code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
#!/usr/bin/env python """Check Identity class""" from matplotlib import pyplot as plt import numpy as N from load import ROOT as R from matplotlib.ticker import MaxNLocator from gna import constructors as C from gna.bindings import DataType from gna.unittest import * from gna import context # # Create the matrix # def test_io(opts): print('Test inputs/outputs (Identity)') mat = N.arange(12, dtype='d').reshape(3, 4) print( 'Input matrix (numpy)' ) print( mat ) print() # # Create transformations # points = C.Points(mat) identity = R.Identity() identity.identity.switchFunction('identity_gpuargs_h') points.points.points >> identity.identity.source identity.print() res = identity.identity.target.data() dt = identity.identity.target.datatype() assert N.allclose(mat, res), "C++ and Python results doesn't match" # # Dump # print( 'Eigen dump (C++)' ) identity.dump() print() print( 'Result (C++ Data to numpy)' ) print( res ) print() print( 'Datatype:', str(dt) ) def gpuargs_make(nsname, mat1, mat2): from gna.env import env ns = env.globalns(nsname) ns.reqparameter('par1', central=1.0, fixed=True, label='Dummy parameter 1') ns.reqparameter('par2', central=1.5, fixed=True, label='Dummy parameter 2') ns.reqparameter('par3', central=1.01e5, fixed=True, label='Dummy parameter 3') ns.printparameters(labels=True) points1, points2 = C.Points(mat1), C.Points(mat2) with ns: dummy = C.Dummy(4, "dummy", ['par1', 'par2', 'par3']) return dummy, points1, points2, ns @floatcopy(globals(), addname=True) def test_vars_01_local(opts, function_name): print('Test inputs/outputs/variables (Dummy)') mat1 = N.arange(12, dtype='d').reshape(3, 4) mat2 = N.arange(15, dtype='d').reshape(5, 3) dummy, points1, points2, ns = gpuargs_make(function_name, mat1, mat2) dummy.dummy.switchFunction('dummy_gpuargs_h_local') dummy.add_input(points1, 'input1') dummy.add_input(points2, 'input2') dummy.add_output('out1') dummy.add_output('out2') dummy.print() res1 = dummy.dummy.out1.data() res2 = dummy.dummy.out2.data() dt1 = dummy.dummy.out1.datatype() dt2 = dummy.dummy.out2.datatype() assert N.allclose(res1, 0.0), "C++ and Python results doesn't match" assert N.allclose(res2, 1.0), "C++ and Python results doesn't match" print( 'Result (C++ Data to numpy)' ) print( res1 ) print( res2 ) print() print( 'Datatype:', str(dt1) ) print( 'Datatype:', str(dt2) ) print('Change 3d variable') ns['par3'].set(-1.0) res1 = dummy.dummy.out1.data() @floatcopy(globals(), addname=True) def test_vars_02(opts, function_name): print('Test inputs/outputs/variables (Dummy)') mat1 = N.arange(12, dtype='d').reshape(3, 4) mat2 = N.arange(15, dtype='d').reshape(5, 3) with context.manager(100) as manager: dummy, points1, points2, ns = gpuargs_make(function_name, mat1, mat2) manager.setVariables(C.stdvector([par.getVariable() for (name, par) in ns.walknames()])) dummy.dummy.switchFunction('dummy_gpuargs_h') dummy.add_input(points1, 'input1') dummy.add_input(points2, 'input2') dummy.add_output('out1') dummy.add_output('out2') dummy.print() res1 = dummy.dummy.out1.data() res2 = dummy.dummy.out2.data() dt1 = dummy.dummy.out1.datatype() dt2 = dummy.dummy.out2.datatype() assert N.allclose(res1, 0.0), "C++ and Python results doesn't match" assert N.allclose(res2, 1.0), "C++ and Python results doesn't match" print( 'Result (C++ Data to numpy)' ) print( res1 ) print( res2 ) print() print( 'Datatype:', str(dt1) ) print( 'Datatype:', str(dt2) ) print('Change 3d variable') ns['par3'].set(-1.0) res1 = dummy.dummy.out1.data() if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() # parser.add_argument('-g', '--gpuargs', action='store_true') run_unittests(globals(), parser.parse_args())
[ "argparse.ArgumentParser", "numpy.allclose", "gna.constructors.Points", "gna.env.env.globalns", "load.ROOT.Identity", "numpy.arange", "gna.constructors.Dummy", "gna.context.manager" ]
[((551, 564), 'gna.constructors.Points', 'C.Points', (['mat'], {}), '(mat)\n', (559, 564), True, 'from gna import constructors as C\n'), ((580, 592), 'load.ROOT.Identity', 'R.Identity', ([], {}), '()\n', (590, 592), True, 'from load import ROOT as R\n'), ((829, 849), 'numpy.allclose', 'N.allclose', (['mat', 'res'], {}), '(mat, res)\n', (839, 849), True, 'import numpy as N\n'), ((1161, 1181), 'gna.env.env.globalns', 'env.globalns', (['nsname'], {}), '(nsname)\n', (1173, 1181), False, 'from gna.env import env\n'), ((2316, 2337), 'numpy.allclose', 'N.allclose', (['res1', '(0.0)'], {}), '(res1, 0.0)\n', (2326, 2337), True, 'import numpy as N\n'), ((2389, 2410), 'numpy.allclose', 'N.allclose', (['res2', '(1.0)'], {}), '(res2, 1.0)\n', (2399, 2410), True, 'import numpy as N\n'), ((3516, 3537), 'numpy.allclose', 'N.allclose', (['res1', '(0.0)'], {}), '(res1, 0.0)\n', (3526, 3537), True, 'import numpy as N\n'), ((3589, 3610), 'numpy.allclose', 'N.allclose', (['res2', '(1.0)'], {}), '(res2, 1.0)\n', (3599, 3610), True, 'import numpy as N\n'), ((3987, 4003), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (4001, 4003), False, 'from argparse import ArgumentParser\n'), ((1491, 1505), 'gna.constructors.Points', 'C.Points', (['mat1'], {}), '(mat1)\n', (1499, 1505), True, 'from gna import constructors as C\n'), ((1507, 1521), 'gna.constructors.Points', 'C.Points', (['mat2'], {}), '(mat2)\n', (1515, 1521), True, 'from gna import constructors as C\n'), ((1551, 1596), 'gna.constructors.Dummy', 'C.Dummy', (['(4)', '"""dummy"""', "['par1', 'par2', 'par3']"], {}), "(4, 'dummy', ['par1', 'par2', 'par3'])\n", (1558, 1596), True, 'from gna import constructors as C\n'), ((2941, 2961), 'gna.context.manager', 'context.manager', (['(100)'], {}), '(100)\n', (2956, 2961), False, 'from gna import context\n'), ((392, 415), 'numpy.arange', 'N.arange', (['(12)'], {'dtype': '"""d"""'}), "(12, dtype='d')\n", (400, 415), True, 'import numpy as N\n'), ((1781, 1804), 'numpy.arange', 'N.arange', (['(12)'], {'dtype': '"""d"""'}), "(12, dtype='d')\n", (1789, 1804), True, 'import numpy as N\n'), ((1830, 1853), 'numpy.arange', 'N.arange', (['(15)'], {'dtype': '"""d"""'}), "(15, dtype='d')\n", (1838, 1853), True, 'import numpy as N\n'), ((2844, 2867), 'numpy.arange', 'N.arange', (['(12)'], {'dtype': '"""d"""'}), "(12, dtype='d')\n", (2852, 2867), True, 'import numpy as N\n'), ((2893, 2916), 'numpy.arange', 'N.arange', (['(15)'], {'dtype': '"""d"""'}), "(15, dtype='d')\n", (2901, 2916), True, 'import numpy as N\n')]
""" Combines predictions based on votes by a set of answer files. """ import re from os import listdir import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from matplotlib.ticker import MultipleLocator, FormatStrFormatter from sklearn.metrics import accuracy_score from .constants import LABEL from .preprocessing import get_train_dev_test def vote(y_true, y_pred, conf): """ confidence vote """ conf_argmax = np.argmax(conf, axis=0) conf_vote = y_pred.T[np.arange(len(y_pred.T)), conf_argmax] acc_conf = accuracy_score(y_true=y_true, y_pred=conf_vote) """ majority vote """ pred = np.mean(y_pred, axis=0) # in case of a tie use the predictions from the confidence vote tie = np.isclose(pred, 0.5) pred[tie] = conf_vote[tie] pred = (pred >= 0.5) acc_major = accuracy_score(y_true=y_true, y_pred=pred) return acc_conf, acc_major def plot_axis(df, ax, legend_pos='orig1'): df.plot(x=np.arange(1, len(df) + 1), ax=ax, use_index=False, xlim=[-25, len(df) + 25], ylim=[0.5, 0.775], style=['-', '-', '-', '-'], lw=1.5, yticks=[.5, .525, .55, .575, .6, .625, .65, .675, .7, .725, .75, .775]) ax.lines[1].set_linewidth(0.9) # 1.15 ax.lines[3].set_linewidth(0.9) # 1.15 col1 = ax.lines[0].get_color() col2 = ax.lines[2].get_color() ax.lines[1].set_color(tuple(1.3*c for c in col1)) # 1.1* ax.lines[3].set_color(tuple(1.3*c for c in col2)) # 1.1* ax.grid(b=True, which='major', linestyle='-', linewidth=0.85) ax.grid(b=True, which='minor', linestyle=':', linewidth=0.75) if legend_pos == 'orig1': ax.legend(loc='center', bbox_to_anchor=(0.5, 0.365)) elif legend_pos == 'orig2': ax.legend().remove() elif legend_pos == 'alt1': ax.legend(loc='center', bbox_to_anchor=(0.5, 0.14)) elif legend_pos == 'alt2': ax.legend(loc='lower left', bbox_to_anchor=(0.02, 0)) else: ax.legend() ax.set_xlabel('number of models', weight='bold') ax.set_ylabel('accuracy', weight='bold') # majorLocator_x = MultipleLocator(500) majorLocator_y = MultipleLocator(.05) majorFormatter_y = FormatStrFormatter('%.2f') minorLocator_y = MultipleLocator(.025) # ax.xaxis.set_major_locator(majorLocator_x) ax.yaxis.set_major_locator(majorLocator_y) ax.yaxis.set_major_formatter(majorFormatter_y) ax.yaxis.set_minor_locator(minorLocator_y) def plot_figure(dfs: list, name, show=True, save=False, legend_pos: list=None, align='h'): length = len(dfs) if legend_pos is None: legend_pos = [''] * length sns.set(color_codes=True, font_scale=1) sns.set_style("whitegrid", {'legend.frameon': True}) sns.set_palette("deep") if align == 'h': fig, ax = plt.subplots(ncols=length, figsize=(5*length, 5), sharey=True) else: fig, ax = plt.subplots(nrows=length, figsize=(5, 5*length)) if length > 1: for i, df in enumerate(dfs): plot_axis(df, ax[i], legend_pos=legend_pos[i]) ax[0].set_title('original dataset') ax[1].set_title('alternative (randomized) data split') else: plot_axis(dfs[0], ax, legend_pos=legend_pos[0]) fig.tight_layout() if show: plt.show() if save: fig.savefig(name + '.pdf', bbox_inches='tight') plt.close('all') def build_df(files, y_true): probs_ser_lst = [pd.Series(np.load(f).flatten(), name=f[-48:-4].replace(' ', '0')) for f in files] probs_df = pd.DataFrame(probs_ser_lst) preds_df = probs_df.applymap(lambda x: x >= 0.5) confs_df = probs_df.apply(lambda x: np.abs(x - 0.5)) accs_ser = preds_df.apply(lambda row: accuracy_score(y_true=y_true, y_pred=row), axis=1) df = pd.concat([accs_ser, preds_df, probs_df, confs_df], axis=1, keys=['acc', 'pred', 'prob', 'conf']) return df def main(): names = { # 'tensorL05con2redo2': '/media/andreas/Linux_Data/hpc-semeval/tensorL05con2redo2/out/', 'alt_split_odd': '/media/andreas/Linux_Data/hpc-semeval/alt_split_odd_both/', } _, df_dev_data, df_tst_data = get_train_dev_test(options=dict(alt_split=True)) dev_true = df_dev_data[LABEL].values.flatten() tst_true = df_tst_data[LABEL].values.flatten() for k, d in names.items(): directory = listdir(d) dev_files = [d + f for f in directory if re.match(r'^probabilities-' + 'dev', f)] tst_files = [d + f for f in directory if re.match(r'^probabilities-' + 'tst', f)] df_dev = build_df(dev_files, dev_true) df_tst = build_df(tst_files, tst_true) df = pd.concat([df_dev, df_tst], axis=1, keys=['dev', 'tst']) df = df.sort_values(('dev', 'acc', 0), ascending=False) dev_acc_filter = 0. if dev_acc_filter: row_filter = df['dev', 'acc', 0] >= dev_acc_filter df = df[row_filter.values] print('filtered for dev accuracies >=', dev_acc_filter) dev_mean = np.mean(df['dev', 'acc', 0].values) tst_mean = np.mean(df['tst', 'acc', 0].values) dev_preds_np = df['dev', 'pred'].values dev_confs_np = df['dev', 'conf'].values tst_preds_np = df['tst', 'pred'].values tst_confs_np = df['tst', 'conf'].values # print more stats if False: pd.set_option('display.float_format', lambda x: '%.6f' % x) print('dev:\n', pd.Series(dev_mean).describe()) print('test:\n', pd.Series(tst_mean).describe()) dev_conf_scores = list() tst_conf_scores = list() dev_major_scores = list() tst_major_scores = list() for i in range(1, len(df)+1): acc_conf_dev, acc_major_dev = vote(dev_true, y_pred=dev_preds_np[:i], conf=dev_confs_np[:i]) acc_conf_tst, acc_major_tst = vote(tst_true, y_pred=tst_preds_np[:i], conf=tst_confs_np[:i]) dev_conf_scores.append(acc_conf_dev) tst_conf_scores.append(acc_conf_tst) dev_major_scores.append(acc_major_dev) tst_major_scores.append(acc_major_tst) mtrx = { # 'dev: confidence vote': dev_conf_scores, # 'test: confidence vote': tst_conf_scores, 'test: mean accuracy': tst_mean, 'dev: sorted accuracy': df['dev', 'acc', 0], 'dev: majority vote': dev_major_scores, 'test: majority vote': tst_major_scores, # 'dev: mean accuracy': dev_mean, } df = pd.DataFrame(mtrx) plot_figure([df], k + 'all_') # df.to_csv('../out/alt-split_2560.csv', sep='\t') if __name__ == '__main__': # TODO: clean up code or add argument flags # main() # df1 = pd.read_csv('../out/orig-split.csv', sep='\t') df2 = pd.read_csv('../out/alt-split_2560.csv', sep='\t') # plot_figure([df1], '../out/orig-split_2', save=True, legend_pos=['orig1']) plot_figure([df2], '../out/alt-split_2560', save=True, legend_pos=['alt1']) # plot_figure([df1, df2], '../out/ensemble_h_2', save=True, legend_pos=['orig2', 'alt2'], align='h') # plot_figure([df1, df2], '../out/ensemble_v_2', save=True, legend_pos=['orig2', 'alt2'], align='v')
[ "numpy.load", "numpy.abs", "numpy.argmax", "pandas.read_csv", "sklearn.metrics.accuracy_score", "numpy.isclose", "numpy.mean", "pandas.set_option", "pandas.DataFrame", "matplotlib.pyplot.close", "matplotlib.ticker.FormatStrFormatter", "matplotlib.ticker.MultipleLocator", "matplotlib.pyplot.subplots", "seaborn.set", "pandas.concat", "seaborn.set_style", "matplotlib.pyplot.show", "re.match", "pandas.Series", "seaborn.set_palette", "os.listdir" ]
[((463, 486), 'numpy.argmax', 'np.argmax', (['conf'], {'axis': '(0)'}), '(conf, axis=0)\n', (472, 486), True, 'import numpy as np\n'), ((566, 613), 'sklearn.metrics.accuracy_score', 'accuracy_score', ([], {'y_true': 'y_true', 'y_pred': 'conf_vote'}), '(y_true=y_true, y_pred=conf_vote)\n', (580, 613), False, 'from sklearn.metrics import accuracy_score\n'), ((652, 675), 'numpy.mean', 'np.mean', (['y_pred'], {'axis': '(0)'}), '(y_pred, axis=0)\n', (659, 675), True, 'import numpy as np\n'), ((754, 775), 'numpy.isclose', 'np.isclose', (['pred', '(0.5)'], {}), '(pred, 0.5)\n', (764, 775), True, 'import numpy as np\n'), ((848, 890), 'sklearn.metrics.accuracy_score', 'accuracy_score', ([], {'y_true': 'y_true', 'y_pred': 'pred'}), '(y_true=y_true, y_pred=pred)\n', (862, 890), False, 'from sklearn.metrics import accuracy_score\n'), ((2155, 2176), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.05)'], {}), '(0.05)\n', (2170, 2176), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter\n'), ((2199, 2225), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (2217, 2225), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter\n'), ((2247, 2269), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.025)'], {}), '(0.025)\n', (2262, 2269), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter\n'), ((2646, 2685), 'seaborn.set', 'sns.set', ([], {'color_codes': '(True)', 'font_scale': '(1)'}), '(color_codes=True, font_scale=1)\n', (2653, 2685), True, 'import seaborn as sns\n'), ((2690, 2742), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""', "{'legend.frameon': True}"], {}), "('whitegrid', {'legend.frameon': True})\n", (2703, 2742), True, 'import seaborn as sns\n'), ((2747, 2770), 'seaborn.set_palette', 'sns.set_palette', (['"""deep"""'], {}), "('deep')\n", (2762, 2770), True, 'import seaborn as sns\n'), ((3370, 3386), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (3379, 3386), True, 'import matplotlib.pyplot as plt\n'), ((3536, 3563), 'pandas.DataFrame', 'pd.DataFrame', (['probs_ser_lst'], {}), '(probs_ser_lst)\n', (3548, 3563), True, 'import pandas as pd\n'), ((3776, 3877), 'pandas.concat', 'pd.concat', (['[accs_ser, preds_df, probs_df, confs_df]'], {'axis': '(1)', 'keys': "['acc', 'pred', 'prob', 'conf']"}), "([accs_ser, preds_df, probs_df, confs_df], axis=1, keys=['acc',\n 'pred', 'prob', 'conf'])\n", (3785, 3877), True, 'import pandas as pd\n'), ((6818, 6868), 'pandas.read_csv', 'pd.read_csv', (['"""../out/alt-split_2560.csv"""'], {'sep': '"""\t"""'}), "('../out/alt-split_2560.csv', sep='\\t')\n", (6829, 6868), True, 'import pandas as pd\n'), ((2811, 2875), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': 'length', 'figsize': '(5 * length, 5)', 'sharey': '(True)'}), '(ncols=length, figsize=(5 * length, 5), sharey=True)\n', (2823, 2875), True, 'import matplotlib.pyplot as plt\n'), ((2902, 2953), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': 'length', 'figsize': '(5, 5 * length)'}), '(nrows=length, figsize=(5, 5 * length))\n', (2914, 2953), True, 'import matplotlib.pyplot as plt\n'), ((3286, 3296), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3294, 3296), True, 'import matplotlib.pyplot as plt\n'), ((4363, 4373), 'os.listdir', 'listdir', (['d'], {}), '(d)\n', (4370, 4373), False, 'from os import listdir\n'), ((4663, 4719), 'pandas.concat', 'pd.concat', (['[df_dev, df_tst]'], {'axis': '(1)', 'keys': "['dev', 'tst']"}), "([df_dev, df_tst], axis=1, keys=['dev', 'tst'])\n", (4672, 4719), True, 'import pandas as pd\n'), ((5030, 5065), 'numpy.mean', 'np.mean', (["df['dev', 'acc', 0].values"], {}), "(df['dev', 'acc', 0].values)\n", (5037, 5065), True, 'import numpy as np\n'), ((5085, 5120), 'numpy.mean', 'np.mean', (["df['tst', 'acc', 0].values"], {}), "(df['tst', 'acc', 0].values)\n", (5092, 5120), True, 'import numpy as np\n'), ((6543, 6561), 'pandas.DataFrame', 'pd.DataFrame', (['mtrx'], {}), '(mtrx)\n', (6555, 6561), True, 'import pandas as pd\n'), ((3657, 3672), 'numpy.abs', 'np.abs', (['(x - 0.5)'], {}), '(x - 0.5)\n', (3663, 3672), True, 'import numpy as np\n'), ((3716, 3757), 'sklearn.metrics.accuracy_score', 'accuracy_score', ([], {'y_true': 'y_true', 'y_pred': 'row'}), '(y_true=y_true, y_pred=row)\n', (3730, 3757), False, 'from sklearn.metrics import accuracy_score\n'), ((5372, 5431), 'pandas.set_option', 'pd.set_option', (['"""display.float_format"""', "(lambda x: '%.6f' % x)"], {}), "('display.float_format', lambda x: '%.6f' % x)\n", (5385, 5431), True, 'import pandas as pd\n'), ((4423, 4461), 're.match', 're.match', (["('^probabilities-' + 'dev')", 'f'], {}), "('^probabilities-' + 'dev', f)\n", (4431, 4461), False, 'import re\n'), ((4513, 4551), 're.match', 're.match', (["('^probabilities-' + 'tst')", 'f'], {}), "('^probabilities-' + 'tst', f)\n", (4521, 4551), False, 'import re\n'), ((3449, 3459), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (3456, 3459), True, 'import numpy as np\n'), ((5460, 5479), 'pandas.Series', 'pd.Series', (['dev_mean'], {}), '(dev_mean)\n', (5469, 5479), True, 'import pandas as pd\n'), ((5521, 5540), 'pandas.Series', 'pd.Series', (['tst_mean'], {}), '(tst_mean)\n', (5530, 5540), True, 'import pandas as pd\n')]
# Databricks notebook source import numpy as np import pandas as pd from scipy import stats # COMMAND ---------- # Simulate original ice cream dataset df = pd.DataFrame() df['temperature'] = np.random.uniform(60, 80, 1000) df['number_of_cones_sold'] = np.random.uniform(0, 20, 1000) flavors = ["Vanilla"] * 300 + ['Chocolate'] * 200 + ['Cookie Dough'] * 300 + ['Coffee'] * 200 np.random.shuffle(flavors) df['most_popular_ice_cream_flavor'] = flavors df['number_bowls_sold'] = np.random.uniform(0, 20, 1000) sorbet = ["Raspberry "] * 250 + ['Lemon'] * 250 + ['Lime'] * 250 + ['Orange'] * 250 np.random.shuffle(sorbet) df['most_popular_sorbet_flavor'] = sorbet df['total_store_sales'] = np.random.normal(100, 10, 1000) df['total_sales_predicted'] = np.random.normal(100, 10, 1000) # Simulate new ice cream dataset df2 = pd.DataFrame() df2['temperature'] = (df['temperature'] - 32) * (5/9) # F -> C df2['number_of_cones_sold'] = np.random.uniform(0, 20, 1000) #stay same flavors = ["Vanilla"] * 100 + ['Chocolate'] * 300 + ['Cookie Dough'] * 400 + ['Coffee'] * 200 np.random.shuffle(flavors) df2['most_popular_ice_cream_flavor'] = flavors df2['number_bowls_sold'] = np.random.uniform(10, 30, 1000) sorbet = ["Raspberry "] * 200 + ['Lemon'] * 200 + ['Lime'] * 200 + ['Orange'] * 200 + [None] * 200 np.random.shuffle(sorbet) df2['most_popular_sorbet_flavor'] = sorbet df2['total_store_sales'] = np.random.normal(150, 10, 1000) # increased df2['total_sales_predicted'] = np.random.normal(80, 10, 1000) # decreased
[ "pandas.DataFrame", "numpy.random.uniform", "numpy.random.normal", "numpy.random.shuffle" ]
[((160, 174), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (172, 174), True, 'import pandas as pd\n'), ((195, 226), 'numpy.random.uniform', 'np.random.uniform', (['(60)', '(80)', '(1000)'], {}), '(60, 80, 1000)\n', (212, 226), True, 'import numpy as np\n'), ((256, 286), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(20)', '(1000)'], {}), '(0, 20, 1000)\n', (273, 286), True, 'import numpy as np\n'), ((382, 408), 'numpy.random.shuffle', 'np.random.shuffle', (['flavors'], {}), '(flavors)\n', (399, 408), True, 'import numpy as np\n'), ((481, 511), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(20)', '(1000)'], {}), '(0, 20, 1000)\n', (498, 511), True, 'import numpy as np\n'), ((597, 622), 'numpy.random.shuffle', 'np.random.shuffle', (['sorbet'], {}), '(sorbet)\n', (614, 622), True, 'import numpy as np\n'), ((691, 722), 'numpy.random.normal', 'np.random.normal', (['(100)', '(10)', '(1000)'], {}), '(100, 10, 1000)\n', (707, 722), True, 'import numpy as np\n'), ((753, 784), 'numpy.random.normal', 'np.random.normal', (['(100)', '(10)', '(1000)'], {}), '(100, 10, 1000)\n', (769, 784), True, 'import numpy as np\n'), ((825, 839), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (837, 839), True, 'import pandas as pd\n'), ((933, 963), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(20)', '(1000)'], {}), '(0, 20, 1000)\n', (950, 963), True, 'import numpy as np\n'), ((1069, 1095), 'numpy.random.shuffle', 'np.random.shuffle', (['flavors'], {}), '(flavors)\n', (1086, 1095), True, 'import numpy as np\n'), ((1170, 1201), 'numpy.random.uniform', 'np.random.uniform', (['(10)', '(30)', '(1000)'], {}), '(10, 30, 1000)\n', (1187, 1201), True, 'import numpy as np\n'), ((1301, 1326), 'numpy.random.shuffle', 'np.random.shuffle', (['sorbet'], {}), '(sorbet)\n', (1318, 1326), True, 'import numpy as np\n'), ((1397, 1428), 'numpy.random.normal', 'np.random.normal', (['(150)', '(10)', '(1000)'], {}), '(150, 10, 1000)\n', (1413, 1428), True, 'import numpy as np\n'), ((1472, 1502), 'numpy.random.normal', 'np.random.normal', (['(80)', '(10)', '(1000)'], {}), '(80, 10, 1000)\n', (1488, 1502), True, 'import numpy as np\n')]
from __future__ import division __author__ = '<NAME>' import numpy as np from scipy.stats import norm import string import bottleneck as bn import math # paa tranformation, window = incoming data, string_length = length of outcoming data class sax(): def process(self, window, output_length, sax_vocab): sax = to_sax(to_paa(normalize(window),output_length),sax_vocab) #return vocabToCoordinates(len(window),output_length,sax[0],4) return vocabToCoordinates(output_length,output_length,sax[0],sax_vocab) def getConfigurationParams(self): return {"output_length":"100","sax_vocab":"4"} def normalize(data): data2 = np.array(data) data2 = data2 - (np.mean(data)) data2 = data2 /data2.std() return data2 def to_paa(data,string_length): data = np.array_split(data, string_length) return [np.mean(section) for section in data] def gen_breakpoints(symbol_count): breakpoints = norm.ppf(np.linspace(1. / symbol_count, 1 - 1. / symbol_count, symbol_count - 1)) breakpoints = np.concatenate((breakpoints, np.array([np.Inf]))) return breakpoints def to_sax(data,symbol_count): breakpoints = gen_breakpoints(symbol_count) locations = [np.where(breakpoints > section_mean)[0][0] for section_mean in data] return [''.join([string.ascii_letters[ind] for ind in locations])] def vocabToCoordinates(time_window, phrase_length, phrases, symbol_count): breakpoints = gen_breakpoints(symbol_count) newCutlines = breakpoints.tolist() max_value = breakpoints[symbol_count - 2] + ((breakpoints[symbol_count - 2] - breakpoints[symbol_count - 3]) * 2) # HERE IS SOMETHING WRONG // ONLY IN VISUALISATION min_value = breakpoints[0] - ((breakpoints[1] - breakpoints[0]) * 2) infi = newCutlines.pop() newCutlines.append(max_value) newCutlines.append(infi) newCutlines.insert(0, min_value) #newCutlines.insert(0,-np.Inf) co1 = time_window / float(phrase_length) g = 0 retList = [] for s in phrases: if s is "#": for i in range(int(co1)): retList.append(np.NaN) g+=1 else: for i in range(int(co1)): retList.append(newCutlines[ord(s) - 97]) g+=1 #print co1,time_window,phrase_length,g,len(phrases) return retList def convertSaxBackToContinious(string_length, symbol_count, data): points, phrases = norm(data,string_length, symbol_count) retList = vocabToCoordinates(data, string_length, phrases, points, symbol_count) #print phrases[0] return retList def saxDistance(w1, w2,original_length,symbol_count): if len(w1) != len(w2): raise Exception("not equal string length") string_length=len(w1) dist = 0 for (l, k) in zip(w1, w2): dist += saxDistanceLetter(l, k,symbol_count) result = np.sqrt(dist) * np.sqrt(np.divide(original_length, string_length)) return result def saxDistanceLetter(w1, w2, symbol_count): n1 = ord(w1) - 97 n2 = ord(w2) - 97 lookupTable= createLookup(symbol_count,gen_breakpoints(symbol_count)) if n1 > symbol_count: raise Exception(" letter not in Dictionary " + w1) if n2 > symbol_count: raise Exception(" letter not in Dictionary " + w2) return lookupTable[n1][n2] def createLookup(symbol_count, breakpoints): return make_matrix(symbol_count, symbol_count, breakpoints) def make_list(row, size, breakpoints): mylist = [] for i in range(size): i = i + 1 if abs(row - i) <= 1: mylist.append(0) else: v = breakpoints[(max(row, i) - 2)] - breakpoints[min(row, i) - 1] mylist.append(v) return mylist def make_matrix(rows, cols, breakpoints): matrix = [] for i in range(rows): i = i + 1 matrix.append(make_list(i, cols, breakpoints)) return matrix
[ "numpy.divide", "scipy.stats.norm", "numpy.mean", "numpy.array", "numpy.where", "numpy.linspace", "numpy.array_split", "numpy.sqrt" ]
[((661, 675), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (669, 675), True, 'import numpy as np\n'), ((804, 839), 'numpy.array_split', 'np.array_split', (['data', 'string_length'], {}), '(data, string_length)\n', (818, 839), True, 'import numpy as np\n'), ((2446, 2485), 'scipy.stats.norm', 'norm', (['data', 'string_length', 'symbol_count'], {}), '(data, string_length, symbol_count)\n', (2450, 2485), False, 'from scipy.stats import norm\n'), ((697, 710), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (704, 710), True, 'import numpy as np\n'), ((853, 869), 'numpy.mean', 'np.mean', (['section'], {}), '(section)\n', (860, 869), True, 'import numpy as np\n'), ((955, 1028), 'numpy.linspace', 'np.linspace', (['(1.0 / symbol_count)', '(1 - 1.0 / symbol_count)', '(symbol_count - 1)'], {}), '(1.0 / symbol_count, 1 - 1.0 / symbol_count, symbol_count - 1)\n', (966, 1028), True, 'import numpy as np\n'), ((2880, 2893), 'numpy.sqrt', 'np.sqrt', (['dist'], {}), '(dist)\n', (2887, 2893), True, 'import numpy as np\n'), ((1075, 1093), 'numpy.array', 'np.array', (['[np.Inf]'], {}), '([np.Inf])\n', (1083, 1093), True, 'import numpy as np\n'), ((2904, 2945), 'numpy.divide', 'np.divide', (['original_length', 'string_length'], {}), '(original_length, string_length)\n', (2913, 2945), True, 'import numpy as np\n'), ((1218, 1254), 'numpy.where', 'np.where', (['(breakpoints > section_mean)'], {}), '(breakpoints > section_mean)\n', (1226, 1254), True, 'import numpy as np\n')]
import numpy as np from astropy.table import Table import glob models = ['MIST_v1.2_feh_m4.00_afe_p0.0_vvcrit0.0_EEPS', 'MIST_v1.2_feh_m4.00_afe_p0.0_vvcrit0.4_EEPS', 'MIST_v1.2_feh_p0.00_afe_p0.0_vvcrit0.0_EEPS', 'MIST_v1.2_feh_p0.00_afe_p0.0_vvcrit0.4_EEPS', 'MIST_v1.2_feh_p0.50_afe_p0.0_vvcrit0.0_EEPS', 'MIST_v1.2_feh_p0.50_afe_p0.0_vvcrit0.4_EEPS'] for model in models: print(model) initial_mass = [] ms_age = [] for file in list(glob.glob(model+'/*.txt')): table = np.loadtxt(file) n = len(table[:,0]) initial_mass.append(table[0,1]) ms_age.append(table[n-1,0]) summary = Table() summary['initial_mass'] = initial_mass summary['ms_age'] = ms_age summary.write(model+'_sum.csv')
[ "astropy.table.Table", "numpy.loadtxt", "glob.glob" ]
[((820, 827), 'astropy.table.Table', 'Table', ([], {}), '()\n', (825, 827), False, 'from astropy.table import Table\n'), ((640, 667), 'glob.glob', 'glob.glob', (["(model + '/*.txt')"], {}), "(model + '/*.txt')\n", (649, 667), False, 'import glob\n'), ((684, 700), 'numpy.loadtxt', 'np.loadtxt', (['file'], {}), '(file)\n', (694, 700), True, 'import numpy as np\n')]
import json import csv import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import itertools import os import shutil def get_dtype_groups(data_types): float_unis = [] object_unis = [] int_unis = [] for i, v in data_types.items(): if i == np.dtype('float64') or i == np.dtype('float32'): float_unis.append(v) if i == np.dtype('O'): object_unis.append(v) if i == np.dtype('int64') or i == np.dtype('int32') or i == np.dtype('int16'): int_unis.append(v) return float_unis, object_unis, int_unis def findsubsets(s, n): return list(itertools.permutations(s, n)) def plot_3d(data, headers, data_types, filename): dirpath = 'saved_plots/{}_Misc_Plots'.format(filename) sub_folders = ['scatter_3dPlots'] if os.path.exists(dirpath) and os.path.isdir(dirpath): shutil.rmtree(dirpath) os.makedirs(dirpath) for i in sub_folders: if os.path.exists(i) and os.path.isdir(i): shutil.rmtree(i) os.makedirs(dirpath+'/'+i) fig = plt.figure() ax = plt.axes(projection='3d') float_unis, object_unis, int_unis = get_dtype_groups(data_types) palette = itertools.cycle(sns.color_palette()) if len(float_unis) > 0: if len(int_unis) > 0: cols = float_unis[0]+int_unis[0] if len(cols) > 4: cols = cols[:4] pairs_3d = findsubsets(cols, 3) else: cols = float_unis[0] if len(cols) > 4: cols = cols[:4] pairs_3d = findsubsets(cols, 3) try: for j in pairs_3d: fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter(data[j[0]], data[j[1]], data[j[2]], color=next(palette)) ax.legend() x = j[0] ax.set_xlabel(x, fontsize=20) ax.set_ylabel(j[1], fontsize=20) ax.set_zlabel(j[2], fontsize=20, rotation=0) fig.set_size_inches(18.5, 10.5) plt.savefig( './{}/scatter_3dPlots/{}_{}_{}_set.png'.format(dirpath, j[0], j[1], j[2])) except Exception as e: print(e) print('error occured while plotting {} columns.'.format(j)) def plot_groupby(data, headers, data_types, filename): dirpath = 'saved_plots/{}_Misc_Plots'.format(filename) float_unis, object_unis, int_unis = get_dtype_groups(data_types) try: if len(object_unis) > 0: for j in object_unis[0]: df = data.groupby(j).mean() # print(df) fig, ax = plt.subplots() df.plot(kind='bar') fig.set_size_inches(18.5, 10.5) unique_values = len(pd.unique(data[j])) if unique_values > 30: continue plt.savefig('./{}/groupby_{}_bar_plot.png'.format(dirpath, j)) except Exception as e: print(e) print('error occured while plotting groupby by {} column.'.format(j))
[ "os.makedirs", "matplotlib.pyplot.axes", "os.path.isdir", "itertools.permutations", "numpy.dtype", "os.path.exists", "pandas.unique", "matplotlib.pyplot.figure", "seaborn.color_palette", "shutil.rmtree", "matplotlib.pyplot.subplots" ]
[((933, 953), 'os.makedirs', 'os.makedirs', (['dirpath'], {}), '(dirpath)\n', (944, 953), False, 'import os\n'), ((1107, 1119), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1117, 1119), True, 'import matplotlib.pyplot as plt\n'), ((1129, 1154), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (1137, 1154), True, 'import matplotlib.pyplot as plt\n'), ((658, 686), 'itertools.permutations', 'itertools.permutations', (['s', 'n'], {}), '(s, n)\n', (680, 686), False, 'import itertools\n'), ((845, 868), 'os.path.exists', 'os.path.exists', (['dirpath'], {}), '(dirpath)\n', (859, 868), False, 'import os\n'), ((873, 895), 'os.path.isdir', 'os.path.isdir', (['dirpath'], {}), '(dirpath)\n', (886, 895), False, 'import os\n'), ((905, 927), 'shutil.rmtree', 'shutil.rmtree', (['dirpath'], {}), '(dirpath)\n', (918, 927), False, 'import shutil\n'), ((1069, 1099), 'os.makedirs', 'os.makedirs', (["(dirpath + '/' + i)"], {}), "(dirpath + '/' + i)\n", (1080, 1099), False, 'import os\n'), ((1255, 1274), 'seaborn.color_palette', 'sns.color_palette', ([], {}), '()\n', (1272, 1274), True, 'import seaborn as sns\n'), ((403, 416), 'numpy.dtype', 'np.dtype', (['"""O"""'], {}), "('O')\n", (411, 416), True, 'import numpy as np\n'), ((991, 1008), 'os.path.exists', 'os.path.exists', (['i'], {}), '(i)\n', (1005, 1008), False, 'import os\n'), ((1013, 1029), 'os.path.isdir', 'os.path.isdir', (['i'], {}), '(i)\n', (1026, 1029), False, 'import os\n'), ((1043, 1059), 'shutil.rmtree', 'shutil.rmtree', (['i'], {}), '(i)\n', (1056, 1059), False, 'import shutil\n'), ((305, 324), 'numpy.dtype', 'np.dtype', (['"""float64"""'], {}), "('float64')\n", (313, 324), True, 'import numpy as np\n'), ((333, 352), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (341, 352), True, 'import numpy as np\n'), ((468, 485), 'numpy.dtype', 'np.dtype', (['"""int64"""'], {}), "('int64')\n", (476, 485), True, 'import numpy as np\n'), ((494, 511), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (502, 511), True, 'import numpy as np\n'), ((520, 537), 'numpy.dtype', 'np.dtype', (['"""int16"""'], {}), "('int16')\n", (528, 537), True, 'import numpy as np\n'), ((1706, 1718), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1716, 1718), True, 'import matplotlib.pyplot as plt\n'), ((1740, 1765), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (1748, 1765), True, 'import matplotlib.pyplot as plt\n'), ((2744, 2758), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2756, 2758), True, 'import matplotlib.pyplot as plt\n'), ((2879, 2897), 'pandas.unique', 'pd.unique', (['data[j]'], {}), '(data[j])\n', (2888, 2897), True, 'import pandas as pd\n')]
import numpy as np from deepen.activation import relu, relu_backward, sigmoid, sigmoid_backward def initialize_params(layer_dims): """Create and initialize the params of an L-layer neural network. Parameters ---------- layer_dims : list or tuple of int The number of neurons in each layer of the network. Returns ------- params : dict of {str: ndarray} Initialized parameters for each layer, l, of the L-layer network. Wl : ndarray Weights matrix of shape (`layer_dims[l]`, `layer_dims[l-1]`). bl : ndarray Biases vector of shape (`layer_dims[l]`, 1). """ params = {} L = len(layer_dims) for l in range(1, L): params['W' + str(l)] = ( np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) ) params['b' + str(l)] = np.zeros((layer_dims[l], 1)) return params def linear_forward(A, W, b): """Calculate the linear part of forward propagation for the current layer. .. math:: $$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}, where $A^{[0]} = X$ Parameters ---------- A : ndarray Activations from the previous layer, of shape (size of previous layer, number of examples). W : ndarray Weights matrix of shape (size of current layer, size of previous layer). b : ndarray Bias vector of shape (size of current layer, 1). Returns ------- Z : ndarray Input of the activation function, also called pre-activation parameter, of shape (size of current layer, number of examples). cache : tuple of ndarray Store `A`, `W`, and `b` for computing the backward pass efficiently. """ Z = np.dot(W, A) + b cache = (A, W, b) return Z, cache def layer_forward(A_prev, W, b, activation): """Compute forward propagation for a single layer. Parameters ---------- A_prev : ndarray Activations from the previous layer of shape (size of previous layer, number of examples). W : ndarray Weights matrix of shape (size of current layer, size of previous layer). b : ndarray Bias vector of shape (size of the current layer, 1). activation : str {"sigmoid", "relu"} Activation function to be used in this layer. Returns ------- A : ndarray Output of the activation function of shape (size of current layer, number of examples). cache : tuple of (tuple of ndarray, ndarray) Stored for computing the backward pass efficiently. linear_cache : tuple of ndarray Stores `cache` returned by `linear_forward()`. activation_cache : ndarray Stores `Z` returned by 'linear_forward()`. """ Z, linear_cache = linear_forward(A_prev, W, b) if activation == "sigmoid": A, activation_cache = sigmoid(Z) elif activation == "relu": A, activation_cache = relu(Z) cache = (linear_cache, activation_cache) return A, cache def model_forward(X, parameters): """Compute forward propagation for [LINEAR->RELU]*(L-1) -> [LINEAR->SIGMOID]. Parameters ---------- X : ndarray Input data of shape (input size, number of examples) parameters : dict of {str: ndarray} Output of initialize_parameters_deep() Returns ------- Y_hat : ndarray Vector of prediction probabilities of shape (1, number of examples). caches : list of (tuple of (tuple of ndarray, ndarray)) The L `cache` results from `layer_forward()`. """ caches = [] A = X L = len(parameters) // 2 for l in range(1, L): A_prev = A A, cache = layer_forward( A_prev, parameters["W" + str(l)], parameters["b" + str(l)], "relu" ) caches.append(cache) Y_hat, cache = layer_forward( A, parameters["W" + str(L)], parameters["b" + str(L)], "sigmoid" ) caches.append(cache) return Y_hat, caches def compute_cost(Y_hat, Y): """Compute the cross-entropy cost. .. math:: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) Parameters ---------- Y_hat : ndarray Vector of prediction probabilities from `model_forward()` of shape (1, number of examples). Y : ndarray Vector of true values of shape (1, number of examples). Returns ------- cost : list of int Cross-entropy cost. """ m = Y.shape[1] cost = (1./m) * (-np.dot(Y, np.log(Y_hat).T) - np.dot(1-Y, np.log(1-Y_hat).T)) cost = np.squeeze(cost) return cost def linear_backward(dZ, cache): """Calculate the linear portion of backward propagation for a single layer. Parameters ---------- dZ : ndarray Gradient of the cost with respect to the linear output of layer l. cache : tuple of ndarray Stored `A`, `W`, `b` from `linear_forward()`. Returns ------- dA_prev : ndarray Gradient of the cost with respect to the activation of the previous layer, l-1. Shape of `cache['A']`. dW : ndarray Gradient of the cost with respect to W for the current layer, l. Shape of `cache['W']`. db : ndarray Gradient of the cost with respect to b for the current layer, l. Shape of `cache['b']`. """ A_prev, W, b = cache m = A_prev.shape[1] dW = (1/m) * np.dot(dZ, A_prev.T) db = (1/m) * np.sum(dZ, axis=1, keepdims=True) dA_prev = np.dot(W.T, dZ) return dA_prev, dW, db def layer_backward(dA, cache, activation): """Compute backward propagation for a single layer. Parameters ---------- dA: ndarray Post-activation gradient for current layer, l. cache : tuple of (tuple of ndarray, ndarray) Stored `(linear_cache, activation_cache)` from `layer_forward()`. activation : str {"relu", "sigmoid"} Activation function to be used in this layer. Returns ------- dA_prev : ndarray Gradient of the cost with respect to the activation of the previous layer, l-1. Shape of `cache['A']`. dW : ndarray Gradient of the cost with respect to W for the current layer, l. Shape of `cache['W']`. db : ndarray Gradient of the cost with respect to b for the current layer, l. Shape of `cache['b']`. """ linear_cache, activation_cache = cache if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) return dA_prev, dW, db def model_backward(Y_hat, Y, caches): """Compute backward propagation for [LINEAR->RELU]*(L-1) -> [LINEAR->SIGMOID]. Parameters ---------- Y_hat : ndarray Vector of prediction probabilities from `model_forward()` of shape (1, number of examples). Y : ndarray Vector of true values of shape (1, number of examples). caches : list of (tuple of (tuple of ndarray, ndarray)) Stored results of `model_forward()`. Returns ------- grads : dict of {str: ndarray} Gradients for layer `l` in `range(L-1)`. dAl : ndarray Gradient of the activations for layer `l`. dWl : ndarray Gradient of the weights for layer `l`. dbl : ndarray Gradient of the biases for layer `l`. """ grads = {} L = len(caches) m = Y_hat.shape[1] Y = Y.reshape(Y_hat.shape) dY_hat = -(np.divide(Y, Y_hat) - np.divide(1-Y, 1-Y_hat)) current_cache = caches[L-1] grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = ( layer_backward(dY_hat, current_cache, "sigmoid") ) for l in reversed(range(L-1)): current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = ( layer_backward(grads["dA" + str(l+1)], current_cache, "relu") ) grads["dA" + str(l)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp return grads def update_params(params, grads, learning_rate): """Update parameters using gradient descent. Parameters ---------- params : dict of {str: ndarray} Initialized parameters from `intialize_params()`. grads : dict of {str: ndarray} Gradients from `model_backward()`. learning_rate : float in (0, 1) Learning rate for the model. Returns ------- params : dict of {str: ndarray} Updated parameters. `Wl` : ndarray Updated weights matrix. `bl` : ndarray Updated biases vector. """ L = len(params) // 2 for l in range(L): params["W" + str(l+1)] -= learning_rate * grads["dW" + str(l+1)] params["b" + str(l+1)] -= learning_rate * grads["db" + str(l+1)] return params
[ "numpy.divide", "deepen.activation.relu", "numpy.sum", "numpy.log", "numpy.random.randn", "numpy.zeros", "deepen.activation.sigmoid", "numpy.squeeze", "numpy.dot", "deepen.activation.relu_backward", "deepen.activation.sigmoid_backward", "numpy.sqrt" ]
[((4728, 4744), 'numpy.squeeze', 'np.squeeze', (['cost'], {}), '(cost)\n', (4738, 4744), True, 'import numpy as np\n'), ((5651, 5666), 'numpy.dot', 'np.dot', (['W.T', 'dZ'], {}), '(W.T, dZ)\n', (5657, 5666), True, 'import numpy as np\n'), ((877, 905), 'numpy.zeros', 'np.zeros', (['(layer_dims[l], 1)'], {}), '((layer_dims[l], 1))\n', (885, 905), True, 'import numpy as np\n'), ((1739, 1751), 'numpy.dot', 'np.dot', (['W', 'A'], {}), '(W, A)\n', (1745, 1751), True, 'import numpy as np\n'), ((2896, 2906), 'deepen.activation.sigmoid', 'sigmoid', (['Z'], {}), '(Z)\n', (2903, 2906), False, 'from deepen.activation import relu, relu_backward, sigmoid, sigmoid_backward\n'), ((5565, 5585), 'numpy.dot', 'np.dot', (['dZ', 'A_prev.T'], {}), '(dZ, A_prev.T)\n', (5571, 5585), True, 'import numpy as np\n'), ((5603, 5636), 'numpy.sum', 'np.sum', (['dZ'], {'axis': '(1)', 'keepdims': '(True)'}), '(dZ, axis=1, keepdims=True)\n', (5609, 5636), True, 'import numpy as np\n'), ((6618, 6653), 'deepen.activation.relu_backward', 'relu_backward', (['dA', 'activation_cache'], {}), '(dA, activation_cache)\n', (6631, 6653), False, 'from deepen.activation import relu, relu_backward, sigmoid, sigmoid_backward\n'), ((761, 810), 'numpy.random.randn', 'np.random.randn', (['layer_dims[l]', 'layer_dims[l - 1]'], {}), '(layer_dims[l], layer_dims[l - 1])\n', (776, 810), True, 'import numpy as np\n'), ((811, 837), 'numpy.sqrt', 'np.sqrt', (['layer_dims[l - 1]'], {}), '(layer_dims[l - 1])\n', (818, 837), True, 'import numpy as np\n'), ((2968, 2975), 'deepen.activation.relu', 'relu', (['Z'], {}), '(Z)\n', (2972, 2975), False, 'from deepen.activation import relu, relu_backward, sigmoid, sigmoid_backward\n'), ((6761, 6799), 'deepen.activation.sigmoid_backward', 'sigmoid_backward', (['dA', 'activation_cache'], {}), '(dA, activation_cache)\n', (6777, 6799), False, 'from deepen.activation import relu, relu_backward, sigmoid, sigmoid_backward\n'), ((7800, 7819), 'numpy.divide', 'np.divide', (['Y', 'Y_hat'], {}), '(Y, Y_hat)\n', (7809, 7819), True, 'import numpy as np\n'), ((7822, 7849), 'numpy.divide', 'np.divide', (['(1 - Y)', '(1 - Y_hat)'], {}), '(1 - Y, 1 - Y_hat)\n', (7831, 7849), True, 'import numpy as np\n'), ((4697, 4714), 'numpy.log', 'np.log', (['(1 - Y_hat)'], {}), '(1 - Y_hat)\n', (4703, 4714), True, 'import numpy as np\n'), ((4666, 4679), 'numpy.log', 'np.log', (['Y_hat'], {}), '(Y_hat)\n', (4672, 4679), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import random from collections import namedtuple def plot_winsratio( wins: list, title: str, start_idx: int = 0, wsize_mean: int = 100, wsize_means_mean: int = 1000, opponent_update_idxs=None, ): """Winrate plotting function, plots both a the WR over the last wsize_mean episodes and a WR mean over the last wsize_means_mean wsize_mean episodes Args: wins (list): Wins vector. Contains 0 or 1 for each loss or victory title (str): Title to use in the plot start_idx (int, optional): Start for the x labels. Defaults to 0. wsize_mean (int, optional): Window size to compute the Winrate. Defaults to 100. wsize_means_mean (int, optional): Window size to compute the mean over the winrates. Defaults to 1000. opponent_updates_idxs (list, optional): List of indexes where the update of the opponent state dict has happened in self play. Default None. """ if len(wins) >= wsize_mean: # Take 100 episode averages means = np.cumsum(wins, dtype=float) means[wsize_mean:] = means[wsize_mean:] - means[:-wsize_mean] means = means[wsize_mean - 1 :] / wsize_mean idxs = [i + start_idx + wsize_mean - 1 for i in range(len(means))] plt.plot(idxs, means, label=f"Running {wsize_mean} average WR") # Take 20 episode averages of the 100 running average if len(means) >= wsize_means_mean: means_mean = np.cumsum(means) means_mean[wsize_means_mean:] = ( means_mean[wsize_means_mean:] - means_mean[:-wsize_means_mean] ) means_mean = means_mean[wsize_means_mean - 1 :] / wsize_means_mean idxs_mean = [ i + start_idx + wsize_mean + wsize_means_mean - 2 for i in range(len(means_mean)) ] plt.plot( idxs_mean, means_mean, label=f"Running {wsize_mean} average WR mean", ) # add vertical lines for opponent update during self play if opponent_update_idxs != None: for x in opponent_update_idxs: if x >= wsize_mean: plt.axvline(x=x, c="red") plt.legend() plt.title(f"Training {title}") plt.savefig("imgs/train_ai.png") plt.close() def rgb2grayscale(rgb: np.ndarray) -> np.ndarray: """Transform RGB image to grayscale Args: rgb (np.ndarray): RGB image to transform Returns: np.ndarray: Grayscale image """ # transform to rgb r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] grayscale = 0.2989 * r + 0.5870 * g + 0.1140 * b return grayscale Transition = namedtuple("Transition", ("ob", "action", "next_ob", "rew", "done")) class ReplayMemory(object): """ Replay memory used for experience replay. It stores transitions. """ def __init__( self, memory_capacity: int, train_buffer_capacity: int, test_buffer_capacity: int, ) -> None: """Initialization of the replay memory Args: memory_capacity (int): Maximum number of elements to fit in the memory train_buffer_capacity (int): Maximum number of elements to fit in the train buffer test_buffer_capacity (int): Maximum number of elements to fit in the test buffer """ self.memory_capacity = memory_capacity self.train_buffer_capacity = train_buffer_capacity self.test_buffer_capacity = test_buffer_capacity self.memory = [] self.train_buffer = [] self.test_buffer = [] self.memory_position = 0 def push_to_memory(self, *args) -> None: """Save a transition to memory""" if len(self.memory) < self.memory_capacity: self.memory.append(None) self.memory[self.memory_position] = Transition(*args) self.memory_position = (self.memory_position + 1) % self.memory_capacity def push_to_train_buffer(self, *args) -> None: """Save a transition to train buffer""" self.train_buffer.append(Transition(*args)) if len(self.train_buffer) > self.train_buffer_capacity: raise Exception("Error: capacity of the train_buffer exceded") def push_to_test_buffer(self, ob: np.ndarray) -> None: """Save an observation to test buffer Args: ob (np.ndarray): Observation/state to push into the buffer """ self.test_buffer.append(ob) if len(self.test_buffer) > self.test_buffer_capacity: raise Exception("Error: capacity of the test_buffer exceded") def sample(self, batch_size: int) -> np.ndarray: """Sample batch_size random elements from memory Args: batch_size (int): Number of elements to sample Returns: np.ndarray: Sampled elements """ return random.sample(self.memory, batch_size) def __len__(self) -> int: """Overwrite of the len function for the object Returns: int: Length of the memory """ return len(self.memory)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.axvline", "matplotlib.pyplot.plot", "random.sample", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "numpy.cumsum", "collections.namedtuple", "matplotlib.pyplot.savefig" ]
[((2784, 2852), 'collections.namedtuple', 'namedtuple', (['"""Transition"""', "('ob', 'action', 'next_ob', 'rew', 'done')"], {}), "('Transition', ('ob', 'action', 'next_ob', 'rew', 'done'))\n", (2794, 2852), False, 'from collections import namedtuple\n'), ((1078, 1106), 'numpy.cumsum', 'np.cumsum', (['wins'], {'dtype': 'float'}), '(wins, dtype=float)\n', (1087, 1106), True, 'import numpy as np\n'), ((1313, 1376), 'matplotlib.pyplot.plot', 'plt.plot', (['idxs', 'means'], {'label': 'f"""Running {wsize_mean} average WR"""'}), "(idxs, means, label=f'Running {wsize_mean} average WR')\n", (1321, 1376), True, 'import matplotlib.pyplot as plt\n'), ((2293, 2305), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2303, 2305), True, 'import matplotlib.pyplot as plt\n'), ((2314, 2344), 'matplotlib.pyplot.title', 'plt.title', (['f"""Training {title}"""'], {}), "(f'Training {title}')\n", (2323, 2344), True, 'import matplotlib.pyplot as plt\n'), ((2353, 2385), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""imgs/train_ai.png"""'], {}), "('imgs/train_ai.png')\n", (2364, 2385), True, 'import matplotlib.pyplot as plt\n'), ((2394, 2405), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2403, 2405), True, 'import matplotlib.pyplot as plt\n'), ((5006, 5044), 'random.sample', 'random.sample', (['self.memory', 'batch_size'], {}), '(self.memory, batch_size)\n', (5019, 5044), False, 'import random\n'), ((1508, 1524), 'numpy.cumsum', 'np.cumsum', (['means'], {}), '(means)\n', (1517, 1524), True, 'import numpy as np\n'), ((1909, 1987), 'matplotlib.pyplot.plot', 'plt.plot', (['idxs_mean', 'means_mean'], {'label': 'f"""Running {wsize_mean} average WR mean"""'}), "(idxs_mean, means_mean, label=f'Running {wsize_mean} average WR mean')\n", (1917, 1987), True, 'import matplotlib.pyplot as plt\n'), ((2258, 2283), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'x', 'c': '"""red"""'}), "(x=x, c='red')\n", (2269, 2283), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np from matplotlib import pyplot as plt from matplotlib.lines import Line2D import matplotlib.ticker as ticker def movingAverage(x, window): ret = np.zeros_like(x) for i in range(len(x)): idx1 = max(0, i - (window - 1) // 2) idx2 = min(len(x), i + (window - 1) // 2 + (2 - (window % 2))) ret[i] = np.mean(x[idx1:idx2]) return ret def computeAverage(x, window, idx): min_idx = max(0, idx - window - 1) return np.mean(x[min_idx:idx]) def plot(predict_values, gt): fig, ax = plt.subplots() ax.plot(np.arange(len(gt)), gt, label='ground truth') ax.plot(np.arange(len(predict_values)), np.array(predict_values), label='predict') start, end = ax.get_xlim() ax.yaxis.set_ticks(np.arange(0, max(gt) +10, 5.0)) ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f')) ax.legend(loc='upper left') plt.xlabel('Frame num.') plt.ylabel('Speed [mph]') # ax.figure.savefig('result.png', bbox_inches='tight') plt.show()
[ "numpy.zeros_like", "matplotlib.pyplot.show", "numpy.mean", "numpy.array", "matplotlib.ticker.FormatStrFormatter", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots" ]
[((168, 184), 'numpy.zeros_like', 'np.zeros_like', (['x'], {}), '(x)\n', (181, 184), True, 'import numpy as np\n'), ((458, 481), 'numpy.mean', 'np.mean', (['x[min_idx:idx]'], {}), '(x[min_idx:idx])\n', (465, 481), True, 'import numpy as np\n'), ((527, 541), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (539, 541), True, 'from matplotlib import pyplot as plt\n'), ((879, 903), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frame num."""'], {}), "('Frame num.')\n", (889, 903), True, 'from matplotlib import pyplot as plt\n'), ((908, 933), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Speed [mph]"""'], {}), "('Speed [mph]')\n", (918, 933), True, 'from matplotlib import pyplot as plt\n'), ((997, 1007), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1005, 1007), True, 'from matplotlib import pyplot as plt\n'), ((334, 355), 'numpy.mean', 'np.mean', (['x[idx1:idx2]'], {}), '(x[idx1:idx2])\n', (341, 355), True, 'import numpy as np\n'), ((644, 668), 'numpy.array', 'np.array', (['predict_values'], {}), '(predict_values)\n', (652, 668), True, 'import numpy as np\n'), ((807, 841), 'matplotlib.ticker.FormatStrFormatter', 'ticker.FormatStrFormatter', (['"""%0.1f"""'], {}), "('%0.1f')\n", (832, 841), True, 'import matplotlib.ticker as ticker\n')]
# SPDX-License-Identifier: Apache-2.0 """ Tests scikit-normalizer converter. """ import unittest import numpy from sklearn.preprocessing import Normalizer from skl2onnx import convert_sklearn from skl2onnx.common.data_types import ( Int64TensorType, FloatTensorType, DoubleTensorType) from test_utils import dump_data_and_model, TARGET_OPSET class TestSklearnNormalizerConverter(unittest.TestCase): def test_model_normalizer(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", Int64TensorType([None, 1]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) def test_model_normalizer_blackop(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([None, 3]))], target_opset=TARGET_OPSET, black_op={"Normalizer"}) self.assertNotIn('op_type: "Normalizer', str(model_onnx)) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL1BlackOp-SkipDim1") def test_model_normalizer_float_l1(self): model = Normalizer(norm="l1") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL1-SkipDim1") def test_model_normalizer_float_l2(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL2-SkipDim1") def test_model_normalizer_double_l1(self): model = Normalizer(norm="l1") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", DoubleTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float64), model, model_onnx, basename="SklearnNormalizerL1Double-SkipDim1") def test_model_normalizer_double_l2(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", DoubleTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float64), model, model_onnx, basename="SklearnNormalizerL2Double-SkipDim1") def test_model_normalizer_float_noshape(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL2NoShape-SkipDim1") if __name__ == "__main__": unittest.main()
[ "unittest.main", "skl2onnx.common.data_types.DoubleTensorType", "skl2onnx.common.data_types.Int64TensorType", "skl2onnx.common.data_types.FloatTensorType", "numpy.array", "sklearn.preprocessing.Normalizer" ]
[((4006, 4021), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4019, 4021), False, 'import unittest\n'), ((459, 480), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (469, 480), False, 'from sklearn.preprocessing import Normalizer\n'), ((824, 845), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (834, 845), False, 'from sklearn.preprocessing import Normalizer\n'), ((1379, 1400), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l1"""'}), "(norm='l1')\n", (1389, 1400), False, 'from sklearn.preprocessing import Normalizer\n'), ((1929, 1950), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (1939, 1950), False, 'from sklearn.preprocessing import Normalizer\n'), ((2480, 2501), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l1"""'}), "(norm='l1')\n", (2490, 2501), False, 'from sklearn.preprocessing import Normalizer\n'), ((2981, 3002), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (2991, 3002), False, 'from sklearn.preprocessing import Normalizer\n'), ((3486, 3507), 'sklearn.preprocessing.Normalizer', 'Normalizer', ([], {'norm': '"""l2"""'}), "(norm='l2')\n", (3496, 3507), False, 'from sklearn.preprocessing import Normalizer\n'), ((1166, 1223), 'numpy.array', 'numpy.array', (['[[1, -1, 3], [3, 1, 2]]'], {'dtype': 'numpy.float32'}), '([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32)\n', (1177, 1223), False, 'import numpy\n'), ((1723, 1780), 'numpy.array', 'numpy.array', (['[[1, -1, 3], [3, 1, 2]]'], {'dtype': 'numpy.float32'}), '([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32)\n', (1734, 1780), False, 'import numpy\n'), ((2273, 2330), 'numpy.array', 'numpy.array', (['[[1, -1, 3], [3, 1, 2]]'], {'dtype': 'numpy.float32'}), '([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32)\n', (2284, 2330), False, 'import numpy\n'), ((2768, 2825), 'numpy.array', 'numpy.array', (['[[1, -1, 3], [3, 1, 2]]'], {'dtype': 'numpy.float64'}), '([[1, -1, 3], [3, 1, 2]], dtype=numpy.float64)\n', (2779, 2825), False, 'import numpy\n'), ((3269, 3326), 'numpy.array', 'numpy.array', (['[[1, -1, 3], [3, 1, 2]]'], {'dtype': 'numpy.float64'}), '([[1, -1, 3], [3, 1, 2]], dtype=numpy.float64)\n', (3280, 3326), False, 'import numpy\n'), ((3823, 3880), 'numpy.array', 'numpy.array', (['[[1, -1, 3], [3, 1, 2]]'], {'dtype': 'numpy.float32'}), '([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32)\n', (3834, 3880), False, 'import numpy\n'), ((588, 614), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, 1]'], {}), '([None, 1])\n', (603, 614), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n'), ((953, 979), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, 3]'], {}), '([None, 3])\n', (968, 979), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n'), ((1508, 1534), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, 3]'], {}), '([None, 3])\n', (1523, 1534), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n'), ((2058, 2084), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, 3]'], {}), '([None, 3])\n', (2073, 2084), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n'), ((2609, 2636), 'skl2onnx.common.data_types.DoubleTensorType', 'DoubleTensorType', (['[None, 3]'], {}), '([None, 3])\n', (2625, 2636), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n'), ((3110, 3137), 'skl2onnx.common.data_types.DoubleTensorType', 'DoubleTensorType', (['[None, 3]'], {}), '([None, 3])\n', (3126, 3137), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n'), ((3615, 3634), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[]'], {}), '([])\n', (3630, 3634), False, 'from skl2onnx.common.data_types import Int64TensorType, FloatTensorType, DoubleTensorType\n')]
import numpy as np from flask import Flask, session,abort,request, jsonify, render_template,redirect,url_for,flash import pickle import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from keras.models import load_model import os import stripe import datetime import keras from keras import optimizers from keras.utils import to_categorical from keras.models import Model from keras.layers import Input, Dense from keras.layers.normalization import BatchNormalization from keras.layers.core import Dropout, Activation app = Flask(__name__) @app.route('/') def home(): return render_template('index.html') @app.route('/heartAttack',methods=['POST']) def heartAttack(): model = load_model('models/heart_disease_model.h5') int_features = [[int(x) for x in request.form.values()]] final_features = [np.array(int_features)] prediction_proba = model.predict(final_features) prediction = (prediction_proba > 0.5) return render_template('index.html', prediction_text='THANK YOU FOR YOUR PURCHASE, \n FOR THE DATA YOU ENTERED \n IT IS PREDICTED {} \n THAT THE PATIENT WILL HAVE A STROKE WITHIN \n THE NEXT 10 YEARS.'.format(prediction)) if __name__ == "__main__": app.run(debug=True, port=8080) #debug=True,host="0.0.0.0",port=50000
[ "keras.models.load_model", "flask.request.form.values", "flask.Flask", "numpy.array", "flask.render_template" ]
[((610, 625), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (615, 625), False, 'from flask import Flask, session, abort, request, jsonify, render_template, redirect, url_for, flash\n'), ((670, 699), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (685, 699), False, 'from flask import Flask, session, abort, request, jsonify, render_template, redirect, url_for, flash\n'), ((780, 823), 'keras.models.load_model', 'load_model', (['"""models/heart_disease_model.h5"""'], {}), "('models/heart_disease_model.h5')\n", (790, 823), False, 'from keras.models import load_model\n'), ((909, 931), 'numpy.array', 'np.array', (['int_features'], {}), '(int_features)\n', (917, 931), True, 'import numpy as np\n'), ((862, 883), 'flask.request.form.values', 'request.form.values', ([], {}), '()\n', (881, 883), False, 'from flask import Flask, session, abort, request, jsonify, render_template, redirect, url_for, flash\n')]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/home/jordibisbal/WS18-MSc-JordiBisbalAnsaldo--NetworkSlicing/evaluation/experiments/1/forks/forks_pow.csv') x = np.arange(0.0, 100, 1) data = df[['T1', 'T2','T3','T4', 'T5','T6','T7', 'T8','T9','T10', 'T11','T12','T13', 'T14','T15','T16', 'T17','T18','T19', 'T20','T21','T21', 'T22','T23','T24', 'T25','T26','T27', 'T28','T29','T30']] fig, ax = plt.subplots(figsize=(8,5)) ax.errorbar(x, np.log10(data.mean(axis=1)), yerr=np.log10(data.std(axis=1)*1.96/np.sqrt(30)) , fmt='.') plt.xlabel('# blocks', fontsize=16) plt.ylabel('log (average # forks ' + '$f_b$)', fontsize=16) plt.grid(linestyle=':',linewidth=1.5) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.tick_params(axis='both', which='major', labelsize=16) ax.legend(loc=1,prop={'size': 16}) ax.set_xlim(xmin=0, xmax=100) ax.set_ylim(ymin=-1, ymax=3) plt.savefig('ev_forks_pow.png') plt.show()
[ "matplotlib.pyplot.show", "pandas.read_csv", "numpy.sqrt", "numpy.arange", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig", "matplotlib.pyplot.grid" ]
[((78, 209), 'pandas.read_csv', 'pd.read_csv', (['"""/home/jordibisbal/WS18-MSc-JordiBisbalAnsaldo--NetworkSlicing/evaluation/experiments/1/forks/forks_pow.csv"""'], {}), "(\n '/home/jordibisbal/WS18-MSc-JordiBisbalAnsaldo--NetworkSlicing/evaluation/experiments/1/forks/forks_pow.csv'\n )\n", (89, 209), True, 'import pandas as pd\n'), ((205, 227), 'numpy.arange', 'np.arange', (['(0.0)', '(100)', '(1)'], {}), '(0.0, 100, 1)\n', (214, 227), True, 'import numpy as np\n'), ((440, 468), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 5)'}), '(figsize=(8, 5))\n', (452, 468), True, 'import matplotlib.pyplot as plt\n'), ((575, 610), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""# blocks"""'], {'fontsize': '(16)'}), "('# blocks', fontsize=16)\n", (585, 610), True, 'import matplotlib.pyplot as plt\n'), ((611, 670), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (["('log (average # forks ' + '$f_b$)')"], {'fontsize': '(16)'}), "('log (average # forks ' + '$f_b$)', fontsize=16)\n", (621, 670), True, 'import matplotlib.pyplot as plt\n'), ((671, 709), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'linestyle': '""":"""', 'linewidth': '(1.5)'}), "(linestyle=':', linewidth=1.5)\n", (679, 709), True, 'import matplotlib.pyplot as plt\n'), ((818, 875), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""major"""', 'labelsize': '(16)'}), "(axis='both', which='major', labelsize=16)\n", (833, 875), True, 'import matplotlib.pyplot as plt\n'), ((972, 1003), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""ev_forks_pow.png"""'], {}), "('ev_forks_pow.png')\n", (983, 1003), True, 'import matplotlib.pyplot as plt\n'), ((1004, 1014), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1012, 1014), True, 'import matplotlib.pyplot as plt\n'), ((550, 561), 'numpy.sqrt', 'np.sqrt', (['(30)'], {}), '(30)\n', (557, 561), True, 'import numpy as np\n')]
import collections import math import numpy as np import mlpy class TermFrequencyAnalyzer(object): def __init__(self, *documents): self.idf = self.compute_idf(*documents) def compute_idf(self, *documents): # document frequency df = collections.defaultdict(int) for tokens in documents: for token in set(tokens): df[token] += 1 # idf idf = dict() for token, count in df.iteritems(): idf[token] = math.log(float(len(documents)) / float(count)) return idf def get_similarity(self, *strings): if len(strings) <= 1: return 0.0 counts = [collections.defaultdict(int) for _ in strings] for index, tokens in enumerate(strings): for token in tokens: counts[index][token] += 1 score = 0.0 # intercept of the tokens for token in set.intersection(*[set(tokens) for tokens in strings]): # term frequency tf = float(sum([count[token] for count in counts])) score += tf * self.idf[token] return score class LongestAnalyzer(object): def __init__(self, *documents): pass def get_similarity(self, a, b): #return self.lcs(a, b) a = np.array(list(a), dtype='U1').view(np.uint32) b = np.array(list(b), dtype='U1').view(np.uint32) length, path = mlpy.lcs_std(a, b) return length def lcs(self, a, b): a = a[:200] b = b[:200] if (len(a) < len(b)): a, b = b, a M = len(a) N = len(b) arr = np.zeros((2, N + 1)) for i in range(1, M + 1): curIdx = i % 2 prevIdx = 1 - curIdx ai = a[i - 1] for j in range(1, N + 1): bj = b[j - 1] if (ai == bj): arr[curIdx][j] = 1 + arr[prevIdx][j - 1] else: arr[curIdx][j] = max(arr[curIdx][j - 1], arr[prevIdx][j]) return arr[M % 2][N]
[ "collections.defaultdict", "numpy.zeros", "mlpy.lcs_std" ]
[((268, 296), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (291, 296), False, 'import collections\n'), ((1437, 1455), 'mlpy.lcs_std', 'mlpy.lcs_std', (['a', 'b'], {}), '(a, b)\n', (1449, 1455), False, 'import mlpy\n'), ((1660, 1680), 'numpy.zeros', 'np.zeros', (['(2, N + 1)'], {}), '((2, N + 1))\n', (1668, 1680), True, 'import numpy as np\n'), ((684, 712), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (707, 712), False, 'import collections\n')]
import os, glob, sys from turbo_seti.find_event.plot_dat import plot_dat from turbo_seti import find_event as find import numpy as np def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('--dir', default=os.getcwd()) parser.add_argument('--minHit', type=float, default=None) parser.add_argument('--maxHit', type=float, default=None) args = parser.parse_args() path = args.dir dat_files = glob.glob(path + "*.dat") min_hit = 1e9 max_hit = 0 if args.minHit == None or args.maxHit == None: for file in dat_files: tbl = find.read_dat(file) min_freq, max_freq = min(tbl["Freq"]), max(tbl["Freq"]) if min_freq < min_hit: min_hit = min_freq if max_freq > max_hit: max_hit = max_freq else: min_hit = args.minHit max_hit = args.maxHit # set min and max hits by hand just to get this image print("Lowest frequency hit: ", min_hit) print("Highext frequency hit: ", max_hit) plot_range = 2000*1e-6 # a 2000Hz width, adjusted to be in units of MHz freq_range = np.arange(np.round(min_hit, 2), np.round(max_hit), plot_range) outDir = path + "bautista-analysis/" if not os.path.exists(outDir): os.mkdir(outDir) for center in freq_range: plot_dat(path + "dat-list.lst", path + "h5-list.lst", path + "events-list.csv", outdir=outDir, check_zero_drift=False, alpha=0.65, color="black", window=(center-0.001, center+0.001)) if __name__ == '__main__': sys.exit(main())
[ "os.mkdir", "turbo_seti.find_event.read_dat", "argparse.ArgumentParser", "os.getcwd", "os.path.exists", "glob.glob", "numpy.round", "turbo_seti.find_event.plot_dat.plot_dat" ]
[((180, 205), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (203, 205), False, 'import argparse\n'), ((453, 478), 'glob.glob', 'glob.glob', (["(path + '*.dat')"], {}), "(path + '*.dat')\n", (462, 478), False, 'import os, glob, sys\n'), ((1166, 1186), 'numpy.round', 'np.round', (['min_hit', '(2)'], {}), '(min_hit, 2)\n', (1174, 1186), True, 'import numpy as np\n'), ((1188, 1205), 'numpy.round', 'np.round', (['max_hit'], {}), '(max_hit)\n', (1196, 1205), True, 'import numpy as np\n'), ((1272, 1294), 'os.path.exists', 'os.path.exists', (['outDir'], {}), '(outDir)\n', (1286, 1294), False, 'import os, glob, sys\n'), ((1304, 1320), 'os.mkdir', 'os.mkdir', (['outDir'], {}), '(outDir)\n', (1312, 1320), False, 'import os, glob, sys\n'), ((1360, 1554), 'turbo_seti.find_event.plot_dat.plot_dat', 'plot_dat', (["(path + 'dat-list.lst')", "(path + 'h5-list.lst')", "(path + 'events-list.csv')"], {'outdir': 'outDir', 'check_zero_drift': '(False)', 'alpha': '(0.65)', 'color': '"""black"""', 'window': '(center - 0.001, center + 0.001)'}), "(path + 'dat-list.lst', path + 'h5-list.lst', path +\n 'events-list.csv', outdir=outDir, check_zero_drift=False, alpha=0.65,\n color='black', window=(center - 0.001, center + 0.001))\n", (1368, 1554), False, 'from turbo_seti.find_event.plot_dat import plot_dat\n'), ((247, 258), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (256, 258), False, 'import os, glob, sys\n'), ((615, 634), 'turbo_seti.find_event.read_dat', 'find.read_dat', (['file'], {}), '(file)\n', (628, 634), True, 'from turbo_seti import find_event as find\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `marble` package.""" import unittest import marble import numpy as np import sympl as sp test_era5_filename = '/home/twine/data/era5/era5-interp-2016.nc' def get_test_state(pc_value=0.): n_features = marble.components.marble.name_feature_counts state = { 'time': sp.timedelta(0), 'liquid_water_static_energy_components': sp.DataArray( np.ones([n_features['sl']]) * pc_value, dims=('sl_latent',), attrs={'units': ''}), 'total_water_mixing_ratio_components': sp.DataArray( np.ones([n_features['rt']]) * pc_value, dims=('rt_latent',), attrs={'units': ''}), 'cloud_water_mixing_ratio_components': sp.DataArray( np.ones([n_features['rcld']]) * pc_value, dims=('rcld_latent',), attrs={'units': ''}), 'rain_water_mixing_ratio_components': sp.DataArray( np.ones([n_features['rrain']]) * pc_value, dims=('rrain_latent',), attrs={'units': ''}), 'cloud_fraction_components': sp.DataArray( np.ones([n_features['cld']]) * pc_value, dims=('cld_latent',), attrs={'units': ''}), 'liquid_water_static_energy_components_horizontal_advective_tendency': sp.DataArray( np.ones([n_features['sl']]) * pc_value, dims=('sl_latent',), attrs={'units': ''}), 'total_water_mixing_ratio_components_horizontal_advective_tendency': sp.DataArray( np.ones([n_features['sl']]) * pc_value, dims=('rt_latent',), attrs={'units': ''}), 'vertical_wind_components': sp.DataArray( np.ones([n_features['w']]) * pc_value, dims=('w_latent',), attrs={'units': ''}), } return state class TestPrincipalComponentConversions(unittest.TestCase): """Tests for `marble` package.""" def test_convert_input_zero_latent_to_height_and_back(self): state = get_test_state(pc_value=0.) converter = marble.InputPrincipalComponentsToHeight() inverse_converter = marble.InputHeightToPrincipalComponents() intermediate = converter(state) intermediate['time'] = state['time'] result = inverse_converter(intermediate) for name in result.keys(): self.assertIn(name, state) self.assertEqual(result[name].shape, state[name].shape, name) self.assertTrue(np.allclose(result[name].values, state[name].values), name) def test_convert_input_nonzero_latent_to_height_and_back(self): state = get_test_state(pc_value=0.6) converter = marble.InputPrincipalComponentsToHeight() inverse_converter = marble.InputHeightToPrincipalComponents() intermediate = converter(state) intermediate['time'] = state['time'] result = inverse_converter(intermediate) for name in result.keys(): self.assertIn(name, state) self.assertEqual(result[name].shape, state[name].shape, name) self.assertTrue(np.allclose(result[name].values, state[name].values), name) def test_convert_diagnostic_zero_latent_to_height(self): """ This only tests that the conversion runs without errors, it does not check anything about the output value. """ state = get_test_state(pc_value=0.) converter = marble.DiagnosticPrincipalComponentsToHeight() result = converter(state) if __name__ == '__main__': unittest.main()
[ "unittest.main", "marble.DiagnosticPrincipalComponentsToHeight", "numpy.allclose", "sympl.timedelta", "numpy.ones", "marble.InputPrincipalComponentsToHeight", "marble.InputHeightToPrincipalComponents" ]
[((3497, 3512), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3510, 3512), False, 'import unittest\n'), ((344, 359), 'sympl.timedelta', 'sp.timedelta', (['(0)'], {}), '(0)\n', (356, 359), True, 'import sympl as sp\n'), ((2010, 2051), 'marble.InputPrincipalComponentsToHeight', 'marble.InputPrincipalComponentsToHeight', ([], {}), '()\n', (2049, 2051), False, 'import marble\n'), ((2080, 2121), 'marble.InputHeightToPrincipalComponents', 'marble.InputHeightToPrincipalComponents', ([], {}), '()\n', (2119, 2121), False, 'import marble\n'), ((2626, 2667), 'marble.InputPrincipalComponentsToHeight', 'marble.InputPrincipalComponentsToHeight', ([], {}), '()\n', (2665, 2667), False, 'import marble\n'), ((2696, 2737), 'marble.InputHeightToPrincipalComponents', 'marble.InputHeightToPrincipalComponents', ([], {}), '()\n', (2735, 2737), False, 'import marble\n'), ((3382, 3428), 'marble.DiagnosticPrincipalComponentsToHeight', 'marble.DiagnosticPrincipalComponentsToHeight', ([], {}), '()\n', (3426, 3428), False, 'import marble\n'), ((436, 463), 'numpy.ones', 'np.ones', (["[n_features['sl']]"], {}), "([n_features['sl']])\n", (443, 463), True, 'import numpy as np\n'), ((604, 631), 'numpy.ones', 'np.ones', (["[n_features['rt']]"], {}), "([n_features['rt']])\n", (611, 631), True, 'import numpy as np\n'), ((772, 801), 'numpy.ones', 'np.ones', (["[n_features['rcld']]"], {}), "([n_features['rcld']])\n", (779, 801), True, 'import numpy as np\n'), ((943, 973), 'numpy.ones', 'np.ones', (["[n_features['rrain']]"], {}), "([n_features['rrain']])\n", (950, 973), True, 'import numpy as np\n'), ((1107, 1135), 'numpy.ones', 'np.ones', (["[n_features['cld']]"], {}), "([n_features['cld']])\n", (1114, 1135), True, 'import numpy as np\n'), ((1309, 1336), 'numpy.ones', 'np.ones', (["[n_features['sl']]"], {}), "([n_features['sl']])\n", (1316, 1336), True, 'import numpy as np\n'), ((1507, 1534), 'numpy.ones', 'np.ones', (["[n_features['sl']]"], {}), "([n_features['sl']])\n", (1514, 1534), True, 'import numpy as np\n'), ((1664, 1690), 'numpy.ones', 'np.ones', (["[n_features['w']]"], {}), "([n_features['w']])\n", (1671, 1690), True, 'import numpy as np\n'), ((2432, 2484), 'numpy.allclose', 'np.allclose', (['result[name].values', 'state[name].values'], {}), '(result[name].values, state[name].values)\n', (2443, 2484), True, 'import numpy as np\n'), ((3048, 3100), 'numpy.allclose', 'np.allclose', (['result[name].values', 'state[name].values'], {}), '(result[name].values, state[name].values)\n', (3059, 3100), True, 'import numpy as np\n')]
### Figure 5 C and E - Obenhaus et al. # Figure S6 A, C, E and F - Obenhaus et al. # # NN distance analysis # Pairwise distance analysis # import sys, os import os.path import numpy as np import pandas as pd import datajoint as dj import cmasher as cmr from tabulate import tabulate import itertools # Make plots pretty import seaborn as sns sns.set(style='white') # Prevent bug in figure export as pdf: import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 ##### IMPORTS ########################################################################### sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from general import print_mannwhitneyu, print_wilcoxon from dj_plotter.helpers.plotting_helpers import make_linear_colormap from helpers_topography.notebooks.pairw_distances import norm_pairw_nn_df, plot_pairw_nn_summary ##### LOAD SCHEMA COMPONENTS ############################################################# from dj_schemas.dj_conn import * ##### EXPORT LOCATION #################################################################### figure_dir = 'YOUR_EXPORT_DIRECTORY/' def pairw_dist(animals, col_dict, param_hash_session='cf83e1357eefb8bd', param_hash_id_cell='standard', region='MEC', pairwise_dist_param='A', cutoff_n_starters=0, plot=True ): # Print col_dict print(f'\nReceived the following column dictionary \n{col_dict}\n') # Brain region filter assert region in ['MEC','PAS'], f'Region "{region}" not understood. Choose "MEC" or "PAS"' all_sessions = (Session.proj('animal_name') * FilteredSessions & [f'animal_name = "{animal}"' for animal in animals] & f'param_hash_session = "{param_hash_session}"' ) # Print pairw dist. parameter score_, score_cutoff_ = (PairwDistParams & f'pairwise_dist_param = "{pairwise_dist_param}"').fetch1('score','score_cutoff') print(f'Filtering pairwise distances by {score_} > {score_cutoff_}') pairw = (Session.proj('animal_name') * PairwDist.Cells * PairwDist.PairwD & all_sessions.proj() \ & f'param_hash_id_cell = "{param_hash_id_cell}"' & f'pairwise_dist_param = "{pairwise_dist_param}"' & f'region = "{region}"' & f'n_startr > {cutoff_n_starters}') pairw_df = pd.DataFrame(pairw.fetch(as_dict=True)) pairw_df.dropna(inplace=True) colors = make_linear_colormap(pairw_df.animal_name, categorical=True, cmap='cmr.guppy') ### COLS TO NORMALIZE ################################################################################# cols_to_norm = col_dict['cols_to_norm'] # ['mean_pairw_dist_shuffref', 'mean_pairw_dist'] cols_to_norm_label = col_dict['cols_to_norm_label'] # ['Ref', 'Data'] norm_to = col_dict['norm_to'] # mean_pairw_dist_shuffall' cols = col_dict['cols'] # 'animal_name' # Normalize pairw_df_norm = norm_pairw_nn_df(pairw_df, cols_to_norm, cols, norm_to) pairw_df_norm.reset_index(drop=True, inplace=True) # Plot if plot: plot_pairw_nn_summary(pairw_df_norm, cols_to_norm, colors=colors, xlabels=cols_to_norm_label, save_path=figure_dir, label='PairwD') # Print statistics print(f'Data over {len(pairw_df.session_name)} datasets (careful! Can be multiplane!) ({len(set(pairw_df.animal_name))} animals)') print(f'{set(pairw_df.animal_name)}') # Calculate p values MannWhithney and 1 sample Wilcoxon rank pairw_df_norm_ = pairw_df_norm[cols_to_norm] results = pd.DataFrame(columns = pairw_df_norm_.columns, index = pairw_df_norm_.columns) for (label1, column1), (label2, column2) in itertools.combinations(pairw_df_norm_.items(), 2): _ ,results.loc[label1, label2] = _ ,results.loc[label2, label1] = print_mannwhitneyu(column1, column2, label_A=label1, label_B=label2) #print(tabulate(results, headers='keys', tablefmt='psql')) print('\nWilcoxon signed rank test (against 1.):') for col in cols_to_norm: try: print_wilcoxon(pairw_df_norm[col] - 1., label=col) except ValueError: print(f'Skipping column {col} (all zero?)') # Print some more stats print('Mean and SEM for PairwDist results') for col in cols_to_norm: mean_col, sem_col = np.nanmean(pairw_df_norm[col]), np.std(pairw_df_norm[col]) / np.sqrt(len(pairw_df_norm[col])) print(f'{col:<30} | Mean ± SEM: {mean_col:.2f} ± {sem_col:.2f}') return pairw_df_norm, len(set(pairw_df.animal_name)), len(pairw_df.session_name) def group_nn_dist(animals, col_dict, param_hash_session='cf83e1357eefb8bd', param_hash_id_cell = 'standard', region='MEC', pairwise_dist_param='A', cutoff_n_starters=0, nn_group_number=5, plot=True ): ''' Like pairw_dist() but for PairwDist.NN instead of PairwDist.PairwD, i.e. grouped NN results nn_group_number : default 5 : Number of NN to consider (group size). Careful: Zero indexed! 0 = first nearest neighbour ''' # Print col_dict print(f'\nReceived the following column dictionary \n{col_dict}\n') # Brain region filter assert region in ['MEC','PAS'], f'Region "{region}" not understood. Choose "MEC" or "PAS"' all_sessions = (Session.proj('animal_name') * FilteredSessions & [f'animal_name = "{animal}"' for animal in animals] & f'param_hash_session = "{param_hash_session}"' ) # Print pairw dist. parameter score_, score_cutoff_ = (PairwDistParams & f'pairwise_dist_param = "{pairwise_dist_param}"').fetch1('score','score_cutoff') print(f'Filtering pairwise distances by {score_} > {score_cutoff_}') nn = (Session.proj('animal_name') * PairwDist.Cells * PairwDist.NN & all_sessions.proj() & f'param_hash_id_cell = "{param_hash_id_cell}"' & f'pairwise_dist_param = "{pairwise_dist_param}"' & f'region = "{region}"' & f'n_startr > {cutoff_n_starters}') nn_df = pd.DataFrame(nn.fetch(as_dict=True)) nn_df.dropna(inplace=True) # Important here because apparently some of the stuff can be None colors = make_linear_colormap(nn_df.animal_name, categorical=True, cmap='cmr.guppy') # Subselect a specific nn_number = number of NN in result (group size) data_cols_pairwDist_NN = ['mean_nn','mean_nn_shuff_all', 'mean_nn_shuff_ref','mean_nn_csr'] # All data columns in table for col in data_cols_pairwDist_NN: nn_df[col] = [res[nn_group_number] for res in nn_df[col]] ### COLS TO NORMALIZE ################################################################################# cols_to_norm = col_dict['cols_to_norm'] cols_to_norm_label = col_dict['cols_to_norm_label'] norm_to = col_dict['norm_to'] cols = col_dict['cols'] # Normalize nn_df_norm = norm_pairw_nn_df(nn_df, cols_to_norm, cols, norm_to) nn_df_norm.reset_index(drop=True, inplace=True) # Plot if plot: plot_pairw_nn_summary(nn_df_norm, cols_to_norm, colors=colors, xlabels=cols_to_norm_label, save_path=figure_dir, label='NN') # Print statistics print(f'Data over {len(nn_df.session_name)} datasets (careful! Can be multiplane!) ({len(set(nn_df.animal_name))} animals)') print(f'{set(nn_df.animal_name)}') # Calculate p values MannWhithney and 1 sample Wilcoxon rank nn_df_norm_ = nn_df_norm[cols_to_norm] results = pd.DataFrame(columns = nn_df_norm_.columns, index = nn_df_norm_.columns) for (label1, column1), (label2, column2) in itertools.combinations(nn_df_norm_.items(), 2): _ ,results.loc[label1, label2] = _ ,results.loc[label2, label1] = print_mannwhitneyu(column1, column2, label_A=label1, label_B=label2) #print(tabulate(results, headers='keys', tablefmt='psql')) print('\nWilcoxon signed rank test (against 1.):') for col in cols_to_norm: #_, onesample_p_data = ttest_1samp(pairw_df_norm[col], 1.) try: print_wilcoxon(nn_df_norm[col] - 1., label=col) except ValueError: print(f'Skipping column {col} (all zero?)') # Print some more stats print('Mean and SEM for NN results') for col in cols_to_norm: mean_col, sem_col = np.nanmean(nn_df_norm[col]), np.std(nn_df_norm[col]) / np.sqrt(len(nn_df_norm[col])) print(f'{col:<30} | Mean ± SEM: {mean_col:.2f} ± {sem_col:.2f}') return nn_df_norm, len(set(nn_df.animal_name)), len(set(nn_df.session_name)) if __name__ == "__main__": grid_mice = [ '82913','88592', '87244', '60480', '97046','89841' ] ov_mice = [ '87187','88106','87245','90222', '94557','89622' ] all_animals = [ '90222','90218','90647', '82913','88592','89622', '87244','89841','60480', '87245','87187','88106', '94557','97045','97046', ] animals = grid_mice pairwise_dist_param = "A" param_hash_id_cell = 'standard' region = 'MEC' # Cutoff number of cells cutoff_n_starters = 15. # For NN nn_group_number = 5 ###### PAIRWISE DISTANCES #################################################################################### # print(f'Creating pairwise distance figure for {len(animals)} animal(s)') # print(animals) # print('\n') # # Create column dictionary # col_dict = {} # col_dict['cols_to_norm'] = ['mean_pairw_dist_shuffall', 'mean_pairw_dist_shuffref', 'mean_pairw_dist'] # #mean_pairw_dist_shuffref, mean_pairw_dist_shuffall # col_dict['cols_to_norm_label'] = ['All', 'Ref', 'Data'] # col_dict['norm_to'] = 'mean_pairw_dist_shuffall' # col_dict['cols'] = 'animal_name' # pairw_dist(animals, # col_dict, # param_hash_session='cf83e1357eefb8bd', # param_hash_id_cell=param_hash_id_cell, # region=region, # pairwise_dist_param=pairwise_dist_param, # cutoff_n_starters=cutoff_n_starters, # ) ####### NN DISTANCES ########################################################################################### print('\n########################################################################################################') print(f'\nCreating NN distance figure for {len(animals)} animal(s)') print(animals) print('\n') # Create column dictionary col_dict = {} col_dict['cols_to_norm'] = ['mean_nn_shuff_all', 'mean_nn_shuff_ref', 'mean_nn'] col_dict['cols_to_norm_label'] = ['All', 'Ref', 'Data'] col_dict['norm_to'] = 'mean_nn_shuff_all' col_dict['cols'] = 'animal_name' group_nn_dist(animals, col_dict, param_hash_session='cf83e1357eefb8bd', param_hash_id_cell=param_hash_id_cell, region=region, pairwise_dist_param=pairwise_dist_param, cutoff_n_starters=cutoff_n_starters, nn_group_number=nn_group_number, plot=True) print(figure_dir) print('Success.')
[ "pandas.DataFrame", "helpers_topography.notebooks.pairw_distances.plot_pairw_nn_summary", "numpy.std", "helpers_topography.notebooks.pairw_distances.norm_pairw_nn_df", "os.path.dirname", "dj_plotter.helpers.plotting_helpers.make_linear_colormap", "numpy.nanmean", "seaborn.set", "general.print_wilcoxon", "general.print_mannwhitneyu" ]
[((352, 374), 'seaborn.set', 'sns.set', ([], {'style': '"""white"""'}), "(style='white')\n", (359, 374), True, 'import seaborn as sns\n'), ((2598, 2676), 'dj_plotter.helpers.plotting_helpers.make_linear_colormap', 'make_linear_colormap', (['pairw_df.animal_name'], {'categorical': '(True)', 'cmap': '"""cmr.guppy"""'}), "(pairw_df.animal_name, categorical=True, cmap='cmr.guppy')\n", (2618, 2676), False, 'from dj_plotter.helpers.plotting_helpers import make_linear_colormap\n'), ((3136, 3191), 'helpers_topography.notebooks.pairw_distances.norm_pairw_nn_df', 'norm_pairw_nn_df', (['pairw_df', 'cols_to_norm', 'cols', 'norm_to'], {}), '(pairw_df, cols_to_norm, cols, norm_to)\n', (3152, 3191), False, 'from helpers_topography.notebooks.pairw_distances import norm_pairw_nn_df, plot_pairw_nn_summary\n'), ((3899, 3973), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'pairw_df_norm_.columns', 'index': 'pairw_df_norm_.columns'}), '(columns=pairw_df_norm_.columns, index=pairw_df_norm_.columns)\n', (3911, 3973), True, 'import pandas as pd\n'), ((6797, 6872), 'dj_plotter.helpers.plotting_helpers.make_linear_colormap', 'make_linear_colormap', (['nn_df.animal_name'], {'categorical': '(True)', 'cmap': '"""cmr.guppy"""'}), "(nn_df.animal_name, categorical=True, cmap='cmr.guppy')\n", (6817, 6872), False, 'from dj_plotter.helpers.plotting_helpers import make_linear_colormap\n'), ((7556, 7608), 'helpers_topography.notebooks.pairw_distances.norm_pairw_nn_df', 'norm_pairw_nn_df', (['nn_df', 'cols_to_norm', 'cols', 'norm_to'], {}), '(nn_df, cols_to_norm, cols, norm_to)\n', (7572, 7608), False, 'from helpers_topography.notebooks.pairw_distances import norm_pairw_nn_df, plot_pairw_nn_summary\n'), ((8292, 8360), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'nn_df_norm_.columns', 'index': 'nn_df_norm_.columns'}), '(columns=nn_df_norm_.columns, index=nn_df_norm_.columns)\n', (8304, 8360), True, 'import pandas as pd\n'), ((3281, 3417), 'helpers_topography.notebooks.pairw_distances.plot_pairw_nn_summary', 'plot_pairw_nn_summary', (['pairw_df_norm', 'cols_to_norm'], {'colors': 'colors', 'xlabels': 'cols_to_norm_label', 'save_path': 'figure_dir', 'label': '"""PairwD"""'}), "(pairw_df_norm, cols_to_norm, colors=colors, xlabels=\n cols_to_norm_label, save_path=figure_dir, label='PairwD')\n", (3302, 3417), False, 'from helpers_topography.notebooks.pairw_distances import norm_pairw_nn_df, plot_pairw_nn_summary\n'), ((4179, 4247), 'general.print_mannwhitneyu', 'print_mannwhitneyu', (['column1', 'column2'], {'label_A': 'label1', 'label_B': 'label2'}), '(column1, column2, label_A=label1, label_B=label2)\n', (4197, 4247), False, 'from general import print_mannwhitneyu, print_wilcoxon\n'), ((7696, 7825), 'helpers_topography.notebooks.pairw_distances.plot_pairw_nn_summary', 'plot_pairw_nn_summary', (['nn_df_norm', 'cols_to_norm'], {'colors': 'colors', 'xlabels': 'cols_to_norm_label', 'save_path': 'figure_dir', 'label': '"""NN"""'}), "(nn_df_norm, cols_to_norm, colors=colors, xlabels=\n cols_to_norm_label, save_path=figure_dir, label='NN')\n", (7717, 7825), False, 'from helpers_topography.notebooks.pairw_distances import norm_pairw_nn_df, plot_pairw_nn_summary\n'), ((8563, 8631), 'general.print_mannwhitneyu', 'print_mannwhitneyu', (['column1', 'column2'], {'label_A': 'label1', 'label_B': 'label2'}), '(column1, column2, label_A=label1, label_B=label2)\n', (8581, 8631), False, 'from general import print_mannwhitneyu, print_wilcoxon\n'), ((611, 636), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (626, 636), False, 'import sys, os\n'), ((4421, 4472), 'general.print_wilcoxon', 'print_wilcoxon', (['(pairw_df_norm[col] - 1.0)'], {'label': 'col'}), '(pairw_df_norm[col] - 1.0, label=col)\n', (4435, 4472), False, 'from general import print_mannwhitneyu, print_wilcoxon\n'), ((4689, 4719), 'numpy.nanmean', 'np.nanmean', (['pairw_df_norm[col]'], {}), '(pairw_df_norm[col])\n', (4699, 4719), True, 'import numpy as np\n'), ((8872, 8920), 'general.print_wilcoxon', 'print_wilcoxon', (['(nn_df_norm[col] - 1.0)'], {'label': 'col'}), '(nn_df_norm[col] - 1.0, label=col)\n', (8886, 8920), False, 'from general import print_mannwhitneyu, print_wilcoxon\n'), ((9138, 9165), 'numpy.nanmean', 'np.nanmean', (['nn_df_norm[col]'], {}), '(nn_df_norm[col])\n', (9148, 9165), True, 'import numpy as np\n'), ((4721, 4747), 'numpy.std', 'np.std', (['pairw_df_norm[col]'], {}), '(pairw_df_norm[col])\n', (4727, 4747), True, 'import numpy as np\n'), ((9167, 9190), 'numpy.std', 'np.std', (['nn_df_norm[col]'], {}), '(nn_df_norm[col])\n', (9173, 9190), True, 'import numpy as np\n')]
import base64 import json import os import zlib from urllib.request import urlretrieve import boto3 import mrcnn.model as modellib import numpy as np import pandas as pd import skimage.io from mrcnn import utils from mrcnn.config import Config from superai.meta_ai import BaseModel s3 = boto3.client("s3") _MODEL_PATH = os.path.join("sagify_base/local_test/test_dir/", "model") # _MODEL_PATH = "s3://canotic-ai/model/mask-rcnn-model.tar.gz" # _MODEL_PATH = 'Mask_RCNN' # Path for models # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = [ "BG", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ] class ModelService(BaseModel): def __init__(self): super().__init__() self.model = None self.initialized = False def initialize(self, context): class InferenceConfig(Config): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU NAME = "inference" GPU_COUNT = 1 IMAGES_PER_GPU = 1 # Number of classes (including background) NUM_CLASSES = 1 + 80 # COCO has 80 classes config = InferenceConfig() config.display() print("Initialised class...") self.initialized = True properties = context.system_properties _MODEL_PATH = properties.get("model_dir") if self.model is None: print("Model Content : ", os.listdir(_MODEL_PATH)) # Local path to trained weights file COCO_MODEL_PATH = os.path.join(_MODEL_PATH, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed try: if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=os.path.join("logs"), config=config) # Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True) self.model = model except RuntimeError: raise MemoryError return self.model def predict_from_image(self, path, class_id=3): image = skimage.io.imread(path) # Run detection clf = self.model print("model retrieved.") results = clf.detect([image], verbose=0) print("detection on image done.") # Visualize results r = results[0] # get indices corresponding to unwanted classes indices_to_remove = np.where(r["class_ids"] != class_id) # remove corresponding entries from `r` new_masks = np.delete(r["masks"], indices_to_remove, axis=2) scores = np.delete(r["scores"], indices_to_remove, axis=0) aggregate_mask = np.logical_not(new_masks.any(axis=2)) class_ids = np.delete(r["class_ids"], indices_to_remove, axis=0) return { "new_masks": new_masks, "aggregate_mask": aggregate_mask, "scores": scores, "class_ids": class_ids, } def predict_intermediate(self, input): image_urls = input["image_url"] predictions = [] for i, url in enumerate(image_urls): image_path = f"image_{i}.jpg" # download image urlretrieve(url, image_path) print("image retrieved") image_path = os.getcwd() + "/" + image_path prediction = self.predict_from_image(image_path) print("predict from image done.") new_masks = prediction["new_masks"] aggregate_mask = prediction["aggregate_mask"] n_masks = new_masks.shape[-1] pred = [] for inst in range(n_masks): pred.append(self._handle_mask(prediction, inst)) print(f"processing mask number {inst} done") # num_workers = mp.cpu_count() // 4 # with Pool(num_workers) as pool: # result = [pool.apply_async(_handle_mask, (prediction, i),) for i in range(n_masks)] # pred = [res.get(timeout=15) for res in result] print("everything done, uploading data.") # data_uri = save_and_upload(aggregate_mask) # pred.append({ # "category": "Background", # "maskUrl": data_uri, # "instance": 0 # }) predictions.append(pred) return predictions def predict(self, json_input): """ Prediction given the request input :param json_input: [dict], request input :return: [dict], prediction """ # transform json_input and assign the transformed value to model_input print("json input", json_input) json_input = json_input[0]["body"] json_input = json_input.decode("utf-8") print("Fixed json input", json_input) try: model_input = pd.read_json(json.loads(json_input)) except ValueError: model_input = pd.read_json(json_input) predictions = self.predict_intermediate(model_input) print("Predictions: ", predictions) # TODO If we have more than 1 model, then create additional classes similar to ModelService # TODO where each of one will load one of your models # # transform predictions to a list and assign and return it # prediction_list = [] # output_keys = set([key.split("_")[0] for key in predictions.keys()]) # for index, row in predictions.iterrows(): # out_row = {key: {} for key in output_keys} # for i, j in row.items(): # name, p_type = i.split("_") # if p_type == "predictions": # p_type = "prediction" # if p_type == "probabilities": # p_type = "probability" # out_row[name][p_type] = j # prediction_list.append(out_row) return predictions def train(self, input_data_path, model_save_path, hyperparams_path=None): pass @classmethod def load_weights(cls, weights_path): pass @staticmethod def get_encoding_string(mask): data = zlib.compress(mask) encoded_string = base64.b64encode(data).decode("utf-8") return encoded_string def _handle_mask(self, prediction, inst): new_masks = prediction["new_masks"] scores = prediction["scores"] class_ids = prediction["class_ids"] print(f"processing mask number {inst}") mask = new_masks[..., inst] mask_data = self.get_encoding_string(mask) class_id = class_ids[inst] w, h = mask.shape[:2] print(f"processing mask number {inst} done") return { "category": class_names[class_id], "class_id": int(class_id), "maskData": mask_data, "instance": inst, "score": float(scores[inst]), "width": w, "height": h, }
[ "os.listdir", "mrcnn.utils.download_trained_weights", "json.loads", "boto3.client", "os.getcwd", "os.path.exists", "pandas.read_json", "zlib.compress", "urllib.request.urlretrieve", "numpy.where", "base64.b64encode", "os.path.join", "numpy.delete" ]
[((290, 308), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (302, 308), False, 'import boto3\n'), ((324, 381), 'os.path.join', 'os.path.join', (['"""sagify_base/local_test/test_dir/"""', '"""model"""'], {}), "('sagify_base/local_test/test_dir/', 'model')\n", (336, 381), False, 'import os\n'), ((3886, 3922), 'numpy.where', 'np.where', (["(r['class_ids'] != class_id)"], {}), "(r['class_ids'] != class_id)\n", (3894, 3922), True, 'import numpy as np\n'), ((3992, 4040), 'numpy.delete', 'np.delete', (["r['masks']", 'indices_to_remove'], {'axis': '(2)'}), "(r['masks'], indices_to_remove, axis=2)\n", (4001, 4040), True, 'import numpy as np\n'), ((4058, 4107), 'numpy.delete', 'np.delete', (["r['scores']", 'indices_to_remove'], {'axis': '(0)'}), "(r['scores'], indices_to_remove, axis=0)\n", (4067, 4107), True, 'import numpy as np\n'), ((4191, 4243), 'numpy.delete', 'np.delete', (["r['class_ids']", 'indices_to_remove'], {'axis': '(0)'}), "(r['class_ids'], indices_to_remove, axis=0)\n", (4200, 4243), True, 'import numpy as np\n'), ((7594, 7613), 'zlib.compress', 'zlib.compress', (['mask'], {}), '(mask)\n', (7607, 7613), False, 'import zlib\n'), ((2816, 2862), 'os.path.join', 'os.path.join', (['_MODEL_PATH', '"""mask_rcnn_coco.h5"""'], {}), "(_MODEL_PATH, 'mask_rcnn_coco.h5')\n", (2828, 2862), False, 'import os\n'), ((4657, 4685), 'urllib.request.urlretrieve', 'urlretrieve', (['url', 'image_path'], {}), '(url, image_path)\n', (4668, 4685), False, 'from urllib.request import urlretrieve\n'), ((2712, 2735), 'os.listdir', 'os.listdir', (['_MODEL_PATH'], {}), '(_MODEL_PATH)\n', (2722, 2735), False, 'import os\n'), ((6316, 6338), 'json.loads', 'json.loads', (['json_input'], {}), '(json_input)\n', (6326, 6338), False, 'import json\n'), ((6393, 6417), 'pandas.read_json', 'pd.read_json', (['json_input'], {}), '(json_input)\n', (6405, 6417), True, 'import pandas as pd\n'), ((7639, 7661), 'base64.b64encode', 'base64.b64encode', (['data'], {}), '(data)\n', (7655, 7661), False, 'import base64\n'), ((2971, 3002), 'os.path.exists', 'os.path.exists', (['COCO_MODEL_PATH'], {}), '(COCO_MODEL_PATH)\n', (2985, 3002), False, 'import os\n'), ((3024, 3071), 'mrcnn.utils.download_trained_weights', 'utils.download_trained_weights', (['COCO_MODEL_PATH'], {}), '(COCO_MODEL_PATH)\n', (3054, 3071), False, 'from mrcnn import utils\n'), ((4748, 4759), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4757, 4759), False, 'import os\n'), ((3199, 3219), 'os.path.join', 'os.path.join', (['"""logs"""'], {}), "('logs')\n", (3211, 3219), False, 'import os\n')]
import tkinter as tk from tkinter import filedialog from tkinter import * from PIL import ImageTk, Image import numpy as np import cv2 #load the trained model to classify sign from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Model from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input from pickle import dump, load from tensorflow.keras.preprocessing.image import load_img, img_to_array base_model = InceptionV3(weights = 'inception_v3_weights_tf_dim_ordering_tf_kernels.h5') vgg_model = Model(base_model.input, base_model.layers[-2].output) def preprocess_img(img_path): #inception v3 excepts img in 299*299 img = load_img(img_path, target_size = (299, 299)) x = img_to_array(img) # Add one more dimension x = np.expand_dims(x, axis = 0) x = preprocess_input(x) return x def encode(image): image = preprocess_img(image) vec = vgg_model.predict(image) vec = np.reshape(vec, (vec.shape[1])) return vec pickle_in = open("wordtoix.pkl", "rb") wordtoix = load(pickle_in) pickle_in = open("ixtoword.pkl", "rb") ixtoword = load(pickle_in) max_length = 74 def greedy_search(pic): start = 'startseq' for i in range(max_length): seq = [wordtoix[word] for word in start.split() if word in wordtoix] seq = pad_sequences([seq], maxlen = max_length) yhat = model.predict([pic, seq]) yhat = np.argmax(yhat) word = ixtoword[yhat] start += ' ' + word if word == 'endseq': break final = start.split() final = final[1:-1] final = ' '.join(final) return final def beam_search(image, beam_index = 3): start = [wordtoix["startseq"]] # start_word[0][0] = index of the starting word # start_word[0][1] = probability of the word predicted start_word = [[start, 0.0]] while len(start_word[0][0]) < max_length: temp = [] for s in start_word: par_caps = pad_sequences([s[0]], maxlen=max_length) e = image preds = model.predict([e, np.array(par_caps)]) # Getting the top <beam_index>(n) predictions word_preds = np.argsort(preds[0])[-beam_index:] # creating a new list so as to put them via the model again for w in word_preds: next_cap, prob = s[0][:], s[1] next_cap.append(w) prob += preds[0][w] temp.append([next_cap, prob]) start_word = temp # Sorting according to the probabilities start_word = sorted(start_word, reverse=False, key=lambda l: l[1]) # Getting the top words start_word = start_word[-beam_index:] start_word = start_word[-1][0] intermediate_caption = [ixtoword[i] for i in start_word] final_caption = [] for i in intermediate_caption: if i != 'endseq': final_caption.append(i) else: break final_caption = ' '.join(final_caption[1:]) return final_caption model = load_model('new-model-1.h5') #initialise GUI top=tk.Tk() top.geometry('800x600') top.title('Image Caption Generator') top.configure(background='#CDCDCD') label2=Label(top,background='#CDCDCD', font=('arial',15)) label1=Label(top,background='#CDCDCD', font=('arial',15)) label=Label(top,background='#CDCDCD', font=('arial',15)) sign_image = Label(top) def classify(file_path): global label_packed enc = encode(file_path) image = enc.reshape(1, 2048) pred = greedy_search(image) print(pred) label.configure(foreground='#000', text= 'Greedy: ' + pred) label.pack(side=BOTTOM,expand=True) beam_3 = beam_search(image) print(beam_3) label1.configure(foreground='#011638', text = 'Beam_3: ' + beam_3) label1.pack(side = BOTTOM, expand = True) beam_5 = beam_search(image, 5) print(beam_5) label2.configure(foreground='#228B22', text = 'Beam_5: ' + beam_5) label2.pack(side = BOTTOM, expand = True) def show_classify_button(file_path): classify_b=Button(top,text="Generate",command=lambda: classify(file_path),padx=10,pady=5) classify_b.configure(background='#364156', foreground='white',font=('arial',10,'bold')) classify_b.place(relx=0.79,rely=0.46) def upload_image(): try: file_path=filedialog.askopenfilename() uploaded=Image.open(file_path) uploaded.thumbnail(((top.winfo_width()/2.25),(top.winfo_height()/2.25))) im=ImageTk.PhotoImage(uploaded) sign_image.configure(image=im) sign_image.image=im label.configure(text='') label1.configure(text='') label2.configure(text='') show_classify_button(file_path) except: pass upload=Button(top,text="Upload an image",command=upload_image,padx=10,pady=5) upload.configure(background='#364156', foreground='white',font=('arial',10,'bold')) upload.pack(side=BOTTOM,pady=50) sign_image.pack(side=BOTTOM,expand=True) #label2.pack(side = BOTTOM, expand = True) heading = Label(top, text="Image Caption Generator",pady=20, font=('arial',22,'bold')) heading.configure(background='#CDCDED',foreground='#FF6348') heading.pack() top.mainloop()
[ "PIL.ImageTk.PhotoImage", "tensorflow.keras.models.load_model", "tensorflow.keras.applications.inception_v3.preprocess_input", "numpy.argmax", "tensorflow.keras.applications.inception_v3.InceptionV3", "tensorflow.keras.preprocessing.image.img_to_array", "numpy.expand_dims", "tkinter.filedialog.askopenfilename", "PIL.Image.open", "tensorflow.keras.models.Model", "tensorflow.keras.preprocessing.image.load_img", "tensorflow.keras.preprocessing.sequence.pad_sequences", "pickle.load", "numpy.argsort", "numpy.reshape", "numpy.array", "tkinter.Tk" ]
[((533, 606), 'tensorflow.keras.applications.inception_v3.InceptionV3', 'InceptionV3', ([], {'weights': '"""inception_v3_weights_tf_dim_ordering_tf_kernels.h5"""'}), "(weights='inception_v3_weights_tf_dim_ordering_tf_kernels.h5')\n", (544, 606), False, 'from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input\n'), ((621, 674), 'tensorflow.keras.models.Model', 'Model', (['base_model.input', 'base_model.layers[-2].output'], {}), '(base_model.input, base_model.layers[-2].output)\n', (626, 674), False, 'from tensorflow.keras.models import Model\n'), ((1132, 1147), 'pickle.load', 'load', (['pickle_in'], {}), '(pickle_in)\n', (1136, 1147), False, 'from pickle import dump, load\n'), ((1198, 1213), 'pickle.load', 'load', (['pickle_in'], {}), '(pickle_in)\n', (1202, 1213), False, 'from pickle import dump, load\n'), ((3191, 3219), 'tensorflow.keras.models.load_model', 'load_model', (['"""new-model-1.h5"""'], {}), "('new-model-1.h5')\n", (3201, 3219), False, 'from tensorflow.keras.models import load_model\n'), ((3241, 3248), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (3246, 3248), True, 'import tkinter as tk\n'), ((757, 799), 'tensorflow.keras.preprocessing.image.load_img', 'load_img', (['img_path'], {'target_size': '(299, 299)'}), '(img_path, target_size=(299, 299))\n', (765, 799), False, 'from tensorflow.keras.preprocessing.image import load_img, img_to_array\n'), ((810, 827), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['img'], {}), '(img)\n', (822, 827), False, 'from tensorflow.keras.preprocessing.image import load_img, img_to_array\n'), ((865, 890), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (879, 890), True, 'import numpy as np\n'), ((901, 920), 'tensorflow.keras.applications.inception_v3.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (917, 920), False, 'from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input\n'), ((1033, 1062), 'numpy.reshape', 'np.reshape', (['vec', 'vec.shape[1]'], {}), '(vec, vec.shape[1])\n', (1043, 1062), True, 'import numpy as np\n'), ((1401, 1440), 'tensorflow.keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['[seq]'], {'maxlen': 'max_length'}), '([seq], maxlen=max_length)\n', (1414, 1440), False, 'from tensorflow.keras.preprocessing.sequence import pad_sequences\n'), ((1499, 1514), 'numpy.argmax', 'np.argmax', (['yhat'], {}), '(yhat)\n', (1508, 1514), True, 'import numpy as np\n'), ((4455, 4483), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {}), '()\n', (4481, 4483), False, 'from tkinter import filedialog\n'), ((4501, 4522), 'PIL.Image.open', 'Image.open', (['file_path'], {}), '(file_path)\n', (4511, 4522), False, 'from PIL import ImageTk, Image\n'), ((4615, 4643), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', (['uploaded'], {}), '(uploaded)\n', (4633, 4643), False, 'from PIL import ImageTk, Image\n'), ((2060, 2100), 'tensorflow.keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['[s[0]]'], {'maxlen': 'max_length'}), '([s[0]], maxlen=max_length)\n', (2073, 2100), False, 'from tensorflow.keras.preprocessing.sequence import pad_sequences\n'), ((2278, 2298), 'numpy.argsort', 'np.argsort', (['preds[0]'], {}), '(preds[0])\n', (2288, 2298), True, 'import numpy as np\n'), ((2161, 2179), 'numpy.array', 'np.array', (['par_caps'], {}), '(par_caps)\n', (2169, 2179), True, 'import numpy as np\n')]
import pandas as pd import argparse import os import mdtraj import numpy as np parser = argparse.ArgumentParser(description='Script to generate trajectories containing only top scoring frames as scored by RWPlus. These top scoring trajectories can then be averaged with Gromacs to produce an averaged structure.') parser.add_argument('-p','--path',help='Path to directory containing all refinement trajectories and RWPlus score files.',required=True,dest='path') parser.add_argument('--percent',help='Percent of top scoring structures to average over. Default: 15,5,40,1',nargs='*',default=[15,5,40,1],type=int) args = parser.parse_args() dir_path = args.path percent = args.percent all_trajs = dict() rw_df = pd.DataFrame(columns = ['traj_idx','frame_idx','score']) for file in os.listdir(dir_path): if file.endswith('.dcd') and file.startswith('refinement_'): print(f'Reading {file}') traj_idx = int(file[file.rfind('_')+1:file.rfind('.')]) curr_traj = mdtraj.load(os.path.join(dir_path,file),top=os.path.join(dir_path,f'minimized_{traj_idx}.pdb')) curr_traj.remove_solvent(inplace=True) all_trajs[traj_idx] = curr_traj elif file.endswith('.txt') and file.startswith('scorelist_'): print(f'Reading {file}') traj_idx = int(file[file.rfind('_')+1:file.rfind('.')]) with open(os.path.join(dir_path,file),'r') as f: scores = f.readlines() scores = np.array(scores,dtype=float) num_frames = len(scores) df = pd.DataFrame(list(zip([traj_idx]*num_frames,np.arange(num_frames),scores)),columns=['traj_idx','frame_idx','score']) rw_df = rw_df.append(df) rw_df.sort_values(by=['score'],inplace=True) num_frames = len(rw_df) for perc in percent: num_top = round(perc*.01*num_frames) print(perc) print(num_top) best_frames = rw_df.head(num_top) for idx in all_trajs.keys(): traj_best = best_frames[best_frames['traj_idx'] == idx] try: newtraj = newtraj.join([all_trajs[idx][list(traj_best['frame_idx'])]]) except: newtraj = all_trajs[idx][list(traj_best['frame_idx'])] print(len(newtraj)) print(f'Saving top {perc}% of frames to top_{perc}_percent.xtc') newtraj.save(os.path.join(dir_path,f'top_{perc}_percent.xtc'),force_overwrite=True) del newtraj
[ "pandas.DataFrame", "argparse.ArgumentParser", "numpy.array", "numpy.arange", "os.path.join", "os.listdir" ]
[((90, 325), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Script to generate trajectories containing only top scoring frames as scored by RWPlus. These top scoring trajectories can then be averaged with Gromacs to produce an averaged structure."""'}), "(description=\n 'Script to generate trajectories containing only top scoring frames as scored by RWPlus. These top scoring trajectories can then be averaged with Gromacs to produce an averaged structure.'\n )\n", (113, 325), False, 'import argparse\n'), ((714, 770), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['traj_idx', 'frame_idx', 'score']"}), "(columns=['traj_idx', 'frame_idx', 'score'])\n", (726, 770), True, 'import pandas as pd\n'), ((783, 803), 'os.listdir', 'os.listdir', (['dir_path'], {}), '(dir_path)\n', (793, 803), False, 'import os\n'), ((2263, 2312), 'os.path.join', 'os.path.join', (['dir_path', 'f"""top_{perc}_percent.xtc"""'], {}), "(dir_path, f'top_{perc}_percent.xtc')\n", (2275, 2312), False, 'import os\n'), ((999, 1027), 'os.path.join', 'os.path.join', (['dir_path', 'file'], {}), '(dir_path, file)\n', (1011, 1027), False, 'import os\n'), ((1442, 1471), 'numpy.array', 'np.array', (['scores'], {'dtype': 'float'}), '(scores, dtype=float)\n', (1450, 1471), True, 'import numpy as np\n'), ((1031, 1082), 'os.path.join', 'os.path.join', (['dir_path', 'f"""minimized_{traj_idx}.pdb"""'], {}), "(dir_path, f'minimized_{traj_idx}.pdb')\n", (1043, 1082), False, 'import os\n'), ((1351, 1379), 'os.path.join', 'os.path.join', (['dir_path', 'file'], {}), '(dir_path, file)\n', (1363, 1379), False, 'import os\n'), ((1561, 1582), 'numpy.arange', 'np.arange', (['num_frames'], {}), '(num_frames)\n', (1570, 1582), True, 'import numpy as np\n')]
""" {This script reads in the raw chain and plots times series for all parameters in order to identify the burn-in} """ # Libs from cosmo_utils.utils import work_paths as cwpaths import matplotlib.pyplot as plt from matplotlib import rc import matplotlib import pandas as pd import numpy as np import math import os __author__ = '{<NAME>}' rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']},size=20) rc('text', usetex=True) matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"] rc('axes', linewidth=2) rc('xtick.major', width=2, size=7) rc('ytick.major', width=2, size=7) def find_nearest(array, value): """Finds the element in array that is closest to the value Args: array (numpy.array): Array of values value (numpy.float): Value to find closest match to Returns: numpy.float: Closest match found in array """ array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx] dict_of_paths = cwpaths.cookiecutter_paths() path_to_raw = dict_of_paths['raw_dir'] path_to_proc = dict_of_paths['proc_dir'] path_to_interim = dict_of_paths['int_dir'] path_to_figures = dict_of_paths['plot_dir'] survey = 'eco' mf_type = 'smf' quenching = 'hybrid' nwalkers = 260 if mf_type == 'smf': path_to_proc = path_to_proc + 'smhm_colour_run27/' else: path_to_proc = path_to_proc + 'bmhm_run3/' chain_fname = path_to_proc + 'mcmc_{0}_colour_raw.txt'.format(survey) if quenching == 'hybrid': emcee_table = pd.read_csv(chain_fname, delim_whitespace=True, names=['Mstar_q','Mhalo_q','mu','nu'], header=None) emcee_table = emcee_table[emcee_table.Mstar_q.values != '#'] emcee_table.Mstar_q = emcee_table.Mstar_q.astype(np.float64) emcee_table.Mhalo_q = emcee_table.Mhalo_q.astype(np.float64) emcee_table.mu = emcee_table.mu.astype(np.float64) emcee_table.nu = emcee_table.nu.astype(np.float64) for idx,row in enumerate(emcee_table.values): if np.isnan(row)[3] == True and np.isnan(row)[2] == False: nu_val = emcee_table.values[idx+1][0] row[3] = nu_val emcee_table = emcee_table.dropna(axis='index', how='any').\ reset_index(drop=True) # emcee_table.nu = np.log10(emcee_table.nu) elif quenching == 'halo': emcee_table = pd.read_csv(chain_fname, delim_whitespace=True, names=['Mh_qc','Mh_qs','mu_c','mu_s'], header=None) emcee_table = emcee_table[emcee_table.Mh_qc.values != '#'] emcee_table.Mh_qc = emcee_table.Mh_qc.astype(np.float64) emcee_table.Mh_qs = emcee_table.Mh_qs.astype(np.float64) emcee_table.mu_c = emcee_table.mu_c.astype(np.float64) emcee_table.mu_s = emcee_table.mu_s.astype(np.float64) for idx,row in enumerate(emcee_table.values): if np.isnan(row)[3] == True and np.isnan(row)[2] == False: mu_s_val = emcee_table.values[idx+1][0] row[3] = mu_s_val emcee_table = emcee_table.dropna(axis='index', how='any').\ reset_index(drop=True) chi2_fname = path_to_proc + '{0}_colour_chi2.txt'.format(survey) chi2_df = pd.read_csv(chi2_fname,header=None,names=['chisquared']) chi2 = np.log10(chi2_df.chisquared.values) emcee_table['chi2'] = chi2 # Each chunk is now a step and within each chunk, each row is a walker # Different from what it used to be where each chunk was a walker and # within each chunk, each row was a step walker_id_arr = np.zeros(len(emcee_table)) iteration_id_arr = np.zeros(len(emcee_table)) counter_wid = 0 counter_stepid = 0 for idx,row in emcee_table.iterrows(): counter_wid += 1 if idx % nwalkers == 0: counter_stepid += 1 counter_wid = 1 walker_id_arr[idx] = counter_wid iteration_id_arr[idx] = counter_stepid id_data = {'walker_id': walker_id_arr, 'iteration_id': iteration_id_arr} id_df = pd.DataFrame(id_data, index=emcee_table.index) emcee_table = emcee_table.assign(**id_df) grps = emcee_table.groupby('iteration_id') grp_keys = grps.groups.keys() if quenching == 'hybrid': Mstar_q = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] Mhalo_q = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] mu = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] nu = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] chi2 = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] for idx,key in enumerate(grp_keys): group = grps.get_group(key) Mstar_q_mean = np.mean(group.Mstar_q.values) Mstar_q_std = np.std(group.Mstar_q.values) Mstar_q[0][idx] = Mstar_q_mean Mstar_q[1][idx] = Mstar_q_std Mhalo_q_mean = np.mean(group.Mhalo_q.values) Mhalo_q_std = np.std(group.Mhalo_q.values) Mhalo_q[0][idx] = Mhalo_q_mean Mhalo_q[1][idx] = Mhalo_q_std mu_mean = np.mean(group.mu.values) mu_std = np.std(group.mu.values) mu[0][idx] = mu_mean mu[1][idx] = mu_std nu_mean = np.mean(group.nu.values) nu_std = np.std(group.nu.values) nu[0][idx] = nu_mean nu[1][idx] = nu_std chi2_mean = np.mean(group.chi2.values) chi2_std = np.std(group.chi2.values) chi2[0][idx] = chi2_mean chi2[1][idx] = chi2_std zumandelbaum_param_vals = [10.5, 13.76, 0.69, 0.15] grp_keys = list(grp_keys) fig1, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1, sharex=True, \ figsize=(10,10)) ax1.plot(grp_keys, Mstar_q[0],c='#941266',ls='--', marker='o') ax1.axhline(zumandelbaum_param_vals[0],color='lightgray') ax2.plot(grp_keys, Mhalo_q[0], c='#941266',ls='--', marker='o') ax2.axhline(zumandelbaum_param_vals[1],color='lightgray') ax3.plot(grp_keys, mu[0], c='#941266',ls='--', marker='o') ax3.axhline(zumandelbaum_param_vals[2],color='lightgray') ax4.plot(grp_keys, nu[0], c='#941266',ls='--', marker='o') ax4.axhline(zumandelbaum_param_vals[3],color='lightgray') ax5.plot(grp_keys, chi2[0], c='#941266',ls='--', marker='o') ax1.fill_between(grp_keys, Mstar_q[0]-Mstar_q[1], Mstar_q[0]+Mstar_q[1], alpha=0.3, color='#941266') ax2.fill_between(grp_keys, Mhalo_q[0]-Mhalo_q[1], Mhalo_q[0]+Mhalo_q[1], \ alpha=0.3, color='#941266') ax3.fill_between(grp_keys, mu[0]-mu[1], mu[0]+mu[1], \ alpha=0.3, color='#941266') ax4.fill_between(grp_keys, nu[0]-nu[1], nu[0]+nu[1], \ alpha=0.3, color='#941266') ax5.fill_between(grp_keys, chi2[0]-chi2[1], chi2[0]+chi2[1], \ alpha=0.3, color='#941266') ax1.set_ylabel(r"$\mathbf{log_{10}\ M^{q}_{*}}$") ax2.set_ylabel(r"$\mathbf{log_{10}\ M^{q}_{h}}$") ax3.set_ylabel(r"$\boldsymbol{\mu}$") # ax4.set_ylabel(r"$\mathbf{log_{10}} \boldsymbol{\ \nu}$") ax4.set_ylabel(r"$\boldsymbol{\nu}$") ax5.set_ylabel(r"$\mathbf{log_{10}} \boldsymbol{{\ \chi}^2}$") # ax5.set_ylabel(r"$\boldsymbol{{\chi}^2}$") # ax1.set_yscale('log') # ax2.set_yscale('log') ax1.annotate(zumandelbaum_param_vals[0], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax2.annotate(zumandelbaum_param_vals[1], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax3.annotate(zumandelbaum_param_vals[2], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax4.annotate(0.15, (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) plt.xlabel(r"$\mathbf{iteration\ number}$") plt.show() elif quenching == 'halo': Mh_qc = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] Mh_qs = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] mu_c = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] mu_s = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] chi2 = [np.zeros(len(grp_keys)),np.zeros(len(grp_keys))] for idx,key in enumerate(grp_keys): group = grps.get_group(key) Mh_qc_mean = np.mean(group.Mh_qc.values) Mh_qc_std = np.std(group.Mh_qc.values) Mh_qc[0][idx] = Mh_qc_mean Mh_qc[1][idx] = Mh_qc_std Mh_qs_mean = np.mean(group.Mh_qs.values) Mh_qs_std = np.std(group.Mh_qs.values) Mh_qs[0][idx] = Mh_qs_mean Mh_qs[1][idx] = Mh_qs_std mu_c_mean = np.mean(group.mu_c.values) mu_c_std = np.std(group.mu_c.values) mu_c[0][idx] = mu_c_mean mu_c[1][idx] = mu_c_std mu_s_mean = np.mean(group.mu_s.values) mu_s_std = np.std(group.mu_s.values) mu_s[0][idx] = mu_s_mean mu_s[1][idx] = mu_s_std chi2_mean = np.mean(group.chi2.values) chi2_std = np.std(group.chi2.values) chi2[0][idx] = chi2_mean chi2[1][idx] = chi2_std zumandelbaum_param_vals = [12.2, 12.17, 0.38, 0.15] grp_keys = list(grp_keys) fig1, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1, sharex=True, \ figsize=(10,10)) ax1.plot(grp_keys, Mh_qc[0],c='#941266',ls='--', marker='o') ax1.axhline(zumandelbaum_param_vals[0],color='lightgray') ax2.plot(grp_keys, Mh_qs[0], c='#941266',ls='--', marker='o') ax2.axhline(zumandelbaum_param_vals[1],color='lightgray') ax3.plot(grp_keys, mu_c[0], c='#941266',ls='--', marker='o') ax3.axhline(zumandelbaum_param_vals[2],color='lightgray') ax4.plot(grp_keys, mu_s[0], c='#941266',ls='--', marker='o') ax4.axhline(zumandelbaum_param_vals[3],color='lightgray') ax5.plot(grp_keys, chi2[0], c='#941266',ls='--', marker='o') ax1.fill_between(grp_keys, Mh_qc[0]-Mh_qc[1], Mh_qc[0]+Mh_qc[1], alpha=0.3, color='#941266') ax2.fill_between(grp_keys, Mh_qs[0]-Mh_qs[1], Mh_qs[0]+Mh_qs[1], \ alpha=0.3, color='#941266') ax3.fill_between(grp_keys, mu_c[0]-mu_c[1], mu_c[0]+mu_c[1], \ alpha=0.3, color='#941266') ax4.fill_between(grp_keys, mu_s[0]-mu_s[1], mu_s[0]+mu_s[1], \ alpha=0.3, color='#941266') ax5.fill_between(grp_keys, chi2[0]-chi2[1], chi2[0]+chi2[1], \ alpha=0.3, color='#941266') ax1.set_ylabel(r"$\mathbf{log_{10}\ Mh_{qc}}$") ax2.set_ylabel(r"$\mathbf{log_{10}\ Mh_{qs}}$") ax3.set_ylabel(r"$\boldsymbol{\ mu_{c}}$") # ax4.set_ylabel(r"$\mathbf{log_{10}} \boldsymbol{\ \nu}$") ax4.set_ylabel(r"$\boldsymbol{\ mu_{s}}$") ax5.set_ylabel(r"$\mathbf{log_{10}} \boldsymbol{{\ \chi}^2}$") # ax5.set_ylabel(r"$\boldsymbol{{\chi}^2}$") # ax1.set_yscale('log') # ax2.set_yscale('log') ax1.annotate(zumandelbaum_param_vals[0], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax2.annotate(zumandelbaum_param_vals[1], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax3.annotate(zumandelbaum_param_vals[2], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax4.annotate(0.15, (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) plt.xlabel(r"$\mathbf{iteration\ number}$") plt.show() ######################## Calculate acceptance fraction ######################## dict_of_paths = cwpaths.cookiecutter_paths() path_to_proc = dict_of_paths['proc_dir'] if mf_type == 'smf': path_to_proc = path_to_proc + 'smhm_colour_run21/' else: path_to_proc = path_to_proc + 'bmhm_run3/' chain_fname = path_to_proc + 'mcmc_{0}_colour_raw.txt'.format(survey) if quenching == 'hybrid': emcee_table = pd.read_csv(chain_fname, delim_whitespace=True, names=['Mstar_q','Mhalo_q','mu','nu'], header=None) emcee_table = emcee_table[emcee_table.Mstar_q.values != '#'] emcee_table.Mstar_q = emcee_table.Mstar_q.astype(np.float64) emcee_table.Mhalo_q = emcee_table.Mhalo_q.astype(np.float64) emcee_table.mu = emcee_table.mu.astype(np.float64) emcee_table.nu = emcee_table.nu.astype(np.float64) for idx,row in enumerate(emcee_table.values): if np.isnan(row)[3] == True and np.isnan(row)[2] == False: nu_val = emcee_table.values[idx+1][0] row[3] = nu_val emcee_table = emcee_table.dropna(axis='index', how='any').\ reset_index(drop=True) # emcee_table.nu = np.log10(emcee_table.nu) elif quenching == 'halo': emcee_table = pd.read_csv(chain_fname, delim_whitespace=True, names=['Mh_qc','Mh_qs','mu_c','mu_s'], header=None) emcee_table = emcee_table[emcee_table.Mh_qc.values != '#'] emcee_table.Mh_qc = emcee_table.Mh_qc.astype(np.float64) emcee_table.Mh_qs = emcee_table.Mh_qs.astype(np.float64) emcee_table.mu_c = emcee_table.mu_c.astype(np.float64) emcee_table.mu_s = emcee_table.mu_s.astype(np.float64) for idx,row in enumerate(emcee_table.values): if np.isnan(row)[3] == True and np.isnan(row)[2] == False: mu_s_val = emcee_table.values[idx+1][0] row[3] = mu_s_val emcee_table = emcee_table.dropna(axis='index', how='any').\ reset_index(drop=True) num_unique_rows = emcee_table[['Mstar_q','Mhalo_q','mu','nu']].drop_duplicates().shape[0] num_rows = len(emcee_table) acceptance_fraction = num_unique_rows / num_rows print("Acceptance fraction: {0}%".format(np.round(acceptance_fraction,2)*100)) # For behroozi chains dict_of_paths = cwpaths.cookiecutter_paths() path_to_proc = dict_of_paths['proc_dir'] chain_fname = path_to_proc + 'smhm_run6/mcmc_{0}_raw.txt'.\ format(survey) emcee_table = pd.read_csv(chain_fname, names=['mhalo_c','mstellar_c','lowmass_slope','highmass_slope', 'scatter'],header=None, delim_whitespace=True) emcee_table = emcee_table[emcee_table.mhalo_c.values != '#'] emcee_table.mhalo_c = emcee_table.mhalo_c.astype(np.float64) emcee_table.mstellar_c = emcee_table.mstellar_c.astype(np.float64) emcee_table.lowmass_slope = emcee_table.lowmass_slope.astype(np.float64) for idx,row in enumerate(emcee_table.values): if np.isnan(row)[4] == True and np.isnan(row)[3] == False: scatter_val = emcee_table.values[idx+1][0] row[4] = scatter_val emcee_table = emcee_table.dropna(axis='index', how='any').reset_index(drop=True) num_unique_rows = emcee_table[['mhalo_c','mstellar_c','lowmass_slope',\ 'highmass_slope']].drop_duplicates().shape[0] num_rows = len(emcee_table) acceptance_fraction = num_unique_rows / num_rows print("Acceptance fraction: {0}%".format(np.round(acceptance_fraction,2)*100)) ################################################################################ def hybrid_quenching_model(theta, gals_df, mock, randint=None): """ Apply hybrid quenching model from Zu and Mandelbaum 2015 Parameters ---------- gals_df: pandas dataframe Mock catalog Returns --------- f_red_cen: array Array of central red fractions f_red_sat: array Array of satellite red fractions """ # parameter values from Table 1 of Zu and Mandelbaum 2015 "prior case" Mstar_q = theta[0] # Msun/h Mh_q = theta[1] # Msun/h mu = theta[2] nu = theta[3] cen_hosthalo_mass_arr, sat_hosthalo_mass_arr = get_host_halo_mock(gals_df, \ mock) cen_stellar_mass_arr, sat_stellar_mass_arr = get_stellar_mock(gals_df, mock, \ randint) f_red_cen = 1 - np.exp(-((cen_stellar_mass_arr/(10**Mstar_q))**mu)) g_Mstar = np.exp(-((sat_stellar_mass_arr/(10**Mstar_q))**mu)) h_Mh = np.exp(-((sat_hosthalo_mass_arr/(10**Mh_q))**nu)) f_red_sat = 1 - (g_Mstar * h_Mh) return f_red_cen, f_red_sat def assign_colour_label_mock(f_red_cen, f_red_sat, gals_df, drop_fred=False): """ Assign colour label to mock catalog Parameters ---------- f_red_cen: array Array of central red fractions f_red_sat: array Array of satellite red fractions gals_df: pandas Dataframe Mock catalog drop_fred: boolean Whether or not to keep red fraction column after colour has been assigned Returns --------- df: pandas Dataframe Dataframe with colour label and random number assigned as new columns """ # Copy of dataframe df = gals_df.copy() # Saving labels color_label_arr = [[] for x in range(len(df))] rng_arr = [[] for x in range(len(df))] # Adding columns for f_red to df df.loc[:, 'f_red'] = np.zeros(len(df)) df.loc[df['cs_flag'] == 1, 'f_red'] = f_red_cen df.loc[df['cs_flag'] == 0, 'f_red'] = f_red_sat # Converting to array f_red_arr = df['f_red'].values # Looping over galaxies for ii, cs_ii in enumerate(df['cs_flag']): # Draw a random number rng = np.random.uniform() # Comparing against f_red if (rng >= f_red_arr[ii]): color_label = 'B' else: color_label = 'R' # Saving to list color_label_arr[ii] = color_label rng_arr[ii] = rng ## Assigning to DataFrame df.loc[:, 'colour_label'] = color_label_arr df.loc[:, 'rng'] = rng_arr # Dropping 'f_red` column if drop_fred: df.drop('f_red', axis=1, inplace=True) return df def get_host_halo_mock(gals_df, mock): """ Get host halo mass from mock catalog Parameters ---------- gals_df: pandas dataframe Mock catalog Returns --------- cen_halos: array Array of central host halo masses sat_halos: array Array of satellite host halo masses """ df = gals_df.copy() # groups = df.groupby('halo_id') # keys = groups.groups.keys() # for key in keys: # group = groups.get_group(key) # for index, value in enumerate(group.cs_flag): # if value == 1: # cen_halos.append(group.loghalom.values[index]) # else: # sat_halos.append(group.loghalom.values[index]) if mock == 'vishnu': cen_halos = [] sat_halos = [] for index, value in enumerate(df.cs_flag): if value == 1: cen_halos.append(df.halo_mvir.values[index]) else: sat_halos.append(df.halo_mvir.values[index]) else: cen_halos = [] sat_halos = [] for index, value in enumerate(df.cs_flag): if value == 1: cen_halos.append(df.loghalom.values[index]) else: sat_halos.append(df.loghalom.values[index]) cen_halos = np.array(cen_halos) sat_halos = np.array(sat_halos) return cen_halos, sat_halos def get_stellar_mock(gals_df, mock, randint=None): """ Get stellar mass from mock catalog Parameters ---------- gals_df: pandas dataframe Mock catalog Returns --------- cen_gals: array Array of central stellar masses sat_gals: array Array of satellite stellar masses """ df = gals_df.copy() if mock == 'vishnu': cen_gals = [] sat_gals = [] for idx,value in enumerate(df.cs_flag): if value == 1: cen_gals.append(df['{0}'.format(randint)].values[idx]) elif value == 0: sat_gals.append(df['{0}'.format(randint)].values[idx]) else: cen_gals = [] sat_gals = [] for idx,value in enumerate(df.cs_flag): if value == 1: cen_gals.append(df.logmstar.values[idx]) elif value == 0: sat_gals.append(df.logmstar.values[idx]) cen_gals = np.array(cen_gals) sat_gals = np.array(sat_gals) return cen_gals, sat_gals def diff_smf(mstar_arr, volume, h1_bool, colour_flag=False): """ Calculates differential stellar mass function in units of h=1.0 Parameters ---------- mstar_arr: numpy array Array of stellar masses volume: float Volume of survey or simulation h1_bool: boolean True if units of masses are h=1, False if units of masses are not h=1 Returns --------- maxis: array Array of x-axis mass values phi: array Array of y-axis values err_tot: array Array of error values per bin bins: array Array of bin edge values """ if not h1_bool: # changing from h=0.7 to h=1 assuming h^-2 dependence logmstar_arr = np.log10((10**mstar_arr) / 2.041) else: logmstar_arr = np.log10(mstar_arr) if survey == 'eco' or survey == 'resolvea': bin_min = np.round(np.log10((10**8.9) / 2.041), 1) if survey == 'eco' and colour_flag == 'R': bin_max = np.round(np.log10((10**11.5) / 2.041), 1) bin_num = 6 elif survey == 'eco' and colour_flag == 'B': bin_max = np.round(np.log10((10**11) / 2.041), 1) bin_num = 6 elif survey == 'resolvea': # different to avoid nan in inverse corr mat bin_max = np.round(np.log10((10**11.5) / 2.041), 1) bin_num = 7 else: bin_max = np.round(np.log10((10**11.5) / 2.041), 1) bin_num = 7 bins = np.linspace(bin_min, bin_max, bin_num) elif survey == 'resolveb': bin_min = np.round(np.log10((10**8.7) / 2.041), 1) bin_max = np.round(np.log10((10**11.8) / 2.041), 1) bins = np.linspace(bin_min, bin_max, 7) # Unnormalized histogram and bin edges counts, edg = np.histogram(logmstar_arr, bins=bins) # paper used 17 bins dm = edg[1] - edg[0] # Bin width maxis = 0.5 * (edg[1:] + edg[:-1]) # Mass axis i.e. bin centers # Normalized to volume and bin width err_poiss = np.sqrt(counts) / (volume * dm) err_tot = err_poiss phi = counts / (volume * dm) # not a log quantity phi = np.log10(phi) return maxis, phi, err_tot, bins, counts def measure_all_smf(table, volume, data_bool, randint_logmstar=None): """ Calculates differential stellar mass function for all, red and blue galaxies from mock/data Parameters ---------- table: pandas Dataframe Dataframe of either mock or data volume: float Volume of simulation/survey cvar: float Cosmic variance error data_bool: Boolean Data or mock Returns --------- 3 multidimensional arrays of stellar mass, phi, total error in SMF and counts per bin for all, red and blue galaxies """ colour_col = 'colour_label' if data_bool: logmstar_col = 'logmstar' max_total, phi_total, err_total, bins_total, counts_total = \ diff_smf(table[logmstar_col], volume, False) max_red, phi_red, err_red, bins_red, counts_red = \ diff_smf(table[logmstar_col].loc[table[colour_col] == 'R'], volume, False, 'R') max_blue, phi_blue, err_blue, bins_blue, counts_blue = \ diff_smf(table[logmstar_col].loc[table[colour_col] == 'B'], volume, False, 'B') else: # logmstar_col = 'stellar_mass' logmstar_col = '{0}'.format(randint_logmstar) max_total, phi_total, err_total, bins_total, counts_total = \ diff_smf(table[logmstar_col], volume, True) max_red, phi_red, err_red, bins_red, counts_red = \ diff_smf(table[logmstar_col].loc[table[colour_col] == 'R'], volume, True, 'R') max_blue, phi_blue, err_blue, bins_blue, counts_blue = \ diff_smf(table[logmstar_col].loc[table[colour_col] == 'B'], volume, True, 'B') return [max_total, phi_total, err_total, counts_total] , \ [max_red, phi_red, err_red, counts_red] , \ [max_blue, phi_blue, err_blue, counts_blue] def assign_colour_label_data(catl): """ Assign colour label to data Parameters ---------- catl: pandas Dataframe Data catalog Returns --------- catl: pandas Dataframe Data catalog with colour label assigned as new column """ logmstar_arr = catl.logmstar.values u_r_arr = catl.modelu_rcorr.values colour_label_arr = np.empty(len(catl), dtype='str') for idx, value in enumerate(logmstar_arr): # Divisions taken from Moffett et al. 2015 equation 1 if value <= 9.1: if u_r_arr[idx] > 1.457: colour_label = 'R' else: colour_label = 'B' if value > 9.1 and value < 10.1: divider = 0.24 * value - 0.7 if u_r_arr[idx] > divider: colour_label = 'R' else: colour_label = 'B' if value >= 10.1: if u_r_arr[idx] > 1.7: colour_label = 'R' else: colour_label = 'B' colour_label_arr[idx] = colour_label catl['colour_label'] = colour_label_arr return catl def read_data_catl(path_to_file, survey): """ Reads survey catalog from file Parameters ---------- path_to_file: `string` Path to survey catalog file survey: `string` Name of survey Returns --------- catl: `pandas.DataFrame` Survey catalog with grpcz, abs rmag and stellar mass limits volume: `float` Volume of survey z_median: `float` Median redshift of survey """ if survey == 'eco': columns = ['name', 'radeg', 'dedeg', 'cz', 'grpcz', 'absrmag', 'logmstar', 'logmgas', 'grp', 'grpn', 'logmh', 'logmh_s', 'fc', 'grpmb', 'grpms','modelu_rcorr'] # 13878 galaxies eco_buff = pd.read_csv(path_to_file,delimiter=",", header=0, \ usecols=columns) if mf_type == 'smf': # 6456 galaxies catl = eco_buff.loc[(eco_buff.grpcz.values >= 3000) & (eco_buff.grpcz.values <= 7000) & (eco_buff.absrmag.values <= -17.33)] elif mf_type == 'bmf': catl = eco_buff.loc[(eco_buff.grpcz.values >= 3000) & (eco_buff.grpcz.values <= 7000) & (eco_buff.absrmag.values <= -17.33)] volume = 151829.26 # Survey volume without buffer [Mpc/h]^3 # cvar = 0.125 z_median = np.median(catl.grpcz.values) / (3 * 10**5) elif survey == 'resolvea' or survey == 'resolveb': columns = ['name', 'radeg', 'dedeg', 'cz', 'grpcz', 'absrmag', 'logmstar', 'logmgas', 'grp', 'grpn', 'grpnassoc', 'logmh', 'logmh_s', 'fc', 'grpmb', 'grpms', 'f_a', 'f_b'] # 2286 galaxies resolve_live18 = pd.read_csv(path_to_file, delimiter=",", header=0, \ usecols=columns) if survey == 'resolvea': if mf_type == 'smf': catl = resolve_live18.loc[(resolve_live18.f_a.values == 1) & (resolve_live18.grpcz.values >= 4500) & (resolve_live18.grpcz.values <= 7000) & (resolve_live18.absrmag.values <= -17.33)] elif mf_type == 'bmf': catl = resolve_live18.loc[(resolve_live18.f_a.values == 1) & (resolve_live18.grpcz.values >= 4500) & (resolve_live18.grpcz.values <= 7000) & (resolve_live18.absrmag.values <= -17.33)] volume = 13172.384 # Survey volume without buffer [Mpc/h]^3 # cvar = 0.30 z_median = np.median(resolve_live18.grpcz.values) / (3 * 10**5) elif survey == 'resolveb': if mf_type == 'smf': # 487 - cz, 369 - grpcz catl = resolve_live18.loc[(resolve_live18.f_b.values == 1) & (resolve_live18.grpcz.values >= 4500) & (resolve_live18.grpcz.values <= 7000) & (resolve_live18.absrmag.values <= -17)] elif mf_type == 'bmf': catl = resolve_live18.loc[(resolve_live18.f_b.values == 1) & (resolve_live18.grpcz.values >= 4500) & (resolve_live18.grpcz.values <= 7000) & (resolve_live18.absrmag.values <= -17)] volume = 4709.8373 # *2.915 #Survey volume without buffer [Mpc/h]^3 # cvar = 0.58 z_median = np.median(resolve_live18.grpcz.values) / (3 * 10**5) return catl, volume, z_median def std_func(bins, mass_arr, vel_arr): ## Calculate std from mean=0 last_index = len(bins)-1 i = 0 std_arr = [] for index1, bin_edge in enumerate(bins): if index1 == last_index: break cen_deltav_arr = [] for index2, stellar_mass in enumerate(mass_arr): if stellar_mass >= bin_edge and stellar_mass < bins[index1+1]: cen_deltav_arr.append(vel_arr[index2]) N = len(cen_deltav_arr) mean = 0 diff_sqrd_arr = [] for value in cen_deltav_arr: diff = value - mean diff_sqrd = diff**2 diff_sqrd_arr.append(diff_sqrd) mean_diff_sqrd = np.mean(diff_sqrd_arr) std = np.sqrt(mean_diff_sqrd) std_arr.append(std) return std_arr def get_deltav_sigma_vishnu_qmcolour(gals_df, randint): """ Calculate spread in velocity dispersion from Vishnu mock (logmstar already in h=1) Parameters ---------- survey: string Name of survey path: string Path to mock catalogs Returns --------- std_red_arr: numpy array Spread in velocity dispersion of red galaxies centers_red_arr: numpy array Bin centers of central stellar mass for red galaxies std_blue_arr: numpy array Spread in velocity dispersion of blue galaxies centers_blue_arr: numpy array Bin centers of central stellar mass for blue galaxies """ mock_pd = gals_df.copy() if survey == 'eco': mock_name = 'ECO' num_mocks = 8 min_cz = 3000 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 151829.26 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolvea': mock_name = 'A' num_mocks = 59 min_cz = 4500 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 13172.384 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolveb': mock_name = 'B' num_mocks = 104 min_cz = 4500 max_cz = 7000 mag_limit = -17 mstar_limit = 8.7 volume = 4709.8373 # Survey volume without buffer [Mpc/h]^3 logmstar_col = '{0}'.format(randint) g_galtype_col = 'g_galtype_{0}'.format(randint) # Using the same survey definition as in mcmc smf i.e excluding the # buffer except no M_r cut since vishnu mock has no M_r info mock_pd = mock_pd.loc[(mock_pd.cz.values >= min_cz) & \ (mock_pd.cz.values <= max_cz) & \ (mock_pd[logmstar_col].values >= (10**mstar_limit/2.041))] red_subset_grpids = np.unique(mock_pd.groupid.loc[(mock_pd.\ colour_label == 'R') & (mock_pd[g_galtype_col] == 1)].values) blue_subset_grpids = np.unique(mock_pd.groupid.loc[(mock_pd.\ colour_label == 'B') & (mock_pd[g_galtype_col] == 1)].values) # Calculating spread in velocity dispersion for galaxies in groups # with a red central red_deltav_arr = [] red_cen_stellar_mass_arr = [] for key in red_subset_grpids: group = mock_pd.loc[mock_pd.groupid == key] cen_stellar_mass = group['{0}'.format(randint)].loc[group[g_galtype_col].\ values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: red_deltav_arr.append(val) red_cen_stellar_mass_arr.append(cen_stellar_mass) # print(max(red_cen_stellar_mass_arr)) red_cen_stellar_mass_arr = np.log10(red_cen_stellar_mass_arr) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a red_stellar_mass_bins = np.linspace(8.6,11.2,6) elif survey == 'resolveb': red_stellar_mass_bins = np.linspace(8.4,11.0,6) std_red = std_func(red_stellar_mass_bins, red_cen_stellar_mass_arr, red_deltav_arr) std_red = np.array(std_red) # Calculating spread in velocity dispersion for galaxies in groups # with a blue central blue_deltav_arr = [] blue_cen_stellar_mass_arr = [] for key in blue_subset_grpids: group = mock_pd.loc[mock_pd.groupid == key] cen_stellar_mass = group['{0}'.format(randint)].loc[group[g_galtype_col]\ .values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: blue_deltav_arr.append(val) blue_cen_stellar_mass_arr.append(cen_stellar_mass) # print(max(blue_cen_stellar_mass_arr)) blue_cen_stellar_mass_arr = np.log10(blue_cen_stellar_mass_arr) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a blue_stellar_mass_bins = np.linspace(8.6,10.7,6) elif survey == 'resolveb': blue_stellar_mass_bins = np.linspace(8.4,10.4,6) std_blue = std_func(blue_stellar_mass_bins, \ blue_cen_stellar_mass_arr, blue_deltav_arr) std_blue = np.array(std_blue) centers_red = 0.5 * (red_stellar_mass_bins[1:] + \ red_stellar_mass_bins[:-1]) centers_blue = 0.5 * (blue_stellar_mass_bins[1:] + \ blue_stellar_mass_bins[:-1]) return std_red, std_blue, centers_red, centers_blue def get_deltav_sigma_mocks_qmcolour(survey, path): """ Calculate spread in velocity dispersion from survey mocks (logmstar converted to h=1 units before analysis) Parameters ---------- survey: string Name of survey path: string Path to mock catalogs Returns --------- std_red_arr: numpy array Spread in velocity dispersion of red galaxies centers_red_arr: numpy array Bin centers of central stellar mass for red galaxies std_blue_arr: numpy array Spread in velocity dispersion of blue galaxies centers_blue_arr: numpy array Bin centers of central stellar mass for blue galaxies """ if survey == 'eco': mock_name = 'ECO' num_mocks = 8 min_cz = 3000 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 151829.26 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolvea': mock_name = 'A' num_mocks = 59 min_cz = 4500 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 13172.384 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolveb': mock_name = 'B' num_mocks = 104 min_cz = 4500 max_cz = 7000 mag_limit = -17 mstar_limit = 8.7 volume = 4709.8373 # Survey volume without buffer [Mpc/h]^3 std_red_arr = [] centers_red_arr = [] std_blue_arr = [] centers_blue_arr = [] box_id_arr = np.linspace(5001,5008,8) for box in box_id_arr: box = int(box) temp_path = path + '{0}/{1}_m200b_catls/'.format(box, mock_name) for num in range(num_mocks): filename = temp_path + '{0}_cat_{1}_Planck_memb_cat.hdf5'.format( mock_name, num) mock_pd = reading_catls(filename) # Using the same survey definition as in mcmc smf i.e excluding the # buffer mock_pd = mock_pd.loc[(mock_pd.cz.values >= min_cz) & \ (mock_pd.cz.values <= max_cz) & \ (mock_pd.M_r.values <= mag_limit) & \ (mock_pd.logmstar.values >= mstar_limit)] Mstar_q = 10.5 # Msun/h Mh_q = 13.76 # Msun/h mu = 0.69 nu = 0.15 theta = [Mstar_q, Mh_q, mu, nu] f_red_c, f_red_s = hybrid_quenching_model(theta, mock_pd, 'nonvishnu') mock_pd = assign_colour_label_mock(f_red_c, f_red_s, mock_pd) mock_pd.logmstar = np.log10((10**mock_pd.logmstar) / 2.041) red_subset_grpids = np.unique(mock_pd.groupid.loc[(mock_pd.