code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
from math import cos, sin import numpy as np from ....simulator import Agent from .quintic_polynomials_planner import quinic_polynomials_planner class TeacherQuinticPolynomials(Agent): def learn(self, state, action): raise NotImplementedError() def explore(self, state, horizon=1): raise NotImplementedError() def __init__(self, world, lane): Agent.__init__(self, world) self.lane = lane self.navigation_plan = None self.goal = self.lane.end_middle() self.goal = self.goal[0], self.goal[1], 0.0 # the angle depends on the lane direction def plan(self, horizon=10): trajectory = quinic_polynomials_planner(sx=self.x, sy=self.y, syaw=self.theta, sv=self.v, sa=0.0, gx=self.goal[0], gy=self.goal[1], gyaw=self.goal[2], gv=0.0, ga=0.0, max_accel=0.0, max_jerk=0.1, dt=1) return np.array(trajectory[3])[:horizon] def exploit(self, state, horizon=1): if self.navigation_plan is None: self.navigation_plan = self.plan() for _ in range(horizon): self.execute() def execute(self, action, horizon=1): for _ in range(horizon): self.x = self.x + self.v * cos(action) self.y = self.y + self.v * sin(action)
[ "numpy.array", "math.cos", "math.sin" ]
[((953, 976), 'numpy.array', 'np.array', (['trajectory[3]'], {}), '(trajectory[3])\n', (961, 976), True, 'import numpy as np\n'), ((1292, 1303), 'math.cos', 'cos', (['action'], {}), '(action)\n', (1295, 1303), False, 'from math import cos, sin\n'), ((1343, 1354), 'math.sin', 'sin', (['action'], {}), '(action)\n', (1346, 1354), False, 'from math import cos, sin\n')]
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ postprocess """ import os import argparse from functools import reduce import numpy as np import mindspore as ms from mindspore import ops, Tensor, context import src.util as util def cal_acc(args): """ :return: meta-baseline eval """ temp = 5. n_shots = [args.num_shots] file_num = int(len(os.listdir(args.post_result_path)) / args.num_shots) aves_keys = ['tl', 'ta', 'vl', 'va'] for n_shot in n_shots: aves_keys += ['fsa-' + str(n_shot)] aves = {k: util.Averager() for k in aves_keys} label_list = np.load(os.path.join(args.pre_result_path, "label.npy"), allow_pickle=True) shape_list = np.load(os.path.join(args.pre_result_path, "shape.npy"), allow_pickle=True) x_shot_shape = shape_list[0] x_query_shape = shape_list[1] shot_shape = x_shot_shape[:-3] query_shape = x_query_shape[:-3] x_shot_len = reduce(lambda x, y: x*y, shot_shape) x_query_len = reduce(lambda x, y: x*y, query_shape) for i, n_shot in enumerate(n_shots): np.random.seed(0) label_shot = label_list[i] for j in range(file_num): labels = Tensor(label_shot[j]) f = os.path.join(args.post_result_path, "nshot_" + str(i) + "_" + str(j) + "_0.bin") x_tot = Tensor(np.fromfile(f, np.float32).reshape(args.batch_size, 512)) x_shot, x_query = x_tot[:x_shot_len], x_tot[-x_query_len:] x_shot = x_shot.view(*shot_shape, -1) x_query = x_query.view(*query_shape, -1) ########## cross-class bias ############ bs = x_shot.shape[0] fs = x_shot.shape[-1] bias = x_shot.view(bs, -1, fs).mean(1) - x_query.mean(1) x_query = x_query + ops.ExpandDims()(bias, 1) x_shot = x_shot.mean(axis=-2) x_shot = ops.L2Normalize(axis=-1)(x_shot) x_query = ops.L2Normalize(axis=-1)(x_query) logits = ops.BatchMatMul()(x_query, x_shot.transpose(0, 2, 1)) logits = logits * temp ret = ops.Argmax()(logits) == labels.astype(ms.int32) acc = ret.astype(ms.float32).mean() aves['fsa-' + str(n_shot)].add(acc.asnumpy()) for k, v in aves.items(): aves[k] = v.item() for n_shot in n_shots: key = 'fsa-' + str(n_shot) print("epoch {}, {}-shot, val acc {:.4f}".format(str(1), n_shot, aves[key])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device_target', type=str, default='CPU', choices=['Ascend', 'GPU', 'CPU']) parser.add_argument('--dataset', default='mini-imagenet') parser.add_argument('--post_result_path', default='./result_Files') parser.add_argument('--pre_result_path', type=str, default='./preprocess_Result') parser.add_argument('--batch_size', type=int, default=320) parser.add_argument('--num_shots', type=int, default=1) args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) cal_acc(args_opt)
[ "os.listdir", "mindspore.context.set_context", "mindspore.ops.Argmax", "numpy.random.seed", "argparse.ArgumentParser", "mindspore.ops.ExpandDims", "numpy.fromfile", "mindspore.ops.L2Normalize", "mindspore.Tensor", "mindspore.ops.BatchMatMul", "functools.reduce", "os.path.join", "src.util.Averager" ]
[((1547, 1585), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'shot_shape'], {}), '(lambda x, y: x * y, shot_shape)\n', (1553, 1585), False, 'from functools import reduce\n'), ((1602, 1641), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'query_shape'], {}), '(lambda x, y: x * y, query_shape)\n', (1608, 1641), False, 'from functools import reduce\n'), ((3108, 3133), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3131, 3133), False, 'import argparse\n'), ((3618, 3724), 'mindspore.context.set_context', 'context.set_context', ([], {'mode': 'context.GRAPH_MODE', 'device_target': 'args_opt.device_target', 'save_graphs': '(False)'}), '(mode=context.GRAPH_MODE, device_target=args_opt.\n device_target, save_graphs=False)\n', (3637, 3724), False, 'from mindspore import ops, Tensor, context\n'), ((1168, 1183), 'src.util.Averager', 'util.Averager', ([], {}), '()\n', (1181, 1183), True, 'import src.util as util\n'), ((1230, 1277), 'os.path.join', 'os.path.join', (['args.pre_result_path', '"""label.npy"""'], {}), "(args.pre_result_path, 'label.npy')\n", (1242, 1277), False, 'import os\n'), ((1323, 1370), 'os.path.join', 'os.path.join', (['args.pre_result_path', '"""shape.npy"""'], {}), "(args.pre_result_path, 'shape.npy')\n", (1335, 1370), False, 'import os\n'), ((1690, 1707), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (1704, 1707), True, 'import numpy as np\n'), ((1798, 1819), 'mindspore.Tensor', 'Tensor', (['label_shot[j]'], {}), '(label_shot[j])\n', (1804, 1819), False, 'from mindspore import ops, Tensor, context\n'), ((987, 1020), 'os.listdir', 'os.listdir', (['args.post_result_path'], {}), '(args.post_result_path)\n', (997, 1020), False, 'import os\n'), ((2488, 2512), 'mindspore.ops.L2Normalize', 'ops.L2Normalize', ([], {'axis': '(-1)'}), '(axis=-1)\n', (2503, 2512), False, 'from mindspore import ops, Tensor, context\n'), ((2543, 2567), 'mindspore.ops.L2Normalize', 'ops.L2Normalize', ([], {'axis': '(-1)'}), '(axis=-1)\n', (2558, 2567), False, 'from mindspore import ops, Tensor, context\n'), ((2598, 2615), 'mindspore.ops.BatchMatMul', 'ops.BatchMatMul', ([], {}), '()\n', (2613, 2615), False, 'from mindspore import ops, Tensor, context\n'), ((2398, 2414), 'mindspore.ops.ExpandDims', 'ops.ExpandDims', ([], {}), '()\n', (2412, 2414), False, 'from mindspore import ops, Tensor, context\n'), ((2707, 2719), 'mindspore.ops.Argmax', 'ops.Argmax', ([], {}), '()\n', (2717, 2719), False, 'from mindspore import ops, Tensor, context\n'), ((1944, 1970), 'numpy.fromfile', 'np.fromfile', (['f', 'np.float32'], {}), '(f, np.float32)\n', (1955, 1970), True, 'import numpy as np\n')]
# Import modulov import numpy as np import matplotlib.pyplot as plt from matplotlib import rc rc('text', usetex=True) # Výpočtová oblasť xmin = -1.0 xmax = 1.0 xn = 101 # Počet vzorkovacích bodov funkcie "f" na intervale "[xmin, xmax]" ymin = xmin ymax = xmax yn = xn # Počet vzorkovacích bodov funkcie "f" na intervale "[ymin, ymax]" xngrad = 10 # Zobrazený bude každý "xngrad" vzorkovací bod v smere osi "x" yngrad = xngrad # Zobrazený bude každý "yngrad" vzorkovací bod v smere osi "y" # Tvorba gridu x, y = np.meshgrid(np.linspace(xmin, xmax, xn), np.linspace(ymin, ymax, yn)) # Výpočet funkcie f = np.sin(2.0 * x) + np.cos(2.0 * y) # Výpočet derivácií "f" podľa "x" a "y" fx = 2.0 * np.cos(2.0 * x) fy = -2.0 * np.sin(2.0 * y) # Vykreslenie fig, ax = plt.subplots(figsize=(12.0 / 2.54, 8.0 / 2.54)) im = ax.imshow(f, extent=(xmin, xmax, ymin, ymax), cmap="bwr", vmin=-np.abs(f).max(), vmax=np.abs(f).max()) ax.quiver( x[::xngrad, ::xngrad], y[::yngrad, ::yngrad], fx[::xngrad, ::xngrad], fy[::yngrad, ::yngrad]) ax.set_xlabel("$x$") ax.set_ylabel("$y$") ax.set_xticks(np.linspace(xmin, xmax, 6)) ax.set_yticks(np.linspace(ymin, ymax, 6)) fig.colorbar(im) plt.show() fig.savefig("../latex/fig-f-gradf.pdf")
[ "matplotlib.rc", "matplotlib.pyplot.show", "numpy.abs", "numpy.sin", "numpy.linspace", "numpy.cos", "matplotlib.pyplot.subplots" ]
[((94, 117), 'matplotlib.rc', 'rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (96, 117), False, 'from matplotlib import rc\n'), ((783, 830), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12.0 / 2.54, 8.0 / 2.54)'}), '(figsize=(12.0 / 2.54, 8.0 / 2.54))\n', (795, 830), True, 'import matplotlib.pyplot as plt\n'), ((1213, 1223), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1221, 1223), True, 'import matplotlib.pyplot as plt\n'), ((546, 573), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', 'xn'], {}), '(xmin, xmax, xn)\n', (557, 573), True, 'import numpy as np\n'), ((575, 602), 'numpy.linspace', 'np.linspace', (['ymin', 'ymax', 'yn'], {}), '(ymin, ymax, yn)\n', (586, 602), True, 'import numpy as np\n'), ((627, 642), 'numpy.sin', 'np.sin', (['(2.0 * x)'], {}), '(2.0 * x)\n', (633, 642), True, 'import numpy as np\n'), ((645, 660), 'numpy.cos', 'np.cos', (['(2.0 * y)'], {}), '(2.0 * y)\n', (651, 660), True, 'import numpy as np\n'), ((714, 729), 'numpy.cos', 'np.cos', (['(2.0 * x)'], {}), '(2.0 * x)\n', (720, 729), True, 'import numpy as np\n'), ((742, 757), 'numpy.sin', 'np.sin', (['(2.0 * y)'], {}), '(2.0 * y)\n', (748, 757), True, 'import numpy as np\n'), ((1126, 1152), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', '(6)'], {}), '(xmin, xmax, 6)\n', (1137, 1152), True, 'import numpy as np\n'), ((1168, 1194), 'numpy.linspace', 'np.linspace', (['ymin', 'ymax', '(6)'], {}), '(ymin, ymax, 6)\n', (1179, 1194), True, 'import numpy as np\n'), ((937, 946), 'numpy.abs', 'np.abs', (['f'], {}), '(f)\n', (943, 946), True, 'import numpy as np\n'), ((915, 924), 'numpy.abs', 'np.abs', (['f'], {}), '(f)\n', (921, 924), True, 'import numpy as np\n')]
import numpy as np import scipy from ._hist import take_bins __all__ = ['ecdf'] __EPSILON__ = 1e-8 #-------------------------------------------------------------------- def ecdf(x,y=None): ''' Empirical Cumulative Density Function (ECDF). Parameters ----------- * x,y: 1d ndarrays, if y is None, than ecdf only by x will be taken. Returns -------- * if y is not None -> (bins,out_x, out_y); * if y is None -> (bins,out_x). Notes ------- * Based on scipy implementation. * If y is not None, ECDF will be constructed on the joint x and y. * If y is None, only bins and cdf(x) (2 argument) will be returned. * ECDF is calculated as: bins = sort(concatenate(x,y)), cdf_x = (serch&past bins in sort(x))/size(x), cdf_y = (serch&past bins in sort(y))/size(y), where: * bins - bins for cdfs (if y is not None, joint bins). ''' x = np.array(x) x = np.sort(x) ret2 =True if (y is not None): y = np.array(y) y = np.sort(y) else: ret2 = False y=np.array([]) bins = np.concatenate((x,y)) bins=np.sort(bins) x_cdf = np.searchsorted(x,bins, 'right') y_cdf = np.searchsorted(y,bins, 'right') x_cdf = (x_cdf) / x.shape[0] y_cdf = (y_cdf) / y.shape[0] out = (bins,x_cdf) if (ret2): out= (bins,x_cdf,y_cdf) return out #-------------------------------------------------------------------- def hist2cdf(hist_x, normalize = True): ''' The cumulative density function made by histogram. Parameters: * hist_x 1d histogram (ndarray). Returns: * cfd(hist_x) (Cumulative Density Function). ''' hist_x = np.asarray(hist_x) out = np.cumsum(hist_x) if(normalize): out /=np.max(out) # TODO: out /=x.size # more simple! return out #-------------------------------------------------------------------- def cdf_by_hist(x,y=None,n_bins = None, bins = None, take_mean=False): ''' Cumulative density function constructed by histogram. Parameters: * x,y: 1d ndarrays; * n_bins: required number of uniformly distributed bins, * work only if bins is None. * bins: grid of prepared bins (can be ununiform) * take_mean: sustrauct mean if ture. Returns: * y is not None -> (out_x, out_y,bins) * y is None -> (out_x,bins) Notes: * If bins is None and n_bins is None: bins = np.sort(np.concatenate((x,y))). This case make the same result as ecdf! * If bins is None and n_bins <=0: n_bins = x.shape[0]; The case of uniform bins grid! (Differ from ECDF). * For tests: modes n_bins = 't10' and n_bins = 't5' for obtaining uniform bins with x shape/10 and /5 correspondingly ''' #FIXME: the results are sligthly differ from ecdf # TODO: the case xy is the same as for ecfd, but uniform bins may be more valid (see tests) if(bins is None and n_bins is None): bins = take_bins(x,y, n_bins='xy') elif(n_bins == 't10' and bins is None): bins = take_bins(x,y, n_bins=x.shape[0]//10) elif(n_bins == 't5' and bins is None): bins = take_bins(x,y, n_bins=x.shape[0]//5) if(y is None): bins, out_x = hist(x,y=None,n_bins = n_bins, bins = bins, take_mean=take_mean) out_x = hist2cdf(out_x, normalize = True) out = (bins, out_x ) else: bins, out_x, out_y = hist(x,y=y,n_bins = n_bins, bins = bins, take_mean=take_mean) out_x = hist2cdf(out_x, normalize = True) out_y = hist2cdf(out_y, normalize = True) out = (bins,out_x, out_y) return out
[ "numpy.asarray", "numpy.searchsorted", "numpy.sort", "numpy.cumsum", "numpy.max", "numpy.array", "numpy.concatenate" ]
[((969, 980), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (977, 980), True, 'import numpy as np\n'), ((989, 999), 'numpy.sort', 'np.sort', (['x'], {}), '(x)\n', (996, 999), True, 'import numpy as np\n'), ((1165, 1187), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (1179, 1187), True, 'import numpy as np\n'), ((1196, 1209), 'numpy.sort', 'np.sort', (['bins'], {}), '(bins)\n', (1203, 1209), True, 'import numpy as np\n'), ((1222, 1255), 'numpy.searchsorted', 'np.searchsorted', (['x', 'bins', '"""right"""'], {}), "(x, bins, 'right')\n", (1237, 1255), True, 'import numpy as np\n'), ((1267, 1300), 'numpy.searchsorted', 'np.searchsorted', (['y', 'bins', '"""right"""'], {}), "(y, bins, 'right')\n", (1282, 1300), True, 'import numpy as np\n'), ((1800, 1818), 'numpy.asarray', 'np.asarray', (['hist_x'], {}), '(hist_x)\n', (1810, 1818), True, 'import numpy as np\n'), ((1834, 1851), 'numpy.cumsum', 'np.cumsum', (['hist_x'], {}), '(hist_x)\n', (1843, 1851), True, 'import numpy as np\n'), ((1056, 1067), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (1064, 1067), True, 'import numpy as np\n'), ((1080, 1090), 'numpy.sort', 'np.sort', (['y'], {}), '(y)\n', (1087, 1090), True, 'import numpy as np\n'), ((1132, 1144), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1140, 1144), True, 'import numpy as np\n'), ((1890, 1901), 'numpy.max', 'np.max', (['out'], {}), '(out)\n', (1896, 1901), True, 'import numpy as np\n')]
