code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import numpy as np import torch import torch.nn as nn from modules.envelope import Envelope from modules.initializers import GlorotOrthogonal class EmbeddingBlock(nn.Module): def __init__(self, emb_size, num_radial, bessel_funcs, cutoff, envelope_exponent, num_atom_types=95, activation=None): super(EmbeddingBlock, self).__init__() self.bessel_funcs = bessel_funcs self.cutoff = cutoff self.activation = activation self.envelope = Envelope(envelope_exponent) self.embedding = nn.Embedding(num_atom_types, emb_size) self.dense_rbf = nn.Linear(num_radial, emb_size) self.dense = nn.Linear(emb_size * 3, emb_size) self.reset_params() def reset_params(self): nn.init.uniform_(self.embedding.weight, a=-np.sqrt(3), b=np.sqrt(3)) GlorotOrthogonal(self.dense_rbf.weight) GlorotOrthogonal(self.dense.weight) def edge_init(self, edges): """ msg emb init """ # m init rbf = self.dense_rbf(edges.data['rbf']) if self.activation is not None: rbf = self.activation(rbf) m = torch.cat([edges.src['h'], edges.dst['h'], rbf], dim=-1) m = self.dense(m) if self.activation is not None: m = self.activation(m) # rbf_env init d_scaled = edges.data['d'] / self.cutoff rbf_env = [f(d_scaled) for f in self.bessel_funcs] rbf_env = torch.stack(rbf_env, dim=1) d_cutoff = self.envelope(d_scaled) rbf_env = d_cutoff[:, None] * rbf_env return {'m': m, 'rbf_env': rbf_env} def forward(self, g): g.ndata['h'] = self.embedding(g.ndata['Z']) g.apply_edges(self.edge_init) return g
[ "torch.stack", "torch.nn.Embedding", "torch.cat", "modules.envelope.Envelope", "torch.nn.Linear", "numpy.sqrt", "modules.initializers.GlorotOrthogonal" ]
[((598, 625), 'modules.envelope.Envelope', 'Envelope', (['envelope_exponent'], {}), '(envelope_exponent)\n', (606, 625), False, 'from modules.envelope import Envelope\n'), ((651, 689), 'torch.nn.Embedding', 'nn.Embedding', (['num_atom_types', 'emb_size'], {}), '(num_atom_types, emb_size)\n', (663, 689), True, 'import torch.nn as nn\n'), ((715, 746), 'torch.nn.Linear', 'nn.Linear', (['num_radial', 'emb_size'], {}), '(num_radial, emb_size)\n', (724, 746), True, 'import torch.nn as nn\n'), ((768, 801), 'torch.nn.Linear', 'nn.Linear', (['(emb_size * 3)', 'emb_size'], {}), '(emb_size * 3, emb_size)\n', (777, 801), True, 'import torch.nn as nn\n'), ((948, 987), 'modules.initializers.GlorotOrthogonal', 'GlorotOrthogonal', (['self.dense_rbf.weight'], {}), '(self.dense_rbf.weight)\n', (964, 987), False, 'from modules.initializers import GlorotOrthogonal\n'), ((996, 1031), 'modules.initializers.GlorotOrthogonal', 'GlorotOrthogonal', (['self.dense.weight'], {}), '(self.dense.weight)\n', (1012, 1031), False, 'from modules.initializers import GlorotOrthogonal\n'), ((1251, 1307), 'torch.cat', 'torch.cat', (["[edges.src['h'], edges.dst['h'], rbf]"], {'dim': '(-1)'}), "([edges.src['h'], edges.dst['h'], rbf], dim=-1)\n", (1260, 1307), False, 'import torch\n'), ((1567, 1594), 'torch.stack', 'torch.stack', (['rbf_env'], {'dim': '(1)'}), '(rbf_env, dim=1)\n', (1578, 1594), False, 'import torch\n'), ((928, 938), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (935, 938), True, 'import numpy as np\n'), ((914, 924), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (921, 924), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Various registration routines to reduce duplication. """ import numpy as np import sksurgerycore.transforms.matrix as mt import sksurgerysurfacematch.interfaces.rigid_registration as rr def do_rigid_registration(reconstructed_cloud, reference_cloud, rigid_registration: rr.RigidRegistration, initial_ref2recon: np.ndarray = None, ): """ Triggers a rigid body registration using rigid_registration. :param reconstructed_cloud: [Nx3] point cloud, e.g. from video. :param reference_cloud: [Mx3] point cloud, e.g. from CT/MR :param rigid_registration: Object that implements a rigid registration. :param initial_ref2recon_transform: [4x4] ndarray representing an initial \ estimate. :return: residual (float), [4x4] transform """ if initial_ref2recon is not None: reference_cloud = \ np.matmul( initial_ref2recon[0:3, 0:3], np.transpose(reference_cloud)) \ + initial_ref2recon[0:3, 3].reshape((3, 1)) reference_cloud = np.transpose(reference_cloud) # Do registration. Best to register recon points to # the provided model (likely from CT or MR), and then invert. residual, transform = \ rigid_registration.register(reconstructed_cloud, reference_cloud ) transform = np.linalg.inv(transform) # Combine initial, if we have one. if initial_ref2recon is not None: init_mat = \ mt.construct_rigid_transformation( initial_ref2recon[0:3, 0:3], initial_ref2recon[0:3, 3] ) transform = np.matmul(transform, init_mat) return residual, transform
[ "numpy.transpose", "numpy.linalg.inv", "numpy.matmul", "sksurgerycore.transforms.matrix.construct_rigid_transformation" ]
[((1492, 1516), 'numpy.linalg.inv', 'np.linalg.inv', (['transform'], {}), '(transform)\n', (1505, 1516), True, 'import numpy as np\n'), ((1148, 1177), 'numpy.transpose', 'np.transpose', (['reference_cloud'], {}), '(reference_cloud)\n', (1160, 1177), True, 'import numpy as np\n'), ((1628, 1721), 'sksurgerycore.transforms.matrix.construct_rigid_transformation', 'mt.construct_rigid_transformation', (['initial_ref2recon[0:3, 0:3]', 'initial_ref2recon[0:3, 3]'], {}), '(initial_ref2recon[0:3, 0:3],\n initial_ref2recon[0:3, 3])\n', (1661, 1721), True, 'import sksurgerycore.transforms.matrix as mt\n'), ((1784, 1814), 'numpy.matmul', 'np.matmul', (['transform', 'init_mat'], {}), '(transform, init_mat)\n', (1793, 1814), True, 'import numpy as np\n'), ((1033, 1062), 'numpy.transpose', 'np.transpose', (['reference_cloud'], {}), '(reference_cloud)\n', (1045, 1062), True, 'import numpy as np\n')]
# From https://groups.google.com/forum/#!topic/networkx-discuss/FwYk0ixLDuY # Plot weighted directed positive/negative network graph import networkx as nx import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch, Circle import numpy as np def draw_curvy_network(G, pos, ax, node_radius=0.02, node_color='b', node_edge_color='b', node_alpha=0.5, edge_color=None, edge_alpha=0.5, edge_width=None): assert isinstance(G, nx.Graph), "G must be a NetworkX graph!" # Convert node colors to lists def _to_list(x, N): if isinstance(x, list): assert len(x) == N return x else: return [x] * N node_radius = _to_list(node_radius, len(G.nodes())) node_color = _to_list(node_color, len(G.nodes())) node_edge_color = _to_list(node_edge_color, len(G.nodes())) node_alpha = _to_list(node_alpha, len(G.nodes())) if edge_color is None: edge_color = _to_list('k', len(G.edges())) edge_alpha = _to_list(edge_alpha, len(G.edges())) # if user specify edge-width it is not the same if edge_width is None: edge_width = 2 edge_width = _to_list(edge_width, len(G.edges())) # Plot the nodes for n, r, a, fc, ec in zip(G, node_radius, node_alpha, node_color, node_edge_color): c = Circle(pos[n], radius=r, alpha=a, fc=fc, ec=ec) ax.add_patch(c) G.node[n]['patch'] = c # Plot the edges seen = {} for (u, v, d), a, lw, ec in zip(G.edges(data=True), edge_alpha, edge_width, edge_color): n1 = G.node[u]['patch'] n2 = G.node[v]['patch'] rad = -0.1 if (u, v) in seen: rad = seen.get((u, v)) rad = (rad + np.sign(rad) * 0.1) * -1 e = FancyArrowPatch(n1.center, n2.center, patchA=n1, patchB=n2, arrowstyle='-|>', connectionstyle='arc3,rad=%s' % rad, mutation_scale=10.0, lw=lw, alpha=a, color=ec) seen[(u, v)] = rad ax.add_patch(e) return e if __name__ == "__main__": from hips.plotting.colormaps import harvard_colors color = harvard_colors()[0:10] G = nx.MultiDiGraph([(1, 1), (1, 2), (2, 1), (2, 3), (3, 4), (2, 4), (3, 2)]) pos = nx.spring_layout(G) ax = plt.gca() edge_width = [5, 0.9, 0.8, 2, 2, 1, 5] edge_color = [color[0], color[0], color[0], color[0], color[1], color[1], color[1]] draw_curvy_network(G, pos, ax, node_color='k', node_edge_color='k', edge_width=edge_width, edge_color=edge_color) ax.autoscale() plt.axis('equal') plt.axis('off') # plt.savefig("graph.pdf") plt.show()
[ "matplotlib.pyplot.show", "networkx.MultiDiGraph", "hips.plotting.colormaps.harvard_colors", "matplotlib.patches.FancyArrowPatch", "matplotlib.pyplot.axis", "matplotlib.patches.Circle", "numpy.sign", "networkx.spring_layout", "matplotlib.pyplot.gca" ]
[((2141, 2214), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', (['[(1, 1), (1, 2), (2, 1), (2, 3), (3, 4), (2, 4), (3, 2)]'], {}), '([(1, 1), (1, 2), (2, 1), (2, 3), (3, 4), (2, 4), (3, 2)])\n', (2156, 2214), True, 'import networkx as nx\n'), ((2226, 2245), 'networkx.spring_layout', 'nx.spring_layout', (['G'], {}), '(G)\n', (2242, 2245), True, 'import networkx as nx\n'), ((2255, 2264), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2262, 2264), True, 'import matplotlib.pyplot as plt\n'), ((2562, 2579), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (2570, 2579), True, 'import matplotlib.pyplot as plt\n'), ((2584, 2599), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2592, 2599), True, 'import matplotlib.pyplot as plt\n'), ((2635, 2645), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2643, 2645), True, 'import matplotlib.pyplot as plt\n'), ((1319, 1366), 'matplotlib.patches.Circle', 'Circle', (['pos[n]'], {'radius': 'r', 'alpha': 'a', 'fc': 'fc', 'ec': 'ec'}), '(pos[n], radius=r, alpha=a, fc=fc, ec=ec)\n', (1325, 1366), False, 'from matplotlib.patches import FancyArrowPatch, Circle\n'), ((1759, 1929), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['n1.center', 'n2.center'], {'patchA': 'n1', 'patchB': 'n2', 'arrowstyle': '"""-|>"""', 'connectionstyle': "('arc3,rad=%s' % rad)", 'mutation_scale': '(10.0)', 'lw': 'lw', 'alpha': 'a', 'color': 'ec'}), "(n1.center, n2.center, patchA=n1, patchB=n2, arrowstyle=\n '-|>', connectionstyle='arc3,rad=%s' % rad, mutation_scale=10.0, lw=lw,\n alpha=a, color=ec)\n", (1774, 1929), False, 'from matplotlib.patches import FancyArrowPatch, Circle\n'), ((2109, 2125), 'hips.plotting.colormaps.harvard_colors', 'harvard_colors', ([], {}), '()\n', (2123, 2125), False, 'from hips.plotting.colormaps import harvard_colors\n'), ((1721, 1733), 'numpy.sign', 'np.sign', (['rad'], {}), '(rad)\n', (1728, 1733), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import numpy as np import scipy.io # Exercise 5 | Regularized Linear Regression and Bias-Variance # # Instructions # ------------ # # This file contains code that helps you get started on the # exercise. You will need to complete the following functions: # # linearRegCostFunction.m # learningCurve.m # validationCurve.m # # For this exercise, you will not need to change any code in this file, # or any other files other than those mentioned above. # class test_ex5_regularized_linear_regressionand_bias_vs_variance(unittest.TestCase): @classmethod def setUp(cls): # Load Training Data print('Loading and Visualizing Data ...') data_file = "resource/ex5data1.mat" # Load # You will have X, y, Xval, yval, Xtest, ytest in your environment mat = scipy.io.loadmat(data_file) cls.X = mat["X"] cls.y = mat["y"] cls.Xval = mat["Xval"] cls.yval = mat["yval"] cls.Xtest = mat["Xtest"] cls.ytest = mat["ytest"] cls.m = np.shape(cls.X)[0] # =========== Part 1: Loading and Visualizing Data ============= # We start the exercise by first loading and visualizing the dataset. # The following code will load the dataset into your environment and plot # the data. # def test_load_and_visualzing_data(self): import matplotlib.pyplot as plt # print("point_end_y: {max_y}".format(max_y = point_end_y)) plt.figure(1) plt.xlabel('Change in water level (x)') plt.ylabel('Water flowing out of the dam (y)') plt.scatter(self.X, self.y, marker='o', color='k', s=10) plt.show() # Plot training data print('Program paused. Press enter to continue.') # =========== Part 2: Regularized Linear Regression Cost ============= # You should now implement the cost function for regularized linear # regression. def test_regularized_linear_regression_cost_and_grad(self): # m = Number of examples theta = np.array([[1], [1]]) X_padded = np.column_stack((np.ones((self.m, 1)), self.X)) from ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction import linearRegCostFunction J, grad = linearRegCostFunction(X_padded, self.y, theta, 1) self.assertAlmostEqual(J, 303.993, delta=0.001) print('Cost at theta = [1 ; 1]: {cost} \n' '(this value should be about 303.993192)'.format(cost=J)) # =========== Part 3: Regularized Linear Regression Gradient ============= # You should now implement the gradient for regularized linear # regression. self.assertAlmostEqual(grad[0], -15.303016, delta=0.0001) self.assertAlmostEqual(grad[1], 598.250744, delta=0.0001) print('Gradient at theta = [1 ; 1]: [{grad_0}; {grad_1}] \n' '(this value should be about [-15.303016; 598.250744])\n'.format(grad_0=grad[0], grad_1=grad[1])) # =========== Part 4: Train Linear Regression ============= # Once you have implemented the cost and gradient correctly, the # trainLinearReg function will use your cost function to train # regularized linear regression. # # Write Up Note: The data is non - linear, so this will not give a great # fit. # def test_train_linear_reg(self): from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg # Train linear regression with lambda = 0 _lambda = 0 x_with_bias = np.column_stack((np.ones(self.m), self.X)) cost, theta = trainLinearReg(x_with_bias, self.y, _lambda) ret = x_with_bias.dot(theta) import matplotlib.pyplot as plt plt.figure(1) plt.xlabel('Change in water level (x)') plt.ylabel('Water flowing out of the dam (y)') plt.scatter(self.X, self.y, marker='x', c='r', s=30, linewidth=2) plt.plot(self.X, ret, linewidth=2) plt.show() # =========== Part 5: Learning Curve for Linear Regression ============= # Next, you should implement the learningCurve function. # # Write Up Note: Since the model is underfitting the data, we expect to # see a graph with "high bias" -- slide 8 in ML-advice.pdf # def test_learning_curve_for_linear_regression(self): _lambda = 0 from ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve import learningCurve x_with_bias = np.column_stack((np.ones(self.m), self.X)) x_val_with_bias = np.column_stack((np.ones(np.shape(self.Xval)[0]), self.Xval)) error_train, error_val = learningCurve(x_with_bias, self.y, x_val_with_bias, self.yval, 0) print('# Training Examples\tTrain Error\tCross Validation Error') for i in range(self.m): print(' \t{index}\t\t{error_train}\t{error_val}\n'.format(index=i, error_train=error_train[i], error_val=error_val[i])) import matplotlib.pyplot as plt temp = np.array([x for x in range(1, self.m + 1)]) # plt.plot(1:m, error_train, 1:m, error_val); plt.title('Learning curve for linear regression') plt.xlabel('Number of training examples') plt.ylabel('Error') plt.plot(temp, np.array(error_train), color='b', linewidth=2, label='Train') plt.plot(temp, np.array(error_val), color='y', linewidth=2, label='Cross Validation') plt.legend() plt.show(block=True) # =========== Part 6: Feature Mapping for Polynomial Regression ============= # One solution to this is to use polynomial regression.You should now # complete polyFeatures to map each example into its powers # def test_feature_mapping_for_polynomial_regression(self): p = 8 # Map X onto Polynomial Features and Normalize from ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures import polyFeatures X_poly = polyFeatures(self.X, p) X_poly_m, X_poly_n = np.shape(X_poly) self.assertEqual(X_poly_m, self.m) self.assertEqual(X_poly_n, p) from ex5_regularized_linear_regressionand_bias_vs_variance.featureNormalize import featureNormalize X_poly, mu, sigma = featureNormalize(X_poly) X_poly = np.column_stack((np.ones((self.m, 1)), X_poly)) X_poly_test = polyFeatures(self.Xtest, p) X_poly_test_m, X_poly_test_n = np.shape(X_poly_test) self.assertEqual(X_poly_test_m, np.shape(self.Xtest)[0]) self.assertEqual(X_poly_test_n, p) X_poly_test = X_poly_test - mu X_poly_test = X_poly_test / sigma X_poly_test = np.column_stack((np.ones((X_poly_test.shape[0], 1)), X_poly_test)) X_poly_val = polyFeatures(self.Xval, p) X_poly_val_m, X_poly_val_n = np.shape(X_poly_val) self.assertEqual(X_poly_val_m, np.shape(self.Xval)[0]) self.assertEqual(X_poly_val_n, p) X_poly_val = X_poly_val - mu X_poly_val = X_poly_val / sigma X_poly_val = np.column_stack((np.ones((X_poly_val.shape[0], 1)), X_poly_val)) print('Normalized Training Example 1:\n' ' {X_poly} '.format(X_poly=X_poly)) # =========== Part 7: Learning Curve for Polynomial Regression ============= # Now, you will get to experiment with polynomial regression with multiple # values of lambda .The code below runs polynomial regression with # lambda = 0. You should try running the code with different values of # lambda to see how the fit and learning curve change. # _lambda = 0 from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg cost, theta = trainLinearReg(X_poly, self.y, _lambda) self.assertIsNotNone(cost) self.assertIsNotNone(theta) import matplotlib.pyplot as plt plt.figure(1) plt.scatter(self.X, self.y, marker='x', c='r', s=30, linewidth=2) plt.xlim([-80, 80]) plt.ylim([-20, 60]) plt.xlabel('Change in water level(x)') plt.ylabel('Water flowing out of the dam(y)') plt.title('Polynomial Regression Fit (lambda = {:f})'.format(_lambda)) # plt.plot(self.X, self.y, 'rx', markersize=10, linewidth=1.5) from ex5_regularized_linear_regressionand_bias_vs_variance.plotFit import plotFit plotFit(min(self.X), max(self.X), mu, sigma, theta, p) plt.show(block=False) plt.figure(2) from ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve import learningCurve error_train, error_val = learningCurve(X_poly, self.y, X_poly_val, self.yval, 0) p1, p2 = plt.plot(range(1, self.m + 1), error_train, range(1, self.m + 1), error_val) plt.legend((p1, p2), ('Train', 'Cross Validation')) plt.show(block=False) print('Polynomial Regression (lambda =%{_lambda})'.format(_lambda=_lambda)) print('# Training Examples\tTrain Error\tCross Validation Error') for i in range(0, self.m): print('\t{i}\t\t{error_train}\t{error_val}'.format(i=i, error_train=error_train[i], error_val=error_val[i])) # =========== Part 8: Validation for Selecting Lambda ============= # You will now implement validationCurve to test various values of # lambda on a validation set. You will then use this to select the # "best" lambda value. # from ex5_regularized_linear_regressionand_bias_vs_variance.validationCurve import validationCurve lambda_vec, error_train, error_val = validationCurve(X_poly, self.y, X_poly_val, self.yval) self.assertEqual(len(error_train), len(lambda_vec)) self.assertEqual(len(error_val), len(lambda_vec)) plt.close('all') p1, p2, = plt.plot(lambda_vec, error_train, lambda_vec, error_val) plt.legend((p1, p2), ('Train', 'Cross Validation')) plt.xlabel('lambda') plt.ylabel('Error') plt.show(block=False) print('lambda\t\tTrain Error\tValidation Error') for i in range(len(lambda_vec)): print( '{lambda_vec}\t{error_train}\t{error_val}'.format(lambda_vec=lambda_vec[i], error_train=error_train[i], error_val=error_val[i])) # =========== Part 9: Computing test set error and Plotting learning curves with randomly selected examples # ============= best lambda value from previous step lambda_val = 3 # note that we're using X_poly - polynomial linear regression with polynomial features from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg _, theta = trainLinearReg(X_poly, self.y, lambda_val) # because we're using X_poly, we also have to use X_poly_test with polynomial features from ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction import linearRegCostFunction error_test, _ = linearRegCostFunction(X_poly_test, self.ytest, theta, 0) print('Test set error: {error_test}'.format(error_test=error_test)) # expected 3.859 # why? something wrong # self.assertAlmostEqual(error_test, 3.859, delta=0.01) # =========== Part 10: Plot learning curves with randomly selected examples ============= # # lambda_val value for this step lambda_val = 0.01 times = 50 error_train_rand = np.zeros((self.m, times)) error_val_rand = np.zeros((self.m, times)) for i in range(self.m): for k in range(times): rand_sample_train = np.random.permutation(X_poly.shape[0]) rand_sample_train = rand_sample_train[:i + 1] rand_sample_val = np.random.permutation(X_poly_val.shape[0]) rand_sample_val = rand_sample_val[:i + 1] X_poly_train_rand = X_poly[rand_sample_train, :] y_train_rand = self.y[rand_sample_train] X_poly_val_rand = X_poly_val[rand_sample_val, :] y_val_rand = self.yval[rand_sample_val] _, theta = trainLinearReg(X_poly_train_rand, y_train_rand, lambda_val) cost, _ = linearRegCostFunction(X_poly_train_rand, y_train_rand, np.asarray(theta), 0) error_train_rand[i, k] = cost cost, _ = linearRegCostFunction(X_poly_val_rand, y_val_rand, theta, 0) error_val_rand[i, k] = cost error_train = np.mean(error_train_rand, axis=1) error_val = np.mean(error_val_rand, axis=1) p1, p2 = plt.plot(range(self.m), error_train, range(self.m), error_val) plt.title('Polynomial Regression Learning Curve (lambda = {:f})'.format(lambda_val)) plt.legend((p1, p2), ('Train', 'Cross Validation')) plt.xlabel('Number of training examples') plt.ylabel('Error') plt.axis([0, 13, 0, 150]) plt.show(block=False) if __name__ == '__main__': unittest.main()
[ "matplotlib.pyplot.title", "ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg.trainLinearReg", "numpy.ones", "ex5_regularized_linear_regressionand_bias_vs_variance.featureNormalize.featureNormalize", "numpy.shape", "matplotlib.pyplot.figure", "numpy.mean", "unittest.main", "matplotlib.pyplot.close", "ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction.linearRegCostFunction", "matplotlib.pyplot.show", "ex5_regularized_linear_regressionand_bias_vs_variance.validationCurve.validationCurve", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "numpy.asarray", "numpy.random.permutation", "matplotlib.pyplot.ylabel", "ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures.polyFeatures", "matplotlib.pyplot.xlim", "matplotlib.pyplot.plot", "matplotlib.pyplot.scatter", "numpy.zeros", "matplotlib.pyplot.axis", "numpy.array", "ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve.learningCurve", "matplotlib.pyplot.xlabel" ]
[((13315, 13330), 'unittest.main', 'unittest.main', ([], {}), '()\n', (13328, 13330), False, 'import unittest\n'), ((1535, 1548), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (1545, 1548), True, 'import matplotlib.pyplot as plt\n'), ((1557, 1596), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Change in water level (x)"""'], {}), "('Change in water level (x)')\n", (1567, 1596), True, 'import matplotlib.pyplot as plt\n'), ((1605, 1651), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water flowing out of the dam (y)"""'], {}), "('Water flowing out of the dam (y)')\n", (1615, 1651), True, 'import matplotlib.pyplot as plt\n'), ((1660, 1716), 'matplotlib.pyplot.scatter', 'plt.scatter', (['self.X', 'self.y'], {'marker': '"""o"""', 'color': '"""k"""', 's': '(10)'}), "(self.X, self.y, marker='o', color='k', s=10)\n", (1671, 1716), True, 'import matplotlib.pyplot as plt\n'), ((1725, 1735), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1733, 1735), True, 'import matplotlib.pyplot as plt\n'), ((2103, 2123), 'numpy.array', 'np.array', (['[[1], [1]]'], {}), '([[1], [1]])\n', (2111, 2123), True, 'import numpy as np\n'), ((2327, 2376), 'ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction.linearRegCostFunction', 'linearRegCostFunction', (['X_padded', 'self.y', 'theta', '(1)'], {}), '(X_padded, self.y, theta, 1)\n', (2348, 2376), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction import linearRegCostFunction\n'), ((3683, 3727), 'ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg.trainLinearReg', 'trainLinearReg', (['x_with_bias', 'self.y', '_lambda'], {}), '(x_with_bias, self.y, _lambda)\n', (3697, 3727), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg\n'), ((3814, 3827), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (3824, 3827), True, 'import matplotlib.pyplot as plt\n'), ((3836, 3875), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Change in water level (x)"""'], {}), "('Change in water level (x)')\n", (3846, 3875), True, 'import matplotlib.pyplot as plt\n'), ((3884, 3930), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water flowing out of the dam (y)"""'], {}), "('Water flowing out of the dam (y)')\n", (3894, 3930), True, 'import matplotlib.pyplot as plt\n'), ((3939, 4004), 'matplotlib.pyplot.scatter', 'plt.scatter', (['self.X', 'self.y'], {'marker': '"""x"""', 'c': '"""r"""', 's': '(30)', 'linewidth': '(2)'}), "(self.X, self.y, marker='x', c='r', s=30, linewidth=2)\n", (3950, 4004), True, 'import matplotlib.pyplot as plt\n'), ((4013, 4047), 'matplotlib.pyplot.plot', 'plt.plot', (['self.X', 'ret'], {'linewidth': '(2)'}), '(self.X, ret, linewidth=2)\n', (4021, 4047), True, 'import matplotlib.pyplot as plt\n'), ((4056, 4066), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4064, 4066), True, 'import matplotlib.pyplot as plt\n'), ((4741, 4806), 'ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve.learningCurve', 'learningCurve', (['x_with_bias', 'self.y', 'x_val_with_bias', 'self.yval', '(0)'], {}), '(x_with_bias, self.y, x_val_with_bias, self.yval, 0)\n', (4754, 4806), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve import learningCurve\n'), ((5352, 5401), 'matplotlib.pyplot.title', 'plt.title', (['"""Learning curve for linear regression"""'], {}), "('Learning curve for linear regression')\n", (5361, 5401), True, 'import matplotlib.pyplot as plt\n'), ((5410, 5451), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of training examples"""'], {}), "('Number of training examples')\n", (5420, 5451), True, 'import matplotlib.pyplot as plt\n'), ((5460, 5479), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Error"""'], {}), "('Error')\n", (5470, 5479), True, 'import matplotlib.pyplot as plt\n'), ((5667, 5679), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5677, 5679), True, 'import matplotlib.pyplot as plt\n'), ((5688, 5708), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(True)'}), '(block=True)\n', (5696, 5708), True, 'import matplotlib.pyplot as plt\n'), ((6184, 6207), 'ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures.polyFeatures', 'polyFeatures', (['self.X', 'p'], {}), '(self.X, p)\n', (6196, 6207), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures import polyFeatures\n'), ((6237, 6253), 'numpy.shape', 'np.shape', (['X_poly'], {}), '(X_poly)\n', (6245, 6253), True, 'import numpy as np\n'), ((6472, 6496), 'ex5_regularized_linear_regressionand_bias_vs_variance.featureNormalize.featureNormalize', 'featureNormalize', (['X_poly'], {}), '(X_poly)\n', (6488, 6496), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.featureNormalize import featureNormalize\n'), ((6585, 6612), 'ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures.polyFeatures', 'polyFeatures', (['self.Xtest', 'p'], {}), '(self.Xtest, p)\n', (6597, 6612), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures import polyFeatures\n'), ((6652, 6673), 'numpy.shape', 'np.shape', (['X_poly_test'], {}), '(X_poly_test)\n', (6660, 6673), True, 'import numpy as np\n'), ((6974, 7000), 'ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures.polyFeatures', 'polyFeatures', (['self.Xval', 'p'], {}), '(self.Xval, p)\n', (6986, 7000), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.polyFeatures import polyFeatures\n'), ((7038, 7058), 'numpy.shape', 'np.shape', (['X_poly_val'], {}), '(X_poly_val)\n', (7046, 7058), True, 'import numpy as np\n'), ((7971, 8010), 'ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg.trainLinearReg', 'trainLinearReg', (['X_poly', 'self.y', '_lambda'], {}), '(X_poly, self.y, _lambda)\n', (7985, 8010), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg\n'), ((8131, 8144), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (8141, 8144), True, 'import matplotlib.pyplot as plt\n'), ((8153, 8218), 'matplotlib.pyplot.scatter', 'plt.scatter', (['self.X', 'self.y'], {'marker': '"""x"""', 'c': '"""r"""', 's': '(30)', 'linewidth': '(2)'}), "(self.X, self.y, marker='x', c='r', s=30, linewidth=2)\n", (8164, 8218), True, 'import matplotlib.pyplot as plt\n'), ((8227, 8246), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-80, 80]'], {}), '([-80, 80])\n', (8235, 8246), True, 'import matplotlib.pyplot as plt\n'), ((8255, 8274), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-20, 60]'], {}), '([-20, 60])\n', (8263, 8274), True, 'import matplotlib.pyplot as plt\n'), ((8283, 8321), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Change in water level(x)"""'], {}), "('Change in water level(x)')\n", (8293, 8321), True, 'import matplotlib.pyplot as plt\n'), ((8330, 8375), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water flowing out of the dam(y)"""'], {}), "('Water flowing out of the dam(y)')\n", (8340, 8375), True, 'import matplotlib.pyplot as plt\n'), ((8688, 8709), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (8696, 8709), True, 'import matplotlib.pyplot as plt\n'), ((8719, 8732), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (8729, 8732), True, 'import matplotlib.pyplot as plt\n'), ((8868, 8923), 'ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve.learningCurve', 'learningCurve', (['X_poly', 'self.y', 'X_poly_val', 'self.yval', '(0)'], {}), '(X_poly, self.y, X_poly_val, self.yval, 0)\n', (8881, 8923), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.learningCurve import learningCurve\n'), ((9026, 9077), 'matplotlib.pyplot.legend', 'plt.legend', (['(p1, p2)', "('Train', 'Cross Validation')"], {}), "((p1, p2), ('Train', 'Cross Validation'))\n", (9036, 9077), True, 'import matplotlib.pyplot as plt\n'), ((9086, 9107), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (9094, 9107), True, 'import matplotlib.pyplot as plt\n'), ((9846, 9900), 'ex5_regularized_linear_regressionand_bias_vs_variance.validationCurve.validationCurve', 'validationCurve', (['X_poly', 'self.y', 'X_poly_val', 'self.yval'], {}), '(X_poly, self.y, X_poly_val, self.yval)\n', (9861, 9900), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.validationCurve import validationCurve\n'), ((10028, 10044), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (10037, 10044), True, 'import matplotlib.pyplot as plt\n'), ((10063, 10119), 'matplotlib.pyplot.plot', 'plt.plot', (['lambda_vec', 'error_train', 'lambda_vec', 'error_val'], {}), '(lambda_vec, error_train, lambda_vec, error_val)\n', (10071, 10119), True, 'import matplotlib.pyplot as plt\n'), ((10128, 10179), 'matplotlib.pyplot.legend', 'plt.legend', (['(p1, p2)', "('Train', 'Cross Validation')"], {}), "((p1, p2), ('Train', 'Cross Validation'))\n", (10138, 10179), True, 'import matplotlib.pyplot as plt\n'), ((10188, 10208), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""lambda"""'], {}), "('lambda')\n", (10198, 10208), True, 'import matplotlib.pyplot as plt\n'), ((10217, 10236), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Error"""'], {}), "('Error')\n", (10227, 10236), True, 'import matplotlib.pyplot as plt\n'), ((10245, 10266), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (10253, 10266), True, 'import matplotlib.pyplot as plt\n'), ((11015, 11057), 'ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg.trainLinearReg', 'trainLinearReg', (['X_poly', 'self.y', 'lambda_val'], {}), '(X_poly, self.y, lambda_val)\n', (11029, 11057), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg\n'), ((11296, 11352), 'ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction.linearRegCostFunction', 'linearRegCostFunction', (['X_poly_test', 'self.ytest', 'theta', '(0)'], {}), '(X_poly_test, self.ytest, theta, 0)\n', (11317, 11352), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction import linearRegCostFunction\n'), ((11767, 11792), 'numpy.zeros', 'np.zeros', (['(self.m, times)'], {}), '((self.m, times))\n', (11775, 11792), True, 'import numpy as np\n'), ((11818, 11843), 'numpy.zeros', 'np.zeros', (['(self.m, times)'], {}), '((self.m, times))\n', (11826, 11843), True, 'import numpy as np\n'), ((12820, 12853), 'numpy.mean', 'np.mean', (['error_train_rand'], {'axis': '(1)'}), '(error_train_rand, axis=1)\n', (12827, 12853), True, 'import numpy as np\n'), ((12874, 12905), 'numpy.mean', 'np.mean', (['error_val_rand'], {'axis': '(1)'}), '(error_val_rand, axis=1)\n', (12881, 12905), True, 'import numpy as np\n'), ((13088, 13139), 'matplotlib.pyplot.legend', 'plt.legend', (['(p1, p2)', "('Train', 'Cross Validation')"], {}), "((p1, p2), ('Train', 'Cross Validation'))\n", (13098, 13139), True, 'import matplotlib.pyplot as plt\n'), ((13148, 13189), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of training examples"""'], {}), "('Number of training examples')\n", (13158, 13189), True, 'import matplotlib.pyplot as plt\n'), ((13198, 13217), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Error"""'], {}), "('Error')\n", (13208, 13217), True, 'import matplotlib.pyplot as plt\n'), ((13226, 13251), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, 13, 0, 150]'], {}), '([0, 13, 0, 150])\n', (13234, 13251), True, 'import matplotlib.pyplot as plt\n'), ((13260, 13281), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (13268, 13281), True, 'import matplotlib.pyplot as plt\n'), ((1111, 1126), 'numpy.shape', 'np.shape', (['cls.X'], {}), '(cls.X)\n', (1119, 1126), True, 'import numpy as np\n'), ((5503, 5524), 'numpy.array', 'np.array', (['error_train'], {}), '(error_train)\n', (5511, 5524), True, 'import numpy as np\n'), ((5588, 5607), 'numpy.array', 'np.array', (['error_val'], {}), '(error_val)\n', (5596, 5607), True, 'import numpy as np\n'), ((2160, 2180), 'numpy.ones', 'np.ones', (['(self.m, 1)'], {}), '((self.m, 1))\n', (2167, 2180), True, 'import numpy as np\n'), ((3635, 3650), 'numpy.ones', 'np.ones', (['self.m'], {}), '(self.m)\n', (3642, 3650), True, 'import numpy as np\n'), ((4594, 4609), 'numpy.ones', 'np.ones', (['self.m'], {}), '(self.m)\n', (4601, 4609), True, 'import numpy as np\n'), ((6531, 6551), 'numpy.ones', 'np.ones', (['(self.m, 1)'], {}), '((self.m, 1))\n', (6538, 6551), True, 'import numpy as np\n'), ((6714, 6734), 'numpy.shape', 'np.shape', (['self.Xtest'], {}), '(self.Xtest)\n', (6722, 6734), True, 'import numpy as np\n'), ((6902, 6936), 'numpy.ones', 'np.ones', (['(X_poly_test.shape[0], 1)'], {}), '((X_poly_test.shape[0], 1))\n', (6909, 6936), True, 'import numpy as np\n'), ((7098, 7117), 'numpy.shape', 'np.shape', (['self.Xval'], {}), '(self.Xval)\n', (7106, 7117), True, 'import numpy as np\n'), ((7279, 7312), 'numpy.ones', 'np.ones', (['(X_poly_val.shape[0], 1)'], {}), '((X_poly_val.shape[0], 1))\n', (7286, 7312), True, 'import numpy as np\n'), ((11948, 11986), 'numpy.random.permutation', 'np.random.permutation', (['X_poly.shape[0]'], {}), '(X_poly.shape[0])\n', (11969, 11986), True, 'import numpy as np\n'), ((12084, 12126), 'numpy.random.permutation', 'np.random.permutation', (['X_poly_val.shape[0]'], {}), '(X_poly_val.shape[0])\n', (12105, 12126), True, 'import numpy as np\n'), ((12457, 12516), 'ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg.trainLinearReg', 'trainLinearReg', (['X_poly_train_rand', 'y_train_rand', 'lambda_val'], {}), '(X_poly_train_rand, y_train_rand, lambda_val)\n', (12471, 12516), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.trainLinearReg import trainLinearReg\n'), ((12692, 12752), 'ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction.linearRegCostFunction', 'linearRegCostFunction', (['X_poly_val_rand', 'y_val_rand', 'theta', '(0)'], {}), '(X_poly_val_rand, y_val_rand, theta, 0)\n', (12713, 12752), False, 'from ex5_regularized_linear_regressionand_bias_vs_variance.linearRegCostFunction import linearRegCostFunction\n'), ((12598, 12615), 'numpy.asarray', 'np.asarray', (['theta'], {}), '(theta)\n', (12608, 12615), True, 'import numpy as np\n'), ((4671, 4690), 'numpy.shape', 'np.shape', (['self.Xval'], {}), '(self.Xval)\n', (4679, 4690), True, 'import numpy as np\n')]
################################################################### # This implementation is based on the following papaer: # # <NAME> and <NAME>. Automatic data and computation # decomposition on distributed# memory parallel computers. # ACM Transactions on Programming Languages and Systems, # 24(1):1–50, Jan. 2002. # # Algorithm of Figure 5 # ################################################################### import heterocl as hcl import numpy as np def top_adi(Nx=20, Ny=20, NT=20, Dx=0.1, Dy=0.1, DT=0.1, B1=0.1, B2=0.1, mu1=0.1, mu2=0.1, a=0.1, b=0.1, c=0.1, d=0.1, e=0.1, f=0.1, dtype=hcl.Int(), target=None): hcl.init(dtype) u = hcl.placeholder((Nx, Ny), "u") v = hcl.placeholder((Nx, Ny), "v") p = hcl.placeholder((Nx, Ny), "p") q = hcl.placeholder((Nx, Ny), "q") def kernel_adi(u, v, p, q): def sweep(u, v, p, q): with hcl.for_(1, Ny - 1, name="L1") as i: v[0][i] = hcl.scalar(1.0) p[i][0] = hcl.scalar(0.0) q[i][0] = v[0][i] with hcl.for_(1, Nx - 1, name="L2") as j: p[i][j] = -1.0 * c / (a * p[i][j - 1] + b) q[i][j] = (-1.0 * d * u[j][i - 1] + (1.0 + 2.0 * d) * u[j][i] - f * u[j][i + 1] - a * q[i][j - 1])/(a * p[i][j - 1] + b) v[Nx - 1][i] = hcl.scalar(1.0) with hcl.for_(Nx - 2, 0, -1, name="L3") as j: v[j][i] = p[i][j] * v[j + 1][i] + q[i][j] with hcl.for_(1, Nx - 1, name="L4") as i: u[i][0] = hcl.scalar(1.0) p[i][0] = hcl.scalar(0.0) q[i][0] = u[i][0] with hcl.for_(1, Ny - 1, name="L5") as j: p[i][j] = -1.0 * f / (d * p[i][j - 1] + e) q[i][j] = (-1.0 * a * v[i - 1][j] + (1.0 + 2 * a) * v[i][j] - c * v[i + 1][j] - d * q[i][j - 1])/(d * p[i][j - 1] + e) u[i][Ny - 1] = hcl.scalar(1.0) with hcl.for_(Ny - 2, 0, -1, name="L6") as j: u[i][j] = p[i][j] * u[i][j + 1] + q[i][j] hcl.mutate((NT,), lambda m: sweep(u, v, p, q), "main_loop") s = hcl.create_schedule([u, v, p, q], kernel_adi) #### Apply customizations #### main_loop = kernel_adi.main_loop #s[main_loop].pipeline(main_loop.L1) #s[main_loop].pipeline(main_loop.L4) #### Apply customizations #### return hcl.build(s, target=target) def adi_golden(N, TSTEPS, Dx, Dy, DT, B1, B2, mu1, mu2, a, b, c, d, e, f, u, v, p, q): for t in range(TSTEPS): ## Column sweep for i in range(1, N - 1): v[0][i] = 1.0 p[i][0] = 0.0 q[i][0] = v[0][i] for j in range(1, N - 1): p[i][j] = -1.0 * c / (a * p[i][j - 1] + b) q[i][j] = (-1.0 * d * u[j][i - 1] + (1.0 + 2.0 * d) * u[j][i] - f * u[j][i + 1] - a * q[i][j - 1])/(a * p[i][j - 1] + b) v[N - 1][i] = 1.0 for j in range(N - 2, 0, -1): v[j][i] = p[i][j] * v[j + 1][i] + q[i][j] ## Row sweep for i in range(1, N - 1): u[i][0] = 1.0 p[i][0] = 0.0 q[i][0] = u[i][0] for j in range(1, N - 1): p[i][j] = -1.0 * f / (d * p[i][j - 1] + e) q[i][j] = (-1.0 * a * v[i - 1][j] + (1.0 + 2.0 * a) * v[i][j] - c * v[i + 1][j] -d * q[i][j - 1])/(d * p[i][j - 1] + e) u[i][N - 1] = 1.0 for j in range(N - 2, 0, -1): u[i][j] = p[i][j] * u[i][j + 1] + q[i][j] def main(Nx=20, Ny=20, NT=20, Dx=0.1, Dy=0.1, DT=0.1, B1=0.1, B2=0.1, mu1=0.1, mu2=0.1, a=0.1, b=0.1, c=0.1, d=0.1, e=0.1, f=0.1, dtype=hcl.Float(32), target=None): u = np.random.randint(10, size=(Nx, Ny)).astype(np.float32) v = np.random.randint(10, size=(Nx, Ny)).astype(np.float32) p = np.random.randint(10, size=(Nx, Ny)).astype(np.float32) q = np.random.randint(10, size=(Nx, Ny)).astype(np.float32) f = top_adi(Nx, Ny, NT, Dx, Dy, DT, B1, B2, mu1, mu2, a, b, c, d, e, f, dtype, target) f(u, v, p, q) if __name__ == "__main__": main()
[ "heterocl.for_", "heterocl.placeholder", "numpy.random.randint", "heterocl.build", "heterocl.create_schedule", "heterocl.init", "heterocl.scalar", "heterocl.Int", "heterocl.Float" ]
[((621, 630), 'heterocl.Int', 'hcl.Int', ([], {}), '()\n', (628, 630), True, 'import heterocl as hcl\n'), ((651, 666), 'heterocl.init', 'hcl.init', (['dtype'], {}), '(dtype)\n', (659, 666), True, 'import heterocl as hcl\n'), ((675, 705), 'heterocl.placeholder', 'hcl.placeholder', (['(Nx, Ny)', '"""u"""'], {}), "((Nx, Ny), 'u')\n", (690, 705), True, 'import heterocl as hcl\n'), ((714, 744), 'heterocl.placeholder', 'hcl.placeholder', (['(Nx, Ny)', '"""v"""'], {}), "((Nx, Ny), 'v')\n", (729, 744), True, 'import heterocl as hcl\n'), ((753, 783), 'heterocl.placeholder', 'hcl.placeholder', (['(Nx, Ny)', '"""p"""'], {}), "((Nx, Ny), 'p')\n", (768, 783), True, 'import heterocl as hcl\n'), ((792, 822), 'heterocl.placeholder', 'hcl.placeholder', (['(Nx, Ny)', '"""q"""'], {}), "((Nx, Ny), 'q')\n", (807, 822), True, 'import heterocl as hcl\n'), ((2176, 2221), 'heterocl.create_schedule', 'hcl.create_schedule', (['[u, v, p, q]', 'kernel_adi'], {}), '([u, v, p, q], kernel_adi)\n', (2195, 2221), True, 'import heterocl as hcl\n'), ((2432, 2459), 'heterocl.build', 'hcl.build', (['s'], {'target': 'target'}), '(s, target=target)\n', (2441, 2459), True, 'import heterocl as hcl\n'), ((3761, 3774), 'heterocl.Float', 'hcl.Float', (['(32)'], {}), '(32)\n', (3770, 3774), True, 'import heterocl as hcl\n'), ((3799, 3835), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '(Nx, Ny)'}), '(10, size=(Nx, Ny))\n', (3816, 3835), True, 'import numpy as np\n'), ((3863, 3899), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '(Nx, Ny)'}), '(10, size=(Nx, Ny))\n', (3880, 3899), True, 'import numpy as np\n'), ((3927, 3963), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '(Nx, Ny)'}), '(10, size=(Nx, Ny))\n', (3944, 3963), True, 'import numpy as np\n'), ((3991, 4027), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '(Nx, Ny)'}), '(10, size=(Nx, Ny))\n', (4008, 4027), True, 'import numpy as np\n'), ((905, 935), 'heterocl.for_', 'hcl.for_', (['(1)', '(Ny - 1)'], {'name': '"""L1"""'}), "(1, Ny - 1, name='L1')\n", (913, 935), True, 'import heterocl as hcl\n'), ((968, 983), 'heterocl.scalar', 'hcl.scalar', (['(1.0)'], {}), '(1.0)\n', (978, 983), True, 'import heterocl as hcl\n'), ((1010, 1025), 'heterocl.scalar', 'hcl.scalar', (['(0.0)'], {}), '(0.0)\n', (1020, 1025), True, 'import heterocl as hcl\n'), ((1353, 1368), 'heterocl.scalar', 'hcl.scalar', (['(1.0)'], {}), '(1.0)\n', (1363, 1368), True, 'import heterocl as hcl\n'), ((1511, 1541), 'heterocl.for_', 'hcl.for_', (['(1)', '(Nx - 1)'], {'name': '"""L4"""'}), "(1, Nx - 1, name='L4')\n", (1519, 1541), True, 'import heterocl as hcl\n'), ((1574, 1589), 'heterocl.scalar', 'hcl.scalar', (['(1.0)'], {}), '(1.0)\n', (1584, 1589), True, 'import heterocl as hcl\n'), ((1616, 1631), 'heterocl.scalar', 'hcl.scalar', (['(0.0)'], {}), '(0.0)\n', (1626, 1631), True, 'import heterocl as hcl\n'), ((1957, 1972), 'heterocl.scalar', 'hcl.scalar', (['(1.0)'], {}), '(1.0)\n', (1967, 1972), True, 'import heterocl as hcl\n'), ((1081, 1111), 'heterocl.for_', 'hcl.for_', (['(1)', '(Nx - 1)'], {'name': '"""L2"""'}), "(1, Nx - 1, name='L2')\n", (1089, 1111), True, 'import heterocl as hcl\n'), ((1390, 1424), 'heterocl.for_', 'hcl.for_', (['(Nx - 2)', '(0)', '(-1)'], {'name': '"""L3"""'}), "(Nx - 2, 0, -1, name='L3')\n", (1398, 1424), True, 'import heterocl as hcl\n'), ((1687, 1717), 'heterocl.for_', 'hcl.for_', (['(1)', '(Ny - 1)'], {'name': '"""L5"""'}), "(1, Ny - 1, name='L5')\n", (1695, 1717), True, 'import heterocl as hcl\n'), ((1994, 2028), 'heterocl.for_', 'hcl.for_', (['(Ny - 2)', '(0)', '(-1)'], {'name': '"""L6"""'}), "(Ny - 2, 0, -1, name='L6')\n", (2002, 2028), True, 'import heterocl as hcl\n')]
# -*- coding: utf-8 -*- # Copyright (c) CKM Analytix Corp. All rights reserved. # Authors: <NAME> (<EMAIL>), <NAME> (<EMAIL>) """ Metrics for determining quality of community structure """ import numpy as np from scipy.sparse import identity __all__ = ['modularity_r', 'modularity_density', 'mula_modularity_density'] def cluster_total_weight(adj_r, c, cluster_num, dict_bool): """Determines the 2*total weight of a community. Parameters ---------- adj_r : SciPy sparse matrix (csr or csc) The N x N rescaled Adjacency matrix constructed from N x N adjacency matrix of the graph and scale 'r'. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. cluster_num : Integer Label of the community of interest. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary keys, and the corresponding boolean arrays (c == label) as values Returns ------- float Twice the total weight of all nodes in the rescaled topology of cluster 'cluster_num'. """ bool_r = dict_bool[cluster_num] zero = np.zeros(adj_r.shape[0], dtype=int) zero[bool_r] = 1 return (adj_r[bool_r].dot(zero)).sum() def cluster_total_volume(adj, c, cluster_num, dict_bool): """Determines the volume of a community. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The N x N rescaled Adjacency matrix constructed from N x N adjacency matrix of the graph and scale r. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. cluster_num : Integer Label of the community of interest. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Total volume of all nodes in the rescaled topology of cluster 'cluster_num'. """ return adj[dict_bool[cluster_num]].sum() def modularity_r(adj, c, cluster_labels, r=0, dict_bool=None): r"""Determines the modularity (of rescaled topology) for a subset of communities in the network. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The N x N Adjacency matrix of the graph of interest. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. cluster_labels : Integer array or list Array/list of unique cluster labels for which modularity is calculated. r : float Resolution of the topology: smaller 'r' favors larger communities, while larger 'r' favors smaller communities. dict_bool : dictionary, optional Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float total modularity (of rescaled topology) for a set of communities given by 'cluster_labels'. Examples -------- >>> G = nx.karate_club_graph() >>> adj = nx.to_scipy_sparse_matrix(G) >>> c = fine_tuned_clustering_q(G) >>> c array([2, 2, 2, 2, 4, 4, 4, 2, 3, 3, 4, 2, 2, 2, 3, 3, 4, 2, 3, 2, 3, 2, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 3, 3]) >>> modularity_r(adj, c, np.unique(c), r=0) 0.4197896120973044 >>> modularity_r(adj, c, [1, 2], r=0) 0.21301775147928995 Notes ----- Modularity in [1]_,[2]_ is given as .. math:: Q = \sum_{c_i \in C}\left [ \frac{|E_{c_i}^{in}|}{|E|} - \left (\frac{2|E_{c_i}^{in}| + |E_{c_i}^{out}|}{2|E|} \right )^2 \right ], where $C$ is the set of all communities. $c_i$ is a specific community in $C$, $|E_{c_i}^{in}|$ is the total weight of edges between nodes within community $c_i$, $|E_{c_i}{out}|$ is the total weight of edges from nodes in community $c_i$ to the nodes outside $c_i$, and $|E|$ is the total weight of edges in the network. Modularity for rescaled topology (see [1]_) at scale $r$ is given as .. math:: Q_r = \sum_{c_i \in C}\left [ \frac{2|E_{c_i}^{in}| +r|c_i|}{2|E| + r|V|} - \left (\frac{2|E_{c_i}^{in}| + |E_{c_i}^{out}| + r|c_i|}{2|E| + r|V|} \right )^2 \right ], where $|c_i|$ is the number of nodes in a specific community. $|V|$ is the total number of nodes in the entire network structure. References ---------- .. [1] <NAME>, <NAME>, <NAME>. Community detection via maximization of modularity and its variants. IEEE Transactions on Computational Social Systems. 1(1), 46–65, 2014 .. [2] <NAME>, <NAME>. Finding and evaluating community structure in community structure in networks. Phys. Rev. E. 69, 026113, 2004 """ Identity = identity(n=(adj).shape[0]) # Rescaled adjancency matrix adj = adj + (Identity*r) if (dict_bool is None): # Track the nodes in each community dict_bool = {} for label in np.unique(cluster_labels): dict_bool[label] = (c == label) one = np.ones(adj.shape[0], dtype=int) # Twice the total weight of all nodes in the rescaled topology total_weight = (adj.dot(one)).sum() # Function to determine modularity of each community in the network modularize = np.vectorize(lambda cluster_num: (cluster_total_weight(adj, c, cluster_num, dict_bool)/total_weight) - ((cluster_total_volume(adj, c, cluster_num, dict_bool)/total_weight)**2)) # Total modularity (of rescaled topology) for a set of communities # given by 'cluster_labels' return np.sum(modularize(cluster_labels)) def split_penalty(adj, c, ci, conn_clusters, total_weight, dict_bool): """Determines total Split Penalty density for splitting edges between a community and a set of communities. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The N x N Adjacency matrix of the graph of interest. c : Integer array Current array of community labels for the nodes in the graph as ordered by the adjacency matrix. ci : Integer Label of the community of interest. conn_clusters : Integer array Array of unique labels of communities that may be connected to the community 'ci'. total_weight : float Twice the total weight of all nodes in the adjacency matrix. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Total Split Penalty density for splitting edges between 'ci' and a set of other communities in 'conn_clusters'. """ bool_ci = dict_bool[ci] adj_ci = adj[bool_ci] # Make sure the array of unique labels do not contain 'ci' search_bool = (conn_clusters != ci) # Determine total split penalty density of splitting edges between # 'ci' and 'conn_clusters' if(np.sum(search_bool) > 0): penalty = sum_penalty(adj_ci, c, conn_clusters[search_bool], dict_bool)/(np.count_nonzero(bool_ci) * total_weight) else: penalty = 0 # Total Split Penalty density for splitting edges between 'ci' and # a set of other communities in 'conn_clusters' return penalty def individual_penalty(adj_ci, c, cj, dict_bool): """Determines partial component of split penalty density for splitting edges between two communities. Parameters ---------- adj_ci : SciPy sparse matrix (csr or csc) The subset of N X N adjacency matrix: adj[c == ci]. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. cj : Integer Label of a community connected to the community 'ci'. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Partial component of split penalty density for splitting edges between 'ci' and 'cj'. """ bool_cj = dict_bool[cj] zero = np.zeros(len(c), dtype=int) zero[bool_cj] = 1 # Determine partial component of split penalty density for splitting edges # between 'ci' and 'cj' return ((((adj_ci.dot(zero)).sum())**2)/np.count_nonzero(bool_cj)) def sum_penalty(adj_ci, c, conn_clusters, dict_bool): """Determines partial component of total Split Penalty density for splitting edges between a community and a set of communities. Parameters ---------- adj_ci : SciPy sparse matrix (csr or csc) The subset of N X N adjacency matrix: adj[c == ci]. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. conn_clusters : Integer array Array of unique labels of communities that may be connected to community 'ci'. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Partial component of total Split Penalty density for splitting edges between 'ci' and a set of other communities in 'conn_clusters'. """ # Function to determine partial component of total Split Penalty density # for splitting edges between 'ci' and 'cj' penalize = np.vectorize(lambda cj: individual_penalty(adj_ci, c, cj, dict_bool)) # Partial component of total Split Penalty density for splitting edges # between 'ci'and a set of other communities in 'conn_clusters' return np.sum(penalize(conn_clusters)) def density_based_modularity(adj, c, ci, total_weight, dict_bool): """Determines partial component of modularity density of a community. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The subset of N X N adjacency matrix: adj[c == ci]. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. ci : Integer Label of community of interest. total_weight : float Twice the total weight of all nodes in the adjacency matrix. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Partial component of modularity density of a community 'ci'. """ # Determine Internal community density of 'ci' comm_density = community_density(adj, c, ci, dict_bool) first_term = (cluster_total_weight(adj, c, ci, dict_bool) * comm_density)/total_weight second_term = ((cluster_total_volume(adj, c, ci, dict_bool) * comm_density)/total_weight)**2 # Partial component of modularity density of 'ci' return (first_term - second_term) def community_density(adj, c, ci, dict_bool): """Determines internal community density of a community. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The subset of N X N adjacency matrix: adj[c == ci]. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. ci : Integer Label of community of interest. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Determines internal community density of community 'ci'. """ bool_ci = dict_bool[ci] zero = np.zeros(adj.shape[0], dtype=int) zero[bool_ci] = 1 # Twice the weight of all edges in the cluster 'ci' community_sum = (adj[bool_ci].dot(zero)).sum() # Number of nodes in commmunity 'ci' size = np.count_nonzero(bool_ci) # Internal community density of 'ci' if(size <= 1): density = 0 else: density = (community_sum)/(size*(size - 1)) # Internal community density of 'ci' return density def compute_modularity_density(adj, c, conn_clusters, cluster_labels, total_weight, dict_bool): """Determines modularity density of a set of communities. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The N x N Adjacency matrix of the graph of interest. c : Integer array Array of community labels for the nodes in the graph as ordered by the adjacency matrix. conn_clusters : Integer array Array of unique labels of communities that may be connected to communities in 'cluster_labels'. cluster_labels : Integer array or list Array/list of unique labels of communities of interest. total_weight : float Twice the total weight of all nodes in the adjacency matrix. dict_bool : dictionary Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Determines modularity density of a set of communities in 'cluster_labels' with a set of connected communities in 'conn_clusters'. """ # Function to determine modularity density of 'ci' with connected # communities in 'conn_clusters' mod_density = np.vectorize(lambda ci: density_based_modularity(adj, c, ci, total_weight, dict_bool) - split_penalty(adj, c, ci, conn_clusters, total_weight, dict_bool)) # Modularity density of a set of communities in 'cluster_labels' with a # set of connected communities in 'conn_clusters' return np.sum(mod_density(cluster_labels)) def modularity_density(adj, c, cluster_labels, dict_bool=None, conn_clusters=None): r"""Determines modularity_density of a set of communities. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The N x N Adjacency matrix of the graph of interest. c : Integer array Current array of community labels for the nodes in the graph as ordered by the adjacency matrix. cluster_labels : Integer array or list Array/list of unique labels of communities of interest. dict_bool : dictionary, optional Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. conn_clusters : Integer array, optional Array of unique labels of communities that may be connected to communities in 'cluster_labels'. It is helpful to send this input when computing modularity density for each community in order to reduce the computational time Returns ------- float Determines modularity_density of a set of communities in 'cluster_labels'. Examples -------- >>> G = nx.karate_club_graph() >>> adj = nx.to_scipy_sparse_matrix(G) >>> c = fine_tuned_clustering_qds(G) >>> c array([4, 4, 4, 4, 2, 2, 2, 4, 3, 3, 2, 4, 4, 4, 3, 3, 2, 4, 3, 4, 3, 4, 3, 3, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3]) >>> modularity_density(adj, c, np.unique(c)) 0.23126500169457212 >>> modularity_density(adj, c, [1, 2]) 0.06929093698324468 >>> modularity_density(adj, c, [1]) 0.028788874942721095 >>> modularity_density(adj, c, [1], conn_clusters = np.array([3, 4])) 0.028788874942721095 Notes ----- Modularity density in [1] is given as .. math:: Q = \sum_{c_i \in C}\left [ \frac{|E_{c_i}^{in}|}{|E|}d_{c_i} - \left (\frac{2|E_{c_i}^{in}| + |E_{c_i}{out}|}{2|E|}d_{c_i} \right )^2 - \sum_{c_j \in C, c_j \neq c_i} \frac{|E_{c_i, c_j}|}{2|E|}d_{c_i,c_j} \right ], d_{c_i} = \frac{2|E_{c_i}^{in}|}{|c_i|\left ( |c_i| - 1 \right )}, d_{c_i,c_j} = \frac{|E_{c_i, c_j}|}{|c_i||c_j|}. where $C$ is the set of all communities. $c_i$ is a specific community in $C$, $|E_{c_i}^{in}|$ is the total weight of edges between nodes within community $c_i$, $|E_{c_i}{out}|$ is the total weight of edges from nodes in community $c_i$ to the nodes outside $c_i$, and $|E|$ is the total weight of edges in the network. $d_{c_i}$ is the internal community density of community $c_i$, $d_{c_i, c_j}$ is the pair-wise density between communities $c_i$ and $c_j$. References ---------- .. [1] <NAME>, <NAME>, <NAME>. Community detection via maximization of modularity and its variants. IEEE Transactions on Computational Social Systems. 1(1), 46–65, 2014 """ one = np.ones(adj.shape[0], dtype=int) # Twice the total weight of all nodes in the adjacency matrix total_weight = (adj.dot(one)).sum() # Array of unique labels of communities in the network unique_clusters = np.unique(c) if (dict_bool is None): # Track the nodes in each community dict_bool = {} for label in unique_clusters: dict_bool[label] = (c == label) if (conn_clusters is None): # Array of labels of communities that may be connected to communities # in 'cluster_labels' conn_clusters = unique_clusters # Compute modularity density of a set of communities in 'cluster_labels' return compute_modularity_density(adj, c, conn_clusters, cluster_labels, total_weight, dict_bool) def dotdot(adj, vec1, vec2): """Computes the dot product of a matrix with two vectors Parameters ---------- adj : Numpy Matrix or SciPy sparse matrix (csr or csc) The N x N Adjacency matrix of the graph of interest. vec1 : first Numpy array vec2 : second Numpy array Returns ------- scalar (float, int, boolean, etc.) Resulting scalar of dot product """ return ((((adj).dot(vec1)).dot(vec2))) def norm_vector(vec): """Normalizes vector for modularity density calculation Parameters ---------- vec : Numpy array to be normalized Returns ------- Numpy array """ mod = (np.count_nonzero(vec))**0.5 vec = vec/mod return vec def mula_modularity_density(adj, c, dict_vec=None): r"""Determines modularity_density of a set of communities using a metric that is free from bias and faster to compute. Parameters ---------- adj : SciPy sparse matrix (csr or csc) The N x N Adjacency matrix of the graph of interest. c : Integer array Current array of community labels for the nodes in the graph as ordered by the adjacency matrix. dict_vec : dictionary, optional Tracks the nodes in each community, with cluster labels as dictionary- keys, and the corresponding boolean arrays (c == label) as values. Returns ------- float Determines modularity_density of a set of communities in 'cluster_labels'. Examples -------- >>> G = nx.karate_club_graph() >>> adj = nx.to_scipy_sparse_matrix(G) >>> c = fine_tuned_clustering_qds(G) >>> c array([4, 4, 4, 4, 2, 2, 2, 4, 3, 3, 2, 4, 4, 4, 3, 3, 2, 4, 3, 4, 3, 4, 3, 3, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3]) >>> new_modularity_density(adj, c, np.unique(c)) 0.23126500169457212 >>> new_modularity_density(adj, c, [1, 2]) 0.06929093698324468 >>> new_modularity_density(adj, c, [1]) 0.028788874942721095 >>> new_modularity_density(adj, c, [1]) 0.028788874942721095 Notes ----- Modularity density in [1] is given as .. math:: Q = \sum_{c \in C}\Bigg\{\frac{\sum_{i,j \in c}T_{ij}}{n_c} - \sum_{c^{\prime} \in C-c}\Bigg( \frac{\sum_{{i \in c,}{j \in c^{\prime}}}T_{ij}}{\sqrt{n_c n_{c^{\prime}}}}\Bigg)\Bigg\} where: - each cluster ${c \in C}$ is represented by an indicator vector ${\vec{v}_c = [v{_{c_i}}] \in {\R}^{|V|} : v{_{c_i}}= 1}$ if ${i \in c}$, else $0$ - \hat{n}_c = \frac{\vec{v}_c}{|\vec{v}_c|} References ---------- .. [1] <NAME>, <NAME>. A new measure of modularity density for community detection. arXiv:1908.08452 2019. """ cluster_labels = np.unique(c) Nsum = 0 if (dict_vec is None): collect_dict_vec = True dict_vec = {} for label in cluster_labels: if collect_dict_vec: vector = norm_vector((c == label)*1) dict_vec[label] = vector else: dict_vect = dict_vec[label]*1 # verify vec is 0|1 Nsum += dict_vec[label] # penalty penalty = dotdot(adj, Nsum, Nsum) modularize = np.vectorize(lambda label: dotdot(adj, dict_vec[label], dict_vec[label])) # Compute reduced modularity density of a set of communities # in 'cluster_labels' metric = 2*np.sum(modularize(cluster_labels)) - penalty return(metric)
[ "numpy.count_nonzero", "numpy.sum", "numpy.zeros", "numpy.ones", "scipy.sparse.identity", "numpy.unique" ]
[((1202, 1237), 'numpy.zeros', 'np.zeros', (['adj_r.shape[0]'], {'dtype': 'int'}), '(adj_r.shape[0], dtype=int)\n', (1210, 1237), True, 'import numpy as np\n'), ((5019, 5043), 'scipy.sparse.identity', 'identity', ([], {'n': 'adj.shape[0]'}), '(n=adj.shape[0])\n', (5027, 5043), False, 'from scipy.sparse import identity\n'), ((5308, 5340), 'numpy.ones', 'np.ones', (['adj.shape[0]'], {'dtype': 'int'}), '(adj.shape[0], dtype=int)\n', (5315, 5340), True, 'import numpy as np\n'), ((12277, 12310), 'numpy.zeros', 'np.zeros', (['adj.shape[0]'], {'dtype': 'int'}), '(adj.shape[0], dtype=int)\n', (12285, 12310), True, 'import numpy as np\n'), ((12494, 12519), 'numpy.count_nonzero', 'np.count_nonzero', (['bool_ci'], {}), '(bool_ci)\n', (12510, 12519), True, 'import numpy as np\n'), ((17395, 17427), 'numpy.ones', 'np.ones', (['adj.shape[0]'], {'dtype': 'int'}), '(adj.shape[0], dtype=int)\n', (17402, 17427), True, 'import numpy as np\n'), ((17617, 17629), 'numpy.unique', 'np.unique', (['c'], {}), '(c)\n', (17626, 17629), True, 'import numpy as np\n'), ((20949, 20961), 'numpy.unique', 'np.unique', (['c'], {}), '(c)\n', (20958, 20961), True, 'import numpy as np\n'), ((5226, 5251), 'numpy.unique', 'np.unique', (['cluster_labels'], {}), '(cluster_labels)\n', (5235, 5251), True, 'import numpy as np\n'), ((7358, 7377), 'numpy.sum', 'np.sum', (['search_bool'], {}), '(search_bool)\n', (7364, 7377), True, 'import numpy as np\n'), ((8826, 8851), 'numpy.count_nonzero', 'np.count_nonzero', (['bool_cj'], {}), '(bool_cj)\n', (8842, 8851), True, 'import numpy as np\n'), ((18878, 18899), 'numpy.count_nonzero', 'np.count_nonzero', (['vec'], {}), '(vec)\n', (18894, 18899), True, 'import numpy as np\n'), ((7495, 7520), 'numpy.count_nonzero', 'np.count_nonzero', (['bool_ci'], {}), '(bool_ci)\n', (7511, 7520), True, 'import numpy as np\n')]
import numpy as np from scipy.stats import gamma as RVgamma # the gamma distribution consider a varying shape parameter and a scale parameter equal to 1 class HMM_approxSEIR_expanded: def __init__( self, N, beta, rho, gamma, q, eta_zero, q_r, t_star ): self.N = N self.beta = beta self.rho = rho self.gamma = gamma self.q = q self.eta_zero = eta_zero self.q_r = q_r self.t_star = t_star def eta_computation(self, T): eta = np.zeros((4, T)) eta[:, 0] = self.eta_zero pC = 1 - np.exp(-self.rho) pR = 1 - np.exp(-self.gamma) for t in range(1, T): Kappa_eta_prev = np.array([[ np.exp(-self.beta*eta[2,t-1]), 1 - np.exp(-self.beta*eta[2,t-1]), 0, 0 ], [ 0, 1 - pC, pC, 0 ], [ 0, 0, 1 - pR, pR ], [ 0, 0, 0, 1 ]]) eta[:, t] = eta[:, t-1] @ Kappa_eta_prev return eta def filtering(self, y): T = np.size(y[0, 0, :]) pC = 1 - np.exp(-self.rho) pR = 1 - np.exp(-self.gamma) pitt = np.zeros([4,T]) pitt[:,0]= self.eta_zero pitt_expanded = np.zeros((4, 4, T)) pitt_expanded[0, :, 0] = pitt[:,0] pitt_prev_expanded = np.zeros((4, 4, T)) pitt_prev_expanded[0, :, 0] = pitt[:,0] Kappa = np.zeros([4,4,T-1]) pitt_expanded_q = np.zeros([4,4,T]) for t in range(1, T): beta_restr = self.beta*(t< self.t_star) + self.beta*(np.exp(-self.q_r*(t-self.t_star)))*(t>= self.t_star) Kappa_eta_prev = np.array([[ np.exp(-beta_restr*pitt[2,t-1]), 1 - np.exp(-beta_restr*pitt[2,t-1]), 0, 0 ], [ 0, 1 - pC, pC, 0 ], [ 0, 0, 1 - pR, pR ], [ 0, 0, 0, 1 ]]) Kappa[:,:,t-1] = Kappa_eta_prev pitt_prev_expanded[:,:, t] = Kappa_eta_prev*( np.sum(pitt_expanded[:, :, t-1], 0) ).reshape(4,1) #rho_vec = pitt_prev_expanded[:,:, t]*(1-self.q) #rho_vec = rho_vec/np.sum(rho_vec) pitt_expanded_q[:,:,t] = pitt_prev_expanded[:,:, t]*(1-self.q) pitt_expanded_q[:,:,t] = pitt_expanded_q[:,:,t]/np.sum(pitt_expanded_q[:,:,t]) pitt_expanded[:,:, t] = y[:,:, t]/self.N + ( 1 - (np.sum( y[:,:, t] ))/(self.N) )*pitt_expanded_q[:,:,t] pitt[:,t] = np.sum( pitt_expanded[:,:, t], 0 ) return pitt, Kappa, pitt_expanded, pitt_prev_expanded def smoothing(self,pitt_expanded, pitt): T = np.size(pitt_expanded[1,1,:]) pist = np.zeros((4, T)) pist[:,T-1] = np.sum(pitt_expanded[:,:,T-1],0) L = np.zeros((4,4)) pist_expanded = np.zeros((4, 4, T)) pist_expanded[:,:,T-1] = pitt_expanded[:,:,T-1] for t in range(T-1,1,-1): pist[:,t-1] = np.sum(pist_expanded[:,:,t],1) L[np.outer(pitt[:,t-1],np.ones(4))!=0] = np.transpose(pitt_expanded[:,:,t-1])[np.outer(pitt[:,t-1],np.ones(4))!=0] / np.outer(pitt[:,t-1],np.ones(4))[np.outer(pitt[:,t-1],np.ones(4))!=0] pist_expanded[:,:,t-1] = np.outer(np.ones(4),pist[:,t-1]) * np.transpose(L) pist[:,0] = np.sum(pist_expanded[:,:,1],1) pist_expanded[0, :, 0] = pist[:,0] return pist, pist_expanded
[ "numpy.size", "numpy.sum", "numpy.zeros", "numpy.transpose", "numpy.ones", "numpy.exp" ]
[((547, 563), 'numpy.zeros', 'np.zeros', (['(4, T)'], {}), '((4, T))\n', (555, 563), True, 'import numpy as np\n'), ((999, 1018), 'numpy.size', 'np.size', (['y[0, 0, :]'], {}), '(y[0, 0, :])\n', (1006, 1018), True, 'import numpy as np\n'), ((1108, 1124), 'numpy.zeros', 'np.zeros', (['[4, T]'], {}), '([4, T])\n', (1116, 1124), True, 'import numpy as np\n'), ((1183, 1202), 'numpy.zeros', 'np.zeros', (['(4, 4, T)'], {}), '((4, 4, T))\n', (1191, 1202), True, 'import numpy as np\n'), ((1278, 1297), 'numpy.zeros', 'np.zeros', (['(4, 4, T)'], {}), '((4, 4, T))\n', (1286, 1297), True, 'import numpy as np\n'), ((1371, 1394), 'numpy.zeros', 'np.zeros', (['[4, 4, T - 1]'], {}), '([4, 4, T - 1])\n', (1379, 1394), True, 'import numpy as np\n'), ((1426, 1445), 'numpy.zeros', 'np.zeros', (['[4, 4, T]'], {}), '([4, 4, T])\n', (1434, 1445), True, 'import numpy as np\n'), ((2575, 2606), 'numpy.size', 'np.size', (['pitt_expanded[1, 1, :]'], {}), '(pitt_expanded[1, 1, :])\n', (2582, 2606), True, 'import numpy as np\n'), ((2629, 2645), 'numpy.zeros', 'np.zeros', (['(4, T)'], {}), '((4, T))\n', (2637, 2645), True, 'import numpy as np\n'), ((2668, 2705), 'numpy.sum', 'np.sum', (['pitt_expanded[:, :, T - 1]', '(0)'], {}), '(pitt_expanded[:, :, T - 1], 0)\n', (2674, 2705), True, 'import numpy as np\n'), ((2713, 2729), 'numpy.zeros', 'np.zeros', (['(4, 4)'], {}), '((4, 4))\n', (2721, 2729), True, 'import numpy as np\n'), ((2754, 2773), 'numpy.zeros', 'np.zeros', (['(4, 4, T)'], {}), '((4, 4, T))\n', (2762, 2773), True, 'import numpy as np\n'), ((3243, 3276), 'numpy.sum', 'np.sum', (['pist_expanded[:, :, 1]', '(1)'], {}), '(pist_expanded[:, :, 1], 1)\n', (3249, 3276), True, 'import numpy as np\n'), ((621, 638), 'numpy.exp', 'np.exp', (['(-self.rho)'], {}), '(-self.rho)\n', (627, 638), True, 'import numpy as np\n'), ((656, 675), 'numpy.exp', 'np.exp', (['(-self.gamma)'], {}), '(-self.gamma)\n', (662, 675), True, 'import numpy as np\n'), ((1037, 1054), 'numpy.exp', 'np.exp', (['(-self.rho)'], {}), '(-self.rho)\n', (1043, 1054), True, 'import numpy as np\n'), ((1072, 1091), 'numpy.exp', 'np.exp', (['(-self.gamma)'], {}), '(-self.gamma)\n', (1078, 1091), True, 'import numpy as np\n'), ((2405, 2438), 'numpy.sum', 'np.sum', (['pitt_expanded[:, :, t]', '(0)'], {}), '(pitt_expanded[:, :, t], 0)\n', (2411, 2438), True, 'import numpy as np\n'), ((2892, 2925), 'numpy.sum', 'np.sum', (['pist_expanded[:, :, t]', '(1)'], {}), '(pist_expanded[:, :, t], 1)\n', (2898, 2925), True, 'import numpy as np\n'), ((2226, 2258), 'numpy.sum', 'np.sum', (['pitt_expanded_q[:, :, t]'], {}), '(pitt_expanded_q[:, :, t])\n', (2232, 2258), True, 'import numpy as np\n'), ((3196, 3211), 'numpy.transpose', 'np.transpose', (['L'], {}), '(L)\n', (3208, 3211), True, 'import numpy as np\n'), ((2976, 3016), 'numpy.transpose', 'np.transpose', (['pitt_expanded[:, :, t - 1]'], {}), '(pitt_expanded[:, :, t - 1])\n', (2988, 3016), True, 'import numpy as np\n'), ((3170, 3180), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (3177, 3180), True, 'import numpy as np\n'), ((748, 782), 'numpy.exp', 'np.exp', (['(-self.beta * eta[2, t - 1])'], {}), '(-self.beta * eta[2, t - 1])\n', (754, 782), True, 'import numpy as np\n'), ((1541, 1578), 'numpy.exp', 'np.exp', (['(-self.q_r * (t - self.t_star))'], {}), '(-self.q_r * (t - self.t_star))\n', (1547, 1578), True, 'import numpy as np\n'), ((1636, 1672), 'numpy.exp', 'np.exp', (['(-beta_restr * pitt[2, t - 1])'], {}), '(-beta_restr * pitt[2, t - 1])\n', (1642, 1672), True, 'import numpy as np\n'), ((1893, 1930), 'numpy.sum', 'np.sum', (['pitt_expanded[:, :, t - 1]', '(0)'], {}), '(pitt_expanded[:, :, t - 1], 0)\n', (1899, 1930), True, 'import numpy as np\n'), ((2958, 2968), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2965, 2968), True, 'import numpy as np\n'), ((3073, 3083), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (3080, 3083), True, 'import numpy as np\n'), ((783, 817), 'numpy.exp', 'np.exp', (['(-self.beta * eta[2, t - 1])'], {}), '(-self.beta * eta[2, t - 1])\n', (789, 817), True, 'import numpy as np\n'), ((1673, 1709), 'numpy.exp', 'np.exp', (['(-beta_restr * pitt[2, t - 1])'], {}), '(-beta_restr * pitt[2, t - 1])\n', (1679, 1709), True, 'import numpy as np\n'), ((2326, 2344), 'numpy.sum', 'np.sum', (['y[:, :, t]'], {}), '(y[:, :, t])\n', (2332, 2344), True, 'import numpy as np\n'), ((3034, 3044), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (3041, 3044), True, 'import numpy as np\n'), ((3106, 3116), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (3113, 3116), True, 'import numpy as np\n')]
from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np from astropy.io import ascii from pkg_resources import resource_filename ''' Function to read in atomic line information for a given rest frame wavelength. Or For the line matching the closest wavelength. Input : lambda_rest :- Rest Frame wavelength (in \AA) of the line to match method :- 'closest' -> If set will match the closest line. 'Exact' -> If set will match the exact wavelength. Output: dic :- Dictionary with fval,lambda and species name. Example: str=rb_setline(2796.3,'closest') Written By: <NAME> Jan 2018, Python 2.7 Edit: <NAME> Sep 2018, Depreciated kwargs to be compatible with python 3 ''' def rb_setline(lambda_rest,method,linelist='atom'): #if kwargs.has_key('linelist'): # linelist=kwargs['linelist'] #else: # linelist='LLS' line_str=read_line_list(linelist) wavelist=np.zeros((len(line_str),)) name = np.empty(len(line_str), dtype='object') fval=np.zeros((len(line_str),)) if linelist=='atom': gamma=np.zeros((len(line_str),)) for i in range(0,len(wavelist)): wavelist[i]=np.double(line_str[i]['wrest']) fval[i]=np.float(line_str[i]['fval']) name[i]=np.str(line_str[i]['ion']) if linelist=='atom': gamma[i]=np.str(line_str[i]['gamma']) if method=='Exact': q= np.where( (np.abs(lambda_rest-wavelist) < 1e-3)) if linelist=='atom': outstr={'wave':wavelist[q],'fval':fval[q],'name':name[q],'gamma':gamma[q]} else: outstr={'wave':wavelist[q],'fval':fval[q],'name':name[q]} elif method=='closest': idx=(np.abs(lambda_rest-wavelist)).argmin() if linelist=='atom': outstr={'wave':wavelist[idx],'fval':fval[idx],'name':name[idx],'gamma':gamma[idx]} else: outstr={'wave':wavelist[idx],'fval':fval[idx],'name':name[idx]} else: raise NameError('Specify the matching method, closest or Exact') return outstr def read_line_list(label): if label=='atom': filename=resource_filename('rbvfit','lines/atom_full.dat') elif label == 'LLS': filename=resource_filename('rbvfit','lines/lls.lst') elif label == 'LLS Small': filename=resource_filename('rbvfit','lines/lls_sub.lst') elif label == 'DLA': filename=resource_filename('rbvfit','lines/dla.lst') else: print('Give Correct LineList') data = [] if label=='atom': s=ascii.read(filename) for line in range(0,len(s['col1'])): source = {} source['wrest'] = float(s['col2'][line]) source['ion'] = s['col1'][line]+' '+np.str(np.int(s['col2'][line])) source['fval']=float(s['col3'][line]) source['gamma']=float(s['col4'][line]) data.append(source) else: f=open(filename,'r') header1 = f.readline() for line in f: line = line.strip() columns = line.split() source = {} source['wrest'] = float(columns[0]) source['ion'] = columns[1]+' '+columns[2] source['fval']=float(columns[3]) data.append(source) return data
[ "astropy.io.ascii.read", "numpy.abs", "numpy.double", "numpy.float", "pkg_resources.resource_filename", "numpy.int", "numpy.str" ]
[((1244, 1275), 'numpy.double', 'np.double', (["line_str[i]['wrest']"], {}), "(line_str[i]['wrest'])\n", (1253, 1275), True, 'import numpy as np\n'), ((1286, 1315), 'numpy.float', 'np.float', (["line_str[i]['fval']"], {}), "(line_str[i]['fval'])\n", (1294, 1315), True, 'import numpy as np\n'), ((1326, 1352), 'numpy.str', 'np.str', (["line_str[i]['ion']"], {}), "(line_str[i]['ion'])\n", (1332, 1352), True, 'import numpy as np\n'), ((2077, 2127), 'pkg_resources.resource_filename', 'resource_filename', (['"""rbvfit"""', '"""lines/atom_full.dat"""'], {}), "('rbvfit', 'lines/atom_full.dat')\n", (2094, 2127), False, 'from pkg_resources import resource_filename\n'), ((2445, 2465), 'astropy.io.ascii.read', 'ascii.read', (['filename'], {}), '(filename)\n', (2455, 2465), False, 'from astropy.io import ascii\n'), ((1388, 1416), 'numpy.str', 'np.str', (["line_str[i]['gamma']"], {}), "(line_str[i]['gamma'])\n", (1394, 1416), True, 'import numpy as np\n'), ((2160, 2204), 'pkg_resources.resource_filename', 'resource_filename', (['"""rbvfit"""', '"""lines/lls.lst"""'], {}), "('rbvfit', 'lines/lls.lst')\n", (2177, 2204), False, 'from pkg_resources import resource_filename\n'), ((1455, 1485), 'numpy.abs', 'np.abs', (['(lambda_rest - wavelist)'], {}), '(lambda_rest - wavelist)\n', (1461, 1485), True, 'import numpy as np\n'), ((2243, 2291), 'pkg_resources.resource_filename', 'resource_filename', (['"""rbvfit"""', '"""lines/lls_sub.lst"""'], {}), "('rbvfit', 'lines/lls_sub.lst')\n", (2260, 2291), False, 'from pkg_resources import resource_filename\n'), ((1697, 1727), 'numpy.abs', 'np.abs', (['(lambda_rest - wavelist)'], {}), '(lambda_rest - wavelist)\n', (1703, 1727), True, 'import numpy as np\n'), ((2324, 2368), 'pkg_resources.resource_filename', 'resource_filename', (['"""rbvfit"""', '"""lines/dla.lst"""'], {}), "('rbvfit', 'lines/dla.lst')\n", (2341, 2368), False, 'from pkg_resources import resource_filename\n'), ((2611, 2634), 'numpy.int', 'np.int', (["s['col2'][line]"], {}), "(s['col2'][line])\n", (2617, 2634), True, 'import numpy as np\n')]
import datetime import warnings from copy import copy from types import MappingProxyType from typing import Sequence, Callable, Mapping, Union, TypeVar, TYPE_CHECKING import numpy as np import pandas as pd import sidekick as sk from .clinical_acessor import Clinical from .metaclass import ModelMeta from .. import fitting as fit from .. import formulas from ..diseases import Disease, DiseaseParams, disease as get_disease from ..logging import log from ..mixins import ( Meta, WithParamsMixin, WithDataModelMixin, WithInfoMixin, WithResultsMixin, WithRegionDemography, ) from ..packages import plt from ..utils import today, not_implemented, extract_keys, param_property T = TypeVar("T") NOW = datetime.datetime.now() TODAY = datetime.date(NOW.year, NOW.month, NOW.day) DAY = datetime.timedelta(days=1) pplt = sk.import_later("..plot", package=__package__) if TYPE_CHECKING: from ..model_group import ModelGroup from pydemic_ui.model import UIProperty class Model( WithDataModelMixin, WithInfoMixin, WithResultsMixin, WithParamsMixin, WithRegionDemography, metaclass=ModelMeta, ): """ Base class for all models. """ meta: Meta class Meta: model_name = "Model" data_aliases = {} # Initial values state: np.ndarray = None initial_cases: float = sk.lazy(lambda self: self._initial_cases()) initial_infected: float = sk.lazy(lambda self: self._initial_infected()) # Initial time date: datetime.date = None time: float = 0.0 iter: int = sk.property(lambda m: len(m.data)) dates: pd.DatetimeIndex = sk.property(lambda m: m.to_dates(m.times)) times: pd.Index = sk.property(lambda m: m.data.index) # Common epidemiological parameters R0: float = param_property("R0", default=2.0) K = sk.property(not_implemented) duplication_time = property(lambda self: np.log(2) / self.K) # Special accessors clinical: Clinical = property(lambda self: Clinical(self)) clinical_model: type = None clinical_params: Mapping = MappingProxyType({}) disease: Disease = None disease_params: DiseaseParams = None @property def ui(self) -> "UIProperty": try: from pydemic_ui.model import UIProperty except ImportError as ex: log.warn(f"Could not import pydemic_ui.model: {ex}") msg = ( "must have pydemic-ui installed to access the model.ui attribute.\n" "Please 'pip install pydemic-ui' before proceeding'" ) raise RuntimeError(msg) return UIProperty(self) def __init__( self, params=None, *, run=None, name=None, date=None, clinical=None, disease=None, **kwargs ): self.name = name or f"{type(self).__name__} model" self.date = pd.to_datetime(date or today()) self.disease = get_disease(disease) self._initialized = False # Fix demography demography_opts = WithRegionDemography._init_from_dict(self, kwargs) self.disease_params = self.disease.params(**demography_opts) # Init other mixins WithParamsMixin.__init__(self, params, keywords=kwargs) WithInfoMixin.__init__(self) WithResultsMixin.__init__(self) WithDataModelMixin.__init__(self) if clinical: clinical = dict(clinical) self.clinical_model = clinical.pop("model", None) self.clinical_params = clinical for k, v in kwargs.items(): if hasattr(self, k): try: setattr(self, k, v) except AttributeError: name = type(self).__name__ msg = f"cannot set '{k}' attribute in '{name}' model" raise AttributeError(msg) else: raise TypeError(f"invalid arguments: {k}") if run is not None: self.run(run) def __str__(self): return self.name def _initial_cases(self): raise NotImplementedError("must be implemented in subclass") def _initial_infected(self): raise NotImplementedError("must be implemented in subclass") def epidemic_model_name(self): """ Return the epidemic model name. """ return self.meta.model_name # # Pickling and copying # # noinspection PyUnresolvedReferences def copy(self, **kwargs): """ Copy instance possibly setting new values for attributes. Keyword Args: All keyword arguments are used to reset attributes in the copy. Examples: >>> m.copy(R0=1.0, name="Stable") <SIR(name="Stable")> """ cls = type(self) data = self.__dict__.copy() params = data.pop("_params") data.pop("_results_cache") new = object.__new__(cls) for k in list(kwargs): if k in data: data[k] = kwargs.pop(k) new._params = copy(params) new._results_cache = {} new.__dict__.update(copy(data)) for k, v in kwargs.items(): setattr(new, k, v) return new def split(self, n=None, **kwargs) -> "ModelGroup": """ Create n copies of model, each one may override a different set of parameters and return a ModelGroup. Args: n: Number of copies in the resulting list. It can also be a sequence of dictionaries with arguments to pass to the .copy() constructor. Keyword Args: Keyword arguments are passed to the `.copy()` method of the model. If the keyword is a sequence, it applies the n-th component of the sequence to the corresponding n-th model. """ from ..model_group import ModelGroup if n is None: for k, v in kwargs.items(): if not isinstance(v, str) and isinstance(v, Sequence): n = len(v) break else: raise TypeError("cannot determine the group size from arguments") if isinstance(n, int): options = [{} for _ in range(n)] else: options = [dict(d) for d in n] n: int = len(options) # Merge option dicts for k, v in kwargs.items(): if not isinstance(v, str) and isinstance(v, Sequence): xs = v m = len(xs) if m != n: raise ValueError( f"sizes do not match: " f"{k} should be a sequence of {n} " f"items, got {m}" ) for opt, x in zip(options, xs): opt.setdefault(k, x) else: for opt in options: opt.setdefault(k, v) # Fix name for opt in options: try: name = opt["name"] except KeyError: pass else: opt["name"] = name.format(n=n, **opt) return ModelGroup(self.copy(**opt) for opt in options) def split_children(self, options=MappingProxyType({}), **kwargs) -> "ModelGroup": """ Similar to split, but split into the children of the given class. Args: options: A mapping between region or region id """ from ..model_group import ModelGroup if self.region is None: raise ValueError("model is not bound to a region") for k in self._params: if k not in kwargs: kwargs[k] = self.get_param(k) for attr in ("disease",): kwargs.setdefault(attr, getattr(self, attr)) return ModelGroup.from_children(self.region, type(self), options, **kwargs) def reset(self, date: Union[datetime.date, float] = None, **kwargs): """ Return a copy of the model setting the state to the final state. If a positional "date" argument is given, reset to the state to the one in the specified date. Args: date (float or date): An optional float or datetime selecting the desired date. Keyword Args: Additional keyword arguments are handled the same way as the :method:`copy` method. """ if date is None: date = self.date time = self.time elif isinstance(date, (float, int)): time = float(date) date = self.to_date(date) else: time: float = self.to_time(date) kwargs["data"] = self.data.loc[[time]] kwargs["date"] = date kwargs["state"] = kwargs["data"].iloc[0].values kwargs["time"] = 1 return self.copy(**kwargs) def trim_dates(self, start=0, end=None): """ Trim data in model to the given interval specified by start and end dates or times. Args: start (int or date): Starting date. If not given, start at zero. end (int or date): End date. If not given, select up to the final date. """ start = int(start or 0) end = int(end or self.time) new = self.copy( date=self.to_date(start), data=self.data.iloc[start:end].reset_index(drop=True), time=end - start, state=self.data.iloc[end].values, ) return new # # Initial conditions # def set_ic(self, state=None, **kwargs): """ Set initial conditions. """ if self.state is None: if state is None: state = self.initial_state(**kwargs) self.state = np.array(state, dtype=float) alias = self.meta.data_aliases for k, v in list(kwargs.items()): if k in alias: del kwargs[k] kwargs[alias[k]] = v components = extract_keys(self.meta.variables, kwargs) for k, v in components.items(): idx = self.meta.get_variable_index(k) self.state[idx] = v return self def set_data(self, data): """ Force a dataframe into simulation state. """ data = data.copy() data.columns = [self.meta.data_aliases.get(c, c) for c in data.columns] self.set_ic(state=data.iloc[0]) self.data = data.reset_index(drop=True) self.time = len(data) - 1 self.date = data.index[-1] self.state[:] = data.iloc[-1] self.info["observed.dates"] = data.index[[0, -1]] self._initialized = True return self def set_cases_from_region(self: T) -> T: """ Set the number of cases from region. """ self.set_cases() return self def set_cases(self: T, curves=None, adjust_R0=False, save_observed=False) -> T: """ Initialize model from a dataframe with the deaths and cases curve. This curve is usually the output of disease.epidemic_curve(region), and is automatically retrieved if not passed explicitly and the region of the model is set. Args: curves: Dataframe with cumulative ["cases", "deaths"] columns. If not given, or None, fetches from disease.epidemic_curves(info) adjust_R0: If true, adjust R0 from the observed cases. save_observed: If true, save the cases curves into the model.info["observed.cases"] key. """ if curves is None: warnings.warn("omitting curves from set_cases will be deprecated.") if self.region is None or self.disease is None: msg = 'must provide both "region" and "disease" or an explicit cases ' "curve." raise ValueError(msg) curves = self.region.pydemic.epidemic_curve(self.disease) if adjust_R0: warnings.warn("adjust_R0 argument is deprecated") method = "RollingOLS" if adjust_R0 is True else adjust_R0 Re, _ = value = fit.estimate_R0(self, curves, Re=True, method=method) assert np.isfinite(Re), f"invalid value for R0: {value}" self.R0 = Re # Save notification it in the info dictionary for reference if "cases_observed" in curves: tf = curves.index[-1] rate = curves.loc[tf, "cases_observed"] / curves.loc[tf, "cases"] else: rate = 1.0 self.info["observed.notification_rate"] = rate # Save simulation state from data model = self.epidemic_model_name() curve = fit.cases(curves) data = fit.epidemic_curve(model, curve, self) self.set_data(data) self.initial_cases = curve.iloc[0] if adjust_R0: self.R0 /= self["susceptible:final"] / self.population self.info["observed.R0"] = self.R0 # Optionally save cases curves into the info dictionary if save_observed: key = "observed.curves" if save_observed is True else save_observed df = curves.rename(columns={"cases": "cases_raw"}) df["cases"] = curve self.info[key] = df return self def adjust_R0(self, method="RollingOLS"): curves = self["cases"] self.R0, _ = fit.estimate_R0(self, curves, method=method) self.info["observed.R0"] = self.R0 def initial_state(self, cases=None, **kwargs): """ Create the default initial vector for model. """ if cases is not None: kwargs.setdefault("population", self.population) return formulas.initial_state(self.epidemic_model_name(), cases, self, **kwargs) return self._initial_state() def infect(self, n=1, column="infectious"): """ Convert 'n' susceptible individuals to infectious. """ last = self.data.index[-1] n = min(n, self.data.loc[last, "susceptible"]) self.data.loc[last, column] += n self.data.loc[last, "susceptible"] -= n return self def _initial_state(self): raise NotImplementedError def initialize(self): """ Force initialization. """ if not self._initialized: self.set_ic() self.data = make_dataframe(self) self._initialized = True # # Running simulation # def run(self: T, time) -> T: """ Runs the model for the given duration. """ steps = int(time) self.initialize() if time == 0: return _, *shape = self.data.shape ts = self.time + 1.0 + np.arange(steps) data = np.zeros((steps, *shape)) date = self.date if self.info.get("event.simulation_start") is None: self.info.save_event("simulation_start") self.run_to_fill(data, ts) extra = pd.DataFrame(data, columns=self.data.columns, index=ts) self.data = pd.concat([self.data, extra]) self.date = date + time * DAY self.time = ts[-1] self.state = data[-1] return self def run_to_fill(self: T, data, times) -> T: """ Run simulation to fill pre-allocated array of data. """ raise NotImplementedError def run_until(self, condition: Callable[["Model"], bool]): """ Run until stop condition is satisfied. Args: condition: A function that receives a model and return True if stop criteria is satisfied. """ raise NotImplementedError # # Utility methods # def to_dates(self, times: Sequence[int], start_date=None) -> pd.DatetimeIndex: """ Convert an array of numerical times to dates. Args: times: Sequence of times. start_date: Starting date. If not given, uses the starting date for simulation. """ dates: pd.DatetimeIndex if isinstance(times, pd.DatetimeIndex): return times if start_date is None: start_date = self.date - self.time * DAY # noinspection PyTypeChecker return pd.to_datetime(times, unit="D", origin=start_date) def to_date(self, time: Union[float, int]) -> datetime.date: """ Convert a single instant to the corresponding datetime """ return pd.to_datetime(time - self.time, unit="D", origin=self.date) def to_times(self, dates: Sequence, start_date=None) -> np.ndarray: """ Convert an array of numerical times to dates. Args: dates: Sequence of dates. start_date: Starting date. If not given, uses the starting date for simulation. """ if start_date is None: start_date = self.date - self.time * DAY data = [(date - start_date).days for date in dates] return np.array(data) if data else np.array([], dtype=int) def to_time(self, date, start_date=None) -> float: """ Convert date to time. """ if start_date is None: return self.to_time(date, self.date) - self.time return float((date - start_date).days) def get_times(self, idx=None): """ Get times possibly sliced by an index. """ if idx is None: return self.times else: return self.times[idx] def get_data_time(self, idx): times = self.get_times(idx) return pd.Series(times, index=times) def get_data_date(self, idx): times = self.get_times(idx) dates = self.to_dates(times) return pd.Series(dates, index=times) def get_data_cases(self, idx): raise NotImplementedError # # Plotting and showing information # def plot( self, components=None, *, ax=None, logy=False, show=False, dates=False, legend=True, grid=True, ): """ Plot the result of simulation. """ ax = ax or plt.gca() kwargs = {"logy": logy, "ax": ax, "grid": grid, "legend": legend} def get_column(col): if dates: col += ":dates" data = self[col] return data components = self.meta.variables if components is None else components for col in components: data = get_column(col) data.plot(**kwargs) if show: plt.show() def make_dataframe(model: Model): """ Create the initial dataframe for the given model. """ data = [model.state] cols = model.meta.variables index = [model.time] return pd.DataFrame(data, columns=cols, index=index)
[ "numpy.arange", "pandas.DataFrame", "pydemic_ui.model.UIProperty", "sidekick.property", "numpy.isfinite", "datetime.timedelta", "typing.TypeVar", "sidekick.import_later", "datetime.datetime.now", "pandas.concat", "types.MappingProxyType", "datetime.date", "pandas.to_datetime", "pandas.Series", "numpy.log", "copy.copy", "numpy.zeros", "numpy.array", "warnings.warn" ]
[((704, 716), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (711, 716), False, 'from typing import Sequence, Callable, Mapping, Union, TypeVar, TYPE_CHECKING\n'), ((723, 746), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (744, 746), False, 'import datetime\n'), ((755, 798), 'datetime.date', 'datetime.date', (['NOW.year', 'NOW.month', 'NOW.day'], {}), '(NOW.year, NOW.month, NOW.day)\n', (768, 798), False, 'import datetime\n'), ((805, 831), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (823, 831), False, 'import datetime\n'), ((839, 885), 'sidekick.import_later', 'sk.import_later', (['"""..plot"""'], {'package': '__package__'}), "('..plot', package=__package__)\n", (854, 885), True, 'import sidekick as sk\n'), ((1698, 1733), 'sidekick.property', 'sk.property', (['(lambda m: m.data.index)'], {}), '(lambda m: m.data.index)\n', (1709, 1733), True, 'import sidekick as sk\n'), ((1833, 1861), 'sidekick.property', 'sk.property', (['not_implemented'], {}), '(not_implemented)\n', (1844, 1861), True, 'import sidekick as sk\n'), ((2078, 2098), 'types.MappingProxyType', 'MappingProxyType', (['{}'], {}), '({})\n', (2094, 2098), False, 'from types import MappingProxyType\n'), ((19097, 19142), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': 'cols', 'index': 'index'}), '(data, columns=cols, index=index)\n', (19109, 19142), True, 'import pandas as pd\n'), ((2620, 2636), 'pydemic_ui.model.UIProperty', 'UIProperty', (['self'], {}), '(self)\n', (2630, 2636), False, 'from pydemic_ui.model import UIProperty\n'), ((5047, 5059), 'copy.copy', 'copy', (['params'], {}), '(params)\n', (5051, 5059), False, 'from copy import copy\n'), ((7279, 7299), 'types.MappingProxyType', 'MappingProxyType', (['{}'], {}), '({})\n', (7295, 7299), False, 'from types import MappingProxyType\n'), ((14946, 14971), 'numpy.zeros', 'np.zeros', (['(steps, *shape)'], {}), '((steps, *shape))\n', (14954, 14971), True, 'import numpy as np\n'), ((15163, 15218), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': 'self.data.columns', 'index': 'ts'}), '(data, columns=self.data.columns, index=ts)\n', (15175, 15218), True, 'import pandas as pd\n'), ((15240, 15269), 'pandas.concat', 'pd.concat', (['[self.data, extra]'], {}), '([self.data, extra])\n', (15249, 15269), True, 'import pandas as pd\n'), ((16503, 16553), 'pandas.to_datetime', 'pd.to_datetime', (['times'], {'unit': '"""D"""', 'origin': 'start_date'}), "(times, unit='D', origin=start_date)\n", (16517, 16553), True, 'import pandas as pd\n'), ((16722, 16782), 'pandas.to_datetime', 'pd.to_datetime', (['(time - self.time)'], {'unit': '"""D"""', 'origin': 'self.date'}), "(time - self.time, unit='D', origin=self.date)\n", (16736, 16782), True, 'import pandas as pd\n'), ((17883, 17912), 'pandas.Series', 'pd.Series', (['times'], {'index': 'times'}), '(times, index=times)\n', (17892, 17912), True, 'import pandas as pd\n'), ((18036, 18065), 'pandas.Series', 'pd.Series', (['dates'], {'index': 'times'}), '(dates, index=times)\n', (18045, 18065), True, 'import pandas as pd\n'), ((5120, 5130), 'copy.copy', 'copy', (['data'], {}), '(data)\n', (5124, 5130), False, 'from copy import copy\n'), ((9891, 9919), 'numpy.array', 'np.array', (['state'], {'dtype': 'float'}), '(state, dtype=float)\n', (9899, 9919), True, 'import numpy as np\n'), ((11780, 11847), 'warnings.warn', 'warnings.warn', (['"""omitting curves from set_cases will be deprecated."""'], {}), "('omitting curves from set_cases will be deprecated.')\n", (11793, 11847), False, 'import warnings\n'), ((12147, 12196), 'warnings.warn', 'warnings.warn', (['"""adjust_R0 argument is deprecated"""'], {}), "('adjust_R0 argument is deprecated')\n", (12160, 12196), False, 'import warnings\n'), ((12368, 12383), 'numpy.isfinite', 'np.isfinite', (['Re'], {}), '(Re)\n', (12379, 12383), True, 'import numpy as np\n'), ((14913, 14929), 'numpy.arange', 'np.arange', (['steps'], {}), '(steps)\n', (14922, 14929), True, 'import numpy as np\n'), ((17286, 17300), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (17294, 17300), True, 'import numpy as np\n'), ((17314, 17337), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (17322, 17337), True, 'import numpy as np\n'), ((1907, 1916), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (1913, 1916), True, 'import numpy as np\n')]
############################################################################### # plot_afefeh: the basic [a/Fe] vs. [Fe/H] plot for the data section ############################################################################### import sys import matplotlib import numpy from scipy import special matplotlib.use('Agg') from galpy.util import bovy_plot from matplotlib import pyplot import define_rcsample def plot_afefeh(plotfilename): # Load the data data= define_rcsample.get_rcsample() # Plot the data bovy_plot.bovy_print() bovy_plot.scatterplot(data[define_rcsample._FEHTAG], data[define_rcsample._AFETAG], 'k.',ms=.8, levels=special.erf(numpy.arange(1,2)/numpy.sqrt(2.)), xrange=[-1.,0.4], yrange=[-0.15,0.35], xlabel=r'$[\mathrm{Fe/H}]$', ylabel=define_rcsample._AFELABEL) # Overplot sub-samples # low alpha, low feh lowfeh= define_rcsample._lowlow_lowfeh(0.) highfeh= define_rcsample._lowlow_highfeh(0.) pyplot.plot([lowfeh,lowfeh],[define_rcsample._lowlow_lowafe(lowfeh), define_rcsample._lowlow_highafe(lowfeh)], 'k--',lw=2.) pyplot.plot([highfeh,highfeh],[define_rcsample._lowlow_lowafe(highfeh), define_rcsample._lowlow_highafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._lowlow_lowafe(lowfeh), define_rcsample._lowlow_lowafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._lowlow_highafe(lowfeh), define_rcsample._lowlow_highafe(highfeh)], 'k--',lw=2.) # high alpha lowfeh= define_rcsample._highalpha_lowfeh(0.) highfeh= define_rcsample._highalpha_highfeh(0.) pyplot.plot([lowfeh,lowfeh],[define_rcsample._highalpha_lowafe(lowfeh), define_rcsample._highalpha_highafe(lowfeh)], 'k--',lw=2.) pyplot.plot([highfeh,highfeh],[define_rcsample._highalpha_lowafe(highfeh), define_rcsample._highalpha_highafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._highalpha_lowafe(lowfeh), define_rcsample._highalpha_lowafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._highalpha_highafe(lowfeh), define_rcsample._highalpha_highafe(highfeh)], 'k--',lw=2.) # solar lowfeh= define_rcsample._solar_lowfeh(0.) highfeh= define_rcsample._solar_highfeh(0.) pyplot.plot([lowfeh,lowfeh],[define_rcsample._solar_lowafe(lowfeh), define_rcsample._solar_highafe(lowfeh)], 'k--',lw=2.) pyplot.plot([highfeh,highfeh],[define_rcsample._solar_lowafe(highfeh), define_rcsample._solar_highafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._solar_lowafe(lowfeh), define_rcsample._solar_lowafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._solar_highafe(lowfeh), define_rcsample._solar_highafe(highfeh)], 'k--',lw=2.) # high [Fe/H] lowfeh= define_rcsample._highfeh_lowfeh(0.) highfeh= define_rcsample._highfeh_highfeh(0.) pyplot.plot([lowfeh,lowfeh],[define_rcsample._highfeh_lowafe(lowfeh), define_rcsample._highfeh_highafe(lowfeh)], 'k--',lw=2.) pyplot.plot([highfeh,highfeh],[define_rcsample._highfeh_lowafe(highfeh), define_rcsample._highfeh_highafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._highfeh_lowafe(lowfeh), define_rcsample._highfeh_lowafe(highfeh)], 'k--',lw=2.) pyplot.plot([lowfeh,highfeh],[define_rcsample._highfeh_highafe(lowfeh), define_rcsample._highfeh_highafe(highfeh)], 'k--',lw=2.) # Label them bovy_plot.bovy_text(-0.4,0.265,r'$\mathrm{high}\ [\alpha/\mathrm{Fe}]$', size=15.,backgroundcolor='w') bovy_plot.bovy_text(-0.975,0.05,r'$\mathrm{low\ [Fe/H]}$', size=15.,backgroundcolor='w') bovy_plot.bovy_text(0.,-0.125,r'$\mathrm{high\ [Fe/H]}$', size=15.,backgroundcolor='w') bovy_plot.bovy_text(-0.225,-0.125,r'$\mathrm{solar}$', size=15.,backgroundcolor='w') # Loci if False: haloc= define_rcsample.highalphalocus() bovy_plot.bovy_plot(haloc[:,0],haloc[:,1],'k-',lw=2.,overplot=True) haloc= define_rcsample.lowalphalocus() bovy_plot.bovy_plot(haloc[:,0],haloc[:,1],'k-',lw=2.,overplot=True) bovy_plot.bovy_end_print(plotfilename) return None if __name__ == '__main__': plot_afefeh(sys.argv[1])
[ "galpy.util.bovy_plot.bovy_print", "define_rcsample._highalpha_lowafe", "numpy.arange", "define_rcsample._solar_lowfeh", "define_rcsample._highfeh_highafe", "define_rcsample._solar_highfeh", "define_rcsample._highalpha_lowfeh", "define_rcsample.get_rcsample", "define_rcsample._highfeh_lowafe", "define_rcsample._solar_highafe", "define_rcsample._solar_lowafe", "define_rcsample._lowlow_highafe", "define_rcsample._highfeh_lowfeh", "galpy.util.bovy_plot.bovy_text", "galpy.util.bovy_plot.bovy_end_print", "matplotlib.use", "define_rcsample._highalpha_highfeh", "define_rcsample.highalphalocus", "define_rcsample._lowlow_highfeh", "define_rcsample._lowlow_lowafe", "define_rcsample.lowalphalocus", "galpy.util.bovy_plot.bovy_plot", "define_rcsample._highalpha_highafe", "define_rcsample._lowlow_lowfeh", "define_rcsample._highfeh_highfeh", "numpy.sqrt" ]
[((297, 318), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (311, 318), False, 'import matplotlib\n'), ((466, 496), 'define_rcsample.get_rcsample', 'define_rcsample.get_rcsample', ([], {}), '()\n', (494, 496), False, 'import define_rcsample\n'), ((521, 543), 'galpy.util.bovy_plot.bovy_print', 'bovy_plot.bovy_print', ([], {}), '()\n', (541, 543), False, 'from galpy.util import bovy_plot\n'), ((1046, 1081), 'define_rcsample._lowlow_lowfeh', 'define_rcsample._lowlow_lowfeh', (['(0.0)'], {}), '(0.0)\n', (1076, 1081), False, 'import define_rcsample\n'), ((1094, 1130), 'define_rcsample._lowlow_highfeh', 'define_rcsample._lowlow_highfeh', (['(0.0)'], {}), '(0.0)\n', (1125, 1130), False, 'import define_rcsample\n'), ((1879, 1917), 'define_rcsample._highalpha_lowfeh', 'define_rcsample._highalpha_lowfeh', (['(0.0)'], {}), '(0.0)\n', (1912, 1917), False, 'import define_rcsample\n'), ((1930, 1969), 'define_rcsample._highalpha_highfeh', 'define_rcsample._highalpha_highfeh', (['(0.0)'], {}), '(0.0)\n', (1964, 1969), False, 'import define_rcsample\n'), ((2737, 2771), 'define_rcsample._solar_lowfeh', 'define_rcsample._solar_lowfeh', (['(0.0)'], {}), '(0.0)\n', (2766, 2771), False, 'import define_rcsample\n'), ((2784, 2819), 'define_rcsample._solar_highfeh', 'define_rcsample._solar_highfeh', (['(0.0)'], {}), '(0.0)\n', (2814, 2819), False, 'import define_rcsample\n'), ((3561, 3597), 'define_rcsample._highfeh_lowfeh', 'define_rcsample._highfeh_lowfeh', (['(0.0)'], {}), '(0.0)\n', (3592, 3597), False, 'import define_rcsample\n'), ((3610, 3647), 'define_rcsample._highfeh_highfeh', 'define_rcsample._highfeh_highfeh', (['(0.0)'], {}), '(0.0)\n', (3642, 3647), False, 'import define_rcsample\n'), ((4396, 4514), 'galpy.util.bovy_plot.bovy_text', 'bovy_plot.bovy_text', (['(-0.4)', '(0.265)', '"""$\\\\mathrm{high}\\\\ [\\\\alpha/\\\\mathrm{Fe}]$"""'], {'size': '(15.0)', 'backgroundcolor': '"""w"""'}), "(-0.4, 0.265,\n '$\\\\mathrm{high}\\\\ [\\\\alpha/\\\\mathrm{Fe}]$', size=15.0, backgroundcolor='w'\n )\n", (4415, 4514), False, 'from galpy.util import bovy_plot\n'), ((4528, 4625), 'galpy.util.bovy_plot.bovy_text', 'bovy_plot.bovy_text', (['(-0.975)', '(0.05)', '"""$\\\\mathrm{low\\\\ [Fe/H]}$"""'], {'size': '(15.0)', 'backgroundcolor': '"""w"""'}), "(-0.975, 0.05, '$\\\\mathrm{low\\\\ [Fe/H]}$', size=15.0,\n backgroundcolor='w')\n", (4547, 4625), False, 'from galpy.util import bovy_plot\n'), ((4646, 4743), 'galpy.util.bovy_plot.bovy_text', 'bovy_plot.bovy_text', (['(0.0)', '(-0.125)', '"""$\\\\mathrm{high\\\\ [Fe/H]}$"""'], {'size': '(15.0)', 'backgroundcolor': '"""w"""'}), "(0.0, -0.125, '$\\\\mathrm{high\\\\ [Fe/H]}$', size=15.0,\n backgroundcolor='w')\n", (4665, 4743), False, 'from galpy.util import bovy_plot\n'), ((4763, 4855), 'galpy.util.bovy_plot.bovy_text', 'bovy_plot.bovy_text', (['(-0.225)', '(-0.125)', '"""$\\\\mathrm{solar}$"""'], {'size': '(15.0)', 'backgroundcolor': '"""w"""'}), "(-0.225, -0.125, '$\\\\mathrm{solar}$', size=15.0,\n backgroundcolor='w')\n", (4782, 4855), False, 'from galpy.util import bovy_plot\n'), ((5149, 5187), 'galpy.util.bovy_plot.bovy_end_print', 'bovy_plot.bovy_end_print', (['plotfilename'], {}), '(plotfilename)\n', (5173, 5187), False, 'from galpy.util import bovy_plot\n'), ((4913, 4945), 'define_rcsample.highalphalocus', 'define_rcsample.highalphalocus', ([], {}), '()\n', (4943, 4945), False, 'import define_rcsample\n'), ((4954, 5028), 'galpy.util.bovy_plot.bovy_plot', 'bovy_plot.bovy_plot', (['haloc[:, 0]', 'haloc[:, 1]', '"""k-"""'], {'lw': '(2.0)', 'overplot': '(True)'}), "(haloc[:, 0], haloc[:, 1], 'k-', lw=2.0, overplot=True)\n", (4973, 5028), False, 'from galpy.util import bovy_plot\n'), ((5037, 5068), 'define_rcsample.lowalphalocus', 'define_rcsample.lowalphalocus', ([], {}), '()\n', (5066, 5068), False, 'import define_rcsample\n'), ((5077, 5151), 'galpy.util.bovy_plot.bovy_plot', 'bovy_plot.bovy_plot', (['haloc[:, 0]', 'haloc[:, 1]', '"""k-"""'], {'lw': '(2.0)', 'overplot': '(True)'}), "(haloc[:, 0], haloc[:, 1], 'k-', lw=2.0, overplot=True)\n", (5096, 5151), False, 'from galpy.util import bovy_plot\n'), ((1163, 1201), 'define_rcsample._lowlow_lowafe', 'define_rcsample._lowlow_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (1193, 1201), False, 'import define_rcsample\n'), ((1236, 1275), 'define_rcsample._lowlow_highafe', 'define_rcsample._lowlow_highafe', (['lowfeh'], {}), '(lowfeh)\n', (1267, 1275), False, 'import define_rcsample\n'), ((1342, 1381), 'define_rcsample._lowlow_lowafe', 'define_rcsample._lowlow_lowafe', (['highfeh'], {}), '(highfeh)\n', (1372, 1381), False, 'import define_rcsample\n'), ((1418, 1458), 'define_rcsample._lowlow_highafe', 'define_rcsample._lowlow_highafe', (['highfeh'], {}), '(highfeh)\n', (1449, 1458), False, 'import define_rcsample\n'), ((1524, 1562), 'define_rcsample._lowlow_lowafe', 'define_rcsample._lowlow_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (1554, 1562), False, 'import define_rcsample\n'), ((1598, 1637), 'define_rcsample._lowlow_lowafe', 'define_rcsample._lowlow_lowafe', (['highfeh'], {}), '(highfeh)\n', (1628, 1637), False, 'import define_rcsample\n'), ((1703, 1742), 'define_rcsample._lowlow_highafe', 'define_rcsample._lowlow_highafe', (['lowfeh'], {}), '(lowfeh)\n', (1734, 1742), False, 'import define_rcsample\n'), ((1778, 1818), 'define_rcsample._lowlow_highafe', 'define_rcsample._lowlow_highafe', (['highfeh'], {}), '(highfeh)\n', (1809, 1818), False, 'import define_rcsample\n'), ((2002, 2043), 'define_rcsample._highalpha_lowafe', 'define_rcsample._highalpha_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (2035, 2043), False, 'import define_rcsample\n'), ((2078, 2120), 'define_rcsample._highalpha_highafe', 'define_rcsample._highalpha_highafe', (['lowfeh'], {}), '(lowfeh)\n', (2112, 2120), False, 'import define_rcsample\n'), ((2187, 2229), 'define_rcsample._highalpha_lowafe', 'define_rcsample._highalpha_lowafe', (['highfeh'], {}), '(highfeh)\n', (2220, 2229), False, 'import define_rcsample\n'), ((2266, 2309), 'define_rcsample._highalpha_highafe', 'define_rcsample._highalpha_highafe', (['highfeh'], {}), '(highfeh)\n', (2300, 2309), False, 'import define_rcsample\n'), ((2375, 2416), 'define_rcsample._highalpha_lowafe', 'define_rcsample._highalpha_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (2408, 2416), False, 'import define_rcsample\n'), ((2452, 2494), 'define_rcsample._highalpha_lowafe', 'define_rcsample._highalpha_lowafe', (['highfeh'], {}), '(highfeh)\n', (2485, 2494), False, 'import define_rcsample\n'), ((2560, 2602), 'define_rcsample._highalpha_highafe', 'define_rcsample._highalpha_highafe', (['lowfeh'], {}), '(lowfeh)\n', (2594, 2602), False, 'import define_rcsample\n'), ((2638, 2681), 'define_rcsample._highalpha_highafe', 'define_rcsample._highalpha_highafe', (['highfeh'], {}), '(highfeh)\n', (2672, 2681), False, 'import define_rcsample\n'), ((2852, 2889), 'define_rcsample._solar_lowafe', 'define_rcsample._solar_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (2881, 2889), False, 'import define_rcsample\n'), ((2924, 2962), 'define_rcsample._solar_highafe', 'define_rcsample._solar_highafe', (['lowfeh'], {}), '(lowfeh)\n', (2954, 2962), False, 'import define_rcsample\n'), ((3029, 3067), 'define_rcsample._solar_lowafe', 'define_rcsample._solar_lowafe', (['highfeh'], {}), '(highfeh)\n', (3058, 3067), False, 'import define_rcsample\n'), ((3104, 3143), 'define_rcsample._solar_highafe', 'define_rcsample._solar_highafe', (['highfeh'], {}), '(highfeh)\n', (3134, 3143), False, 'import define_rcsample\n'), ((3209, 3246), 'define_rcsample._solar_lowafe', 'define_rcsample._solar_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (3238, 3246), False, 'import define_rcsample\n'), ((3282, 3320), 'define_rcsample._solar_lowafe', 'define_rcsample._solar_lowafe', (['highfeh'], {}), '(highfeh)\n', (3311, 3320), False, 'import define_rcsample\n'), ((3386, 3424), 'define_rcsample._solar_highafe', 'define_rcsample._solar_highafe', (['lowfeh'], {}), '(lowfeh)\n', (3416, 3424), False, 'import define_rcsample\n'), ((3460, 3499), 'define_rcsample._solar_highafe', 'define_rcsample._solar_highafe', (['highfeh'], {}), '(highfeh)\n', (3490, 3499), False, 'import define_rcsample\n'), ((3680, 3719), 'define_rcsample._highfeh_lowafe', 'define_rcsample._highfeh_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (3711, 3719), False, 'import define_rcsample\n'), ((3754, 3794), 'define_rcsample._highfeh_highafe', 'define_rcsample._highfeh_highafe', (['lowfeh'], {}), '(lowfeh)\n', (3786, 3794), False, 'import define_rcsample\n'), ((3861, 3901), 'define_rcsample._highfeh_lowafe', 'define_rcsample._highfeh_lowafe', (['highfeh'], {}), '(highfeh)\n', (3892, 3901), False, 'import define_rcsample\n'), ((3938, 3979), 'define_rcsample._highfeh_highafe', 'define_rcsample._highfeh_highafe', (['highfeh'], {}), '(highfeh)\n', (3970, 3979), False, 'import define_rcsample\n'), ((4045, 4084), 'define_rcsample._highfeh_lowafe', 'define_rcsample._highfeh_lowafe', (['lowfeh'], {}), '(lowfeh)\n', (4076, 4084), False, 'import define_rcsample\n'), ((4120, 4160), 'define_rcsample._highfeh_lowafe', 'define_rcsample._highfeh_lowafe', (['highfeh'], {}), '(highfeh)\n', (4151, 4160), False, 'import define_rcsample\n'), ((4226, 4266), 'define_rcsample._highfeh_highafe', 'define_rcsample._highfeh_highafe', (['lowfeh'], {}), '(lowfeh)\n', (4258, 4266), False, 'import define_rcsample\n'), ((4302, 4343), 'define_rcsample._highfeh_highafe', 'define_rcsample._highfeh_highafe', (['highfeh'], {}), '(highfeh)\n', (4334, 4343), False, 'import define_rcsample\n'), ((741, 759), 'numpy.arange', 'numpy.arange', (['(1)', '(2)'], {}), '(1, 2)\n', (753, 759), False, 'import numpy\n'), ((759, 774), 'numpy.sqrt', 'numpy.sqrt', (['(2.0)'], {}), '(2.0)\n', (769, 774), False, 'import numpy\n')]
from .base_lot import * import numpy as np import os from .units import * #TODO get rid of get_energy class QChem(Lot): def run(self,geom,multiplicity): tempfilename = 'tempQCinp' tempfile = open(tempfilename,'w') if self.lot_inp_file == False: tempfile.write(' $rem\n') tempfile.write(' JOBTYPE FORCE\n') tempfile.write(' EXCHANGE {}\n'.format(self.functional)) tempfile.write(' SCF_ALGORITHM rca_diis\n') tempfile.write(' SCF_MAX_CYCLES 300\n') tempfile.write(' BASIS {}\n'.format(self.basis)) #tempfile.write(' ECP LANL2DZ \n') tempfile.write(' WAVEFUNCTION_ANALYSIS FALSE\n') tempfile.write(' GEOM_OPT_MAX_CYCLES 300\n') tempfile.write('scf_convergence 6\n') tempfile.write(' SYM_IGNORE TRUE\n') tempfile.write(' SYMMETRY FALSE\n') tempfile.write('molden_format true\n') tempfile.write(' $end\n') tempfile.write('\n') tempfile.write('$molecule\n') else: with open(self.lot_inp_file) as lot_inp: lot_inp_lines = lot_inp.readlines() for line in lot_inp_lines: tempfile.write(line) tempfile.write('{} {}\n'.format(self.charge,multiplicity)) if os.path.isfile("link.txt"): with open("link.txt") as link: link_lines = link.readlines() tmp_geom = [list(i) for i in geom] for i,coord in enumerate(tmp_geom): coord.append(link_lines[i].rstrip('\n')) for i in coord: tempfile.write(str(i)+' ') tempfile.write('\n') else: for coord in geom: for i in coord: tempfile.write(str(i)+' ') tempfile.write('\n') tempfile.write('$end') tempfile.close() cmd = "qchem -nt {} -save {} {}.qchem.out {}.{}".format(self.nproc,tempfilename,tempfilename,self.node_id,multiplicity) os.system(cmd) efilepath = os.environ['QCSCRATCH'] efilepath += '/{}.{}/GRAD'.format(self.node_id,multiplicity) with open(efilepath) as efile: elines = efile.readlines() temp = 0 for lines in elines: if temp == 1: self.E.append((multiplicity,float(lines.split()[0]))) break if "$" in lines: temp += 1 gradfilepath = os.environ['QCSCRATCH'] gradfilepath += '/{}.{}/GRAD'.format(self.node_id,multiplicity) with open(gradfilepath) as gradfile: gradlines = gradfile.readlines() temp = 0 tmp=[] for lines in gradlines: if '$' in lines: temp+=1 elif temp == 2: tmpline = lines.split() tmp.append([float(i) for i in tmpline]) elif temp == 3: break self.grada.append((multiplicity,tmp)) return def get_energy(self,coords,multiplicity,state): #if self.has_nelectrons==False: # for i in self.states: # self.get_nelec(geom,i[0]) # self.has_nelectrons==True if self.hasRanForCurrentCoords==False or (coords != self.currentCoords).any(): self.currentCoords = coords.copy() geom = manage_xyz.np_to_xyz(self.geom,self.currentCoords) self.runall(geom) self.hasRanForCurrentCoords=True tmp = self.search_tuple(self.E,multiplicity) return np.asarray(tmp[state][1])*KCAL_MOL_PER_AU def get_gradient(self,coords,multiplicity,state): #if self.has_nelectrons==False: # for i in self.states: # self.get_nelec(geom,i[0]) # self.has_nelectrons==True if self.hasRanForCurrentCoords==False or (coords != self.currentCoords).any(): self.currentCoords = coords.copy() geom = manage_xyz.np_to_xyz(self.geom,self.currentCoords) self.runall(geom) tmp = self.search_tuple(self.grada,multiplicity) return np.asarray(tmp[state][1])*ANGSTROM_TO_AU @classmethod def copy(cls,lot,**kwargs): base = os.environ['QCSCRATCH'] for state in self.states: multiplicity = state[0] efilepath_old=base+ '/{}.{}'.format(self.node_id,multiplicity) efilepath_new =base+ '/{}.{}'.format(node_id,multiplicity) os.system('cp -r ' + efilepath_old +' ' + efilepath_new) return cls(lot.options.copy().set_values(options))
[ "numpy.asarray", "os.path.isfile", "os.system" ]
[((1355, 1381), 'os.path.isfile', 'os.path.isfile', (['"""link.txt"""'], {}), "('link.txt')\n", (1369, 1381), False, 'import os\n'), ((2103, 2117), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (2112, 2117), False, 'import os\n'), ((3668, 3693), 'numpy.asarray', 'np.asarray', (['tmp[state][1]'], {}), '(tmp[state][1])\n', (3678, 3693), True, 'import numpy as np\n'), ((4228, 4253), 'numpy.asarray', 'np.asarray', (['tmp[state][1]'], {}), '(tmp[state][1])\n', (4238, 4253), True, 'import numpy as np\n'), ((4586, 4643), 'os.system', 'os.system', (["('cp -r ' + efilepath_old + ' ' + efilepath_new)"], {}), "('cp -r ' + efilepath_old + ' ' + efilepath_new)\n", (4595, 4643), False, 'import os\n')]
from enum import Enum import numpy as np import tensorflow as tf from edward1_utils import get_ancestors, get_descendants class GenerativeMode(Enum): UNCONDITIONED = 1 # i.e. sampling the learnt prior CONDITIONED = 2 # i.e. sampling the posterior, with variational samples substituted RECONSTRUCTION = 3 # i.e. mode of the posterior def noncopying_integrated_reparam_klqp(generative_builder, variational_builder, name_to_data_map, discrete_name_to_states_map, sample_count=1, beta=1., alpha=5.e6, grad_clip_magnitude=None): # Every variable in the generative and variational should have a leading dimension that is 'IID', corresponding to # an index-into-batch or otherwise sampled independently -- when we make substitutions, this dimension may be # expanded to incorporate more samples. Thus, all RVs are indexed by iid-index, * # Generative RVs are created by lambdas, taking zero or one parameters. There should be zero parameters when # dim0 (i.e. the iid-dimension) has size fixed by ancestral variables; there should be one parameter when it's a 'root' # variable (i.e. doesn't have any ancestor-RVs) and its base dim0 should be multiplied by that parameter # Variational RVs are created similarly; the name given to the lambda should match that of the corresponding # generative variable. Sample/discrete-expanded observations are retrived with a second lambda # generative_builder is free to return any type or None; for example, it may choose to return an object containing # some of its random variables; the unconditioned and mode-reconstruction versions of this result are returned to # the caller # ** note that we do not allow (but do not check for!) non-leaf non-RV tensors that are iib-indexed and have an RV as a sibling to # ** be included as parents of RVs in the graph, as these cannot easily be expanded to the correct dimensionality -- their iid-index # ** will always be of 'base' size, and will not broadcast correctly against 'upsampled' iid-indices of the sibling RV # ** this could be fixed by handling such things essentially the same as expansion-like-discrete # ** note that having RVs created with a non-default (i.e. not scalar) sample_shape will not work in general, as we call rv.sample() # ** directly without passing this in -- so the shape will not be what the caller expects assert len(discrete_name_to_states_map) < 2 if len(discrete_name_to_states_map) == 1: assert False # ...as this is broken for now -- discrete states get 'blurred together' discrete_name, discrete_states = discrete_name_to_states_map.items()[0] # discrete_states is a numpy array indexed by discrete-index, * assert discrete_name not in name_to_data_map else: discrete_name = None discrete_states = np.zeros([1]) # Build the 'prior', i.e. the generative without variational substitutions, so we can evaluate the prior probability of the variational samples later name_to_unconditioned_generative_variable = {} generative_root_variable_names = set() def make_unconditioned_rv(name, builder): with tf.name_scope(name): assert name not in name_to_unconditioned_generative_variable is_root_variable = builder.__code__.co_argcount == 1 # ideally the below assert would *define* root-ness (indeed, it does, conceptually), but can't evaluate it before the variable is created! variable = builder(1) if is_root_variable else builder() assert is_root_variable == (len(get_ancestors(variable, name_to_unconditioned_generative_variable.values())) == 0) # ** could be made more efficient by caching, so quickly know chunks of the graph do/don't have ancestor-RVs if is_root_variable: generative_root_variable_names.add(name) name_to_unconditioned_generative_variable[name] = variable return variable.value with tf.variable_scope('generative'), tf.name_scope('unconditioned'): unconditioned_generative = generative_builder(make_unconditioned_rv, GenerativeMode.UNCONDITIONED) def expand_like_discrete(substituted_value): # This will be applied to all variables that aren't indexed by discrete-state substituted_value = tf.reshape(substituted_value, [sample_count, -1] + list(map(int, substituted_value.get_shape()[1:]))) # indexed by sample-index, iid-index, * substituted_value = tf.tile(substituted_value, [1, discrete_states.shape[0]] + [1] * (substituted_value.get_shape().ndims - 2)) # indexed by sample-index, discrete-index * iid-index, * return tf.reshape(substituted_value, [-1] + list(map(int, substituted_value.get_shape()[2:]))) # indexed by sample-index * discrete-index * iid-index, * name_to_substituted_value = {} # each value is indexed by sample-index * discrete-index * iid-index, * # Construct expanded copies of the observations (tiled over sample and discrete indices); these are made available # to the variational so it can reason over them, and are used as substitutions in the generative for name in name_to_data_map: assert name != discrete_name # ** need to think about this case! # ** should also probably assert that the observed variable is not a variational-descendant of the discrete (or any other variable!) substituted_value = tf.tile( name_to_data_map[name], [sample_count] + [1] * (name_to_data_map[name].get_shape().ndims - 1) ) # indexed by sample-index * iid-index, * # ** is calling expand_like_discrete not strictly less efficient that just adding the discrete-state-count into the above tile? name_to_substituted_value[name] = expand_like_discrete(substituted_value) # always expand, as an observed variable cannot be variational-descendant of the discrete def is_variable_discrete_indexed(variable): # Substituted values are always discrete-indexed, hence having one of them as an ancestor is a sufficient # condition for being discrete-indexed. In practice we check the reverse, as the substitution is not an RV # hence won't be returned as an ancestor. It is also a necessary condition, as there is no other route through # which discrete-indexing can be added return any( len(get_descendants(substituted_value, [variable])) > 0 for substituted_value in name_to_substituted_value.values() ) # Build the variational, substituting samples and expanding all variables to be indexed by sample and discrete indices name_to_conditioned_variational_variable = {} def make_variational_rv(name, builder): with tf.name_scope('q_' + name): assert name in name_to_unconditioned_generative_variable assert name not in name_to_data_map assert name not in name_to_conditioned_variational_variable is_root_variable = builder.__code__.co_argcount == 1 # ideally the below assert would *define* root-ness (indeed, it does, conceptually), but can't evaluate it before the variable is created! variable = builder(sample_count) if is_root_variable else builder() assert is_root_variable == ( len(get_ancestors(variable, name_to_conditioned_variational_variable.values())) == 0 # it's a root variable if it doesn't have any variational RV as an ancestor... and all( len(get_descendants(name_to_substituted_value[observation_name], [variable])) == 0 # ...and no observation has it as a descendant -- i.e. it doesn't have any observation as an ancestor either for observation_name in name_to_data_map ) ) # ** could be made more efficient by caching, so quickly know chunks of the graph do/don't have ancestor-RVs substituted_value = variable.value # indexed by sample-index * [discrete-index *] iid-index, * if discrete_name is not None: # if there's a discrete to be integrated, then *all* substituted values must be discrete-indexed if name == discrete_name: assert map(int, substituted_value.get_shape()[1:]) == list(discrete_states.shape[1:]) # check the discrete values have the same shape as samples from the distribution substituted_value = tf.tile( discrete_states[np.newaxis, :, np.newaxis, ...], [sample_count, 1, int(substituted_value.get_shape()[0]) / sample_count / (discrete_states.shape[0] if is_variable_discrete_indexed(variable) else 1)] + [1] * (len(discrete_states.shape) - 1) ) # indexed by sample-index, discrete-index, iid-index, * substituted_value = tf.reshape(substituted_value, [-1] + list(discrete_states.shape[1:])) # indexed by sample-index * discrete-index * iid-index, * else: if not is_variable_discrete_indexed(variable): substituted_value = expand_like_discrete(substituted_value) name_to_conditioned_variational_variable[name] = variable # this is used to evaluate the variational density of the variational sample; for both this and next, uses ancestral substitutions in case of non-MF variational name_to_substituted_value[name] = substituted_value # this is substituted into the generative return substituted_value with tf.variable_scope('variational'), tf.name_scope('conditioned'): variational_builder(make_variational_rv, lambda observation_name: name_to_substituted_value[observation_name]) if discrete_name is not None: assert discrete_name in name_to_conditioned_variational_variable assert discrete_name in name_to_substituted_value # Build the 'conditioned generative', with values substituted from the variational and observations name_to_conditioned_generative_variable = {} def make_conditioned_rv(name, builder): with tf.name_scope(name): is_root_variable = name in generative_root_variable_names # i.e. whether this is an RV with no ancestor-RVs, meaning that it should be replicated according to sample_count (otherwise, replication of some ancestor should 'bubble down' to us) variable = builder(sample_count) if is_root_variable else builder() name_to_conditioned_generative_variable[name] = variable # used to evaluate the generative density of the variational sample (and the observed data), with ancestral substitutions if name not in name_to_substituted_value: # Marginalise by sampling from the generative (with ancestral conditioning), as there's no corresponding variational or observation # ** could condition the warning on whether it actually has descendants! print('warning: {} has neither variational distribution nor observed value, hence will be marginalised by sampling'.format(name)) substituted_value = variable.value if discrete_name is not None: if not is_variable_discrete_indexed(variable): substituted_value = expand_like_discrete(substituted_value) name_to_substituted_value[name] = substituted_value return name_to_substituted_value[name] with tf.variable_scope('generative', reuse=True), tf.name_scope('conditioned'): conditioned_generative = generative_builder(make_conditioned_rv, GenerativeMode.CONDITIONED) if discrete_name is not None: assert discrete_name in name_to_conditioned_generative_variable def get_mode_or_mean(variable): try: return variable.distribution.mode() except NotImplementedError: print('warning: using mean instead of mode for {} in reconstruction'.format(variable.distribution.name)) return variable.distribution.mean() # fall back to mean, e.g. for uniform random variables # Build a second copy of the variational, with the (variational) mode of each variable substituted, in order to do # a full 'ancestrally modal' reconstruction in the non-MF case name_to_variational_mode = {} def make_variational_reconstruction_rv(name, builder): with tf.name_scope('q_' + name): assert name in name_to_unconditioned_generative_variable is_root_variable = builder.__code__.co_argcount == 1 # ** cache from first variational model creation above? variable = builder(1) if is_root_variable else builder() name_to_variational_mode[name] = get_mode_or_mean(variable) return name_to_variational_mode[name] with tf.variable_scope('variational', reuse=True), tf.name_scope('modes'): variational_builder(make_variational_reconstruction_rv, lambda observation_name: name_to_data_map[observation_name]) # This third copy of the generative is not used by inference, but is returned to the caller to use for reconstructions # It does not perform any sample/discrete expansion, but substitutes variational modes for ancestral latents def make_reconstruction_rv(name, builder): with tf.name_scope(name): if name in name_to_variational_mode: return name_to_variational_mode[name] else: # ** non-use of name_to_data_map here may not be desirable if the variable is not a leaf variable = builder(1) if name in generative_root_variable_names else builder() return get_mode_or_mean(variable) with tf.variable_scope('generative', reuse=True), tf.name_scope('reconstruction'): reconstruction_modes = generative_builder(make_reconstruction_rv, GenerativeMode.RECONSTRUCTION) with tf.name_scope('integrated_klqp'): def lifted_log_prob(variable, value, name): # ** would be nice if we could rely on variable.name == name! # variable is a random variable, indexed by sample-index * [discrete-index *] iid-index, * # value is a tensor, indexed by sample-index * discrete-index * iid-index, * # This function evaluates variable.log_prob on slices of value taken over discrete-index, summing away non-iid dimensions discrete_state_count = discrete_states.shape[0] if discrete_name is None: log_prob = variable.distribution.log_prob(value) return tf.reduce_sum(log_prob, axis=list(range(1, log_prob.get_shape().ndims)))[np.newaxis, ...] elif is_variable_discrete_indexed(variable): log_prob = variable.distribution.log_prob(value) # indexed by sample-index * discrete-index * iid-index, * log_prob = tf.reduce_sum(log_prob, axis=list(range(1, log_prob.get_shape().ndims))) # indexed by sample-index * discrete-index * iid-index log_prob = tf.reshape(log_prob, [sample_count, discrete_state_count, -1]) # indexed by sample-index, discrete-index, iid-index return tf.reshape(tf.transpose(log_prob, [1, 0, 2]), [discrete_state_count, -1]) # indexed by discrete-index, sample-index * iid-index else: value = tf.reshape(value, [sample_count, discrete_state_count, -1] + list(map(int, value.get_shape()[1:]))) # indexed by sample-index, discrete-index, iid-index, * value = tf.transpose(value, [1, 0, 2] + list(range(3, value.get_shape().ndims))) # indexed by discrete-index, sample-index, iid-index, * value = tf.reshape(value, [discrete_state_count, -1] + list(map(int, value.get_shape()[3:]))) # indexed by discrete-index, sample-index * iid-index, * log_prob = tf.stack([ variable.distribution.log_prob(value[state_index]) for state_index in range(discrete_state_count) ]) # indexed by discrete-index, sample-index * iid-index, * return tf.reduce_sum(log_prob, axis=range(2, log_prob.get_shape().ndims)) # indexed by discrete-index, sample-index * iid-index if discrete_name is not None: discrete_qz_probs = tf.exp(lifted_log_prob( name_to_conditioned_variational_variable[discrete_name], name_to_substituted_value[discrete_name], # this is the discrete states tiled over sample-index and iid-index discrete_name )) # indexed by discrete-index, sample-index * iid-index; this is the probability under the variational, of each discrete state def E_log_prob_wrt_discrete(variable, value, name): # ** again, would be nice if could rely on variable.name == name! # log_prob is indexed by sample-index * [discrete-index *] iid-index, * # result is scalar, being a mean over samples, and minibatch-elements, an expectation over discrete-states, and a sum over remaining dimensions maybe_weighted_log_prob = lifted_log_prob(variable, value, name) # indexed by discrete-index, sample-index * iid-index if discrete_name is not None: maybe_weighted_log_prob *= discrete_qz_probs return tf.reduce_mean(maybe_weighted_log_prob) # that we do a mean over iid-index means we treat the minibatch-indexing as independent sampling, not a joint rv log_Px = sum( E_log_prob_wrt_discrete(name_to_conditioned_generative_variable[name], name_to_substituted_value[name], name) for name in name_to_data_map ) log_Pz = sum( E_log_prob_wrt_discrete(name_to_conditioned_generative_variable[name], name_to_substituted_value[name], name) # for name in name_to_conditioned_generative_variable for name in name_to_conditioned_variational_variable # variational not generative so we only include things with variational (not prior) substitutions if name != discrete_name # ...as we use L1 divergence for this instead if name not in name_to_data_map # ...as it's in P(x) instead ) log_Qz = sum( E_log_prob_wrt_discrete(name_to_conditioned_variational_variable[name], name_to_substituted_value[name], name) for name in name_to_conditioned_variational_variable if name != discrete_name # ...as we use L1 divergence for this instead ) for name in name_to_conditioned_variational_variable: if name != discrete_name: if name not in name_to_data_map: tf.summary.scalar('P(z_' + name + ')', E_log_prob_wrt_discrete(name_to_conditioned_generative_variable[name], name_to_substituted_value[name], name)) for name in name_to_data_map: tf.summary.scalar('P(x_' + name + ')', E_log_prob_wrt_discrete(name_to_conditioned_generative_variable[name], name_to_substituted_value[name], name)) for name in name_to_conditioned_variational_variable: if name != discrete_name: value = E_log_prob_wrt_discrete(name_to_conditioned_variational_variable[name], name_to_substituted_value[name], name) tf.summary.scalar('Q(z_' + name + ')', value) if discrete_name is not None: discrete_z_probs = tf.exp(lifted_log_prob( name_to_unconditioned_generative_variable[discrete_name], name_to_substituted_value[discrete_name], # this is the discrete states tiled over sample-index and iid-index discrete_name )) # indexed by discrete-index, sample-index * iid-index; this is the prior (unconditioned gen.) probability of the discrete states; it will be constant over sample-index and iid-index iff the discrete has no gen. ancestors discrete_z_probs = tf.reduce_mean(discrete_z_probs, axis=1) # indexed by discrete-index discrete_qz_probs = tf.reduce_mean(discrete_qz_probs, axis=1) # ditto; the mean here is calculating the aggregated posterior over the batch and samples discrete_divergence_loss = tf.reduce_mean(tf.abs(discrete_z_probs - discrete_qz_probs)) * alpha # L1 loss else: discrete_divergence_loss = 0. tf.losses.add_loss(0.) # this is needed because get_total_loss throws instead of returning zero if no losses have been registered additional_losses = tf.losses.get_total_loss() loss = -(log_Px + (log_Pz - log_Qz) * beta) + discrete_divergence_loss + additional_losses tf.summary.scalar('inference/loss', loss) tf.summary.scalar('inference/log_Px', log_Px) tf.summary.scalar('inference/log_Pz', log_Pz) tf.summary.scalar('inference/log_Qz', log_Qz) tf.summary.scalar('inference/Ldd', discrete_divergence_loss) tf.summary.scalar('inference/L*', additional_losses) var_list = tf.trainable_variables() grads = tf.gradients(loss, [v._ref() for v in var_list]) abs_grads = tf.abs(tf.concat([tf.reshape(grad, [-1]) for grad in grads if grad is not None], axis=0)) loss = tf.Print(loss, [log_Px, log_Pz * beta, log_Qz * beta, discrete_divergence_loss, additional_losses, tf.reduce_mean(abs_grads), tf.reduce_max(abs_grads)], 'p(x), p(z), q(z), Ldd, L*, <|g|>, max |g| = ') if grad_clip_magnitude is not None: grads, _ = tf.clip_by_global_norm(grads, grad_clip_magnitude) return loss, list(zip(grads, var_list)), unconditioned_generative, reconstruction_modes, conditioned_generative