\ colour_label == 'R') & (mock_pd.g_galtype == 1)].values) blue_subset_grpids = np.unique(mock_pd.groupid.loc[(mock_pd.\ colour_label == 'B') & (mock_pd.g_galtype == 1)].values) # Calculating spread in velocity dispersion for galaxies in groups # with a red central red_deltav_arr = [] red_cen_stellar_mass_arr = [] for key in red_subset_grpids: group = mock_pd.loc[mock_pd.groupid == key] cen_stellar_mass = group.logmstar.loc[group.g_galtype.\ values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: red_deltav_arr.append(val) red_cen_stellar_mass_arr.append(cen_stellar_mass) # print(max(red_cen_stellar_mass_arr)) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a red_stellar_mass_bins = np.linspace(8.6,11.2,6) elif survey == 'resolveb': red_stellar_mass_bins = np.linspace(8.4,11.0,6) std_red = std_func(red_stellar_mass_bins, red_cen_stellar_mass_arr, red_deltav_arr) std_red = np.array(std_red) std_red_arr.append(std_red) # Calculating spread in velocity dispersion for galaxies in groups # with a blue central blue_deltav_arr = [] blue_cen_stellar_mass_arr = [] for key in blue_subset_grpids: group = mock_pd.loc[mock_pd.groupid == key] cen_stellar_mass = group.logmstar.loc[group.g_galtype\ .values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: blue_deltav_arr.append(val) blue_cen_stellar_mass_arr.append(cen_stellar_mass) # print(max(blue_cen_stellar_mass_arr)) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a blue_stellar_mass_bins = np.linspace(8.6,10.7,6) elif survey == 'resolveb': blue_stellar_mass_bins = np.linspace(8.4,10.4,6) std_blue = std_func(blue_stellar_mass_bins, \ blue_cen_stellar_mass_arr, blue_deltav_arr) std_blue = np.array(std_blue) std_blue_arr.append(std_blue) centers_red = 0.5 * (red_stellar_mass_bins[1:] + \ red_stellar_mass_bins[:-1]) centers_blue = 0.5 * (blue_stellar_mass_bins[1:] + \ blue_stellar_mass_bins[:-1]) centers_red_arr.append(centers_red) centers_blue_arr.append(centers_blue) std_red_arr = np.array(std_red_arr) centers_red_arr = np.array(centers_red_arr) std_blue_arr = np.array(std_blue_arr) centers_blue_arr = np.array(centers_blue_arr) return std_red_arr, std_blue_arr, centers_red_arr, centers_blue_arr def get_deltav_sigma_data(df): """ Measure spread in velocity dispersion separately for red and blue galaxies by binning up central stellar mass (changes logmstar units from h=0.7 to h=1) Parameters ---------- df: pandas Dataframe Data catalog Returns --------- std_red: numpy array Spread in velocity dispersion of red galaxies centers_red: numpy array Bin centers of central stellar mass for red galaxies std_blue: numpy array Spread in velocity dispersion of blue galaxies centers_blue: numpy array Bin centers of central stellar mass for blue galaxies """ catl = df.copy() if survey == 'eco' or survey == 'resolvea': catl = catl.loc[catl.logmstar >= 8.9] elif survey == 'resolveb': catl = catl.loc[catl.logmstar >= 8.7] catl.logmstar = np.log10((10**catl.logmstar) / 2.041) red_subset_grpids = np.unique(catl.grp.loc[(catl.\ colour_label == 'R') & (catl.fc == 1)].values) blue_subset_grpids = np.unique(catl.grp.loc[(catl.\ colour_label == 'B') & (catl.fc == 1)].values) # Calculating spread in velocity dispersion for galaxies in groups with a # red central red_deltav_arr = [] red_cen_stellar_mass_arr = [] for key in red_subset_grpids: group = catl.loc[catl.grp == key] cen_stellar_mass = group.logmstar.loc[group.fc.\ values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: red_deltav_arr.append(val) red_cen_stellar_mass_arr.append(cen_stellar_mass) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a red_stellar_mass_bins = np.linspace(8.6,11.2,6) elif survey == 'resolveb': red_stellar_mass_bins = np.linspace(8.4,11.0,6) std_red = std_func(red_stellar_mass_bins, red_cen_stellar_mass_arr, red_deltav_arr) std_red = np.array(std_red) # Calculating spread in velocity dispersion for galaxies in groups with a # blue central blue_deltav_arr = [] blue_cen_stellar_mass_arr = [] for key in blue_subset_grpids: group = catl.loc[catl.grp == key] cen_stellar_mass = group.logmstar.loc[group.fc\ .values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: blue_deltav_arr.append(val) blue_cen_stellar_mass_arr.append(cen_stellar_mass) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a blue_stellar_mass_bins = np.linspace(8.6,10.7,6) elif survey == 'resolveb': blue_stellar_mass_bins = np.linspace(8.4,10.4,6) std_blue = std_func(blue_stellar_mass_bins, blue_cen_stellar_mass_arr, blue_deltav_arr) std_blue = np.array(std_blue) centers_red = 0.5 * (red_stellar_mass_bins[1:] + \ red_stellar_mass_bins[:-1]) centers_blue = 0.5 * (blue_stellar_mass_bins[1:] + \ blue_stellar_mass_bins[:-1]) return std_red, centers_red, std_blue, centers_blue def reading_catls(filename, catl_format='.hdf5'): """ Function to read ECO/RESOLVE catalogues. Parameters ---------- filename: string path and name of the ECO/RESOLVE catalogue to read catl_format: string, optional (default = '.hdf5') type of file to read. Options: - '.hdf5': Reads in a catalogue in HDF5 format Returns ------- mock_pd: pandas DataFrame DataFrame with galaxy/group information Examples -------- # Specifying `filename` >>> filename = 'ECO_catl.hdf5' # Reading in Catalogue >>> mock_pd = reading_catls(filename, format='.hdf5') >>> mock_pd.head() x y z vx vy vz \ 0 10.225435 24.778214 3.148386 356.112457 -318.894409 366.721832 1 20.945772 14.500367 -0.237940 168.731766 37.558834 447.436951 2 21.335835 14.808488 0.004653 967.204407 -701.556763 -388.055115 3 11.102760 21.782235 2.947002 611.646484 -179.032089 113.388794 4 13.217764 21.214905 2.113904 120.689598 -63.448833 400.766541 loghalom cs_flag haloid halo_ngal ... cz_nodist vel_tot \ 0 12.170 1 196005 1 ... 2704.599189 602.490355 1 11.079 1 197110 1 ... 2552.681697 479.667489 2 11.339 1 197131 1 ... 2602.377466 1256.285409 3 11.529 1 199056 1 ... 2467.277182 647.318259 4 10.642 1 199118 1 ... 2513.381124 423.326770 vel_tan vel_pec ra_orig groupid M_group g_ngal g_galtype \ 0 591.399858 -115.068833 215.025116 0 11.702527 1 1 1 453.617221 155.924074 182.144134 1 11.524787 4 0 2 1192.742240 394.485714 182.213220 1 11.524787 4 0 3 633.928896 130.977416 210.441320 2 11.502205 1 1 4 421.064495 43.706352 205.525386 3 10.899680 1 1 halo_rvir 0 0.184839 1 0.079997 2 0.097636 3 0.113011 4 0.057210 """ ## Checking if file exists if not os.path.exists(filename): msg = '`filename`: {0} NOT FOUND! Exiting..'.format(filename) raise ValueError(msg) ## Reading file if catl_format=='.hdf5': mock_pd = pd.read_hdf(filename) else: msg = '`catl_format` ({0}) not supported! Exiting...'.format(catl_format) raise ValueError(msg) return mock_pd def get_err_data(survey, path): """ Calculate error in data SMF from mocks Parameters ---------- survey: string Name of survey path: string Path to mock catalogs Returns --------- err_total: array Standard deviation of phi values between all mocks and for all galaxies err_red: array Standard deviation of phi values between all mocks and for red galaxies err_blue: array Standard deviation of phi values between all mocks and for blue galaxies """ if survey == 'eco': mock_name = 'ECO' num_mocks = 8 min_cz = 3000 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 151829.26 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolvea': mock_name = 'A' num_mocks = 59 min_cz = 4500 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 13172.384 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolveb': mock_name = 'B' num_mocks = 104 min_cz = 4500 max_cz = 7000 mag_limit = -17 mstar_limit = 8.7 volume = 4709.8373 # Survey volume without buffer [Mpc/h]^3 phi_arr_total = [] phi_arr_red = [] phi_arr_blue = [] # logmstar_red_max_arr = [] # logmstar_blue_max_arr = [] # colour_err_arr = [] # colour_corr_mat_inv = [] box_id_arr = np.linspace(5001,5008,8) for box in box_id_arr: box = int(box) temp_path = path + '{0}/{1}_m200b_catls/'.format(box, mock_name) for num in range(num_mocks): filename = temp_path + '{0}_cat_{1}_Planck_memb_cat.hdf5'.format( mock_name, num) mock_pd = reading_catls(filename) # Using the same survey definition as in mcmc smf i.e excluding the # buffer mock_pd = mock_pd.loc[(mock_pd.cz.values >= min_cz) & \ (mock_pd.cz.values <= max_cz) & (mock_pd.M_r.values <= mag_limit) &\ (mock_pd.logmstar.values >= mstar_limit)] Mstar_q = 10.5 # Msun/h Mh_q = 13.76 # Msun/h mu = 0.69 nu = 0.15 theta = [Mstar_q, Mh_q, mu, nu] f_red_c, f_red_s = hybrid_quenching_model(theta, mock_pd, 'nonvishnu') mock_pd = assign_colour_label_mock(f_red_c, f_red_s, mock_pd) # logmstar_red_max = mock_pd.logmstar.loc[mock_pd.colour_label == 'R'].max() # logmstar_red_max_arr.append(logmstar_red_max) # logmstar_blue_max = mock_pd.logmstar.loc[mock_pd.colour_label == 'B'].max() # logmstar_blue_max_arr.append(logmstar_blue_max) logmstar_arr = mock_pd.logmstar.values #Measure SMF of mock using diff_smf function max_total, phi_total, err_total, bins_total, counts_total = \ diff_smf(logmstar_arr, volume, False) max_red, phi_red, err_red, bins_red, counts_red = \ diff_smf(mock_pd.logmstar.loc[mock_pd.colour_label.values == 'R'], volume, False, 'R') max_blue, phi_blue, err_blue, bins_blue, counts_blue = \ diff_smf(mock_pd.logmstar.loc[mock_pd.colour_label.values == 'B'], volume, False, 'B') phi_arr_total.append(phi_total) phi_arr_red.append(phi_red) phi_arr_blue.append(phi_blue) phi_arr_total = np.array(phi_arr_total) phi_arr_red = np.array(phi_arr_red) phi_arr_blue = np.array(phi_arr_blue) # phi_arr_colour = np.append(phi_arr_red, phi_arr_blue, axis = 0) # Covariance matrix for total phi (all galaxies) # cov_mat = np.cov(phi_arr_total, rowvar=False) # default norm is N-1 # err_total = np.sqrt(cov_mat.diagonal()) # cov_mat_red = np.cov(phi_arr_red, rowvar=False) # default norm is N-1 # err_red = np.sqrt(cov_mat_red.diagonal()) # colour_err_arr.append(err_red) # cov_mat_blue = np.cov(phi_arr_blue, rowvar=False) # default norm is N-1 # err_blue = np.sqrt(cov_mat_blue.diagonal()) # colour_err_arr.append(err_blue) # corr_mat_red = cov_mat_red / np.outer(err_red , err_red) # corr_mat_inv_red = np.linalg.inv(corr_mat_red) # colour_corr_mat_inv.append(corr_mat_inv_red) # corr_mat_blue = cov_mat_blue / np.outer(err_blue , err_blue) # corr_mat_inv_blue = np.linalg.inv(corr_mat_blue) # colour_corr_mat_inv.append(corr_mat_inv_blue) deltav_sig_red, deltav_sig_blue, deltav_sig_cen_red, deltav_sig_cen_blue = \ get_deltav_sigma_mocks_qmcolour(survey, path) phi_red_0 = phi_arr_red[:,0] phi_red_1 = phi_arr_red[:,1] phi_red_2 = phi_arr_red[:,2] phi_red_3 = phi_arr_red[:,3] phi_red_4 = phi_arr_red[:,4] phi_blue_0 = phi_arr_blue[:,0] phi_blue_1 = phi_arr_blue[:,1] phi_blue_2 = phi_arr_blue[:,2] phi_blue_3 = phi_arr_blue[:,3] phi_blue_4 = phi_arr_blue[:,4] dv_red_0 = deltav_sig_red[:,0] dv_red_1 = deltav_sig_red[:,1] dv_red_2 = deltav_sig_red[:,2] dv_red_3 = deltav_sig_red[:,3] dv_red_4 = deltav_sig_red[:,4] dv_blue_0 = deltav_sig_blue[:,0] dv_blue_1 = deltav_sig_blue[:,1] dv_blue_2 = deltav_sig_blue[:,2] dv_blue_3 = deltav_sig_blue[:,3] dv_blue_4 = deltav_sig_blue[:,4] combined_df = pd.DataFrame({'phi_red_0':phi_red_0, 'phi_red_1':phi_red_1,\ 'phi_red_2':phi_red_2, 'phi_red_3':phi_red_3, 'phi_red_4':phi_red_4, \ 'phi_blue_0':phi_blue_0, 'phi_blue_1':phi_blue_1, 'phi_blue_2':phi_blue_2, 'phi_blue_3':phi_blue_3, 'phi_blue_4':phi_blue_4, \ 'dv_red_0':dv_red_0, 'dv_red_1':dv_red_1, 'dv_red_2':dv_red_2, \ 'dv_red_3':dv_red_3, 'dv_red_4':dv_red_4, \ 'dv_blue_0':dv_blue_0, 'dv_blue_1':dv_blue_1, 'dv_blue_2':dv_blue_2, \ 'dv_blue_3':dv_blue_3, 'dv_blue_4':dv_blue_4}) # Correlation matrix of phi and deltav colour measurements combined corr_mat_colour = combined_df.corr() corr_mat_inv_colour = np.linalg.inv(corr_mat_colour.values) err_colour = np.sqrt(np.diag(combined_df.cov())) # deltav_sig_colour = np.append(deltav_sig_red, deltav_sig_blue, axis = 0) # cov_mat_colour = np.cov(phi_arr_colour,deltav_sig_colour, rowvar=False) # err_colour = np.sqrt(cov_mat_colour.diagonal()) # corr_mat_colour = cov_mat_colour / np.outer(err_colour, err_colour) # corr_mat_inv_colour = np.linalg.inv(corr_mat_colour) # cov_mat_colour = np.cov(phi_arr_red,phi_arr_blue, rowvar=False) # err_colour = np.sqrt(cov_mat_colour.diagonal()) # corr_mat_colour = cov_mat_colour / np.outer(err_colour, err_colour) # corr_mat_inv_colour = np.linalg.inv(corr_mat_colour) return err_colour, corr_mat_inv_colour def debug_within_outside_1sig(emcee_table, grp_keys, Mstar_q, Mhalo_q, mu, nu, chi2): zumandelbaum_param_vals = [10.5, 13.76, 0.69, 0.15] iteration = 600.0 emcee_table_it600 = emcee_table.loc[emcee_table.iteration_id == iteration] chi2_std_it600 = np.std(emcee_table_it600.chi2) chi2_mean_it600 = np.mean(emcee_table_it600.chi2) # selecting value from within one sigma df_within_sig = emcee_table_it600.loc[(emcee_table_it600.chi2 < chi2_mean_it600 + chi2_std_it600)&(emcee_table_it600.chi2 > chi2_mean_it600 - chi2_std_it600)] chi2_within_sig = df_within_sig.chi2.values[3] mstar_within_sig = df_within_sig.Mstar_q.values[3] mhalo_within_sig = df_within_sig.Mhalo_q.values[3] mu_within_sig = df_within_sig.mu.values[3] nu_within_sig = df_within_sig.nu.values[3] # # selecting value from outside one sigma df_outside_sig = emcee_table_it600.loc[emcee_table_it600.chi2 > chi2_mean_it600 + chi2_std_it600] chi2_outside_sig = df_outside_sig.chi2.values[3] mstar_outside_sig = df_outside_sig.Mstar_q.values[3] mhalo_outside_sig = df_outside_sig.Mhalo_q.values[3] mu_outside_sig = df_outside_sig.mu.values[3] nu_outside_sig = df_outside_sig.nu.values[3] fig1, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1, sharex=True, \ figsize=(10,10)) ax1.plot(grp_keys, Mstar_q[0],c='#941266',ls='--', marker='o') ax1.axhline(zumandelbaum_param_vals[0],color='lightgray') ax1.scatter(iteration, mstar_outside_sig, marker='*', c='k', s=70) ax1.scatter(iteration, mstar_within_sig, marker='o', c='k', s=70) ax2.plot(grp_keys, Mhalo_q[0], c='#941266',ls='--', marker='o') ax2.axhline(zumandelbaum_param_vals[1],color='lightgray') ax2.scatter(iteration, mhalo_outside_sig, marker='*', c='k', s=70) ax2.scatter(iteration, mhalo_within_sig, marker='o', c='k', s=70) ax3.plot(grp_keys, mu[0], c='#941266',ls='--', marker='o') ax3.axhline(zumandelbaum_param_vals[2],color='lightgray') ax3.scatter(iteration, mu_outside_sig, marker='*', c='k', s=70) ax3.scatter(iteration, mu_within_sig, marker='o', c='k', s=70) ax4.plot(grp_keys, nu[0], c='#941266',ls='--', marker='o') ax4.axhline(zumandelbaum_param_vals[3],color='lightgray') ax4.scatter(iteration, nu_outside_sig, marker='*', c='k', s=70) ax4.scatter(iteration, nu_within_sig, marker='o', c='k', s=70) ax5.plot(grp_keys, chi2[0], c='#941266',ls='--', marker='o') ax5.scatter(iteration, chi2_outside_sig, marker='*', c='k', s=70) ax5.scatter(iteration, chi2_within_sig, marker='o', c='k', s=70) ax1.fill_between(grp_keys, Mstar_q[0]-Mstar_q[1], Mstar_q[0]+Mstar_q[1], alpha=0.3, color='#941266') ax2.fill_between(grp_keys, Mhalo_q[0]-Mhalo_q[1], Mhalo_q[0]+Mhalo_q[1], \ alpha=0.3, color='#941266') ax3.fill_between(grp_keys, mu[0]-mu[1], mu[0]+mu[1], \ alpha=0.3, color='#941266') ax4.fill_between(grp_keys, nu[0]-nu[1], nu[0]+nu[1], \ alpha=0.3, color='#941266') ax5.fill_between(grp_keys, chi2[0]-chi2[1], chi2[0]+chi2[1], \ alpha=0.3, color='#941266') ax1.set_ylabel(r"$\mathbf{log_{10}\ M^{q}_{*}}$") ax2.set_ylabel(r"$\mathbf{log_{10}\ M^{q}_{h}}$") ax3.set_ylabel(r"$\boldsymbol{\mu}$") # ax4.set_ylabel(r"$\mathbf{log_{10}} \boldsymbol{\ \nu}$") ax4.set_ylabel(r"$\boldsymbol{\nu}$") ax5.set_ylabel(r"$\mathbf{log_{10}} \boldsymbol{{\ \chi}^2}$") # ax5.set_ylabel(r"$\boldsymbol{{\chi}^2}$") # ax1.set_yscale('log') # ax2.set_yscale('log') ax1.annotate(zumandelbaum_param_vals[0], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax2.annotate(zumandelbaum_param_vals[1], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax3.annotate(zumandelbaum_param_vals[2], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) ax4.annotate(zumandelbaum_param_vals[3], (0.95,0.85), xycoords='axes fraction', bbox=dict(boxstyle="square", ec='k', fc='lightgray', alpha=0.5), size=10) plt.xlabel(r"$\mathbf{iteration\ number}$") plt.show() dict_of_paths = cwpaths.cookiecutter_paths() path_to_raw = dict_of_paths['raw_dir'] path_to_proc = dict_of_paths['proc_dir'] path_to_interim = dict_of_paths['int_dir'] path_to_figures = dict_of_paths['plot_dir'] path_to_data = dict_of_paths['data_dir'] catl_file = path_to_raw + "eco/eco_all.csv" path_to_mocks = path_to_data + 'mocks/m200b/eco/' randint_logmstar_file = pd.read_csv("/Users/asadm2/Desktop/randint_logmstar.txt", header=None) mock_num = randint_logmstar_file[0].values[int(iteration)-1] gals_df_ = reading_catls(path_to_proc + "gal_group.hdf5") theta_within = [mstar_within_sig, mhalo_within_sig, mu_within_sig, nu_within_sig] f_red_cen, f_red_sat = hybrid_quenching_model(theta_within, gals_df_, 'vishnu', \ mock_num) gals_df = assign_colour_label_mock(f_red_cen, f_red_sat, gals_df_) v_sim = 130**3 total_model, red_model, blue_model = measure_all_smf(gals_df, v_sim , False, mock_num) sig_red_within, sig_blue_within, cen_red_within, cen_blue_within = \ get_deltav_sigma_vishnu_qmcolour(gals_df, mock_num) total_model_within, red_model_within, blue_model_within = total_model, \ red_model, blue_model theta_outside = [mstar_outside_sig, mhalo_outside_sig, mu_outside_sig, \ nu_outside_sig] f_red_cen, f_red_sat = hybrid_quenching_model(theta_outside, gals_df_, 'vishnu', \ mock_num) gals_df = assign_colour_label_mock(f_red_cen, f_red_sat, gals_df_) v_sim = 130**3 total_model, red_model, blue_model = measure_all_smf(gals_df, v_sim , False, mock_num) sig_red_outside, sig_blue_outside, cen_red_outside, cen_blue_outside = \ get_deltav_sigma_vishnu_qmcolour(gals_df, mock_num) total_model_outside, red_model_outside, blue_model_outside = total_model, \ red_model, blue_model catl, volume, z_median = read_data_catl(catl_file, survey) catl = assign_colour_label_data(catl) total_data, red_data, blue_data = measure_all_smf(catl, volume, True) std_red, centers_red, std_blue, centers_blue = get_deltav_sigma_data(catl) sigma, corr_mat_inv = get_err_data(survey, path_to_mocks) plt.clf() plt.plot(total_model_within[0], total_model_within[1], c='k', linestyle='-', \ label='total within 1sig') plt.plot(total_model_outside[0], total_model_outside[1], c='k', linestyle='--',\ label='total outside 1sig') plt.plot(red_model_within[0], red_model_within[1], color='maroon', linestyle='--', label='within 1sig') plt.plot(blue_model_within[0], blue_model_within[1], color='mediumblue', linestyle='--', label='within 1sig') plt.plot(red_model_outside[0], red_model_outside[1], color='indianred', linestyle='--', label='outside 1sig') plt.plot(blue_model_outside[0], blue_model_outside[1], color='cornflowerblue', linestyle='--', label='outside 1sig') plt.errorbar(x=red_data[0], y=red_data[1], yerr=sigma[0:5], xerr=None, color='r', label='data') plt.errorbar(x=blue_data[0], y=blue_data[1], yerr=sigma[5:10], xerr=None, color='b', label='data') plt.xlabel(r'\boldmath$\log_{10}\ M_\star \left[\mathrm{M_\odot}\, \mathrm{h}^{-1} \right]$', fontsize=20) plt.ylabel(r'\boldmath$\Phi \left[\mathrm{dex}^{-1}\,\mathrm{Mpc}^{-3}\,\mathrm{h}^{3} \right]$', fontsize=20) plt.legend(loc='best') plt.title('ECO SMF') plt.show() plt.clf() plt.plot(max_total, phi_total, c='k') plt.xlabel(r'\boldmath$\log_{10}\ M_\star \left[\mathrm{M_\odot}\, \mathrm{h}^{-1} \right]$', fontsize=20) plt.ylabel(r'\boldmath$\Phi \left[\mathrm{dex}^{-1}\,\mathrm{Mpc}^{-3}\,\mathrm{h}^{3} \right]$', fontsize=20) plt.legend(loc='best') plt.title('ECO SMF') plt.show() plt.clf() plt.scatter(cen_red_within, sig_red_within, c='maroon', label='within 1sig') plt.scatter(cen_red_outside, sig_red_outside, c='indianred', label='outside 1sig') plt.scatter(cen_blue_within, sig_blue_within, c='mediumblue', label='within 1sig') plt.scatter(cen_blue_outside, sig_blue_outside, c='cornflowerblue', \ label='outside 1sig') plt.errorbar(x=centers_red, y=std_red, yerr=sigma[10:15], xerr=None, color='r',\ label='data', fmt='') plt.errorbar(x=centers_blue, y=std_blue, yerr=sigma[15:20], xerr=None, \ color='b', label='data', fmt='') plt.xlabel(r'\boldmath$\log_{10}\ M_\star \left[\mathrm{M_\odot}\, \mathrm{h}^{-1} \right]$', fontsize=20) plt.ylabel(r'$\sigma$') plt.legend(loc='best') plt.title(r'ECO spread in $\delta v$') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.rc", "numpy.abs", "matplotlib.pyplot.clf", "pandas.read_csv", "numpy.isnan", "numpy.histogram", "numpy.mean", "numpy.exp", "cosmo_utils.utils.work_paths.cookiecutter_paths", "numpy.round", "numpy.unique", "pandas.DataFrame", "pandas.read_hdf", "numpy.std", "os.path.exists", "numpy.linspace", "numpy.log10", "matplotlib.pyplot.subplots", "matplotlib.pyplot.errorbar", "matplotlib.pyplot.show", "numpy.median", "numpy.asarray", "matplotlib.pyplot.legend", "numpy.linalg.inv", "matplotlib.pyplot.ylabel", "numpy.random.uniform", "matplotlib.pyplot.plot", "matplotlib.pyplot.scatter", "numpy.array", "matplotlib.pyplot.xlabel", "numpy.sqrt" ]
[((344, 420), 'matplotlib.rc', 'rc', (['"""font"""'], {'size': '(20)'}), "('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}, size=20)\n", (346, 420), False, 'from matplotlib import rc\n'), ((416, 439), 'matplotlib.rc', 'rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (418, 439), False, 'from matplotlib import rc\n'), ((509, 532), 'matplotlib.rc', 'rc', (['"""axes"""'], {'linewidth': '(2)'}), "('axes', linewidth=2)\n", (511, 532), False, 'from matplotlib import rc\n'), ((533, 567), 'matplotlib.rc', 'rc', (['"""xtick.major"""'], {'width': '(2)', 'size': '(7)'}), "('xtick.major', width=2, size=7)\n", (535, 567), False, 'from matplotlib import rc\n'), ((568, 602), 'matplotlib.rc', 'rc', (['"""ytick.major"""'], {'width': '(2)', 'size': '(7)'}), "('ytick.major', width=2, size=7)\n", (570, 602), False, 'from matplotlib import rc\n'), ((1002, 1030), 'cosmo_utils.utils.work_paths.cookiecutter_paths', 'cwpaths.cookiecutter_paths', ([], {}), '()\n', (1028, 1030), True, 'from cosmo_utils.utils import work_paths as cwpaths\n'), ((3117, 3175), 'pandas.read_csv', 'pd.read_csv', (['chi2_fname'], {'header': 'None', 'names': "['chisquared']"}), "(chi2_fname, header=None, names=['chisquared'])\n", (3128, 3175), True, 'import pandas as pd\n'), ((3181, 3216), 'numpy.log10', 'np.log10', (['chi2_df.chisquared.values'], {}), '(chi2_df.chisquared.values)\n', (3189, 3216), True, 'import numpy as np\n'), ((3855, 3901), 'pandas.DataFrame', 'pd.DataFrame', (['id_data'], {'index': 'emcee_table.index'}), '(id_data, index=emcee_table.index)\n', (3867, 3901), True, 'import pandas as pd\n'), ((11390, 11418), 'cosmo_utils.utils.work_paths.cookiecutter_paths', 'cwpaths.cookiecutter_paths', ([], {}), '()\n', (11416, 11418), True, 'from cosmo_utils.utils import work_paths as cwpaths\n'), ((13520, 13548), 'cosmo_utils.utils.work_paths.cookiecutter_paths', 'cwpaths.cookiecutter_paths', ([], {}), '()\n', (13546, 13548), True, 'from cosmo_utils.utils import work_paths as cwpaths\n'), ((13684, 13827), 'pandas.read_csv', 'pd.read_csv', (['chain_fname'], {'names': "['mhalo_c', 'mstellar_c', 'lowmass_slope', 'highmass_slope', 'scatter']", 'header': 'None', 'delim_whitespace': '(True)'}), "(chain_fname, names=['mhalo_c', 'mstellar_c', 'lowmass_slope',\n 'highmass_slope', 'scatter'], header=None, delim_whitespace=True)\n", (13695, 13827), True, 'import pandas as pd\n'), ((899, 916), 'numpy.asarray', 'np.asarray', (['array'], {}), '(array)\n', (909, 916), True, 'import numpy as np\n'), ((1512, 1618), 'pandas.read_csv', 'pd.read_csv', (['chain_fname'], {'delim_whitespace': '(True)', 'names': "['Mstar_q', 'Mhalo_q', 'mu', 'nu']", 'header': 'None'}), "(chain_fname, delim_whitespace=True, names=['Mstar_q', 'Mhalo_q',\n 'mu', 'nu'], header=None)\n", (1523, 1618), True, 'import pandas as pd\n'), ((5359, 5408), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(5)', '(1)'], {'sharex': '(True)', 'figsize': '(10, 10)'}), '(5, 1, sharex=True, figsize=(10, 10))\n', (5371, 5408), True, 'import matplotlib.pyplot as plt\n'), ((7595, 7639), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\mathbf{iteration\\\\ number}$"""'], {}), "('$\\\\mathbf{iteration\\\\ number}$')\n", (7605, 7639), True, 'import matplotlib.pyplot as plt\n'), ((7643, 7653), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7651, 7653), True, 'import matplotlib.pyplot as plt\n'), ((11706, 11812), 'pandas.read_csv', 'pd.read_csv', (['chain_fname'], {'delim_whitespace': '(True)', 'names': "['Mstar_q', 'Mhalo_q', 'mu', 'nu']", 'header': 'None'}), "(chain_fname, delim_whitespace=True, names=['Mstar_q', 'Mhalo_q',\n 'mu', 'nu'], header=None)\n", (11717, 11812), True, 'import pandas as pd\n'), ((15560, 15613), 'numpy.exp', 'np.exp', (['(-(sat_stellar_mass_arr / 10 ** Mstar_q) ** mu)'], {}), '(-(sat_stellar_mass_arr / 10 ** Mstar_q) ** mu)\n', (15566, 15613), True, 'import numpy as np\n'), ((15623, 15674), 'numpy.exp', 'np.exp', (['(-(sat_hosthalo_mass_arr / 10 ** Mh_q) ** nu)'], {}), '(-(sat_hosthalo_mass_arr / 10 ** Mh_q) ** nu)\n', (15629, 15674), True, 'import numpy as np\n'), ((18631, 18650), 'numpy.array', 'np.array', (['cen_halos'], {}), '(cen_halos)\n', (18639, 18650), True, 'import numpy as np\n'), ((18667, 18686), 'numpy.array', 'np.array', (['sat_halos'], {}), '(sat_halos)\n', (18675, 18686), True, 'import numpy as np\n'), ((19687, 19705), 'numpy.array', 'np.array', (['cen_gals'], {}), '(cen_gals)\n', (19695, 19705), True, 'import numpy as np\n'), ((19721, 19739), 'numpy.array', 'np.array', (['sat_gals'], {}), '(sat_gals)\n', (19729, 19739), True, 'import numpy as np\n'), ((21577, 21614), 'numpy.histogram', 'np.histogram', (['logmstar_arr'], {'bins': 'bins'}), '(logmstar_arr, bins=bins)\n', (21589, 21614), True, 'import numpy as np\n'), ((21923, 21936), 'numpy.log10', 'np.log10', (['phi'], {}), '(phi)\n', (21931, 21936), True, 'import numpy as np\n'), ((31210, 31315), 'numpy.unique', 'np.unique', (["mock_pd.groupid.loc[(mock_pd.colour_label == 'R') & (mock_pd[g_galtype_col] ==\n 1)].values"], {}), "(mock_pd.groupid.loc[(mock_pd.colour_label == 'R') & (mock_pd[\n g_galtype_col] == 1)].values)\n", (31219, 31315), True, 'import numpy as np\n'), ((31348, 31453), 'numpy.unique', 'np.unique', (["mock_pd.groupid.loc[(mock_pd.colour_label == 'B') & (mock_pd[g_galtype_col] ==\n 1)].values"], {}), "(mock_pd.groupid.loc[(mock_pd.colour_label == 'B') & (mock_pd[\n g_galtype_col] == 1)].values)\n", (31357, 31453), True, 'import numpy as np\n'), ((32142, 32176), 'numpy.log10', 'np.log10', (['red_cen_stellar_mass_arr'], {}), '(red_cen_stellar_mass_arr)\n', (32150, 32176), True, 'import numpy as np\n'), ((32544, 32561), 'numpy.array', 'np.array', (['std_red'], {}), '(std_red)\n', (32552, 32561), True, 'import numpy as np\n'), ((33254, 33289), 'numpy.log10', 'np.log10', (['blue_cen_stellar_mass_arr'], {}), '(blue_cen_stellar_mass_arr)\n', (33262, 33289), True, 'import numpy as np\n'), ((33669, 33687), 'numpy.array', 'np.array', (['std_blue'], {}), '(std_blue)\n', (33677, 33687), True, 'import numpy as np\n'), ((35468, 35494), 'numpy.linspace', 'np.linspace', (['(5001)', '(5008)', '(8)'], {}), '(5001, 5008, 8)\n', (35479, 35494), True, 'import numpy as np\n'), ((39686, 39707), 'numpy.array', 'np.array', (['std_red_arr'], {}), '(std_red_arr)\n', (39694, 39707), True, 'import numpy as np\n'), ((39730, 39755), 'numpy.array', 'np.array', (['centers_red_arr'], {}), '(centers_red_arr)\n', (39738, 39755), True, 'import numpy as np\n'), ((39775, 39797), 'numpy.array', 'np.array', (['std_blue_arr'], {}), '(std_blue_arr)\n', (39783, 39797), True, 'import numpy as np\n'), ((39821, 39847), 'numpy.array', 'np.array', (['centers_blue_arr'], {}), '(centers_blue_arr)\n', (39829, 39847), True, 'import numpy as np\n'), ((40802, 40839), 'numpy.log10', 'np.log10', (['(10 ** catl.logmstar / 2.041)'], {}), '(10 ** catl.logmstar / 2.041)\n', (40810, 40839), True, 'import numpy as np\n'), ((40868, 40943), 'numpy.unique', 'np.unique', (["catl.grp.loc[(catl.colour_label == 'R') & (catl.fc == 1)].values"], {}), "(catl.grp.loc[(catl.colour_label == 'R') & (catl.fc == 1)].values)\n", (40877, 40943), True, 'import numpy as np\n'), ((40981, 41056), 'numpy.unique', 'np.unique', (["catl.grp.loc[(catl.colour_label == 'B') & (catl.fc == 1)].values"], {}), "(catl.grp.loc[(catl.colour_label == 'B') & (catl.fc == 1)].values)\n", (40990, 41056), True, 'import numpy as np\n'), ((42009, 42026), 'numpy.array', 'np.array', (['std_red'], {}), '(std_red)\n', (42017, 42026), True, 'import numpy as np\n'), ((42985, 43003), 'numpy.array', 'np.array', (['std_blue'], {}), '(std_blue)\n', (42993, 43003), True, 'import numpy as np\n'), ((47334, 47360), 'numpy.linspace', 'np.linspace', (['(5001)', '(5008)', '(8)'], {}), '(5001, 5008, 8)\n', (47345, 47360), True, 'import numpy as np\n'), ((49379, 49402), 'numpy.array', 'np.array', (['phi_arr_total'], {}), '(phi_arr_total)\n', (49387, 49402), True, 'import numpy as np\n'), ((49421, 49442), 'numpy.array', 'np.array', (['phi_arr_red'], {}), '(phi_arr_red)\n', (49429, 49442), True, 'import numpy as np\n'), ((49462, 49484), 'numpy.array', 'np.array', (['phi_arr_blue'], {}), '(phi_arr_blue)\n', (49470, 49484), True, 'import numpy as np\n'), ((51258, 51780), 'pandas.DataFrame', 'pd.DataFrame', (["{'phi_red_0': phi_red_0, 'phi_red_1': phi_red_1, 'phi_red_2': phi_red_2,\n 'phi_red_3': phi_red_3, 'phi_red_4': phi_red_4, 'phi_blue_0':\n phi_blue_0, 'phi_blue_1': phi_blue_1, 'phi_blue_2': phi_blue_2,\n 'phi_blue_3': phi_blue_3, 'phi_blue_4': phi_blue_4, 'dv_red_0':\n dv_red_0, 'dv_red_1': dv_red_1, 'dv_red_2': dv_red_2, 'dv_red_3':\n dv_red_3, 'dv_red_4': dv_red_4, 'dv_blue_0': dv_blue_0, 'dv_blue_1':\n dv_blue_1, 'dv_blue_2': dv_blue_2, 'dv_blue_3': dv_blue_3, 'dv_blue_4':\n dv_blue_4}"], {}), "({'phi_red_0': phi_red_0, 'phi_red_1': phi_red_1, 'phi_red_2':\n phi_red_2, 'phi_red_3': phi_red_3, 'phi_red_4': phi_red_4, 'phi_blue_0':\n phi_blue_0, 'phi_blue_1': phi_blue_1, 'phi_blue_2': phi_blue_2,\n 'phi_blue_3': phi_blue_3, 'phi_blue_4': phi_blue_4, 'dv_red_0':\n dv_red_0, 'dv_red_1': dv_red_1, 'dv_red_2': dv_red_2, 'dv_red_3':\n dv_red_3, 'dv_red_4': dv_red_4, 'dv_blue_0': dv_blue_0, 'dv_blue_1':\n dv_blue_1, 'dv_blue_2': dv_blue_2, 'dv_blue_3': dv_blue_3, 'dv_blue_4':\n dv_blue_4})\n", (51270, 51780), True, 'import pandas as pd\n'), ((51950, 51987), 'numpy.linalg.inv', 'np.linalg.inv', (['corr_mat_colour.values'], {}), '(corr_mat_colour.values)\n', (51963, 51987), True, 'import numpy as np\n'), ((53076, 53106), 'numpy.std', 'np.std', (['emcee_table_it600.chi2'], {}), '(emcee_table_it600.chi2)\n', (53082, 53106), True, 'import numpy as np\n'), ((53129, 53160), 'numpy.mean', 'np.mean', (['emcee_table_it600.chi2'], {}), '(emcee_table_it600.chi2)\n', (53136, 53160), True, 'import numpy as np\n'), ((54138, 54187), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(5)', '(1)'], {'sharex': '(True)', 'figsize': '(10, 10)'}), '(5, 1, sharex=True, figsize=(10, 10))\n', (54150, 54187), True, 'import matplotlib.pyplot as plt\n'), ((57088, 57132), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\mathbf{iteration\\\\ number}$"""'], {}), "('$\\\\mathbf{iteration\\\\ number}$')\n", (57098, 57132), True, 'import matplotlib.pyplot as plt\n'), ((57136, 57146), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (57144, 57146), True, 'import matplotlib.pyplot as plt\n'), ((57168, 57196), 'cosmo_utils.utils.work_paths.cookiecutter_paths', 'cwpaths.cookiecutter_paths', ([], {}), '()\n', (57194, 57196), True, 'from cosmo_utils.utils import work_paths as cwpaths\n'), ((57556, 57626), 'pandas.read_csv', 'pd.read_csv', (['"""/Users/asadm2/Desktop/randint_logmstar.txt"""'], {'header': 'None'}), "('/Users/asadm2/Desktop/randint_logmstar.txt', header=None)\n", (57567, 57626), True, 'import pandas as pd\n'), ((59352, 59361), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (59359, 59361), True, 'import matplotlib.pyplot as plt\n'), ((59366, 59473), 'matplotlib.pyplot.plot', 'plt.plot', (['total_model_within[0]', 'total_model_within[1]'], {'c': '"""k"""', 'linestyle': '"""-"""', 'label': '"""total within 1sig"""'}), "(total_model_within[0], total_model_within[1], c='k', linestyle='-',\n label='total within 1sig')\n", (59374, 59473), True, 'import matplotlib.pyplot as plt\n'), ((59484, 59596), 'matplotlib.pyplot.plot', 'plt.plot', (['total_model_outside[0]', 'total_model_outside[1]'], {'c': '"""k"""', 'linestyle': '"""--"""', 'label': '"""total outside 1sig"""'}), "(total_model_outside[0], total_model_outside[1], c='k', linestyle=\n '--', label='total outside 1sig')\n", (59492, 59596), True, 'import matplotlib.pyplot as plt\n'), ((59605, 59712), 'matplotlib.pyplot.plot', 'plt.plot', (['red_model_within[0]', 'red_model_within[1]'], {'color': '"""maroon"""', 'linestyle': '"""--"""', 'label': '"""within 1sig"""'}), "(red_model_within[0], red_model_within[1], color='maroon',\n linestyle='--', label='within 1sig')\n", (59613, 59712), True, 'import matplotlib.pyplot as plt\n'), ((59722, 59835), 'matplotlib.pyplot.plot', 'plt.plot', (['blue_model_within[0]', 'blue_model_within[1]'], {'color': '"""mediumblue"""', 'linestyle': '"""--"""', 'label': '"""within 1sig"""'}), "(blue_model_within[0], blue_model_within[1], color='mediumblue',\n linestyle='--', label='within 1sig')\n", (59730, 59835), True, 'import matplotlib.pyplot as plt\n'), ((59845, 59958), 'matplotlib.pyplot.plot', 'plt.plot', (['red_model_outside[0]', 'red_model_outside[1]'], {'color': '"""indianred"""', 'linestyle': '"""--"""', 'label': '"""outside 1sig"""'}), "(red_model_outside[0], red_model_outside[1], color='indianred',\n linestyle='--', label='outside 1sig')\n", (59853, 59958), True, 'import matplotlib.pyplot as plt\n'), ((59968, 60089), 'matplotlib.pyplot.plot', 'plt.plot', (['blue_model_outside[0]', 'blue_model_outside[1]'], {'color': '"""cornflowerblue"""', 'linestyle': '"""--"""', 'label': '"""outside 1sig"""'}), "(blue_model_outside[0], blue_model_outside[1], color=\n 'cornflowerblue', linestyle='--', label='outside 1sig')\n", (59976, 60089), True, 'import matplotlib.pyplot as plt\n'), ((60098, 60197), 'matplotlib.pyplot.errorbar', 'plt.errorbar', ([], {'x': 'red_data[0]', 'y': 'red_data[1]', 'yerr': 'sigma[0:5]', 'xerr': 'None', 'color': '"""r"""', 'label': '"""data"""'}), "(x=red_data[0], y=red_data[1], yerr=sigma[0:5], xerr=None,\n color='r', label='data')\n", (60110, 60197), True, 'import matplotlib.pyplot as plt\n'), ((60207, 60309), 'matplotlib.pyplot.errorbar', 'plt.errorbar', ([], {'x': 'blue_data[0]', 'y': 'blue_data[1]', 'yerr': 'sigma[5:10]', 'xerr': 'None', 'color': '"""b"""', 'label': '"""data"""'}), "(x=blue_data[0], y=blue_data[1], yerr=sigma[5:10], xerr=None,\n color='b', label='data')\n", (60219, 60309), True, 'import matplotlib.pyplot as plt\n'), ((60319, 60444), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""\\\\boldmath$\\\\log_{10}\\\\ M_\\\\star \\\\left[\\\\mathrm{M_\\\\odot}\\\\, \\\\mathrm{h}^{-1} \\\\right]$"""'], {'fontsize': '(20)'}), "(\n '\\\\boldmath$\\\\log_{10}\\\\ M_\\\\star \\\\left[\\\\mathrm{M_\\\\odot}\\\\, \\\\mathrm{h}^{-1} \\\\right]$'\n , fontsize=20)\n", (60329, 60444), True, 'import matplotlib.pyplot as plt\n'), ((60430, 60558), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""\\\\boldmath$\\\\Phi \\\\left[\\\\mathrm{dex}^{-1}\\\\,\\\\mathrm{Mpc}^{-3}\\\\,\\\\mathrm{h}^{3} \\\\right]$"""'], {'fontsize': '(20)'}), "(\n '\\\\boldmath$\\\\Phi \\\\left[\\\\mathrm{dex}^{-1}\\\\,\\\\mathrm{Mpc}^{-3}\\\\,\\\\mathrm{h}^{3} \\\\right]$'\n , fontsize=20)\n", (60440, 60558), True, 'import matplotlib.pyplot as plt\n'), ((60545, 60567), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (60555, 60567), True, 'import matplotlib.pyplot as plt\n'), ((60572, 60592), 'matplotlib.pyplot.title', 'plt.title', (['"""ECO SMF"""'], {}), "('ECO SMF')\n", (60581, 60592), True, 'import matplotlib.pyplot as plt\n'), ((60597, 60607), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (60605, 60607), True, 'import matplotlib.pyplot as plt\n'), ((60613, 60622), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (60620, 60622), True, 'import matplotlib.pyplot as plt\n'), ((60627, 60664), 'matplotlib.pyplot.plot', 'plt.plot', (['max_total', 'phi_total'], {'c': '"""k"""'}), "(max_total, phi_total, c='k')\n", (60635, 60664), True, 'import matplotlib.pyplot as plt\n'), ((60669, 60794), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""\\\\boldmath$\\\\log_{10}\\\\ M_\\\\star \\\\left[\\\\mathrm{M_\\\\odot}\\\\, \\\\mathrm{h}^{-1} \\\\right]$"""'], {'fontsize': '(20)'}), "(\n '\\\\boldmath$\\\\log_{10}\\\\ M_\\\\star \\\\left[\\\\mathrm{M_\\\\odot}\\\\, \\\\mathrm{h}^{-1} \\\\right]$'\n , fontsize=20)\n", (60679, 60794), True, 'import matplotlib.pyplot as plt\n'), ((60780, 60908), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""\\\\boldmath$\\\\Phi \\\\left[\\\\mathrm{dex}^{-1}\\\\,\\\\mathrm{Mpc}^{-3}\\\\,\\\\mathrm{h}^{3} \\\\right]$"""'], {'fontsize': '(20)'}), "(\n '\\\\boldmath$\\\\Phi \\\\left[\\\\mathrm{dex}^{-1}\\\\,\\\\mathrm{Mpc}^{-3}\\\\,\\\\mathrm{h}^{3} \\\\right]$'\n , fontsize=20)\n", (60790, 60908), True, 'import matplotlib.pyplot as plt\n'), ((60895, 60917), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (60905, 60917), True, 'import matplotlib.pyplot as plt\n'), ((60922, 60942), 'matplotlib.pyplot.title', 'plt.title', (['"""ECO SMF"""'], {}), "('ECO SMF')\n", (60931, 60942), True, 'import matplotlib.pyplot as plt\n'), ((60947, 60957), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (60955, 60957), True, 'import matplotlib.pyplot as plt\n'), ((60963, 60972), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (60970, 60972), True, 'import matplotlib.pyplot as plt\n'), ((60977, 61053), 'matplotlib.pyplot.scatter', 'plt.scatter', (['cen_red_within', 'sig_red_within'], {'c': '"""maroon"""', 'label': '"""within 1sig"""'}), "(cen_red_within, sig_red_within, c='maroon', label='within 1sig')\n", (60988, 61053), True, 'import matplotlib.pyplot as plt\n'), ((61058, 61145), 'matplotlib.pyplot.scatter', 'plt.scatter', (['cen_red_outside', 'sig_red_outside'], {'c': '"""indianred"""', 'label': '"""outside 1sig"""'}), "(cen_red_outside, sig_red_outside, c='indianred', label=\n 'outside 1sig')\n", (61069, 61145), True, 'import matplotlib.pyplot as plt\n'), ((61145, 61232), 'matplotlib.pyplot.scatter', 'plt.scatter', (['cen_blue_within', 'sig_blue_within'], {'c': '"""mediumblue"""', 'label': '"""within 1sig"""'}), "(cen_blue_within, sig_blue_within, c='mediumblue', label=\n 'within 1sig')\n", (61156, 61232), True, 'import matplotlib.pyplot as plt\n'), ((61232, 61326), 'matplotlib.pyplot.scatter', 'plt.scatter', (['cen_blue_outside', 'sig_blue_outside'], {'c': '"""cornflowerblue"""', 'label': '"""outside 1sig"""'}), "(cen_blue_outside, sig_blue_outside, c='cornflowerblue', label=\n 'outside 1sig')\n", (61243, 61326), True, 'import matplotlib.pyplot as plt\n'), ((61336, 61442), 'matplotlib.pyplot.errorbar', 'plt.errorbar', ([], {'x': 'centers_red', 'y': 'std_red', 'yerr': 'sigma[10:15]', 'xerr': 'None', 'color': '"""r"""', 'label': '"""data"""', 'fmt': '""""""'}), "(x=centers_red, y=std_red, yerr=sigma[10:15], xerr=None, color=\n 'r', label='data', fmt='')\n", (61348, 61442), True, 'import matplotlib.pyplot as plt\n'), ((61451, 61558), 'matplotlib.pyplot.errorbar', 'plt.errorbar', ([], {'x': 'centers_blue', 'y': 'std_blue', 'yerr': 'sigma[15:20]', 'xerr': 'None', 'color': '"""b"""', 'label': '"""data"""', 'fmt': '""""""'}), "(x=centers_blue, y=std_blue, yerr=sigma[15:20], xerr=None,\n color='b', label='data', fmt='')\n", (61463, 61558), True, 'import matplotlib.pyplot as plt\n'), ((61569, 61694), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""\\\\boldmath$\\\\log_{10}\\\\ M_\\\\star \\\\left[\\\\mathrm{M_\\\\odot}\\\\, \\\\mathrm{h}^{-1} \\\\right]$"""'], {'fontsize': '(20)'}), "(\n '\\\\boldmath$\\\\log_{10}\\\\ M_\\\\star \\\\left[\\\\mathrm{M_\\\\odot}\\\\, \\\\mathrm{h}^{-1} \\\\right]$'\n , fontsize=20)\n", (61579, 61694), True, 'import matplotlib.pyplot as plt\n'), ((61680, 61703), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\sigma$"""'], {}), "('$\\\\sigma$')\n", (61690, 61703), True, 'import matplotlib.pyplot as plt\n'), ((61708, 61730), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (61718, 61730), True, 'import matplotlib.pyplot as plt\n'), ((61735, 61773), 'matplotlib.pyplot.title', 'plt.title', (['"""ECO spread in $\\\\delta v$"""'], {}), "('ECO spread in $\\\\delta v$')\n", (61744, 61773), True, 'import matplotlib.pyplot as plt\n'), ((61778, 61788), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (61786, 61788), True, 'import matplotlib.pyplot as plt\n'), ((2322, 2428), 'pandas.read_csv', 'pd.read_csv', (['chain_fname'], {'delim_whitespace': '(True)', 'names': "['Mh_qc', 'Mh_qs', 'mu_c', 'mu_s']", 'header': 'None'}), "(chain_fname, delim_whitespace=True, names=['Mh_qc', 'Mh_qs',\n 'mu_c', 'mu_s'], header=None)\n", (2333, 2428), True, 'import pandas as pd\n'), ((4451, 4480), 'numpy.mean', 'np.mean', (['group.Mstar_q.values'], {}), '(group.Mstar_q.values)\n', (4458, 4480), True, 'import numpy as np\n'), ((4503, 4531), 'numpy.std', 'np.std', (['group.Mstar_q.values'], {}), '(group.Mstar_q.values)\n', (4509, 4531), True, 'import numpy as np\n'), ((4632, 4661), 'numpy.mean', 'np.mean', (['group.Mhalo_q.values'], {}), '(group.Mhalo_q.values)\n', (4639, 4661), True, 'import numpy as np\n'), ((4684, 4712), 'numpy.std', 'np.std', (['group.Mhalo_q.values'], {}), '(group.Mhalo_q.values)\n', (4690, 4712), True, 'import numpy as np\n'), ((4808, 4832), 'numpy.mean', 'np.mean', (['group.mu.values'], {}), '(group.mu.values)\n', (4815, 4832), True, 'import numpy as np\n'), ((4850, 4873), 'numpy.std', 'np.std', (['group.mu.values'], {}), '(group.mu.values)\n', (4856, 4873), True, 'import numpy as np\n'), ((4949, 4973), 'numpy.mean', 'np.mean', (['group.nu.values'], {}), '(group.nu.values)\n', (4956, 4973), True, 'import numpy as np\n'), ((4991, 5014), 'numpy.std', 'np.std', (['group.nu.values'], {}), '(group.nu.values)\n', (4997, 5014), True, 'import numpy as np\n'), ((5092, 5118), 'numpy.mean', 'np.mean', (['group.chi2.values'], {}), '(group.chi2.values)\n', (5099, 5118), True, 'import numpy as np\n'), ((5138, 5163), 'numpy.std', 'np.std', (['group.chi2.values'], {}), '(group.chi2.values)\n', (5144, 5163), True, 'import numpy as np\n'), ((8991, 9040), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(5)', '(1)'], {'sharex': '(True)', 'figsize': '(10, 10)'}), '(5, 1, sharex=True, figsize=(10, 10))\n', (9003, 9040), True, 'import matplotlib.pyplot as plt\n'), ((11233, 11277), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\mathbf{iteration\\\\ number}$"""'], {}), "('$\\\\mathbf{iteration\\\\ number}$')\n", (11243, 11277), True, 'import matplotlib.pyplot as plt\n'), ((11281, 11291), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11289, 11291), True, 'import matplotlib.pyplot as plt\n'), ((12516, 12622), 'pandas.read_csv', 'pd.read_csv', (['chain_fname'], {'delim_whitespace': '(True)', 'names': "['Mh_qc', 'Mh_qs', 'mu_c', 'mu_s']", 'header': 'None'}), "(chain_fname, delim_whitespace=True, names=['Mh_qc', 'Mh_qs',\n 'mu_c', 'mu_s'], header=None)\n", (12527, 12622), True, 'import pandas as pd\n'), ((15493, 15546), 'numpy.exp', 'np.exp', (['(-(cen_stellar_mass_arr / 10 ** Mstar_q) ** mu)'], {}), '(-(cen_stellar_mass_arr / 10 ** Mstar_q) ** mu)\n', (15499, 15546), True, 'import numpy as np\n'), ((16862, 16881), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (16879, 16881), True, 'import numpy as np\n'), ((20509, 20542), 'numpy.log10', 'np.log10', (['(10 ** mstar_arr / 2.041)'], {}), '(10 ** mstar_arr / 2.041)\n', (20517, 20542), True, 'import numpy as np\n'), ((20576, 20595), 'numpy.log10', 'np.log10', (['mstar_arr'], {}), '(mstar_arr)\n', (20584, 20595), True, 'import numpy as np\n'), ((21279, 21317), 'numpy.linspace', 'np.linspace', (['bin_min', 'bin_max', 'bin_num'], {}), '(bin_min, bin_max, bin_num)\n', (21290, 21317), True, 'import numpy as np\n'), ((21801, 21816), 'numpy.sqrt', 'np.sqrt', (['counts'], {}), '(counts)\n', (21808, 21816), True, 'import numpy as np\n'), ((25760, 25827), 'pandas.read_csv', 'pd.read_csv', (['path_to_file'], {'delimiter': '""","""', 'header': '(0)', 'usecols': 'columns'}), "(path_to_file, delimiter=',', header=0, usecols=columns)\n", (25771, 25827), True, 'import pandas as pd\n'), ((29249, 29271), 'numpy.mean', 'np.mean', (['diff_sqrd_arr'], {}), '(diff_sqrd_arr)\n', (29256, 29271), True, 'import numpy as np\n'), ((29286, 29309), 'numpy.sqrt', 'np.sqrt', (['mean_diff_sqrd'], {}), '(mean_diff_sqrd)\n', (29293, 29309), True, 'import numpy as np\n'), ((32322, 32347), 'numpy.linspace', 'np.linspace', (['(8.6)', '(11.2)', '(6)'], {}), '(8.6, 11.2, 6)\n', (32333, 32347), True, 'import numpy as np\n'), ((33436, 33461), 'numpy.linspace', 'np.linspace', (['(8.6)', '(10.7)', '(6)'], {}), '(8.6, 10.7, 6)\n', (33447, 33461), True, 'import numpy as np\n'), ((41787, 41812), 'numpy.linspace', 'np.linspace', (['(8.6)', '(11.2)', '(6)'], {}), '(8.6, 11.2, 6)\n', (41798, 41812), True, 'import numpy as np\n'), ((42753, 42778), 'numpy.linspace', 'np.linspace', (['(8.6)', '(10.7)', '(6)'], {}), '(8.6, 10.7, 6)\n', (42764, 42778), True, 'import numpy as np\n'), ((45506, 45530), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (45520, 45530), False, 'import os\n'), ((45699, 45720), 'pandas.read_hdf', 'pd.read_hdf', (['filename'], {}), '(filename)\n', (45710, 45720), True, 'import pandas as pd\n'), ((929, 950), 'numpy.abs', 'np.abs', (['(array - value)'], {}), '(array - value)\n', (935, 950), True, 'import numpy as np\n'), ((8085, 8112), 'numpy.mean', 'np.mean', (['group.Mh_qc.values'], {}), '(group.Mh_qc.values)\n', (8092, 8112), True, 'import numpy as np\n'), ((8133, 8159), 'numpy.std', 'np.std', (['group.Mh_qc.values'], {}), '(group.Mh_qc.values)\n', (8139, 8159), True, 'import numpy as np\n'), ((8250, 8277), 'numpy.mean', 'np.mean', (['group.Mh_qs.values'], {}), '(group.Mh_qs.values)\n', (8257, 8277), True, 'import numpy as np\n'), ((8298, 8324), 'numpy.std', 'np.std', (['group.Mh_qs.values'], {}), '(group.Mh_qs.values)\n', (8304, 8324), True, 'import numpy as np\n'), ((8414, 8440), 'numpy.mean', 'np.mean', (['group.mu_c.values'], {}), '(group.mu_c.values)\n', (8421, 8440), True, 'import numpy as np\n'), ((8460, 8485), 'numpy.std', 'np.std', (['group.mu_c.values'], {}), '(group.mu_c.values)\n', (8466, 8485), True, 'import numpy as np\n'), ((8571, 8597), 'numpy.mean', 'np.mean', (['group.mu_s.values'], {}), '(group.mu_s.values)\n', (8578, 8597), True, 'import numpy as np\n'), ((8617, 8642), 'numpy.std', 'np.std', (['group.mu_s.values'], {}), '(group.mu_s.values)\n', (8623, 8642), True, 'import numpy as np\n'), ((8728, 8754), 'numpy.mean', 'np.mean', (['group.chi2.values'], {}), '(group.chi2.values)\n', (8735, 8754), True, 'import numpy as np\n'), ((8774, 8799), 'numpy.std', 'np.std', (['group.chi2.values'], {}), '(group.chi2.values)\n', (8780, 8799), True, 'import numpy as np\n'), ((13443, 13475), 'numpy.round', 'np.round', (['acceptance_fraction', '(2)'], {}), '(acceptance_fraction, 2)\n', (13451, 13475), True, 'import numpy as np\n'), ((14609, 14641), 'numpy.round', 'np.round', (['acceptance_fraction', '(2)'], {}), '(acceptance_fraction, 2)\n', (14617, 14641), True, 'import numpy as np\n'), ((20672, 20699), 'numpy.log10', 'np.log10', (['(10 ** 8.9 / 2.041)'], {}), '(10 ** 8.9 / 2.041)\n', (20680, 20699), True, 'import numpy as np\n'), ((21483, 21515), 'numpy.linspace', 'np.linspace', (['bin_min', 'bin_max', '(7)'], {}), '(bin_min, bin_max, 7)\n', (21494, 21515), True, 'import numpy as np\n'), ((26407, 26435), 'numpy.median', 'np.median', (['catl.grpcz.values'], {}), '(catl.grpcz.values)\n', (26416, 26435), True, 'import numpy as np\n'), ((26785, 26852), 'pandas.read_csv', 'pd.read_csv', (['path_to_file'], {'delimiter': '""","""', 'header': '(0)', 'usecols': 'columns'}), "(path_to_file, delimiter=',', header=0, usecols=columns)\n", (26796, 26852), True, 'import pandas as pd\n'), ((31851, 31875), 'numpy.mean', 'np.mean', (['group.cz.values'], {}), '(group.cz.values)\n', (31858, 31875), True, 'import numpy as np\n'), ((32409, 32434), 'numpy.linspace', 'np.linspace', (['(8.4)', '(11.0)', '(6)'], {}), '(8.4, 11.0, 6)\n', (32420, 32434), True, 'import numpy as np\n'), ((32959, 32983), 'numpy.mean', 'np.mean', (['group.cz.values'], {}), '(group.cz.values)\n', (32966, 32983), True, 'import numpy as np\n'), ((33524, 33549), 'numpy.linspace', 'np.linspace', (['(8.4)', '(10.4)', '(6)'], {}), '(8.4, 10.4, 6)\n', (33535, 33549), True, 'import numpy as np\n'), ((36507, 36547), 'numpy.log10', 'np.log10', (['(10 ** mock_pd.logmstar / 2.041)'], {}), '(10 ** mock_pd.logmstar / 2.041)\n', (36515, 36547), True, 'import numpy as np\n'), ((36580, 36680), 'numpy.unique', 'np.unique', (["mock_pd.groupid.loc[(mock_pd.colour_label == 'R') & (mock_pd.g_galtype == 1)\n ].values"], {}), "(mock_pd.groupid.loc[(mock_pd.colour_label == 'R') & (mock_pd.\n g_galtype == 1)].values)\n", (36589, 36680), True, 'import numpy as np\n'), ((36729, 36829), 'numpy.unique', 'np.unique', (["mock_pd.groupid.loc[(mock_pd.colour_label == 'B') & (mock_pd.g_galtype == 1)\n ].values"], {}), "(mock_pd.groupid.loc[(mock_pd.colour_label == 'B') & (mock_pd.\n g_galtype == 1)].values)\n", (36738, 36829), True, 'import numpy as np\n'), ((38019, 38036), 'numpy.array', 'np.array', (['std_red'], {}), '(std_red)\n', (38027, 38036), True, 'import numpy as np\n'), ((39273, 39291), 'numpy.array', 'np.array', (['std_blue'], {}), '(std_blue)\n', (39281, 39291), True, 'import numpy as np\n'), ((41425, 41449), 'numpy.mean', 'np.mean', (['group.cz.values'], {}), '(group.cz.values)\n', (41432, 41449), True, 'import numpy as np\n'), ((41874, 41899), 'numpy.linspace', 'np.linspace', (['(8.4)', '(11.0)', '(6)'], {}), '(8.4, 11.0, 6)\n', (41885, 41899), True, 'import numpy as np\n'), ((42388, 42412), 'numpy.mean', 'np.mean', (['group.cz.values'], {}), '(group.cz.values)\n', (42395, 42412), True, 'import numpy as np\n'), ((42841, 42866), 'numpy.linspace', 'np.linspace', (['(8.4)', '(10.4)', '(6)'], {}), '(8.4, 10.4, 6)\n', (42852, 42866), True, 'import numpy as np\n'), ((14146, 14159), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (14154, 14159), True, 'import numpy as np\n'), ((14175, 14188), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (14183, 14188), True, 'import numpy as np\n'), ((20786, 20814), 'numpy.log10', 'np.log10', (['(10 ** 11.5 / 2.041)'], {}), '(10 ** 11.5 / 2.041)\n', (20794, 20814), True, 'import numpy as np\n'), ((21376, 21403), 'numpy.log10', 'np.log10', (['(10 ** 8.7 / 2.041)'], {}), '(10 ** 8.7 / 2.041)\n', (21384, 21403), True, 'import numpy as np\n'), ((21435, 21463), 'numpy.log10', 'np.log10', (['(10 ** 11.8 / 2.041)'], {}), '(10 ** 11.8 / 2.041)\n', (21443, 21463), True, 'import numpy as np\n'), ((37757, 37782), 'numpy.linspace', 'np.linspace', (['(8.6)', '(11.2)', '(6)'], {}), '(8.6, 11.2, 6)\n', (37768, 37782), True, 'import numpy as np\n'), ((39000, 39025), 'numpy.linspace', 'np.linspace', (['(8.6)', '(10.7)', '(6)'], {}), '(8.6, 10.7, 6)\n', (39011, 39025), True, 'import numpy as np\n'), ((1998, 2011), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (2006, 2011), True, 'import numpy as np\n'), ((2027, 2040), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (2035, 2040), True, 'import numpy as np\n'), ((12192, 12205), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (12200, 12205), True, 'import numpy as np\n'), ((12221, 12234), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (12229, 12234), True, 'import numpy as np\n'), ((20927, 20953), 'numpy.log10', 'np.log10', (['(10 ** 11 / 2.041)'], {}), '(10 ** 11 / 2.041)\n', (20935, 20953), True, 'import numpy as np\n'), ((27618, 27656), 'numpy.median', 'np.median', (['resolve_live18.grpcz.values'], {}), '(resolve_live18.grpcz.values)\n', (27627, 27656), True, 'import numpy as np\n'), ((37288, 37312), 'numpy.mean', 'np.mean', (['group.cz.values'], {}), '(group.cz.values)\n', (37295, 37312), True, 'import numpy as np\n'), ((37860, 37885), 'numpy.linspace', 'np.linspace', (['(8.4)', '(11.0)', '(6)'], {}), '(8.4, 11.0, 6)\n', (37871, 37885), True, 'import numpy as np\n'), ((38527, 38551), 'numpy.mean', 'np.mean', (['group.cz.values'], {}), '(group.cz.values)\n', (38534, 38551), True, 'import numpy as np\n'), ((39104, 39129), 'numpy.linspace', 'np.linspace', (['(8.4)', '(10.4)', '(6)'], {}), '(8.4, 10.4, 6)\n', (39115, 39129), True, 'import numpy as np\n'), ((2806, 2819), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (2814, 2819), True, 'import numpy as np\n'), ((2835, 2848), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (2843, 2848), True, 'import numpy as np\n'), ((13000, 13013), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (13008, 13013), True, 'import numpy as np\n'), ((13029, 13042), 'numpy.isnan', 'np.isnan', (['row'], {}), '(row)\n', (13037, 13042), True, 'import numpy as np\n'), ((21105, 21133), 'numpy.log10', 'np.log10', (['(10 ** 11.5 / 2.041)'], {}), '(10 ** 11.5 / 2.041)\n', (21113, 21133), True, 'import numpy as np\n'), ((21207, 21235), 'numpy.log10', 'np.log10', (['(10 ** 11.5 / 2.041)'], {}), '(10 ** 11.5 / 2.041)\n', (21215, 21235), True, 'import numpy as np\n'), ((28474, 28512), 'numpy.median', 'np.median', (['resolve_live18.grpcz.values'], {}), '(resolve_live18.grpcz.values)\n', (28483, 28512), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt def plot_tsp(parameters, rank): rank = np.concatenate([rank, rank[0:1]], axis=0) plt.figure() plt.plot(parameters[:, 0], parameters[:, 1], 'ro', color='red') plt.plot(parameters[:, 0][rank], parameters[:, 1][rank], 'r-', color='blue') plt.show()
[ "matplotlib.pyplot.figure", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.concatenate" ]
[((96, 137), 'numpy.concatenate', 'np.concatenate', (['[rank, rank[0:1]]'], {'axis': '(0)'}), '([rank, rank[0:1]], axis=0)\n', (110, 137), True, 'import numpy as np\n'), ((143, 155), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (153, 155), True, 'import matplotlib.pyplot as plt\n'), ((160, 223), 'matplotlib.pyplot.plot', 'plt.plot', (['parameters[:, 0]', 'parameters[:, 1]', '"""ro"""'], {'color': '"""red"""'}), "(parameters[:, 0], parameters[:, 1], 'ro', color='red')\n", (168, 223), True, 'import matplotlib.pyplot as plt\n'), ((228, 304), 'matplotlib.pyplot.plot', 'plt.plot', (['parameters[:, 0][rank]', 'parameters[:, 1][rank]', '"""r-"""'], {'color': '"""blue"""'}), "(parameters[:, 0][rank], parameters[:, 1][rank], 'r-', color='blue')\n", (236, 304), True, 'import matplotlib.pyplot as plt\n'), ((309, 319), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (317, 319), True, 'import matplotlib.pyplot as plt\n')]
"""build_test_dataset.py -- The functions to build simulated data sets. """ import pickle import numpy as np from scipy import stats # import matplotlib.pyplot as plt # import corner DATA_NAME = 'simple' # default DATA_NAME = '3_gaus' MB_HOST = 'indirect' # default MB_HOST = 'step' # todo implement this MB_HOST = 'direct' np.random.seed(13048293) N_SNE = 300 YOUNG_FRAC = 0.95 N_YOUNG = int(N_SNE*YOUNG_FRAC) N_OLD = N_SNE - N_YOUNG # TRUE VALUES c_true = np.random.randn(N_SNE)*0.1 mass_young = np.random.randn(N_YOUNG) + 11 - np.random.exponential(0.5, N_YOUNG) mass_old = np.random.randn(N_OLD)*0.75 + 11 mass_true = np.concatenate((mass_young, mass_old)) x1_true = np.random.randn(N_SNE)*((mass_true>10)*0.75 + (mass_true<=10)*0.9) + ((mass_true>10)*-0.5 + (mass_true<=10)*0.1) age_young = (np.random.triangular(0.25, 0.5, 6, size=N_YOUNG)*(mass_young/4) + np.random.exponential(size=N_YOUNG)*x1_true[:N_YOUNG]/3) age_old = np.random.randn(N_OLD)*0.75 + 10 age_true = np.append(age_young, age_old) COFF = [-0.1, 3, 0.05/0.5, 0.05/2] if MB_HOST == 'direct': mb_true = COFF[0]*x1_true + COFF[1]*c_true + COFF[2]*mass_true + COFF[3]*age_true - 20 else: mb_true = COFF[0]*x1_true + COFF[1]*c_true - 20 # corner.corner(np.array([x1_true, c_true, mass_true, age_true, mb_true]).T, # labels=['x1', 'c', 'mass', 'age', 'M']) # plt.show() # OBSERVATIONAL x1_obs = x1_true + np.random.randn(N_SNE)*0.3 c_obs = c_true + np.random.randn(N_SNE)*0.04 mass_obs = mass_true + np.random.randn(N_SNE)*0.5 # todo add obs systematic to ages if DATA_NAME == '3_gaus': AGE_STD = 0.2 # each should be shape (N_SNE, 3) for the 3_gaus model # tile works if the input array is shape (N_SNE, 1) age_gaus_mean = np.abs(np.tile(age_true.reshape(N_SNE, 1), 3) + np.random.randn(N_SNE, 3)*AGE_STD*np.tile(age_true.reshape(N_SNE, 1), 3)) age_gaus_mean = np.expand_dims(age_gaus_mean, 0) # only apply 1/3 of the uncertainty to each Gaussian age_gaus_std = np.random.randn(N_SNE, 3)*(AGE_STD*np.tile(age_true.reshape(N_SNE, 1), 3))/3 age_gaus_std = np.expand_dims(age_gaus_std, 0) # it just works, test it with .sum(axis=1). age_gaus_A = np.random.dirichlet((1, 1, 1), (N_SNE)) age_gaus_A = np.expand_dims(age_gaus_A, 0) else: # defaults to simple model AGE_STD = 0.2 age_obs = np.abs(age_true + np.random.randn(N_SNE)*AGE_STD*age_true) age_gaus_std = [np.array([AGE_STD*np.abs(age_true)]).T] age_gaus_A = np.ones((1, N_SNE, 1), dtype=np.float) mb_obs = mb_true + np.random.randn(N_SNE)*0.15 # corner.corner(np.array([x1_obs, c_obs, mass_obs, age_obs, mb_obs]).T, # labels=['x1', 'c', 'mass', 'age', 'M'], show_titles=True) # plt.show() # SAVE DATA if DATA_NAME == '3_gaus': n_age_mix = 3 else: n_age_mix = 1 pickle.dump(dict( # general properties n_sne=N_SNE, n_props=5, n_non_gaus_props=1, n_sn_set=1, sn_set_inds=[0]*N_SNE, # redshifts z_helio=[0.1]*N_SNE, z_CMB=[0.1]*N_SNE, # Gaussian defined properties obs_mBx1c=[[mb_obs[i], x1_obs[i], c_obs[i], mass_obs[i]] for i in range(N_SNE)], obs_mBx1c_cov=[np.diag([0.05**2, 0.3**2, 0.04**2, 0.3**2])]*N_SNE, # Non-Gaussian properties, aka age n_age_mix=n_age_mix, age_gaus_mean=age_gaus_mean, age_gaus_std=age_gaus_std, age_gaus_A=age_gaus_A, # Other stuff that does not really need to change do_fullDint=0, outl_frac_prior_lnmean=-4.6, outl_frac_prior_lnwidth=1, lognormal_intr_prior=0, allow_alpha_S_N=0), open(f'test_{DATA_NAME}_{N_SNE}_obs.pkl', 'wb')) pickle.dump({'x1': x1_true, 'c': c_true, 'mass': mass_true, 'age': age_true, 'mb': mb_true}, open(f'test_{DATA_NAME}_{N_SNE}_true.pkl', 'wb'))
[ "numpy.random.dirichlet", "numpy.random.triangular", "numpy.random.seed", "numpy.abs", "numpy.random.randn", "numpy.random.exponential", "numpy.expand_dims", "numpy.ones", "numpy.append", "numpy.diag", "numpy.concatenate" ]
[((340, 364), 'numpy.random.seed', 'np.random.seed', (['(13048293)'], {}), '(13048293)\n', (354, 364), True, 'import numpy as np\n'), ((644, 682), 'numpy.concatenate', 'np.concatenate', (['(mass_young, mass_old)'], {}), '((mass_young, mass_old))\n', (658, 682), True, 'import numpy as np\n'), ((1011, 1040), 'numpy.append', 'np.append', (['age_young', 'age_old'], {}), '(age_young, age_old)\n', (1020, 1040), True, 'import numpy as np\n'), ((479, 501), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (494, 501), True, 'import numpy as np\n'), ((552, 587), 'numpy.random.exponential', 'np.random.exponential', (['(0.5)', 'N_YOUNG'], {}), '(0.5, N_YOUNG)\n', (573, 587), True, 'import numpy as np\n'), ((1940, 1972), 'numpy.expand_dims', 'np.expand_dims', (['age_gaus_mean', '(0)'], {}), '(age_gaus_mean, 0)\n', (1954, 1972), True, 'import numpy as np\n'), ((2145, 2176), 'numpy.expand_dims', 'np.expand_dims', (['age_gaus_std', '(0)'], {}), '(age_gaus_std, 0)\n', (2159, 2176), True, 'import numpy as np\n'), ((2242, 2279), 'numpy.random.dirichlet', 'np.random.dirichlet', (['(1, 1, 1)', 'N_SNE'], {}), '((1, 1, 1), N_SNE)\n', (2261, 2279), True, 'import numpy as np\n'), ((2299, 2328), 'numpy.expand_dims', 'np.expand_dims', (['age_gaus_A', '(0)'], {}), '(age_gaus_A, 0)\n', (2313, 2328), True, 'import numpy as np\n'), ((2534, 2572), 'numpy.ones', 'np.ones', (['(1, N_SNE, 1)'], {'dtype': 'np.float'}), '((1, N_SNE, 1), dtype=np.float)\n', (2541, 2572), True, 'import numpy as np\n'), ((520, 544), 'numpy.random.randn', 'np.random.randn', (['N_YOUNG'], {}), '(N_YOUNG)\n', (535, 544), True, 'import numpy as np\n'), ((599, 621), 'numpy.random.randn', 'np.random.randn', (['N_OLD'], {}), '(N_OLD)\n', (614, 621), True, 'import numpy as np\n'), ((694, 716), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (709, 716), True, 'import numpy as np\n'), ((821, 869), 'numpy.random.triangular', 'np.random.triangular', (['(0.25)', '(0.5)', '(6)'], {'size': 'N_YOUNG'}), '(0.25, 0.5, 6, size=N_YOUNG)\n', (841, 869), True, 'import numpy as np\n'), ((967, 989), 'numpy.random.randn', 'np.random.randn', (['N_OLD'], {}), '(N_OLD)\n', (982, 989), True, 'import numpy as np\n'), ((1435, 1457), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (1450, 1457), True, 'import numpy as np\n'), ((1479, 1501), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (1494, 1501), True, 'import numpy as np\n'), ((1530, 1552), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (1545, 1552), True, 'import numpy as np\n'), ((2592, 2614), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (2607, 2614), True, 'import numpy as np\n'), ((900, 935), 'numpy.random.exponential', 'np.random.exponential', ([], {'size': 'N_YOUNG'}), '(size=N_YOUNG)\n', (921, 935), True, 'import numpy as np\n'), ((2049, 2074), 'numpy.random.randn', 'np.random.randn', (['N_SNE', '(3)'], {}), '(N_SNE, 3)\n', (2064, 2074), True, 'import numpy as np\n'), ((1846, 1871), 'numpy.random.randn', 'np.random.randn', (['N_SNE', '(3)'], {}), '(N_SNE, 3)\n', (1861, 1871), True, 'import numpy as np\n'), ((2416, 2438), 'numpy.random.randn', 'np.random.randn', (['N_SNE'], {}), '(N_SNE)\n', (2431, 2438), True, 'import numpy as np\n'), ((3294, 3345), 'numpy.diag', 'np.diag', (['[0.05 ** 2, 0.3 ** 2, 0.04 ** 2, 0.3 ** 2]'], {}), '([0.05 ** 2, 0.3 ** 2, 0.04 ** 2, 0.3 ** 2])\n', (3301, 3345), True, 'import numpy as np\n'), ((2495, 2511), 'numpy.abs', 'np.abs', (['age_true'], {}), '(age_true)\n', (2501, 2511), True, 'import numpy as np\n')]
"""Run model ensemble The canonical form of `job run` is: job run [OPTIONS] -- EXECUTABLE [OPTIONS] where `EXECUTABLE` is your model executable or a command, followed by its arguments. Note the `--` that separates `job run` arguments `OPTIONS` from the executable. When there is no ambiguity in the command-line arguments (as seen by python's argparse) it may be dropped. `job run` options determine in which manner to run the model, which parameter values to vary (the ensemble), and how to communicate these parameter values to the model. """ examples=""" Examples -------- job run -p a=2,3,4 b=0,1 -o out --shell -- echo --a {a} --b {b} --out {} --a 2 --b 0 --out out/0 --a 2 --b 1 --out out/1 --a 3 --b 0 --out out/2 --a 3 --b 1 --out out/3 --a 4 --b 0 --out out/4 --a 4 --b 1 --out out/5 The command above runs an ensemble of 6 model versions, by calling `echo --a {a} --b {b} --out {}` where `{a}`, `{b}` and `{}` are formatted using runtime with parameter and run directory values, as displayed in the output above. Parameters can also be provided as a file: job run -p a=2,3,4 b=0,1 -o out --file-name "params.txt" --file-type "linesep" --line-sep " " --shell cat {}/params.txt a 2 b 0 a 2 b 1 a 3 b 0 a 3 b 1 a 4 b 0 a 4 b 1 Where UNIX `cat` command displays file content into the terminal. File types that involve grouping, such as namelist, require a group prefix with a `.` separator in the parameter name: job run -p g1.a=0,1 g2.b=2. -o out --file-name "params.txt" --file-type "namelist" --shell cat {}/params.txt &g1 a = 0 / &g2 b = 2.0 / &g1 a = 1 / &g2 b = 2.0 / """ import argparse import tempfile import numpy as np from runner.param import MultiParam, DiscreteParam from runner.model import Model #from runner.xparams import XParams from runner.xrun import XParams, XRun, XPARAM from runner.job.model import interface from runner.job.config import ParserIO, program import os EXPCONFIG = 'experiment.json' EXPDIR = 'out' # run # --- def parse_slurm_array_indices(a): indices = [] for i in a.split(","): if '-' in i: if ':' in i: i, step = i.split(':') step = int(step) else: step = 1 start, stop = i.split('-') start = int(start) stop = int(stop) + 1 # last index is ignored in python indices.extend(range(start, stop, step)) else: indices.append(int(i)) return indices def _typechecker(type): def check(string): try: type(string) # just a check except Exception as error: print('ERROR:', str(error)) raise return string submit = argparse.ArgumentParser(add_help=False) grp = submit.add_argument_group("simulation modes") #grp.add_argument('--batch-script', help='') #x = grp.add_mutually_exclusive_group() grp.add_argument('--max-workers', type=int, help="number of workers for parallel processing (need to be allocated, e.g. via sbatch) -- default to the number of runs") grp.add_argument('-t', '--timeout', type=float, default=31536000, help='timeout in seconds (default to %(default)s)') grp.add_argument('--shell', action='store_true', help='print output to terminal instead of log file, run sequentially, mostly useful for testing/debugging') grp.add_argument('--echo', action='store_true', help='display commands instead of running them (but does setup output directory). Alias for --shell --force echo [model args ...]') #grp.add_argument('-b', '--array', action='store_true', # help='submit using sbatch --array (faster!), EXPERIMENTAL)') grp.add_argument('-f', '--force', action='store_true', help='perform run even if params.txt already exists directory') folders = argparse.ArgumentParser(add_help=False) grp = folders.add_argument_group("simulation settings") grp.add_argument('-o','--out-dir', default=EXPDIR, dest='expdir', help='experiment directory \ (params.txt and logs/ will be created, as well as individual model output directories') grp.add_argument('-a','--auto-dir', action='store_true', help='run directory named according to parameter values instead of run `id`') params_parser = argparse.ArgumentParser(add_help=False) x = params_parser.add_mutually_exclusive_group() x.add_argument('-p', '--params', type=DiscreteParam.parse, help="""Param values to combine. SPEC specifies discrete parameter values as a comma-separated list `VALUE[,VALUE...]` or a range `START:STOP:N`.""", metavar="NAME=SPEC", nargs='*') x.add_argument('-i','--params-file', help='ensemble parameters file') x.add_argument('--continue', dest="continue_simu", action='store_true', help=argparse.SUPPRESS) #help='load params.txt from simulation directory') params_parser.add_argument('-j','--id', type=_typechecker(parse_slurm_array_indices), dest='runid', metavar="I,J...,START-STOP:STEP,...", help='select one or several ensemble members (0-based !), \ slurm sbatch --array syntax, e.g. `0,2,4` or `0-4:2` \ or a combination of these, `0,2,4,5` <==> `0-4:2,5`') params_parser.add_argument('--include-default', action='store_true', help='also run default model version (with no parameters)') #grp = output_parser.add_argument_group("model output", # description='model output variables') #grp.add_argument("-v", "--output-variables", nargs='+', default=[], # help='list of state variables to include in output.txt') # #grp.add_argument('-l', '--likelihood', # type=ScipyParam.parse, # help='distribution, to compute weights', # metavar="NAME=DIST", # default = [], # nargs='+') parser = argparse.ArgumentParser(parents=[interface.parser, params_parser, folders, submit], epilog=examples, description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) runio = interface.join(ParserIO(folders)) # interface + folder: saveit @program(parser) def main(o): if o.echo: o.model = ['echo'] + o.model o.shell = True o.force = True model = Model(interface.get(o)) pfile = os.path.join(o.expdir, XPARAM) if o.continue_simu: o.params_file = pfile o.force = True if o.params_file: xparams = XParams.read(o.params_file) elif o.params: prior = MultiParam(o.params) xparams = prior.product() # only product allowed as direct input #update = {p.name:p.value for p in o.params} else: xparams = XParams(np.empty((0,0)), names=[]) o.include_default = True xrun = XRun(model, xparams, expdir=o.expdir, autodir=o.auto_dir, max_workers=o.max_workers, timeout=o.timeout) # create dir, write params.txt file, as well as experiment configuration try: if not o.continue_simu: xrun.setup(force=o.force) except RuntimeError as error: print("ERROR :: "+str(error)) print("Use -f/--force to bypass this check") parser.exit(1) #write_config(vars(o), os.path.join(o.expdir, EXPCONFIG), parser=experiment) runio.dump(o, open(os.path.join(o.expdir, EXPCONFIG),'w')) if o.runid: indices = parse_slurm_array_indices(o.runid) else: indices = np.arange(xparams.size) if o.include_default: indices = list(indices) + [None] # test: run everything serially if o.shell: for i in indices: xrun[i].run(background=False) # the default else: xrun.run(indices=indices) return main.register('run', help='run model (single version or ensemble)') if __name__ == '__main__': main()
[ "argparse.ArgumentParser", "numpy.empty", "runner.param.MultiParam", "runner.xrun.XParams.read", "runner.job.config.program", "runner.job.config.ParserIO", "numpy.arange", "runner.job.model.interface.get", "os.path.join", "runner.xrun.XRun" ]
[((2929, 2968), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (2952, 2968), False, 'import argparse\n'), ((4063, 4102), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (4086, 4102), False, 'import argparse\n'), ((4548, 4587), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (4571, 4587), False, 'import argparse\n'), ((6271, 6455), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'parents': '[interface.parser, params_parser, folders, submit]', 'epilog': 'examples', 'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(parents=[interface.parser, params_parser, folders,\n submit], epilog=examples, description=__doc__, formatter_class=argparse\n .RawDescriptionHelpFormatter)\n', (6294, 6455), False, 'import argparse\n'), ((6522, 6537), 'runner.job.config.program', 'program', (['parser'], {}), '(parser)\n', (6529, 6537), False, 'from runner.job.config import ParserIO, program\n'), ((6471, 6488), 'runner.job.config.ParserIO', 'ParserIO', (['folders'], {}), '(folders)\n', (6479, 6488), False, 'from runner.job.config import ParserIO, program\n'), ((6700, 6730), 'os.path.join', 'os.path.join', (['o.expdir', 'XPARAM'], {}), '(o.expdir, XPARAM)\n', (6712, 6730), False, 'import os\n'), ((7169, 7277), 'runner.xrun.XRun', 'XRun', (['model', 'xparams'], {'expdir': 'o.expdir', 'autodir': 'o.auto_dir', 'max_workers': 'o.max_workers', 'timeout': 'o.timeout'}), '(model, xparams, expdir=o.expdir, autodir=o.auto_dir, max_workers=o.\n max_workers, timeout=o.timeout)\n', (7173, 7277), False, 'from runner.xrun import XParams, XRun, XPARAM\n'), ((6669, 6685), 'runner.job.model.interface.get', 'interface.get', (['o'], {}), '(o)\n', (6682, 6685), False, 'from runner.job.model import interface\n'), ((6850, 6877), 'runner.xrun.XParams.read', 'XParams.read', (['o.params_file'], {}), '(o.params_file)\n', (6862, 6877), False, 'from runner.xrun import XParams, XRun, XPARAM\n'), ((7822, 7845), 'numpy.arange', 'np.arange', (['xparams.size'], {}), '(xparams.size)\n', (7831, 7845), True, 'import numpy as np\n'), ((6914, 6934), 'runner.param.MultiParam', 'MultiParam', (['o.params'], {}), '(o.params)\n', (6924, 6934), False, 'from runner.param import MultiParam, DiscreteParam\n'), ((7684, 7717), 'os.path.join', 'os.path.join', (['o.expdir', 'EXPCONFIG'], {}), '(o.expdir, EXPCONFIG)\n', (7696, 7717), False, 'import os\n'), ((7097, 7113), 'numpy.empty', 'np.empty', (['(0, 0)'], {}), '((0, 0))\n', (7105, 7113), True, 'import numpy as np\n')]
import os import h5py import torch import numpy as np import scipy import json class CorresPondenceNet(torch.utils.data.Dataset): def __init__(self, cfg, flag='train'): super().__init__() with open(os.path.join(cfg['data_path'], 'name2id.json'), 'r') as f: self.name2id = json.load(f) try: self.catg = self.name2id[cfg['class_name'].capitalize()] except: raise ValueError self.task = cfg['task_type'] with h5py.File(os.path.join(cfg['data_path'], 'corr_mean_dist_geo', '{}_mean_distance.h5'.format(self.catg)), 'r') as f: self.mean_distance = f['mean_distance'][:] if self.task == 'embedding': self.users = {} self.pcds = [] self.keypoints = [] self.num_annos = 0 filename = os.path.join( cfg['data_path'], '{}.h5'.format(self.catg)) with h5py.File(filename, 'r') as f: self.pcds = f['point_clouds'][:] self.keypoints = f['keypoints'][:] self.mesh_names = f['mesh_names'][:] num_train = int(self.pcds.shape[0] * 0.7) num_divide = int(self.pcds.shape[0] * 0.85) if flag == 'train': self.pcds = self.pcds[:num_train] self.keypoints = self.keypoints[:num_train] self.mesh_names = self.mesh_names[:num_train] elif flag == 'val': self.pcds = self.pcds[num_train:num_divide] self.keypoints = self.keypoints[num_train:num_divide] self.mesh_names = self.mesh_names[num_train:num_divide] elif flag == 'test': self.pcds = self.pcds[num_divide:] self.keypoints = self.keypoints[num_divide:] self.mesh_names = self.mesh_names[num_divide:] else: raise ValueError self.num_annos = self.pcds.shape[0] else: raise ValueError def __getitem__(self, item): if self.task == 'embedding': pcd = self.pcds[item] keypoint_index = np.array(self.keypoints[item], dtype=np.int32) return torch.tensor(pcd).float(), torch.tensor(keypoint_index).int(), torch.tensor(self.mean_distance).float(), 0 else: raise ValueError def __len__(self): return self.num_annos
[ "h5py.File", "json.load", "numpy.array", "os.path.join", "torch.tensor" ]
[((306, 318), 'json.load', 'json.load', (['f'], {}), '(f)\n', (315, 318), False, 'import json\n'), ((2186, 2232), 'numpy.array', 'np.array', (['self.keypoints[item]'], {'dtype': 'np.int32'}), '(self.keypoints[item], dtype=np.int32)\n', (2194, 2232), True, 'import numpy as np\n'), ((219, 265), 'os.path.join', 'os.path.join', (["cfg['data_path']", '"""name2id.json"""'], {}), "(cfg['data_path'], 'name2id.json')\n", (231, 265), False, 'import os\n'), ((954, 978), 'h5py.File', 'h5py.File', (['filename', '"""r"""'], {}), "(filename, 'r')\n", (963, 978), False, 'import h5py\n'), ((2252, 2269), 'torch.tensor', 'torch.tensor', (['pcd'], {}), '(pcd)\n', (2264, 2269), False, 'import torch\n'), ((2279, 2307), 'torch.tensor', 'torch.tensor', (['keypoint_index'], {}), '(keypoint_index)\n', (2291, 2307), False, 'import torch\n'), ((2315, 2347), 'torch.tensor', 'torch.tensor', (['self.mean_distance'], {}), '(self.mean_distance)\n', (2327, 2347), False, 'import torch\n')]
import os import time import torch import random import numpy as np from tqdm import tqdm import torch.nn as nn from util import epoch_time import torch.optim as optim from model.neural_network import RandomlyWiredNeuralNetwork from data.data_util import fetch_dataloader, test_voc, test_imagenet SEED = 981126 random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True class Trainer: def __init__(self, num_epoch, lr, batch_size, num_node, p, k, m, channel, in_channels, path, graph_mode, dataset, is_small_regime, checkpoint_path, load): super(Trainer, self).__init__() self.params = {'num_epoch': num_epoch, 'batch_size': batch_size, 'lr': lr, 'node_num': num_node, 'p': p, 'k': k, 'm': m, 'in_channels': in_channels, 'channel': channel, 'classes': 21 if dataset == 'voc' else 1000, 'graph_mode': graph_mode, 'load': load, 'path': path, 'dataset': dataset, 'is_small_regime': is_small_regime, 'checkpoint_path': checkpoint_path } self.device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu') self.train_data, self.val_data, self.test_data = fetch_dataloader( self.params['dataset'], self.params['path'], self.params['batch_size']) self.rwnn = RandomlyWiredNeuralNetwork( self.params['channel'], self.params['in_channels'], self.params['p'], self.params['k'], self.params['m'], self.params['graph_mode'], self.params['classes'], self.params['node_num'], self.params['checkpoint_path'], self.params['load'], self.params['is_small_regime'] ).to(self.device) self.optimizer = optim.SGD( self.rwnn.parameters(), self.params['lr'], 0.9, weight_decay=5e-5) self.best_loss = float('inf') self.step_num = 0 if load: checkpoint = torch.load(os.path.join( self.params['checkpoint_path'], 'train.tar')) self.rwnn.load_state_dict(checkpoint['model_state_dict']) self.optimizer.load_state_dict( checkpoint['optimizer_state_dict']) self.epoch = checkpoint['epoch'] self.best_loss = checkpoint['best_loss'] self.scheduler = checkpoint['scheduler'] self.step_num = checkpoint['step_num'] else: self.epoch = 0 self.scheduler = optim.lr_scheduler.CosineAnnealingLR( self.optimizer, self.params['num_epoch']) self.criterion = nn.CrossEntropyLoss() pytorch_total_params = sum(p.numel() for p in self.rwnn.parameters()) print(f"Number of parameters {pytorch_total_params}") def train(self): print("\nbegin training...") for epoch in range(self.epoch, self.params['num_epoch']): print( f"\nEpoch: {epoch+1} out of {self.params['num_epoch']}, step: {self.step_num}") start_time = time.perf_counter() epoch_loss, step = train_loop( self.train_data, self.rwnn, self.optimizer, self.criterion, self.device) val_loss = val_loop(self.val_data, self.rwnn, self.criterion, self.device) if val_loss < self.best_loss: self.best_loss = val_loss with open(os.path.join(self.params['checkpoint_path'], 'best_model.txt'), 'w') as f: f.write( f"epoch: {epoch+1}, 'validation loss: {val_loss}, step: {self.step_num}") torch.save( self.rwnn, os.path.join(self.params['checkpoint_path'], 'best.pt')) if (epoch + 1) % 15 == 0: if self.params['dataset'] == 'voc': test_voc(self.test_data, self.rwnn, self.device) self.step_num += step self.scheduler.step() end_time = time.perf_counter() minutes, seconds, time_left_min, time_left_sec = epoch_time( end_time-start_time, epoch, self.params['num_epoch']) torch.save({ 'epoch': epoch, 'model_state_dict': self.rwnn.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict(), 'best_loss': self.best_loss, 'scheduler': self.scheduler, 'step_num': self.step_num }, os.path.join(self.params['checkpoint_path'], 'train.tar')) print( f"Train_loss: {round(epoch_loss, 3)} - Val_loss: {round(val_loss, 3)}") print( f"Epoch time: {minutes}m {seconds}s - Time left for training: {time_left_min}m {time_left_sec}s") def train_loop(train_iter, model, optimizer, criterion, device): epoch_loss = 0 step_num = 0 model.train() print("Training...") for src, tgt in tqdm(train_iter): src = src.to(device) tgt = tgt.to(device) optimizer.zero_grad() logits = model(src) loss = criterion(logits, tgt) loss.backward() optimizer.step() step_num += 1 epoch_loss += loss.item() return epoch_loss / len(train_iter), step_num def val_loop(val_iter, model, criterion, device): model.eval() val_loss = 0 with torch.no_grad(): print("Validating...") for src, tgt in tqdm(val_iter): src = src.to(device) tgt = tgt.to(device) logits = model(src) loss = criterion(logits, tgt) val_loss += loss.item() return val_loss / len(val_iter)
[ "util.epoch_time", "tqdm.tqdm", "numpy.random.seed", "torch.manual_seed", "data.data_util.fetch_dataloader", "model.neural_network.RandomlyWiredNeuralNetwork", "torch.cuda.manual_seed", "torch.nn.CrossEntropyLoss", "time.perf_counter", "torch.optim.lr_scheduler.CosineAnnealingLR", "data.data_util.test_voc", "random.seed", "torch.cuda.is_available", "torch.no_grad", "os.path.join" ]
[((314, 331), 'random.seed', 'random.seed', (['SEED'], {}), '(SEED)\n', (325, 331), False, 'import random\n'), ((332, 352), 'numpy.random.seed', 'np.random.seed', (['SEED'], {}), '(SEED)\n', (346, 352), True, 'import numpy as np\n'), ((353, 376), 'torch.manual_seed', 'torch.manual_seed', (['SEED'], {}), '(SEED)\n', (370, 376), False, 'import torch\n'), ((377, 405), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['SEED'], {}), '(SEED)\n', (399, 405), False, 'import torch\n'), ((5502, 5518), 'tqdm.tqdm', 'tqdm', (['train_iter'], {}), '(train_iter)\n', (5506, 5518), False, 'from tqdm import tqdm\n'), ((1660, 1753), 'data.data_util.fetch_dataloader', 'fetch_dataloader', (["self.params['dataset']", "self.params['path']", "self.params['batch_size']"], {}), "(self.params['dataset'], self.params['path'], self.params[\n 'batch_size'])\n", (1676, 1753), False, 'from data.data_util import fetch_dataloader, test_voc, test_imagenet\n'), ((3131, 3152), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3150, 3152), True, 'import torch.nn as nn\n'), ((5932, 5947), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5945, 5947), False, 'import torch\n'), ((6005, 6019), 'tqdm.tqdm', 'tqdm', (['val_iter'], {}), '(val_iter)\n', (6009, 6019), False, 'from tqdm import tqdm\n'), ((3009, 3087), 'torch.optim.lr_scheduler.CosineAnnealingLR', 'optim.lr_scheduler.CosineAnnealingLR', (['self.optimizer', "self.params['num_epoch']"], {}), "(self.optimizer, self.params['num_epoch'])\n", (3045, 3087), True, 'import torch.optim as optim\n'), ((3560, 3579), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3577, 3579), False, 'import time\n'), ((4536, 4555), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4553, 4555), False, 'import time\n'), ((4618, 4684), 'util.epoch_time', 'epoch_time', (['(end_time - start_time)', 'epoch', "self.params['num_epoch']"], {}), "(end_time - start_time, epoch, self.params['num_epoch'])\n", (4628, 4684), False, 'from util import epoch_time\n'), ((1564, 1589), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1587, 1589), False, 'import torch\n'), ((1807, 2119), 'model.neural_network.RandomlyWiredNeuralNetwork', 'RandomlyWiredNeuralNetwork', (["self.params['channel']", "self.params['in_channels']", "self.params['p']", "self.params['k']", "self.params['m']", "self.params['graph_mode']", "self.params['classes']", "self.params['node_num']", "self.params['checkpoint_path']", "self.params['load']", "self.params['is_small_regime']"], {}), "(self.params['channel'], self.params[\n 'in_channels'], self.params['p'], self.params['k'], self.params['m'],\n self.params['graph_mode'], self.params['classes'], self.params[\n 'node_num'], self.params['checkpoint_path'], self.params['load'], self.\n params['is_small_regime'])\n", (1833, 2119), False, 'from model.neural_network import RandomlyWiredNeuralNetwork\n'), ((2495, 2552), 'os.path.join', 'os.path.join', (["self.params['checkpoint_path']", '"""train.tar"""'], {}), "(self.params['checkpoint_path'], 'train.tar')\n", (2507, 2552), False, 'import os\n'), ((5034, 5091), 'os.path.join', 'os.path.join', (["self.params['checkpoint_path']", '"""train.tar"""'], {}), "(self.params['checkpoint_path'], 'train.tar')\n", (5046, 5091), False, 'import os\n'), ((4225, 4280), 'os.path.join', 'os.path.join', (["self.params['checkpoint_path']", '"""best.pt"""'], {}), "(self.params['checkpoint_path'], 'best.pt')\n", (4237, 4280), False, 'import os\n'), ((4393, 4441), 'data.data_util.test_voc', 'test_voc', (['self.test_data', 'self.rwnn', 'self.device'], {}), '(self.test_data, self.rwnn, self.device)\n', (4401, 4441), False, 'from data.data_util import fetch_dataloader, test_voc, test_imagenet\n'), ((3944, 4006), 'os.path.join', 'os.path.join', (["self.params['checkpoint_path']", '"""best_model.txt"""'], {}), "(self.params['checkpoint_path'], 'best_model.txt')\n", (3956, 4006), False, 'import os\n')]
import trimesh import numpy as np import cv2 import copy import pickle import torch import pdb def depth2normal(depth, f_pix_x, f_pix_y=None): ''' To compute a normal map from the depth map Input: - depth: torch.Tensor (H, W) - f_pix_x: K[0, 0] - f_pix_y: K[1, 1] Return: - normal: torch.Tensor (H, W, 3) ''' if f_pix_y is None: f_pix_y = f_pix_x h, w = depth.shape eps = 1e-12 bg_flag = (depth > 1e5) | (depth == 0) depth[bg_flag] = 0.0 depth_left, depth_right, depth_up, depth_down = torch.zeros(h, w), torch.zeros(h, w), torch.zeros(h, w), torch.zeros(h, w) if depth.get_device() != -1: device_id = depth.get_device() depth_left, depth_right, depth_up, depth_down = depth_left.to(device_id), depth_right.to(device_id), depth_up.to(device_id), depth_down.to(device_id) depth_left[:, 1:w-1] = depth[:, :w-2].clone() depth_right[:, 1:w-1] = depth[:, 2:].clone() depth_up[1:h-1, :] = depth[:h-2, :].clone() depth_down[1:h-1, :] = depth[2:, :].clone() dzdx = (depth_right - depth_left) * f_pix_x / 2.0 dzdy = (depth_down - depth_up) * f_pix_y / 2.0 normal = torch.stack([dzdx, dzdy, -torch.ones_like(dzdx)]).permute(1, 2, 0) normal_length = torch.norm(normal, p=2, dim=2) normal = normal / (normal_length + 1e-12)[:,:,None] normal[bg_flag] = 0.0 return normal def quad2rotation(quad): ''' input: torch.Tensor (4) ''' bs = quad.shape[0] qr, qi, qj, qk = quad[:,0], quad[:,1], quad[:,2], quad[:,3] rot_mat = torch.zeros(bs, 3, 3).to(quad.get_device()) rot_mat[:,0,0] = 1 - 2 * (qj ** 2 + qk ** 2) rot_mat[:,0,1] = 2 * (qi * qj - qk * qr) rot_mat[:,0,2] = 2 * (qi * qk + qj * qr) rot_mat[:,1,0] = 2 * (qi * qj + qk * qr) rot_mat[:,1,1] = 1 - 2 * (qi ** 2 + qk ** 2) rot_mat[:,1,2] = 2 * (qj * qk - qi * qr) rot_mat[:,2,0] = 2 * (qi * qk - qj * qr) rot_mat[:,2,1] = 2 * (qj * qk + qi * qr) rot_mat[:,2,2] = 1 - 2 * (qi ** 2 + qj ** 2) return rot_mat def get_camera_from_tensor(inputs): N = len(inputs.shape) if N == 1: inputs = inputs.unsqueeze(0) quad, T = inputs[:,:4], inputs[:,4:] R = quad2rotation(quad) RT = torch.cat([R, T[:,:,None]], 2) if N == 1: RT = RT[0] return RT def get_tensor_from_camera(RT): gpu_id = -1 if type(RT) == torch.Tensor: if RT.get_device() != -1: RT = RT.detach().cpu() gpu_id = RT.get_device() RT = RT.numpy() from mathutils import Matrix R, T = RT[:,:3], RT[:,3] rot = Matrix(R) quad = rot.to_quaternion() tensor = np.concatenate([quad, T], 0) tensor = torch.from_numpy(tensor).float() if gpu_id != -1: tensor = tensor.to(gpu_id) return tensor def downsize_camera_intrinsic(intrinsic, factor): ''' Input: - intrinsic type: np.array (3,3) - factor int ''' img_h, img_w = int(2 * intrinsic[1,2]), int(2 * intrinsic[0,2]) img_h_new, img_w_new = img_h / factor, img_w / factor if (img_h_new - round(img_h_new)) > 1e-12 or (img_w_new - round(img_w_new)) > 1e-12: raise ValueError('The image size {0} should be divisible by the factor {1}.'.format((img_h, img_w), factor)) intrinsic_new = copy.deepcopy(intrinsic) intrinsic_new[0,:] = intrinsic[0,:] / factor intrinsic_new[1,:] = intrinsic[1,:] / factor return intrinsic_new def sample_points_from_mesh(mesh, N=30000): ''' Return: -- points: np.array (N, 3) ''' points = trimesh.sample.sample_surface(mesh, N)[0] return points def transform_point_cloud(points): ''' solve the mismatch between the point cloud coordinate and the mesh obj. ''' points_new = copy.deepcopy(points) points_new[:,1] = -points[:,2] points_new[:,2] = points[:,1] return points_new def read_pickle(fname): with open(fname, 'rb') as f: data = pickle.load(f, encoding='latin1') return data def save_render_output(render_output, fname): depth_rendered, normal_rendered, valid_mask_rendered, _ = render_output output = {} output['depth'] = depth_rendered.detach().cpu().numpy() output['normal'] = normal_rendered.detach().cpu().numpy() output['valid_mask'] = valid_mask_rendered.detach().cpu().numpy() save_pkl(output, fname) def save_pkl(data, fname): with open(fname, 'wb') as f: pickle.dump(data, f)
[ "torch.ones_like", "copy.deepcopy", "trimesh.sample.sample_surface", "pickle.dump", "torch.norm", "torch.cat", "pickle.load", "torch.zeros", "mathutils.Matrix", "numpy.concatenate", "torch.from_numpy" ]
[((1268, 1298), 'torch.norm', 'torch.norm', (['normal'], {'p': '(2)', 'dim': '(2)'}), '(normal, p=2, dim=2)\n', (1278, 1298), False, 'import torch\n'), ((2244, 2276), 'torch.cat', 'torch.cat', (['[R, T[:, :, None]]', '(2)'], {}), '([R, T[:, :, None]], 2)\n', (2253, 2276), False, 'import torch\n'), ((2607, 2616), 'mathutils.Matrix', 'Matrix', (['R'], {}), '(R)\n', (2613, 2616), False, 'from mathutils import Matrix\n'), ((2661, 2689), 'numpy.concatenate', 'np.concatenate', (['[quad, T]', '(0)'], {}), '([quad, T], 0)\n', (2675, 2689), True, 'import numpy as np\n'), ((3298, 3322), 'copy.deepcopy', 'copy.deepcopy', (['intrinsic'], {}), '(intrinsic)\n', (3311, 3322), False, 'import copy\n'), ((3768, 3789), 'copy.deepcopy', 'copy.deepcopy', (['points'], {}), '(points)\n', (3781, 3789), False, 'import copy\n'), ((561, 578), 'torch.zeros', 'torch.zeros', (['h', 'w'], {}), '(h, w)\n', (572, 578), False, 'import torch\n'), ((580, 597), 'torch.zeros', 'torch.zeros', (['h', 'w'], {}), '(h, w)\n', (591, 597), False, 'import torch\n'), ((599, 616), 'torch.zeros', 'torch.zeros', (['h', 'w'], {}), '(h, w)\n', (610, 616), False, 'import torch\n'), ((618, 635), 'torch.zeros', 'torch.zeros', (['h', 'w'], {}), '(h, w)\n', (629, 635), False, 'import torch\n'), ((3563, 3601), 'trimesh.sample.sample_surface', 'trimesh.sample.sample_surface', (['mesh', 'N'], {}), '(mesh, N)\n', (3592, 3601), False, 'import trimesh\n'), ((3954, 3987), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""latin1"""'}), "(f, encoding='latin1')\n", (3965, 3987), False, 'import pickle\n'), ((4433, 4453), 'pickle.dump', 'pickle.dump', (['data', 'f'], {}), '(data, f)\n', (4444, 4453), False, 'import pickle\n'), ((1571, 1592), 'torch.zeros', 'torch.zeros', (['bs', '(3)', '(3)'], {}), '(bs, 3, 3)\n', (1582, 1592), False, 'import torch\n'), ((2703, 2727), 'torch.from_numpy', 'torch.from_numpy', (['tensor'], {}), '(tensor)\n', (2719, 2727), False, 'import torch\n'), ((1207, 1228), 'torch.ones_like', 'torch.ones_like', (['dzdx'], {}), '(dzdx)\n', (1222, 1228), False, 'import torch\n')]
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2020 by ShabaniPy Authors, see AUTHORS for more details. # # Distributed under the terms of the MIT license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Test Fraunhofer estimation. """ import numpy as np from shabanipy.jj.fraunhofer.estimation import guess_current_distribution def create_fraunhofer_like(): fields = np.linspace(-1, 1, 1001) return fields, np.abs(np.sinc(8 * (fields - 0.1))) def create_squid_like(): fields = np.linspace(-1, 1, 1001) return ( fields, 2 + np.cos(8 * np.pi * (fields + 0.1)) * np.sinc(0.1 * (fields + 0.1)), ) def validate_fraunhofer(offset, first_node, amplitude, c_dis): np.testing.assert_almost_equal(offset, 0.1) assert abs(first_node + 0.025) < 0.05 np.testing.assert_almost_equal(amplitude, 1.0) np.testing.assert_array_equal(c_dis, np.ones(5) / 20) def validate_squid(offset, first_node, amplitude, c_dis): np.testing.assert_almost_equal(offset, -0.1) assert abs(first_node - 0.025) < 0.05 np.testing.assert_almost_equal(amplitude, 3.0) np.testing.assert_array_equal(c_dis, np.array([0.625, 0, 0, 0, 0.625])) def test_guess_current_distribution_fraunhofer(): """Test identifying a fraunhofer like pattern. """ fields, fraunhofer_like_ics = create_fraunhofer_like() offsets, first_nodes, amplitudes, c_dis = guess_current_distribution( fields, fraunhofer_like_ics, 5, 4 ) validate_fraunhofer(offsets, first_nodes, amplitudes, c_dis) def test_guess_current_distribution_squid(): """Test identifying a SQUID like pattern. """ fields, squid_like_ics = create_squid_like() offsets, first_nodes, amplitudes, c_dis = guess_current_distribution( fields, squid_like_ics, 5, 4 ) validate_squid(offsets, first_nodes, amplitudes, c_dis) def test_guess_current_distribution_too_small_data(): """Test handling data which do not comport enough points. """ fields = np.linspace(-1, 1, 201) fraunhofer_like_ics = np.abs(np.sinc(2 * (fields - 0.1))) offsets, first_nodes, amplitudes, c_dis = guess_current_distribution( fields, fraunhofer_like_ics, 5, 4 ) np.testing.assert_almost_equal(offsets, 0.1) assert amplitudes == 1.0 def test_2D_inputs(): """Test that we can handle properly 2D inputs.""" fields_f, fraunhofer_like_ics = create_fraunhofer_like() fields_s, squid_like_ics = create_squid_like() # 2D inputs fields = np.empty((2, len(fields_f))) fields[0] = fields_f fields[1] = fields_s ics = np.empty_like(fields) ics[0] = fraunhofer_like_ics ics[1] = squid_like_ics offsets, first_nodes, amplitudes, c_dis = guess_current_distribution( fields, ics, 5, 4 ) for o, f, a, cd, validator in zip( offsets, first_nodes, amplitudes, c_dis, (validate_fraunhofer, validate_squid) ): validator(o, f, a, cd) def test_3D_inputs(): """Test that we can handle properly 3D inputs.""" fields_f, fraunhofer_like_ics = create_fraunhofer_like() fields_s, squid_like_ics = create_squid_like() # 3D inputs fields = np.empty((2, 2, len(fields_f))) fields[0, :] = fields_f fields[1, :] = fields_s ics = np.empty_like(fields) ics[0, :] = fraunhofer_like_ics ics[1, :] = squid_like_ics offsets, first_nodes, amplitudes, c_dis = guess_current_distribution( fields, ics, 5, 4 ) for o, f, a, cd, validator in zip( offsets, first_nodes, amplitudes, c_dis, (validate_fraunhofer, validate_squid) ): validator(o[0], f[0], a[0], cd[0]) validator(o[1], f[1], a[1], cd[1])
[ "numpy.testing.assert_almost_equal", "shabanipy.jj.fraunhofer.estimation.guess_current_distribution", "numpy.empty_like", "numpy.ones", "numpy.sinc", "numpy.array", "numpy.linspace", "numpy.cos" ]
[((556, 580), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(1001)'], {}), '(-1, 1, 1001)\n', (567, 580), True, 'import numpy as np\n'), ((676, 700), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(1001)'], {}), '(-1, 1, 1001)\n', (687, 700), True, 'import numpy as np\n'), ((885, 928), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['offset', '(0.1)'], {}), '(offset, 0.1)\n', (915, 928), True, 'import numpy as np\n'), ((975, 1021), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['amplitude', '(1.0)'], {}), '(amplitude, 1.0)\n', (1005, 1021), True, 'import numpy as np\n'), ((1144, 1188), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['offset', '(-0.1)'], {}), '(offset, -0.1)\n', (1174, 1188), True, 'import numpy as np\n'), ((1235, 1281), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['amplitude', '(3.0)'], {}), '(amplitude, 3.0)\n', (1265, 1281), True, 'import numpy as np\n'), ((1576, 1637), 'shabanipy.jj.fraunhofer.estimation.guess_current_distribution', 'guess_current_distribution', (['fields', 'fraunhofer_like_ics', '(5)', '(4)'], {}), '(fields, fraunhofer_like_ics, 5, 4)\n', (1602, 1637), False, 'from shabanipy.jj.fraunhofer.estimation import guess_current_distribution\n'), ((1916, 1972), 'shabanipy.jj.fraunhofer.estimation.guess_current_distribution', 'guess_current_distribution', (['fields', 'squid_like_ics', '(5)', '(4)'], {}), '(fields, squid_like_ics, 5, 4)\n', (1942, 1972), False, 'from shabanipy.jj.fraunhofer.estimation import guess_current_distribution\n'), ((2188, 2211), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(201)'], {}), '(-1, 1, 201)\n', (2199, 2211), True, 'import numpy as np\n'), ((2321, 2382), 'shabanipy.jj.fraunhofer.estimation.guess_current_distribution', 'guess_current_distribution', (['fields', 'fraunhofer_like_ics', '(5)', '(4)'], {}), '(fields, fraunhofer_like_ics, 5, 4)\n', (2347, 2382), False, 'from shabanipy.jj.fraunhofer.estimation import guess_current_distribution\n'), ((2401, 2445), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['offsets', '(0.1)'], {}), '(offsets, 0.1)\n', (2431, 2445), True, 'import numpy as np\n'), ((2785, 2806), 'numpy.empty_like', 'np.empty_like', (['fields'], {}), '(fields)\n', (2798, 2806), True, 'import numpy as np\n'), ((2915, 2960), 'shabanipy.jj.fraunhofer.estimation.guess_current_distribution', 'guess_current_distribution', (['fields', 'ics', '(5)', '(4)'], {}), '(fields, ics, 5, 4)\n', (2941, 2960), False, 'from shabanipy.jj.fraunhofer.estimation import guess_current_distribution\n'), ((3459, 3480), 'numpy.empty_like', 'np.empty_like', (['fields'], {}), '(fields)\n', (3472, 3480), True, 'import numpy as np\n'), ((3595, 3640), 'shabanipy.jj.fraunhofer.estimation.guess_current_distribution', 'guess_current_distribution', (['fields', 'ics', '(5)', '(4)'], {}), '(fields, ics, 5, 4)\n', (3621, 3640), False, 'from shabanipy.jj.fraunhofer.estimation import guess_current_distribution\n'), ((1323, 1356), 'numpy.array', 'np.array', (['[0.625, 0, 0, 0, 0.625]'], {}), '([0.625, 0, 0, 0, 0.625])\n', (1331, 1356), True, 'import numpy as np\n'), ((2245, 2272), 'numpy.sinc', 'np.sinc', (['(2 * (fields - 0.1))'], {}), '(2 * (fields - 0.1))\n', (2252, 2272), True, 'import numpy as np\n'), ((607, 634), 'numpy.sinc', 'np.sinc', (['(8 * (fields - 0.1))'], {}), '(8 * (fields - 0.1))\n', (614, 634), True, 'import numpy as np\n'), ((1063, 1073), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (1070, 1073), True, 'import numpy as np\n'), ((742, 776), 'numpy.cos', 'np.cos', (['(8 * np.pi * (fields + 0.1))'], {}), '(8 * np.pi * (fields + 0.1))\n', (748, 776), True, 'import numpy as np\n'), ((779, 808), 'numpy.sinc', 'np.sinc', (['(0.1 * (fields + 0.1))'], {}), '(0.1 * (fields + 0.1))\n', (786, 808), True, 'import numpy as np\n')]
""" Author : <NAME> """ import numpy as np import matplotlib.pyplot as plt import cv2 import os from keras import backend as K from tqdm.keras import TqdmCallback from scipy.stats import spearmanr from tensorflow.keras import Input from tensorflow.keras import optimizers from tensorflow.keras import models from tensorflow.keras import layers from tensorflow.keras import regularizers from tensorflow.keras.models import Model from statistics import mean from sklearn.utils import shuffle from tensorflow import keras from tensorflow.keras.optimizers import Adam import pandas as pd import datetime from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau ,Callback,TensorBoard from keras.models import load_model from tensorflow.keras.preprocessing import image from tensorflow.keras import applications import PIL from keras.activations import softmax,sigmoid import h5py from PIL import Image from keras.layers import Layer from scipy.stats import spearmanr,pearsonr import sklearn import tensorflow as tf from tensorflow.keras.layers import MaxPooling2D ,Dense,Concatenate ,Dropout ,Input,concatenate,Conv2D,Reshape,GlobalMaxPooling2D,Flatten,GlobalAveragePooling2D,AveragePooling2D,Lambda,MaxPooling2D,TimeDistributed, Bidirectional, LSTM import argparse import random from tqdm import tqdm tf.keras.backend.clear_session() #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 #os.environ['CUDA_VISIBLE_DEVICES']="" def data_generator(data,batch_size=16): num_samples = len(data) random.shuffle(data) while True: for offset in range(0, num_samples, batch_size): # Get the samples you'll use in this batch batch_samples = data[offset:offset+batch_size] X_train = np.zeros((batch_size, 30,25,2560)) y_train = np.zeros((batch_size,1)) for i in range(batch_size): X_train[i,:,:,:] = np.load(batch_samples[i][0]) y_train[i,:] = np.load(batch_samples[i][1]) y_train[i,:] = y_train[i,:] yield X_train, y_train def logistic_func(X, bayta1, bayta2, bayta3, bayta4): # 4-parameter logistic function logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4)))) yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart) return yhat ''' def data_generator_1(data,batch_size=4): num_samples = len(data) while True: for offset in range(0, num_samples, batch_size): # Get the samples you'll use in this batch batch_samples = data[offset:offset+batch_size] X_train = np.zeros((batch_size, 30,25,2560)) y_train = np.zeros((batch_size,1)) for i in range(batch_size): X_train[i,:,:,:] = np.load(batch_samples[i][0]) y_train[i,:] = np.load(batch_samples[i][1]) yield X_train def data_generator_2(data,batch_size=1): num_samples = len(data) while True: for offset in range(0, num_samples, batch_size): # Get the samples you'll use in this batch batch_samples = data[offset:offset+batch_size] X_train = np.zeros((batch_size, 30,25,2560)) y_train = np.zeros((batch_size,1)) for i in range(batch_size): X_train[i,:,:,:] = np.load(batch_samples[i][0]) y_train[i,:] = np.load(batch_samples[i][1]) yield y_train ''' def build_model(batch_shape, model_final): model = models.Sequential() model.add(TimeDistributed(model_final,input_shape = batch_shape)) model.add(Bidirectional(LSTM(64,return_sequences=True,kernel_initializer='random_normal', recurrent_initializer='random_normal', dropout=0.4,recurrent_dropout=0))) model.add(Bidirectional(LSTM(64,return_sequences=True, kernel_initializer='random_normal', recurrent_initializer='random_normal', dropout=0.4,recurrent_dropout=0))) model.add(Flatten()) model.add(Dense(256,activation='relu', kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001))) model.add(layers.Dropout(rate=0.5)) model.add(layers.Dense(1)) model.add(layers.Activation('linear')) model.compile(optimizer=optimizers.Adam(),loss='mse',metrics=['mae']) model.summary() return model def data_prepare(): x = os.listdir('features_X') li = [] for i in range(len(x)): tem = [] x_f = './features_X/' + x[i] y_f = './features_y/' + x[i] tem.append(x_f) tem.append(y_f) li.append(tem) li.sort() return (li) if __name__ == '__main__': parser = argparse.ArgumentParser("End2End_train") parser.add_argument('-nf', '--num_frames', default=30, type=int, help='Number of cropped frames per video.' ) parser.add_argument('-m', '--pretrained_model', default='/models/res-bi-sp_koniq.h5', type=str, help='path to pretrained spatial pooling module.' ) parser.add_argument('-b', '--batch_size', default=16, type=int, help='batch_size.' ) if not os.path.exists('./models'): os.makedirs('./models') args = parser.parse_args() md = ModelCheckpoint(filepath='./models/trained_model.h5',monitor='val_loss', mode='min',save_weights_only=True,save_best_only=True,verbose=1) rd = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=20,min_lr=1e-7, verbose=2, mode='min') ear = EarlyStopping(monitor='val_loss',mode ='min', patience=80, verbose=2,restore_best_weights=False) callbacks_k = [md,rd,TqdmCallback(verbose=2),ear] li = data_prepare() li.sort() num_patch = 25 nb = args.num_frames batch_size = args.batch_size sp_pretrained = args.pretrained_model sep = int(len(li)/5) train_l = li[0:sep*4] test_l = li[sep*4:] train_gen = data_generator(train_l,batch_size= batch_size) val_gen = data_generator(test_l,batch_size= batch_size) In = Input((nb,num_patch,2048)) model = load_model(sp_pretrained) for layer in model.layers: layer.trainable = True model_final = Model(inputs=model.input,outputs=model.layers[-3].output ) model = build_model((nb,num_patch,2048), model_final) history = model.fit_generator(train_gen,steps_per_epoch = int(len(train_l)/ batch_size), epochs=200,validation_data=val_gen,validation_steps = int(len(test_l)/batch_size) ,verbose=0,callbacks=callbacks_k)
[ "keras.models.load_model", "numpy.load", "numpy.abs", "argparse.ArgumentParser", "tensorflow.keras.layers.Dense", "random.shuffle", "tensorflow.keras.models.Sequential", "tensorflow.keras.layers.Flatten", "os.path.exists", "tensorflow.keras.layers.Activation", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.layers.Input", "keras.callbacks.ReduceLROnPlateau", "numpy.divide", "tensorflow.keras.layers.Dropout", "keras.callbacks.ModelCheckpoint", "tensorflow.keras.backend.clear_session", "tensorflow.keras.models.Model", "tensorflow.keras.initializers.RandomNormal", "tensorflow.keras.layers.TimeDistributed", "os.listdir", "os.makedirs", "numpy.zeros", "keras.callbacks.EarlyStopping", "tensorflow.keras.layers.LSTM", "tqdm.keras.TqdmCallback" ]
[((1330, 1362), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (1360, 1362), True, 'import tensorflow as tf\n'), ((1559, 1579), 'random.shuffle', 'random.shuffle', (['data'], {}), '(data)\n', (1573, 1579), False, 'import random\n'), ((3628, 3647), 'tensorflow.keras.models.Sequential', 'models.Sequential', ([], {}), '()\n', (3645, 3647), False, 'from tensorflow.keras import models\n'), ((4530, 4554), 'os.listdir', 'os.listdir', (['"""features_X"""'], {}), "('features_X')\n", (4540, 4554), False, 'import os\n'), ((4781, 4821), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""End2End_train"""'], {}), "('End2End_train')\n", (4804, 4821), False, 'import argparse\n'), ((5380, 5525), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', ([], {'filepath': '"""./models/trained_model.h5"""', 'monitor': '"""val_loss"""', 'mode': '"""min"""', 'save_weights_only': '(True)', 'save_best_only': '(True)', 'verbose': '(1)'}), "(filepath='./models/trained_model.h5', monitor='val_loss',\n mode='min', save_weights_only=True, save_best_only=True, verbose=1)\n", (5395, 5525), False, 'from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, Callback, TensorBoard\n'), ((5524, 5627), 'keras.callbacks.ReduceLROnPlateau', 'ReduceLROnPlateau', ([], {'monitor': '"""val_loss"""', 'factor': '(0.5)', 'patience': '(20)', 'min_lr': '(1e-07)', 'verbose': '(2)', 'mode': '"""min"""'}), "(monitor='val_loss', factor=0.5, patience=20, min_lr=1e-07,\n verbose=2, mode='min')\n", (5541, 5627), False, 'from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, Callback, TensorBoard\n'), ((5629, 5730), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'patience': '(80)', 'verbose': '(2)', 'restore_best_weights': '(False)'}), "(monitor='val_loss', mode='min', patience=80, verbose=2,\n restore_best_weights=False)\n", (5642, 5730), False, 'from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, Callback, TensorBoard\n'), ((6105, 6133), 'tensorflow.keras.layers.Input', 'Input', (['(nb, num_patch, 2048)'], {}), '((nb, num_patch, 2048))\n', (6110, 6133), False, 'from tensorflow.keras.layers import MaxPooling2D, Dense, Concatenate, Dropout, Input, concatenate, Conv2D, Reshape, GlobalMaxPooling2D, Flatten, GlobalAveragePooling2D, AveragePooling2D, Lambda, MaxPooling2D, TimeDistributed, Bidirectional, LSTM\n'), ((6141, 6166), 'keras.models.load_model', 'load_model', (['sp_pretrained'], {}), '(sp_pretrained)\n', (6151, 6166), False, 'from keras.models import load_model\n'), ((6235, 6293), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'model.input', 'outputs': 'model.layers[-3].output'}), '(inputs=model.input, outputs=model.layers[-3].output)\n', (6240, 6293), False, 'from tensorflow.keras.models import Model\n'), ((2329, 2369), 'numpy.divide', 'np.divide', (['(bayta1 - bayta2)', 'logisticPart'], {}), '(bayta1 - bayta2, logisticPart)\n', (2338, 2369), True, 'import numpy as np\n'), ((3660, 3713), 'tensorflow.keras.layers.TimeDistributed', 'TimeDistributed', (['model_final'], {'input_shape': 'batch_shape'}), '(model_final, input_shape=batch_shape)\n', (3675, 3713), False, 'from tensorflow.keras.layers import MaxPooling2D, Dense, Concatenate, Dropout, Input, concatenate, Conv2D, Reshape, GlobalMaxPooling2D, Flatten, GlobalAveragePooling2D, AveragePooling2D, Lambda, MaxPooling2D, TimeDistributed, Bidirectional, LSTM\n'), ((4166, 4175), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (4173, 4175), False, 'from tensorflow.keras.layers import MaxPooling2D, Dense, Concatenate, Dropout, Input, concatenate, Conv2D, Reshape, GlobalMaxPooling2D, Flatten, GlobalAveragePooling2D, AveragePooling2D, Lambda, MaxPooling2D, TimeDistributed, Bidirectional, LSTM\n'), ((4301, 4325), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', ([], {'rate': '(0.5)'}), '(rate=0.5)\n', (4315, 4325), False, 'from tensorflow.keras import layers\n'), ((4340, 4355), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(1)'], {}), '(1)\n', (4352, 4355), False, 'from tensorflow.keras import layers\n'), ((4369, 4396), 'tensorflow.keras.layers.Activation', 'layers.Activation', (['"""linear"""'], {}), "('linear')\n", (4386, 4396), False, 'from tensorflow.keras import layers\n'), ((5290, 5316), 'os.path.exists', 'os.path.exists', (['"""./models"""'], {}), "('./models')\n", (5304, 5316), False, 'import os\n'), ((5320, 5343), 'os.makedirs', 'os.makedirs', (['"""./models"""'], {}), "('./models')\n", (5331, 5343), False, 'import os\n'), ((5748, 5771), 'tqdm.keras.TqdmCallback', 'TqdmCallback', ([], {'verbose': '(2)'}), '(verbose=2)\n', (5760, 5771), False, 'from tqdm.keras import TqdmCallback\n'), ((1803, 1839), 'numpy.zeros', 'np.zeros', (['(batch_size, 30, 25, 2560)'], {}), '((batch_size, 30, 25, 2560))\n', (1811, 1839), True, 'import numpy as np\n'), ((1860, 1885), 'numpy.zeros', 'np.zeros', (['(batch_size, 1)'], {}), '((batch_size, 1))\n', (1868, 1885), True, 'import numpy as np\n'), ((3744, 3888), 'tensorflow.keras.layers.LSTM', 'LSTM', (['(64)'], {'return_sequences': '(True)', 'kernel_initializer': '"""random_normal"""', 'recurrent_initializer': '"""random_normal"""', 'dropout': '(0.4)', 'recurrent_dropout': '(0)'}), "(64, return_sequences=True, kernel_initializer='random_normal',\n recurrent_initializer='random_normal', dropout=0.4, recurrent_dropout=0)\n", (3748, 3888), False, 'from tensorflow.keras.layers import MaxPooling2D, Dense, Concatenate, Dropout, Input, concatenate, Conv2D, Reshape, GlobalMaxPooling2D, Flatten, GlobalAveragePooling2D, AveragePooling2D, Lambda, MaxPooling2D, TimeDistributed, Bidirectional, LSTM\n'), ((3946, 4090), 'tensorflow.keras.layers.LSTM', 'LSTM', (['(64)'], {'return_sequences': '(True)', 'kernel_initializer': '"""random_normal"""', 'recurrent_initializer': '"""random_normal"""', 'dropout': '(0.4)', 'recurrent_dropout': '(0)'}), "(64, return_sequences=True, kernel_initializer='random_normal',\n recurrent_initializer='random_normal', dropout=0.4, recurrent_dropout=0)\n", (3950, 4090), False, 'from tensorflow.keras.layers import MaxPooling2D, Dense, Concatenate, Dropout, Input, concatenate, Conv2D, Reshape, GlobalMaxPooling2D, Flatten, GlobalAveragePooling2D, AveragePooling2D, Lambda, MaxPooling2D, TimeDistributed, Bidirectional, LSTM\n'), ((4425, 4442), 'tensorflow.keras.optimizers.Adam', 'optimizers.Adam', ([], {}), '()\n', (4440, 4442), False, 'from tensorflow.keras import optimizers\n'), ((1958, 1986), 'numpy.load', 'np.load', (['batch_samples[i][0]'], {}), '(batch_samples[i][0])\n', (1965, 1986), True, 'import numpy as np\n'), ((2016, 2044), 'numpy.load', 'np.load', (['batch_samples[i][1]'], {}), '(batch_samples[i][1])\n', (2023, 2044), True, 'import numpy as np\n'), ((4238, 4286), 'tensorflow.keras.initializers.RandomNormal', 'tf.keras.initializers.RandomNormal', ([], {'stddev': '(0.001)'}), '(stddev=0.001)\n', (4272, 4286), True, 'import tensorflow as tf\n'), ((2293, 2307), 'numpy.abs', 'np.abs', (['bayta4'], {}), '(bayta4)\n', (2299, 2307), True, 'import numpy as np\n')]
# # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # try: import sionna except ImportError as e: import sys sys.path.append("../") import tensorflow as tf gpus = tf.config.list_physical_devices('GPU') print('Number of GPUs available :', len(gpus)) if gpus: gpu_num = 0 # Number of the GPU to be used try: tf.config.set_visible_devices(gpus[gpu_num], 'GPU') print('Only GPU number', gpu_num, 'used.') tf.config.experimental.set_memory_growth(gpus[gpu_num], True) except RuntimeError as e: print(e) import unittest import pytest # for pytest filterwarnings import numpy as np from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder from sionna.fec.polar.decoding import Polar5GDecoder from sionna.fec.crc import CRCEncoder from sionna.fec.utils import GaussianPriorSource from sionna.utils import BinarySource from sionna.fec.polar.utils import generate_5g_ranking class TestPolarDecodingSC(unittest.TestCase): def test_invalid_inputs(self): """Test against invalid values of n and frozen_pos.""" # frozen vec to long n = 32 frozen_pos = np.arange(n+1) with self.assertRaises(AssertionError): PolarSCDecoder(frozen_pos, n) # n not a pow of 2 # frozen vec to long n = 32 k = 12 frozen_pos,_ = generate_5g_ranking(k, n) with self.assertRaises(AssertionError): PolarSCDecoder(frozen_pos, n+1) # test valid shapes # (k, n) param_valid = [[0, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) PolarSCDecoder(frozen_pos, p[1]) # no complex-valued input allowed with self.assertRaises(ValueError): frozen_pos,_ = generate_5g_ranking(32, 64) PolarSCDecoder(frozen_pos, 64, output_dtype=tf.complex64) def test_output_dim(self): """Test that output dims are correct (=n) and output equals all-zero codeword.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) dec = PolarSCDecoder(frozen_pos, p[1]) c = -10. * np.ones([bs, p[1]]) # all-zero with BPSK (no noise);logits u = dec(c).numpy() self.assertTrue(u.shape[-1]==p[0]) # also check that all-zero input yields all-zero output u_hat = np.zeros([bs, p[0]]) self.assertTrue(np.array_equal(u, u_hat)) def test_numerical_stab(self): """Test for numerical stability (no nan or infty as output).""" bs = 10 # (k,n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256]] source = GaussianPriorSource() for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) dec = PolarSCDecoder(frozen_pos, p[1]) # case 1: extremely large inputs c = source([[bs, p[1]], 0.0001]) # llrs u1 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u1))) #no inftfy self.assertFalse(np.any(np.isinf(u1))) self.assertFalse(np.any(np.isneginf(u1))) # case 2: zero llr input c = tf.zeros([bs, p[1]]) # llrs u2 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u2))) #no inftfy self.assertFalse(np.any(np.isinf(u2))) self.assertFalse(np.any(np.isneginf(u2))) def test_identity(self): """test that info bits can be recovered if no noise is added.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: source = BinarySource() frozen_pos, _ = generate_5g_ranking(p[0],p[1]) enc = PolarEncoder(frozen_pos, p[1]) dec = PolarSCDecoder(frozen_pos, p[1]) u = source([bs, p[0]]) c = enc(u) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 n = 128 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = PolarSCDecoder(frozen_pos, n)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs, n]) model(b) # call twice to see that bs can change b2 = source([bs+1, n]) model(b2) model.summary() def test_multi_dimensional(self): """Test against arbitrary shapes. """ k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarSCDecoder(frozen_pos, n) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarSCDecoder(frozen_pos, n) b = source([1,15,n]) b_rep = tf.tile(b, [bs, 1, 1]) # and run tf version (to be tested) c = dec(b_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_tf_fun(self): """Test that graph mode works and xla is supported.""" @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) bs = 10 k = 100 n = 128 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) dec = PolarSCDecoder(frozen_pos, n) u = source([bs, n]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() # run same test for XLA (jit_compile=True) u = source([bs, n]) x = run_graph_xla(u).numpy() x = run_graph_xla(u).numpy() u = source([bs+1, n]) x = run_graph_xla(u).numpy() def test_ref_implementation(self): """Test against pre-calculated results from internal implementation. """ ref_path = '../test/codes/polar/' filename = ["P_128_37", "P_128_110", "P_256_128"] for f in filename: A = np.load(ref_path + f + "_Avec.npy") llr_ch = np.load(ref_path + f + "_Lch.npy") u_hat = np.load(ref_path + f + "_uhat.npy") frozen_pos = np.array(np.where(A==0)[0]) info_pos = np.array(np.where(A==1)[0]) n = len(frozen_pos) + len(info_pos) k = len(info_pos) dec = PolarSCDecoder(frozen_pos, n) l_in = -1. * llr_ch # logits u_hat_tf = dec(l_in).numpy() # the output should be equal to the reference self.assertTrue(np.array_equal(u_hat_tf, u_hat)) def test_dtype_flexible(self): """Test that output_dtype can be flexible.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() frozen_pos, _ = generate_5g_ranking(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = PolarSCDecoder(frozen_pos, n, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex-valued inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = PolarSCDecoder(frozen_pos, n, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c) class TestPolarDecodingSCL(unittest.TestCase): # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_invalid_inputs(self): """Test against invalid values of n and frozen_pos.""" # frozen vec to long n = 32 frozen_pos = np.arange(n+1) with self.assertRaises(AssertionError): PolarSCLDecoder(frozen_pos, n) # n not a pow of 2 # frozen vec to long n = 32 k = 12 frozen_pos,_ = generate_5g_ranking(k, n) with self.assertRaises(AssertionError): PolarSCLDecoder(frozen_pos, n+1) # also test valid shapes # (k, n) param_valid = [[0, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) PolarSCLDecoder(frozen_pos, p[1]) # no complex-valued input allowed with self.assertRaises(ValueError): frozen_pos,_ = generate_5g_ranking(32, 64) PolarSCLDecoder(frozen_pos, 64, output_dtype=tf.complex64) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_output_dim(self): """Test that output dims are correct (=n) and output is the all-zero codeword.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] # use_hybrid, use_fast_scl, cpu_only, use_scatter for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) # all-zero with BPSK (no noise);logits c = -10. * np.ones([bs, p[1]]) u = dec(c).numpy() # check shape self.assertTrue(u.shape[-1]==p[0]) # also check that all-zero input yields all-zero u_hat = np.zeros([bs, p[0]]) self.assertTrue(np.array_equal(u, u_hat)) # also test different list sizes n = 32 k = 16 frozen_pos, _ = generate_5g_ranking(k, n) list_sizes = [1, 2, 8, 32] for list_size in list_sizes: for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, list_size=list_size, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) # all-zero with BPSK (no noise);logits c = -10. * np.ones([bs, n]) u = dec(c).numpy() self.assertTrue(u.shape[-1]==k) # also check that all-zero input yields all-zero u_hat = np.zeros([bs, k]) self.assertTrue(np.array_equal(u, u_hat)) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_numerical_stab(self): """Test for numerical stability (no nan or infty as output)""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256]] source = GaussianPriorSource() for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) # case 1: extremely large inputs c = source([[bs, p[1]], 0.0001]) # llrs u1 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u1))) #no inftfy self.assertFalse(np.any(np.isinf(u1))) self.assertFalse(np.any(np.isneginf(u1))) # case 2: zero input c = tf.zeros([bs, p[1]]) # llrs u2 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u2))) #no inftfy self.assertFalse(np.any(np.isinf(u2))) self.assertFalse(np.any(np.isneginf(u2))) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_identity(self): """Test that info bits can be recovered if no noise is added.""" bs = 10 # (k,n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256]] source = BinarySource() # use_hybrid, use_fast_scl, cpu_only, use_scatter for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) enc = PolarEncoder(frozen_pos, p[1]) u = source([bs, p[0]]) c = enc(u) llr_ch = 200.*(2.*c-1) # demod BPSK witout noise for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) # also test different list sizes n = 32 k = 16 crc_degree = "CRC11" frozen_pos, _ = generate_5g_ranking(k, n) enc = PolarEncoder(frozen_pos, n) enc_crc = CRCEncoder(crc_degree) u = source([bs, k-enc_crc.crc_length]) u_crc = enc_crc(u) c = enc(u_crc) llr_ch = 200.*(2.*c-1) # demod BPSK witout noise list_sizes = [1, 2, 8, 32] for list_size in list_sizes: for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, list_size=list_size, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter, crc_degree=crc_degree) u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u_crc.numpy(), u_hat.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 16 n = 32 for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = PolarSCLDecoder(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs,n]) model(b) # call twice to see that bs can change b2 = source([bs+1,n]) model(b2) model.summary() # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_multi_dimensional(self): """Test against multi-dimensional input shapes. As reshaping is done before calling the actual decoder, no exhaustive testing against all decoder options is required. """ k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarSCLDecoder(frozen_pos, n) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 78 n = 128 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) b = source([1,15,n]) b_rep = tf.tile(b, [bs, 1, 1]) # and run tf version (to be tested) c = dec(b_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_tf_fun(self): """Test that graph mode works and XLA is supported.""" bs = 10 k = 16 n = 32 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) crc_degrees = [None, "CRC11"] for crc_degree in crc_degrees: for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) dec = PolarSCLDecoder(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter, crc_degree=crc_degree) # test that for arbitrary input only binary values are # returned u = source([bs, n]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() if not cpu_only: # cpu only does not support XLA # run same test for XLA (jit_compile=True) u = source([bs, n]) x = run_graph_xla(u).numpy() x = run_graph_xla(u).numpy() u = source([bs+1, n]) x = run_graph_xla(u).numpy() # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_ref_implementation(self): """Test against pre-calculated results from internal implementation. Also verifies that all decoding options yield same results. Remark: results are for SC only, i.e., list_size=1. """ ref_path = '../test/codes/polar/' filename = ["P_128_37", "P_128_110", "P_256_128"] for f in filename: A = np.load(ref_path + f + "_Avec.npy") llr_ch = np.load(ref_path + f + "_Lch.npy") u_hat = np.load(ref_path + f + "_uhat.npy") frozen_pos = np.array(np.where(A==0)[0]) info_pos = np.array(np.where(A==1)[0]) n = len(frozen_pos) + len(info_pos) k = len(info_pos) for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, list_size=1, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) l_in = -1. * llr_ch # logits u_hat_tf = dec(l_in).numpy() # the output should be equal to the reference self.assertTrue(np.array_equal(u_hat_tf, u_hat)) def test_hybrid_scl(self): """Verify hybrid SC decoding option. Remark: XLA is currently not supported. """ bs = 10 n = 32 k = 16 crc_degree = "CRC11" list_sizes = [1, 2, 8, 32] frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() enc = PolarEncoder(frozen_pos, n) enc_crc = CRCEncoder(crc_degree) k_crc = enc_crc.crc_length u = source([bs, k-k_crc]) u_crc = enc_crc(u) c = enc(u_crc) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise for list_size in list_sizes: dec = PolarSCLDecoder(frozen_pos, n, list_size=list_size, use_hybrid_sc=True, crc_degree=crc_degree) u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u_crc.numpy(), u_hat.numpy())) # verify that graph can be executed @tf.function def run_graph(u): return dec(u) u = source([bs, n]) # execute the graph twice x = run_graph(u).numpy() x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() def test_dtype_flexible(self): """Test that output_dtype is variable.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() frozen_pos, _ = generate_5g_ranking(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = PolarSCLDecoder(frozen_pos, n, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex-valued inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = PolarSCLDecoder(frozen_pos, n, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c) class TestPolarDecodingBP(unittest.TestCase): """Test Polar BP decoder.""" def test_invalid_inputs(self): """Test against invalid values of n and frozen_pos.""" # frozen vec to long n = 32 frozen_pos = np.arange(n+1) with self.assertRaises(AssertionError): PolarBPDecoder(frozen_pos, n) # n not a pow of 2 # frozen vec to long n = 32 k = 12 frozen_pos,_ = generate_5g_ranking(k, n) with self.assertRaises(AssertionError): PolarBPDecoder(frozen_pos, n+1) # test also valid shapes # (k, n) param_valid = [[0, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) PolarBPDecoder(frozen_pos, p[1]) # no complex-valued input allowed with self.assertRaises(ValueError): frozen_pos,_ = generate_5g_ranking(32, 64) PolarBPDecoder(frozen_pos, 64, output_dtype=tf.complex64) def test_output_dim(self): """Test that output dims are correct (=n) and output is all-zero codeword.""" # batch size bs = 10 # (k, n) param_valid = [[1, 32],[10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for hard_out in [True, False]: for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) dec = PolarBPDecoder(frozen_pos, p[1], hard_out=hard_out) # all-zero with BPSK (no noise);logits c = -10. * np.ones([bs, p[1]]) u = dec(c).numpy() self.assertTrue(u.shape[-1]==p[0]) if hard_out: # also check that all-zero input yields all-zero output u_hat = np.zeros([bs, p[0]]) self.assertTrue(np.array_equal(u, u_hat)) def test_identity(self): """Test that info bits can be recovered if no noise is added.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: source = BinarySource() frozen_pos, _ = generate_5g_ranking(p[0], p[1]) enc = PolarEncoder(frozen_pos, p[1]) dec = PolarBPDecoder(frozen_pos, p[1]) u = source([bs, p[0]]) c = enc(u) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 n = 128 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = PolarBPDecoder(frozen_pos, n)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs, n]) model(b) # call twice to see that bs can change b2 = source([bs+1, n]) model(b2) model.summary() def test_multi_dimensional(self): """Test against arbitrary shapes.""" k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarBPDecoder(frozen_pos, n) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarBPDecoder(frozen_pos, n) b = source([1, 15, n]) b_rep = tf.tile(b, [bs, 1, 1]) # and run tf version (to be tested) c = dec(b_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_numerics(self): """Test for numerical stability with large llrs and many iterations. """ bs = 100 k = 120 n = 256 num_iter = 200 for hard_out in [False, True]: frozen_pos, _ = generate_5g_ranking(k, n) source = GaussianPriorSource() dec = PolarBPDecoder(frozen_pos, n, hard_out=hard_out, num_iter=num_iter) b = source([[bs,n], 0.001]) # very large llrs c = dec(b).numpy() # all values are finite (not nan and not inf) self.assertTrue(np.sum(np.abs(1 - np.isfinite(c)))==0) def test_tf_fun(self): """Test that graph mode works and XLA is supported.""" @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) bs = 10 k = 32 n = 64 num_iter = 10 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) dec = PolarBPDecoder(frozen_pos, n, num_iter=num_iter) # test that for arbitrary input only 0,1 values are returned u = source([bs, n]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() x = run_graph(u).numpy() # Currently not supported # run same test for XLA (jit_compile=True) #u = source([bs, n]) #x = run_graph_xla(u).numpy() #x = run_graph_xla(u).numpy() #u = source([bs+1, n]) #x = run_graph_xla(u).numpy() def test_ref_implementation(self): """Test against Numpy reference implementation. Test hard and soft output. """ def boxplus_np(x, y): """Check node update (boxplus) for LLRs in numpy. See [Stimming_LLR]_ and [Hashemi_SSCL]_ for detailed equations. """ x_in = np.maximum(np.minimum(x, llr_max), -llr_max) y_in = np.maximum(np.minimum(y, llr_max), -llr_max) # avoid division for numerical stability llr_out = np.log(1 + np.exp(x_in + y_in)) llr_out -= np.log(np.exp(x_in) + np.exp(y_in)) return llr_out def decode_bp(llr_ch, n_iter, frozen_pos, info_pos): n = llr_ch.shape[-1] bs = llr_ch.shape[0] n_stages = int(np.log2(n)) msg_r = np.zeros([bs, n_stages+1, n]) msg_l = np.zeros([bs, n_stages+1, n]) # init llr_ch msg_l[:, n_stages, :] = -1*llr_ch.numpy() # init frozen positions with infty msg_r[:, 0, frozen_pos] = llr_max # and decode for iter in range(n_iter): # update r messages for s in range(n_stages): # calc indices ind_range = np.arange(int(n/2)) ind_1 = ind_range * 2 - np.mod(ind_range, 2**(s)) ind_2 = ind_1 + 2**s # load messages l1_in = msg_l[:, s+1, ind_1] l2_in = msg_l[:, s+1, ind_2] r1_in = msg_r[:, s, ind_1] r2_in = msg_r[:, s, ind_2] # r1_out msg_r[:, s+1, ind_1] = boxplus_np(r1_in, l2_in + r2_in) # r2_out msg_r[:, s+1, ind_2] = boxplus_np(r1_in, l1_in) + r2_in # update l messages for s in range(n_stages-1, -1, -1): ind_range = np.arange(int(n/2)) ind_1 = ind_range * 2 - np.mod(ind_range, 2**(s)) ind_2 = ind_1 + 2**s l1_in = msg_l[:, s+1, ind_1] l2_in = msg_l[:, s+1, ind_2] r1_in = msg_r[:, s, ind_1] r2_in = msg_r[:, s, ind_2] # l1_out msg_l[:, s, ind_1] = boxplus_np(l1_in, l2_in + r2_in) # l2_out msg_l[:, s, ind_2] = boxplus_np(r1_in, l1_in) + l2_in # recover u_hat u_hat_soft = msg_l[:, 0, info_pos] u_hat = 0.5 * (1 - np.sign(u_hat_soft)) return u_hat, u_hat_soft # generate llr_ch noise_var = 0.3 num_iters = [5, 10, 20, 40] llr_max = 19.3 bs = 100 n = 128 k = 64 frozen_pos, info_pos = generate_5g_ranking(k, n) for num_iter in num_iters: source = GaussianPriorSource() llr_ch = source([[bs, n], noise_var]) # and decode dec_bp = PolarBPDecoder(frozen_pos, n, hard_out=True, num_iter=num_iter) dec_bp_soft = PolarBPDecoder(frozen_pos, n, hard_out=False, num_iter=num_iter) u_hat_bp = dec_bp(llr_ch).numpy() u_hat_bp_soft = dec_bp_soft(llr_ch,).numpy() # and run BP decoder u_hat_ref, u_hat_ref_soft = decode_bp(llr_ch, num_iter, frozen_pos, info_pos) # the output should be equal to the reference self.assertTrue(np.array_equal(u_hat_bp, u_hat_ref)) self.assertTrue(np.allclose(-u_hat_bp_soft, u_hat_ref_soft, rtol=5e-2, atol=5e-3)) def test_dtype_flexible(self): """Test that output dtype is variable.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() frozen_pos, _ = generate_5g_ranking(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = PolarBPDecoder(frozen_pos, n, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = PolarBPDecoder(frozen_pos, n, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c) class TestPolarDecoding5G(unittest.TestCase): def test_invalid_inputs(self): """Test against invalid input values. Note: consistency of code parameters is already checked by the encoder. """ enc = Polar5GEncoder(40, 60) with self.assertRaises(AssertionError): Polar5GDecoder(enc, dec_type=1) with self.assertRaises(ValueError): Polar5GDecoder(enc, dec_type="ABC") with self.assertRaises(AssertionError): Polar5GDecoder("SC") # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_identity_de_ratematching(self): """Test that info bits can be recovered if no noise is added and dimensions are correct.""" bs = 10 # (k,n) param_valid = [[12, 32], [20, 32], [100, 257], [123, 897], [1013, 1088]] dec_types = ["SC", "SCL", "hybSCL", "BP"] for p in param_valid: for dec_type in dec_types: source = BinarySource() enc = Polar5GEncoder(p[0], p[1]) dec = Polar5GDecoder(enc, dec_type=dec_type) u = source([bs, p[0]]) c = enc(u) self.assertTrue(c.numpy().shape[-1]==p[1]) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 n = 145 source = BinarySource() enc = Polar5GEncoder(k, n) dec_types = ["SC", "SCL", "hybSCL", "BP"] for dec_type in dec_types: inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = Polar5GDecoder(enc, dec_type=dec_type)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs,n]) model(b) # call twice to see that bs can change b2 = source([bs+1,n]) model(b2) model.summary() # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_multi_dimensional(self): """Test against arbitrary shapes.""" k = 120 n = 237 enc = Polar5GEncoder(k, n) source = BinarySource() dec_types = ["SC", "SCL", "hybSCL", "BP"] for dec_type in dec_types: dec = Polar5GDecoder(enc, dec_type=dec_type) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 95 n = 145 enc = Polar5GEncoder(k, n) source = GaussianPriorSource() dec_types = ["SC", "SCL", "hybSCL", "BP"] for dec_type in dec_types: dec = Polar5GDecoder(enc, dec_type=dec_type) llr = source([[1,4,n], 0.5]) llr_rep = tf.tile(llr, [bs, 1, 1]) # and run tf version (to be tested) c = dec(llr_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_tf_fun(self): """Test that tf.function decorator works include xla compiler test.""" bs = 10 k = 45 n = 67 enc = Polar5GEncoder(k, n) source = GaussianPriorSource() # hybSCL does not support graph mode! dec_types = ["SC", "SCL", "BP"] for dec_type in dec_types: print(dec_type) dec = Polar5GDecoder(enc, dec_type=dec_type) @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) # test that for arbitrary input only binary values are returned u = source([[bs, n], 0.5]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([[bs+1, n], 0.5]) x = run_graph(u).numpy() # run same test for XLA (jit_compile=True) # BP does currently not support XLA if dec_type != "BP": u = source([[bs, n], 0.5]) x = run_graph_xla(u).numpy() x = run_graph_xla(u).numpy() u = source([[bs+1, n], 0.5]) x = run_graph_xla(u).numpy() def test_dtype_flexible(self): """Test that output dtype can be variable.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() enc = Polar5GEncoder(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = Polar5GDecoder(enc, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = Polar5GDecoder(enc, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c)
[ "numpy.load", "numpy.array_equal", "sionna.fec.polar.utils.generate_5g_ranking", "numpy.allclose", "tensorflow.reshape", "tensorflow.zeros_like", "numpy.ones", "numpy.isnan", "sionna.fec.polar.decoding.Polar5GDecoder", "numpy.arange", "numpy.exp", "sionna.fec.polar.decoding.PolarSCLDecoder", "sionna.fec.polar.decoding.PolarSCDecoder", "sys.path.append", "tensorflow.keras.Input", "sionna.fec.polar.encoding.PolarEncoder", "numpy.isfinite", "tensorflow.cast", "sionna.fec.polar.encoding.Polar5GEncoder", "numpy.minimum", "numpy.log2", "numpy.isneginf", "sionna.fec.polar.decoding.PolarBPDecoder", "tensorflow.config.experimental.set_memory_growth", "numpy.isinf", "numpy.mod", "tensorflow.keras.Model", "tensorflow.tile", "sionna.utils.BinarySource", "sionna.fec.crc.CRCEncoder", "sionna.fec.utils.GaussianPriorSource", "tensorflow.config.set_visible_devices", "tensorflow.config.list_physical_devices", "numpy.zeros", "tensorflow.zeros", "numpy.where", "numpy.sign", "tensorflow.function", "pytest.mark.filterwarnings" ]