import operator import math import numpy as np from rtlsdr import RtlSdr import matplotlib.pyplot as plt # Available sample rates ''' 3200000Hz 2800000Hz 2560000Hz 2400000Hz 2048000Hz 1920000Hz 1800000Hz 1400000Hz 1024000Hz 900001Hz 250000Hz ''' # Receiver class. This needs receiving parameters and will receive data from the SDR class Receiver: def __init__(self, sample_rate, ppm, resolution, num_FFT, num_med): self.sdr = RtlSdr() # configure SDR self.sdr.sample_rate = sample_rate self.sdr.center_freq = 1420405000 # For some reason the SDR doesn't want to set the offset PPM to 0 so we avoid that if ppm != 0: self.sdr.freq_correction = ppm self.sdr.gain = 'auto' self.resolution = 2**resolution self.num_FFT = num_FFT self.num_med = num_med # Reads data from SDR, processes and writes it def receive(self): print(f'Receiving {self.num_FFT} bins of {self.resolution} samples each...') data_PSD = self.sample() # Observed frequency range start_freq = self.sdr.center_freq - self.sdr.sample_rate/2 stop_freq = self.sdr.center_freq + self.sdr.sample_rate/2 freqs = np.linspace(start = start_freq, stop = stop_freq, num = self.resolution) # Samples a blank spectrum to callibrate spectrum with. self.sdr.center_freq = self.sdr.center_freq + 3000000 blank_PSD = self.sample() SNR_spectrum = self.estimate_SNR(data = data_PSD, blank = blank_PSD) SNR_median = self.median(SNR_spectrum) if self.num_med != 0 else SNR_spectrum # Close the SDR self.sdr.close() return freqs, SNR_median # Returns numpy array with PSD values averaged from "num_FFT" datasets def sample(self): counter = 0.0 PSD_summed = (0, )* self.resolution while (counter < self.num_FFT): samples = self.sdr.read_samples(self.resolution) # Applies window to samples in time domain before performing FFT window = np.hanning(self.resolution) windowed_samples = samples * window # Perform FFT and PSD-analysis PSD = np.abs(np.fft.fft(windowed_samples)/self.sdr.sample_rate)**2 PSD_checked = self.check_for_zero(PSD) PSD_log = 10*np.log10(PSD_checked) PSD_summed = tuple(map(operator.add, PSD_summed, np.fft.fftshift(PSD_log))) counter += 1.0 averaged_PSD = tuple(sample/counter for sample in PSD_summed) return averaged_PSD # Calculates SNR from spectrum and H-line SNR def estimate_SNR(self, data, blank): SNR = np.array(data)-np.array(blank) # Ghetto noise floor estimate: noise_floor = sum(SNR[0:10])/10 shifted_SNR = SNR-noise_floor return shifted_SNR # Median filter for rfi-removal def median(self, data): for i in range(len(data)): data[i] = np.mean(data[i:i+self.num_med]) return data # Checks if samples have been dropped and replaces 0.0 with next value def check_for_zero(self, PSD): try: index = list(PSD).index(0.0) print('Dropped sample was recovered!') PSD[index] = (PSD[index+1]+PSD[index-1])/2 return PSD except: return PSD
[ "rtlsdr.RtlSdr", "numpy.fft.fft", "numpy.mean", "numpy.array", "numpy.fft.fftshift", "numpy.linspace", "numpy.hanning", "numpy.log10" ]
[((446, 454), 'rtlsdr.RtlSdr', 'RtlSdr', ([], {}), '()\n', (452, 454), False, 'from rtlsdr import RtlSdr\n'), ((1237, 1303), 'numpy.linspace', 'np.linspace', ([], {'start': 'start_freq', 'stop': 'stop_freq', 'num': 'self.resolution'}), '(start=start_freq, stop=stop_freq, num=self.resolution)\n', (1248, 1303), True, 'import numpy as np\n'), ((2104, 2131), 'numpy.hanning', 'np.hanning', (['self.resolution'], {}), '(self.resolution)\n', (2114, 2131), True, 'import numpy as np\n'), ((2744, 2758), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2752, 2758), True, 'import numpy as np\n'), ((2759, 2774), 'numpy.array', 'np.array', (['blank'], {}), '(blank)\n', (2767, 2774), True, 'import numpy as np\n'), ((3043, 3076), 'numpy.mean', 'np.mean', (['data[i:i + self.num_med]'], {}), '(data[i:i + self.num_med])\n', (3050, 3076), True, 'import numpy as np\n'), ((2380, 2401), 'numpy.log10', 'np.log10', (['PSD_checked'], {}), '(PSD_checked)\n', (2388, 2401), True, 'import numpy as np\n'), ((2463, 2487), 'numpy.fft.fftshift', 'np.fft.fftshift', (['PSD_log'], {}), '(PSD_log)\n', (2478, 2487), True, 'import numpy as np\n'), ((2249, 2277), 'numpy.fft.fft', 'np.fft.fft', (['windowed_samples'], {}), '(windowed_samples)\n', (2259, 2277), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np def faces_with_repeated_vertices(f): if f.shape[1] == 3: return np.unique(np.concatenate([ np.where(f[:, 0] == f[:, 1])[0], np.where(f[:, 0] == f[:, 2])[0], np.where(f[:, 1] == f[:, 2])[0], ])) else: return np.unique(np.concatenate([ np.where(f[:, 0] == f[:, 1])[0], np.where(f[:, 0] == f[:, 2])[0], np.where(f[:, 0] == f[:, 3])[0], np.where(f[:, 1] == f[:, 2])[0], np.where(f[:, 1] == f[:, 3])[0], np.where(f[:, 2] == f[:, 3])[0], ])) def faces_with_out_of_range_vertices(f, v): return np.unique(np.concatenate([ np.where(f < 0)[0], np.where(f >= len(v))[0], ])) def check_integrity(mesh): errors = [] for f_index in faces_with_out_of_range_vertices(mesh.f, mesh.v): errors.append(("f", f_index, "Vertex out of range")) for f_index in faces_with_repeated_vertices(mesh.f): errors.append(("f", f_index, "Repeated vertex")) return errors def print_integrity_errors(errors, mesh): for attr, index, message in errors: try: data = getattr(mesh, attr)[index] except (AttributeError, IndexError): data = '' print("{} {} {} {}".format(attr, index, message, data))
[ "numpy.where" ]
[((734, 749), 'numpy.where', 'np.where', (['(f < 0)'], {}), '(f < 0)\n', (742, 749), True, 'import numpy as np\n'), ((174, 202), 'numpy.where', 'np.where', (['(f[:, 0] == f[:, 1])'], {}), '(f[:, 0] == f[:, 1])\n', (182, 202), True, 'import numpy as np\n'), ((219, 247), 'numpy.where', 'np.where', (['(f[:, 0] == f[:, 2])'], {}), '(f[:, 0] == f[:, 2])\n', (227, 247), True, 'import numpy as np\n'), ((264, 292), 'numpy.where', 'np.where', (['(f[:, 1] == f[:, 2])'], {}), '(f[:, 1] == f[:, 2])\n', (272, 292), True, 'import numpy as np\n'), ((373, 401), 'numpy.where', 'np.where', (['(f[:, 0] == f[:, 1])'], {}), '(f[:, 0] == f[:, 1])\n', (381, 401), True, 'import numpy as np\n'), ((418, 446), 'numpy.where', 'np.where', (['(f[:, 0] == f[:, 2])'], {}), '(f[:, 0] == f[:, 2])\n', (426, 446), True, 'import numpy as np\n'), ((463, 491), 'numpy.where', 'np.where', (['(f[:, 0] == f[:, 3])'], {}), '(f[:, 0] == f[:, 3])\n', (471, 491), True, 'import numpy as np\n'), ((508, 536), 'numpy.where', 'np.where', (['(f[:, 1] == f[:, 2])'], {}), '(f[:, 1] == f[:, 2])\n', (516, 536), True, 'import numpy as np\n'), ((553, 581), 'numpy.where', 'np.where', (['(f[:, 1] == f[:, 3])'], {}), '(f[:, 1] == f[:, 3])\n', (561, 581), True, 'import numpy as np\n'), ((598, 626), 'numpy.where', 'np.where', (['(f[:, 2] == f[:, 3])'], {}), '(f[:, 2] == f[:, 3])\n', (606, 626), True, 'import numpy as np\n')]
import argparse import numpy as np from packaging import version import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="2,3" from PIL import Image import matplotlib.pyplot as plt import cv2 from skimage.transform import rotate import torch from torch.autograd import Variable import torch.nn as nn from torch.utils import data from models.unet import UNet from dataset.refuge import REFUGE NUM_CLASSES = 3 NUM_STEPS = 512 # Number of images in the validation set. RESTORE_FROM = '/home/charlietran/CADA_Tutorial/Model_Weights/Trial1/UNet1000_v18_weightedclass.pth' SAVE_PATH = '/home/charlietran/CADA_Tutorial/result/Trial1/' MODEL = 'Unet' BATCH_SIZE = 1 is_polar = False #If need to transfer the image and labels to polar coordinates: MICCAI version is False ROI_size = 700 #ROI size from evaluation.evaluation_segmentation import * print(RESTORE_FROM) palette=[ 255, 255, 255, # black background 128, 128, 128, # index 1 is red 0, 0, 0, # index 2 is yellow 0, 0 , 0 # index 3 is orange ] zero_pad = 256 * 3 - len(palette) for i in range(zero_pad): palette.append(0) def colorize_mask(mask): # mask: numpy array of the mask new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P') new_mask.putpalette(palette) return new_mask def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Unet Network") parser.add_argument("--model", type=str, default=MODEL, help="Model Choice Unet.") parser.add_argument("--num-classes", type=int, default=NUM_CLASSES, help="Number of classes to predict (including background).") parser.add_argument("--restore-from", type=str, default=RESTORE_FROM, help="Where restore model parameters from.") parser.add_argument("--batch-size", type=int, default=BATCH_SIZE, help="Number of images sent to the network in one step.") parser.add_argument("--gpu", type=int, default=0, help="choose gpu device.") parser.add_argument("--save", type=str, default=SAVE_PATH, help="Path to save result.") parser.add_argument("--is_polar", type=bool, default=False, help="If proceed images in polar coordinate. MICCAI version is false") parser.add_argument("--ROI_size", type=int, default=460, help="Size of ROI.") parser.add_argument('--t', type=int, default=3, help='t for Recurrent step of R2U_Net or R2AttU_Net') return parser.parse_args() def main(): """Create the model and start the evaluation process.""" args = get_arguments() gpu0 = args.gpu if not os.path.exists(args.save): os.makedirs(args.save) model = UNet(3, n_classes=args.num_classes) saved_state_dict = torch.load(args.restore_from) model.load_state_dict(saved_state_dict) model.cuda(gpu0) model.train() testloader = data.DataLoader(REFUGE(False, domain='REFUGE_TEST', is_transform=True), batch_size=args.batch_size, shuffle=False, pin_memory=True) if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(ROI_size, ROI_size), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(ROI_size, ROI_size), mode='bilinear') for index, batch in enumerate(testloader): if index % 100 == 0: print('%d processd' % index) image, label, _, _, name = batch if args.model == 'Unet': _,_,_,_, output2 = model(Variable(image, volatile=True).cuda(gpu0)) output = interp(output2).cpu().data.numpy() for idx, one_name in enumerate(name): pred = output[idx] pred = pred.transpose(1,2,0) pred = np.asarray(np.argmax(pred, axis=2), dtype=np.uint8) output_col = colorize_mask(pred) print(output_col.size) one_name = one_name.split('/')[-1] output_col = output_col.convert('L') output_col.save('%s/%s.bmp' % (args.save, one_name)) if __name__ == '__main__': main() results_folder = SAVE_PATH gt_folder = '/DATA/charlie/AWC/CADA_Tutorial_Image/Target_Test/mask/' output_path = results_folder export_table = True evaluate_segmentation_results(results_folder, gt_folder, output_path, export_table)
[ "os.makedirs", "argparse.ArgumentParser", "numpy.argmax", "torch.autograd.Variable", "torch.load", "dataset.refuge.REFUGE", "os.path.exists", "packaging.version.parse", "torch.nn.Upsample", "models.unet.UNet" ]
[((1465, 1516), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Unet Network"""'}), "(description='Unet Network')\n", (1488, 1516), False, 'import argparse\n'), ((2912, 2947), 'models.unet.UNet', 'UNet', (['(3)'], {'n_classes': 'args.num_classes'}), '(3, n_classes=args.num_classes)\n', (2916, 2947), False, 'from models.unet import UNet\n'), ((2972, 3001), 'torch.load', 'torch.load', (['args.restore_from'], {}), '(args.restore_from)\n', (2982, 3001), False, 'import torch\n'), ((2841, 2866), 'os.path.exists', 'os.path.exists', (['args.save'], {}), '(args.save)\n', (2855, 2866), False, 'import os\n'), ((2876, 2898), 'os.makedirs', 'os.makedirs', (['args.save'], {}), '(args.save)\n', (2887, 2898), False, 'import os\n'), ((3120, 3174), 'dataset.refuge.REFUGE', 'REFUGE', (['(False)'], {'domain': '"""REFUGE_TEST"""', 'is_transform': '(True)'}), "(False, domain='REFUGE_TEST', is_transform=True)\n", (3126, 3174), False, 'from dataset.refuge import REFUGE\n'), ((3281, 3313), 'packaging.version.parse', 'version.parse', (['torch.__version__'], {}), '(torch.__version__)\n', (3294, 3313), False, 'from packaging import version\n'), ((3317, 3339), 'packaging.version.parse', 'version.parse', (['"""0.4.0"""'], {}), "('0.4.0')\n", (3330, 3339), False, 'from packaging import version\n'), ((3358, 3433), 'torch.nn.Upsample', 'nn.Upsample', ([], {'size': '(ROI_size, ROI_size)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(size=(ROI_size, ROI_size), mode='bilinear', align_corners=True)\n", (3369, 3433), True, 'import torch.nn as nn\n'), ((3461, 3516), 'torch.nn.Upsample', 'nn.Upsample', ([], {'size': '(ROI_size, ROI_size)', 'mode': '"""bilinear"""'}), "(size=(ROI_size, ROI_size), mode='bilinear')\n", (3472, 3516), True, 'import torch.nn as nn\n'), ((3997, 4020), 'numpy.argmax', 'np.argmax', (['pred'], {'axis': '(2)'}), '(pred, axis=2)\n', (4006, 4020), True, 'import numpy as np\n'), ((3747, 3777), 'torch.autograd.Variable', 'Variable', (['image'], {'volatile': '(True)'}), '(image, volatile=True)\n', (3755, 3777), False, 'from torch.autograd import Variable\n')]
# TODO: Explain 8 corners logic at the top and use it consistently # Add comments of explanation import numpy as np import scipy.spatial from .rotation import rotate_points_along_z def get_size(box): """ Args: box: 8x3 Returns: size: [dx, dy, dz] """ distance = scipy.spatial.distance.cdist(box[0:1, :], box[1:5, :]) l = distance[0, 2] w = distance[0, 0] h = distance[0, 3] return [l, w, h] def get_heading_angle(box): """ Args: box: (8, 3) Returns: heading_angle: float """ a = box[0, 0] - box[1, 0] b = box[0, 1] - box[1, 1] heading_angle = np.arctan2(a, b) return heading_angle def compute_box_3d(size, center, rotmat): """Compute corners of a single box from rotation matrix Args: size: list of float [dx, dy, dz] center: np.array [x, y, z] rotmat: np.array (3, 3) Returns: corners: (8, 3) """ l, h, w = [i / 2 for i in size] center = np.reshape(center, (-1, 3)) center = center.reshape(3) x_corners = [l, l, -l, -l, l, l, -l, -l] y_corners = [h, -h, -h, h, h, -h, -h, h] z_corners = [w, w, w, w, -w, -w, -w, -w] corners_3d = np.dot( np.transpose(rotmat), np.vstack([x_corners, y_corners, z_corners]) ) corners_3d[0, :] += center[0] corners_3d[1, :] += center[1] corners_3d[2, :] += center[2] return np.transpose(corners_3d) def corners_to_boxes(corners3d): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: corners: (N, 8, 3), vertex order shown in figure above Returns: boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading] with (x, y, z) is the box center (dx, dy, dz) as the box size and heading as the clockwise rotation angle """ boxes3d = np.zeros((corners3d.shape[0], 7)) for i in range(corners3d.shape[0]): boxes3d[i, :3] = np.mean(corners3d[i, :, :], axis=0) boxes3d[i, 3:6] = get_size(corners3d[i, :, :]) boxes3d[i, 6] = get_heading_angle(corners3d[i, :, :]) return boxes3d def boxes_to_corners_3d(boxes3d): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center Returns: corners: (N, 8, 3) """ template = np.array([[1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1], [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1]] ) / 2. # corners3d: of shape (N, 3, 8) corners3d = np.tile(boxes3d[:, None, 3:6], (1, 8, 1)) * template[None, :, :] corners3d = rotate_points_along_z(corners3d.reshape(-1, 8, 3), boxes3d[:, 6]).reshape( -1, 8, 3 ) corners3d += boxes3d[:, None, 0:3] return corners3d def points_in_boxes(points, boxes): """ Args: pc: np.array (n, 3+d) boxes: np.array (m, 8, 3) Returns: mask: np.array (n, m) of type bool """ if len(boxes) == 0: return np.zeros([points.shape[0], 1], dtype=np.bool) points = points[:, :3] # get xyz # u = p6 - p5 u = boxes[:, 6, :] - boxes[:, 5, :] # (m, 3) # v = p6 - p7 v = boxes[:, 6, :] - boxes[:, 7, :] # (m, 3) # w = p6 - p2 w = boxes[:, 6, :] - boxes[:, 2, :] # (m, 3) # ux, vx, wx ux = np.matmul(points, u.T) # (n, m) vx = np.matmul(points, v.T) wx = np.matmul(points, w.T) # up6, up5, vp6, vp7, wp6, wp2 up6 = np.sum(u * boxes[:, 6, :], axis=1) up5 = np.sum(u * boxes[:, 5, :], axis=1) vp6 = np.sum(v * boxes[:, 6, :], axis=1) vp7 = np.sum(v * boxes[:, 7, :], axis=1) wp6 = np.sum(w * boxes[:, 6, :], axis=1) wp2 = np.sum(w * boxes[:, 2, :], axis=1) mask_u = np.logical_and(ux <= up6, ux >= up5) # (1024, n) mask_v = np.logical_and(vx <= vp6, vx >= vp7) mask_w = np.logical_and(wx <= wp6, wx >= wp2) mask = mask_u & mask_v & mask_w # (10240, n) return mask def poly_area(x,y): """ Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1))) def polygon_clip(subjectPolygon, clipPolygon): """ Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0]) def computeIntersection(): dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]] dp = [s[0] - e[0], s[1] - e[1]] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3] outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return (outputList) def convex_hull_intersection(p1, p2): """ Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1,p2) if inter_p is not None: hull_inter = scipy.spatial.ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def box3d_vol(corners): ''' corners: (8,3) no assumption on axis direction ''' a = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2)) b = np.sqrt(np.sum((corners[1,:] - corners[2,:])**2)) c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2)) return a*b*c def box3d_iou(corners1, corners2): ''' Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU ''' # corner points are in counter clockwise order rect1 = [(corners1[i,0], corners1[i,1]) for i in range(3,-1,-1)] rect2 = [(corners2[i,0], corners2[i,1]) for i in range(3,-1,-1)] area1 = poly_area(np.array(rect1)[:,0], np.array(rect1)[:,1]) area2 = poly_area(np.array(rect2)[:,0], np.array(rect2)[:,1]) inter, inter_area = convex_hull_intersection(rect1, rect2) iou_2d = inter_area/(area1+area2-inter_area) ymax = min(corners1[:,2].max(), corners2[:,2].max()) ymin = max(corners1[:,2].min(), corners2[:,2].min()) inter_vol = inter_area * max(0.0, ymax-ymin) vol1 = box3d_vol(corners1) vol2 = box3d_vol(corners2) iou = inter_vol / (vol1 + vol2 - inter_vol) return iou
[ "numpy.arctan2", "numpy.sum", "numpy.logical_and", "numpy.roll", "numpy.zeros", "numpy.transpose", "numpy.mean", "numpy.array", "numpy.reshape", "numpy.matmul", "numpy.tile", "numpy.vstack" ]
[((646, 662), 'numpy.arctan2', 'np.arctan2', (['a', 'b'], {}), '(a, b)\n', (656, 662), True, 'import numpy as np\n'), ((1004, 1031), 'numpy.reshape', 'np.reshape', (['center', '(-1, 3)'], {}), '(center, (-1, 3))\n', (1014, 1031), True, 'import numpy as np\n'), ((1417, 1441), 'numpy.transpose', 'np.transpose', (['corners_3d'], {}), '(corners_3d)\n', (1429, 1441), True, 'import numpy as np\n'), ((1937, 1970), 'numpy.zeros', 'np.zeros', (['(corners3d.shape[0], 7)'], {}), '((corners3d.shape[0], 7))\n', (1945, 1970), True, 'import numpy as np\n'), ((3577, 3599), 'numpy.matmul', 'np.matmul', (['points', 'u.T'], {}), '(points, u.T)\n', (3586, 3599), True, 'import numpy as np\n'), ((3619, 3641), 'numpy.matmul', 'np.matmul', (['points', 'v.T'], {}), '(points, v.T)\n', (3628, 3641), True, 'import numpy as np\n'), ((3651, 3673), 'numpy.matmul', 'np.matmul', (['points', 'w.T'], {}), '(points, w.T)\n', (3660, 3673), True, 'import numpy as np\n'), ((3720, 3754), 'numpy.sum', 'np.sum', (['(u * boxes[:, 6, :])'], {'axis': '(1)'}), '(u * boxes[:, 6, :], axis=1)\n', (3726, 3754), True, 'import numpy as np\n'), ((3765, 3799), 'numpy.sum', 'np.sum', (['(u * boxes[:, 5, :])'], {'axis': '(1)'}), '(u * boxes[:, 5, :], axis=1)\n', (3771, 3799), True, 'import numpy as np\n'), ((3810, 3844), 'numpy.sum', 'np.sum', (['(v * boxes[:, 6, :])'], {'axis': '(1)'}), '(v * boxes[:, 6, :], axis=1)\n', (3816, 3844), True, 'import numpy as np\n'), ((3855, 3889), 'numpy.sum', 'np.sum', (['(v * boxes[:, 7, :])'], {'axis': '(1)'}), '(v * boxes[:, 7, :], axis=1)\n', (3861, 3889), True, 'import numpy as np\n'), ((3900, 3934), 'numpy.sum', 'np.sum', (['(w * boxes[:, 6, :])'], {'axis': '(1)'}), '(w * boxes[:, 6, :], axis=1)\n', (3906, 3934), True, 'import numpy as np\n'), ((3945, 3979), 'numpy.sum', 'np.sum', (['(w * boxes[:, 2, :])'], {'axis': '(1)'}), '(w * boxes[:, 2, :], axis=1)\n', (3951, 3979), True, 'import numpy as np\n'), ((3994, 4030), 'numpy.logical_and', 'np.logical_and', (['(ux <= up6)', '(ux >= up5)'], {}), '(ux <= up6, ux >= up5)\n', (4008, 4030), True, 'import numpy as np\n'), ((4057, 4093), 'numpy.logical_and', 'np.logical_and', (['(vx <= vp6)', '(vx >= vp7)'], {}), '(vx <= vp6, vx >= vp7)\n', (4071, 4093), True, 'import numpy as np\n'), ((4107, 4143), 'numpy.logical_and', 'np.logical_and', (['(wx <= wp6)', '(wx >= wp2)'], {}), '(wx <= wp6, wx >= wp2)\n', (4121, 4143), True, 'import numpy as np\n'), ((1231, 1251), 'numpy.transpose', 'np.transpose', (['rotmat'], {}), '(rotmat)\n', (1243, 1251), True, 'import numpy as np\n'), ((1253, 1297), 'numpy.vstack', 'np.vstack', (['[x_corners, y_corners, z_corners]'], {}), '([x_corners, y_corners, z_corners])\n', (1262, 1297), True, 'import numpy as np\n'), ((2036, 2071), 'numpy.mean', 'np.mean', (['corners3d[i, :, :]'], {'axis': '(0)'}), '(corners3d[i, :, :], axis=0)\n', (2043, 2071), True, 'import numpy as np\n'), ((2568, 2682), 'numpy.array', 'np.array', (['[[1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1], [1, 1, 1], [1, -1, 1],\n [-1, -1, 1], [-1, 1, 1]]'], {}), '([[1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1], [1, 1, 1], [1,\n -1, 1], [-1, -1, 1], [-1, 1, 1]])\n', (2576, 2682), True, 'import numpy as np\n'), ((2798, 2839), 'numpy.tile', 'np.tile', (['boxes3d[:, None, 3:6]', '(1, 8, 1)'], {}), '(boxes3d[:, None, 3:6], (1, 8, 1))\n', (2805, 2839), True, 'import numpy as np\n'), ((3262, 3307), 'numpy.zeros', 'np.zeros', (['[points.shape[0], 1]'], {'dtype': 'np.bool'}), '([points.shape[0], 1], dtype=np.bool)\n', (3270, 3307), True, 'import numpy as np\n'), ((6481, 6525), 'numpy.sum', 'np.sum', (['((corners[0, :] - corners[1, :]) ** 2)'], {}), '((corners[0, :] - corners[1, :]) ** 2)\n', (6487, 6525), True, 'import numpy as np\n'), ((6539, 6583), 'numpy.sum', 'np.sum', (['((corners[1, :] - corners[2, :]) ** 2)'], {}), '((corners[1, :] - corners[2, :]) ** 2)\n', (6545, 6583), True, 'import numpy as np\n'), ((6597, 6641), 'numpy.sum', 'np.sum', (['((corners[0, :] - corners[4, :]) ** 2)'], {}), '((corners[0, :] - corners[4, :]) ** 2)\n', (6603, 6641), True, 'import numpy as np\n'), ((7201, 7216), 'numpy.array', 'np.array', (['rect1'], {}), '(rect1)\n', (7209, 7216), True, 'import numpy as np\n'), ((7223, 7238), 'numpy.array', 'np.array', (['rect1'], {}), '(rect1)\n', (7231, 7238), True, 'import numpy as np\n'), ((7267, 7282), 'numpy.array', 'np.array', (['rect2'], {}), '(rect2)\n', (7275, 7282), True, 'import numpy as np\n'), ((7289, 7304), 'numpy.array', 'np.array', (['rect2'], {}), '(rect2)\n', (7297, 7304), True, 'import numpy as np\n'), ((4374, 4387), 'numpy.roll', 'np.roll', (['y', '(1)'], {}), '(y, 1)\n', (4381, 4387), True, 'import numpy as np\n'), ((4397, 4410), 'numpy.roll', 'np.roll', (['x', '(1)'], {}), '(x, 1)\n', (4404, 4410), True, 'import numpy as np\n')]
""" Compute resonances using the cxroots library (contour integration techniques) Authors: <NAME>, <NAME> Karlsruhe Institute of Technology, Germany University of California, Merced Last modified: 20/04/2021 """ from sys import argv import matplotlib.pyplot as plt import numpy as np from cxroots import AnnulusSector, Circle from scipy.special import h1vp, hankel1, iv, ivp ## Entries ## ε = float(argv[1]) # For example -1.1 + 1e-2 * 1j η = np.sqrt(-ε) print(f"η = {η}") c = η + 1 / η ## Internal functions ## def rootsAnnSec(m, rMin, rMax, aMin, aMax): f0 = lambda k: ivp(m, η * k) * hankel1(m, k) / η + iv(m, η * k) * h1vp(m, k) f1 = ( lambda k: ivp(m, η * k, 2) * hankel1(m, k) + c * ivp(m, η * k) * h1vp(m, k) + iv(m, η * k) * h1vp(m, k, 2) ) A = AnnulusSector(center=0.0, radii=(rMin, rMax), phiRange=(aMin, aMax)) z = A.roots(f0, df=f1) return z.roots def writeFile(myFile, m, z): if np.size(z, 0): for i in range(np.size(z, 0)): myFile.write(f"{m} {z[i].real} {z[i].imag}\n") def calcInt(): plaTrue = ε > -1.0 if plaTrue: Int = open(f"eps_{ε}_int", "w") Pla = open(f"eps_{ε}_pla", "w") else: Int = open(f"eps_{ε}_int", "w") for m in range(65): print(f"m = {m}") f0 = lambda k: ivp(m, η * k) * hankel1(m, k) / η + iv(m, η * k) * h1vp(m, k) f1 = ( lambda k: ivp(m, η * k, 2) * hankel1(m, k) + c * ivp(m, η * k) * h1vp(m, k) + iv(m, η * k) * h1vp(m, k, 2) ) t = np.linspace(0.2, 65.0, num=1024) k = 1j * t rf = np.real(f0(k)) ind = np.where(rf[1:] * rf[:-1] < 0.0)[0] roots = np.zeros(np.shape(ind), dtype=complex) for a, i in enumerate(ind): C = Circle(center=1j * (t[i] + t[i + 1]) / 2.0, radius=(t[i + 1] - t[i])) z = C.roots(f0, df=f1) roots[a] = z.roots[0] if plaTrue: if m: writeFile(Int, m, roots[1:]) writeFile(Pla, m, roots[[0]]) else: writeFile(Int, m, roots) else: writeFile(Int, m, roots) if plaTrue: Int.close() Pla.close() else: Int.close() calcInt() def calcResPla(): if ε < -1.0: Pla = open(f"eps_{ε}_pla", "w") angle = -np.pi / 4.0 for m in range(1, 65): r = max(0.1, 0.9 * np.sqrt(1.0 - η ** (-2)) * m - 1.0) R = max(2.0, 1.1 * np.sqrt(1.0 - η ** (-2)) * m + 1.0) a = min(angle, -1e-3) z = rootsAnnSec(m, r, R, a, 1e-3) writeFile(Pla, m, z) angle = np.angle(z[0]) Pla.close() calcResPla() def calcResOut(): Out = open(f"eps_{ε}_out", "w") rMin = 0.2 rMax = 5.0 aMin = -np.pi + 0.01 aMax = 0.0 for m in range(33, 65): print(f"m = {m}") z = rootsAnnSec(m, rMin, rMax, aMin, aMax) writeFile(Out, m, z) if m > 3: zMod = np.abs(z) zArg = np.angle(z) rMin = max(0.2, np.amin(zMod) * 0.75) rMax = max(rMax, np.amax(zMod) + 3.0) aMin = min(aMin, (-np.pi + np.amin(zArg)) / 2.0) aMax = np.amax(zArg) / 2.0 Out.close() calcResOut() def calc_cx_pla(): with open(f"eps_{ε}_pla", "w") as file: rMin, rMax = 0.1, 0.5 aMin = -np.pi / 4 for m in range(1, 65): z = rootsAnnSec(m, rMin, rMax, aMin, 1e-3)[0] file.write(f"{m} {z.real} {z.imag}\n") rMin = abs(z) rMax = abs(z) * (m + 1) / m + 1 aMin = min(2.5 * np.angle(z), -1e-3) print(m, rMin, rMax, aMin) calc_cx_pla() def rewriteSave(): Int = np.loadtxt(f"eps_{ε}_int") Pla = np.loadtxt(f"eps_{ε}_pla") Out = np.loadtxt(f"eps_{ε}_out") ind = np.argsort(Out[:, 1])[::-1] out2 = Out[ind] rep = out2[:, 1] > -1e-3 np.savez(f"eps_{ε}.npz", inner=Int, plasmon=Pla, outer=out2[rep]) rewriteSave() def rewriteSave_pla(): Pla = np.loadtxt(f"eps_{ε}_pla") np.savez(f"eps_{ε}.npz", plasmon=Pla) # rewriteSave_pla()
[ "scipy.special.h1vp", "numpy.size", "numpy.abs", "scipy.special.ivp", "numpy.amin", "numpy.angle", "numpy.argsort", "numpy.shape", "cxroots.Circle", "numpy.where", "scipy.special.iv", "numpy.loadtxt", "numpy.linspace", "cxroots.AnnulusSector", "numpy.amax", "scipy.special.hankel1", "numpy.savez", "numpy.sqrt" ]
[((482, 493), 'numpy.sqrt', 'np.sqrt', (['(-ε)'], {}), '(-ε)\n', (489, 493), True, 'import numpy as np\n'), ((834, 902), 'cxroots.AnnulusSector', 'AnnulusSector', ([], {'center': '(0.0)', 'radii': '(rMin, rMax)', 'phiRange': '(aMin, aMax)'}), '(center=0.0, radii=(rMin, rMax), phiRange=(aMin, aMax))\n', (847, 902), False, 'from cxroots import AnnulusSector, Circle\n'), ((987, 1000), 'numpy.size', 'np.size', (['z', '(0)'], {}), '(z, 0)\n', (994, 1000), True, 'import numpy as np\n'), ((3819, 3845), 'numpy.loadtxt', 'np.loadtxt', (['f"""eps_{ε}_int"""'], {}), "(f'eps_{ε}_int')\n", (3829, 3845), True, 'import numpy as np\n'), ((3856, 3882), 'numpy.loadtxt', 'np.loadtxt', (['f"""eps_{ε}_pla"""'], {}), "(f'eps_{ε}_pla')\n", (3866, 3882), True, 'import numpy as np\n'), ((3893, 3919), 'numpy.loadtxt', 'np.loadtxt', (['f"""eps_{ε}_out"""'], {}), "(f'eps_{ε}_out')\n", (3903, 3919), True, 'import numpy as np\n'), ((4013, 4078), 'numpy.savez', 'np.savez', (['f"""eps_{ε}.npz"""'], {'inner': 'Int', 'plasmon': 'Pla', 'outer': 'out2[rep]'}), "(f'eps_{ε}.npz', inner=Int, plasmon=Pla, outer=out2[rep])\n", (4021, 4078), True, 'import numpy as np\n'), ((4130, 4156), 'numpy.loadtxt', 'np.loadtxt', (['f"""eps_{ε}_pla"""'], {}), "(f'eps_{ε}_pla')\n", (4140, 4156), True, 'import numpy as np\n'), ((4161, 4198), 'numpy.savez', 'np.savez', (['f"""eps_{ε}.npz"""'], {'plasmon': 'Pla'}), "(f'eps_{ε}.npz', plasmon=Pla)\n", (4169, 4198), True, 'import numpy as np\n'), ((1605, 1637), 'numpy.linspace', 'np.linspace', (['(0.2)', '(65.0)'], {'num': '(1024)'}), '(0.2, 65.0, num=1024)\n', (1616, 1637), True, 'import numpy as np\n'), ((3931, 3952), 'numpy.argsort', 'np.argsort', (['Out[:, 1]'], {}), '(Out[:, 1])\n', (3941, 3952), True, 'import numpy as np\n'), ((1025, 1038), 'numpy.size', 'np.size', (['z', '(0)'], {}), '(z, 0)\n', (1032, 1038), True, 'import numpy as np\n'), ((1700, 1732), 'numpy.where', 'np.where', (['(rf[1:] * rf[:-1] < 0.0)'], {}), '(rf[1:] * rf[:-1] < 0.0)\n', (1708, 1732), True, 'import numpy as np\n'), ((1761, 1774), 'numpy.shape', 'np.shape', (['ind'], {}), '(ind)\n', (1769, 1774), True, 'import numpy as np\n'), ((1843, 1912), 'cxroots.Circle', 'Circle', ([], {'center': '(1.0j * (t[i] + t[i + 1]) / 2.0)', 'radius': '(t[i + 1] - t[i])'}), '(center=1.0j * (t[i] + t[i + 1]) / 2.0, radius=t[i + 1] - t[i])\n', (1849, 1912), False, 'from cxroots import AnnulusSector, Circle\n'), ((2727, 2741), 'numpy.angle', 'np.angle', (['z[0]'], {}), '(z[0])\n', (2735, 2741), True, 'import numpy as np\n'), ((3079, 3088), 'numpy.abs', 'np.abs', (['z'], {}), '(z)\n', (3085, 3088), True, 'import numpy as np\n'), ((3108, 3119), 'numpy.angle', 'np.angle', (['z'], {}), '(z)\n', (3116, 3119), True, 'import numpy as np\n'), ((653, 665), 'scipy.special.iv', 'iv', (['m', '(η * k)'], {}), '(m, η * k)\n', (655, 665), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((669, 679), 'scipy.special.h1vp', 'h1vp', (['m', 'k'], {}), '(m, k)\n', (673, 679), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((790, 802), 'scipy.special.iv', 'iv', (['m', '(η * k)'], {}), '(m, η * k)\n', (792, 802), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((806, 819), 'scipy.special.h1vp', 'h1vp', (['m', 'k', '(2)'], {}), '(m, k, 2)\n', (810, 819), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((3300, 3313), 'numpy.amax', 'np.amax', (['zArg'], {}), '(zArg)\n', (3307, 3313), True, 'import numpy as np\n'), ((615, 628), 'scipy.special.ivp', 'ivp', (['m', '(η * k)'], {}), '(m, η * k)\n', (618, 628), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((632, 645), 'scipy.special.hankel1', 'hankel1', (['m', 'k'], {}), '(m, k)\n', (639, 645), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((706, 722), 