {}), '(path1.route, path2.route,\n path1_segment_start, path1_segment_end, path2_segment_start,\n path2_segment_end)\n', (21383, 21497), False, 'import search_matches\n')]
import os import glob from shutil import copy2 from PIL import Image import json import numpy as np import argparse import shutil from skimage import io from tqdm import tqdm class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) def copy_file(src, dst): if os.path.exists(dst): os.rmdir(dst) shutil.copytree(src, dst) def construct_box(inst_root, label_root, dst): inst_list = os.listdir(inst_root) cls_list = os.listdir(label_root) for inst, cls in zip(*(inst_list, cls_list)): inst_map = Image.open(os.path.join(inst_root, inst)) # inst_map = Image.open(inst) inst_map = np.array(inst_map, dtype=np.int32) cls_map = Image.open(os.path.join(label_root, cls)) # cls_map = Image.open(cls) cls_map = np.array(cls_map, dtype=np.int32) H, W = inst_map.shape # get a list of unique instances inst_info = {'imgHeight':H, 'imgWidth':W, 'objects':{}} inst_ids = np.unique(inst_map) for iid in inst_ids: if int(iid) <=0: # filter out non-instance masks continue ys,xs = np.where(inst_map==iid) ymin, ymax, xmin, xmax = \ ys.min(), ys.max(), xs.min(), xs.max() cls_label = np.median(cls_map[inst_map==iid]) inst_info['objects'][str(iid)] = {'bbox': [xmin, ymin, xmax, ymax], 'cls':int(cls_label)} # write a file to path filename = os.path.splitext(os.path.basename(inst))[0] savename = os.path.join(dst, filename + '.json') with open(savename, 'w') as f: json.dump(inst_info, f, cls=NpEncoder) print('wrote a bbox summary of %s to %s' % (inst, savename)) def copy_label(src_path, dst_path1, dst_path2): for img_name in tqdm(os.listdir(src_path)): if '.png' in img_name: img = io.imread(os.path.join(src_path, img_name)) img[img == 255] = 30 io.imsave(os.path.join(dst_path1, img_name), img) img = img.astype('uint16') img[img == 30] = 30*1000 io.imsave(os.path.join(dst_path2, img_name), img) def process_files(source_base_path, target_base_pth, subset, COCO_path): dst_path = {} for name in ['img','label','inst','bbox']: cur_path = os.path.join(target_base_pth, subset + '_' + name) if not os.path.exists(cur_path): os.makedirs(cur_path) dst_path[name] = cur_path print('process label and inst copy') copy_label(source_base_path, dst_path['label'], dst_path['inst']) ### copy_file(dst_path['label'], dst_path['inst']) print('process img copy') if COCO_path: copy_img_file(source_base_path, dst_path['img'], COCO_path+'/'+subset+'2017') construct_box(dst_path['inst'], dst_path['label'], dst_path['bbox']) def copy_img_file(source_base_path, target_base_path, COCO_path): print({target_base_path}) for filepath in tqdm(os.listdir(source_base_path)): if ('.png' in filepath) or ('.jpg' in filepath): basename = os.path.basename(filepath).split('.')[0] filename = basename.split('_')[0] indexid = basename.split('_')[1] if os.path.isfile(COCO_path + '/' + filename + '.jpg'): os.symlink(COCO_path + '/' + filename + '.jpg', target_base_path + '/' + filename+'_'+indexid+'.jpg') else: print('File %s.jpg not Found. Please check mannually.' %filename) # organize image if __name__ == '__main__': parser = argparse.ArgumentParser(description='List the content of a folder') parser.add_argument('-s', '--subset', help='class for training the model', type=str) parser.add_argument('-d', '--datapath',default='/home/yam28/Documents/phdYoop/datasets/COCO', type=str) args = parser.parse_args() source_base_path_train = 'dataset/train/' + args.subset source_base_path_train_aug = 'dataset/train/' + args.subset+'_silvia' source_base_path_valid = 'dataset/val/' + args.subset target_base_pth = 'datasets/stamp_' + args.subset + '_aug' COCO_path = args.datapath process_files(source_base_path_train_aug, target_base_pth, 'train', None)
[ "json.dump", "shutil.copytree", "argparse.ArgumentParser", "os.makedirs", "numpy.median", "os.path.basename", "os.path.exists", "os.path.isfile", "numpy.where", "numpy.array", "os.rmdir", "os.symlink", "os.path.join", "os.listdir", "numpy.unique" ]
[((558, 577), 'os.path.exists', 'os.path.exists', (['dst'], {}), '(dst)\n', (572, 577), False, 'import os\n'), ((605, 630), 'shutil.copytree', 'shutil.copytree', (['src', 'dst'], {}), '(src, dst)\n', (620, 630), False, 'import shutil\n'), ((696, 717), 'os.listdir', 'os.listdir', (['inst_root'], {}), '(inst_root)\n', (706, 717), False, 'import os\n'), ((733, 755), 'os.listdir', 'os.listdir', (['label_root'], {}), '(label_root)\n', (743, 755), False, 'import os\n'), ((3839, 3906), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""List the content of a folder"""'}), "(description='List the content of a folder')\n", (3862, 3906), False, 'import argparse\n'), ((587, 600), 'os.rmdir', 'os.rmdir', (['dst'], {}), '(dst)\n', (595, 600), False, 'import os\n'), ((924, 958), 'numpy.array', 'np.array', (['inst_map'], {'dtype': 'np.int32'}), '(inst_map, dtype=np.int32)\n', (932, 958), True, 'import numpy as np\n'), ((1073, 1106), 'numpy.array', 'np.array', (['cls_map'], {'dtype': 'np.int32'}), '(cls_map, dtype=np.int32)\n', (1081, 1106), True, 'import numpy as np\n'), ((1261, 1280), 'numpy.unique', 'np.unique', (['inst_map'], {}), '(inst_map)\n', (1270, 1280), True, 'import numpy as np\n'), ((1812, 1849), 'os.path.join', 'os.path.join', (['dst', "(filename + '.json')"], {}), "(dst, filename + '.json')\n", (1824, 1849), False, 'import os\n'), ((2083, 2103), 'os.listdir', 'os.listdir', (['src_path'], {}), '(src_path)\n', (2093, 2103), False, 'import os\n'), ((2591, 2641), 'os.path.join', 'os.path.join', (['target_base_pth', "(subset + '_' + name)"], {}), "(target_base_pth, subset + '_' + name)\n", (2603, 2641), False, 'import os\n'), ((3247, 3275), 'os.listdir', 'os.listdir', (['source_base_path'], {}), '(source_base_path)\n', (3257, 3275), False, 'import os\n'), ((836, 865), 'os.path.join', 'os.path.join', (['inst_root', 'inst'], {}), '(inst_root, inst)\n', (848, 865), False, 'import os\n'), ((988, 1017), 'os.path.join', 'os.path.join', (['label_root', 'cls'], {}), '(label_root, cls)\n', (1000, 1017), False, 'import os\n'), ((1417, 1442), 'numpy.where', 'np.where', (['(inst_map == iid)'], {}), '(inst_map == iid)\n', (1425, 1442), True, 'import numpy as np\n'), ((1563, 1598), 'numpy.median', 'np.median', (['cls_map[inst_map == iid]'], {}), '(cls_map[inst_map == iid])\n', (1572, 1598), True, 'import numpy as np\n'), ((1901, 1939), 'json.dump', 'json.dump', (['inst_info', 'f'], {'cls': 'NpEncoder'}), '(inst_info, f, cls=NpEncoder)\n', (1910, 1939), False, 'import json\n'), ((2657, 2681), 'os.path.exists', 'os.path.exists', (['cur_path'], {}), '(cur_path)\n', (2671, 2681), False, 'import os\n'), ((2695, 2716), 'os.makedirs', 'os.makedirs', (['cur_path'], {}), '(cur_path)\n', (2706, 2716), False, 'import os\n'), ((3505, 3556), 'os.path.isfile', 'os.path.isfile', (["(COCO_path + '/' + filename + '.jpg')"], {}), "(COCO_path + '/' + filename + '.jpg')\n", (3519, 3556), False, 'import os\n'), ((1766, 1788), 'os.path.basename', 'os.path.basename', (['inst'], {}), '(inst)\n', (1782, 1788), False, 'import os\n'), ((2165, 2197), 'os.path.join', 'os.path.join', (['src_path', 'img_name'], {}), '(src_path, img_name)\n', (2177, 2197), False, 'import os\n'), ((2254, 2287), 'os.path.join', 'os.path.join', (['dst_path1', 'img_name'], {}), '(dst_path1, img_name)\n', (2266, 2287), False, 'import os\n'), ((2392, 2425), 'os.path.join', 'os.path.join', (['dst_path2', 'img_name'], {}), '(dst_path2, img_name)\n', (2404, 2425), False, 'import os\n'), ((3574, 3685), 'os.symlink', 'os.symlink', (["(COCO_path + '/' + filename + '.jpg')", "(target_base_path + '/' + filename + '_' + indexid + '.jpg')"], {}), "(COCO_path + '/' + filename + '.jpg', target_base_path + '/' +\n filename + '_' + indexid + '.jpg')\n", (3584, 3685), False, 'import os\n'), ((3358, 3384), 'os.path.basename', 'os.path.basename', (['filepath'], {}), '(filepath)\n', (3374, 3384), False, 'import os\n')]
import torch import scipy.fft import numpy as np from functools import lru_cache @lru_cache() def compute_dct_mat(n: int, device: str, dtype: torch.dtype) -> torch.Tensor: m = scipy.fft.dct(np.eye(n), norm="ortho") return torch.tensor(m, device=device, dtype=dtype) @lru_cache() def compute_idct_mat(n: int, device: str, dtype: torch.dtype) -> torch.Tensor: m = scipy.fft.idct(np.eye(n), norm="ortho") return torch.tensor(m, device=device, dtype=dtype) def dct(t: torch.Tensor) -> torch.Tensor: m = compute_dct_mat(t.shape[-2], device=t.device, dtype=t.dtype) return torch.einsum("...id,ij->jd", t, m) def idct(t: torch.Tensor) -> torch.Tensor: m = compute_idct_mat(t.shape[-2], device=t.device, dtype=t.dtype) return torch.einsum("...id,ij->jd", t, m) def dct2(t: torch.Tensor) -> torch.Tensor: h, w = t.shape[-2:] mh = compute_dct_mat(h, device=t.device, dtype=t.dtype) mw = compute_dct_mat(w, device=t.device, dtype=t.dtype) return torch.einsum("...hw,hi,wj->...ij", t, mh, mw) def idct2(t: torch.Tensor) -> torch.Tensor: h, w = t.shape[-2:] mh = compute_idct_mat(h, device=t.device, dtype=t.dtype) mw = compute_idct_mat(w, device=t.device, dtype=t.dtype) return torch.einsum("...hw,hi,wj->...ij", t, mh, mw) def dct3(t: torch.Tensor) -> torch.Tensor: l, h, w = t.shape[-3:] ml = compute_dct_mat(l, device=t.device, dtype=t.dtype) mh = compute_dct_mat(h, device=t.device, dtype=t.dtype) mw = compute_dct_mat(w, device=t.device, dtype=t.dtype) return torch.einsum("...lhw,li,hj,wk->...ijk", t, ml, mh, mw) def idct3(t: torch.Tensor) -> torch.Tensor: l, h, w = t.shape[-3:] ml = compute_idct_mat(l, device=t.device, dtype=t.dtype) mh = compute_idct_mat(h, device=t.device, dtype=t.dtype) mw = compute_idct_mat(w, device=t.device, dtype=t.dtype) return torch.einsum("...lhw,li,hj,wk->...ijk", t, ml, mh, mw)
[ "torch.einsum", "functools.lru_cache", "numpy.eye", "torch.tensor" ]
[((84, 95), 'functools.lru_cache', 'lru_cache', ([], {}), '()\n', (93, 95), False, 'from functools import lru_cache\n'), ((279, 290), 'functools.lru_cache', 'lru_cache', ([], {}), '()\n', (288, 290), False, 'from functools import lru_cache\n'), ((232, 275), 'torch.tensor', 'torch.tensor', (['m'], {'device': 'device', 'dtype': 'dtype'}), '(m, device=device, dtype=dtype)\n', (244, 275), False, 'import torch\n'), ((429, 472), 'torch.tensor', 'torch.tensor', (['m'], {'device': 'device', 'dtype': 'dtype'}), '(m, device=device, dtype=dtype)\n', (441, 472), False, 'import torch\n'), ((597, 631), 'torch.einsum', 'torch.einsum', (['"""...id,ij->jd"""', 't', 'm'], {}), "('...id,ij->jd', t, m)\n", (609, 631), False, 'import torch\n'), ((758, 792), 'torch.einsum', 'torch.einsum', (['"""...id,ij->jd"""', 't', 'm'], {}), "('...id,ij->jd', t, m)\n", (770, 792), False, 'import torch\n'), ((993, 1038), 'torch.einsum', 'torch.einsum', (['"""...hw,hi,wj->...ij"""', 't', 'mh', 'mw'], {}), "('...hw,hi,wj->...ij', t, mh, mw)\n", (1005, 1038), False, 'import torch\n'), ((1242, 1287), 'torch.einsum', 'torch.einsum', (['"""...hw,hi,wj->...ij"""', 't', 'mh', 'mw'], {}), "('...hw,hi,wj->...ij', t, mh, mw)\n", (1254, 1287), False, 'import torch\n'), ((1551, 1605), 'torch.einsum', 'torch.einsum', (['"""...lhw,li,hj,wk->...ijk"""', 't', 'ml', 'mh', 'mw'], {}), "('...lhw,li,hj,wk->...ijk', t, ml, mh, mw)\n", (1563, 1605), False, 'import torch\n'), ((1873, 1927), 'torch.einsum', 'torch.einsum', (['"""...lhw,li,hj,wk->...ijk"""', 't', 'ml', 'mh', 'mw'], {}), "('...lhw,li,hj,wk->...ijk', t, ml, mh, mw)\n", (1885, 1927), False, 'import torch\n'), ((196, 205), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (202, 205), True, 'import numpy as np\n'), ((393, 402), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (399, 402), True, 'import numpy as np\n')]
import numpy as np def day_1(file: str): """Read in day 1 part 1 input and count increasing values""" with open(file) as f: data_in = f.read() # convert data to float data = [float(i) for i in data_in.split()] # Part 1 print(sum(np.diff(np.array(data)) > 0)) # Part 2 convolution = [] for i in range(len(data) - 2): convolution.append(data[i] + data[i + 1] + data[i + 2]) print(sum(np.diff(convolution) > 0)) pass def main(): day_1("inputs/day_1_1.txt") if __name__ == "__main__": main()
[ "numpy.diff", "numpy.array" ]
[((443, 463), 'numpy.diff', 'np.diff', (['convolution'], {}), '(convolution)\n', (450, 463), True, 'import numpy as np\n'), ((272, 286), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (280, 286), True, 'import numpy as np\n')]
from util import get_dataset from sklearn.metrics import classification_report import numpy as np from keras.layers import Dense, Input, concatenate from keras.models import Model from keras import backend as K def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def build_model(bert_dim=768, profile_dim=32): ''' bert network ''' bert_input = Input(shape=(bert_dim,)) bert_output = Dense(256, activation='relu')(bert_input) bert_output = Dense(256, activation='relu')(bert_output) bert_output = Dense(256, activation='relu')(bert_output) bert_output = Dense(32, activation='relu')(bert_output) ''' input for profile network ''' profile_input = Input(shape=(profile_dim,)) ''' model for combined features ''' x = concatenate([profile_input, bert_output]) output = Dense(32, activation='relu')(x) output = Dense(16, activation='relu')(output) output = Dense(1, activation='sigmoid')(output) model = Model(inputs=[profile_input, bert_input], outputs=[output]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc', f1_m]) return model if __name__ == "__main__": cross_val = None for i in range(5): ''' get data with bert embeddings ''' train_x, train_y, test_x, test_y = get_dataset('bert') ''' build neural network model ''' model = build_model() model.summary() train_split = np.hsplit(train_x, np.array([32, 800]))[:2] test_split = np.hsplit(test_x, np.array([32, 800]))[:2] model.fit(x=train_split, y=train_y, batch_size=32, shuffle=True, epochs=100) if cross_val == None: cross_val = model.evaluate(test_split, test_y) else: cross_val += model.evaluate(test_split, test_y) print([metric/5 for metric in cross_val]) model.save('bert_sent_parallel_cross_val.h5')
[ "keras.backend.epsilon", "util.get_dataset", "keras.models.Model", "keras.layers.Dense", "numpy.array", "keras.layers.Input", "keras.layers.concatenate", "keras.backend.clip" ]
[((988, 1012), 'keras.layers.Input', 'Input', ([], {'shape': '(bert_dim,)'}), '(shape=(bert_dim,))\n', (993, 1012), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1326, 1353), 'keras.layers.Input', 'Input', ([], {'shape': '(profile_dim,)'}), '(shape=(profile_dim,))\n', (1331, 1353), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1415, 1456), 'keras.layers.concatenate', 'concatenate', (['[profile_input, bert_output]'], {}), '([profile_input, bert_output])\n', (1426, 1456), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1617, 1676), 'keras.models.Model', 'Model', ([], {'inputs': '[profile_input, bert_input]', 'outputs': '[output]'}), '(inputs=[profile_input, bert_input], outputs=[output])\n', (1622, 1676), False, 'from keras.models import Model\n'), ((1031, 1060), 'keras.layers.Dense', 'Dense', (['(256)'], {'activation': '"""relu"""'}), "(256, activation='relu')\n", (1036, 1060), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1091, 1120), 'keras.layers.Dense', 'Dense', (['(256)'], {'activation': '"""relu"""'}), "(256, activation='relu')\n", (1096, 1120), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1152, 1181), 'keras.layers.Dense', 'Dense', (['(256)'], {'activation': '"""relu"""'}), "(256, activation='relu')\n", (1157, 1181), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1213, 1241), 'keras.layers.Dense', 'Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (1218, 1241), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1470, 1498), 'keras.layers.Dense', 'Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (1475, 1498), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1515, 1543), 'keras.layers.Dense', 'Dense', (['(16)'], {'activation': '"""relu"""'}), "(16, activation='relu')\n", (1520, 1543), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1565, 1595), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (1570, 1595), False, 'from keras.layers import Dense, Input, concatenate\n'), ((1968, 1987), 'util.get_dataset', 'get_dataset', (['"""bert"""'], {}), "('bert')\n", (1979, 1987), False, 'from util import get_dataset\n'), ((282, 311), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (288, 311), True, 'from keras import backend as K\n'), ((353, 373), 'keras.backend.clip', 'K.clip', (['y_true', '(0)', '(1)'], {}), '(y_true, 0, 1)\n', (359, 373), True, 'from keras import backend as K\n'), ((428, 439), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (437, 439), True, 'from keras import backend as K\n'), ((527, 556), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (533, 556), True, 'from keras import backend as K\n'), ((599, 619), 'keras.backend.clip', 'K.clip', (['y_pred', '(0)', '(1)'], {}), '(y_pred, 0, 1)\n', (605, 619), True, 'from keras import backend as K\n'), ((678, 689), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (687, 689), True, 'from keras import backend as K\n'), ((872, 883), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (881, 883), True, 'from keras import backend as K\n'), ((2148, 2167), 'numpy.array', 'np.array', (['[32, 800]'], {}), '([32, 800])\n', (2156, 2167), True, 'import numpy as np\n'), ((2212, 2231), 'numpy.array', 'np.array', (['[32, 800]'], {}), '([32, 800])\n', (2220, 2231), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created in September 2017 @author: mmalekzadeh """ import numpy as np from keras.models import model_from_json from keras import backend as K def mcor(y_true, y_pred): #matthews_correlation y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pred_neg = 1 - y_pred_pos y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos tp = K.sum(y_pos * y_pred_pos) tn = K.sum(y_neg * y_pred_neg) fp = K.sum(y_neg * y_pred_pos) fn = K.sum(y_pos * y_pred_neg) numerator = (tp * tn - fp * fn) denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) return numerator / (denominator + K.epsilon()) def precision(y_true, y_pred): """Precision metric. Only computes a batch-wise average of precision. Computes the precision, a metric for multi-label classification of how many selected items are relevant. """ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def recall(y_true, y_pred): """Recall metric. Only computes a batch-wise average of recall. Computes the recall, a metric for multi-label classification of how many relevant items are selected. """ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall ### Global Variables ### ## Load Lists of Inferences all_inferences = np.load("all_inferences.npy") white_list = np.asarray(all_inferences[0].tolist()[0]) black_list = np.asarray(all_inferences[1].tolist()[0]) gray_list = np.asarray(all_inferences[2].tolist()[0]) num_classes = len(white_list)+len(black_list)+len(gray_list) ## Load Original Test Data of each list ## w -> white, b -> black, g -> gray o_w_test_data = np.load("data_test_white.npy") o_b_test_data = np.load("data_test_black.npy") o_g_test_data = np.load("data_test_gray.npy") o_w_test_data = np.reshape(o_w_test_data, (len(o_w_test_data), o_w_test_data.shape[1], o_w_test_data.shape[2], 1)) o_b_test_data = np.reshape(o_b_test_data, (len(o_b_test_data), o_b_test_data.shape[1], o_b_test_data.shape[2], 1)) o_g_test_data = np.reshape(o_g_test_data, (len(o_g_test_data), o_g_test_data.shape[1], o_g_test_data.shape[2], 1)) ## Load Transformed Test Data of each list tr_w_test_data = np.load("transformed_w_test_data.npy") tr_b_test_data = np.load("transformed_b_test_data.npy") tr_g_test_data = np.load("transformed_g_test_data.npy") ## Load Labels of each list w_test_label = np.load("label_test_white.npy") b_test_label = np.load("label_test_black.npy") g_test_label = np.load("label_test_gray.npy") ## Build one-hot codes for each list y_white = np.zeros((w_test_label.shape[0], num_classes)) for i in range(w_test_label.shape[0]): y_white[i, int(w_test_label[i])] = 1 y_black = np.zeros((b_test_label.shape[0], num_classes)) for i in range(b_test_label.shape[0]): y_black[i, int(b_test_label[i])] = 1 y_gray = np.zeros((g_test_label.shape[0], num_classes)) for i in range(g_test_label.shape[0]): y_gray[i, int(g_test_label[i])] = 1 # load json and create model json_file = open('server_cnn_model.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("server_cnn_model_weights.h5") print("Loaded model from disk") # evaluate loaded model on test data loaded_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy',precision ,recall]) ## Evaluate Original Data o_w_scores = loaded_model.evaluate(o_w_test_data, y_white, verbose=1) o_b_scores = loaded_model.evaluate(o_b_test_data, y_black, verbose=1) o_g_scores = loaded_model.evaluate(o_g_test_data, y_gray, verbose=1) ## Predict Original Data o_w_predict = loaded_model.predict(o_w_test_data, verbose=1) o_b_predict = loaded_model.predict(o_b_test_data, verbose=1) o_g_predict = loaded_model.predict(o_g_test_data, verbose=1) ## Evaluate Transformed Data tr_w_scores = loaded_model.evaluate(tr_w_test_data, y_white, verbose=1) tr_b_scores = loaded_model.evaluate(tr_b_test_data, y_black, verbose=1) tr_g_scores = loaded_model.evaluate(tr_g_test_data, y_gray, verbose=1) ## Predict Transformed Data tr_w_predict = loaded_model.predict(tr_w_test_data, verbose=1) tr_b_predict = loaded_model.predict(tr_b_test_data, verbose=1) tr_g_predict = loaded_model.predict(tr_g_test_data, verbose=1) print("\n ~~~ Result: F1-Socre on Original Data:") print("\n on white-listed: %.2f%%"% ((2*((o_w_scores[2]*o_w_scores[3])/(o_w_scores[2]+o_w_scores[3])))*100)) print("\n on black-listed %.2f%%"% ((2*((o_b_scores[2]*o_b_scores[3])/(o_b_scores[2]+o_b_scores[3])))*100)) print("\n on gray-listed %.2f%%"% ((2*((o_g_scores[2]*o_g_scores[3])/(o_g_scores[2]+o_g_scores[3])))*100)) print("\n ~~~ Result: F1-Socre on Transformed Data:") print("\n on white-listed: %.2f%%"% ((2*((tr_w_scores[2]*tr_w_scores[3])/(tr_w_scores[2]+tr_w_scores[3])))*100)) print("\n on black-listed %.2f%%"% ((2*((tr_b_scores[2]*tr_b_scores[3])/(tr_b_scores[2]+tr_b_scores[3])))*100)) print("\n on gray-listed %.2f%%"% ((2*((tr_g_scores[2]*tr_g_scores[3])/(tr_g_scores[2]+tr_g_scores[3])))*100)) # ########### Calculating Confusion Matrix ########### import itertools import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.GnBu): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", fontsize=18, color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') o_w_pred = np.argmax(o_w_predict,axis=1) o_b_pred = np.argmax(o_b_predict,axis=1) o_g_pred = np.argmax(o_g_predict,axis=1) tr_w_pred = np.argmax(tr_w_predict,axis=1) tr_b_pred = np.argmax(tr_b_predict,axis=1) tr_g_pred = np.argmax(tr_g_predict,axis=1) w_true = np.zeros(o_w_pred.shape[0]) b_true = np.zeros(o_b_pred.shape[0]) g_true = np.zeros(o_g_pred.shape[0]) for i in range(o_w_pred.shape[0]): w_true[i]= 1 if o_w_pred[i] in gray_list: o_w_pred[i]= 2 elif o_w_pred[i] in white_list: o_w_pred[i]= 1 else: o_w_pred[i]= 0 for i in range(o_b_pred.shape[0]): b_true[i]= 0 if o_b_pred[i] in gray_list: o_b_pred[i]= 2 elif o_b_pred[i] in white_list: o_b_pred[i]= 1 else: o_b_pred[i]= 0 for i in range(o_g_pred.shape[0]): g_true[i]= 2 if o_g_pred[i] in gray_list: o_g_pred[i]= 2 elif o_g_pred[i] in white_list: o_g_pred[i]= 1 else: o_g_pred[i]= 0 for i in range(tr_w_pred.shape[0]): if tr_w_pred[i] in gray_list: tr_w_pred[i]= 2 elif tr_w_pred[i] in white_list: tr_w_pred[i]= 1 else: tr_w_pred[i]= 0 for i in range(tr_b_pred.shape[0]): if tr_b_pred[i] in gray_list: tr_b_pred[i]= 2 elif tr_b_pred[i] in white_list: tr_b_pred[i]= 1 else: tr_b_pred[i]= 0 for i in range(tr_g_pred.shape[0]): if tr_g_pred[i] in gray_list: tr_g_pred[i]= 2 elif tr_g_pred[i] in white_list: tr_g_pred[i]= 1 else: tr_g_pred[i]= 0 class_names =["B", "W", "G"] ycf_test = np.append(w_true, g_true, axis=0) ycf_test = np.append(ycf_test, b_true, axis=0) ycf_o_pred = np.append(o_w_pred, o_g_pred, axis=0) ycf_o_pred = np.append(ycf_o_pred, o_b_pred, axis=0) ycf_tr_pred = np.append(tr_w_pred, tr_g_pred, axis=0) ycf_tr_pred = np.append(ycf_tr_pred, tr_b_pred, axis=0) ## Compute confusion matrix for Original Data o_cnf_matrix = confusion_matrix(ycf_test, ycf_o_pred) np.set_printoptions(precision=3) ## Plot non-normalized confusion matrix plot_confusion_matrix(o_cnf_matrix, classes=class_names, normalize=True, title='Confusion Matrix of Original Data') plt.savefig('OCF.pdf',bbox_inches='tight') plt.gcf().clear() ## Compute confusion matrix for Transformed Data tr_cnf_matrix = confusion_matrix(ycf_test, ycf_tr_pred) np.set_printoptions(precision=3) ## Plot non-normalized confusion matrix plot_confusion_matrix(tr_cnf_matrix, classes=class_names, normalize=True, title='Confusion Matrix of Transformed Data') plt.savefig('TrCF.pdf',bbox_inches='tight')
[ "matplotlib.pyplot.title", "numpy.load", "numpy.argmax", "keras.backend.epsilon", "matplotlib.pyplot.tight_layout", "keras.backend.sqrt", "numpy.set_printoptions", "matplotlib.pyplot.imshow", "matplotlib.pyplot.yticks", "matplotlib.pyplot.colorbar", "numpy.append", "matplotlib.pyplot.xticks", "keras.backend.clip", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gcf", "numpy.zeros", "keras.backend.sum", "keras.models.model_from_json", "sklearn.metrics.confusion_matrix", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((1666, 1695), 'numpy.load', 'np.load', (['"""all_inferences.npy"""'], {}), "('all_inferences.npy')\n", (1673, 1695), True, 'import numpy as np\n'), ((2014, 2044), 'numpy.load', 'np.load', (['"""data_test_white.npy"""'], {}), "('data_test_white.npy')\n", (2021, 2044), True, 'import numpy as np\n'), ((2061, 2091), 'numpy.load', 'np.load', (['"""data_test_black.npy"""'], {}), "('data_test_black.npy')\n", (2068, 2091), True, 'import numpy as np\n'), ((2108, 2137), 'numpy.load', 'np.load', (['"""data_test_gray.npy"""'], {}), "('data_test_gray.npy')\n", (2115, 2137), True, 'import numpy as np\n'), ((2792, 2830), 'numpy.load', 'np.load', (['"""transformed_w_test_data.npy"""'], {}), "('transformed_w_test_data.npy')\n", (2799, 2830), True, 'import numpy as np\n'), ((2848, 2886), 'numpy.load', 'np.load', (['"""transformed_b_test_data.npy"""'], {}), "('transformed_b_test_data.npy')\n", (2855, 2886), True, 'import numpy as np\n'), ((2904, 2942), 'numpy.load', 'np.load', (['"""transformed_g_test_data.npy"""'], {}), "('transformed_g_test_data.npy')\n", (2911, 2942), True, 'import numpy as np\n'), ((2987, 3018), 'numpy.load', 'np.load', (['"""label_test_white.npy"""'], {}), "('label_test_white.npy')\n", (2994, 3018), True, 'import numpy as np\n'), ((3034, 3065), 'numpy.load', 'np.load', (['"""label_test_black.npy"""'], {}), "('label_test_black.npy')\n", (3041, 3065), True, 'import numpy as np\n'), ((3081, 3111), 'numpy.load', 'np.load', (['"""label_test_gray.npy"""'], {}), "('label_test_gray.npy')\n", (3088, 3111), True, 'import numpy as np\n'), ((3161, 3207), 'numpy.zeros', 'np.zeros', (['(w_test_label.shape[0], num_classes)'], {}), '((w_test_label.shape[0], num_classes))\n', (3169, 3207), True, 'import numpy as np\n'), ((3299, 3345), 'numpy.zeros', 'np.zeros', (['(b_test_label.shape[0], num_classes)'], {}), '((b_test_label.shape[0], num_classes))\n', (3307, 3345), True, 'import numpy as np\n'), ((3436, 3482), 'numpy.zeros', 'np.zeros', (['(g_test_label.shape[0], num_classes)'], {}), '((g_test_label.shape[0], num_classes))\n', (3444, 3482), True, 'import numpy as np\n'), ((3709, 3743), 'keras.models.model_from_json', 'model_from_json', (['loaded_model_json'], {}), '(loaded_model_json)\n', (3724, 3743), False, 'from keras.models import model_from_json\n'), ((7110, 7140), 'numpy.argmax', 'np.argmax', (['o_w_predict'], {'axis': '(1)'}), '(o_w_predict, axis=1)\n', (7119, 7140), True, 'import numpy as np\n'), ((7151, 7181), 'numpy.argmax', 'np.argmax', (['o_b_predict'], {'axis': '(1)'}), '(o_b_predict, axis=1)\n', (7160, 7181), True, 'import numpy as np\n'), ((7192, 7222), 'numpy.argmax', 'np.argmax', (['o_g_predict'], {'axis': '(1)'}), '(o_g_predict, axis=1)\n', (7201, 7222), True, 'import numpy as np\n'), ((7234, 7265), 'numpy.argmax', 'np.argmax', (['tr_w_predict'], {'axis': '(1)'}), '(tr_w_predict, axis=1)\n', (7243, 7265), True, 'import numpy as np\n'), ((7277, 7308), 'numpy.argmax', 'np.argmax', (['tr_b_predict'], {'axis': '(1)'}), '(tr_b_predict, axis=1)\n', (7286, 7308), True, 'import numpy as np\n'), ((7320, 7351), 'numpy.argmax', 'np.argmax', (['tr_g_predict'], {'axis': '(1)'}), '(tr_g_predict, axis=1)\n', (7329, 7351), True, 'import numpy as np\n'), ((7361, 7388), 'numpy.zeros', 'np.zeros', (['o_w_pred.shape[0]'], {}), '(o_w_pred.shape[0])\n', (7369, 7388), True, 'import numpy as np\n'), ((7398, 7425), 'numpy.zeros', 'np.zeros', (['o_b_pred.shape[0]'], {}), '(o_b_pred.shape[0])\n', (7406, 7425), True, 'import numpy as np\n'), ((7435, 7462), 'numpy.zeros', 'np.zeros', (['o_g_pred.shape[0]'], {}), '(o_g_pred.shape[0])\n', (7443, 7462), True, 'import numpy as np\n'), ((8679, 8712), 'numpy.append', 'np.append', (['w_true', 'g_true'], {'axis': '(0)'}), '(w_true, g_true, axis=0)\n', (8688, 8712), True, 'import numpy as np\n'), ((8724, 8759), 'numpy.append', 'np.append', (['ycf_test', 'b_true'], {'axis': '(0)'}), '(ycf_test, b_true, axis=0)\n', (8733, 8759), True, 'import numpy as np\n'), ((8773, 8810), 'numpy.append', 'np.append', (['o_w_pred', 'o_g_pred'], {'axis': '(0)'}), '(o_w_pred, o_g_pred, axis=0)\n', (8782, 8810), True, 'import numpy as np\n'), ((8824, 8863), 'numpy.append', 'np.append', (['ycf_o_pred', 'o_b_pred'], {'axis': '(0)'}), '(ycf_o_pred, o_b_pred, axis=0)\n', (8833, 8863), True, 'import numpy as np\n'), ((8878, 8917), 'numpy.append', 'np.append', (['tr_w_pred', 'tr_g_pred'], {'axis': '(0)'}), '(tr_w_pred, tr_g_pred, axis=0)\n', (8887, 8917), True, 'import numpy as np\n'), ((8932, 8973), 'numpy.append', 'np.append', (['ycf_tr_pred', 'tr_b_pred'], {'axis': '(0)'}), '(ycf_tr_pred, tr_b_pred, axis=0)\n', (8941, 8973), True, 'import numpy as np\n'), ((9036, 9074), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['ycf_test', 'ycf_o_pred'], {}), '(ycf_test, ycf_o_pred)\n', (9052, 9074), False, 'from sklearn.metrics import confusion_matrix\n'), ((9075, 9107), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(3)'}), '(precision=3)\n', (9094, 9107), True, 'import numpy as np\n'), ((9286, 9329), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""OCF.pdf"""'], {'bbox_inches': '"""tight"""'}), "('OCF.pdf', bbox_inches='tight')\n", (9297, 9329), True, 'import matplotlib.pyplot as plt\n'), ((9414, 9453), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['ycf_test', 'ycf_tr_pred'], {}), '(ycf_test, ycf_tr_pred)\n', (9430, 9453), False, 'from sklearn.metrics import confusion_matrix\n'), ((9454, 9486), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(3)'}), '(precision=3)\n', (9473, 9486), True, 'import numpy as np\n'), ((9669, 9713), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""TrCF.pdf"""'], {'bbox_inches': '"""tight"""'}), "('TrCF.pdf', bbox_inches='tight')\n", (9680, 9713), True, 'import matplotlib.pyplot as plt\n'), ((407, 432), 'keras.backend.sum', 'K.sum', (['(y_pos * y_pred_pos)'], {}), '(y_pos * y_pred_pos)\n', (412, 432), True, 'from keras import backend as K\n'), ((443, 468), 'keras.backend.sum', 'K.sum', (['(y_neg * y_pred_neg)'], {}), '(y_neg * y_pred_neg)\n', (448, 468), True, 'from keras import backend as K\n'), ((481, 506), 'keras.backend.sum', 'K.sum', (['(y_neg * y_pred_pos)'], {}), '(y_neg * y_pred_pos)\n', (486, 506), True, 'from keras import backend as K\n'), ((517, 542), 'keras.backend.sum', 'K.sum', (['(y_pos * y_pred_neg)'], {}), '(y_pos * y_pred_neg)\n', (522, 542), True, 'from keras import backend as K\n'), ((601, 654), 'keras.backend.sqrt', 'K.sqrt', (['((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))'], {}), '((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))\n', (607, 654), True, 'from keras import backend as K\n'), ((6464, 6514), 'matplotlib.pyplot.imshow', 'plt.imshow', (['cm'], {'interpolation': '"""nearest"""', 'cmap': 'cmap'}), "(cm, interpolation='nearest', cmap=cmap)\n", (6474, 6514), True, 'import matplotlib.pyplot as plt\n'), ((6519, 6535), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (6528, 6535), True, 'import matplotlib.pyplot as plt\n'), ((6540, 6554), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (6552, 6554), True, 'import matplotlib.pyplot as plt\n'), ((6600, 6644), 'matplotlib.pyplot.xticks', 'plt.xticks', (['tick_marks', 'classes'], {'rotation': '(45)'}), '(tick_marks, classes, rotation=45)\n', (6610, 6644), True, 'import matplotlib.pyplot as plt\n'), ((6649, 6680), 'matplotlib.pyplot.yticks', 'plt.yticks', (['tick_marks', 'classes'], {}), '(tick_marks, classes)\n', (6659, 6680), True, 'import matplotlib.pyplot as plt\n'), ((7016, 7034), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7032, 7034), True, 'import matplotlib.pyplot as plt\n'), ((7039, 7063), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True label"""'], {}), "('True label')\n", (7049, 7063), True, 'import matplotlib.pyplot as plt\n'), ((7068, 7097), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted label"""'], {}), "('Predicted label')\n", (7078, 7097), True, 'import matplotlib.pyplot as plt\n'), ((274, 294), 'keras.backend.clip', 'K.clip', (['y_pred', '(0)', '(1)'], {}), '(y_pred, 0, 1)\n', (280, 294), True, 'from keras import backend as K\n'), ((351, 371), 'keras.backend.clip', 'K.clip', (['y_true', '(0)', '(1)'], {}), '(y_true, 0, 1)\n', (357, 371), True, 'from keras import backend as K\n'), ((9330, 9339), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (9337, 9339), True, 'import matplotlib.pyplot as plt\n'), ((696, 707), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (705, 707), True, 'from keras import backend as K\n'), ((977, 1006), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (983, 1006), True, 'from keras import backend as K\n'), ((1049, 1069), 'keras.backend.clip', 'K.clip', (['y_pred', '(0)', '(1)'], {}), '(y_pred, 0, 1)\n', (1055, 1069), True, 'from keras import backend as K\n'), ((1128, 1139), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (1137, 1139), True, 'from keras import backend as K\n'), ((1418, 1447), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (1424, 1447), True, 'from keras import backend as K\n'), ((1489, 1509), 'keras.backend.clip', 'K.clip', (['y_true', '(0)', '(1)'], {}), '(y_true, 0, 1)\n', (1495, 1509), True, 'from keras import backend as K\n'), ((1564, 1575), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (1573, 1575), True, 'from keras import backend as K\n')]