[ "tensorflow.abs", "tensorflow.losses.add_loss", "tensorflow.summary.scalar", "tensorflow.trainable_variables", "tensorflow.reshape", "numpy.zeros", "tensorflow.variable_scope", "tensorflow.reduce_mean", "edward1_utils.get_descendants", "tensorflow.transpose", "tensorflow.reduce_max", "tensorflow.name_scope", "tensorflow.clip_by_global_norm", "tensorflow.losses.get_total_loss" ]
[((20630, 20671), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""inference/loss"""', 'loss'], {}), "('inference/loss', loss)\n", (20647, 20671), True, 'import tensorflow as tf\n'), ((20676, 20721), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""inference/log_Px"""', 'log_Px'], {}), "('inference/log_Px', log_Px)\n", (20693, 20721), True, 'import tensorflow as tf\n'), ((20726, 20771), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""inference/log_Pz"""', 'log_Pz'], {}), "('inference/log_Pz', log_Pz)\n", (20743, 20771), True, 'import tensorflow as tf\n'), ((20776, 20821), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""inference/log_Qz"""', 'log_Qz'], {}), "('inference/log_Qz', log_Qz)\n", (20793, 20821), True, 'import tensorflow as tf\n'), ((20826, 20886), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""inference/Ldd"""', 'discrete_divergence_loss'], {}), "('inference/Ldd', discrete_divergence_loss)\n", (20843, 20886), True, 'import tensorflow as tf\n'), ((20891, 20943), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""inference/L*"""', 'additional_losses'], {}), "('inference/L*', additional_losses)\n", (20908, 20943), True, 'import tensorflow as tf\n'), ((20960, 20984), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (20982, 20984), True, 'import tensorflow as tf\n'), ((2862, 2875), 'numpy.zeros', 'np.zeros', (['[1]'], {}), '([1])\n', (2870, 2875), True, 'import numpy as np\n'), ((3993, 4024), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""generative"""'], {}), "('generative')\n", (4010, 4024), True, 'import tensorflow as tf\n'), ((4026, 4056), 'tensorflow.name_scope', 'tf.name_scope', (['"""unconditioned"""'], {}), "('unconditioned')\n", (4039, 4056), True, 'import tensorflow as tf\n'), ((9570, 9602), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""variational"""'], {}), "('variational')\n", (9587, 9602), True, 'import tensorflow as tf\n'), ((9604, 9632), 'tensorflow.name_scope', 'tf.name_scope', (['"""conditioned"""'], {}), "('conditioned')\n", (9617, 9632), True, 'import tensorflow as tf\n'), ((11489, 11532), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""generative"""'], {'reuse': '(True)'}), "('generative', reuse=True)\n", (11506, 11532), True, 'import tensorflow as tf\n'), ((11534, 11562), 'tensorflow.name_scope', 'tf.name_scope', (['"""conditioned"""'], {}), "('conditioned')\n", (11547, 11562), True, 'import tensorflow as tf\n'), ((12838, 12882), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""variational"""'], {'reuse': '(True)'}), "('variational', reuse=True)\n", (12855, 12882), True, 'import tensorflow as tf\n'), ((12884, 12906), 'tensorflow.name_scope', 'tf.name_scope', (['"""modes"""'], {}), "('modes')\n", (12897, 12906), True, 'import tensorflow as tf\n'), ((13731, 13774), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""generative"""'], {'reuse': '(True)'}), "('generative', reuse=True)\n", (13748, 13774), True, 'import tensorflow as tf\n'), ((13776, 13807), 'tensorflow.name_scope', 'tf.name_scope', (['"""reconstruction"""'], {}), "('reconstruction')\n", (13789, 13807), True, 'import tensorflow as tf\n'), ((13924, 13956), 'tensorflow.name_scope', 'tf.name_scope', (['"""integrated_klqp"""'], {}), "('integrated_klqp')\n", (13937, 13956), True, 'import tensorflow as tf\n'), ((20340, 20363), 'tensorflow.losses.add_loss', 'tf.losses.add_loss', (['(0.0)'], {}), '(0.0)\n', (20358, 20363), True, 'import tensorflow as tf\n'), ((20499, 20525), 'tensorflow.losses.get_total_loss', 'tf.losses.get_total_loss', ([], {}), '()\n', (20523, 20525), True, 'import tensorflow as tf\n'), ((21425, 21475), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['grads', 'grad_clip_magnitude'], {}), '(grads, grad_clip_magnitude)\n', (21447, 21475), True, 'import tensorflow as tf\n'), ((3184, 3203), 'tensorflow.name_scope', 'tf.name_scope', (['name'], {}), '(name)\n', (3197, 3203), True, 'import tensorflow as tf\n'), ((6768, 6794), 'tensorflow.name_scope', 'tf.name_scope', (["('q_' + name)"], {}), "('q_' + name)\n", (6781, 6794), True, 'import tensorflow as tf\n'), ((10129, 10148), 'tensorflow.name_scope', 'tf.name_scope', (['name'], {}), '(name)\n', (10142, 10148), True, 'import tensorflow as tf\n'), ((12419, 12445), 'tensorflow.name_scope', 'tf.name_scope', (["('q_' + name)"], {}), "('q_' + name)\n", (12432, 12445), True, 'import tensorflow as tf\n'), ((13330, 13349), 'tensorflow.name_scope', 'tf.name_scope', (['name'], {}), '(name)\n', (13343, 13349), True, 'import tensorflow as tf\n'), ((17315, 17354), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['maybe_weighted_log_prob'], {}), '(maybe_weighted_log_prob)\n', (17329, 17354), True, 'import tensorflow as tf\n'), ((19921, 19961), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['discrete_z_probs'], {'axis': '(1)'}), '(discrete_z_probs, axis=1)\n', (19935, 19961), True, 'import tensorflow as tf\n'), ((20023, 20064), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['discrete_qz_probs'], {'axis': '(1)'}), '(discrete_qz_probs, axis=1)\n', (20037, 20064), True, 'import tensorflow as tf\n'), ((21263, 21288), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['abs_grads'], {}), '(abs_grads)\n', (21277, 21288), True, 'import tensorflow as tf\n'), ((21290, 21314), 'tensorflow.reduce_max', 'tf.reduce_max', (['abs_grads'], {}), '(abs_grads)\n', (21303, 21314), True, 'import tensorflow as tf\n'), ((19282, 19327), 'tensorflow.summary.scalar', 'tf.summary.scalar', (["('Q(z_' + name + ')')", 'value'], {}), "('Q(z_' + name + ')', value)\n", (19299, 19327), True, 'import tensorflow as tf\n'), ((21081, 21103), 'tensorflow.reshape', 'tf.reshape', (['grad', '[-1]'], {}), '(grad, [-1])\n', (21091, 21103), True, 'import tensorflow as tf\n'), ((15040, 15102), 'tensorflow.reshape', 'tf.reshape', (['log_prob', '[sample_count, discrete_state_count, -1]'], {}), '(log_prob, [sample_count, discrete_state_count, -1])\n', (15050, 15102), True, 'import tensorflow as tf\n'), ((20210, 20254), 'tensorflow.abs', 'tf.abs', (['(discrete_z_probs - discrete_qz_probs)'], {}), '(discrete_z_probs - discrete_qz_probs)\n', (20216, 20254), True, 'import tensorflow as tf\n'), ((6403, 6449), 'edward1_utils.get_descendants', 'get_descendants', (['substituted_value', '[variable]'], {}), '(substituted_value, [variable])\n', (6418, 6449), False, 'from edward1_utils import get_ancestors, get_descendants\n'), ((15191, 15224), 'tensorflow.transpose', 'tf.transpose', (['log_prob', '[1, 0, 2]'], {}), '(log_prob, [1, 0, 2])\n', (15203, 15224), True, 'import tensorflow as tf\n'), ((7557, 7629), 'edward1_utils.get_descendants', 'get_descendants', (['name_to_substituted_value[observation_name]', '[variable]'], {}), '(name_to_substituted_value[observation_name], [variable])\n', (7572, 7629), False, 'from edward1_utils import get_ancestors, get_descendants\n')]
# This code calculates compressibility factor (z-factor) for natural hydrocarbon gases # with 3 different methods. It is the outcomes of the following paper: # <br> # <NAME>.; <NAME>., <NAME>.; <NAME>. & <NAME>, <NAME>. # Using artificial neural networks to estimate the Z-Factor for natural hydrocarbon gases # Journal of Petroleum Science and Engineering, 2010, 73, 248-257 # <br> # The original paper can be found at: # <a href="http://www.sciencedirect.com/science/article/pii/S0920410510001427">here</a>. # <p> # Artificial Neural Network (ANN)has been applied and two accurate non-iterative methods are presented. # The Dranchuk and Abou-Kassem equation of state model, which is an iterative method, is # also presented here for comparison. All the methods are: # <ul> # <li> ANN10: this method is the most accurate ANN method that presented in the paper. # <li> ANN5: this method is the next accurate ANN method that presented in the paper. # <li> DAK: this is the Dranchuk and Abou-Kassem equation of state. # </ul> # # @author <a href="mailto:<EMAIL>"><NAME></a> # @author <a href="mailto:<EMAIL>"><NAME>.</a> import numpy as np class CalculateZFactor: # Minimum and Maximum values used in the neural network to normalize the input and output values. def __init__(self): pass Ppr_min = 0 Ppr_max = 30 Tpr_min = 1 Tpr_max = 3 Z_min = 0.25194 Z_max = 2.66 # -------------START OF NETWORK 2-5-5-1 STRUCTURE------------- # Weights and Biases for the 1st layer of neurons wb1_5 = [ [-1.5949, 7.9284, 7.2925], [-1.7917, 1.2117, 2.221], [5.3547, -4.5424, -0.9846], [4.6209, 2.2228, 8.9966], [-2.3577, -0.1499, -1.5063] ] # Weights and Biases for the 2nd layer of neurons wb2_5 = [ [2.3617, -4.0858, 1.2062, -1.1518, -1.2915, 2.0626], [10.0141, 9.8649, -11.4445, -123.0698, 7.5898, 95.1393], [10.4103, 14.1358, -10.9061, -125.5468, 6.3448, 93.8916], [-1.7794, 14.0742, -1.4195, 12.0894, -15.4537, -9.9439], [-0.5988, -0.4354, -0.336, 9.9429, -0.4029, -8.3371] ] # Weights and Biases for the 3rd layer of neurons wb3_5 = [1.4979, -37.466, 37.7958, -7.7463, 6.9079, 2.8462] # -------------END OF NETWORK 2-5-5-1 STRUCTURE------------- # -------------START OF NETWORK 2-10-10-1 STRUCTURE------------- # Weights and Biases for the 1st layer of neurons wb1_10 = [ [2.2458, -2.2493, -3.7801], [3.4663, 8.1167, -14.9512], [5.0509, -1.8244, 3.5017], [6.1185, -0.2045, 0.3179], [1.3366, 4.9303, 2.2153], [-2.8652, 1.1679, 1.0218], [-6.5716, -0.8414, -8.1646], [-6.1061, 12.7945, 7.2201], [13.0884, 7.5387, 19.2231], [70.7187, 7.6138, 74.6949] ] # Weights and Biases for the 2nd layer of neurons wb2_10 = [ [4.674, 1.4481, -1.5131, 0.0461, -0.1427, 2.5454, -6.7991, -0.5948, -1.6361, 0.5801, -3.0336], [-6.7171, -0.7737, -5.6596, 2.975, 14.6248, 2.7266, 5.5043, -13.2659, -0.7158, 3.076, 15.9058], [7.0753, -3.0128, -1.1779, -6.445, -1.1517, 7.3248, 24.7022, -0.373, 4.2665, -7.8302, -3.1938], [2.5847, -12.1313, 21.3347, 1.2881, -0.2724, -1.0393, -19.1914, -0.263, -3.2677, -12.4085, -10.2058], [-19.8404, 4.8606, 0.3891, -4.5608, -0.9258, -7.3852, 18.6507, 0.0403, -6.3956, -0.9853, 13.5862], [16.7482, -3.8389, -1.2688, 1.9843, -0.1401, -8.9383, -30.8856, -1.5505, -4.7172, 10.5566, 8.2966], [2.4256, 2.1989, 18.8572, -14.5366, 11.64, -19.3502, 26.6786, -8.9867, -13.9055, 5.195, 9.7723], [-16.388, 12.1992, -2.2401, -4.0366, -0.368, -6.9203, -17.8283, -0.0244, 9.3962, -1.7107, -1.0572], [14.6257, 7.5518, 12.6715, -12.7354, 10.6586, -43.1601, 1.3387, -16.3876, 8.5277, 45.9331, -6.6981], [-6.9243, 0.6229, 1.6542, -0.6833, 1.3122, -5.588, -23.4508, 0.5679, 1.7561, -3.1352, 5.8675] ] # Weights and Biases for the 3rd layer of neurons wb3_10 = [-30.1311, 2.0902, -3.5296, 18.1108, -2.528, -0.7228, 0.0186, 5.3507, -0.1476, -5.0827, 3.9767] # -------------END OF NETWORK 2-10-10-1 STRUCTURE------------- # input and output of the 1st layer in 2-5-5-1 network. [,0] ==> inputs, [,1] ==> outputs n1_5 = np.zeros((5, 2)) # input and output of the 2nd layer in 2-5-5-1 network. [,0] ==> inputs, [,1] ==> outputs n2_5 = np.zeros((5, 2)) # input and output of the 1st layer in 2-10-10-1 network. [,0] ==> inputs, [,1] ==> outputs n1_10 = np.zeros((10, 2)) # input and output of the 2nd layer in 2-10-10-1 network. [,0] ==> inputs, [,1] ==> outputs n2_10 = np.zeros((10, 2)) TOLERANCE = 0.0001 # tolerance of DAK MAX_NO_Iterations = 20 # Max number of iterations for DAK def ANN10(self, Ppr: float, Tpr: float) -> float: """ his method calculates the z-factor using a 2x10x10x1 Artificial Neural Network based on training data obtained from Standing-Katz and Katz charts. It always produces a result, but accuracy is controlled for 0<Ppr<30 and 1<Tpr<3 :param Ppr: pseudo-reduced pressure :param Tpr: pseudo-reduced temperature :return: z factor """ Ppr_n = 2.0 / (self.Ppr_max - self.Ppr_min) * (Ppr - self.Ppr_min) - 1.0 Tpr_n = 2.0 / (self.Tpr_max - self.Tpr_min) * (Tpr - self.Tpr_min) - 1.0 for i in range(10): self.n1_10[i][0] = Ppr_n * self.wb1_10[i][0] + Tpr_n * self.wb1_10[i][1] + self.wb1_10[i][2] self.n1_10[i][1] = log_sig(self.n1_10[i][0]) for i in range(10): self.n2_10[i][0] = 0 for j in range(len(self.n2_10)): self.n2_10[i][0] += self.n1_10[j][1] * self.wb2_10[i][j] self.n2_10[i][0] += self.wb2_10[i][10] # adding the bias value self.n2_10[i][1] = log_sig(self.n2_10[i][0]) z_n = 0 for j in range(len(self.n2_10)): z_n += self.n2_10[j][1] * self.wb3_10[j] z_n += self.wb3_10[10] # adding the bias value zAnn10 = (z_n + 1) * (self.Z_max - self.Z_min) / 2 + self.Z_min # reverse normalization of normalized z factor. return zAnn10 def ANN5(self, Ppr: float, Tpr: float) -> float: """ This method calculates the z-factor using a 2x5x5x1 Artificial Neural Network based on training data obtained from Standing-Katz and Katz charts. It always produces a result, but accuracy is controlled for 0<Ppr<30 and 1<Tpr<3 :param Ppr: pseudo-reduced pressure :param Tpr: pseudo-reduced temperature :return: z factor """ Ppr_n = 2.0 / (self.Ppr_max - self.Ppr_min) * (Ppr - self.Ppr_min) - 1.0 Tpr_n = 2.0 / (self.Tpr_max - self.Tpr_min) * (Tpr - self.Tpr_min) - 1.0 for i in range(5): self.n1_5[i][0] = Ppr_n * self.wb1_5[i][0] + Tpr_n * self.wb1_5[i][1] + self.wb1_5[i][2] self.n1_5[i][1] = log_sig(self.n1_5[i][0]) for i in range(5): self.n2_5[i][0] = 0 for j in range(len(self.n2_5)): self.n2_5[i][0] += self.n1_5[j][1] * self.wb2_5[i][j] self.n2_5[i][0] += self.wb2_5[i][5] # adding the bias value self.n2_5[i][1] = log_sig(self.n2_5[i][0]) z_n = 0 for j in range(len(self.n2_5)): z_n += self.n2_5[j][1] * self.wb3_5[j] z_n += self.wb3_5[5] # adding the bias value zAnn5 = (z_n + 1) * ( self.Z_max - self.Z_min) / 2 + self.Z_min # reverse normalization of normalized z factor. return zAnn5 def DAK(self, Ppr: float, Tpr: float) -> float: """ This method calculates the z-factor using Dranchuk and Abou-Kassem (DAK) method. :param Ppr: pseudo-reduced pressure :param Tpr: pseudo-reduced temperature :return: z factor """ A1 = 0.3265 A2 = -1.07 A3 = -0.5339 A4 = 0.01569 A5 = -0.05165 A6 = 0.5475 A7 = -0.7361 A8 = 0.1844 A9 = 0.1056 A10 = 0.6134 A11 = 0.721 z_new = 1.0 z_old = 1.0 den = calculate_density(Ppr, Tpr, z_old) for i in range(1, self.MAX_NO_Iterations + 1): z_old = z_new z_new = 1 + \ (A1 + A2 / Tpr + A3 / Tpr ** 3 + A4 / Tpr ** 4 + A5 / Tpr ** 5) * den + \ (A6 + A7 / Tpr + A8 / Tpr ** 2) * den ** 2 - \ A9 * (A7 / Tpr + A8 / Tpr ** 2) * den ** 5 + \ A10 * (1 + A11 * den ** 2) * den ** 2 / Tpr ** 3 * np.exp(-1 * A11 * den ** 2) den = calculate_density(Ppr, Tpr, z_new) if np.abs(z_new - z_old) < self.TOLERANCE: break zDAK = z_new return zDAK def log_sig(x): return 1 / (1 + np.exp(-1 * x)) def calculate_density(pr: float, tr: float, z: float): return 0.27 * pr / tr / z
[ "numpy.abs", "numpy.zeros", "numpy.exp" ]
[((4319, 4335), 'numpy.zeros', 'np.zeros', (['(5, 2)'], {}), '((5, 2))\n', (4327, 4335), True, 'import numpy as np\n'), ((4441, 4457), 'numpy.zeros', 'np.zeros', (['(5, 2)'], {}), '((5, 2))\n', (4449, 4457), True, 'import numpy as np\n'), ((4567, 4584), 'numpy.zeros', 'np.zeros', (['(10, 2)'], {}), '((10, 2))\n', (4575, 4584), True, 'import numpy as np\n'), ((4693, 4710), 'numpy.zeros', 'np.zeros', (['(10, 2)'], {}), '((10, 2))\n', (4701, 4710), True, 'import numpy as np\n'), ((8915, 8929), 'numpy.exp', 'np.exp', (['(-1 * x)'], {}), '(-1 * x)\n', (8921, 8929), True, 'import numpy as np\n'), ((8772, 8793), 'numpy.abs', 'np.abs', (['(z_new - z_old)'], {}), '(z_new - z_old)\n', (8778, 8793), True, 'import numpy as np\n'), ((8674, 8701), 'numpy.exp', 'np.exp', (['(-1 * A11 * den ** 2)'], {}), '(-1 * A11 * den ** 2)\n', (8680, 8701), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sat Feb 6 14:52:32 2021 @author: Patrice Simple utility script to read tiles from drive and compile a large tensor saved as an npy file. Use only if you have enough ram to contain all your samples at once """ import numpy as np import glob import skimage.io as io def tic(): #Homemade version of matlab tic and toc functions import time global startTime_for_tictoc startTime_for_tictoc = time.time() def toc(): import time if 'startTime_for_tictoc' in globals(): print ("Elapsed time is " + str(time.time() - startTime_for_tictoc) + " seconds.") else: print ("Toc: start time not set") tic() folder='/media/patrice/DataDrive/SEE_ICE/JointTrain/' OutputName='JointTensor5k' tilesize=50 bands=4 classes=7 subsample=1#percentage subsample in each class NormFactor=8192 #will save a normalised tensor ready for the CNN, better for memory to normalise now UINT8=False #if true this will overide NormFactor and reduce the radiometry to 8-bit via normalisation by 16384 FP16=True #cast final tensor in float 16 for mixed precision training Itot=0 for c in range(1,classes+1): class_folder=folder+'C'+str(c)+'/' clist=glob.glob(class_folder+'*.tif') Itot=Itot+len(clist) print ('found '+str(Itot)+' tile samples') MasterTensor=np.zeros((int(subsample*Itot),tilesize,tilesize,bands), dtype='float16') MasterLabel=np.zeros((int(subsample*Itot)), dtype='float16') tile=0 for c in range(1,classes+1): class_folder=folder+'C'+str(c)+'/' clist=glob.glob(class_folder+'*.tif') idx = np.random.choice(np.arange(len(clist)), int(len(clist)*subsample), replace=False) for i in range(len(idx)): I=io.imread(clist[idx[i]]).reshape((1,tilesize,tilesize,bands)) Label=c MasterLabel[tile] = Label if UINT8 and not(FP16): MasterTensor=np.uint8(MasterTensor) MasterTensor[tile,:,:,:] = np.uint8(255*I/16384) elif FP16 and UINT8: MasterTensor=np.float16(MasterTensor) I= np.uint8(255*I/16384) MasterTensor[tile,:,:,:]=np.float16(I/255) elif not(UINT8) and FP16: MasterTensor=np.float16(MasterTensor) MasterTensor[tile,:,:,:]=np.float16(I/NormFactor) else: MasterTensor=np.int16(MasterTensor) MasterTensor[tile,:,:,:]=np.int16(I) tile+=1 print('Class '+str(c)+' compiled') if UINT8 and not(FP16):#downsample radiometry and save as uint8 np.save(folder+OutputName+'_T_uint8',MasterTensor) np.save(folder+OutputName+'_L_uint8',MasterLabel) elif FP16 and UINT8:#data will be float 16, but first they have been downsampled to 8bit before normalisation np.save(folder+OutputName+'_T_uint8float16',MasterTensor) np.save(folder+OutputName+'_L_uint8float16',MasterLabel) elif not(UINT8) and FP16: np.save(folder+OutputName+'_T_float16',MasterTensor) np.save(folder+OutputName+'_L_float16',MasterLabel) else: np.save(folder+OutputName+'_T_int16',MasterTensor) np.save(folder+OutputName+'_L_int16',MasterLabel) #Output as npy arrays for both the tensor and the label toc()
[ "numpy.float16", "numpy.uint8", "numpy.save", "time.time", "glob.glob", "numpy.int16", "skimage.io.imread" ]
[((448, 459), 'time.time', 'time.time', ([], {}), '()\n', (457, 459), False, 'import time\n'), ((1210, 1243), 'glob.glob', 'glob.glob', (["(class_folder + '*.tif')"], {}), "(class_folder + '*.tif')\n", (1219, 1243), False, 'import glob\n'), ((1549, 1582), 'glob.glob', 'glob.glob', (["(class_folder + '*.tif')"], {}), "(class_folder + '*.tif')\n", (1558, 1582), False, 'import glob\n'), ((2535, 2590), 'numpy.save', 'np.save', (["(folder + OutputName + '_T_uint8')", 'MasterTensor'], {}), "(folder + OutputName + '_T_uint8', MasterTensor)\n", (2542, 2590), True, 'import numpy as np\n'), ((2590, 2644), 'numpy.save', 'np.save', (["(folder + OutputName + '_L_uint8')", 'MasterLabel'], {}), "(folder + OutputName + '_L_uint8', MasterLabel)\n", (2597, 2644), True, 'import numpy as np\n'), ((2760, 2822), 'numpy.save', 'np.save', (["(folder + OutputName + '_T_uint8float16')", 'MasterTensor'], {}), "(folder + OutputName + '_T_uint8float16', MasterTensor)\n", (2767, 2822), True, 'import numpy as np\n'), ((2822, 2883), 'numpy.save', 'np.save', (["(folder + OutputName + '_L_uint8float16')", 'MasterLabel'], {}), "(folder + OutputName + '_L_uint8float16', MasterLabel)\n", (2829, 2883), True, 'import numpy as np\n'), ((1890, 1912), 'numpy.uint8', 'np.uint8', (['MasterTensor'], {}), '(MasterTensor)\n', (1898, 1912), True, 'import numpy as np\n'), ((1952, 1977), 'numpy.uint8', 'np.uint8', (['(255 * I / 16384)'], {}), '(255 * I / 16384)\n', (1960, 1977), True, 'import numpy as np\n'), ((2919, 2976), 'numpy.save', 'np.save', (["(folder + OutputName + '_T_float16')", 'MasterTensor'], {}), "(folder + OutputName + '_T_float16', MasterTensor)\n", (2926, 2976), True, 'import numpy as np\n'), ((2976, 3032), 'numpy.save', 'np.save', (["(folder + OutputName + '_L_float16')", 'MasterLabel'], {}), "(folder + OutputName + '_L_float16', MasterLabel)\n", (2983, 3032), True, 'import numpy as np\n'), ((3045, 3100), 'numpy.save', 'np.save', (["(folder + OutputName + '_T_int16')", 'MasterTensor'], {}), "(folder + OutputName + '_T_int16', MasterTensor)\n", (3052, 3100), True, 'import numpy as np\n'), ((3100, 3154), 'numpy.save', 'np.save', (["(folder + OutputName + '_L_int16')", 'MasterLabel'], {}), "(folder + OutputName + '_L_int16', MasterLabel)\n", (3107, 3154), True, 'import numpy as np\n'), ((1721, 1745), 'skimage.io.imread', 'io.imread', (['clist[idx[i]]'], {}), '(clist[idx[i]])\n', (1730, 1745), True, 'import skimage.io as io\n'), ((2028, 2052), 'numpy.float16', 'np.float16', (['MasterTensor'], {}), '(MasterTensor)\n', (2038, 2052), True, 'import numpy as np\n'), ((2068, 2093), 'numpy.uint8', 'np.uint8', (['(255 * I / 16384)'], {}), '(255 * I / 16384)\n', (2076, 2093), True, 'import numpy as np\n'), ((2127, 2146), 'numpy.float16', 'np.float16', (['(I / 255)'], {}), '(I / 255)\n', (2137, 2146), True, 'import numpy as np\n'), ((2204, 2228), 'numpy.float16', 'np.float16', (['MasterTensor'], {}), '(MasterTensor)\n', (2214, 2228), True, 'import numpy as np\n'), ((2266, 2292), 'numpy.float16', 'np.float16', (['(I / NormFactor)'], {}), '(I / NormFactor)\n', (2276, 2292), True, 'import numpy as np\n'), ((2330, 2352), 'numpy.int16', 'np.int16', (['MasterTensor'], {}), '(MasterTensor)\n', (2338, 2352), True, 'import numpy as np\n'), ((2390, 2401), 'numpy.int16', 'np.int16', (['I'], {}), '(I)\n', (2398, 2401), True, 'import numpy as np\n'), ((572, 583), 'time.time', 'time.time', ([], {}), '()\n', (581, 583), False, 'import time\n')]
""" Modular arithmetic """ from collections import defaultdict import numpy as np class ModInt: """ Integers of Z/pZ """ def __init__(self, a, n): self.v = a % n self.n = n def __eq__(a, b): if isinstance(b, ModInt): return not bool(a - b) else: return NotImplemented def __hash__(self): return hash((self.v, self.n)) def __bool__(self): return bool(self.v) def __add__(a, b): assert isinstance(b, ModInt) assert a.n == b.n return ModInt(a.v + b.v, a.n) def __radd__(a, b): assert isinstance(b, int) return ModInt(a.v + b, a.n) def __neg__(a): return ModInt(-a.v, a.n) def __sub__(a, b): return ModInt(a.v - b.v, a.n) def __mul__(a, b): if isinstance(b, int): return ModInt(b * a.v, a.n) elif isinstance(b, ModInt): assert a.n == b.n return ModInt(a.v * b.v, a.n) return NotImplemented def __rmul__(a, b): return a * b def __pow__(P, k): assert isinstance(k, int) V = 1 A = P while k: if k & 1: V *= A k >>= 1 if not k: break A *= A return V def inv(self): if self.v == 0: raise ZeroDivisionError return ModInt(ModInt._inv(self.v, self.n), self.n) @staticmethod def _inv(k, n): k %= n if k == 1: return k return (n - n // k) * ModInt._inv(n % k, n) % n def __truediv__(a, b): assert isinstance(b, ModInt) assert a.n == b.n return a * b.inv() def __rtruediv__(a, k): assert isinstance(k, int) return ModInt(k, a.n) / a @staticmethod def extended_euclid(a, b): """Extended Euclid algorithm Return ------ x : int y : int a * x + b * y = gcd(a, b) """ A, B = a, b sa, sb = (1 if a >= 0 else -1), (1 if b >= 0 else -1) xp, yp = 1, 0 x, y = 0, 1 while b: assert A * xp + B * yp == a assert A * x + B * y == b r = a // b a, b = b, a % b x, xp = xp - r * x, x y, yp = yp - r * y, y return sa * xp, sb * yp def __repr__(self): return '%s(%s, %s)' % (self.__class__.__name__, self.v, self.n) def __str__(self): return '%s' % self.v class Polynomial: """ Generic class for polynomials Works with int, float and ModInt """ def __len__(self): return len(self.C) def trim(C): i = len(C) - 1 while i >= 0 and not C[i]: i -= 1 return C[:i + 1] def __init__(self, C=None): if C is None: C = [] self.C = Polynomial.trim(C) @property def deg(self): return len(self.C) - 1 def prime(self): return Polynomial([i * self[i] for i in range(1, len(self))]) def eval(self, x): if not self: return 0 v = self[-1] for c in self[-2::-1]: v = v * x + c return v def shift(self, d): return Polynomial( [0 * self[0]] * d + self.C if self else []) def __eq__(P, Q): return P.deg == Q.deg and all(cP == cQ for cP, cQ in zip(P, Q)) def __hash__(self): return hash(tuple(self.C)) def __call__(self, x): return Polynomial.eval(self, x) def __getitem__(self, x): return self.C[x] def __neg__(P): return Polynomial([-c for c in P.C]) def __add__(P, Q): if len(P.C) < len(Q.C): P, Q = Q, P return Polynomial([P[d] + Q[d] for d in range(len(Q))] + P[len(Q):]) def __sub__(P, Q): return P + (-Q) def _mulpoly(P, Q): assert isinstance(Q, Polynomial) return Polynomial([sum(P[k] * Q[d - k] for k in range(max(0, d + 1 - len(Q)), min(d + 1, len(P))) ) for d in range(len(P) + len(Q) - 1)]) def _mulscal(P, k): return Polynomial([k * c for c in P]) def __mul__(P, Q): if isinstance(Q, Polynomial): return P._mulpoly(Q) return P._mulscal(Q) def __rmul__(P, Q): return P * Q def __pow__(P, k): assert isinstance(k, int) V = 1 A = P while k: if k & 1: V *= A k >>= 1 if not k: break A *= A return V def __iter__(self): yield from self.C def euclidean_division(A, B): Q = [0 * B[0]] * max(0, len(A) - len(B) + 1) while len(A.C) >= len(B.C): Q[len(A.C) - len(B.C)] = A[-1] / B[-1] A -= B.shift(len(A) - len(B)) * (A[-1] / B[-1]) return Polynomial(Q), A def __floordiv__(A, B): assert isinstance(B, Polynomial) return A.euclidean_division(B)[0] def __mod__(A, B): """ Polynomial euclidian division or modular reduction """ if isinstance(B, Polynomial): return A.euclidean_division(B)[1] else: assert isinstance(B, int) assert all(isinstance(c, int) for c in A) return A.reduceP(B) def __lt__(A, B): return A.deg < B.deg def __bool__(self): return bool(self.C) def gcd(A, B): while B: A, B = B, A % B return A * (1 / A[-1]) @staticmethod def gaussianElimKer(M, zero, one): """ Outputs an element of the kernel of M zero and one are elements of the same field """ # V satisfies the invariant # M = V M_0 V = [Polynomial([zero] * i + [one]) for i in range(len(M))] pivots = [None] * (len(M) + 1) for l in range(len(M)): while M[l].deg >= 0: idp = M[l].deg if pivots[idp] is None: pivots[idp] = l break else: c = M[l][idp] / M[pivots[idp]][idp] M[l] -= c * M[pivots[idp]] V[l] -= c * V[pivots[idp]] else: # If a line is null, we found an element of the kernel return V[l] return None def computeQ(P): # only for Z/pZ[X] square-free polynoms, for p prime p = P[0].n # We ignore the image of 1 because (F-Id)(1) = 0 M = [Polynomial(([ModInt(0, p)] * (i * p)) + [ModInt(1, p)]) % P for i in range(1, P.deg)] # M -= Id for i in range(1, P.deg): M[i - 1] -= Polynomial([ModInt(0, p)] * i + [ModInt(1, p)]) # We find an element of the kernel by Gaussian elimination pQ = Polynomial.gaussianElimKer(M, ModInt(0, p), ModInt(1, p)) # We put back the 1 tha was removed return pQ.shift(1) if pQ is not None else None def factor_unit(P): """ Berlekamp's algorithm only in Z/pZ """ assert all(isinstance(c, ModInt) for c in P) assert len(set(c.n for c in P)) == 1 if P.deg == 1: return defaultdict(int, {P: 1}) p = P[0].n S = Polynomial.gcd(P, P.prime()) if S.deg == P.deg: # P' = 0 so P = R^p R = Polynomial(P.C[::p]) return defaultdict(int, {D: p * v for D, v in Polynomial.factor_unit(R).items()}) else: factors = defaultdict(int) if S.deg: for D, v in S.factor_unit().items(): factors[D] += v P //= S # P is now square-free # We look for Q in Ker(F-Id) \ {1} Q = Polynomial.computeQ(P) if Q is None: # P is irreducible factors[P] += 1 else: # P is the product of the gcd(P, Q-i) # that are factored recursively for i in range(p): D = Polynomial.gcd(P, Q - Polynomial([ModInt(i, p)])) if D.deg: for DD, v in D.factor_unit().items(): factors[DD] += v return factors def factor(P): """ Factorization of P only in Z/pZ """ cd = P[-1] if P.deg == 0: return (cd, defaultdict(int)) P = P * (1 / cd) return (cd, P.factor_unit()) @staticmethod def ppfactors(fz): c, Ds = fz a = str(c) if not Ds or c * c != c else '' l = [a] + [(str(D) if D.deg == 1 and not D[0] else ('(%s)' % D)) + (v > 1) * ('^%s' % v) for D, v in sorted(Ds.items(), key=lambda e: (e[0].deg, e[1]))] return '⋅'.join(i for i in l if i) def reduceP(P, p): return Polynomial([ModInt(c, p) for c in P]) @staticmethod def sign_changes(l): return sum(a * b < 0 for a, b in zip(l, l[1:])) def isreal(P): return not any(isinstance(c, ModInt) for c in P) def isinteger(P): return all(isinstance(c, int) for c in P) def sturm(P): """ Number of distinct real roots by Sturm's theorem. Only works on int or float coefficients """ inf = float('inf') assert P.isreal() A = P B = A.prime() l1 = [A(-inf)] l2 = [A(inf)] while B: l1.append(B(-inf)) l2.append(B(inf)) B, A = -A % B, B return Polynomial.sign_changes(l1) - Polynomial.sign_changes(l2) @property def r1(P): """ Number of real roots with multiplicity """ assert P.isreal() ans = 0 s = P.sturm() while s: ans += s P = P.gcd(P.prime()) s = P.sturm() return ans @property def r2(P): ans = P.deg - P.r1 assert ans % 2 == 0 return ans // 2 def sylvester(P, Q): """ Sylvester's matrix """ assert P.isreal() assert Q.isreal() p = P.deg q = Q.deg P = np.array(P) Q = np.array(Q) m = np.zeros((p + q, p + q)) for i in range(q): m[i][i:i + p + 1] = P for i in range(p): m[q + i][i:i + q + 1] = Q return m def resultant(P, Q): """ Resultant of two real polynomials """ return np.linalg.det(P.sylvester(Q)) @property def disc(P): """ Discriminant of a real polynomial """ ans = P.resultant(P.prime()) / P[-1] if P.isinteger(): ans = int(ans.round()) if P.deg % 4 in [0, 1]: return ans else: return -ans def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self.C) @staticmethod def _formatmonomial(c, d): assert c a = b = '' if c * c != c or not d: a = str(c) + (d != 0) * '⋅' if d > 1: b = 'X^' + str(d) elif d == 1: b = 'X' return a + b def __str__(self): if not self.C: return "0" ans = '+'.join(self._formatmonomial(c, d) for (d, c) in reversed(list(enumerate(self))) if c) return ans.replace("+-", "-").replace('-1⋅', '-')
[ "numpy.zeros", "collections.defaultdict", "numpy.array" ]
[((10508, 10519), 'numpy.array', 'np.array', (['P'], {}), '(P)\n', (10516, 10519), True, 'import numpy as np\n'), ((10532, 10543), 'numpy.array', 'np.array', (['Q'], {}), '(Q)\n', (10540, 10543), True, 'import numpy as np\n'), ((10556, 10580), 'numpy.zeros', 'np.zeros', (['(p + q, p + q)'], {}), '((p + q, p + q))\n', (10564, 10580), True, 'import numpy as np\n'), ((7378, 7402), 'collections.defaultdict', 'defaultdict', (['int', '{P: 1}'], {}), '(int, {P: 1})\n', (7389, 7402), False, 'from collections import defaultdict\n'), ((7754, 7770), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (7765, 7770), False, 'from collections import defaultdict\n'), ((8671, 8687), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (8682, 8687), False, 'from collections import defaultdict\n')]
import numpy as np class Average: @staticmethod def aggregate(gradients): assert len(gradients) > 0, "Empty list of gradient to aggregate" if len(gradients) > 1: return np.mean(gradients, axis=0) else: return gradients[0]
[ "numpy.mean" ]
[((209, 235), 'numpy.mean', 'np.mean', (['gradients'], {'axis': '(0)'}), '(gradients, axis=0)\n', (216, 235), True, 'import numpy as np\n')]
# ******************************************************************************* # # Copyright (c) 2021 <NAME>. All rights reserved. # # ******************************************************************************* import math, numpy from coppertop.pipe import * from coppertop.std.linalg import tvarray @coppertop def cov(A:tvarray) -> tvarray: return numpy.cov(A).view(tvarray) @coppertop def mean(ndOrPy): # should do full numpy? return numpy.mean(ndOrPy) @coppertop def std(ndOrPy, dof=0): # should do full numpy? std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) return numpy.std(ndOrPy, dof) @coppertop def logisticCDF(x, mu, s): return 1 / (1 + math.exp(-1 * (x - mu) / s)) @coppertop def logisticCDFInv(p, mu, s): return mu + -s * math.log(1 / p - 1)
[ "math.exp", "numpy.std", "numpy.mean", "math.log", "numpy.cov" ]
[((464, 482), 'numpy.mean', 'numpy.mean', (['ndOrPy'], {}), '(ndOrPy)\n', (474, 482), False, 'import math, numpy\n'), ((627, 649), 'numpy.std', 'numpy.std', (['ndOrPy', 'dof'], {}), '(ndOrPy, dof)\n', (636, 649), False, 'import math, numpy\n'), ((368, 380), 'numpy.cov', 'numpy.cov', (['A'], {}), '(A)\n', (377, 380), False, 'import math, numpy\n'), ((709, 736), 'math.exp', 'math.exp', (['(-1 * (x - mu) / s)'], {}), '(-1 * (x - mu) / s)\n', (717, 736), False, 'import math, numpy\n'), ((801, 820), 'math.log', 'math.log', (['(1 / p - 1)'], {}), '(1 / p - 1)\n', (809, 820), False, 'import math, numpy\n')]
import numpy as np from int_tabulated import * def GetNDVItoDate(NDVI, Time, Start_End, bpy, DaysPerBand, CurrentBand): #; #;jzhu,8/9/2011,This program calculates total ndvi integration (ndvi*day) from start of season to currentband, the currentband is the dayindex of interesting day. # FILL=-1.0 ny=1 #;DaysPerBand=365./bpy NowT=CurrentBand #CurrentBand is the index of NDVI, the index start from 0 NowN=NDVI[NowT] SeasonLength=NowT-Start_End['SOST'][0] NDVItoDate=np.zeros(ny)+FILL if SeasonLength < 0: SeasonLength = FILL if SeasonLength > 0 and SeasonLength < bpy: #<2> #index range segl=int(np.ceil(Start_End['SOST'][0])) segh=int(np.floor(NowT )) + 1 XSeg= Time[ segl: segh ] #Xseg[Start_End['SOST'][0]:NowT] NDVILine= NDVI[ segl : segh ] #if XSeg[0] != Start_End['SOST'][0]: #<3> # XSeg = np.concatenate([ np.array( [Start_End['SOST'][0] ] ), XSeg]) # NDVILine = np.concatenate([ np.array([ Start_End['SOSN'][0] ] ), NDVILine]) #<3> #if XSeg[len(XSeg)-1] != NowT : #<4> # XSeg = np.concatenate( [XSeg, np.array([NowT]) ] ) # NDVILine= np.concatenate( [NDVILine, np.array([NowN]) ] ) #<4> BaseLine=XSeg*0+Start_End['SOSN'][0] # get rid of duplicated point and sort the XSeg XSeg, index=np.unique(XSeg,return_index=True) NDVILine=NDVILine[index] BaseLine=BaseLine[index] IntNDVI=Int_Tabulated(XSeg, NDVILine) IntBase=Int_Tabulated(XSeg, BaseLine) NDVItoDate[0]=(IntNDVI-IntBase)*DaysPerBand else: #<2> NDVItoDate[0]=FILL NDVItoDate={'NDVItoDate':NDVItoDate[0],'NowT':NowT,'NowN':NowN} return NDVItoDate
[ "numpy.floor", "numpy.zeros", "numpy.ceil", "numpy.unique" ]
[((529, 541), 'numpy.zeros', 'np.zeros', (['ny'], {}), '(ny)\n', (537, 541), True, 'import numpy as np\n'), ((1508, 1542), 'numpy.unique', 'np.unique', (['XSeg'], {'return_index': '(True)'}), '(XSeg, return_index=True)\n', (1517, 1542), True, 'import numpy as np\n'), ((703, 732), 'numpy.ceil', 'np.ceil', (["Start_End['SOST'][0]"], {}), "(Start_End['SOST'][0])\n", (710, 732), True, 'import numpy as np\n'), ((754, 768), 'numpy.floor', 'np.floor', (['NowT'], {}), '(NowT)\n', (762, 768), True, 'import numpy as np\n')]
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from brightics.common.repr import BrtcReprBuilder, strip_margin, plt2MD, \ pandasDF2MD, keyValues2MD from brightics.common.groupby import _function_by_group from brightics.common.utils import check_required_parameters from brightics.common.utils import get_default_from_parameters_if_required from brightics.common.validation import validate from brightics.common.validation import from_under import pandas as pd import numpy as np from scipy.stats import mannwhitneyu import itertools def mann_whitney_test(table, group_by=None, **params): check_required_parameters(_mann_whitney_test, params, ['table']) params = get_default_from_parameters_if_required(params, _mann_whitney_test) if group_by is not None: return _function_by_group(_mann_whitney_test, table, group_by=group_by, **params) else: return _mann_whitney_test(table, **params) def _mann_whitney_test(table, response_col, factor_col, use_continuity=True): result = dict() rb = BrtcReprBuilder() rb.addMD("""## Mann Whitney test Result""") groups = dict() uniq_factor = table[factor_col].unique() for name in uniq_factor: groups[name] = np.array(table[response_col])[np.where(table[factor_col] == name)] for name1, name2 in itertools.combinations(uniq_factor, 2): stats, pval = mannwhitneyu(groups[name1], groups[name2], use_continuity=use_continuity) rb.addMD(strip_margin(""" | ## {name1} vs {name2} | | ### Statistics U value: {stats} | | ### P value: {pval} """.format(name1=name1, name2=name2, stats=stats, pval=pval))) name = str(name1) + '_' + str(name2) result[name] = dict() result[name]['Statistics'] = stats result[name]['P value'] = pval result['_repr_brtc_'] = rb.get() return {'result': result}
[ "brightics.common.utils.get_default_from_parameters_if_required", "scipy.stats.mannwhitneyu", "brightics.common.repr.BrtcReprBuilder", "itertools.combinations", "numpy.where", "numpy.array", "brightics.common.utils.check_required_parameters", "brightics.common.groupby._function_by_group" ]
[((1165, 1229), 'brightics.common.utils.check_required_parameters', 'check_required_parameters', (['_mann_whitney_test', 'params', "['table']"], {}), "(_mann_whitney_test, params, ['table'])\n", (1190, 1229), False, 'from brightics.common.utils import check_required_parameters\n'), ((1248, 1315), 'brightics.common.utils.get_default_from_parameters_if_required', 'get_default_from_parameters_if_required', (['params', '_mann_whitney_test'], {}), '(params, _mann_whitney_test)\n', (1287, 1315), False, 'from brightics.common.utils import get_default_from_parameters_if_required\n'), ((1610, 1627), 'brightics.common.repr.BrtcReprBuilder', 'BrtcReprBuilder', ([], {}), '()\n', (1625, 1627), False, 'from brightics.common.repr import BrtcReprBuilder, strip_margin, plt2MD, pandasDF2MD, keyValues2MD\n'), ((1889, 1927), 'itertools.combinations', 'itertools.combinations', (['uniq_factor', '(2)'], {}), '(uniq_factor, 2)\n', (1911, 1927), False, 'import itertools\n'), ((1365, 1439), 'brightics.common.groupby._function_by_group', '_function_by_group', (['_mann_whitney_test', 'table'], {'group_by': 'group_by'}), '(_mann_whitney_test, table, group_by=group_by, **params)\n', (1383, 1439), False, 'from brightics.common.groupby import _function_by_group\n'), ((1951, 2024), 'scipy.stats.mannwhitneyu', 'mannwhitneyu', (['groups[name1]', 'groups[name2]'], {'use_continuity': 'use_continuity'}), '(groups[name1], groups[name2], use_continuity=use_continuity)\n', (1963, 2024), False, 'from scipy.stats import mannwhitneyu\n'), ((1798, 1827), 'numpy.array', 'np.array', (['table[response_col]'], {}), '(table[response_col])\n', (1806, 1827), True, 'import numpy as np\n'), ((1828, 1863), 'numpy.where', 'np.where', (['(table[factor_col] == name)'], {}), '(table[factor_col] == name)\n', (1836, 1863), True, 'import numpy as np\n')]
import tensorflow as tf from capsule.utils import squash import numpy as np layers = tf.keras.layers models = tf.keras.models class GammaCapsule(tf.keras.Model): def __init__(self, in_capsules, in_dim, out_capsules, out_dim, stdev=0.2, routing_iterations=2, use_bias=True, name=''): super(GammaCapsule, self).__init__(name=name) self.in_capsules = in_capsules self.in_dim = in_dim self.out_capsules = out_capsules self.out_dim = out_dim self.routing_iterations = routing_iterations self.use_bias = use_bias with tf.name_scope(self.name): w_init = tf.random_normal_initializer(stddev=stdev) self.W = tf.Variable(name="W", initial_value=w_init(shape=(1, out_capsules, in_capsules, out_dim, in_dim), dtype='float32'), trainable=True) if self.use_bias: bias_init = tf.constant_initializer(0.1) self.bias = tf.Variable(name="bias", initial_value=bias_init(shape=(1, out_capsules, out_dim), dtype='float32'), trainable=True) def call(self, u): """ param: u - (batch_size, in_caps, in_dim) """ batch_size = tf.shape(u)[0] u_norm = tf.norm(u, axis=-1) # (batch_size, in_caps) # Reshape u into (batch_size, out_caps, in_caps, out_dim, in_dim) u = tf.expand_dims(u, 1) u = tf.expand_dims(u, 3) u = tf.tile(u, [1, self.out_capsules, 1, 1, 1]) u = tf.tile(u, [1, 1, 1, self.out_dim, 1]) # Duplicate transformation matrix for each batch w = tf.tile(self.W, [batch_size, 1, 1, 1, 1]) # Dotwise product between u and w to get all votes # shape = (batch_size, out_caps, in_caps, out_dim) u_hat = tf.reduce_sum(u * w, axis=-1) # Ensure that ||u_hat|| <= ||v_i|| u_hat_norm = tf.norm(u_hat, axis=-1, keepdims=True) u_norm = tf.expand_dims(u_norm, axis=1) u_norm = tf.expand_dims(u_norm, axis=3) u_norm = tf.tile(u_norm, [1, self.out_capsules, 1, self.out_dim]) new_u_hat_norm = tf.math.minimum(u_hat_norm, u_norm) u_hat = u_hat / u_hat_norm * new_u_hat_norm # Scaled-distance-agreement routing bias = tf.tile(self.bias, [batch_size, 1, 1]) b_ij = tf.zeros(shape=[batch_size, self.out_capsules, self.in_capsules, 1]) for r in range(self.routing_iterations): c_ij = tf.nn.softmax(b_ij, axis=1) c_ij_tiled = tf.tile(c_ij, [1, 1, 1, self.out_dim]) s_j = tf.reduce_sum(c_ij_tiled * u_hat, axis=2) + bias v_j = squash(s_j) if(r < self.routing_iterations - 1): v_j = tf.expand_dims(v_j, 2) v_j = tf.tile(v_j, [1, 1, self.in_capsules, 1]) # (batch_size, out_caps, in_caps, out_dim) # Calculate scale factor t p_p = 0.9 d = tf.norm(v_j - u_hat, axis=-1, keepdims=True) d_o = tf.reduce_mean(tf.reduce_mean(d)) d_p = d_o * 0.5 t = tf.constant(np.log(p_p * (self.out_capsules - 1)) - np.log(1 - p_p), dtype=tf.float32) \ / (d_p - d_o + 1e-12) t = tf.expand_dims(t, axis=-1) # Calc log prior using inverse distances b_ij = t * d return v_j
[ "tensorflow.nn.softmax", "tensorflow.reduce_sum", "numpy.log", "tensorflow.constant_initializer", "tensorflow.reduce_mean", "tensorflow.tile", "tensorflow.zeros", "tensorflow.random_normal_initializer", "tensorflow.shape", "capsule.utils.squash", "tensorflow.name_scope", "tensorflow.norm", "tensorflow.math.minimum", "tensorflow.expand_dims" ]
[((1410, 1429), 'tensorflow.norm', 'tf.norm', (['u'], {'axis': '(-1)'}), '(u, axis=-1)\n', (1417, 1429), True, 'import tensorflow as tf\n'), ((1545, 1565), 'tensorflow.expand_dims', 'tf.expand_dims', (['u', '(1)'], {}), '(u, 1)\n', (1559, 1565), True, 'import tensorflow as tf\n'), ((1579, 1599), 'tensorflow.expand_dims', 'tf.expand_dims', (['u', '(3)'], {}), '(u, 3)\n', (1593, 1599), True, 'import tensorflow as tf\n'), ((1614, 1657), 'tensorflow.tile', 'tf.tile', (['u', '[1, self.out_capsules, 1, 1, 1]'], {}), '(u, [1, self.out_capsules, 1, 1, 1])\n', (1621, 1657), True, 'import tensorflow as tf\n'), ((1670, 1708), 'tensorflow.tile', 'tf.tile', (['u', '[1, 1, 1, self.out_dim, 1]'], {}), '(u, [1, 1, 1, self.out_dim, 1])\n', (1677, 1708), True, 'import tensorflow as tf\n'), ((1779, 1820), 'tensorflow.tile', 'tf.tile', (['self.W', '[batch_size, 1, 1, 1, 1]'], {}), '(self.W, [batch_size, 1, 1, 1, 1])\n', (1786, 1820), True, 'import tensorflow as tf\n'), ((1956, 1985), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(u * w)'], {'axis': '(-1)'}), '(u * w, axis=-1)\n', (1969, 1985), True, 'import tensorflow as tf\n'), ((2051, 2089), 'tensorflow.norm', 'tf.norm', (['u_hat'], {'axis': '(-1)', 'keepdims': '(True)'}), '(u_hat, axis=-1, keepdims=True)\n', (2058, 2089), True, 'import tensorflow as tf\n'), ((2107, 2137), 'tensorflow.expand_dims', 'tf.expand_dims', (['u_norm'], {'axis': '(1)'}), '(u_norm, axis=1)\n', (2121, 2137), True, 'import tensorflow as tf\n'), ((2155, 2185), 'tensorflow.expand_dims', 'tf.expand_dims', (['u_norm'], {'axis': '(3)'}), '(u_norm, axis=3)\n', (2169, 2185), True, 'import tensorflow as tf\n'), ((2203, 2259), 'tensorflow.tile', 'tf.tile', (['u_norm', '[1, self.out_capsules, 1, self.out_dim]'], {}), '(u_norm, [1, self.out_capsules, 1, self.out_dim])\n', (2210, 2259), True, 'import tensorflow as tf\n'), ((2285, 2320), 'tensorflow.math.minimum', 'tf.math.minimum', (['u_hat_norm', 'u_norm'], {}), '(u_hat_norm, u_norm)\n', (2300, 2320), True, 'import tensorflow as tf\n'), ((2433, 2471), 'tensorflow.tile', 'tf.tile', (['self.bias', '[batch_size, 1, 1]'], {}), '(self.bias, [batch_size, 1, 1])\n', (2440, 2471), True, 'import tensorflow as tf\n'), ((2487, 2555), 'tensorflow.zeros', 'tf.zeros', ([], {'shape': '[batch_size, self.out_capsules, self.in_capsules, 1]'}), '(shape=[batch_size, self.out_capsules, self.in_capsules, 1])\n', (2495, 2555), True, 'import tensorflow as tf\n'), ((587, 611), 'tensorflow.name_scope', 'tf.name_scope', (['self.name'], {}), '(self.name)\n', (600, 611), True, 'import tensorflow as tf\n'), ((634, 676), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'stdev'}), '(stddev=stdev)\n', (662, 676), True, 'import tensorflow as tf\n'), ((1378, 1389), 'tensorflow.shape', 'tf.shape', (['u'], {}), '(u)\n', (1386, 1389), True, 'import tensorflow as tf\n'), ((2624, 2651), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['b_ij'], {'axis': '(1)'}), '(b_ij, axis=1)\n', (2637, 2651), True, 'import tensorflow as tf\n'), ((2677, 2715), 'tensorflow.tile', 'tf.tile', (['c_ij', '[1, 1, 1, self.out_dim]'], {}), '(c_ij, [1, 1, 1, self.out_dim])\n', (2684, 2715), True, 'import tensorflow as tf\n'), ((2801, 2812), 'capsule.utils.squash', 'squash', (['s_j'], {}), '(s_j)\n', (2807, 2812), False, 'from capsule.utils import squash\n'), ((981, 1009), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.1)'], {}), '(0.1)\n', (1004, 1009), True, 'import tensorflow as tf\n'), ((2734, 2775), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(c_ij_tiled * u_hat)'], {'axis': '(2)'}), '(c_ij_tiled * u_hat, axis=2)\n', (2747, 2775), True, 'import tensorflow as tf\n'), ((2885, 2907), 'tensorflow.expand_dims', 'tf.expand_dims', (['v_j', '(2)'], {}), '(v_j, 2)\n', (2899, 2907), True, 'import tensorflow as tf\n'), ((2930, 2971), 'tensorflow.tile', 'tf.tile', (['v_j', '[1, 1, self.in_capsules, 1]'], {}), '(v_j, [1, 1, self.in_capsules, 1])\n', (2937, 2971), True, 'import tensorflow as tf\n'), ((3121, 3165), 'tensorflow.norm', 'tf.norm', (['(v_j - u_hat)'], {'axis': '(-1)', 'keepdims': '(True)'}), '(v_j - u_hat, axis=-1, keepdims=True)\n', (3128, 3165), True, 'import tensorflow as tf\n'), ((3426, 3452), 'tensorflow.expand_dims', 'tf.expand_dims', (['t'], {'axis': '(-1)'}), '(t, axis=-1)\n', (3440, 3452), True, 'import tensorflow as tf\n'), ((3203, 3220), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['d'], {}), '(d)\n', (3217, 3220), True, 'import tensorflow as tf\n'), ((3286, 3323), 'numpy.log', 'np.log', (['(p_p * (self.out_capsules - 1))'], {}), '(p_p * (self.out_capsules - 1))\n', (3292, 3323), True, 'import numpy as np\n'), ((3326, 3341), 'numpy.log', 'np.log', (['(1 - p_p)'], {}), '(1 - p_p)\n', (3332, 3341), True, 'import numpy as np\n')]
# code-checked # server-checked import cv2 import numpy as np import os import os.path as osp import random import torch from torch.utils import data import pickle def generate_scale_label(image, label): f_scale = 0.5 + random.randint(0, 16)/10.0 image = cv2.resize(image, None, fx=f_scale, fy=f_scale, interpolation=cv2.INTER_LINEAR) label = cv2.resize(label, None, fx=f_scale, fy=f_scale, interpolation=cv2.INTER_NEAREST) return image, label def id2trainId(label, id_to_trainid): label_copy = label.copy() for k, v in id_to_trainid.items(): label_copy[label == k] = v return label_copy ################################################################################ # Cityscapes ################################################################################ class DatasetCityscapesAugmentation(data.Dataset): def __init__(self, root, list_path, max_iters=None, crop_size=(512, 512), ignore_label=255): self.root = root self.list_path = list_path self.crop_h, self.crop_w = crop_size self.ignore_label = ignore_label self.img_ids = [i_id.strip().split() for i_id in open(list_path)] print ("DatasetCityscapesAugmentation - num unique examples: %d" % len(self.img_ids)) if not max_iters==None: self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids))) print ("DatasetCityscapesAugmentation - num examples: %d" % len(self.img_ids)) self.files = [] for item in self.img_ids: image_path, label_path = item name = osp.splitext(osp.basename(label_path))[0] img_file = osp.join(self.root, image_path) label_file = osp.join(self.root, label_path) self.files.append({ "img": img_file, "label": label_file, "name": name, "weight": 1 }) self.id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) label = id2trainId(label, self.id_to_trainid) size = image.shape name = datafiles["name"] image, label = generate_scale_label(image, label) image = np.asarray(image, np.float32) mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) image = image.transpose((2, 0, 1)) flip = np.random.choice(2)*2 - 1 image = image[:, :, ::flip] label = label[:, ::flip] return image.copy(), label.copy(), np.array(size), name class DatasetCityscapesEval(data.Dataset): def __init__(self, root, list_path, ignore_label=255): self.root = root self.list_path = list_path self.ignore_label = ignore_label self.img_ids = [i_id.strip().split() for i_id in open(list_path)] print ("DatasetCityscapesEval - num examples: %d" % len(self.img_ids)) self.files = [] for item in self.img_ids: image_path, label_path = item name = osp.splitext(osp.basename(label_path))[0] img_file = osp.join(self.root, image_path) label_file = osp.join(self.root, label_path) self.files.append({ "img": img_file, "label": label_file, "name": name, "weight": 1 }) self.id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) if not os.path.exists(datafiles["img"]): # (26 out of 25000 images are missing) return self.__getitem__(0) label = id2trainId(label, self.id_to_trainid) size = image.shape name = datafiles["name"] image = np.asarray(image, np.float32) mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean image = image.transpose((2, 0, 1)) return image.copy(), label.copy(), np.array(size), name class DatasetCityscapesEvalSeq(data.Dataset): def __init__(self, data_path, sequence="00"): self.data_path = data_path self.img_dir = self.data_path + "/leftImg8bit/demoVideo/stuttgart_" + sequence + "/" self.examples = [] file_names = os.listdir(self.img_dir) for file_name in file_names: img_id = file_name.split("_leftImg8bit.png")[0] img_path = self.img_dir + file_name example = {} example["img_path"] = img_path example["img_id"] = img_id self.examples.append(example) self.num_examples = len(self.examples) print ("DatasetCityscapesEvalSeq - num examples: %d" % self.num_examples) def __len__(self): return len(self.examples) def __getitem__(self, index): datafiles = self.examples[index] image = cv2.imread(datafiles["img_path"], cv2.IMREAD_COLOR) size = image.shape name = datafiles["img_id"] image = np.asarray(image, np.float32) mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean image = image.transpose((2, 0, 1)) return image.copy(), np.array(size), name ################################################################################ # Synscapes ################################################################################ class DatasetSynscapesAugmentation(data.Dataset): def __init__(self, root, root_meta, type="train", max_iters=None, crop_size=(512, 512), ignore_label=255): self.root = root self.root_meta = root_meta self.crop_h, self.crop_w = crop_size self.ignore_label = ignore_label if type == "train": with open(root_meta + "/train_img_ids.pkl", "rb") as file: # (needed for python3) self.img_ids = pickle.load(file) elif type == "val": with open(root_meta + "/val_img_ids.pkl", "rb") as file: # (needed for python3) self.img_ids = pickle.load(file) else: raise Exception("type must be either 'train' or 'val'!") print ("DatasetSynscapesAugmentation - num unique examples: %d" % len(self.img_ids)) if not max_iters==None: self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids))) print ("DatasetSynscapesAugmentation - num examples: %d" % len(self.img_ids)) self.files = [] for img_id in self.img_ids: self.files.append({ "img": self.root + "/img/rgb-2k/" + img_id + ".png", "label": self.root_meta + "/gtFine/" + img_id + ".png", "name": img_id, "weight": 1 }) self.id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) if not os.path.exists(datafiles["img"]): # (26 out of 25000 images are missing) return self.__getitem__(0) label = id2trainId(label, self.id_to_trainid) size = image.shape name = datafiles["name"] image, label = generate_scale_label(image, label) image = np.asarray(image, np.float32) mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) image = image.transpose((2, 0, 1)) flip = np.random.choice(2)*2 - 1 image = image[:, :, ::flip] label = label[:, ::flip] return image.copy(), label.copy(), np.array(size), name class DatasetSynscapesEval(data.Dataset): def __init__(self, root, root_meta, type="val", ignore_label=255): self.root = root self.root_meta = root_meta self.ignore_label = ignore_label if type == "train": with open(root_meta + "/train_img_ids.pkl", "rb") as file: # (needed for python3) self.img_ids = pickle.load(file) elif type == "val": with open(root_meta + "/val_img_ids.pkl", "rb") as file: # (needed for python3) self.img_ids = pickle.load(file) else: raise Exception("type must be either 'train' or 'val'!") print ("DatasetSynscapesEval - num examples: %d" % len(self.img_ids)) self.files = [] for img_id in self.img_ids: self.files.append({ "img": self.root + "/img/rgb-2k/" + img_id + ".png", "label": self.root_meta + "/gtFine/" + img_id + ".png", "name": img_id, "weight": 1 }) self.id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} def __len__(self): return len(self.files) def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) if not os.path.exists(datafiles["img"]): # (26 out of 25000 images are missing) return self.__getitem__(0) label = id2trainId(label, self.id_to_trainid) size = image.shape name = datafiles["name"] image = np.asarray(image, np.float32) mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean image = image.transpose((2, 0, 1)) return image.copy(), label.copy(), np.array(size), name
[ "random.randint", "os.path.basename", "numpy.asarray", "cv2.copyMakeBorder", "os.path.exists", "cv2.imread", "pickle.load", "numpy.array", "numpy.random.choice", "os.path.join", "os.listdir", "cv2.resize" ]
[((266, 345), 'cv2.resize', 'cv2.resize', (['image', 'None'], {'fx': 'f_scale', 'fy': 'f_scale', 'interpolation': 'cv2.INTER_LINEAR'}), '(image, None, fx=f_scale, fy=f_scale, interpolation=cv2.INTER_LINEAR)\n', (276, 345), False, 'import cv2\n'), ((358, 443), 'cv2.resize', 'cv2.resize', (['label', 'None'], {'fx': 'f_scale', 'fy': 'f_scale', 'interpolation': 'cv2.INTER_NEAREST'}), '(label, None, fx=f_scale, fy=f_scale, interpolation=cv2.INTER_NEAREST\n )\n', (368, 443), False, 'import cv2\n'), ((2677, 2723), 'cv2.imread', 'cv2.imread', (["datafiles['img']", 'cv2.IMREAD_COLOR'], {}), "(datafiles['img'], cv2.IMREAD_COLOR)\n", (2687, 2723), False, 'import cv2\n'), ((2740, 2792), 'cv2.imread', 'cv2.imread', (["datafiles['label']", 'cv2.IMREAD_GRAYSCALE'], {}), "(datafiles['label'], cv2.IMREAD_GRAYSCALE)\n", (2750, 2792), False, 'import cv2\n'), ((2983, 3012), 'numpy.asarray', 'np.asarray', (['image', 'np.float32'], {}), '(image, np.float32)\n', (2993, 3012), True, 'import numpy as np\n'), ((3684, 3722), 'random.randint', 'random.randint', (['(0)', '(img_h - self.crop_h)'], {}), '(0, img_h - self.crop_h)\n', (3698, 3722), False, 'import random\n'), ((3739, 3777), 'random.randint', 'random.randint', (['(0)', '(img_w - self.crop_w)'], {}), '(0, img_w - self.crop_w)\n', (3753, 3777), False, 'import random\n'), ((3794, 3883), 'numpy.asarray', 'np.asarray', (['img_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w]', 'np.float32'], {}), '(img_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w],\n np.float32)\n', (3804, 3883), True, 'import numpy as np\n'), ((3896, 3987), 'numpy.asarray', 'np.asarray', (['label_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w]', 'np.float32'], {}), '(label_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w],\n np.float32)\n', (3906, 3987), True, 'import numpy as np\n'), ((5755, 5801), 'cv2.imread', 'cv2.imread', (["datafiles['img']", 'cv2.IMREAD_COLOR'], {}), "(datafiles['img'], cv2.IMREAD_COLOR)\n", (5765, 5801), False, 'import cv2\n'), ((5818, 5870), 'cv2.imread', 'cv2.imread', (["datafiles['label']", 'cv2.IMREAD_GRAYSCALE'], {}), "(datafiles['label'], cv2.IMREAD_GRAYSCALE)\n", (5828, 5870), False, 'import cv2\n'), ((6132, 6161), 'numpy.asarray', 'np.asarray', (['image', 'np.float32'], {}), '(image, np.float32)\n', (6142, 6161), True, 'import numpy as np\n'), ((6648, 6672), 'os.listdir', 'os.listdir', (['self.img_dir'], {}), '(self.img_dir)\n', (6658, 6672), False, 'import os\n'), ((7249, 7300), 'cv2.imread', 'cv2.imread', (["datafiles['img_path']", 'cv2.IMREAD_COLOR'], {}), "(datafiles['img_path'], cv2.IMREAD_COLOR)\n", (7259, 7300), False, 'import cv2\n'), ((7379, 7408), 'numpy.asarray', 'np.asarray', (['image', 'np.float32'], {}), '(image, np.float32)\n', (7389, 7408), True, 'import numpy as np\n'), ((9879, 9925), 'cv2.imread', 'cv2.imread', (["datafiles['img']", 'cv2.IMREAD_COLOR'], {}), "(datafiles['img'], cv2.IMREAD_COLOR)\n", (9889, 9925), False, 'import cv2\n'), ((9942, 9994), 'cv2.imread', 'cv2.imread', (["datafiles['label']", 'cv2.IMREAD_GRAYSCALE'], {}), "(datafiles['label'], cv2.IMREAD_GRAYSCALE)\n", (9952, 9994), False, 'import cv2\n'), ((10313, 10342), 'numpy.asarray', 'np.asarray', (['image', 'np.float32'], {}), '(image, np.float32)\n', (10323, 10342), True, 'import numpy as np\n'), ((11014, 11052), 'random.randint', 'random.randint', (['(0)', '(img_h - self.crop_h)'], {}), '(0, img_h - self.crop_h)\n', (11028, 11052), False, 'import random\n'), ((11069, 11107), 'random.randint', 'random.randint', (['(0)', '(img_w - self.crop_w)'], {}), '(0, img_w - self.crop_w)\n', (11083, 11107), False, 'import random\n'), ((11124, 11213), 'numpy.asarray', 'np.asarray', (['img_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w]', 'np.float32'], {}), '(img_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w],\n np.float32)\n', (11134, 11213), True, 'import numpy as np\n'), ((11226, 11317), 'numpy.asarray', 'np.asarray', (['label_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w]', 'np.float32'], {}), '(label_pad[h_off:h_off + self.crop_h, w_off:w_off + self.crop_w],\n np.float32)\n', (11236, 11317), True, 'import numpy as np\n'), ((13305, 13351), 'cv2.imread', 'cv2.imread', (["datafiles['img']", 'cv2.IMREAD_COLOR'], {}), "(datafiles['img'], cv2.IMREAD_COLOR)\n", (13315, 13351), False, 'import cv2\n'), ((13368, 13420), 'cv2.imread', 'cv2.imread', (["datafiles['label']", 'cv2.IMREAD_GRAYSCALE'], {}), "(datafiles['label'], cv2.IMREAD_GRAYSCALE)\n", (13378, 13420), False, 'import cv2\n'), ((13682, 13711), 'numpy.asarray', 'np.asarray', (['image', 'np.float32'], {}), '(image, np.float32)\n', (13692, 13711), True, 'import numpy as np\n'), ((227, 248), 'random.randint', 'random.randint', (['(0)', '(16)'], {}), '(0, 16)\n', (241, 248), False, 'import random\n'), ((1668, 1699), 'os.path.join', 'osp.join', (['self.root', 'image_path'], {}), '(self.root, image_path)\n', (1676, 1699), True, 'import os.path as osp\n'), ((1725, 1756), 'os.path.join', 'osp.join', (['self.root', 'label_path'], {}), '(self.root, label_path)\n', (1733, 1756), True, 'import os.path as osp\n'), ((3295, 3389), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['image', '(0)', 'pad_h', '(0)', 'pad_w', 'cv2.BORDER_CONSTANT'], {'value': '(0.0, 0.0, 0.0)'}), '(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(\n 0.0, 0.0, 0.0))\n', (3313, 3389), False, 'import cv2\n'), ((3441, 3540), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['label', '(0)', 'pad_h', '(0)', 'pad_w', 'cv2.BORDER_CONSTANT'], {'value': '(self.ignore_label,)'}), '(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(\n self.ignore_label,))\n', (3459, 3540), False, 'import cv2\n'), ((4182, 4196), 'numpy.array', 'np.array', (['size'], {}), '(size)\n', (4190, 4196), True, 'import numpy as np\n'), ((4746, 4777), 'os.path.join', 'osp.join', (['self.root', 'image_path'], {}), '(self.root, image_path)\n', (4754, 4777), True, 'import os.path as osp\n'), ((4803, 4834), 'os.path.join', 'osp.join', (['self.root', 'label_path'], {}), '(self.root, label_path)\n', (4811, 4834), True, 'import os.path as osp\n'), ((5887, 5919), 'os.path.exists', 'os.path.exists', (["datafiles['img']"], {}), "(datafiles['img'])\n", (5901, 5919), False, 'import os\n'), ((6351, 6365), 'numpy.array', 'np.array', (['size'], {}), '(size)\n', (6359, 6365), True, 'import numpy as np\n'), ((7584, 7598), 'numpy.array', 'np.array', (['size'], {}), '(size)\n', (7592, 7598), True, 'import numpy as np\n'), ((10011, 10043), 'os.path.exists', 'os.path.exists', (["datafiles['img']"], {}), "(datafiles['img'])\n", (10025, 10043), False, 'import os\n'), ((10625, 10719), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['image', '(0)', 'pad_h', '(0)', 'pad_w', 'cv2.BORDER_CONSTANT'], {'value': '(0.0, 0.0, 0.0)'}), '(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(\n 0.0, 0.0, 0.0))\n', (10643, 10719), False, 'import cv2\n'), ((10771, 10870), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['label', '(0)', 'pad_h', '(0)', 'pad_w', 'cv2.BORDER_CONSTANT'], {'value': '(self.ignore_label,)'}), '(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(\n self.ignore_label,))\n', (10789, 10870), False, 'import cv2\n'), ((11512, 11526), 'numpy.array', 'np.array', (['size'], {}), '(size)\n', (11520, 11526), True, 'import numpy as np\n'), ((13437, 13469), 'os.path.exists', 'os.path.exists', (["datafiles['img']"], {}), "(datafiles['img'])\n", (13451, 13469), False, 'import os\n'), ((13901, 13915), 'numpy.array', 'np.array', (['size'], {}), '(size)\n', (13909, 13915), True, 'import numpy as np\n'), ((4043, 4062), 'numpy.random.choice', 'np.random.choice', (['(2)'], {}), '(2)\n', (4059, 4062), True, 'import numpy as np\n'), ((8246, 8263), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (8257, 8263), False, 'import pickle\n'), ((11373, 11392), 'numpy.random.choice', 'np.random.choice', (['(2)'], {}), '(2)\n', (11389, 11392), True, 'import numpy as np\n'), ((11902, 11919), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (11913, 11919), False, 'import pickle\n'), ((1616, 1640), 'os.path.basename', 'osp.basename', (['label_path'], {}), '(label_path)\n', (1628, 1640), True, 'import os.path as osp\n'), ((4694, 4718), 'os.path.basename', 'osp.basename', (['label_path'], {}), '(label_path)\n', (4706, 4718), True, 'import os.path as osp\n'), ((8415, 8432), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (8426, 8432), False, 'import pickle\n'), ((12071, 12088), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (12082, 12088), False, 'import pickle\n')]
# -*- coding: utf-8 -*- """ @author: <NAME> @copyright 2017 @licence: 2-clause BSD licence This file contains the main code for the phase-state machine """ import numpy as _np import pandas as _pd import itertools from numba import jit import warnings as _warnings @jit(nopython=True, cache=True) def _limit(a): """ faster version of numpy clip, also modifies array in place """ #numba doesn't support indexing by boolean #a[a<lower]=lower #a[a>upper]=upper shape = a.shape for j in range(shape[1]): for i in range(shape[0]): if a[i,j] < 0.0: a[i,j] = 0.0 if a[i,j] > 1.0: a[i,j] = 1.0 @jit(nopython=True, cache=True) def _signfunc(x): return 1.0-2*(x<0) @jit(nopython=True, cache=True) def ReLU(x): return 0.5*(_np.abs(x)+x) # Alternative, differentiable "sign" function # Also improves stability of the state's sign #@jit(nopython=True) #def _signfunc(x, epsilon=1e-3): # return _np.tanh(x/epsilon) #_np.set_printoptions(precision=3, suppress=True) @jit(nopython=True, cache=True) def _step(statevector, #main state vector. Input and output, modified in-place #outputs, modified in place: dotstatevector, #velocity of main state vector activationMatrix, #Activation for each potential state and transition phasesMatrix, #Phases for each transition phaseVelocitiesMatrix, #Derivative of phases for each transition #inputs: phaseVelocityExponentInput, #input to modify velocity of each transition individually (exponential scale, basis 2) BiasMatrix, #input to depart / avert departure from states stateConnectivityGreedinessAdjustment, #input to modify how strong a successor state pulls the system towards itself, relative to the predecessor state stateConnectivityCompetingGreedinessAdjustment, #input to adjust greediness in between compeeting successor states phasesInput, # phase target in case a transition is enslaved to an external phase velocityAdjustmentGain, # gain related to enslaving phase noise_velocity, # vector that gets added to state velocity (usually in order to inject some base noise) #parameters: numStates, #number of states / dimensions betaInv, #precomputed from beta parameter (state locations / scale) stateConnectivityAbs, #precomputed from state graph stateConnectivitySignMap, #precomputed from state graph stateConnectivityIsBidirectional, #precomputed from state graph stateConnectivityNrEdges, #precomputed from state graph rhoZero, #coupling values for creating discrete states rhoDelta, #coupling values for creating stable heteroclinic channels alpha, #growth rate of states, determines speed of transitioning dt, # time step duration in seconds dtInv, #precomputed from dt nonlinearityParamsLambda, #Kumaraswamy distribution parameters to modify gradualness of activation nonlinearityParamsPsi, #Kumaraswamy distribution parameters to modify gradualness of phase progress stateVectorExponent, #modifies the bending of heteroclinic channels speedLimit, #safety limit to state velocity epsilonLambda, #determines the region of zero activation around the coordinates axes #for comparative study: emulateHybridAutomaton, #set this to true to hack phasta into acting like a discrete state graph / hybrid automaton triggervalue_successors, #for HA emulation mode, modified in-place ): """ Core phase-state machine computation. Written as a function in order to be able to optimize it with numba Note: The function modifies several arguments (numpy arrays) in place. """ #compute adjustment to the instantaneously effective growth factor scaledactivation = activationMatrix * (1.0 / max(1.0, _np.sum(activationMatrix))) kd = 2** _np.sum( scaledactivation * phaseVelocityExponentInput) #compute mu for phase control: phaseerrors = activationMatrix * (phasesInput-phasesMatrix) correctiveAction = phaseerrors * velocityAdjustmentGain correctiveActionPredecessor = _np.zeros((numStates)) for i in range(numStates): correctiveActionPredecessor += correctiveAction[:,i] correctiveActionSuccessor = _np.zeros((numStates)) for i in range(numStates): correctiveActionSuccessor += correctiveAction[i,:] mu = correctiveActionPredecessor - correctiveActionSuccessor statevector_abs = _np.abs(statevector) #adjust signs of the bias values depending on the transition direction: biases = _np.dot(BiasMatrix * stateConnectivitySignMap * _np.outer(1-statevector_abs,statevector_abs), statevector) noise_statevector = noise_velocity * dt #If requested, decide whether to start a transition using a threshold, and stick to that decision no matter what until the transition finishes if emulateHybridAutomaton: predecessors = 1.0*(_np.abs(statevector)*betaInv > 0.99) successors = (_np.dot(stateConnectivityAbs, predecessors) > 0.5 ) notsuccessors = (_np.dot(stateConnectivityAbs, predecessors) < 0.5 ) triggervalue_successors[notsuccessors] = 0.0 noise_statevector = _np.zeros((numStates)) threshold = 0.1 if _np.any(triggervalue_successors >= threshold ): chosensuccessor = _np.argmax(triggervalue_successors) value_chosen = triggervalue_successors[chosensuccessor] notchosensuccessors = successors.copy() notchosensuccessors[chosensuccessor] = 0 triggervalue_successors[:] = 0.0 triggervalue_successors[chosensuccessor] = value_chosen if triggervalue_successors[chosensuccessor] < 1e5: triggervalue_successors[ chosensuccessor ] = 1e6 #print(chosensuccessor) noise_statevector[chosensuccessor] = 1.0 else: triggervalue_successors[:] += biases * dt + noise_velocity statevector[:] = statevector #for numba statesigns = _signfunc(statevector) statesignsOuterProduct = _np.outer(statesigns,statesigns) #precompute this, as we need it several times #stateVectorExponent=1 #straight channels: |x| (original SHC by Horchler/Rabinovich) #stateVectorExponent=2 #spherical channels: |x|**2 (default for phasta) x_gamma = (statevector*statesigns)**stateVectorExponent #Compute a mask that ensures the attractor works with negative state values too, that the transition's "sign" is observed, and that unidirectional edges do not accidentally change between positive and negative state values #the computation is formulated such that only algebraic and continuous functions (e.g. ReLu) are used M_T = ReLU(statesignsOuterProduct*stateConnectivitySignMap) #Appropriate signs for transition-related greediness adjustment, depending on whether a graph edge is bidirectional or not: TransitionGreedinessAdjustmentSign = (stateConnectivityNrEdges * ReLU(statesignsOuterProduct) - stateConnectivityIsBidirectional) * stateConnectivitySignMap #sum everything into a transition/greedinesses matrix (T+G): T_G = M_T*stateConnectivityAbs + TransitionGreedinessAdjustmentSign*stateConnectivityGreedinessAdjustment + stateConnectivityCompetingGreedinessAdjustment #This is the core computation and time integration of the dynamical system: growth = alpha + _np.dot(rhoZero, x_gamma) + _np.dot(rhoDelta * T_G, x_gamma) dotstatevector[:] = statevector * growth * kd + mu + biases #estimate velocity. do not add noise to velocity, promp mixer doesnt like jumps dotstatevector_L2 = _np.sqrt(_np.sum(dotstatevector**2)) velocity_limitfactor = _np.minimum(1.0, speedLimit/(1e-8 + dotstatevector_L2)) #limit speed of the motion in state space to avoid extreme phase velocities that a robot cannot statevector[:] = (statevector + dotstatevector*dt*velocity_limitfactor + noise_statevector) #set the new state #prepare a normalized state vector for the subsequent operations: statevector_abs = _np.abs(statevector) S = statevector_abs.reshape((numStates,1)) S2 = S*S S_plus_P = S + S.T statevectorL1 = _np.sum(S) statevectorL2 = _np.sum(S2) #compute the transition/state activation matrix (Lambda) activations = stateConnectivitySignMap * _np.outer(statevector, statevector) * 16 * (statevectorL2) / (S_plus_P**4+statevectorL1**4) activationMatrix[:,:] = activations * stateConnectivityAbs #function shown in visualization_of_activationfunction.py _limit(activationMatrix) #apply nonlinearity: if (nonlinearityParamsLambda[0] != 1.0 or nonlinearityParamsLambda[1] != 1.0 ): activationMatrix[:,:] = 1.0-(1.0-activationMatrix**nonlinearityParamsLambda[0])**nonlinearityParamsLambda[1] #Kumaraswamy CDF #compute the state activation and put it into the diagonal of Lambda: residual = max(0.0, 1.0 - _np.sum(activationMatrix)) stateactivation_normalized = S2/ _np.sum(S2) for i in range(numStates): activationMatrix[i,i] = stateactivation_normalized[i,0] * residual #compute the phase progress matrix (Psi) epsilonPsi = 0.0001 newphases = (S+epsilonPsi) / (S_plus_P+2*epsilonPsi) _limit(newphases) #apply nonlinearity: if (nonlinearityParamsPsi[0] != 1.0 or nonlinearityParamsPsi[1] != 1.0 ): newphases = 1.0-(1.0-newphases**nonlinearityParamsPsi[0])**nonlinearityParamsPsi[1] #Kumaraswamy CDF phaseVelocitiesMatrix[:,:] = (newphases - phasesMatrix) * dtInv phasesMatrix[:,:] = newphases return _KumaraswamyCDFParameters = { 'kumaraswamy1,1': (1.,1.), 'kumaraswamy2,1': (2.,1.), 'kumaraswamy1,2': (1.,2.), #values for the Kumaraswamy CDF that approximate the given incomplete beta function: 'beta2,2': (1.913227338072261,2.2301669931409323), 'beta3,3': (2.561444544688591,3.680069490606511), 'beta2,5': (1.6666251656562021,5.9340642444701555), } class Kernel(): """ This class provides a dynamical system that can behave like a state machine. The transitions are smooth though, which enables interestingbehaviors like online-synchronisation and negotiation of branch alternatives The most important parameters are: numStates: the number of quasi-discrete states the system should have predecessors: a list of lists which defines the preceeding states of each state Note: Don't set up mutual predecessors (i.e. a loop with two states). This does not work. You need at least 3 states for a loop. alpha: determines the speed at which a state becomes dominant. Effectively speeds up or slows down the machine epsilon: "noise" added to the states, which has the effect of reducing the average dwell time for the preceeding states Less important paramters: beta: scaling factor for the state variable (usually 1.0) nu: determines how easy it is to push away from a state (usually 1.5). dt: time step at which the system is simulated (default: 1e-2) Inputs: Observed phase Psi_d: A matrix analogous to the phase matrix, containing phase estimates conditional to the transition or phase being activated phase control gain K_p: A matrix analogous to the activation matrix, which indicates how confident the state observation is inputbias: vector that signals which state should currently be the next (e.g. from perception) Output: stateVector: The actual, evolving state of the dynamical system. phase matrix Psi: A (numStates x numStates) matrix aggregating all phase variables for each possible transition, plus the state vector on the diagonal activation matrix Lambda: A matrix which contains the corresponding transition activation values. state activations correspond to the 1-sum(transition activations), so that sum(matrix) = 1 (i.e.e can be used as a weighing matrix) """ def __init__(self, **kwargs): self.numStates = 0 self.t = 0.0 self.statehistorylen = 0 self.historyIndex = 0 self.setParameters(**kwargs) def setParameters(self, numStates=3, predecessors=None, successors=[[1],[2],[0]], alphaTime=None, alpha=40.0, epsilon=1e-9, nu=1.0, beta=1.0, dt=1e-2, stateVectorExponent=2.0, speedLimit = _np.inf, initialState=0, nonlinearityLambda='kumaraswamy1,1', nonlinearityPsi='kumaraswamy1,1', inputFilterTimeConstant = 0.1, reuseNoiseSampleTimes = 10, reset=False, recordSteps=-1, emulateHybridAutomaton=False): """ Method to set or reconfigure the phase-state-machine numStates: The number of states the system should have predecessors: A list of lists which contain the state indices of the respective predecessors successors: A list of lists which contain the state indices of the respective successors Note: use of predecessors and successors parameter is mutually exclusive! For the meaning of the other parameters, please consult the paper or the code """ oldcount = self.numStates #parameters: self.numStates = numStates if alphaTime is None: #backwards compatibility: if no alphatime is provided, use dt-dependent alpha value self.alphaTime = self._sanitizeParam(alpha)/dt else: self.alphaTime = self._sanitizeParam(alphaTime) self.beta = self._sanitizeParam(beta) self.betaInv = 1.0/self.beta #this is used often, so precompute once self.nu = self._sanitizeParam(nu) self.nu_term = self.nu/(1 + self.nu) #equations usually use this term - precompute it self.epsilon = self._sanitizeParam(epsilon) * self.beta #Wiener process noise self.epsilonLambda=0.01 #regularization parameter of activation function self.maxGreediness=10.0 #maximum factor to allow for increasing decisiveness (mainly to guard against input errors) self.reuseNoiseSampleTimes = reuseNoiseSampleTimes self.stateVectorExponent =stateVectorExponent self.speedLimit = speedLimit if initialState >= self.numStates: raise ValueError() self.initialState = initialState if predecessors is not None: #convert list of predecessors into list of successors self.successors = self._predecessorListToSuccessorList(predecessors) else: self.successors = successors self.updateDt(dt) #also calls self._updateRho self.nonlinearityParamsLambda = _KumaraswamyCDFParameters[nonlinearityLambda] #nonlinearity for sparsifying activation values self.nonlinearityParamsPsi = _KumaraswamyCDFParameters[nonlinearityPsi] #nonlinearity that linearizes phase variables #inputs: self.BiasMatrix = _np.zeros((self.numStates,self.numStates)) #determines transition preferences and state timeout duration self.BiasMatrixDesired = _np.zeros((self.numStates,self.numStates)) #determines transition preferences and state timeout duration self.emulateHybridAutomaton = emulateHybridAutomaton #set this to true to emulate discrete switching behavior on bias input self.triggervalue_successors = _np.zeros((self.numStates)) self.phasesInput = _np.zeros((self.numStates,self.numStates)) #input to synchronize state transitions (slower/faster) self.velocityAdjustmentGain = _np.zeros((self.numStates,self.numStates)) #gain of the control enslaving the given state transition self.phaseVelocityExponentInput = _np.zeros((self.numStates,self.numStates)) #contains values that limit transition velocity self.stateConnectivityGreedinessAdjustment = _np.zeros((self.numStates,self.numStates)) #contains values that adjust transition greediness self.stateConnectivityCompetingGreedinessAdjustment = _np.zeros((self.numStates,self.numStates)) #contains values that adjust competing transition greediness self.stateConnectivityGreedinessTransitions = _np.zeros((self.numStates,self.numStates)) self.stateConnectivityGreedinessCompetingSuccessors = _np.zeros((self.numStates,self.numStates)) self.inputfilterK = dt / max(dt , inputFilterTimeConstant) #how much inputs should be low-passed (to avoid sudden changes in phasta state) #internal data structures if self.numStates != oldcount or reset: #force a reset if number of states change self.statevector = _np.zeros((numStates)) self.dotstatevector = _np.zeros((numStates)) self.statevector[self.initialState] = self.beta[self.initialState] #start at a state self.phasesActivation = _np.zeros((self.numStates,self.numStates)) self.phasesProgress = _np.zeros((self.numStates,self.numStates)) self.phasesProgressVelocities = _np.zeros((self.numStates,self.numStates)) self.biases = _np.zeros((self.numStates, self.numStates)) self.noise_velocity = 0.0 self.noiseValidCounter = 0 #these data structures are used to save the history of the system: if recordSteps< 0: pass elif recordSteps == 0: self.statehistorylen = 0 self.historyIndex = 0 else: self.statehistorylen = recordSteps self.statehistory = _np.empty((self.statehistorylen, self.numStates+1)) self.statehistory.fill(_np.nan) self.phasesActivationHistory= _np.zeros((self.statehistorylen, self.numStates,self.numStates)) self.phasesProgressHistory = _np.zeros((self.statehistorylen, self.numStates,self.numStates)) self.historyIndex = 0 def _updateRho(self): """ internal method to compute the P matrix from preset parameters also computes the state connectivity matrix reimplements the computation by the SHCtoolbox code """ stateConnectivityAbs = _np.zeros((self.numStates, self.numStates)) stateConnectivitySignMap =_np.tri(self.numStates, self.numStates, k=0) - _np.tri(self.numStates, self.numStates, k=-1).T for state, successorsPerState in enumerate(self.successors): #precedecessorcount = len(predecessorsPerState) for successor in successorsPerState: if state == successor: raise ValueError("Cannot set a state ({0}) as successor of itself!".format(state)) stateConnectivityAbs[successor,state] = 1 stateConnectivitySignMap[successor,state] = 1 stateConnectivitySignMap[state, successor] = -1 self.stateConnectivityAbs = stateConnectivityAbs self.stateConnectivitySignMap = stateConnectivitySignMap #precompute some things: self.stateConnectivityIsBidirectional = _np.sqrt(self.stateConnectivityAbs * self.stateConnectivityAbs.T) self.stateConnectivityNrEdges = stateConnectivityAbs + stateConnectivityAbs.T self.stateConnectivity = self.stateConnectivityAbs #compute a matrix that has ones for states that have a common predecessor, i.e. pairs of states which compete (except for self-competition) self.connectivitySigned = self.stateConnectivitySignMap*self.stateConnectivityAbs self.competingStates = _np.dot(self.stateConnectivityAbs, self.stateConnectivityAbs.T) * (1-_np.eye(self.numStates)) #first, fill in the standard values in rhoZero # rhoZero = beta^-1 x alpha * (1 - I + alpha^-1 x alpha) alphaInv = 1/self.alpha s = _np.dot(self.alpha[:,_np.newaxis],self.betaInv[_np.newaxis,:]) rhoZero = s * (_np.eye(self.numStates) - 1 - _np.dot(self.alpha[:,_np.newaxis],alphaInv[_np.newaxis,:])) #then fill the rhoDelta: rhoDelta = (self.alpha[:,_np.newaxis]*self.betaInv[_np.newaxis,:] / self.nu_term[:,_np.newaxis]) self.rhoZero = rhoZero self.rhoDelta = rhoDelta successorCountInv = 1.0/_np.maximum(_np.sum(self.stateConnectivityAbs, axis=0)[_np.newaxis,:],1.0) self.BiasMeanBalancingWeights = self.stateConnectivityAbs * successorCountInv def step(self, until=None, period=None, nr_steps=1): """ Main algorithm, implementing the integration step, state space decomposition, phase control and velocity adjustment. period: give a period to simulate until: give a time until to simulate nr_steps: give the number of steps to simulate at self.dt If more than one argument is given, then precedence is: until > period > nr_steps """ if until is not None: period = until - self.t if period < 0.0: raise RuntimeError("argument until is in the past") #if a period is given, iterate until we finished that period: if period is not None: nr_steps = int(period // self.dt) for i in range(nr_steps): #execute a single step: self.t = self.t + self.dt #advance time self.noiseValidCounter = self.noiseValidCounter - 1 if self.noiseValidCounter <= 0: #do not sample every timestep as the dynamical system cannot react that fast anyway. Effectively low-pass-filters the noise. self.noise_velocity = _np.random.normal(scale = self.epsilonPerSample, size=self.numStates) #sample a discretized wiener process noise self.noiseValidCounter = self.reuseNoiseSampleTimes #low-pass filter input to avoid sudden jumps in velocity self.BiasMatrix += self.inputfilterK * (self.BiasMatrixDesired-self.BiasMatrix) self.stateConnectivityGreedinessAdjustment += self.inputfilterK * (self.stateConnectivityGreedinessTransitions - self.stateConnectivityGreedinessAdjustment) self.stateConnectivityCompetingGreedinessAdjustment += self.inputfilterK * (self.stateConnectivityGreedinessCompetingSuccessors -self.stateConnectivityCompetingGreedinessAdjustment) _step( #arrays modified in-place: self.statevector, self.dotstatevector, self.phasesActivation, self.phasesProgress, self.phasesProgressVelocities, #inputs self.phaseVelocityExponentInput, self.BiasMatrix, self.stateConnectivityGreedinessAdjustment, self.stateConnectivityCompetingGreedinessAdjustment, self.phasesInput, self.velocityAdjustmentGain, self.noise_velocity, #parameters self.numStates, self.betaInv , self.stateConnectivityAbs, self.stateConnectivitySignMap, self.stateConnectivityIsBidirectional, self.stateConnectivityNrEdges, self.rhoZero, self.rhoDelta, self.alpha, self.dt, self.dtInv, self.nonlinearityParamsLambda, self.nonlinearityParamsPsi, self.stateVectorExponent, self.speedLimit, self.epsilonLambda, self.emulateHybridAutomaton, self.triggervalue_successors ) #note the currently most active state/transition (for informative purposes) i = _np.argmax(self.phasesActivation) self.currentPredecessor = i % self.numStates self.currentSuccessor = i // self.numStates self._recordState() return self.statevector def get1DState(self): """ return value of a one-dimensional signal that indicates which state we are in, or in which transition """ value = self.currentPredecessor + (self.currentSuccessor - self.currentPredecessor) * self.phasesProgress[self.currentSuccessor,self.currentPredecessor] return value def sayState(self): """ returns a string describing the current state """ if self.currentPredecessor == self.currentSuccessor: return "{0}".format(self.currentPredecessor ) else: return "{0}->{1}".format(self.currentPredecessor , self.currentSuccessor) def updateDt(self, dt): """ upadate the time step used to integrate the dynamical system: """ self.dt = dt self.dtInv = 1.0 / dt self.epsilonPerSample = self.epsilon *_np.sqrt(self.dt*self.reuseNoiseSampleTimes)/dt #factor accounts for the accumulation during a time step (assuming a Wiener process) self.alpha = self.alphaTime * self.dt self._updateRho() def updateEpsilon(self, epsilon): """ Update the noise vector """ self.epsilon = epsilon self.updateDt(self.dt) #need to recompute self.epsilonPerSample def updateSuccessors(self, listoflist): """ recompute the system according to the given list of predecessors """ self.successors=listoflist self._updateRho() def updateGreediness(self, greedinesses): """ update the greediness for competing transitions / successor states Low values make the system maintain co-activated transitions for a long time, high values make transitions very competitive. 0.0: complete indecisiveness (transitions do not compete at all and may not converge towards an exclusive successor state) 1.0: behavior of the original SHC network by [1] 20.0: extremely greedy transitions, behaves much like a discrete state machine negative values: abort transition and return to the predecessor state Absolute values less than 1.0 also reduce speed of transitions, 0.0 stops transitions completely. This value is considered during a transition away from the predecessor state, i.e. it influences the transition dynamics while honoring the basic state connectivity greediness: vector of size self.numStates or matrix of size (numStates,numStates) scalar: set a common greediness value for all competing transitions vector: greediness values for all competing transitions leading to the related successor state matrix: set greediness value for each competing transition individually """ greedinesses = _np.asarray(greedinesses) if greedinesses.ndim == 1: greedinesses = greedinesses[_np.newaxis,:] elif greedinesses.ndim == 0: greedinesses = _np.full((1, self.numStates),greedinesses) #adjust the strength / reverse direction of the outgoing shc's according to greedinesses: greediness_successorstates = _np.clip((0.5*greedinesses-0.5), -1.0, 0.0) # _np.clip(g, -self.nu_term, 0.0) strength = self.stateConnectivityAbs * greediness_successorstates.T #works for (1,-1) transition pairs too self.stateConnectivityGreedinessTransitions = strength + strength.T #Adjust competition between nodes according to their greediness: kappa=0. # self.stateConnectivityGreedinessCompetingSuccessors = self.competingStates * 0.5*(1-(1.+kappa)*greedinesses+kappa*greedinesses.T) self.stateConnectivityGreedinessCompetingSuccessors = self.competingStates * 0.5*(1-greedinesses) def updateCompetingTransitionGreediness(self,greedinesses): _warnings.warn("Please replace updateCompetingTransitionGreediness with updateGreediness asap!", DeprecationWarning, stacklevel=2) self.updateGreediness(greedinesses) def _predecessorListToSuccessorList(self, predecessors): """ helper to convert lists of predecessor states into lists of successor states""" successors = [ [] for i in range(self.numStates) ] #create a list of lists for i, predecessorsPerState in enumerate(predecessors): for pre in predecessorsPerState: successors[pre].append(i) return successors def updatePredecessors(self, listoflist): """ recompute the system according to the given list of predecessors """ self.successors = self._predecessorListToSuccessorList(predecessors) self._updateRho() def getPredecessors(self): """ return the predecessors """ successors = [ [] for i in range(self.numStates) ] #create a list of lists for i, predecessorsPerState in enumerate(predecessors): for pre in predecessorsPerState: successors[pre].append(i) return successors def updateBiases(self, successorBias): """ changes the "bias" input array Small values bias the system to hasten transitions towards that state Large, short spikes can be used to override any state and force the system into any state, regardless of state connectivity successorBias: numpy array of biases for each (successor state biased towards, current state) pair if scalar: set all successor biases to the same value if vector: set successor biases to the given vector for every state if matrix: set each (successor state, current state) pair individually """ bias = _np.asarray(successorBias) if bias.ndim == 1: self.BiasMatrixDesired[:,:] = (self.stateConnectivity) * bias[:,_np.newaxis] else: self.BiasMatrixDesired[:,:] = bias def updateB(self, successorBias): _warnings.warn("Please replace updateB() with updateBiases() asap!",stacklevel=2) self.updateBiases(successorBias) def updateTransitionTriggerInput(self, successorBias): _warnings.warn("Please replace updateTransitionTriggerInput() with updateBiases() asap!",stacklevel=2) self.updateBiases(successorBias) def updatePhasesInput(self, phases): """ changes the Psi_d matrix Use this as phase reference to sync the system with a phase from perception """ _np.copyto(self.phasesInput, phases) def updateVelocityEnslavementGain(self, gains): """ changes the K_p matrix Set the gain values to use for each phase transition. """ _np.copyto(self.velocityAdjustmentGain, gains) def updateTransitionPhaseVelocityExponentInput(self, limits): """ Update the matrix that specifies how fast the given phases should progress Each element effectively is an exponent with base 2 for adjusting each phase velocity individually limits[j,i]: exponent for the transition from i to j limits[i,i]: 0 (enforced implicitly) if limits is a vector: treat it as common exponent for transitions of the same predecessor state if limits is a scalar: set as common exponent for all transitions While phase velocity can also be controlled by the self.alpha vector directly, large variations to individual states' alpha parameter can alter the convergence behavior and we may lose the stable heteroclinic channel properties This method here effectly "scales" the timeline during transitions """ limits = _np.asarray(limits) if limits.ndim == 1: limits = limits[_np.newaxis,:] elif limits.ndim == 0: limits = limits[_np.newaxis,_np.newaxis] self.phaseVelocityExponentInput[:,:] = limits #_np.fill_diagonal(self.phaseVelocityExponentInput , 0.0) def getHistory(self): """ return the historic values for plotting """ if self.statehistorylen == 0: raise RuntimeError("no history is being recorded") return (self.statehistory[:self.historyIndex,:], self.phasesActivationHistory[:self.historyIndex,:,:], self.phasesProgressHistory[:self.historyIndex,:,:] ) def _sanitizeParam(self, p): """ internal helper to provide robust handling of lists and numpy array input data """ if _np.isscalar(p): sanitizedP = _np.empty((self.numStates)) sanitizedP.fill(float(p)) else: try: p = p[0:self.numStates] except IndexError: raise Exception("Parameter has not the length of numStates!") sanitizedP = _np.array(p) return sanitizedP def _recordState(self): """ internal helper to save the current state for later plotting """ if self.historyIndex < self.statehistorylen: self.statehistory[self.historyIndex, 0] = self.t self.statehistory[self.historyIndex, 1:self.numStates+1] = self.statevector self.phasesActivationHistory[self.historyIndex, :,:] = self.phasesActivation self.phasesProgressHistory[self.historyIndex, :,:] = self.phasesProgress if self.historyIndex < self.statehistorylen: self.historyIndex = self.historyIndex + 1
[ "numpy.abs", "numpy.sum", "numpy.argmax", "numpy.empty", "numpy.clip", "numpy.random.normal", "numpy.full", "numpy.tri", "numpy.minimum", "numpy.asarray", "numpy.dot", "numpy.copyto", "numpy.outer", "numpy.isscalar", "numpy.zeros", "numpy.any", "numba.jit", "numpy.array", "numpy.eye", "warnings.warn", "numpy.sqrt" ]
[((271, 301), 'numba.jit', 'jit', ([], {'nopython': '(True)', 'cache': '(True)'}), '(nopython=True, cache=True)\n', (274, 301), False, 'from numba import jit\n'), ((692, 722), 'numba.jit', 'jit', ([], {'nopython': '(True)', 'cache': '(True)'}), '(nopython=True, cache=True)\n', (695, 722), False, 'from numba import jit\n'), ((767, 797), 'numba.jit', 'jit', ([], {'nopython': '(True)', 'cache': '(True)'}), '(nopython=True, cache=True)\n', (770, 797), False, 'from numba import jit\n'), ((1075, 1105), 'numba.jit', 'jit', ([], {'nopython': '(True)', 'cache': '(True)'}), '(nopython=True, cache=True)\n', (1078, 1105), False, 'from numba import jit\n'), ((4858, 4878), 'numpy.zeros', '_np.zeros', (['numStates'], {}), '(numStates)\n', (4867, 4878), True, 'import numpy as _np\n'), ((5017, 5037), 'numpy.zeros', '_np.zeros', (['numStates'], {}), '(numStates)\n', (5026, 5037), True, 'import numpy as _np\n'), ((5234, 5254), 'numpy.abs', '_np.abs', (['statevector'], {}), '(statevector)\n', (5241, 5254), True, 'import numpy as _np\n'), ((7001, 7034), 'numpy.outer', '_np.outer', (['statesigns', 'statesigns'], {}), '(statesigns, statesigns)\n', (7010, 7034), True, 'import numpy as _np\n'), ((8704, 8762), 'numpy.minimum', '_np.minimum', (['(1.0)', '(speedLimit / (1e-08 + dotstatevector_L2))'], {}), '(1.0, speedLimit / (1e-08 + dotstatevector_L2))\n', (8715, 8762), True, 'import numpy as _np\n'), ((9097, 9117), 'numpy.abs', '_np.abs', (['statevector'], {}), '(statevector)\n', (9104, 9117), True, 'import numpy as _np\n'), ((9237, 9247), 'numpy.sum', '_np.sum', (['S'], {}), '(S)\n', (9244, 9247), True, 'import numpy as _np\n'), ((9272, 9283), 'numpy.sum', '_np.sum', (['S2'], {}), '(S2)\n', (9279, 9283), True, 'import numpy as _np\n'), ((4584, 4638), 'numpy.sum', '_np.sum', (['(scaledactivation * phaseVelocityExponentInput)'], {}), '(scaledactivation * phaseVelocityExponentInput)\n', (4591, 4638), True, 'import numpy as _np\n'), ((6023, 6043), 'numpy.zeros', '_np.zeros', (['numStates'], {}), '(numStates)\n', (6032, 6043), True, 'import numpy as _np\n'), ((6089, 6134), 'numpy.any', '_np.any', (['(triggervalue_successors >= threshold)'], {}), '(triggervalue_successors >= threshold)\n', (6096, 6134), True, 'import numpy as _np\n'), ((8425, 8457), 'numpy.dot', '_np.dot', (['(rhoDelta * T_G)', 'x_gamma'], {}), '(rhoDelta * T_G, x_gamma)\n', (8432, 8457), True, 'import numpy as _np\n'), ((8645, 8673), 'numpy.sum', '_np.sum', (['(dotstatevector ** 2)'], {}), '(dotstatevector ** 2)\n', (8652, 8673), True, 'import numpy as _np\n'), ((10093, 10104), 'numpy.sum', '_np.sum', (['S2'], {}), '(S2)\n', (10100, 10104), True, 'import numpy as _np\n'), ((16425, 16468), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (16434, 16468), True, 'import numpy as _np\n'), ((16563, 16606), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (16572, 16606), True, 'import numpy as _np\n'), ((16840, 16865), 'numpy.zeros', '_np.zeros', (['self.numStates'], {}), '(self.numStates)\n', (16849, 16865), True, 'import numpy as _np\n'), ((16904, 16947), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (16913, 16947), True, 'import numpy as _np\n'), ((17041, 17084), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (17050, 17084), True, 'import numpy as _np\n'), ((17185, 17228), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (17194, 17228), True, 'import numpy as _np\n'), ((17330, 17373), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (17339, 17373), True, 'import numpy as _np\n'), ((17486, 17529), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (17495, 17529), True, 'import numpy as _np\n'), ((17644, 17687), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (17653, 17687), True, 'import numpy as _np\n'), ((17749, 17792), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (17758, 17792), True, 'import numpy as _np\n'), ((19669, 19712), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (19678, 19712), True, 'import numpy as _np\n'), ((20531, 20596), 'numpy.sqrt', '_np.sqrt', (['(self.stateConnectivityAbs * self.stateConnectivityAbs.T)'], {}), '(self.stateConnectivityAbs * self.stateConnectivityAbs.T)\n', (20539, 20596), True, 'import numpy as _np\n'), ((21289, 21354), 'numpy.dot', '_np.dot', (['self.alpha[:, _np.newaxis]', 'self.betaInv[_np.newaxis, :]'], {}), '(self.alpha[:, _np.newaxis], self.betaInv[_np.newaxis, :])\n', (21296, 21354), True, 'import numpy as _np\n'), ((25665, 25698), 'numpy.argmax', '_np.argmax', (['self.phasesActivation'], {}), '(self.phasesActivation)\n', (25675, 25698), True, 'import numpy as _np\n'), ((28762, 28787), 'numpy.asarray', '_np.asarray', (['greedinesses'], {}), '(greedinesses)\n', (28773, 28787), True, 'import numpy as _np\n'), ((29129, 29174), 'numpy.clip', '_np.clip', (['(0.5 * greedinesses - 0.5)', '(-1.0)', '(0.0)'], {}), '(0.5 * greedinesses - 0.5, -1.0, 0.0)\n', (29137, 29174), True, 'import numpy as _np\n'), ((29817, 29957), 'warnings.warn', '_warnings.warn', (['"""Please replace updateCompetingTransitionGreediness with updateGreediness asap!"""', 'DeprecationWarning'], {'stacklevel': '(2)'}), "(\n 'Please replace updateCompetingTransitionGreediness with updateGreediness asap!'\n , DeprecationWarning, stacklevel=2)\n", (29831, 29957), True, 'import warnings as _warnings\n'), ((31742, 31768), 'numpy.asarray', '_np.asarray', (['successorBias'], {}), '(successorBias)\n', (31753, 31768), True, 'import numpy as _np\n'), ((32001, 32087), 'warnings.warn', '_warnings.warn', (['"""Please replace updateB() with updateBiases() asap!"""'], {'stacklevel': '(2)'}), "('Please replace updateB() with updateBiases() asap!',\n stacklevel=2)\n", (32015, 32087), True, 'import warnings as _warnings\n'), ((32192, 32304), 'warnings.warn', '_warnings.warn', (['"""Please replace updateTransitionTriggerInput() with updateBiases() asap!"""'], {'stacklevel': '(2)'}), "(\n 'Please replace updateTransitionTriggerInput() with updateBiases() asap!',\n stacklevel=2)\n", (32206, 32304), True, 'import warnings as _warnings\n'), ((32544, 32580), 'numpy.copyto', '_np.copyto', (['self.phasesInput', 'phases'], {}), '(self.phasesInput, phases)\n', (32554, 32580), True, 'import numpy as _np\n'), ((32776, 32822), 'numpy.copyto', '_np.copyto', (['self.velocityAdjustmentGain', 'gains'], {}), '(self.velocityAdjustmentGain, gains)\n', (32786, 32822), True, 'import numpy as _np\n'), ((33788, 33807), 'numpy.asarray', '_np.asarray', (['limits'], {}), '(limits)\n', (33799, 33807), True, 'import numpy as _np\n'), ((34650, 34665), 'numpy.isscalar', '_np.isscalar', (['p'], {}), '(p)\n', (34662, 34665), True, 'import numpy as _np\n'), ((828, 838), 'numpy.abs', '_np.abs', (['x'], {}), '(x)\n', (835, 838), True, 'import numpy as _np\n'), ((5400, 5447), 'numpy.outer', '_np.outer', (['(1 - statevector_abs)', 'statevector_abs'], {}), '(1 - statevector_abs, statevector_abs)\n', (5409, 5447), True, 'import numpy as _np\n'), ((5798, 5841), 'numpy.dot', '_np.dot', (['stateConnectivityAbs', 'predecessors'], {}), '(stateConnectivityAbs, predecessors)\n', (5805, 5841), True, 'import numpy as _np\n'), ((5881, 5924), 'numpy.dot', '_np.dot', (['stateConnectivityAbs', 'predecessors'], {}), '(stateConnectivityAbs, predecessors)\n', (5888, 5924), True, 'import numpy as _np\n'), ((6171, 6206), 'numpy.argmax', '_np.argmax', (['triggervalue_successors'], {}), '(triggervalue_successors)\n', (6181, 6206), True, 'import numpy as _np\n'), ((8397, 8422), 'numpy.dot', '_np.dot', (['rhoZero', 'x_gamma'], {}), '(rhoZero, x_gamma)\n', (8404, 8422), True, 'import numpy as _np\n'), ((10025, 10050), 'numpy.sum', '_np.sum', (['activationMatrix'], {}), '(activationMatrix)\n', (10032, 10050), True, 'import numpy as _np\n'), ((18105, 18125), 'numpy.zeros', '_np.zeros', (['numStates'], {}), '(numStates)\n', (18114, 18125), True, 'import numpy as _np\n'), ((18162, 18182), 'numpy.zeros', '_np.zeros', (['numStates'], {}), '(numStates)\n', (18171, 18182), True, 'import numpy as _np\n'), ((18319, 18362), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (18328, 18362), True, 'import numpy as _np\n'), ((18396, 18439), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (18405, 18439), True, 'import numpy as _np\n'), ((18483, 18526), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (18492, 18526), True, 'import numpy as _np\n'), ((18552, 18595), 'numpy.zeros', '_np.zeros', (['(self.numStates, self.numStates)'], {}), '((self.numStates, self.numStates))\n', (18561, 18595), True, 'import numpy as _np\n'), ((19747, 19791), 'numpy.tri', '_np.tri', (['self.numStates', 'self.numStates'], {'k': '(0)'}), '(self.numStates, self.numStates, k=0)\n', (19754, 19791), True, 'import numpy as _np\n'), ((21022, 21085), 'numpy.dot', '_np.dot', (['self.stateConnectivityAbs', 'self.stateConnectivityAbs.T'], {}), '(self.stateConnectivityAbs, self.stateConnectivityAbs.T)\n', (21029, 21085), True, 'import numpy as _np\n'), ((34692, 34717), 'numpy.empty', '_np.empty', (['self.numStates'], {}), '(self.numStates)\n', (34701, 34717), True, 'import numpy as _np\n'), ((34963, 34975), 'numpy.array', '_np.array', (['p'], {}), '(p)\n', (34972, 34975), True, 'import numpy as _np\n'), ((4539, 4564), 'numpy.sum', '_np.sum', (['activationMatrix'], {}), '(activationMatrix)\n', (4546, 4564), True, 'import numpy as _np\n'), ((19794, 19839), 'numpy.tri', '_np.tri', (['self.numStates', 'self.numStates'], {'k': '(-1)'}), '(self.numStates, self.numStates, k=-1)\n', (19801, 19839), True, 'import numpy as _np\n'), ((21091, 21114), 'numpy.eye', '_np.eye', (['self.numStates'], {}), '(self.numStates)\n', (21098, 21114), True, 'import numpy as _np\n'), ((21405, 21466), 'numpy.dot', '_np.dot', (['self.alpha[:, _np.newaxis]', 'alphaInv[_np.newaxis, :]'], {}), '(self.alpha[:, _np.newaxis], alphaInv[_np.newaxis, :])\n', (21412, 21466), True, 'import numpy as _np\n'), ((23217, 23284), 'numpy.random.normal', '_np.random.normal', ([], {'scale': 'self.epsilonPerSample', 'size': 'self.numStates'}), '(scale=self.epsilonPerSample, size=self.numStates)\n', (23234, 23284), True, 'import numpy as _np\n'), ((26776, 26822), 'numpy.sqrt', '_np.sqrt', (['(self.dt * self.reuseNoiseSampleTimes)'], {}), '(self.dt * self.reuseNoiseSampleTimes)\n', (26784, 26822), True, 'import numpy as _np\n'), ((28942, 28985), 'numpy.full', '_np.full', (['(1, self.numStates)', 'greedinesses'], {}), '((1, self.numStates), greedinesses)\n', (28950, 28985), True, 'import numpy as _np\n'), ((5734, 5754), 'numpy.abs', '_np.abs', (['statevector'], {}), '(statevector)\n', (5741, 5754), True, 'import numpy as _np\n'), ((9398, 9433), 'numpy.outer', '_np.outer', (['statevector', 'statevector'], {}), '(statevector, statevector)\n', (9407, 9433), True, 'import numpy as _np\n'), ((19023, 19076), 'numpy.empty', '_np.empty', (['(self.statehistorylen, self.numStates + 1)'], {}), '((self.statehistorylen, self.numStates + 1))\n', (19032, 19076), True, 'import numpy as _np\n'), ((19169, 19234), 'numpy.zeros', '_np.zeros', (['(self.statehistorylen, self.numStates, self.numStates)'], {}), '((self.statehistorylen, self.numStates, self.numStates))\n', (19178, 19234), True, 'import numpy as _np\n'), ((19279, 19344), 'numpy.zeros', '_np.zeros', (['(self.statehistorylen, self.numStates, self.numStates)'], {}), '((self.statehistorylen, self.numStates, self.numStates))\n', (19288, 19344), True, 'import numpy as _np\n'), ((21375, 21398), 'numpy.eye', '_np.eye', (['self.numStates'], {}), '(self.numStates)\n', (21382, 21398), True, 'import numpy as _np\n'), ((21729, 21771), 'numpy.sum', '_np.sum', (['self.stateConnectivityAbs'], {'axis': '(0)'}), '(self.stateConnectivityAbs, axis=0)\n', (21736, 21771), True, 'import numpy as _np\n')]
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle.proto.ParameterConfig_pb2 import ParameterConfig from collections import OrderedDict import paddle.trainer.config_parser as cp import struct import tarfile import cStringIO from topology import Topology __all__ = ['Parameters', 'create'] def create(layers): """ Create parameter pool by topology. :param layers: :return: """ topology = Topology(layers) pool = Parameters() initializers = cp.g_parameter_initializer_map for param in topology.proto().parameters: pool.__append_config__(param) if param.name in initializers: pool[param.name] = initializers[param.name](param.name) return pool class Parameters(object): """ `Parameters` manages all the learnable parameters in a neural network. It stores parameters' information in an OrderedDict. The key is the name of a parameter, and value is a parameter's configuration(in protobuf format), such as initialization mean and std, its size, whether it is a static parameter, and so on. :param __param_conf__: store the configurations of learnable parameters in the network in an OrderedDict. Parameter is added one by one into the dict by following their created order in the network: parameters of the previous layers in a network are careted first. You can visit the parameters from bottom to top by iterating over this dict. :type __param_conf__: OrderedDict :param __gradient_machines__: all of the parameters in a neural network are appended to a PaddlePaddle gradient machine, which is used internally to copy parameter values between C++ and Python end. :type __gradient_machines__: list :param __tmp_params__: a dict to store dummy parameters if no __gradient_machines__ is appended to `Parameters`. :type __tmp_params__: dict Basically usage is .. code-block:: python data = paddle.layers.data(...) ... out = paddle.layers.fc(...) parameters = paddle.parameters.create(out) parameter_names = parameters.names() fc_mat = parameters.get('fc') print fc_mat """ def __init__(self): self.__param_conf__ = OrderedDict() self.__gradient_machines__ = [] self.__tmp_params__ = dict() def __append_config__(self, param_conf): """ Append a parameter configuration. It used to initialize Parameters and should be invoked only in paddle.parameters.create :param param_conf: The parameter configuration in protobuf :type param_conf: ParameterConfig :return: Nothing """ if not isinstance(param_conf, ParameterConfig): raise ValueError("param_conf must be paddle.proto.ParameterConfig") if param_conf.name in self.__param_conf__: raise ValueError("duplicated parameter %s" % param_conf.name) self.__param_conf__[param_conf.name] = param_conf def keys(self): """ keys are the names of each parameter. :return: list of parameter name :rtype: list """ return self.__param_conf__.keys() def names(self): """ names of each parameter. :return: list of parameter name :rtype: list """ return self.keys() def has_key(self, key): """ has_key return true if there are such parameter name == key :param key: Parameter name :type key: basestring :return: True if contains such key """ return key in self.__param_conf__.keys() def __iter__(self): """ Return an iterator of parameter name. It is used by `for loop` or `in` operator. .. code-block:: python parameters = paddle.parameters.create(...) if "fc_param" in parameters: print 'OK' :return: an iterator of parameter name :rtype: iterator """ return iter(self.__param_conf__) def __getter_inner(self, key, param_type): import py_paddle.swig_paddle as api shape = self.get_shape(key) if len(self.__gradient_machines__) == 0: # create new parameter in python numpy. if key in self.__tmp_params__: return self.__tmp_params__[key] else: return np.ndarray(shape=shape, dtype=np.float32) else: for each_gradient_machine in self.__gradient_machines__: param = __get_parameter_in_gradient_machine__( each_gradient_machine, key) # for simplify implementation now, we always copy from C++ assert isinstance(param, api.Parameter) val = param.getBuf(param_type) assert isinstance(val, api.Vector) val = val.copyToNumpyArray() return val # else continue raise RuntimeError("Unexpected branch") def __getitem__(self, key): """ Get parameter by parameter name. It uses Python dict syntax. :note: It will always copy the parameter from C++ side. :param key: Parameter name :type key: basestring :return: parameter value :rtype: np.ndarray """ import py_paddle.swig_paddle as api return self.__getter_inner(key, api.PARAMETER_VALUE) def get_shape(self, key): """ get shape of the parameter. :param key: parameter name :type key: basestring :return: parameter's shape :rtype: tuple """ if not isinstance(key, basestring): raise ValueError("parameter name should be string") if not self.has_key(key): raise ValueError("No such parameter %s" % key) conf = self.__param_conf__[key] dims = conf.dims if conf.dims else (1, conf.size) return tuple(map(int, dims)) def __setitem__(self, key, value): """ Set parameter by parameter name & value. It use Python dict syntax. :note: It will always copy the parameter to C++ side. :param key: Parameter name :type key: basestring :param value: Parameter matrix. :type value: np.ndarray :return: Nothing """ if not isinstance(value, np.ndarray): raise ValueError("Must return ndarray") value = value.astype(dtype=np.float32) shape = self.get_shape(key) if value.shape != shape: raise ValueError("Value shape mismatch, expect %s, should %s" % (shape, value.shape)) if len(self.__gradient_machines__) == 0: self.__tmp_params__[key] = value else: for each_gradient_machine in self.__gradient_machines__: __copy_parameter_to_gradient_machine__(each_gradient_machine, key, value) def get(self, parameter_name): """ Get parameter by parameter name. :note: It will always copy the parameter from C++ side. :param parameter_name: parameter name :type parameter_name: basestring :return: The parameter matrix. :rtype: np.ndarray """ return self.__getitem__(key=parameter_name) def get_grad(self, key): """ Get grandient by parameter name. :note: It will always copy the parameter from C++ side. :param key: parameter name :type key: basestring :return: The grandient matrix. :rtype: np.ndarray """ import py_paddle.swig_paddle as api if self.__param_conf__[key].is_static: return np.zeros(self.__param_conf__[key].size, dtype=np.float32) return self.__getter_inner(key, api.PARAMETER_GRADIENT) def set(self, parameter_name, value): """ Set parameter by parameter name & matrix. :param parameter_name: parameter name :type parameter_name: basestring :param value: parameter matrix :type value: np.ndarray :return: Nothing. """ self.__setitem__(key=parameter_name, value=value) def append_gradient_machine(self, gradient_machine): """ append gradient machine to parameters. This method is used internally in Trainer.train. :param gradient_machine: PaddlePaddle C++ GradientMachine object. :type gradient_machine: api.GradientMachine :return: """ import py_paddle.swig_paddle as api if not isinstance(gradient_machine, api.GradientMachine): raise ValueError("gradient_machine should be api.GradientMachine") if len(self.__tmp_params__) != 0: for name, val in self.__tmp_params__.iteritems(): try: __copy_parameter_to_gradient_machine__(gradient_machine, name, val) except ValueError: # If no such parameter in gradient machine, then don't copy pass self.__gradient_machines__.append(gradient_machine) def serialize(self, name, f): """ :param name: :param f: :type f: file :return: """ param = self.get(name) size = reduce(lambda a, b: a * b, param.shape) f.write(struct.pack("IIQ", 0, 4, size)) param = param.astype(np.float32) s = param.tostring() wrote_size = 0 buf = buffer(s, wrote_size, 65535) while buf: # f.write crashes with big data blog. f.write(buf) wrote_size += 65535 buf = buffer(s, wrote_size, 65535) def deserialize(self, name, f): """ :param name: :param f: :type f: file :return: """ f.read(16) # header arr = np.frombuffer(f.read(), dtype=np.float32) self.set(name, arr.reshape(self.get_shape(name))) def to_tar(self, f): tar = tarfile.TarFile(fileobj=f, mode='w') for nm in self.names(): buf = cStringIO.StringIO() self.serialize(nm, buf) tarinfo = tarfile.TarInfo(name=nm) buf.seek(0) tarinfo.size = len(buf.getvalue()) tar.addfile(tarinfo, buf) conf = self.__param_conf__[nm] confStr = conf.SerializeToString() tarinfo = tarfile.TarInfo(name="%s.protobuf" % nm) tarinfo.size = len(confStr) buf = cStringIO.StringIO(confStr) buf.seek(0) tar.addfile(tarinfo, fileobj=buf) @staticmethod def from_tar(f): """ Create a `Parameters` object from the given file. And the `Parameters` only contains the parameters in this file. It is adapted the parameters are same in the defined network and the given file. For example, it can be used in the inference. :param f: the initialized model file. :type f: tar file :return: A Parameters object. :rtype: Parameters. """ params = Parameters() tar = tarfile.TarFile(fileobj=f, mode='r') for finfo in tar: assert isinstance(finfo, tarfile.TarInfo) if finfo.name.endswith('.protobuf'): f = tar.extractfile(finfo) conf = ParameterConfig() conf.ParseFromString(f.read()) params.__append_config__(conf) for param_name in params.names(): f = tar.extractfile(param_name) params.deserialize(param_name, f) return params def init_from_tar(self, f): """ Different from `from_tar`, this interface can be used to init partial network parameters from another saved model. :param f: the initialized model file. :type f: tar file :return: Nothing. """ tar_param = Parameters.from_tar(f) for pname in tar_param.names(): if pname in self.names(): self.set(pname, tar_param.get(pname)) def __get_parameter_in_gradient_machine__(gradient_machine, name): """ :param gradient_machine: :type gradient_machine: api.GradientMachine :param name: :return: :rtype: api.Parameter """ params = filter(lambda p: p.getName() == name, gradient_machine.getParameters()) if len(params) == 0: raise ValueError("No such parameter") elif len(params) > 1: raise ValueError("Unexpected branch") else: return params[0] def __copy_parameter_to_gradient_machine__(gradient_machine, name, arr): """ Copy a python ndarray into the gradient machine. :param gradient_machine: :type gradient_machine: api.GradientMachine :param name: :param arr: :type arr: np.ndarray :return: :rtype: api.Parameter """ import py_paddle.swig_paddle as api param = __get_parameter_in_gradient_machine__(gradient_machine, name) vec = param.getBuf(api.PARAMETER_VALUE) assert isinstance(vec, api.Vector) vec.copyFromNumpyArray(arr.flatten())
[ "topology.Topology", "tarfile.TarFile", "paddle.proto.ParameterConfig_pb2.ParameterConfig", "numpy.zeros", "tarfile.TarInfo", "struct.pack", "collections.OrderedDict", "cStringIO.StringIO", "numpy.ndarray" ]
[((1005, 1021), 'topology.Topology', 'Topology', (['layers'], {}), '(layers)\n', (1013, 1021), False, 'from topology import Topology\n'), ((2864, 2877), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2875, 2877), False, 'from collections import OrderedDict\n'), ((10804, 10840), 'tarfile.TarFile', 'tarfile.TarFile', ([], {'fileobj': 'f', 'mode': '"""w"""'}), "(fileobj=f, mode='w')\n", (10819, 10840), False, 'import tarfile\n'), ((11942, 11978), 'tarfile.TarFile', 'tarfile.TarFile', ([], {'fileobj': 'f', 'mode': '"""r"""'}), "(fileobj=f, mode='r')\n", (11957, 11978), False, 'import tarfile\n'), ((8435, 8492), 'numpy.zeros', 'np.zeros', (['self.__param_conf__[key].size'], {'dtype': 'np.float32'}), '(self.__param_conf__[key].size, dtype=np.float32)\n', (8443, 8492), True, 'import numpy as np\n'), ((10151, 10181), 'struct.pack', 'struct.pack', (['"""IIQ"""', '(0)', '(4)', 'size'], {}), "('IIQ', 0, 4, size)\n", (10162, 10181), False, 'import struct\n'), ((10891, 10911), 'cStringIO.StringIO', 'cStringIO.StringIO', ([], {}), '()\n', (10909, 10911), False, 'import cStringIO\n'), ((10970, 10994), 'tarfile.TarInfo', 'tarfile.TarInfo', ([], {'name': 'nm'}), '(name=nm)\n', (10985, 10994), False, 'import tarfile\n'), ((11217, 11257), 'tarfile.TarInfo', 'tarfile.TarInfo', ([], {'name': "('%s.protobuf' % nm)"}), "(name='%s.protobuf' % nm)\n", (11232, 11257), False, 'import tarfile\n'), ((11316, 11343), 'cStringIO.StringIO', 'cStringIO.StringIO', (['confStr'], {}), '(confStr)\n', (11334, 11343), False, 'import cStringIO\n'), ((5040, 5081), 'numpy.ndarray', 'np.ndarray', ([], {'shape': 'shape', 'dtype': 'np.float32'}), '(shape=shape, dtype=np.float32)\n', (5050, 5081), True, 'import numpy as np\n'), ((12174, 12191), 'paddle.proto.ParameterConfig_pb2.ParameterConfig', 'ParameterConfig', ([], {}), '()\n', (12189, 12191), False, 'from paddle.proto.ParameterConfig_pb2 import ParameterConfig\n')]
import numpy as np import imageio import os AVAILABLE_IMAGES = ['barbara'] def _add_noise(img, sigma): noise = np.random.normal(scale=sigma, size=img.shape).astype(img.dtype) return img + noise def example_image(img_name, noise_std=0): imgf = os.path.join('sparselandtools', 'applications', 'assets', img_name + '.png') # read image try: img = imageio.imread(imgf)[:, :, 0].astype('float32') except IndexError: img = imageio.imread(imgf).astype('float32') # add noise img = _add_noise(img, sigma=noise_std) return img
[ "imageio.imread", "os.path.join", "numpy.random.normal" ]
[((290, 366), 'os.path.join', 'os.path.join', (['"""sparselandtools"""', '"""applications"""', '"""assets"""', "(img_name + '.png')"], {}), "('sparselandtools', 'applications', 'assets', img_name + '.png')\n", (302, 366), False, 'import os\n'), ((118, 163), 'numpy.random.normal', 'np.random.normal', ([], {'scale': 'sigma', 'size': 'img.shape'}), '(scale=sigma, size=img.shape)\n', (134, 163), True, 'import numpy as np\n'), ((408, 428), 'imageio.imread', 'imageio.imread', (['imgf'], {}), '(imgf)\n', (422, 428), False, 'import imageio\n'), ((493, 513), 'imageio.imread', 'imageio.imread', (['imgf'], {}), '(imgf)\n', (507, 513), False, 'import imageio\n')]