[((267, 305), 'tensorflow.config.list_physical_devices', 'tf.config.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (298, 305), True, 'import tensorflow as tf\n'), ((9161, 9228), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (9187, 9228), False, 'import pytest\n'), ((10308, 10375), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (10334, 10375), False, 'import pytest\n'), ((12882, 12949), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (12908, 12949), False, 'import pytest\n'), ((14689, 14756), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (14715, 14756), False, 'import pytest\n'), ((18282, 18349), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (18308, 18349), False, 'import pytest\n'), ((22085, 22152), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (22111, 22152), False, 'import pytest\n'), ((37736, 37803), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (37762, 37803), False, 'import pytest\n'), ((38730, 38797), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (38756, 38797), False, 'import pytest\n'), ((39548, 39615), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (39574, 39615), False, 'import pytest\n'), ((40416, 40483), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore: Required ressource allocation"""'], {}), "('ignore: Required ressource allocation')\n", (40442, 40483), False, 'import pytest\n'), ((213, 235), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (228, 235), False, 'import sys\n'), ((426, 477), 'tensorflow.config.set_visible_devices', 'tf.config.set_visible_devices', (['gpus[gpu_num]', '"""GPU"""'], {}), "(gpus[gpu_num], 'GPU')\n", (455, 477), True, 'import tensorflow as tf\n'), ((537, 598), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['gpus[gpu_num]', '(True)'], {}), '(gpus[gpu_num], True)\n', (577, 598), True, 'import tensorflow as tf\n'), ((1323, 1339), 'numpy.arange', 'np.arange', (['(n + 1)'], {}), '(n + 1)\n', (1332, 1339), True, 'import numpy as np\n'), ((1538, 1563), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (1557, 1563), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((3129, 3150), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (3148, 3150), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((4831, 4845), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (4843, 4845), False, 'from sionna.utils import BinarySource\n'), ((4870, 4895), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (4889, 4895), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((4913, 4954), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': 'n', 'dtype': 'tf.float32'}), '(shape=n, dtype=tf.float32)\n', (4927, 4954), True, 'import tensorflow as tf\n'), ((5023, 5063), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'inputs', 'outputs': 'x'}), '(inputs=inputs, outputs=x)\n', (5037, 5063), True, 'import tensorflow as tf\n'), ((5381, 5406), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (5400, 5406), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((5424, 5438), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (5436, 5438), False, 'from sionna.utils import BinarySource\n'), ((5453, 5482), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (5467, 5482), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((5529, 5556), 'tensorflow.reshape', 'tf.reshape', (['b', '[4, 5, 5, n]'], {}), '(b, [4, 5, 5, n])\n', (5539, 5556), True, 'import tensorflow as tf\n'), ((5724, 5751), 'tensorflow.reshape', 'tf.reshape', (['c_res', '[100, k]'], {}), '(c_res, [100, k])\n', (5734, 5751), True, 'import tensorflow as tf\n'), ((6042, 6067), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (6061, 6067), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((6085, 6099), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (6097, 6099), False, 'from sionna.utils import BinarySource\n'), ((6114, 6143), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (6128, 6143), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((6190, 6212), 'tensorflow.tile', 'tf.tile', (['b', '[bs, 1, 1]'], {}), '(b, [bs, 1, 1])\n', (6197, 6212), True, 'import tensorflow as tf\n'), ((6558, 6587), 'tensorflow.function', 'tf.function', ([], {'jit_compile': '(True)'}), '(jit_compile=True)\n', (6569, 6587), True, 'import tensorflow as tf\n'), ((6710, 6724), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (6722, 6724), False, 'from sionna.utils import BinarySource\n'), ((6749, 6774), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (6768, 6774), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((6789, 6818), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (6803, 6818), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((8285, 8306), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (8304, 8306), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((8331, 8356), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (8350, 8356), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((8920, 8974), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {'output_dtype': 'tf.float32'}), '(frozen_pos, n, output_dtype=tf.float32)\n', (8934, 8974), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((9393, 9409), 'numpy.arange', 'np.arange', (['(n + 1)'], {}), '(n + 1)\n', (9402, 9409), True, 'import numpy as np\n'), ((9609, 9634), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (9628, 9634), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((11808, 11833), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (11827, 11833), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((13172, 13193), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (13191, 13193), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((14974, 14988), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (14986, 14988), False, 'from sionna.utils import BinarySource\n'), ((16059, 16084), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (16078, 16084), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((16099, 16126), 'sionna.fec.polar.encoding.PolarEncoder', 'PolarEncoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (16111, 16126), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((16145, 16167), 'sionna.fec.crc.CRCEncoder', 'CRCEncoder', (['crc_degree'], {}), '(crc_degree)\n', (16155, 16167), False, 'from sionna.fec.crc import CRCEncoder\n'), ((18649, 18674), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (18668, 18674), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((18692, 18706), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (18704, 18706), False, 'from sionna.utils import BinarySource\n'), ((18721, 18751), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (18736, 18751), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((18798, 18825), 'tensorflow.reshape', 'tf.reshape', (['b', '[4, 5, 5, n]'], {}), '(b, [4, 5, 5, n])\n', (18808, 18825), True, 'import tensorflow as tf\n'), ((18993, 19020), 'tensorflow.reshape', 'tf.reshape', (['c_res', '[100, k]'], {}), '(c_res, [100, k])\n', (19003, 19020), True, 'import tensorflow as tf\n'), ((19309, 19334), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (19328, 19334), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((19352, 19366), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (19364, 19366), False, 'from sionna.utils import BinarySource\n'), ((20244, 20258), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (20256, 20258), False, 'from sionna.utils import BinarySource\n'), ((20283, 20308), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (20302, 20308), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((23910, 23935), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (23929, 23935), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((23953, 23967), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (23965, 23967), False, 'from sionna.utils import BinarySource\n'), ((23982, 24009), 'sionna.fec.polar.encoding.PolarEncoder', 'PolarEncoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (23994, 24009), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((24028, 24050), 'sionna.fec.crc.CRCEncoder', 'CRCEncoder', (['crc_degree'], {}), '(crc_degree)\n', (24038, 24050), False, 'from sionna.fec.crc import CRCEncoder\n'), ((25157, 25178), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (25176, 25178), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((25203, 25228), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (25222, 25228), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((25793, 25848), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'output_dtype': 'tf.float32'}), '(frozen_pos, n, output_dtype=tf.float32)\n', (25808, 25848), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((26165, 26181), 'numpy.arange', 'np.arange', (['(n + 1)'], {}), '(n + 1)\n', (26174, 26181), True, 'import numpy as np\n'), ((26380, 26405), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (26399, 26405), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((28865, 28879), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (28877, 28879), False, 'from sionna.utils import BinarySource\n'), ((28904, 28929), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (28923, 28929), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((28947, 28988), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': 'n', 'dtype': 'tf.float32'}), '(shape=n, dtype=tf.float32)\n', (28961, 28988), True, 'import tensorflow as tf\n'), ((29057, 29097), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'inputs', 'outputs': 'x'}), '(inputs=inputs, outputs=x)\n', (29071, 29097), True, 'import tensorflow as tf\n'), ((29406, 29431), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (29425, 29431), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((29449, 29463), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (29461, 29463), False, 'from sionna.utils import BinarySource\n'), ((29478, 29507), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (29492, 29507), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((29554, 29581), 'tensorflow.reshape', 'tf.reshape', (['b', '[4, 5, 5, n]'], {}), '(b, [4, 5, 5, n])\n', (29564, 29581), True, 'import tensorflow as tf\n'), ((29749, 29776), 'tensorflow.reshape', 'tf.reshape', (['c_res', '[100, k]'], {}), '(c_res, [100, k])\n', (29759, 29776), True, 'import tensorflow as tf\n'), ((30067, 30092), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (30086, 30092), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((30110, 30124), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (30122, 30124), False, 'from sionna.utils import BinarySource\n'), ((30139, 30168), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (30153, 30168), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((30217, 30239), 'tensorflow.tile', 'tf.tile', (['b', '[bs, 1, 1]'], {}), '(b, [bs, 1, 1])\n', (30224, 30239), True, 'import tensorflow as tf\n'), ((31316, 31345), 'tensorflow.function', 'tf.function', ([], {'jit_compile': '(True)'}), '(jit_compile=True)\n', (31327, 31345), True, 'import tensorflow as tf\n'), ((31488, 31502), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (31500, 31502), False, 'from sionna.utils import BinarySource\n'), ((31527, 31552), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (31546, 31552), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((31567, 31615), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {'num_iter': 'num_iter'}), '(frozen_pos, n, num_iter=num_iter)\n', (31581, 31615), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((35087, 35112), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (35106, 35112), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((36392, 36413), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (36411, 36413), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((36438, 36463), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (36457, 36463), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((37020, 37074), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {'output_dtype': 'tf.float32'}), '(frozen_pos, n, output_dtype=tf.float32)\n', (37034, 37074), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((37382, 37404), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['(40)', '(60)'], {}), '(40, 60)\n', (37396, 37404), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((38969, 38983), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (38981, 38983), False, 'from sionna.utils import BinarySource\n'), ((38998, 39018), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['k', 'n'], {}), '(k, n)\n', (39012, 39018), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((39747, 39767), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['k', 'n'], {}), '(k, n)\n', (39761, 39767), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((39785, 39799), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (39797, 39799), False, 'from sionna.utils import BinarySource\n'), ((40663, 40683), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['k', 'n'], {}), '(k, n)\n', (40677, 40683), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((40701, 40722), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (40720, 40722), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((41319, 41339), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['k', 'n'], {}), '(k, n)\n', (41333, 41339), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((41357, 41378), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (41376, 41378), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((42648, 42669), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (42667, 42669), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((42684, 42704), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['k', 'n'], {}), '(k, n)\n', (42698, 42704), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((43251, 43295), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'output_dtype': 'tf.float32'}), '(enc, output_dtype=tf.float32)\n', (43265, 43295), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((1398, 1427), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (1412, 1427), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((1624, 1657), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', '(n + 1)'], {}), '(frozen_pos, n + 1)\n', (1638, 1657), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((1875, 1906), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (1894, 1906), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((1919, 1951), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (1933, 1951), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((2066, 2093), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['(32)', '(64)'], {}), '(32, 64)\n', (2085, 2093), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((2106, 2163), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', '(64)'], {'output_dtype': 'tf.complex64'}), '(frozen_pos, 64, output_dtype=tf.complex64)\n', (2120, 2163), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((2502, 2533), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (2521, 2533), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((2551, 2583), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (2565, 2583), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((2832, 2852), 'numpy.zeros', 'np.zeros', (['[bs, p[0]]'], {}), '([bs, p[0]])\n', (2840, 2852), True, 'import numpy as np\n'), ((3210, 3241), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (3229, 3241), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((3259, 3291), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (3273, 3291), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((3688, 3708), 'tensorflow.zeros', 'tf.zeros', (['[bs, p[1]]'], {}), '([bs, p[1]])\n', (3696, 3708), True, 'import tensorflow as tf\n'), ((4263, 4277), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (4275, 4277), False, 'from sionna.utils import BinarySource\n'), ((4306, 4337), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (4325, 4337), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((4355, 4385), 'sionna.fec.polar.encoding.PolarEncoder', 'PolarEncoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (4367, 4385), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((4404, 4436), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (4418, 4436), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((4969, 4998), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (4983, 4998), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((5824, 5848), 'numpy.array_equal', 'np.array_equal', (['c', 'c_res'], {}), '(c, c_res)\n', (5838, 5848), True, 'import numpy as np\n'), ((7540, 7575), 'numpy.load', 'np.load', (["(ref_path + f + '_Avec.npy')"], {}), "(ref_path + f + '_Avec.npy')\n", (7547, 7575), True, 'import numpy as np\n'), ((7597, 7631), 'numpy.load', 'np.load', (["(ref_path + f + '_Lch.npy')"], {}), "(ref_path + f + '_Lch.npy')\n", (7604, 7631), True, 'import numpy as np\n'), ((7652, 7687), 'numpy.load', 'np.load', (["(ref_path + f + '_uhat.npy')"], {}), "(ref_path + f + '_uhat.npy')\n", (7659, 7687), True, 'import numpy as np\n'), ((7890, 7919), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (7904, 7919), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((8886, 8904), 'tensorflow.zeros_like', 'tf.zeros_like', (['llr'], {}), '(llr)\n', (8899, 8904), True, 'import tensorflow as tf\n'), ((9468, 9498), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (9483, 9498), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((9695, 9729), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', '(n + 1)'], {}), '(frozen_pos, n + 1)\n', (9710, 9729), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((9952, 9983), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (9971, 9983), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((9995, 10028), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (10010, 10028), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((10143, 10170), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['(32)', '(64)'], {}), '(32, 64)\n', (10162, 10170), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((10183, 10241), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', '(64)'], {'output_dtype': 'tf.complex64'}), '(frozen_pos, 64, output_dtype=tf.complex64)\n', (10198, 10241), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((10770, 10801), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (10789, 10801), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((13253, 13284), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (13272, 13284), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((15106, 15137), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (15125, 15137), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((15156, 15186), 'sionna.fec.polar.encoding.PolarEncoder', 'PolarEncoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (15168, 15186), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((19093, 19117), 'numpy.array_equal', 'np.array_equal', (['c', 'c_res'], {}), '(c, c_res)\n', (19107, 19117), True, 'import numpy as np\n'), ((22556, 22591), 'numpy.load', 'np.load', (["(ref_path + f + '_Avec.npy')"], {}), "(ref_path + f + '_Avec.npy')\n", (22563, 22591), True, 'import numpy as np\n'), ((22613, 22647), 'numpy.load', 'np.load', (["(ref_path + f + '_Lch.npy')"], {}), "(ref_path + f + '_Lch.npy')\n", (22620, 22647), True, 'import numpy as np\n'), ((22668, 22703), 'numpy.load', 'np.load', (["(ref_path + f + '_uhat.npy')"], {}), "(ref_path + f + '_uhat.npy')\n", (22675, 22703), True, 'import numpy as np\n'), ((24283, 24381), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'list_size': 'list_size', 'use_hybrid_sc': '(True)', 'crc_degree': 'crc_degree'}), '(frozen_pos, n, list_size=list_size, use_hybrid_sc=True,\n crc_degree=crc_degree)\n', (24298, 24381), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((25759, 25777), 'tensorflow.zeros_like', 'tf.zeros_like', (['llr'], {}), '(llr)\n', (25772, 25777), True, 'import tensorflow as tf\n'), ((26240, 26269), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (26254, 26269), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((26466, 26499), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', '(n + 1)'], {}), '(frozen_pos, n + 1)\n', (26480, 26499), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((26722, 26753), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (26741, 26753), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((26765, 26797), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (26779, 26797), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((26912, 26939), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['(32)', '(64)'], {}), '(32, 64)\n', (26931, 26939), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((26952, 27009), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', '(64)'], {'output_dtype': 'tf.complex64'}), '(frozen_pos, 64, output_dtype=tf.complex64)\n', (26966, 27009), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((28296, 28310), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (28308, 28310), False, 'from sionna.utils import BinarySource\n'), ((28339, 28370), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (28358, 28370), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((28389, 28419), 'sionna.fec.polar.encoding.PolarEncoder', 'PolarEncoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (28401, 28419), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((28438, 28470), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'p[1]'], {}), '(frozen_pos, p[1])\n', (28452, 28470), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((29003, 29032), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {}), '(frozen_pos, n)\n', (29017, 29032), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((29849, 29873), 'numpy.array_equal', 'np.array_equal', (['c', 'c_res'], {}), '(c, c_res)\n', (29863, 29873), True, 'import numpy as np\n'), ((30669, 30694), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (30688, 30694), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((30716, 30737), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (30735, 30737), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((30756, 30823), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {'hard_out': 'hard_out', 'num_iter': 'num_iter'}), '(frozen_pos, n, hard_out=hard_out, num_iter=num_iter)\n', (30770, 30823), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((33045, 33076), 'numpy.zeros', 'np.zeros', (['[bs, n_stages + 1, n]'], {}), '([bs, n_stages + 1, n])\n', (33053, 33076), True, 'import numpy as np\n'), ((33095, 33126), 'numpy.zeros', 'np.zeros', (['[bs, n_stages + 1, n]'], {}), '([bs, n_stages + 1, n])\n', (33103, 33126), True, 'import numpy as np\n'), ((35171, 35192), 'sionna.fec.utils.GaussianPriorSource', 'GaussianPriorSource', ([], {}), '()\n', (35190, 35192), False, 'from sionna.fec.utils import GaussianPriorSource\n'), ((35290, 35353), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {'hard_out': '(True)', 'num_iter': 'num_iter'}), '(frozen_pos, n, hard_out=True, num_iter=num_iter)\n', (35304, 35353), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((35416, 35480), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {'hard_out': '(False)', 'num_iter': 'num_iter'}), '(frozen_pos, n, hard_out=False, num_iter=num_iter)\n', (35430, 35480), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((36986, 37004), 'tensorflow.zeros_like', 'tf.zeros_like', (['llr'], {}), '(llr)\n', (36999, 37004), True, 'import tensorflow as tf\n'), ((37465, 37496), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': '(1)'}), '(enc, dec_type=1)\n', (37479, 37496), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((37553, 37588), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': '"""ABC"""'}), "(enc, dec_type='ABC')\n", (37567, 37588), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((37649, 37669), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['"""SC"""'], {}), "('SC')\n", (37663, 37669), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((39126, 39167), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': 'n', 'dtype': 'tf.float32'}), '(shape=n, dtype=tf.float32)\n', (39140, 39167), True, 'import tensorflow as tf\n'), ((39253, 39293), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'inputs', 'outputs': 'x'}), '(inputs=inputs, outputs=x)\n', (39267, 39293), True, 'import tensorflow as tf\n'), ((39904, 39942), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': 'dec_type'}), '(enc, dec_type=dec_type)\n', (39918, 39942), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((39997, 40024), 'tensorflow.reshape', 'tf.reshape', (['b', '[4, 5, 5, n]'], {}), '(b, [4, 5, 5, n])\n', (40007, 40024), True, 'import tensorflow as tf\n'), ((40216, 40243), 'tensorflow.reshape', 'tf.reshape', (['c_res', '[100, k]'], {}), '(c_res, [100, k])\n', (40226, 40243), True, 'import tensorflow as tf\n'), ((40827, 40865), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': 'dec_type'}), '(enc, dec_type=dec_type)\n', (40841, 40865), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((40930, 40954), 'tensorflow.tile', 'tf.tile', (['llr', '[bs, 1, 1]'], {}), '(llr, [bs, 1, 1])\n', (40937, 40954), True, 'import tensorflow as tf\n'), ((41547, 41585), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': 'dec_type'}), '(enc, dec_type=dec_type)\n', (41561, 41585), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((41686, 41715), 'tensorflow.function', 'tf.function', ([], {'jit_compile': '(True)'}), '(jit_compile=True)\n', (41697, 41715), True, 'import tensorflow as tf\n'), ((43217, 43235), 'tensorflow.zeros_like', 'tf.zeros_like', (['llr'], {}), '(llr)\n', (43230, 43235), True, 'import tensorflow as tf\n'), ((2607, 2626), 'numpy.ones', 'np.ones', (['[bs, p[1]]'], {}), '([bs, p[1]])\n', (2614, 2626), True, 'import numpy as np\n'), ((2881, 2905), 'numpy.array_equal', 'np.array_equal', (['u', 'u_hat'], {}), '(u, u_hat)\n', (2895, 2905), True, 'import numpy as np\n'), ((6346, 6384), 'numpy.array_equal', 'np.array_equal', (['c[0, :, :]', 'c[i, :, :]'], {}), '(c[0, :, :], c[i, :, :])\n', (6360, 6384), True, 'import numpy as np\n'), ((8089, 8120), 'numpy.array_equal', 'np.array_equal', (['u_hat_tf', 'u_hat'], {}), '(u_hat_tf, u_hat)\n', (8103, 8120), True, 'import numpy as np\n'), ((8580, 8599), 'tensorflow.cast', 'tf.cast', (['llr', 'dt_in'], {}), '(llr, dt_in)\n', (8587, 8599), True, 'import tensorflow as tf\n'), ((8623, 8673), 'sionna.fec.polar.decoding.PolarSCDecoder', 'PolarSCDecoder', (['frozen_pos', 'n'], {'output_dtype': 'dt_out'}), '(frozen_pos, n, output_dtype=dt_out)\n', (8637, 8673), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((25452, 25471), 'tensorflow.cast', 'tf.cast', (['llr', 'dt_in'], {}), '(llr, dt_in)\n', (25459, 25471), True, 'import tensorflow as tf\n'), ((25495, 25546), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'output_dtype': 'dt_out'}), '(frozen_pos, n, output_dtype=dt_out)\n', (25510, 25546), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((27410, 27441), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (27429, 27441), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((27463, 27514), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'p[1]'], {'hard_out': 'hard_out'}), '(frozen_pos, p[1], hard_out=hard_out)\n', (27477, 27514), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((30373, 30411), 'numpy.array_equal', 'np.array_equal', (['c[0, :, :]', 'c[i, :, :]'], {}), '(c[0, :, :], c[i, :, :])\n', (30387, 30411), True, 'import numpy as np\n'), ((32564, 32586), 'numpy.minimum', 'np.minimum', (['x', 'llr_max'], {}), '(x, llr_max)\n', (32574, 32586), True, 'import numpy as np\n'), ((32628, 32650), 'numpy.minimum', 'np.minimum', (['y', 'llr_max'], {}), '(y, llr_max)\n', (32638, 32650), True, 'import numpy as np\n'), ((33012, 33022), 'numpy.log2', 'np.log2', (['n'], {}), '(n)\n', (33019, 33022), True, 'import numpy as np\n'), ((35981, 36016), 'numpy.array_equal', 'np.array_equal', (['u_hat_bp', 'u_hat_ref'], {}), '(u_hat_bp, u_hat_ref)\n', (35995, 36016), True, 'import numpy as np\n'), ((36046, 36112), 'numpy.allclose', 'np.allclose', (['(-u_hat_bp_soft)', 'u_hat_ref_soft'], {'rtol': '(0.05)', 'atol': '(0.005)'}), '(-u_hat_bp_soft, u_hat_ref_soft, rtol=0.05, atol=0.005)\n', (36057, 36112), True, 'import numpy as np\n'), ((36687, 36706), 'tensorflow.cast', 'tf.cast', (['llr', 'dt_in'], {}), '(llr, dt_in)\n', (36694, 36706), True, 'import tensorflow as tf\n'), ((36730, 36780), 'sionna.fec.polar.decoding.PolarBPDecoder', 'PolarBPDecoder', (['frozen_pos', 'n'], {'output_dtype': 'dt_out'}), '(frozen_pos, n, output_dtype=dt_out)\n', (36744, 36780), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((38238, 38252), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (38250, 38252), False, 'from sionna.utils import BinarySource\n'), ((38275, 38301), 'sionna.fec.polar.encoding.Polar5GEncoder', 'Polar5GEncoder', (['p[0]', 'p[1]'], {}), '(p[0], p[1])\n', (38289, 38301), False, 'from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder\n'), ((38324, 38362), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': 'dec_type'}), '(enc, dec_type=dec_type)\n', (38338, 38362), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((39186, 39224), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'dec_type': 'dec_type'}), '(enc, dec_type=dec_type)\n', (39200, 39224), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((40324, 40348), 'numpy.array_equal', 'np.array_equal', (['c', 'c_res'], {}), '(c, c_res)\n', (40338, 40348), True, 'import numpy as np\n'), ((42928, 42947), 'tensorflow.cast', 'tf.cast', (['llr', 'dt_in'], {}), '(llr, dt_in)\n', (42935, 42947), True, 'import tensorflow as tf\n'), ((42971, 43011), 'sionna.fec.polar.decoding.Polar5GDecoder', 'Polar5GDecoder', (['enc'], {'output_dtype': 'dt_out'}), '(enc, output_dtype=dt_out)\n', (42985, 43011), False, 'from sionna.fec.polar.decoding import Polar5GDecoder\n'), ((3491, 3503), 'numpy.isnan', 'np.isnan', (['u1'], {}), '(u1)\n', (3499, 3503), True, 'import numpy as np\n'), ((3565, 3577), 'numpy.isinf', 'np.isinf', (['u1'], {}), '(u1)\n', (3573, 3577), True, 'import numpy as np\n'), ((3616, 3631), 'numpy.isneginf', 'np.isneginf', (['u1'], {}), '(u1)\n', (3627, 3631), True, 'import numpy as np\n'), ((3817, 3829), 'numpy.isnan', 'np.isnan', (['u2'], {}), '(u2)\n', (3825, 3829), True, 'import numpy as np\n'), ((3891, 3903), 'numpy.isinf', 'np.isinf', (['u2'], {}), '(u2)\n', (3899, 3903), True, 'import numpy as np\n'), ((3942, 3957), 'numpy.isneginf', 'np.isneginf', (['u2'], {}), '(u2)\n', (3953, 3957), True, 'import numpy as np\n'), ((7722, 7738), 'numpy.where', 'np.where', (['(A == 0)'], {}), '(A == 0)\n', (7730, 7738), True, 'import numpy as np\n'), ((7773, 7789), 'numpy.where', 'np.where', (['(A == 1)'], {}), '(A == 1)\n', (7781, 7789), True, 'import numpy as np\n'), ((17467, 17481), 'sionna.utils.BinarySource', 'BinarySource', ([], {}), '()\n', (17479, 17481), False, 'from sionna.utils import BinarySource\n'), ((17518, 17543), 'sionna.fec.polar.utils.generate_5g_ranking', 'generate_5g_ranking', (['k', 'n'], {}), '(k, n)\n', (17537, 17543), False, 'from sionna.fec.polar.utils import generate_5g_ranking\n'), ((17573, 17614), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': 'n', 'dtype': 'tf.float32'}), '(shape=n, dtype=tf.float32)\n', (17587, 17614), True, 'import tensorflow as tf\n'), ((17939, 17979), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'inputs', 'outputs': 'x'}), '(inputs=inputs, outputs=x)\n', (17953, 17979), True, 'import tensorflow as tf\n'), ((19529, 19634), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only,\n use_scatter=use_scatter)\n', (19544, 19634), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((19849, 19871), 'tensorflow.tile', 'tf.tile', (['b', '[bs, 1, 1]'], {}), '(b, [bs, 1, 1])\n', (19856, 19871), True, 'import tensorflow as tf\n'), ((22738, 22754), 'numpy.where', 'np.where', (['(A == 0)'], {}), '(A == 0)\n', (22746, 22754), True, 'import numpy as np\n'), ((22789, 22805), 'numpy.where', 'np.where', (['(A == 1)'], {}), '(A == 1)\n', (22797, 22805), True, 'import numpy as np\n'), ((27671, 27690), 'numpy.ones', 'np.ones', (['[bs, p[1]]'], {}), '([bs, p[1]])\n', (27678, 27690), True, 'import numpy as np\n'), ((27910, 27930), 'numpy.zeros', 'np.zeros', (['[bs, p[0]]'], {}), '([bs, p[0]])\n', (27918, 27930), True, 'import numpy as np\n'), ((32748, 32767), 'numpy.exp', 'np.exp', (['(x_in + y_in)'], {}), '(x_in + y_in)\n', (32754, 32767), True, 'import numpy as np\n'), ((32799, 32811), 'numpy.exp', 'np.exp', (['x_in'], {}), '(x_in)\n', (32805, 32811), True, 'import numpy as np\n'), ((32814, 32826), 'numpy.exp', 'np.exp', (['y_in'], {}), '(y_in)\n', (32820, 32826), True, 'import numpy as np\n'), ((34840, 34859), 'numpy.sign', 'np.sign', (['u_hat_soft'], {}), '(u_hat_soft)\n', (34847, 34859), True, 'import numpy as np\n'), ((41106, 41144), 'numpy.array_equal', 'np.array_equal', (['c[0, :, :]', 'c[i, :, :]'], {}), '(c[0, :, :], c[i, :, :])\n', (41120, 41144), True, 'import numpy as np\n'), ((10980, 11089), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'p[1]'], {'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=\n cpu_only, use_scatter=use_scatter)\n', (10995, 11089), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((11625, 11645), 'numpy.zeros', 'np.zeros', (['[bs, p[0]]'], {}), '([bs, p[0]])\n', (11633, 11645), True, 'import numpy as np\n'), ((12084, 12211), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'list_size': 'list_size', 'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, n, list_size=list_size, use_fast_scl=\n use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter)\n', (12099, 12211), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((12732, 12749), 'numpy.zeros', 'np.zeros', (['[bs, k]'], {}), '([bs, k])\n', (12740, 12749), True, 'import numpy as np\n'), ((13463, 13572), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'p[1]'], {'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=\n cpu_only, use_scatter=use_scatter)\n', (13478, 13572), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((14267, 14287), 'tensorflow.zeros', 'tf.zeros', (['[bs, p[1]]'], {}), '([bs, p[1]])\n', (14275, 14287), True, 'import tensorflow as tf\n'), ((15484, 15593), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'p[1]'], {'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=\n cpu_only, use_scatter=use_scatter)\n', (15499, 15593), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((16572, 16727), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'list_size': 'list_size', 'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter', 'crc_degree': 'crc_degree'}), '(frozen_pos, n, list_size=list_size, use_fast_scl=\n use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter, crc_degree=\n crc_degree)\n', (16587, 16727), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((17641, 17746), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only,\n use_scatter=use_scatter)\n', (17656, 17746), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((20681, 20710), 'tensorflow.function', 'tf.function', ([], {'jit_compile': '(True)'}), '(jit_compile=True)\n', (20692, 20710), True, 'import tensorflow as tf\n'), ((20829, 20957), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter', 'crc_degree': 'crc_degree'}), '(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only,\n use_scatter=use_scatter, crc_degree=crc_degree)\n', (20844, 20957), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((23066, 23184), 'sionna.fec.polar.decoding.PolarSCLDecoder', 'PolarSCLDecoder', (['frozen_pos', 'n'], {'list_size': '(1)', 'use_fast_scl': 'use_fast_scl', 'cpu_only': 'cpu_only', 'use_scatter': 'use_scatter'}), '(frozen_pos, n, list_size=1, use_fast_scl=use_fast_scl,\n cpu_only=cpu_only, use_scatter=use_scatter)\n', (23081, 23184), False, 'from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder\n'), ((27967, 27991), 'numpy.array_equal', 'np.array_equal', (['u', 'u_hat'], {}), '(u, u_hat)\n', (27981, 27991), True, 'import numpy as np\n'), ((33575, 33600), 'numpy.mod', 'np.mod', (['ind_range', '(2 ** s)'], {}), '(ind_range, 2 ** s)\n', (33581, 33600), True, 'import numpy as np\n'), ((34266, 34291), 'numpy.mod', 'np.mod', (['ind_range', '(2 ** s)'], {}), '(ind_range, 2 ** s)\n', (34272, 34291), True, 'import numpy as np\n'), ((11360, 11379), 'numpy.ones', 'np.ones', (['[bs, p[1]]'], {}), '([bs, p[1]])\n', (11367, 11379), True, 'import numpy as np\n'), ((11686, 11710), 'numpy.array_equal', 'np.array_equal', (['u', 'u_hat'], {}), '(u, u_hat)\n', (11700, 11710), True, 'import numpy as np\n'), ((12511, 12527), 'numpy.ones', 'np.ones', (['[bs, n]'], {}), '([bs, n])\n', (12518, 12527), True, 'import numpy as np\n'), ((12790, 12814), 'numpy.array_equal', 'np.array_equal', (['u', 'u_hat'], {}), '(u, u_hat)\n', (12804, 12814), True, 'import numpy as np\n'), ((20053, 20091), 'numpy.array_equal', 'np.array_equal', (['c[0, :, :]', 'c[i, :, :]'], {}), '(c[0, :, :], c[i, :, :])\n', (20067, 20091), True, 'import numpy as np\n'), ((23603, 23634), 'numpy.array_equal', 'np.array_equal', (['u_hat_tf', 'u_hat'], {}), '(u_hat_tf, u_hat)\n', (23617, 23634), True, 'import numpy as np\n'), ((14014, 14026), 'numpy.isnan', 'np.isnan', (['u1'], {}), '(u1)\n', (14022, 14026), True, 'import numpy as np\n'), ((14112, 14124), 'numpy.isinf', 'np.isinf', (['u1'], {}), '(u1)\n', (14120, 14124), True, 'import numpy as np\n'), ((14175, 14190), 'numpy.isneginf', 'np.isneginf', (['u1'], {}), '(u1)\n', (14186, 14190), True, 'import numpy as np\n'), ((14444, 14456), 'numpy.isnan', 'np.isnan', (['u2'], {}), '(u2)\n', (14452, 14456), True, 'import numpy as np\n'), ((14542, 14554), 'numpy.isinf', 'np.isinf', (['u2'], {}), '(u2)\n', (14550, 14554), True, 'import numpy as np\n'), ((14605, 14620), 'numpy.isneginf', 'np.isneginf', (['u2'], {}), '(u2)\n', (14616, 14620), True, 'import numpy as np\n'), ((31119, 31133), 'numpy.isfinite', 'np.isfinite', (['c'], {}), '(c)\n', (31130, 31133), True, 'import numpy as np\n')]
from scipy.integrate import odeint from scipy.optimize import fsolve import numpy as np import itertools import matplotlib.pyplot as plt from colorlines import colorline from matplotlib import style class PhaseDiagram: def __init__(self, system): self.system = system self.fig, self.ax = plt.subplots(1, 1) def steady_states(self, search_space, discretization=5): linspaces = [np.linspace(axis[0], axis[1], discretization) for axis in search_space] guesses = list(itertools.product(*linspaces)) ss_system = lambda x: self.system(x, 0) results = [] for guess in guesses: calc_result, _, convergence_success, info = fsolve(ss_system, guess, full_output=True) if convergence_success: if len(results) == 0: results.append(calc_result) else: new_guess = True for result in results: if all(np.isclose(calc_result, result, atol=1e-2)): new_guess = False if new_guess: results.append(calc_result) else: print('convergence failure') return results def plot_trajectory(self, x0, time_sequence, ax, fade=0.1, linewidth=1): r = odeint(f, x0, time_sequence) colorline(x=r[:,0], y=r[:,1], ax=ax, cmap='bone_r', fade=fade, linewidth=linewidth) # plt.plot(r[:,0], r[:,1]) def random_paths(self, n, time_sequence, x_rand_interval, y_rand_interval, fade=0.1, linewidth=1): self.fig.subplots_adjust( top=0.981, bottom=0.043, left=0.029, right=0.981, hspace=0.2, wspace=0.2 ) for _ in range(n): x_random = np.random.uniform(x_rand_interval[0], x_rand_interval[1]) y_random = np.random.uniform(y_rand_interval[0], y_rand_interval[1]) self.plot_trajectory([x_random, y_random], time_sequence=time_sequence, ax=self.ax, fade=fade, linewidth=linewidth) plt.show() def f(x, t): y = np.zeros(shape=2) y[0] = x[0] - x[1]*x[0] y[1] = x[0]*x[1] - x[1] return y PD = PhaseDiagram(f) steady_states = PD.steady_states(search_space=[[-10,40],[-10,40]]) print(steady_states) time_sequence=np.linspace(0.1,2.5,1000) PD.random_paths(n=150, time_sequence=time_sequence, x_rand_interval=[-.4, 1.5], y_rand_interval=[0, 2], fade=1.0) # PD.fig.savefig('PD1.png', dpi=300)
[ "numpy.random.uniform", "matplotlib.pyplot.show", "scipy.integrate.odeint", "numpy.zeros", "scipy.optimize.fsolve", "numpy.isclose", "numpy.linspace", "itertools.product", "matplotlib.pyplot.subplots", "colorlines.colorline" ]
[((2448, 2475), 'numpy.linspace', 'np.linspace', (['(0.1)', '(2.5)', '(1000)'], {}), '(0.1, 2.5, 1000)\n', (2459, 2475), True, 'import numpy as np\n'), ((2227, 2244), 'numpy.zeros', 'np.zeros', ([], {'shape': '(2)'}), '(shape=2)\n', (2235, 2244), True, 'import numpy as np\n'), ((324, 342), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (336, 342), True, 'import matplotlib.pyplot as plt\n'), ((1396, 1424), 'scipy.integrate.odeint', 'odeint', (['f', 'x0', 'time_sequence'], {}), '(f, x0, time_sequence)\n', (1402, 1424), False, 'from scipy.integrate import odeint\n'), ((1434, 1524), 'colorlines.colorline', 'colorline', ([], {'x': 'r[:, 0]', 'y': 'r[:, 1]', 'ax': 'ax', 'cmap': '"""bone_r"""', 'fade': 'fade', 'linewidth': 'linewidth'}), "(x=r[:, 0], y=r[:, 1], ax=ax, cmap='bone_r', fade=fade, linewidth=\n linewidth)\n", (1443, 1524), False, 'from colorlines import colorline\n'), ((2189, 2199), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2197, 2199), True, 'import matplotlib.pyplot as plt\n'), ((429, 474), 'numpy.linspace', 'np.linspace', (['axis[0]', 'axis[1]', 'discretization'], {}), '(axis[0], axis[1], discretization)\n', (440, 474), True, 'import numpy as np\n'), ((527, 556), 'itertools.product', 'itertools.product', (['*linspaces'], {}), '(*linspaces)\n', (544, 556), False, 'import itertools\n'), ((719, 761), 'scipy.optimize.fsolve', 'fsolve', (['ss_system', 'guess'], {'full_output': '(True)'}), '(ss_system, guess, full_output=True)\n', (725, 761), False, 'from scipy.optimize import fsolve\n'), ((1911, 1968), 'numpy.random.uniform', 'np.random.uniform', (['x_rand_interval[0]', 'x_rand_interval[1]'], {}), '(x_rand_interval[0], x_rand_interval[1])\n', (1928, 1968), True, 'import numpy as np\n'), ((1993, 2050), 'numpy.random.uniform', 'np.random.uniform', (['y_rand_interval[0]', 'y_rand_interval[1]'], {}), '(y_rand_interval[0], y_rand_interval[1])\n', (2010, 2050), True, 'import numpy as np\n'), ((1030, 1072), 'numpy.isclose', 'np.isclose', (['calc_result', 'result'], {'atol': '(0.01)'}), '(calc_result, result, atol=0.01)\n', (1040, 1072), True, 'import numpy as np\n')]
import torch import torch.nn as nn from torchvision import models import numpy as np from torch.autograd import Variable import os class Model: def __init__(self, key = 'abnormal'): self.INPUT_DIM = 224 self.MAX_PIXEL_VAL = 255 self.MEAN = 58.09 self.STDDEV = 49.73 self.model_ab=MRI_alex(False) if key == 'abnormal': self.model_ab.load_state_dict(torch.load(r"models/abnormal.pt", map_location='cpu')) elif key =='acl': self.model_ab.load_state_dict(torch.load(r"models/acl.pt", map_location='cpu')) else: self.model_ab.load_state_dict(torch.load(r"models/men.pt", map_location='cpu')) self.model_ab.cuda() def preprocess(self, series): pad = int((series.shape[2] - self.INPUT_DIM)/2) series = series[:,pad:-pad,pad:-pad] series = (series-np.min(series))/(np.max(series)-np.min(series))*self.MAX_PIXEL_VAL series = (series - self.MEAN) / self.STDDEV series = np.stack((series,)*3, axis=1) series_float = torch.FloatTensor(series) return series_float def study(self, axial_path, sagit_path, coron_path): vol_axial = np.load(axial_path) vol_sagit = np.load(sagit_path) vol_coron = np.load(coron_path) vol_axial_tensor = self.preprocess(vol_axial) vol_sagit_tensor = self.preprocess(vol_sagit) vol_coron_tensor = self.preprocess(vol_coron) return {"axial": vol_axial_tensor, "sagit": vol_sagit_tensor, "coron": vol_coron_tensor} def predict(self, model, tensors, abnormality_prior=None): vol_axial = tensors["axial"].cuda() vol_sagit = tensors["sagit"].cuda() vol_coron = tensors["coron"].cuda() vol_axial = Variable(vol_axial) vol_sagit = Variable(vol_sagit) vol_coron = Variable(vol_coron) logit = model.forward(vol_axial, vol_sagit, vol_coron) pred = torch.sigmoid(logit) pred_npy = pred.data.cpu().numpy()[0][0] if abnormality_prior: pred_npy = pred_npy * abnormality_prior return pred_npy def get_prediction(self): self.predict(self.model_ab, self.study(axial_path, coronal_path, sagittal_path)) class MRI_alex(nn.Module): def __init__(self, training=True): super().__init__() self.axial_net = models.alexnet(pretrained=training) self.sagit_net = models.alexnet(pretrained=training) self.coron_net = models.alexnet(pretrained=training) self.gap_axial = nn.AdaptiveAvgPool2d(1) self.gap_sagit = nn.AdaptiveAvgPool2d(1) self.gap_coron = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(3*256, 1) return def forward(self,vol_axial, vol_sagit, vol_coron): vol_axial = torch.squeeze(vol_axial, dim=0) vol_sagit = torch.squeeze(vol_sagit, dim=0) vol_coron = torch.squeeze(vol_coron, dim=0) vol_axial = self.axial_net.features(vol_axial) vol_sagit = self.sagit_net.features(vol_sagit) vol_coron = self.coron_net.features(vol_coron) vol_axial = self.gap_axial(vol_axial).view(vol_axial.size(0), -1) x = torch.max(vol_axial, 0, keepdim=True)[0] vol_sagit = self.gap_sagit(vol_sagit).view(vol_sagit.size(0), -1) y = torch.max(vol_sagit, 0, keepdim=True)[0] vol_coron = self.gap_coron(vol_coron).view(vol_coron.size(0), -1) z = torch.max(vol_coron, 0, keepdim=True)[0] w = torch.cat((x, y, z), 1) out = self.classifier(w) return out
[ "numpy.stack", "torch.nn.AdaptiveAvgPool2d", "numpy.load", "torch.autograd.Variable", "torch.load", "torchvision.models.alexnet", "torch.FloatTensor", "torch.cat", "torch.squeeze", "torch.sigmoid", "numpy.min", "torch.max", "numpy.max", "torch.nn.Linear" ]
[((1031, 1062), 'numpy.stack', 'np.stack', (['((series,) * 3)'], {'axis': '(1)'}), '((series,) * 3, axis=1)\n', (1039, 1062), True, 'import numpy as np\n'), ((1084, 1109), 'torch.FloatTensor', 'torch.FloatTensor', (['series'], {}), '(series)\n', (1101, 1109), False, 'import torch\n'), ((1220, 1239), 'numpy.load', 'np.load', (['axial_path'], {}), '(axial_path)\n', (1227, 1239), True, 'import numpy as np\n'), ((1260, 1279), 'numpy.load', 'np.load', (['sagit_path'], {}), '(sagit_path)\n', (1267, 1279), True, 'import numpy as np\n'), ((1300, 1319), 'numpy.load', 'np.load', (['coron_path'], {}), '(coron_path)\n', (1307, 1319), True, 'import numpy as np\n'), ((1835, 1854), 'torch.autograd.Variable', 'Variable', (['vol_axial'], {}), '(vol_axial)\n', (1843, 1854), False, 'from torch.autograd import Variable\n'), ((1875, 1894), 'torch.autograd.Variable', 'Variable', (['vol_sagit'], {}), '(vol_sagit)\n', (1883, 1894), False, 'from torch.autograd import Variable\n'), ((1915, 1934), 'torch.autograd.Variable', 'Variable', (['vol_coron'], {}), '(vol_coron)\n', (1923, 1934), False, 'from torch.autograd import Variable\n'), ((2013, 2033), 'torch.sigmoid', 'torch.sigmoid', (['logit'], {}), '(logit)\n', (2026, 2033), False, 'import torch\n'), ((2448, 2483), 'torchvision.models.alexnet', 'models.alexnet', ([], {'pretrained': 'training'}), '(pretrained=training)\n', (2462, 2483), False, 'from torchvision import models\n'), ((2509, 2544), 'torchvision.models.alexnet', 'models.alexnet', ([], {'pretrained': 'training'}), '(pretrained=training)\n', (2523, 2544), False, 'from torchvision import models\n'), ((2570, 2605), 'torchvision.models.alexnet', 'models.alexnet', ([], {'pretrained': 'training'}), '(pretrained=training)\n', (2584, 2605), False, 'from torchvision import models\n'), ((2631, 2654), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (2651, 2654), True, 'import torch.nn as nn\n'), ((2680, 2703), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (2700, 2703), True, 'import torch.nn as nn\n'), ((2729, 2752), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (2749, 2752), True, 'import torch.nn as nn\n'), ((2779, 2800), 'torch.nn.Linear', 'nn.Linear', (['(3 * 256)', '(1)'], {}), '(3 * 256, 1)\n', (2788, 2800), True, 'import torch.nn as nn\n'), ((2894, 2925), 'torch.squeeze', 'torch.squeeze', (['vol_axial'], {'dim': '(0)'}), '(vol_axial, dim=0)\n', (2907, 2925), False, 'import torch\n'), ((2946, 2977), 'torch.squeeze', 'torch.squeeze', (['vol_sagit'], {'dim': '(0)'}), '(vol_sagit, dim=0)\n', (2959, 2977), False, 'import torch\n'), ((2998, 3029), 'torch.squeeze', 'torch.squeeze', (['vol_coron'], {'dim': '(0)'}), '(vol_coron, dim=0)\n', (3011, 3029), False, 'import torch\n'), ((3588, 3611), 'torch.cat', 'torch.cat', (['(x, y, z)', '(1)'], {}), '((x, y, z), 1)\n', (3597, 3611), False, 'import torch\n'), ((3281, 3318), 'torch.max', 'torch.max', (['vol_axial', '(0)'], {'keepdim': '(True)'}), '(vol_axial, 0, keepdim=True)\n', (3290, 3318), False, 'import torch\n'), ((3408, 3445), 'torch.max', 'torch.max', (['vol_sagit', '(0)'], {'keepdim': '(True)'}), '(vol_sagit, 0, keepdim=True)\n', (3417, 3445), False, 'import torch\n'), ((3535, 3572), 'torch.max', 'torch.max', (['vol_coron', '(0)'], {'keepdim': '(True)'}), '(vol_coron, 0, keepdim=True)\n', (3544, 3572), False, 'import torch\n'), ((422, 474), 'torch.load', 'torch.load', (['"""models/abnormal.pt"""'], {'map_location': '"""cpu"""'}), "('models/abnormal.pt', map_location='cpu')\n", (432, 474), False, 'import torch\n'), ((545, 592), 'torch.load', 'torch.load', (['"""models/acl.pt"""'], {'map_location': '"""cpu"""'}), "('models/acl.pt', map_location='cpu')\n", (555, 592), False, 'import torch\n'), ((651, 698), 'torch.load', 'torch.load', (['"""models/men.pt"""'], {'map_location': '"""cpu"""'}), "('models/men.pt', map_location='cpu')\n", (661, 698), False, 'import torch\n'), ((895, 909), 'numpy.min', 'np.min', (['series'], {}), '(series)\n', (901, 909), True, 'import numpy as np\n'), ((912, 926), 'numpy.max', 'np.max', (['series'], {}), '(series)\n', (918, 926), True, 'import numpy as np\n'), ((927, 941), 'numpy.min', 'np.min', (['series'], {}), '(series)\n', (933, 941), True, 'import numpy as np\n')]
from scipy import optimize import matplotlib.pyplot as plt import numpy as np x = np.array([1, 1.1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15], dtype=float) y = np.array([5, 3, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, 126.14, 140.03]) # 一个输入序列,4个未知参数,2个分段函数 def piecewise_linear(x, x0, y0, k1, k2): # x<x0 ⇒ lambda x: k1*x + y0 - k1*x0 # x>=x0 ⇒ lambda x: k2*x + y0 - k2*x0 return np.piecewise(x, [x < x0, x >= x0], [lambda x:k1*x + y0-k1*x0, lambda x:k2*x + y0-k2*x0]) def gauss(mean, scale, x=np.linspace(1,22,22), sigma=4): return scale * np.exp(-np.square(x - mean) / (2 * sigma ** 2)) # # 用已有的 (x, y) 去拟合 piecewise_linear 分段函数 # p , e = optimize.curve_fit(piecewise_linear, x, y) # xd = np.linspace(0, 15, 100) # plt.plot(x, y, "o") # plt.plot(xd, piecewise_linear(xd, *p)) # plt.savefig('123.png') xi = np.linspace(1,22,22) information_matrix = np.zeros((22)) x = [1, 13] for i in range(len(x)): information_matrix += gauss(x[i],1) # plt.plot(xi, information_matrix) plt.plot(xi, information_matrix) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.square", "numpy.zeros", "numpy.array", "numpy.linspace", "numpy.piecewise" ]
[((87, 166), 'numpy.array', 'np.array', (['[1, 1.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]'], {'dtype': 'float'}), '([1, 1.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=float)\n', (95, 166), True, 'import numpy as np\n'), ((172, 276), 'numpy.array', 'np.array', (['[5, 3, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, 112.25, \n 126.14, 140.03]'], {}), '([5, 3, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 84.47, 98.36, \n 112.25, 126.14, 140.03])\n', (180, 276), True, 'import numpy as np\n'), ((935, 957), 'numpy.linspace', 'np.linspace', (['(1)', '(22)', '(22)'], {}), '(1, 22, 22)\n', (946, 957), True, 'import numpy as np\n'), ((978, 990), 'numpy.zeros', 'np.zeros', (['(22)'], {}), '(22)\n', (986, 990), True, 'import numpy as np\n'), ((1107, 1139), 'matplotlib.pyplot.plot', 'plt.plot', (['xi', 'information_matrix'], {}), '(xi, information_matrix)\n', (1115, 1139), True, 'import matplotlib.pyplot as plt\n'), ((1141, 1151), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1149, 1151), True, 'import matplotlib.pyplot as plt\n'), ((451, 557), 'numpy.piecewise', 'np.piecewise', (['x', '[x < x0, x >= x0]', '[lambda x: k1 * x + y0 - k1 * x0, lambda x: k2 * x + y0 - k2 * x0]'], {}), '(x, [x < x0, x >= x0], [lambda x: k1 * x + y0 - k1 * x0, lambda\n x: k2 * x + y0 - k2 * x0])\n', (463, 557), True, 'import numpy as np\n'), ((605, 627), 'numpy.linspace', 'np.linspace', (['(1)', '(22)', '(22)'], {}), '(1, 22, 22)\n', (616, 627), True, 'import numpy as np\n'), ((665, 684), 'numpy.square', 'np.square', (['(x - mean)'], {}), '(x - mean)\n', (674, 684), True, 'import numpy as np\n')]
# %% """ <NAME> любит французские багеты. Длина французского багета равна 1 метру. За один заглот <NAME> заглатывает кусок случайной длины равномерно распределенной на отрезке [0; 1]. Для того, чтобы съесть весь багет удаву потребуется случайное количество N заглотов. Оцените P(N=2), P(N=3), E(N) """ # %% import numpy as np import pandas as pd from random import uniform # %% uniform(a=0, b=1) list(range(7)) # %% def eat_baget(): """ Симулятор <NAME>. Возвращает число укусов, потребовавшееся на один багет. """ n_ukusov = 0 baget = 1 while baget > 0: zaglot = uniform(a=0, b=1) baget -= zaglot n_ukusov += 1 return n_ukusov # %% eat_baget() # %% n_exp = 1000 udaff_life = [eat_baget() for i in range(n_exp)] udaff_life EN_hat = np.mean(udaff_life) EN_hat PNeq2_hat = udaff_life.count(2) / n_exp PNeq2_hat PNeq3_hat = udaff_life.count(3) / n_exp PNeq3_hat # %% """ <NAME> подбрасывает кубик до первой шестёрки. Обозначим: величина N — число бросков. Событие A — при подбрасываниях выпадала только чётная грань. Оцените P(N=2), P(N=3), E(N) Оцените P(A), P(N=2|A), P(A|N=2), P(A OR N=2), P(A AND N=2) """ # %% from random import randint # %% randint(a=1, b=2) # %% 7 // 2 # %% 7 % 2 def throw_until_six(): """ Подбрасываем кубик до первой шестёрки. Считаем число бросков. И следим за тем, выпадали ли только четные числа. Возвращает: (число бросков, True/False) """ n_broskov = 0 tolko_chet = True brosok = -1 # вымышленный бросок, только чтобы зайти в цикл while brosok < 6: brosok = randint(1, 6) n_broskov += 1 if brosok % 2 == 1: tolko_chet = False return (n_broskov, tolko_chet) # %% throw_until_six() n_exp = 1000 throw_list = [throw_until_six() for i in range(n_exp)] throw_list # %% throw_df = pd.DataFrame(throw_list, columns=['n_throw', 'only_even']) throw_df.describe() # %% """ Накануне войны Жестокий Тиран очень большой страны издал указ. Отныне за каждого новорождённого мальчика семья получает денежную премию, но если в семье рождается вторая девочка, то всю семью убивают. Бедные жители страны запуганы и остро нуждаются в деньгах, поэтому в каждой семье дети будут появляться до тех пор, пока не родится первая девочка. а) Каким будет среднее число детей в семье? б) Какой будет доля мальчиков в стране? в) Какой будет средняя доля мальчиков в случайной семье? г) Сколько в среднем мальчиков в случайно выбираемой семье? """
[ "pandas.DataFrame", "numpy.mean", "random.randint", "random.uniform" ]
[((381, 398), 'random.uniform', 'uniform', ([], {'a': '(0)', 'b': '(1)'}), '(a=0, b=1)\n', (388, 398), False, 'from random import uniform\n'), ((795, 814), 'numpy.mean', 'np.mean', (['udaff_life'], {}), '(udaff_life)\n', (802, 814), True, 'import numpy as np\n'), ((1218, 1235), 'random.randint', 'randint', ([], {'a': '(1)', 'b': '(2)'}), '(a=1, b=2)\n', (1225, 1235), False, 'from random import randint\n'), ((1862, 1920), 'pandas.DataFrame', 'pd.DataFrame', (['throw_list'], {'columns': "['n_throw', 'only_even']"}), "(throw_list, columns=['n_throw', 'only_even'])\n", (1874, 1920), True, 'import pandas as pd\n'), ((604, 621), 'random.uniform', 'uniform', ([], {'a': '(0)', 'b': '(1)'}), '(a=0, b=1)\n', (611, 621), False, 'from random import uniform\n'), ((1610, 1623), 'random.randint', 'randint', (['(1)', '(6)'], {}), '(1, 6)\n', (1617, 1623), False, 'from random import randint\n')]
import pandas as pd import numpy as np from matplotlib.collections import PatchCollection, LineCollection from descartes.patch import PolygonPatch try: import geopandas # noqa: F401 except ImportError: HAS_GEOPANDAS = False else: HAS_GEOPANDAS = True from ..doctools import document from ..exceptions import PlotnineError from ..utils import to_rgba, SIZE_FACTOR from .geom import geom from .geom_point import geom_point @document class geom_map(geom): """ Draw map feature The map feature are drawn without any special projections. {usage} Parameters ---------- {common_parameters} Notes ----- This geom is best suited for plotting a shapefile read into geopandas dataframe. The dataframe should have a ``geometry`` column. """ DEFAULT_AES = {'alpha': 1, 'color': '#111111', 'fill': '#333333', 'linetype': 'solid', 'shape': 'o', 'size': 0.5, 'stroke': 0.5} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity', 'na_rm': False} REQUIRED_AES = {'geometry'} legend_geom = 'polygon' def __init__(self, mapping=None, data=None, **kwargs): if not HAS_GEOPANDAS: raise PlotnineError( "geom_map requires geopandas. " "Please install geopandas." ) geom.__init__(self, mapping, data, **kwargs) # Almost all geodataframes loaded from shapefiles # have a geometry column. if 'geometry' not in self.mapping: self.mapping['geometry'] = 'geometry' def setup_data(self, data): if not len(data): return data # Remove any NULL geometries, and remember # All the non-Null shapes in a shapefile are required to be # of the same shape type. bool_idx = np.array([g is not None for g in data['geometry']]) if not np.all(bool_idx): data = data.loc[bool_idx] # Add polygon limits. Scale training uses them try: bounds = data['geometry'].bounds except AttributeError: # The geometry is not a GeoSeries # Bounds calculation is extracted from # geopandas.base.GeoPandasBase.bounds bounds = pd.DataFrame( np.array([x.bounds for x in data['geometry']]), columns=['xmin', 'ymin', 'xmax', 'ymax'], index=data.index) else: bounds.rename( columns={ 'minx': 'xmin', 'maxx': 'xmax', 'miny': 'ymin', 'maxy': 'ymax' }, inplace=True) data = pd.concat([data, bounds], axis=1) return data def draw_panel(self, data, panel_params, coord, ax, **params): if not len(data): return data data.loc[data['color'].isnull(), 'color'] = 'none' data.loc[data['fill'].isnull(), 'fill'] = 'none' data['fill'] = to_rgba(data['fill'], data['alpha']) geom_type = data.geometry.iloc[0].geom_type if geom_type in ('Polygon', 'MultiPolygon'): data['size'] *= SIZE_FACTOR patches = [PolygonPatch(g) for g in data['geometry']] coll = PatchCollection( patches, edgecolor=data['color'], facecolor=data['fill'], linestyle=data['linetype'], linewidth=data['size'], zorder=params['zorder'], ) ax.add_collection(coll) elif geom_type == 'Point': # Extract point coordinates from shapely geom # and plot with geom_point arr = np.array([list(g.coords)[0] for g in data['geometry']]) data['x'] = arr[:, 0] data['y'] = arr[:, 1] for _, gdata in data.groupby('group'): gdata.reset_index(inplace=True, drop=True) gdata.is_copy = None geom_point.draw_group( gdata, panel_params, coord, ax, **params) elif geom_type == 'LineString': data['size'] *= SIZE_FACTOR data['color'] = to_rgba(data['color'], data['alpha']) segments = [list(g.coords) for g in data['geometry']] coll = LineCollection( segments, edgecolor=data['color'], linewidth=data['size'], linestyle=data['linetype'], zorder=params['zorder']) ax.add_collection(coll)
[ "matplotlib.collections.LineCollection", "descartes.patch.PolygonPatch", "numpy.array", "matplotlib.collections.PatchCollection", "pandas.concat", "numpy.all" ]
[((1860, 1913), 'numpy.array', 'np.array', (["[(g is not None) for g in data['geometry']]"], {}), "([(g is not None) for g in data['geometry']])\n", (1868, 1913), True, 'import numpy as np\n'), ((2741, 2774), 'pandas.concat', 'pd.concat', (['[data, bounds]'], {'axis': '(1)'}), '([data, bounds], axis=1)\n', (2750, 2774), True, 'import pandas as pd\n'), ((1927, 1943), 'numpy.all', 'np.all', (['bool_idx'], {}), '(bool_idx)\n', (1933, 1943), True, 'import numpy as np\n'), ((3321, 3480), 'matplotlib.collections.PatchCollection', 'PatchCollection', (['patches'], {'edgecolor': "data['color']", 'facecolor': "data['fill']", 'linestyle': "data['linetype']", 'linewidth': "data['size']", 'zorder': "params['zorder']"}), "(patches, edgecolor=data['color'], facecolor=data['fill'],\n linestyle=data['linetype'], linewidth=data['size'], zorder=params['zorder']\n )\n", (3336, 3480), False, 'from matplotlib.collections import PatchCollection, LineCollection\n'), ((3259, 3274), 'descartes.patch.PolygonPatch', 'PolygonPatch', (['g'], {}), '(g)\n', (3271, 3274), False, 'from descartes.patch import PolygonPatch\n'), ((2326, 2372), 'numpy.array', 'np.array', (["[x.bounds for x in data['geometry']]"], {}), "([x.bounds for x in data['geometry']])\n", (2334, 2372), True, 'import numpy as np\n'), ((4372, 4502), 'matplotlib.collections.LineCollection', 'LineCollection', (['segments'], {'edgecolor': "data['color']", 'linewidth': "data['size']", 'linestyle': "data['linetype']", 'zorder': "params['zorder']"}), "(segments, edgecolor=data['color'], linewidth=data['size'],\n linestyle=data['linetype'], zorder=params['zorder'])\n", (4386, 4502), False, 'from matplotlib.collections import PatchCollection, LineCollection\n')]
# Copyright 2021 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import random import logging import numpy as np import pandas as pd from sklearn.model_selection import KFold, StratifiedKFold class DataLoader: def __init__(self, config, logger): # Initialize Dataloader Configuration logging.info('[DATALOADER]: Initializing Spectrometer Dataloader') self.config = config self.dl_cfg = self.config['dataloader'] # Initialize PRNG Seed Values if self.dl_cfg.enable_seed: random.seed(self.dl_cfg.seed) np.random.seed(self.dl_cfg.seed) # Load Dataset logging.info('[DATALOADER]: Loading Dataset Files') logging.info('[DATALOADER]: > Loading File: ' + self.dl_cfg.data_path) # Preprocess Data raw_data = open(self.dl_cfg.data_path, 'r').read().split('\n\n') data = [] for row in raw_data: if len(row) == 0: continue row = row.replace('(', '').replace(')', '').strip() row = row.replace('\n', ' ').split(' ')[2:] row = list(map(lambda x: float(x), row)) if row[0] == 0: row[0] = 1.0 # Replace Encoding data.append(row) self.data = np.array(data) logging.info('[DATALOADER]: > Loaded: ' + self.dl_cfg.data_path + '\t' + \ 'Data Shape: ' + str(self.data.shape)) def get_data(self): # Initialize Crossfold Validation if self.dl_cfg.crossval.stratified: kf = StratifiedKFold(n_splits=self.dl_cfg.crossval.folds, shuffle=self.dl_cfg.crossval.shuffle, random_state=self.dl_cfg.crossval.random_state) else: kf = KFold(n_splits=self.dl_cfg.crossval.folds, shuffle=self.dl_cfg.crossval.shuffle, random_state=self.dl_cfg.crossval.random_state) for fold, (train_index, test_index) in enumerate(kf.split(self.data)): # Initialize Data Features and Labels X_train = self.data[train_index, 1:] y_train = self.data[train_index, 0].astype(int) - 1 X_test = self.data[test_index, 1:] y_test = self.data[test_index, 0].astype(int) - 1 # Set Dataloader Attributes self.num_class = len(np.unique(y_train)) yield fold, X_train, y_train, X_test, y_test
[ "numpy.random.seed", "sklearn.model_selection.KFold", "logging.info", "random.seed", "numpy.array", "sklearn.model_selection.StratifiedKFold", "numpy.unique" ]
[((854, 920), 'logging.info', 'logging.info', (['"""[DATALOADER]: Initializing Spectrometer Dataloader"""'], {}), "('[DATALOADER]: Initializing Spectrometer Dataloader')\n", (866, 920), False, 'import logging\n'), ((1192, 1243), 'logging.info', 'logging.info', (['"""[DATALOADER]: Loading Dataset Files"""'], {}), "('[DATALOADER]: Loading Dataset Files')\n", (1204, 1243), False, 'import logging\n'), ((1252, 1322), 'logging.info', 'logging.info', (["('[DATALOADER]: > Loading File: ' + self.dl_cfg.data_path)"], {}), "('[DATALOADER]: > Loading File: ' + self.dl_cfg.data_path)\n", (1264, 1322), False, 'import logging\n'), ((1793, 1807), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (1801, 1807), True, 'import numpy as np\n'), ((1085, 1114), 'random.seed', 'random.seed', (['self.dl_cfg.seed'], {}), '(self.dl_cfg.seed)\n', (1096, 1114), False, 'import random\n'), ((1127, 1159), 'numpy.random.seed', 'np.random.seed', (['self.dl_cfg.seed'], {}), '(self.dl_cfg.seed)\n', (1141, 1159), True, 'import numpy as np\n'), ((2079, 2222), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'self.dl_cfg.crossval.folds', 'shuffle': 'self.dl_cfg.crossval.shuffle', 'random_state': 'self.dl_cfg.crossval.random_state'}), '(n_splits=self.dl_cfg.crossval.folds, shuffle=self.dl_cfg.\n crossval.shuffle, random_state=self.dl_cfg.crossval.random_state)\n', (2094, 2222), False, 'from sklearn.model_selection import KFold, StratifiedKFold\n'), ((2315, 2448), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'self.dl_cfg.crossval.folds', 'shuffle': 'self.dl_cfg.crossval.shuffle', 'random_state': 'self.dl_cfg.crossval.random_state'}), '(n_splits=self.dl_cfg.crossval.folds, shuffle=self.dl_cfg.crossval.\n shuffle, random_state=self.dl_cfg.crossval.random_state)\n', (2320, 2448), False, 'from sklearn.model_selection import KFold, StratifiedKFold\n'), ((2916, 2934), 'numpy.unique', 'np.unique', (['y_train'], {}), '(y_train)\n', (2925, 2934), True, 'import numpy as np\n')]
#!/home/roberto/anaconda3/envs/tensorflow/bin/python # Copyright 2022 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import sys import multiprocessing import time import pandas as pd import tensorflow as tf import cv2 from utils import detector_utils as detector_utils from utils import label_map_util class FasterRCNN(multiprocessing.Process): def __init__(self, input_pipe, kcf_pipe, gpu_id, num_classes, jump, video_name, player, model_name): multiprocessing.Process.__init__(self) self.input_pipe = input_pipe self.kcf_pipe = kcf_pipe self.gpu_id = gpu_id self.num_classes = num_classes self.jump = jump self.video_name = video_name self.player = player self.model_name = model_name def run(self): cwd_path = os.getcwd() path_to_ckpt = os.path.join(cwd_path, self.model_name,'frozen_inference_graph.pb') path_to_labels = os.path.join(cwd_path,'training','labelmap.pbtxt') path_to_video = os.path.join(cwd_path,self.video_name) os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(self.gpu_id) label_map = label_map_util.load_labelmap(path_to_labels) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=self.num_classes, use_display_name=True) category_index = label_map_util.create_category_index(categories) detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(path_to_ckpt, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.4 sess = tf.Session(config=config, graph=detection_graph) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') print(detection_classes) num_detections = detection_graph.get_tensor_by_name('num_detections:0') video = cv2.VideoCapture(path_to_video) num_iter = 0 while(video.isOpened()): _, frame = video.read() if not (num_iter % self.jump): if frame is None: break frame_expanded = np.expand_dims(frame, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: frame_expanded}) (box, score) = self.best_score_box(boxes, scores, classes) # Send info to both threads self.input_pipe.send((num_iter, box, score)) self.kcf_pipe.send((num_iter, box, score)) num_iter+=1 return def best_score_box(self, boxes, scores, classes): pos_max = np.where(scores==np.amax(scores[np.where(classes==self.player)])) return boxes[pos_max], scores[pos_max]
[ "os.getcwd", "utils.label_map_util.create_category_index", "utils.label_map_util.load_labelmap", "tensorflow.GraphDef", "tensorflow.Session", "numpy.expand_dims", "utils.label_map_util.convert_label_map_to_categories", "cv2.VideoCapture", "tensorflow.ConfigProto", "numpy.where", "tensorflow.gfile.GFile", "tensorflow.Graph", "tensorflow.import_graph_def", "multiprocessing.Process.__init__", "os.path.join" ]
[((996, 1034), 'multiprocessing.Process.__init__', 'multiprocessing.Process.__init__', (['self'], {}), '(self)\n', (1028, 1034), False, 'import multiprocessing\n'), ((1340, 1351), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1349, 1351), False, 'import os\n'), ((1375, 1443), 'os.path.join', 'os.path.join', (['cwd_path', 'self.model_name', '"""frozen_inference_graph.pb"""'], {}), "(cwd_path, self.model_name, 'frozen_inference_graph.pb')\n", (1387, 1443), False, 'import os\n'), ((1468, 1520), 'os.path.join', 'os.path.join', (['cwd_path', '"""training"""', '"""labelmap.pbtxt"""'], {}), "(cwd_path, 'training', 'labelmap.pbtxt')\n", (1480, 1520), False, 'import os\n'), ((1543, 1582), 'os.path.join', 'os.path.join', (['cwd_path', 'self.video_name'], {}), '(cwd_path, self.video_name)\n', (1555, 1582), False, 'import os\n'), ((1682, 1726), 'utils.label_map_util.load_labelmap', 'label_map_util.load_labelmap', (['path_to_labels'], {}), '(path_to_labels)\n', (1710, 1726), False, 'from utils import label_map_util\n'), ((1748, 1867), 'utils.label_map_util.convert_label_map_to_categories', 'label_map_util.convert_label_map_to_categories', (['label_map'], {'max_num_classes': 'self.num_classes', 'use_display_name': '(True)'}), '(label_map, max_num_classes=\n self.num_classes, use_display_name=True)\n', (1794, 1867), False, 'from utils import label_map_util\n'), ((1888, 1936), 'utils.label_map_util.create_category_index', 'label_map_util.create_category_index', (['categories'], {}), '(categories)\n', (1924, 1936), False, 'from utils import label_map_util\n'), ((1972, 1982), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1980, 1982), True, 'import tensorflow as tf\n'), ((2983, 3014), 'cv2.VideoCapture', 'cv2.VideoCapture', (['path_to_video'], {}), '(path_to_video)\n', (2999, 3014), False, 'import cv2\n'), ((2053, 2066), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (2064, 2066), True, 'import tensorflow as tf\n'), ((2317, 2333), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (2331, 2333), True, 'import tensorflow as tf\n'), ((2473, 2521), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config', 'graph': 'detection_graph'}), '(config=config, graph=detection_graph)\n', (2483, 2521), True, 'import tensorflow as tf\n'), ((2084, 2118), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['path_to_ckpt', '"""rb"""'], {}), "(path_to_ckpt, 'rb')\n", (2098, 2118), True, 'import tensorflow as tf\n'), ((2252, 2294), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['od_graph_def'], {'name': '""""""'}), "(od_graph_def, name='')\n", (2271, 2294), True, 'import tensorflow as tf\n'), ((3252, 3281), 'numpy.expand_dims', 'np.expand_dims', (['frame'], {'axis': '(0)'}), '(frame, axis=0)\n', (3266, 3281), True, 'import numpy as np\n'), ((3914, 3946), 'numpy.where', 'np.where', (['(classes == self.player)'], {}), '(classes == self.player)\n', (3922, 3946), True, 'import numpy as np\n')]
import objax from jax import vmap, grad, jacrev import jax.numpy as np from jax.scipy.linalg import cholesky, cho_factor from .utils import inv, solve, gaussian_first_derivative_wrt_mean, gaussian_second_derivative_wrt_mean from numpy.polynomial.hermite import hermgauss import numpy as onp import itertools class Cubature(objax.Module): def __init__(self, dim=None): if dim is None: # dimension of cubature not known upfront self.store = False else: # dimension known, store sigma points and weights self.store = True self.x, self.w = self.get_cubature_points_and_weights(dim) def __call__(self, dim): if self.store: return self.x, self.w else: return self.get_cubature_points_and_weights(dim) def get_cubature_points_and_weights(self, dim): raise NotImplementedError class GaussHermite(Cubature): def __init__(self, dim=None, num_cub_points=20): self.num_cub_points = num_cub_points super().__init__(dim) def get_cubature_points_and_weights(self, dim): return gauss_hermite(dim, self.num_cub_points) class UnscentedThirdOrder(Cubature): def get_cubature_points_and_weights(self, dim): return symmetric_cubature_third_order(dim) class UnscentedFifthOrder(Cubature): def get_cubature_points_and_weights(self, dim): return symmetric_cubature_fifth_order(dim) class Unscented(UnscentedFifthOrder): pass def mvhermgauss(H: int, D: int): """ This function is adapted from GPflow: https://github.com/GPflow/GPflow Return the evaluation locations 'xn', and weights 'wn' for a multivariate Gauss-Hermite quadrature. The outputs can be used to approximate the following type of integral: int exp(-x)*f(x) dx ~ sum_i w[i,:]*f(x[i,:]) :param H: Number of Gauss-Hermite evaluation points. :param D: Number of input dimensions. Needs to be known at call-time. :return: eval_locations 'x' (H**DxD), weights 'w' (H**D) """ gh_x, gh_w = hermgauss(H) x = np.array(list(itertools.product(*(gh_x,) * D))) # H**DxD w = np.prod(np.array(list(itertools.product(*(gh_w,) * D))), 1) # H**D return x, w def gauss_hermite(dim=1, num_quad_pts=20): """ Return weights and sigma-points for Gauss-Hermite cubature """ # sigma_pts, weights = hermgauss(num_quad_pts) # Gauss-Hermite sigma points and weights sigma_pts, weights = mvhermgauss(num_quad_pts, dim) sigma_pts = np.sqrt(2) * sigma_pts.T weights = weights.T * np.pi ** (-0.5 * dim) # scale weights by 1/√π return sigma_pts, weights def symmetric_cubature_third_order(dim=1, kappa=None): """ Return weights and sigma-points for the symmetric cubature rule of order 3. Uses 2dim+1 sigma-points """ if kappa is None: # kappa = 1 - dim kappa = 0 # CKF w0 = kappa / (dim + kappa) wm = 1 / (2 * (dim + kappa)) u = onp.sqrt(dim + kappa) if (dim == 1) and (kappa == 0): weights = onp.array([w0, wm, wm]) sigma_pts = onp.array([0., u, -u]) # sigma_pts = onp.array([-u, 0., u]) # weights = onp.array([wm, w0, wm]) elif (dim == 2) and (kappa == 0): weights = onp.array([w0, wm, wm, wm, wm]) sigma_pts = onp.block([[0., u, 0., -u, 0.], [0., 0., u, 0., -u]]) elif (dim == 3) and (kappa == 0): weights = onp.array([w0, wm, wm, wm, wm, wm, wm]) sigma_pts = onp.block([[0., u, 0., 0., -u, 0., 0.], [0., 0., u, 0., 0., -u, 0.], [0., 0., 0., u, 0., 0., -u]]) else: weights = onp.concatenate([onp.array([[kappa / (dim + kappa)]]), wm * onp.ones([1, 2*dim])], axis=1) sigma_pts = onp.sqrt(dim + kappa) * onp.block([onp.zeros([dim, 1]), onp.eye(dim), -onp.eye(dim)]) return sigma_pts, weights def symmetric_cubature_fifth_order(dim=1): """ Return weights and sigma-points for the symmetric cubature rule of order 5 Uses 2(dim**2)+1 sigma-points """ # The weights and sigma-points from McNamee & Stenger I0 = 1 I2 = 1 I4 = 3 I22 = 1 u = onp.sqrt(I4 / I2) A0 = I0 - dim * (I2 / I4) ** 2 * (I4 - 0.5 * (dim - 1) * I22) A1 = 0.5 * (I2 / I4) ** 2 * (I4 - (dim - 1) * I22) A2 = 0.25 * (I2 / I4) ** 2 * I22 # we implement specific cases manually to save compute if dim == 1: weights = onp.array([A0, A1, A1]) sigma_pts = onp.array([0., u, -u]) elif dim == 2: weights = onp.array([A0, A1, A1, A1, A1, A2, A2, A2, A2]) sigma_pts = onp.block([[0., u, -u, 0., 0., u, -u, u, -u], [0., 0., 0., u, -u, u, -u, -u, u]]) elif dim == 3: weights = onp.array([A0, A1, A1, A1, A1, A1, A1, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2]) sigma_pts = onp.block([[0., u, -u, 0., 0., 0., 0., u, -u, u, -u, u, -u, u, -u, 0., 0., 0., 0.], [0., 0., 0., u, -u, 0., 0., u, -u, -u, u, 0., 0., 0., 0., u, -u, u, -u], [0., 0., 0., 0., 0., u, -u, 0., 0., 0., 0., u, -u, -u, u, u, -u, -u, u]]) else: # general case U0 = sym_set(dim, []) U1 = sym_set(dim, [u]) U2 = sym_set(dim, [u, u]) sigma_pts = onp.concatenate([U0, U1, U2], axis=1) weights = onp.concatenate([A0 * onp.ones(U0.shape[1]), A1 * onp.ones(U1.shape[1]), A2 * onp.ones(U2.shape[1])]) return sigma_pts, weights def sym_set(n, gen=None): if (gen is None) or (len(gen) == 0): U = onp.zeros([n, 1]) else: lengen = len(gen) if lengen == 1: U = onp.zeros([n, 2 * n]) elif lengen == 2: U = onp.zeros([n, 2 * n * (n - 1)]) else: raise NotImplementedError ind = 0 for i in range(n): u = onp.zeros(n) u[i] = gen[0] if lengen > 1: if abs(gen[0] - gen[1]) < 1e-10: V = sym_set(n-i-1, gen[1:]) for j in range(V.shape[1]): u[i+1:] = V[:, j] U[:, 2*ind] = u U[:, 2*ind + 1] = -u ind += 1 else: raise NotImplementedError # V = sym_set(n-1, gen[1:]) # for j in range(V.shape[1]): # u[:i-1, i+1:] = V[:, j] # U = onp.concatenate([U, u, -u]) # ind += 1 else: U[:, 2*i] = u U[:, 2*i+1] = -u return U def variational_expectation_cubature(likelihood, y, post_mean, post_cov, cubature=None): """ Computes the "variational expectation" via cubature, i.e. the expected log-likelihood, and its derivatives w.r.t. the posterior mean E[log p(yₙ|fₙ)] = ∫ log p(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ with EP power a. :param likelihood: the likelihood model :param y: observed data (yₙ) [scalar] :param post_mean: posterior mean (mₙ) [scalar] :param post_cov: posterior variance (vₙ) [scalar] :param cubature: the function to compute sigma points and weights to use during cubature :return: exp_log_lik: the expected log likelihood, E[log p(yₙ|fₙ)] [scalar] dE_dm: derivative of E[log p(yₙ|fₙ)] w.r.t. mₙ [scalar] d2E_dm2: second derivative of E[log p(yₙ|fₙ)] w.r.t. mₙ [scalar] """ if cubature is None: x, w = gauss_hermite(post_mean.shape[0], 20) # Gauss-Hermite sigma points and weights else: x, w = cubature(post_mean.shape[0]) # fsigᵢ=xᵢ√(vₙ) + mₙ: scale locations according to cavity dist. sigma_points = cholesky(post_cov) @ np.atleast_2d(x) + post_mean # pre-compute wᵢ log p(yₙ|xᵢ√(2vₙ) + mₙ) weighted_log_likelihood_eval = w * likelihood.evaluate_log_likelihood(y, sigma_points) # Compute expected log likelihood via cubature: # E[log p(yₙ|fₙ)] = ∫ log p(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ p(yₙ|fsigᵢ) exp_log_lik = np.sum( weighted_log_likelihood_eval ) # Compute first derivative via cubature: # dE[log p(yₙ|fₙ)]/dmₙ = ∫ (fₙ-mₙ) vₙ⁻¹ log p(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ (fₙ-mₙ) vₙ⁻¹ log p(yₙ|fsigᵢ) invv = np.diag(post_cov)[:, None] ** -1 dE_dm = np.sum( invv * (sigma_points - post_mean) * weighted_log_likelihood_eval, axis=-1 )[:, None] # Compute second derivative via cubature (deriv. w.r.t. var = 0.5 * 2nd deriv. w.r.t. mean): # dE[log p(yₙ|fₙ)]/dvₙ = ∫ [(fₙ-mₙ)² vₙ⁻² - vₙ⁻¹]/2 log p(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ [(fₙ-mₙ)² vₙ⁻² - vₙ⁻¹]/2 log p(yₙ|fsigᵢ) dE_dv = np.sum( (0.5 * (invv ** 2 * (sigma_points - post_mean) ** 2) - 0.5 * invv) * weighted_log_likelihood_eval, axis=-1 ) dE_dv = np.diag(dE_dv) d2E_dm2 = 2 * dE_dv return exp_log_lik, dE_dm, d2E_dm2 def log_density_cubature(likelihood, y, mean, cov, cubature=None): """ logZₙ = log ∫ p(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ :param likelihood: the likelihood model :param y: observed data (yₙ) [scalar] :param mean: cavity mean (mₙ) [scalar] :param cov: cavity covariance (cₙ) [scalar] :param cubature: the function to compute sigma points and weights to use during cubature :return: lZ: the log density, logZₙ [scalar] """ if cubature is None: x, w = gauss_hermite(mean.shape[0], 20) # Gauss-Hermite sigma points and weights else: x, w = cubature(mean.shape[0]) cav_cho, low = cho_factor(cov) # fsigᵢ=xᵢ√cₙ + mₙ: scale locations according to cavity dist. sigma_points = cav_cho @ np.atleast_2d(x) + mean # pre-compute wᵢ p(yₙ|xᵢ√(2vₙ) + mₙ) weighted_likelihood_eval = w * likelihood.evaluate_likelihood(y, sigma_points) # Compute partition function via cubature: # Zₙ = ∫ p(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ ≈ ∑ᵢ wᵢ p(yₙ|fsigᵢ) Z = np.sum( weighted_likelihood_eval, axis=-1 ) lZ = np.log(np.maximum(Z, 1e-8)) return lZ def moment_match_cubature(likelihood, y, cav_mean, cav_cov, power=1.0, cubature=None): """ TODO: N.B. THIS VERSION ALLOWS MULTI-DIMENSIONAL MOMENT MATCHING, BUT CAN BE UNSTABLE Perform moment matching via cubature. Moment matching involves computing the log partition function, logZₙ, and its derivatives w.r.t. the cavity mean logZₙ = log ∫ pᵃ(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ with EP power a. :param likelihood: the likelihood model :param y: observed data (yₙ) [scalar] :param cav_mean: cavity mean (mₙ) [scalar] :param cav_cov: cavity covariance (cₙ) [scalar] :param power: EP power / fraction (a) [scalar] :param cubature: the function to compute sigma points and weights to use during cubature :return: lZ: the log partition function, logZₙ [scalar] dlZ: first derivative of logZₙ w.r.t. mₙ (if derivatives=True) [scalar] d2lZ: second derivative of logZₙ w.r.t. mₙ (if derivatives=True) [scalar] """ if cubature is None: x, w = gauss_hermite(cav_mean.shape[0], 20) # Gauss-Hermite sigma points and weights else: x, w = cubature(cav_mean.shape[0]) cav_cho, low = cho_factor(cav_cov) # fsigᵢ=xᵢ√cₙ + mₙ: scale locations according to cavity dist. sigma_points = cav_cho @ np.atleast_2d(x) + cav_mean # pre-compute wᵢ pᵃ(yₙ|xᵢ√(2vₙ) + mₙ) weighted_likelihood_eval = w * likelihood.evaluate_likelihood(y, sigma_points) ** power # Compute partition function via cubature: # Zₙ = ∫ pᵃ(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ pᵃ(yₙ|fsigᵢ) Z = np.sum( weighted_likelihood_eval, axis=-1 ) lZ = np.log(np.maximum(Z, 1e-8)) Zinv = 1.0 / np.maximum(Z, 1e-8) # Compute derivative of partition function via cubature: # dZₙ/dmₙ = ∫ (fₙ-mₙ) vₙ⁻¹ pᵃ(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ (fₙ-mₙ) vₙ⁻¹ pᵃ(yₙ|fsigᵢ) d1 = vmap( gaussian_first_derivative_wrt_mean, (1, None, None, 1) )(sigma_points[..., None], cav_mean, cav_cov, weighted_likelihood_eval) dZ = np.sum(d1, axis=0) # dlogZₙ/dmₙ = (dZₙ/dmₙ) / Zₙ dlZ = Zinv * dZ # Compute second derivative of partition function via cubature: # d²Zₙ/dmₙ² = ∫ [(fₙ-mₙ)² vₙ⁻² - vₙ⁻¹] pᵃ(yₙ|fₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ [(fₙ-mₙ)² vₙ⁻² - vₙ⁻¹] pᵃ(yₙ|fsigᵢ) d2 = vmap( gaussian_second_derivative_wrt_mean, (1, None, None, 1) )(sigma_points[..., None], cav_mean, cav_cov, weighted_likelihood_eval) d2Z = np.sum(d2, axis=0) # d²logZₙ/dmₙ² = d[(dZₙ/dmₙ) / Zₙ]/dmₙ # = (d²Zₙ/dmₙ² * Zₙ - (dZₙ/dmₙ)²) / Zₙ² # = d²Zₙ/dmₙ² / Zₙ - (dlogZₙ/dmₙ)² d2lZ = -dlZ @ dlZ.T + Zinv * d2Z return lZ, dlZ, d2lZ # def statistical_linear_regression_cubature(likelihood, mean, cov, cubature=None): # """ # Perform statistical linear regression (SLR) using cubature. # We aim to find a likelihood approximation p(yₙ|fₙ) ≈ 𝓝(yₙ|Afₙ+b,Ω). # TODO: this currently assumes an additive noise model (ok for our current applications), make more general # """ # if cubature is None: # x, w = gauss_hermite(mean.shape[0], 20) # Gauss-Hermite sigma points and weights # else: # x, w = cubature(mean.shape[0]) # # fsigᵢ=xᵢ√(vₙ) + mₙ: scale locations according to cavity dist. # sigma_points = cholesky(cov) @ np.atleast_2d(x) + mean # lik_expectation, lik_covariance = likelihood.conditional_moments(sigma_points) # # Compute muₙ via cubature: # # muₙ = ∫ E[yₙ|fₙ] 𝓝(fₙ|mₙ,vₙ) dfₙ # # ≈ ∑ᵢ wᵢ E[yₙ|fsigᵢ] # mu = np.sum( # w * lik_expectation, axis=-1 # )[:, None] # # Compute variance S via cubature: # # S = ∫ [(E[yₙ|fₙ]-muₙ) (E[yₙ|fₙ]-muₙ)' + Cov[yₙ|fₙ]] 𝓝(fₙ|mₙ,vₙ) dfₙ # # ≈ ∑ᵢ wᵢ [(E[yₙ|fsigᵢ]-muₙ) (E[yₙ|fsigᵢ]-muₙ)' + Cov[yₙ|fₙ]] # # TODO: allow for multi-dim cubature # S = np.sum( # w * ((lik_expectation - mu) * (lik_expectation - mu) + lik_covariance), axis=-1 # )[:, None] # # Compute cross covariance C via cubature: # # C = ∫ (fₙ-mₙ) (E[yₙ|fₙ]-muₙ)' 𝓝(fₙ|mₙ,vₙ) dfₙ # # ≈ ∑ᵢ wᵢ (fsigᵢ -mₙ) (E[yₙ|fsigᵢ]-muₙ)' # C = np.sum( # w * (sigma_points - mean) * (lik_expectation - mu), axis=-1 # )[:, None] # # compute equivalent likelihood noise, omega # omega = S - C.T @ solve(cov, C) # # Compute derivative of z via cubature: # # d_mu = ∫ E[yₙ|fₙ] vₙ⁻¹ (fₙ-mₙ) 𝓝(fₙ|mₙ,vₙ) dfₙ # # ≈ ∑ᵢ wᵢ E[yₙ|fsigᵢ] vₙ⁻¹ (fsigᵢ-mₙ) # prec = inv(cov) # d_mu = np.sum( # # w * lik_expectation * (solve(cov, sigma_points - mean)), axis=-1 # w * lik_expectation * (prec @ (sigma_points - mean)), axis=-1 # )[None, :] # # Second derivative: # # d2_mu = -∫ E[yₙ|fₙ] vₙ⁻¹ 𝓝(fₙ|mₙ,vₙ) dfₙ + ∫ E[yₙ|fₙ] (vₙ⁻¹ (fₙ-mₙ))² 𝓝(fₙ|mₙ,vₙ) dfₙ # # ≈ ∑ᵢ wᵢ E[yₙ|fsigᵢ] ((vₙ⁻¹ (fsigᵢ-mₙ))² - vₙ⁻¹) # d2_mu = np.sum( # w * lik_expectation * (prec @ (sigma_points - mean) ** 2 - prec), axis=-1 # )[None, :] # return mu, omega, d_mu, d2_mu def statistical_linear_regression_cubature(likelihood, mean, cov, cubature=None): """ Perform statistical linear regression (SLR) using cubature. We aim to find a likelihood approximation p(yₙ|fₙ) ≈ 𝓝(yₙ|Afₙ+b,Ω). TODO: this currently assumes an additive noise model (ok for our current applications), make more general """ mu, omega = expected_conditional_mean(likelihood, mean, cov, cubature) dmu_dm = expected_conditional_mean_dm(likelihood, mean, cov, cubature) d2mu_dm2 = expected_conditional_mean_dm2(likelihood, mean, cov, cubature) return mu.reshape(-1, 1), omega, dmu_dm.reshape(1, -1), d2mu_dm2 # return mu.reshape(-1, 1), omega, dmu_dm[None], np.swapaxes(d2mu_dm2, axis1=0, axis2=2) def expected_conditional_mean(likelihood, mean, cov, cubature=None): """ Compute Eq[E[y|f]] = ∫ Ey[p(y|f)] 𝓝(f|mean,cov) dfₙ """ if cubature is None: x, w = gauss_hermite(mean.shape[0], 20) # Gauss-Hermite sigma points and weights else: x, w = cubature(mean.shape[0]) # fsigᵢ=xᵢ√(vₙ) + mₙ: scale locations according to cavity dist. sigma_points = cholesky(cov) @ np.atleast_2d(x) + mean lik_expectation, lik_covariance = likelihood.conditional_moments(sigma_points) # Compute muₙ via cubature: # muₙ = ∫ E[yₙ|fₙ] 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ E[yₙ|fsigᵢ] mu = np.sum( w * lik_expectation, axis=-1 )[:, None] S = np.sum( # w * ((lik_expectation - mu) @ (lik_expectation - mu).T + lik_covariance), axis=-1 # TODO: CHECK MULTI-DIM w * ((lik_expectation - mu) ** 2 + lik_covariance), axis=-1 )[:, None] # Compute cross covariance C via cubature: # C = ∫ (fₙ-mₙ) (E[yₙ|fₙ]-muₙ)' 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ (fsigᵢ -mₙ) (E[yₙ|fsigᵢ]-muₙ)' C = np.sum( w * (sigma_points - mean) * (lik_expectation - mu), axis=-1 )[:, None] # compute equivalent likelihood noise, omega omega = S - C.T @ solve(cov, C) return np.squeeze(mu), omega def expected_conditional_mean_dm(likelihood, mean, cov, cubature=None): """ """ dmu_dm, _ = grad(expected_conditional_mean, argnums=1, has_aux=True)(likelihood, mean, cov, cubature) return np.squeeze(dmu_dm) def expected_conditional_mean_dm2(likelihood, mean, cov, cubature=None): """ """ d2mu_dm2 = jacrev(expected_conditional_mean_dm, argnums=1)(likelihood, mean, cov, cubature) return d2mu_dm2 def predict_cubature(likelihood, mean_f, var_f, cubature=None): """ predict in data space given predictive mean and var of the latent function """ if cubature is None: x, w = gauss_hermite(mean_f.shape[0], 20) # Gauss-Hermite sigma points and weights else: x, w = cubature(mean_f.shape[0]) chol_f, low = cho_factor(var_f) # fsigᵢ=xᵢ√cₙ + mₙ: scale locations according to latent dist. sigma_points = chol_f @ np.atleast_2d(x) + mean_f # Compute moments via cubature: # E[y] = ∫ E[yₙ|fₙ] 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ E[yₙ|fₙ] # E[y^2] = ∫ (Cov[yₙ|fₙ] + E[yₙ|fₙ]^2) 𝓝(fₙ|mₙ,vₙ) dfₙ # ≈ ∑ᵢ wᵢ (Cov[yₙ|fₙ] + E[yₙ|fₙ]^2) conditional_expectation, conditional_covariance = likelihood.conditional_moments(sigma_points) expected_y = np.sum(w * conditional_expectation, axis=-1) expected_y_squared = np.sum(w * (conditional_covariance + conditional_expectation ** 2), axis=-1) # Cov[y] = E[y^2] - E[y]^2 covariance_y = expected_y_squared - expected_y ** 2 return expected_y, covariance_y
[ "numpy.polynomial.hermite.hermgauss", "jax.numpy.atleast_2d", "numpy.ones", "jax.numpy.squeeze", "itertools.product", "jax.numpy.diag", "jax.numpy.sum", "jax.vmap", "jax.numpy.maximum", "jax.scipy.linalg.cho_factor", "numpy.concatenate", "numpy.block", "jax.jacrev", "jax.scipy.linalg.cholesky", "numpy.zeros", "numpy.array", "jax.grad", "numpy.eye", "jax.numpy.sqrt", "numpy.sqrt" ]
[((2062, 2074), 'numpy.polynomial.hermite.hermgauss', 'hermgauss', (['H'], {}), '(H)\n', (2071, 2074), False, 'from numpy.polynomial.hermite import hermgauss\n'), ((2977, 2998), 'numpy.sqrt', 'onp.sqrt', (['(dim + kappa)'], {}), '(dim + kappa)\n', (2985, 2998), True, 'import numpy as onp\n'), ((4231, 4248), 'numpy.sqrt', 'onp.sqrt', (['(I4 / I2)'], {}), '(I4 / I2)\n', (4239, 4248), True, 'import numpy as onp\n'), ((8243, 8279), 'jax.numpy.sum', 'np.sum', (['weighted_log_likelihood_eval'], {}), '(weighted_log_likelihood_eval)\n', (8249, 8279), True, 'import jax.numpy as np\n'), ((8917, 9035), 'jax.numpy.sum', 'np.sum', (['((0.5 * (invv ** 2 * (sigma_points - post_mean) ** 2) - 0.5 * invv) *\n weighted_log_likelihood_eval)'], {'axis': '(-1)'}), '((0.5 * (invv ** 2 * (sigma_points - post_mean) ** 2) - 0.5 * invv) *\n weighted_log_likelihood_eval, axis=-1)\n', (8923, 9035), True, 'import jax.numpy as np\n'), ((9066, 9080), 'jax.numpy.diag', 'np.diag', (['dE_dv'], {}), '(dE_dv)\n', (9073, 9080), True, 'import jax.numpy as np\n'), ((9783, 9798), 'jax.scipy.linalg.cho_factor', 'cho_factor', (['cov'], {}), '(cov)\n', (9793, 9798), False, 'from jax.scipy.linalg import cholesky, cho_factor\n'), ((10155, 10196), 'jax.numpy.sum', 'np.sum', (['weighted_likelihood_eval'], {'axis': '(-1)'}), '(weighted_likelihood_eval, axis=-1)\n', (10161, 10196), True, 'import jax.numpy as np\n'), ((11438, 11457), 'jax.scipy.linalg.cho_factor', 'cho_factor', (['cav_cov'], {}), '(cav_cov)\n', (11448, 11457), False, 'from jax.scipy.linalg import cholesky, cho_factor\n'), ((11840, 11881), 'jax.numpy.sum', 'np.sum', (['weighted_likelihood_eval'], {'axis': '(-1)'}), '(weighted_likelihood_eval, axis=-1)\n', (11846, 11881), True, 'import jax.numpy as np\n'), ((12300, 12318), 'jax.numpy.sum', 'np.sum', (['d1'], {'axis': '(0)'}), '(d1, axis=0)\n', (12306, 12318), True, 'import jax.numpy as np\n'), ((12736, 12754), 'jax.numpy.sum', 'np.sum', (['d2'], {'axis': '(0)'}), '(d2, axis=0)\n', (12742, 12754), True, 'import jax.numpy as np\n'), ((17507, 17525), 'jax.numpy.squeeze', 'np.squeeze', (['dmu_dm'], {}), '(dmu_dm)\n', (17517, 17525), True, 'import jax.numpy as np\n'), ((18080, 18097), 'jax.scipy.linalg.cho_factor', 'cho_factor', (['var_f'], {}), '(var_f)\n', (18090, 18097), False, 'from jax.scipy.linalg import cholesky, cho_factor\n'), ((18544, 18588), 'jax.numpy.sum', 'np.sum', (['(w * conditional_expectation)'], {'axis': '(-1)'}), '(w * conditional_expectation, axis=-1)\n', (18550, 18588), True, 'import jax.numpy as np\n'), ((18614, 18690), 'jax.numpy.sum', 'np.sum', (['(w * (conditional_covariance + conditional_expectation ** 2))'], {'axis': '(-1)'}), '(w * (conditional_covariance + conditional_expectation ** 2), axis=-1)\n', (18620, 18690), True, 'import jax.numpy as np\n'), ((2522, 2532), 'jax.numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2529, 2532), True, 'import jax.numpy as np\n'), ((3053, 3076), 'numpy.array', 'onp.array', (['[w0, wm, wm]'], {}), '([w0, wm, wm])\n', (3062, 3076), True, 'import numpy as onp\n'), ((3097, 3120), 'numpy.array', 'onp.array', (['[0.0, u, -u]'], {}), '([0.0, u, -u])\n', (3106, 3120), True, 'import numpy as onp\n'), ((4501, 4524), 'numpy.array', 'onp.array', (['[A0, A1, A1]'], {}), '([A0, A1, A1])\n', (4510, 4524), True, 'import numpy as onp\n'), ((4545, 4568), 'numpy.array', 'onp.array', (['[0.0, u, -u]'], {}), '([0.0, u, -u])\n', (4554, 4568), True, 'import numpy as onp\n'), ((5714, 5731), 'numpy.zeros', 'onp.zeros', (['[n, 1]'], {}), '([n, 1])\n', (5723, 5731), True, 'import numpy as onp\n'), ((8532, 8617), 'jax.numpy.sum', 'np.sum', (['(invv * (sigma_points - post_mean) * weighted_log_likelihood_eval)'], {'axis': '(-1)'}), '(invv * (sigma_points - post_mean) * weighted_log_likelihood_eval,\n axis=-1)\n', (8538, 8617), True, 'import jax.numpy as np\n'), ((10227, 10247), 'jax.numpy.maximum', 'np.maximum', (['Z', '(1e-08)'], {}), '(Z, 1e-08)\n', (10237, 10247), True, 'import jax.numpy as np\n'), ((11912, 11932), 'jax.numpy.maximum', 'np.maximum', (['Z', '(1e-08)'], {}), '(Z, 1e-08)\n', (11922, 11932), True, 'import jax.numpy as np\n'), ((11950, 11970), 'jax.numpy.maximum', 'np.maximum', (['Z', '(1e-08)'], {}), '(Z, 1e-08)\n', (11960, 11970), True, 'import jax.numpy as np\n'), ((12146, 12206), 'jax.vmap', 'vmap', (['gaussian_first_derivative_wrt_mean', '(1, None, None, 1)'], {}), '(gaussian_first_derivative_wrt_mean, (1, None, None, 1))\n', (12150, 12206), False, 'from jax import vmap, grad, jacrev\n'), ((12580, 12641), 'jax.vmap', 'vmap', (['gaussian_second_derivative_wrt_mean', '(1, None, None, 1)'], {}), '(gaussian_second_derivative_wrt_mean, (1, None, None, 1))\n', (12584, 12641), False, 'from jax import vmap, grad, jacrev\n'), ((16661, 16697), 'jax.numpy.sum', 'np.sum', (['(w * lik_expectation)'], {'axis': '(-1)'}), '(w * lik_expectation, axis=-1)\n', (16667, 16697), True, 'import jax.numpy as np\n'), ((16729, 16796), 'jax.numpy.sum', 'np.sum', (['(w * ((lik_expectation - mu) ** 2 + lik_covariance))'], {'axis': '(-1)'}), '(w * ((lik_expectation - mu) ** 2 + lik_covariance), axis=-1)\n', (16735, 16796), True, 'import jax.numpy as np\n'), ((17091, 17158), 'jax.numpy.sum', 'np.sum', (['(w * (sigma_points - mean) * (lik_expectation - mu))'], {'axis': '(-1)'}), '(w * (sigma_points - mean) * (lik_expectation - mu), axis=-1)\n', (17097, 17158), True, 'import jax.numpy as np\n'), ((17278, 17292), 'jax.numpy.squeeze', 'np.squeeze', (['mu'], {}), '(mu)\n', (17288, 17292), True, 'import jax.numpy as np\n'), ((17406, 17462), 'jax.grad', 'grad', (['expected_conditional_mean'], {'argnums': '(1)', 'has_aux': '(True)'}), '(expected_conditional_mean, argnums=1, has_aux=True)\n', (17410, 17462), False, 'from jax import vmap, grad, jacrev\n'), ((17632, 17679), 'jax.jacrev', 'jacrev', (['expected_conditional_mean_dm'], {'argnums': '(1)'}), '(expected_conditional_mean_dm, argnums=1)\n', (17638, 17679), False, 'from jax import vmap, grad, jacrev\n'), ((2097, 2130), 'itertools.product', 'itertools.product', (['*((gh_x,) * D)'], {}), '(*((gh_x,) * D))\n', (2114, 2130), False, 'import itertools\n'), ((3265, 3296), 'numpy.array', 'onp.array', (['[w0, wm, wm, wm, wm]'], {}), '([w0, wm, wm, wm, wm])\n', (3274, 3296), True, 'import numpy as onp\n'), ((3317, 3376), 'numpy.block', 'onp.block', (['[[0.0, u, 0.0, -u, 0.0], [0.0, 0.0, u, 0.0, -u]]'], {}), '([[0.0, u, 0.0, -u, 0.0], [0.0, 0.0, u, 0.0, -u]])\n', (3326, 3376), True, 'import numpy as onp\n'), ((4605, 4652), 'numpy.array', 'onp.array', (['[A0, A1, A1, A1, A1, A2, A2, A2, A2]'], {}), '([A0, A1, A1, A1, A1, A2, A2, A2, A2])\n', (4614, 4652), True, 'import numpy as onp\n'), ((4673, 4765), 'numpy.block', 'onp.block', (['[[0.0, u, -u, 0.0, 0.0, u, -u, u, -u], [0.0, 0.0, 0.0, u, -u, u, -u, -u, u]]'], {}), '([[0.0, u, -u, 0.0, 0.0, u, -u, u, -u], [0.0, 0.0, 0.0, u, -u, u, \n -u, -u, u]])\n', (4682, 4765), True, 'import numpy as onp\n'), ((5809, 5830), 'numpy.zeros', 'onp.zeros', (['[n, 2 * n]'], {}), '([n, 2 * n])\n', (5818, 5830), True, 'import numpy as onp\n'), ((6017, 6029), 'numpy.zeros', 'onp.zeros', (['n'], {}), '(n)\n', (6026, 6029), True, 'import numpy as onp\n'), ((7890, 7908), 'jax.scipy.linalg.cholesky', 'cholesky', (['post_cov'], {}), '(post_cov)\n', (7898, 7908), False, 'from jax.scipy.linalg import cholesky, cho_factor\n'), ((7911, 7927), 'jax.numpy.atleast_2d', 'np.atleast_2d', (['x'], {}), '(x)\n', (7924, 7927), True, 'import jax.numpy as np\n'), ((8487, 8504), 'jax.numpy.diag', 'np.diag', (['post_cov'], {}), '(post_cov)\n', (8494, 8504), True, 'import jax.numpy as np\n'), ((9894, 9910), 'jax.numpy.atleast_2d', 'np.atleast_2d', (['x'], {}), '(x)\n', (9907, 9910), True, 'import jax.numpy as np\n'), ((11553, 11569), 'jax.numpy.atleast_2d', 'np.atleast_2d', (['x'], {}), '(x)\n', (11566, 11569), True, 'import jax.numpy as np\n'), ((16429, 16442), 'jax.scipy.linalg.cholesky', 'cholesky', (['cov'], {}), '(cov)\n', (16437, 16442), False, 'from jax.scipy.linalg import cholesky, cho_factor\n'), ((16445, 16461), 'jax.numpy.atleast_2d', 'np.atleast_2d', (['x'], {}), '(x)\n', (16458, 16461), True, 'import jax.numpy as np\n'), ((18192, 18208), 'jax.numpy.atleast_2d', 'np.atleast_2d', (['x'], {}), '(x)\n', (18205, 18208), True, 'import jax.numpy as np\n'), ((2171, 2204), 'itertools.product', 'itertools.product', (['*((gh_w,) * D)'], {}), '(*((gh_w,) * D))\n', (2188, 2204), False, 'import itertools\n'), ((3459, 3498), 'numpy.array', 'onp.array', (['[w0, wm, wm, wm, wm, wm, wm]'], {}), '([w0, wm, wm, wm, wm, wm, wm])\n', (3468, 3498), True, 'import numpy as onp\n'), ((3519, 3637), 'numpy.block', 'onp.block', (['[[0.0, u, 0.0, 0.0, -u, 0.0, 0.0], [0.0, 0.0, u, 0.0, 0.0, -u, 0.0], [0.0, \n 0.0, 0.0, u, 0.0, 0.0, -u]]'], {}), '([[0.0, u, 0.0, 0.0, -u, 0.0, 0.0], [0.0, 0.0, u, 0.0, 0.0, -u, \n 0.0], [0.0, 0.0, 0.0, u, 0.0, 0.0, -u]])\n', (3528, 3637), True, 'import numpy as onp\n'), ((4823, 4914), 'numpy.array', 'onp.array', (['[A0, A1, A1, A1, A1, A1, A1, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2]'], {}), '([A0, A1, A1, A1, A1, A1, A1, A2, A2, A2, A2, A2, A2, A2, A2, A2,\n A2, A2, A2])\n', (4832, 4914), True, 'import numpy as onp\n'), ((4931, 5200), 'numpy.block', 'onp.block', (['[[0.0, u, -u, 0.0, 0.0, 0.0, 0.0, u, -u, u, -u, u, -u, u, -u, 0.0, 0.0, 0.0,\n 0.0], [0.0, 0.0, 0.0, u, -u, 0.0, 0.0, u, -u, -u, u, 0.0, 0.0, 0.0, 0.0,\n u, -u, u, -u], [0.0, 0.0, 0.0, 0.0, 0.0, u, -u, 0.0, 0.0, 0.0, 0.0, u, \n -u, -u, u, u, -u, -u, u]]'], {}), '([[0.0, u, -u, 0.0, 0.0, 0.0, 0.0, u, -u, u, -u, u, -u, u, -u, 0.0,\n 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, u, -u, 0.0, 0.0, u, -u, -u, u, 0.0, 0.0,\n 0.0, 0.0, u, -u, u, -u], [0.0, 0.0, 0.0, 0.0, 0.0, u, -u, 0.0, 0.0, 0.0,\n 0.0, u, -u, -u, u, u, -u, -u, u]])\n', (4940, 5200), True, 'import numpy as onp\n'), ((5373, 5410), 'numpy.concatenate', 'onp.concatenate', (['[U0, U1, U2]'], {'axis': '(1)'}), '([U0, U1, U2], axis=1)\n', (5388, 5410), True, 'import numpy as onp\n'), ((5873, 5904), 'numpy.zeros', 'onp.zeros', (['[n, 2 * n * (n - 1)]'], {}), '([n, 2 * n * (n - 1)])\n', (5882, 5904), True, 'import numpy as onp\n'), ((3830, 3851), 'numpy.sqrt', 'onp.sqrt', (['(dim + kappa)'], {}), '(dim + kappa)\n', (3838, 3851), True, 'import numpy as onp\n'), ((3736, 3772), 'numpy.array', 'onp.array', (['[[kappa / (dim + kappa)]]'], {}), '([[kappa / (dim + kappa)]])\n', (3745, 3772), True, 'import numpy as onp\n'), ((3779, 3801), 'numpy.ones', 'onp.ones', (['[1, 2 * dim]'], {}), '([1, 2 * dim])\n', (3787, 3801), True, 'import numpy as onp\n'), ((3865, 3884), 'numpy.zeros', 'onp.zeros', (['[dim, 1]'], {}), '([dim, 1])\n', (3874, 3884), True, 'import numpy as onp\n'), ((3886, 3898), 'numpy.eye', 'onp.eye', (['dim'], {}), '(dim)\n', (3893, 3898), True, 'import numpy as onp\n'), ((5451, 5472), 'numpy.ones', 'onp.ones', (['U0.shape[1]'], {}), '(U0.shape[1])\n', (5459, 5472), True, 'import numpy as onp\n'), ((5514, 5535), 'numpy.ones', 'onp.ones', (['U1.shape[1]'], {}), '(U1.shape[1])\n', (5522, 5535), True, 'import numpy as onp\n'), ((5577, 5598), 'numpy.ones', 'onp.ones', (['U2.shape[1]'], {}), '(U2.shape[1])\n', (5585, 5598), True, 'import numpy as onp\n'), ((3901, 3913), 'numpy.eye', 'onp.eye', (['dim'], {}), '(dim)\n', (3908, 3913), True, 'import numpy as onp\n')]
from RandomGenerator.randomInt import randomInt from numpy import random def randomIntSeed (start, end, seed): state = random.get_state() random.seed(seed) try: randIntSeeded = randomInt(start, end) return randIntSeeded finally: random.set_state(state)
[ "numpy.random.get_state", "numpy.random.seed", "RandomGenerator.randomInt.randomInt", "numpy.random.set_state" ]
[((124, 142), 'numpy.random.get_state', 'random.get_state', ([], {}), '()\n', (140, 142), False, 'from numpy import random\n'), ((147, 164), 'numpy.random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (158, 164), False, 'from numpy import random\n'), ((198, 219), 'RandomGenerator.randomInt.randomInt', 'randomInt', (['start', 'end'], {}), '(start, end)\n', (207, 219), False, 'from RandomGenerator.randomInt import randomInt\n'), ((270, 293), 'numpy.random.set_state', 'random.set_state', (['state'], {}), '(state)\n', (286, 293), False, 'from numpy import random\n')]
from numpy import random, pi from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt Ntrials, Nhits = 1_000_000, 0 for n in range(Ntrials): x, y, z = random.uniform(-1, 1, 3) # draw 2 samples, each uniformly distributed over (-1,1) if x**2 + y**2 + z**2 < 1: Nhits += 1 print("Monte Carlo estimator of V(3): %.5f" % ((2**3)*(Nhits / Ntrials))) print("Actual value of V(3) up to 5 decimal digits: %.5f" % (4*pi/3)) print("The relative error is %.5f%%" % (100 * abs((2**3)*(Nhits / Ntrials) - (4*pi/3))))
[ "numpy.random.uniform" ]
[((171, 195), 'numpy.random.uniform', 'random.uniform', (['(-1)', '(1)', '(3)'], {}), '(-1, 1, 3)\n', (185, 195), False, 'from numpy import random, pi\n')]
# Author: <NAME> # License: BSD import warnings from nilearn.input_data import NiftiMasker warnings.filterwarnings("ignore", category=DeprecationWarning) import os from os.path import expanduser, join import matplotlib.pyplot as plt import numpy as np import seaborn as sns from joblib import Memory, dump from joblib import Parallel, delayed from sklearn.model_selection import train_test_split from sklearn.utils import check_random_state from modl.datasets import fetch_adhd from modl.decomposition.fmri import fMRIDictFact from modl.decomposition.stability import mean_amari_discrepency from modl.plotting.fmri import display_maps from nilearn.datasets import fetch_atlas_smith_2009 from modl.utils.system import get_cache_dirs batch_size = 200 learning_rate = .92 method = 'masked' step_size = 0.01 reduction_ = 8 alpha = 1e-3 n_epochs = 4 verbose = 15 n_jobs = 70 smoothing_fwhm = 6 components_list = [20, 40, 80, 120, 200, 300, 500] n_runs = 20 dict_init = fetch_atlas_smith_2009().rsn20 dataset = fetch_adhd(n_subjects=40) data = dataset.rest.values train_data, test_data = train_test_split(data, test_size=2, random_state=0) train_imgs, train_confounds = zip(*train_data) test_imgs, test_confounds = zip(*test_data) mask = dataset.mask mem = Memory(location=get_cache_dirs()[0]) masker = NiftiMasker(mask_img=mask).fit() def fit_single(train_imgs, test_imgs, n_components, random_state): dict_fact = fMRIDictFact(smoothing_fwhm=smoothing_fwhm, method=method, step_size=step_size, mask=mask, memory=mem, memory_level=2, verbose=verbose, n_epochs=n_epochs, n_jobs=1, random_state=random_state, n_components=n_components, positive=True, learning_rate=learning_rate, batch_size=batch_size, reduction=reduction_, alpha=alpha, callback=None, ) dict_fact.fit(train_imgs, confounds=train_confounds) score = dict_fact.score(test_imgs) return dict_fact.components_, score def fit_many_runs(train_imgs, test_imgs, components_list, n_runs=10, n_jobs=1): random_states = check_random_state(0).randint(0, int(1e7), size=n_runs) cached_fit = mem.cache(fit_single) res = Parallel(n_jobs=n_jobs)(delayed(cached_fit)( train_imgs, test_imgs, n_components, random_state) for n_components in components_list for random_state in random_states ) components, scores = zip(*res) shape = (len(components_list), len(random_states)) components = np.array(components).reshape(shape).tolist() scores = np.array(scores).reshape(shape).tolist() discrepencies = [] var_discrepencies = [] best_components = [] for n_components, these_components, these_scores in zip(components_list, components, scores): discrepency, var_discrepency = mean_amari_discrepency( these_components) best_estimator = these_components[np.argmin(these_scores)] discrepencies.append(var_discrepency) var_discrepencies.append(var_discrepency) best_components.append(best_estimator) discrepencies = np.array(discrepencies) var_discrepencies = np.array(var_discrepencies) best_components = np.array(best_components) components = best_components[np.argmin(discrepencies)] return discrepencies, var_discrepencies, components output_dir = expanduser('~/output_drago4/modl/fmri_stability2') if not os.path.exists(output_dir): os.makedirs(output_dir) discrepencies, var_discrepencies, components = fit_many_runs( train_imgs, test_imgs, components_list, n_jobs=n_jobs, n_runs=n_runs) components_img = masker.inverse_transform(components) components_img.to_filename( join(output_dir, 'components.nii.gz')) dump((components_list, discrepencies, var_discrepencies), join(output_dir, 'discrepencies.pkl')) fig = plt.figure() display_maps(fig, components_img) plt.savefig(join(output_dir, 'components.pdf')) fig, ax = plt.subplots(1, 1) ax.fill_between(components_list, discrepencies - var_discrepencies, discrepencies + var_discrepencies, alpha=0.5) ax.plot(components_list, discrepencies, marker='o') ax.set_xlabel('Number of components') ax.set_ylabel('Mean Amari discrepency') sns.despine(fig) fig.suptitle('Stability selection using DL') plt.savefig(join(output_dir, 'discrepencies.pdf'))
[ "sklearn.utils.check_random_state", "modl.decomposition.fmri.fMRIDictFact", "sklearn.model_selection.train_test_split", "numpy.argmin", "matplotlib.pyplot.figure", "modl.plotting.fmri.display_maps", "os.path.join", "os.path.exists", "nilearn.datasets.fetch_atlas_smith_2009", "nilearn.input_data.NiftiMasker", "matplotlib.pyplot.subplots", "modl.datasets.fetch_adhd", "modl.decomposition.stability.mean_amari_discrepency", "modl.utils.system.get_cache_dirs", "os.makedirs", "warnings.filterwarnings", "seaborn.despine", "numpy.array", "joblib.Parallel", "joblib.delayed", "os.path.expanduser" ]
[((93, 155), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'DeprecationWarning'}), "('ignore', category=DeprecationWarning)\n", (116, 155), False, 'import warnings\n'), ((1015, 1040), 'modl.datasets.fetch_adhd', 'fetch_adhd', ([], {'n_subjects': '(40)'}), '(n_subjects=40)\n', (1025, 1040), False, 'from modl.datasets import fetch_adhd\n'), ((1092, 1143), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data'], {'test_size': '(2)', 'random_state': '(0)'}), '(data, test_size=2, random_state=0)\n', (1108, 1143), False, 'from sklearn.model_selection import train_test_split\n'), ((3957, 4007), 'os.path.expanduser', 'expanduser', (['"""~/output_drago4/modl/fmri_stability2"""'], {}), "('~/output_drago4/modl/fmri_stability2')\n", (3967, 4007), False, 'from os.path import expanduser, join\n'), ((4456, 4468), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4466, 4468), True, 'import matplotlib.pyplot as plt\n'), ((4469, 4502), 'modl.plotting.fmri.display_maps', 'display_maps', (['fig', 'components_img'], {}), '(fig, components_img)\n', (4481, 4502), False, 'from modl.plotting.fmri import display_maps\n'), ((4561, 4579), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (4573, 4579), True, 'import matplotlib.pyplot as plt\n'), ((4840, 4856), 'seaborn.despine', 'sns.despine', (['fig'], {}), '(fig)\n', (4851, 4856), True, 'import seaborn as sns\n'), ((973, 997), 'nilearn.datasets.fetch_atlas_smith_2009', 'fetch_atlas_smith_2009', ([], {}), '()\n', (995, 997), False, 'from nilearn.datasets import fetch_atlas_smith_2009\n'), ((1425, 1779), 'modl.decomposition.fmri.fMRIDictFact', 'fMRIDictFact', ([], {'smoothing_fwhm': 'smoothing_fwhm', 'method': 'method', 'step_size': 'step_size', 'mask': 'mask', 'memory': 'mem', 'memory_level': '(2)', 'verbose': 'verbose', 'n_epochs': 'n_epochs', 'n_jobs': '(1)', 'random_state': 'random_state', 'n_components': 'n_components', 'positive': '(True)', 'learning_rate': 'learning_rate', 'batch_size': 'batch_size', 'reduction': 'reduction_', 'alpha': 'alpha', 'callback': 'None'}), '(smoothing_fwhm=smoothing_fwhm, method=method, step_size=\n step_size, mask=mask, memory=mem, memory_level=2, verbose=verbose,\n n_epochs=n_epochs, n_jobs=1, random_state=random_state, n_components=\n n_components, positive=True, learning_rate=learning_rate, batch_size=\n batch_size, reduction=reduction_, alpha=alpha, callback=None)\n', (1437, 1779), False, 'from modl.decomposition.fmri import fMRIDictFact\n'), ((3702, 3725), 'numpy.array', 'np.array', (['discrepencies'], {}), '(discrepencies)\n', (3710, 3725), True, 'import numpy as np\n'), ((3750, 3777), 'numpy.array', 'np.array', (['var_discrepencies'], {}), '(var_discrepencies)\n', (3758, 3777), True, 'import numpy as np\n'), ((3800, 3825), 'numpy.array', 'np.array', (['best_components'], {}), '(best_components)\n', (3808, 3825), True, 'import numpy as np\n'), ((4016, 4042), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (4030, 4042), False, 'import os\n'), ((4048, 4071), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (4059, 4071), False, 'import os\n'), ((4308, 4345), 'os.path.join', 'join', (['output_dir', '"""components.nii.gz"""'], {}), "(output_dir, 'components.nii.gz')\n", (4312, 4345), False, 'from os.path import expanduser, join\n'), ((4410, 4447), 'os.path.join', 'join', (['output_dir', '"""discrepencies.pkl"""'], {}), "(output_dir, 'discrepencies.pkl')\n", (4414, 4447), False, 'from os.path import expanduser, join\n'), ((4515, 4549), 'os.path.join', 'join', (['output_dir', '"""components.pdf"""'], {}), "(output_dir, 'components.pdf')\n", (4519, 4549), False, 'from os.path import expanduser, join\n'), ((4914, 4951), 'os.path.join', 'join', (['output_dir', '"""discrepencies.pdf"""'], {}), "(output_dir, 'discrepencies.pdf')\n", (4918, 4951), False, 'from os.path import expanduser, join\n'), ((1307, 1333), 'nilearn.input_data.NiftiMasker', 'NiftiMasker', ([], {'mask_img': 'mask'}), '(mask_img=mask)\n', (1318, 1333), False, 'from nilearn.input_data import NiftiMasker\n'), ((2600, 2623), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'n_jobs'}), '(n_jobs=n_jobs)\n', (2608, 2623), False, 'from joblib import Parallel, delayed\n'), ((3417, 3457), 'modl.decomposition.stability.mean_amari_discrepency', 'mean_amari_discrepency', (['these_components'], {}), '(these_components)\n', (3439, 3457), False, 'from modl.decomposition.stability import mean_amari_discrepency\n'), ((3859, 3883), 'numpy.argmin', 'np.argmin', (['discrepencies'], {}), '(discrepencies)\n', (3868, 3883), True, 'import numpy as np\n'), ((1277, 1293), 'modl.utils.system.get_cache_dirs', 'get_cache_dirs', ([], {}), '()\n', (1291, 1293), False, 'from modl.utils.system import get_cache_dirs\n'), ((2494, 2515), 'sklearn.utils.check_random_state', 'check_random_state', (['(0)'], {}), '(0)\n', (2512, 2515), False, 'from sklearn.utils import check_random_state\n'), ((3513, 3536), 'numpy.argmin', 'np.argmin', (['these_scores'], {}), '(these_scores)\n', (3522, 3536), True, 'import numpy as np\n'), ((2624, 2643), 'joblib.delayed', 'delayed', (['cached_fit'], {}), '(cached_fit)\n', (2631, 2643), False, 'from joblib import Parallel, delayed\n'), ((2985, 3005), 'numpy.array', 'np.array', (['components'], {}), '(components)\n', (2993, 3005), True, 'import numpy as np\n'), ((3043, 3059), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (3051, 3059), True, 'import numpy as np\n')]
""" stateinterpreter Interpretation of metastable states from MD simulations """ import sys from setuptools import setup, find_packages, Extension import versioneer import numpy os_name = sys.platform compile_args = ["-O3", "-ffast-math", "-march=native", "-fopenmp" ] libraries = ["m"] link_args = ['-fopenmp'] if os_name.startswith('darwin'): #clang compilation compile_args.insert(-1, "-Xpreprocessor") libraries.append("omp") link_args.insert(-1, "-Xpreprocessor") __cython__ = False # command line option, try-import, ... try: import Cython __cython__ = True except ModuleNotFoundError: __cython__ = False ext = '.pyx' if __cython__ else '.c' short_description = "Interpretation of metastable states from MD simulations".split("\n")[0] # from https://github.com/pytest-dev/pytest-runner#conditional-requirement needs_pytest = {'pytest', 'test', 'ptr'}.intersection(sys.argv) pytest_runner = ['pytest-runner'] if needs_pytest else [] try: with open("README.md", "r") as handle: long_description = handle.read() except: long_description = None ext_modules=[ Extension("stateinterpreter.utils._compiled_numerics", ["stateinterpreter/utils/_compiled_numerics"+ext], libraries=libraries, include_dirs=[numpy.get_include()], extra_compile_args = compile_args, extra_link_args= link_args ) ] if __cython__: from Cython.Build import cythonize ext_modules = cythonize(ext_modules) setup( # Self-descriptive entries which should always be present name='stateinterpreter', author='<NAME> <<EMAIL>>, <NAME> <pietro.<EMAIL>li.iit>"', description=short_description, long_description=long_description, long_description_content_type="text/markdown", version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), license='MIT', # Which Python importable modules should be included when your package is installed # Handled automatically by setuptools. Use 'exclude' to prevent some specific # subpackage(s) from being added, if needed packages=find_packages(), # Optional include package data to ship with your package # Customize MANIFEST.in if the general case does not suit your needs # Comment out this line to prevent the files from being packaged with your software include_package_data=True, # Allows `setup.py test` to work correctly with pytest setup_requires=[] + pytest_runner, ext_modules = ext_modules, zip_safe = False, # Additional entries you may want simply uncomment the lines you want and fill in the data # url='http://www.my_package.com', # Website # install_requires=[], # Required packages, pulls from pip if needed; do not use for Conda deployment # platforms=['Linux', # 'Mac OS-X', # 'Unix', # 'Windows'], # Valid platforms your code works on, adjust to your flavor # python_requires=">=3.5", # Python version restrictions # Manual control if final package is compressible or not, set False to prevent the .egg from being made # zip_safe=False, )
[ "versioneer.get_version", "Cython.Build.cythonize", "versioneer.get_cmdclass", "numpy.get_include", "setuptools.find_packages" ]
[((1487, 1509), 'Cython.Build.cythonize', 'cythonize', (['ext_modules'], {}), '(ext_modules)\n', (1496, 1509), False, 'from Cython.Build import cythonize\n'), ((1809, 1833), 'versioneer.get_version', 'versioneer.get_version', ([], {}), '()\n', (1831, 1833), False, 'import versioneer\n'), ((1848, 1873), 'versioneer.get_cmdclass', 'versioneer.get_cmdclass', ([], {}), '()\n', (1871, 1873), False, 'import versioneer\n'), ((2126, 2141), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (2139, 2141), False, 'from setuptools import setup, find_packages, Extension\n'), ((1297, 1316), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (1314, 1316), False, 'import numpy\n')]
# Here we provide the key functions for tile-coding. To avoid huge dimensionality expansion, we have tiled # per feature variable, but using feature-column cross functionality a pair of feature-variables # also can be tiled, and also higher orders. from typing import List import numpy as np import tensorflow as tf from tensorflow.python.ops import math_ops class Tilings(object): def __init__(self, tile_strategy_boundaries, num_tilings): self.num_tilings = num_tilings self.tile_strategy_boundaries = tile_strategy_boundaries def _get_stack_tiling_boundaries(self, boundaries) -> List[List[float]]: boundaries = np.array(boundaries) each_bucket_resolution = np.array( [float(boundaries[i + 1] - boundaries[i]) / self.num_tilings for i in range(len(boundaries) - 1)] + [0]) return [list(boundaries + i * each_bucket_resolution) for i in range(self.num_tilings)] @staticmethod def _get_tiles(input_data, list_boundaries: List[List[float]]): all_tiles = [] input_tensor = tf.cast(input_data, tf.float64) for i, boundaries in enumerate(list_boundaries): bucketized_tensor = math_ops.bucketize(input_tensor, boundaries) bucketized_tensor = tf.reshape(bucketized_tensor, (-1, 1)) bucketized_tensor = tf.math.add(bucketized_tensor, i * (len(boundaries) - 1)) all_tiles.append(bucketized_tensor) return tf.concat(all_tiles, axis=1) def get_features_tiles(self, features): features_tiles = dict() for feature_name, boundaries in self.tile_strategy_boundaries.items(): list_boundaries = self._get_stack_tiling_boundaries(boundaries) features_tiles[feature_name] = Tilings._get_tiles(features[feature_name], list_boundaries) return features_tiles
[ "tensorflow.python.ops.math_ops.bucketize", "tensorflow.reshape", "tensorflow.concat", "tensorflow.cast", "numpy.array" ]
[((652, 672), 'numpy.array', 'np.array', (['boundaries'], {}), '(boundaries)\n', (660, 672), True, 'import numpy as np\n'), ((1062, 1093), 'tensorflow.cast', 'tf.cast', (['input_data', 'tf.float64'], {}), '(input_data, tf.float64)\n', (1069, 1093), True, 'import tensorflow as tf\n'), ((1452, 1480), 'tensorflow.concat', 'tf.concat', (['all_tiles'], {'axis': '(1)'}), '(all_tiles, axis=1)\n', (1461, 1480), True, 'import tensorflow as tf\n'), ((1183, 1227), 'tensorflow.python.ops.math_ops.bucketize', 'math_ops.bucketize', (['input_tensor', 'boundaries'], {}), '(input_tensor, boundaries)\n', (1201, 1227), False, 'from tensorflow.python.ops import math_ops\n'), ((1260, 1298), 'tensorflow.reshape', 'tf.reshape', (['bucketized_tensor', '(-1, 1)'], {}), '(bucketized_tensor, (-1, 1))\n', (1270, 1298), True, 'import tensorflow as tf\n')]
import tensorflow as tf import numpy as np import src.utils as utils """ Implementation of InfoVAE https://arxiv.org/abs/1706.02262 """ def reparameterise(x, n, stddev): """ Model each output as bing guassian distributed. Use the reparameterisation trick so we can sample while remaining differentiable. """ with tf.name_scope('reparameterise'): z_mean = x[:,:,:,:n] z_stddev = x[:,:,:,n:] e = tf.random_normal(tf.shape(z_mean), stddev=stddev) # TODO log_var or stddev? return z_mean + tf.square(z_stddev)*e def compute_kernel(x, y): """ Compute the distance between x and y using a guassian kernel. """ x_size = tf.shape(x)[0] y_size = tf.shape(y)[0] dim = tf.shape(x)[1] tiled_x = tf.tile(tf.reshape(x, [x_size, 1, dim]), [1, y_size, 1]) tiled_y = tf.tile(tf.reshape(y, [1, y_size, dim]), [x_size, 1, 1]) return tf.exp(-tf.reduce_mean(tf.square(tiled_x - tiled_y), axis=2) / tf.cast(dim, tf.float32)) def compute_mmd(x, y): """ Calculate the maximum mean disrepancy.. """ x_kernel = compute_kernel(x, x) y_kernel = compute_kernel(y, y) xy_kernel = compute_kernel(x, y) return tf.reduce_mean(x_kernel) + tf.reduce_mean(y_kernel) - 2 * tf.reduce_mean(xy_kernel) def gaussian_d(x, y): """ A conceptual lack of understanding here. Do I need a dx to calculate this over? Doesnt make sense for a single point!? """ d = tf.norm(x - y, axis=1) return tf.exp(-0.5*d)/(tf.sqrt(2*tf.constant(np.pi))) def pz(z): """ Estimate p(z) using our prior on z. """ z = tf.layers.flatten(z) return gaussian_d(z , tf.zeros_like(z)) def px_z(x_, y): # the added noise in the hidden layer. return gaussian_d(tf.layers.flatten(y[:,:,:,:1]), tf.layers.flatten(x_)) def pz_x(h, z): # the added noise in the final layer. shape = h.get_shape().as_list() return gaussian_d(tf.layers.flatten(h[:,:,:,:shape[-1]//2]), tf.layers.flatten(z)) def p_bayes(x_, y, h, z): """ If p(z | x) is far away from p(z) then p(x) is low p(x) = p(x | z) p(z) / p(z | x) """ return px_z(x_, y) * pz(z) / pz_x(h, z) # def KL_divergence(p, q): # return tf.reduce_sum(p * tf.log(p/q), axis=-1) # # def bayesian_surprise(z): # """ # # """ # return kl(z, prior) class InfoVAE(): def __init__(self, n_hidden, width, depth, stddev=0.0001): """ Args: """ self.n_hidden = n_hidden self.width = width self.depth = depth self.n_channels = 1 self.stddev = stddev self.construct() def construct(self): """ Constructs: encoder (tf.keras.Model): encode the gradient into the hidden space decoder (tf.keras.Model): decodes a hidden state into an image """ layers = [] layers.append(tf.keras.layers.Conv2D(self.width, 4, strides=(2, 2), padding='same', # input_shape=(28,28,1) )) layers.append(tf.keras.layers.Activation(tf.keras.activations.selu)) for i in range(self.depth): layers.append(tf.keras.layers.Conv2D(self.width, 4, strides=(2, 2), padding='same'),) layers.append(tf.keras.layers.Activation(tf.keras.activations.selu)) layers.append(tf.keras.layers.Conv2D(self.n_hidden*2, 1, strides=(1, 1), padding='same')) self.encoder = tf.keras.Sequential(layers) # decoder layers = [] layers.append(tf.keras.layers.Conv2DTranspose(self.width, 4, strides=(2, 2), padding='same', # input_shape=(1,1,self.n_hidden) )) layers.append(tf.keras.layers.Activation(tf.keras.activations.selu)) for _ in range(self.depth): layers.append(tf.keras.layers.Conv2DTranspose(self.width, 4, strides=(2, 2), padding='same')) layers.append(tf.keras.layers.Activation(tf.keras.activations.selu)) layers.append(tf.keras.layers.Conv2DTranspose(self.n_channels*2, 1, strides=(1, 1), padding='same')) self.decoder = tf.keras.Sequential(layers) def __call__(self, x): """ Args: x (tf.tensor): the input shape is [None, width, height, channels], dtype is tf.float32 """ with tf.name_scope('infovae'): self.h = self.encoder(x) self.z = reparameterise(self.h, self.n_hidden, self.stddev) self.y = self.decoder(self.z) self.x_ = reparameterise(self.y, self.n_channels, self.stddev) return self.x_ def make_losses(self, x, y=None): self.x = x if y is None: print('...') y = self.__call__(self.x) with tf.name_scope('loss'): recon_loss = tf.losses.sigmoid_cross_entropy( logits=tf.layers.flatten(y), multi_class_labels=tf.layers.flatten(self.x)) latent_loss = compute_mmd(tf.layers.flatten(self.z), tf.layers.flatten(tf.random_normal(shape=tf.shape(self.z)))) return recon_loss, latent_loss def make_contractive_loss(self): # assumes make_losses has already been called print(self.h, self.x) dhdx = tf.gradients(self.h, self.x)[0] print(dhdx) if dhdx is None: raise ValueError() return tf.reduce_mean(tf.reduce_sum(tf.square(dhdx), axis=[1,2,3])) def estimate_density(self, x): x_ = self.__call__(x) return p_bayes(x_, self.y, self.h, self.z) @staticmethod def preprocess(x): im = np.reshape(x, [-1, 28, 28, 1]) im = np.round(im).astype(np.float32) # NOTE important !? return np.pad(im, [(0,0), (2,2), (2,2), (0,0)], 'constant', constant_values=0) if __name__ == '__main__': tf.enable_eager_execution() x = tf.random_normal((100, 28, 28, 1)) nn = InfoVAE(12, 16, 3) x_ = nn(x) # loss = nn.make_losses(x) assert x_.shape == x.shape
[ "tensorflow.reshape", "tensorflow.zeros_like", "tensorflow.keras.Sequential", "numpy.round", "numpy.pad", "tensorflow.cast", "tensorflow.keras.layers.Activation", "tensorflow.exp", "numpy.reshape", "tensorflow.gradients", "tensorflow.name_scope", "tensorflow.norm", "tensorflow.layers.flatten", "tensorflow.reduce_mean", "tensorflow.constant", "tensorflow.random_normal", "tensorflow.keras.layers.Conv2DTranspose", "tensorflow.enable_eager_execution", "tensorflow.keras.layers.Conv2D", "tensorflow.shape", "tensorflow.square" ]
[((1473, 1495), 'tensorflow.norm', 'tf.norm', (['(x - y)'], {'axis': '(1)'}), '(x - y, axis=1)\n', (1480, 1495), True, 'import tensorflow as tf\n'), ((1630, 1650), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['z'], {}), '(z)\n', (1647, 1650), True, 'import tensorflow as tf\n'), ((6352, 6379), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (6377, 6379), True, 'import tensorflow as tf\n'), ((6388, 6422), 'tensorflow.random_normal', 'tf.random_normal', (['(100, 28, 28, 1)'], {}), '((100, 28, 28, 1))\n', (6404, 6422), True, 'import tensorflow as tf\n'), ((339, 370), 'tensorflow.name_scope', 'tf.name_scope', (['"""reparameterise"""'], {}), "('reparameterise')\n", (352, 370), True, 'import tensorflow as tf\n'), ((697, 708), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (705, 708), True, 'import tensorflow as tf\n'), ((725, 736), 'tensorflow.shape', 'tf.shape', (['y'], {}), '(y)\n', (733, 736), True, 'import tensorflow as tf\n'), ((750, 761), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (758, 761), True, 'import tensorflow as tf\n'), ((787, 818), 'tensorflow.reshape', 'tf.reshape', (['x', '[x_size, 1, dim]'], {}), '(x, [x_size, 1, dim])\n', (797, 818), True, 'import tensorflow as tf\n'), ((858, 889), 'tensorflow.reshape', 'tf.reshape', (['y', '[1, y_size, dim]'], {}), '(y, [1, y_size, dim])\n', (868, 889), True, 'import tensorflow as tf\n'), ((1507, 1523), 'tensorflow.exp', 'tf.exp', (['(-0.5 * d)'], {}), '(-0.5 * d)\n', (1513, 1523), True, 'import tensorflow as tf\n'), ((1677, 1693), 'tensorflow.zeros_like', 'tf.zeros_like', (['z'], {}), '(z)\n', (1690, 1693), True, 'import tensorflow as tf\n'), ((1778, 1811), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['y[:, :, :, :1]'], {}), '(y[:, :, :, :1])\n', (1795, 1811), True, 'import tensorflow as tf\n'), ((1832, 1853), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['x_'], {}), '(x_)\n', (1849, 1853), True, 'import tensorflow as tf\n'), ((1972, 2018), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['h[:, :, :, :shape[-1] // 2]'], {}), '(h[:, :, :, :shape[-1] // 2])\n', (1989, 2018), True, 'import tensorflow as tf\n'), ((2037, 2057), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['z'], {}), '(z)\n', (2054, 2057), True, 'import tensorflow as tf\n'), ((3812, 3839), 'tensorflow.keras.Sequential', 'tf.keras.Sequential', (['layers'], {}), '(layers)\n', (3831, 3839), True, 'import tensorflow as tf\n'), ((4581, 4608), 'tensorflow.keras.Sequential', 'tf.keras.Sequential', (['layers'], {}), '(layers)\n', (4600, 4608), True, 'import tensorflow as tf\n'), ((6136, 6166), 'numpy.reshape', 'np.reshape', (['x', '[-1, 28, 28, 1]'], {}), '(x, [-1, 28, 28, 1])\n', (6146, 6166), True, 'import numpy as np\n'), ((6248, 6323), 'numpy.pad', 'np.pad', (['im', '[(0, 0), (2, 2), (2, 2), (0, 0)]', '"""constant"""'], {'constant_values': '(0)'}), "(im, [(0, 0), (2, 2), (2, 2), (0, 0)], 'constant', constant_values=0)\n", (6254, 6323), True, 'import numpy as np\n'), ((461, 477), 'tensorflow.shape', 'tf.shape', (['z_mean'], {}), '(z_mean)\n', (469, 477), True, 'import tensorflow as tf\n'), ((981, 1005), 'tensorflow.cast', 'tf.cast', (['dim', 'tf.float32'], {}), '(dim, tf.float32)\n', (988, 1005), True, 'import tensorflow as tf\n'), ((1211, 1235), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['x_kernel'], {}), '(x_kernel)\n', (1225, 1235), True, 'import tensorflow as tf\n'), ((1238, 1262), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['y_kernel'], {}), '(y_kernel)\n', (1252, 1262), True, 'import tensorflow as tf\n'), ((1269, 1294), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['xy_kernel'], {}), '(xy_kernel)\n', (1283, 1294), True, 'import tensorflow as tf\n'), ((2954, 3023), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (2976, 3023), True, 'import tensorflow as tf\n'), ((3178, 3231), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (3204, 3231), True, 'import tensorflow as tf\n'), ((3617, 3693), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(self.n_hidden * 2)', '(1)'], {'strides': '(1, 1)', 'padding': '"""same"""'}), "(self.n_hidden * 2, 1, strides=(1, 1), padding='same')\n", (3639, 3693), True, 'import tensorflow as tf\n'), ((3901, 3979), 'tensorflow.keras.layers.Conv2DTranspose', 'tf.keras.layers.Conv2DTranspose', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (3932, 3979), True, 'import tensorflow as tf\n'), ((4171, 4224), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (4197, 4224), True, 'import tensorflow as tf\n'), ((4471, 4562), 'tensorflow.keras.layers.Conv2DTranspose', 'tf.keras.layers.Conv2DTranspose', (['(self.n_channels * 2)', '(1)'], {'strides': '(1, 1)', 'padding': '"""same"""'}), "(self.n_channels * 2, 1, strides=(1, 1),\n padding='same')\n", (4502, 4562), True, 'import tensorflow as tf\n'), ((4819, 4843), 'tensorflow.name_scope', 'tf.name_scope', (['"""infovae"""'], {}), "('infovae')\n", (4832, 4843), True, 'import tensorflow as tf\n'), ((5255, 5276), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (5268, 5276), True, 'import tensorflow as tf\n'), ((5780, 5808), 'tensorflow.gradients', 'tf.gradients', (['self.h', 'self.x'], {}), '(self.h, self.x)\n', (5792, 5808), True, 'import tensorflow as tf\n'), ((553, 572), 'tensorflow.square', 'tf.square', (['z_stddev'], {}), '(z_stddev)\n', (562, 572), True, 'import tensorflow as tf\n'), ((1533, 1551), 'tensorflow.constant', 'tf.constant', (['np.pi'], {}), '(np.pi)\n', (1544, 1551), True, 'import tensorflow as tf\n'), ((3295, 3364), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (3317, 3364), True, 'import tensorflow as tf\n'), ((3540, 3593), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (3566, 3593), True, 'import tensorflow as tf\n'), ((4288, 4366), 'tensorflow.keras.layers.Conv2DTranspose', 'tf.keras.layers.Conv2DTranspose', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (4319, 4366), True, 'import tensorflow as tf\n'), ((4394, 4447), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (4420, 4447), True, 'import tensorflow as tf\n'), ((5481, 5506), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['self.z'], {}), '(self.z)\n', (5498, 5506), True, 'import tensorflow as tf\n'), ((5932, 5947), 'tensorflow.square', 'tf.square', (['dhdx'], {}), '(dhdx)\n', (5941, 5947), True, 'import tensorflow as tf\n'), ((6180, 6192), 'numpy.round', 'np.round', (['im'], {}), '(im)\n', (6188, 6192), True, 'import numpy as np\n'), ((941, 969), 'tensorflow.square', 'tf.square', (['(tiled_x - tiled_y)'], {}), '(tiled_x - tiled_y)\n', (950, 969), True, 'import tensorflow as tf\n'), ((5359, 5379), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['y'], {}), '(y)\n', (5376, 5379), True, 'import tensorflow as tf\n'), ((5416, 5441), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['self.x'], {}), '(self.x)\n', (5433, 5441), True, 'import tensorflow as tf\n'), ((5583, 5599), 'tensorflow.shape', 'tf.shape', (['self.z'], {}), '(self.z)\n', (5591, 5599), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python3 import argparse def parse_args(): p = argparse.ArgumentParser() p.add_argument('path', type=str) p.add_argument('-m', '--minpow', type=int, default=3) p.add_argument('-M', '--maxpow', type=int, default=7) p.add_argument('-s', '--step', type=int, default=2) p.add_argument('-t', '--trials', type=int, default=10) p.add_argument('--speed_funcs', type=str) return p.parse_args() # We do this ahead of time so that if we end up only printing the # usage message we don't bother with the other (e.g. MPI-related) # setup below here if __name__ == '__main__': args = parse_args() import sys if '../../build/Release' not in sys.path: sys.path.insert(0, '../../build/Release') import pyolim as olim import h5py import mpi4py.MPI import numpy as np import os.path from common3d import compute_soln, get_exact_soln, get_marcher_name, marchers, \ time_marcher from itertools import product from speedfuncs3d import get_speed_func_name, get_speed_func_by_name, \ get_soln_func, speed_funcs comm = mpi4py.MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() def rms(x): y = x.flatten() n = y.size assert(n > 0) return np.sqrt(y.dot(y)/n) def linf_error(x): return np.linalg.norm(x.flatten(), np.inf) def get_ns(args): minpow = args.minpow maxpow = args.maxpow steps = args.step ns = np.logspace(minpow, maxpow, steps*(maxpow - minpow) + 1, base=2) return (2*np.round(ns/2)).astype(int) + 1 def get_dataset_name(Marcher, s): mname = get_marcher_name(Marcher) sname = get_speed_func_name(s) return '%s/%s' % (mname.replace(' ', '_'), sname) def create_datasets(f, M_by_s, ns): for Marcher, s in M_by_s: name = get_dataset_name(Marcher, s) f.create_dataset(name + '/n', (len(ns),), dtype=np.int) for n in ns: shape = (n, n, n) f.create_dataset(name + '/u' + str(n), shape, dtype=np.float) f.create_dataset(name + '/U' + str(n), shape, dtype=np.float) f.create_dataset(name + '/rms', (len(ns),), dtype=np.float) f.create_dataset(name + '/max', (len(ns),), dtype=np.float) f.create_dataset(name + '/t', (len(ns),), dtype=np.float) def populate_datasets(Marcher, s, ns, t): name = get_dataset_name(Marcher, s) print(name) f[name + '/n'][:] = ns print('- computing exact solutions') us = [get_exact_soln(get_soln_func(s), n) for n in ns] for n, u in zip(ns, us): f[name + '/u' + str(n)][:, :, :] = u print('- computing numerical solutions') Us = [compute_soln(Marcher, s, n) for n in ns] for n, U in zip(ns, Us): f[name + '/U' + str(n)][:, :, :] = U print('- evaluating errors') f[name + '/rms'][:] = [rms(u - U) for u, U in zip(us, Us)] f[name + '/max'][:] = [linf_error(u - U) for u, U in zip(us, Us)] print('- collecting CPU times') f[name + '/t'][:] = [time_marcher(Marcher, s, n, ntrials=t) for n in ns] if __name__ == '__main__': with h5py.File(args.path, 'w', driver='mpio', comm=comm) as f: if args.speed_funcs is not None: speed_funcs_ = [ get_speed_func_by_name(name) for name in args.speed_funcs.split(',')] else: speed_funcs_ = speed_funcs() ns = get_ns(args) if rank == 0: print('Test problem sizes: ' + ', '.join(map(str, ns))) if rank == 0: print('Creating datasets') create_datasets(f, product(marchers, speed_funcs_), ns) for i, (Marcher, s) in enumerate(product(marchers, speed_funcs_)): if i % size != rank: continue populate_datasets(Marcher, s, ns, args.trials)
[ "speedfuncs3d.speed_funcs", "common3d.time_marcher", "h5py.File", "argparse.ArgumentParser", "common3d.get_marcher_name", "numpy.logspace", "sys.path.insert", "speedfuncs3d.get_soln_func", "itertools.product", "numpy.round", "common3d.compute_soln", "speedfuncs3d.get_speed_func_name", "speedfuncs3d.get_speed_func_by_name" ]
[((67, 92), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (90, 92), False, 'import argparse\n'), ((694, 735), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""../../build/Release"""'], {}), "(0, '../../build/Release')\n", (709, 735), False, 'import sys\n'), ((1395, 1461), 'numpy.logspace', 'np.logspace', (['minpow', 'maxpow', '(steps * (maxpow - minpow) + 1)'], {'base': '(2)'}), '(minpow, maxpow, steps * (maxpow - minpow) + 1, base=2)\n', (1406, 1461), True, 'import numpy as np\n'), ((1553, 1578), 'common3d.get_marcher_name', 'get_marcher_name', (['Marcher'], {}), '(Marcher)\n', (1569, 1578), False, 'from common3d import compute_soln, get_exact_soln, get_marcher_name, marchers, time_marcher\n'), ((1591, 1613), 'speedfuncs3d.get_speed_func_name', 'get_speed_func_name', (['s'], {}), '(s)\n', (1610, 1613), False, 'from speedfuncs3d import get_speed_func_name, get_speed_func_by_name, get_soln_func, speed_funcs\n'), ((2602, 2629), 'common3d.compute_soln', 'compute_soln', (['Marcher', 's', 'n'], {}), '(Marcher, s, n)\n', (2614, 2629), False, 'from common3d import compute_soln, get_exact_soln, get_marcher_name, marchers, time_marcher\n'), ((2946, 2984), 'common3d.time_marcher', 'time_marcher', (['Marcher', 's', 'n'], {'ntrials': 't'}), '(Marcher, s, n, ntrials=t)\n', (2958, 2984), False, 'from common3d import compute_soln, get_exact_soln, get_marcher_name, marchers, time_marcher\n'), ((3036, 3087), 'h5py.File', 'h5py.File', (['args.path', '"""w"""'], {'driver': '"""mpio"""', 'comm': 'comm'}), "(args.path, 'w', driver='mpio', comm=comm)\n", (3045, 3087), False, 'import h5py\n'), ((2438, 2454), 'speedfuncs3d.get_soln_func', 'get_soln_func', (['s'], {}), '(s)\n', (2451, 2454), False, 'from speedfuncs3d import get_speed_func_name, get_speed_func_by_name, get_soln_func, speed_funcs\n'), ((3308, 3321), 'speedfuncs3d.speed_funcs', 'speed_funcs', ([], {}), '()\n', (3319, 3321), False, 'from speedfuncs3d import get_speed_func_name, get_speed_func_by_name, get_soln_func, speed_funcs\n'), ((3528, 3559), 'itertools.product', 'product', (['marchers', 'speed_funcs_'], {}), '(marchers, speed_funcs_)\n', (3535, 3559), False, 'from itertools import product\n'), ((3607, 3638), 'itertools.product', 'product', (['marchers', 'speed_funcs_'], {}), '(marchers, speed_funcs_)\n', (3614, 3638), False, 'from itertools import product\n'), ((3181, 3209), 'speedfuncs3d.get_speed_func_by_name', 'get_speed_func_by_name', (['name'], {}), '(name)\n', (3203, 3209), False, 'from speedfuncs3d import get_speed_func_name, get_speed_func_by_name, get_soln_func, speed_funcs\n'), ((1474, 1490), 'numpy.round', 'np.round', (['(ns / 2)'], {}), '(ns / 2)\n', (1482, 1490), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Feb 19 18:03:59 2016 @author: jones_000 """ import copy as cp import numpy as np import math import Solver import Physics import Body import vector import matplotlib.pyplot as plt class Simulation(object): '''Parent Simulation class Attributes ---------- stop_condition : callable sets the stop condition for simulation physics : Physics the physics being simulated with a solver body : array, GravBody the array of bodies with position, velocity, and mass ''' def __init__(self,stop_condition=None,physics=None,body=None): '''Make body a list''' if type(body) == list: self.body = body else: self.body = [body] self.physics = physics self.stop_condition = stop_condition def get_results(self): '''This advances the sim and returns results''' body = self.body time = 0 self.bodies = [cp.deepcopy(self.body)] self.t = [0] while self.stop_condition(self.bodies) == True: body, time = self.physics.advance(body,time) self.bodies.append(cp.deepcopy(body)) self.t.append(time) return self.t, self.bodies class OrbitSim(Simulation): '''Drives the Central Grav sim for orbits Attributes ---------- stop_condition : callable sets the stop condition for simulation physics : Physics the physics being simulated with a solver body : GravBody the body with position, velocity, and mass ''' def __init__(self,stop_condition=None,physics=None,body=None,apnd=True): Simulation.__init__(self,stop_condition,physics,body) self.bodies = [cp.deepcopy(self.body)] self.t = [0] self.apnd = apnd def get_results(self): '''Returns time and bodies lists''' return self.t, self.bodies def advance(self,time=None,step=None): '''Advances sim to a certain time or step Parameters ---------- time : float the target time for the sim step : float the number of steps to run ''' if time != None: dt = self.physics.solver.stepsize time = time - dt self.run(self.time_stop(time)) self.physics.solver.stepsize = time + dt - self.t[-1] self.run(self.time_stop(time+dt)) self.physics.solver.stepsize = dt if step != None: self.run(self.step_stop(step)) if time == None and step == None: self.run(self.stop_condition) def step_stop(self,step): '''Reference to stop function to end at a certain step''' def stop(time,bodies): steps = math.floor(time/self.physics.solver.step_size) if steps < step: return True else: return False return stop def time_stop(self,goal): '''Reference to a stop function to end at a certain time''' def stop(time,bodies): if time < goal: return True else: return False return stop def run(self,stop_condition): '''Internal run function that advances bodies Parameters ---------- stop_condition : callable the stop function to end the sim ''' time = self.t[-1] while stop_condition(time,self.bodies) == True: self.body, time = self.physics.advance(self.body,time) if self.apnd: self.bodies.append(cp.deepcopy(self.body)) self.t.append(time) if not self.apnd: self.bodies.append(cp.deepcopy(self.body)) self.t.append(cp.deepcopy(time)) class BinarySim(OrbitSim): '''Takes in Elliptical Inputs and produces a Binary Sim Attributes ---------- M1 : float mass of the first body M2 : float mass of the second body a1 : float the semi-major axis of the first body's orbit e : float the orbits' eccentricity ''' def __init__(self,M1=None,M2=None,a1=1,e=0,apnd=True): '''Build GravBodies''' self.G = 4*math.pi**2. r1p = a1-e*a1 r2p = -(M1/M2)*r1p v1p = math.sqrt(((self.G*M2**3.)/(a1*(M1+M2)**2.))*((1.+e)/(1.-e))) v2p = -(M1/M2)*v1p r1 = vector.Vector(r1p,0.,0.) r2 = vector.Vector(r2p,0.,0.) v1 = vector.Vector(0.,v1p,0.) v2 = vector.Vector(0.,v2p,0.) body1 = Body.GravBody(M1,r1,v1) body2 = Body.GravBody(M2,r2,v2) '''Set up Sim''' self.body = [body1,body2] solver = Solver.RK2(0.01) self.physics = Physics.NBody(solver,self.G) self.bodies = [cp.deepcopy(self.body)] self.t = [0] self.apnd = apnd class ExoSim(BinarySim): '''Runs a siim for an exoplant search Attributes ---------- Ms : float mass of the star Mp : float mass of the plant ap : float the semi-major axis of the planet's orbit e : float the orbits' eccentricity Rs : float the radius of the star in Solar Radii Rp : float the radius of the planet in Solar Radii omega : float the angle of periastron i : float the angle of inclination ''' def __init__(self,Ms=None,Mp=None,ap=None,e=0,Rs=None,Rp=None,omega=None,i=None,apnd=True): '''Save Values''' self.apnd = apnd self.Rs = Rs self.Rp = Rp self.G = 4*math.pi**2. self.period = np.sqrt(((ap**3.)*((Ms+Mp)**2.))/Ms**3.) '''Set up Vectors''' rpp = ap-e*ap rsp = -(Mp/Ms)*rpp vpp = math.sqrt(((self.G*Ms**3.)/(ap*(Ms+Mp)**2.))*((1.+e)/(1.-e))) vsp = -(Mp/Ms)*vpp '''Rotate Vectors into Viewer frame''' rs = vector.Vector(rsp,0.,0.) rs.rot_z(omega) rs.rot_x(i) rp = vector.Vector(rpp,0.,0.) rp.rot_z(omega) rp.rot_x(i) vs = vector.Vector(0.,vsp,0.) vs.rot_z(omega) vs.rot_x(i) vp = vector.Vector(0.,vpp,0.) vp.rot_z(omega) vp.rot_x(i) '''Set Up Sim''' star = Body.GravBody(Ms,rs,vs) planet = Body.GravBody(Mp,rp,vp) self.body = [star,planet] solver = Solver.RK2(0.01) self.physics = Physics.NBody(solver,self.G) self.bodies = [cp.deepcopy(self.body)] self.t = [0] def advance(self,time=None): '''Advances Sim to a certain time or for one orbital period Parameters ---------- time : float the target time for the simulation, defaults to one orbital period ''' if time == None: time = self.period dt = self.physics.solver.stepsize time = time - dt self.run(self.time_stop(time)) self.physics.solver.stepsize = time + dt - self.t[-1] self.run(self.time_stop(time+dt)) self.physics.solver.stepsize = dt def light_curve(self,time,bodies): '''Creates and plots an exoplanet transit light curve for the orbit Paramters --------- time : list, float a list of the independant variable, time bodies : list, GravBody a list of the Gravbodies at each time in time list Returns ------- a graph of the light curve ''' r_list = np.array([b[0].position - b[1].position for b in bodies]) p = np.array([r.cart for r in r_list]) d = np.sqrt((p[:,0])**2. + (p[:,1])**2.) x = (self.Rp**2. - self.Rs**2. + d**2.)/(2.*d) h = np.sqrt(self.Rp**2. - x**2.) theta = np.arccos(x/self.Rp) psi = np.arccos((d-x)/self.Rs) '''Areas of Arcs and Triangles''' a1 = 0.5*x*h ap = 0.5*theta*(self.Rp**2.) A1 = ap - a1 a2 = 0.5*(d-x)*h As = 0.5*psi*(self.Rs**2.) A2 = As -a2 A = 2*(A1 + A2) '''Fix Failures''' A[d>=(self.Rp+self.Rs)] = 0. A[d<=(self.Rs-self.Rp)] = np.pi*(self.Rp**2.) A[p[:,2]<=0] = 0 I = ((np.pi*self.Rs**2.) - A)/(np.pi*self.Rs**2.) plt.figure() plt.plot(time,I,'.') plt.title('Exo Planet Light Curve') plt.xlabel('Time [Years]') plt.ylabel('Intensity')