import numpy as np from scipy.integrate import odeint from matplotlib import pyplot as plt def calc_derivative(ypos, time): return -2*ypos time_vec = np.linspace(0, 4, 40) yvec = odeint(calc_derivative, 1, time_vec) plt.figure(figsize=(4, 3)) plt.plot(time_vec, yvec) plt.xlabel('t: Time') plt.ylabel('y: Position') plt.tight_layout()
[ "matplotlib.pyplot.plot", "scipy.integrate.odeint", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout" ]
[((156, 177), 'numpy.linspace', 'np.linspace', (['(0)', '(4)', '(40)'], {}), '(0, 4, 40)\n', (167, 177), True, 'import numpy as np\n'), ((185, 221), 'scipy.integrate.odeint', 'odeint', (['calc_derivative', '(1)', 'time_vec'], {}), '(calc_derivative, 1, time_vec)\n', (191, 221), False, 'from scipy.integrate import odeint\n'), ((223, 249), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 3)'}), '(figsize=(4, 3))\n', (233, 249), True, 'from matplotlib import pyplot as plt\n'), ((250, 274), 'matplotlib.pyplot.plot', 'plt.plot', (['time_vec', 'yvec'], {}), '(time_vec, yvec)\n', (258, 274), True, 'from matplotlib import pyplot as plt\n'), ((275, 296), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t: Time"""'], {}), "('t: Time')\n", (285, 296), True, 'from matplotlib import pyplot as plt\n'), ((297, 322), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y: Position"""'], {}), "('y: Position')\n", (307, 322), True, 'from matplotlib import pyplot as plt\n'), ((323, 341), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (339, 341), True, 'from matplotlib import pyplot as plt\n')]
import warnings warnings.filterwarnings('ignore') import numpy as np import scipy.io as sio import seaborn as sns import matplotlib.pyplot as plt import wget import os from random import shuffle import cv2 from PIL import Image sns.set_style("white") # ----------------------Downloading DATA-------------------------- folder_name = 'svhn_data' filename_list = ['train_32x32.mat', 'test_32x32.mat', 'extra_32x32.mat'] print('\n') print('Checking if ' + folder_name + ' directory exists') print('\n') if not os.path.exists(folder_name): print('Directory does not exist. Creating ' + folder_name + ' directory now') print('\n') os.mkdir(folder_name) print('Directory ' + folder_name + ' created') else: print('Directory ' + folder_name + ' already exists.') print('\n') print('Downloading svhn data files...') print('\n') for filename in filename_list: filepath = './svhn_data/' + filename if not os.path.exists(filepath): print('Downloading ' + filename + ' file') print('\n') url = 'http://ufldl.stanford.edu/housenumbers/' + filename wget.download(url, filepath) else: print('File ' + filename + ' already exists.') print('\n') print(20*"+") print('Downloading done') # ------------------------------------------------------------------------ def image_compare(img,lab,fig_name): plt.figure(str(fig_name)) for i in range(1, 10): plt.subplot(3, 3, i) plt.imshow(img[:,:,:,i]) plt.title('Num ' + str(lab[i])) plt.xticks() plt.yticks() plt.tight_layout() plt.show(block=False) return # ---------------------------LOADING SVHN DATA---------------------------- # These file contains dictionaries. # The dictionaries keys are: dict_keys(['y', 'X', '__version__', '__header__', '__globals__']) # We are only concerned with the 'y' and 'X'. # The 'y' key contains the labels (What the number is in the image) # The 'X' key contains the actual images. train_data = sio.loadmat('svhn_data/train_32x32.mat') test_data = sio.loadmat('svhn_data/test_32x32.mat') extra_data = sio.loadmat('svhn_data/extra_32x32.mat') # Combining X from train, test & extra & stacking them one above the other x_train = np.array(train_data['X']) x_test = np.array(test_data['X']) x_extra = np.array(extra_data['X']) x = np.concatenate((x_train,x_test,x_extra),axis=-1) print(20*"+") print("Combined all image matrices!") # Combining y from train, test & extra & converting label 10 to 0 across the entire target variable y_train = train_data['y'] y_test = test_data['y'] y_extra = extra_data['y'] y = np.concatenate((y_train,y_test,y_extra)) y[y == 10] = 0 # label 10 has been converted to 0 print(20*"+") print("Combined all labels!") ind_list = [i for i in range(len(x[1,1,1,:]))] shuffle(ind_list) x_s = x[:,:,:,ind_list] y_s = y[ind_list,] print(20*"+") print("Data Shuffled!") # Splitting into train & test train_pct_index = int(0.8 * (len(x[1,1,1,:]))) X_train, X_test = x_s[:,:,:,:train_pct_index], x_s[:,:,:,train_pct_index:] y_train, y_test = y_s[:train_pct_index], y_s[train_pct_index:] ##################################################################### unique1, train_counts = np.unique(y_train, return_counts=True) train_counts = np.asarray( (unique1, train_counts) ).T unique2, test_counts = np.unique(y_test, return_counts=True) test_counts = np.asarray( (unique2, test_counts) ).T ax1 = plt.subplot(121) ax1.grid(False) sns.set_style("white") sns.barplot(np.arange(0,len(train_counts)),train_counts[:,-1]) plt.xlabel("Categories") plt.ylabel("Counts") plt.title("Labels distribution in Train Dataset") ax2 = plt.subplot(122,sharey=ax1) ax2.grid(False) sns.set_style("white") sns.barplot(np.arange(0,len(test_counts)),test_counts[:,-1]) plt.xlabel("Categories") plt.ylabel("Counts") plt.title("Labels distribution in Test Dataset") plt.show() ##################################################################### print(20*"+") print("Data Splitting Completed!") # PLOTTING IMAGES # Normalizing images IMAGE_WIDTH = 32 IMAGE_HEIGHT = 32 def transform_img(img, img_width, img_height): #Histogram Equalization img[:, :, 0] = cv2.equalizeHist(img[:, :, 0]) img[:, :, 1] = cv2.equalizeHist(img[:, :, 1]) img[:, :, 2] = cv2.equalizeHist(img[:, :, 2]) img = cv2.resize(img, (img_width, img_height), interpolation = cv2.INTER_CUBIC) return img x_train_normalized = [] x_test_normalized = [] image_compare(X_train,y_train,"before normalizing") tot_train_images = len(X_train[1,1,1,:]) for i in range(tot_train_images): image = X_train[:,:,:,i] img = transform_img(image, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT) x_train_normalized.append(img) x_train_normalized = np.array(x_train_normalized) x_train_normalized = np.transpose(x_train_normalized,(1,2,3,0)) image_compare(x_train_normalized,y_train,"after normalizing") print(20*"+") print("Normalized Training Images!") tot_test_images = len(X_test[1,1,1,:]) for i in range(tot_test_images): image = X_test[:,:,:,i] img = transform_img(image, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT) x_test_normalized.append(img) x_test_normalized = np.array(x_test_normalized) x_test_normalized = np.transpose(x_test_normalized,(1,2,3,0)) print(20*"+") print("Normalized Testing Images!") print(20*"+") print("Preprocessing Completed!") # Note - Data has been combined, shuffled, splitted, normalized here. Also label 10 has been converted to 0 # Now we work on Frameworks #### SHAPE OF X_TRAIN_NORMALIZED IS (32, 32, 3, 504336) #### SHAPE OF X_TEST_NORMALIZED IS (32, 32, 3, 126084) #### SHAPE OF Y_TRAIN_NORMALIZED IS (504336, 1) #### SHAPE OF Y_TEST_NORMALIZED IS (126084, 1) dict_train = {'x_train':x_train_normalized,'y_train':y_train} dict_test = {'x_test':x_test_normalized,'y_test':y_test} sio.savemat('./svhn_data/train_processed.mat',dict_train,format='5') sio.savemat('./svhn_data/test_processed.mat',dict_test,format='5') print(20*"+") print("Files Created!") print("Execute 02_LMDB_Creator now!") print(20*"+")
[ "matplotlib.pyplot.title", "os.mkdir", "scipy.io.loadmat", "random.shuffle", "matplotlib.pyplot.tight_layout", "numpy.unique", "matplotlib.pyplot.imshow", "matplotlib.pyplot.yticks", "numpy.transpose", "os.path.exists", "matplotlib.pyplot.xticks", "cv2.resize", "seaborn.set_style", "cv2.equalizeHist", "matplotlib.pyplot.show", "numpy.asarray", "wget.download", "matplotlib.pyplot.ylabel", "numpy.concatenate", "matplotlib.pyplot.subplot", "warnings.filterwarnings", "scipy.io.savemat", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((17, 50), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (40, 50), False, 'import warnings\n'), ((241, 263), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (254, 263), True, 'import seaborn as sns\n'), ((2080, 2120), 'scipy.io.loadmat', 'sio.loadmat', (['"""svhn_data/train_32x32.mat"""'], {}), "('svhn_data/train_32x32.mat')\n", (2091, 2120), True, 'import scipy.io as sio\n'), ((2134, 2173), 'scipy.io.loadmat', 'sio.loadmat', (['"""svhn_data/test_32x32.mat"""'], {}), "('svhn_data/test_32x32.mat')\n", (2145, 2173), True, 'import scipy.io as sio\n'), ((2188, 2228), 'scipy.io.loadmat', 'sio.loadmat', (['"""svhn_data/extra_32x32.mat"""'], {}), "('svhn_data/extra_32x32.mat')\n", (2199, 2228), True, 'import scipy.io as sio\n'), ((2320, 2345), 'numpy.array', 'np.array', (["train_data['X']"], {}), "(train_data['X'])\n", (2328, 2345), True, 'import numpy as np\n'), ((2356, 2380), 'numpy.array', 'np.array', (["test_data['X']"], {}), "(test_data['X'])\n", (2364, 2380), True, 'import numpy as np\n'), ((2392, 2417), 'numpy.array', 'np.array', (["extra_data['X']"], {}), "(extra_data['X'])\n", (2400, 2417), True, 'import numpy as np\n'), ((2423, 2474), 'numpy.concatenate', 'np.concatenate', (['(x_train, x_test, x_extra)'], {'axis': '(-1)'}), '((x_train, x_test, x_extra), axis=-1)\n', (2437, 2474), True, 'import numpy as np\n'), ((2717, 2759), 'numpy.concatenate', 'np.concatenate', (['(y_train, y_test, y_extra)'], {}), '((y_train, y_test, y_extra))\n', (2731, 2759), True, 'import numpy as np\n'), ((2908, 2925), 'random.shuffle', 'shuffle', (['ind_list'], {}), '(ind_list)\n', (2915, 2925), False, 'from random import shuffle\n'), ((3336, 3374), 'numpy.unique', 'np.unique', (['y_train'], {'return_counts': '(True)'}), '(y_train, return_counts=True)\n', (3345, 3374), True, 'import numpy as np\n'), ((3455, 3492), 'numpy.unique', 'np.unique', (['y_test'], {'return_counts': '(True)'}), '(y_test, return_counts=True)\n', (3464, 3492), True, 'import numpy as np\n'), ((3556, 3572), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (3567, 3572), True, 'import matplotlib.pyplot as plt\n'), ((3591, 3613), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (3604, 3613), True, 'import seaborn as sns\n'), ((3681, 3705), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Categories"""'], {}), "('Categories')\n", (3691, 3705), True, 'import matplotlib.pyplot as plt\n'), ((3707, 3727), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Counts"""'], {}), "('Counts')\n", (3717, 3727), True, 'import matplotlib.pyplot as plt\n'), ((3729, 3778), 'matplotlib.pyplot.title', 'plt.title', (['"""Labels distribution in Train Dataset"""'], {}), "('Labels distribution in Train Dataset')\n", (3738, 3778), True, 'import matplotlib.pyplot as plt\n'), ((3788, 3816), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {'sharey': 'ax1'}), '(122, sharey=ax1)\n', (3799, 3816), True, 'import matplotlib.pyplot as plt\n'), ((3834, 3856), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (3847, 3856), True, 'import seaborn as sns\n'), ((3920, 3944), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Categories"""'], {}), "('Categories')\n", (3930, 3944), True, 'import matplotlib.pyplot as plt\n'), ((3946, 3966), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Counts"""'], {}), "('Counts')\n", (3956, 3966), True, 'import matplotlib.pyplot as plt\n'), ((3968, 4016), 'matplotlib.pyplot.title', 'plt.title', (['"""Labels distribution in Test Dataset"""'], {}), "('Labels distribution in Test Dataset')\n", (3977, 4016), True, 'import matplotlib.pyplot as plt\n'), ((4020, 4030), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4028, 4030), True, 'import matplotlib.pyplot as plt\n'), ((4929, 4957), 'numpy.array', 'np.array', (['x_train_normalized'], {}), '(x_train_normalized)\n', (4937, 4957), True, 'import numpy as np\n'), ((4980, 5026), 'numpy.transpose', 'np.transpose', (['x_train_normalized', '(1, 2, 3, 0)'], {}), '(x_train_normalized, (1, 2, 3, 0))\n', (4992, 5026), True, 'import numpy as np\n'), ((5386, 5413), 'numpy.array', 'np.array', (['x_test_normalized'], {}), '(x_test_normalized)\n', (5394, 5413), True, 'import numpy as np\n'), ((5435, 5480), 'numpy.transpose', 'np.transpose', (['x_test_normalized', '(1, 2, 3, 0)'], {}), '(x_test_normalized, (1, 2, 3, 0))\n', (5447, 5480), True, 'import numpy as np\n'), ((6059, 6129), 'scipy.io.savemat', 'sio.savemat', (['"""./svhn_data/train_processed.mat"""', 'dict_train'], {'format': '"""5"""'}), "('./svhn_data/train_processed.mat', dict_train, format='5')\n", (6070, 6129), True, 'import scipy.io as sio\n'), ((6129, 6197), 'scipy.io.savemat', 'sio.savemat', (['"""./svhn_data/test_processed.mat"""', 'dict_test'], {'format': '"""5"""'}), "('./svhn_data/test_processed.mat', dict_test, format='5')\n", (6140, 6197), True, 'import scipy.io as sio\n'), ((534, 561), 'os.path.exists', 'os.path.exists', (['folder_name'], {}), '(folder_name)\n', (548, 561), False, 'import os\n'), ((668, 689), 'os.mkdir', 'os.mkdir', (['folder_name'], {}), '(folder_name)\n', (676, 689), False, 'import os\n'), ((1634, 1652), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1650, 1652), True, 'import matplotlib.pyplot as plt\n'), ((1658, 1679), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (1666, 1679), True, 'import matplotlib.pyplot as plt\n'), ((3391, 3426), 'numpy.asarray', 'np.asarray', (['(unique1, train_counts)'], {}), '((unique1, train_counts))\n', (3401, 3426), True, 'import numpy as np\n'), ((3508, 3542), 'numpy.asarray', 'np.asarray', (['(unique2, test_counts)'], {}), '((unique2, test_counts))\n', (3518, 3542), True, 'import numpy as np\n'), ((4338, 4368), 'cv2.equalizeHist', 'cv2.equalizeHist', (['img[:, :, 0]'], {}), '(img[:, :, 0])\n', (4354, 4368), False, 'import cv2\n'), ((4389, 4419), 'cv2.equalizeHist', 'cv2.equalizeHist', (['img[:, :, 1]'], {}), '(img[:, :, 1])\n', (4405, 4419), False, 'import cv2\n'), ((4440, 4470), 'cv2.equalizeHist', 'cv2.equalizeHist', (['img[:, :, 2]'], {}), '(img[:, :, 2])\n', (4456, 4470), False, 'import cv2\n'), ((4482, 4553), 'cv2.resize', 'cv2.resize', (['img', '(img_width, img_height)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(img, (img_width, img_height), interpolation=cv2.INTER_CUBIC)\n', (4492, 4553), False, 'import cv2\n'), ((968, 992), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (982, 992), False, 'import os\n'), ((1144, 1172), 'wget.download', 'wget.download', (['url', 'filepath'], {}), '(url, filepath)\n', (1157, 1172), False, 'import wget\n'), ((1489, 1509), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(3)', 'i'], {}), '(3, 3, i)\n', (1500, 1509), True, 'import matplotlib.pyplot as plt\n'), ((1519, 1546), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img[:, :, :, i]'], {}), '(img[:, :, :, i])\n', (1529, 1546), True, 'import matplotlib.pyplot as plt\n'), ((1594, 1606), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {}), '()\n', (1604, 1606), True, 'import matplotlib.pyplot as plt\n'), ((1616, 1628), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {}), '()\n', (1626, 1628), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np from mmdet.datasets import PIPELINES from mmdet.datasets.pipelines.formating import Collect from ssod.core import TrimapMasks @PIPELINES.register_module() class ExtraAttrs(object): def __init__(self, **attrs): self.attrs = attrs def __call__(self, results): for k, v in self.attrs.items(): assert k not in results results[k] = v return results @PIPELINES.register_module() class ExtraCollect(Collect): def __init__(self, *args, extra_meta_keys=[], **kwargs): super().__init__(*args, **kwargs) self.meta_keys = self.meta_keys + tuple(extra_meta_keys) @PIPELINES.register_module() class PseudoSamples(object): def __init__( self, with_bbox=False, with_mask=False, with_seg=False, fill_value=255 ): """ Replacing gt labels in original data with fake labels or adding extra fake labels for unlabeled data. This is to remove the effect of labeled data and keep its elements aligned with other sample. Args: with_bbox: with_mask: with_seg: fill_value: """ self.with_bbox = with_bbox self.with_mask = with_mask self.with_seg = with_seg self.fill_value = fill_value def __call__(self, results): if self.with_bbox: results["gt_bboxes"] = np.zeros((0, 4)) results["gt_labels"] = np.zeros((0,)) if "bbox_fields" not in results: results["bbox_fields"] = [] if "gt_bboxes" not in results["bbox_fields"]: results["bbox_fields"].append("gt_bboxes") if self.with_mask: num_inst = len(results["gt_bboxes"]) h, w = results["img"].shape[:2] results["gt_masks"] = TrimapMasks( [ self.fill_value * np.ones((h, w), dtype=np.uint8) for _ in range(num_inst) ], h, w, ) if "mask_fields" not in results: results["mask_fields"] = [] if "gt_masks" not in results["mask_fields"]: results["mask_fields"].append("gt_masks") if self.with_seg: results["gt_semantic_seg"] = self.fill_value * np.ones( results["img"].shape[:2], dtype=np.uint8 ) if "seg_fields" not in results: results["seg_fields"] = [] if "gt_semantic_seg" not in results["seg_fields"]: results["seg_fields"].append("gt_semantic_seg") return results
[ "numpy.zeros", "mmdet.datasets.PIPELINES.register_module", "numpy.ones" ]
[((149, 176), 'mmdet.datasets.PIPELINES.register_module', 'PIPELINES.register_module', ([], {}), '()\n', (174, 176), False, 'from mmdet.datasets import PIPELINES\n'), ((426, 453), 'mmdet.datasets.PIPELINES.register_module', 'PIPELINES.register_module', ([], {}), '()\n', (451, 453), False, 'from mmdet.datasets import PIPELINES\n'), ((654, 681), 'mmdet.datasets.PIPELINES.register_module', 'PIPELINES.register_module', ([], {}), '()\n', (679, 681), False, 'from mmdet.datasets import PIPELINES\n'), ((1393, 1409), 'numpy.zeros', 'np.zeros', (['(0, 4)'], {}), '((0, 4))\n', (1401, 1409), True, 'import numpy as np\n'), ((1445, 1459), 'numpy.zeros', 'np.zeros', (['(0,)'], {}), '((0,))\n', (1453, 1459), True, 'import numpy as np\n'), ((2327, 2376), 'numpy.ones', 'np.ones', (["results['img'].shape[:2]"], {'dtype': 'np.uint8'}), "(results['img'].shape[:2], dtype=np.uint8)\n", (2334, 2376), True, 'import numpy as np\n'), ((1889, 1920), 'numpy.ones', 'np.ones', (['(h, w)'], {'dtype': 'np.uint8'}), '((h, w), dtype=np.uint8)\n', (1896, 1920), True, 'import numpy as np\n')]
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:<EMAIL>) import logging import numpy import pandas import os import os.path import requests import time import typing from datetime import datetime, timedelta from dateutil import parser from decimal import Decimal from solana.publickey import PublicKey from .account import Account from .context import Context # # 🥭 TradeHistory class # # Downloads and unifies trade history data. # class TradeHistory: COLUMNS = ["Timestamp", "Market", "Side", "MakerOrTaker", "Change", "Price", "Quantity", "Fee", "SequenceNumber", "FeeTier", "MarketType", "OrderId"] __perp_column_name_mapper = { "loadTimestamp": "Timestamp", "seqNum": "SequenceNumber", "price": "Price", "quantity": "Quantity" } __spot_column_name_mapper = { "loadTimestamp": "Timestamp", "seqNum": "SequenceNumber", "price": "Price", "size": "Quantity", "side": "Side", "feeCost": "Fee", "feeTier": "FeeTier", "orderId": "OrderId" } __decimal_spot_columns = [ "openOrderSlot", "feeTier", "nativeQuantityReleased", "nativeQuantityPaid", "nativeFeeOrRebate", "orderId", "clientOrderId", "source", "seqNum", "baseTokenDecimals", "quoteTokenDecimals", "price", "feeCost", "size" ] __decimal_perp_columns = [ "seqNum", "makerFee", "takerFee", "makerOrderId", "takerOrderId", "price", "quantity" ] __column_converters = { "Timestamp": lambda value: parser.parse(value), "SequenceNumber": lambda value: Decimal(value), "Price": lambda value: Decimal(value), "Change": lambda value: Decimal(value), "Quantity": lambda value: Decimal(value), "Fee": lambda value: Decimal(value), "FeeTier": lambda value: Decimal(value), "OrderId": lambda value: Decimal(value) } def __init__(self, seconds_pause_between_rest_calls: int = 1) -> None: self._logger: logging.Logger = logging.getLogger(self.__class__.__name__) self.__seconds_pause_between_rest_calls: int = seconds_pause_between_rest_calls self.__trades: pandas.DataFrame = pandas.DataFrame(columns=TradeHistory.COLUMNS) @staticmethod def __market_lookup(context: Context) -> typing.Callable[[pandas.Series], str]: def __safe_lookup(row: pandas.Series) -> str: address: PublicKey = PublicKey(row["address"]) market = context.market_lookup.find_by_address(address) if market is None: raise Exception(f"No market found with address {address}") return market.symbol return __safe_lookup @staticmethod def __download_json(url: str) -> typing.Any: response = requests.get(url) response.raise_for_status() return response.json() @staticmethod def __download_all_perps(context: Context, account: Account) -> pandas.DataFrame: url = f"https://event-history-api.herokuapp.com/perp_trades/{account.address}?page=all" data = TradeHistory.__download_json(url) trades: pandas.DataFrame = TradeHistory.__perp_data_to_dataframe(context, account, data) return trades @staticmethod def __download_updated_perps(context: Context, account: Account, newer_than: typing.Optional[datetime], seconds_pause_between_rest_calls: int) -> pandas.DataFrame: trades: pandas.DataFrame = pandas.DataFrame(columns=TradeHistory.COLUMNS) page: int = 0 complete: bool = False while not complete: page += 1 url = f"https://event-history-api.herokuapp.com/perp_trades/{account.address}?page={page}" data = TradeHistory.__download_json(url) frame: pandas.DataFrame = TradeHistory.__perp_data_to_dataframe(context, account, data) if len(frame) == 0: complete = True else: trades = trades.append(frame) if (newer_than is not None) and (frame.loc[frame.index[-1], "Timestamp"] < newer_than): complete = True else: time.sleep(seconds_pause_between_rest_calls) return trades @staticmethod def __perp_data_to_dataframe(context: Context, account: Account, data: typing.Any) -> pandas.DataFrame: # Perp data is an array of JSON packages like: # { # "loadTimestamp": "2021-09-02T10:54:56.000Z", # "address": <PUBLIC-KEY-STRING>, # "seqNum": "2831", # "makerFee": "0", # "takerFee": "0.0004999999999988347", # "takerSide": "sell", # "maker": <PUBLIC-KEY-STRING>, # "makerOrderId": <BIG-INT>, # "taker": <PUBLIC-KEY-STRING>, # "takerOrderId": <BIG-INT>, # "price": "50131.9", # "quantity": "0.019" # }, def __side_lookup(row: pandas.Series) -> str: if row["MakerOrTaker"] == "taker": return str(row["takerSide"]) elif row["takerSide"] == "buy": return "sell" else: return "buy" def __fee_calculator(row: pandas.Series) -> Decimal: price: Decimal = row["Price"] quantity: Decimal = row["Quantity"] fee_rate: Decimal if row["MakerOrTaker"] == "maker": fee_rate = row["makerFee"] else: fee_rate = row["takerFee"] return price * quantity * fee_rate if len(data["data"]) <= 1: return pandas.DataFrame(columns=TradeHistory.COLUMNS) trade_data = data["data"][:-1] for trade in trade_data: for column_name in TradeHistory.__decimal_perp_columns: trade[column_name] = Decimal(trade[column_name]) frame = pandas.DataFrame(trade_data).rename(mapper=TradeHistory.__perp_column_name_mapper, axis=1, copy=True) frame["Timestamp"] = frame["Timestamp"].apply(lambda timestamp: parser.parse(timestamp).replace(microsecond=0)) frame["Market"] = frame.apply(TradeHistory.__market_lookup(context), axis=1) frame["MarketType"] = "perp" this_address = f"{account.address}" frame["MakerOrTaker"] = frame["maker"].apply(lambda addy: "maker" if addy == this_address else "taker") frame["FeeTier"] = -1 frame["Fee"] = frame.apply(__fee_calculator, axis=1) frame["Side"] = frame.apply(__side_lookup, axis=1) frame["Change"] = (frame["Price"] * frame["Quantity"]) - frame["Fee"] frame["Change"] = frame["Change"].where(frame["Side"] == "sell", other=-frame["Change"]) frame["OrderId"] = numpy.where(frame["MakerOrTaker"] == "maker", frame["makerOrderId"], frame["takerOrderId"]) return frame[TradeHistory.COLUMNS] @staticmethod def __download_all_spots(context: Context, account: Account) -> pandas.DataFrame: trades: pandas.DataFrame = pandas.DataFrame(columns=TradeHistory.COLUMNS) for spot_open_orders_address in account.spot_open_orders: url = f"https://event-history-api.herokuapp.com/trades/open_orders/{spot_open_orders_address}?page=all" data = TradeHistory.__download_json(url) frame = TradeHistory.__spot_data_to_dataframe(context, account, data) trades = trades.append(frame) return trades @staticmethod def __download_updated_spots(context: Context, account: Account, newer_than: typing.Optional[datetime], seconds_pause_between_rest_calls: int) -> pandas.DataFrame: trades: pandas.DataFrame = pandas.DataFrame(columns=TradeHistory.COLUMNS) for spot_open_orders_address in account.spot_open_orders: page: int = 0 complete: bool = False while not complete: page += 1 url = f"https://event-history-api.herokuapp.com/trades/open_orders/{spot_open_orders_address}?page={page}" data = TradeHistory.__download_json(url) frame = TradeHistory.__spot_data_to_dataframe(context, account, data) if len(frame) == 0: complete = True else: trades = trades.append(frame) earliest_in_frame = frame.loc[frame.index[-1], "Timestamp"] if (newer_than is not None) and (earliest_in_frame < newer_than): complete = True else: time.sleep(seconds_pause_between_rest_calls) return trades @staticmethod def __spot_data_to_dataframe(context: Context, account: Account, data: typing.Any) -> pandas.DataFrame: # Spot data is an array of JSON packages like: # { # "loadTimestamp": "2021-10-05T16:04:50.717Z", # "address": <PUBLIC-KEY-STRING>, # "programId": <PUBLIC-KEY-STRING>, # "baseCurrency": "SOL", # "quoteCurrency": "USDC", # "fill": true, # "out": false, # "bid": true, # "maker": true, # "openOrderSlot": "0", # "feeTier": "4", # "nativeQuantityReleased": "3000000000", # "nativeQuantityPaid": "487482712", # "nativeFeeOrRebate": "146288", # "orderId": <BIG-INT>, # "openOrders": <PUBLIC-KEY-STRING>, # "clientOrderId": <BIG-INT>, # "uuid": <LONG-OPAQUE-UUID-STRING>, # "source": "2", # "seqNum": "24827175", # "baseTokenDecimals": 9, # "quoteTokenDecimals": 6, # "side": "buy", # "price": 162.543, # "feeCost": -0.146288, # "size": 3 # } if len(data["data"]) == 0: return pandas.DataFrame(columns=TradeHistory.COLUMNS) else: trade_data = data["data"] for trade in trade_data: for column_name in TradeHistory.__decimal_spot_columns: trade[column_name] = Decimal(trade[column_name]) frame = pandas.DataFrame(trade_data).rename( mapper=TradeHistory.__spot_column_name_mapper, axis=1, copy=True) frame["Timestamp"] = frame["Timestamp"].apply( lambda timestamp: parser.parse(timestamp).replace(microsecond=0)) frame["Market"] = frame.apply(TradeHistory.__market_lookup(context), axis=1) frame["MakerOrTaker"] = numpy.where(frame["maker"], "maker", "taker") frame["Change"] = (frame["Price"] * frame["Quantity"]) - frame["Fee"] frame["Change"] = frame["Change"].where(frame["Side"] == "sell", other=-frame["Change"]) frame["MarketType"] = "spot" return frame[TradeHistory.COLUMNS] @property def trades(self) -> pandas.DataFrame: return self.__trades.copy(deep=True) def download_latest(self, context: Context, account: Account, cutoff: datetime) -> None: # Go back further than we need to so we can be sure we're not skipping any trades due to race conditions. # We remove duplicates a few lines further down. self._logger.info(f"Downloading spot trades from {cutoff}") spot: pandas.DataFrame = TradeHistory.__download_updated_spots(context, account, cutoff, self.__seconds_pause_between_rest_calls) self._logger.info(f"Downloading perp trades from {cutoff}") perp: pandas.DataFrame = TradeHistory.__download_updated_perps(context, account, cutoff, self.__seconds_pause_between_rest_calls) all_trades: pandas.DataFrame = pandas.concat([self.__trades, spot, perp]) all_trades = all_trades[all_trades["Timestamp"] >= cutoff] distinct_trades = all_trades.drop_duplicates() sorted_trades = distinct_trades.sort_values(["Timestamp", "Market", "SequenceNumber"], axis=0, ascending=True) self._logger.info(f"Download complete. Data contains {len(sorted_trades)} trades.") self.__trades = sorted_trades def update(self, context: Context, account: Account) -> None: latest_trade: typing.Optional[datetime] = self.__trades.loc[self.__trades.index[-1], "Timestamp"] if len(self.__trades) > 0 else None spot: pandas.DataFrame perp: pandas.DataFrame if latest_trade is None: self._logger.info("Downloading all spot trades.") spot = TradeHistory.__download_all_spots(context, account) self._logger.info("Downloading all perp trades.") perp = TradeHistory.__download_all_perps(context, account) else: # Go back further than we need to so we can be sure we're not skipping any trades due to race conditions. # We remove duplicates a few lines further down. cutoff_safety_margin: timedelta = timedelta(hours=1) cutoff: datetime = latest_trade - cutoff_safety_margin self._logger.info( f"Downloading spot trades from {cutoff}, {cutoff_safety_margin} before latest stored trade at {latest_trade}") spot = TradeHistory.__download_updated_spots(context, account, cutoff, self.__seconds_pause_between_rest_calls) self._logger.info( f"Downloading perp trades from {cutoff}, {cutoff_safety_margin} before latest stored trade at {latest_trade}") perp = TradeHistory.__download_updated_perps(context, account, cutoff, self.__seconds_pause_between_rest_calls) all_trades = pandas.concat([self.__trades, spot, perp]) distinct_trades = all_trades.drop_duplicates() sorted_trades = distinct_trades.sort_values(["Timestamp", "Market", "SequenceNumber"], axis=0, ascending=True) self._logger.info(f"Download complete. Data contains {len(sorted_trades)} trades.") self.__trades = sorted_trades def load(self, filename: str, ok_if_missing: bool = False) -> None: if not os.path.isfile(filename): if not ok_if_missing: raise Exception(f"File {filename} does not exist or is not a file.") else: existing = pandas.read_csv(filename, float_precision="round_trip", converters=TradeHistory.__column_converters) self.__trades = self.__trades.append(existing) def save(self, filename: str) -> None: self.__trades.to_csv(filename, index=False, mode="w") def __str__(self) -> str: return f"« TradeHistory containing {len(self.__trades)} trades »" def __repr__(self) -> str: return f"{self}"