import os import sys import argparse import numpy as np import theano.tensor as T homepath = os.path.join('..', '..') if not homepath in sys.path: sys.path.insert(0, homepath) from dlearn.models.layer import FullConnLayer, ConvPoolLayer from dlearn.models.nnet import NeuralNet from dlearn.utils import actfuncs, costfuncs from dlearn.utils.serialize import load_data, save_data from dlearn.optimization import sgd # Program arguments parser desctxt = """ Train latent network. Use learned attribute and segmentation network. """ dataset_txt = """ The input dataset data_name.pkl. """ attr_txt = """ The attribute network model_name.pkl. """ seg_txt = """ The segmentation network model_name.pkl. """ output_txt = """ If not specified, the output model will be saved as model_latent.pkl. Otherwise it will be saved as model_latent_name.pkl. """ parser = argparse.ArgumentParser(description=desctxt) parser.add_argument('-d', '--dataset', nargs=1, required=True, metavar='name', help=dataset_txt) parser.add_argument('-a', '--attribute', nargs=1, required=True, metavar='name', help=attr_txt) parser.add_argument('-s', '--segmentation', nargs=1, required=True, metavar='name', help=seg_txt) parser.add_argument('-o', '--output', nargs='?', default=None, metavar='name', help=output_txt) args = parser.parse_args() def train_model(dataset, attr_model, seg_model): def shape_constrained_pooling(fmaps): s = fmaps.sum(axis=[2, 3]) Z = abs(actfuncs.tanh(fmaps)).sum(axis=[2, 3]) return s / Z X = T.tensor4() A = T.matrix() feature_layers = [] feature_layers.append(ConvPoolLayer( input=X, input_shape=(3, 160, 80), filter_shape=(32, 3, 5, 5), pool_shape=(2, 2), active_func=actfuncs.tanh, flatten=False, W=attr_model.blocks[0]._W, b=0.0 )) feature_layers.append(ConvPoolLayer( input=feature_layers[-1].output, input_shape=feature_layers[-1].output_shape, filter_shape=(64, 32, 5, 5), pool_shape=(2, 2), active_func=actfuncs.tanh, flatten=False, W=attr_model.blocks[1]._W, b=0.0 )) seg_layers = [] seg_layers.append(FullConnLayer( input=feature_layers[-1].output.flatten(2), input_shape=np.prod(feature_layers[-1].output_shape), output_shape=1024, dropout_ratio=0.1, active_func=actfuncs.tanh, W=seg_model.blocks[2]._W, b=seg_model.blocks[2]._b )) seg_layers.append(FullConnLayer( input=seg_layers[-1].output, input_shape=seg_layers[-1].output_shape, output_shape=37 * 17, dropout_input=seg_layers[-1].dropout_output, active_func=actfuncs.sigmoid, W=seg_model.blocks[3]._W, b=seg_model.blocks[3]._b )) S = seg_layers[-1].output S = S * (S >= 0.1) S = S.reshape((S.shape[0], 37, 17)) S = S.dimshuffle(0, 'x', 1, 2) S_dropout = seg_layers[-1].dropout_output S_dropout = S_dropout * (S_dropout >= 0.1) S_dropout = S_dropout.reshape((S_dropout.shape[0], 37, 17)) S_dropout = S_dropout.dimshuffle(0, 'x', 1, 2) attr_layers = [] ''' attr_layers.append(ConvPoolLayer( input=feature_layers[-1].output * S, input_shape=feature_layers[-1].output_shape, filter_shape=(128, 64, 3, 3), pool_shape=(2, 2), dropout_input=feature_layers[-1].output * S_dropout, active_func=actfuncs.tanh, flatten=False, W=attr_model.blocks[2]._W, b=0.0 )) ''' attr_layers.append(FullConnLayer( input=shape_constrained_pooling(feature_layers[-1].output * S), input_shape=feature_layers[-1].output_shape, output_shape=64, dropout_input=shape_constrained_pooling( feature_layers[-1].dropout_output * S_dropout), dropout_ratio=0.1, active_func=actfuncs.tanh, W=attr_model.blocks[2]._W, b=attr_model.blocks[2]._b )) attr_layers.append(FullConnLayer( input=attr_layers[-1].output, input_shape=attr_layers[-1].output_shape, output_shape=11, dropout_input=attr_layers[-1].dropout_output, active_func=actfuncs.sigmoid, W=attr_model.blocks[3]._W, b=attr_model.blocks[3]._b )) model = NeuralNet(feature_layers + seg_layers + attr_layers, X, attr_layers[-1].output) model.target = A model.cost = costfuncs.binxent(attr_layers[-1].dropout_output, A) + \ 1e-3 * model.get_norm(2) model.error = costfuncs.binerr(attr_layers[-1].output, A) sgd.train(model, dataset, lr=1e-3, momentum=0.9, batch_size=100, n_epochs=300, epoch_waiting=10) return model if __name__ == '__main__': dataset_file = 'data_{0}.pkl'.format(args.dataset[0]) attr_file = 'model_{0}.pkl'.format(args.attribute[0]) seg_file = 'model_{0}.pkl'.format(args.segmentation[0]) out_file = 'model_latent.pkl' if args.output is None else \ 'model_latent_{0}.pkl'.format(args.output) dataset = load_data(dataset_file) attr_model = load_data(attr_file) seg_model = load_data(seg_file) model = train_model(dataset, attr_model, seg_model) save_data(model, out_file)
[ "argparse.ArgumentParser", "theano.tensor.tensor4", "dlearn.utils.serialize.load_data", "dlearn.optimization.sgd.train", "dlearn.utils.costfuncs.binxent", "sys.path.insert", "dlearn.utils.costfuncs.binerr", "dlearn.models.layer.ConvPoolLayer", "numpy.prod", "dlearn.utils.actfuncs.tanh", "dlearn.utils.serialize.save_data", "dlearn.models.nnet.NeuralNet", "os.path.join", "dlearn.models.layer.FullConnLayer", "theano.tensor.matrix" ]
[((94, 118), 'os.path.join', 'os.path.join', (['""".."""', '""".."""'], {}), "('..', '..')\n", (106, 118), False, 'import os\n'), ((868, 912), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'desctxt'}), '(description=desctxt)\n', (891, 912), False, 'import argparse\n'), ((153, 181), 'sys.path.insert', 'sys.path.insert', (['(0)', 'homepath'], {}), '(0, homepath)\n', (168, 181), False, 'import sys\n'), ((1622, 1633), 'theano.tensor.tensor4', 'T.tensor4', ([], {}), '()\n', (1631, 1633), True, 'import theano.tensor as T\n'), ((1642, 1652), 'theano.tensor.matrix', 'T.matrix', ([], {}), '()\n', (1650, 1652), True, 'import theano.tensor as T\n'), ((4436, 4515), 'dlearn.models.nnet.NeuralNet', 'NeuralNet', (['(feature_layers + seg_layers + attr_layers)', 'X', 'attr_layers[-1].output'], {}), '(feature_layers + seg_layers + attr_layers, X, attr_layers[-1].output)\n', (4445, 4515), False, 'from dlearn.models.nnet import NeuralNet\n'), ((4685, 4728), 'dlearn.utils.costfuncs.binerr', 'costfuncs.binerr', (['attr_layers[-1].output', 'A'], {}), '(attr_layers[-1].output, A)\n', (4701, 4728), False, 'from dlearn.utils import actfuncs, costfuncs\n'), ((4734, 4836), 'dlearn.optimization.sgd.train', 'sgd.train', (['model', 'dataset'], {'lr': '(0.001)', 'momentum': '(0.9)', 'batch_size': '(100)', 'n_epochs': '(300)', 'epoch_waiting': '(10)'}), '(model, dataset, lr=0.001, momentum=0.9, batch_size=100, n_epochs=\n 300, epoch_waiting=10)\n', (4743, 4836), False, 'from dlearn.optimization import sgd\n'), ((5219, 5242), 'dlearn.utils.serialize.load_data', 'load_data', (['dataset_file'], {}), '(dataset_file)\n', (5228, 5242), False, 'from dlearn.utils.serialize import load_data, save_data\n'), ((5260, 5280), 'dlearn.utils.serialize.load_data', 'load_data', (['attr_file'], {}), '(attr_file)\n', (5269, 5280), False, 'from dlearn.utils.serialize import load_data, save_data\n'), ((5297, 5316), 'dlearn.utils.serialize.load_data', 'load_data', (['seg_file'], {}), '(seg_file)\n', (5306, 5316), False, 'from dlearn.utils.serialize import load_data, save_data\n'), ((5379, 5405), 'dlearn.utils.serialize.save_data', 'save_data', (['model', 'out_file'], {}), '(model, out_file)\n', (5388, 5405), False, 'from dlearn.utils.serialize import load_data, save_data\n'), ((1704, 1884), 'dlearn.models.layer.ConvPoolLayer', 'ConvPoolLayer', ([], {'input': 'X', 'input_shape': '(3, 160, 80)', 'filter_shape': '(32, 3, 5, 5)', 'pool_shape': '(2, 2)', 'active_func': 'actfuncs.tanh', 'flatten': '(False)', 'W': 'attr_model.blocks[0]._W', 'b': '(0.0)'}), '(input=X, input_shape=(3, 160, 80), filter_shape=(32, 3, 5, 5),\n pool_shape=(2, 2), active_func=actfuncs.tanh, flatten=False, W=\n attr_model.blocks[0]._W, b=0.0)\n', (1717, 1884), False, 'from dlearn.models.layer import FullConnLayer, ConvPoolLayer\n'), ((1974, 2198), 'dlearn.models.layer.ConvPoolLayer', 'ConvPoolLayer', ([], {'input': 'feature_layers[-1].output', 'input_shape': 'feature_layers[-1].output_shape', 'filter_shape': '(64, 32, 5, 5)', 'pool_shape': '(2, 2)', 'active_func': 'actfuncs.tanh', 'flatten': '(False)', 'W': 'attr_model.blocks[1]._W', 'b': '(0.0)'}), '(input=feature_layers[-1].output, input_shape=feature_layers[-\n 1].output_shape, filter_shape=(64, 32, 5, 5), pool_shape=(2, 2),\n active_func=actfuncs.tanh, flatten=False, W=attr_model.blocks[1]._W, b=0.0)\n', (1987, 2198), False, 'from dlearn.models.layer import FullConnLayer, ConvPoolLayer\n'), ((2619, 2865), 'dlearn.models.layer.FullConnLayer', 'FullConnLayer', ([], {'input': 'seg_layers[-1].output', 'input_shape': 'seg_layers[-1].output_shape', 'output_shape': '(37 * 17)', 'dropout_input': 'seg_layers[-1].dropout_output', 'active_func': 'actfuncs.sigmoid', 'W': 'seg_model.blocks[3]._W', 'b': 'seg_model.blocks[3]._b'}), '(input=seg_layers[-1].output, input_shape=seg_layers[-1].\n output_shape, output_shape=37 * 17, dropout_input=seg_layers[-1].\n dropout_output, active_func=actfuncs.sigmoid, W=seg_model.blocks[3]._W,\n b=seg_model.blocks[3]._b)\n', (2632, 2865), False, 'from dlearn.models.layer import FullConnLayer, ConvPoolLayer\n'), ((4127, 4373), 'dlearn.models.layer.FullConnLayer', 'FullConnLayer', ([], {'input': 'attr_layers[-1].output', 'input_shape': 'attr_layers[-1].output_shape', 'output_shape': '(11)', 'dropout_input': 'attr_layers[-1].dropout_output', 'active_func': 'actfuncs.sigmoid', 'W': 'attr_model.blocks[3]._W', 'b': 'attr_model.blocks[3]._b'}), '(input=attr_layers[-1].output, input_shape=attr_layers[-1].\n output_shape, output_shape=11, dropout_input=attr_layers[-1].\n dropout_output, active_func=actfuncs.sigmoid, W=attr_model.blocks[3]._W,\n b=attr_model.blocks[3]._b)\n', (4140, 4373), False, 'from dlearn.models.layer import FullConnLayer, ConvPoolLayer\n'), ((4577, 4629), 'dlearn.utils.costfuncs.binxent', 'costfuncs.binxent', (['attr_layers[-1].dropout_output', 'A'], {}), '(attr_layers[-1].dropout_output, A)\n', (4594, 4629), False, 'from dlearn.utils import actfuncs, costfuncs\n'), ((2391, 2431), 'numpy.prod', 'np.prod', (['feature_layers[-1].output_shape'], {}), '(feature_layers[-1].output_shape)\n', (2398, 2431), True, 'import numpy as np\n'), ((1553, 1573), 'dlearn.utils.actfuncs.tanh', 'actfuncs.tanh', (['fmaps'], {}), '(fmaps)\n', (1566, 1573), False, 'from dlearn.utils import actfuncs, costfuncs\n')]
import numpy as np from common import numerical_gradient, softmax, cross_entropy_error from collections import OrderedDict class Relu: def __init__(self): self.mask = None def forward(self, x): self.mask = (x <= 0) out = x.copy() out[self.mask] = 0 return out def backward(self, dout): dout[self.mask] = 0 dx = dout return dx class Affine: def __init__(self, W, b): self.W = W self.b = b self.x = None self.dW = None self.db = None def forward(self, x): self.x = x return np.dot(x, self.W) + self.b def backward(self, dout): dx = np.dot(dout, self.W.T) self.dW = np.dot(self.x.T, dout) self.db = np.sum(dout, axis=0) return dx class SoftmaxWithLoss: def __init__(self): self.loss = None self.y = None self.x = None def forward(self, x, t): self.t = t self.y = softmax(x) self.loss = cross_entropy_error(self.y, self.t) return self.loss def backward(self, dout=1): batch_size = self.t.shape[0] dx = (self.y - self.t) / batch_size return dx class TowLayerNet: def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01): self.params = {} self.params['W1'] = weight_init_std * \ np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = weight_init_std * \ np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) self.layers = OrderedDict() self.layers['Affine1'] = \ Affine(self.params['W1'], self.params['b1']) self.layers['Relu1'] = Relu() self.layers['Affine2'] = \ Affine(self.params['W2'], self.params['b2']) self.lastLayer = SoftmaxWithLoss() def predict(self, x): for layer in self.layers.values(): x = layer.forward(x) return x def loss(self, x, t): y = self.predict(x) return self.lastLayer.forward(y, t) def accuracy(self, x, t): y = self.predict(x) y = np.argmax(y, axis=1) if t.ndim != 1: t = np.argmax(t, axis=1) accuracy = np.sum(y == t) / float(x.shape[0]) return accuracy def numerical_gradient(self, x, t): loss_W = lambda W: self.loss(x, t) grads = {} grads['W1'] = numerical_gradient(loss_W, self.params['W1']) grads['b1'] = numerical_gradient(loss_W, self.params['b1']) grads['W2'] = numerical_gradient(loss_W, self.params['W2']) grads['b2'] = numerical_gradient(loss_W, self.params['b2']) return grads def gradient(self, x, t): # 순전파 self.loss(x, t) dout = 1 dout = self.lastLayer.backward(dout) layers = list(self.layers.values()) layers.reverse() for layer in layers: dout = layer.backward(dout) grads = {} grads['W1'] = self.layers['Affine1'].dW grads['b1'] = self.layers['Affine1'].db grads['W2'] = self.layers['Affine2'].dW grads['b2'] = self.layers['Affine2'].db return grads # ========== ========== # # 오차역전파법을 통해 구한 기울기 검증하기 from dataset.mnist import load_mnist (x_train, t_train), (x_test, t_test) = \ load_mnist(normalize=True, one_hot_label=True) network = TowLayerNet(input_size=784, hidden_size=50, output_size=10) x_batch = x_train[:3] t_batch = t_train[:3] grad_numerical = network.numerical_gradient(x_batch, t_batch) grad_backprop = network.gradient(x_batch, t_batch) for k in grad_numerical.keys(): diff = np.average(np.abs(grad_backprop[k] - grad_numerical[k])) print(k + ' : ' + str(diff)) # ========== ========== # # 학습 구현 iters_num = 10000 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) print('#========== ==========#') print('iters_num: %s' % str(iters_num)) print('train_size: %s' % str(train_size)) print('batch_size: %s' % str(batch_size)) print('learning_rate: %s' % str(learning_rate)) print('iter_per_epoch: %s' % str(iter_per_epoch)) print('#========== ==========#') for i in range(iters_num): batch_mask = np.random.choice(train_size, batch_size) # print(batch_mask) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] # 오차역전파법으로 기울기 구하기 grad = network.gradient(x_batch, t_batch) # 갱신 for key in ('W1', 'b1', 'W2', 'b2'): network.params[key] -= learning_rate * grad[key] loss = network.loss(x_batch, t_batch) train_loss_list.append(loss) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print(train_acc, test_acc)
[ "numpy.sum", "numpy.abs", "numpy.argmax", "common.numerical_gradient", "numpy.random.randn", "common.softmax", "numpy.zeros", "dataset.mnist.load_mnist", "numpy.random.choice", "collections.OrderedDict", "numpy.dot", "common.cross_entropy_error" ]
[((3510, 3556), 'dataset.mnist.load_mnist', 'load_mnist', ([], {'normalize': '(True)', 'one_hot_label': '(True)'}), '(normalize=True, one_hot_label=True)\n', (3520, 3556), False, 'from dataset.mnist import load_mnist\n'), ((4487, 4527), 'numpy.random.choice', 'np.random.choice', (['train_size', 'batch_size'], {}), '(train_size, batch_size)\n', (4503, 4527), True, 'import numpy as np\n'), ((697, 719), 'numpy.dot', 'np.dot', (['dout', 'self.W.T'], {}), '(dout, self.W.T)\n', (703, 719), True, 'import numpy as np\n'), ((738, 760), 'numpy.dot', 'np.dot', (['self.x.T', 'dout'], {}), '(self.x.T, dout)\n', (744, 760), True, 'import numpy as np\n'), ((779, 799), 'numpy.sum', 'np.sum', (['dout'], {'axis': '(0)'}), '(dout, axis=0)\n', (785, 799), True, 'import numpy as np\n'), ((1003, 1013), 'common.softmax', 'softmax', (['x'], {}), '(x)\n', (1010, 1013), False, 'from common import numerical_gradient, softmax, cross_entropy_error\n'), ((1034, 1069), 'common.cross_entropy_error', 'cross_entropy_error', (['self.y', 'self.t'], {}), '(self.y, self.t)\n', (1053, 1069), False, 'from common import numerical_gradient, softmax, cross_entropy_error\n'), ((1519, 1540), 'numpy.zeros', 'np.zeros', (['hidden_size'], {}), '(hidden_size)\n', (1527, 1540), True, 'import numpy as np\n'), ((1687, 1708), 'numpy.zeros', 'np.zeros', (['output_size'], {}), '(output_size)\n', (1695, 1708), True, 'import numpy as np\n'), ((1732, 1745), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1743, 1745), False, 'from collections import OrderedDict\n'), ((2302, 2322), 'numpy.argmax', 'np.argmax', (['y'], {'axis': '(1)'}), '(y, axis=1)\n', (2311, 2322), True, 'import numpy as np\n'), ((2589, 2634), 'common.numerical_gradient', 'numerical_gradient', (['loss_W', "self.params['W1']"], {}), "(loss_W, self.params['W1'])\n", (2607, 2634), False, 'from common import numerical_gradient, softmax, cross_entropy_error\n'), ((2657, 2702), 'common.numerical_gradient', 'numerical_gradient', (['loss_W', "self.params['b1']"], {}), "(loss_W, self.params['b1'])\n", (2675, 2702), False, 'from common import numerical_gradient, softmax, cross_entropy_error\n'), ((2725, 2770), 'common.numerical_gradient', 'numerical_gradient', (['loss_W', "self.params['W2']"], {}), "(loss_W, self.params['W2'])\n", (2743, 2770), False, 'from common import numerical_gradient, softmax, cross_entropy_error\n'), ((2793, 2838), 'common.numerical_gradient', 'numerical_gradient', (['loss_W', "self.params['b2']"], {}), "(loss_W, self.params['b2'])\n", (2811, 2838), False, 'from common import numerical_gradient, softmax, cross_entropy_error\n'), ((3841, 3885), 'numpy.abs', 'np.abs', (['(grad_backprop[k] - grad_numerical[k])'], {}), '(grad_backprop[k] - grad_numerical[k])\n', (3847, 3885), True, 'import numpy as np\n'), ((626, 643), 'numpy.dot', 'np.dot', (['x', 'self.W'], {}), '(x, self.W)\n', (632, 643), True, 'import numpy as np\n'), ((1450, 1490), 'numpy.random.randn', 'np.random.randn', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (1465, 1490), True, 'import numpy as np\n'), ((1617, 1658), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (1632, 1658), True, 'import numpy as np\n'), ((2363, 2383), 'numpy.argmax', 'np.argmax', (['t'], {'axis': '(1)'}), '(t, axis=1)\n', (2372, 2383), True, 'import numpy as np\n'), ((2404, 2418), 'numpy.sum', 'np.sum', (['(y == t)'], {}), '(y == t)\n', (2410, 2418), True, 'import numpy as np\n')]
#!/usr/bin/env python import numpy as np from scipy.stats import norm def bachelier(So, K, sigma, T, option_type): ''' Calculate European option price using Bachelier model: dSt = sigma * S0 * dWt St = S0*(1 + sigma*Wt) Parameter --------- So: float price of underlying asset at time 0 K: float strike price of option sigma: float variance of Brownian motion T: float length of time option_type: str type of European option. Including: van call/put (vanilla), con call/put (cash-or-nothing), aon call/put (asset-or-nothing) Return ------ val: value of the option at time 0 ''' xs = (K-So) / (So * sigma * np.sqrt(T)) val = None if So == K: return sigma*So*np.sqrt(T/(2*np.pi)) if option_type == 'van call': val = (So - K) * norm.cdf(-xs) + So*sigma*np.sqrt(T)*norm.pdf(-xs) elif option_type == 'van put': val = (K - So) * norm.cdf(xs) + So*sigma*np.sqrt(T)*norm.pdf(xs) elif option_type == 'con call': val = norm.cdf(-xs) elif option_type == 'con put': val = norm.cdf(xs) elif option_type == 'aon call': val = So*norm.cdf(-xs) + So*sigma*np.sqrt(T)*norm.pdf(-xs) elif option_type == 'aon put': val = So*norm.cdf(xs) - So*sigma*np.sqrt(T)*norm.pdf(xs) else: raise(ValueError("Option type is invalid. " + "Should be either 'van call', 'van put', 'con call', 'con put', 'aon call', or 'aon put'")) return val def black_scholes(So, K, r, sigma, T, option_type): ''' Calculate European option price using Black-Scholes (1973) model: dSt = r*dSt + sigma*St*dWt St = S0*exp{(r-sigma^2/2)t + sigma*Wt} Parameter --------- So: float price of underlying asset at time 0 K: float strike price of option r: float drift of St sigma: float variance of Brownian motion T: float length of time option_type: str type of European option. Including: van call/put (vanilla), con call/put (cash-or-nothing), aon call/put (asset-or-nothing) Return ------ val: value of the option at time 0 ''' d1 = (np.log(So/K) + (r+sigma**2/2)*T) / (sigma*np.sqrt(T)) d2 = (np.log(So/K) + (r-sigma**2/2)*T) / (sigma*np.sqrt(T)) val = None if So == K: return sigma*So*np.sqrt(T/(2*np.pi)) if option_type == 'van call': val = So*norm.cdf(d1) - K*np.e**(-r*T)*norm.cdf(d2) elif option_type == 'van put': val = -So*norm.cdf(-d1) + K*np.e**(-r*T)*norm.cdf(-d2) elif option_type == 'con call': val = np.e**(-r*T) * norm.cdf(d2) elif option_type == 'con put': val = np.e**(-r*T) * norm.cdf(-d2) elif option_type == 'aon call': val = So*norm.cdf(d1) elif option_type == 'aon put': val = So*norm.cdf(-d1) else: raise(ValueError("Option type is invalid. " + "Should be either 'van call', 'van put', 'con call', 'con put', 'aon call', or 'aon put'")) return val
[ "scipy.stats.norm.cdf", "scipy.stats.norm.pdf", "numpy.log", "numpy.sqrt" ]
[((748, 758), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (755, 758), True, 'import numpy as np\n'), ((820, 844), 'numpy.sqrt', 'np.sqrt', (['(T / (2 * np.pi))'], {}), '(T / (2 * np.pi))\n', (827, 844), True, 'import numpy as np\n'), ((2341, 2355), 'numpy.log', 'np.log', (['(So / K)'], {}), '(So / K)\n', (2347, 2355), True, 'import numpy as np\n'), ((2383, 2393), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (2390, 2393), True, 'import numpy as np\n'), ((2405, 2419), 'numpy.log', 'np.log', (['(So / K)'], {}), '(So / K)\n', (2411, 2419), True, 'import numpy as np\n'), ((2447, 2457), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (2454, 2457), True, 'import numpy as np\n'), ((2519, 2543), 'numpy.sqrt', 'np.sqrt', (['(T / (2 * np.pi))'], {}), '(T / (2 * np.pi))\n', (2526, 2543), True, 'import numpy as np\n'), ((905, 918), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-xs)'], {}), '(-xs)\n', (913, 918), False, 'from scipy.stats import norm\n'), ((941, 954), 'scipy.stats.norm.pdf', 'norm.pdf', (['(-xs)'], {}), '(-xs)\n', (949, 954), False, 'from scipy.stats import norm\n'), ((1113, 1126), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-xs)'], {}), '(-xs)\n', (1121, 1126), False, 'from scipy.stats import norm\n'), ((2596, 2608), 'scipy.stats.norm.cdf', 'norm.cdf', (['d1'], {}), '(d1)\n', (2604, 2608), False, 'from scipy.stats import norm\n'), ((2626, 2638), 'scipy.stats.norm.cdf', 'norm.cdf', (['d2'], {}), '(d2)\n', (2634, 2638), False, 'from scipy.stats import norm\n'), ((930, 940), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (937, 940), True, 'import numpy as np\n'), ((1015, 1027), 'scipy.stats.norm.cdf', 'norm.cdf', (['xs'], {}), '(xs)\n', (1023, 1027), False, 'from scipy.stats import norm\n'), ((1050, 1062), 'scipy.stats.norm.pdf', 'norm.pdf', (['xs'], {}), '(xs)\n', (1058, 1062), False, 'from scipy.stats import norm\n'), ((1176, 1188), 'scipy.stats.norm.cdf', 'norm.cdf', (['xs'], {}), '(xs)\n', (1184, 1188), False, 'from scipy.stats import norm\n'), ((2692, 2705), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-d1)'], {}), '(-d1)\n', (2700, 2705), False, 'from scipy.stats import norm\n'), ((2723, 2736), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-d2)'], {}), '(-d2)\n', (2731, 2736), False, 'from scipy.stats import norm\n'), ((2802, 2814), 'scipy.stats.norm.cdf', 'norm.cdf', (['d2'], {}), '(d2)\n', (2810, 2814), False, 'from scipy.stats import norm\n'), ((1039, 1049), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (1046, 1049), True, 'import numpy as np\n'), ((2879, 2892), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-d2)'], {}), '(-d2)\n', (2887, 2892), False, 'from scipy.stats import norm\n'), ((2946, 2958), 'scipy.stats.norm.cdf', 'norm.cdf', (['d1'], {}), '(d1)\n', (2954, 2958), False, 'from scipy.stats import norm\n'), ((1242, 1255), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-xs)'], {}), '(-xs)\n', (1250, 1255), False, 'from scipy.stats import norm\n'), ((1278, 1291), 'scipy.stats.norm.pdf', 'norm.pdf', (['(-xs)'], {}), '(-xs)\n', (1286, 1291), False, 'from scipy.stats import norm\n'), ((3011, 3024), 'scipy.stats.norm.cdf', 'norm.cdf', (['(-d1)'], {}), '(-d1)\n', (3019, 3024), False, 'from scipy.stats import norm\n'), ((1267, 1277), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (1274, 1277), True, 'import numpy as np\n'), ((1344, 1356), 'scipy.stats.norm.cdf', 'norm.cdf', (['xs'], {}), '(xs)\n', (1352, 1356), False, 'from scipy.stats import norm\n'), ((1379, 1391), 'scipy.stats.norm.pdf', 'norm.pdf', (['xs'], {}), '(xs)\n', (1387, 1391), False, 'from scipy.stats import norm\n'), ((1368, 1378), 'numpy.sqrt', 'np.sqrt', (['T'], {}), '(T)\n', (1375, 1378), True, 'import numpy as np\n')]
from pydlm import dlm, trend, seasonality from scipy.stats import norm import numpy as np import matplotlib.pyplot as plt # A linear trend linear_trend = trend(degree=1, discount=1, name='linear_trend', w=10) # A seasonality time_series = [] for i in range(10): if i == 0: x_sim = np.random.normal(0,1,1) else: x_sim = np.random.normal(x_sim,10,1) time_series.append(np.random.normal(x_sim,10,1)) time_series = np.array(time_series) simple_dlm = dlm(time_series) + linear_trend simple_dlm.fit() filteredMean = simple_dlm.getMean(filterType='forwardFilter') filteredVar = simple_dlm.getVar(filterType='forwardFilter') ll = 0 one_step_ahead_samples = [] for i in range(len(time_series)): tmp_samples = [] for j in range(1000): tmp = np.random.normal(filteredMean[i],filteredVar[i], 1) tmp_samples.append(np.random.normal(tmp,1,1)) one_step_ahead_samples.append(tmp_samples) one_step_ahead_samples = np.array(one_step_ahead_samples) upper_pi = [] lower_pi = [] for p in one_step_ahead_samples: upper_pi.append(np.percentile(p,95)) lower_pi.append(np.percentile(p,5)) time_series_shifted = time_series #plt.plot(range(len(time_series_shifted)),time_series_shifted,color='orange') #plt.fill_between(range(len(time_series_shifted)),upper_pi,lower_pi,alpha=.3) #plt.show() from pykalman import KalmanFilter random_state = np.random.RandomState(0) transition_matrix = 1 transition_offset = .1 observation_matrix = 1 observation_offset = 1 transition_covariance = 10 observation_covariance = 1 initial_state_mean = 0 initial_state_covariance = 1 # sample from model kf = KalmanFilter( transition_matrix, observation_matrix, transition_covariance, observation_covariance, transition_offset, observation_offset, initial_state_mean, initial_state_covariance, random_state=random_state ) filtered_state_means, filtered_state_variances = kf.filter(time_series) filteredMean = filtered_state_means.reshape((-1)) filteredVar = filtered_state_variances.reshape((-1)) one_step_ahead_samples = [] for i in range(len(time_series)): tmp_samples = [] for j in range(10000): tmp = np.random.normal(filteredMean[i],filteredVar[i], 1) tmp2 = np.random.normal(tmp,10,1) tmp_samples.append(np.random.normal(tmp2,10,1)) one_step_ahead_samples.append(tmp_samples) one_step_ahead_samples = np.array(one_step_ahead_samples) upper_pi = [] lower_pi = [] for p in one_step_ahead_samples: upper_pi.append(np.percentile(p,95)) lower_pi.append(np.percentile(p,5)) time_series = time_series.reshape((-1)) time_series_shifted = time_series.tolist()[1:] + [10] plt.plot(range(len(time_series_shifted)),time_series_shifted,color='orange') plt.fill_between(range(len(time_series_shifted)),upper_pi,lower_pi,alpha=.3) plt.show()
[ "matplotlib.pyplot.show", "pydlm.trend", "numpy.random.RandomState", "pykalman.KalmanFilter", "numpy.percentile", "numpy.array", "numpy.random.normal", "pydlm.dlm" ]
[((155, 209), 'pydlm.trend', 'trend', ([], {'degree': '(1)', 'discount': '(1)', 'name': '"""linear_trend"""', 'w': '(10)'}), "(degree=1, discount=1, name='linear_trend', w=10)\n", (160, 209), False, 'from pydlm import dlm, trend, seasonality\n'), ((441, 462), 'numpy.array', 'np.array', (['time_series'], {}), '(time_series)\n', (449, 462), True, 'import numpy as np\n'), ((957, 989), 'numpy.array', 'np.array', (['one_step_ahead_samples'], {}), '(one_step_ahead_samples)\n', (965, 989), True, 'import numpy as np\n'), ((1388, 1412), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (1409, 1412), True, 'import numpy as np\n'), ((1637, 1855), 'pykalman.KalmanFilter', 'KalmanFilter', (['transition_matrix', 'observation_matrix', 'transition_covariance', 'observation_covariance', 'transition_offset', 'observation_offset', 'initial_state_mean', 'initial_state_covariance'], {'random_state': 'random_state'}), '(transition_matrix, observation_matrix, transition_covariance,\n observation_covariance, transition_offset, observation_offset,\n initial_state_mean, initial_state_covariance, random_state=random_state)\n', (1649, 1855), False, 'from pykalman import KalmanFilter\n'), ((2477, 2509), 'numpy.array', 'np.array', (['one_step_ahead_samples'], {}), '(one_step_ahead_samples)\n', (2485, 2509), True, 'import numpy as np\n'), ((2903, 2913), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2911, 2913), True, 'import matplotlib.pyplot as plt\n'), ((476, 492), 'pydlm.dlm', 'dlm', (['time_series'], {}), '(time_series)\n', (479, 492), False, 'from pydlm import dlm, trend, seasonality\n'), ((295, 320), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(1)'], {}), '(0, 1, 1)\n', (311, 320), True, 'import numpy as np\n'), ((345, 375), 'numpy.random.normal', 'np.random.normal', (['x_sim', '(10)', '(1)'], {}), '(x_sim, 10, 1)\n', (361, 375), True, 'import numpy as np\n'), ((397, 427), 'numpy.random.normal', 'np.random.normal', (['x_sim', '(10)', '(1)'], {}), '(x_sim, 10, 1)\n', (413, 427), True, 'import numpy as np\n'), ((779, 831), 'numpy.random.normal', 'np.random.normal', (['filteredMean[i]', 'filteredVar[i]', '(1)'], {}), '(filteredMean[i], filteredVar[i], 1)\n', (795, 831), True, 'import numpy as np\n'), ((1072, 1092), 'numpy.percentile', 'np.percentile', (['p', '(95)'], {}), '(p, 95)\n', (1085, 1092), True, 'import numpy as np\n'), ((1113, 1132), 'numpy.percentile', 'np.percentile', (['p', '(5)'], {}), '(p, 5)\n', (1126, 1132), True, 'import numpy as np\n'), ((2246, 2298), 'numpy.random.normal', 'np.random.normal', (['filteredMean[i]', 'filteredVar[i]', '(1)'], {}), '(filteredMean[i], filteredVar[i], 1)\n', (2262, 2298), True, 'import numpy as np\n'), ((2313, 2341), 'numpy.random.normal', 'np.random.normal', (['tmp', '(10)', '(1)'], {}), '(tmp, 10, 1)\n', (2329, 2341), True, 'import numpy as np\n'), ((2592, 2612), 'numpy.percentile', 'np.percentile', (['p', '(95)'], {}), '(p, 95)\n', (2605, 2612), True, 'import numpy as np\n'), ((2633, 2652), 'numpy.percentile', 'np.percentile', (['p', '(5)'], {}), '(p, 5)\n', (2646, 2652), True, 'import numpy as np\n'), ((858, 885), 'numpy.random.normal', 'np.random.normal', (['tmp', '(1)', '(1)'], {}), '(tmp, 1, 1)\n', (874, 885), True, 'import numpy as np\n'), ((2376, 2405), 'numpy.random.normal', 'np.random.normal', (['tmp2', '(10)', '(1)'], {}), '(tmp2, 10, 1)\n', (2392, 2405), True, 'import numpy as np\n')]
""" Implementation of :py:class:`Dataset` object. A folder containing a set of subjects with CT and RS in dicom format is converted into nii format. A new folder is created keeping the same organization. """ import os import numpy as np from dcmrtstruct2nii import dcmrtstruct2nii, list_rt_structs class Dataset: """ From dicom to dataset class. Convert CT and RTSTRUCT into nii, readable by deep learning frameworks. All subfolders representing subject must contain the CT and the RS associated. Example: >>> from segmentation_rt.rs2mask import Dataset >>> structures = ['Heart', 'Breast L', 'Breast R'] >>> dataset = Dataset('data/dicom_dataset', 'data/nii_dataset', structures) >>> dataset.make() :param string path: Root directory. :param string export_path: Export path. :param list[string] structures: List of desired structure(s). :param bool force: Force export even if one structure is missing. """ def __init__(self, path, export_path, structures, force=True): self.path = path self.export_path = export_path self.structures = structures self.dataset_name = os.path.basename(export_path) self.force = force self.root_path = os.path.dirname(self.path) self.patients = [folder for folder in os.listdir(self.path) if os.path.isdir(os.path.join(self.path, folder))] self.patient_paths = [os.path.join(self.path, patient) for patient in self.patients] self.rs_paths = self.get_rs() def __str__(self): return self.dataset_name def get_rs(self): """ List RTSTRUCT for each patient. :rtype: list[str] """ rs_paths = [] for path in self.patient_paths: files = [filename for filename in os.listdir(path) if filename.startswith("RS")] assert len(files) > 0, 'at least one RS is required' rs = files[0] rs_paths.append(os.path.join(path, rs)) return rs_paths def find_structures(self, index): """ List missing and not missing structures in a RTSTRUCT. :param index: index of the patient. :type index: int :return: List missing and not missing structures. :rtype: (list[str],list[str]) """ structures = list_rt_structs(self.rs_paths[index]) ref_structures = np.array(self.structures) maks = np.in1d(ref_structures, structures) not_missing = ref_structures[maks] missing = ref_structures[~maks] if len(missing): print(f"WARNING ! Some structures are missing: {missing}\n") return missing, not_missing def make(self): """Create structures and convert the CT in nii format for each subject.""" print(f"Structure(s) to export: {self.structures}") print(f"Patient(s) identification : {self.patients}") for index, path_patient in enumerate(self.patient_paths): patient_id = self.patients[index] print(f"Exporting {index + 1} ({patient_id}) on {len(self.patients)}") nii_output = os.path.join(self.export_path, patient_id) missing, not_missing = self.find_structures(index) if len(missing) == 0 or self.force: dcmrtstruct2nii(self.rs_paths[index], path_patient, nii_output, not_missing, False, mask_foreground_value=1) nii_maks = [nii_mask for nii_mask in os.listdir(nii_output) if nii_mask.startswith('mask')] for nii in nii_maks: name = os.path.splitext(nii)[0].split("_")[1].replace("-", " ") os.rename(os.path.join(nii_output, nii), os.path.join(nii_output, name + '.nii')) os.rename(os.path.join(nii_output, "image.nii"), os.path.join(nii_output, "ct.nii")) else: print(f"Skip {patient_id} because of missing structure(s)") print("Export done")
[ "dcmrtstruct2nii.list_rt_structs", "dcmrtstruct2nii.dcmrtstruct2nii", "os.path.basename", "os.path.dirname", "numpy.array", "os.path.splitext", "os.path.join", "os.listdir", "numpy.in1d" ]
[((1215, 1244), 'os.path.basename', 'os.path.basename', (['export_path'], {}), '(export_path)\n', (1231, 1244), False, 'import os\n'), ((1298, 1324), 'os.path.dirname', 'os.path.dirname', (['self.path'], {}), '(self.path)\n', (1313, 1324), False, 'import os\n'), ((2406, 2443), 'dcmrtstruct2nii.list_rt_structs', 'list_rt_structs', (['self.rs_paths[index]'], {}), '(self.rs_paths[index])\n', (2421, 2443), False, 'from dcmrtstruct2nii import dcmrtstruct2nii, list_rt_structs\n'), ((2469, 2494), 'numpy.array', 'np.array', (['self.structures'], {}), '(self.structures)\n', (2477, 2494), True, 'import numpy as np\n'), ((2510, 2545), 'numpy.in1d', 'np.in1d', (['ref_structures', 'structures'], {}), '(ref_structures, structures)\n', (2517, 2545), True, 'import numpy as np\n'), ((1499, 1531), 'os.path.join', 'os.path.join', (['self.path', 'patient'], {}), '(self.path, patient)\n', (1511, 1531), False, 'import os\n'), ((3214, 3256), 'os.path.join', 'os.path.join', (['self.export_path', 'patient_id'], {}), '(self.export_path, patient_id)\n', (3226, 3256), False, 'import os\n'), ((1371, 1392), 'os.listdir', 'os.listdir', (['self.path'], {}), '(self.path)\n', (1381, 1392), False, 'import os\n'), ((2045, 2067), 'os.path.join', 'os.path.join', (['path', 'rs'], {}), '(path, rs)\n', (2057, 2067), False, 'import os\n'), ((3385, 3497), 'dcmrtstruct2nii.dcmrtstruct2nii', 'dcmrtstruct2nii', (['self.rs_paths[index]', 'path_patient', 'nii_output', 'not_missing', '(False)'], {'mask_foreground_value': '(1)'}), '(self.rs_paths[index], path_patient, nii_output, not_missing,\n False, mask_foreground_value=1)\n', (3400, 3497), False, 'from dcmrtstruct2nii import dcmrtstruct2nii, list_rt_structs\n'), ((1435, 1466), 'os.path.join', 'os.path.join', (['self.path', 'folder'], {}), '(self.path, folder)\n', (1447, 1466), False, 'import os\n'), ((1879, 1895), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (1889, 1895), False, 'import os\n'), ((3885, 3922), 'os.path.join', 'os.path.join', (['nii_output', '"""image.nii"""'], {}), "(nii_output, 'image.nii')\n", (3897, 3922), False, 'import os\n'), ((3924, 3958), 'os.path.join', 'os.path.join', (['nii_output', '"""ct.nii"""'], {}), "(nii_output, 'ct.nii')\n", (3936, 3958), False, 'import os\n'), ((3580, 3602), 'os.listdir', 'os.listdir', (['nii_output'], {}), '(nii_output)\n', (3590, 3602), False, 'import os\n'), ((3786, 3815), 'os.path.join', 'os.path.join', (['nii_output', 'nii'], {}), '(nii_output, nii)\n', (3798, 3815), False, 'import os\n'), ((3817, 3856), 'os.path.join', 'os.path.join', (['nii_output', "(name + '.nii')"], {}), "(nii_output, name + '.nii')\n", (3829, 3856), False, 'import os\n'), ((3699, 3720), 'os.path.splitext', 'os.path.splitext', (['nii'], {}), '(nii)\n', (3715, 3720), False, 'import os\n')]
import numpy as numpy a = numpy.array([5,2,6,2,7,5,6,8,2,9]) print ('First array:') print(a) print('\n') print('Unique values of first array:') u = numpy.unique(a) print(u) print('\n') print('Unique array and indices array:') u, indices = numpy.unique(a, return_index = True) print (indices) print('\n') print('We can see each number corresponds to index in original array:') print(a) print('\n') print('Indices of unique array:') u, indices = numpy.unique(a, return_inverse = True) print (u) print ('\n') print('Indices are:') print(indices) print('\n') print('Reconstruct the original array using indices') print (u[indices]) print ('\n') print('Return the count repetitions of unique elements:') u, indices = numpy.unique(a, return_counts = True) print(u) print(indices)
[ "numpy.array", "numpy.unique" ]
[((26, 69), 'numpy.array', 'numpy.array', (['[5, 2, 6, 2, 7, 5, 6, 8, 2, 9]'], {}), '([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])\n', (37, 69), True, 'import numpy as numpy\n'), ((150, 165), 'numpy.unique', 'numpy.unique', (['a'], {}), '(a)\n', (162, 165), True, 'import numpy as numpy\n'), ((242, 276), 'numpy.unique', 'numpy.unique', (['a'], {'return_index': '(True)'}), '(a, return_index=True)\n', (254, 276), True, 'import numpy as numpy\n'), ((449, 485), 'numpy.unique', 'numpy.unique', (['a'], {'return_inverse': '(True)'}), '(a, return_inverse=True)\n', (461, 485), True, 'import numpy as numpy\n'), ((720, 755), 'numpy.unique', 'numpy.unique', (['a'], {'return_counts': '(True)'}), '(a, return_counts=True)\n', (732, 755), True, 'import numpy as numpy\n')]
import os import numpy import pandas from skimage import io def read_ids_from_csv(csv_file): """ Reads a column named 'ID' from csv_file. This function was created to make sure basic I/O works in unit testing. """ csv = pandas.read_csv(csv_file) return csv.ID def read_hpa_image(image_id, root_dir): """ Reads a four channel HPA cell image given by 'image_id' from 'root_dir' and returns it as a (H x W x 4) numpy array. """ root = os.path.join(root_dir, image_id) stems = ("_red.png", "_blue.png", "_yellow.png", "_green.png") paths = [root+stem for stem in stems] image = [io.imread(path) for path in paths] return numpy.dstack(image)
[ "pandas.read_csv", "os.path.join", "skimage.io.imread", "numpy.dstack" ]
[((242, 267), 'pandas.read_csv', 'pandas.read_csv', (['csv_file'], {}), '(csv_file)\n', (257, 267), False, 'import pandas\n'), ((480, 512), 'os.path.join', 'os.path.join', (['root_dir', 'image_id'], {}), '(root_dir, image_id)\n', (492, 512), False, 'import os\n'), ((681, 700), 'numpy.dstack', 'numpy.dstack', (['image'], {}), '(image)\n', (693, 700), False, 'import numpy\n'), ((635, 650), 'skimage.io.imread', 'io.imread', (['path'], {}), '(path)\n', (644, 650), False, 'from skimage import io\n')]
from matplotlib import pyplot as plt import pickle import numpy as np import os,sys ''' results = [] for i in range(10): with open(f'/home/yiran/pc_mapping/arena-v2/examples/bc_saved_models/refactor_success_max_mine/run{i}/test_result.npy', 'rb') as f: result_i = pickle.load(f) result_number = [v for (k,v) in result_i.items()] results.append(result_number) results = np.array(results) result_mean = results.mean(axis=0) result_std = results.std(axis=0) print(result_mean, result_std) exit() ''' x = [1,3,5,7,9,11,13,15,17,19] y_ub = np.arange(1,21,2) y_heuristic = [1.0, 3.0, 4.99, 6.83, 8.53, 9.46, 10.89, 12.3, 13.69, 13.64] y_DDQN = [0.99, 2.88, 4.78, 3.82, 2.37, 2.14, 1.35, 1.01, 0.91,1.09] y_refactor_max = [0.98, 2.86, 4.64, 5.67, 5.81, 5.82, 5.35, 5.07, 3.34, 3.11] y_refactor_success_max = [0.99, 3.0, 4.94, 6.55, 7.74, 8.47, 8.48, 7.72, 7.29, 5.85] y_refactor_purify_10of10_max = [1.0, 2.97, 4.85, 6.76, 8.05, 8.42, 8.66, 8.03, 7.58, 5.65] y_refactor_purify_9of10_max = [1.0, 3.0, 4.94, 6.69, 8.27, 9.27, 9.3, 8.88, 8.87, 7.94] y_refactor_purify_8of10_max = [1.0, 3.0, 4.95, 6.76, 7.68, 8.14, 8.11, 8.18, 6.99, 5.09] y_refactor_purify_7of10_max = [1.0, 3.0, 4.93, 6.91, 8.32, 9.46, 10.64, 11.7, 11.81, 10.86] y_refactor_purify_6of10_max = [1.0, 2.97, 4.93, 6.78, 8.35, 9.87, 10.78, 11.29, 12.0, 11.09] y_refactor_purify_5of10_max = [1.0, 2.94, 5.0, 6.59, 8.28, 8.96, 10.22, 10.34, 10.93, 10.56] y_refactor_purify_4of10_max = [1.0, 2.97, 5.0, 6.79, 8.16, 9.27, 8.16, 7.82, 7.47, 6.02] y_refactor_purify_3of10_max = [1.0, 2.95, 4.96, 6.56, 7.96, 9.14, 8.64, 7.64, 7.36, 4.54] y_refactor_purify_2of10_max = [1.0, 3.0, 4.95, 6.75, 8.32, 9.49, 9.55, 9.73, 9.75, 8.04] y_refactor_purify_1of10_max = [1.0, 2.97, 4.96, 6.75, 7.92, 8.09, 7.92, 6.62, 5.85, 4.7] plt.xlabel('number of coins') plt.ylabel('collected coins (mean of 100 runs)') plt.xlim(0, 19) plt.xticks(np.arange(1,21,2)) plt.ylim(0, 19) plt.yticks(np.arange(1,21,2)) plt.plot(x, y_ub, label='max score') plt.plot(x, y_heuristic, label='IL heuristic') plt.plot(x, y_refactor_purify_6of10_max, label='IL purify') plt.plot(x, y_refactor_success_max, label='IL successful traj') plt.plot(x, y_refactor_max, label='IL all traj') plt.plot(x, y_DDQN, label='DoubleDQN') plt.legend(loc='upper left') plt.show()
[ "matplotlib.pyplot.xlim", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "numpy.arange", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((556, 575), 'numpy.arange', 'np.arange', (['(1)', '(21)', '(2)'], {}), '(1, 21, 2)\n', (565, 575), True, 'import numpy as np\n'), ((1806, 1835), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""number of coins"""'], {}), "('number of coins')\n", (1816, 1835), True, 'from matplotlib import pyplot as plt\n'), ((1836, 1884), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""collected coins (mean of 100 runs)"""'], {}), "('collected coins (mean of 100 runs)')\n", (1846, 1884), True, 'from matplotlib import pyplot as plt\n'), ((1885, 1900), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(19)'], {}), '(0, 19)\n', (1893, 1900), True, 'from matplotlib import pyplot as plt\n'), ((1931, 1946), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(19)'], {}), '(0, 19)\n', (1939, 1946), True, 'from matplotlib import pyplot as plt\n'), ((1977, 2013), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_ub'], {'label': '"""max score"""'}), "(x, y_ub, label='max score')\n", (1985, 2013), True, 'from matplotlib import pyplot as plt\n'), ((2014, 2060), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_heuristic'], {'label': '"""IL heuristic"""'}), "(x, y_heuristic, label='IL heuristic')\n", (2022, 2060), True, 'from matplotlib import pyplot as plt\n'), ((2061, 2120), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_refactor_purify_6of10_max'], {'label': '"""IL purify"""'}), "(x, y_refactor_purify_6of10_max, label='IL purify')\n", (2069, 2120), True, 'from matplotlib import pyplot as plt\n'), ((2121, 2184), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_refactor_success_max'], {'label': '"""IL successful traj"""'}), "(x, y_refactor_success_max, label='IL successful traj')\n", (2129, 2184), True, 'from matplotlib import pyplot as plt\n'), ((2185, 2233), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_refactor_max'], {'label': '"""IL all traj"""'}), "(x, y_refactor_max, label='IL all traj')\n", (2193, 2233), True, 'from matplotlib import pyplot as plt\n'), ((2234, 2272), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_DDQN'], {'label': '"""DoubleDQN"""'}), "(x, y_DDQN, label='DoubleDQN')\n", (2242, 2272), True, 'from matplotlib import pyplot as plt\n'), ((2273, 2301), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""'}), "(loc='upper left')\n", (2283, 2301), True, 'from matplotlib import pyplot as plt\n'), ((2302, 2312), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2310, 2312), True, 'from matplotlib import pyplot as plt\n'), ((1912, 1931), 'numpy.arange', 'np.arange', (['(1)', '(21)', '(2)'], {}), '(1, 21, 2)\n', (1921, 1931), True, 'import numpy as np\n'), ((1958, 1977), 'numpy.arange', 'np.arange', (['(1)', '(21)', '(2)'], {}), '(1, 21, 2)\n', (1967, 1977), True, 'import numpy as np\n')]
import numpy as np import pandas as pd def complexity_hjorth(signal): """Hjorth's Complexity and Parameters Hjorth Parameters are indicators of statistical properties used in signal processing in the time domain introduced by Hjorth (1970). The parameters are activity, mobility, and complexity. NeuroKit returns complexity directly in the output tuple, but the other parameters can be found in the dictionary. - The **complexity** parameter gives an estimate of the bandwidth of the signal, which indicates the similarity of the shape of the signal to a pure sine wave (where the value converges to 1). Complexity is define as the ratio of the mobility of the first derivative of the signal to the mobility of the signal. - The **mobility** parameter represents the mean frequency or the proportion of standard deviation of the power spectrum. This is defined as the square root of variance of the first derivative of the signal divided by the variance of the signal. - The **activity** parameter is simply the variance of the signal. See Also -------- fractal_petrosian Parameters ---------- signal : Union[list, np.array, pd.Series] The signal (i.e., a time series) in the form of a vector of values. Returns ------- hjorth : float Hjorth's Complexity. info : dict A dictionary containing additional information regarding the parameters used to compute Hjorth's Complexity. Examples ---------- >>> import neurokit2 as nk >>> >>> signal = nk.signal_simulate(duration=2, frequency=5) >>> >>> complexity, info = nk.complexity_hjorth(signal) >>> complexity #doctest: +SKIP References ---------- - https://github.com/raphaelvallat/antropy/blob/master/antropy """ # Sanity checks if isinstance(signal, (np.ndarray, pd.DataFrame)) and signal.ndim > 1: raise ValueError( "Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet." ) # Calculate derivatives dx = np.diff(signal) ddx = np.diff(dx) # Calculate variance and its derivatives x_var = np.var(signal) # = activity dx_var = np.var(dx) ddx_var = np.var(ddx) # Mobility and complexity mobility = np.sqrt(dx_var / x_var) complexity = np.sqrt(ddx_var / dx_var) / mobility return complexity, {"Mobility": mobility, "Activity": x_var}
[ "numpy.diff", "numpy.var", "numpy.sqrt" ]
[((2112, 2127), 'numpy.diff', 'np.diff', (['signal'], {}), '(signal)\n', (2119, 2127), True, 'import numpy as np\n'), ((2138, 2149), 'numpy.diff', 'np.diff', (['dx'], {}), '(dx)\n', (2145, 2149), True, 'import numpy as np\n'), ((2208, 2222), 'numpy.var', 'np.var', (['signal'], {}), '(signal)\n', (2214, 2222), True, 'import numpy as np\n'), ((2250, 2260), 'numpy.var', 'np.var', (['dx'], {}), '(dx)\n', (2256, 2260), True, 'import numpy as np\n'), ((2275, 2286), 'numpy.var', 'np.var', (['ddx'], {}), '(ddx)\n', (2281, 2286), True, 'import numpy as np\n'), ((2333, 2356), 'numpy.sqrt', 'np.sqrt', (['(dx_var / x_var)'], {}), '(dx_var / x_var)\n', (2340, 2356), True, 'import numpy as np\n'), ((2374, 2399), 'numpy.sqrt', 'np.sqrt', (['(ddx_var / dx_var)'], {}), '(ddx_var / dx_var)\n', (2381, 2399), True, 'import numpy as np\n')]
import numpy as np import warnings def remove_base(seq, base, tolerance=1e-4): """ Functionality: Remove x from (x \sqcup z) Since there might be some float errors, I allow for a mismatch of the time_stamps between two seqs no larger than a threshold. The threshold value: tolerance * max_time_stamp :param list seq: x \sqcup z :param list base: x :param float tolerance: A rate. :rtype: list :return: z """ if len(seq) == 0: return seq tolerance = tolerance * seq[-1]['time_since_start'] n_seq = len(seq) n_base = len(base) seq_types = np.empty(shape=[n_seq], dtype=np.int64) seq_time_stamps = np.empty(shape=[n_seq], dtype=np.float32) base_types = np.empty(shape=[n_base], dtype=np.int64) base_time_stamps = np.empty(shape=[n_base], dtype=np.float32) for token_idx, token in enumerate(seq): seq_types[token_idx] = token['type_event'] seq_time_stamps[token_idx] = token['time_since_start'] for token_idx, token in enumerate(base): base_types[token_idx] = token['type_event'] base_time_stamps[token_idx] = token['time_since_start'] type_equal = base_types.repeat(n_seq).reshape(n_base, n_seq) type_equal = type_equal == seq_types time_equal = base_time_stamps.repeat(n_seq).reshape(n_base, n_seq) time_equal = np.abs(time_equal - seq_time_stamps) < tolerance to_remove = (type_equal & time_equal).any(axis=0) rst = list() for token_idx in np.where(~to_remove)[0]: rst.append(seq[token_idx]) if len(rst) + len(base) != len(seq): warnings.warn('Some base tokens are missing from the seq!') return rst def remove_bases_for_test(all_particles, golds, bases): """ Helper function for testing. Functionality: Remove observed tokens from proposed particles and gold seqs. :param list all_particles: x \sqcup z_m :param list golds: x \sqcup z :param list bases: x :rtype: list, list :return: particles (only z_m) and gold seqs (only z) """ assert len(all_particles) == len(golds) == len(bases) rst_particles = list() rst_golds = list() for particles, gold, base in zip(all_particles, golds, bases): new_particles = list() for particle in particles: new_particles.append(remove_base(particle, base)) rst_particles.append(new_particles) rst_golds.append(remove_base(gold, base)) return rst_particles, rst_golds # Following codes are just for testing if __name__ == '__main__': import pickle dataset = pickle.load(open('data/pilottaxi/train.pkl', 'rb')) seq = dataset['seqs'][0] # base = dataset['seqs_obs'][0] base = list() from pprint import pprint pprint('seq:') pprint(seq) pprint('base:') pprint(base) pprint('after removal:') pprint(remove_base(seq, base)) assert len(seq) == len(remove_base(seq, base))
[ "numpy.abs", "numpy.empty", "numpy.where", "pprint.pprint", "warnings.warn" ]
[((611, 650), 'numpy.empty', 'np.empty', ([], {'shape': '[n_seq]', 'dtype': 'np.int64'}), '(shape=[n_seq], dtype=np.int64)\n', (619, 650), True, 'import numpy as np\n'), ((673, 714), 'numpy.empty', 'np.empty', ([], {'shape': '[n_seq]', 'dtype': 'np.float32'}), '(shape=[n_seq], dtype=np.float32)\n', (681, 714), True, 'import numpy as np\n'), ((732, 772), 'numpy.empty', 'np.empty', ([], {'shape': '[n_base]', 'dtype': 'np.int64'}), '(shape=[n_base], dtype=np.int64)\n', (740, 772), True, 'import numpy as np\n'), ((796, 838), 'numpy.empty', 'np.empty', ([], {'shape': '[n_base]', 'dtype': 'np.float32'}), '(shape=[n_base], dtype=np.float32)\n', (804, 838), True, 'import numpy as np\n'), ((2761, 2775), 'pprint.pprint', 'pprint', (['"""seq:"""'], {}), "('seq:')\n", (2767, 2775), False, 'from pprint import pprint\n'), ((2780, 2791), 'pprint.pprint', 'pprint', (['seq'], {}), '(seq)\n', (2786, 2791), False, 'from pprint import pprint\n'), ((2796, 2811), 'pprint.pprint', 'pprint', (['"""base:"""'], {}), "('base:')\n", (2802, 2811), False, 'from pprint import pprint\n'), ((2816, 2828), 'pprint.pprint', 'pprint', (['base'], {}), '(base)\n', (2822, 2828), False, 'from pprint import pprint\n'), ((2833, 2857), 'pprint.pprint', 'pprint', (['"""after removal:"""'], {}), "('after removal:')\n", (2839, 2857), False, 'from pprint import pprint\n'), ((1354, 1390), 'numpy.abs', 'np.abs', (['(time_equal - seq_time_stamps)'], {}), '(time_equal - seq_time_stamps)\n', (1360, 1390), True, 'import numpy as np\n'), ((1497, 1517), 'numpy.where', 'np.where', (['(~to_remove)'], {}), '(~to_remove)\n', (1505, 1517), True, 'import numpy as np\n'), ((1607, 1666), 'warnings.warn', 'warnings.warn', (['"""Some base tokens are missing from the seq!"""'], {}), "('Some base tokens are missing from the seq!')\n", (1620, 1666), False, 'import warnings\n')]
import cv2 # cap = cv2.VideoCapture(0) cap = cv2.VideoCapture('../datasets/opencv/fish.mp4') while True: _ret, frame = cap.read() frame = cv2.resize(frame, (500,400)) cv2.imshow('opencv camera', frame) k = cv2.waitKey(1) #1msec 대기 if k==27 or k==13 : break cap.release() cv2.destroyAllWindows() import numpy as np while True: _ret, frame = cap.read() frame = cv2.resize(frame, (500,400)) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) h = hsv[:, :, 0] #hue s = hsv[:, :, 1] #saturation v = hsv[:, :, 2] # value brighthness img = np.zeros(h.shape, dtype=np.uint8) img[((h < 50) | (h > 200)) & (s > 100)] = 255 cv2.imshow('opencv camera', img) k = cv2.waitKey(1) #1msec 대기 if k==27 or k==13 : break cap.release() cv2.destroyAllWindows()
[ "cv2.waitKey", "cv2.cvtColor", "cv2.imshow", "numpy.zeros", "cv2.VideoCapture", "cv2.destroyAllWindows", "cv2.resize" ]
[((45, 92), 'cv2.VideoCapture', 'cv2.VideoCapture', (['"""../datasets/opencv/fish.mp4"""'], {}), "('../datasets/opencv/fish.mp4')\n", (61, 92), False, 'import cv2\n'), ((292, 315), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (313, 315), False, 'import cv2\n'), ((775, 798), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (796, 798), False, 'import cv2\n'), ((147, 176), 'cv2.resize', 'cv2.resize', (['frame', '(500, 400)'], {}), '(frame, (500, 400))\n', (157, 176), False, 'import cv2\n'), ((180, 214), 'cv2.imshow', 'cv2.imshow', (['"""opencv camera"""', 'frame'], {}), "('opencv camera', frame)\n", (190, 214), False, 'import cv2\n'), ((223, 237), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (234, 237), False, 'import cv2\n'), ((389, 418), 'cv2.resize', 'cv2.resize', (['frame', '(500, 400)'], {}), '(frame, (500, 400))\n', (399, 418), False, 'import cv2\n'), ((428, 466), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (440, 466), False, 'import cv2\n'), ((577, 610), 'numpy.zeros', 'np.zeros', (['h.shape'], {'dtype': 'np.uint8'}), '(h.shape, dtype=np.uint8)\n', (585, 610), True, 'import numpy as np\n'), ((665, 697), 'cv2.imshow', 'cv2.imshow', (['"""opencv camera"""', 'img'], {}), "('opencv camera', img)\n", (675, 697), False, 'import cv2\n'), ((706, 720), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (717, 720), False, 'import cv2\n')]
# -*- coding: utf-8 -*- """ Created on Tue Sep 13 19:00:40 2016 @author: sebalander """ from numpy import zeros, sqrt, array, tan, arctan, prod, cos from cv2 import Rodrigues from lmfit import minimize, Parameters #from calibration import calibrator #xypToZplane = calibrator.xypToZplane # ## %% ========== ========== PARAMETER HANDLING ========== ========== #def formatParameters(rVec, tVec, linearCoeffs, distCoeffs): # params = Parameters() # # if prod(rVec.shape) == 9: # rVec = Rodrigues(rVec)[0] # # rVec = rVec.reshape(3) # # for i in range(3): # params.add('rvec%d'%i, # value=rVec[i], vary=True) # params.add('tvec%d'%i, # value=tVec[i], vary=True) # # # image center # params.add('cameraMatrix0', # value=linearCoeffs[0], vary=False) # params.add('cameraMatrix1', # value=linearCoeffs[1], vary=False) # # # k # params.add('distCoeffs', # value=distCoeffs, vary=False) # # return params # #def retrieveParameters(params): # ''' # # ''' # rvec = zeros((3,1)) # tvec = zeros((3,1)) # for i in range(3): # rvec[i,0] = params['rvec%d'%i].value # tvec[i,0] = params['tvec%d'%i].value # # cameraMatrix = zeros(2) # cameraMatrix[0] = params['cameraMatrix0'].value # cameraMatrix[1] = params['cameraMatrix1'].value # # distCoeffs = params['distCoeffs'].value # # return rvec, tvec, cameraMatrix, distCoeffs # %% ========== ========== DIRECT ========== ========== def radialDistort(rh, k, quot=False, der=False): ''' returns distorted radius using distortion coefficient k optionally it returns the distortion quotioent rpp = rp * q ''' k.shape = 1 th = arctan(rh) tanth = tan(th / 2) rd = k * tanth if der: # rpp wrt rp dDdH = k / cos(th / 2)**2 / 2 / (1 + rh**2) # calculate quotient q = rd / rh # q wrt rpp dQdH = ((dDdH - q) / rh).reshape((1, -1)) # deriv wrt undistorted coords dQdK = (tanth / rh).reshape((1, -1)) if quot: return q, dQdH, dQdK else: return rd, dQdH, dQdK else: if quot: return rd / rh else: return rd ## we asume that intrinsic distortion paramters is just a scalar: distCoeffs=k #def direct(fiducialPoints, rVec, tVec, linearCoeffs, distCoeffs): # # format as matrix # try: # rVec.reshape(3) # rVec = Rodrigues(rVec)[0] # except: # pass # # xyz = rVec.dot(fiducialPoints[0].T)+tVec # # xp = xyz[0]/xyz[2] # yp = xyz[1]/xyz[2] # # rp = sqrt(xp**2 + yp**2) # thetap = arctan(rp) # # rpp = distCoeffs*tan(thetap/2) # # rpp_rp = rpp/rp # # xpp = xp*rpp_rp # ypp = yp*rpp_rp # # u = xpp + linearCoeffs[0] # v = ypp + linearCoeffs[1] # # return array([u,v]).reshape((fiducialPoints.shape[1],1,2)) # #def residualDirect(params, fiducialPoints, imageCorners): # rVec, tVec, linearCoeffs, distCoeffs = retrieveParameters(params) # # projectedCorners = direct(fiducialPoints, # rVec, # tVec, # linearCoeffs, # distCoeffs) # # return imageCorners[:,0,:] - projectedCorners[:,0,:] # #def calibrateDirect(fiducialPoints, imageCorners, rVec, tVec, linearCoeffs, distCoeffs): # initialParams = formatParameters(rVec, tVec, linearCoeffs, distCoeffs) # generate Parameters obj # # out = minimize(residualDirect, # initialParams, # args=(fiducialPoints, # imageCorners)) # # rvecOpt, tvecOpt, _, _ = retrieveParameters(out.params) # # return rvecOpt, tvecOpt, out.params # %% ========== ========== INVERSE ========== ========== def radialUndistort(rd, k, quot=False, der=False): ''' takes distorted radius and returns the radius undistorted optionally it returns the undistortion quotient rd = rh * q ''' # polynomial coeffs, grade 7 # # (k1,k2,p1,p2[,k3[,k4,k5,k6[,s1,s2,s3,s4[,τx,τy]]]]) k.shape = -1 thetap = 2 * arctan(rd / k) rh = tan(thetap) retVal = True if der: # derivada de la directa q, dQdH, dQdK = radialDistort(rh, k, quot, der) if quot: return q, retVal, dQdH, dQdK else: return rh, retVal, dQdH, dQdK else: if quot: # returns q return rd / rh, retVal else: return rh, retVal #def inverse(imageCorners, rVec, tVec, linearCoeffs, distCoeffs): # # xpp = imageCorners[:,0,0]-linearCoeffs[0] # ypp = imageCorners[:,0,1]-linearCoeffs[1] # rpp = sqrt(xpp**2 + ypp**2) # # thetap = 2*arctan(rpp/distCoeffs) # # rp = tan(thetap) # # rp_rpp = rp/rpp # # xp = xpp * rp_rpp # yp = ypp * rp_rpp # # # project to z=0 plane. perhaps calculate faster with homography function? # XYZ = xypToZplane(xp, yp, rVec, tVec) # # return XYZ # # #def residualInverse(params, fiducialPoints, imageCorners): # rVec, tVec, linearCoeffs, distCoeffs = retrieveParameters(params) # # projectedFiducialPoints = inverse(imageCorners, # rVec, # tVec, # linearCoeffs, # distCoeffs) # # return fiducialPoints[0,:,:2] - projectedFiducialPoints[0,:,:2] # #def calibrateInverse(fiducialPoints, imageCorners, rVec, tVec, linearCoeffs, distCoeffs): # initialParams = formatParameters(rVec, tVec, linearCoeffs, distCoeffs) # generate Parameters obj # # out = minimize(residualInverse, # initialParams, # args=(fiducialPoints, # imageCorners)) # # rvecOpt, tvecOpt, _, _ = retrieveParameters(out.params) # # return rvecOpt, tvecOpt, out.params
[ "numpy.arctan", "numpy.tan", "numpy.cos" ]
[((1758, 1768), 'numpy.arctan', 'arctan', (['rh'], {}), '(rh)\n', (1764, 1768), False, 'from numpy import zeros, sqrt, array, tan, arctan, prod, cos\n'), ((1781, 1792), 'numpy.tan', 'tan', (['(th / 2)'], {}), '(th / 2)\n', (1784, 1792), False, 'from numpy import zeros, sqrt, array, tan, arctan, prod, cos\n'), ((4240, 4251), 'numpy.tan', 'tan', (['thetap'], {}), '(thetap)\n', (4243, 4251), False, 'from numpy import zeros, sqrt, array, tan, arctan, prod, cos\n'), ((4215, 4229), 'numpy.arctan', 'arctan', (['(rd / k)'], {}), '(rd / k)\n', (4221, 4229), False, 'from numpy import zeros, sqrt, array, tan, arctan, prod, cos\n'), ((1865, 1876), 'numpy.cos', 'cos', (['(th / 2)'], {}), '(th / 2)\n', (1868, 1876), False, 'from numpy import zeros, sqrt, array, tan, arctan, prod, cos\n')]
""" plot.py defines functions for plotting phase diagrams of complex coacervate liquid separation. """ # standard libraries import matplotlib.pyplot as plt from matplotlib import cm # colormap import numpy as np import pandas as pd # custom libraries import pe import salt as nacl # plotting libraries import plotly.graph_objects as go from bokeh.plotting import figure, output_file, show from bokeh.models import ColumnDataSource, Title, Range1d from bokeh.models.tools import HoverTool # CONSTANTS NA = 6.022E23 # Avogadro's number, molecules / mol m3_2_L = 1E3 K_2_C = 273.15 # conversion from Kelvin to Celsius (subtract this) m_2_A = 1E10 def alpha_custom_rho(data, rho_p_list, rho_s_list, beads_2_M, T_range=[273.15,373.35], cmap_name='plasma', sigma=None, colors=None, marker='o', lw=1, T_cels=False, y_lim=[0.5, 1], square_box=False, tol=0.05, ax=None, show_lgnd=True): """ Plots the volume fraction of supernatant phase I (alpha) vs. the overall density of the varied component. Note: currently eliminates data points with alpha = 1 because they tend to be the result of numerical imprecision T_range : 2-tuple Lower and upper bounds on temperature to consider in degrees Kelvin (even if T_cels is True) tol : float, opt Tolerance of how close volume fraction nearest single-phase region needs to be to 1 to round up to 1 (for plotting dashed line) """ # creates list of colors for each value of the varied density if colors is None: colors = get_colors(cmap_name, len(rho_var_list)) # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) # plots volume fraction of supernatant for each composition for i, rho_pair in enumerate(zip(rho_p_list, rho_s_list)): # plots binodal for low polymer concentration [M] rho_p, rho_s = rho_pair results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] rho_CI_list = results['rho_CI'] rho_CII_list = results['rho_CII'] lB_arr = results['lB'] alpha = results['alpha'] T_arr = pe.lB_2_T_arr(lB_arr, T_range, sigma=sigma) liq_h2o = (T_arr >= T_range[0]) * (T_arr <= T_range[1]) * \ (np.asarray(alpha) != 1) if T_cels: T_arr -= K_2_C # plots alpha vs. T for given rho_p alpha_arr = np.array(alpha)[liq_h2o] T_arr = T_arr[liq_h2o] ax.plot(T_arr, alpha_arr, color=colors[i], marker=marker, lw=lw, label=r'$\rho_p = $' + \ '{0:.2f} M, '.format(rho_p) + r'$\rho_s = $' + \ '{0:.2f} M'.format(rho_s)) ### Single Phase # plots dashed line to lowest temperature if single phase # *checks if lowest plotted temperature reaches y axis T_min = np.min(T_arr) if T_min > np.min(ax.get_xlim()): alpha_single_phase = alpha_arr[np.argmin(T_arr)] # rounds up to 1 if volume fraction is close (discontinuous phase sep) if np.abs(alpha_single_phase - 1) < tol: ax.plot([T_min, T_min], [alpha_single_phase, 1], '-', lw=lw, color=colors[i]) alpha_single_phase = 1 # rounds to 0.5 if volume fraction is close (passes through LCST) if np.abs(alpha_single_phase - 0.5) < tol: alpha_single_phase = 0.5 # plots horizontal dashed line to indicate single phase at low T ax.plot([ax.get_xlim()[0], T_min], [alpha_single_phase, alpha_single_phase], '--', lw=lw, color=colors[i]) # determines labels and limits of axes if T_cels: x_lim = [T_range[0] - K_2_C, T_range[1] - K_2_C] x_label = r'$T$' x_unit = r'$^{\circ}$C' else: x_lim = T_range x_lim = r'$T$ [K]' y_label = r'$V_{sup}/V_{tot}$' # formats plot format_binodal(ax, x_label, x_unit, T_range, x_lim=x_lim, y_lim=y_lim, y_label=y_label, square_box=square_box, show_lgnd=show_lgnd) return ax def alpha_vary_rho(data, rho_var_list, rho_fix, ch_var, beads_2_M, T_range=[273.15,373.35], cmap_name='plasma', sigma=None, colors=None, marker='o', lw=1, T_cels=False, y_lim=[0.5, 1], title=None, square_box=False): """ Plots the volume fraction of supernatant phase I (alpha) vs. the overall density of the varied component. Note: currently eliminates data points with alpha = 1 because they tend to be the result of numerical imprecision T_range : 2-tuple Lower and upper bounds on temperature to consider in degrees Kelvin (even if T_cels==True) """ # creates dictionary of values based on which component's density is varied d = get_plot_dict_p_s(ch_var) # creates list of colors for each value of the varied density if colors is None: colors = get_colors(cmap_name, len(rho_var_list)) # creates figure fig = plt.figure() ax = fig.add_subplot(111) for i, rho_var in enumerate(rho_var_list): # plots binodal for low polymer concentration [M] rho_pair = np.array([rho_var, rho_fix]) rho_p, rho_s = rho_pair[d['order']] results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] rho_CI_list = results['rho_CI'] rho_CII_list = results['rho_CII'] lB_arr = results['lB'] alpha = results['alpha'] T_arr = pe.lB_2_T_arr(lB_arr, T_range, sigma=sigma) liq_h2o = (T_arr >= T_range[0]) * (T_arr <= T_range[1]) * \ (np.asarray(alpha) != 1) if T_cels: T_arr -= K_2_C # plots alpha vs. T for given rho_p ax.plot(T_arr[liq_h2o], np.array(alpha)[liq_h2o], color=colors[i], marker=marker, lw=lw, label=r'$\rho_' + d['ch_var'] + ' = $' + \ '{0:.2f} M'.format(rho_var)) # determines labels and limits of axes if T_cels: x_lim = [T_range[0] - K_2_C, T_range[1] - K_2_C] x_label = r'$T$' x_unit = r'$^{\circ}$C' else: x_lim = T_range x_lim = r'$T$ [K]' y_label = r'$V^{sup}/V^{tot}$' if title is None: title = 'Effect of Total {0:s} on Supernatant Volume, {1:s} = {2:.2f} M' \ .format(d['name_var'], r'$\rho_' + d['ch_fix'] + '$', rho_fix) # formats plot format_binodal(ax, x_label, x_unit, T_range, title=title, x_lim=x_lim, y_lim=y_lim, y_label=y_label, square_box=square_box) return ax def binodal(lB_arr, left_list, right_list, left='rhoPCI', right='rhoPCII', x_label='polyanion density', n_tie_lines=3, plot_T=True, sigma=None, T_range=[273, 373], beads_2_M=None, title='', fix_eps=False, deg_C=False, x_lim=None, y_lim=None, marker=True, line=False, c1='blue', c2='red'): """ Plots binodal with polyanion density as x axis and temperature or Bjerrum length as y axis using Bokeh interactive plotting methods. Parameters ---------- lB_arr : (Nx1) numpy array Array of Bjerrum lengths non-dimensionalized by sigma defined in definition of "data" dictionary. left_list : N-element list List of x-axis variable in phase I (supernatant) [beads/sigma^3] right_list : N-element list List of x-axis variable in phase II (coacervate) [beads/sigma^3] left : string Name of heading in df of the variable given in left_list right : string Name of heading in df of the variable given in right_list x_label : string Variable to be plotted along the x-axis (without units) n_tie_lines : int Number of tie lines to plot plot_T : bool y axis is temperature [K] if True, Bjerrum [sigma] if False T_range : 2-element list Lower and upper bound for temperatures to plot (to limit temperatures to those for which water is liquid) beads_2_M : float Conversion from beads/sigma^3 to moles of monomers / L. If None, no conversion is made and the units on the x axis are beads/sigma^3. title : string Title of plot fix_eps : bool Fixed epsilon to constant value if True, or allows it to vary with temperature if False. deg_C : bool, opt If True, temperature is shown in degrees Celsius (assuming it is provided in Kelvin), default = False. x_lim : 2-element tuple of floats, optional Lower and upper bounds of x axis. If None provided, automatically set. y_lim : 2-element tuple of floats, optional Lower and upper bounds of y axis. If None provided, automatically set. Returns ------- p : bokeh plot Plot of binodal. Use bokeh's "show(p)" to display. Use "output_notebook()" beforehand to show the plot in the same cell (instead of a separate browser tab). """ left_arr = np.copy(left_list) right_arr = np.copy(right_list) # calculates conversion from beads / sigma^3 to mol/L if beads_2_M is not None: left_arr *= beads_2_M right_arr *= beads_2_M units_rho = '[mol/L]' else: units_rho = '[beads/sigma^3]' # computes temperature corresponding to Bjerrum lengths T_arr = pe.lB_2_T_arr(lB_arr, T_range, fix_eps=fix_eps, sigma=sigma) # stores results in dataframe for plotting df_mu = pd.DataFrame(columns=['BJ', 'T', left, right]) liq_h2o = np.logical_and(T_arr >= T_range[0], T_arr <= T_range[1]) df_mu['BJ'] = lB_arr[liq_h2o] df_mu['T'] = T_arr[liq_h2o] - deg_C*273 # converts to degrees Celsius if requested df_mu[left] = left_arr[liq_h2o] # monomer density df_mu[right] = right_arr[liq_h2o] # monomer density # plots binodal at fixed chemical potential n_plot = len(df_mu) if n_plot == 0: print('No data to plot in plot.binodal()--error likely.') p = no_salt(df_mu, n_plot, left=left, right=right, x_label=x_label, n_tie_lines=n_tie_lines, plot_T=plot_T, marker=marker, line=line, title=title, units_rho=units_rho, deg_C=deg_C, c1=c1, c2=c2) # sets axis limits if requested if x_lim is not None: p.x_range = Range1d(*x_lim) if y_lim is not None: p.y_range = Range1d(*y_lim) return p def binodal_custom_rho(data, rho_p_list, rho_s_list, beads_2_M, x_var='polycation', x_label=r'$\rho_{PSS}$', sigma=None, T_range=[273.15,373.15], cmap_name='plasma', colors=None, marker='o', fill_left='none', fill_right='full', lw_sup=1, lw_co=3, lgnd_out=True, lw=1, x_lim=None, T_cels=False, c_sup='#1414FF', c_co='#FF0000', ls_sup='-', square_box=False, plot_fixed_rho=False, ax=None, show_lgnd=True): """ Like `binodal_vary_rho()` but allows user to customize both rho_p and rho_s (overall) of each condition, rather than fixing one for all conditions. """ # creates list of colors for each value of rho_p if colors is None: if cmap_name is not None: colors = get_colors(cmap_name, len(rho_var_list)) # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) for i, rho_pair in enumerate(zip(rho_p_list, rho_s_list)): rho_p, rho_s = rho_pair # plots binodal for low polymer concentration [M] results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] rho_CI_list = results['rho_CI'] rho_CII_list = results['rho_CII'] rho_PAI_list = results['rho_PAI'] rho_PAII_list = results['rho_PAII'] rho_AI_list = results['rho_AI'] rho_AII_list = results['rho_AII'] lB_arr = results['lB'] alpha = results['alpha'] # selects the x-axis data if x_var == 'polycation': left_arr = np.array(rho_PCI_list) right_arr = np.array(rho_PCII_list) elif x_var == 'polyanion': left_arr = np.array(rho_PAI_list) right_arr = np.array(rho_PAII_list) elif x_var == 'cation': left_arr = np.array(rho_CI_list) right_arr = np.array(rho_CII_list) elif x_var == 'anion': left_arr = np.array(rho_AI_list) right_arr = np.array(rho_AII_list) elif x_var == 'solvent': left_arr = pe.calc_rho_solv(rho_PCI_list, rho_CI_list, beads_2_M) right_arr = pe.calc_rho_solv(rho_PCII_list, rho_CII_list, beads_2_M) elif x_var == 'polyelectrolyte': left_arr = np.array(rho_PCI_list) + np.array(rho_PAI_list) right_arr = np.array(rho_PCII_list) + np.array(rho_PAII_list) elif x_var == 'salt': left_arr = np.array(rho_CI_list) right_arr = np.array(rho_CII_list) else: print('Error. Invalid x variable in plot.binodal_vary_rho().') # computes temperature and identifies data within range T_arr = pe.lB_2_T_arr(lB_arr, T_range, sigma=sigma) liq_h2o = np.logical_and(T_arr >= T_range[0], T_arr <= T_range[1]) # converts temperature from Kelvin to Celsius if T_cels: T_arr -= K_2_C # assigns separate colors to coacervate and supernatant if not specified if colors is not None: c_sup = colors[i] c_co = colors[i] # supernatant ax.plot(left_arr[liq_h2o], T_arr[liq_h2o], color=c_sup, marker=marker, fillstyle=fill_left, ls=ls_sup, label=r'$\rho_p = $' + '{0:.2f} M, '.format(rho_p) + \ r'$\rho_s = $' + '{0:.2f} M, supernatant'.format(rho_s), lw=lw_sup) # coacervate ax.plot(right_arr[liq_h2o], T_arr[liq_h2o], color=c_co, marker=marker, fillstyle=fill_right, label=r'$\rho_p = $' + '{0:.2f} M, '.format(rho_p) + \ r'$\rho_s = $' + '{0:.2f} M, coacervate'.format(rho_s), lw=lw_co) # plots dashed line indicating fixed density if requested if plot_fixed_rho: # defines dictionary mapping x variable to corresponding fixed # density x_var_2_rho_fixed = {'polycation' : rho_p/2, 'cation' : rho_s, 'solvent' : 1 - rho_p - rho_s, 'polyelectrolyte' : rho_p, 'salt' : rho_s} # selects appropriate fixed density based on x variable rho_fixed = x_var_2_rho_fixed[x_var] # determines color based on which branch is closest if (rho_fixed - np.max(left_arr[liq_h2o])) > \ (np.min(right_arr[liq_h2o]) - rho_fixed): # coacervate branch is closest to fixed density color = c_co else: # supernatant branch is closest to fixed density color = c_sup # plots fixed density as vertical dashed line ax.plot([rho_fixed, rho_fixed], ax.get_ylim(), '--', color=color, lw=lw_sup) # determines units of density to display on plot if beads_2_M is not None: units_rho = 'mol/L' else: units_rho = 'beads/sigma^3' # formats plot format_binodal(ax, x_label, units_rho, T_range, x_lim=x_lim, T_cels=T_cels, square_box=square_box, show_lgnd=show_lgnd) return ax def binodal_custom_rho_rho(data, lB_list, rho_p_list, rho_s_list, beads_2_M, show_tie_line=True, cmap_name='plasma', colors=None, sigma=None, marker='o', fill_left='none', fill_right='full', lgnd_out=True, tol=1E-4, ms=10, T_cels=False, show_lB=False, T_range=[273.15, 373.15], lw=2, square_box=False, ax=None, colors_symbols=None, mew=1.5, x_lim=None, y_lim=None, show_lgnd=True): """ Plots the binodal as a function of salt density and polyelectrolyte density. Different Bjerrum lengths/temperatures are represented by different trend lines. Returns ------- None. """ # variables defining order of plotted objects back = 0 front = 10 # lists symbols for plotting overall composition sym_list = ['*', '^', 's', '<', '>', 'v', '+', 'x'] # creates list of colors for each value of rho_p if colors is None: colors = get_colors(cmap_name, len(lB_list)) # determines units if beads_2_M != 1: units_rho = 'mol/L' else: units_rho = r'beads/$\sigma^3$' # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) # loops through each temperature / Bjerrum length in data for i, lB in enumerate(lB_list): df = data[lB] # loads binodal data for supernatant (I) and coacervate (II) # doubles polycation concentration to include polyanion in polymer # concentration ion_I_list = list(beads_2_M*df['rhoCI']) ion_II_list = list(beads_2_M*df['rhoCII']) polymer_I_list = list(2*beads_2_M*df['rhoPCI']) polymer_II_list = list(2*beads_2_M*df['rhoPCII']) # critical points polymer_c = polymer_I_list[-1] ion_c = ion_I_list[-1] # computes temperature T = pe.lB_2_T(lB, sigma=sigma) if T_cels: T_unit = r'$^{\circ}$C' T -= K_2_C else: T_unit = ' K' # plots tie lines and overall composition for j, rho_pair in enumerate(zip(rho_p_list, rho_s_list)): rho_p, rho_s = rho_pair results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] rho_CI_list = results['rho_CI'] rho_CII_list = results['rho_CII'] lB_arr = np.asarray(results['lB']) alpha = results['alpha'] # converts to arrays of polymer and salt concentrations rho_p_I = 2*np.asarray(rho_PCI_list) rho_s_I = np.asarray(rho_CI_list) rho_p_II = 2*np.asarray(rho_PCII_list) rho_s_II = np.asarray(rho_CII_list) # continues if no T in range has 2 phases for concentration # finds closest match given Bjerrum length try: i_tie = np.where(np.abs(lB_arr - lB) < tol)[0][0] except: print('lB = {0:.3f} gives 1 phase for'.format(lB) + \ ' rho_p = {0:.3f} [{1:s}],'.format(rho_p, units_rho) + \ 'rho_s = {0:.3f} [{1:s}].'.format(rho_s, units_rho)) continue # tie line if show_tie_line: ax.plot([rho_p_I[i_tie], rho_p_II[i_tie]], [rho_s_I[i_tie], rho_s_II[i_tie]], '--', color='k', lw=lw, zorder=back) # supernatant ax.plot(rho_p_I[i_tie], rho_s_I[i_tie], color=colors[i], marker='o', fillstyle='none', zorder=front) # coacervate ax.plot(rho_p_II[i_tie], rho_s_II[i_tie], color=colors[i], marker='o', fillstyle='none', zorder=front) # plots overall composition last time through if i == len(lB_list)-1: short = {'mol/L' : 'M', 'beads/sigma^3' : r'$\sigma^{-3}$'} if sym_list[j] == '*': ms_boost = 4 else: ms_boost = 0 # if provided, can specify marker face color if colors_symbols is not None: mfc = colors_symbols[j] else: mfc = 'w' # plots symbol representing composition ax.plot(rho_p, rho_s, marker=sym_list[j], markerfacecolor=mfc, ms=ms+ms_boost, markeredgecolor='k', markeredgewidth=mew, lw=0, label=r'$\rho_p = $ ' + '{0:.2f} {1:s}'.format(rho_p, short[units_rho]) + r', $\rho_s = $ ' + \ '{0:.2f} {1:s}'.format(rho_s, short[units_rho]), zorder=front) # plots binodal, flipping coacervate order to be in order label = r'$T = $' + '{0:d}{1:s}'.format(int(T), T_unit) if show_lB: label += r', $l_B = $ ' + '{0:.3f}'.format(lB) ax.plot(polymer_I_list + polymer_II_list[::-1], ion_I_list + ion_II_list[::-1], color=colors[i], lw=lw, label=label, zorder=back) # plots critical point ax.plot(polymer_c, ion_c, marker='o', fillstyle='full', color=colors[i], zorder=front) # formats plot x_label = r'$\rho_p$' y_label = r'$\rho_s$ [' + units_rho + ']' # determines component with varied concentration name_pair = ['Polymer', 'Salt'] format_binodal(ax, x_label, units_rho, T_range, y_label=y_label, x_lim=x_lim, y_lim=y_lim, lgnd_out=lgnd_out, square_box=square_box, show_lgnd=show_lgnd) return ax def binodal_line_3d(data, mode='lines', ms=8, op=0.1, c1='black', c2='black', lw=8, fig=None): """Plots line binodal in 3d plot.""" x1, y1, z1, x2, y2, z2 = data fig = line_3d(x1, y1, z1, mode=mode, ms=ms, op=op, c=c1, lw=lw, fig=fig) fig = line_3d(x2, y2, z2, mode=mode, ms=ms, op=op, c=c2, lw=lw, fig=fig) return fig def binodal_proj_fixed_conc(data, mu_salt_folder, rho_salt_M_list, color_list, T_range, sigma, z_name, beads_2_M, lB_list, lB_color_list, T_cels=False, marker='o', show_lB=False, fill_left='none', fill_right='full', lw_sup=1, lw_co=3, lw_lB=2, naming_structure='NA(100)NB(100)*', ext='PD', figsize=None, vertical=True): """ Computes binodal projected onto three different planes (polymer-temperature, salt-temperature, and polymer-salt) at fixed concentration of salt in a saltwater reservoir. show_lB : bool, optional If True, will show Bjerrum length in legend """ ### Formats Figure # creates figure to plot the three 2D projections in a single row if figsize is None: fig = plt.figure() else: fig = plt.figure(figsize=figsize) ### Creates Axes if vertical: h = 3 # 3 plots high w = 1 # 1 plot wide else: h = 1 # 1 plot high w = 3 # 3 plots wide # polymer-T projection ax_pT = fig.add_subplot(h, w, 1) # salt-T projection ax_sT = fig.add_subplot(h, w, 2) # polymer-salt projection ax_ps = fig.add_subplot(h, w, 3) # computes binodal at different saltwater reservoir concentrations # and plots on each of the three projections for rho_salt_M, color in zip(rho_salt_M_list, color_list): # converts mol/L to beads/sigma^3 rho_salt = rho_salt_M / beads_2_M # makes dataframe of binodal for fixed salt reservoir concentration df_mu = nacl.make_df_mu(data, mu_salt_folder, rho_salt, T_range, sigma, naming_structure=naming_structure, ext=ext) rho_p_I, rho_s_I, T_arr, rho_p_II, rho_s_II, _ = nacl.extract_df_mu_data(df_mu, z_name) # computes temperature and identifies data within range liq_h2o = np.logical_and(T_arr >= T_range[0], T_arr <= T_range[1]) # converts temperature from Kelvin to Celsius if T_cels: T_arr -= K_2_C # creates labels label_sup = r'$\rho_s^{res} = $' + '{0:.2f} M, supernatant'.format(rho_salt_M) label_co = r'$\rho_s^{res} = $' + '{0:.2f} M, coacervate'.format(rho_salt_M) # polymer-T projection ax_pT.plot(rho_p_I[liq_h2o], T_arr[liq_h2o], color=color, marker=marker, fillstyle=fill_left, label=label_sup, lw=lw_sup) ax_pT.plot(rho_p_II[liq_h2o], T_arr[liq_h2o], color=color, marker=marker, fillstyle=fill_right, label=label_co, lw=lw_co) # salt-T projection ax_sT.plot(rho_s_I[liq_h2o], T_arr[liq_h2o], color=color, marker=marker, fillstyle=fill_left, label=label_sup, lw=lw_sup) ax_sT.plot(rho_s_II[liq_h2o], T_arr[liq_h2o], color=color, marker=marker, fillstyle=fill_right, label=label_co, lw=lw_co) # polymer-salt projection ax_ps.plot(rho_p_I[liq_h2o], rho_s_I[liq_h2o], color=color, label=label_sup, lw=lw_sup, zorder=10) ax_ps.plot(rho_p_II[liq_h2o], rho_s_II[liq_h2o], color=color, label=label_co, lw=lw_co, zorder=10) # plots isothermal binodal slices in polymer-salt plane for lB, lB_color in zip(lB_list, lB_color_list): df = data[lB] T = pe.lB_2_T(lB, sigma=sigma) # loads binodal data for supernatant (I) and coacervate (II) # doubles polycation concentration to include polyanion in polymer # concentration ion_I_list = list(beads_2_M*df['rhoCI']) ion_II_list = list(beads_2_M*df['rhoCII']) polymer_I_list = list(2*beads_2_M*df['rhoPCI']) polymer_II_list = list(2*beads_2_M*df['rhoPCII']) # critical points polymer_c = polymer_I_list[-1] ion_c = ion_I_list[-1] # units for temperature if T_cels: T_unit = r'$^{\circ}$C' T -= K_2_C else: T_unit = ' K' # plots binodal, flipping coacervate order to be in order label = r'$T = $' + '{0:d}{1:s} '.format(int(T), T_unit) if show_lB: label += r'$l_B = $ ' + '{0:.3f}'.format(lB) ax_ps.plot(polymer_I_list + polymer_II_list[::-1], ion_I_list + ion_II_list[::-1], color=lB_color, lw=lw_lB, label=label, zorder=0) # plots critical point ax_ps.plot(polymer_c, ion_c, marker='o', fillstyle='full', color=lB_color) return fig, ax_pT, ax_sT, ax_ps def binodal_rho_rho(data, lB_list, rho_var_list, rho_fix, ch_var, beads_2_M, show_tie_line=True, cmap_name='plasma', colors=None, sigma=None, title=None, marker='o', fill_left='none', fill_right='full', lgnd_out=True, tol=1E-4, ms=10, T_cels=False, show_lB=False, T_range=[273.15, 373.15], lw=2, square_box=False, ax=None): """ Plots the binodal as a function of salt density and polyelectrolyte density. Different Bjerrum lengths/temperatures are represented by different trend lines. Returns ------- None. """ # variables defining order of plotted objects back = 0 front = 10 # lists symbols for plotting overall composition sym_list = ['*', '^', 's', '<', '>', 'v', '+', 'x'] # creates dictionary to order fixed and varied densities properly d = get_plot_dict_p_s(ch_var) # creates list of colors for each value of rho_p if colors is None: colors = get_colors(cmap_name, len(lB_list)) # determines units if beads_2_M != 1: units_rho = 'mol/L' else: units_rho = r'beads/$\sigma^3$' # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) # loops through each temperature / Bjerrum length in data for i, lB in enumerate(lB_list): df = data[lB] # loads binodal data for supernatant (I) and coacervate (II) # doubles polycation concentration to include polyanion in polymer # concentration ion_I_list = list(beads_2_M*df['rhoCI']) ion_II_list = list(beads_2_M*df['rhoCII']) polymer_I_list = list(2*beads_2_M*df['rhoPCI']) polymer_II_list = list(2*beads_2_M*df['rhoPCII']) # critical points polymer_c = polymer_I_list[-1] ion_c = ion_I_list[-1] # computes temperature T = pe.lB_2_T(lB, sigma=sigma) if T_cels: T_unit = r'$^{\circ}$C' T -= K_2_C else: T_unit = ' K' # plots tie lines and overall composition for j, rho_var in enumerate(rho_var_list): rho_pair = np.array([rho_var, rho_fix]) rho_p, rho_s = rho_pair[d['order']] results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] rho_CI_list = results['rho_CI'] rho_CII_list = results['rho_CII'] lB_arr = np.asarray(results['lB']) alpha = results['alpha'] # converts to arrays of polymer and salt concentrations rho_p_I = 2*np.asarray(rho_PCI_list) rho_s_I = np.asarray(rho_CI_list) rho_p_II = 2*np.asarray(rho_PCII_list) rho_s_II = np.asarray(rho_CII_list) # continues if no T in range has 2 phases for concentration # finds closest match given Bjerrum length try: i_tie = np.where(np.abs(lB_arr - lB) < tol)[0][0] except: print('lB = {0:.3f} gives 1 phase for'.format(lB) + \ ' rho_p = {0:.3f} [{1:s}],'.format(rho_p, units_rho) + \ 'rho_s = {0:.3f} [{1:s}].'.format(rho_s, units_rho)) continue # tie line if show_tie_line: ax.plot([rho_p_I[i_tie], rho_p_II[i_tie]], [rho_s_I[i_tie], rho_s_II[i_tie]], '--', color='k', lw=lw, zorder=back) # supernatant ax.plot(rho_p_I[i_tie], rho_s_I[i_tie], color=colors[i], marker='o', fillstyle='none', zorder=front) # coacervate ax.plot(rho_p_II[i_tie], rho_s_II[i_tie], color=colors[i], marker='o', fillstyle='none', zorder=front) # plots overall composition last time through if i == len(lB_list)-1: short = {'mol/L' : 'M', 'beads/sigma^3' : r'$\sigma^{-3}$'} if sym_list[j] == '*': ms_boost = 4 else: ms_boost = 0 ax.plot(rho_p, rho_s, marker=sym_list[j], markerfacecolor='w', ms=ms+ms_boost, markeredgecolor='k', markeredgewidth=1.5, lw=0, label=r'$\rho_p = $ ' + '{0:.2f} {1:s}'.format(rho_p, short[units_rho]) + r', $\rho_s = $ ' + \ '{0:.2f} {1:s}'.format(rho_s, short[units_rho]), zorder=front) # plots binodal, flipping coacervate order to be in order label = r'$T = $' + '{0:d}{1:s}'.format(int(T), T_unit) if show_lB: label += r', $l_B = $ ' + '{0:.3f}'.format(lB) ax.plot(polymer_I_list + polymer_II_list[::-1], ion_I_list + ion_II_list[::-1], color=colors[i], lw=lw, label=label, zorder=front) # plots critical point ax.plot(polymer_c, ion_c, marker='o', fillstyle='full', color=colors[i], zorder=front) # formats plot x_label = r'$\rho_p$' y_label = r'$\rho_s$ [' + units_rho + ']' # determines component with varied concentration name_pair = ['Polymer', 'Salt'] name_var = name_pair[d['order'][0]] if title is None: title = 'Vary Overall {0:s} Concentration'.format(name_var) format_binodal(ax, x_label, units_rho, T_range, y_label=y_label, title=title, lgnd_out=lgnd_out, square_box=square_box) return ax def binodal_surf_3d(data, mode='markers', ms=4, op=0.01, c1='blue', c2='red', lw=0, fig=None): """Plots surface binodal in 3d.""" x1, y1, z1, x2, y2, z2 = data if fig == None: fig = go.Figure() # plots phase I (supernatant) of full binodal fig = fig.add_trace(go.Scatter3d( x=x1, y=y1, z=z1, mode=mode, marker=dict( size=ms, opacity=op, color=c1 ), line=dict( color=c1, width=lw, ), )) # plots phase II (coacervate) of full binodal fig.add_trace(go.Scatter3d( x=x2, y=y2, z=z2, mode=mode, marker=dict( size=ms, opacity=op, color=c2 ), line=dict( color=c2, width=lw, ), )) return fig def binodal_surf_3d_batch(data_3d, op, ms, lw, mode, fig=None, skip=[]): """ Plots batch of data for a 3d surface binodal. """ # extracts data x1_coll, y1_coll, z1_coll, x2_coll, y2_coll, z2_coll = data_3d z_arr = np.unique(z1_coll) # plots data at each z value for (i, z) in enumerate(z_arr): # skips indices requested if i in skip: continue # extracts data corresponding to current z value (T or lB) x1 = x1_coll[z1_coll==z] y1 = y1_coll[z1_coll==z] z1 = z1_coll[z1_coll==z] x2 = x2_coll[z2_coll==z] y2 = y2_coll[z2_coll==z] z2 = z2_coll[z2_coll==z] # plots dataon 3D plot fig = binodal_surf_3d((x1, y1, z1, x2, y2, z2), op=op, ms=ms, lw=lw, mode=mode, fig=fig) return fig def binodal_vary_conc(mu_salt_folder, data, rho_salt_list, beads_2_M, qty, x_var='polycation', x_label=r'$\rho_{PSS}$', sigma=None, T_range=[273,373], cmap_name='plasma', colors=None, marker='o', fill_left='none', fill_right='full', lgnd_out=True): """ LEGACY Plots the binodal for different average densities of polymer. qty : string The quantity from df to return. Options include 'rhoPC', 'rhoPA', 'rhoC', and 'rhoA'. """ # creates list of colors for each value of rho_p if colors is None: colors = get_colors(cmap_name, len(rho_salt_list)) # creates figure fig = plt.figure() ax = fig.add_subplot(111) for i, rho_salt in enumerate(rho_salt_list): # plots binodal for low polymer concentration [M] mu_conc = nacl.get_mu_conc(mu_salt_folder, data, rho_salt, beads_2_M=beads_2_M) try: lB_arr, rho_PCI_list, rho_PCII_list = nacl.fixed_conc(mu_conc, data, qty, beads_2_M=beads_2_M) except: continue # selects the x-axis data left_arr = np.array(rho_PCI_list) right_arr = np.array(rho_PCII_list) # computes temperature and identifies data within range T_arr = pe.lB_2_T_arr(lB_arr, T_range, sigma=sigma) liq_h2o = np.logical_and(T_arr >= T_range[0], T_arr <= T_range[1]) # determines units if beads_2_M is not None: units_rho = '[mol/L]' else: units_rho = '[beads/sigma^3]' # left binodal ax.plot(left_arr[liq_h2o], T_arr[liq_h2o], color=colors[i], marker=marker, fillstyle=fill_left, label=r'$\rho_{salt} = $' + '{0:.2f} {1:s}, supernatant' \ .format(rho_salt, units_rho)) # right binodal ax.plot(right_arr[liq_h2o], T_arr[liq_h2o], color=colors[i], marker=marker, fillstyle=fill_right, label=r'$\rho_{salt} = $' + \ '{0:.2f} {1:s}, coacervate'.format(rho_salt, units_rho)) # formats plot ax.set_ylim(T_range) ax.set_xlabel(x_label + ' ' + units_rho, fontsize=16) ax.set_ylabel(r'$T$ [K]', fontsize=16) ax.tick_params(axis='both', labelsize=14) ax.set_title('Effect of Salt Reservoir on Binodal', fontsize=16) # put legend outside of plot box if lgnd_out: box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height]) legend_x = 1 legend_y = 0.5 plt.legend(loc='center left', bbox_to_anchor=(legend_x, legend_y), fontsize=12) else: plt.legend(fontsize=12) return ax def binodal_vary_f(data, f_list, color_list, T_cels=True, x_label=r'$\rho_p$', units_rho='M', T_range=[273.15, 373.15], lw1=1, lw2=4, square_box=True, show_lgnd=False, ax=None): """ Plots binodal projected onto coordinate plane for different charge fractions f. """ # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) for f, color in zip(f_list, color_list): # creates labels label_sup = r'$f$ =' + ' {0:.2f} supernatant'.format(f) label_co = r'$f$ =' + ' {0:.2f} coacervate'.format(f) # extracts data T_arr, rho_p_I, rho_p_II = data[f] # polymer-T projection ax.plot(rho_p_I, T_arr, color=color, label=label_sup, lw=lw1) ax.plot(rho_p_II, T_arr, color=color, label=label_co, lw=lw2) # formats plot format_binodal(ax, x_label, units_rho, T_range, T_cels=T_cels, square_box=square_box, show_lgnd=show_lgnd) return ax def binodal_vary_N(data, N_list, color_list, T_cels=True, x_label=r'$\rho_p$', units_rho='M', T_range=[273.15, 373.15], lw1=1, lw2=4, square_box=True, show_lgnd=False, ax=None): """ Plots binodal projected onto coordinate plane for different degrees of polymerization N. """ # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(131) for N, color in zip(N_list, color_list): # extracts data for given N T_arr, rho_p_I, rho_p_II = data[N] # creates labels label_sup = r'$N$ =' + ' {0:d} supernatant'.format(N) label_co = r'$N$ =' + ' {0:d} coacervate'.format(N) # polymer-T projection ax.plot(rho_p_I, T_arr, color=color, label=label_sup, lw=lw1) ax.plot(rho_p_II, T_arr, color=color, label=label_co, lw=lw2) # formats plot format_binodal(ax, x_label, units_rho, T_range, T_cels=T_cels, square_box=square_box, show_lgnd=show_lgnd) return ax def binodal_vary_sigma(data, sigma_list, color_list, T_cels=True, x_label=r'$\rho_p$', units_rho='M', T_range=[273.15, 373.15], lw1=1, lw2=4, square_box=True, show_lgnd=False, x_lim=None, ax=None): """ Plots binodal projected onto coordinate plane for different charge fractions f. """ # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) for sigma, color in zip(sigma_list, color_list): # creates labels label_sup = r'$\sigma$ =' + ' {0:.1f}'.format(sigma*m_2_A) + r' $\AA$ supernatant' label_co = r'$\sigma$ =' + ' {0:.1f}'.format(sigma*m_2_A) + r' $\AA$ coacervate' # extracts data T_arr, rho_p_I, rho_p_II = data[sigma] # polymer-T projection ax.plot(rho_p_I, T_arr, color=color, label=label_sup, lw=lw1) ax.plot(rho_p_II, T_arr, color=color, label=label_co, lw=lw2) # formats plot format_binodal(ax, x_label, units_rho, T_range, T_cels=T_cels, x_lim=x_lim, square_box=square_box, show_lgnd=show_lgnd) return ax def binodal_vary_rho(data, rho_var_list, rho_fix, ch_var, beads_2_M, x_var='polycation', x_label=r'$\rho_{PSS}$', sigma=None, T_range=[273.15,373.15], cmap_name='plasma', colors=None, marker='o', fill_left='none', fill_right='full', lw_sup=1, lw_co=3, lgnd_out=True, lw=1, x_lim=None, T_cels=False, title=None, c_sup='#1414FF', c_co='#FF0000', ls_sup='-', square_box=False, ax=None): """ Plots the binodal for different average densities of polymer. If T_cels is True, converts the temperature from Kelvin to Celsius """ # creates dictionary of values based on which component's density is varied d = get_plot_dict_p_s(ch_var) # creates list of colors for each value of rho_p if colors is None: if cmap_name is not None: colors = get_colors(cmap_name, len(rho_var_list)) # creates figure if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ### Plots figure for i, rho_var in enumerate(rho_var_list): # plots binodal for low polymer concentration [M] rho_pair = np.array([rho_var, rho_fix]) rho_p, rho_s = rho_pair[d['order']] results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] rho_CI_list = results['rho_CI'] rho_CII_list = results['rho_CII'] rho_PAI_list = results['rho_PAI'] rho_PAII_list = results['rho_PAII'] rho_AI_list = results['rho_AI'] rho_AII_list = results['rho_AII'] lB_arr = results['lB'] alpha = results['alpha'] # selects the x-axis data if x_var == 'polycation': left_arr = np.array(rho_PCI_list) right_arr = np.array(rho_PCII_list) elif x_var == 'polyanion': left_arr = np.array(rho_PAI_list) right_arr = np.array(rho_PAII_list) elif x_var == 'cation': left_arr = np.array(rho_CI_list) right_arr = np.array(rho_CII_list) elif x_var == 'anion': left_arr = np.array(rho_AI_list) right_arr = np.array(rho_AII_list) elif x_var == 'solvent': left_arr = pe.calc_rho_solv(rho_PCI_list, rho_CI_list, beads_2_M) right_arr = pe.calc_rho_solv(rho_PCII_list, rho_CII_list, beads_2_M) elif x_var == 'polyelectrolyte': left_arr = np.array(rho_PCI_list) + np.array(rho_PAI_list) right_arr = np.array(rho_PCII_list) + np.array(rho_PAII_list) elif x_var == 'salt': left_arr = np.array(rho_CI_list) right_arr = np.array(rho_CII_list) else: print('Error. Invalid x variable in plot.binodal_vary_rho().') # computes temperature and identifies data within range T_arr = pe.lB_2_T_arr(lB_arr, T_range, sigma=sigma) liq_h2o = np.logical_and(T_arr >= T_range[0], T_arr <= T_range[1]) # converts temperature from Kelvin to Celsius if T_cels: T_arr -= K_2_C # assigns separate colors to coacervate and supernatant if not specified if colors is not None: c_sup = colors[i] c_co = colors[i] # supernatant ax.plot(left_arr[liq_h2o], T_arr[liq_h2o], color=c_sup, marker=marker, fillstyle=fill_left, ls=ls_sup, label=r'$\rho_' + d['ch_var'] + ' = $' + '{0:.2f} M, supernatant' \ .format(rho_var), lw=lw_sup) # coacervate ax.plot(right_arr[liq_h2o], T_arr[liq_h2o], color=c_co, marker=marker, fillstyle=fill_right, label=r'$\rho_' + d['ch_var'] + ' = $' + \ '{0:.2f} M, coacervate'.format(rho_var), lw=lw_co) # determines units of density to display on plot if beads_2_M is not None: units_rho = 'mol/L' else: units_rho = 'beads/sigma^3' # formats plot if title is None: title = 'Effect of {0:s} on Binodal, {1:s} = {2:.2f} M' \ .format(d['name_var'], r'$\rho_' + d['ch_fix'] + '$', rho_fix) format_binodal(ax, x_label, units_rho, T_range, title=title, x_lim=x_lim, T_cels=T_cels, square_box=square_box) return ax def fig4(data_pred, df_exp, rho_s_raw_list, rho_p_raw, sigma, T_range, lw=3, c_sup='#1414FF', c_co='#FF0000', ms=11, mfc='w', mew=1.5, x_lim=None, x_label=r'$\rho_{PSS}$', conv_vals=False, tol=1E-6, show_lgnd=False, figsize=None, pad=3, vertical=False, plot_errorbars=False): """ Validates fit of sigma to experiments. """ # computes conversion from beads/sigma^3 to mol/L beads_2_M = pe.get_beads_2_M(sigma, SI=True) # creates figure if figsize is None: fig = plt.figure() else: fig = plt.figure(figsize=figsize) # determines arrangement of subplots if vertical: h = len(rho_s_raw_list) # many plots high w = 1 # 1 plot wide else: h = 1 # 1 plot high w = len(rho_s_raw_list) # many plots wide # Plots figure for i, rho_s_raw in enumerate(rho_s_raw_list): if conv_vals: rho_p, rho_s = nacl.conv_ali_conc(df_exp, rho_p_raw, rho_s_raw) # creates subplot ax = fig.add_subplot(h, w, i+1) # polymer-temperature plane ax = binodal_custom_rho(data_pred, [rho_p], [rho_s], beads_2_M, x_var='polycation', x_label=x_label, x_lim=x_lim, sigma=sigma, T_range=T_range, marker='', lw=lw, lw_sup=lw, lw_co=lw, colors=None, cmap_name=None, T_cels=True, c_sup=c_sup, c_co=c_co, ls_sup='--', square_box=True, show_lgnd=show_lgnd, ax=ax) # plots experimental results for i in range(len(df_exp)): rho_p_exp, rho_s_exp, T_exp, \ rho_p_sup, rho_p_co, s_rho_p_sup, \ s_rho_p_co = nacl.read_df_exp(df_exp, i, conv_vals=conv_vals, read_sigma=plot_errorbars) if (rho_p_exp == rho_p) and (rho_s_exp == rho_s): # plots supernatant and coacervate compositions rho_pss_sup = rho_p_sup/2 rho_pss_co = rho_p_co/2 if plot_errorbars: s_rho_pss_sup = s_rho_p_sup/2 s_rho_pss_co = s_rho_p_co/2 ax.errorbar(rho_pss_sup, T_exp, xerr=s_rho_pss_sup, lw=0, marker='o', ms=ms, markerfacecolor=mfc, markeredgewidth=mew, elinewidth=1, markeredgecolor=c_sup, label='Ali et al. (2019), supernatant') ax.errorbar(rho_pss_co, T_exp, xerr=s_rho_pss_co, lw=0, marker='o', ms=ms, markerfacecolor=c_co, markeredgewidth=mew, elinewidth=1, markeredgecolor=c_co, label='Ali et al. (2019), coacervate') else: ax.plot(rho_pss_sup, T_exp, lw=0, marker='o', ms=ms, markerfacecolor=mfc, markeredgewidth=mew, markeredgecolor=c_sup, label='Ali et al. (2019), supernatant') ax.plot(rho_pss_co, T_exp, lw=0, marker='o', ms=ms, markerfacecolor=c_co, markeredgewidth=mew, markeredgecolor=c_co, label='Ali et al. (2019), coacervate') # pads subplots with whitespace fig.tight_layout(pad=pad) return fig def figs3(data_folder_N, data_folder_f, data_folder_sigma, mu_salt_folder_N, mu_salt_folder_f, mu_salt_folder_sigma, rho_s_M_N, rho_s_M_f, rho_s_M_sigma, ext_N, ext_f, ext_sigma, N_list, f_list, sigma_list, color_list_N, color_list_f, color_list_sigma, sigma_fixed, x_lim_sigma=[0,6], figsize=None, pad=3, naming_structure_sigma='NA(100)NB(100)lB(*)', lB_lo=1.3, lB_hi=2.398): """Plots Figure S3 of SI showing effects of N, f, and sigma on binodal projections in polymer-temperature plane.""" # creates figure if figsize is None: fig = plt.figure() else: fig = plt.figure(figsize=figsize) ### Effect of varying N print('loading N data') # adds subplot axN = fig.add_subplot(131) # extracts data data_vary_N = nacl.binodal_vary_N_data(data_folder_N, mu_salt_folder_N, rho_s_M_N, N_list, sigma=sigma_fixed, ext=ext_N) # plots data print('plotting N data') _ = binodal_vary_N(data_vary_N, N_list, color_list_N, ax=axN) ### Effect of varying charge fraction f # adds subplot axf = fig.add_subplot(132) # extracts data print('loading f data') data_vary_f = nacl.binodal_vary_f_data(data_folder_f, mu_salt_folder_f, rho_s_M_f, f_list, sigma=sigma_fixed, ext=ext_f) # plots data print('plotting f data') _ = binodal_vary_f(data_vary_f, f_list, color_list_f, ax=axf) ### Effect of varying sigma axsigma = fig.add_subplot(133) # laads all data print('loading sigma data') data = nacl.load_data(data_folder_sigma, ext=ext_sigma, naming_structure=naming_structure_sigma, lB_lo=lB_lo, lB_hi=lB_hi) # extracts relevant data data_vary_sigma = nacl.binodal_vary_sigma_data(data, mu_salt_folder_sigma, rho_s_M_sigma, sigma_list, ext=ext_sigma) # plots data print('plotting sigma data') _ = binodal_vary_sigma(data_vary_sigma, sigma_list, color_list_sigma, ax=axsigma, x_lim=x_lim_sigma) # pads subplots with whitespace fig.tight_layout(pad=pad) return fig def compare_to_exp(data, beads_2_M, rho_p_list=[0.3], rho_s_list=[1.6, 1.85, 1.9], N=100, f=1, sigma=4, t_fs=12, T_range=[273.15, 323.15]): """ Compares predictions from data to the experiment in the Prabhu group. """ # sets x and y axis limits x_lim = (-0.05, 1.3) # [mol/L] y_lim = (0, 60) # [C] # sets temperature range T_range = [273, 333] for rho_s in rho_s_list: for rho_p in rho_p_list: # computes polycation concentrations at different temperatures for fixed polymer and salt [mol/L] results = nacl.fixed_rho_total(data, rho_p, rho_s, beads_2_M) rho_PCI_list = results['rho_PCI'] rho_PCII_list = results['rho_PCII'] lB_arr = results['lB'] # plots binodal title = '{0:.2f} M Salt, {1:.2f} M Polymer, N = {2:d}, f = {3:.2f}, sig = {4:.2f} A'.format(rho_s, rho_p, N, f, sigma) p = binodal(lB_arr, rho_PCI_list, rho_PCII_list, title=title, beads_2_M=1, n_tie_lines=0, deg_C=True, T_range=T_range, x_lim=x_lim, y_lim=y_lim, marker=False, line=True) p.title.text_font_size = '{0:d}pt'.format(t_fs) show(p) return def crit_line_3d(data_cp, c_crit, lw_crit, fig): """ Plots critical line in 3D, typically for 3D surface binodal plot. LEGACY """ polymer_c_list, salt_c_list, z_arr = data_cp fig.add_trace(go.Scatter3d( x=polymer_c_list, y=salt_c_list, z=z_arr, mode='lines', line=dict( color=c_crit, width=lw_crit, ), ), ) return fig def fig1(data_3d, data_cp, data_z, data_mu, plot_params, fixed_T=True, fixed_salt=True, crit_line=True, fixed_comp=False, data_comp=None, data_outlines=None, skip=[], plot_axes=True, outline_scale_factor=1.02, toc_fig=False, has_ucst=False, show_labels=True): """ Plots Figure 1 from CCLS paper: 3d surface binodal, fixed T 2d line binodal, fixed salt reservoir concentration 2d line binodal, and critical line. """ # if Table of Contents (TOC) figure, removes all but LCST if toc_fig: fixed_salt = True crit_line = True fixed_comp = False fixed_T = False x_range, y_range, z_range, eye_xyz, op, ms_bin, lw_bin, \ lw_fix, lw_crit, lw_outline, c1_T, c2_T, c1_fix, c2_fix, \ c_crit, c_outline, mode, width, height, fs, offset = plot_params x, y, z = eye_xyz # plots 3d surface binodal fig = binodal_surf_3d_batch(data_3d, op, ms_bin, lw_bin, mode, skip=skip) if crit_line: # plots critical line fig = line_3d(*data_cp, c=c_crit, lw=lw_crit, fig=fig) if fixed_T: # plots binodal at fixed z value (temperature or Bjerrum length) fig = binodal_line_3d(data_z, fig=fig, lw=lw_fix, c1=c1_T, c2=c2_T) if fixed_salt: ### FIXED SALT CONCENTRATION ### # if there is a UCST, split the binodal in two if has_ucst: # identifies threshold between UCST and LCST by largest gap in z z1 = data_mu[2] z1_diff = np.diff(z1) i_thresh = np.argmax(z1_diff) thresh_ucst = (z1[i_thresh] + z1[i_thresh+1])/2 # splits data below UCST and above LCST ucst_data = list(zip(*[(x1, y1, z1, x2, y2, z2) for x1, y1, z1, x2, y2, z2 in zip(*data_mu) if z1 < thresh_ucst])) lcst_data = list(zip(*[(x1, y1, z1, x2, y2, z2) for x1, y1, z1, x2, y2, z2 in zip(*data_mu) if z1 > thresh_ucst])) # plots UCST and LCST data separately fig = binodal_line_3d(ucst_data, fig=fig, lw=lw_fix, c1=c1_fix, c2=c2_fix) fig = binodal_line_3d(lcst_data, fig=fig, lw=lw_fix, c1=c1_fix, c2=c2_fix) else: # plots data for fixed saltwater reservoir concentration fig = binodal_line_3d(data_mu, fig=fig, lw=lw_fix, c1=c1_fix, c2=c2_fix) if fixed_comp: # plots binodal at fixed overall salt, polymer concentration # fig = binodal_line_3d(data_comp, fig=fig, lw=lw_fix, c1=c1_fix, c2=c2_fix) # plots outlines of the surface for definition if data_outlines is not None: for data_outline in data_outlines: data_outline_scaled = [] for coord in data_outline: coord = outline_scale_factor*np.asarray(coord) data_outline_scaled += [coord] fig = binodal_line_3d(data_outline_scaled, c1=c_outline, c2=c_outline, fig=fig) if plot_axes: # x-axis fig = line_3d(x_range, [offset, offset], [z_range[0] + offset, z_range[0] + offset], lw=12, c=c_outline, fig=fig) # y-axis fig = line_3d([offset, offset], y_range, [z_range[0] + offset, z_range[0] + offset], lw=12, c=c_outline, fig=fig) # z-axis fig = line_3d([offset, offset], [offset, offset], z_range, c=c_outline, lw=12, fig=fig) ### FORMATS FIGURE ### fig.update_layout( scene = dict(xaxis = dict(range=x_range,), yaxis = dict(range=y_range,), zaxis = dict(range=z_range,), ), width = width, height = height, # changes initial view of figure scene_camera = dict( eye=dict(x=x, y=y, z=z), # center=dict(x=0, y=0.3, z=0.3), # up=dict(x=0, y=0, z=1) ), font = dict( family='Arial', color='black', size=fs) ) ### Cleanup # removes legend (too crowded to be off use) fig.update_layout(showlegend=False) #removes tick labels and axis titles (so I can add them myself) if not show_labels: fig.update_layout( scene = dict(xaxis = dict(showticklabels=False, title=''), yaxis = dict(showticklabels=False, title=''), zaxis = dict(showticklabels=False, title='', tickmode = 'linear', tick0 = 0, dtick = 50), ), ) return fig def fig2a(rho_salt_M_list_list, data, mu_salt_folder, color_list, T_range, sigma, z_name, beads_2_M, lB_list, lB_color_list, pad, kwargs, units_rho='mol/L', show_lgnd=False, y_lim_T=(0, 100), rho_p_label=r'$\rho_p$', rho_s_label=r'$\rho_s$', y_lim_s=[0, 2.25]): """Plots Figure 2a of binodal projections at different saltwater concentrations.""" for rho_salt_M_list in rho_salt_M_list_list: # plots binodal projections fig, ax_pT, ax_sT, \ ax_ps = binodal_proj_fixed_conc(data, mu_salt_folder, rho_salt_M_list, color_list, T_range, sigma, z_name, beads_2_M, lB_list, lB_color_list, **kwargs) # formats plots ax_pT = format_binodal(ax_pT, rho_p_label, units_rho, T_range, T_cels=kwargs['T_cels'], y_lim=y_lim_T, show_lgnd=show_lgnd) ax_sT = format_binodal(ax_sT, rho_s_label, units_rho, T_range, T_cels=kwargs['T_cels'], y_lim=y_lim_T, show_lgnd=show_lgnd) ax_ps = format_binodal(ax_ps, rho_p_label, units_rho, T_range, y_label=rho_s_label + ' [' + units_rho + ']', show_lgnd=show_lgnd, y_lim=y_lim_s) # pads plots with whitespace fig.tight_layout(pad=pad) return fig def fig2b(data, rho_p_list, rho_s_list, beads_2_M, lB_list, color_list, lB_color_list, kwargs, alpha_y_lim=(0.5,1.05), alpha_yticks=(0.5,0.75,1), figsize=None, pad=3, mew=0.5, show_lgnd=False): """Plots Figure 2b of binodal projections at different overall compositions.""" ### Formats Figure if figsize is None: fig = plt.figure() else: fig = plt.figure(figsize=figsize) ### polymer-temperature plane ### ax1 = fig.add_subplot(221) _ = binodal_custom_rho(data, rho_p_list, rho_s_list, beads_2_M, x_var='polyelectrolyte', x_label=r'$\rho_p$', marker='', colors=color_list, plot_fixed_rho=True, ax=ax1, show_lgnd=show_lgnd, **kwargs) ### salt-temperature plane ### ax2 = fig.add_subplot(222) _ = binodal_custom_rho(data, rho_p_list, rho_s_list, beads_2_M, x_var='salt', x_label=r'$\rho_s$', marker='', colors=color_list, plot_fixed_rho=True, ax=ax2, show_lgnd=show_lgnd, **kwargs) ### polymer-salt plane ### ax3 = fig.add_subplot(223) _ = binodal_custom_rho_rho(data, lB_list, rho_p_list, rho_s_list, beads_2_M, colors=lB_color_list, mew=mew, ax=ax3, show_lgnd=show_lgnd, colors_symbols=color_list, **kwargs) ### volume fraction of supernatant vs. temperature ### ax4 = fig.add_subplot(224) _ = alpha_custom_rho(data, rho_p_list, rho_s_list, beads_2_M, y_lim=alpha_y_lim, marker='', colors=color_list, ax=ax4, show_lgnd=show_lgnd, **kwargs) # customizes tick mark locations ax4.set_yticks(alpha_yticks) # pads subplots with whitespace fig.tight_layout(pad=pad) return fig def fig3(data, lB_list, rho_p_fixed, rho_s_fixed, rho_p_varied, rho_s_varied, beads_2_M, kwargs, figsize=None, pad=3, vertical=True): """Plots Figure 3 of tie lines in polymer-salt plane.""" # formats figure if figsize is None: fig = plt.figure() else: fig = plt.figure(figsize=figsize) # determines arrangement of subplots if vertical: h = 2 # 2 plots high w = 1 # 1 plot wide else: h = 1 # 1 plot high w = 2 # 2 plots wide ################ VARIES SALT CONCENTRATION ############### # creates subplot ax1 = fig.add_subplot(h, w, 1) # plots binodal rho_p_list = rho_p_fixed*np.ones([len(rho_s_varied)]) rho_s_list = rho_s_varied _ = binodal_custom_rho_rho(data, lB_list, rho_p_list, rho_s_list, beads_2_M, ax=ax1, show_lgnd=False, **kwargs) ############ VARIES POLYMER CONCENTRATION #################### # creates subplot ax2 = fig.add_subplot(h, w, 2) # plots binodal rho_p_list = rho_p_varied rho_s_list = rho_s_fixed*np.ones([len(rho_p_varied)]) ax = binodal_custom_rho_rho(data, lB_list, rho_p_list, rho_s_list, beads_2_M, ax=ax2, show_lgnd=False, **kwargs) # pads subplots with whitespace fig.tight_layout(pad=pad) return fig def figs1(T_range, sigma, T_room_C=20, T_cels=True, figsize=(5,5), gridspec=10, lw=3, y_lim=[5.5,9.5], y_ticks=[6,7,8,9], d=0.5, ax_fs=16, tk_fs=16): """Plots Figure S1 of the SI of Bjerrum length vs. T for fixed and T-dependent dielectric constant.""" # computes Bjerrum lengths T_arr, lB_A_arr, lB_0_A_arr = nacl.lB_comparison(T_range, sigma, T_room_C=T_room_C) # creates figure fig, (ax1, ax2) = plt.subplots(2, 1, figsize=figsize, gridspec_kw={'height_ratios': [gridspec,1]}, sharex=True) # adjusts temperature based on requested unit if T_cels: T_arr -= K_2_C unit_T = r'$^{\circ}C$' else: unit_T = 'K' # plots Bjerrum lengths ax1.plot(T_arr, lB_A_arr, lw=lw, label=r'$\epsilon(T)$') ax1.plot(T_arr, lB_0_A_arr, lw=lw, label=r'$\epsilon(T) = \epsilon($' + \ '{0:d}'.format(int(T_room_C)) + r'$^{\circ}C)$') # formats plot ax2.set_xlabel(r'$T$ [' + unit_T + ']', fontsize=ax_fs) ax1.set_ylabel(r'$l_B$ $[\AA]$', fontsize=ax_fs) ax1.tick_params(axis='both', labelsize=tk_fs) ax2.tick_params(axis='both', labelsize=tk_fs) ### Creates broken axis # see: https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html # set limits and ticks on upper axis ax1.set_ylim(y_lim) ax1.set_yticks(y_ticks) # lower axis ax2.set_ylim([0, 0.5]) ax2.set_yticks([0]) # hide the spines between ax and ax2 ax1.spines['bottom'].set_visible(False) ax2.spines['top'].set_visible(False) ax1.xaxis.tick_top() ax1.tick_params(top=False, labeltop=False) # don't put ticks or labels at top ax2.xaxis.tick_bottom() # plots diagonal hatch marks on y-axis--"d" is ratio of height to length kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, linestyle="none", color='k', mec='k', mew=1, clip_on=False) ax1.plot([0, 1], [0, 0], transform=ax1.transAxes, **kwargs) ax2.plot([0, 1], [1, 1], transform=ax2.transAxes, **kwargs) return fig def format_binodal(ax, x_label, units_rho, T_range, y_label=None, title=None, x_lim=None, y_lim=None, T_cels=False, lgnd_out=True, square_box=True, show_lgnd=True): """ Formats axes of a plot of the binodal projected onto a plane with temperature as the vertical axis. """ if x_lim is not None: ax.set_xlim(x_lim) ax.set_xlabel('{0:s} [{1:s}]'.format(x_label, units_rho), fontsize=18) # assumes that the y axis is temperature if another label is not given if y_label is None: T_unit = 'K' if T_cels: T_unit = r'$^{\circ}$C' T_range = [T - K_2_C for T in T_range] if y_lim is None: ax.set_ylim(T_range) else: ax.set_ylim(y_lim) ax.set_ylabel(r'$T$' + ' [{0:s}]'.format(T_unit), fontsize=18) else: ax.set_ylabel(y_label, fontsize=18) ax.set_ylim(y_lim) ax.tick_params(axis='both', labelsize=16) if title is not None: ax.set_title(title, fontsize=16) # makes box of plot square if square_box: ax.set_aspect(np.diff(ax.get_xlim()) / np.diff(ax.get_ylim())) # places legend outside of plot box if show_lgnd: if lgnd_out: box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height]) legend_x = 1 legend_y = 0.5 ax.legend(loc='center left', bbox_to_anchor=(legend_x, legend_y), fontsize=14, frameon=False) else: ax.legend(fontsize=12, frameon=False) return ax def get_colors(cmap_name, n): """Returns list of colors using given colormap.""" cmap = plt.get_cmap(cmap_name) return [cmap(val) for val in np.linspace(0, 1, n)] def get_lgnd_labels(handles, labels, key): """Returns zipped handles and labels for which labels contains key.""" return [pair for pair in zip(handles, labels) if key in pair[1]] def get_plot_dict_p_s(ch_var): """Returns a dictionary of key parameters for plotting based on varied component.""" d = {} # polyelectrolyte density varied if ch_var == 'p': d = {'ch_var':'p', 'ch_fix':'s', 'order':[0,1], 'name_var':'Polymer'} # salt density varied elif ch_var == 's': d = {'ch_var':'s', 'ch_fix':'p', 'order':[1,0], 'name_var':'Salt'} else: print('invalid ch_var character: choose s or p.') return d def line_3d(x, y, z, mode='lines', ms=8, op=0.1, c='black', lw=8, fig=None): """ Plots line in 3D plot (plotly). """ if fig == None: fig = go.Figure() # plots phase I (supernatant) of fixed salt binodal fig.add_trace(go.Scatter3d( x=x, y=y, z=z, mode=mode, marker=dict( size=ms, opacity=op, color=c ), line=dict( color=c, width=lw, ), )) return fig def no_salt(df, n_plot, left='rhoPCI', right='rhoPCII', x_label='polycation density', p=None, n_tie_lines=0, plot_T=False, title='', line=False, marker=True, w=500, h=500, units_rho='[beads/sigma^3]', deg_C=False, leg1='supernatant', c1='blue', leg2='coacervate', c2='red'): """ Plots the binodal for a polyelectrolyte in solution without salt. """ if plot_T: y = 'T' if deg_C: y_label = 'Temperature [' + r'$^{\circ}$' + 'C]' else: y_label = 'Temperature [K]' else: y = 'BJ' y_label = 'Bjerrum length' # samples a uniform subset of the data n = len(df) skip = int(n / n_plot) sample = df.iloc[::skip] # creates figure object if not provided if p is None: p = figure(plot_width=w, plot_height=h) # loads source for plot data source = ColumnDataSource(sample) if marker: # creates circle glyph of polycation concentration in dilute phase p.circle(x=left, y=y, source=source, size=10, color=c1, legend_label=leg1) # creates circle glyph of polycation concentration in coacervate phase p.circle(x=right, y=y, source=source, size=10, color=c2, legend_label=leg2) if line: # creates circle glyph of polycation concentration in dilute phase p.line(x=left, y=y, source=source, line_width=6, line_color=c1, legend_label=leg1) # creates circle glyph of polycation concentration in coacervate phase p.line(x=right, y=y, source=source, line_width=6, line_color=c2, legend_label=leg2) # adds tie lines if n_tie_lines > 0: skip_tie_lines = int(n / n_tie_lines) df_tie_lines = df.iloc[::skip_tie_lines] for t in range(len(df_tie_lines)): p.line([df_tie_lines[left].iloc[t], df_tie_lines[right].iloc[t]], [df_tie_lines[y].iloc[t], df_tie_lines[y].iloc[t]], color='black') # adds plot labels p.xaxis.axis_label = x_label + ' ' + units_rho p.xaxis.axis_label_text_font_size = '18pt' p.xaxis.major_label_text_font_size = '14pt' p.yaxis.axis_label = y_label p.yaxis.axis_label_text_font_size = '18pt' p.yaxis.major_label_text_font_size = '14pt' # adds title p.title.text = title p.title.text_font_size = '16pt' # formats legend p.legend.location = "bottom_right" p.legend.label_text_font_size = '14pt' p.legend.click_policy = 'hide' # creates hover feature to read data hover = HoverTool() hover.tooltips=[ (y_label, '@' + y), (x_label + ' (I)', '@' + left), (x_label + ' (II)', '@' + right) ] p.add_tools(hover) return p def pt_3d(x, y, z, mode='markers', ms=8, op=1, c='black', fig=None): """ Plots line in 3D plot (plotly). """ if fig == None: fig = go.Figure() # plots phase I (supernatant) of fixed salt binodal fig.add_trace(go.Scatter3d( x=[x], y=[y], z=[z], mode=mode, marker=dict( size=ms, opacity=op, color=c ), )) return fig def salt(df, n_plot, p=None, n_tie_lines=0): """ Plots the binodal for a polyelectrolyte in solution with salt at a fixed Bjerrum length on rho_p vs. rho_s axes. """ # samples a uniform subset of the data n = len(df) skip = int(n / n_plot) sample = df.iloc[::skip] # creates figure object if not provided if p is None: p = figure() # loads source for plot data source = ColumnDataSource(sample) # creates circle glyph of polycation concentration in dilute phase p.circle(x='rhoPAI', y='rhoAI', source=source, size=10, color='red', legend_label='dilute phase (I)') # creates circle glyph of polycation concentration in coacervate phase p.circle(x='rhoPAII', y='rhoAII', source=source, size=10, color='blue', legend_label='coacervate phase (II)') # draws tie lines if n_tie_lines > 0: skip_tie_lines = int(n / n_tie_lines) df_tie_lines = df.iloc[::skip_tie_lines] for t in range(len(df_tie_lines)): x = [df_tie_lines['rhoPAI'].iloc[t], df_tie_lines['rhoPAII'].iloc[t]] y = [df_tie_lines['rhoAI'].iloc[t], df_tie_lines['rhoAII'].iloc[t]] p.line(x, y, color='black') # adds plot labels p.xaxis.axis_label = 'polyanion number density' p.xaxis.axis_label_text_font_size = '18pt' p.xaxis.major_label_text_font_size = '14pt' p.yaxis.axis_label = 'anion number density' p.yaxis.axis_label_text_font_size = '18pt' p.yaxis.major_label_text_font_size = '14pt' # formats legend p.legend.location = "top_right" p.legend.label_text_font_size = '16pt' p.legend.click_policy = 'hide' # creates hover feature to read data hover = HoverTool() hover.tooltips=[ ('Anion Density (I)', '@rhoAI'), ('Anion Density (II)', '@rhoAII'), ('Polyanion density (I)', '@rhoPAI'), ('Polyanion density (II)', '@rhoPAII') ] p.add_tools(hover) return p def sort_lgnd_labels(ax, sorted_keys): """Sorts legend labels based on order of keywords.""" # gets handles and labels from legend handles, labels = ax.get_legend_handles_labels() # sorts by keywords lgnd_sorted = [] for key in sorted_keys: lgnd_sorted += get_lgnd_labels(handles, labels, key) # removes redundant entries lgnd_unique = [(0,0)] # primer entry [lgnd_unique.append(pair) for pair in lgnd_sorted if pair[1] \ not in list(zip(*lgnd_unique))[1]] # removes primer entry lgnd_unique = lgnd_unique[1:] # unzips handles_sorted, labels_sorted = zip(*lgnd_unique) # adds legend outside plot box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height]) legend_x = 1 legend_y = 0.5 ax.legend(handles_sorted, labels_sorted, loc='center left', bbox_to_anchor=(legend_x, legend_y), fontsize=14, frameon=False) return ax def validate_fit(data_pred, df_exp, ch_var, rho_var_list, rho_fix, colors, beads_2_M_opt, T_range=[273.15, 323.15], lw=2, sigma=None, conv_vals=False, x_var='polyelectrolyte'): """ Validates fit of sigma to experiments. """ if conv_vals: rho_p = df_exp['rho_p [M]'].to_numpy(dtype=float) rho_p_conv = df_exp['rho_p (conv) [M]'].to_numpy(dtype=float) rho_s = df_exp['rho_s [M]'].to_numpy(dtype=float) rho_s_conv = df_exp['rho_s (conv) [M]'].to_numpy(dtype=float) # matches polymer and salt values with fixed and varied concentrations rho_var_list_conv = [] if ch_var == 'p': for rho_var in rho_var_list: i = np.where(rho_var == rho_p)[0][0] rho_var_list_conv += [rho_p_conv[i]] rho_fix_conv = rho_s_conv[np.where(rho_fix == rho_s)[0][0]] elif ch_var == 's': for rho_var in rho_var_list: i = np.where(rho_var == rho_s)[0][0] rho_var_list_conv += [rho_s_conv[i]] rho_fix_conv = rho_p_conv[np.where(rho_fix == rho_p)[0][0]] # polymer-temperature plane if conv_vals: ax = binodal_vary_rho(data_pred, rho_var_list_conv, rho_fix_conv, ch_var, beads_2_M_opt, x_var=x_var, x_label=r'$\rho_p$', sigma=sigma, T_range=T_range, marker='', lw=lw, colors=colors, T_cels=True) else: ax = binodal_vary_rho(data_pred, rho_var_list, rho_fix, ch_var, beads_2_M_opt, x_var=x_var, x_label=r'$\rho_p$', sigma=sigma, T_range=T_range, marker='', lw=lw, colors=colors, T_cels=True) # plots experimental results for i in range(len(df_exp)): rho_p, rho_s, T_exp, rho_p_sup, rho_p_co = nacl.read_df_exp(df_exp, i) if ch_var == 'p': rho_var_exp = rho_p rho_fix_exp = rho_s elif ch_var == 's': rho_var_exp = rho_s rho_fix_exp = rho_p else: print('Please select s or p as ch_var') if (rho_var_exp in rho_var_list) and (rho_fix_exp == rho_fix): # determines color color = [colors[i] for i in range(len(colors)) if rho_var_list[i] == rho_var_exp][0] # plots desired species concentration if x_var == 'polyanion' or x_var == 'polycation': # if just plotting polyanion, divides total polymer # concentration in half (assumes symmetric solution) rho_sup = rho_p_sup / 2 rho_co = rho_p_co / 2 elif x_var == 'polyelectrolyte': rho_sup = rho_p_sup rho_co = rho_p_co # plots supernatant and coacervate compositions ax.plot(rho_sup, T_exp, color=color, marker='o', label='supernatant') ax.plot(rho_co, T_exp, color=color, marker='^', label='coacervate')
[ "bokeh.models.ColumnDataSource", "pe.get_beads_2_M", "numpy.abs", "numpy.argmax", "salt.extract_df_mu_data", "numpy.argmin", "matplotlib.pyplot.figure", "salt.fixed_conc", "numpy.unique", "pandas.DataFrame", "numpy.copy", "salt.binodal_vary_f_data", "pe.lB_2_T", "numpy.max", "bokeh.plotting.show", "numpy.linspace", "salt.lB_comparison", "matplotlib.pyplot.subplots", "salt.read_df_exp", "salt.fixed_rho_total", "salt.make_df_mu", "matplotlib.pyplot.get_cmap", "plotly.graph_objects.Figure", "salt.get_mu_conc", "matplotlib.pyplot.legend", "bokeh.models.Range1d", "numpy.asarray", "pe.calc_rho_solv", "numpy.min", "bokeh.models.tools.HoverTool", "pe.lB_2_T_arr", "bokeh.plotting.figure", "salt.binodal_vary_N_data", "numpy.logical_and", "salt.binodal_vary_sigma_data", "salt.conv_ali_conc", "numpy.diff", "numpy.array", "numpy.where", "salt.load_data" ]