[ "matplotlib.pyplot.title", "Solver.RK2", "copy.deepcopy", "math.sqrt", "matplotlib.pyplot.plot", "math.floor", "Physics.NBody", "matplotlib.pyplot.figure", "Body.GravBody", "numpy.array", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.ylabel", "vector.Vector", "numpy.arccos", "numpy.sqrt" ]
[((4569, 4654), 'math.sqrt', 'math.sqrt', (['(self.G * M2 ** 3.0 / (a1 * (M1 + M2) ** 2.0) * ((1.0 + e) / (1.0 - e)))'], {}), '(self.G * M2 ** 3.0 / (a1 * (M1 + M2) ** 2.0) * ((1.0 + e) / (1.0 -\n e)))\n', (4578, 4654), False, 'import math\n'), ((4671, 4699), 'vector.Vector', 'vector.Vector', (['r1p', '(0.0)', '(0.0)'], {}), '(r1p, 0.0, 0.0)\n', (4684, 4699), False, 'import vector\n'), ((4709, 4737), 'vector.Vector', 'vector.Vector', (['r2p', '(0.0)', '(0.0)'], {}), '(r2p, 0.0, 0.0)\n', (4722, 4737), False, 'import vector\n'), ((4747, 4775), 'vector.Vector', 'vector.Vector', (['(0.0)', 'v1p', '(0.0)'], {}), '(0.0, v1p, 0.0)\n', (4760, 4775), False, 'import vector\n'), ((4785, 4813), 'vector.Vector', 'vector.Vector', (['(0.0)', 'v2p', '(0.0)'], {}), '(0.0, v2p, 0.0)\n', (4798, 4813), False, 'import vector\n'), ((4826, 4851), 'Body.GravBody', 'Body.GravBody', (['M1', 'r1', 'v1'], {}), '(M1, r1, v1)\n', (4839, 4851), False, 'import Body\n'), ((4866, 4891), 'Body.GravBody', 'Body.GravBody', (['M2', 'r2', 'v2'], {}), '(M2, r2, v2)\n', (4879, 4891), False, 'import Body\n'), ((4975, 4991), 'Solver.RK2', 'Solver.RK2', (['(0.01)'], {}), '(0.01)\n', (4985, 4991), False, 'import Solver\n'), ((5015, 5044), 'Physics.NBody', 'Physics.NBody', (['solver', 'self.G'], {}), '(solver, self.G)\n', (5028, 5044), False, 'import Physics\n'), ((5985, 6034), 'numpy.sqrt', 'np.sqrt', (['(ap ** 3.0 * (Ms + Mp) ** 2.0 / Ms ** 3.0)'], {}), '(ap ** 3.0 * (Ms + Mp) ** 2.0 / Ms ** 3.0)\n', (5992, 6034), True, 'import numpy as np\n'), ((6127, 6212), 'math.sqrt', 'math.sqrt', (['(self.G * Ms ** 3.0 / (ap * (Ms + Mp) ** 2.0) * ((1.0 + e) / (1.0 - e)))'], {}), '(self.G * Ms ** 3.0 / (ap * (Ms + Mp) ** 2.0) * ((1.0 + e) / (1.0 -\n e)))\n', (6136, 6212), False, 'import math\n'), ((6285, 6313), 'vector.Vector', 'vector.Vector', (['rsp', '(0.0)', '(0.0)'], {}), '(rsp, 0.0, 0.0)\n', (6298, 6313), False, 'import vector\n'), ((6367, 6395), 'vector.Vector', 'vector.Vector', (['rpp', '(0.0)', '(0.0)'], {}), '(rpp, 0.0, 0.0)\n', (6380, 6395), False, 'import vector\n'), ((6449, 6477), 'vector.Vector', 'vector.Vector', (['(0.0)', 'vsp', '(0.0)'], {}), '(0.0, vsp, 0.0)\n', (6462, 6477), False, 'import vector\n'), ((6531, 6559), 'vector.Vector', 'vector.Vector', (['(0.0)', 'vpp', '(0.0)'], {}), '(0.0, vpp, 0.0)\n', (6544, 6559), False, 'import vector\n'), ((6649, 6674), 'Body.GravBody', 'Body.GravBody', (['Ms', 'rs', 'vs'], {}), '(Ms, rs, vs)\n', (6662, 6674), False, 'import Body\n'), ((6690, 6715), 'Body.GravBody', 'Body.GravBody', (['Mp', 'rp', 'vp'], {}), '(Mp, rp, vp)\n', (6703, 6715), False, 'import Body\n'), ((6765, 6781), 'Solver.RK2', 'Solver.RK2', (['(0.01)'], {}), '(0.01)\n', (6775, 6781), False, 'import Solver\n'), ((6805, 6834), 'Physics.NBody', 'Physics.NBody', (['solver', 'self.G'], {}), '(solver, self.G)\n', (6818, 6834), False, 'import Physics\n'), ((7950, 8009), 'numpy.array', 'np.array', (['[(b[0].position - b[1].position) for b in bodies]'], {}), '([(b[0].position - b[1].position) for b in bodies])\n', (7958, 8009), True, 'import numpy as np\n'), ((8020, 8054), 'numpy.array', 'np.array', (['[r.cart for r in r_list]'], {}), '([r.cart for r in r_list])\n', (8028, 8054), True, 'import numpy as np\n'), ((8067, 8107), 'numpy.sqrt', 'np.sqrt', (['(p[:, 0] ** 2.0 + p[:, 1] ** 2.0)'], {}), '(p[:, 0] ** 2.0 + p[:, 1] ** 2.0)\n', (8074, 8107), True, 'import numpy as np\n'), ((8171, 8205), 'numpy.sqrt', 'np.sqrt', (['(self.Rp ** 2.0 - x ** 2.0)'], {}), '(self.Rp ** 2.0 - x ** 2.0)\n', (8178, 8205), True, 'import numpy as np\n'), ((8216, 8238), 'numpy.arccos', 'np.arccos', (['(x / self.Rp)'], {}), '(x / self.Rp)\n', (8225, 8238), True, 'import numpy as np\n'), ((8251, 8279), 'numpy.arccos', 'np.arccos', (['((d - x) / self.Rs)'], {}), '((d - x) / self.Rs)\n', (8260, 8279), True, 'import numpy as np\n'), ((8757, 8769), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8767, 8769), True, 'import matplotlib.pyplot as plt\n'), ((8778, 8800), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'I', '"""."""'], {}), "(time, I, '.')\n", (8786, 8800), True, 'import matplotlib.pyplot as plt\n'), ((8807, 8842), 'matplotlib.pyplot.title', 'plt.title', (['"""Exo Planet Light Curve"""'], {}), "('Exo Planet Light Curve')\n", (8816, 8842), True, 'import matplotlib.pyplot as plt\n'), ((8851, 8877), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [Years]"""'], {}), "('Time [Years]')\n", (8861, 8877), True, 'import matplotlib.pyplot as plt\n'), ((8886, 8909), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Intensity"""'], {}), "('Intensity')\n", (8896, 8909), True, 'import matplotlib.pyplot as plt\n'), ((1031, 1053), 'copy.deepcopy', 'cp.deepcopy', (['self.body'], {}), '(self.body)\n', (1042, 1053), True, 'import copy as cp\n'), ((1846, 1868), 'copy.deepcopy', 'cp.deepcopy', (['self.body'], {}), '(self.body)\n', (1857, 1868), True, 'import copy as cp\n'), ((2939, 2987), 'math.floor', 'math.floor', (['(time / self.physics.solver.step_size)'], {}), '(time / self.physics.solver.step_size)\n', (2949, 2987), False, 'import math\n'), ((5067, 5089), 'copy.deepcopy', 'cp.deepcopy', (['self.body'], {}), '(self.body)\n', (5078, 5089), True, 'import copy as cp\n'), ((6857, 6879), 'copy.deepcopy', 'cp.deepcopy', (['self.body'], {}), '(self.body)\n', (6868, 6879), True, 'import copy as cp\n'), ((1220, 1237), 'copy.deepcopy', 'cp.deepcopy', (['body'], {}), '(body)\n', (1231, 1237), True, 'import copy as cp\n'), ((3939, 3961), 'copy.deepcopy', 'cp.deepcopy', (['self.body'], {}), '(self.body)\n', (3950, 3961), True, 'import copy as cp\n'), ((3989, 4006), 'copy.deepcopy', 'cp.deepcopy', (['time'], {}), '(time)\n', (4000, 4006), True, 'import copy as cp\n'), ((3822, 3844), 'copy.deepcopy', 'cp.deepcopy', (['self.body'], {}), '(self.body)\n', (3833, 3844), True, 'import copy as cp\n')]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. import torch import torch.nn as nn import torch.utils.data as data import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import os import time import argparse import numpy as np from PIL import Image import cv2 from data.choose_config import cfg cfg = cfg.cfg from utils.augmentations import to_chw_bgr from importlib import import_module def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='face detection demo') parser.add_argument('--save_dir', type=str, default='results/', help='Directory for detect result') parser.add_argument('--model', type=str, default='weights/rpool_face_c.pth', help='trained model') parser.add_argument('--thresh', default=0.17, type=float, help='Final confidence threshold') parser.add_argument('--multigpu', default=False, type=str2bool, help='Specify whether model was trained with multigpu') parser.add_argument('--model_arch', default='RPool_Face_C', type=str, choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome', 'RPool_Face_M4'], help='choose architecture among rpool variants') parser.add_argument('--image_folder', default=None, type=str, help='folder containing images') parser.add_argument('--save_traces', default=False, type=str2bool, help='Specify whether to save input output traces') args = parser.parse_args() if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) use_cuda = torch.cuda.is_available() if use_cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') def detect(net, img_path, thresh, save_traces): img = Image.open(img_path) img = img.convert('RGB') img = np.array(img) height, width, _ = img.shape if os.environ['IS_QVGA_MONO'] == '1': max_im_shrink = np.sqrt( 320 * 240 / (img.shape[0] * img.shape[1])) else: max_im_shrink = np.sqrt( 640 * 480 / (img.shape[0] * img.shape[1])) if save_traces==True and os.environ['IS_QVGA_MONO'] == '1': image = cv2.resize(img, (320, 240)) elif save_traces==True: image = cv2.resize(img, (640, 480)) else: image = cv2.resize(img, None, None, fx=max_im_shrink, fy=max_im_shrink, interpolation=cv2.INTER_LINEAR) x = to_chw_bgr(image) x = x.astype('float32') x -= cfg.img_mean x = x[[2, 1, 0], :, :] if cfg.IS_MONOCHROME == True: x = 0.299 * x[0] + 0.587 * x[1] + 0.114 * x[2] x = torch.from_numpy(x).unsqueeze(0).unsqueeze(0) else: x = torch.from_numpy(x).unsqueeze(0) if use_cuda: x = x.cuda() t1 = time.time() y, loc, conf = net(x) detections = y.data scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img = cv2.imread(img_path, cv2.IMREAD_COLOR) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= thresh: score = detections[0, i, j, 0] pt = (detections[0, i, j, 1:] * scale).cpu().numpy() left_up, right_bottom = (pt[0], pt[1]), (pt[2], pt[3]) j += 1 cv2.rectangle(img, left_up, right_bottom, (0, 0, 255), 2) conf_score = "{:.3f}".format(score) point = (int(left_up[0]), int(left_up[1] - 5)) cv2.putText(img, conf_score, point, cv2.FONT_HERSHEY_COMPLEX, 0.6, (0, 255, 0), 1) t2 = time.time() print('detect:{} timer:{}'.format(img_path, t2 - t1)) cv2.imwrite(os.path.join(args.save_dir, os.path.basename(img_path)), img) if save_traces == True: return x, loc, conf if __name__ == '__main__': module = import_module('models.' + args.model_arch) net = module.build_s3fd('test', cfg.NUM_CLASSES) if args.multigpu == True: net = torch.nn.DataParallel(net) checkpoint_dict = torch.load(args.model) model_dict = net.state_dict() model_dict.update(checkpoint_dict) net.load_state_dict(model_dict) net.eval() if use_cuda: net.cuda() cudnn.benckmark = True img_path = args.image_folder img_list = [os.path.join(img_path, x) for x in os.listdir(img_path)] x = [] loc = [] conf = [] for path in img_list: if args.save_traces == True: x_temp, loc_temp, conf_temp = detect(net, path, args.thresh, args.save_traces) x.append(x_temp) loc.append(loc_temp) conf.append(conf_temp) else: detect(net, path, args.thresh, args.save_traces) if args.save_traces == True: np.save('trace_inputs.npy', torch.cat(x).cpu().detach().numpy()) np.save('trace_outputs.npy', torch.cat([torch.cat(conf), torch.cat(loc)], dim=1).cpu().detach().numpy())
[ "utils.augmentations.to_chw_bgr", "argparse.ArgumentParser", "torch.set_default_tensor_type", "torch.cat", "cv2.rectangle", "os.path.join", "torch.load", "os.path.exists", "torch.Tensor", "cv2.resize", "importlib.import_module", "os.path.basename", "torch.cuda.is_available", "os.listdir", "torch.from_numpy", "cv2.putText", "os.makedirs", "PIL.Image.open", "time.time", "cv2.imread", "numpy.array", "torch.nn.DataParallel", "numpy.sqrt" ]
[((543, 601), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""face detection demo"""'}), "(description='face detection demo')\n", (566, 601), False, 'import argparse\n'), ((1751, 1776), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1774, 1776), False, 'import torch\n'), ((1677, 1706), 'os.path.exists', 'os.path.exists', (['args.save_dir'], {}), '(args.save_dir)\n', (1691, 1706), False, 'import os\n'), ((1712, 1738), 'os.makedirs', 'os.makedirs', (['args.save_dir'], {}), '(args.save_dir)\n', (1723, 1738), False, 'import os\n'), ((1795, 1850), 'torch.set_default_tensor_type', 'torch.set_default_tensor_type', (['"""torch.cuda.FloatTensor"""'], {}), "('torch.cuda.FloatTensor')\n", (1824, 1850), False, 'import torch\n'), ((1861, 1911), 'torch.set_default_tensor_type', 'torch.set_default_tensor_type', (['"""torch.FloatTensor"""'], {}), "('torch.FloatTensor')\n", (1890, 1911), False, 'import torch\n'), ((1972, 1992), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1982, 1992), False, 'from PIL import Image\n'), ((2032, 2045), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2040, 2045), True, 'import numpy as np\n'), ((2642, 2659), 'utils.augmentations.to_chw_bgr', 'to_chw_bgr', (['image'], {}), '(image)\n', (2652, 2659), False, 'from utils.augmentations import to_chw_bgr\n'), ((2988, 2999), 'time.time', 'time.time', ([], {}), '()\n', (2997, 2999), False, 'import time\n'), ((3062, 3132), 'torch.Tensor', 'torch.Tensor', (['[img.shape[1], img.shape[0], img.shape[1], img.shape[0]]'], {}), '([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])\n', (3074, 3132), False, 'import torch\n'), ((3170, 3208), 'cv2.imread', 'cv2.imread', (['img_path', 'cv2.IMREAD_COLOR'], {}), '(img_path, cv2.IMREAD_COLOR)\n', (3180, 3208), False, 'import cv2\n'), ((3811, 3822), 'time.time', 'time.time', ([], {}), '()\n', (3820, 3822), False, 'import time\n'), ((4060, 4102), 'importlib.import_module', 'import_module', (["('models.' + args.model_arch)"], {}), "('models.' + args.model_arch)\n", (4073, 4102), False, 'from importlib import import_module\n'), ((4251, 4273), 'torch.load', 'torch.load', (['args.model'], {}), '(args.model)\n', (4261, 4273), False, 'import torch\n'), ((2146, 2196), 'numpy.sqrt', 'np.sqrt', (['(320 * 240 / (img.shape[0] * img.shape[1]))'], {}), '(320 * 240 / (img.shape[0] * img.shape[1]))\n', (2153, 2196), True, 'import numpy as np\n'), ((2244, 2294), 'numpy.sqrt', 'np.sqrt', (['(640 * 480 / (img.shape[0] * img.shape[1]))'], {}), '(640 * 480 / (img.shape[0] * img.shape[1]))\n', (2251, 2294), True, 'import numpy as np\n'), ((2389, 2416), 'cv2.resize', 'cv2.resize', (['img', '(320, 240)'], {}), '(img, (320, 240))\n', (2399, 2416), False, 'import cv2\n'), ((4201, 4227), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['net'], {}), '(net)\n', (4222, 4227), False, 'import torch\n'), ((4521, 4546), 'os.path.join', 'os.path.join', (['img_path', 'x'], {}), '(img_path, x)\n', (4533, 4546), False, 'import os\n'), ((2461, 2488), 'cv2.resize', 'cv2.resize', (['img', '(640, 480)'], {}), '(img, (640, 480))\n', (2471, 2488), False, 'import cv2\n'), ((2515, 2614), 'cv2.resize', 'cv2.resize', (['img', 'None', 'None'], {'fx': 'max_im_shrink', 'fy': 'max_im_shrink', 'interpolation': 'cv2.INTER_LINEAR'}), '(img, None, None, fx=max_im_shrink, fy=max_im_shrink,\n interpolation=cv2.INTER_LINEAR)\n', (2525, 2614), False, 'import cv2\n'), ((3518, 3575), 'cv2.rectangle', 'cv2.rectangle', (['img', 'left_up', 'right_bottom', '(0, 0, 255)', '(2)'], {}), '(img, left_up, right_bottom, (0, 0, 255), 2)\n', (3531, 3575), False, 'import cv2\n'), ((3695, 3781), 'cv2.putText', 'cv2.putText', (['img', 'conf_score', 'point', 'cv2.FONT_HERSHEY_COMPLEX', '(0.6)', '(0, 255, 0)', '(1)'], {}), '(img, conf_score, point, cv2.FONT_HERSHEY_COMPLEX, 0.6, (0, 255,\n 0), 1)\n', (3706, 3781), False, 'import cv2\n'), ((3926, 3952), 'os.path.basename', 'os.path.basename', (['img_path'], {}), '(img_path)\n', (3942, 3952), False, 'import os\n'), ((4572, 4592), 'os.listdir', 'os.listdir', (['img_path'], {}), '(img_path)\n', (4582, 4592), False, 'import os\n'), ((2908, 2927), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (2924, 2927), False, 'import torch\n'), ((2840, 2859), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (2856, 2859), False, 'import torch\n'), ((5028, 5040), 'torch.cat', 'torch.cat', (['x'], {}), '(x)\n', (5037, 5040), False, 'import torch\n'), ((5113, 5128), 'torch.cat', 'torch.cat', (['conf'], {}), '(conf)\n', (5122, 5128), False, 'import torch\n'), ((5130, 5144), 'torch.cat', 'torch.cat', (['loc'], {}), '(loc)\n', (5139, 5144), False, 'import torch\n')]
from glob import glob import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse """ This is a reproduction of Fernando's 2011 normalized commit rate plot. This shows roughly the bus factor """ parser = argparse.ArgumentParser() parser.add_argument("--outname", "-o") args = parser.parse_args() outname = args.outname filenames = glob("data/raw_data/*/commits.tsv") filenames.sort() fig, ax = plt.subplots() for i, filename in enumerate(filenames): # Parse project name project = filename.split("/")[2].split("_")[0] commits = pd.read_csv(filename, sep="\t", keep_default_na=False) commits[commits["author_name"].isnull()]["author_name"] = "" _, ticket_counts = np.unique(commits["author_name"], return_counts=True) ticket_counts.sort() ticket_counts = ticket_counts[::-1] / ticket_counts.max() ax.plot(ticket_counts[:15] * 100, label=project, marker=".", color="C%d" % i, linewidth=2) ax.set_xlim(0, 20) ax.legend() ax.set_title("Normalized commit rates", fontweight="bold", fontsize="large") ax.set_xticks(np.arange(0, 21, 5)) ax.set_yticks([0, 50, 100]) [ax.axhline(i, color="0", alpha=0.3, linewidth=1, zorder=-1) for i in (0, 50, 100)] ax.set_ylim(-1, 105) ax.spines['right'].set_color('none') ax.spines['left'].set_color('none') ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.grid(which='major', axis='y', linewidth=0.75, linestyle='-', color='0.5') ax.set_xticklabels(["%d" % i for i in np.arange(0, 20, 5)], fontsize="medium", fontweight="bold", color="0.5") ax.set_yticklabels(["%d%%" % i for i in (0, 50, 100)], fontsize="medium", fontweight="bold", color="0.5") ax.set_xlabel("Contributors", fontsize="medium", fontweight="bold", color="0.5") if outname is not None: try: os.makedirs(os.path.dirname(outname)) except OSError: pass fig.savefig(outname)
[ "argparse.ArgumentParser", "pandas.read_csv", "os.path.dirname", "numpy.arange", "glob.glob", "matplotlib.pyplot.subplots", "numpy.unique" ]
[((243, 268), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (266, 268), False, 'import argparse\n'), ((372, 407), 'glob.glob', 'glob', (['"""data/raw_data/*/commits.tsv"""'], {}), "('data/raw_data/*/commits.tsv')\n", (376, 407), False, 'from glob import glob\n'), ((436, 450), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (448, 450), True, 'import matplotlib.pyplot as plt\n'), ((584, 638), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'sep': '"""\t"""', 'keep_default_na': '(False)'}), "(filename, sep='\\t', keep_default_na=False)\n", (595, 638), True, 'import pandas as pd\n'), ((727, 780), 'numpy.unique', 'np.unique', (["commits['author_name']"], {'return_counts': '(True)'}), "(commits['author_name'], return_counts=True)\n", (736, 780), True, 'import numpy as np\n'), ((1136, 1155), 'numpy.arange', 'np.arange', (['(0)', '(21)', '(5)'], {}), '(0, 21, 5)\n', (1145, 1155), True, 'import numpy as np\n'), ((1634, 1653), 'numpy.arange', 'np.arange', (['(0)', '(20)', '(5)'], {}), '(0, 20, 5)\n', (1643, 1653), True, 'import numpy as np\n'), ((2000, 2024), 'os.path.dirname', 'os.path.dirname', (['outname'], {}), '(outname)\n', (2015, 2024), False, 'import os\n')]
import numpy import pytest from grunnur import dtypes from grunnur.modules import render_with_modules def test_normalize_type(): dtype = dtypes.normalize_type(numpy.int32) assert dtype == numpy.int32 assert type(dtype) == numpy.dtype def test_ctype_builtin(): assert dtypes.ctype(numpy.int32) == 'int' def test_is_complex(): assert dtypes.is_complex(numpy.complex64) assert dtypes.is_complex(numpy.complex128) assert not dtypes.is_complex(numpy.float64) def test_is_double(): assert dtypes.is_double(numpy.float64) assert dtypes.is_double(numpy.complex128) assert not dtypes.is_double(numpy.complex64) def test_is_integer(): assert dtypes.is_integer(numpy.int32) assert not dtypes.is_integer(numpy.float32) def test_is_real(): assert dtypes.is_real(numpy.float32) assert not dtypes.is_real(numpy.complex64) assert not dtypes.is_real(numpy.int32) def test_promote_type(): assert dtypes._promote_type(numpy.int8) == numpy.int32 assert dtypes._promote_type(numpy.uint8) == numpy.uint32 assert dtypes._promote_type(numpy.float16) == numpy.float32 assert dtypes._promote_type(numpy.int32) == numpy.int32 def test_result_type(): assert dtypes.result_type(numpy.int32, numpy.float32) == numpy.float64 def test_min_scalar_type(): assert dtypes.min_scalar_type(1) == numpy.uint32 assert dtypes.min_scalar_type(-1) == numpy.int32 assert dtypes.min_scalar_type(1.) == numpy.float32 assert dtypes.min_scalar_type(2**31-1, force_signed=True) == numpy.int32 # 2**31 will not fit into int32 type assert dtypes.min_scalar_type(2**31, force_signed=True) == numpy.int64 def test_detect_type(): assert dtypes.detect_type(numpy.int8(-1)) == numpy.int32 assert dtypes.detect_type(numpy.int64(-1)) == numpy.int64 assert dtypes.detect_type(-1) == numpy.int32 assert dtypes.detect_type(-1.) == numpy.float32 def test_complex_for(): assert dtypes.complex_for(numpy.float32) == numpy.complex64 assert dtypes.complex_for(numpy.float64) == numpy.complex128 with pytest.raises(ValueError): assert dtypes.complex_for(numpy.complex64) with pytest.raises(ValueError): assert dtypes.complex_for(numpy.int32) def test_real_for(): assert dtypes.real_for(numpy.complex64) == numpy.float32 assert dtypes.real_for(numpy.complex128) == numpy.float64 with pytest.raises(ValueError): assert dtypes.real_for(numpy.float32) with pytest.raises(ValueError): assert dtypes.real_for(numpy.int32) def test_complex_ctr(): assert dtypes.complex_ctr(numpy.complex64) == "COMPLEX_CTR(float2)" def test_cast(): cast = dtypes.cast(numpy.uint64) for val in [cast(1), cast(numpy.int32(1)), cast(numpy.uint64(1))]: assert val.dtype == numpy.uint64 and val == 1 def test_c_constant(): # scalar values assert dtypes.c_constant(1) == "1" assert dtypes.c_constant(numpy.uint64(1)) == "1UL" assert dtypes.c_constant(numpy.int64(-1)) == "-1L" assert dtypes.c_constant(numpy.float64(1.)) == "1.0" assert dtypes.c_constant(numpy.float32(1.)) == "1.0f" assert dtypes.c_constant(numpy.complex64(1 + 2j)) == "COMPLEX_CTR(float2)(1.0f, 2.0f)" assert dtypes.c_constant(numpy.complex128(1 + 2j)) == "COMPLEX_CTR(double2)(1.0, 2.0)" # array assert dtypes.c_constant(numpy.array([1, 2, 3], numpy.float32)) == "{1.0f, 2.0f, 3.0f}" # struct type dtype = numpy.dtype([('val1', numpy.int32), ('val2', numpy.float32)]) val = numpy.empty((), dtype) val['val1'] = 1 val['val2'] = 2 assert dtypes.c_constant(val) == "{1, 2.0f}" # custom dtype assert dtypes.c_constant(1, numpy.float32) == "1.0f" def test__align_simple(): dtype = numpy.dtype('int32') res = dtypes._align(dtype) ref = dtypes.WrappedType(dtype, dtype.itemsize) assert res == ref def test__align_array(): dtype = numpy.dtype('int32') dtype_arr = numpy.dtype((dtype, 3)) res = dtypes._align(dtype_arr) ref = dtypes.WrappedType(dtype_arr, dtype.itemsize) assert res == ref def test__align_non_aligned_struct(): dtype = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32])) res = dtypes._align(dtype) dtype_aligned = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 2, 4], itemsize=8, aligned=True)) wt_x = dtypes.WrappedType(numpy.dtype('int8'), 1) wt_y = dtypes.WrappedType(numpy.dtype('int16'), 2) wt_z = dtypes.WrappedType(numpy.dtype('int32'), 4) ref = dtypes.WrappedType( dtype_aligned, 4, explicit_alignment=None, wrapped_fields=dict(x=wt_x, y=wt_y, z=wt_z), field_alignments=dict(x=None, y=None, z=None)) assert res == ref def test__align_aligned_struct(): dtype_aligned = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 2, 4], itemsize=8, aligned=True)) res = dtypes._align(dtype_aligned) wt_x = dtypes.WrappedType(numpy.dtype('int8'), 1) wt_y = dtypes.WrappedType(numpy.dtype('int16'), 2) wt_z = dtypes.WrappedType(numpy.dtype('int32'), 4) ref = dtypes.WrappedType( dtype_aligned, 4, explicit_alignment=None, wrapped_fields=dict(x=wt_x, y=wt_y, z=wt_z), field_alignments=dict(x=None, y=None, z=None)) assert res == ref def test__align_aligned_struct_custom_itemsize(): dtype_aligned = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 2, 4], itemsize=16, aligned=True)) res = dtypes._align(dtype_aligned) wt_x = dtypes.WrappedType(numpy.dtype('int8'), 1) wt_y = dtypes.WrappedType(numpy.dtype('int16'), 2) wt_z = dtypes.WrappedType(numpy.dtype('int32'), 4) ref = dtypes.WrappedType( dtype_aligned, 16, explicit_alignment=16, wrapped_fields=dict(x=wt_x, y=wt_y, z=wt_z), field_alignments=dict(x=None, y=None, z=None)) assert res == ref def test__align_custom_field_offsets(): dtype = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 4, 16], itemsize=32)) dtype_aligned = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 4, 16], itemsize=32, aligned=True)) res = dtypes._align(dtype_aligned) wt_x = dtypes.WrappedType(numpy.dtype('int8'), 1) wt_y = dtypes.WrappedType(numpy.dtype('int16'), 2) wt_z = dtypes.WrappedType(numpy.dtype('int32'), 4) ref = dtypes.WrappedType( dtype_aligned, 16, explicit_alignment=None, wrapped_fields=dict(x=wt_x, y=wt_y, z=wt_z), field_alignments=dict(x=None, y=4, z=16)) assert res == ref def test__align_aligned_struct_invalid_itemsize(): dtype_aligned = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 2, 4], itemsize=20, # not a power of 2, an error should be raised aligned=True)) with pytest.raises(ValueError): dtypes._align(dtype_aligned) def test_align_nested(): dtype_nested = numpy.dtype(dict( names=['val1', 'pad'], formats=[numpy.int8, numpy.int8])) dtype = numpy.dtype(dict( names=['pad', 'struct_arr', 'regular_arr'], formats=[numpy.int32, numpy.dtype((dtype_nested, 2)), numpy.dtype((numpy.int16, 3))])) dtype_ref = numpy.dtype(dict( names=['pad','struct_arr','regular_arr'], formats=[numpy.int32, (dtype_nested, (2,)), (numpy.int16, (3,))], offsets=[0,4,8], itemsize=16)) dtype_aligned = dtypes.align(dtype) assert dtype_aligned.isalignedstruct assert dtype_aligned == dtype_ref def test_align_preserve_nested_aligned(): dtype_int3 = numpy.dtype(dict(names=['x'], formats=[(numpy.int32, 3)], itemsize=16, aligned=True)) dtype = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int32, dtype_int3, numpy.int32])) dtype_ref = numpy.dtype(dict( names=['x','y','z'], formats=[numpy.int32, dtype_int3, numpy.int32], offsets=[0,16,32], itemsize=48, aligned=True)) dtype_aligned = dtypes.align(dtype) assert dtype_aligned.isalignedstruct assert dtype_aligned == dtype_ref def test_lcm(): assert dtypes._lcm(10) == 10 assert dtypes._lcm(15, 20) == 60 assert dtypes._lcm(16, 32, 24) == 96 def test_find_minimum_alignment(): # simple case: base alignment is enough because 12 is the next multiple of 4 after 9 assert dtypes._find_minimum_alignment(12, 4, 9) == 4 # the next multiple of 4 is 12, but we want offset 16 - this means we need to set # the alignment equal to 8, because 16 is the next multiple of 8 after 9. assert dtypes._find_minimum_alignment(16, 4, 9) == 8 # incorrect offset (not a multiple of the base alignment) with pytest.raises(ValueError): dtypes._find_minimum_alignment(13, 4, 9) # offset too large and not a power of 2 - cannot achieve that with alignment only, # will need explicit padding with pytest.raises(ValueError): dtypes._find_minimum_alignment(24, 4, 9) def test_wrapped_type_repr(): dtype_aligned = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 4, 16], itemsize=32, aligned=True)) wt_x = dtypes.WrappedType(numpy.dtype('int8'), 1) wt_y = dtypes.WrappedType(numpy.dtype('int16'), 2) wt_z = dtypes.WrappedType(numpy.dtype('int32'), 4) wt = dtypes.WrappedType( dtype_aligned, 16, explicit_alignment=None, wrapped_fields=dict(x=wt_x, y=wt_y, z=wt_z), field_alignments=dict(x=None, y=4, z=16)) assert eval( repr(wt), dict( numpy=numpy, WrappedType=dtypes.WrappedType, int8=numpy.int8, int16=numpy.int16, int32=numpy.int32)) == wt def test_ctype_struct(): dtype = dtypes.align(numpy.dtype([('val1', numpy.int32), ('val2', numpy.float32)])) ctype = dtypes.ctype(dtype) src = render_with_modules("${ctype}", render_globals=dict(ctype=ctype)).strip() assert src == ( 'typedef struct _mod__module_0__ {\n' ' int val1;\n' ' float val2;\n' '} _mod__module_0_;\n\n\n' '_mod__module_0_') def test_ctype_struct_nested(): dtype_nested = numpy.dtype(dict( names=['val1', 'pad'], formats=[numpy.int8, numpy.int8])) dtype = numpy.dtype(dict( names=['pad', 'struct_arr', 'regular_arr'], formats=[numpy.int32, numpy.dtype((dtype_nested, 2)), numpy.dtype((numpy.int16, 3))])) dtype = dtypes.align(dtype) ctype = dtypes.ctype(dtype) src = render_with_modules("${ctype}", render_globals=dict(ctype=ctype)).strip() assert src == ( 'typedef struct _mod__module_1__ {\n' ' char val1;\n' ' char pad;\n' '} _mod__module_1_;\n\n\n' 'typedef struct _mod__module_0__ {\n' ' int pad;\n' ' _mod__module_1_ struct_arr[2];\n' ' short regular_arr[3];\n' '} _mod__module_0_;\n\n\n' '_mod__module_0_') def test_ctype_to_ctype_struct(): # Checks that ctype() on an unknown type calls ctype_struct() dtype = dtypes.align(numpy.dtype([('val1', numpy.int32), ('val2', numpy.float32)])) ctype = dtypes.ctype(dtype) src = render_with_modules("${ctype}", render_globals=dict(ctype=ctype)).strip() assert src == ( 'typedef struct _mod__module_0__ {\n' ' int val1;\n' ' float val2;\n' '} _mod__module_0_;\n\n\n' '_mod__module_0_') def test_ctype_struct(): dtype = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 4, 16], itemsize=64, aligned=True)) ctype = dtypes.ctype_struct(dtype) src = render_with_modules("${ctype}", render_globals=dict(ctype=ctype)).strip() assert src == ( 'typedef struct _mod__module_0__ {\n' ' char x;\n' ' short ALIGN(4) y;\n' ' int ALIGN(16) z;\n' '} ALIGN(64) _mod__module_0_;\n\n\n' '_mod__module_0_') def test_ctype_struct_ignore_alignment(): dtype = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32], offsets=[0, 4, 16], itemsize=64, aligned=True)) ctype = dtypes.ctype_struct(dtype, ignore_alignment=True) src = render_with_modules("${ctype}", render_globals=dict(ctype=ctype)).strip() assert src == ( 'typedef struct _mod__module_0__ {\n' ' char x;\n' ' short y;\n' ' int z;\n' '} _mod__module_0_;\n\n\n' '_mod__module_0_') def test_ctype_struct_checks_alignment(): dtype = numpy.dtype(dict( names=['x', 'y', 'z'], formats=[numpy.int8, numpy.int16, numpy.int32])) with pytest.raises(ValueError): dtypes.ctype_struct(dtype) def test_ctype_struct_for_non_struct(): dtype = numpy.dtype((numpy.int32, 3)) with pytest.raises(ValueError): dtypes.ctype_struct(dtype) # ctype_struct() is not applicable for simple types with pytest.raises(ValueError): dtypes.ctype_struct(numpy.int32) def test_flatten_dtype(): dtype_nested = numpy.dtype(dict( names=['val1', 'pad'], formats=[numpy.int8, numpy.int8])) dtype = numpy.dtype(dict( names=['pad', 'struct_arr', 'regular_arr'], formats=[numpy.int32, numpy.dtype((dtype_nested, 2)), numpy.dtype((numpy.int16, 3))])) res = dtypes.flatten_dtype(dtype) ref = [ (['pad'], numpy.dtype('int32')), (['struct_arr', 0, 'val1'], numpy.dtype('int8')), (['struct_arr', 0, 'pad'], numpy.dtype('int8')), (['struct_arr', 1, 'val1'], numpy.dtype('int8')), (['struct_arr', 1, 'pad'], numpy.dtype('int8')), (['regular_arr', 0], numpy.dtype('int16')), (['regular_arr', 1], numpy.dtype('int16')), (['regular_arr', 2], numpy.dtype('int16'))] assert dtypes.flatten_dtype(dtype) == ref def test_c_path(): assert dtypes.c_path(['struct_arr', 0, 'val1']) == 'struct_arr[0].val1' def test_extract_field(): dtype_nested = numpy.dtype(dict( names=['val1', 'pad'], formats=[numpy.int8, numpy.int8])) dtype = numpy.dtype(dict( names=['pad', 'struct_arr', 'regular_arr'], formats=[numpy.int32, numpy.dtype((dtype_nested, 2)), numpy.dtype((numpy.int16, 3))])) a = numpy.empty(16, dtype) a['struct_arr']['val1'][:,1] = numpy.arange(16) assert (dtypes.extract_field(a, ['struct_arr', 1, 'val1']) == numpy.arange(16)).all() b = numpy.empty(16, dtype_nested) b['val1'] = numpy.arange(16) assert (dtypes.extract_field(b, ['val1']) == numpy.arange(16)).all()
[ "numpy.uint64", "grunnur.dtypes.is_double", "numpy.empty", "grunnur.dtypes.is_complex", "grunnur.dtypes.detect_type", "grunnur.dtypes._align", "grunnur.dtypes._find_minimum_alignment", "numpy.arange", "grunnur.dtypes.align", "numpy.float64", "numpy.complex64", "numpy.int8", "grunnur.dtypes.c_constant", "grunnur.dtypes.flatten_dtype", "pytest.raises", "grunnur.dtypes.normalize_type", "grunnur.dtypes.is_real", "numpy.int64", "numpy.int32", "grunnur.dtypes._promote_type", "grunnur.dtypes.WrappedType", "numpy.complex128", "grunnur.dtypes.complex_for", "grunnur.dtypes.cast", "grunnur.dtypes.extract_field", "grunnur.dtypes.ctype_struct", "grunnur.dtypes.min_scalar_type", "grunnur.dtypes.ctype", "grunnur.dtypes._lcm", "grunnur.dtypes.c_path", "numpy.dtype", "grunnur.dtypes.complex_ctr", "numpy.float32", "numpy.array", "grunnur.dtypes.real_for", "grunnur.dtypes.is_integer", "grunnur.dtypes.result_type" ]
[((144, 178), 'grunnur.dtypes.normalize_type', 'dtypes.normalize_type', (['numpy.int32'], {}), '(numpy.int32)\n', (165, 178), False, 'from grunnur import dtypes\n'), ((359, 393), 'grunnur.dtypes.is_complex', 'dtypes.is_complex', (['numpy.complex64'], {}), '(numpy.complex64)\n', (376, 393), False, 'from grunnur import dtypes\n'), ((405, 440), 'grunnur.dtypes.is_complex', 'dtypes.is_complex', (['numpy.complex128'], {}), '(numpy.complex128)\n', (422, 440), False, 'from grunnur import dtypes\n'), ((524, 555), 'grunnur.dtypes.is_double', 'dtypes.is_double', (['numpy.float64'], {}), '(numpy.float64)\n', (540, 555), False, 'from grunnur import dtypes\n'), ((567, 601), 'grunnur.dtypes.is_double', 'dtypes.is_double', (['numpy.complex128'], {}), '(numpy.complex128)\n', (583, 601), False, 'from grunnur import dtypes\n'), ((687, 717), 'grunnur.dtypes.is_integer', 'dtypes.is_integer', (['numpy.int32'], {}), '(numpy.int32)\n', (704, 717), False, 'from grunnur import dtypes\n'), ((799, 828), 'grunnur.dtypes.is_real', 'dtypes.is_real', (['numpy.float32'], {}), '(numpy.float32)\n', (813, 828), False, 'from grunnur import dtypes\n'), ((2687, 2712), 'grunnur.dtypes.cast', 'dtypes.cast', (['numpy.uint64'], {}), '(numpy.uint64)\n', (2698, 2712), False, 'from grunnur import dtypes\n'), ((3465, 3526), 'numpy.dtype', 'numpy.dtype', (["[('val1', numpy.int32), ('val2', numpy.float32)]"], {}), "([('val1', numpy.int32), ('val2', numpy.float32)])\n", (3476, 3526), False, 'import numpy\n'), ((3537, 3559), 'numpy.empty', 'numpy.empty', (['()', 'dtype'], {}), '((), dtype)\n', (3548, 3559), False, 'import numpy\n'), ((3766, 3786), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (3777, 3786), False, 'import numpy\n'), ((3797, 3817), 'grunnur.dtypes._align', 'dtypes._align', (['dtype'], {}), '(dtype)\n', (3810, 3817), False, 'from grunnur import dtypes\n'), ((3828, 3869), 'grunnur.dtypes.WrappedType', 'dtypes.WrappedType', (['dtype', 'dtype.itemsize'], {}), '(dtype, dtype.itemsize)\n', (3846, 3869), False, 'from grunnur import dtypes\n'), ((3931, 3951), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (3942, 3951), False, 'import numpy\n'), ((3968, 3991), 'numpy.dtype', 'numpy.dtype', (['(dtype, 3)'], {}), '((dtype, 3))\n', (3979, 3991), False, 'import numpy\n'), ((4002, 4026), 'grunnur.dtypes._align', 'dtypes._align', (['dtype_arr'], {}), '(dtype_arr)\n', (4015, 4026), False, 'from grunnur import dtypes\n'), ((4037, 4082), 'grunnur.dtypes.WrappedType', 'dtypes.WrappedType', (['dtype_arr', 'dtype.itemsize'], {}), '(dtype_arr, dtype.itemsize)\n', (4055, 4082), False, 'from grunnur import dtypes\n'), ((4273, 4293), 'grunnur.dtypes._align', 'dtypes._align', (['dtype'], {}), '(dtype)\n', (4286, 4293), False, 'from grunnur import dtypes\n'), ((5100, 5128), 'grunnur.dtypes._align', 'dtypes._align', (['dtype_aligned'], {}), '(dtype_aligned)\n', (5113, 5128), False, 'from grunnur import dtypes\n'), ((5756, 5784), 'grunnur.dtypes._align', 'dtypes._align', (['dtype_aligned'], {}), '(dtype_aligned)\n', (5769, 5784), False, 'from grunnur import dtypes\n'), ((6570, 6598), 'grunnur.dtypes._align', 'dtypes._align', (['dtype_aligned'], {}), '(dtype_aligned)\n', (6583, 6598), False, 'from grunnur import dtypes\n'), ((7875, 7894), 'grunnur.dtypes.align', 'dtypes.align', (['dtype'], {}), '(dtype)\n', (7887, 7894), False, 'from grunnur import dtypes\n'), ((8454, 8473), 'grunnur.dtypes.align', 'dtypes.align', (['dtype'], {}), '(dtype)\n', (8466, 8473), False, 'from grunnur import dtypes\n'), ((10318, 10337), 'grunnur.dtypes.ctype', 'dtypes.ctype', (['dtype'], {}), '(dtype)\n', (10330, 10337), False, 'from grunnur import dtypes\n'), ((10945, 10964), 'grunnur.dtypes.align', 'dtypes.align', (['dtype'], {}), '(dtype)\n', (10957, 10964), False, 'from grunnur import dtypes\n'), ((10977, 10996), 'grunnur.dtypes.ctype', 'dtypes.ctype', (['dtype'], {}), '(dtype)\n', (10989, 10996), False, 'from grunnur import dtypes\n'), ((11663, 11682), 'grunnur.dtypes.ctype', 'dtypes.ctype', (['dtype'], {}), '(dtype)\n', (11675, 11682), False, 'from grunnur import dtypes\n'), ((12182, 12208), 'grunnur.dtypes.ctype_struct', 'dtypes.ctype_struct', (['dtype'], {}), '(dtype)\n', (12201, 12208), False, 'from grunnur import dtypes\n'), ((12769, 12818), 'grunnur.dtypes.ctype_struct', 'dtypes.ctype_struct', (['dtype'], {'ignore_alignment': '(True)'}), '(dtype, ignore_alignment=True)\n', (12788, 12818), False, 'from grunnur import dtypes\n'), ((13394, 13423), 'numpy.dtype', 'numpy.dtype', (['(numpy.int32, 3)'], {}), '((numpy.int32, 3))\n', (13405, 13423), False, 'import numpy\n'), ((13957, 13984), 'grunnur.dtypes.flatten_dtype', 'dtypes.flatten_dtype', (['dtype'], {}), '(dtype)\n', (13977, 13984), False, 'from grunnur import dtypes\n'), ((14894, 14916), 'numpy.empty', 'numpy.empty', (['(16)', 'dtype'], {}), '(16, dtype)\n', (14905, 14916), False, 'import numpy\n'), ((14952, 14968), 'numpy.arange', 'numpy.arange', (['(16)'], {}), '(16)\n', (14964, 14968), False, 'import numpy\n'), ((15068, 15097), 'numpy.empty', 'numpy.empty', (['(16)', 'dtype_nested'], {}), '(16, dtype_nested)\n', (15079, 15097), False, 'import numpy\n'), ((15114, 15130), 'numpy.arange', 'numpy.arange', (['(16)'], {}), '(16)\n', (15126, 15130), False, 'import numpy\n'), ((288, 313), 'grunnur.dtypes.ctype', 'dtypes.ctype', (['numpy.int32'], {}), '(numpy.int32)\n', (300, 313), False, 'from grunnur import dtypes\n'), ((456, 488), 'grunnur.dtypes.is_complex', 'dtypes.is_complex', (['numpy.float64'], {}), '(numpy.float64)\n', (473, 488), False, 'from grunnur import dtypes\n'), ((617, 650), 'grunnur.dtypes.is_double', 'dtypes.is_double', (['numpy.complex64'], {}), '(numpy.complex64)\n', (633, 650), False, 'from grunnur import dtypes\n'), ((733, 765), 'grunnur.dtypes.is_integer', 'dtypes.is_integer', (['numpy.float32'], {}), '(numpy.float32)\n', (750, 765), False, 'from grunnur import dtypes\n'), ((844, 875), 'grunnur.dtypes.is_real', 'dtypes.is_real', (['numpy.complex64'], {}), '(numpy.complex64)\n', (858, 875), False, 'from grunnur import dtypes\n'), ((891, 918), 'grunnur.dtypes.is_real', 'dtypes.is_real', (['numpy.int32'], {}), '(numpy.int32)\n', (905, 918), False, 'from grunnur import dtypes\n'), ((957, 989), 'grunnur.dtypes._promote_type', 'dtypes._promote_type', (['numpy.int8'], {}), '(numpy.int8)\n', (977, 989), False, 'from grunnur import dtypes\n'), ((1016, 1049), 'grunnur.dtypes._promote_type', 'dtypes._promote_type', (['numpy.uint8'], {}), '(numpy.uint8)\n', (1036, 1049), False, 'from grunnur import dtypes\n'), ((1077, 1112), 'grunnur.dtypes._promote_type', 'dtypes._promote_type', (['numpy.float16'], {}), '(numpy.float16)\n', (1097, 1112), False, 'from grunnur import dtypes\n'), ((1141, 1174), 'grunnur.dtypes._promote_type', 'dtypes._promote_type', (['numpy.int32'], {}), '(numpy.int32)\n', (1161, 1174), False, 'from grunnur import dtypes\n'), ((1227, 1273), 'grunnur.dtypes.result_type', 'dtypes.result_type', (['numpy.int32', 'numpy.float32'], {}), '(numpy.int32, numpy.float32)\n', (1245, 1273), False, 'from grunnur import dtypes\n'), ((1332, 1357), 'grunnur.dtypes.min_scalar_type', 'dtypes.min_scalar_type', (['(1)'], {}), '(1)\n', (1354, 1357), False, 'from grunnur import dtypes\n'), ((1385, 1411), 'grunnur.dtypes.min_scalar_type', 'dtypes.min_scalar_type', (['(-1)'], {}), '(-1)\n', (1407, 1411), False, 'from grunnur import dtypes\n'), ((1438, 1465), 'grunnur.dtypes.min_scalar_type', 'dtypes.min_scalar_type', (['(1.0)'], {}), '(1.0)\n', (1460, 1465), False, 'from grunnur import dtypes\n'), ((1494, 1548), 'grunnur.dtypes.min_scalar_type', 'dtypes.min_scalar_type', (['(2 ** 31 - 1)'], {'force_signed': '(True)'}), '(2 ** 31 - 1, force_signed=True)\n', (1516, 1548), False, 'from grunnur import dtypes\n'), ((1612, 1662), 'grunnur.dtypes.min_scalar_type', 'dtypes.min_scalar_type', (['(2 ** 31)'], {'force_signed': '(True)'}), '(2 ** 31, force_signed=True)\n', (1634, 1662), False, 'from grunnur import dtypes\n'), ((1836, 1858), 'grunnur.dtypes.detect_type', 'dtypes.detect_type', (['(-1)'], {}), '(-1)\n', (1854, 1858), False, 'from grunnur import dtypes\n'), ((1885, 1909), 'grunnur.dtypes.detect_type', 'dtypes.detect_type', (['(-1.0)'], {}), '(-1.0)\n', (1903, 1909), False, 'from grunnur import dtypes\n'), ((1963, 1996), 'grunnur.dtypes.complex_for', 'dtypes.complex_for', (['numpy.float32'], {}), '(numpy.float32)\n', (1981, 1996), False, 'from grunnur import dtypes\n'), ((2027, 2060), 'grunnur.dtypes.complex_for', 'dtypes.complex_for', (['numpy.float64'], {}), '(numpy.float64)\n', (2045, 2060), False, 'from grunnur import dtypes\n'), ((2090, 2115), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2103, 2115), False, 'import pytest\n'), ((2132, 2167), 'grunnur.dtypes.complex_for', 'dtypes.complex_for', (['numpy.complex64'], {}), '(numpy.complex64)\n', (2150, 2167), False, 'from grunnur import dtypes\n'), ((2177, 2202), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2190, 2202), False, 'import pytest\n'), ((2219, 2250), 'grunnur.dtypes.complex_for', 'dtypes.complex_for', (['numpy.int32'], {}), '(numpy.int32)\n', (2237, 2250), False, 'from grunnur import dtypes\n'), ((2285, 2317), 'grunnur.dtypes.real_for', 'dtypes.real_for', (['numpy.complex64'], {}), '(numpy.complex64)\n', (2300, 2317), False, 'from grunnur import dtypes\n'), ((2346, 2379), 'grunnur.dtypes.real_for', 'dtypes.real_for', (['numpy.complex128'], {}), '(numpy.complex128)\n', (2361, 2379), False, 'from grunnur import dtypes\n'), ((2406, 2431), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2419, 2431), False, 'import pytest\n'), ((2448, 2478), 'grunnur.dtypes.real_for', 'dtypes.real_for', (['numpy.float32'], {}), '(numpy.float32)\n', (2463, 2478), False, 'from grunnur import dtypes\n'), ((2488, 2513), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2501, 2513), False, 'import pytest\n'), ((2530, 2558), 'grunnur.dtypes.real_for', 'dtypes.real_for', (['numpy.int32'], {}), '(numpy.int32)\n', (2545, 2558), False, 'from grunnur import dtypes\n'), ((2596, 2631), 'grunnur.dtypes.complex_ctr', 'dtypes.complex_ctr', (['numpy.complex64'], {}), '(numpy.complex64)\n', (2614, 2631), False, 'from grunnur import dtypes\n'), ((2894, 2914), 'grunnur.dtypes.c_constant', 'dtypes.c_constant', (['(1)'], {}), '(1)\n', (2911, 2914), False, 'from grunnur import dtypes\n'), ((3611, 3633), 'grunnur.dtypes.c_constant', 'dtypes.c_constant', (['val'], {}), '(val)\n', (3628, 3633), False, 'from grunnur import dtypes\n'), ((3680, 3715), 'grunnur.dtypes.c_constant', 'dtypes.c_constant', (['(1)', 'numpy.float32'], {}), '(1, numpy.float32)\n', (3697, 3715), False, 'from grunnur import dtypes\n'), ((4521, 4540), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (4532, 4540), False, 'import numpy\n'), ((4575, 4595), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (4586, 4595), False, 'import numpy\n'), ((4630, 4650), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (4641, 4650), False, 'import numpy\n'), ((5160, 5179), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (5171, 5179), False, 'import numpy\n'), ((5214, 5234), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (5225, 5234), False, 'import numpy\n'), ((5269, 5289), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (5280, 5289), False, 'import numpy\n'), ((5816, 5835), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (5827, 5835), False, 'import numpy\n'), ((5870, 5890), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (5881, 5890), False, 'import numpy\n'), ((5925, 5945), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (5936, 5945), False, 'import numpy\n'), ((6630, 6649), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (6641, 6649), False, 'import numpy\n'), ((6684, 6704), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (6695, 6704), False, 'import numpy\n'), ((6739, 6759), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (6750, 6759), False, 'import numpy\n'), ((7268, 7293), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7281, 7293), False, 'import pytest\n'), ((7303, 7331), 'grunnur.dtypes._align', 'dtypes._align', (['dtype_aligned'], {}), '(dtype_aligned)\n', (7316, 7331), False, 'from grunnur import dtypes\n'), ((8583, 8598), 'grunnur.dtypes._lcm', 'dtypes._lcm', (['(10)'], {}), '(10)\n', (8594, 8598), False, 'from grunnur import dtypes\n'), ((8616, 8635), 'grunnur.dtypes._lcm', 'dtypes._lcm', (['(15)', '(20)'], {}), '(15, 20)\n', (8627, 8635), False, 'from grunnur import dtypes\n'), ((8653, 8676), 'grunnur.dtypes._lcm', 'dtypes._lcm', (['(16)', '(32)', '(24)'], {}), '(16, 32, 24)\n', (8664, 8676), False, 'from grunnur import dtypes\n'), ((8820, 8860), 'grunnur.dtypes._find_minimum_alignment', 'dtypes._find_minimum_alignment', (['(12)', '(4)', '(9)'], {}), '(12, 4, 9)\n', (8850, 8860), False, 'from grunnur import dtypes\n'), ((9041, 9081), 'grunnur.dtypes._find_minimum_alignment', 'dtypes._find_minimum_alignment', (['(16)', '(4)', '(9)'], {}), '(16, 4, 9)\n', (9071, 9081), False, 'from grunnur import dtypes\n'), ((9159, 9184), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (9172, 9184), False, 'import pytest\n'), ((9194, 9234), 'grunnur.dtypes._find_minimum_alignment', 'dtypes._find_minimum_alignment', (['(13)', '(4)', '(9)'], {}), '(13, 4, 9)\n', (9224, 9234), False, 'from grunnur import dtypes\n'), ((9365, 9390), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (9378, 9390), False, 'import pytest\n'), ((9400, 9440), 'grunnur.dtypes._find_minimum_alignment', 'dtypes._find_minimum_alignment', (['(24)', '(4)', '(9)'], {}), '(24, 4, 9)\n', (9430, 9440), False, 'from grunnur import dtypes\n'), ((9700, 9719), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (9711, 9719), False, 'import numpy\n'), ((9754, 9774), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (9765, 9774), False, 'import numpy\n'), ((9809, 9829), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (9820, 9829), False, 'import numpy\n'), ((10243, 10304), 'numpy.dtype', 'numpy.dtype', (["[('val1', numpy.int32), ('val2', numpy.float32)]"], {}), "([('val1', numpy.int32), ('val2', numpy.float32)])\n", (10254, 10304), False, 'import numpy\n'), ((11588, 11649), 'numpy.dtype', 'numpy.dtype', (["[('val1', numpy.int32), ('val2', numpy.float32)]"], {}), "([('val1', numpy.int32), ('val2', numpy.float32)])\n", (11599, 11649), False, 'import numpy\n'), ((13278, 13303), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (13291, 13303), False, 'import pytest\n'), ((13313, 13339), 'grunnur.dtypes.ctype_struct', 'dtypes.ctype_struct', (['dtype'], {}), '(dtype)\n', (13332, 13339), False, 'from grunnur import dtypes\n'), ((13433, 13458), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (13446, 13458), False, 'import pytest\n'), ((13468, 13494), 'grunnur.dtypes.ctype_struct', 'dtypes.ctype_struct', (['dtype'], {}), '(dtype)\n', (13487, 13494), False, 'from grunnur import dtypes\n'), ((13561, 13586), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (13574, 13586), False, 'import pytest\n'), ((13596, 13628), 'grunnur.dtypes.ctype_struct', 'dtypes.ctype_struct', (['numpy.int32'], {}), '(numpy.int32)\n', (13615, 13628), False, 'from grunnur import dtypes\n'), ((14436, 14463), 'grunnur.dtypes.flatten_dtype', 'dtypes.flatten_dtype', (['dtype'], {}), '(dtype)\n', (14456, 14463), False, 'from grunnur import dtypes\n'), ((14503, 14543), 'grunnur.dtypes.c_path', 'dtypes.c_path', (["['struct_arr', 0, 'val1']"], {}), "(['struct_arr', 0, 'val1'])\n", (14516, 14543), False, 'from grunnur import dtypes\n'), ((1732, 1746), 'numpy.int8', 'numpy.int8', (['(-1)'], {}), '(-1)\n', (1742, 1746), False, 'import numpy\n'), ((1793, 1808), 'numpy.int64', 'numpy.int64', (['(-1)'], {}), '(-1)\n', (1804, 1808), False, 'import numpy\n'), ((2743, 2757), 'numpy.int32', 'numpy.int32', (['(1)'], {}), '(1)\n', (2754, 2757), False, 'import numpy\n'), ((2765, 2780), 'numpy.uint64', 'numpy.uint64', (['(1)'], {}), '(1)\n', (2777, 2780), False, 'import numpy\n'), ((2951, 2966), 'numpy.uint64', 'numpy.uint64', (['(1)'], {}), '(1)\n', (2963, 2966), False, 'import numpy\n'), ((3006, 3021), 'numpy.int64', 'numpy.int64', (['(-1)'], {}), '(-1)\n', (3017, 3021), False, 'import numpy\n'), ((3061, 3079), 'numpy.float64', 'numpy.float64', (['(1.0)'], {}), '(1.0)\n', (3074, 3079), False, 'import numpy\n'), ((3118, 3136), 'numpy.float32', 'numpy.float32', (['(1.0)'], {}), '(1.0)\n', (3131, 3136), False, 'import numpy\n'), ((3176, 3201), 'numpy.complex64', 'numpy.complex64', (['(1 + 2.0j)'], {}), '(1 + 2.0j)\n', (3191, 3201), False, 'import numpy\n'), ((3267, 3293), 'numpy.complex128', 'numpy.complex128', (['(1 + 2.0j)'], {}), '(1 + 2.0j)\n', (3283, 3293), False, 'import numpy\n'), ((3371, 3408), 'numpy.array', 'numpy.array', (['[1, 2, 3]', 'numpy.float32'], {}), '([1, 2, 3], numpy.float32)\n', (3382, 3408), False, 'import numpy\n'), ((14015, 14035), 'numpy.dtype', 'numpy.dtype', (['"""int32"""'], {}), "('int32')\n", (14026, 14035), False, 'import numpy\n'), ((14074, 14093), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (14085, 14093), False, 'import numpy\n'), ((14131, 14150), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (14142, 14150), False, 'import numpy\n'), ((14189, 14208), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (14200, 14208), False, 'import numpy\n'), ((14246, 14265), 'numpy.dtype', 'numpy.dtype', (['"""int8"""'], {}), "('int8')\n", (14257, 14265), False, 'import numpy\n'), ((14297, 14317), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (14308, 14317), False, 'import numpy\n'), ((14349, 14369), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (14360, 14369), False, 'import numpy\n'), ((14401, 14421), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (14412, 14421), False, 'import numpy\n'), ((14981, 15031), 'grunnur.dtypes.extract_field', 'dtypes.extract_field', (['a', "['struct_arr', 1, 'val1']"], {}), "(a, ['struct_arr', 1, 'val1'])\n", (15001, 15031), False, 'from grunnur import dtypes\n'), ((15035, 15051), 'numpy.arange', 'numpy.arange', (['(16)'], {}), '(16)\n', (15047, 15051), False, 'import numpy\n'), ((15143, 15176), 'grunnur.dtypes.extract_field', 'dtypes.extract_field', (['b', "['val1']"], {}), "(b, ['val1'])\n", (15163, 15176), False, 'from grunnur import dtypes\n'), ((15180, 15196), 'numpy.arange', 'numpy.arange', (['(16)'], {}), '(16)\n', (15192, 15196), False, 'import numpy\n'), ((7583, 7613), 'numpy.dtype', 'numpy.dtype', (['(dtype_nested, 2)'], {}), '((dtype_nested, 2))\n', (7594, 7613), False, 'import numpy\n'), ((7615, 7644), 'numpy.dtype', 'numpy.dtype', (['(numpy.int16, 3)'], {}), '((numpy.int16, 3))\n', (7626, 7644), False, 'import numpy\n'), ((10867, 10897), 'numpy.dtype', 'numpy.dtype', (['(dtype_nested, 2)'], {}), '((dtype_nested, 2))\n', (10878, 10897), False, 'import numpy\n'), ((10899, 10928), 'numpy.dtype', 'numpy.dtype', (['(numpy.int16, 3)'], {}), '((numpy.int16, 3))\n', (10910, 10928), False, 'import numpy\n'), ((13881, 13911), 'numpy.dtype', 'numpy.dtype', (['(dtype_nested, 2)'], {}), '((dtype_nested, 2))\n', (13892, 13911), False, 'import numpy\n'), ((13913, 13942), 'numpy.dtype', 'numpy.dtype', (['(numpy.int16, 3)'], {}), '((numpy.int16, 3))\n', (13924, 13942), False, 'import numpy\n'), ((14820, 14850), 'numpy.dtype', 'numpy.dtype', (['(dtype_nested, 2)'], {}), '((dtype_nested, 2))\n', (14831, 14850), False, 'import numpy\n'), ((14852, 14881), 'numpy.dtype', 'numpy.dtype', (['(numpy.int16, 3)'], {}), '((numpy.int16, 3))\n', (14863, 14881), False, 'import numpy\n')]
# AUTOGENERATED! DO NOT EDIT! File to edit: dev/52_USB_camera.ipynb (unless otherwise specified). __all__ = ['Camera'] # Cell from FLIRCam.core import * # Cell # Standard imports: from pathlib import Path import logging from logging.handlers import RotatingFileHandler from time import sleep, time as timestamp from datetime import datetime from threading import Thread, Event from struct import pack as pack_data # External imports: import numpy as np # Cell import PySpin class Camera(): """Control acquisition and receive images from a camera. To initialise a Camera a *model* (determines hardware interface) and *identity* (identifying the specific device) must be given. If both are given to the constructor the Camera will be initialised immediately (unless auto_init=False is passed). Manually initialise with a call to Camera.initialize(); release hardware with a call to Camera.deinitialize(). After the Camera is intialised, acquisition properties (e.g. exposure_time and frame_rate) may be set and images received. The Camera also supports event-driven acquisition, see Camera.add_event_callback(), where new images are automatically passed on to the desired functions. Args: model (str, optional): The model used to determine the correct hardware API. Supported: 'ptgrey' for PointGrey/FLIR Machine Vision cameras (using Spinnaker and PySpin). identity (str, optional): String identifying the device. For model *ptgrey* this is 'serial number' *as a string*. name (str, optional): Name for the device. auto_init (bool, optional): If both model and identity are given when creating the Camera and auto_init is True (the default), Camera.initialize() will be called after creation. debug_folder (pathlib.Path, optional): The folder for debug logging. If None (the default) the folder *pypogs*/debug will be used/created. Example: :: # Create instance and set parameters (will auto initialise) cam = pypogs.Camera(model='ptgrey', identity='18285284', name='CoarseCam') cam.gain = 0 #decibel cam.exposure_time = 100 #milliseconds cam.frame_rate_auto = True # Start acquisition cam.start() # Wait for a while time.sleep(2) # Read the latest image img = cam.get_latest_image() # Stop the acquisition cam.stop() # Release the hardware cam.deinitialize() """ _supported_models = ('ptgrey',) def __init__(self, model=None, identity=None, name=None, auto_init=True, debug_folder=None): """Create Camera instance. See class documentation.""" # Logger setup self._debug_folder = None if debug_folder is None: try: self.debug_folder = Path(__file__).parent / 'debug' except: self.debug_folder = Path()/'debug' else: self.debug_folder = debug_folder self.log = logging.getLogger(f'{name}') if not self.log.hasHandlers(): # Add new handlers to the logger if there are none self.log.setLevel(logging.DEBUG) # Console handler at INFO level ch = logging.StreamHandler() ch.setLevel(logging.INFO) # File handler at DEBUG level # fh = logging.FileHandler(self.debug_folder / 'log.txt') fh = RotatingFileHandler(self.debug_folder / 'camera.log', maxBytes=1*1024*1024, backupCount=2) fh.setLevel(logging.DEBUG) # Format and add # log_formatter = logging.Formatter('%(asctime)s:%(name)s-%(levelname)s: %(message)s') # log_formatter = logging.Formatter('%(asctime)s CAM-%(levelname)s: %(message)s') log_formatter = logging.Formatter('%(asctime)s %(name)s-%(levelname)s-%(threadName)s'+ '-%(funcName)s-(%(lineno)d) %(message)s') fh.setFormatter(log_formatter) ch.setFormatter(log_formatter) self.log.addHandler(fh) self.log.addHandler(ch) self.log.info('New console and file logging handlers added.') # Start of constructor self.log.debug('Camera Init: Model:'+str(model)+' ID:'+str(identity) \ +' Name:'+str(name) +' AutoInit:'+str(auto_init)) self._model = None self._identity = None self._name = 'UnnamedCamera' self._plate_scale = 1.0 self._rotation = 0.0 self._flipX = False self._flipY = False self._rot90 = 0 #Number of times to rotate by 90 deg, done after flips #Only used for ptgrey self._ptgrey_camera = None self._ptgrey_camlist = None self._ptgrey_system = None #Callbacks on image event self._call_on_image = set() self._got_image_event = Event() self._image_data = None self._image_frameID = None self._image_timestamp = None self._imgs_since_start = 0 self.log.debug('Calling self on constructor input') if model is not None: self.model = model if identity is not None: self.identity = identity if name is not None: self.name = name if auto_init and not None in (model, identity): self.log.debug('Trying to auto-initialise') self.initialize() self.log.debug('Registering destructor') # TODO: Should we register deinitialisor instead? (probably yes...) import atexit, weakref atexit.register(weakref.ref(self.__del__)) self.log.info('Camera instance created with name: ' + self.name + '.') def __del__(self): """Destructor. Releases hardware.""" if self.is_init: self.deinitialize() def getprops(self, prop_list): """ Get FLIR Camera properties, listed in the prop_list""" assert self.is_init, 'Camera must be initialised' prop_dict = { i : None for i in prop_list } try: nodemap = self._ptgrey_camera.GetNodeMap() for i, p in enumerate(prop_list): # val_list[i] = PySpin.CIntegerPtr(nodemap.GetNode(p)).GetValue() try: # integer prop_dict[p] = PySpin.CIntegerPtr(nodemap.GetNode(p)).GetValue() except: try: # Float prop_dict[p] = PySpin.CFloatPtr(nodemap.GetNode(p)).GetValue() except: try: # enumeration node = PySpin.CEnumerationPtr(nodemap.GetNode(p)) prop_dict[p] = node.GetCurrentEntry().GetDisplayName().lower() except: # Bool prop_dict[p] = PySpin.CBooleanPtr(nodemap.GetNode(p)).GetValue() self.log.debug(f'Found Node "{str(p)}" = {prop_dict[p]}') except PySpin.SpinnakerException: self.log.warning(f'Failed to read node "{str(p)}"') finally: return prop_dict def setprops(self, prop_dict, stop=True): """ Set FLIR Camera properties, listed in the prop_dict""" assert self.is_init, 'Camera must be initialised' was_stopped = False if self.is_running and stop: self.log.debug('Camera is running, stop it and restart immediately after.') self.stop() was_stopped = True assert self.is_init, 'Camera must be initialised' type_list = [type(value) for key, value in self.getprops(prop_dict).items()] self.log.debug(f'Type_list = {type_list}') try: nodemap = self._ptgrey_camera.GetNodeMap() for (key, value), t in zip(prop_dict.items(), type_list): if t == int : # integer PySpin.CIntegerPtr(nodemap.GetNode(key)).SetValue(value) elif t == float: PySpin.CFloatPtr(nodemap.GetNode(key)).SetValue(value) elif t == str: node = PySpin.CEnumerationPtr(nodemap.GetNode(key)) node.SetIntValue(node.GetEntryByName(value).GetValue()) elif t == bool: # node = PySpin.CBooleanPtr(nodemap.GetNode('AcquisitionFrameRateEnable')) PySpin.CBooleanPtr(nodemap.GetNode(key)).SetValue(value) elif t == type(None): self.log.warning(f'No property type found for node: "{key}"') # raise Exception(f'No property type found for node: "{key}"') return else: self.log.warning(f'Property type not implemented for node: "{key}"') # raise Exception(f'Property type not implemented for node: "{key}"') return self.log.debug(f'Set Node "{key}" = {value}') except PySpin.SpinnakerException as e: if 'LogicalErrorException' in e.message: self.log.warning(f'Node: "{key}", LogicalErrorException') elif 'OutOfRangeException' in e.message: self.log.warning(f'Node: "{key}", value: "{value}" is out of range.') elif 'AccessException' in e.message: self.log.warning(f'Not allowed to change Node: "{key}" now - Try "stop=True".') else: self.log.warning(f'Failed to set node: "{key}"') if was_stopped : try: self.start() self.log.debug('Restarted') except Exception: self.log.debug('Failed to restart: ', exc_info=True) def _ptgrey_release(self): """PRIVATE: Release Point Grey hardware resources.""" self.log.debug('PointGrey hardware release called') if self._ptgrey_camera is not None: self.log.debug('Deleting PtGrey camera object') del(self._ptgrey_camera) #Preferred over =None according to PtGrey self._ptgrey_camera = None if self._ptgrey_camlist is not None: self.log.debug('Clearing and deleting PtGrey camlist') self._ptgrey_camlist.Clear() del(self._ptgrey_camlist) self._ptgrey_camlist = None if self._ptgrey_system is not None: self.log.debug('Has PtGrey system. Is in use? '+str(self._ptgrey_system.IsInUse())) if not self._ptgrey_system.IsInUse(): self.log.debug('Not in use, releasing and deleting') self._ptgrey_system.ReleaseInstance() del(self._ptgrey_system) self._ptgrey_system = None self.log.debug('Hardware released') @property def debug_folder(self): """pathlib.Path: Get or set the path for debug logging. Will create folder if not existing.""" return self._debug_folder @debug_folder.setter def debug_folder(self, path): # Do not do logging in here! This will be called before the logger is set up path = Path(path) #Make sure pathlib.Path if path.is_file(): path = path.parent if not path.is_dir(): path.mkdir(parents=True) self._debug_folder = path @property def name(self): """str: Get or set the name.""" return self._name @name.setter def name(self, name): self.log.debug('Setting name to: '+str(name)) self._name = str(name) self.log.debug('Name set to '+str(self.name)) @property def model(self): """str: Get or set the device model. Supported: - 'ptgrey' for FLIR/Point Grey cameras (using Spinnaker/PySpin SDKs). - This will determine which hardware API that is used. - Must set before initialising the device and may not be changed for an initialised device. """ return self._model @model.setter def model(self, model): self.log.debug('Setting model to: '+str(model)) assert not self.is_init, 'Can not change already intialised device model' model = str(model) assert model.lower() in self._supported_models,\ 'Model type not recognised, allowed: '+str(self._supported_models) #TODO: Check that the APIs are available. self._model = model self.log.debug('Model set to '+str(self.model)) @property def identity(self): """str: Get or set the device and/or input. Model must be defined first. - For model *ptgrey* this is the serial number *as a string* - Must set before initialising the device and may not be changed for an initialised device. """ return self._identity @identity.setter def identity(self, identity): self.log.debug('Setting identity to: '+str(identity)) assert not self.is_init, 'Can not change already intialised device' assert self.model is not None, 'Must define model first' identity = str(identity) if not self._ptgrey_system: self._ptgrey_system = PySpin.System.GetInstance() #Get singleton self._ptgrey_camlist = self._ptgrey_system.GetCameras() self.log.debug('Got cam list, size:'+str(self._ptgrey_camlist.GetSize())) self._ptgrey_camera = self._ptgrey_camlist.GetBySerial(identity) valid = self._ptgrey_camera.IsValid() self.log.debug('Got object, valid: '+str(valid)) if valid: self.log.debug('Already init: '+str(self._ptgrey_camera.IsInitialized())) if not valid: self.log.debug('Invalid camera object. Cleaning up') del(self._ptgrey_camera) self._ptgrey_camera = None self._ptgrey_camlist.Clear() raise AssertionError('The camera was not found') elif self._ptgrey_camera.IsInitialized(): self.log.debug('Camera object already in use. Cleaning up') del(self._ptgrey_camera) self._ptgrey_camera = None self._ptgrey_camlist.Clear() raise RuntimeError('The camera is already in use') else: self.log.debug('Seems valid. Setting identity and cleaning up') del(self._ptgrey_camera) self._ptgrey_camera = None self._identity = identity self._ptgrey_camlist.Clear() self.log.debug('Identity set to: '+str(self.identity)) @property def is_init(self): """bool: True if the device is initialised (and therefore ready to start).""" init = self._ptgrey_camera is not None and self._ptgrey_camera.IsInitialized() return init def initialize(self): """Initialise (make ready to start) the device. The model and identity must be defined.""" self.log.debug('Initialising') assert not self.is_init, 'Already initialised' assert not None in (self.model, self.identity), 'Must define model and identity before initialising' if self._ptgrey_camera is not None: raise RuntimeError('There is already a camera object here') if not self._ptgrey_system: self._ptgrey_system = PySpin.System.GetInstance() #Get singleton if self._ptgrey_camlist: #Clear old list and get fresh one self._ptgrey_camlist.Clear() del(self._ptgrey_camlist) self._ptgrey_camlist = self._ptgrey_system.GetCameras() self.log.debug('Getting pyspin object and initialising') self._ptgrey_camera = self._ptgrey_camlist.GetBySerial(self.identity) self._ptgrey_camera.Init() # BASIC SETUP # self.log.debug('Setting gamma off') # nodemap = self._ptgrey_camera.GetNodeMap() # PySpin.CBooleanPtr(nodemap.GetNode('GammaEnable')).SetValue(False) self.log.debug('Setting acquisition mode to continuous') self._ptgrey_camera.AcquisitionMode.SetIntValue(PySpin.AcquisitionMode_Continuous) self.log.debug('Setting stream mode to newest only') self._ptgrey_camera.TLStream.StreamBufferHandlingMode.SetIntValue( PySpin.StreamBufferHandlingMode_NewestOnly) self.log.info('Camera successfully initialised') def deinitialize(self): """De-initialise the device and release hardware resources. Will stop the acquisition if it is running.""" self.log.debug('De-initialising') assert self.is_init, 'Not initialised' if self.is_running: self.log.debug('Is running, stopping') self.stop() self.log.debug('Stopped') self.log.debug('Found PtGrey camera, deinitialising') self.unregister_event_handler() try: self._ptgrey_camera.DeInit() del(self._ptgrey_camera) self._ptgrey_camera = None self.log.debug('Deinitialised PtGrey camera object and deleted') except: self.log.exception('Failed to close task') self.log.debug('Trying to release PtGrey hardware resources') self._ptgrey_release() def register_event_handler(self): """Initialise images event handler mode.""" class PtGreyEventHandler(PySpin.ImageEvent): """Barebones event handler for ptgrey, just pass along the event to the Camera class.""" def __init__(self, parent): assert parent.model.lower() == 'ptgrey', 'Trying to attach ptgrey event handler to non ptgrey model' super().__init__() self.parent = parent def OnImageEvent(self, image:PySpin.Image): """Read out the image and a timestamp, reshape to array, pass to parent""" # self.parent.log.debug('Image event! Unpack and release pointer') self.parent._image_timestamp = datetime.utcnow() try: # img = image.GetData() image_converted = image.Convert(PySpin.PixelFormat_RGB8) image_converted = image_converted.GetNDArray() # print('img', image_converted.shape) # img = img.reshape((img_ptr.GetHeight(), img_ptr.GetWidth(), 3)) if self.parent._flipX: img = np.fliplr(image_converted) if self.parent._flipY: img = np.flipud(image_converted) if self.parent._rot90: img = np.rot90(image_converted, self.parent._rot90) self.parent._image_data = image_converted self.parent._image_frameID = image.GetFrameID() except: self.parent.log.warning('Failed to unpack image', exc_info=True) self.parent._image_data = None finally: image.Release() # self.parent._image_data = np.ones((100,100,3)) # self.parent._image_frameID = image.GetFrameID() # image.Release() self.parent._got_image_event.set() if self.parent._imgs_since_start % 10 == 0: self.parent.log.debug('Frames Received: ' + str(self.parent._imgs_since_start) \ + ' Size:' + str(self.parent._image_data.shape) \ + ' Type:' + str(self.parent._image_data.dtype)) for func in self.parent._call_on_image: try: self.parent.log.debug('Calling back to: ' + str(func)) func(self.parent._image_data, self.parent._image_frameID, self.parent._image_timestamp, self.parent.identity) except: self.parent.log.warning('Failed image callback', exc_info=True) self.parent._imgs_since_start += 1 # self.parent.log.debug('Event handler finished.') self._ptgrey_event_handler = PtGreyEventHandler(self) self.log.debug('Created ptgrey image event handler') self._ptgrey_camera.RegisterEvent( self._ptgrey_event_handler ) self.log.debug('Registered ptgrey image event handler') def unregister_event_handler(self): """Unregister images event handler.""" try: self._ptgrey_camera.UnregisterEvent(self._ptgrey_event_handler) self.log.debug('Unregistered event handler') except: self.log.exception('Failed to unregister event handler') @property def available_properties(self): """tuple of str: Get all the available properties (settings) supported by this device.""" assert self.is_init, 'Camera must be initialised' return ('flip_x', 'flip_y', 'rotate_90', 'plate_scale', 'rotation', 'binning', 'size_readout', 'frame_rate_auto',\ 'frame_rate', 'gain_auto', 'gain', 'exposure_time_auto', 'exposure_time') @property def flip_x(self): """bool: Get or set if the image X-axis should be flipped. Default is False.""" self.log.debug('Get flip-X called') assert self.is_init, 'Camera must be initialised' self.log.debug('Using PtGrey camera. Will flip the received image array ourselves: ' +str(self._flipX)) return self._flipX @flip_x.setter def flip_x(self, flip): self.log.debug('Set flip-X called with: '+str(flip)) assert self.is_init, 'Camera must be initialised' flip = bool(flip) self.log.debug('Using PtGrey camera. Will flip the received image array ourselves.') self._flipX = flip self.log.debug('_flipX set to: '+str(self._flipX)) @property def flip_y(self): """bool: Get or set if the image Y-axis should be flipped. Default is False.""" self.log.debug('Get flip-Y called') assert self.is_init, 'Camera must be initialised' self.log.debug('Using PtGrey camera. Will flip the received image array ourselves: ' +str(self._flipX)) return self._flipY @flip_y.setter def flip_y(self, flip): self.log.debug('Set flip-Y called with: '+str(flip)) assert self.is_init, 'Camera must be initialised' flip = bool(flip) self.log.debug('Using PtGrey camera. Will flip the received image array ourselves.') self._flipY = flip self.log.debug('_flipY set to: '+str(self._flipY)) @property def rotate_90(self): """int: Get or set how many times the image should be rotated by 90 degrees. Applied *after* flip_x and flip_y. """ assert self.is_init, 'Camera must be initialised' return self._rot90 @rotate_90.setter def rotate_90(self, k): self.log.debug('Set rot90 called with: '+str(k)) assert self.is_init, 'Camera must be initialised' k = int(k) self.log.debug('Using PtGrey camera. Will rotate the received image array ourselves.') self._rot90 = k self.log.debug('rot90 set to: '+str(self._rot90)) @property def plate_scale(self): """float: Get or set the plate scale of the Camera in arcsec per pixel. This will not affect anything in this class but is used elsewhere. Set this to the physical pixel plate scale *before* any binning. When getting the plate scale it will be scaled by the binning factor. """ return self._plate_scale * self.binning @plate_scale.setter def plate_scale(self, arcsec): self.log.debug('Set plate scale called with: '+str(arcsec)) self._plate_scale = float(arcsec) self.log.debug('Plate scale set to: '+str(self.plate_scale)) @property def rotation(self): """float: Get or set the camera rotation relative to the horizon in degrees. This does not affect the received images, but is used elsewhere. Use rotate_90 first to keep this rotation small. """ return self._rotation @rotation.setter def rotation(self, rot): self.log.debug('Set rotation called with: '+str(rot)) self._rotation = float(rot) self.log.debug('Rotation set to: '+str(self.rotation)) @property def frame_rate_auto(self): """bool: Get or set automatic frame rate. If True camera will run as fast as possible.""" self.log.debug('Get frame rate auto called') val = self.getprops(['AcquisitionFrameRateEnable'])['AcquisitionFrameRateEnable'] return not val @frame_rate_auto.setter def frame_rate_auto(self, auto): self.log.debug('Set frame rate called with: '+str(auto)) auto = bool(auto) self.setprops({'AcquisitionFrameRateEnable': not auto}) @property def frame_rate_limit(self): """tuple of float: Get the minimum and maximum frame rate in Hz supported.""" self.log.debug('Get frame rate limit called') mn,mx = list(self.getprops(['FrameRateHz_Min', 'FrameRateHz_Max']).values()) return (mn,mx) @property def frame_rate(self): """float: Get or set the camera frame rate in Hz. Will set auto frame rate to False.""" self.log.debug('Get frame rate called') return self.getprops(['AcquisitionFrameRate'])['AcquisitionFrameRate'] @frame_rate.setter def frame_rate(self, frame_rate_hz): self.log.debug('Set frame rate called with: '+str(frame_rate_hz)) self.frame_rate_auto = False self.setprops({'AcquisitionFrameRate':frame_rate_hz}) @property def gain_auto(self): """bool: Get or set automatic gain. If True the gain will be continuously updated.""" self.log.debug('Get gain auto called') val = self.getprops(['GainAuto'])['GainAuto'].lower() return True if val == 'continuous' else False @gain_auto.setter def gain_auto(self, auto): self.log.debug('Set gain called with: '+str(auto)) auto = bool(auto) self.setprops({'GainAuto': 'Continuous' if auto else 'Off'}) @property def gain_limit(self): """tuple of float: Get the minimum and maximum gain in dB supported.""" self.log.debug('Get gain limit called') mn,mx = list(self.getprops(['GainDB_Min', 'GainDB_Max']).values()) return (mn,mx) @property def gain(self): """Float: Get or set the camera gain in dB. Will set auto frame rate to False.""" self.log.debug('Get gain called') return self.getprops(['Gain'])['Gain'] @gain.setter def gain(self, gain_db): self.log.debug('Set gain called with: '+str(gain_db)) self.gain_auto = False self.setprops({'Gain':gain_db}) @property def exposure_time_auto(self): """bool: Get or set automatic exposure time. If True the exposure time will be continuously updated.""" self.log.debug('Get exposure time auto called') val = self.getprops(['ExposureAuto'])['ExposureAuto'].lower() return True if val == 'continuous' else False @exposure_time_auto.setter def exposure_time_auto(self, auto): self.log.debug('Set exposure time called with: '+str(auto)) auto = bool(auto) self.setprops({'ExposureAuto': 'Continuous' if auto else 'Off'}) @property def exposure_time_limit(self): """tuple of float: Get the minimum and maximum expsure time in ms supported.""" self.log.debug('Get gain limit called') prop_list = list(self.getprops(['ExposureTime_FloatMin', 'ExposureTime_FloatMax']).values()) return (prop_list[0]/1000, prop_list[1]/1000) @property def exposure_time(self): """float: Get or set the camera expsure time in ms. Will set auto exposure time to False.""" self.log.debug('Get exposure time called') return self.getprops(['ExposureTime'])['ExposureTime'] / 1000 @exposure_time.setter def exposure_time(self, exposure_ms): self.log.debug('Set exposure time called with: '+str(exposure_ms)) assert self.is_init, 'Camera must be initialised' exposure_ms = float(exposure_ms)*1000 self.exposure_time_auto = False self.setprops({'ExposureTime':exposure_ms}) @property def binning(self): """int: Number of pixels to bin in each dimension (e.g. 2 gives 2x2 binning). Bins by summing. Setting will stop and restart camera if running. Will scale size_readout to show the same sensor area. """ val_horiz, val_vert = self.getprops(['BinningHorizontal','BinningVertical']).values() if val_horiz != val_vert: self.log.warning('Horzontal and vertical binning is not equal.') return val_horiz @binning.setter def binning(self, binning): self.log.debug('Set binning called with: '+str(binning)) binning = int(binning) initial_size = self.size_readout initial_bin = self.binning self.log.debug('Initial sensor readout area and binning: '+str(initial_size)+' ,'+str(initial_bin)) self.setprops({'BinningHorizontal':binning, 'BinningVertical':binning}) new_bin = self.binning bin_scaling = new_bin/initial_bin new_size = [round(sz/bin_scaling) for sz in initial_size] self.log.debug('New binning and new size to set: '+str(new_bin)+' ,'+str(new_size)) try: self.size_readout = new_size self.log.debug('Set new size to: ' + str(self.size_readout)) except: self.log.warning('Failed to scale readout after binning change', exc_info=True) @property def size_max(self): """tuple of int: Get the maximum allowed readout size (width, height) in pixels.""" val_w, val_h = self.getprops(['WidthMax','HeightMax']).values() return (val_w, val_h) @property def size_readout(self): """tuple of int: Get or set the number of pixels read out (width, height). Will automatically center. This applies after binning, i.e. this is the size the output image will be. Setting will stop and restart camera if running. """ val_w, val_h = self.getprops(['Width','Height']).values() return (val_w, val_h) @size_readout.setter def size_readout(self, size): assert self.is_init, 'Camera must be initialised' if isinstance(size, (int, float)): size = (size, size) size = tuple([int(x) for x in size]) self.log.debug(f'Setting size_readout({size})') maxWidth, maxHeight = self.size_max new_offset = (round((maxWidth - size[0]) / 2), round((maxHeight - size[1]) / 2)) self.log.debug('Neccessary offset: ' + str(new_offset)) self.setprops({'OffsetX':new_offset[0], 'OffsetY':new_offset[1], 'Width':size[0], 'Height':size[1]}) def add_event_callback(self, method): """Add a method to be called when a new image shows up. The method should have the signature (image, timestamp, \*args, \*\*kwargs) where: - image (numpy.ndarray): The image data as a 2D numpy array. - timestamp (datetime.datetime): UTC timestamp when the image event occured (i.e. when the capture finished). - \*args, \*\*kwargs should be allowed for forward compatability. The callback should *not* be used for computations, make sure the method returns as fast as possible. Args: method: The method to be called, with signature (image, timestamp, \*args, \*\*kwargs). """ self.log.debug('Adding to callbacks: ' + str(method)) self._call_on_image.add(method) def remove_event_callback(self, method): """Remove method from event callbacks.""" self.log.debug('Removing callbacks: ' + str(method)) try: self._call_on_image.remove(method) except: self.log.warning('Could not remove callback', exc_info=True) @property def is_running(self): """bool: True if device is currently acquiring data.""" # self.log.debug('Checking if running') if not self.is_init: return False if self.model.lower() == 'ptgrey': return self._ptgrey_camera is not None and self._ptgrey_camera.IsStreaming() else: self.log.warning('Forbidden model string defined.') raise RuntimeError('An unknown (forbidden) model is defined: '+str(self.model)) def start(self): """ Start the acquisition. Device must be initialised.""" assert self.is_init, 'Must initialise first' if self.is_running: self.log.info('Camera already running, name: '+self.name) return self.log.debug('Got start command') self._imgs_since_start = 0 try: self._ptgrey_camera.BeginAcquisition() except PySpin.SpinnakerException as e: self.log.debug('Could not start:', exc_info=True) if 'already streaming' in e.message: self.log.warning('The camera was already streaming...') else: raise RuntimeError('Failed to start camera acquisition') from e self.log.info('Acquisition started, name: '+self.name) def stop(self): """Stop the acquisition.""" if not self.is_running: self.log.info('Camera was not running, name: '+self.name) return self.log.debug('Got stop command') if self.model.lower() == 'ptgrey': self.log.debug('Using PtGrey') try: self._ptgrey_camera.EndAcquisition() except: self.log.debug('Could not stop:', exc_info=True) raise RuntimeError('Failed to stop camera acquisition') else: self.log.warning('Forbidden model string defined.') raise RuntimeError('An unknown (forbidden) model is defined: '+str(self.model)) self._image_data = None self._image_timestamp = None self._got_image_event.clear() self.log.info('Acquisition stopped, name: '+self.name) def get_next_image(self, timeout=10): """Get the next image to be completed. Camera does not have to be running. Args: timeout (float): Maximum time (seconds) to wait for the image before raising TimeoutError. Returns: numpy.ndarray: 2d array with image data. """ # self.log.debug('Got next image request') assert self.is_init, 'Camera must be initialised' if not self.is_running: self.log.debug('Camera was not running, start and grab the first image') self._got_image_event.clear() self.start() if not self._got_image_event.wait(timeout): raise TimeoutError('Getting image timed out') img = self._image_data self.stop() else: # self.log.debug('Camera running, grab the first image to show up') self._got_image_event.clear() if not self._got_image_event.wait(timeout): raise TimeoutError('Getting image timed out') img = self._image_data return img def get_new_image(self, timeout=10): """Get an image guaranteed to be started *after* calling this method. Camera does not have to be running. Args: timeout (float): Maximum time (seconds) to wait for the image before raising TimeoutError. Returns: numpy.ndarray: 2d array with image data. """ self.log.debug('Got next image request') assert self.is_init, 'Camera must be initialised' if not self.is_running: self.log.debug('Camera was not running, start and grab the first image') self._got_image_event.clear() self.start() if not self._got_image_event.wait(timeout): raise TimeoutError('Getting image timed out') img = self._image_data self.stop() else: self.log.debug('Camera running, grab the second image to show up') self._got_image_event.clear() if not self._got_image_event.wait(timeout/2): raise TimeoutError('Getting image timed out') self._got_image_event.clear() if not self._got_image_event.wait(timeout/2): raise TimeoutError('Getting image timed out') img = self._image_data return img def get_latest_image(self): """Get latest image in the cache immediately. Camera must be running. Returns: numpy.ndarray: 2d array with image data. """ self.log.debug('Got latest image request') assert self.is_running, 'Camera must be running' return self._image_data
[ "PySpin.System.GetInstance", "logging.StreamHandler", "numpy.flipud", "logging.Formatter", "datetime.datetime.utcnow", "pathlib.Path", "numpy.fliplr", "threading.Event", "numpy.rot90", "weakref.ref", "logging.handlers.RotatingFileHandler", "logging.getLogger" ]
[((3110, 3138), 'logging.getLogger', 'logging.getLogger', (['f"""{name}"""'], {}), "(f'{name}')\n", (3127, 3138), False, 'import logging\n'), ((5060, 5067), 'threading.Event', 'Event', ([], {}), '()\n', (5065, 5067), False, 'from threading import Thread, Event\n'), ((11271, 11281), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (11275, 11281), False, 'from pathlib import Path\n'), ((3347, 3370), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (3368, 3370), False, 'import logging\n'), ((3538, 3637), 'logging.handlers.RotatingFileHandler', 'RotatingFileHandler', (["(self.debug_folder / 'camera.log')"], {'maxBytes': '(1 * 1024 * 1024)', 'backupCount': '(2)'}), "(self.debug_folder / 'camera.log', maxBytes=1 * 1024 * \n 1024, backupCount=2)\n", (3557, 3637), False, 'from logging.handlers import RotatingFileHandler\n'), ((3951, 4068), 'logging.Formatter', 'logging.Formatter', (["('%(asctime)s %(name)s-%(levelname)s-%(threadName)s' +\n '-%(funcName)s-(%(lineno)d) %(message)s')"], {}), "('%(asctime)s %(name)s-%(levelname)s-%(threadName)s' +\n '-%(funcName)s-(%(lineno)d) %(message)s')\n", (3968, 4068), False, 'import logging\n'), ((5779, 5804), 'weakref.ref', 'weakref.ref', (['self.__del__'], {}), '(self.__del__)\n', (5790, 5804), False, 'import atexit, weakref\n'), ((13341, 13368), 'PySpin.System.GetInstance', 'PySpin.System.GetInstance', ([], {}), '()\n', (13366, 13368), False, 'import PySpin\n'), ((15421, 15448), 'PySpin.System.GetInstance', 'PySpin.System.GetInstance', ([], {}), '()\n', (15446, 15448), False, 'import PySpin\n'), ((18122, 18139), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (18137, 18139), False, 'from datetime import datetime\n'), ((2929, 2943), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (2933, 2943), False, 'from pathlib import Path\n'), ((3017, 3023), 'pathlib.Path', 'Path', ([], {}), '()\n', (3021, 3023), False, 'from pathlib import Path\n'), ((18566, 18592), 'numpy.fliplr', 'np.fliplr', (['image_converted'], {}), '(image_converted)\n', (18575, 18592), True, 'import numpy as np\n'), ((18666, 18692), 'numpy.flipud', 'np.flipud', (['image_converted'], {}), '(image_converted)\n', (18675, 18692), True, 'import numpy as np\n'), ((18766, 18811), 'numpy.rot90', 'np.rot90', (['image_converted', 'self.parent._rot90'], {}), '(image_converted, self.parent._rot90)\n', (18774, 18811), True, 'import numpy as np\n')]
import sys from pathlib import Path from argparse import ArgumentParser import h5py import pandas as pd import numpy as np from tqdm import tqdm from export import export_read_file def get_args(): parser = ArgumentParser(description="Parse sequencing_summary.txt files and .paf files to find split reads " "in an Oxford Nanopore Dataset", add_help=False) general = parser.add_argument_group(title='General options') general.add_argument("-h", "--help", action="help", help="Show this help and exit" ) in_args = parser.add_argument_group( title='Input sources' ) in_args.add_argument("-s", "--summary", required=True, nargs='+', help='Sequencing summary file(s) generated by albacore or guppy. Can be compressed ' 'using gzip, bzip2, xz, or zip') in_args.add_argument("--start-events", help="start_events.csv file generated by event_finder.py", default="", required=True, ) in_args.add_argument("--end-events", help="end_events.csv file generated by event_finder.py", default="", required=True, ) in_args.add_argument("--targets", help="A text file of target read ids with one per line.", default="", required=True, ) in_args.add_argument("--bulk-files", help="ONT bulk FAST5 files.", nargs='+', default="", ) in_args.add_argument("-o", "--output-name", help="Name of the output folder, this will be generated if it does not exist", required=True, default="" ) in_args.add_argument("--extra-classifications", help="Any extra MinKNOW classifications to include.", nargs='*', default="", ) return parser.parse_args() def main(): args = get_args() # debug(args) # # sys.exit() # Make folders for j in ['starts', 'ends']: Path('{i}/{j}/{k}'.format(i=args.output_name, j=j, k='fast5')).mkdir(parents=True, exist_ok=True) # Open files start_events = pd.read_csv(args.start_events, sep=',') end_events = pd.read_csv(args.end_events, sep=',') seq_sum_df = concat_files_to_df(file_list=args.summary, sep='\t') # Create end_time Series in seq_sum_df seq_sum_df['end_time'] = seq_sum_df['start_time'] + seq_sum_df['duration'] # Sort and Groupby to segregate runs and channels seq_sum_df = seq_sum_df.sort_values(by=['run_id', 'channel', 'start_time'], ascending=True) seq_sum_df_1 = seq_sum_df.copy() gb = seq_sum_df.groupby(['run_id', 'channel']) gb1 = seq_sum_df_1.groupby(['run_id', 'channel']) # Get previous and next start times within groupby seq_sum_df['next_start'] = gb['start_time'].shift(-1) seq_sum_df_1['prev_start'] = gb1['start_time'].shift(1) target_read_ids = [] with open(args.targets, 'r') as file: for line in file: target_read_ids.append(line.strip()) classifications = ['pore', 'inrange', 'good_single', 'unblocking'] if args.extra_classifications: classifications.extend(args.extra_classifications) # Get end_events for target_read_ids end_events = end_events[end_events['read_id'].isin(target_read_ids)] normal_ending_ids = end_events[end_events['time'].ge(0) & end_events['label'].isin(classifications)]['read_id'].unique() abnormally_ending_ids = end_events[~end_events['read_id'].isin(normal_ending_ids)]['read_id'].unique() end_target_ss = seq_sum_df[seq_sum_df['read_id'].isin(abnormally_ending_ids)] # Get start_events for target_read_ids start_events = start_events[start_events['read_id'].isin(target_read_ids)] normal_starting_ids = start_events[start_events['time'].le(0) & start_events['label'].isin(classifications)]['read_id'].unique() abnormally_starting_ids = start_events[~start_events['read_id'].isin(normal_starting_ids)]['read_id'].unique() start_target_ss = seq_sum_df_1[seq_sum_df_1['read_id'].isin(abnormally_starting_ids)] print('Collecting abnormally ending reads:') end_read_info = write_files(end_target_ss, args.bulk_files, 'start_time', 'next_start', '{i}/ends/fast5/'.format(i=args.output_name)) end_read_info.to_csv('{}/ends_read_info.txt'.format(args.output_name), sep='\t', index=False, header=True) end_read_info.to_csv('{}/ends_filenames.txt'.format(args.output_name), sep='\t', index=False, header=False, columns=['filename']) print('Collecting abnormally starting reads:') start_read_info = write_files(start_target_ss, args.bulk_files, 'prev_start', 'end_time', '{i}/starts/fast5/'.format(i=args.output_name)) start_read_info.to_csv('{}/starts_read_info.txt'.format(args.output_name), sep='\t', index=False, header=True) start_read_info.to_csv('{}/starts_filenames.txt'.format(args.output_name), sep='\t', index=False, header=False, columns=['filename']) return def write_files(target_ss, bulkfiles, read_start_col, read_end_col, export_path, remove_pore=True): """Abstraction for export_read_file for collecting read info Parameters ---------- target_ss : pd.DataFrame DataFrame of reads to generate reads for bulkfiles: list list of bulk FAST5 files read_start_col : str Column in the target_ss that start index is derived from read_end_col : str Column in the target_ss that end index is derived from export_path : str The folder where read files will be written remove_pore : bool Remove pore-like signal from trace (>1500) Returns ------- pd.DataFrame DataFrame of read info about reads that have been written """ d = { 'read_id': [], 'channel': [], 'start_index': [], 'end_index': [], 'bv_read_id': [], 'filename': [], 'bv_filename': [] } files_written = 0 for bf in tqdm(bulkfiles): f = h5py.File(bf, 'r') run_id = f['UniqueGlobalKey']["tracking_id"].attrs["run_id"].decode('utf8') sf = int(f["UniqueGlobalKey"]["context_tags"].attrs["sample_frequency"].decode('utf8')) t = target_ss[target_ss['run_id'] == run_id] t = t.dropna() f.close() file = h5py.File(bf, 'r') for idx, row in tqdm(t.iterrows(), total=t.shape[0], desc=run_id): si = int(np.floor(row[read_start_col] * sf)) ei = int(np.floor(row[read_end_col] * sf)) d['read_id'].append(row['read_id']) d['channel'].append(row['channel']) d['start_index'].append(si) d['end_index'].append(ei) d['bv_read_id'].append("{ch}-{start}-{end}".format(ch=row['channel'], start=si, end=ei)) d['filename'].append(row['filename']) d['bv_filename'].append(export_read_file(row['channel'], si, ei, file, export_path, remove_pore=remove_pore)) files_written += 1 print('{} reads written'.format(files_written)) return pd.DataFrame(d) def concat_files_to_df(file_list, **kwargs): """Return a pandas.DataFrame from a list of files """ df_list = [] for f in file_list: try: df_list.append(pd.read_csv(filepath_or_buffer=f, **kwargs)) except pd.errors.ParserError as e: print('{}\nThis is usually caused by an input file not being the expected format'.format(repr(e))) sys.exit(1) except Exception as e: sys.exit(1) return pd.concat(df_list, ignore_index=True) def debug(args): dirs = dir(args) for attr in dirs: if attr[0] != '_': print('{a:<25} {b}'.format(a=attr, b=getattr(args, attr))) if __name__ == '__main__': main()
[ "pandas.DataFrame", "export.export_read_file", "tqdm.tqdm", "h5py.File", "argparse.ArgumentParser", "pandas.read_csv", "numpy.floor", "pandas.concat", "sys.exit" ]
[((214, 369), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Parse sequencing_summary.txt files and .paf files to find split reads in an Oxford Nanopore Dataset"""', 'add_help': '(False)'}), "(description=\n 'Parse sequencing_summary.txt files and .paf files to find split reads in an Oxford Nanopore Dataset'\n , add_help=False)\n", (228, 369), False, 'from argparse import ArgumentParser\n'), ((2693, 2732), 'pandas.read_csv', 'pd.read_csv', (['args.start_events'], {'sep': '""","""'}), "(args.start_events, sep=',')\n", (2704, 2732), True, 'import pandas as pd\n'), ((2750, 2787), 'pandas.read_csv', 'pd.read_csv', (['args.end_events'], {'sep': '""","""'}), "(args.end_events, sep=',')\n", (2761, 2787), True, 'import pandas as pd\n'), ((6723, 6738), 'tqdm.tqdm', 'tqdm', (['bulkfiles'], {}), '(bulkfiles)\n', (6727, 6738), False, 'from tqdm import tqdm\n'), ((8072, 8087), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (8084, 8087), True, 'import pandas as pd\n'), ((8567, 8604), 'pandas.concat', 'pd.concat', (['df_list'], {'ignore_index': '(True)'}), '(df_list, ignore_index=True)\n', (8576, 8604), True, 'import pandas as pd\n'), ((6752, 6770), 'h5py.File', 'h5py.File', (['bf', '"""r"""'], {}), "(bf, 'r')\n", (6761, 6770), False, 'import h5py\n'), ((7060, 7078), 'h5py.File', 'h5py.File', (['bf', '"""r"""'], {}), "(bf, 'r')\n", (7069, 7078), False, 'import h5py\n'), ((7175, 7209), 'numpy.floor', 'np.floor', (['(row[read_start_col] * sf)'], {}), '(row[read_start_col] * sf)\n', (7183, 7209), True, 'import numpy as np\n'), ((7232, 7264), 'numpy.floor', 'np.floor', (['(row[read_end_col] * sf)'], {}), '(row[read_end_col] * sf)\n', (7240, 7264), True, 'import numpy as np\n'), ((7627, 7716), 'export.export_read_file', 'export_read_file', (["row['channel']", 'si', 'ei', 'file', 'export_path'], {'remove_pore': 'remove_pore'}), "(row['channel'], si, ei, file, export_path, remove_pore=\n remove_pore)\n", (7643, 7716), False, 'from export import export_read_file\n'), ((8278, 8321), 'pandas.read_csv', 'pd.read_csv', ([], {'filepath_or_buffer': 'f'}), '(filepath_or_buffer=f, **kwargs)\n', (8289, 8321), True, 'import pandas as pd\n'), ((8489, 8500), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8497, 8500), False, 'import sys\n'), ((8544, 8555), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8552, 8555), False, 'import sys\n')]
from autumn.projects.covid_19.vaccine_optimisation.vaccine_opti import ( get_decision_vars_names, initialise_opti_object, ) import numpy as np import yaml COUNTRY = "malaysia" # should use "malaysia" or "philippines" def run_sample_code(): # Initialisation of the optimisation object. This needs to be run once before optimising. opti_object = initialise_opti_object(COUNTRY) # Create decision variables for random allocations and random relaxation decision_vars = [] for phase_number in range(2): sample = list(np.random.uniform(low=0.0, high=1.0, size=(8,))) _sum = sum(sample) decision_vars += [s / _sum for s in sample] decision_vars.append(np.random.uniform(low=0.0, high=1.0)) # create_scenario_yml_file(COUNTRY, decision_vars, sc_index=6) # Evaluate objective function [total_deaths, max_hospital, relaxation] = opti_object.evaluate_objective(decision_vars) # Print decision vars and outputs print(get_decision_vars_names()) print(f"Decision variables: {decision_vars}") print(f"N deaths: {total_deaths} / Max hospital: {max_hospital} / Relaxation: {relaxation}") def dump_decision_vars_sample(n_samples): decision_vars_sample = [] for i in range(n_samples): decision_vars = [] for phase_number in range(2): sample = list(np.random.uniform(low=0.0, high=1.0, size=(8,))) _sum = sum(sample) decision_vars += [s / _sum for s in sample] decision_vars.append(float(np.random.uniform(low=0.0, high=1.0))) decision_vars = [float(v) for v in decision_vars] decision_vars_sample.append(decision_vars) file_path = "comparison_test/vars_sample.yml" with open(file_path, "w") as f: yaml.dump(decision_vars_sample, f) def evaluate_sample_decision_vars(user="Guillaume"): file_path = "comparison_test/vars_sample.yml" with open(file_path) as file: vars_samples = yaml.load(file) opti_object = initialise_opti_object(COUNTRY) dumped_dict = {"deaths": [], "hosp": []} for decision_vars in vars_samples: [total_deaths, max_hospital, _] = opti_object.evaluate_objective(decision_vars) dumped_dict["deaths"].append(float(total_deaths)) dumped_dict["hosp"].append(float(max_hospital)) file_path = f"comparison_test/obj_values_{user}.yml" with open(file_path, "w") as f: yaml.dump(dumped_dict, f) def compare_outputs(): outputs = {} for name in ["Romain", "Guillaume"]: file_path = f"comparison_test/obj_values_{name}.yml" with open(file_path) as file: outputs[name] = yaml.load(file) for obj in ["deaths", "hosp"]: perc_diff = [ int( 100 * (outputs["Guillaume"][obj][i] - outputs["Romain"][obj][i]) / outputs["Romain"][obj][i] ) for i in range(len(outputs["Romain"][obj])) ] average_perc_diff = sum(perc_diff) / len(perc_diff) print(f"Comparison for {obj}:") print("Percentage difference (ref. Romain):") print(perc_diff) print(f"Average perc diff: {average_perc_diff}%") for name in ["Romain", "Guillaume"]: x = outputs[name][obj] ordered_output = sorted(x) ranks = [ordered_output.index(v) for v in x] print(f"Ranks {name}:") print(ranks) print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") print() # evaluate_sample_decision_vars("Guillaume") # compare_outputs() # This can be run using: # python -m apps runsamplevaccopti
[ "numpy.random.uniform", "yaml.load", "autumn.projects.covid_19.vaccine_optimisation.vaccine_opti.initialise_opti_object", "autumn.projects.covid_19.vaccine_optimisation.vaccine_opti.get_decision_vars_names", "yaml.dump" ]
[((365, 396), 'autumn.projects.covid_19.vaccine_optimisation.vaccine_opti.initialise_opti_object', 'initialise_opti_object', (['COUNTRY'], {}), '(COUNTRY)\n', (387, 396), False, 'from autumn.projects.covid_19.vaccine_optimisation.vaccine_opti import get_decision_vars_names, initialise_opti_object\n'), ((2009, 2040), 'autumn.projects.covid_19.vaccine_optimisation.vaccine_opti.initialise_opti_object', 'initialise_opti_object', (['COUNTRY'], {}), '(COUNTRY)\n', (2031, 2040), False, 'from autumn.projects.covid_19.vaccine_optimisation.vaccine_opti import get_decision_vars_names, initialise_opti_object\n'), ((707, 743), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(1.0)'}), '(low=0.0, high=1.0)\n', (724, 743), True, 'import numpy as np\n'), ((990, 1015), 'autumn.projects.covid_19.vaccine_optimisation.vaccine_opti.get_decision_vars_names', 'get_decision_vars_names', ([], {}), '()\n', (1013, 1015), False, 'from autumn.projects.covid_19.vaccine_optimisation.vaccine_opti import get_decision_vars_names, initialise_opti_object\n'), ((1776, 1810), 'yaml.dump', 'yaml.dump', (['decision_vars_sample', 'f'], {}), '(decision_vars_sample, f)\n', (1785, 1810), False, 'import yaml\n'), ((1974, 1989), 'yaml.load', 'yaml.load', (['file'], {}), '(file)\n', (1983, 1989), False, 'import yaml\n'), ((2429, 2454), 'yaml.dump', 'yaml.dump', (['dumped_dict', 'f'], {}), '(dumped_dict, f)\n', (2438, 2454), False, 'import yaml\n'), ((554, 601), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(1.0)', 'size': '(8,)'}), '(low=0.0, high=1.0, size=(8,))\n', (571, 601), True, 'import numpy as np\n'), ((2666, 2681), 'yaml.load', 'yaml.load', (['file'], {}), '(file)\n', (2675, 2681), False, 'import yaml\n'), ((1360, 1407), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(1.0)', 'size': '(8,)'}), '(low=0.0, high=1.0, size=(8,))\n', (1377, 1407), True, 'import numpy as np\n'), ((1531, 1567), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(1.0)'}), '(low=0.0, high=1.0)\n', (1548, 1567), True, 'import numpy as np\n')]
import numpy as np import os from astropy.time import Time from pandas import DataFrame from orbitize.kepler import calc_orbit from orbitize import read_input, system, sampler def test_secondary_rv_lnlike_calc(): """ Generates fake secondary RV data and asserts that the log(likelihood) of the true parameters is what we expect. Also tests that the primary and secondary RV orbits are related by -m/mtot """ # define an orbit & generate secondary RVs a = 10 e = 0 i = np.pi / 4 omega = 0 Omega = 0 tau = 0.3 m0 = 1 m1 = 0.1 plx = 10 orbitize_params_list = np.array([a, e, i, omega, Omega, tau, plx, m1, m0]) epochs = Time(np.linspace(2005, 2025, int(1e3)), format='decimalyear').mjd _, _, rv_p = calc_orbit(epochs, a, e, i, omega, Omega, tau, plx, m0+m1, mass_for_Kamp=m0) data_file = DataFrame(columns=['epoch', 'object','rv', 'rv_err']) data_file.epoch = epochs data_file.object = np.ones(len(epochs), dtype=int) data_file.rv = rv_p data_file.rv_err = np.ones(len(epochs)) * 0.01 data_file.to_csv('tmp.csv', index=False) # set up a fit using the simulated data data_table = read_input.read_file('tmp.csv') mySys = system.System(1, data_table, m0, plx, mass_err=0.1, plx_err=0.1, fit_secondary_mass=True) mySamp = sampler.MCMC(mySys) computed_lnlike = mySamp._logl(orbitize_params_list) # residuals should be 0 assert computed_lnlike == np.sum(-np.log(np.sqrt(2 * np.pi * data_file.rv_err.values**2))) # clean up os.system('rm tmp.csv') # assert that the secondary orbit is the primary orbit scaled _, _, rv = mySys.compute_all_orbits(orbitize_params_list) rv0 = rv[:,0] rv1 = rv[:,1] assert np.all(rv0 == -m1 / m0 * rv1) if __name__ == '__main__': test_secondary_rv_lnlike_calc()
[ "pandas.DataFrame", "orbitize.kepler.calc_orbit", "orbitize.read_input.read_file", "os.system", "orbitize.system.System", "numpy.array", "orbitize.sampler.MCMC", "numpy.all", "numpy.sqrt" ]
[((628, 679), 'numpy.array', 'np.array', (['[a, e, i, omega, Omega, tau, plx, m1, m0]'], {}), '([a, e, i, omega, Omega, tau, plx, m1, m0])\n', (636, 679), True, 'import numpy as np\n'), ((778, 856), 'orbitize.kepler.calc_orbit', 'calc_orbit', (['epochs', 'a', 'e', 'i', 'omega', 'Omega', 'tau', 'plx', '(m0 + m1)'], {'mass_for_Kamp': 'm0'}), '(epochs, a, e, i, omega, Omega, tau, plx, m0 + m1, mass_for_Kamp=m0)\n', (788, 856), False, 'from orbitize.kepler import calc_orbit\n'), ((872, 926), 'pandas.DataFrame', 'DataFrame', ([], {'columns': "['epoch', 'object', 'rv', 'rv_err']"}), "(columns=['epoch', 'object', 'rv', 'rv_err'])\n", (881, 926), False, 'from pandas import DataFrame\n'), ((1193, 1224), 'orbitize.read_input.read_file', 'read_input.read_file', (['"""tmp.csv"""'], {}), "('tmp.csv')\n", (1213, 1224), False, 'from orbitize import read_input, system, sampler\n'), ((1237, 1330), 'orbitize.system.System', 'system.System', (['(1)', 'data_table', 'm0', 'plx'], {'mass_err': '(0.1)', 'plx_err': '(0.1)', 'fit_secondary_mass': '(True)'}), '(1, data_table, m0, plx, mass_err=0.1, plx_err=0.1,\n fit_secondary_mass=True)\n', (1250, 1330), False, 'from orbitize import read_input, system, sampler\n'), ((1340, 1359), 'orbitize.sampler.MCMC', 'sampler.MCMC', (['mySys'], {}), '(mySys)\n', (1352, 1359), False, 'from orbitize import read_input, system, sampler\n'), ((1561, 1584), 'os.system', 'os.system', (['"""rm tmp.csv"""'], {}), "('rm tmp.csv')\n", (1570, 1584), False, 'import os\n'), ((1762, 1791), 'numpy.all', 'np.all', (['(rv0 == -m1 / m0 * rv1)'], {}), '(rv0 == -m1 / m0 * rv1)\n', (1768, 1791), True, 'import numpy as np\n'), ((1491, 1540), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi * data_file.rv_err.values ** 2)'], {}), '(2 * np.pi * data_file.rv_err.values ** 2)\n', (1498, 1540), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np def get_infos2Laplace_1D(input_dim=1, out_dim=1, intervalL=0.0, intervalR=1.0, equa_name=None): # -uxx = f if equa_name == 'PDE1': # u=sin(pi*x), f=-pi*pi*sin(pi*x) fside = lambda x: -(np.pi)*(np.pi)*tf.sin(np.pi*x) utrue = lambda x: tf.sin(np.pi*x) uleft = lambda x: tf.sin(np.pi*intervalL) uright = lambda x: tf.sin(np.pi*intervalR) return fside, utrue, uleft, uright # 偏微分方程的一些信息:边界条件,初始条件,真解,右端项函数 def get_infos2Laplace_2D(input_dim=1, out_dim=1, left_bottom=0.0, right_top=1.0, equa_name=None): if equa_name == 'PDE1': # u=exp(-x)(x_y^3), f = -exp(-x)(x-2+y^3+6y) f_side = lambda x, y: -(tf.exp(-1.0*x)) * (x - 2 + tf.pow(y, 3) + 6 * y) u_true = lambda x, y: (tf.exp(-1.0*x))*(x + tf.pow(y, 3)) ux_left = lambda x, y: tf.exp(-left_bottom) * (tf.pow(y, 3) + 1.0 * left_bottom) ux_right = lambda x, y: tf.exp(-right_top) * (tf.pow(y, 3) + 1.0 * right_top) uy_bottom = lambda x, y: tf.exp(-x) * (tf.pow(left_bottom, 3) + x) uy_top = lambda x, y: tf.exp(-x) * (tf.pow(right_top, 3) + x) return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top elif equa_name == 'PDE2': f_side = lambda x, y: (-1.0)*tf.sin(np.pi*x) * (2 - np.square(np.pi)*tf.square(y)) u_true = lambda x, y: tf.square(y)*tf.sin(np.pi*x) ux_left = lambda x, y: tf.square(y) * tf.sin(np.pi * left_bottom) ux_right = lambda x, y: tf.square(y) * tf.sin(np.pi * right_top) uy_bottom = lambda x, y: tf.square(left_bottom) * tf.sin(np.pi * x) uy_top = lambda x, y: tf.square(right_top) * tf.sin(np.pi * x) return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top elif equa_name == 'PDE3': # u=exp(x+y), f = -2*exp(x+y) f_side = lambda x, y: -2.0*(tf.exp(x)*tf.exp(y)) u_true = lambda x, y: tf.exp(x)*tf.exp(y) ux_left = lambda x, y: tf.multiply(tf.exp(y), tf.exp(left_bottom)) ux_right = lambda x, y: tf.multiply(tf.exp(y), tf.exp(right_top)) uy_bottom = lambda x, y: tf.multiply(tf.exp(x), tf.exp(left_bottom)) uy_top = lambda x, y: tf.multiply(tf.exp(x), tf.exp(right_top)) return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top elif equa_name == 'PDE4': # u=(1/4)*(x^2+y^2), f = -1 f_side = lambda x, y: -1.0*tf.ones_like(x) u_true = lambda x, y: 0.25*(tf.pow(x, 2)+tf.pow(y, 2)) ux_left = lambda x, y: 0.25 * tf.pow(y, 2) + 0.25 * tf.pow(left_bottom, 2) ux_right = lambda x, y: 0.25 * tf.pow(y, 2) + 0.25 * tf.pow(right_top, 2) uy_bottom = lambda x, y: 0.25 * tf.pow(x, 2) + 0.25 * tf.pow(left_bottom, 2) uy_top = lambda x, y: 0.25 * tf.pow(x, 2) + 0.25 * tf.pow(right_top, 2) return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top elif equa_name == 'PDE5': # u=(1/4)*(x^2+y^2)+x+y, f = -1 f_side = lambda x, y: -1.0*tf.ones_like(x) u_true = lambda x, y: 0.25*(tf.pow(x, 2)+tf.pow(y, 2)) + x + y ux_left = lambda x, y: 0.25 * tf.pow(y, 2) + 0.25 * tf.pow(left_bottom, 2) + left_bottom + y ux_right = lambda x, y: 0.25 * tf.pow(y, 2) + 0.25 * tf.pow(right_top, 2) + right_top + y uy_bottom = lambda x, y: 0.25 * tf.pow(x, 2) + tf.pow(left_bottom, 2) + left_bottom + x uy_top = lambda x, y: 0.25 * tf.pow(x, 2) + 0.25 * tf.pow(right_top, 2) + right_top + x return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top elif equa_name == 'PDE6': # u=(1/2)*(x^2)*(y^2), f = -(x^2+y^2) f_side = lambda x, y: -1.0*(tf.pow(x, 2)+tf.pow(y, 2)) u_true = lambda x, y: 0.5 * (tf.pow(x, 2) * tf.pow(y, 2)) ux_left = lambda x, y: 0.5 * (tf.pow(left_bottom, 2) * tf.pow(y, 2)) ux_right = lambda x, y: 0.5 * (tf.pow(right_top, 2) * tf.pow(y, 2)) uy_bottom = lambda x, y: 0.5 * (tf.pow(x, 2) * tf.pow(left_bottom, 2)) uy_top = lambda x, y: 0.5 * (tf.pow(x, 2) * tf.pow(right_top, 2)) return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top elif equa_name == 'PDE7': # u=(1/2)*(x^2)*(y^2)+x+y, f = -(x^2+y^2) f_side = lambda x, y: -1.0*(tf.pow(x, 2)+tf.pow(y, 2)) u_true = lambda x, y: 0.5*(tf.pow(x, 2)*tf.pow(y, 2)) + x*tf.ones_like(x) + y*tf.ones_like(y) ux_left = lambda x, y: 0.5 * tf.multiply(tf.pow(left_bottom, 2), tf.pow(y, 2)) + left_bottom + y ux_right = lambda x, y: 0.5 * tf.multiply(tf.pow(right_top, 2), tf.pow(y, 2)) + right_top + y uy_bottom = lambda x, y: 0.5 * tf.multiply(tf.pow(x, 2), tf.pow(left_bottom, 2)) + x + left_bottom uy_top = lambda x, y: 0.5 * tf.multiply(tf.pow(x, 2), tf.pow(right_top, 2)) + x + right_top return f_side, u_true, ux_left, ux_right, uy_bottom, uy_top # 偏微分方程的一些信息:边界条件,初始条件,真解,右端项函数 def get_infos2Laplace_3D(input_dim=1, out_dim=1, intervalL=0.0, intervalR=1.0, equa_name=None): if equa_name == 'PDE1': # -Laplace U = f # u=sin(pi*x)*sin(pi*y)*sin(pi*z), f=-pi*pi*sin(pi*x)*sin(pi*y)*sin(pi*z) fside = lambda x, y, z: -(np.pi)*(np.pi)*tf.sin(np.pi*x) utrue = lambda x, y, z: tf.sin(np.pi*x)*tf.sin(np.pi*y)*tf.sin(np.pi*z) u_00 = lambda x, y, z: tf.sin(np.pi*intervalL)*tf.sin(np.pi*y)*tf.sin(np.pi*z) u_01 = lambda x, y, z: tf.sin(np.pi*intervalR)*tf.sin(np.pi*y)*tf.sin(np.pi*z) u_10 = lambda x, y, z: tf.sin(np.pi*x)*tf.sin(np.pi*intervalL)*tf.sin(np.pi*z) u_11 = lambda x, y, z: tf.sin(np.pi*x)*tf.sin(np.pi*intervalR)*tf.sin(np.pi*z) u_20 = lambda x, y, z: tf.sin(np.pi*x)*tf.sin(np.pi*y)*tf.sin(np.pi*intervalL) u_21 = lambda x, y, z: tf.sin(np.pi*x)*tf.sin(np.pi*y)*tf.sin(np.pi*intervalR) return fside, utrue, u_00, u_01, u_10, u_11, u_20, u_21 # 偏微分方程的一些信息:边界条件,初始条件,真解,右端项函数 def get_infos2Laplace_5D(input_dim=1, out_dim=1, intervalL=0.0, intervalR=1.0, equa_name=None): if equa_name == 'PDE1': # u=sin(pi*x), f=-pi*pi*sin(pi*x) fside = lambda x, y, z, s, t: -(np.pi)*(np.pi)*tf.sin(np.pi*x) utrue = lambda x, y, z, s, t: tf.sin(np.pi*x)*tf.sin(np.pi*y)*tf.sin(np.pi*z)*tf.sin(np.pi*s)*tf.sin(np.pi*t) u_00 = lambda x, y, z, s, t: tf.sin(np.pi*intervalL)*tf.sin(np.pi*y)*tf.sin(np.pi*z)*tf.sin(np.pi*s)*tf.sin(np.pi*t) u_01 = lambda x, y, z, s, t: tf.sin(np.pi*intervalR)*tf.sin(np.pi*y)*tf.sin(np.pi*z)*tf.sin(np.pi*s)*tf.sin(np.pi*t) u_10 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * intervalL) * tf.sin(np.pi * z) * tf.sin(np.pi * s) * tf.sin(np.pi * t) u_11 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * intervalR) * tf.sin(np.pi * z) * tf.sin(np.pi * s) * tf.sin(np.pi * t) u_20 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * y) * tf.sin(np.pi * intervalL) * tf.sin(np.pi * s) * tf.sin(np.pi * t) u_21 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * y) * tf.sin(np.pi * intervalR) * tf.sin(np.pi * s) * tf.sin(np.pi * t) u_30 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * y) * tf.sin(np.pi * z) * tf.sin(np.pi * intervalL) * tf.sin(np.pi * t) u_31 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * y) * tf.sin(np.pi * z) * tf.sin(np.pi * intervalR) * tf.sin(np.pi * t) u_40 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * y) * tf.sin(np.pi * z) * tf.sin(np.pi * s) * tf.sin(np.pi * intervalL) u_41 = lambda x, y, z, s, t: tf.sin(np.pi * x) * tf.sin(np.pi * y) * tf.sin(np.pi * z) * tf.sin(np.pi * s) * tf.sin(np.pi * intervalR) return fside, utrue, u_00, u_01, u_10, u_11, u_20, u_21, u_30, u_31, u_40, u_41
[ "tensorflow.sin", "numpy.square", "tensorflow.pow", "tensorflow.ones_like", "tensorflow.exp", "tensorflow.square" ]
[((320, 337), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (326, 337), True, 'import tensorflow as tf\n'), ((363, 388), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (369, 388), True, 'import tensorflow as tf\n'), ((415, 440), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (421, 440), True, 'import tensorflow as tf\n'), ((277, 294), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (283, 294), True, 'import tensorflow as tf\n'), ((814, 830), 'tensorflow.exp', 'tf.exp', (['(-1.0 * x)'], {}), '(-1.0 * x)\n', (820, 830), True, 'import tensorflow as tf\n'), ((883, 903), 'tensorflow.exp', 'tf.exp', (['(-left_bottom)'], {}), '(-left_bottom)\n', (889, 903), True, 'import tensorflow as tf\n'), ((974, 992), 'tensorflow.exp', 'tf.exp', (['(-right_top)'], {}), '(-right_top)\n', (980, 992), True, 'import tensorflow as tf\n'), ((1062, 1072), 'tensorflow.exp', 'tf.exp', (['(-x)'], {}), '(-x)\n', (1068, 1072), True, 'import tensorflow as tf\n'), ((1135, 1145), 'tensorflow.exp', 'tf.exp', (['(-x)'], {}), '(-x)\n', (1141, 1145), True, 'import tensorflow as tf\n'), ((5253, 5270), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (5259, 5270), True, 'import tensorflow as tf\n'), ((5334, 5351), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (5340, 5351), True, 'import tensorflow as tf\n'), ((5422, 5439), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (5428, 5439), True, 'import tensorflow as tf\n'), ((5510, 5527), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (5516, 5527), True, 'import tensorflow as tf\n'), ((5598, 5615), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (5604, 5615), True, 'import tensorflow as tf\n'), ((5686, 5703), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (5692, 5703), True, 'import tensorflow as tf\n'), ((5766, 5791), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (5772, 5791), True, 'import tensorflow as tf\n'), ((5854, 5879), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (5860, 5879), True, 'import tensorflow as tf\n'), ((6201, 6218), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (6207, 6218), True, 'import tensorflow as tf\n'), ((6320, 6337), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (6326, 6337), True, 'import tensorflow as tf\n'), ((6446, 6463), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (6452, 6463), True, 'import tensorflow as tf\n'), ((6572, 6589), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (6578, 6589), True, 'import tensorflow as tf\n'), ((6714, 6731), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (6720, 6731), True, 'import tensorflow as tf\n'), ((6858, 6875), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (6864, 6875), True, 'import tensorflow as tf\n'), ((7002, 7019), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (7008, 7019), True, 'import tensorflow as tf\n'), ((7146, 7163), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (7152, 7163), True, 'import tensorflow as tf\n'), ((7290, 7307), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (7296, 7307), True, 'import tensorflow as tf\n'), ((7434, 7451), 'tensorflow.sin', 'tf.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (7440, 7451), True, 'import tensorflow as tf\n'), ((7570, 7595), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (7576, 7595), True, 'import tensorflow as tf\n'), ((7714, 7739), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (7720, 7739), True, 'import tensorflow as tf\n'), ((731, 747), 'tensorflow.exp', 'tf.exp', (['(-1.0 * x)'], {}), '(-1.0 * x)\n', (737, 747), True, 'import tensorflow as tf\n'), ((835, 847), 'tensorflow.pow', 'tf.pow', (['y', '(3)'], {}), '(y, 3)\n', (841, 847), True, 'import tensorflow as tf\n'), ((907, 919), 'tensorflow.pow', 'tf.pow', (['y', '(3)'], {}), '(y, 3)\n', (913, 919), True, 'import tensorflow as tf\n'), ((996, 1008), 'tensorflow.pow', 'tf.pow', (['y', '(3)'], {}), '(y, 3)\n', (1002, 1008), True, 'import tensorflow as tf\n'), ((1076, 1098), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(3)'], {}), '(left_bottom, 3)\n', (1082, 1098), True, 'import tensorflow as tf\n'), ((1149, 1169), 'tensorflow.pow', 'tf.pow', (['right_top', '(3)'], {}), '(right_top, 3)\n', (1155, 1169), True, 'import tensorflow as tf\n'), ((1400, 1412), 'tensorflow.square', 'tf.square', (['y'], {}), '(y)\n', (1409, 1412), True, 'import tensorflow as tf\n'), ((1413, 1430), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (1419, 1430), True, 'import tensorflow as tf\n'), ((1463, 1475), 'tensorflow.square', 'tf.square', (['y'], {}), '(y)\n', (1472, 1475), True, 'import tensorflow as tf\n'), ((1478, 1505), 'tensorflow.sin', 'tf.sin', (['(np.pi * left_bottom)'], {}), '(np.pi * left_bottom)\n', (1484, 1505), True, 'import tensorflow as tf\n'), ((1539, 1551), 'tensorflow.square', 'tf.square', (['y'], {}), '(y)\n', (1548, 1551), True, 'import tensorflow as tf\n'), ((1554, 1579), 'tensorflow.sin', 'tf.sin', (['(np.pi * right_top)'], {}), '(np.pi * right_top)\n', (1560, 1579), True, 'import tensorflow as tf\n'), ((1614, 1636), 'tensorflow.square', 'tf.square', (['left_bottom'], {}), '(left_bottom)\n', (1623, 1636), True, 'import tensorflow as tf\n'), ((1639, 1656), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (1645, 1656), True, 'import tensorflow as tf\n'), ((1688, 1708), 'tensorflow.square', 'tf.square', (['right_top'], {}), '(right_top)\n', (1697, 1708), True, 'import tensorflow as tf\n'), ((1711, 1728), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (1717, 1728), True, 'import tensorflow as tf\n'), ((5302, 5319), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (5308, 5319), True, 'import tensorflow as tf\n'), ((5318, 5335), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (5324, 5335), True, 'import tensorflow as tf\n'), ((5382, 5407), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (5388, 5407), True, 'import tensorflow as tf\n'), ((5406, 5423), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (5412, 5423), True, 'import tensorflow as tf\n'), ((5470, 5495), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (5476, 5495), True, 'import tensorflow as tf\n'), ((5494, 5511), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (5500, 5511), True, 'import tensorflow as tf\n'), ((5558, 5575), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (5564, 5575), True, 'import tensorflow as tf\n'), ((5574, 5599), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (5580, 5599), True, 'import tensorflow as tf\n'), ((5646, 5663), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (5652, 5663), True, 'import tensorflow as tf\n'), ((5662, 5687), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (5668, 5687), True, 'import tensorflow as tf\n'), ((5734, 5751), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (5740, 5751), True, 'import tensorflow as tf\n'), ((5750, 5767), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (5756, 5767), True, 'import tensorflow as tf\n'), ((5822, 5839), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (5828, 5839), True, 'import tensorflow as tf\n'), ((5838, 5855), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (5844, 5855), True, 'import tensorflow as tf\n'), ((6304, 6321), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (6310, 6321), True, 'import tensorflow as tf\n'), ((6430, 6447), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (6436, 6447), True, 'import tensorflow as tf\n'), ((6556, 6573), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (6562, 6573), True, 'import tensorflow as tf\n'), ((6694, 6711), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (6700, 6711), True, 'import tensorflow as tf\n'), ((6838, 6855), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (6844, 6855), True, 'import tensorflow as tf\n'), ((6982, 6999), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (6988, 6999), True, 'import tensorflow as tf\n'), ((7126, 7143), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (7132, 7143), True, 'import tensorflow as tf\n'), ((7262, 7287), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (7268, 7287), True, 'import tensorflow as tf\n'), ((7406, 7431), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (7412, 7431), True, 'import tensorflow as tf\n'), ((7550, 7567), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (7556, 7567), True, 'import tensorflow as tf\n'), ((7694, 7711), 'tensorflow.sin', 'tf.sin', (['(np.pi * s)'], {}), '(np.pi * s)\n', (7700, 7711), True, 'import tensorflow as tf\n'), ((758, 770), 'tensorflow.pow', 'tf.pow', (['y', '(3)'], {}), '(y, 3)\n', (764, 770), True, 'import tensorflow as tf\n'), ((1313, 1330), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (1319, 1330), True, 'import tensorflow as tf\n'), ((1957, 1966), 'tensorflow.exp', 'tf.exp', (['x'], {}), '(x)\n', (1963, 1966), True, 'import tensorflow as tf\n'), ((1967, 1976), 'tensorflow.exp', 'tf.exp', (['y'], {}), '(y)\n', (1973, 1976), True, 'import tensorflow as tf\n'), ((2021, 2030), 'tensorflow.exp', 'tf.exp', (['y'], {}), '(y)\n', (2027, 2030), True, 'import tensorflow as tf\n'), ((2032, 2051), 'tensorflow.exp', 'tf.exp', (['left_bottom'], {}), '(left_bottom)\n', (2038, 2051), True, 'import tensorflow as tf\n'), ((2098, 2107), 'tensorflow.exp', 'tf.exp', (['y'], {}), '(y)\n', (2104, 2107), True, 'import tensorflow as tf\n'), ((2109, 2126), 'tensorflow.exp', 'tf.exp', (['right_top'], {}), '(right_top)\n', (2115, 2126), True, 'import tensorflow as tf\n'), ((2174, 2183), 'tensorflow.exp', 'tf.exp', (['x'], {}), '(x)\n', (2180, 2183), True, 'import tensorflow as tf\n'), ((2185, 2204), 'tensorflow.exp', 'tf.exp', (['left_bottom'], {}), '(left_bottom)\n', (2191, 2204), True, 'import tensorflow as tf\n'), ((2249, 2258), 'tensorflow.exp', 'tf.exp', (['x'], {}), '(x)\n', (2255, 2258), True, 'import tensorflow as tf\n'), ((2260, 2277), 'tensorflow.exp', 'tf.exp', (['right_top'], {}), '(right_top)\n', (2266, 2277), True, 'import tensorflow as tf\n'), ((6288, 6305), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (6294, 6305), True, 'import tensorflow as tf\n'), ((6414, 6431), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (6420, 6431), True, 'import tensorflow as tf\n'), ((6540, 6557), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (6546, 6557), True, 'import tensorflow as tf\n'), ((6674, 6691), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (6680, 6691), True, 'import tensorflow as tf\n'), ((6818, 6835), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (6824, 6835), True, 'import tensorflow as tf\n'), ((6954, 6979), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (6960, 6979), True, 'import tensorflow as tf\n'), ((7098, 7123), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (7104, 7123), True, 'import tensorflow as tf\n'), ((7242, 7259), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (7248, 7259), True, 'import tensorflow as tf\n'), ((7386, 7403), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (7392, 7403), True, 'import tensorflow as tf\n'), ((7530, 7547), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (7536, 7547), True, 'import tensorflow as tf\n'), ((7674, 7691), 'tensorflow.sin', 'tf.sin', (['(np.pi * z)'], {}), '(np.pi * z)\n', (7680, 7691), True, 'import tensorflow as tf\n'), ((1336, 1352), 'numpy.square', 'np.square', (['np.pi'], {}), '(np.pi)\n', (1345, 1352), True, 'import numpy as np\n'), ((1353, 1365), 'tensorflow.square', 'tf.square', (['y'], {}), '(y)\n', (1362, 1365), True, 'import tensorflow as tf\n'), ((1905, 1914), 'tensorflow.exp', 'tf.exp', (['x'], {}), '(x)\n', (1911, 1914), True, 'import tensorflow as tf\n'), ((1915, 1924), 'tensorflow.exp', 'tf.exp', (['y'], {}), '(y)\n', (1921, 1924), True, 'import tensorflow as tf\n'), ((2452, 2467), 'tensorflow.ones_like', 'tf.ones_like', (['x'], {}), '(x)\n', (2464, 2467), True, 'import tensorflow as tf\n'), ((6256, 6273), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (6262, 6273), True, 'import tensorflow as tf\n'), ((6272, 6289), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (6278, 6289), True, 'import tensorflow as tf\n'), ((6374, 6399), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (6380, 6399), True, 'import tensorflow as tf\n'), ((6398, 6415), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (6404, 6415), True, 'import tensorflow as tf\n'), ((6500, 6525), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (6506, 6525), True, 'import tensorflow as tf\n'), ((6524, 6541), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (6530, 6541), True, 'import tensorflow as tf\n'), ((6626, 6643), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (6632, 6643), True, 'import tensorflow as tf\n'), ((6646, 6671), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalL)'], {}), '(np.pi * intervalL)\n', (6652, 6671), True, 'import tensorflow as tf\n'), ((6770, 6787), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (6776, 6787), True, 'import tensorflow as tf\n'), ((6790, 6815), 'tensorflow.sin', 'tf.sin', (['(np.pi * intervalR)'], {}), '(np.pi * intervalR)\n', (6796, 6815), True, 'import tensorflow as tf\n'), ((6914, 6931), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (6920, 6931), True, 'import tensorflow as tf\n'), ((6934, 6951), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (6940, 6951), True, 'import tensorflow as tf\n'), ((7058, 7075), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (7064, 7075), True, 'import tensorflow as tf\n'), ((7078, 7095), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (7084, 7095), True, 'import tensorflow as tf\n'), ((7202, 7219), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (7208, 7219), True, 'import tensorflow as tf\n'), ((7222, 7239), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (7228, 7239), True, 'import tensorflow as tf\n'), ((7346, 7363), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (7352, 7363), True, 'import tensorflow as tf\n'), ((7366, 7383), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (7372, 7383), True, 'import tensorflow as tf\n'), ((7490, 7507), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (7496, 7507), True, 'import tensorflow as tf\n'), ((7510, 7527), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (7516, 7527), True, 'import tensorflow as tf\n'), ((7634, 7651), 'tensorflow.sin', 'tf.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (7640, 7651), True, 'import tensorflow as tf\n'), ((7654, 7671), 'tensorflow.sin', 'tf.sin', (['(np.pi * y)'], {}), '(np.pi * y)\n', (7660, 7671), True, 'import tensorflow as tf\n'), ((2505, 2517), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (2511, 2517), True, 'import tensorflow as tf\n'), ((2518, 2530), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (2524, 2530), True, 'import tensorflow as tf\n'), ((2571, 2583), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (2577, 2583), True, 'import tensorflow as tf\n'), ((2593, 2615), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (2599, 2615), True, 'import tensorflow as tf\n'), ((2656, 2668), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (2662, 2668), True, 'import tensorflow as tf\n'), ((2678, 2698), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (2684, 2698), True, 'import tensorflow as tf\n'), ((2740, 2752), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (2746, 2752), True, 'import tensorflow as tf\n'), ((2762, 2784), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (2768, 2784), True, 'import tensorflow as tf\n'), ((2823, 2835), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (2829, 2835), True, 'import tensorflow as tf\n'), ((2845, 2865), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (2851, 2865), True, 'import tensorflow as tf\n'), ((3043, 3058), 'tensorflow.ones_like', 'tf.ones_like', (['x'], {}), '(x)\n', (3055, 3058), True, 'import tensorflow as tf\n'), ((3392, 3414), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (3398, 3414), True, 'import tensorflow as tf\n'), ((3714, 3726), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (3720, 3726), True, 'import tensorflow as tf\n'), ((3727, 3739), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3733, 3739), True, 'import tensorflow as tf\n'), ((3781, 3793), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (3787, 3793), True, 'import tensorflow as tf\n'), ((3796, 3808), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3802, 3808), True, 'import tensorflow as tf\n'), ((3851, 3873), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (3857, 3873), True, 'import tensorflow as tf\n'), ((3876, 3888), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3882, 3888), True, 'import tensorflow as tf\n'), ((3930, 3950), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (3936, 3950), True, 'import tensorflow as tf\n'), ((3953, 3965), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3959, 3965), True, 'import tensorflow as tf\n'), ((4008, 4020), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (4014, 4020), True, 'import tensorflow as tf\n'), ((4023, 4045), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (4029, 4045), True, 'import tensorflow as tf\n'), ((4085, 4097), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (4091, 4097), True, 'import tensorflow as tf\n'), ((4100, 4120), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (4106, 4120), True, 'import tensorflow as tf\n'), ((3098, 3110), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (3104, 3110), True, 'import tensorflow as tf\n'), ((3111, 3123), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3117, 3123), True, 'import tensorflow as tf\n'), ((3174, 3186), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3180, 3186), True, 'import tensorflow as tf\n'), ((3196, 3218), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (3202, 3218), True, 'import tensorflow as tf\n'), ((3277, 3289), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (3283, 3289), True, 'import tensorflow as tf\n'), ((3299, 3319), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (3305, 3319), True, 'import tensorflow as tf\n'), ((3377, 3389), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (3383, 3389), True, 'import tensorflow as tf\n'), ((3471, 3483), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (3477, 3483), True, 'import tensorflow as tf\n'), ((3493, 3513), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (3499, 3513), True, 'import tensorflow as tf\n'), ((4310, 4322), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (4316, 4322), True, 'import tensorflow as tf\n'), ((4323, 4335), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (4329, 4335), True, 'import tensorflow as tf\n'), ((4426, 4441), 'tensorflow.ones_like', 'tf.ones_like', (['y'], {}), '(y)\n', (4438, 4441), True, 'import tensorflow as tf\n'), ((4406, 4421), 'tensorflow.ones_like', 'tf.ones_like', (['x'], {}), '(x)\n', (4418, 4421), True, 'import tensorflow as tf\n'), ((4375, 4387), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (4381, 4387), True, 'import tensorflow as tf\n'), ((4388, 4400), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (4394, 4400), True, 'import tensorflow as tf\n'), ((4494, 4516), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (4500, 4516), True, 'import tensorflow as tf\n'), ((4518, 4530), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (4524, 4530), True, 'import tensorflow as tf\n'), ((4601, 4621), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (4607, 4621), True, 'import tensorflow as tf\n'), ((4623, 4635), 'tensorflow.pow', 'tf.pow', (['y', '(2)'], {}), '(y, 2)\n', (4629, 4635), True, 'import tensorflow as tf\n'), ((4705, 4717), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (4711, 4717), True, 'import tensorflow as tf\n'), ((4719, 4741), 'tensorflow.pow', 'tf.pow', (['left_bottom', '(2)'], {}), '(left_bottom, 2)\n', (4725, 4741), True, 'import tensorflow as tf\n'), ((4810, 4822), 'tensorflow.pow', 'tf.pow', (['x', '(2)'], {}), '(x, 2)\n', (4816, 4822), True, 'import tensorflow as tf\n'), ((4824, 4844), 'tensorflow.pow', 'tf.pow', (['right_top', '(2)'], {}), '(right_top, 2)\n', (4830, 4844), True, 'import tensorflow as tf\n')]
import modelexp from modelexp.experiments import Generic from modelexp.models.Generic import Parabola import numpy as np import random app = modelexp.App() app.setExperiment(Generic) modelRef = app.setModel(Parabola) modelRef.defineDomain(np.linspace(-3, 3, 100)) modelRef.setParam('a', 1.3) modelRef.setParam('x0', 0.3) modelRef.setParam('c', -0.2) modelRef.calcModel() sig_y = 0.05*modelRef.y randomized_y = [] for i in range(len(modelRef.y)): randomized_y.append(random.gauss(modelRef.y[i], 0.05*modelRef.y[i])) randomized_y = np.array(randomized_y) with open('parabolaData.xye', 'w') as f: for i in range(len(modelRef.y)): f.write(f'{modelRef.x[i]}\t{randomized_y[i]}\t{sig_y[i]}\n')
[ "modelexp.App", "random.gauss", "numpy.array", "numpy.linspace" ]
[((142, 156), 'modelexp.App', 'modelexp.App', ([], {}), '()\n', (154, 156), False, 'import modelexp\n'), ((536, 558), 'numpy.array', 'np.array', (['randomized_y'], {}), '(randomized_y)\n', (544, 558), True, 'import numpy as np\n'), ((242, 265), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(100)'], {}), '(-3, 3, 100)\n', (253, 265), True, 'import numpy as np\n'), ((472, 521), 'random.gauss', 'random.gauss', (['modelRef.y[i]', '(0.05 * modelRef.y[i])'], {}), '(modelRef.y[i], 0.05 * modelRef.y[i])\n', (484, 521), False, 'import random\n')]
import tensorflow as tf import numpy as np import os SCRIPT_PATH = os.path.abspath(__file__) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) MODEL_PATH = os.path.join(SCRIPT_DIR, "model/model.h5") MODEL = None INPUT_SIZE = 7 * 12 OUTPUT_SIZE = 1 def _load_model(): """ Load the TensorFlow model if it is not loaded in the current context Azure functions often preserve their contexts between executions https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python#global-variables """ global MODEL if MODEL is None: MODEL = tf.keras.models.load_model(MODEL_PATH) def normalize(costs): return np.log(costs + 1) def denormalize(costs): return np.exp(costs) - 1 def make_subsequences(data, subsequence_size): """ Create subsequences of subsequence_size with the array Example ------- >>> make_subsequences(np.array([1, 2, 3, 4]), 2) array([ [1, 2], [2, 3], [3, 4], ]) """ number_of_subsequences = data.shape[0] - subsequence_size + 1 return np.array([data[index:subsequence_size+index] for index in range(number_of_subsequences)]) def predict_costs(actual_costs): _load_model() normalized_costs = normalize(np.array(actual_costs)) subsequences = make_subsequences(normalized_costs, INPUT_SIZE) predictions = MODEL.predict(subsequences, subsequences.shape[0]).flatten() predictions = denormalize(predictions) return predictions.tolist()
[ "os.path.abspath", "tensorflow.keras.models.load_model", "numpy.log", "os.path.dirname", "numpy.array", "numpy.exp", "os.path.join" ]
[((68, 93), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (83, 93), False, 'import os\n'), ((107, 135), 'os.path.dirname', 'os.path.dirname', (['SCRIPT_PATH'], {}), '(SCRIPT_PATH)\n', (122, 135), False, 'import os\n'), ((149, 191), 'os.path.join', 'os.path.join', (['SCRIPT_DIR', '"""model/model.h5"""'], {}), "(SCRIPT_DIR, 'model/model.h5')\n", (161, 191), False, 'import os\n'), ((654, 671), 'numpy.log', 'np.log', (['(costs + 1)'], {}), '(costs + 1)\n', (660, 671), True, 'import numpy as np\n'), ((580, 618), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (606, 618), True, 'import tensorflow as tf\n'), ((709, 722), 'numpy.exp', 'np.exp', (['costs'], {}), '(costs)\n', (715, 722), True, 'import numpy as np\n'), ((1251, 1273), 'numpy.array', 'np.array', (['actual_costs'], {}), '(actual_costs)\n', (1259, 1273), True, 'import numpy as np\n')]
""" ModelFit.py Author: <NAME> Affiliation: University of Colorado at Boulder Created on: Mon May 12 14:01:29 MDT 2014 Description: """ import signal import numpy as np from ..util.PrintInfo import print_fit from ..util.Pickling import write_pickle_file from ..physics.Constants import nu_0_mhz import gc, os, sys, copy, types, time, re from .ModelFit import ModelFit, LogLikelihood, FitBase from ..simulations import Global21cm as simG21 from ..analysis import Global21cm as anlGlobal21cm from ..simulations import Global21cm as simGlobal21cm try: # this runs with no issues in python 2 but raises error in python 3 basestring except: # this try/except allows for python 2/3 compatible string type checking basestring = str try: from mpi4py import MPI rank = MPI.COMM_WORLD.rank size = MPI.COMM_WORLD.size except ImportError: rank = 0 size = 1 def_kwargs = {'verbose': False, 'progress_bar': False} class loglikelihood(LogLikelihood): def __init__(self, xdata, ydata, error, turning_points): """ Computes log-likelihood at given step in MCMC chain. Parameters ---------- """ LogLikelihood.__init__(self, xdata, ydata, error) self.turning_points = turning_points def __call__(self, sim): """ Compute log-likelihood for model generated via input parameters. Returns ------- Tuple: (log likelihood, blobs) """ # Compute the likelihood if we've made it this far if self.turning_points: tps = sim.turning_points try: nu = [nu_0_mhz / (1. + tps[tp][0]) \ for tp in self.turning_points] T = [tps[tp][1] for tp in self.turning_points] except KeyError: return -np.inf yarr = np.array(nu + T) assert len(yarr) == len(self.ydata) else: yarr = np.interp(self.xdata, sim.history['nu'], sim.history['dTb']) if np.any(np.isnan(yarr)): return -np.inf lnL = -0.5 * (np.sum((yarr - self.ydata)**2 \ / self.error**2 + np.log(2. * np.pi * self.error**2))) return lnL + self.const_term class FitGlobal21cm(FitBase): @property def loglikelihood(self): if not hasattr(self, '_loglikelihood'): self._loglikelihood = loglikelihood(self.xdata, self.ydata, self.error, self.turning_points) return self._loglikelihood @property def turning_points(self): if not hasattr(self, '_turning_points'): self._turning_points = False return self._turning_points @turning_points.setter def turning_points(self, value): if type(value) == bool: if value: self._turning_points = list('BCD') else: self._turning_points = False elif type(value) == tuple: self._turning_points = list(value) elif type(value) == list: self._turning_points = value elif isinstance(value, basestring): if len(value) == 1: self._turning_points = [value] else: self._turning_points = list(value) @property def frequencies(self): if not hasattr(self, '_frequencies'): raise AttributeError('Must supply frequencies by hand!') return self._frequencies @frequencies.setter def frequencies(self, value): self._frequencies = value @property def data(self): if not hasattr(self, '_data'): raise AttributeError('Must set data by hand!') return self._data @data.setter def data(self, value): """ Set x and ydata at the same time, either by passing in a simulation instance, a dictionary of parameters, or a sequence of brightness temperatures corresponding to the frequencies defined in self.frequencies (self.xdata). """ if type(value) == dict: kwargs = value.copy() kwargs.update(def_kwargs) sim = simGlobal21cm(**kwargs) sim.run() self.sim = sim elif isinstance(value, simGlobal21cm) or \ isinstance(value, anlGlobal21cm): sim = self.sim = value elif type(value) in [list, tuple]: sim = None else: assert len(value) == len(self.frequencies) assert not self.turning_points self.xdata = self.frequencies self.ydata = value return if self.turning_points is not None: self.xdata = None if sim is not None: z = [sim.turning_points[tp][0] for tp in self.turning_points] T = [sim.turning_points[tp][1] for tp in self.turning_points] nu = nu_0_mhz / (1. + np.array(z)) self.ydata = np.array(list(nu) + T) else: assert len(value) == 2 * len(self.turning_points) self.ydata = value else: self.xdata = self.frequencies if hasattr(self, 'sim'): nu = self.sim.history['nu'] dTb = self.sim.history['dTb'] self.ydata = np.interp(self.xdata, nu, dTb).copy() \ + self.noise @property def noise(self): if not hasattr(self, '_noise'): self._noise = np.zeros_like(self.xdata) return self._noise @noise.setter def noise(self, value): self._noise = np.random.normal(0., value, size=len(self.frequencies)) @property def error(self): if not hasattr(self, '_error'): raise AttributeError('Must set errors by hand!') return self._error @error.setter def error(self, value): if type(value) is dict: nu = [value[tp][0] for tp in self.turning_points] T = [value[tp][1] for tp in self.turning_points] self._error = np.array(nu + T) else: if hasattr(self, '_data'): assert len(value) == len(self.data), \ "Data and errors must have same shape!" self._error = value def _check_for_conflicts(self): """ Hacky at the moment. Preventative measure against is_log=True for spectrum_logN. Could generalize. """ for i, element in enumerate(self.parameters): if re.search('spectrum_logN', element): if self.is_log[i]: raise ValueError('spectrum_logN is already logarithmic!')