[ "pandas.DataFrame", "dateutil.parser.parse", "decimal.Decimal", "pandas.read_csv", "time.sleep", "solana.publickey.PublicKey", "os.path.isfile", "numpy.where", "datetime.timedelta", "requests.get", "pandas.concat", "logging.getLogger" ]
[((2888, 2930), 'logging.getLogger', 'logging.getLogger', (['self.__class__.__name__'], {}), '(self.__class__.__name__)\n', (2905, 2930), False, 'import logging\n'), ((3061, 3107), 'pandas.DataFrame', 'pandas.DataFrame', ([], {'columns': 'TradeHistory.COLUMNS'}), '(columns=TradeHistory.COLUMNS)\n', (3077, 3107), False, 'import pandas\n'), ((3647, 3664), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (3659, 3664), False, 'import requests\n'), ((4324, 4370), 'pandas.DataFrame', 'pandas.DataFrame', ([], {'columns': 'TradeHistory.COLUMNS'}), '(columns=TradeHistory.COLUMNS)\n', (4340, 4370), False, 'import pandas\n'), ((7633, 7729), 'numpy.where', 'numpy.where', (["(frame['MakerOrTaker'] == 'maker')", "frame['makerOrderId']", "frame['takerOrderId']"], {}), "(frame['MakerOrTaker'] == 'maker', frame['makerOrderId'], frame[\n 'takerOrderId'])\n", (7644, 7729), False, 'import numpy\n'), ((7948, 7994), 'pandas.DataFrame', 'pandas.DataFrame', ([], {'columns': 'TradeHistory.COLUMNS'}), '(columns=TradeHistory.COLUMNS)\n', (7964, 7994), False, 'import pandas\n'), ((8599, 8645), 'pandas.DataFrame', 'pandas.DataFrame', ([], {'columns': 'TradeHistory.COLUMNS'}), '(columns=TradeHistory.COLUMNS)\n', (8615, 8645), False, 'import pandas\n'), ((13066, 13108), 'pandas.concat', 'pandas.concat', (['[self.__trades, spot, perp]'], {}), '([self.__trades, spot, perp])\n', (13079, 13108), False, 'import pandas\n'), ((15144, 15186), 'pandas.concat', 'pandas.concat', (['[self.__trades, spot, perp]'], {}), '([self.__trades, spot, perp])\n', (15157, 15186), False, 'import pandas\n'), ((2403, 2422), 'dateutil.parser.parse', 'parser.parse', (['value'], {}), '(value)\n', (2415, 2422), False, 'from dateutil import parser\n'), ((2464, 2478), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2471, 2478), False, 'from decimal import Decimal\n'), ((2511, 2525), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2518, 2525), False, 'from decimal import Decimal\n'), ((2559, 2573), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2566, 2573), False, 'from decimal import Decimal\n'), ((2609, 2623), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2616, 2623), False, 'from decimal import Decimal\n'), ((2654, 2668), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2661, 2668), False, 'from decimal import Decimal\n'), ((2703, 2717), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2710, 2717), False, 'from decimal import Decimal\n'), ((2752, 2766), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (2759, 2766), False, 'from decimal import Decimal\n'), ((3298, 3323), 'solana.publickey.PublicKey', 'PublicKey', (["row['address']"], {}), "(row['address'])\n", (3307, 3323), False, 'from solana.publickey import PublicKey\n'), ((6509, 6555), 'pandas.DataFrame', 'pandas.DataFrame', ([], {'columns': 'TradeHistory.COLUMNS'}), '(columns=TradeHistory.COLUMNS)\n', (6525, 6555), False, 'import pandas\n'), ((10820, 10866), 'pandas.DataFrame', 'pandas.DataFrame', ([], {'columns': 'TradeHistory.COLUMNS'}), '(columns=TradeHistory.COLUMNS)\n', (10836, 10866), False, 'import pandas\n'), ((11503, 11548), 'numpy.where', 'numpy.where', (["frame['maker']", '"""maker"""', '"""taker"""'], {}), "(frame['maker'], 'maker', 'taker')\n", (11514, 11548), False, 'import numpy\n'), ((14358, 14376), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (14367, 14376), False, 'from datetime import datetime, timedelta\n'), ((15579, 15603), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (15593, 15603), False, 'import os\n'), ((15761, 15866), 'pandas.read_csv', 'pandas.read_csv', (['filename'], {'float_precision': '"""round_trip"""', 'converters': 'TradeHistory.__column_converters'}), "(filename, float_precision='round_trip', converters=\n TradeHistory.__column_converters)\n", (15776, 15866), False, 'import pandas\n'), ((6734, 6761), 'decimal.Decimal', 'Decimal', (['trade[column_name]'], {}), '(trade[column_name])\n', (6741, 6761), False, 'from decimal import Decimal\n'), ((6779, 6807), 'pandas.DataFrame', 'pandas.DataFrame', (['trade_data'], {}), '(trade_data)\n', (6795, 6807), False, 'import pandas\n'), ((5040, 5084), 'time.sleep', 'time.sleep', (['seconds_pause_between_rest_calls'], {}), '(seconds_pause_between_rest_calls)\n', (5050, 5084), False, 'import time\n'), ((11069, 11096), 'decimal.Decimal', 'Decimal', (['trade[column_name]'], {}), '(trade[column_name])\n', (11076, 11096), False, 'from decimal import Decimal\n'), ((11118, 11146), 'pandas.DataFrame', 'pandas.DataFrame', (['trade_data'], {}), '(trade_data)\n', (11134, 11146), False, 'import pandas\n'), ((6953, 6976), 'dateutil.parser.parse', 'parser.parse', (['timestamp'], {}), '(timestamp)\n', (6965, 6976), False, 'from dateutil import parser\n'), ((9498, 9542), 'time.sleep', 'time.sleep', (['seconds_pause_between_rest_calls'], {}), '(seconds_pause_between_rest_calls)\n', (9508, 9542), False, 'import time\n'), ((11330, 11353), 'dateutil.parser.parse', 'parser.parse', (['timestamp'], {}), '(timestamp)\n', (11342, 11353), False, 'from dateutil import parser\n')]
import numpy as np import pandas as pd import os from collections import Counter from scipy.stats import hypergeom fdr_threshold = 0.05 def main(): os.makedirs('results/enrichment', exist_ok=True) os.makedirs('results/GO', exist_ok=True) # LOAD # single cell gene data all_gene_data = pd.read_csv('data/gene_lists/all-scRNA-data.csv') # normalised RPKM bulk data corrected for age, sex, etc bulk_data = pd.read_csv('data/processed_psychencode/PsychENCODE-prenatal-bulk-RPKM-data-scRNA-filtered-Winsor-log2-residualised.csv') # gene-wise correlation with PC components correlation_results = pd.read_csv('results/gene_correlations/PCA_correlations-KendallTau-residualisedRPKM.csv') # fetal background geneset = all filtered genes in bulk data background_genes = pd.read_csv('data/gene_lists/background_genes.txt', header=None)[0] print('number of background genes: {:}'.format(len(background_genes))) # get gene lists print('gathering gene lists') # genes differentially expressed by classes or categories, returning all genes, as well as those that are unique to each class # CELL TIMING: PRECURSOR OR MATURE cell_timing, cell_timing_genes, cell_timing_unique_genes = get_gene_lists(all_gene_data, background_genes, class_type='timing') # CELL CLASS cell_classes, cell_class_genes, cell_class_unique_genes = get_gene_lists(all_gene_data, background_genes, class_type='class') # CELL TYPE cell_types, cell_type_genes, cell_type_unique_genes = get_gene_lists(all_gene_data, background_genes, class_type='cluster_study') # get significant genes significant_genes = pd.read_csv('results/gene_correlations/PCA_correlations-KendallTau-PC-significant_genes-p' + str(fdr_threshold) + '.csv') # genes positively correlated to PC component positive_significant_genes_list = list(significant_genes.loc[significant_genes['PC1_tau']>0,'symbol']) # genes negatively correlated to PC component negative_significant_genes_list = list(significant_genes.loc[significant_genes['PC1_tau']<0,'symbol']) # ENRICHMENT print("cell enrichments") cell_timing_enrichment_results = run_enrichment(cell_timing, cell_timing_genes, cell_timing_unique_genes, positive_significant_genes_list, negative_significant_genes_list, background_genes) cell_timing_enrichment_results.to_csv('results/enrichment/cell_timing_enrichment-PC1-significant_genes-p' + str(fdr_threshold) + '.csv', index=False) print("see results/enrichment/cell_timing_enrichment-significant_genes-p" + str(fdr_threshold) + ".csv") cell_class_enrichment_results = run_enrichment(cell_classes, cell_class_genes, cell_class_unique_genes, positive_significant_genes_list, negative_significant_genes_list, background_genes) cell_class_enrichment_results.to_csv('results/enrichment/cell_class_enrichment-PC1-significant_genes-p' + str(fdr_threshold) + '.csv', index=False) print("see results/enrichment/cell_class_enrichment-significant_genes-p" + str(fdr_threshold) + ".csv") cell_type_enrichment_results = run_enrichment(cell_types, cell_type_genes, cell_type_unique_genes, positive_significant_genes_list, negative_significant_genes_list, background_genes) cell_type_enrichment_results.to_csv('results/enrichment/cell_type_enrichment-PC1-significant_genes-p' + str(fdr_threshold) + '.csv', index=False) print("see results/enrichment/cell_type_enrichment-significant_genes-p" + str(fdr_threshold) + ".csv") # save out lists for webgestalt np.savetxt('results/GO/positive_genes.txt', positive_significant_genes_list, fmt='%s') np.savetxt('results/GO/negative_genes.txt', negative_significant_genes_list, fmt='%s') ### HELPERS ############################################################################################## def get_gene_lists(data, background_genes, class_type='class'): # ALL GENES EXPRESSED IN A GIVEN CELL CLASS class_genes = [] classes = np.unique(data[class_type]) # remove neuron class if it's there (not split into excit. and inhib.), classes = list(set(classes) - set(['neuron'])) for cell_class in classes: # genes in cell class class_data = np.array(data.loc[data[class_type]==cell_class, 'gene'].values, dtype=str).reshape(-1) # only keep genes that are also present in bulk data class_data = class_data[pd.DataFrame(class_data).isin(list(background_genes)).values.reshape(-1)] class_genes.append(np.unique(class_data)) # ALL GENES *UNIQUELY* EXPRESSED IN A GIVEN CELL CLASS ctr = Counter(np.hstack(class_genes)) gene_count = pd.DataFrame([list(ctr.keys()), list(ctr.values())]).T repeat_genes = gene_count.loc[(gene_count[1]>1),0].values class_unique_genes = class_genes.copy() for n,cell_class in enumerate(classes): # remove shared class_unique_genes[n] = list(set(class_unique_genes[n])-set(repeat_genes)) return classes, class_genes, class_unique_genes def safe_div(x,y): if y == 0: return np.array([0]) return x / y def calculate_enrichment(hit_list, top_genes, full_gene_list): x = sum(pd.DataFrame(top_genes).isin(hit_list).values) # how many top genes in cell list n = sum(pd.DataFrame(hit_list).isin(full_gene_list).values)[0] # how many cell genes in full list N = len(top_genes) # number of samples M = len(full_gene_list) # total number in population enrichment = safe_div( (x/N) , ((n-x) / (M-N)) ) p = hypergeom.sf(x-1, M, n, N) return enrichment, p def run_enrichment(classes, gene_lists, unique_gene_lists, positive_genes, negative_genes, background_genes): enrichment_results = [] num_genes = [] # for each cell class/type for i in np.arange(len(classes)): # for full and unique gene lists for gl in [gene_lists, unique_gene_lists]: # as long as there are some genes if len(gl[i])>0: # calculate enrichment in the postively and negatively correlated lists for g in [positive_genes, negative_genes]: enrichment_results.append(calculate_enrichment(list(gl[i]), list(g), list(background_genes))) num_genes.append(len(gl[i])) # otherwise is nan else: for g in [positive_genes, negative_genes]: enrichment_results.append((np.array([np.nan]),np.array([np.nan]))) num_genes.append(np.array([0])) # collate into dataframe results = pd.DataFrame(np.hstack(enrichment_results).T) results.columns=['enrichment', 'p'] results['class'] = np.repeat(classes, 4) results['loading'] = ['positive', 'negative']*(len(classes)*2) results['gene_list'] = np.hstack([np.repeat(['all', 'unique'], 2)]*len(classes)) results['num_genes'] = np.squeeze(num_genes) results = results.loc[:,['class','loading','gene_list','num_genes','enrichment','p']] return results if __name__ == '__main__': main()
[ "scipy.stats.hypergeom.sf", "pandas.DataFrame", "os.makedirs", "pandas.read_csv", "numpy.savetxt", "numpy.hstack", "numpy.array", "numpy.squeeze", "numpy.unique", "numpy.repeat" ]
[((156, 204), 'os.makedirs', 'os.makedirs', (['"""results/enrichment"""'], {'exist_ok': '(True)'}), "('results/enrichment', exist_ok=True)\n", (167, 204), False, 'import os\n'), ((209, 249), 'os.makedirs', 'os.makedirs', (['"""results/GO"""'], {'exist_ok': '(True)'}), "('results/GO', exist_ok=True)\n", (220, 249), False, 'import os\n'), ((310, 359), 'pandas.read_csv', 'pd.read_csv', (['"""data/gene_lists/all-scRNA-data.csv"""'], {}), "('data/gene_lists/all-scRNA-data.csv')\n", (321, 359), True, 'import pandas as pd\n'), ((437, 568), 'pandas.read_csv', 'pd.read_csv', (['"""data/processed_psychencode/PsychENCODE-prenatal-bulk-RPKM-data-scRNA-filtered-Winsor-log2-residualised.csv"""'], {}), "(\n 'data/processed_psychencode/PsychENCODE-prenatal-bulk-RPKM-data-scRNA-filtered-Winsor-log2-residualised.csv'\n )\n", (448, 568), True, 'import pandas as pd\n'), ((633, 732), 'pandas.read_csv', 'pd.read_csv', (['"""results/gene_correlations/PCA_correlations-KendallTau-residualisedRPKM.csv"""'], {}), "(\n 'results/gene_correlations/PCA_correlations-KendallTau-residualisedRPKM.csv'\n )\n", (644, 732), True, 'import pandas as pd\n'), ((3544, 3634), 'numpy.savetxt', 'np.savetxt', (['"""results/GO/positive_genes.txt"""', 'positive_significant_genes_list'], {'fmt': '"""%s"""'}), "('results/GO/positive_genes.txt', positive_significant_genes_list,\n fmt='%s')\n", (3554, 3634), True, 'import numpy as np\n'), ((3635, 3725), 'numpy.savetxt', 'np.savetxt', (['"""results/GO/negative_genes.txt"""', 'negative_significant_genes_list'], {'fmt': '"""%s"""'}), "('results/GO/negative_genes.txt', negative_significant_genes_list,\n fmt='%s')\n", (3645, 3725), True, 'import numpy as np\n'), ((3977, 4004), 'numpy.unique', 'np.unique', (['data[class_type]'], {}), '(data[class_type])\n', (3986, 4004), True, 'import numpy as np\n'), ((5511, 5539), 'scipy.stats.hypergeom.sf', 'hypergeom.sf', (['(x - 1)', 'M', 'n', 'N'], {}), '(x - 1, M, n, N)\n', (5523, 5539), False, 'from scipy.stats import hypergeom\n'), ((6659, 6680), 'numpy.repeat', 'np.repeat', (['classes', '(4)'], {}), '(classes, 4)\n', (6668, 6680), True, 'import numpy as np\n'), ((6860, 6881), 'numpy.squeeze', 'np.squeeze', (['num_genes'], {}), '(num_genes)\n', (6870, 6881), True, 'import numpy as np\n'), ((812, 876), 'pandas.read_csv', 'pd.read_csv', (['"""data/gene_lists/background_genes.txt"""'], {'header': 'None'}), "('data/gene_lists/background_genes.txt', header=None)\n", (823, 876), True, 'import pandas as pd\n'), ((4598, 4620), 'numpy.hstack', 'np.hstack', (['class_genes'], {}), '(class_genes)\n', (4607, 4620), True, 'import numpy as np\n'), ((5056, 5069), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (5064, 5069), True, 'import numpy as np\n'), ((4497, 4518), 'numpy.unique', 'np.unique', (['class_data'], {}), '(class_data)\n', (4506, 4518), True, 'import numpy as np\n'), ((6563, 6592), 'numpy.hstack', 'np.hstack', (['enrichment_results'], {}), '(enrichment_results)\n', (6572, 6592), True, 'import numpy as np\n'), ((4216, 4292), 'numpy.array', 'np.array', (["data.loc[data[class_type] == cell_class, 'gene'].values"], {'dtype': 'str'}), "(data.loc[data[class_type] == cell_class, 'gene'].values, dtype=str)\n", (4224, 4292), True, 'import numpy as np\n'), ((6786, 6817), 'numpy.repeat', 'np.repeat', (["['all', 'unique']", '(2)'], {}), "(['all', 'unique'], 2)\n", (6795, 6817), True, 'import numpy as np\n'), ((5164, 5187), 'pandas.DataFrame', 'pd.DataFrame', (['top_genes'], {}), '(top_genes)\n', (5176, 5187), True, 'import pandas as pd\n'), ((5257, 5279), 'pandas.DataFrame', 'pd.DataFrame', (['hit_list'], {}), '(hit_list)\n', (5269, 5279), True, 'import pandas as pd\n'), ((6491, 6504), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (6499, 6504), True, 'import numpy as np\n'), ((6414, 6432), 'numpy.array', 'np.array', (['[np.nan]'], {}), '([np.nan])\n', (6422, 6432), True, 'import numpy as np\n'), ((6433, 6451), 'numpy.array', 'np.array', (['[np.nan]'], {}), '([np.nan])\n', (6441, 6451), True, 'import numpy as np\n'), ((4396, 4420), 'pandas.DataFrame', 'pd.DataFrame', (['class_data'], {}), '(class_data)\n', (4408, 4420), True, 'import pandas as pd\n')]
""" Mask R-CNN ------------------------------------------------------------ Usage: import the module (see Jupyter notebooks for examples), or run from the command line as such: # Train a new model starting from pre-trained COCO weights python3 auto.py train --dataset=/path/to/auto/dataset --weights=coco # Resume training a model that you had trained earlier python3 auto.py train --dataset=/path/to/auto/dataset --weights=last # Train a new model starting from ImageNet weights python3 auto.py train --dataset=/path/to/auto/dataset --weights=imagenet # Apply color overlay to an image python3 auto.py overlay --weights=/path/to/weights/file.h5 --image=<URL or path to file> # Apply color overlay to video using the last weights you trained python3 auto.py overlay --weights=last --video=<URL or path to file> """ import os import sys import datetime import enum import numpy as np import skimage.draw # Root directory of the project ROOT_DIR = os.path.abspath("../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import model as modellib, utils from math import isnan # Path to trained weights file COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") ############################################################ # Configurations ############################################################ #classchange class ClassName(enum.Enum): lane = 1 pedestrian = 2 vehicle = 3 sign_board = 4 street_light = 5 class AutoConfig(Config): """Configuration for training on the auto dataset. Derives from the base Config class and overrides some values. """ # Give the configuration a recognizable name NAME = "auto" # We use a GPU with 12GB memory, which can fit two images. # Adjust down if you use a smaller GPU. IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 5 # Background + 5 custom classes # Number of training steps per epoch STEPS_PER_EPOCH = 100 # Skip detections with < 90% confidence DETECTION_MIN_CONFIDENCE = 0.9 global dataset_dir ############################################################ # Dataset ############################################################ class AutoDataset(utils.Dataset): def load_auto(self, dataset_dir, subset): """Load a subset of the Auto dataset. dataset_dir: Root directory of the dataset. subset: Subset to load: train or val """ # Add classes. #classchange self.add_class("auto", 1, "lane") self.add_class("auto", 2, "pedestrian") self.add_class("auto", 3, "vehicle") self.add_class("auto", 4, "sign_board") self.add_class("auto", 5, "street_light") # Train or validation dataset? assert subset in ["train", "val"] dataset_dir = os.path.join(dataset_dir, subset) images = os.listdir(dataset_dir) for i in images: if i == ".directory": continue image_path = os.path.join(dataset_dir, i) image = skimage.io.imread(image_path) height, width = image.shape[:2] self.add_image( source='auto', image_id=i, # use file name as a unique image id path=image_path, width=width, height=height, ) def load_mask(self, image_id): """Generate instance masks for an image. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ info = self.image_info[image_id] mask_dir = os.path.join(dataset_dir, "../masks") image_path = os.path.join(mask_dir, str(info["id"])) image = skimage.io.imread(image_path) #classchange :start: lane = np.all(image == (0, 255, 0), axis=-1) pedestrian = np.all(image == (255, 0, 255), axis=-1) vehicle = np.all(image == (0, 255, 255), axis=-1) sign_board = np.all(image == (255, 0, 0), axis=-1) street_light = np.all(image == (255, 255, 0), axis=-1) mask = np.stack((lane, pedestrian, vehicle, sign_board, street_light), axis=2).astype(np.bool) class_ids = np.arange(1, 6).astype(np.int32) #classchange (includes background) #classchange :end: return mask, class_ids def train(model): """Train the model.""" # Training dataset. dataset_train = AutoDataset() dataset_train.load_auto(args.dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = AutoDataset() dataset_val.load_auto(args.dataset, "val") dataset_val.prepare() # *** This training schedule is an example. Update to your needs *** # Since we're using a very small dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train all layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=30, layers='heads') def color_overlay(image, mask, class_ids): """Apply color overlay. image: RGB image [height, width, 3] mask: segmentation mask [height, width, #classes] Returns result image. """ overlayed = image print("Found classes: ", [ClassName(class_id).name for class_id in class_ids]) if mask.shape[-1] > 0: for i in range(mask.shape[-1]): m = mask[:, :, i] m = np.stack((m, m, m), axis=2) # classchange if class_ids[i] == 1: overlayed = np.where(m, (115, 255, 115), overlayed).astype(np.uint8) elif class_ids[i] == 2: overlayed = np.where(m, (255, 115, 255), overlayed).astype(np.uint8) elif class_ids[i] == 3: overlayed = np.where(m, (115, 255, 255), overlayed).astype(np.uint8) elif class_ids[i] == 4: overlayed = np.where(m, (255, 115, 115), overlayed).astype(np.uint8) elif class_ids[i] == 5: overlayed = np.where(m, (255, 255, 115), overlayed).astype(np.uint8) else: overlayed = overlayed.astype(np.uint8) return overlayed def detect_and_overlay(model, image_path=None, video_path=None): assert image_path or video_path # Image or video? if image_path: # Run model detection and generate the color overlay print("Running on {}".format(args.image)) # Read image image = skimage.io.imread(args.image) # Convert grayscale images to 3D if len(image.shape) == 2: image = np.stack((image, image, image), axis=2) # Detect objects r = model.detect([image], verbose=1)[0] # Color overlay overlay = color_overlay(image, r['masks'], r['class_ids']) # Save output file_name = "overlay_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) skimage.io.imsave(file_name, overlay) elif video_path: import cv2 # Video capture vcapture = cv2.VideoCapture(video_path) width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(cv2.CAP_PROP_FPS) # Define codec and create video writer file_name = "overlay_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True while success: print("frame: ", count) # Read next image success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color overlay overlay = color_overlay(image, r['masks'], r['class_ids']) # RGB -> BGR to save image to video overlay = overlay[..., ::-1] # Add image to video writer vwriter.write(overlay) count += 1 vwriter.release() print("Saved to ", file_name) ############################################################ # Evaluate ############################################################ def get_mask(image, mask, class_ids): """Apply color overlay. image: RGB image [height, width, 3] mask: instance segmentation mask [height, width, instance count] Returns result image. """ overlay = image pd_mask = np.zeros([overlay.shape[0], overlay.shape[1], 5], dtype=np.uint8) #classchange if mask.shape[-1] > 0: for i in range(mask.shape[-1]): m = mask[:, :, i:i+1] pd_mask[:,:,class_ids[i]-1:class_ids[i]] = np.where(m, True, pd_mask[:,:,class_ids[i]-1:class_ids[i]]).astype(np.uint8) ############## For visualizing mask ############## # pd_mask = np.zeros([overlay.shape[0], overlay.shape[1], 3], dtype=np.uint8) # if mask.shape[-1] > 0: # for i in range(mask.shape[-1]): # m = mask[:, :, i] # m = np.stack((m, m, m), axis=2) # #classchange # if class_ids[i] == 1: # pd_mask = np.where(m, (0, 255, 0), pd_mask).astype(np.uint8) # elif class_ids[i] == 2: # pd_mask = np.where(m, (255, 0, 255), pd_mask).astype(np.uint8) # elif class_ids[i] == 3: # pd_mask = np.where(m, (0, 255, 255), pd_mask).astype(np.uint8) # elif class_ids[i] == 4: # pd_mask = np.where(m, (255, 0, 0), pd_mask).astype(np.uint8) # elif class_ids[i] == 5: # pd_mask = np.where(m, (255, 255, 0), pd_mask).astype(np.uint8) ################################################# return pd_mask def evaluate(model, dataset, limit=0, image_ids=None): """Evaluates a set of data for IOU scores. dataset: A Dataset object with validation data limit: if not 0, it's the number of images to use for evaluation """ # Pick COCO images from the dataset image_ids = image_ids or dataset.image_ids # Limit to a subset if limit: image_ids = image_ids[:limit] import time t_prediction = 0 t_start = time.time() results = [] total_iou_score = 0 total_class_iou = np.zeros(5) #classchange for i, image_id in enumerate(image_ids): # Load image image = dataset.load_image(image_id) gt_mask, class_ids = dataset.load_mask(image_id) # Run detection t = time.time() r = model.detect([image], verbose=0)[0] t_prediction += (time.time() - t) ################ Save predicted images ############## # Color overlay overlay = color_overlay(image, r['masks'], r['class_ids']) # Save output file_name = "overlay_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) skimage.io.imsave("dataset/images/predicted/" + file_name, overlay) ##################################################### pd_mask = get_mask(image, r['masks'], r['class_ids']) intersection = np.logical_and(gt_mask, pd_mask) union = np.logical_or(gt_mask, pd_mask) iou_score = np.sum(intersection) / np.sum(union) total_iou_score += iou_score class_iou = np.zeros(5) #classchange for j in range(5): #classchange inter = np.logical_and(gt_mask[:,:,j], pd_mask[:,:,j]) un = np.logical_or(gt_mask[:,:,j], pd_mask[:,:,j]) class_iou[j] = np.sum(inter) / np.sum(un) if not isnan(class_iou[j]): total_class_iou[j] += class_iou[j] class_names = [ClassName(class_id).name for class_id in class_ids] print(f"Class IOU scores") for j in range(5): #classchange print(class_names[j].ljust(14) + ": " + str(class_iou[j])) print(f"IOU score for {image_id} = {iou_score}") print("".ljust(50,'-')) results.extend((image_id, iou_score)) print("IOUs = ", results) print() print("".ljust(50,'-')) class_names = [ClassName(class_id).name for class_id in class_ids] print(f"Average Class IOU scores") for j in range(5): #classchange print(class_names[j].ljust(14) + ": " + str((total_class_iou[j]/len(image_ids)))) print(f"------ Average IOU score = {total_iou_score/len(image_ids)} ------\n".ljust(50,'-')) print("Prediction time: {}. \nAverage time: {}/image".format( t_prediction, t_prediction / len(image_ids))) print("Total time: ", time.time() - t_start) ############################################################ # Training ############################################################ if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN to detect classes for autonomous driving.') parser.add_argument("command", metavar="<command>", help="'train' or 'overlay'") parser.add_argument('--dataset', required=False, metavar="/path/to/auto/dataset/", help='Directory of the required dataset') parser.add_argument('--weights', required=True, metavar="/path/to/weights.h5", help="Path to weights .h5 file or 'coco'") parser.add_argument('--logs', required=False, default=DEFAULT_LOGS_DIR, metavar="/path/to/logs/", help='Logs and checkpoints directory (default=logs/)') parser.add_argument('--image', required=False, metavar="path or URL to image", help='Image to apply the color overlay on') parser.add_argument('--video', required=False, metavar="path or URL to video", help='Video to apply the color overlay on') args = parser.parse_args() # Validate arguments if args.command == "train": assert args.dataset, "Argument --dataset is required for training" elif args.command == "overlay": assert args.image or args.video, \ "Provide --image or --video to apply color overlay" print("Weights: ", args.weights) print("Dataset: ", args.dataset) print("Logs: ", args.logs) dataset_dir = args.dataset # Configurations if args.command == "train": config = AutoConfig() else: class InferenceConfig(AutoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() # Create model if args.command == "train": model = modellib.MaskRCNN(mode="training", config=config, model_dir=args.logs) else: model = modellib.MaskRCNN(mode="inference", config=config, model_dir=args.logs) # Select weights file to load if args.weights.lower() == "coco": weights_path = COCO_WEIGHTS_PATH # Download weights file if not os.path.exists(weights_path): utils.download_trained_weights(weights_path) elif args.weights.lower() == "last": # Find last trained weights weights_path = model.find_last() elif args.weights.lower() == "imagenet": # Start from ImageNet trained weights weights_path = model.get_imagenet_weights() else: weights_path = args.weights # Load weights print("Loading weights ", weights_path) if args.weights.lower() == "coco": # Exclude the last layers because they require a matching # number of classes model.load_weights(weights_path, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) else: model.load_weights(weights_path, by_name=True) # Train or evaluate if args.command == "train": train(model) elif args.command == "overlay": detect_and_overlay(model, image_path=args.image, video_path=args.video) elif args.command == "evaluate": # Validation dataset dataset_val = AutoDataset() dataset_val.load_auto(args.dataset, "val") dataset_val.prepare() # print("Running COCO evaluation on {} images.".format(args.limit)) evaluate(model, dataset_val) else: print("'{}' is not recognized. " "Use 'train' or 'overlay'".format(args.command))