'scipy.special.ivp', 'ivp', (['m', '(η * k)', '(2)'], {}), '(m, η * k, 2)\n', (709, 722), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((726, 739), 'scipy.special.hankel1', 'hankel1', (['m', 'k'], {}), '(m, k)\n', (733, 739), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((770, 780), 'scipy.special.h1vp', 'h1vp', (['m', 'k'], {}), '(m, k)\n', (774, 780), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1400, 1412), 'scipy.special.iv', 'iv', (['m', '(η * k)'], {}), '(m, η * k)\n', (1402, 1412), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1416, 1426), 'scipy.special.h1vp', 'h1vp', (['m', 'k'], {}), '(m, k)\n', (1420, 1426), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1553, 1565), 'scipy.special.iv', 'iv', (['m', '(η * k)'], {}), '(m, η * k)\n', (1555, 1565), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1569, 1582), 'scipy.special.h1vp', 'h1vp', (['m', 'k', '(2)'], {}), '(m, k, 2)\n', (1573, 1582), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((3148, 3161), 'numpy.amin', 'np.amin', (['zMod'], {}), '(zMod)\n', (3155, 3161), True, 'import numpy as np\n'), ((3199, 3212), 'numpy.amax', 'np.amax', (['zMod'], {}), '(zMod)\n', (3206, 3212), True, 'import numpy as np\n'), ((3713, 3724), 'numpy.angle', 'np.angle', (['z'], {}), '(z)\n', (3721, 3724), True, 'import numpy as np\n'), ((753, 766), 'scipy.special.ivp', 'ivp', (['m', '(η * k)'], {}), '(m, η * k)\n', (756, 766), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1362, 1375), 'scipy.special.ivp', 'ivp', (['m', '(η * k)'], {}), '(m, η * k)\n', (1365, 1375), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1379, 1392), 'scipy.special.hankel1', 'hankel1', (['m', 'k'], {}), '(m, k)\n', (1386, 1392), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1461, 1477), 'scipy.special.ivp', 'ivp', (['m', '(η * k)', '(2)'], {}), '(m, η * k, 2)\n', (1464, 1477), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1481, 1494), 'scipy.special.hankel1', 'hankel1', (['m', 'k'], {}), '(m, k)\n', (1488, 1494), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((1529, 1539), 'scipy.special.h1vp', 'h1vp', (['m', 'k'], {}), '(m, k)\n', (1533, 1539), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((3259, 3272), 'numpy.amin', 'np.amin', (['zArg'], {}), '(zArg)\n', (3266, 3272), True, 'import numpy as np\n'), ((1512, 1525), 'scipy.special.ivp', 'ivp', (['m', '(η * k)'], {}), '(m, η * k)\n', (1515, 1525), False, 'from scipy.special import h1vp, hankel1, iv, ivp\n'), ((2490, 2512), 'numpy.sqrt', 'np.sqrt', (['(1.0 - η ** -2)'], {}), '(1.0 - η ** -2)\n', (2497, 2512), True, 'import numpy as np\n'), ((2557, 2579), 'numpy.sqrt', 'np.sqrt', (['(1.0 - η ** -2)'], {}), '(1.0 - η ** -2)\n', (2564, 2579), True, 'import numpy as np\n')]
import sys import ReadFile import pickle import World import importlib.util import os.path as osp import policy_generator as pg import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator import numpy as np def module_from_file(module_name, file_path): spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def get_example_path(): return sys.argv[1] def get_config_path(path): config_filepath=osp.join(path,'config.txt') return config_filepath def get_file_paths(example_path,config_obj): # File Names locations_filename=None agents_filename=osp.join(example_path,config_obj.agents_filename) interactions_FilesList_filename=osp.join(example_path,config_obj.interactions_files_list) events_FilesList_filename=osp.join(example_path,config_obj.events_files_list) if config_obj.locations_filename=="": locations_filename=None else: locations_filename=osp.join(example_path,config_obj.locations_filename) return agents_filename, interactions_FilesList_filename, events_FilesList_filename, locations_filename def get_file_names_list(example_path,interactions_FilesList_filename,events_FilesList_filename,config_obj): # Reading through a file (for interactions/events) that contain file names which contain interactions and event details for a time step interactions_files_list=None events_files_list=None if config_obj.interactions_files_list=='': print('No Interaction files uploaded!') else: interactionFiles_obj=ReadFile.ReadFilesList(interactions_FilesList_filename) interactions_files_list=list(map(lambda x : osp.join(example_path,x) ,interactionFiles_obj.file_list)) if interactions_files_list==[]: print('No Interactions inputted') if config_obj.events_files_list=='': print('No Event files uploaded!') else: eventFiles_obj=ReadFile.ReadFilesList(events_FilesList_filename) events_files_list=list(map(lambda x : osp.join(example_path,x) ,eventFiles_obj.file_list)) if events_files_list==[]: print('No Events inputted') return interactions_files_list, events_files_list def get_model(example_path): UserModel = module_from_file("Generate_model", osp.join(example_path,'UserModel.py')) model = UserModel.UserModel() return model def get_policy(example_path): Generate_policy = module_from_file("Generate_policy", osp.join(example_path,'Generate_policy.py')) policy_list, event_restriction_fn=Generate_policy.generate_policy() return policy_list, event_restriction_fn if __name__=="__main__": example_path = get_example_path() config_filename = get_config_path(example_path) # Read Config file using ReadFile.ReadConfiguration config_obj=ReadFile.ReadConfiguration(config_filename) agents_filename, interactions_FilesList_filename,\ events_FilesList_filename, locations_filename = get_file_paths(example_path,config_obj) interactions_files_list, events_files_list = get_file_names_list(example_path,interactions_FilesList_filename,events_FilesList_filename,config_obj) # User Model model = get_model(example_path) # policy_list, event_restriction_fn=get_policy(example_path) ########################################################################################## num_tests = 90 ntpa_max=6 napt_max=6 X=np.arange(1, napt_max+1, 1) Y=np.arange(1, ntpa_max+1, 1) X,Y = np.meshgrid(X,Y) print(X) print(Y) data_list={'Infected':np.zeros((ntpa_max,napt_max)),'False Positives':np.zeros((ntpa_max,napt_max)),'Quarantined':np.zeros((ntpa_max,napt_max))} for i in range(napt_max): for j in range(ntpa_max): policy_list, event_restriction_fn = pg.generate_group_testing_tests_policy(num_tests, i+1, j+1) world_obj=World.World(config_obj,model,policy_list,event_restriction_fn,agents_filename,interactions_files_list,locations_filename,events_files_list) tdict, total_infection, total_quarantined_days, wrongly_quarantined_days, total_test_cost = world_obj.simulate_worlds(plot=False) data_list['Infected'][j][i]=total_infection data_list['False Positives'][j][i]=world_obj.total_false_positives data_list['Quarantined'][j][i]=total_quarantined_days print(data_list) fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(X, Y, np.array(data_list['False Positives']), cmap=cm.coolwarm,linewidth=0, antialiased=False) plt.xlabel("Number of Agents per testtube") plt.ylabel("Number of testtubes per agent") plt.title("Pool testing strategies vs total false positives") fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(X, Y, np.array(data_list['Infected']), cmap=cm.coolwarm,linewidth=0, antialiased=False) plt.xlabel("Number of Agents per testtube") plt.ylabel("Number of testtubes per agent") plt.title("Pool testing strategies vs total infections") fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(X, Y, np.array(data_list['Quarantined']), cmap=cm.coolwarm,linewidth=0, antialiased=False) plt.xlabel("Number of Agents per testtube") plt.ylabel("Number of testtubes per agent") plt.title("Pool testing strategies vs total quarantine") fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() ###############################################################################################
[ "matplotlib.pyplot.title", "numpy.meshgrid", "matplotlib.pyplot.show", "ReadFile.ReadConfiguration", "ReadFile.ReadFilesList", "numpy.zeros", "matplotlib.pyplot.subplots", "policy_generator.generate_group_testing_tests_policy", "numpy.arange", "numpy.array", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "os.path.join", "World.World" ]
[((573, 601), 'os.path.join', 'osp.join', (['path', '"""config.txt"""'], {}), "(path, 'config.txt')\n", (581, 601), True, 'import os.path as osp\n'), ((740, 790), 'os.path.join', 'osp.join', (['example_path', 'config_obj.agents_filename'], {}), '(example_path, config_obj.agents_filename)\n', (748, 790), True, 'import os.path as osp\n'), ((826, 884), 'os.path.join', 'osp.join', (['example_path', 'config_obj.interactions_files_list'], {}), '(example_path, config_obj.interactions_files_list)\n', (834, 884), True, 'import os.path as osp\n'), ((914, 966), 'os.path.join', 'osp.join', (['example_path', 'config_obj.events_files_list'], {}), '(example_path, config_obj.events_files_list)\n', (922, 966), True, 'import os.path as osp\n'), ((2944, 2987), 'ReadFile.ReadConfiguration', 'ReadFile.ReadConfiguration', (['config_filename'], {}), '(config_filename)\n', (2970, 2987), False, 'import ReadFile\n'), ((3560, 3589), 'numpy.arange', 'np.arange', (['(1)', '(napt_max + 1)', '(1)'], {}), '(1, napt_max + 1, 1)\n', (3569, 3589), True, 'import numpy as np\n'), ((3594, 3623), 'numpy.arange', 'np.arange', (['(1)', '(ntpa_max + 1)', '(1)'], {}), '(1, ntpa_max + 1, 1)\n', (3603, 3623), True, 'import numpy as np\n'), ((3632, 3649), 'numpy.meshgrid', 'np.meshgrid', (['X', 'Y'], {}), '(X, Y)\n', (3643, 3649), True, 'import numpy as np\n'), ((4542, 4587), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': '3d'}"}), "(subplot_kw={'projection': '3d'})\n", (4554, 4587), True, 'import matplotlib.pyplot as plt\n'), ((4714, 4757), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Agents per testtube"""'], {}), "('Number of Agents per testtube')\n", (4724, 4757), True, 'import matplotlib.pyplot as plt\n'), ((4762, 4805), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of testtubes per agent"""'], {}), "('Number of testtubes per agent')\n", (4772, 4805), True, 'import matplotlib.pyplot as plt\n'), ((4810, 4871), 'matplotlib.pyplot.title', 'plt.title', (['"""Pool testing strategies vs total false positives"""'], {}), "('Pool testing strategies vs total false positives')\n", (4819, 4871), True, 'import matplotlib.pyplot as plt\n'), ((4921, 4931), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4929, 4931), True, 'import matplotlib.pyplot as plt\n'), ((4947, 4992), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': '3d'}"}), "(subplot_kw={'projection': '3d'})\n", (4959, 4992), True, 'import matplotlib.pyplot as plt\n'), ((5112, 5155), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Agents per testtube"""'], {}), "('Number of Agents per testtube')\n", (5122, 5155), True, 'import matplotlib.pyplot as plt\n'), ((5160, 5203), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of testtubes per agent"""'], {}), "('Number of testtubes per agent')\n", (5170, 5203), True, 'import matplotlib.pyplot as plt\n'), ((5208, 5264), 'matplotlib.pyplot.title', 'plt.title', (['"""Pool testing strategies vs total infections"""'], {}), "('Pool testing strategies vs total infections')\n", (5217, 5264), True, 'import matplotlib.pyplot as plt\n'), ((5314, 5324), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5322, 5324), True, 'import matplotlib.pyplot as plt\n'), ((5340, 5385), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': '3d'}"}), "(subplot_kw={'projection': '3d'})\n", (5352, 5385), True, 'import matplotlib.pyplot as plt\n'), ((5508, 5551), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Agents per testtube"""'], {}), "('Number of Agents per testtube')\n", (5518, 5551), True, 'import matplotlib.pyplot as plt\n'), ((5556, 5599), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of testtubes per agent"""'], {}), "('Number of testtubes per agent')\n", (5566, 5599), True, 'import matplotlib.pyplot as plt\n'), ((5604, 5660), 'matplotlib.pyplot.title', 'plt.title', (['"""Pool testing strategies vs total quarantine"""'], {}), "('Pool testing strategies vs total quarantine')\n", (5613, 5660), True, 'import matplotlib.pyplot as plt\n'), ((5710, 5720), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5718, 5720), True, 'import matplotlib.pyplot as plt\n'), ((1077, 1130), 'os.path.join', 'osp.join', (['example_path', 'config_obj.locations_filename'], {}), '(example_path, config_obj.locations_filename)\n', (1085, 1130), True, 'import os.path as osp\n'), ((1684, 1739), 'ReadFile.ReadFilesList', 'ReadFile.ReadFilesList', (['interactions_FilesList_filename'], {}), '(interactions_FilesList_filename)\n', (1706, 1739), False, 'import ReadFile\n'), ((2055, 2104), 'ReadFile.ReadFilesList', 'ReadFile.ReadFilesList', (['events_FilesList_filename'], {}), '(events_FilesList_filename)\n', (2077, 2104), False, 'import ReadFile\n'), ((2414, 2452), 'os.path.join', 'osp.join', (['example_path', '"""UserModel.py"""'], {}), "(example_path, 'UserModel.py')\n", (2422, 2452), True, 'import os.path as osp\n'), ((2593, 2637), 'os.path.join', 'osp.join', (['example_path', '"""Generate_policy.py"""'], {}), "(example_path, 'Generate_policy.py')\n", (2601, 2637), True, 'import os.path as osp\n'), ((3703, 3733), 'numpy.zeros', 'np.zeros', (['(ntpa_max, napt_max)'], {}), '((ntpa_max, napt_max))\n', (3711, 3733), True, 'import numpy as np\n'), ((3751, 3781), 'numpy.zeros', 'np.zeros', (['(ntpa_max, napt_max)'], {}), '((ntpa_max, napt_max))\n', (3759, 3781), True, 'import numpy as np\n'), ((3795, 3825), 'numpy.zeros', 'np.zeros', (['(ntpa_max, napt_max)'], {}), '((ntpa_max, napt_max))\n', (3803, 3825), True, 'import numpy as np\n'), ((4621, 4659), 'numpy.array', 'np.array', (["data_list['False Positives']"], {}), "(data_list['False Positives'])\n", (4629, 4659), True, 'import numpy as np\n'), ((5026, 5057), 'numpy.array', 'np.array', (["data_list['Infected']"], {}), "(data_list['Infected'])\n", (5034, 5057), True, 'import numpy as np\n'), ((5419, 5453), 'numpy.array', 'np.array', (["data_list['Quarantined']"], {}), "(data_list['Quarantined'])\n", (5427, 5453), True, 'import numpy as np\n'), ((3940, 4003), 'policy_generator.generate_group_testing_tests_policy', 'pg.generate_group_testing_tests_policy', (['num_tests', '(i + 1)', '(j + 1)'], {}), '(num_tests, i + 1, j + 1)\n', (3978, 4003), True, 'import policy_generator as pg\n'), ((4022, 4176), 'World.World', 'World.World', (['config_obj', 'model', 'policy_list', 'event_restriction_fn', 'agents_filename', 'interactions_files_list', 'locations_filename', 'events_files_list'], {}), '(config_obj, model, policy_list, event_restriction_fn,\n agents_filename, interactions_files_list, locations_filename,\n events_files_list)\n', (4033, 4176), False, 'import World\n'), ((1792, 1817), 'os.path.join', 'osp.join', (['example_path', 'x'], {}), '(example_path, x)\n', (1800, 1817), True, 'import os.path as osp\n'), ((2151, 2176), 'os.path.join', 'osp.join', (['example_path', 'x'], {}), '(example_path, x)\n', (2159, 2176), True, 'import os.path as osp\n')]