[ "numpy.zeros_like", "numpy.log", "numpy.isnan", "numpy.array", "numpy.interp", "re.search" ]
[((1966, 1982), 'numpy.array', 'np.array', (['(nu + T)'], {}), '(nu + T)\n', (1974, 1982), True, 'import numpy as np\n'), ((2066, 2126), 'numpy.interp', 'np.interp', (['self.xdata', "sim.history['nu']", "sim.history['dTb']"], {}), "(self.xdata, sim.history['nu'], sim.history['dTb'])\n", (2075, 2126), True, 'import numpy as np\n'), ((2146, 2160), 'numpy.isnan', 'np.isnan', (['yarr'], {}), '(yarr)\n', (2154, 2160), True, 'import numpy as np\n'), ((5892, 5917), 'numpy.zeros_like', 'np.zeros_like', (['self.xdata'], {}), '(self.xdata)\n', (5905, 5917), True, 'import numpy as np\n'), ((6524, 6540), 'numpy.array', 'np.array', (['(nu + T)'], {}), '(nu + T)\n', (6532, 6540), True, 'import numpy as np\n'), ((7026, 7061), 're.search', 're.search', (['"""spectrum_logN"""', 'element'], {}), "('spectrum_logN', element)\n", (7035, 7061), False, 'import gc, os, sys, copy, types, time, re\n'), ((2275, 2312), 'numpy.log', 'np.log', (['(2.0 * np.pi * self.error ** 2)'], {}), '(2.0 * np.pi * self.error ** 2)\n', (2281, 2312), True, 'import numpy as np\n'), ((5274, 5285), 'numpy.array', 'np.array', (['z'], {}), '(z)\n', (5282, 5285), True, 'import numpy as np\n'), ((5717, 5747), 'numpy.interp', 'np.interp', (['self.xdata', 'nu', 'dTb'], {}), '(self.xdata, nu, dTb)\n', (5726, 5747), True, 'import numpy as np\n')]
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np #! [auto_compilation] import openvino.runtime as ov compiled_model = ov.compile_model("model.xml") #! [auto_compilation] #! [properties_example] core = ov.Core() input_a = ov.opset8.parameter([8]) res = ov.opset8.absolute(input_a) model = ov.Model(res, [input_a]) compiled = core.compile_model(model, "CPU") print(model.inputs) print(model.outputs) print(compiled.inputs) print(compiled.outputs) #! [properties_example] #! [tensor_basics] data_float64 = np.ones(shape=(2,8)) tensor = ov.Tensor(data_float64) assert tensor.element_type == ov.Type.f64 data_int32 = np.ones(shape=(2,8), dtype=np.int32) tensor = ov.Tensor(data_int32) assert tensor.element_type == ov.Type.i32 #! [tensor_basics] #! [tensor_shared_mode] data_to_share = np.ones(shape=(2,8)) shared_tensor = ov.Tensor(data_to_share, shared_memory=True) # Editing of the numpy array affects Tensor's data data_to_share[0][2] = 6.0 assert shared_tensor.data[0][2] == 6.0 # Editing of Tensor's data affects the numpy array shared_tensor.data[0][2] = 0.6 assert data_to_share[0][2] == 0.6 #! [tensor_shared_mode] infer_request = compiled.create_infer_request() data = np.random.randint(-5, 3 + 1, size=(8)) #! [passing_numpy_array] # Passing inputs data in form of a dictionary infer_request.infer(inputs={0: data}) # Passing inputs data in form of a list infer_request.infer(inputs=[data]) #! [passing_numpy_array] #! [getting_results] # Get output tensor results = infer_request.get_output_tensor().data # Get tensor with CompiledModel's output node results = infer_request.get_tensor(compiled.outputs[0]).data # Get all results with special helper property results = list(infer_request.results.values()) #! [getting_results] #! [sync_infer] # Simple call to InferRequest results = infer_request.infer(inputs={0: data}) # Extra feature: calling CompiledModel directly results = compiled_model(inputs={0: data}) #! [sync_infer] #! [asyncinferqueue] core = ov.Core() # Simple model that adds two inputs together input_a = ov.opset8.parameter([8]) input_b = ov.opset8.parameter([8]) res = ov.opset8.add(input_a, input_b) model = ov.Model(res, [input_a, input_b]) compiled = core.compile_model(model, "CPU") # Number of InferRequests that AsyncInferQueue holds jobs = 4 infer_queue = ov.AsyncInferQueue(compiled, jobs) # Create data data = [np.array([i] * 8, dtype=np.float32) for i in range(jobs)] # Run all jobs for i in range(len(data)): infer_queue.start_async({0: data[i], 1: data[i]}) infer_queue.wait_all() #! [asyncinferqueue] #! [asyncinferqueue_access] results = infer_queue[3].get_output_tensor().data #! [asyncinferqueue_access] #! [asyncinferqueue_set_callback] data_done = [False for _ in range(jobs)] def f(request, userdata): print(f"Done! Result: {request.get_output_tensor().data}") data_done[userdata] = True infer_queue.set_callback(f) for i in range(len(data)): infer_queue.start_async({0: data[i], 1: data[i]}, userdata=i) infer_queue.wait_all() assert all(data_done) #! [asyncinferqueue_set_callback] unt8_data = np.ones([100]) #! [packing_data] from openvino.helpers import pack_data packed_buffer = pack_data(unt8_data, ov.Type.u4) # Create tensor with shape in element types t = ov.Tensor(packed_buffer, [1, 128], ov.Type.u4) #! [packing_data] #! [unpacking] from openvino.helpers import unpack_data unpacked_data = unpack_data(t.data, t.element_type, t.shape) assert np.array_equal(unpacked_data , unt8_data) #! [unpacking] #! [releasing_gil] import openvino.runtime as ov import cv2 as cv from threading import Thread input_data = [] # Processing input data will be done in a separate thread # while compilation of the model and creation of the infer request # is going to be executed in the main thread. def prepare_data(input, image_path): image = cv.imread(image_path) h, w = list(input.shape)[-2:] image = cv.resize(image, (h, w)) image = image.transpose((2, 0, 1)) image = np.expand_dims(image, 0) input_data.append(image) core = ov.Core() model = core.read_model("model.xml") # Create thread with prepare_data function as target and start it thread = Thread(target=prepare_data, args=[model.input(), "path/to/image"]) thread.start() # The GIL will be released in compile_model. # It allows a thread above to start the job, # while main thread is running in the background. compiled = core.compile_model(model, "GPU") # After returning from compile_model, the main thread acquires the GIL # and starts create_infer_request which releases it once again. request = compiled.create_infer_request() # Join the thread to make sure the input_data is ready thread.join() # running the inference request.infer(input_data) #! [releasing_gil]
[ "openvino.runtime.opset8.parameter", "openvino.runtime.Core", "numpy.array_equal", "openvino.runtime.opset8.absolute", "openvino.runtime.Model", "openvino.runtime.opset8.add", "numpy.ones", "numpy.expand_dims", "openvino.runtime.AsyncInferQueue", "openvino.runtime.compile_model", "cv2.imread", "numpy.random.randint", "numpy.array", "openvino.helpers.pack_data", "openvino.runtime.Tensor", "openvino.helpers.unpack_data", "cv2.resize" ]
[((173, 202), 'openvino.runtime.compile_model', 'ov.compile_model', (['"""model.xml"""'], {}), "('model.xml')\n", (189, 202), True, 'import openvino.runtime as ov\n'), ((257, 266), 'openvino.runtime.Core', 'ov.Core', ([], {}), '()\n', (264, 266), True, 'import openvino.runtime as ov\n'), ((278, 302), 'openvino.runtime.opset8.parameter', 'ov.opset8.parameter', (['[8]'], {}), '([8])\n', (297, 302), True, 'import openvino.runtime as ov\n'), ((309, 336), 'openvino.runtime.opset8.absolute', 'ov.opset8.absolute', (['input_a'], {}), '(input_a)\n', (327, 336), True, 'import openvino.runtime as ov\n'), ((345, 369), 'openvino.runtime.Model', 'ov.Model', (['res', '[input_a]'], {}), '(res, [input_a])\n', (353, 369), True, 'import openvino.runtime as ov\n'), ((563, 584), 'numpy.ones', 'np.ones', ([], {'shape': '(2, 8)'}), '(shape=(2, 8))\n', (570, 584), True, 'import numpy as np\n'), ((594, 617), 'openvino.runtime.Tensor', 'ov.Tensor', (['data_float64'], {}), '(data_float64)\n', (603, 617), True, 'import openvino.runtime as ov\n'), ((674, 711), 'numpy.ones', 'np.ones', ([], {'shape': '(2, 8)', 'dtype': 'np.int32'}), '(shape=(2, 8), dtype=np.int32)\n', (681, 711), True, 'import numpy as np\n'), ((721, 742), 'openvino.runtime.Tensor', 'ov.Tensor', (['data_int32'], {}), '(data_int32)\n', (730, 742), True, 'import openvino.runtime as ov\n'), ((845, 866), 'numpy.ones', 'np.ones', ([], {'shape': '(2, 8)'}), '(shape=(2, 8))\n', (852, 866), True, 'import numpy as np\n'), ((883, 927), 'openvino.runtime.Tensor', 'ov.Tensor', (['data_to_share'], {'shared_memory': '(True)'}), '(data_to_share, shared_memory=True)\n', (892, 927), True, 'import openvino.runtime as ov\n'), ((1242, 1278), 'numpy.random.randint', 'np.random.randint', (['(-5)', '(3 + 1)'], {'size': '(8)'}), '(-5, 3 + 1, size=8)\n', (1259, 1278), True, 'import numpy as np\n'), ((2037, 2046), 'openvino.runtime.Core', 'ov.Core', ([], {}), '()\n', (2044, 2046), True, 'import openvino.runtime as ov\n'), ((2103, 2127), 'openvino.runtime.opset8.parameter', 'ov.opset8.parameter', (['[8]'], {}), '([8])\n', (2122, 2127), True, 'import openvino.runtime as ov\n'), ((2138, 2162), 'openvino.runtime.opset8.parameter', 'ov.opset8.parameter', (['[8]'], {}), '([8])\n', (2157, 2162), True, 'import openvino.runtime as ov\n'), ((2169, 2200), 'openvino.runtime.opset8.add', 'ov.opset8.add', (['input_a', 'input_b'], {}), '(input_a, input_b)\n', (2182, 2200), True, 'import openvino.runtime as ov\n'), ((2209, 2242), 'openvino.runtime.Model', 'ov.Model', (['res', '[input_a, input_b]'], {}), '(res, [input_a, input_b])\n', (2217, 2242), True, 'import openvino.runtime as ov\n'), ((2364, 2398), 'openvino.runtime.AsyncInferQueue', 'ov.AsyncInferQueue', (['compiled', 'jobs'], {}), '(compiled, jobs)\n', (2382, 2398), True, 'import openvino.runtime as ov\n'), ((3141, 3155), 'numpy.ones', 'np.ones', (['[100]'], {}), '([100])\n', (3148, 3155), True, 'import numpy as np\n'), ((3231, 3263), 'openvino.helpers.pack_data', 'pack_data', (['unt8_data', 'ov.Type.u4'], {}), '(unt8_data, ov.Type.u4)\n', (3240, 3263), False, 'from openvino.helpers import pack_data\n'), ((3312, 3358), 'openvino.runtime.Tensor', 'ov.Tensor', (['packed_buffer', '[1, 128]', 'ov.Type.u4'], {}), '(packed_buffer, [1, 128], ov.Type.u4)\n', (3321, 3358), True, 'import openvino.runtime as ov\n'), ((3451, 3495), 'openvino.helpers.unpack_data', 'unpack_data', (['t.data', 't.element_type', 't.shape'], {}), '(t.data, t.element_type, t.shape)\n', (3462, 3495), False, 'from openvino.helpers import unpack_data\n'), ((3503, 3543), 'numpy.array_equal', 'np.array_equal', (['unpacked_data', 'unt8_data'], {}), '(unpacked_data, unt8_data)\n', (3517, 3543), True, 'import numpy as np\n'), ((4100, 4109), 'openvino.runtime.Core', 'ov.Core', ([], {}), '()\n', (4107, 4109), True, 'import openvino.runtime as ov\n'), ((2422, 2457), 'numpy.array', 'np.array', (['([i] * 8)'], {'dtype': 'np.float32'}), '([i] * 8, dtype=np.float32)\n', (2430, 2457), True, 'import numpy as np\n'), ((3894, 3915), 'cv2.imread', 'cv.imread', (['image_path'], {}), '(image_path)\n', (3903, 3915), True, 'import cv2 as cv\n'), ((3962, 3986), 'cv2.resize', 'cv.resize', (['image', '(h, w)'], {}), '(image, (h, w))\n', (3971, 3986), True, 'import cv2 as cv\n'), ((4038, 4062), 'numpy.expand_dims', 'np.expand_dims', (['image', '(0)'], {}), '(image, 0)\n', (4052, 4062), True, 'import numpy as np\n')]
# <NAME> 2014-2020 # mlxtend Machine Learning Library Extensions # # Nonparametric Permutation Test # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause import numpy as np from itertools import combinations from math import factorial try: from nose.tools import nottest except ImportError: # Use a no-op decorator if nose is not available def nottest(f): return f # decorator to prevent nose to consider # this as a unit test due to "test" in the name @nottest def permutation_test(x, y, func='x_mean != y_mean', method='exact', num_rounds=1000, seed=None): """ Nonparametric permutation test Parameters ------------- x : list or numpy array with shape (n_datapoints,) A list or 1D numpy array of the first sample (e.g., the treatment group). y : list or numpy array with shape (n_datapoints,) A list or 1D numpy array of the second sample (e.g., the control group). func : custom function or str (default: 'x_mean != y_mean') function to compute the statistic for the permutation test. - If 'x_mean != y_mean', uses `func=lambda x, y: np.abs(np.mean(x) - np.mean(y)))` for a two-sided test. - If 'x_mean > y_mean', uses `func=lambda x, y: np.mean(x) - np.mean(y))` for a one-sided test. - If 'x_mean < y_mean', uses `func=lambda x, y: np.mean(y) - np.mean(x))` for a one-sided test. method : 'approximate' or 'exact' (default: 'exact') If 'exact' (default), all possible permutations are considered. If 'approximate' the number of drawn samples is given by `num_rounds`. Note that 'exact' is typically not feasible unless the dataset size is relatively small. num_rounds : int (default: 1000) The number of permutation samples if `method='approximate'`. seed : int or None (default: None) The random seed for generating permutation samples if `method='approximate'`. Returns ---------- p-value under the null hypothesis Examples ----------- For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/evaluate/permutation_test/ """ if method not in ('approximate', 'exact'): raise AttributeError('method must be "approximate"' ' or "exact", got %s' % method) if isinstance(func, str): if func not in ( 'x_mean != y_mean', 'x_mean > y_mean', 'x_mean < y_mean'): raise AttributeError('Provide a custom function' ' lambda x,y: ... or a string' ' in ("x_mean != y_mean", ' '"x_mean > y_mean", "x_mean < y_mean")') elif func == 'x_mean != y_mean': def func(x, y): return np.abs(np.mean(x) - np.mean(y)) elif func == 'x_mean > y_mean': def func(x, y): return np.mean(x) - np.mean(y) else: def func(x, y): return np.mean(y) - np.mean(x) rng = np.random.RandomState(seed) m, n = len(x), len(y) combined = np.hstack((x, y)) more_extreme = 0. reference_stat = func(x, y) # Note that whether we compute the combinations or permutations # does not affect the results, since the number of permutations # n_A specific objects in A and n_B specific objects in B is the # same for all combinations in x_1, ... x_{n_A} and # x_{n_{A+1}}, ... x_{n_A + n_B} # In other words, for any given number of combinations, we get # n_A! x n_B! times as many permutations; hoewever, the computed # value of those permutations that are merely re-arranged combinations # does not change. Hence, the result, since we divide by the number of # combinations or permutations is the same, the permutations simply have # "n_A! x n_B!" as a scaling factor in the numerator and denominator # and using combinations instead of permutations simply saves computational # time if method == 'exact': for indices_x in combinations(range(m + n), m): indices_y = [i for i in range(m + n) if i not in indices_x] diff = func(combined[list(indices_x)], combined[indices_y]) if diff > reference_stat: more_extreme += 1. num_rounds = factorial(m + n) / (factorial(m)*factorial(n)) else: for i in range(num_rounds): rng.shuffle(combined) if func(combined[:m], combined[m:]) > reference_stat: more_extreme += 1. return more_extreme / num_rounds
[ "numpy.mean", "math.factorial", "numpy.random.RandomState", "numpy.hstack" ]
[((3160, 3187), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (3181, 3187), True, 'import numpy as np\n'), ((3230, 3247), 'numpy.hstack', 'np.hstack', (['(x, y)'], {}), '((x, y))\n', (3239, 3247), True, 'import numpy as np\n'), ((4453, 4469), 'math.factorial', 'factorial', (['(m + n)'], {}), '(m + n)\n', (4462, 4469), False, 'from math import factorial\n'), ((4473, 4485), 'math.factorial', 'factorial', (['m'], {}), '(m)\n', (4482, 4485), False, 'from math import factorial\n'), ((4486, 4498), 'math.factorial', 'factorial', (['n'], {}), '(n)\n', (4495, 4498), False, 'from math import factorial\n'), ((2918, 2928), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (2925, 2928), True, 'import numpy as np\n'), ((2931, 2941), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (2938, 2941), True, 'import numpy as np\n'), ((3035, 3045), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (3042, 3045), True, 'import numpy as np\n'), ((3048, 3058), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (3055, 3058), True, 'import numpy as np\n'), ((3125, 3135), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (3132, 3135), True, 'import numpy as np\n'), ((3138, 3148), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (3145, 3148), True, 'import numpy as np\n')]
# OLD USAGE # python align_faces.py --shape-predictor shape_predictor_68_face_landmarks.dat --image images/example_01.jpg # import the necessary packages from imutils.face_utils import FaceAligner from PIL import Image import numpy as np # import argparse import imutils import dlib import cv2 # construct the argument parser and parse the arguments # ap = argparse.ArgumentParser() # ap.add_argument("--shape-predictor", help="path to facial landmark predictor", default='shape_predictor_68_face_landmarks.dat') # ap.add_argument("--input", help="path to input images", default='input_raw') # ap.add_argument("--output", help="path to input images", default='input_aligned') # args = vars(ap.parse_args()) # initialize dlib's face detector (HOG-based) and then create # the facial landmark predictor and the face aligner detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') fa = FaceAligner(predictor, desiredFaceWidth=256, desiredLeftEye=(0.371, 0.480)) # Input: numpy array for image with RGB channels # Output: (numpy array, face_found) def align_face(img): img = img[:, :, ::-1] # Convert from RGB to BGR format img = imutils.resize(img, width=800) # detect faces in the grayscale image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rects = detector(gray, 2) if len(rects) > 0: # align the face using facial landmarks align_img = fa.align(img, gray, rects[0])[:, :, ::-1] align_img = np.array(Image.fromarray(align_img).convert('RGB')) return align_img, True else: # No face found return None, False # Input: img_path # Output: aligned_img if face_found, else None def align(img_path): img = Image.open(img_path) img = img.convert('RGB') # if image is RGBA or Grayscale etc img = np.array(img) x, face_found = align_face(img) return x
[ "cv2.cvtColor", "PIL.Image.open", "PIL.Image.fromarray", "numpy.array", "dlib.get_frontal_face_detector", "imutils.resize", "dlib.shape_predictor", "imutils.face_utils.FaceAligner" ]
[((836, 868), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (866, 868), False, 'import dlib\n'), ((881, 942), 'dlib.shape_predictor', 'dlib.shape_predictor', (['"""shape_predictor_68_face_landmarks.dat"""'], {}), "('shape_predictor_68_face_landmarks.dat')\n", (901, 942), False, 'import dlib\n'), ((948, 1022), 'imutils.face_utils.FaceAligner', 'FaceAligner', (['predictor'], {'desiredFaceWidth': '(256)', 'desiredLeftEye': '(0.371, 0.48)'}), '(predictor, desiredFaceWidth=256, desiredLeftEye=(0.371, 0.48))\n', (959, 1022), False, 'from imutils.face_utils import FaceAligner\n'), ((1219, 1249), 'imutils.resize', 'imutils.resize', (['img'], {'width': '(800)'}), '(img, width=800)\n', (1233, 1249), False, 'import imutils\n'), ((1304, 1341), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (1316, 1341), False, 'import cv2\n'), ((1767, 1787), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1777, 1787), False, 'from PIL import Image\n'), ((1864, 1877), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (1872, 1877), True, 'import numpy as np\n'), ((1535, 1561), 'PIL.Image.fromarray', 'Image.fromarray', (['align_img'], {}), '(align_img)\n', (1550, 1561), False, 'from PIL import Image\n')]
from styx_msgs.msg import TrafficLight import cv2 import numpy as np class TLClassifier(object): def __init__(self): pass def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ img_blur = cv2.medianBlur(image,3) img_hsv = cv2.cvtColor(img_blur,cv2.COLOR_BGR2HSV) red_lower_range = cv2.inRange(hsv_image, np.array([0, 100, 100],np.uint8), np.array([10, 255, 255],np.uint8)) red_upper_range = cv2.inRange(hsv_image, np.array([160, 100, 100],np.uint8), np.array([179, 255, 255],np.uint8)) yellow_range = cv2.inRange(hsv_image, np.array([28, 120, 120],np.uint8), np.array([47, 255, 255],np.uint8)) if cv2.countNonZero(red_lower_range) + cv2.countNonZero(red_upper_range) > 48 or cv2.countNonZero(yellow_range) > 48: return TrafficLight.RED else: return TrafficLight.GREEN # return TrafficLight.UNKNOWN
[ "cv2.cvtColor", "cv2.countNonZero", "numpy.array", "cv2.medianBlur" ]
[((453, 477), 'cv2.medianBlur', 'cv2.medianBlur', (['image', '(3)'], {}), '(image, 3)\n', (467, 477), False, 'import cv2\n'), ((495, 536), 'cv2.cvtColor', 'cv2.cvtColor', (['img_blur', 'cv2.COLOR_BGR2HSV'], {}), '(img_blur, cv2.COLOR_BGR2HSV)\n', (507, 536), False, 'import cv2\n'), ((586, 619), 'numpy.array', 'np.array', (['[0, 100, 100]', 'np.uint8'], {}), '([0, 100, 100], np.uint8)\n', (594, 619), True, 'import numpy as np\n'), ((620, 654), 'numpy.array', 'np.array', (['[10, 255, 255]', 'np.uint8'], {}), '([10, 255, 255], np.uint8)\n', (628, 654), True, 'import numpy as np\n'), ((704, 739), 'numpy.array', 'np.array', (['[160, 100, 100]', 'np.uint8'], {}), '([160, 100, 100], np.uint8)\n', (712, 739), True, 'import numpy as np\n'), ((740, 775), 'numpy.array', 'np.array', (['[179, 255, 255]', 'np.uint8'], {}), '([179, 255, 255], np.uint8)\n', (748, 775), True, 'import numpy as np\n'), ((822, 856), 'numpy.array', 'np.array', (['[28, 120, 120]', 'np.uint8'], {}), '([28, 120, 120], np.uint8)\n', (830, 856), True, 'import numpy as np\n'), ((857, 891), 'numpy.array', 'np.array', (['[47, 255, 255]', 'np.uint8'], {}), '([47, 255, 255], np.uint8)\n', (865, 891), True, 'import numpy as np\n'), ((982, 1012), 'cv2.countNonZero', 'cv2.countNonZero', (['yellow_range'], {}), '(yellow_range)\n', (998, 1012), False, 'import cv2\n'), ((904, 937), 'cv2.countNonZero', 'cv2.countNonZero', (['red_lower_range'], {}), '(red_lower_range)\n', (920, 937), False, 'import cv2\n'), ((940, 973), 'cv2.countNonZero', 'cv2.countNonZero', (['red_upper_range'], {}), '(red_upper_range)\n', (956, 973), False, 'import cv2\n')]
""" Script to compute dci score of learned representation. """ import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import numpy as np from absl import flags, app from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from disentanglement_lib.evaluation.metrics import dci from disentanglement_lib.visualize import visualize_scores import os FLAGS = flags.FLAGS flags.DEFINE_string('c_path', '', 'File path for underlying factors c') flags.DEFINE_string('assign_mat_path', 'data/hirid/assign_mats/hirid_assign_mat.npy', 'Path for assignment matrix') flags.DEFINE_string('model_name', '', 'Name of model directory to get learned latent code') flags.DEFINE_enum('data_type_dci', 'dsprites', ['hmnist', 'physionet', 'hirid', 'sprites', 'dsprites', 'smallnorb', 'cars3d', 'shapes3d'], 'Type of data and how to evaluate') flags.DEFINE_list('score_factors', [], 'Underlying factors to consider in DCI score calculation') flags.DEFINE_enum('rescaling', 'linear', ['linear', 'standard'], 'Rescaling of ground truth factors') flags.DEFINE_bool('shuffle', False, 'Whether or not to shuffle evaluation data.') flags.DEFINE_integer('dci_seed', 42, 'Random seed.') flags.DEFINE_bool('visualize_score', False, 'Whether or not to visualize score') flags.DEFINE_bool('save_score', False, 'Whether or not to save calculated score') def load_z_c(c_path, z_path): try: c_full = np.load(c_path)['factors_test'] except IndexError: c_full = np.load(c_path) z = np.load(z_path) c = c_full return c, z def main(argv, model_dir=None): del argv # Unused if model_dir is None: out_dir = FLAGS.model_name else: out_dir = model_dir z_path = '{}/z_mean.npy'.format(out_dir) if FLAGS.c_path == '': if FLAGS.data_type_dci != 'hirid': c_path = os.path.join(F'/data/{FLAGS.data_type_dci}', F'factors_{FLAGS.data_type_dci}.npz') else: c_path = os.path.join(F'/data/{FLAGS.data_type_dci}', F'{FLAGS.data_type_dci}.npz') else: c_path = FLAGS.c_path if FLAGS.data_type_dci == "physionet": # Use imputed values as ground truth for physionet data c, z = load_z_c('{}/imputed.npy'.format(out_dir), z_path) c = np.transpose(c, (0,2,1)) elif FLAGS.data_type_dci == "hirid": c = np.load(c_path)['x_test_miss'] c = np.transpose(c, (0, 2, 1)) c = c.astype(int) z = np.load(z_path) else: c, z = load_z_c(c_path, z_path) z_shape = z.shape c_shape = c.shape z_reshape = np.reshape(np.transpose(z, (0,2,1)),(z_shape[0]*z_shape[2],z_shape[1])) c_reshape = np.reshape(np.transpose(c, (0,2,1)),(c_shape[0]*c_shape[2],c_shape[1])) c_reshape = c_reshape[:z_reshape.shape[0], ...] # Experimental physionet rescaling if FLAGS.data_type_dci == 'physionet': if FLAGS.rescaling == 'linear': # linear rescaling c_rescale = 10 * c_reshape c_reshape = c_rescale.astype(int) elif FLAGS.rescaling == 'standard': # standardizing scaler = StandardScaler() c_rescale = scaler.fit_transform(c_reshape) c_reshape = (10*c_rescale).astype(int) else: raise ValueError("Rescaling must be 'linear' or 'standard'") # Include all factors in score calculation, if not specified otherwise if not FLAGS.score_factors: FLAGS.score_factors = np.arange(c_shape[1]).astype(str) # Check if ground truth factor doesn't change and remove if is the case mask = np.ones(c_reshape.shape[1], dtype=bool) for i in range(c_reshape.shape[1]): c_change = np.sum(abs(np.diff(c_reshape[:8000,i]))) if (not c_change) or (F"{i}" not in FLAGS.score_factors): mask[i] = False c_reshape = c_reshape[:,mask] print(F'C shape: {c_reshape.shape}') print(F'Z shape: {z_reshape.shape}') print(F'Shuffle: {FLAGS.shuffle}') c_train, c_test, z_train, z_test = train_test_split(c_reshape, z_reshape, test_size=0.2, shuffle=FLAGS.shuffle, random_state=FLAGS.dci_seed) if FLAGS.data_type_dci == "hirid": n_train = 20000 n_test = 5000 else: n_train = 8000 n_test = 2000 importance_matrix, i_train, i_test = dci.compute_importance_gbt( z_train[:n_train, :].transpose(), c_train[:n_train, :].transpose().astype(int), z_test[:n_test, :].transpose(), c_test[:n_test, :].transpose().astype(int)) # Calculate scores d = dci.disentanglement(importance_matrix) c = dci.completeness(importance_matrix) print(F'D: {d}') print(F'C: {c}') print(F'I: {i_test}') if FLAGS.data_type_dci in ['hirid', 'physionet']: miss_idxs = np.nonzero(np.invert(mask))[0] for idx in miss_idxs: importance_matrix = np.insert(importance_matrix, idx, 0, axis=1) assign_mat = np.load(FLAGS.assign_mat_path) impt_mat_assign = np.matmul(importance_matrix, assign_mat) impt_mat_assign_norm = np.nan_to_num( impt_mat_assign / np.sum(impt_mat_assign, axis=0)) d_assign = dci.disentanglement(impt_mat_assign_norm) c_assign = dci.completeness(impt_mat_assign_norm) print(F'D assign: {d_assign}') print(F'C assign: {c_assign}') if FLAGS.save_score: if FLAGS.data_type_dci in ['hirid', 'physionet']: np.savez(F'{out_dir}/dci_assign_2_{FLAGS.dci_seed}', informativeness_train=i_train, informativeness_test=i_test, disentanglement=d, completeness=c, disentanglement_assign=d_assign, completeness_assign=c_assign) else: np.savez(F'{out_dir}/dci_{FLAGS.dci_seed}', informativeness_train=i_train, informativeness_test=i_test, disentanglement=d, completeness=c) # Visualization if FLAGS.visualize_score: if FLAGS.data_type_dci == 'hirid': # Visualize visualize_scores.heat_square(np.transpose(importance_matrix), out_dir, F"dci_matrix_{FLAGS.dci_seed}", "feature", "latent dim") visualize_scores.heat_square(np.transpose(impt_mat_assign_norm), out_dir, F"dci_matrix_assign_{FLAGS.dci_seed}", "feature", "latent_dim") # Save importance matrices if FLAGS.save_score: np.save(F"{out_dir}/impt_matrix_{FLAGS.dci_seed}", importance_matrix) np.save(F"{out_dir}/impt_matrix_assign_{FLAGS.dci_seed}", impt_mat_assign_norm) else: # Visualize visualize_scores.heat_square(importance_matrix, out_dir, F"dci_matrix_{FLAGS.dci_seed}", "x_axis", "y_axis") # Save importance matrices np.save(F"{out_dir}/impt_matrix_{FLAGS.dci_seed}", importance_matrix) print("Evaluation finished") if __name__ == '__main__': app.run(main)
[ "numpy.load", "sklearn.preprocessing.StandardScaler", "numpy.sum", "numpy.invert", "sklearn.model_selection.train_test_split", "numpy.ones", "numpy.arange", "absl.flags.DEFINE_list", "os.path.join", "warnings.simplefilter", "disentanglement_lib.visualize.visualize_scores.heat_square", "absl.flags.DEFINE_bool", "numpy.transpose", "numpy.insert", "absl.flags.DEFINE_integer", "absl.flags.DEFINE_enum", "numpy.save", "numpy.savez", "disentanglement_lib.evaluation.metrics.dci.completeness", "absl.flags.DEFINE_string", "absl.app.run", "numpy.diff", "numpy.matmul", "disentanglement_lib.evaluation.metrics.dci.disentanglement" ]
[((79, 141), 'warnings.simplefilter', 'warnings.simplefilter', ([], {'action': '"""ignore"""', 'category': 'FutureWarning'}), "(action='ignore', category=FutureWarning)\n", (100, 141), False, 'import warnings\n'), ((438, 509), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""c_path"""', '""""""', '"""File path for underlying factors c"""'], {}), "('c_path', '', 'File path for underlying factors c')\n", (457, 509), False, 'from absl import flags, app\n'), ((510, 634), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""assign_mat_path"""', '"""data/hirid/assign_mats/hirid_assign_mat.npy"""', '"""Path for assignment matrix"""'], {}), "('assign_mat_path',\n 'data/hirid/assign_mats/hirid_assign_mat.npy', 'Path for assignment matrix'\n )\n", (529, 634), False, 'from absl import flags, app\n'), ((626, 721), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""model_name"""', '""""""', '"""Name of model directory to get learned latent code"""'], {}), "('model_name', '',\n 'Name of model directory to get learned latent code')\n", (645, 721), False, 'from absl import flags, app\n'), ((718, 900), 'absl.flags.DEFINE_enum', 'flags.DEFINE_enum', (['"""data_type_dci"""', '"""dsprites"""', "['hmnist', 'physionet', 'hirid', 'sprites', 'dsprites', 'smallnorb',\n 'cars3d', 'shapes3d']", '"""Type of data and how to evaluate"""'], {}), "('data_type_dci', 'dsprites', ['hmnist', 'physionet',\n 'hirid', 'sprites', 'dsprites', 'smallnorb', 'cars3d', 'shapes3d'],\n 'Type of data and how to evaluate')\n", (735, 900), False, 'from absl import flags, app\n'), ((893, 994), 'absl.flags.DEFINE_list', 'flags.DEFINE_list', (['"""score_factors"""', '[]', '"""Underlying factors to consider in DCI score calculation"""'], {}), "('score_factors', [],\n 'Underlying factors to consider in DCI score calculation')\n", (910, 994), False, 'from absl import flags, app\n'), ((991, 1096), 'absl.flags.DEFINE_enum', 'flags.DEFINE_enum', (['"""rescaling"""', '"""linear"""', "['linear', 'standard']", '"""Rescaling of ground truth factors"""'], {}), "('rescaling', 'linear', ['linear', 'standard'],\n 'Rescaling of ground truth factors')\n", (1008, 1096), False, 'from absl import flags, app\n'), ((1093, 1178), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""shuffle"""', '(False)', '"""Whether or not to shuffle evaluation data."""'], {}), "('shuffle', False,\n 'Whether or not to shuffle evaluation data.')\n", (1110, 1178), False, 'from absl import flags, app\n'), ((1175, 1227), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""dci_seed"""', '(42)', '"""Random seed."""'], {}), "('dci_seed', 42, 'Random seed.')\n", (1195, 1227), False, 'from absl import flags, app\n'), ((1228, 1313), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""visualize_score"""', '(False)', '"""Whether or not to visualize score"""'], {}), "('visualize_score', False, 'Whether or not to visualize score'\n )\n", (1245, 1313), False, 'from absl import flags, app\n'), ((1309, 1394), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""save_score"""', '(False)', '"""Whether or not to save calculated score"""'], {}), "('save_score', False,\n 'Whether or not to save calculated score')\n", (1326, 1394), False, 'from absl import flags, app\n'), ((1544, 1559), 'numpy.load', 'np.load', (['z_path'], {}), '(z_path)\n', (1551, 1559), True, 'import numpy as np\n'), ((3634, 3673), 'numpy.ones', 'np.ones', (['c_reshape.shape[1]'], {'dtype': 'bool'}), '(c_reshape.shape[1], dtype=bool)\n', (3641, 3673), True, 'import numpy as np\n'), ((4063, 4172), 'sklearn.model_selection.train_test_split', 'train_test_split', (['c_reshape', 'z_reshape'], {'test_size': '(0.2)', 'shuffle': 'FLAGS.shuffle', 'random_state': 'FLAGS.dci_seed'}), '(c_reshape, z_reshape, test_size=0.2, shuffle=FLAGS.shuffle,\n random_state=FLAGS.dci_seed)\n', (4079, 4172), False, 'from sklearn.model_selection import train_test_split\n'), ((4591, 4629), 'disentanglement_lib.evaluation.metrics.dci.disentanglement', 'dci.disentanglement', (['importance_matrix'], {}), '(importance_matrix)\n', (4610, 4629), False, 'from disentanglement_lib.evaluation.metrics import dci\n'), ((4638, 4673), 'disentanglement_lib.evaluation.metrics.dci.completeness', 'dci.completeness', (['importance_matrix'], {}), '(importance_matrix)\n', (4654, 4673), False, 'from disentanglement_lib.evaluation.metrics import dci\n'), ((7256, 7269), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (7263, 7269), False, 'from absl import flags, app\n'), ((2304, 2330), 'numpy.transpose', 'np.transpose', (['c', '(0, 2, 1)'], {}), '(c, (0, 2, 1))\n', (2316, 2330), True, 'import numpy as np\n'), ((2629, 2655), 'numpy.transpose', 'np.transpose', (['z', '(0, 2, 1)'], {}), '(z, (0, 2, 1))\n', (2641, 2655), True, 'import numpy as np\n'), ((2717, 2743), 'numpy.transpose', 'np.transpose', (['c', '(0, 2, 1)'], {}), '(c, (0, 2, 1))\n', (2729, 2743), True, 'import numpy as np\n'), ((5060, 5090), 'numpy.load', 'np.load', (['FLAGS.assign_mat_path'], {}), '(FLAGS.assign_mat_path)\n', (5067, 5090), True, 'import numpy as np\n'), ((5117, 5157), 'numpy.matmul', 'np.matmul', (['importance_matrix', 'assign_mat'], {}), '(importance_matrix, assign_mat)\n', (5126, 5157), True, 'import numpy as np\n'), ((5286, 5327), 'disentanglement_lib.evaluation.metrics.dci.disentanglement', 'dci.disentanglement', (['impt_mat_assign_norm'], {}), '(impt_mat_assign_norm)\n', (5305, 5327), False, 'from disentanglement_lib.evaluation.metrics import dci\n'), ((5347, 5385), 'disentanglement_lib.evaluation.metrics.dci.completeness', 'dci.completeness', (['impt_mat_assign_norm'], {}), '(impt_mat_assign_norm)\n', (5363, 5385), False, 'from disentanglement_lib.evaluation.metrics import dci\n'), ((1448, 1463), 'numpy.load', 'np.load', (['c_path'], {}), '(c_path)\n', (1455, 1463), True, 'import numpy as np\n'), ((1520, 1535), 'numpy.load', 'np.load', (['c_path'], {}), '(c_path)\n', (1527, 1535), True, 'import numpy as np\n'), ((1885, 1971), 'os.path.join', 'os.path.join', (['f"""/data/{FLAGS.data_type_dci}"""', 'f"""factors_{FLAGS.data_type_dci}.npz"""'], {}), "(f'/data/{FLAGS.data_type_dci}',\n f'factors_{FLAGS.data_type_dci}.npz')\n", (1897, 1971), False, 'import os\n'), ((2003, 2077), 'os.path.join', 'os.path.join', (['f"""/data/{FLAGS.data_type_dci}"""', 'f"""{FLAGS.data_type_dci}.npz"""'], {}), "(f'/data/{FLAGS.data_type_dci}', f'{FLAGS.data_type_dci}.npz')\n", (2015, 2077), False, 'import os\n'), ((2425, 2451), 'numpy.transpose', 'np.transpose', (['c', '(0, 2, 1)'], {}), '(c, (0, 2, 1))\n', (2437, 2451), True, 'import numpy as np\n'), ((2490, 2505), 'numpy.load', 'np.load', (['z_path'], {}), '(z_path)\n', (2497, 2505), True, 'import numpy as np\n'), ((4910, 4954), 'numpy.insert', 'np.insert', (['importance_matrix', 'idx', '(0)'], {'axis': '(1)'}), '(importance_matrix, idx, 0, axis=1)\n', (4919, 4954), True, 'import numpy as np\n'), ((5560, 5779), 'numpy.savez', 'np.savez', (['f"""{out_dir}/dci_assign_2_{FLAGS.dci_seed}"""'], {'informativeness_train': 'i_train', 'informativeness_test': 'i_test', 'disentanglement': 'd', 'completeness': 'c', 'disentanglement_assign': 'd_assign', 'completeness_assign': 'c_assign'}), "(f'{out_dir}/dci_assign_2_{FLAGS.dci_seed}', informativeness_train=\n i_train, informativeness_test=i_test, disentanglement=d, completeness=c,\n disentanglement_assign=d_assign, completeness_assign=c_assign)\n", (5568, 5779), True, 'import numpy as np\n'), ((5839, 5981), 'numpy.savez', 'np.savez', (['f"""{out_dir}/dci_{FLAGS.dci_seed}"""'], {'informativeness_train': 'i_train', 'informativeness_test': 'i_test', 'disentanglement': 'd', 'completeness': 'c'}), "(f'{out_dir}/dci_{FLAGS.dci_seed}', informativeness_train=i_train,\n informativeness_test=i_test, disentanglement=d, completeness=c)\n", (5847, 5981), True, 'import numpy as np\n'), ((6877, 6989), 'disentanglement_lib.visualize.visualize_scores.heat_square', 'visualize_scores.heat_square', (['importance_matrix', 'out_dir', 'f"""dci_matrix_{FLAGS.dci_seed}"""', '"""x_axis"""', '"""y_axis"""'], {}), "(importance_matrix, out_dir,\n f'dci_matrix_{FLAGS.dci_seed}', 'x_axis', 'y_axis')\n", (6905, 6989), False, 'from disentanglement_lib.visualize import visualize_scores\n'), ((7119, 7188), 'numpy.save', 'np.save', (['f"""{out_dir}/impt_matrix_{FLAGS.dci_seed}"""', 'importance_matrix'], {}), "(f'{out_dir}/impt_matrix_{FLAGS.dci_seed}', importance_matrix)\n", (7126, 7188), True, 'import numpy as np\n'), ((2382, 2397), 'numpy.load', 'np.load', (['c_path'], {}), '(c_path)\n', (2389, 2397), True, 'import numpy as np\n'), ((3162, 3178), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3176, 3178), False, 'from sklearn.preprocessing import StandardScaler\n'), ((3512, 3533), 'numpy.arange', 'np.arange', (['c_shape[1]'], {}), '(c_shape[1])\n', (3521, 3533), True, 'import numpy as np\n'), ((3744, 3772), 'numpy.diff', 'np.diff', (['c_reshape[:8000, i]'], {}), '(c_reshape[:8000, i])\n', (3751, 3772), True, 'import numpy as np\n'), ((4828, 4843), 'numpy.invert', 'np.invert', (['mask'], {}), '(mask)\n', (4837, 4843), True, 'import numpy as np\n'), ((5234, 5265), 'numpy.sum', 'np.sum', (['impt_mat_assign'], {'axis': '(0)'}), '(impt_mat_assign, axis=0)\n', (5240, 5265), True, 'import numpy as np\n'), ((6158, 6189), 'numpy.transpose', 'np.transpose', (['importance_matrix'], {}), '(importance_matrix)\n', (6170, 6189), True, 'import numpy as np\n'), ((6380, 6414), 'numpy.transpose', 'np.transpose', (['impt_mat_assign_norm'], {}), '(impt_mat_assign_norm)\n', (6392, 6414), True, 'import numpy as np\n'), ((6660, 6729), 'numpy.save', 'np.save', (['f"""{out_dir}/impt_matrix_{FLAGS.dci_seed}"""', 'importance_matrix'], {}), "(f'{out_dir}/impt_matrix_{FLAGS.dci_seed}', importance_matrix)\n", (6667, 6729), True, 'import numpy as np\n'), ((6746, 6825), 'numpy.save', 'np.save', (['f"""{out_dir}/impt_matrix_assign_{FLAGS.dci_seed}"""', 'impt_mat_assign_norm'], {}), "(f'{out_dir}/impt_matrix_assign_{FLAGS.dci_seed}', impt_mat_assign_norm)\n", (6753, 6825), True, 'import numpy as np\n')]
import numpy as np import math as math import cv2 def get_ideal_low_pass_filter( shape, cutoff,width): [h, w] = shape mask_image = np.zeros((h, w)) for i in range(h): for j in range(w): distance = math.sqrt((i - (h / 2)) * (i - (h / 2)) + (j - (w / 2)) * (j - (w / 2))) if distance >= cutoff-(width/2) and distance <= cutoff+(width/2): mask_image[i][j] = 0 else: mask_image[i][j] = 1 return mask_image def get_ideal_high_pass_filter( shape, cutoff,width): mask_image = 1 - get_ideal_low_pass_filter(shape, cutoff,width) return mask_image def get_butterworth_low_pass_filter( shape, cutoff,order,width): [h, w] = shape mask_image = np.zeros((h, w)) for i in range(h): for j in range(w): distance = math.sqrt((i - (h / 2)) ** 2 + ((j - (w / 2)) ** 2)) if distance ** 2 - cutoff ** 2 == 0: mask_image[i][j] = 0 else: mask_image[i][j] = 1 / (1 + (((distance * width) / (distance ** 2 - cutoff ** 2)) ** (2 * order))) return mask_image def get_butterworth_high_pass_filter( shape, cutoff,order,width): mask_image = 1 - get_butterworth_low_pass_filter(shape, cutoff,order,width) return mask_image def get_gaussian_low_pass_filter(shape, cutoff,width): [h, w] = shape mask_image = np.zeros((h, w)) for i in range(h): for j in range(w): distance = math.sqrt((i - (h / 2)) ** 2 + ((j - (w / 2)) ** 2)) if (distance == 0): mask_image[i][j] = 0 else: mask_image[i][j] = 1 - math.exp(-(((distance ** 2 - cutoff ** 2) / (distance * width)) ** 2)) return mask_image def get_gaussian_high_pass_filter(shape, cutoff,width): mask_image = 1 - get_gaussian_low_pass_filter(shape, cutoff,width) return mask_image def post_process_image(image): c_min = np.min(image) c_max = np.max(image) new_min = 0 new_max = 255 stretch_image = np.zeros((np.shape(image)), dtype=np.uint8) for i in range(0, image.shape[0]): for j in range(0, image.shape[1]): stretch_image[i][j] = (image[i][j] - c_min) * ((new_max - new_min) / (c_max - c_min)) + new_min return stretch_image def filtering_band_filter(image,cutoff,width,filtertype): s = image.shape fft_image = np.fft.fft2(image) shift_image = np.fft.fftshift(fft_image) dft_image = np.uint8(np.log(np.absolute(shift_image)) * 10) if filtertype=='Ideal Low Pass' : mask = get_ideal_low_pass_filter(s, cutoff,width) elif filtertype=='Ideal High Pass' : mask=get_ideal_high_pass_filter(s, cutoff,width) elif filtertype=='Gaussain Low Pass': mask=get_gaussian_low_pass_filter(s,cutoff,width) elif filtertype=='Gaussian High Pass': mask=get_gaussian_high_pass_filter(s,cutoff,width) elif filtertype=='Butterworth Low Pass': mask=get_butterworth_low_pass_filter(s,cutoff,width,order=2) else: mask=0 filter_image = shift_image * mask filter_finalimg =np.uint8(np.log(np.absolute(filter_image))*10) ishift_image = np.fft.ifftshift(filter_image) ifft_image = np.fft.ifft2(ishift_image) mag_image = np.absolute(ifft_image) f = post_process_image(mag_image) return [f,filter_finalimg] def filtering_band_filter_order(image,cutoff,order,width,filtertype): s = image.shape fft_image = np.fft.fft2(image) shift_image = np.fft.fftshift(fft_image) dft_image = np.uint8(np.log(np.absolute(shift_image)) * 10) if filtertype=='Butterworth Low Pass': mask=get_butterworth_low_pass_filter(s,cutoff,order,width) else: mask=get_butterworth_high_pass_filter(s,cutoff,order,width) filter_image = shift_image * (mask*200) # filter_finalimg1= np.log(np.absolute(filter_image)) * 10 filter_finalimg = np.uint8(np.log(np.absolute(filter_image)) * 10) # cv2.imshow("ButterLow",filter_finalimg) #cv2.waitKey(0) ishift_image = np.fft.ifftshift(filter_image) ifft_image = np.fft.ifft2(ishift_image) mag_image = np.absolute(ifft_image) f = post_process_image(mag_image) return [f,filter_finalimg]
[ "numpy.fft.ifftshift", "numpy.absolute", "math.exp", "math.sqrt", "numpy.zeros", "numpy.shape", "numpy.min", "numpy.max", "numpy.fft.fftshift", "numpy.fft.fft2", "numpy.fft.ifft2" ]
[((143, 159), 'numpy.zeros', 'np.zeros', (['(h, w)'], {}), '((h, w))\n', (151, 159), True, 'import numpy as np\n'), ((747, 763), 'numpy.zeros', 'np.zeros', (['(h, w)'], {}), '((h, w))\n', (755, 763), True, 'import numpy as np\n'), ((1395, 1411), 'numpy.zeros', 'np.zeros', (['(h, w)'], {}), '((h, w))\n', (1403, 1411), True, 'import numpy as np\n'), ((1952, 1965), 'numpy.min', 'np.min', (['image'], {}), '(image)\n', (1958, 1965), True, 'import numpy as np\n'), ((1978, 1991), 'numpy.max', 'np.max', (['image'], {}), '(image)\n', (1984, 1991), True, 'import numpy as np\n'), ((2402, 2420), 'numpy.fft.fft2', 'np.fft.fft2', (['image'], {}), '(image)\n', (2413, 2420), True, 'import numpy as np\n'), ((2439, 2465), 'numpy.fft.fftshift', 'np.fft.fftshift', (['fft_image'], {}), '(fft_image)\n', (2454, 2465), True, 'import numpy as np\n'), ((3192, 3222), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['filter_image'], {}), '(filter_image)\n', (3208, 3222), True, 'import numpy as np\n'), ((3240, 3266), 'numpy.fft.ifft2', 'np.fft.ifft2', (['ishift_image'], {}), '(ishift_image)\n', (3252, 3266), True, 'import numpy as np\n'), ((3283, 3306), 'numpy.absolute', 'np.absolute', (['ifft_image'], {}), '(ifft_image)\n', (3294, 3306), True, 'import numpy as np\n'), ((3484, 3502), 'numpy.fft.fft2', 'np.fft.fft2', (['image'], {}), '(image)\n', (3495, 3502), True, 'import numpy as np\n'), ((3521, 3547), 'numpy.fft.fftshift', 'np.fft.fftshift', (['fft_image'], {}), '(fft_image)\n', (3536, 3547), True, 'import numpy as np\n'), ((4064, 4094), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['filter_image'], {}), '(filter_image)\n', (4080, 4094), True, 'import numpy as np\n'), ((4112, 4138), 'numpy.fft.ifft2', 'np.fft.ifft2', (['ishift_image'], {}), '(ishift_image)\n', (4124, 4138), True, 'import numpy as np\n'), ((4155, 4178), 'numpy.absolute', 'np.absolute', (['ifft_image'], {}), '(ifft_image)\n', (4166, 4178), True, 'import numpy as np\n'), ((2056, 2071), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (2064, 2071), True, 'import numpy as np\n'), ((233, 297), 'math.sqrt', 'math.sqrt', (['((i - h / 2) * (i - h / 2) + (j - w / 2) * (j - w / 2))'], {}), '((i - h / 2) * (i - h / 2) + (j - w / 2) * (j - w / 2))\n', (242, 297), True, 'import math as math\n'), ((837, 883), 'math.sqrt', 'math.sqrt', (['((i - h / 2) ** 2 + (j - w / 2) ** 2)'], {}), '((i - h / 2) ** 2 + (j - w / 2) ** 2)\n', (846, 883), True, 'import math as math\n'), ((1485, 1531), 'math.sqrt', 'math.sqrt', (['((i - h / 2) ** 2 + (j - w / 2) ** 2)'], {}), '((i - h / 2) ** 2 + (j - w / 2) ** 2)\n', (1494, 1531), True, 'import math as math\n'), ((2498, 2522), 'numpy.absolute', 'np.absolute', (['shift_image'], {}), '(shift_image)\n', (2509, 2522), True, 'import numpy as np\n'), ((3141, 3166), 'numpy.absolute', 'np.absolute', (['filter_image'], {}), '(filter_image)\n', (3152, 3166), True, 'import numpy as np\n'), ((3580, 3604), 'numpy.absolute', 'np.absolute', (['shift_image'], {}), '(shift_image)\n', (3591, 3604), True, 'import numpy as np\n'), ((3945, 3970), 'numpy.absolute', 'np.absolute', (['filter_image'], {}), '(filter_image)\n', (3956, 3970), True, 'import numpy as np\n'), ((1664, 1732), 'math.exp', 'math.exp', (['(-((distance ** 2 - cutoff ** 2) / (distance * width)) ** 2)'], {}), '(-((distance ** 2 - cutoff ** 2) / (distance * width)) ** 2)\n', (1672, 1732), True, 'import math as math\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Created by <NAME> at 2019-09-02 """Step_simulate.py :description : script :param : :returns: :rtype: """ import os import cobra import matplotlib.pyplot as plt import numpy as np os.chdir('../../ComplementaryData/Step_03_Compare_Refine/') print('----- loading model -----') iHL622 = cobra.io.load_json_model('../../ModelFiles/iHL622.json') # %% <biomass vs od > print('----- change medium -----') iHL622.objective = "BIOMASS" experiment_group = ['A', 'B', 'C', 'D', 'E'] experiment_result = [1.38, 1.88, 1.92, 1.92, 1.90] experiment_result_err = [0.66, 0.35, 0.69, 0.37, 0.47] experiment_medium = { 'EX_glc__D_e': [-20, -20, -20, -20, -20, ], 'EX_glyc_e': [0.00, -5.00, -5.00, -10.00, -10.], 'EX_fru_e': [0.00, -1.00, -5.00, -1.00, -5.], 'EX_lac__L_e': [18.215, 21.334, 20.882, 17.881, 16.577], 'EX_ac_e': [17.058, 18.301, 18.285, 19.703, 19.643], 'EX_etoh_e': [5.135, 4.623, 4.312, 2.558, 2.230], } # for k in experiment_medium.keys(): # g/L --> mM # temp = np.array(experiment_medium[k])*1000/iHL622.metabolites.get_by_id(k.replace('EX_','')).formula_weight # experiment_medium[k] = temp predict_result = [] for i in range(0, len(experiment_result)): model = iHL622.copy() for rea in experiment_medium.keys(): bound = experiment_medium[rea][i] if bound <= 0: model.reactions.get_by_id(rea).bounds = (bound, 0) elif bound >= 0: model.reactions.get_by_id(rea).bounds = (0, bound) sol = model.optimize() predict_result.append(round(sol.objective_value, 3)) print('Experiment Biomass:', experiment_result) print('iHL622 Biomass:', predict_result) # %% <vitmin B12 > NOTE: error # experiment_medium = { # 'BIOMASS': predict_result, # 'EX_glc__D_e': [-20, -20, -20, -20, -20, ], # 'EX_glyc_e': [0.00, -5.00, -5.00, -10.00, -10.], # 'EX_fru_e': [0.00, -1.00, -5.00, -1.00, -5.], } # # predict_result_b12 = [] # for i in range(0, len(experiment_result)): # model = iHL622.copy() # rea = cobra.Reaction('EX_adeadocbl_c') # model.add_reaction(rea) # model.reactions.get_by_id('EX_adeadocbl_c').reaction = 'adeadocbl_c --> ' # model.objective = 'EX_adeadocbl_c' # # model.reactions.get_by_id('EX_ade_e').bounds = (0,0) # for rea in experiment_medium.keys(): # bound = experiment_medium[rea][i] # if rea == 'BIOMASS': # model.reactions.get_by_id(rea).bounds = (bound, bound) # # elif bound <= 0: # model.reactions.get_by_id(rea).bounds = (bound, 0) # elif bound >= 0: # model.reactions.get_by_id(rea).bounds = (0, bound) # predict_result_b12.append( # round(model.optimize().objective_value * 1355.365, 3)) # Cobalamin: Molar mass: 1,355.365 g/mol # print('iHL622 b12:', predict_result_b12) # %% <draw> import brewer2mpl fig, ax = plt.subplots(figsize=(6, 4)) ax2 = ax.twinx() bmap = brewer2mpl.get_map('Set2', 'qualitative', 7) colors = bmap.mpl_colors # plt.ylim((0.0, 1.0)) x = np.arange(0, 5) width = 0.25 # the width of the bars rects2 = ax.bar(x + width / 2, predict_result, width, label='Model Growth rate', color=colors[0]) # , rects1 = ax2.bar(x - width / 2, experiment_result, width, yerr=experiment_result_err, label='Experiment OD600', color=colors[1]) # rects1_ = ax2.bar(0, 0, label='Model Growth rate', color=colors[0], ) # Add some text for labels, title and custom x-axis tick labels, etc. ax2.set_ylabel("OD600", fontsize=16) ax.set_ylabel('Growth rate (mmol/gDW/h)', fontsize=16) # color = 'tab:blue' # ax.tick_params(axis='y') # , labelcolor='tab:blue' ax2.set_ylim((0, 3.2)) ax.set_ylim((0, 2.2)) ax.set_title('Growth rate simulation', fontsize=18) labels = [''] + experiment_group ax2.set_xticklabels(labels, fontsize=16) ax2.legend(loc='best', fontsize=11) # ax2.legend(loc='best', fontsize=14) fig.tight_layout() plt.show() fig.savefig('Growth rate simulation case2_1.png')
[ "matplotlib.pyplot.show", "numpy.arange", "brewer2mpl.get_map", "cobra.io.load_json_model", "matplotlib.pyplot.subplots", "os.chdir" ]
[((234, 293), 'os.chdir', 'os.chdir', (['"""../../ComplementaryData/Step_03_Compare_Refine/"""'], {}), "('../../ComplementaryData/Step_03_Compare_Refine/')\n", (242, 293), False, 'import os\n'), ((338, 394), 'cobra.io.load_json_model', 'cobra.io.load_json_model', (['"""../../ModelFiles/iHL622.json"""'], {}), "('../../ModelFiles/iHL622.json')\n", (362, 394), False, 'import cobra\n'), ((2913, 2941), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(6, 4)'}), '(figsize=(6, 4))\n', (2925, 2941), True, 'import matplotlib.pyplot as plt\n'), ((2966, 3010), 'brewer2mpl.get_map', 'brewer2mpl.get_map', (['"""Set2"""', '"""qualitative"""', '(7)'], {}), "('Set2', 'qualitative', 7)\n", (2984, 3010), False, 'import brewer2mpl\n'), ((3064, 3079), 'numpy.arange', 'np.arange', (['(0)', '(5)'], {}), '(0, 5)\n', (3073, 3079), True, 'import numpy as np\n'), ((3946, 3956), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3954, 3956), True, 'import matplotlib.pyplot as plt\n')]
import miniml import numpy as np # Adapted from: # https://lucidar.me/en/neural-networks/curve-fitting-nonlinear-regression/ # init data np.random.seed(3) X = np.linspace(-10, 10, num=1000) Y = 0.1*X*np.cos(X) + 0.1*np.random.normal(size=1000) X = X.reshape((len(X), 1)) Y = Y.reshape((len(Y), 1)) # create model model = miniml.Model() model.dense(1, None, 'plain') model.dense(64, 'relu', 'he') model.dense(32, 'relu', 'he') model.dense(1, None, 'plain') # init params rate = 0.01 epochs = 1000 # train model optimizer = miniml.Adam( cost = 'mse', epochs = epochs, init_seed = 48, store = 10, verbose = 200) costs = optimizer.train(model, X, Y, rate) # plot results miniml.plot_costs(epochs, costs=costs) miniml.plot_regression(model, X, Y)
[ "miniml.Model", "numpy.random.seed", "miniml.plot_costs", "miniml.plot_regression", "numpy.linspace", "numpy.cos", "numpy.random.normal", "miniml.Adam" ]
[((139, 156), 'numpy.random.seed', 'np.random.seed', (['(3)'], {}), '(3)\n', (153, 156), True, 'import numpy as np\n'), ((161, 191), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)'], {'num': '(1000)'}), '(-10, 10, num=1000)\n', (172, 191), True, 'import numpy as np\n'), ((325, 339), 'miniml.Model', 'miniml.Model', ([], {}), '()\n', (337, 339), False, 'import miniml\n'), ((528, 603), 'miniml.Adam', 'miniml.Adam', ([], {'cost': '"""mse"""', 'epochs': 'epochs', 'init_seed': '(48)', 'store': '(10)', 'verbose': '(200)'}), "(cost='mse', epochs=epochs, init_seed=48, store=10, verbose=200)\n", (539, 603), False, 'import miniml\n'), ((695, 733), 'miniml.plot_costs', 'miniml.plot_costs', (['epochs'], {'costs': 'costs'}), '(epochs, costs=costs)\n', (712, 733), False, 'import miniml\n'), ((734, 769), 'miniml.plot_regression', 'miniml.plot_regression', (['model', 'X', 'Y'], {}), '(model, X, Y)\n', (756, 769), False, 'import miniml\n'), ((202, 211), 'numpy.cos', 'np.cos', (['X'], {}), '(X)\n', (208, 211), True, 'import numpy as np\n'), ((218, 245), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1000)'}), '(size=1000)\n', (234, 245), True, 'import numpy as np\n')]
from copy import deepcopy from .helpers import set_n_jobs, replace_with_in_params from sklearn.ensemble import (StackingRegressor, StackingClassifier, VotingClassifier, VotingRegressor) from joblib import Parallel, delayed from sklearn.base import clone, is_classifier from sklearn.utils import Bunch from sklearn.model_selection import check_cv, cross_val_predict import numpy as np import pandas as pd from .base import _fit_single_estimator, _get_est_fit_params from ..main.CV import BPtCV from sklearn.utils.validation import check_is_fitted from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.metaestimators import available_if, if_delegate_has_method from sklearn.preprocessing import LabelEncoder from .helpers import (get_mean_fis, get_concat_fis, get_concat_fis_len, check_for_nested_loader, get_nested_final_estimator) def _fit_all_estimators(self, X, y, sample_weight=None, mapping=None, fit_index=None): # Validate names, all_estimators = self._validate_estimators() # Fit all estimators self.estimators_ = Parallel(n_jobs=self.n_jobs)( delayed(_fit_single_estimator)(clone(est), X, y, sample_weight, mapping, fit_index) for est in all_estimators if est != 'drop' ) self.named_estimators_ = Bunch() est_fitted_idx = 0 for name_est, org_est in zip(names, all_estimators): if org_est != 'drop': self.named_estimators_[name_est] = self.estimators_[ est_fitted_idx] est_fitted_idx += 1 else: self.named_estimators_[name_est] = 'drop' return names, all_estimators def voting_fit(self, X, y, sample_weight=None, mapping=None, fit_index=None, **kwargs): # Fit self.estimators_ on all data self._fit_all_estimators( X, y, sample_weight=sample_weight, mapping=mapping, fit_index=fit_index) return self def _get_cv_inds(self, index): # If BPtCV call get_cv if isinstance(self.cv, BPtCV): random_state = None if hasattr(self, 'random_state'): random_state = self.random_state return self.cv.get_cv(fit_index=index, random_state=random_state, return_index=True) # Otherwise treat as sklearn arg directly return self.cv def stacking_fit(self, X, y, sample_weight=None, mapping=None, fit_index=None, **kwargs): # Validate final estimator self._validate_final_estimator() # Fit self.estimators_ on all data names, all_estimators = self._fit_all_estimators( X, y, sample_weight=sample_weight, mapping=mapping, fit_index=fit_index) # To train the meta-classifier using the most data as possible, we use # a cross-validation to obtain the output of the stacked estimators. # Get cv inds w/ handle cases for BPtCV cv_inds = self._get_cv_inds(fit_index) # To ensure that the data provided to each estimator are the same, we # need to set the random state of the cv if there is one and we need to # take a copy. cv = check_cv(cv_inds, y=y, classifier=is_classifier(self)) if hasattr(cv, 'random_state') and cv.random_state is None: cv.random_state = np.random.RandomState() # Proc stack method stack_method = [self.stack_method] * len(all_estimators) self.stack_method_ = [ self._method_name(name, est, meth) for name, est, meth in zip(names, all_estimators, stack_method) ] # Base fit params for sample weight sample_weight_params = ({"sample_weight": sample_weight} if sample_weight is not None else None) # Get the fit params for each indv estimator all_fit_params = [_get_est_fit_params(est, mapping=mapping, fit_index=fit_index, other_params=sample_weight_params) for est in all_estimators] # Catch rare error - TODO come up with fix if X.shape[0] == X.shape[1]: raise RuntimeError('Same numbers of data points and ', 'features can lead to error.') # Make the cross validated internal predictions to train # the final_estimator predictions = Parallel(n_jobs=self.n_jobs)( delayed(cross_val_predict)(clone(est), X, y, cv=deepcopy(cv), method=meth, n_jobs=self.n_jobs, fit_params=fit_params, verbose=self.verbose) for est, meth, fit_params in zip(all_estimators, self.stack_method_, all_fit_params) if est != 'drop' ) # Only not None or not 'drop' estimators will be used in transform. # Remove the None from the method as well. self.stack_method_ = [ meth for (meth, est) in zip(self.stack_method_, all_estimators) if est != 'drop' ] # @TODO make sure train data index is concatenated correctly X_meta = self._concatenate_predictions(X, predictions) _fit_single_estimator(self.final_estimator_, X_meta, y, sample_weight=sample_weight, mapping=None, fit_index=fit_index) return self def ensemble_classifier_fit(self, X, y, sample_weight=None, mapping=None, fit_index=None, **kwargs): check_classification_targets(y) # To make compatible with each Voting and Stacking ... self._le = LabelEncoder().fit(y) self.le_ = self._le self.classes_ = self._le.classes_ transformed_y = self._le.transform(y) return self.bpt_fit(X, transformed_y, sample_weight=sample_weight, mapping=mapping, fit_index=fit_index, **kwargs) def _base_transform_feat_names(self, X_df, encoders=None, nested_model=False): '''This base functions works under the assumption of calculating mean coef's.''' # Check each sub estimator for the method # transform feat names all_feat_names = [] for est in self.estimators_: if hasattr(est, 'transform_feat_names'): feat_names = est.transform_feat_names(X_df, encoders=encoders, nested_model=nested_model) all_feat_names.append(feat_names) # If None found if len(all_feat_names) == 0: return list(X_df) # If some found, only return updated if all the same # So check if all same as first # if any not the same, return base for fn in all_feat_names[1:]: if fn != all_feat_names[0]: return list(X_df) # Otherwise, return first return all_feat_names[0] def _loader_transform_feat_names(self, X_df, encoders=None, nested_model=False): # Check each estimator all_feat_names = [] for est in self.estimators_: if hasattr(est, 'transform_feat_names'): feat_names = est.transform_feat_names(X_df, encoders=encoders, nested_model=nested_model) all_feat_names.append(feat_names) # If none found if len(all_feat_names) == 0: return list(X_df) # Get concat list all_concat = list(np.concatenate(all_feat_names)) # If all unique, return concat if len(set(all_concat)) == len(all_concat): return all_concat # Otherwise, append unique identifier all_concat = [] for i, fn in enumerate(all_feat_names): all_concat += [str(i) + '_' + str(name) for name in fn] return all_concat def _transform_feat_names(self, X_df, encoders=None, nested_model=False): if self.has_nested_loader(): return self._loader_transform_feat_names(X_df, encoders=encoders, nested_model=nested_model) else: return self._base_transform_feat_names(X_df, encoders=encoders, nested_model=nested_model) def _get_fis_lens(self): '''This method is used in loader version of voting ensembles''' # If already stored as attribute, use that if hasattr(self, 'concat_est_lens_'): return getattr(self, 'concat_est_lens_') # Try coef fi_len = get_concat_fis_len(self.estimators_, 'coef_') if fi_len is not None: return fi_len # Then feature importances fi_len = get_concat_fis_len(self.estimators_, 'feature_importances_') if fi_len is not None: return fi_len # TODO - could do a search in each base estimator to try and determine # the final n features in ? return None def base_inverse_transform_fis(self, fis, avg_method): # If not loader, return as is if not self.has_nested_loader(): return fis # Get underlying lengths concat_fi_lens_ = self._get_fis_lens() if concat_fi_lens_ is None: return fis # Go through and inverse transform each chunk fi_chunks, ind = [], 0 for est, l in zip(self.estimators_, concat_fi_lens_): # If any don't have it, return passed original if not hasattr(est, 'inverse_transform_fis'): return fis # Append the inverse transformed chunk fi_chunks.append(est.inverse_transform_fis(fis.iloc[ind:ind+l])) ind += l # Combine together in DataFrame fi_df = pd.DataFrame(fi_chunks) avg = avg_method(fi_df) # Put back together in series, and return that return pd.Series(avg, index=list(fi_df)) def voting_inverse_transform_fis(self, fis): def mean_avg(fi_df): return np.mean(np.array(fi_df), axis=0) return self.base_inverse_transform_fis(fis, mean_avg) def _get_estimator_fi_weights(estimator): weights = None if hasattr(estimator, 'coef_'): weights = getattr(estimator, 'coef_') if weights is None and hasattr(estimator, 'feature_importances_'): weights = getattr(estimator, 'feature_importances_') if weights is None: return None # Set to absolute weights = np.abs(weights) # Shape if not 1D is (1, n_features) or (n_classes, n_features) # TODO handle multiclass if len(np.shape(weights)) > 1: weights = weights[0] return weights def stacking_inverse_transform_fis(self, fis): def stacked_avg(fi_df): # First assumption we need to make is that we # are only interested in absolute values fis = np.abs(np.array(fi_df)) # Use coef / feat importance from estimator as weights weights = _get_estimator_fi_weights(self.final_estimator_) if weights is None: return None # Return weighted average try: return np.average(fis, axis=0, weights=weights) except ZeroDivisionError: return np.average(fis, axis=0) return self.base_inverse_transform_fis(fis, stacked_avg) def has_nested_loader(self): # If not already set, set if not hasattr(self, 'nested_loader_'): setattr(self, 'nested_loader_', check_for_nested_loader(self.estimators_)) return getattr(self, 'nested_loader_') def ensemble_transform(self, X): # If nested model case, return concatenation of transforms if self.has_nested_loader(): # Init Xts, self.concat_est_lens_ = [], [] for estimator in self.estimators_: # Get transformed X, passing along nested model True Xt = estimator.transform(X, nested_model=True) # Keep track of transformed + length Xts.append(Xt) self.concat_est_lens_.append(Xt.shape[-1]) # Return concat along axis 1 return np.concatenate(Xts, axis=1) # TODO - non nested loader case, but still nested model case else: raise RuntimeError('Not implemented.') def _get_estimators_pred_chunks(self, X, method='predict'): # Convert method to list if not if not isinstance(method, list): method = [method for _ in range(len(self.estimators_))] # Go through each estimator, to make predictions # on just the chunk of transformed input relevant for each. pred_chunks, ind = [], 0 for estimator, l, m in zip(self.estimators_, self.concat_est_lens_, method): # Get the corresponding final estimator final_estimator = get_nested_final_estimator(estimator) # Get predictions pred_chunk = getattr(final_estimator, m)(X[:, ind:ind+l]) # Append predictions pred_chunks.append(pred_chunk) # Increment index ind += l return np.asarray(pred_chunks) def _stacked_classifier_predict(self, X, method, **predict_params): check_is_fitted(self) # Nested loader case if self.has_nested_loader(): # Get predict probas from each predict_probas = self._get_estimators_pred_chunks(X, method=self.stack_method_) concat_preds = self._concatenate_predictions(X, predict_probas) # Make preds with final estimator on concat preds y_pred = getattr(self.final_estimator_, method)(concat_preds) # If predict, cast to inverse transform if method == 'predict': y_pred = self._le.inverse_transform(y_pred) return y_pred # TODO finish other case for stacked classifier raise RuntimeError('Not Implemented') class BPtStackingRegressor(StackingRegressor): _needs_mapping = True _needs_fit_index = True _fit_all_estimators = _fit_all_estimators fit = stacking_fit _get_cv_inds = _get_cv_inds has_nested_loader = has_nested_loader transform_feat_names = _transform_feat_names _base_transform_feat_names = _base_transform_feat_names _loader_transform_feat_names = _loader_transform_feat_names _get_fis_lens = _get_fis_lens inverse_transform_fis = stacking_inverse_transform_fis base_inverse_transform_fis = base_inverse_transform_fis _get_estimators_pred_chunks = _get_estimators_pred_chunks ensemble_transform = ensemble_transform @property def feature_importances_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'feature_importances_') # TODO - average according to stacked ... @property def coef_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'coef_') # TODO - average according to stacked ... def transform(self, X, nested_model=False): # Not nested, base case transform if not nested_model: return super().transform(X) return self.ensemble_transform(X) def predict(self, X): # Base case is when number of features stays the same as expected. if X.shape[-1] == self.n_features_in_: return super().predict(X) check_is_fitted(self) # Nested loader case if self.has_nested_loader(): # If nested loader, then the expectation is that this # predict is receiving the concat fully model nested transformed # output from each of the self.estimators_ pred_chunks = self._get_estimators_pred_chunks(X, method='predict').T # Return predictions from final estimator return self.final_estimator_.predict(pred_chunks) # TODO fill in other case? raise RuntimeError('Not Implemented') class BPtStackingClassifier(StackingClassifier): _needs_mapping = True _needs_fit_index = True _fit_all_estimators = _fit_all_estimators bpt_fit = stacking_fit fit = ensemble_classifier_fit _get_cv_inds = _get_cv_inds has_nested_loader = has_nested_loader transform_feat_names = _transform_feat_names _base_transform_feat_names = _base_transform_feat_names _loader_transform_feat_names = _loader_transform_feat_names _get_fis_lens = _get_fis_lens inverse_transform_fis = stacking_inverse_transform_fis base_inverse_transform_fis = base_inverse_transform_fis _get_estimators_pred_chunks = _get_estimators_pred_chunks ensemble_transform = ensemble_transform _stacked_classifier_predict = _stacked_classifier_predict @property def feature_importances_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'feature_importances_') # TODO - average according to stacked ... @property def coef_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'coef_') # TODO - average according to stacked ... def transform(self, X, nested_model=False): # Not nested, base case transform if not nested_model: return super().transform(X) return self.ensemble_transform(X) @if_delegate_has_method(delegate="final_estimator_") def predict(self, X, **predict_params): # Base case if X.shape[-1] == self.n_features_in_: return super().predict(X, **predict_params) # Other case return self._stacked_classifier_predict(X, method='predict', **predict_params) @if_delegate_has_method(delegate="final_estimator_") def predict_proba(self, X): # Base case if X.shape[-1] == self.n_features_in_: return super().predict_proba(X) # Other case return self._stacked_classifier_predict(X, method='predict_proba') @if_delegate_has_method(delegate="final_estimator_") def decision_function(self, X): # Base case if X.shape[-1] == self.n_features_in_: return super().decision_function(X) # Other case return self._stacked_classifier_predict(X, method='decision_function') class BPtVotingRegressor(VotingRegressor): # Set tags _needs_mapping = True _needs_fit_index = True # Override / set methods _fit_all_estimators = _fit_all_estimators fit = voting_fit has_nested_loader = has_nested_loader transform_feat_names = _transform_feat_names _base_transform_feat_names = _base_transform_feat_names _loader_transform_feat_names = _loader_transform_feat_names _get_fis_lens = _get_fis_lens inverse_transform_fis = voting_inverse_transform_fis base_inverse_transform_fis = base_inverse_transform_fis ensemble_transform = ensemble_transform _get_estimators_pred_chunks = _get_estimators_pred_chunks @property def feature_importances_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'feature_importances_') return get_mean_fis(self.estimators_, 'feature_importances_') @property def coef_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'coef_') return get_mean_fis(self.estimators_, 'coef_') def predict(self, X): # Make sure fitted check_is_fitted(self) # Base case is when number of features stays the same as expected. if X.shape[-1] == self.n_features_in_: return super().predict(X) # Otherwise, two cases, nested loader or not if self.has_nested_loader(): # If nested loader, then the expectation is that this # predict is receiving the concat fully model nested transformed # output from each of the self.estimators_ pred_chunks = self._get_estimators_pred_chunks(X, method='predict') # The voting ensemble just uses the mean from each mean_preds = np.mean(pred_chunks, axis=0) return mean_preds # TODO fill in other case? raise RuntimeError('Not Implemented') def transform(self, X, nested_model=False): # Not nested, base case transform if not nested_model: return super().transform(X) return self.ensemble_transform(X) class BPtVotingClassifier(VotingClassifier): _needs_mapping = True _needs_fit_index = True _fit_all_estimators = _fit_all_estimators bpt_fit = voting_fit fit = ensemble_classifier_fit has_nested_loader = has_nested_loader transform_feat_names = _transform_feat_names _base_transform_feat_names = _base_transform_feat_names _loader_transform_feat_names = _loader_transform_feat_names _get_fis_lens = _get_fis_lens inverse_transform_fis = voting_inverse_transform_fis base_inverse_transform_fis = base_inverse_transform_fis ensemble_transform = ensemble_transform _get_estimators_pred_chunks = _get_estimators_pred_chunks @property def feature_importances_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'feature_importances_') return get_mean_fis(self.estimators_, 'feature_importances_') @property def coef_(self): if self.has_nested_loader(): return get_concat_fis(self.estimators_, 'coef_') return get_mean_fis(self.estimators_, 'coef_') def _check_voting(self): if self.voting == "hard": raise AttributeError( f"predict_proba is not available when voting={repr(self.voting)}" ) return True def predict(self, X): # Make sure fitted check_is_fitted(self) # Base case is when number of features stays the same as expected. if X.shape[-1] == self.n_features_in_: return super().predict(X) # If loader based if self.has_nested_loader(): # If nested loader, then the expectation is that this # predict is receiving the concat fully model nested transformed # output from each of the self.estimators_ # If soft voting, can use predict proba instead if self.voting == "soft": maj = np.argmax(self.predict_proba(X), axis=1) # Hard voting, use base pred else: # Get predictions with special nested predictions = self._get_estimators_pred_chunks(X, method='predict') # Get majority vote w/ maj = np.apply_along_axis( lambda x: np.argmax(np.bincount(x, weights=self._weights_not_none)), axis=1, arr=predictions, ) # Use label encoder to inverse transform before returning maj = self.le_.inverse_transform(maj) return maj # TODO fill in other case? raise RuntimeError('Not Implemented') def transform(self, X, nested_model=False): # Not nested, base case transform if not nested_model: return super().transform(X) return self.ensemble_transform(X) @available_if(_check_voting) def predict_proba(self, X): check_is_fitted(self) # Base case is when number of features stays the same as expected. if X.shape[-1] == self.n_features_in_: return super().predict_proba(X) # Otherwise, two cases, nested loader or not if self.has_nested_loader(): # Get predict probas from each predict_probas = self._get_estimators_pred_chunks(X, method='predict_proba') # Calculate average avg = np.average(predict_probas, axis=0, weights=self._weights_not_none) # And return return avg # TODO fill in other case? raise RuntimeError('Not Implemented') class EnsembleWrapper(): def __init__(self, model_params, ensemble_params, _get_ensembler, n_jobs, random_state): self.model_params = model_params self.ensemble_params = ensemble_params self._get_ensembler = _get_ensembler self.n_jobs = n_jobs self.random_state = random_state def _update_params(self, p_name, to_add): # Get existing params = getattr(self, p_name) # Fill in new new_params = {} for key in params: new_params[to_add + '__' + key] = params[key] # Update setattr(self, p_name, new_params) def _update_model_ensemble_params(self, to_add, model=True, ensemble=True): if model: self._update_params('model_params', to_add) if ensemble: self._update_params('ensemble_params', to_add) def _basic_ensemble(self, models, name, ensemble=False): if len(models) == 1: return models else: basic_ensemble = self._get_ensembler(models) self._update_model_ensemble_params(name, ensemble=ensemble) return [(name, basic_ensemble)] def get_updated_params(self): self.model_params.update(self.ensemble_params) return self.model_params def wrap_ensemble(self, models, ensemble, ensemble_params, final_estimator=None, final_estimator_params=None): # If no ensemble is passed, return either the 1 model, # or a voting wrapper if ensemble is None or len(ensemble) == 0: return self._basic_ensemble(models=models, name='Default Voting', ensemble=True) # Otherwise special ensembles else: # If needs a single estimator, but multiple models passed, # wrap in ensemble! if ensemble_params.single_estimator: se_ensemb_name = 'Single-Estimator Compatible Ensemble' models = self._basic_ensemble(models, se_ensemb_name, ensemble=False) # If no split and single estimator if ensemble_params.single_estimator: return self._wrap_single(models, ensemble, ensemble_params.n_jobs_type) # Last case is, no split/DES ensemble and also # not single estimator based # e.g., in case of stacking regressor. else: return self._wrap_multiple(models, ensemble, final_estimator, final_estimator_params, ensemble_params.n_jobs_type, ensemble_params.cv) def _wrap_single(self, models, ensemble_info, n_jobs_type): '''If passed single_estimator flag''' # Unpack ensemble info ensemble_name = ensemble_info[0] ensemble_obj = ensemble_info[1][0] ensemble_extra_params = ensemble_info[1][1] # Models here since single estimator is assumed # to be just a list with # of one tuple as # [(model or ensemble name, model or ensemble)] base_estimator = models[0][1] # Set n jobs based on passed type if n_jobs_type == 'ensemble': model_n_jobs = 1 ensemble_n_jobs = self.n_jobs else: model_n_jobs = self.n_jobs ensemble_n_jobs = 1 # Set model / base_estimator n_jobs set_n_jobs(base_estimator, model_n_jobs) # Make sure random_state is set (should be already) if hasattr(base_estimator, 'random_state'): setattr(base_estimator, 'random_state', self.random_state) # Create the ensemble object ensemble = ensemble_obj(base_estimator=base_estimator, **ensemble_extra_params) # Set ensemble n_jobs set_n_jobs(ensemble, ensemble_n_jobs) # Set random state if hasattr(ensemble, 'random_state'): setattr(ensemble, 'random_state', self.random_state) # Wrap as object new_ensemble = [(ensemble_name, ensemble)] # Have to change model name to base_estimator self.model_params =\ replace_with_in_params(self.model_params, models[0][0], 'base_estimator') # Append ensemble name to all model params self._update_model_ensemble_params(ensemble_name, ensemble=False) return new_ensemble def _wrap_multiple(self, models, ensemble_info, final_estimator, final_estimator_params, n_jobs_type, cv): '''In case of no split/DES ensemble, and not single estimator based.''' # Unpack ensemble info ensemble_name = ensemble_info[0] ensemble_obj = ensemble_info[1][0] ensemble_extra_params = ensemble_info[1][1] # Models here just self.models a list of tuple of # all models. # So, ensemble_extra_params should contain the # final estimator + other params # Set model_n_jobs and ensemble n_jobs based on type if n_jobs_type == 'ensemble': model_n_jobs = 1 ensemble_n_jobs = self.n_jobs else: model_n_jobs = self.n_jobs ensemble_n_jobs = 1 # Set the model jobs set_n_jobs(models, model_n_jobs) # Make sure random state is propegated for model in models: if hasattr(model[1], 'random_state'): setattr(model[1], 'random_state', self.random_state) # Determine the parameters to init the ensemble pass_params = ensemble_extra_params pass_params['estimators'] = models # Process final_estimator if passed if final_estimator is not None: # Replace name of final estimator w/ final_estimator in params final_estimator_params =\ replace_with_in_params(params=final_estimator_params, original=final_estimator[0][0], replace='final_estimator') # Add final estimator params to model_params - once name changed # to avoid potential overlap. self.model_params.update(final_estimator_params) # Unpack actual model obj final_estimator_obj = final_estimator[0][1] # Set final estimator n_jobs to model n_jobs set_n_jobs(final_estimator_obj, model_n_jobs) # Redundant random state check if hasattr(final_estimator_obj, 'random_state'): setattr(final_estimator_obj, 'random_state', self.random_state) # Add to pass params pass_params['final_estimator'] = final_estimator_obj # Check if cv passed if cv is not None: pass_params['cv'] = cv # Init the ensemble object ensemble = ensemble_obj(**pass_params) # Set ensemble n_jobs set_n_jobs(ensemble, ensemble_n_jobs) # Set random state if hasattr(ensemble, 'random_state'): setattr(ensemble, 'random_state', self.random_state) # Wrap as pipeline compatible object new_ensemble = [(ensemble_name, ensemble)] # Append ensemble name to all model params self._update_model_ensemble_params(ensemble_name, ensemble=False) return new_ensemble
[ "numpy.abs", "numpy.shape", "numpy.mean", "sklearn.base.clone", "pandas.DataFrame", "sklearn.utils.Bunch", "numpy.random.RandomState", "sklearn.preprocessing.LabelEncoder", "sklearn.base.is_classifier", "sklearn.utils.metaestimators.available_if", "numpy.bincount", "copy.deepcopy", "numpy.average", "numpy.asarray", "sklearn.utils.metaestimators.if_delegate_has_method", "numpy.concatenate", "sklearn.utils.validation.check_is_fitted", "numpy.array", "joblib.Parallel", "joblib.delayed", "sklearn.utils.multiclass.check_classification_targets" ]
[((1400, 1407), 'sklearn.utils.Bunch', 'Bunch', ([], {}), '()\n', (1405, 1407), False, 'from sklearn.utils import Bunch\n'), ((5663, 5694), 'sklearn.utils.multiclass.check_classification_targets', 'check_classification_targets', (['y'], {}), '(y)\n', (5691, 5694), False, 'from sklearn.utils.multiclass import check_classification_targets\n'), ((9608, 9631), 'pandas.DataFrame', 'pd.DataFrame', (['fi_chunks'], {}), '(fi_chunks)\n', (9620, 9631), True, 'import pandas as pd\n'), ((10299, 10314), 'numpy.abs', 'np.abs', (['weights'], {}), '(weights)\n', (10305, 10314), True, 'import numpy as np\n'), ((12871, 12894), 'numpy.asarray', 'np.asarray', (['pred_chunks'], {}), '(pred_chunks)\n', (12881, 12894), True, 'import numpy as np\n'), ((12970, 12991), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (12985, 12991), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((17162, 17213), 'sklearn.utils.metaestimators.if_delegate_has_method', 'if_delegate_has_method', ([], {'delegate': '"""final_estimator_"""'}), "(delegate='final_estimator_')\n", (17184, 17213), False, 'from sklearn.utils.metaestimators import available_if, if_delegate_has_method\n'), ((17497, 17548), 'sklearn.utils.metaestimators.if_delegate_has_method', 'if_delegate_has_method', ([], {'delegate': '"""final_estimator_"""'}), "(delegate='final_estimator_')\n", (17519, 17548), False, 'from sklearn.utils.metaestimators import available_if, if_delegate_has_method\n'), ((17796, 17847), 'sklearn.utils.metaestimators.if_delegate_has_method', 'if_delegate_has_method', ([], {'delegate': '"""final_estimator_"""'}), "(delegate='final_estimator_')\n", (17818, 17847), False, 'from sklearn.utils.metaestimators import available_if, if_delegate_has_method\n'), ((23233, 23260), 'sklearn.utils.metaestimators.available_if', 'available_if', (['_check_voting'], {}), '(_check_voting)\n', (23245, 23260), False, 'from sklearn.utils.metaestimators import available_if, if_delegate_has_method\n'), ((1152, 1180), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.n_jobs'}), '(n_jobs=self.n_jobs)\n', (1160, 1180), False, 'from joblib import Parallel, delayed\n'), ((3384, 3407), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (3405, 3407), True, 'import numpy as np\n'), ((4424, 4452), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.n_jobs'}), '(n_jobs=self.n_jobs)\n', (4432, 4452), False, 'from joblib import Parallel, delayed\n'), ((7573, 7603), 'numpy.concatenate', 'np.concatenate', (['all_feat_names'], {}), '(all_feat_names)\n', (7587, 7603), True, 'import numpy as np\n'), ((11953, 11980), 'numpy.concatenate', 'np.concatenate', (['Xts'], {'axis': '(1)'}), '(Xts, axis=1)\n', (11967, 11980), True, 'import numpy as np\n'), ((15155, 15176), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (15170, 15176), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((19308, 19329), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (19323, 19329), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((21714, 21735), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (21729, 21735), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((23302, 23323), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self'], {}), '(self)\n', (23317, 23323), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((3273, 3292), 'sklearn.base.is_classifier', 'is_classifier', (['self'], {}), '(self)\n', (3286, 3292), False, 'from sklearn.base import clone, is_classifier\n'), ((5770, 5784), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (5782, 5784), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((9854, 9869), 'numpy.array', 'np.array', (['fi_df'], {}), '(fi_df)\n', (9862, 9869), True, 'import numpy as np\n'), ((10424, 10441), 'numpy.shape', 'np.shape', (['weights'], {}), '(weights)\n', (10432, 10441), True, 'import numpy as np\n'), ((10704, 10719), 'numpy.array', 'np.array', (['fi_df'], {}), '(fi_df)\n', (10712, 10719), True, 'import numpy as np\n'), ((10979, 11019), 'numpy.average', 'np.average', (['fis'], {'axis': '(0)', 'weights': 'weights'}), '(fis, axis=0, weights=weights)\n', (10989, 11019), True, 'import numpy as np\n'), ((19950, 19978), 'numpy.mean', 'np.mean', (['pred_chunks'], {'axis': '(0)'}), '(pred_chunks, axis=0)\n', (19957, 19978), True, 'import numpy as np\n'), ((23766, 23832), 'numpy.average', 'np.average', (['predict_probas'], {'axis': '(0)', 'weights': 'self._weights_not_none'}), '(predict_probas, axis=0, weights=self._weights_not_none)\n', (23776, 23832), True, 'import numpy as np\n'), ((1190, 1220), 'joblib.delayed', 'delayed', (['_fit_single_estimator'], {}), '(_fit_single_estimator)\n', (1197, 1220), False, 'from joblib import Parallel, delayed\n'), ((1221, 1231), 'sklearn.base.clone', 'clone', (['est'], {}), '(est)\n', (1226, 1231), False, 'from sklearn.base import clone, is_classifier\n'), ((4462, 4488), 'joblib.delayed', 'delayed', (['cross_val_predict'], {}), '(cross_val_predict)\n', (4469, 4488), False, 'from joblib import Parallel, delayed\n'), ((4489, 4499), 'sklearn.base.clone', 'clone', (['est'], {}), '(est)\n', (4494, 4499), False, 'from sklearn.base import clone, is_classifier\n'), ((11073, 11096), 'numpy.average', 'np.average', (['fis'], {'axis': '(0)'}), '(fis, axis=0)\n', (11083, 11096), True, 'import numpy as np\n'), ((4510, 4522), 'copy.deepcopy', 'deepcopy', (['cv'], {}), '(cv)\n', (4518, 4522), False, 'from copy import deepcopy\n'), ((22656, 22702), 'numpy.bincount', 'np.bincount', (['x'], {'weights': 'self._weights_not_none'}), '(x, weights=self._weights_not_none)\n', (22667, 22702), True, 'import numpy as np\n')]
''' This script plots spectrograms for pre-ictal periods. Then, it uses NMF to find subgraphs and expressions for pre-ictal periods. Finally, it calculates states as the subgraph with maximal expression at each time point and calculates the dissimilarity between states. Inputs: target-electrodes-{mode}.mat bandpower-windows-pre-sz-{mode}.mat Outputs: ''' # %% # %load_ext autoreload # %autoreload 2 # Imports and environment setup import numpy as np import sys import os import pandas as pd import json from scipy.io import loadmat import matplotlib.pyplot as plt from tqdm import tqdm from os.path import join as ospj from scipy.stats import zscore import time from kneed import KneeLocator sys.path.append('tools') from plot_spectrogram import plot_spectrogram from movmean import movmean from pull_sz_starts import pull_sz_starts from pull_patient_localization import pull_patient_localization from mpl_toolkits.axes_grid1 import make_axes_locatable from time2ind import time2ind from fastdtw import fastdtw from scipy.spatial.distance import euclidean from sklearn.decomposition import NMF from sklearn.metrics.cluster import adjusted_rand_score import warnings from sklearn.exceptions import ConvergenceWarning warnings.filterwarnings(action='ignore', category=ConvergenceWarning) # Get paths from config file and metadata with open("config.json") as f: config = json.load(f) repo_path = config['repositoryPath'] metadata_path = config['metadataPath'] palette = config['lightColors'] DTW_FLAG = config['flags']["DTW_FLAG"] electrodes_opt = config['electrodes'] band_opt = config['bands'] data_path = ospj(repo_path, 'data') figure_path = ospj(repo_path, 'figures') metadata_fname = ospj(metadata_path, "DATA_MASTER.json") with open(metadata_fname) as f: metadata = json.load(f)['PATIENTS'] patient_cohort = pd.read_excel(ospj(data_path, "patient_cohort.xlsx")) # flags SAVE_PLOT = True NMF_OPT_FLAG = True SUBJ_LEVEL = False FIXED_PREICTAL_SEC = 60 * config['preictal_window_min'] LEAD_SZ_WINDOW_SEC = (FIXED_PREICTAL_SEC + 60 * 15) # 15 min buffer # %% patient_localization_mat = loadmat(ospj(metadata_path, 'patient_localization_final.mat'))['patient_localization'] patients, labels, ignore, resect, gm_wm, coords, region, soz = pull_patient_localization(ospj(metadata_path, 'patient_localization_final.mat')) for index, row in patient_cohort.iterrows(): if row['Ignore']: continue pt = row["Patient"] print("Calculating pre-ictal NMF for {}".format(pt)) pt_data_path = ospj(data_path, pt) pt_figure_path = ospj(figure_path, pt) if not os.path.exists(pt_figure_path): os.makedirs(pt_figure_path) # pull and format electrode metadata electrodes_mat = loadmat(ospj(pt_data_path, "selected_electrodes_elec-{}.mat".format(electrodes_opt))) target_electrode_region_inds = electrodes_mat['targetElectrodesRegionInds'][0] pt_index = patients.index(pt) sz_starts = pull_sz_starts(pt, metadata) # get bandpower from pre-ictal period and log transform # bandpower_mat_data = loadmat(ospj(pt_data_path, "bandpower-windows-pre-sz-{}.mat".format(electrodes_opt))) # bandpower_data = 10*np.log10(bandpower_mat_data['allFeats']) # t_sec = np.squeeze(bandpower_mat_data['entireT']) / 1e6 # sz_id = np.squeeze(bandpower_mat_data['szID']) df = pd.read_pickle(ospj(pt_data_path, "bandpower_elec-{}_period-preictal.pkl".format(electrodes_opt))) if band_opt == "all": bandpower_data = df.filter(regex=("^((?!broad).)*$"), axis=1) bandpower_data = bandpower_data.drop(['Seizure id'], axis=1) elif band_opt == "broad": bandpower_data = df.filter(regex=("broad"), axis=1) else: print("Band configuration not given properly") exit sz_id = np.squeeze(df['Seizure id']) t_sec = np.array(df.index / np.timedelta64(1, 's')) n_sz = np.size(np.unique(sz_id)) # remove short inter-seizure intervals lead_sz = np.diff(np.insert(sz_starts, 0, [0])) > (FIXED_PREICTAL_SEC + 60 * 15) # 15 min buffer remaining_sz_ids = np.where(lead_sz)[0] remove_sz_ids = np.where(~lead_sz)[0] print("\tremoving seizures {}".format(remove_sz_ids)) print(type(sz_id)) for remv in remove_sz_ids: t_sec = np.delete(t_sec, np.where(sz_id == remv)) bandpower_data.drop(bandpower_data.index[np.where(sz_id == remv)[0]], inplace=True) sz_id.drop(sz_id.index[np.where(sz_id == remv)[0]], inplace=True) np.save(ospj(pt_data_path, "remaining_sz_ids.npy"), remaining_sz_ids) # Apply NMF to pre-ictal period to find components (H) and expression (W) n_remaining_sz = np.size(remaining_sz_ids) n_components = range(2, 20) for sz_idx in tqdm(range(n_remaining_sz)): i_sz = remaining_sz_ids[sz_idx] data = bandpower_data[sz_id == i_sz] # print("\trunning NMF") start_time = time.time() reconstruction_err = np.zeros(np.size(n_components)) for ind, i_components in enumerate(n_components): # print("\t\tTesting NMF with {} components".format(i_components)) model = NMF(n_components=i_components, init='nndsvd', random_state=0, max_iter=1000) W = model.fit_transform(data - np.min(data)) reconstruction_err[ind] = model.reconstruction_err_ end_time = time.time() # print("\tNMF took {} seconds".format(end_time - start_time)) kneedle = KneeLocator(n_components, reconstruction_err, curve="convex", direction="decreasing") n_opt_components = kneedle.knee # print("\t{} components was found as optimal, rerunning for final iteration".format(n_opt_components)) model = NMF(n_components=n_opt_components, init='nndsvd', random_state=0, max_iter=1000) W = model.fit_transform(data - np.min(data)) H = model.components_ np.save(ospj(pt_data_path, "nmf_expression_band-{}_elec-{}_sz-{}.npy".format(band_opt, electrodes_opt, i_sz)), W) np.save(ospj(pt_data_path, "nmf_components_band-{}_elec-{}_sz-{}.npy".format(band_opt, electrodes_opt, i_sz)), H) np.save(ospj(pt_data_path, "lead_sz_t_sec_band-{}_elec-{}.npy".format(band_opt, electrodes_opt)), t_sec) np.save(ospj(pt_data_path, "lead_sz_sz_id_band-{}_elec-{}.npy".format(band_opt, electrodes_opt)), sz_id) ############################################## # %% # # States are defined as the max expressed component at each time point # states = np.argmax(movmean(W[:, 1:].T, k=100).T, axis=-1) + 1 # # take the dissimilarity in states, optionally using fast dynamic time warping # if DTW_FLAG: # states_dissim_mat = np.zeros((n_remaining_sz, n_remaining_sz)) # for ind1, i in enumerate(remaining_sz_ids): # for ind2, j in enumerate(remaining_sz_ids): # distance, path = fastdtw(states[sz_id == i], states[sz_id == j], dist=euclidean) # states_dissim_mat[ind1, ind2] = distance # else: # # find how long pre-ictal segments are for each sz and take shortest one # pre_ictal_lengths = np.zeros(remaining_sz_ids.shape, dtype=int) # for ind, i_sz in enumerate(remaining_sz_ids): # pre_ictal_lengths[ind] = np.size(states[sz_id == i_sz]) # pre_ictal_length = np.min(pre_ictal_lengths) # # matrix of adjusted rand score for similar state occurences # states_dissim_mat = np.zeros((n_remaining_sz, n_remaining_sz)) # for ind1, i in enumerate(remaining_sz_ids): # for ind2, j in enumerate(remaining_sz_ids): # rand = adjusted_rand_score(states[sz_id == i][-pre_ictal_length:], states[sz_id == j][-pre_ictal_length:]) # states_dissim_mat[ind1, ind2] = 1 - rand # np.save(ospj(pt_data_path, "states_dissim_mat_{}.npy".format(mode)), states_dissim_mat) # np.save(ospj(pt_data_path, "remaining_sz_ids.npy"), remaining_sz_ids) # # Plot the NMF subgraphs and expression # if PLOT: # for i in remaining_sz_ids: # fig, ax = plt.subplots() # t_arr_min = (t_sec[sz_id == i] - t_sec[sz_id == i][-1]) / 60 # ax.plot(t_arr_min, movmean(W[sz_id == i, 1:].T, k=100, mode='same').T) # ax.set_xlabel("Time from seizure onset (min)") # ax.set_ylabel("Subgraph coefficient") # ax.set_title("Seizure {}".format(i)) # ax.legend(np.arange(n_components - 1) + 2, title="Component") # if SAVE_PLOT: # plt.savefig(ospj(pt_figure_path, "subgraph_expression_sz_{}_{}.svg".format(i, mode)), bbox_inches='tight', transparent='true') # plt.savefig(ospj(pt_figure_path, "subgraph_expression_sz_{}_{}.png".format(i, mode)), bbox_inches='tight', transparent='true') # plt.close() # ax = plot_spectrogram(H, start_time=0, end_time=n_components) # ax.set_title("{}".format(pt)) # ax.set_xlabel("Component") # if SAVE_PLOT: # plt.savefig(ospj(pt_figure_path, "subgraphs_{}.svg".format(mode)), bbox_inches='tight', transparent='true') # plt.savefig(ospj(pt_figure_path, "subgraphs_{}.png".format(mode)), bbox_inches='tight', transparent='true') # plt.close() # if PLOT: # n_electrodes = soz_electrodes.shape[0] # # plot all states # component_arr = np.reshape(H, (n_components, -1, n_electrodes)) # # component_z = np.zeros(component_arr.shape) # # for i_comp in range(n_components): # # component_z[i_comp, :, :] = zscore(component_arr[i_comp, :, :], axis=1) # # sort to put non-soz first # sort_soz_inds = np.argsort(soz_electrodes) # n_soz = np.sum(soz_electrodes) # n_non_soz = n_electrodes - n_soz # for i_comp in range(n_components): # fig, ax = plt.subplots() # divider = make_axes_locatable(ax) # cax = divider.append_axes('right', size='5%', pad=0.05) # im = ax.imshow(component_arr[i_comp, :, sort_soz_inds].T) # ax.axvline(n_non_soz - 0.5, c='r', lw=2) # ax.set_title("Subgraph {}, {}".format(i_comp, pt)) # ax.set_yticks(np.arange(6)) # ax.set_yticklabels([r'$\delta$', r'$\theta$', r'$\alpha$', r'$\beta$', r'low-$\gamma$', r'high-$\gamma$']) # ax.set_xticks(np.arange(n_electrodes)) # ax.set_xticks([n_non_soz / 2, n_non_soz + n_soz / 2]) # ax.set_xticklabels(["Non SOZ", "SOZ"]) # ax.set_xlabel("Electrodes") # ax.set_ylabel("Frequency band") # cbar = fig.colorbar(im, cax=cax, orientation='vertical') # cbar.ax.set_ylabel('Power (dB)', rotation=90) # if SAVE_PLOT: # plt.savefig(ospj(pt_figure_path, "soz_subgraph_{}_heatmap_{}.svg".format(i_comp, mode)), bbox_inches='tight', transparent='true') # plt.savefig(ospj(pt_figure_path, "soz_subgraph_{}_heatmap_{}.png".format(i_comp, mode)), bbox_inches='tight', transparent='true') # plt.close() # # plot soz state expression for all seizures # for i in remaining_sz_ids: # fig, ax = plt.subplots() # t_arr_min = (t_sec[sz_id == i] - t_sec[sz_id == i][-1]) / 60 # ax.plot(t_arr_min, movmean(W[sz_id == i,pt_soz_state].T, k=100).T) # ax.set_xlabel("Time from seizure onset (min)") # ax.set_ylabel("SOZ subgraph coefficient") # ax.set_title("Seizure {}".format(i)) # if SAVE_PLOT: # plt.savefig(ospj(pt_figure_path, "soz_expression_sz_{}_{}.svg".format(i, mode)), bbox_inches='tight', transparent='true') # plt.savefig(ospj(pt_figure_path, "soz_expression_sz_{}_{}.png".format(i, mode)), bbox_inches='tight', transparent='true') # plt.close() # break # # %% # min_pre_ictal_size = min([W[sz_id == i,pt_soz_state].shape[0] for i in remaining_sz_ids]) # pre_ictal_soz_state = np.zeros((np.size(remaining_sz_ids), min_pre_ictal_size)) # for ind, i_sz in enumerate(remaining_sz_ids): # pre_ictal_soz_state[ind, :] = W[sz_id == i_sz,pt_soz_state][-min_pre_ictal_size:] # # %% # # %%
[ "sys.path.append", "kneed.KneeLocator", "numpy.size", "json.load", "sklearn.decomposition.NMF", "os.makedirs", "warnings.filterwarnings", "os.path.exists", "time.time", "numpy.insert", "numpy.min", "pull_sz_starts.pull_sz_starts", "numpy.where", "numpy.timedelta64", "numpy.squeeze", "os.path.join", "numpy.unique" ]
[((699, 723), 'sys.path.append', 'sys.path.append', (['"""tools"""'], {}), "('tools')\n", (714, 723), False, 'import sys\n'), ((1227, 1296), 'warnings.filterwarnings', 'warnings.filterwarnings', ([], {'action': '"""ignore"""', 'category': 'ConvergenceWarning'}), "(action='ignore', category=ConvergenceWarning)\n", (1250, 1296), False, 'import warnings\n'), ((1622, 1645), 'os.path.join', 'ospj', (['repo_path', '"""data"""'], {}), "(repo_path, 'data')\n", (1626, 1645), True, 'from os.path import join as ospj\n'), ((1660, 1686), 'os.path.join', 'ospj', (['repo_path', '"""figures"""'], {}), "(repo_path, 'figures')\n", (1664, 1686), True, 'from os.path import join as ospj\n'), ((1705, 1744), 'os.path.join', 'ospj', (['metadata_path', '"""DATA_MASTER.json"""'], {}), "(metadata_path, 'DATA_MASTER.json')\n", (1709, 1744), True, 'from os.path import join as ospj\n'), ((1384, 1396), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1393, 1396), False, 'import json\n'), ((1849, 1887), 'os.path.join', 'ospj', (['data_path', '"""patient_cohort.xlsx"""'], {}), "(data_path, 'patient_cohort.xlsx')\n", (1853, 1887), True, 'from os.path import join as ospj\n'), ((2288, 2341), 'os.path.join', 'ospj', (['metadata_path', '"""patient_localization_final.mat"""'], {}), "(metadata_path, 'patient_localization_final.mat')\n", (2292, 2341), True, 'from os.path import join as ospj\n'), ((2530, 2549), 'os.path.join', 'ospj', (['data_path', 'pt'], {}), '(data_path, pt)\n', (2534, 2549), True, 'from os.path import join as ospj\n'), ((2571, 2592), 'os.path.join', 'ospj', (['figure_path', 'pt'], {}), '(figure_path, pt)\n', (2575, 2592), True, 'from os.path import join as ospj\n'), ((2954, 2982), 'pull_sz_starts.pull_sz_starts', 'pull_sz_starts', (['pt', 'metadata'], {}), '(pt, metadata)\n', (2968, 2982), False, 'from pull_sz_starts import pull_sz_starts\n'), ((3795, 3823), 'numpy.squeeze', 'np.squeeze', (["df['Seizure id']"], {}), "(df['Seizure id'])\n", (3805, 3823), True, 'import numpy as np\n'), ((4663, 4688), 'numpy.size', 'np.size', (['remaining_sz_ids'], {}), '(remaining_sz_ids)\n', (4670, 4688), True, 'import numpy as np\n'), ((1792, 1804), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1801, 1804), False, 'import json\n'), ((2120, 2173), 'os.path.join', 'ospj', (['metadata_path', '"""patient_localization_final.mat"""'], {}), "(metadata_path, 'patient_localization_final.mat')\n", (2124, 2173), True, 'from os.path import join as ospj\n'), ((2604, 2634), 'os.path.exists', 'os.path.exists', (['pt_figure_path'], {}), '(pt_figure_path)\n', (2618, 2634), False, 'import os\n'), ((2644, 2671), 'os.makedirs', 'os.makedirs', (['pt_figure_path'], {}), '(pt_figure_path)\n', (2655, 2671), False, 'import os\n'), ((3899, 3915), 'numpy.unique', 'np.unique', (['sz_id'], {}), '(sz_id)\n', (3908, 3915), True, 'import numpy as np\n'), ((4089, 4106), 'numpy.where', 'np.where', (['lead_sz'], {}), '(lead_sz)\n', (4097, 4106), True, 'import numpy as np\n'), ((4130, 4148), 'numpy.where', 'np.where', (['(~lead_sz)'], {}), '(~lead_sz)\n', (4138, 4148), True, 'import numpy as np\n'), ((4501, 4543), 'os.path.join', 'ospj', (['pt_data_path', '"""remaining_sz_ids.npy"""'], {}), "(pt_data_path, 'remaining_sz_ids.npy')\n", (4505, 4543), True, 'from os.path import join as ospj\n'), ((4909, 4920), 'time.time', 'time.time', ([], {}), '()\n', (4918, 4920), False, 'import time\n'), ((5356, 5367), 'time.time', 'time.time', ([], {}), '()\n', (5365, 5367), False, 'import time\n'), ((5458, 5548), 'kneed.KneeLocator', 'KneeLocator', (['n_components', 'reconstruction_err'], {'curve': '"""convex"""', 'direction': '"""decreasing"""'}), "(n_components, reconstruction_err, curve='convex', direction=\n 'decreasing')\n", (5469, 5548), False, 'from kneed import KneeLocator\n'), ((5714, 5799), 'sklearn.decomposition.NMF', 'NMF', ([], {'n_components': 'n_opt_components', 'init': '"""nndsvd"""', 'random_state': '(0)', 'max_iter': '(1000)'}), "(n_components=n_opt_components, init='nndsvd', random_state=0, max_iter=1000\n )\n", (5717, 5799), False, 'from sklearn.decomposition import NMF\n'), ((3856, 3878), 'numpy.timedelta64', 'np.timedelta64', (['(1)', '"""s"""'], {}), "(1, 's')\n", (3870, 3878), True, 'import numpy as np\n'), ((3987, 4015), 'numpy.insert', 'np.insert', (['sz_starts', '(0)', '[0]'], {}), '(sz_starts, 0, [0])\n', (3996, 4015), True, 'import numpy as np\n'), ((4298, 4321), 'numpy.where', 'np.where', (['(sz_id == remv)'], {}), '(sz_id == remv)\n', (4306, 4321), True, 'import numpy as np\n'), ((4959, 4980), 'numpy.size', 'np.size', (['n_components'], {}), '(n_components)\n', (4966, 4980), True, 'import numpy as np\n'), ((5139, 5215), 'sklearn.decomposition.NMF', 'NMF', ([], {'n_components': 'i_components', 'init': '"""nndsvd"""', 'random_state': '(0)', 'max_iter': '(1000)'}), "(n_components=i_components, init='nndsvd', random_state=0, max_iter=1000)\n", (5142, 5215), False, 'from sklearn.decomposition import NMF\n'), ((5834, 5846), 'numpy.min', 'np.min', (['data'], {}), '(data)\n', (5840, 5846), True, 'import numpy as np\n'), ((4372, 4395), 'numpy.where', 'np.where', (['(sz_id == remv)'], {}), '(sz_id == remv)\n', (4380, 4395), True, 'import numpy as np\n'), ((4446, 4469), 'numpy.where', 'np.where', (['(sz_id == remv)'], {}), '(sz_id == remv)\n', (4454, 4469), True, 'import numpy as np\n'), ((5259, 5271), 'numpy.min', 'np.min', (['data'], {}), '(data)\n', (5265, 5271), True, 'import numpy as np\n')]
# This script compares reading from an array in a loop using the # tables.Array.read method. In the first case, read is used without supplying # an 'out' argument, which causes a new output buffer to be pre-allocated # with each call. In the second case, the buffer is created once, and then # reused. from __future__ import division from __future__ import print_function from __future__ import unicode_literals import time import numpy as np import tables def create_file(array_size): array = np.ones(array_size, dtype='i8') with tables.open_file('test.h5', 'w') as fobj: array = fobj.create_array('/', 'test', array) print('file created, size: {0} MB'.format(array.size_on_disk / 1e6)) def standard_read(array_size): N = 10 with tables.open_file('test.h5', 'r') as fobj: array = fobj.get_node('/', 'test') start = time.time() for i in range(N): output = array.read(0, array_size, 1) end = time.time() assert(np.all(output == 1)) print('standard read \t {0:5.5f}'.format((end - start) / N)) def pre_allocated_read(array_size): N = 10 with tables.open_file('test.h5', 'r') as fobj: array = fobj.get_node('/', 'test') start = time.time() output = np.empty(array_size, 'i8') for i in range(N): array.read(0, array_size, 1, out=output) end = time.time() assert(np.all(output == 1)) print('pre-allocated read\t {0:5.5f}'.format((end - start) / N)) if __name__ == '__main__': array_num_bytes = [int(x) for x in [1e5, 1e6, 1e7, 1e8]] for array_bytes in array_num_bytes: array_size = int(array_bytes // 8) create_file(array_size) standard_read(array_size) pre_allocated_read(array_size) print()
[ "numpy.empty", "numpy.ones", "time.time", "tables.open_file", "numpy.all" ]
[((506, 537), 'numpy.ones', 'np.ones', (['array_size'], {'dtype': '"""i8"""'}), "(array_size, dtype='i8')\n", (513, 537), True, 'import numpy as np\n'), ((547, 579), 'tables.open_file', 'tables.open_file', (['"""test.h5"""', '"""w"""'], {}), "('test.h5', 'w')\n", (563, 579), False, 'import tables\n'), ((773, 805), 'tables.open_file', 'tables.open_file', (['"""test.h5"""', '"""r"""'], {}), "('test.h5', 'r')\n", (789, 805), False, 'import tables\n'), ((874, 885), 'time.time', 'time.time', ([], {}), '()\n', (883, 885), False, 'import time\n'), ((977, 988), 'time.time', 'time.time', ([], {}), '()\n', (986, 988), False, 'import time\n'), ((1004, 1023), 'numpy.all', 'np.all', (['(output == 1)'], {}), '(output == 1)\n', (1010, 1023), True, 'import numpy as np\n'), ((1154, 1186), 'tables.open_file', 'tables.open_file', (['"""test.h5"""', '"""r"""'], {}), "('test.h5', 'r')\n", (1170, 1186), False, 'import tables\n'), ((1255, 1266), 'time.time', 'time.time', ([], {}), '()\n', (1264, 1266), False, 'import time\n'), ((1284, 1310), 'numpy.empty', 'np.empty', (['array_size', '"""i8"""'], {}), "(array_size, 'i8')\n", (1292, 1310), True, 'import numpy as np\n'), ((1405, 1416), 'time.time', 'time.time', ([], {}), '()\n', (1414, 1416), False, 'import time\n'), ((1432, 1451), 'numpy.all', 'np.all', (['(output == 1)'], {}), '(output == 1)\n', (1438, 1451), True, 'import numpy as np\n')]
import numpy as np def distance_from_region(label_mask, distance_mask=None, scale=1, ord=2): """Find the distance at every point in an image from a set of labeled points. Parameters ========== label_mask : ndarray A mask designating the points to find the distance from. A True value indicates that the pixel is in the region, a False value indicates it is not. distance_mask : ndarray A mask inidicating which regions to calculate the distance in scale : int Scale the calculated distance to another distance measure (eg. to millimeters) ord : int Order of norm to use when calculating distance. See np.linalg.norm for more details Returns ======= distances : ndarray A masked array of the same size as label_mask. If distance_mask is passed in then the output array is masked by it. """ if distance_mask is None: distance_mask = np.ones(label_mask.shape, dtype=bool) assert label_mask.shape == distance_mask.shape scale = np.array(scale) output = np.zeros(label_mask.shape) indxs = np.indices(label_mask.shape) X = indxs[:, distance_mask].T Y = indxs[:, label_mask].T for x in X: output[tuple(x)] = np.linalg.norm(scale*(x-Y), ord=ord, axis=1).min() return np.ma.array(output, mask=np.logical_not(distance_mask)) def contours(distances, contours=10): amin,amax = distances.min(), distances.max() edges,step = np.linspace(amin, amax, contours, retstep=True) mask = np.logical_not(np.ma.getmaskarray(distances)) return [np.ma.getdata(mask & (distances >= cntr) & (distances < (cntr+step))) for cntr in edges[:-1]], edges def plot_by_contours(arr, contour_masks, contour_vals, ax=None): if ax is None: import pylab as pl _,ax = pl.subplots() x = contour_vals[:-1] y = np.array([arr[mask].mean() for mask in contour_masks]) ax.set_xlabel('Distance from surface (mm)') ax.set_ylabel('Mean R2* value') return ax.plot(x, y, 'o--')[0], x, y def plot_by_distance(arr, distances, ax=None): assert arr.shape == distances.shape if ax is None: import pylab _,ax = pylab.subplots() mask = np.logical_not(np.ma.getmaskarray(distances)) x = distances[mask].ravel() y = arr[mask].ravel() return ax.plot(x,y,'o')
[ "numpy.ma.getdata", "numpy.ma.getmaskarray", "numpy.zeros", "numpy.ones", "numpy.logical_not", "numpy.indices", "pylab.subplots", "numpy.array", "numpy.linalg.norm", "numpy.linspace" ]
[((1046, 1061), 'numpy.array', 'np.array', (['scale'], {}), '(scale)\n', (1054, 1061), True, 'import numpy as np\n'), ((1075, 1101), 'numpy.zeros', 'np.zeros', (['label_mask.shape'], {}), '(label_mask.shape)\n', (1083, 1101), True, 'import numpy as np\n'), ((1115, 1143), 'numpy.indices', 'np.indices', (['label_mask.shape'], {}), '(label_mask.shape)\n', (1125, 1143), True, 'import numpy as np\n'), ((1476, 1523), 'numpy.linspace', 'np.linspace', (['amin', 'amax', 'contours'], {'retstep': '(True)'}), '(amin, amax, contours, retstep=True)\n', (1487, 1523), True, 'import numpy as np\n'), ((945, 982), 'numpy.ones', 'np.ones', (['label_mask.shape'], {'dtype': 'bool'}), '(label_mask.shape, dtype=bool)\n', (952, 982), True, 'import numpy as np\n'), ((1550, 1579), 'numpy.ma.getmaskarray', 'np.ma.getmaskarray', (['distances'], {}), '(distances)\n', (1568, 1579), True, 'import numpy as np\n'), ((1822, 1835), 'pylab.subplots', 'pl.subplots', ([], {}), '()\n', (1833, 1835), True, 'import pylab as pl\n'), ((2195, 2211), 'pylab.subplots', 'pylab.subplots', ([], {}), '()\n', (2209, 2211), False, 'import pylab\n'), ((2239, 2268), 'numpy.ma.getmaskarray', 'np.ma.getmaskarray', (['distances'], {}), '(distances)\n', (2257, 2268), True, 'import numpy as np\n'), ((1339, 1368), 'numpy.logical_not', 'np.logical_not', (['distance_mask'], {}), '(distance_mask)\n', (1353, 1368), True, 'import numpy as np\n'), ((1593, 1662), 'numpy.ma.getdata', 'np.ma.getdata', (['(mask & (distances >= cntr) & (distances < cntr + step))'], {}), '(mask & (distances >= cntr) & (distances < cntr + step))\n', (1606, 1662), True, 'import numpy as np\n'), ((1252, 1300), 'numpy.linalg.norm', 'np.linalg.norm', (['(scale * (x - Y))'], {'ord': 'ord', 'axis': '(1)'}), '(scale * (x - Y), ord=ord, axis=1)\n', (1266, 1300), True, 'import numpy as np\n')]
from nose.plugins.attrib import attr from numpy.testing.utils import assert_equal, assert_allclose, assert_raises import numpy as np from brian2.spatialneuron import * from brian2.units import um, second @attr('codegen-independent') def test_basicshapes(): morpho = Soma(diameter=30*um) morpho.L = Cylinder(length=10*um, diameter=1*um, n=10) morpho.LL = Cylinder(length=5*um, diameter=2*um, n=5) morpho.right = Cylinder(length=3*um, diameter=1*um, n=7) morpho.right['nextone'] = Cylinder(length=2*um, diameter=1*um, n=3) # Check total number of compartments assert_equal(len(morpho),26) assert_equal(len(morpho.L.main),10) # Check that end point is at distance 15 um from soma assert_allclose(morpho.LL.distance[-1],15*um) @attr('codegen-independent') def test_subgroup(): morpho = Soma(diameter=30*um) morpho.L = Cylinder(length=10*um, diameter=1*um, n=10) morpho.LL = Cylinder(length=5*um, diameter=2*um, n=5) morpho.right = Cylinder(length=3*um, diameter=1*um, n=7) # Getting a single compartment by index assert_allclose(morpho.L[2].distance,3*um) # Getting a single compartment by position assert_allclose(morpho.LL[0*um].distance,11*um) assert_allclose(morpho.LL[1*um].distance,11*um) assert_allclose(morpho.LL[1.5*um].distance,12*um) assert_allclose(morpho.LL[5*um].distance,15*um) # Getting a segment assert_allclose(morpho.L[3*um:5.1*um].distance, [3, 4, 5]*um) # Indices cannot be obtained at this stage assert_raises(AttributeError,lambda :morpho.L.indices[:]) # Compress the morphology and get absolute compartment indices N = len(morpho) morpho.compress(MorphologyData(N)) assert_equal(morpho.LL.indices[:], [11, 12, 13, 14, 15]) assert_equal(morpho.L.indices[3*um:5.1*um], [3, 4, 5]) assert_equal(morpho.L.indices[3*um:5.1*um], morpho.L[3*um:5.1*um].indices[:]) assert_equal(morpho.L.indices[:5.1*um], [1, 2, 3, 4, 5]) assert_equal(morpho.L.indices[3*um:], [3, 4, 5, 6, 7, 8, 9, 10]) assert_equal(morpho.L.indices[3.5*um], 4) assert_equal(morpho.L.indices[3], 4) assert_equal(morpho.L.indices[-1], 10) assert_equal(morpho.L.indices[3:5], [4, 5]) assert_equal(morpho.L.indices[3:], [4, 5, 6, 7, 8, 9, 10]) assert_equal(morpho.L.indices[:5], [1, 2, 3, 4, 5]) # Main branch assert_equal(len(morpho.L.main), 10) # Non-existing branch assert_raises(AttributeError, lambda: morpho.axon) # Incorrect indexing # wrong units or mixing units assert_raises(TypeError, lambda: morpho.indices[3*second:5*second]) assert_raises(TypeError, lambda: morpho.indices[3.4:5.3]) assert_raises(TypeError, lambda: morpho.indices[3:5*um]) assert_raises(TypeError, lambda: morpho.indices[3*um:5]) # providing a step assert_raises(TypeError, lambda: morpho.indices[3*um:5*um:2*um]) assert_raises(TypeError, lambda: morpho.indices[3:5:2]) # incorrect type assert_raises(TypeError, lambda: morpho.indices[object()]) if __name__ == '__main__': test_basicshapes() test_subgroup()
[ "numpy.testing.utils.assert_equal", "numpy.testing.utils.assert_allclose", "numpy.testing.utils.assert_raises", "nose.plugins.attrib.attr" ]
[((207, 234), 'nose.plugins.attrib.attr', 'attr', (['"""codegen-independent"""'], {}), "('codegen-independent')\n", (211, 234), False, 'from nose.plugins.attrib import attr\n'), ((767, 794), 'nose.plugins.attrib.attr', 'attr', (['"""codegen-independent"""'], {}), "('codegen-independent')\n", (771, 794), False, 'from nose.plugins.attrib import attr\n'), ((719, 767), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.LL.distance[-1]', '(15 * um)'], {}), '(morpho.LL.distance[-1], 15 * um)\n', (734, 767), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1076, 1121), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.L[2].distance', '(3 * um)'], {}), '(morpho.L[2].distance, 3 * um)\n', (1091, 1121), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1170, 1222), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.LL[0 * um].distance', '(11 * um)'], {}), '(morpho.LL[0 * um].distance, 11 * um)\n', (1185, 1222), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1222, 1274), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.LL[1 * um].distance', '(11 * um)'], {}), '(morpho.LL[1 * um].distance, 11 * um)\n', (1237, 1274), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1274, 1328), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.LL[1.5 * um].distance', '(12 * um)'], {}), '(morpho.LL[1.5 * um].distance, 12 * um)\n', (1289, 1328), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1328, 1380), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.LL[5 * um].distance', '(15 * um)'], {}), '(morpho.LL[5 * um].distance, 15 * um)\n', (1343, 1380), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1404, 1471), 'numpy.testing.utils.assert_allclose', 'assert_allclose', (['morpho.L[3 * um:5.1 * um].distance', '([3, 4, 5] * um)'], {}), '(morpho.L[3 * um:5.1 * um].distance, [3, 4, 5] * um)\n', (1419, 1471), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1517, 1576), 'numpy.testing.utils.assert_raises', 'assert_raises', (['AttributeError', '(lambda : morpho.L.indices[:])'], {}), '(AttributeError, lambda : morpho.L.indices[:])\n', (1530, 1576), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1705, 1761), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.LL.indices[:]', '[11, 12, 13, 14, 15]'], {}), '(morpho.LL.indices[:], [11, 12, 13, 14, 15])\n', (1717, 1761), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1766, 1824), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3 * um:5.1 * um]', '[3, 4, 5]'], {}), '(morpho.L.indices[3 * um:5.1 * um], [3, 4, 5])\n', (1778, 1824), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1825, 1915), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3 * um:5.1 * um]', 'morpho.L[3 * um:5.1 * um].indices[:]'], {}), '(morpho.L.indices[3 * um:5.1 * um], morpho.L[3 * um:5.1 * um].\n indices[:])\n', (1837, 1915), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1924, 1982), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[:5.1 * um]', '[1, 2, 3, 4, 5]'], {}), '(morpho.L.indices[:5.1 * um], [1, 2, 3, 4, 5])\n', (1936, 1982), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((1985, 2051), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3 * um:]', '[3, 4, 5, 6, 7, 8, 9, 10]'], {}), '(morpho.L.indices[3 * um:], [3, 4, 5, 6, 7, 8, 9, 10])\n', (1997, 2051), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2054, 2097), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3.5 * um]', '(4)'], {}), '(morpho.L.indices[3.5 * um], 4)\n', (2066, 2097), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2100, 2136), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3]', '(4)'], {}), '(morpho.L.indices[3], 4)\n', (2112, 2136), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2141, 2179), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[-1]', '(10)'], {}), '(morpho.L.indices[-1], 10)\n', (2153, 2179), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2184, 2227), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3:5]', '[4, 5]'], {}), '(morpho.L.indices[3:5], [4, 5])\n', (2196, 2227), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2232, 2290), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[3:]', '[4, 5, 6, 7, 8, 9, 10]'], {}), '(morpho.L.indices[3:], [4, 5, 6, 7, 8, 9, 10])\n', (2244, 2290), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2295, 2346), 'numpy.testing.utils.assert_equal', 'assert_equal', (['morpho.L.indices[:5]', '[1, 2, 3, 4, 5]'], {}), '(morpho.L.indices[:5], [1, 2, 3, 4, 5])\n', (2307, 2346), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2438, 2489), 'numpy.testing.utils.assert_raises', 'assert_raises', (['AttributeError', '(lambda : morpho.axon)'], {}), '(AttributeError, lambda : morpho.axon)\n', (2451, 2489), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2554, 2626), 'numpy.testing.utils.assert_raises', 'assert_raises', (['TypeError', '(lambda : morpho.indices[3 * second:5 * second])'], {}), '(TypeError, lambda : morpho.indices[3 * second:5 * second])\n', (2567, 2626), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2626, 2684), 'numpy.testing.utils.assert_raises', 'assert_raises', (['TypeError', '(lambda : morpho.indices[3.4:5.3])'], {}), '(TypeError, lambda : morpho.indices[3.4:5.3])\n', (2639, 2684), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2688, 2747), 'numpy.testing.utils.assert_raises', 'assert_raises', (['TypeError', '(lambda : morpho.indices[3:5 * um])'], {}), '(TypeError, lambda : morpho.indices[3:5 * um])\n', (2701, 2747), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2749, 2808), 'numpy.testing.utils.assert_raises', 'assert_raises', (['TypeError', '(lambda : morpho.indices[3 * um:5])'], {}), '(TypeError, lambda : morpho.indices[3 * um:5])\n', (2762, 2808), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2835, 2906), 'numpy.testing.utils.assert_raises', 'assert_raises', (['TypeError', '(lambda : morpho.indices[3 * um:5 * um:2 * um])'], {}), '(TypeError, lambda : morpho.indices[3 * um:5 * um:2 * um])\n', (2848, 2906), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n'), ((2904, 2960), 'numpy.testing.utils.assert_raises', 'assert_raises', (['TypeError', '(lambda : morpho.indices[3:5:2])'], {}), '(TypeError, lambda : morpho.indices[3:5:2])\n', (2917, 2960), False, 'from numpy.testing.utils import assert_equal, assert_allclose, assert_raises\n')]
import os import cv2 from matplotlib.pyplot import gray import numpy as np people = ['<NAME>', '<NAME>', '<NAME>', 'Madonna', '<NAME>'] DIR = r'/home/senai/tiago-projects/opencv-course/Resources/Faces/train' haar_cascade = cv2.CascadeClassifier('/home/senai/tiago-projects/opencv-course/face_detection/haar_face.xml') features = [] labels = [] def create_train(): for person in people: path = os.path.join(DIR, person) label = people.index(person) for img in os.listdir(path): img_path = os.path.join(path, img) img_array = cv2.imread(img_path) gray = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY) faces_rect = haar_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4) for(x,y,w,h) in faces_rect: faces_roi = gray[y:y+h, x:x+w] features.append(faces_roi) labels.append(label) create_train() features = np.array(features) labels = np.array(labels) face_recognizer = cv2.face.LBPHFaceRecognizer_create() # Train the recognizer on the features list and the labels list face_recognizer.train(features, labels) face_recognizer.save('face_trained.yml') np.save('features.npy', features) np.save('labels.npy', labels)
[ "numpy.save", "cv2.face.LBPHFaceRecognizer_create", "cv2.cvtColor", "cv2.imread", "numpy.array", "cv2.CascadeClassifier", "os.path.join", "os.listdir" ]
[((224, 323), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['"""/home/senai/tiago-projects/opencv-course/face_detection/haar_face.xml"""'], {}), "(\n '/home/senai/tiago-projects/opencv-course/face_detection/haar_face.xml')\n", (245, 323), False, 'import cv2\n'), ((956, 974), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (964, 974), True, 'import numpy as np\n'), ((985, 1001), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (993, 1001), True, 'import numpy as np\n'), ((1021, 1057), 'cv2.face.LBPHFaceRecognizer_create', 'cv2.face.LBPHFaceRecognizer_create', ([], {}), '()\n', (1055, 1057), False, 'import cv2\n'), ((1205, 1238), 'numpy.save', 'np.save', (['"""features.npy"""', 'features'], {}), "('features.npy', features)\n", (1212, 1238), True, 'import numpy as np\n'), ((1239, 1268), 'numpy.save', 'np.save', (['"""labels.npy"""', 'labels'], {}), "('labels.npy', labels)\n", (1246, 1268), True, 'import numpy as np\n'), ((408, 433), 'os.path.join', 'os.path.join', (['DIR', 'person'], {}), '(DIR, person)\n', (420, 433), False, 'import os\n'), ((491, 507), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (501, 507), False, 'import os\n'), ((532, 555), 'os.path.join', 'os.path.join', (['path', 'img'], {}), '(path, img)\n', (544, 555), False, 'import os\n'), ((581, 601), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (591, 601), False, 'import cv2\n'), ((621, 664), 'cv2.cvtColor', 'cv2.cvtColor', (['img_array', 'cv2.COLOR_BGR2GRAY'], {}), '(img_array, cv2.COLOR_BGR2GRAY)\n', (633, 664), False, 'import cv2\n')]
''' Specialized scientific functions for biogeophysical variables and L4C model processes. ''' import numpy as np from functools import partial from scipy.ndimage import generic_filter from scipy.linalg import solve_banded from scipy.sparse import dia_matrix from pyl4c import suppress_warnings from pyl4c.data.fixtures import HDF_PATHS, BPLUT from pyl4c.utils import get_pft_array, subset from pyl4c.stats import ols, ols_variance, linear_constraint def arrhenius( tsoil, beta0: float, beta1: float = 66.02, beta2: float = 227.13): r''' The Arrhenius equation for response of enzymes to (soil) temperature, constrained to lie on the closed interval [0, 1]. $$ f(T_{SOIL}) = \mathrm{exp}\left[\beta_0\left( \frac{1}{\beta_1} - \frac{1}{T_{SOIL} - \beta_2} \right) \right] $$ Parameters ---------- tsoil : numpy.ndarray Array of soil temperature in degrees K beta0 : float Coefficient for soil temperature (deg K) beta1 : float Coefficient for ... (deg K) beta2 : float Coefficient for ... (deg K) Returns ------- numpy.ndarray Array of soil temperatures mapped through the Arrhenius function ''' a = (1.0 / beta1) b = np.divide(1.0, np.subtract(tsoil, beta2)) # This is the simple answer, but it takes on values >1 y0 = np.exp(np.multiply(beta0, np.subtract(a, b))) # Constrain the output to the interval [0, 1] return np.where(y0 > 1, 1, np.where(y0 < 0, 0, y0)) def bias_correction_parameters( series, npoly: int = 1, cutoff: float = 1, var_cutoff: float = None, add_intercept: bool = True): ''' Calculate the bias correction parameters for two overlapping time series, nominally the Nature Run and L4C Operational products, of a given variable using quantile mapping. For example, can correct the bias in Nature Run (2000-2017) against the L4C Ops record (2015-Present) by fitting bias correction parameters for the overlap period 2015-2017. Model can be specified: y = alpha + X beta_0 + X^2 beta_1 + ... NOTE: Because Nature Run and L4C Ops compare very well in some locations, a degree-1 polynomial (straight line) is fit first (regardless of npoly); if this solution produces corrections that are <1 gC m^-2, the degree-1 solution is used. In some areas, there is a strong linear correspondence between most measurements but a small number have a super-linear relationship that is poorly fit by a degree-2 polynomial; in these cases (where model variance of the degree-2 fit is > var_cutoff), the degree-1 solution is used. Forcing the line of best fit through the origin (with intercept=False) is also not recommended. Parameters ---------- series : numpy.ndarray A (t x 2) NumPy array where t rows correspond to t time steps and each column is a product; the first column is the reference product or dependent variable in the linear bias correction. npoly : int Degree of the polynomial to use in bias correction (Default: 1) cutoff : float Cutoff for the degree-1 bias correction, in data units (e.g., 1 g C m-2 day-1); defaults to 1.0, i.e., the residual after correction must be greater than 1 g C m-2 day-1, which is the average impact of L4SM versus model-only observations. If this cutoff is exceeded, the degree-1 solution is returned. var_cutoff : float or None Cutoff in variance for higher-order solutions; if the residual model variance exceeds this threshold for the degree-N solution, then return the degree (N-1) solution (Default: None) add_intercept : bool True to add a the y-intercept term (Default: True) Returns ------- numpy.ndarray A vector of length N + 1 where N is the degree of the polynomial fit requested ''' def xmat(x, npoly): # Creates the design/ model matrix for a polynomial series # Add a column for each power of the requested polynomial series x = np.repeat(x.reshape((t, 1)), npoly, axis = 1) for i in range(1, npoly): # Calculate X^n for n up to N powers x[:,i] = np.power(x[:,0], npoly + 1) return x def fit(x, y, npoly): # Fits the model using OLS # If all of the Y values are NaN if np.all(np.isnan(y)): return np.ones((npoly + 1,)) * np.nan try: return ols(xmat(x, npoly), y, add_intercept) except np.linalg.linalg.LinAlgError: return np.ones((npoly + 1,)) * np.nan # Sort the input series from low -> high t = series.shape[0] y = np.sort(series[:,0]) x = np.sort(series[:,1]) # For some pixels, the time series has zero variance, and this can produce # unstable OLS estimates (e.g., zero slope) if np.var(y) == 0 or np.var(x) == 0: # Return coefficients: (0, 1, 0, ..., 0) return np.hstack(((0, 1), list(0 for i in range(1, npoly)))) if np.var(y) == 0 and np.var(x) == 0: # Intercept (mean) is the only necessary predictor return np.hstack(((1, 0), list(0 for i in range(1, npoly)))) fit1 = np.hstack( (fit(x, y, npoly = 1), list(0 for i in range(1, npoly)))) if npoly == 1: return fit1 # First, try a degree-1 polynomial (straight-line) fit; if the bias # correction slope is such that the correction is < 1 gC/m^-2, # which is similar to the average impact of L4SM vs. model-only # observations, then use the degree-1 fit parameters if x.mean() - (fit1[1] * x.mean()) < cutoff: return fit1 # Second, starting with the simpler model, check if progressively more # complicated models (up to a maximum of npoly) really do fit the data # better; if not, or if the model variance is above a cutoff, use the # next most-complicated model (last_model) last_model = fit1 # Starting with the simplest model... for p in range(2, npoly + 1): model = fit(x, y, npoly = p) # Calculates unbiased estimate of model variance model_var = ols_variance(xmat(x, p), y, model, add_intercept) # Without a cutoff for guidance, if the model variance of the degree-1 # fit is lower than that of the degree-2 fit... if var_cutoff is None: if model_var > ols_variance( xmat(x, 1), y, last_model[0:p], add_intercept): return last_model else: if model_var > var_cutoff: return last_model last_model = model # Unless a simpler model was better, return coefficients for the requested # polynomial degree return model def climatology365(series, dates): ''' Computes a 365-day climatology for different locations from a time series of length T. Ignores leap days. The climatology could then be indexed using ordinals generated by `ordinals365()`. Parameters ---------- series : numpy.ndarray T x ... array of data dates : list or tuple Sequence of datetime.datetime or datetime.date instances Returns ------- numpy.ndarray ''' @suppress_warnings def calc_climatology(x): return np.array([ np.nanmean(x[ordinal == day,...], axis = 0) for day in range(1, 366) ]) # Get first and last day of the year (DOY) ordinal = np.array([ # Finally, subtract 1 from each day in a leap year after Leap Day (doy - 1) if ((dates[i].year % 4 == 0) and doy >= 60) else doy for i, doy in enumerate([ # Next, fill in 0 wherever Leap Day occurs 0 if (dates[i].year % 4 == 0 and doy == 60) else doy for i, doy in enumerate([ # First, convert datetime.datetime to ordinal day-of-year (DOY) int(dt.strftime('%j')) for dt in dates ]) ]) ]) return calc_climatology(series) def daynight_partition(arr_24hr, updown, reducer = 'mean'): ''' Partitions a 24-hour time series array into daytime and nighttime values, then calculates the mean in each group. Daytime is defined as when the sun is above the horizon; nighttime is the complement. Parameters ---------- arr_24hr : numpy.ndarray A size (24 x ...) array; the first axis must have 24 elements corresponding to the measurement in each hour updown: numpy.ndarray A size (2 x ...) array, compatible with arr_24hr, where the first axis has the hour of sunrise and sunset, in that order, for each element reducer : str One of "mean" or "sum" indicating whether an average or a total of the daytime/ nighttime values should be calculated; e.g., for "mean", the hourly values from daytime hours are added up and divided by the length of the day (in hours). Returns ------- numpy.ndarray A size (2 x ...) array where the first axis enumerates the daytime and nighttime mean values, respectively ''' assert reducer in ('mean', 'sum'),\ 'Argument "reducer" must be one of: "mean", "sum"' # Prepare single-valued output array arr_daytime = np.zeros(arr_24hr.shape[1:]) arr_nighttime = arr_daytime.copy() daylight_hrs = arr_daytime.copy().astype(np.int16) # Do sunrise and sunset define an interval? (Sunset > Sunrise)? inside_interval = np.apply_along_axis(lambda x: x[1] > x[0], 0, updown) # Or is the sun never up? never_up = np.logical_and(updown[0,...] == -1, updown[1,...] == -1) # Iteratively sum daytime VPD and temperature values for hr in range(0, 24): # Given only hour of sunrise/set on a 24-hour clock... # if sun rises and sets on same day: SUNRISE <= HOUR <= SUNSET; # if sun sets on next day: either SUNRISE <= HOUR or HOUR <= SUNSET; sun_is_up = np.logical_or( # Either... np.logical_and(inside_interval, # ...Rises and sets same day np.logical_and(updown[0,...] <= hr, hr <= updown[1,...])), np.logical_and(~inside_interval, # ...Sets on next day np.logical_or(updown[0,...] <= hr, hr <= updown[1,...]))) # For simplicity, compute a 24-hour mean even if the sun never rises; # there's no way to know what the "correct" daytime value is mask = np.logical_or(never_up, sun_is_up) np.add(np.where( mask, arr_24hr[hr,...], 0), arr_daytime, out = arr_daytime) np.add(np.where( ~mask, arr_24hr[hr,...], 0), arr_nighttime, out = arr_nighttime) # Keep track of the denominator (hours) for calculating the mean; # note that this over-estimates actual daylight hours by 1 hour # but results in the correct denominator for the sums above np.add(np.where(mask, 1, 0), daylight_hrs, out = daylight_hrs) arr_24hr = None # Calculate mean quantities if reducer == 'mean': arr_daytime = np.divide(arr_daytime, daylight_hrs) arr_nighttime = np.divide(arr_nighttime, 24 - daylight_hrs) # For sites where the sun is always above/ below the horizon, set missing # nighttime values to zero arr_nighttime[~np.isfinite(arr_nighttime)] = 0 return np.stack((arr_daytime, arr_nighttime)) def e_mult(params, tmin, vpd, smrz, ft): ''' Calculate environmental constraint multiplier for gross primary productivity (GPP), E_mult, based on current model parameters. The expected parameter names are "LUE" for the maximum light-use efficiency; "smrz0" and "smrz1" for the lower and upper bounds on root- zone soil moisture; "vpd0" and "vpd1" for the lower and upper bounds on vapor pressure deficity (VPD); "tmin0" and "tmin1" for the lower and upper bounds on minimum temperature; and "ft0" for the multiplier during frozen ground conditions. Parameters ---------- params : dict A dict-like data structure with named model parameters tmin : numpy.ndarray (T x N) vector of minimum air temperature (deg K), where T is the number of time steps, N the number of sites vpd : numpy.ndarray (T x N) vector of vapor pressure deficit (Pa), where T is the number of time steps, N the number of sites smrz : numpy.ndarray (T x N) vector of root-zone soil moisture wetness (%), where T is the number of time steps, N the number of sites ft : numpy.ndarray (T x N) vector of the (binary) freeze-thaw status, where T is the number of time steps, N the number of sites (Frozen = 0, Thawed = 1) Returns ------- numpy.ndarray ''' # Calculate E_mult based on current parameters f_tmin = linear_constraint(params['tmin0'], params['tmin1']) f_vpd = linear_constraint(params['vpd0'], params['vpd1'], 'reversed') f_smrz = linear_constraint(params['smrz0'], params['smrz1']) f_ft = linear_constraint(params['ft0'], 1.0, 'binary') return f_tmin(tmin) * f_vpd(vpd) * f_smrz(smrz) * f_ft(ft) def k_mult(params, tsoil, smsf): ''' Calculate environmental constraint multiplier for soil heterotrophic respiration (RH), K_mult, based on current model parameters. The expected parameter names are "tsoil" for the Arrhenius function of soil temperature and "smsf0" and "smsf1" for the lower and upper bounds of the ramp function on surface soil moisture. Parameters ---------- params : dict A dict-like data structure with named model parameters tsoil : numpy.ndarray (T x N) vector of soil temperature (deg K), where T is the number of time steps, N the number of sites smsf : numpy.ndarray (T x N) vector of surface soil wetness (%), where T is the number of time steps, N the number of sites Returns ------- numpy.ndarray ''' f_tsoil = partial(arrhenius, beta0 = params['tsoil']) f_smsf = linear_constraint(params['smsf0'], params['smsf1']) return f_tsoil(tsoil) * f_smsf(smsf) def litterfall_casa(lai, years, dt = 1/365): ''' Calculates daily litterfall fraction after the CASA model (Randerson et al. 1996). Computes the fraction of evergreen versus deciduous canopy and allocates a constant daily fraction (out of the year) for evergreen canopy but a varying daily fraction for deciduous, where the fraction varies with "leaf loss," a function of leaf area index (LAI). Canopies are assumed to be a mix of evergreen and deciduous, so the litterfall fraction is a sum of these two approaches. <NAME>., <NAME>, <NAME>., <NAME>., & <NAME>. (1996). Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO2. *Global Biogeochemical Cycles,* 10(4), 585–602. The approach here is a bit different from Randerson et al. (1996) because we re- calculate the evergreen fraction each year; however, this is a reasonable elaboration that, incidentally, accounts for potential changes in the evergreen-vs-deciduous mix of the canopy. The result is an array of daily litterfall fractions, i.e., the result multiplied by the annual NPP sum (for a given site and year) obtains the daily litterfall. Parameters ---------- lai : numpy.ndarray The (T x N) leaf-area index (LAI) array, for T time steps and N sites years : numpy.ndarray A length-T 1D array indexing the years, e.g., [2001, 2001, 2001, ...]; used to identify which of T time steps belong to a year, so that litterfall fractions sum to one over a year dt : float The fraction of a year that each time step represents, e.g., for daily time steps, should be close to 1/365 (Default: 1/365) Returns ------- numpy.ndarray The fraction of available inputs (e.g., annual NPP) that should be allocated to litterfall at each time step ''' def leaf_loss(lai): # Leaf loss function from CASA, a triangular averaging function # centered on the current date, where the right limb of the # triangle is subtracted from the left limb (leading minus # lagged LAI is equated to leaf loss) ll = generic_filter( lai, lambda x: (0.5 * x[0] + x[1]) - (x[3] + 0.5 * x[4]), size = 5, mode = 'mirror') return np.where(ll < 0, 0, ll) # Leaf loss cannot be < 0 # Get leaf loss at each site (column-wise) ll = np.apply_along_axis(leaf_loss, 0, lai) ll = np.where(np.isnan(ll), 0, ll) # Fill NaNs with zero leaf loss unique_years = np.unique(years).tolist() unique_years.sort() for each_year in unique_years: # For those dates in this year... idx = years == each_year # Calculate the evergreen fraction (ratio of min LAI to mean LAI over # the course of a year) efrac = np.apply_along_axis( lambda x: np.nanmin(x) / np.nanmean(x), 0, lai[idx,:]) # Calculate sum of 1/AnnualNPP (Evergreen input) plus daily leaf loss # fraction (Deciduous input); Evergreen canopies have constant daily # inputs ll[idx,:] = (efrac * dt) + (1 - efrac) * np.divide( ll[idx,:], ll[idx,:].sum(axis = 0)) return ll def mean_residence_time( hdf, units = 'years', subset_id = None, nodata = -9999): ''' Calculates the mean residence time (MRT) of soil organic carbon (SOC) pools as the quotient of SOC stock size and heterotrophic respiration (RH). Chen et al. (2013, Global and Planetary Change), provide a formal equation for mean residence time: (SOC/R_H). Parameters ---------- hdf : h5py.File The HDF5 file / h5py.File object units : str Either "years" (default) or "days" subset_id : str (Optional) Can provide keyword designating the desired subset area nodata : float (Optional) The NoData or Fill value (Default: -9999) Returns ------- tuple Tuple of: subset array, xoff, yoff, i.e., (numpy.ndarray, Int, Int) ''' assert units in ('days', 'years'), 'The units argument must be one of: "days" or "years"' soc_field = HDF_PATHS['SPL4CMDL']['4']['SOC'] rh_field = HDF_PATHS['SPL4CMDL']['4']['RH'] if subset_id is not None: # Get X- and Y-offsets while we're at it soc, xoff, yoff = subset( hdf, soc_path, None, None, subset_id = subset_id) rh, _, _ = subset( hdf, rh_path, None, None, subset_id = subset_id) else: xoff = yoff = 0 soc = hdf[soc_path][:] rh = hdf[rh_path][:] # Find those areas of NoData in either array mask = np.logical_or(soc == nodata, rh == nodata) mrt = np.divide(soc, rh) if units == 'years': # NOTE: No need to guard against NaNs/ NoData here because of mask mrt = np.divide(mrt, 365.0) np.place(mrt, mask, nodata) # Put NoData values back in return (mrt, xoff, yoff) def npp( hdf, use_subgrid = False, subset_id = None, subset_bbox = None, nodata = -9999): ''' Calculates net primary productivity (NPP), based on the carbon use efficiency (CUE) of each plant functional type (PFT). NPP is derived as: `NPP = GPP * CUE`, where `CUE = NPP/GPP`. Parameters ---------- hdf : h5py.File The HDF5 file / h5py.File object use_subgrid : bool True to use the 1-km subgrid; requires iterating through the PFT means subset_id : str (Optional) Can provide keyword designating the desired subset area subset_bbox : list or tuple (Optional) Can provide a bounding box to define a desired subset area nodata : float The NoData value to mask (Default: -9999) Returns ------- numpy.ndarray NPP values on an EASE-Grid 2.0 array ''' grid = 'M01' if use_subgrid else 'M09' cue_array = cue(get_pft_array(grid, subset_id, subset_bbox)) if not use_subgrid: if subset_id is not None or subset_bbox is not None: gpp, _, _ = subset( hdf, 'GPP/gpp_mean', subset_id = subset_id, subset_bbox = subset_bbox) else: gpp = hdf['GPP/gpp_mean'][:] else: raise NotImplementedError('No support for the 1-km subgrid') gpp[gpp == nodata] = np.nan return np.multiply(gpp, cue_array) def ordinals365(dates): ''' Returns a length-T sequence of ordinals on [1,365]. Can be used for indexing a 365-day climatology; see `climatology365()`. Parameters ---------- dates : list or tuple Sequence of datetime.datetime or datetime.date instances Returns ------- list ''' return [ t - 1 if (year % 4 == 0 and t >= 60) else t for t, year in [(int(t.strftime('%j')), t.year) for t in dates] ] def rescale_smrz(smrz0, smrz_min, smrz_max = 100): ''' Rescales root-zone soil-moisture (SMRZ); original SMRZ is in percent saturation units. NOTE: Although Jones et al. (2017) write "SMRZ_wp is the plant wilting point moisture level determined by ancillary soil texture data provided by L4SM..." in actuality it is just `smrz_min`. Parameters ---------- smrz0 : numpy.ndarray (T x N) array of original SMRZ data, in percent (%) saturation units for N sites and T time steps smrz_min : numpy.ndarray or float Site-level long-term minimum SMRZ (percent saturation) smrz_max : numpy.ndarray or float Site-level long-term maximum SMRZ (percent saturation); can optionally provide a fixed upper-limit on SMRZ; useful for calculating SMRZ100. Returns ------- numpy.ndarray ''' if smrz_min.ndim == 1: smrz_min = smrz_min[np.newaxis,:] assert smrz0.ndim == 2,\ 'Expected smrz0 to be a 2D array' assert smrz0.shape[1] == smrz_min.shape[1],\ 'smrz_min should have one value per site' # Clip input SMRZ to the lower, upper bounds smrz0 = np.where(smrz0 < smrz_min, smrz_min, smrz0) smrz0 = np.where(smrz0 > smrz_max, smrz_max, smrz0) smrz_norm = np.add(np.multiply(100, np.divide( np.subtract(smrz0, smrz_min), np.subtract(smrz_max, smrz_min))), 1) # Log-transform normalized data and rescale to range between # 5.0 and 100 ()% saturation) return np.add( np.multiply(95, np.divide(np.log(smrz_norm), np.log(101))), 5) def soc_analytical_spinup(litterfall, k_mult, fmet, fstr, decay_rates): r''' Using the solution to the differential equations governing change in the soil organic carbon (SOC) pools, calculates the steady-state size of each SOC pool. The analytical steady-state value for the metabolic ("fast") pool is: $$ C_{met} = \frac{f_{met} \sum NPP}{R_{opt} \sum K_{mult}} $$ The analytical steady-state value for the structural ("medium") pool is: $$ C_{str} = \frac{(1 - f_{met})\sum NPP}{R_{opt}\, k_{str} \sum K_{mult}} $$ The analytical steady-state value for the recalcitrant ("slow") pool is: $$ C_{rec} = \frac{f_{str}\, k_{str}\, C_{str}}{k_{rec}} $$ Parameters ---------- litterfall : numpy.ndarray Average daily litterfall k_mult : numpy.ndarray The K_mult climatology, i.e., a (365 x N x 81) array of the long-term average K_mult value at each of N sites (with 81 1-km subgrid sites) fmet : numpy.ndarray The f_metabolic model parameter, as an (N x 81) array fstr : numpy.ndarray The f_structural model parameter, as an (N x 81) array decay_rates : numpy.ndarray The optimal decay rates for each SOC pool, as a (3 x N x 81) array Returns ------- tuple A 3-element tuple, each element the steady-state values for that pool, i.e., `(metabolic, structural, recalcitrant)` ''' # NOTE: litterfall is average daily litterfall (see upstream where we # divided by 365), so, to obtain annual sum, multiply by 365 c0 = np.divide( fmet * (litterfall * 365), decay_rates[0,...] * np.sum(k_mult, axis = 0)) c1 = np.divide( (1 - fmet) * (litterfall * 365), decay_rates[1,...] * np.sum(k_mult, axis = 0)) c2 = np.divide( fstr * decay_rates[1,...] * c1, decay_rates[2,...]) c0[np.isnan(c0)] = 0 c1[np.isnan(c1)] = 0 c2[np.isnan(c2)] = 0 return (c0, c1, c2) def tridiag_solver(tri, r, kl = 1, ku = 1, banded = None): ''' Solution to the tridiagonal equation by solving the system of equations in sparse form. Creates a banded matrix consisting of the diagonals, starting with the lowest diagonal and moving up, e.g., for matrix: A = [[10., 2., 0., 0.], [ 3., 10., 4., 0.], [ 0., 1., 7., 5.], [ 0., 0., 3., 4.]] banded = [[ 3., 1., 3., 0.], [10., 10., 7., 4.], [ 0., 2., 4., 5.]] The banded matrix is what should be provided to the optoinal "banded" argument, which should be used if the banded matrix can be created faster than `scipy.sparse.dia_matrix()`. Parameters ---------- tri : numpy.ndarray A tridiagonal matrix (N x N) r : numpy.ndarray Vector of solutions to the system, Ax = r, where A is the tridiagonal matrix kl : int Lower bandwidth (number of lower diagonals) (Default: 1) ku : int Upper bandwidth (number of upper diagonals) (Default: 1) banded : numpy.ndarray (Optional) Provide the banded matrix with diagonals along the rows; this can be faster than scipy.sparse.dia_matrix() Returns ------- numpy.ndarray ''' assert tri.ndim == 2 and (tri.shape[0] == tri.shape[1]),\ 'Only supports 2-dimensional square matrices' if banded is None: banded = dia_matrix(tri).data # If it is necessary, in a future implementation, to extract diagonals; # this is a starting point for problems where kl = ku = 1 # n = tri.shape[0] # a, b, c = [ # (n-1, n, n-1) refer to the lengths of each vector # sparse[(i+1),(max(0,i)):j] # for i, j in zip(range(-1, 2), (n-1, n, n+1)) # ] return solve_banded((kl, ku), np.flipud(banded), r) def vpd(qv2m, ps, temp_k): r''' Calculates vapor pressure deficit (VPD); unfortunately, the provenance of this formula cannot be properly attributed. It is taken from the SMAP L4C Science code base, so it is exactly how L4C calculates VPD. $$ \mathrm{VPD} = 610.7 \times \mathrm{exp}\left( \frac{17.38 \times T_C}{239 + T_C} \right) - \frac{(P \times [\mathrm{QV2M}]}{0.622 + (0.378 \times [\mathrm{QV2M}])} $$ Where P is the surface pressure (Pa), QV2M is the water vapor mixing ratio at 2-meter height, and T is the temperature in degrees C (though this function requires units of Kelvin when called). NOTE: A variation on this formula can be found in the text: <NAME>. and <NAME>. 1990. Principles of Environmental Physics, 2nd. Ed. Edward Arnold Publisher. See also: https://glossary.ametsoc.org/wiki/Mixing_ratio Parameters ---------- qv2m : numpy.ndarray or float QV2M, the water vapor mixing ratio at 2-m height ps : numpy.ndarray or float The surface pressure, in Pascals temp_k : numpy.ndarray or float The temperature at 2-m height in degrees Kelvin Returns ------- numpy.ndarray or float VPD in Pascals ''' temp_c = temp_k - 273.15 # Convert temperature to degrees C avp = np.divide(np.multiply(qv2m, ps), 0.622 + (0.378 * qv2m)) x = np.divide(17.38 * temp_c, (239 + temp_c)) esat = 610.7 * np.exp(x) return np.subtract(esat, avp)