[ "numpy.sum", "argparse.ArgumentParser", "cv2.VideoWriter_fourcc", "numpy.arange", "mrcnn.model.MaskRCNN", "os.path.join", "sys.path.append", "mrcnn.utils.download_trained_weights", "os.path.abspath", "os.path.exists", "datetime.datetime.now", "numpy.stack", "math.isnan", "os.listdir", "numpy.all", "numpy.logical_and", "numpy.zeros", "time.time", "cv2.VideoCapture", "numpy.where", "numpy.logical_or" ]
[((1002, 1024), 'os.path.abspath', 'os.path.abspath', (['"""../"""'], {}), "('../')\n", (1017, 1024), False, 'import os\n'), ((1045, 1070), 'sys.path.append', 'sys.path.append', (['ROOT_DIR'], {}), '(ROOT_DIR)\n', (1060, 1070), False, 'import sys\n'), ((1262, 1305), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""mask_rcnn_coco.h5"""'], {}), "(ROOT_DIR, 'mask_rcnn_coco.h5')\n", (1274, 1305), False, 'import os\n'), ((1433, 1463), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""logs"""'], {}), "(ROOT_DIR, 'logs')\n", (1445, 1463), False, 'import os\n'), ((9139, 9204), 'numpy.zeros', 'np.zeros', (['[overlay.shape[0], overlay.shape[1], 5]'], {'dtype': 'np.uint8'}), '([overlay.shape[0], overlay.shape[1], 5], dtype=np.uint8)\n', (9147, 9204), True, 'import numpy as np\n'), ((10876, 10887), 'time.time', 'time.time', ([], {}), '()\n', (10885, 10887), False, 'import time\n'), ((10952, 10963), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (10960, 10963), True, 'import numpy as np\n'), ((13476, 13578), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Train Mask R-CNN to detect classes for autonomous driving."""'}), "(description=\n 'Train Mask R-CNN to detect classes for autonomous driving.')\n", (13499, 13578), False, 'import argparse\n'), ((3112, 3145), 'os.path.join', 'os.path.join', (['dataset_dir', 'subset'], {}), '(dataset_dir, subset)\n', (3124, 3145), False, 'import os\n'), ((3163, 3186), 'os.listdir', 'os.listdir', (['dataset_dir'], {}), '(dataset_dir)\n', (3173, 3186), False, 'import os\n'), ((3987, 4024), 'os.path.join', 'os.path.join', (['dataset_dir', '"""../masks"""'], {}), "(dataset_dir, '../masks')\n", (3999, 4024), False, 'import os\n'), ((4177, 4214), 'numpy.all', 'np.all', (['(image == (0, 255, 0))'], {'axis': '(-1)'}), '(image == (0, 255, 0), axis=-1)\n', (4183, 4214), True, 'import numpy as np\n'), ((4236, 4275), 'numpy.all', 'np.all', (['(image == (255, 0, 255))'], {'axis': '(-1)'}), '(image == (255, 0, 255), axis=-1)\n', (4242, 4275), True, 'import numpy as np\n'), ((4294, 4333), 'numpy.all', 'np.all', (['(image == (0, 255, 255))'], {'axis': '(-1)'}), '(image == (0, 255, 255), axis=-1)\n', (4300, 4333), True, 'import numpy as np\n'), ((4355, 4392), 'numpy.all', 'np.all', (['(image == (255, 0, 0))'], {'axis': '(-1)'}), '(image == (255, 0, 0), axis=-1)\n', (4361, 4392), True, 'import numpy as np\n'), ((4416, 4455), 'numpy.all', 'np.all', (['(image == (255, 255, 0))'], {'axis': '(-1)'}), '(image == (255, 255, 0), axis=-1)\n', (4422, 4455), True, 'import numpy as np\n'), ((11184, 11195), 'time.time', 'time.time', ([], {}), '()\n', (11193, 11195), False, 'import time\n'), ((11770, 11802), 'numpy.logical_and', 'np.logical_and', (['gt_mask', 'pd_mask'], {}), '(gt_mask, pd_mask)\n', (11784, 11802), True, 'import numpy as np\n'), ((11819, 11850), 'numpy.logical_or', 'np.logical_or', (['gt_mask', 'pd_mask'], {}), '(gt_mask, pd_mask)\n', (11832, 11850), True, 'import numpy as np\n'), ((11966, 11977), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (11974, 11977), True, 'import numpy as np\n'), ((15554, 15624), 'mrcnn.model.MaskRCNN', 'modellib.MaskRCNN', ([], {'mode': '"""training"""', 'config': 'config', 'model_dir': 'args.logs'}), "(mode='training', config=config, model_dir=args.logs)\n", (15571, 15624), True, 'from mrcnn import model as modellib, utils\n'), ((15685, 15756), 'mrcnn.model.MaskRCNN', 'modellib.MaskRCNN', ([], {'mode': '"""inference"""', 'config': 'config', 'model_dir': 'args.logs'}), "(mode='inference', config=config, model_dir=args.logs)\n", (15702, 15756), True, 'from mrcnn import model as modellib, utils\n'), ((3297, 3325), 'os.path.join', 'os.path.join', (['dataset_dir', 'i'], {}), '(dataset_dir, i)\n', (3309, 3325), False, 'import os\n'), ((5903, 5930), 'numpy.stack', 'np.stack', (['(m, m, m)'], {'axis': '(2)'}), '((m, m, m), axis=2)\n', (5911, 5930), True, 'import numpy as np\n'), ((7056, 7095), 'numpy.stack', 'np.stack', (['(image, image, image)'], {'axis': '(2)'}), '((image, image, image), axis=2)\n', (7064, 7095), True, 'import numpy as np\n'), ((7342, 7365), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (7363, 7365), False, 'import datetime\n'), ((7496, 7524), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_path'], {}), '(video_path)\n', (7512, 7524), False, 'import cv2\n'), ((11269, 11280), 'time.time', 'time.time', ([], {}), '()\n', (11278, 11280), False, 'import time\n'), ((11520, 11543), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11541, 11543), False, 'import datetime\n'), ((11871, 11891), 'numpy.sum', 'np.sum', (['intersection'], {}), '(intersection)\n', (11877, 11891), True, 'import numpy as np\n'), ((11894, 11907), 'numpy.sum', 'np.sum', (['union'], {}), '(union)\n', (11900, 11907), True, 'import numpy as np\n'), ((12052, 12102), 'numpy.logical_and', 'np.logical_and', (['gt_mask[:, :, j]', 'pd_mask[:, :, j]'], {}), '(gt_mask[:, :, j], pd_mask[:, :, j])\n', (12066, 12102), True, 'import numpy as np\n'), ((12116, 12165), 'numpy.logical_or', 'np.logical_or', (['gt_mask[:, :, j]', 'pd_mask[:, :, j]'], {}), '(gt_mask[:, :, j], pd_mask[:, :, j])\n', (12129, 12165), True, 'import numpy as np\n'), ((13220, 13231), 'time.time', 'time.time', ([], {}), '()\n', (13229, 13231), False, 'import time\n'), ((15953, 15981), 'os.path.exists', 'os.path.exists', (['weights_path'], {}), '(weights_path)\n', (15967, 15981), False, 'import os\n'), ((15995, 16039), 'mrcnn.utils.download_trained_weights', 'utils.download_trained_weights', (['weights_path'], {}), '(weights_path)\n', (16025, 16039), False, 'from mrcnn import model as modellib, utils\n'), ((4472, 4543), 'numpy.stack', 'np.stack', (['(lane, pedestrian, vehicle, sign_board, street_light)'], {'axis': '(2)'}), '((lane, pedestrian, vehicle, sign_board, street_light), axis=2)\n', (4480, 4543), True, 'import numpy as np\n'), ((4580, 4595), 'numpy.arange', 'np.arange', (['(1)', '(6)'], {}), '(1, 6)\n', (4589, 4595), True, 'import numpy as np\n'), ((7798, 7821), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (7819, 7821), False, 'import datetime\n'), ((7902, 7933), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'MJPG'"], {}), "(*'MJPG')\n", (7924, 7933), False, 'import cv2\n'), ((12189, 12202), 'numpy.sum', 'np.sum', (['inter'], {}), '(inter)\n', (12195, 12202), True, 'import numpy as np\n'), ((12205, 12215), 'numpy.sum', 'np.sum', (['un'], {}), '(un)\n', (12211, 12215), True, 'import numpy as np\n'), ((12235, 12254), 'math.isnan', 'isnan', (['class_iou[j]'], {}), '(class_iou[j])\n', (12240, 12254), False, 'from math import isnan\n'), ((9375, 9438), 'numpy.where', 'np.where', (['m', '(True)', 'pd_mask[:, :, class_ids[i] - 1:class_ids[i]]'], {}), '(m, True, pd_mask[:, :, class_ids[i] - 1:class_ids[i]])\n', (9383, 9438), True, 'import numpy as np\n'), ((6019, 6058), 'numpy.where', 'np.where', (['m', '(115, 255, 115)', 'overlayed'], {}), '(m, (115, 255, 115), overlayed)\n', (6027, 6058), True, 'import numpy as np\n'), ((6140, 6179), 'numpy.where', 'np.where', (['m', '(255, 115, 255)', 'overlayed'], {}), '(m, (255, 115, 255), overlayed)\n', (6148, 6179), True, 'import numpy as np\n'), ((6261, 6300), 'numpy.where', 'np.where', (['m', '(115, 255, 255)', 'overlayed'], {}), '(m, (115, 255, 255), overlayed)\n', (6269, 6300), True, 'import numpy as np\n'), ((6382, 6421), 'numpy.where', 'np.where', (['m', '(255, 115, 115)', 'overlayed'], {}), '(m, (255, 115, 115), overlayed)\n', (6390, 6421), True, 'import numpy as np\n'), ((6503, 6542), 'numpy.where', 'np.where', (['m', '(255, 255, 115)', 'overlayed'], {}), '(m, (255, 255, 115), overlayed)\n', (6511, 6542), True, 'import numpy as np\n')]
import cv2 import numpy as np from skimage.viewer import ImageViewer def remove_rows(image, rows, cols): newrows = int(rows / 2) newimg = np.zeros((newrows, cols), np.uint8) for r in range(1, newrows + 1): newimg[r - 1:r, :] = image[r * 2 - 1:r * 2, :] return newimg img = cv2.imread('pirate.jpg', cv2.IMREAD_GRAYSCALE) print(img.shape) img = remove_rows(img, img.shape[0], img.shape[1]) viewer = ImageViewer(img) viewer.show()
[ "cv2.imread", "skimage.viewer.ImageViewer", "numpy.zeros" ]
[((301, 347), 'cv2.imread', 'cv2.imread', (['"""pirate.jpg"""', 'cv2.IMREAD_GRAYSCALE'], {}), "('pirate.jpg', cv2.IMREAD_GRAYSCALE)\n", (311, 347), False, 'import cv2\n'), ((426, 442), 'skimage.viewer.ImageViewer', 'ImageViewer', (['img'], {}), '(img)\n', (437, 442), False, 'from skimage.viewer import ImageViewer\n'), ((148, 183), 'numpy.zeros', 'np.zeros', (['(newrows, cols)', 'np.uint8'], {}), '((newrows, cols), np.uint8)\n', (156, 183), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as p import numpy as n import pylab import scipy.stats as stats import networkx as nwx import glob import builtins from matplotlib.pyplot import margins import os.path import json from sklearn import svm, cross_validation, datasets def classify(data, cls): y = data[0, :] X = data[1:, :] if(cls == 'svm'): model = svm.SVC(kernel='linear'); X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) # split the data 80/20 for path in sorted(glob.glob('motive.*.csv')): data = n.genfromtxt(path, delimiter=',') svmresult = classify(data, 'svm') for path in sorted(glob.glob('motive.*.csv')): data = n.genfromtxt(path, delimiter=',') svmresult = classify(data, 'svm') ax = p.subplot(111) ax.plot(data[:, :], alpha=0.5) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(True) ax.spines["left"].set_visible(True) ax.get_xaxis().set_tick_params(which='both', top='off') ax.set_xlabel('iterations') ax.set_ylabel('perturbation') p.savefig('am.perturbation.png')
[ "matplotlib.pyplot.subplot", "sklearn.cross_validation.train_test_split", "sklearn.svm.SVC", "numpy.genfromtxt", "matplotlib.use", "glob.glob", "matplotlib.pyplot.savefig" ]
[((50, 64), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (57, 64), True, 'import matplotlib as mpl\n'), ((870, 884), 'matplotlib.pyplot.subplot', 'p.subplot', (['(111)'], {}), '(111)\n', (879, 884), True, 'import matplotlib.pyplot as p\n'), ((1182, 1214), 'matplotlib.pyplot.savefig', 'p.savefig', (['"""am.perturbation.png"""'], {}), "('am.perturbation.png')\n", (1191, 1214), True, 'import matplotlib.pyplot as p\n'), ((618, 643), 'glob.glob', 'glob.glob', (['"""motive.*.csv"""'], {}), "('motive.*.csv')\n", (627, 643), False, 'import glob\n'), ((657, 690), 'numpy.genfromtxt', 'n.genfromtxt', (['path'], {'delimiter': '""","""'}), "(path, delimiter=',')\n", (669, 690), True, 'import numpy as n\n'), ((749, 774), 'glob.glob', 'glob.glob', (['"""motive.*.csv"""'], {}), "('motive.*.csv')\n", (758, 774), False, 'import glob\n'), ((788, 821), 'numpy.genfromtxt', 'n.genfromtxt', (['path'], {'delimiter': '""","""'}), "(path, delimiter=',')\n", (800, 821), True, 'import numpy as n\n'), ((433, 457), 'sklearn.svm.SVC', 'svm.SVC', ([], {'kernel': '"""linear"""'}), "(kernel='linear')\n", (440, 457), False, 'from sklearn import svm, cross_validation, datasets\n'), ((502, 556), 'sklearn.cross_validation.train_test_split', 'cross_validation.train_test_split', (['X', 'y'], {'test_size': '(0.2)'}), '(X, y, test_size=0.2)\n', (535, 556), False, 'from sklearn import svm, cross_validation, datasets\n')]
# MIT License. # Copyright (c) 2021 by BioicDL. All rights reserved. # Created by LiuXb on 2021/1/5 # -*- coding:utf-8 -*- """ @Modified: @Description: """ import time import cv2 import numpy as np class BackgroundDetector(object): def __init__(self): self.fgmask = None self.fgbg = None def diffGround(self, groundImg, currrentImg, img_threshold=10, show_mask=False): """ generate mask from a background image""" # transfer to gray image groundImg_gray = cv2.cvtColor(groundImg, cv2.COLOR_BGR2GRAY) groundBlur = cv2.GaussianBlur(groundImg_gray, (3, 3), 1) groundBlur.dtype = 'int16' currrentImg_gray = cv2.cvtColor(currrentImg, cv2.COLOR_BGR2GRAY) currrentImgBlur = cv2.GaussianBlur(currrentImg_gray, (3, 3), 1) currrentImgBlur.dtype = 'int16' # subtraction dGrayBlur = abs(groundBlur-currrentImgBlur) dGrayBlur.dtype = 'uint8' dGrayMidBlur = cv2.medianBlur(dGrayBlur, 5) ret, thresh = cv2.threshold(dGrayMidBlur, img_threshold, 255, cv2.THRESH_BINARY) if show_mask: cv2.imshow('diff img', dGrayMidBlur) cv2.imshow('binary img from diff', thresh) cv2.waitKey() return thresh def filterColor(self, currrentImg, lower=np.array([10, 20, 0]), upper=np.array([60, 80, 40]), show_result=False): """ BGR channels""" mask = cv2.inRange(currrentImg, lower, upper) mask = cv2.bitwise_not(mask) if show_result: cv2.imshow('binary img from color', mask) cv2.waitKey() return mask def multiFrameLoader(self, ref_video='outpy.avi', ref_num=500, mog_threshold=20): """ load background video""" cap = cv2.VideoCapture(ref_video) self.fgbg = cv2.createBackgroundSubtractorMOG2(history=ref_num, detectShadows=True, varThreshold=mog_threshold) cnt = 0 while (cnt < ref_num): ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) self.fgmask = self.fgbg.apply(gray) # self.fgmask = cv2.medianBlur(self.fgmask, 5) def multiFrameFilter(self, color_img, show_mask=False): """ create Gaussian Mixture Model from multi images as background""" gray = cv2.cvtColor(color_img, cv2.COLOR_BGR2GRAY) mask = self.fgbg.apply(gray, self.fgmask, 0) # median filter mask = cv2.medianBlur(mask, 5) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.dilate(mask, kernel) mask = cv2.erode(mask, kernel, iterations=1) if show_mask: cv2.imshow('binary img from mog', mask) cv2.waitKey() return mask def grabCut_rect(self, color_img, rect=[200, 0, 900, 720]): """ rect = [col_min, row_min, col_max, row_max]""" mask = np.zeros(color_img.shape[:2], np.uint8) bgdModel = np.zeros((1, 65), np.float64) fgdModel = np.zeros((1, 65), np.float64) # rect = (200, 0, 900, 720) cv2.grabCut(color_img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8') return mask2 def grabCut_mask(self, color_img, mask): # wherever it is marked white (sure foreground), change mask=1 # wherever it is marked black (sure background), change mask=0 mask[mask == 0] = 0 mask[mask != 0] = 1 bgdModel = np.zeros((1, 65), np.float64) fgdModel = np.zeros((1, 65), np.float64) mask, bgdModel, fgdModel = cv2.grabCut(color_img, mask, None, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_MASK) mask = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8') return mask def getConnectedDomain(self, binary_img, connectivity=4, region_area=1000, show_label=False): """ obtain connected domain""" num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_img, connectivity, cv2.CV_32S) # delete small regions label_index = [] for i in range(num_labels): if stats[i][4] < region_area: labels[labels == i] = 0 else: label_index.append(i) # Map component labels to hue val, 0-179 is the hue range in OpenCV if np.max(labels) == 0: label_hue = np.uint8(labels) else: label_hue = np.uint8(179*labels/np.max(labels)) blank_ch = 255*np.ones_like(label_hue) labeled_img = cv2.merge([label_hue, blank_ch, blank_ch]) # Converting cvt to BGR labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR) # set bg label to black labeled_img[label_hue == 0] = 0 if show_label: cv2.imshow('color labels', labeled_img) cv2.waitKey() return labels, label_index, labeled_img def getConvexHull(self, img, show_convex=False): # convex hull result = cv2.findContours(np.uint8(img), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # contour: if hierarchy[0][i][3] == -1, it means there are contours inside # len(contours[i] is the num of the contour contours = [] if len(result) == 2: contours = result[0] hierarchy = result[1] elif len(result) == 3: contours = result[1] hierarchy = result[2] hull = [] for i in range(len(contours)): # creating convex hull object for each contour hull.append(cv2.convexHull(contours[i], False)) if show_convex: # create an empty black image drawing = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) # draw contours and hull points for i in range(len(contours)): color_contours = (0, 255, 0) # green - color for contours color = (255, 0, 0) # blue - color for convex hull # draw ith contour cv2.drawContours(drawing, contours, i, color_contours, 1, 8, hierarchy) # draw ith convex hull object cv2.drawContours(drawing, hull, i, color, 1, 8) cv2.imshow('convex', drawing) cv2.waitKey() return hull if __name__ == '__main__': from deepclaw.driver.sensors.camera.Realsense_L515 import Realsense camera = Realsense('./configs/basic_config/camera_rs_d435_c1.yaml') frame = camera.get_frame() color = frame.color_image[0] time.sleep(1) frame = camera.get_frame() color = frame.color_image[0] save_ref_img = False if save_ref_img: cv2.imwrite('./projects/ICRA2020/ref_img.jpg', color) refImg = cv2.imread('./projects/ICRA2020/ref_img.jpg') cv2.imshow("a", refImg) cv2.waitKey() bd_test = BackgroundDetector() # generate mask # thresh = bd_test.diffGround(refImg, color, img_threshold=20, show_mask=True) thresh = bd_test.filterColor(color, show_result=True) # bd_test.multiFrameLoader(ref_video='d435qi_v40.avi', ref_num=500, mog_threshold=16) # thresh = bd_test.multiFrameFilter(color, show_mask=True) labels, labels_index, color_labels = bd_test.getConnectedDomain(thresh, show_label=True, region_area=2000) hul = bd_test.getConvexHull(labels, show_convex=True)
[ "cv2.GaussianBlur", "cv2.medianBlur", "deepclaw.driver.sensors.camera.Realsense_L515.Realsense", "cv2.erode", "cv2.imshow", "cv2.inRange", "cv2.dilate", "cv2.cvtColor", "cv2.imwrite", "numpy.max", "cv2.drawContours", "numpy.uint8", "cv2.bitwise_not", "numpy.ones_like", "cv2.waitKey", "time.sleep", "cv2.connectedComponentsWithStats", "cv2.convexHull", "cv2.merge", "cv2.grabCut", "cv2.createBackgroundSubtractorMOG2", "cv2.getStructuringElement", "cv2.threshold", "numpy.zeros", "cv2.VideoCapture", "cv2.imread", "numpy.where", "numpy.array" ]
[((6489, 6547), 'deepclaw.driver.sensors.camera.Realsense_L515.Realsense', 'Realsense', (['"""./configs/basic_config/camera_rs_d435_c1.yaml"""'], {}), "('./configs/basic_config/camera_rs_d435_c1.yaml')\n", (6498, 6547), False, 'from deepclaw.driver.sensors.camera.Realsense_L515 import Realsense\n'), ((6616, 6629), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (6626, 6629), False, 'import time\n'), ((6816, 6861), 'cv2.imread', 'cv2.imread', (['"""./projects/ICRA2020/ref_img.jpg"""'], {}), "('./projects/ICRA2020/ref_img.jpg')\n", (6826, 6861), False, 'import cv2\n'), ((6866, 6889), 'cv2.imshow', 'cv2.imshow', (['"""a"""', 'refImg'], {}), "('a', refImg)\n", (6876, 6889), False, 'import cv2\n'), ((6894, 6907), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (6905, 6907), False, 'import cv2\n'), ((510, 553), 'cv2.cvtColor', 'cv2.cvtColor', (['groundImg', 'cv2.COLOR_BGR2GRAY'], {}), '(groundImg, cv2.COLOR_BGR2GRAY)\n', (522, 553), False, 'import cv2\n'), ((575, 618), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['groundImg_gray', '(3, 3)', '(1)'], {}), '(groundImg_gray, (3, 3), 1)\n', (591, 618), False, 'import cv2\n'), ((681, 726), 'cv2.cvtColor', 'cv2.cvtColor', (['currrentImg', 'cv2.COLOR_BGR2GRAY'], {}), '(currrentImg, cv2.COLOR_BGR2GRAY)\n', (693, 726), False, 'import cv2\n'), ((753, 798), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['currrentImg_gray', '(3, 3)', '(1)'], {}), '(currrentImg_gray, (3, 3), 1)\n', (769, 798), False, 'import cv2\n'), ((970, 998), 'cv2.medianBlur', 'cv2.medianBlur', (['dGrayBlur', '(5)'], {}), '(dGrayBlur, 5)\n', (984, 998), False, 'import cv2\n'), ((1022, 1088), 'cv2.threshold', 'cv2.threshold', (['dGrayMidBlur', 'img_threshold', '(255)', 'cv2.THRESH_BINARY'], {}), '(dGrayMidBlur, img_threshold, 255, cv2.THRESH_BINARY)\n', (1035, 1088), False, 'import cv2\n'), ((1309, 1330), 'numpy.array', 'np.array', (['[10, 20, 0]'], {}), '([10, 20, 0])\n', (1317, 1330), True, 'import numpy as np\n'), ((1338, 1360), 'numpy.array', 'np.array', (['[60, 80, 40]'], {}), '([60, 80, 40])\n', (1346, 1360), True, 'import numpy as np\n'), ((1425, 1463), 'cv2.inRange', 'cv2.inRange', (['currrentImg', 'lower', 'upper'], {}), '(currrentImg, lower, upper)\n', (1436, 1463), False, 'import cv2\n'), ((1479, 1500), 'cv2.bitwise_not', 'cv2.bitwise_not', (['mask'], {}), '(mask)\n', (1494, 1500), False, 'import cv2\n'), ((1763, 1790), 'cv2.VideoCapture', 'cv2.VideoCapture', (['ref_video'], {}), '(ref_video)\n', (1779, 1790), False, 'import cv2\n'), ((1811, 1914), 'cv2.createBackgroundSubtractorMOG2', 'cv2.createBackgroundSubtractorMOG2', ([], {'history': 'ref_num', 'detectShadows': '(True)', 'varThreshold': 'mog_threshold'}), '(history=ref_num, detectShadows=True,\n varThreshold=mog_threshold)\n', (1845, 1914), False, 'import cv2\n'), ((2359, 2402), 'cv2.cvtColor', 'cv2.cvtColor', (['color_img', 'cv2.COLOR_BGR2GRAY'], {}), '(color_img, cv2.COLOR_BGR2GRAY)\n', (2371, 2402), False, 'import cv2\n'), ((2495, 2518), 'cv2.medianBlur', 'cv2.medianBlur', (['mask', '(5)'], {}), '(mask, 5)\n', (2509, 2518), False, 'import cv2\n'), ((2536, 2585), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(5, 5)'], {}), '(cv2.MORPH_RECT, (5, 5))\n', (2561, 2585), False, 'import cv2\n'), ((2601, 2625), 'cv2.dilate', 'cv2.dilate', (['mask', 'kernel'], {}), '(mask, kernel)\n', (2611, 2625), False, 'import cv2\n'), ((2641, 2678), 'cv2.erode', 'cv2.erode', (['mask', 'kernel'], {'iterations': '(1)'}), '(mask, kernel, iterations=1)\n', (2650, 2678), False, 'import cv2\n'), ((2939, 2978), 'numpy.zeros', 'np.zeros', (['color_img.shape[:2]', 'np.uint8'], {}), '(color_img.shape[:2], np.uint8)\n', (2947, 2978), True, 'import numpy as np\n'), ((2998, 3027), 'numpy.zeros', 'np.zeros', (['(1, 65)', 'np.float64'], {}), '((1, 65), np.float64)\n', (3006, 3027), True, 'import numpy as np\n'), ((3047, 3076), 'numpy.zeros', 'np.zeros', (['(1, 65)', 'np.float64'], {}), '((1, 65), np.float64)\n', (3055, 3076), True, 'import numpy as np\n'), ((3121, 3206), 'cv2.grabCut', 'cv2.grabCut', (['color_img', 'mask', 'rect', 'bgdModel', 'fgdModel', '(5)', 'cv2.GC_INIT_WITH_RECT'], {}), '(color_img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT\n )\n', (3132, 3206), False, 'import cv2\n'), ((3560, 3589), 'numpy.zeros', 'np.zeros', (['(1, 65)', 'np.float64'], {}), '((1, 65), np.float64)\n', (3568, 3589), True, 'import numpy as np\n'), ((3609, 3638), 'numpy.zeros', 'np.zeros', (['(1, 65)', 'np.float64'], {}), '((1, 65), np.float64)\n', (3617, 3638), True, 'import numpy as np\n'), ((3674, 3759), 'cv2.grabCut', 'cv2.grabCut', (['color_img', 'mask', 'None', 'bgdModel', 'fgdModel', '(5)', 'cv2.GC_INIT_WITH_MASK'], {}), '(color_img, mask, None, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_MASK\n )\n', (3685, 3759), False, 'import cv2\n'), ((4033, 4103), 'cv2.connectedComponentsWithStats', 'cv2.connectedComponentsWithStats', (['binary_img', 'connectivity', 'cv2.CV_32S'], {}), '(binary_img, connectivity, cv2.CV_32S)\n', (4065, 4103), False, 'import cv2\n'), ((4627, 4669), 'cv2.merge', 'cv2.merge', (['[label_hue, blank_ch, blank_ch]'], {}), '([label_hue, blank_ch, blank_ch])\n', (4636, 4669), False, 'import cv2\n'), ((4724, 4768), 'cv2.cvtColor', 'cv2.cvtColor', (['labeled_img', 'cv2.COLOR_HSV2BGR'], {}), '(labeled_img, cv2.COLOR_HSV2BGR)\n', (4736, 4768), False, 'import cv2\n'), ((6748, 6801), 'cv2.imwrite', 'cv2.imwrite', (['"""./projects/ICRA2020/ref_img.jpg"""', 'color'], {}), "('./projects/ICRA2020/ref_img.jpg', color)\n", (6759, 6801), False, 'import cv2\n'), ((1123, 1159), 'cv2.imshow', 'cv2.imshow', (['"""diff img"""', 'dGrayMidBlur'], {}), "('diff img', dGrayMidBlur)\n", (1133, 1159), False, 'import cv2\n'), ((1172, 1214), 'cv2.imshow', 'cv2.imshow', (['"""binary img from diff"""', 'thresh'], {}), "('binary img from diff', thresh)\n", (1182, 1214), False, 'import cv2\n'), ((1227, 1240), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (1238, 1240), False, 'import cv2\n'), ((1537, 1578), 'cv2.imshow', 'cv2.imshow', (['"""binary img from color"""', 'mask'], {}), "('binary img from color', mask)\n", (1547, 1578), False, 'import cv2\n'), ((1591, 1604), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (1602, 1604), False, 'import cv2\n'), ((2059, 2098), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (2071, 2098), False, 'import cv2\n'), ((2714, 2753), 'cv2.imshow', 'cv2.imshow', (['"""binary img from mog"""', 'mask'], {}), "('binary img from mog', mask)\n", (2724, 2753), False, 'import cv2\n'), ((2766, 2779), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (2777, 2779), False, 'import cv2\n'), ((4422, 4436), 'numpy.max', 'np.max', (['labels'], {}), '(labels)\n', (4428, 4436), True, 'import numpy as np\n'), ((4467, 4483), 'numpy.uint8', 'np.uint8', (['labels'], {}), '(labels)\n', (4475, 4483), True, 'import numpy as np\n'), ((4581, 4604), 'numpy.ones_like', 'np.ones_like', (['label_hue'], {}), '(label_hue)\n', (4593, 4604), True, 'import numpy as np\n'), ((4876, 4915), 'cv2.imshow', 'cv2.imshow', (['"""color labels"""', 'labeled_img'], {}), "('color labels', labeled_img)\n", (4886, 4915), False, 'import cv2\n'), ((4928, 4941), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (4939, 4941), False, 'import cv2\n'), ((5100, 5113), 'numpy.uint8', 'np.uint8', (['img'], {}), '(img)\n', (5108, 5113), True, 'import numpy as np\n'), ((5774, 5825), 'numpy.zeros', 'np.zeros', (['(img.shape[0], img.shape[1], 3)', 'np.uint8'], {}), '((img.shape[0], img.shape[1], 3), np.uint8)\n', (5782, 5825), True, 'import numpy as np\n'), ((6299, 6328), 'cv2.imshow', 'cv2.imshow', (['"""convex"""', 'drawing'], {}), "('convex', drawing)\n", (6309, 6328), False, 'import cv2\n'), ((6341, 6354), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (6352, 6354), False, 'import cv2\n'), ((3218, 3259), 'numpy.where', 'np.where', (['((mask == 2) | (mask == 0))', '(0)', '(1)'], {}), '((mask == 2) | (mask == 0), 0, 1)\n', (3226, 3259), True, 'import numpy as np\n'), ((3770, 3811), 'numpy.where', 'np.where', (['((mask == 2) | (mask == 0))', '(0)', '(1)'], {}), '((mask == 2) | (mask == 0), 0, 1)\n', (3778, 3811), True, 'import numpy as np\n'), ((5649, 5683), 'cv2.convexHull', 'cv2.convexHull', (['contours[i]', '(False)'], {}), '(contours[i], False)\n', (5663, 5683), False, 'import cv2\n'), ((6105, 6176), 'cv2.drawContours', 'cv2.drawContours', (['drawing', 'contours', 'i', 'color_contours', '(1)', '(8)', 'hierarchy'], {}), '(drawing, contours, i, color_contours, 1, 8, hierarchy)\n', (6121, 6176), False, 'import cv2\n'), ((6239, 6286), 'cv2.drawContours', 'cv2.drawContours', (['drawing', 'hull', 'i', 'color', '(1)', '(8)'], {}), '(drawing, hull, i, color, 1, 8)\n', (6255, 6286), False, 'import cv2\n'), ((4542, 4556), 'numpy.max', 'np.max', (['labels'], {}), '(labels)\n', (4548, 4556), True, 'import numpy as np\n')]
from pydata import Data, h5todata import numpy as np import os import h5py def test_Data(tmpdir): o = Data(x=np.ones(3), y=np.ones(3), a=5, b='hh') assert o.b=='hh' assert o['a']==5 o.append(np.ones(5),np.ones(5)) o.save(os.path.join(tmpdir, 'test.txt')) o.save(os.path.join(tmpdir, 'test.h5')) def test_h5todata(tmpdir): o = Data(x=np.ones(3), y=np.ones(3), a=5, b='hh') o.save(os.path.join(tmpdir, 'test.h5')) f = h5py.File(os.path.join(tmpdir, 'test.h5'),'r') d = h5todata(f['data0000']) assert d.a==5 assert d.x[0]==1