[((5262, 5274), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5272, 5274), True, 'import matplotlib.pyplot as plt\n'), ((9297, 9315), 'numpy.copy', 'np.copy', (['left_list'], {}), '(left_list)\n', (9304, 9315), True, 'import numpy as np\n'), ((9332, 9351), 'numpy.copy', 'np.copy', (['right_list'], {}), '(right_list)\n', (9339, 9351), True, 'import numpy as np\n'), ((9652, 9712), 'pe.lB_2_T_arr', 'pe.lB_2_T_arr', (['lB_arr', 'T_range'], {'fix_eps': 'fix_eps', 'sigma': 'sigma'}), '(lB_arr, T_range, fix_eps=fix_eps, sigma=sigma)\n', (9665, 9712), False, 'import pe\n'), ((9773, 9819), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['BJ', 'T', left, right]"}), "(columns=['BJ', 'T', left, right])\n", (9785, 9819), True, 'import pandas as pd\n'), ((9834, 9890), 'numpy.logical_and', 'np.logical_and', (['(T_arr >= T_range[0])', '(T_arr <= T_range[1])'], {}), '(T_arr >= T_range[0], T_arr <= T_range[1])\n', (9848, 9890), True, 'import numpy as np\n'), ((33758, 33776), 'numpy.unique', 'np.unique', (['z1_coll'], {}), '(z1_coll)\n', (33767, 33776), True, 'import numpy as np\n'), ((35080, 35092), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (35090, 35092), True, 'import matplotlib.pyplot as plt\n'), ((45434, 45466), 'pe.get_beads_2_M', 'pe.get_beads_2_M', (['sigma'], {'SI': '(True)'}), '(sigma, SI=True)\n', (45450, 45466), False, 'import pe\n'), ((49207, 49317), 'salt.binodal_vary_N_data', 'nacl.binodal_vary_N_data', (['data_folder_N', 'mu_salt_folder_N', 'rho_s_M_N', 'N_list'], {'sigma': 'sigma_fixed', 'ext': 'ext_N'}), '(data_folder_N, mu_salt_folder_N, rho_s_M_N, N_list,\n sigma=sigma_fixed, ext=ext_N)\n', (49231, 49317), True, 'import salt as nacl\n'), ((49611, 49721), 'salt.binodal_vary_f_data', 'nacl.binodal_vary_f_data', (['data_folder_f', 'mu_salt_folder_f', 'rho_s_M_f', 'f_list'], {'sigma': 'sigma_fixed', 'ext': 'ext_f'}), '(data_folder_f, mu_salt_folder_f, rho_s_M_f, f_list,\n sigma=sigma_fixed, ext=ext_f)\n', (49635, 49721), True, 'import salt as nacl\n'), ((50050, 50170), 'salt.load_data', 'nacl.load_data', (['data_folder_sigma'], {'ext': 'ext_sigma', 'naming_structure': 'naming_structure_sigma', 'lB_lo': 'lB_lo', 'lB_hi': 'lB_hi'}), '(data_folder_sigma, ext=ext_sigma, naming_structure=\n naming_structure_sigma, lB_lo=lB_lo, lB_hi=lB_hi)\n', (50064, 50170), True, 'import salt as nacl\n'), ((50229, 50331), 'salt.binodal_vary_sigma_data', 'nacl.binodal_vary_sigma_data', (['data', 'mu_salt_folder_sigma', 'rho_s_M_sigma', 'sigma_list'], {'ext': 'ext_sigma'}), '(data, mu_salt_folder_sigma, rho_s_M_sigma,\n sigma_list, ext=ext_sigma)\n', (50257, 50331), True, 'import salt as nacl\n'), ((62350, 62403), 'salt.lB_comparison', 'nacl.lB_comparison', (['T_range', 'sigma'], {'T_room_C': 'T_room_C'}), '(T_range, sigma, T_room_C=T_room_C)\n', (62368, 62403), True, 'import salt as nacl\n'), ((62508, 62606), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'figsize': 'figsize', 'gridspec_kw': "{'height_ratios': [gridspec, 1]}", 'sharex': '(True)'}), "(2, 1, figsize=figsize, gridspec_kw={'height_ratios': [gridspec,\n 1]}, sharex=True)\n", (62520, 62606), True, 'import matplotlib.pyplot as plt\n'), ((65892, 65915), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['cmap_name'], {}), '(cmap_name)\n', (65904, 65915), True, 'import matplotlib.pyplot as plt\n'), ((68060, 68084), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', (['sample'], {}), '(sample)\n', (68076, 68084), False, 'from bokeh.models import ColumnDataSource, Title, Range1d\n'), ((69778, 69789), 'bokeh.models.tools.HoverTool', 'HoverTool', ([], {}), '()\n', (69787, 69789), False, 'from bokeh.models.tools import HoverTool\n'), ((70839, 70863), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', (['sample'], {}), '(sample)\n', (70855, 70863), False, 'from bokeh.models import ColumnDataSource, Title, Range1d\n'), ((72122, 72133), 'bokeh.models.tools.HoverTool', 'HoverTool', ([], {}), '()\n', (72131, 72133), False, 'from bokeh.models.tools import HoverTool\n'), ((1727, 1739), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1737, 1739), True, 'import matplotlib.pyplot as plt\n'), ((2010, 2061), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (2030, 2061), True, 'import salt as nacl\n'), ((2310, 2353), 'pe.lB_2_T_arr', 'pe.lB_2_T_arr', (['lB_arr', 'T_range'], {'sigma': 'sigma'}), '(lB_arr, T_range, sigma=sigma)\n', (2323, 2353), False, 'import pe\n'), ((3028, 3041), 'numpy.min', 'np.min', (['T_arr'], {}), '(T_arr)\n', (3034, 3041), True, 'import numpy as np\n'), ((5429, 5457), 'numpy.array', 'np.array', (['[rho_var, rho_fix]'], {}), '([rho_var, rho_fix])\n', (5437, 5457), True, 'import numpy as np\n'), ((5520, 5571), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (5540, 5571), True, 'import salt as nacl\n'), ((5820, 5863), 'pe.lB_2_T_arr', 'pe.lB_2_T_arr', (['lB_arr', 'T_range'], {'sigma': 'sigma'}), '(lB_arr, T_range, sigma=sigma)\n', (5833, 5863), False, 'import pe\n'), ((10594, 10609), 'bokeh.models.Range1d', 'Range1d', (['*x_lim'], {}), '(*x_lim)\n', (10601, 10609), False, 'from bokeh.models import ColumnDataSource, Title, Range1d\n'), ((10656, 10671), 'bokeh.models.Range1d', 'Range1d', (['*y_lim'], {}), '(*y_lim)\n', (10663, 10671), False, 'from bokeh.models import ColumnDataSource, Title, Range1d\n'), ((11641, 11653), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (11651, 11653), True, 'import matplotlib.pyplot as plt\n'), ((11860, 11911), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (11880, 11911), True, 'import salt as nacl\n'), ((13691, 13734), 'pe.lB_2_T_arr', 'pe.lB_2_T_arr', (['lB_arr', 'T_range'], {'sigma': 'sigma'}), '(lB_arr, T_range, sigma=sigma)\n', (13704, 13734), False, 'import pe\n'), ((13753, 13809), 'numpy.logical_and', 'np.logical_and', (['(T_arr >= T_range[0])', '(T_arr <= T_range[1])'], {}), '(T_arr >= T_range[0], T_arr <= T_range[1])\n', (13767, 13809), True, 'import numpy as np\n'), ((17449, 17461), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (17459, 17461), True, 'import matplotlib.pyplot as plt\n'), ((18141, 18167), 'pe.lB_2_T', 'pe.lB_2_T', (['lB'], {'sigma': 'sigma'}), '(lB, sigma=sigma)\n', (18150, 18167), False, 'import pe\n'), ((23245, 23257), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (23255, 23257), True, 'import matplotlib.pyplot as plt\n'), ((23282, 23309), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (23292, 23309), True, 'import matplotlib.pyplot as plt\n'), ((24026, 24137), 'salt.make_df_mu', 'nacl.make_df_mu', (['data', 'mu_salt_folder', 'rho_salt', 'T_range', 'sigma'], {'naming_structure': 'naming_structure', 'ext': 'ext'}), '(data, mu_salt_folder, rho_salt, T_range, sigma,\n naming_structure=naming_structure, ext=ext)\n', (24041, 24137), True, 'import salt as nacl\n'), ((24223, 24261), 'salt.extract_df_mu_data', 'nacl.extract_df_mu_data', (['df_mu', 'z_name'], {}), '(df_mu, z_name)\n', (24246, 24261), True, 'import salt as nacl\n'), ((24345, 24401), 'numpy.logical_and', 'np.logical_and', (['(T_arr >= T_range[0])', '(T_arr <= T_range[1])'], {}), '(T_arr >= T_range[0], T_arr <= T_range[1])\n', (24359, 24401), True, 'import numpy as np\n'), ((25751, 25777), 'pe.lB_2_T', 'pe.lB_2_T', (['lB'], {'sigma': 'sigma'}), '(lB, sigma=sigma)\n', (25760, 25777), False, 'import pe\n'), ((28207, 28219), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (28217, 28219), True, 'import matplotlib.pyplot as plt\n'), ((28899, 28925), 'pe.lB_2_T', 'pe.lB_2_T', (['lB'], {'sigma': 'sigma'}), '(lB, sigma=sigma)\n', (28908, 28925), False, 'import pe\n'), ((32871, 32882), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (32880, 32882), True, 'import plotly.graph_objects as go\n'), ((35249, 35318), 'salt.get_mu_conc', 'nacl.get_mu_conc', (['mu_salt_folder', 'data', 'rho_salt'], {'beads_2_M': 'beads_2_M'}), '(mu_salt_folder, data, rho_salt, beads_2_M=beads_2_M)\n', (35265, 35318), True, 'import salt as nacl\n'), ((35530, 35552), 'numpy.array', 'np.array', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (35538, 35552), True, 'import numpy as np\n'), ((35573, 35596), 'numpy.array', 'np.array', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (35581, 35596), True, 'import numpy as np\n'), ((35678, 35721), 'pe.lB_2_T_arr', 'pe.lB_2_T_arr', (['lB_arr', 'T_range'], {'sigma': 'sigma'}), '(lB_arr, T_range, sigma=sigma)\n', (35691, 35721), False, 'import pe\n'), ((35740, 35796), 'numpy.logical_and', 'np.logical_and', (['(T_arr >= T_range[0])', '(T_arr <= T_range[1])'], {}), '(T_arr >= T_range[0], T_arr <= T_range[1])\n', (35754, 35796), True, 'import numpy as np\n'), ((36953, 37032), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""center left"""', 'bbox_to_anchor': '(legend_x, legend_y)', 'fontsize': '(12)'}), "(loc='center left', bbox_to_anchor=(legend_x, legend_y), fontsize=12)\n", (36963, 37032), True, 'import matplotlib.pyplot as plt\n'), ((37051, 37074), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '(12)'}), '(fontsize=12)\n', (37061, 37074), True, 'import matplotlib.pyplot as plt\n'), ((37468, 37480), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (37478, 37480), True, 'import matplotlib.pyplot as plt\n'), ((38525, 38537), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (38535, 38537), True, 'import matplotlib.pyplot as plt\n'), ((39620, 39632), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (39630, 39632), True, 'import matplotlib.pyplot as plt\n'), ((41377, 41389), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (41387, 41389), True, 'import matplotlib.pyplot as plt\n'), ((41571, 41599), 'numpy.array', 'np.array', (['[rho_var, rho_fix]'], {}), '([rho_var, rho_fix])\n', (41579, 41599), True, 'import numpy as np\n'), ((41662, 41713), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (41682, 41713), True, 'import salt as nacl\n'), ((43493, 43536), 'pe.lB_2_T_arr', 'pe.lB_2_T_arr', (['lB_arr', 'T_range'], {'sigma': 'sigma'}), '(lB_arr, T_range, sigma=sigma)\n', (43506, 43536), False, 'import pe\n'), ((43555, 43611), 'numpy.logical_and', 'np.logical_and', (['(T_arr >= T_range[0])', '(T_arr <= T_range[1])'], {}), '(T_arr >= T_range[0], T_arr <= T_range[1])\n', (43569, 43611), True, 'import numpy as np\n'), ((45527, 45539), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (45537, 45539), True, 'import matplotlib.pyplot as plt\n'), ((45564, 45591), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (45574, 45591), True, 'import matplotlib.pyplot as plt\n'), ((48997, 49009), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (49007, 49009), True, 'import matplotlib.pyplot as plt\n'), ((49034, 49061), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (49044, 49061), True, 'import matplotlib.pyplot as plt\n'), ((59037, 59049), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (59047, 59049), True, 'import matplotlib.pyplot as plt\n'), ((59074, 59101), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (59084, 59101), True, 'import matplotlib.pyplot as plt\n'), ((60928, 60940), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (60938, 60940), True, 'import matplotlib.pyplot as plt\n'), ((60965, 60992), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (60975, 60992), True, 'import matplotlib.pyplot as plt\n'), ((66822, 66833), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (66831, 66833), True, 'import plotly.graph_objects as go\n'), ((67977, 68012), 'bokeh.plotting.figure', 'figure', ([], {'plot_width': 'w', 'plot_height': 'h'}), '(plot_width=w, plot_height=h)\n', (67983, 68012), False, 'from bokeh.plotting import figure, output_file, show\n'), ((70140, 70151), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (70149, 70151), True, 'import plotly.graph_objects as go\n'), ((70783, 70791), 'bokeh.plotting.figure', 'figure', ([], {}), '()\n', (70789, 70791), False, 'from bokeh.plotting import figure, output_file, show\n'), ((75340, 75367), 'salt.read_df_exp', 'nacl.read_df_exp', (['df_exp', 'i'], {}), '(df_exp, i)\n', (75356, 75367), True, 'import salt as nacl\n'), ((2577, 2592), 'numpy.array', 'np.array', (['alpha'], {}), '(alpha)\n', (2585, 2592), True, 'import numpy as np\n'), ((12404, 12426), 'numpy.array', 'np.array', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (12412, 12426), True, 'import numpy as np\n'), ((12451, 12474), 'numpy.array', 'np.array', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (12459, 12474), True, 'import numpy as np\n'), ((18463, 18514), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (18483, 18514), True, 'import salt as nacl\n'), ((18720, 18745), 'numpy.asarray', 'np.asarray', (["results['lB']"], {}), "(results['lB'])\n", (18730, 18745), True, 'import numpy as np\n'), ((18922, 18945), 'numpy.asarray', 'np.asarray', (['rho_CI_list'], {}), '(rho_CI_list)\n', (18932, 18945), True, 'import numpy as np\n'), ((19020, 19044), 'numpy.asarray', 'np.asarray', (['rho_CII_list'], {}), '(rho_CII_list)\n', (19030, 19044), True, 'import numpy as np\n'), ((29169, 29197), 'numpy.array', 'np.array', (['[rho_var, rho_fix]'], {}), '([rho_var, rho_fix])\n', (29177, 29197), True, 'import numpy as np\n'), ((29270, 29321), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (29290, 29321), True, 'import salt as nacl\n'), ((29527, 29552), 'numpy.asarray', 'np.asarray', (["results['lB']"], {}), "(results['lB'])\n", (29537, 29552), True, 'import numpy as np\n'), ((29729, 29752), 'numpy.asarray', 'np.asarray', (['rho_CI_list'], {}), '(rho_CI_list)\n', (29739, 29752), True, 'import numpy as np\n'), ((29827, 29851), 'numpy.asarray', 'np.asarray', (['rho_CII_list'], {}), '(rho_CII_list)\n', (29837, 29851), True, 'import numpy as np\n'), ((35382, 35438), 'salt.fixed_conc', 'nacl.fixed_conc', (['mu_conc', 'data', 'qty'], {'beads_2_M': 'beads_2_M'}), '(mu_conc, data, qty, beads_2_M=beads_2_M)\n', (35397, 35438), True, 'import salt as nacl\n'), ((42206, 42228), 'numpy.array', 'np.array', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (42214, 42228), True, 'import numpy as np\n'), ((42253, 42276), 'numpy.array', 'np.array', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (42261, 42276), True, 'import numpy as np\n'), ((45937, 45985), 'salt.conv_ali_conc', 'nacl.conv_ali_conc', (['df_exp', 'rho_p_raw', 'rho_s_raw'], {}), '(df_exp, rho_p_raw, rho_s_raw)\n', (45955, 45985), True, 'import salt as nacl\n'), ((46805, 46880), 'salt.read_df_exp', 'nacl.read_df_exp', (['df_exp', 'i'], {'conv_vals': 'conv_vals', 'read_sigma': 'plot_errorbars'}), '(df_exp, i, conv_vals=conv_vals, read_sigma=plot_errorbars)\n', (46821, 46880), True, 'import salt as nacl\n'), ((51226, 51277), 'salt.fixed_rho_total', 'nacl.fixed_rho_total', (['data', 'rho_p', 'rho_s', 'beads_2_M'], {}), '(data, rho_p, rho_s, beads_2_M)\n', (51246, 51277), True, 'import salt as nacl\n'), ((51869, 51876), 'bokeh.plotting.show', 'show', (['p'], {}), '(p)\n', (51873, 51876), False, 'from bokeh.plotting import figure, output_file, show\n'), ((53964, 53975), 'numpy.diff', 'np.diff', (['z1'], {}), '(z1)\n', (53971, 53975), True, 'import numpy as np\n'), ((53999, 54017), 'numpy.argmax', 'np.argmax', (['z1_diff'], {}), '(z1_diff)\n', (54008, 54017), True, 'import numpy as np\n'), ((65949, 65969), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n'], {}), '(0, 1, n)\n', (65960, 65969), True, 'import numpy as np\n'), ((2443, 2460), 'numpy.asarray', 'np.asarray', (['alpha'], {}), '(alpha)\n', (2453, 2460), True, 'import numpy as np\n'), ((3127, 3143), 'numpy.argmin', 'np.argmin', (['T_arr'], {}), '(T_arr)\n', (3136, 3143), True, 'import numpy as np\n'), ((3243, 3273), 'numpy.abs', 'np.abs', (['(alpha_single_phase - 1)'], {}), '(alpha_single_phase - 1)\n', (3249, 3273), True, 'import numpy as np\n'), ((3523, 3555), 'numpy.abs', 'np.abs', (['(alpha_single_phase - 0.5)'], {}), '(alpha_single_phase - 0.5)\n', (3529, 3555), True, 'import numpy as np\n'), ((5953, 5970), 'numpy.asarray', 'np.asarray', (['alpha'], {}), '(alpha)\n', (5963, 5970), True, 'import numpy as np\n'), ((6099, 6114), 'numpy.array', 'np.array', (['alpha'], {}), '(alpha)\n', (6107, 6114), True, 'import numpy as np\n'), ((12533, 12555), 'numpy.array', 'np.array', (['rho_PAI_list'], {}), '(rho_PAI_list)\n', (12541, 12555), True, 'import numpy as np\n'), ((12580, 12603), 'numpy.array', 'np.array', (['rho_PAII_list'], {}), '(rho_PAII_list)\n', (12588, 12603), True, 'import numpy as np\n'), ((18875, 18899), 'numpy.asarray', 'np.asarray', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (18885, 18899), True, 'import numpy as np\n'), ((18971, 18996), 'numpy.asarray', 'np.asarray', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (18981, 18996), True, 'import numpy as np\n'), ((29682, 29706), 'numpy.asarray', 'np.asarray', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (29692, 29706), True, 'import numpy as np\n'), ((29778, 29803), 'numpy.asarray', 'np.asarray', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (29788, 29803), True, 'import numpy as np\n'), ((42335, 42357), 'numpy.array', 'np.array', (['rho_PAI_list'], {}), '(rho_PAI_list)\n', (42343, 42357), True, 'import numpy as np\n'), ((42382, 42405), 'numpy.array', 'np.array', (['rho_PAII_list'], {}), '(rho_PAII_list)\n', (42390, 42405), True, 'import numpy as np\n'), ((12659, 12680), 'numpy.array', 'np.array', (['rho_CI_list'], {}), '(rho_CI_list)\n', (12667, 12680), True, 'import numpy as np\n'), ((12705, 12727), 'numpy.array', 'np.array', (['rho_CII_list'], {}), '(rho_CII_list)\n', (12713, 12727), True, 'import numpy as np\n'), ((15402, 15427), 'numpy.max', 'np.max', (['left_arr[liq_h2o]'], {}), '(left_arr[liq_h2o])\n', (15408, 15427), True, 'import numpy as np\n'), ((15450, 15476), 'numpy.min', 'np.min', (['right_arr[liq_h2o]'], {}), '(right_arr[liq_h2o])\n', (15456, 15476), True, 'import numpy as np\n'), ((42461, 42482), 'numpy.array', 'np.array', (['rho_CI_list'], {}), '(rho_CI_list)\n', (42469, 42482), True, 'import numpy as np\n'), ((42507, 42529), 'numpy.array', 'np.array', (['rho_CII_list'], {}), '(rho_CII_list)\n', (42515, 42529), True, 'import numpy as np\n'), ((55198, 55215), 'numpy.asarray', 'np.asarray', (['coord'], {}), '(coord)\n', (55208, 55215), True, 'import numpy as np\n'), ((12782, 12803), 'numpy.array', 'np.array', (['rho_AI_list'], {}), '(rho_AI_list)\n', (12790, 12803), True, 'import numpy as np\n'), ((12828, 12850), 'numpy.array', 'np.array', (['rho_AII_list'], {}), '(rho_AII_list)\n', (12836, 12850), True, 'import numpy as np\n'), ((42584, 42605), 'numpy.array', 'np.array', (['rho_AI_list'], {}), '(rho_AI_list)\n', (42592, 42605), True, 'import numpy as np\n'), ((42630, 42652), 'numpy.array', 'np.array', (['rho_AII_list'], {}), '(rho_AII_list)\n', (42638, 42652), True, 'import numpy as np\n'), ((74127, 74153), 'numpy.where', 'np.where', (['(rho_var == rho_p)'], {}), '(rho_var == rho_p)\n', (74135, 74153), True, 'import numpy as np\n'), ((74251, 74277), 'numpy.where', 'np.where', (['(rho_fix == rho_s)'], {}), '(rho_fix == rho_s)\n', (74259, 74277), True, 'import numpy as np\n'), ((12907, 12961), 'pe.calc_rho_solv', 'pe.calc_rho_solv', (['rho_PCI_list', 'rho_CI_list', 'beads_2_M'], {}), '(rho_PCI_list, rho_CI_list, beads_2_M)\n', (12923, 12961), False, 'import pe\n'), ((13070, 13126), 'pe.calc_rho_solv', 'pe.calc_rho_solv', (['rho_PCII_list', 'rho_CII_list', 'beads_2_M'], {}), '(rho_PCII_list, rho_CII_list, beads_2_M)\n', (13086, 13126), False, 'import pe\n'), ((42709, 42763), 'pe.calc_rho_solv', 'pe.calc_rho_solv', (['rho_PCI_list', 'rho_CI_list', 'beads_2_M'], {}), '(rho_PCI_list, rho_CI_list, beads_2_M)\n', (42725, 42763), False, 'import pe\n'), ((42872, 42928), 'pe.calc_rho_solv', 'pe.calc_rho_solv', (['rho_PCII_list', 'rho_CII_list', 'beads_2_M'], {}), '(rho_PCII_list, rho_CII_list, beads_2_M)\n', (42888, 42928), False, 'import pe\n'), ((74374, 74400), 'numpy.where', 'np.where', (['(rho_var == rho_s)'], {}), '(rho_var == rho_s)\n', (74382, 74400), True, 'import numpy as np\n'), ((74498, 74524), 'numpy.where', 'np.where', (['(rho_fix == rho_p)'], {}), '(rho_fix == rho_p)\n', (74506, 74524), True, 'import numpy as np\n'), ((19223, 19242), 'numpy.abs', 'np.abs', (['(lB_arr - lB)'], {}), '(lB_arr - lB)\n', (19229, 19242), True, 'import numpy as np\n'), ((30030, 30049), 'numpy.abs', 'np.abs', (['(lB_arr - lB)'], {}), '(lB_arr - lB)\n', (30036, 30049), True, 'import numpy as np\n'), ((13277, 13299), 'numpy.array', 'np.array', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (13285, 13299), True, 'import numpy as np\n'), ((13302, 13324), 'numpy.array', 'np.array', (['rho_PAI_list'], {}), '(rho_PAI_list)\n', (13310, 13324), True, 'import numpy as np\n'), ((13349, 13372), 'numpy.array', 'np.array', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (13357, 13372), True, 'import numpy as np\n'), ((13375, 13398), 'numpy.array', 'np.array', (['rho_PAII_list'], {}), '(rho_PAII_list)\n', (13383, 13398), True, 'import numpy as np\n'), ((13452, 13473), 'numpy.array', 'np.array', (['rho_CI_list'], {}), '(rho_CI_list)\n', (13460, 13473), True, 'import numpy as np\n'), ((13498, 13520), 'numpy.array', 'np.array', (['rho_CII_list'], {}), '(rho_CII_list)\n', (13506, 13520), True, 'import numpy as np\n'), ((43079, 43101), 'numpy.array', 'np.array', (['rho_PCI_list'], {}), '(rho_PCI_list)\n', (43087, 43101), True, 'import numpy as np\n'), ((43104, 43126), 'numpy.array', 'np.array', (['rho_PAI_list'], {}), '(rho_PAI_list)\n', (43112, 43126), True, 'import numpy as np\n'), ((43151, 43174), 'numpy.array', 'np.array', (['rho_PCII_list'], {}), '(rho_PCII_list)\n', (43159, 43174), True, 'import numpy as np\n'), ((43177, 43200), 'numpy.array', 'np.array', (['rho_PAII_list'], {}), '(rho_PAII_list)\n', (43185, 43200), True, 'import numpy as np\n'), ((43254, 43275), 'numpy.array', 'np.array', (['rho_CI_list'], {}), '(rho_CI_list)\n', (43262, 43275), True, 'import numpy as np\n'), ((43300, 43322), 'numpy.array', 'np.array', (['rho_CII_list'], {}), '(rho_CII_list)\n', (43308, 43322), True, 'import numpy as np\n')]
import typing import sys import numpy as np import numba as nb @nb.njit def csgraph_to_directed(g: np.ndarray) -> np.ndarray: m = len(g) g = np.vstack((g, g)) g[m:, :2] = g[m:, 1::-1] return g @nb.njit def sort_csgraph( n: int, g: np.ndarray, ) -> typing.Tuple[np.ndarray, np.ndarray, np.ndarray]: sort_idx = np.argsort(g[:, 0], kind='mergesort') g = g[sort_idx] edge_idx = np.searchsorted(g[:, 0], np.arange(n + 1)) original_idx = np.arange(len(g))[sort_idx] return g, edge_idx, original_idx @nb.njit def euler_tour_edge( g: np.ndarray, edge_idx: np.ndarray, root: int, ) -> typing.Tuple[(np.ndarray, ) * 3]: n = g[:, :2].max() + 1 parent = np.full(n, -1, np.int64) depth = np.zeros(n, np.int64) tour = np.empty(n * 2, np.int64) st = [root] for i in range(2 * n): u = st.pop() tour[i] = u if u < 0: continue st.append(-u - 1) for v in g[edge_idx[u]:edge_idx[u + 1], 1][::-1]: if v == parent[u]: continue parent[v] = u depth[v] = depth[u] + 1 st.append(v) return tour, parent, depth @nb.njit def euler_tour_node( g: np.ndarray, edge_idx: np.ndarray, root: int, ) -> typing.Tuple[(np.ndarray, ) * 4]: tour, parent, depth = euler_tour_edge(g, edge_idx, root) n = len(tour) >> 1 tour = tour[:-1] first_idx = np.full(n, -1, np.int64) for i in range(2 * n - 1): u = tour[i] if u < 0: tour[i] = parent[~u] continue first_idx[u] = i return tour, first_idx, parent, depth @nb.njit def uf_build(n: int) -> np.ndarray: return np.full(n, -1, np.int64) @nb.njit def uf_find(uf: np.ndarray, u: int) -> int: if uf[u] < 0: return u uf[u] = uf_find(uf, uf[u]) return uf[u] @nb.njit def uf_unite( uf: np.ndarray, u: int, v: int, ) -> typing.NoReturn: u, v = uf_find(uf, u), uf_find(uf, v) if u == v: return if uf[u] > uf[v]: u, v = v, u uf[u] += uf[v] uf[v] = u @nb.njit def lca( g: np.ndarray, edge_idx: np.ndarray, vu: np.ndarray, ) -> np.ndarray: m = len(vu) tour, parent, _ = euler_tour_edge(g, edge_idx, 0) n = len(tour) >> 1 first_idx = np.full(n, -1, np.int64) for i in range(len(tour)): u = tour[i] if u < 0: continue first_idx[u] = i for i in range(m): v, u = vu[i] if first_idx[v] < first_idx[u]: vu[i] = vu[i, ::-1] vu, query_idx, original_idx = sort_csgraph(n, vu) _lca = np.empty(m, np.int64) uf = uf_build(n) ancestor = np.arange(n) for v in tour[:-1]: if v >= 0: continue v = ~v for j in range(query_idx[v], query_idx[v + 1]): u = vu[j, 1] _lca[original_idx[j]] = ancestor[uf_find(uf, u)] p = parent[v] uf_unite(uf, v, p) ancestor[uf_find(uf, p)] = p return _lca @nb.njit((nb.i8[:, :], nb.i8[:, :]), cache=True) def solve(xy: np.ndarray, ab: np.ndarray) -> typing.NoReturn: n = len(xy) + 1 g = csgraph_to_directed(xy) g, edge_idx, _ = sort_csgraph(n, g) _, _, depth = euler_tour_edge(g, edge_idx, 0) _lca = lca(g, edge_idx, ab) for i in range(len(ab)): u, v = ab[i] l = _lca[i] d = depth[u] + depth[v] - 2 * depth[l] + 1 print(d) def main() -> typing.NoReturn: n = int(input()) I = np.array( sys.stdin.read().split(), dtype=np.int64, ) xy = I[:2 * (n - 1)].reshape(n - 1, 2) - 1 ab = I[2 * n - 1:].reshape(-1, 2) - 1 solve(xy, ab) main()
[ "numpy.full", "sys.stdin.read", "numpy.empty", "numba.njit", "numpy.zeros", "numpy.argsort", "numpy.arange", "numpy.vstack" ]
[((2746, 2793), 'numba.njit', 'nb.njit', (['(nb.i8[:, :], nb.i8[:, :])'], {'cache': '(True)'}), '((nb.i8[:, :], nb.i8[:, :]), cache=True)\n', (2753, 2793), True, 'import numba as nb\n'), ((154, 171), 'numpy.vstack', 'np.vstack', (['(g, g)'], {}), '((g, g))\n', (163, 171), True, 'import numpy as np\n'), ((337, 374), 'numpy.argsort', 'np.argsort', (['g[:, 0]'], {'kind': '"""mergesort"""'}), "(g[:, 0], kind='mergesort')\n", (347, 374), True, 'import numpy as np\n'), ((691, 715), 'numpy.full', 'np.full', (['n', '(-1)', 'np.int64'], {}), '(n, -1, np.int64)\n', (698, 715), True, 'import numpy as np\n'), ((726, 747), 'numpy.zeros', 'np.zeros', (['n', 'np.int64'], {}), '(n, np.int64)\n', (734, 747), True, 'import numpy as np\n'), ((757, 782), 'numpy.empty', 'np.empty', (['(n * 2)', 'np.int64'], {}), '(n * 2, np.int64)\n', (765, 782), True, 'import numpy as np\n'), ((1326, 1350), 'numpy.full', 'np.full', (['n', '(-1)', 'np.int64'], {}), '(n, -1, np.int64)\n', (1333, 1350), True, 'import numpy as np\n'), ((1571, 1595), 'numpy.full', 'np.full', (['n', '(-1)', 'np.int64'], {}), '(n, -1, np.int64)\n', (1578, 1595), True, 'import numpy as np\n'), ((2130, 2154), 'numpy.full', 'np.full', (['n', '(-1)', 'np.int64'], {}), '(n, -1, np.int64)\n', (2137, 2154), True, 'import numpy as np\n'), ((2402, 2423), 'numpy.empty', 'np.empty', (['m', 'np.int64'], {}), '(m, np.int64)\n', (2410, 2423), True, 'import numpy as np\n'), ((2456, 2468), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (2465, 2468), True, 'import numpy as np\n'), ((431, 447), 'numpy.arange', 'np.arange', (['(n + 1)'], {}), '(n + 1)\n', (440, 447), True, 'import numpy as np\n'), ((3213, 3229), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (3227, 3229), False, 'import sys\n')]
""" ============================================= Multiclass Classification with NumPy and TMVA ============================================= """ from array import array import numpy as np from numpy.random import RandomState from root_numpy.tmva import add_classification_events, evaluate_reader from root_numpy import ROOT_VERSION import matplotlib.pyplot as plt from ROOT import TMVA, TFile, TCut plt.style.use('ggplot') RNG = RandomState(42) # Construct an example multiclass dataset n_events = 1000 class_0 = RNG.multivariate_normal( [-2, -2], np.diag([1, 1]), n_events) class_1 = RNG.multivariate_normal( [0, 2], np.diag([1, 1]), n_events) class_2 = RNG.multivariate_normal( [2, -2], np.diag([1, 1]), n_events) X = np.concatenate([class_0, class_1, class_2]) y = np.ones(X.shape[0]) w = RNG.randint(1, 10, n_events * 3) y[:class_0.shape[0]] *= 0 y[-class_2.shape[0]:] *= 2 permute = RNG.permutation(y.shape[0]) X = X[permute] y = y[permute] # Split into training and test datasets X_train, y_train, w_train = X[:n_events], y[:n_events], w[:n_events] X_test, y_test, w_test = X[n_events:], y[n_events:], w[n_events:] output = TFile('tmva_output.root', 'recreate') factory = TMVA.Factory('classifier', output, 'AnalysisType=Multiclass:' '!V:Silent:!DrawProgressBar') if ROOT_VERSION >= '6.07/04': data = TMVA.DataLoader('.') else: data = factory for n in range(2): data.AddVariable('f{0}'.format(n), 'F') # Call root_numpy's utility functions to add events from the arrays add_classification_events(data, X_train, y_train, weights=w_train) add_classification_events(data, X_test, y_test, weights=w_test, test=True) # The following line is necessary if events have been added individually: data.PrepareTrainingAndTestTree(TCut('1'), 'NormMode=EqualNumEvents') # Train an MLP if ROOT_VERSION >= '6.07/04': BookMethod = factory.BookMethod else: BookMethod = TMVA.Factory.BookMethod BookMethod(data, 'MLP', 'MLP', 'NeuronType=tanh:NCycles=200:HiddenLayers=N+2,2:' 'TestRate=5:EstimatorType=MSE') factory.TrainAllMethods() # Classify the test dataset with the BDT reader = TMVA.Reader() for n in range(2): reader.AddVariable('f{0}'.format(n), array('f', [0.])) reader.BookMVA('MLP', 'weights/classifier_MLP.weights.xml') class_proba = evaluate_reader(reader, 'MLP', X_test) # Plot the decision boundaries plot_colors = "rgb" plot_step = 0.02 class_names = "ABC" cmap = plt.get_cmap('Paired') fig = plt.figure(figsize=(5, 5)) fig.patch.set_alpha(0) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = evaluate_reader(reader, 'MLP', np.c_[xx.ravel(), yy.ravel()]) Z = np.argmax(Z, axis=1) - 1 Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=cmap, alpha=0.5) plt.axis("tight") # Plot the training points for i, n, c in zip(range(3), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=cmap, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') plt.tight_layout() plt.show()
[ "matplotlib.pyplot.title", "numpy.argmax", "numpy.ones", "ROOT.TFile", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "matplotlib.pyplot.contourf", "numpy.arange", "ROOT.TMVA.DataLoader", "numpy.diag", "matplotlib.pyplot.tight_layout", "root_numpy.tmva.add_classification_events", "numpy.random.RandomState", "array.array", "ROOT.TMVA.Reader", "matplotlib.pyplot.show", "root_numpy.tmva.evaluate_reader", "matplotlib.pyplot.get_cmap", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "ROOT.TCut", "matplotlib.pyplot.ylabel", "numpy.concatenate", "matplotlib.pyplot.xlim", "matplotlib.pyplot.scatter", "ROOT.TMVA.Factory", "matplotlib.pyplot.axis", "numpy.where", "matplotlib.pyplot.xlabel" ]
[((401, 424), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (414, 424), True, 'import matplotlib.pyplot as plt\n'), ((431, 446), 'numpy.random.RandomState', 'RandomState', (['(42)'], {}), '(42)\n', (442, 446), False, 'from numpy.random import RandomState\n'), ((735, 778), 'numpy.concatenate', 'np.concatenate', (['[class_0, class_1, class_2]'], {}), '([class_0, class_1, class_2])\n', (749, 778), True, 'import numpy as np\n'), ((783, 802), 'numpy.ones', 'np.ones', (['X.shape[0]'], {}), '(X.shape[0])\n', (790, 802), True, 'import numpy as np\n'), ((1147, 1184), 'ROOT.TFile', 'TFile', (['"""tmva_output.root"""', '"""recreate"""'], {}), "('tmva_output.root', 'recreate')\n", (1152, 1184), False, 'from ROOT import TMVA, TFile, TCut\n'), ((1195, 1287), 'ROOT.TMVA.Factory', 'TMVA.Factory', (['"""classifier"""', 'output', '"""AnalysisType=Multiclass:!V:Silent:!DrawProgressBar"""'], {}), "('classifier', output,\n 'AnalysisType=Multiclass:!V:Silent:!DrawProgressBar')\n", (1207, 1287), False, 'from ROOT import TMVA, TFile, TCut\n'), ((1553, 1619), 'root_numpy.tmva.add_classification_events', 'add_classification_events', (['data', 'X_train', 'y_train'], {'weights': 'w_train'}), '(data, X_train, y_train, weights=w_train)\n', (1578, 1619), False, 'from root_numpy.tmva import add_classification_events, evaluate_reader\n'), ((1620, 1694), 'root_numpy.tmva.add_classification_events', 'add_classification_events', (['data', 'X_test', 'y_test'], {'weights': 'w_test', 'test': '(True)'}), '(data, X_test, y_test, weights=w_test, test=True)\n', (1645, 1694), False, 'from root_numpy.tmva import add_classification_events, evaluate_reader\n'), ((2180, 2193), 'ROOT.TMVA.Reader', 'TMVA.Reader', ([], {}), '()\n', (2191, 2193), False, 'from ROOT import TMVA, TFile, TCut\n'), ((2346, 2384), 'root_numpy.tmva.evaluate_reader', 'evaluate_reader', (['reader', '"""MLP"""', 'X_test'], {}), "(reader, 'MLP', X_test)\n", (2361, 2384), False, 'from root_numpy.tmva import add_classification_events, evaluate_reader\n'), ((2481, 2503), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""Paired"""'], {}), "('Paired')\n", (2493, 2503), True, 'import matplotlib.pyplot as plt\n'), ((2511, 2537), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (2521, 2537), True, 'import matplotlib.pyplot as plt\n'), ((2899, 2944), 'matplotlib.pyplot.contourf', 'plt.contourf', (['xx', 'yy', 'Z'], {'cmap': 'cmap', 'alpha': '(0.5)'}), '(xx, yy, Z, cmap=cmap, alpha=0.5)\n', (2911, 2944), True, 'import matplotlib.pyplot as plt\n'), ((2945, 2962), 'matplotlib.pyplot.axis', 'plt.axis', (['"""tight"""'], {}), "('tight')\n", (2953, 2962), True, 'import matplotlib.pyplot as plt\n'), ((3182, 3204), 'matplotlib.pyplot.xlim', 'plt.xlim', (['x_min', 'x_max'], {}), '(x_min, x_max)\n', (3190, 3204), True, 'import matplotlib.pyplot as plt\n'), ((3205, 3227), 'matplotlib.pyplot.ylim', 'plt.ylim', (['y_min', 'y_max'], {}), '(y_min, y_max)\n', (3213, 3227), True, 'import matplotlib.pyplot as plt\n'), ((3228, 3257), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (3238, 3257), True, 'import matplotlib.pyplot as plt\n'), ((3258, 3273), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (3268, 3273), True, 'import matplotlib.pyplot as plt\n'), ((3274, 3289), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (3284, 3289), True, 'import matplotlib.pyplot as plt\n'), ((3290, 3320), 'matplotlib.pyplot.title', 'plt.title', (['"""Decision Boundary"""'], {}), "('Decision Boundary')\n", (3299, 3320), True, 'import matplotlib.pyplot as plt\n'), ((3322, 3340), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3338, 3340), True, 'import matplotlib.pyplot as plt\n'), ((3341, 3351), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3349, 3351), True, 'import matplotlib.pyplot as plt\n'), ((555, 570), 'numpy.diag', 'np.diag', (['[1, 1]'], {}), '([1, 1])\n', (562, 570), True, 'import numpy as np\n'), ((629, 644), 'numpy.diag', 'np.diag', (['[1, 1]'], {}), '([1, 1])\n', (636, 644), True, 'import numpy as np\n'), ((704, 719), 'numpy.diag', 'np.diag', (['[1, 1]'], {}), '([1, 1])\n', (711, 719), True, 'import numpy as np\n'), ((1375, 1395), 'ROOT.TMVA.DataLoader', 'TMVA.DataLoader', (['"""."""'], {}), "('.')\n", (1390, 1395), False, 'from ROOT import TMVA, TFile, TCut\n'), ((1801, 1810), 'ROOT.TCut', 'TCut', (['"""1"""'], {}), "('1')\n", (1805, 1810), False, 'from ROOT import TMVA, TFile, TCut\n'), ((2686, 2720), 'numpy.arange', 'np.arange', (['x_min', 'x_max', 'plot_step'], {}), '(x_min, x_max, plot_step)\n', (2695, 2720), True, 'import numpy as np\n'), ((2743, 2777), 'numpy.arange', 'np.arange', (['y_min', 'y_max', 'plot_step'], {}), '(y_min, y_max, plot_step)\n', (2752, 2777), True, 'import numpy as np\n'), ((2850, 2870), 'numpy.argmax', 'np.argmax', (['Z'], {'axis': '(1)'}), '(Z, axis=1)\n', (2859, 2870), True, 'import numpy as np\n'), ((3057, 3073), 'numpy.where', 'np.where', (['(y == i)'], {}), '(y == i)\n', (3065, 3073), True, 'import numpy as np\n'), ((3078, 3149), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[idx, 0]', 'X[idx, 1]'], {'c': 'c', 'cmap': 'cmap', 'label': "('Class %s' % n)"}), "(X[idx, 0], X[idx, 1], c=c, cmap=cmap, label='Class %s' % n)\n", (3089, 3149), True, 'import matplotlib.pyplot as plt\n'), ((2254, 2271), 'array.array', 'array', (['"""f"""', '[0.0]'], {}), "('f', [0.0])\n", (2259, 2271), False, 'from array import array\n')]
from drl_negotiation.scenario import BaseScenario from drl_negotiation.core import TrainWorld, MySCML2020Agent from drl_negotiation.myagent import MyComponentsBasedAgent from drl_negotiation.hyperparameters import * from negmas.helpers import get_class from scml.scml2020 import ( DecentralizingAgent, BuyCheapSellExpensiveAgent, SCML2020World, is_system_agent, ) from typing import Union import numpy as np class Scenario(BaseScenario): def make_world(self, config=None) -> TrainWorld: # configuration, for Scenario scml if config is None: agent_types = [get_class(agent_type, ) for agent_type in TRAINING_AGENT_TYPES] n_steps = N_STEPS world_configuration = SCML2020World.generate( agent_types=agent_types, n_steps=n_steps ) else: world_configuration = SCML2020World.generate( agent_types=config['agent_types'], agent_params=config['agent_params'][:-2], n_steps=config['n_steps'] ) world = TrainWorld(configuration=world_configuration) if config is None: self.reset_world(world) return world def reset_world(self, world): # callback, reset # reset world, agents, factories # fixed position agent_types = world.configuration['agent_types'] agent_params = world.configuration['agent_params'][:-2] n_steps = world.configuration['n_steps'] reset_configuration = SCML2020World.generate( #TODO: [Future work Improvement] could be reset agent_types=agent_types, agent_params=agent_params, n_steps=n_steps ) world.__init__(configuration=reset_configuration) def benchmark_data(self, agent, world, seller=True): #TODO: data for benchmarkign purposes, info_callabck, # will be rendered when display is true # how to compare different companies, Ratio Analysis # https://www.investopedia.com/ask/answers/032315/how-does-ratio-analysis-make-it-easier-compare-different-companies.asp # price-to-earnings ratio and net profit margin # Margin Ratios and Return Ratios # https://corporatefinanceinstitute.com/resources/knowledge/finance/profitability-ratios/ profitability = [] initial_balances = [] factories = [_ for _ in world.factories if not is_system_agent(_.agent_id)] for i, factory in enumerate(factories): initial_balances.append(factory.initial_balance) normalize = all(_ != 0 for _ in initial_balances) for _ in world.agents: if world.agents[_].action_callback == "system": continue if world.agents[_] in world.heuristic_agents: if normalize: profitability.append( (agent.state.f[2] - agent.state.f[0]) / agent.state.f[0] - ([f.current_balance for f in factories if f.agent_id == world.agents[_].id][0] - [f.initial_balance for f in factories if f.agent_id == world.agents[_].id][0]) / [f.initial_balance for f in factories if f.agent_id == world.agents[_].id][0] ) else: profitability.append( (agent.state.f[2] - agent.state.f[0]) - ([f.current_balance for f in factories if f.agent_id == world.agents[_].id][0] - [f.initial_balance for f in factories if f.agent_id == world.agents[_].id][0]) ) return {"profitability": profitability} def good_agents(self, world): return [agent for agent in world.agents if not agent.adversary] def adversaries(self, world): return [agent for agent in world.agents if agent.adversary] def reward(self, agent, world, seller=True): # callback, reward # Delayed reward problem???? # Keep this in mind when writing reward functions: You get what you incentivize, not what you intend. # idea 1: external rewards, e.g. balance - initial balance for agent, -(balance - initial balance) for adversary agent # idea 2: Intrinsic motivation rewards. # On Learning Intrinsic Rewards for Policy Gradient Methods, https://arxiv.org/abs/1804.06459 return self.adversary_reward(agent, world) if agent.adversary else self.agent_reward(agent, world) def agent_reward(self, agent, world): # 1. Difference of balance with the end of last step, begin of current step # 2. Difference of balance with the other agents rew = 0 # means in this world step, the agent starts a negotiation except initial state if agent.state.o_negotiation_step == agent.awi.current_step: rew = (agent.state.f[2]- agent.state.f[1]) / (agent.state.f[0]) * REW_FACTOR gap = [] for entity in world.entities: if entity is agent: continue if entity.action_callback == "system": continue if entity.action_callback is None: continue initial_balance = [_.initial_balance for _ in world.factories if _.agent_id == entity.id][0] current_balance = [_.current_balance for _ in world.factories if _.agent_id == entity.id][0] gap.append((current_balance - initial_balance) / initial_balance) rew -= np.mean(np.array(gap)) return rew def adversary_reward(self, agent, world): #TODO: keep the good agents near the intial funds # neg reward # pos reward # agent.init_f - agent.f rew = 0 return rew def observation(self, agent: Union[MyComponentsBasedAgent, MySCML2020Agent], world: Union[TrainWorld], seller=True): # get all observation, # callback: obrvation _obs = agent._get_obs(seller=seller) #2. Economic gap with others, extra information # economic_gaps = [] # # for entity in world.entities: # if entity is agent: continue # economic_gaps.append(entity.state.f - agent.state.f) # # economic_gaps = np.array(economic_gaps) #return np.concatenate(economic_gaps + o_m.flatten() + o_a + o_u_c + o_u_e + o_u_t + o_q_n.flatten() + o_t_c) # return np.concatenate((economic_gaps.flatten(), _obs)) return _obs def done(self, agent, world, seller=True): # callback of done # simulation is end if world.world_done: return True import ipdb # agent is brankrupt return [_.is_bankrupt for _ in world.factories if _.agent_id == agent.id][0]
[ "scml.scml2020.SCML2020World.generate", "scml.scml2020.is_system_agent", "drl_negotiation.core.TrainWorld", "numpy.array", "negmas.helpers.get_class" ]
[((1138, 1183), 'drl_negotiation.core.TrainWorld', 'TrainWorld', ([], {'configuration': 'world_configuration'}), '(configuration=world_configuration)\n', (1148, 1183), False, 'from drl_negotiation.core import TrainWorld, MySCML2020Agent\n'), ((1599, 1694), 'scml.scml2020.SCML2020World.generate', 'SCML2020World.generate', ([], {'agent_types': 'agent_types', 'agent_params': 'agent_params', 'n_steps': 'n_steps'}), '(agent_types=agent_types, agent_params=agent_params,\n n_steps=n_steps)\n', (1621, 1694), False, 'from scml.scml2020 import DecentralizingAgent, BuyCheapSellExpensiveAgent, SCML2020World, is_system_agent\n'), ((773, 837), 'scml.scml2020.SCML2020World.generate', 'SCML2020World.generate', ([], {'agent_types': 'agent_types', 'n_steps': 'n_steps'}), '(agent_types=agent_types, n_steps=n_steps)\n', (795, 837), False, 'from scml.scml2020 import DecentralizingAgent, BuyCheapSellExpensiveAgent, SCML2020World, is_system_agent\n'), ((932, 1063), 'scml.scml2020.SCML2020World.generate', 'SCML2020World.generate', ([], {'agent_types': "config['agent_types']", 'agent_params': "config['agent_params'][:-2]", 'n_steps': "config['n_steps']"}), "(agent_types=config['agent_types'], agent_params=\n config['agent_params'][:-2], n_steps=config['n_steps'])\n", (954, 1063), False, 'from scml.scml2020 import DecentralizingAgent, BuyCheapSellExpensiveAgent, SCML2020World, is_system_agent\n'), ((5546, 5559), 'numpy.array', 'np.array', (['gap'], {}), '(gap)\n', (5554, 5559), True, 'import numpy as np\n'), ((645, 666), 'negmas.helpers.get_class', 'get_class', (['agent_type'], {}), '(agent_type)\n', (654, 666), False, 'from negmas.helpers import get_class\n'), ((2523, 2550), 'scml.scml2020.is_system_agent', 'is_system_agent', (['_.agent_id'], {}), '(_.agent_id)\n', (2538, 2550), False, 'from scml.scml2020 import DecentralizingAgent, BuyCheapSellExpensiveAgent, SCML2020World, is_system_agent\n')]
# Copyright 2017 The TensorFlow Lattice Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CalibratedEtl tests.""" # Dependency imports import numpy as np from tensorflow_lattice.python.estimators import calibrated_etl from tensorflow_lattice.python.estimators import hparams as tfl_hparams from tensorflow_lattice.python.lib import keypoints_initialization from tensorflow_lattice.python.lib import test_data from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.feature_column import feature_column_lib from tensorflow.python.platform import test _NUM_KEYPOINTS = 50 class CalibratedEtlHParamsTest(test.TestCase): def testEmptyMonotonicLatticeRankExpectsError(self): hparams = tfl_hparams.CalibratedEtlHParams(feature_names=['x']) hparams.set_param('monotonic_num_lattices', 2) hparams.set_param('monotonic_lattice_size', 2) with self.assertRaisesRegexp( ValueError, 'Hyperparameter configuration cannot be used in the calibrated etl ' 'estimator.'): calibrated_etl.calibrated_etl_classifier(hparams=hparams) def testEmptyMonotonicLatticeSizeExpectsError(self): hparams = tfl_hparams.CalibratedEtlHParams(feature_names=['x']) hparams.set_param('monotonic_num_lattices', 2) hparams.set_param('monotonic_lattice_rank', 2) with self.assertRaisesRegexp( ValueError, 'Hyperparameter configuration cannot be used in the calibrated etl ' 'estimator.'): calibrated_etl.calibrated_etl_classifier(hparams=hparams) def testEmptyNonMonotonicLatticeRankExpectsError(self): hparams = tfl_hparams.CalibratedEtlHParams(feature_names=['x']) hparams.set_param('non_monotonic_num_lattices', 2) hparams.set_param('non_monotonic_lattice_size', 2) with self.assertRaisesRegexp( ValueError, 'Hyperparameter configuration cannot be used in the calibrated etl ' 'estimator.'): calibrated_etl.calibrated_etl_classifier(hparams=hparams) def testEmptyNonMonotonicLatticeSizeExpectsError(self): hparams = tfl_hparams.CalibratedEtlHParams(feature_names=['x']) hparams.set_param('non_monotonic_num_lattices', 2) hparams.set_param('non_monotonic_lattice_rank', 2) with self.assertRaisesRegexp( ValueError, 'Hyperparameter configuration cannot be used in the calibrated etl ' 'estimator.'): calibrated_etl.calibrated_etl_classifier(hparams=hparams) def testWrongLatticeRegularization(self): hparams = tfl_hparams.CalibratedEtlHParams(feature_names=['x']) hparams.set_param('non_monotonic_num_lattices', 2) hparams.set_param('non_monotonic_lattice_size', 2) hparams.set_param('nno_monotonic_lattice_rank', 2) hparams.set_feature_param('x', 'lattice_l1_reg', 0.1) hparams.set_feature_param('x', 'lattice_l2_reg', 0.1) hparams.set_feature_param('x', 'lattice_l1_torsion_reg', 0.1) hparams.set_feature_param('x', 'lattice_l1_torsion_reg', 0.1) with self.assertRaisesRegexp( ValueError, 'Hyperparameter configuration cannot be used in the calibrated etl ' 'estimator.'): calibrated_etl.calibrated_etl_classifier(hparams=hparams) class CalibratedEtlTest(test.TestCase): def setUp(self): super(CalibratedEtlTest, self).setUp() self._test_data = test_data.TestData() def _CalibratedEtlRegressor(self, feature_names, feature_columns, **hparams_args): def init_fn(): return keypoints_initialization.uniform_keypoints_for_signal( _NUM_KEYPOINTS, -1., 1., 0., 1.) hparams = tfl_hparams.CalibratedEtlHParams( feature_names, num_keypoints=_NUM_KEYPOINTS, monotonic_num_lattices=1, monotonic_lattice_rank=1, monotonic_lattice_size=2, non_monotonic_num_lattices=1, non_monotonic_lattice_rank=1, non_monotonic_lattice_size=2, **hparams_args) # Turn off monotonic calibrator. hparams.set_param('calibration_monotonic', None) hparams.set_param('learning_rate', 0.1) return calibrated_etl.calibrated_etl_regressor( feature_columns=feature_columns, hparams=hparams, keypoints_initializers_fn=init_fn) def _CalibratedEtlClassifier(self, feature_columns, **hparams_args): def init_fn(): return keypoints_initialization.uniform_keypoints_for_signal( _NUM_KEYPOINTS, -1., 1., 0., 1.) hparams = tfl_hparams.CalibratedEtlHParams( num_keypoints=_NUM_KEYPOINTS, monotonic_num_lattices=1, monotonic_lattice_rank=1, monotonic_lattice_size=2, non_monotonic_num_lattices=1, non_monotonic_lattice_rank=1, non_monotonic_lattice_size=2, **hparams_args) # Turn off monotonic calibrator. hparams.set_param('calibration_monotonic', None) hparams.set_param('learning_rate', 0.1) return calibrated_etl.calibrated_etl_classifier( feature_columns=feature_columns, hparams=hparams, keypoints_initializers_fn=init_fn) def testCalibratedEtlRegressorTraining1D(self): feature_columns = [ feature_column_lib.numeric_column('x'), ] estimator = self._CalibratedEtlRegressor( ['x'], feature_columns, interpolation_type='simplex') estimator.train(input_fn=self._test_data.oned_input_fn()) # Here we only check the successful evaluation. # Checking the actual number, accuracy, etc, makes the test too flaky. _ = estimator.evaluate(input_fn=self._test_data.oned_input_fn()) def testCalibratedEtlRegressorTraining2D(self): feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] estimator = self._CalibratedEtlRegressor( ['x0', 'x1'], feature_columns, interpolation_type='hypercube') estimator.train(input_fn=self._test_data.twod_input_fn()) # Here we only check the successful evaluation. # Checking the actual number, accuracy, etc, makes the test too flaky. _ = estimator.evaluate(input_fn=self._test_data.twod_input_fn()) def testCalibratedEtlRegressorTraining2DWithCalbrationRegularization(self): feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] estimator = self._CalibratedEtlRegressor( ['x0', 'x1'], feature_columns, interpolation_type='simplex', calibration_l1_reg=1e-2, calibration_l2_reg=1e-2, calibration_l1_laplacian_reg=0.05, calibration_l2_laplacian_reg=0.01) estimator.train(input_fn=self._test_data.twod_input_fn()) # Here we only check the successful evaluation. # Checking the actual number, accuracy, etc, makes the test too flaky. _ = estimator.evaluate(input_fn=self._test_data.twod_input_fn()) def testCalibratedEtlRegressorTraining2DWithLatticeRegularizer(self): feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] estimator = self._CalibratedEtlRegressor( ['x0', 'x1'], feature_columns, interpolation_type='simplex', lattice_l1_reg=1.0, lattice_l2_reg=1.0, lattice_l1_torsion_reg=1.0, lattice_l2_torsion_reg=1.0, lattice_l1_laplacian_reg=1.0, lattice_l2_laplacian_reg=1.0) estimator.train(input_fn=self._test_data.twod_input_fn()) results = estimator.evaluate(input_fn=self._test_data.twod_input_fn()) # We expect the worse result due to the calibration regularization. self.assertGreater(results['average_loss'], 3e-3) self.assertLess(results['average_loss'], 4e-2) def testCalibratedEtlRegressorTrainingMultiDimensionalFeature(self): feature_columns = [ feature_column_lib.numeric_column('x', shape=(2,)), ] estimator = self._CalibratedEtlRegressor(['x'], feature_columns) estimator.train(input_fn=self._test_data.multid_feature_input_fn()) results = estimator.evaluate( input_fn=self._test_data.multid_feature_input_fn()) self.assertLess(results['average_loss'], 1e-2) # Turn-off calibration for feature 'x', it should turn off for both # dimensions, and the results should get much worse. estimator = self._CalibratedEtlRegressor( ['x'], feature_columns, feature__x__num_keypoints=0) estimator.train(input_fn=self._test_data.multid_feature_input_fn()) results = estimator.evaluate( input_fn=self._test_data.multid_feature_input_fn()) self.assertGreater(results['average_loss'], 1e-2) def testCalibratedEtlClassifierTraining(self): feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] estimator = self._CalibratedEtlClassifier(feature_columns) estimator.train(input_fn=self._test_data.twod_classificer_input_fn()) results = estimator.evaluate( input_fn=self._test_data.twod_classificer_input_fn()) self.assertGreater(results['accuracy'], 0.97) def testCalibratedEtlClassifierTrainingWithCalibrationRegularizer(self): feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] estimator = self._CalibratedEtlClassifier( feature_columns, calibration_l1_reg=1e-2, calibration_l2_reg=1e-2, calibration_l1_laplacian_reg=1e-1, calibration_l2_laplacian_reg=1e-1, interpolation_type='hypercube') estimator.train(input_fn=self._test_data.twod_classificer_input_fn()) # Here we only check the successful evaluation. # Checking the actual number, accuracy, etc, makes the test too flaky. _ = estimator.evaluate( input_fn=self._test_data.twod_classificer_input_fn()) def testCalibratedEtlClassifierTrainingWithLatticeRegularizer(self): feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] estimator = self._CalibratedEtlClassifier( feature_columns, lattice_l1_reg=1.0, lattice_l2_reg=1.0, lattice_l1_torsion_reg=1.0, lattice_l2_torsion_reg=1.0, lattice_l1_laplacian_reg=1.0, lattice_l2_laplacian_reg=1.0, interpolation_type='hypercube') estimator.train(input_fn=self._test_data.twod_classificer_input_fn()) results = estimator.evaluate( input_fn=self._test_data.twod_classificer_input_fn()) # Due to regularizer, we expect the worse performance. self.assertLess(results['accuracy'], 0.97) self.assertGreater(results['accuracy'], 0.8) def testCalibratedEtlMonotonicClassifierTraining(self): # Construct the following training pair. # # Training: (x, y) # ([0., 0.], 0.0) # ([0., 1.], 1.0) # ([1., 0.], 1.0) # ([1., 1.], 0.0) # # which is not a monotonic function. Then check the forcing monotonicity # resulted in the following monotonicity or not. # f(0, 0) <= f(0, 1), f(0, 0) <= f(1, 0), f(0, 1) <= f(1, 1), # f(1, 0) < = f(1, 1). x0 = np.array([0.0, 0.0, 1.0, 1.0]) x1 = np.array([0.0, 1.0, 0.0, 1.0]) x_samples = {'x0': x0, 'x1': x1} training_y = np.array([[False], [True], [True], [False]]) train_input_fn = numpy_io.numpy_input_fn( x=x_samples, y=training_y, batch_size=4, num_epochs=1000, shuffle=False) test_input_fn = numpy_io.numpy_input_fn(x=x_samples, y=None, shuffle=False) # Define monotonic lattice classifier. feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] def init_fn(): return keypoints_initialization.uniform_keypoints_for_signal( 2, 0., 1., 0., 1.) hparams = tfl_hparams.CalibratedEtlHParams( num_keypoints=2, monotonic_num_lattices=2, monotonic_lattice_rank=2, monotonic_lattice_size=2) hparams.set_param('calibration_monotonic', +1) hparams.set_param('lattice_monotonic', True) hparams.set_param('learning_rate', 0.1) estimator = calibrated_etl.calibrated_etl_classifier( feature_columns=feature_columns, hparams=hparams, keypoints_initializers_fn=init_fn) estimator.train(input_fn=train_input_fn) predictions = [ results['logits'][0] for results in estimator.predict(input_fn=test_input_fn) ] self.assertEqual(len(predictions), 4) # Check monotonicity. Note that projection has its own precision, so we # add a small number. self.assertLess(predictions[0], predictions[1] + 1e-6) self.assertLess(predictions[0], predictions[2] + 1e-6) self.assertLess(predictions[1], predictions[3] + 1e-6) self.assertLess(predictions[2], predictions[3] + 1e-6) def testCalibratedEtlWithMissingTraining(self): # x0 is missing with it's own vertex: so it can take very different values, # while x1 is missing and calibrated, in this case to the middle of the # lattice. x0 = np.array([0., 0., 1., 1., -1., -1., 0., 1.]) x1 = np.array([0., 1., 0., 1., 0., 1., -1., -1.]) training_y = np.array([1., 3., 7., 11., 23., 27., 2., 9.]) x_samples = {'x0': x0, 'x1': x1} train_input_fn = numpy_io.numpy_input_fn( x=x_samples, y=training_y, batch_size=x0.shape[0], num_epochs=2000, shuffle=False) test_input_fn = numpy_io.numpy_input_fn( x=x_samples, y=training_y, shuffle=False) feature_columns = [ feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1'), ] def init_fn(): return keypoints_initialization.uniform_keypoints_for_signal( 2, 0., 1., 0., 1.) hparams = tfl_hparams.CalibratedEtlHParams( ['x0', 'x1'], num_keypoints=2, non_monotonic_num_lattices=5, non_monotonic_lattice_rank=2, non_monotonic_lattice_size=2, learning_rate=0.1, missing_input_value=-1.) estimator = calibrated_etl.calibrated_etl_regressor( feature_columns=feature_columns, hparams=hparams, keypoints_initializers_fn=init_fn) estimator.train(input_fn=train_input_fn) results = estimator.evaluate(input_fn=test_input_fn) self.assertLess(results['average_loss'], 0.1) if __name__ == '__main__': test.main()
[ "tensorflow.python.platform.test.main", "tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams", "tensorflow.python.feature_column.feature_column_lib.numeric_column", "tensorflow_lattice.python.lib.test_data.TestData", "tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier", "tensorflow_lattice.python.lib.keypoints_initialization.uniform_keypoints_for_signal", "numpy.array", "tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn", "tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_regressor" ]
[((14983, 14994), 'tensorflow.python.platform.test.main', 'test.main', ([], {}), '()\n', (14992, 14994), False, 'from tensorflow.python.platform import test\n'), ((1306, 1359), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'feature_names': "['x']"}), "(feature_names=['x'])\n", (1338, 1359), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((1750, 1803), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'feature_names': "['x']"}), "(feature_names=['x'])\n", (1782, 1803), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((2197, 2250), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'feature_names': "['x']"}), "(feature_names=['x'])\n", (2229, 2250), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((2652, 2705), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'feature_names': "['x']"}), "(feature_names=['x'])\n", (2684, 2705), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((3093, 3146), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'feature_names': "['x']"}), "(feature_names=['x'])\n", (3125, 3146), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((3906, 3926), 'tensorflow_lattice.python.lib.test_data.TestData', 'test_data.TestData', ([], {}), '()\n', (3924, 3926), False, 'from tensorflow_lattice.python.lib import test_data\n'), ((4189, 4463), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', (['feature_names'], {'num_keypoints': '_NUM_KEYPOINTS', 'monotonic_num_lattices': '(1)', 'monotonic_lattice_rank': '(1)', 'monotonic_lattice_size': '(2)', 'non_monotonic_num_lattices': '(1)', 'non_monotonic_lattice_rank': '(1)', 'non_monotonic_lattice_size': '(2)'}), '(feature_names, num_keypoints=\n _NUM_KEYPOINTS, monotonic_num_lattices=1, monotonic_lattice_rank=1,\n monotonic_lattice_size=2, non_monotonic_num_lattices=1,\n non_monotonic_lattice_rank=1, non_monotonic_lattice_size=2, **hparams_args)\n', (4221, 4463), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((4670, 4798), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_regressor', 'calibrated_etl.calibrated_etl_regressor', ([], {'feature_columns': 'feature_columns', 'hparams': 'hparams', 'keypoints_initializers_fn': 'init_fn'}), '(feature_columns=feature_columns,\n hparams=hparams, keypoints_initializers_fn=init_fn)\n', (4709, 4798), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((5038, 5296), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'num_keypoints': '_NUM_KEYPOINTS', 'monotonic_num_lattices': '(1)', 'monotonic_lattice_rank': '(1)', 'monotonic_lattice_size': '(2)', 'non_monotonic_num_lattices': '(1)', 'non_monotonic_lattice_rank': '(1)', 'non_monotonic_lattice_size': '(2)'}), '(num_keypoints=_NUM_KEYPOINTS,\n monotonic_num_lattices=1, monotonic_lattice_rank=1,\n monotonic_lattice_size=2, non_monotonic_num_lattices=1,\n non_monotonic_lattice_rank=1, non_monotonic_lattice_size=2, **hparams_args)\n', (5070, 5296), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((5496, 5625), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'feature_columns': 'feature_columns', 'hparams': 'hparams', 'keypoints_initializers_fn': 'init_fn'}), '(feature_columns=feature_columns,\n hparams=hparams, keypoints_initializers_fn=init_fn)\n', (5536, 5625), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((11721, 11751), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0, 1.0]'], {}), '([0.0, 0.0, 1.0, 1.0])\n', (11729, 11751), True, 'import numpy as np\n'), ((11761, 11791), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0, 1.0]'], {}), '([0.0, 1.0, 0.0, 1.0])\n', (11769, 11791), True, 'import numpy as np\n'), ((11846, 11890), 'numpy.array', 'np.array', (['[[False], [True], [True], [False]]'], {}), '([[False], [True], [True], [False]])\n', (11854, 11890), True, 'import numpy as np\n'), ((11913, 12014), 'tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn', 'numpy_io.numpy_input_fn', ([], {'x': 'x_samples', 'y': 'training_y', 'batch_size': '(4)', 'num_epochs': '(1000)', 'shuffle': '(False)'}), '(x=x_samples, y=training_y, batch_size=4, num_epochs\n =1000, shuffle=False)\n', (11936, 12014), False, 'from tensorflow.python.estimator.inputs import numpy_io\n'), ((12039, 12098), 'tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn', 'numpy_io.numpy_input_fn', ([], {'x': 'x_samples', 'y': 'None', 'shuffle': '(False)'}), '(x=x_samples, y=None, shuffle=False)\n', (12062, 12098), False, 'from tensorflow.python.estimator.inputs import numpy_io\n'), ((12403, 12534), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', ([], {'num_keypoints': '(2)', 'monotonic_num_lattices': '(2)', 'monotonic_lattice_rank': '(2)', 'monotonic_lattice_size': '(2)'}), '(num_keypoints=2, monotonic_num_lattices=2,\n monotonic_lattice_rank=2, monotonic_lattice_size=2)\n', (12435, 12534), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((12725, 12854), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'feature_columns': 'feature_columns', 'hparams': 'hparams', 'keypoints_initializers_fn': 'init_fn'}), '(feature_columns=feature_columns,\n hparams=hparams, keypoints_initializers_fn=init_fn)\n', (12765, 12854), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((13653, 13705), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0, 1.0, -1.0, -1.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0, 1.0, -1.0, -1.0, 0.0, 1.0])\n', (13661, 13705), True, 'import numpy as np\n'), ((13707, 13759), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, -1.0, -1.0]'], {}), '([0.0, 1.0, 0.0, 1.0, 0.0, 1.0, -1.0, -1.0])\n', (13715, 13759), True, 'import numpy as np\n'), ((13769, 13822), 'numpy.array', 'np.array', (['[1.0, 3.0, 7.0, 11.0, 23.0, 27.0, 2.0, 9.0]'], {}), '([1.0, 3.0, 7.0, 11.0, 23.0, 27.0, 2.0, 9.0])\n', (13777, 13822), True, 'import numpy as np\n'), ((13874, 13984), 'tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn', 'numpy_io.numpy_input_fn', ([], {'x': 'x_samples', 'y': 'training_y', 'batch_size': 'x0.shape[0]', 'num_epochs': '(2000)', 'shuffle': '(False)'}), '(x=x_samples, y=training_y, batch_size=x0.shape[0],\n num_epochs=2000, shuffle=False)\n', (13897, 13984), False, 'from tensorflow.python.estimator.inputs import numpy_io\n'), ((14042, 14107), 'tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn', 'numpy_io.numpy_input_fn', ([], {'x': 'x_samples', 'y': 'training_y', 'shuffle': '(False)'}), '(x=x_samples, y=training_y, shuffle=False)\n', (14065, 14107), False, 'from tensorflow.python.estimator.inputs import numpy_io\n'), ((14377, 14583), 'tensorflow_lattice.python.estimators.hparams.CalibratedEtlHParams', 'tfl_hparams.CalibratedEtlHParams', (["['x0', 'x1']"], {'num_keypoints': '(2)', 'non_monotonic_num_lattices': '(5)', 'non_monotonic_lattice_rank': '(2)', 'non_monotonic_lattice_size': '(2)', 'learning_rate': '(0.1)', 'missing_input_value': '(-1.0)'}), "(['x0', 'x1'], num_keypoints=2,\n non_monotonic_num_lattices=5, non_monotonic_lattice_rank=2,\n non_monotonic_lattice_size=2, learning_rate=0.1, missing_input_value=-1.0)\n", (14409, 14583), True, 'from tensorflow_lattice.python.estimators import hparams as tfl_hparams\n'), ((14649, 14777), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_regressor', 'calibrated_etl.calibrated_etl_regressor', ([], {'feature_columns': 'feature_columns', 'hparams': 'hparams', 'keypoints_initializers_fn': 'init_fn'}), '(feature_columns=feature_columns,\n hparams=hparams, keypoints_initializers_fn=init_fn)\n', (14688, 14777), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((1622, 1679), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'hparams': 'hparams'}), '(hparams=hparams)\n', (1662, 1679), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((2066, 2123), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'hparams': 'hparams'}), '(hparams=hparams)\n', (2106, 2123), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((2521, 2578), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'hparams': 'hparams'}), '(hparams=hparams)\n', (2561, 2578), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((2976, 3033), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'hparams': 'hparams'}), '(hparams=hparams)\n', (3016, 3033), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((3721, 3778), 'tensorflow_lattice.python.estimators.calibrated_etl.calibrated_etl_classifier', 'calibrated_etl.calibrated_etl_classifier', ([], {'hparams': 'hparams'}), '(hparams=hparams)\n', (3761, 3778), False, 'from tensorflow_lattice.python.estimators import calibrated_etl\n'), ((4076, 4170), 'tensorflow_lattice.python.lib.keypoints_initialization.uniform_keypoints_for_signal', 'keypoints_initialization.uniform_keypoints_for_signal', (['_NUM_KEYPOINTS', '(-1.0)', '(1.0)', '(0.0)', '(1.0)'], {}), '(_NUM_KEYPOINTS, -1.0,\n 1.0, 0.0, 1.0)\n', (4129, 4170), False, 'from tensorflow_lattice.python.lib import keypoints_initialization\n'), ((4925, 5019), 'tensorflow_lattice.python.lib.keypoints_initialization.uniform_keypoints_for_signal', 'keypoints_initialization.uniform_keypoints_for_signal', (['_NUM_KEYPOINTS', '(-1.0)', '(1.0)', '(0.0)', '(1.0)'], {}), '(_NUM_KEYPOINTS, -1.0,\n 1.0, 0.0, 1.0)\n', (4978, 5019), False, 'from tensorflow_lattice.python.lib import keypoints_initialization\n'), ((5730, 5768), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x"""'], {}), "('x')\n", (5763, 5768), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((6225, 6264), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (6258, 6264), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((6274, 6313), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (6307, 6313), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((6807, 6846), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (6840, 6846), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((6856, 6895), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (6889, 6895), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((7549, 7588), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (7582, 7588), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((7598, 7637), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (7631, 7637), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((8398, 8448), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x"""'], {'shape': '(2,)'}), "('x', shape=(2,))\n", (8431, 8448), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((9281, 9320), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (9314, 9320), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((9330, 9369), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (9363, 9369), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((9768, 9807), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (9801, 9807), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((9817, 9856), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (9850, 9856), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((10524, 10563), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (10557, 10563), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((10573, 10612), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (10606, 10612), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((12175, 12214), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (12208, 12214), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((12224, 12263), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (12257, 12263), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((12304, 12380), 'tensorflow_lattice.python.lib.keypoints_initialization.uniform_keypoints_for_signal', 'keypoints_initialization.uniform_keypoints_for_signal', (['(2)', '(0.0)', '(1.0)', '(0.0)', '(1.0)'], {}), '(2, 0.0, 1.0, 0.0, 1.0)\n', (12357, 12380), False, 'from tensorflow_lattice.python.lib import keypoints_initialization\n'), ((14149, 14188), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x0"""'], {}), "('x0')\n", (14182, 14188), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((14198, 14237), 'tensorflow.python.feature_column.feature_column_lib.numeric_column', 'feature_column_lib.numeric_column', (['"""x1"""'], {}), "('x1')\n", (14231, 14237), False, 'from tensorflow.python.feature_column import feature_column_lib\n'), ((14278, 14354), 'tensorflow_lattice.python.lib.keypoints_initialization.uniform_keypoints_for_signal', 'keypoints_initialization.uniform_keypoints_for_signal', (['(2)', '(0.0)', '(1.0)', '(0.0)', '(1.0)'], {}), '(2, 0.0, 1.0, 0.0, 1.0)\n', (14331, 14354), False, 'from tensorflow_lattice.python.lib import keypoints_initialization\n')]
from models import PatchCore from save_utils import saveModelPath import numpy import torch import warnings from torch import tensor from torchvision import transforms import json import numpy from PIL import Image, ImageFilter import os from torch.utils.data import DataLoader,TensorDataset warnings.filterwarnings("ignore") class train_patchcore(): def __init__(self,configPath,train_imgs_folder, resize=None,center_crop=None, f_coreset=.20,backbone_name="wide_resnet50_2", TimeStamp=None): self.configPath=configPath self.train_imgs_folder=train_imgs_folder self.resize=resize self.center_crop=center_crop self.f_coreset=f_coreset self.backbone_name=backbone_name self.TimeStamp=TimeStamp with open(configPath) as json_file: self.data = json.load(json_file) self.model=PatchCore( f_coreset=f_coreset, backbone_name=backbone_name, ) self.train_tar,self.train_path,self.model_path=saveModelPath(self.configPath,self.TimeStamp) IMAGENET_MEAN = tensor([.485, .456, .406]) IMAGENET_STD = tensor([.229, .224, .225]) transfoms_paras = [ transforms.ToTensor(), transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), ] if resize!=None: transfoms_paras.append(transforms.Resize(self.resize, interpolation=transforms.InterpolationMode.BICUBIC)) if center_crop!=None: transfoms_paras.append(transforms.CenterCrop(center_crop)) if self.data!=None: self.scaling_factor=self.data['scaling_factor'] self.median_blur_size=self.data['smooth'] if self.scaling_factor!=1: width = int(self.data['original_imgsz'][0]*self.scaling_factor) height = int(self.data['original_imgsz'][1]*self.scaling_factor) self.resize=[height,width] transfoms_paras.append(transforms.Resize(self.resize, interpolation=transforms.InterpolationMode.BICUBIC)) self.loader=transforms.Compose(transfoms_paras) def genTrainDS(self): train_ims = [] train_labels = [] for img_id in self.data['train_ids']: img_path = os.path.join(self.train_imgs_folder, img_id) train_im = Image.open(img_path).convert('RGB') if self.median_blur_size!=0: train_im = train_im.filter(ImageFilter.MedianFilter(size=self.median_blur_size)) print ('Applying median filter on training image with degree of '+ str(self.median_blur_size)) train_im = self.loader(train_im) train_label = tensor([0]) train_ims.append(train_im.numpy()) train_labels.append(train_label.numpy()) train_ims = numpy.array(train_ims) train_labels = numpy.array(train_labels) print ('Training Tensor Shape is' + str(train_ims.shape)) train_ims = torch.from_numpy(train_ims) train_labels = torch.from_numpy(train_labels) train_data = TensorDataset(train_ims,train_labels) train_ds = DataLoader(train_data) return train_ds def saveTrainConfig(self): self.data['configPath'] = self.configPath self.data['imgsz'] = self.resize self.data['center_crop'] = self.center_crop self.data['scaling_factor'] = self.scaling_factor self.data['train_imgs_folder'] = self.train_imgs_folder self.data['backbone_name'] = self.backbone_name self.data['TimeStamp'] = self.TimeStamp json_string = json.dumps(self.data) json_filePath = os.path.join(self.model_path,'training_config.json') with open(json_filePath, 'w') as outfile: outfile.write(json_string) def run(self): train_ds = self.genTrainDS() tobesaved = self.model.fit(train_ds) torch.save(tobesaved, self.train_tar) torch.save(self.model.state_dict(), self.train_path) self.saveTrainConfig()
[ "json.dumps", "torch.utils.data.TensorDataset", "torchvision.transforms.Normalize", "os.path.join", "torch.utils.data.DataLoader", "torchvision.transforms.Compose", "torchvision.transforms.CenterCrop", "PIL.ImageFilter.MedianFilter", "torch.from_numpy", "torchvision.transforms.Resize", "save_utils.saveModelPath", "json.load", "warnings.filterwarnings", "PIL.Image.open", "torch.save", "numpy.array", "models.PatchCore", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((295, 328), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (318, 328), False, 'import warnings\n'), ((923, 982), 'models.PatchCore', 'PatchCore', ([], {'f_coreset': 'f_coreset', 'backbone_name': 'backbone_name'}), '(f_coreset=f_coreset, backbone_name=backbone_name)\n', (932, 982), False, 'from models import PatchCore\n'), ((1099, 1145), 'save_utils.saveModelPath', 'saveModelPath', (['self.configPath', 'self.TimeStamp'], {}), '(self.configPath, self.TimeStamp)\n', (1112, 1145), False, 'from save_utils import saveModelPath\n'), ((1170, 1199), 'torch.tensor', 'tensor', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (1176, 1199), False, 'from torch import tensor\n'), ((1220, 1249), 'torch.tensor', 'tensor', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (1226, 1249), False, 'from torch import tensor\n'), ((2202, 2237), 'torchvision.transforms.Compose', 'transforms.Compose', (['transfoms_paras'], {}), '(transfoms_paras)\n', (2220, 2237), False, 'from torchvision import transforms\n'), ((2964, 2986), 'numpy.array', 'numpy.array', (['train_ims'], {}), '(train_ims)\n', (2975, 2986), False, 'import numpy\n'), ((3010, 3035), 'numpy.array', 'numpy.array', (['train_labels'], {}), '(train_labels)\n', (3021, 3035), False, 'import numpy\n'), ((3123, 3150), 'torch.from_numpy', 'torch.from_numpy', (['train_ims'], {}), '(train_ims)\n', (3139, 3150), False, 'import torch\n'), ((3174, 3204), 'torch.from_numpy', 'torch.from_numpy', (['train_labels'], {}), '(train_labels)\n', (3190, 3204), False, 'import torch\n'), ((3226, 3264), 'torch.utils.data.TensorDataset', 'TensorDataset', (['train_ims', 'train_labels'], {}), '(train_ims, train_labels)\n', (3239, 3264), False, 'from torch.utils.data import DataLoader, TensorDataset\n'), ((3283, 3305), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {}), '(train_data)\n', (3293, 3305), False, 'from torch.utils.data import DataLoader, TensorDataset\n'), ((3755, 3776), 'json.dumps', 'json.dumps', (['self.data'], {}), '(self.data)\n', (3765, 3776), False, 'import json\n'), ((3801, 3854), 'os.path.join', 'os.path.join', (['self.model_path', '"""training_config.json"""'], {}), "(self.model_path, 'training_config.json')\n", (3813, 3854), False, 'import os\n'), ((4057, 4094), 'torch.save', 'torch.save', (['tobesaved', 'self.train_tar'], {}), '(tobesaved, self.train_tar)\n', (4067, 4094), False, 'import torch\n'), ((882, 902), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (891, 902), False, 'import json\n'), ((1299, 1320), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1318, 1320), False, 'from torchvision import transforms\n'), ((1346, 1395), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['IMAGENET_MEAN', 'IMAGENET_STD'], {}), '(IMAGENET_MEAN, IMAGENET_STD)\n', (1366, 1395), False, 'from torchvision import transforms\n'), ((2392, 2436), 'os.path.join', 'os.path.join', (['self.train_imgs_folder', 'img_id'], {}), '(self.train_imgs_folder, img_id)\n', (2404, 2436), False, 'import os\n'), ((2830, 2841), 'torch.tensor', 'tensor', (['[0]'], {}), '([0])\n', (2836, 2841), False, 'from torch import tensor\n'), ((1479, 1566), 'torchvision.transforms.Resize', 'transforms.Resize', (['self.resize'], {'interpolation': 'transforms.InterpolationMode.BICUBIC'}), '(self.resize, interpolation=transforms.InterpolationMode.\n BICUBIC)\n', (1496, 1566), False, 'from torchvision import transforms\n'), ((1628, 1662), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['center_crop'], {}), '(center_crop)\n', (1649, 1662), False, 'from torchvision import transforms\n'), ((2097, 2184), 'torchvision.transforms.Resize', 'transforms.Resize', (['self.resize'], {'interpolation': 'transforms.InterpolationMode.BICUBIC'}), '(self.resize, interpolation=transforms.InterpolationMode.\n BICUBIC)\n', (2114, 2184), False, 'from torchvision import transforms\n'), ((2460, 2480), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (2470, 2480), False, 'from PIL import Image, ImageFilter\n'), ((2593, 2645), 'PIL.ImageFilter.MedianFilter', 'ImageFilter.MedianFilter', ([], {'size': 'self.median_blur_size'}), '(size=self.median_blur_size)\n', (2617, 2645), False, 'from PIL import Image, ImageFilter\n')]
import cv2 import numpy as np from .fs_access import FSAccess def read_image_file(fname_url): with FSAccess(fname_url, True) as image_f: img_buf = image_f.read() np_arr = np.frombuffer(img_buf, np.uint8) img = cv2.imdecode(np_arr, 0) return img def write_image_file(fname_url, img): np_arr = np.getbuffer(img) img_buf = cv2.imencode(os.path.splitext(fname_url)[1], np_arr) with FSAccess(fname_url, True, read=False) as image_f: image_f.write(img_buf)
[ "numpy.frombuffer", "cv2.imdecode", "numpy.getbuffer" ]
[((330, 347), 'numpy.getbuffer', 'np.getbuffer', (['img'], {}), '(img)\n', (342, 347), True, 'import numpy as np\n'), ((192, 224), 'numpy.frombuffer', 'np.frombuffer', (['img_buf', 'np.uint8'], {}), '(img_buf, np.uint8)\n', (205, 224), True, 'import numpy as np\n'), ((239, 262), 'cv2.imdecode', 'cv2.imdecode', (['np_arr', '(0)'], {}), '(np_arr, 0)\n', (251, 262), False, 'import cv2\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 11 14:03:30 2020 @author: acpotter """ #%% -- IMPORTS -- import sys sys.path.append("..") # import one subdirectory up in files # external packages import numpy as np import qiskit as qk import networkx as nx #import tenpy # custom things #import mps #%% class ParamCircuit(object): """ Parameterized circuit Circuit + parameters """ def __init__(self,circ,param_names): self.circ=circ self.param_names = param_names def bind_parameters(self,params): self.circ.bind_parameters(params) return self.circ # def bind_from_array(self,param_vals): # """ # input: param_vals, np.array of values, must be same length as self.param_names # """ # params = dict(zip(self.param_names,param_vals)) # return self.bind_from_array(params) class QKParamCircuit(ParamCircuit): """ ParamCircuit implemented with qiskit """ def __init__(self,circ,param_names): self.circ=circ self.param_names = param_names self.circuit_format='qiskit' def bind_parameters(self,params): cres = self.circ.bind_parameters(params) return cres def unitary(self,params): """ input: params = dictionary of qiskit circuit parameters output: returns unitary for circuit """ bound_circ = self.bind_parameters(params) simulator = qk.Aer.get_backend('unitary_simulator') result = qk.execute(bound_circ,simulator).result() u = result.get_unitary(bound_circ) return u # def bind_from_array(self,params): # """ # sets named parameters to particular values # input: # params: dictionary {parameter name: numerical value} # output: # circuit with parameters resolved # """ # return self.circ.bind_parameters(params) #%% -- ISOTENSOR CLASS -- class IsoTensor(object): """ node of an isometric tensor-network, generated by parameterized cirq unitary works equally for tensor network state (TNS) or operator (TNO); for TNS: physical register implicitly assumed to start from reference state: |00..0> Intention: circuit object intended to be easily adaptable to work equally with cirq, qiskit, etc... """ def __init__(self, name, # label for the tensor qregs, # listof quantum registers pcirc, # parameterized circuit object #param_names, # list of circuit parameter names (str's) meas_list=[], # list of tuples: (qreg, creg, measurement circuit) circuit_format:str='qiskit', # string specifying circuit type thermal = False, thermal_prob = 0 #the chance of flipping a physical site ): self.name=name self.qregs=qregs self.regdims = [2**len(reg) for reg in qregs] self.circ= pcirc.circ self.param_names = pcirc.param_names # self.param_names=param_names self.circuit_format=circuit_format self.meas_list=meas_list self.p =thermal_prob self.thermal = thermal def __str__(self): return self.name def __rep__(self): return self.name ## Resolve Circuit Parameters ## def resolve_circuit(self,params,include_measurements=True): """ resolves parameters in circuit inputs: params: dictionary of parameter names and values include_measurements, bool, whether or not to include measurement and reset outputs: resolved circuit """ if self.circuit_format == 'qiskit': cres = self.circ.bind_parameters(params) if include_measurements: for qreg,creg,mcirc,cbits in self.meas_list: cres = cres.combine(mcirc) cres.add_register(creg) # add the measurement circuit cres.measure(qreg,cbits) cres.reset(qreg) if self.thermal: #do a pre-measurement circuit to flip a site to |1> with prob. p pre_cir = qk.QuantumCircuit() for reg in self.qregs: pre_cir.add_register(reg) if include_measurements: for qreg,creg,mcirc,cbits in self.meas_list: pre_cir.add_register(creg) cdict = {} for i in range(len(self.qregs[0])):#need to match register to combine cdict['c_pre'+str(i)] = qk.ClassicalRegister(1,'c_pre'+str(i)) cres.add_register(cdict['c_pre'+str(i)]) pre_cir.add_register(cdict['c_pre'+str(i)]) pre_cir.rx(2*np.arcsin(np.sqrt(abs(self.p[i]))),self.qregs[0][i]) pre_cir.measure(self.qregs[0][i],cdict['c_pre'+str(i)]) pre_cir.reset(self.qregs[0][i]) pre_cir.x(self.qregs[0][i]).c_if(cdict['c_pre'+str(i)], 1) cres = pre_cir.combine(cres) return cres else: raise NotImplementedError() def bind_params(self,params): """ inputs: - params: dictionary {'name':value} for parameters in circuit outputs: - circuit with symbolic parameters set to numerical values """ if self.circuit_format == 'qiskit': return self.circ.bind_parameters(params) else: raise NotImplementedError() ## Compute unitaries ## def unitary(self,params): """ inputs: - params: dictionary {'name':value} for parameters in circuit outputs: - unitary for circuit, as numpy array with shape regdims (output legs),regdims (input legs) """ if self.circuit_format == 'qiskit': return self.unitary_qiskit(params) elif self.circuit_format == 'cirq': return self.unitary_cirq(params) else: raise NotImplementedError('only qiskit implemented') def unitary_qiskit(self,params): """ inputs: - params, dictionary {parameter:value} for parameters in circuit note: parameter key type depends on type of circuit for qiskit: parameter keys are qiskit circuit parameters for cirq: they are sympy symbols """ # setup unitary simulator and compute unitary bound_circ = self.circ.bind_parameters(params) simulator = qk.Aer.get_backend('unitary_simulator') result = qk.execute(bound_circ,simulator).result() u = result.get_unitary(bound_circ) # need to re-size and re-order to be ampatible with expected indexing # note: qiskit writes bases in opposite order of usual convention # e.g. for 3-qubit register: [q0,q1,q2], # the state 011 refers to: q0=1, q1=1, q2=0 u = u.reshape(self.regdims[::-1]+self.regdims[::-1]) # reshape as tensor nreg = len(self.qregs) old_order = list(range(2*nreg)) new_order = old_order.copy() new_order[0:nreg] = old_order[0:nreg][::-1] new_order[nreg::] = old_order[nreg::][::-1] u = np.moveaxis(u,old_order,new_order) return u def unitary_cirq(self,params): """ unitary constructor for cirq-based circuits """ qubit_order = [q for qreg in self.qregs for q in qreg] # order to return the qubit unitary # resolve the symbolic circuit parameters to numerical values resolver = cirq.ParamResolver(params) resolved_circuit = cirq.resolve_parameters(self.circuit, resolver) u = resolved_circuit.unitary(qubit_order = qubit_order) return u.reshape(self.regdims) # reshape as a multi-l #%% class IsoNetwork(object): """ NetworkX directed graph with: nodes = IsoTensors edges have list of qubits To Do: - add global measurement register names list - create to_qasm function that traverses the grapha and assembles together the qasm files for each node, adding the appropriate header and defining qubits and measurement registers one time in the beginning """ def __init__(self,nodes=[], edges=[], qregs=[], circuit_format='qiskit' ): """ nodes, list of IsoTensors edges, list of tuples (output node, input node, list of qubits passed along edge) qregs, list of qubit registers (for cirq: each qubit register is list of qubits, for qiskit, each qreg is a QuantumRegister object) cregs, list of classical registers # meas_dict, dictionary of classical registers to # hold measurement values for each node that gets measured # keys=MeasurementNode, values = list of tuples: # (qreg to be measured, creg that stores outcome, circuit to transform qubits to measurement basis) # note: keys of this define which nodes get measured param_assignments, dict with key = node, value = list of parameter objects for that node for qiskit: parameters are inbuilt circuit parameter for cirq: parameters are sympy symbols measurement_nodes, list of IsoTensors that get measured i.e. have at least one output leg that terminates in a measurement actual basis for measurement only specified at qasm output/simulator step """ self.circuit_format=circuit_format # construct graph and check that is a DAG # check for repeated node names self.graph = nx.DiGraph() self.graph.add_nodes_from(nodes) self.graph.add_edges_from(edges) # check that graph is directed & acyclic (DAG) if nx.algorithms.dag.is_directed_acyclic_graph(self.graph) != True: raise RuntimeError('Graph must be directed and acyclic') # store node information self.nodes = nodes self.qregs = qregs # self.creg_dict = creg_dict self.node_names = [node.name for node in nodes] if len(self.node_names) != len(set(self.node_names)): raise ValueError('Tensor nodes must have unique names') # store variational parameter info self.param_assignments = {} for node in nodes: self.param_assignments[node]=node.param_names # self.param_assignments = param_assignments # topologically sort nodes in order of execution self.sorted_nodes = [node for node in nx.topological_sort(self.graph)] ## Circuit Construction Methods ## def construct_circuit(self,param_dict,include_measurements=True): """ input: param_dict, dict of {parameter:value} output: circuit """ if self.circuit_format=='qiskit': return self.construct_cirquit_qiskit(param_dict,include_measurements) else: raise NotImplementedError def construct_cirquit_qiskit(self,param_dict,include_measurements=True): """ construct circuit for network using qiskit """ self.circ = qk.QuantumCircuit() # add quantum and classical registers for reg in self.qregs: self.circ.add_register(reg) #for reg in list(self.creg_dict.values()): self.circ.add_register(reg) for node in self.sorted_nodes: node_dict = {k:param_dict[k] for k in self.param_assignments[node]} node_circ = node.resolve_circuit(node_dict,include_measurements) self.circ = self.circ.combine(node_circ) return self.circ def to_qasm(self,param_dict): if self.circuit_format=='qiskit': return self.construct_circuit(param_dict).qasm() else: raise NotImplementedError() #%%
[ "sys.path.append", "numpy.moveaxis", "qiskit.QuantumCircuit", "qiskit.execute", "networkx.topological_sort", "networkx.algorithms.dag.is_directed_acyclic_graph", "networkx.DiGraph", "qiskit.Aer.get_backend" ]
[((140, 161), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (155, 161), False, 'import sys\n'), ((1513, 1552), 'qiskit.Aer.get_backend', 'qk.Aer.get_backend', (['"""unitary_simulator"""'], {}), "('unitary_simulator')\n", (1531, 1552), True, 'import qiskit as qk\n'), ((6841, 6880), 'qiskit.Aer.get_backend', 'qk.Aer.get_backend', (['"""unitary_simulator"""'], {}), "('unitary_simulator')\n", (6859, 6880), True, 'import qiskit as qk\n'), ((7544, 7580), 'numpy.moveaxis', 'np.moveaxis', (['u', 'old_order', 'new_order'], {}), '(u, old_order, new_order)\n', (7555, 7580), True, 'import numpy as np\n'), ((10105, 10117), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (10115, 10117), True, 'import networkx as nx\n'), ((11725, 11744), 'qiskit.QuantumCircuit', 'qk.QuantumCircuit', ([], {}), '()\n', (11742, 11744), True, 'import qiskit as qk\n'), ((10275, 10330), 'networkx.algorithms.dag.is_directed_acyclic_graph', 'nx.algorithms.dag.is_directed_acyclic_graph', (['self.graph'], {}), '(self.graph)\n', (10318, 10330), True, 'import networkx as nx\n'), ((1570, 1603), 'qiskit.execute', 'qk.execute', (['bound_circ', 'simulator'], {}), '(bound_circ, simulator)\n', (1580, 1603), True, 'import qiskit as qk\n'), ((4412, 4431), 'qiskit.QuantumCircuit', 'qk.QuantumCircuit', ([], {}), '()\n', (4429, 4431), True, 'import qiskit as qk\n'), ((6898, 6931), 'qiskit.execute', 'qk.execute', (['bound_circ', 'simulator'], {}), '(bound_circ, simulator)\n', (6908, 6931), True, 'import qiskit as qk\n'), ((11065, 11096), 'networkx.topological_sort', 'nx.topological_sort', (['self.graph'], {}), '(self.graph)\n', (11084, 11096), True, 'import networkx as nx\n')]
""" Script that trains Tensorflow singletask models on QM7 dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import deepchem as dc import numpy as np from qm7_datasets import load_qm7b_from_mat np.random.seed(123) qm7_tasks, datasets, transformers = load_qm7b_from_mat(split='stratified') train_dataset, valid_dataset, test_dataset = datasets fit_transformers = [dc.trans.CoulombFitTransformer(train_dataset)] regression_metric = [dc.metrics.Metric(dc.metrics.mean_absolute_error, mode="regression"), dc.metrics.Metric(dc.metrics.pearson_r2_score, mode="regression")] model = dc.models.TensorflowMultiTaskFitTransformRegressor( n_tasks=len(qm7_tasks), n_features=[23, 23], learning_rate=0.001 , momentum=.8, batch_size=25, weight_init_stddevs=[1/np.sqrt(400),1/np.sqrt(100),1/np.sqrt(100)], bias_init_consts=[0.,0.,0.], layer_sizes=[400,100,100], dropouts=[0.01,0.01,0.01], fit_transformers=fit_transformers, n_evals=10, seed=123) # Fit trained model model.fit(train_dataset, nb_epoch=50) model.save() train_scores = model.evaluate(train_dataset, regression_metric, transformers) print("Train scores [kcal/mol]") print(train_scores) valid_scores = model.evaluate(valid_dataset, regression_metric, transformers) print("Valid scores [kcal/mol]") print(valid_scores) test_scores = model.evaluate(test_dataset, regression_metric, transformers) print("Test scores [kcal/mol]") print(test_scores)
[ "numpy.random.seed", "deepchem.trans.CoulombFitTransformer", "qm7_datasets.load_qm7b_from_mat", "deepchem.metrics.Metric", "numpy.sqrt" ]
[((279, 298), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (293, 298), True, 'import numpy as np\n'), ((335, 373), 'qm7_datasets.load_qm7b_from_mat', 'load_qm7b_from_mat', ([], {'split': '"""stratified"""'}), "(split='stratified')\n", (353, 373), False, 'from qm7_datasets import load_qm7b_from_mat\n'), ((448, 493), 'deepchem.trans.CoulombFitTransformer', 'dc.trans.CoulombFitTransformer', (['train_dataset'], {}), '(train_dataset)\n', (478, 493), True, 'import deepchem as dc\n'), ((516, 584), 'deepchem.metrics.Metric', 'dc.metrics.Metric', (['dc.metrics.mean_absolute_error'], {'mode': '"""regression"""'}), "(dc.metrics.mean_absolute_error, mode='regression')\n", (533, 584), True, 'import deepchem as dc\n'), ((601, 666), 'deepchem.metrics.Metric', 'dc.metrics.Metric', (['dc.metrics.pearson_r2_score'], {'mode': '"""regression"""'}), "(dc.metrics.pearson_r2_score, mode='regression')\n", (618, 666), True, 'import deepchem as dc\n'), ((854, 866), 'numpy.sqrt', 'np.sqrt', (['(400)'], {}), '(400)\n', (861, 866), True, 'import numpy as np\n'), ((869, 881), 'numpy.sqrt', 'np.sqrt', (['(100)'], {}), '(100)\n', (876, 881), True, 'import numpy as np\n'), ((884, 896), 'numpy.sqrt', 'np.sqrt', (['(100)'], {}), '(100)\n', (891, 896), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import sys from PyQt5.QtWidgets import QVBoxLayout,QWidget from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import matplotlib.pyplot as plt import random import numpy as np class HistogramWidget(QWidget): def __init__(self, statNames=None, histograms=None, binWidth=None): super().__init__() self._statNames = statNames self._histograms = histograms self._binWidth = binWidth self.figure = plt.figure() self.canvas = FigureCanvas(self.figure) self.toolbar = NavigationToolbar(self.canvas, self) layout = QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.setLayout(layout) self.plot() def plot(self, statNames=None, histograms=None, binWidth=None): self._statNames = statNames self._histograms = histograms self._binWidth = binWidth self.figure.clear() if self._statNames is None or self._histograms is None or len(self._histograms) == 0: return ax = self.figure.add_subplot(111) ax.set_title("Histograms") legend = [] for i in range(len(self._statNames)): label = self._statNames[i] values = self._histograms[i] first_nonzero_index = next((i for i, x in enumerate(values) if x!=0), None) last_nonzero_index = next((len(values) - idx for idx, item in enumerate(reversed(values), 1) if item), None) bins = [j for j in range((first_nonzero_index-10000), last_nonzero_index-10000)] values = values[first_nonzero_index:last_nonzero_index] # this is for merging bins according to bin width mergedValues = [sum(values[i:i + self._binWidth]) for i in range(0, len(values), self._binWidth)] mergedBins = [bins[i]/10 for i in range(0, len(bins), self._binWidth)] left, right = mergedBins[:-1], mergedBins[1:] X = np.array([left, right]).T.flatten() X = np.append(X, mergedBins[len(mergedBins)-1]) Y = np.array([mergedValues, mergedValues]).T.flatten()[:-1] legend.append(label) ax.plot(X, Y) ax.legend(legend) self.canvas.draw()
[ "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "PyQt5.QtWidgets.QVBoxLayout", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.backends.backend_qt5agg.NavigationToolbar2QT" ]
[((584, 596), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (594, 596), True, 'import matplotlib.pyplot as plt\n'), ((619, 644), 'matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg', 'FigureCanvas', (['self.figure'], {}), '(self.figure)\n', (631, 644), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\n'), ((668, 704), 'matplotlib.backends.backend_qt5agg.NavigationToolbar2QT', 'NavigationToolbar', (['self.canvas', 'self'], {}), '(self.canvas, self)\n', (685, 704), True, 'from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar\n'), ((722, 735), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (733, 735), False, 'from PyQt5.QtWidgets import QVBoxLayout, QWidget\n'), ((2109, 2132), 'numpy.array', 'np.array', (['[left, right]'], {}), '([left, right])\n', (2117, 2132), True, 'import numpy as np\n'), ((2221, 2259), 'numpy.array', 'np.array', (['[mergedValues, mergedValues]'], {}), '([mergedValues, mergedValues])\n', (2229, 2259), True, 'import numpy as np\n')]
"""Script containing the abstract policy class.""" import numpy as np import tensorflow as tf from hbaselines.utils.tf_util import get_trainable_vars from hbaselines.utils.tf_util import get_target_updates class ActorCriticPolicy(object): """Base Actor Critic Policy. Attributes ---------- sess : tf.compat.v1.Session the current TensorFlow session ob_space : gym.spaces.* the observation space of the environment ac_space : gym.spaces.* the action space of the environment co_space : gym.spaces.* the context space of the environment buffer_size : int the max number of transitions to store batch_size : int SGD batch size actor_lr : float actor learning rate critic_lr : float critic learning rate verbose : int the verbosity level: 0 none, 1 training information, 2 tensorflow debug tau : float target update rate gamma : float discount factor layer_norm : bool enable layer normalisation layers : list of int or None the size of the Neural network for the policy act_fun : tf.nn.* the activation function to use in the neural network use_huber : bool specifies whether to use the huber distance function as the loss for the critic. If set to False, the mean-squared error metric is used instead """ def __init__(self, sess, ob_space, ac_space, co_space, buffer_size, batch_size, actor_lr, critic_lr, verbose, tau, gamma, layer_norm, layers, act_fun, use_huber): """Instantiate the base policy object. Parameters ---------- sess : tf.compat.v1.Session the current TensorFlow session ob_space : gym.spaces.* the observation space of the environment ac_space : gym.spaces.* the action space of the environment co_space : gym.spaces.* the context space of the environment buffer_size : int the max number of transitions to store batch_size : int SGD batch size actor_lr : float actor learning rate critic_lr : float critic learning rate verbose : int the verbosity level: 0 none, 1 training information, 2 tensorflow debug tau : float target update rate gamma : float discount factor layer_norm : bool enable layer normalisation layers : list of int or None the size of the Neural network for the policy act_fun : tf.nn.* the activation function to use in the neural network use_huber : bool specifies whether to use the huber distance function as the loss for the critic. If set to False, the mean-squared error metric is used instead """ self.sess = sess self.ob_space = ob_space self.ac_space = ac_space self.co_space = co_space self.buffer_size = buffer_size self.batch_size = batch_size self.actor_lr = actor_lr self.critic_lr = critic_lr self.verbose = verbose self.layers = layers self.tau = tau self.gamma = gamma self.layer_norm = layer_norm self.act_fun = act_fun self.use_huber = use_huber print(locals()) def initialize(self): """Initialize the policy. This is used at the beginning of training by the algorithm, after the model parameters have been initialized. """ raise NotImplementedError def update(self, update_actor=True, **kwargs): """Perform a gradient update step. Parameters ---------- update_actor : bool specifies whether to update the actor policy. The critic policy is still updated if this value is set to False. Returns ------- float critic loss float actor loss """ raise NotImplementedError def get_action(self, obs, context, apply_noise, random_actions, env_num=0): """Call the actor methods to compute policy actions. Parameters ---------- obs : array_like the observation context : array_like or None the contextual term. Set to None if no context is provided by the environment. apply_noise : bool whether to add Gaussian noise to the output of the actor. Defaults to False random_actions : bool if set to True, actions are sampled randomly from the action space instead of being computed by the policy. This is used for exploration purposes. env_num : int the environment number. Used to handle situations when multiple parallel environments are being used. Returns ------- array_like computed action by the policy """ raise NotImplementedError def store_transition(self, obs0, context0, action, reward, obs1, context1, done, is_final_step, env_num=0, evaluate=False): """Store a transition in the replay buffer. Parameters ---------- obs0 : array_like the last observation context0 : array_like or None the last contextual term. Set to None if no context is provided by the environment. action : array_like the action reward : float the reward obs1 : array_like the current observation context1 : array_like or None the current contextual term. Set to None if no context is provided by the environment. done : float is the episode done is_final_step : bool whether the time horizon was met in the step corresponding to the current sample. This is used by the TD3 algorithm to augment the done mask. env_num : int the environment number. Used to handle situations when multiple parallel environments are being used. evaluate : bool whether the sample is being provided by the evaluation environment. If so, the data is not stored in the replay buffer. """ raise NotImplementedError def get_td_map(self): """Return dict map for the summary (to be run in the algorithm).""" raise NotImplementedError @staticmethod def _get_obs(obs, context, axis=0): """Return the processed observation. If the contextual term is not None, this will look as follows: ----------------- processed_obs = | obs | context | ----------------- Otherwise, this method simply returns the observation. Parameters ---------- obs : array_like the original observation context : array_like or None the contextual term. Set to None if no context is provided by the environment. axis : int the axis to concatenate the observations and contextual terms by Returns ------- array_like the processed observation """ if context is not None and context[0] is not None: context = context.flatten() if axis == 0 else context obs = np.concatenate((obs, context), axis=axis) return obs @staticmethod def _get_ob_dim(ob_space, co_space): """Return the processed observation dimension. If the context space is not None, it is included in the computation of this term. Parameters ---------- ob_space : gym.spaces.* the observation space of the environment co_space : gym.spaces.* the context space of the environment Returns ------- tuple the true observation dimension """ ob_dim = ob_space.shape if co_space is not None: ob_dim = tuple(map(sum, zip(ob_dim, co_space.shape))) return ob_dim @staticmethod def _setup_target_updates(model_scope, target_scope, scope, tau, verbose): """Create the soft and initial target updates. The initial model parameters are assumed to be stored under the scope name "model", while the target policy parameters are assumed to be under the scope name "target". If an additional outer scope was provided when creating the policies, they can be passed under the `scope` parameter. Parameters ---------- model_scope : str the scope of the model parameters target_scope : str the scope of the target parameters scope : str or None the outer scope, set to None if not available tau : float target update rate verbose : int the verbosity level: 0 none, 1 training information, 2 tensorflow debug Returns ------- tf.Operation initial target updates, to match the target with the model tf.Operation soft target update operations """ if scope is not None: model_scope = scope + '/' + model_scope target_scope = scope + '/' + target_scope return get_target_updates( get_trainable_vars(model_scope), get_trainable_vars(target_scope), tau, verbose) @staticmethod def _remove_fingerprint(val, ob_dim, fingerprint_dim, additional_dim): """Remove the fingerprint from the input. This is a hacky procedure to remove the fingerprint elements from the computation. The fingerprint elements are the last few elements of the observation dimension, before any additional concatenated observations (e.g. contexts or actions). Parameters ---------- val : tf.Variable the original input ob_dim : int number of environmental observation elements fingerprint_dim : int number of fingerprint elements additional_dim : int number of additional elements that were added to the input variable Returns ------- tf.Variable the input with the fingerprints zeroed out """ return val * tf.constant([1.0] * (ob_dim - fingerprint_dim) + [0.0] * fingerprint_dim + [1.0] * additional_dim)
[ "hbaselines.utils.tf_util.get_trainable_vars", "tensorflow.constant", "numpy.concatenate" ]
[((7880, 7921), 'numpy.concatenate', 'np.concatenate', (['(obs, context)'], {'axis': 'axis'}), '((obs, context), axis=axis)\n', (7894, 7921), True, 'import numpy as np\n'), ((9920, 9951), 'hbaselines.utils.tf_util.get_trainable_vars', 'get_trainable_vars', (['model_scope'], {}), '(model_scope)\n', (9938, 9951), False, 'from hbaselines.utils.tf_util import get_trainable_vars\n'), ((9965, 9997), 'hbaselines.utils.tf_util.get_trainable_vars', 'get_trainable_vars', (['target_scope'], {}), '(target_scope)\n', (9983, 9997), False, 'from hbaselines.utils.tf_util import get_trainable_vars\n'), ((10939, 11042), 'tensorflow.constant', 'tf.constant', (['([1.0] * (ob_dim - fingerprint_dim) + [0.0] * fingerprint_dim + [1.0] *\n additional_dim)'], {}), '([1.0] * (ob_dim - fingerprint_dim) + [0.0] * fingerprint_dim + \n [1.0] * additional_dim)\n', (10950, 11042), True, 'import tensorflow as tf\n')]
import numpy as np import opt_prob import scipy.optimize # -- problem setup name = '2.4 GOLDPR' problem = opt_prob.Cons(name) def cns(x): g = -1.0*np.array(problem.cns(x)) return g.tolist() # -- start optimization x0 = ((np.array(problem.lb) + np.array(problem.ub)) / 2.0).tolist() bounds = [] for lb_i, ub_i in zip(problem.lb, problem.ub): bounds.append((lb_i, ub_i)) ineq_cons = {'type':'ineq', 'fun': cns} method = 'SLSQP' options = {'disp': True} res = scipy.optimize.minimize(problem.obj, x0, method=method, bounds=bounds, constraints=ineq_cons, options=options) print(res)
[ "numpy.array", "opt_prob.Cons" ]
[((108, 127), 'opt_prob.Cons', 'opt_prob.Cons', (['name'], {}), '(name)\n', (121, 127), False, 'import opt_prob\n'), ((234, 254), 'numpy.array', 'np.array', (['problem.lb'], {}), '(problem.lb)\n', (242, 254), True, 'import numpy as np\n'), ((257, 277), 'numpy.array', 'np.array', (['problem.ub'], {}), '(problem.ub)\n', (265, 277), True, 'import numpy as np\n')]
"""Initialisation procedures.""" # pylint: disable=import-outside-toplevel import numpy as np import scipy.integrate as sci import probnum.filtsmooth as pnfs import probnum.statespace as pnss from probnum import randvars # In the initialisation-via-RK function below, this value is added to the marginal stds of the initial derivatives that are known. # If we put in zero, there are linalg errors (because a zero-cov RV is conditioned on a dirac likelihood). # This value is chosen such that its square-root is a really small damping factor). SMALL_VALUE = 1e-28 def initialize_odefilter_with_rk( f, y0, t0, prior, initrv, df=None, h0=1e-2, method="DOP853" ): r"""Initialize an ODE filter by fitting the prior process to a few steps of an approximate ODE solution computed with Scipy's RK. It goes as follows: 1. The ODE integration problem is set up on the interval ``[t0, t0 + (2*order+1)*h0]`` and solved with a call to ``scipy.integrate.solve_ivp``. The solver is uses adaptive steps with ``atol=rtol=1e-12``, but is forced to pass through the events ``(t0, t0+h0, t0 + 2*h0, ..., t0 + (2*order+1)*h0)``. The result is a vector of time points and states, with at least ``(2*order+1)``. Potentially, the adaptive steps selected many more steps, but because of the events, fewer steps cannot have happened. 2. A prescribed prior is fitted to the first ``(2*order+1)`` (t, y) pairs of the solution. ``order`` is the order of the prior. 3. The value of the resulting posterior at time ``t=t0`` is an estimate of the state and all its derivatives. The resulting marginal standard deviations estimate the error. This random variable is returned. Parameters ---------- f ODE vector field. y0 Initial value. t0 Initial time point. prior Prior distribution used for the ODE solver. For instance an integrated Brownian motion prior (``IBM``). initrv Initial random variable. df Jacobian of the ODE vector field. Optional. If specified, more components of the result will be exact. h0 Maximum step-size to use for computing the approximate ODE solution. The smaller, the more accurate, but also, the smaller, the less stable. The best value here depends on the ODE problem, and probably the chosen method. Optional. Default is ``1e-2``. method Which solver to use. This is communicated as a string that is compatible with ``scipy.integrate.solve_ivp(..., method=method)``. Optional. Default is `DOP853`. Returns ------- Normal Estimated (improved) initial random variable. Compatible with the specified prior. Examples -------- >>> from dataclasses import astuple >>> from probnum.randvars import Normal >>> from probnum.statespace import IBM >>> from probnum.problems.zoo.diffeq import vanderpol Compute the initial values of the van-der-Pol problem as follows >>> f, t0, tmax, y0, df, *_ = astuple(vanderpol()) >>> print(y0) [2. 0.] >>> prior = IBM(ordint=3, spatialdim=2) >>> initrv = Normal(mean=np.zeros(prior.dimension), cov=np.eye(prior.dimension)) >>> improved_initrv = initialize_odefilter_with_rk(f, y0, t0, prior=prior, initrv=initrv, df=df) >>> print(prior.proj2coord(0) @ improved_initrv.mean) [2. 0.] >>> print(np.round(improved_initrv.mean, 1)) [ 2. 0. -2. 58.2 0. -2. 60. -1745.7] >>> print(np.round(np.log10(improved_initrv.std), 1)) [-13.8 -11.3 -9. -1.5 -13.8 -11.3 -9. -1.5] """ y0 = np.asarray(y0) ode_dim = y0.shape[0] if y0.ndim > 0 else 1 order = prior.ordint proj_to_y = prior.proj2coord(0) zeros_shift = np.zeros(ode_dim) zeros_cov = np.zeros((ode_dim, ode_dim)) measmod = pnss.DiscreteLTIGaussian( proj_to_y, zeros_shift, zeros_cov, proc_noise_cov_cholesky=zeros_cov, forward_implementation="sqrt", backward_implementation="sqrt", ) # order + 1 would suffice in theory, 2*order + 1 is for good measure # (the "+1" is a safety factor for order=1) num_steps = 2 * order + 1 t_eval = np.arange(t0, t0 + (num_steps + 1) * h0, h0) sol = sci.solve_ivp( f, (t0, t0 + (num_steps + 1) * h0), y0=y0, atol=1e-12, rtol=1e-12, t_eval=t_eval, method=method, ) ts = sol.t[:num_steps] ys = sol.y[:, :num_steps].T initmean = initrv.mean.copy() initmean[0 :: (order + 1)] = y0 initmean[1 :: (order + 1)] = f(t0, y0) initcov_diag = np.diag(initrv.cov).copy() initcov_diag[0 :: (order + 1)] = SMALL_VALUE initcov_diag[1 :: (order + 1)] = SMALL_VALUE if df is not None: if order > 1: initmean[2 :: (order + 1)] = df(t0, y0) @ f(t0, y0) initcov_diag[2 :: (order + 1)] = SMALL_VALUE initcov = np.diag(initcov_diag) initcov_cholesky = np.diag(np.sqrt(initcov_diag)) initrv = randvars.Normal(initmean, initcov, cov_cholesky=initcov_cholesky) kalman = pnfs.Kalman(prior, measmod, initrv) out = kalman.filtsmooth(ys, ts) estimated_initrv = out.state_rvs[0] return estimated_initrv def initialize_odefilter_with_taylormode(f, y0, t0, prior, initrv): """Initialize an ODE filter with Taylor-mode automatic differentiation. This requires JAX. For an explanation of what happens ``under the hood``, see [1]_. References ---------- .. [1] <NAME>. and <NAME>., Stable implementation of probabilistic ODE solvers, *arXiv:2012.10106*, 2020. The implementation is inspired by the implementation in https://github.com/jacobjinkelly/easy-neural-ode/blob/master/latent_ode.py Parameters ---------- f ODE vector field. y0 Initial value. t0 Initial time point. prior Prior distribution used for the ODE solver. For instance an integrated Brownian motion prior (``IBM``). initrv Initial random variable. Returns ------- Normal Estimated initial random variable. Compatible with the specified prior. Examples -------- >>> import sys, pytest >>> if sys.platform.startswith('win'): ... pytest.skip('this doctest does not work on Windows') >>> from dataclasses import astuple >>> from probnum.randvars import Normal >>> from probnum.problems.zoo.diffeq import threebody_jax, vanderpol_jax >>> from probnum.statespace import IBM Compute the initial values of the restricted three-body problem as follows >>> f, t0, tmax, y0, df, *_ = astuple(threebody_jax()) >>> print(y0) [ 0.994 0. 0. -2.00158511] >>> prior = IBM(ordint=3, spatialdim=4) >>> initrv = Normal(mean=np.zeros(prior.dimension), cov=np.eye(prior.dimension)) >>> improved_initrv = initialize_odefilter_with_taylormode(f, y0, t0, prior, initrv) >>> print(prior.proj2coord(0) @ improved_initrv.mean) [ 0.994 0. 0. -2.00158511] >>> print(improved_initrv.mean) [ 9.94000000e-01 0.00000000e+00 -3.15543023e+02 0.00000000e+00 0.00000000e+00 -2.00158511e+00 0.00000000e+00 9.99720945e+04 0.00000000e+00 -3.15543023e+02 0.00000000e+00 6.39028111e+07 -2.00158511e+00 0.00000000e+00 9.99720945e+04 0.00000000e+00] Compute the initial values of the van-der-Pol oscillator as follows >>> f, t0, tmax, y0, df, *_ = astuple(vanderpol_jax()) >>> print(y0) [2. 0.] >>> prior = IBM(ordint=3, spatialdim=2) >>> initrv = Normal(mean=np.zeros(prior.dimension), cov=np.eye(prior.dimension)) >>> improved_initrv = initialize_odefilter_with_taylormode(f, y0, t0, prior, initrv) >>> print(prior.proj2coord(0) @ improved_initrv.mean) [2. 0.] >>> print(improved_initrv.mean) [ 2. 0. -2. 60. 0. -2. 60. -1798.] >>> print(improved_initrv.std) [0. 0. 0. 0. 0. 0. 0. 0.] """ try: import jax.numpy as jnp from jax.config import config from jax.experimental.jet import jet config.update("jax_enable_x64", True) except ImportError as err: raise ImportError( "Cannot perform Taylor-mode initialisation without optional " "dependencies jax and jaxlib. Try installing them via `pip install jax jaxlib`." ) from err order = prior.ordint def total_derivative(z_t): """Total derivative.""" z, t = jnp.reshape(z_t[:-1], z_shape), z_t[-1] dz = jnp.ravel(f(t, z)) dt = jnp.array([1.0]) dz_t = jnp.concatenate((dz, dt)) return dz_t z_shape = y0.shape z_t = jnp.concatenate((jnp.ravel(y0), jnp.array([t0]))) derivs = [] derivs.extend(y0) if order == 0: all_derivs = pnss.Integrator._convert_derivwise_to_coordwise( np.asarray(jnp.array(derivs)), ordint=0, spatialdim=len(y0) ) return randvars.Normal( np.asarray(all_derivs), cov=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), cov_cholesky=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), ) (dy0, [*yns]) = jet(total_derivative, (z_t,), ((jnp.ones_like(z_t),),)) derivs.extend(dy0[:-1]) if order == 1: all_derivs = pnss.Integrator._convert_derivwise_to_coordwise( np.asarray(jnp.array(derivs)), ordint=1, spatialdim=len(y0) ) return randvars.Normal( np.asarray(all_derivs), cov=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), cov_cholesky=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), ) for _ in range(1, order): (dy0, [*yns]) = jet(total_derivative, (z_t,), ((dy0, *yns),)) derivs.extend(yns[-2][:-1]) all_derivs = pnss.Integrator._convert_derivwise_to_coordwise( jnp.array(derivs), ordint=order, spatialdim=len(y0) ) return randvars.Normal( np.asarray(all_derivs), cov=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), cov_cholesky=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), )
[ "jax.config.config.update", "jax.numpy.array", "jax.numpy.ones_like", "jax.numpy.reshape", "jax.experimental.jet.jet", "probnum.randvars.Normal", "jax.numpy.concatenate", "numpy.asarray", "scipy.integrate.solve_ivp", "numpy.zeros", "numpy.arange", "jax.numpy.ravel", "numpy.diag", "probnum.statespace.DiscreteLTIGaussian", "probnum.filtsmooth.Kalman", "numpy.sqrt" ]
[((3620, 3634), 'numpy.asarray', 'np.asarray', (['y0'], {}), '(y0)\n', (3630, 3634), True, 'import numpy as np\n'), ((3762, 3779), 'numpy.zeros', 'np.zeros', (['ode_dim'], {}), '(ode_dim)\n', (3770, 3779), True, 'import numpy as np\n'), ((3796, 3824), 'numpy.zeros', 'np.zeros', (['(ode_dim, ode_dim)'], {}), '((ode_dim, ode_dim))\n', (3804, 3824), True, 'import numpy as np\n'), ((3839, 4004), 'probnum.statespace.DiscreteLTIGaussian', 'pnss.DiscreteLTIGaussian', (['proj_to_y', 'zeros_shift', 'zeros_cov'], {'proc_noise_cov_cholesky': 'zeros_cov', 'forward_implementation': '"""sqrt"""', 'backward_implementation': '"""sqrt"""'}), "(proj_to_y, zeros_shift, zeros_cov,\n proc_noise_cov_cholesky=zeros_cov, forward_implementation='sqrt',\n backward_implementation='sqrt')\n", (3863, 4004), True, 'import probnum.statespace as pnss\n'), ((4217, 4261), 'numpy.arange', 'np.arange', (['t0', '(t0 + (num_steps + 1) * h0)', 'h0'], {}), '(t0, t0 + (num_steps + 1) * h0, h0)\n', (4226, 4261), True, 'import numpy as np\n'), ((4272, 4387), 'scipy.integrate.solve_ivp', 'sci.solve_ivp', (['f', '(t0, t0 + (num_steps + 1) * h0)'], {'y0': 'y0', 'atol': '(1e-12)', 'rtol': '(1e-12)', 't_eval': 't_eval', 'method': 'method'}), '(f, (t0, t0 + (num_steps + 1) * h0), y0=y0, atol=1e-12, rtol=\n 1e-12, t_eval=t_eval, method=method)\n', (4285, 4387), True, 'import scipy.integrate as sci\n'), ((4947, 4968), 'numpy.diag', 'np.diag', (['initcov_diag'], {}), '(initcov_diag)\n', (4954, 4968), True, 'import numpy as np\n'), ((5036, 5101), 'probnum.randvars.Normal', 'randvars.Normal', (['initmean', 'initcov'], {'cov_cholesky': 'initcov_cholesky'}), '(initmean, initcov, cov_cholesky=initcov_cholesky)\n', (5051, 5101), False, 'from probnum import randvars\n'), ((5115, 5150), 'probnum.filtsmooth.Kalman', 'pnfs.Kalman', (['prior', 'measmod', 'initrv'], {}), '(prior, measmod, initrv)\n', (5126, 5150), True, 'import probnum.filtsmooth as pnfs\n'), ((5000, 5021), 'numpy.sqrt', 'np.sqrt', (['initcov_diag'], {}), '(initcov_diag)\n', (5007, 5021), True, 'import numpy as np\n'), ((8173, 8210), 'jax.config.config.update', 'config.update', (['"""jax_enable_x64"""', '(True)'], {}), "('jax_enable_x64', True)\n", (8186, 8210), False, 'from jax.config import config\n'), ((8645, 8661), 'jax.numpy.array', 'jnp.array', (['[1.0]'], {}), '([1.0])\n', (8654, 8661), True, 'import jax.numpy as jnp\n'), ((8677, 8702), 'jax.numpy.concatenate', 'jnp.concatenate', (['(dz, dt)'], {}), '((dz, dt))\n', (8692, 8702), True, 'import jax.numpy as jnp\n'), ((9773, 9818), 'jax.experimental.jet.jet', 'jet', (['total_derivative', '(z_t,)', '((dy0, *yns),)'], {}), '(total_derivative, (z_t,), ((dy0, *yns),))\n', (9776, 9818), False, 'from jax.experimental.jet import jet\n'), ((9930, 9947), 'jax.numpy.array', 'jnp.array', (['derivs'], {}), '(derivs)\n', (9939, 9947), True, 'import jax.numpy as jnp\n'), ((10025, 10047), 'numpy.asarray', 'np.asarray', (['all_derivs'], {}), '(all_derivs)\n', (10035, 10047), True, 'import numpy as np\n'), ((4640, 4659), 'numpy.diag', 'np.diag', (['initrv.cov'], {}), '(initrv.cov)\n', (4647, 4659), True, 'import numpy as np\n'), ((8560, 8590), 'jax.numpy.reshape', 'jnp.reshape', (['z_t[:-1]', 'z_shape'], {}), '(z_t[:-1], z_shape)\n', (8571, 8590), True, 'import jax.numpy as jnp\n'), ((8774, 8787), 'jax.numpy.ravel', 'jnp.ravel', (['y0'], {}), '(y0)\n', (8783, 8787), True, 'import jax.numpy as jnp\n'), ((8789, 8804), 'jax.numpy.array', 'jnp.array', (['[t0]'], {}), '([t0])\n', (8798, 8804), True, 'import jax.numpy as jnp\n'), ((9063, 9085), 'numpy.asarray', 'np.asarray', (['all_derivs'], {}), '(all_derivs)\n', (9073, 9085), True, 'import numpy as np\n'), ((9551, 9573), 'numpy.asarray', 'np.asarray', (['all_derivs'], {}), '(all_derivs)\n', (9561, 9573), True, 'import numpy as np\n'), ((8959, 8976), 'jax.numpy.array', 'jnp.array', (['derivs'], {}), '(derivs)\n', (8968, 8976), True, 'import jax.numpy as jnp\n'), ((9283, 9301), 'jax.numpy.ones_like', 'jnp.ones_like', (['z_t'], {}), '(z_t)\n', (9296, 9301), True, 'import jax.numpy as jnp\n'), ((9447, 9464), 'jax.numpy.array', 'jnp.array', (['derivs'], {}), '(derivs)\n', (9456, 9464), True, 'import jax.numpy as jnp\n')]
# -*- coding: utf-8 -*- """ Created on Fri Nov 16 12:05:08 2018 @author: Alexandre """ ############################################################################### import numpy as np ############################################################################### from pyro.dynamic import pendulum from pyro.control import nonlinear from pyro.control import robotcontrollers from pyro.planning import plan from pyro.analysis import simulation ############################################################################### sys = pendulum.SinglePendulum() ############################################################################### # Planning traj = plan.load_trajectory('rrt.npy') q_goal = np.array([-3.14]) ############################################################################### # P kp = 5 kd = 0 ki = 0 p_ctl = robotcontrollers.JointPID( 1 , kp , ki, kd) p_ctl.rbar = q_goal # PD kp = 5 kd = 2 ki = 0 pd_ctl = robotcontrollers.JointPID( 1 , kp , ki, kd) pd_ctl.rbar = q_goal # PID kp = 5 kd = 2 ki = 1 pid_ctl = robotcontrollers.JointPID( 1 , kp , ki, kd) pid_ctl.rbar = q_goal # Computed Torque ctc_ctl = nonlinear.ComputedTorqueController( sys ) ctc_ctl.rbar = q_goal ctc_ctl.w0 = 2.0 ctc_ctl.zeta = 0.8 # Sliding Mode sld_ctl = nonlinear.SlidingModeController( sys ) sld_ctl.lam = 1 sld_ctl.gain = 5 sld_ctl.rbar = q_goal # OpenLoop with traj traj_ctl = plan.OpenLoopController( traj ) # Computed Torque with traj traj_ctc_ctl = nonlinear.ComputedTorqueController( sys , traj ) traj_ctc_ctl.rbar = q_goal traj_ctc_ctl.w0 = 2.0 traj_ctc_ctl.zeta = 0.8 # Sliding Mode with traj traj_sld_ctl = nonlinear.SlidingModeController( sys , traj ) traj_sld_ctl.lam = 1 traj_sld_ctl.gain = 5 traj_sld_ctl.rbar = q_goal ############################################################################### # Controller selection #ctl = p_ctl #ctl = pd_ctl #ctl = pid_ctl #ctl = ctc_ctl #ctl = sld_ctl #ctl = traj_ctl #ctl = traj_ctc_ctl ctl = traj_sld_ctl ############################################################################### # New cl-dynamic cl_sys = ctl + sys # Simultation q0 = 0 tf = 10 cl_sys.sim = simulation.CLosedLoopSimulation( cl_sys , tf , tf * 1000 + 1 , 'euler' ) cl_sys.sim.x0 = np.array([q0,0]) cl_sys.sim.compute() cl_sys.sim.plot('xu') cl_sys.animate_simulation() cl_sys.sim.phase_plane_trajectory(0,1)
[ "pyro.control.nonlinear.ComputedTorqueController", "pyro.control.nonlinear.SlidingModeController", "pyro.analysis.simulation.CLosedLoopSimulation", "pyro.control.robotcontrollers.JointPID", "pyro.dynamic.pendulum.SinglePendulum", "pyro.planning.plan.load_trajectory", "numpy.array", "pyro.planning.plan.OpenLoopController" ]
[((537, 562), 'pyro.dynamic.pendulum.SinglePendulum', 'pendulum.SinglePendulum', ([], {}), '()\n', (560, 562), False, 'from pyro.dynamic import pendulum\n'), ((666, 697), 'pyro.planning.plan.load_trajectory', 'plan.load_trajectory', (['"""rrt.npy"""'], {}), "('rrt.npy')\n", (686, 697), False, 'from pyro.planning import plan\n'), ((707, 724), 'numpy.array', 'np.array', (['[-3.14]'], {}), '([-3.14])\n', (715, 724), True, 'import numpy as np\n'), ((845, 885), 'pyro.control.robotcontrollers.JointPID', 'robotcontrollers.JointPID', (['(1)', 'kp', 'ki', 'kd'], {}), '(1, kp, ki, kd)\n', (870, 885), False, 'from pyro.control import robotcontrollers\n'), ((950, 990), 'pyro.control.robotcontrollers.JointPID', 'robotcontrollers.JointPID', (['(1)', 'kp', 'ki', 'kd'], {}), '(1, kp, ki, kd)\n', (975, 990), False, 'from pyro.control import robotcontrollers\n'), ((1058, 1098), 'pyro.control.robotcontrollers.JointPID', 'robotcontrollers.JointPID', (['(1)', 'kp', 'ki', 'kd'], {}), '(1, kp, ki, kd)\n', (1083, 1098), False, 'from pyro.control import robotcontrollers\n'), ((1158, 1197), 'pyro.control.nonlinear.ComputedTorqueController', 'nonlinear.ComputedTorqueController', (['sys'], {}), '(sys)\n', (1192, 1197), False, 'from pyro.control import nonlinear\n'), ((1293, 1329), 'pyro.control.nonlinear.SlidingModeController', 'nonlinear.SlidingModeController', (['sys'], {}), '(sys)\n', (1324, 1329), False, 'from pyro.control import nonlinear\n'), ((1421, 1450), 'pyro.planning.plan.OpenLoopController', 'plan.OpenLoopController', (['traj'], {}), '(traj)\n', (1444, 1450), False, 'from pyro.planning import plan\n'), ((1502, 1547), 'pyro.control.nonlinear.ComputedTorqueController', 'nonlinear.ComputedTorqueController', (['sys', 'traj'], {}), '(sys, traj)\n', (1536, 1547), False, 'from pyro.control import nonlinear\n'), ((1673, 1715), 'pyro.control.nonlinear.SlidingModeController', 'nonlinear.SlidingModeController', (['sys', 'traj'], {}), '(sys, traj)\n', (1704, 1715), False, 'from pyro.control import nonlinear\n'), ((2186, 2253), 'pyro.analysis.simulation.CLosedLoopSimulation', 'simulation.CLosedLoopSimulation', (['cl_sys', 'tf', '(tf * 1000 + 1)', '"""euler"""'], {}), "(cl_sys, tf, tf * 1000 + 1, 'euler')\n", (2217, 2253), False, 'from pyro.analysis import simulation\n'), ((2275, 2292), 'numpy.array', 'np.array', (['[q0, 0]'], {}), '([q0, 0])\n', (2283, 2292), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import paddle.v2 as paddle import gzip import sys import data_provider import numpy as np def param(): return paddle.attr.Param( initial_std=0.01, initial_mean=0 ) def encoder(x_): x_ = paddle.layer.fc( input=x_, size=512, act=paddle.activation.Sigmoid(), param_attr=param(), bias_attr=param() ) x_ = paddle.layer.fc( input=x_, size=256, act=paddle.activation.Relu(), param_attr=param(), bias_attr=param() ) x_ = paddle.layer.fc( input=x_, size=128, act=paddle.activation.Relu(), param_attr=param(), bias_attr=param() ) return x_ def decoder(x_): x_ = paddle.layer.fc( input=x_, size=128, act=paddle.activation.Sigmoid(), param_attr=param(), bias_attr=param() ) x_ = paddle.layer.fc( input=x_, size=256, act=paddle.activation.Relu(), param_attr=param(), bias_attr=param() ) x_ = paddle.layer.fc( input=x_, size=512, act=paddle.activation.Relu(), param_attr=param(), bias_attr=param() ) return x_ def output(x_): return paddle.layer.fc( input=x_, size=784, act=paddle.activation.Relu(), param_attr=param(), bias_attr=param() ) paddle.init(use_gpu=False, trainer_count=1) x = paddle.layer.data( name='x', type=paddle.data_type.dense_vector(784) ) y = encoder(x) y = decoder(y) y = output(y) def train(): optimizer = paddle.optimizer.RMSProp( learning_rate=1e-3, regularization=paddle.optimizer.L2Regularization(rate=8e-4) ) loss = paddle.layer.mse_cost(label=x, input=y) parameters = paddle.parameters.create(loss) trainer = paddle.trainer.SGD( cost=loss, parameters=parameters, update_equation=optimizer ) feeding = {'x': 0} def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 50 == 0: print ("\n pass %d, Batch: %d cost: %f" % (event.pass_id, event.batch_id, event.cost)) else: sys.stdout.write('.') sys.stdout.flush() if isinstance(event, paddle.event.EndPass): with gzip.open('output/params_pass_%d.tar.gz' % event.pass_id, 'w') as f: parameters.to_tar(f) reader = data_provider.create_reader('train', 60000) trainer.train( paddle.batch( reader=reader, batch_size=128 ), feeding=feeding, num_passes=20, event_handler=event_handler ) def test(model_path): with gzip.open(model_path, 'r') as openFile: parameters = paddle.parameters.Parameters.from_tar(openFile) testset = [[x] for x in data_provider.fetch_testingset()['images'][:10]] # 使用infer进行预测 result = paddle.infer( input=testset, parameters=parameters, output_layer=y, feeding={'x': 0} ) return result, np.array(testset) if __name__ == '__main__': origin, result = test('output/params_pass_19.tar.gz') np.save('origin.dat', origin) np.save('result.dat', result)
[ "sys.stdout.write", "paddle.v2.layer.mse_cost", "sys.stdout.flush", "data_provider.create_reader", "paddle.v2.activation.Sigmoid", "data_provider.fetch_testingset", "paddle.v2.activation.Relu", "paddle.v2.parameters.create", "paddle.v2.init", "numpy.save", "paddle.v2.attr.Param", "paddle.v2.data_type.dense_vector", "paddle.v2.infer", "paddle.v2.batch", "paddle.v2.optimizer.L2Regularization", "gzip.open", "paddle.v2.trainer.SGD", "numpy.array", "paddle.v2.parameters.Parameters.from_tar" ]
[((2494, 2537), 'paddle.v2.init', 'paddle.init', ([], {'use_gpu': '(False)', 'trainer_count': '(1)'}), '(use_gpu=False, trainer_count=1)\n', (2505, 2537), True, 'import paddle.v2 as paddle\n'), ((1207, 1258), 'paddle.v2.attr.Param', 'paddle.attr.Param', ([], {'initial_std': '(0.01)', 'initial_mean': '(0)'}), '(initial_std=0.01, initial_mean=0)\n', (1224, 1258), True, 'import paddle.v2 as paddle\n'), ((2838, 2877), 'paddle.v2.layer.mse_cost', 'paddle.layer.mse_cost', ([], {'label': 'x', 'input': 'y'}), '(label=x, input=y)\n', (2859, 2877), True, 'import paddle.v2 as paddle\n'), ((2896, 2926), 'paddle.v2.parameters.create', 'paddle.parameters.create', (['loss'], {}), '(loss)\n', (2920, 2926), True, 'import paddle.v2 as paddle\n'), ((2942, 3021), 'paddle.v2.trainer.SGD', 'paddle.trainer.SGD', ([], {'cost': 'loss', 'parameters': 'parameters', 'update_equation': 'optimizer'}), '(cost=loss, parameters=parameters, update_equation=optimizer)\n', (2960, 3021), True, 'import paddle.v2 as paddle\n'), ((3611, 3654), 'data_provider.create_reader', 'data_provider.create_reader', (['"""train"""', '(60000)'], {}), "('train', 60000)\n", (3638, 3654), False, 'import data_provider\n'), ((4101, 4190), 'paddle.v2.infer', 'paddle.infer', ([], {'input': 'testset', 'parameters': 'parameters', 'output_layer': 'y', 'feeding': "{'x': 0}"}), "(input=testset, parameters=parameters, output_layer=y, feeding=\n {'x': 0})\n", (4113, 4190), True, 'import paddle.v2 as paddle\n'), ((4352, 4381), 'numpy.save', 'np.save', (['"""origin.dat"""', 'origin'], {}), "('origin.dat', origin)\n", (4359, 4381), True, 'import numpy as np\n'), ((4386, 4415), 'numpy.save', 'np.save', (['"""result.dat"""', 'result'], {}), "('result.dat', result)\n", (4393, 4415), True, 'import numpy as np\n'), ((2584, 2618), 'paddle.v2.data_type.dense_vector', 'paddle.data_type.dense_vector', (['(784)'], {}), '(784)\n', (2613, 2618), True, 'import paddle.v2 as paddle\n'), ((3682, 3725), 'paddle.v2.batch', 'paddle.batch', ([], {'reader': 'reader', 'batch_size': '(128)'}), '(reader=reader, batch_size=128)\n', (3694, 3725), True, 'import paddle.v2 as paddle\n'), ((3884, 3910), 'gzip.open', 'gzip.open', (['model_path', '"""r"""'], {}), "(model_path, 'r')\n", (3893, 3910), False, 'import gzip\n'), ((3945, 3992), 'paddle.v2.parameters.Parameters.from_tar', 'paddle.parameters.Parameters.from_tar', (['openFile'], {}), '(openFile)\n', (3982, 3992), True, 'import paddle.v2 as paddle\n'), ((4243, 4260), 'numpy.array', 'np.array', (['testset'], {}), '(testset)\n', (4251, 4260), True, 'import numpy as np\n'), ((1374, 1401), 'paddle.v2.activation.Sigmoid', 'paddle.activation.Sigmoid', ([], {}), '()\n', (1399, 1401), True, 'import paddle.v2 as paddle\n'), ((1537, 1561), 'paddle.v2.activation.Relu', 'paddle.activation.Relu', ([], {}), '()\n', (1559, 1561), True, 'import paddle.v2 as paddle\n'), ((1697, 1721), 'paddle.v2.activation.Relu', 'paddle.activation.Relu', ([], {}), '()\n', (1719, 1721), True, 'import paddle.v2 as paddle\n'), ((1890, 1917), 'paddle.v2.activation.Sigmoid', 'paddle.activation.Sigmoid', ([], {}), '()\n', (1915, 1917), True, 'import paddle.v2 as paddle\n'), ((2053, 2077), 'paddle.v2.activation.Relu', 'paddle.activation.Relu', ([], {}), '()\n', (2075, 2077), True, 'import paddle.v2 as paddle\n'), ((2213, 2237), 'paddle.v2.activation.Relu', 'paddle.activation.Relu', ([], {}), '()\n', (2235, 2237), True, 'import paddle.v2 as paddle\n'), ((2407, 2431), 'paddle.v2.activation.Relu', 'paddle.activation.Relu', ([], {}), '()\n', (2429, 2431), True, 'import paddle.v2 as paddle\n'), ((2775, 2821), 'paddle.v2.optimizer.L2Regularization', 'paddle.optimizer.L2Regularization', ([], {'rate': '(0.0008)'}), '(rate=0.0008)\n', (2808, 2821), True, 'import paddle.v2 as paddle\n'), ((3365, 3386), 'sys.stdout.write', 'sys.stdout.write', (['"""."""'], {}), "('.')\n", (3381, 3386), False, 'import sys\n'), ((3403, 3421), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3419, 3421), False, 'import sys\n'), ((3491, 3553), 'gzip.open', 'gzip.open', (["('output/params_pass_%d.tar.gz' % event.pass_id)", '"""w"""'], {}), "('output/params_pass_%d.tar.gz' % event.pass_id, 'w')\n", (3500, 3553), False, 'import gzip\n'), ((4021, 4053), 'data_provider.fetch_testingset', 'data_provider.fetch_testingset', ([], {}), '()\n', (4051, 4053), False, 'import data_provider\n')]