from django.db import connection import numpy as np def getstudentcoursewisePLO(studentID, courseID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum,100*(sum(e.obtainedMarks)/sum(a.totalMarks)) as plopercent FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and r.student_id = '{}' and co.course_id = '{}' GROUP BY p.ploID '''.format(studentID, courseID)) row = cursor.fetchall() return row def getcoursewiseavgPLO(courseID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum, avg(100*e.obtainedMarks/a.totalMarks) FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and co.course_id = '{}' GROUP BY p.ploID '''.format(courseID)) row = cursor.fetchall() return row def getcompletedcourses(studentID): with connection.cursor() as cursor: cursor.execute( ''' SELECT distinct s.course_id FROM app_registration_t r, app_evaluation_t e, app_section_t s WHERE r.registrationID = e.registration_id and r.section_id = s.sectionID and r.student_id = '{}' '''.format(studentID)) row = cursor.fetchall() return row def getcorrespondingstudentid(userID): with connection.cursor() as cursor: cursor.execute( ''' SELECT studentID FROM app_student_t s WHERE s.user_ptr_id = '{}' '''.format(userID)) row = cursor.fetchall() return row def getstudentprogramwisePLO(studentID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum,100*(sum(e.obtainedMarks)/sum(a.totalMarks)) as plopercent FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_student_t s, app_program_t pr WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and r.student_id = '{}' and s.studentID = r.student_id and s.program_id = pr.programID GROUP BY p.ploID '''.format(studentID)) row = cursor.fetchall() return row def getprogramwiseavgPLO(programID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum, avg(100*e.obtainedMarks/a.totalMarks) FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = '{}' GROUP BY p.ploID '''.format(programID)) row = cursor.fetchall() return row def getstudentprogramid(studentID): with connection.cursor() as cursor: cursor.execute(''' SELECT s.program_id FROM app_student_t s WHERE s.studentID = '{}' '''.format(studentID)) row = cursor.fetchall() return row def getstudentallcoursePLO(studentID, category): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as ploNum,co.course_id,sum(e.obtainedMarks),sum(a.totalMarks), derived.Total FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, ( SELECT p.ploNum as ploNum,sum(a.totalMarks) as Total, r.student_id as StudentID FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and r.student_id = '{}' GROUP BY r.student_id,p.ploID) derived WHERE r.student_id = derived.StudentID and e.registration_id = r.registrationID and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.ploNum = derived.ploNum GROUP BY p.ploID,co.course_id '''.format(studentID)) row = cursor.fetchall() table = [] courses = [] for entry in row: if entry[1] not in courses: courses.append(entry[1]) courses.sort() plo = ["PLO1", "PLO2", "PLO3", "PLO4", "PLO5", "PLO6", "PLO7", "PLO8", "PLO9", "PLO10", "PLO11", "PLO12"] for i in courses: temptable = [] if category == 'report': temptable = [i] for j in plo: found = False for k in row: if j == k[0] and i == k[1]: if category == 'report': temptable.append(np.round(100 * k[2] / k[3], 2)) elif category == 'chart': temptable.append(np.round(100 * k[2] / k[4], 2)) found = True if not found: if category == 'report': temptable.append('N/A') elif category == 'chart': temptable.append(0) table.append(temptable) return plo, courses, table def getfacultycoursewisePLO(courseID, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.first_name, f.last_name, f.plonum, COUNT(*) as achieved_cnt FROM ( SELECT u.first_name, u.last_name, p.ploNum as plonum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, accounts_user u, app_employee_t emp WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.faculty_id IN ( SELECT DISTINCT s.faculty_id FROM app_section_t s WHERE s.course_id = '{}' ) and s.semester IN ({}) and s.course_id ='{}' and s.faculty_id = emp.employeeID and emp.user_ptr_id = u.id )f WHERE f.percentage >= 40 GROUP BY f.first_name, f.plonum; '''.format(courseID, sem, courseID)) row1 = cursor.fetchall() cursor.execute(''' SELECT COUNT(*) FROM ( SELECT u.first_name, u.last_name, p.ploNum as plonum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, accounts_user u, app_employee_t emp WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.faculty_id IN ( SELECT DISTINCT s.faculty_id FROM app_section_t s WHERE s.course_id = '{}' ) and s.semester IN ({}) and s.course_id ='{}' and s.faculty_id = emp.employeeID and emp.user_ptr_id = u.id )f GROUP BY f.first_name, f.plonum; '''.format(courseID, sem, courseID)) row2 = cursor.fetchall() faculty = [] plonum = [] plos1 = [] plos2 = [] for record in row1: faculty.append(record[0]+' '+record[1]) plonum.append(record[2]) plos1.append(record[3]) for record in row2: plos2.append(record[0]) plos = 100*(np.array(plos1)/np.array(plos2)) plos = plos.tolist() faculty = list(set(faculty)) plonum = list(set(plonum)) plonum.sort() plonum.sort(key=len, reverse=False) plos = np.array(plos) plos = np.split(plos, len(plos)/len(plonum)) new_plo=[] for plo in plos: new_plo.append(plo.tolist()) return faculty, plonum, new_plo def getsemestercoursewisePLO(courseID, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.semester, f.plonum, COUNT(*) as achieved_cnt FROM ( SELECT s.semester, p.ploNum as plonum, s.course_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.semester IN ({}) and co.course_id ='{}' and s.course_id = co.course_id )f WHERE f.percentage >= 40 GROUP BY f.semester, f.plonum; '''.format(sem, courseID)) row1 = cursor.fetchall() cursor.execute(''' SELECT COUNT(*) as all_cnt FROM ( SELECT s.semester, p.ploNum as plonum, s.course_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.semester IN ({}) and co.course_id ='{}' and s.course_id = co.course_id )f GROUP BY f.semester, f.plonum; '''.format(sem, courseID)) row2 = cursor.fetchall() semester = [] plonum = [] acheived = [] all_cnt = [] for record in row1: semester.append(record[0]) plonum.append(record[1]) acheived.append(record[2]) for record in row2: all_cnt.append(record[0]) acheived_per = 100*(np.array(acheived)/np.array(all_cnt)) semester = list(set(semester)) plonum = list(set(plonum)) failed_per = 100 - acheived_per acheived_per = np.split(acheived_per, len(acheived_per)/len(semester)) failed_per = np.split(failed_per, len(failed_per)/len(semester)) acheived=[] for plo in acheived_per: acheived.append(plo.tolist()) failed=[] for plo in failed_per: failed.append(plo.tolist()) return semester, plonum, acheived, failed def getplowisecoursecomparism(plos, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] ploo = ''; for plo in plos: ploo += '"' ploo += plo ploo += '",' ploo = ploo[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.course_id, f.ploNum, COUNT(*) FROM ( SELECT s.course_id, p.ploNum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.ploNum in ({}) and a.section_id = s.sectionID and s.semester IN ({}) )f WHERE f.percentage >= 40 GROUP BY f.ploNum, f.course_id; '''.format(ploo, sem)) row1 = cursor.fetchall() with connection.cursor() as cursor: cursor.execute(''' SELECT COUNT(*) FROM ( SELECT s.course_id, p.ploNum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.ploNum in ({}) and a.section_id = s.sectionID and s.semester IN ({}) )f GROUP BY f.ploNum, f.course_id; '''.format(ploo, sem)) row2 = cursor.fetchall() courses = [] plonum = [] acheived = [] all_cnt = [] for record in row1: courses.append(record[0]) plonum.append(record[1]) acheived.append(record[2]) for record in row2: all_cnt.append(record[0]) acheived_per = 100*(np.array(acheived)/np.array(all_cnt)) courses = list(set(courses)) plonum = list(set(plonum)) acheived_per = np.split(acheived_per, len(acheived_per)/len(plonum)) acheived=[] for plo in acheived_per: acheived.append(plo.tolist()) return courses, plonum, acheived def getprogramsemesterwiseplocount(program, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.plonum, COUNT(*) FROM ( SELECT p.ploNum as plonum, r.student_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, app_program_t prog WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = prog.programID and prog.programName = '{}' and a.section_id = s.sectionID and s.semester IN ({}) )f WHERE f.percentage>=40 GROUP BY f.plonum; '''.format(program, sem)) row1 = cursor.fetchall() with connection.cursor() as cursor: cursor.execute(''' SELECT COUNT(*) FROM ( SELECT p.ploNum as plonum, r.student_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, app_program_t prog WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = prog.programID and prog.programName = '{}' and a.section_id = s.sectionID and s.semester IN ({}) )f GROUP BY f.plonum; '''.format(program, sem)) row2 = cursor.fetchall() plonum = [] acheived = [] attempted = [] for record in row1: plonum.append(record[0]) acheived.append(record[1]) for record in row2: attempted.append(record[0]) plonum = list(set(plonum)) acheived = np.array(acheived) attempted = np.array(attempted) new_acheived=[] for plo in acheived: new_acheived.append(plo.tolist()) new_attempted=[] for plo in attempted: new_attempted.append(plo.tolist()) plonum.sort() plonum.sort(key=len, reverse=False) return plonum, new_acheived, new_attempted def getprogramwiseploandcourses(program, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.ploNum, f.course_id, COUNT(*) FROM ( SELECT p.ploNum as plonum, s.course_id, r.student_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, app_program_t prog WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = prog.programID and prog.programName = '{}' and a.section_id = s.sectionID and s.semester IN ({}) )f WHERE f.percentage>=40 GROUP BY f.ploNum, f.course_id '''.format(program, sem)) row = cursor.fetchall() plonum = [] courses = [] counts = [] for record in row: plonum.append(record[0]) courses.append(record[1]) plonum = list(set(plonum)) plonum.sort() plonum.sort(key=len, reverse=False) courses = list(set(courses)) courses.sort() table = np.zeros((len(courses), len(plonum))) for record in row: table[courses.index(record[1])][plonum.index(record[0])] += record[2] table = table.tolist() return plonum, courses, table
[ "numpy.round", "numpy.array", "django.db.connection.cursor" ]
[((112, 131), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (129, 131), False, 'from django.db import connection\n'), ((930, 949), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (947, 949), False, 'from django.db import connection\n'), ((1672, 1691), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (1689, 1691), False, 'from django.db import connection\n'), ((2186, 2205), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (2203, 2205), False, 'from django.db import connection\n'), ((2502, 2521), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (2519, 2521), False, 'from django.db import connection\n'), ((3445, 3464), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (3462, 3464), False, 'from django.db import connection\n'), ((4189, 4208), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (4206, 4208), False, 'from django.db import connection\n'), ((4508, 4527), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (4525, 4527), False, 'from django.db import connection\n'), ((7192, 7211), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (7209, 7211), False, 'from django.db import connection\n'), ((10761, 10775), 'numpy.array', 'np.array', (['plos'], {}), '(plos)\n', (10769, 10775), True, 'import numpy as np\n'), ((11155, 11174), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (11172, 11174), False, 'from django.db import connection\n'), ((14719, 14738), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (14736, 14738), False, 'from django.db import connection\n'), ((15853, 15872), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (15870, 15872), False, 'from django.db import connection\n'), ((17774, 17793), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (17791, 17793), False, 'from django.db import connection\n'), ((18929, 18948), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (18946, 18948), False, 'from django.db import connection\n'), ((20318, 20336), 'numpy.array', 'np.array', (['acheived'], {}), '(acheived)\n', (20326, 20336), True, 'import numpy as np\n'), ((20357, 20376), 'numpy.array', 'np.array', (['attempted'], {}), '(attempted)\n', (20365, 20376), True, 'import numpy as np\n'), ((20896, 20915), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (20913, 20915), False, 'from django.db import connection\n'), ((10543, 10558), 'numpy.array', 'np.array', (['plos1'], {}), '(plos1)\n', (10551, 10558), True, 'import numpy as np\n'), ((10559, 10574), 'numpy.array', 'np.array', (['plos2'], {}), '(plos2)\n', (10567, 10574), True, 'import numpy as np\n'), ((13831, 13849), 'numpy.array', 'np.array', (['acheived'], {}), '(acheived)\n', (13839, 13849), True, 'import numpy as np\n'), ((13850, 13867), 'numpy.array', 'np.array', (['all_cnt'], {}), '(all_cnt)\n', (13858, 13867), True, 'import numpy as np\n'), ((17239, 17257), 'numpy.array', 'np.array', (['acheived'], {}), '(acheived)\n', (17247, 17257), True, 'import numpy as np\n'), ((17258, 17275), 'numpy.array', 'np.array', (['all_cnt'], {}), '(all_cnt)\n', (17266, 17275), True, 'import numpy as np\n'), ((6562, 6592), 'numpy.round', 'np.round', (['(100 * k[2] / k[3])', '(2)'], {}), '(100 * k[2] / k[3], 2)\n', (6570, 6592), True, 'import numpy as np\n'), ((6681, 6711), 'numpy.round', 'np.round', (['(100 * k[2] / k[4])', '(2)'], {}), '(100 * k[2] / k[4], 2)\n', (6689, 6711), True, 'import numpy as np\n')]