[ "os.path.join", "pydata.h5todata", "numpy.ones" ]
[((510, 533), 'pydata.h5todata', 'h5todata', (["f['data0000']"], {}), "(f['data0000'])\n", (518, 533), False, 'from pydata import Data, h5todata\n'), ((208, 218), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (215, 218), True, 'import numpy as np\n'), ((219, 229), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (226, 229), True, 'import numpy as np\n'), ((242, 274), 'os.path.join', 'os.path.join', (['tmpdir', '"""test.txt"""'], {}), "(tmpdir, 'test.txt')\n", (254, 274), False, 'import os\n'), ((287, 318), 'os.path.join', 'os.path.join', (['tmpdir', '"""test.h5"""'], {}), "(tmpdir, 'test.h5')\n", (299, 318), False, 'import os\n'), ((414, 445), 'os.path.join', 'os.path.join', (['tmpdir', '"""test.h5"""'], {}), "(tmpdir, 'test.h5')\n", (426, 445), False, 'import os\n'), ((465, 496), 'os.path.join', 'os.path.join', (['tmpdir', '"""test.h5"""'], {}), "(tmpdir, 'test.h5')\n", (477, 496), False, 'import os\n'), ((114, 124), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (121, 124), True, 'import numpy as np\n'), ((128, 138), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (135, 138), True, 'import numpy as np\n'), ((364, 374), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (371, 374), True, 'import numpy as np\n'), ((378, 388), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (385, 388), True, 'import numpy as np\n')]
__author__ = "<NAME>" __license__ = "MIT" __email__ = "<EMAIL>" """ Todo: [Organized HIGH to LOW priority...] Organize in Functions better - Remove Redundant Code & Optimize - """ # Modules required import pygame import time import numpy from typing import List # Initialize global variables pygame.init() SQ_DIM = 480 top = 48 left = 86 y = 32 screen = pygame.display.set_mode((SQ_DIM,SQ_DIM)) clock = pygame.time.Clock() COLOR_INACTIVE = pygame.Color(156,156,156) COLOR_ACTIVE = pygame.Color(255,255,255) COLOR_TAKEN = pygame.Color(255,89,89) ALLOWED = ['1','2','3','4','5','6','7','8','9'] FONT = pygame.font.Font("font/Roboto-Medium.ttf", 32) FONT_SMALL = pygame.font.Font("font/Roboto-Medium.ttf", 16) # Predefined Sudoku game boars def initialboard(difficulty: int = 3) -> List: if difficulty == 1: easy_1 = [[(0,1),1],[(0,3),9],[(0,4),4],[(0,7),6], [(1,1),2],[(1,3),7],[(1,5),6],[(1,6),1],[(1,8),3], [(2,0),6],[(2,2),9],[(2,3),1],[(2,6),7],[(2,8),4], [(3,2),7],[(3,3),4], [(4,0),4],[(4,2),3],[(4,6),8],[(4,8),9], [(5,5),8],[(5,6),4], [(6,0),9],[(6,2),6],[(6,5),4],[(6,6),2],[(6,8),7], [(7,0),2],[(7,2),1],[(7,3),6],[(7,5),5],[(7,7),3], [(8,1),7],[(8,4),2],[(8,5),9],[(8,7),4]] return isomorphic_board(easy_1) elif difficulty == 2: med_1 = [[(0,0),6],[(0,1),4],[(0,3),9], [(1,5),1],[(1,6),3], [(2,8),2], [(3,1),3],[(3,6),9],[(3,8),6], [(4,0),1],[(4,6),7],[(4,7),5], [(5,1),2],[(5,4),8],[(5,5),5],[(5,8),1], [(6,5),8], [(7,7),9],[(7,8),7], [(8,0),2],[(8,1),7],[(8,2),9],[(8,7),6],[(8,8),4]] return isomorphic_board(med_1) elif difficulty == 3: hard_1 = [[(0,3),4], [(1,5),8],[(1,7),9],[(1,8),6], [(2,4),5],[(2,5),3],[(2,7),8], [(3,1),4],[(3,2),8], [(4,0),2],[(4,4),4],[(4,5),9],[(4,8),1], [(5,0),6],[(5,6),5],[(5,8),9], [(6,0),4],[(6,3),1],[(6,6),7], [(7,1),8],[(7,3),9],[(7,6),4], [(8,1),1],[(8,4),7],[(8,7),2]] return isomorphic_board(hard_1) else: return easy_1 return hard_1 # Creates an isomorphic sudoku board # Only symbol, row, column permutations implemented # TODO: Implement block and stack permutations def isomorphic_board(board: List) -> List: iso_board = [] permute_symbols = numpy.random.permutation(9) row_permutations = [numpy.random.permutation(range(3*i,3*(i+1))) for i in range(3)] col_permutations = [numpy.random.permutation(range(3*i,3*(i+1))) for i in range(3)] #block_permutation = numpy.random.permutation(range(3)) #stack_permutation = numpy.random.permutation(range(3)) for entry in board: pos = entry[0] val = entry[1] r_perm = row_permutations[pos[0]//3] c_perm = col_permutations[pos[1]//3] iso_board.append([(r_perm.item(pos[0]%3),c_perm.item(pos[1]%3)),permute_symbols.item(val-1)+1]) return iso_board # Create number boxes and user input boxes based on the initial board chosen def create_board(taken_positions: List, number_boxes: List, input_boxes: List, board: List, difficulty: int) -> None: init_board = initialboard(difficulty) for position in init_board: pos = position[0] taken_positions.append(pos) num = position[1] number_boxes.append(NumBox(left+pos[1]*(y+1),top+pos[0]*(y+1),y,y,board_coordinates=(pos[0],pos[1]),value=num,text=str(num))) board[pos[0],pos[1]] = num for i in range(9): for j in range(9): if (i,j) not in taken_positions: input_boxes.append(InputBox(left+j*(y+1),top+i*(y+1),y,y,board_coordinates=(i,j))) # Make the sudoku board look nice with borders and such def borders(screen): shift = 32 total = 296 for i in range(9): pygame.draw.line(screen, COLOR_INACTIVE, (left,top+i*(shift+1)-1), (left+total,top+i*(shift+1)-1),4) pygame.draw.line(screen, COLOR_ACTIVE, (left-1,top-1), (left+total+2,top-1),4) pygame.draw.line(screen, COLOR_ACTIVE, (left,top), (left,top+total+2),4) pygame.draw.line(screen, COLOR_ACTIVE, (left+total,top), (left+total,top+total+2),4) pygame.draw.line(screen, COLOR_ACTIVE, (left,top+total), (left+total,top+total),4) pygame.draw.line(screen, COLOR_ACTIVE, (left,top+3*(shift+1)-1), (left+total,top+3*(shift+1)-1),4) pygame.draw.line(screen, COLOR_ACTIVE, (left,top+6*(shift+1)-1), (left+total,top+6*(shift+1)-1),4) pygame.draw.line(screen, COLOR_ACTIVE, (left+3*(shift+1)-1,top), (left+3*(shift+1)-1,top+total),4) pygame.draw.line(screen, COLOR_ACTIVE, (left+6*(shift+1)-1,top), (left+6*(shift+1)-1,top+total),4) # Check whether the board has Sudoku Properties # 1) Whole Board is Latin Square # 2) Each subsquare has a distinct entries def win(board: List) -> bool: comp = numpy.array(list(range(1,10))) # Latin Square Check for i in range(9): if not (numpy.array_equal(numpy.sort(board[i]),comp) and numpy.array_equal(numpy.sort(board[:,i]),comp)): return False # Subsquare Checks for offset_x in range(0,7,3): for offset_y in range(0,7,3): box_xy = [] for smallbox_x in range(3): for smallbox_y in range(3): box_xy.append(board.item(offset_x+smallbox_x,offset_y+smallbox_y)) if not numpy.array_equal(numpy.sort(numpy.array(box_xy)),comp): return False return True # Is this a valid number placement, i.e., does it maintain the Latin Square # property and the subsquare property? def is_taken(coord: tuple, num: int, board) -> bool: # 0's are default values, do not check them if num != 0: # Latin Square rows for i in range(9): if board.item(i,coord[1]) == num and coord[0] != i: return True # Latin Square columns for j in range(9): if board.item(coord[0],j) == num and coord[1] != j: return True startx = coord[0]//3 starty = coord[1]//3 # Subsquare property? for i in range(startx*3,startx*3+3,1): for j in range(starty*3,starty*3+3,1): if board.item(i,j) == num and coord[0] != i and coord[1] != j: return True return False def find_first_empty_location(sboard) -> bool: for r in range(9): for c in range(9): if sboard.item(r,c) == 0: return (r,c) return (-1,-1) # Solve Sudoku by backtracking def sudoku_backtracking_solver(sboard) -> bool: loc = find_first_empty_location(sboard) if loc[0] == loc[1] == -1: return True (row,col) = loc for number in range(1,10): if not is_taken((row,col),number,sboard): sboard[row,col] = number if sudoku_backtracking_solver(sboard): return True sboard[row,col] = 0 return False # Class defining user input boxes class InputBox: def __init__(self, x, y, w, h, text='', cursor_visible=True, max_string_length=1, board_coordinates=(0,0)): self.rect = pygame.Rect(x, y, w, h) self.color = COLOR_INACTIVE self.text = text self.txt_surface = FONT.render(text, True, self.color) self.active = False self.cursor_color = (0, 0, 1) self.cursor_visible = cursor_visible self.max_string_length = max_string_length # set to -1 for no limit self.board_coordinates = board_coordinates self.value = 0 def handle_event(self, event): if event.type == pygame.MOUSEBUTTONDOWN: if self.rect.collidepoint(event.pos): self.active = not self.active else: self.active = False self.color = COLOR_ACTIVE if self.active else COLOR_INACTIVE if event.type == pygame.KEYDOWN: if self.active: if event.key == pygame.K_RETURN: print(self.text) elif event.key == pygame.K_BACKSPACE: self.text = self.text[:-1] elif len(self.text) < self.max_string_length or self.max_string_length == -1: self.text += event.unicode if(self.text == ''): self.value = 0 elif(self.text in ALLOWED): self.value = int(self.text) else: self.text = '' self.value = 0 self.txt_surface = FONT.render(self.text, True, self.color) def get_attr(self): return (self.board_coordinates,self.value) def draw(self, screen): screen.blit(self.txt_surface, (self.rect.x+6, self.rect.y-2)) pygame.draw.rect(screen, self.color, self.rect, 2) # Number boxes from predefined board, not user interactive. class NumBox: def __init__(self, x, y, w, h, text='', value=0, board_coordinates=(0,0)): self.rect = pygame.Rect(x, y, w, h) self.text = text self.color = COLOR_INACTIVE self.hint = 0 self.board_coordinates = board_coordinates self.value = value self.txt_surface = FONT.render(text, True, self.color) def draw(self, screen): surf = self.txt_surface.get_rect() surf.center = (self.rect.x+int(self.rect.w/2), (self.rect.y + int(self.rect.h/2))) screen.blit(self.txt_surface, surf) pygame.draw.rect(screen, self.color, self.rect, 2) # Messages to inform player class MessageBox: def __init__(self, x, y, w, h, text, font=FONT): self.rect = pygame.Rect(x, y, w, h) self.text = text self.color = COLOR_ACTIVE self.hint = 0 self.font = font self.txt_surface = font.render(text, True, self.color) def __draw__(self, screen): surf = self.txt_surface.get_rect() surf.center = (self.rect.x+int(self.rect.w/2), (self.rect.y + int(self.rect.h/2))) screen.blit(self.txt_surface, surf) pygame.draw.rect(screen, self.color, self.rect, 2) # Message to indicate whether the move just made was valid class TextBox(MessageBox): def __init__(self, x, y, w, h, text='',font=FONT_SMALL): super().__init__(x,y,w,h,text,font) def update(self,hint: bool): if hint: self.text="Try again" else: self.text="Go!" self.txt_surface = self.font.render(self.text, True, self.color) def draw(self, screen): super().__draw__(screen) # Message to indicate whether the board is properly completed class WinBox(MessageBox): def __init__(self, x, y, w, h, text='',font=FONT_SMALL): super().__init__(x,y,w,h,text,font) self.win = False self.score_changed = False def update(self,board): if win(board): self.text="You Win!" self.win = True else: self.text="Not done" self.txt_surface = self.font.render(self.text, True, self.color) def draw(self, screen): super().__draw__(screen) class ScoreBox(MessageBox): def __init__(self, x, y, w, h, text='',font=FONT_SMALL): super().__init__(x,y,w,h,text,font) self.value = 0 def update(self,move): self.value += move self.text = str(self.value) self.txt_surface = self.font.render(self.text, True, self.color) def draw(self, screen): super().__draw__(screen) def text_objects(text, font): textSurface = font.render(text, True, pygame.Color(0,0,0)) return textSurface, textSurface.get_rect() def button(msg,x,y,w,h,ic,ac,action=None): mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() if x+w > mouse[0] > x and y+h > mouse[1] > y: pygame.draw.rect(screen, ac,(x,y,w,h)) if click[0] == 1 and action != None: difficulty = int(msg) action(difficulty) else: pygame.draw.rect(screen, ic,(x,y,w,h)) textSurf, textRect = text_objects(msg, FONT_SMALL) textRect.center = ( (x+int(w/2)), (y+int(h/2)) ) screen.blit(textSurf, textRect) # Get the list of Highscores from the file: highscores.txt def get_highscores(): scores = [] scoreBoxes = [] with open('data/highscores.txt') as f: scores = f.readlines() scores = sorted([int(score.rstrip()) for score in scores],reverse=True) f.close() space = 10 height = 20 i = 0 for score in scores: scoreBoxes.append(MessageBox(200,330+space*i+height*(i-1),80,height,text="{}".format(score),font=FONT_SMALL)) i += 1 return scoreBoxes # Update the highscores.txt file def update_leaderboard(new_score: int) -> None: scores = [] with open('data/highscores.txt') as f: scores = f.readlines() scores = sorted([int(score.rstrip()) for score in scores]) f.close() if len(scores) != 0: i = 0 if new_score <= scores[i]: return while new_score > scores[i] and i < len(scores)-1: i += 1 if i > 0: for j in range(i): scores[j] = scores[j+1] scores[i-1] = new_score with open('data/highscores.txt','w') as f: scores = sorted(scores,reverse=True) f.seek(0) f.truncate() for score in scores: f.write("{}\n".format(score)) f.close() # Update user score def update_score(lastboard,board,Hint,change_to_zero,changed_up_one,scorebox1,screen): if numpy.array_equal(lastboard,board): scorebox1.update(0) elif (not numpy.array_equal(lastboard,board)) and (not change_to_zero): (r,c) = matrix_not_equal(lastboard,board) if (not Hint) and (not changed_up_one.item(r,c)): scorebox1.update(1) # Only allow a box to increase the score once changed_up_one[r,c] = True elif Hint: scorebox1.update(-1) else: scorebox1.update(0) else: scorebox1.update(0) scorebox1.draw(screen) # Returns lexicographic first place two matrices not equal if the matrices are the same shape def matrix_not_equal(A,B): row = -1 col = -1 if A.shape == B.shape: (nrows,ncols) = A.shape for i in range(nrows): if not numpy.array_equal(A[i],B[i]): row = i for j in range(ncols): if not numpy.array_equal(A[:,j],B[:,j]): col = j return (row,col) else: return (row,col) def main(): intro = True while intro: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() else: screen.fill((0, 0, 0)) sudoku = MessageBox(140,50,200,50,text="SUDOKU!") sudoku.__draw__(screen) selectdiff = MessageBox(165,150,150,30,text="Select Difficulty",font=FONT_SMALL) selectdiff.__draw__(screen) button("1",140,200,40,50,COLOR_INACTIVE,COLOR_ACTIVE,action=game) button("2",220,200,40,50,COLOR_INACTIVE,COLOR_ACTIVE,action=game) button("3",300,200,40,50,COLOR_INACTIVE,COLOR_ACTIVE,action=game) highscores = MessageBox(165,270,150,30,text="Highscores",font=FONT_SMALL) scoreBoxes = get_highscores() for scoreBox in scoreBoxes: scoreBox.__draw__(screen) highscores.__draw__(screen) pygame.display.update() clock.tick(40) return def game(difficulty): # Initialize board components board = numpy.zeros((9,9),dtype=int) Taken = numpy.zeros((9,9),dtype=bool) # lastlastboard = numpy.zeros((9,9),dtype=int) lastboard = numpy.zeros((9,9),dtype=int) number_boxes = [] taken_positions = [] input_boxes = [] changed_up_one = numpy.zeros((9,9),dtype=bool) create_board(taken_positions,number_boxes,input_boxes,board,difficulty) sboard = numpy.copy(board) sudoku_backtracking_solver(sboard) print(sboard) # Create Progress Messages resetbox1 = WinBox(left,top+310,150,40,text='Not done',font=FONT) hintbox1 = TextBox(left,top+360,150,40,text='GO!',font=FONT) scorebox1 = ScoreBox(left+170,top+310,100,40,text='0',font=FONT) # Run until user asks to quit running = True while running: lastboard = numpy.copy(board) change_to_zero = False # Did user click window close button? for event in pygame.event.get(): if event.type == pygame.QUIT: running = False for box in input_boxes: box.handle_event(event) # Check whether moves were valid for box in input_boxes: (coord,number) = box.get_attr() board[coord[0],coord[1]] = number if lastboard[coord[0],coord[1]] != 0 and number == 0: change_to_zero = True toggle = is_taken(coord,number,board) if toggle: Taken[coord[0],coord[1]] = True else: Taken[coord[0],coord[1]] = False # Draw the number the user inputed screen.fill((0, 0, 0)) for numbox in number_boxes: numbox.draw(screen) for box in input_boxes: box.draw(screen) # Are there any invalid moves on the board? Hint = numpy.any(Taken) # Update Hint Message hintbox1.update(Hint) hintbox1.draw(screen) # Update user score update_score(lastboard,board,Hint,change_to_zero,changed_up_one,scorebox1,screen) # Indicate to user whether game is finished resetbox1.update(board) resetbox1.draw(screen) # Edit highscores if user won and score merits leaderboard if resetbox1.win and not resetbox1.score_changed: new_score = int(scorebox1.text) update_leaderboard(new_score) resetbox1.score_changed = True borders(screen) pygame.display.update() clock.tick(40) screen.fill((0, 0, 0)) pygame.display.update()
[ "pygame.draw.line", "pygame.event.get", "pygame.Rect", "pygame.display.update", "pygame.font.Font", "pygame.mouse.get_pos", "numpy.copy", "pygame.display.set_mode", "pygame.quit", "pygame.mouse.get_pressed", "pygame.draw.rect", "pygame.init", "numpy.sort", "numpy.random.permutation", "pygame.time.Clock", "pygame.Color", "numpy.zeros", "numpy.any", "numpy.array", "numpy.array_equal" ]
[((314, 327), 'pygame.init', 'pygame.init', ([], {}), '()\n', (325, 327), False, 'import pygame\n'), ((376, 417), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(SQ_DIM, SQ_DIM)'], {}), '((SQ_DIM, SQ_DIM))\n', (399, 417), False, 'import pygame\n'), ((425, 444), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (442, 444), False, 'import pygame\n'), ((462, 489), 'pygame.Color', 'pygame.Color', (['(156)', '(156)', '(156)'], {}), '(156, 156, 156)\n', (474, 489), False, 'import pygame\n'), ((503, 530), 'pygame.Color', 'pygame.Color', (['(255)', '(255)', '(255)'], {}), '(255, 255, 255)\n', (515, 530), False, 'import pygame\n'), ((543, 568), 'pygame.Color', 'pygame.Color', (['(255)', '(89)', '(89)'], {}), '(255, 89, 89)\n', (555, 568), False, 'import pygame\n'), ((622, 668), 'pygame.font.Font', 'pygame.font.Font', (['"""font/Roboto-Medium.ttf"""', '(32)'], {}), "('font/Roboto-Medium.ttf', 32)\n", (638, 668), False, 'import pygame\n'), ((682, 728), 'pygame.font.Font', 'pygame.font.Font', (['"""font/Roboto-Medium.ttf"""', '(16)'], {}), "('font/Roboto-Medium.ttf', 16)\n", (698, 728), False, 'import pygame\n'), ((2688, 2715), 'numpy.random.permutation', 'numpy.random.permutation', (['(9)'], {}), '(9)\n', (2712, 2715), False, 'import numpy\n'), ((4266, 4361), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left - 1, top - 1)', '(left + total + 2, top - 1)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left - 1, top - 1), (left + total +\n 2, top - 1), 4)\n', (4282, 4361), False, 'import pygame\n'), ((4349, 4428), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left, top)', '(left, top + total + 2)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left, top), (left, top + total + 2), 4)\n', (4365, 4428), False, 'import pygame\n'), ((4426, 4526), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left + total, top)', '(left + total, top + total + 2)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left + total, top), (left + total, \n top + total + 2), 4)\n', (4442, 4526), False, 'import pygame\n'), ((4515, 4611), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left, top + total)', '(left + total, top + total)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left, top + total), (left + total, \n top + total), 4)\n', (4531, 4611), False, 'import pygame\n'), ((4603, 4727), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left, top + 3 * (shift + 1) - 1)', '(left + total, top + 3 * (shift + 1) - 1)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left, top + 3 * (shift + 1) - 1), (\n left + total, top + 3 * (shift + 1) - 1), 4)\n', (4619, 4727), False, 'import pygame\n'), ((4706, 4830), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left, top + 6 * (shift + 1) - 1)', '(left + total, top + 6 * (shift + 1) - 1)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left, top + 6 * (shift + 1) - 1), (\n left + total, top + 6 * (shift + 1) - 1), 4)\n', (4722, 4830), False, 'import pygame\n'), ((4810, 4934), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left + 3 * (shift + 1) - 1, top)', '(left + 3 * (shift + 1) - 1, top + total)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left + 3 * (shift + 1) - 1, top), (\n left + 3 * (shift + 1) - 1, top + total), 4)\n', (4826, 4934), False, 'import pygame\n'), ((4913, 5037), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_ACTIVE', '(left + 6 * (shift + 1) - 1, top)', '(left + 6 * (shift + 1) - 1, top + total)', '(4)'], {}), '(screen, COLOR_ACTIVE, (left + 6 * (shift + 1) - 1, top), (\n left + 6 * (shift + 1) - 1, top + total), 4)\n', (4929, 5037), False, 'import pygame\n'), ((12012, 12034), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (12032, 12034), False, 'import pygame\n'), ((12047, 12073), 'pygame.mouse.get_pressed', 'pygame.mouse.get_pressed', ([], {}), '()\n', (12071, 12073), False, 'import pygame\n'), ((13909, 13944), 'numpy.array_equal', 'numpy.array_equal', (['lastboard', 'board'], {}), '(lastboard, board)\n', (13926, 13944), False, 'import numpy\n'), ((16060, 16090), 'numpy.zeros', 'numpy.zeros', (['(9, 9)'], {'dtype': 'int'}), '((9, 9), dtype=int)\n', (16071, 16090), False, 'import numpy\n'), ((16101, 16132), 'numpy.zeros', 'numpy.zeros', (['(9, 9)'], {'dtype': 'bool'}), '((9, 9), dtype=bool)\n', (16112, 16132), False, 'import numpy\n'), ((16198, 16228), 'numpy.zeros', 'numpy.zeros', (['(9, 9)'], {'dtype': 'int'}), '((9, 9), dtype=int)\n', (16209, 16228), False, 'import numpy\n'), ((16316, 16347), 'numpy.zeros', 'numpy.zeros', (['(9, 9)'], {'dtype': 'bool'}), '((9, 9), dtype=bool)\n', (16327, 16347), False, 'import numpy\n'), ((16435, 16452), 'numpy.copy', 'numpy.copy', (['board'], {}), '(board)\n', (16445, 16452), False, 'import numpy\n'), ((18565, 18588), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (18586, 18588), False, 'import pygame\n'), ((4160, 4285), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'COLOR_INACTIVE', '(left, top + i * (shift + 1) - 1)', '(left + total, top + i * (shift + 1) - 1)', '(4)'], {}), '(screen, COLOR_INACTIVE, (left, top + i * (shift + 1) - 1),\n (left + total, top + i * (shift + 1) - 1), 4)\n', (4176, 4285), False, 'import pygame\n'), ((7470, 7493), 'pygame.Rect', 'pygame.Rect', (['x', 'y', 'w', 'h'], {}), '(x, y, w, h)\n', (7481, 7493), False, 'import pygame\n'), ((9099, 9149), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'self.color', 'self.rect', '(2)'], {}), '(screen, self.color, self.rect, 2)\n', (9115, 9149), False, 'import pygame\n'), ((9325, 9348), 'pygame.Rect', 'pygame.Rect', (['x', 'y', 'w', 'h'], {}), '(x, y, w, h)\n', (9336, 9348), False, 'import pygame\n'), ((9788, 9838), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'self.color', 'self.rect', '(2)'], {}), '(screen, self.color, self.rect, 2)\n', (9804, 9838), False, 'import pygame\n'), ((9960, 9983), 'pygame.Rect', 'pygame.Rect', (['x', 'y', 'w', 'h'], {}), '(x, y, w, h)\n', (9971, 9983), False, 'import pygame\n'), ((10372, 10422), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'self.color', 'self.rect', '(2)'], {}), '(screen, self.color, self.rect, 2)\n', (10388, 10422), False, 'import pygame\n'), ((11887, 11908), 'pygame.Color', 'pygame.Color', (['(0)', '(0)', '(0)'], {}), '(0, 0, 0)\n', (11899, 11908), False, 'import pygame\n'), ((12132, 12174), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'ac', '(x, y, w, h)'], {}), '(screen, ac, (x, y, w, h))\n', (12148, 12174), False, 'import pygame\n'), ((12299, 12341), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'ic', '(x, y, w, h)'], {}), '(screen, ic, (x, y, w, h))\n', (12315, 12341), False, 'import pygame\n'), ((14997, 15015), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (15013, 15015), False, 'import pygame\n'), ((16840, 16857), 'numpy.copy', 'numpy.copy', (['board'], {}), '(board)\n', (16850, 16857), False, 'import numpy\n'), ((16957, 16975), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (16973, 16975), False, 'import pygame\n'), ((17855, 17871), 'numpy.any', 'numpy.any', (['Taken'], {}), '(Taken)\n', (17864, 17871), False, 'import numpy\n'), ((18487, 18510), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (18508, 18510), False, 'import pygame\n'), ((13987, 14022), 'numpy.array_equal', 'numpy.array_equal', (['lastboard', 'board'], {}), '(lastboard, board)\n', (14004, 14022), False, 'import numpy\n'), ((14706, 14735), 'numpy.array_equal', 'numpy.array_equal', (['A[i]', 'B[i]'], {}), '(A[i], B[i])\n', (14723, 14735), False, 'import numpy\n'), ((14810, 14845), 'numpy.array_equal', 'numpy.array_equal', (['A[:, j]', 'B[:, j]'], {}), '(A[:, j], B[:, j])\n', (14827, 14845), False, 'import numpy\n'), ((15075, 15088), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (15086, 15088), False, 'import pygame\n'), ((15925, 15948), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (15946, 15948), False, 'import pygame\n'), ((5296, 5316), 'numpy.sort', 'numpy.sort', (['board[i]'], {}), '(board[i])\n', (5306, 5316), False, 'import numpy\n'), ((5345, 5368), 'numpy.sort', 'numpy.sort', (['board[:, i]'], {}), '(board[:, i])\n', (5355, 5368), False, 'import numpy\n'), ((5739, 5758), 'numpy.array', 'numpy.array', (['box_xy'], {}), '(box_xy)\n', (5750, 5758), False, 'import numpy\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ The basic algorithm simulation archtecture of the C/C++ system """ import numpy as np PRIME= np.array([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271]); print(PRIME[::-1])
[ "numpy.array" ]
[((142, 2882), 'numpy.array', 'np.array', (['[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,\n 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \n 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, \n 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, \n 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, \n 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, \n 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, \n 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, \n 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, \n 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, \n 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, \n 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, \n 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109,\n 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,\n 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291,\n 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,\n 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481,\n 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,\n 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627,\n 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,\n 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831,\n 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,\n 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,\n 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,\n 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213,\n 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,\n 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383,\n 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,\n 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593,\n 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,\n 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753,\n 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,\n 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957,\n 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,\n 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181,\n 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271]'], {}), '([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, \n 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,\n 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, \n 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, \n 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, \n 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, \n 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, \n 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, \n 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, \n 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, \n 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, \n 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, \n 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,\n 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,\n 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,\n 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373,\n 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459,\n 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549,\n 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619,\n 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721,\n 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,\n 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907,\n 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003,\n 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089,\n 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203,\n 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287,\n 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377,\n 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459,\n 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579,\n 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677,\n 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741,\n 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837,\n 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939,\n 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041,\n 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,\n 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257,\n 3259, 3271])\n', (150, 2882), True, 'import numpy as np\n')]