# -*- coding: utf-8 -*- import os import sys import numpy as np IMAGE_SIZE = 64 #按照指定图像大小调整尺寸 def resize_image(image, height = IMAGE_SIZE, width = IMAGE_SIZE): top, bottom, left, right = (0, 0, 0, 0) #获取图像尺寸 h, w, _ = image.shape #对于长宽不相等的图片,找到最长的一边 longest_edge = max(h, w) #计算短边需要增加多上像素宽度使其与长边等长 if h < longest_edge: dh = longest_edge - h top = dh // 2 bottom = dh - top elif w < longest_edge: dw = longest_edge - w left = dw // 2 right = dw - left else: pass BLACK = [0, 0, 0] #给图像增加边界,是图片长、宽等长,cv2.BORDER_CONSTANT指定边界颜色由value指定 constant = cv2.copyMakeBorder(image, top , bottom, left, right, cv2.BORDER_CONSTANT, value = BLACK) #调整图像大小并返回 return cv2.resize(constant, (height, width)) #读取训练数据 images = [] labels = [] def read_images(path_name): for dir_item in os.listdir(path_name): full_path = os.path.abspath(os.path.join(path_name, dir_item)) if os.path.isdir(full_path): read_images(full_path) else: if dir_item.endswith('.jpg'): print(full_path) image = cv2.imread(full_path) image = resize_image(image, IMAGE_SIZE, IMAGE_SIZE) images.append(image) labels.append(path_name) return images,labels #从指定路径读取训练数据 def load_dataset(path_name): images,labels = read_images(path_name) #将输入的所有图片转成四维数组,尺寸为(图片数量*IMAGE_SIZE*IMAGE_SIZE*3) #图片为64 * 64像素,一个像素3个颜色值(RGB) images = np.array(images) labels = np.array([0 if label.endswith('yangwk') else 1 for label in labels]) return images, labels if __name__ == '__main__': path_name = './data/' images, labels = load_dataset(path_name) print(images.shape) print(labels.shape)
[ "os.path.isdir", "numpy.array", "os.listdir", "os.path.join" ]
[((798, 819), 'os.listdir', 'os.listdir', (['path_name'], {}), '(path_name)\n', (808, 819), False, 'import os\n'), ((1350, 1366), 'numpy.array', 'np.array', (['images'], {}), '(images)\n', (1358, 1366), True, 'import numpy as np\n'), ((891, 915), 'os.path.isdir', 'os.path.isdir', (['full_path'], {}), '(full_path)\n', (904, 915), False, 'import os\n'), ((851, 884), 'os.path.join', 'os.path.join', (['path_name', 'dir_item'], {}), '(path_name, dir_item)\n', (863, 884), False, 'import os\n')]
""" Regularizer class for that also supports GPU code <NAME> <EMAIL> <NAME> <EMAIL> March 04, 2018 """ import arrayfire as af import numpy as np from opticaltomography import settings np_complex_datatype = settings.np_complex_datatype np_float_datatype = settings.np_float_datatype af_float_datatype = settings.af_float_datatype af_complex_datatype = settings.af_complex_datatype class Regularizer: """ Highest-level Regularizer class that is responsible for parsing user arguments to create proximal operators All proximal operators operate on complex variables (real & imaginary part separately) Pure Real: pure_real: boolean, whether or not to enforce object to be purely real Pure imaginary: pure_imag: boolean, whether or not to enforce object to be purely imaginary Positivity: positivity_real(positivity_imag): boolean, whether or not to enforce positivity for real(imaginary) part Negativity: negativity_real(negativity_imag): boolean, whether or not to enforce negativity for real(imaginary) part LASSO (L1 regularizer): lasso: boolean, whether or not to use LASSO proximal operator lasso_parameter: threshold for LASSO Total variation (3D only): total_variation: boolean, whether or not to use total variation regularization total_variation_gpu: boolean, whether or not to use GPU implementation total_variation_parameter: scalar, regularization parameter (lambda) total_variation_maxitr: integer, number of each iteration for total variation """ def __init__(self, configs = None, verbose = True, **kwargs): #Given all parameters, construct all proximal operators self.prox_list = [] reg_params = kwargs if configs != None: reg_params = self._parseConfigs(configs) #Purely real if reg_params.get("pure_real", False): self.prox_list.append(PureReal()) #Purely imaginary if reg_params.get("pure_imag", False): self.prox_list.append(Pureimag()) #Total Variation if reg_params.get("total_variation", False): if reg_params.get("total_variation_gpu", False): self.prox_list.append(TotalVariationGPU(**reg_params)) else: self.prox_list.append(TotalVariationCPU(**reg_params)) #L1 Regularizer (LASSO) elif reg_params.get("lasso", False): self.prox_list.append(Lasso(reg_params.get("lasso_parameter", 1.0))) #Others else: #Positivity positivity_real = reg_params.get("positivity_real", False) positivity_imag = reg_params.get("positivity_imag", False) if positivity_real or positivity_imag: self.prox_list.append(Positivity(positivity_real, positivity_imag)) #Negativity negativity_real = reg_params.get("negativity_real", False) negativity_imag = reg_params.get("negativity_imag", False) if negativity_real or negativity_imag: self.prox_list.append(Negativity(negativity_real, negativity_imag)) if verbose: for prox_op in self.prox_list: print("Regularizer -", prox_op.proximal_name) def _parseConfigs(self, configs): params = {} params["pure_real"] = configs.pure_real params["pure_imag"] = configs.pure_imag #Total variation params["total_variation"] = configs.total_variation params["total_variation_gpu"] = configs.total_variation_gpu params["total_variation_maxitr"] = configs.max_iter_tv params["total_variation_order"] = configs.order_tv params["total_variation_parameter"] = configs.reg_tv #LASSO params["lasso"] = configs.lasso params["lasso_parameter"] = configs.reg_lasso #Positivity/Negativity if configs.positivity_real[0]: if configs.positivity_real[1] == "larger": params["positivity_real"] = True else: params["negativity_real"] = True if configs.positivity_imag[0]: if configs.positivity_imag[1] == "larger": params["positivity_imag"] = True else: params["negativity_imag"] = True return params def computeCost(self, x): cost = 0.0 for prox_op in self.prox_list: cost_temp = prox_op.computeCost(x) if cost_temp != None: cost += cost_temp return cost def applyRegularizer(self, x): for prox_op in self.prox_list: x = prox_op.computeProx(x) return x class ProximalOperator(): def __init__(self, proximal_name): self.proximal_name = proximal_name def computeCost(self): pass def computeProx(self): pass def setParameter(self): pass def _boundRealValue(self, x, value = 0, flag_project = True): """If flag is true, only values that are greater than 'value' are preserved""" if flag_project: x[x < value] = 0 return x class TotalVariationGPU(ProximalOperator): def __init__(self, **kwargs): proximal_name = "Total Variation" parameter = kwargs.get("total_variation_parameter", 1.0) maxitr = kwargs.get("total_variation_maxitr", 15) self.order = kwargs.get("total_variation_order", 1) self.pure_real = kwargs.get("pure_real", False) self.pure_imag = kwargs.get("pure_imag", False) #real part if kwargs.get("positivity_real", False): self.realProjector = lambda x: self._boundRealValue(x, 0, True) proximal_name = "%s+%s" % (proximal_name, "positivity_real") elif kwargs.get("negativity_real", False): self.realProjector = lambda x: -1.0 * self._boundRealValue(-1.0 * x, 0, True) proximal_name = "%s+%s" % (proximal_name, "negativity_real") else: self.realProjector = lambda x: x #imaginary part if kwargs.get("positivity_imag", False): self.imagProjector = lambda x: self._boundRealValue(x, 0, True) proximal_name = "%s+%s" % (proximal_name, "positivity_imag") elif kwargs.get("negativity_imag", False): self.imagProjector = lambda x: -1.0 * self._boundRealValue(-1.0 * x, 0, True) proximal_name = "%s+%s" % (proximal_name, "negativity_imag") else: self.imagProjector = lambda x: x self.setParameter(parameter, maxitr) super().__init__(proximal_name) def setParameter(self, parameter, maxitr): self.parameter = parameter self.maxitr = maxitr def computeCost(self, x): return None def _computeTVNorm(self, x): x_norm = x**2 x_norm = af.sum(x_norm, dim = 3)**0.5 x_norm[x_norm<1.0] = 1.0 return x_norm def computeProx(self, x): if self.pure_real: x = self._computeProxReal(af.real(x), self.realProjector) + 1.0j * 0.0 elif self.pure_imag: x = 1.0j *self._computeProxReal(af.imag(x), self.imagProjector) else: x = self._computeProxReal(af.real(x), self.realProjector) \ + 1.0j * self._computeProxReal(af.imag(x), self.imagProjector) return x def _filterD(self, x, axis): assert axis<3, "This function only supports matrix up to 3 dimension!" if self.order == 1: if axis == 0: Dx = x - af.shift(x, 1, 0, 0) elif axis == 1: Dx = x - af.shift(x, 0, 1, 0) else: Dx = x - af.shift(x, 0, 0, 1) elif self.order == 2: if axis == 0: Dx = x - 2*af.shift(x, 1, 0, 0) + af.shift(x, 2, 0, 0) elif axis == 1: Dx = x - 2*af.shift(x, 0, 1, 0) + af.shift(x, 0, 2, 0) else: Dx = x - 2*af.shift(x, 0, 0, 1) + af.shift(x, 0, 0, 2) elif self.order == 3: if axis == 0: Dx = x - 3*af.shift(x, 1, 0, 0) + 3*af.shift(x, 2, 0, 0) - af.shift(x, 3, 0, 0) elif axis == 1: Dx = x - 3*af.shift(x, 0, 1, 0) + 3*af.shift(x, 0, 2, 0) - af.shift(x, 0, 3, 0) else: Dx = x - 3*af.shift(x, 0, 0, 1) + 3*af.shift(x, 0, 0, 2) - af.shift(x, 0, 0, 3) else: raise NotImplementedError("filter orders larger than 1 are not implemented!") return Dx def _filterDT(self, x): if self.order == 1: DTx = x[:, :, :, 0] - af.shift(x[ :, :, :, 0], -1, 0, 0) + \ x[:, :, :, 1] - af.shift(x[ :, :, :, 1], 0, -1, 0) + \ x[:, :, :, 2] - af.shift(x[ :, :, :, 2], 0, 0, -1) elif self.order == 2: DTx = x[:, :, :, 0] - 2*af.shift(x[ :, :, :, 0], -1, 0, 0) + af.shift(x[ :, :, :, 0], -2, 0, 0) + \ x[:, :, :, 1] - 2*af.shift(x[ :, :, :, 1], 0, -1, 0) + af.shift(x[ :, :, :, 1], 0, -2, 0) + \ x[:, :, :, 2] - 2*af.shift(x[ :, :, :, 2], 0, 0, -1) + af.shift(x[ :, :, :, 2], 0, 0, -2) elif self.order == 3: DTx = x[:, :, :, 0] - 3*af.shift(x[ :, :, :, 0], -1, 0, 0) + 3*af.shift(x[ :, :, :, 0], -2, 0, 0) - af.shift(x[ :, :, :, 0], -3, 0, 0) + \ x[:, :, :, 1] - 3*af.shift(x[ :, :, :, 1], 0, -1, 0) + 3*af.shift(x[ :, :, :, 1], 0, -2, 0) - af.shift(x[ :, :, :, 1], 0, -3, 0) + \ x[:, :, :, 2] - 3*af.shift(x[ :, :, :, 2], 0, 0, -1) + 3*af.shift(x[ :, :, :, 2], 0, 0, -2) - af.shift(x[ :, :, :, 2], 0, 0, -3) else: raise NotImplementedError("filter orders larger than 1 are not implemented!") return DTx def _computeProxReal(self, x, projector): t_k = 1.0 u_k = af.constant(0.0, x.shape[0], x.shape[1], x.shape[2], 3, dtype = af_float_datatype) u_k1 = af.constant(0.0, x.shape[0], x.shape[1], x.shape[2], 3, dtype = af_float_datatype) u_hat = af.constant(0.0, x.shape[0], x.shape[1], x.shape[2], 3, dtype = af_float_datatype) grad_u_hat = af.constant(0.0, x.shape[0], x.shape[1], x.shape[2], dtype = af_float_datatype) def _gradUpdate(): grad_u_hat = x - self.parameter * self._filterDT(u_hat) return grad_u_hat for iteration in range(self.maxitr): if iteration > 0: grad_u_hat = _gradUpdate() else: grad_u_hat[:, :, :] = x grad_u_hat = projector(grad_u_hat) u_k1[ :, :, :, 0] = u_hat[ :, :, :, 0] + (1.0/(12.0)**self.order/self.parameter) * self._filterD(grad_u_hat, axis=0) u_k1[ :, :, :, 1] = u_hat[ :, :, :, 1] + (1.0/(12.0)**self.order/self.parameter) * self._filterD(grad_u_hat, axis=1) u_k1[ :, :, :, 2] = u_hat[ :, :, :, 2] + (1.0/(12.0)**self.order/self.parameter) * self._filterD(grad_u_hat, axis=2) u_k1_norm = self._computeTVNorm(u_k1) u_k1[ :, :, :, 0] /= u_k1_norm u_k1[ :, :, :, 1] /= u_k1_norm u_k1[ :, :, :, 2] /= u_k1_norm t_k1 = 0.5 * (1.0 + (1.0 + 4.0*t_k**2)**0.5) beta = (t_k - 1.0)/t_k1 u_hat = (1.0 + beta)*u_k1 - beta*u_k if iteration < self.maxitr - 1: u_k = u_k1.copy() return projector(_gradUpdate()) class TotalVariationCPU(TotalVariationGPU): def _computeTVNorm(self, x): u_k1_norm = af.to_array(x) u_k1_norm[:, :, :, :] *= u_k1_norm u_k1_norm = af.sum(u_k1_norm, dim = 3)**0.5 u_k1_norm[u_k1_norm<1.0] = 1.0 return np.array(u_k1_norm) def computeProx(self, x): if self.pure_real: x = self._computeProxReal(np.real(x), self.realProjector) + 1.0j * 0.0 elif self.pure_imag: x = 1.0j *self._computeProxReal(np.imag(x), self.imagProjector) else: x = self._computeProxReal(np.real(x), self.realProjector) \ + 1.0j * self._computeProxReal(np.imag(x), self.imagProjector) return af.to_array(x) def _computeProxReal(self, x, projector): t_k = 1.0 u_k = np.zeros(x.shape + (3,), dtype = np_float_datatype); u_k1 = u_k.copy() u_hat = u_k.copy() def _gradUpdate(): u_hat_af = af.to_array(u_hat) DTu_hat = u_hat_af[:, :, :, 0] - af.shift(u_hat_af[ :, :, :, 0], -1, 0, 0) + \ u_hat_af[:, :, :, 1] - af.shift(u_hat_af[ :, :, :, 1], 0, -1, 0) + \ u_hat_af[:, :, :, 2] - af.shift(u_hat_af[ :, :, :, 2], 0, 0, -1) grad_u_hat = x - np.array(self.parameter * DTu_hat) return grad_u_hat for iteration in range(self.maxitr): if iteration > 0: grad_u_hat = _gradUpdate() else: grad_u_hat = x.copy() grad_u_hat = projector(grad_u_hat) u_k1[ :, :, :, 0] = u_hat[ :, :, :, 0] + (1.0/12.0/self.parameter) * (grad_u_hat-np.roll(grad_u_hat, 1, axis = 0)) u_k1[ :, :, :, 1] = u_hat[ :, :, :, 1] + (1.0/12.0/self.parameter) * (grad_u_hat-np.roll(grad_u_hat, 1, axis = 1)) u_k1[ :, :, :, 2] = u_hat[ :, :, :, 2] + (1.0/12.0/self.parameter) * (grad_u_hat-np.roll(grad_u_hat, 1, axis = 2)) u_k1_norm = self._computeTVNorm(u_k1) u_k1[ :, :, :] /= u_k1_norm[:, :, :, np.newaxis] t_k1 = 0.5 * (1.0 + (1.0 + 4.0*t_k**2)**0.5) beta = (t_k - 1.0)/t_k1 u_hat = (1.0 + beta)*u_k1 - beta*u_k if iteration < self.maxitr - 1: u_k = u_k1.copy() return projector(_gradUpdate()) class Positivity(ProximalOperator): """Enforce positivity constraint on a complex variable's real & imaginary part.""" def __init__(self, positivity_real, positivity_imag, proximal_name = "Positivity"): super().__init__(proximal_name) self.real = positivity_real self.imag = positivity_imag def computeCost(self, x): return None def computeProx(self, x): if type(x).__module__ == "arrayfire.array": x = self._boundRealValue(af.real(x), 0, self.real) +\ 1.0j * self._boundRealValue(af.imag(x), 0, self.imag) else: x = self._boundRealValue(np.real(x), 0, self.real) +\ 1.0j * self._boundRealValue(np.imag(x), 0, self.imag) return x class Negativity(Positivity): """Enforce positivity constraint on a complex variable's real & imaginary part.""" def __init__(self, negativity_real, negativity_imag): super().__init__(negativity_real, negativity_imag, "Negativity") def computeProx(self, x): return (-1.) * super().computeProx((-1.) * x) class PureReal(ProximalOperator): """Enforce real constraint on a complex, imaginary part will be cleared""" def __init__(self): super().__init__("Pure real") def computeCost(self, x): return None def computeProx(self, x): if type(x).__module__ == "arrayfire.array": x = af.real(x) + 1j*0.0 else: x = np.real(x) + 1j*0.0 return x class Pureimag(ProximalOperator): """Enforce imaginary constraint on a complex, real part will be cleared""" def __init__(self): super().__init__("Pure imaginary") def computeCost(self, x): return None def computeProx(self, x): if type(x).__module__ == "arrayfire.array": x = 1j*af.imag(x) else: x = 1j*x.imag return x class Lasso(ProximalOperator): """||x||_1 regularizer, soft thresholding with certain parameter""" def __init__(self, parameter): super().__init__("LASSO") self.setParameter(parameter) def _softThreshold(self, x): if type(x).__module__ == "arrayfire.array": #POTENTIAL BUG: af.sign implementation does not agree with documentation x = (af.sign(x)-0.5)*(-2.0) * (af.abs(x) - self.parameter) * (af.abs(x) > self.parameter) else: x = np.sign(x) * (np.abs(x) - self.parameter) * (np.abs(x) > self.parameter) return x def setParameter(self, parameter): self.parameter = parameter def computeCost(self, x): return af.norm(af.moddims(x, np.prod(x.shape)), norm_type = af.NORM.VECTOR_1) def computeProx(self, x): if type(x).__module__ == "arrayfire.array": x = self._softThreshold(af.real(x)) + 1.0j * self._softThreshold(af.imag(x)) else: x = self._softThreshold(np.real(x)) + 1.0j * self._softThreshold(np.imag(x)) return x #TODO: implement Tikhonov class Tikhonov(ProximalOperator): def __init__(self): pass def setParameter(self, parameter): self.parameter = parameter def computeCost(self, x): pass def computeProx(self, x): return x #TODO: implement pure amplitude constraint class PureAmplitude(ProximalOperator): def computeCost(self, x): return None def computeProx(self, x): return x #TODO: implement pure phase constraint class PurePhase(ProximalOperator): def computeCost(self, x): return None def computeProx(self, x): return x
[ "arrayfire.to_array", "arrayfire.abs", "numpy.abs", "arrayfire.sum", "arrayfire.shift", "arrayfire.imag", "numpy.roll", "numpy.zeros", "numpy.prod", "numpy.imag", "numpy.array", "numpy.real", "numpy.sign", "arrayfire.sign", "arrayfire.real", "arrayfire.constant" ]
[((8794, 8879), 'arrayfire.constant', 'af.constant', (['(0.0)', 'x.shape[0]', 'x.shape[1]', 'x.shape[2]', '(3)'], {'dtype': 'af_float_datatype'}), '(0.0, x.shape[0], x.shape[1], x.shape[2], 3, dtype=af_float_datatype\n )\n', (8805, 8879), True, 'import arrayfire as af\n'), ((8892, 8977), 'arrayfire.constant', 'af.constant', (['(0.0)', 'x.shape[0]', 'x.shape[1]', 'x.shape[2]', '(3)'], {'dtype': 'af_float_datatype'}), '(0.0, x.shape[0], x.shape[1], x.shape[2], 3, dtype=af_float_datatype\n )\n', (8903, 8977), True, 'import arrayfire as af\n'), ((8990, 9075), 'arrayfire.constant', 'af.constant', (['(0.0)', 'x.shape[0]', 'x.shape[1]', 'x.shape[2]', '(3)'], {'dtype': 'af_float_datatype'}), '(0.0, x.shape[0], x.shape[1], x.shape[2], 3, dtype=af_float_datatype\n )\n', (9001, 9075), True, 'import arrayfire as af\n'), ((9088, 9165), 'arrayfire.constant', 'af.constant', (['(0.0)', 'x.shape[0]', 'x.shape[1]', 'x.shape[2]'], {'dtype': 'af_float_datatype'}), '(0.0, x.shape[0], x.shape[1], x.shape[2], dtype=af_float_datatype)\n', (9099, 9165), True, 'import arrayfire as af\n'), ((10341, 10355), 'arrayfire.to_array', 'af.to_array', (['x'], {}), '(x)\n', (10352, 10355), True, 'import arrayfire as af\n'), ((10498, 10517), 'numpy.array', 'np.array', (['u_k1_norm'], {}), '(u_k1_norm)\n', (10506, 10517), True, 'import numpy as np\n'), ((10884, 10898), 'arrayfire.to_array', 'af.to_array', (['x'], {}), '(x)\n', (10895, 10898), True, 'import arrayfire as af\n'), ((10977, 11026), 'numpy.zeros', 'np.zeros', (['(x.shape + (3,))'], {'dtype': 'np_float_datatype'}), '(x.shape + (3,), dtype=np_float_datatype)\n', (10985, 11026), True, 'import numpy as np\n'), ((6166, 6187), 'arrayfire.sum', 'af.sum', (['x_norm'], {'dim': '(3)'}), '(x_norm, dim=3)\n', (6172, 6187), True, 'import arrayfire as af\n'), ((10424, 10448), 'arrayfire.sum', 'af.sum', (['u_k1_norm'], {'dim': '(3)'}), '(u_k1_norm, dim=3)\n', (10430, 10448), True, 'import arrayfire as af\n'), ((11120, 11138), 'arrayfire.to_array', 'af.to_array', (['u_hat'], {}), '(u_hat)\n', (11131, 11138), True, 'import arrayfire as af\n'), ((7810, 7843), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 2]', '(0)', '(0)', '(-1)'], {}), '(x[:, :, :, 2], 0, 0, -1)\n', (7818, 7843), True, 'import arrayfire as af\n'), ((11348, 11388), 'arrayfire.shift', 'af.shift', (['u_hat_af[:, :, :, 2]', '(0)', '(0)', '(-1)'], {}), '(u_hat_af[:, :, :, 2], 0, 0, -1)\n', (11356, 11388), True, 'import arrayfire as af\n'), ((11410, 11444), 'numpy.array', 'np.array', (['(self.parameter * DTu_hat)'], {}), '(self.parameter * DTu_hat)\n', (11418, 11444), True, 'import numpy as np\n'), ((13669, 13679), 'arrayfire.real', 'af.real', (['x'], {}), '(x)\n', (13676, 13679), True, 'import arrayfire as af\n'), ((13707, 13717), 'numpy.real', 'np.real', (['x'], {}), '(x)\n', (13714, 13717), True, 'import numpy as np\n'), ((14037, 14047), 'arrayfire.imag', 'af.imag', (['x'], {}), '(x)\n', (14044, 14047), True, 'import arrayfire as af\n'), ((14752, 14768), 'numpy.prod', 'np.prod', (['x.shape'], {}), '(x.shape)\n', (14759, 14768), True, 'import numpy as np\n'), ((6321, 6331), 'arrayfire.real', 'af.real', (['x'], {}), '(x)\n', (6328, 6331), True, 'import arrayfire as af\n'), ((6768, 6788), 'arrayfire.shift', 'af.shift', (['x', '(1)', '(0)', '(0)'], {}), '(x, 1, 0, 0)\n', (6776, 6788), True, 'import arrayfire as af\n'), ((8136, 8169), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 2]', '(0)', '(0)', '(-2)'], {}), '(x[:, :, :, 2], 0, 0, -2)\n', (8144, 8169), True, 'import arrayfire as af\n'), ((10599, 10609), 'numpy.real', 'np.real', (['x'], {}), '(x)\n', (10606, 10609), True, 'import numpy as np\n'), ((12808, 12818), 'arrayfire.real', 'af.real', (['x'], {}), '(x)\n', (12815, 12818), True, 'import arrayfire as af\n'), ((12949, 12959), 'numpy.real', 'np.real', (['x'], {}), '(x)\n', (12956, 12959), True, 'import numpy as np\n'), ((14498, 14507), 'arrayfire.abs', 'af.abs', (['x'], {}), '(x)\n', (14504, 14507), True, 'import arrayfire as af\n'), ((14541, 14551), 'numpy.sign', 'np.sign', (['x'], {}), '(x)\n', (14548, 14551), True, 'import numpy as np\n'), ((14586, 14595), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (14592, 14595), True, 'import numpy as np\n'), ((14903, 14913), 'arrayfire.real', 'af.real', (['x'], {}), '(x)\n', (14910, 14913), True, 'import arrayfire as af\n'), ((14994, 15004), 'numpy.real', 'np.real', (['x'], {}), '(x)\n', (15001, 15004), True, 'import numpy as np\n'), ((6424, 6434), 'arrayfire.imag', 'af.imag', (['x'], {}), '(x)\n', (6431, 6434), True, 'import arrayfire as af\n'), ((6493, 6503), 'arrayfire.real', 'af.real', (['x'], {}), '(x)\n', (6500, 6503), True, 'import arrayfire as af\n'), ((6826, 6846), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(1)', '(0)'], {}), '(x, 0, 1, 0)\n', (6834, 6846), True, 'import arrayfire as af\n'), ((6874, 6894), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(0)', '(1)'], {}), '(x, 0, 0, 1)\n', (6882, 6894), True, 'import arrayfire as af\n'), ((6980, 7000), 'arrayfire.shift', 'af.shift', (['x', '(2)', '(0)', '(0)'], {}), '(x, 2, 0, 0)\n', (6988, 7000), True, 'import arrayfire as af\n'), ((7740, 7773), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 1]', '(0)', '(-1)', '(0)'], {}), '(x[:, :, :, 1], 0, -1, 0)\n', (7748, 7773), True, 'import arrayfire as af\n'), ((8579, 8612), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 2]', '(0)', '(0)', '(-3)'], {}), '(x[:, :, :, 2], 0, 0, -3)\n', (8587, 8612), True, 'import arrayfire as af\n'), ((10702, 10712), 'numpy.imag', 'np.imag', (['x'], {}), '(x)\n', (10709, 10712), True, 'import numpy as np\n'), ((10771, 10781), 'numpy.real', 'np.real', (['x'], {}), '(x)\n', (10778, 10781), True, 'import numpy as np\n'), ((11263, 11303), 'arrayfire.shift', 'af.shift', (['u_hat_af[:, :, :, 1]', '(0)', '(-1)', '(0)'], {}), '(u_hat_af[:, :, :, 1], 0, -1, 0)\n', (11271, 11303), True, 'import arrayfire as af\n'), ((11727, 11757), 'numpy.roll', 'np.roll', (['grad_u_hat', '(1)'], {'axis': '(0)'}), '(grad_u_hat, 1, axis=0)\n', (11734, 11757), True, 'import numpy as np\n'), ((11846, 11876), 'numpy.roll', 'np.roll', (['grad_u_hat', '(1)'], {'axis': '(1)'}), '(grad_u_hat, 1, axis=1)\n', (11853, 11876), True, 'import numpy as np\n'), ((11965, 11995), 'numpy.roll', 'np.roll', (['grad_u_hat', '(1)'], {'axis': '(2)'}), '(grad_u_hat, 1, axis=2)\n', (11972, 11995), True, 'import numpy as np\n'), ((12887, 12897), 'arrayfire.imag', 'af.imag', (['x'], {}), '(x)\n', (12894, 12897), True, 'import arrayfire as af\n'), ((13028, 13038), 'numpy.imag', 'np.imag', (['x'], {}), '(x)\n', (13035, 13038), True, 'import numpy as np\n'), ((14467, 14476), 'arrayfire.abs', 'af.abs', (['x'], {}), '(x)\n', (14473, 14476), True, 'import arrayfire as af\n'), ((14555, 14564), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (14561, 14564), True, 'import numpy as np\n'), ((14944, 14954), 'arrayfire.imag', 'af.imag', (['x'], {}), '(x)\n', (14951, 14954), True, 'import arrayfire as af\n'), ((15035, 15045), 'numpy.imag', 'np.imag', (['x'], {}), '(x)\n', (15042, 15045), True, 'import numpy as np\n'), ((6565, 6575), 'arrayfire.imag', 'af.imag', (['x'], {}), '(x)\n', (6572, 6575), True, 'import arrayfire as af\n'), ((7063, 7083), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(2)', '(0)'], {}), '(x, 0, 2, 0)\n', (7071, 7083), True, 'import arrayfire as af\n'), ((7136, 7156), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(0)', '(2)'], {}), '(x, 0, 0, 2)\n', (7144, 7156), True, 'import arrayfire as af\n'), ((7266, 7286), 'arrayfire.shift', 'af.shift', (['x', '(3)', '(0)', '(0)'], {}), '(x, 3, 0, 0)\n', (7274, 7286), True, 'import arrayfire as af\n'), ((8099, 8132), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 2]', '(0)', '(0)', '(-1)'], {}), '(x[:, :, :, 2], 0, 0, -1)\n', (8107, 8132), True, 'import arrayfire as af\n'), ((10843, 10853), 'numpy.imag', 'np.imag', (['x'], {}), '(x)\n', (10850, 10853), True, 'import numpy as np\n'), ((14441, 14451), 'arrayfire.sign', 'af.sign', (['x'], {}), '(x)\n', (14448, 14451), True, 'import arrayfire as af\n'), ((6956, 6976), 'arrayfire.shift', 'af.shift', (['x', '(1)', '(0)', '(0)'], {}), '(x, 1, 0, 0)\n', (6964, 6976), True, 'import arrayfire as af\n'), ((7374, 7394), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(3)', '(0)'], {}), '(x, 0, 3, 0)\n', (7382, 7394), True, 'import arrayfire as af\n'), ((7472, 7492), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(0)', '(3)'], {}), '(x, 0, 0, 3)\n', (7480, 7492), True, 'import arrayfire as af\n'), ((7670, 7703), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 0]', '(-1)', '(0)', '(0)'], {}), '(x[:, :, :, 0], -1, 0, 0)\n', (7678, 7703), True, 'import arrayfire as af\n'), ((8036, 8069), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 1]', '(0)', '(-2)', '(0)'], {}), '(x[:, :, :, 1], 0, -2, 0)\n', (8044, 8069), True, 'import arrayfire as af\n'), ((8542, 8575), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 2]', '(0)', '(0)', '(-2)'], {}), '(x[:, :, :, 2], 0, 0, -2)\n', (8550, 8575), True, 'import arrayfire as af\n'), ((11178, 11218), 'arrayfire.shift', 'af.shift', (['u_hat_af[:, :, :, 0]', '(-1)', '(0)', '(0)'], {}), '(u_hat_af[:, :, :, 0], -1, 0, 0)\n', (11186, 11218), True, 'import arrayfire as af\n'), ((7039, 7059), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(1)', '(0)'], {}), '(x, 0, 1, 0)\n', (7047, 7059), True, 'import arrayfire as af\n'), ((7112, 7132), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(0)', '(1)'], {}), '(x, 0, 0, 1)\n', (7120, 7132), True, 'import arrayfire as af\n'), ((7243, 7263), 'arrayfire.shift', 'af.shift', (['x', '(2)', '(0)', '(0)'], {}), '(x, 2, 0, 0)\n', (7251, 7263), True, 'import arrayfire as af\n'), ((8503, 8536), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 2]', '(0)', '(0)', '(-1)'], {}), '(x[:, :, :, 2], 0, 0, -1)\n', (8511, 8536), True, 'import arrayfire as af\n'), ((7217, 7237), 'arrayfire.shift', 'af.shift', (['x', '(1)', '(0)', '(0)'], {}), '(x, 1, 0, 0)\n', (7225, 7237), True, 'import arrayfire as af\n'), ((7351, 7371), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(2)', '(0)'], {}), '(x, 0, 2, 0)\n', (7359, 7371), True, 'import arrayfire as af\n'), ((7449, 7469), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(0)', '(2)'], {}), '(x, 0, 0, 2)\n', (7457, 7469), True, 'import arrayfire as af\n'), ((7999, 8032), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 1]', '(0)', '(-1)', '(0)'], {}), '(x[:, :, :, 1], 0, -1, 0)\n', (8007, 8032), True, 'import arrayfire as af\n'), ((8440, 8473), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 1]', '(0)', '(-3)', '(0)'], {}), '(x[:, :, :, 1], 0, -3, 0)\n', (8448, 8473), True, 'import arrayfire as af\n'), ((7325, 7345), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(1)', '(0)'], {}), '(x, 0, 1, 0)\n', (7333, 7345), True, 'import arrayfire as af\n'), ((7423, 7443), 'arrayfire.shift', 'af.shift', (['x', '(0)', '(0)', '(1)'], {}), '(x, 0, 0, 1)\n', (7431, 7443), True, 'import arrayfire as af\n'), ((7936, 7969), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 0]', '(-2)', '(0)', '(0)'], {}), '(x[:, :, :, 0], -2, 0, 0)\n', (7944, 7969), True, 'import arrayfire as af\n'), ((8403, 8436), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 1]', '(0)', '(-2)', '(0)'], {}), '(x[:, :, :, 1], 0, -2, 0)\n', (8411, 8436), True, 'import arrayfire as af\n'), ((7899, 7932), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 0]', '(-1)', '(0)', '(0)'], {}), '(x[:, :, :, 0], -1, 0, 0)\n', (7907, 7932), True, 'import arrayfire as af\n'), ((8364, 8397), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 1]', '(0)', '(-1)', '(0)'], {}), '(x[:, :, :, 1], 0, -1, 0)\n', (8372, 8397), True, 'import arrayfire as af\n'), ((8301, 8334), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 0]', '(-3)', '(0)', '(0)'], {}), '(x[:, :, :, 0], -3, 0, 0)\n', (8309, 8334), True, 'import arrayfire as af\n'), ((8264, 8297), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 0]', '(-2)', '(0)', '(0)'], {}), '(x[:, :, :, 0], -2, 0, 0)\n', (8272, 8297), True, 'import arrayfire as af\n'), ((8225, 8258), 'arrayfire.shift', 'af.shift', (['x[:, :, :, 0]', '(-1)', '(0)', '(0)'], {}), '(x[:, :, :, 0], -1, 0, 0)\n', (8233, 8258), True, 'import arrayfire as af\n')]
# <NAME> # PandS project 2020 import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns # Import data as pandas dataframe iris_data = pd.read_csv('iris.data', header=None) # assign column headers iris_data.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'] # A. Output a summary of each variable to a single txt file. # Isolate columns according to data type float_values = iris_data.iloc[:,0:4] str_values = iris_data.iloc[:,4] # Use describe function to summarise data float_summary = float_values.describe() str_summary = str_values.describe() # Establish 3 unique values in str_summary. # This creates an array of each value. str_summary = str_values.unique() # Transpose str_summary array and convert to dataframe str_summary = str_summary[:, None] str_summary = pd.DataFrame({"Species": str_summary[:, 0]}) # Format string variable summary # Add column containing quantity of unique values quantity = ['50', '50', '50'] str_summary['Count'] = quantity # Rename rows in str_summary str_summary.index = ['Species_A', 'Species_B', 'Species_C'] # Format summary output and write to text file with open("iris_summary.txt", "w") as f: heading = "SUMMARY OF VARIABLES IN IRIS DATASET" f.write(heading + "\n") f.write("=" * len(heading) + "\n\n\n\n") heading2 = "NUMERIC VARIABLE SUMMARY" f.write(heading2 + "\n") f.write("=" * len(heading2) + "\n") f.write(float_summary.to_string() + "\n\n\n\n") heading3 = "DEPENDENT VARIABLE SUMMARY" f.write(heading3 + "\n") f.write("=" * len(heading3) + "\n") f.write(str_summary.to_string() + "\n\n\n\n\n\n\n") # B. Save a histogram of each variable to png files # Assign each column to a variable for easier manipulation sep_len = iris_data['sepal_length'] sep_width = iris_data['sepal_width'] pet_len = iris_data['petal_length'] pet_width = iris_data['petal_width'] species = iris_data['species'] # Write a function which outputs a histogram for each dataset variable and saves # it as a png file. # First for numeric variables def var_hist(var_data, fig_num, x_label, y_label, title, filepath): plt.figure(fig_num) plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.hist(var_data, rwidth=0.9,) plt.savefig(filepath) plt.close() # Close figure so plot won't be displayed later # Then for string variable def var_hist2(var_data, fig_num, x_label, y_label, title, filepath): plt.figure(fig_num) plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.hist(var_data, bins=3, rwidth=0.9) plt.xticks(np.arange(0,3)) plt.savefig(filepath) plt.close() # Call function for each variable var_hist(sep_len, 1, 'sepal_length_cm', 'Frequency', 'Sepal Length', 'sepal_length.png') var_hist(sep_width, 2, 'sepal_width_cm', 'Frequency', 'Sepal Width', 'sepal_width.png') var_hist(pet_len, 3, 'petal_length_cm', 'Frequency', 'Petal Length', 'petal_length.png') var_hist(pet_width, 4, 'petal_width_cm', 'Frequency', 'Petal Width', 'petal_width.png') var_hist2(species, 5, 'species', 'Frequency', 'Iris Species', 'species.png') # 4 axes on one figure for better visual comparison fig, axs = plt.subplots(2, 2) axs1 = axs[0, 0] axs1.hist(sep_len, rwidth=0.9) axs1.set_title('Sepal_Length_Cm') axs1.set(ylabel='frequency') axs2 = axs[0, 1] axs2.hist(sep_width, rwidth=0.9) axs2.set_title('Sepal_Width_Cm',) axs2.set(ylabel='frequency') axs3 = axs[1, 0] axs3.hist(pet_len, rwidth=0.9) axs3.set_title('Petal_Length_Cm') axs3.set(ylabel='frequency') axs4 = axs[1, 1] axs4.hist(pet_width, rwidth=0.9) axs4.set_title('Petal_Width_Cm') axs4.set(ylabel='frequency') #plt.show() plt.close() # C. Output a scatter plot of each pair of variables # Scatter plot with matplotlib (no colour separation) plt.scatter(sep_len, sep_width) plt.xlabel('sepal_length') plt.ylabel('sepal_width') #plt.show() plt.close() # Write a function which outputs a scatter plot of each pair of variables. # Each categorical variable (species of iris flower) is categorized by colour def scatter(x, y): sns.set(style="darkgrid", font_scale=1.25) sns.lmplot(x, y, iris_data, fit_reg=False, hue='species') plt.show() plt.close() # Call function for each pair of variables scatter('sepal_length', 'sepal_width') scatter('sepal_length', 'petal_length') scatter('sepal_length', 'petal_width') scatter('sepal_width', 'petal_length') scatter('sepal_width', 'petal_width') scatter('petal_length', 'petal_width') # Output pairplot using kde to represent marginal distribution sns.set(style='ticks', font_scale=1.25, color_codes=True) sns.pairplot(iris_data, hue='species', diag_kind='kde') plt.show()
[ "pandas.DataFrame", "matplotlib.pyplot.title", "seaborn.set", "seaborn.lmplot", "matplotlib.pyplot.show", "matplotlib.pyplot.hist", "pandas.read_csv", "matplotlib.pyplot.close", "matplotlib.pyplot.scatter", "matplotlib.pyplot.figure", "numpy.arange", "seaborn.pairplot", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((171, 208), 'pandas.read_csv', 'pd.read_csv', (['"""iris.data"""'], {'header': 'None'}), "('iris.data', header=None)\n", (182, 208), True, 'import pandas as pd\n'), ((849, 893), 'pandas.DataFrame', 'pd.DataFrame', (["{'Species': str_summary[:, 0]}"], {}), "({'Species': str_summary[:, 0]})\n", (861, 893), True, 'import pandas as pd\n'), ((3231, 3249), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {}), '(2, 2)\n', (3243, 3249), True, 'import matplotlib.pyplot as plt\n'), ((3715, 3726), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3724, 3726), True, 'import matplotlib.pyplot as plt\n'), ((3839, 3870), 'matplotlib.pyplot.scatter', 'plt.scatter', (['sep_len', 'sep_width'], {}), '(sep_len, sep_width)\n', (3850, 3870), True, 'import matplotlib.pyplot as plt\n'), ((3871, 3897), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""sepal_length"""'], {}), "('sepal_length')\n", (3881, 3897), True, 'import matplotlib.pyplot as plt\n'), ((3898, 3923), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""sepal_width"""'], {}), "('sepal_width')\n", (3908, 3923), True, 'import matplotlib.pyplot as plt\n'), ((3936, 3947), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3945, 3947), True, 'import matplotlib.pyplot as plt\n'), ((4610, 4667), 'seaborn.set', 'sns.set', ([], {'style': '"""ticks"""', 'font_scale': '(1.25)', 'color_codes': '(True)'}), "(style='ticks', font_scale=1.25, color_codes=True)\n", (4617, 4667), True, 'import seaborn as sns\n'), ((4668, 4723), 'seaborn.pairplot', 'sns.pairplot', (['iris_data'], {'hue': '"""species"""', 'diag_kind': '"""kde"""'}), "(iris_data, hue='species', diag_kind='kde')\n", (4680, 4723), True, 'import seaborn as sns\n'), ((4724, 4734), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4732, 4734), True, 'import matplotlib.pyplot as plt\n'), ((2178, 2197), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (2188, 2197), True, 'import matplotlib.pyplot as plt\n'), ((2202, 2221), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x_label'], {}), '(x_label)\n', (2212, 2221), True, 'import matplotlib.pyplot as plt\n'), ((2226, 2245), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y_label'], {}), '(y_label)\n', (2236, 2245), True, 'import matplotlib.pyplot as plt\n'), ((2250, 2266), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (2259, 2266), True, 'import matplotlib.pyplot as plt\n'), ((2271, 2301), 'matplotlib.pyplot.hist', 'plt.hist', (['var_data'], {'rwidth': '(0.9)'}), '(var_data, rwidth=0.9)\n', (2279, 2301), True, 'import matplotlib.pyplot as plt\n'), ((2307, 2328), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filepath'], {}), '(filepath)\n', (2318, 2328), True, 'import matplotlib.pyplot as plt\n'), ((2333, 2344), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2342, 2344), True, 'import matplotlib.pyplot as plt\n'), ((2495, 2514), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (2505, 2514), True, 'import matplotlib.pyplot as plt\n'), ((2519, 2538), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x_label'], {}), '(x_label)\n', (2529, 2538), True, 'import matplotlib.pyplot as plt\n'), ((2543, 2562), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y_label'], {}), '(y_label)\n', (2553, 2562), True, 'import matplotlib.pyplot as plt\n'), ((2567, 2583), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (2576, 2583), True, 'import matplotlib.pyplot as plt\n'), ((2588, 2626), 'matplotlib.pyplot.hist', 'plt.hist', (['var_data'], {'bins': '(3)', 'rwidth': '(0.9)'}), '(var_data, bins=3, rwidth=0.9)\n', (2596, 2626), True, 'import matplotlib.pyplot as plt\n'), ((2662, 2683), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filepath'], {}), '(filepath)\n', (2673, 2683), True, 'import matplotlib.pyplot as plt\n'), ((2688, 2699), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2697, 2699), True, 'import matplotlib.pyplot as plt\n'), ((4126, 4168), 'seaborn.set', 'sns.set', ([], {'style': '"""darkgrid"""', 'font_scale': '(1.25)'}), "(style='darkgrid', font_scale=1.25)\n", (4133, 4168), True, 'import seaborn as sns\n'), ((4173, 4230), 'seaborn.lmplot', 'sns.lmplot', (['x', 'y', 'iris_data'], {'fit_reg': '(False)', 'hue': '"""species"""'}), "(x, y, iris_data, fit_reg=False, hue='species')\n", (4183, 4230), True, 'import seaborn as sns\n'), ((4235, 4245), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4243, 4245), True, 'import matplotlib.pyplot as plt\n'), ((4250, 4261), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4259, 4261), True, 'import matplotlib.pyplot as plt\n'), ((2642, 2657), 'numpy.arange', 'np.arange', (['(0)', '(3)'], {}), '(0, 3)\n', (2651, 2657), True, 'import numpy as np\n')]
# <NAME> - github.com/2b-t (2022) # @file utilities_test.py # @brief Different testing routines for utility functions for accuracy calculation and file import and export import numpy as np from parameterized import parameterized from typing import Tuple import unittest from src.utilities import AccX, IO class TestAccX(unittest.TestCase): _shape = (10,20) _disparities = [ ["disparity = 1", 1], ["disparity = 2", 2], ["disparity = 3", 3] ] @parameterized.expand(_disparities) def test_same_image(self, name: str, threshold_disparity: int) -> None: # Parameterised unit test for testing if two identical images result in an accuracy measure of unity # @param[in] name: The name of the parameterised test # @param[in] threshold_disparity: The threshold disparity for the accuracy measure mag = threshold_disparity*10 groundtruth_image = mag*np.ones(self._shape) prediction_image = mag*np.ones(groundtruth_image.shape) mask_image = np.ones(groundtruth_image.shape) accx = AccX.compute(prediction_image, groundtruth_image, mask_image, threshold_disparity) self.assertAlmostEqual(accx, 1.0, places=7) return @parameterized.expand(_disparities) def test_slightly_shifted_image(self, name: str, threshold_disparity: int) -> None: # Parameterised unit test for testing if an image and its slightly shifted counterpart result in an accuracy measure of unity # @param[in] name: The name of the parameterised test # @param[in] threshold_disparity: The threshold disparity for the accuracy measure mag = threshold_disparity*10 groundtruth_image = mag*np.ones(self._shape) prediction_image = (mag+threshold_disparity-1)*np.ones(groundtruth_image.shape) mask_image = np.ones(groundtruth_image.shape) accx = AccX.compute(prediction_image, groundtruth_image, mask_image, threshold_disparity) self.assertAlmostEqual(accx, 1.0, places=7) return @parameterized.expand(_disparities) def test_no_mask(self, name: str, threshold_disparity: int) -> None: # Parameterised unit test for testing if two identical images with no given mask result in an accuracy measure of unity # @param[in] name: The name of the parameterised test # @param[in] threshold_disparity: The threshold disparity for the accuracy measure mag = threshold_disparity*10 groundtruth_image = mag*np.ones(self._shape) prediction_image = mag*np.ones(groundtruth_image.shape) mask_image = None accx = AccX.compute(prediction_image, groundtruth_image, mask_image, threshold_disparity) self.assertAlmostEqual(accx, 1.0, places=7) return @parameterized.expand(_disparities) def test_inverse_image(self, name: str, threshold_disparity: int) -> None: # Parameterised unit test for testing if two inverse images result in an accuracy measure of zero # @param[in] name: The name of the parameterised test # @param[in] threshold_disparity: The threshold disparity for the accuracy measure mag = threshold_disparity*10 groundtruth_image = mag*np.ones(self._shape) prediction_image = np.zeros(groundtruth_image.shape) mask_image = np.ones(groundtruth_image.shape) accx = AccX.compute(prediction_image, groundtruth_image, mask_image, threshold_disparity) self.assertAlmostEqual(accx, 0.0, places=7) return @parameterized.expand(_disparities) def test_significantly_shifted_image(self, name: str, threshold_disparity: int) -> None: # Parameterised unit test for testing if an image and its significantly shifted counterpart result in an accuracy measure of zero # @param[in] name: The name of the parameterised test # @param[in] threshold_disparity: The threshold disparity for the accuracy measure mag = threshold_disparity*10 groundtruth_image = mag*np.ones(self._shape) prediction_image = (mag+threshold_disparity+1)*np.ones(groundtruth_image.shape) mask_image = np.ones(groundtruth_image.shape) accx = AccX.compute(prediction_image, groundtruth_image, mask_image, threshold_disparity) self.assertAlmostEqual(accx, 0.0, places=7) return @parameterized.expand(_disparities) def test_zero_mask(self, name: str, threshold_disparity: int) -> None: # Parameterised unit test for testing if two equal images with a mask of zero results in an accuracy measure of zero # @param[in] name: The name of the parameterised test # @param[in] threshold_disparity: The threshold disparity for the accuracy measure mag = threshold_disparity*10 groundtruth_image = mag*np.ones(self._shape) prediction_image = groundtruth_image mask_image = np.zeros(groundtruth_image.shape) accx = AccX.compute(prediction_image, groundtruth_image, mask_image, threshold_disparity) self.assertAlmostEqual(accx, 0.0, places=7) return class TestIO(unittest.TestCase): _resolutions = [ ["resolution = (10, 20)", (10, 20)], ["resolution = (30, 4)", (30, 4)], ["resolution = (65, 24)", (65, 24)] ] def test_import_image(self) -> None: # TODO(tobit): Implement pass def test_export_image(self) -> None: # TODO(tobit): Implement pass def test_str_comma(self) -> None: # Function for testing conversion of numbers to comma-separated numbers self.assertEqual(IO._str_comma(10, 2), "10") self.assertEqual(IO._str_comma(9.3, 2), "9,3") self.assertEqual(IO._str_comma(1.234, 2), "1,23") return @parameterized.expand(_resolutions) def test_normalise_positive_image_no_groundtruth(self, name: str, shape: Tuple[int, int]) -> None: # Function for testing normalising a positive image with a no ground-truth should result in a positive image # @param[in] name: The name of the parameterised test # @param[in] shape: The image resolution to be considered for the test mag = 13 image = mag*np.ones(shape) groundtruth_image = None result = IO.normalise_image(image, groundtruth_image) self.assertGreaterEqual(np.min(result), 0.0) self.assertLessEqual(np.max(result), 1.0) return @parameterized.expand(_resolutions) def test_normalise_positive_image_positive_groundtruth(self, name: str, shape: Tuple[int, int]) -> None: # Function for testing normalising a regular image with a regular ground-truth should result in a positive image # @param[in] name: The name of the parameterised test # @param[in] shape: The image resolution to be considered for the test mag = 13 image = mag*np.ones(shape) groundtruth_image = 2*image result = IO.normalise_image(image, groundtruth_image) self.assertGreaterEqual(np.min(result), 0.0) self.assertLessEqual(np.max(result), 1.0) return @parameterized.expand(_resolutions) def test_normalise_negative_image_positive_groundtruth(self, name: str, shape: Tuple[int, int]) -> None: # Function for testing normalising a negative image which should result in a ValueError # @param[in] name: The name of the parameterised test # @param[in] shape: The image resolution to be considered for the test mag = 13 groundtruth_image = mag*np.ones(shape) image = -2*groundtruth_image self.assertRaises(ValueError, IO.normalise_image, image, groundtruth_image) return @parameterized.expand(_resolutions) def test_normalise_positive_image_negative_groundtruth(self, name: str, shape: Tuple[int, int]) -> None: # Function for testing normalising a negative ground-truth which should result in a ValueError # @param[in] name: The name of the parameterised test # @param[in] shape: The image resolution to be considered for the test mag = 13 image = mag*np.ones(shape) groundtruth_image = -2*image self.assertRaises(ValueError, IO.normalise_image, image, groundtruth_image) return if __name__ == '__main__': unittest.main()
[ "unittest.main", "src.utilities.IO._str_comma", "src.utilities.AccX.compute", "numpy.zeros", "numpy.ones", "src.utilities.IO.normalise_image", "parameterized.parameterized.expand", "numpy.min", "numpy.max" ]
[((509, 543), 'parameterized.parameterized.expand', 'parameterized.expand', (['_disparities'], {}), '(_disparities)\n', (529, 543), False, 'from parameterized import parameterized\n'), ((1222, 1256), 'parameterized.parameterized.expand', 'parameterized.expand', (['_disparities'], {}), '(_disparities)\n', (1242, 1256), False, 'from parameterized import parameterized\n'), ((1998, 2032), 'parameterized.parameterized.expand', 'parameterized.expand', (['_disparities'], {}), '(_disparities)\n', (2018, 2032), False, 'from parameterized import parameterized\n'), ((2699, 2733), 'parameterized.parameterized.expand', 'parameterized.expand', (['_disparities'], {}), '(_disparities)\n', (2719, 2733), False, 'from parameterized import parameterized\n'), ((3409, 3443), 'parameterized.parameterized.expand', 'parameterized.expand', (['_disparities'], {}), '(_disparities)\n', (3429, 3443), False, 'from parameterized import parameterized\n'), ((4192, 4226), 'parameterized.parameterized.expand', 'parameterized.expand', (['_disparities'], {}), '(_disparities)\n', (4212, 4226), False, 'from parameterized import parameterized\n'), ((5563, 5597), 'parameterized.parameterized.expand', 'parameterized.expand', (['_resolutions'], {}), '(_resolutions)\n', (5583, 5597), False, 'from parameterized import parameterized\n'), ((6195, 6229), 'parameterized.parameterized.expand', 'parameterized.expand', (['_resolutions'], {}), '(_resolutions)\n', (6215, 6229), False, 'from parameterized import parameterized\n'), ((6836, 6870), 'parameterized.parameterized.expand', 'parameterized.expand', (['_resolutions'], {}), '(_resolutions)\n', (6856, 6870), False, 'from parameterized import parameterized\n'), ((7394, 7428), 'parameterized.parameterized.expand', 'parameterized.expand', (['_resolutions'], {}), '(_resolutions)\n', (7414, 7428), False, 'from parameterized import parameterized\n'), ((7972, 7987), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7985, 7987), False, 'import unittest\n'), ((1032, 1064), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (1039, 1064), True, 'import numpy as np\n'), ((1076, 1162), 'src.utilities.AccX.compute', 'AccX.compute', (['prediction_image', 'groundtruth_image', 'mask_image', 'threshold_disparity'], {}), '(prediction_image, groundtruth_image, mask_image,\n threshold_disparity)\n', (1088, 1162), False, 'from src.utilities import AccX, IO\n'), ((1806, 1838), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (1813, 1838), True, 'import numpy as np\n'), ((1850, 1936), 'src.utilities.AccX.compute', 'AccX.compute', (['prediction_image', 'groundtruth_image', 'mask_image', 'threshold_disparity'], {}), '(prediction_image, groundtruth_image, mask_image,\n threshold_disparity)\n', (1862, 1936), False, 'from src.utilities import AccX, IO\n'), ((2553, 2639), 'src.utilities.AccX.compute', 'AccX.compute', (['prediction_image', 'groundtruth_image', 'mask_image', 'threshold_disparity'], {}), '(prediction_image, groundtruth_image, mask_image,\n threshold_disparity)\n', (2565, 2639), False, 'from src.utilities import AccX, IO\n'), ((3168, 3201), 'numpy.zeros', 'np.zeros', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (3176, 3201), True, 'import numpy as np\n'), ((3219, 3251), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (3226, 3251), True, 'import numpy as np\n'), ((3263, 3349), 'src.utilities.AccX.compute', 'AccX.compute', (['prediction_image', 'groundtruth_image', 'mask_image', 'threshold_disparity'], {}), '(prediction_image, groundtruth_image, mask_image,\n threshold_disparity)\n', (3275, 3349), False, 'from src.utilities import AccX, IO\n'), ((4002, 4034), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (4009, 4034), True, 'import numpy as np\n'), ((4046, 4132), 'src.utilities.AccX.compute', 'AccX.compute', (['prediction_image', 'groundtruth_image', 'mask_image', 'threshold_disparity'], {}), '(prediction_image, groundtruth_image, mask_image,\n threshold_disparity)\n', (4058, 4132), False, 'from src.utilities import AccX, IO\n'), ((4711, 4744), 'numpy.zeros', 'np.zeros', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (4719, 4744), True, 'import numpy as np\n'), ((4756, 4842), 'src.utilities.AccX.compute', 'AccX.compute', (['prediction_image', 'groundtruth_image', 'mask_image', 'threshold_disparity'], {}), '(prediction_image, groundtruth_image, mask_image,\n threshold_disparity)\n', (4768, 4842), False, 'from src.utilities import AccX, IO\n'), ((6040, 6084), 'src.utilities.IO.normalise_image', 'IO.normalise_image', (['image', 'groundtruth_image'], {}), '(image, groundtruth_image)\n', (6058, 6084), False, 'from src.utilities import AccX, IO\n'), ((6681, 6725), 'src.utilities.IO.normalise_image', 'IO.normalise_image', (['image', 'groundtruth_image'], {}), '(image, groundtruth_image)\n', (6699, 6725), False, 'from src.utilities import AccX, IO\n'), ((934, 954), 'numpy.ones', 'np.ones', (['self._shape'], {}), '(self._shape)\n', (941, 954), True, 'import numpy as np\n'), ((982, 1014), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (989, 1014), True, 'import numpy as np\n'), ((1684, 1704), 'numpy.ones', 'np.ones', (['self._shape'], {}), '(self._shape)\n', (1691, 1704), True, 'import numpy as np\n'), ((1756, 1788), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (1763, 1788), True, 'import numpy as np\n'), ((2439, 2459), 'numpy.ones', 'np.ones', (['self._shape'], {}), '(self._shape)\n', (2446, 2459), True, 'import numpy as np\n'), ((2487, 2519), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (2494, 2519), True, 'import numpy as np\n'), ((3124, 3144), 'numpy.ones', 'np.ones', (['self._shape'], {}), '(self._shape)\n', (3131, 3144), True, 'import numpy as np\n'), ((3880, 3900), 'numpy.ones', 'np.ones', (['self._shape'], {}), '(self._shape)\n', (3887, 3900), True, 'import numpy as np\n'), ((3952, 3984), 'numpy.ones', 'np.ones', (['groundtruth_image.shape'], {}), '(groundtruth_image.shape)\n', (3959, 3984), True, 'import numpy as np\n'), ((4632, 4652), 'numpy.ones', 'np.ones', (['self._shape'], {}), '(self._shape)\n', (4639, 4652), True, 'import numpy as np\n'), ((5413, 5433), 'src.utilities.IO._str_comma', 'IO._str_comma', (['(10)', '(2)'], {}), '(10, 2)\n', (5426, 5433), False, 'from src.utilities import AccX, IO\n'), ((5462, 5483), 'src.utilities.IO._str_comma', 'IO._str_comma', (['(9.3)', '(2)'], {}), '(9.3, 2)\n', (5475, 5483), False, 'from src.utilities import AccX, IO\n'), ((5513, 5536), 'src.utilities.IO._str_comma', 'IO._str_comma', (['(1.234)', '(2)'], {}), '(1.234, 2)\n', (5526, 5536), False, 'from src.utilities import AccX, IO\n'), ((5983, 5997), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (5990, 5997), True, 'import numpy as np\n'), ((6113, 6127), 'numpy.min', 'np.min', (['result'], {}), '(result)\n', (6119, 6127), True, 'import numpy as np\n'), ((6159, 6173), 'numpy.max', 'np.max', (['result'], {}), '(result)\n', (6165, 6173), True, 'import numpy as np\n'), ((6621, 6635), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (6628, 6635), True, 'import numpy as np\n'), ((6754, 6768), 'numpy.min', 'np.min', (['result'], {}), '(result)\n', (6760, 6768), True, 'import numpy as np\n'), ((6800, 6814), 'numpy.max', 'np.max', (['result'], {}), '(result)\n', (6806, 6814), True, 'import numpy as np\n'), ((7249, 7263), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (7256, 7263), True, 'import numpy as np\n'), ((7802, 7816), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (7809, 7816), True, 'import numpy as np\n')]
import Bio.SeqUtils.ProtParam import os import ASAP.FeatureExtraction as extract import pandas as pd import matplotlib.pyplot as plt import numpy as np # Chothia numbering definition for CDR regions CHOTHIA_CDR = {'L': {'1': [24, 34], '2': [50, 56], '3': [89, 97]}, 'H':{'1': [26, 32], '2': [52, 56], '3': [95, 102]}} canonical_direct = '../data/pigs_canonical.txt' SET_NAME = 'IGHV' IF_ONLY_HEAVY = True CNT_DB = 1 CNT_TARGET = 1 REFERENCE_PATH_TESTCASE = '../testCase/IGHV/reference-IGHV/' TARGETING_PATH_TESTCASE = '../testCase/IGHV/targeting-MMP-IGHV/' TARGET_DESIRE_SIZE = 134 #44 #IGHV targeting_direct = TARGETING_PATH_TESTCASE reference_direct = REFERENCE_PATH_TESTCASE Amino, Num, Germ, DatasetName, DatasetSize = extract.ReadAminoNumGerm(targeting_direct, reference_direct) seq_id = [] for i, name in enumerate(DatasetName): # if i<2: # continue tmp= [[] for j in range(int(DatasetSize[i]))] # for every seq in that dataset for j in range(int(DatasetSize[i])): seq_name = name + '_' + str(j) seq_id.append(seq_name) # raw sequence def sequence_raw(): def getSequenceHL(sname): SH = ''.join(Amino['H'][sname]) SL = '' if not IF_ONLY_HEAVY: SL = ''.join(Amino['L'][sname]) return SL, SH else: return [SH] with open('../results/'+SET_NAME +'_Sequence.csv','w') as fi: fi.write('sequence name, ') if not IF_ONLY_HEAVY: fi.write('light chain, ') fi.write('heavy chain\n') for sname in seq_id: fi.write(sname + ',' + ','.join(getSequenceHL(sname))+ '\n') # sequence with numbering def sequence_num(): def getSequenceHL_num(sname): NH = ','.join(Num['H'][sname]) SH = ','.join(Amino['H'][sname]) NL = ','.join(Num['L'][sname]) SL = ','.join(Amino['L'][sname]) return NH, SH, NL, SL with open('./Sequence_numbered.csv','w') as fi: for sname in seq_id: NH, SH, NL, SL = getSequenceHL_num(sname) fi.write(sname + ' light num,' + NL + '\n') fi.write(sname + ' light seq,' + SL + '\n') fi.write(sname + ' heavy num,' + NH + '\n') fi.write(sname + ' heavy seq,' + SH + '\n') # sequence with region def sequence_region(): def getSequenceHL_region(sname): NH = Num['H'][sname] HFW1, HCDR1, HFW2, HCDR2, HFW3, HCDR3, HFW4 = '', '', '', '', '', '', '' for i, number in enumerate(NH): if number[-1] >= 'A' and number[-1] <= 'Z': num_i = int(number[:-1]) else: num_i = int(number) if num_i < CHOTHIA_CDR['H']['1'][0]: HFW1 += Amino['H'][sname][i] elif num_i <= CHOTHIA_CDR['H']['1'][1]: HCDR1+= Amino['H'][sname][i] elif num_i < CHOTHIA_CDR['H']['2'][0]: HFW2 += Amino['H'][sname][i] elif num_i <= CHOTHIA_CDR['H']['2'][1]: HCDR2 += Amino['H'][sname][i] elif num_i < CHOTHIA_CDR['H']['3'][0]: HFW3 += Amino['H'][sname][i] elif num_i <= CHOTHIA_CDR['H']['3'][1]: HCDR3 += Amino['H'][sname][i] else: HFW4 += Amino['H'][sname][i] if IF_ONLY_HEAVY: return ''.join(HFW1), ''.join(HCDR1), ''.join(HFW2), ''.join(HCDR2), ''.join(HFW3), ''.join(HCDR3), ''.join( HFW4) else: NL = Num['L'][sname] LFW1, LCDR1, LFW2, LCDR2, LFW3, LCDR3, LFW4 = '', '', '', '', '', '', '' for i, number in enumerate(NL): if number[-1] >= 'A' and number[-1] <= 'Z': num_i = int(number[:-1]) else: num_i = int(number) if num_i < CHOTHIA_CDR['L']['1'][0]: LFW1 += Amino['L'][sname][i] elif num_i <= CHOTHIA_CDR['L']['1'][1]: LCDR1 += Amino['L'][sname][i] elif num_i < CHOTHIA_CDR['L']['2'][0]: LFW2 += Amino['L'][sname][i] elif num_i <= CHOTHIA_CDR['L']['2'][1]: LCDR2 += Amino['L'][sname][i] elif num_i < CHOTHIA_CDR['L']['3'][0]: LFW3 += Amino['L'][sname][i] elif num_i <= CHOTHIA_CDR['L']['3'][1]: LCDR3 += Amino['L'][sname][i] else: LFW4 += Amino['L'][sname][i] return ''.join(LFW1), ''.join(LCDR1), ''.join(LFW2), ''.join(LCDR2), ''.join(LFW3), ''.join(LCDR3), ''.join(LFW4),\ ''.join(HFW1), ''.join(HCDR1), ''.join(HFW2), ''.join(HCDR2), ''.join(HFW3), ''.join(HCDR3), ''.join(HFW4) with open('../results/'+SET_NAME +'_Sequence_region.csv','w') as fi: if IF_ONLY_HEAVY: fi.write( 'sequence id, heavy chain FW1, heavy chain CDR1, heavy chain FW2, heavy chain CDR2, heavy chain FW3, heavy chain CDR3, heavy chain FW4\n') else: fi.write('sequence id, light chain FW1, light chain CDR1, light chain FW2, light chain CDR2, light chain FW3, light chain CDR3, light chain FW4, '+ 'heavy chain FW1, heavy chain CDR1, heavy chain FW2, heavy chain CDR2, heavy chain FW3, heavy chain CDR3, heavy chain FW4\n') for sname in seq_id: fi.write(sname + ',' + ','.join(getSequenceHL_region(sname)) + '\n') def feature_distribution(): from collections import Counter write_out = [[] for i in range(len(seq_id))] for fi in range(1,12): feat = [] for item in write_out: feat.append(item[fi]) feat_count = Counter(feat) sorted_count = sorted(feat_count.items(), key=lambda kv: kv[1], reverse=True) if fi==11: feat_type = sorted_count[0][0].split('_')[0] else: feat_type = sorted_count[0][0].split('_')[0] + sorted_count[0][0].split('_')[1] with open('./Features_distribution_'+feat_type+'.csv','w') as fi: for i in range(len(sorted_count)): fi.write(sorted_count[i][0]+','+str(sorted_count[i][1])+'\n') def feature(): write_out = [[] for i in range(len(seq_id))] for i in range(len(seq_id)): write_out[i].append(seq_id[i]) for idx, f in enumerate(AllFeatureVectors[i]): if f == 1: write_out[i].append(AllFeatureNames[idx]) with open('../results/'+SET_NAME +'_Features.csv', 'w') as fi: fi.write('sequence id, ') if not IF_ONLY_HEAVY: fi.write('light chain V region, light chain J region, ') fi.write('heavy chain V region, heavy chain J region, ') if not IF_ONLY_HEAVY: fi.write('Canonical L1, Canonical L2, Canonical L3, ') fi.write('Canonical H1, Canonical H2, Canonical H3, ' ) fi.write('PI, frequent positional motif\n') for i in range(len(write_out)): fi.write(','.join(write_out[i]) + '\n') def correlation_feature(): ###### plot correlation matrix data = pd.DataFrame(AllFeatureVectors, columns=AllFeatureNames) # print(AllFeatureVectors.shape) corr = data.corr() import numpy as np corr = np.array(corr) with open('../results/Pearson_feature_correlation.csv', 'w') as fi: fi.write('Feature value 1, Feature value 2, Pearson coefficient\n') for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): # if str(corr[i][j])=='nan': # print('nan', AllFeatureNames[i], AllFeatureNames[j]) fi.write(AllFeatureNames[i]+ ','+AllFeatureNames[j]+','+ str(corr[i][j])+'\n') # data.to_csv(r'../results/Feature_test.csv', header=True) # fig = plt.figure(figsize=(100, 70)) # ax = fig.add_subplot(111) # cax = ax.matshow(corr, cmap='seismic', vmin=-1, vmax =1) # fig.colorbar(cax) # ticks = np.arange(0, len(data.columns),1) # ax.set_xticks(ticks) # plt.xticks(rotation=90) # ax.set_yticks(ticks) # ax.set_xticklabels(data.columns) # ax.set_yticklabels(data.columns) # plt.savefig('../results/feature_correlation.png') # corr = pd.DataFrame(corr, index=AllFeatureNames, columns=AllFeatureNames) ###### display pairwise correlation value # au_corr = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) # au_corr = au_corr.stack().sort_values(ascending=False) # au_corr = corr.unstack() # au_corr.columns = [' 1', 'Feature 2', 'Pearson Correlation Value'] # au_corr = pd.DataFrame(au_corr.values, columns = ['Feature 1, Feature 2, Pearson Correlation Value']) # au_corr.to_csv(r'../results/Pearson_feature_correlation.csv', header=True) # print(len(au_corr)) # print(AllFeatureVectors[:, AllFeatureNames.index('Germ_LJ_IGKJ3*01')]) # print(AllFeatureVectors[:, AllFeatureNames.index('Canonical_L2_0')]) # def JaccardCoefficientAnalysis(): # df = pd.DataFrame(AllFeatureVectors, columns=AllFeatureNames) # # interest_feature=['Germ_HV_IGHV3-23*01', 'Canonical_H2_6', 'Germ_HJ_IGHJ4*02', 'Germ_HJ_IGHJ6*01', 'Germ_LV_IGKV1D-39*01', # 'Canonical_H2_5', 'Germ_HJ_IGHJ4*01'] # jac_sim = np.eye(len(AllFeatureNames)) # for i in range(len(AllFeatureNames)): # for j in range(i+1, len(AllFeatureNames)): # if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): # continue # a = AllFeatureVectors[:, i] # b = AllFeatureVectors[:, j] # aandb =0 # aorb = 0 # for k in range(len(a)): # if a[k]==b[k] and a[k]==1: # aandb +=1 # if a[k]==1 or b[k]==1: # aorb +=1 # if aorb==0: # jac_tmp=0 # else: # jac_tmp = float(aandb)/aorb # if AllFeatureNames[i] in interest_feature and AllFeatureNames[j] in interest_feature: # print(AllFeatureNames[i], AllFeatureNames[j], jac_tmp) # # jac_sim[i][j]=jac_tmp # jac_sim[j][i]=jac_tmp # # # with open('../results/Jaccard_feature_coefficient.csv', 'w') as fi: # fi.write('Feature value 1, Feature value 2, Jaccard coefficient\n') # for i in range(len(AllFeatureNames)): # for j in range(i+1, len(AllFeatureNames)): # if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): # continue # fi.write(AllFeatureNames[i]+ ','+AllFeatureNames[j]+','+ str(jac_sim[i][j])+'\n') # # # fig = plt.figure(figsize=(100, 70)) # ax = fig.add_subplot(111) # cax = ax.matshow(jac_sim, cmap='Blues', vmin=0, vmax =1) # fig.colorbar(cax) # ticks = np.arange(0, len(df.columns),1) # ax.set_xticks(ticks) # plt.xticks(rotation=90) # ax.set_yticks(ticks) # ax.set_xticklabels(df.columns) # ax.set_yticklabels(df.columns) # plt.savefig('../results/feature_coefficient.png') # # # print(AllFeatureVectors[:,AllFeatureNames.index('Germ_LJ_IGKJ3*01')]) # # print(AllFeatureVectors[:,AllFeatureNames.index('Canonical_L2_0*01')]) # # where(np.triu(np.ones(jac_sim.shape), k=1).astype(np.bool)) # # au_jac = jac_sim.where(np.triu(np.ones(jac_sim.shape), k=0).astype(np.bool)) # # au_jac = au_jac.stack().sort_values(ascending=False) # # au_jac = jac_sim.unstack() # # print(len(au_jac)) # # au_jac.to_csv(r'../results/Jaccard_feature_coefficient.csv', header=True) def JaccardCoefficientAnalysis(): PDB_size = DatasetSize[0] jac_sim_PDB = np.eye(len(AllFeatureNames)) for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): continue a = AllFeatureVectors[:PDB_size, i] b = AllFeatureVectors[:PDB_size, j] aandb =0 aorb = 0 for k in range(len(a)): if a[k]==b[k] and a[k]==1: aandb +=1 if a[k]==1 or b[k]==1: aorb +=1 if aorb==0: jac_tmp=0 else: jac_tmp = float(aandb)/aorb # if AllFeatureNames[i] == 'Germ_HV_IGHV3-23*01' and AllFeatureNames[j] =='Canonical_H2_6': # print(a, b, jac_tmp) # if AllFeatureNames[i] in interest_feature and AllFeatureNames[j] in interest_feature: # print(AllFeatureNames[i], AllFeatureNames[j], jac_tmp) jac_sim_PDB[i][j]=jac_tmp jac_sim_PDB[j][i]=jac_tmp jac_sim_MMP = np.eye(len(AllFeatureNames)) for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): continue a = AllFeatureVectors[PDB_size:, i] b = AllFeatureVectors[PDB_size:, j] aandb =0 aorb = 0 for k in range(len(a)): if a[k]==b[k] and a[k]==1: aandb +=1 if a[k]==1 or b[k]==1: aorb +=1 if aorb==0: jac_tmp=0 else: jac_tmp = float(aandb)/aorb # if AllFeatureNames[i] in interest_feature and AllFeatureNames[j] in interest_feature: # print(AllFeatureNames[i], AllFeatureNames[j], jac_tmp) jac_sim_MMP[i][j]=jac_tmp jac_sim_MMP[j][i]=jac_tmp with open('../results/'+SET_NAME+'_Jaccard Feature Coefficient.csv', 'w') as fi: fi.write('Feature value 1, Feature value 2, Jaccard coefficient for reference set, Jaccard coefficient for MMP-targeting set\n') for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): continue fi.write(AllFeatureNames[i]+ ','+AllFeatureNames[j]+','+ str(jac_sim_PDB[i][j])+','+ str(jac_sim_MMP[i][j])+'\n') if __name__=='__main__': sequence_raw() sequence_region() OneHotGerm, GermFeatureNames = extract.GetOneHotGerm(Germ, DatasetSize, DatasetName) OneHotCanon, CanonFeatureNames = extract.GetOneHotCanon(canonical_direct, Amino, Num, DatasetSize, DatasetName) CDRH3 = extract.GetCDRH3(Amino, Num) OneHotPI, PIFeatureNames = extract.GetOneHotPI(CDRH3, DatasetSize, DatasetName) MultiHotMotif, MotifFeatureNames = extract.MultiHotMotif(CDRH3, DatasetSize, DatasetName) AllFeatureVectors, AllFeatureNames, _, _ = extract.GetFeatureVectors(OneHotGerm, GermFeatureNames, OneHotCanon, CanonFeatureNames, OneHotPI, PIFeatureNames, MultiHotMotif, MotifFeatureNames) feature() # correlation_feature() JaccardCoefficientAnalysis()
[ "pandas.DataFrame", "ASAP.FeatureExtraction.MultiHotMotif", "ASAP.FeatureExtraction.GetOneHotGerm", "ASAP.FeatureExtraction.GetOneHotCanon", "ASAP.FeatureExtraction.GetFeatureVectors", "numpy.array", "ASAP.FeatureExtraction.GetCDRH3", "collections.Counter", "ASAP.FeatureExtraction.GetOneHotPI", "ASAP.FeatureExtraction.ReadAminoNumGerm" ]
[((728, 788), 'ASAP.FeatureExtraction.ReadAminoNumGerm', 'extract.ReadAminoNumGerm', (['targeting_direct', 'reference_direct'], {}), '(targeting_direct, reference_direct)\n', (752, 788), True, 'import ASAP.FeatureExtraction as extract\n'), ((7133, 7189), 'pandas.DataFrame', 'pd.DataFrame', (['AllFeatureVectors'], {'columns': 'AllFeatureNames'}), '(AllFeatureVectors, columns=AllFeatureNames)\n', (7145, 7189), True, 'import pandas as pd\n'), ((7284, 7298), 'numpy.array', 'np.array', (['corr'], {}), '(corr)\n', (7292, 7298), True, 'import numpy as np\n'), ((14457, 14510), 'ASAP.FeatureExtraction.GetOneHotGerm', 'extract.GetOneHotGerm', (['Germ', 'DatasetSize', 'DatasetName'], {}), '(Germ, DatasetSize, DatasetName)\n', (14478, 14510), True, 'import ASAP.FeatureExtraction as extract\n'), ((14548, 14626), 'ASAP.FeatureExtraction.GetOneHotCanon', 'extract.GetOneHotCanon', (['canonical_direct', 'Amino', 'Num', 'DatasetSize', 'DatasetName'], {}), '(canonical_direct, Amino, Num, DatasetSize, DatasetName)\n', (14570, 14626), True, 'import ASAP.FeatureExtraction as extract\n'), ((14639, 14667), 'ASAP.FeatureExtraction.GetCDRH3', 'extract.GetCDRH3', (['Amino', 'Num'], {}), '(Amino, Num)\n', (14655, 14667), True, 'import ASAP.FeatureExtraction as extract\n'), ((14699, 14751), 'ASAP.FeatureExtraction.GetOneHotPI', 'extract.GetOneHotPI', (['CDRH3', 'DatasetSize', 'DatasetName'], {}), '(CDRH3, DatasetSize, DatasetName)\n', (14718, 14751), True, 'import ASAP.FeatureExtraction as extract\n'), ((14791, 14845), 'ASAP.FeatureExtraction.MultiHotMotif', 'extract.MultiHotMotif', (['CDRH3', 'DatasetSize', 'DatasetName'], {}), '(CDRH3, DatasetSize, DatasetName)\n', (14812, 14845), True, 'import ASAP.FeatureExtraction as extract\n'), ((14893, 15048), 'ASAP.FeatureExtraction.GetFeatureVectors', 'extract.GetFeatureVectors', (['OneHotGerm', 'GermFeatureNames', 'OneHotCanon', 'CanonFeatureNames', 'OneHotPI', 'PIFeatureNames', 'MultiHotMotif', 'MotifFeatureNames'], {}), '(OneHotGerm, GermFeatureNames, OneHotCanon,\n CanonFeatureNames, OneHotPI, PIFeatureNames, MultiHotMotif,\n MotifFeatureNames)\n', (14918, 15048), True, 'import ASAP.FeatureExtraction as extract\n'), ((5731, 5744), 'collections.Counter', 'Counter', (['feat'], {}), '(feat)\n', (5738, 5744), False, 'from collections import Counter\n')]
import numpy as np import tensorflow as tf from rl.losses import QLearningLoss from rl.algorithms import OnlineRLAlgorithm from rl.runner import * from rl.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer from rl import util from deeplearning.layers import Adam, RunningNorm from deeplearning.schedules import LinearSchedule from deeplearning import logger from collections import deque import time class QLearning(OnlineRLAlgorithm): def defaults(self): return { 'lr': 1e-4, 'momentum': 0.9, 'beta2': 0.999, 'clip_norm': 10., 'gamma': 0.99, 'learning_starts': int(1e5), 'exploration_timesteps': int(1e6), 'final_eps': 0.02, 'target_update_freq': int(1e4), 'prioritized_replay': True, 'huber_loss': True, 'buffer_size': int(1e6), 'replay_alpha': 0.6, 'replay_beta': 0.4, 't_beta_max': int(1e7) } def __init__(self, logdir, env_fn, model_fn, nenv, rollout_length=1, batch_size=32, callback=None, **kwargs ): defaults = self.defaults() for k in kwargs: assert k in defaults, "Unknown argument: {}".format(k) defaults.update(kwargs) super().__init__(logdir, env_fn, model_fn, nenv, rollout_length, batch_size, callback, runner_flags=[], **defaults) self.target_sync = tf.group([tf.assign(v1,v2) for v1,v2 in zip(self.loss.qtarg.variables(), self.loss.qvals.variables())]) if self.args.prioritized_replay: self.buffer = PrioritizedReplayBuffer(self.args.buffer_size, alpha=self.args.replay_alpha) else: self.buffer = ReplayBuffer(self.args.buffer_size) # determine if the network has a RunningNorm submodule that needs to be updated. submods = self.opt.find_submodules_by_instance(RunningNorm) self.rn = submods[0] if len(submods) > 0 else None self.losses = deque(maxlen=100) self.nsteps = 0 self.last_target_sync = (self.t // self.args.target_update_freq) * self.args.target_update_freq self.beta_schedule = LinearSchedule(self.args.t_beta_max, 1.0, self.args.replay_beta) self.eps_schedule = LinearSchedule(int(self.args.exploration_timesteps), self.args.final_eps, 1.0) self._time_start = time.time() self._t_start = self.t def _def_loss(self, model_fn, env): target_network = model_fn(env) target_network.build('target', self.nenv, self.batch_size, trainable=False) # extra network for double dqn. Tie variables with network return QLearningLoss('loss', model_fn(env), model_fn(env), target_network, gamma=self.args.gamma, use_huber_loss=self.args.huber_loss) def _def_opt(self, loss): return Adam( 'opt', loss, lr=self.args.lr, beta1=self.args.momentum, beta2=self.args.beta2, clip_norm=self.args.clip_norm ) def _before_step(self): if self.t == 0 or self.t - self.last_target_sync > self.args.target_update_freq: self.target_sync.run() self.last_target_sync = self.t self.actor.update_eps(self.eps_schedule.value(self.t)) def _process_rollout(self, rollout): self._update_buffer(rollout) while len(self.buffer) < self.args.learning_starts and len(self.buffer) != self.args.buffer_size: self._update_buffer(self.runner.rollout()) self.t += self.timesteps_per_step if self.args.prioritized_replay: obs, acs, rews, next_obs, dones, weights, self._inds = self.buffer.sample(self.nenv * self.batch_size, self.beta_schedule.value(self.t)) inputs=[obs, next_obs, next_obs, rews, acs, dones, weights[...,None]] else: obs, acs, rews, next_obs, dones = self.buffer.sample(self.nenv * self.batch_size) inputs=[obs, next_obs, next_obs, rews, acs, dones] return inputs def _update_buffer(self, rollout): if self.rn is not None: x = np.asarray(rollout.obs) self._update_running_norm(x.reshape([-1] + list(x.shape[2:]))) for i,obs in enumerate(rollout.obs): next_obs = rollout.end_ob if i == len(rollout.obs) - 1 else rollout.obs[i+1] for j in range(self.nenv): ob = obs[j] next_ob = next_obs[j] ac = rollout.actions[i][j] r = rollout.rewards[i][j] done = rollout.dones[i][j] self.buffer.add(ob, ac, r, next_ob, done) def _update_model(self, data): outs = self.opt.run(inputs=data, state=[], state_out=False, update=True, td=True) if self.args.prioritized_replay: self.buffer.update_priorities(self._inds, priorities=np.abs(outs['td'][:,0]) + 1e-6) self.losses.append(outs['out']) return outs def _after_step(self, rollout, data, outs): self.nsteps += 1 if self.nsteps % 100 == 0: logger.log("========================| Timestep: {} |========================".format(self.t)) meanloss = np.mean(np.array(self.losses), axis=0) # Logging stats... logger.logkv('Loss', meanloss) logger.logkv('timesteps', self.t) logger.logkv('serial timesteps', self.t / self.nenv) logger.logkv('mean episode length', np.mean(self.runner.get_episode_lengths())) logger.logkv('mean episode reward', np.mean(self.runner.get_episode_rewards())) logger.logkv('fps', int((self.t - self._t_start) / (time.time() - self._time_start))) logger.logkv('time_elapsed', time.time() - self._time_start) logger.logkv('time spent exploring', self.actor.eps) logger.dumpkvs() def _update_running_norm(self, x): mean = x.mean(axis=0) var = x.var(axis=0) count = x.shape[0] self.rn.update(mean, var, count) def update_lr(self, new_lr): self.opt.update_lr(new_lr)
[ "numpy.abs", "numpy.asarray", "deeplearning.logger.dumpkvs", "deeplearning.schedules.LinearSchedule", "time.time", "deeplearning.logger.logkv", "deeplearning.layers.Adam", "tensorflow.assign", "numpy.array", "rl.replay_buffer.PrioritizedReplayBuffer", "rl.replay_buffer.ReplayBuffer", "collections.deque" ]
[((2065, 2082), 'collections.deque', 'deque', ([], {'maxlen': '(100)'}), '(maxlen=100)\n', (2070, 2082), False, 'from collections import deque\n'), ((2240, 2304), 'deeplearning.schedules.LinearSchedule', 'LinearSchedule', (['self.args.t_beta_max', '(1.0)', 'self.args.replay_beta'], {}), '(self.args.t_beta_max, 1.0, self.args.replay_beta)\n', (2254, 2304), False, 'from deeplearning.schedules import LinearSchedule\n'), ((2439, 2450), 'time.time', 'time.time', ([], {}), '()\n', (2448, 2450), False, 'import time\n'), ((2902, 3021), 'deeplearning.layers.Adam', 'Adam', (['"""opt"""', 'loss'], {'lr': 'self.args.lr', 'beta1': 'self.args.momentum', 'beta2': 'self.args.beta2', 'clip_norm': 'self.args.clip_norm'}), "('opt', loss, lr=self.args.lr, beta1=self.args.momentum, beta2=self.\n args.beta2, clip_norm=self.args.clip_norm)\n", (2906, 3021), False, 'from deeplearning.layers import Adam, RunningNorm\n'), ((1673, 1749), 'rl.replay_buffer.PrioritizedReplayBuffer', 'PrioritizedReplayBuffer', (['self.args.buffer_size'], {'alpha': 'self.args.replay_alpha'}), '(self.args.buffer_size, alpha=self.args.replay_alpha)\n', (1696, 1749), False, 'from rl.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer\n'), ((1790, 1825), 'rl.replay_buffer.ReplayBuffer', 'ReplayBuffer', (['self.args.buffer_size'], {}), '(self.args.buffer_size)\n', (1802, 1825), False, 'from rl.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer\n'), ((4222, 4245), 'numpy.asarray', 'np.asarray', (['rollout.obs'], {}), '(rollout.obs)\n', (4232, 4245), True, 'import numpy as np\n'), ((5392, 5422), 'deeplearning.logger.logkv', 'logger.logkv', (['"""Loss"""', 'meanloss'], {}), "('Loss', meanloss)\n", (5404, 5422), False, 'from deeplearning import logger\n'), ((5435, 5468), 'deeplearning.logger.logkv', 'logger.logkv', (['"""timesteps"""', 'self.t'], {}), "('timesteps', self.t)\n", (5447, 5468), False, 'from deeplearning import logger\n'), ((5481, 5533), 'deeplearning.logger.logkv', 'logger.logkv', (['"""serial timesteps"""', '(self.t / self.nenv)'], {}), "('serial timesteps', self.t / self.nenv)\n", (5493, 5533), False, 'from deeplearning import logger\n'), ((5901, 5953), 'deeplearning.logger.logkv', 'logger.logkv', (['"""time spent exploring"""', 'self.actor.eps'], {}), "('time spent exploring', self.actor.eps)\n", (5913, 5953), False, 'from deeplearning import logger\n'), ((5966, 5982), 'deeplearning.logger.dumpkvs', 'logger.dumpkvs', ([], {}), '()\n', (5980, 5982), False, 'from deeplearning import logger\n'), ((1512, 1529), 'tensorflow.assign', 'tf.assign', (['v1', 'v2'], {}), '(v1, v2)\n', (1521, 1529), True, 'import tensorflow as tf\n'), ((5318, 5339), 'numpy.array', 'np.array', (['self.losses'], {}), '(self.losses)\n', (5326, 5339), True, 'import numpy as np\n'), ((5857, 5868), 'time.time', 'time.time', ([], {}), '()\n', (5866, 5868), False, 'import time\n'), ((4978, 5002), 'numpy.abs', 'np.abs', (["outs['td'][:, 0]"], {}), "(outs['td'][:, 0])\n", (4984, 5002), True, 'import numpy as np\n'), ((5782, 5793), 'time.time', 'time.time', ([], {}), '()\n', (5791, 5793), False, 'import time\n')]
import gi import numpy.testing import pint import pyRestTable import pytest gi.require_version("Hkl", "5.0") # NOTE: MUST call gi.require_version() BEFORE import hkl from hkl.calc import A_KEV from hkl.diffract import Constraint from hkl import SimulatedE4CV class Fourc(SimulatedE4CV): ... @pytest.fixture(scope="function") def fourc(): fourc = Fourc("", name="fourc") fourc.wait_for_connection() fourc._update_calc_energy() return fourc def test_calc_energy_permit(fourc): assert fourc._calc_energy_update_permitted fourc.energy_update_calc_flag.put(False) assert not fourc._calc_energy_update_permitted nrg = fourc.calc.energy fourc.energy.put(5.989) # BTW: Cr K absorption edge numpy.testing.assert_almost_equal(fourc.energy.get(), 5.989) numpy.testing.assert_almost_equal(fourc.calc.energy, nrg) fourc._energy_changed() numpy.testing.assert_almost_equal(fourc.calc.energy, nrg) fourc._energy_changed(fourc.energy.get()) numpy.testing.assert_almost_equal(fourc.calc.energy, nrg) fourc._energy_changed(5.989) numpy.testing.assert_almost_equal(fourc.calc.energy, nrg) fourc._update_calc_energy() numpy.testing.assert_almost_equal(fourc.calc.energy, 5.989) # test that value argument is ignored fourc._update_calc_energy(A_KEV / 1) numpy.testing.assert_almost_equal(fourc.calc.energy, 5.989) def test_energy(fourc): numpy.testing.assert_almost_equal(fourc.energy.get(), fourc.calc.energy) for nrg in (8.0, 8.04, 9.0, 0.931): fourc.energy.put(nrg) numpy.testing.assert_almost_equal(fourc.energy.get(), nrg) numpy.testing.assert_almost_equal(fourc.calc.energy, nrg) numpy.testing.assert_almost_equal(fourc.calc.wavelength, A_KEV / nrg) def test_energy_offset(fourc): assert fourc.energy_offset.get() == 0 nrg = 8.0 fourc.energy.put(nrg) numpy.testing.assert_almost_equal(fourc.energy.get(), nrg) numpy.testing.assert_almost_equal(fourc.energy.get(), fourc.calc.energy) for offset in (0.05, -0.1): fourc.energy_offset.put(offset) fourc.energy.put(nrg) numpy.testing.assert_almost_equal(fourc.energy.get(), nrg) numpy.testing.assert_almost_equal(fourc.energy.get() + offset, fourc.calc.energy) def test_energy_offset_units(fourc): assert fourc.energy_offset.get() == 0 assert fourc.energy_units.get() == "keV" fourc.energy_units.put("eV") assert fourc.energy_units.get() == "eV" nrg = 931 fourc.energy.put(nrg) numpy.testing.assert_almost_equal(fourc.energy.get(), nrg) numpy.testing.assert_almost_equal(fourc.energy.get() / 1000, fourc.calc.energy) for offset in (5, -6): fourc.energy_offset.put(offset) fourc.energy.put(nrg) numpy.testing.assert_almost_equal(fourc.energy.get(), nrg) numpy.testing.assert_almost_equal((fourc.energy.get() + offset) / 1000, fourc.calc.energy) def test_energy_units_931eV(fourc): assert fourc.energy_units.get() == "keV" fourc.energy_units.put("eV") assert fourc.energy_units.get() == "eV" eV = 931 fourc.energy.put(eV) numpy.testing.assert_almost_equal(fourc.energy.get(), eV) numpy.testing.assert_almost_equal(fourc.calc.energy, eV / 1000) def test_energy_units_issue79(fourc): # issue #79 fourc.energy_units.put("eV") fourc.energy_offset.put(0) eV = 1746 fourc.energy.put(eV) numpy.testing.assert_almost_equal(fourc.calc.energy, eV / 1000) numpy.testing.assert_almost_equal( # fmt: off pint.Quantity(fourc.calc.energy, "keV").to(fourc.energy_units.get()).magnitude, fourc.energy.get(), # fmt: on ) def test_energy_units_offset(fourc): fourc.energy_units.put("keV") fourc.energy.put(7.985) fourc.energy_offset.put(0.015) assert fourc.calc.energy == 8.0 assert round(fourc.energy.get(), 6) == 7.985 fourc.energy.put(8) assert fourc.calc.energy == 8.015 assert round(fourc.energy.get(), 6) == 8 fourc.energy_offset.put(0.0) assert fourc.calc.energy == 8.0 def test_energy_units_issue86(fourc): # issue #86 # changing units or offset changes .energy, not .calc.energy fourc.energy.put(8) fourc.energy_offset.put(0.015) fourc.energy_units.put("eV") # test interim state when fourc.energy value has not changed but units have assert round(fourc.calc.energy, 6) == 8.015e-3 assert round(fourc.energy.get(), 1) == 8 fourc.energy.put(8000) assert round(fourc.calc.energy, 8) == 8.000015 assert round(fourc.energy.get(), 1) == 8000 fourc.energy_offset.put(15) assert round(fourc.calc.energy, 8) == 8.015 assert round(fourc.energy.get(), 1) == 8000 fourc.energy.put(8000) assert round(fourc.calc.energy, 8) == 8.015 assert round(fourc.energy.get(), 1) == 8000 def test_names(fourc): assert fourc.geometry_name.get() == "E4CV" assert fourc.class_name.get() == "Fourc" def test_forward_solutions_table(fourc): fourc.energy.put(A_KEV / 1.54) # (100) has chi ~ 0 which poses occasional roundoff errors # (sometimes -0.00000, sometimes 0.00000) sol = fourc.forward(1, 0, 0) assert pytest.approx(sol.omega, 1e-5) == -30 assert pytest.approx(sol.chi, 1e-5) == 0 assert pytest.approx(sol.phi, 1e-5) == -90 assert pytest.approx(sol.tth, 1e-5) == -60 fourc.apply_constraints({"tth": Constraint(0, 180, 0, True)}) tbl = fourc.forward_solutions_table( # fmt: off [ [1, 1, 0], [1, 1, 1], [100, 1, 1], # no solutions ] # fmt: on ) received = str(tbl).splitlines() expected = [ "=========== ======== ===== ======== ==== =====", "(hkl) solution omega chi phi tth ", "=========== ======== ===== ======== ==== =====", "[1, 1, 0] 0 45.0 45.0 90.0 90.0 ", "[1, 1, 1] 0 60.0 35.26439 45.0 120.0", "[100, 1, 1] none ", "=========== ======== ===== ======== ==== =====", ] for r, e in zip(received, expected): assert r == e def test_pa(fourc, capsys): tbl = fourc.pa() assert isinstance(tbl, pyRestTable.Table) out, err = capsys.readouterr() assert len(out) > 0 assert err == "" out = [v.rstrip() for v in out.strip().splitlines()] expected = [ "===================== ====================================================================", "term value", "===================== ====================================================================", "diffractometer fourc", "geometry E4CV", "class Fourc", "energy (keV) 8.00000", "wavelength (angstrom) 1.54980", "calc engine hkl", "mode bissector", "positions ===== =======", " name value", " ===== =======", " omega 0.00000", " chi 0.00000", " phi 0.00000", " tth 0.00000", " ===== =======", "constraints ===== ========= ========== ===== ====", " axis low_limit high_limit value fit", " ===== ========= ========== ===== ====", " omega -180.0 180.0 0.0 True", " chi -180.0 180.0 0.0 True", " phi -180.0 180.0 0.0 True", " tth -180.0 180.0 0.0 True", " ===== ========= ========== ===== ====", "sample: main ================ ===================================================", " term value", " ================ ===================================================", " unit cell edges a=1.54, b=1.54, c=1.54", " unit cell angles alpha=90.0, beta=90.0, gamma=90.0", " [U] [[1. 0. 0.]", " [0. 1. 0.]", " [0. 0. 1.]]", " [UB] [[ 4.07999046e+00 -2.49827363e-16 -2.49827363e-16]", " [ 0.00000000e+00 4.07999046e+00 -2.49827363e-16]", " [ 0.00000000e+00 0.00000000e+00 4.07999046e+00]]", " ================ ===================================================", "===================== ====================================================================", ] assert len(out) == len(expected) assert out == expected def test_wh(fourc, capsys): tbl = fourc.wh() assert isinstance(tbl, pyRestTable.Table) out, err = capsys.readouterr() assert len(out) > 0 assert err == "" out = [v.rstrip() for v in out.strip().splitlines()] expected = [ "===================== ========= =========", "term value axis_type", "===================== ========= =========", "diffractometer fourc", "sample name main", "energy (keV) 8.00000", "wavelength (angstrom) 1.54980", "calc engine hkl", "mode bissector", "h 0.0 pseudo", "k 0.0 pseudo", "l 0.0 pseudo", "omega 0 real", "chi 0 real", "phi 0 real", "tth 0 real", "===================== ========= =========", ] assert len(out) == len(expected) assert out == expected def test_show_constraints(fourc, capsys): fourc.show_constraints() out, err = capsys.readouterr() assert len(out) > 0 assert err == "" out = [v.rstrip() for v in out.strip().splitlines()] expected = [ "===== ========= ========== ===== ====", "axis low_limit high_limit value fit", "===== ========= ========== ===== ====", "omega -180.0 180.0 0.0 True", "chi -180.0 180.0 0.0 True", "phi -180.0 180.0 0.0 True", "tth -180.0 180.0 0.0 True", "===== ========= ========== ===== ====", ] for r, e in zip(out, expected): assert r.rstrip() == e.rstrip() def test_apply_constraints(fourc): fourc.energy.put(A_KEV / 1.54) # fmt: off fourc.apply_constraints( { "tth": Constraint(0, 180, 0, True), "chi": Constraint(0, 180, 0, True), } ) # fmt: on sol = fourc.forward(1, 0, 0) assert pytest.approx(sol.omega, 1e-5) == 30 assert pytest.approx(sol.chi, 1e-5) == 0 assert pytest.approx(sol.phi, 1e-5) == 90 assert pytest.approx(sol.tth, 1e-5) == 60 def test_specify_engine(): import hkl import numpy as np from ophyd import Component as Cpt from ophyd import PseudoSingle from ophyd import SoftPositioner class Q4C(hkl.E4CV): q = Cpt(PseudoSingle, "") omega = Cpt(SoftPositioner, limits=(-180, 180), init_pos=0) chi = Cpt(SoftPositioner, limits=(-180, 180), init_pos=0) phi = Cpt(SoftPositioner, limits=(-180, 180), init_pos=0) tth = Cpt(SoftPositioner, limits=(-180, 180), init_pos=0) q4c = Q4C("", name="q4c") assert q4c.calc.engine.name == "hkl" q4c = Q4C("", name="q4c", engine="q") assert q4c.calc.engine.name == "q" q = 1.0 angle = 2 * np.arcsin(q * q4c.calc.wavelength / 4 / np.pi) * 180 / np.pi value = q4c.forward(q) assert round(value.tth, 5) == round(angle, 5) assert value.omega == 0.0 assert value.chi == 0.0 assert value.phi == 0.0
[ "gi.require_version", "pytest.fixture", "numpy.arcsin", "ophyd.Component", "hkl.diffract.Constraint", "pytest.approx", "pint.Quantity" ]
[((77, 109), 'gi.require_version', 'gi.require_version', (['"""Hkl"""', '"""5.0"""'], {}), "('Hkl', '5.0')\n", (95, 109), False, 'import gi\n'), ((301, 333), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (315, 333), False, 'import pytest\n'), ((5226, 5257), 'pytest.approx', 'pytest.approx', (['sol.omega', '(1e-05)'], {}), '(sol.omega, 1e-05)\n', (5239, 5257), False, 'import pytest\n'), ((5275, 5304), 'pytest.approx', 'pytest.approx', (['sol.chi', '(1e-05)'], {}), '(sol.chi, 1e-05)\n', (5288, 5304), False, 'import pytest\n'), ((5320, 5349), 'pytest.approx', 'pytest.approx', (['sol.phi', '(1e-05)'], {}), '(sol.phi, 1e-05)\n', (5333, 5349), False, 'import pytest\n'), ((5367, 5396), 'pytest.approx', 'pytest.approx', (['sol.tth', '(1e-05)'], {}), '(sol.tth, 1e-05)\n', (5380, 5396), False, 'import pytest\n'), ((11196, 11227), 'pytest.approx', 'pytest.approx', (['sol.omega', '(1e-05)'], {}), '(sol.omega, 1e-05)\n', (11209, 11227), False, 'import pytest\n'), ((11244, 11273), 'pytest.approx', 'pytest.approx', (['sol.chi', '(1e-05)'], {}), '(sol.chi, 1e-05)\n', (11257, 11273), False, 'import pytest\n'), ((11289, 11318), 'pytest.approx', 'pytest.approx', (['sol.phi', '(1e-05)'], {}), '(sol.phi, 1e-05)\n', (11302, 11318), False, 'import pytest\n'), ((11335, 11364), 'pytest.approx', 'pytest.approx', (['sol.tth', '(1e-05)'], {}), '(sol.tth, 1e-05)\n', (11348, 11364), False, 'import pytest\n'), ((11586, 11607), 'ophyd.Component', 'Cpt', (['PseudoSingle', '""""""'], {}), "(PseudoSingle, '')\n", (11589, 11607), True, 'from ophyd import Component as Cpt\n'), ((11624, 11675), 'ophyd.Component', 'Cpt', (['SoftPositioner'], {'limits': '(-180, 180)', 'init_pos': '(0)'}), '(SoftPositioner, limits=(-180, 180), init_pos=0)\n', (11627, 11675), True, 'from ophyd import Component as Cpt\n'), ((11690, 11741), 'ophyd.Component', 'Cpt', (['SoftPositioner'], {'limits': '(-180, 180)', 'init_pos': '(0)'}), '(SoftPositioner, limits=(-180, 180), init_pos=0)\n', (11693, 11741), True, 'from ophyd import Component as Cpt\n'), ((11756, 11807), 'ophyd.Component', 'Cpt', (['SoftPositioner'], {'limits': '(-180, 180)', 'init_pos': '(0)'}), '(SoftPositioner, limits=(-180, 180), init_pos=0)\n', (11759, 11807), True, 'from ophyd import Component as Cpt\n'), ((11822, 11873), 'ophyd.Component', 'Cpt', (['SoftPositioner'], {'limits': '(-180, 180)', 'init_pos': '(0)'}), '(SoftPositioner, limits=(-180, 180), init_pos=0)\n', (11825, 11873), True, 'from ophyd import Component as Cpt\n'), ((5440, 5467), 'hkl.diffract.Constraint', 'Constraint', (['(0)', '(180)', '(0)', '(True)'], {}), '(0, 180, 0, True)\n', (5450, 5467), False, 'from hkl.diffract import Constraint\n'), ((11045, 11072), 'hkl.diffract.Constraint', 'Constraint', (['(0)', '(180)', '(0)', '(True)'], {}), '(0, 180, 0, True)\n', (11055, 11072), False, 'from hkl.diffract import Constraint\n'), ((11093, 11120), 'hkl.diffract.Constraint', 'Constraint', (['(0)', '(180)', '(0)', '(True)'], {}), '(0, 180, 0, True)\n', (11103, 11120), False, 'from hkl.diffract import Constraint\n'), ((12056, 12102), 'numpy.arcsin', 'np.arcsin', (['(q * q4c.calc.wavelength / 4 / np.pi)'], {}), '(q * q4c.calc.wavelength / 4 / np.pi)\n', (12065, 12102), True, 'import numpy as np\n'), ((3577, 3616), 'pint.Quantity', 'pint.Quantity', (['fourc.calc.energy', '"""keV"""'], {}), "(fourc.calc.energy, 'keV')\n", (3590, 3616), False, 'import pint\n')]
from itertools import groupby import numpy as np def best_path(mat: np.ndarray, labels: str) -> str: """Best path (greedy) decoder. Take best-scoring character per time-step, then remove repeated characters and CTC blank characters. See dissertation of Graves, p63. Args: mat: Output of neural network of shape TxC. labels: The set of characters the neural network can recognize, excluding the CTC-blank. Returns: The decoded text. """ # get char indices along best path best_path_indices = np.argmax(mat, axis=1) # collapse best path (using itertools.groupby), map to chars, join char list to string blank_idx = len(labels) best_chars_collapsed = [labels[k] for k, _ in groupby(best_path_indices) if k != blank_idx] res = ''.join(best_chars_collapsed) return res
[ "itertools.groupby", "numpy.argmax" ]
[((554, 576), 'numpy.argmax', 'np.argmax', (['mat'], {'axis': '(1)'}), '(mat, axis=1)\n', (563, 576), True, 'import numpy as np\n'), ((747, 773), 'itertools.groupby', 'groupby', (['best_path_indices'], {}), '(best_path_indices)\n', (754, 773), False, 'from itertools import groupby\n')]
import numpy as np import pandas as pd import matplotlib.pyplot as plt # use all cores #import os #os.system("taskset -p 0xff %d" % os.getpid()) pd.options.mode.chained_assignment = None # deactivating slicing warns def load_seattle_speed_matrix(): """ Loads the whole Seattle `speed_matrix_2015` into memory. Caution ~ 200 mb of data :param: :return df (pandas.DataFrame): speed matrix as DataFrame. Columns are sensors, rows are timestamps """ speed_matrix = './data/Seattle_Loop_Dataset/speed_matrix_2015' print('Loading data...') df = pd.read_pickle(speed_matrix) df.index = pd.to_datetime(df.index, format='%Y-%m-%d %H:%M') print('Load completed.') return df def best_moving_average(df, col, average_window_in_hours=27, from_date=None, to_date=None, plot=False): """ Calculates the moving average in a window of `average_window_in_hours` hours and propagates into the future. Beware! This code uses data from the future to perform predictions. Meaning it is meant to be used to generate the "perfect" moving average baseline. :param df (pandas.DataFrame): dataset being used :param col (str): column for which the moving average will be applied :param average_window_in_hours (int): the window (in hours) used to generate predictions :param from_date (str): initial date to be shown in the plot, format: "YYYY-MM-DD" :param to_date (str): end date to be shown in the plot :param plot (bool): plot moving average and original df :return MAE, RMSE (tuple): Both metrics are calculated for the column `col` """ ndf = df[[col]] window_size = average_window_in_hours*12 ndf['preds'] = ndf.rolling(window=window_size).mean().shift(1) MAE = ndf.apply((lambda x: np.abs(x[0] - x[1])), axis=1).dropna().mean() RMSE = np.sqrt(ndf.apply((lambda x: np.power(x[0] - x[1], 2)), axis=1).dropna().mean()) if plot: if from_date is not None and to_date is not None: ndf.resample('1h').mean().loc[from_date:to_date].plot(figsize=(12, 7)) else: ndf.resample('1h').mean()[:500].plot(figsize=(12, 7)) plt.show() return (MAE, RMSE) def calculate_metrics(df, average_window_in_hours, verbose=5, save=True): """ Calculates MAE and RMSE for all columns of `df`, taking a sliding window of `average_window_in_hours` hours. :param df (panads.DataFrame): dataset being used :param average_window_in_hours (int): the window (in hours) used to generate predictions :param verbose (int): option to display the calculations on-the-fly. Values are going to be displayed after `verbose` iterations. :param save (bool): :return mae_and_rmse (dict): dictionary containing (MAE, RMSE) for each column of `df` """ mae_and_rmse = {} for (it, col) in enumerate(df.columns): MAE, RMSE = best_moving_average(df, col, average_window_in_hours) mae_and_rmse[col] = (MAE, RMSE) if it%verbose == 0: print('Column: {}, MAE: {}, RMSE: {}'.format(col, MAE, RMSE)) if save: # TODO: add param to attribute filename and filedir pd.DataFrame(mae_rmse, index=['MAE', 'RMSE']).to_csv('./experiment_results/seattle_best_moving_average_mae_rmse.csv') return mae_and_rmse def real_moving_average(df, col, sliding_window_in_hours, forecast_window_in_minutes): """ Calculating the moving average using a sliding window of `sliding_window_in_hours` on a forecast window of `forecast_window_in_minutes` over the dataset. Returns a dataframe with the forecast for the given dataframe. """ sliding_window = 12*sliding_window_in_hours forecast_window = ((forecast_window_in_minutes+5)//5) X = df[col].values Y = X[:sliding_window] for i in range(forecast_window): ypred = np.mean(Y[i: i+sliding_window]) Y = np.append(Y, ypred) forecast_df = pd.DataFrame( data=Y[len(Y)-forecast_window:], index=df.index[sliding_window:sliding_window+forecast_window] ) return forecast_df # still need to compute MAE and RMSE for all data def moving_average_forecast(df, col, sliding_window_in_hours, forecast_window_in_minutes): """ Applies moving average forecast across all the dataset. Stride can be applied to make forecasting faster, ie, stride makes the sliding window jump a window of `stride_in_minutes`. Returns a pandas.DataFrame containing a side-by-side comparison of the real dataframe and its predictions, for all predicted values. """ sliding_window = 12*sliding_window_in_hours forecast_window = ((forecast_window_in_minutes+5)//5) stride_in_minutes = 60 stride = (stride_in_minutes//5) all_predictions = [] if stride_in_minutes == 0: max_it = len(df) else: max_it = len(df)//stride for i in range(max_it): try: smaller_df = df.iloc[i*stride: (sliding_window+forecast_window) + (i+1)*stride] preds = real_moving_average(smaller_df, col, sliding_window_in_hours, forecast_window_in_minutes) fdf = pd.concat([smaller_df[[col]].loc[preds.index[0]:preds.index[-1]],preds], axis=1) fdf = fdf.rename(columns={0:col+'_pred'}) all_predictions.append(fdf) except: pass return pd.concat(all_predictions, axis=0) def metrics(preds_df): """ Given a `preds_df` containing two columns, the first with real values and the second being preds, returns MAE and RMSE """ preds = preds_df MAE = np.mean(np.abs(preds[preds.columns[0]] - preds[preds.columns[1]] )) RMSE = np.sqrt(np.mean(np.power(preds[preds.columns[0]] - preds[preds.columns[1]], 2))) return (MAE, RMSE) def main(): # this options should go into an argument parser SLIDING_WINDOW_IN_HOURS = 4 FORECAST_WINDOW_IN_MINUTES = 15 STRIDE_IN_MINUTES = 60 df = load_seattle_speed_matrix() metrics_dict = {} for col in df.columns: print(col) preds = moving_average_forecast(df, col, SLIDING_WINDOW_IN_HOURS, FORECAST_WINDOW_IN_MINUTES) mae_rmse = metrics(preds) metrics_dict[col] = mae_rmse pd.DataFrame(metrics_dict, index=['MAE', 'RMSE']).to_csv('./experiment_results/training_window_4_hour_forecast_window_15_min_mae_rmse_seattle.csv') if __name__ == '__main__': main()
[ "pandas.DataFrame", "matplotlib.pyplot.show", "numpy.abs", "numpy.power", "numpy.append", "numpy.mean", "pandas.to_datetime", "pandas.read_pickle", "pandas.concat" ]
[((580, 608), 'pandas.read_pickle', 'pd.read_pickle', (['speed_matrix'], {}), '(speed_matrix)\n', (594, 608), True, 'import pandas as pd\n'), ((624, 673), 'pandas.to_datetime', 'pd.to_datetime', (['df.index'], {'format': '"""%Y-%m-%d %H:%M"""'}), "(df.index, format='%Y-%m-%d %H:%M')\n", (638, 673), True, 'import pandas as pd\n'), ((5405, 5439), 'pandas.concat', 'pd.concat', (['all_predictions'], {'axis': '(0)'}), '(all_predictions, axis=0)\n', (5414, 5439), True, 'import pandas as pd\n'), ((2169, 2179), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2177, 2179), True, 'import matplotlib.pyplot as plt\n'), ((3886, 3918), 'numpy.mean', 'np.mean', (['Y[i:i + sliding_window]'], {}), '(Y[i:i + sliding_window])\n', (3893, 3918), True, 'import numpy as np\n'), ((3930, 3949), 'numpy.append', 'np.append', (['Y', 'ypred'], {}), '(Y, ypred)\n', (3939, 3949), True, 'import numpy as np\n'), ((5644, 5701), 'numpy.abs', 'np.abs', (['(preds[preds.columns[0]] - preds[preds.columns[1]])'], {}), '(preds[preds.columns[0]] - preds[preds.columns[1]])\n', (5650, 5701), True, 'import numpy as np\n'), ((5186, 5271), 'pandas.concat', 'pd.concat', (['[smaller_df[[col]].loc[preds.index[0]:preds.index[-1]], preds]'], {'axis': '(1)'}), '([smaller_df[[col]].loc[preds.index[0]:preds.index[-1]], preds],\n axis=1)\n', (5195, 5271), True, 'import pandas as pd\n'), ((5731, 5793), 'numpy.power', 'np.power', (['(preds[preds.columns[0]] - preds[preds.columns[1]])', '(2)'], {}), '(preds[preds.columns[0]] - preds[preds.columns[1]], 2)\n', (5739, 5793), True, 'import numpy as np\n'), ((6277, 6326), 'pandas.DataFrame', 'pd.DataFrame', (['metrics_dict'], {'index': "['MAE', 'RMSE']"}), "(metrics_dict, index=['MAE', 'RMSE'])\n", (6289, 6326), True, 'import pandas as pd\n'), ((3192, 3237), 'pandas.DataFrame', 'pd.DataFrame', (['mae_rmse'], {'index': "['MAE', 'RMSE']"}), "(mae_rmse, index=['MAE', 'RMSE'])\n", (3204, 3237), True, 'import pandas as pd\n'), ((1789, 1808), 'numpy.abs', 'np.abs', (['(x[0] - x[1])'], {}), '(x[0] - x[1])\n', (1795, 1808), True, 'import numpy as np\n'), ((1875, 1899), 'numpy.power', 'np.power', (['(x[0] - x[1])', '(2)'], {}), '(x[0] - x[1], 2)\n', (1883, 1899), True, 'import numpy as np\n')]
""" This module contains a class that describes an object in the world. """ import numpy as np class Object: """ Object is a simple wireframe composed of multiple points connected by lines that can be drawn in the viewport. """ TOTAL_OBJECTS = -1 def __init__(self, points=None, name=None, color=None): self._points = [] if points is None else points self._name = self.default_name() if name is None else name self._color = (0, 0, 0) if color is None else color Object.TOTAL_OBJECTS += 1 @staticmethod def default_name(): """ Default name for new objects. """ return "object{}".format(Object.TOTAL_OBJECTS + 1) @property def points(self): """ The points in the wireframe. """ return self._points @property def name(self): """ Name of the object. """ return self._name @property def color(self): """ Color of the object. """ return self._color @property def center(self): """ Center of the object. """ points = set() for face in self._points: points.update(face) x_points = [point[0] for point in points] y_points = [point[1] for point in points] z_points = [point[2] for point in points] return \ (np.average(x_points), np.average(y_points), np.average(z_points)) def _transform(self, matrix, center=None, offset=None): center = self.center if center is None else center # move object to center operation_matrix = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [-center[0], -center[1], -center[2], 1], ]) # perform operation operation_matrix = operation_matrix.dot([ matrix[0] + [0], matrix[1] + [0], matrix[2] + [0], ([0, 0, 0] if offset is None else offset) + [1], ]) # move object back to original position operation_matrix = operation_matrix.dot([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [center[0], center[1], center[2], 1], ]) for fpos, face in enumerate(self._points): for ppos, point in enumerate(face): new_point = np.dot(point + (1,), operation_matrix) self._points[fpos][ppos] = tuple(new_point[:3]) def move(self, offset): """ Moves the object by an offset = (x, y). """ self._transform( [ [1, 0, 0], [0, 1, 0], [0, 0, 1], ], center=None, offset=list(offset)) def zoom(self, factor): """ Zooms in the object by 'factor' times. """ self._transform( [ [factor, 0, 0], [0, factor, 0], [0, 0, factor], ]) @staticmethod def generate_rotation_matrix(x_angle, y_angle, z_angle): """ Generates the matrix that rotates points. """ return np.array([ [1, 0, 0], [0, np.cos(x_angle), -np.sin(x_angle)], [0, np.sin(x_angle), np.cos(x_angle)], ]).dot([ [np.cos(y_angle), 0, np.sin(y_angle)], [0, 1, 0], [-np.sin(y_angle), 0, np.cos(y_angle)], ]).dot([ [np.cos(z_angle), -np.sin(z_angle), 0], [np.sin(z_angle), np.cos(z_angle), 0], [0, 0, 1], ]).tolist() def rotate(self, x_angle, y_angle, z_angle, center=None): """ Rotates the object around center, the angle is in radians. """ self._transform( Object.generate_rotation_matrix(x_angle, y_angle, z_angle), center) def project(self): """ Projects the 3D objects to 2D. Using perspective projection. """ def _project(point): return ( point[0]/(point[2]/Window.COP_DISTANCE+1), point[1]/(point[2]/Window.COP_DISTANCE+1)) self._points = [list(map(_project, face)) for face in self._points] def clip(self, window): """ Weiler-Atherton polygon clipping algorithm. """ def connect_points(clipped, side1, side2, window): """ Connects points of the window. """ edge = side1 while edge != side2: clipped.append(window.points[0][edge]) edge = (edge - 1) % 4 boundaries = window.real_boundaries clipped = [] for face in self._points: new_face = [] entered, exited = None, None for i in range(len(face) - 1): points, side = Object._clip_line( face[i], face[i + 1], *boundaries[0], *boundaries[1]) if not points: # clipped line is outside window continue if side[0] is not None: # entered if exited is not None: connect_points(new_face, exited, side[0], window) else: entered = side[0] if side[1] is not None: # exited exited = side[1] new_face.append(points[0]) new_face.append(points[1]) else: new_face.append(points[0]) if new_face and face[0] == face[-1]: if entered is not None: connect_points(new_face, exited, entered, window) new_face.append(new_face[0]) clipped.append(new_face) self._points = clipped @staticmethod def _clip_line(point1, point2, xmin, ymin, xmax, ymax): """ Liang-Barsky line clipping algorithm. """ deltax, deltay = point2[0] - point1[0], point2[1] - point1[1] deltas = [-deltax, -deltay, deltax, deltay] # p distances = [ # q point1[0] - xmin, point1[1] - ymin, xmax - point1[0], ymax - point1[1]] ratios = np.divide(distances, deltas) # r pct1, pct2 = 0, 1 # how much of the line is inside the window side = [None, None] for i in range(4): if deltas[i] == 0 and distances[i] < 0: return (), side if deltas[i] < 0: if ratios[i] > pct1: # entered side[0] = i pct1 = ratios[i] if deltas[i] > 0: if ratios[i] < pct2: # exited side[1] = i pct2 = ratios[i] if pct1 > pct2: return (), side clipped = ( tuple(np.add((point1[0], point1[1]), (pct1*deltax, pct1*deltay))), tuple(np.add((point1[0], point1[1]), (pct2*deltax, pct2*deltay))), ) return clipped, side @staticmethod def build_from_file(path): """ Returns objects described in an OBJ file. """ with open(path) as obj: raw_file = obj.read() file_lines = [line.split(" ") for line in raw_file.split("\n")] vertices = {} faces = [] for number, line in enumerate(file_lines): if line[0] == "v": vertices[number + 1] = tuple(map(float, line[1:])) if line[0] == "f": face = [] for index in line[1:]: face.append(vertices[int(index)]) face.append(vertices[int(line[1])]) faces.append(face) return Object(points=faces) class Window(Object): """ The window object. This object delimits what should be drawn in the viewport. Moving and rescaling it has the effect to change which portion of the world is drawn at the viewport. """ BORDER = 0.05 def __init__(self, width, height): points = [ (-width/2, height/2, 0), (-width/2, -height/2, 0), (width/2, -height/2, 0), (width/2, height/2, 0), ] points.append(points[0]) super().__init__([points], "window", (0, 0, 0)) self._rotation_matrix = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) @property def expanded_boundaries(self): """ Boundaries a little bigger than the actual window. """ width = self._points[0][3][0] - self._points[0][1][0] height = self._points[0][3][1] - self._points[0][1][1] factor = np.multiply((width, height), Window.BORDER) return ( np.subtract(self._points[0][1], factor), np.add(self._points[0][3], factor)) @property def real_boundaries(self): """ Returns windows' bottom left and upper right coordinates. """ return (self._points[0][1], self._points[0][3]) @property def inv_rotation_matrix(self): """ This matrix rotates the window back to its original position. """ return np.linalg.inv(self._rotation_matrix).tolist() def move(self, offset): # rotate offset vector to move window relative to its own directions offset = np.dot(offset, self._rotation_matrix) super().move(offset) def zoom(self, factor): # save original state original_points = self._points.copy() # apply the zoom operation super().zoom(factor**(-1)) # find new window size minimum, maximum = self.real_boundaries width = np.abs(maximum[0] - minimum[0]) height = np.abs(maximum[1] - minimum[1]) # if zoom was exceeded, go back to original state and raise an error if width < 10 and height < 10: self._points = original_points raise RuntimeError("Maximum zoom in exceeded") def rotate(self, x_angle, y_angle, z_angle, center=None): # find M = R^-1 * T * R # R is the rotation matrix, it saves the rotation state of the window # T is the matrix of the rotation that is being applied matrix = Object.generate_rotation_matrix(x_angle, y_angle, z_angle) matrix = np.dot(self.inv_rotation_matrix, matrix) matrix = np.dot(matrix, self._rotation_matrix) self._transform(matrix.tolist()) # update rotation matrix self._rotation_matrix = np.dot(self._rotation_matrix, matrix) def clip(self, _): pass class Curve(Object): """ A Bezier curve with four control points. """ def __init__(self, points, name=None, color=None): curve = Curve._generate_curve(points) curve.append(curve[-1]) # add stub point for clipping super().__init__( points=[curve], name=name, color=color) @staticmethod def _generate_curve(points): def f(t, i): return np.array([t**3, t**2, t, 1]).dot(np.array([ [-1, 3, -3, 1], [3, -6, 3, 0], [-3, 3, 0, 0], [1, 0, 0, 0], ])).dot(np.array([p[i] for p in points])) step = 0.02 x_points = [f(t, 0) for t in np.arange(0, 1+step, step)] y_points = [f(t, 1) for t in np.arange(0, 1+step, step)] z_points = [f(t, 2) for t in np.arange(0, 1+step, step)] return list(zip(x_points, y_points, z_points)) class Spline(Object): """ A Spline curve with arbitrary amount of control points. """ def __init__(self, points, name=None, color=None): curves = [] for i in range(len(points) - 3): # build a curve for every four control points curve = Spline._generate_curve(points[i:i+4]) curve.append(curve[-1]) # add stub point for clipping curves.append(curve) super().__init__( points=curves, name=name, color=color) @staticmethod def _generate_curve(points): coef = np.multiply(1/6, np.array([ [-1, 3, -3, 1], [3, -6, 3, 0], [-3, 0, 3, 0], [1, 4, 1, 0], ])).dot(np.array(points)) number_of_points = 50 delta = 1/number_of_points deltas = np.array([ [0, 0, 0, 1], [delta**3, delta**2, delta, 0], [6*delta**3, 2*delta**2, 0, 0], [6*delta**3, 0, 0, 0], ]).dot(coef) points = [tuple(deltas[0])] for _ in range(number_of_points): # update coordinates using forward differences deltas[0] += deltas[1] deltas[1] += deltas[2] deltas[2] += deltas[3] points.append(tuple(deltas[0])) return points
[ "numpy.divide", "numpy.multiply", "numpy.abs", "numpy.average", "numpy.subtract", "numpy.sin", "numpy.array", "numpy.linalg.inv", "numpy.arange", "numpy.cos", "numpy.dot", "numpy.add" ]
[((1601, 1698), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [-center[0], -center[1], -center\n [2], 1]]'], {}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [-center[0], -center[1],\n -center[2], 1]])\n', (1609, 1698), True, 'import numpy as np\n'), ((6089, 6117), 'numpy.divide', 'np.divide', (['distances', 'deltas'], {}), '(distances, deltas)\n', (6098, 6117), True, 'import numpy as np\n'), ((8215, 8258), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, 1, 0], [0, 0, 1]]'], {}), '([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\n', (8223, 8258), True, 'import numpy as np\n'), ((8555, 8598), 'numpy.multiply', 'np.multiply', (['(width, height)', 'Window.BORDER'], {}), '((width, height), Window.BORDER)\n', (8566, 8598), True, 'import numpy as np\n'), ((9205, 9242), 'numpy.dot', 'np.dot', (['offset', 'self._rotation_matrix'], {}), '(offset, self._rotation_matrix)\n', (9211, 9242), True, 'import numpy as np\n'), ((9544, 9575), 'numpy.abs', 'np.abs', (['(maximum[0] - minimum[0])'], {}), '(maximum[0] - minimum[0])\n', (9550, 9575), True, 'import numpy as np\n'), ((9593, 9624), 'numpy.abs', 'np.abs', (['(maximum[1] - minimum[1])'], {}), '(maximum[1] - minimum[1])\n', (9599, 9624), True, 'import numpy as np\n'), ((10174, 10214), 'numpy.dot', 'np.dot', (['self.inv_rotation_matrix', 'matrix'], {}), '(self.inv_rotation_matrix, matrix)\n', (10180, 10214), True, 'import numpy as np\n'), ((10232, 10269), 'numpy.dot', 'np.dot', (['matrix', 'self._rotation_matrix'], {}), '(matrix, self._rotation_matrix)\n', (10238, 10269), True, 'import numpy as np\n'), ((10376, 10413), 'numpy.dot', 'np.dot', (['self._rotation_matrix', 'matrix'], {}), '(self._rotation_matrix, matrix)\n', (10382, 10413), True, 'import numpy as np\n'), ((1355, 1375), 'numpy.average', 'np.average', (['x_points'], {}), '(x_points)\n', (1365, 1375), True, 'import numpy as np\n'), ((1377, 1397), 'numpy.average', 'np.average', (['y_points'], {}), '(y_points)\n', (1387, 1397), True, 'import numpy as np\n'), ((1399, 1419), 'numpy.average', 'np.average', (['z_points'], {}), '(z_points)\n', (1409, 1419), True, 'import numpy as np\n'), ((8628, 8667), 'numpy.subtract', 'np.subtract', (['self._points[0][1]', 'factor'], {}), '(self._points[0][1], factor)\n', (8639, 8667), True, 'import numpy as np\n'), ((8681, 8715), 'numpy.add', 'np.add', (['self._points[0][3]', 'factor'], {}), '(self._points[0][3], factor)\n', (8687, 8715), True, 'import numpy as np\n'), ((12077, 12093), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (12085, 12093), True, 'import numpy as np\n'), ((2358, 2396), 'numpy.dot', 'np.dot', (['(point + (1,))', 'operation_matrix'], {}), '(point + (1,), operation_matrix)\n', (2364, 2396), True, 'import numpy as np\n'), ((6716, 6778), 'numpy.add', 'np.add', (['(point1[0], point1[1])', '(pct1 * deltax, pct1 * deltay)'], {}), '((point1[0], point1[1]), (pct1 * deltax, pct1 * deltay))\n', (6722, 6778), True, 'import numpy as np\n'), ((6795, 6857), 'numpy.add', 'np.add', (['(point1[0], point1[1])', '(pct2 * deltax, pct2 * deltay)'], {}), '((point1[0], point1[1]), (pct2 * deltax, pct2 * deltay))\n', (6801, 6857), True, 'import numpy as np\n'), ((9036, 9072), 'numpy.linalg.inv', 'np.linalg.inv', (['self._rotation_matrix'], {}), '(self._rotation_matrix)\n', (9049, 9072), True, 'import numpy as np\n'), ((11050, 11082), 'numpy.array', 'np.array', (['[p[i] for p in points]'], {}), '([p[i] for p in points])\n', (11058, 11082), True, 'import numpy as np\n'), ((11142, 11170), 'numpy.arange', 'np.arange', (['(0)', '(1 + step)', 'step'], {}), '(0, 1 + step, step)\n', (11151, 11170), True, 'import numpy as np\n'), ((11207, 11235), 'numpy.arange', 'np.arange', (['(0)', '(1 + step)', 'step'], {}), '(0, 1 + step, step)\n', (11216, 11235), True, 'import numpy as np\n'), ((11272, 11300), 'numpy.arange', 'np.arange', (['(0)', '(1 + step)', 'step'], {}), '(0, 1 + step, step)\n', (11281, 11300), True, 'import numpy as np\n'), ((12178, 12309), 'numpy.array', 'np.array', (['[[0, 0, 0, 1], [delta ** 3, delta ** 2, delta, 0], [6 * delta ** 3, 2 * \n delta ** 2, 0, 0], [6 * delta ** 3, 0, 0, 0]]'], {}), '([[0, 0, 0, 1], [delta ** 3, delta ** 2, delta, 0], [6 * delta ** 3,\n 2 * delta ** 2, 0, 0], [6 * delta ** 3, 0, 0, 0]])\n', (12186, 12309), True, 'import numpy as np\n'), ((11942, 12012), 'numpy.array', 'np.array', (['[[-1, 3, -3, 1], [3, -6, 3, 0], [-3, 0, 3, 0], [1, 4, 1, 0]]'], {}), '([[-1, 3, -3, 1], [3, -6, 3, 0], [-3, 0, 3, 0], [1, 4, 1, 0]])\n', (11950, 12012), True, 'import numpy as np\n'), ((10895, 10965), 'numpy.array', 'np.array', (['[[-1, 3, -3, 1], [3, -6, 3, 0], [-3, 3, 0, 0], [1, 0, 0, 0]]'], {}), '([[-1, 3, -3, 1], [3, -6, 3, 0], [-3, 3, 0, 0], [1, 0, 0, 0]])\n', (10903, 10965), True, 'import numpy as np\n'), ((3412, 3427), 'numpy.cos', 'np.cos', (['z_angle'], {}), '(z_angle)\n', (3418, 3427), True, 'import numpy as np\n'), ((3464, 3479), 'numpy.sin', 'np.sin', (['z_angle'], {}), '(z_angle)\n', (3470, 3479), True, 'import numpy as np\n'), ((3481, 3496), 'numpy.cos', 'np.cos', (['z_angle'], {}), '(z_angle)\n', (3487, 3496), True, 'import numpy as np\n'), ((10862, 10894), 'numpy.array', 'np.array', (['[t ** 3, t ** 2, t, 1]'], {}), '([t ** 3, t ** 2, t, 1])\n', (10870, 10894), True, 'import numpy as np\n'), ((3430, 3445), 'numpy.sin', 'np.sin', (['z_angle'], {}), '(z_angle)\n', (3436, 3445), True, 'import numpy as np\n'), ((3269, 3284), 'numpy.cos', 'np.cos', (['y_angle'], {}), '(y_angle)\n', (3275, 3284), True, 'import numpy as np\n'), ((3289, 3304), 'numpy.sin', 'np.sin', (['y_angle'], {}), '(y_angle)\n', (3295, 3304), True, 'import numpy as np\n'), ((3364, 3379), 'numpy.cos', 'np.cos', (['y_angle'], {}), '(y_angle)\n', (3370, 3379), True, 'import numpy as np\n'), ((3344, 3359), 'numpy.sin', 'np.sin', (['y_angle'], {}), '(y_angle)\n', (3350, 3359), True, 'import numpy as np\n'), ((3152, 3167), 'numpy.cos', 'np.cos', (['x_angle'], {}), '(x_angle)\n', (3158, 3167), True, 'import numpy as np\n'), ((3204, 3219), 'numpy.sin', 'np.sin', (['x_angle'], {}), '(x_angle)\n', (3210, 3219), True, 'import numpy as np\n'), ((3221, 3236), 'numpy.cos', 'np.cos', (['x_angle'], {}), '(x_angle)\n', (3227, 3236), True, 'import numpy as np\n'), ((3170, 3185), 'numpy.sin', 'np.sin', (['x_angle'], {}), '(x_angle)\n', (3176, 3185), True, 'import numpy as np\n')]
"""Utils functions.""" from copy import deepcopy import mne import numpy as np from ._logs import logger # TODO: Add test for this. Also compare speed with latest version of numpy. # Also compared speed with a numba implementation. def _corr_vectors(A, B, axis=0): # based on: # https://github.com/wmvanvliet/mne_microstates/blob/master/microstates.py # written by <NAME> <<EMAIL>> """Compute pairwise correlation of multiple pairs of vectors. Fast way to compute correlation of multiple pairs of vectors without computing all pairs as would with corr(A,B). Borrowed from Oli at StackOverflow. Note the resulting coefficients vary slightly from the ones obtained from corr due to differences in the order of the calculations. (Differences are of a magnitude of 1e-9 to 1e-17 depending on the tested data). Parameters ---------- A : ndarray, shape (n, m) The first collection of vectors B : ndarray, shape (n, m) The second collection of vectors axis : int The axis that contains the elements of each vector. Defaults to 0. Returns ------- corr : ndarray, shape (m, ) For each pair of vectors, the correlation between them. """ if A.shape != B.shape: raise ValueError("All input arrays must have the same shape") # If maps is null, divide will not trhow an error. np.seterr(divide="ignore", invalid="ignore") An = A - np.mean(A, axis=axis) Bn = B - np.mean(B, axis=axis) An /= np.linalg.norm(An, axis=axis) Bn /= np.linalg.norm(Bn, axis=axis) corr = np.sum(An * Bn, axis=axis) corr = np.nan_to_num(corr, posinf=0, neginf=0) np.seterr(divide="warn", invalid="warn") return corr # TODO: To be removed when ChInfo is implemented. def _copy_info(inst, sfreq): ch_names = inst.info["ch_names"] ch_types = [ mne.channel_type(inst.info, idx) for idx in range(0, inst.info["nchan"]) ] new_info = mne.create_info(ch_names, sfreq=sfreq, ch_types=ch_types) if inst.get_montage(): montage = inst.get_montage() new_info.set_montage(montage) return new_info def _compare_infos(cluster_info, inst_info): """Check that channels in cluster_info are all present in inst_info.""" for ch in cluster_info["ch_names"]: if ch not in inst_info["ch_names"]: raise ValueError( "Instance to segment into microstates sequence does not have " "the same channels as the instance used for fitting." ) # Extract loc arrays cluster_loc = list() for ch in cluster_info["chs"]: cluster_loc.append((ch["ch_name"], deepcopy(ch["loc"]))) inst_loc = list() for ch in inst_info["chs"]: if ch["ch_name"] in cluster_info["ch_names"]: inst_loc.append((ch["ch_name"], deepcopy(ch["loc"]))) cluster_loc = [loc[1] for loc in sorted(cluster_loc, key=lambda x: x[0])] inst_loc = [loc[1] for loc in sorted(inst_loc, key=lambda x: x[0])] # Compare loc assert len(cluster_loc) == len(inst_loc) # sanity-check for l1, l2 in zip(cluster_loc, inst_loc): if not np.allclose(l1, l2, equal_nan=True): logger.warning( "Instance to segment into microstates sequence does not have " "the same channels montage as the instance used for fitting. " ) break # Compare attributes in chs cluster_kinds = list() cluster_units = list() cluster_coord_frame = list() for ch in cluster_info["chs"]: cluster_kinds.append((ch["ch_name"], ch["kind"])) cluster_units.append((ch["ch_name"], ch["unit"])) cluster_coord_frame.append((ch["ch_name"], ch["coord_frame"])) inst_kinds = list() inst_units = list() inst_coord_frames = list() for ch in inst_info["chs"]: if ch["ch_name"] in cluster_info["ch_names"]: inst_kinds.append((ch["ch_name"], ch["kind"])) inst_units.append((ch["ch_name"], ch["unit"])) inst_coord_frames.append((ch["ch_name"], ch["coord_frame"])) cluster_kinds = [ elt[1] for elt in sorted(cluster_kinds, key=lambda x: x[0]) ] cluster_units = [ elt[1] for elt in sorted(cluster_units, key=lambda x: x[0]) ] cluster_coord_frame = [ elt[1] for elt in sorted(cluster_coord_frame, key=lambda x: x[0]) ] inst_kinds = [elt[1] for elt in sorted(inst_kinds, key=lambda x: x[0])] inst_units = [elt[1] for elt in sorted(inst_units, key=lambda x: x[0])] inst_coord_frames = [ elt[1] for elt in sorted(inst_coord_frames, key=lambda x: x[0]) ] if not all( kind1 == kind2 for kind1, kind2 in zip(cluster_kinds, inst_kinds) ): logger.warning( "Instance to segment into microstates sequence does not have " "the same channels kinds as the instance used for fitting. " ) if not all( unit1 == unit2 for unit1, unit2 in zip(cluster_units, inst_units) ): logger.warning( "Instance to segment into microstates sequence does not have " "the same channels units as the instance used for fitting. " ) if not all( f1 == f2 for f1, f2 in zip(cluster_coord_frame, inst_coord_frames) ): logger.warning( "Instance to segment into microstates sequence does not have " "the same coordinate frames as the instance used for fitting. " )
[ "copy.deepcopy", "numpy.sum", "numpy.nan_to_num", "numpy.seterr", "numpy.allclose", "mne.channel_type", "mne.create_info", "numpy.mean", "numpy.linalg.norm" ]
[((1399, 1443), 'numpy.seterr', 'np.seterr', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (1408, 1443), True, 'import numpy as np\n'), ((1524, 1553), 'numpy.linalg.norm', 'np.linalg.norm', (['An'], {'axis': 'axis'}), '(An, axis=axis)\n', (1538, 1553), True, 'import numpy as np\n'), ((1564, 1593), 'numpy.linalg.norm', 'np.linalg.norm', (['Bn'], {'axis': 'axis'}), '(Bn, axis=axis)\n', (1578, 1593), True, 'import numpy as np\n'), ((1605, 1631), 'numpy.sum', 'np.sum', (['(An * Bn)'], {'axis': 'axis'}), '(An * Bn, axis=axis)\n', (1611, 1631), True, 'import numpy as np\n'), ((1643, 1682), 'numpy.nan_to_num', 'np.nan_to_num', (['corr'], {'posinf': '(0)', 'neginf': '(0)'}), '(corr, posinf=0, neginf=0)\n', (1656, 1682), True, 'import numpy as np\n'), ((1687, 1727), 'numpy.seterr', 'np.seterr', ([], {'divide': '"""warn"""', 'invalid': '"""warn"""'}), "(divide='warn', invalid='warn')\n", (1696, 1727), True, 'import numpy as np\n'), ((1989, 2046), 'mne.create_info', 'mne.create_info', (['ch_names'], {'sfreq': 'sfreq', 'ch_types': 'ch_types'}), '(ch_names, sfreq=sfreq, ch_types=ch_types)\n', (2004, 2046), False, 'import mne\n'), ((1457, 1478), 'numpy.mean', 'np.mean', (['A'], {'axis': 'axis'}), '(A, axis=axis)\n', (1464, 1478), True, 'import numpy as np\n'), ((1492, 1513), 'numpy.mean', 'np.mean', (['B'], {'axis': 'axis'}), '(B, axis=axis)\n', (1499, 1513), True, 'import numpy as np\n'), ((1887, 1919), 'mne.channel_type', 'mne.channel_type', (['inst.info', 'idx'], {}), '(inst.info, idx)\n', (1903, 1919), False, 'import mne\n'), ((3185, 3220), 'numpy.allclose', 'np.allclose', (['l1', 'l2'], {'equal_nan': '(True)'}), '(l1, l2, equal_nan=True)\n', (3196, 3220), True, 'import numpy as np\n'), ((2698, 2717), 'copy.deepcopy', 'deepcopy', (["ch['loc']"], {}), "(ch['loc'])\n", (2706, 2717), False, 'from copy import deepcopy\n'), ((2872, 2891), 'copy.deepcopy', 'deepcopy', (["ch['loc']"], {}), "(ch['loc'])\n", (2880, 2891), False, 'from copy import deepcopy\n')]
import numpy as numpy a = numpy.arange(150) # a[0::2] *= numpy.sqrt(2)/2.0 * (numpy.cos(2) - numpy.sin(2)) a[0::2] *= 2 print(a)
[ "numpy.arange" ]
[((26, 43), 'numpy.arange', 'numpy.arange', (['(150)'], {}), '(150)\n', (38, 43), True, 'import numpy as numpy\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This is pytest for twinpy.properties.hexagonal. """ from copy import deepcopy import numpy as np from twinpy.properties import hexagonal a = 2.93 c = 4.65 def test_check_hexagonal_lattice(ti_cell_wyckoff_c): """ Check check_hexagonal_lattice. """ hexagonal_lattice = ti_cell_wyckoff_c[0] hexagonal.check_hexagonal_lattice(lattice=hexagonal_lattice) def test_check_cell_is_hcp(ti_cell_wyckoff_c, ti_cell_wyckoff_d): """ Check check_cell_is_hcp. """ for cell in [ti_cell_wyckoff_c, ti_cell_wyckoff_d]: hexagonal.check_cell_is_hcp(cell=cell) def test_convert_direction(): """ Check convert_direction_from_four_to_three and convert_direction_from_three_to_four. Note: Let basis vectors for hexagonal lattice be a_1, a_2 and c, a_1 = [1,0,0] = 1/3[2,-1,-1,0]. """ def _test_convert_direction_from_three_to_four(three, four_expected): _four = hexagonal.convert_direction_from_three_to_four( three=three) np.testing.assert_allclose(_four, four_expected) def _test_convert_direction_from_four_to_three(four, three_expected): _three = hexagonal.convert_direction_from_four_to_three( four=four) np.testing.assert_allclose(_three, three_expected) a_1_three = np.array([1.,0.,0.]) a_1_four = np.array([2.,-1.,-1.,0.]) / 3. _test_convert_direction_from_three_to_four(three=a_1_three, four_expected=a_1_four) _test_convert_direction_from_four_to_three(four=a_1_four, three_expected=a_1_three) def test_hexagonal_direction(ti_cell_wyckoff_c): """ Check HexagonalDirection. """ def _test_reset_indices(hex_dr, three): _hex_dr = deepcopy(hex_dr) _hex_dr.reset_indices(three=three) _three_expected = _hex_dr.three np.testing.assert_allclose(three, _three_expected) def _test_inverse(hex_dr): _inv_hex_dr = deepcopy(hex_dr) _inv_hex_dr.inverse() _three = hex_dr.three _inv_three = _inv_hex_dr.three np.testing.assert_allclose(_three, _inv_three*(-1.)) def _test_get_cartesian(hex_dr, cart_expected): _cart = hex_dr.get_cartesian(normalize=False) _cart_normalized = hex_dr.get_cartesian(normalize=True) _norm = np.linalg.norm(_cart_normalized) np.testing.assert_allclose(_cart, cart_expected) np.testing.assert_allclose(_norm, 1.) lattice = ti_cell_wyckoff_c[0] three_a1 = np.array([1.,0.,0.]) # a_1 three_c = np.array([0.,0.,1.]) # c a1_cart = np.array([a,0.,0.]) # cartesian coordinate for vector a_1 hex_dr_a1 = hexagonal.HexagonalDirection(lattice=lattice, three=three_a1) _test_reset_indices(hex_dr=hex_dr_a1, three=three_c) _test_inverse(hex_dr=hex_dr_a1) _test_get_cartesian(hex_dr=hex_dr_a1, cart_expected=a1_cart) def test_convert_plane(): """ Check convert_plane_from_four_to_three and convert_plane_from_three_to_four. Note: (10-12) plane is equal to (102). """ def _test_convert_plane_from_three_to_four(three, four_expected): _four = hexagonal.convert_plane_from_three_to_four( three=three) np.testing.assert_allclose(_four, four_expected) def _test_convert_plane_from_four_to_three(four, three_expected): _three = hexagonal.convert_plane_from_four_to_three( four=four) np.testing.assert_allclose(_three, three_expected) twin_three = np.array([1.,0.,2.]) twin_four = np.array([1.,0.,-1.,2.]) _test_convert_plane_from_three_to_four(three=twin_three, four_expected=twin_four) _test_convert_plane_from_four_to_three(four=twin_four, three_expected=twin_three) def test_hexagonal_plane(ti_cell_wyckoff_c): """ Check HexagonalPlane. """ def _test_reset_indices(hex_pln, four): _hex_pln = deepcopy(hex_pln) _hex_pln.reset_indices(four=four) _four = _hex_pln.four np.testing.assert_allclose(_four, four) def _test_inverse(hex_pln): _inv_hex_pln = deepcopy(hex_pln) _inv_hex_pln.inverse() four = hex_pln.four _inv_four = _inv_hex_pln.four np.testing.assert_allclose(_inv_four, four*(-1)) def _test_get_distance_from_plane(hex_pln, frac_coord, d_expected): _d = hex_pln.get_distance_from_plane(frac_coord=frac_coord) np.testing.assert_allclose(_d, d_expected) def _test_get_plane_interval(hex_pln, d_expected): _d = hex_pln.get_plane_interval() np.testing.assert_allclose(_d, d_expected) lattice = ti_cell_wyckoff_c[0] basal_four = np.array([0.,0.,0.,1.]) twin_four = np.array([1.,0.,-1.,2.]) hex_pln_basal = hexagonal.HexagonalPlane(lattice=lattice, four=basal_four) hex_pln_twin = hexagonal.HexagonalPlane(lattice=lattice, four=twin_four) c_three = np.array([0.,0.,1.]) _test_reset_indices(hex_pln=hex_pln_twin, four=basal_four) _test_inverse(hex_pln=hex_pln_twin) _test_get_distance_from_plane(hex_pln=hex_pln_basal, frac_coord=c_three, d_expected=c) _test_get_plane_interval(hex_pln=hex_pln_basal, d_expected=c)