#Color dict import numpy as np # import wandb import cv2 import torch import os colors = { '0':[(128, 64, 128), (244, 35, 232), (0, 0, 230), (220, 190, 40), (70, 70, 70), (70, 130, 180), (0, 0, 0)], '1':[(128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140), (220, 20, 60), (255, 0, 0), (0, 0, 230), (255, 204, 54), (0, 0, 70), (220, 190, 40), (190, 153, 153), (174, 64, 67), (153, 153, 153), (70, 70, 70), (107, 142, 35), (70, 130, 180)], '2':[(128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140), (220, 20, 60), (255, 0, 0), (0, 0, 230), (119, 11, 32), (255, 204, 54), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90), (220, 190, 40), (102, 102, 156), (190, 153, 153), (180, 165, 180), (174, 64, 67), (220, 220, 0), (250, 170, 30), (153, 153, 153), (169, 187, 214), (70, 70, 70), (150, 100, 100), (107, 142, 35), (70, 130, 180)], '3':[(128, 64, 128), (250, 170, 160), (81, 0, 81), (244, 35, 232), (230, 150, 140), (152, 251, 152), (220, 20, 60), (246, 198, 145), (255, 0, 0), (0, 0, 230), (119, 11, 32), (255, 204, 54), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (136, 143, 153), (220, 190, 40), (102, 102, 156), (190, 153, 153), (180, 165, 180), (174, 64, 67), (220, 220, 0), (250, 170, 30), (153, 153, 153), (153, 153, 153), (169, 187, 214), (70, 70, 70), (150, 100, 100), (150, 120, 90), (107, 142, 35), (70, 130, 180), (169, 187, 214), (0, 0, 142)] } def visualize(mask,n_classes,ignore_label,gt = None): if(n_classes<len(colors['0'])): id = 0 elif(n_classes<len(colors['1'])): id = 1 elif(n_classes<len(colors['2'])): id = 2 else: id = 3 out_mask = np.zeros((mask.shape[0],mask.shape[1],3)) for i in range(n_classes): out_mask[mask == i] = colors[str(id)][i] if(gt is not None): out_mask[gt == ignore_label] = (255,255,255) out_mask[np.where((out_mask == [0, 0, 0]).all(axis=2))] = (255,255,255) return out_mask def error_map(pred,gt,cfg): canvas = pred.copy() canvas[canvas == gt] = 255 canvas[gt == cfg.Loss.ignore_label] = 255 return canvas # def segmentation_validation_visualization(epoch,sample,pred,batch_size,class_labels,wandb_image,cfg): # os.makedirs(os.path.join(cfg.train.output_dir,'Visualization',str(epoch)),exist_ok = True) # input = sample['image'].permute(0,2,3,1).detach().cpu().numpy() # label = sample['label'].detach().cpu().numpy().astype(np.uint8) # pred = torch.argmax(pred[0],dim = 1).detach().cpu().numpy().astype(np.uint8) # for i in range(batch_size): # errormap = error_map(pred[i],label[i],cfg) # wandb_image.append(wandb.Image(cv2.resize(cv2.cvtColor(input[i], cv2.COLOR_BGR2RGB),(cfg.dataset.width//4,cfg.dataset.height//4)), masks={ # "predictions" : { # "mask_data" : cv2.resize(pred[i],(cfg.dataset.width//4,cfg.dataset.height//4)), # "class_labels" : class_labels # }, # "ground_truth" : { # "mask_data" : cv2.resize(label[i],(cfg.dataset.width//4,cfg.dataset.height//4)), # "class_labels" : class_labels # } # , # "error_map" : { # "mask_data" : cv2.resize(errormap,(cfg.dataset.width//4,cfg.dataset.height//4)), # "class_labels" : class_labels # } # })) # if(cfg.valid.write): # prediction = visualize(pred[i],cfg.model.n_classes,cfg.Loss.ignore_label,gt = label[i]) # mask = visualize(label[i],cfg.model.n_classes,cfg.Loss.ignore_label,gt = label[i]) # out = np.concatenate([((input[i]* np.array(cfg.dataset.mean) + np.array(cfg.dataset.std))*255).astype(int),mask,prediction,visualize(errormap,cfg.model.n_classes,cfg.Loss.ignore_label,label[i])],axis = 1) # cv2.imwrite(os.path.join(cfg.train.output_dir,'Visualization',str(epoch),sample['img_name'][i]),out) # return wandb_image
[ "numpy.zeros" ]
[((1692, 1735), 'numpy.zeros', 'np.zeros', (['(mask.shape[0], mask.shape[1], 3)'], {}), '((mask.shape[0], mask.shape[1], 3))\n', (1700, 1735), True, 'import numpy as np\n')]
""" @author: <NAME>, Energy Information Networks & Systems @ TU Darmstadt """ import numpy as np import tensorflow as tf from models.igc import ImplicitGenerativeCopula, GMMNCopula from models.utils import cdf_interpolator import pyvinecopulib as pv from models import mv_copulas import matplotlib.pyplot as plt class CopulaAutoEncoder(object): def __init__(self, x, ae_model): if isinstance(ae_model, str): ae_model = tf.keras.models.load_model(ae_model) self.encoder_model = ae_model.encoder self.decoder_model = ae_model.decoder self.z = self._encode(x) self.margins = self._fit_margins(self.z) self.u = self._cdf(self.z) def _encode(self, x): # encode images to latent space return self.encoder_model(x).numpy() def _decode(self, z): # decode latent space samples to images return self.decoder_model(z).numpy() def _cdf(self, z): # get pseudo obs u = np.zeros_like(z) for i in range(u.shape[1]): u[:,i] = self.margins[i].cdf(z[:,i]) return u def _ppf(self, u): # inverse marginal cdf z = np.zeros_like(u) for i in range(z.shape[1]): z[:,i] = self.margins[i].ppf(u[:,i]) return z def _fit_margins(self, z): # get the marginal distributions via ecdf interpolation margins = [] for i in range(z.shape[1]): margins.append(cdf_interpolator(z[:,i], kind="linear", x_min=np.min(z[:,i])-np.diff(np.sort(z[:,i])[0:2])[0], x_max=np.max(z[:,i])+np.diff(np.sort(z[:,i])[-2:])[0])) return margins def _sample_u(self, n_samples=1): # sample from copula return self.copula.simulate(n_samples) def _sample_z(self, n_samples=1, u=None): # sample from latent space if u is None: return self._ppf(self._sample_u(n_samples)) else: return self._ppf(u) def sample_images(self, n_samples=1, z=None): # sample an image if z is None: return self._decode(self._sample_z(n_samples)) else: return self._decode(z) def show_images(self, n=5, imgs=None, cmap="gray", title=None): if imgs is None: imgs = self.sample_images(n) plt.figure(figsize=(16, 3)) for i in range(n): ax = plt.subplot(1, n, i+1) plt.imshow(np.squeeze(imgs[i]*255), vmin=0, vmax=255, cmap=cmap) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.suptitle(title) plt.tight_layout() class IGCAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Implicit Generative Copula """ def fit(self, epochs=100, batch_size=100, n_samples_train=200, regen_noise=1000000, validation_split=0.0, validation_data=None): if validation_data is not None: u_test = self._cdf((self._encode(validation_data))) else: u_test = None #self.copula = ImplicitGenerativeCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula = ImplicitGenerativeCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2, n_layers=3, n_neurons=200) hist = self.copula.fit(self.u, epochs=epochs, batch_size=batch_size, validation_data=u_test, regen_noise=regen_noise, validation_split=0.0) return hist def save_copula_model(self, path): self.copula.save_model(path) def load_copula_model(self, path, n_samples_train=200): self.copula = ImplicitGenerativeCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula.load_model(path) print("Loaded saved copula model.") class GMMNCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with GMMN Copula """ def fit(self, epochs=100, batch_size=100, n_samples_train=200, regen_noise=10000000, validation_split=0.0, validation_data=None): if validation_data is not None: u_test = self._cdf((self._encode(validation_data))) else: u_test = None #self.copula = GMMNCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula = GMMNCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2, n_layers=3, n_neurons=200) hist = self.copula.fit(self.u, epochs=epochs, batch_size=batch_size, validation_data=u_test, regen_noise=regen_noise, validation_split=0.0) return hist def save_copula_model(self, path): self.copula.save_model(path) def load_copula_model(self, path, n_samples_train=200): self.copula = GMMNCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula.load_model(path) print("Loaded saved copula model.") class VineCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Vine Copula """ def fit(self, families="nonparametric", show_trace=False, trunc_lvl=18446744073709551615): if families == "nonparametric": controls = pv.FitControlsVinecop(family_set=[pv.BicopFamily.tll], trunc_lvl=trunc_lvl, show_trace=show_trace) elif families == "parametric": controls = pv.FitControlsVinecop(family_set=[pv.BicopFamily.indep, pv.BicopFamily.gaussian, pv.BicopFamily.student, pv.BicopFamily.clayton, pv.BicopFamily.gumbel, pv.BicopFamily.frank, pv.BicopFamily.joe, pv.BicopFamily.bb1, pv.BicopFamily.bb6, pv.BicopFamily.bb7, pv.BicopFamily.bb8], trunc_lvl=trunc_lvl, show_trace=show_trace) else: controls = pv.FitControlsVinecop(trunc_lvl=trunc_lvl, show_trace=show_trace) self.copula = pv.Vinecop(data=self.u, controls=controls) def save_model(self, path): self.copula.to_json(path) print(f"Saved vine copula model to {path}.") def load_model(self, path): self.copula = pv.Vinecop(filename=path) print("Loaded vine copula model.") class GaussianCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Gaussian Copula """ def fit(self): self.copula = mv_copulas.GaussianCopula() self.copula.fit(self.u) class IndependenceCopulaCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Independence Copula """ def fit(self): pass def _sample_u(self, n_samples): return np.random.uniform(0.0, 1.0, size=(n_samples, self.u.shape[1])) class VariationalAutoEncoder(object): def __init__(self, decoder_model="models/autoencoder/VAE_decoder_fashion_mnist_100epochs", latent_dim=25): if isinstance(decoder_model, str): self.decoder_model = tf.keras.models.load_model(decoder_model) else: self.decoder_model = decoder_model self.decoder_model.compile() self.latent_dim = 25 def _sample_z(self, n_samples): # sample from latent space return np.random.normal(loc=0.0, scale=1.0, size=(n_samples, self.latent_dim)) def _decode(self,z): return self.decoder_model.predict(z) def fit(self): pass def sample_images(self, n_samples): # sample an image return self._decode(self._sample_z(n_samples)) def show_images(self, n=5, imgs=None, cmap="gray", title=None): if imgs is None: imgs = self.sample_images(n) plt.figure(figsize=(16, 3)) for i in range(n): ax = plt.subplot(1, n, i+1) plt.imshow(np.squeeze(imgs[i]*255), vmin=0, vmax=255, cmap=cmap) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.suptitle(title) plt.tight_layout()
[ "models.mv_copulas.GaussianCopula", "numpy.random.uniform", "matplotlib.pyplot.subplot", "numpy.zeros_like", "tensorflow.keras.models.load_model", "models.igc.GMMNCopula", "pyvinecopulib.FitControlsVinecop", "matplotlib.pyplot.suptitle", "models.igc.ImplicitGenerativeCopula", "numpy.sort", "matplotlib.pyplot.figure", "pyvinecopulib.Vinecop", "numpy.min", "numpy.max", "numpy.random.normal", "numpy.squeeze", "matplotlib.pyplot.tight_layout" ]
[((1004, 1020), 'numpy.zeros_like', 'np.zeros_like', (['z'], {}), '(z)\n', (1017, 1020), True, 'import numpy as np\n'), ((1203, 1219), 'numpy.zeros_like', 'np.zeros_like', (['u'], {}), '(u)\n', (1216, 1219), True, 'import numpy as np\n'), ((2538, 2565), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 3)'}), '(figsize=(16, 3))\n', (2548, 2565), True, 'import matplotlib.pyplot as plt\n'), ((2810, 2829), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['title'], {}), '(title)\n', (2822, 2829), True, 'import matplotlib.pyplot as plt\n'), ((2838, 2856), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2854, 2856), True, 'import matplotlib.pyplot as plt\n'), ((3406, 3552), 'models.igc.ImplicitGenerativeCopula', 'ImplicitGenerativeCopula', ([], {'dim_out': 'self.z.shape[1]', 'n_samples_train': 'n_samples_train', 'dim_latent': '(self.z.shape[1] * 2)', 'n_layers': '(3)', 'n_neurons': '(200)'}), '(dim_out=self.z.shape[1], n_samples_train=\n n_samples_train, dim_latent=self.z.shape[1] * 2, n_layers=3, n_neurons=200)\n', (3430, 3552), False, 'from models.igc import ImplicitGenerativeCopula, GMMNCopula\n'), ((3879, 3998), 'models.igc.ImplicitGenerativeCopula', 'ImplicitGenerativeCopula', ([], {'dim_out': 'self.z.shape[1]', 'n_samples_train': 'n_samples_train', 'dim_latent': '(self.z.shape[1] * 2)'}), '(dim_out=self.z.shape[1], n_samples_train=\n n_samples_train, dim_latent=self.z.shape[1] * 2)\n', (3903, 3998), False, 'from models.igc import ImplicitGenerativeCopula, GMMNCopula\n'), ((4603, 4734), 'models.igc.GMMNCopula', 'GMMNCopula', ([], {'dim_out': 'self.z.shape[1]', 'n_samples_train': 'n_samples_train', 'dim_latent': '(self.z.shape[1] * 2)', 'n_layers': '(3)', 'n_neurons': '(200)'}), '(dim_out=self.z.shape[1], n_samples_train=n_samples_train,\n dim_latent=self.z.shape[1] * 2, n_layers=3, n_neurons=200)\n', (4613, 4734), False, 'from models.igc import ImplicitGenerativeCopula, GMMNCopula\n'), ((5062, 5166), 'models.igc.GMMNCopula', 'GMMNCopula', ([], {'dim_out': 'self.z.shape[1]', 'n_samples_train': 'n_samples_train', 'dim_latent': '(self.z.shape[1] * 2)'}), '(dim_out=self.z.shape[1], n_samples_train=n_samples_train,\n dim_latent=self.z.shape[1] * 2)\n', (5072, 5166), False, 'from models.igc import ImplicitGenerativeCopula, GMMNCopula\n'), ((6804, 6846), 'pyvinecopulib.Vinecop', 'pv.Vinecop', ([], {'data': 'self.u', 'controls': 'controls'}), '(data=self.u, controls=controls)\n', (6814, 6846), True, 'import pyvinecopulib as pv\n'), ((7022, 7047), 'pyvinecopulib.Vinecop', 'pv.Vinecop', ([], {'filename': 'path'}), '(filename=path)\n', (7032, 7047), True, 'import pyvinecopulib as pv\n'), ((7241, 7268), 'models.mv_copulas.GaussianCopula', 'mv_copulas.GaussianCopula', ([], {}), '()\n', (7266, 7268), False, 'from models import mv_copulas\n'), ((7507, 7569), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)'], {'size': '(n_samples, self.u.shape[1])'}), '(0.0, 1.0, size=(n_samples, self.u.shape[1]))\n', (7524, 7569), True, 'import numpy as np\n'), ((8062, 8133), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0.0)', 'scale': '(1.0)', 'size': '(n_samples, self.latent_dim)'}), '(loc=0.0, scale=1.0, size=(n_samples, self.latent_dim))\n', (8078, 8133), True, 'import numpy as np\n'), ((8516, 8543), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 3)'}), '(figsize=(16, 3))\n', (8526, 8543), True, 'import matplotlib.pyplot as plt\n'), ((8788, 8807), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['title'], {}), '(title)\n', (8800, 8807), True, 'import matplotlib.pyplot as plt\n'), ((8816, 8834), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8832, 8834), True, 'import matplotlib.pyplot as plt\n'), ((446, 482), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['ae_model'], {}), '(ae_model)\n', (472, 482), True, 'import tensorflow as tf\n'), ((2610, 2634), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', 'n', '(i + 1)'], {}), '(1, n, i + 1)\n', (2621, 2634), True, 'import matplotlib.pyplot as plt\n'), ((5504, 5606), 'pyvinecopulib.FitControlsVinecop', 'pv.FitControlsVinecop', ([], {'family_set': '[pv.BicopFamily.tll]', 'trunc_lvl': 'trunc_lvl', 'show_trace': 'show_trace'}), '(family_set=[pv.BicopFamily.tll], trunc_lvl=trunc_lvl,\n show_trace=show_trace)\n', (5525, 5606), True, 'import pyvinecopulib as pv\n'), ((7798, 7839), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['decoder_model'], {}), '(decoder_model)\n', (7824, 7839), True, 'import tensorflow as tf\n'), ((8588, 8612), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', 'n', '(i + 1)'], {}), '(1, n, i + 1)\n', (8599, 8612), True, 'import matplotlib.pyplot as plt\n'), ((2656, 2681), 'numpy.squeeze', 'np.squeeze', (['(imgs[i] * 255)'], {}), '(imgs[i] * 255)\n', (2666, 2681), True, 'import numpy as np\n'), ((5665, 6003), 'pyvinecopulib.FitControlsVinecop', 'pv.FitControlsVinecop', ([], {'family_set': '[pv.BicopFamily.indep, pv.BicopFamily.gaussian, pv.BicopFamily.student, pv.\n BicopFamily.clayton, pv.BicopFamily.gumbel, pv.BicopFamily.frank, pv.\n BicopFamily.joe, pv.BicopFamily.bb1, pv.BicopFamily.bb6, pv.BicopFamily\n .bb7, pv.BicopFamily.bb8]', 'trunc_lvl': 'trunc_lvl', 'show_trace': 'show_trace'}), '(family_set=[pv.BicopFamily.indep, pv.BicopFamily.\n gaussian, pv.BicopFamily.student, pv.BicopFamily.clayton, pv.\n BicopFamily.gumbel, pv.BicopFamily.frank, pv.BicopFamily.joe, pv.\n BicopFamily.bb1, pv.BicopFamily.bb6, pv.BicopFamily.bb7, pv.BicopFamily\n .bb8], trunc_lvl=trunc_lvl, show_trace=show_trace)\n', (5686, 6003), True, 'import pyvinecopulib as pv\n'), ((6715, 6780), 'pyvinecopulib.FitControlsVinecop', 'pv.FitControlsVinecop', ([], {'trunc_lvl': 'trunc_lvl', 'show_trace': 'show_trace'}), '(trunc_lvl=trunc_lvl, show_trace=show_trace)\n', (6736, 6780), True, 'import pyvinecopulib as pv\n'), ((8634, 8659), 'numpy.squeeze', 'np.squeeze', (['(imgs[i] * 255)'], {}), '(imgs[i] * 255)\n', (8644, 8659), True, 'import numpy as np\n'), ((1647, 1662), 'numpy.min', 'np.min', (['z[:, i]'], {}), '(z[:, i])\n', (1653, 1662), True, 'import numpy as np\n'), ((1747, 1762), 'numpy.max', 'np.max', (['z[:, i]'], {}), '(z[:, i])\n', (1753, 1762), True, 'import numpy as np\n'), ((1670, 1686), 'numpy.sort', 'np.sort', (['z[:, i]'], {}), '(z[:, i])\n', (1677, 1686), True, 'import numpy as np\n'), ((1770, 1786), 'numpy.sort', 'np.sort', (['z[:, i]'], {}), '(z[:, i])\n', (1777, 1786), True, 'import numpy as np\n')]