[ "numpy.sum", "numpy.ones", "numpy.isnan", "numpy.exp", "numpy.unique", "numpy.nanmean", "numpy.multiply", "pyl4c.stats.linear_constraint", "numpy.power", "numpy.isfinite", "numpy.place", "numpy.apply_along_axis", "pyl4c.utils.get_pft_array", "scipy.sparse.dia_matrix", "numpy.var", "numpy.stack", "functools.partial", "numpy.divide", "numpy.flipud", "numpy.sort", "scipy.ndimage.generic_filter", "pyl4c.utils.subset", "numpy.subtract", "numpy.logical_and", "numpy.log", "numpy.zeros", "numpy.nanmin", "numpy.where", "numpy.logical_or" ]
[((4740, 4761), 'numpy.sort', 'np.sort', (['series[:, 0]'], {}), '(series[:, 0])\n', (4747, 4761), True, 'import numpy as np\n'), ((4769, 4790), 'numpy.sort', 'np.sort', (['series[:, 1]'], {}), '(series[:, 1])\n', (4776, 4790), True, 'import numpy as np\n'), ((9339, 9367), 'numpy.zeros', 'np.zeros', (['arr_24hr.shape[1:]'], {}), '(arr_24hr.shape[1:])\n', (9347, 9367), True, 'import numpy as np\n'), ((9552, 9605), 'numpy.apply_along_axis', 'np.apply_along_axis', (['(lambda x: x[1] > x[0])', '(0)', 'updown'], {}), '(lambda x: x[1] > x[0], 0, updown)\n', (9571, 9605), True, 'import numpy as np\n'), ((9651, 9709), 'numpy.logical_and', 'np.logical_and', (['(updown[0, ...] == -1)', '(updown[1, ...] == -1)'], {}), '(updown[0, ...] == -1, updown[1, ...] == -1)\n', (9665, 9709), True, 'import numpy as np\n'), ((11422, 11460), 'numpy.stack', 'np.stack', (['(arr_daytime, arr_nighttime)'], {}), '((arr_daytime, arr_nighttime))\n', (11430, 11460), True, 'import numpy as np\n'), ((12901, 12952), 'pyl4c.stats.linear_constraint', 'linear_constraint', (["params['tmin0']", "params['tmin1']"], {}), "(params['tmin0'], params['tmin1'])\n", (12918, 12952), False, 'from pyl4c.stats import ols, ols_variance, linear_constraint\n'), ((12966, 13027), 'pyl4c.stats.linear_constraint', 'linear_constraint', (["params['vpd0']", "params['vpd1']", '"""reversed"""'], {}), "(params['vpd0'], params['vpd1'], 'reversed')\n", (12983, 13027), False, 'from pyl4c.stats import ols, ols_variance, linear_constraint\n'), ((13041, 13092), 'pyl4c.stats.linear_constraint', 'linear_constraint', (["params['smrz0']", "params['smrz1']"], {}), "(params['smrz0'], params['smrz1'])\n", (13058, 13092), False, 'from pyl4c.stats import ols, ols_variance, linear_constraint\n'), ((13106, 13153), 'pyl4c.stats.linear_constraint', 'linear_constraint', (["params['ft0']", '(1.0)', '"""binary"""'], {}), "(params['ft0'], 1.0, 'binary')\n", (13123, 13153), False, 'from pyl4c.stats import ols, ols_variance, linear_constraint\n'), ((14066, 14107), 'functools.partial', 'partial', (['arrhenius'], {'beta0': "params['tsoil']"}), "(arrhenius, beta0=params['tsoil'])\n", (14073, 14107), False, 'from functools import partial\n'), ((14124, 14175), 'pyl4c.stats.linear_constraint', 'linear_constraint', (["params['smsf0']", "params['smsf1']"], {}), "(params['smsf0'], params['smsf1'])\n", (14141, 14175), False, 'from pyl4c.stats import ols, ols_variance, linear_constraint\n'), ((16701, 16739), 'numpy.apply_along_axis', 'np.apply_along_axis', (['leaf_loss', '(0)', 'lai'], {}), '(leaf_loss, 0, lai)\n', (16720, 16739), True, 'import numpy as np\n'), ((18932, 18974), 'numpy.logical_or', 'np.logical_or', (['(soc == nodata)', '(rh == nodata)'], {}), '(soc == nodata, rh == nodata)\n', (18945, 18974), True, 'import numpy as np\n'), ((18985, 19003), 'numpy.divide', 'np.divide', (['soc', 'rh'], {}), '(soc, rh)\n', (18994, 19003), True, 'import numpy as np\n'), ((19144, 19171), 'numpy.place', 'np.place', (['mrt', 'mask', 'nodata'], {}), '(mrt, mask, nodata)\n', (19152, 19171), True, 'import numpy as np\n'), ((20608, 20635), 'numpy.multiply', 'np.multiply', (['gpp', 'cue_array'], {}), '(gpp, cue_array)\n', (20619, 20635), True, 'import numpy as np\n'), ((22281, 22324), 'numpy.where', 'np.where', (['(smrz0 < smrz_min)', 'smrz_min', 'smrz0'], {}), '(smrz0 < smrz_min, smrz_min, smrz0)\n', (22289, 22324), True, 'import numpy as np\n'), ((22337, 22380), 'numpy.where', 'np.where', (['(smrz0 > smrz_max)', 'smrz_max', 'smrz0'], {}), '(smrz0 > smrz_max, smrz_max, smrz0)\n', (22345, 22380), True, 'import numpy as np\n'), ((24538, 24601), 'numpy.divide', 'np.divide', (['(fstr * decay_rates[1, ...] * c1)', 'decay_rates[2, ...]'], {}), '(fstr * decay_rates[1, ...] * c1, decay_rates[2, ...])\n', (24547, 24601), True, 'import numpy as np\n'), ((27992, 28031), 'numpy.divide', 'np.divide', (['(17.38 * temp_c)', '(239 + temp_c)'], {}), '(17.38 * temp_c, 239 + temp_c)\n', (28001, 28031), True, 'import numpy as np\n'), ((28068, 28090), 'numpy.subtract', 'np.subtract', (['esat', 'avp'], {}), '(esat, avp)\n', (28079, 28090), True, 'import numpy as np\n'), ((1266, 1291), 'numpy.subtract', 'np.subtract', (['tsoil', 'beta2'], {}), '(tsoil, beta2)\n', (1277, 1291), True, 'import numpy as np\n'), ((1488, 1511), 'numpy.where', 'np.where', (['(y0 < 0)', '(0)', 'y0'], {}), '(y0 < 0, 0, y0)\n', (1496, 1511), True, 'import numpy as np\n'), ((10509, 10543), 'numpy.logical_or', 'np.logical_or', (['never_up', 'sun_is_up'], {}), '(never_up, sun_is_up)\n', (10522, 10543), True, 'import numpy as np\n'), ((11132, 11168), 'numpy.divide', 'np.divide', (['arr_daytime', 'daylight_hrs'], {}), '(arr_daytime, daylight_hrs)\n', (11141, 11168), True, 'import numpy as np\n'), ((11193, 11236), 'numpy.divide', 'np.divide', (['arr_nighttime', '(24 - daylight_hrs)'], {}), '(arr_nighttime, 24 - daylight_hrs)\n', (11202, 11236), True, 'import numpy as np\n'), ((16454, 16552), 'scipy.ndimage.generic_filter', 'generic_filter', (['lai', '(lambda x: 0.5 * x[0] + x[1] - (x[3] + 0.5 * x[4]))'], {'size': '(5)', 'mode': '"""mirror"""'}), "(lai, lambda x: 0.5 * x[0] + x[1] - (x[3] + 0.5 * x[4]), size\n =5, mode='mirror')\n", (16468, 16552), False, 'from scipy.ndimage import generic_filter\n'), ((16594, 16617), 'numpy.where', 'np.where', (['(ll < 0)', '(0)', 'll'], {}), '(ll < 0, 0, ll)\n', (16602, 16617), True, 'import numpy as np\n'), ((16758, 16770), 'numpy.isnan', 'np.isnan', (['ll'], {}), '(ll)\n', (16766, 16770), True, 'import numpy as np\n'), ((18619, 18673), 'pyl4c.utils.subset', 'subset', (['hdf', 'soc_path', 'None', 'None'], {'subset_id': 'subset_id'}), '(hdf, soc_path, None, None, subset_id=subset_id)\n', (18625, 18673), False, 'from pyl4c.utils import get_pft_array, subset\n'), ((18708, 18761), 'pyl4c.utils.subset', 'subset', (['hdf', 'rh_path', 'None', 'None'], {'subset_id': 'subset_id'}), '(hdf, rh_path, None, None, subset_id=subset_id)\n', (18714, 18761), False, 'from pyl4c.utils import get_pft_array, subset\n'), ((19118, 19139), 'numpy.divide', 'np.divide', (['mrt', '(365.0)'], {}), '(mrt, 365.0)\n', (19127, 19139), True, 'import numpy as np\n'), ((20166, 20209), 'pyl4c.utils.get_pft_array', 'get_pft_array', (['grid', 'subset_id', 'subset_bbox'], {}), '(grid, subset_id, subset_bbox)\n', (20179, 20209), False, 'from pyl4c.utils import get_pft_array, subset\n'), ((24624, 24636), 'numpy.isnan', 'np.isnan', (['c0'], {}), '(c0)\n', (24632, 24636), True, 'import numpy as np\n'), ((24649, 24661), 'numpy.isnan', 'np.isnan', (['c1'], {}), '(c1)\n', (24657, 24661), True, 'import numpy as np\n'), ((24674, 24686), 'numpy.isnan', 'np.isnan', (['c2'], {}), '(c2)\n', (24682, 24686), True, 'import numpy as np\n'), ((26576, 26593), 'numpy.flipud', 'np.flipud', (['banded'], {}), '(banded)\n', (26585, 26593), True, 'import numpy as np\n'), ((27940, 27961), 'numpy.multiply', 'np.multiply', (['qv2m', 'ps'], {}), '(qv2m, ps)\n', (27951, 27961), True, 'import numpy as np\n'), ((28050, 28059), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (28056, 28059), True, 'import numpy as np\n'), ((1387, 1404), 'numpy.subtract', 'np.subtract', (['a', 'b'], {}), '(a, b)\n', (1398, 1404), True, 'import numpy as np\n'), ((4279, 4307), 'numpy.power', 'np.power', (['x[:, 0]', '(npoly + 1)'], {}), '(x[:, 0], npoly + 1)\n', (4287, 4307), True, 'import numpy as np\n'), ((4445, 4456), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (4453, 4456), True, 'import numpy as np\n'), ((4927, 4936), 'numpy.var', 'np.var', (['y'], {}), '(y)\n', (4933, 4936), True, 'import numpy as np\n'), ((4945, 4954), 'numpy.var', 'np.var', (['x'], {}), '(x)\n', (4951, 4954), True, 'import numpy as np\n'), ((5087, 5096), 'numpy.var', 'np.var', (['y'], {}), '(y)\n', (5093, 5096), True, 'import numpy as np\n'), ((5106, 5115), 'numpy.var', 'np.var', (['x'], {}), '(x)\n', (5112, 5115), True, 'import numpy as np\n'), ((10559, 10595), 'numpy.where', 'np.where', (['mask', 'arr_24hr[hr, ...]', '(0)'], {}), '(mask, arr_24hr[hr, ...], 0)\n', (10567, 10595), True, 'import numpy as np\n'), ((10656, 10693), 'numpy.where', 'np.where', (['(~mask)', 'arr_24hr[hr, ...]', '(0)'], {}), '(~mask, arr_24hr[hr, ...], 0)\n', (10664, 10693), True, 'import numpy as np\n'), ((10976, 10996), 'numpy.where', 'np.where', (['mask', '(1)', '(0)'], {}), '(mask, 1, 0)\n', (10984, 10996), True, 'import numpy as np\n'), ((16830, 16846), 'numpy.unique', 'np.unique', (['years'], {}), '(years)\n', (16839, 16846), True, 'import numpy as np\n'), ((20320, 20393), 'pyl4c.utils.subset', 'subset', (['hdf', '"""GPP/gpp_mean"""'], {'subset_id': 'subset_id', 'subset_bbox': 'subset_bbox'}), "(hdf, 'GPP/gpp_mean', subset_id=subset_id, subset_bbox=subset_bbox)\n", (20326, 20393), False, 'from pyl4c.utils import get_pft_array, subset\n'), ((24387, 24409), 'numpy.sum', 'np.sum', (['k_mult'], {'axis': '(0)'}), '(k_mult, axis=0)\n', (24393, 24409), True, 'import numpy as np\n'), ((24503, 24525), 'numpy.sum', 'np.sum', (['k_mult'], {'axis': '(0)'}), '(k_mult, axis=0)\n', (24509, 24525), True, 'import numpy as np\n'), ((26188, 26203), 'scipy.sparse.dia_matrix', 'dia_matrix', (['tri'], {}), '(tri)\n', (26198, 26203), False, 'from scipy.sparse import dia_matrix\n'), ((4466, 4487), 'numpy.ones', 'np.ones', (['(npoly + 1,)'], {}), '((npoly + 1,))\n', (4473, 4487), True, 'import numpy as np\n'), ((7369, 7411), 'numpy.nanmean', 'np.nanmean', (['x[ordinal == day, ...]'], {'axis': '(0)'}), '(x[ordinal == day, ...], axis=0)\n', (7379, 7411), True, 'import numpy as np\n'), ((10145, 10203), 'numpy.logical_and', 'np.logical_and', (['(updown[0, ...] <= hr)', '(hr <= updown[1, ...])'], {}), '(updown[0, ...] <= hr, hr <= updown[1, ...])\n', (10159, 10203), True, 'import numpy as np\n'), ((10287, 10344), 'numpy.logical_or', 'np.logical_or', (['(updown[0, ...] <= hr)', '(hr <= updown[1, ...])'], {}), '(updown[0, ...] <= hr, hr <= updown[1, ...])\n', (10300, 10344), True, 'import numpy as np\n'), ((11379, 11405), 'numpy.isfinite', 'np.isfinite', (['arr_nighttime'], {}), '(arr_nighttime)\n', (11390, 11405), True, 'import numpy as np\n'), ((22440, 22468), 'numpy.subtract', 'np.subtract', (['smrz0', 'smrz_min'], {}), '(smrz0, smrz_min)\n', (22451, 22468), True, 'import numpy as np\n'), ((22478, 22509), 'numpy.subtract', 'np.subtract', (['smrz_max', 'smrz_min'], {}), '(smrz_max, smrz_min)\n', (22489, 22509), True, 'import numpy as np\n'), ((22670, 22687), 'numpy.log', 'np.log', (['smrz_norm'], {}), '(smrz_norm)\n', (22676, 22687), True, 'import numpy as np\n'), ((22689, 22700), 'numpy.log', 'np.log', (['(101)'], {}), '(101)\n', (22695, 22700), True, 'import numpy as np\n'), ((4631, 4652), 'numpy.ones', 'np.ones', (['(npoly + 1,)'], {}), '((npoly + 1,))\n', (4638, 4652), True, 'import numpy as np\n'), ((17161, 17173), 'numpy.nanmin', 'np.nanmin', (['x'], {}), '(x)\n', (17170, 17173), True, 'import numpy as np\n'), ((17176, 17189), 'numpy.nanmean', 'np.nanmean', (['x'], {}), '(x)\n', (17186, 17189), True, 'import numpy as np\n')]
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2022 Scipp contributors (https://github.com/scipp) # @author <NAME> from .view import PlotView from ..core import zeros, scalar import numpy as np from matplotlib.collections import PathCollection class PlotView2d(PlotView): """ View object for 2 dimensional plots. Contains a `PlotFigure2d`. The difference between `PlotView2d` and `PlotFigure2d` is that `PlotView2d` also handles the communications with the `PlotController` that are to do with the `PlotProfile` plot displayed below the `PlotFigure2d`. In addition, `PlotView2d` provides a dynamic image resampling for large input data. """ def __init__(self, figure, formatters): super().__init__(figure=figure, formatters=formatters) self._axes = ['y', 'x'] self._marker_index = [] self._marks_scatter = None self._lim_updated = False self.current_lims = {} self.global_lims = {} for event in ['xlim_changed', 'ylim_changed']: self.figure.ax.callbacks.connect(event, self._lims_changed) def _make_data(self, new_values, mask_info): dims = new_values.dims for dim in dims: xmin = new_values.coords[dim].values[0] xmax = new_values.coords[dim].values[-1] if dim not in self.global_lims: self.global_lims[dim] = [xmin, xmax] self.current_lims[dim] = [xmin, xmax] values = new_values.values slice_values = { "values": values, "extent": np.array([self.current_lims[dims[1]], self.current_lims[dims[0]]]).flatten() } mask_info = next(iter(mask_info.values())) if len(mask_info) > 0: # Use automatic broadcasting in Scipp variables msk = zeros(sizes=new_values.sizes, dtype='int32', unit=None) for m, val in mask_info.items(): if val: msk += new_values.masks[m].astype(msk.dtype) slice_values["masks"] = msk.values return slice_values def _lims_changed(self, *args): """ Update limits and resample the image according to new viewport. When we use the zoom tool, the event listener on the displayed axes limits detects two separate events: one for the x axis and another for the y axis. We use a small locking mechanism here to trigger only a single resampling update by waiting for the y limits to also change. """ for dim in self.dims: if dim not in self.global_lims: return if not self._lim_updated: self._lim_updated = True return self._lim_updated = False # Make sure we don't overrun the original array bounds dimx = self.dims[1] dimy = self.dims[0] xylims = { dimx: np.clip(self.figure.ax.get_xlim(), *sorted(self.global_lims[dimx])), dimy: np.clip(self.figure.ax.get_ylim(), *sorted(self.global_lims[dimy])) } dx = np.abs(self.current_lims[dimx][1] - self.current_lims[dimx][0]) dy = np.abs(self.current_lims[dimy][1] - self.current_lims[dimy][0]) diffx = np.abs(self.current_lims[dimx] - xylims[dimx]) / dx diffy = np.abs(self.current_lims[dimy] - xylims[dimy]) / dy diff = diffx.sum() + diffy.sum() # Only resample image if the changes in axes limits are large enough to # avoid too many updates while panning. if diff > 0.1: self.current_lims.update(xylims) self.controller.update_data(slices=self.current_limits) # If we are zooming, rescale to data? # TODO This will trigger a second call to view.refresh and thus # self.update_data. Why does the controller have to call refresh # to make view.rescale_to_data take effect? if self.figure.rescale_on_zoom(): self.controller.rescale_to_data() @property def current_limits(self): limits = {} for dim in self.dims: low, high = self.current_lims[dim] unit = self._data.coords[dim].unit limits[dim] = [scalar(low, unit=unit), scalar(high, unit=unit)] return limits @property def global_limits(self): limits = {} for dim in self.dims: low, high = self.global_lims[dim] unit = self._data.coords[dim].unit limits[dim] = [scalar(low, unit=unit), scalar(high, unit=unit)] return limits def _update_axes(self): """ Update the current and global axes limits, before updating the figure axes. """ super()._update_axes() self.clear_marks() def clear_marks(self): """ Reset all scatter markers when a profile is reset. """ if self._marks_scatter is not None: self._marks_scatter = None self.figure.ax.collections = [] self.figure.draw() def _do_handle_pick(self, event): """ Return the index of the picked scatter point, None if something else is picked. """ if isinstance(event.artist, PathCollection): return self._marker_index[event.ind[0]] def _do_mark(self, index, color, x, y): """ Add a marker (colored scatter point). """ if self._marks_scatter is None: self._marks_scatter = self.figure.ax.scatter([x], [y], c=[color], edgecolors="w", picker=5, zorder=10) else: new_offsets = np.concatenate((self._marks_scatter.get_offsets(), [[x, y]]), axis=0) new_colors = np.concatenate((self._marks_scatter.get_facecolors(), [color]), axis=0) self._marks_scatter.set_offsets(new_offsets) self._marks_scatter.set_facecolors(new_colors) self._marker_index.append(index) self.figure.draw() def remove_mark(self, index): """ Remove a marker (scatter point). """ i = self._marker_index.index(index) xy = np.delete(self._marks_scatter.get_offsets(), i, axis=0) c = np.delete(self._marks_scatter.get_facecolors(), i, axis=0) self._marks_scatter.set_offsets(xy) self._marks_scatter.set_facecolors(c) self._marker_index.remove(index) self.figure.draw()
[ "numpy.array", "numpy.abs" ]
[((3143, 3206), 'numpy.abs', 'np.abs', (['(self.current_lims[dimx][1] - self.current_lims[dimx][0])'], {}), '(self.current_lims[dimx][1] - self.current_lims[dimx][0])\n', (3149, 3206), True, 'import numpy as np\n'), ((3220, 3283), 'numpy.abs', 'np.abs', (['(self.current_lims[dimy][1] - self.current_lims[dimy][0])'], {}), '(self.current_lims[dimy][1] - self.current_lims[dimy][0])\n', (3226, 3283), True, 'import numpy as np\n'), ((3300, 3346), 'numpy.abs', 'np.abs', (['(self.current_lims[dimx] - xylims[dimx])'], {}), '(self.current_lims[dimx] - xylims[dimx])\n', (3306, 3346), True, 'import numpy as np\n'), ((3368, 3414), 'numpy.abs', 'np.abs', (['(self.current_lims[dimy] - xylims[dimy])'], {}), '(self.current_lims[dimy] - xylims[dimy])\n', (3374, 3414), True, 'import numpy as np\n'), ((1610, 1676), 'numpy.array', 'np.array', (['[self.current_lims[dims[1]], self.current_lims[dims[0]]]'], {}), '([self.current_lims[dims[1]], self.current_lims[dims[0]]])\n', (1618, 1676), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Measure Rabi oscillation by changing the amplitude of the control pulse. The control pulse has a sin^2 envelope, while the readout pulse is square. """ import ast import math import os import time import h5py import numpy as np from numpy.typing import ArrayLike from mla_server import set_dc_bias from presto.hardware import AdcFSample, AdcMode, DacFSample, DacMode from presto import pulsed from presto.utils import get_sourcecode, sin2 class RabiAmp: def __init__( self, readout_freq: float, control_freq: float, readout_port: int, control_port: int, readout_amp: float, readout_duration: float, control_duration: float, sample_duration: float, sample_port: int, control_amp_arr: ArrayLike, wait_delay: float, readout_sample_delay: float, num_averages: int, jpa_params=None, ): self.readout_freq = readout_freq self.control_freq = control_freq self.readout_port = readout_port self.control_port = control_port self.readout_amp = readout_amp self.readout_duration = readout_duration self.control_duration = control_duration self.sample_duration = sample_duration self.sample_port = sample_port self.control_amp_arr = control_amp_arr self.wait_delay = wait_delay self.readout_sample_delay = readout_sample_delay self.num_averages = num_averages self.rabi_n = len(control_amp_arr) self.t_arr = None # replaced by run self.store_arr = None # replaced by run self.jpa_params = jpa_params def run( self, presto_address, presto_port=None, ext_ref_clk=False, ): # Instantiate interface class with pulsed.Pulsed( address=presto_address, port=presto_port, ext_ref_clk=ext_ref_clk, adc_mode=AdcMode.Mixed, adc_fsample=AdcFSample.G2, dac_mode=[DacMode.Mixed42, DacMode.Mixed02, DacMode.Mixed02, DacMode.Mixed02], dac_fsample=[DacFSample.G10, DacFSample.G6, DacFSample.G6, DacFSample.G6], ) as pls: pls.hardware.set_adc_attenuation(self.sample_port, 0.0) pls.hardware.set_dac_current(self.readout_port, 32_000) pls.hardware.set_dac_current(self.control_port, 32_000) pls.hardware.set_inv_sinc(self.readout_port, 0) pls.hardware.set_inv_sinc(self.control_port, 0) pls.hardware.configure_mixer( freq=self.readout_freq, in_ports=self.sample_port, out_ports=self.readout_port, sync=False, # sync in next call ) pls.hardware.configure_mixer( freq=self.control_freq, out_ports=self.control_port, sync=True, # sync here ) if self.jpa_params is not None: pls.hardware.set_lmx(self.jpa_params['jpa_pump_freq'], self.jpa_params['jpa_pump_pwr']) set_dc_bias(self.jpa_params['jpa_bias_port'], self.jpa_params['jpa_bias']) time.sleep(1.0) # ************************************ # *** Setup measurement parameters *** # ************************************ # Setup lookup tables for frequencies pls.setup_freq_lut( output_ports=self.readout_port, group=0, frequencies=0.0, phases=0.0, phases_q=0.0, ) pls.setup_freq_lut( output_ports=self.control_port, group=0, frequencies=0.0, phases=0.0, phases_q=0.0, ) # Setup lookup tables for amplitudes pls.setup_scale_lut( output_ports=self.readout_port, group=0, scales=self.readout_amp, ) pls.setup_scale_lut( output_ports=self.control_port, group=0, scales=self.control_amp_arr, ) # Setup readout and control pulses # use setup_long_drive to create a pulse with square envelope # setup_long_drive supports smooth rise and fall transitions for the pulse, # but we keep it simple here readout_pulse = pls.setup_long_drive( output_port=self.readout_port, group=0, duration=self.readout_duration, amplitude=1.0, amplitude_q=1.0, rise_time=0e-9, fall_time=0e-9, ) # For the control pulse we create a sine-squared envelope, # and use setup_template to use the user-defined envelope control_ns = int(round(self.control_duration * pls.get_fs("dac"))) # number of samples in the control template control_envelope = sin2(control_ns) control_pulse = pls.setup_template( output_port=self.control_port, group=0, template=control_envelope, template_q=control_envelope, envelope=True, ) # Setup sampling window pls.set_store_ports(self.sample_port) pls.set_store_duration(self.sample_duration) # ****************************** # *** Program pulse sequence *** # ****************************** T = 0.0 # s, start at time zero ... # Control pulse pls.reset_phase(T, self.control_port) pls.output_pulse(T, control_pulse) # Readout pulse starts right after control pulse T += self.control_duration pls.reset_phase(T, self.readout_port) pls.output_pulse(T, readout_pulse) # Sampling window pls.store(T + self.readout_sample_delay) # Move to next Rabi amplitude T += self.readout_duration pls.next_scale(T, self.control_port) # every iteration will have a different amplitude # Wait for decay T += self.wait_delay # ************************** # *** Run the experiment *** # ************************** # repeat the whole sequence `rabi_n` times # then average `num_averages` times pls.run( period=T, repeat_count=self.rabi_n, num_averages=self.num_averages, print_time=True, ) t_arr, (data_I, data_Q) = pls.get_store_data() if self.jpa_params is not None: pls.hardware.set_lmx(0.0, 0.0) set_dc_bias(self.jpa_params['jpa_bias_port'], 0.0) self.t_arr = t_arr self.store_arr = data_I + 1j * data_Q return self.save() def save(self, save_filename=None): # ************************* # *** Save data to HDF5 *** # ************************* if save_filename is None: script_path = os.path.realpath(__file__) # full path of current script current_dir, script_basename = os.path.split(script_path) script_filename = os.path.splitext(script_basename)[0] # name of current script timestamp = time.strftime("%Y%m%d_%H%M%S", time.localtime()) # current date and time save_basename = f"{script_filename:s}_{timestamp:s}.h5" # name of save file save_path = os.path.join(current_dir, "data", save_basename) # full path of save file else: save_path = os.path.realpath(save_filename) source_code = get_sourcecode(__file__) # save also the sourcecode of the script for future reference with h5py.File(save_path, "w") as h5f: dt = h5py.string_dtype(encoding='utf-8') ds = h5f.create_dataset("source_code", (len(source_code), ), dt) for ii, line in enumerate(source_code): ds[ii] = line for attribute in self.__dict__: print(f"{attribute}: {self.__dict__[attribute]}") if attribute.startswith("_"): # don't save private attributes continue if attribute == "jpa_params": h5f.attrs[attribute] = str(self.__dict__[attribute]) elif np.isscalar(self.__dict__[attribute]): h5f.attrs[attribute] = self.__dict__[attribute] else: h5f.create_dataset(attribute, data=self.__dict__[attribute]) print(f"Data saved to: {save_path}") return save_path @classmethod def load(cls, load_filename): with h5py.File(load_filename, "r") as h5f: num_averages = h5f.attrs["num_averages"] control_freq = h5f.attrs["control_freq"] readout_freq = h5f.attrs["readout_freq"] readout_duration = h5f.attrs["readout_duration"] control_duration = h5f.attrs["control_duration"] readout_amp = h5f.attrs["readout_amp"] sample_duration = h5f.attrs["sample_duration"] # rabi_n = h5f.attrs["rabi_n"] wait_delay = h5f.attrs["wait_delay"] readout_sample_delay = h5f.attrs["readout_sample_delay"] control_amp_arr = h5f["control_amp_arr"][()] t_arr = h5f["t_arr"][()] store_arr = h5f["store_arr"][()] # source_code = h5f["source_code"][()] # these were added later try: readout_port = h5f.attrs["readout_port"] except KeyError: readout_port = 0 try: control_port = h5f.attrs["control_port"] except KeyError: control_port = 0 try: sample_port = h5f.attrs["sample_port"] except KeyError: sample_port = 0 try: jpa_params = ast.literal_eval(h5f.attrs["jpa_params"]) except KeyError: jpa_params = None self = cls( readout_freq, control_freq, readout_port, control_port, readout_amp, readout_duration, control_duration, sample_duration, sample_port, control_amp_arr, wait_delay, readout_sample_delay, num_averages, jpa_params, ) self.control_amp_arr = control_amp_arr self.t_arr = t_arr self.store_arr = store_arr return self def analyze(self, all_plots=False): if self.t_arr is None: raise RuntimeError if self.store_arr is None: raise RuntimeError import matplotlib.pyplot as plt from presto.utils import rotate_opt ret_fig = [] t_low = 1500 * 1e-9 t_high = 2000 * 1e-9 # t_span = t_high - t_low idx_low = np.argmin(np.abs(self.t_arr - t_low)) idx_high = np.argmin(np.abs(self.t_arr - t_high)) idx = np.arange(idx_low, idx_high) # nr_samples = len(idx) if all_plots: # Plot raw store data for first iteration as a check fig1, ax1 = plt.subplots(2, 1, sharex=True, tight_layout=True) ax11, ax12 = ax1 ax11.axvspan(1e9 * t_low, 1e9 * t_high, facecolor="#dfdfdf") ax12.axvspan(1e9 * t_low, 1e9 * t_high, facecolor="#dfdfdf") ax11.plot(1e9 * self.t_arr, np.abs(self.store_arr[0, 0, :])) ax12.plot(1e9 * self.t_arr, np.angle(self.store_arr[0, 0, :])) ax12.set_xlabel("Time [ns]") fig1.show() ret_fig.append(fig1) # Analyze Rabi resp_arr = np.mean(self.store_arr[:, 0, idx], axis=-1) data = rotate_opt(resp_arr) # Fit data popt_x, perr_x = _fit_period(self.control_amp_arr, np.real(data)) period = popt_x[3] period_err = perr_x[3] pi_amp = period / 2 pi_2_amp = period / 4 print("Tau pulse amplitude: {} +- {} FS".format(period, period_err)) print("Pi pulse amplitude: {} +- {} FS".format(pi_amp, period_err / 2)) print("Pi/2 pulse amplitude: {} +- {} FS".format(pi_2_amp, period_err / 4)) if all_plots: fig2, ax2 = plt.subplots(4, 1, sharex=True, figsize=(6.4, 6.4), tight_layout=True) ax21, ax22, ax23, ax24 = ax2 ax21.plot(self.control_amp_arr, np.abs(data)) ax22.plot(self.control_amp_arr, np.angle(data)) ax23.plot(self.control_amp_arr, np.real(data)) ax23.plot(self.control_amp_arr, _func(self.control_amp_arr, *popt_x), '--') ax24.plot(self.control_amp_arr, np.imag(data)) ax21.set_ylabel("Amplitude [FS]") ax22.set_ylabel("Phase [rad]") ax23.set_ylabel("I [FS]") ax24.set_ylabel("Q [FS]") ax2[-1].set_xlabel("Pulse amplitude [FS]") fig2.show() ret_fig.append(fig2) data_max = np.abs(data).max() unit = "" mult = 1.0 if data_max < 1e-6: unit = "n" mult = 1e9 elif data_max < 1e-3: unit = "μ" mult = 1e6 elif data_max < 1e0: unit = "m" mult = 1e3 fig3, ax3 = plt.subplots(tight_layout=True) ax3.plot(self.control_amp_arr, mult * np.real(data), '.') ax3.plot(self.control_amp_arr, mult * _func(self.control_amp_arr, *popt_x), '--') ax3.set_ylabel(f"I quadrature [{unit:s}FS]") ax3.set_xlabel("Pulse amplitude [FS]") fig3.show() ret_fig.append(fig3) return ret_fig def _func(t, offset, amplitude, T2, period, phase): frequency = 1 / period return offset + amplitude * np.exp(-t / T2) * np.cos(math.tau * frequency * t + phase) def _fit_period(x: list[float], y: list[float]) -> tuple[list[float], list[float]]: from scipy.optimize import curve_fit # from scipy.optimize import least_squares pkpk = np.max(y) - np.min(y) offset = np.min(y) + pkpk / 2 amplitude = 0.5 * pkpk T2 = 0.5 * (np.max(x) - np.min(x)) freqs = np.fft.rfftfreq(len(x), x[1] - x[0]) fft = np.fft.rfft(y) frequency = freqs[1 + np.argmax(np.abs(fft[1:]))] period = 1 / frequency first = (y[0] - offset) / amplitude if first > 1.: first = 1. elif first < -1.: first = -1. phase = np.arccos(first) p0 = ( offset, amplitude, T2, period, phase, ) res = curve_fit(_func, x, y, p0=p0) popt = res[0] pcov = res[1] perr = np.sqrt(np.diag(pcov)) offset, amplitude, T2, period, phase = popt return popt, perr # def _residuals(p, x, y): # offset, amplitude, T2, period, phase = p # return _func(x, offset, amplitude, T2, period, phase) - y # res = least_squares(_residuals, p0, args=(x, y)) # # offset, amplitude, T2, period, phase = res.x # return res.x, np.zeros_like(res.x) if __name__ == "__main__": WHICH_QUBIT = 2 # 1 (higher resonator) or 2 (lower resonator) USE_JPA = False WITH_COUPLER = False # Presto's IP address or hostname # ADDRESS = "172.16.17.32" # PORT = 42874 ADDRESS = "127.0.0.1" PORT = 7878 EXT_REF_CLK = False # set to True to lock to an external reference clock jpa_bias_port = 1 if WHICH_QUBIT == 1: if WITH_COUPLER: readout_freq = 6.167_009 * 1e9 # Hz, frequency for resonator readout control_freq = 3.556_520 * 1e9 # Hz else: readout_freq = 6.166_600 * 1e9 # Hz, frequency for resonator readout control_freq = 3.557_866 * 1e9 # Hz control_port = 3 jpa_pump_freq = 2 * 6.169e9 # Hz jpa_pump_pwr = 11 # lmx units jpa_bias = +0.437 # V elif WHICH_QUBIT == 2: if WITH_COUPLER: readout_freq = 6.029_130 * 1e9 # Hz, frequency for resonator readout control_freq = 4.093_042 * 1e9 # Hz else: readout_freq = 6.028_450 * 1e9 # Hz, frequency for resonator readout control_freq = 4.093_372 * 1e9 # Hz control_port = 4 jpa_pump_freq = 2 * 6.031e9 # Hz jpa_pump_pwr = 9 # lmx units jpa_bias = +0.449 # V else: raise ValueError # cavity drive: readout readout_amp = 0.4 # FS readout_duration = 2e-6 # s, duration of the readout pulse readout_port = 1 # qubit drive: control control_duration = 20e-9 # s, duration of the control pulse # cavity readout: sample sample_duration = 4 * 1e-6 # s, duration of the sampling window sample_port = 1 # Rabi experiment num_averages = 1_000 rabi_n = 128 # number of steps when changing duration of control pulse control_amp_arr = np.linspace(0.0, 1.0, rabi_n) # FS, amplitudes for control pulse wait_delay = 200e-6 # s, delay between repetitions to allow the qubit to decay readout_sample_delay = 290 * 1e-9 # s, delay between readout pulse and sample window to account for latency jpa_params = { 'jpa_bias': jpa_bias, 'jpa_bias_port': jpa_bias_port, 'jpa_pump_freq': jpa_pump_freq, 'jpa_pump_pwr': jpa_pump_pwr, } if USE_JPA else None rabi = RabiAmp( readout_freq, control_freq, readout_port, control_port, readout_amp, readout_duration, control_duration, sample_duration, sample_port, control_amp_arr, wait_delay, readout_sample_delay, num_averages, jpa_params, ) rabi.run(ADDRESS, PORT, EXT_REF_CLK)
[ "presto.pulsed.Pulsed", "numpy.fft.rfft", "presto.utils.rotate_opt", "numpy.abs", "numpy.angle", "numpy.imag", "numpy.mean", "numpy.arange", "numpy.exp", "numpy.diag", "os.path.join", "presto.utils.sin2", "numpy.max", "numpy.linspace", "numpy.real", "mla_server.set_dc_bias", "numpy.arccos", "matplotlib.pyplot.subplots", "time.localtime", "presto.utils.get_sourcecode", "h5py.File", "os.path.realpath", "h5py.string_dtype", "scipy.optimize.curve_fit", "time.sleep", "numpy.min", "numpy.cos", "numpy.isscalar", "os.path.splitext", "ast.literal_eval", "os.path.split" ]
[((14644, 14658), 'numpy.fft.rfft', 'np.fft.rfft', (['y'], {}), '(y)\n', (14655, 14658), True, 'import numpy as np\n'), ((14872, 14888), 'numpy.arccos', 'np.arccos', (['first'], {}), '(first)\n', (14881, 14888), True, 'import numpy as np\n'), ((14994, 15023), 'scipy.optimize.curve_fit', 'curve_fit', (['_func', 'x', 'y'], {'p0': 'p0'}), '(_func, x, y, p0=p0)\n', (15003, 15023), False, 'from scipy.optimize import curve_fit\n'), ((17298, 17327), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'rabi_n'], {}), '(0.0, 1.0, rabi_n)\n', (17309, 17327), True, 'import numpy as np\n'), ((7958, 7982), 'presto.utils.get_sourcecode', 'get_sourcecode', (['__file__'], {}), '(__file__)\n', (7972, 7982), False, 'from presto.utils import get_sourcecode, sin2\n'), ((11440, 11468), 'numpy.arange', 'np.arange', (['idx_low', 'idx_high'], {}), '(idx_low, idx_high)\n', (11449, 11468), True, 'import numpy as np\n'), ((12128, 12171), 'numpy.mean', 'np.mean', (['self.store_arr[:, 0, idx]'], {'axis': '(-1)'}), '(self.store_arr[:, 0, idx], axis=-1)\n', (12135, 12171), True, 'import numpy as np\n'), ((12187, 12207), 'presto.utils.rotate_opt', 'rotate_opt', (['resp_arr'], {}), '(resp_arr)\n', (12197, 12207), False, 'from presto.utils import rotate_opt\n'), ((13742, 13773), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'tight_layout': '(True)'}), '(tight_layout=True)\n', (13754, 13773), True, 'import matplotlib.pyplot as plt\n'), ((14463, 14472), 'numpy.max', 'np.max', (['y'], {}), '(y)\n', (14469, 14472), True, 'import numpy as np\n'), ((14475, 14484), 'numpy.min', 'np.min', (['y'], {}), '(y)\n', (14481, 14484), True, 'import numpy as np\n'), ((14498, 14507), 'numpy.min', 'np.min', (['y'], {}), '(y)\n', (14504, 14507), True, 'import numpy as np\n'), ((15079, 15092), 'numpy.diag', 'np.diag', (['pcov'], {}), '(pcov)\n', (15086, 15092), True, 'import numpy as np\n'), ((1850, 2153), 'presto.pulsed.Pulsed', 'pulsed.Pulsed', ([], {'address': 'presto_address', 'port': 'presto_port', 'ext_ref_clk': 'ext_ref_clk', 'adc_mode': 'AdcMode.Mixed', 'adc_fsample': 'AdcFSample.G2', 'dac_mode': '[DacMode.Mixed42, DacMode.Mixed02, DacMode.Mixed02, DacMode.Mixed02]', 'dac_fsample': '[DacFSample.G10, DacFSample.G6, DacFSample.G6, DacFSample.G6]'}), '(address=presto_address, port=presto_port, ext_ref_clk=\n ext_ref_clk, adc_mode=AdcMode.Mixed, adc_fsample=AdcFSample.G2,\n dac_mode=[DacMode.Mixed42, DacMode.Mixed02, DacMode.Mixed02, DacMode.\n Mixed02], dac_fsample=[DacFSample.G10, DacFSample.G6, DacFSample.G6,\n DacFSample.G6])\n', (1863, 2153), False, 'from presto import pulsed\n'), ((5171, 5187), 'presto.utils.sin2', 'sin2', (['control_ns'], {}), '(control_ns)\n', (5175, 5187), False, 'from presto.utils import get_sourcecode, sin2\n'), ((7358, 7384), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (7374, 7384), False, 'import os\n'), ((7459, 7485), 'os.path.split', 'os.path.split', (['script_path'], {}), '(script_path)\n', (7472, 7485), False, 'import os\n'), ((7790, 7838), 'os.path.join', 'os.path.join', (['current_dir', '"""data"""', 'save_basename'], {}), "(current_dir, 'data', save_basename)\n", (7802, 7838), False, 'import os\n'), ((7903, 7934), 'os.path.realpath', 'os.path.realpath', (['save_filename'], {}), '(save_filename)\n', (7919, 7934), False, 'import os\n'), ((8059, 8084), 'h5py.File', 'h5py.File', (['save_path', '"""w"""'], {}), "(save_path, 'w')\n", (8068, 8084), False, 'import h5py\n'), ((8110, 8145), 'h5py.string_dtype', 'h5py.string_dtype', ([], {'encoding': '"""utf-8"""'}), "(encoding='utf-8')\n", (8127, 8145), False, 'import h5py\n'), ((9028, 9057), 'h5py.File', 'h5py.File', (['load_filename', '"""r"""'], {}), "(load_filename, 'r')\n", (9037, 9057), False, 'import h5py\n'), ((11340, 11366), 'numpy.abs', 'np.abs', (['(self.t_arr - t_low)'], {}), '(self.t_arr - t_low)\n', (11346, 11366), True, 'import numpy as np\n'), ((11397, 11424), 'numpy.abs', 'np.abs', (['(self.t_arr - t_high)'], {}), '(self.t_arr - t_high)\n', (11403, 11424), True, 'import numpy as np\n'), ((11613, 11663), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'sharex': '(True)', 'tight_layout': '(True)'}), '(2, 1, sharex=True, tight_layout=True)\n', (11625, 11663), True, 'import matplotlib.pyplot as plt\n'), ((12287, 12300), 'numpy.real', 'np.real', (['data'], {}), '(data)\n', (12294, 12300), True, 'import numpy as np\n'), ((12706, 12776), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(4)', '(1)'], {'sharex': '(True)', 'figsize': '(6.4, 6.4)', 'tight_layout': '(True)'}), '(4, 1, sharex=True, figsize=(6.4, 6.4), tight_layout=True)\n', (12718, 12776), True, 'import matplotlib.pyplot as plt\n'), ((14234, 14274), 'numpy.cos', 'np.cos', (['(math.tau * frequency * t + phase)'], {}), '(math.tau * frequency * t + phase)\n', (14240, 14274), True, 'import numpy as np\n'), ((14562, 14571), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (14568, 14571), True, 'import numpy as np\n'), ((14574, 14583), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (14580, 14583), True, 'import numpy as np\n'), ((3169, 3243), 'mla_server.set_dc_bias', 'set_dc_bias', (["self.jpa_params['jpa_bias_port']", "self.jpa_params['jpa_bias']"], {}), "(self.jpa_params['jpa_bias_port'], self.jpa_params['jpa_bias'])\n", (3180, 3243), False, 'from mla_server import set_dc_bias\n'), ((3260, 3275), 'time.sleep', 'time.sleep', (['(1.0)'], {}), '(1.0)\n', (3270, 3275), False, 'import time\n'), ((6996, 7046), 'mla_server.set_dc_bias', 'set_dc_bias', (["self.jpa_params['jpa_bias_port']", '(0.0)'], {}), "(self.jpa_params['jpa_bias_port'], 0.0)\n", (7007, 7046), False, 'from mla_server import set_dc_bias\n'), ((7516, 7549), 'os.path.splitext', 'os.path.splitext', (['script_basename'], {}), '(script_basename)\n', (7532, 7549), False, 'import os\n'), ((7634, 7650), 'time.localtime', 'time.localtime', ([], {}), '()\n', (7648, 7650), False, 'import time\n'), ((10298, 10339), 'ast.literal_eval', 'ast.literal_eval', (["h5f.attrs['jpa_params']"], {}), "(h5f.attrs['jpa_params'])\n", (10314, 10339), False, 'import ast\n'), ((11879, 11910), 'numpy.abs', 'np.abs', (['self.store_arr[0, 0, :]'], {}), '(self.store_arr[0, 0, :])\n', (11885, 11910), True, 'import numpy as np\n'), ((11952, 11985), 'numpy.angle', 'np.angle', (['self.store_arr[0, 0, :]'], {}), '(self.store_arr[0, 0, :])\n', (11960, 11985), True, 'import numpy as np\n'), ((12862, 12874), 'numpy.abs', 'np.abs', (['data'], {}), '(data)\n', (12868, 12874), True, 'import numpy as np\n'), ((12920, 12934), 'numpy.angle', 'np.angle', (['data'], {}), '(data)\n', (12928, 12934), True, 'import numpy as np\n'), ((12980, 12993), 'numpy.real', 'np.real', (['data'], {}), '(data)\n', (12987, 12993), True, 'import numpy as np\n'), ((13127, 13140), 'numpy.imag', 'np.imag', (['data'], {}), '(data)\n', (13134, 13140), True, 'import numpy as np\n'), ((13440, 13452), 'numpy.abs', 'np.abs', (['data'], {}), '(data)\n', (13446, 13452), True, 'import numpy as np\n'), ((13820, 13833), 'numpy.real', 'np.real', (['data'], {}), '(data)\n', (13827, 13833), True, 'import numpy as np\n'), ((14216, 14231), 'numpy.exp', 'np.exp', (['(-t / T2)'], {}), '(-t / T2)\n', (14222, 14231), True, 'import numpy as np\n'), ((14695, 14710), 'numpy.abs', 'np.abs', (['fft[1:]'], {}), '(fft[1:])\n', (14701, 14710), True, 'import numpy as np\n'), ((8683, 8720), 'numpy.isscalar', 'np.isscalar', (['self.__dict__[attribute]'], {}), '(self.__dict__[attribute])\n', (8694, 8720), True, 'import numpy as np\n')]
import copy import warnings from collections.abc import Iterable from inspect import Parameter, signature import numpy as np from sklearn.utils.validation import ( check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn, ) from ._label import MISSING_LABEL, check_missing_label, is_unlabeled def check_scalar( x, name, target_type, min_inclusive=True, max_inclusive=True, min_val=None, max_val=None, ): """Validate scalar parameters type and value. Parameters ---------- x : object The scalar parameter to validate. name : str The name of the parameter to be printed in error messages. target_type : type or tuple Acceptable data types for the parameter. min_val : float or int, optional (default=None) The minimum valid value the parameter can take. If None (default) it is implied that the parameter does not have a lower bound. min_inclusive : bool, optional (default=True) If true, the minimum valid value is inclusive, otherwise exclusive. max_val : float or int, optional (default=None) The maximum valid value the parameter can take. If None (default) it is implied that the parameter does not have an upper bound. max_inclusive : bool, optional (default=True) If true, the maximum valid value is inclusive, otherwise exclusive. Raises ------- TypeError If the parameter's type does not match the desired type. ValueError If the parameter's value violates the given bounds. """ if not isinstance(x, target_type): raise TypeError( "`{}` must be an instance of {}, not {}.".format( name, target_type, type(x) ) ) if min_inclusive: if min_val is not None and x < min_val: raise ValueError( "`{}`= {}, must be >= " "{}.".format(name, x, min_val) ) else: if min_val is not None and x <= min_val: raise ValueError( "`{}`= {}, must be > " "{}.".format(name, x, min_val) ) if max_inclusive: if max_val is not None and x > max_val: raise ValueError( "`{}`= {}, must be <= " "{}.".format(name, x, max_val) ) else: if max_val is not None and x >= max_val: raise ValueError( "`{}`= {}, must be < " "{}.".format(name, x, max_val) ) def check_classifier_params(classes, missing_label, cost_matrix=None): """Check whether the parameters are compatible to each other (only if `classes` is not None). Parameters ---------- classes : array-like, shape (n_classes) Array of class labels. missing_label : {number, str, None, np.nan} Symbol to represent a missing label. cost_matrix : array-like, shape (n_classes, n_classes), default=None Cost matrix. If None, cost matrix will be not checked. """ check_missing_label(missing_label) if classes is not None: check_classes(classes) dtype = np.array(classes).dtype check_missing_label(missing_label, target_type=dtype, name="classes") n_labeled = is_unlabeled(y=classes, missing_label=missing_label).sum() if n_labeled > 0: raise ValueError( f"`classes={classes}` contains " f"`missing_label={missing_label}.`" ) if cost_matrix is not None: check_cost_matrix(cost_matrix=cost_matrix, n_classes=len(classes)) else: if cost_matrix is not None: raise ValueError( "You cannot specify 'cost_matrix' without " "specifying 'classes'." ) def check_classes(classes): """Check whether class labels are uniformly strings or numbers. Parameters ---------- classes : array-like, shape (n_classes) Array of class labels. """ if not isinstance(classes, Iterable): raise TypeError( "'classes' is not iterable. Got {}".format(type(classes)) ) try: classes_sorted = np.array(sorted(set(classes))) if len(classes) != len(classes_sorted): raise ValueError("Duplicate entries in 'classes'.") except TypeError: types = sorted(t.__qualname__ for t in set(type(v) for v in classes)) raise TypeError( "'classes' must be uniformly strings or numbers. Got {}".format( types ) ) def check_class_prior(class_prior, n_classes): """Check if the class_prior is a valid prior. Parameters ---------- class_prior : numeric | array_like, shape (n_classes) A class prior. n_classes : int The number of classes. Returns ------- class_prior : np.ndarray, shape (n_classes) Numpy array as prior. """ if class_prior is None: raise TypeError("'class_prior' must not be None.") check_scalar(n_classes, name="n_classes", target_type=int, min_val=1) if np.isscalar(class_prior): check_scalar( class_prior, name="class_prior", target_type=(int, float), min_val=0, ) class_prior = np.array([class_prior] * n_classes) else: class_prior = check_array(class_prior, ensure_2d=False) is_negative = np.sum(class_prior < 0) if class_prior.shape != (n_classes,) or is_negative: raise ValueError( "`class_prior` must be either a non-negative" "float or a list of `n_classes` non-negative " "floats." ) return class_prior.reshape(-1) def check_cost_matrix( cost_matrix, n_classes, only_non_negative=False, contains_non_zero=False, diagonal_is_zero=False, ): """Check whether cost matrix has shape `(n_classes, n_classes)`. Parameters ---------- cost_matrix : array-like, shape (n_classes, n_classes) Cost matrix. n_classes : int Number of classes. only_non_negative : bool, optional (default=True) This parameter determines whether the matrix must contain only non negative cost entries. contains_non_zero : bool, optional (default=True) This parameter determines whether the matrix must contain at least on non-zero cost entry. diagonal_is_zero : bool, optional (default=True) This parameter determines whether the diagonal cost entries must be zero. Returns ------- cost_matrix_new : np.ndarray, shape (n_classes, n_classes) Numpy array as cost matrix. """ check_scalar(n_classes, target_type=int, name="n_classes", min_val=1) cost_matrix_new = check_array( np.array(cost_matrix, dtype=float), ensure_2d=True ) if cost_matrix_new.shape != (n_classes, n_classes): raise ValueError( "'cost_matrix' must have shape ({}, {}). " "Got {}.".format(n_classes, n_classes, cost_matrix_new.shape) ) if np.sum(cost_matrix_new < 0) > 0: if only_non_negative: raise ValueError( "'cost_matrix' must contain only non-negative cost entries." ) else: warnings.warn("'cost_matrix' contains negative cost entries.") if n_classes != 1 and np.sum(cost_matrix_new != 0) == 0: if contains_non_zero: raise ValueError( "'cost_matrix' must contain at least one non-zero cost " "entry." ) else: warnings.warn( "'cost_matrix' contains contains no non-zero cost entry." ) if np.sum(np.diag(cost_matrix_new) != 0) > 0: if diagonal_is_zero: raise ValueError( "'cost_matrix' must contain only cost entries being zero on " "its diagonal." ) else: warnings.warn( "'cost_matrix' contains non-zero cost entries on its diagonal." ) return cost_matrix_new def check_X_y( X=None, y=None, X_cand=None, sample_weight=None, sample_weight_cand=None, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, allow_nan=None, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, estimator=None, missing_label=MISSING_LABEL, ): """Input validation for standard estimators. Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : nd-array, list or sparse matrix Labeled input data. y : nd-array, list or sparse matrix Labels for X. X_cand : nd-array, list or sparse matrix (default=None) Unlabeled input data sample_weight : array-like of shape (n_samples,) (default=None) Sample weights. sample_weight_cand : array-like of shape (n_candidates,) (default=None) Sample weights of the candidates. accept_sparse : string, boolean or list of string (default=False) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool (default=True) If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean or 'allow-nan', (default=True) Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` ensure_2d : boolean (default=True) Whether to raise a value error if X is not 2D. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. allow_nan : boolean (default=None) Whether to allow np.nan in y. ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. missing_label : {scalar, string, np.nan, None}, (default=np.nan) Value to represent a missing label. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. candidates : object The converted and validated candidates Only returned if candidates is not None. sample_weight : np.ndarray The converted and validated sample_weight. sample_weight_cand : np.ndarray The converted and validated sample_weight_cand. Only returned if candidates is not None. """ if allow_nan is None: allow_nan = True if missing_label is np.nan else False if X is not None: X = check_array( X, accept_sparse=accept_sparse, accept_large_sparse=accept_large_sparse, dtype=dtype, order=order, copy=copy, force_all_finite=force_all_finite, ensure_2d=ensure_2d, allow_nd=allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=ensure_min_features, estimator=estimator, ) if y is not None: if multi_output: y = check_array( y, accept_sparse="csr", force_all_finite=True, ensure_2d=False, dtype=None, ) else: y = column_or_1d(y, warn=True) assert_all_finite(y, allow_nan=allow_nan) if y_numeric and y.dtype.kind == "O": y = y.astype(np.float64) if X is not None and y is not None: check_consistent_length(X, y) if sample_weight is None: sample_weight = np.ones(y.shape) sample_weight = check_array(sample_weight, ensure_2d=False) check_consistent_length(y, sample_weight) if ( y.ndim > 1 and y.shape[1] > 1 or sample_weight.ndim > 1 and sample_weight.shape[1] > 1 ): check_consistent_length(y.T, sample_weight.T) if X_cand is not None: X_cand = check_array( X_cand, accept_sparse=accept_sparse, accept_large_sparse=accept_large_sparse, dtype=dtype, order=order, copy=copy, force_all_finite=force_all_finite, ensure_2d=ensure_2d, allow_nd=allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=ensure_min_features, estimator=estimator, ) if X is not None and X_cand.shape[1] != X.shape[1]: raise ValueError( "The number of features of candidates does not match" "the number of features of X" ) if sample_weight_cand is None: sample_weight_cand = np.ones(len(X_cand)) sample_weight_cand = check_array(sample_weight_cand, ensure_2d=False) check_consistent_length(X_cand, sample_weight_cand) if X_cand is None: return X, y, sample_weight else: return X, y, X_cand, sample_weight, sample_weight_cand def check_random_state(random_state, seed_multiplier=None): """Check validity of the given random state. Parameters ---------- random_state : None | int | instance of RandomState If random_state is None, return the RandomState singleton used by np.random. If random_state is an int, return a new RandomState. If random_state is already a RandomState instance, return it. Otherwise raise ValueError. seed_multiplier : None | int, optional (default=None) If the random_state and seed_multiplier are not None, draw a new int from the random state, multiply it with the multiplier, and use the product as the seed of a new random state. Returns ------- random_state: instance of RandomState The validated random state. """ if random_state is None or seed_multiplier is None: return check_random_state_sklearn(random_state) check_scalar( seed_multiplier, name="seed_multiplier", target_type=int, min_val=1 ) random_state = copy.deepcopy(random_state) random_state = check_random_state_sklearn(random_state) seed = (random_state.randint(1, 2**31) * seed_multiplier) % (2**31) return np.random.RandomState(seed) def check_indices(indices, A, dim="adaptive", unique=True): """Check if indices fit to array. Parameters ---------- indices : array-like of shape (n_indices, n_dim) or (n_indices,) The considered indices, where for every `i = 0, ..., n_indices - 1` `indices[i]` is interpreted as an index to the array `A`. A : array-like The array that is indexed. dim : int or tuple of ints The dimensions of the array that are indexed. If `dim` equals `'adaptive'`, `dim` is set to first indices corresponding to the shape of `indices`. E.g., if `indices` is of shape (n_indices,), `dim` is set `0`. unique: bool or `check_unique` If `unique` is `True` unique indices are returned. If `unique` is `'check_unique'` an exception is raised if the indices are not unique. Returns ------- indices: tuple of np.ndarrays or np.ndarray The validated indices. """ indices = check_array(indices, dtype=int, ensure_2d=False) A = check_array(A, allow_nd=True, force_all_finite=False, ensure_2d=False) if unique == "check_unique": if indices.ndim == 1: n_unique_indices = len(np.unique(indices)) else: n_unique_indices = len(np.unique(indices, axis=0)) if n_unique_indices < len(indices): raise ValueError( f"`indices` contains two different indices of the " f"same value." ) elif unique: if indices.ndim == 1: indices = np.unique(indices) else: indices = np.unique(indices, axis=0) check_type(dim, "dim", int, tuple, target_vals=["adaptive"]) if dim == "adaptive": if indices.ndim == 1: dim = 0 else: dim = tuple(range(indices.shape[1])) if isinstance(dim, tuple): for n in dim: check_type(n, "entry of `dim`", int) if A.ndim <= max(dim): raise ValueError( f"`dim` contains entry of value {max(dim)}, but all" f"entries of dim must be smaller than {A.ndim}." ) if len(dim) != indices.shape[1]: raise ValueError( f"shape of `indices` along dimension 1 is " f"{indices.shape[0]}, but must be {len(dim)}" ) indices = tuple(indices.T) for (i, n) in enumerate(indices): if np.any(indices[i] >= A.shape[dim[i]]): raise ValueError( f"`indices[{i}]` contains index of value " f"{np.max(indices[i])} but all indices must be" f" less than {A.shape[dim[i]]}." ) return indices else: if A.ndim <= dim: raise ValueError( f"`dim` has value {dim}, but must be smaller than " f"{A.ndim}." ) if np.any(indices >= A.shape[dim]): raise ValueError( f"`indices` contains index of value " f"{np.max(indices)} but all indices must be" f" less than {A.shape[dim]}." ) return indices def check_type( obj, name, *target_types, target_vals=None, indicator_funcs=None ): """Check if obj is one of the given types. It is also possible to allow specific values. Further it is possible to pass indicator functions that can also accept obj. Thereby obj must either have a correct type a correct value or be accepted by an indicator function. Parameters ---------- obj: object The object to be checked. name: str The variable name of the object. target_types : iterable The possible types. target_vals : iterable, optional (default=None) Possible further values that the object is allowed to equal. indicator_funcs : iterable, optional (default=None) Possible further custom indicator (boolean) functions that accept the object by returning `True` if the object is passed as a parameter. """ target_vals = target_vals if target_vals is not None else [] indicator_funcs = indicator_funcs if indicator_funcs is not None else [] wrong_type = not isinstance(obj, target_types) wrong_value = obj not in target_vals wrong_index = all(not i_func(obj) for i_func in indicator_funcs) if wrong_type and wrong_value and wrong_index: error_str = f"`{name}` " if len(target_types) == 0 and len(target_vals) == 0: error_str += f" must" if len(target_vals) == 0 and len(target_types) > 0: error_str += f" has type `{type(obj)}`, but must" elif len(target_vals) > 0 and len(target_types) == 0: error_str += f" has value `{obj}`, but must" else: error_str += f" has type `{type(obj)}` and value `{obj}`, but must" if len(target_types) == 1: error_str += f" have type `{target_types[0]}`" elif 1 <= len(target_types) <= 3: error_str += " have type" for i in range(len(target_types) - 1): error_str += f" `{target_types[i]}`," error_str += f" or `{target_types[len(target_types) - 1]}`" elif len(target_types) > 3: error_str += ( f" have one of the following types: {set(target_types)}" ) if len(target_vals) > 0: if len(target_types) > 0 and len(indicator_funcs) == 0: error_str += " or" elif len(target_types) > 0 and len(indicator_funcs) > 0: error_str += "," error_str += ( f" equal one of the following values: {set(target_vals)}" ) if len(indicator_funcs) > 0: if len(target_types) > 0 or len(target_vals) > 0: error_str += " or" error_str += ( f" be accepted by one of the following custom boolean " f"functions: {set(i_f.__name__ for i_f in indicator_funcs)}" ) raise TypeError(error_str + ".") def check_callable(func, name, n_free_parameters=None): """Checks if function is a callable and if the number of free parameters is correct. Parameters ---------- func: callable The functions to be validated. name: str The name of the function n_free_parameters: int, optional (default=None) The number of free parameters. If `n_free_parameters` is `None`, `n_free_parameters` is set to `1`. """ if n_free_parameters is None: n_free_parameters = 1 if not callable(func): raise TypeError( f"`{name}` must be callable. " f"`{name}` is of type {type(func)}" ) # count the number of arguments that have no default value n_free_params = len( list( filter( lambda x: x.default == Parameter.empty, signature(func).parameters.values(), ) ) ) if n_free_params != n_free_parameters: raise ValueError( f"The number of free parameters of the callable has to " f"equal {n_free_parameters}. " f"The number of free parameters is {n_free_params}." ) def check_bound( bound=None, X=None, ndim=2, epsilon=0, bound_must_be_given=False ): """Validates bound and returns the bound of X if bound is None. `bound` or `X` must not be None. Parameters ---------- bound: array-like, shape (2, ndim), optional (default=None) The given bound of shape [[x1_min, x2_min, ..., xndim_min], [x1_max, x2_max, ..., xndim_max]] X: matrix-like, shape (n_samples, ndim), optional (default=None) The sample matrix X is the feature matrix representing samples. ndim: int, optional (default=2) The number of dimensions. epsilon: float, optional (default=0) The minimal distance between the returned bound and the values of `X`, if `bound` is not specified. bound_must_be_given: bool, optional (default=False) Whether it is allowed for the bound to be `None` and to be inferred by `X`. Returns ------- bound: array-like, shape (2, ndim), optional (default=None) The given bound or bound of X. """ if X is not None: X = check_array(X) if X.shape[1] != ndim: raise ValueError( f"`X` along axis 1 must be of length {ndim}. " f"`X` along axis 1 is of length {X.shape[1]}." ) if bound is not None: bound = check_array(bound) if bound.shape != (2, ndim): raise ValueError( f"Shape of `bound` must be (2, {ndim}). " f"Shape of `bound` is {bound.shape}." ) elif bound_must_be_given: raise ValueError("`bound` must not be `None`.") if bound is None and X is not None: minima = np.nanmin(X, axis=0) - epsilon maxima = np.nanmax(X, axis=0) + epsilon bound = np.append(minima.reshape(1, -1), maxima.reshape(1, -1), axis=0) return bound elif bound is not None and X is not None: if np.any(np.logical_or(bound[0] > X, X > bound[1])): warnings.warn("`X` contains values not within range of `bound`.") return bound elif bound is not None: return bound else: raise ValueError("`X` or `bound` must not be None.") def check_budget_manager( budget, budget_manager, default_budget_manager_class, default_budget_manager_dict=None, ): """Validate if budget manager is a budgetmanager class and create a copy 'budget_manager_'. """ if default_budget_manager_dict is None: default_budget_manager_dict = {} if budget_manager is None: budget_manager_ = default_budget_manager_class( budget=budget, **default_budget_manager_dict ) else: if budget is not None and budget != budget_manager.budget: warnings.warn( "budgetmanager is already given such that the budget " "is not used. The given budget differs from the " "budget_managers budget." ) budget_manager_ = copy.deepcopy(budget_manager) return budget_manager_
[ "numpy.sum", "numpy.ones", "sklearn.utils.validation.check_consistent_length", "numpy.diag", "numpy.unique", "numpy.random.RandomState", "numpy.max", "inspect.signature", "sklearn.utils.validation.check_array", "copy.deepcopy", "sklearn.utils.validation.column_or_1d", "numpy.nanmax", "numpy.isscalar", "numpy.nanmin", "numpy.any", "sklearn.utils.validation.check_random_state", "numpy.array", "numpy.logical_or", "sklearn.utils.validation.assert_all_finite", "warnings.warn" ]
[((5175, 5199), 'numpy.isscalar', 'np.isscalar', (['class_prior'], {}), '(class_prior)\n', (5186, 5199), True, 'import numpy as np\n'), ((17167, 17194), 'copy.deepcopy', 'copy.deepcopy', (['random_state'], {}), '(random_state)\n', (17180, 17194), False, 'import copy\n'), ((17214, 17254), 'sklearn.utils.validation.check_random_state', 'check_random_state_sklearn', (['random_state'], {}), '(random_state)\n', (17240, 17254), True, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((17339, 17366), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (17360, 17366), True, 'import numpy as np\n'), ((18350, 18398), 'sklearn.utils.validation.check_array', 'check_array', (['indices'], {'dtype': 'int', 'ensure_2d': '(False)'}), '(indices, dtype=int, ensure_2d=False)\n', (18361, 18398), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((18407, 18477), 'sklearn.utils.validation.check_array', 'check_array', (['A'], {'allow_nd': '(True)', 'force_all_finite': '(False)', 'ensure_2d': '(False)'}), '(A, allow_nd=True, force_all_finite=False, ensure_2d=False)\n', (18418, 18477), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((5373, 5408), 'numpy.array', 'np.array', (['([class_prior] * n_classes)'], {}), '([class_prior] * n_classes)\n', (5381, 5408), True, 'import numpy as np\n'), ((5441, 5482), 'sklearn.utils.validation.check_array', 'check_array', (['class_prior'], {'ensure_2d': '(False)'}), '(class_prior, ensure_2d=False)\n', (5452, 5482), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((5505, 5528), 'numpy.sum', 'np.sum', (['(class_prior < 0)'], {}), '(class_prior < 0)\n', (5511, 5528), True, 'import numpy as np\n'), ((6906, 6940), 'numpy.array', 'np.array', (['cost_matrix'], {'dtype': 'float'}), '(cost_matrix, dtype=float)\n', (6914, 6940), True, 'import numpy as np\n'), ((7191, 7218), 'numpy.sum', 'np.sum', (['(cost_matrix_new < 0)'], {}), '(cost_matrix_new < 0)\n', (7197, 7218), True, 'import numpy as np\n'), ((13632, 13948), 'sklearn.utils.validation.check_array', 'check_array', (['X'], {'accept_sparse': 'accept_sparse', 'accept_large_sparse': 'accept_large_sparse', 'dtype': 'dtype', 'order': 'order', 'copy': 'copy', 'force_all_finite': 'force_all_finite', 'ensure_2d': 'ensure_2d', 'allow_nd': 'allow_nd', 'ensure_min_samples': 'ensure_min_samples', 'ensure_min_features': 'ensure_min_features', 'estimator': 'estimator'}), '(X, accept_sparse=accept_sparse, accept_large_sparse=\n accept_large_sparse, dtype=dtype, order=order, copy=copy,\n force_all_finite=force_all_finite, ensure_2d=ensure_2d, allow_nd=\n allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=\n ensure_min_features, estimator=estimator)\n', (13643, 13948), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((14573, 14602), 'sklearn.utils.validation.check_consistent_length', 'check_consistent_length', (['X', 'y'], {}), '(X, y)\n', (14596, 14602), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((14706, 14749), 'sklearn.utils.validation.check_array', 'check_array', (['sample_weight'], {'ensure_2d': '(False)'}), '(sample_weight, ensure_2d=False)\n', (14717, 14749), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((14758, 14799), 'sklearn.utils.validation.check_consistent_length', 'check_consistent_length', (['y', 'sample_weight'], {}), '(y, sample_weight)\n', (14781, 14799), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((15062, 15383), 'sklearn.utils.validation.check_array', 'check_array', (['X_cand'], {'accept_sparse': 'accept_sparse', 'accept_large_sparse': 'accept_large_sparse', 'dtype': 'dtype', 'order': 'order', 'copy': 'copy', 'force_all_finite': 'force_all_finite', 'ensure_2d': 'ensure_2d', 'allow_nd': 'allow_nd', 'ensure_min_samples': 'ensure_min_samples', 'ensure_min_features': 'ensure_min_features', 'estimator': 'estimator'}), '(X_cand, accept_sparse=accept_sparse, accept_large_sparse=\n accept_large_sparse, dtype=dtype, order=order, copy=copy,\n force_all_finite=force_all_finite, ensure_2d=ensure_2d, allow_nd=\n allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=\n ensure_min_features, estimator=estimator)\n', (15073, 15383), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((15863, 15911), 'sklearn.utils.validation.check_array', 'check_array', (['sample_weight_cand'], {'ensure_2d': '(False)'}), '(sample_weight_cand, ensure_2d=False)\n', (15874, 15911), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((15920, 15971), 'sklearn.utils.validation.check_consistent_length', 'check_consistent_length', (['X_cand', 'sample_weight_cand'], {}), '(X_cand, sample_weight_cand)\n', (15943, 15971), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((17006, 17046), 'sklearn.utils.validation.check_random_state', 'check_random_state_sklearn', (['random_state'], {}), '(random_state)\n', (17032, 17046), True, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((20312, 20343), 'numpy.any', 'np.any', (['(indices >= A.shape[dim])'], {}), '(indices >= A.shape[dim])\n', (20318, 20343), True, 'import numpy as np\n'), ((25798, 25812), 'sklearn.utils.validation.check_array', 'check_array', (['X'], {}), '(X)\n', (25809, 25812), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((26056, 26074), 'sklearn.utils.validation.check_array', 'check_array', (['bound'], {}), '(bound)\n', (26067, 26074), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((27724, 27753), 'copy.deepcopy', 'copy.deepcopy', (['budget_manager'], {}), '(budget_manager)\n', (27737, 27753), False, 'import copy\n'), ((3193, 3210), 'numpy.array', 'np.array', (['classes'], {}), '(classes)\n', (3201, 3210), True, 'import numpy as np\n'), ((7401, 7463), 'warnings.warn', 'warnings.warn', (['"""\'cost_matrix\' contains negative cost entries."""'], {}), '("\'cost_matrix\' contains negative cost entries.")\n', (7414, 7463), False, 'import warnings\n'), ((7490, 7518), 'numpy.sum', 'np.sum', (['(cost_matrix_new != 0)'], {}), '(cost_matrix_new != 0)\n', (7496, 7518), True, 'import numpy as np\n'), ((7723, 7795), 'warnings.warn', 'warnings.warn', (['"""\'cost_matrix\' contains contains no non-zero cost entry."""'], {}), '("\'cost_matrix\' contains contains no non-zero cost entry.")\n', (7736, 7795), False, 'import warnings\n'), ((8085, 8163), 'warnings.warn', 'warnings.warn', (['"""\'cost_matrix\' contains non-zero cost entries on its diagonal."""'], {}), '("\'cost_matrix\' contains non-zero cost entries on its diagonal.")\n', (8098, 8163), False, 'import warnings\n'), ((14148, 14239), 'sklearn.utils.validation.check_array', 'check_array', (['y'], {'accept_sparse': '"""csr"""', 'force_all_finite': '(True)', 'ensure_2d': '(False)', 'dtype': 'None'}), "(y, accept_sparse='csr', force_all_finite=True, ensure_2d=False,\n dtype=None)\n", (14159, 14239), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((14361, 14387), 'sklearn.utils.validation.column_or_1d', 'column_or_1d', (['y'], {'warn': '(True)'}), '(y, warn=True)\n', (14373, 14387), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((14400, 14441), 'sklearn.utils.validation.assert_all_finite', 'assert_all_finite', (['y'], {'allow_nan': 'allow_nan'}), '(y, allow_nan=allow_nan)\n', (14417, 14441), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((14665, 14681), 'numpy.ones', 'np.ones', (['y.shape'], {}), '(y.shape)\n', (14672, 14681), True, 'import numpy as np\n'), ((14971, 15016), 'sklearn.utils.validation.check_consistent_length', 'check_consistent_length', (['y.T', 'sample_weight.T'], {}), '(y.T, sample_weight.T)\n', (14994, 15016), False, 'from sklearn.utils.validation import check_array, column_or_1d, assert_all_finite, check_consistent_length, check_random_state as check_random_state_sklearn\n'), ((19826, 19863), 'numpy.any', 'np.any', (['(indices[i] >= A.shape[dim[i]])'], {}), '(indices[i] >= A.shape[dim[i]])\n', (19832, 19863), True, 'import numpy as np\n'), ((26412, 26432), 'numpy.nanmin', 'np.nanmin', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (26421, 26432), True, 'import numpy as np\n'), ((26460, 26480), 'numpy.nanmax', 'np.nanmax', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (26469, 26480), True, 'import numpy as np\n'), ((27490, 27639), 'warnings.warn', 'warnings.warn', (['"""budgetmanager is already given such that the budget is not used. The given budget differs from the budget_managers budget."""'], {}), "(\n 'budgetmanager is already given such that the budget is not used. The given budget differs from the budget_managers budget.'\n )\n", (27503, 27639), False, 'import warnings\n'), ((7840, 7864), 'numpy.diag', 'np.diag', (['cost_matrix_new'], {}), '(cost_matrix_new)\n', (7847, 7864), True, 'import numpy as np\n'), ((18576, 18594), 'numpy.unique', 'np.unique', (['indices'], {}), '(indices)\n', (18585, 18594), True, 'import numpy as np\n'), ((18645, 18671), 'numpy.unique', 'np.unique', (['indices'], {'axis': '(0)'}), '(indices, axis=0)\n', (18654, 18671), True, 'import numpy as np\n'), ((18929, 18947), 'numpy.unique', 'np.unique', (['indices'], {}), '(indices)\n', (18938, 18947), True, 'import numpy as np\n'), ((18984, 19010), 'numpy.unique', 'np.unique', (['indices'], {'axis': '(0)'}), '(indices, axis=0)\n', (18993, 19010), True, 'import numpy as np\n'), ((26656, 26697), 'numpy.logical_or', 'np.logical_or', (['(bound[0] > X)', '(X > bound[1])'], {}), '(bound[0] > X, X > bound[1])\n', (26669, 26697), True, 'import numpy as np\n'), ((26712, 26777), 'warnings.warn', 'warnings.warn', (['"""`X` contains values not within range of `bound`."""'], {}), "('`X` contains values not within range of `bound`.')\n", (26725, 26777), False, 'import warnings\n'), ((20448, 20463), 'numpy.max', 'np.max', (['indices'], {}), '(indices)\n', (20454, 20463), True, 'import numpy as np\n'), ((19985, 20003), 'numpy.max', 'np.max', (['indices[i]'], {}), '(indices[i])\n', (19991, 20003), True, 'import numpy as np\n'), ((24386, 24401), 'inspect.signature', 'signature', (['func'], {}), '(func)\n', (24395, 24401), False, 'from inspect import Parameter, signature\n')]
#!/usr/bin/env python # coding: utf-8 import argparse import concurrent.futures import logging import numpy as np import pandas as pd import pyBigWig import pysam import os import re import sys from Bio import SeqIO from Bio.Seq import Seq from collections import Counter from numpy.lib.stride_tricks import sliding_window_view from operator import itemgetter from tqdm import tqdm os.environ["CUDA_VISIBLE_DEVICES"] = "" def get_args(): """ Get arguments from command line with argparse. """ parser = argparse.ArgumentParser( prog='aligned_bam_to_cpg_scores.py', description="""Calculate CpG positions and scores from an aligned bam file. Outputs raw and coverage-filtered results in bed and bigwig format, including haplotype-specific results (when available).""") parser.add_argument("-b", "--bam", required=True, metavar="input.bam", help="The aligned BAM file.") parser.add_argument("-f", "--fasta", required=True, metavar="ref.fasta", help="The reference fasta file.") parser.add_argument("-o", "--output_label", required=True, metavar="label", help="Label for output files, which results in [label].bed/bw.") parser.add_argument("-p", "--pileup_mode", required=False, choices=["model", "count"], default="model", help="Use a model-based approach to score modifications across sites (model) " "or a simple count-based approach (count). [default = %(default)s]") parser.add_argument("-d", "--model_dir", required=False, default=None, metavar="/path/to/model/dir", help="Full path to the directory containing the model (*.pb files) to load. [default = None]") parser.add_argument("-m", "--modsites", required=False, choices=["denovo", "reference"], default="denovo", help="Only output CG sites with a modification probability > 0 " "(denovo), or output all CG sites based on the " "supplied reference fasta (reference). [default = %(default)s]") parser.add_argument("-c", "--min_coverage", required=False, default=4, type=int, metavar="int", help="Minimum coverage required for filtered outputs. [default: %(default)d]") parser.add_argument("-q", "--min_mapq", required=False, default=0, type=int, metavar="int", help="Ignore alignments with MAPQ < N. [default: %(default)d]") parser.add_argument("-a", "--hap_tag", required=False, default="HP", metavar="TAG", help="The SAM tag containing haplotype information. [default: %(default)s]") parser.add_argument("-s", "--chunksize", required=False, default=500000, type=int, metavar="int", help="Break reference regions into chunks " "of this size for parallel processing. [default = %(default)d]") parser.add_argument("-t", "--threads", required=False, default=1, type=int, metavar="int", help="Number of threads for parallel processing. [default = %(default)d]") return parser.parse_args() def setup_logging(output_label): """ Set up logging to file. """ logname = "{}-aligned_bam_to_cpg_scores.log".format(output_label) # ensure logging file does not exist, if so remove if os.path.exists(logname): os.remove(logname) # set up logging to file logging.basicConfig(filename=logname, format="%(asctime)s: %(levelname)s: %(message)s", datefmt='%d-%b-%y %H:%M:%S', level=logging.DEBUG) def log_args(args): """ Record argument settings in log file. """ logging.info("Using following argument settings:") for arg, val in vars(args).items(): logging.info("\t--{}: {}".format(arg, val)) def get_regions_to_process(input_bam, input_fasta, chunksize, modsites, pileup_mode, model_dir, min_mapq, hap_tag): """ Breaks reference regions into smaller regions based on chunk size specified. Returns a list of lists that can be used for multiprocessing. Each sublist contains: [bam path (str), fasta path (str), modsites (str), reference name (str), start coordinate (int), stop coordinate (int)] :param input_bam: Path to input bam file. (str) :param input_fasta: Path to reference fasta file. (str) :param chunksize: Chunk size (default = 500000). (int) :param modsites: Filtering method. (str: "denovo", "reference") :param pileup_mode: Site modification calling method. (str: "model", "count") :param model_dir: Full path to model directory to load (if supplied), otherwise is None. :param min_mapq: Minimum mapping quality score. (int) :param hap_tag: The SAM tag label containing haplotype information. (str) :return regions_to_process: List of lists containing region sizes. (list) """ logging.info("get_regions_to_process: Starting chunking.") # open the input bam file with pysam bamIn = pysam.AlignmentFile(input_bam, 'rb') # empty list to store sublists with region information regions_to_process = [] # iterate over reference names and their corresponding lengths references = zip(bamIn.references, bamIn.lengths) for ref, length in references: start = 1 while start < length: end = start + chunksize if end < length: regions_to_process.append([input_bam, input_fasta, modsites, pileup_mode, model_dir, ref, start, end - 1, min_mapq, hap_tag]) else: regions_to_process.append([input_bam, input_fasta, modsites, pileup_mode, model_dir, ref, start, length, min_mapq, hap_tag]) start = start + chunksize # close bam bamIn.close() logging.info("get_regions_to_process: Created {:,} region chunks.\n".format(len(regions_to_process))) return regions_to_process def cg_sites_from_fasta(input_fasta, ref): """ Gets all CG site positions from a given reference region, and make positions keys in a dict with empty strings as vals. :param input_fasta: A path to reference fasta file. (str) :param ref: Reference name. (str) :return cg_sites_ref_set: Set with all CG ref positions. (set) """ # open fasta with BioPython and iterated over records with open(input_fasta) as fh: for record in SeqIO.parse(fh, "fasta"): # if record name matches this particular ref, if record.id == ref: # use regex to find all indices for 'CG' in the reference seq, e.g. the C positions cg_sites_ref_set = {i.start() for i in re.finditer('CG', str(record.seq.upper()))} # there may be some stretches without any CpGs in a reference region # handle these edge cases by adding a dummy value of -1 (an impossible coordinate) if not cg_sites_ref_set: cg_sites_ref_set.add(-1) # once seq is found, stop iterating break # make sure the ref region was matched to a ref fasta seq if not cg_sites_ref_set: logging.error("cg_sites_from_fasta: The sequence '{}' was not found in the reference fasta file.".format(ref)) raise ValueError('The sequence "{}" was not found in the reference fasta file!'.format(ref)) return cg_sites_ref_set def get_mod_sequence(integers): """ A generator that takes an iterable of integers coding mod bases from the SAM Mm tags, and yields an iterable of positions of sequential bases. Example: [5, 12, 0] -> [6, 19, 20] In above example the 6th C, 19th C, and 20th C are modified See this example described in: https://samtools.github.io/hts-specs/SAMtags.pdf; Dec 9 2021 :param integers: Iterable of integers (parsed from SAM Mm tag). (iter) :return mod_sequence: Iterator of integers, 1-based counts of position of modified base in set of bases. (iter) """ base_count = 0 for i in integers: base_count += i + 1 yield base_count def get_base_indices(query_seq, base, reverse): """ Find all occurrences of base in query sequence and make a list of their indices. Return the list of indices. :param query_seq: The original read sequence (not aligned read sequence). (str) :param base: The nucleotide modifications occur on ('C'). (str) :param reverse: True/False whether sequence is reversed. (Boolean) :return: List of integers, 0-based indices of all bases in query seq. (list) """ if reverse == False: return [i.start() for i in re.finditer(base, query_seq)] # if seq stored in reverse, need reverse complement to get correct indices for base # use biopython for this (convert to Seq, get RC, convert to string) else: return [i.start() for i in re.finditer(base, str(Seq(query_seq).reverse_complement()))] def parse_mmtag(query_seq, mmtag, modcode, base, reverse): """ Get a generator of the 0-based indices of the modified bases in the query sequence. :param query_seq: The original read sequence (not aligned read sequence). (str) :param mmtag: The Mm tag obtained for the read ('C+m,5,12,0;'). (str) :param modcode: The modification code to search for in the tag ('C+m'). (str) :param base: The nucleotide modifications occur on ('C'). (str) :param reverse: True/False whether sequence is reversed. (Boolean) :return mod_base_indices: Generator of integers, 0-based indices of all mod bases in query seq. (iter) """ try: # tags are written as: C+m,5,12,0;C+h,5,12,0; # if multiple mod types present in tag, must find relevant one first modline = next(x[len(modcode)+1:] for x in mmtag.split(';') if x.startswith(modcode)) # first get the sequence of the mod bases from tag integers # this is a 1-based position of each mod base in the complete set of this base from this read # e.g., [6, 19, 20] = the 6th, 19th, and 20th C bases are modified in the set of Cs mod_sequence = get_mod_sequence((int(x) for x in modline.split(','))) # get all 0-based indices of this base in this read, e.g. every C position base_indices = get_base_indices(query_seq, base, reverse) # use the mod sequence to identify indices of the mod bases in the read return (base_indices[i - 1] for i in mod_sequence) except: return iter(()) def parse_mltag(mltag): """ Convert 255 discrete integer code into mod score 0-1, return as a generator. This is NOT designed to handle interleaved Ml format for multiple mod types! :param mltag: The Ml tag obtained for the read with('Ml:B:C,204,89,26'). (str) :return: Generator of floats, probabilities of all mod bases in query seq. (iter) """ return (round(x / 256, 3) if x > 0 else 0 for x in mltag) def get_mod_dict(query_seq, mmtag, modcode, base, mltag, reverse): """ Make a dictionary from the Mm and Ml tags, in which the modified base index (in the query seq) is the key and the mod score is the value. This is NOT designed to handle interleaved Ml format for multiple mod types! :param query_seq: The original read sequence (not aligned read sequence). (str) :param mmtag: The Mm tag obtained for the read ('C+m,5,12,0;'). (str) :param modcode: The modification code to search for in the tag ('C+m'). (str) :param base: The nucleotide modifications occur on ('C'). (str) :param mltag: The Ml tag obtained for the read with('Ml:B:C,204,89,26'). (str) :param reverse: True/False whether sequence is reversed. (Boolean) :return mod_dict: Dictionary with mod positions and scores. (dict) """ mod_base_indices = parse_mmtag(query_seq, mmtag, modcode, base, reverse) mod_scores = parse_mltag(mltag) mod_dict = dict(zip(mod_base_indices, mod_scores)) return mod_dict def pileup_from_reads(bamIn, ref, pos_start, pos_stop, min_mapq, hap_tag, modsites): """ For a given region, retrieve all reads. For each read, iterate over positions aligned to this region. Build a list with an entry for each ref position in the region. Each entry has a list of 3-tuples, each of which includes information from a read base read aligned to that site. The 3-tuple contains strand information, modification score, and haplotype. (strand symbol (str), mod score (float), haplotype (int)) Return the unfiltered list of base modification data. :param bamIn: AlignmentFile object of input bam file. :param ref: Reference name. (str) :param pos_start: Start coordinate for region. (int) :param pos_stop: Stop coordinate for region. (int) :param min_mapq: Minimum mapping quality score. (int) :param hap_tag: Name of SAM tag containing haplotype information. (str) :param modsites: Filtering method. (str: "denovo", "reference") :return basemod_data: Unfiltered list of base modification data (list) :return cg_sites_read_set: Set of positions in read consensus sequence with CG, given as reference position. The set is empty unless modsites is 'denovo' (set) """ logging.debug("coordinates {}: {:,}-{:,}: (2) pileup_from_reads".format(ref, pos_start, pos_stop)) basemod_data = [] # These structures are only used for modsites denovo mode pos_pileup = [] pos_pileup_hap1 = [] pos_pileup_hap2 = [] is_denovo_modsites = modsites == "denovo" # iterate over all reads present in this region for read in bamIn.fetch(contig=ref, start=pos_start, stop=pos_stop): # check if passes minimum mapping quality score if read.mapping_quality < min_mapq: #logging.warning("pileup_from_reads: read did not pass minimum mapQV: {}".format(read.query_name)) continue # identify the haplotype tag, if any (default tag = HP) # values are 1 or 2 (for haplotypes), or 0 (no haplotype) # an integer is expected but custom tags can produce strings instead try: hap_val = read.get_tag(hap_tag) try: hap = int(hap_val) except ValueError: logging.error("coordinates {}: {:,}-{:,}: (2) pileup_from_reads: illegal haplotype value {}".format(ref, pos_start, pos_stop, hap_val)) except KeyError: hap = 0 # check for SAM-spec methylation tags # draft tags were Ml and Mm, accepted tags are now ML and MM # check for both types, set defaults to None and change if found mmtag, mltag = None, None try: mmtag = read.get_tag('Mm') mltag = read.get_tag('Ml') except KeyError: pass try: mmtag = read.get_tag('MM') mltag = read.get_tag('ML') except KeyError: pass if mmtag is not None and mltag is not None: if not basemod_data: ref_pos_count = 1 + pos_stop - pos_start basemod_data = [[] for _ in range(ref_pos_count)] if is_denovo_modsites: pos_pileup = [[] for _ in range(ref_pos_count)] pos_pileup_hap1 = [[] for _ in range(ref_pos_count)] pos_pileup_hap2 = [[] for _ in range(ref_pos_count)] is_reverse = bool(read.is_reverse) strand = "+" if is_reverse : strand = "-" rev_strand_offset = len(read.query_sequence) - 2 # note that this could potentially be used for other mod types, but # the Mm and Ml parsing functions are not set up for the interleaved format # e.g., ‘Mm:Z:C+mh,5,12; Ml:B:C,204,26,89,130’ does NOT work # to work it must be one mod type, and one score per mod position mod_dict = get_mod_dict(read.query_sequence, mmtag, 'C+m', 'C', mltag, is_reverse) if True: # iterate over positions for query_pos, ref_pos in read.get_aligned_pairs(matches_only=True)[20:-20]: # make sure ref position is in range of ref target region if ref_pos >= pos_start and ref_pos <= pos_stop: ref_offset = ref_pos - pos_start # building a consensus is MUCH faster when we iterate over reads (vs. by column then by read) # we are building a dictionary with ref position as key and list of bases as val if is_denovo_modsites: query_base = read.query_sequence[query_pos] pos_pileup[ref_offset].append(query_base) if hap == 1: pos_pileup_hap1[ref_offset].append(query_base) elif hap == 2: pos_pileup_hap2[ref_offset].append(query_base) # identify if read is reverse strand or forward to set correct location if is_reverse: location = (rev_strand_offset - query_pos) else: location = query_pos # check if this position has a mod score in the dictionary, # if not assign score of zero score = mod_dict.get(location, 0) # Add tuple with strand, modification score, and haplotype to the list for this position basemod_data[ref_offset].append((strand, score, hap)) # if no SAM-spec methylation tags present, ignore read and log else: logging.warning("pileup_from_reads: read missing MM and/or ML tag(s): {}".format(read.query_name)) cg_sites_read_set = set() if is_denovo_modsites: for refpos_list in (pos_pileup, pos_pileup_hap1, pos_pileup_hap2): last_base = 'N' last_index = 0 for index,v in enumerate(refpos_list): # find the most common base, if no reads present use N if len(v): base = Counter(v).most_common(1)[0][0] else: base = 'N' if last_base == 'C' and base == 'G' : cg_sites_read_set.add(pos_start+last_index) # This restriction recreates the original code behavior: # - Advantage: Method can find a CpG aligning across a deletion in the reference # - Disadvantage: Method will find 'fake' CpG across gaps in the haplotype phasing # # The disadvantage is fixable, but first focus on identical output to make verification easy if base != 'N': last_base = base last_index = index return basemod_data, cg_sites_read_set def filter_basemod_data(basemod_data, cg_sites_read_set, ref, pos_start, pos_stop, input_fasta, modsites): """ Filter the per-position base modification data, based on the modsites option selected: "reference": Keep all sites that match a reference CG site (this includes both modified and unmodified sites). It will exclude all modified sites that are not CG sites, according to the ref sequence. "denovo": Keep all sites which have at least one modification score > 0, per strand. This can include sites that are CG in the reads, but not in the reference. It can exclude CG sites with no modifications on either strand from being written to the bed file. Return the filtered list. :param basemod_data: List of base modification data per position, offset by pos_start. (list) :param cg_sites_read_set: Set with reference coordinates for all CG sites in consensus from reads. (set) :param ref: A path to reference fasta file. (str) :param pos_start: Start coordinate for region. (int) :param pos_stop: Stop coordinate for region. (int) :param modsites: Filtering method. (str: "denovo", "reference") :param ref: Reference name. (str) :return filtered_basemod_data: List of 2-tuples for each position retained after filtering. Each 2-tuple is the reference position and base mod data list. The list is sorted by reference position (list) """ filtered_basemod_data = [] if modsites == "reference": if basemod_data: # Get CG positions in reference cg_sites_ref_set = cg_sites_from_fasta(input_fasta, ref) # Keep all sites that match a reference CG position and have at least one basemod observation. filtered_basemod_data=[(i+pos_start,v) for i, v in enumerate(basemod_data) if (i + pos_start) in cg_sites_ref_set and v] logging.debug("coordinates {}: {:,}-{:,}: (3) filter_basemod_data: sites kept = {:,}".format(ref, pos_start, pos_stop, len(filtered_basemod_data))) elif modsites == "denovo": if basemod_data: # Keep all sites that match position of a read consensus CG site. filtered_basemod_data=[(i+pos_start,v) for i, v in enumerate(basemod_data) if (i + pos_start) in cg_sites_read_set] logging.debug("coordinates {}: {:,}-{:,}: (3) filter_basemod_data: sites kept = {:,}".format(ref, pos_start, pos_stop, len(filtered_basemod_data))) del basemod_data del cg_sites_read_set return filtered_basemod_data def calc_stats(df): """ Gets summary stats from a given dataframe p. :param df: Pandas dataframe. :return: Summary statistics """ total = df.shape[0] mod = df[df['prob'] > 0.5].shape[0] unMod = df[df['prob'] <= 0.5].shape[0] modScore = "." if mod == 0 else str(round(df[df['prob'] > 0.5]['prob'].mean(), 3)) unModScore = "." if unMod == 0 else str(round(df[df['prob'] <= 0.5]['prob'].mean(), 3)) percentMod = 0.0 if mod == 0 else round((mod / total) * 100, 1) return percentMod, mod, unMod, modScore, unModScore def collect_bed_results_count(ref, pos_start, pos_stop, filtered_basemod_data): """ Iterates over reference positions and for each position, makes a pandas dataframe from the sublists. The dataframe is filtered for strands and haplotypes, and summary statistics are calculated with calc_stats(). For each position and strand/haploytpe combination, a sublist of summary information is appended to the bed_results list: [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) mod score, (9) unmod score] This information is used to write the output bed file. :param ref: Reference name. (str) :param pos_start: Start coordinate for region. (int) :param pos_stop: Stop coordinate for region. (int) :param filtered_basemod_data: List of 2-tuples for each position remaining after filtration. Each 2-tuple is the reference position and base mod dat. The list is sorted by reference position (list) :return bed_results: List of sublists with information to write the output bed file. (list) """ logging.debug("coordinates {}: {:,}-{:,}: (4) collect_bed_results_count".format(ref, pos_start, pos_stop)) # intiate empty list to store bed sublists bed_results = [] # iterate over the ref positions and corresponding vals for (refPosition, modinfoList) in filtered_basemod_data: # create pandas dataframe from this list of sublists df = pd.DataFrame(modinfoList, columns=['strand', 'prob', 'hap']) # Filter dataframe based on strand/haplotype combinations, get information, # and create sublists and append to bed_results. # merged strands / haplotype 1 percentMod, mod, unMod, modScore, unModScore = calc_stats(df[df['hap'] == 1]) if mod + unMod >= 1: bed_results.append([ref, refPosition, (refPosition + 1), percentMod, "hap1", mod + unMod, mod, unMod, modScore, unModScore]) # merged strands / haplotype 2 percentMod, mod, unMod, modScore, unModScore = calc_stats(df[df['hap'] == 2]) if mod + unMod >= 1: bed_results.append([ref, refPosition, (refPosition + 1), percentMod, "hap2", mod + unMod, mod, unMod, modScore, unModScore]) # merged strands / both haplotypes percentMod, mod, unMod, modScore, unModScore = calc_stats(df) if mod + unMod >= 1: bed_results.append([ref, refPosition, (refPosition + 1), percentMod, "Total", mod + unMod, mod, unMod, modScore, unModScore]) return bed_results def get_normalized_histo(probs, adj): """ Create the array data structure needed to apply the model, for a given site. :param probs: List of methylation probabilities. (list) :param adj: A 0 or 1 indicating whether previous position was a CG. (int) :return: List with normalized histogram and coverage (if min coverage met), else returns empty list. (list) """ cov = len(probs) if (cov >= 4): hist = np.histogram(probs, bins=20, range=[0, 1])[0] norm = np.linalg.norm(hist) # divide hist by norm and add values to array # add either 0 (not adjacent to a prior CG) or 1 (adjacent to a prior CG) to final spot in array norm_hist = np.append(hist / norm, adj) return [norm_hist, cov] else: return [] def discretize_score(score, coverage): """ Apply a small correction to the model probability to make it compatible with the number of reads at that site. Allows the number of modified and unmodified reads to be estimated. :param score: Modification probability, from model. (float) :param coverage: Number of reads. (int) :return mod_reads: Estimated number of modified reads. (int) :return unmod_reads: Estimated number of unmodified reads. (int) :return adjusted_score: Adjusted probability score, based on percent modified reads. (float) """ # need to round up or round down modified read numbers based on score # which allows a push towards 0/50/100 for adjusted score if score > 50: if score < 65: mod_reads = int(np.floor(score/100 * float(coverage))) else: mod_reads = int(np.ceil(score/100 * float(coverage))) else: if score > 35: mod_reads = int(np.ceil(score/100 * float(coverage))) else: mod_reads = int(np.floor(score/100 * float(coverage))) unmod_reads = int(coverage) - mod_reads if mod_reads == 0: adjusted_score = 0.0 else: adjusted_score = round((mod_reads / (mod_reads + unmod_reads)) * 100, 1) return mod_reads, unmod_reads, adjusted_score def apply_model(refpositions, normhistos, coverages, ref, pos_start, pos_stop, model, hap, bed_results): """ Apply model to make modification calls for all sites using a sliding window approach. Append to a list of results, ultimately for bed file: [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) adjusted probability] :param refpositions: List with all CG positions. (list) :param normhistos: List with all normalized histogram data structures. (list) :param coverages: List with all CG coverages. (list) :param ref: Reference contig name. (str) :param pos_start: Start coordinate for region. (int) :param pos_stop: Stop coordinate for region. (int) :param model: The tensorflow model object. :param hap: Label of haplotype (hap1, hap2, or Total). (str) :param bed_results: List of bed results to which these model results will be appended (list) """ if len(normhistos) > 11: featPad = np.pad(np.stack(normhistos), pad_width=((6, 4), (0, 0)), mode='constant', constant_values=0) featuresWindow = sliding_window_view(featPad, 11, axis=0) featuresWindow = np.swapaxes(featuresWindow, 1, 2) predict = model.predict(featuresWindow) predict = np.clip(predict, 0, 1) for i, position in enumerate(refpositions): model_score = round(predict[i][0] * 100, 1) mod_reads, unmod_reads, adjusted_score = discretize_score(model_score, coverages[i]) bed_results.append((ref, position, (position + 1), model_score, hap, coverages[i], mod_reads, unmod_reads, adjusted_score)) else: logging.warning("coordinates {}: {:,}-{:,}: apply_model: insufficient data for {}".format(ref, pos_start, pos_stop, hap)) def collect_bed_results_model(ref, pos_start, pos_stop, filtered_basemod_data, model_dir): """ Iterates over reference positions and creates normalized histograms of scores, feeds all sites and scores into model function to assign modification probabilities, and creates a list of sublists for writing bed files: [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) adjusted probability] This information is returned and ultimately used to write the output bed file. :param ref: Reference name. (str) :param pos_start: Start coordinate for region. (int) :param pos_stop: Stop coordinate for region. (int) :param filtered_basemod_data: List of 2-tuples for each position remaining after filtration. Each 2-tuple is the reference position and base mod dat. The list is sorted by reference position (list) :param model_dir: Full path to directory containing model. (str) :return bed_results: List of sublists with information to write the output bed file. (list) """ logging.debug("coordinates {}: {:,}-{:,}: (4) collect_bed_results_model".format(ref, pos_start, pos_stop)) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf logging.getLogger('tensorflow').setLevel(logging.ERROR) # this may or may not do anything to help with the greedy thread situation... #tf.config.threading.set_intra_op_parallelism_threads(1) #tf.config.threading.set_inter_op_parallelism_threads(1) model = tf.keras.models.load_model(model_dir, compile=False) total_refpositions, total_normhistos, total_coverages = [], [], [] hap1_refpositions, hap1_normhistos, hap1_coverages = [], [], [] hap2_refpositions, hap2_normhistos, hap2_coverages = [], [], [] # set initial C index for CG location to 0 previousLocation = 0 # iterate over reference positions and values (list containing [strand, score, hap]) in filtered_basemod_data for (refPosition, modinfoList) in filtered_basemod_data: # determine if there is an adjacent prior CG, score appropriately if (refPosition - previousLocation) == 2: adj = 1 else: adj = 0 # update CG position previousLocation = refPosition # build lists for combined haplotypes # returns [norm_hist, cov] if min coverage met, otherwise returns empty list total_result_list = get_normalized_histo([x[1] for x in modinfoList], adj) if total_result_list: total_normhistos.append(total_result_list[0]) total_coverages.append(total_result_list[1]) total_refpositions.append(refPosition) # build lists for hap1 hap1_result_list = get_normalized_histo([x[1] for x in modinfoList if x[2] == 1], adj) if hap1_result_list: hap1_normhistos.append(hap1_result_list[0]) hap1_coverages.append(hap1_result_list[1]) hap1_refpositions.append(refPosition) # build lists for hap2 hap2_result_list = get_normalized_histo([x[1] for x in modinfoList if x[2] == 2], adj) if hap2_result_list: hap2_normhistos.append(hap2_result_list[0]) hap2_coverages.append(hap2_result_list[1]) hap2_refpositions.append(refPosition) # initiate empty list to store all bed results bed_results = [] # run model for total, hap1, hap2, and add to bed results if non-empty list was returned apply_model(total_refpositions, total_normhistos, total_coverages, ref, pos_start, pos_stop, model, "Total", bed_results) apply_model(hap1_refpositions, hap1_normhistos, hap1_coverages, ref, pos_start, pos_stop, model, "hap1", bed_results) apply_model(hap2_refpositions, hap2_normhistos, hap2_coverages, ref, pos_start, pos_stop, model, "hap2", bed_results) return bed_results def run_process_region(arguments): """ Process a given reference region to identify modified bases. Uses pickled args (input_file, ref, pos_start, pos_stop) to run pileup_from_reads() to get all desired sites (based on modsites option), then runs collect_bed_results() to summarize information. The sublists will differ between model or count method, but they always share the first 7 elements: [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, ...] :param arguments: Pickled list. (list) :return bed_results: List of sublists with information to write the output bed file. (list) """ # unpack pickled items: # [bam path (str), fasta path (str), modsites option (str), # pileup_mode option (str), model directory path (str), # reference contig name (str), start coordinate (int), # stop coordinate (int), minimum mapping QV (int), haplotype tag name (str)] input_bam, input_fasta, modsites, pileup_mode, model_dir, ref, pos_start, pos_stop, min_mapq, hap_tag = arguments logging.debug("coordinates {}: {:,}-{:,}: (1) run_process_region: start".format(ref, pos_start, pos_stop)) # open the input bam file with pysam bamIn = pysam.AlignmentFile(input_bam, 'rb') # get all ref sites with mods and information from corresponding aligned reads basemod_data, cg_sites_read_set = pileup_from_reads(bamIn, ref, pos_start, pos_stop, min_mapq, hap_tag, modsites) # filter based on denovo or reference sites filtered_basemod_data = filter_basemod_data(basemod_data, cg_sites_read_set, ref, pos_start, pos_stop, input_fasta, modsites) # bam object no longer needed, close file bamIn.close() if filtered_basemod_data: # summarize the mod results, depends on pileup_mode option selected if pileup_mode == "count": bed_results = collect_bed_results_count(ref, pos_start, pos_stop, filtered_basemod_data) elif pileup_mode == "model": bed_results = collect_bed_results_model(ref, pos_start, pos_stop, filtered_basemod_data, model_dir) else: bed_results = [] logging.debug("coordinates {}: {:,}-{:,}: (5) run_process_region: finish".format(ref, pos_start, pos_stop)) if len(bed_results) > 1: return bed_results else: return def run_process_region_wrapper(arguments): try: return run_process_region(arguments) except Exception as e: sys.stderr.write("Exception thrown in worker process {}: {}\n".format(os.getpid(),e)) raise def run_all_pileup_processing(regions_to_process, threads): """ Function to distribute jobs based on reference regions created. Collects results and returns list for writing output bed file. The bed results will differ based on model or count method, but they always share the first 7 elements: [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, ...] :param regions_to_process: List of sublists defining regions (input_file, ref, pos_start, pos_stop). (list) :param threads: Number of threads to use for multiprocessing. (int) :return filtered_bed_results: List of sublists with information to write the output bed file. (list) """ logging.info("run_all_pileup_processing: Starting parallel processing.\n") # run all jobs progress_bar = None if sys.stderr.isatty(): progress_bar = tqdm(total=len(regions_to_process), miniters=1, smoothing=0) bed_results = [] with concurrent.futures.ProcessPoolExecutor(max_workers=threads) as executor: futures = [executor.submit(run_process_region_wrapper, r) for r in regions_to_process] # Process results in order of completion for future in concurrent.futures.as_completed(futures): bed_result = future.result() bed_results.append(bed_result) if progress_bar: progress_bar.update(1) if progress_bar: progress_bar.close() logging.info("run_all_pileup_processing: Finished parallel processing.\n") # results is a list of sublists, may contain None, remove these filtered_bed_results = [i for i in bed_results if i] # turn list of lists of sublists into list of sublists flattened_bed_results = [i for sublist in filtered_bed_results for i in sublist] # ensure bed results are sorted by ref contig name, start position logging.info("run_all_pileup_processing: Starting sort for bed results.\n") if flattened_bed_results: flattened_bed_results.sort(key=itemgetter(0, 1)) logging.info("run_all_pileup_processing: Finished sort for bed results.\n") return flattened_bed_results def write_output_bed(label, modsites, min_coverage, bed_results): """ Writes output bed file(s) based on information in bed_merge_results (default). Separates results into total, hap1, and hap2. If haplotypes not available, only total is produced. The bed_merge_results list will contain slighty different information depending on the pileup_mode option, but the first 7 fields will be identical: count-based list [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) mod score, (9) unmod score] OR model-based list [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) adjusted probability] :param outname: Name of output bed file to write. (str) :param modsites: "reference" or "denovo", for the CpG detection mode. (str) :param min_coverage: Minimum coverage to retain a site. (int) :param bed_results: List of sublists with information to write the output bed file. (list) :return output_files: List of output bed file names that were successfully written. (list) """ logging.info("write_output_bed: Writing unfiltered output bed files.\n") out_total = "{}.combined.{}.bed".format(label, modsites) out_hap1 = "{}.hap1.{}.bed".format(label, modsites) out_hap2 = "{}.hap2.{}.bed".format(label, modsites) cov_total = "{}.combined.{}.mincov{}.bed".format(label, modsites, min_coverage) cov_hap1 = "{}.hap1.{}.mincov{}.bed".format(label, modsites, min_coverage) cov_hap2 = "{}.hap2.{}.mincov{}.bed".format(label, modsites, min_coverage) # remove any previous version of output files for f in [out_total, out_hap1, out_hap2, cov_total, cov_hap1, cov_hap2]: if os.path.exists(f): os.remove(f) with open(out_total, 'a') as fh_total: with open(out_hap1, 'a') as fh_hap1: with open(out_hap2, 'a') as fh_hap2: for i in bed_results: if i[4] == "Total": fh_total.write("{}\n".format("\t".join([str(j) for j in i]))) elif i[4] == "hap1": fh_hap1.write("{}\n".format("\t".join([str(j) for j in i]))) elif i[4] == "hap2": fh_hap2.write("{}\n".format("\t".join([str(j) for j in i]))) # write coverage-filtered versions of bed files logging.info("write_output_bed: Writing coverage-filtered output bed files, using min coverage = {}.\n".format(min_coverage)) output_files = [] for inBed, covBed in [(out_total, cov_total), (out_hap1, cov_hap1), (out_hap2, cov_hap2)]: # if haplotypes not present, the bed files are empty, remove and do not write cov-filtered version if os.stat(inBed).st_size == 0: os.remove(inBed) else: output_files.append(inBed) # write coverage filtered bed file with open(inBed, 'r') as fh_in, open(covBed, 'a') as fh_out: for line in fh_in: if int(line.split('\t')[5]) >= min_coverage: fh_out.write(line) # check to ensure some sites were written, otherwise remove if os.stat(covBed).st_size == 0: os.remove(covBed) else: output_files.append(covBed) return output_files def make_bed_df(bed, pileup_mode): """ Construct a pandas dataframe from a bed file. count-based list [(0) ref name, (1) start coord, (2) stop coord, (3) % mod sites, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) mod score, (9) unmod score] OR model-based list [(0) ref name, (1) start coord, (2) stop coord, (3) mod probability, (4) haplotype, (5) coverage, (6) mod sites, (7) unmod sites, (8) adjusted probability] :param bed: Name of bed file. :param pileup_mode: Site modification calling method. (str: "model", "count") :return df: Pandas dataframe. """ logging.debug("make_bed_df: Converting '{}' to pandas dataframe.\n".format(bed)) if pileup_mode == "count": df = pd.read_csv(bed, sep='\t', header=None, names = ['chromosome', 'start', 'stop', 'mod_probability', 'haplotype', 'coverage', 'modified_bases', 'unmodified_bases', 'mod_score', 'unmod_score']) df.drop(columns=['modified_bases', 'unmodified_bases', 'mod_score', 'unmod_score', 'haplotype', 'coverage'], inplace=True) elif pileup_mode == "model": df = pd.read_csv(bed, sep='\t', header=None, names = ['chromosome', 'start', 'stop', 'mod_probability', 'haplotype', 'coverage', 'modified_bases', 'unmodified_bases', 'adj_prob']) df.drop(columns=['haplotype', 'coverage', 'modified_bases', 'unmodified_bases', 'adj_prob'], inplace=True) #df.sort_values(by=['chromosome', 'start'], inplace=True) return df def get_bigwig_header_info(input_fasta): """ Get chromosome names and lengths from reference fasta. :param input_fasta: Name of reference fasta file. :return header: List of tuples, containing [ (ref1, length1), (ref2, length2), ...] . """ logging.debug("get_bigwig_header_info: Getting ref:length info from reference fasta.\n") header = [] with open(input_fasta) as fh: for record in SeqIO.parse(fh, "fasta"): header.append((record.id, len(record.seq))) return header def write_bigwig_from_df(df, header, outname): """ Function to write a bigwig file using a pandas dataframe from a bed file. :param df: Pandas dataframe object (created from bed file). :param header: List containing (ref name, length) information. (list of tuples) :param outname: Name of bigwig output file to write (OUT.bw). """ logging.debug("write_bigwig_from_df: Writing bigwig file for '{}'.\n".format(outname)) # first filter reference contigs to match those in bed file # get all unique ref contig names from bed chroms_present = list(df["chromosome"].unique()) # header is a list of tuples, filter to keep only those present in bed # must also sort reference contigs by name filtered_header = sorted([x for x in header if x[0] in chroms_present], key=itemgetter(0)) for i,j in filtered_header: logging.debug("\tHeader includes: '{}', '{}'.".format(i,j)) # raise error if no reference contig names match if not filtered_header: logging.error("No reference contig names match between bed file and reference fasta!") raise ValueError("No reference contig names match between bed file and reference fasta!") # open bigwig object, enable writing mode (default is read only) bw = pyBigWig.open(outname, "w") # must add header to bigwig prior to writing entries bw.addHeader(filtered_header) # iterate over ref contig names for chrom, length in filtered_header: logging.debug("\tAdding entries for '{}'.".format(chrom)) # subset dataframe by chromosome name temp_df = df[df["chromosome"] == chrom] logging.debug("\tNumber of entries = {:,}.".format(temp_df.shape[0])) # add entries in order specified for bigwig objects: # list of chr names: ["chr1", "chr1", "chr1"] # list of start coords: [1, 100, 125] # list of stop coords: ends=[6, 120, 126] # list of vals: values=[0.0, 1.0, 200.0] bw.addEntries(list(temp_df["chromosome"]), list(temp_df["start"]), ends=list(temp_df["stop"]), values=list(temp_df["mod_probability"])) logging.debug("\tFinished entries for '{}'.\n".format(chrom)) # close bigwig object bw.close() def convert_bed_to_bigwig(bed_files, fasta, pileup_mode): """ Write bigwig files for each output bed file. :param bed_files: List of output bed file names. (list) :param fasta: A path to reference fasta file. (str) :param pileup_mode: Site modification calling method. (str: "model", "count") """ logging.info("convert_bed_to_bigwig: Converting {} bed files to bigwig files.\n".format(len(bed_files))) header = get_bigwig_header_info(fasta) for bed in bed_files: outname = "{}.bw".format(bed.split(".bed")[0]) df = make_bed_df(bed, pileup_mode) write_bigwig_from_df(df, header, outname) def main(): args = get_args() setup_logging(args.output_label) log_args(args) if args.pileup_mode == "model": if args.model_dir == None: logging.error("Must supply a model to use when running model-based scoring!") raise ValueError("Must supply a model to use when running model-based scoring!") else: if not os.path.isdir(args.model_dir): logging.error("{} is not a valid directory path!".format(args.model_dir)) raise ValueError("{} is not a valid directory path!".format(args.model_dir)) print("\nChunking regions for multiprocessing.") regions_to_process = get_regions_to_process(args.bam, args.fasta, args.chunksize, args.modsites, args.pileup_mode, args.model_dir, args.min_mapq, args.hap_tag) print("Running multiprocessing on {:,} chunks.".format(len(regions_to_process))) bed_results = run_all_pileup_processing(regions_to_process, args.threads) print("Finished multiprocessing.\nWriting bed files.") bed_files = write_output_bed(args.output_label, args.modsites, args.min_coverage, bed_results) print("Writing bigwig files.") convert_bed_to_bigwig(bed_files, args.fasta, args.pileup_mode) print("Finished.\n") if __name__ == '__main__': main()
[ "os.remove", "Bio.Seq.Seq", "argparse.ArgumentParser", "pandas.read_csv", "re.finditer", "numpy.clip", "numpy.histogram", "numpy.linalg.norm", "pandas.DataFrame", "logging.error", "sys.stderr.isatty", "os.path.exists", "numpy.append", "numpy.swapaxes", "collections.Counter", "numpy.stack", "tensorflow.keras.models.load_model", "Bio.SeqIO.parse", "os.stat", "pysam.AlignmentFile", "numpy.lib.stride_tricks.sliding_window_view", "logging.debug", "os.getpid", "logging.basicConfig", "os.path.isdir", "logging.info", "pyBigWig.open", "operator.itemgetter", "logging.getLogger" ]
[((519, 801), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""aligned_bam_to_cpg_scores.py"""', 'description': '"""Calculate CpG positions and scores from an aligned bam file. Outputs raw and \n coverage-filtered results in bed and bigwig format, including haplotype-specific results (when available)."""'}), '(prog=\'aligned_bam_to_cpg_scores.py\', description=\n """Calculate CpG positions and scores from an aligned bam file. Outputs raw and \n coverage-filtered results in bed and bigwig format, including haplotype-specific results (when available)."""\n )\n', (542, 801), False, 'import argparse\n'), ((4240, 4263), 'os.path.exists', 'os.path.exists', (['logname'], {}), '(logname)\n', (4254, 4263), False, 'import os\n'), ((4326, 4472), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'logname', 'format': '"""%(asctime)s: %(levelname)s: %(message)s"""', 'datefmt': '"""%d-%b-%y %H:%M:%S"""', 'level': 'logging.DEBUG'}), "(filename=logname, format=\n '%(asctime)s: %(levelname)s: %(message)s', datefmt='%d-%b-%y %H:%M:%S',\n level=logging.DEBUG)\n", (4345, 4472), False, 'import logging\n'), ((4619, 4669), 'logging.info', 'logging.info', (['"""Using following argument settings:"""'], {}), "('Using following argument settings:')\n", (4631, 4669), False, 'import logging\n'), ((5830, 5888), 'logging.info', 'logging.info', (['"""get_regions_to_process: Starting chunking."""'], {}), "('get_regions_to_process: Starting chunking.')\n", (5842, 5888), False, 'import logging\n'), ((5942, 5978), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['input_bam', '"""rb"""'], {}), "(input_bam, 'rb')\n", (5961, 5978), False, 'import pysam\n'), ((31278, 31330), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['model_dir'], {'compile': '(False)'}), '(model_dir, compile=False)\n', (31304, 31330), True, 'import tensorflow as tf\n'), ((34891, 34927), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['input_bam', '"""rb"""'], {}), "(input_bam, 'rb')\n", (34910, 34927), False, 'import pysam\n'), ((36951, 37025), 'logging.info', 'logging.info', (['"""run_all_pileup_processing: Starting parallel processing.\n"""'], {}), "('run_all_pileup_processing: Starting parallel processing.\\n')\n", (36963, 37025), False, 'import logging\n'), ((37077, 37096), 'sys.stderr.isatty', 'sys.stderr.isatty', ([], {}), '()\n', (37094, 37096), False, 'import sys\n'), ((37703, 37777), 'logging.info', 'logging.info', (['"""run_all_pileup_processing: Finished parallel processing.\n"""'], {}), "('run_all_pileup_processing: Finished parallel processing.\\n')\n", (37715, 37777), False, 'import logging\n'), ((38123, 38198), 'logging.info', 'logging.info', (['"""run_all_pileup_processing: Starting sort for bed results.\n"""'], {}), "('run_all_pileup_processing: Starting sort for bed results.\\n')\n", (38135, 38198), False, 'import logging\n'), ((39637, 39709), 'logging.info', 'logging.info', (['"""write_output_bed: Writing unfiltered output bed files.\n"""'], {}), "('write_output_bed: Writing unfiltered output bed files.\\n')\n", (39649, 39709), False, 'import logging\n'), ((43792, 43885), 'logging.debug', 'logging.debug', (['"""get_bigwig_header_info: Getting ref:length info from reference fasta.\n"""'], {}), "(\n 'get_bigwig_header_info: Getting ref:length info from reference fasta.\\n')\n", (43805, 43885), False, 'import logging\n'), ((45335, 45362), 'pyBigWig.open', 'pyBigWig.open', (['outname', '"""w"""'], {}), "(outname, 'w')\n", (45348, 45362), False, 'import pyBigWig\n'), ((4273, 4291), 'os.remove', 'os.remove', (['logname'], {}), '(logname)\n', (4282, 4291), False, 'import os\n'), ((7315, 7339), 'Bio.SeqIO.parse', 'SeqIO.parse', (['fh', '"""fasta"""'], {}), "(fh, 'fasta')\n", (7326, 7339), False, 'from Bio import SeqIO\n'), ((24544, 24604), 'pandas.DataFrame', 'pd.DataFrame', (['modinfoList'], {'columns': "['strand', 'prob', 'hap']"}), "(modinfoList, columns=['strand', 'prob', 'hap'])\n", (24556, 24604), True, 'import pandas as pd\n'), ((26235, 26255), 'numpy.linalg.norm', 'np.linalg.norm', (['hist'], {}), '(hist)\n', (26249, 26255), True, 'import numpy as np\n'), ((26435, 26462), 'numpy.append', 'np.append', (['(hist / norm)', 'adj'], {}), '(hist / norm, adj)\n', (26444, 26462), True, 'import numpy as np\n'), ((29027, 29067), 'numpy.lib.stride_tricks.sliding_window_view', 'sliding_window_view', (['featPad', '(11)'], {'axis': '(0)'}), '(featPad, 11, axis=0)\n', (29046, 29067), False, 'from numpy.lib.stride_tricks import sliding_window_view\n'), ((29094, 29127), 'numpy.swapaxes', 'np.swapaxes', (['featuresWindow', '(1)', '(2)'], {}), '(featuresWindow, 1, 2)\n', (29105, 29127), True, 'import numpy as np\n'), ((29195, 29217), 'numpy.clip', 'np.clip', (['predict', '(0)', '(1)'], {}), '(predict, 0, 1)\n', (29202, 29217), True, 'import numpy as np\n'), ((38294, 38369), 'logging.info', 'logging.info', (['"""run_all_pileup_processing: Finished sort for bed results.\n"""'], {}), "('run_all_pileup_processing: Finished sort for bed results.\\n')\n", (38306, 38369), False, 'import logging\n'), ((40264, 40281), 'os.path.exists', 'os.path.exists', (['f'], {}), '(f)\n', (40278, 40281), False, 'import os\n'), ((42671, 42867), 'pandas.read_csv', 'pd.read_csv', (['bed'], {'sep': '"""\t"""', 'header': 'None', 'names': "['chromosome', 'start', 'stop', 'mod_probability', 'haplotype', 'coverage',\n 'modified_bases', 'unmodified_bases', 'mod_score', 'unmod_score']"}), "(bed, sep='\\t', header=None, names=['chromosome', 'start',\n 'stop', 'mod_probability', 'haplotype', 'coverage', 'modified_bases',\n 'unmodified_bases', 'mod_score', 'unmod_score'])\n", (42682, 42867), True, 'import pandas as pd\n'), ((43953, 43977), 'Bio.SeqIO.parse', 'SeqIO.parse', (['fh', '"""fasta"""'], {}), "(fh, 'fasta')\n", (43964, 43977), False, 'from Bio import SeqIO\n'), ((45071, 45162), 'logging.error', 'logging.error', (['"""No reference contig names match between bed file and reference fasta!"""'], {}), "(\n 'No reference contig names match between bed file and reference fasta!')\n", (45084, 45162), False, 'import logging\n'), ((26174, 26216), 'numpy.histogram', 'np.histogram', (['probs'], {'bins': '(20)', 'range': '[0, 1]'}), '(probs, bins=20, range=[0, 1])\n', (26186, 26216), True, 'import numpy as np\n'), ((28916, 28936), 'numpy.stack', 'np.stack', (['normhistos'], {}), '(normhistos)\n', (28924, 28936), True, 'import numpy as np\n'), ((31004, 31035), 'logging.getLogger', 'logging.getLogger', (['"""tensorflow"""'], {}), "('tensorflow')\n", (31021, 31035), False, 'import logging\n'), ((40295, 40307), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (40304, 40307), False, 'import os\n'), ((41321, 41337), 'os.remove', 'os.remove', (['inBed'], {}), '(inBed)\n', (41330, 41337), False, 'import os\n'), ((43099, 43279), 'pandas.read_csv', 'pd.read_csv', (['bed'], {'sep': '"""\t"""', 'header': 'None', 'names': "['chromosome', 'start', 'stop', 'mod_probability', 'haplotype', 'coverage',\n 'modified_bases', 'unmodified_bases', 'adj_prob']"}), "(bed, sep='\\t', header=None, names=['chromosome', 'start',\n 'stop', 'mod_probability', 'haplotype', 'coverage', 'modified_bases',\n 'unmodified_bases', 'adj_prob'])\n", (43110, 43279), True, 'import pandas as pd\n'), ((44867, 44880), 'operator.itemgetter', 'itemgetter', (['(0)'], {}), '(0)\n', (44877, 44880), False, 'from operator import itemgetter\n'), ((47175, 47252), 'logging.error', 'logging.error', (['"""Must supply a model to use when running model-based scoring!"""'], {}), "('Must supply a model to use when running model-based scoring!')\n", (47188, 47252), False, 'import logging\n'), ((9548, 9576), 're.finditer', 're.finditer', (['base', 'query_seq'], {}), '(base, query_seq)\n', (9559, 9576), False, 'import re\n'), ((38268, 38284), 'operator.itemgetter', 'itemgetter', (['(0)', '(1)'], {}), '(0, 1)\n', (38278, 38284), False, 'from operator import itemgetter\n'), ((41280, 41294), 'os.stat', 'os.stat', (['inBed'], {}), '(inBed)\n', (41287, 41294), False, 'import os\n'), ((41787, 41804), 'os.remove', 'os.remove', (['covBed'], {}), '(covBed)\n', (41796, 41804), False, 'import os\n'), ((47379, 47408), 'os.path.isdir', 'os.path.isdir', (['args.model_dir'], {}), '(args.model_dir)\n', (47392, 47408), False, 'import os\n'), ((36198, 36209), 'os.getpid', 'os.getpid', ([], {}), '()\n', (36207, 36209), False, 'import os\n'), ((41741, 41756), 'os.stat', 'os.stat', (['covBed'], {}), '(covBed)\n', (41748, 41756), False, 'import os\n'), ((9806, 9820), 'Bio.Seq.Seq', 'Seq', (['query_seq'], {}), '(query_seq)\n', (9809, 9820), False, 'from Bio.Seq import Seq\n'), ((19141, 19151), 'collections.Counter', 'Counter', (['v'], {}), '(v)\n', (19148, 19151), False, 'from collections import Counter\n')]
import numpy as np def get_monthly_rate(rate) -> float: """ computes the monthy interest rate based on the yearly interest rate :param float rate: the yearly interest rate :return: the monthly interest rate This computation uses the 12th root on the growth factor """ growth_year = rate + 1 growth_month = np.power(growth_year, 1./12) rate_month = growth_month - 1 return rate_month
[ "numpy.power" ]
[((343, 374), 'numpy.power', 'np.power', (['growth_year', '(1.0 / 12)'], {}), '(growth_year, 1.0 / 12)\n', (351, 374), True, 'import numpy as np\n')]
import numpy as np, pyemma as py # from msmbuilder.decomposition.tica import tICA from sklearn.kernel_approximation import Nystroem class Kernel_tica(object): def __init__(self, n_components, lag_time, gamma, # gamma value for rbf kernel n_components_nystroem=100, # number of components for Nystroem kernel approximation landmarks = None, shrinkage = None, weights='empirical' # if 'koopman', use Koopman reweighting for tICA (see Wu, Hao, et al. "Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations." The Journal of Chemical Physics 146.15 (2017): 154104.) ): self._n_components = n_components self._lag_time = lag_time self._n_components_nystroem = n_components_nystroem self._landmarks = landmarks self._gamma = gamma self._nystroem = Nystroem(gamma=gamma, n_components=n_components_nystroem) self._weights = weights # self._tica = tICA(n_components=n_components, lag_time=lag_time, shrinkage=shrinkage) self._shrinkage = shrinkage return def fit(self, sequence_list): if self._landmarks is None: self._nystroem.fit(np.concatenate(sequence_list)) else: print("using landmarks") self._nystroem.fit(self._landmarks) sequence_transformed = [self._nystroem.transform(item) for item in sequence_list] # define tica object at fit() with sequence_list supplied for initialization, as it is required by # Koopman reweighting self._tica = py.coordinates.tica(sequence_transformed, lag=self._lag_time, dim=self._n_components, kinetic_map=True, weights=self._weights) return def transform(self, sequence_list): return self._tica.transform( [self._nystroem.transform(item) for item in sequence_list]) def fit_transform(self, sequence_list): self.fit(sequence_list) return self.transform(sequence_list) def score(self, sequence_list): model = self.__class__(n_components = self._n_components, lag_time=self._lag_time, gamma=self._gamma, n_components_nystroem=self._n_components_nystroem, landmarks=self._landmarks, shrinkage=self._shrinkage) model.fit(sequence_list) return np.sum(model._tica.eigenvalues)
[ "sklearn.kernel_approximation.Nystroem", "pyemma.coordinates.tica", "numpy.sum", "numpy.concatenate" ]
[((975, 1032), 'sklearn.kernel_approximation.Nystroem', 'Nystroem', ([], {'gamma': 'gamma', 'n_components': 'n_components_nystroem'}), '(gamma=gamma, n_components=n_components_nystroem)\n', (983, 1032), False, 'from sklearn.kernel_approximation import Nystroem\n'), ((1691, 1822), 'pyemma.coordinates.tica', 'py.coordinates.tica', (['sequence_transformed'], {'lag': 'self._lag_time', 'dim': 'self._n_components', 'kinetic_map': '(True)', 'weights': 'self._weights'}), '(sequence_transformed, lag=self._lag_time, dim=self.\n _n_components, kinetic_map=True, weights=self._weights)\n', (1710, 1822), True, 'import numpy as np, pyemma as py\n'), ((2549, 2580), 'numpy.sum', 'np.sum', (['model._tica.eigenvalues'], {}), '(model._tica.eigenvalues)\n', (2555, 2580), True, 'import numpy as np, pyemma as py\n'), ((1313, 1342), 'numpy.concatenate', 'np.concatenate', (['sequence_list'], {}), '(sequence_list)\n', (1327, 1342), True, 'import numpy as np, pyemma as py\n')]
import sys sys.path.append('../src/') import os import numpy as np from mask_rcnn.mrcnn import utils import mask_rcnn.mrcnn.model as modellib from mask_rcnn.samples.coco import coco import cv2 import argparse as ap class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 def get_mask_rcnn(model, image, COCO_MODEL_PATH): # Run detection results = model.detect([image], verbose=1) r = results[0] idx = np.where(r['class_ids'] != 0) #select non-background boxes = r['rois'][idx] scores = r['scores'][idx] classes = r['class_ids'][idx] #score threshold = 0.7 idxs = np.where(scores > 0.7) boxes = boxes[idxs] people_scores = scores[idxs] classes = classes[idxs] return boxes, scores, classes def run(read_direc, save_direc, model, COCO_MODEL_PATH, class_names, save_image=False): if os.path.exists('./processed_images_mask.txt'): with open('./processed_images_mask.txt', 'r') as f: processed_files = f.readlines() else: processed_files = [] print('Started:', save_direc, read_direc) if not os.path.exists(save_direc+'/'): os.mkdir(save_direc+'/') if save_image: if not os.path.exists(save_direc+'/images_mask/'): os.mkdir(save_direc + '/images_mask/') i=0 for fi in os.listdir(read_direc): if fi + '\n' in processed_files: print('Skipping ', fi) continue image = cv2.imread(read_direc +fi) #histogram equalization image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) image[:,:,2] = cv2.equalizeHist(image[:,:,2]) image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) i = i+1 if i % 1000 == 0: print('Processed ' + str(i) + 'images') scaler_y = np.shape(image)[0]/960 scaler_x = np.shape(image)[1]/540 image1 = cv2.resize(image, (540, 960)) mask_boxes, mask_scores, mask_classes = get_mask_rcnn(model, image1, COCO_MODEL_PATH) for bbox, score, classid in zip(mask_boxes, mask_scores, mask_classes): bbox[1] = int(bbox[1])*scaler_x bbox[0] = int(bbox[0])*scaler_y bbox[3] = int(bbox[3])*scaler_x bbox[2] = int(bbox[2])*scaler_y with open(save_direc+'/groundtruth_boxes_mask.txt', 'a') as f: f.write(str(fi) + ' ' + str(bbox[1])+ ' ' + str(bbox[0]) + ' ' + str(bbox[3]) + ' ' + str(bbox[2]) + ' ' + str(score) + ' ' + class_names[classid] + '\n') if save_image: cv2.rectangle(image, (int(bbox[1]+1), int(bbox[0]+1)), (int(bbox[3]+1), int(bbox[2]+1)), (0,255,0), 3) cv2.putText(image, class_names[classid], (round(float(bbox[1])), round(float(bbox[0]))), cv2.FONT_HERSHEY_SIMPLEX, 4,(0,0,255),10,cv2.LINE_AA) with open('./processed_images_mask.txt', 'a') as f: f.write(fi + '\n') if save_image: cv2.imwrite(save_direc+'/images_mask/' + str(i) + '.jpg', image) if __name__ == '__main__': parser = ap.ArgumentParser() parser.add_argument('-r', "--readdir", help="Directory with images") parser.add_argument('-s', "--savedir", help="Directory for saving the detection results") parser.add_argument('-i', "--saveimage", action='store_true', help="Save image with predicted bounding box or not") args = vars(parser.parse_args()) read_direc = args['readdir'] save_direc = args['savedir'] COCO_MODEL_PATH = "../src/models/mask_rcnn_coco.h5" MODEL_DIR = os.path.join('mask_rcnn/', "logs") class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'fire hydrant', 'stop sign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush'] config = InferenceConfig() # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True) run(read_direc, save_direc, model, COCO_MODEL_PATH, class_names, args['saveimage']) print('Finished')
[ "sys.path.append", "os.mkdir", "cv2.equalizeHist", "argparse.ArgumentParser", "cv2.cvtColor", "os.path.exists", "numpy.shape", "cv2.imread", "numpy.where", "mask_rcnn.mrcnn.model.MaskRCNN", "os.path.join", "os.listdir", "cv2.resize" ]