[ "twinpy.properties.hexagonal.HexagonalPlane", "twinpy.properties.hexagonal.convert_direction_from_three_to_four", "copy.deepcopy", "twinpy.properties.hexagonal.convert_direction_from_four_to_three", "twinpy.properties.hexagonal.check_cell_is_hcp", "twinpy.properties.hexagonal.HexagonalDirection", "twinpy.properties.hexagonal.convert_plane_from_four_to_three", "numpy.array", "numpy.linalg.norm", "numpy.testing.assert_allclose", "twinpy.properties.hexagonal.convert_plane_from_three_to_four", "twinpy.properties.hexagonal.check_hexagonal_lattice" ]
[((363, 423), 'twinpy.properties.hexagonal.check_hexagonal_lattice', 'hexagonal.check_hexagonal_lattice', ([], {'lattice': 'hexagonal_lattice'}), '(lattice=hexagonal_lattice)\n', (396, 423), False, 'from twinpy.properties import hexagonal\n'), ((1366, 1391), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (1374, 1391), True, 'import numpy as np\n'), ((2626, 2651), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (2634, 2651), True, 'import numpy as np\n'), ((2668, 2693), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (2676, 2693), True, 'import numpy as np\n'), ((2708, 2731), 'numpy.array', 'np.array', (['[a, 0.0, 0.0]'], {}), '([a, 0.0, 0.0])\n', (2716, 2731), True, 'import numpy as np\n'), ((2783, 2844), 'twinpy.properties.hexagonal.HexagonalDirection', 'hexagonal.HexagonalDirection', ([], {'lattice': 'lattice', 'three': 'three_a1'}), '(lattice=lattice, three=three_a1)\n', (2811, 2844), False, 'from twinpy.properties import hexagonal\n'), ((3661, 3686), 'numpy.array', 'np.array', (['[1.0, 0.0, 2.0]'], {}), '([1.0, 0.0, 2.0])\n', (3669, 3686), True, 'import numpy as np\n'), ((3698, 3729), 'numpy.array', 'np.array', (['[1.0, 0.0, -1.0, 2.0]'], {}), '([1.0, 0.0, -1.0, 2.0])\n', (3706, 3729), True, 'import numpy as np\n'), ((4894, 4924), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 0.0, 1.0])\n', (4902, 4924), True, 'import numpy as np\n'), ((4934, 4965), 'numpy.array', 'np.array', (['[1.0, 0.0, -1.0, 2.0]'], {}), '([1.0, 0.0, -1.0, 2.0])\n', (4942, 4965), True, 'import numpy as np\n'), ((4979, 5037), 'twinpy.properties.hexagonal.HexagonalPlane', 'hexagonal.HexagonalPlane', ([], {'lattice': 'lattice', 'four': 'basal_four'}), '(lattice=lattice, four=basal_four)\n', (5003, 5037), False, 'from twinpy.properties import hexagonal\n'), ((5102, 5159), 'twinpy.properties.hexagonal.HexagonalPlane', 'hexagonal.HexagonalPlane', ([], {'lattice': 'lattice', 'four': 'twin_four'}), '(lattice=lattice, four=twin_four)\n', (5126, 5159), False, 'from twinpy.properties import hexagonal\n'), ((5218, 5243), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0]'], {}), '([0.0, 0.0, 1.0])\n', (5226, 5243), True, 'import numpy as np\n'), ((601, 639), 'twinpy.properties.hexagonal.check_cell_is_hcp', 'hexagonal.check_cell_is_hcp', ([], {'cell': 'cell'}), '(cell=cell)\n', (628, 639), False, 'from twinpy.properties import hexagonal\n'), ((989, 1048), 'twinpy.properties.hexagonal.convert_direction_from_three_to_four', 'hexagonal.convert_direction_from_three_to_four', ([], {'three': 'three'}), '(three=three)\n', (1035, 1048), False, 'from twinpy.properties import hexagonal\n'), ((1074, 1122), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_four', 'four_expected'], {}), '(_four, four_expected)\n', (1100, 1122), True, 'import numpy as np\n'), ((1215, 1272), 'twinpy.properties.hexagonal.convert_direction_from_four_to_three', 'hexagonal.convert_direction_from_four_to_three', ([], {'four': 'four'}), '(four=four)\n', (1261, 1272), False, 'from twinpy.properties import hexagonal\n'), ((1298, 1348), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_three', 'three_expected'], {}), '(_three, three_expected)\n', (1324, 1348), True, 'import numpy as np\n'), ((1402, 1434), 'numpy.array', 'np.array', (['[2.0, -1.0, -1.0, 0.0]'], {}), '([2.0, -1.0, -1.0, 0.0])\n', (1410, 1434), True, 'import numpy as np\n'), ((1862, 1878), 'copy.deepcopy', 'deepcopy', (['hex_dr'], {}), '(hex_dr)\n', (1870, 1878), False, 'from copy import deepcopy\n'), ((1970, 2020), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['three', '_three_expected'], {}), '(three, _three_expected)\n', (1996, 2020), True, 'import numpy as np\n'), ((2075, 2091), 'copy.deepcopy', 'deepcopy', (['hex_dr'], {}), '(hex_dr)\n', (2083, 2091), False, 'from copy import deepcopy\n'), ((2199, 2252), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_three', '(_inv_three * -1.0)'], {}), '(_three, _inv_three * -1.0)\n', (2225, 2252), True, 'import numpy as np\n'), ((2439, 2471), 'numpy.linalg.norm', 'np.linalg.norm', (['_cart_normalized'], {}), '(_cart_normalized)\n', (2453, 2471), True, 'import numpy as np\n'), ((2480, 2528), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_cart', 'cart_expected'], {}), '(_cart, cart_expected)\n', (2506, 2528), True, 'import numpy as np\n'), ((2537, 2575), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_norm', '(1.0)'], {}), '(_norm, 1.0)\n', (2563, 2575), True, 'import numpy as np\n'), ((3295, 3350), 'twinpy.properties.hexagonal.convert_plane_from_three_to_four', 'hexagonal.convert_plane_from_three_to_four', ([], {'three': 'three'}), '(three=three)\n', (3337, 3350), False, 'from twinpy.properties import hexagonal\n'), ((3376, 3424), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_four', 'four_expected'], {}), '(_four, four_expected)\n', (3402, 3424), True, 'import numpy as np\n'), ((3513, 3566), 'twinpy.properties.hexagonal.convert_plane_from_four_to_three', 'hexagonal.convert_plane_from_four_to_three', ([], {'four': 'four'}), '(four=four)\n', (3555, 3566), False, 'from twinpy.properties import hexagonal\n'), ((3592, 3642), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_three', 'three_expected'], {}), '(_three, three_expected)\n', (3618, 3642), True, 'import numpy as np\n'), ((4134, 4151), 'copy.deepcopy', 'deepcopy', (['hex_pln'], {}), '(hex_pln)\n', (4142, 4151), False, 'from copy import deepcopy\n'), ((4232, 4271), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_four', 'four'], {}), '(_four, four)\n', (4258, 4271), True, 'import numpy as np\n'), ((4328, 4345), 'copy.deepcopy', 'deepcopy', (['hex_pln'], {}), '(hex_pln)\n', (4336, 4345), False, 'from copy import deepcopy\n'), ((4451, 4499), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_inv_four', '(four * -1)'], {}), '(_inv_four, four * -1)\n', (4477, 4499), True, 'import numpy as np\n'), ((4649, 4691), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_d', 'd_expected'], {}), '(_d, d_expected)\n', (4675, 4691), True, 'import numpy as np\n'), ((4798, 4840), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['_d', 'd_expected'], {}), '(_d, d_expected)\n', (4824, 4840), True, 'import numpy as np\n')]
""" Helper functions used by multiple parts of LAtools. (c) <NAME> : https://github.com/oscarbranson """ import os import shutil import re import configparser import datetime as dt import numpy as np import dateutil as du import pkg_resources as pkgrs import uncertainties.unumpy as un import scipy.interpolate as interp from .stat_fns import nominal_values from .analyte_names import pretty_element # Bunch modifies dict to allow item access using dot (.) operator class Bunch(dict): def __init__(self, *args, **kwds): super(Bunch, self).__init__(*args, **kwds) self.__dict__ = self # warnings monkeypatch # https://stackoverflow.com/questions/2187269/python-print-only-the-message-on-warnings def _warning(message, category=UserWarning, filename='', lineno=-1, file=None, line=None): print(message) def get_date(datetime, time_format=None): """ Return a datetime oject from a string, with optional time format. Parameters ---------- datetime : str Date-time as string in any sensible format. time_format : datetime str (optional) String describing the datetime format. If missing uses dateutil.parser to guess time format. """ if time_format is None: t = du.parser.parse(datetime) else: t = dt.datetime.strptime(datetime, time_format) return t def get_total_n_points(d): """ Returns the total number of data points in values of dict. Paramters --------- d : dict """ n = 0 for di in d.values(): n += len(di) return n def get_total_time_span(d): """ Returns total length of analysis. """ tmax = 0 for di in d.values(): if di.uTime.max() > tmax: tmax = di.uTime.max() return tmax def unitpicker(a, llim=0.1, denominator=None, focus_stage=None): """ Determines the most appropriate plotting unit for data. Parameters ---------- a : float or array-like number to optimise. If array like, the 25% quantile is optimised. llim : float minimum allowable value in scaled data. Returns ------- (float, str) (multiplier, unit) """ if not isinstance(a, (int, float)): a = nominal_values(a) a = np.percentile(a[~np.isnan(a)], 25) if a == 0: raise ValueError("Cannot calculate unit for zero.") if denominator is not None: pd = pretty_element(denominator) else: pd = '' if focus_stage == 'calibrated': udict = {0: 'mol/mol ' + pd, 1: 'mmol/mol ' + pd, 2: '$\mu$mol/mol ' + pd, 3: 'nmol/mol ' + pd, 4: 'pmol/mol ' + pd, 5: 'fmol/mol ' + pd} elif focus_stage == 'ratios': udict = {0: 'counts/count ' + pd, 1: '$10^{-3}$ counts/count ' + pd, 2: '$10^{-6}$ counts/count ' + pd, 3: '$10^{-9}$ counts/count ' + pd, 4: '$10^{-12}$ counts/count ' + pd, 5: '$10^{-15}$ counts/count ' + pd} elif focus_stage in ('rawdata', 'despiked', 'bkgsub'): udict = udict = {0: 'counts', 1: '$10^{-3}$ counts', 2: '$10^{-6}$ counts', 3: '$10^{-9}$ counts', 4: '$10^{-12}$ counts', 5: '$10^{-15}$ counts'} else: udict = {0: '', 1: '', 2: '', 3: '', 4: '', 5: ''} a = abs(a) n = 0 if a < llim: while a < llim: a *= 1000 n += 1 return float(1000**n), udict[n] def collate_data(in_dir, extension='.csv', out_dir=None): """ Copy all csvs in nested directroy to single directory. Function to copy all csvs from a directory, and place them in a new directory. Parameters ---------- in_dir : str Input directory containing csv files in subfolders extension : str The extension that identifies your data files. Defaults to '.csv'. out_dir : str Destination directory Returns ------- None """ if out_dir is None: out_dir = './' + re.search('^\.(.*)', extension).groups(0)[0] if not os.path.isdir(out_dir): os.mkdir(out_dir) for p, d, fs in os.walk(in_dir): for f in fs: if extension in f: shutil.copy(p + '/' + f, out_dir + '/' + f) return def bool_transitions(a): """ Return indices where a boolean array changes from True to False """ return np.where(a[:-1] != a[1:])[0] def bool_2_indices(a): """ Convert boolean array into a 2D array of (start, stop) pairs. """ if any(a): lims = [] lims.append(np.where(a[:-1] != a[1:])[0]) if a[0]: lims.append([0]) if a[-1]: lims.append([len(a) - 1]) lims = np.concatenate(lims) lims.sort() return np.reshape(lims, (lims.size // 2, 2)) else: return None def enumerate_bool(bool_array, nstart=0): """ Consecutively numbers contiguous booleans in array. i.e. a boolean sequence, and resulting numbering T F T T T F T F F F T T F 0-1 1 1 - 2 ---3 3 - where ' - ' Parameters ---------- bool_array : array_like Array of booleans. nstart : int The number of the first boolean group. """ ind = bool_2_indices(bool_array) ns = np.full(bool_array.size, nstart, dtype=int) for n, lims in enumerate(ind): ns[lims[0]:lims[-1] + 1] = nstart + n + 1 return ns def tuples_2_bool(tuples, x): """ Generate boolean array from list of limit tuples. Parameters ---------- tuples : array_like [2, n] array of (start, end) values x : array_like x scale the tuples are mapped to Returns ------- array_like boolean array, True where x is between each pair of tuples. """ if np.ndim(tuples) == 1: tuples = [tuples] out = np.zeros(x.size, dtype=bool) for l, u in tuples: out[(x > l) & (x < u)] = True return out def get_example_data(destination_dir): if os.path.isdir(destination_dir): overwrite = input(destination_dir + ' already exists. Overwrite? [N/y]: ').lower() == 'y' if overwrite: shutil.rmtree(destination_dir) else: print(destination_dir + ' was not overwritten.') shutil.copytree(pkgrs.resource_filename('latools', 'resources/test_data'), destination_dir) return def rangecalc(xs, pad=0.05): mn = np.nanmin(xs) mx = np.nanmax(xs) xr = mx - mn return [mn - pad * xr, mx + pad * xr] class un_interp1d(object): """ object for handling interpolation of values with uncertainties. """ def __init__(self, x, y, fill_value=np.nan, **kwargs): if isinstance(fill_value, tuple): nom_fill = tuple([un.nominal_values(v) for v in fill_value]) std_fill = tuple([un.std_devs(v) for v in fill_value]) else: nom_fill = std_fill = fill_value self.nom_interp = interp.interp1d(un.nominal_values(x), un.nominal_values(y), fill_value=nom_fill, **kwargs) self.std_interp = interp.interp1d(un.nominal_values(x), un.std_devs(y), fill_value=std_fill, **kwargs) def new(self, xn): yn = self.nom_interp(xn) yn_err = self.std_interp(xn) return un.uarray(yn, yn_err) def new_nom(self, xn): return self.nom_interp(xn) def new_std(self, xn): return self.std_interp(xn) def rolling_window(a, window, pad=None): """ Returns (win, len(a)) rolling - window array of data. Parameters ---------- a : array_like Array to calculate the rolling window of window : int Description of `window`. pad : same as dtype(a) Description of `pad`. Returns ------- array_like An array of shape (n, window), where n is either len(a) - window if pad is None, or len(a) if pad is not None. """ shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1], ) out = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) # pad shape if window % 2 == 0: npre = window // 2 - 1 npost = window // 2 else: npre = npost = window // 2 if isinstance(pad, str): if pad == 'ends': prepad = np.full((npre, window), a[0]) postpad = np.full((npost, window), a[-1]) elif pad == 'mean_ends': prepad = np.full((npre, window), np.mean(a[:(window // 2)])) postpad = np.full((npost, window), np.mean(a[-(window // 2):])) elif pad == 'repeat_ends': prepad = np.full((npre, window), out[0]) postpad = np.full((npost, window), out[0]) else: raise ValueError("If pad is a string, it must be either 'ends', 'mean_ends' or 'repeat_ends'.") return np.concatenate((prepad, out, postpad)) elif pad is not None: pre_blankpad = np.empty(((npre, window))) pre_blankpad[:] = pad post_blankpad = np.empty(((npost, window))) post_blankpad[:] = pad return np.concatenate([pre_blankpad, out, post_blankpad]) else: return out def fastsmooth(a, win=11): """ Returns rolling - window smooth of a. Function to efficiently calculate the rolling mean of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale. """ # check to see if 'window' is odd (even does not work) if win % 2 == 0: win += 1 # add 1 to window if it is even. kernel = np.ones(win) / win npad = int((win - 1) / 2) spad = np.full(npad + 1, np.mean(a[:(npad + 1)])) epad = np.full(npad - 1, np.mean(a[-(npad - 1):])) return np.concatenate([spad, np.convolve(a, kernel, 'valid'), epad]) def fastgrad(a, win=11): """ Returns rolling - window gradient of a. Function to efficiently calculate the rolling gradient of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale. """ # check to see if 'window' is odd (even does not work) if win % 2 == 0: win += 1 # subtract 1 from window if it is even. # trick for efficient 'rolling' computation in numpy # shape = a.shape[:-1] + (a.shape[-1] - win + 1, win) # strides = a.strides + (a.strides[-1], ) # wins = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) wins = rolling_window(a, win, 'ends') # apply rolling gradient to data a = map(lambda x: np.polyfit(np.arange(win), x, 1)[0], wins) return np.array(list(a)) def calc_grads(x, dat, keys=None, win=5): """ Calculate gradients of values in dat. Parameters ---------- x : array like Independent variable for items in dat. dat : dict {key: dependent_variable} pairs keys : str or array-like Which keys in dict to calculate the gradient of. win : int The side of the rolling window for gradient calculation Returns ------- dict of gradients """ if keys is None: keys = dat.keys() def grad(xy): if (~np.isnan(xy)).all(): try: return np.polyfit(xy[0], xy[1], 1)[0] except ValueError: return np.nan else: return np.nan xs = rolling_window(x, win, pad='repeat_ends') grads = Bunch() for k in keys: d = nominal_values(rolling_window(dat[k], win, pad='repeat_ends')) grads[k] = np.array(list(map(grad, zip(xs, d)))) return grads def findmins(x, y): """ Function to find local minima. Parameters ---------- x, y : array_like 1D arrays of the independent (x) and dependent (y) variables. Returns ------- array_like Array of points in x where y has a local minimum. """ return x[np.r_[False, y[1:] < y[:-1]] & np.r_[y[:-1] < y[1:], False]] def stack_keys(ddict, keys, extra=None): """ Combine elements of ddict into an array of shape (len(ddict[key]), len(keys)). Useful for preparing data for sklearn. Parameters ---------- ddict : dict A dict containing arrays or lists to be stacked. Must be of equal length. keys : list or str The keys of dict to stack. Must be present in ddict. extra : list (optional) A list of additional arrays to stack. Elements of extra must be the same length as arrays in ddict. Extras are inserted as the first columns of output. """ if isinstance(keys, str): d = [ddict[keys]] else: d = [ddict[k] for k in keys] if extra is not None: d = extra + d return np.vstack(d).T
[ "os.mkdir", "numpy.polyfit", "numpy.empty", "os.walk", "numpy.ones", "pkg_resources.resource_filename", "numpy.isnan", "numpy.mean", "numpy.arange", "shutil.rmtree", "numpy.convolve", "shutil.copy", "numpy.full", "numpy.ndim", "numpy.reshape", "re.search", "dateutil.parser.parse", "uncertainties.unumpy.uarray", "datetime.datetime.strptime", "numpy.lib.stride_tricks.as_strided", "uncertainties.unumpy.nominal_values", "numpy.concatenate", "numpy.vstack", "numpy.nanmax", "uncertainties.unumpy.std_devs", "os.path.isdir", "numpy.zeros", "numpy.nanmin", "numpy.where" ]
[((4364, 4379), 'os.walk', 'os.walk', (['in_dir'], {}), '(in_dir)\n', (4371, 4379), False, 'import os\n'), ((5523, 5566), 'numpy.full', 'np.full', (['bool_array.size', 'nstart'], {'dtype': 'int'}), '(bool_array.size, nstart, dtype=int)\n', (5530, 5566), True, 'import numpy as np\n'), ((6100, 6128), 'numpy.zeros', 'np.zeros', (['x.size'], {'dtype': 'bool'}), '(x.size, dtype=bool)\n', (6108, 6128), True, 'import numpy as np\n'), ((6253, 6283), 'os.path.isdir', 'os.path.isdir', (['destination_dir'], {}), '(destination_dir)\n', (6266, 6283), False, 'import os\n'), ((6717, 6730), 'numpy.nanmin', 'np.nanmin', (['xs'], {}), '(xs)\n', (6726, 6730), True, 'import numpy as np\n'), ((6740, 6753), 'numpy.nanmax', 'np.nanmax', (['xs'], {}), '(xs)\n', (6749, 6753), True, 'import numpy as np\n'), ((8484, 8548), 'numpy.lib.stride_tricks.as_strided', 'np.lib.stride_tricks.as_strided', (['a'], {'shape': 'shape', 'strides': 'strides'}), '(a, shape=shape, strides=strides)\n', (8515, 8548), True, 'import numpy as np\n'), ((1276, 1301), 'dateutil.parser.parse', 'du.parser.parse', (['datetime'], {}), '(datetime)\n', (1291, 1301), True, 'import dateutil as du\n'), ((1324, 1367), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['datetime', 'time_format'], {}), '(datetime, time_format)\n', (1344, 1367), True, 'import datetime as dt\n'), ((4293, 4315), 'os.path.isdir', 'os.path.isdir', (['out_dir'], {}), '(out_dir)\n', (4306, 4315), False, 'import os\n'), ((4325, 4342), 'os.mkdir', 'os.mkdir', (['out_dir'], {}), '(out_dir)\n', (4333, 4342), False, 'import os\n'), ((4625, 4650), 'numpy.where', 'np.where', (['(a[:-1] != a[1:])'], {}), '(a[:-1] != a[1:])\n', (4633, 4650), True, 'import numpy as np\n'), ((4961, 4981), 'numpy.concatenate', 'np.concatenate', (['lims'], {}), '(lims)\n', (4975, 4981), True, 'import numpy as np\n'), ((5018, 5055), 'numpy.reshape', 'np.reshape', (['lims', '(lims.size // 2, 2)'], {}), '(lims, (lims.size // 2, 2))\n', (5028, 5055), True, 'import numpy as np\n'), ((6041, 6056), 'numpy.ndim', 'np.ndim', (['tuples'], {}), '(tuples)\n', (6048, 6056), True, 'import numpy as np\n'), ((6570, 6627), 'pkg_resources.resource_filename', 'pkgrs.resource_filename', (['"""latools"""', '"""resources/test_data"""'], {}), "('latools', 'resources/test_data')\n", (6593, 6627), True, 'import pkg_resources as pkgrs\n'), ((7731, 7752), 'uncertainties.unumpy.uarray', 'un.uarray', (['yn', 'yn_err'], {}), '(yn, yn_err)\n', (7740, 7752), True, 'import uncertainties.unumpy as un\n'), ((9316, 9354), 'numpy.concatenate', 'np.concatenate', (['(prepad, out, postpad)'], {}), '((prepad, out, postpad))\n', (9330, 9354), True, 'import numpy as np\n'), ((10354, 10366), 'numpy.ones', 'np.ones', (['win'], {}), '(win)\n', (10361, 10366), True, 'import numpy as np\n'), ((10432, 10453), 'numpy.mean', 'np.mean', (['a[:npad + 1]'], {}), '(a[:npad + 1])\n', (10439, 10453), True, 'import numpy as np\n'), ((10486, 10510), 'numpy.mean', 'np.mean', (['a[-(npad - 1):]'], {}), '(a[-(npad - 1):])\n', (10493, 10510), True, 'import numpy as np\n'), ((13829, 13841), 'numpy.vstack', 'np.vstack', (['d'], {}), '(d)\n', (13838, 13841), True, 'import numpy as np\n'), ((6443, 6473), 'shutil.rmtree', 'shutil.rmtree', (['destination_dir'], {}), '(destination_dir)\n', (6456, 6473), False, 'import shutil\n'), ((7268, 7288), 'uncertainties.unumpy.nominal_values', 'un.nominal_values', (['x'], {}), '(x)\n', (7285, 7288), True, 'import uncertainties.unumpy as un\n'), ((7332, 7352), 'uncertainties.unumpy.nominal_values', 'un.nominal_values', (['y'], {}), '(y)\n', (7349, 7352), True, 'import uncertainties.unumpy as un\n'), ((7469, 7489), 'uncertainties.unumpy.nominal_values', 'un.nominal_values', (['x'], {}), '(x)\n', (7486, 7489), True, 'import uncertainties.unumpy as un\n'), ((7533, 7547), 'uncertainties.unumpy.std_devs', 'un.std_devs', (['y'], {}), '(y)\n', (7544, 7547), True, 'import uncertainties.unumpy as un\n'), ((8769, 8798), 'numpy.full', 'np.full', (['(npre, window)', 'a[0]'], {}), '((npre, window), a[0])\n', (8776, 8798), True, 'import numpy as np\n'), ((8821, 8852), 'numpy.full', 'np.full', (['(npost, window)', 'a[-1]'], {}), '((npost, window), a[-1])\n', (8828, 8852), True, 'import numpy as np\n'), ((9404, 9428), 'numpy.empty', 'np.empty', (['(npre, window)'], {}), '((npre, window))\n', (9412, 9428), True, 'import numpy as np\n'), ((9485, 9510), 'numpy.empty', 'np.empty', (['(npost, window)'], {}), '((npost, window))\n', (9493, 9510), True, 'import numpy as np\n'), ((9559, 9609), 'numpy.concatenate', 'np.concatenate', (['[pre_blankpad, out, post_blankpad]'], {}), '([pre_blankpad, out, post_blankpad])\n', (9573, 9609), True, 'import numpy as np\n'), ((10545, 10576), 'numpy.convolve', 'np.convolve', (['a', 'kernel', '"""valid"""'], {}), "(a, kernel, 'valid')\n", (10556, 10576), True, 'import numpy as np\n'), ((4449, 4492), 'shutil.copy', 'shutil.copy', (["(p + '/' + f)", "(out_dir + '/' + f)"], {}), "(p + '/' + f, out_dir + '/' + f)\n", (4460, 4492), False, 'import shutil\n'), ((4813, 4838), 'numpy.where', 'np.where', (['(a[:-1] != a[1:])'], {}), '(a[:-1] != a[1:])\n', (4821, 4838), True, 'import numpy as np\n'), ((2321, 2332), 'numpy.isnan', 'np.isnan', (['a'], {}), '(a)\n', (2329, 2332), True, 'import numpy as np\n'), ((7057, 7077), 'uncertainties.unumpy.nominal_values', 'un.nominal_values', (['v'], {}), '(v)\n', (7074, 7077), True, 'import uncertainties.unumpy as un\n'), ((7130, 7144), 'uncertainties.unumpy.std_devs', 'un.std_devs', (['v'], {}), '(v)\n', (7141, 7144), True, 'import uncertainties.unumpy as un\n'), ((8931, 8955), 'numpy.mean', 'np.mean', (['a[:window // 2]'], {}), '(a[:window // 2])\n', (8938, 8955), True, 'import numpy as np\n'), ((9006, 9033), 'numpy.mean', 'np.mean', (['a[-(window // 2):]'], {}), '(a[-(window // 2):])\n', (9013, 9033), True, 'import numpy as np\n'), ((9091, 9122), 'numpy.full', 'np.full', (['(npre, window)', 'out[0]'], {}), '((npre, window), out[0])\n', (9098, 9122), True, 'import numpy as np\n'), ((9145, 9177), 'numpy.full', 'np.full', (['(npost, window)', 'out[0]'], {}), '((npost, window), out[0])\n', (9152, 9177), True, 'import numpy as np\n'), ((11649, 11663), 'numpy.arange', 'np.arange', (['win'], {}), '(win)\n', (11658, 11663), True, 'import numpy as np\n'), ((12258, 12270), 'numpy.isnan', 'np.isnan', (['xy'], {}), '(xy)\n', (12266, 12270), True, 'import numpy as np\n'), ((12319, 12346), 'numpy.polyfit', 'np.polyfit', (['xy[0]', 'xy[1]', '(1)'], {}), '(xy[0], xy[1], 1)\n', (12329, 12346), True, 'import numpy as np\n'), ((4236, 4268), 're.search', 're.search', (['"""^\\\\.(.*)"""', 'extension'], {}), "('^\\\\.(.*)', extension)\n", (4245, 4268), False, 'import re\n')]
# Copyright 2021 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Test for hook of session run.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from distutils.version import LooseVersion as Version import six import numpy as np import tensorflow as tf from tensorflow.python.platform import test from tensorflow.python.framework.versions import __version__ import epl from epl.parallel.hooks import _append_replicated_fetches # pylint: disable=missing-docstring,unused-argument,unused-variable class RunHookTest(test.TestCase): def test_for_append_replicated_fetches(self): epl.init(config=epl.Config({"communication.gradients_reduce_method": "sum"})) with epl.Cluster(worker_hosts="127.0.0.1:8001", worker_index=0): with epl.replicate(device_count=1): num_x = np.random.randint(0, 10, (500, 20)).astype(dtype=np.float32) num_y = np.random.randint(0, 10, 500).astype(dtype=np.int64) dataset = tf.data.Dataset.from_tensor_slices((num_x, num_y)) \ .batch(10).repeat(1) iterator = dataset.make_initializable_iterator() tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) x, labels = iterator.get_next() logits = tf.layers.dense(x, 2) logits = tf.layers.dense(logits, 10) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) epl.add_to_collection(loss, epl.GraphKeys.GLOBAL_MEAN_OBJECTS) global_step = tf.train.get_or_create_global_step() optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.9) train_op = optimizer.minimize(loss, global_step=global_step) tf.train.MonitoredTrainingSession() # Test for a single operation/tensor. fetches = loss replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches.name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertListEqual(replicas, [ "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0" ]) fetches = train_op replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] # Test for nvidia-tf(1.15.4) and deeprec(1.15.5). if Version(__version__) >= Version("1.15.4") and Version(__version__) < Version("2.0"): suffix = "/group_deps" else: suffix = "" self.assertEqual(fetches.name, "Momentum" + suffix) self.assertEqual(replicas, [ "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix ]) # Test for list fetches. fetches = [loss, train_op] replicas = [] fetches = _append_replicated_fetches(fetches, replicas) fetches = [fetch.name for fetch in fetches] replicas = [rep.name for rep in replicas] self.assertListEqual( fetches, ["EPL_PARALLEL_STRATEGY/truediv:0", "Momentum" + suffix]) self.assertListEqual(replicas, [ "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix ]) # Test for type of dict. fetches = {"loss": loss, "train_op": train_op} replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches["loss"].name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertEqual(fetches["train_op"].name, "Momentum" + suffix) if six.PY2: self.assertListEqual(replicas, [ "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix, "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0" ]) else: self.assertListEqual(replicas, [ "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix ]) # Test for type of OrderedDict fetches = collections.OrderedDict() fetches["loss"] = loss fetches["train_op"] = train_op replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches["loss"].name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertEqual(fetches["train_op"].name, "Momentum" + suffix) self.assertListEqual(replicas, [ "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix ]) # Test for type of tuple. fetches = (loss, train_op) replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches[0].name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertEqual(fetches[1].name, "Momentum" + suffix) self.assertListEqual(replicas, [ "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix ]) # Test for type of namedtuple. fetch_type = collections.namedtuple("fetch_type", ["loss", "train_op"]) fetches = fetch_type(loss=loss, train_op=train_op) replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches.loss.name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertEqual(fetches.train_op.name, "Momentum" + suffix) self.assertListEqual(replicas, [ "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix ]) # Test for nested list fetches. def _flatten(li): return sum( ([x] if not isinstance(x, list) else _flatten(x) for x in li), []) fetches = [labels, [train_op, logits, [loss, global_step]]] replicas = [] fetches = _append_replicated_fetches(fetches, replicas) fetches = _flatten(fetches) fetches = [fetch.name for fetch in fetches] replicas = [rep.name for rep in replicas] self.assertListEqual(fetches, [ "IteratorGetNext:1", "Momentum" + suffix, "dense_1/BiasAdd:0", "EPL_PARALLEL_STRATEGY/truediv:0", "global_step:0" ]) self.assertListEqual(replicas, [ "EPL_REPLICA_1/IteratorGetNext:1", "EPL_REPLICA_2/IteratorGetNext:1", "EPL_REPLICA_3/IteratorGetNext:1", "EPL_REPLICA_1/Momentum" + suffix, "EPL_REPLICA_2/Momentum" + suffix, "EPL_REPLICA_3/Momentum" + suffix, "EPL_REPLICA_1/dense_1/BiasAdd:0", "EPL_REPLICA_2/dense_1/BiasAdd:0", "EPL_REPLICA_3/dense_1/BiasAdd:0", "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/global_step:0", "EPL_REPLICA_2/global_step:0", "EPL_REPLICA_3/global_step:0" ]) # Test for nested list with dict. fetches = [labels, {"loss": loss}] replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches[0].name, "IteratorGetNext:1") self.assertEqual(fetches[1]["loss"].name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertListEqual(replicas, [ "EPL_REPLICA_1/IteratorGetNext:1", "EPL_REPLICA_2/IteratorGetNext:1", "EPL_REPLICA_3/IteratorGetNext:1", "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0" ]) # Test for nested list with tuple. fetches = [labels, (loss, global_step)] replicas = [] fetches = _append_replicated_fetches(fetches, replicas) replicas = [rep.name for rep in replicas] self.assertEqual(fetches[0].name, "IteratorGetNext:1") self.assertEqual(fetches[1][0].name, "EPL_PARALLEL_STRATEGY/truediv:0") self.assertEqual(fetches[1][1].name, "global_step:0") self.assertListEqual(replicas, [ "EPL_REPLICA_1/IteratorGetNext:1", "EPL_REPLICA_2/IteratorGetNext:1", "EPL_REPLICA_3/IteratorGetNext:1", "EPL_PARALLEL_STRATEGY/truediv_1:0", "EPL_PARALLEL_STRATEGY/truediv_2:0", "EPL_PARALLEL_STRATEGY/truediv_3:0", "EPL_REPLICA_1/global_step:0", "EPL_REPLICA_2/global_step:0", "EPL_REPLICA_3/global_step:0" ]) # pylint: enable=missing-docstring,unused-argument,unused-variable if __name__ == "__main__": test.main()
[ "tensorflow.python.platform.test.main", "tensorflow.train.MonitoredTrainingSession", "tensorflow.losses.sparse_softmax_cross_entropy", "epl.add_to_collection", "distutils.version.LooseVersion", "tensorflow.layers.dense", "tensorflow.train.get_or_create_global_step", "epl.replicate", "tensorflow.add_to_collection", "tensorflow.data.Dataset.from_tensor_slices", "epl.Cluster", "epl.parallel.hooks._append_replicated_fetches", "numpy.random.randint", "tensorflow.train.MomentumOptimizer", "collections.namedtuple", "collections.OrderedDict", "epl.Config" ]
[((10439, 10450), 'tensorflow.python.platform.test.main', 'test.main', ([], {}), '()\n', (10448, 10450), False, 'from tensorflow.python.platform import test\n'), ((8955, 9000), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (8981, 9000), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((9631, 9676), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (9657, 9676), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((1387, 1445), 'epl.Cluster', 'epl.Cluster', ([], {'worker_hosts': '"""127.0.0.1:8001"""', 'worker_index': '(0)'}), "(worker_hosts='127.0.0.1:8001', worker_index=0)\n", (1398, 1445), False, 'import epl\n'), ((2526, 2561), 'tensorflow.train.MonitoredTrainingSession', 'tf.train.MonitoredTrainingSession', ([], {}), '()\n', (2559, 2561), True, 'import tensorflow as tf\n'), ((2664, 2709), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (2690, 2709), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((3080, 3125), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (3106, 3125), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((3714, 3759), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (3740, 3759), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((4397, 4442), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (4423, 4442), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((5402, 5427), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (5425, 5427), False, 'import collections\n'), ((5530, 5575), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (5556, 5575), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((6212, 6257), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (6238, 6257), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((6812, 6870), 'collections.namedtuple', 'collections.namedtuple', (['"""fetch_type"""', "['loss', 'train_op']"], {}), "('fetch_type', ['loss', 'train_op'])\n", (6834, 6870), False, 'import collections\n'), ((6964, 7009), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (6990, 7009), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((7780, 7825), 'epl.parallel.hooks._append_replicated_fetches', '_append_replicated_fetches', (['fetches', 'replicas'], {}), '(fetches, replicas)\n', (7806, 7825), False, 'from epl.parallel.hooks import _append_replicated_fetches\n'), ((1316, 1376), 'epl.Config', 'epl.Config', (["{'communication.gradients_reduce_method': 'sum'}"], {}), "({'communication.gradients_reduce_method': 'sum'})\n", (1326, 1376), False, 'import epl\n'), ((1458, 1487), 'epl.replicate', 'epl.replicate', ([], {'device_count': '(1)'}), '(device_count=1)\n', (1471, 1487), False, 'import epl\n'), ((1824, 1899), 'tensorflow.add_to_collection', 'tf.add_to_collection', (['tf.GraphKeys.TABLE_INITIALIZERS', 'iterator.initializer'], {}), '(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)\n', (1844, 1899), True, 'import tensorflow as tf\n'), ((1987, 2008), 'tensorflow.layers.dense', 'tf.layers.dense', (['x', '(2)'], {}), '(x, 2)\n', (2002, 2008), True, 'import tensorflow as tf\n'), ((2026, 2053), 'tensorflow.layers.dense', 'tf.layers.dense', (['logits', '(10)'], {}), '(logits, 10)\n', (2041, 2053), True, 'import tensorflow as tf\n'), ((2069, 2137), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', ([], {'labels': 'labels', 'logits': 'logits'}), '(labels=labels, logits=logits)\n', (2107, 2137), True, 'import tensorflow as tf\n'), ((2200, 2262), 'epl.add_to_collection', 'epl.add_to_collection', (['loss', 'epl.GraphKeys.GLOBAL_MEAN_OBJECTS'], {}), '(loss, epl.GraphKeys.GLOBAL_MEAN_OBJECTS)\n', (2221, 2262), False, 'import epl\n'), ((2285, 2321), 'tensorflow.train.get_or_create_global_step', 'tf.train.get_or_create_global_step', ([], {}), '()\n', (2319, 2321), True, 'import tensorflow as tf\n'), ((2342, 2403), 'tensorflow.train.MomentumOptimizer', 'tf.train.MomentumOptimizer', ([], {'learning_rate': '(0.001)', 'momentum': '(0.9)'}), '(learning_rate=0.001, momentum=0.9)\n', (2368, 2403), True, 'import tensorflow as tf\n'), ((3239, 3259), 'distutils.version.LooseVersion', 'Version', (['__version__'], {}), '(__version__)\n', (3246, 3259), True, 'from distutils.version import LooseVersion as Version\n'), ((3263, 3280), 'distutils.version.LooseVersion', 'Version', (['"""1.15.4"""'], {}), "('1.15.4')\n", (3270, 3280), True, 'from distutils.version import LooseVersion as Version\n'), ((3285, 3305), 'distutils.version.LooseVersion', 'Version', (['__version__'], {}), '(__version__)\n', (3292, 3305), True, 'from distutils.version import LooseVersion as Version\n'), ((3308, 3322), 'distutils.version.LooseVersion', 'Version', (['"""2.0"""'], {}), "('2.0')\n", (3315, 3322), True, 'from distutils.version import LooseVersion as Version\n'), ((1505, 1540), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', '(500, 20)'], {}), '(0, 10, (500, 20))\n', (1522, 1540), True, 'import numpy as np\n'), ((1582, 1611), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', '(500)'], {}), '(0, 10, 500)\n', (1599, 1611), True, 'import numpy as np\n'), ((1653, 1703), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(num_x, num_y)'], {}), '((num_x, num_y))\n', (1687, 1703), True, 'import tensorflow as tf\n')]
import six import numpy as np import nutszebra_utility as nz import sys import pickle def unpickle(file_name): fp = open(file_name, 'rb') if sys.version_info.major == 2: data = pickle.load(fp) elif sys.version_info.major == 3: data = pickle.load(fp, encoding='latin-1') fp.close() return data class Cifar10(object): def __init__(self): self.utility = nz.Utility() self.output_name = 'cifar10.pkl' self.url = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' self.downloaded_file = 'cifar-10-python.tar.gz' self.untared_file = 'cifar-10-batches-py' self.batch_train_file = ['data_batch_' + str(num) for num in six.moves.range(1, 6)] self.batch_test_file = 'test_batch' self.meta_file = 'batches.meta' self.converted_name = 'cifar10.pkl' def download_cifar_10(self): # if already downloaded and processed, then return True if self.converted_name in self.utility.find_files(self.utility.nutszebra_path, affix_flag=True): print('Already downloaded') return True # download file print('Downloading: ' + self.downloaded_file) self.utility.download_file(self.url, self.utility.nutszebra_path, self.downloaded_file) print('Done') print('Uncompressing') # untar self.utility.untar_gz(self.utility.nutszebra_path + '/' + self.downloaded_file) print('Done') # delete tar.gz file self.utility.remove_file(self.downloaded_file) # load train file print('Loading train data') train_x = np.zeros((50000, 3, 32, 32), dtype=np.float32) train_y = np.zeros((50000), dtype=np.int32) for i, batch_file in enumerate(self.batch_train_file): data = unpickle(self.untared_file + '/' + batch_file) start = i * 10000 end = start + 10000 train_x[start:end] = data['data'].reshape(10000, 3, 32, 32) train_y[start:end] = np.array(data['labels'], dtype=np.int32) print('Done') # load test file print('Loading test data') test_x = np.zeros((10000, 3, 32, 32), dtype=np.float32) test_y = np.zeros((10000), dtype=np.int32) data = unpickle(self.untared_file + '/' + self.batch_test_file) test_x[:] = data['data'].reshape(10000, 3, 32, 32) test_y[:] = np.array(data['labels'], dtype=np.int32) print('Done') # load meta file data = unpickle(self.untared_file + '/' + self.meta_file) meta = data['label_names'] # save loaded data print('Saving') data = {} data['train_x'] = train_x data['train_y'] = train_y data['test_x'] = test_x data['test_y'] = test_y data['meta'] = meta self.utility.save_pickle(data, self.utility.nutszebra_path + '/' + self.converted_name) def check_overlap(self): data = self.load_cifar10_data() length = len(data['test_x']) result = [0] * length for i in six.moves.range(length): result[i] = np.any(np.all(data['test_x'][i] == data['train_x'])) return (np.any(result), result) def load_cifar10_data(self): self.download_cifar_10() return unpickle(self.utility.nutszebra_path + '/' + self.converted_name)
[ "six.moves.range", "numpy.zeros", "numpy.any", "nutszebra_utility.Utility", "pickle.load", "numpy.array", "numpy.all" ]
[((195, 210), 'pickle.load', 'pickle.load', (['fp'], {}), '(fp)\n', (206, 210), False, 'import pickle\n'), ((404, 416), 'nutszebra_utility.Utility', 'nz.Utility', ([], {}), '()\n', (414, 416), True, 'import nutszebra_utility as nz\n'), ((1644, 1690), 'numpy.zeros', 'np.zeros', (['(50000, 3, 32, 32)'], {'dtype': 'np.float32'}), '((50000, 3, 32, 32), dtype=np.float32)\n', (1652, 1690), True, 'import numpy as np\n'), ((1709, 1740), 'numpy.zeros', 'np.zeros', (['(50000)'], {'dtype': 'np.int32'}), '(50000, dtype=np.int32)\n', (1717, 1740), True, 'import numpy as np\n'), ((2179, 2225), 'numpy.zeros', 'np.zeros', (['(10000, 3, 32, 32)'], {'dtype': 'np.float32'}), '((10000, 3, 32, 32), dtype=np.float32)\n', (2187, 2225), True, 'import numpy as np\n'), ((2243, 2274), 'numpy.zeros', 'np.zeros', (['(10000)'], {'dtype': 'np.int32'}), '(10000, dtype=np.int32)\n', (2251, 2274), True, 'import numpy as np\n'), ((2428, 2468), 'numpy.array', 'np.array', (["data['labels']"], {'dtype': 'np.int32'}), "(data['labels'], dtype=np.int32)\n", (2436, 2468), True, 'import numpy as np\n'), ((3096, 3119), 'six.moves.range', 'six.moves.range', (['length'], {}), '(length)\n', (3111, 3119), False, 'import six\n'), ((264, 299), 'pickle.load', 'pickle.load', (['fp'], {'encoding': '"""latin-1"""'}), "(fp, encoding='latin-1')\n", (275, 299), False, 'import pickle\n'), ((2039, 2079), 'numpy.array', 'np.array', (["data['labels']"], {'dtype': 'np.int32'}), "(data['labels'], dtype=np.int32)\n", (2047, 2079), True, 'import numpy as np\n'), ((3214, 3228), 'numpy.any', 'np.any', (['result'], {}), '(result)\n', (3220, 3228), True, 'import numpy as np\n'), ((709, 730), 'six.moves.range', 'six.moves.range', (['(1)', '(6)'], {}), '(1, 6)\n', (724, 730), False, 'import six\n'), ((3152, 3196), 'numpy.all', 'np.all', (["(data['test_x'][i] == data['train_x'])"], {}), "(data['test_x'][i] == data['train_x'])\n", (3158, 3196), True, 'import numpy as np\n')]
from tqdm import tqdm from MCTS import MCTS from BinaryTree import BinaryTree import numpy as np import matplotlib.pyplot as plt np.random.seed(15) def run_experiment(max_iterations, dynamic_c=False): """ Run a single experiment of a sequence of MCTS searches to find the optimal path. :param max_iterations: Number of iterations to run the MCTS. :param dynamic_c: Boolean indicating whether to use a dynamic c or not. :return: value of the optimal path found from the search """ tree = BinaryTree(depth=12, b=20, tau=3) best_leaf = max(tree.leaves) mcts = MCTS(max_iterations=max_iterations, c=2) optimal_path = "" while tree.depth > 0: # search the best direction direction = mcts.search(tree, dynamic_c=dynamic_c, verbose=False) optimal_path += direction # update the tree tree.update_root(direction) # return the distance of the optimal path found from the search wrt the best leaf return sum(1 for a, b in zip(optimal_path, best_leaf.address) if a != b) def main(): # compute statistics for static c and dynamic c n_iterations = np.logspace(0.7, 3, num=18, base=10, dtype=int) values_static_c = [run_experiment(max_iterations=n, dynamic_c=False) for n in tqdm(n_iterations, desc='Execute MCTS with c=2', unit=' experiment')] values_dynamic_c = [run_experiment(max_iterations=n, dynamic_c=True) for n in tqdm(n_iterations, desc='Execute MCTS with dynamic c', unit=' experiment')] # plot the results plt.figure(figsize=(8, 4)) plt.plot(n_iterations, values_dynamic_c, '-o', label="MCTS with dynamic c") plt.plot(n_iterations, values_static_c, '-o', label="MCTS with c=2") plt.xlabel("Number of iterations") plt.ylabel("Distance of the optimal path from the best leaf") plt.title("Compare the value of the optimal path found by MCTS with and without dynamic c") plt.grid(linestyle='--', linewidth=1) plt.xscale("log") plt.xticks(n_iterations, n_iterations) plt.legend() plt.show() if __name__ == "__main__": main()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.xscale", "tqdm.tqdm", "numpy.random.seed", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.logspace", "matplotlib.pyplot.legend", "MCTS.MCTS", "matplotlib.pyplot.figure", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "BinaryTree.BinaryTree", "matplotlib.pyplot.grid", "matplotlib.pyplot.xlabel" ]
[((131, 149), 'numpy.random.seed', 'np.random.seed', (['(15)'], {}), '(15)\n', (145, 149), True, 'import numpy as np\n'), ((519, 552), 'BinaryTree.BinaryTree', 'BinaryTree', ([], {'depth': '(12)', 'b': '(20)', 'tau': '(3)'}), '(depth=12, b=20, tau=3)\n', (529, 552), False, 'from BinaryTree import BinaryTree\n'), ((597, 637), 'MCTS.MCTS', 'MCTS', ([], {'max_iterations': 'max_iterations', 'c': '(2)'}), '(max_iterations=max_iterations, c=2)\n', (601, 637), False, 'from MCTS import MCTS\n'), ((1143, 1190), 'numpy.logspace', 'np.logspace', (['(0.7)', '(3)'], {'num': '(18)', 'base': '(10)', 'dtype': 'int'}), '(0.7, 3, num=18, base=10, dtype=int)\n', (1154, 1190), True, 'import numpy as np\n'), ((1529, 1555), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 4)'}), '(figsize=(8, 4))\n', (1539, 1555), True, 'import matplotlib.pyplot as plt\n'), ((1560, 1635), 'matplotlib.pyplot.plot', 'plt.plot', (['n_iterations', 'values_dynamic_c', '"""-o"""'], {'label': '"""MCTS with dynamic c"""'}), "(n_iterations, values_dynamic_c, '-o', label='MCTS with dynamic c')\n", (1568, 1635), True, 'import matplotlib.pyplot as plt\n'), ((1640, 1708), 'matplotlib.pyplot.plot', 'plt.plot', (['n_iterations', 'values_static_c', '"""-o"""'], {'label': '"""MCTS with c=2"""'}), "(n_iterations, values_static_c, '-o', label='MCTS with c=2')\n", (1648, 1708), True, 'import matplotlib.pyplot as plt\n'), ((1713, 1747), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of iterations"""'], {}), "('Number of iterations')\n", (1723, 1747), True, 'import matplotlib.pyplot as plt\n'), ((1752, 1813), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Distance of the optimal path from the best leaf"""'], {}), "('Distance of the optimal path from the best leaf')\n", (1762, 1813), True, 'import matplotlib.pyplot as plt\n'), ((1818, 1919), 'matplotlib.pyplot.title', 'plt.title', (['"""Compare the value of the optimal path found by MCTS with and without dynamic c"""'], {}), "(\n 'Compare the value of the optimal path found by MCTS with and without dynamic c'\n )\n", (1827, 1919), True, 'import matplotlib.pyplot as plt\n'), ((1914, 1951), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'linestyle': '"""--"""', 'linewidth': '(1)'}), "(linestyle='--', linewidth=1)\n", (1922, 1951), True, 'import matplotlib.pyplot as plt\n'), ((1956, 1973), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (1966, 1973), True, 'import matplotlib.pyplot as plt\n'), ((1978, 2016), 'matplotlib.pyplot.xticks', 'plt.xticks', (['n_iterations', 'n_iterations'], {}), '(n_iterations, n_iterations)\n', (1988, 2016), True, 'import matplotlib.pyplot as plt\n'), ((2021, 2033), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2031, 2033), True, 'import matplotlib.pyplot as plt\n'), ((2038, 2048), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2046, 2048), True, 'import matplotlib.pyplot as plt\n'), ((1273, 1341), 'tqdm.tqdm', 'tqdm', (['n_iterations'], {'desc': '"""Execute MCTS with c=2"""', 'unit': '""" experiment"""'}), "(n_iterations, desc='Execute MCTS with c=2', unit=' experiment')\n", (1277, 1341), False, 'from tqdm import tqdm\n'), ((1425, 1499), 'tqdm.tqdm', 'tqdm', (['n_iterations'], {'desc': '"""Execute MCTS with dynamic c"""', 'unit': '""" experiment"""'}), "(n_iterations, desc='Execute MCTS with dynamic c', unit=' experiment')\n", (1429, 1499), False, 'from tqdm import tqdm\n')]
import numpy as np import time import keyboard import math import threading def attack_mob(boxes,classes): """ recevies in the player box and the mob box and then will move the player towards the mob and then attack it """ #midpoints X1 and X2 player, closestmob = calculate_distance(boxes,classes) #vertical movement y axis if player[0]<closestmob[0]: keyboard.teledown() else: keyboard.teleup() # horizontal movement, i messed up the coordinates while creating the tuple index 1 is x, index 0 is y if player[1]<closestmob[1]: #moveleft and attack print("player coord:"+str(player[0])+" "+str(player[1])) print("\n mob coord:"+str(closestmob[0])+" "+str(closestmob[1])) keyboard.moveRight() keyboard.moveRight() # keyboard.moveRight() keyboard.attackFiveTimes() keyboard.loot() else: # mob is to the right and attack print("player coord:"+str(player[0])+" "+str(player[1])) print("\n mob coord:"+str(closestmob[0])+" "+str(closestmob[1])) keyboard.moveLeft() keyboard.moveLeft() # keyboard.moveLeft() keyboard.attackFiveTimes() keyboard.loot() def filter(detections): """ takes first five detections returns boxes,scores and classes as numpy arrays """ #get first five predictions boxes = detections['detection_boxes'][0].numpy()[:5] scores = detections['detection_scores'][0].numpy()[:5] classes = (detections['detection_classes'][0].numpy() + 1).astype(int)[:5] isTherePlayer = False if 2 in classes[:]: isTherePlayer = True return boxes, scores, classes, isTherePlayer def calculate_distance(boxes,classes): """ calculates the distance between the player and the three mobs, and returns the mob with the shortest distance """ #get the index of the player, returns a numpy array containing the index itemindex = np.where(classes==2) #get the midpoints, list of tuples midpoints =[] for i in range(np.shape(boxes)[0]): midpoints.append(getBoxesMidpoint(boxes[i])) #calculate the distance between the player and the mobs distance=np.zeros(5,dtype=np.float32) for i in range(np.shape(boxes)[0]): if i == itemindex[0][0]: distance[i]= 99999.0 else: distance[i]=distance_2points(midpoints[i],midpoints[itemindex[0][0]]) #get the min index, and return the player coord and mob coord. minindex = np.argmin(distance) return midpoints[itemindex[0][0]],midpoints[minindex] def getBoxesMidpoint(box): """ takes in normalized coordinates of the 800x600 screen. coordinates are xmin,ymin,xmax,ymax returns a tuple of the midpoint """ #denormalize them normalized_coord = np.array([box[0]*806,box[1]*629,box[2]*806,box[3]*629],dtype=np.float32) #offset from the origin return (((normalized_coord[2]-normalized_coord[0])/2)+normalized_coord[0],((((normalized_coord[3]-normalized_coord[1])/2))+normalized_coord[1])) def distance_2points(pt1,pt2): """ returns distance between two points pt1(x1,y1),pt2(x2,y2). points as tuples. """ return math.hypot(pt2[0]-pt1[0], pt2[1]-pt1[1]) def autobuff(stop_event): starttime = time.time() while not stop_event.wait(1): print("Buffing!") keyboard.buff() keyboard.buff() keyboard.buff() time.sleep(65.0 - ((time.time() - starttime) % 65.0)) def autocc(stop_event): starttime = time.time() while not stop_event.wait(1): print("CC'ing!") keyboard.cc() time.sleep(90.0 - ((time.time() - starttime) % 90.0)) if __name__ == "__main__": pass
[ "math.hypot", "numpy.zeros", "keyboard.moveRight", "numpy.argmin", "time.time", "keyboard.teledown", "keyboard.loot", "keyboard.moveLeft", "numpy.where", "numpy.array", "keyboard.cc", "keyboard.teleup", "keyboard.buff", "numpy.shape", "keyboard.attackFiveTimes" ]
[((1979, 2001), 'numpy.where', 'np.where', (['(classes == 2)'], {}), '(classes == 2)\n', (1987, 2001), True, 'import numpy as np\n'), ((2228, 2257), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'np.float32'}), '(5, dtype=np.float32)\n', (2236, 2257), True, 'import numpy as np\n'), ((2546, 2565), 'numpy.argmin', 'np.argmin', (['distance'], {}), '(distance)\n', (2555, 2565), True, 'import numpy as np\n'), ((2845, 2934), 'numpy.array', 'np.array', (['[box[0] * 806, box[1] * 629, box[2] * 806, box[3] * 629]'], {'dtype': 'np.float32'}), '([box[0] * 806, box[1] * 629, box[2] * 806, box[3] * 629], dtype=np\n .float32)\n', (2853, 2934), True, 'import numpy as np\n'), ((3236, 3280), 'math.hypot', 'math.hypot', (['(pt2[0] - pt1[0])', '(pt2[1] - pt1[1])'], {}), '(pt2[0] - pt1[0], pt2[1] - pt1[1])\n', (3246, 3280), False, 'import math\n'), ((3320, 3331), 'time.time', 'time.time', ([], {}), '()\n', (3329, 3331), False, 'import time\n'), ((3567, 3578), 'time.time', 'time.time', ([], {}), '()\n', (3576, 3578), False, 'import time\n'), ((391, 410), 'keyboard.teledown', 'keyboard.teledown', ([], {}), '()\n', (408, 410), False, 'import keyboard\n'), ((429, 446), 'keyboard.teleup', 'keyboard.teleup', ([], {}), '()\n', (444, 446), False, 'import keyboard\n'), ((762, 782), 'keyboard.moveRight', 'keyboard.moveRight', ([], {}), '()\n', (780, 782), False, 'import keyboard\n'), ((791, 811), 'keyboard.moveRight', 'keyboard.moveRight', ([], {}), '()\n', (809, 811), False, 'import keyboard\n'), ((851, 877), 'keyboard.attackFiveTimes', 'keyboard.attackFiveTimes', ([], {}), '()\n', (875, 877), False, 'import keyboard\n'), ((886, 901), 'keyboard.loot', 'keyboard.loot', ([], {}), '()\n', (899, 901), False, 'import keyboard\n'), ((1099, 1118), 'keyboard.moveLeft', 'keyboard.moveLeft', ([], {}), '()\n', (1116, 1118), False, 'import keyboard\n'), ((1127, 1146), 'keyboard.moveLeft', 'keyboard.moveLeft', ([], {}), '()\n', (1144, 1146), False, 'import keyboard\n'), ((1185, 1211), 'keyboard.attackFiveTimes', 'keyboard.attackFiveTimes', ([], {}), '()\n', (1209, 1211), False, 'import keyboard\n'), ((1220, 1235), 'keyboard.loot', 'keyboard.loot', ([], {}), '()\n', (1233, 1235), False, 'import keyboard\n'), ((3400, 3415), 'keyboard.buff', 'keyboard.buff', ([], {}), '()\n', (3413, 3415), False, 'import keyboard\n'), ((3424, 3439), 'keyboard.buff', 'keyboard.buff', ([], {}), '()\n', (3437, 3439), False, 'import keyboard\n'), ((3448, 3463), 'keyboard.buff', 'keyboard.buff', ([], {}), '()\n', (3461, 3463), False, 'import keyboard\n'), ((3646, 3659), 'keyboard.cc', 'keyboard.cc', ([], {}), '()\n', (3657, 3659), False, 'import keyboard\n'), ((2076, 2091), 'numpy.shape', 'np.shape', (['boxes'], {}), '(boxes)\n', (2084, 2091), True, 'import numpy as np\n'), ((2276, 2291), 'numpy.shape', 'np.shape', (['boxes'], {}), '(boxes)\n', (2284, 2291), True, 'import numpy as np\n'), ((3492, 3503), 'time.time', 'time.time', ([], {}), '()\n', (3501, 3503), False, 'import time\n'), ((3688, 3699), 'time.time', 'time.time', ([], {}), '()\n', (3697, 3699), False, 'import time\n')]
# -*- coding: utf-8 -*- # Created on Sat Jun 05 2021 # Last modified on Mon Jun 07 2021 # Copyright (c) CaMOS Development Team. All Rights Reserved. # Distributed under a MIT License. See LICENSE for more info. import numpy as np from camos.tasks.analysis import Analysis from camos.utils.generategui import NumericInput, DatasetInput from camos.utils.units import get_time class BurstClean(Analysis): analysis_name = "Clean Events" required = ["dataset"] def __init__(self, *args, **kwargs): super(BurstClean, self).__init__(*args, **kwargs) def _run( self, duration: NumericInput("Total Duration ({})".format(get_time()), 100), _filter_min: NumericInput("Minimum Events/{}".format(get_time()), 1), _filter_max: NumericInput("Maximum Events/{}".format(get_time()), 50), _i_data: DatasetInput("Source dataset", 0), ): output_type = [("CellID", "int"), ("Active", "float")] # data should be provided in format summary (active events) data = self.signal.data[_i_data] self.dataname = self.signal.names[_i_data] if not ("Active" in data.dtype.names): raise ValueError("The dataset does not have the expected shape") # Calculates the MFR, could be given as an input? unique, counts = np.unique(data[:]["CellID"], return_counts=True) active = data[:]["Active"] IDs = data[:]["CellID"] IDs_include = unique[ np.where( (counts >= _filter_min * duration) & (counts <= _filter_max * duration) ) ] idx = np.isin(IDs, IDs_include) active_filter = active[idx] IDs_filter = IDs[idx] # Calculate mean firing rate per cell self.output = np.zeros(shape=(len(active_filter), 1), dtype=output_type) self.output[:]["CellID"] = IDs_filter.reshape(-1, 1) self.output[:]["Active"] = active_filter.reshape(-1, 1) self.output = self.output[1:] self.foutput = self.output # self.notify( # "{}: Events Before = {}; Events After = {}".format( # self.analysis_name, len(data), len(self.output) # ), # "INFO", # ) def connectComponents(self, fields): # Changing the input data to update the duration fields["_i_data"].connect( lambda x: fields["duration"].widget.setText( str(int(self.signal.properties[x]["duration"])) ) )
[ "camos.utils.generategui.DatasetInput", "numpy.isin", "numpy.where", "camos.utils.units.get_time", "numpy.unique" ]
[((1324, 1372), 'numpy.unique', 'np.unique', (["data[:]['CellID']"], {'return_counts': '(True)'}), "(data[:]['CellID'], return_counts=True)\n", (1333, 1372), True, 'import numpy as np\n'), ((1618, 1643), 'numpy.isin', 'np.isin', (['IDs', 'IDs_include'], {}), '(IDs, IDs_include)\n', (1625, 1643), True, 'import numpy as np\n'), ((850, 883), 'camos.utils.generategui.DatasetInput', 'DatasetInput', (['"""Source dataset"""', '(0)'], {}), "('Source dataset', 0)\n", (862, 883), False, 'from camos.utils.generategui import NumericInput, DatasetInput\n'), ((1482, 1567), 'numpy.where', 'np.where', (['((counts >= _filter_min * duration) & (counts <= _filter_max * duration))'], {}), '((counts >= _filter_min * duration) & (counts <= _filter_max *\n duration))\n', (1490, 1567), True, 'import numpy as np\n'), ((657, 667), 'camos.utils.units.get_time', 'get_time', ([], {}), '()\n', (665, 667), False, 'from camos.utils.units import get_time\n'), ((737, 747), 'camos.utils.units.get_time', 'get_time', ([], {}), '()\n', (745, 747), False, 'from camos.utils.units import get_time\n'), ((815, 825), 'camos.utils.units.get_time', 'get_time', ([], {}), '()\n', (823, 825), False, 'from camos.utils.units import get_time\n')]
""" Created on April 13, 2018 Edited on July 05, 2019 @author: <NAME> & <NAME> Sony CSL Paris, France Institute for Computational Perception, Johannes Kepler University, Linz Austrian Research Institute for Artificial Intelligence, Vienna """ import numpy as np import librosa import torch.utils.data as data import torch import logging import PIL from scipy.signal import get_window from torchvision.transforms import Resize, ToPILImage, ToTensor, Compose, \ CenterCrop from complex_auto.util import to_numpy, cached LOGGER = logging.getLogger(__name__) def standardize_(ngram): ngram = ngram - ngram.mean() std = ngram.std() if std > 1e-8: ngram = .1 * ngram / std return ngram class Data(object): def __init__(self, data_x, data_y, standardize=False): self.data_x = data_x self.data_y = data_y def __getitem__(self, index): return [standardize_(torch.FloatTensor(self.data_x[index])), standardize_(torch.FloatTensor(self.data_y[index])), -1, -1, -1] def __len__(self): return len(self.data_x) class DataSampler(object): def __init__(self, data_x, length_ngram, samples_epoch, standard=True, shifts=[24, 24], scales=[1., 0], shuffle=True, transform=(0, 1, 2), emph_onset=0, random_pairs=False): """ Returns random ngrams from data, can shift and scale data in two dimensions :param data_x: data (2d) :param length_ngram: length of sampled ngrams :param samples_epoch: number of samples per epoch :param standard: if instances should be standardized :param shifts: 2-tuple, maximal random shifts in two dimensions :param scales: 2-tuple, maximal random scaling in two dimensions :param shuffle: instances are returned in random order :param transform: iterable; which transforms should be applied. pitch_shift (0), time shift (1), tempo-change (2) :param emph_onset: onsets are emphasized :param random_pairs: a pair is sampled using two random (unrelated) instances """ self.data_x = data_x self.length_ngram = length_ngram self.samples_epoch = samples_epoch self.standard = standard self.max_x = shifts[0] self.max_y = shifts[1] self.scale_x = scales[0] self.scale_y = scales[1] self.shuffle = shuffle self.transform = transform self.emph_onset = emph_onset self.random_pairs = random_pairs self.check_lengths() def check_lengths(self): delete = [] for i, song in enumerate(self.data_x): max_ = song.shape[1] - self.length_ngram - self.max_x if not self.max_x < max_: print(f"Warning: Song number {i} is too short to be used " f"with ngram length {self.length_ngram} and maximal " f"time shift of {self.max_x} (will be ignored)!") delete.append(i) self.data_x = [i for j, i in enumerate(self.data_x) if j not in delete] def __len__(self): if not self.shuffle: return self.get_ngram_count() return self.samples_epoch def __getitem__(self, index): # Transform: pitch_shift (0), time shift (1), tempo-change (2) if self.transform is None: # random transform transform = np.random.randint(0, 3) else: transform = np.random.choice(self.transform) if self.random_pairs: # song_id, start, end = self.get_random_ngram() # ngram = self.data_x[song_id][:, start:end].copy() # song_id, start, end = self.get_random_ngram() # ngram_trans = self.data_x[song_id][:, start:end].copy() if np.random.randint(2) == 0: [ngram, ngram_trans], song_id = self.get_pairs_same_song() label = -1 transform = -1 # skips transformation codes else: song_id, start, end = self.get_ngram_by_idx(index) ngram = self.data_x[song_id][:, start:end].copy() elif self.shuffle: song_id, start, end = self.get_random_ngram() ngram = self.data_x[song_id][:, start:end].copy() else: song_id, start, end = self.get_ngram_by_idx(index) ngram = self.data_x[song_id][:, start:end].copy() # Normalization needed for PIL image processing (scale) ngram -= ngram.min() if ngram.max() > 1e-6: ngram /= ngram.max() assert ngram.shape[1] != 0, f"{start}, {end}," \ f"{self.data_x[song_id].shape[1]}, " \ f"{self.max_x}" if transform == 1: if self.max_x == 0: shiftx = 0 else: shiftx = np.random.randint(-self.max_x, self.max_x) ngram_trans = self.trans_time_shift(end, song_id, start, shiftx) label = "shiftx" + str(shiftx) if transform == 0: if self.max_y == 0: shifty = 0 else: shifty = np.random.randint(-self.max_y, self.max_y) ngram_trans = self.trans_pitch_shift(ngram, shifty) label = "shifty" + str(shifty) if transform == 2: scale_x = 1 + self.scale_x * np.random.rand() ngram, ngram_trans, minus = self.trans_speed_change(ngram, scale_x) label = scale_x if not minus else -scale_x label = "scale" + str(label) ngram = to_numpy(ngram) ngram_trans = to_numpy(ngram_trans) ngram_onset = np.diff(np.concatenate((ngram[:, 0:1], ngram), axis=1), axis=1) ngram_trans_onset = np.diff(np.concatenate((ngram_trans[:, 0:1], ngram_trans), axis=1), axis=1) ngram_onset[ngram_onset < 0] = 0 ngram_trans_onset[ngram_trans_onset < 0] = 0 ngram = ngram + ngram_onset * self.emph_onset ngram_trans = ngram_trans + ngram_trans_onset * self.emph_onset if self.standard: ngram = self.standardize(ngram) ngram_trans = self.standardize(ngram_trans) ngram = torch.FloatTensor(ngram).view(-1) ngram_trans = torch.FloatTensor(ngram_trans).view(-1) return ngram+1e-8, ngram_trans+1e-8, transform, song_id, label def get_ngram_count(self): count = 0 count_data = len(self.data_x) for i in range(count_data): len_data = self.data_x[i].shape[1] startmin = 2 * self.max_x startmax = len_data - self.length_ngram - 2 * self.max_x count += startmax - startmin return count def get_ngram_by_idx(self, index): count = 0 count_data = len(self.data_x) for i in range(count_data): len_data = self.data_x[i].shape[1] startmin = 2 * self.max_x startmax = len_data - self.length_ngram - 2 * self.max_x if index >= count and index + startmin < count + startmax: song_id = i start = index - count + startmin break count += startmax - startmin end = start + self.length_ngram return song_id, start, end def get_random_ngram(self): count_data = len(self.data_x) song_id = np.random.randint(0, count_data) len_data = self.data_x[song_id].shape[1] start = np.random.randint(self.max_x, len_data - self.length_ngram - self.max_x) end = start + self.length_ngram return song_id, start, end def get_pairs_same_song(self): count_data = len(self.data_x) song_id = np.random.randint(0, count_data) len_data = self.data_x[song_id].shape[1] pairs = [] for i in range(2): start = np.random.randint(2 * self.max_x, len_data - self.length_ngram - 2 * self.max_x) end = start + self.length_ngram ngram = self.data_x[song_id][:, start:end].copy() pairs.append(ngram) return pairs, song_id def trans_speed_change(self, ngram, scale_x): size1 = ngram.shape[1] size0 = ngram.shape[0] new_size_t_x = int(scale_x * size1) new_size_t_y = ngram.shape[0] transform_out = Compose([ ToPILImage(), Resize((new_size_t_y, new_size_t_x), interpolation=PIL.Image.NEAREST), CenterCrop((size0, size1)), ToTensor() ]) ngram_trans = transform_out(torch.FloatTensor(ngram).unsqueeze(0)) minus = False if np.random.randint(0, 2) == 1: ngram_ = ngram ngram = ngram_trans ngram_trans = ngram_ minus = True return ngram, ngram_trans, minus def trans_pitch_shift(self, ngram, shifty): return to_numpy(self.transp0(torch.FloatTensor(ngram), shifty)) def trans_time_shift(self, end, song_id, start, shiftx): return self.data_x[song_id][:, start + shiftx:end + shiftx] def standardize(self, ngram): ngram = ngram - ngram.mean() std = ngram.std() ngram = .1 * ngram / (std + 1e-8) return ngram def transp0(self, x, shift): """ Transposes axis 0 (zero-based) of x by [shift] steps. Missing information is padded with zeros. :param x: the array to transpose :param shift: the transposition distance :return: x transposed """ if shift == 0: return x pad = torch.zeros(abs(shift), x.size(1)) if shift < 0: return torch.cat([pad, x[:-abs(shift), :]], dim=0) return torch.cat([x[abs(shift):, :], pad], dim=0) def transp1(self, x, shift): """ Transposes axis 1 (zero-based) of x by [shift] steps. Missing information is padded with zeros. :param x: the array to transpose :param shift: the transposition distance :return: x transposed """ if shift == 0: return x pad = torch.zeros(x.size(1), abs(shift)) if shift < 0: return torch.cat([pad, x[:, :-abs(shift)]], dim=1) return torch.cat([x[:, abs(shift):], pad], dim=1) class Signal(data.Dataset): def __init__(self, filelist, sr="22050", trg_shift=0, block_size=1024, refresh_cache=False, cache_fn="signal_cache.pyc.bz", allow_diff_shapes=False, padded=False, random_shift=0, samples_epoch=1000, window='hann'): """ Constructor for 1D signal dataset :param filelist: list of audio file names (str) :param sr: desired sample rate :param trg_shift: target == input shifted by [-trg_shift] steps, blocks are shortened accordingly :param block_size: length of one instance in a batch :param refresh_cache: when True recalculate and save to cache file when False loads from cache file when available :param cache_fn: filename of cache file """ self.trg_shift = trg_shift self.block_size = block_size self.sr = sr self.allow_diff_shapes = allow_diff_shapes self.padded = padded self.random_shift = random_shift self.window = window self.samples_epoch = samples_epoch self.signals = cached(cache_fn, self.load_files, (filelist,), refresh_cache=refresh_cache) def __getitem__(self, index): rand_inst = np.random.randint(len(self.signals)) if self.random_shift > 0: shift = np.random.randint(-self.random_shift, self.random_shift) else: shift = self.trg_shift rand_pos = np.random.randint(abs(shift), len(self.signals[rand_inst]) - abs(shift) - self.block_size) w = get_window(self.window, self.block_size) x = self.signals[rand_inst][rand_pos:rand_pos+self.block_size] y = self.signals[rand_inst][rand_pos+shift: rand_pos+shift+self.block_size, :] x = torch.FloatTensor(x.squeeze() * w) y = torch.FloatTensor(y.squeeze() * w) x = self.standardize(x) y = self.standardize(y) return x, y, -1, -1, -1 def standardize(self, signal): ngram = signal - signal.mean() std = ngram.std() if std > 1e-6: ngram = ngram / std else: # prevent empty input ngram = ngram + 1e-8 return ngram def __len__(self): return self.samples_epoch def load_files(self, filelist): data_all = [] for file in filelist: file = file.strip('\n') print(f"loading file {file}") signal = librosa.load(file)[0][:, None] data_all.append(signal) if len(data_all) == 0: LOGGER.warning("No data added to Signal Dataset!") return data_all
[ "complex_auto.util.cached", "numpy.concatenate", "scipy.signal.get_window", "torch.FloatTensor", "torchvision.transforms.ToPILImage", "torchvision.transforms.ToTensor", "complex_auto.util.to_numpy", "numpy.random.randint", "librosa.load", "numpy.random.choice", "numpy.random.rand", "torchvision.transforms.CenterCrop", "logging.getLogger", "torchvision.transforms.Resize" ]
[((541, 568), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (558, 568), False, 'import logging\n'), ((7686, 7718), 'numpy.random.randint', 'np.random.randint', (['(0)', 'count_data'], {}), '(0, count_data)\n', (7703, 7718), True, 'import numpy as np\n'), ((7784, 7856), 'numpy.random.randint', 'np.random.randint', (['self.max_x', '(len_data - self.length_ngram - self.max_x)'], {}), '(self.max_x, len_data - self.length_ngram - self.max_x)\n', (7801, 7856), True, 'import numpy as np\n'), ((8058, 8090), 'numpy.random.randint', 'np.random.randint', (['(0)', 'count_data'], {}), '(0, count_data)\n', (8075, 8090), True, 'import numpy as np\n'), ((11906, 11981), 'complex_auto.util.cached', 'cached', (['cache_fn', 'self.load_files', '(filelist,)'], {'refresh_cache': 'refresh_cache'}), '(cache_fn, self.load_files, (filelist,), refresh_cache=refresh_cache)\n', (11912, 11981), False, 'from complex_auto.util import to_numpy, cached\n'), ((12463, 12503), 'scipy.signal.get_window', 'get_window', (['self.window', 'self.block_size'], {}), '(self.window, self.block_size)\n', (12473, 12503), False, 'from scipy.signal import get_window\n'), ((3513, 3536), 'numpy.random.randint', 'np.random.randint', (['(0)', '(3)'], {}), '(0, 3)\n', (3530, 3536), True, 'import numpy as np\n'), ((3575, 3607), 'numpy.random.choice', 'np.random.choice', (['self.transform'], {}), '(self.transform)\n', (3591, 3607), True, 'import numpy as np\n'), ((5781, 5796), 'complex_auto.util.to_numpy', 'to_numpy', (['ngram'], {}), '(ngram)\n', (5789, 5796), False, 'from complex_auto.util import to_numpy, cached\n'), ((5823, 5844), 'complex_auto.util.to_numpy', 'to_numpy', (['ngram_trans'], {}), '(ngram_trans)\n', (5831, 5844), False, 'from complex_auto.util import to_numpy, cached\n'), ((5876, 5922), 'numpy.concatenate', 'np.concatenate', (['(ngram[:, 0:1], ngram)'], {'axis': '(1)'}), '((ngram[:, 0:1], ngram), axis=1)\n', (5890, 5922), True, 'import numpy as np\n'), ((6037, 6095), 'numpy.concatenate', 'np.concatenate', (['(ngram_trans[:, 0:1], ngram_trans)'], {'axis': '(1)'}), '((ngram_trans[:, 0:1], ngram_trans), axis=1)\n', (6051, 6095), True, 'import numpy as np\n'), ((8206, 8291), 'numpy.random.randint', 'np.random.randint', (['(2 * self.max_x)', '(len_data - self.length_ngram - 2 * self.max_x)'], {}), '(2 * self.max_x, len_data - self.length_ngram - 2 * self.max_x\n )\n', (8223, 8291), True, 'import numpy as np\n'), ((9034, 9057), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (9051, 9057), True, 'import numpy as np\n'), ((12159, 12215), 'numpy.random.randint', 'np.random.randint', (['(-self.random_shift)', 'self.random_shift'], {}), '(-self.random_shift, self.random_shift)\n', (12176, 12215), True, 'import numpy as np\n'), ((923, 960), 'torch.FloatTensor', 'torch.FloatTensor', (['self.data_x[index]'], {}), '(self.data_x[index])\n', (940, 960), False, 'import torch\n'), ((992, 1029), 'torch.FloatTensor', 'torch.FloatTensor', (['self.data_y[index]'], {}), '(self.data_y[index])\n', (1009, 1029), False, 'import torch\n'), ((3908, 3928), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (3925, 3928), True, 'import numpy as np\n'), ((5007, 5049), 'numpy.random.randint', 'np.random.randint', (['(-self.max_x)', 'self.max_x'], {}), '(-self.max_x, self.max_x)\n', (5024, 5049), True, 'import numpy as np\n'), ((5349, 5391), 'numpy.random.randint', 'np.random.randint', (['(-self.max_y)', 'self.max_y'], {}), '(-self.max_y, self.max_y)\n', (5366, 5391), True, 'import numpy as np\n'), ((6516, 6540), 'torch.FloatTensor', 'torch.FloatTensor', (['ngram'], {}), '(ngram)\n', (6533, 6540), False, 'import torch\n'), ((6572, 6602), 'torch.FloatTensor', 'torch.FloatTensor', (['ngram_trans'], {}), '(ngram_trans)\n', (6589, 6602), False, 'import torch\n'), ((8735, 8747), 'torchvision.transforms.ToPILImage', 'ToPILImage', ([], {}), '()\n', (8745, 8747), False, 'from torchvision.transforms import Resize, ToPILImage, ToTensor, Compose, CenterCrop\n'), ((8761, 8830), 'torchvision.transforms.Resize', 'Resize', (['(new_size_t_y, new_size_t_x)'], {'interpolation': 'PIL.Image.NEAREST'}), '((new_size_t_y, new_size_t_x), interpolation=PIL.Image.NEAREST)\n', (8767, 8830), False, 'from torchvision.transforms import Resize, ToPILImage, ToTensor, Compose, CenterCrop\n'), ((8863, 8889), 'torchvision.transforms.CenterCrop', 'CenterCrop', (['(size0, size1)'], {}), '((size0, size1))\n', (8873, 8889), False, 'from torchvision.transforms import Resize, ToPILImage, ToTensor, Compose, CenterCrop\n'), ((8903, 8913), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (8911, 8913), False, 'from torchvision.transforms import Resize, ToPILImage, ToTensor, Compose, CenterCrop\n'), ((9309, 9333), 'torch.FloatTensor', 'torch.FloatTensor', (['ngram'], {}), '(ngram)\n', (9326, 9333), False, 'import torch\n'), ((5568, 5584), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (5582, 5584), True, 'import numpy as np\n'), ((8961, 8985), 'torch.FloatTensor', 'torch.FloatTensor', (['ngram'], {}), '(ngram)\n', (8978, 8985), False, 'import torch\n'), ((13382, 13400), 'librosa.load', 'librosa.load', (['file'], {}), '(file)\n', (13394, 13400), False, 'import librosa\n')]
""" Implementation using CuPy acceleration. .. moduleauthor:: <NAME> <<EMAIL>> """ import numpy as np from time import time import cupy as cp from cupyx.scipy import fft as cufft def powerspectrum(*u, average=True, diagnostics=False, kmin=None, kmax=None, npts=None, compute_fft=True, compute_sqr=True, double=True, bench=False, **kwargs): """ See the documentation for the :ref:`CPU version<powerspectrum>`. Parameters ---------- u : `np.ndarray` Scalar or vector field. If vector data, pass arguments as ``u1, u2, ..., un`` where ``ui`` is the ith vector component. Each ``ui`` can be 1D, 2D, or 3D, and all must have the same ``ui.shape`` and ``ui.dtype``. average : `bool`, optional If ``True``, average over values in a given bin and multiply by the bin volume. If ``False``, compute the sum. diagnostics : `bool`, optional Return the standard deviation and number of points in a particular radial bin. kmin : `int` or `float`, optional Minimum wavenumber in power spectrum bins. If ``None``, ``kmin = 1``. kmax : `int` or `float`, optional Maximum wavenumber in power spectrum bins. If ``None``, ``kmax = max(u.shape)//2``. npts : `int`, optional Number of modes between ``kmin`` and ``kmax``, inclusive. If ``None``, ``npts = kmax-kmin+1``. compute_fft : `bool`, optional If ``False``, do not take the FFT of the input data. FFTs should not be passed with the zero-frequency component in the center. compute_sqr : `bool`, optional If ``False``, sum the real part of the FFT. This can be useful for purely real FFTs, where the sign of the FFT is useful information. If ``True``, take the square as usual. double : `bool`, optional If ``False``, calculate FFTs in single precision. Useful for saving memory. bench : `bool`, optional Print message for time of calculation. kwargs Additional keyword arguments passed to ``cupyx.scipy.fft.fftn`` or ``cupyx.scipy.fft.rfftn``. Returns ------- spectrum : `np.ndarray`, shape `(npts,)` Radially averaged power spectrum :math:`P(k)`. kn : `np.ndarray`, shape `(npts,)` Left edges of radial bins :math:`k`. counts : `np.ndarray`, shape `(npts,)`, optional Number of points :math:`N_k` in each bin. vol : `np.ndarray`, shape `(npts,)`, optional Volume :math:`V_k` of each bin. stdev : `np.ndarray`, shape `(npts,)`, optional Standard deviation multiplied with :math:`V_k` in each bin. """ if bench: t0 = time() shape = u[0].shape ndim = u[0].ndim ncomp = len(u) N = max(u[0].shape) if np.issubdtype(u[0].dtype, np.floating): real = True dtype = cp.float64 if double else cp.float32 else: real = False dtype = cp.complex128 if double else cp.complex64 if ndim not in [1, 2, 3]: raise ValueError("Dimension of image must be 1, 2, or 3.") # Get memory pools mempool = cp.get_default_memory_pool() pinned_mempool = cp.get_default_pinned_memory_pool() # Compute pqower spectral density with memory efficiency density = None comp = cp.empty(shape, dtype=dtype) for i in range(ncomp): temp = cp.asarray(u[i], dtype=dtype) comp[...] = temp del temp if compute_fft: fft = _cufftn(comp, **kwargs) else: fft = comp if density is None: fftshape = fft.shape density = cp.zeros(fft.shape) if compute_sqr: density[...] += _mod_squared(fft) else: density[...] += cp.real(fft) del fft mempool.free_all_blocks() pinned_mempool.free_all_blocks() # Need to double count if using rfftn if real and compute_fft: density[...] *= 2 # Get radial coordinates kr = cp.asarray(_kmag_sampling(fftshape, real=real).astype(np.float32)) # Flatten arrays kr = kr.ravel() density = density.ravel() # Get minimum and maximum k for binning if not given if kmin is None: kmin = 1 if kmax is None: kmax = int(N/2) if npts is None: npts = kmax-kmin+1 # Generate bins kn = cp.linspace(kmin, kmax, npts, endpoint=True) # Left edges of bins dk = kn[1] - kn[0] # Radially average power spectral density if ndim == 1: fac = 2*np.pi elif ndim == 2: fac = 4*np.pi elif ndim == 3: fac = 4./3.*np.pi spectrum = cp.zeros_like(kn) stdev = cp.zeros_like(kn) vol = cp.zeros_like(kn) counts = cp.zeros(kn.shape, dtype=np.int64) for i, ki in enumerate(kn): ii = cp.where(cp.logical_and(kr >= ki, kr < ki+dk)) samples = density[ii] vk = fac*cp.pi*((ki+dk)**ndim-(ki)**ndim) if average: spectrum[i] = vk*cp.mean(samples) else: spectrum[i] = cp.sum(samples) if diagnostics: Nk = samples.size stdev[i] = vk * cp.std(samples, ddof=1) vol[i] = vk counts[i] = Nk del density, kr mempool.free_all_blocks() pinned_mempool.free_all_blocks() if bench: print(f"Time: {time() - t0:.04f} s") result = [spectrum.get(), kn.get()] if diagnostics: result.extend([counts.get(), vol.get(), stdev.get()]) return tuple(result) def _cufftn(data, overwrite_input=False, **kwargs): """ Calculate the N-dimensional fft of an image with memory efficiency """ # Get memory pools mempool = cp.get_default_memory_pool() pinned_mempool = cp.get_default_pinned_memory_pool() # Real vs. Complex data if data.dtype in [cp.float32, cp.float64]: value_type = 'R2C' fftn = cufft.rfftn elif data.dtype in [cp.complex64, cp.complex128]: value_type = 'C2C' fftn = cufft.fftn else: raise ValueError(f"{data.dtype} is unrecognized data type.") # Get plan for computing fft plan = cufft.get_fft_plan(data, value_type=value_type) # Compute fft with plan: fft = fftn(data, overwrite_x=overwrite_input, **kwargs) # Release memory del plan mempool.free_all_blocks() pinned_mempool.free_all_blocks() return fft @cp.fuse(kernel_name='mod_squared') def _mod_squared(a): return cp.real(a*cp.conj(a)) def _kmag_sampling(shape, real=True): """ Generates the |k| coordinate system. """ if real: freq = np.fft.rfftfreq s = list(shape) s[-1] = (s[-1]-1)*2 shape = s else: freq = np.fft.fftfreq ndim = len(shape) kmag = np.zeros(shape) ksqr = [] for i in range(ndim): ni = shape[i] sample = freq(ni) if i == ndim - 1 else np.fft.fftfreq(ni) if real: sample = np.abs(sample) k1d = sample * ni ksqr.append(k1d * k1d) if ndim == 1: ksqr = ksqr[0] elif ndim == 2: ksqr = np.add.outer(ksqr[0], ksqr[1]) elif ndim == 3: ksqr = np.add.outer(np.add.outer(ksqr[0], ksqr[1]), ksqr[2]) kmag = np.sqrt(ksqr) return kmag if __name__ == '__main__': import pyFC from matplotlib import pyplot as plt dim = 100 fc = pyFC.LogNormalFractalCube( ni=dim, nj=dim, nk=dim, kmin=10, mean=1, beta=-5/3) fc.gen_cube() data = fc.cube psd, kn, stdev, vol, N = powerspectrum(data, diagnostics=True) print(psd.mean()) def zero_log10(s): """ Takes logarithm of an array while retaining the zeros """ sp = np.where(s > 0., s, 1) return np.log10(sp) log_psd = zero_log10(psd) log_kn = zero_log10(kn) idxs = np.where(log_kn >= np.log10(fc.kmin)) m, b = np.polyfit(log_kn[idxs], log_psd[idxs], 1) plt.errorbar(kn, psd, label=rf'PSD, $\beta = {fc.beta}$', color='g') plt.plot(log_kn[idxs], m*log_kn[idxs]+b, label=rf'Fit, $\beta = {m}$', color='k') plt.ylabel(r"$\log{P(k)}$") plt.xlabel(r"$\log{k}$") plt.legend(loc='upper right') plt.show()
[ "numpy.abs", "cupy.empty", "cupy.zeros_like", "numpy.polyfit", "cupy.get_default_memory_pool", "numpy.add.outer", "cupy.fuse", "cupy.std", "numpy.fft.fftfreq", "pyFC.LogNormalFractalCube", "numpy.log10", "matplotlib.pyplot.errorbar", "matplotlib.pyplot.show", "cupy.zeros", "cupy.real", "matplotlib.pyplot.legend", "cupy.conj", "cupy.get_default_pinned_memory_pool", "cupy.mean", "matplotlib.pyplot.ylabel", "numpy.issubdtype", "cupyx.scipy.fft.get_fft_plan", "matplotlib.pyplot.plot", "cupy.asarray", "numpy.zeros", "cupy.sum", "time.time", "numpy.where", "cupy.linspace", "cupy.logical_and", "matplotlib.pyplot.xlabel", "numpy.sqrt" ]
[((6522, 6556), 'cupy.fuse', 'cp.fuse', ([], {'kernel_name': '"""mod_squared"""'}), "(kernel_name='mod_squared')\n", (6529, 6556), True, 'import cupy as cp\n'), ((2898, 2936), 'numpy.issubdtype', 'np.issubdtype', (['u[0].dtype', 'np.floating'], {}), '(u[0].dtype, np.floating)\n', (2911, 2936), True, 'import numpy as np\n'), ((3236, 3264), 'cupy.get_default_memory_pool', 'cp.get_default_memory_pool', ([], {}), '()\n', (3262, 3264), True, 'import cupy as cp\n'), ((3286, 3321), 'cupy.get_default_pinned_memory_pool', 'cp.get_default_pinned_memory_pool', ([], {}), '()\n', (3319, 3321), True, 'import cupy as cp\n'), ((3414, 3442), 'cupy.empty', 'cp.empty', (['shape'], {'dtype': 'dtype'}), '(shape, dtype=dtype)\n', (3422, 3442), True, 'import cupy as cp\n'), ((4474, 4518), 'cupy.linspace', 'cp.linspace', (['kmin', 'kmax', 'npts'], {'endpoint': '(True)'}), '(kmin, kmax, npts, endpoint=True)\n', (4485, 4518), True, 'import cupy as cp\n'), ((4754, 4771), 'cupy.zeros_like', 'cp.zeros_like', (['kn'], {}), '(kn)\n', (4767, 4771), True, 'import cupy as cp\n'), ((4784, 4801), 'cupy.zeros_like', 'cp.zeros_like', (['kn'], {}), '(kn)\n', (4797, 4801), True, 'import cupy as cp\n'), ((4812, 4829), 'cupy.zeros_like', 'cp.zeros_like', (['kn'], {}), '(kn)\n', (4825, 4829), True, 'import cupy as cp\n'), ((4843, 4877), 'cupy.zeros', 'cp.zeros', (['kn.shape'], {'dtype': 'np.int64'}), '(kn.shape, dtype=np.int64)\n', (4851, 4877), True, 'import cupy as cp\n'), ((5808, 5836), 'cupy.get_default_memory_pool', 'cp.get_default_memory_pool', ([], {}), '()\n', (5834, 5836), True, 'import cupy as cp\n'), ((5858, 5893), 'cupy.get_default_pinned_memory_pool', 'cp.get_default_pinned_memory_pool', ([], {}), '()\n', (5891, 5893), True, 'import cupy as cp\n'), ((6255, 6302), 'cupyx.scipy.fft.get_fft_plan', 'cufft.get_fft_plan', (['data'], {'value_type': 'value_type'}), '(data, value_type=value_type)\n', (6273, 6302), True, 'from cupyx.scipy import fft as cufft\n'), ((6895, 6910), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (6903, 6910), True, 'import numpy as np\n'), ((7359, 7372), 'numpy.sqrt', 'np.sqrt', (['ksqr'], {}), '(ksqr)\n', (7366, 7372), True, 'import numpy as np\n'), ((7500, 7579), 'pyFC.LogNormalFractalCube', 'pyFC.LogNormalFractalCube', ([], {'ni': 'dim', 'nj': 'dim', 'nk': 'dim', 'kmin': '(10)', 'mean': '(1)', 'beta': '(-5 / 3)'}), '(ni=dim, nj=dim, nk=dim, kmin=10, mean=1, beta=-5 / 3)\n', (7525, 7579), False, 'import pyFC\n'), ((8008, 8050), 'numpy.polyfit', 'np.polyfit', (['log_kn[idxs]', 'log_psd[idxs]', '(1)'], {}), '(log_kn[idxs], log_psd[idxs], 1)\n', (8018, 8050), True, 'import numpy as np\n'), ((8056, 8124), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['kn', 'psd'], {'label': 'f"""PSD, $\\\\beta = {fc.beta}$"""', 'color': '"""g"""'}), "(kn, psd, label=f'PSD, $\\\\beta = {fc.beta}$', color='g')\n", (8068, 8124), True, 'from matplotlib import pyplot as plt\n'), ((8146, 8235), 'matplotlib.pyplot.plot', 'plt.plot', (['log_kn[idxs]', '(m * log_kn[idxs] + b)'], {'label': 'f"""Fit, $\\\\beta = {m}$"""', 'color': '"""k"""'}), "(log_kn[idxs], m * log_kn[idxs] + b, label=f'Fit, $\\\\beta = {m}$',\n color='k')\n", (8154, 8235), True, 'from matplotlib import pyplot as plt\n'), ((8245, 8272), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\log{P(k)}$"""'], {}), "('$\\\\log{P(k)}$')\n", (8255, 8272), True, 'from matplotlib import pyplot as plt\n'), ((8277, 8301), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\log{k}$"""'], {}), "('$\\\\log{k}$')\n", (8287, 8301), True, 'from matplotlib import pyplot as plt\n'), ((8306, 8335), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (8316, 8335), True, 'from matplotlib import pyplot as plt\n'), ((8341, 8351), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8349, 8351), True, 'from matplotlib import pyplot as plt\n'), ((2795, 2801), 'time.time', 'time', ([], {}), '()\n', (2799, 2801), False, 'from time import time\n'), ((3485, 3514), 'cupy.asarray', 'cp.asarray', (['u[i]'], {'dtype': 'dtype'}), '(u[i], dtype=dtype)\n', (3495, 3514), True, 'import cupy as cp\n'), ((7838, 7861), 'numpy.where', 'np.where', (['(s > 0.0)', 's', '(1)'], {}), '(s > 0.0, s, 1)\n', (7846, 7861), True, 'import numpy as np\n'), ((7876, 7888), 'numpy.log10', 'np.log10', (['sp'], {}), '(sp)\n', (7884, 7888), True, 'import numpy as np\n'), ((3743, 3762), 'cupy.zeros', 'cp.zeros', (['fft.shape'], {}), '(fft.shape)\n', (3751, 3762), True, 'import cupy as cp\n'), ((3875, 3887), 'cupy.real', 'cp.real', (['fft'], {}), '(fft)\n', (3882, 3887), True, 'import cupy as cp\n'), ((4932, 4970), 'cupy.logical_and', 'cp.logical_and', (['(kr >= ki)', '(kr < ki + dk)'], {}), '(kr >= ki, kr < ki + dk)\n', (4946, 4970), True, 'import cupy as cp\n'), ((5156, 5171), 'cupy.sum', 'cp.sum', (['samples'], {}), '(samples)\n', (5162, 5171), True, 'import cupy as cp\n'), ((6599, 6609), 'cupy.conj', 'cp.conj', (['a'], {}), '(a)\n', (6606, 6609), True, 'import cupy as cp\n'), ((7021, 7039), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['ni'], {}), '(ni)\n', (7035, 7039), True, 'import numpy as np\n'), ((7078, 7092), 'numpy.abs', 'np.abs', (['sample'], {}), '(sample)\n', (7084, 7092), True, 'import numpy as np\n'), ((7227, 7257), 'numpy.add.outer', 'np.add.outer', (['ksqr[0]', 'ksqr[1]'], {}), '(ksqr[0], ksqr[1])\n', (7239, 7257), True, 'import numpy as np\n'), ((7978, 7995), 'numpy.log10', 'np.log10', (['fc.kmin'], {}), '(fc.kmin)\n', (7986, 7995), True, 'import numpy as np\n'), ((5099, 5115), 'cupy.mean', 'cp.mean', (['samples'], {}), '(samples)\n', (5106, 5115), True, 'import cupy as cp\n'), ((5254, 5277), 'cupy.std', 'cp.std', (['samples'], {'ddof': '(1)'}), '(samples, ddof=1)\n', (5260, 5277), True, 'import cupy as cp\n'), ((7306, 7336), 'numpy.add.outer', 'np.add.outer', (['ksqr[0]', 'ksqr[1]'], {}), '(ksqr[0], ksqr[1])\n', (7318, 7336), True, 'import numpy as np\n'), ((5455, 5461), 'time.time', 'time', ([], {}), '()\n', (5459, 5461), False, 'from time import time\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import torch from itertools import permutations def loss_calc(est, ref, loss_type): """ time-domain loss: sisdr """ # time domain (wav input) if loss_type == "sisdr": loss = batch_SDR_torch(est, ref) if loss_type == "mse": loss = batch_mse_torch(est, ref) if loss_type == "log_mse": loss = batch_log_mse_torch(est, ref) return loss def calc_sdr_torch(estimation, origin, mask=None): """ batch-wise SDR caculation for one audio file on pytorch Variables. estimation: (batch, nsample) origin: (batch, nsample) mask: optional, (batch, nsample), binary """ if mask is not None: origin = origin * mask estimation = estimation * mask origin_power = torch.pow(origin, 2).sum(1, keepdim=True) + 1e-8 # (batch, 1) scale = torch.sum(origin*estimation, 1, keepdim=True) / origin_power # (batch, 1) est_true = scale * origin # (batch, nsample) est_res = estimation - est_true # (batch, nsample) true_power = torch.pow(est_true, 2).sum(1) res_power = torch.pow(est_res, 2).sum(1) return 10*torch.log10(true_power) - 10*torch.log10(res_power) # (batch, 1) def batch_SDR_torch(estimation, origin, mask=None): """ batch-wise SDR caculation for multiple audio files. estimation: (batch, nsource, nsample) origin: (batch, nsource, nsample) mask: optional, (batch, nsample), binary """ batch_size_est, nsource_est, nsample_est = estimation.size() batch_size_ori, nsource_ori, nsample_ori = origin.size() assert batch_size_est == batch_size_ori, "Estimation and original sources should have same shape." assert nsource_est == nsource_ori, "Estimation and original sources should have same shape." assert nsample_est == nsample_ori, "Estimation and original sources should have same shape." assert nsource_est < nsample_est, "Axis 1 should be the number of sources, and axis 2 should be the signal." batch_size = batch_size_est nsource = nsource_est nsample = nsample_est # zero mean signals estimation = estimation - torch.mean(estimation, 2, keepdim=True).expand_as(estimation) origin = origin - torch.mean(origin, 2, keepdim=True).expand_as(estimation) # possible permutations perm = list(set(permutations(np.arange(nsource)))) # pair-wise SDR SDR = torch.zeros((batch_size, nsource, nsource)).type(estimation.type()) for i in range(nsource): for j in range(nsource): SDR[:,i,j] = calc_sdr_torch(estimation[:,i], origin[:,j], mask) # choose the best permutation SDR_max = [] SDR_perm = [] for permute in perm: sdr = [] for idx in range(len(permute)): sdr.append(SDR[:,idx,permute[idx]].view(batch_size,-1)) sdr = torch.sum(torch.cat(sdr, 1), 1) SDR_perm.append(sdr.view(batch_size, 1)) SDR_perm = torch.cat(SDR_perm, 1) SDR_max, _ = torch.max(SDR_perm, dim=1) return - SDR_max / nsource # def calc_mse_torch(estimation, origin): # return torch.mean(torch.pow(estimation-origin,2),1).mean(1) def batch_mse_torch(estimation, origin): """ batch-wise mse caculation for multiple audio files. estimation: (batch, nsource, frames, freq_bins) origin: (batch, nsource, frames, freq_bins) nsource = 2 """ mse1 = torch.sqrt(torch.pow(estimation - origin, 2).mean([3])).mean([1,2]) mse2 = torch.sqrt(torch.pow(estimation - origin.flip([1]), 2).mean([3])).mean([1,2]) return torch.stack((mse1, mse2),1).min(1)[0] def batch_log_mse_torch(estimation, origin): """ batch-wise mse caculation for multiple audio files. estimation: (batch, nsource, frames, freq_bins) origin: (batch, nsource, frames, freq_bins) nsource = 2 """ # eps = 1e-20 # mse1 = torch.log10(torch.sqrt(torch.pow(estimation - origin, 2).mean([3])).mean([1,2])+eps) # mse2 = torch.log10(torch.sqrt(torch.pow(estimation - origin.flip([1]), 2).mean([3])).mean([1,2])+eps) mse1 = torch.log10(torch.pow(estimation - origin, 2).mean([3])).mean([1,2]) mse2 = torch.log10(torch.pow(estimation - origin.flip([1]), 2).mean([3])).mean([1,2]) return torch.stack((mse1, mse2),1).min(1)[0] if __name__ == "__main__": est = torch.rand(10, 2, 32, 1000) ref = torch.rand(10, 2, 32, 1000) out = loss_calc(est, ref, "mse") print(out.shape) print(out)
[ "torch.mean", "torch.stack", "torch.cat", "torch.log10", "torch.pow", "torch.max", "numpy.arange", "torch.rand", "torch.zeros", "torch.sum" ]
[((3031, 3053), 'torch.cat', 'torch.cat', (['SDR_perm', '(1)'], {}), '(SDR_perm, 1)\n', (3040, 3053), False, 'import torch\n'), ((3071, 3097), 'torch.max', 'torch.max', (['SDR_perm'], {'dim': '(1)'}), '(SDR_perm, dim=1)\n', (3080, 3097), False, 'import torch\n'), ((4405, 4432), 'torch.rand', 'torch.rand', (['(10)', '(2)', '(32)', '(1000)'], {}), '(10, 2, 32, 1000)\n', (4415, 4432), False, 'import torch\n'), ((4443, 4470), 'torch.rand', 'torch.rand', (['(10)', '(2)', '(32)', '(1000)'], {}), '(10, 2, 32, 1000)\n', (4453, 4470), False, 'import torch\n'), ((908, 955), 'torch.sum', 'torch.sum', (['(origin * estimation)', '(1)'], {'keepdim': '(True)'}), '(origin * estimation, 1, keepdim=True)\n', (917, 955), False, 'import torch\n'), ((1116, 1138), 'torch.pow', 'torch.pow', (['est_true', '(2)'], {}), '(est_true, 2)\n', (1125, 1138), False, 'import torch\n'), ((1162, 1183), 'torch.pow', 'torch.pow', (['est_res', '(2)'], {}), '(est_res, 2)\n', (1171, 1183), False, 'import torch\n'), ((1210, 1233), 'torch.log10', 'torch.log10', (['true_power'], {}), '(true_power)\n', (1221, 1233), False, 'import torch\n'), ((1239, 1261), 'torch.log10', 'torch.log10', (['res_power'], {}), '(res_power)\n', (1250, 1261), False, 'import torch\n'), ((2491, 2534), 'torch.zeros', 'torch.zeros', (['(batch_size, nsource, nsource)'], {}), '((batch_size, nsource, nsource))\n', (2502, 2534), False, 'import torch\n'), ((2945, 2962), 'torch.cat', 'torch.cat', (['sdr', '(1)'], {}), '(sdr, 1)\n', (2954, 2962), False, 'import torch\n'), ((828, 848), 'torch.pow', 'torch.pow', (['origin', '(2)'], {}), '(origin, 2)\n', (837, 848), False, 'import torch\n'), ((2226, 2265), 'torch.mean', 'torch.mean', (['estimation', '(2)'], {'keepdim': '(True)'}), '(estimation, 2, keepdim=True)\n', (2236, 2265), False, 'import torch\n'), ((2310, 2345), 'torch.mean', 'torch.mean', (['origin', '(2)'], {'keepdim': '(True)'}), '(origin, 2, keepdim=True)\n', (2320, 2345), False, 'import torch\n'), ((2434, 2452), 'numpy.arange', 'np.arange', (['nsource'], {}), '(nsource)\n', (2443, 2452), True, 'import numpy as np\n'), ((3652, 3680), 'torch.stack', 'torch.stack', (['(mse1, mse2)', '(1)'], {}), '((mse1, mse2), 1)\n', (3663, 3680), False, 'import torch\n'), ((4329, 4357), 'torch.stack', 'torch.stack', (['(mse1, mse2)', '(1)'], {}), '((mse1, mse2), 1)\n', (4340, 4357), False, 'import torch\n'), ((3495, 3528), 'torch.pow', 'torch.pow', (['(estimation - origin)', '(2)'], {}), '(estimation - origin, 2)\n', (3504, 3528), False, 'import torch\n'), ((4171, 4204), 'torch.pow', 'torch.pow', (['(estimation - origin)', '(2)'], {}), '(estimation - origin, 2)\n', (4180, 4204), False, 'import torch\n')]
from __future__ import absolute_import, division import numpy as np from numpy.testing import assert_array_almost_equal, assert_allclose from pytest import raises from fatiando.seismic import conv def test_impulse_response(): """ conv.convolutional_model raises the source wavelet as result when the model is a centred spike, considering the dimension of the model equal to the source wavelet """ w = conv.rickerwave(30., 2.e-3) rc_test = np.zeros((w.shape[0], 20)) rc_test[w.shape[0]//2, :] = 1. spike = conv.convolutional_model(rc_test, 30., conv.rickerwave, dt=2.e-3) for j in range(0, rc_test.shape[1]): assert_array_almost_equal(spike[:, j], w, 9) def test_rc_shorter_than_wavelet(): """ When the reflectivity series is shorter than the wavelength, the spike response is observed like in the opposite case. The difference is that the the ricker wavelet (or other symmetric wavelet) is shorter in the result. """ w = conv.rickerwave(30., 2.e-3) rc_test = np.zeros((21, 20)) rc_test[rc_test.shape[0]//2, :] = 1 spike = conv.convolutional_model(rc_test, 30., conv.rickerwave, dt=2.e-3) for j in range(0, rc_test.shape[1]): wmin = (w.shape[0] - rc_test.shape[0])//2 wmax = -(w.shape[0] - rc_test.shape[0])//2 assert_array_almost_equal(spike[:, j], w[wmin:wmax], 9) def test_reflectivity_wrong_dimensions(): """ Velocity and density are provided as matrix or vector to reflectivity calculation, so they must have the same dimension. """ vel = np.ones((10, 10)) dens = np.ones((11, 11)) raises(AssertionError, conv.reflectivity, vel, dens) vel = np.ones((10)) dens = np.ones((11)) raises(AssertionError, conv.reflectivity, vel, dens) def test_depth_2_time_wrong_dimensions(): """ Velocity and property are provided as matrix to depth to time cconversion, so they must have the same dimension. """ vel = np.ones((10, 10)) dens = np.ones((11, 11)) dt = 2.e-3 dz = 1. raises(AssertionError, conv.depth_2_time, vel, dens, dt, dz) def test_ricker(): """ conv.rickerwave inputs must satisfy the condition for sampling and stability, otherwise this implies in a error. """ f = 50. dt = 2.e-3 raises(AssertionError, conv.rickerwave, f, dt)
[ "numpy.zeros", "numpy.ones", "fatiando.seismic.conv.rickerwave", "pytest.raises", "fatiando.seismic.conv.convolutional_model", "numpy.testing.assert_array_almost_equal" ]
[((428, 456), 'fatiando.seismic.conv.rickerwave', 'conv.rickerwave', (['(30.0)', '(0.002)'], {}), '(30.0, 0.002)\n', (443, 456), False, 'from fatiando.seismic import conv\n'), ((470, 496), 'numpy.zeros', 'np.zeros', (['(w.shape[0], 20)'], {}), '((w.shape[0], 20))\n', (478, 496), True, 'import numpy as np\n'), ((544, 610), 'fatiando.seismic.conv.convolutional_model', 'conv.convolutional_model', (['rc_test', '(30.0)', 'conv.rickerwave'], {'dt': '(0.002)'}), '(rc_test, 30.0, conv.rickerwave, dt=0.002)\n', (568, 610), False, 'from fatiando.seismic import conv\n'), ((998, 1026), 'fatiando.seismic.conv.rickerwave', 'conv.rickerwave', (['(30.0)', '(0.002)'], {}), '(30.0, 0.002)\n', (1013, 1026), False, 'from fatiando.seismic import conv\n'), ((1040, 1058), 'numpy.zeros', 'np.zeros', (['(21, 20)'], {}), '((21, 20))\n', (1048, 1058), True, 'import numpy as np\n'), ((1111, 1177), 'fatiando.seismic.conv.convolutional_model', 'conv.convolutional_model', (['rc_test', '(30.0)', 'conv.rickerwave'], {'dt': '(0.002)'}), '(rc_test, 30.0, conv.rickerwave, dt=0.002)\n', (1135, 1177), False, 'from fatiando.seismic import conv\n'), ((1582, 1599), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (1589, 1599), True, 'import numpy as np\n'), ((1611, 1628), 'numpy.ones', 'np.ones', (['(11, 11)'], {}), '((11, 11))\n', (1618, 1628), True, 'import numpy as np\n'), ((1633, 1685), 'pytest.raises', 'raises', (['AssertionError', 'conv.reflectivity', 'vel', 'dens'], {}), '(AssertionError, conv.reflectivity, vel, dens)\n', (1639, 1685), False, 'from pytest import raises\n'), ((1696, 1707), 'numpy.ones', 'np.ones', (['(10)'], {}), '(10)\n', (1703, 1707), True, 'import numpy as np\n'), ((1721, 1732), 'numpy.ones', 'np.ones', (['(11)'], {}), '(11)\n', (1728, 1732), True, 'import numpy as np\n'), ((1739, 1791), 'pytest.raises', 'raises', (['AssertionError', 'conv.reflectivity', 'vel', 'dens'], {}), '(AssertionError, conv.reflectivity, vel, dens)\n', (1745, 1791), False, 'from pytest import raises\n'), ((1983, 2000), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (1990, 2000), True, 'import numpy as np\n'), ((2012, 2029), 'numpy.ones', 'np.ones', (['(11, 11)'], {}), '((11, 11))\n', (2019, 2029), True, 'import numpy as np\n'), ((2061, 2121), 'pytest.raises', 'raises', (['AssertionError', 'conv.depth_2_time', 'vel', 'dens', 'dt', 'dz'], {}), '(AssertionError, conv.depth_2_time, vel, dens, dt, dz)\n', (2067, 2121), False, 'from pytest import raises\n'), ((2311, 2357), 'pytest.raises', 'raises', (['AssertionError', 'conv.rickerwave', 'f', 'dt'], {}), '(AssertionError, conv.rickerwave, f, dt)\n', (2317, 2357), False, 'from pytest import raises\n'), ((659, 703), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['spike[:, j]', 'w', '(9)'], {}), '(spike[:, j], w, 9)\n', (684, 703), False, 'from numpy.testing import assert_array_almost_equal, assert_allclose\n'), ((1327, 1382), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['spike[:, j]', 'w[wmin:wmax]', '(9)'], {}), '(spike[:, j], w[wmin:wmax], 9)\n', (1352, 1382), False, 'from numpy.testing import assert_array_almost_equal, assert_allclose\n')]
import numpy as np def L2Loss(y_predicted, y_ground_truth, reduction="None"): """returns l2 loss between two arrays :param y_predicted: array of predicted values :type y_predicted: ndarray :param y_ground_truth: array of ground truth values :type y_ground_truth: ndarray :param reduction: reduction mode, defaults to "mean" :type reduction: str, optional :return: l2-loss :rtype: scalar if reduction is sum or mean, else ndarray """ # Calculate the difference array difference = y_predicted - y_ground_truth # Raise every difference value to the power of 2 squared_difference = np.multiply(difference, difference) # L2 distance is the reduced form of the squared difference array if reduction == "sum": # Reduction can be done by summing up all the values in the difference array (this is known as "L2-Loss") l2_distance = np.sum(squared_difference) return l2_distance elif reduction == "mean": # Reduction can also be done by taking the mean (this is known as "Mean Squared Error") mean_squared_error = np.mean(squared_difference) return mean_squared_error elif reduction == "None": return squared_difference else: print('ValueError: reduction should be "sum" / "mean" / "None"') def main(): print("Initializing predicted and ground truth arrays:\n") print('(NOTE: Enter the values in a space-separated format. Ex: "5.36 1.02 2.03")') y_predicted = [ float(item) for item in input("Enter the predicted values: ").split() ] y_ground_truth = [ float(item) for item in input("Enter the corresponding ground truth values: ").split() ] assert len(y_predicted) == len( y_ground_truth ), "Number of predicted values {} and ground truth {} values should match".format( len(y_predicted), len(y_ground_truth) ) y_predicted = np.array(y_predicted) y_ground_truth = np.array(y_ground_truth) reduction = str(input('Enter the reduction mode: "sum" / "mean" / "None": ')) loss = L2Loss(y_predicted, y_ground_truth, reduction=reduction) print("L2-Loss with {}-reduction: {}".format(reduction, loss)) if __name__ == "__main__": main()
[ "numpy.array", "numpy.mean", "numpy.multiply", "numpy.sum" ]
[((637, 672), 'numpy.multiply', 'np.multiply', (['difference', 'difference'], {}), '(difference, difference)\n', (648, 672), True, 'import numpy as np\n'), ((1941, 1962), 'numpy.array', 'np.array', (['y_predicted'], {}), '(y_predicted)\n', (1949, 1962), True, 'import numpy as np\n'), ((1984, 2008), 'numpy.array', 'np.array', (['y_ground_truth'], {}), '(y_ground_truth)\n', (1992, 2008), True, 'import numpy as np\n'), ((906, 932), 'numpy.sum', 'np.sum', (['squared_difference'], {}), '(squared_difference)\n', (912, 932), True, 'import numpy as np\n'), ((1115, 1142), 'numpy.mean', 'np.mean', (['squared_difference'], {}), '(squared_difference)\n', (1122, 1142), True, 'import numpy as np\n')]
# Copyright 2020-2022 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from opendr.engine.datasets import Dataset from opendr.engine.data import Image from opendr.perception.object_detection_2d.datasets.transforms import BoundingBoxListToNumpyArray from opendr.engine.constants import OPENDR_SERVER_URL from pycocotools.coco import COCO import os from urllib.request import urlretrieve import ssl import time from zipfile import ZipFile import tarfile import pickle import numpy as np import math from tqdm import tqdm import gc class Dataset_NMS(Dataset): def __init__(self, path=None, dataset_name=None, split=None, use_ssd=True, device='cuda'): super().__init__() available_dataset = ['COCO', 'PETS', 'TEST_MODULE'] self.dataset_sets = {'train': None, 'val': None, 'test': None} if dataset_name not in available_dataset: except_str = 'Unsupported dataset: ' + dataset_name + '. Currently available are:' for j in range(len(available_dataset)): except_str = except_str + ' \'' + available_dataset[j] + '\'' if j < len(available_dataset) - 1: except_str = except_str + ',' except_str = except_str + '.' raise ValueError(except_str) ssl._create_default_https_context = ssl._create_unverified_context self.dataset_name = dataset_name self.split = split # self.__prepare_dataset() self.path = os.path.join(path, dataset_name) self.src_data = [] if self.dataset_name == "PETS": self.detector = 'JPD' self.detector_type = 'default' if use_ssd: self.detector = 'SSD' self.detector_type = 'custom' self.dataset_sets['train'] = 'train' self.dataset_sets['val'] = 'val' self.dataset_sets['test'] = 'test' if self.dataset_sets[self.split] is None: raise ValueError(self.split + ' split is not available...') if not os.path.exists(os.path.join(self.path, 'images/S1/L1')): self.download( 'http://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_PETS09/S1_L1.tar.bz2', download_path=os.path.join(self.path, 'images'), file_format="tar.bz2", create_dir=True) if not os.path.exists(os.path.join(self.path, 'images/S1/L2')): self.download( 'http://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_PETS09/S1_L2.tar.bz2', download_path=os.path.join(self.path, 'images'), file_format="tar.bz2", create_dir=True) if not os.path.exists(os.path.join(self.path, 'images/S2/L1')): self.download( 'http://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_PETS09/S2_L1.tar.bz2', download_path=os.path.join(self.path, 'images'), file_format="tar.bz2", create_dir=True) if not os.path.exists(os.path.join(self.path, 'images/S2/L2')): self.download( 'http://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_PETS09/S2_L2.tar.bz2', download_path=os.path.join(self.path, 'images'), file_format="tar.bz2", create_dir=True) if not os.path.exists(os.path.join(self.path, 'images/S2/L3')): self.download( 'http://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_PETS09/S2_L3.tar.bz2', download_path=os.path.join(self.path, 'images'), file_format="tar.bz2", create_dir=True) if not os.path.exists(os.path.join(self.path, 'images/S3/Multiple_Flow')): self.download( 'http://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_PETS09/S3_MF.tar.bz2', download_path=os.path.join(self.path, 'images'), file_format="tar.bz2", create_dir=True) if not os.path.exists( os.path.join(self.path, 'annotations', 'pets_' + self.dataset_sets[self.split] + '.json')): self.download('http://datasets.d2.mpi-inf.mpg.de/hosang17cvpr/PETS_annotations_json.zip', download_path=os.path.join(self.path, 'annotations'), file_format="zip", create_dir=True) pkl_filename = os.path.join(self.path, 'data_' + self.detector + '_' + self.dataset_sets[self.split] + '_pets.pkl') if not os.path.exists(pkl_filename): ssd = None if use_ssd: from opendr.perception.object_detection_2d.ssd.ssd_learner import SingleShotDetectorLearner ssd = SingleShotDetectorLearner(device=device) ssd.download(".", mode="pretrained") ssd.load("./ssd_default_person", verbose=True) if not os.path.exists( os.path.join(self.path, 'detections', 'PETS-' + self.dataset_sets[self.split] + '_siyudpm_dets.idl')): self.download('http://datasets.d2.mpi-inf.mpg.de/hosang17cvpr/PETS_detections.zip', download_path=os.path.join(self.path, 'detections'), file_format="zip", create_dir=True) if not os.path.exists( os.path.join(self.path, 'annotations', 'PETS-' + self.dataset_sets[self.split] + '.idl')): self.download('http://datasets.d2.mpi-inf.mpg.de/hosang17cvpr/PETS_annotations.zip', download_path=os.path.join(self.path, 'annotations'), file_format="zip", create_dir=True) with open(os.path.join(self.path, 'annotations', 'PETS-' + self.dataset_sets[self.split] + '.idl')) as fp_gt: fp_dt = None if self.detector_type == 'default': fp_dt = open(os.path.join(self.path, 'detections', 'PETS-' + self.dataset_sets[self.split] + '_siyudpm_dets.idl')) print('Preparing PETS ' + self.dataset_sets[self.split] + ' set...') current_id = 0 number_samples = 1696 if self.split == 'val': current_id = 1696 number_samples = 240 elif self.split == 'test': current_id = 1936 number_samples = 436 pbarDesc = "Overall progress" pbar = tqdm(desc=pbarDesc, total=number_samples) if self.detector_type == 'default': line_dt = fp_dt.readline() line_gt = fp_gt.readline() while line_gt: remove_strings = ['PETS09-', '\"', ':', '(', ')', ',', '', ';'] data_gt = line_gt.replace(':', ' ') for j in range(len(remove_strings)): data_gt = data_gt.replace(remove_strings[j], '') data_gt = data_gt.split() filename_gt = data_gt[0][0:2] + '/' + data_gt[0][2:] if filename_gt[0:6] == 'S2/L1/': filename_gt = filename_gt.replace('img/00', 'Time_12-34/View_001/frame_') num = int(filename_gt[-8:-4]) - 1 filename_gt = filename_gt[:-8] + str(num).zfill(4) + '.jpg' if filename_gt[0:6] == 'S2/L2/': filename_gt = filename_gt.replace('img/00', 'Time_14-55/View_001/frame_') num = int(filename_gt[-8:-4]) - 1 filename_gt = filename_gt[:-8] + str(num).zfill(4) + '.jpg' if filename_gt[0:2] == 'S3': filename_gt = filename_gt.replace('_MF', 'Multiple_Flow') if self.detector_type == 'default': data_dt = line_dt.replace(':', ' ') for j in range(len(remove_strings)): data_dt = data_dt.replace(remove_strings[j], '') data_dt = data_dt.split() filename_dt = data_dt[0][0:2] + '/' + data_dt[0][2:] if filename_dt[0:6] == 'S2/L1/': filename_dt = filename_dt.replace('img/00', 'Time_12-34/View_001/frame_') num = int(filename_dt[-8:-4]) - 1 filename_dt = filename_dt[:-8] + str(num).zfill(4) + '.jpg' if filename_dt[0:6] == 'S2/L2/': filename_dt = filename_dt.replace('img/00', 'Time_14-55/View_001/frame_') num = int(filename_dt[-8:-4]) - 1 filename_dt = filename_dt[:-8] + str(num).zfill(4) + '.jpg' if filename_dt[0:2] == 'S3': filename_dt = filename_dt.replace('_MF', 'Multiple_Flow') if filename_gt != filename_dt: raise ValueError('Errors in files...') img = Image.open(os.path.join(self.path, 'images/', filename_gt)) dt_boxes = [] if self.detector_type == 'default': for i in range(1, (len(data_dt)), 5): dt_box = np.array((float(data_dt[i]), float(data_dt[i + 1]), float(data_dt[i + 2]), float(data_dt[i + 3]), 1 / (1 + math.exp(- float(data_dt[i + 4]))))) dt_boxes.append(dt_box) else: bboxes_list = ssd.infer(img, threshold=0.0, custom_nms=None, nms_thresh=0.975, nms_topk=6000, post_nms=6000) bboxes_list = BoundingBoxListToNumpyArray()(bboxes_list) bboxes_list = bboxes_list[bboxes_list[:, 4] > 0.015] bboxes_list = bboxes_list[np.argsort(bboxes_list[:, 4]), :][::-1] bboxes_list = bboxes_list[:5000, :] for b in range(len(bboxes_list)): dt_boxes.append(np.array([bboxes_list[b, 0], bboxes_list[b, 1], bboxes_list[b, 2], bboxes_list[b, 3], bboxes_list[b, 4][0]])) gt_boxes = [] for i in range(1, (len(data_gt)), 5): gt_box = np.array((float(data_gt[i]), float(data_gt[i + 1]), float(data_gt[i + 2]), float(data_gt[i + 3]))) gt_boxes.append(gt_box) self.src_data.append({ 'id': current_id, 'filename': os.path.join('images', filename_gt), 'resolution': img.opencv().shape[0:2][::-1], 'gt_boxes': [np.asarray([]), np.asarray(gt_boxes)], 'dt_boxes': [np.asarray([]), np.asarray(dt_boxes)] }) current_id = current_id + 1 pbar.update(1) if self.detector_type == 'default': line_dt = fp_dt.readline() line_gt = fp_gt.readline() pbar.close() if self.detector_type == 'default': fp_dt.close() elif self.detector == 'SSD': del ssd gc.collect() with open(pkl_filename, 'wb') as handle: pickle.dump(self.src_data, handle, protocol=pickle.DEFAULT_PROTOCOL) else: with open(pkl_filename, 'rb') as fp_pkl: self.src_data = pickle.load(fp_pkl) self.classes = ['background', 'human'] self.class_ids = [-1, 1] self.annotation_file = 'pets_' + self.dataset_sets[self.split] + '.json' elif self.dataset_name == "COCO": self.dataset_sets['train'] = 'train' self.dataset_sets['val'] = 'minival' self.dataset_sets['test'] = 'valminusminival' if self.dataset_sets[self.split] is None: raise ValueError(self.split + ' split is not available...') elif self.dataset_sets[self.split] == 'train': imgs_split = 'train2014' else: imgs_split = 'val2014' self.detector = 'FRCN' self.detector_type = 'default' ssd = None if use_ssd: self.detector = 'SSD' self.detector_type = 'custom' from opendr.perception.object_detection_2d.ssd.ssd_learner import SingleShotDetectorLearner ssd = SingleShotDetectorLearner(device=device) ssd.download(".", mode="pretrained") ssd.load("./ssd_default_person", verbose=True) if not os.path.exists(os.path.join(self.path, imgs_split)): self.download('http://images.cocodataset.org/zips/' + imgs_split + '.zip', download_path=os.path.join(self.path), file_format="zip", create_dir=True) pkl_filename = os.path.join(self.path, 'data_' + self.detector + '_' + self.dataset_sets[self.split] + '_coco.pkl') if not os.path.exists(pkl_filename): if not os.path.exists(os.path.join(self.path, 'annotations', 'instances_' + self.dataset_sets[self.split] + '2014.json')): if self.dataset_sets[self.split] == 'train': ann_url = 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip' self.download(ann_url, download_path=os.path.join(self.path), file_format="zip", create_dir=True) else: if self.dataset_sets[self.split] == 'minival': ann_url = 'https://dl.dropboxusercontent.com/s/o43o90bna78omob/' \ 'instances_minival2014.json.zip?dl=0' else: ann_url = 'https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/' \ 'instances_valminusminival2014.json.zip?dl=0' self.download(ann_url, download_path=os.path.join(self.path, 'annotations'), file_format="zip", create_dir=True) if not os.path.exists(os.path.join(self.path, 'detections', 'coco_2014_' + self.dataset_sets[self.split] + '_FRCN_train.pkl')): self.download('http://datasets.d2.mpi-inf.mpg.de/hosang17cvpr/coco_2014_FRCN.tar.gz', download_path=os.path.join(self.path, 'detections'), file_format='tar.gz', create_dir=True) with open(os.path.join(self.path, 'detections', 'coco_2014_' + self.dataset_sets[self.split] + '_FRCN_train.pkl'), 'rb') as f: dets_default = pickle.load(f, encoding='latin1') annots = COCO(annotation_file=os.path.join(self.path, 'annotations', 'instances_' + self.dataset_sets[self.split] + '2014.json')) pbarDesc = "Overall progress" pbar = tqdm(desc=pbarDesc, total=len(dets_default[1])) for i in range(len(dets_default[1])): dt_boxes = [] img_info = annots.loadImgs([dets_default[1][i]])[0] img = Image.open(os.path.join(self.path, imgs_split, img_info["file_name"])) if self.detector_type == 'default': dt_boxes = dets_default[0][1][i] elif self.detector == 'SSD': bboxes_list = ssd.infer(img, threshold=0.0, custom_nms=None, nms_thresh=0.975, nms_topk=6000, post_nms=6000) bboxes_list = BoundingBoxListToNumpyArray()(bboxes_list) if bboxes_list.shape[0] > 0: bboxes_list = bboxes_list[bboxes_list[:, 4] > 0.015] if bboxes_list.shape[0] > 0: bboxes_list = bboxes_list[np.argsort(bboxes_list[:, 4]), :][::-1] bboxes_list = bboxes_list[:5000, :] for b in range(len(bboxes_list)): dt_boxes.append(np.array([bboxes_list[b, 0], bboxes_list[b, 1], bboxes_list[b, 2], bboxes_list[b, 3], bboxes_list[b, 4][0]])) dt_boxes = np.asarray(dt_boxes) annots_in_frame = annots.loadAnns( annots.getAnnIds(imgIds=[dets_default[1][i]], catIds=[1], iscrowd=False)) gt_boxes = [] for j in range(len(annots_in_frame)): gt_boxes.append(annots_in_frame[j]['bbox']) gt_boxes = np.asarray(np.asarray(gt_boxes)) if gt_boxes.shape[0] > 0: gt_boxes[:, 2] = gt_boxes[:, 0] + gt_boxes[:, 2] gt_boxes[:, 3] = gt_boxes[:, 1] + gt_boxes[:, 3] self.src_data.append({ 'id': dets_default[1][i], 'filename': os.path.join(imgs_split, img_info["file_name"]), 'resolution': [img_info['width'], img_info['height']], 'gt_boxes': [np.asarray([]), gt_boxes], 'dt_boxes': [np.asarray([]), dt_boxes] }) pbar.update(1) pbar.close() if self.detector == 'SSD': del ssd gc.collect() with open(pkl_filename, 'wb') as handle: pickle.dump(self.src_data, handle, protocol=pickle.DEFAULT_PROTOCOL) else: with open(pkl_filename, 'rb') as fp_pkl: self.src_data = pickle.load(fp_pkl) self.classes = ['background', 'person'] self.class_ids = [-1, 1] self.annotation_file = 'instances_' + self.dataset_sets[self.split] + '2014.json' elif self.dataset_name == "TEST_MODULE": self.dataset_sets['train'] = 'test' self.dataset_sets['val'] = 'test' self.dataset_sets['test'] = 'test' if self.dataset_sets[self.split] is None: raise ValueError(self.split + ' split is not available...') pkl_filename = os.path.join(self.path, 'test_module.pkl') if not os.path.exists(pkl_filename): data_url = OPENDR_SERVER_URL + '/perception/object_detection_2d/nms/datasets/test_module.zip' self.download(data_url, download_path=os.path.join(self.path).replace("TEST_MODULE", ""), file_format="zip", create_dir=True) with open(pkl_filename, 'rb') as fp_pkl: self.src_data = pickle.load(fp_pkl) self.classes = ['background', 'person'] self.class_ids = [-1, 1] self.annotation_file = 'test_module_anns.json' @staticmethod def download( url, download_path, dataset_sub_path=".", file_format="zip", create_dir=False): if create_dir: os.makedirs(download_path, exist_ok=True) print("Downloading dataset from", url, "to", download_path) start_time = 0 last_print = 0 def reporthook(count, block_size, total_size): nonlocal start_time nonlocal last_print if count == 0: start_time = time.time() last_print = start_time return duration = time.time() - start_time progress_size = int(count * block_size) speed = int(progress_size / (1024 * duration)) if time.time() - last_print >= 1: last_print = time.time() print( "\r%d MB, %d KB/s, %d seconds passed" % (progress_size / (1024 * 1024), speed, duration), end='' ) if file_format == "zip": zip_path = os.path.join(download_path, "dataset.zip") urlretrieve(url, zip_path, reporthook=reporthook) print() print("Extracting data from zip file") with ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(download_path) os.remove(zip_path) elif file_format == "tar.bz2" or file_format == "tar.gz": tar_path = os.path.join(download_path, "dataset." + file_format) urlretrieve(url, tar_path, reporthook=reporthook) print() def members(tf): l = len("Crowd_PETS09/") for member in tf.getmembers(): if member.path.startswith("Crowd_PETS09/"): member.path = member.path[l:] yield member with tarfile.open(tar_path, "r:" + file_format.split('.')[1]) as tar: if file_format == "tar.bz2": tar.extractall(path=download_path, members=members(tar)) else: tar.extractall(path=download_path) tar.close() os.remove(tar_path) else: raise ValueError("Unsupported file_format: " + file_format)
[ "os.remove", "tqdm.tqdm", "zipfile.ZipFile", "os.makedirs", "opendr.perception.object_detection_2d.ssd.ssd_learner.SingleShotDetectorLearner", "pickle.dump", "numpy.asarray", "os.path.exists", "time.time", "opendr.perception.object_detection_2d.datasets.transforms.BoundingBoxListToNumpyArray", "urllib.request.urlretrieve", "gc.collect", "pickle.load", "numpy.array", "numpy.argsort", "os.path.join" ]