import numpy as np import scipy as sp import scipy.stats from ngboost.distns import Normal, Laplace, LogNormal, LogLaplace from ngboost.ngboost import NGBoost from ngboost.scores import MLE, CRPS, MLE_SURV, CRPS_SURV from ngboost.learners import default_tree_learner, default_linear_learner from ngboost.evaluation import * from sklearn.metrics import r2_score from matplotlib import pyplot as plt from argparse import ArgumentParser if __name__ == '__main__': argparser = ArgumentParser() argparser.add_argument("--dist", type=str, default="Laplace") argparser.add_argument("--noise-dist", type=str, default="Normal") args = argparser.parse_args() m, n = 1000, 50 if args.noise_dist == "Normal": noise = np.random.randn(*(m, 1)) elif args.noise_dist == "Laplace": noise = sp.stats.laplace.rvs(size=(m, 1)) beta = np.random.randn(n, 1) X = np.random.randn(m, n) / np.sqrt(n) Y = np.exp(X @ beta + 0.5 * noise) print(X.shape, Y.shape) dist = eval("Log" + args.dist) ngb = NGBoost(n_estimators=50, learning_rate=0.5, Dist=dist, Base=default_linear_learner, natural_gradient=False, minibatch_frac=1.0, Score=CRPS()) losses = ngb.fit(X, Y) preds = ngb.pred_dist(X) print(f"R2: {r2_score(Y, np.exp(preds.loc)):.4f}") pctles, observed, slope, intercept = calibration_regression(preds, Y) plt.figure(figsize = (8, 3)) plt.subplot(1, 2, 1) plot_pit_histogram(pctles, observed) plt.title("Original scale") Y = np.log(Y) dist = eval(args.dist) ngb = NGBoost(n_estimators=50, learning_rate=0.5, Dist=dist, Base=default_linear_learner, natural_gradient=False, minibatch_frac=1.0, Score=CRPS()) losses = ngb.fit(X, Y) preds = ngb.pred_dist(X) print(f"R2: {r2_score(Y, np.exp(preds.loc)):.4f}") pctles, observed, slope, intercept = calibration_regression(preds, Y) plt.subplot(1, 2, 2) plot_pit_histogram(pctles, observed) plt.title("Log-scale") plt.tight_layout() plt.savefig("./figures/pit_logscale.pdf") plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "scipy.stats.laplace.rvs", "matplotlib.pyplot.show", "argparse.ArgumentParser", "numpy.log", "numpy.random.randn", "matplotlib.pyplot.figure", "numpy.exp", "matplotlib.pyplot.tight_layout", "ngboost.scores.CRPS", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((480, 496), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (494, 496), False, 'from argparse import ArgumentParser\n'), ((866, 887), 'numpy.random.randn', 'np.random.randn', (['n', '(1)'], {}), '(n, 1)\n', (881, 887), True, 'import numpy as np\n'), ((939, 969), 'numpy.exp', 'np.exp', (['(X @ beta + 0.5 * noise)'], {}), '(X @ beta + 0.5 * noise)\n', (945, 969), True, 'import numpy as np\n'), ((1469, 1495), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 3)'}), '(figsize=(8, 3))\n', (1479, 1495), True, 'from matplotlib import pyplot as plt\n'), ((1502, 1522), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (1513, 1522), True, 'from matplotlib import pyplot as plt\n'), ((1568, 1595), 'matplotlib.pyplot.title', 'plt.title', (['"""Original scale"""'], {}), "('Original scale')\n", (1577, 1595), True, 'from matplotlib import pyplot as plt\n'), ((1605, 1614), 'numpy.log', 'np.log', (['Y'], {}), '(Y)\n', (1611, 1614), True, 'import numpy as np\n'), ((2077, 2097), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (2088, 2097), True, 'from matplotlib import pyplot as plt\n'), ((2143, 2165), 'matplotlib.pyplot.title', 'plt.title', (['"""Log-scale"""'], {}), "('Log-scale')\n", (2152, 2165), True, 'from matplotlib import pyplot as plt\n'), ((2170, 2188), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2186, 2188), True, 'from matplotlib import pyplot as plt\n'), ((2193, 2234), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./figures/pit_logscale.pdf"""'], {}), "('./figures/pit_logscale.pdf')\n", (2204, 2234), True, 'from matplotlib import pyplot as plt\n'), ((2239, 2249), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2247, 2249), True, 'from matplotlib import pyplot as plt\n'), ((741, 765), 'numpy.random.randn', 'np.random.randn', (['*(m, 1)'], {}), '(*(m, 1))\n', (756, 765), True, 'import numpy as np\n'), ((896, 917), 'numpy.random.randn', 'np.random.randn', (['m', 'n'], {}), '(m, n)\n', (911, 917), True, 'import numpy as np\n'), ((920, 930), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (927, 930), True, 'import numpy as np\n'), ((821, 854), 'scipy.stats.laplace.rvs', 'sp.stats.laplace.rvs', ([], {'size': '(m, 1)'}), '(size=(m, 1))\n', (841, 854), True, 'import scipy as sp\n'), ((1269, 1275), 'ngboost.scores.CRPS', 'CRPS', ([], {}), '()\n', (1273, 1275), False, 'from ngboost.scores import MLE, CRPS, MLE_SURV, CRPS_SURV\n'), ((1877, 1883), 'ngboost.scores.CRPS', 'CRPS', ([], {}), '()\n', (1881, 1883), False, 'from ngboost.scores import MLE, CRPS, MLE_SURV, CRPS_SURV\n'), ((1364, 1381), 'numpy.exp', 'np.exp', (['preds.loc'], {}), '(preds.loc)\n', (1370, 1381), True, 'import numpy as np\n'), ((1972, 1989), 'numpy.exp', 'np.exp', (['preds.loc'], {}), '(preds.loc)\n', (1978, 1989), True, 'import numpy as np\n')]
from __future__ import print_function import sys import os import numpy as np from multiprocessing import Pool, freeze_support import tempfile from impy.definitions import * from impy.constants import * from impy.kinematics import EventKinematics from impy import impy_config, pdata from impy.util import info # AF: This is what the user interaction has to yield. # It is the typical expected configuration that one # wants to run (read pp-mode at energies not exceeding # 7 TeV). If you want cosmic ray energies, this should # be rather p-N at 10 EeV and lab frame (not yet defined). event_kinematics = EventKinematics(ecm=7000 * GeV, p1pdg=2212, p2pdg=2212 # nuc2_prop=(14,7) ) impy_config["user_frame"] = 'center-of-mass' gen_list = [ 'SIBYLL23D', 'SIBYLL23C', 'SIBYLL23', 'SIBYLL21', 'DPMJETIII306', 'DPMJETIII191', 'EPOSLHC', 'PHOJET112', 'PHOJET191', 'URQMD34', # 'PYTHIA8', 'QGSJET01C', 'QGSJETII03', 'QGSJETII04' ] xlab_bins = np.linspace(0,1,21) xlab_widths = xlab_bins[1:] - xlab_bins[:-1] xlab_centers = 0.5*(xlab_bins[1:] + xlab_bins[:-1]) nevents = 5000 norm = 1./float(nevents)/xlab_widths def run_generator(gen,*args): print('Testing',gen) hist_p = np.zeros(len(xlab_centers)) hist_pi = np.zeros(len(xlab_centers)) try: log = tempfile.mkstemp()[1] generator = make_generator_instance(interaction_model_by_tag[gen]) generator.init_generator(event_kinematics,logfname=log) for event in generator.event_generator(event_kinematics, nevents): event.filter_final_state_charged() hist_p += np.histogram(event.xlab[event.p_ids == 2212], bins=xlab_bins, weights=event.xlab[event.p_ids == 2212]**1.7)[0] hist_pi += np.histogram(event.xlab[np.abs(event.p_ids) == 211], bins=xlab_bins, weights=event.xlab[np.abs(event.p_ids) == 211]**1.7)[0] return True, gen, log, hist_p, hist_pi except: return False, gen, log, hist_p, hist_pi if __name__ in ['__main__', '__test__']: freeze_support() pool = Pool(processes=32) result = [pool.apply_async(run_generator, (gen,)) for gen in gen_list] result = [res.get(timeout=100000) for res in result] logs = {} xlab_protons = {} xlab_piplus = {} failed = [] passed = [] for r, gen, log, hist_p, hist_pi in result: if r: passed.append(gen) xlab_protons[gen] = hist_p xlab_piplus[gen] = hist_pi else: failed.append(gen) with open(log) as f: logs[gen] = f.read() info(0, 'Test results for 158 GeV pC collisions in lab frame:\n') info(0, 'Passed:', '\n', '\n '.join(passed)) info(0, '\nFailed:', '\n', '\n '.join(failed)) import pickle pickle.dump((xlab_bins, xlab_protons, xlab_piplus, logs), open(os.path.splitext(__file__)[0] + '.pkl','wb'), protocol=-1)
[ "numpy.abs", "impy.util.info", "tempfile.mkstemp", "impy.kinematics.EventKinematics", "numpy.histogram", "os.path.splitext", "numpy.linspace", "multiprocessing.Pool", "multiprocessing.freeze_support" ]
[((608, 663), 'impy.kinematics.EventKinematics', 'EventKinematics', ([], {'ecm': '(7000 * GeV)', 'p1pdg': '(2212)', 'p2pdg': '(2212)'}), '(ecm=7000 * GeV, p1pdg=2212, p2pdg=2212)\n', (623, 663), False, 'from impy.kinematics import EventKinematics\n'), ((1144, 1165), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(21)'], {}), '(0, 1, 21)\n', (1155, 1165), True, 'import numpy as np\n'), ((2335, 2351), 'multiprocessing.freeze_support', 'freeze_support', ([], {}), '()\n', (2349, 2351), False, 'from multiprocessing import Pool, freeze_support\n'), ((2363, 2381), 'multiprocessing.Pool', 'Pool', ([], {'processes': '(32)'}), '(processes=32)\n', (2367, 2381), False, 'from multiprocessing import Pool, freeze_support\n'), ((2918, 2983), 'impy.util.info', 'info', (['(0)', '"""Test results for 158 GeV pC collisions in lab frame:\n"""'], {}), "(0, 'Test results for 158 GeV pC collisions in lab frame:\\n')\n", (2922, 2983), False, 'from impy.util import info\n'), ((1476, 1494), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (1492, 1494), False, 'import tempfile\n'), ((1782, 1896), 'numpy.histogram', 'np.histogram', (['event.xlab[event.p_ids == 2212]'], {'bins': 'xlab_bins', 'weights': '(event.xlab[event.p_ids == 2212] ** 1.7)'}), '(event.xlab[event.p_ids == 2212], bins=xlab_bins, weights=event\n .xlab[event.p_ids == 2212] ** 1.7)\n', (1794, 1896), True, 'import numpy as np\n'), ((3186, 3212), 'os.path.splitext', 'os.path.splitext', (['__file__'], {}), '(__file__)\n', (3202, 3212), False, 'import os\n'), ((2003, 2022), 'numpy.abs', 'np.abs', (['event.p_ids'], {}), '(event.p_ids)\n', (2009, 2022), True, 'import numpy as np\n'), ((2131, 2150), 'numpy.abs', 'np.abs', (['event.p_ids'], {}), '(event.p_ids)\n', (2137, 2150), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ @author: abhilash """ import numpy as np import cv2 # load the image to detect, get width, height # resize to match input size, convert to blob to pass into model img_to_detect = cv2.imread('images/testing/scene3.jpg') img_height = img_to_detect.shape[0] img_width = img_to_detect.shape[1] resized_img_to_detect = cv2.resize(img_to_detect,(300,300)) img_blob = cv2.dnn.blobFromImage(resized_img_to_detect,0.007843,(300,300),127.5) #recommended scale factor is 0.007843, width,height of blob is 300,300, mean of 255 is 127.5, # set of 21 class labels in alphabetical order (background + rest of 20 classes) class_labels = ["background", "aeroplane", "bicycle", "bird", "boat","bottle", "bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant", "sheep","sofa", "train", "tvmonitor"] # Loading pretrained model from prototext and caffemodel files # input preprocessed blob into model and pass through the model # obtain the detection predictions by the model using forward() method mobilenetssd = cv2.dnn.readNetFromCaffe('dataset/mobilenetssd.prototext','dataset/mobilenetssd.caffemodel') mobilenetssd.setInput(img_blob) obj_detections = mobilenetssd.forward() # returned obj_detections[0, 0, index, 1] , 1 => will have the prediction class index # 2 => will have confidence, 3 to 7 => will have the bounding box co-ordinates no_of_detections = obj_detections.shape[2] # loop over the detections for index in np.arange(0, no_of_detections): prediction_confidence = obj_detections[0, 0, index, 2] # take only predictions with confidence more than 20% if prediction_confidence > 0.20: #get the predicted label predicted_class_index = int(obj_detections[0, 0, index, 1]) predicted_class_label = class_labels[predicted_class_index] #obtain the bounding box co-oridnates for actual image from resized image size bounding_box = obj_detections[0, 0, index, 3:7] * np.array([img_width, img_height, img_width, img_height]) (start_x_pt, start_y_pt, end_x_pt, end_y_pt) = bounding_box.astype("int") # print the prediction in console predicted_class_label = "{}: {:.2f}%".format(class_labels[predicted_class_index], prediction_confidence * 100) print("predicted object {}: {}".format(index+1, predicted_class_label)) # draw rectangle and text in the image cv2.rectangle(img_to_detect, (start_x_pt, start_y_pt), (end_x_pt, end_y_pt), (0,255,0), 2) cv2.putText(img_to_detect, predicted_class_label, (start_x_pt, start_y_pt-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1) cv2.imshow("Detection Output", img_to_detect)
[ "cv2.putText", "cv2.dnn.blobFromImage", "cv2.rectangle", "cv2.imread", "numpy.arange", "numpy.array", "cv2.dnn.readNetFromCaffe", "cv2.imshow", "cv2.resize" ]
[((223, 262), 'cv2.imread', 'cv2.imread', (['"""images/testing/scene3.jpg"""'], {}), "('images/testing/scene3.jpg')\n", (233, 262), False, 'import cv2\n'), ((361, 398), 'cv2.resize', 'cv2.resize', (['img_to_detect', '(300, 300)'], {}), '(img_to_detect, (300, 300))\n', (371, 398), False, 'import cv2\n'), ((409, 482), 'cv2.dnn.blobFromImage', 'cv2.dnn.blobFromImage', (['resized_img_to_detect', '(0.007843)', '(300, 300)', '(127.5)'], {}), '(resized_img_to_detect, 0.007843, (300, 300), 127.5)\n', (430, 482), False, 'import cv2\n'), ((1101, 1198), 'cv2.dnn.readNetFromCaffe', 'cv2.dnn.readNetFromCaffe', (['"""dataset/mobilenetssd.prototext"""', '"""dataset/mobilenetssd.caffemodel"""'], {}), "('dataset/mobilenetssd.prototext',\n 'dataset/mobilenetssd.caffemodel')\n", (1125, 1198), False, 'import cv2\n'), ((1523, 1553), 'numpy.arange', 'np.arange', (['(0)', 'no_of_detections'], {}), '(0, no_of_detections)\n', (1532, 1553), True, 'import numpy as np\n'), ((2740, 2785), 'cv2.imshow', 'cv2.imshow', (['"""Detection Output"""', 'img_to_detect'], {}), "('Detection Output', img_to_detect)\n", (2750, 2785), False, 'import cv2\n'), ((2512, 2608), 'cv2.rectangle', 'cv2.rectangle', (['img_to_detect', '(start_x_pt, start_y_pt)', '(end_x_pt, end_y_pt)', '(0, 255, 0)', '(2)'], {}), '(img_to_detect, (start_x_pt, start_y_pt), (end_x_pt, end_y_pt),\n (0, 255, 0), 2)\n', (2525, 2608), False, 'import cv2\n'), ((2612, 2742), 'cv2.putText', 'cv2.putText', (['img_to_detect', 'predicted_class_label', '(start_x_pt, start_y_pt - 5)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 255, 0)', '(1)'], {}), '(img_to_detect, predicted_class_label, (start_x_pt, start_y_pt -\n 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)\n', (2623, 2742), False, 'import cv2\n'), ((2051, 2107), 'numpy.array', 'np.array', (['[img_width, img_height, img_width, img_height]'], {}), '([img_width, img_height, img_width, img_height])\n', (2059, 2107), True, 'import numpy as np\n')]
from utils.data_loader import MNIST from models.gru import GRU from models.tcn import TCN import torch import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim import numpy as np # 1エポック学習します def train(model, optimizer, train_loader, log_interval=10): model.train() loss_in_log_interval = 0 n_samples_processed = 0 for i_batch, (x, y) in enumerate(train_loader): x, y = Variable(x), Variable(y) optimizer.zero_grad() if type(model) is TCN: y_hat = model(x) else: hidden = model.generate_initial_hidden(x.size()[0]) y_hat, hidden = model(x, hidden) loss = F.nll_loss(y_hat, y) loss.backward() optimizer.step() loss_in_log_interval += loss.item() n_samples_processed += x.size()[0] if (i_batch + 1) % log_interval == 0: print('{}/{} バッチ ({}/{} サンプル) 流れました 最近 {} バッチの平均損失 {}'.format( i_batch + 1, len(train_loader), n_samples_processed, len(train_loader.dataset), log_interval, loss_in_log_interval / log_interval )) loss_in_log_interval = 0 # テストデータに対してテストします def test(model, test_loader): model.eval() n_total = len(test_loader.dataset) test_loss = 0 n_correct = 0.0 with torch.no_grad(): for x, y in test_loader: if type(model) is TCN: y_hat = model(x) else: hidden = model.generate_initial_hidden(x.size()[0]) y_hat, hidden = model(x, hidden) test_loss += F.nll_loss(y_hat, y, reduction='sum').item() pred = y_hat.data.max(1, keepdim=True)[1] n_correct += pred.eq(y.data.view_as(pred)).sum() test_loss /= n_total print(f'テストデータでの平均損失 {test_loss}') print('テストデータでの正解率 {}/{} ({:.2%})'.format(int(n_correct), n_total, n_correct / n_total)) # メイン # - arch : 学習するモデル構造を gru, tcn から指定します # - id : 吐き出す重みファイルの識別子です # - weight_dict : 既に重みファイルがあれば読み込みます # - epochs : エポック数です 0にすると訓練スキップになります # - permute : これを指定すると系列をこのインデックスの順序に入れ換えます def main(arch='gru', id='hoge', weight_dict=None, epochs=10, permute=None): batch_size = 64 train_loader, test_loader = MNIST(batch_size=batch_size, sequential=(arch == 'tcn'), sequential_rnn=(arch != 'tcn'), permute=permute) if arch == 'tcn': model = TCN(input_size=1, output_size=10, num_channels=[25]*8, kernel_size=7, dropout=0.0) optimizer = optim.Adam(model.parameters(), lr=2e-3) elif arch == 'gru': model = GRU(input_size=1, output_size=10, num_layers=1, d_hidden=128, initial_update_gate_bias=0.5, dropout=0.0) optimizer = optim.RMSprop(model.parameters(), lr=1e-3) if weight_dict is not None: model.load_state_dict(torch.load(weight_dict)) for epoch in range(epochs): print(f'エポック {epoch}') train(model, optimizer, train_loader) test(model, test_loader) torch.save(model.state_dict(), f'./weights/{arch}_sequential_mnist_{id}_{epoch}.dict') test(model, test_loader) if __name__ == '__main__': np.random.seed(0) torch.manual_seed(0) main(arch='gru', weight_dict='./weights/gru_sequential_mnist_sample.dict', epochs=0) main(arch='tcn', weight_dict='./weights/tcn_sequential_mnist_sample.dict', epochs=0) # main(arch='gru', epochs=1) # main(arch='tcn', epochs=1) # Permuted MNIST をする場合 permute = np.random.permutation(784) # main(arch='gru', epochs=1, permute=permute) # main(arch='tcn', epochs=1, permute=permute)
[ "numpy.random.seed", "models.tcn.TCN", "torch.manual_seed", "torch.autograd.Variable", "torch.load", "utils.data_loader.MNIST", "torch.nn.functional.nll_loss", "numpy.random.permutation", "models.gru.GRU", "torch.no_grad" ]
[((2284, 2389), 'utils.data_loader.MNIST', 'MNIST', ([], {'batch_size': 'batch_size', 'sequential': "(arch == 'tcn')", 'sequential_rnn': "(arch != 'tcn')", 'permute': 'permute'}), "(batch_size=batch_size, sequential=arch == 'tcn', sequential_rnn=arch !=\n 'tcn', permute=permute)\n", (2289, 2389), False, 'from utils.data_loader import MNIST\n'), ((3323, 3340), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (3337, 3340), True, 'import numpy as np\n'), ((3345, 3365), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (3362, 3365), False, 'import torch\n'), ((3653, 3679), 'numpy.random.permutation', 'np.random.permutation', (['(784)'], {}), '(784)\n', (3674, 3679), True, 'import numpy as np\n'), ((688, 708), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['y_hat', 'y'], {}), '(y_hat, y)\n', (698, 708), True, 'import torch.nn.functional as F\n'), ((1351, 1366), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1364, 1366), False, 'import torch\n'), ((2542, 2630), 'models.tcn.TCN', 'TCN', ([], {'input_size': '(1)', 'output_size': '(10)', 'num_channels': '([25] * 8)', 'kernel_size': '(7)', 'dropout': '(0.0)'}), '(input_size=1, output_size=10, num_channels=[25] * 8, kernel_size=7,\n dropout=0.0)\n', (2545, 2630), False, 'from models.tcn import TCN\n'), ((435, 446), 'torch.autograd.Variable', 'Variable', (['x'], {}), '(x)\n', (443, 446), False, 'from torch.autograd import Variable\n'), ((448, 459), 'torch.autograd.Variable', 'Variable', (['y'], {}), '(y)\n', (456, 459), False, 'from torch.autograd import Variable\n'), ((2745, 2853), 'models.gru.GRU', 'GRU', ([], {'input_size': '(1)', 'output_size': '(10)', 'num_layers': '(1)', 'd_hidden': '(128)', 'initial_update_gate_bias': '(0.5)', 'dropout': '(0.0)'}), '(input_size=1, output_size=10, num_layers=1, d_hidden=128,\n initial_update_gate_bias=0.5, dropout=0.0)\n', (2748, 2853), False, 'from models.gru import GRU\n'), ((2997, 3020), 'torch.load', 'torch.load', (['weight_dict'], {}), '(weight_dict)\n', (3007, 3020), False, 'import torch\n'), ((1629, 1666), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['y_hat', 'y'], {'reduction': '"""sum"""'}), "(y_hat, y, reduction='sum')\n", (1639, 1666), True, 'import torch.nn.functional as F\n')]
import streamlit as st import numpy as np import pickle from sklearn.tree import DecisionTreeClassifier #model = DecisionTreeClassifier(max_depth=8) model = pickle.load(open('model.pickle','rb')) st.write(""" # CoverMyMeds - PA Approval Chances """) st.write("This project was done as part of the Erdos Data Science bootcamp Fall 2021. The data was provided by CoverMyMeds.") st.header("User Information") st.write("Please fill in the following information." ) bin = st.radio("Select the BIN of Insurance payer: ", ("417380","417614","417740","999001")) drug = st.radio("Select the drug that you want covered: ", ("A","B","C")) tried_failed = st.radio("Have you tried and failed the generic alternative?", ("Yes","No")) contraindication = st.radio("Do you have an associated contraindication for the medication requested (i.e. is there any reason you cannot take this drug)?",("Yes","No")); correct_diagnosis = st.radio("Do you have the corrected diagnosis for the associated drug?",("Yes","No")); # Find reject code: reject_code = 0; if bin == "417380": if drug == "A": reject_code = 75; elif drug == "B": reject_code = 76; elif drug == "C": reject_code = 70; elif bin == "417614": if drug == "A": reject_code = 70; elif drug == "B": reject_code = 75; elif drug == "C": reject_code = 76; elif bin == "417740": if drug == "A": reject_code = 76; elif drug == "B": reject_code = 70; elif drug == "C": reject_code = 75; elif bin == "999001": reject_code = 76; #Set features d = {"Yes":1, "No":0} #Dictionary for Yes = 1, No = 0 cd = d[correct_diagnosis] tf = d[tried_failed] contra = d[contraindication] drug_B = int(drug == "B") drug_C = int(drug == "C") bin_417614 = int(bin == "417614") bin_417740 = int(bin == "417740") bin_999001 = int(bin == "999001") reject_code_75 = int(reject_code == 75) reject_code_76 = int(reject_code == 76) #Predict pred = model.predict_proba([[cd,tf,contra,drug_B,drug_C,bin_417614,bin_417740,bin_999001, reject_code_75, reject_code_76]]) if tf == 0: pred1 = model.predict_proba([[cd,1,contra,drug_B,drug_C,bin_417614,bin_417740,bin_999001, reject_code_75, reject_code_76]]) st.header("Result") st.write("""The chances of your PA being approved are: **{}**""".format(np.round(100*pred[0,1],3)), "%.") if tf == 0: st.write("""In addition, if you first try the generic alternative but still need this drug, then the chances of your PA form being approved are: {}""".format(np.round(100*pred1[0,1],3)), "%.")
[ "streamlit.header", "numpy.round", "streamlit.radio", "streamlit.write" ]
[((200, 253), 'streamlit.write', 'st.write', (['"""\n# CoverMyMeds - PA Approval Chances\n"""'], {}), '("""\n# CoverMyMeds - PA Approval Chances\n""")\n', (208, 253), True, 'import streamlit as st\n'), ((255, 390), 'streamlit.write', 'st.write', (['"""This project was done as part of the Erdos Data Science bootcamp Fall 2021. The data was provided by CoverMyMeds."""'], {}), "(\n 'This project was done as part of the Erdos Data Science bootcamp Fall 2021. The data was provided by CoverMyMeds.'\n )\n", (263, 390), True, 'import streamlit as st\n'), ((382, 411), 'streamlit.header', 'st.header', (['"""User Information"""'], {}), "('User Information')\n", (391, 411), True, 'import streamlit as st\n'), ((413, 466), 'streamlit.write', 'st.write', (['"""Please fill in the following information."""'], {}), "('Please fill in the following information.')\n", (421, 466), True, 'import streamlit as st\n'), ((475, 568), 'streamlit.radio', 'st.radio', (['"""Select the BIN of Insurance payer: """', "('417380', '417614', '417740', '999001')"], {}), "('Select the BIN of Insurance payer: ', ('417380', '417614',\n '417740', '999001'))\n", (483, 568), True, 'import streamlit as st\n'), ((570, 638), 'streamlit.radio', 'st.radio', (['"""Select the drug that you want covered: """', "('A', 'B', 'C')"], {}), "('Select the drug that you want covered: ', ('A', 'B', 'C'))\n", (578, 638), True, 'import streamlit as st\n'), ((653, 730), 'streamlit.radio', 'st.radio', (['"""Have you tried and failed the generic alternative?"""', "('Yes', 'No')"], {}), "('Have you tried and failed the generic alternative?', ('Yes', 'No'))\n", (661, 730), True, 'import streamlit as st\n'), ((750, 912), 'streamlit.radio', 'st.radio', (['"""Do you have an associated contraindication for the medication requested (i.e. is there any reason you cannot take this drug)?"""', "('Yes', 'No')"], {}), "(\n 'Do you have an associated contraindication for the medication requested (i.e. is there any reason you cannot take this drug)?'\n , ('Yes', 'No'))\n", (758, 912), True, 'import streamlit as st\n'), ((923, 1015), 'streamlit.radio', 'st.radio', (['"""Do you have the corrected diagnosis for the associated drug?"""', "('Yes', 'No')"], {}), "('Do you have the corrected diagnosis for the associated drug?', (\n 'Yes', 'No'))\n", (931, 1015), True, 'import streamlit as st\n'), ((2240, 2259), 'streamlit.header', 'st.header', (['"""Result"""'], {}), "('Result')\n", (2249, 2259), True, 'import streamlit as st\n'), ((2332, 2361), 'numpy.round', 'np.round', (['(100 * pred[0, 1])', '(3)'], {}), '(100 * pred[0, 1], 3)\n', (2340, 2361), True, 'import numpy as np\n'), ((2541, 2571), 'numpy.round', 'np.round', (['(100 * pred1[0, 1])', '(3)'], {}), '(100 * pred1[0, 1], 3)\n', (2549, 2571), True, 'import numpy as np\n')]
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for utils.""" import os from absl.testing import absltest from alphafold_paddle.common import protein from alphafold_paddle.relax import utils import numpy as np # Internal import (7716). class UtilsTest(absltest.TestCase): def test_overwrite_b_factors(self): testdir = os.path.join( absltest.get_default_test_srcdir(), 'alphafold/relax/testdata/' 'multiple_disulfides_target.pdb') with open(testdir) as f: test_pdb = f.read() n_residues = 191 bfactors = np.stack([np.arange(0, n_residues)] * 37, axis=-1) output_pdb = utils.overwrite_b_factors(test_pdb, bfactors) # Check that the atom lines are unchanged apart from the B-factors. atom_lines_original = [l for l in test_pdb.split('\n') if l[:4] == ('ATOM')] atom_lines_new = [l for l in output_pdb.split('\n') if l[:4] == ('ATOM')] for line_original, line_new in zip(atom_lines_original, atom_lines_new): self.assertEqual(line_original[:60].strip(), line_new[:60].strip()) self.assertEqual(line_original[66:].strip(), line_new[66:].strip()) # Check B-factors are correctly set for all atoms present. as_protein = protein.from_pdb_string(output_pdb) np.testing.assert_almost_equal( np.where(as_protein.atom_mask > 0, as_protein.b_factors, 0), np.where(as_protein.atom_mask > 0, bfactors, 0)) if __name__ == '__main__': absltest.main()
[ "absl.testing.absltest.main", "alphafold_paddle.common.protein.from_pdb_string", "alphafold_paddle.relax.utils.overwrite_b_factors", "absl.testing.absltest.get_default_test_srcdir", "numpy.where", "numpy.arange" ]
[((1994, 2009), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (2007, 2009), False, 'from absl.testing import absltest\n'), ((1181, 1226), 'alphafold_paddle.relax.utils.overwrite_b_factors', 'utils.overwrite_b_factors', (['test_pdb', 'bfactors'], {}), '(test_pdb, bfactors)\n', (1206, 1226), False, 'from alphafold_paddle.relax import utils\n'), ((1765, 1800), 'alphafold_paddle.common.protein.from_pdb_string', 'protein.from_pdb_string', (['output_pdb'], {}), '(output_pdb)\n', (1788, 1800), False, 'from alphafold_paddle.common import protein\n'), ((907, 941), 'absl.testing.absltest.get_default_test_srcdir', 'absltest.get_default_test_srcdir', ([], {}), '()\n', (939, 941), False, 'from absl.testing import absltest\n'), ((1845, 1904), 'numpy.where', 'np.where', (['(as_protein.atom_mask > 0)', 'as_protein.b_factors', '(0)'], {}), '(as_protein.atom_mask > 0, as_protein.b_factors, 0)\n', (1853, 1904), True, 'import numpy as np\n'), ((1914, 1961), 'numpy.where', 'np.where', (['(as_protein.atom_mask > 0)', 'bfactors', '(0)'], {}), '(as_protein.atom_mask > 0, bfactors, 0)\n', (1922, 1961), True, 'import numpy as np\n'), ((1122, 1146), 'numpy.arange', 'np.arange', (['(0)', 'n_residues'], {}), '(0, n_residues)\n', (1131, 1146), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np from numpy import cos, sin from numpy.testing import assert_equal import unittest import pcl from pcl.registration import icp, gicp, icp_nl, ia_ransac bun0Tobun4 = [[0.85250509, -0.03745676, -0.52137518, 0.04118973], [0.03552843, 0.99927479, -0.01369729, 0.00103067], [0.52151012, -0.00684663, 0.8532176, 0.03994245], [0., 0., 0., 1.]] class TestICP(unittest.TestCase): def setUpRandom(self): # Check if ICP can find a mild rotation. theta = [-.031, .4, .59] rot_x = [[1, 0, 0], [0, cos(theta[0]), -sin(theta[0])], [0, sin(theta[0]), cos(theta[0])]] rot_y = [[cos(theta[1]), 0, sin(theta[1])], [0, 1, 0], [-sin(theta[1]), 0, cos(theta[1])]] rot_z = [[cos(theta[2]), -sin(theta[1]), 0], [sin(theta[2]), cos(theta[1]), 0], [0, 0, 1]] transform = np.dot(rot_x, np.dot(rot_y, rot_z)) # print("---------") # print("Rotation: ") # print(transform[0:3,0:3]) # print("Translation: ", transform[3, 0:3]) # print("---------") random_cloud = np.random.RandomState(42).randn(900, 3) self.source = pcl.PointCloud(random_cloud.astype(np.float32)) a = np.dot(random_cloud, transform).astype(np.float32) self.target = pcl.PointCloud(a) def setUpBunny(self): self.source = pcl.PointCloud() self.source.from_file("tests/bun0.pcd") self.target = pcl.PointCloud() self.target.from_file("tests/bun4.pcd") def setUp(self): self.setUpBunny() def check_algo(self, algo, max_iter=1000, **kwargs): converged, transf, estimate, fitness = \ algo(self.source, self.target, max_iter=max_iter, **kwargs) self.assertTrue(isinstance(transf, np.ndarray)) self.assertEqual(transf.shape, (4, 4)) np.testing.assert_allclose(bun0Tobun4, transf, 0, 0.1) assert_equal(transf[3], [0, 0, 0, 1]) # XXX I think I misunderstand fitness, it's not equal to the following # MSS. # mss = (np.linalg.norm(estimate.to_array() # - self.source.to_array(), axis=1) ** 2).mean() # self.assertLess(mss, 1) # print("------", algo) # print("Converged: ", converged, "Estimate: ", estimate, # "Fitness: ", fitness) # print("Rotation: ") # print(transf[0:3,0:3]) # print("Translation: ", transf[3, 0:3]) # print("---------") def testGICP(self): self.check_algo(gicp) def testICP_NL(self): self.check_algo(icp_nl) def testIA_RANSAC(self): # reducing radius makes this test fail # reducing the max_iter to 1000 makes the test fail self.check_algo(ia_ransac, radius=0.5, minSampleDistance=0.01, maxCorrespondenceDistance=0.5, max_iter=10000) def testICP(self): self.check_algo(icp) transf1 = icp(self.source, self.target, max_iter=1)[1] transf2 = icp(self.source, self.target, max_iter=2)[1] self.assertFalse(np.allclose(transf1, transf2, 0, 0.1), "First and second transformation should be unequal" " in this complicated registration.") transf1 = icp(self.source, self.target, transformationEpsilon=0)[1] transf2 = icp(self.source, self.target, transformationEpsilon=1)[1] self.assertFalse(np.allclose(transf1, transf2, 0, 0.1), "Transformations should be unequal" " with different stopping criteria.") transf1 = icp(self.source, self.target, euclideanFitnessEpsilon=0)[1] transf2 = icp(self.source, self.target, euclideanFitnessEpsilon=1)[1] self.assertFalse(np.allclose(transf1, transf2, 0, 0.1), "Transformations should be unequal with different" " stopping criteria.")