[((11, 37), 'sys.path.append', 'sys.path.append', (['"""../src/"""'], {}), "('../src/')\n", (26, 37), False, 'import sys\n'), ((591, 620), 'numpy.where', 'np.where', (["(r['class_ids'] != 0)"], {}), "(r['class_ids'] != 0)\n", (599, 620), True, 'import numpy as np\n'), ((831, 853), 'numpy.where', 'np.where', (['(scores > 0.7)'], {}), '(scores > 0.7)\n', (839, 853), True, 'import numpy as np\n'), ((1112, 1157), 'os.path.exists', 'os.path.exists', (['"""./processed_images_mask.txt"""'], {}), "('./processed_images_mask.txt')\n", (1126, 1157), False, 'import os\n'), ((1605, 1627), 'os.listdir', 'os.listdir', (['read_direc'], {}), '(read_direc)\n', (1615, 1627), False, 'import os\n'), ((3511, 3530), 'argparse.ArgumentParser', 'ap.ArgumentParser', ([], {}), '()\n', (3528, 3530), True, 'import argparse as ap\n'), ((4013, 4047), 'os.path.join', 'os.path.join', (['"""mask_rcnn/"""', '"""logs"""'], {}), "('mask_rcnn/', 'logs')\n", (4025, 4047), False, 'import os\n'), ((5501, 5572), 'mask_rcnn.mrcnn.model.MaskRCNN', 'modellib.MaskRCNN', ([], {'mode': '"""inference"""', 'model_dir': 'MODEL_DIR', 'config': 'config'}), "(mode='inference', model_dir=MODEL_DIR, config=config)\n", (5518, 5572), True, 'import mask_rcnn.mrcnn.model as modellib\n'), ((1389, 1421), 'os.path.exists', 'os.path.exists', (["(save_direc + '/')"], {}), "(save_direc + '/')\n", (1403, 1421), False, 'import os\n'), ((1429, 1455), 'os.mkdir', 'os.mkdir', (["(save_direc + '/')"], {}), "(save_direc + '/')\n", (1437, 1455), False, 'import os\n'), ((1779, 1806), 'cv2.imread', 'cv2.imread', (['(read_direc + fi)'], {}), '(read_direc + fi)\n', (1789, 1806), False, 'import cv2\n'), ((1871, 1909), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2HSV'], {}), '(image, cv2.COLOR_BGR2HSV)\n', (1883, 1909), False, 'import cv2\n'), ((1933, 1965), 'cv2.equalizeHist', 'cv2.equalizeHist', (['image[:, :, 2]'], {}), '(image[:, :, 2])\n', (1949, 1965), False, 'import cv2\n'), ((1980, 2018), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_HSV2BGR'], {}), '(image, cv2.COLOR_HSV2BGR)\n', (1992, 2018), False, 'import cv2\n'), ((2214, 2243), 'cv2.resize', 'cv2.resize', (['image', '(540, 960)'], {}), '(image, (540, 960))\n', (2224, 2243), False, 'import cv2\n'), ((1488, 1532), 'os.path.exists', 'os.path.exists', (["(save_direc + '/images_mask/')"], {}), "(save_direc + '/images_mask/')\n", (1502, 1532), False, 'import os\n'), ((1544, 1582), 'os.mkdir', 'os.mkdir', (["(save_direc + '/images_mask/')"], {}), "(save_direc + '/images_mask/')\n", (1552, 1582), False, 'import os\n'), ((2132, 2147), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (2140, 2147), True, 'import numpy as np\n'), ((2174, 2189), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (2182, 2189), True, 'import numpy as np\n')]
from abc import ABC, abstractmethod from collections import OrderedDict from functools import reduce import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import gym import matplotlib.pyplot as plt class Params(): """ policy which outputs the policy parameters directly, i.e. for direct optimization """ def __init__(self, dim_in=7, dim_act=6): self.dim_act = dim_act self.init_params() def init_params(self): self.params = np.random.randn(self.dim_act)/3 - 1.75 self.num_params = self.dim_act def forward(self, obs): return self.get_params() def get_params(self): return self.params def set_params(self, params): assert params.shape == self.params.shape self.params = params def reset(self): pass if __name__ == "__main__": # run tests print("OK")
[ "numpy.random.randn" ]
[((517, 546), 'numpy.random.randn', 'np.random.randn', (['self.dim_act'], {}), '(self.dim_act)\n', (532, 546), True, 'import numpy as np\n')]
import socket import nengo import numpy as np import pytest from nengo.exceptions import SimulationError from nengo_loihi.block import Axon, LoihiBlock, Synapse from nengo_loihi.builder.builder import Model from nengo_loihi.builder.discretize import discretize_model from nengo_loihi.hardware import interface as hardware_interface from nengo_loihi.hardware.allocators import Greedy from nengo_loihi.hardware.builder import build_board from nengo_loihi.hardware.nxsdk_shim import NxsdkBoard class MockNxsdk: def __init__(self): self.__version__ = None def test_error_on_old_version(monkeypatch): mock = MockNxsdk() mock.__version__ = "0.5.5" monkeypatch.setattr(hardware_interface, "nxsdk", mock) with pytest.raises(ImportError, match="nxsdk"): hardware_interface.HardwareInterface.check_nxsdk_version() def test_no_warn_on_current_version(monkeypatch): mock = MockNxsdk() mock.__version__ = str(hardware_interface.HardwareInterface.max_nxsdk_version) monkeypatch.setattr(hardware_interface, "nxsdk", mock) monkeypatch.setattr(hardware_interface, "assert_nxsdk", lambda: True) with pytest.warns(None) as record: hardware_interface.HardwareInterface.check_nxsdk_version() assert len(record) == 0 def test_warn_on_future_version(monkeypatch): mock = MockNxsdk() mock.__version__ = "100.0.0" monkeypatch.setattr(hardware_interface, "nxsdk", mock) monkeypatch.setattr(hardware_interface, "assert_nxsdk", lambda: True) with pytest.warns(UserWarning): hardware_interface.HardwareInterface.check_nxsdk_version() def test_builder_poptype_errors(): pytest.importorskip("nxsdk") # Test error in build_synapse model = Model() block = LoihiBlock(1) block.compartment.configure_lif() model.add_block(block) synapse = Synapse(1) synapse.set_weights([[1]]) synapse.pop_type = 8 block.add_synapse(synapse) discretize_model(model) allocator = Greedy() # one core per ensemble board = allocator(model, n_chips=1) with pytest.raises(ValueError, match="unrecognized pop_type"): build_board(board) # Test error in build_axon model = Model() block0 = LoihiBlock(1) block0.compartment.configure_lif() model.add_block(block0) block1 = LoihiBlock(1) block1.compartment.configure_lif() model.add_block(block1) axon = Axon(1) block0.add_axon(axon) synapse = Synapse(1) synapse.set_weights([[1]]) synapse.pop_type = 8 axon.target = synapse block1.add_synapse(synapse) discretize_model(model) board = allocator(model, n_chips=1) with pytest.raises(ValueError, match="unrecognized pop_type"): build_board(board) def test_host_snip_recv_bytes(): host_snip = hardware_interface.HostSnip(None) # We bypass the host_snip.connect method and connect manually host_address = "127.0.0.1" # Standard loopback interface address # Configure socket to send data to itself host_snip.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) host_snip.socket.bind((host_address, host_snip.port)) host_snip.socket.connect((host_address, host_snip.port)) # Generate random data to send data = np.random.randint(0, 8192, size=1100, dtype=np.int32) # Correctly receive data in two chunks # Note that chunks are 4096 bytes at the smallest (HostSnip.recv_size) host_snip.send_all(data) received = host_snip.recv_bytes(1024 * 4) assert np.all(received == data[:1024]) rest = 1100 - 1024 received = host_snip.recv_bytes(rest * 4) assert np.all(received == data[-rest:]) # Send too little data host_snip.send_all(data) with pytest.raises(RuntimeError, match="less than expected"): host_snip.recv_bytes(1536 * 4) # Send shutdown signal at the end data[-1] = -1 host_snip.send_all(data) with pytest.raises(RuntimeError, match="shutdown signal from chip"): host_snip.recv_bytes(1100 * 4) # Too little data with shutdown signal still raises too little data host_snip.send_all(data) with pytest.raises(RuntimeError, match="less than expected"): host_snip.recv_bytes(2048 * 4) @pytest.mark.target_loihi def test_interface_connection_errors(Simulator, monkeypatch): with nengo.Network() as net: nengo.Ensemble(2, 1) # test opening closed interface error sim = Simulator(net) interface = sim.sims["loihi"] interface.close() with pytest.raises(SimulationError, match="cannot be reopened"): with interface: pass sim.close() # test failed connection error def start(*args, **kwargs): raise Exception("Mock failure to connect") monkeypatch.setattr(NxsdkBoard, "start", start) with pytest.raises(SimulationError, match="Mock failure to connect"): with Simulator(net): pass @pytest.mark.filterwarnings("ignore:Model is precomputable.") @pytest.mark.target_loihi def test_snip_input_count(Simulator, seed, plt): with nengo.Network(seed=seed) as model: a = nengo.Ensemble(100, 1) for i in range(30): stim = nengo.Node(0.5) nengo.Connection(stim, a, synapse=None) with Simulator(model, precompute=False) as sim: with pytest.warns(UserWarning, match="Too many spikes"): sim.run(0.01)
[ "nengo_loihi.builder.builder.Model", "nengo_loihi.block.Axon", "numpy.random.randint", "nengo.Connection", "nengo_loihi.hardware.builder.build_board", "pytest.warns", "nengo.Node", "nengo_loihi.block.LoihiBlock", "nengo_loihi.hardware.interface.HostSnip", "pytest.raises", "nengo.Network", "nengo_loihi.hardware.allocators.Greedy", "nengo.Ensemble", "numpy.all", "pytest.importorskip", "nengo_loihi.block.Synapse", "nengo_loihi.hardware.interface.HardwareInterface.check_nxsdk_version", "pytest.mark.filterwarnings", "nengo_loihi.builder.discretize.discretize_model" ]
[((4928, 4988), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore:Model is precomputable."""'], {}), "('ignore:Model is precomputable.')\n", (4954, 4988), False, 'import pytest\n'), ((1655, 1683), 'pytest.importorskip', 'pytest.importorskip', (['"""nxsdk"""'], {}), "('nxsdk')\n", (1674, 1683), False, 'import pytest\n'), ((1731, 1738), 'nengo_loihi.builder.builder.Model', 'Model', ([], {}), '()\n', (1736, 1738), False, 'from nengo_loihi.builder.builder import Model\n'), ((1751, 1764), 'nengo_loihi.block.LoihiBlock', 'LoihiBlock', (['(1)'], {}), '(1)\n', (1761, 1764), False, 'from nengo_loihi.block import Axon, LoihiBlock, Synapse\n'), ((1845, 1855), 'nengo_loihi.block.Synapse', 'Synapse', (['(1)'], {}), '(1)\n', (1852, 1855), False, 'from nengo_loihi.block import Axon, LoihiBlock, Synapse\n'), ((1948, 1971), 'nengo_loihi.builder.discretize.discretize_model', 'discretize_model', (['model'], {}), '(model)\n', (1964, 1971), False, 'from nengo_loihi.builder.discretize import discretize_model\n'), ((1989, 1997), 'nengo_loihi.hardware.allocators.Greedy', 'Greedy', ([], {}), '()\n', (1995, 1997), False, 'from nengo_loihi.hardware.allocators import Greedy\n'), ((2202, 2209), 'nengo_loihi.builder.builder.Model', 'Model', ([], {}), '()\n', (2207, 2209), False, 'from nengo_loihi.builder.builder import Model\n'), ((2223, 2236), 'nengo_loihi.block.LoihiBlock', 'LoihiBlock', (['(1)'], {}), '(1)\n', (2233, 2236), False, 'from nengo_loihi.block import Axon, LoihiBlock, Synapse\n'), ((2317, 2330), 'nengo_loihi.block.LoihiBlock', 'LoihiBlock', (['(1)'], {}), '(1)\n', (2327, 2330), False, 'from nengo_loihi.block import Axon, LoihiBlock, Synapse\n'), ((2410, 2417), 'nengo_loihi.block.Axon', 'Axon', (['(1)'], {}), '(1)\n', (2414, 2417), False, 'from nengo_loihi.block import Axon, LoihiBlock, Synapse\n'), ((2459, 2469), 'nengo_loihi.block.Synapse', 'Synapse', (['(1)'], {}), '(1)\n', (2466, 2469), False, 'from nengo_loihi.block import Axon, LoihiBlock, Synapse\n'), ((2589, 2612), 'nengo_loihi.builder.discretize.discretize_model', 'discretize_model', (['model'], {}), '(model)\n', (2605, 2612), False, 'from nengo_loihi.builder.discretize import discretize_model\n'), ((2800, 2833), 'nengo_loihi.hardware.interface.HostSnip', 'hardware_interface.HostSnip', (['None'], {}), '(None)\n', (2827, 2833), True, 'from nengo_loihi.hardware import interface as hardware_interface\n'), ((3259, 3312), 'numpy.random.randint', 'np.random.randint', (['(0)', '(8192)'], {'size': '(1100)', 'dtype': 'np.int32'}), '(0, 8192, size=1100, dtype=np.int32)\n', (3276, 3312), True, 'import numpy as np\n'), ((3518, 3549), 'numpy.all', 'np.all', (['(received == data[:1024])'], {}), '(received == data[:1024])\n', (3524, 3549), True, 'import numpy as np\n'), ((3630, 3662), 'numpy.all', 'np.all', (['(received == data[-rest:])'], {}), '(received == data[-rest:])\n', (3636, 3662), True, 'import numpy as np\n'), ((737, 778), 'pytest.raises', 'pytest.raises', (['ImportError'], {'match': '"""nxsdk"""'}), "(ImportError, match='nxsdk')\n", (750, 778), False, 'import pytest\n'), ((788, 846), 'nengo_loihi.hardware.interface.HardwareInterface.check_nxsdk_version', 'hardware_interface.HardwareInterface.check_nxsdk_version', ([], {}), '()\n', (844, 846), True, 'from nengo_loihi.hardware import interface as hardware_interface\n'), ((1148, 1166), 'pytest.warns', 'pytest.warns', (['None'], {}), '(None)\n', (1160, 1166), False, 'import pytest\n'), ((1186, 1244), 'nengo_loihi.hardware.interface.HardwareInterface.check_nxsdk_version', 'hardware_interface.HardwareInterface.check_nxsdk_version', ([], {}), '()\n', (1242, 1244), True, 'from nengo_loihi.hardware import interface as hardware_interface\n'), ((1520, 1545), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (1532, 1545), False, 'import pytest\n'), ((1555, 1613), 'nengo_loihi.hardware.interface.HardwareInterface.check_nxsdk_version', 'hardware_interface.HardwareInterface.check_nxsdk_version', ([], {}), '()\n', (1611, 1613), True, 'from nengo_loihi.hardware import interface as hardware_interface\n'), ((2073, 2129), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""unrecognized pop_type"""'}), "(ValueError, match='unrecognized pop_type')\n", (2086, 2129), False, 'import pytest\n'), ((2139, 2157), 'nengo_loihi.hardware.builder.build_board', 'build_board', (['board'], {}), '(board)\n', (2150, 2157), False, 'from nengo_loihi.hardware.builder import build_board\n'), ((2664, 2720), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""unrecognized pop_type"""'}), "(ValueError, match='unrecognized pop_type')\n", (2677, 2720), False, 'import pytest\n'), ((2730, 2748), 'nengo_loihi.hardware.builder.build_board', 'build_board', (['board'], {}), '(board)\n', (2741, 2748), False, 'from nengo_loihi.hardware.builder import build_board\n'), ((3729, 3784), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""less than expected"""'}), "(RuntimeError, match='less than expected')\n", (3742, 3784), False, 'import pytest\n'), ((3920, 3982), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""shutdown signal from chip"""'}), "(RuntimeError, match='shutdown signal from chip')\n", (3933, 3982), False, 'import pytest\n'), ((4134, 4189), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""less than expected"""'}), "(RuntimeError, match='less than expected')\n", (4147, 4189), False, 'import pytest\n'), ((4329, 4344), 'nengo.Network', 'nengo.Network', ([], {}), '()\n', (4342, 4344), False, 'import nengo\n'), ((4361, 4381), 'nengo.Ensemble', 'nengo.Ensemble', (['(2)', '(1)'], {}), '(2, 1)\n', (4375, 4381), False, 'import nengo\n'), ((4515, 4573), 'pytest.raises', 'pytest.raises', (['SimulationError'], {'match': '"""cannot be reopened"""'}), "(SimulationError, match='cannot be reopened')\n", (4528, 4573), False, 'import pytest\n'), ((4814, 4877), 'pytest.raises', 'pytest.raises', (['SimulationError'], {'match': '"""Mock failure to connect"""'}), "(SimulationError, match='Mock failure to connect')\n", (4827, 4877), False, 'import pytest\n'), ((5073, 5097), 'nengo.Network', 'nengo.Network', ([], {'seed': 'seed'}), '(seed=seed)\n', (5086, 5097), False, 'import nengo\n'), ((5120, 5142), 'nengo.Ensemble', 'nengo.Ensemble', (['(100)', '(1)'], {}), '(100, 1)\n', (5134, 5142), False, 'import nengo\n'), ((5190, 5205), 'nengo.Node', 'nengo.Node', (['(0.5)'], {}), '(0.5)\n', (5200, 5205), False, 'import nengo\n'), ((5218, 5257), 'nengo.Connection', 'nengo.Connection', (['stim', 'a'], {'synapse': 'None'}), '(stim, a, synapse=None)\n', (5234, 5257), False, 'import nengo\n'), ((5323, 5373), 'pytest.warns', 'pytest.warns', (['UserWarning'], {'match': '"""Too many spikes"""'}), "(UserWarning, match='Too many spikes')\n", (5335, 5373), False, 'import pytest\n')]
import os import numpy as np # from skimage.io import imread import cv2 import copy from skimage.transform import resize def load_data_siamese(x_size,y_size,data_path,label_path,image_s_path,uncentain_path,validation_name,test_name): tmp = np.loadtxt(label_path, dtype=np.str, delimiter=",") # delete one image because we don't have the jpg image, 8252 is the position of this item and 1 is related to the title tmp = np.delete(tmp,8252+1, axis = 0) ran = tmp[:,0] lr = tmp[:,1] tracking = tmp[:,2] tmp1=tmp[:,3] ran = ran[1:len(ran)] lr = lr[1:len(lr)] tracking = tracking[1:len(tracking)] tmp1=tmp1[1:len(tmp1)] #generate ran and tracking numer for image with ending -s tmp_s = np.loadtxt(image_s_path, dtype=np.str, delimiter=",") ran_s = tmp_s[:,1] tracking_s = tmp_s[:,2] ran_s = ran_s[1:len(ran_s)] tracking_s = tracking_s[1:len(tracking_s)] #generate ran and tracking numer for image with uncentain label tmp_un = np.loadtxt(uncentain_path, dtype=np.str, delimiter=",") ran_un = tmp_un[:,0] tracking_un = tmp_un[:,1] ran_un = ran_un[1:len(ran_un)] tracking_un = tracking_un[1:len(tracking_un)] # x_size = 331 # y_size = 331 val_images1 = np.ndarray((len(validation_name)*20, x_size, y_size,3)) val_images2 = np.ndarray((len(validation_name)*20, x_size, y_size,3)) # val_images = [] val_labels = [] le = 0 for i in range(len(validation_name)): ind = np.argwhere(ran==validation_name[i][0]) kk = 0 for j in range(len(ind)): if lr[int(ind[j])] == validation_name[i][1]: data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg')) IM = cv2.imread(data_paths) if kk == 0: val_images_base = cv2.resize(IM, (x_size, y_size)) gt = tmp1[int(ind[j])] kk =1 else: val_images1[le] = val_images_base val_images2[le] = cv2.resize(IM, (x_size, y_size)) le += 1 if gt == tmp1[int(ind[j])]: val_labels = np.append(val_labels,1) else: val_labels = np.append(val_labels,0) # # take the second image as the ground truth # val_labels = np.append(val_labels,tmp1[int(ind[j])]) # continue val_images1 = val_images1[0:le,:,:,:] val_images2 = val_images2[0:le,:,:,:] val_images = [val_images1,val_images2] test_images1 = np.ndarray((len(test_name)*20, x_size, y_size,3)) test_images2 = np.ndarray((len(test_name)*20, x_size, y_size,3)) #test_images = [] test_labels = [] le = 0 ind_start = [] ll_index = 0 for i in range(len(test_name)): ind = np.argwhere(ran==test_name[i][0]) kk = 0 for j in range(len(ind)): if lr[int(ind[j])] == test_name[i][1]: data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg')) IM = cv2.imread(data_paths) if kk ==0: test_images_base = cv2.resize(IM, (x_size, y_size)) gt = tmp1[int(ind[j])] kk = 1 ind_start = np.append(ind_start,ll_index) else: test_images1[le] = test_images_base test_images2[le] = cv2.resize(IM, (x_size, y_size)) le += 1 if gt == tmp1[int(ind[j])]: test_labels = np.append(test_labels,1) else: test_labels = np.append(test_labels,0) ll_index += 1 # # take the second image as the ground truth # test_labels = np.append(test_labels,tmp1[int(ind[j])]) # continue test_images1 = test_images1[0:le,:,:,:] test_images2 = test_images2[0:le,:,:,:] test_images =[test_images1,test_images2] # test_images_s = np.ndarray((len(test_name)*10, x_size, y_size,3)) # #test_images = [] # test_labels_s = [] # le = 0 # for i in range(len(test_name)): # ind = np.argwhere(ran==test_name[i][0]) # ind_s = np.argwhere(ran_s==test_name[i][0]) # for j in range(len(ind)): # if lr[int(ind[j])] == test_name[i][1] and len(np.argwhere(tracking_s[ind_s]==tracking[int(ind[j])])) != 0: # data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg')) # IM = cv2.imread(data_paths) # test_images_s[le] = cv2.resize(IM, (x_size, y_size)) # # test_images_s[le] = resize(IM, (x_size, y_size, 3)) # # test_images_s[le] = IM # #test_images = np.append(test_images,IM) # le += 1 # test_labels_s = np.append(test_labels_s,tmp1[int(ind[j])]) # # continue # test_images_s = test_images_s[0:le,:,:,:] # test_images_un = np.ndarray((len(test_name)*10, x_size, y_size,3)) # #test_images = [] # test_labels_un = [] # le = 0 # for i in range(len(test_name)): # ind = np.argwhere(ran==test_name[i][0]) # ind_un = np.argwhere(ran_un==test_name[i][0]) # for j in range(len(ind)): # if lr[int(ind[j])] == test_name[i][1] and len(np.argwhere(tracking_un[ind_un]==tracking[int(ind[j])])) != 0: # data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg')) # IM = cv2.imread(data_paths) # test_images_un[le] = cv2.resize(IM, (x_size, y_size)) # # test_images_un[le] = resize(IM, (x_size, y_size, 3)) # # test_images_un[le] = IM # #test_images = np.append(test_images,IM) # le += 1 # test_labels_un = np.append(test_labels_un,tmp1[int(ind[j])]) # # continue # test_images_un = test_images_un[0:le,:,:,:] # return val_labels, test_labels # return val_images,val_labels, test_images,test_labels, test_images_s, test_labels_s, test_images_un, test_labels_un return val_images,val_labels, test_images,test_labels,ind_start
[ "cv2.imread", "numpy.append", "numpy.loadtxt", "numpy.argwhere", "numpy.delete", "cv2.resize" ]
[((245, 296), 'numpy.loadtxt', 'np.loadtxt', (['label_path'], {'dtype': 'np.str', 'delimiter': '""","""'}), "(label_path, dtype=np.str, delimiter=',')\n", (255, 296), True, 'import numpy as np\n'), ((431, 463), 'numpy.delete', 'np.delete', (['tmp', '(8252 + 1)'], {'axis': '(0)'}), '(tmp, 8252 + 1, axis=0)\n', (440, 463), True, 'import numpy as np\n'), ((739, 792), 'numpy.loadtxt', 'np.loadtxt', (['image_s_path'], {'dtype': 'np.str', 'delimiter': '""","""'}), "(image_s_path, dtype=np.str, delimiter=',')\n", (749, 792), True, 'import numpy as np\n'), ((1010, 1065), 'numpy.loadtxt', 'np.loadtxt', (['uncentain_path'], {'dtype': 'np.str', 'delimiter': '""","""'}), "(uncentain_path, dtype=np.str, delimiter=',')\n", (1020, 1065), True, 'import numpy as np\n'), ((1533, 1574), 'numpy.argwhere', 'np.argwhere', (['(ran == validation_name[i][0])'], {}), '(ran == validation_name[i][0])\n', (1544, 1574), True, 'import numpy as np\n'), ((2990, 3025), 'numpy.argwhere', 'np.argwhere', (['(ran == test_name[i][0])'], {}), '(ran == test_name[i][0])\n', (3001, 3025), True, 'import numpy as np\n'), ((1811, 1833), 'cv2.imread', 'cv2.imread', (['data_paths'], {}), '(data_paths)\n', (1821, 1833), False, 'import cv2\n'), ((3256, 3278), 'cv2.imread', 'cv2.imread', (['data_paths'], {}), '(data_paths)\n', (3266, 3278), False, 'import cv2\n'), ((1900, 1932), 'cv2.resize', 'cv2.resize', (['IM', '(x_size, y_size)'], {}), '(IM, (x_size, y_size))\n', (1910, 1932), False, 'import cv2\n'), ((2116, 2148), 'cv2.resize', 'cv2.resize', (['IM', '(x_size, y_size)'], {}), '(IM, (x_size, y_size))\n', (2126, 2148), False, 'import cv2\n'), ((3345, 3377), 'cv2.resize', 'cv2.resize', (['IM', '(x_size, y_size)'], {}), '(IM, (x_size, y_size))\n', (3355, 3377), False, 'import cv2\n'), ((3480, 3510), 'numpy.append', 'np.append', (['ind_start', 'll_index'], {}), '(ind_start, ll_index)\n', (3489, 3510), True, 'import numpy as np\n'), ((3627, 3659), 'cv2.resize', 'cv2.resize', (['IM', '(x_size, y_size)'], {}), '(IM, (x_size, y_size))\n', (3637, 3659), False, 'import cv2\n'), ((2262, 2286), 'numpy.append', 'np.append', (['val_labels', '(1)'], {}), '(val_labels, 1)\n', (2271, 2286), True, 'import numpy as np\n'), ((2349, 2373), 'numpy.append', 'np.append', (['val_labels', '(0)'], {}), '(val_labels, 0)\n', (2358, 2373), True, 'import numpy as np\n'), ((3774, 3799), 'numpy.append', 'np.append', (['test_labels', '(1)'], {}), '(test_labels, 1)\n', (3783, 3799), True, 'import numpy as np\n'), ((3863, 3888), 'numpy.append', 'np.append', (['test_labels', '(0)'], {}), '(test_labels, 0)\n', (3872, 3888), True, 'import numpy as np\n')]
#! /usr/bin/env python import os,sys import cv2, re import numpy as np try: from pyutil import PyLogger except ImportError: from .. import PyLogger __author__ = "<NAME>" __credits__ = ["<NAME>"] __version__ = "0.0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" SRC_TYPE_NAME = ["WebCam","Video","IPCam"] OUTPUT_VIDEO_NAME = "source{}.avi" SAVE_FORMAT = 'XVID' DEFAULT_FPS = 20 class VideoController(): def __init__(self, video_src, video_ratio=1, record_prefix="", record_name="", isRecord=False, log=False, debug=False): # init logger self.__logger = PyLogger(log=log,debug=debug) self.__vid_caps = list() self.__vid_writers = list() self.__record_path = os.path.join(record_prefix,record_name) if record_name != "" else os.path.join(record_prefix,OUTPUT_VIDEO_NAME) self.__video_ratio = video_ratio self.fps = DEFAULT_FPS # create a VideoCapture for each src for src in video_src: self.__initVideoSource(src) # init writer parameters self.__fourcc = cv2.VideoWriter_fourcc(*SAVE_FORMAT) if isRecord: self.__initVideoWriter() def __initVideoSource(self, src, camId=-1): """ Initialise video input source Args: src (object): video source used by Opencv, could be int or String camId (int): if any cameraId was given """ if src is None or src == "": return sourceType = -1 # usb cam/web cam if type(src) is int: sourceType = 0 # search for ipcams elif re.search( r'(http)|(rstp)|(https) & *', src, re.M|re.I): sourceType = 2 # videos else: sourceType = 1 cap = cv2.VideoCapture(src) if cap.isOpened(): if camId == -1: camId = len(self.__vid_caps) if len(self.__vid_caps) > 0: cams = np.array(self.__vid_caps)[:,0] if camId in cams: camId = np.amax(cams) + 1 fps = int(cap.get(cv2.CAP_PROP_FPS)) self.__vid_caps.append([camId, sourceType, cap, src,fps]) self.__logger.info("Video Input Connected to {}".format(src)) else: self.__logger.error("No {} Source Found From {}".format(SRC_TYPE_NAME[sourceType], src)) def __initVideoWriter(self): """ Initialise video writer """ for cap_info in self.__vid_caps: cap = cap_info[2] # get cv2.cap object fps = cap_info[4] if fps == 0 or self.fps < fps: fps = self.fps self.__vid_writers.append([cap_info[0],cv2.VideoWriter(self.__record_path.format(cap_info[0]), self.__fourcc, fps, (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)/self.__video_ratio),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)/self.__video_ratio)))]) def writeVideo(self, camId, frame): """ Write video to output Args: camId (int): if any cameraId was given frame (np.array): video frame to be written """ if len(self.__vid_writers) > 0: ids = np.array(self.__vid_writers)[:,0] if frame is not None: self.__vid_writers[np.where(ids == camId)[0][0]][1].write(frame) def getFrame(self, camId): """ Return frame from video source Args: camId (int): camera ID Returns: **frame** (np.array) - current frame """ # Capture frame-by-frame frame = None try: cap = self.__vid_caps[np.where(np.array(self.__vid_caps)[:,0]==camId)[0][0]][2] if cap is not None: ret, frame = cap.read() frame = cv2.resize(frame, (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)/self.__video_ratio),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)/self.__video_ratio))) #frame = cv2.resize(frame, (420,240)) except cv2.error: return None return frame def showFrame(self, frame, title="Video"): """ Using OpenCV to display the current frame Title is important if need to display multi window Args: frame (np.array): frame given to be shown title (string): display window title, associate frame and display window """ # Display the resulting frame cv2.imshow(title,frame) # This line is important to keep the video showing if cv2.waitKey(1) & 0xFF == ord('q'): cap.release() cv2.destroyAllWindows() def onClose(self): for cap in self.__vid_caps: cap[2].release() for writer in self.__vid_writers: writer[1].release() cv2.destroyAllWindows() def printVideoSrcInfo(self): # header self.__logger.info("{:5}|{:10}".format("CamID","Source")) # body for cap in self.__vid_caps: src = cap[3] if type(src) is int: src = SRC_TYPE_NAME[0]+ " {}".format(src) self.__logger.info("{:5}|{}".format(cap[0],src)) def getVideoSrcInfo(self): """ Return Camera Information Returns: * **cam_info** (numpy.array) - camera information (camId, src) """ if len(self.__vid_caps) <= 0: return None return np.array(self.__vid_caps)[:,[0,3]] def drawInfo(self, frame, fps, color=(255,255,255), num_people=-1): """ Draw frame info Args: frame (numpy.array): input frame fps (int): Frame per second color (tuple): BGR color code num_people (int): number of people detected Returns: * **frame** (numpy.array) - modified frame """ frame_size = frame.shape cv2.putText(frame, "FPS:{}".format(fps), (20,frame_size[0]-20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) if num_people >= 0: cv2.putText(frame, "Num.Person:{}".format(num_people), (frame_size[1]-150,frame_size[0]-20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) return frame def setIsRecord(self, isRecord): """ Set is recorded video or not Args: isRecord (boolean): record video or not """ if isRecord and not self.isRecord: self.__initVideoWriter() self.isRecord = isRecord
[ "cv2.VideoWriter_fourcc", "cv2.waitKey", "cv2.imshow", "cv2.VideoCapture", "numpy.amax", "numpy.where", "numpy.array", "re.search", "cv2.destroyAllWindows", "os.path.join", "pyutil.PyLogger" ]
[((566, 596), 'pyutil.PyLogger', 'PyLogger', ([], {'log': 'log', 'debug': 'debug'}), '(log=log, debug=debug)\n', (574, 596), False, 'from pyutil import PyLogger\n'), ((987, 1023), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (['*SAVE_FORMAT'], {}), '(*SAVE_FORMAT)\n', (1009, 1023), False, 'import cv2, re\n'), ((1547, 1568), 'cv2.VideoCapture', 'cv2.VideoCapture', (['src'], {}), '(src)\n', (1563, 1568), False, 'import cv2, re\n'), ((3795, 3819), 'cv2.imshow', 'cv2.imshow', (['title', 'frame'], {}), '(title, frame)\n', (3805, 3819), False, 'import cv2, re\n'), ((4088, 4111), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4109, 4111), False, 'import cv2, re\n'), ((676, 716), 'os.path.join', 'os.path.join', (['record_prefix', 'record_name'], {}), '(record_prefix, record_name)\n', (688, 716), False, 'import os, sys\n'), ((742, 788), 'os.path.join', 'os.path.join', (['record_prefix', 'OUTPUT_VIDEO_NAME'], {}), '(record_prefix, OUTPUT_VIDEO_NAME)\n', (754, 788), False, 'import os, sys\n'), ((1426, 1482), 're.search', 're.search', (['"""(http)|(rstp)|(https) & *"""', 'src', '(re.M | re.I)'], {}), "('(http)|(rstp)|(https) & *', src, re.M | re.I)\n", (1435, 1482), False, 'import cv2, re\n'), ((3932, 3955), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3953, 3955), False, 'import cv2, re\n'), ((4594, 4619), 'numpy.array', 'np.array', (['self.__vid_caps'], {}), '(self.__vid_caps)\n', (4602, 4619), True, 'import numpy as np\n'), ((2763, 2791), 'numpy.array', 'np.array', (['self.__vid_writers'], {}), '(self.__vid_writers)\n', (2771, 2791), True, 'import numpy as np\n'), ((3877, 3891), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3888, 3891), False, 'import cv2, re\n'), ((1685, 1710), 'numpy.array', 'np.array', (['self.__vid_caps'], {}), '(self.__vid_caps)\n', (1693, 1710), True, 'import numpy as np\n'), ((1751, 1764), 'numpy.amax', 'np.amax', (['cams'], {}), '(cams)\n', (1758, 1764), True, 'import numpy as np\n'), ((2845, 2867), 'numpy.where', 'np.where', (['(ids == camId)'], {}), '(ids == camId)\n', (2853, 2867), True, 'import numpy as np\n'), ((3134, 3159), 'numpy.array', 'np.array', (['self.__vid_caps'], {}), '(self.__vid_caps)\n', (3142, 3159), True, 'import numpy as np\n')]
"""Example of count data sampled from negative-binomial distribution """ import numpy as np from matplotlib import pyplot as plt from scipy import stats from sklearn.model_selection import train_test_split from xgboost_distribution import XGBDistribution def generate_count_data(n_samples=10_000): X = np.random.uniform(-2, 0, n_samples) n = 66 * np.abs(np.cos(X)) p = 0.5 * np.abs(np.cos(X / 3)) y = np.random.negative_binomial(n=n, p=p, size=n_samples) return X[..., np.newaxis], y def predict_distribution(model, X, y): """Predict a distribution for a given X, and evaluate over y""" distribution_func = { "normal": getattr(stats, "norm").pdf, "laplace": getattr(stats, "laplace").pdf, "poisson": getattr(stats, "poisson").pmf, "negative-binomial": getattr(stats, "nbinom").pmf, } preds = model.predict(X[..., np.newaxis]) dists = np.zeros(shape=(len(X), len(y))) for ii, x in enumerate(X): params = {field: param[ii] for (field, param) in zip(preds._fields, preds)} dists[ii] = distribution_func[model.distribution](y, **params) return dists def create_distribution_heatmap( model, x_range=(-2, 0), x_steps=100, y_range=(0, 100), normalize=True ): xx = np.linspace(x_range[0], x_range[1], x_steps) yy = np.linspace(y_range[0], y_range[1], y_range[1] - y_range[0] + 1) ym, xm = np.meshgrid(xx, yy) z = predict_distribution(model, xx, yy) if normalize: z = z / z.max(axis=0) return ym, xm, z.transpose() def main(): random_state = 10 np.random.seed(random_state) X, y = generate_count_data(n_samples=10_000) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state) model = XGBDistribution( distribution="negative-binomial", # try changing the distribution here natural_gradient=True, max_depth=3, n_estimators=500, ) model.fit( X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=10, verbose=False, ) xm, ym, z = create_distribution_heatmap(model) fig, ax = plt.subplots(figsize=(9, 6)) ax.pcolormesh( xm, ym, z, cmap="Oranges", vmin=0, vmax=1.608, alpha=1.0, shading="auto" ) ax.scatter(X_test, y_test, s=0.75, alpha=0.25, c="k", label="data") plt.show() if __name__ == "__main__": main()
[ "numpy.random.uniform", "numpy.meshgrid", "numpy.random.seed", "matplotlib.pyplot.show", "xgboost_distribution.XGBDistribution", "numpy.random.negative_binomial", "sklearn.model_selection.train_test_split", "numpy.linspace", "numpy.cos", "matplotlib.pyplot.subplots" ]
[((309, 344), 'numpy.random.uniform', 'np.random.uniform', (['(-2)', '(0)', 'n_samples'], {}), '(-2, 0, n_samples)\n', (326, 344), True, 'import numpy as np\n'), ((421, 474), 'numpy.random.negative_binomial', 'np.random.negative_binomial', ([], {'n': 'n', 'p': 'p', 'size': 'n_samples'}), '(n=n, p=p, size=n_samples)\n', (448, 474), True, 'import numpy as np\n'), ((1272, 1316), 'numpy.linspace', 'np.linspace', (['x_range[0]', 'x_range[1]', 'x_steps'], {}), '(x_range[0], x_range[1], x_steps)\n', (1283, 1316), True, 'import numpy as np\n'), ((1326, 1390), 'numpy.linspace', 'np.linspace', (['y_range[0]', 'y_range[1]', '(y_range[1] - y_range[0] + 1)'], {}), '(y_range[0], y_range[1], y_range[1] - y_range[0] + 1)\n', (1337, 1390), True, 'import numpy as np\n'), ((1404, 1423), 'numpy.meshgrid', 'np.meshgrid', (['xx', 'yy'], {}), '(xx, yy)\n', (1415, 1423), True, 'import numpy as np\n'), ((1592, 1620), 'numpy.random.seed', 'np.random.seed', (['random_state'], {}), '(random_state)\n', (1606, 1620), True, 'import numpy as np\n'), ((1710, 1759), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'random_state': 'random_state'}), '(X, y, random_state=random_state)\n', (1726, 1759), False, 'from sklearn.model_selection import train_test_split\n'), ((1773, 1880), 'xgboost_distribution.XGBDistribution', 'XGBDistribution', ([], {'distribution': '"""negative-binomial"""', 'natural_gradient': '(True)', 'max_depth': '(3)', 'n_estimators': '(500)'}), "(distribution='negative-binomial', natural_gradient=True,\n max_depth=3, n_estimators=500)\n", (1788, 1880), False, 'from xgboost_distribution import XGBDistribution\n'), ((2170, 2198), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(9, 6)'}), '(figsize=(9, 6))\n', (2182, 2198), True, 'from matplotlib import pyplot as plt\n'), ((2381, 2391), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2389, 2391), True, 'from matplotlib import pyplot as plt\n'), ((365, 374), 'numpy.cos', 'np.cos', (['X'], {}), '(X)\n', (371, 374), True, 'import numpy as np\n'), ((397, 410), 'numpy.cos', 'np.cos', (['(X / 3)'], {}), '(X / 3)\n', (403, 410), True, 'import numpy as np\n')]
import os import numpy as np import tensorflow as tf from utils.recorder import RecorderTf2 as Recorder class Base(tf.keras.Model): def __init__(self, a_dim_or_list, action_type, base_dir): super().__init__() physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: self.device = "/gpu:0" tf.config.experimental.set_memory_growth(physical_devices[0], True) else: self.device = "/cpu:0" tf.keras.backend.set_floatx('float64') self.cp_dir, self.log_dir, self.excel_dir = [os.path.join(base_dir, i) for i in ['model', 'log', 'excel']] self.action_type = action_type self.a_counts = int(np.array(a_dim_or_list).prod()) self.global_step = tf.Variable(0, name="global_step", trainable=False, dtype=tf.int64) # in TF 2.x must be tf.int64, because function set_step need args to be tf.int64. self.episode = 0 def get_init_episode(self): """ get the initial training step. use for continue train from last training step. """ if os.path.exists(os.path.join(self.cp_dir, 'checkpoint')): return int(tf.train.latest_checkpoint(self.cp_dir).split('-')[-1]) else: return 0 def generate_recorder(self, logger2file, model=None): """ create model/log/data dictionary and define writer to record training data. """ self.check_or_create(self.cp_dir, 'checkpoints') self.check_or_create(self.log_dir, 'logs(summaries)') self.check_or_create(self.excel_dir, 'excel') self.recorder = Recorder( cp_dir=self.cp_dir, log_dir=self.log_dir, excel_dir=self.excel_dir, logger2file=logger2file, model=model ) def init_or_restore(self, base_dir): """ check whether chekpoint and model be within cp_dir, if in it, restore otherwise initialize randomly. """ cp_dir = os.path.join(base_dir, 'model') if os.path.exists(os.path.join(cp_dir, 'checkpoint')): try: self.recorder.checkpoint.restore(self.recorder.saver.latest_checkpoint) except: self.recorder.logger.error('restore model from checkpoint FAILED.') else: self.recorder.logger.info('restore model from checkpoint SUCCUESS.') else: self.recorder.logger.info('initialize model SUCCUESS.') def save_checkpoint(self, global_step): """ save the training model """ self.recorder.saver.save(checkpoint_number=global_step) def writer_summary(self, global_step, **kargs): """ record the data used to show in the tensorboard """ tf.summary.experimental.set_step(global_step) for i in [{'tag': 'MAIN/' + key, 'value': kargs[key]} for key in kargs]: tf.summary.scalar(i['tag'], i['value']) self.recorder.writer.flush() def check_or_create(self, dicpath, name=''): """ check dictionary whether existing, if not then create it. """ if not os.path.exists(dicpath): os.makedirs(dicpath) print(f'create {name} directionary :', dicpath) def close(self): """ end training, and export the training model """ pass def get_global_step(self): """ get the current trianing step. """ return self.global_step def set_global_step(self, num): """ set the start training step. """ self.global_step = num def update_target_net_weights(self, tge, src, ployak=None): if ployak is None: tf.group([r.assign(v) for r, v in zip(tge, src)]) else: tf.group([r.assign(self.ployak * v + (1 - self.ployak) * r) for r, v in zip(tge, src)])
[ "os.path.join", "tensorflow.summary.scalar", "os.makedirs", "utils.recorder.RecorderTf2", "tensorflow.config.experimental.set_memory_growth", "os.path.exists", "tensorflow.summary.experimental.set_step", "tensorflow.Variable", "numpy.array", "tensorflow.train.latest_checkpoint", "tensorflow.keras.backend.set_floatx", "tensorflow.config.experimental.list_physical_devices" ]
[((252, 303), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (296, 303), True, 'import tensorflow as tf\n'), ((514, 552), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', (['"""float64"""'], {}), "('float64')\n", (541, 552), True, 'import tensorflow as tf\n'), ((794, 861), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'trainable': '(False)', 'dtype': 'tf.int64'}), "(0, name='global_step', trainable=False, dtype=tf.int64)\n", (805, 861), True, 'import tensorflow as tf\n'), ((1661, 1779), 'utils.recorder.RecorderTf2', 'Recorder', ([], {'cp_dir': 'self.cp_dir', 'log_dir': 'self.log_dir', 'excel_dir': 'self.excel_dir', 'logger2file': 'logger2file', 'model': 'model'}), '(cp_dir=self.cp_dir, log_dir=self.log_dir, excel_dir=self.excel_dir,\n logger2file=logger2file, model=model)\n', (1669, 1779), True, 'from utils.recorder import RecorderTf2 as Recorder\n'), ((2038, 2069), 'os.path.join', 'os.path.join', (['base_dir', '"""model"""'], {}), "(base_dir, 'model')\n", (2050, 2069), False, 'import os\n'), ((2834, 2879), 'tensorflow.summary.experimental.set_step', 'tf.summary.experimental.set_step', (['global_step'], {}), '(global_step)\n', (2866, 2879), True, 'import tensorflow as tf\n'), ((389, 456), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[0]', '(True)'], {}), '(physical_devices[0], True)\n', (429, 456), True, 'import tensorflow as tf\n'), ((606, 631), 'os.path.join', 'os.path.join', (['base_dir', 'i'], {}), '(base_dir, i)\n', (618, 631), False, 'import os\n'), ((1140, 1179), 'os.path.join', 'os.path.join', (['self.cp_dir', '"""checkpoint"""'], {}), "(self.cp_dir, 'checkpoint')\n", (1152, 1179), False, 'import os\n'), ((2096, 2130), 'os.path.join', 'os.path.join', (['cp_dir', '"""checkpoint"""'], {}), "(cp_dir, 'checkpoint')\n", (2108, 2130), False, 'import os\n'), ((2973, 3012), 'tensorflow.summary.scalar', 'tf.summary.scalar', (["i['tag']", "i['value']"], {}), "(i['tag'], i['value'])\n", (2990, 3012), True, 'import tensorflow as tf\n'), ((3205, 3228), 'os.path.exists', 'os.path.exists', (['dicpath'], {}), '(dicpath)\n', (3219, 3228), False, 'import os\n'), ((3242, 3262), 'os.makedirs', 'os.makedirs', (['dicpath'], {}), '(dicpath)\n', (3253, 3262), False, 'import os\n'), ((735, 758), 'numpy.array', 'np.array', (['a_dim_or_list'], {}), '(a_dim_or_list)\n', (743, 758), True, 'import numpy as np\n'), ((1205, 1244), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['self.cp_dir'], {}), '(self.cp_dir)\n', (1231, 1244), True, 'import tensorflow as tf\n')]
# Copyright 2019 the ProGraML authors. # # Contact <NAME> <<EMAIL>>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file contains TODO: one line summary. TODO: Detailed explanation of the file. """ from typing import Any from typing import Iterable from typing import List from typing import NamedTuple from typing import Optional import numpy as np import sklearn.metrics from labm8.py import app FLAGS = app.FLAGS app.DEFINE_string( "batch_scores_averaging_method", "weighted", "Selects the averaging method to use when computing recall/precision/F1 " "scores. See <https://scikit-learn.org/stable/modules/generated/sklearn" ".metrics.f1_score.html>", ) class Data(NamedTuple): """The model data for a batch.""" graph_ids: List[int] data: Any # A flag used to mark that this batch is the end of an iterable sequences of # batches. end_of_batches: bool = False @property def graph_count(self) -> int: return len(self.graph_ids) def EmptyBatch() -> Data: """Construct an empty batch.""" return Data(graph_ids=[], data=None) def EndOfBatches() -> Data: """Construct a 'end of batches' marker.""" return Data(graph_ids=[], data=None, end_of_batches=True) class BatchIterator(NamedTuple): """A batch iterator""" batches: Iterable[Data] # The total number of graphs in all of the batches. graph_count: int class Results(NamedTuple): """The results of running a batch through a model. Don't instantiate this tuple directly, use Results.Create(). """ targets: np.array predictions: np.array # The number of model iterations to compute the final results. This is used # by iterative models such as message passing networks. iteration_count: int # For iterative models, this indicates whether the state of the model at # iteration_count had converged on a solution. model_converged: bool # The learning rate and loss of models, if applicable. learning_rate: Optional[float] loss: Optional[float] # Batch-level average performance metrics. accuracy: float precision: float recall: float f1: float @property def has_learning_rate(self) -> bool: return self.learning_rate is not None @property def has_loss(self) -> bool: return self.loss is not None @property def target_count(self) -> int: """Get the number of targets in the batch. For graph-level classifiers, this will be equal to Data.graph_count, else it's equal to the batch node count. """ return self.targets.shape[1] def __repr__(self) -> str: return ( f"accuracy={self.accuracy:.2%}%, " f"precision={self.precision:.3f}, " f"recall={self.recall:.3f}, " f"f1={self.f1:.3f}" ) def __eq__(self, rhs: "Results"): """Compare batch results.""" return self.accuracy == rhs.accuracy def __gt__(self, rhs: "Results"): """Compare batch results.""" return self.accuracy > rhs.accuracy @classmethod def Create( cls, targets: np.array, predictions: np.array, iteration_count: int = 1, model_converged: bool = True, learning_rate: Optional[float] = None, loss: Optional[float] = None, ): """Construct a results instance from 1-hot targets and predictions. This is the preferred means of construct a Results instance, which takes care of evaluating all of the metrics for you. The behavior of metrics calculation is dependent on the --batch_scores_averaging_method flag. Args: targets: An array of 1-hot target vectors with shape (y_count, y_dimensionality), dtype int32. predictions: An array of 1-hot prediction vectors with shape (y_count, y_dimensionality), dtype int32. iteration_count: For iterative models, the number of model iterations to compute the final result. model_converged: For iterative models, whether model converged. learning_rate: The model learning rate, if applicable. loss: The model loss, if applicable. Returns: A Results instance. """ if targets.shape != predictions.shape: raise TypeError( f"Expected model to produce targets with shape {targets.shape} but " f"instead received predictions with shape {predictions.shape}" ) y_dimensionality = targets.shape[1] if y_dimensionality < 2: raise TypeError( f"Expected label dimensionality > 1, received {y_dimensionality}" ) # Create dense arrays of shape (target_count). true_y = np.argmax(targets, axis=1) pred_y = np.argmax(predictions, axis=1) # NOTE(github.com/ChrisCummins/ProGraML/issues/22): This assumes that # labels use the values [0,...n). labels = np.arange(y_dimensionality, dtype=np.int64) return cls( targets=targets, predictions=predictions, iteration_count=iteration_count, model_converged=model_converged, learning_rate=learning_rate, loss=loss, accuracy=sklearn.metrics.accuracy_score(true_y, pred_y), precision=sklearn.metrics.precision_score( true_y, pred_y, labels=labels, average=FLAGS.batch_scores_averaging_method, ), recall=sklearn.metrics.recall_score( true_y, pred_y, labels=labels, average=FLAGS.batch_scores_averaging_method, ), f1=sklearn.metrics.f1_score( true_y, pred_y, labels=labels, average=FLAGS.batch_scores_averaging_method, ), ) class RollingResults: """Maintain weighted rolling averages across batches.""" def __init__(self): self.weight_sum = 0 self.batch_count = 0 self.graph_count = 0 self.target_count = 0 self.weighted_iteration_count_sum = 0 self.weighted_model_converged_sum = 0 self.has_learning_rate = False self.weighted_learning_rate_sum = 0 self.has_loss = False self.weighted_loss_sum = 0 self.weighted_accuracy_sum = 0 self.weighted_precision_sum = 0 self.weighted_recall_sum = 0 self.weighted_f1_sum = 0 def Update( self, data: Data, results: Results, weight: Optional[float] = None ) -> None: """Update the rolling results with a new batch. Args: data: The batch data used to produce the results. results: The batch results to update the current state with. weight: A weight to assign to weighted sums. E.g. to weight results across all targets, use weight=results.target_count. To weight across targets, use weight=batch.target_count. To weight across graphs, use weight=batch.graph_count. By default, weight by target count. """ if weight is None: weight = results.target_count self.weight_sum += weight self.batch_count += 1 self.graph_count += data.graph_count self.target_count += results.target_count self.weighted_iteration_count_sum += results.iteration_count * weight self.weighted_model_converged_sum += ( weight if results.model_converged else 0 ) if results.has_learning_rate: self.has_learning_rate = True self.weighted_learning_rate_sum += results.learning_rate * weight if results.has_loss: self.has_loss = True self.weighted_loss_sum += results.loss * weight self.weighted_accuracy_sum += results.accuracy * weight self.weighted_precision_sum += results.precision * weight self.weighted_recall_sum += results.recall * weight self.weighted_f1_sum += results.f1 * weight @property def iteration_count(self) -> float: return self.weighted_iteration_count_sum / max(self.weight_sum, 1) @property def model_converged(self) -> float: return self.weighted_model_converged_sum / max(self.weight_sum, 1) @property def learning_rate(self) -> Optional[float]: if self.has_learning_rate: return self.weighted_learning_rate_sum / max(self.weight_sum, 1) @property def loss(self) -> Optional[float]: if self.has_loss: return self.weighted_loss_sum / max(self.weight_sum, 1) @property def accuracy(self) -> float: return self.weighted_accuracy_sum / max(self.weight_sum, 1) @property def precision(self) -> float: return self.weighted_precision_sum / max(self.weight_sum, 1) @property def recall(self) -> float: return self.weighted_recall_sum / max(self.weight_sum, 1) @property def f1(self) -> float: return self.weighted_f1_sum / max(self.weight_sum, 1)
[ "numpy.arange", "labm8.py.app.DEFINE_string", "numpy.argmax" ]
[((928, 1167), 'labm8.py.app.DEFINE_string', 'app.DEFINE_string', (['"""batch_scores_averaging_method"""', '"""weighted"""', '"""Selects the averaging method to use when computing recall/precision/F1 scores. See <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html>"""'], {}), "('batch_scores_averaging_method', 'weighted',\n 'Selects the averaging method to use when computing recall/precision/F1 scores. See <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html>'\n )\n", (945, 1167), False, 'from labm8.py import app\n'), ((5005, 5031), 'numpy.argmax', 'np.argmax', (['targets'], {'axis': '(1)'}), '(targets, axis=1)\n', (5014, 5031), True, 'import numpy as np\n'), ((5045, 5075), 'numpy.argmax', 'np.argmax', (['predictions'], {'axis': '(1)'}), '(predictions, axis=1)\n', (5054, 5075), True, 'import numpy as np\n'), ((5202, 5245), 'numpy.arange', 'np.arange', (['y_dimensionality'], {'dtype': 'np.int64'}), '(y_dimensionality, dtype=np.int64)\n', (5211, 5245), True, 'import numpy as np\n')]
import collections import os import numpy as np import tensorflow as tf from pysc2.lib import actions from tensorflow.contrib import layers from tensorflow.contrib.layers.python.layers.optimizers import OPTIMIZER_SUMMARIES from actorcritic.policy import FullyConvPolicy from common.preprocess import ObsProcesser, FEATURE_KEYS, AgentInputTuple from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs def _get_placeholders(spatial_dim): sd = spatial_dim feature_list = [ (FEATURE_KEYS.minimap_numeric, tf.float32, [None, sd, sd, ObsProcesser.N_MINIMAP_CHANNELS]), (FEATURE_KEYS.screen_numeric, tf.float32, [None, sd, sd, ObsProcesser.N_SCREEN_CHANNELS]), (FEATURE_KEYS.screen_unit_type, tf.int32, [None, sd, sd]), (FEATURE_KEYS.is_spatial_action_available, tf.float32, [None]), (FEATURE_KEYS.available_action_ids, tf.float32, [None, len(actions.FUNCTIONS)]), (FEATURE_KEYS.selected_spatial_action, tf.int32, [None, 2]), (FEATURE_KEYS.selected_action_id, tf.int32, [None]), (FEATURE_KEYS.value_target, tf.float32, [None]), (FEATURE_KEYS.player_relative_screen, tf.int32, [None, sd, sd]), (FEATURE_KEYS.player_relative_minimap, tf.int32, [None, sd, sd]), (FEATURE_KEYS.advantage, tf.float32, [None]) ] return AgentInputTuple( **{name: tf.placeholder(dtype, shape, name) for name, dtype, shape in feature_list} ) class ACMode: A2C = "a2c" PPO = "ppo" SelectedLogProbs = collections.namedtuple("SelectedLogProbs", ["action_id", "spatial", "total"]) class ActorCriticAgent: _scalar_summary_key = "scalar_summaries" def __init__(self, sess: tf.Session, summary_path: str, all_summary_freq: int, scalar_summary_freq: int, spatial_dim: int, mode: str, clip_epsilon=0.2, unit_type_emb_dim=4, loss_value_weight=1.0, entropy_weight_spatial=1e-6, entropy_weight_action_id=1e-5, max_gradient_norm=None, optimiser="adam", optimiser_pars: dict = None, policy=FullyConvPolicy ): """ Actor-Critic Agent for learning pysc2-minigames https://arxiv.org/pdf/1708.04782.pdf https://github.com/deepmind/pysc2 Can use - A2C https://blog.openai.com/baselines-acktr-a2c/ (synchronous version of A3C) or - PPO https://arxiv.org/pdf/1707.06347.pdf :param summary_path: tensorflow summaries will be created here :param all_summary_freq: how often save all summaries :param scalar_summary_freq: int, how often save scalar summaries :param spatial_dim: dimension for both minimap and screen :param mode: a2c or ppo :param clip_epsilon: epsilon for clipping the ratio in PPO (no effect in A2C) :param loss_value_weight: value weight for a2c update :param entropy_weight_spatial: spatial entropy weight for a2c update :param entropy_weight_action_id: action selection entropy weight for a2c update :param max_gradient_norm: global max norm for gradients, if None then not limited :param optimiser: see valid choices below :param optimiser_pars: optional parameters to pass in optimiser :param policy: Policy class """ assert optimiser in ["adam", "rmsprop"] assert mode in [ACMode.A2C, ACMode.PPO] self.mode = mode self.sess = sess self.spatial_dim = spatial_dim self.loss_value_weight = loss_value_weight self.entropy_weight_spatial = entropy_weight_spatial self.entropy_weight_action_id = entropy_weight_action_id self.unit_type_emb_dim = unit_type_emb_dim self.summary_path = summary_path os.makedirs(summary_path, exist_ok=True) self.summary_writer = tf.summary.FileWriter(summary_path) self.all_summary_freq = all_summary_freq self.scalar_summary_freq = scalar_summary_freq self.train_step = 0 self.max_gradient_norm = max_gradient_norm self.clip_epsilon = clip_epsilon self.policy = policy opt_class = tf.train.AdamOptimizer if optimiser == "adam" else tf.train.RMSPropOptimizer if optimiser_pars is None: pars = { "adam": { "learning_rate": 1e-4, "epsilon": 5e-7 }, "rmsprop": { "learning_rate": 2e-4 } }[optimiser] else: pars = optimiser_pars self.optimiser = opt_class(**pars) def init(self): self.sess.run(self.init_op) if self.mode == ACMode.PPO: self.update_theta() def _get_select_action_probs(self, pi, selected_spatial_action_flat): action_id = select_from_each_row( pi.action_id_log_probs, self.placeholders.selected_action_id ) spatial = select_from_each_row( pi.spatial_action_log_probs, selected_spatial_action_flat ) total = spatial + action_id return SelectedLogProbs(action_id, spatial, total) def _scalar_summary(self, name, tensor): tf.summary.scalar(name, tensor, collections=[tf.GraphKeys.SUMMARIES, self._scalar_summary_key]) def build_model(self): self.placeholders = _get_placeholders(self.spatial_dim) with tf.variable_scope("theta"): theta = self.policy(self, trainable=True).build() selected_spatial_action_flat = ravel_index_pairs( self.placeholders.selected_spatial_action, self.spatial_dim ) selected_log_probs = self._get_select_action_probs(theta, selected_spatial_action_flat) # maximum is to avoid 0 / 0 because this is used to calculate some means sum_spatial_action_available = tf.maximum( 1e-10, tf.reduce_sum(self.placeholders.is_spatial_action_available) ) neg_entropy_spatial = tf.reduce_sum( theta.spatial_action_probs * theta.spatial_action_log_probs ) / sum_spatial_action_available neg_entropy_action_id = tf.reduce_mean(tf.reduce_sum( theta.action_id_probs * theta.action_id_log_probs, axis=1 )) if self.mode == ACMode.PPO: # could also use stop_gradient and forget about the trainable with tf.variable_scope("theta_old"): theta_old = self.policy(self, trainable=False).build() new_theta_var = tf.global_variables("theta/") old_theta_var = tf.global_variables("theta_old/") assert len(tf.trainable_variables("theta/")) == len(new_theta_var) assert not tf.trainable_variables("theta_old/") assert len(old_theta_var) == len(new_theta_var) self.update_theta_op = [ tf.assign(t_old, t_new) for t_new, t_old in zip(new_theta_var, old_theta_var) ] selected_log_probs_old = self._get_select_action_probs( theta_old, selected_spatial_action_flat ) ratio = tf.exp(selected_log_probs.total - selected_log_probs_old.total) clipped_ratio = tf.clip_by_value( ratio, 1.0 - self.clip_epsilon, 1.0 + self.clip_epsilon ) l_clip = tf.minimum( ratio * self.placeholders.advantage, clipped_ratio * self.placeholders.advantage ) self.sampled_action_id = weighted_random_sample(theta_old.action_id_probs) self.sampled_spatial_action = weighted_random_sample(theta_old.spatial_action_probs) self.value_estimate = theta_old.value_estimate self._scalar_summary("action/ratio", tf.reduce_mean(clipped_ratio)) self._scalar_summary("action/ratio_is_clipped", tf.reduce_mean(tf.to_float(tf.equal(ratio, clipped_ratio)))) policy_loss = -tf.reduce_mean(l_clip) else: self.sampled_action_id = weighted_random_sample(theta.action_id_probs) self.sampled_spatial_action = weighted_random_sample(theta.spatial_action_probs) self.value_estimate = theta.value_estimate policy_loss = -tf.reduce_mean(selected_log_probs.total * self.placeholders.advantage) value_loss = tf.losses.mean_squared_error( self.placeholders.value_target, theta.value_estimate) loss = ( policy_loss + value_loss * self.loss_value_weight + neg_entropy_spatial * self.entropy_weight_spatial + neg_entropy_action_id * self.entropy_weight_action_id ) self.train_op = layers.optimize_loss( loss=loss, global_step=tf.train.get_global_step(), optimizer=self.optimiser, clip_gradients=self.max_gradient_norm, summaries=OPTIMIZER_SUMMARIES, learning_rate=None, name="train_op" ) self._scalar_summary("value/estimate", tf.reduce_mean(self.value_estimate)) self._scalar_summary("value/target", tf.reduce_mean(self.placeholders.value_target)) self._scalar_summary("action/is_spatial_action_available", tf.reduce_mean(self.placeholders.is_spatial_action_available)) self._scalar_summary("action/selected_id_log_prob", tf.reduce_mean(selected_log_probs.action_id)) self._scalar_summary("loss/policy", policy_loss) self._scalar_summary("loss/value", value_loss) self._scalar_summary("loss/neg_entropy_spatial", neg_entropy_spatial) self._scalar_summary("loss/neg_entropy_action_id", neg_entropy_action_id) self._scalar_summary("loss/total", loss) self._scalar_summary("value/advantage", tf.reduce_mean(self.placeholders.advantage)) self._scalar_summary("action/selected_total_log_prob", tf.reduce_mean(selected_log_probs.total)) self._scalar_summary("action/selected_spatial_log_prob", tf.reduce_sum(selected_log_probs.spatial) / sum_spatial_action_available) self.init_op = tf.global_variables_initializer() self.saver = tf.train.Saver(max_to_keep=2) self.all_summary_op = tf.summary.merge_all(tf.GraphKeys.SUMMARIES) self.scalar_summary_op = tf.summary.merge(tf.get_collection(self._scalar_summary_key)) def _input_to_feed_dict(self, input_dict): return {k + ":0": v for k, v in input_dict.items()} def step(self, obs): feed_dict = self._input_to_feed_dict(obs) action_id, spatial_action, value_estimate = self.sess.run( [self.sampled_action_id, self.sampled_spatial_action, self.value_estimate], feed_dict=feed_dict ) spatial_action_2d = np.array( np.unravel_index(spatial_action, (self.spatial_dim,) * 2) ).transpose() return action_id, spatial_action_2d, value_estimate def train(self, input_dict): feed_dict = self._input_to_feed_dict(input_dict) ops = [self.train_op] write_all_summaries = ( (self.train_step % self.all_summary_freq == 0) and self.summary_path is not None ) write_scalar_summaries = ( (self.train_step % self.scalar_summary_freq == 0) and self.summary_path is not None ) if write_all_summaries: ops.append(self.all_summary_op) elif write_scalar_summaries: ops.append(self.scalar_summary_op) r = self.sess.run(ops, feed_dict) if write_all_summaries or write_scalar_summaries: self.summary_writer.add_summary(r[-1], global_step=self.train_step) self.train_step += 1 def get_value(self, obs): feed_dict = self._input_to_feed_dict(obs) return self.sess.run(self.value_estimate, feed_dict=feed_dict) def flush_summaries(self): self.summary_writer.flush() def save(self, path, step=None): os.makedirs(path, exist_ok=True) step = step or self.train_step print("saving model to %s, step %d" % (path, step)) self.saver.save(self.sess, path + '/model.ckpt', global_step=step) def load(self, path): ckpt = tf.train.get_checkpoint_state(path) self.saver.restore(self.sess, ckpt.model_checkpoint_path) self.train_step = int(ckpt.model_checkpoint_path.split('-')[-1]) print("loaded old model with train_step %d" % self.train_step) self.train_step += 1 def update_theta(self): if self.mode == ACMode.PPO: self.sess.run(self.update_theta_op)
[ "tensorflow.reduce_sum", "tensorflow.clip_by_value", "tensorflow.trainable_variables", "tensorflow.get_collection", "tensorflow.global_variables", "tensorflow.assign", "common.util.ravel_index_pairs", "tensorflow.variable_scope", "tensorflow.minimum", "tensorflow.placeholder", "tensorflow.summary.FileWriter", "tensorflow.exp", "tensorflow.summary.merge_all", "tensorflow.train.get_checkpoint_state", "tensorflow.train.get_global_step", "tensorflow.equal", "tensorflow.summary.scalar", "tensorflow.losses.mean_squared_error", "tensorflow.global_variables_initializer", "tensorflow.train.Saver", "common.util.weighted_random_sample", "tensorflow.reduce_mean", "os.makedirs", "common.util.select_from_each_row", "numpy.unravel_index", "collections.namedtuple" ]
[((1528, 1605), 'collections.namedtuple', 'collections.namedtuple', (['"""SelectedLogProbs"""', "['action_id', 'spatial', 'total']"], {}), "('SelectedLogProbs', ['action_id', 'spatial', 'total'])\n", (1550, 1605), False, 'import collections\n'), ((3882, 3922), 'os.makedirs', 'os.makedirs', (['summary_path'], {'exist_ok': '(True)'}), '(summary_path, exist_ok=True)\n', (3893, 3922), False, 'import os\n'), ((3953, 3988), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['summary_path'], {}), '(summary_path)\n', (3974, 3988), True, 'import tensorflow as tf\n'), ((4945, 5032), 'common.util.select_from_each_row', 'select_from_each_row', (['pi.action_id_log_probs', 'self.placeholders.selected_action_id'], {}), '(pi.action_id_log_probs, self.placeholders.\n selected_action_id)\n', (4965, 5032), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((5068, 5147), 'common.util.select_from_each_row', 'select_from_each_row', (['pi.spatial_action_log_probs', 'selected_spatial_action_flat'], {}), '(pi.spatial_action_log_probs, selected_spatial_action_flat)\n', (5088, 5147), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((5320, 5420), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['name', 'tensor'], {'collections': '[tf.GraphKeys.SUMMARIES, self._scalar_summary_key]'}), '(name, tensor, collections=[tf.GraphKeys.SUMMARIES, self.\n _scalar_summary_key])\n', (5337, 5420), True, 'import tensorflow as tf\n'), ((5664, 5742), 'common.util.ravel_index_pairs', 'ravel_index_pairs', (['self.placeholders.selected_spatial_action', 'self.spatial_dim'], {}), '(self.placeholders.selected_spatial_action, self.spatial_dim)\n', (5681, 5742), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((8475, 8562), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['self.placeholders.value_target', 'theta.value_estimate'], {}), '(self.placeholders.value_target, theta.\n value_estimate)\n', (8503, 8562), True, 'import tensorflow as tf\n'), ((10273, 10306), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (10304, 10306), True, 'import tensorflow as tf\n'), ((10328, 10357), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(2)'}), '(max_to_keep=2)\n', (10342, 10357), True, 'import tensorflow as tf\n'), ((10388, 10432), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', (['tf.GraphKeys.SUMMARIES'], {}), '(tf.GraphKeys.SUMMARIES)\n', (10408, 10432), True, 'import tensorflow as tf\n'), ((12163, 12195), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (12174, 12195), False, 'import os\n'), ((12412, 12447), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['path'], {}), '(path)\n', (12441, 12447), True, 'import tensorflow as tf\n'), ((5534, 5560), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""theta"""'], {}), "('theta')\n", (5551, 5560), True, 'import tensorflow as tf\n'), ((6014, 6074), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.placeholders.is_spatial_action_available'], {}), '(self.placeholders.is_spatial_action_available)\n', (6027, 6074), True, 'import tensorflow as tf\n'), ((6116, 6190), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(theta.spatial_action_probs * theta.spatial_action_log_probs)'], {}), '(theta.spatial_action_probs * theta.spatial_action_log_probs)\n', (6129, 6190), True, 'import tensorflow as tf\n'), ((6291, 6363), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(theta.action_id_probs * theta.action_id_log_probs)'], {'axis': '(1)'}), '(theta.action_id_probs * theta.action_id_log_probs, axis=1)\n', (6304, 6363), True, 'import tensorflow as tf\n'), ((6647, 6676), 'tensorflow.global_variables', 'tf.global_variables', (['"""theta/"""'], {}), "('theta/')\n", (6666, 6676), True, 'import tensorflow as tf\n'), ((6705, 6738), 'tensorflow.global_variables', 'tf.global_variables', (['"""theta_old/"""'], {}), "('theta_old/')\n", (6724, 6738), True, 'import tensorflow as tf\n'), ((7244, 7307), 'tensorflow.exp', 'tf.exp', (['(selected_log_probs.total - selected_log_probs_old.total)'], {}), '(selected_log_probs.total - selected_log_probs_old.total)\n', (7250, 7307), True, 'import tensorflow as tf\n'), ((7336, 7409), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['ratio', '(1.0 - self.clip_epsilon)', '(1.0 + self.clip_epsilon)'], {}), '(ratio, 1.0 - self.clip_epsilon, 1.0 + self.clip_epsilon)\n', (7352, 7409), True, 'import tensorflow as tf\n'), ((7461, 7558), 'tensorflow.minimum', 'tf.minimum', (['(ratio * self.placeholders.advantage)', '(clipped_ratio * self.placeholders.advantage)'], {}), '(ratio * self.placeholders.advantage, clipped_ratio * self.\n placeholders.advantage)\n', (7471, 7558), True, 'import tensorflow as tf\n'), ((7637, 7686), 'common.util.weighted_random_sample', 'weighted_random_sample', (['theta_old.action_id_probs'], {}), '(theta_old.action_id_probs)\n', (7659, 7686), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((7729, 7783), 'common.util.weighted_random_sample', 'weighted_random_sample', (['theta_old.spatial_action_probs'], {}), '(theta_old.spatial_action_probs)\n', (7751, 7783), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((8161, 8206), 'common.util.weighted_random_sample', 'weighted_random_sample', (['theta.action_id_probs'], {}), '(theta.action_id_probs)\n', (8183, 8206), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((8249, 8299), 'common.util.weighted_random_sample', 'weighted_random_sample', (['theta.spatial_action_probs'], {}), '(theta.spatial_action_probs)\n', (8271, 8299), False, 'from common.util import weighted_random_sample, select_from_each_row, ravel_index_pairs\n'), ((9177, 9212), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['self.value_estimate'], {}), '(self.value_estimate)\n', (9191, 9212), True, 'import tensorflow as tf\n'), ((9259, 9305), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['self.placeholders.value_target'], {}), '(self.placeholders.value_target)\n', (9273, 9305), True, 'import tensorflow as tf\n'), ((9386, 9447), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['self.placeholders.is_spatial_action_available'], {}), '(self.placeholders.is_spatial_action_available)\n', (9400, 9447), True, 'import tensorflow as tf\n'), ((9521, 9565), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['selected_log_probs.action_id'], {}), '(selected_log_probs.action_id)\n', (9535, 9565), True, 'import tensorflow as tf\n'), ((9936, 9979), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['self.placeholders.advantage'], {}), '(self.placeholders.advantage)\n', (9950, 9979), True, 'import tensorflow as tf\n'), ((10056, 10096), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['selected_log_probs.total'], {}), '(selected_log_probs.total)\n', (10070, 10096), True, 'import tensorflow as tf\n'), ((10483, 10526), 'tensorflow.get_collection', 'tf.get_collection', (['self._scalar_summary_key'], {}), '(self._scalar_summary_key)\n', (10500, 10526), True, 'import tensorflow as tf\n'), ((1378, 1412), 'tensorflow.placeholder', 'tf.placeholder', (['dtype', 'shape', 'name'], {}), '(dtype, shape, name)\n', (1392, 1412), True, 'import tensorflow as tf\n'), ((6515, 6545), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""theta_old"""'], {}), "('theta_old')\n", (6532, 6545), True, 'import tensorflow as tf\n'), ((6842, 6878), 'tensorflow.trainable_variables', 'tf.trainable_variables', (['"""theta_old/"""'], {}), "('theta_old/')\n", (6864, 6878), True, 'import tensorflow as tf\n'), ((6993, 7016), 'tensorflow.assign', 'tf.assign', (['t_old', 't_new'], {}), '(t_old, t_new)\n', (7002, 7016), True, 'import tensorflow as tf\n'), ((7892, 7921), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['clipped_ratio'], {}), '(clipped_ratio)\n', (7906, 7921), True, 'import tensorflow as tf\n'), ((8087, 8109), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['l_clip'], {}), '(l_clip)\n', (8101, 8109), True, 'import tensorflow as tf\n'), ((8382, 8452), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(selected_log_probs.total * self.placeholders.advantage)'], {}), '(selected_log_probs.total * self.placeholders.advantage)\n', (8396, 8452), True, 'import tensorflow as tf\n'), ((8899, 8925), 'tensorflow.train.get_global_step', 'tf.train.get_global_step', ([], {}), '()\n', (8923, 8925), True, 'import tensorflow as tf\n'), ((10175, 10216), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['selected_log_probs.spatial'], {}), '(selected_log_probs.spatial)\n', (10188, 10216), True, 'import tensorflow as tf\n'), ((6763, 6795), 'tensorflow.trainable_variables', 'tf.trainable_variables', (['"""theta/"""'], {}), "('theta/')\n", (6785, 6795), True, 'import tensorflow as tf\n'), ((10961, 11018), 'numpy.unravel_index', 'np.unravel_index', (['spatial_action', '((self.spatial_dim,) * 2)'], {}), '(spatial_action, (self.spatial_dim,) * 2)\n', (10977, 11018), True, 'import numpy as np\n'), ((8026, 8056), 'tensorflow.equal', 'tf.equal', (['ratio', 'clipped_ratio'], {}), '(ratio, clipped_ratio)\n', (8034, 8056), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python # coding:utf-8 from __future__ import print_function #import sys import re import glob import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt all_files = glob.glob('../*/dat_L*_tau_inf') list_L = [] list_N = [] list_mx = [] list_mz0mz1 = [] list_ene = [] for file_name in all_files: # N = file_name.replace("dat_L","") L = re.sub(".*dat_L","",file_name) L = int(L.replace("_tau_inf","")) N = L**2 list_L.append(L) list_N.append(N) print(file_name,L,N) # file = open(sys.argv[1]) # file = open('dat_L3_tau_inf') file = open(file_name) lines = file.readlines() file.close() for line in lines: if line.startswith("mx ["): line_mx = line[:-1] line_mx = line_mx.replace("mx [","") line_mx = line_mx.replace("]","") # list_mx = np.fromstring(line_mx,dtype=np.float,sep=',') list_mx.append(np.fromstring(line_mx,dtype=np.float,sep=',')) if line.startswith("mz0mz1 ["): line_mz0mz1 = line[:-1] line_mz0mz1 = line_mz0mz1.replace("mz0mz1 [","") line_mz0mz1 = line_mz0mz1.replace("]","") list_mz0mz1.append(np.fromstring(line_mz0mz1,dtype=np.float,sep=',')) if line.startswith("ene ["): line_ene = line[:-1] line_ene = line_ene.replace("ene [","") line_ene = line_ene.replace("]","") list_ene.append(np.fromstring(line_ene,dtype=np.float,sep=',')) if line.startswith("field_steps: h(t)= ["): line_h = line[:-1] line_h = line_h.replace("field_steps: h(t)= [","") line_h = line_h.replace("]","") list_h = np.fromstring(line_h,dtype=np.float,sep=',') list_enedens = [] for i in range(len(list_N)): list_enedens.append(np.array([x/list_N[i] for x in list_ene[i]],dtype=np.float)) print("h",list_h) for i in range(len(list_L)): print("L mx",list_L[i],list_mx[i]) print("L mz0mz1",list_L[i],list_mz0mz1[i]) print("L enedens",list_L[i],list_enedens[i]) fig0 = plt.figure() fig0.suptitle("mx") for i in range(len(list_L)): plt.plot(list_h,list_mx[i],label=list_L[i]) plt.xlabel("field") plt.legend(bbox_to_anchor=(1,1),loc='upper right',borderaxespad=1) plt.gca().invert_xaxis() fig0.savefig("fig_mx.png") fig1 = plt.figure() fig1.suptitle("mz0mz1") for i in range(len(list_L)): plt.plot(list_h,list_mz0mz1[i],label=list_L[i]) plt.xlabel("field") plt.legend(bbox_to_anchor=(1,0),loc='lower right',borderaxespad=1) plt.gca().invert_xaxis() fig1.savefig("fig_mz0mz1.png") fig2 = plt.figure() fig2.suptitle("enedens") for i in range(len(list_L)): plt.plot(list_h,list_enedens[i],label=list_L[i]) plt.xlabel("field") plt.legend(bbox_to_anchor=(1,0),loc='lower right',borderaxespad=1) plt.gca().invert_xaxis() fig2.savefig("fig_enedens.png")
[ "matplotlib.pyplot.plot", "matplotlib.pyplot.gca", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "matplotlib.use", "numpy.array", "glob.glob", "matplotlib.pyplot.xlabel", "re.sub", "numpy.fromstring" ]
[((147, 168), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (161, 168), False, 'import matplotlib\n'), ((214, 246), 'glob.glob', 'glob.glob', (['"""../*/dat_L*_tau_inf"""'], {}), "('../*/dat_L*_tau_inf')\n", (223, 246), False, 'import glob\n'), ((2106, 2118), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2116, 2118), True, 'import matplotlib.pyplot as plt\n'), ((2216, 2235), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""field"""'], {}), "('field')\n", (2226, 2235), True, 'import matplotlib.pyplot as plt\n'), ((2236, 2305), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1, 1)', 'loc': '"""upper right"""', 'borderaxespad': '(1)'}), "(bbox_to_anchor=(1, 1), loc='upper right', borderaxespad=1)\n", (2246, 2305), True, 'import matplotlib.pyplot as plt\n'), ((2363, 2375), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2373, 2375), True, 'import matplotlib.pyplot as plt\n'), ((2481, 2500), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""field"""'], {}), "('field')\n", (2491, 2500), True, 'import matplotlib.pyplot as plt\n'), ((2501, 2570), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1, 0)', 'loc': '"""lower right"""', 'borderaxespad': '(1)'}), "(bbox_to_anchor=(1, 0), loc='lower right', borderaxespad=1)\n", (2511, 2570), True, 'import matplotlib.pyplot as plt\n'), ((2632, 2644), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2642, 2644), True, 'import matplotlib.pyplot as plt\n'), ((2752, 2771), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""field"""'], {}), "('field')\n", (2762, 2771), True, 'import matplotlib.pyplot as plt\n'), ((2772, 2841), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1, 0)', 'loc': '"""lower right"""', 'borderaxespad': '(1)'}), "(bbox_to_anchor=(1, 0), loc='lower right', borderaxespad=1)\n", (2782, 2841), True, 'import matplotlib.pyplot as plt\n'), ((391, 423), 're.sub', 're.sub', (['""".*dat_L"""', '""""""', 'file_name'], {}), "('.*dat_L', '', file_name)\n", (397, 423), False, 'import re\n'), ((2172, 2217), 'matplotlib.pyplot.plot', 'plt.plot', (['list_h', 'list_mx[i]'], {'label': 'list_L[i]'}), '(list_h, list_mx[i], label=list_L[i])\n', (2180, 2217), True, 'import matplotlib.pyplot as plt\n'), ((2433, 2482), 'matplotlib.pyplot.plot', 'plt.plot', (['list_h', 'list_mz0mz1[i]'], {'label': 'list_L[i]'}), '(list_h, list_mz0mz1[i], label=list_L[i])\n', (2441, 2482), True, 'import matplotlib.pyplot as plt\n'), ((2703, 2753), 'matplotlib.pyplot.plot', 'plt.plot', (['list_h', 'list_enedens[i]'], {'label': 'list_L[i]'}), '(list_h, list_enedens[i], label=list_L[i])\n', (2711, 2753), True, 'import matplotlib.pyplot as plt\n'), ((1854, 1918), 'numpy.array', 'np.array', (['[(x / list_N[i]) for x in list_ene[i]]'], {'dtype': 'np.float'}), '([(x / list_N[i]) for x in list_ene[i]], dtype=np.float)\n', (1862, 1918), True, 'import numpy as np\n'), ((2303, 2312), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2310, 2312), True, 'import matplotlib.pyplot as plt\n'), ((2568, 2577), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2575, 2577), True, 'import matplotlib.pyplot as plt\n'), ((2839, 2848), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2846, 2848), True, 'import matplotlib.pyplot as plt\n'), ((1737, 1783), 'numpy.fromstring', 'np.fromstring', (['line_h'], {'dtype': 'np.float', 'sep': '""","""'}), "(line_h, dtype=np.float, sep=',')\n", (1750, 1783), True, 'import numpy as np\n'), ((960, 1007), 'numpy.fromstring', 'np.fromstring', (['line_mx'], {'dtype': 'np.float', 'sep': '""","""'}), "(line_mx, dtype=np.float, sep=',')\n", (973, 1007), True, 'import numpy as np\n'), ((1229, 1280), 'numpy.fromstring', 'np.fromstring', (['line_mz0mz1'], {'dtype': 'np.float', 'sep': '""","""'}), "(line_mz0mz1, dtype=np.float, sep=',')\n", (1242, 1280), True, 'import numpy as np\n'), ((1478, 1526), 'numpy.fromstring', 'np.fromstring', (['line_ene'], {'dtype': 'np.float', 'sep': '""","""'}), "(line_ene, dtype=np.float, sep=',')\n", (1491, 1526), True, 'import numpy as np\n')]
#!/usr/bin/env python # encoding: utf-8 import argparse import prody import os import shutil import subprocess import numpy from os.path import join GMX_PATH = '/usr/local/gromacs/bin/' mdp_string = ''' define = -DPOSRES integrator = {integrator} nsteps = 1000 emtol = 1 nstlist = 1 coulombtype = Cut-off vdwtype = Cut-off ns_type = simple rlist = 1.8 rcoulomb = 1.8 rvdw = 1.8 pbc = xyz implicit_solvent = GBSA gb_algorithm = OBC sa_algorithm = ACE-approximation rgbradii = 1.8 ;nstxout = 1 ''' def parse_args(): parser = argparse.ArgumentParser(description='Generate trajectory with gaussian flucutations.') parser.add_argument('pdb_file', metavar='INPUT_PDB_FILE', help='path to input pdb file') parser.add_argument('trajectory', metavar='TRAJECTORY', help='path to input trajectory') parser.add_argument('out_file', metavar='OUTPUT_PDB_FILE', help='path to input pdb file') parser.add_argument('--pos_res_k', type=float, default=1000.) args = parser.parse_args() return (args.pdb_file, args.trajectory, args.out_file, args.pos_res_k) class Minimizer(object): def __init__(self, input_pdb_filename, trajectory_filename): self.input_pdb = self._load_pdb(input_pdb_filename) self.trajectory = self._load_pdb(trajectory_filename) def _load_pdb(self, in_file): protein = prody.parsePDB(in_file) return protein def _get_closest_frame(self): output = prody.AtomGroup('Cartesian average coordinates') output.setCoords( self.trajectory.getCoords() ) output.setNames( self.trajectory.getNames() ) output.setResnums( self.trajectory.getResnums() ) output.setResnames( self.trajectory.getResnames() ) ensemble = prody.PDBEnsemble(self.trajectory) ensemble.setCoords(self.input_pdb) ensemble.superpose() rmsds = ensemble.getRMSDs() min_index = numpy.argmin(rmsds) output.setCoords( ensemble.getCoordsets(min_index) ) return output def _create_no_h_file(self, output_stream): # make the index file cmd = join(GMX_PATH, 'make_ndx') cmd += ' -f min_round_2.gro -o no_h.ndx' p1 = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=output_stream, stderr=output_stream) p1.communicate('q\n') # run editconf edit_cmd = join(GMX_PATH, 'editconf') edit_cmd += ' -f min_round_2.gro -o no_h.gro -n no_h.ndx' p2 = subprocess.Popen(edit_cmd, shell=True, stdin=subprocess.PIPE, stdout=output_stream, stderr=output_stream) p2.communicate('2\n') def _re_order(self, output_stream): # create a new index file lines = open('index.ndx').read().splitlines() header = lines[0] indices = [] for line in lines[1:]: cols = line.split() for col in cols: indices.append( int(col) ) resorted = [ indices.index(val)+1 for val in range( 1, max(indices)+1 ) ] with open('resort.ndx', 'w') as out: print >>out, header for val in resorted: print >>out, val # resort edit_cmd = join(GMX_PATH, 'editconf') edit_cmd += ' -f no_h.gro -o min.pdb -n resort.ndx' subprocess.check_call(edit_cmd, shell=True, stdout=output_stream, stderr=output_stream) def run_minimization(self, posres_force_const=1000., output_stream=None): start = self._get_closest_frame() # create temp dir if os.path.isdir('Temp'): pass else: os.mkdir('Temp') os.chdir('Temp') # write the average file prody.writePDB('average.pdb', self.input_pdb) pdb_cmd = join(GMX_PATH, 'pdb2gmx') pdb_cmd += ' -f average.pdb -ff amber99sb-ildn -water none -n index.ndx -posrefc {} -o ref.gro -his'.format( posres_force_const) p = subprocess.Popen(pdb_cmd, shell=True, stdin=subprocess.PIPE, stdout=output_stream, stderr=output_stream) p.communicate('0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n') # put it in a bigger box box_cmd = join(GMX_PATH, 'editconf') box_cmd += ' -f ref.gro -o ref_box.gro -c -box 999 999 999' subprocess.check_call(box_cmd, shell=True, stdout=output_stream, stderr=output_stream) # write pdb file prody.writePDB('start.pdb', start) # pdb2gmx pdb_cmd = join(GMX_PATH, 'pdb2gmx') pdb_cmd += ' -f start.pdb -ff amber99sb-ildn -water none -n index.ndx -posrefc {} -his'.format( posres_force_const) p = subprocess.Popen(pdb_cmd, shell=True, stdin=subprocess.PIPE, stdout=output_stream, stderr=output_stream) p.communicate('0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n') # put it in a bigger box box_cmd = join(GMX_PATH, 'editconf') box_cmd += ' -f conf.gro -o box.gro -c -box 999 999 999' subprocess.check_call(box_cmd, shell=True, stdout=output_stream, stderr=output_stream) # # Round 1 # # write mdp file with open('min_round_1.mdp', 'w') as min_file: min_file.write( mdp_string.format(integrator='steep') ) # run grompp grompp_cmd = join(GMX_PATH, 'grompp') grompp_cmd += ' -f min_round_1.mdp -c box.gro -p topol.top -o min_round_1 -r ref_box.gro' subprocess.check_call(grompp_cmd, shell=True, stdout=output_stream, stderr=output_stream) # run mdrun md_cmd = join(GMX_PATH, 'mdrun') md_cmd += ' -deffnm min_round_1 -v -nt 1' subprocess.check_call(md_cmd, shell=True, stdout=output_stream, stderr=output_stream) # # Round 2 # # write mdp file with open('min_round_2.mdp', 'w') as min_file: min_file.write( mdp_string.format(integrator='l-bfgs') ) # run grompp grompp_cmd = join(GMX_PATH, 'grompp') grompp_cmd += ' -f min_round_2.mdp -c min_round_1.gro -p topol.top -o min_round_2 -maxwarn 1 -r ref_box.gro' subprocess.check_call(grompp_cmd, shell=True, stdout=output_stream, stderr=output_stream) # run mdrun md_cmd = join(GMX_PATH, 'mdrun') md_cmd += ' -deffnm min_round_2 -v -nt 1' subprocess.check_call(md_cmd, shell=True, stdout=output_stream, stderr=output_stream) # # gather results # self._create_no_h_file(output_stream) self._re_order(output_stream) # load the pdb protein = prody.parsePDB('min.pdb').select('not hydrogen') # clean up os.chdir('..') shutil.rmtree('Temp') return protein def main(): r = parse_args() input_pdb_filename = r[0] trajectory_filename = r[1] output_pdb_filename = r[2] force_const = r[3] m = Minimizer(input_pdb_filename, trajectory_filename) minimized_protein = m.run_minimization(force_const) prody.writePDB(output_pdb_filename, minimized_protein) if __name__ == '__main__': main()
[ "os.mkdir", "subprocess.Popen", "argparse.ArgumentParser", "prody.PDBEnsemble", "os.path.join", "os.path.isdir", "prody.AtomGroup", "numpy.argmin", "prody.parsePDB", "shutil.rmtree", "prody.writePDB", "os.chdir", "subprocess.check_call" ]
[((534, 625), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate trajectory with gaussian flucutations."""'}), "(description=\n 'Generate trajectory with gaussian flucutations.')\n", (557, 625), False, 'import argparse\n'), ((7413, 7467), 'prody.writePDB', 'prody.writePDB', (['output_pdb_filename', 'minimized_protein'], {}), '(output_pdb_filename, minimized_protein)\n', (7427, 7467), False, 'import prody\n'), ((1341, 1364), 'prody.parsePDB', 'prody.parsePDB', (['in_file'], {}), '(in_file)\n', (1355, 1364), False, 'import prody\n'), ((1440, 1488), 'prody.AtomGroup', 'prody.AtomGroup', (['"""Cartesian average coordinates"""'], {}), "('Cartesian average coordinates')\n", (1455, 1488), False, 'import prody\n'), ((1737, 1771), 'prody.PDBEnsemble', 'prody.PDBEnsemble', (['self.trajectory'], {}), '(self.trajectory)\n', (1754, 1771), False, 'import prody\n'), ((1900, 1919), 'numpy.argmin', 'numpy.argmin', (['rmsds'], {}), '(rmsds)\n', (1912, 1919), False, 'import numpy\n'), ((2097, 2123), 'os.path.join', 'join', (['GMX_PATH', '"""make_ndx"""'], {}), "(GMX_PATH, 'make_ndx')\n", (2101, 2123), False, 'from os.path import join\n'), ((2186, 2291), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'shell': '(True)', 'stdin': 'subprocess.PIPE', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(cmd, shell=True, stdin=subprocess.PIPE, stdout=\n output_stream, stderr=output_stream)\n', (2202, 2291), False, 'import subprocess\n'), ((2390, 2416), 'os.path.join', 'join', (['GMX_PATH', '"""editconf"""'], {}), "(GMX_PATH, 'editconf')\n", (2394, 2416), False, 'from os.path import join\n'), ((2496, 2606), 'subprocess.Popen', 'subprocess.Popen', (['edit_cmd'], {'shell': '(True)', 'stdin': 'subprocess.PIPE', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(edit_cmd, shell=True, stdin=subprocess.PIPE, stdout=\n output_stream, stderr=output_stream)\n', (2512, 2606), False, 'import subprocess\n'), ((3235, 3261), 'os.path.join', 'join', (['GMX_PATH', '"""editconf"""'], {}), "(GMX_PATH, 'editconf')\n", (3239, 3261), False, 'from os.path import join\n'), ((3330, 3422), 'subprocess.check_call', 'subprocess.check_call', (['edit_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(edit_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (3351, 3422), False, 'import subprocess\n'), ((3607, 3628), 'os.path.isdir', 'os.path.isdir', (['"""Temp"""'], {}), "('Temp')\n", (3620, 3628), False, 'import os\n'), ((3698, 3714), 'os.chdir', 'os.chdir', (['"""Temp"""'], {}), "('Temp')\n", (3706, 3714), False, 'import os\n'), ((3757, 3802), 'prody.writePDB', 'prody.writePDB', (['"""average.pdb"""', 'self.input_pdb'], {}), "('average.pdb', self.input_pdb)\n", (3771, 3802), False, 'import prody\n'), ((3821, 3846), 'os.path.join', 'join', (['GMX_PATH', '"""pdb2gmx"""'], {}), "(GMX_PATH, 'pdb2gmx')\n", (3825, 3846), False, 'from os.path import join\n'), ((4008, 4117), 'subprocess.Popen', 'subprocess.Popen', (['pdb_cmd'], {'shell': '(True)', 'stdin': 'subprocess.PIPE', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(pdb_cmd, shell=True, stdin=subprocess.PIPE, stdout=\n output_stream, stderr=output_stream)\n', (4024, 4117), False, 'import subprocess\n'), ((4330, 4356), 'os.path.join', 'join', (['GMX_PATH', '"""editconf"""'], {}), "(GMX_PATH, 'editconf')\n", (4334, 4356), False, 'from os.path import join\n'), ((4433, 4524), 'subprocess.check_call', 'subprocess.check_call', (['box_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(box_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (4454, 4524), False, 'import subprocess\n'), ((4584, 4618), 'prody.writePDB', 'prody.writePDB', (['"""start.pdb"""', 'start'], {}), "('start.pdb', start)\n", (4598, 4618), False, 'import prody\n'), ((4656, 4681), 'os.path.join', 'join', (['GMX_PATH', '"""pdb2gmx"""'], {}), "(GMX_PATH, 'pdb2gmx')\n", (4660, 4681), False, 'from os.path import join\n'), ((4830, 4939), 'subprocess.Popen', 'subprocess.Popen', (['pdb_cmd'], {'shell': '(True)', 'stdin': 'subprocess.PIPE', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(pdb_cmd, shell=True, stdin=subprocess.PIPE, stdout=\n output_stream, stderr=output_stream)\n', (4846, 4939), False, 'import subprocess\n'), ((5153, 5179), 'os.path.join', 'join', (['GMX_PATH', '"""editconf"""'], {}), "(GMX_PATH, 'editconf')\n", (5157, 5179), False, 'from os.path import join\n'), ((5253, 5344), 'subprocess.check_call', 'subprocess.check_call', (['box_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(box_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (5274, 5344), False, 'import subprocess\n'), ((5601, 5625), 'os.path.join', 'join', (['GMX_PATH', '"""grompp"""'], {}), "(GMX_PATH, 'grompp')\n", (5605, 5625), False, 'from os.path import join\n'), ((5732, 5826), 'subprocess.check_call', 'subprocess.check_call', (['grompp_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(grompp_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (5753, 5826), False, 'import subprocess\n'), ((5890, 5913), 'os.path.join', 'join', (['GMX_PATH', '"""mdrun"""'], {}), "(GMX_PATH, 'mdrun')\n", (5894, 5913), False, 'from os.path import join\n'), ((5972, 6062), 'subprocess.check_call', 'subprocess.check_call', (['md_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(md_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (5993, 6062), False, 'import subprocess\n'), ((6320, 6344), 'os.path.join', 'join', (['GMX_PATH', '"""grompp"""'], {}), "(GMX_PATH, 'grompp')\n", (6324, 6344), False, 'from os.path import join\n'), ((6470, 6564), 'subprocess.check_call', 'subprocess.check_call', (['grompp_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(grompp_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (6491, 6564), False, 'import subprocess\n'), ((6628, 6651), 'os.path.join', 'join', (['GMX_PATH', '"""mdrun"""'], {}), "(GMX_PATH, 'mdrun')\n", (6632, 6651), False, 'from os.path import join\n'), ((6710, 6800), 'subprocess.check_call', 'subprocess.check_call', (['md_cmd'], {'shell': '(True)', 'stdout': 'output_stream', 'stderr': 'output_stream'}), '(md_cmd, shell=True, stdout=output_stream, stderr=\n output_stream)\n', (6731, 6800), False, 'import subprocess\n'), ((7075, 7089), 'os.chdir', 'os.chdir', (['""".."""'], {}), "('..')\n", (7083, 7089), False, 'import os\n'), ((7098, 7119), 'shutil.rmtree', 'shutil.rmtree', (['"""Temp"""'], {}), "('Temp')\n", (7111, 7119), False, 'import shutil\n'), ((3673, 3689), 'os.mkdir', 'os.mkdir', (['"""Temp"""'], {}), "('Temp')\n", (3681, 3689), False, 'import os\n'), ((6998, 7023), 'prody.parsePDB', 'prody.parsePDB', (['"""min.pdb"""'], {}), "('min.pdb')\n", (7012, 7023), False, 'import prody\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ This module defines filters for Cell instances """ from __future__ import print_function import copy import numpy as np from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND from tunacell.base.datatools import multiplicative_increments from tunacell.base.observable import Observable class FilterCell(FilterGeneral): "General class for filtering cell objects (reader.Cell instances)" _type = 'CELL' class FilterCellAny(FilterCell): "Class that does not filter anything." def __init__(self): self.label = 'Always True' # short description for human readers return def func(self, cell): return True class FilterData(FilterCell): """Default filter test only if cell exists and cell.data non empty.""" def __init__(self): self.label = 'Cell Has Data' return def func(self, cell): boo = False if cell is not None: boo = cell.data is not None and len(cell.data) > 0 return boo class FilterCellIDparity(FilterCell): """Test whether identifier is odd or even""" def __init__(self, parity='even'): self.parity = parity self.label = 'Cell identifier is {}'.format(parity) return def func(self, cell): # test if even try: even = int(cell.identifier) % 2 == 0 if self.parity == 'even': return even elif self.parity == 'odd': return not even else: raise ValueError("Parity must be 'even' or 'odd'") except ValueError as ve: print(ve) return False class FilterCellIDbound(FilterCell): """Test class""" def __init__(self, lower_bound=None, upper_bound=None): self.lower_bound = lower_bound self.upper_bound = upper_bound self.label = '{} <= cellID < {}'.format(lower_bound, upper_bound) return def func(self, cell): return bounded(int(cell.identifier), self.lower_bound, self.upper_bound) class FilterHasParent(FilterCell): """Test whether a cell has an identified parent cell""" def __init__(self): self.label = 'Cell Has Parent' return def func(self, cell): boo = False if cell.parent: boo = True return boo class FilterDaughters(FilterCell): "Test whether a given cell as at least one daughter cell" def __init__(self, daughter_min=1, daughter_max=2): label = 'Number of daughter cell(s): ' label += '{0} <= n_daughters <= {1}'.format(daughter_min, daughter_max) self.label = label self.lower_bound = daughter_min self.upper_bound = daughter_max + 1 # lower <= x < upper return def func(self, cell): return bounded(len(cell.childs), lower_bound=self.lower_bound, upper_bound=self.upper_bound) class FilterCompleteCycle(FilterCell): "Test whether a cell has a given parent and at least one daughter." def __init__(self, daughter_min=1): label = 'Cell cycle complete' label += ' (with at least {} daughter cell(s)'.format(daughter_min) self.daughter_min = daughter_min self.label = label return def func(self, cell): filt_parent = FilterHasParent() filt_daughter = FilterDaughters(daughter_min=self.daughter_min) return filt_parent(cell) and filt_daughter(cell) class FilterCycleFrames(FilterCell): """Check whether cell has got a minimal number of datapoints.""" def __init__(self, lower_bound=None, upper_bound=None): self.lower_bound = lower_bound self.upper_bound = upper_bound label = 'Number of registered frames:' label += '{0} <= n_frames <= {1}'.format(self.lower_bound, self.upper_bound) self.label = label return def func(self, cell): # check whether data exists boo = False filtData = FilterData() if filtData.func(cell): boo = bounded(len(cell.data), lower_bound=self.lower_bound, upper_bound=self.upper_bound ) return boo class FilterCycleSpanIncluded(FilterCell): """Check that cell cycle time interval is within valid bounds.""" def __init__(self, lower_bound=None, upper_bound=None): self.lower_bound = lower_bound self.upper_bound = upper_bound label = '{} <= Initial frame and Final frame < {}'.format(lower_bound, upper_bound) self.label = label return def func(self, cell): boo = False filtData = FilterData() if filtData(cell): boo = included(cell.data['time'], lower_bound=self.lower_bound, upper_bound=self.upper_bound) return boo class FilterTimeInCycle(FilterCell): """Check that tref is within cell birth and division time""" def __init__(self, tref=0.): self.tref = tref label = 'birth/first time <= {} < division/last time'.format(tref) self.label = label return def func(self, cell): boo = False filtData = FilterData() if filtData(cell): if cell.birth_time is not None: lower = cell.birth_time else: lower = cell.data['time'][0] if cell.division_time is not None: upper = cell.division_time else: upper = cell.data['time'][-1] boo = lower <= self.tref < upper return boo class FilterObservableBound(FilterCell): """Check that a given observable is bounded. Parameters ---------- obs : Observable instance observable that will be tested for bounds works only for continuous observable (mode='dynamics') tref : float (default None) Time of reference at which to test dynamics observable value lower_bound : float (default None) upper_bound : float (default None) """ def __init__(self, obs=Observable(name='undefined'), tref=None, lower_bound=None, upper_bound=None): self.obs_to_test = obs # observable to be tested self._obs = [obs, ] # hidden to be computed at for filtering purpose self.tref = tref # code below is commented because func is able to deal with arrays # if obs.mode == 'dynamics' and tref is None: # msg = 'For dynamics mode, this filter needs a valid tref (float)' # raise ValueError(msg) self.lower_bound = lower_bound self.upper_bound = upper_bound label = '{} <= {}'.format(lower_bound, obs.name) if tref is not None: label += ' (t={})'.format(tref) label += ' < {}'.format(upper_bound) self.label = label return def func(self, cell): import collections boo = False if self.tref is not None: filt = FilterAND(FilterData(), FilterTimeInCycle(tref=self.tref)) else: filt = FilterData() label = self.obs_to_test.label if filt(cell): # retrieve data array = cell._sdata[label] # two cases: array, or single value raw_time = cell.data['time'] if len(raw_time) > 1: dt = np.amin(raw_time[1:] - raw_time[:-1]) else: dt = cell.container.period if array is None: return False if isinstance(array, collections.Iterable): if self.tref is None: # data may be one value (for cycle observables), or array boo = bounded(array[label], self.lower_bound, self.upper_bound) else: # find data closest to tref (-> round to closest time) # for now return closest time to tref index = np.argmin(np.abs(array['time'] - self.tref)) # check that it's really close: if np.abs(array['time'][index] - self.tref) < dt: value = array[label][index] boo = bounded(value, self.lower_bound, self.upper_bound) # otherwise it's a number else: boo = bounded(array, self.lower_bound, self.upper_bound) return boo # useless ? class FilterLengthIncrement(FilterCell): "Check increments are bounded." def __init__(self, lower_bound=None, upper_bound=None): self.lower_bound = lower_bound self.upper_bound = upper_bound label = 'Length increments between two successive frames: ' label += '{0} <= delta_length <= {1}'.format(self.lower_bound, self.upper_bound) return def func(self, cell): boo = False filtData = FilterData() if filtData(cell): ell = np.array(cell.data['length']) incr = multiplicative_increments(ell) lower = bounded(np.amin(incr), lower_bound=self.lower_bound) upper = bounded(np.amax(incr), upper_bound=self.upper_bound) boo = lower and upper return boo class FilterSymmetricDivision(FilterCell): """Check that cell division is (roughly) symmetric. Parameters ---------- raw : str column label of raw observable to test for symmetric division (usually one of 'length', 'area'). This quantity will be approximated """ def __init__(self, raw='area', lower_bound=0.4, upper_bound=0.6): self.raw = raw # Observable to be computed: raw at birth, raw at division # hidden _obs because not part of parameters, but should be computed self._obs = [Observable(raw=raw, scale='log', mode='birth', timing='b'), Observable(raw=raw, scale='log', mode='division', timing='d')] self.lower_bound = lower_bound self.upper_bound = upper_bound label = 'Symmetric division filter:' ratio_str = '(daughter cell {})/(mother cell {})'.format(raw, raw) label += ' {} <= {} <= {}'.format(self.lower_bound, ratio_str, self.upper_bound) # label += 'OR (in case mother cell data is missing) ' # label += '{0} <= (daughter cell area)/(sister cell area) <= {1}\ # '.format(self.lower_bound/self.upper_bound, # self.upper_bound/self.lower_bound) self.label = label return def func(self, cell): boo = False filtData = FilterData() if cell.parent is None: # birth is not reported, impossible to test, cannot exclude from data boo = True else: if filtData(cell): csize = cell._sdata[self._obs[0].label] if filtData(cell.parent): psize = cell.parent._sdata[self._obs[1].label] boo = bounded(csize/psize, lower_bound=self.lower_bound, upper_bound=self.upper_bound ) else: # parent exists, but without data. # this is a weird scenario, that should not exist # TODO: warn user? # but we can check with sibling sibs = copy.deepcopy(cell.parent.childs) for item in sibs: if item.identifier == cell.identifier: sibs.remove(item) if sibs: if len(sibs) > 1: from ..base.cell import CellChildsError raise CellChildsError('>2 daughters') sib = sibs[0] # there should be only one cell if sib.data is not None: sibsize = sib._sdata[self._obs[0].label()] boo = bounded(csize/sibsize, lower_bound=self.lower_bound, upper_bound=self.upper_bound ) else: boo = True # sibling cell: no data, accept this cell else: boo = True # no sibling, accept this cell return boo
[ "tunacell.filters.main.included", "copy.deepcopy", "numpy.abs", "numpy.amin", "tunacell.base.datatools.multiplicative_increments", "tunacell.filters.main.bounded", "tunacell.base.observable.Observable", "numpy.amax", "numpy.array" ]
[((6363, 6391), 'tunacell.base.observable.Observable', 'Observable', ([], {'name': '"""undefined"""'}), "(name='undefined')\n", (6373, 6391), False, 'from tunacell.base.observable import Observable\n'), ((4970, 5062), 'tunacell.filters.main.included', 'included', (["cell.data['time']"], {'lower_bound': 'self.lower_bound', 'upper_bound': 'self.upper_bound'}), "(cell.data['time'], lower_bound=self.lower_bound, upper_bound=self.\n upper_bound)\n", (4978, 5062), False, 'from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND\n'), ((9303, 9332), 'numpy.array', 'np.array', (["cell.data['length']"], {}), "(cell.data['length'])\n", (9311, 9332), True, 'import numpy as np\n'), ((9352, 9382), 'tunacell.base.datatools.multiplicative_increments', 'multiplicative_increments', (['ell'], {}), '(ell)\n', (9377, 9382), False, 'from tunacell.base.datatools import multiplicative_increments\n'), ((10143, 10201), 'tunacell.base.observable.Observable', 'Observable', ([], {'raw': 'raw', 'scale': '"""log"""', 'mode': '"""birth"""', 'timing': '"""b"""'}), "(raw=raw, scale='log', mode='birth', timing='b')\n", (10153, 10201), False, 'from tunacell.base.observable import Observable\n'), ((10224, 10285), 'tunacell.base.observable.Observable', 'Observable', ([], {'raw': 'raw', 'scale': '"""log"""', 'mode': '"""division"""', 'timing': '"""d"""'}), "(raw=raw, scale='log', mode='division', timing='d')\n", (10234, 10285), False, 'from tunacell.base.observable import Observable\n'), ((7679, 7716), 'numpy.amin', 'np.amin', (['(raw_time[1:] - raw_time[:-1])'], {}), '(raw_time[1:] - raw_time[:-1])\n', (7686, 7716), True, 'import numpy as np\n'), ((8654, 8704), 'tunacell.filters.main.bounded', 'bounded', (['array', 'self.lower_bound', 'self.upper_bound'], {}), '(array, self.lower_bound, self.upper_bound)\n', (8661, 8704), False, 'from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND\n'), ((9411, 9424), 'numpy.amin', 'np.amin', (['incr'], {}), '(incr)\n', (9418, 9424), True, 'import numpy as np\n'), ((9484, 9497), 'numpy.amax', 'np.amax', (['incr'], {}), '(incr)\n', (9491, 9497), True, 'import numpy as np\n'), ((8035, 8092), 'tunacell.filters.main.bounded', 'bounded', (['array[label]', 'self.lower_bound', 'self.upper_bound'], {}), '(array[label], self.lower_bound, self.upper_bound)\n', (8042, 8092), False, 'from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND\n'), ((11446, 11533), 'tunacell.filters.main.bounded', 'bounded', (['(csize / psize)'], {'lower_bound': 'self.lower_bound', 'upper_bound': 'self.upper_bound'}), '(csize / psize, lower_bound=self.lower_bound, upper_bound=self.\n upper_bound)\n', (11453, 11533), False, 'from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND\n'), ((11895, 11928), 'copy.deepcopy', 'copy.deepcopy', (['cell.parent.childs'], {}), '(cell.parent.childs)\n', (11908, 11928), False, 'import copy\n'), ((8286, 8319), 'numpy.abs', 'np.abs', (["(array['time'] - self.tref)"], {}), "(array['time'] - self.tref)\n", (8292, 8319), True, 'import numpy as np\n'), ((8396, 8436), 'numpy.abs', 'np.abs', (["(array['time'][index] - self.tref)"], {}), "(array['time'][index] - self.tref)\n", (8402, 8436), True, 'import numpy as np\n'), ((8525, 8575), 'tunacell.filters.main.bounded', 'bounded', (['value', 'self.lower_bound', 'self.upper_bound'], {}), '(value, self.lower_bound, self.upper_bound)\n', (8532, 8575), False, 'from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND\n'), ((12506, 12595), 'tunacell.filters.main.bounded', 'bounded', (['(csize / sibsize)'], {'lower_bound': 'self.lower_bound', 'upper_bound': 'self.upper_bound'}), '(csize / sibsize, lower_bound=self.lower_bound, upper_bound=self.\n upper_bound)\n', (12513, 12595), False, 'from tunacell.filters.main import FilterGeneral, bounded, included, FilterAND\n')]
# -*- coding: utf-8 -*- """ Created on Mon Mar 16 18:04:26 2020 @author: hp """ import pandas as pd import numpy as np ratings= pd.read_csv('ratings.csv') movies= pd.read_csv(r'movies.csv' ) ts = ratings['timestamp'] ts = pd.to_datetime(ts, unit = 's').dt.hour movies['hours'] = ts merged = ratings.merge(movies, left_on = 'movieId' , right_on = 'movieId', suffixes = ['_user','']) merged = merged[['userId', 'movieId','genres','hours']] merged = pd.concat([merged,merged['genres'].str.get_dummies(sep = '|')], axis = 1) del merged['genres'] del merged['(no genres listed)'] def activateuserprofile(userId): userprofile = merged.loc[merged['userId'] == userId] del userprofile ['userId'] del userprofile['movieId'] userprofile = userprofile.groupby(['hours'], as_index = False, sort =True).sum() userprofile.iloc[:,1:20] = userprofile.iloc[:,1:20].apply(lambda x:(x - np.min(x))/(np.max(x)-np.min(x)),axis = 1) return(userprofile) activeuser = activateuserprofile(30) recommend = movies= pd.read_csv(r'recommend.csv' ) del merged['userId'] del merged['rating'] merged = merged.drop_duplicate() user_pref = recommend.merge(merged, left_on = 'movieId' , right_on = 'movieId', suffixes = ['_user','']) product = np.dot(user_pref.iloc[:,2:21].as_matrix(), activeuser.iloc[21,2:21].as_matrix())#IndexError: single positional indexer is out-of-bounds preferences = np.stack((user_pref['movieId'], product), axis =-1) df = pd.DataFrame(preferences, columns = ['movieId', 'prefrernces']) result = (df.sort_values(['preferences'], ascending = False).iloc[0:10],0)
[ "pandas.DataFrame", "numpy.stack", "pandas.read_csv", "numpy.min", "numpy.max", "pandas.to_datetime" ]
[((141, 167), 'pandas.read_csv', 'pd.read_csv', (['"""ratings.csv"""'], {}), "('ratings.csv')\n", (152, 167), True, 'import pandas as pd\n'), ((177, 202), 'pandas.read_csv', 'pd.read_csv', (['"""movies.csv"""'], {}), "('movies.csv')\n", (188, 202), True, 'import pandas as pd\n'), ((1461, 1489), 'pandas.read_csv', 'pd.read_csv', (['"""recommend.csv"""'], {}), "('recommend.csv')\n", (1472, 1489), True, 'import pandas as pd\n'), ((1845, 1895), 'numpy.stack', 'np.stack', (["(user_pref['movieId'], product)"], {'axis': '(-1)'}), "((user_pref['movieId'], product), axis=-1)\n", (1853, 1895), True, 'import numpy as np\n'), ((1904, 1965), 'pandas.DataFrame', 'pd.DataFrame', (['preferences'], {'columns': "['movieId', 'prefrernces']"}), "(preferences, columns=['movieId', 'prefrernces'])\n", (1916, 1965), True, 'import pandas as pd\n'), ((239, 267), 'pandas.to_datetime', 'pd.to_datetime', (['ts'], {'unit': '"""s"""'}), "(ts, unit='s')\n", (253, 267), True, 'import pandas as pd\n'), ((926, 935), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (932, 935), True, 'import numpy as np\n'), ((938, 947), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (944, 947), True, 'import numpy as np\n'), ((948, 957), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (954, 957), True, 'import numpy as np\n')]
# A neural network which approximates linear function y = 2x + 3. # The network has 1 layer with 1 node, which has 1 input (and a bias). # As there is no activation effectively this node is a linear function. # After +/- 10.000 iterations W should be close to 2 and B should be close to 3. import matplotlib.pyplot as plt import numpy as np np.set_printoptions(formatter={"float": "{: 0.3f}".format}, linewidth=np.inf) np.random.seed(1) X = np.array([[0], [1], [2], [3], [4]]) # X = input (here: 5 values) Y = 2 * X + 3 # Y = output: y = 2x + 3 (as many values as there are X's) W = np.random.normal(scale=0.1, size=(1, 1)) # layer: (1, 1) = 1 node with 1 input B = np.random.normal(scale=0.1, size=(1, 1)) # bias: (1, 1) = for 1 node (and by definition only 1 bias value per node) learning_rate = 0.001 iterations = 10000 error = [] print("initial :", "W =", W, "B =", B, "(random initialization)") m = X.shape[0] for _ in range(iterations): # forward pass a = W.dot(X.T) + B # back propagation da = a - Y.T # da = error dz = da # no activation dw = dz.dot(X) / m db = np.sum(dz, axis=1, keepdims=True) / m W -= learning_rate * dw B -= learning_rate * db error.append(np.average(da ** 2)) print("result :", "W =", W, "B =", B, "(after {} iterations)".format(iterations)) print("expected: W = 2, B = 3") plt.plot(range(iterations), error) plt.title("MSE (mean squared error)") plt.xlabel("training iterations") plt.ylabel("mse") plt.show()
[ "matplotlib.pyplot.title", "numpy.set_printoptions", "numpy.random.seed", "matplotlib.pyplot.show", "numpy.sum", "numpy.average", "numpy.array", "numpy.random.normal", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((343, 420), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'formatter': "{'float': '{: 0.3f}'.format}", 'linewidth': 'np.inf'}), "(formatter={'float': '{: 0.3f}'.format}, linewidth=np.inf)\n", (362, 420), True, 'import numpy as np\n'), ((421, 438), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (435, 438), True, 'import numpy as np\n'), ((444, 479), 'numpy.array', 'np.array', (['[[0], [1], [2], [3], [4]]'], {}), '([[0], [1], [2], [3], [4]])\n', (452, 479), True, 'import numpy as np\n'), ((589, 629), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(0.1)', 'size': '(1, 1)'}), '(scale=0.1, size=(1, 1))\n', (605, 629), True, 'import numpy as np\n'), ((673, 713), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(0.1)', 'size': '(1, 1)'}), '(scale=0.1, size=(1, 1))\n', (689, 713), True, 'import numpy as np\n'), ((1399, 1436), 'matplotlib.pyplot.title', 'plt.title', (['"""MSE (mean squared error)"""'], {}), "('MSE (mean squared error)')\n", (1408, 1436), True, 'import matplotlib.pyplot as plt\n'), ((1437, 1470), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""training iterations"""'], {}), "('training iterations')\n", (1447, 1470), True, 'import matplotlib.pyplot as plt\n'), ((1471, 1488), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""mse"""'], {}), "('mse')\n", (1481, 1488), True, 'import matplotlib.pyplot as plt\n'), ((1489, 1499), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1497, 1499), True, 'import matplotlib.pyplot as plt\n'), ((1113, 1146), 'numpy.sum', 'np.sum', (['dz'], {'axis': '(1)', 'keepdims': '(True)'}), '(dz, axis=1, keepdims=True)\n', (1119, 1146), True, 'import numpy as np\n'), ((1226, 1245), 'numpy.average', 'np.average', (['(da ** 2)'], {}), '(da ** 2)\n', (1236, 1245), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import numpy as np import matplotlib.pyplot as plt from numpy import log10 as lg from numpy import pi as pi from scipy.interpolate import interp1d as sp_interp1d from scipy.integrate import odeint from scipy.integrate import ode import warnings import timeit import scipy.optimize as opt from matplotlib import cm from astropy import constants as const from astropy import units as u from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset G=const.G.cgs.value c=const.c.cgs.value Ms=const.M_sun.cgs.value hbar=const.hbar.cgs.value m_n=const.m_n.cgs.value km=10**5 import matplotlib.font_manager as font_manager plt.rcParams['xtick.labelsize'] = 25 plt.rcParams['ytick.labelsize'] = 25 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['xtick.major.size'] = 8 plt.rcParams['ytick.major.size'] = 8 plt.rcParams['xtick.minor.size'] = 4 plt.rcParams['ytick.minor.size'] = 4 plt.rcParams['xtick.top'] = True plt.rcParams['ytick.right'] = True plt.rcParams['axes.labelpad'] = 8.0 plt.rcParams['figure.constrained_layout.h_pad'] = 0 plt.rcParams['text.usetex'] = True plt.rc('text', usetex=True) plt.rcParams['font.sans-serif'] = ['Times New Roman'] plt.tick_params(axis='both', which='minor', labelsize=18) from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) names1= ['m14','m14_5_001','m14_5_1', 'm14_10_001','m14_10_1'] names2=['m20','m20_5_001', 'm20_10_001','m20_10_1'] colors=['black', 'c', 'g', 'orange', 'red', 'black', 'c','orange','red'] linestyle=['-', ':', '-.', '-', '--' ,'-' ,'--' , '-.' ,':'] labels=[r'\rm GR',r'$\xi=5,\,\, a=0.01$', r'$\xi=5,\,\, a=1$',r'$\xi=10,\,\, a=0.01$',r'$\xi=10,\,\, a=1$',r'\rm GR',r'$\xi=5,\,\, a=0.01$', r'$\xi=10,\,\, a=0.01$',r'$\xi=10,\,\, a=1$'] fig, axs = plt.subplots(2, 2,figsize=(15,12),sharex=True, sharey='row') plt.subplots_adjust(hspace=0.0) plt.subplots_adjust(wspace=0) axs[0,0].yaxis.set_minor_locator(MultipleLocator(0.25/5)) axs[1,0].yaxis.set_minor_locator(MultipleLocator(0.2/5)) axs[0,0].xaxis.set_minor_locator(MultipleLocator(10/5)) for i in range(len(names1)): data1 = np.genfromtxt('data/'+'sol_'+ 'ap4_'+names1[i]+'.txt') R, gtt, grr= data1[:,0]/10**5, data1[:,1], data1[:, 2] axs[1,0].plot(R,gtt,linewidth=2, color=colors[i],linestyle=linestyle[i]) axs[1,0].grid(alpha=0.6) axs[1,0].set_ylabel(r'$ -g_{tt}$', fontsize=30) axs[0,0].plot(R,grr,linewidth=2, color=colors[i],linestyle=linestyle[i],label=labels[i]) axs[0,0].grid(alpha=0.6) axs[0,0].set_ylabel(r'$ g_{rr}$', fontsize=30) axs[0,0].legend(fontsize=25, frameon=False,loc=(0.37,0.27)) sub_axes = plt.axes([.3, .18, .20, .18]) sub_axes.plot(R,gtt,linewidth=2, color=colors[i],linestyle=linestyle[i]) sub_axes.set_ylim(0.67,0.725) sub_axes.set_xlim(13.4,14.6) # sub_axes.set_xticks([10,11,12]) # sub_axes.grid(alpha=0.8) sub_axes.yaxis.set_minor_locator(MultipleLocator(0.02/5)) sub_axes.xaxis.set_minor_locator(MultipleLocator(0.5/5)) for j in range(len(names2)): data2 = np.genfromtxt('data/'+'sol_'+ 'ap4_'+names2[j]+'.txt') R, gtt, grr= data2[:,0]/10**5, data2[:,1], data2[:, 2] axs[1,1].plot(R,gtt,linewidth=2, color=colors[j+5],linestyle=linestyle[j+5]) axs[1,1].grid(alpha=0.6) axs[0,1].plot(R,grr,linewidth=2, color=colors[j+5],linestyle=linestyle[j+5],label=labels[j+5]) axs[0,1].grid(alpha=0.6) axs[0,1].legend(fontsize=25, frameon=False,loc=(0.37,0.4)) sub_axes = plt.axes([.69, .18, .19, .16]) sub_axes.plot(R,gtt,linewidth=2, color=colors[j+5],linestyle=linestyle[j+5]) sub_axes.set_xlim(13.4,14.6) sub_axes.set_ylim(0.53,0.59) # sub_axes.set_yticks([6,8,10]) sub_axes.set_yticks([0.54,0.56,0.58]) # sub_axes.grid(alpha=0.8) sub_axes.yaxis.set_minor_locator(MultipleLocator(0.02/5)) sub_axes.xaxis.set_minor_locator(MultipleLocator(0.5/5)) fig.text(0.48, 0.04, r'$r\,[\rm km]$' ,fontsize=30) # fig.text(0.7, 0.04, r'$r\,[\rm km]$' ,fontsize=30) axs[1,0].set_ylim(0.14,0.95) axs[0,0].set_ylim(0.97,2.35) axs[0,0].set_xlim(-1,43) fig.text(0.28, 0.84, r'$M=1.4M_{\odot}$' ,fontsize=25) fig.text(0.66, 0.84, r'$M=2M_{\odot}$' ,fontsize=25) plt.savefig("ap41.pdf", format='pdf', bbox_inches="tight") plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.axes", "numpy.genfromtxt", "matplotlib.pyplot.rc", "matplotlib.pyplot.tick_params", "matplotlib.ticker.MultipleLocator", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig", "matplotlib.pyplot.subplots_adjust" ]
[((1228, 1255), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (1234, 1255), True, 'import matplotlib.pyplot as plt\n'), ((1310, 1367), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""minor"""', 'labelsize': '(18)'}), "(axis='both', which='minor', labelsize=18)\n", (1325, 1367), True, 'import matplotlib.pyplot as plt\n'), ((1943, 2006), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(15, 12)', 'sharex': '(True)', 'sharey': '"""row"""'}), "(2, 2, figsize=(15, 12), sharex=True, sharey='row')\n", (1955, 2006), True, 'import matplotlib.pyplot as plt\n'), ((2004, 2035), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.0)'}), '(hspace=0.0)\n', (2023, 2035), True, 'import matplotlib.pyplot as plt\n'), ((2036, 2065), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0)'}), '(wspace=0)\n', (2055, 2065), True, 'import matplotlib.pyplot as plt\n'), ((4410, 4468), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""ap41.pdf"""'], {'format': '"""pdf"""', 'bbox_inches': '"""tight"""'}), "('ap41.pdf', format='pdf', bbox_inches='tight')\n", (4421, 4468), True, 'import matplotlib.pyplot as plt\n'), ((4469, 4479), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4477, 4479), True, 'import matplotlib.pyplot as plt\n'), ((2099, 2124), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.25 / 5)'], {}), '(0.25 / 5)\n', (2114, 2124), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n'), ((2157, 2181), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.2 / 5)'], {}), '(0.2 / 5)\n', (2172, 2181), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n'), ((2214, 2237), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(10 / 5)'], {}), '(10 / 5)\n', (2229, 2237), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n'), ((2293, 2354), 'numpy.genfromtxt', 'np.genfromtxt', (["('data/' + 'sol_' + 'ap4_' + names1[i] + '.txt')"], {}), "('data/' + 'sol_' + 'ap4_' + names1[i] + '.txt')\n", (2306, 2354), True, 'import numpy as np\n'), ((2832, 2864), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.3, 0.18, 0.2, 0.18]'], {}), '([0.3, 0.18, 0.2, 0.18])\n', (2840, 2864), True, 'import matplotlib.pyplot as plt\n'), ((3261, 3322), 'numpy.genfromtxt', 'np.genfromtxt', (["('data/' + 'sol_' + 'ap4_' + names2[j] + '.txt')"], {}), "('data/' + 'sol_' + 'ap4_' + names2[j] + '.txt')\n", (3274, 3322), True, 'import numpy as np\n'), ((3696, 3730), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.69, 0.18, 0.19, 0.16]'], {}), '([0.69, 0.18, 0.19, 0.16])\n', (3704, 3730), True, 'import matplotlib.pyplot as plt\n'), ((3114, 3139), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.02 / 5)'], {}), '(0.02 / 5)\n', (3129, 3139), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n'), ((3176, 3200), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.5 / 5)'], {}), '(0.5 / 5)\n', (3191, 3200), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n'), ((4022, 4047), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.02 / 5)'], {}), '(0.02 / 5)\n', (4037, 4047), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n'), ((4084, 4108), 'matplotlib.ticker.MultipleLocator', 'MultipleLocator', (['(0.5 / 5)'], {}), '(0.5 / 5)\n', (4099, 4108), False, 'from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator\n')]