[((2050, 2082), 'os.path.join', 'os.path.join', (['path', 'dataset_name'], {}), '(path, dataset_name)\n', (2062, 2082), False, 'import os\n'), ((5035, 5140), 'os.path.join', 'os.path.join', (['self.path', "('data_' + self.detector + '_' + self.dataset_sets[self.split] + '_pets.pkl')"], {}), "(self.path, 'data_' + self.detector + '_' + self.dataset_sets[\n self.split] + '_pets.pkl')\n", (5047, 5140), False, 'import os\n'), ((21238, 21279), 'os.makedirs', 'os.makedirs', (['download_path'], {'exist_ok': '(True)'}), '(download_path, exist_ok=True)\n', (21249, 21279), False, 'import os\n'), ((22149, 22191), 'os.path.join', 'os.path.join', (['download_path', '"""dataset.zip"""'], {}), "(download_path, 'dataset.zip')\n", (22161, 22191), False, 'import os\n'), ((22204, 22253), 'urllib.request.urlretrieve', 'urlretrieve', (['url', 'zip_path'], {'reporthook': 'reporthook'}), '(url, zip_path, reporthook=reporthook)\n', (22215, 22253), False, 'from urllib.request import urlretrieve\n'), ((22439, 22458), 'os.remove', 'os.remove', (['zip_path'], {}), '(zip_path)\n', (22448, 22458), False, 'import os\n'), ((5195, 5223), 'os.path.exists', 'os.path.exists', (['pkl_filename'], {}), '(pkl_filename)\n', (5209, 5223), False, 'import os\n'), ((14549, 14654), 'os.path.join', 'os.path.join', (['self.path', "('data_' + self.detector + '_' + self.dataset_sets[self.split] + '_coco.pkl')"], {}), "(self.path, 'data_' + self.detector + '_' + self.dataset_sets[\n self.split] + '_coco.pkl')\n", (14561, 14654), False, 'import os\n'), ((21572, 21583), 'time.time', 'time.time', ([], {}), '()\n', (21581, 21583), False, 'import time\n'), ((21671, 21682), 'time.time', 'time.time', ([], {}), '()\n', (21680, 21682), False, 'import time\n'), ((21882, 21893), 'time.time', 'time.time', ([], {}), '()\n', (21891, 21893), False, 'import time\n'), ((22342, 22364), 'zipfile.ZipFile', 'ZipFile', (['zip_path', '"""r"""'], {}), "(zip_path, 'r')\n", (22349, 22364), False, 'from zipfile import ZipFile\n'), ((22548, 22601), 'os.path.join', 'os.path.join', (['download_path', "('dataset.' + file_format)"], {}), "(download_path, 'dataset.' + file_format)\n", (22560, 22601), False, 'import os\n'), ((22614, 22663), 'urllib.request.urlretrieve', 'urlretrieve', (['url', 'tar_path'], {'reporthook': 'reporthook'}), '(url, tar_path, reporthook=reporthook)\n', (22625, 22663), False, 'from urllib.request import urlretrieve\n'), ((23275, 23294), 'os.remove', 'os.remove', (['tar_path'], {}), '(tar_path)\n', (23284, 23294), False, 'import os\n'), ((2642, 2681), 'os.path.join', 'os.path.join', (['self.path', '"""images/S1/L1"""'], {}), "(self.path, 'images/S1/L1')\n", (2654, 2681), False, 'import os\n'), ((2973, 3012), 'os.path.join', 'os.path.join', (['self.path', '"""images/S1/L2"""'], {}), "(self.path, 'images/S1/L2')\n", (2985, 3012), False, 'import os\n'), ((3304, 3343), 'os.path.join', 'os.path.join', (['self.path', '"""images/S2/L1"""'], {}), "(self.path, 'images/S2/L1')\n", (3316, 3343), False, 'import os\n'), ((3635, 3674), 'os.path.join', 'os.path.join', (['self.path', '"""images/S2/L2"""'], {}), "(self.path, 'images/S2/L2')\n", (3647, 3674), False, 'import os\n'), ((3966, 4005), 'os.path.join', 'os.path.join', (['self.path', '"""images/S2/L3"""'], {}), "(self.path, 'images/S2/L3')\n", (3978, 4005), False, 'import os\n'), ((4297, 4347), 'os.path.join', 'os.path.join', (['self.path', '"""images/S3/Multiple_Flow"""'], {}), "(self.path, 'images/S3/Multiple_Flow')\n", (4309, 4347), False, 'import os\n'), ((4660, 4754), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""', "('pets_' + self.dataset_sets[self.split] + '.json')"], {}), "(self.path, 'annotations', 'pets_' + self.dataset_sets[self.\n split] + '.json')\n", (4672, 4754), False, 'import os\n'), ((5418, 5458), 'opendr.perception.object_detection_2d.ssd.ssd_learner.SingleShotDetectorLearner', 'SingleShotDetectorLearner', ([], {'device': 'device'}), '(device=device)\n', (5443, 5458), False, 'from opendr.perception.object_detection_2d.ssd.ssd_learner import SingleShotDetectorLearner\n'), ((7415, 7456), 'tqdm.tqdm', 'tqdm', ([], {'desc': 'pbarDesc', 'total': 'number_samples'}), '(desc=pbarDesc, total=number_samples)\n', (7419, 7456), False, 'from tqdm import tqdm\n'), ((13049, 13068), 'pickle.load', 'pickle.load', (['fp_pkl'], {}), '(fp_pkl)\n', (13060, 13068), False, 'import pickle\n'), ((14067, 14107), 'opendr.perception.object_detection_2d.ssd.ssd_learner.SingleShotDetectorLearner', 'SingleShotDetectorLearner', ([], {'device': 'device'}), '(device=device)\n', (14092, 14107), False, 'from opendr.perception.object_detection_2d.ssd.ssd_learner import SingleShotDetectorLearner\n'), ((14709, 14737), 'os.path.exists', 'os.path.exists', (['pkl_filename'], {}), '(pkl_filename)\n', (14723, 14737), False, 'import os\n'), ((20446, 20488), 'os.path.join', 'os.path.join', (['self.path', '"""test_module.pkl"""'], {}), "(self.path, 'test_module.pkl')\n", (20458, 20488), False, 'import os\n'), ((21822, 21833), 'time.time', 'time.time', ([], {}), '()\n', (21831, 21833), False, 'import time\n'), ((2864, 2897), 'os.path.join', 'os.path.join', (['self.path', '"""images"""'], {}), "(self.path, 'images')\n", (2876, 2897), False, 'import os\n'), ((3195, 3228), 'os.path.join', 'os.path.join', (['self.path', '"""images"""'], {}), "(self.path, 'images')\n", (3207, 3228), False, 'import os\n'), ((3526, 3559), 'os.path.join', 'os.path.join', (['self.path', '"""images"""'], {}), "(self.path, 'images')\n", (3538, 3559), False, 'import os\n'), ((3857, 3890), 'os.path.join', 'os.path.join', (['self.path', '"""images"""'], {}), "(self.path, 'images')\n", (3869, 3890), False, 'import os\n'), ((4188, 4221), 'os.path.join', 'os.path.join', (['self.path', '"""images"""'], {}), "(self.path, 'images')\n", (4200, 4221), False, 'import os\n'), ((4530, 4563), 'os.path.join', 'os.path.join', (['self.path', '"""images"""'], {}), "(self.path, 'images')\n", (4542, 4563), False, 'import os\n'), ((4902, 4940), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""'], {}), "(self.path, 'annotations')\n", (4914, 4940), False, 'import os\n'), ((5646, 5751), 'os.path.join', 'os.path.join', (['self.path', '"""detections"""', "('PETS-' + self.dataset_sets[self.split] + '_siyudpm_dets.idl')"], {}), "(self.path, 'detections', 'PETS-' + self.dataset_sets[self.\n split] + '_siyudpm_dets.idl')\n", (5658, 5751), False, 'import os\n'), ((6110, 6203), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""', "('PETS-' + self.dataset_sets[self.split] + '.idl')"], {}), "(self.path, 'annotations', 'PETS-' + self.dataset_sets[self.\n split] + '.idl')\n", (6122, 6203), False, 'import os\n'), ((6490, 6583), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""', "('PETS-' + self.dataset_sets[self.split] + '.idl')"], {}), "(self.path, 'annotations', 'PETS-' + self.dataset_sets[self.\n split] + '.idl')\n", (6502, 6583), False, 'import os\n'), ((12869, 12937), 'pickle.dump', 'pickle.dump', (['self.src_data', 'handle'], {'protocol': 'pickle.DEFAULT_PROTOCOL'}), '(self.src_data, handle, protocol=pickle.DEFAULT_PROTOCOL)\n', (12880, 12937), False, 'import pickle\n'), ((14258, 14293), 'os.path.join', 'os.path.join', (['self.path', 'imgs_split'], {}), '(self.path, imgs_split)\n', (14270, 14293), False, 'import os\n'), ((16795, 16828), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""latin1"""'}), "(f, encoding='latin1')\n", (16806, 16828), False, 'import pickle\n'), ((18474, 18494), 'numpy.asarray', 'np.asarray', (['dt_boxes'], {}), '(dt_boxes)\n', (18484, 18494), True, 'import numpy as np\n'), ((19626, 19638), 'gc.collect', 'gc.collect', ([], {}), '()\n', (19636, 19638), False, 'import gc\n'), ((19716, 19784), 'pickle.dump', 'pickle.dump', (['self.src_data', 'handle'], {'protocol': 'pickle.DEFAULT_PROTOCOL'}), '(self.src_data, handle, protocol=pickle.DEFAULT_PROTOCOL)\n', (19727, 19784), False, 'import pickle\n'), ((19896, 19915), 'pickle.load', 'pickle.load', (['fp_pkl'], {}), '(fp_pkl)\n', (19907, 19915), False, 'import pickle\n'), ((20508, 20536), 'os.path.exists', 'os.path.exists', (['pkl_filename'], {}), '(pkl_filename)\n', (20522, 20536), False, 'import os\n'), ((20905, 20924), 'pickle.load', 'pickle.load', (['fp_pkl'], {}), '(fp_pkl)\n', (20916, 20924), False, 'import pickle\n'), ((5938, 5975), 'os.path.join', 'os.path.join', (['self.path', '"""detections"""'], {}), "(self.path, 'detections')\n", (5950, 5975), False, 'import os\n'), ((6354, 6392), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""'], {}), "(self.path, 'annotations')\n", (6366, 6392), False, 'import os\n'), ((6755, 6860), 'os.path.join', 'os.path.join', (['self.path', '"""detections"""', "('PETS-' + self.dataset_sets[self.split] + '_siyudpm_dets.idl')"], {}), "(self.path, 'detections', 'PETS-' + self.dataset_sets[self.\n split] + '_siyudpm_dets.idl')\n", (6767, 6860), False, 'import os\n'), ((10191, 10238), 'os.path.join', 'os.path.join', (['self.path', '"""images/"""', 'filename_gt'], {}), "(self.path, 'images/', filename_gt)\n", (10203, 10238), False, 'import os\n'), ((12771, 12783), 'gc.collect', 'gc.collect', ([], {}), '()\n', (12781, 12783), False, 'import gc\n'), ((14431, 14454), 'os.path.join', 'os.path.join', (['self.path'], {}), '(self.path)\n', (14443, 14454), False, 'import os\n'), ((14777, 14880), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""', "('instances_' + self.dataset_sets[self.split] + '2014.json')"], {}), "(self.path, 'annotations', 'instances_' + self.dataset_sets[\n self.split] + '2014.json')\n", (14789, 14880), False, 'import os\n'), ((16054, 16162), 'os.path.join', 'os.path.join', (['self.path', '"""detections"""', "('coco_2014_' + self.dataset_sets[self.split] + '_FRCN_train.pkl')"], {}), "(self.path, 'detections', 'coco_2014_' + self.dataset_sets[self\n .split] + '_FRCN_train.pkl')\n", (16066, 16162), False, 'import os\n'), ((16604, 16712), 'os.path.join', 'os.path.join', (['self.path', '"""detections"""', "('coco_2014_' + self.dataset_sets[self.split] + '_FRCN_train.pkl')"], {}), "(self.path, 'detections', 'coco_2014_' + self.dataset_sets[self\n .split] + '_FRCN_train.pkl')\n", (16616, 16712), False, 'import os\n'), ((16875, 16978), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""', "('instances_' + self.dataset_sets[self.split] + '2014.json')"], {}), "(self.path, 'annotations', 'instances_' + self.dataset_sets[\n self.split] + '2014.json')\n", (16887, 16978), False, 'import os\n'), ((17348, 17406), 'os.path.join', 'os.path.join', (['self.path', 'imgs_split', "img_info['file_name']"], {}), "(self.path, imgs_split, img_info['file_name'])\n", (17360, 17406), False, 'import os\n'), ((18850, 18870), 'numpy.asarray', 'np.asarray', (['gt_boxes'], {}), '(gt_boxes)\n', (18860, 18870), True, 'import numpy as np\n'), ((10958, 10987), 'opendr.perception.object_detection_2d.datasets.transforms.BoundingBoxListToNumpyArray', 'BoundingBoxListToNumpyArray', ([], {}), '()\n', (10985, 10987), False, 'from opendr.perception.object_detection_2d.datasets.transforms import BoundingBoxListToNumpyArray\n'), ((11986, 12021), 'os.path.join', 'os.path.join', (['"""images"""', 'filename_gt'], {}), "('images', filename_gt)\n", (11998, 12021), False, 'import os\n'), ((16466, 16503), 'os.path.join', 'os.path.join', (['self.path', '"""detections"""'], {}), "(self.path, 'detections')\n", (16478, 16503), False, 'import os\n'), ((19193, 19240), 'os.path.join', 'os.path.join', (['imgs_split', "img_info['file_name']"], {}), "(imgs_split, img_info['file_name'])\n", (19205, 19240), False, 'import os\n'), ((11350, 11462), 'numpy.array', 'np.array', (['[bboxes_list[b, 0], bboxes_list[b, 1], bboxes_list[b, 2], bboxes_list[b, 3],\n bboxes_list[b, 4][0]]'], {}), '([bboxes_list[b, 0], bboxes_list[b, 1], bboxes_list[b, 2],\n bboxes_list[b, 3], bboxes_list[b, 4][0]])\n', (11358, 11462), True, 'import numpy as np\n'), ((12137, 12151), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (12147, 12151), True, 'import numpy as np\n'), ((12153, 12173), 'numpy.asarray', 'np.asarray', (['gt_boxes'], {}), '(gt_boxes)\n', (12163, 12173), True, 'import numpy as np\n'), ((12217, 12231), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (12227, 12231), True, 'import numpy as np\n'), ((12233, 12253), 'numpy.asarray', 'np.asarray', (['dt_boxes'], {}), '(dt_boxes)\n', (12243, 12253), True, 'import numpy as np\n'), ((15265, 15288), 'os.path.join', 'os.path.join', (['self.path'], {}), '(self.path)\n', (15277, 15288), False, 'import os\n'), ((15902, 15940), 'os.path.join', 'os.path.join', (['self.path', '"""annotations"""'], {}), "(self.path, 'annotations')\n", (15914, 15940), False, 'import os\n'), ((17789, 17818), 'opendr.perception.object_detection_2d.datasets.transforms.BoundingBoxListToNumpyArray', 'BoundingBoxListToNumpyArray', ([], {}), '()\n', (17816, 17818), False, 'from opendr.perception.object_detection_2d.datasets.transforms import BoundingBoxListToNumpyArray\n'), ((19358, 19372), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (19368, 19372), True, 'import numpy as np\n'), ((19422, 19436), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (19432, 19436), True, 'import numpy as np\n'), ((11136, 11165), 'numpy.argsort', 'np.argsort', (['bboxes_list[:, 4]'], {}), '(bboxes_list[:, 4])\n', (11146, 11165), True, 'import numpy as np\n'), ((18279, 18391), 'numpy.array', 'np.array', (['[bboxes_list[b, 0], bboxes_list[b, 1], bboxes_list[b, 2], bboxes_list[b, 3],\n bboxes_list[b, 4][0]]'], {}), '([bboxes_list[b, 0], bboxes_list[b, 1], bboxes_list[b, 2],\n bboxes_list[b, 3], bboxes_list[b, 4][0]])\n', (18287, 18391), True, 'import numpy as np\n'), ((20702, 20725), 'os.path.join', 'os.path.join', (['self.path'], {}), '(self.path)\n', (20714, 20725), False, 'import os\n'), ((18073, 18102), 'numpy.argsort', 'np.argsort', (['bboxes_list[:, 4]'], {}), '(bboxes_list[:, 4])\n', (18083, 18102), True, 'import numpy as np\n')]
import flask import random import sys import os import glob import re from pathlib import Path import pickle import numpy as np # Import fast.ai Library from fastai import * from fastai.vision import * # Flask utils from flask import Flask, redirect, url_for, request, render_template,jsonify from werkzeug.utils import secure_filename app = flask.Flask(__name__) UPLOAD_FOLDER = './UPLOAD_FOLDER/' path=Path("path") classes = ['stress', 'non-stress'] learn=load_learner(path,'a.pkl') with open('classifier_pickle','rb') as f: cls=pickle.load(f) label_dictionary = {0: 'Healthy Plant', 1: 'Stress but recoverable',2:'Cannot Recover'} def model_predict(img_path): """model_predict will return the preprocessed image """ img = open_image(img_path) pred_class,pred_idx,outputs = learn.predict(img) return pred_class @app.route('/upload', methods = ['GET', 'POST']) def handle_request(): print("hello"); imagefile = flask.request.files['image'] print("hello", flask.request); filename = UPLOAD_FOLDER + str(random.randint(0, 5000)) + '.png' #filename = werkzeug.utils.secure_filename(imagefile.filename) #filename= "photo.jpg"; print("\nReceived image File name : " + imagefile.filename) imagefile.save(filename) preds=model_predict(filename) print(type(preds)) return str(preds) @app.route('/calculate', methods = ['GET', 'POST']) def handle_response(): print("Hello"); # getting the data from a separate json file. json = request.get_json() # the keys that should be included in the json file. transaction_keys = ['tdry' , 'twet', 'tcanopy', 'timeDay'] # return a error message if a key is not included in the file. #stringValues= flask.request.values.get['dry', 'wet', 'canopy', 'time'] #print("Hello", flask.request); a=json[transaction_keys[0]] print(a) b=json[transaction_keys[1]] print(b) c=json[transaction_keys[2]] print(c) d=json[transaction_keys[3]] print(d) pred=np.array([[a,b,c,d]]) pr=cls.predict(pred) print(pr) return jsonify(label_dictionary[int(pr)]) #ans=label_dictionary[int(pr)] #print(ans) #return ans app.run(host="127.0.0.1",port=5000, debug=True)
[ "random.randint", "flask.Flask", "pathlib.Path", "pickle.load", "numpy.array", "flask.request.get_json" ]
[((346, 367), 'flask.Flask', 'flask.Flask', (['__name__'], {}), '(__name__)\n', (357, 367), False, 'import flask\n'), ((409, 421), 'pathlib.Path', 'Path', (['"""path"""'], {}), "('path')\n", (413, 421), False, 'from pathlib import Path\n'), ((544, 558), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (555, 558), False, 'import pickle\n'), ((1508, 1526), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (1524, 1526), False, 'from flask import Flask, redirect, url_for, request, render_template, jsonify\n'), ((1990, 2014), 'numpy.array', 'np.array', (['[[a, b, c, d]]'], {}), '([[a, b, c, d]])\n', (1998, 2014), True, 'import numpy as np\n'), ((1054, 1077), 'random.randint', 'random.randint', (['(0)', '(5000)'], {}), '(0, 5000)\n', (1068, 1077), False, 'import random\n')]
import time from collections import defaultdict from datetime import timedelta import cvxpy as cp import empiricalutilities as eu import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from transfer_entropy import TransferEntropy plt.style.use('fivethirtyeight') # %% eqs = 'SPY DIA XLK XLV XLF IYZ XLY XLP XLI XLE XLU XME IYR XLB XPH IWM PHO ' \ 'SOXX WOOD FDN GNR IBB ILF ITA IYT KIE PBW ' \ 'AFK EZA ECH EWW EWC EWZ EEM EIDO EPOL EPP EWA EWD EWG EWH EWJ EWI EWK ' \ 'EWL EWM EWP EWQ EWS EWT EWU EWY GXC HAO EZU RSX TUR'.split() fi = 'AGG SHY IEI IEF TLT TIP LQD HYG MBB'.split() cmdtys = 'GLD SLV DBA DBC USO UNG'.split() fx = 'FXA FXB FXC FXE FXF FXY'.split() assets = eqs + fi + cmdtys + fx def cum_rets(rets): cum_rets = [] cum_rets.append(1) for i, ret in enumerate(rets): cum_rets.append(cum_rets[i]*(1+ret)) return cum_rets # %% ete_mats = {} mod = TransferEntropy(assets=assets) period = 'Q' months = mod.prices.index.to_period(period).unique().to_timestamp() iters = len(months)-24 with tqdm(total=iters) as pbar: for start, end in zip(months[:-1], months[1:]): end -= timedelta(1) mod.set_timeperiod(start, end) mod.compute_effective_transfer_entropy(sims=30, bins=6, std_threshold=1) ete = mod.ete.copy() ete_mats[start] = ete pbar.update(1) ete_df = pd.concat(ete_mats) ete_df.to_csv(f'../ete_{period}.csv') # %% q = 4 res = defaultdict(dict) mod = TransferEntropy(assets=assets) iters = len(months)-1 for start, end in zip(months[:-1], months[1:]): ete = ete_mats[start] ete_out = ete.sum(axis=0) ete_in = ete.sum(axis=1) end -= timedelta(1) mod.set_timeperiod(start, end) returns = mod.prices.iloc[-1]/mod.prices.iloc[0]-1 vols = mod.data.std() names = 'eteout etein etenetout etetotal'.split() for name, ETE in zip(names, [ete_out, ete_in, ete_out-ete_in, ete_in+ete_out]): df = pd.DataFrame({'returns': returns, 'vol': vols, name: ETE}) df['q'] = pd.qcut(ETE, q=q, labels=False) res[name][start] = df.groupby('q').agg('mean').reset_index().copy() # %% q_rets = {} for name in names: resdf = res[name] resdf = pd.concat(resdf) resdf.index = resdf.index.droplevel(1) fig, ax = plt.subplots(1, 1, figsize=(10, 6)) cmap = sns.color_palette('Blues_r', n_colors=4) for c, qtile in zip(cmap, range(q)): q_rets[qtile] = resdf[resdf['q']==qtile]['returns'].values ax.plot(months, cum_rets(q_rets[qtile]), c=c, lw=2, alpha=1, label=f'Quartile {qtile+1}') fig.autofmt_xdate() plt.ylabel('Cumulative Return') plt.xlabel('Time') plt.legend() plt.tight_layout() plt.savefig(f'../plots/{name}_quartile_returns.png', dpi=300) eu.latex_figure(f'../data/plots/{name}_quartile_returns.png') # %% for name in names: table = defaultdict(dict) resdf = res[name] resdf = pd.concat(resdf) resdf.index = resdf.index.droplevel(1) table for qtile in range(q): table[qtile]['r'] = resdf[resdf['q']==qtile]['returns'].mean()*12 table[qtile]['v'] = resdf[resdf['q']==qtile]['returns'].std()*np.sqrt(12) table[qtile][name] = resdf[resdf['q']==qtile][name].mean() table = pd.DataFrame.from_dict(table, orient='index') table['sr'] = table['r']/table['v'] table = table.reset_index() table = table[['index', 'r', 'v', 'sr', name]] cols = 'Quartile Return Volatility Sharpe'.split() cols += [name] table.columns = cols table['Quartile'] += 1 table[['Return', 'Volatility']] *= 100 eu.latex_print(table, prec=2, hide_index=True) # %% def get_CAPM_weights(er, cov, gamma): n = cov.shape[0] w = cp.Variable((n, 1)) gamma = cp.Parameter(nonneg=True, value=gamma) ret = w.T @ er risk = cp.quad_form(w, cov) constraints = [ cp.sum(w) == 1, w <= 0.1, w >= 0, ret >= 0.02, ] obj = cp.Maximize(ret - gamma*risk) prob = cp.Problem(obj, constraints) prob.solve() return w.value def get_MV_weights(er, cov): n = cov.shape[0] w = cp.Variable((n, 1)) ret = w.T @ er risk = cp.quad_form(w, cov) constraints = [ cp.sum(w) == 1, w <= 0.1, w >= 0, ret >= 0.02, ] obj = cp.Minimize(risk) prob = cp.Problem(obj, constraints) prob.solve() return w.value def get_weights(er, start, ete): n = len(ete) w = cp.Variable((n, 1)) ret = w.T @ er obj = cp.Minimize(w.T @ (ete)) constraints = [ cp.sum(w) == 1, w <= 0.1, w >= 0, ret >= 0.02, ] prob = cp.Problem(obj, constraints) prob.solve() return w.value # %% ete_mats = pd.read_csv('../ete_Q.csv', index_col=[0, 1], parse_dates=True, infer_datetime_format=True) ete_mats = ete_mats[assets].copy() mod = TransferEntropy(assets=assets) mo_df = mod.prices.resample('Q').last() mo_ret_df = (mo_df/mo_df.shift(1).values-1).dropna() EXP_RETS = mo_ret_df.mean().values.reshape(-1, 1) e_perf = [] e_perf_ete = [] mv_perf = [] mv_perf_ete = [] capm = defaultdict(list) capm_ete = defaultdict(list) gammas = [0.1, 1, 10] with tqdm(total=iters) as pbar: for start, end in zip(months[:-1], months[1:]): end -= timedelta(1) mod.set_timeperiod(start, end) # get month's returns, cov, and ete matrices cov = np.cov(mod.data.values, rowvar=False) ete_mat = ete_mats.loc[start] ete_mat = ete_mat.T[assets].T.values.copy() ete_out = ete_mat.sum(axis=0).reshape(-1, 1) ete_in = ete_mat.sum(axis=1).reshape(-1, 1) net_out = ete_out - ete_in r = (mod.prices.iloc[-1]/mod.prices.iloc[0]-1).values # get strategy weights we = get_weights(EXP_RETS, start, net_out) wmv = get_MV_weights(EXP_RETS, cov) e_perf.append(np.squeeze(we.T @ r)) e_perf_ete.append(np.squeeze(we.T @ net_out)) mv_perf.append(np.squeeze(wmv.T @ r)) mv_perf_ete.append(np.squeeze(wmv.T @ net_out)) for gamma in gammas: w_capm = get_CAPM_weights(EXP_RETS, cov, gamma) capm[gamma].append(np.squeeze(w_capm.T @ r)) capm_ete[gamma].append(np.squeeze(w_capm.T @ net_out)) pbar.update(1) # %% alpha=0.75 lw=2 fig, ax = plt.subplots(1, 1, figsize=(10, 6)) cmap2 = sns.color_palette('Reds_r', n_colors=len(gammas)*2) ax.plot(months, cum_rets(e_perf), alpha=alpha, label='ETE', lw=lw, c='steelblue') ax.plot(months, cum_rets(mv_perf), alpha=alpha, label='MV', lw=lw, c='forestgreen') for i, gamma in enumerate(reversed(gammas[1:])): ax.plot(months, cum_rets(capm[gamma]), alpha=alpha, label=f'CAPM $\\gamma={gamma}$', lw=lw, c=cmap2[i]) fig.autofmt_xdate() plt.ylabel('Cumulative Return') plt.xlabel('Time') plt.legend() plt.tight_layout() eu.save_fig(f'../plots/portfolio_comparison', dpi=300) plt.show() eu.latex_figure(f'../plots/portfolio_comparison') # %% tbl = pd.DataFrame({ 'ETE': e_perf, 'MV': mv_perf, 'CAPM 1': capm[1], 'CAPM 10': capm[10], }, index=months[1:]) tbl = (tbl.mean()*4).to_frame().join((tbl.std()*np.sqrt(4)).to_frame(), rsuffix='vol') tbl.columns = 'Return Volatility'.split() tbl['Sharpe'] = tbl['Return']/tbl['Volatility'] tbl['Return'] *= 100 tbl['Volatility'] *= 100 tbl2 = pd.DataFrame({ 'ETE': e_perf_ete, 'MV': mv_perf_ete, 'CAPM 1': capm_ete[1], 'CAPM 10': capm_ete[10], }, index=months[1:]) tbl = tbl.join(tbl2.mean().to_frame()) tbl.columns = 'Return Volatility Sharpe ETE'.split() eu.latex_print(tbl, prec=2)
[ "pandas.read_csv", "collections.defaultdict", "cvxpy.sum", "matplotlib.pyplot.style.use", "empiricalutilities.save_fig", "matplotlib.pyplot.tight_layout", "cvxpy.Maximize", "cvxpy.quad_form", "pandas.DataFrame", "datetime.timedelta", "cvxpy.Problem", "empiricalutilities.latex_figure", "pandas.qcut", "numpy.cov", "matplotlib.pyplot.subplots", "pandas.concat", "tqdm.tqdm", "matplotlib.pyplot.show", "pandas.DataFrame.from_dict", "matplotlib.pyplot.legend", "cvxpy.Variable", "numpy.squeeze", "matplotlib.pyplot.ylabel", "transfer_entropy.TransferEntropy", "cvxpy.Minimize", "cvxpy.Parameter", "empiricalutilities.latex_print", "seaborn.color_palette", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((293, 325), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (306, 325), True, 'import matplotlib.pyplot as plt\n'), ((959, 989), 'transfer_entropy.TransferEntropy', 'TransferEntropy', ([], {'assets': 'assets'}), '(assets=assets)\n', (974, 989), False, 'from transfer_entropy import TransferEntropy\n'), ((1466, 1485), 'pandas.concat', 'pd.concat', (['ete_mats'], {}), '(ete_mats)\n', (1475, 1485), True, 'import pandas as pd\n'), ((1541, 1558), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (1552, 1558), False, 'from collections import defaultdict\n'), ((1566, 1596), 'transfer_entropy.TransferEntropy', 'TransferEntropy', ([], {'assets': 'assets'}), '(assets=assets)\n', (1581, 1596), False, 'from transfer_entropy import TransferEntropy\n'), ((4887, 4982), 'pandas.read_csv', 'pd.read_csv', (['"""../ete_Q.csv"""'], {'index_col': '[0, 1]', 'parse_dates': '(True)', 'infer_datetime_format': '(True)'}), "('../ete_Q.csv', index_col=[0, 1], parse_dates=True,\n infer_datetime_format=True)\n", (4898, 4982), True, 'import pandas as pd\n'), ((5025, 5055), 'transfer_entropy.TransferEntropy', 'TransferEntropy', ([], {'assets': 'assets'}), '(assets=assets)\n', (5040, 5055), False, 'from transfer_entropy import TransferEntropy\n'), ((5265, 5282), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (5276, 5282), False, 'from collections import defaultdict\n'), ((5294, 5311), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (5305, 5311), False, 'from collections import defaultdict\n'), ((6485, 6520), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(10, 6)'}), '(1, 1, figsize=(10, 6))\n', (6497, 6520), True, 'import matplotlib.pyplot as plt\n'), ((6942, 6973), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cumulative Return"""'], {}), "('Cumulative Return')\n", (6952, 6973), True, 'import matplotlib.pyplot as plt\n'), ((6974, 6992), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (6984, 6992), True, 'import matplotlib.pyplot as plt\n'), ((6993, 7005), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (7003, 7005), True, 'import matplotlib.pyplot as plt\n'), ((7006, 7024), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7022, 7024), True, 'import matplotlib.pyplot as plt\n'), ((7025, 7079), 'empiricalutilities.save_fig', 'eu.save_fig', (['f"""../plots/portfolio_comparison"""'], {'dpi': '(300)'}), "(f'../plots/portfolio_comparison', dpi=300)\n", (7036, 7079), True, 'import empiricalutilities as eu\n'), ((7080, 7090), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7088, 7090), True, 'import matplotlib.pyplot as plt\n'), ((7091, 7140), 'empiricalutilities.latex_figure', 'eu.latex_figure', (['f"""../plots/portfolio_comparison"""'], {}), "(f'../plots/portfolio_comparison')\n", (7106, 7140), True, 'import empiricalutilities as eu\n'), ((7152, 7258), 'pandas.DataFrame', 'pd.DataFrame', (["{'ETE': e_perf, 'MV': mv_perf, 'CAPM 1': capm[1], 'CAPM 10': capm[10]}"], {'index': 'months[1:]'}), "({'ETE': e_perf, 'MV': mv_perf, 'CAPM 1': capm[1], 'CAPM 10':\n capm[10]}, index=months[1:])\n", (7164, 7258), True, 'import pandas as pd\n'), ((7539, 7661), 'pandas.DataFrame', 'pd.DataFrame', (["{'ETE': e_perf_ete, 'MV': mv_perf_ete, 'CAPM 1': capm_ete[1], 'CAPM 10':\n capm_ete[10]}"], {'index': 'months[1:]'}), "({'ETE': e_perf_ete, 'MV': mv_perf_ete, 'CAPM 1': capm_ete[1],\n 'CAPM 10': capm_ete[10]}, index=months[1:])\n", (7551, 7661), True, 'import pandas as pd\n'), ((7793, 7820), 'empiricalutilities.latex_print', 'eu.latex_print', (['tbl'], {'prec': '(2)'}), '(tbl, prec=2)\n', (7807, 7820), True, 'import empiricalutilities as eu\n'), ((1100, 1117), 'tqdm.tqdm', 'tqdm', ([], {'total': 'iters'}), '(total=iters)\n', (1104, 1117), False, 'from tqdm import tqdm\n'), ((1766, 1778), 'datetime.timedelta', 'timedelta', (['(1)'], {}), '(1)\n', (1775, 1778), False, 'from datetime import timedelta\n'), ((2340, 2356), 'pandas.concat', 'pd.concat', (['resdf'], {}), '(resdf)\n', (2349, 2356), True, 'import pandas as pd\n'), ((2415, 2450), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(10, 6)'}), '(1, 1, figsize=(10, 6))\n', (2427, 2450), True, 'import matplotlib.pyplot as plt\n'), ((2462, 2502), 'seaborn.color_palette', 'sns.color_palette', (['"""Blues_r"""'], {'n_colors': '(4)'}), "('Blues_r', n_colors=4)\n", (2479, 2502), True, 'import seaborn as sns\n'), ((2750, 2781), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cumulative Return"""'], {}), "('Cumulative Return')\n", (2760, 2781), True, 'import matplotlib.pyplot as plt\n'), ((2786, 2804), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (2796, 2804), True, 'import matplotlib.pyplot as plt\n'), ((2809, 2821), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2819, 2821), True, 'import matplotlib.pyplot as plt\n'), ((2826, 2844), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2842, 2844), True, 'import matplotlib.pyplot as plt\n'), ((2849, 2910), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""../plots/{name}_quartile_returns.png"""'], {'dpi': '(300)'}), "(f'../plots/{name}_quartile_returns.png', dpi=300)\n", (2860, 2910), True, 'import matplotlib.pyplot as plt\n'), ((2915, 2976), 'empiricalutilities.latex_figure', 'eu.latex_figure', (['f"""../data/plots/{name}_quartile_returns.png"""'], {}), "(f'../data/plots/{name}_quartile_returns.png')\n", (2930, 2976), True, 'import empiricalutilities as eu\n'), ((3015, 3032), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (3026, 3032), False, 'from collections import defaultdict\n'), ((3067, 3083), 'pandas.concat', 'pd.concat', (['resdf'], {}), '(resdf)\n', (3076, 3083), True, 'import pandas as pd\n'), ((3400, 3445), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['table'], {'orient': '"""index"""'}), "(table, orient='index')\n", (3422, 3445), True, 'import pandas as pd\n'), ((3742, 3788), 'empiricalutilities.latex_print', 'eu.latex_print', (['table'], {'prec': '(2)', 'hide_index': '(True)'}), '(table, prec=2, hide_index=True)\n', (3756, 3788), True, 'import empiricalutilities as eu\n'), ((3861, 3880), 'cvxpy.Variable', 'cp.Variable', (['(n, 1)'], {}), '((n, 1))\n', (3872, 3880), True, 'import cvxpy as cp\n'), ((3893, 3931), 'cvxpy.Parameter', 'cp.Parameter', ([], {'nonneg': '(True)', 'value': 'gamma'}), '(nonneg=True, value=gamma)\n', (3905, 3931), True, 'import cvxpy as cp\n'), ((3962, 3982), 'cvxpy.quad_form', 'cp.quad_form', (['w', 'cov'], {}), '(w, cov)\n', (3974, 3982), True, 'import cvxpy as cp\n'), ((4102, 4133), 'cvxpy.Maximize', 'cp.Maximize', (['(ret - gamma * risk)'], {}), '(ret - gamma * risk)\n', (4113, 4133), True, 'import cvxpy as cp\n'), ((4143, 4171), 'cvxpy.Problem', 'cp.Problem', (['obj', 'constraints'], {}), '(obj, constraints)\n', (4153, 4171), True, 'import cvxpy as cp\n'), ((4268, 4287), 'cvxpy.Variable', 'cp.Variable', (['(n, 1)'], {}), '((n, 1))\n', (4279, 4287), True, 'import cvxpy as cp\n'), ((4318, 4338), 'cvxpy.quad_form', 'cp.quad_form', (['w', 'cov'], {}), '(w, cov)\n', (4330, 4338), True, 'import cvxpy as cp\n'), ((4458, 4475), 'cvxpy.Minimize', 'cp.Minimize', (['risk'], {}), '(risk)\n', (4469, 4475), True, 'import cvxpy as cp\n'), ((4487, 4515), 'cvxpy.Problem', 'cp.Problem', (['obj', 'constraints'], {}), '(obj, constraints)\n', (4497, 4515), True, 'import cvxpy as cp\n'), ((4611, 4630), 'cvxpy.Variable', 'cp.Variable', (['(n, 1)'], {}), '((n, 1))\n', (4622, 4630), True, 'import cvxpy as cp\n'), ((4660, 4682), 'cvxpy.Minimize', 'cp.Minimize', (['(w.T @ ete)'], {}), '(w.T @ ete)\n', (4671, 4682), True, 'import cvxpy as cp\n'), ((4805, 4833), 'cvxpy.Problem', 'cp.Problem', (['obj', 'constraints'], {}), '(obj, constraints)\n', (4815, 4833), True, 'import cvxpy as cp\n'), ((5340, 5357), 'tqdm.tqdm', 'tqdm', ([], {'total': 'iters'}), '(total=iters)\n', (5344, 5357), False, 'from tqdm import tqdm\n'), ((1194, 1206), 'datetime.timedelta', 'timedelta', (['(1)'], {}), '(1)\n', (1203, 1206), False, 'from datetime import timedelta\n'), ((2082, 2140), 'pandas.DataFrame', 'pd.DataFrame', (["{'returns': returns, 'vol': vols, name: ETE}"], {}), "({'returns': returns, 'vol': vols, name: ETE})\n", (2094, 2140), True, 'import pandas as pd\n'), ((2159, 2190), 'pandas.qcut', 'pd.qcut', (['ETE'], {'q': 'q', 'labels': '(False)'}), '(ETE, q=q, labels=False)\n', (2166, 2190), True, 'import pandas as pd\n'), ((5434, 5446), 'datetime.timedelta', 'timedelta', (['(1)'], {}), '(1)\n', (5443, 5446), False, 'from datetime import timedelta\n'), ((5554, 5591), 'numpy.cov', 'np.cov', (['mod.data.values'], {'rowvar': '(False)'}), '(mod.data.values, rowvar=False)\n', (5560, 5591), True, 'import numpy as np\n'), ((3308, 3319), 'numpy.sqrt', 'np.sqrt', (['(12)'], {}), '(12)\n', (3315, 3319), True, 'import numpy as np\n'), ((4011, 4020), 'cvxpy.sum', 'cp.sum', (['w'], {}), '(w)\n', (4017, 4020), True, 'import cvxpy as cp\n'), ((4367, 4376), 'cvxpy.sum', 'cp.sum', (['w'], {}), '(w)\n', (4373, 4376), True, 'import cvxpy as cp\n'), ((4713, 4722), 'cvxpy.sum', 'cp.sum', (['w'], {}), '(w)\n', (4719, 4722), True, 'import cvxpy as cp\n'), ((6036, 6056), 'numpy.squeeze', 'np.squeeze', (['(we.T @ r)'], {}), '(we.T @ r)\n', (6046, 6056), True, 'import numpy as np\n'), ((6084, 6110), 'numpy.squeeze', 'np.squeeze', (['(we.T @ net_out)'], {}), '(we.T @ net_out)\n', (6094, 6110), True, 'import numpy as np\n'), ((6136, 6157), 'numpy.squeeze', 'np.squeeze', (['(wmv.T @ r)'], {}), '(wmv.T @ r)\n', (6146, 6157), True, 'import numpy as np\n'), ((6186, 6213), 'numpy.squeeze', 'np.squeeze', (['(wmv.T @ net_out)'], {}), '(wmv.T @ net_out)\n', (6196, 6213), True, 'import numpy as np\n'), ((6336, 6360), 'numpy.squeeze', 'np.squeeze', (['(w_capm.T @ r)'], {}), '(w_capm.T @ r)\n', (6346, 6360), True, 'import numpy as np\n'), ((6397, 6427), 'numpy.squeeze', 'np.squeeze', (['(w_capm.T @ net_out)'], {}), '(w_capm.T @ net_out)\n', (6407, 6427), True, 'import numpy as np\n'), ((7347, 7357), 'numpy.sqrt', 'np.sqrt', (['(4)'], {}), '(4)\n', (7354, 7357), True, 'import numpy as np\n')]
"""Experiments and corresponding analysis. format adapted from https://github.com/gyyang/olfaction_evolution Each experiment is described by a function that returns a list of configurations function name is the experiment name combinatorial mode: config_ranges should not have repetitive values sequential mode: config_ranges values should have equal length, otherwise this will only loop through the shortest one control mode: base_config must contain keys in config_ranges """ import os import copy from collections import OrderedDict import logging import numpy as np from configs.config_global import ROOT_DIR, LOG_LEVEL from configs.configs import BaseConfig from utils.config_utils import vary_config from analysis.train_analysis import plot_train_log import evaluate from analysis import plots def init_analysis(configs_): logging.basicConfig(level=LOG_LEVEL) exp_name = configs_[0].experiment_name print('Analyzing ' + exp_name) exp_path = os.path.join(ROOT_DIR, 'experiments', exp_name) + os.sep plot_train_log([exp_path], exp_name=exp_name) # ----------------------------------------------------- # experiments # ----------------------------------------------------- def timescale(): config = BaseConfig() config.experiment_name = 'timescale' config.rnn_type = 'plainRNN' config.t_scale = 1.0 config.augment = None config.use_velocity = False config.context = None config.context_w = 10 config.hidden_size = 64 config.num_ep = 40 config_ranges = OrderedDict() config_ranges['rnn_type'] = ['plainRNN', 'CTRNN', 'LSTM', 'GRU', 'RNNSTSP'] configs = vary_config(config, config_ranges, mode='combinatorial') return configs def timescale_aug(): config = BaseConfig() config.experiment_name = 'timescale_aug' config.rnn_type = 'plainRNN' config.t_scale = 1.0 config.augment = (0.5, 1.5) config.use_velocity = False config.context = None config.context_w = 10 config.hidden_size = 64 config.num_ep = 40 config_ranges = OrderedDict() config_ranges['rnn_type'] = ['plainRNN', 'CTRNN', 'LSTM', 'GRU', 'RNNSTSP'] configs = vary_config(config, config_ranges, mode='combinatorial') return configs def timecode(): config = BaseConfig() config.experiment_name = 'timecode' config.rnn_type = 'plainRNN' config.t_scale = 1.0 config.augment = None config.use_velocity = False config.context = 'zero' config.context_w = 10 config.hidden_size = 64 config.num_ep = 40 config_ranges = OrderedDict() config_ranges['context'] = ['zero', 'noise', 'scalar', 'ramping', 'clock', 'stairs_end', 'stairs_start'] configs = vary_config(config, config_ranges, mode='combinatorial') return configs def timecode_aug(): config = BaseConfig() config.experiment_name = 'timecode_aug' config.rnn_type = 'plainRNN' config.t_scale = 1.0 config.augment = (0.5, 1.5) config.use_velocity = False config.context = 'zero' config.context_w = 10 config.hidden_size = 64 config.num_ep = 40 config_ranges = OrderedDict() config_ranges['context'] = ['zero', 'noise', 'scalar', 'ramping', 'clock', 'stairs_end', 'stairs_start'] configs = vary_config(config, config_ranges, mode='combinatorial') return configs # ----------------------------------------------------- # analysis # ----------------------------------------------------- def timescale_analysis(): configs = timescale() init_analysis(configs) t_scale_list = np.arange(0.1, 2, 0.1) acc_list = np.zeros_like(t_scale_list) for cfg in configs: for i_s, t_scale in enumerate(t_scale_list): new_cfg = copy.deepcopy(cfg) new_cfg.t_scale = t_scale acc_list[i_s] = evaluate.eval_total_acc(new_cfg) np.save(os.path.join(cfg.save_path, 'tscalelist.npy'), t_scale_list) np.save(os.path.join(cfg.save_path, 'acclist.npy'), acc_list) plots.plot_gen(t_scale_list, acc_list, cfg.rnn_type) plots.plot_group_gen(configs, configs[0].experiment_name, mode='rnn_type') def timescale_aug_analysis(): configs = timescale_aug() init_analysis(configs) t_scale_list = np.arange(0.1, 2, 0.1) acc_list = np.zeros_like(t_scale_list) for cfg in configs: for i_s, t_scale in enumerate(t_scale_list): new_cfg = copy.deepcopy(cfg) new_cfg.t_scale = t_scale acc_list[i_s] = evaluate.eval_total_acc(new_cfg) np.save(os.path.join(cfg.save_path, 'tscalelist.npy'), t_scale_list) np.save(os.path.join(cfg.save_path, 'acclist.npy'), acc_list) plots.plot_gen(t_scale_list, acc_list, cfg.rnn_type) plots.plot_group_gen(configs, configs[0].experiment_name, mode='rnn_type') def timecode_analysis(): configs = timecode() init_analysis(configs) t_scale_list = np.arange(0.1, 2, 0.1) acc_list = np.zeros_like(t_scale_list) for cfg in configs: for i_s, t_scale in enumerate(t_scale_list): new_cfg = copy.deepcopy(cfg) new_cfg.t_scale = t_scale acc_list[i_s] = evaluate.eval_total_acc(new_cfg) np.save(os.path.join(cfg.save_path, 'tscalelist.npy'), t_scale_list) np.save(os.path.join(cfg.save_path, 'acclist.npy'), acc_list) plots.plot_gen(t_scale_list, acc_list, cfg.context) plots.plot_group_gen(configs, configs[0].experiment_name, mode='context') def timecode_aug_analysis(): configs = timecode_aug() init_analysis(configs) t_scale_list = np.arange(0.1, 2, 0.1) acc_list = np.zeros_like(t_scale_list) for cfg in configs: for i_s, t_scale in enumerate(t_scale_list): new_cfg = copy.deepcopy(cfg) new_cfg.t_scale = t_scale acc_list[i_s] = evaluate.eval_total_acc(new_cfg) np.save(os.path.join(cfg.save_path, 'tscalelist.npy'), t_scale_list) np.save(os.path.join(cfg.save_path, 'acclist.npy'), acc_list) plots.plot_gen(t_scale_list, acc_list, cfg.context) plots.plot_group_gen(configs, configs[0].experiment_name, mode='context')
[ "utils.config_utils.vary_config", "copy.deepcopy", "numpy.zeros_like", "analysis.plots.plot_gen", "os.path.join", "logging.basicConfig", "evaluate.eval_total_acc", "numpy.arange", "analysis.train_analysis.plot_train_log", "collections.OrderedDict", "configs.configs.BaseConfig", "analysis.plots.plot_group_gen" ]
[((857, 893), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'LOG_LEVEL'}), '(level=LOG_LEVEL)\n', (876, 893), False, 'import logging\n'), ((1048, 1093), 'analysis.train_analysis.plot_train_log', 'plot_train_log', (['[exp_path]'], {'exp_name': 'exp_name'}), '([exp_path], exp_name=exp_name)\n', (1062, 1093), False, 'from analysis.train_analysis import plot_train_log\n'), ((1254, 1266), 'configs.configs.BaseConfig', 'BaseConfig', ([], {}), '()\n', (1264, 1266), False, 'from configs.configs import BaseConfig\n'), ((1549, 1562), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1560, 1562), False, 'from collections import OrderedDict\n'), ((1789, 1845), 'utils.config_utils.vary_config', 'vary_config', (['config', 'config_ranges'], {'mode': '"""combinatorial"""'}), "(config, config_ranges, mode='combinatorial')\n", (1800, 1845), False, 'from utils.config_utils import vary_config\n'), ((1901, 1913), 'configs.configs.BaseConfig', 'BaseConfig', ([], {}), '()\n', (1911, 1913), False, 'from configs.configs import BaseConfig\n'), ((2206, 2219), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2217, 2219), False, 'from collections import OrderedDict\n'), ((2446, 2502), 'utils.config_utils.vary_config', 'vary_config', (['config', 'config_ranges'], {'mode': '"""combinatorial"""'}), "(config, config_ranges, mode='combinatorial')\n", (2457, 2502), False, 'from utils.config_utils import vary_config\n'), ((2553, 2565), 'configs.configs.BaseConfig', 'BaseConfig', ([], {}), '()\n', (2563, 2565), False, 'from configs.configs import BaseConfig\n'), ((2849, 2862), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2860, 2862), False, 'from collections import OrderedDict\n'), ((3018, 3074), 'utils.config_utils.vary_config', 'vary_config', (['config', 'config_ranges'], {'mode': '"""combinatorial"""'}), "(config, config_ranges, mode='combinatorial')\n", (3029, 3074), False, 'from utils.config_utils import vary_config\n'), ((3129, 3141), 'configs.configs.BaseConfig', 'BaseConfig', ([], {}), '()\n', (3139, 3141), False, 'from configs.configs import BaseConfig\n'), ((3435, 3448), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (3446, 3448), False, 'from collections import OrderedDict\n'), ((3604, 3660), 'utils.config_utils.vary_config', 'vary_config', (['config', 'config_ranges'], {'mode': '"""combinatorial"""'}), "(config, config_ranges, mode='combinatorial')\n", (3615, 3660), False, 'from utils.config_utils import vary_config\n'), ((3904, 3926), 'numpy.arange', 'np.arange', (['(0.1)', '(2)', '(0.1)'], {}), '(0.1, 2, 0.1)\n', (3913, 3926), True, 'import numpy as np\n'), ((3942, 3969), 'numpy.zeros_like', 'np.zeros_like', (['t_scale_list'], {}), '(t_scale_list)\n', (3955, 3969), True, 'import numpy as np\n'), ((4400, 4474), 'analysis.plots.plot_group_gen', 'plots.plot_group_gen', (['configs', 'configs[0].experiment_name'], {'mode': '"""rnn_type"""'}), "(configs, configs[0].experiment_name, mode='rnn_type')\n", (4420, 4474), False, 'from analysis import plots\n'), ((4583, 4605), 'numpy.arange', 'np.arange', (['(0.1)', '(2)', '(0.1)'], {}), '(0.1, 2, 0.1)\n', (4592, 4605), True, 'import numpy as np\n'), ((4621, 4648), 'numpy.zeros_like', 'np.zeros_like', (['t_scale_list'], {}), '(t_scale_list)\n', (4634, 4648), True, 'import numpy as np\n'), ((5079, 5153), 'analysis.plots.plot_group_gen', 'plots.plot_group_gen', (['configs', 'configs[0].experiment_name'], {'mode': '"""rnn_type"""'}), "(configs, configs[0].experiment_name, mode='rnn_type')\n", (5099, 5153), False, 'from analysis import plots\n'), ((5252, 5274), 'numpy.arange', 'np.arange', (['(0.1)', '(2)', '(0.1)'], {}), '(0.1, 2, 0.1)\n', (5261, 5274), True, 'import numpy as np\n'), ((5290, 5317), 'numpy.zeros_like', 'np.zeros_like', (['t_scale_list'], {}), '(t_scale_list)\n', (5303, 5317), True, 'import numpy as np\n'), ((5747, 5820), 'analysis.plots.plot_group_gen', 'plots.plot_group_gen', (['configs', 'configs[0].experiment_name'], {'mode': '"""context"""'}), "(configs, configs[0].experiment_name, mode='context')\n", (5767, 5820), False, 'from analysis import plots\n'), ((5927, 5949), 'numpy.arange', 'np.arange', (['(0.1)', '(2)', '(0.1)'], {}), '(0.1, 2, 0.1)\n', (5936, 5949), True, 'import numpy as np\n'), ((5965, 5992), 'numpy.zeros_like', 'np.zeros_like', (['t_scale_list'], {}), '(t_scale_list)\n', (5978, 5992), True, 'import numpy as np\n'), ((6422, 6495), 'analysis.plots.plot_group_gen', 'plots.plot_group_gen', (['configs', 'configs[0].experiment_name'], {'mode': '"""context"""'}), "(configs, configs[0].experiment_name, mode='context')\n", (6442, 6495), False, 'from analysis import plots\n'), ((987, 1034), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""experiments"""', 'exp_name'], {}), "(ROOT_DIR, 'experiments', exp_name)\n", (999, 1034), False, 'import os\n'), ((4343, 4395), 'analysis.plots.plot_gen', 'plots.plot_gen', (['t_scale_list', 'acc_list', 'cfg.rnn_type'], {}), '(t_scale_list, acc_list, cfg.rnn_type)\n', (4357, 4395), False, 'from analysis import plots\n'), ((5022, 5074), 'analysis.plots.plot_gen', 'plots.plot_gen', (['t_scale_list', 'acc_list', 'cfg.rnn_type'], {}), '(t_scale_list, acc_list, cfg.rnn_type)\n', (5036, 5074), False, 'from analysis import plots\n'), ((5691, 5742), 'analysis.plots.plot_gen', 'plots.plot_gen', (['t_scale_list', 'acc_list', 'cfg.context'], {}), '(t_scale_list, acc_list, cfg.context)\n', (5705, 5742), False, 'from analysis import plots\n'), ((6366, 6417), 'analysis.plots.plot_gen', 'plots.plot_gen', (['t_scale_list', 'acc_list', 'cfg.context'], {}), '(t_scale_list, acc_list, cfg.context)\n', (6380, 6417), False, 'from analysis import plots\n'), ((4069, 4087), 'copy.deepcopy', 'copy.deepcopy', (['cfg'], {}), '(cfg)\n', (4082, 4087), False, 'import copy\n'), ((4154, 4186), 'evaluate.eval_total_acc', 'evaluate.eval_total_acc', (['new_cfg'], {}), '(new_cfg)\n', (4177, 4186), False, 'import evaluate\n'), ((4204, 4249), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""tscalelist.npy"""'], {}), "(cfg.save_path, 'tscalelist.npy')\n", (4216, 4249), False, 'import os\n'), ((4281, 4323), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""acclist.npy"""'], {}), "(cfg.save_path, 'acclist.npy')\n", (4293, 4323), False, 'import os\n'), ((4748, 4766), 'copy.deepcopy', 'copy.deepcopy', (['cfg'], {}), '(cfg)\n', (4761, 4766), False, 'import copy\n'), ((4833, 4865), 'evaluate.eval_total_acc', 'evaluate.eval_total_acc', (['new_cfg'], {}), '(new_cfg)\n', (4856, 4865), False, 'import evaluate\n'), ((4883, 4928), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""tscalelist.npy"""'], {}), "(cfg.save_path, 'tscalelist.npy')\n", (4895, 4928), False, 'import os\n'), ((4960, 5002), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""acclist.npy"""'], {}), "(cfg.save_path, 'acclist.npy')\n", (4972, 5002), False, 'import os\n'), ((5417, 5435), 'copy.deepcopy', 'copy.deepcopy', (['cfg'], {}), '(cfg)\n', (5430, 5435), False, 'import copy\n'), ((5502, 5534), 'evaluate.eval_total_acc', 'evaluate.eval_total_acc', (['new_cfg'], {}), '(new_cfg)\n', (5525, 5534), False, 'import evaluate\n'), ((5552, 5597), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""tscalelist.npy"""'], {}), "(cfg.save_path, 'tscalelist.npy')\n", (5564, 5597), False, 'import os\n'), ((5629, 5671), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""acclist.npy"""'], {}), "(cfg.save_path, 'acclist.npy')\n", (5641, 5671), False, 'import os\n'), ((6092, 6110), 'copy.deepcopy', 'copy.deepcopy', (['cfg'], {}), '(cfg)\n', (6105, 6110), False, 'import copy\n'), ((6177, 6209), 'evaluate.eval_total_acc', 'evaluate.eval_total_acc', (['new_cfg'], {}), '(new_cfg)\n', (6200, 6209), False, 'import evaluate\n'), ((6227, 6272), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""tscalelist.npy"""'], {}), "(cfg.save_path, 'tscalelist.npy')\n", (6239, 6272), False, 'import os\n'), ((6304, 6346), 'os.path.join', 'os.path.join', (['cfg.save_path', '"""acclist.npy"""'], {}), "(cfg.save_path, 'acclist.npy')\n", (6316, 6346), False, 'import os\n')]
from pathlib import Path import numpy as np from PIL import Image def load_light_distribution(name="lamp_spectrum.csv"): sd_light_source = np.loadtxt(name, skiprows=1, dtype="float") sd_light_source = sd_light_source[np.where(sd_light_source[:, 0] >= 400)] # rindx = np.where(sd_light_source[:, 0] >= 400) and np.where(sd_light_source[:, 0] <= 600) sd_light_source = sd_light_source[:, 1:2] # print("sum", np.sum(sd_light_source)) sd_light_source = sd_light_source[::20] sd_light_source = sd_light_source[:44] # print(sd_light_source.shape) return sd_light_source def load_illuminantA(name="A.csv"): sd_light_source = np.loadtxt(name, skiprows=1, dtype="float") sd_light_source = sd_light_source[np.where(sd_light_source[:, 0] >= 400)] sd_light_source = sd_light_source[:, 1:2] # print("sum",np.sum(sd_light_source)) # sd_light_source = sd_light_source / np.max(sd_light_source) sd_light_source = sd_light_source[::2] sd_light_source = sd_light_source[:44] # print(sd_light_source) return sd_light_source def hsi_to_ci31931_rgb(himg, dist_name): pass def hsi_to_rgb(himg, dist_name): """ input: ハイパースペクトル画像 HSI(numpy型) return: RGB画像(Image objedct) """ # 計測時にノイズとして負の値になった値を0にする np.where(himg < 0, 0, himg) cmf = np.loadtxt("./csvs/CIE1931-2deg-XYZ.csv", delimiter=",") # HSIが400nm以上のため等色関数も400nm以上のみを利用 cmf = cmf[np.where(cmf[:, 0] >= 400)] # 光源の分光分布の5nm刻みをHSIと同じ10nm刻みに変更 cmf = cmf[::2] cmf = cmf[:44, :] stem = Path(dist_name).stem if stem in ["A"]: # 標準光源Aは780nmまでを可視光としているため,HSIと等色関数も780nmm以下に制限 nhimg = himg[:, :, :39] cmf = cmf[:39, :] sd_light_source = load_illuminantA(name=dist_name) elif stem in ["D65"]: nhimg = himg[:, :, :44] cmf = cmf[:44, :] sd_light_source = load_illuminantA(name=dist_name) else: nhimg = himg[:, :, :44] sd_light_source = load_light_distribution(name=dist_name) flag_const_100 = False ncmf = cmf[:, 1:] nmf_multi_ld = ncmf * sd_light_source x = nmf_multi_ld[:, 0] y = nmf_multi_ld[:, 1] z = nmf_multi_ld[:, 2] if flag_const_100: k = 100 / np.sum(y) # print(np.sum(y)) else: k = 1 / np.sum(y) # print(np.sum(y)) X = np.sum(x * nhimg, axis=2) Y = np.sum(y * nhimg, axis=2) Z = np.sum(z * nhimg, axis=2) XYZ = np.stack([X, Y, Z], 2) # print(np.max(XYZ), np.min(XYZ)) # print(np.max(Y*k), np.min(Y*k)) XYZ = XYZ * k XYZ.shape xyz_to_r = np.array([3.2406255, -1.537208, -0.4986286]) r = np.dot(XYZ, xyz_to_r) xyz_to_g = np.array([-0.9689307, 1.8757561, 0.0415175]) g = np.dot(XYZ, xyz_to_g) xyz_to_b = np.array([0.0557101, -0.2040211, 1.0569959]) b = np.dot(XYZ, xyz_to_b) rgb_img2 = np.stack([r, g, b], axis=2) rgb_img2 = np.where(rgb_img2 < 0, 0, rgb_img2) if flag_const_100: # HSI画像配布元と同じガンマ補正(ガンマ=0.6)をする # print(np.max(rgb_img2)) rgb_img2 = np.power(rgb_img2/255, 0.6) else: # XYZからsRGBへのレンダリングするためのガンマ補正 # print(np.max(255*rgb_img2)) rgb_img2 = np.where(rgb_img2 <= 0.0031308, 12.92 * rgb_img2, 1.055 * np.power(rgb_img2, 1/2.4) - 0.055) rgb_img2 = np.clip(rgb_img2, 0, 1) if flag_const_100: img = Image.fromarray(np.uint8(255*rgb_img2)) else: img = Image.fromarray(np.uint8(255*rgb_img2)) return img
[ "numpy.stack", "numpy.uint8", "numpy.sum", "numpy.power", "numpy.clip", "pathlib.Path", "numpy.where", "numpy.array", "numpy.loadtxt", "numpy.dot" ]
[((146, 189), 'numpy.loadtxt', 'np.loadtxt', (['name'], {'skiprows': '(1)', 'dtype': '"""float"""'}), "(name, skiprows=1, dtype='float')\n", (156, 189), True, 'import numpy as np\n'), ((663, 706), 'numpy.loadtxt', 'np.loadtxt', (['name'], {'skiprows': '(1)', 'dtype': '"""float"""'}), "(name, skiprows=1, dtype='float')\n", (673, 706), True, 'import numpy as np\n'), ((1287, 1314), 'numpy.where', 'np.where', (['(himg < 0)', '(0)', 'himg'], {}), '(himg < 0, 0, himg)\n', (1295, 1314), True, 'import numpy as np\n'), ((1326, 1382), 'numpy.loadtxt', 'np.loadtxt', (['"""./csvs/CIE1931-2deg-XYZ.csv"""'], {'delimiter': '""","""'}), "('./csvs/CIE1931-2deg-XYZ.csv', delimiter=',')\n", (1336, 1382), True, 'import numpy as np\n'), ((2341, 2366), 'numpy.sum', 'np.sum', (['(x * nhimg)'], {'axis': '(2)'}), '(x * nhimg, axis=2)\n', (2347, 2366), True, 'import numpy as np\n'), ((2375, 2400), 'numpy.sum', 'np.sum', (['(y * nhimg)'], {'axis': '(2)'}), '(y * nhimg, axis=2)\n', (2381, 2400), True, 'import numpy as np\n'), ((2409, 2434), 'numpy.sum', 'np.sum', (['(z * nhimg)'], {'axis': '(2)'}), '(z * nhimg, axis=2)\n', (2415, 2434), True, 'import numpy as np\n'), ((2445, 2467), 'numpy.stack', 'np.stack', (['[X, Y, Z]', '(2)'], {}), '([X, Y, Z], 2)\n', (2453, 2467), True, 'import numpy as np\n'), ((2591, 2635), 'numpy.array', 'np.array', (['[3.2406255, -1.537208, -0.4986286]'], {}), '([3.2406255, -1.537208, -0.4986286])\n', (2599, 2635), True, 'import numpy as np\n'), ((2644, 2665), 'numpy.dot', 'np.dot', (['XYZ', 'xyz_to_r'], {}), '(XYZ, xyz_to_r)\n', (2650, 2665), True, 'import numpy as np\n'), ((2681, 2725), 'numpy.array', 'np.array', (['[-0.9689307, 1.8757561, 0.0415175]'], {}), '([-0.9689307, 1.8757561, 0.0415175])\n', (2689, 2725), True, 'import numpy as np\n'), ((2734, 2755), 'numpy.dot', 'np.dot', (['XYZ', 'xyz_to_g'], {}), '(XYZ, xyz_to_g)\n', (2740, 2755), True, 'import numpy as np\n'), ((2771, 2815), 'numpy.array', 'np.array', (['[0.0557101, -0.2040211, 1.0569959]'], {}), '([0.0557101, -0.2040211, 1.0569959])\n', (2779, 2815), True, 'import numpy as np\n'), ((2824, 2845), 'numpy.dot', 'np.dot', (['XYZ', 'xyz_to_b'], {}), '(XYZ, xyz_to_b)\n', (2830, 2845), True, 'import numpy as np\n'), ((2861, 2888), 'numpy.stack', 'np.stack', (['[r, g, b]'], {'axis': '(2)'}), '([r, g, b], axis=2)\n', (2869, 2888), True, 'import numpy as np\n'), ((2905, 2940), 'numpy.where', 'np.where', (['(rgb_img2 < 0)', '(0)', 'rgb_img2'], {}), '(rgb_img2 < 0, 0, rgb_img2)\n', (2913, 2940), True, 'import numpy as np\n'), ((3297, 3320), 'numpy.clip', 'np.clip', (['rgb_img2', '(0)', '(1)'], {}), '(rgb_img2, 0, 1)\n', (3304, 3320), True, 'import numpy as np\n'), ((228, 266), 'numpy.where', 'np.where', (['(sd_light_source[:, 0] >= 400)'], {}), '(sd_light_source[:, 0] >= 400)\n', (236, 266), True, 'import numpy as np\n'), ((745, 783), 'numpy.where', 'np.where', (['(sd_light_source[:, 0] >= 400)'], {}), '(sd_light_source[:, 0] >= 400)\n', (753, 783), True, 'import numpy as np\n'), ((1435, 1461), 'numpy.where', 'np.where', (['(cmf[:, 0] >= 400)'], {}), '(cmf[:, 0] >= 400)\n', (1443, 1461), True, 'import numpy as np\n'), ((1552, 1567), 'pathlib.Path', 'Path', (['dist_name'], {}), '(dist_name)\n', (1556, 1567), False, 'from pathlib import Path\n'), ((3056, 3085), 'numpy.power', 'np.power', (['(rgb_img2 / 255)', '(0.6)'], {}), '(rgb_img2 / 255, 0.6)\n', (3064, 3085), True, 'import numpy as np\n'), ((2233, 2242), 'numpy.sum', 'np.sum', (['y'], {}), '(y)\n', (2239, 2242), True, 'import numpy as np\n'), ((2296, 2305), 'numpy.sum', 'np.sum', (['y'], {}), '(y)\n', (2302, 2305), True, 'import numpy as np\n'), ((3374, 3398), 'numpy.uint8', 'np.uint8', (['(255 * rgb_img2)'], {}), '(255 * rgb_img2)\n', (3382, 3398), True, 'import numpy as np\n'), ((3438, 3462), 'numpy.uint8', 'np.uint8', (['(255 * rgb_img2)'], {}), '(255 * rgb_img2)\n', (3446, 3462), True, 'import numpy as np\n'), ((3247, 3274), 'numpy.power', 'np.power', (['rgb_img2', '(1 / 2.4)'], {}), '(rgb_img2, 1 / 2.4)\n', (3255, 3274), True, 'import numpy as np\n')]
import pyaudio import numpy as np import sys import time import asyncio from aiohttp import web, WSMsgType import json import os import struct import websocket HOST = os.getenv('HOST', '0.0.0.0') PORT = int(os.getenv('PORT', 8080)) SAMPLE_RATE = 44100 CHUNK_SIZE = 4096 AUDIO_FORMAT = pyaudio.paInt16 FORMAT = np.int16 def calculate_levels(data, chunk,sample_rate): # Apply FFT - real data so rfft used fourier=np.fft.rfft(data) # Remove last element in array to make it the same size as chunk fourier=np.delete(fourier,len(fourier)-1) #fourier = fourier[0:256] # Find amplitude power = np.log10(np.abs(fourier))**2 # Arrange array into 256 rows for the Unicorn HAT HD power = np.reshape(power,(256,8)) matrix= np.average(power,axis=1) return list(matrix.astype(int).astype(float)) def calculate_spect(data, chunk): data_int = struct.unpack(str(2 * chunk) + 'B', data) yf = np.fft.rfft(data_int) spect = np.abs(yf[256:512]) / (128 * chunk) max_v = np.max(spect) # hist = np.histogram(spect, 256) return list(spect.astype(float)), max_v.astype(float) # return list(hist[0].astype(float)), max_v.astype(float) def audio_analyse(stream): signal = np.frombuffer(stream.read(CHUNK_SIZE, exception_on_overflow = False), FORMAT) # levels = calculate_levels(signal, CHUNK_SIZE, SAMPLE_RATE) levels, max_v = calculate_spect(signal, CHUNK_SIZE) return json.dumps({'data':levels,'max':max_v}) async def connection_test(request): return web.Response(text='Connection test') async def websocket_handler(request): print('Websocket connection starting') ws = web.WebSocketResponse() await ws.prepare(request) print('Websocket connection ready') # rgb = audio_analyse(stream) async for msg in ws: levels = audio_analyse(stream) if msg.type == WSMsgType.TEXT: if msg.data == 'close': await ws.close() else: await ws.send_str(levels) print('Websocket connection closed') return ws def main(): loop = asyncio.get_event_loop() app = web.Application(loop=loop) app.router.add_route('GET', '/', connection_test) app.router.add_route('GET', '/ws', websocket_handler) web.run_app(app, host=HOST, port=PORT) if __name__ == '__main__': p = pyaudio.PyAudio() stream = p.open(format=AUDIO_FORMAT, channels=1, rate=SAMPLE_RATE, input=True, frames_per_buffer=CHUNK_SIZE) main()
[ "numpy.fft.rfft", "numpy.average", "aiohttp.web.Response", "aiohttp.web.WebSocketResponse", "asyncio.get_event_loop", "numpy.abs", "aiohttp.web.Application", "json.dumps", "numpy.max", "numpy.reshape", "aiohttp.web.run_app", "pyaudio.PyAudio", "os.getenv" ]
[((169, 197), 'os.getenv', 'os.getenv', (['"""HOST"""', '"""0.0.0.0"""'], {}), "('HOST', '0.0.0.0')\n", (178, 197), False, 'import os\n'), ((209, 232), 'os.getenv', 'os.getenv', (['"""PORT"""', '(8080)'], {}), "('PORT', 8080)\n", (218, 232), False, 'import os\n'), ((424, 441), 'numpy.fft.rfft', 'np.fft.rfft', (['data'], {}), '(data)\n', (435, 441), True, 'import numpy as np\n'), ((718, 745), 'numpy.reshape', 'np.reshape', (['power', '(256, 8)'], {}), '(power, (256, 8))\n', (728, 745), True, 'import numpy as np\n'), ((756, 781), 'numpy.average', 'np.average', (['power'], {'axis': '(1)'}), '(power, axis=1)\n', (766, 781), True, 'import numpy as np\n'), ((932, 953), 'numpy.fft.rfft', 'np.fft.rfft', (['data_int'], {}), '(data_int)\n', (943, 953), True, 'import numpy as np\n'), ((1014, 1027), 'numpy.max', 'np.max', (['spect'], {}), '(spect)\n', (1020, 1027), True, 'import numpy as np\n'), ((1438, 1480), 'json.dumps', 'json.dumps', (["{'data': levels, 'max': max_v}"], {}), "({'data': levels, 'max': max_v})\n", (1448, 1480), False, 'import json\n'), ((1526, 1562), 'aiohttp.web.Response', 'web.Response', ([], {'text': '"""Connection test"""'}), "(text='Connection test')\n", (1538, 1562), False, 'from aiohttp import web, WSMsgType\n'), ((1654, 1677), 'aiohttp.web.WebSocketResponse', 'web.WebSocketResponse', ([], {}), '()\n', (1675, 1677), False, 'from aiohttp import web, WSMsgType\n'), ((2097, 2121), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (2119, 2121), False, 'import asyncio\n'), ((2132, 2158), 'aiohttp.web.Application', 'web.Application', ([], {'loop': 'loop'}), '(loop=loop)\n', (2147, 2158), False, 'from aiohttp import web, WSMsgType\n'), ((2275, 2313), 'aiohttp.web.run_app', 'web.run_app', (['app'], {'host': 'HOST', 'port': 'PORT'}), '(app, host=HOST, port=PORT)\n', (2286, 2313), False, 'from aiohttp import web, WSMsgType\n'), ((2351, 2368), 'pyaudio.PyAudio', 'pyaudio.PyAudio', ([], {}), '()\n', (2366, 2368), False, 'import pyaudio\n'), ((966, 985), 'numpy.abs', 'np.abs', (['yf[256:512]'], {}), '(yf[256:512])\n', (972, 985), True, 'import numpy as np\n'), ((629, 644), 'numpy.abs', 'np.abs', (['fourier'], {}), '(fourier)\n', (635, 644), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from functools import partial import numpy as np import torch import torch.nn as nn import torchvision from omegaconf import OmegaConf import hydra import phyre from phyre_simulator import PhyreSimulator # pylint: disable=unused-import from losses import * # pylint: disable=wildcard-import,unused-wildcard-import from preproc import * # pylint: disable=wildcard-import,unused-wildcard-import USE_CUDA = torch.cuda.is_available() DEVICE = torch.device('cuda:0' if USE_CUDA else 'cpu') np.random.seed(42) class ActionNetwork(nn.Module): def __init__(self, action_size, output_size, hidden_size=256, num_layers=1): super().__init__() self.layers = nn.ModuleList([nn.Linear(action_size, hidden_size)]) for _ in range(1, num_layers): self.layers.append(nn.Linear(hidden_size, hidden_size)) self.output = nn.Linear(hidden_size, output_size) def forward(self, tensor): for layer in self.layers: tensor = nn.functional.relu(layer(tensor), inplace=True) return self.output(tensor) class FilmActionNetwork(nn.Module): def __init__(self, action_size, output_size, **kwargs): super().__init__() self.net = ActionNetwork(action_size, output_size * 2, **kwargs) def forward(self, actions, image): beta, gamma = torch.chunk( self.net(actions).unsqueeze(-1).unsqueeze(-1), chunks=2, dim=1) return image * beta + gamma class SimpleNetWithAction(nn.Module): def __init__(self, action_size, action_network_kwargs=None): super().__init__() action_network_kwargs = action_network_kwargs or {} self.stem = nn.Sequential( nn.Conv2d(phyre.NUM_COLORS, 3, kernel_size=1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=True), nn.Conv2d(3, 64, kernel_size=7, stride=4, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.action_net = ActionNetwork(action_size, 128, **action_network_kwargs) @property def device(self): if hasattr(self, 'parameters') and next(self.parameters()).is_cuda: return 'cuda' else: return 'cpu' def preprocess(self, observations): device = self.device image = _image_colors_to_onehot( observations.to(dtype=torch.long, device=device)) return dict(features=self.stem(image).squeeze(-1).squeeze(-1)) def forward(self, observations, actions, preprocessed=None): if preprocessed is None: preprocessed = self.preprocess(observations) return self._forward(actions, **preprocessed) def _forward(self, actions, features): actions = self.action_net(actions.to(features.device)) return (actions * features).sum(-1) / (actions.shape[-1]**0.5) def ce_loss(self, decisions, targets): targets = torch.ByteTensor(targets).float().to(decisions.device) return nn.functional.binary_cross_entropy_with_logits( decisions, targets) def _get_fusution_points(fusion_place_spec, max_points): if fusion_place_spec == 'all': return tuple(range(max_points)) elif fusion_place_spec == 'none': return tuple() else: return tuple(int(fusion_place_spec), ) class ResNet18FilmAction(nn.Module): def __init__(self, action_size, action_layers=1, action_hidden_size=256, fusion_place='last'): super().__init__() net = torchvision.models.resnet18(pretrained=False) conv1 = nn.Conv2d(phyre.NUM_COLORS, 64, kernel_size=7, stride=2, padding=3, bias=False) self.register_buffer('embed_weights', torch.eye(phyre.NUM_COLORS)) self.stem = nn.Sequential(conv1, net.bn1, net.relu, net.maxpool) self.stages = nn.ModuleList( [net.layer1, net.layer2, net.layer3, net.layer4]) def build_film(output_size): return FilmActionNetwork(action_size, output_size, hidden_size=action_hidden_size, num_layers=action_layers) assert fusion_place in ('first', 'last', 'all', 'none', 'last_single') self.last_network = None if fusion_place == 'all': self.action_networks = nn.ModuleList( [build_film(size) for size in (64, 64, 128, 256)]) elif fusion_place == 'last': # Save module as attribute. self._action_network = build_film(256) self.action_networks = [None, None, None, self._action_network] elif fusion_place == 'first': # Save module as attribute. self._action_network = build_film(64) self.action_networks = [self._action_network, None, None, None] elif fusion_place == 'last_single': # Save module as attribute. self.last_network = build_film(512) self.action_networks = [None, None, None, None] elif fusion_place == 'none': self.action_networks = [None, None, None, None] else: raise Exception('Unknown fusion place: %s' % fusion_place) self.reason = nn.Linear(512, 1) @property def device(self): if hasattr(self, 'parameters') and next(self.parameters()).is_cuda: return 'cuda' else: return 'cpu' def preprocess(self, observations): image = self._image_colors_to_onehot(observations) features = self.stem(image) for stage, act_layer in zip(self.stages, self.action_networks): if act_layer is not None: break features = stage(features) else: features = nn.functional.adaptive_max_pool2d(features, 1) return dict(features=features) def forward(self, observations, actions, preprocessed=None): if preprocessed is None: preprocessed = self.preprocess(observations) return self._forward(actions, **preprocessed) def _forward(self, actions, features): actions = actions.to(features.device) skip_compute = True for stage, film_layer in zip(self.stages, self.action_networks): if film_layer is not None: skip_compute = False features = film_layer(actions, features) if skip_compute: continue features = stage(features) if not skip_compute: features = nn.functional.adaptive_max_pool2d(features, 1) if self.last_network is not None: features = self.last_network(actions, features) features = features.flatten(1) if features.shape[0] == 1 and actions.shape[0] != 1: # Haven't had a chance to use actions. So will match batch size as # in actions manually. features = features.expand(actions.shape[0], -1) return self.reason(features).squeeze(-1) def ce_loss(self, decisions, targets): targets = targets.to(dtype=torch.float, device=decisions.device) return nn.functional.binary_cross_entropy_with_logits( decisions, targets) def _image_colors_to_onehot(self, indices): onehot = torch.nn.functional.embedding( indices.to(dtype=torch.long, device=self.embed_weights.device), self.embed_weights) onehot = onehot.permute(0, 3, 1, 2).contiguous() return onehot def _image_colors_to_onehot(indices): onehot = torch.nn.functional.embedding( indices, torch.eye(phyre.NUM_COLORS, device=indices.device)) onehot = onehot.permute(0, 3, 1, 2).contiguous() return onehot def gen_dyn_conv(dim_in, dim_out): # Switched to 1x1 kernels since I might be running it on 1x1 features too. # Using vector features when using object representation conv = nn.Conv2d(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) return conv class DynConcat(nn.Module): """Simple dynamics model, that concats the features and 2 layer MLP.""" def __init__(self, encoder, dim, n, nobj): super().__init__() del encoder # This one doesn't need it self.dyn = nn.Sequential(gen_dyn_conv(dim * n * nobj, dim * nobj), nn.ReLU(inplace=True), gen_dyn_conv(dim * nobj, dim * nobj), nn.ReLU(inplace=True), gen_dyn_conv(dim * nobj, dim * nobj)) def forward(self, features, pixels): """ This dyn model does not use pixels, so will just return the last history frame Args: features: (B, T, Nobj, D, H', W') pixels: (B, T, Nobj, C, H, W) Returns: pred: (B, Nobj, D, H', W') pixels: (B, Nobj, C, H, W) addl_losses: {} """ cat_feats = torch.reshape(features, (features.shape[0], -1) + features.shape[-2:]) future_feat = torch.reshape(self.dyn(cat_feats), features.shape[:1] + features.shape[2:]) # Skip connection, add the last frames features, so it stops # deleting things pred = features[:, -1, ...] + future_feat return pred, pixels[:, -1, ...], {} class MultiSTN(nn.Module): """Multi spatial transformer network: predicts multiple transformations and applies to parts of the input feature, split on the channel dim.""" def __init__(self, input_dim, num_tx, dof='affine', inp_type='pix', affine_tx_mode='bilinear', kernel_size=3, stochastic=False): """ Args: input_dim (int): Dimension of the features used to predict the STN parameters num_tx (int): Number of transformations to predict, will apply to the tensor, split along some dimension dof (str): Controls how generic of a affine matrix to predict. If 'affine', will predict a generic 3x2 matrix If 'rot-trans-only', it will only predict theta, x, y, and use those to construct the affine matrix. So it will force the matrix to not do any shear, scale etc. Similarly for 'rot-only' and 'trans-only' inp_type (str): Defines the type of the input. 'pix' is the default, to directly transform the grid and move the pixels. 'pt' is the PointNet style format, where the first 2 dimensions of each split of the channels must correspond to the X, Y location, and the transforms will just modify those dimensions, and not touch the pixel values at all. affine_tx_mode (str): The mode to use for grid_sample kernel_size (int) stochastic (bool): If true, predict a distribution over the affine matrix, instead of deterministically. """ super().__init__() self.num_tx = num_tx self.dof = dof self.inp_type = inp_type self.affine_tx_mode = affine_tx_mode # Spatial transformer localization-network self.localization = nn.Sequential( nn.Conv2d(input_dim, 8 * num_tx, kernel_size=kernel_size, padding=kernel_size // 2), nn.ReLU(True), nn.Conv2d(8 * num_tx, 10 * num_tx, kernel_size=kernel_size, padding=kernel_size // 2), nn.ReLU(True)) # Regressor for the affine matrices # Predicting 3x2 parameters that should be enough for any generic # affine transformation, though will subselect in case only few # parameters are needed self.stochastic = stochastic if self.stochastic: self.fc_loc_mean = nn.Linear(10 * num_tx, 10 * num_tx) self.fc_loc_logvar = nn.Linear(10 * num_tx, 10 * num_tx) self.fc_loc = nn.Sequential(nn.Linear(10 * num_tx, 32 * num_tx), nn.ReLU(True), nn.Linear(32 * num_tx, num_tx * 3 * 2)) # Initialize the weights/bias with identity transformation self.fc_loc[2].weight.data.zero_() if self.dof != 'affine': # The paramters would be used for rot/trans self.fc_loc[2].bias.data.zero_() # 0 rot/translation by default else: self.fc_loc[2].bias.data.copy_( torch.from_numpy( np.array([1, 0, 0, 0, 1, 0] * num_tx, dtype=np.float))) def transform_pix(self, feat, theta, mode='bilinear'): """Transform the features using theta.""" grid = nn.functional.affine_grid(theta, feat.size(), align_corners=True) return nn.functional.grid_sample(feat, grid, mode=mode, align_corners=True) def transform_pt(self, feat, theta): """Transform pt-net style feature using theta. Here, it assumes the first 2 dimensions of the feature are loc. Args: feat (B, C, H, W), C >= 2 Returns: tx feat (B, C, H, W) """ assert feat.shape[1] >= 2 feat_pos = feat[:, :2, ...] feat_pos_ones = torch.ones_like(feat[:, :1, ...]) feat_pos_aug = torch.cat([feat_pos, feat_pos_ones], dim=1) feat_pos_aug = feat_pos_aug.view(feat.shape[:1] + (3, -1)) feat_pos_aug_end = feat_pos_aug.transpose(1, 2).unsqueeze(-1) txed = torch.matmul(theta.unsqueeze(1), feat_pos_aug_end) tx_feat_pos = txed.squeeze(-1).transpose(1, 2).view(feat_pos.shape) # Attach the features to it tx_feat = torch.cat([tx_feat_pos, feat[:, 2:, ...]], dim=1) return tx_feat def _compute_loc_stochastic(self, feat_hist): # from https://github.com/pytorch/examples/blob/master/vae/main.py#L53 mean = self.fc_loc_mean(feat_hist) logvar = self.fc_loc_logvar(feat_hist) std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) latent_var_z = mean + eps * std kl_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp()) return self.fc_loc(latent_var_z), kl_loss def forward(self, feat_for_tx, feat_to_tx, split_dim=1): """ Args: feat_for_tx (B, D, H, W): The features to use to compute the transformation feat_to_tx (B, D', H, W): Features to apply the tx onto split_dim (int): Dimension to split on """ feat_hist_embed = self.localization(feat_for_tx) # Average out the spatial dimension feat_hist_embed = torch.mean(feat_hist_embed, dim=[-2, -1]) addl_losses = {} if self.stochastic: pred, kl_loss = self._compute_loc_stochastic(feat_hist_embed) addl_losses['kl'] = kl_loss else: pred = self.fc_loc(feat_hist_embed) if self.dof != 'affine': pred = pred.view(-1, self.num_tx, 3 * 2) # Say the first number is actual angle, and next 2 are x, y angle = pred[..., :1] pos_x = pred[..., 1:2] pos_y = pred[..., 2:3] if self.dof == 'rot-only': pos_x = torch.zeros_like(pos_x) pos_y = torch.zeros_like(pos_y) elif self.dof == 'trans-only': angle = torch.zeros_like(angle) else: assert self.dof == 'rot-trans-only', 'The only other option' cos_angle = torch.cos(angle) sin_angle = torch.sin(angle) # create the 2x3 matrix out of this theta = torch.cat( [cos_angle, sin_angle, pos_x, -sin_angle, cos_angle, pos_y], dim=-1) theta = theta.view(theta.shape[:-1] + (2, 3)) elif self.dof == 'affine': theta = pred.view(-1, self.num_tx, 2, 3) else: raise NotImplementedError('Unknown {}'.format(self.dof)) # Split the channels of feat_to_tx into num_tx groups, and apply the # transformations to each of those groups assert feat_to_tx.shape[split_dim] % self.num_tx == 0, ( 'Must be divisible to ensure equal sized chunks') # Chunk it feat_to_tx_parts = torch.chunk(feat_to_tx, self.num_tx, split_dim) # Apply the corresponding transformation to each part if self.inp_type == 'pix': tx_fn = partial(self.transform_pix, mode=self.affine_tx_mode) elif self.inp_type == 'pt': tx_fn = self.transform_pt else: raise NotImplementedError('Unknown type {}'.format(self.inp_type)) feat_to_tx_parts_txed = [ tx_fn(el, theta[:, i, ...]) for i, el in enumerate(feat_to_tx_parts) ] return torch.cat(feat_to_tx_parts_txed, dim=split_dim), addl_losses class DynSTN(nn.Module): """Spatial Transformer based dynamics model.""" def __init__(self, encoder, dim, n, nobj, num_tx, base_stn): super().__init__() del encoder # This one doesn't need it assert nobj == 1 or nobj == num_tx, ( 'Either split the 1 object features and tx, or tx each obj sep') self.dyn = hydra.utils.instantiate(base_stn, dim * n * nobj, num_tx) def forward(self, features, pixels): """ This dyn model does not use pixels, so will just return the last history frame Args: features: (B, T, Nobj, D, H', W') pixels: (B, T, Nobj, C, H, W) Returns: pred: (B, Nobj, D, H', W') pix addl_losses """ cat_feats = torch.reshape(features, (features.shape[0], -1) + features.shape[-2:]) # For > 1 objs, just flatten Nobj and D channels, and the STN class # will split it back to do the transformations feat_obj_flat = torch.flatten(features, 2, 3) new_feat, addl_loses = self.dyn(cat_feats, feat_obj_flat[:, -1, ...]) future_feat = torch.reshape(new_feat, features.shape[:1] + features.shape[2:]) return future_feat, pixels[:, -1, ...], addl_loses class DynSTNPixels_DEPRECATED(nn.Module): """Spatial Transformer based dynamics model, applied on pixels. Use DynSTNPixelChannelsDetBg""" def __init__(self, encoder, dim, n, nobj, num_tx, base_stn): super().__init__() self.enc = encoder self.dyn = hydra.utils.instantiate(base_stn, dim * n * nobj, num_tx) self.num_tx = num_tx # A network to predict num_tx attention maps self.attention = nn.Sequential( gen_deconv(dim * n * nobj, num_tx), *([gen_deconv(num_tx, num_tx, upsample_factor=4)] * 2), nn.Conv2d(num_tx, num_tx, kernel_size=1, padding=0, bias=False), nn.Softmax(dim=1)) def forward(self, features, pixels): """ Args: features: (B, T, Nobj, D, H', W') pixels: (B, T, C, H, W) Returns: pred: (B, Nobj, D, H', W') """ raise NotImplementedError('Deal with objectified pixel input. ' 'Also deal with addl losses. ') cat_feats = torch.reshape(features, (features.shape[0], -1) + features.shape[-2:]) assert features.shape[2] == 1, 'Not implemented yet for >1 objs' # Repmat the image channels num_tx times, so STN can predict those many # transformations pixels_tiled = pixels.repeat(1, 1, self.num_tx, 1, 1) future_pixels_tiled = self.dyn(cat_feats, pixels_tiled[:, -1, ...]) # Compute attention maps for compositing attention_maps = self.attention(cat_feats) # Do a weighted sum of the channels using the attention maps attention_maps_split = torch.chunk(attention_maps, self.num_tx, 1) future_pixels_split = torch.chunk(future_pixels_tiled, self.num_tx, 1) weighted = [ att * pix for att, pix in zip(attention_maps_split, future_pixels_split) ] future_pixels = torch.mean(torch.stack(weighted), dim=0) # Since this is a new image being generated, need to pass through the # encoder to get the features for this image future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...] return future_feat, future_pixels class DynSTNPixelChannels_DEPRECATED(nn.Module): """Spatial Transformer based dynamics model, applied on channels of img. Use DynSTNPixelChannelsDetBg""" def __init__(self, encoder, dim, n, nobj, base_stn): super().__init__() self.enc = encoder self.num_tx = phyre.NUM_COLORS # One tx per color self.dyn = hydra.utils.instantiate(base_stn, dim * n * nobj, self.num_tx) def forward(self, features, pixels): """ Args: features: (B, T, Nobj, D, H', W') pixels: (B, T, C, H, W) Returns: pred: (B, Nobj, D, H', W') """ raise NotImplementedError('Deal with objectified pixel input. ' 'Also deal with addl losses. ') assert (pixels.shape[2] == self.num_tx or pixels.shape[2] == self.num_tx * 3), 'In pix or pt mode so far' cat_feats = torch.reshape(features, (features.shape[0], -1) + features.shape[-2:]) assert features.shape[2] == 1, 'Not implemented yet for >1 objs' future_pixels = self.dyn(cat_feats, pixels[:, -1, ...]) # Since this is a new image being generated, need to pass through the # encoder to get the features for this image future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...] return future_feat, future_pixels class DynSTNPixelChannelsGenBg_DEPRECATED(nn.Module): """Spatial Transformer based dynamics model, applied on channels of img. Generates the background. Use DynSTNPixelChannelsDetBg """ def __init__(self, encoder, dim, n, nobj, base_stn): super().__init__() self.enc = encoder # One tx per color, except background that is generated since it's not # an object that can be moved like others. Just a 1x1 convolution on # the predicted image to gen the last channel self.num_tx = phyre.NUM_COLORS - 1 self.dyn = hydra.utils.instantiate(base_stn, dim * n * nobj, self.num_tx) # Just a couple layer should suffice, over the last frame, and new frame # feature self.bg_dec = nn.Sequential( nn.Conv2d(2 * phyre.NUM_COLORS - 1, 8, kernel_size=1, stride=1, padding=0, bias=False), nn.ReLU(inplace=True), nn.Conv2d(8, 1, kernel_size=1, stride=1, padding=0, bias=False)) def forward(self, features, pixels): """ Args: features: (B, T, Nobj, D, H', W') pixels: (B, T, C, H, W) Returns: pred: (B, Nobj, D, H', W') """ raise NotImplementedError('Deal with objectified pixel input. ' 'Also deal with addl losses. ') assert (pixels.shape[2] - 1) == self.num_tx cat_feats = torch.reshape(features, (features.shape[0], -1) + features.shape[-2:]) assert features.shape[2] == 1, 'Not implemented yet for >1 objs' future_pixels_obj = self.dyn(cat_feats, pixels[:, -1, 1:, ...]) future_pixels_bg = self.bg_dec( torch.cat([pixels[:, -1, ...], future_pixels_obj], dim=1)) future_pixels = torch.cat([future_pixels_bg, future_pixels_obj], dim=1) # Since this is a new image being generated, need to pass through the # encoder to get the features for this image future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...] return future_feat, future_pixels class DynSTNPixelChannelsDetBg(nn.Module): """Spatial Transformer based dynamics model, applied on channels of img. Generates the background deterministically, using the change. """ def __init__(self, encoder, dim, n, nobj, base_stn, movable_ch, movable_only=False): super().__init__() self.enc = encoder self.movable_only = movable_only # One tx per color (or movable colors, if that is set), # except background that is generated since it's not # an object that can be moved like others. if self.movable_only: self.movable_channels = torch.LongTensor(movable_ch) else: self.movable_channels = torch.arange(1, phyre.NUM_COLORS) self.num_tx = len(self.movable_channels) self.nobj = nobj self.dyn = hydra.utils.instantiate(base_stn, dim * n * nobj, self.num_tx * nobj) def forward(self, features, pixels): """ Args: features: (B, T, Nobj, D, H', W') pixels: (B, T, Nobj, C, H, W) Returns: pred: (B, Nobj, D, H', W') pix addl_losses """ assert pixels.shape[3] >= self.num_tx cat_feats = torch.reshape(features, (features.shape[0], -1) + features.shape[-2:]) pixels_movable = pixels[:, -1, :, self.movable_channels, ...] # combine all channels of objects and transform pixels_movable_flat = torch.flatten(pixels_movable, 1, 2) future_pixels_flat_movable, addl_losses = self.dyn( cat_feats, pixels_movable_flat) future_pixels_movable = future_pixels_flat_movable.view( pixels_movable.shape) future_pixels = pixels[:, -1, ...] # Copy most of the channels future_pixels[:, :, self.movable_channels, ...] = future_pixels_movable # Compute the background deterministically, where all other channels # are 0s, it has to be 1. So make channels sum to 1. future_pixels_bg = 1.0 - torch.sum( future_pixels[:, :, 1:, ...], dim=2, keepdims=True) future_pixels[:, :, :1, ...] = future_pixels_bg # Since this is a new image being generated, need to pass through the # encoder to get the features for this image future_feat = self.enc(future_pixels.unsqueeze(1))[:, 0, ...] return future_feat, future_pixels, addl_losses def gen_deconv(in_dim, out_dim, stride=1, kernel_size=3, padding=1, upsample_factor=2, inst_norm=False, activation=nn.ReLU(inplace=True)): return nn.Sequential( nn.ConvTranspose2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, bias=False), # nn.Sequential() simulates identity, if no instance norm to be added nn.InstanceNorm2d(out_dim, affine=True) if inst_norm else nn.Sequential(), activation, nn.Upsample(scale_factor=upsample_factor, mode='bilinear', align_corners=True)) class BasicDecoder(nn.Module): """Simple decoder, goes from features to frame representation.""" def __init__(self, in_dim, out_dim, nlayers, kernel_size, padding, upsample_factor, decode_from, backprop_feat_ext, inst_norm, activation): super().__init__() decoder_dim = 256 self.backprop_feat_ext = backprop_feat_ext self.decode_from = decode_from assert self.decode_from in ['pixels', 'features'] if self.decode_from == 'pixels': in_dim = phyre.NUM_COLORS decoder_dim = 16 activation = hydra.utils.instantiate(activation) logging.warning('Using %s activation for decoders', activation) inter_layers = [ gen_deconv(decoder_dim, decoder_dim, 1, kernel_size, padding, upsample_factor, inst_norm, activation=activation) for _ in range(nlayers) ] self.deconv_net = nn.Sequential( gen_deconv(in_dim, decoder_dim, 1, kernel_size, padding, upsample_factor, activation=activation), *inter_layers, gen_deconv( decoder_dim, out_dim, 1, kernel_size, padding, upsample_factor, activation=nn.Sequential())) # No activation on the last def forward(self, features, pixels): """ Args: features (BxNobjxDxH'xW'): Features to be decoded pixels (BxNobjxCxHxW): Pixels generated by the dynamics model Returns: imgs (BxNobjxD_outxHxW): Output frames (per obj, aggregation is done later in the Fwd class) """ if self.decode_from == 'pixels': decode_feature = pixels else: decode_feature = features if not self.backprop_feat_ext: # Means train the decoder separately from the rest of the network, # don't backprop gradients to the feature extractor decode_feature = decode_feature.detach() # Summing the features over all the objects, and doing one decode. # Separate decodes takes just way too much time, so need to do it once decode_feature = torch.sum(decode_feature, dim=1, keepdims=True) features_flatten_obj = torch.flatten(decode_feature, 0, 1) images = self.deconv_net(features_flatten_obj) # Reshape back into object level out = torch.reshape(images, decode_feature.shape[:2] + images.shape[1:]) return out class TrivialDecoder(nn.Module): """Trivial decoder, simply outputs the frames from the dynamics model.""" def __init__(self, in_dim, out_dim): super().__init__() del in_dim, out_dim def forward(self, features, pixels): """ Args: features (BxNobjxDxH'xW'): Features to be decoded pixels (BxNobjxCxHxW): Pixels generated by the dynamics model Returns: imgs (BxNobjxCxHxW): Output frames """ del features # assumes the dynamics model will do all decoding return pixels def average_losses(all_losses): """Average the losses into one dict of losses. Args: all_losses: List of dictionary of losses. Returns: combined: A dictionary with same keys as individual dicts, with all losses combined. """ if len(all_losses) == 0: return {} combined = {} for key, val in all_losses[0].items(): if not isinstance(val, torch.Tensor): # If it's none or sth.. eg some loss was not active combined[key] = val else: # Average all the values stkd = torch.stack([el[key] for el in all_losses]) # Average the losses that are positive, since I set undefined # losses to -1 (where not enough GT is available, etc) combined[key] = torch.mean(stkd * (stkd >= 0), dim=0) return combined class BasicObjEncoder(nn.Module): """Takes objectified representation, and puts it through more layers.""" def __init__(self, in_dim, out_dim, nlayers, kernel_size=3, stride=1, padding=1, spatial_mean=True): super().__init__() if nlayers > 0: self.out_dim = out_dim else: logging.warning('Ignoring the out_dim (%d) for ObjEncoder', out_dim) self.out_dim = in_dim layers_lst = [[ nn.Conv2d(in_dim if i == 0 else out_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, bias=False), nn.ReLU(inplace=True) ] for i in range(nlayers)] layers_lst_flat = [item for sublist in layers_lst for item in sublist] if len(layers_lst_flat) > 0: layers_lst_flat = layers_lst_flat[:-1] # Remove the last relu self.encoder = nn.Sequential(*layers_lst_flat) else: self.encoder = None self.spatial_mean = spatial_mean def forward(self, feat): """ Args: feat: (B, T, Nobj, D, H', W') """ if self.encoder: feat_flat = torch.flatten(feat, 0, 2) obj_embed_flat = self.encoder(feat_flat) obj_embed = torch.reshape( obj_embed_flat, feat.shape[:3] + obj_embed_flat.shape[1:]) else: obj_embed = feat if self.spatial_mean: obj_embed = torch.mean(obj_embed, dim=[-1, -2], keepdims=True) return obj_embed class ContextGatingObjectifier(nn.Module): """Takes intermediate representation and converts into object-level rep.""" def __init__(self, dim, obj_encoder, nobj=1): super().__init__() self.obj_mapper = nn.Sequential( nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, bias=False), nn.ReLU(inplace=True), nn.Conv2d(dim, nobj, kernel_size=1, stride=1, padding=0, bias=False)) self.obj_encoder = hydra.utils.instantiate(obj_encoder, dim) self.out_dim = self.obj_encoder.out_dim def forward(self, vid_feat): """ Decompose the video features into object level representation. Args: vid_feat: (BxTxDxH'xW') nobj (int): Max number of objects in the scene. The hope is that the extra channels will just have some degenerate information Returns: BxTxNobjxDxH''xW'' """ raise NotImplementedError('The inp is now objfied, TODO deal with it') batch_size = vid_feat.shape[0] # Use context gating: generate a heatmap for each object at each time # step, and weight using that heatmap to get an object representation flatten_feat = torch.flatten(vid_feat, 0, 1) # Unsqueeze to add a channel dimension to the attention maps obj_map = self.obj_mapper(flatten_feat).unsqueeze(2) # Add a 1-D object dimension flatten_feat = flatten_feat.unsqueeze(1) # Weight the feats with the attention maps to get the object-features mapped_feat = flatten_feat * obj_map # Reshape to add the time dimension back mapped_feat = torch.reshape(mapped_feat, (batch_size, -1) + mapped_feat.shape[1:]) final_feat = self.obj_encoder(mapped_feat) return final_feat class ChannelSplitObjectifier(nn.Module): """Splits the channel of image representation to get obj rep.""" def __init__(self, dim, obj_encoder, nobj=1): super().__init__() self.nobj = nobj self.obj_encoder = hydra.utils.instantiate(obj_encoder, dim // nobj) self.out_dim = self.obj_encoder.out_dim def forward(self, vid_feat): """ Decompose the video features into object level representation. Args: vid_feat: (BxTxNobjxDxH'xW') Returns: BxTxNobjx(D/Nobj)xH'xW' """ assert vid_feat.shape[2] == 1, ( 'Channel split can not deal with pre objectified {} input'.format( vid_feat.shape[2])) assert vid_feat.shape[3] % self.nobj == 0, 'Must be divisible' # Reshape the channel dimension to split into an object dimension objed = vid_feat.view(vid_feat.shape[:2] + (self.nobj, -1) + vid_feat.shape[-2:]) assert objed.shape[2] == self.nobj assert objed.shape[3] == vid_feat.shape[3] / self.nobj # Apply a little network to get a flat feature obj_encoded = self.obj_encoder(objed) return obj_encoded class TrivialObjectifier(nn.Module): """Simply returns the feature. Earlier version would unsqueeze, but since the component splitting the input at least has 1 obj, so no need to unsqueeze it further. """ def __init__(self, dim, obj_encoder, nobj=1): super().__init__() del obj_encoder self.nobj = nobj self.out_dim = dim def forward(self, vid_feat): assert vid_feat.shape[2] == self.nobj, ('{} != {}'.format( vid_feat.shape[2], self.nobj)) return vid_feat class SimpleBaseEncoder(nn.Module): """Simple network, simplified from Anton's version.""" def __init__(self, in_dim, width_scale_factor): """Simple encoder weights. For a 256x256 input, it'll give a 4x4 output.""" super().__init__() self.width_scale_factor = width_scale_factor _s = self._scale_int self.stem = nn.Sequential( nn.Conv2d(in_dim, 3, kernel_size=1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=True), nn.Conv2d(3, _s(64), kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(_s(64)), nn.ReLU(inplace=True), nn.Conv2d(_s(64), _s(64), kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(_s(64)), nn.ReLU(inplace=True), nn.Conv2d(_s(64), _s(64), kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(_s(64)), nn.ReLU(inplace=True), nn.Conv2d(_s(64), _s(64), kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(_s(64)), nn.ReLU(inplace=True), nn.Conv2d(_s(64), _s(128), kernel_size=5, stride=2, padding=2, bias=False), nn.BatchNorm2d(_s(128)), nn.ReLU(inplace=True), ) self.out_dim = _s(128) def _scale_int(self, n): """Scale the number by a factor. To control width of this network.""" return int(self.width_scale_factor * n) def forward(self, image): return self.stem(image) class ResNetBaseEncoder(nn.Module): """ResNet based feature extractor.""" def __init__(self, in_dim, base_model, nlayers): super().__init__() net = hydra.utils.instantiate(base_model) conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3, bias=False) self.stem = nn.Sequential(conv1, net.bn1, net.relu, net.maxpool) self.stages = nn.ModuleList( [getattr(net, 'layer%d' % (i + 1)) for i in range(nlayers)]) last_stage = self.stages[-1][-1] if hasattr(last_stage, 'bn3'): self.out_dim = last_stage.bn3.num_features elif hasattr(last_stage, 'bn2'): self.out_dim = last_stage.bn2.num_features else: raise ValueError('This should not happen') def forward(self, image): features = self.stem(image) for stage in self.stages: features = stage(features) return features class BasicEncoder(nn.Module): """Encode pixels to features.""" def __init__(self, in_dim, nobj, feat_ext, objectifier, obj_encoder, spatial_mean, feat_ext_eval_mode, process_objs_together): """ Args: obj_before_enc: If true, do the objectify in the input (pixel) space before running the encode (so each object is encoded separately) spatial_mean: Avg pool the features to 1x1 feat_ext_eval_mode: Set the feature extractor to eval mode for BN, dropout etc process_objs_together: If true, it will concatenate all objs on the channel dimension, extract features, and split the features in channel dimensions to get features for each obj """ super().__init__() self.nobj = nobj self.process_objs_together = process_objs_together # The image embedding model self.feat_ext = hydra.utils.instantiate( feat_ext, in_dim * nobj if self.process_objs_together else in_dim) initial_dim = self.feat_ext.out_dim # The objects model self.objectifier = hydra.utils.instantiate(objectifier, initial_dim, obj_encoder) self.out_dim = self.objectifier.out_dim if self.process_objs_together: assert self.out_dim % nobj == 0 self.out_dim //= nobj self.spatial_mean = spatial_mean self.feat_ext_eval_mode = feat_ext_eval_mode def _forward_vid(self, batch_vid_obs, l2_norm_feats=False): """ Convert a video into images to run the forward model. Args: batch_vid_obs: BxTxCxHxW or BxTxNobjxCxHxW Returns: features: BxTxDxH'xW' or BxTxNobjxDxH'xW' """ # Add an object dimension, so the rest of the code doesn't have to # deal with edge cases added_obj_dim = False if len(batch_vid_obs.shape) == 4: added_obj_dim = True batch_vid_obs = batch_vid_obs.unsqueeze(2) # BxTxNobjxCxHxW # Flatten videos into frames to extract out the features # resulting shape B'xC'xHxW if self.process_objs_together: # resulting shape B' = B * T, C' = Nobj * C flat_obs = batch_vid_obs.reshape((-1, ) + batch_vid_obs.shape[-4:]) flat_obs = torch.flatten(flat_obs, 1, 2) else: # resulting shape B' = B * T * Nobj, C' = C flat_obs = batch_vid_obs.reshape((-1, ) + batch_vid_obs.shape[-3:]) # Extract features if self.feat_ext_eval_mode: self.feat_ext.eval() features = self.feat_ext(flat_obs) if self.spatial_mean: # Mean over spatial dimensions features = torch.mean(features, dim=[-2, -1], keepdims=True) if l2_norm_feats: # L2 normalize the features -- MemoryBank, MoCo and PIRL do that features = nn.functional.normalize(features, p=2, dim=-1) # Reshape back to original batch dimension if self.process_objs_together: features_batched = features.reshape(batch_vid_obs.shape[:2] + (self.nobj, -1) + features.shape[-2:]) else: features_batched = features.reshape(batch_vid_obs.shape[:-3] + features.shape[1:]) if added_obj_dim: features_batched = features_batched.squeeze(2) assert features_batched.shape[-3] == self.out_dim return features_batched def forward(self, vid): """ Args: vid (B, T, Nobj, C, H, W): Input video, in preprocessed form; i.e. one-hot Returns: obj_feat (B, T, Nobj', D, H', W'): Features with objects, if needed """ vid_feat = self._forward_vid(vid) vid_feat = self.objectifier(vid_feat) return vid_feat def combine_obj_pixels(obj_pix, obj_dim): """Combine obj-split pixels into a single image. Args: obj_pix: B, ..., Nobj, ..., C, H, W obj_dim: The dimension to reduce over -- which corresponds to objs Returns B, ..., ..., C, H, W """ if obj_pix is None: return None return torch.max(obj_pix, dim=obj_dim)[0] class MLPClassifier(nn.Module): """Simple classifier on top of the intermediate features.""" def __init__(self, in_dim, nlayers, match_inp_sz_layer=False): super().__init__() self.nlayers = nlayers if nlayers == 0: return # First linear layer, to project to the in_dim dimension, if not self.match_inp_sz_layer = match_inp_sz_layer if self.match_inp_sz_layer: raise NotImplementedError('Doesnt work with multi-gpu yet..') self.register_parameter('init_linear_wt', None) self.in_dim = in_dim layers = [[nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True)] for _ in range(nlayers - 1)] layers_flat = [item for sublist in layers for item in sublist] self.cls = nn.Sequential(*(layers_flat[:-1] + [nn.Linear(in_dim, 1)])) def reset_parameters(self, inp, in_dim, out_dim): self.init_linear_wt = nn.Parameter( inp.new(in_dim, out_dim).normal_(0, 1)) def forward(self, preds, pixs, process_all_frames=False): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (BxT) process_all_frames: Set true when used by other classifiers for intermediate feature extraction, so to get features for each frame. """ del pixs # This does not use it if self.nlayers == 0: return preds # Since this classifier doesn't take into account context and the final # _cls is going to look at the last frame, so might as well only process # that last frame if not process_all_frames: preds = preds[:, -1:, ...] mean_feat = torch.mean(preds, axis=[2, -1, -2]) if self.match_inp_sz_layer: if self.init_linear_wt is None: logging.warning( 'Creating a linear layer to map the input ' 'dims (%d) to MLP input dim (%d)', mean_feat.shape[-1], self.in_dim) self.reset_parameters(preds, self.in_dim, preds.shape[1] * preds.shape[3]) mean_feat = nn.functional.linear(mean_feat, self.init_linear_wt) mean_feat = nn.ReLU(inplace=True)(mean_feat) return self.cls(mean_feat).squeeze(-1) class ConvNetClassifier(nn.Module): """ConvNet classifier on top of the intermediate features.""" def __init__(self, feat_in_dim, num_conv_blocks, num_fc_layers): super().__init__() del feat_in_dim nobj = 1 self.enc = BasicEncoder( phyre.NUM_COLORS, nobj, OmegaConf.create({ 'class': 'nets.ResNetBaseEncoder', 'params': { 'base_model': { 'class': 'torchvision.models.resnet18', 'params': { 'pretrained': False, } }, 'nlayers': num_conv_blocks, } }), OmegaConf.create({ 'class': 'nets.TrivialObjectifier', 'params': { 'nobj': nobj, # will sum into 1 obj } }), OmegaConf.create({ 'class': 'nets.BasicObjEncoder', 'params': { 'out_dim': 16, 'nlayers': 0, 'spatial_mean': True, } }), spatial_mean=False, feat_ext_eval_mode=False, process_objs_together=False, # Doesn't matter, 1 obj ) self.cls = MLPClassifier(self.enc.out_dim, num_fc_layers) def forward(self, preds, pixs, process_all_frames=False): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) process_all_frames: Set true when used by other classifiers for intermediate feature extraction, so to get features for each frame. Retuns: solved: (BxT) """ # Not enforcing the assert here if pred is None, since this module # is usually used by other modules as a way to extract features, # and it might pass in None for preds. But rest assured, this check # would have been done on the caller side. assert preds is None or preds.shape[1] == pixs.shape[1], ( 'Must pass in run_decode=True if using a pixel-based classifier!!') del preds # This does not use it # Since this classifier doesn't take into account context and the final # _cls is going to look at the last frame, so might as well only process # that last frame if not process_all_frames: pixs = pixs[:, -1:, ...] obj_feats = self.enc(pixs) return self.cls(obj_feats, None, process_all_frames=process_all_frames) class TxClassifier(nn.Module): """Transformer on top of the intermediate features over time.""" def __init__(self, in_dim, nheads, nlayers): super().__init__() self.tx_enc = TxEncoder(in_dim, nheads, nlayers) self.cls = nn.Linear(self.tx_enc.out_dim, 1) def forward(self, preds, pixs): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (Bx1) """ del pixs # This does not use it # Spatial mean the features stacked_mean_feat = torch.flatten(torch.mean(preds, axis=[-1, -2]), 1, 2) feat_enc_time = self.cls(self.tx_enc(stacked_mean_feat)) # Max pool over time to get the final prediction # Keepdims since the output format expects a time dimension and does # a max pool over it at the end cls_pred = torch.max(feat_enc_time, dim=1, keepdims=True)[0].squeeze(-1) return cls_pred class ConvTxClassifier(nn.Module): """Transformer on top of the Conv features learned over time.""" def __init__(self, in_dim, nconvblocks, nheads, nlayers): super().__init__() self.conv_feat = ConvNetClassifier(in_dim, nconvblocks, 0) self.tx_cls = TxClassifier(self.conv_feat.enc.out_dim, nheads, nlayers) def forward(self, preds, pixs): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (Bx1) """ assert preds.shape[1] == pixs.shape[1], ( 'Must pass in run_decode=True if using a pixel-based classifier!!') del preds feats = self.conv_feat(None, pixs, process_all_frames=True) preds = self.tx_cls(feats, None) return preds class Conv3dClassifier(nn.Module): """3D conv over features learned over time.""" def __init__(self, in_dim, num_3d_layers): super().__init__() layers = [[ nn.Conv3d(in_dim, in_dim, 3, stride=2, padding=1, bias=False), nn.ReLU(inplace=True) ] for _ in range(num_3d_layers - 1)] layers_flat = [item for sublist in layers for item in sublist] self.enc = nn.Sequential(*(layers_flat[:-1])) self.cls = nn.Linear(in_dim, 1) def forward(self, preds, pixs): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (Bx1) """ del pixs enc_preds = self.enc(preds.squeeze(2).transpose(1, 2)) cls_preds = self.cls(torch.mean(enc_preds, [-1, -2, -3])) # It has 1 extra dim in the end from the fc layer which should be # removed, but since I need to add a time dimension anyway, just leave # this there (will end up the same) return cls_preds class ConvConv3dClassifier(nn.Module): """Conv3D on top of the Conv features learned over time.""" def __init__(self, in_dim, nconvblocks, n3dlayers): super().__init__() self.conv_feat = ConvNetClassifier(in_dim, nconvblocks, 0) self.td_cls = Conv3dClassifier(self.conv_feat.enc.out_dim, n3dlayers) def forward(self, preds, pixs): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (Bx1) """ assert preds.shape[1] == pixs.shape[1], ( 'Must pass in run_decode=True if using a pixel-based classifier!!') del preds feats = self.conv_feat(None, pixs, process_all_frames=True) preds = self.td_cls(feats, None) return preds class ConcatClassifier(nn.Module): """Concat the features and classify.""" def __init__(self, in_dim, nlayers): super().__init__() self.cls = MLPClassifier(in_dim, nlayers, match_inp_sz_layer=True) def forward(self, preds, pixs): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (Bx1) """ del pixs # Concatenate over the time dimension preds_flat = preds.view(preds.shape[0], 1, 1, -1, preds.shape[-2], preds.shape[-1]) return self.cls(preds_flat, None, process_all_frames=True) class ConvConcatClassifier(nn.Module): """Concat the Conv features and classify.""" def __init__(self, in_dim, nconvblocks, nclslayers): super().__init__() self.conv_feat = ConvNetClassifier(in_dim, nconvblocks, 0) self.concat_cls = ConcatClassifier(self.conv_feat.enc.out_dim, nclslayers) def forward(self, preds, pixs): """ Run the classifier on the predictions. Args: preds: (BxTx1xDxH'xW') pixs: (BxTx1xDxHxW) Retuns: solved: (Bx1) """ assert preds.shape[1] == pixs.shape[1], ( 'Must pass in run_decode=True if using a pixel-based classifier!!') del preds feats = self.conv_feat(None, pixs, process_all_frames=True) preds = self.concat_cls(feats, None) return preds class TrivialInteractor(nn.Module): """Model interactions btw objects: do nothing.""" def __init__(self, in_dim): super().__init__() del in_dim @classmethod def forward(cls, feat): """ Args: feat: (B, T, Nobj, C, H', W') Returns: feat as is """ return feat class TxEncoder(nn.Module): """Transformer based encoder, generates a feature combining the context.""" def __init__(self, in_dim, nheads, nlayers, maintain_dim=False): """ Args: maintain_dim (bool): If true, it maps the final output to the same dimensionality as the input """ super().__init__() # Very basic position encoding self.loc_embed = nn.Sequential(nn.Linear(1, 4), nn.ReLU(inplace=True), nn.Linear(4, 8)) self.nheads = nheads self.nlayers = nlayers in_dim_loc = in_dim + 8 * nheads self.loc_mixer = nn.Linear(in_dim_loc, in_dim_loc) layer = nn.TransformerEncoderLayer(in_dim_loc, nheads) self.encoder = nn.TransformerEncoder(layer, nlayers) if maintain_dim: self.back_to_orig_dim = nn.Linear(in_dim_loc, in_dim) self.out_dim = in_dim else: self.back_to_orig_dim = lambda x: x # Identity self.out_dim = in_dim_loc def forward(self, feat): """ Args: feat: (B, T, C) Returns: Same shape as input """ # Add a location embedding (over time), since time axis will flatten loc_embedding = self.loc_embed( torch.arange(feat.shape[1], device=feat.device).unsqueeze(-1).float()) # Make into the shape of the feature loc_embedding = loc_embedding.unsqueeze(0).repeat( feat.shape[0], 1, self.nheads) feat = torch.cat([feat, loc_embedding], dim=-1) # Mix up the location information throughout the features so each head # would have it mixed_feat = self.loc_mixer(feat) # Transformer encoder expects the time dimension as the 0th! So gotta # permute things around return self.back_to_orig_dim( self.encoder(mixed_feat.permute(1, 0, 2)).permute(1, 0, 2)) class TxInteractor(nn.Module): """Model interactions btw objects: using Transformer.""" def __init__(self, in_dim, nheads, nlayers): super().__init__() self.in_dim = in_dim self.tx_enc = TxEncoder(in_dim, nheads, nlayers, maintain_dim=True) def forward(self, feat): """ Args: feat: (B, T, Nobj, C, H', W') Returns: Same shape as input """ # Mean reduce the spatial dimensions for tx, then add it back to the # original feature as a residual connection feat_spat_mean = torch.mean(feat, dim=[-1, -2]) feat_flat = feat_spat_mean.flatten(1, 2) tx_feat = self.tx_enc(feat_flat) tx_feat = tx_feat.view( feat_spat_mean.shape).unsqueeze(-1).unsqueeze(-1) return feat + tx_feat class TrivialSpatialAttention(nn.Module): def __init__(self, in_dim): super().__init__() del in_dim def forward(self, feat): return feat class TxSpatialAttention(nn.Module): def __init__(self, in_dim, nheads, nlayers): super().__init__() self.tx_enc = TxEncoder(in_dim, nheads, nlayers, maintain_dim=True) def forward(self, feat): """ Args: feats (B, T, Nobj, D, H', W') """ feat_flat = torch.flatten(torch.flatten(feat, 0, 2), -2, -1) feat_att = self.tx_enc(feat_flat.transpose(1, 2)).transpose(1, 2) return feat_att.view(feat.shape) class Fwd(nn.Module): """The master class with Forward model.""" def __init__(self, agent_cfg): """ Args: dyn_type: The type of dynamics model to use. dyn_n: Number of previous features used for prediction. """ super().__init__() # The image embedding model self.preproc = VideoPreprocessor(agent_cfg) self.enc = hydra.utils.instantiate(agent_cfg.encoder, self.preproc.out_dim, agent_cfg.nobj) dim = self.enc.out_dim self.interactor = hydra.utils.instantiate(agent_cfg.interactor, dim) # The dynamics model self.dyn = hydra.utils.instantiate(agent_cfg.dyn, self.enc, dim) # Classifier model self.nframes_to_cls = agent_cfg.nframes_to_cls # A attention of the latent features before passing them through the # classifier. self.spat_att = hydra.utils.instantiate(agent_cfg.spat_att, dim) self.cls = hydra.utils.instantiate(agent_cfg.cls, dim) # Decoder model self.dec = hydra.utils.instantiate(agent_cfg.decoder, dim, phyre.NUM_COLORS) # Other loss functions self.pix_loss = hydra.utils.instantiate(agent_cfg.loss_fn.pix) self.nce_loss = hydra.utils.instantiate(agent_cfg.loss_fn.nce, dim) @property def device(self): if hasattr(self, 'parameters') and next(self.parameters()).is_cuda: return 'cuda' else: return 'cpu' def _forward_dyn(self, feats, vids, n_fwd_times, need_intermediate=False): """ Args: feats: (BxT_histxNobjxDxH'xW') vids: (BxT_histxCxHxW) The video corresponding to the feats, some dyn models might use them. n_fwd_times: Number of times to run the fwd model on the last frames need_intermediate: If true, give all the intermediate features Returns: all_preds: The predictions at each time step, in n_fwd_times all_pixs: The predictions in pixels. Note all dynamics models don't use pixels, so it might just give the last frame as output all_solved: The classification at each time step, for n_fwd_times """ all_preds = [] all_pixs = [] all_addl_losses = [] if n_fwd_times == 0: return [all_preds, all_pixs, all_addl_losses] def run_fwd_append(feats, pixs): pred, pred_pix, addl_losses = self.dyn(feats, pixs) all_preds.append(pred) all_pixs.append(pred_pix) all_addl_losses.append(addl_losses) run_fwd_append(feats, vids) n_fwd_times_copy = n_fwd_times while n_fwd_times - 1 > 0: feats = torch.cat( [feats[:, 1:, ...], torch.unsqueeze(all_preds[-1], axis=1)], dim=1) vids = torch.cat( [vids[:, 1:, ...], torch.unsqueeze(all_pixs[-1], axis=1)], dim=1) run_fwd_append(feats, vids) n_fwd_times -= 1 assert len(all_preds) == n_fwd_times_copy, ( '%d %d' % (len(all_preds), n_fwd_times_copy)) if not need_intermediate: all_preds = [all_preds[-1]] all_pixs = [all_pixs[-1]] all_addl_losses = [all_addl_losses[-1]] # Will compute solved or not later, after decode, in case the classifier # needs that information return all_preds, all_pixs, all_addl_losses def _slice_for_dyn(self, features_batched, n_hist_frames, nslices=-1): """ Args: features_batched: BxTx.... can deal with any following dimensions, typically it is (BxTxNobjxDxH'xW') n_hist_frames (int): Number of frames to use as history nslices (int): If -1, make as many slices of the training data as possible. If 1, keep only the first one. (1 used when training classifier on top, which should always see videos from the start) Returns: B'x n_hist_frames x ... (B'x n_hist_frames x Nobj x D x H' x W') """ clip_hist = [] assert features_batched.shape[1] >= n_hist_frames for i in range((features_batched.shape[1] - n_hist_frames + 1)): if nslices > 0 and i >= nslices: break clip_hist.append(features_batched[:, i:i + n_hist_frames, ...]) clip_hist = torch.cat(clip_hist, dim=0) return clip_hist def _forward_dec(self, feats, pixels): """ Args: feats: List of features (BxD) from the dynamics prediction stage, one for each time step predicted. pixels: List of corresponding pixels from the dynamics model. The dyn model may or may not actually generate new pixels. """ return [self.dec(feat, pix) for feat, pix in zip(feats, pixels)] # Loss functions ########################################################### def cswm_loss(self, pred, gt, hinge=1.0): """ The energy based contrastive loss. Args: pred (BxNobjxDxH'xW') gt (BxNobjxDxH'xW') From https://github.com/tkipf/c-swm/blob/master/modules.py#L94 """ pred = pred.view(pred.shape[:2] + (-1, )) gt = gt.view(gt.shape[:2] + (-1, )) batch_size = gt.size(0) perm = np.random.permutation(batch_size) neg = gt[perm] def energy(pred, gt, sigma=0.5): """Energy function based on normalized squared L2 norm. Args: pred (B, Nobj, D') gt (B, Nobj, D') """ norm = 0.5 / (sigma**2) diff = pred - gt return norm * diff.pow(2).sum(2).mean(1) pos_loss = energy(pred, gt) zeros = torch.zeros_like(pos_loss) pos_loss = pos_loss.mean() neg_loss = torch.max(zeros, hinge - energy(pred, neg)).mean() return pos_loss + neg_loss def ce_loss(self, decisions, targets): targets = targets.to(dtype=torch.float, device=decisions.device) return torch.nn.functional.binary_cross_entropy_with_logits( decisions, targets) def autoencoder_loss(self, pix, latent, autoenc_loss_ratio): """ Runs a random portion of the actual frames through decoder to incur a loss to encourage the intermediate representation to learn a good autoencoder as well. Random fraction only for compute reasons. Ideally would run every frame (ratio = 1) Args: pix (B, T, H, W): Actual pixels of the input frames latent (B, T, Nobj, D, H', W'): Latent representation of the input frames autoenc_loss_ratio (float): What percentage of the input frames to run it on. Only for compute reasons, ideally run it on all. Returns: loss {'autoenc': (1,) <float>} for the loss """ # Flatten the Batch and time dimension to get all the frames pix_flat = torch.flatten(pix, 0, 1) latent_flat = torch.flatten(latent, 0, 1) # Select a subset of the frames to run the loss on assert pix_flat.shape[0] == latent_flat.shape[0] idx = np.arange(pix_flat.shape[0]) np.random.shuffle(idx) sel_cnt = int(autoenc_loss_ratio * len(idx)) idx_sel = np.sort(idx[:sel_cnt]) pix_flat_sel = pix_flat[idx_sel, ...] latent_flat_sel = latent_flat[idx_sel, ...] # Generate the pixels for the latent, and incur loss pred_flat_sel = combine_obj_pixels(self.dec(latent_flat_sel, None), 1) loss = self.pix_loss(pred_flat_sel, pix_flat_sel).unsqueeze(0) return {'autoenc_pix': loss} def solved_or_not_loss(self, clip_preds_solved, vid_is_solved): """ Repeat the is_solved to as many times the batch was repeated to get the class label at each forward prediction Args: clip_preds_solved (B',) vid_is_solved (B,) B and B' might be different but B' must be a multiple of B, since it happens when num_slices > 1 Returns: loss {'ce': (1,) <float>} for the loss """ assert clip_preds_solved.shape[0] % vid_is_solved.shape[0] == 0 return { 'ce': self.ce_loss( clip_preds_solved, vid_is_solved.repeat((clip_preds_solved.shape[0] // vid_is_solved.shape[0], ))).unsqueeze(0) } ############################################################################ def _compute_losses(self, clip_pred, clip_pred_pix, vid_feat, vid, n_hist_frames, n_fwd_times): """ Compute all losses possible. """ dummy_loss = torch.Tensor([-1]).to(clip_pred.device) losses = {} # NCE and pixel loss # find the GT for each clip, note that all predictions may not have a GT # since the last n_hist_frames for a video will make a prediction that # goes out of the list of frames that were extracted for that video. feat_preds = [] feat_gt = [] pix_preds = [] pix_gt = [] batch_size = vid_feat.shape[0] gt_max_time = vid_feat.shape[1] # Max slices that could have been made of the data, to use all of the # training clip max_slices_with_gt = gt_max_time - n_hist_frames - n_fwd_times + 1 num_slices = clip_pred.shape[0] // batch_size for i in range(min(max_slices_with_gt, num_slices)): corr_pred = clip_pred[i * batch_size:(i + 1) * batch_size, ...] # Get the corresponding GT predictions for this pred corr_gt = vid_feat[:, i + n_hist_frames + n_fwd_times - 1] assert corr_gt.shape == corr_pred.shape feat_preds.append(corr_pred) feat_gt.append(corr_gt) # Same thing for pix if clip_pred_pix is not None: corr_pix_pred = clip_pred_pix[i * vid_feat.shape[0]:(i + 1) * vid_feat.shape[0], ...] corr_pix_gt = vid[:, i + n_hist_frames + n_fwd_times - 1] pix_preds.append(corr_pix_pred) pix_gt.append(corr_pix_gt) if len(feat_gt) > 0: # Keep a batch dimension to the loss, since it will be run over # multiple GPUs feat_preds = torch.cat(feat_preds) feat_gt = torch.cat(feat_gt) losses['nce'] = self.nce_loss(feat_preds, feat_gt).unsqueeze(0) losses['cswm'] = self.cswm_loss(feat_preds, feat_gt).unsqueeze(0) else: losses['nce'] = dummy_loss losses['cswm'] = dummy_loss # Reconstruction loss if len(pix_gt) > 0: losses['pix'] = self.pix_loss(torch.cat(pix_preds), torch.cat(pix_gt)).unsqueeze(0) else: losses['pix'] = dummy_loss return losses def _cls(self, feat_hist, pix_hist, feat_preds, pix_preds): """ Wrapper around the classifier, collates all the input frames/features and predicted future frames/features. The images, features are already summed over the objects Args: feat_hist: (B, T, C, H', W') pix_hist: (B, T, 7, H, W) feat_preds [list of (B, C, H', W')] -- len = num predictions pix_preds [list of (B, 7, H, W)] -- len = num predictions The elements could be None, since not all models predict pixels Returns: (B,) predicted scores for the clips """ feats_combined = feat_hist if feat_preds is not None and len(feat_preds) > 0: feats_combined = torch.cat([feat_hist] + [el.unsqueeze(1) for el in feat_preds], dim=1) pix_combined = pix_hist if (pix_preds is not None and len(pix_preds) > 0 and pix_preds[0] is not None): pix_combined = torch.cat([pix_combined] + [el.unsqueeze(1) for el in pix_preds], dim=1) # Sum over objs -- we want the classifier model to see everything # at the same time # They are summed now, but need the dimension still pix_combined = pix_combined.unsqueeze(2) feats_combined = feats_combined.unsqueeze(2) # If need to keep only a subset of the frames if self.nframes_to_cls > 0: pix_combined = pix_combined[:, :self.nframes_to_cls, ...] feats_combined = feats_combined[:, :self.nframes_to_cls, ...] feats_combined = self.spat_att(feats_combined) # Keep the last prediction, as that should ideally be the best # prediction of whether it was solved or not # torch.max was hard to optimize through return self.cls(feats_combined, pix_combined)[:, -1] def forward(self, vid, vid_is_solved, n_hist_frames=3, n_fwd_times=1, n_fwd_times_incur_loss=999999, run_decode=False, compute_losses=False, need_intermediate=False, autoenc_loss_ratio=0.0, nslices=-1): """ Args: vid: (BxTxNobjxHxW) The input video vid_is_solved: (Bx1) Whether the video is solved in the end of not. Could be None at test time. n_hist_frames: (int) Number of frames to use as history for prediction n_fwd_times: (int) How many times to run the forward dynamics model n_fwd_times_incur_loss (int): Upto how many of these forwards to incur loss on. run_decode: (bool) Decode the features into pixel output compute_losses: Should be set at train time. Will compute losses, whatever it can given the data (eg, if vid_is_solved is not passed to the function, it will not compute the CE loss). need_intermediate (bool): Set true if you want to run the dynamics model and need all the intermediate results. Else, will return a list with only 1 element, the final output. autoenc_loss_ratio (float btw 0-1): Set to 1 to run auto-encoder style loss on all frames when run_decode is set. num_slices (int): See in the _slice_for_dyn fn Returns: clip_feat: BxTxD """ vid_preproc = self.preproc.preprocess_vid(vid) obj_feat = self.enc(vid_preproc) clip_hist = self._slice_for_dyn(obj_feat, n_hist_frames, nslices=nslices) vid_hist = self._slice_for_dyn(vid_preproc, n_hist_frames, nslices=nslices) assert clip_hist.shape[1] == n_hist_frames clip_hist = self.interactor(clip_hist) clip_preds, clip_preds_pix, clip_preds_addl_losses = self._forward_dyn( clip_hist, vid_hist, n_fwd_times, need_intermediate) if run_decode: clip_preds_pix = self._forward_dec(clip_preds, clip_preds_pix) else: clip_preds_pix = [None] * len(clip_preds) # Compute the solved or not, will only do for the ones asked for clip_preds_solved = self._cls( combine_obj_pixels(clip_hist, 2), combine_obj_pixels(vid_hist, 2), [combine_obj_pixels(el, 1) for el in clip_preds], [combine_obj_pixels(el, 1) for el in clip_preds_pix]) all_losses = [] clip_preds_pix_unpreproc_for_loss = [ self.preproc.unpreprocess_frame_for_loss(el) for el in clip_preds_pix ] if compute_losses: for i in range(min(len(clip_preds), n_fwd_times_incur_loss)): # Compute losses at each prediction step, if need_intermediate # is set. Else, it will only return a single output # (at the last prediction), and then we can only incur loss at # that point. if not need_intermediate: assert len(clip_preds) == 1 pred_id = -1 # Only loss on predicting the final rolled out obs this_fwd_times = n_fwd_times else: assert len(clip_preds) == n_fwd_times pred_id = i this_fwd_times = i + 1 all_losses.append( self._compute_losses( # For the loss, using only the last prediction (for now) clip_preds[pred_id], combine_obj_pixels( clip_preds_pix_unpreproc_for_loss[pred_id], 1), obj_feat, combine_obj_pixels(vid, 2), n_hist_frames, this_fwd_times)) all_losses = average_losses(all_losses) all_losses.update(average_losses(clip_preds_addl_losses)) all_losses.update( self.solved_or_not_loss(clip_preds_solved, vid_is_solved)) # Add losses on the provided frames if requested if run_decode and autoenc_loss_ratio > 0: all_losses.update( self.autoencoder_loss(combine_obj_pixels(vid, 2), obj_feat, autoenc_loss_ratio)) clip_preds_pix_unpreproc = [ combine_obj_pixels(self.preproc.unpreprocess_frame_after_loss(el), 1) for el in clip_preds_pix_unpreproc_for_loss ] all_preds = { 'feats': clip_preds, 'is_solved': clip_preds_solved, 'pixels': clip_preds_pix_unpreproc, } return all_preds, all_losses
[ "numpy.random.seed", "torch.eye", "torch.ByteTensor", "torch.cat", "torch.nn.InstanceNorm2d", "torch.cos", "numpy.arange", "torch.nn.Softmax", "torch.arange", "torch.device", "torch.nn.functional.normalize", "torch.flatten", "torch.nn.functional.grid_sample", "logging.warning", "torch.nn.Conv3d", "torch.nn.TransformerEncoderLayer", "torch.nn.functional.binary_cross_entropy_with_logits", "torch.exp", "torch.nn.Upsample", "torch.Tensor", "torch.nn.functional.adaptive_max_pool2d", "torch.nn.Linear", "numpy.random.shuffle", "torchvision.models.resnet18", "torch.mean", "torch.nn.TransformerEncoder", "functools.partial", "torch.randn_like", "torch.nn.ModuleList", "torch.zeros_like", "torch.nn.Conv2d", "numpy.sort", "torch.nn.BatchNorm2d", "torch.cuda.is_available", "torch.max", "numpy.random.permutation", "torch.unsqueeze", "torch.reshape", "torch.sum", "torch.ones_like", "torch.nn.ReLU", "torch.nn.ConvTranspose2d", "torch.stack", "torch.nn.Sequential", "hydra.utils.instantiate", "torch.LongTensor", "torch.nn.functional.linear", "omegaconf.OmegaConf.create", "numpy.array", "torch.chunk", "torch.sin" ]