[ "pcl.registration.icp", "numpy.testing.assert_allclose", "numpy.allclose", "numpy.random.RandomState", "numpy.sin", "numpy.testing.assert_equal", "numpy.cos", "numpy.dot", "pcl.PointCloud" ]
[((1603, 1620), 'pcl.PointCloud', 'pcl.PointCloud', (['a'], {}), '(a)\n', (1617, 1620), False, 'import pcl\n'), ((1670, 1686), 'pcl.PointCloud', 'pcl.PointCloud', ([], {}), '()\n', (1684, 1686), False, 'import pcl\n'), ((1757, 1773), 'pcl.PointCloud', 'pcl.PointCloud', ([], {}), '()\n', (1771, 1773), False, 'import pcl\n'), ((2160, 2214), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['bun0Tobun4', 'transf', '(0)', '(0.1)'], {}), '(bun0Tobun4, transf, 0, 0.1)\n', (2186, 2214), True, 'import numpy as np\n'), ((2223, 2260), 'numpy.testing.assert_equal', 'assert_equal', (['transf[3]', '[0, 0, 0, 1]'], {}), '(transf[3], [0, 0, 0, 1])\n', (2235, 2260), False, 'from numpy.testing import assert_equal\n'), ((1185, 1205), 'numpy.dot', 'np.dot', (['rot_y', 'rot_z'], {}), '(rot_y, rot_z)\n', (1191, 1205), True, 'import numpy as np\n'), ((3264, 3305), 'pcl.registration.icp', 'icp', (['self.source', 'self.target'], {'max_iter': '(1)'}), '(self.source, self.target, max_iter=1)\n', (3267, 3305), False, 'from pcl.registration import icp, gicp, icp_nl, ia_ransac\n'), ((3327, 3368), 'pcl.registration.icp', 'icp', (['self.source', 'self.target'], {'max_iter': '(2)'}), '(self.source, self.target, max_iter=2)\n', (3330, 3368), False, 'from pcl.registration import icp, gicp, icp_nl, ia_ransac\n'), ((3397, 3434), 'numpy.allclose', 'np.allclose', (['transf1', 'transf2', '(0)', '(0.1)'], {}), '(transf1, transf2, 0, 0.1)\n', (3408, 3434), True, 'import numpy as np\n'), ((3595, 3649), 'pcl.registration.icp', 'icp', (['self.source', 'self.target'], {'transformationEpsilon': '(0)'}), '(self.source, self.target, transformationEpsilon=0)\n', (3598, 3649), False, 'from pcl.registration import icp, gicp, icp_nl, ia_ransac\n'), ((3671, 3725), 'pcl.registration.icp', 'icp', (['self.source', 'self.target'], {'transformationEpsilon': '(1)'}), '(self.source, self.target, transformationEpsilon=1)\n', (3674, 3725), False, 'from pcl.registration import icp, gicp, icp_nl, ia_ransac\n'), ((3754, 3791), 'numpy.allclose', 'np.allclose', (['transf1', 'transf2', '(0)', '(0.1)'], {}), '(transf1, transf2, 0, 0.1)\n', (3765, 3791), True, 'import numpy as np\n'), ((3936, 3992), 'pcl.registration.icp', 'icp', (['self.source', 'self.target'], {'euclideanFitnessEpsilon': '(0)'}), '(self.source, self.target, euclideanFitnessEpsilon=0)\n', (3939, 3992), False, 'from pcl.registration import icp, gicp, icp_nl, ia_ransac\n'), ((4014, 4070), 'pcl.registration.icp', 'icp', (['self.source', 'self.target'], {'euclideanFitnessEpsilon': '(1)'}), '(self.source, self.target, euclideanFitnessEpsilon=1)\n', (4017, 4070), False, 'from pcl.registration import icp, gicp, icp_nl, ia_ransac\n'), ((4099, 4136), 'numpy.allclose', 'np.allclose', (['transf1', 'transf2', '(0)', '(0.1)'], {}), '(transf1, transf2, 0, 0.1)\n', (4110, 4136), True, 'import numpy as np\n'), ((705, 718), 'numpy.cos', 'cos', (['theta[0]'], {}), '(theta[0])\n', (708, 718), False, 'from numpy import cos, sin\n'), ((771, 784), 'numpy.sin', 'sin', (['theta[0]'], {}), '(theta[0])\n', (774, 784), False, 'from numpy import cos, sin\n'), ((787, 800), 'numpy.cos', 'cos', (['theta[0]'], {}), '(theta[0])\n', (790, 800), False, 'from numpy import cos, sin\n'), ((821, 834), 'numpy.cos', 'cos', (['theta[1]'], {}), '(theta[1])\n', (824, 834), False, 'from numpy import cos, sin\n'), ((853, 866), 'numpy.sin', 'sin', (['theta[1]'], {}), '(theta[1])\n', (856, 866), False, 'from numpy import cos, sin\n'), ((973, 986), 'numpy.cos', 'cos', (['theta[1]'], {}), '(theta[1])\n', (976, 986), False, 'from numpy import cos, sin\n'), ((1007, 1020), 'numpy.cos', 'cos', (['theta[2]'], {}), '(theta[2])\n', (1010, 1020), False, 'from numpy import cos, sin\n'), ((1061, 1074), 'numpy.sin', 'sin', (['theta[2]'], {}), '(theta[2])\n', (1064, 1074), False, 'from numpy import cos, sin\n'), ((1077, 1090), 'numpy.cos', 'cos', (['theta[1]'], {}), '(theta[1])\n', (1080, 1090), False, 'from numpy import cos, sin\n'), ((1408, 1433), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (1429, 1433), True, 'import numpy as np\n'), ((1530, 1561), 'numpy.dot', 'np.dot', (['random_cloud', 'transform'], {}), '(random_cloud, transform)\n', (1536, 1561), True, 'import numpy as np\n'), ((721, 734), 'numpy.sin', 'sin', (['theta[0]'], {}), '(theta[0])\n', (724, 734), False, 'from numpy import cos, sin\n'), ((942, 955), 'numpy.sin', 'sin', (['theta[1]'], {}), '(theta[1])\n', (945, 955), False, 'from numpy import cos, sin\n'), ((1023, 1036), 'numpy.sin', 'sin', (['theta[1]'], {}), '(theta[1])\n', (1026, 1036), False, 'from numpy import cos, sin\n')]
# License: BSD 3 clause import unittest import numpy as np from scipy.sparse import csr_matrix from tick.robust import ModelHuber from tick.base_model.tests.generalized_linear_model import TestGLM from tick.linear_model import SimuLinReg class Test(TestGLM): def test_ModelHuber(self): """...Numerical consistency check of loss and gradient for Huber model """ np.random.seed(12) n_samples, n_features = 5000, 10 w0 = np.random.randn(n_features) c0 = np.random.randn() # First check with intercept X, y = SimuLinReg(w0, c0, n_samples=n_samples, verbose=False).simulate() X_spars = csr_matrix(X) model = ModelHuber(fit_intercept=True, threshold=1.3).fit(X, y) model_spars = ModelHuber(fit_intercept=True, threshold=1.3).fit( X_spars, y) self.run_test_for_glm(model, model_spars) self._test_glm_intercept_vs_hardcoded_intercept(model) # Then check without intercept X, y = SimuLinReg(w0, None, n_samples=n_samples, verbose=False, seed=2038).simulate() X_spars = csr_matrix(X) model = ModelHuber(fit_intercept=False).fit(X, y) model_spars = ModelHuber(fit_intercept=False).fit(X_spars, y) self.run_test_for_glm(model, model_spars) # Test for the Lipschitz constants without intercept self.assertAlmostEqual(model.get_lip_best(), 2.6873683857125981) self.assertAlmostEqual(model.get_lip_mean(), 9.95845726788432) self.assertAlmostEqual(model.get_lip_max(), 54.82616964855237) self.assertAlmostEqual(model_spars.get_lip_mean(), model.get_lip_mean()) self.assertAlmostEqual(model_spars.get_lip_max(), model.get_lip_max()) # Test for the Lipschitz constants with intercept model = ModelHuber(fit_intercept=True).fit(X, y) model_spars = ModelHuber(fit_intercept=True).fit(X_spars, y) self.assertAlmostEqual(model.get_lip_best(), 2.687568385712598) self.assertAlmostEqual(model.get_lip_mean(), 10.958457267884327) self.assertAlmostEqual(model.get_lip_max(), 55.82616964855237) self.assertAlmostEqual(model_spars.get_lip_mean(), model.get_lip_mean()) self.assertAlmostEqual(model_spars.get_lip_max(), model.get_lip_max()) def test_ModelHuber_threshold(self): np.random.seed(12) n_samples, n_features = 5000, 10 w0 = np.random.randn(n_features) c0 = np.random.randn() # First check with intercept X, y = SimuLinReg(w0, c0, n_samples=n_samples, verbose=False).simulate() model = ModelHuber(threshold=1.541).fit(X, y) self.assertEqual(model._model.get_threshold(), 1.541) model.threshold = 3.14 self.assertEqual(model._model.get_threshold(), 3.14) msg = '^threshold must be > 0$' with self.assertRaisesRegex(RuntimeError, msg): model = ModelHuber(threshold=-1).fit(X, y) with self.assertRaisesRegex(RuntimeError, msg): model.threshold = 0. if __name__ == '__main__': unittest.main()
[ "unittest.main", "tick.linear_model.SimuLinReg", "numpy.random.seed", "numpy.random.randn", "scipy.sparse.csr_matrix", "tick.robust.ModelHuber" ]
[((3225, 3240), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3238, 3240), False, 'import unittest\n'), ((394, 412), 'numpy.random.seed', 'np.random.seed', (['(12)'], {}), '(12)\n', (408, 412), True, 'import numpy as np\n'), ((467, 494), 'numpy.random.randn', 'np.random.randn', (['n_features'], {}), '(n_features)\n', (482, 494), True, 'import numpy as np\n'), ((508, 525), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (523, 525), True, 'import numpy as np\n'), ((689, 702), 'scipy.sparse.csr_matrix', 'csr_matrix', (['X'], {}), '(X)\n', (699, 702), False, 'from scipy.sparse import csr_matrix\n'), ((1163, 1176), 'scipy.sparse.csr_matrix', 'csr_matrix', (['X'], {}), '(X)\n', (1173, 1176), False, 'from scipy.sparse import csr_matrix\n'), ((2466, 2484), 'numpy.random.seed', 'np.random.seed', (['(12)'], {}), '(12)\n', (2480, 2484), True, 'import numpy as np\n'), ((2539, 2566), 'numpy.random.randn', 'np.random.randn', (['n_features'], {}), '(n_features)\n', (2554, 2566), True, 'import numpy as np\n'), ((2580, 2597), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (2595, 2597), True, 'import numpy as np\n'), ((579, 633), 'tick.linear_model.SimuLinReg', 'SimuLinReg', (['w0', 'c0'], {'n_samples': 'n_samples', 'verbose': '(False)'}), '(w0, c0, n_samples=n_samples, verbose=False)\n', (589, 633), False, 'from tick.linear_model import SimuLinReg\n'), ((719, 764), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'fit_intercept': '(True)', 'threshold': '(1.3)'}), '(fit_intercept=True, threshold=1.3)\n', (729, 764), False, 'from tick.robust import ModelHuber\n'), ((797, 842), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'fit_intercept': '(True)', 'threshold': '(1.3)'}), '(fit_intercept=True, threshold=1.3)\n', (807, 842), False, 'from tick.robust import ModelHuber\n'), ((1040, 1107), 'tick.linear_model.SimuLinReg', 'SimuLinReg', (['w0', 'None'], {'n_samples': 'n_samples', 'verbose': '(False)', 'seed': '(2038)'}), '(w0, None, n_samples=n_samples, verbose=False, seed=2038)\n', (1050, 1107), False, 'from tick.linear_model import SimuLinReg\n'), ((1193, 1224), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (1203, 1224), False, 'from tick.robust import ModelHuber\n'), ((1258, 1289), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (1268, 1289), False, 'from tick.robust import ModelHuber\n'), ((1899, 1929), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'fit_intercept': '(True)'}), '(fit_intercept=True)\n', (1909, 1929), False, 'from tick.robust import ModelHuber\n'), ((1962, 1992), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'fit_intercept': '(True)'}), '(fit_intercept=True)\n', (1972, 1992), False, 'from tick.robust import ModelHuber\n'), ((2650, 2704), 'tick.linear_model.SimuLinReg', 'SimuLinReg', (['w0', 'c0'], {'n_samples': 'n_samples', 'verbose': '(False)'}), '(w0, c0, n_samples=n_samples, verbose=False)\n', (2660, 2704), False, 'from tick.linear_model import SimuLinReg\n'), ((2759, 2786), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'threshold': '(1.541)'}), '(threshold=1.541)\n', (2769, 2786), False, 'from tick.robust import ModelHuber\n'), ((3068, 3092), 'tick.robust.ModelHuber', 'ModelHuber', ([], {'threshold': '(-1)'}), '(threshold=-1)\n', (3078, 3092), False, 'from tick.robust import ModelHuber\n')]
""" Tests for CameraCalibrator and related functions """ import numpy as np import pytest from scipy.stats import norm from traitlets.config.configurable import Config from astropy import units as u from ctapipe.calib.camera.calibrator import CameraCalibrator from ctapipe.image.extractor import LocalPeakWindowSum, FullWaveformSum from ctapipe.instrument import CameraGeometry from ctapipe.containers import DataContainer @pytest.fixture(scope="function") def subarray(example_event): return example_event.inst.subarray def test_camera_calibrator(example_event, subarray): telid = list(example_event.r0.tel)[0] calibrator = CameraCalibrator(subarray=subarray) calibrator(example_event) image = example_event.dl1.tel[telid].image pulse_time = example_event.dl1.tel[telid].pulse_time assert image is not None assert pulse_time is not None assert image.shape == (1764,) assert pulse_time.shape == (1764,) def test_manual_extractor(subarray): calibrator = CameraCalibrator( subarray=subarray, image_extractor=LocalPeakWindowSum(subarray=subarray) ) assert isinstance(calibrator.image_extractor, LocalPeakWindowSum) def test_config(subarray): window_shift = 3 window_width = 9 config = Config( { "LocalPeakWindowSum": { "window_shift": window_shift, "window_width": window_width, } } ) calibrator = CameraCalibrator( subarray=subarray, image_extractor=LocalPeakWindowSum(subarray=subarray, config=config), config=config ) assert calibrator.image_extractor.window_shift.tel[None] == window_shift assert calibrator.image_extractor.window_width.tel[None] == window_width def test_check_r1_empty(example_event, subarray): calibrator = CameraCalibrator(subarray=subarray) telid = list(example_event.r0.tel)[0] waveform = example_event.r1.tel[telid].waveform.copy() with pytest.warns(UserWarning): example_event.r1.tel[telid].waveform = None calibrator._calibrate_dl0(example_event, telid) assert example_event.dl0.tel[telid].waveform is None assert calibrator._check_r1_empty(None) is True assert calibrator._check_r1_empty(waveform) is False calibrator = CameraCalibrator( subarray=subarray, image_extractor=FullWaveformSum(subarray=subarray) ) event = DataContainer() event.dl0.tel[telid].waveform = np.full((2048, 128), 2) with pytest.warns(UserWarning): calibrator(event) assert (event.dl0.tel[telid].waveform == 2).all() assert (event.dl1.tel[telid].image == 2 * 128).all() def test_check_dl0_empty(example_event, subarray): calibrator = CameraCalibrator(subarray=subarray) telid = list(example_event.r0.tel)[0] calibrator._calibrate_dl0(example_event, telid) waveform = example_event.dl0.tel[telid].waveform.copy() with pytest.warns(UserWarning): example_event.dl0.tel[telid].waveform = None calibrator._calibrate_dl1(example_event, telid) assert example_event.dl1.tel[telid].image is None assert calibrator._check_dl0_empty(None) is True assert calibrator._check_dl0_empty(waveform) is False calibrator = CameraCalibrator(subarray=subarray) event = DataContainer() event.dl1.tel[telid].image = np.full(2048, 2) with pytest.warns(UserWarning): calibrator(event) assert (event.dl1.tel[telid].image == 2).all() def test_dl1_charge_calib(subarray): camera = CameraGeometry.from_name("CHEC") n_pixels = camera.n_pixels n_samples = 96 mid = n_samples // 2 pulse_sigma = 6 random = np.random.RandomState(1) x = np.arange(n_samples) # Randomize times and create pulses time_offset = random.uniform(mid - 10, mid + 10, n_pixels)[:, np.newaxis] y = norm.pdf(x, time_offset, pulse_sigma) # Define absolute calibration coefficients absolute = random.uniform(100, 1000, n_pixels) y *= absolute[:, np.newaxis] # Define relative coefficients relative = random.normal(1, 0.01, n_pixels) y /= relative[:, np.newaxis] # Define pedestal pedestal = random.uniform(-4, 4, n_pixels) y += pedestal[:, np.newaxis] event = DataContainer() telid = list(subarray.tel.keys())[0] event.dl0.tel[telid].waveform = y # Test default calibrator = CameraCalibrator( subarray=subarray, image_extractor=FullWaveformSum(subarray=subarray) ) calibrator(event) np.testing.assert_allclose(event.dl1.tel[telid].image, y.sum(1)) event.calibration.tel[telid].dl1.time_shift = time_offset event.calibration.tel[telid].dl1.pedestal_offset = pedestal * n_samples event.calibration.tel[telid].dl1.absolute_factor = absolute event.calibration.tel[telid].dl1.relative_factor = relative # Test without need for timing corrections calibrator = CameraCalibrator( subarray=subarray, image_extractor=FullWaveformSum(subarray=subarray) ) calibrator(event) np.testing.assert_allclose(event.dl1.tel[telid].image, 1) # TODO: Test with timing corrections
[ "numpy.full", "ctapipe.instrument.CameraGeometry.from_name", "ctapipe.image.extractor.FullWaveformSum", "ctapipe.containers.DataContainer", "ctapipe.calib.camera.calibrator.CameraCalibrator", "pytest.warns", "pytest.fixture", "scipy.stats.norm.pdf", "numpy.random.RandomState", "ctapipe.image.extractor.LocalPeakWindowSum", "numpy.arange", "traitlets.config.configurable.Config", "numpy.testing.assert_allclose" ]
[((427, 459), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (441, 459), False, 'import pytest\n'), ((642, 677), 'ctapipe.calib.camera.calibrator.CameraCalibrator', 'CameraCalibrator', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (658, 677), False, 'from ctapipe.calib.camera.calibrator import CameraCalibrator\n'), ((1271, 1367), 'traitlets.config.configurable.Config', 'Config', (["{'LocalPeakWindowSum': {'window_shift': window_shift, 'window_width':\n window_width}}"], {}), "({'LocalPeakWindowSum': {'window_shift': window_shift, 'window_width':\n window_width}})\n", (1277, 1367), False, 'from traitlets.config.configurable import Config\n'), ((1838, 1873), 'ctapipe.calib.camera.calibrator.CameraCalibrator', 'CameraCalibrator', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (1854, 1873), False, 'from ctapipe.calib.camera.calibrator import CameraCalibrator\n'), ((2430, 2445), 'ctapipe.containers.DataContainer', 'DataContainer', ([], {}), '()\n', (2443, 2445), False, 'from ctapipe.containers import DataContainer\n'), ((2482, 2505), 'numpy.full', 'np.full', (['(2048, 128)', '(2)'], {}), '((2048, 128), 2)\n', (2489, 2505), True, 'import numpy as np\n'), ((2749, 2784), 'ctapipe.calib.camera.calibrator.CameraCalibrator', 'CameraCalibrator', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (2765, 2784), False, 'from ctapipe.calib.camera.calibrator import CameraCalibrator\n'), ((3272, 3307), 'ctapipe.calib.camera.calibrator.CameraCalibrator', 'CameraCalibrator', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (3288, 3307), False, 'from ctapipe.calib.camera.calibrator import CameraCalibrator\n'), ((3320, 3335), 'ctapipe.containers.DataContainer', 'DataContainer', ([], {}), '()\n', (3333, 3335), False, 'from ctapipe.containers import DataContainer\n'), ((3369, 3385), 'numpy.full', 'np.full', (['(2048)', '(2)'], {}), '(2048, 2)\n', (3376, 3385), True, 'import numpy as np\n'), ((3551, 3583), 'ctapipe.instrument.CameraGeometry.from_name', 'CameraGeometry.from_name', (['"""CHEC"""'], {}), "('CHEC')\n", (3575, 3583), False, 'from ctapipe.instrument import CameraGeometry\n'), ((3692, 3716), 'numpy.random.RandomState', 'np.random.RandomState', (['(1)'], {}), '(1)\n', (3713, 3716), True, 'import numpy as np\n'), ((3725, 3745), 'numpy.arange', 'np.arange', (['n_samples'], {}), '(n_samples)\n', (3734, 3745), True, 'import numpy as np\n'), ((3873, 3910), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', 'time_offset', 'pulse_sigma'], {}), '(x, time_offset, pulse_sigma)\n', (3881, 3910), False, 'from scipy.stats import norm\n'), ((4276, 4291), 'ctapipe.containers.DataContainer', 'DataContainer', ([], {}), '()\n', (4289, 4291), False, 'from ctapipe.containers import DataContainer\n'), ((5077, 5134), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['event.dl1.tel[telid].image', '(1)'], {}), '(event.dl1.tel[telid].image, 1)\n', (5103, 5134), True, 'import numpy as np\n'), ((1984, 2009), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (1996, 2009), False, 'import pytest\n'), ((2515, 2540), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (2527, 2540), False, 'import pytest\n'), ((2948, 2973), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (2960, 2973), False, 'import pytest\n'), ((3395, 3420), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (3407, 3420), False, 'import pytest\n'), ((1073, 1110), 'ctapipe.image.extractor.LocalPeakWindowSum', 'LocalPeakWindowSum', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (1091, 1110), False, 'from ctapipe.image.extractor import LocalPeakWindowSum, FullWaveformSum\n'), ((1533, 1585), 'ctapipe.image.extractor.LocalPeakWindowSum', 'LocalPeakWindowSum', ([], {'subarray': 'subarray', 'config': 'config'}), '(subarray=subarray, config=config)\n', (1551, 1585), False, 'from ctapipe.image.extractor import LocalPeakWindowSum, FullWaveformSum\n'), ((2377, 2411), 'ctapipe.image.extractor.FullWaveformSum', 'FullWaveformSum', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (2392, 2411), False, 'from ctapipe.image.extractor import LocalPeakWindowSum, FullWaveformSum\n'), ((4477, 4511), 'ctapipe.image.extractor.FullWaveformSum', 'FullWaveformSum', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (4492, 4511), False, 'from ctapipe.image.extractor import LocalPeakWindowSum, FullWaveformSum\n'), ((5010, 5044), 'ctapipe.image.extractor.FullWaveformSum', 'FullWaveformSum', ([], {'subarray': 'subarray'}), '(subarray=subarray)\n', (5025, 5044), False, 'from ctapipe.image.extractor import LocalPeakWindowSum, FullWaveformSum\n')]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import numpy as np import torch from d2go.data.dataset_mappers.d2go_dataset_mapper import D2GoDatasetMapper from detectron2.data import detection_utils as utils, transforms as T from detectron2.structures import BoxMode, Instances, RotatedBoxes from .build import D2GO_DATA_MAPPER_REGISTRY logger = logging.getLogger(__name__) @D2GO_DATA_MAPPER_REGISTRY.register() class RotatedDatasetMapper(D2GoDatasetMapper): def _original_call(self, dataset_dict): """ Modified from detectron2's original __call__ in DatasetMapper """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = self._read_image(dataset_dict, format=self.img_format) if not self.backfill_size: utils.check_image_size(dataset_dict, image) if "annotations" not in dataset_dict: image, transforms = T.apply_transform_gens( ([self.crop_gen] if self.crop_gen else []) + self.tfm_gens, image ) else: # Crop around an instance if there are instances in the image. # USER: Remove if you don't use cropping if self.crop_gen: crop_tfm = utils.gen_crop_transform_with_instance( self.crop_gen.get_crop_size(image.shape[:2]), image.shape[:2], np.random.choice(dataset_dict["annotations"]), ) image = crop_tfm.apply_image(image) image, transforms = T.apply_transform_gens(self.tfm_gens, image) if self.crop_gen: transforms = crop_tfm + transforms image_shape = image.shape[:2] # h, w dataset_dict["image"] = torch.as_tensor( image.transpose(2, 0, 1).astype("float32") ) # Can use uint8 if it turns out to be slow some day assert not self.load_proposals, "Not supported!" if not self.is_train: dataset_dict.pop("annotations", None) dataset_dict.pop("sem_seg_file_name", None) return dataset_dict if "annotations" in dataset_dict: for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) if not self.keypoint_on: anno.pop("keypoints", None) # Convert dataset_dict["annotations"] to dataset_dict["instances"] annotations = [ obj for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] # Convert either rotated box or horizontal box to XYWHA_ABS format original_boxes = [ BoxMode.convert( box=obj["bbox"], from_mode=obj["bbox_mode"], to_mode=BoxMode.XYWHA_ABS, ) for obj in annotations ] transformed_boxes = transforms.apply_rotated_box( np.array(original_boxes, dtype=np.float64) ) instances = Instances(image_shape) instances.gt_classes = torch.tensor( [obj["category_id"] for obj in annotations], dtype=torch.int64 ) instances.gt_boxes = RotatedBoxes(transformed_boxes) instances.gt_boxes.clip(image_shape) dataset_dict["instances"] = instances[instances.gt_boxes.nonempty()] return dataset_dict
[ "copy.deepcopy", "detectron2.structures.RotatedBoxes", "detectron2.data.transforms.apply_transform_gens", "detectron2.data.detection_utils.check_image_size", "numpy.array", "detectron2.structures.Instances", "numpy.random.choice", "torch.tensor", "detectron2.structures.BoxMode.convert", "logging.getLogger" ]
[((426, 453), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (443, 453), False, 'import logging\n'), ((702, 729), 'copy.deepcopy', 'copy.deepcopy', (['dataset_dict'], {}), '(dataset_dict)\n', (715, 729), False, 'import copy\n'), ((886, 929), 'detectron2.data.detection_utils.check_image_size', 'utils.check_image_size', (['dataset_dict', 'image'], {}), '(dataset_dict, image)\n', (908, 929), True, 'from detectron2.data import detection_utils as utils, transforms as T\n'), ((1009, 1103), 'detectron2.data.transforms.apply_transform_gens', 'T.apply_transform_gens', (['(([self.crop_gen] if self.crop_gen else []) + self.tfm_gens)', 'image'], {}), '(([self.crop_gen] if self.crop_gen else []) + self.\n tfm_gens, image)\n', (1031, 1103), True, 'from detectron2.data import detection_utils as utils, transforms as T\n'), ((1640, 1684), 'detectron2.data.transforms.apply_transform_gens', 'T.apply_transform_gens', (['self.tfm_gens', 'image'], {}), '(self.tfm_gens, image)\n', (1662, 1684), True, 'from detectron2.data import detection_utils as utils, transforms as T\n'), ((3242, 3264), 'detectron2.structures.Instances', 'Instances', (['image_shape'], {}), '(image_shape)\n', (3251, 3264), False, 'from detectron2.structures import BoxMode, Instances, RotatedBoxes\n'), ((3300, 3376), 'torch.tensor', 'torch.tensor', (["[obj['category_id'] for obj in annotations]"], {'dtype': 'torch.int64'}), "([obj['category_id'] for obj in annotations], dtype=torch.int64)\n", (3312, 3376), False, 'import torch\n'), ((3440, 3471), 'detectron2.structures.RotatedBoxes', 'RotatedBoxes', (['transformed_boxes'], {}), '(transformed_boxes)\n', (3452, 3471), False, 'from detectron2.structures import BoxMode, Instances, RotatedBoxes\n'), ((2861, 2953), 'detectron2.structures.BoxMode.convert', 'BoxMode.convert', ([], {'box': "obj['bbox']", 'from_mode': "obj['bbox_mode']", 'to_mode': 'BoxMode.XYWHA_ABS'}), "(box=obj['bbox'], from_mode=obj['bbox_mode'], to_mode=\n BoxMode.XYWHA_ABS)\n", (2876, 2953), False, 'from detectron2.structures import BoxMode, Instances, RotatedBoxes\n'), ((3160, 3202), 'numpy.array', 'np.array', (['original_boxes'], {'dtype': 'np.float64'}), '(original_boxes, dtype=np.float64)\n', (3168, 3202), True, 'import numpy as np\n'), ((1491, 1536), 'numpy.random.choice', 'np.random.choice', (["dataset_dict['annotations']"], {}), "(dataset_dict['annotations'])\n", (1507, 1536), True, 'import numpy as np\n')]
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ The base image interface. """ import numpy as np from scipy import ndimage # Local imports from .image import Image from ..transforms.affines import to_matrix_vector from ..reference.coordinate_system import CoordinateSystem from ..reference.coordinate_map import (AffineTransform, product as cmap_product) ################################################################################ # class `AffineImage` ################################################################################ class AffineImage(Image): """ The affine image for nipy. This object is a subclass of Image that assumes the first 3 coordinates are spatial. **Attributes** :metadata: dictionnary Optional, user-defined, dictionnary used to carry around extra information about the data as it goes through transformations. The Image class does not garanty consistency of this information as the data is modified. :_data: Private pointer to the data. **Properties** :affine: 4x4 ndarray Affine mapping from voxel axes to world coordinates (world coordinates are always forced to be 'x', 'y', 'z'). :spatial_coordmap: AffineTransform Coordinate map describing the spatial coordinates (always forced to be 'x', 'y', 'z') and the coordinate axes with names axis_names[:3]. :coordmap: AffineTransform Coordinate map describing the relationship between all coordinates and axis_names. **Notes** The data is stored in an undefined way: prescalings might need to be applied to it before using it, or the data might be loaded on demand. The best practice to access the data is not to access the _data attribute, but to use the `get_data` method. """ #--------------------------------------------------------------------------- # Attributes, BaseImage interface #--------------------------------------------------------------------------- # The name of the reference coordinate system coord_sys = '' # User defined meta data metadata = dict() # The data (ndarray) _data = None # XXX: Need an attribute to determine in a clever way the # interplation order/method def __init__(self, data, affine, coord_sys, metadata=None): """ Creates a new nipy image with an affine mapping. Parameters ---------- data : ndarray ndarray representing the data. affine : 4x4 ndarray affine transformation to the reference coordinate system coord_system : string name of the reference coordinate system. """ affine = np.asarray(affine) if affine.shape != (4,4): raise ValueError('Affine image takes 4x4 affine as input') function_domain = CoordinateSystem(['axis%d' % i for i in range(3)], name=coord_sys) function_range = CoordinateSystem(['x','y','z'], name='world') spatial_coordmap = AffineTransform(function_domain, function_range, affine) nonspatial_names = ['axis%d' % i for i in range(3, data.ndim)] if nonspatial_names: nonspatial_coordmap = AffineTransform.from_start_step(nonspatial_names, nonspatial_names, [0]*(data.ndim-3), [1]*(data.ndim-3)) full_coordmap = cmap_product(spatial_coordmap, nonspatial_coordmap) else: full_coordmap = spatial_coordmap self._spatial_coordmap = spatial_coordmap self.coord_sys = coord_sys Image.__init__(self, data, full_coordmap) if metadata is not None: self.metadata = metadata def _get_spatial_coordmap(self): """ Returns 3 dimensional AffineTransform, which is the same as self.coordmap if self.ndim == 3. """ return self._spatial_coordmap spatial_coordmap = property(_get_spatial_coordmap) def _get_affine(self): """ Returns the affine of the spatial coordmap which will always be a 4x4 matrix. """ return self._spatial_coordmap.affine affine = property(_get_affine) def get_data(self): # XXX What's wrong with __array__? Wouldn't that be closer to numpy? """ Return data as a numpy array. """ return np.asarray(self._data) def resampled_to_affine(self, affine_transform, world_to_world=None, interpolation_order=3, shape=None): """ Resample the image to be an affine image. Parameters ---------- affine_transform : AffineTransform Affine of the new grid. XXX In the original proposal, it said something about "if only 3x3 it is assumed to be a rotation", but this wouldn't work the way the code was written becuase it was written as if affine was the affine of an AffineImage. So, if you input a "rotation matrix" that is assuming you have voxels of size 1.... This rotation can now be expressed with the world_to_world argument. world_to_world: 4x4 ndarray, optional A matrix representing a mapping from the target's (affine_transform) "world" to self's "world". Defaults to np.identity(4) interpolation_order : int, optional Order of the spline interplation. If 0, nearest-neighbour interpolation is performed. shape: tuple Shape of the resulting image. Defaults to self.shape. Returns ------- resampled_image : nipy AffineImage New nipy image with the data resampled in the given affine. Notes ----- The coordinate system of the resampled_image is the world of affine_transform. Therefore, if world_to_world=np.identity(4), the coordinate system is not changed: the returned image points to the same world space. """ shape = shape or self.shape shape = shape[:3] if world_to_world is None: world_to_world = np.identity(4) world_to_world_transform = AffineTransform(affine_transform.function_range, self.spatial_coordmap.function_range, world_to_world) # Delayed import to avoid circular imports from ...algorithms.resample import resample if self.ndim == 3: im = resample(self, affine_transform, world_to_world_transform, shape, order=interpolation_order) return AffineImage(np.array(im), affine_transform.affine, affine_transform.function_domain.name) # XXX this below wasn't included in the original AffineImage proposal # and it would fail for an AffineImage with ndim == 4. # I don't know if it should be included as a special case in the AffineImage, # but then we should at least raise an exception saying that these resample_* methods # only work for AffineImage's with ndim==3. # # This is part of the reason nipy.core.image.Image does not have # resample_* methods... elif self.ndim == 4: result = np.empty(shape + (self.shape[3],)) data = self.get_data() for i in range(self.shape[3]): tmp_affine_im = AffineImage(data[...,i], self.affine, self.axis_names[:-1]) tmp_im = tmp_affine_im.resampled_to_affine(affine_transform, world_to_world, interpolation_order, shape) result[...,i] = np.array(tmp_im) return AffineImage(result, affine_transform.affine, affine_transform.function_domain.name) else: raise ValueError('resampling only defined for 3d and 4d AffineImage') def resampled_to_img(self, target_image, world_to_world=None, interpolation_order=3): """ Resample the image to be on the same grid than the target image. Parameters ---------- target_image : AffineImage Nipy image onto the grid of which the data will be resampled. XXX In the proposal, target_image was assumed to be a matrix if it had no attribute "affine". It now has to have a spatial_coordmap attribute. world_to_world: 4x4 ndarray, optional A matrix representing a mapping from the target's "world" to self's "world". Defaults to np.identity(4) interpolation_order : int, optional Order of the spline interplation. If 0, nearest neighboor interpolation is performed. Returns ------- resampled_image : nipy_image New nipy image with the data resampled. Notes ----- The coordinate system of the resampled_image is the world of target_image. Therefore, if world_to_world=np.identity(4), the coordinate system is not changed: the returned image points to the same world space. XXX Since you've enforced the outputs always to be 'x','y','z' -- EVERY image is embedded in the same coordinate system (i.e. 'x','y','z'), but images can have different coordinate axes. The term "embedding" that was here in the proposal refers to something in the range of a function, not its domain. By adding a world_to_world transformation, i.e. a rotation or something, we now change the coordinate system of the resampled_image """ return self.resampled_to_affine(target_image.spatial_coordmap, world_to_world, interpolation_order, target_image.shape) def values_in_world(self, x, y, z, interpolation_order=3): """ Return the values of the data at the world-space positions given by x, y, z Parameters ---------- x : number or ndarray x positions in world space, in other words milimeters y : number or ndarray y positions in world space, in other words milimeters. The shape of y should match the shape of x z : number or ndarray z positions in world space, in other words milimeters. The shape of z should match the shape of x interpolation_order : int, optional Order of the spline interplation. If 0, nearest neighboor interpolation is performed. Returns ------- values : number or ndarray Data values interpolated at the given world position. This is a number or an ndarray, depending on the shape of the input coordinate. """ x = np.atleast_1d(x) y = np.atleast_1d(y) z = np.atleast_1d(z) shape = x.shape if not ((x.shape == y.shape) and (x.shape == z.shape)): raise ValueError('x, y and z shapes should be equal') x = x.ravel() y = y.ravel() z = z.ravel() xyz = np.c_[x, y, z] world_to_voxel = self.spatial_coordmap.inverse() ijk = world_to_voxel(xyz) values = ndimage.map_coordinates(self.get_data(), ijk.T, order=interpolation_order) values = np.reshape(values, shape) return values #--------------------------------------------------------------------------- # AffineImage interface #--------------------------------------------------------------------------- def xyz_ordered(self): """ Returns an image with the affine diagonal and positive in its coordinate system. """ A, b = to_matrix_vector(self.affine) if not np.all((np.abs(A) > 0.001).sum(axis=0) == 1): raise CoordSystemError( 'Cannot reorder the axis: the image affine contains rotations' ) axis_numbers = list(np.argmax(np.abs(A), axis=1)) axis_names = [self.spatial_coordmap.function_domain.coord_names[a] for a in axis_numbers] reordered_coordmap = self.spatial_coordmap.reordered_domain(axis_names) data = self.get_data() transposed_data = np.transpose(data, axis_numbers + range(3, self.ndim)) return AffineImage(transposed_data, reordered_coordmap.affine, reordered_coordmap.function_domain.name) #--------------------------------------------------------------------------- # Private methods #--------------------------------------------------------------------------- def __repr__(self): options = np.get_printoptions() np.set_printoptions(precision=6, threshold=64, edgeitems=2) representation = \ 'AffineImage(\n data=%s,\n affine=%s,\n coord_sys=%s)' % ( '\n '.join(repr(self._data).split('\n')), '\n '.join(repr(self.affine).split('\n')), repr(self.coord_sys)) np.set_printoptions(**options) return representation def __copy__(self): """ Copy the Image and the arrays and metadata it contains. """ return self.__class__(data=self.get_data().copy(), affine=self.affine.copy(), coord_sys=self.coord_sys, metadata=self.metadata.copy()) def __deepcopy__(self, option): """ Copy the Image and the arrays and metadata it contains. """ import copy return self.__class__(data=self.get_data().copy(), affine=self.affine.copy(), coord_sys=self.coord_sys, metadata=copy.deepcopy(self.metadata)) def __eq__(self, other): return ( isinstance(other, self.__class__) and np.all(self.get_data() == other.get_data()) and np.all(self.affine == other.affine) and (self.coord_sys == other.coord_sys))