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Training script for split miniImageNET 100 experiment. """ from __future__ import print_function import argparse import os import sys import math import time import random import datetime import collections import numpy as np import tensorflow as tf from copy import deepcopy from six.moves import cPickle as pickle from utils.data_utils import construct_split_miniImagenet from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, load_task_specific_data, grad_check from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels from model import Model ############################################################### ################ Some definitions ############################# ### These will be edited by the command line options ########## ############################################################### ## Training Options NUM_RUNS = 5 # Number of experiments to average over TRAIN_ITERS = 2000 # Number of training iterations per task BATCH_SIZE = 16 LEARNING_RATE = 0.1 RANDOM_SEED = 1234 VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM'] OPTIM = 'SGD' OPT_MOMENTUM = 0.9 OPT_POWER = 0.9 VALID_ARCHS = ['CNN', 'RESNET-S', 'RESNET-B', 'VGG'] ARCH = 'RESNET-S' ## Model options MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'M-EWC', 'S-GEM', 'A-GEM', 'FTR_EXT', 'PNN', 'ER-Reservoir', 'ER-Ringbuffer', 'SUBSPACE-PROJ', 'ER-SUBSPACE', 'PROJ-SUBSPACE-GP', 'ER-SUBSPACE-GP'] #List of valid models IMP_METHOD = 'EWC' SYNAP_STGTH = 75000 FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher) FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper) SAMPLES_PER_CLASS = 13 IMG_HEIGHT = 84 IMG_WIDTH = 84 IMG_CHANNELS = 3 TOTAL_CLASSES = 100 # Total number of classes in the dataset VISUALIZE_IMPORTANCE_MEASURE = False MEASURE_CONVERGENCE_AFTER = 0.9 EPS_MEM_BATCH_SIZE = 256 DEBUG_EPISODIC_MEMORY = False K_FOR_CROSS_VAL = 3 TIME_MY_METHOD = False COUNT_VIOLATONS = False MEASURE_PERF_ON_EPS_MEMORY = False ## Logging, saving and testing options LOG_DIR = './split_miniImagenet_results' RESNET18_miniImageNET10_CHECKPOINT = './resnet-18-pretrained-miniImagenet10/model.ckpt-19999' DATA_FILE = 'miniImageNet_Dataset/miniImageNet_full.pickle' ## Evaluation options ## Task split NUM_TASKS = 10 MULTI_TASK = False PROJECTION_RANK = 50 GRAD_CHECK = False QR = False SVB = False # Define function to load/ store training weights. We will use ImageNet initialization later on def save(saver, sess, logdir, step): '''Save weights. Args: saver: TensorFlow Saver object. sess: TensorFlow session. logdir: path to the snapshots directory. step: current training step. ''' model_name = 'model.ckpt' checkpoint_path = os.path.join(logdir, model_name) if not os.path.exists(logdir): os.makedirs(logdir) saver.save(sess, checkpoint_path, global_step=step) print('The checkpoint has been created.') def load(saver, sess, ckpt_path): '''Load trained weights. Args: saver: TensorFlow Saver object. sess: TensorFlow session. ckpt_path: path to checkpoint file with parameters. ''' saver.restore(sess, ckpt_path) print("Restored model parameters from {}".format(ckpt_path)) def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Script for split miniImagenet experiment.") parser.add_argument("--cross-validate-mode", action="store_true", help="If option is chosen then snapshoting after each batch is disabled") parser.add_argument("--online-cross-val", action="store_true", help="If option is chosen then enable the online cross validation of the learning rate") parser.add_argument("--train-single-epoch", action="store_true", help="If option is chosen then train for single epoch") parser.add_argument("--eval-single-head", action="store_true", help="If option is chosen then evaluate on a single head setting.") parser.add_argument("--maintain-orthogonality", action="store_true", help="If option is chosen then weights will be projected to Steifel manifold.") parser.add_argument("--arch", type=str, default=ARCH, help="Network Architecture for the experiment.\ \n \nSupported values: %s"%(VALID_ARCHS)) parser.add_argument("--num-runs", type=int, default=NUM_RUNS, help="Total runs/ experiments over which accuracy is averaged.") parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS, help="Number of training iterations for each task.") parser.add_argument("--batch-size", type=int, default=BATCH_SIZE, help="Mini-batch size for each task.") parser.add_argument("--random-seed", type=int, default=RANDOM_SEED, help="Random Seed.") parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE, help="Starting Learning rate for each task.") parser.add_argument("--optim", type=str, default=OPTIM, help="Optimizer for the experiment. \ \n \nSupported values: %s"%(VALID_OPTIMS)) parser.add_argument("--imp-method", type=str, default=IMP_METHOD, help="Model to be used for LLL. \ \n \nSupported values: %s"%(MODELS)) parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH, help="Synaptic strength for the regularization.") parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY, help="Exponential moving average decay for Fisher calculation at each step.") parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER, help="Number of training iterations after which the Fisher will be updated.") parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS, help="Total size of episodic memory.") parser.add_argument("--eps-mem-batch", type=int, default=EPS_MEM_BATCH_SIZE, help="Number of samples per class from previous tasks.") parser.add_argument("--num-tasks", type=int, default=NUM_TASKS, help="Number of tasks.") parser.add_argument("--subspace-share-dims", type=int, default=0, help="Number of dimensions to share across tasks.") parser.add_argument("--data-file", type=str, default=DATA_FILE, help="miniImageNet data file.") parser.add_argument("--log-dir", type=str, default=LOG_DIR, help="Directory where the plots and model accuracies will be stored.") return parser.parse_args() def train_task_sequence(model, sess, datasets, args): """ Train and evaluate LLL system such that we only see a example once Args: Returns: dict A dictionary containing mean and stds for the experiment """ # List to store accuracy for each run runs = [] task_labels_dataset = [] if model.imp_method in {'A-GEM', 'ER-Ringbuffer', 'ER-Reservoir', 'ER-SUBSPACE', 'ER-SUBSPACE-GP'}: use_episodic_memory = True else: use_episodic_memory = False batch_size = args.batch_size # Loop over number of runs to average over for runid in range(args.num_runs): print('\t\tRun %d:'%(runid)) # Initialize the random seeds np.random.seed(args.random_seed+runid) random.seed(args.random_seed+runid) # Get the task labels from the total number of tasks and full label space task_labels = [] classes_per_task = TOTAL_CLASSES// args.num_tasks total_classes = classes_per_task * model.num_tasks if args.online_cross_val: label_array = np.arange(total_classes) else: class_label_offset = K_FOR_CROSS_VAL * classes_per_task label_array = np.arange(class_label_offset, total_classes+class_label_offset) np.random.shuffle(label_array) for tt in range(model.num_tasks): tt_offset = tt*classes_per_task task_labels.append(list(label_array[tt_offset:tt_offset+classes_per_task])) print('Task: {}, Labels:{}'.format(tt, task_labels[tt])) # Store the task labels task_labels_dataset.append(task_labels) # Set episodic memory size episodic_mem_size = args.mem_size * total_classes # Initialize all the variables in the model sess.run(tf.global_variables_initializer()) # Run the init ops model.init_updates(sess) # List to store accuracies for a run evals = [] # List to store the classes that we have so far - used at test time test_labels = [] if use_episodic_memory: # Reserve a space for episodic memory episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]) episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES]) count_cls = np.zeros(TOTAL_CLASSES, dtype=np.int32) episodic_filled_counter = 0 examples_seen_so_far = 0 # Mask for softmax logit_mask = np.zeros(TOTAL_CLASSES) nd_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES]) if COUNT_VIOLATONS: violation_count = np.zeros(model.num_tasks) vc = 0 proj_matrices = generate_projection_matrix(model.num_tasks, feature_dim=model.subspace_proj.get_shape()[0], share_dims=args.subspace_share_dims, qr=QR) # Check the sanity of the generated matrices unit_test_projection_matrices(proj_matrices) # TODO: Temp for gradients check prev_task_grads = [] # Training loop for all the tasks for task in range(len(task_labels)): print('\t\tTask %d:'%(task)) # If not the first task then restore weights from previous task if(task > 0 and model.imp_method != 'PNN'): model.restore(sess) if model.imp_method == 'PNN': pnn_train_phase = np.array(np.zeros(model.num_tasks), dtype=np.bool) pnn_train_phase[task] = True pnn_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES]) # If not in the cross validation mode then concatenate the train and validation sets task_train_images, task_train_labels = load_task_specific_data(datasets[0]['train'], task_labels[task]) # If multi_task is set then train using all the datasets of all the tasks if MULTI_TASK: if task == 0: for t_ in range(1, len(task_labels)): task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[t_]) task_train_images = np.concatenate((task_train_images, task_tr_images), axis=0) task_train_labels = np.concatenate((task_train_labels, task_tr_labels), axis=0) else: # Skip training for this task continue print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task)) print('Unique labels in the task: {}'.format(np.unique(np.nonzero(task_train_labels)[1]))) # Test for the tasks that we've seen so far test_labels += task_labels[task] # Assign equal weights to all the examples task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32) num_train_examples = task_train_images.shape[0] logit_mask[:] = 0 # Train a task observing sequence of data if args.train_single_epoch: # Ceiling operation num_iters = (num_train_examples + batch_size - 1) // batch_size if args.cross_validate_mode: logit_mask[task_labels[task]] = 1.0 else: num_iters = args.train_iters # Set the mask only once before starting the training for the task logit_mask[task_labels[task]] = 1.0 if MULTI_TASK: logit_mask[:] = 1.0 # Randomly suffle the training examples perm = np.arange(num_train_examples) np.random.shuffle(perm) train_x = task_train_images[perm] train_y = task_train_labels[perm] task_sample_weights = task_sample_weights[perm] # Array to store accuracies when training for task T ftask = [] # Number of iterations after which convergence is checked convergence_iters = int(num_iters * MEASURE_CONVERGENCE_AFTER) # Training loop for task T for iters in range(num_iters): if args.train_single_epoch and not args.cross_validate_mode and not MULTI_TASK: if (iters <= 20) or (iters > 20 and iters % 50 == 0): # Snapshot the current performance across all tasks after each mini-batch fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, projection_matrices=proj_matrices) ftask.append(fbatch) if model.imp_method == 'PNN': pnn_train_phase[:] = False pnn_train_phase[task] = True pnn_logit_mask[:] = 0 pnn_logit_mask[task][task_labels[task]] = 1.0 elif model.imp_method in {'A-GEM', 'ER-Ringbuffer'}: nd_logit_mask[:] = 0 nd_logit_mask[task][task_labels[task]] = 1.0 else: # Set the output labels over which the model needs to be trained logit_mask[:] = 0 logit_mask[task_labels[task]] = 1.0 if args.train_single_epoch: offset = iters * batch_size if (offset+batch_size <= num_train_examples): residual = batch_size else: residual = num_train_examples - offset if model.imp_method == 'PNN': feed_dict = {model.x: train_x[offset:offset+residual], model.y_[task]: train_y[offset:offset+residual], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5, model.learning_rate: args.learning_rate} train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)} logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, pnn_logit_mask)} feed_dict.update(train_phase_dict) feed_dict.update(logit_mask_dict) else: feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual], model.sample_weights: task_sample_weights[offset:offset+residual], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5, model.train_phase: True, model.learning_rate: args.learning_rate} else: offset = (iters * batch_size) % (num_train_examples - batch_size) residual = batch_size if model.imp_method == 'PNN': feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_[task]: train_y[offset:offset+batch_size], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5, model.learning_rate: args.learning_rate} train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)} logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, pnn_logit_mask)} feed_dict.update(train_phase_dict) feed_dict.update(logit_mask_dict) else: feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size], model.sample_weights: task_sample_weights[offset:offset+batch_size], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5, model.train_phase: True, model.learning_rate: args.learning_rate} if model.imp_method == 'VAN': feed_dict[model.output_mask] = logit_mask _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'PROJ-SUBSPACE-GP': if task == 0: feed_dict[model.output_mask] = logit_mask feed_dict[model.subspace_proj] = proj_matrices[task] _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) else: # Compute gradient in \perp space logit_mask[:] = 0 for tt in range(task): logit_mask[task_labels[tt]] = 1.0 feed_dict[model.output_mask] = logit_mask feed_dict[model.train_phase] = False feed_dict[model.subspace_proj] = np.eye(proj_matrices[task].shape[0]) - proj_matrices[task] sess.run(model.store_ref_grads, feed_dict=feed_dict) # Compute gradient in P space and train logit_mask[task_labels[task]] = 1.0 feed_dict[model.output_mask] = logit_mask feed_dict[model.train_phase] = True feed_dict[model.subspace_proj] = proj_matrices[task] _, loss = sess.run([model.train_gp, model.gp_total_loss], feed_dict=feed_dict) reg = 0.0 elif model.imp_method == 'SUBSPACE-PROJ': feed_dict[model.output_mask] = logit_mask feed_dict[model.subspace_proj] = proj_matrices[task] if args.maintain_orthogonality: _, loss = sess.run([model.train_stiefel, model.reg_loss], feed_dict=feed_dict) else: _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'PNN': _, loss = sess.run([model.train[task], model.unweighted_entropy[task]], feed_dict=feed_dict) elif model.imp_method == 'FTR_EXT': feed_dict[model.output_mask] = logit_mask if task == 0: _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) else: _, loss = sess.run([model.train_classifier, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'EWC' or model.imp_method == 'M-EWC': feed_dict[model.output_mask] = logit_mask # If first iteration of the first task then set the initial value of the running fisher if task == 0 and iters == 0: sess.run([model.set_initial_running_fisher], feed_dict=feed_dict) # Update fisher after every few iterations if (iters + 1) % model.fisher_update_after == 0: sess.run(model.set_running_fisher) sess.run(model.reset_tmp_fisher) if (iters >= convergence_iters) and (model.imp_method == 'M-EWC'): _, _, _, _, loss = sess.run([model.weights_old_ops_grouped, model.set_tmp_fisher, model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict) else: _, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'PI': feed_dict[model.output_mask] = logit_mask _, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'MAS': feed_dict[model.output_mask] = logit_mask _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'A-GEM': if task == 0: nd_logit_mask[:] = 0 nd_logit_mask[task][task_labels[task]] = 1.0 logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)} feed_dict.update(logit_mask_dict) feed_dict[model.mem_batch_size] = batch_size # Normal application of gradients _, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict) else: ## Compute and store the reference gradients on the previous tasks # Set the mask for all the previous tasks so far nd_logit_mask[:] = 0 for tt in range(task): nd_logit_mask[tt][task_labels[tt]] = 1.0 if episodic_filled_counter <= args.eps_mem_batch: mem_sample_mask = np.arange(episodic_filled_counter) else: # Sample a random subset from episodic memory buffer mem_sample_mask = np.random.choice(episodic_filled_counter, args.eps_mem_batch, replace=False) # Sample without replacement so that we don't sample an example more than once # Store the reference gradient ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask], model.keep_prob: 1.0, model.train_phase: True, model.learning_rate: args.learning_rate} logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)} ref_feed_dict.update(logit_mask_dict) ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask)) sess.run(model.store_ref_grads, feed_dict=ref_feed_dict) # Compute the gradient for current task and project if need be nd_logit_mask[:] = 0 nd_logit_mask[task][task_labels[task]] = 1.0 logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)} feed_dict.update(logit_mask_dict) feed_dict[model.mem_batch_size] = batch_size if COUNT_VIOLATONS: vc, _, loss = sess.run([model.violation_count, model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict) else: _, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict) # Put the batch in the ring buffer update_fifo_buffer(train_x[offset:offset+residual], train_y[offset:offset+residual], episodic_images, episodic_labels, task_labels[task], args.mem_size, count_cls, episodic_filled_counter) elif model.imp_method == 'RWALK': feed_dict[model.output_mask] = logit_mask # If first iteration of the first task then set the initial value of the running fisher if task == 0 and iters == 0: sess.run([model.set_initial_running_fisher], feed_dict=feed_dict) # Store the current value of the weights sess.run(model.weights_delta_old_grouped) # Update fisher and importance score after every few iterations if (iters + 1) % model.fisher_update_after == 0: # Update the importance score using distance in riemannian manifold sess.run(model.update_big_omega_riemann) # Now that the score is updated, compute the new value for running Fisher sess.run(model.set_running_fisher) # Store the current value of the weights sess.run(model.weights_delta_old_grouped) # Reset the delta_L sess.run([model.reset_small_omega]) _, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped, model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict) elif model.imp_method == 'ER-Reservoir': mem_filled_so_far = examples_seen_so_far if (examples_seen_so_far < episodic_mem_size) else episodic_mem_size if mem_filled_so_far < args.eps_mem_batch: er_mem_indices = np.arange(mem_filled_so_far) else: er_mem_indices = np.random.choice(mem_filled_so_far, args.eps_mem_batch, replace=False) np.random.shuffle(er_mem_indices) er_train_x_batch = np.concatenate((episodic_images[er_mem_indices], train_x[offset:offset+residual]), axis=0) er_train_y_batch = np.concatenate((episodic_labels[er_mem_indices], train_y[offset:offset+residual]), axis=0) labels_in_the_batch = np.unique(np.nonzero(er_train_y_batch)[1]) logit_mask[:] = 0 for tt in range(task+1): if any(c_lab == t_lab for t_lab in task_labels[tt] for c_lab in labels_in_the_batch): logit_mask[task_labels[tt]] = 1.0 feed_dict = {model.x: er_train_x_batch, model.y_: er_train_y_batch, model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0, model.train_phase: True, model.learning_rate: args.learning_rate} feed_dict[model.output_mask] = logit_mask _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) # Reservoir update for er_x, er_y_ in zip(train_x[offset:offset+residual], train_y[offset:offset+residual]): update_reservior(er_x, er_y_, episodic_images, episodic_labels, episodic_mem_size, examples_seen_so_far) examples_seen_so_far += 1 elif model.imp_method == 'ER-Ringbuffer': # Sample Bn U Bm mem_filled_so_far = episodic_filled_counter if (episodic_filled_counter <= episodic_mem_size) else episodic_mem_size er_mem_indices = np.arange(mem_filled_so_far) if (mem_filled_so_far <= args.eps_mem_batch) else np.random.choice(mem_filled_so_far, args.eps_mem_batch, replace=False) np.random.shuffle(er_mem_indices) er_train_x_batch = np.concatenate((episodic_images[er_mem_indices], train_x[offset:offset+residual]), axis=0) # TODO: Check if for task 0 the first arg is empty er_train_y_batch = np.concatenate((episodic_labels[er_mem_indices], train_y[offset:offset+residual]), axis=0) # Set the logit masks nd_logit_mask[:] = 0 for tt in range(task+1): nd_logit_mask[tt][task_labels[tt]] = 1.0 logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)} feed_dict = {model.x: er_train_x_batch, model.y_: er_train_y_batch, model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0, model.train_phase: True, model.learning_rate: args.learning_rate} feed_dict.update(logit_mask_dict) feed_dict[model.mem_batch_size] = float(er_train_x_batch.shape[0]) _, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict) # Put the batch in the FIFO ring buffer update_fifo_buffer(train_x[offset:offset+residual], train_y[offset:offset+residual], episodic_images, episodic_labels, task_labels[task], args.mem_size, count_cls, episodic_filled_counter) elif model.imp_method == 'ER-SUBSPACE': # Zero out all the grads sess.run([model.reset_er_subspace_grads]) if task > 0: # Randomly pick a task to replay tt = np.squeeze(np.random.choice(np.arange(task), 1, replace=False)) mem_offset = tt*args.mem_size*classes_per_task er_mem_indices = np.arange(mem_offset, mem_offset+args.mem_size*classes_per_task) np.random.shuffle(er_mem_indices) er_train_x_batch = episodic_images[er_mem_indices] er_train_y_batch = episodic_labels[er_mem_indices] feed_dict = {model.x: er_train_x_batch, model.y_: er_train_y_batch, model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0, model.train_phase: True, model.task_id: task+1, model.learning_rate: args.learning_rate} logit_mask[:] = 0 logit_mask[task_labels[tt]] = 1.0 feed_dict[model.output_mask] = logit_mask feed_dict[model.subspace_proj] = proj_matrices[tt] sess.run(model.accum_er_subspace_grads, feed_dict=feed_dict) # Train on the current task feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual], model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0, model.train_phase: True, model.task_id: task+1, model.learning_rate: args.learning_rate} logit_mask[:] = 0 logit_mask[task_labels[task]] = 1.0 feed_dict[model.output_mask] = logit_mask feed_dict[model.subspace_proj] = proj_matrices[task] if args.maintain_orthogonality: if SVB: _, _, loss = sess.run([model.train_er_subspace, model.accum_er_subspace_grads, model.reg_loss], feed_dict=feed_dict) # Every few iterations bound the singular values if iters % 20 == 0: sess.run(model.update_weights_svb) else: _, loss = sess.run([model.accum_er_subspace_grads, model.reg_loss], feed_dict=feed_dict) sess.run(model.train_stiefel, feed_dict={model.learning_rate: args.learning_rate}) else: _, _, loss = sess.run([model.train_er_subspace, model.accum_er_subspace_grads, model.reg_loss], feed_dict=feed_dict) # Put the batch in the FIFO ring buffer update_fifo_buffer(train_x[offset:offset+residual], train_y[offset:offset+residual], episodic_images, episodic_labels, task_labels[task], args.mem_size, count_cls, episodic_filled_counter) elif model.imp_method == 'ER-SUBSPACE-GP': # Zero out all the grads sess.run([model.reset_er_subspace_gp_grads]) feed_dict = {model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0, model.task_id: task+1, model.learning_rate: args.learning_rate, model.train_phase: True} if task > 0: # Randomly pick a task to replay tt = np.squeeze(np.random.choice(np.arange(task), 1, replace=False)) mem_offset = tt*args.mem_size*classes_per_task er_mem_indices = np.arange(mem_offset, mem_offset+args.mem_size*classes_per_task) np.random.shuffle(er_mem_indices) er_train_x_batch = episodic_images[er_mem_indices] er_train_y_batch = episodic_labels[er_mem_indices] logit_mask[:] = 0 logit_mask[task_labels[tt]] = 1.0 feed_dict[model.output_mask] = logit_mask feed_dict[model.x] = er_train_x_batch feed_dict[model.y_] = er_train_y_batch # Compute the gradient in the \perp space #feed_dict[model.subspace_proj] = np.eye(proj_matrices[tt].shape[0]) - proj_matrices[tt] #sess.run(model.store_ref_grads, feed_dict=feed_dict) # Compute the gradient in P space and store the gradient feed_dict[model.subspace_proj] = proj_matrices[tt] sess.run(model.accum_er_subspace_grads, feed_dict=feed_dict) # Train on the current task logit_mask[:] = 0 logit_mask[task_labels[task]] = 1.0 feed_dict[model.output_mask] = logit_mask if task == 0: feed_dict[model.x] = train_x[offset:offset+residual] feed_dict[model.y_] = train_y[offset:offset+residual] else: # Sample Bn U Bm mem_filled_so_far = episodic_filled_counter if (episodic_filled_counter <= episodic_mem_size) else episodic_mem_size er_mem_indices = np.arange(mem_filled_so_far) if (mem_filled_so_far <= args.eps_mem_batch) else np.random.choice(mem_filled_so_far, args.eps_mem_batch, replace=False) np.random.shuffle(er_mem_indices) er_train_x_batch = np.concatenate((episodic_images[er_mem_indices], train_x[offset:offset+residual]), axis=0) # TODO: Check if for task 0 the first arg is empty er_train_y_batch = np.concatenate((episodic_labels[er_mem_indices], train_y[offset:offset+residual]), axis=0) feed_dict[model.x] = er_train_x_batch feed_dict[model.y_] = er_train_y_batch # Compute the gradient in the \perp space feed_dict[model.subspace_proj] = np.eye(proj_matrices[tt].shape[0]) - proj_matrices[task] sess.run(model.store_ref_grads, feed_dict=feed_dict) # Compute the gradient in P space and store the gradient feed_dict[model.x] = train_x[offset:offset+residual] feed_dict[model.y_] = train_y[offset:offset+residual] feed_dict[model.subspace_proj] = proj_matrices[task] _, loss = sess.run([model.train_er_gp, model.gp_total_loss], feed_dict=feed_dict) # Put the batch in the FIFO ring buffer update_fifo_buffer(train_x[offset:offset+residual], train_y[offset:offset+residual], episodic_images, episodic_labels, task_labels[task], args.mem_size, count_cls, episodic_filled_counter) if (iters % 100 == 0): print('Step {:d} {:.3f}'.format(iters, loss)) #print('Step {:d}\t CE: {:.3f}\t Reg: {:.9f}\t TL: {:.3f}'.format(iters, entropy, reg, loss)) #print('Step {:d}\t Reg: {:.9f}\t TL: {:.3f}'.format(iters, reg, loss)) if (math.isnan(loss)): print('ERROR: NaNs NaNs NaNs!!!') sys.exit(0) print('\t\t\t\tTraining for Task%d done!'%(task)) if model.imp_method == 'SUBSPACE-PROJ' and GRAD_CHECK: # TODO: Compute the average gradient of the task at \theta^*: Could be done as running average (no need for extra passes?) bbatch_size = 100 grad_sum = [] for iiters in range(train_x.shape[0] // bbatch_size): offset = iiters * bbatch_size feed_dict = {model.x: train_x[offset:offset+bbatch_size], model.y_: train_y[offset:offset+bbatch_size], model.keep_prob: 1.0, model.train_phase: False, model.learning_rate: args.learning_rate} nd_logit_mask[:] = 0 nd_logit_mask[task][task_labels[task]] = 1.0 logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)} feed_dict.update(logit_mask_dict) #feed_dict[model.subspace_proj] = proj_matrices[task] projection_dict = {proj: proj_matrices[proj.get_shape()[0]][task] for proj in model.subspace_proj} feed_dict.update(projection_dict) feed_dict[model.mem_batch_size] = residual grad_vars, train_vars = sess.run([model.reg_gradients_vars, model.trainable_vars], feed_dict=feed_dict) for v in range(len(train_vars)): if iiters == 0: grad_sum.append(grad_vars[v][0]) else: grad_sum[v] += (grad_vars[v][0] - grad_sum[v])/ iiters prev_task_grads.append(grad_sum) if use_episodic_memory: episodic_filled_counter += args.mem_size * classes_per_task if model.imp_method == 'A-GEM': if COUNT_VIOLATONS: violation_count[task] = vc print('Task {}: Violation Count: {}'.format(task, violation_count)) sess.run(model.reset_violation_count, feed_dict=feed_dict) # Compute the inter-task updates, Fisher/ importance scores etc # Don't calculate the task updates for the last task if (task < (len(task_labels) - 1)) or MEASURE_PERF_ON_EPS_MEMORY: model.task_updates(sess, task, task_train_images, task_labels[task]) # TODO: For MAS, should the gradients be for current task or all the previous tasks print('\t\t\t\tTask updates after Task%d done!'%(task)) if args.train_single_epoch and not args.cross_validate_mode: fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, projection_matrices=proj_matrices) print('Task: {}, Acc: {}'.format(task, fbatch)) ftask.append(fbatch) ftask = np.array(ftask) if model.imp_method == 'PNN': pnn_train_phase[:] = False pnn_train_phase[task] = True pnn_logit_mask[:] = 0 pnn_logit_mask[task][task_labels[task]] = 1.0 else: if MEASURE_PERF_ON_EPS_MEMORY: eps_mem = { 'images': episodic_images, 'labels': episodic_labels, } # Measure perf on episodic memory ftask = test_task_sequence(model, sess, eps_mem, task_labels, task, classes_per_task=classes_per_task, projection_matrices=proj_matrices) else: # List to store accuracy for all the tasks for the current trained model ftask = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, projection_matrices=proj_matrices) print('Task: {}, Acc: {}'.format(task, ftask)) # Store the accuracies computed at task T in a list evals.append(ftask) # Reset the optimizer model.reset_optimizer(sess) #-> End for loop task runs.append(np.array(evals)) # End for loop runid runs = np.array(runs) return runs, task_labels_dataset def test_task_sequence(model, sess, test_data, test_tasks, task, classes_per_task=0, projection_matrices=None): """ Snapshot the current performance """ if TIME_MY_METHOD: # Only compute the training time return np.zeros(model.num_tasks) final_acc = np.zeros(model.num_tasks) if model.imp_method in {'PNN', 'A-GEM', 'ER-Ringbuffer'}: logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES]) else: logit_mask = np.zeros(TOTAL_CLASSES) if MEASURE_PERF_ON_EPS_MEMORY: for tt, labels in enumerate(test_tasks): # Multi-head evaluation setting logit_mask[:] = 0 logit_mask[labels] = 1.0 mem_offset = tt*SAMPLES_PER_CLASS*classes_per_task feed_dict = {model.x: test_data['images'][mem_offset:mem_offset+SAMPLES_PER_CLASS*classes_per_task], model.y_: test_data['labels'][mem_offset:mem_offset+SAMPLES_PER_CLASS*classes_per_task], model.keep_prob: 1.0, model.train_phase: False, model.output_mask: logit_mask} acc = model.accuracy.eval(feed_dict = feed_dict) final_acc[tt] = acc return final_acc for tt, labels in enumerate(test_tasks): if not MULTI_TASK: if tt > task: return final_acc task_test_images, task_test_labels = load_task_specific_data(test_data, labels) if model.imp_method == 'PNN': pnn_train_phase = np.array(np.zeros(model.num_tasks), dtype=np.bool) logit_mask[:] = 0 logit_mask[tt][labels] = 1.0 feed_dict = {model.x: task_test_images, model.y_[tt]: task_test_labels, model.keep_prob: 1.0} train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)} logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)} feed_dict.update(train_phase_dict) feed_dict.update(logit_mask_dict) acc = model.accuracy[tt].eval(feed_dict = feed_dict) elif model.imp_method in {'A-GEM', 'ER-Ringbuffer'}: logit_mask[:] = 0 logit_mask[tt][labels] = 1.0 feed_dict = {model.x: task_test_images, model.y_: task_test_labels, model.keep_prob: 1.0, model.train_phase: False} logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)} feed_dict.update(logit_mask_dict) #if model.imp_method in {'SUBSPACE-PROJ', 'ER-SUBSPACE', 'PROJ-SUBSPACE-GP'}: if False: feed_dict[model.subspace_proj] = projection_matrices[tt] #feed_dict[model.subspace_proj] = np.eye(projection_matrices[tt].shape[0]) #projection_dict = {proj: projection_matrices[proj.get_shape()[0]][tt] for proj in model.subspace_proj} #feed_dict.update(projection_dict) acc = model.accuracy[tt].eval(feed_dict = feed_dict) else: logit_mask[:] = 0 logit_mask[labels] = 1.0 #for ttt in range(task+1): # logit_mask[test_tasks[ttt]] = 1.0 feed_dict = {model.x: task_test_images, model.y_: task_test_labels, model.keep_prob: 1.0, model.train_phase: False, model.output_mask: logit_mask} if model.imp_method in {'SUBSPACE-PROJ', 'ER-SUBSPACE', 'PROJ-SUBSPACE-GP', 'ER-SUBSPACE-GP'}: feed_dict[model.subspace_proj] = projection_matrices[tt] acc = model.accuracy.eval(feed_dict = feed_dict) final_acc[tt] = acc return final_acc def main(): """ Create the model and start the training """ # Get the CL arguments args = get_arguments() # Check if the network architecture is valid if args.arch not in VALID_ARCHS: raise ValueError("Network architecture %s is not supported!"%(args.arch)) # Check if the method to compute importance is valid if args.imp_method not in MODELS: raise ValueError("Importance measure %s is undefined!"%(args.imp_method)) # Check if the optimizer is valid if args.optim not in VALID_OPTIMS: raise ValueError("Optimizer %s is undefined!"%(args.optim)) # Create log directories to store the results if not os.path.exists(args.log_dir): print('Log directory %s created!'%(args.log_dir)) os.makedirs(args.log_dir) # Generate the experiment key and store the meta data in a file exper_meta_data = {'ARCH': args.arch, 'DATASET': 'SPLIT_miniImageNET', 'NUM_RUNS': args.num_runs, 'TRAIN_SINGLE_EPOCH': args.train_single_epoch, 'IMP_METHOD': args.imp_method, 'SYNAP_STGTH': args.synap_stgth, 'FISHER_EMA_DECAY': args.fisher_ema_decay, 'FISHER_UPDATE_AFTER': args.fisher_update_after, 'OPTIM': args.optim, 'LR': args.learning_rate, 'BATCH_SIZE': args.batch_size, 'MEM_SIZE': args.mem_size} experiment_id = "SPLIT_miniImageNET_META_%s_%s_%r_%s-"%(args.imp_method, str(args.synap_stgth).replace('.', '_'), str(args.batch_size), str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M") snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data) # Get the task labels from the total number of tasks and full label space if args.online_cross_val: num_tasks = K_FOR_CROSS_VAL else: num_tasks = args.num_tasks - K_FOR_CROSS_VAL # Load the split miniImagenet dataset data_labs = [np.arange(TOTAL_CLASSES)] datasets = construct_split_miniImagenet(data_labs, args.data_file) # Variables to store the accuracies and standard deviations of the experiment acc_mean = dict() acc_std = dict() # Reset the default graph tf.reset_default_graph() graph = tf.Graph() with graph.as_default(): # Set the random seed tf.set_random_seed(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) # Define Input and Output of the model x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]) learning_rate = tf.placeholder(dtype=tf.float32, shape=()) if args.imp_method == 'PNN': y_ = [] for i in range(num_tasks): y_.append(tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES])) else: y_ = tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES]) # Define the optimizer if args.optim == 'ADAM': opt = tf.train.AdamOptimizer(learning_rate=learning_rate) elif args.optim == 'SGD': opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) elif args.optim == 'MOMENTUM': #base_lr = tf.constant(args.learning_rate) #learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER)) opt = tf.train.MomentumOptimizer(learning_rate, OPT_MOMENTUM) # Create the Model/ contruct the graph model = Model(x, y_, num_tasks, opt, args.imp_method, args.synap_stgth, args.fisher_update_after, args.fisher_ema_decay, learning_rate, network_arch=args.arch) # Set up tf session and initialize variables. config = tf.ConfigProto() config.gpu_options.allow_growth = True time_start = time.time() with tf.Session(config=config, graph=graph) as sess: runs, task_labels_dataset = train_task_sequence(model, sess, datasets, args) # Close the session sess.close() time_end = time.time() time_spent = time_end - time_start # Store all the results in one dictionary to process later exper_acc = dict(mean=runs) exper_labels = dict(labels=task_labels_dataset) # If cross-validation flag is enabled, store the stuff in a text file if args.cross_validate_mode: acc_mean, acc_std = average_acc_stats_across_runs(runs, model.imp_method) fgt_mean, fgt_std = average_fgt_stats_across_runs(runs, model.imp_method) cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_miniImageNET_%s_%s'%(args.imp_method, args.optim) + '.txt' with open(cross_validate_dump_file, 'a') as f: if MULTI_TASK: f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.arch, args.learning_rate, args.synap_stgth, acc_mean[-1,:].mean())) else: f.write('ORTHO:{} \t SVB:{}\t NUM_TASKS: {} \t MEM_SIZE: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t SHARED_SUBSPACE:{}, \t ACC: {} (+-{})\t Fgt: {} (+-{})\t QR:{}\t Time: {}\n'.format(args.maintain_orthogonality, SVB, args.num_tasks, args.mem_size, args.arch, args.learning_rate, args.synap_stgth, args.subspace_share_dims, acc_mean, acc_std, fgt_mean, fgt_std, QR, str(time_spent))) # Store the experiment output to a file snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc) snapshot_task_labels(args.log_dir, experiment_id, exper_labels) if __name__ == '__main__': main()
[ "numpy.random.seed", "argparse.ArgumentParser", "utils.utils.average_acc_stats_across_runs", "tensorflow.reset_default_graph", "numpy.ones", "utils.utils.average_fgt_stats_across_runs", "tensorflow.ConfigProto", "numpy.arange", "utils.vis_utils.snapshot_experiment_meta_data", "utils.data_utils.construct_split_miniImagenet", "utils.vis_utils.snapshot_experiment_eval", "os.path.join", "os.path.exists", "tensorflow.set_random_seed", "tensorflow.placeholder", "random.seed", "numpy.random.choice", "datetime.datetime.now", "numpy.random.shuffle", "utils.utils.load_task_specific_data", "math.isnan", "utils.utils.update_reservior", "tensorflow.global_variables_initializer", "tensorflow.Session", "tensorflow.train.MomentumOptimizer", "tensorflow.Graph", "tensorflow.train.GradientDescentOptimizer", "sys.exit", "numpy.concatenate", "utils.utils.unit_test_projection_matrices", "os.makedirs", "utils.vis_utils.snapshot_task_labels", "model.Model", "numpy.zeros", "time.time", "numpy.nonzero", "utils.utils.update_fifo_buffer", "numpy.array", "numpy.eye", "tensorflow.train.AdamOptimizer" ]
[((3393, 3425), 'os.path.join', 'os.path.join', (['logdir', 'model_name'], {}), '(logdir, model_name)\n', (3405, 3425), False, 'import os\n'), ((4050, 4135), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Script for split miniImagenet experiment."""'}), "(description='Script for split miniImagenet experiment.'\n )\n", (4073, 4135), False, 'import argparse\n'), ((42224, 42238), 'numpy.array', 'np.array', (['runs'], {}), '(runs)\n', (42232, 42238), True, 'import numpy as np\n'), ((42565, 42590), 'numpy.zeros', 'np.zeros', (['model.num_tasks'], {}), '(model.num_tasks)\n', (42573, 42590), True, 'import numpy as np\n'), ((47575, 47650), 'utils.vis_utils.snapshot_experiment_meta_data', 'snapshot_experiment_meta_data', (['args.log_dir', 'experiment_id', 'exper_meta_data'], {}), '(args.log_dir, experiment_id, exper_meta_data)\n', (47604, 47650), False, 'from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels\n'), ((47960, 48015), 'utils.data_utils.construct_split_miniImagenet', 'construct_split_miniImagenet', (['data_labs', 'args.data_file'], {}), '(data_labs, args.data_file)\n', (47988, 48015), False, 'from utils.data_utils import construct_split_miniImagenet\n'), ((48177, 48201), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (48199, 48201), True, 'import tensorflow as tf\n'), ((48215, 48225), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (48223, 48225), True, 'import tensorflow as tf\n'), ((51366, 51430), 'utils.vis_utils.snapshot_experiment_eval', 'snapshot_experiment_eval', (['args.log_dir', 'experiment_id', 'exper_acc'], {}), '(args.log_dir, experiment_id, exper_acc)\n', (51390, 51430), False, 'from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels\n'), ((51435, 51498), 'utils.vis_utils.snapshot_task_labels', 'snapshot_task_labels', (['args.log_dir', 'experiment_id', 'exper_labels'], {}), '(args.log_dir, experiment_id, exper_labels)\n', (51455, 51498), False, 'from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels\n'), ((3437, 3459), 'os.path.exists', 'os.path.exists', (['logdir'], {}), '(logdir)\n', (3451, 3459), False, 'import os\n'), ((3467, 3486), 'os.makedirs', 'os.makedirs', (['logdir'], {}), '(logdir)\n', (3478, 3486), False, 'import os\n'), ((8308, 8348), 'numpy.random.seed', 'np.random.seed', (['(args.random_seed + runid)'], {}), '(args.random_seed + runid)\n', (8322, 8348), True, 'import numpy as np\n'), ((8355, 8392), 'random.seed', 'random.seed', (['(args.random_seed + runid)'], {}), '(args.random_seed + runid)\n', (8366, 8392), False, 'import random\n'), ((8882, 8912), 'numpy.random.shuffle', 'np.random.shuffle', (['label_array'], {}), '(label_array)\n', (8899, 8912), True, 'import numpy as np\n'), ((10110, 10133), 'numpy.zeros', 'np.zeros', (['TOTAL_CLASSES'], {}), '(TOTAL_CLASSES)\n', (10118, 10133), True, 'import numpy as np\n'), ((10158, 10200), 'numpy.zeros', 'np.zeros', (['[model.num_tasks, TOTAL_CLASSES]'], {}), '([model.num_tasks, TOTAL_CLASSES])\n', (10166, 10200), True, 'import numpy as np\n'), ((10527, 10571), 'utils.utils.unit_test_projection_matrices', 'unit_test_projection_matrices', (['proj_matrices'], {}), '(proj_matrices)\n', (10556, 10571), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((42522, 42547), 'numpy.zeros', 'np.zeros', (['model.num_tasks'], {}), '(model.num_tasks)\n', (42530, 42547), True, 'import numpy as np\n'), ((42674, 42716), 'numpy.zeros', 'np.zeros', (['[model.num_tasks, TOTAL_CLASSES]'], {}), '([model.num_tasks, TOTAL_CLASSES])\n', (42682, 42716), True, 'import numpy as np\n'), ((42748, 42771), 'numpy.zeros', 'np.zeros', (['TOTAL_CLASSES'], {}), '(TOTAL_CLASSES)\n', (42756, 42771), True, 'import numpy as np\n'), ((43630, 43672), 'utils.utils.load_task_specific_data', 'load_task_specific_data', (['test_data', 'labels'], {}), '(test_data, labels)\n', (43653, 43672), False, 'from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, load_task_specific_data, grad_check\n'), ((46608, 46636), 'os.path.exists', 'os.path.exists', (['args.log_dir'], {}), '(args.log_dir)\n', (46622, 46636), False, 'import os\n'), ((46704, 46729), 'os.makedirs', 'os.makedirs', (['args.log_dir'], {}), '(args.log_dir)\n', (46715, 46729), False, 'import os\n'), ((47919, 47943), 'numpy.arange', 'np.arange', (['TOTAL_CLASSES'], {}), '(TOTAL_CLASSES)\n', (47928, 47943), True, 'import numpy as np\n'), ((48294, 48330), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['args.random_seed'], {}), '(args.random_seed)\n', (48312, 48330), True, 'import tensorflow as tf\n'), ((48339, 48371), 'numpy.random.seed', 'np.random.seed', (['args.random_seed'], {}), '(args.random_seed)\n', (48353, 48371), True, 'import numpy as np\n'), ((48380, 48409), 'random.seed', 'random.seed', (['args.random_seed'], {}), '(args.random_seed)\n', (48391, 48409), False, 'import random\n'), ((48470, 48547), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]'}), '(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])\n', (48484, 48547), True, 'import tensorflow as tf\n'), ((48572, 48614), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '()'}), '(dtype=tf.float32, shape=())\n', (48586, 48614), True, 'import tensorflow as tf\n'), ((49471, 49632), 'model.Model', 'Model', (['x', 'y_', 'num_tasks', 'opt', 'args.imp_method', 'args.synap_stgth', 'args.fisher_update_after', 'args.fisher_ema_decay', 'learning_rate'], {'network_arch': 'args.arch'}), '(x, y_, num_tasks, opt, args.imp_method, args.synap_stgth, args.\n fisher_update_after, args.fisher_ema_decay, learning_rate, network_arch\n =args.arch)\n', (49476, 49632), False, 'from model import Model\n'), ((49712, 49728), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (49726, 49728), True, 'import tensorflow as tf\n'), ((49798, 49809), 'time.time', 'time.time', ([], {}), '()\n', (49807, 49809), False, 'import time\n'), ((50036, 50047), 'time.time', 'time.time', ([], {}), '()\n', (50045, 50047), False, 'import time\n'), ((50375, 50428), 'utils.utils.average_acc_stats_across_runs', 'average_acc_stats_across_runs', (['runs', 'model.imp_method'], {}), '(runs, model.imp_method)\n', (50404, 50428), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((50457, 50510), 'utils.utils.average_fgt_stats_across_runs', 'average_fgt_stats_across_runs', (['runs', 'model.imp_method'], {}), '(runs, model.imp_method)\n', (50486, 50510), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((8676, 8700), 'numpy.arange', 'np.arange', (['total_classes'], {}), '(total_classes)\n', (8685, 8700), True, 'import numpy as np\n'), ((8809, 8874), 'numpy.arange', 'np.arange', (['class_label_offset', '(total_classes + class_label_offset)'], {}), '(class_label_offset, total_classes + class_label_offset)\n', (8818, 8874), True, 'import numpy as np\n'), ((9401, 9434), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (9432, 9434), True, 'import tensorflow as tf\n'), ((9777, 9843), 'numpy.zeros', 'np.zeros', (['[episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]'], {}), '([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])\n', (9785, 9843), True, 'import numpy as np\n'), ((9874, 9918), 'numpy.zeros', 'np.zeros', (['[episodic_mem_size, TOTAL_CLASSES]'], {}), '([episodic_mem_size, TOTAL_CLASSES])\n', (9882, 9918), True, 'import numpy as np\n'), ((9943, 9982), 'numpy.zeros', 'np.zeros', (['TOTAL_CLASSES'], {'dtype': 'np.int32'}), '(TOTAL_CLASSES, dtype=np.int32)\n', (9951, 9982), True, 'import numpy as np\n'), ((10260, 10285), 'numpy.zeros', 'np.zeros', (['model.num_tasks'], {}), '(model.num_tasks)\n', (10268, 10285), True, 'import numpy as np\n'), ((11346, 11410), 'utils.utils.load_task_specific_data', 'load_task_specific_data', (["datasets[0]['train']", 'task_labels[task]'], {}), "(datasets[0]['train'], task_labels[task])\n", (11369, 11410), False, 'from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, load_task_specific_data, grad_check\n'), ((12470, 12525), 'numpy.ones', 'np.ones', (['[task_train_labels.shape[0]]'], {'dtype': 'np.float32'}), '([task_train_labels.shape[0]], dtype=np.float32)\n', (12477, 12525), True, 'import numpy as np\n'), ((13263, 13292), 'numpy.arange', 'np.arange', (['num_train_examples'], {}), '(num_train_examples)\n', (13272, 13292), True, 'import numpy as np\n'), ((13305, 13328), 'numpy.random.shuffle', 'np.random.shuffle', (['perm'], {}), '(perm)\n', (13322, 13328), True, 'import numpy as np\n'), ((42166, 42181), 'numpy.array', 'np.array', (['evals'], {}), '(evals)\n', (42174, 42181), True, 'import numpy as np\n'), ((48825, 48880), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, TOTAL_CLASSES]'}), '(tf.float32, shape=[None, TOTAL_CLASSES])\n', (48839, 48880), True, 'import tensorflow as tf\n'), ((48964, 49015), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (48986, 49015), True, 'import tensorflow as tf\n'), ((49823, 49861), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config', 'graph': 'graph'}), '(config=config, graph=graph)\n', (49833, 49861), True, 'import tensorflow as tf\n'), ((11154, 11196), 'numpy.zeros', 'np.zeros', (['[model.num_tasks, TOTAL_CLASSES]'], {}), '([model.num_tasks, TOTAL_CLASSES])\n', (11162, 11196), True, 'import numpy as np\n'), ((37859, 37875), 'math.isnan', 'math.isnan', (['loss'], {}), '(loss)\n', (37869, 37875), False, 'import math\n'), ((40894, 40909), 'numpy.array', 'np.array', (['ftask'], {}), '(ftask)\n', (40902, 40909), True, 'import numpy as np\n'), ((43750, 43775), 'numpy.zeros', 'np.zeros', (['model.num_tasks'], {}), '(model.num_tasks)\n', (43758, 43775), True, 'import numpy as np\n'), ((47520, 47543), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (47541, 47543), False, 'import datetime\n'), ((49069, 49131), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (49102, 49131), True, 'import tensorflow as tf\n'), ((11034, 11059), 'numpy.zeros', 'np.zeros', (['model.num_tasks'], {}), '(model.num_tasks)\n', (11042, 11059), True, 'import numpy as np\n'), ((37952, 37963), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (37960, 37963), False, 'import sys\n'), ((48737, 48792), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, TOTAL_CLASSES]'}), '(tf.float32, shape=[None, TOTAL_CLASSES])\n', (48751, 48792), True, 'import tensorflow as tf\n'), ((49351, 49406), 'tensorflow.train.MomentumOptimizer', 'tf.train.MomentumOptimizer', (['learning_rate', 'OPT_MOMENTUM'], {}), '(learning_rate, OPT_MOMENTUM)\n', (49377, 49406), True, 'import tensorflow as tf\n'), ((11670, 11732), 'utils.utils.load_task_specific_data', 'load_task_specific_data', (["datasets[0]['train']", 'task_labels[t_]'], {}), "(datasets[0]['train'], task_labels[t_])\n", (11693, 11732), False, 'from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, load_task_specific_data, grad_check\n'), ((11777, 11836), 'numpy.concatenate', 'np.concatenate', (['(task_train_images, task_tr_images)'], {'axis': '(0)'}), '((task_train_images, task_tr_images), axis=0)\n', (11791, 11836), True, 'import numpy as np\n'), ((11881, 11940), 'numpy.concatenate', 'np.concatenate', (['(task_train_labels, task_tr_labels)'], {'axis': '(0)'}), '((task_train_labels, task_tr_labels), axis=0)\n', (11895, 11940), True, 'import numpy as np\n'), ((12242, 12271), 'numpy.nonzero', 'np.nonzero', (['task_train_labels'], {}), '(task_train_labels)\n', (12252, 12271), True, 'import numpy as np\n'), ((18695, 18731), 'numpy.eye', 'np.eye', (['proj_matrices[task].shape[0]'], {}), '(proj_matrices[task].shape[0])\n', (18701, 18731), True, 'import numpy as np\n'), ((24848, 25049), 'utils.utils.update_fifo_buffer', 'update_fifo_buffer', (['train_x[offset:offset + residual]', 'train_y[offset:offset + residual]', 'episodic_images', 'episodic_labels', 'task_labels[task]', 'args.mem_size', 'count_cls', 'episodic_filled_counter'], {}), '(train_x[offset:offset + residual], train_y[offset:offset +\n residual], episodic_images, episodic_labels, task_labels[task], args.\n mem_size, count_cls, episodic_filled_counter)\n', (24866, 25049), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((23005, 23039), 'numpy.arange', 'np.arange', (['episodic_filled_counter'], {}), '(episodic_filled_counter)\n', (23014, 23039), True, 'import numpy as np\n'), ((23197, 23273), 'numpy.random.choice', 'np.random.choice', (['episodic_filled_counter', 'args.eps_mem_batch'], {'replace': '(False)'}), '(episodic_filled_counter, args.eps_mem_batch, replace=False)\n', (23213, 23273), True, 'import numpy as np\n'), ((26956, 26989), 'numpy.random.shuffle', 'np.random.shuffle', (['er_mem_indices'], {}), '(er_mem_indices)\n', (26973, 26989), True, 'import numpy as np\n'), ((27029, 27125), 'numpy.concatenate', 'np.concatenate', (['(episodic_images[er_mem_indices], train_x[offset:offset + residual])'], {'axis': '(0)'}), '((episodic_images[er_mem_indices], train_x[offset:offset +\n residual]), axis=0)\n', (27043, 27125), True, 'import numpy as np\n'), ((27159, 27255), 'numpy.concatenate', 'np.concatenate', (['(episodic_labels[er_mem_indices], train_y[offset:offset + residual])'], {'axis': '(0)'}), '((episodic_labels[er_mem_indices], train_y[offset:offset +\n residual]), axis=0)\n', (27173, 27255), True, 'import numpy as np\n'), ((26769, 26797), 'numpy.arange', 'np.arange', (['mem_filled_so_far'], {}), '(mem_filled_so_far)\n', (26778, 26797), True, 'import numpy as np\n'), ((26865, 26935), 'numpy.random.choice', 'np.random.choice', (['mem_filled_so_far', 'args.eps_mem_batch'], {'replace': '(False)'}), '(mem_filled_so_far, args.eps_mem_batch, replace=False)\n', (26881, 26935), True, 'import numpy as np\n'), ((28208, 28316), 'utils.utils.update_reservior', 'update_reservior', (['er_x', 'er_y_', 'episodic_images', 'episodic_labels', 'episodic_mem_size', 'examples_seen_so_far'], {}), '(er_x, er_y_, episodic_images, episodic_labels,\n episodic_mem_size, examples_seen_so_far)\n', (28224, 28316), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((28803, 28836), 'numpy.random.shuffle', 'np.random.shuffle', (['er_mem_indices'], {}), '(er_mem_indices)\n', (28820, 28836), True, 'import numpy as np\n'), ((28876, 28972), 'numpy.concatenate', 'np.concatenate', (['(episodic_images[er_mem_indices], train_x[offset:offset + residual])'], {'axis': '(0)'}), '((episodic_images[er_mem_indices], train_x[offset:offset +\n residual]), axis=0)\n', (28890, 28972), True, 'import numpy as np\n'), ((29057, 29153), 'numpy.concatenate', 'np.concatenate', (['(episodic_labels[er_mem_indices], train_y[offset:offset + residual])'], {'axis': '(0)'}), '((episodic_labels[er_mem_indices], train_y[offset:offset +\n residual]), axis=0)\n', (29071, 29153), True, 'import numpy as np\n'), ((30050, 30251), 'utils.utils.update_fifo_buffer', 'update_fifo_buffer', (['train_x[offset:offset + residual]', 'train_y[offset:offset + residual]', 'episodic_images', 'episodic_labels', 'task_labels[task]', 'args.mem_size', 'count_cls', 'episodic_filled_counter'], {}), '(train_x[offset:offset + residual], train_y[offset:offset +\n residual], episodic_images, episodic_labels, task_labels[task], args.\n mem_size, count_cls, episodic_filled_counter)\n', (30068, 30251), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((27302, 27330), 'numpy.nonzero', 'np.nonzero', (['er_train_y_batch'], {}), '(er_train_y_batch)\n', (27312, 27330), True, 'import numpy as np\n'), ((28633, 28661), 'numpy.arange', 'np.arange', (['mem_filled_so_far'], {}), '(mem_filled_so_far)\n', (28642, 28661), True, 'import numpy as np\n'), ((28712, 28782), 'numpy.random.choice', 'np.random.choice', (['mem_filled_so_far', 'args.eps_mem_batch'], {'replace': '(False)'}), '(mem_filled_so_far, args.eps_mem_batch, replace=False)\n', (28728, 28782), True, 'import numpy as np\n'), ((33252, 33453), 'utils.utils.update_fifo_buffer', 'update_fifo_buffer', (['train_x[offset:offset + residual]', 'train_y[offset:offset + residual]', 'episodic_images', 'episodic_labels', 'task_labels[task]', 'args.mem_size', 'count_cls', 'episodic_filled_counter'], {}), '(train_x[offset:offset + residual], train_y[offset:offset +\n residual], episodic_images, episodic_labels, task_labels[task], args.\n mem_size, count_cls, episodic_filled_counter)\n', (33270, 33453), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((30738, 30806), 'numpy.arange', 'np.arange', (['mem_offset', '(mem_offset + args.mem_size * classes_per_task)'], {}), '(mem_offset, mem_offset + args.mem_size * classes_per_task)\n', (30747, 30806), True, 'import numpy as np\n'), ((30827, 30860), 'numpy.random.shuffle', 'np.random.shuffle', (['er_mem_indices'], {}), '(er_mem_indices)\n', (30844, 30860), True, 'import numpy as np\n'), ((37298, 37499), 'utils.utils.update_fifo_buffer', 'update_fifo_buffer', (['train_x[offset:offset + residual]', 'train_y[offset:offset + residual]', 'episodic_images', 'episodic_labels', 'task_labels[task]', 'args.mem_size', 'count_cls', 'episodic_filled_counter'], {}), '(train_x[offset:offset + residual], train_y[offset:offset +\n residual], episodic_images, episodic_labels, task_labels[task], args.\n mem_size, count_cls, episodic_filled_counter)\n', (37316, 37499), False, 'from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior, update_fifo_buffer, generate_projection_matrix, unit_test_projection_matrices\n'), ((34195, 34263), 'numpy.arange', 'np.arange', (['mem_offset', '(mem_offset + args.mem_size * classes_per_task)'], {}), '(mem_offset, mem_offset + args.mem_size * classes_per_task)\n', (34204, 34263), True, 'import numpy as np\n'), ((34284, 34317), 'numpy.random.shuffle', 'np.random.shuffle', (['er_mem_indices'], {}), '(er_mem_indices)\n', (34301, 34317), True, 'import numpy as np\n'), ((36074, 36107), 'numpy.random.shuffle', 'np.random.shuffle', (['er_mem_indices'], {}), '(er_mem_indices)\n', (36091, 36107), True, 'import numpy as np\n'), ((36151, 36247), 'numpy.concatenate', 'np.concatenate', (['(episodic_images[er_mem_indices], train_x[offset:offset + residual])'], {'axis': '(0)'}), '((episodic_images[er_mem_indices], train_x[offset:offset +\n residual]), axis=0)\n', (36165, 36247), True, 'import numpy as np\n'), ((36336, 36432), 'numpy.concatenate', 'np.concatenate', (['(episodic_labels[er_mem_indices], train_y[offset:offset + residual])'], {'axis': '(0)'}), '((episodic_labels[er_mem_indices], train_y[offset:offset +\n residual]), axis=0)\n', (36350, 36432), True, 'import numpy as np\n'), ((36668, 36702), 'numpy.eye', 'np.eye', (['proj_matrices[tt].shape[0]'], {}), '(proj_matrices[tt].shape[0])\n', (36674, 36702), True, 'import numpy as np\n'), ((30589, 30604), 'numpy.arange', 'np.arange', (['task'], {}), '(task)\n', (30598, 30604), True, 'import numpy as np\n'), ((35900, 35928), 'numpy.arange', 'np.arange', (['mem_filled_so_far'], {}), '(mem_filled_so_far)\n', (35909, 35928), True, 'import numpy as np\n'), ((35979, 36049), 'numpy.random.choice', 'np.random.choice', (['mem_filled_so_far', 'args.eps_mem_batch'], {'replace': '(False)'}), '(mem_filled_so_far, args.eps_mem_batch, replace=False)\n', (35995, 36049), True, 'import numpy as np\n'), ((34046, 34061), 'numpy.arange', 'np.arange', (['task'], {}), '(task)\n', (34055, 34061), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from tilec.fg import dBnudT,get_mix """ compute various conversion factors for LFI bandpasses """ TCMB = 2.726 # Kelvin TCMB_uK = 2.726e6 # micro-Kelvin hplanck = 6.626068e-34 # MKS kboltz = 1.3806503e-23 # MKS clight = 299792458.0 # MKS clight_cmpersec = 2.99792458*1.e10 #speed of light in cm/s N_freqs = 3 LFI_freqs = [] LFI_freqs.append('030') LFI_freqs.append('044') LFI_freqs.append('070') LFI_freqs_GHz = np.array([30.0, 44.0, 70.0]) LFI_files = [] for i in xrange(N_freqs): print("----------") print(LFI_freqs[i]) LFI_files.append('../data/LFI_BANDPASS_F'+LFI_freqs[i]+'_reformat.txt') LFI_loc = np.loadtxt(LFI_files[i]) # check norm, i.e., make sure response is unity for CMB LFI_loc_GHz = LFI_loc[:,0] LFI_loc_trans = LFI_loc[:,1] print("CMB norm = ", np.trapz(LFI_loc_trans, LFI_loc_GHz)) # compute K_CMB -> y_SZ conversion print("K_CMB -> y_SZ conversion: ", np.trapz(LFI_loc_trans*dBnudT(LFI_loc_GHz)*1.e6, LFI_loc_GHz) / np.trapz(LFI_loc_trans*dBnudT(LFI_loc_GHz)*1.e6*get_mix(LFI_loc_GHz,'tSZ')/TCMB_uK, LFI_loc_GHz) / TCMB) # compute K_CMB -> MJy/sr conversion [IRAS convention, alpha=-1 power-law SED] print("K_CMB -> MJy/sr conversion [IRAS convention, alpha=-1 power-law SED]: ", np.trapz(LFI_loc_trans*dBnudT(LFI_loc_GHz)*1.e6, LFI_loc_GHz) / np.trapz(LFI_loc_trans*(LFI_freqs_GHz[i]/LFI_loc_GHz), LFI_loc_GHz) * 1.e20) # compute color correction from IRAS to "dust" (power-law with alpha=4) print("MJy/sr color correction (power-law, alpha=-1 to alpha=4): ", np.trapz(LFI_loc_trans*(LFI_freqs_GHz[i]/LFI_loc_GHz), LFI_loc_GHz) / np.trapz(LFI_loc_trans*(LFI_loc_GHz/LFI_freqs_GHz[i])**4.0, LFI_loc_GHz)) # compute color correction from IRAS to modified blackbody with T=13.6 K, beta=1.4 (to compare to results at https://wiki.cosmos.esa.int/planckpla2015/index.php/UC_CC_Tables ) print("MJy/sr color correction (power-law alpha=-1 to MBB T=13.6 K/beta=1.4): ", np.trapz(LFI_loc_trans*(LFI_freqs_GHz[i]/LFI_loc_GHz), LFI_loc_GHz) / np.trapz(LFI_loc_trans*(LFI_loc_GHz/LFI_freqs_GHz[i])**(1.4+3.) * (np.exp(hplanck*LFI_freqs_GHz[i]*1.e9/(kboltz*13.6))-1.)/(np.exp(hplanck*LFI_loc_GHz*1.e9/(kboltz*13.6))-1.), LFI_loc_GHz)) print("----------")
[ "numpy.trapz", "tilec.fg.dBnudT", "numpy.array", "numpy.exp", "numpy.loadtxt", "tilec.fg.get_mix" ]
[((506, 534), 'numpy.array', 'np.array', (['[30.0, 44.0, 70.0]'], {}), '([30.0, 44.0, 70.0])\n', (514, 534), True, 'import numpy as np\n'), ((714, 738), 'numpy.loadtxt', 'np.loadtxt', (['LFI_files[i]'], {}), '(LFI_files[i])\n', (724, 738), True, 'import numpy as np\n'), ((888, 924), 'numpy.trapz', 'np.trapz', (['LFI_loc_trans', 'LFI_loc_GHz'], {}), '(LFI_loc_trans, LFI_loc_GHz)\n', (896, 924), True, 'import numpy as np\n'), ((1630, 1701), 'numpy.trapz', 'np.trapz', (['(LFI_loc_trans * (LFI_freqs_GHz[i] / LFI_loc_GHz))', 'LFI_loc_GHz'], {}), '(LFI_loc_trans * (LFI_freqs_GHz[i] / LFI_loc_GHz), LFI_loc_GHz)\n', (1638, 1701), True, 'import numpy as np\n'), ((1700, 1778), 'numpy.trapz', 'np.trapz', (['(LFI_loc_trans * (LFI_loc_GHz / LFI_freqs_GHz[i]) ** 4.0)', 'LFI_loc_GHz'], {}), '(LFI_loc_trans * (LFI_loc_GHz / LFI_freqs_GHz[i]) ** 4.0, LFI_loc_GHz)\n', (1708, 1778), True, 'import numpy as np\n'), ((2039, 2110), 'numpy.trapz', 'np.trapz', (['(LFI_loc_trans * (LFI_freqs_GHz[i] / LFI_loc_GHz))', 'LFI_loc_GHz'], {}), '(LFI_loc_trans * (LFI_freqs_GHz[i] / LFI_loc_GHz), LFI_loc_GHz)\n', (2047, 2110), True, 'import numpy as np\n'), ((1405, 1476), 'numpy.trapz', 'np.trapz', (['(LFI_loc_trans * (LFI_freqs_GHz[i] / LFI_loc_GHz))', 'LFI_loc_GHz'], {}), '(LFI_loc_trans * (LFI_freqs_GHz[i] / LFI_loc_GHz), LFI_loc_GHz)\n', (1413, 1476), True, 'import numpy as np\n'), ((2233, 2295), 'numpy.exp', 'np.exp', (['(hplanck * LFI_loc_GHz * 1000000000.0 / (kboltz * 13.6))'], {}), '(hplanck * LFI_loc_GHz * 1000000000.0 / (kboltz * 13.6))\n', (2239, 2295), True, 'import numpy as np\n'), ((1028, 1047), 'tilec.fg.dBnudT', 'dBnudT', (['LFI_loc_GHz'], {}), '(LFI_loc_GHz)\n', (1034, 1047), False, 'from tilec.fg import dBnudT, get_mix\n'), ((1117, 1144), 'tilec.fg.get_mix', 'get_mix', (['LFI_loc_GHz', '"""tSZ"""'], {}), "(LFI_loc_GHz, 'tSZ')\n", (1124, 1144), False, 'from tilec.fg import dBnudT, get_mix\n'), ((1364, 1383), 'tilec.fg.dBnudT', 'dBnudT', (['LFI_loc_GHz'], {}), '(LFI_loc_GHz)\n', (1370, 1383), False, 'from tilec.fg import dBnudT, get_mix\n'), ((2176, 2243), 'numpy.exp', 'np.exp', (['(hplanck * LFI_freqs_GHz[i] * 1000000000.0 / (kboltz * 13.6))'], {}), '(hplanck * LFI_freqs_GHz[i] * 1000000000.0 / (kboltz * 13.6))\n', (2182, 2243), True, 'import numpy as np\n'), ((1092, 1111), 'tilec.fg.dBnudT', 'dBnudT', (['LFI_loc_GHz'], {}), '(LFI_loc_GHz)\n', (1098, 1111), False, 'from tilec.fg import dBnudT, get_mix\n')]
''' An Elman Network is implemented, taking the output of the last time step of the time series as prediction, and also to compute the training loss. This is done because this output is thought of as the most informed one. ''' import torch from torch import nn from sklearn.preprocessing import MaxAbsScaler from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import accuracy_score import random import numpy as np import copy import importlib import os import einops from experiment_config import experiment_path, chosen_experiment spec = importlib.util.spec_from_file_location(chosen_experiment, experiment_path) config = importlib.util.module_from_spec(spec) spec.loader.exec_module(config) configuration = config.learning_config def choose_best(models_and_losses): index_best = [i[1] for i in models_and_losses].index(min([i[1] for i in models_and_losses])) epoch = index_best+1 return models_and_losses[index_best], epoch def save_model(model, epoch, loss): path = os.path.join(config.models_folder, configuration['classifier']) if not os.path.exists(path): os.makedirs(path) try: torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': model.optimizer.state_dict(), 'loss': loss, }, os.path.join(path, 'model.pth')) except TypeError: torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict, 'optimizer_state_dict': model.optimizer.state_dict(), 'loss': loss, }, os.path.join(path, 'model.pth')) class RNN(nn.Module): def __init__(self, input_size, output_size, hidden_dim, n_layers): super(RNN, self).__init__() self.hidden_dim = hidden_dim self.n_layers = n_layers self.output_size = output_size self.input_size = input_size self._device = self.choose_device() self._rnn = nn.RNN(input_size, hidden_dim, n_layers, nonlinearity=configuration["activation function"]).to(self._device) self._fc = nn.Linear(hidden_dim, output_size).to(self._device) self.optimizer = self.choose_optimizer(alpha=configuration["learning rate"] * configuration["mini batch size"]) # linear scaling of LR self._estimator_type = 'classifier' def forward(self, x): seq_length = len(x[0]) # Initializing hidden state for first input using method defined below hidden = self.init_hidden(seq_length).to(self._device) if x.dim() == 2: x = x.view(-1,seq_length, 1) # Passing in the input and hidden state into the model and obtaining outputs if x.device == torch.device("cpu"): self._rnn = self._rnn.to(torch.device("cpu")) self._fc = self._fc.to(torch.device("cpu")) out, hidden = self._rnn(x, hidden) out = self._fc(out) else: self._rnn = self._rnn.to(self.choose_device()) self._fc = self._fc.to(self.choose_device()) out, hidden = self._rnn(x, hidden) # feed output into the fully connected layer out = self._fc(out) return out, hidden def init_hidden(self, seq_length): device = self._device # This method generates the first hidden state of zeros which we'll use in the forward pass hidden = torch.zeros(self.n_layers, seq_length, self.hidden_dim).to(device) # We'll send the tensor holding the hidden state to the device we specified earlier as well return hidden def fit(self, train_loader=None, test_loader=None, X_train=None, y_train=None, X_test=None, y_test=None, early_stopping=True, control_lr=None, prev_epoch=1, prev_loss=1, grid_search_parameter=None): torch.cuda.empty_cache() self.early_stopping = early_stopping self.control_lr = control_lr if X_train and y_train: X = X_train y = y_train mini_batch_size = configuration["mini batch size"] criterion = nn.CrossEntropyLoss() nominal_lr = configuration["learning rate"] * mini_batch_size # linear scaling of LR lr = nominal_lr loss = 10000000000 #set initial dummy loss lrs = [] training_losses = [] models_and_val_losses = [] pause = 0 # for early stopping if prev_epoch is None or grid_search_parameter: prev_epoch = 1 if grid_search_parameter is not None: configuration[configuration["grid search"][0]] = grid_search_parameter for epoch in range(prev_epoch, configuration["number of epochs"] + 1): if configuration["optimizer"] == 'SGD' and not epoch == prev_epoch: #ADAM optimizer has internal states and should therefore not be reinitialized every epoch; only for SGD bc here changing the learning rate makes sense self.optimizer, lr = self.control_learning_rate(lr=lr, loss=loss, losses=training_losses, nominal_lr=nominal_lr, epoch=epoch) lrs.append(lr) if X_train and y_train: zipped_X_y = list(zip(X, y)) random.shuffle(zipped_X_y) #randomly shuffle samples to have different mini batches between epochs X, y = zip(*zipped_X_y) X = np.array(X) y = list(y) if len(X) % mini_batch_size > 0: #drop some samples if necessary to fit with batch size samples_to_drop = len(X) % mini_batch_size X = X[:-samples_to_drop] y = y[:-samples_to_drop] mini_batches = X.reshape((int(len(X) / mini_batch_size), mini_batch_size, len(X[0]))) mini_batch_targets = np.array(y).reshape(int(len(y) / mini_batch_size), mini_batch_size) input_seq = [torch.Tensor(i).view(len(i), -1, 1) for i in mini_batches] target_seq = [torch.Tensor([i]).view(-1).long() for i in mini_batch_targets] inout_seq = list(zip(input_seq, target_seq)) #optimizer.zero_grad() # Clears existing gradients from previous epoch for sequences, labels in inout_seq: labels = labels.to(self._device) sequences = sequences.to(self._device) self.optimizer.zero_grad() # Clears existing gradients from previous batch so as not to backprop through entire dataset output, hidden = self(sequences) if configuration['decision criteria'] == 'majority vote': start_voting_outputs = int((configuration['calibration rate']) * output.size()[1]) voting_outputs = torch.stack([i[start_voting_outputs:] for i in output]) # choose last n outputs of timeseries to do majority vote relevant_outputs = voting_outputs.to(self._device) labels = torch.stack([i[-1] for i in labels]).long() labels = einops.repeat(labels, 'b -> (b copy)', copy=relevant_outputs.size()[1]) labels = torch.stack(torch.split(labels, relevant_outputs.size()[1]), dim=0) loss = sum([criterion(relevant_outputs[i], labels[i]) for i in list(range(labels.size()[0]))]) / \ labels.size()[0] else: last_outputs = torch.stack( [i[-1] for i in output]) # choose last output of timeseries (most informed output) relevant_outputs = last_outputs.to(self._device) labels = torch.stack([i[-1] for i in labels]).long() loss = criterion(relevant_outputs, labels) loss.backward() # Does backpropagation and calculates gradients loss.backward() # Does backpropagation and calculates gradients torch.nn.utils.clip_grad_norm_(self.parameters(), configuration["gradient clipping"]) # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. self.optimizer.step() # Updates the weights accordingly self.detach([last_outputs, sequences, labels, hidden]) #detach tensors from GPU to free memory elif train_loader and test_loader: import sys toolbar_width = len(train_loader) # setup toolbar print('Epoch {}/{} completed:'.format(epoch, configuration["number of epochs"])) sys.stdout.write("[%s]" % (" " * toolbar_width)) sys.stdout.flush() sys.stdout.write("\b" * (toolbar_width+1)) # return to start of line, after '[' sys.stdout.flush() for i, (sequences, labels, raw_seq) in enumerate(train_loader): labels = labels.to(self._device) sequences = sequences.to(self._device) self.optimizer.zero_grad() # Clears existing gradients from previous batch so as not to backprop through entire dataset output, hidden = self(sequences) if configuration['decision criteria'] == 'majority vote': if configuration['calibration rate'] == 1: start_voting_outputs = int((configuration['calibration rate']) * output.size()[ 1]) - 1 # equal to only using the last output else: start_voting_outputs = int((configuration['calibration rate']) * output.size()[1]) voting_outputs = torch.stack([i[start_voting_outputs:] for i in output]) #choose last n outputs of timeseries to do majority vote relevant_outputs = voting_outputs.to(self._device) labels = torch.stack([i[-1] for i in labels]).long() labels = einops.repeat(labels, 'b -> (b copy)', copy=relevant_outputs.size()[1]) labels = torch.stack(torch.split(labels, relevant_outputs.size()[1]), dim=0) loss = sum([criterion(relevant_outputs[i], labels[i]) for i in list(range(labels.size()[0]))])/labels.size()[0] else: last_outputs = torch.stack([i[-1] for i in output]) #choose last output of timeseries (most informed output) relevant_outputs = last_outputs.to(self._device) labels = torch.stack([i[-1] for i in labels]).long() loss = criterion(relevant_outputs, labels) loss.backward() # Does backpropagation and calculates gradients torch.nn.utils.clip_grad_norm_(self.parameters(), configuration["gradient clipping"]) # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. self.optimizer.step() # Updates the weights accordingly self.detach([relevant_outputs, sequences, labels, hidden]) #detach tensors from GPU to free memory progress = (i+1) / len(train_loader) sys.stdout.write("- %.1f%% " %(progress*100)) sys.stdout.flush() if config.dev_mode: break sys.stdout.write("]\n") # this ends the progress bar sys.stdout.flush() else: print('Either provide X and y or dataloaders!') if X_train and y_train: training_losses.append(loss) val_outputs = torch.stack([i[-1].view(-1) for i in self.predict(X_test)[1]]).to(self._device) val_loss = criterion(val_outputs, torch.Tensor([np.array(y_test)]).view(-1).long().to(self._device)) else: training_losses.append(loss) pred, val_outputs, y_test = self.predict(test_loader=test_loader) val_outputs = torch.stack([i[-1] for i in val_outputs]).to(self._device) y_test = y_test.view(-1).long().to(self._device) val_loss = criterion(val_outputs, y_test).to(self._device) self.detach([val_outputs]) models_and_val_losses.append((copy.deepcopy(self.state_dict), val_loss.item())) if configuration["save_model"]: clf, ep = choose_best(models_and_val_losses) if ep == epoch: save_model(self, epoch, val_loss.item()) if self.early_stopping: try: if abs(models_and_val_losses[-1][1] - models_and_val_losses[-2][1]) < 1*10**-6: pause += 1 if pause == 5: print('Validation loss has not changed for {0} epochs! Early stopping of training after {1} epochs!'.format(pause, epoch)) return models_and_val_losses, training_losses, lrs except IndexError: pass if not configuration["cross_validation"] and epoch % 10 == 0: print('Epoch: {}/{}.............'.format(epoch, configuration["number of epochs"]), end=' ') print("Loss: {:.4f}".format(loss.item())) return models_and_val_losses, training_losses, lrs def predict(self, test_loader=None, X=None): if X is not None: input_sequences = torch.stack([torch.Tensor(i).view(len(i), -1) for i in X]) input_sequences = input_sequences.to(self._device) outputs, hidden = self(input_sequences) last_outputs = torch.stack([i[-1] for i in outputs]).to(self._device) probs = nn.Softmax(dim=-1)(last_outputs) pred = torch.argmax(probs, dim=-1) # chose class that has highest probability self.detach([input_sequences, hidden, outputs]) return [i.item() for i in pred], outputs elif test_loader: pred = torch.Tensor() y_test = torch.Tensor() outputs_cumm = torch.Tensor() for i, (input_sequences, labels, raw_seq) in enumerate(test_loader): input_sequences = input_sequences.to(self._device) outputs, hidden = self(input_sequences) if configuration['decision criteria'] == 'majority vote': if configuration['calibration rate'] == 1: start_voting_outputs = int((configuration['calibration rate']) * outputs.size()[ 1]) - 1 # equal to only using the last output else: start_voting_outputs = int((configuration['calibration rate']) * outputs.size()[1]) voting_outputs = torch.stack([i[start_voting_outputs:] for i in outputs]) #choose last n outputs of timeseries to do majority vote relevant_outputs = voting_outputs.to(self._device) most_likely_outputs = torch.argmax(nn.Softmax(dim=-1)(relevant_outputs), dim=-1) majority_vote_result = torch.mode(most_likely_outputs, dim=-1)[0] pred_new = majority_vote_result.float() else: last_outputs = torch.stack([i[-1] for i in outputs]).to(self._device) probs = nn.Softmax(dim=-1)(last_outputs) pred_new = torch.argmax(probs, dim=-1).float() outputs_cumm = torch.cat((outputs_cumm.to(self._device), outputs.float()), 0) pred = torch.cat((pred.to(self._device), pred_new), 0) # chose class that has highest probability y_test = torch.cat((y_test, labels.float()), 0) # chose class that has highest probability self.detach([input_sequences, hidden, outputs]) if configuration["train test split"] <= 1: share_of_test_set = len(test_loader)*configuration["train test split"]*labels.size()[0] else: share_of_test_set = configuration["train test split"] if y_test.size()[0] >= share_of_test_set: #to choose the test set size (memory issues!!) break return [i.item() for i in pred], outputs_cumm, y_test else: print('Either provide X or a dataloader!') def choose_optimizer(self, alpha=configuration["learning rate"]): if configuration["optimizer"] == 'Adam': optimizer = torch.optim.Adam(self.parameters(), lr=alpha) else: optimizer = torch.optim.SGD(self.parameters(), lr=alpha) return optimizer def control_learning_rate(self, lr=None, loss=None, losses=None, epoch=None, nominal_lr=None): warm_up_share = configuration["percentage of epochs for warm up"] / 100 if self.control_lr == 'warm up' and epoch < int(warm_up_share * configuration["number of epochs"]): lr = nominal_lr * epoch / int((warm_up_share * configuration["number of epochs"])) optimizer = self.choose_optimizer(alpha=lr) elif self.control_lr == 'warm up' and epoch >= int(warm_up_share * configuration["number of epochs"]): lr = nominal_lr * (configuration["number of epochs"] - epoch) / int((1-warm_up_share) * configuration["number of epochs"]) optimizer = self.choose_optimizer(alpha=lr) elif self.control_lr == 'LR controlled': if losses[-1] > loss: lr = lr * 1.1 optimizer = self.choose_optimizer(alpha=lr) elif losses[-1] <= loss: lr = lr * 0.90 optimizer = self.choose_optimizer(alpha=lr) else: lr = lr optimizer = self.choose_optimizer(alpha=lr) return optimizer, lr def preprocess(self, X_train, X_test): scaler = self.fit_scaler(X_train) X_train = self.preprocessing(X_train, scaler) X_test = self.preprocessing(X_test, scaler) return X_train, X_test def fit_scaler(self, X): X_zeromean = np.array([x - x.mean() for x in X]) # deduct it's own mean from every sample maxabs_scaler = MaxAbsScaler().fit(X_zeromean) # fit scaler as to scale training data between -1 and 1 return maxabs_scaler def preprocessing(self, X, scaler): X_zeromean = np.array([x - x.mean() for x in X]) X = scaler.transform(X_zeromean) return X def score(self, y_test, y_pred): metrics = precision_recall_fscore_support(y_test, y_pred, average='macro') accuracy = accuracy_score(y_test, y_pred) return [accuracy, metrics] def get_params(self, deep=True): return {"hidden_dim": self.hidden_dim, "n_layers": self.n_layers, "output_size": self.output_size, "input_size" : self.input_size} def choose_device(self): is_cuda = torch.cuda.is_available() if is_cuda: device = torch.device("cuda") else: device = torch.device("cpu") return device def detach(self, inputs=[]): for i in inputs: torch.detach(i) torch.cuda.empty_cache() return
[ "sys.stdout.write", "torch.argmax", "sklearn.metrics.accuracy_score", "random.shuffle", "sklearn.preprocessing.MaxAbsScaler", "torch.nn.Softmax", "sys.stdout.flush", "torch.device", "os.path.join", "sklearn.metrics.precision_recall_fscore_support", "importlib.util.module_from_spec", "os.path.exists", "importlib.util.spec_from_file_location", "torch.Tensor", "torch.nn.Linear", "torch.zeros", "copy.deepcopy", "torch.cuda.is_available", "torch.nn.RNN", "torch.mode", "torch.detach", "os.makedirs", "torch.stack", "torch.nn.CrossEntropyLoss", "numpy.array", "torch.cuda.empty_cache" ]
[((572, 646), 'importlib.util.spec_from_file_location', 'importlib.util.spec_from_file_location', (['chosen_experiment', 'experiment_path'], {}), '(chosen_experiment, experiment_path)\n', (610, 646), False, 'import importlib\n'), ((656, 693), 'importlib.util.module_from_spec', 'importlib.util.module_from_spec', (['spec'], {}), '(spec)\n', (687, 693), False, 'import importlib\n'), ((1022, 1085), 'os.path.join', 'os.path.join', (['config.models_folder', "configuration['classifier']"], {}), "(config.models_folder, configuration['classifier'])\n", (1034, 1085), False, 'import os\n'), ((1098, 1118), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1112, 1118), False, 'import os\n'), ((1128, 1145), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (1139, 1145), False, 'import os\n'), ((3837, 3861), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (3859, 3861), False, 'import torch\n'), ((4105, 4126), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (4124, 4126), False, 'from torch import nn\n'), ((18994, 19058), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['y_test', 'y_pred'], {'average': '"""macro"""'}), "(y_test, y_pred, average='macro')\n", (19025, 19058), False, 'from sklearn.metrics import precision_recall_fscore_support\n'), ((19078, 19108), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (19092, 19108), False, 'from sklearn.metrics import accuracy_score\n'), ((19369, 19394), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (19392, 19394), False, 'import torch\n'), ((19629, 19653), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (19651, 19653), False, 'import torch\n'), ((1360, 1391), 'os.path.join', 'os.path.join', (['path', '"""model.pth"""'], {}), "(path, 'model.pth')\n", (1372, 1391), False, 'import os\n'), ((2740, 2759), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2752, 2759), False, 'import torch\n'), ((14169, 14196), 'torch.argmax', 'torch.argmax', (['probs'], {'dim': '(-1)'}), '(probs, dim=-1)\n', (14181, 14196), False, 'import torch\n'), ((19436, 19456), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (19448, 19456), False, 'import torch\n'), ((19492, 19511), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (19504, 19511), False, 'import torch\n'), ((19605, 19620), 'torch.detach', 'torch.detach', (['i'], {}), '(i)\n', (19617, 19620), False, 'import torch\n'), ((1617, 1648), 'os.path.join', 'os.path.join', (['path', '"""model.pth"""'], {}), "(path, 'model.pth')\n", (1629, 1648), False, 'import os\n'), ((1992, 2088), 'torch.nn.RNN', 'nn.RNN', (['input_size', 'hidden_dim', 'n_layers'], {'nonlinearity': "configuration['activation function']"}), "(input_size, hidden_dim, n_layers, nonlinearity=configuration[\n 'activation function'])\n", (1998, 2088), False, 'from torch import nn\n'), ((2120, 2154), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'output_size'], {}), '(hidden_dim, output_size)\n', (2129, 2154), False, 'from torch import nn\n'), ((2798, 2817), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2810, 2817), False, 'import torch\n'), ((2854, 2873), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2866, 2873), False, 'import torch\n'), ((3435, 3490), 'torch.zeros', 'torch.zeros', (['self.n_layers', 'seq_length', 'self.hidden_dim'], {}), '(self.n_layers, seq_length, self.hidden_dim)\n', (3446, 3490), False, 'import torch\n'), ((5317, 5343), 'random.shuffle', 'random.shuffle', (['zipped_X_y'], {}), '(zipped_X_y)\n', (5331, 5343), False, 'import random\n'), ((5489, 5500), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (5497, 5500), True, 'import numpy as np\n'), ((14116, 14134), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (14126, 14134), False, 'from torch import nn\n'), ((14400, 14414), 'torch.Tensor', 'torch.Tensor', ([], {}), '()\n', (14412, 14414), False, 'import torch\n'), ((14436, 14450), 'torch.Tensor', 'torch.Tensor', ([], {}), '()\n', (14448, 14450), False, 'import torch\n'), ((14478, 14492), 'torch.Tensor', 'torch.Tensor', ([], {}), '()\n', (14490, 14492), False, 'import torch\n'), ((18641, 18655), 'sklearn.preprocessing.MaxAbsScaler', 'MaxAbsScaler', ([], {}), '()\n', (18653, 18655), False, 'from sklearn.preprocessing import MaxAbsScaler\n'), ((8869, 8917), 'sys.stdout.write', 'sys.stdout.write', (["('[%s]' % (' ' * toolbar_width))"], {}), "('[%s]' % (' ' * toolbar_width))\n", (8885, 8917), False, 'import sys\n'), ((8934, 8952), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (8950, 8952), False, 'import sys\n'), ((8969, 9015), 'sys.stdout.write', 'sys.stdout.write', (["('\\x08' * (toolbar_width + 1))"], {}), "('\\x08' * (toolbar_width + 1))\n", (8985, 9015), False, 'import sys\n'), ((9065, 9083), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9081, 9083), False, 'import sys\n'), ((11718, 11741), 'sys.stdout.write', 'sys.stdout.write', (['"""]\n"""'], {}), "(']\\n')\n", (11734, 11741), False, 'import sys\n'), ((11787, 11805), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (11803, 11805), False, 'import sys\n'), ((12658, 12688), 'copy.deepcopy', 'copy.deepcopy', (['self.state_dict'], {}), '(self.state_dict)\n', (12671, 12688), False, 'import copy\n'), ((14041, 14078), 'torch.stack', 'torch.stack', (['[i[-1] for i in outputs]'], {}), '([i[-1] for i in outputs])\n', (14052, 14078), False, 'import torch\n'), ((5941, 5952), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (5949, 5952), True, 'import numpy as np\n'), ((6923, 6978), 'torch.stack', 'torch.stack', (['[i[start_voting_outputs:] for i in output]'], {}), '([i[start_voting_outputs:] for i in output])\n', (6934, 6978), False, 'import torch\n'), ((7689, 7725), 'torch.stack', 'torch.stack', (['[i[-1] for i in output]'], {}), '([i[-1] for i in output])\n', (7700, 7725), False, 'import torch\n'), ((11545, 11593), 'sys.stdout.write', 'sys.stdout.write', (["('- %.1f%% ' % (progress * 100))"], {}), "('- %.1f%% ' % (progress * 100))\n", (11561, 11593), False, 'import sys\n'), ((11611, 11629), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (11627, 11629), False, 'import sys\n'), ((12373, 12414), 'torch.stack', 'torch.stack', (['[i[-1] for i in val_outputs]'], {}), '([i[-1] for i in val_outputs])\n', (12384, 12414), False, 'import torch\n'), ((15186, 15242), 'torch.stack', 'torch.stack', (['[i[start_voting_outputs:] for i in outputs]'], {}), '([i[start_voting_outputs:] for i in outputs])\n', (15197, 15242), False, 'import torch\n'), ((6039, 6054), 'torch.Tensor', 'torch.Tensor', (['i'], {}), '(i)\n', (6051, 6054), False, 'import torch\n'), ((9986, 10041), 'torch.stack', 'torch.stack', (['[i[start_voting_outputs:] for i in output]'], {}), '([i[start_voting_outputs:] for i in output])\n', (9997, 10041), False, 'import torch\n'), ((10661, 10697), 'torch.stack', 'torch.stack', (['[i[-1] for i in output]'], {}), '([i[-1] for i in output])\n', (10672, 10697), False, 'import torch\n'), ((13851, 13866), 'torch.Tensor', 'torch.Tensor', (['i'], {}), '(i)\n', (13863, 13866), False, 'import torch\n'), ((15516, 15555), 'torch.mode', 'torch.mode', (['most_likely_outputs'], {'dim': '(-1)'}), '(most_likely_outputs, dim=-1)\n', (15526, 15555), False, 'import torch\n'), ((15760, 15778), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (15770, 15778), False, 'from torch import nn\n'), ((7201, 7237), 'torch.stack', 'torch.stack', (['[i[-1] for i in labels]'], {}), '([i[-1] for i in labels])\n', (7212, 7237), False, 'import torch\n'), ((7920, 7956), 'torch.stack', 'torch.stack', (['[i[-1] for i in labels]'], {}), '([i[-1] for i in labels])\n', (7931, 7956), False, 'import torch\n'), ((15427, 15445), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (15437, 15445), False, 'from torch import nn\n'), ((15677, 15714), 'torch.stack', 'torch.stack', (['[i[-1] for i in outputs]'], {}), '([i[-1] for i in outputs])\n', (15688, 15714), False, 'import torch\n'), ((15824, 15851), 'torch.argmax', 'torch.argmax', (['probs'], {'dim': '(-1)'}), '(probs, dim=-1)\n', (15836, 15851), False, 'import torch\n'), ((6128, 6145), 'torch.Tensor', 'torch.Tensor', (['[i]'], {}), '([i])\n', (6140, 6145), False, 'import torch\n'), ((10208, 10244), 'torch.stack', 'torch.stack', (['[i[-1] for i in labels]'], {}), '([i[-1] for i in labels])\n', (10219, 10244), False, 'import torch\n'), ((10869, 10905), 'torch.stack', 'torch.stack', (['[i[-1] for i in labels]'], {}), '([i[-1] for i in labels])\n', (10880, 10905), False, 'import torch\n'), ((12145, 12161), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (12153, 12161), True, 'import numpy as np\n')]
import numpy as np import pymc3 as pm import theano import theano.tensor as tt # for reproducibility here's some version info for modules used in this notebook import platform import IPython import matplotlib import matplotlib.pyplot as plt import emcee import corner import os from autograd import grad from files.myIOlib import show_seaborn_plot print("Python version: {}".format(platform.python_version())) print("IPython version: {}".format(IPython.__version__)) print("Numpy version: {}".format(np.__version__)) print("Theano version: {}".format(theano.__version__)) print("PyMC3 version: {}".format(pm.__version__)) print("Matplotlib version: {}".format(matplotlib.__version__)) print("emcee version: {}".format(emcee.__version__)) print("corner version: {}".format(corner.__version__)) import numpy as np import pymc3 as pm import arviz as az #Ordering imports from myIOlib import * from myModel import * from myFUQ import * #Ordering tools import numpy as np import arviz as az from scipy import stats import matplotlib as mpl from theano import as_op import theano.tensor as tt import scipy.special as sc import math import time # Start timing code execution t0 = time.time() ################# User settings ################### # Define the amount of samples N = 1 # Define time of simulation timestep = 30 endtime = 10320 t1steps = round(endtime / timestep) Nt = 2*t1steps+1 x = timestep * np.linspace(0, 2 * t1steps, Nt) # Units MPA = 1e6 # Forward/Bayesian Inference calculation performInference = True useFEA = False # Location to store output outfile = 'output/output_%d.png' % N #################### Core ######################### # Generate text file for parameters generate_txt( "parameters.txt" ) # Import parameters.txt to variables print("Reading model parameters...") params_aquifer, params_well = read_from_txt( "parameters.txt" ) # Construct the objects for the doublet model print("Constructing the doublet model...") aquifer = Aquifer(params_aquifer) # doublet = DoubletGenerator(aquifer) from myUQ import * from files.myUQlib import * ######## Forward Uncertainty Quantification ######### if not performInference: # Run Bayesian FUQ (input parameters not np. but pm. -> random values, as pdf not work in FEA -> output array of values -> mean, stdv -> pm. ) import pymc3 as pm from pymc3.distributions import Interpolated print('Running on PyMC3 v{}'.format(pm.__version__)) # Run Forward Uncertainty Quantification print("\r\nSolving Forward Uncertainty Quantification...") # Set input from stoichastic parameters print("\r\nSetting input from stoichastic parameters...") parametersRVS = generateRVSfromPDF(N) print("Stoichastic parameters", parametersRVS) if useFEA: # Run Finite Element Analysis (Forward) print("\r\nRunning FEA...") sol = performFEA(parametersRVS, aquifer, N, timestep, endtime) else: # # Run Analytical Analysis (Forward) print("\r\nRunning Analytical Analysis...") sol = performAA(parametersRVS, x) ########################### # Post processing # ########################### # Output pressure/temperature matrix and plot for single point in time fig, ax = plt.subplots(1, 1, figsize=(10, 7), tight_layout=True) ax.set(xlabel='Wellbore pressure [Pa]', ylabel='Probability') ax.hist(sol[0][:, t1steps], density=True, histtype='stepfilled', alpha=0.2, bins=20) # plt.show() # Evaluate the doublet model print("\r\nEvaluating numerical solution for the doublet model...") doublet = DoubletGenerator(aquifer, sol) pnodelist, Tnodelist = evaluateDoublet(doublet) ######## Inverse Uncertainty Quantification ######### else: # Run Bayesian Inference import pymc3 as pm from pymc3.distributions import Interpolated from pymc3.distributions.timeseries import EulerMaruyama print('Running on PyMC3 v{}'.format(pm.__version__)) # Set distribution settings chains = 4 ndraws = 15 # number of draws from the distribution nburn = 5 # number of "burn-in points" (which we'll discard) # Library functions def get_𝜇_K(porosity, size): constant = np.random.uniform(low=10, high=100, size=size) # np.random.uniform(low=3.5, high=5.8, size=size) tau = np.random.uniform(low=0.3, high=0.5, size=size) tothepower = np.random.uniform(low=3, high=5, size=size) rc = np.random.uniform(low=10e-6, high=30e-6, size=size) SSA = 3 / rc permeability = constant * tau ** 2 * (porosity.random(size=N) ** tothepower / SSA ** 2) 𝜇_K = np.mean(permeability) # constant = np.random.uniform(low=3.5, high=5.8, size=N) # tothepower = np.random.uniform(low=3, high=5, size=N) # Tau = (2) ** (1 / 2) # S0_sand = np.random.uniform(low=1.5e2, high=2.2e2, size=N) # specific surface area [1/cm] # K_samples = constant * (φpdf.random(size=N) ** tothepower / S0_sand ** 2) # Kpdf = pm.Lognormal('K', mu=math.log(np.mean(K_samples)), sd=1) #joined distribution return 𝜇_K ########################### # Synthetic data # ########################### # Set up our data Nt = Nt # number of data points CV = 0.001 # coefficient of variation noise # True data K_true = 1e-12 # 2.2730989084434785e-08 φ_true = 0.163 H_true = 70 ct_true = 1e-10 Q_true = 0.07 cs_true = 2650 # Lognormal priors for true parameters Hpdf = stats.lognorm(scale=H_true, s=0.01) φpdf = stats.lognorm(scale=φ_true, s=0.01) Kpdf = stats.lognorm(scale=K_true, s=0.01) ctpdf = stats.lognorm(scale=ct_true, s=0.01) Qpdf = stats.lognorm(scale=Q_true, s=0.01) cspdf = stats.lognorm(scale=cs_true, s=0.01) theta = parametersRVS = [Hpdf.rvs(size=1), φpdf.rvs(size=1), Kpdf.rvs(size=1), ctpdf.rvs(size=1), Qpdf.rvs(size=1), cspdf.rvs(size=1)] # parametersRVS = [H_true, φ_true, K_true, ct_true, Q_true, cs_true] # theta = parametersRVS = [H_true, φ_true, K_true, ct_true, Q_true, cs_true] truemodel = my_model(theta, x) print("truemodel", truemodel) # Make data np.random.seed(716742) # set random seed, so the data is reproducible each time sigma = CV * np.mean(truemodel) # data = sigma * np.random.randn(Nt) + truemodel # Use real data data = get_welldata('PBH') # plot transient test parameters = {'axes.labelsize': 14, 'axes.titlesize': 18} plt.rcParams.update(parameters) plt.figure(figsize=(10, 3)) # plt.subplot(121) plt.plot(truemodel/MPA, 'k', label='$p_{true}$', alpha=0.5), plt.plot(data/MPA, 'r', label='$σ_{noise} = 1.0e-2$', alpha=0.5),\ plt.ylabel("p(t) [MPa]"), plt.xlabel("t [min]"), #plt.legend() plt.tight_layout() plt.show() # Create our Op logl = LogLikeWithGrad(my_loglike, data, x, sigma) print(logl) ########################### # Synthetic data # ########################### # with pm.Model() as SyntheticModel: # # # True data (what actually drives the true pressure) # K_true = 1e-12 # 2.2730989084434785e-08 # φ_true = 0.163 # H_true = 70 # ct_true = 1e-10 # Q_true = 0.07 # cs_true = 2650 # # # Lognormal priors for true parameters # Hpdf = pm.Lognormal('H', mu=np.log(H_true), sd=0.01) # φpdf = pm.Lognormal('φ', mu=np.log(φ_true), sd=0.01) # Kpdf = pm.Lognormal('K', mu=np.log(K_true), sd=0.01) # ctpdf = pm.Lognormal('ct', mu=np.log(ct_true), sd=0.01) # Qpdf = pm.Lognormal('Q', mu=np.log(Q_true), sd=0.01) # cspdf = pm.Lognormal('cs', mu=np.log(cs_true), sd=0.01) # parametersRVS = [Hpdf.random(size=Nt), φpdf.random(size=Nt), Kpdf.random(size=Nt), ctpdf.random(size=Nt), # Qpdf.random(size=Nt), cspdf.random(size=Nt)] # # # parametersRVS = [H_true, φ_true, K_true, ct_true, Q_true, cs_true] # solAA = performAA(parametersRVS, aquifer, N, timestep, endtime) # p_true = np.mean(solAA[0].T, axis=1) # print(p_true) # # # Z_t observed data # np.random.seed(716742) # set random seed, so the data is reproducible each time # σnoise = 0.1 # sd_p = σnoise * np.var(p_true) ** 0.5 # z_t = p_true + np.random.randn(Nt) * sd_p # use PyMC3 to sampler from log-likelihood with pm.Model() as opmodel: ########################### # Prior information # ########################### # Mean of expert variables (the specific informative prior) 𝜇_H = aquifer.H # lower_H = 35, upper_H = 105 (COV = 50%) 𝜇_φ = aquifer.φ # lower_φ = 0.1, upper_φ = 0.3 (COV = 50%) 𝜇_ct = aquifer.ct # lower_ct = 0.5e-10, upper_ct = 1.5e-10 (COV = 50%) 𝜇_Q = aquifer.Q # lower_Q = 0.35, upper_Q = 0.105 (COV = 50%) 𝜇_cs = aquifer.cps # lower_cs = 1325 upper_cs = 3975 (COV = 50%) # Standard deviation of variables (CV=50%) sd_H = 0.3 sd_φ = 0.3 sd_K = 0.3 sd_ct = 0.3 sd_Q = 0.3 sd_cs = 0.001 # Lognormal priors for unknown model parameters Hpdf = pm.Uniform('H', lower=35, upper=105) φpdf = pm.Uniform('φ', lower=0.1, upper=0.3) Kpdf = pm.Uniform('K', lower=0.5e-13, upper=1.5e-13) ctpdf = pm.Uniform('ct', lower=0.5e-10, upper=1.5e-10) Qpdf = pm.Uniform('Q', lower=0.035, upper=0.105) cspdf = pm.Uniform('cs', lower=1325, upper=3975) # Hpdf = pm.Lognormal('H', mu=np.log(𝜇_H), sd=sd_H) # φpdf = pm.Lognormal('φ', mu=np.log(𝜇_φ), sd=sd_φ) # Kpdf = pm.Lognormal('K', mu=np.log(get_𝜇_K(φpdf, N)), sd=sd_K) # ctpdf = pm.Lognormal('ct', mu=np.log(𝜇_ct), sd=sd_ct) # Qpdf = pm.Lognormal('Q', mu=np.log(𝜇_Q), sd=sd_Q) # cspdf = pm.Lognormal('cs', mu=np.log(𝜇_cs), sd=sd_cs) thetaprior = [Hpdf, φpdf, Kpdf, ctpdf, Qpdf, cspdf] # convert thetaprior to a tensor vector theta = tt.as_tensor_variable([Hpdf, φpdf, Kpdf, ctpdf, Qpdf, cspdf]) # use a DensityDist pm.DensityDist( 'likelihood', lambda v: logl(v), observed={'v': theta} # random=my_model_random ) with opmodel: # Inference trace = pm.sample(ndraws, cores=1, chains=chains, tune=nburn, discard_tuned_samples=True) # plot the traces print(az.summary(trace, round_to=2)) _ = pm.traceplot(trace, lines=(('K', {}, [K_true ]), ('φ', {}, [φ_true]), ('H', {}, [H_true]), ('ct', {}, [ct_true]) , ('Q', {}, [Q_true]), ('cs', {}, [cs_true]))) # put the chains in an array (for later!) # samples_pymc3_2 = np.vstack((trace['K'], trace['φ'], trace['H'], trace['ct'], trace['Q'], trace['cs'])).T # just because we can, let's draw posterior predictive samples of the model # ppc = pm.sample_posterior_predictive(trace, samples=250, model=opmodel) # _, ax = plt.subplots() # # for vals in ppc['likelihood']: # plt.plot(x, vals, color='b', alpha=0.05, lw=3) # ax.plot(x, my_model([H_true, φ_true, K_true, ct_true, Q_true, cs_true], x), 'k--', lw=2) # # ax.set_xlabel("Predictor (stdz)") # ax.set_ylabel("Outcome (stdz)") # ax.set_title("Posterior predictive checks"); ########################### # Post processing # ########################### # print('Posterior distributions.') # cmap = mpl.cm.autumn # for param in ['K', 'φ', 'H', 'ct', 'Q', 'cs']: # plt.figure(figsize=(8, 2)) # samples = trace[param] # smin, smax = np.min(samples), np.max(samples) # x = np.linspace(smin, smax, 100) # y = stats.gaussian_kde(samples)(x) # plt.axvline({'K': K_true, 'φ': φ_true, 'H': H_true, 'ct': ct_true, 'Q': Q_true, 'cs': cs_true}[param], c='k') # plt.ylabel('Probability density') # plt.title(param) # # plt.tight_layout(); data_spp = az.from_pymc3(trace=trace) trace_K = az.plot_posterior(data_spp, var_names=['K'], kind='hist') trace_φ = az.plot_posterior(data_spp, var_names=['φ'], kind='hist') trace_H = az.plot_posterior(data_spp, var_names=['H'], kind='hist') trace_Q = az.plot_posterior(data_spp, var_names=['Q'], kind='hist') trace_ct = az.plot_posterior(data_spp, var_names=['ct'], kind='hist') trace_cs = az.plot_posterior(data_spp, var_names=['cs'], kind='hist') joint_plt = az.plot_joint(data_spp, var_names=['K', 'φ'], kind='kde', fill_last=False); # trace_fig = az.plot_trace(trace, var_names=[ 'H', 'φ', 'K', 'ct', 'Q', 'cs'], compact=True); plt.show() # a = np.random.uniform(0.1, 0.3) # b = np.random.uniform(0.5e-12, 1.5e-12) # _, ax = plt.subplots(1, 2, figsize=(10, 4)) # az.plot_dist(a, color="C1", label="Prior", ax=ax[0]) # az.plot_posterior(data_spp, color="C2", var_names=['φ'], ax=ax[1], kind='hist') # az.plot_dist(b, color="C1", label="Prior", ax=ax[1]) # az.plot_posterior(data_spp, color="C2", var_names=['K'], label="Posterior", ax=ax[0], kind='hist') plt.show() with pm.Model() as PriorModel: ########################### # Prior information # ########################### # Mean of expert variables (the specific informative prior) 𝜇_H = aquifer.H # lower_H = 35, upper_H = 105 (COV = 50%) 𝜇_φ = aquifer.φ # lower_φ = 0.1, upper_φ = 0.3 (COV = 50%) 𝜇_ct = aquifer.ct # lower_ct = 0.5e-10, upper_ct = 1.5e-10 (COV = 50%) 𝜇_Q = aquifer.Q # lower_Q = 0.35, upper_Q = 0.105 (COV = 50%) 𝜇_cs = aquifer.cps # lower_cs = 1325 upper_cs = 3975 (COV = 50%) # Standard deviation of variables (CV=50%) sd_H = 0.3 sd_φ = 0.3 sd_K = 0.3 sd_ct = 0.3 sd_Q = 0.3 sd_cs = 0.001 # Lognormal priors for unknown model parameters Hpdf = pm.Lognormal('H', mu=np.log(𝜇_H), sd=sd_H) φpdf = pm.Lognormal('φ', mu=np.log(𝜇_φ), sd=sd_φ) Kpdf = pm.Lognormal('K', mu=np.log(get_𝜇_K(φpdf, N)), sd=sd_K) ctpdf = pm.Lognormal('ct', mu=np.log(𝜇_ct), sd=sd_ct) Qpdf = pm.Lognormal('Q', mu=np.log(𝜇_Q), sd=sd_Q) cspdf = pm.Lognormal('cs', mu=np.log(𝜇_cs), sd=sd_cs) # Uniform priors for unknown model parameters # Hpdf = pm.Uniform('H', lower=35, upper=105) # φpdf = pm.Lognormal('φ', mu=np.log(𝜇_φ), sd=sd_φ) #φpdf = pm.Uniform('φ', lower=0.1, upper=0.3) # Kpdf = pm.Lognormal('K', mu=np.log(get_𝜇_K(φpdf, N)), sd=sd_K) # ctpdf = pm.Uniform('ct', lower=0.5e-10, upper=1.5e-10) # Qpdf = pm.Uniform('Q', lower=0.035, upper=0.105) # cspdf = pm.Uniform('cs', lower=1325, upper=3975) theta = [Hpdf.random(size=1), φpdf.random(size=1), Kpdf.random(size=1), ctpdf.random(size=1), Qpdf.random(size=1), cspdf.random(size=1)] # Run Analytical Analysis (Backward) print("\r\nRunning Analytical Analysis... (Prior, pymc3)") # p_t = my_model(theta, x) # draw single sample multiple points in time # p_t = np.mean(solAA[0].T, axis=1) # draw single sample multiple points in time # Likelihood (sampling distribution) of observations # z_h = pm.Lognormal('z_h', mu=np.log(p_t), sd=sigma, observed=np.log(data)) # plot 95% CI with seaborn # with open('pprior.npy', 'wb') as pprior: # np.save(pprior, p) # show_seaborn_plot('pprior.npy', "pwell") # plt.show() # mu_p = np.mean(p_t) # sd_p = np.var(p_t) ** 0.5 # p = pm.Lognormal('p', mu=np.log(mu_p), sd=sd_p) # # Likelihood (predicted distribution) of observations # y = pm.Normal('y', mu=p, sd=1e4, observed=z_t) # with PriorModel: # # Inference # start = pm.find_MAP() # Find starting value by optimization # step = pm.NUTS(scaling=start) # Instantiate MCMC sampling algoritm #HamiltonianMC # # trace = pm.sample(10000, start=start, step=step, cores=1, chains=chains) # # print(az.summary(trace, round_to=2)) # chain_count = trace.get_values('K').shape[0] # T_pred = pm.sample_posterior_predictive(trace, samples=chain_count, model=PriorModel) # data_spp = az.from_pymc3(trace=trace) # joint_plt = az.plot_joint(data_spp, var_names=['K', 'φ'], kind='kde', fill_last=False); # trace_fig = az.plot_trace(trace, var_names=[ 'H', 'φ', 'K', 'ct', 'Q', 'cs'], figsize=(12, 8)); # az.plot_trace(trace, var_names=['H', 'φ', 'K', 'ct', 'Q'], compact=True); # fig, axes = az.plot_forest(trace, var_names=['H', 'φ', 'K', 'ct', 'Q'], combined=True) #94% confidence interval with only lines (must normalize the means!) # axes[0].grid(); # trace_H = az.plot_posterior(data_spp, var_names=['φ'], kind='hist') # trace_p = az.plot_posterior(data_spp, var_names=['p'], kind='hist') # pm.traceplot(trace) # plt.show() traces = [trace] for _ in range(2): with pm.Model() as InferenceModel: # Priors are posteriors from previous iteration H = from_posterior('H', trace['H']) φ = from_posterior('φ', trace['φ']) K = from_posterior('K', trace['K']) ct = from_posterior('ct', trace['ct']) Q = from_posterior('Q', trace['Q']) cs = from_posterior('cs', trace['cs']) # Random sample method # parametersRVS = [H.random(size=Nt), φ.random(size=Nt), K.random(size=Nt), ct.random(size=Nt), Q.random(size=Nt), cs.random(size=Nt)] print("\r\nRunning Analytical Analysis... (Backward, pymc3)") # solAA = performAA(parametersRVS, aquifer, N, timestep, endtime) # p_t = np.mean(solAA[0].T, axis=1) # draw single sample multiple points in time # Likelihood (sampling distribution) of observations # z_h = pm.Lognormal('z_h', mu=np.log(p_t), sd=sd_p, observed=np.log(z_t)) # Inference # start = pm.find_MAP() # step = pm.NUTS(scaling=start) # trace = pm.sample(ndraws, start=start, step=step, cores=1, chains=chains) thetaprior = [H, φ, K, ct, Q, cs] # convert thetaprior to a tensor vector theta = tt.as_tensor_variable([H, φ, K, ct, Q, cs]) # use a DensityDist pm.DensityDist( 'likelihood', lambda v: logl(v), observed={'v': theta} # random=my_model_random ) trace = pm.sample(ndraws, cores=1, chains=chains) traces.append(trace) # plt.figure(figsize=(10, 3)) # plt.subplot(121) # plt.plot(np.percentile(trace[ph], [2.5, 97.5], axis=0).T, 'k', label='$\hat{x}_{95\%}(t)$') # plt.plot(p_t, 'r', label='$p(t)$') # plt.legend() # # plt.subplot(122) # plt.hist(trace[lam], 30, label='$\hat{\lambda}$', alpha=0.5) # plt.axvline(porosity_true, color='r', label='$\lambda$', alpha=0.5) # plt.legend(); # # plt.figure(figsize=(10, 6)) # plt.subplot(211) # plt.plot(np.percentile(trace[ph][..., 0], [2.5, 97.5], axis=0).T, 'k', label='$\hat{p}_{95\%}(t)$') # plt.plot(ps, 'r', label='$p(t)$') # plt.legend(loc=0) # plt.subplot(234), plt.hist(trace['Kh']), plt.axvline(K), plt.xlim([1e-13, 1e-11]), plt.title('K') # plt.subplot(235), plt.hist(trace['φh']), plt.axvline(φ), plt.xlim([0, 1.0]), plt.title('φ') # plt.subplot(236), plt.hist(trace['Hh']), plt.axvline(m), plt.xlim([50, 100]), plt.title('H') # plt.tight_layout() # # plt.show() ########################### # Post processing # ########################### print('Posterior distributions after ' + str(len(traces)) + ' iterations.') cmap = mpl.cm.autumn for param in ['K', 'φ', 'H', 'ct', 'Q']: plt.figure(figsize=(8, 2)) for update_i, trace in enumerate(traces): samples = trace[param] smin, smax = np.min(samples), np.max(samples) x = np.linspace(smin, smax, 100) y = stats.gaussian_kde(samples)(x) plt.plot(x, y, color=cmap(1 - update_i / len(traces))) plt.axvline({'K': K_true, 'φ': φ_true, 'H': H_true, 'ct': ct_true, 'Q': Q_true}[param], c='k') plt.ylabel('Frequency') plt.title(param) plt.tight_layout(); plt.show() # Stop timing code execution t2 = time.time() print("CPU time [s] : ", t2 - t0) # Stop timing code execution print("\r\nDone. Post-processing...") #################### Postprocessing ######################### print('Post processing. Plot 95% CI with seaborn') cmap = mpl.cm.autumn plt.figure(figsize=(8, 2)) for node in range(len(pnodelist)): with open('pnode' + str(node+2) + '.npy', 'wb') as f: np.save(f, pnodelist[node]) show_seaborn_plot('pnode' + str(node+2) + '.npy', str(node+2)) # plt.legend(str(node+2)) plt.xlabel("t [min]", size=14) plt.ylabel("p(t) [MPa]", size=14) plt.tight_layout(); plt.figure(figsize=(8, 2)) for node in range(len(Tnodelist)): with open('Tnode' + str(node+2) + '.npy', 'wb') as f: np.save(f, Tnodelist[node]) show_seaborn_plot('Tnode' + str(node+2) + '.npy', str(node+2)) plt.legend(str(node+2)) plt.xlabel("t [min]", size=14) plt.ylabel("T(t) [K]", size=14) plt.tight_layout(); # plt.figure(figsize=(8, 2)) # with open('power.npy', 'wb') as f: # np.save(f, doublet.Phe/1e6) # show_seaborn_plot('power.npy', 'power output') # plt.xlabel("t [min]", size=14) # plt.ylabel("P(t) [MW]", size=14) plt.show() # plot 95% CI with seaborn # with open('pprior.npy', 'wb') as pprior: # np.save(pprior, sol[0]) # # show_seaborn_plot('pprior.npy', "p9") # plt.show() # with open('pmatrix.npy', 'rb') as f: # a = np.load(f) # print("saved solution matrix", a) # plot 95% CI with seaborn # with open('pnode9.npy', 'wb') as f9: # np.save(f9, doublet.pnode9) # # with open('pnode8.npy', 'wb') as f8: # np.save(f8, doublet.pnode8) # plot_solution(sol, outfile) # plt.show()
[ "pymc3.sample", "matplotlib.pyplot.title", "platform.python_version", "numpy.random.seed", "arviz.plot_joint", "arviz.from_pymc3", "matplotlib.pyplot.figure", "numpy.mean", "pymc3.Uniform", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.axvline", "theano.tensor.as_tensor_variable", "arviz.plot_posterior", "numpy.max", "matplotlib.pyplot.rcParams.update", "numpy.linspace", "matplotlib.pyplot.subplots", "pymc3.Model", "matplotlib.pyplot.show", "numpy.save", "scipy.stats.gaussian_kde", "numpy.min", "pymc3.traceplot", "matplotlib.pyplot.ylabel", "arviz.summary", "numpy.random.uniform", "numpy.log", "matplotlib.pyplot.plot", "scipy.stats.lognorm", "time.time", "matplotlib.pyplot.xlabel" ]
[((1211, 1222), 'time.time', 'time.time', ([], {}), '()\n', (1220, 1222), False, 'import time\n'), ((21085, 21096), 'time.time', 'time.time', ([], {}), '()\n', (21094, 21096), False, 'import time\n'), ((21351, 21377), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 2)'}), '(figsize=(8, 2))\n', (21361, 21377), True, 'import matplotlib.pyplot as plt\n'), ((21604, 21634), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t [min]"""'], {'size': '(14)'}), "('t [min]', size=14)\n", (21614, 21634), True, 'import matplotlib.pyplot as plt\n'), ((21635, 21668), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""p(t) [MPa]"""'], {'size': '(14)'}), "('p(t) [MPa]', size=14)\n", (21645, 21668), True, 'import matplotlib.pyplot as plt\n'), ((21669, 21687), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (21685, 21687), True, 'import matplotlib.pyplot as plt\n'), ((21690, 21716), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 2)'}), '(figsize=(8, 2))\n', (21700, 21716), True, 'import matplotlib.pyplot as plt\n'), ((21941, 21971), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t [min]"""'], {'size': '(14)'}), "('t [min]', size=14)\n", (21951, 21971), True, 'import matplotlib.pyplot as plt\n'), ((21972, 22003), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""T(t) [K]"""'], {'size': '(14)'}), "('T(t) [K]', size=14)\n", (21982, 22003), True, 'import matplotlib.pyplot as plt\n'), ((22004, 22022), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (22020, 22022), True, 'import matplotlib.pyplot as plt\n'), ((22243, 22253), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22251, 22253), True, 'import matplotlib.pyplot as plt\n'), ((1440, 1471), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * t1steps)', 'Nt'], {}), '(0, 2 * t1steps, Nt)\n', (1451, 1471), True, 'import numpy as np\n'), ((3282, 3336), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(10, 7)', 'tight_layout': '(True)'}), '(1, 1, figsize=(10, 7), tight_layout=True)\n', (3294, 3336), True, 'import matplotlib.pyplot as plt\n'), ((5563, 5598), 'scipy.stats.lognorm', 'stats.lognorm', ([], {'scale': 'H_true', 's': '(0.01)'}), '(scale=H_true, s=0.01)\n', (5576, 5598), False, 'from scipy import stats\n'), ((5611, 5646), 'scipy.stats.lognorm', 'stats.lognorm', ([], {'scale': 'φ_true', 's': '(0.01)'}), '(scale=φ_true, s=0.01)\n', (5624, 5646), False, 'from scipy import stats\n'), ((5657, 5692), 'scipy.stats.lognorm', 'stats.lognorm', ([], {'scale': 'K_true', 's': '(0.01)'}), '(scale=K_true, s=0.01)\n', (5670, 5692), False, 'from scipy import stats\n'), ((5705, 5741), 'scipy.stats.lognorm', 'stats.lognorm', ([], {'scale': 'ct_true', 's': '(0.01)'}), '(scale=ct_true, s=0.01)\n', (5718, 5741), False, 'from scipy import stats\n'), ((5753, 5788), 'scipy.stats.lognorm', 'stats.lognorm', ([], {'scale': 'Q_true', 's': '(0.01)'}), '(scale=Q_true, s=0.01)\n', (5766, 5788), False, 'from scipy import stats\n'), ((5801, 5837), 'scipy.stats.lognorm', 'stats.lognorm', ([], {'scale': 'cs_true', 's': '(0.01)'}), '(scale=cs_true, s=0.01)\n', (5814, 5837), False, 'from scipy import stats\n'), ((6244, 6266), 'numpy.random.seed', 'np.random.seed', (['(716742)'], {}), '(716742)\n', (6258, 6266), True, 'import numpy as np\n'), ((6578, 6609), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['parameters'], {}), '(parameters)\n', (6597, 6609), True, 'import matplotlib.pyplot as plt\n'), ((6614, 6641), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (6624, 6641), True, 'import matplotlib.pyplot as plt\n'), ((6868, 6886), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6884, 6886), True, 'import matplotlib.pyplot as plt\n'), ((6892, 6902), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6900, 6902), True, 'import matplotlib.pyplot as plt\n'), ((10744, 10910), 'pymc3.traceplot', 'pm.traceplot', (['trace'], {'lines': "(('K', {}, [K_true]), ('φ', {}, [φ_true]), ('H', {}, [H_true]), ('ct', {},\n [ct_true]), ('Q', {}, [Q_true]), ('cs', {}, [cs_true]))"}), "(trace, lines=(('K', {}, [K_true]), ('φ', {}, [φ_true]), ('H',\n {}, [H_true]), ('ct', {}, [ct_true]), ('Q', {}, [Q_true]), ('cs', {}, [\n cs_true])))\n", (10756, 10910), True, 'import pymc3 as pm\n'), ((12287, 12313), 'arviz.from_pymc3', 'az.from_pymc3', ([], {'trace': 'trace'}), '(trace=trace)\n', (12300, 12313), True, 'import arviz as az\n'), ((12328, 12385), 'arviz.plot_posterior', 'az.plot_posterior', (['data_spp'], {'var_names': "['K']", 'kind': '"""hist"""'}), "(data_spp, var_names=['K'], kind='hist')\n", (12345, 12385), True, 'import arviz as az\n'), ((12401, 12458), 'arviz.plot_posterior', 'az.plot_posterior', (['data_spp'], {'var_names': "['φ']", 'kind': '"""hist"""'}), "(data_spp, var_names=['φ'], kind='hist')\n", (12418, 12458), True, 'import arviz as az\n'), ((12472, 12529), 'arviz.plot_posterior', 'az.plot_posterior', (['data_spp'], {'var_names': "['H']", 'kind': '"""hist"""'}), "(data_spp, var_names=['H'], kind='hist')\n", (12489, 12529), True, 'import arviz as az\n'), ((12544, 12601), 'arviz.plot_posterior', 'az.plot_posterior', (['data_spp'], {'var_names': "['Q']", 'kind': '"""hist"""'}), "(data_spp, var_names=['Q'], kind='hist')\n", (12561, 12601), True, 'import arviz as az\n'), ((12617, 12675), 'arviz.plot_posterior', 'az.plot_posterior', (['data_spp'], {'var_names': "['ct']", 'kind': '"""hist"""'}), "(data_spp, var_names=['ct'], kind='hist')\n", (12634, 12675), True, 'import arviz as az\n'), ((12691, 12749), 'arviz.plot_posterior', 'az.plot_posterior', (['data_spp'], {'var_names': "['cs']", 'kind': '"""hist"""'}), "(data_spp, var_names=['cs'], kind='hist')\n", (12708, 12749), True, 'import arviz as az\n'), ((12766, 12840), 'arviz.plot_joint', 'az.plot_joint', (['data_spp'], {'var_names': "['K', 'φ']", 'kind': '"""kde"""', 'fill_last': '(False)'}), "(data_spp, var_names=['K', 'φ'], kind='kde', fill_last=False)\n", (12779, 12840), True, 'import arviz as az\n'), ((12946, 12956), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12954, 12956), True, 'import matplotlib.pyplot as plt\n'), ((13407, 13417), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13415, 13417), True, 'import matplotlib.pyplot as plt\n'), ((21014, 21032), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (21030, 21032), True, 'import matplotlib.pyplot as plt\n'), ((21039, 21049), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (21047, 21049), True, 'import matplotlib.pyplot as plt\n'), ((389, 414), 'platform.python_version', 'platform.python_version', ([], {}), '()\n', (412, 414), False, 'import platform\n'), ((4242, 4288), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(10)', 'high': '(100)', 'size': 'size'}), '(low=10, high=100, size=size)\n', (4259, 4288), True, 'import numpy as np\n'), ((4354, 4401), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.3)', 'high': '(0.5)', 'size': 'size'}), '(low=0.3, high=0.5, size=size)\n', (4371, 4401), True, 'import numpy as np\n'), ((4423, 4466), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(3)', 'high': '(5)', 'size': 'size'}), '(low=3, high=5, size=size)\n', (4440, 4466), True, 'import numpy as np\n'), ((4480, 4531), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(1e-05)', 'high': '(3e-05)', 'size': 'size'}), '(low=1e-05, high=3e-05, size=size)\n', (4497, 4531), True, 'import numpy as np\n'), ((4666, 4687), 'numpy.mean', 'np.mean', (['permeability'], {}), '(permeability)\n', (4673, 4687), True, 'import numpy as np\n'), ((6342, 6360), 'numpy.mean', 'np.mean', (['truemodel'], {}), '(truemodel)\n', (6349, 6360), True, 'import numpy as np\n'), ((6669, 6730), 'matplotlib.pyplot.plot', 'plt.plot', (['(truemodel / MPA)', '"""k"""'], {'label': '"""$p_{true}$"""', 'alpha': '(0.5)'}), "(truemodel / MPA, 'k', label='$p_{true}$', alpha=0.5)\n", (6677, 6730), True, 'import matplotlib.pyplot as plt\n'), ((6730, 6796), 'matplotlib.pyplot.plot', 'plt.plot', (['(data / MPA)', '"""r"""'], {'label': '"""$σ_{noise} = 1.0e-2$"""', 'alpha': '(0.5)'}), "(data / MPA, 'r', label='$σ_{noise} = 1.0e-2$', alpha=0.5)\n", (6738, 6796), True, 'import matplotlib.pyplot as plt\n'), ((6801, 6825), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""p(t) [MPa]"""'], {}), "('p(t) [MPa]')\n", (6811, 6825), True, 'import matplotlib.pyplot as plt\n'), ((6827, 6848), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t [min]"""'], {}), "('t [min]')\n", (6837, 6848), True, 'import matplotlib.pyplot as plt\n'), ((8540, 8550), 'pymc3.Model', 'pm.Model', ([], {}), '()\n', (8548, 8550), True, 'import pymc3 as pm\n'), ((9437, 9473), 'pymc3.Uniform', 'pm.Uniform', (['"""H"""'], {'lower': '(35)', 'upper': '(105)'}), "('H', lower=35, upper=105)\n", (9447, 9473), True, 'import pymc3 as pm\n'), ((9490, 9527), 'pymc3.Uniform', 'pm.Uniform', (['"""φ"""'], {'lower': '(0.1)', 'upper': '(0.3)'}), "('φ', lower=0.1, upper=0.3)\n", (9500, 9527), True, 'import pymc3 as pm\n'), ((9542, 9585), 'pymc3.Uniform', 'pm.Uniform', (['"""K"""'], {'lower': '(5e-14)', 'upper': '(1.5e-13)'}), "('K', lower=5e-14, upper=1.5e-13)\n", (9552, 9585), True, 'import pymc3 as pm\n'), ((9604, 9648), 'pymc3.Uniform', 'pm.Uniform', (['"""ct"""'], {'lower': '(5e-11)', 'upper': '(1.5e-10)'}), "('ct', lower=5e-11, upper=1.5e-10)\n", (9614, 9648), True, 'import pymc3 as pm\n'), ((9666, 9707), 'pymc3.Uniform', 'pm.Uniform', (['"""Q"""'], {'lower': '(0.035)', 'upper': '(0.105)'}), "('Q', lower=0.035, upper=0.105)\n", (9676, 9707), True, 'import pymc3 as pm\n'), ((9724, 9764), 'pymc3.Uniform', 'pm.Uniform', (['"""cs"""'], {'lower': '(1325)', 'upper': '(3975)'}), "('cs', lower=1325, upper=3975)\n", (9734, 9764), True, 'import pymc3 as pm\n'), ((10272, 10333), 'theano.tensor.as_tensor_variable', 'tt.as_tensor_variable', (['[Hpdf, φpdf, Kpdf, ctpdf, Qpdf, cspdf]'], {}), '([Hpdf, φpdf, Kpdf, ctpdf, Qpdf, cspdf])\n', (10293, 10333), True, 'import theano.tensor as tt\n'), ((10581, 10667), 'pymc3.sample', 'pm.sample', (['ndraws'], {'cores': '(1)', 'chains': 'chains', 'tune': 'nburn', 'discard_tuned_samples': '(True)'}), '(ndraws, cores=1, chains=chains, tune=nburn, discard_tuned_samples\n =True)\n', (10590, 10667), True, 'import pymc3 as pm\n'), ((13428, 13438), 'pymc3.Model', 'pm.Model', ([], {}), '()\n', (13436, 13438), True, 'import pymc3 as pm\n'), ((20520, 20546), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 2)'}), '(figsize=(8, 2))\n', (20530, 20546), True, 'import matplotlib.pyplot as plt\n'), ((20857, 20955), 'matplotlib.pyplot.axvline', 'plt.axvline', (["{'K': K_true, 'φ': φ_true, 'H': H_true, 'ct': ct_true, 'Q': Q_true}[param]"], {'c': '"""k"""'}), "({'K': K_true, 'φ': φ_true, 'H': H_true, 'ct': ct_true, 'Q':\n Q_true}[param], c='k')\n", (20868, 20955), True, 'import matplotlib.pyplot as plt\n'), ((20960, 20983), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency"""'], {}), "('Frequency')\n", (20970, 20983), True, 'import matplotlib.pyplot as plt\n'), ((20992, 21008), 'matplotlib.pyplot.title', 'plt.title', (['param'], {}), '(param)\n', (21001, 21008), True, 'import matplotlib.pyplot as plt\n'), ((21479, 21506), 'numpy.save', 'np.save', (['f', 'pnodelist[node]'], {}), '(f, pnodelist[node])\n', (21486, 21506), True, 'import numpy as np\n'), ((21818, 21845), 'numpy.save', 'np.save', (['f', 'Tnodelist[node]'], {}), '(f, Tnodelist[node])\n', (21825, 21845), True, 'import numpy as np\n'), ((10704, 10733), 'arviz.summary', 'az.summary', (['trace'], {'round_to': '(2)'}), '(trace, round_to=2)\n', (10714, 10733), True, 'import arviz as az\n'), ((17463, 17473), 'pymc3.Model', 'pm.Model', ([], {}), '()\n', (17471, 17473), True, 'import pymc3 as pm\n'), ((18742, 18785), 'theano.tensor.as_tensor_variable', 'tt.as_tensor_variable', (['[H, φ, K, ct, Q, cs]'], {}), '([H, φ, K, ct, Q, cs])\n', (18763, 18785), True, 'import theano.tensor as tt\n'), ((19025, 19066), 'pymc3.sample', 'pm.sample', (['ndraws'], {'cores': '(1)', 'chains': 'chains'}), '(ndraws, cores=1, chains=chains)\n', (19034, 19066), True, 'import pymc3 as pm\n'), ((20706, 20734), 'numpy.linspace', 'np.linspace', (['smin', 'smax', '(100)'], {}), '(smin, smax, 100)\n', (20717, 20734), True, 'import numpy as np\n'), ((14349, 14360), 'numpy.log', 'np.log', (['μ_H'], {}), '(μ_H)\n', (14355, 14360), True, 'import numpy as np\n'), ((14409, 14420), 'numpy.log', 'np.log', (['μ_φ'], {}), '(μ_φ)\n', (14415, 14420), True, 'import numpy as np\n'), ((14538, 14550), 'numpy.log', 'np.log', (['μ_ct'], {}), '(μ_ct)\n', (14544, 14550), True, 'import numpy as np\n'), ((14598, 14609), 'numpy.log', 'np.log', (['μ_Q'], {}), '(μ_Q)\n', (14604, 14609), True, 'import numpy as np\n'), ((14658, 14670), 'numpy.log', 'np.log', (['μ_cs'], {}), '(μ_cs)\n', (14664, 14670), True, 'import numpy as np\n'), ((20657, 20672), 'numpy.min', 'np.min', (['samples'], {}), '(samples)\n', (20663, 20672), True, 'import numpy as np\n'), ((20674, 20689), 'numpy.max', 'np.max', (['samples'], {}), '(samples)\n', (20680, 20689), True, 'import numpy as np\n'), ((20751, 20778), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['samples'], {}), '(samples)\n', (20769, 20778), False, 'from scipy import stats\n')]
# Some implementation details regarding PyBullet: # # PyBullet's IK solver uses damped least squares (DLS) optimization. This is commonly # known as Levenberg-Marquardt (LM) optimization. from __future__ import annotations import dataclasses from typing import NamedTuple, Optional import numpy as np import pybullet as p from dm_robotics.geometry.geometry import Pose from dm_robotics.transformations import transformations as tr from coffee.client import BulletClient, ClientConfig, ConnectionMode from coffee.joints import Joints from coffee.structs import LinkState from coffee.utils import geometry_utils class IKSolution(NamedTuple): """An IK solution returned by the IKSolver. Attributes: qpos: The joint configuration. linear_err: The linear error between the solved pose and the target pose. angular_err: The angular error between the solved pose and the target pose. """ qpos: np.ndarray linear_err: float angular_err: float @dataclasses.dataclass class IKSolver: """Inverse kinematics solver. Computes a joint configuration that brings an element (in a kinematic chain) to a desired pose. """ pb_client: BulletClient joints: Joints ik_point_joint_id: int joint_damping: float = 0.0 nullspace_reference: Optional[np.ndarray] = None def __post_init__(self) -> None: if self.nullspace_reference is None: self.nullspace_reference = 0.5 * np.sum(self.joints.joints_range, axis=1) # Dirty hack to get around pybullet's lack of support for computing FK given a # joint configuration as an argument. # See: https://github.com/bulletphysics/bullet3/issues/2603 self._shadow_client = BulletClient.create( mode=ConnectionMode.DIRECT, config=ClientConfig(), ) manipulator_kwargs = self.pb_client._body_cache[self.joints.body_id] shadow_body_id = self._shadow_client.load_urdf(**manipulator_kwargs) # Make sure the shadow robot is in the same world pose as the actual one. pos, quat = self.pb_client.getBasePositionAndOrientation(self.joints.body_id) self._shadow_client.resetBasePositionAndOrientation( bodyUniqueId=shadow_body_id, posObj=pos, ornObj=quat, ) self._shadow_joints = Joints.from_body_id(shadow_body_id, self._shadow_client) def solve( self, ref_pose: Pose, linear_tol: float = 1e-3, angular_tol: float = 1e-3, max_steps: int = 100, num_attempts: int = 50, stop_on_first_successful_attempt: bool = False, inital_joint_configuration: Optional[np.ndarray] = None, nullspace_reference: Optional[np.ndarray] = None, verbose: bool = False, ) -> Optional[np.ndarray]: """Attempts to solve the inverse kinematics problem. This method computes a joint configuration that solves the IK problem. It returns None if no solution is found. If multiple solutions are found, it will return the one where the joints are closer to the `nullspace_reference`. If no `nullspace_reference is provided, it will use the center of the joint ranges as reference. Args: ref_pose: Target pose of the controlled element in Cartesian world frame. linear_tol: The linear tolerance, in meters, that determines if the solution found is valid. angular_tol: The angular tolerance, in radians, that determines if the solution found is valid. max_steps: num_attempts: The number of different attempts the solver should do. For a given target pose, there exists an infinite number of possible solutions, having more attempts allows to compare different joint configurations. The solver will return the solution where the joints are closer to the `nullspace_reference`. Note that not all attempts are successful, and thus, having more attempts gives better chances of finding a correct solution. stop_on_first_successful_attempt: If true, the method will return the first solution that meets the tolerance criteria. If false, returns the solution where the joints are closer to `nullspace_reference`. inital_joint_configuration: A joint configuration that will be used for the first attempt. This can be useful in the case of a complex pose, a user could provide the initial guess that is close to the desired solution. If None, all the joints will be set to 0 for the first attempt. nullspace_reference: The desired joint configuration that is set as the nullspace goal. When the controlled element is in the desired pose, the solver will try and bring the joint configuration closer to the nullspace reference without moving the element. If no nullspace reference is provided, the center of the joint ranges is used as reference. Can be overriden in the `solve` method. Returns: The corresponding joint configuration if a solution is found, else None. Raises: ValueError: If the `nullspace_reference` does not have the correct length. ValueError: If the `inital_joint_configuration` does not have the correct length. """ if nullspace_reference is None: nullspace_reference = self.nullspace_reference else: if len(nullspace_reference) != self.joints.dof: raise ValueError("nullspace_reference has an invalid length.") if inital_joint_configuration is None: inital_joint_configuration = self.joints.zeros_array() else: inital_joint_configuration = np.array(inital_joint_configuration) if len(inital_joint_configuration) != self.joints.dof: raise ValueError("inital_joint_configuration has an invalid length.") nullspace_jnt_qpos_min_err = np.inf sol_qpos = None success = False # Each iteration of this loop attempts to solve the inverse kinematics. # If a solution is found, it is compared to previous solutions. for attempt in range(num_attempts): # Use the user provided joint configuration for the first attempt. if attempt == 0: qpos_new = inital_joint_configuration else: # Randomize the initial joint configuration so that the IK can find # a different solution. qpos_new = np.random.uniform( low=self.joints.joints_lower_limit, high=self.joints.joints_upper_limit, ) # Reset the joints to this configuration. for i, joint_id in enumerate(self._shadow_joints.controllable_joints): self._shadow_client.resetJointState( self._shadow_joints.body_id, joint_id, qpos_new[i], ) # Solve the IK. joint_qpos, linear_err, angular_err = self._solve_ik( ref_pose, max_steps, verbose, ) # Check if the attempt was successful. The solution is saved if the # joints are closer to the nullspace reference. if linear_err <= linear_tol and angular_err <= angular_tol: success = True nullspace_jnt_qpos_err = float( np.linalg.norm(joint_qpos - nullspace_reference) ) if nullspace_jnt_qpos_err < nullspace_jnt_qpos_min_err: nullspace_jnt_qpos_min_err = nullspace_jnt_qpos_err sol_qpos = joint_qpos if verbose: print( f"attempt: {attempt} " f"- nullspace_jnt_qpos_min_err: {nullspace_jnt_qpos_min_err:.4f} " f"- success: {success}" ) if success and stop_on_first_successful_attempt: break if not success: print(f"Unable to solve inverse kinematics for ref_pose: {ref_pose}") else: if verbose: print(f"Found a solution in {attempt} attempts.") return sol_qpos def _solve_ik( self, ref_pose: Pose, max_steps: int, verbose: bool, ) -> IKSolution: """Finds a joint configuration that brings element pose to target pose.""" try: qpos = self._shadow_client.calculateInverseKinematics( bodyUniqueId=self._shadow_joints.body_id, endEffectorLinkIndex=self.ik_point_joint_id, targetPosition=ref_pose.position, targetOrientation=geometry_utils.as_quaternion_xyzw( ref_pose.quaternion ), residualThreshold=1e-5, maxNumIterations=max_steps, jointDamping=self._shadow_joints.const_array( self.joint_damping ).tolist(), ) if np.isnan(np.sum(qpos)): qpos = None else: # Clip to joint limits. qpos = np.clip( a=qpos, a_min=self._shadow_joints.joints_lower_limit, a_max=self._shadow_joints.joints_upper_limit, ) except p.error as e: if verbose: print(f"IK failed with error message: {e}") qpos = None # If we were unable to find a solution, exit early. if qpos is None: return IKSolution(np.empty(self._shadow_joints.dof), np.inf, np.inf) # If we found a solution, we compute its associated pose and compare with the # target pose. We do this by first using forward kinematics to compute the # pose of the controlled element associated with the solution and then computing # linear and angular errors. # Forward kinematics. for i, joint_id in enumerate(self._shadow_joints.controllable_joints): self._shadow_client.resetJointState( self._shadow_joints.body_id, joint_id, qpos[i], ) cur_pose = self.forward_kinematics(shadow=True) # Error computation. linear_err = float(np.linalg.norm(ref_pose.position - cur_pose.position)) err_quat = tr.quat_diff_active(ref_pose.quaternion, cur_pose.quaternion) err_axis_angle = tr.quat_to_axisangle(err_quat) angular_err = float(np.linalg.norm(err_axis_angle)) return IKSolution(np.array(qpos), linear_err, angular_err) def forward_kinematics(self, shadow: bool = False) -> Pose: if shadow: eef_link_state = LinkState( *self._shadow_client.getLinkState( bodyUniqueId=self._shadow_joints.body_id, linkIndex=self.ik_point_joint_id, computeLinkVelocity=0, computeForwardKinematics=True, ) ) else: eef_link_state = LinkState( *self.pb_client.getLinkState( bodyUniqueId=self.joints.body_id, linkIndex=self.ik_point_joint_id, computeLinkVelocity=0, computeForwardKinematics=True, ) ) return Pose( position=eef_link_state.link_world_position, quaternion=geometry_utils.as_quaternion_wxyz( eef_link_state.link_world_orientation ), )
[ "numpy.random.uniform", "coffee.client.ClientConfig", "numpy.sum", "coffee.joints.Joints.from_body_id", "numpy.empty", "dm_robotics.transformations.transformations.quat_diff_active", "numpy.clip", "coffee.utils.geometry_utils.as_quaternion_wxyz", "coffee.utils.geometry_utils.as_quaternion_xyzw", "numpy.array", "numpy.linalg.norm", "dm_robotics.transformations.transformations.quat_to_axisangle" ]
[((2359, 2415), 'coffee.joints.Joints.from_body_id', 'Joints.from_body_id', (['shadow_body_id', 'self._shadow_client'], {}), '(shadow_body_id, self._shadow_client)\n', (2378, 2415), False, 'from coffee.joints import Joints\n'), ((10821, 10882), 'dm_robotics.transformations.transformations.quat_diff_active', 'tr.quat_diff_active', (['ref_pose.quaternion', 'cur_pose.quaternion'], {}), '(ref_pose.quaternion, cur_pose.quaternion)\n', (10840, 10882), True, 'from dm_robotics.transformations import transformations as tr\n'), ((10908, 10938), 'dm_robotics.transformations.transformations.quat_to_axisangle', 'tr.quat_to_axisangle', (['err_quat'], {}), '(err_quat)\n', (10928, 10938), True, 'from dm_robotics.transformations import transformations as tr\n'), ((6023, 6059), 'numpy.array', 'np.array', (['inital_joint_configuration'], {}), '(inital_joint_configuration)\n', (6031, 6059), True, 'import numpy as np\n'), ((10747, 10800), 'numpy.linalg.norm', 'np.linalg.norm', (['(ref_pose.position - cur_pose.position)'], {}), '(ref_pose.position - cur_pose.position)\n', (10761, 10800), True, 'import numpy as np\n'), ((10967, 10997), 'numpy.linalg.norm', 'np.linalg.norm', (['err_axis_angle'], {}), '(err_axis_angle)\n', (10981, 10997), True, 'import numpy as np\n'), ((11026, 11040), 'numpy.array', 'np.array', (['qpos'], {}), '(qpos)\n', (11034, 11040), True, 'import numpy as np\n'), ((1466, 1506), 'numpy.sum', 'np.sum', (['self.joints.joints_range'], {'axis': '(1)'}), '(self.joints.joints_range, axis=1)\n', (1472, 1506), True, 'import numpy as np\n'), ((1819, 1833), 'coffee.client.ClientConfig', 'ClientConfig', ([], {}), '()\n', (1831, 1833), False, 'from coffee.client import BulletClient, ClientConfig, ConnectionMode\n'), ((6834, 6929), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'self.joints.joints_lower_limit', 'high': 'self.joints.joints_upper_limit'}), '(low=self.joints.joints_lower_limit, high=self.joints.\n joints_upper_limit)\n', (6851, 6929), True, 'import numpy as np\n'), ((9454, 9466), 'numpy.sum', 'np.sum', (['qpos'], {}), '(qpos)\n', (9460, 9466), True, 'import numpy as np\n'), ((9578, 9690), 'numpy.clip', 'np.clip', ([], {'a': 'qpos', 'a_min': 'self._shadow_joints.joints_lower_limit', 'a_max': 'self._shadow_joints.joints_upper_limit'}), '(a=qpos, a_min=self._shadow_joints.joints_lower_limit, a_max=self.\n _shadow_joints.joints_upper_limit)\n', (9585, 9690), True, 'import numpy as np\n'), ((10018, 10051), 'numpy.empty', 'np.empty', (['self._shadow_joints.dof'], {}), '(self._shadow_joints.dof)\n', (10026, 10051), True, 'import numpy as np\n'), ((11920, 11992), 'coffee.utils.geometry_utils.as_quaternion_wxyz', 'geometry_utils.as_quaternion_wxyz', (['eef_link_state.link_world_orientation'], {}), '(eef_link_state.link_world_orientation)\n', (11953, 11992), False, 'from coffee.utils import geometry_utils\n'), ((7804, 7852), 'numpy.linalg.norm', 'np.linalg.norm', (['(joint_qpos - nullspace_reference)'], {}), '(joint_qpos - nullspace_reference)\n', (7818, 7852), True, 'import numpy as np\n'), ((9109, 9163), 'coffee.utils.geometry_utils.as_quaternion_xyzw', 'geometry_utils.as_quaternion_xyzw', (['ref_pose.quaternion'], {}), '(ref_pose.quaternion)\n', (9142, 9163), False, 'from coffee.utils import geometry_utils\n')]
import os import json import shutil import argparse import numpy as np from PIL import Image def getSeqInfo(dataset_dir, seq): ann_dir = os.path.join(dataset_dir, 'Annotations', '480p') seq_path = os.path.join(ann_dir, seq) frame_list = os.listdir(seq_path) frame_num = len(frame_list) frames = os.listdir(os.path.join(ann_dir, seq)) masks = np.stack([np.array(Image.open(os.path.join(ann_dir, seq, f)).convert('P'), dtype=np.uint8) for f in frames]) img_size = [masks.shape[1], masks.shape[0]] obj_ids = np.delete(np.unique(masks), 0) return frame_num, img_size, len(obj_ids) def create_json(root_dir): val_txt_dst = os.path.join(root_dir, 'ImageSets', '2017', 'val.txt') with open(val_txt_dst, 'r') as f: val_seqs = f.readlines() f.close() val_seqs = list(map(lambda elem: elem.strip(), val_seqs)) # create davis.json '''Generate global json''' json_dict = dict() json_dict['attributes'] = [] json_dict['sets'] = ["train", "val"] json_dict['years'] = [2018] json_dict['sequences'] = dict() for idx, seq in enumerate(val_seqs): seq = seq.strip() seq_dict = {'attributes': [], 'eval_t': True, 'name': seq, 'set': 'val', 'year': 2018, 'num_scribbles': 3} seq_dict['num_frames'], seq_dict['image_size'], seq_dict['num_objects'] = getSeqInfo(root_dir, seq) json_dict['sequences'][seq] = seq_dict print(f'valid: {idx+1}') global_json_path = os.path.join(root_dir, 'scb_ytbvos.json') with open(global_json_path, 'wt') as f: json.dump(json_dict, f, indent=2, separators=(',', ': ')) def create_dataset(src_ytbvos_path, dst_ytbvos_path, scb_ytbvos_path): if os.path.exists(src_ytbvos_path): os.makedirs(dst_ytbvos_path, exist_ok=True) # set youtube original path src_dir_JPEGImages = os.path.join(src_ytbvos_path, 'train', 'JPEGImages') src_dir_Annotations = os.path.join(src_ytbvos_path, 'train', 'CleanedAnnotations') # set youtube davis-like path dst_dir_ImageSets = os.path.join(dst_ytbvos_path, 'ImageSets', '2017') dst_dir_JPEGImages = os.path.join(dst_ytbvos_path, 'JPEGImages', '480p') dst_dir_Annotations = os.path.join(dst_ytbvos_path, 'Annotations', '480p') dst_dir_Scribbles = os.path.join(dst_ytbvos_path, 'Scribbles') if os.path.isdir(src_dir_JPEGImages) and os.path.isdir(src_dir_Annotations) and os.path.isdir(scb_ytbvos_path): # load sequence list assert len(os.listdir(src_dir_JPEGImages)) == len(os.listdir(src_dir_Annotations)) with open(os.path.join(scb_ytbvos_path, 'val.txt'), 'r') as f: seqs_list = f.readlines() f.close() seqs_list = list(map(lambda elem: elem.strip(), seqs_list)) else: if not os.path.isdir(src_dir_JPEGImages): print(f"{src_dir_JPEGImages} is not found in {src_ytbvos_path}") if not os.path.isdir(src_dir_Annotations): print(f"{src_dir_Annotations} is not found in {src_ytbvos_path}") if not os.path.isdir(scb_ytbvos_path): print(f"{scb_ytbvos_path} is not found") return # create dist dirs os.makedirs(dst_dir_ImageSets, exist_ok=True) os.makedirs(dst_dir_JPEGImages, exist_ok=True) os.makedirs(dst_dir_Annotations, exist_ok=True) os.makedirs(dst_dir_Scribbles, exist_ok=True) # --- copy files --- # ImageSets shutil.copyfile(os.path.join(scb_ytbvos_path, 'val.txt'), os.path.join(dst_dir_ImageSets, 'val.txt')) len_seq = [] for i, seq in enumerate(seqs_list): print(f"validation set {i+1}") # JPEGImages src_dir_JPEGImages_seq = os.path.join(src_dir_JPEGImages, seq) dst_dir_JPEGImages_seq = os.path.join(dst_dir_JPEGImages, seq) os.makedirs(dst_dir_JPEGImages_seq, exist_ok=True) file_name = np.sort(os.listdir(src_dir_JPEGImages_seq)) for j, file in enumerate(file_name): src_path = os.path.join(src_dir_JPEGImages_seq, file) dst_path = os.path.join(dst_dir_JPEGImages_seq, f"{str(j).zfill(5)}.jpg") if not os.path.exists(dst_path): shutil.copyfile(src_path, dst_path) # if not os.path.exists(dst_path): os.symlink(src_path, dst_path) # Annotations src_dir_Annotations_seq = os.path.join(src_dir_Annotations, seq) dst_dir_Annotations_seq = os.path.join(dst_dir_Annotations, seq) os.makedirs(dst_dir_Annotations_seq, exist_ok=True) file_name = np.sort(os.listdir(src_dir_Annotations_seq)) for j, file in enumerate(file_name): src_path = os.path.join(src_dir_Annotations_seq, file) dst_path = os.path.join(dst_dir_Annotations_seq, f"{str(j).zfill(5)}.png") if not os.path.exists(dst_path): shutil.copyfile(src_path, dst_path) # if not os.path.exists(dst_path): os.symlink(src_path, dst_path) # Scribbles src_dir_Scribbles_seq = os.path.join(scb_ytbvos_path, seq) dst_dir_Scribbles_seq = os.path.join(dst_dir_Scribbles, seq) os.makedirs(dst_dir_Scribbles_seq, exist_ok=True) file_name = np.sort(os.listdir(src_dir_Scribbles_seq)) for j, file in enumerate(file_name): src_path = os.path.join(src_dir_Scribbles_seq, file) dst_path = os.path.join(dst_dir_Scribbles_seq, file) if not os.path.exists(dst_path): shutil.copyfile(src_path, dst_path) # statistic file_name = np.sort(os.listdir(src_dir_JPEGImages_seq)) len_seq.append(len(file_name)) # create sequences information create_json(dst_ytbvos_path) print(f"done") else: print(f"{src_ytbvos_path} not existed") def main(): parser = argparse.ArgumentParser() parser.add_argument('--src', type=str, required=True) parser.add_argument('--scb', type=str, required=True) parser.add_argument('--dst', type=str, default='data/Scribble_Youtube_VOS') args = parser.parse_args() src_ytbvos_path = args.src dst_ytbvos_path = args.dst scb_ytbvos_path = args.scb create_dataset(src_ytbvos_path, dst_ytbvos_path, scb_ytbvos_path) if __name__ == '__main__': main()
[ "json.dump", "argparse.ArgumentParser", "os.makedirs", "os.path.isdir", "os.path.exists", "shutil.copyfile", "os.path.join", "os.listdir", "numpy.unique" ]
[((143, 191), 'os.path.join', 'os.path.join', (['dataset_dir', '"""Annotations"""', '"""480p"""'], {}), "(dataset_dir, 'Annotations', '480p')\n", (155, 191), False, 'import os\n'), ((207, 233), 'os.path.join', 'os.path.join', (['ann_dir', 'seq'], {}), '(ann_dir, seq)\n', (219, 233), False, 'import os\n'), ((251, 271), 'os.listdir', 'os.listdir', (['seq_path'], {}), '(seq_path)\n', (261, 271), False, 'import os\n'), ((664, 718), 'os.path.join', 'os.path.join', (['root_dir', '"""ImageSets"""', '"""2017"""', '"""val.txt"""'], {}), "(root_dir, 'ImageSets', '2017', 'val.txt')\n", (676, 718), False, 'import os\n'), ((1486, 1527), 'os.path.join', 'os.path.join', (['root_dir', '"""scb_ytbvos.json"""'], {}), "(root_dir, 'scb_ytbvos.json')\n", (1498, 1527), False, 'import os\n'), ((1719, 1750), 'os.path.exists', 'os.path.exists', (['src_ytbvos_path'], {}), '(src_ytbvos_path)\n', (1733, 1750), False, 'import os\n'), ((5977, 6002), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6000, 6002), False, 'import argparse\n'), ((329, 355), 'os.path.join', 'os.path.join', (['ann_dir', 'seq'], {}), '(ann_dir, seq)\n', (341, 355), False, 'import os\n'), ((550, 566), 'numpy.unique', 'np.unique', (['masks'], {}), '(masks)\n', (559, 566), True, 'import numpy as np\n'), ((1580, 1637), 'json.dump', 'json.dump', (['json_dict', 'f'], {'indent': '(2)', 'separators': "(',', ': ')"}), "(json_dict, f, indent=2, separators=(',', ': '))\n", (1589, 1637), False, 'import json\n'), ((1760, 1803), 'os.makedirs', 'os.makedirs', (['dst_ytbvos_path'], {'exist_ok': '(True)'}), '(dst_ytbvos_path, exist_ok=True)\n', (1771, 1803), False, 'import os\n'), ((1870, 1922), 'os.path.join', 'os.path.join', (['src_ytbvos_path', '"""train"""', '"""JPEGImages"""'], {}), "(src_ytbvos_path, 'train', 'JPEGImages')\n", (1882, 1922), False, 'import os\n'), ((1953, 2013), 'os.path.join', 'os.path.join', (['src_ytbvos_path', '"""train"""', '"""CleanedAnnotations"""'], {}), "(src_ytbvos_path, 'train', 'CleanedAnnotations')\n", (1965, 2013), False, 'import os\n'), ((2081, 2131), 'os.path.join', 'os.path.join', (['dst_ytbvos_path', '"""ImageSets"""', '"""2017"""'], {}), "(dst_ytbvos_path, 'ImageSets', '2017')\n", (2093, 2131), False, 'import os\n'), ((2161, 2212), 'os.path.join', 'os.path.join', (['dst_ytbvos_path', '"""JPEGImages"""', '"""480p"""'], {}), "(dst_ytbvos_path, 'JPEGImages', '480p')\n", (2173, 2212), False, 'import os\n'), ((2243, 2295), 'os.path.join', 'os.path.join', (['dst_ytbvos_path', '"""Annotations"""', '"""480p"""'], {}), "(dst_ytbvos_path, 'Annotations', '480p')\n", (2255, 2295), False, 'import os\n'), ((2324, 2366), 'os.path.join', 'os.path.join', (['dst_ytbvos_path', '"""Scribbles"""'], {}), "(dst_ytbvos_path, 'Scribbles')\n", (2336, 2366), False, 'import os\n'), ((3229, 3274), 'os.makedirs', 'os.makedirs', (['dst_dir_ImageSets'], {'exist_ok': '(True)'}), '(dst_dir_ImageSets, exist_ok=True)\n', (3240, 3274), False, 'import os\n'), ((3283, 3329), 'os.makedirs', 'os.makedirs', (['dst_dir_JPEGImages'], {'exist_ok': '(True)'}), '(dst_dir_JPEGImages, exist_ok=True)\n', (3294, 3329), False, 'import os\n'), ((3338, 3385), 'os.makedirs', 'os.makedirs', (['dst_dir_Annotations'], {'exist_ok': '(True)'}), '(dst_dir_Annotations, exist_ok=True)\n', (3349, 3385), False, 'import os\n'), ((3394, 3439), 'os.makedirs', 'os.makedirs', (['dst_dir_Scribbles'], {'exist_ok': '(True)'}), '(dst_dir_Scribbles, exist_ok=True)\n', (3405, 3439), False, 'import os\n'), ((2379, 2412), 'os.path.isdir', 'os.path.isdir', (['src_dir_JPEGImages'], {}), '(src_dir_JPEGImages)\n', (2392, 2412), False, 'import os\n'), ((2417, 2451), 'os.path.isdir', 'os.path.isdir', (['src_dir_Annotations'], {}), '(src_dir_Annotations)\n', (2430, 2451), False, 'import os\n'), ((2456, 2486), 'os.path.isdir', 'os.path.isdir', (['scb_ytbvos_path'], {}), '(scb_ytbvos_path)\n', (2469, 2486), False, 'import os\n'), ((3514, 3554), 'os.path.join', 'os.path.join', (['scb_ytbvos_path', '"""val.txt"""'], {}), "(scb_ytbvos_path, 'val.txt')\n", (3526, 3554), False, 'import os\n'), ((3556, 3598), 'os.path.join', 'os.path.join', (['dst_dir_ImageSets', '"""val.txt"""'], {}), "(dst_dir_ImageSets, 'val.txt')\n", (3568, 3598), False, 'import os\n'), ((3771, 3808), 'os.path.join', 'os.path.join', (['src_dir_JPEGImages', 'seq'], {}), '(src_dir_JPEGImages, seq)\n', (3783, 3808), False, 'import os\n'), ((3846, 3883), 'os.path.join', 'os.path.join', (['dst_dir_JPEGImages', 'seq'], {}), '(dst_dir_JPEGImages, seq)\n', (3858, 3883), False, 'import os\n'), ((3896, 3946), 'os.makedirs', 'os.makedirs', (['dst_dir_JPEGImages_seq'], {'exist_ok': '(True)'}), '(dst_dir_JPEGImages_seq, exist_ok=True)\n', (3907, 3946), False, 'import os\n'), ((4456, 4494), 'os.path.join', 'os.path.join', (['src_dir_Annotations', 'seq'], {}), '(src_dir_Annotations, seq)\n', (4468, 4494), False, 'import os\n'), ((4533, 4571), 'os.path.join', 'os.path.join', (['dst_dir_Annotations', 'seq'], {}), '(dst_dir_Annotations, seq)\n', (4545, 4571), False, 'import os\n'), ((4584, 4635), 'os.makedirs', 'os.makedirs', (['dst_dir_Annotations_seq'], {'exist_ok': '(True)'}), '(dst_dir_Annotations_seq, exist_ok=True)\n', (4595, 4635), False, 'import os\n'), ((5144, 5178), 'os.path.join', 'os.path.join', (['scb_ytbvos_path', 'seq'], {}), '(scb_ytbvos_path, seq)\n', (5156, 5178), False, 'import os\n'), ((5215, 5251), 'os.path.join', 'os.path.join', (['dst_dir_Scribbles', 'seq'], {}), '(dst_dir_Scribbles, seq)\n', (5227, 5251), False, 'import os\n'), ((5264, 5313), 'os.makedirs', 'os.makedirs', (['dst_dir_Scribbles_seq'], {'exist_ok': '(True)'}), '(dst_dir_Scribbles_seq, exist_ok=True)\n', (5275, 5313), False, 'import os\n'), ((2861, 2894), 'os.path.isdir', 'os.path.isdir', (['src_dir_JPEGImages'], {}), '(src_dir_JPEGImages)\n', (2874, 2894), False, 'import os\n'), ((2980, 3014), 'os.path.isdir', 'os.path.isdir', (['src_dir_Annotations'], {}), '(src_dir_Annotations)\n', (2993, 3014), False, 'import os\n'), ((3101, 3131), 'os.path.isdir', 'os.path.isdir', (['scb_ytbvos_path'], {}), '(scb_ytbvos_path)\n', (3114, 3131), False, 'import os\n'), ((3979, 4013), 'os.listdir', 'os.listdir', (['src_dir_JPEGImages_seq'], {}), '(src_dir_JPEGImages_seq)\n', (3989, 4013), False, 'import os\n'), ((4091, 4133), 'os.path.join', 'os.path.join', (['src_dir_JPEGImages_seq', 'file'], {}), '(src_dir_JPEGImages_seq, file)\n', (4103, 4133), False, 'import os\n'), ((4668, 4703), 'os.listdir', 'os.listdir', (['src_dir_Annotations_seq'], {}), '(src_dir_Annotations_seq)\n', (4678, 4703), False, 'import os\n'), ((4781, 4824), 'os.path.join', 'os.path.join', (['src_dir_Annotations_seq', 'file'], {}), '(src_dir_Annotations_seq, file)\n', (4793, 4824), False, 'import os\n'), ((5346, 5379), 'os.listdir', 'os.listdir', (['src_dir_Scribbles_seq'], {}), '(src_dir_Scribbles_seq)\n', (5356, 5379), False, 'import os\n'), ((5457, 5498), 'os.path.join', 'os.path.join', (['src_dir_Scribbles_seq', 'file'], {}), '(src_dir_Scribbles_seq, file)\n', (5469, 5498), False, 'import os\n'), ((5526, 5567), 'os.path.join', 'os.path.join', (['dst_dir_Scribbles_seq', 'file'], {}), '(dst_dir_Scribbles_seq, file)\n', (5538, 5567), False, 'import os\n'), ((5710, 5744), 'os.listdir', 'os.listdir', (['src_dir_JPEGImages_seq'], {}), '(src_dir_JPEGImages_seq)\n', (5720, 5744), False, 'import os\n'), ((2544, 2574), 'os.listdir', 'os.listdir', (['src_dir_JPEGImages'], {}), '(src_dir_JPEGImages)\n', (2554, 2574), False, 'import os\n'), ((2583, 2614), 'os.listdir', 'os.listdir', (['src_dir_Annotations'], {}), '(src_dir_Annotations)\n', (2593, 2614), False, 'import os\n'), ((2638, 2678), 'os.path.join', 'os.path.join', (['scb_ytbvos_path', '"""val.txt"""'], {}), "(scb_ytbvos_path, 'val.txt')\n", (2650, 2678), False, 'import os\n'), ((4247, 4271), 'os.path.exists', 'os.path.exists', (['dst_path'], {}), '(dst_path)\n', (4261, 4271), False, 'import os\n'), ((4273, 4308), 'shutil.copyfile', 'shutil.copyfile', (['src_path', 'dst_path'], {}), '(src_path, dst_path)\n', (4288, 4308), False, 'import shutil\n'), ((4939, 4963), 'os.path.exists', 'os.path.exists', (['dst_path'], {}), '(dst_path)\n', (4953, 4963), False, 'import os\n'), ((4965, 5000), 'shutil.copyfile', 'shutil.copyfile', (['src_path', 'dst_path'], {}), '(src_path, dst_path)\n', (4980, 5000), False, 'import shutil\n'), ((5591, 5615), 'os.path.exists', 'os.path.exists', (['dst_path'], {}), '(dst_path)\n', (5605, 5615), False, 'import os\n'), ((5617, 5652), 'shutil.copyfile', 'shutil.copyfile', (['src_path', 'dst_path'], {}), '(src_path, dst_path)\n', (5632, 5652), False, 'import shutil\n'), ((399, 428), 'os.path.join', 'os.path.join', (['ann_dir', 'seq', 'f'], {}), '(ann_dir, seq, f)\n', (411, 428), False, 'import os\n')]
# # Created by djz on 2022/04/01. # import numpy as np from typing import Dict from transformers.file_utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import GenericTensor, Pipeline def sigmoid(_outputs): return 1.0 / (1.0 + np.exp(-_outputs)) def softmax(_outputs): maxes = np.max(_outputs, axis=-1, keepdims=True) shifted_exp = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class ClassificationFunction(ExplicitEnum): SIGMOID = "sigmoid" SOFTMAX = "softmax" NONE = "none" class TextClassificationPipeline(Pipeline): return_all_scores = False function_to_apply = ClassificationFunction.NONE def __init__(self, **kwargs): super().__init__(**kwargs) def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, **tokenizer_kwargs): preprocess_params = tokenizer_kwargs postprocess_params = {} if hasattr(self.model.config, "return_all_scores") and return_all_scores is None: return_all_scores = self.model.config.return_all_scores if return_all_scores is not None: postprocess_params["return_all_scores"] = return_all_scores if isinstance(function_to_apply, str): function_to_apply = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: postprocess_params["function_to_apply"] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self, *args, **kwargs): result = super().__call__(*args, **kwargs) if isinstance(args[0], str): # This pipeline is odd, and return a list when single item is run return [result] else: return result def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, GenericTensor]: return_tensors = 'pt' return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) def _forward(self, model_inputs): return self.model(**model_inputs) def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: function_to_apply = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: function_to_apply = ClassificationFunction.SOFTMAX elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: function_to_apply = self.model.config.function_to_apply else: function_to_apply = ClassificationFunction.NONE outputs = model_outputs["logits"][0] outputs = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: scores = sigmoid(outputs) elif function_to_apply == ClassificationFunction.SOFTMAX: scores = softmax(outputs) elif function_to_apply == ClassificationFunction.NONE: scores = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") if return_all_scores: return [{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores)] else: return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()}
[ "numpy.max", "numpy.exp" ]
[((331, 371), 'numpy.max', 'np.max', (['_outputs'], {'axis': '(-1)', 'keepdims': '(True)'}), '(_outputs, axis=-1, keepdims=True)\n', (337, 371), True, 'import numpy as np\n'), ((390, 414), 'numpy.exp', 'np.exp', (['(_outputs - maxes)'], {}), '(_outputs - maxes)\n', (396, 414), True, 'import numpy as np\n'), ((276, 293), 'numpy.exp', 'np.exp', (['(-_outputs)'], {}), '(-_outputs)\n', (282, 293), True, 'import numpy as np\n')]
#coding: UTF-8 import sys import os import os.path import glob import cv2 import numpy as np CAPTUREDDIR = './captured' CALIBFLAG = 0 # cv2.CALIB_FIX_K3 def calibFromImages(dirname, chess_shape, chess_block_size): if not os.path.exists(dirname): print('Directory \'' + dirname + '\' was not found') return None filenames = sorted(glob.glob(dirname + '/*')) if len(filenames) == 0: print('No image was found in \'' + dirname + '\'') return None print('=== Camera Calibration ===') objp = np.zeros((chess_shape[0]*chess_shape[1], 3), np.float32) objp[:, :2] = chess_block_size * \ np.mgrid[0:chess_shape[0], 0:chess_shape[1]].T.reshape(-1, 2) print('Finding chess corners in input images ...') objp_list = [] imgp_list = [] img_shape = None for f in filenames: print(' ' + f + ' : ', end='') img = cv2.imread(f, cv2.IMREAD_GRAYSCALE) if img_shape is None: img_shape = img.shape elif img_shape != img.shape: print('Mismatch size') continue ret, imgp = cv2.findChessboardCorners(img, chess_shape, None) if ret: print('Found') objp_list.append(objp) imgp_list.append(imgp) else: print('Not found') print(' ', len(objp_list), 'images are used') ret, cam_int, cam_dist, rvecs, tvecs = cv2.calibrateCamera( objp_list, imgp_list, img_shape, None, None, None, None, CALIBFLAG ) print('Image size :', img_shape) print('RMS :', ret) print('Intrinsic parameters :') print(cam_int) print('Distortion parameters :') print(cam_dist) print() rmtxs = list(map(lambda vec: cv2.Rodrigues(vec)[0], rvecs)) fs = cv2.FileStorage('calibration.xml', cv2.FILE_STORAGE_WRITE) fs.write('img_shape', img_shape) fs.write('rms', ret) fs.write('intrinsic', cam_int) fs.write('distortion', cam_dist) fs.write('rotation_vectors', np.array(rvecs)) fs.write('rotation_matrixes', np.array(rmtxs)) fs.write('translation_vectors', np.array(tvecs)) fs.release() return (img_shape, ret, cam_int, cam_dist, rvecs, tvecs) if __name__ == '__main__': if len(sys.argv) == 4: chess_shape = (int(sys.argv[1]), int(sys.argv[2])) chess_block_size = float(sys.argv[3]) calibFromImages(CAPTUREDDIR, chess_shape, chess_block_size) else: print('Usage :') print(' Save captured images into \'' + CAPTUREDDIR + '\'') print( ' Run \'python3 caliblate_camera_from_images.py <num of chess corners in vert> <num of chess corners in hori> <chess block size(m or mm)>')
[ "cv2.findChessboardCorners", "numpy.zeros", "os.path.exists", "cv2.imread", "cv2.FileStorage", "cv2.Rodrigues", "numpy.array", "cv2.calibrateCamera", "glob.glob" ]
[((548, 606), 'numpy.zeros', 'np.zeros', (['(chess_shape[0] * chess_shape[1], 3)', 'np.float32'], {}), '((chess_shape[0] * chess_shape[1], 3), np.float32)\n', (556, 606), True, 'import numpy as np\n'), ((1422, 1513), 'cv2.calibrateCamera', 'cv2.calibrateCamera', (['objp_list', 'imgp_list', 'img_shape', 'None', 'None', 'None', 'None', 'CALIBFLAG'], {}), '(objp_list, imgp_list, img_shape, None, None, None, None,\n CALIBFLAG)\n', (1441, 1513), False, 'import cv2\n'), ((1784, 1842), 'cv2.FileStorage', 'cv2.FileStorage', (['"""calibration.xml"""', 'cv2.FILE_STORAGE_WRITE'], {}), "('calibration.xml', cv2.FILE_STORAGE_WRITE)\n", (1799, 1842), False, 'import cv2\n'), ((231, 254), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (245, 254), False, 'import os\n'), ((361, 386), 'glob.glob', 'glob.glob', (["(dirname + '/*')"], {}), "(dirname + '/*')\n", (370, 386), False, 'import glob\n'), ((907, 942), 'cv2.imread', 'cv2.imread', (['f', 'cv2.IMREAD_GRAYSCALE'], {}), '(f, cv2.IMREAD_GRAYSCALE)\n', (917, 942), False, 'import cv2\n'), ((1120, 1169), 'cv2.findChessboardCorners', 'cv2.findChessboardCorners', (['img', 'chess_shape', 'None'], {}), '(img, chess_shape, None)\n', (1145, 1169), False, 'import cv2\n'), ((2010, 2025), 'numpy.array', 'np.array', (['rvecs'], {}), '(rvecs)\n', (2018, 2025), True, 'import numpy as np\n'), ((2061, 2076), 'numpy.array', 'np.array', (['rmtxs'], {}), '(rmtxs)\n', (2069, 2076), True, 'import numpy as np\n'), ((2114, 2129), 'numpy.array', 'np.array', (['tvecs'], {}), '(tvecs)\n', (2122, 2129), True, 'import numpy as np\n'), ((1743, 1761), 'cv2.Rodrigues', 'cv2.Rodrigues', (['vec'], {}), '(vec)\n', (1756, 1761), False, 'import cv2\n')]