[((1022, 1047), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1045, 1047), False, 'import torch\n'), ((1057, 1102), 'torch.device', 'torch.device', (["('cuda:0' if USE_CUDA else 'cpu')"], {}), "('cuda:0' if USE_CUDA else 'cpu')\n", (1069, 1102), False, 'import torch\n'), ((1103, 1121), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (1117, 1121), True, 'import numpy as np\n'), ((9710, 9784), 'torch.nn.Conv2d', 'nn.Conv2d', (['dim_in', 'dim_out'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False)\n', (9719, 9784), True, 'import torch.nn as nn\n'), ((29393, 29414), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (29400, 29414), True, 'import torch.nn as nn\n'), ((1484, 1519), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (1493, 1519), True, 'import torch.nn as nn\n'), ((4587, 4653), 'torch.nn.functional.binary_cross_entropy_with_logits', 'nn.functional.binary_cross_entropy_with_logits', (['decisions', 'targets'], {}), '(decisions, targets)\n', (4633, 4653), True, 'import torch.nn as nn\n'), ((5166, 5211), 'torchvision.models.resnet18', 'torchvision.models.resnet18', ([], {'pretrained': '(False)'}), '(pretrained=False)\n', (5193, 5211), False, 'import torchvision\n'), ((5228, 5307), 'torch.nn.Conv2d', 'nn.Conv2d', (['phyre.NUM_COLORS', '(64)'], {'kernel_size': '(7)', 'stride': '(2)', 'padding': '(3)', 'bias': '(False)'}), '(phyre.NUM_COLORS, 64, kernel_size=7, stride=2, padding=3, bias=False)\n', (5237, 5307), True, 'import torch.nn as nn\n'), ((5533, 5585), 'torch.nn.Sequential', 'nn.Sequential', (['conv1', 'net.bn1', 'net.relu', 'net.maxpool'], {}), '(conv1, net.bn1, net.relu, net.maxpool)\n', (5546, 5585), True, 'import torch.nn as nn\n'), ((5608, 5671), 'torch.nn.ModuleList', 'nn.ModuleList', (['[net.layer1, net.layer2, net.layer3, net.layer4]'], {}), '([net.layer1, net.layer2, net.layer3, net.layer4])\n', (5621, 5671), True, 'import torch.nn as nn\n'), ((7024, 7041), 'torch.nn.Linear', 'nn.Linear', (['(512)', '(1)'], {}), '(512, 1)\n', (7033, 7041), True, 'import torch.nn as nn\n'), ((8934, 9000), 'torch.nn.functional.binary_cross_entropy_with_logits', 'nn.functional.binary_cross_entropy_with_logits', (['decisions', 'targets'], {}), '(decisions, targets)\n', (8980, 9000), True, 'import torch.nn as nn\n'), ((9399, 9449), 'torch.eye', 'torch.eye', (['phyre.NUM_COLORS'], {'device': 'indices.device'}), '(phyre.NUM_COLORS, device=indices.device)\n', (9408, 9449), False, 'import torch\n'), ((10873, 10943), 'torch.reshape', 'torch.reshape', (['features', '((features.shape[0], -1) + features.shape[-2:])'], {}), '(features, (features.shape[0], -1) + features.shape[-2:])\n', (10886, 10943), False, 'import torch\n'), ((15038, 15106), 'torch.nn.functional.grid_sample', 'nn.functional.grid_sample', (['feat', 'grid'], {'mode': 'mode', 'align_corners': '(True)'}), '(feat, grid, mode=mode, align_corners=True)\n', (15063, 15106), True, 'import torch.nn as nn\n'), ((15607, 15640), 'torch.ones_like', 'torch.ones_like', (['feat[:, :1, ...]'], {}), '(feat[:, :1, ...])\n', (15622, 15640), False, 'import torch\n'), ((15664, 15707), 'torch.cat', 'torch.cat', (['[feat_pos, feat_pos_ones]'], {'dim': '(1)'}), '([feat_pos, feat_pos_ones], dim=1)\n', (15673, 15707), False, 'import torch\n'), ((16041, 16090), 'torch.cat', 'torch.cat', (['[tx_feat_pos, feat[:, 2:, ...]]'], {'dim': '(1)'}), '([tx_feat_pos, feat[:, 2:, ...]], dim=1)\n', (16050, 16090), False, 'import torch\n'), ((16348, 16371), 'torch.exp', 'torch.exp', (['(0.5 * logvar)'], {}), '(0.5 * logvar)\n', (16357, 16371), False, 'import torch\n'), ((16386, 16407), 'torch.randn_like', 'torch.randn_like', (['std'], {}), '(std)\n', (16402, 16407), False, 'import torch\n'), ((17024, 17065), 'torch.mean', 'torch.mean', (['feat_hist_embed'], {'dim': '[-2, -1]'}), '(feat_hist_embed, dim=[-2, -1])\n', (17034, 17065), False, 'import torch\n'), ((18670, 18717), 'torch.chunk', 'torch.chunk', (['feat_to_tx', 'self.num_tx', 'split_dim'], {}), '(feat_to_tx, self.num_tx, split_dim)\n', (18681, 18717), False, 'import torch\n'), ((19632, 19689), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['base_stn', '(dim * n * nobj)', 'num_tx'], {}), '(base_stn, dim * n * nobj, num_tx)\n', (19655, 19689), False, 'import hydra\n'), ((20073, 20143), 'torch.reshape', 'torch.reshape', (['features', '((features.shape[0], -1) + features.shape[-2:])'], {}), '(features, (features.shape[0], -1) + features.shape[-2:])\n', (20086, 20143), False, 'import torch\n'), ((20333, 20362), 'torch.flatten', 'torch.flatten', (['features', '(2)', '(3)'], {}), '(features, 2, 3)\n', (20346, 20362), False, 'import torch\n'), ((20463, 20527), 'torch.reshape', 'torch.reshape', (['new_feat', '(features.shape[:1] + features.shape[2:])'], {}), '(new_feat, features.shape[:1] + features.shape[2:])\n', (20476, 20527), False, 'import torch\n'), ((20909, 20966), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['base_stn', '(dim * n * nobj)', 'num_tx'], {}), '(base_stn, dim * n * nobj, num_tx)\n', (20932, 20966), False, 'import hydra\n'), ((21689, 21759), 'torch.reshape', 'torch.reshape', (['features', '((features.shape[0], -1) + features.shape[-2:])'], {}), '(features, (features.shape[0], -1) + features.shape[-2:])\n', (21702, 21759), False, 'import torch\n'), ((22311, 22354), 'torch.chunk', 'torch.chunk', (['attention_maps', 'self.num_tx', '(1)'], {}), '(attention_maps, self.num_tx, 1)\n', (22322, 22354), False, 'import torch\n'), ((22385, 22433), 'torch.chunk', 'torch.chunk', (['future_pixels_tiled', 'self.num_tx', '(1)'], {}), '(future_pixels_tiled, self.num_tx, 1)\n', (22396, 22433), False, 'import torch\n'), ((23223, 23285), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['base_stn', '(dim * n * nobj)', 'self.num_tx'], {}), '(base_stn, dim * n * nobj, self.num_tx)\n', (23246, 23285), False, 'import hydra\n'), ((23835, 23905), 'torch.reshape', 'torch.reshape', (['features', '((features.shape[0], -1) + features.shape[-2:])'], {}), '(features, (features.shape[0], -1) + features.shape[-2:])\n', (23848, 23905), False, 'import torch\n'), ((24907, 24969), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['base_stn', '(dim * n * nobj)', 'self.num_tx'], {}), '(base_stn, dim * n * nobj, self.num_tx)\n', (24930, 24969), False, 'import hydra\n'), ((25887, 25957), 'torch.reshape', 'torch.reshape', (['features', '((features.shape[0], -1) + features.shape[-2:])'], {}), '(features, (features.shape[0], -1) + features.shape[-2:])\n', (25900, 25957), False, 'import torch\n'), ((26272, 26327), 'torch.cat', 'torch.cat', (['[future_pixels_bg, future_pixels_obj]'], {'dim': '(1)'}), '([future_pixels_bg, future_pixels_obj], dim=1)\n', (26281, 26327), False, 'import torch\n'), ((27518, 27587), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['base_stn', '(dim * n * nobj)', '(self.num_tx * nobj)'], {}), '(base_stn, dim * n * nobj, self.num_tx * nobj)\n', (27541, 27587), False, 'import hydra\n'), ((27961, 28031), 'torch.reshape', 'torch.reshape', (['features', '((features.shape[0], -1) + features.shape[-2:])'], {}), '(features, (features.shape[0], -1) + features.shape[-2:])\n', (27974, 28031), False, 'import torch\n'), ((28222, 28257), 'torch.flatten', 'torch.flatten', (['pixels_movable', '(1)', '(2)'], {}), '(pixels_movable, 1, 2)\n', (28235, 28257), False, 'import torch\n'), ((29451, 29559), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['in_dim', 'out_dim'], {'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'bias': '(False)'}), '(in_dim, out_dim, kernel_size=kernel_size, stride=stride,\n padding=padding, bias=False)\n', (29469, 29559), True, 'import torch.nn as nn\n'), ((29889, 29967), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': 'upsample_factor', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=upsample_factor, mode='bilinear', align_corners=True)\n", (29900, 29967), True, 'import torch.nn as nn\n'), ((30620, 30655), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['activation'], {}), '(activation)\n', (30643, 30655), False, 'import hydra\n'), ((30664, 30727), 'logging.warning', 'logging.warning', (['"""Using %s activation for decoders"""', 'activation'], {}), "('Using %s activation for decoders', activation)\n", (30679, 30727), False, 'import logging\n'), ((32532, 32579), 'torch.sum', 'torch.sum', (['decode_feature'], {'dim': '(1)', 'keepdims': '(True)'}), '(decode_feature, dim=1, keepdims=True)\n', (32541, 32579), False, 'import torch\n'), ((32611, 32646), 'torch.flatten', 'torch.flatten', (['decode_feature', '(0)', '(1)'], {}), '(decode_feature, 0, 1)\n', (32624, 32646), False, 'import torch\n'), ((32757, 32823), 'torch.reshape', 'torch.reshape', (['images', '(decode_feature.shape[:2] + images.shape[1:])'], {}), '(images, decode_feature.shape[:2] + images.shape[1:])\n', (32770, 32823), False, 'import torch\n'), ((36681, 36722), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['obj_encoder', 'dim'], {}), '(obj_encoder, dim)\n', (36704, 36722), False, 'import hydra\n'), ((37450, 37479), 'torch.flatten', 'torch.flatten', (['vid_feat', '(0)', '(1)'], {}), '(vid_feat, 0, 1)\n', (37463, 37479), False, 'import torch\n'), ((37890, 37958), 'torch.reshape', 'torch.reshape', (['mapped_feat', '((batch_size, -1) + mapped_feat.shape[1:])'], {}), '(mapped_feat, (batch_size, -1) + mapped_feat.shape[1:])\n', (37903, 37958), False, 'import torch\n'), ((38314, 38363), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['obj_encoder', '(dim // nobj)'], {}), '(obj_encoder, dim // nobj)\n', (38337, 38363), False, 'import hydra\n'), ((42136, 42171), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['base_model'], {}), '(base_model)\n', (42159, 42171), False, 'import hydra\n'), ((42188, 42257), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_dim', '(64)'], {'kernel_size': '(7)', 'stride': '(2)', 'padding': '(3)', 'bias': '(False)'}), '(in_dim, 64, kernel_size=7, stride=2, padding=3, bias=False)\n', (42197, 42257), True, 'import torch.nn as nn\n'), ((42408, 42460), 'torch.nn.Sequential', 'nn.Sequential', (['conv1', 'net.bn1', 'net.relu', 'net.maxpool'], {}), '(conv1, net.bn1, net.relu, net.maxpool)\n', (42421, 42460), True, 'import torch.nn as nn\n'), ((44009, 44104), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['feat_ext', '(in_dim * nobj if self.process_objs_together else in_dim)'], {}), '(feat_ext, in_dim * nobj if self.\n process_objs_together else in_dim)\n', (44032, 44104), False, 'import hydra\n'), ((44212, 44274), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['objectifier', 'initial_dim', 'obj_encoder'], {}), '(objectifier, initial_dim, obj_encoder)\n', (44235, 44274), False, 'import hydra\n'), ((47437, 47468), 'torch.max', 'torch.max', (['obj_pix'], {'dim': 'obj_dim'}), '(obj_pix, dim=obj_dim)\n', (47446, 47468), False, 'import torch\n'), ((49293, 49328), 'torch.mean', 'torch.mean', (['preds'], {'axis': '[2, -1, -2]'}), '(preds, axis=[2, -1, -2])\n', (49303, 49328), False, 'import torch\n'), ((52865, 52898), 'torch.nn.Linear', 'nn.Linear', (['self.tx_enc.out_dim', '(1)'], {}), '(self.tx_enc.out_dim, 1)\n', (52874, 52898), True, 'import torch.nn as nn\n'), ((54981, 55013), 'torch.nn.Sequential', 'nn.Sequential', (['*layers_flat[:-1]'], {}), '(*layers_flat[:-1])\n', (54994, 55013), True, 'import torch.nn as nn\n'), ((55035, 55055), 'torch.nn.Linear', 'nn.Linear', (['in_dim', '(1)'], {}), '(in_dim, 1)\n', (55044, 55055), True, 'import torch.nn as nn\n'), ((59109, 59142), 'torch.nn.Linear', 'nn.Linear', (['in_dim_loc', 'in_dim_loc'], {}), '(in_dim_loc, in_dim_loc)\n', (59118, 59142), True, 'import torch.nn as nn\n'), ((59159, 59205), 'torch.nn.TransformerEncoderLayer', 'nn.TransformerEncoderLayer', (['in_dim_loc', 'nheads'], {}), '(in_dim_loc, nheads)\n', (59185, 59205), True, 'import torch.nn as nn\n'), ((59229, 59266), 'torch.nn.TransformerEncoder', 'nn.TransformerEncoder', (['layer', 'nlayers'], {}), '(layer, nlayers)\n', (59250, 59266), True, 'import torch.nn as nn\n'), ((60036, 60076), 'torch.cat', 'torch.cat', (['[feat, loc_embedding]'], {'dim': '(-1)'}), '([feat, loc_embedding], dim=-1)\n', (60045, 60076), False, 'import torch\n'), ((61030, 61060), 'torch.mean', 'torch.mean', (['feat'], {'dim': '[-1, -2]'}), '(feat, dim=[-1, -2])\n', (61040, 61060), False, 'import torch\n'), ((62335, 62420), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.encoder', 'self.preproc.out_dim', 'agent_cfg.nobj'], {}), '(agent_cfg.encoder, self.preproc.out_dim, agent_cfg.nobj\n )\n', (62358, 62420), False, 'import hydra\n'), ((62559, 62609), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.interactor', 'dim'], {}), '(agent_cfg.interactor, dim)\n', (62582, 62609), False, 'import hydra\n'), ((62658, 62711), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.dyn', 'self.enc', 'dim'], {}), '(agent_cfg.dyn, self.enc, dim)\n', (62681, 62711), False, 'import hydra\n'), ((62917, 62965), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.spat_att', 'dim'], {}), '(agent_cfg.spat_att, dim)\n', (62940, 62965), False, 'import hydra\n'), ((62985, 63028), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.cls', 'dim'], {}), '(agent_cfg.cls, dim)\n', (63008, 63028), False, 'import hydra\n'), ((63072, 63137), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.decoder', 'dim', 'phyre.NUM_COLORS'], {}), '(agent_cfg.decoder, dim, phyre.NUM_COLORS)\n', (63095, 63137), False, 'import hydra\n'), ((63236, 63282), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.loss_fn.pix'], {}), '(agent_cfg.loss_fn.pix)\n', (63259, 63282), False, 'import hydra\n'), ((63307, 63358), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['agent_cfg.loss_fn.nce', 'dim'], {}), '(agent_cfg.loss_fn.nce, dim)\n', (63330, 63358), False, 'import hydra\n'), ((66579, 66606), 'torch.cat', 'torch.cat', (['clip_hist'], {'dim': '(0)'}), '(clip_hist, dim=0)\n', (66588, 66606), False, 'import torch\n'), ((67555, 67588), 'numpy.random.permutation', 'np.random.permutation', (['batch_size'], {}), '(batch_size)\n', (67576, 67588), True, 'import numpy as np\n'), ((67995, 68021), 'torch.zeros_like', 'torch.zeros_like', (['pos_loss'], {}), '(pos_loss)\n', (68011, 68021), False, 'import torch\n'), ((68294, 68366), 'torch.nn.functional.binary_cross_entropy_with_logits', 'torch.nn.functional.binary_cross_entropy_with_logits', (['decisions', 'targets'], {}), '(decisions, targets)\n', (68346, 68366), False, 'import torch\n'), ((69239, 69263), 'torch.flatten', 'torch.flatten', (['pix', '(0)', '(1)'], {}), '(pix, 0, 1)\n', (69252, 69263), False, 'import torch\n'), ((69286, 69313), 'torch.flatten', 'torch.flatten', (['latent', '(0)', '(1)'], {}), '(latent, 0, 1)\n', (69299, 69313), False, 'import torch\n'), ((69444, 69472), 'numpy.arange', 'np.arange', (['pix_flat.shape[0]'], {}), '(pix_flat.shape[0])\n', (69453, 69472), True, 'import numpy as np\n'), ((69481, 69503), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (69498, 69503), True, 'import numpy as np\n'), ((69575, 69597), 'numpy.sort', 'np.sort', (['idx[:sel_cnt]'], {}), '(idx[:sel_cnt])\n', (69582, 69597), True, 'import numpy as np\n'), ((2314, 2371), 'torch.nn.Conv2d', 'nn.Conv2d', (['phyre.NUM_COLORS', '(3)'], {'kernel_size': '(1)', 'bias': '(False)'}), '(phyre.NUM_COLORS, 3, kernel_size=1, bias=False)\n', (2323, 2371), True, 'import torch.nn as nn\n'), ((2385, 2402), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(3)'], {}), '(3)\n', (2399, 2402), True, 'import torch.nn as nn\n'), ((2416, 2437), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2423, 2437), True, 'import torch.nn as nn\n'), ((2451, 2515), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)'], {'kernel_size': '(7)', 'stride': '(4)', 'padding': '(3)', 'bias': '(False)'}), '(3, 64, kernel_size=7, stride=4, padding=3, bias=False)\n', (2460, 2515), True, 'import torch.nn as nn\n'), ((2529, 2547), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (2543, 2547), True, 'import torch.nn as nn\n'), ((2561, 2582), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2568, 2582), True, 'import torch.nn as nn\n'), ((2596, 2661), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(64)'], {'kernel_size': '(5)', 'stride': '(2)', 'padding': '(2)', 'bias': '(False)'}), '(64, 64, kernel_size=5, stride=2, padding=2, bias=False)\n', (2605, 2661), True, 'import torch.nn as nn\n'), ((2675, 2693), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (2689, 2693), True, 'import torch.nn as nn\n'), ((2707, 2728), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2714, 2728), True, 'import torch.nn as nn\n'), ((2742, 2807), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(64)'], {'kernel_size': '(5)', 'stride': '(2)', 'padding': '(2)', 'bias': '(False)'}), '(64, 64, kernel_size=5, stride=2, padding=2, bias=False)\n', (2751, 2807), True, 'import torch.nn as nn\n'), ((2821, 2839), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (2835, 2839), True, 'import torch.nn as nn\n'), ((2853, 2874), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2860, 2874), True, 'import torch.nn as nn\n'), ((2888, 2953), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(64)'], {'kernel_size': '(5)', 'stride': '(2)', 'padding': '(2)', 'bias': '(False)'}), '(64, 64, kernel_size=5, stride=2, padding=2, bias=False)\n', (2897, 2953), True, 'import torch.nn as nn\n'), ((2967, 2985), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (2981, 2985), True, 'import torch.nn as nn\n'), ((2999, 3020), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3006, 3020), True, 'import torch.nn as nn\n'), ((3034, 3100), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(128)'], {'kernel_size': '(5)', 'stride': '(2)', 'padding': '(2)', 'bias': '(False)'}), '(64, 128, kernel_size=5, stride=2, padding=2, bias=False)\n', (3043, 3100), True, 'import torch.nn as nn\n'), ((3114, 3133), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(128)'], {}), '(128)\n', (3128, 3133), True, 'import torch.nn as nn\n'), ((3147, 3168), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3154, 3168), True, 'import torch.nn as nn\n'), ((3182, 3249), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)'], {'kernel_size': '(5)', 'stride': '(2)', 'padding': '(2)', 'bias': '(False)'}), '(128, 128, kernel_size=5, stride=2, padding=2, bias=False)\n', (3191, 3249), True, 'import torch.nn as nn\n'), ((3285, 3304), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(128)'], {}), '(128)\n', (3299, 3304), True, 'import torch.nn as nn\n'), ((3318, 3339), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3325, 3339), True, 'import torch.nn as nn\n'), ((3353, 3420), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)'], {'kernel_size': '(5)', 'stride': '(2)', 'padding': '(2)', 'bias': '(False)'}), '(128, 128, kernel_size=5, stride=2, padding=2, bias=False)\n', (3362, 3420), True, 'import torch.nn as nn\n'), ((3456, 3475), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(128)'], {}), '(128)\n', (3470, 3475), True, 'import torch.nn as nn\n'), ((3489, 3510), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3496, 3510), True, 'import torch.nn as nn\n'), ((5484, 5511), 'torch.eye', 'torch.eye', (['phyre.NUM_COLORS'], {}), '(phyre.NUM_COLORS)\n', (5493, 5511), False, 'import torch\n'), ((7564, 7610), 'torch.nn.functional.adaptive_max_pool2d', 'nn.functional.adaptive_max_pool2d', (['features', '(1)'], {}), '(features, 1)\n', (7597, 7610), True, 'import torch.nn as nn\n'), ((8329, 8375), 'torch.nn.functional.adaptive_max_pool2d', 'nn.functional.adaptive_max_pool2d', (['features', '(1)'], {}), '(features, 1)\n', (8362, 8375), True, 'import torch.nn as nn\n'), ((10242, 10263), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (10249, 10263), True, 'import torch.nn as nn\n'), ((10369, 10390), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (10376, 10390), True, 'import torch.nn as nn\n'), ((13346, 13434), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_dim', '(8 * num_tx)'], {'kernel_size': 'kernel_size', 'padding': '(kernel_size // 2)'}), '(input_dim, 8 * num_tx, kernel_size=kernel_size, padding=\n kernel_size // 2)\n', (13355, 13434), True, 'import torch.nn as nn\n'), ((13497, 13510), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (13504, 13510), True, 'import torch.nn as nn\n'), ((13524, 13614), 'torch.nn.Conv2d', 'nn.Conv2d', (['(8 * num_tx)', '(10 * num_tx)'], {'kernel_size': 'kernel_size', 'padding': '(kernel_size // 2)'}), '(8 * num_tx, 10 * num_tx, kernel_size=kernel_size, padding=\n kernel_size // 2)\n', (13533, 13614), True, 'import torch.nn as nn\n'), ((13677, 13690), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (13684, 13690), True, 'import torch.nn as nn\n'), ((14011, 14046), 'torch.nn.Linear', 'nn.Linear', (['(10 * num_tx)', '(10 * num_tx)'], {}), '(10 * num_tx, 10 * num_tx)\n', (14020, 14046), True, 'import torch.nn as nn\n'), ((14080, 14115), 'torch.nn.Linear', 'nn.Linear', (['(10 * num_tx)', '(10 * num_tx)'], {}), '(10 * num_tx, 10 * num_tx)\n', (14089, 14115), True, 'import torch.nn as nn\n'), ((14152, 14187), 'torch.nn.Linear', 'nn.Linear', (['(10 * num_tx)', '(32 * num_tx)'], {}), '(10 * num_tx, 32 * num_tx)\n', (14161, 14187), True, 'import torch.nn as nn\n'), ((14225, 14238), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (14232, 14238), True, 'import torch.nn as nn\n'), ((14276, 14314), 'torch.nn.Linear', 'nn.Linear', (['(32 * num_tx)', '(num_tx * 3 * 2)'], {}), '(32 * num_tx, num_tx * 3 * 2)\n', (14285, 14314), True, 'import torch.nn as nn\n'), ((17902, 17918), 'torch.cos', 'torch.cos', (['angle'], {}), '(angle)\n', (17911, 17918), False, 'import torch\n'), ((17943, 17959), 'torch.sin', 'torch.sin', (['angle'], {}), '(angle)\n', (17952, 17959), False, 'import torch\n'), ((18028, 18106), 'torch.cat', 'torch.cat', (['[cos_angle, sin_angle, pos_x, -sin_angle, cos_angle, pos_y]'], {'dim': '(-1)'}), '([cos_angle, sin_angle, pos_x, -sin_angle, cos_angle, pos_y], dim=-1)\n', (18037, 18106), False, 'import torch\n'), ((18836, 18889), 'functools.partial', 'partial', (['self.transform_pix'], {'mode': 'self.affine_tx_mode'}), '(self.transform_pix, mode=self.affine_tx_mode)\n', (18843, 18889), False, 'from functools import partial\n'), ((19210, 19257), 'torch.cat', 'torch.cat', (['feat_to_tx_parts_txed'], {'dim': 'split_dim'}), '(feat_to_tx_parts_txed, dim=split_dim)\n', (19219, 19257), False, 'import torch\n'), ((21217, 21280), 'torch.nn.Conv2d', 'nn.Conv2d', (['num_tx', 'num_tx'], {'kernel_size': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(num_tx, num_tx, kernel_size=1, padding=0, bias=False)\n', (21226, 21280), True, 'import torch.nn as nn\n'), ((21294, 21311), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (21304, 21311), True, 'import torch.nn as nn\n'), ((22597, 22618), 'torch.stack', 'torch.stack', (['weighted'], {}), '(weighted)\n', (22608, 22618), False, 'import torch\n'), ((25161, 25251), 'torch.nn.Conv2d', 'nn.Conv2d', (['(2 * phyre.NUM_COLORS - 1)', '(8)'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(2 * phyre.NUM_COLORS - 1, 8, kernel_size=1, stride=1, padding=0,\n bias=False)\n', (25170, 25251), True, 'import torch.nn as nn\n'), ((25359, 25380), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (25366, 25380), True, 'import torch.nn as nn\n'), ((25394, 25457), 'torch.nn.Conv2d', 'nn.Conv2d', (['(8)', '(1)'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(8, 1, kernel_size=1, stride=1, padding=0, bias=False)\n', (25403, 25457), True, 'import torch.nn as nn\n'), ((26189, 26246), 'torch.cat', 'torch.cat', (['[pixels[:, -1, ...], future_pixels_obj]'], {'dim': '(1)'}), '([pixels[:, -1, ...], future_pixels_obj], dim=1)\n', (26198, 26246), False, 'import torch\n'), ((27312, 27340), 'torch.LongTensor', 'torch.LongTensor', (['movable_ch'], {}), '(movable_ch)\n', (27328, 27340), False, 'import torch\n'), ((27391, 27424), 'torch.arange', 'torch.arange', (['(1)', 'phyre.NUM_COLORS'], {}), '(1, phyre.NUM_COLORS)\n', (27403, 27424), False, 'import torch\n'), ((28784, 28845), 'torch.sum', 'torch.sum', (['future_pixels[:, :, 1:, ...]'], {'dim': '(2)', 'keepdims': '(True)'}), '(future_pixels[:, :, 1:, ...], dim=2, keepdims=True)\n', (28793, 28845), False, 'import torch\n'), ((29778, 29817), 'torch.nn.InstanceNorm2d', 'nn.InstanceNorm2d', (['out_dim'], {'affine': '(True)'}), '(out_dim, affine=True)\n', (29795, 29817), True, 'import torch.nn as nn\n'), ((29844, 29859), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (29857, 29859), True, 'import torch.nn as nn\n'), ((34045, 34088), 'torch.stack', 'torch.stack', (['[el[key] for el in all_losses]'], {}), '([el[key] for el in all_losses])\n', (34056, 34088), False, 'import torch\n'), ((34258, 34295), 'torch.mean', 'torch.mean', (['(stkd * (stkd >= 0))'], {'dim': '(0)'}), '(stkd * (stkd >= 0), dim=0)\n', (34268, 34295), False, 'import torch\n'), ((34765, 34833), 'logging.warning', 'logging.warning', (['"""Ignoring the out_dim (%d) for ObjEncoder"""', 'out_dim'], {}), "('Ignoring the out_dim (%d) for ObjEncoder', out_dim)\n", (34780, 34833), False, 'import logging\n'), ((35449, 35480), 'torch.nn.Sequential', 'nn.Sequential', (['*layers_lst_flat'], {}), '(*layers_lst_flat)\n', (35462, 35480), True, 'import torch.nn as nn\n'), ((35727, 35752), 'torch.flatten', 'torch.flatten', (['feat', '(0)', '(2)'], {}), '(feat, 0, 2)\n', (35740, 35752), False, 'import torch\n'), ((35830, 35902), 'torch.reshape', 'torch.reshape', (['obj_embed_flat', '(feat.shape[:3] + obj_embed_flat.shape[1:])'], {}), '(obj_embed_flat, feat.shape[:3] + obj_embed_flat.shape[1:])\n', (35843, 35902), False, 'import torch\n'), ((36017, 36067), 'torch.mean', 'torch.mean', (['obj_embed'], {'dim': '[-1, -2]', 'keepdims': '(True)'}), '(obj_embed, dim=[-1, -2], keepdims=True)\n', (36027, 36067), False, 'import torch\n'), ((36348, 36415), 'torch.nn.Conv2d', 'nn.Conv2d', (['dim', 'dim'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(dim, dim, kernel_size=1, stride=1, padding=0, bias=False)\n', (36357, 36415), True, 'import torch.nn as nn\n'), ((36439, 36460), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (36446, 36460), True, 'import torch.nn as nn\n'), ((36474, 36542), 'torch.nn.Conv2d', 'nn.Conv2d', (['dim', 'nobj'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(dim, nobj, kernel_size=1, stride=1, padding=0, bias=False)\n', (36483, 36542), True, 'import torch.nn as nn\n'), ((40250, 40297), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_dim', '(3)'], {'kernel_size': '(1)', 'bias': '(False)'}), '(in_dim, 3, kernel_size=1, bias=False)\n', (40259, 40297), True, 'import torch.nn as nn\n'), ((40311, 40328), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(3)'], {}), '(3)\n', (40325, 40328), True, 'import torch.nn as nn\n'), ((40342, 40363), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (40349, 40363), True, 'import torch.nn as nn\n'), ((40605, 40626), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (40612, 40626), True, 'import torch.nn as nn\n'), ((40873, 40894), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (40880, 40894), True, 'import torch.nn as nn\n'), ((41141, 41162), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (41148, 41162), True, 'import torch.nn as nn\n'), ((41409, 41430), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (41416, 41430), True, 'import torch.nn as nn\n'), ((41679, 41700), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (41686, 41700), True, 'import torch.nn as nn\n'), ((45459, 45488), 'torch.flatten', 'torch.flatten', (['flat_obs', '(1)', '(2)'], {}), '(flat_obs, 1, 2)\n', (45472, 45488), False, 'import torch\n'), ((45874, 45923), 'torch.mean', 'torch.mean', (['features'], {'dim': '[-2, -1]', 'keepdims': '(True)'}), '(features, dim=[-2, -1], keepdims=True)\n', (45884, 45923), False, 'import torch\n'), ((46050, 46096), 'torch.nn.functional.normalize', 'nn.functional.normalize', (['features'], {'p': '(2)', 'dim': '(-1)'}), '(features, p=2, dim=-1)\n', (46073, 46096), True, 'import torch.nn as nn\n'), ((49768, 49820), 'torch.nn.functional.linear', 'nn.functional.linear', (['mean_feat', 'self.init_linear_wt'], {}), '(mean_feat, self.init_linear_wt)\n', (49788, 49820), True, 'import torch.nn as nn\n'), ((50259, 50451), 'omegaconf.OmegaConf.create', 'OmegaConf.create', (["{'class': 'nets.ResNetBaseEncoder', 'params': {'base_model': {'class':\n 'torchvision.models.resnet18', 'params': {'pretrained': False}},\n 'nlayers': num_conv_blocks}}"], {}), "({'class': 'nets.ResNetBaseEncoder', 'params': {\n 'base_model': {'class': 'torchvision.models.resnet18', 'params': {\n 'pretrained': False}}, 'nlayers': num_conv_blocks}})\n", (50275, 50451), False, 'from omegaconf import OmegaConf\n'), ((50685, 50770), 'omegaconf.OmegaConf.create', 'OmegaConf.create', (["{'class': 'nets.TrivialObjectifier', 'params': {'nobj': nobj}}"], {}), "({'class': 'nets.TrivialObjectifier', 'params': {'nobj': nobj}}\n )\n", (50701, 50770), False, 'from omegaconf import OmegaConf\n'), ((50887, 51005), 'omegaconf.OmegaConf.create', 'OmegaConf.create', (["{'class': 'nets.BasicObjEncoder', 'params': {'out_dim': 16, 'nlayers': 0,\n 'spatial_mean': True}}"], {}), "({'class': 'nets.BasicObjEncoder', 'params': {'out_dim': 16,\n 'nlayers': 0, 'spatial_mean': True}})\n", (50903, 51005), False, 'from omegaconf import OmegaConf\n'), ((53249, 53281), 'torch.mean', 'torch.mean', (['preds'], {'axis': '[-1, -2]'}), '(preds, axis=[-1, -2])\n', (53259, 53281), False, 'import torch\n'), ((55396, 55431), 'torch.mean', 'torch.mean', (['enc_preds', '[-1, -2, -3]'], {}), '(enc_preds, [-1, -2, -3])\n', (55406, 55431), False, 'import torch\n'), ((58887, 58902), 'torch.nn.Linear', 'nn.Linear', (['(1)', '(4)'], {}), '(1, 4)\n', (58896, 58902), True, 'import torch.nn as nn\n'), ((58904, 58925), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (58911, 58925), True, 'import torch.nn as nn\n'), ((58966, 58981), 'torch.nn.Linear', 'nn.Linear', (['(4)', '(8)'], {}), '(4, 8)\n', (58975, 58981), True, 'import torch.nn as nn\n'), ((59328, 59357), 'torch.nn.Linear', 'nn.Linear', (['in_dim_loc', 'in_dim'], {}), '(in_dim_loc, in_dim)\n', (59337, 59357), True, 'import torch.nn as nn\n'), ((61782, 61807), 'torch.flatten', 'torch.flatten', (['feat', '(0)', '(2)'], {}), '(feat, 0, 2)\n', (61795, 61807), False, 'import torch\n'), ((72724, 72745), 'torch.cat', 'torch.cat', (['feat_preds'], {}), '(feat_preds)\n', (72733, 72745), False, 'import torch\n'), ((72768, 72786), 'torch.cat', 'torch.cat', (['feat_gt'], {}), '(feat_gt)\n', (72777, 72786), False, 'import torch\n'), ((1317, 1352), 'torch.nn.Linear', 'nn.Linear', (['action_size', 'hidden_size'], {}), '(action_size, hidden_size)\n', (1326, 1352), True, 'import torch.nn as nn\n'), ((1425, 1460), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (1434, 1460), True, 'import torch.nn as nn\n'), ((17620, 17643), 'torch.zeros_like', 'torch.zeros_like', (['pos_x'], {}), '(pos_x)\n', (17636, 17643), False, 'import torch\n'), ((17668, 17691), 'torch.zeros_like', 'torch.zeros_like', (['pos_y'], {}), '(pos_y)\n', (17684, 17691), False, 'import torch\n'), ((34932, 35054), 'torch.nn.Conv2d', 'nn.Conv2d', (['(in_dim if i == 0 else out_dim)', 'out_dim'], {'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'bias': '(False)'}), '(in_dim if i == 0 else out_dim, out_dim, kernel_size=kernel_size,\n stride=stride, padding=padding, bias=False)\n', (34941, 35054), True, 'import torch.nn as nn\n'), ((35174, 35195), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (35181, 35195), True, 'import torch.nn as nn\n'), ((48084, 48109), 'torch.nn.Linear', 'nn.Linear', (['in_dim', 'in_dim'], {}), '(in_dim, in_dim)\n', (48093, 48109), True, 'import torch.nn as nn\n'), ((48130, 48151), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (48137, 48151), True, 'import torch.nn as nn\n'), ((49425, 49559), 'logging.warning', 'logging.warning', (['"""Creating a linear layer to map the input dims (%d) to MLP input dim (%d)"""', 'mean_feat.shape[-1]', 'self.in_dim'], {}), "(\n 'Creating a linear layer to map the input dims (%d) to MLP input dim (%d)',\n mean_feat.shape[-1], self.in_dim)\n", (49440, 49559), False, 'import logging\n'), ((49845, 49866), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (49852, 49866), True, 'import torch.nn as nn\n'), ((54749, 54810), 'torch.nn.Conv3d', 'nn.Conv3d', (['in_dim', 'in_dim', '(3)'], {'stride': '(2)', 'padding': '(1)', 'bias': '(False)'}), '(in_dim, in_dim, 3, stride=2, padding=1, bias=False)\n', (54758, 54810), True, 'import torch.nn as nn\n'), ((54824, 54845), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (54831, 54845), True, 'import torch.nn as nn\n'), ((71052, 71070), 'torch.Tensor', 'torch.Tensor', (['[-1]'], {}), '([-1])\n', (71064, 71070), False, 'import torch\n'), ((14694, 14747), 'numpy.array', 'np.array', (['([1, 0, 0, 0, 1, 0] * num_tx)'], {'dtype': 'np.float'}), '([1, 0, 0, 0, 1, 0] * num_tx, dtype=np.float)\n', (14702, 14747), True, 'import numpy as np\n'), ((17759, 17782), 'torch.zeros_like', 'torch.zeros_like', (['angle'], {}), '(angle)\n', (17775, 17782), False, 'import torch\n'), ((31588, 31603), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (31601, 31603), True, 'import torch.nn as nn\n'), ((53589, 53635), 'torch.max', 'torch.max', (['feat_enc_time'], {'dim': '(1)', 'keepdims': '(True)'}), '(feat_enc_time, dim=1, keepdims=True)\n', (53598, 53635), False, 'import torch\n'), ((64881, 64919), 'torch.unsqueeze', 'torch.unsqueeze', (['all_preds[-1]'], {'axis': '(1)'}), '(all_preds[-1], axis=1)\n', (64896, 64919), False, 'import torch\n'), ((65027, 65064), 'torch.unsqueeze', 'torch.unsqueeze', (['all_pixs[-1]'], {'axis': '(1)'}), '(all_pixs[-1], axis=1)\n', (65042, 65064), False, 'import torch\n'), ((4517, 4542), 'torch.ByteTensor', 'torch.ByteTensor', (['targets'], {}), '(targets)\n', (4533, 4542), False, 'import torch\n'), ((48308, 48328), 'torch.nn.Linear', 'nn.Linear', (['in_dim', '(1)'], {}), '(in_dim, 1)\n', (48317, 48328), True, 'import torch.nn as nn\n'), ((73135, 73155), 'torch.cat', 'torch.cat', (['pix_preds'], {}), '(pix_preds)\n', (73144, 73155), False, 'import torch\n'), ((73199, 73216), 'torch.cat', 'torch.cat', (['pix_gt'], {}), '(pix_gt)\n', (73208, 73216), False, 'import torch\n'), ((59778, 59825), 'torch.arange', 'torch.arange', (['feat.shape[1]'], {'device': 'feat.device'}), '(feat.shape[1], device=feat.device)\n', (59790, 59825), False, 'import torch\n')]
#!python3 # -*- coding:utf-8 -*- # 『Pythonで始めるOpenCV4プログラミング』 # 北山尚洋 import cv2 import sys, traceback import numpy as np def add(imgName1, imgName2): try: img1 = cv2.imread(imgName1) img2 = cv2.imread(imgName2) if img1 is None or img2 is None: print("no file reading...") sys.exit(1) #caution! #src file size have to same size each img1 and img2. and same type. img1 = cv2.resize(img1, (500,500)) img2 = cv2.resize(img2, (500,500)) cv2.imshow('image1', img1) cv2.imshow('image2', img2) dst = cv2.add(img1, img2) cv2.imshow('synthesize', dst) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as ex: print("Error:", sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.format_tb(sys.exc_info()[2])) finally: pass def addScolor(imgName1): try: img1 = cv2.imread(imgName1) if img1 is None: print("no file reading...") sys.exit(1) cv2.imshow("img1",img1) height = img1.shape[0] width = img1.shape[1] blue = np.zeros((height, width, 3), np.uint8) blue[:,:] = [128, 0, 0] dst = cv2.add(img1, blue) cv2.imshow("after", dst) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as ex: print("Error:", sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.format_tb(sys.exc_info()[2])) finally: pass def addMask(imgName1, imgName2): try: img1 = cv2.imread(imgName1) img2 = cv2.imread(imgName2) if img1 is None or img2 is None: print("no file reading...") sys.exit(1) #caution! #src file size have to same size each img1 and img2. and same type. img1 = cv2.resize(img1, (500,500)) img2 = cv2.resize(img2, (500,500)) cv2.imshow('image1', img1) cv2.imshow('image2', img2) #create mask height = img1.shape[0] width = img1.shape[1] img_mask = np.zeros((height, width), np.uint8) img_mask[ height//4:height*3//4, width//4:width*3//4 ] = [255] #add two image with mask. dst = cv2.add(img1, img2, mask = img_mask) cv2.imshow('dst1', dst) #add two image with mask. dst = cv2.add(img1, img2, mask = img_mask) cv2.imshow('dst1', dst) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as ex: print("Error:", sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.format_tb(sys.exc_info()[2])) finally: pass #add(sys.argv[1], sys.argv[2]) #addScolor(sys.argv[1]) addMask(sys.argv[1], sys.argv[2])
[ "cv2.waitKey", "cv2.destroyAllWindows", "numpy.zeros", "cv2.imread", "sys.exc_info", "sys.exit", "cv2.imshow", "cv2.add", "cv2.resize" ]
[((177, 197), 'cv2.imread', 'cv2.imread', (['imgName1'], {}), '(imgName1)\n', (187, 197), False, 'import cv2\n'), ((213, 233), 'cv2.imread', 'cv2.imread', (['imgName2'], {}), '(imgName2)\n', (223, 233), False, 'import cv2\n'), ((466, 494), 'cv2.resize', 'cv2.resize', (['img1', '(500, 500)'], {}), '(img1, (500, 500))\n', (476, 494), False, 'import cv2\n'), ((509, 537), 'cv2.resize', 'cv2.resize', (['img2', '(500, 500)'], {}), '(img2, (500, 500))\n', (519, 537), False, 'import cv2\n'), ((554, 580), 'cv2.imshow', 'cv2.imshow', (['"""image1"""', 'img1'], {}), "('image1', img1)\n", (564, 580), False, 'import cv2\n'), ((589, 615), 'cv2.imshow', 'cv2.imshow', (['"""image2"""', 'img2'], {}), "('image2', img2)\n", (599, 615), False, 'import cv2\n'), ((639, 658), 'cv2.add', 'cv2.add', (['img1', 'img2'], {}), '(img1, img2)\n', (646, 658), False, 'import cv2\n'), ((667, 696), 'cv2.imshow', 'cv2.imshow', (['"""synthesize"""', 'dst'], {}), "('synthesize', dst)\n", (677, 696), False, 'import cv2\n'), ((714, 728), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (725, 728), False, 'import cv2\n'), ((737, 760), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (758, 760), False, 'import cv2\n'), ((1009, 1029), 'cv2.imread', 'cv2.imread', (['imgName1'], {}), '(imgName1)\n', (1019, 1029), False, 'import cv2\n'), ((1149, 1173), 'cv2.imshow', 'cv2.imshow', (['"""img1"""', 'img1'], {}), "('img1', img1)\n", (1159, 1173), False, 'import cv2\n'), ((1258, 1296), 'numpy.zeros', 'np.zeros', (['(height, width, 3)', 'np.uint8'], {}), '((height, width, 3), np.uint8)\n', (1266, 1296), True, 'import numpy as np\n'), ((1352, 1371), 'cv2.add', 'cv2.add', (['img1', 'blue'], {}), '(img1, blue)\n', (1359, 1371), False, 'import cv2\n'), ((1380, 1404), 'cv2.imshow', 'cv2.imshow', (['"""after"""', 'dst'], {}), "('after', dst)\n", (1390, 1404), False, 'import cv2\n'), ((1422, 1436), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1433, 1436), False, 'import cv2\n'), ((1445, 1468), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1466, 1468), False, 'import cv2\n'), ((1720, 1740), 'cv2.imread', 'cv2.imread', (['imgName1'], {}), '(imgName1)\n', (1730, 1740), False, 'import cv2\n'), ((1756, 1776), 'cv2.imread', 'cv2.imread', (['imgName2'], {}), '(imgName2)\n', (1766, 1776), False, 'import cv2\n'), ((2009, 2037), 'cv2.resize', 'cv2.resize', (['img1', '(500, 500)'], {}), '(img1, (500, 500))\n', (2019, 2037), False, 'import cv2\n'), ((2052, 2080), 'cv2.resize', 'cv2.resize', (['img2', '(500, 500)'], {}), '(img2, (500, 500))\n', (2062, 2080), False, 'import cv2\n'), ((2097, 2123), 'cv2.imshow', 'cv2.imshow', (['"""image1"""', 'img1'], {}), "('image1', img1)\n", (2107, 2123), False, 'import cv2\n'), ((2132, 2158), 'cv2.imshow', 'cv2.imshow', (['"""image2"""', 'img2'], {}), "('image2', img2)\n", (2142, 2158), False, 'import cv2\n'), ((2269, 2304), 'numpy.zeros', 'np.zeros', (['(height, width)', 'np.uint8'], {}), '((height, width), np.uint8)\n', (2277, 2304), True, 'import numpy as np\n'), ((2433, 2467), 'cv2.add', 'cv2.add', (['img1', 'img2'], {'mask': 'img_mask'}), '(img1, img2, mask=img_mask)\n', (2440, 2467), False, 'import cv2\n'), ((2478, 2501), 'cv2.imshow', 'cv2.imshow', (['"""dst1"""', 'dst'], {}), "('dst1', dst)\n", (2488, 2501), False, 'import cv2\n'), ((2559, 2593), 'cv2.add', 'cv2.add', (['img1', 'img2'], {'mask': 'img_mask'}), '(img1, img2, mask=img_mask)\n', (2566, 2593), False, 'import cv2\n'), ((2604, 2627), 'cv2.imshow', 'cv2.imshow', (['"""dst1"""', 'dst'], {}), "('dst1', dst)\n", (2614, 2627), False, 'import cv2\n'), ((2653, 2667), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (2664, 2667), False, 'import cv2\n'), ((2676, 2699), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2697, 2699), False, 'import cv2\n'), ((336, 347), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (344, 347), False, 'import sys, traceback\n'), ((1116, 1127), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1124, 1127), False, 'import sys, traceback\n'), ((1879, 1890), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1887, 1890), False, 'import sys, traceback\n'), ((822, 836), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (834, 836), False, 'import sys, traceback\n'), ((855, 869), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (867, 869), False, 'import sys, traceback\n'), ((1530, 1544), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (1542, 1544), False, 'import sys, traceback\n'), ((1563, 1577), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (1575, 1577), False, 'import sys, traceback\n'), ((2761, 2775), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2773, 2775), False, 'import sys, traceback\n'), ((2794, 2808), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2806, 2808), False, 'import sys, traceback\n'), ((908, 922), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (920, 922), False, 'import sys, traceback\n'), ((1616, 1630), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (1628, 1630), False, 'import sys, traceback\n'), ((2847, 2861), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2859, 2861), False, 'import sys, traceback\n')]
import time import numpy as np import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets, models from collections import OrderedDict from PIL import Image import matplotlib.pyplot as plt import json import argparse def load_checkpoint(checkpoint_path, model): checkpoint = torch.load(checkpoint_path) if(model == "vgg"): nhu = checkpoint['nhu'] model = models.vgg11(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(25088, nhu)), ('relu', nn.ReLU()), ('fc2', nn.Linear(nhu, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] elif(model == "densenet"): nhu = checkpoint['nhu'] model = models.densenet121(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(1024, nhu)), ('relu', nn.ReLU()), ('fc2', nn.Linear(nhu, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' pil_image = Image.open(image) pil_image = pil_image.resize((256, 256)) width, height = pil_image.size # Get dimensions left = (width - 224)/2 top = (height - 224)/2 right = (width + 224)/2 bottom = (height + 224)/2 pil_image = pil_image.crop((left, top, right, bottom)) pil_image = pil_image.convert('RGB') np_image = np.array(pil_image)/255 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) np_image = (np_image-mean)/std np_image = np_image.transpose((2, 0, 1)) return torch.from_numpy(np_image) def predict(image_path, model, device="cpu", topk=5): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' print(device) output_image = process_image(image_path).to(device) image = torch.zeros([64, 3, 224, 224], dtype=torch.float64).to(device) image += output_image.to(device) model.to(device) model.eval() torch.no_grad() logps = model.forward(image.float()) ps = torch.exp(logps) probability, index = torch.topk(ps, topk, dim=1) return probability.to(device), index.to(device) def get_input_args(): """ Retrieves and parses the 3 command line arguments provided by the user when they run the program from a terminal window. This function uses Python's argparse module to created and defined these 3 command line arguments. If the user fails to provide some or all of the 3 arguments, then the default values are used for the missing arguments. Command Line Arguments: 1. Image Folder as --dir with default value 'flowers' 2. CNN Model Architecture as --arch with default value 'vgg' 3. GPU as --GPU with default value 'cpu' This function returns these arguments as an ArgumentParser object. Parameters: None - simply using argparse module to create & store command line arguments Returns: parse_args() -data structure that stores the command line arguments object """ # Replace None with parser.parse_args() parsed argument collection that # you created with this function # Creates Argument Parser object named parser parser = argparse.ArgumentParser() # Argument 1: that's a path to a folder parser.add_argument('input', type=str, help='path to the image') parser.add_argument('ckpdir', type=str, help='path to the folder of check point') parser.add_argument('--arch', type=str, default='vgg', help='The Network architecture') parser.add_argument('--gpu', type=bool, default=False, help='gpu enable') parser.add_argument('--topk', type=float, default=5, help='topk') parser.add_argument('--category_names', type=str, default='cat_to_name.json', help='directory of jason file') # Assigns variable in_args to parse_args() in_args = parser.parse_args() return in_args
[ "torch.topk", "argparse.ArgumentParser", "torchvision.models.vgg11", "torch.nn.ReLU", "torch.nn.LogSoftmax", "torch.load", "torchvision.models.densenet121", "PIL.Image.open", "torch.exp", "numpy.array", "torch.nn.Linear", "torch.zeros", "torch.no_grad", "torch.from_numpy" ]
[((329, 356), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (339, 356), False, 'import torch\n'), ((1656, 1673), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (1666, 1673), False, 'from PIL import Image\n'), ((2036, 2067), 'numpy.array', 'np.array', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (2044, 2067), True, 'import numpy as np\n'), ((2078, 2109), 'numpy.array', 'np.array', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (2086, 2109), True, 'import numpy as np\n'), ((2201, 2227), 'torch.from_numpy', 'torch.from_numpy', (['np_image'], {}), '(np_image)\n', (2217, 2227), False, 'import torch\n'), ((2608, 2623), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2621, 2623), False, 'import torch\n'), ((2674, 2690), 'torch.exp', 'torch.exp', (['logps'], {}), '(logps)\n', (2683, 2690), False, 'import torch\n'), ((2716, 2743), 'torch.topk', 'torch.topk', (['ps', 'topk'], {'dim': '(1)'}), '(ps, topk, dim=1)\n', (2726, 2743), False, 'import torch\n'), ((3843, 3868), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3866, 3868), False, 'import argparse\n'), ((429, 458), 'torchvision.models.vgg11', 'models.vgg11', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (441, 458), False, 'from torchvision import transforms, datasets, models\n'), ((2001, 2020), 'numpy.array', 'np.array', (['pil_image'], {}), '(pil_image)\n', (2009, 2020), True, 'import numpy as np\n'), ((994, 1029), 'torchvision.models.densenet121', 'models.densenet121', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (1012, 1029), False, 'from torchvision import transforms, datasets, models\n'), ((2466, 2517), 'torch.zeros', 'torch.zeros', (['[64, 3, 224, 224]'], {'dtype': 'torch.float64'}), '([64, 3, 224, 224], dtype=torch.float64)\n', (2477, 2517), False, 'import torch\n'), ((609, 630), 'torch.nn.Linear', 'nn.Linear', (['(25088)', 'nhu'], {}), '(25088, nhu)\n', (618, 630), True, 'import torch.nn as nn\n'), ((654, 663), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (661, 663), True, 'import torch.nn as nn\n'), ((686, 705), 'torch.nn.Linear', 'nn.Linear', (['nhu', '(102)'], {}), '(nhu, 102)\n', (695, 705), True, 'import torch.nn as nn\n'), ((731, 751), 'torch.nn.LogSoftmax', 'nn.LogSoftmax', ([], {'dim': '(1)'}), '(dim=1)\n', (744, 751), True, 'import torch.nn as nn\n'), ((1180, 1200), 'torch.nn.Linear', 'nn.Linear', (['(1024)', 'nhu'], {}), '(1024, nhu)\n', (1189, 1200), True, 'import torch.nn as nn\n'), ((1224, 1233), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1231, 1233), True, 'import torch.nn as nn\n'), ((1256, 1275), 'torch.nn.Linear', 'nn.Linear', (['nhu', '(102)'], {}), '(nhu, 102)\n', (1265, 1275), True, 'import torch.nn as nn\n'), ((1301, 1321), 'torch.nn.LogSoftmax', 'nn.LogSoftmax', ([], {'dim': '(1)'}), '(dim=1)\n', (1314, 1321), True, 'import torch.nn as nn\n')]
# Ad Soyad: <NAME> No: 180401041 #import numpy.matlib #Matrislerde kullanılabilir from matrix_operations import matrix_transpose # gerekli matris işlemleri için fonksiyonların dahil edilmesi. # D=A^T --> D= np.transpose(A) --> transpose kullanımı from matrix_operations import matrix_multiplication # C=AxB(AB=C) --> C=np.dot(A,B) --> matrislerde çarpma işlemi from matrix_operations import matrix_inverse # D=A^-1 --> D= np.linalg.inv --> matrisin tersinin alınması için.. from copy import copy #ilk veriyi kaybetmeden kopyası üzerinde işlem yapmak için kullanılır.. from __init__ import __data_file__ #veri girişi için kullandım , init=initialization(başlatma) ile daha kolay bir görünüm elde ettik.. from __init__ import __output_file__ #veri çıkışı için kullandım import numpy as np # numpy artık np değişkeniyle ifade ediliyor.. import sys #dir(sys) sys.argv komutu, programın ismi ile birlikte, bu programa parametre olarak verilen değerleri de bir liste halinde saklıyor. import os #gerek yok silinebilir # import sys sayesinde %d,%s gibi C diline ait göstergelerle sayısal ifadelerimiz daha da kolaylaştı ''' sys kullanımı ....--> en aşağıda arguments=sys.argv.. def çık(): print('Çıkılıyor...') sys.exit() # programı kapanmaya zorlamak için kullanılabilir. if len(sys.argv) < 2: #eğer parametre veya verilerde istenilenden fazlası veya azı varsa kullanılabilir print('Gerekli parametreleri girmediniz!') çık() elif len(sys.argv) > 2: #sys.argv kullandığım parametreleri liste halinde tutar print('Çok fazla parametre girdiniz!') çık() elif sys.argv[1] in ['-v', '-V']: print('Program sürümü: 0.8') else: mesaj = 'Girdiğiniz parametre ({}) anlaşılamadı!' print(mesaj.format(sys.argv[1])) çık() ---> BU ŞEKİLDE YETERLİ DEĞİL DETAYLANMASI LAZIM.. ''' ''' class BColors: ENDC = '\033[0m'-->kullanılır BOLD = '\033[1m'-->?? UNDERLINE = '\033[4m'-->?? INACTIVE = '\033[90m' FAIL = '\033[91m'-->kullanılır OKGREEN = '\033[92m' WARNING = '\033[93m'-->kullanılır OKBLUE = '\033[94m' HEADER = '\033[95m' COMMENT = '\033[96m' BLOCK = '\033[97m' CODE = '\033[98m' ''' class term_renkleri: WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' #BOLD = '\033[1m' #UNDERLINE = '\033[4m' #COMMENT = '\033[96m' class process:#süreç def __init__(self, veri_içerik: list): # init yapıcı(constructor) fonksiyondur , self parametresi zorunludur. """ Bu sınıf tüm ana işlemleri yürütür : param veri_içerik: Bir veri listesi """ self.veri_ = veri_içerik self.first_var = 0 #ilk varyasyon = 0 , başlangıc self.last_var = len(self.veri_) #son varyasyon =len(self.veri) self.grade_regression_result = None # regresyon iki ya da daha fazla değişken arasındaki değişimleri ölçmeye yarar.(Grafikler ile görselleşmesi sonucunda da anlaşılırlığı yükselir.) self.results = list() #sonuçları listeye atacağız aşağıdaki işlemlerle self.error_results = list() #hata sonuçları için yine bir boş liste kullanımı yapıldı.(for error results..) def set_data_range(self, first=0, last=0, all_=False): """ Regresyon için veri aralığını ayarlama : param first: Verilerin ilk dizini : param last: Son dizin veri verileri : param all_: Tüm verileri seç : dönüş: Yok(None) """ if all_:#if dene self.first_var = 0 self.last_var = len(self.veri_) else: self.first_var = first #ilk varyasyon ilk son v.. son self.last_var = last print( term_renkleri.WARNING + "Veri aralığının %d dan %d a kadar ayarlanması!" % (self.first_var, self.last_var) + term_renkleri.ENDC) # veri aralığının 0 dan 59 a ayarlaması gibi def regression_for_grade(self, derece=0, no_print=False):#sınıf için regresyon # çözüme(solution) ulaşmam için : # X * çözümler = Y # çözümler = (X_t * X)^-1 * X_t * Y solution_matrix = np.zeros(shape=(derece + 1, 1), dtype=float)#çözelti matrix x_matrix = np.zeros(shape=((self.last_var - self.first_var), derece + 1), dtype=float) y_matrix = np.zeros(shape=((self.last_var - self.first_var), 1), dtype=float) # Prepair matrixs matris hazırlanışı y_index = 0 for i in range(0, (self.last_var - self.first_var)): for j in range(0, x_matrix.shape[1]): x_matrix[i][j] = pow(float(self.veri_[i + self.first_var]), j) y_matrix[i][0] = float(y_index) y_index += 1 x_trans_matrix = matrix_transpose(x_matrix) #transpozunun alınması multi_matrix = matrix_multiplication(x_trans_matrix, x_matrix)#matris ile transpozunun alınması tersini alma işlemi inversed_matrix = matrix_inverse(multi_matrix)#matrisin tersinin alınması multi_two_matrix = matrix_multiplication(x_trans_matrix, y_matrix) multi_three_matrix = matrix_multiplication(inversed_matrix, multi_two_matrix) solution_matrix = multi_three_matrix self.grade_regression_result = copy(solution_matrix) self.results.append(self.grade_regression_result) #regresyon sonuçları listemize atıldı.. 1 to_printed = "" to_printed += str(derece) + ". derece regresyon sonuçlarım : \n" to_printed += str(self.grade_regression_result[0]) for i in range(1, derece + 1): to_printed += " + " + str(self.grade_regression_result[i]) + "X" to_printed += "^^" + str(i) to_printed += " = Y" if not no_print: print(to_printed) def calculate_most_usefull(self): #en yararlı olanı hesapla for i in range(len(self.results)): avarage = 0.0 y_index = 0 for x_data in self.veri_: X = float(x_data) Y = y_index y_index += 1 total = 0.0 for j in self.results[i]: total += float(j) * pow(X, j) E = total - Y avarage += E avarage /= len(self.veri_) self.error_results.append(avarage) for i in range(len(self.error_results)): if self.error_results[i] < 0: self.error_results[i] *= -1 the_lowest_error = self.error_results[0] the_lowest_error_index = 0 for i in range(len(self.error_results)): if self.error_results[i] < the_lowest_error: the_lowest_error = self.error_results[i] the_lowest_error_index = i print("Polinom bölgesindeki en düşük hata (aralıklar karşılaştırıldı): %d .derece regresyon ile E=%s" % ((the_lowest_error_index + 1), the_lowest_error)) def veri_uzunluk(self): #verileri almak için fonksiyon return len(self.veri_) def kill_vars(self): #ölüm varyasyonu self.grade_regression_result = None self.results = list() self.error_results = list() def write_to_file(self, the_dir): #dosyaya yazma işlemi with open(the_dir + "/%s" % __output_file__, "w") as fh: to_printed = "" for i in range(len(self.results)): to_printed += str(i + 1) + " Reggression\t" for j in range(len(self.results[i])): to_printed += str(self.results[i][j]) + "X^^" + str(j) + "\t" to_printed += "\n" fh.write(to_printed) print(term_renkleri.WARNING + "%s file generated!" % __output_file__ + term_renkleri.ENDC) def main(): if arguman: # argüman(args)=sys.argv ataması ile ana listede parametre tutmayı tercih ettim. print(term_renkleri.WARNING + "Argüman işleyici yok!" + term_renkleri.ENDC) # Aslında buna gerek yok ,çünkü dosyam zaten var yeni_veri = None working_directory = os.getcwd() try: #try exception yapısı bak, hata mesajı vermek için with open(working_directory + "/%s" % __data_file__, "r") as fh: string_format = fh.read() a = string_format.splitlines() # If last line of file is not /n son dosya satırı değilse for i in range(len(a)): if a[i] == "": a.pop(len(a)-1) yeni_veri = copy(a) #copy ile ana liste elemanları korundu.. except FileNotFoundError: #dosya bulunamadı hatası buna da gerek yok aslında raise Exception("Dosya bulunamadı! %s file" % __data_file__) if not yeni_veri: #dosya var ama veri yoksa verilecek mesaj raise Exception("Dosya bulundu ancak okuma başarısız oldu. ") print(term_renkleri.WARNING + "Dosya açıldı ve başarıyla okundu" + term_renkleri.ENDC) #başarılı dosyaaçılması ve veriokunması durumu print(term_renkleri.WARNING + "İlk soru başlangıç:" + term_renkleri.ENDC) new_process = process(yeni_veri) new_process.set_data_range(all_=True) new_process.regression_for_grade(derece=1) new_process.regression_for_grade(derece=2) new_process.regression_for_grade(derece=3) new_process.regression_for_grade(derece=4) new_process.regression_for_grade(derece=5) new_process.regression_for_grade(derece=6) #new_process.regressionn_for_grade(grade=7) new_process.write_to_file(working_directory) print(term_renkleri.WARNING + "İLK SORUNUN BAŞARIYLA SONLANMASI. \t" + term_renkleri.ENDC)#ilk soru bitti ikinci soru işleniyor print(term_renkleri.WARNING + "Burası ikincinin başlangıc noktası:" + term_renkleri.ENDC) new_process.calculate_most_usefull() print(term_renkleri.WARNING + "İKİNCİ SORUNUN BAŞARILA SONLANMASI. \t" + term_renkleri.ENDC)#ikinci soru bitti üçüncü soru işleniyor print(term_renkleri.WARNING + "Burası üçüncünün başlangıç noktası :" + term_renkleri.ENDC) print(term_renkleri.FAIL + "Taşma durumuna dikkat edilmeli !!" + term_renkleri.ENDC)# taşmaya dikkat et for i in range(int(new_process.veri_uzunluk() / 10) + 1): first = i * 10 last = i * 10 + 10 #last > first if i >= int(new_process.veri_uzunluk() / 10): last = new_process.veri_uzunluk() new_process.kill_vars() new_process.set_data_range(first, last)# ilk ,son karşılaştırma için olabilir?? new_process.regression_for_grade(derece=1, no_print=True) new_process.regression_for_grade(derece=2, no_print=True) new_process.regression_for_grade(derece=3, no_print=True) new_process.regression_for_grade(derece=4, no_print=True) new_process.regression_for_grade(derece=5, no_print=True) new_process.regression_for_grade(derece=6, no_print=True) new_process.calculate_most_usefull() if __name__ == '__main__': arguman = sys.argv[1:] main()
[ "matrix_operations.matrix_transpose", "os.getcwd", "numpy.zeros", "copy.copy", "matrix_operations.matrix_inverse", "matrix_operations.matrix_multiplication" ]
[((8209, 8220), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8218, 8220), False, 'import os\n'), ((4313, 4357), 'numpy.zeros', 'np.zeros', ([], {'shape': '(derece + 1, 1)', 'dtype': 'float'}), '(shape=(derece + 1, 1), dtype=float)\n', (4321, 4357), True, 'import numpy as np\n'), ((4392, 4465), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.last_var - self.first_var, derece + 1)', 'dtype': 'float'}), '(shape=(self.last_var - self.first_var, derece + 1), dtype=float)\n', (4400, 4465), True, 'import numpy as np\n'), ((4487, 4551), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.last_var - self.first_var, 1)', 'dtype': 'float'}), '(shape=(self.last_var - self.first_var, 1), dtype=float)\n', (4495, 4551), True, 'import numpy as np\n'), ((4906, 4932), 'matrix_operations.matrix_transpose', 'matrix_transpose', (['x_matrix'], {}), '(x_matrix)\n', (4922, 4932), False, 'from matrix_operations import matrix_transpose\n'), ((4979, 5026), 'matrix_operations.matrix_multiplication', 'matrix_multiplication', (['x_trans_matrix', 'x_matrix'], {}), '(x_trans_matrix, x_matrix)\n', (5000, 5026), False, 'from matrix_operations import matrix_multiplication\n'), ((5106, 5134), 'matrix_operations.matrix_inverse', 'matrix_inverse', (['multi_matrix'], {}), '(multi_matrix)\n', (5120, 5134), False, 'from matrix_operations import matrix_inverse\n'), ((5198, 5245), 'matrix_operations.matrix_multiplication', 'matrix_multiplication', (['x_trans_matrix', 'y_matrix'], {}), '(x_trans_matrix, y_matrix)\n', (5219, 5245), False, 'from matrix_operations import matrix_multiplication\n'), ((5284, 5340), 'matrix_operations.matrix_multiplication', 'matrix_multiplication', (['inversed_matrix', 'multi_two_matrix'], {}), '(inversed_matrix, multi_two_matrix)\n', (5305, 5340), False, 'from matrix_operations import matrix_multiplication\n'), ((5425, 5446), 'copy.copy', 'copy', (['solution_matrix'], {}), '(solution_matrix)\n', (5429, 5446), False, 'from copy import copy\n'), ((8633, 8640), 'copy.copy', 'copy', (['a'], {}), '(a)\n', (8637, 8640), False, 'from copy import copy\n')]
# -*- coding: utf-8 -*- """ Class for storing supply curves and calculating marginal costs Created on Thu Feb 7 15:34:33 2019 @author: elisn """ import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd class SupplyCurve(): """ Has panda dataframe with list of bids One or many generators may be added to the supply curve. The generators must be in the form of a panda data frame, with the columns ['c2','c1','pmax'] The marginal cost of a generator is given by MC = 2*c2*q + c1, where q ranges from 0 to pmax Hence a generator with c2 = 0 has constant marginal cost (Thus note that the coefficients are those for the Total Cost function) It is also possible to add bids, which then must have the columns [cap,mc_min,mc_max] Note that the internal functions use the bid structure. Class methods: price2quantity(price) - calculates the quantity offered for a given price, straightforward calculation quantity2price(quantity) - calculates price required for given quantity not straightforward since constant bids produce discrete jumps in the offered quantity plot() - plots supply curve """ def __init__(self,bids = pd.DataFrame(columns=['cap','mc_min','mc_max']),gens = pd.DataFrame(columns=['c2','c1','pmax']) ): self.bids = bids.append(get_generator_bids(gens),ignore_index=True).sort_values(by=['mc_min','mc_max']) self._calculate_inflection_points_() def add_bids(self,bids): """ Add bids to supply curve, in the form of a data frame """ self.bids = self.bids.append(bids,ignore_index=True).sort_values(by=['mc_min','mc_max']) self._calculate_inflection_points_() def add_gens(self,gens): """ Add generators with c1, c2, pmax coefficients to supply curve """ self.bids = self.bids.append(get_generator_bids(gens),ignore_index=True).sort_values(by=['mc_min','mc_max']) self._calculate_inflection_points_() def price2quantity(self,price): """ Calculate the offered quantity for a given price """ # loop over bids, calculate offer by each quantity = 0 for i in self.bids.index: if price >= self.bids.loc[i,'mc_min']: if self.bids.loc[i,'mc_min'] != self.bids.loc[i,'mc_max']: # variable MC q = (price - self.bids.loc[i,'mc_min'])/(self.bids.loc[i,'mc_max']-self.bids.loc[i,'mc_min'])*self.bids.loc[i,'cap'] if q > self.bids.loc[i,'cap']: q = self.bids.loc[i,'cap'] quantity += q else: # fixed MC quantity += self.bids.loc[i,'cap'] else: # mc_min exceeds price, can exit as bids are sorted by increasing mc_min return quantity return quantity def _calculate_inflection_points_(self): """ Find all inflection points in the supply curve """ ppoints = [] for i in self.bids.index: if self.bids.loc[i,'mc_min'] not in ppoints: ppoints.append(self.bids.loc[i,'mc_min']) if self.bids.loc[i,'mc_max'] not in ppoints: ppoints.append(self.bids.loc[i,'mc_max']) ppoints.sort() # find curresponding quantities qpoints = [] for point in ppoints: qpoints.append(self.price2quantity(point)) self.xprice = ppoints self.xquant = qpoints def quantity2price(self,quantity,plot=False,verbose=False): """ Calculate minimum price needed for given quantity """ idx = 0 while True: if idx == self.xprice.__len__(): # quantity > qmax, not enough capacity if verbose: print("Insufficient capacity: {0} MW available, but quantity = {1:.3}".format(self.xquant[-1],quantity)) #return np.nan p = np.nan break elif self.xquant[idx] < quantity: idx += 1 # go to next price level else: if idx == 0: # quantity <= 0 - return lowest marginal cost #print("Non-positive quantity = {0:.3}, returning lowest available MC".format(quantity)) #return self.xprice[0] p = self.xprice[0] break elif self.xquant[idx] == quantity: # price corresponds exactly to quantity #return self.xprice[idx] p = self.xprice[idx] break else: # check if offer curve is linear by evaluating quantity between prices if self.price2quantity(self.xprice[idx-1]+(self.xprice[idx]-self.xprice[idx-1])/2) > self.xquant[idx-1]: # if offer curve is linear, interpolate to find correct price # Note: Cannot interpolate linearly to next intersection point, as there # the curve may consist of a linear horizontal section to the next point # Thus we must instead find the inverse slope by summing the inverse slopes # of linear bids at this point # use inverse slope at price xprice[idx] for interpolation p = self.xprice[idx-1] + (quantity-self.xquant[idx-1]) / self._find_slope_(self.xprice[idx]) if p > self.xprice[idx]: # cap price increase up to xprice[idx] # if idx == 3: # print(p) # pass p = self.xprice[idx] #return p break else: # else return this price p = self.xprice[idx] #return self.xprice[idx] break if plot: # plot supply curve with determined point self.plot(qpoints=[quantity],ppoints=[p]) return p def _find_slope_(self,price): """ Find the slope of the supply curve, in MW/EUR (quantity/price) for given price """ # loop over all linear bids and see which are active in this price range slope = 0 # slope in MW/EUR for index in self.bids.index: if self.bids.loc[index,'mc_min'] != self.bids.loc[index,'mc_max'] and \ price > self.bids.loc[index,'mc_min'] and price <= self.bids.loc[index,'mc_max']: slope += self.bids.loc[index,'cap']/(self.bids.loc[index,'mc_max']-self.bids.loc[index,'mc_min']) return slope def plot(self,qpoints=[],ppoints=[]): """ Plot supply curve """ x_quantity = np.linspace(0,self.xquant[-1]) y_price = np.array([self.quantity2price(x) for x in x_quantity]) y2_price = np.linspace(self.xprice[0],self.xprice[-1]) x2_quantity = np.array([self.price2quantity(p) for p in y2_price]) # # merge data points into single array # x = np.array([x for x,_ in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) # y = np.array([y for _,y in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) # plt.plot() plt.plot(x_quantity,y_price,'*') plt.plot(x2_quantity,y2_price,'*') #plt.plot(x,y) # add given points to plot if qpoints.__len__() > 0: plt.plot(np.array(qpoints),np.array(ppoints),'r*') plt.grid() plt.xlabel('MW') plt.ylabel('EUR/MWh') plt.title('Supply curve') plt.legend(['quantity2price','price2quantity']) plt.show() def get_curve(self): """ Return x and y vector with points to plot the offer curve """ x_quantity = np.linspace(0,self.xquant[-1]) y_price = np.array([self.quantity2price(x) for x in x_quantity]) y2_price = np.linspace(self.xprice[0],self.xprice[-1]) x2_quantity = np.array([self.price2quantity(p) for p in y2_price]) # merge data points into single array x = np.array([x for x,_ in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) y = np.array([y for _,y in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) return x,y def get_generator_bids(gens): """ Takes a panda dataframe with generator info, and returns a dataframe with bids with the columns [cap,mc_min,mc_max] cap - total capacity of bid mc_min - minimum marginal cost (=c1) mc_max - maximum marginal cost (=2*c2) """ bids = pd.DataFrame(columns=['cap','mc_min','mc_max']) bids.loc[:,'cap'] = gens.loc[:,'pmax'] bids.loc[:,'mc_min'] = gens.loc[:,'c1'] bids.loc[:,'mc_max'] = gens.loc[:,'pmax'] * gens.loc[:,'c2']*2 + gens.loc[:,'c1'] bids.index = list(range(bids.__len__())) return bids if __name__ == "__main__": with open('Data/generators.pkl','rb') as f: gens = pickle.load(f) # gens = pd.DataFrame(columns=['c1','c2','pmax'],index=[1,2]) # gens.loc[1,:] = [10,0,10000] # gens.loc[2,:] = [20,0,10000] # gens.loc[3,:] = [15,0.0005,10000] s = SupplyCurve(gens=gens) s.plot() s.add_bids(pd.DataFrame(np.array([[10000,10,10],[10000,80,80]]),columns=['cap','mc_min','mc_max'])) s.plot() x,y = s.get_curve() plt.plot(x,y)
[ "pandas.DataFrame", "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "pickle.load", "numpy.array", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((9079, 9128), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['cap', 'mc_min', 'mc_max']"}), "(columns=['cap', 'mc_min', 'mc_max'])\n", (9091, 9128), True, 'import pandas as pd\n'), ((9860, 9874), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (9868, 9874), True, 'import matplotlib.pyplot as plt\n'), ((1279, 1328), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['cap', 'mc_min', 'mc_max']"}), "(columns=['cap', 'mc_min', 'mc_max'])\n", (1291, 1328), True, 'import pandas as pd\n'), ((1334, 1376), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['c2', 'c1', 'pmax']"}), "(columns=['c2', 'c1', 'pmax'])\n", (1346, 1376), True, 'import pandas as pd\n'), ((7080, 7111), 'numpy.linspace', 'np.linspace', (['(0)', 'self.xquant[-1]'], {}), '(0, self.xquant[-1])\n', (7091, 7111), True, 'import numpy as np\n'), ((7212, 7256), 'numpy.linspace', 'np.linspace', (['self.xprice[0]', 'self.xprice[-1]'], {}), '(self.xprice[0], self.xprice[-1])\n', (7223, 7256), True, 'import numpy as np\n'), ((7635, 7645), 'matplotlib.pyplot.plot', 'plt.plot', ([], {}), '()\n', (7643, 7645), True, 'import matplotlib.pyplot as plt\n'), ((7654, 7688), 'matplotlib.pyplot.plot', 'plt.plot', (['x_quantity', 'y_price', '"""*"""'], {}), "(x_quantity, y_price, '*')\n", (7662, 7688), True, 'import matplotlib.pyplot as plt\n'), ((7695, 7731), 'matplotlib.pyplot.plot', 'plt.plot', (['x2_quantity', 'y2_price', '"""*"""'], {}), "(x2_quantity, y2_price, '*')\n", (7703, 7731), True, 'import matplotlib.pyplot as plt\n'), ((7893, 7903), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (7901, 7903), True, 'import matplotlib.pyplot as plt\n'), ((7912, 7928), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""MW"""'], {}), "('MW')\n", (7922, 7928), True, 'import matplotlib.pyplot as plt\n'), ((7937, 7958), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""EUR/MWh"""'], {}), "('EUR/MWh')\n", (7947, 7958), True, 'import matplotlib.pyplot as plt\n'), ((7967, 7992), 'matplotlib.pyplot.title', 'plt.title', (['"""Supply curve"""'], {}), "('Supply curve')\n", (7976, 7992), True, 'import matplotlib.pyplot as plt\n'), ((8001, 8049), 'matplotlib.pyplot.legend', 'plt.legend', (["['quantity2price', 'price2quantity']"], {}), "(['quantity2price', 'price2quantity'])\n", (8011, 8049), True, 'import matplotlib.pyplot as plt\n'), ((8057, 8067), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8065, 8067), True, 'import matplotlib.pyplot as plt\n'), ((8206, 8237), 'numpy.linspace', 'np.linspace', (['(0)', 'self.xquant[-1]'], {}), '(0, self.xquant[-1])\n', (8217, 8237), True, 'import numpy as np\n'), ((8338, 8382), 'numpy.linspace', 'np.linspace', (['self.xprice[0]', 'self.xprice[-1]'], {}), '(self.xprice[0], self.xprice[-1])\n', (8349, 8382), True, 'import numpy as np\n'), ((9459, 9473), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9470, 9473), False, 'import pickle\n'), ((9737, 9781), 'numpy.array', 'np.array', (['[[10000, 10, 10], [10000, 80, 80]]'], {}), '([[10000, 10, 10], [10000, 80, 80]])\n', (9745, 9781), True, 'import numpy as np\n'), ((7843, 7860), 'numpy.array', 'np.array', (['qpoints'], {}), '(qpoints)\n', (7851, 7860), True, 'import numpy as np\n'), ((7861, 7878), 'numpy.array', 'np.array', (['ppoints'], {}), '(ppoints)\n', (7869, 7878), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from sklearn.metrics import classification_report from keras.callbacks import ModelCheckpoint from keras.utils import plot_model import matplotlib.pyplot as plt import numpy as np import os from tnmlearn.callbacks import TrainingMonitor # %% class BaseLearningModel: def __init__(self): self.callbacks = [] def buildTrainMonCB_(self, outputpath): # construct the set of callbacks figPath = os.path.sep.join([outputpath, "{}.png".format( os.getpid())]) jsonPath = os.path.sep.join([outputpath, "{}.json".format( os.getpid())]) self.callbacks.append(TrainingMonitor(figPath, jsonPath=jsonPath)) def buildModelChkPointCB_(self, weightpath): # construct the callback to save only the *best* model to disk # based on the validation loss fname = os.path.sep.join([weightpath, "weights-{epoch:03d}-{val_loss:.4f}.hdf5"]) checkpoint = ModelCheckpoint(fname, monitor="val_loss", mode="min", save_best_only=True, verbose=1) self.callbacks.append(checkpoint) def fit_(self, epochs=100, batch_size=32): # train the model using SGD print("[INFO] training network...") H = self.model.fit(self.trainX, self.trainY, callbacks=self.callbacks, validation_data=(self.testX, self.testY), epochs=epochs, batch_size=batch_size) self.H = H return H def plotModel_(self, outputpath): plot_model(self.model, to_file=outputpath, show_shapes=True) def plot(self): # plot the training loss and accuracy H = self.H epochs = len(H.history['loss']) plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, epochs), H.history["loss"], label="train_loss") plt.plot(np.arange(0, epochs), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, epochs), H.history["acc"], label="train_acc") plt.plot(np.arange(0, epochs), H.history["val_acc"], label="val_acc") plt.title("Training Loss and Accuracy") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend() plt.show() def evaluate_(self, batch_size): # evaluate the network print("[INFO] evaluating network...") predictions = self.model.predict(self.testX, batch_size=batch_size) print(classification_report(self.testY.argmax(axis=1), predictions.argmax(axis=1), target_names=self.classNames))
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "os.getpid", "keras.callbacks.ModelCheckpoint", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "keras.utils.plot_model", "matplotlib.pyplot.style.use", "numpy.arange", "tnmlearn.callbacks.TrainingMonitor", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "os.path.sep.join" ]
[((829, 902), 'os.path.sep.join', 'os.path.sep.join', (["[weightpath, 'weights-{epoch:03d}-{val_loss:.4f}.hdf5']"], {}), "([weightpath, 'weights-{epoch:03d}-{val_loss:.4f}.hdf5'])\n", (845, 902), False, 'import os\n'), ((927, 1017), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['fname'], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'save_best_only': '(True)', 'verbose': '(1)'}), "(fname, monitor='val_loss', mode='min', save_best_only=True,\n verbose=1)\n", (942, 1017), False, 'from keras.callbacks import ModelCheckpoint\n'), ((1499, 1559), 'keras.utils.plot_model', 'plot_model', (['self.model'], {'to_file': 'outputpath', 'show_shapes': '(True)'}), '(self.model, to_file=outputpath, show_shapes=True)\n', (1509, 1559), False, 'from keras.utils import plot_model\n'), ((1681, 1704), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (1694, 1704), True, 'import matplotlib.pyplot as plt\n'), ((1709, 1721), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1719, 1721), True, 'import matplotlib.pyplot as plt\n'), ((2022, 2061), 'matplotlib.pyplot.title', 'plt.title', (['"""Training Loss and Accuracy"""'], {}), "('Training Loss and Accuracy')\n", (2031, 2061), True, 'import matplotlib.pyplot as plt\n'), ((2066, 2087), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch #"""'], {}), "('Epoch #')\n", (2076, 2087), True, 'import matplotlib.pyplot as plt\n'), ((2092, 2119), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss/Accuracy"""'], {}), "('Loss/Accuracy')\n", (2102, 2119), True, 'import matplotlib.pyplot as plt\n'), ((2124, 2136), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2134, 2136), True, 'import matplotlib.pyplot as plt\n'), ((2141, 2151), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2149, 2151), True, 'import matplotlib.pyplot as plt\n'), ((621, 664), 'tnmlearn.callbacks.TrainingMonitor', 'TrainingMonitor', (['figPath'], {'jsonPath': 'jsonPath'}), '(figPath, jsonPath=jsonPath)\n', (636, 664), False, 'from tnmlearn.callbacks import TrainingMonitor\n'), ((1735, 1755), 'numpy.arange', 'np.arange', (['(0)', 'epochs'], {}), '(0, epochs)\n', (1744, 1755), True, 'import numpy as np\n'), ((1809, 1829), 'numpy.arange', 'np.arange', (['(0)', 'epochs'], {}), '(0, epochs)\n', (1818, 1829), True, 'import numpy as np\n'), ((1885, 1905), 'numpy.arange', 'np.arange', (['(0)', 'epochs'], {}), '(0, epochs)\n', (1894, 1905), True, 'import numpy as np\n'), ((1957, 1977), 'numpy.arange', 'np.arange', (['(0)', 'epochs'], {}), '(0, epochs)\n', (1966, 1977), True, 'import numpy as np\n'), ((494, 505), 'os.getpid', 'os.getpid', ([], {}), '()\n', (503, 505), False, 'import os\n'), ((580, 591), 'os.getpid', 'os.getpid', ([], {}), '()\n', (589, 591), False, 'import os\n')]
import numpy as np import tensorflow as tf import csv def classify_state(X, n_state): up = 80 if (0 <= X <= 2.5): return n_state - 1, 2.5 for i in range(n_state - 1): if (up - (i + 1) * 2.5 < X <= up - i * 2.5): return i, up - i * 2.5 def GA(max_prob_index, n_actions): values = np.zeros(n_actions) jjj = 0 for i in range(n_actions): values[i] = jjj jjj = jjj + 2.5 return values[max_prob_index] def GR(X, x, n_actions, round_size, n_state): values = np.zeros(n_actions) jjj = 0 for i in range(n_actions): values[i] = jjj jjj = jjj + 2.5 reward = np.zeros(n_actions) flag = 0 _, down = classify_state(X[x + 1][round_size - 1], n_state) for i in range(n_actions): if (down + 2.5 >= values[i] > down): reward[i] = 1 elif (down + 5 >= values[i] >= down + 2.5): reward[i] = 2 elif (down + 7.5 >= values[i] > down+5): reward[i] = 3 else: reward[i] = -1 return reward, flag, values def classify_losspackge(diff, one_hot_state, n_state): if (diff == 0): class_one_hot = one_hot_state[0] for i in range(int((n_state / 2) - 1)): if (2.5 * i < diff <= 2.5 * (i + 1)): class_one_hot = one_hot_state[i + 1] if (2.5 * (int(n_state / 2) - 1) < diff): class_one_hot = one_hot_state[int(n_state / 2) - 1] for i in range(int(n_state / 2) - 2): if (-2.5 * (i + 1) <= diff < -2.5 * (i)): class_one_hot = one_hot_state[int(n_state / 2) - 1 + i + 1] if (-2.5 * (int(n_state / 2) - 2) > diff): class_one_hot = one_hot_state[int(n_state / 2) - 1 + int(n_state / 2) - 2 + 1] return class_one_hot def lstm_test(cell_number, n_actions, n_state, epoch, one_hot_state, X, model_i, round_size): tf.reset_default_graph() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) input = tf.placeholder(tf.float32, [None, round_size , n_state], name="input_x") # 1*30 lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=cell_number, state_is_tuple=True) _, final_state = tf.nn.dynamic_rnn(cell=lstm_cell, inputs=input, dtype=tf.float32) W3 = tf.get_variable("W3", shape=[cell_number, n_actions], initializer=tf.contrib.layers.xavier_initializer()) B3 = tf.get_variable("B3", shape=[1, n_actions], initializer=tf.constant_initializer()) score = tf.matmul(final_state[1], W3) + B3 probability = tf.nn.softmax(score) restore_path = './model_' + str(model_i) + '/' + str(epoch) + '.ckpt' saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, restore_path) down_count = len(X) RAB = np.zeros(2) DLR = np.zeros(2) G_list = [] X_list = [] G =80 #15.5 G_list.append(G) batch_reward, batch_state, all_reward_for_loss, batch_action, all_action_for_loss = [], [], [], [], [] g_count=0 for x in range(len(X)-1): if (x != 0): if (G > 80): G_list.append(80) else: G_list.append(action_values) g_count=g_count+1 R_state = [] for i in range(round_size): #print(len(X[x][i])) state_arg, D = classify_state(X[x][i], n_state) state_ = one_hot_state[state_arg] R_state.append(state_) batch_state.append(R_state) state = np.reshape(R_state, [1, round_size , n_state]) tfprob = sess.run(probability, feed_dict={input: state}) max_prob_index = np.argmax(tfprob[0]) loss_package = G - X[x][round_size - 1] if (loss_package >= 0): RAB[0] = RAB[0] + loss_package RAB[1] = RAB[1] + 1 else: DLR[0] = DLR[0] + (-1) * loss_package DLR[1] = DLR[1] + 1 action_values = GA(max_prob_index, n_actions) reward, flag, values = GR(X, x, n_actions, round_size, n_state) X_list.append(X[x][round_size - 1]) G = action_values batch_reward.append(reward) all_reward_for_loss.append(reward) x_count=down_count if (RAB[1] != 0): RAB_ = RAB[0] / RAB[1] else: RAB_ = 0 if (DLR[1] != 0): DLR_ = DLR[0] / DLR[1] else: DLR_ = 0 with open('./model_' + str(model_i) + '/lost_package.csv', 'a', newline='') as p: writer = csv.writer(p) writer.writerow(['RAB', 'DLR']) writer.writerow([RAB_, DLR_]) return x_count,g_count, G_list
[ "tensorflow.contrib.layers.xavier_initializer", "tensorflow.nn.softmax", "csv.writer", "tensorflow.train.Saver", "numpy.argmax", "tensorflow.nn.dynamic_rnn", "tensorflow.reset_default_graph", "tensorflow.constant_initializer", "numpy.zeros", "tensorflow.Session", "tensorflow.placeholder", "tensorflow.nn.rnn_cell.BasicLSTMCell", "tensorflow.matmul", "tensorflow.ConfigProto", "numpy.reshape", "tensorflow.GPUOptions" ]
[((325, 344), 'numpy.zeros', 'np.zeros', (['n_actions'], {}), '(n_actions)\n', (333, 344), True, 'import numpy as np\n'), ((531, 550), 'numpy.zeros', 'np.zeros', (['n_actions'], {}), '(n_actions)\n', (539, 550), True, 'import numpy as np\n'), ((655, 674), 'numpy.zeros', 'np.zeros', (['n_actions'], {}), '(n_actions)\n', (663, 674), True, 'import numpy as np\n'), ((1883, 1907), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (1905, 1907), True, 'import tensorflow as tf\n'), ((1926, 1978), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'per_process_gpu_memory_fraction': '(0.333)'}), '(per_process_gpu_memory_fraction=0.333)\n', (1939, 1978), True, 'import tensorflow as tf\n'), ((2061, 2132), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, round_size, n_state]'], {'name': '"""input_x"""'}), "(tf.float32, [None, round_size, n_state], name='input_x')\n", (2075, 2132), True, 'import tensorflow as tf\n'), ((2158, 2230), 'tensorflow.nn.rnn_cell.BasicLSTMCell', 'tf.nn.rnn_cell.BasicLSTMCell', ([], {'num_units': 'cell_number', 'state_is_tuple': '(True)'}), '(num_units=cell_number, state_is_tuple=True)\n', (2186, 2230), True, 'import tensorflow as tf\n'), ((2252, 2317), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', ([], {'cell': 'lstm_cell', 'inputs': 'input', 'dtype': 'tf.float32'}), '(cell=lstm_cell, inputs=input, dtype=tf.float32)\n', (2269, 2317), True, 'import tensorflow as tf\n'), ((2640, 2660), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['score'], {}), '(score)\n', (2653, 2660), True, 'import tensorflow as tf\n'), ((2748, 2764), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2762, 2764), True, 'import tensorflow as tf\n'), ((2587, 2616), 'tensorflow.matmul', 'tf.matmul', (['final_state[1]', 'W3'], {}), '(final_state[1], W3)\n', (2596, 2616), True, 'import tensorflow as tf\n'), ((2774, 2786), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2784, 2786), True, 'import tensorflow as tf\n'), ((2882, 2893), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2890, 2893), True, 'import numpy as np\n'), ((2908, 2919), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2916, 2919), True, 'import numpy as np\n'), ((4729, 4742), 'csv.writer', 'csv.writer', (['p'], {}), '(p)\n', (4739, 4742), False, 'import csv\n'), ((2008, 2047), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'gpu_options': 'gpu_options'}), '(gpu_options=gpu_options)\n', (2022, 2047), True, 'import tensorflow as tf\n'), ((2418, 2456), 'tensorflow.contrib.layers.xavier_initializer', 'tf.contrib.layers.xavier_initializer', ([], {}), '()\n', (2454, 2456), True, 'import tensorflow as tf\n'), ((2548, 2573), 'tensorflow.constant_initializer', 'tf.constant_initializer', ([], {}), '()\n', (2571, 2573), True, 'import tensorflow as tf\n'), ((3679, 3724), 'numpy.reshape', 'np.reshape', (['R_state', '[1, round_size, n_state]'], {}), '(R_state, [1, round_size, n_state])\n', (3689, 3724), True, 'import numpy as np\n'), ((3824, 3844), 'numpy.argmax', 'np.argmax', (['tfprob[0]'], {}), '(tfprob[0])\n', (3833, 3844), True, 'import numpy as np\n')]
import os import pdb import numpy as np from fastestimator.summary.logs import parse_log_file from scipy.stats import ttest_ind from tabulate import tabulate def get_best_step(objective, eval_steps, result, mode, train_history): obj_step = 0 for idx, value in enumerate(result): if (mode == "max" and value >= objective) or (mode == "min" and value <= objective): obj_step = eval_steps[idx] break upper_step = obj_step lower_step = eval_steps[idx - 1] min_loss = None min_train_step = None for train_step, train_loss in train_history.items(): if train_step > lower_step and train_step <= upper_step: if min_loss is None: min_loss = train_loss min_train_step = train_step elif train_loss < min_loss: min_loss = train_loss min_train_step = train_step return min_train_step def get_column_mean_std(all_data, best_mode, lrname, lr_schedules, arc_name="lr-controller-weighted-acc"): if best_mode == "max": get_best = np.max get_worst = np.min elif best_mode == "min": get_best = np.min get_worst = np.max else: raise ValueError("best_mode needs to be one of ['max', 'min']") column_data = all_data[lrname] best_numbers = [] for lr_schedule in lr_schedules: lr_schedule_data = column_data[lr_schedule] for step, result, _ in lr_schedule_data: best_numbers.append(get_best(result)) convergence_target = get_worst(best_numbers) br_dict, bs_dict = {}, {} for lr_schedule in lr_schedules: best_step, best_result = [], [] lr_schedule_data = column_data[lr_schedule] for step, result, train_history in lr_schedule_data: best_result.append(get_best(result)) best_step.append( get_best_step(convergence_target, step, result, best_mode, train_history)) br_dict[lr_schedule] = best_result bs_dict[lr_schedule] = best_step table = [] for lr_schedule in lr_schedules: best_result = br_dict[lr_schedule] best_step = bs_dict[lr_schedule] br_display = f"{np.mean(best_result):.4f}" bs_display = f"{np.mean(best_step):.0f}" if np.mean(best_result) == get_best( [np.mean(x) for x in br_dict.values()]): br_display += "*" if np.mean(best_step) == min([np.mean(x) for x in bs_dict.values()]): bs_display += "*" if ttest_ind(br_dict[arc_name], br_dict[lr_schedule]).pvalue < 0.05: br_display += "#" if ttest_ind(bs_dict[arc_name], bs_dict[lr_schedule]).pvalue < 0.05: bs_display += "#" table.append([ lr_schedule, br_display, f"{np.std(best_result):.4f}", bs_display, f"{np.std(best_step):.0f}" ]) print( tabulate(table, headers=[ "scheduler", "metric mean", "metric std", "step mean", "step std" ], tablefmt="github")) def get_column_median(all_data, best_mode, lrname, lr_schedules, arc_name="lr-controller-weighted-acc"): if best_mode == "max": get_best = np.max get_worst = np.min elif best_mode == "min": get_best = np.min get_worst = np.max else: raise ValueError("best_mode needs to be one of ['max', 'min']") column_data = all_data[lrname] best_numbers = [] for lr_schedule in lr_schedules: lr_schedule_data = column_data[lr_schedule] for step, result, _ in lr_schedule_data: best_numbers.append(get_best(result)) convergence_target = get_worst(best_numbers) br_dict, bs_dict = {}, {} for lr_schedule in lr_schedules: best_step, best_result = [], [] lr_schedule_data = column_data[lr_schedule] for step, result, train_history in lr_schedule_data: best_result.append(get_best(result)) best_step.append( get_best_step(convergence_target, step, result, best_mode, train_history)) br_dict[lr_schedule] = best_result bs_dict[lr_schedule] = best_step table = [] for lr_schedule in lr_schedules: best_result = br_dict[lr_schedule] best_step = bs_dict[lr_schedule] br_display = f"{np.median(best_result):.4f}" bs_display = f"{np.median(best_step):.0f}" if np.median(best_result) == get_best( [np.median(x) for x in br_dict.values()]): br_display += "*" if np.median(best_step) == min( [np.median(x) for x in bs_dict.values()]): bs_display += "*" if ttest_ind(br_dict[arc_name], br_dict[lr_schedule]).pvalue < 0.05: br_display += "#" if ttest_ind(bs_dict[arc_name], bs_dict[lr_schedule]).pvalue < 0.05: bs_display += "#" table.append([ lr_schedule, br_display, bs_display, ]) print( tabulate(table, headers=[ "scheduler", "metric median", "step median", ], tablefmt="github")) def check_file_complete(folder_path): filenames = [ fname for fname in os.listdir(folder_path) if fname.endswith(".txt") ] lr_set = set() schedule_set = set() id_set = set() # get the set of lr, scheduler, id for filename in filenames: configs = os.path.splitext(filename)[0].split("_") lr_name, lr_schedule_name, run_id = configs lr_set.add(lr_name) schedule_set.add(lr_schedule_name) id_set.add(run_id) # check all combinations exist for lr in lr_set: for schedule in schedule_set: for run in id_set: filename = f"{lr}_{schedule}_{run}.txt" assert os.path.exists(os.path.join( folder_path, filename)), f"{filename} is missing" def print_table(folder_path, best_mode, metric_name, loss_name, mode): if mode == "mean_std": print_func = get_column_mean_std elif mode == "median": print_func = get_column_median else: raise ValueError("mode needs to be one of ['mean_std', 'median']") check_file_complete(folder_path) all_data = {} filenames = [ fname for fname in os.listdir(folder_path) if fname.endswith(".txt") ] for filename in filenames: filepath = os.path.join(folder_path, filename) configs = os.path.splitext(filename)[0].split("_") lr_name, lr_schedule_name, run_id = configs summary = parse_log_file(filepath, ".txt") result = np.array( [acc for acc in summary.history["eval"][metric_name].values()]) steps = np.array( [acc for acc in summary.history["eval"][metric_name].keys()]) train_history = summary.history["train"][loss_name] if lr_name not in all_data: all_data[lr_name] = {} if lr_schedule_name not in all_data[lr_name]: all_data[lr_name][lr_schedule_name] = [] all_data[lr_name][lr_schedule_name].append( (steps, result, train_history)) for lrname in sorted(list(all_data.keys()), reverse=True): print( f"========================================== lrname={lrname} ===========================================" ) print_func(all_data, best_mode, lrname=lrname, lr_schedules=[ "base-lr", "cosine-decay", "cyclic-cosine-decay", "exponential-decay", "lr-controller-weighted-acc" ]) if __name__ == "__main__": print_table( mode="median", # "median" or "mean_std" folder_path= "/mnt/c/Users/212770359/Downloads/ARC-master/iccv/logs/normal_comparison/language_modeling", # path of the log dir best_mode="min", # "max" or "min" metric_name="perplexity", # evaluation metric loss_name="ce") # loss key
[ "fastestimator.summary.logs.parse_log_file", "numpy.median", "numpy.std", "scipy.stats.ttest_ind", "numpy.mean", "tabulate.tabulate", "os.path.splitext", "os.path.join", "os.listdir" ]
[((3104, 3219), 'tabulate.tabulate', 'tabulate', (['table'], {'headers': "['scheduler', 'metric mean', 'metric std', 'step mean', 'step std']", 'tablefmt': '"""github"""'}), "(table, headers=['scheduler', 'metric mean', 'metric std',\n 'step mean', 'step std'], tablefmt='github')\n", (3112, 3219), False, 'from tabulate import tabulate\n'), ((5397, 5490), 'tabulate.tabulate', 'tabulate', (['table'], {'headers': "['scheduler', 'metric median', 'step median']", 'tablefmt': '"""github"""'}), "(table, headers=['scheduler', 'metric median', 'step median'],\n tablefmt='github')\n", (5405, 5490), False, 'from tabulate import tabulate\n'), ((6894, 6929), 'os.path.join', 'os.path.join', (['folder_path', 'filename'], {}), '(folder_path, filename)\n', (6906, 6929), False, 'import os\n'), ((7059, 7091), 'fastestimator.summary.logs.parse_log_file', 'parse_log_file', (['filepath', '""".txt"""'], {}), "(filepath, '.txt')\n", (7073, 7091), False, 'from fastestimator.summary.logs import parse_log_file\n'), ((2489, 2509), 'numpy.mean', 'np.mean', (['best_result'], {}), '(best_result)\n', (2496, 2509), True, 'import numpy as np\n'), ((2618, 2636), 'numpy.mean', 'np.mean', (['best_step'], {}), '(best_step)\n', (2625, 2636), True, 'import numpy as np\n'), ((4806, 4828), 'numpy.median', 'np.median', (['best_result'], {}), '(best_result)\n', (4815, 4828), True, 'import numpy as np\n'), ((4939, 4959), 'numpy.median', 'np.median', (['best_step'], {}), '(best_step)\n', (4948, 4959), True, 'import numpy as np\n'), ((5690, 5713), 'os.listdir', 'os.listdir', (['folder_path'], {}), '(folder_path)\n', (5700, 5713), False, 'import os\n'), ((6787, 6810), 'os.listdir', 'os.listdir', (['folder_path'], {}), '(folder_path)\n', (6797, 6810), False, 'import os\n'), ((2401, 2421), 'numpy.mean', 'np.mean', (['best_result'], {}), '(best_result)\n', (2408, 2421), True, 'import numpy as np\n'), ((2452, 2470), 'numpy.mean', 'np.mean', (['best_step'], {}), '(best_step)\n', (2459, 2470), True, 'import numpy as np\n'), ((2727, 2777), 'scipy.stats.ttest_ind', 'ttest_ind', (['br_dict[arc_name]', 'br_dict[lr_schedule]'], {}), '(br_dict[arc_name], br_dict[lr_schedule])\n', (2736, 2777), False, 'from scipy.stats import ttest_ind\n'), ((2835, 2885), 'scipy.stats.ttest_ind', 'ttest_ind', (['bs_dict[arc_name]', 'bs_dict[lr_schedule]'], {}), '(bs_dict[arc_name], bs_dict[lr_schedule])\n', (2844, 2885), False, 'from scipy.stats import ttest_ind\n'), ((4714, 4736), 'numpy.median', 'np.median', (['best_result'], {}), '(best_result)\n', (4723, 4736), True, 'import numpy as np\n'), ((4767, 4787), 'numpy.median', 'np.median', (['best_step'], {}), '(best_step)\n', (4776, 4787), True, 'import numpy as np\n'), ((5065, 5115), 'scipy.stats.ttest_ind', 'ttest_ind', (['br_dict[arc_name]', 'br_dict[lr_schedule]'], {}), '(br_dict[arc_name], br_dict[lr_schedule])\n', (5074, 5115), False, 'from scipy.stats import ttest_ind\n'), ((5173, 5223), 'scipy.stats.ttest_ind', 'ttest_ind', (['bs_dict[arc_name]', 'bs_dict[lr_schedule]'], {}), '(bs_dict[arc_name], bs_dict[lr_schedule])\n', (5182, 5223), False, 'from scipy.stats import ttest_ind\n'), ((2536, 2546), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (2543, 2546), True, 'import numpy as np\n'), ((2645, 2655), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (2652, 2655), True, 'import numpy as np\n'), ((4855, 4867), 'numpy.median', 'np.median', (['x'], {}), '(x)\n', (4864, 4867), True, 'import numpy as np\n'), ((4981, 4993), 'numpy.median', 'np.median', (['x'], {}), '(x)\n', (4990, 4993), True, 'import numpy as np\n'), ((5898, 5924), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (5914, 5924), False, 'import os\n'), ((6310, 6345), 'os.path.join', 'os.path.join', (['folder_path', 'filename'], {}), '(folder_path, filename)\n', (6322, 6345), False, 'import os\n'), ((6948, 6974), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (6964, 6974), False, 'import os\n'), ((2995, 3014), 'numpy.std', 'np.std', (['best_result'], {}), '(best_result)\n', (3001, 3014), True, 'import numpy as np\n'), ((3049, 3066), 'numpy.std', 'np.std', (['best_step'], {}), '(best_step)\n', (3055, 3066), True, 'import numpy as np\n')]
import numpy as np def filter_ids(array, clinical_ids): # list of array indices that need to be deleted del_indices = [] i = 0 for img in array: id = img[-1] if id not in clinical_ids: del_indices.append(i) i = i + 1 array = np.delete(array, del_indices, axis=0) return array
[ "numpy.delete" ]
[((286, 323), 'numpy.delete', 'np.delete', (['array', 'del_indices'], {'axis': '(0)'}), '(array, del_indices, axis=0)\n', (295, 323), True, 'import numpy as np\n')]
import cdutil import cdat_info import cdms2 import cdms2,cdutil,sys,MV2,numpy,os,cdat_info import unittest import numpy import tempfile class CDUTIL(unittest.TestCase): def testRegions(self): regionNA = cdutil.region.domain(latitude=(-50.,50.,'ccb')) f=cdms2.open(cdat_info.get_sampledata_path()+'/clt.nc') d=f('u', regionNA) # -------------------------------------------------------- # makesure the warning has been displayed for the 3rd args # -------------------------------------------------------- bounds = d.getLatitude().getBounds() self.assertTrue(numpy.allclose(bounds[0], numpy.array([-50., -49.19124603]))) self.assertTrue(numpy.allclose(bounds[-1], numpy.array([49.19124603, 50.]))) if __name__ == "__main__": unittest.main()
[ "unittest.main", "cdutil.region.domain", "numpy.array", "cdat_info.get_sampledata_path" ]
[((809, 824), 'unittest.main', 'unittest.main', ([], {}), '()\n', (822, 824), False, 'import unittest\n'), ((218, 269), 'cdutil.region.domain', 'cdutil.region.domain', ([], {'latitude': "(-50.0, 50.0, 'ccb')"}), "(latitude=(-50.0, 50.0, 'ccb'))\n", (238, 269), False, 'import cdms2, cdutil, sys, MV2, numpy, os, cdat_info\n'), ((287, 318), 'cdat_info.get_sampledata_path', 'cdat_info.get_sampledata_path', ([], {}), '()\n', (316, 318), False, 'import cdms2, cdutil, sys, MV2, numpy, os, cdat_info\n'), ((655, 689), 'numpy.array', 'numpy.array', (['[-50.0, -49.19124603]'], {}), '([-50.0, -49.19124603])\n', (666, 689), False, 'import numpy\n'), ((742, 774), 'numpy.array', 'numpy.array', (['[49.19124603, 50.0]'], {}), '([49.19124603, 50.0])\n', (753, 774), False, 'import numpy\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ COS method ========== The method comes from [1]_ The original code is found at http://www.wilmott.com/messageview.cfm?catid=34&threadid=78554 References ---------- .. [1] <NAME>., & <NAME>. (2009). A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions. *SIAM Journal on Scientific Computing*, 31(2), 826. doi:10.1137/080718061 <http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/COS.pdf> """ from __future__ import division, print_function import numpy as np import numexpr as ne __all__ = ['cosmethod'] def cosmethod(model, moneyness=0., call=True, npoints=2**10): """COS method. Parameters ---------- model : instance of specific model class The method depends on availability of two methods: - charfun - cos_restriction moneyness : array_like Moneyness of the option, np.log(strike/price) - riskfree * maturity call : bool array_like Call/Put flag npoints : int Number of points on the grid. The more the better, but slower. Returns ------- array_like Option premium normalized by asset price Notes ----- `charfun` method (risk-neutral conditional chracteristic function) of `model` instance should depend on one argument only (array_like) and should return array_like of the same dimension. `cos_restriction` method of `model` instance takes `maturity` and `riskfree` as array arguments, and returns two corresponding arrays (a, b). """ if not hasattr(model, 'charfun'): raise Exception('Characteristic function is not available!') if not hasattr(model, 'cos_restriction'): raise Exception('COS restriction is not available!') # (nobs, ) arrays alim, blim = model.cos_restriction() # (npoints, nobs) array kvec = np.arange(npoints)[:, np.newaxis] * np.pi / (blim - alim) # (npoints, ) array unit = np.append(.5, np.ones(npoints-1)) # Arguments argc = (kvec, alim, blim, 0, blim) argp = (kvec, alim, blim, alim, 0) # (nobs, ) array put = np.logical_not(call) # (npoints, nobs) array umat = 2 / (blim - alim) * (call * xfun(*argc) - put * xfun(*argp)) # (npoints, nobs) array pmat = model.charfun(kvec) # (npoints, nobs) array xmat = np.exp(-1j * kvec * (moneyness + alim)) # (nobs, ) array return np.exp(moneyness) * np.dot(unit, pmat * umat * xmat).real def xfun(k, a, b, c, d): """Xi-Psi function. Parameters ---------- k : (n, 1) array a : float or (m, ) array b : float or (m, ) array c : float or (m, ) array d : float or (m, ) array Returns ------- (n, m) array """ # out0 = (np.cos(k * (d-a)) * np.exp(d) - np.cos(k * (c-a)) * np.exp(c) # + k * (np.sin(k * (d-a)) * np.exp(d) - np.sin(k * (c-a)) * np.exp(c)))\ # / (1 + k**2) # out1 = (np.sin(k[1:] * (d-a)) - np.sin(k[1:] * (c-a))) / k[1:] out0 = ne.evaluate(("(cos(k * (d-a)) * exp(d) - cos(k * (c-a)) * exp(c)" "+ k * (sin(k * (d-a)) * exp(d) - sin(k * (c-a)) * exp(c)))" "/ (1 + k**2)")) k1 = k[1:] out1 = ne.evaluate("(sin(k1 * (d-a)) - sin(k1 * (c-a))) / k1") out1 = np.vstack([(d - c) * np.ones_like(a), out1]) return out0 - out1 if __name__ == '__main__': pass
[ "numpy.ones_like", "numpy.logical_not", "numpy.ones", "numexpr.evaluate", "numpy.arange", "numpy.exp", "numpy.dot" ]
[((2168, 2188), 'numpy.logical_not', 'np.logical_not', (['call'], {}), '(call)\n', (2182, 2188), True, 'import numpy as np\n'), ((2387, 2428), 'numpy.exp', 'np.exp', (['(-1.0j * kvec * (moneyness + alim))'], {}), '(-1.0j * kvec * (moneyness + alim))\n', (2393, 2428), True, 'import numpy as np\n'), ((3045, 3190), 'numexpr.evaluate', 'ne.evaluate', (['"""(cos(k * (d-a)) * exp(d) - cos(k * (c-a)) * exp(c)+ k * (sin(k * (d-a)) * exp(d) - sin(k * (c-a)) * exp(c)))/ (1 + k**2)"""'], {}), "(\n '(cos(k * (d-a)) * exp(d) - cos(k * (c-a)) * exp(c)+ k * (sin(k * (d-a)) * exp(d) - sin(k * (c-a)) * exp(c)))/ (1 + k**2)'\n )\n", (3056, 3190), True, 'import numexpr as ne\n'), ((3231, 3286), 'numexpr.evaluate', 'ne.evaluate', (['"""(sin(k1 * (d-a)) - sin(k1 * (c-a))) / k1"""'], {}), "('(sin(k1 * (d-a)) - sin(k1 * (c-a))) / k1')\n", (3242, 3286), True, 'import numexpr as ne\n'), ((2023, 2043), 'numpy.ones', 'np.ones', (['(npoints - 1)'], {}), '(npoints - 1)\n', (2030, 2043), True, 'import numpy as np\n'), ((2459, 2476), 'numpy.exp', 'np.exp', (['moneyness'], {}), '(moneyness)\n', (2465, 2476), True, 'import numpy as np\n'), ((2479, 2511), 'numpy.dot', 'np.dot', (['unit', '(pmat * umat * xmat)'], {}), '(unit, pmat * umat * xmat)\n', (2485, 2511), True, 'import numpy as np\n'), ((1916, 1934), 'numpy.arange', 'np.arange', (['npoints'], {}), '(npoints)\n', (1925, 1934), True, 'import numpy as np\n'), ((3320, 3335), 'numpy.ones_like', 'np.ones_like', (['a'], {}), '(a)\n', (3332, 3335), True, 'import numpy as np\n')]
import numpy as np from glob import glob from scipy import ndimage from keras import callbacks from keras.optimizers import Adamax, SGD, RMSprop import resnet50 def convert_to_one_hot(Y, C): '''Converts array with labels to one-hot encoding Keyword Arguments: Y -- 1-dimensional numpy array containing labeled values C -- total number of labels in Y ''' Y = np.eye(C)[Y.reshape(-1)].T return Y def load_dataset(datapath, composers): '''Loads dataset into memory Keyword Arguments: datapath -- absolute or relative path to dataset location composers -- list of composer names included in the dataset ''' folders = glob('%s/*' %datapath) X_train = [] Y_train = [] for folder in folders: files = glob('%s\\*.jpg' %folder) print('working on composer: %s' %(folder.split('\\')[-1])) for f in files: im = ndimage.imread(f, mode='L') im = im/255 im = im.reshape(im.shape[0], im.shape[1], 1) X_train.append(im) Y_train.append(composers.index(folder.split('\\')[-1])) return np.asarray(X_train), np.asarray(Y_train) if __name__ == '__main__': print('setting model') model = ResNet50.ResNet50(input_shape = (70, 400, 1), classes = 7) epochs = 100 learning_rate = 0.001 lr_decay = 0.001/100 print('compiling model...') #optimizer_instance = Adam(lr=learning_rate, decay=lr_decay)#lr=0.0005, beta_1=0.9, beta_2=0.999, epsilon=0.001) #optimizer_instance = Adamax(lr=learning_rate, decay=lr_decay) optimizer_instance = SGD(lr=learning_rate, decay=lr_decay) #optimizer_instance = RMSprop(lr=learning_rate, decay=lr_decay) model.compile(optimizer=optimizer_instance, loss='categorical_crossentropy', metrics=['acc']) print('loading dataset......') composers = ['Bach', 'Beethoven', 'Brahms', 'Chopin', 'Grieg', 'Liszt', 'Mozart'] datapath = 'Dataset_Train_Medium/' X_train, Y_train = load_dataset(datapath, composers) datapath_val = 'Dataset_Dev_Medium/' X_test, Y_test = load_dataset(datapath_val, composers) print('applying one-hot-encoding') Y_train = convert_to_one_hot(Y_train, 7).T Y_test = convert_to_one_hot(Y_test, 7).T print('setting up callbacks...') nancheck = callbacks.TerminateOnNaN() filepath = 'Models/weights-improvement-{epoch:02d}-{acc:.2f}.hdf5' saver = callbacks.ModelCheckpoint(filepath, monitor='acc', verbose=1, save_best_only=False, mode='max', period=1) logger = callbacks.CSVLogger('model-weights/trainingresults.log') callbacklist = [nancheck, saver, logger] print('starting model fitting') model.fit(X_train, Y_train, validation_data = (X_test, Y_test), epochs=epochs, batch_size=72, callbacks=callbacklist) print('Saving model.........') model.save('second_run.h5')
[ "keras.optimizers.SGD", "keras.callbacks.TerminateOnNaN", "numpy.eye", "keras.callbacks.ModelCheckpoint", "numpy.asarray", "glob.glob", "keras.callbacks.CSVLogger", "scipy.ndimage.imread" ]
[((676, 699), 'glob.glob', 'glob', (["('%s/*' % datapath)"], {}), "('%s/*' % datapath)\n", (680, 699), False, 'from glob import glob\n'), ((1609, 1646), 'keras.optimizers.SGD', 'SGD', ([], {'lr': 'learning_rate', 'decay': 'lr_decay'}), '(lr=learning_rate, decay=lr_decay)\n', (1612, 1646), False, 'from keras.optimizers import Adamax, SGD, RMSprop\n'), ((2318, 2344), 'keras.callbacks.TerminateOnNaN', 'callbacks.TerminateOnNaN', ([], {}), '()\n', (2342, 2344), False, 'from keras import callbacks\n'), ((2428, 2537), 'keras.callbacks.ModelCheckpoint', 'callbacks.ModelCheckpoint', (['filepath'], {'monitor': '"""acc"""', 'verbose': '(1)', 'save_best_only': '(False)', 'mode': '"""max"""', 'period': '(1)'}), "(filepath, monitor='acc', verbose=1,\n save_best_only=False, mode='max', period=1)\n", (2453, 2537), False, 'from keras import callbacks\n'), ((2547, 2603), 'keras.callbacks.CSVLogger', 'callbacks.CSVLogger', (['"""model-weights/trainingresults.log"""'], {}), "('model-weights/trainingresults.log')\n", (2566, 2603), False, 'from keras import callbacks\n'), ((777, 803), 'glob.glob', 'glob', (["('%s\\\\*.jpg' % folder)"], {}), "('%s\\\\*.jpg' % folder)\n", (781, 803), False, 'from glob import glob\n'), ((1131, 1150), 'numpy.asarray', 'np.asarray', (['X_train'], {}), '(X_train)\n', (1141, 1150), True, 'import numpy as np\n'), ((1152, 1171), 'numpy.asarray', 'np.asarray', (['Y_train'], {}), '(Y_train)\n', (1162, 1171), True, 'import numpy as np\n'), ((390, 399), 'numpy.eye', 'np.eye', (['C'], {}), '(C)\n', (396, 399), True, 'import numpy as np\n'), ((911, 938), 'scipy.ndimage.imread', 'ndimage.imread', (['f'], {'mode': '"""L"""'}), "(f, mode='L')\n", (925, 938), False, 'from scipy import ndimage\n')]
import numpy as np import matplotlib import matplotlib.pyplot as plt target = ["True", "False"] el_decay = ["True", "False"] error = np.array([[4.478, 3.483], [3.647, 2.502]]) fig, ax = plt.subplots() im = ax.imshow(error) # We want to show all ticks... ax.set_xticks(np.arange(len(el_decay))) ax.set_yticks(np.arange(len(target))) # ... and label them with the respective list entries ax.set_xticklabels(el_decay) ax.set_yticklabels(target) ax.set_ylabel("Target electron") ax.set_xlabel("Electron-Electron shift decay") # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. for i in range(len(target)): for j in range(len(el_decay)): text = ax.text(j, i, error[i, j], ha="center", va="center", color="w") ax.set_title("Shift: Energy error (mHa) for Nitrogen") fig.tight_layout() plt.show()
[ "numpy.array", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((135, 177), 'numpy.array', 'np.array', (['[[4.478, 3.483], [3.647, 2.502]]'], {}), '([[4.478, 3.483], [3.647, 2.502]])\n', (143, 177), True, 'import numpy as np\n'), ((210, 224), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (222, 224), True, 'import matplotlib.pyplot as plt\n'), ((986, 996), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (994, 996), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np import copy class Particle: def __init__(self, lb, ub): """Initialize the particle. Attributes ---------- lb : float lower bounds for initial values ub : float upper bounds for initial values """ self.lb = lb self.ub = ub self.position = np.random.uniform(lb, ub, size=lb.shape[0]) self.velocity = np.random.uniform(lb, ub, size=lb.shape[0]) self.fitness = None self.pbest_position = self.position self.pbest_fitness = float('inf') def move(self): self.position += self.velocity class Swarm: def __init__(self, function_list, n_particles, n_iterations, lb, ub, w=0.7, c1=2.0, c2=2.0): """Initialize the swarm. Attributes --------- function_list : list list of functions to optimize n_particles : int number of particles in swarm n_iterations : int number of optimization iterations lb : float lower bounds for initial values ub : float upper bounds for initial values w : float inertia weight c1 : float cognitive weight c2 : float social weight """ self.function_list = function_list self.n_obj = len(function_list) self.n_particles = n_particles self.n_iterations = n_iterations assert len(lb) == len(ub) self.lb = np.array(lb) self.ub = np.array(ub) self.w = w self.c1 = c1 self.c2 = c2 self.gbest_position = np.random.uniform(lb, ub, size=self.lb.shape[0]) self.gbest_fitness = float('inf') self.population = [] self.iteration = 0 def reset_environment(self): self.population = [] self.iteration = 0 def termination_check(self): if self.iteration > self.n_iterations: return False else: return True def initialise_swarm(self): for _ in range(self.n_particles): self.population.append(Particle(self.lb, self.ub)) def eval_fitness(self, particle): """Evaluate particle fitness based on all functions in function_list""" _fitness = 0 for func in self.function_list: _fitness += func(particle.position) particle.fitness = _fitness def swarm_eval_fitness(self): for particle in self.population: self.eval_fitness(particle) def update_velocity(self, particle): inertia = self.w * particle.velocity cognitive = (self.c1 * np.random.uniform() * (particle.pbest_position - particle.position)) social = (self.c2 * np.random.uniform() * (self.gbest_position - particle.position)) particle.velocity = inertia + cognitive + social def swarm_update_velocity(self): for particle in self.population: self.update_velocity(particle) def update_pbest(self, particle): if particle.fitness < particle.pbest_fitness: particle.pbest_fitness = particle.fitness particle.pbest_position = particle.position def update_gbest(self, particle): if particle.fitness < self.gbest_fitness: self.gbest_fitness = copy.deepcopy(particle.fitness) self.gbest_position = copy.deepcopy(particle.position) def swarm_update_best(self): for particle in self.population: self.update_pbest(particle) self.update_gbest(particle) def swarm_move(self): for particle in self.population: particle.move() def optimise(self): self.reset_environment() self.initialise_swarm() while self.termination_check(): self.swarm_eval_fitness() self.swarm_update_best() self.swarm_update_velocity() self.swarm_move() self.iteration += 1 if __name__ == '__main__': print('MOPSO: Aggregating Approach') def function_one(position): return np.square(position[0]) def function_two(position): return np.square(position[0] - 2) function_list = [function_one, function_two] n_particles = 30 n_iterations = 100 lb = [-100] ub = [100] swarm = Swarm(function_list=function_list, n_particles=n_particles, n_iterations=n_iterations, lb=lb, ub=ub) swarm.optimise() print('gbest_position: ', swarm.gbest_position) print('gbest_fitness: ', swarm.gbest_fitness)
[ "numpy.random.uniform", "copy.deepcopy", "numpy.square", "numpy.array" ]
[((362, 405), 'numpy.random.uniform', 'np.random.uniform', (['lb', 'ub'], {'size': 'lb.shape[0]'}), '(lb, ub, size=lb.shape[0])\n', (379, 405), True, 'import numpy as np\n'), ((430, 473), 'numpy.random.uniform', 'np.random.uniform', (['lb', 'ub'], {'size': 'lb.shape[0]'}), '(lb, ub, size=lb.shape[0])\n', (447, 473), True, 'import numpy as np\n'), ((1556, 1568), 'numpy.array', 'np.array', (['lb'], {}), '(lb)\n', (1564, 1568), True, 'import numpy as np\n'), ((1587, 1599), 'numpy.array', 'np.array', (['ub'], {}), '(ub)\n', (1595, 1599), True, 'import numpy as np\n'), ((1693, 1741), 'numpy.random.uniform', 'np.random.uniform', (['lb', 'ub'], {'size': 'self.lb.shape[0]'}), '(lb, ub, size=self.lb.shape[0])\n', (1710, 1741), True, 'import numpy as np\n'), ((4201, 4223), 'numpy.square', 'np.square', (['position[0]'], {}), '(position[0])\n', (4210, 4223), True, 'import numpy as np\n'), ((4272, 4298), 'numpy.square', 'np.square', (['(position[0] - 2)'], {}), '(position[0] - 2)\n', (4281, 4298), True, 'import numpy as np\n'), ((3421, 3452), 'copy.deepcopy', 'copy.deepcopy', (['particle.fitness'], {}), '(particle.fitness)\n', (3434, 3452), False, 'import copy\n'), ((3487, 3519), 'copy.deepcopy', 'copy.deepcopy', (['particle.position'], {}), '(particle.position)\n', (3500, 3519), False, 'import copy\n'), ((2715, 2734), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (2732, 2734), True, 'import numpy as np\n'), ((2833, 2852), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (2850, 2852), True, 'import numpy as np\n')]
import pygame from pygame.locals import * from constants import * from copy import deepcopy import numpy as np from heuristic import * class Player(object): def __init__(self, color, player_num): self.color = color self.direction = UP self.player_num = player_num self.move_counter = 0 # Keeps track of movement to regulate growth rate loc = P1_LOC if player_num == 1 else P2_LOC self.segments = [Rect(loc[0], loc[1], CELL_WIDTH, CELL_WIDTH)] def direction_valid(self,direction): if (direction == UP and self.direction == DOWN): return False if (direction == LEFT and self.direction == RIGHT): return False if (direction == DOWN and self.direction == UP): return False if (direction == RIGHT and self.direction == LEFT): return False return True def set_direction(self, direction): if self.direction_valid(direction): self.direction = direction def set_color(self, color): self.color = color def clone(self, player=None, direction=None): if player == None: player = self cloned_player = deepcopy(player) if direction != None: cloned_player.direction = direction cloned_player.move() return cloned_player def get_state(self, other_player): state = np.zeros((GAME_HEIGHT/CELL_WIDTH, GAME_WIDTH/CELL_WIDTH)) for rect in self.segments: loc = rect.topleft x,y = loc[0]/CELL_WIDTH, loc[1]/CELL_WIDTH state[y,x] = FRIENDLY for rect in other_player.segments: loc = rect.topleft x,y = loc[0]/CELL_WIDTH, loc[1]/CELL_WIDTH state[y,x] = OPPONENT return state def has_collided(self, other_player, head = None): segments_to_check = self.segments[:] if head == None: head = self.segments[0] segments_to_check.pop(0) head_loc = head.topleft return (not (0 <= head_loc[0] <= GAME_WIDTH - CELL_WIDTH) or not (0 <= head_loc[1] <= GAME_HEIGHT - CELL_WIDTH) or head.collidelist(segments_to_check) != -1 or head.collidelist(other_player.segments) != -1) def draw(self, display_surface): for segment in self.segments: pygame.draw.rect(display_surface, self.color, segment) def move(self): head_loc = self.segments[0].topleft delta = DIRECTION_DELTAS[self.direction] new_x = head_loc[0] + delta['x'] * CELL_WIDTH new_y = head_loc[1] + delta['y'] * CELL_WIDTH head = Rect(new_x, new_y, CELL_WIDTH, CELL_WIDTH) self.segments.insert(0, head) self.move_counter = (self.move_counter + 1) % PLAYER_GROWTH_RATE if self.move_counter == 0: self.segments.pop() # Remove last segment of tail """ Chooses the next move to make in the game. Subclasses of Player (aka custom bots) should override this method. other_player is a dict object with the following key/values: direction: The other player's current direction (i.e. UP) segments: Copy of list of segments of the other player """ def choose_move(self, other_player): self.move()
[ "pygame.draw.rect", "copy.deepcopy", "numpy.zeros" ]
[((1204, 1220), 'copy.deepcopy', 'deepcopy', (['player'], {}), '(player)\n', (1212, 1220), False, 'from copy import deepcopy\n'), ((1417, 1478), 'numpy.zeros', 'np.zeros', (['(GAME_HEIGHT / CELL_WIDTH, GAME_WIDTH / CELL_WIDTH)'], {}), '((GAME_HEIGHT / CELL_WIDTH, GAME_WIDTH / CELL_WIDTH))\n', (1425, 1478), True, 'import numpy as np\n'), ((2397, 2451), 'pygame.draw.rect', 'pygame.draw.rect', (['display_surface', 'self.color', 'segment'], {}), '(display_surface, self.color, segment)\n', (2413, 2451), False, 'import pygame\n')]
import numpy as np def to_array(image): array = np.array(image, dtype=np.float32)[..., :3] array = array / 255. return array def l2_normalize(x, axis=0): norm = np.linalg.norm(x, axis=axis, keepdims=True) return x / norm def distance(a, b): # Euclidean distance # return np.linalg.norm(a - b) # Cosine distance, ||a|| and ||b|| is one because embeddings are normalized. # No need to compute np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) return np.dot(a, b)
[ "numpy.array", "numpy.dot", "numpy.linalg.norm" ]
[((180, 223), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {'axis': 'axis', 'keepdims': '(True)'}), '(x, axis=axis, keepdims=True)\n', (194, 223), True, 'import numpy as np\n'), ((498, 510), 'numpy.dot', 'np.dot', (['a', 'b'], {}), '(a, b)\n', (504, 510), True, 'import numpy as np\n'), ((53, 86), 'numpy.array', 'np.array', (['image'], {'dtype': 'np.float32'}), '(image, dtype=np.float32)\n', (61, 86), True, 'import numpy as np\n')]
''' control systems - ode simulation @link https://www.youtube.com/watch?v=yp5x8RMNi7o ''' import numpy as np from scipy.integrate import odeint from matplotlib import pyplot as plt def sys_ode(x, t): # set system constants c = 4 # damping constant k = 2 # spring stiffness constant m = 20 # point-mass F = 5 # input force into the system # compute state first derivative dx1 = x[1] dx2 = (F - c*x[1] - k*x[0])/m return [dx1, dx2] def sim(): # set constants t_0 = 0 t_f = 60 period = 0.1 # set state initial condition x_init = [0, 0] # set a discrete time stamp t = np.arange(t_0, t_f, period) x = odeint(sys_ode, x_init, t) x1 = x[:,0] x2 = x[:,1] plt.plot(t,x1) plt.plot(t,x2) plt.title('Mass-Spring-Damper System') plt.xlabel('t') plt.ylabel('x(t)') plt.legend(['x1', 'x2']) plt.grid() plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.integrate.odeint", "matplotlib.pyplot.legend", "numpy.arange", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((611, 638), 'numpy.arange', 'np.arange', (['t_0', 't_f', 'period'], {}), '(t_0, t_f, period)\n', (620, 638), True, 'import numpy as np\n'), ((645, 671), 'scipy.integrate.odeint', 'odeint', (['sys_ode', 'x_init', 't'], {}), '(sys_ode, x_init, t)\n', (651, 671), False, 'from scipy.integrate import odeint\n'), ((704, 719), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x1'], {}), '(t, x1)\n', (712, 719), True, 'from matplotlib import pyplot as plt\n'), ((721, 736), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x2'], {}), '(t, x2)\n', (729, 736), True, 'from matplotlib import pyplot as plt\n'), ((738, 776), 'matplotlib.pyplot.title', 'plt.title', (['"""Mass-Spring-Damper System"""'], {}), "('Mass-Spring-Damper System')\n", (747, 776), True, 'from matplotlib import pyplot as plt\n'), ((779, 794), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t"""'], {}), "('t')\n", (789, 794), True, 'from matplotlib import pyplot as plt\n'), ((797, 815), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""x(t)"""'], {}), "('x(t)')\n", (807, 815), True, 'from matplotlib import pyplot as plt\n'), ((818, 842), 'matplotlib.pyplot.legend', 'plt.legend', (["['x1', 'x2']"], {}), "(['x1', 'x2'])\n", (828, 842), True, 'from matplotlib import pyplot as plt\n'), ((845, 855), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (853, 855), True, 'from matplotlib import pyplot as plt\n'), ((858, 868), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (866, 868), True, 'from matplotlib import pyplot as plt\n')]
import numpy as np a_matris = [[2,0,0], [0,2,0], [0,0,2]] x_matris = [] b_matris = [2, 4, 9] u_a_matris = np.triu(a_matris) x3 = float(b_matris[2])/u_a_matris[2][2] x2 = float(b_matris[1] - x3*u_a_matris[1][2])/u_a_matris[1][1] x1 = float(b_matris[0] - x2*u_a_matris[0][1] - x3*u_a_matris[0][2])/u_a_matris[0][0] print(x1, x2, x3)
[ "numpy.triu" ]
[((132, 149), 'numpy.triu', 'np.triu', (['a_matris'], {}), '(a_matris)\n', (139, 149), True, 'import numpy as np\n')]
import os import logging import galsim import galsim.config import piff import numpy as np import ngmix if ngmix.__version__[0:2] == "v1": NGMIX_V2 = False from ngmix.fitting import LMSimple from ngmix.admom import Admom else: NGMIX_V2 = True from ngmix.fitting import Fitter from ngmix.admom import AdmomFitter from scipy.interpolate import CloughTocher2DInterpolator logger = logging.getLogger(__name__) # pixel scale used for fitting the Piff models PIFF_SCALE = 0.25 class DES_Piff(object): """A wrapper for Piff to use with Galsim. This wrapper uses ngmix to fit smooth models to the Piff PSF images. The parameters of these models are then interpolated across the SE image and used to generate a smooth approximation to the PSF. Parameters ---------- file_name : str The file with the Piff psf solution. smooth : bool, optional If True, then smooth the Piff PSFs. Default of False. """ _req_params = {'file_name': str} _opt_params = {} _single_params = [] _takes_rng = False def __init__(self, file_name, smooth=False): self.file_name = file_name # Read the Piff file. This may fail if the Piff # file is missing. We catch this and continue # since if we're substituting in some different # PSF model for rejectlisted piff files, we'll # never actually use self._piff try: self._piff = piff.read( os.path.expanduser(os.path.expandvars(file_name))) except IOError: print("failed to load Piff file, hopefully it's rejectlisted...") self._piff = None self._did_fit = False self.smooth = smooth def _fit_smooth_model(self): dxy = 256 ny = 4096 // dxy + 1 nx = 2048 // dxy + 1 xloc = np.empty((ny, nx), dtype=np.float64) yloc = np.empty((ny, nx), dtype=np.float64) pars = np.empty((ny, nx, 3), dtype=np.float64) for yi, yl in enumerate(np.linspace(1, 4096, ny)): for xi, xl in enumerate(np.linspace(1, 2048, nx)): rng = np.random.RandomState(seed=yi + nx * xi) xloc[yi, xi] = xl yloc[yi, xi] = yl pos = galsim.PositionD(x=xl, y=yl) gs_img = self._draw(pos).drawImage( nx=19, ny=19, scale=PIFF_SCALE, method='sb') img = gs_img.array nse = np.std( np.concatenate([img[0, :], img[-1, :]])) obs = ngmix.Observation( image=img, weight=np.ones_like(img)/nse**2, jacobian=ngmix.jacobian.DiagonalJacobian( x=9, y=9, scale=PIFF_SCALE)) _g1 = np.nan _g2 = np.nan _T = np.nan # there are some nutty PSFs if gs_img.calculateFWHM() > 0.5: for _ in range(5): try: if NGMIX_V2: am = AdmomFitter(rng=rng) res = am.go(obs, 0.3) if res['flags'] != 0: continue lm = Fitter(model='turb') lm_res = lm.go(obs, res['pars']) if lm_res['flags'] == 0: _g1 = lm_res['pars'][2] _g2 = lm_res['pars'][3] _T = lm_res['pars'][4] break else: am = Admom(obs, rng=rng) am.go(0.3) res = am.get_result() if res['flags'] != 0: continue lm = LMSimple(obs, 'turb') lm.go(res['pars']) lm_res = lm.get_result() if lm_res['flags'] == 0: _g1 = lm_res['pars'][2] _g2 = lm_res['pars'][3] _T = lm_res['pars'][4] break except ngmix.gexceptions.GMixRangeError: pass try: irr, irc, icc = ngmix.moments.g2mom(_g1, _g2, _T) # this is a fudge factor that gets the overall PSF FWHM # correct # the naive correction for the pixel size is # a bit too small pixel_var = PIFF_SCALE * PIFF_SCALE / 12 * 1.73 irr -= pixel_var icc -= pixel_var _g1, _g2, _T = ngmix.moments.mom2g(irr, irc, icc) except Exception: _g1 = np.nan _g2 = np.nan _T = np.nan pars[yi, xi, 0] = _g1 pars[yi, xi, 1] = _g2 pars[yi, xi, 2] = _T xloc = xloc.ravel() yloc = yloc.ravel() pos = np.stack([xloc, yloc], axis=1) assert pos.shape == (xloc.shape[0], 2) # make interps g1 = pars[:, :, 0].ravel() msk = np.isfinite(g1) if len(msk) < 10: raise ValueError('DES Piff fitting failed too much!') if np.any(~msk): g1[~msk] = np.mean(g1[msk]) self._g1int = CloughTocher2DInterpolator( pos, g1, fill_value=np.mean(g1[msk])) g2 = pars[:, :, 1].ravel() msk = np.isfinite(g2) if len(msk) < 10: raise ValueError('DES Piff fitting failed too much!') if np.any(~msk): g2[~msk] = np.mean(g2[msk]) self._g2int = CloughTocher2DInterpolator( pos, g2, fill_value=np.mean(g2[msk])) T = pars[:, :, 2].ravel() msk = np.isfinite(T) if len(msk) < 10: raise ValueError('DES Piff fitting failed too much!') if np.any(~msk): T[~msk] = np.mean(T[msk]) self._Tint = CloughTocher2DInterpolator( pos, T, fill_value=np.mean(T[msk])) self._did_fit = True def _draw(self, image_pos, wcs=None, n_pix=None, x_interpolant='lanczos15', gsparams=None): """Get an image of the PSF at the given location. Parameters ---------- image_pos : galsim.Position The image position for the PSF. wcs : galsim.BaseWCS or subclass, optional The WCS to use to draw the PSF. n_pix : int, optional The image size to use when drawing without smoothing. Defaults to 53 pixels if not given x_interpolant : str, optional The interpolant to use. gsparams : galsim.GSParams, optional Ootional galsim configuration data to pass along. Returns ------- psf : galsim.InterpolatedImage The PSF at the image position. """ if wcs is not None: if n_pix is not None: n_pix = n_pix else: n_pix = 53 pixel_wcs = wcs.local(image_pos) else: n_pix = 19 pixel_wcs = galsim.PixelScale(PIFF_SCALE) # nice and big image size here cause this has been a problem image = galsim.ImageD(ncol=n_pix, nrow=n_pix, wcs=pixel_wcs) psf = self.getPiff().draw( image_pos.x, image_pos.y, image=image, center=True, ) psf = galsim.InterpolatedImage( galsim.ImageD(psf.array), # make sure galsim is not keeping state wcs=pixel_wcs, gsparams=gsparams, x_interpolant=x_interpolant ).withFlux( 1.0 ) return psf def getPiff(self): return self._piff def getPSF( self, image_pos, wcs=None, smooth=False, n_pix=None, **kwargs ): """Get an image of the PSF at the given location. Parameters ---------- image_pos : galsim.Position The image position for the PSF. wcs : galsim.BaseWCS or subclass, optional The WCS to use to draw the PSF. Currently used only when smoothing is turned off. smooth : bool, optional If True, then smooth the Piff PSFs. Default of False. n_pix : int, optional The image size to use when drawing without smoothing. **kargs : extra keyword arguments These are all ignored. Returns ------- psf : galsim.GSObject The PSF at the image position. """ if smooth or self.smooth: if not self._did_fit: self._fit_smooth_model() arr = np.array([ np.clip(image_pos.x, 1, 2048), np.clip(image_pos.y, 1, 4096)]) _g1 = self._g1int(arr)[0] _g2 = self._g2int(arr)[0] _T = self._Tint(arr)[0] if np.any(np.isnan(np.array([_g1, _g2, _T]))): logger.debug("Piff smooth fit params are NaN: %s %s %s %s", image_pos, _g1, _g2, _T) raise RuntimeError("NaN smooth Piff params at %s!" % image_pos) pars = np.array([0, 0, _g1, _g2, _T, 1]) obj = ngmix.gmix.make_gmix_model(pars, 'turb').make_galsim_object() return obj.withFlux(1) else: return self._draw(image_pos, wcs=wcs, n_pix=n_pix) class PiffLoader(galsim.config.InputLoader): def getKwargs(self, config, base, logger): req = {'file_name': str} opt = {} kwargs, safe = galsim.config.GetAllParams( config, base, req=req, opt=opt) return kwargs, safe # add a config input section galsim.config.RegisterInputType('des_piff', PiffLoader(DES_Piff)) # and a builder def BuildDES_Piff(config, base, ignore, gsparams, logger): des_piff = galsim.config.GetInputObj('des_piff', config, base, 'DES_Piff') opt = {'flux': float, 'num': int, 'image_pos': galsim.PositionD, 'x_interpolant': str, 'smooth': bool} params, safe = galsim.config.GetAllParams( config, base, opt=opt, ignore=ignore) if 'image_pos' in params: image_pos = params['image_pos'] elif 'image_pos' in base: image_pos = base['image_pos'] else: raise galsim.GalSimConfigError( "DES_Piff requested, but no image_pos defined in base.") if 'wcs' not in base: raise galsim.GalSimConfigError( "DES_Piff requested, but no wcs defined in base.") wcs = base['wcs'] if gsparams: gsparams = galsim.GSParams(**gsparams) else: gsparams = None psf = des_piff.getPSF( image_pos, wcs, smooth=params.get('smooth', False), gsparams=gsparams) if 'flux' in params: psf = psf.withFlux(params['flux']) # we make sure to declare the returned object as not safe for reuse can_be_reused = False return psf, can_be_reused def BuildDES_Piff_with_substitute(config, base, ignore, gsparams, logger): # This builder usually just calls BuildDES_Piff, but can also # be passed use_substitute = True, in which case it builds some # other PSF. We use this for rejectlisted Piff files. if "use_substitute" in config: use_substitute = galsim.config.ParseValue(config, "use_substitute", base, bool)[0] else: use_substitute = False if use_substitute: return (galsim.config.BuildGSObject( config, "substitute_psf", base=base, gsparams=gsparams, logger=logger)) else: ignore += ["use_substitute", "substitute_psf"] return BuildDES_Piff(config, base, ignore, gsparams, logger) galsim.config.RegisterObjectType( 'DES_Piff', BuildDES_Piff_with_substitute, input_type='des_piff')
[ "galsim.config.BuildGSObject", "numpy.empty", "numpy.clip", "numpy.mean", "ngmix.gmix.make_gmix_model", "galsim.PixelScale", "galsim.config.GetAllParams", "galsim.config.GetInputObj", "galsim.PositionD", "galsim.ImageD", "galsim.config.RegisterObjectType", "numpy.isfinite", "numpy.random.RandomState", "ngmix.jacobian.DiagonalJacobian", "numpy.linspace", "numpy.stack", "ngmix.fitting.LMSimple", "numpy.ones_like", "galsim.config.ParseValue", "galsim.GSParams", "os.path.expandvars", "ngmix.moments.mom2g", "galsim.GalSimConfigError", "numpy.concatenate", "ngmix.fitting.Fitter", "ngmix.moments.g2mom", "ngmix.admom.Admom", "numpy.any", "numpy.array", "ngmix.admom.AdmomFitter", "logging.getLogger" ]
[((407, 434), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (424, 434), False, 'import logging\n'), ((12281, 12383), 'galsim.config.RegisterObjectType', 'galsim.config.RegisterObjectType', (['"""DES_Piff"""', 'BuildDES_Piff_with_substitute'], {'input_type': '"""des_piff"""'}), "('DES_Piff', BuildDES_Piff_with_substitute,\n input_type='des_piff')\n", (12313, 12383), False, 'import galsim\n'), ((10347, 10410), 'galsim.config.GetInputObj', 'galsim.config.GetInputObj', (['"""des_piff"""', 'config', 'base', '"""DES_Piff"""'], {}), "('des_piff', config, base, 'DES_Piff')\n", (10372, 10410), False, 'import galsim\n'), ((10582, 10646), 'galsim.config.GetAllParams', 'galsim.config.GetAllParams', (['config', 'base'], {'opt': 'opt', 'ignore': 'ignore'}), '(config, base, opt=opt, ignore=ignore)\n', (10608, 10646), False, 'import galsim\n'), ((1862, 1898), 'numpy.empty', 'np.empty', (['(ny, nx)'], {'dtype': 'np.float64'}), '((ny, nx), dtype=np.float64)\n', (1870, 1898), True, 'import numpy as np\n'), ((1914, 1950), 'numpy.empty', 'np.empty', (['(ny, nx)'], {'dtype': 'np.float64'}), '((ny, nx), dtype=np.float64)\n', (1922, 1950), True, 'import numpy as np\n'), ((1966, 2005), 'numpy.empty', 'np.empty', (['(ny, nx, 3)'], {'dtype': 'np.float64'}), '((ny, nx, 3), dtype=np.float64)\n', (1974, 2005), True, 'import numpy as np\n'), ((5414, 5444), 'numpy.stack', 'np.stack', (['[xloc, yloc]'], {'axis': '(1)'}), '([xloc, yloc], axis=1)\n', (5422, 5444), True, 'import numpy as np\n'), ((5565, 5580), 'numpy.isfinite', 'np.isfinite', (['g1'], {}), '(g1)\n', (5576, 5580), True, 'import numpy as np\n'), ((5684, 5696), 'numpy.any', 'np.any', (['(~msk)'], {}), '(~msk)\n', (5690, 5696), True, 'import numpy as np\n'), ((5888, 5903), 'numpy.isfinite', 'np.isfinite', (['g2'], {}), '(g2)\n', (5899, 5903), True, 'import numpy as np\n'), ((6007, 6019), 'numpy.any', 'np.any', (['(~msk)'], {}), '(~msk)\n', (6013, 6019), True, 'import numpy as np\n'), ((6210, 6224), 'numpy.isfinite', 'np.isfinite', (['T'], {}), '(T)\n', (6221, 6224), True, 'import numpy as np\n'), ((6328, 6340), 'numpy.any', 'np.any', (['(~msk)'], {}), '(~msk)\n', (6334, 6340), True, 'import numpy as np\n'), ((7700, 7752), 'galsim.ImageD', 'galsim.ImageD', ([], {'ncol': 'n_pix', 'nrow': 'n_pix', 'wcs': 'pixel_wcs'}), '(ncol=n_pix, nrow=n_pix, wcs=pixel_wcs)\n', (7713, 7752), False, 'import galsim\n'), ((10057, 10115), 'galsim.config.GetAllParams', 'galsim.config.GetAllParams', (['config', 'base'], {'req': 'req', 'opt': 'opt'}), '(config, base, req=req, opt=opt)\n', (10083, 10115), False, 'import galsim\n'), ((10955, 11030), 'galsim.GalSimConfigError', 'galsim.GalSimConfigError', (['"""DES_Piff requested, but no wcs defined in base."""'], {}), "('DES_Piff requested, but no wcs defined in base.')\n", (10979, 11030), False, 'import galsim\n'), ((11103, 11130), 'galsim.GSParams', 'galsim.GSParams', ([], {}), '(**gsparams)\n', (11118, 11130), False, 'import galsim\n'), ((12020, 12123), 'galsim.config.BuildGSObject', 'galsim.config.BuildGSObject', (['config', '"""substitute_psf"""'], {'base': 'base', 'gsparams': 'gsparams', 'logger': 'logger'}), "(config, 'substitute_psf', base=base, gsparams=\n gsparams, logger=logger)\n", (12047, 12123), False, 'import galsim\n'), ((2038, 2062), 'numpy.linspace', 'np.linspace', (['(1)', '(4096)', 'ny'], {}), '(1, 4096, ny)\n', (2049, 2062), True, 'import numpy as np\n'), ((5721, 5737), 'numpy.mean', 'np.mean', (['g1[msk]'], {}), '(g1[msk])\n', (5728, 5737), True, 'import numpy as np\n'), ((6044, 6060), 'numpy.mean', 'np.mean', (['g2[msk]'], {}), '(g2[msk])\n', (6051, 6060), True, 'import numpy as np\n'), ((6364, 6379), 'numpy.mean', 'np.mean', (['T[msk]'], {}), '(T[msk])\n', (6371, 6379), True, 'import numpy as np\n'), ((7584, 7613), 'galsim.PixelScale', 'galsim.PixelScale', (['PIFF_SCALE'], {}), '(PIFF_SCALE)\n', (7601, 7613), False, 'import galsim\n'), ((9664, 9697), 'numpy.array', 'np.array', (['[0, 0, _g1, _g2, _T, 1]'], {}), '([0, 0, _g1, _g2, _T, 1])\n', (9672, 9697), True, 'import numpy as np\n'), ((10819, 10905), 'galsim.GalSimConfigError', 'galsim.GalSimConfigError', (['"""DES_Piff requested, but no image_pos defined in base."""'], {}), "(\n 'DES_Piff requested, but no image_pos defined in base.')\n", (10843, 10905), False, 'import galsim\n'), ((11823, 11885), 'galsim.config.ParseValue', 'galsim.config.ParseValue', (['config', '"""use_substitute"""', 'base', 'bool'], {}), "(config, 'use_substitute', base, bool)\n", (11847, 11885), False, 'import galsim\n'), ((2101, 2125), 'numpy.linspace', 'np.linspace', (['(1)', '(2048)', 'nx'], {}), '(1, 2048, nx)\n', (2112, 2125), True, 'import numpy as np\n'), ((2150, 2190), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': '(yi + nx * xi)'}), '(seed=yi + nx * xi)\n', (2171, 2190), True, 'import numpy as np\n'), ((2282, 2310), 'galsim.PositionD', 'galsim.PositionD', ([], {'x': 'xl', 'y': 'yl'}), '(x=xl, y=yl)\n', (2298, 2310), False, 'import galsim\n'), ((5820, 5836), 'numpy.mean', 'np.mean', (['g1[msk]'], {}), '(g1[msk])\n', (5827, 5836), True, 'import numpy as np\n'), ((6143, 6159), 'numpy.mean', 'np.mean', (['g2[msk]'], {}), '(g2[msk])\n', (6150, 6159), True, 'import numpy as np\n'), ((6460, 6475), 'numpy.mean', 'np.mean', (['T[msk]'], {}), '(T[msk])\n', (6467, 6475), True, 'import numpy as np\n'), ((1513, 1542), 'os.path.expandvars', 'os.path.expandvars', (['file_name'], {}), '(file_name)\n', (1531, 1542), False, 'import os\n'), ((2513, 2552), 'numpy.concatenate', 'np.concatenate', (['[img[0, :], img[-1, :]]'], {}), '([img[0, :], img[-1, :]])\n', (2527, 2552), True, 'import numpy as np\n'), ((7952, 7976), 'galsim.ImageD', 'galsim.ImageD', (['psf.array'], {}), '(psf.array)\n', (7965, 7976), False, 'import galsim\n'), ((9213, 9242), 'numpy.clip', 'np.clip', (['image_pos.x', '(1)', '(2048)'], {}), '(image_pos.x, 1, 2048)\n', (9220, 9242), True, 'import numpy as np\n'), ((9260, 9289), 'numpy.clip', 'np.clip', (['image_pos.y', '(1)', '(4096)'], {}), '(image_pos.y, 1, 4096)\n', (9267, 9289), True, 'import numpy as np\n'), ((9436, 9460), 'numpy.array', 'np.array', (['[_g1, _g2, _T]'], {}), '([_g1, _g2, _T])\n', (9444, 9460), True, 'import numpy as np\n'), ((9716, 9756), 'ngmix.gmix.make_gmix_model', 'ngmix.gmix.make_gmix_model', (['pars', '"""turb"""'], {}), "(pars, 'turb')\n", (9742, 9756), False, 'import ngmix\n'), ((2708, 2767), 'ngmix.jacobian.DiagonalJacobian', 'ngmix.jacobian.DiagonalJacobian', ([], {'x': '(9)', 'y': '(9)', 'scale': 'PIFF_SCALE'}), '(x=9, y=9, scale=PIFF_SCALE)\n', (2739, 2767), False, 'import ngmix\n'), ((4594, 4627), 'ngmix.moments.g2mom', 'ngmix.moments.g2mom', (['_g1', '_g2', '_T'], {}), '(_g1, _g2, _T)\n', (4613, 4627), False, 'import ngmix\n'), ((5046, 5080), 'ngmix.moments.mom2g', 'ngmix.moments.mom2g', (['irr', 'irc', 'icc'], {}), '(irr, irc, icc)\n', (5065, 5080), False, 'import ngmix\n'), ((2653, 2670), 'numpy.ones_like', 'np.ones_like', (['img'], {}), '(img)\n', (2665, 2670), True, 'import numpy as np\n'), ((3121, 3141), 'ngmix.admom.AdmomFitter', 'AdmomFitter', ([], {'rng': 'rng'}), '(rng=rng)\n', (3132, 3141), False, 'from ngmix.admom import AdmomFitter\n'), ((3333, 3353), 'ngmix.fitting.Fitter', 'Fitter', ([], {'model': '"""turb"""'}), "(model='turb')\n", (3339, 3353), False, 'from ngmix.fitting import Fitter\n'), ((3768, 3787), 'ngmix.admom.Admom', 'Admom', (['obs'], {'rng': 'rng'}), '(obs, rng=rng)\n', (3773, 3787), False, 'from ngmix.admom import Admom\n'), ((4022, 4043), 'ngmix.fitting.LMSimple', 'LMSimple', (['obs', '"""turb"""'], {}), "(obs, 'turb')\n", (4030, 4043), False, 'from ngmix.fitting import LMSimple\n')]