[ "copy.deepcopy", "numpy.set_printoptions", "numpy.abs", "numpy.empty", "numpy.asarray", "numpy.identity", "numpy.array", "numpy.reshape", "numpy.atleast_1d", "numpy.all", "numpy.get_printoptions" ]
[((2983, 3001), 'numpy.asarray', 'np.asarray', (['affine'], {}), '(affine)\n', (2993, 3001), True, 'import numpy as np\n'), ((4689, 4711), 'numpy.asarray', 'np.asarray', (['self._data'], {}), '(self._data)\n', (4699, 4711), True, 'import numpy as np\n'), ((11743, 11759), 'numpy.atleast_1d', 'np.atleast_1d', (['x'], {}), '(x)\n', (11756, 11759), True, 'import numpy as np\n'), ((11772, 11788), 'numpy.atleast_1d', 'np.atleast_1d', (['y'], {}), '(y)\n', (11785, 11788), True, 'import numpy as np\n'), ((11801, 11817), 'numpy.atleast_1d', 'np.atleast_1d', (['z'], {}), '(z)\n', (11814, 11817), True, 'import numpy as np\n'), ((12303, 12328), 'numpy.reshape', 'np.reshape', (['values', 'shape'], {}), '(values, shape)\n', (12313, 12328), True, 'import numpy as np\n'), ((13653, 13674), 'numpy.get_printoptions', 'np.get_printoptions', ([], {}), '()\n', (13672, 13674), True, 'import numpy as np\n'), ((13683, 13742), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(6)', 'threshold': '(64)', 'edgeitems': '(2)'}), '(precision=6, threshold=64, edgeitems=2)\n', (13702, 13742), True, 'import numpy as np\n'), ((14025, 14055), 'numpy.set_printoptions', 'np.set_printoptions', ([], {}), '(**options)\n', (14044, 14055), True, 'import numpy as np\n'), ((6614, 6628), 'numpy.identity', 'np.identity', (['(4)'], {}), '(4)\n', (6625, 6628), True, 'import numpy as np\n'), ((14975, 15010), 'numpy.all', 'np.all', (['(self.affine == other.affine)'], {}), '(self.affine == other.affine)\n', (14981, 15010), True, 'import numpy as np\n'), ((7166, 7178), 'numpy.array', 'np.array', (['im'], {}), '(im)\n', (7174, 7178), True, 'import numpy as np\n'), ((7816, 7850), 'numpy.empty', 'np.empty', (['(shape + (self.shape[3],))'], {}), '(shape + (self.shape[3],))\n', (7824, 7850), True, 'import numpy as np\n'), ((12968, 12977), 'numpy.abs', 'np.abs', (['A'], {}), '(A)\n', (12974, 12977), True, 'import numpy as np\n'), ((14776, 14804), 'copy.deepcopy', 'copy.deepcopy', (['self.metadata'], {}), '(self.metadata)\n', (14789, 14804), False, 'import copy\n'), ((8397, 8413), 'numpy.array', 'np.array', (['tmp_im'], {}), '(tmp_im)\n', (8405, 8413), True, 'import numpy as np\n'), ((12759, 12768), 'numpy.abs', 'np.abs', (['A'], {}), '(A)\n', (12765, 12768), True, 'import numpy as np\n')]
import numpy as np from mayavi import mlab import os from roots.swcToolkit import swcToolkit class swcVisualizer(): """ mfile = 'fileonpath.swc' visualizer = swcVisualizer() visualizer.mplot_mfile(mfile) """ def __init__(self): self.swcTool = swcToolkit() def create_cylinders(self,coords,diams,data,num_pts): x = [] y = [] z = [] connections = [] D = [] offset = 0 for kk in range(len(coords)): # Define points C1 = np.array(coords[kk][0]) C2 = np.array(coords[kk][1]) # Define normal plane p = C1-C2 d = np.dot(p,C1) # Get normal vectors on plane z_idx = np.arange(3)[p==0] nz_idx = np.arange(3)[p!=0] if len(nz_idx) == 3: x1 = 1. y1 = 1. z1 = (d-(np.dot(p[:2],[x1,y1])))/p[2] a = np.array([x1,y1,z1]) elif len(nz_idx) == 2: a = np.zeros(3) a[z_idx] = 1. a[nz_idx[0]] = 1. a[nz_idx[1]] = (d-p[nz_idx[0]])/p[nz_idx[1]] else: a = np.zeros(3) a[z_idx] = 1. a[nz_idx] = d/p[nz_idx] a = a-C1 if len(p[p!=0]) == 3: x2 = 1. y2 = (a[2]*p[0]/p[2] - a[0]) / (a[1] - a[2]*p[1]/p[2]) z2 = -(p[1]*y2+p[0])/p[2] b = np.array([x2,y2,z2]) elif len(p[p!=0]) == 2: b = np.zeros(3) b[z_idx] = 1. b[nz_idx[0]] = a[z_idx]/(a[nz_idx[1]]*p[nz_idx[0]]/p[nz_idx[1]] - a[nz_idx[0]]) b[nz_idx[1]] = -p[nz_idx[0]]*b[nz_idx[0]]/p[nz_idx[1]] else: b = np.zeros(3) b[nz_idx] = 0 b[z_idx[0]] = 1. b[z_idx[1]] = -a[z_idx[0]]/a[z_idx[1]] # Convert to unit vectors a = a/np.linalg.norm(a) b = b/np.linalg.norm(b) theta_step = np.pi*2/num_pts # Define set of points at a defined radius around # the original points, C1 and C2 P1 = np.zeros((num_pts,3)) P2 = np.zeros((num_pts,3)) r1 = diams[kk][0] r2 = diams[kk][1] theta = 0 for ii in range(num_pts): for jj in range(3): P1[ii][jj] = C1[jj] + r1*np.cos(theta)*a[jj] + r1*np.sin(theta)*b[jj] P2[ii][jj] = C2[jj] + r2*np.cos(theta)*a[jj] + r2*np.sin(theta)*b[jj] theta += theta_step # Define triangles for ii in range(2*num_pts): if ii < num_pts: connections.append((ii+offset,(ii+1)%num_pts+offset,ii+num_pts+offset)) else: connections.append((ii+offset,(ii+1-num_pts)%num_pts+offset+num_pts,(ii-num_pts+1)%num_pts+offset)) for ii in range(num_pts): x.append(P1[ii][0]) y.append(P1[ii][1]) z.append(P1[ii][2]) D.append(data[kk]) for ii in range(num_pts): x.append(P2[ii][0]) y.append(P2[ii][1]) z.append(P2[ii][2]) D.append(data[kk]) offset += 2*num_pts x = np.array(x) y = np.array(y) z = np.array(z) D = np.array(D) return x, y, z, connections, D def insert_midpoint(self,a,b): midpoint = [item/2.0 for item in [a[0]+b[0],a[1]+b[1],a[2]+b[2],a[3]+b[3]]] return([list(a),midpoint,list(b)]) def segment_branch(self,branch): segments =[] for i,seg_end in enumerate(branch[:-1]): segments.append([branch[i],branch[i+1]]) return(segments) def unzip_sectioned_arbor(self,arbor): if arbor is None: return({},{},{},{}) x = {} y = {} z = {} r = {} for branch in arbor.keys(): x[branch] = [] y[branch] = [] z[branch] = [] r[branch] = [] for section in arbor[branch]: for point in section: x[branch].append(point[0]) y[branch].append(point[1]) z[branch].append(point[2]) r[branch].append(point[3]) return(x,y,z,r) def rgb_to_mlabcolor(self,rgb): return((rgb[0]/255.0,rgb[1]/255.0,rgb[2]/255.0)) def mplot_sectioned_arbor_simplified(self,arbor,arbor_labels,view=True,DefaultDiameters=True): fig = mlab.figure(bgcolor=(42/255.0,56/255.0,54/255.0),size=(1280,720)) keys = ['node','paranode1','paranode2','internode','interbouton','bouton'] diams = [0.75,1.54,1.54,1.54,0.2,1.0] values = [self.rgb_to_mlabcolor(item) for item in [(255, 22, 84),(112, 193, 179),(178, 219, 191),(36, 123, 160),((243, 255, 189)),(255, 22, 84)]] color_dict = dict(zip(keys,values)) diam_dict = dict(zip(keys,diams)) mobjs = [] for branch in arbor.keys(): # if branch not in [0,1]: # continue for s,section in enumerate(arbor[branch]): if DefaultDiameters: mobjs.append(mlab.plot3d([sec[0] for sec in section],[sec[1] for sec in section],[sec[2] for sec in section],color=color_dict[arbor_labels[branch][s]],tube_radius=diam_dict[arbor_labels[branch][s]],tube_sides=6,representation='wireframe')) else: mobjs.append(mlab.plot3d([sec[0] for sec in section],[sec[1] for sec in section],[sec[2] for sec in section],color=color_dict[arbor_labels[branch][s]],tube_radius=section[-1][-1],tube_sides=6)) mobjs[-1].actor.property.lighting = False mlab.view(azimuth=0,elevation=0) if view: mlab.show() def plot_electrode(self,arbor,arbor_labels,view=False): keys = ['contact','noncontact','activecontact'] values = [self.rgb_to_mlabcolor(item) for item in [(42,56,54),(224, 224, 224),(173,42,42)]] color_dict = dict(zip(keys,values)) electrode_parts = [] electrode_parts.append(mlab.points3d([arbor[1][0][0][0]],[arbor[1][0][0][1]],[arbor[1][0][0][2]],color=color_dict['noncontact'],scale_factor=arbor[1][0][0][3]*1,mode='sphere',resolution=16)) for s,section in enumerate(arbor[0]): if s in arbor_labels: col = color_dict['contact'] if s == 3: col = color_dict['activecontact'] else: col = color_dict['noncontact'] electrode_parts.append(mlab.plot3d([sec[0] for sec in section],[sec[1] for sec in section],[sec[2] for sec in section],color=col,tube_radius=section[-1][-1]/2.0,tube_sides=16)) for part in electrode_parts: part.actor.property.backface_culling=True part.actor.property.frontface_culling=True part.actor.property.shading=True if view: mlab.show() def mplot_sectioned_arbors(self,arbors,colors = [(0.29, 0.58, 0.67),(0.82, 0.35, 0.24)],view=True): fig = mlab.figure(bgcolor=(42/255.0,56/255.0,54/255.0),size=(1280,720)) colors = [(item[0]/255.0,item[1]/255.0,item[2]/255.0) for item in [[0,119,187],[51,187,238],[0,153,136],[238,119,51],[204,51,17],[238,51,119],[221,170,51]]] colors.reverse() col_index = 0 for arbor in arbors: myav_coords = [] myav_diams = [] x,y,z,r = self.unzip_sectioned_arbor(arbor) coords = [] diams = [] for bnum in x: tcoords = [] tdiams = [] for i,tem in enumerate(x[bnum]): tcoords.append([x[bnum][i],y[bnum][i],z[bnum][i]]) tdiams.append(r[bnum][i]) tdiams[-1] *= 3.0 coords.extend(self.segment_branch(tcoords)) diams.extend(self.segment_branch(tdiams)) myav_coords.extend(coords) myav_diams.extend(diams) myav_vs = [20 for i in range(len(myav_coords)-len(coords))]+[2 for j in range(len(coords))] num_pts = 20 tx,ty,tz,tconn,tD = self.create_cylinders(myav_coords,myav_diams,myav_vs,num_pts) tmsh = mlab.triangular_mesh(tx,ty,tz,tconn,scalars=tD,vmin=1,vmax=20,representation='wireframe',color=colors[col_index]) tmsh.actor.property.frontface_culling = True tmsh.actor.property.backface_culling = True tmsh.actor.property.lighting = False col_index+=1 if col_index==len(colors): col_index=0 mlab.view(azimuth=0,elevation=0) # for ii in range(D.shape[1]): # _=mlab.triangular_mesh(x,y,z,connection,scalars = D[:,ii],vmin=Min,vmax=Max) # _=mlab.view(azimuth=0,elevation=0) # _=mlab.savefig('pic%.4d.png' % ii, size=(800,600)) # mlab.savefig('pic%.4d.png' % tstep,size=(1200,900)) if view: mlab.show() def view(self): mlab.show() def close(self): mlab.close(all=True) def mplot_sectioned_arbor(self,fig=None,arbor=None,colors = [(0.29, 0.58, 0.67),(0.82, 0.35, 0.24)],view=True): if fig is None: fig = mlab.figure(bgcolor=(42/255.0,56/255.0,54/255.0),size=(1280,720)) colorind = 0 myav_coords = [] myav_diams = [] x,y,z,r = self.unzip_sectioned_arbor(arbor) coords = [] diams = [] for bnum in x: tcoords = [] tdiams = [] for i,tem in enumerate(x[bnum]): tcoords.append([x[bnum][i],y[bnum][i],z[bnum][i]]) tdiams.append(r[bnum][i]) # tdiams[-1] = 0.025 coords.extend(self.segment_branch(tcoords)) diams.extend(self.segment_branch(tdiams)) myav_coords.extend(coords) myav_diams.extend(diams) myav_vs = [20 for i in range(len(myav_coords)-len(coords))]+[2 for j in range(len(coords))] num_pts = 20 tx,ty,tz,tconn,tD = self.create_cylinders(myav_coords,myav_diams,myav_vs,num_pts) mlab.triangular_mesh(tx,ty,tz,tconn,scalars=tD,vmin=1,vmax=20,representation='wireframe') colorind+=1 mlab.view(azimuth=0,elevation=0) # for ii in range(D.shape[1]): # _=mlab.triangular_mesh(x,y,z,connection,scalars = D[:,ii],vmin=Min,vmax=Max) # _=mlab.view(azimuth=0,elevation=0) # _=mlab.savefig('pic%.4d.png' % ii, size=(800,600)) # mlab.savefig('pic%.4d.png' % tstep,size=(1200,900)) if view: mlab.show() def mplot_mfile(self,swcfile,colors = [(0.29, 0.58, 0.67),(0.82, 0.35, 0.24)]): colorind = 0 myav_coords = [] myav_diams = [] x,y,z,r = self.swcTool.load_swc(swcfile,asTree=False) coords = [] diams = [] for bnum in x: tcoords = [] tdiams = [] for i,tem in enumerate(x[bnum]): tcoords.append([x[bnum][i],y[bnum][i],z[bnum][i]]) tdiams.append(r[bnum][i]) # tdiams[-1] = 0.025 coords.extend(self.segment_branch(tcoords)) diams.extend(self.segment_branch(tdiams)) myav_coords.extend(coords) myav_diams.extend(diams) myav_vs = [20 for i in range(len(myav_coords)-len(coords))]+[2 for j in range(len(coords))] num_pts = 6 tx,ty,tz,tconn,tD = self.create_cylinders(myav_coords,myav_diams,myav_vs,num_pts) mlab.triangular_mesh(tx,ty,tz,tconn,scalars=tD,vmin=1,vmax=20,color=colors[colorind]) colorind+=1 mlab.view(azimuth=0,elevation=0) # for ii in range(D.shape[1]): # _=mlab.triangular_mesh(x,y,z,connection,scalars = D[:,ii],vmin=Min,vmax=Max) # _=mlab.view(azimuth=0,elevation=0) # _=mlab.savefig('pic%.4d.png' % ii, size=(800,600)) # mlab.savefig('pic%.4d.png' % tstep,size=(1200,900)) mlab.show()
[ "mayavi.mlab.figure", "mayavi.mlab.show", "roots.swcToolkit.swcToolkit", "numpy.zeros", "mayavi.mlab.plot3d", "mayavi.mlab.points3d", "mayavi.mlab.close", "numpy.sin", "numpy.array", "numpy.arange", "numpy.linalg.norm", "numpy.cos", "numpy.dot", "mayavi.mlab.view", "mayavi.mlab.triangular_mesh" ]
[((261, 273), 'roots.swcToolkit.swcToolkit', 'swcToolkit', ([], {}), '()\n', (271, 273), False, 'from roots.swcToolkit import swcToolkit\n'), ((2611, 2622), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2619, 2622), True, 'import numpy as np\n'), ((2629, 2640), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (2637, 2640), True, 'import numpy as np\n'), ((2647, 2658), 'numpy.array', 'np.array', (['z'], {}), '(z)\n', (2655, 2658), True, 'import numpy as np\n'), ((2665, 2676), 'numpy.array', 'np.array', (['D'], {}), '(D)\n', (2673, 2676), True, 'import numpy as np\n'), ((3645, 3720), 'mayavi.mlab.figure', 'mlab.figure', ([], {'bgcolor': '(42 / 255.0, 56 / 255.0, 54 / 255.0)', 'size': '(1280, 720)'}), '(bgcolor=(42 / 255.0, 56 / 255.0, 54 / 255.0), size=(1280, 720))\n', (3656, 3720), False, 'from mayavi import mlab\n'), ((4720, 4753), 'mayavi.mlab.view', 'mlab.view', ([], {'azimuth': '(0)', 'elevation': '(0)'}), '(azimuth=0, elevation=0)\n', (4729, 4753), False, 'from mayavi import mlab\n'), ((5928, 6003), 'mayavi.mlab.figure', 'mlab.figure', ([], {'bgcolor': '(42 / 255.0, 56 / 255.0, 54 / 255.0)', 'size': '(1280, 720)'}), '(bgcolor=(42 / 255.0, 56 / 255.0, 54 / 255.0), size=(1280, 720))\n', (5939, 6003), False, 'from mayavi import mlab\n'), ((7211, 7244), 'mayavi.mlab.view', 'mlab.view', ([], {'azimuth': '(0)', 'elevation': '(0)'}), '(azimuth=0, elevation=0)\n', (7220, 7244), False, 'from mayavi import mlab\n'), ((7561, 7572), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (7570, 7572), False, 'from mayavi import mlab\n'), ((7595, 7615), 'mayavi.mlab.close', 'mlab.close', ([], {'all': '(True)'}), '(all=True)\n', (7605, 7615), False, 'from mayavi import mlab\n'), ((8498, 8598), 'mayavi.mlab.triangular_mesh', 'mlab.triangular_mesh', (['tx', 'ty', 'tz', 'tconn'], {'scalars': 'tD', 'vmin': '(1)', 'vmax': '(20)', 'representation': '"""wireframe"""'}), "(tx, ty, tz, tconn, scalars=tD, vmin=1, vmax=20,\n representation='wireframe')\n", (8518, 8598), False, 'from mayavi import mlab\n'), ((8604, 8637), 'mayavi.mlab.view', 'mlab.view', ([], {'azimuth': '(0)', 'elevation': '(0)'}), '(azimuth=0, elevation=0)\n', (8613, 8637), False, 'from mayavi import mlab\n'), ((9690, 9787), 'mayavi.mlab.triangular_mesh', 'mlab.triangular_mesh', (['tx', 'ty', 'tz', 'tconn'], {'scalars': 'tD', 'vmin': '(1)', 'vmax': '(20)', 'color': 'colors[colorind]'}), '(tx, ty, tz, tconn, scalars=tD, vmin=1, vmax=20, color=\n colors[colorind])\n', (9710, 9787), False, 'from mayavi import mlab\n'), ((9792, 9825), 'mayavi.mlab.view', 'mlab.view', ([], {'azimuth': '(0)', 'elevation': '(0)'}), '(azimuth=0, elevation=0)\n', (9801, 9825), False, 'from mayavi import mlab\n'), ((10089, 10100), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (10098, 10100), False, 'from mayavi import mlab\n'), ((458, 481), 'numpy.array', 'np.array', (['coords[kk][0]'], {}), '(coords[kk][0])\n', (466, 481), True, 'import numpy as np\n'), ((490, 513), 'numpy.array', 'np.array', (['coords[kk][1]'], {}), '(coords[kk][1])\n', (498, 513), True, 'import numpy as np\n'), ((563, 576), 'numpy.dot', 'np.dot', (['p', 'C1'], {}), '(p, C1)\n', (569, 576), True, 'import numpy as np\n'), ((1710, 1732), 'numpy.zeros', 'np.zeros', (['(num_pts, 3)'], {}), '((num_pts, 3))\n', (1718, 1732), True, 'import numpy as np\n'), ((1740, 1762), 'numpy.zeros', 'np.zeros', (['(num_pts, 3)'], {}), '((num_pts, 3))\n', (1748, 1762), True, 'import numpy as np\n'), ((4770, 4781), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (4779, 4781), False, 'from mayavi import mlab\n'), ((5075, 5257), 'mayavi.mlab.points3d', 'mlab.points3d', (['[arbor[1][0][0][0]]', '[arbor[1][0][0][1]]', '[arbor[1][0][0][2]]'], {'color': "color_dict['noncontact']", 'scale_factor': '(arbor[1][0][0][3] * 1)', 'mode': '"""sphere"""', 'resolution': '(16)'}), "([arbor[1][0][0][0]], [arbor[1][0][0][1]], [arbor[1][0][0][2]],\n color=color_dict['noncontact'], scale_factor=arbor[1][0][0][3] * 1,\n mode='sphere', resolution=16)\n", (5088, 5257), False, 'from mayavi import mlab\n'), ((5801, 5812), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (5810, 5812), False, 'from mayavi import mlab\n'), ((6895, 7020), 'mayavi.mlab.triangular_mesh', 'mlab.triangular_mesh', (['tx', 'ty', 'tz', 'tconn'], {'scalars': 'tD', 'vmin': '(1)', 'vmax': '(20)', 'representation': '"""wireframe"""', 'color': 'colors[col_index]'}), "(tx, ty, tz, tconn, scalars=tD, vmin=1, vmax=20,\n representation='wireframe', color=colors[col_index])\n", (6915, 7020), False, 'from mayavi import mlab\n'), ((7528, 7539), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (7537, 7539), False, 'from mayavi import mlab\n'), ((7758, 7833), 'mayavi.mlab.figure', 'mlab.figure', ([], {'bgcolor': '(42 / 255.0, 56 / 255.0, 54 / 255.0)', 'size': '(1280, 720)'}), '(bgcolor=(42 / 255.0, 56 / 255.0, 54 / 255.0), size=(1280, 720))\n', (7769, 7833), False, 'from mayavi import mlab\n'), ((8913, 8924), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (8922, 8924), False, 'from mayavi import mlab\n'), ((624, 636), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (633, 636), True, 'import numpy as np\n'), ((655, 667), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (664, 667), True, 'import numpy as np\n'), ((772, 794), 'numpy.array', 'np.array', (['[x1, y1, z1]'], {}), '([x1, y1, z1])\n', (780, 794), True, 'import numpy as np\n'), ((1150, 1172), 'numpy.array', 'np.array', (['[x2, y2, z2]'], {}), '([x2, y2, z2])\n', (1158, 1172), True, 'import numpy as np\n'), ((1532, 1549), 'numpy.linalg.norm', 'np.linalg.norm', (['a'], {}), '(a)\n', (1546, 1549), True, 'import numpy as np\n'), ((1559, 1576), 'numpy.linalg.norm', 'np.linalg.norm', (['b'], {}), '(b)\n', (1573, 1576), True, 'import numpy as np\n'), ((5472, 5640), 'mayavi.mlab.plot3d', 'mlab.plot3d', (['[sec[0] for sec in section]', '[sec[1] for sec in section]', '[sec[2] for sec in section]'], {'color': 'col', 'tube_radius': '(section[-1][-1] / 2.0)', 'tube_sides': '(16)'}), '([sec[0] for sec in section], [sec[1] for sec in section], [sec[\n 2] for sec in section], color=col, tube_radius=section[-1][-1] / 2.0,\n tube_sides=16)\n', (5483, 5640), False, 'from mayavi import mlab\n'), ((827, 838), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (835, 838), True, 'import numpy as np\n'), ((946, 957), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (954, 957), True, 'import numpy as np\n'), ((1206, 1217), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1214, 1217), True, 'import numpy as np\n'), ((1396, 1407), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1404, 1407), True, 'import numpy as np\n'), ((735, 758), 'numpy.dot', 'np.dot', (['p[:2]', '[x1, y1]'], {}), '(p[:2], [x1, y1])\n', (741, 758), True, 'import numpy as np\n'), ((4228, 4472), 'mayavi.mlab.plot3d', 'mlab.plot3d', (['[sec[0] for sec in section]', '[sec[1] for sec in section]', '[sec[2] for sec in section]'], {'color': 'color_dict[arbor_labels[branch][s]]', 'tube_radius': 'diam_dict[arbor_labels[branch][s]]', 'tube_sides': '(6)', 'representation': '"""wireframe"""'}), "([sec[0] for sec in section], [sec[1] for sec in section], [sec[\n 2] for sec in section], color=color_dict[arbor_labels[branch][s]],\n tube_radius=diam_dict[arbor_labels[branch][s]], tube_sides=6,\n representation='wireframe')\n", (4239, 4472), False, 'from mayavi import mlab\n'), ((4483, 4676), 'mayavi.mlab.plot3d', 'mlab.plot3d', (['[sec[0] for sec in section]', '[sec[1] for sec in section]', '[sec[2] for sec in section]'], {'color': 'color_dict[arbor_labels[branch][s]]', 'tube_radius': 'section[-1][-1]', 'tube_sides': '(6)'}), '([sec[0] for sec in section], [sec[1] for sec in section], [sec[\n 2] for sec in section], color=color_dict[arbor_labels[branch][s]],\n tube_radius=section[-1][-1], tube_sides=6)\n', (4494, 4676), False, 'from mayavi import mlab\n'), ((1925, 1938), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1931, 1938), True, 'import numpy as np\n'), ((2000, 2013), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2006, 2013), True, 'import numpy as np\n'), ((1900, 1913), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1906, 1913), True, 'import numpy as np\n'), ((1975, 1988), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1981, 1988), True, 'import numpy as np\n')]
""" Unit tests to verify utility_rank module. """ import unittest import numpy as np from pymcdm import weights from utility_weights import UtilityWeights class TestUtilityNormalization(unittest.TestCase): """ Class used for the verification of implementation of normalization formulas """ def setUp(self): self.test_mat = np.array([[1, 1, 2, 3, 3, 1], [2, 3, 1, 2, 1, 2], [4, 5, 3, 1, 2, 3]]) self.uw = UtilityWeights(self.test_mat) def test_equal_weights(self): """ The standard deviations weights should all be equal. They should have the value of 1/number_of_criteria :return: """ out_weights = np.array(self.uw.weights_equal()) expected_weights = weights.equal_weights(self.test_mat) # Because of summing a very long floating numbers the calculation error shows up. There is a # need to use assertAlomstEqual method self.assertAlmostEqual(sum(out_weights), 1, 1) self.assertEqual(out_weights[0], 1 / len(out_weights)) self.assertTrue(all(element == out_weights[0] for element in out_weights)) np.testing.assert_array_equal(out_weights, expected_weights) def test_standard_deviation_weights(self): """ The sum of standard deviations weights should be equal one . :return: """ out_weights = np.array(self.uw.weights_std()) self.assertEqual(sum(out_weights), 1) def test_entrophy_weights(self): """ The sum of entropy weights should be equal one . """ out_weights = np.array(self.uw.weights_entropy()) self.assertEqual(sum(out_weights), 1) if __name__ == '__main__': unittest.main()
[ "unittest.main", "utility_weights.UtilityWeights", "pymcdm.weights.equal_weights", "numpy.testing.assert_array_equal", "numpy.array" ]
[((1788, 1803), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1801, 1803), False, 'import unittest\n'), ((348, 418), 'numpy.array', 'np.array', (['[[1, 1, 2, 3, 3, 1], [2, 3, 1, 2, 1, 2], [4, 5, 3, 1, 2, 3]]'], {}), '([[1, 1, 2, 3, 3, 1], [2, 3, 1, 2, 1, 2], [4, 5, 3, 1, 2, 3]])\n', (356, 418), True, 'import numpy as np\n'), ((505, 534), 'utility_weights.UtilityWeights', 'UtilityWeights', (['self.test_mat'], {}), '(self.test_mat)\n', (519, 534), False, 'from utility_weights import UtilityWeights\n'), ((814, 850), 'pymcdm.weights.equal_weights', 'weights.equal_weights', (['self.test_mat'], {}), '(self.test_mat)\n', (835, 850), False, 'from pymcdm import weights\n'), ((1209, 1269), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['out_weights', 'expected_weights'], {}), '(out_weights, expected_weights)\n', (1238, 1269), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright 2018 IBM RESEARCH. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np from qiskit.converters import circuit_to_dag def summarize_circuits(circuits): """Summarize circuits based on QuantumCircuit, and four metrics are summarized. Number of qubits and classical bits, and number of operations and depth of circuits. The average statistic is provided if multiple circuits are inputed. Args: circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits """ if not isinstance(circuits, list): circuits = [circuits] ret = "" ret += "Submitting {} circuits.\n".format(len(circuits)) ret += "============================================================================\n" stats = np.zeros(4) for i, circuit in enumerate(circuits): dag = circuit_to_dag(circuit) depth = dag.depth() width = dag.width() size = dag.size() classical_bits = dag.num_cbits() op_counts = dag.count_ops() stats[0] += width stats[1] += classical_bits stats[2] += size stats[3] += depth ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format( i, width, classical_bits, size, depth, op_counts)]) if len(circuits) > 1: stats /= len(circuits) ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format( stats[0], stats[1], stats[2], stats[3])]) ret += "============================================================================\n" return ret
[ "numpy.zeros", "qiskit.converters.circuit_to_dag" ]
[((1402, 1413), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (1410, 1413), True, 'import numpy as np\n'), ((1471, 1494), 'qiskit.converters.circuit_to_dag', 'circuit_to_dag', (['circuit'], {}), '(circuit)\n', (1485, 1494), False, 'from qiskit.converters import circuit_to_dag\n')]
""" References: ----------- [1] http://2019.icbeb.org/Challenge.html """ import math from typing import Union, Optional, Sequence from numbers import Real import numpy as np __all__ = [ "compute_metrics", ] def compute_metrics(rpeaks_truths:Sequence[Union[np.ndarray,Sequence[int]]], rpeaks_preds:Sequence[Union[np.ndarray,Sequence[int]]], fs:Real, thr:float=0.075, verbose:int=0) -> float: """ finished, checked, Parameters: ----------- rpeaks_truths: sequence, sequence of ground truths of rpeaks locations from multiple records rpeaks_preds: sequence, predictions of ground truths of rpeaks locations for multiple records fs: real number, sampling frequency of ECG signal thr: float, default 0.075, threshold for a prediction to be truth positive, with units in seconds, verbose: int, default 0, print verbosity Returns: -------- rec_acc: float, accuracy of predictions """ assert len(rpeaks_truths) == len(rpeaks_preds), \ f"number of records does not match, truth indicates {len(rpeaks_truths)}, while pred indicates {len(rpeaks_preds)}" n_records = len(rpeaks_truths) record_flags = np.ones((len(rpeaks_truths),), dtype=float) thr_ = thr * fs if verbose >= 1: print(f"number of records = {n_records}") print(f"threshold in number of sample points = {thr_}") for idx, (truth_arr, pred_arr) in enumerate(zip(rpeaks_truths, rpeaks_preds)): false_negative = 0 false_positive = 0 true_positive = 0 extended_truth_arr = np.concatenate((truth_arr.astype(int), [int(9.5*fs)])) for j, t_ind in enumerate(extended_truth_arr[:-1]): next_t_ind = extended_truth_arr[j+1] loc = np.where(np.abs(pred_arr - t_ind) <= thr_)[0] if j == 0: err = np.where((pred_arr >= 0.5*fs + thr_) & (pred_arr <= t_ind - thr_))[0] else: err = np.array([], dtype=int) err = np.append( err, np.where((pred_arr >= t_ind+thr_) & (pred_arr <= next_t_ind-thr_))[0] ) false_positive += len(err) if len(loc) >= 1: true_positive += 1 false_positive += len(loc) - 1 elif len(loc) == 0: false_negative += 1 if false_negative + false_positive > 1: record_flags[idx] = 0 elif false_negative == 1 and false_positive == 0: record_flags[idx] = 0.3 elif false_negative == 0 and false_positive == 1: record_flags[idx] = 0.7 if verbose >= 2: print(f"for the {idx}-th record,\ntrue positive = {true_positive}\nfalse positive = {false_positive}\nfalse negative = {false_negative}") rec_acc = round(np.sum(record_flags) / n_records, 4) print(f'QRS_acc: {rec_acc}') print('Scoring complete.') return rec_acc def score(r_ref, hr_ref, r_ans, hr_ans, fs_, thr_): """ the official scoring function """ HR_score = 0 record_flags = np.ones(len(r_ref)) for i in range(len(r_ref)): FN = 0 FP = 0 TP = 0 if math.isnan(hr_ans[i]): hr_ans[i] = 0 hr_der = abs(int(hr_ans[i]) - int(hr_ref[i])) if hr_der <= 0.02 * hr_ref[i]: HR_score = HR_score + 1 elif hr_der <= 0.05 * hr_ref[i]: HR_score = HR_score + 0.75 elif hr_der <= 0.1 * hr_ref[i]: HR_score = HR_score + 0.5 elif hr_der <= 0.2 * hr_ref[i]: HR_score = HR_score + 0.25 r_ref[i] = r_ref[i].astype(int) # added by wenh06 for j in range(len(r_ref[i])): loc = np.where(np.abs(r_ans[i] - r_ref[i][j]) <= thr_*fs_)[0] if j == 0: err = np.where((r_ans[i] >= 0.5*fs_ + thr_*fs_) & (r_ans[i] <= r_ref[i][j] - thr_*fs_))[0] # comments by wenh06: # elif j == len(r_ref[i])-1: # the above would falsely omit the interval between the 0-th and the 1-st ref rpeaks # for example for # r_ref = [np.array([500, 1000])] # r_ans = [np.array([500, 700, 1000])] # a false positive is missed if j == len(r_ref[i])-1: err = np.where((r_ans[i] >= r_ref[i][j]+thr_*fs_) & (r_ans[i] <= 9.5*fs_ - thr_*fs_))[0] else: err = np.where((r_ans[i] >= r_ref[i][j]+thr_*fs_) & (r_ans[i] <= r_ref[i][j+1]-thr_*fs_))[0] FP = FP + len(err) if len(loc) >= 1: TP += 1 FP = FP + len(loc) - 1 elif len(loc) == 0: FN += 1 if FN + FP > 1: record_flags[i] = 0 elif FN == 1 and FP == 0: record_flags[i] = 0.3 elif FN == 0 and FP == 1: record_flags[i] = 0.7 rec_acc = round(np.sum(record_flags) / len(r_ref), 4) hr_acc = round(HR_score / len(r_ref), 4) print('QRS_acc: {}'.format(rec_acc)) print('HR_acc: {}'.format(hr_acc)) print('Scoring complete.') return rec_acc, hr_acc
[ "math.isnan", "numpy.abs", "numpy.sum", "numpy.where", "numpy.array" ]
[((3230, 3251), 'math.isnan', 'math.isnan', (['hr_ans[i]'], {}), '(hr_ans[i])\n', (3240, 3251), False, 'import math\n'), ((2860, 2880), 'numpy.sum', 'np.sum', (['record_flags'], {}), '(record_flags)\n', (2866, 2880), True, 'import numpy as np\n'), ((4953, 4973), 'numpy.sum', 'np.sum', (['record_flags'], {}), '(record_flags)\n', (4959, 4973), True, 'import numpy as np\n'), ((1998, 2021), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (2006, 2021), True, 'import numpy as np\n'), ((1888, 1956), 'numpy.where', 'np.where', (['((pred_arr >= 0.5 * fs + thr_) & (pred_arr <= t_ind - thr_))'], {}), '((pred_arr >= 0.5 * fs + thr_) & (pred_arr <= t_ind - thr_))\n', (1896, 1956), True, 'import numpy as np\n'), ((2088, 2158), 'numpy.where', 'np.where', (['((pred_arr >= t_ind + thr_) & (pred_arr <= next_t_ind - thr_))'], {}), '((pred_arr >= t_ind + thr_) & (pred_arr <= next_t_ind - thr_))\n', (2096, 2158), True, 'import numpy as np\n'), ((3863, 3955), 'numpy.where', 'np.where', (['((r_ans[i] >= 0.5 * fs_ + thr_ * fs_) & (r_ans[i] <= r_ref[i][j] - thr_ * fs_))'], {}), '((r_ans[i] >= 0.5 * fs_ + thr_ * fs_) & (r_ans[i] <= r_ref[i][j] - \n thr_ * fs_))\n', (3871, 3955), True, 'import numpy as np\n'), ((4348, 4440), 'numpy.where', 'np.where', (['((r_ans[i] >= r_ref[i][j] + thr_ * fs_) & (r_ans[i] <= 9.5 * fs_ - thr_ * fs_))'], {}), '((r_ans[i] >= r_ref[i][j] + thr_ * fs_) & (r_ans[i] <= 9.5 * fs_ - \n thr_ * fs_))\n', (4356, 4440), True, 'import numpy as np\n'), ((4471, 4568), 'numpy.where', 'np.where', (['((r_ans[i] >= r_ref[i][j] + thr_ * fs_) & (r_ans[i] <= r_ref[i][j + 1] - \n thr_ * fs_))'], {}), '((r_ans[i] >= r_ref[i][j] + thr_ * fs_) & (r_ans[i] <= r_ref[i][j +\n 1] - thr_ * fs_))\n', (4479, 4568), True, 'import numpy as np\n'), ((1806, 1830), 'numpy.abs', 'np.abs', (['(pred_arr - t_ind)'], {}), '(pred_arr - t_ind)\n', (1812, 1830), True, 'import numpy as np\n'), ((3771, 3801), 'numpy.abs', 'np.abs', (['(r_ans[i] - r_ref[i][j])'], {}), '(r_ans[i] - r_ref[i][j])\n', (3777, 3801), True, 'import numpy as np\n')]
import os import time import pandas as pd import numpy as np import tsam.timeseriesaggregation as tsam def test_segmentation(): raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0) orig_raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_segmentation.csv'), index_col = [0,1,2]) starttime = time.time() aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 20, hoursPerPeriod = 24, clusterMethod = 'hierarchical', segmentation=True, noSegments=12) typPeriods = aggregation.createTypicalPeriods() print('Clustering took ' + str(time.time() - starttime)) # sort the typical days in order to avoid error assertion due to different order sortedDaysOrig = orig_raw.sum(axis=0,level=0).sort_values('GHI').index sortedDaysTest = typPeriods.sum(axis=0,level=0).sort_values('GHI').index # rearange their order orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig,:].stack() test = typPeriods.unstack().loc[sortedDaysTest,:].stack() np.testing.assert_array_almost_equal(orig.values, test.values,decimal=4) if __name__ == "__main__": test_segmentation()
[ "numpy.testing.assert_array_almost_equal", "os.path.dirname", "tsam.timeseriesaggregation.TimeSeriesAggregation", "time.time" ]
[((407, 418), 'time.time', 'time.time', ([], {}), '()\n', (416, 418), False, 'import time\n'), ((438, 577), 'tsam.timeseriesaggregation.TimeSeriesAggregation', 'tsam.TimeSeriesAggregation', (['raw'], {'noTypicalPeriods': '(20)', 'hoursPerPeriod': '(24)', 'clusterMethod': '"""hierarchical"""', 'segmentation': '(True)', 'noSegments': '(12)'}), "(raw, noTypicalPeriods=20, hoursPerPeriod=24,\n clusterMethod='hierarchical', segmentation=True, noSegments=12)\n", (464, 577), True, 'import tsam.timeseriesaggregation as tsam\n'), ((1149, 1222), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['orig.values', 'test.values'], {'decimal': '(4)'}), '(orig.values, test.values, decimal=4)\n', (1185, 1222), True, 'import numpy as np\n'), ((169, 194), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (184, 194), False, 'import os\n'), ((284, 309), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (299, 309), False, 'import os\n'), ((709, 720), 'time.time', 'time.time', ([], {}), '()\n', (718, 720), False, 'import time\n')]