""" This module contains methods/objects that facilitate basic operations. """ # std pkgs import numpy as np import random from typing import Dict, List, Optional, Union from pathlib import Path import pickle # non-std pkgs import matplotlib.pyplot as plt def hamming_dist(k1, k2): val = 0 for ind, char in enumerate(k1): if char != k2[ind]: val += 1 return val def clean_input_sequences(input_seq): """ This method cleans all input sequences to ensure they will be compatible with the precomputed hash table. """ seq_list = [] for aa in input_seq: if aa not in ["A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"]: print(aa) if aa == "*": amino_chosen = "G" elif aa == "B": amino_chosen = np.random.choice(["N", "D"], 1, p=[0.5, 0.5])[0] elif aa == "Z": amino_chosen = np.random.choice(["Q", "E"], 1, p=[0.5, 0.5])[0] elif aa == "J": amino_chosen = np.random.choice(["L", "I"], 1, p=[0.5, 0.5])[0] elif aa == "X": amino_chosen = random.choice(["A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"])[0] else: amino_chosen = aa seq_list.append(amino_chosen) return ''.join(seq_list) #+ input_seq[kmer_size+1:] def readFasta(fasta_file_path: Union[str, Path]): """ This function reads a fasta file Parameters ---------- fasta file path: string OR Path Returns ------- proteins : array of protein sequence (ordered) protein_names : array of protein names (ordered) """ proteins, protein_names = [], [] with open(fasta_file_path) as fasta_file: fasta_file_array = fasta_file.readlines() for line_count, fasta_line in enumerate(fasta_file_array): if (fasta_line[0] == ">"): name = fasta_line.strip("\n") protein_names.append(name) proteins.append(protein_seq) if line_count > 0 else None protein_seq = "" # renew sequence everytime fasta name is added. else: protein_seq += fasta_line.strip("\n") proteins.append(protein_seq) return proteins, protein_names def get_kmer_size(hash_table) -> int: """ This function extracts the kmer size from the hash table. """ kmer_size = 0 with open(hash_table, "rb") as hash_tb: hash = pickle.load(hash_tb) kmer_size = len(list(hash.keys())[0]) return kmer_size
[ "pickle.load", "random.choice", "numpy.random.choice" ]
[((2668, 2688), 'pickle.load', 'pickle.load', (['hash_tb'], {}), '(hash_tb)\n', (2679, 2688), False, 'import pickle\n'), ((856, 901), 'numpy.random.choice', 'np.random.choice', (["['N', 'D']", '(1)'], {'p': '[0.5, 0.5]'}), "(['N', 'D'], 1, p=[0.5, 0.5])\n", (872, 901), True, 'import numpy as np\n'), ((956, 1001), 'numpy.random.choice', 'np.random.choice', (["['Q', 'E']", '(1)'], {'p': '[0.5, 0.5]'}), "(['Q', 'E'], 1, p=[0.5, 0.5])\n", (972, 1001), True, 'import numpy as np\n'), ((1056, 1101), 'numpy.random.choice', 'np.random.choice', (["['L', 'I']", '(1)'], {'p': '[0.5, 0.5]'}), "(['L', 'I'], 1, p=[0.5, 0.5])\n", (1072, 1101), True, 'import numpy as np\n'), ((1156, 1275), 'random.choice', 'random.choice', (["['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P',\n 'S', 'T', 'W', 'Y', 'V']"], {}), "(['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K',\n 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'])\n", (1169, 1275), False, 'import random\n')]
import numpy as np import cv2 import os from glob import glob from tqdm import tqdm img_h, img_w = 256, 256 means, stdevs = [], [] img_list = [] TRAIN_DATASET_PATH = 'data/Real/subset/train/B' image_fns = glob(os.path.join(TRAIN_DATASET_PATH, '*.*')) for single_img_path in tqdm(image_fns): img = cv2.imread(single_img_path) img = cv2.resize(img, (img_w, img_h)) img = img[:, :, :, np.newaxis] img_list.append(img) imgs = np.concatenate(img_list, axis=3) imgs = imgs.astype(np.float32) / 255. for i in range(3): pixels = imgs[:, :, i, :].ravel() # 拉成一行 means.append(np.mean(pixels)) stdevs.append(np.std(pixels)) # BGR --> RGB , CV读取的需要转换,PIL读取的不用转换 means.reverse() stdevs.reverse() print("normMean = {}".format(means)) print("normStd = {}".format(stdevs)) # normMean = [0.35389897, 0.39104056, 0.34307468] # normStd = [0.2158508, 0.23398565, 0.20874721] # normMean1 = [0.47324282, 0.498616, 0.46873462] # normStd1 = [0.2431127, 0.2601882, 0.25678185] # [0.413570895, 0.44482827999999996, 0.40590465] # [0.22948174999999998, 0.24708692499999999, 0.23276452999999997]
[ "tqdm.tqdm", "numpy.concatenate", "numpy.std", "cv2.imread", "numpy.mean", "os.path.join", "cv2.resize" ]
[((278, 293), 'tqdm.tqdm', 'tqdm', (['image_fns'], {}), '(image_fns)\n', (282, 293), False, 'from tqdm import tqdm\n'), ((444, 476), 'numpy.concatenate', 'np.concatenate', (['img_list'], {'axis': '(3)'}), '(img_list, axis=3)\n', (458, 476), True, 'import numpy as np\n'), ((213, 252), 'os.path.join', 'os.path.join', (['TRAIN_DATASET_PATH', '"""*.*"""'], {}), "(TRAIN_DATASET_PATH, '*.*')\n", (225, 252), False, 'import os\n'), ((305, 332), 'cv2.imread', 'cv2.imread', (['single_img_path'], {}), '(single_img_path)\n', (315, 332), False, 'import cv2\n'), ((343, 374), 'cv2.resize', 'cv2.resize', (['img', '(img_w, img_h)'], {}), '(img, (img_w, img_h))\n', (353, 374), False, 'import cv2\n'), ((598, 613), 'numpy.mean', 'np.mean', (['pixels'], {}), '(pixels)\n', (605, 613), True, 'import numpy as np\n'), ((633, 647), 'numpy.std', 'np.std', (['pixels'], {}), '(pixels)\n', (639, 647), True, 'import numpy as np\n')]
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from .. import QtCore, QtGui from . import AbstractMPLDataView from .. import AbstractDataView2D import logging logger = logging.getLogger(__name__) class ContourView(AbstractDataView2D, AbstractMPLDataView): """ The ContourView provides a UI widget for viewing a number of 1-D data sets as a contour plot, starting from dataset 0 at y = 0 """ def __init__(self, fig, data_list=None, cmap=None, norm=None, *args, **kwargs): """ __init__ docstring Parameters ---------- fig : figure to draw the artists on x_data : list list of vectors of x-coordinates y_data : list list of vectors of y-coordinates lbls : list list of the names of each data set cmap : colormap that matplotlib understands norm : mpl.colors.Normalize """ # set some defaults # no defaults yet # call the parent constructors super(ContourView, self).__init__(data_list=data_list, fig=fig, cmap=cmap, norm=norm, *args, **kwargs) # create the matplotlib axes self._ax = self._fig.add_subplot(1, 1, 1) self._ax.set_aspect('equal') # plot the data self.replot() def replot(self): """ Override Replot the data after modifying a display parameter (e.g., offset or autoscaling) or adding new data """ # TODO: This class was originally written to convert a 1-D stack into a # 2-D contour. Rewrite this replot method # get the keys from the dict keys = list(six.iterkeys(self._data)) # number of datasets in the data dict num_keys = len(keys) # cannot plot data if there are no keys if num_keys < 1: return # set the local counter counter = num_keys - 1 # @tacaswell Should it be required that all datasets are the same # length? num_coords = len(self._data[keys[0]][0]) # declare the array self._data_arr = np.zeros((num_keys, num_coords)) # add the data to the main axes for key in self._data.keys(): # get the (x,y) data from the dictionary (x, y) = self._data[key] # add the data to the array self._data_arr[counter] = y # decrement the counter counter -= 1 # get the first dataset to get the x axis and number of y datasets x, y = self._data[keys[0]] y = np.arange(len(keys)) # TODO: Colormap initialization is not working properly. self._ax.contourf(x, y, self._data_arr) # , cmap=colors.Colormap(self._cmap))
[ "numpy.zeros", "logging.getLogger", "six.iterkeys" ]
[((2744, 2771), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2761, 2771), False, 'import logging\n'), ((4791, 4823), 'numpy.zeros', 'np.zeros', (['(num_keys, num_coords)'], {}), '((num_keys, num_coords))\n', (4799, 4823), True, 'import numpy as np\n'), ((4341, 4365), 'six.iterkeys', 'six.iterkeys', (['self._data'], {}), '(self._data)\n', (4353, 4365), False, 'import six\n')]
import math import numpy as np from uam_simulator import my_utils from uam_simulator import pathPlanning from uam_simulator import orca import gurobipy as grb from gurobipy import GRB import time as python_time class Flightplan: def __init__(self, t0, dt, positions, times=None): self.start_time = t0 self.positions = positions self.time_step = dt self.times = None if times is not None: self.time_step = None self.times = np.array(times) else: self.times = np.array([self.start_time + i * self.time_step for i in range(0, len(self.positions))]) if self.time_step is not None: self.end_time = self.start_time + (len(self.positions) - 1) * self.time_step else: self.end_time=self.times[-1] def get_planned_position_at(self, time, return_velocity=False, ignore_timed_out=False, debug=False): """ Interpolates between the flight points """ if ignore_timed_out and time > self.end_time: if return_velocity: return None, None else: return None n = len(self.positions) if self.time_step is not None: idx_float = (float(time) - float(self.start_time)) / float(self.time_step) idx_low = min(math.floor(idx_float), n - 1) idx_high = min(math.ceil(idx_float), n - 1) if idx_low == idx_high: # Indices are equal because idx_float is an int if return_velocity: if idx_high == n-1: velocity = np.array([0, 0]) else: velocity = (self.positions[idx_high+1]-self.positions[idx_high])/(self.times[idx_high+1]-self.times[idx_high]) return self.positions[idx_high], velocity else: return self.positions[idx_high] else: if time > self.times[-1]: return np.copy(self.positions[-1]) idx_high = np.searchsorted(self.times, time) idx_low = max(0, idx_high - 1) if self.times[idx_high] == time or idx_low == idx_high: if return_velocity: if idx_high == n-1: velocity = np.array([0, 0]) else: velocity = (self.positions[idx_high+1]-self.positions[idx_high])/(self.times[idx_high+1]-self.times[idx_high]) return self.positions[idx_high], velocity else: return self.positions[idx_high] idx_float = idx_low + (time - self.times[idx_low]) / (self.times[idx_high] - self.times[idx_low]) pos_high = self.positions[idx_high] pos_low = self.positions[idx_low] # if time is exactly integer then returns the exact pos if debug: print(idx_float) print(pos_high) print(pos_low) if return_velocity: return pos_low + (pos_high - pos_low) * (idx_float - idx_low), (pos_high-pos_low)/(self.times[idx_high]-self.times[idx_low]) else: return pos_low + (pos_high - pos_low) * (idx_float - idx_low) def get_planned_trajectory_between(self, start_time, end_time, debug=False): """ Returns trajectory between start_time and end_time""" if (start_time - self.end_time) >= -1e-4 or (end_time - self.start_time) <= 1e-4: return None, None trajectory_end_time = min(end_time, self.end_time) trajectory_start_time = max(start_time, self.start_time) trajectory = [] times = [] if debug: print('time step is '+str(self.time_step)) print('start_time is '+str(start_time)) print('end_time '+str(end_time)) print('positions '+str(self.positions)) print('times '+str(self.times)) print(start_time-self.end_time) if self.time_step is None: # self.times is sorted [start_index, end_index] = np.searchsorted(self.times, [trajectory_start_time, trajectory_end_time]) temp = self.times[start_index] if abs(self.times[start_index]-trajectory_start_time) > 1e-4: # requires interpolation # Since we already now the index we could avoid a second call to search sorted trajectory.append(self.get_planned_position_at(trajectory_start_time)) times.append(trajectory_start_time) for i in range(start_index, end_index): trajectory.append(self.positions[i]) times.append(self.times[i]) # trajectory_end_time <= times[end_index] if abs(self.times[end_index]-trajectory_end_time) > 1e-4: # requires interpolation trajectory.append(self.get_planned_position_at(trajectory_end_time)) times.append(trajectory_end_time) else: trajectory.append(self.positions[end_index]) times.append(trajectory_end_time) else: start_index_float = float((trajectory_start_time - self.start_time) / self.time_step) end_index_float = float((trajectory_end_time - self.start_time) / self.time_step) lower = math.ceil(start_index_float) upper = min(math.floor(end_index_float), len(self.positions) - 1) if lower != start_index_float: pos_0 = self.get_planned_position_at(start_time) trajectory.append(np.copy(pos_0)) times.append(trajectory_start_time) for index in range(lower, upper + 1): trajectory.append(self.positions[index]) # times.append(self.start_time+index*self.time_step) times.append(self.times[index]) if upper != end_index_float: pos_end = self.get_planned_position_at(end_time) trajectory.append(pos_end) times.append(trajectory_end_time) return trajectory, times def get_end_time(self): if self.time_step is not None: return self.start_time + (len(self.positions) - 1) * self.time_step else: return self.times[-1] class Agent: def __init__(self, env, radius, max_speed, start=None, end=None, start_time=0, agent_logic='dumb', centralized_manager=None, algo_type=None, agent_dynamics=None, id=0, sensing_radius=10000, flight_leg='initial'): self.id = id self.environment = env self.centralized_manager = centralized_manager self.agent_dynamics = agent_dynamics if agent_logic == 'dumb': protected_area = self.environment.get_protected_area() else: # All other agents can wait in place protected_area = None # Can't have random start and not random end (or vice versa) if start is None or end is None: self.start, self.goal = self.environment.get_random_start_and_end(protected_area_start=protected_area) if np.linalg.norm(self.start - self.goal) < 10: # Play one more time # print('agent start and goal are close, redrawing at random') self.start, self.goal = self.environment.get_random_start_and_end(protected_area_start=protected_area) if np.linalg.norm(self.start - self.goal) < 10: print('unlikely, agent start and goal are still close') else: self.start = start self.goal = end self.position = np.copy(self.start) # Passed by reference self.new_position = np.copy(self.start) self.radius = radius self.orientation = 0 self.minSpeed = 0.0 self.maxSpeed = max_speed self.sensing_radius = sensing_radius self.desired_start_time = start_time self.start_time = start_time # actual start time if a ground delay is planned if np.linalg.norm(self.goal - self.start) == 0: print(agent_logic) print(start) print(end) print(np.linalg.norm(self.goal - self.start)) self.velocity = self.maxSpeed * (self.goal - self.start) / (np.linalg.norm(self.goal - self.start)) self.new_velocity = self.velocity self.trajectory = [] self.trajectory_times = [] self.collision_avoidance_time = [] self.preflight_time = None self.flightPlan = None self.status = 'ok' self.agent_logic = agent_logic self.tolerance = self.environment.tolerance self.t_removed_from_sim=None if agent_logic == 'dumb': self.ownship = False else: self.ownship = True self.flight_status = 'initialized' self.algo_type = algo_type self.cumulative_density=0 self.density=0 self.n_steps=0 self.flight_leg=flight_leg def get_predicted_end_time(self): if self.flightPlan is not None: return self.flightPlan.end_time else: print('Agent: in order to get the predicted end time a flight plan must exist') return self.start_time def compute_next_move(self, current_time, dt, debug=False, density=0): """ Store the next position in self.new_position. The position is updated when move is called """ if self.agent_logic == 'dumb': self.new_position = self.compute_straight_move(self.position, self.goal, self.maxSpeed, dt) self.new_velocity = (self.new_position - self.position) / dt if self.agent_logic == 'reactive': self.cumulative_density += density self.n_steps += 1 if self.algo_type is None: self.algo_type = 'MVP' self.new_velocity = self.collision_avoidance(dt, algo_type=self.algo_type) self.new_velocity = self.velocity_update(self.new_velocity) self.new_position += self.new_velocity * dt if self.agent_logic == 'strategic': # Follow flight plan (without consideration for kinematic properties) self.new_position = self.flightPlan.get_planned_position_at(current_time + dt, debug=debug) self.new_velocity = (self.new_position - self.position) / dt if debug: print('New position ' + str(self.new_position)) print('old position ' + str(self.position)) if self.trajectory == []: self.trajectory.append(np.copy(self.position)) self.trajectory_times.append(current_time) self.trajectory.append(np.copy(self.new_position)) self.trajectory_times.append(current_time + dt) self.flight_status = 'ongoing' def compute_straight_move(self, current_position, goal, speed, dt): orientation = math.atan2(goal[1] - current_position[1], goal[0] - current_position[0]) d = np.linalg.norm(goal - current_position) max_step_length = min(speed * dt, d) # slow down to arrive at the goal on the next time step return current_position + np.array([math.cos(orientation), math.sin(orientation)]) * max_step_length def move(self): self.position = np.copy(self.new_position) self.velocity = np.copy(self.new_velocity) return self.position def velocity_update(self, new_velocity): # Introduce kinematic constraints # For now just clamp the velocity and instantly change the orientation v = np.linalg.norm(new_velocity) v_clamped = my_utils.clamp(self.minSpeed, self.maxSpeed, v) if self.agent_dynamics is None: return new_velocity * v_clamped / v else: turn_angle = my_utils.get_angle(self.velocity, new_velocity) max_angle=30*math.pi/180 if abs(turn_angle)>max_angle: vel = self.velocity * v_clamped / np.linalg.norm(self.velocity) theta=math.copysign(max_angle,turn_angle) return vel @ np.asarray([[math.cos(theta), math.sin(theta)], [-math.sin(theta), math.cos(theta)]]) else: return new_velocity * v_clamped / v def preflight(self, dt, algo_type='Straight', density=0): # Given, the start/goals and published flight plans of other agents find a free path and publish it self.density = density if self.centralized_manager is None: print('agent.py preflight error, a centralized manager must exist') if algo_type == 'Straight': timer_start = python_time.time() plan = [] plan.append(self.start) pos = np.copy(self.start) d = np.linalg.norm(self.goal - pos) # Larger time steps require larger tolerance # TODO tolerances are a bit of a mess while d > self.maxSpeed * dt: pos = self.compute_straight_move(pos, self.goal, self.maxSpeed, dt) d = np.linalg.norm(self.goal - pos) plan.append(pos) if d != 0: plan.append(self.goal) self.flightPlan = Flightplan(self.start_time, dt, plan) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'LocalVO': timer_start = python_time.time() local_planner = pathPlanning.Local_VO(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager, self.tolerance) success, plan, times = local_planner.search() if not success: self.flight_status = 'cancelled' return None self.start_time = times[0] ## Debug if len(times) < 2: print('the plan is too short') print('agent start '+ str(self.start)) print('agent goal '+str(self.goal)) print('agent plan pos '+str(plan)) print('agent plan times ' + str(times)) self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'Decoupled': timer_start = python_time.time() decoupled_planner = pathPlanning.DecoupledApproach(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager, self.tolerance) success, plan, times = decoupled_planner.search() if not success: self.flight_status = 'cancelled' return None self.start_time = times[0] self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'SIPP': timer_start = python_time.time() sipp_planner = pathPlanning.SIPP(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager, self.tolerance) success, plan, times = sipp_planner.search() if not success: self.flight_status = 'cancelled' return None self.start_time = times[0] self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'A_star_8': timer_start = python_time.time() astar_planner = pathPlanning.AStar_8grid(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager) success, plan, times = astar_planner.search() if not success: self.flight_status = 'cancelled' timer_end = python_time.time() self.preflight_time = timer_end - timer_start return None self.start_time = times[0] self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan else: print('The algo type ' + algo_type + ' is not implemented') def can_safely_take_off(self, t): if self.algo_type == 'straight': return True neighbors = self.environment.get_neighbors(self.position, self.radius) for vehicle in neighbors: if t >= vehicle.start_time and vehicle.id != self.id: # if np.linalg.norm(self.position - vehicle.position) <= self.radius: self.flight_status = 'waiting' return False self.start_time = t return True def collision_avoidance(self, dt, algo_type='MVP'): # Given current position, next flight plan goal and surrounding vehicles decide where to go # Based on Hoekstra Bluesky simulator # The returned velocity might not be feasible if algo_type == 'MVP_Bluesky': timer_start = python_time.time() neighbors = self.get_neighbors() velocity_change = np.asarray([0.0, 0.0]) direction = self.goal - self.position d = np.linalg.norm(direction) desired_velocity = min(self.maxSpeed, d / dt) * direction / d safety_factor = 1.10 # 10% safety factor (as in The effects of Swarming on a Voltage Potential-Based Conflict Resolution Algorithm, <NAME>) # if d<=self.radius: # dV=0 # else: for neighbor in neighbors: # Find Time of Closest Approach delta_pos = self.position - neighbor.position dist=np.linalg.norm(delta_pos) delta_vel = desired_velocity - neighbor.velocity if np.linalg.norm(delta_vel)==0: t_cpa=0 else: t_cpa=-np.dot(delta_pos, delta_vel) / np.dot(delta_vel, delta_vel) dcpa = delta_pos+delta_vel*t_cpa dabsH = np.linalg.norm(dcpa) # If there is a conflict if dabsH < self.radius: # If head-on conflict if dabsH<=10: dabsH=10 dcpa[0] = delta_pos[1] / dist * dabsH dcpa[1] = -delta_pos[0] / dist * dabsH if self.radius*safety_factor < dist: erratum = np.cos(np.arcsin((self.radius*safety_factor) / dist) - np.arcsin(dabsH / dist)) dV =(((self.radius*safety_factor) / erratum - dabsH) * dcpa)/(abs(t_cpa)*dabsH) else: # If already moving away from conflict (tcpa is negative) then just keep going if t_cpa<=0: dV = 0 else: dV =(self.radius*safety_factor - dabsH)*dcpa/(abs(t_cpa)*dabsH) velocity_change += dV timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return desired_velocity + velocity_change elif algo_type == 'VO': timer_start = python_time.time() intruders = self.get_neighbors() d = np.linalg.norm(self.goal - self.position) speed = min(d / dt, self.maxSpeed) if d == 0: print('VO, this should not happen') print('distance to goal is 0') desired_velocity = (self.goal - self.position) * speed / d model = setupMIQCP(intruders, desired_velocity, self) model.optimize() if model.status != GRB.Status.OPTIMAL: print('Error gurobi failed to find a solution') print(model.status) vars = model.getVars() if intruders != []: # plotter([-1000,1000],[-1000,1000],100,[get_VO(intruders[0],self)],chosen_v=np.array([vars[0].x,vars[1].x])) pass timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return np.array([vars[0].x, vars[1].x]) elif algo_type == 'ORCA': timer_start = python_time.time() reactive_solver = orca.ORCA() vel=reactive_solver.compute_new_velocity(self, dt) timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return vel elif algo_type == 'straight': timer_start = python_time.time() d = np.linalg.norm(self.goal - self.position) speed = min(d / dt, self.maxSpeed) desired_velocity = (self.goal - self.position) * speed / d timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return desired_velocity else: print(algo_type+' not implemented ') def get_neighbors(self): neighbors = self.environment.get_neighbors(self.position, self.sensing_radius) if neighbors == []: return [] else: return neighbors[neighbors != self] def get_nearest_neighbors(self, k, max_radius): # Will return itself so query one more neighbor neighbors = self.environment.get_nearest_neighbors(self.position, k+1, max_radius) if neighbors == []: return [] else: return neighbors[neighbors != self] def finish_flight(self, t,goal_pos=None, t_removed_from_sim=None): self.flight_status = 'finished' self.arrival_time = t self.t_removed_from_sim=t_removed_from_sim if goal_pos is not None: self.trajectory.append(np.copy(goal_pos)) self.trajectory_times.append(t) def log_agent(self): agent_log = {'flight_status': self.flight_status, 'agent_type': self.agent_logic, 'desired_time_of_departure': self.desired_start_time, 'agent_id':self.id} if self.flight_status== 'finished' or self.flight_status == 'ongoing': agent_log['actual_time_of_departure'] = self.start_time if self.flight_status == 'finished': ideal_length = float(np.linalg.norm(self.goal - self.start)) actual_length = 0 if self.trajectory == []: print('agent, empty trajectory ') # happens if start and goal are really close print(self.start) print(self.goal) pos_0 = self.trajectory[0] for pos in self.trajectory: d = np.linalg.norm(pos - pos_0) actual_length += d pos_0 = np.copy(pos) direction = self.goal - self.start heading = math.atan2(direction[1], direction[0]) if self.agent_logic == 'reactive': self.density = self.cumulative_density/self.n_steps - 1 agent_log['flight_status']= self.flight_status agent_log['agent_type']= self.agent_logic agent_log['length_ideal']= ideal_length agent_log['actual_length']= actual_length agent_log['ideal_time_of_arrival']= self.desired_start_time+ideal_length / self.maxSpeed agent_log['actual_time_of_arrival']= self.arrival_time if self.t_removed_from_sim is not None: agent_log['time_removed_from_sim']=self.t_removed_from_sim agent_log['heading']= heading agent_log['density']= self.density if self.agent_logic == 'strategic': agent_log['time_to_preflight'] = self.preflight_time elif self.agent_logic == 'reactive': agent_log['average_time_to_plan_avoidance'] = sum(self.collision_avoidance_time) / len(self.collision_avoidance_time) agent_log['total_planning_time'] = sum(self.collision_avoidance_time) return agent_log def get_VO(intruder_agent, ownship_agent): if intruder_agent == ownship_agent: print('get_VO this should not happen intruder and ownship are the same') rel_pos = intruder_agent.position - ownship_agent.position d = np.linalg.norm(rel_pos) if d == 0: print('the distance between the two agents is 0') if ownship_agent.radius > d: print('there is an intruder in the protected radius') print(ownship_agent.position) print(intruder_agent.position) alpha = math.asin(ownship_agent.radius / d) # VO cone half-angle (>=0) theta = math.atan2(rel_pos[1], rel_pos[0]) vector1 = [math.cos(theta + alpha), math.sin(theta + alpha)] vector2 = [math.cos(theta - alpha), math.sin(theta - alpha)] # must be greater normal_1 = np.array([vector1[1], -vector1[0]]) # Rotated +90 degrees constraint1 = lambda x, y: np.dot((np.array([x, y]) - intruder_agent.velocity) + 0.1 * normal_1, normal_1) # must be smaller normal_2 = np.array([-vector2[1], vector2[0]]) # Rotated -90 degrees constraint2 = lambda x, y: np.dot((np.array([x, y]) - intruder_agent.velocity) + 0.1 * normal_2, normal_2) return constraint1, constraint2 def setupMIQCP(intruders, desired_vel, ownship_agent): """ Intruders should be an array of agents """ model = grb.Model('VO') max_vel = ownship_agent.maxSpeed model.addVar(lb=-max_vel, ub=max_vel, name='x') model.addVar(lb=-max_vel, ub=max_vel, name='y') model.addVars(2 * len(intruders), vtype=GRB.BINARY) model.update() X = model.getVars() n_intruder = 0 for intruder in intruders: constraints_or = get_VO(intruder, ownship_agent) n_constraint = 0 for constraint in constraints_or: c = constraint(0, 0) a = constraint(1, 0) - c b = constraint(0, 1) - c # K must be arbitrarily large so that when the binary constraint is 1 the constraint is always respected K = abs(a * max_vel) + abs(b * max_vel) + c model.addConstr(a * X[0] + b * X[1] - K * X[2 + 2 * n_intruder + n_constraint] <= -c) n_constraint += 1 model.addConstr(X[2 + 2 * n_intruder] + X[2 + 2 * n_intruder + 1] <= 1) n_intruder += 1 model.addConstr(X[0] * X[0] + X[1] * X[1] <= max_vel ** 2) model.setObjective( (X[0] - desired_vel[0]) * (X[0] - desired_vel[0]) + (X[1] - desired_vel[1]) * (X[1] - desired_vel[1]), GRB.MINIMIZE) model.setParam("OutputFlag", 0) model.setParam("FeasibilityTol", 1e-9) model.update() return model
[ "math.asin", "math.atan2", "math.copysign", "numpy.linalg.norm", "uam_simulator.pathPlanning.AStar_8grid", "numpy.copy", "numpy.arcsin", "math.cos", "math.ceil", "uam_simulator.orca.ORCA", "numpy.asarray", "gurobipy.Model", "math.sin", "numpy.dot", "math.floor", "uam_simulator.my_utils.clamp", "numpy.searchsorted", "time.time", "uam_simulator.pathPlanning.Local_VO", "uam_simulator.pathPlanning.SIPP", "numpy.array", "uam_simulator.my_utils.get_angle", "uam_simulator.pathPlanning.DecoupledApproach" ]
[((25063, 25086), 'numpy.linalg.norm', 'np.linalg.norm', (['rel_pos'], {}), '(rel_pos)\n', (25077, 25086), True, 'import numpy as np\n'), ((25344, 25379), 'math.asin', 'math.asin', (['(ownship_agent.radius / d)'], {}), '(ownship_agent.radius / d)\n', (25353, 25379), False, 'import math\n'), ((25420, 25454), 'math.atan2', 'math.atan2', (['rel_pos[1]', 'rel_pos[0]'], {}), '(rel_pos[1], rel_pos[0])\n', (25430, 25454), False, 'import math\n'), ((25622, 25657), 'numpy.array', 'np.array', (['[vector1[1], -vector1[0]]'], {}), '([vector1[1], -vector1[0]])\n', (25630, 25657), True, 'import numpy as np\n'), ((25829, 25864), 'numpy.array', 'np.array', (['[-vector2[1], vector2[0]]'], {}), '([-vector2[1], vector2[0]])\n', (25837, 25864), True, 'import numpy as np\n'), ((26155, 26170), 'gurobipy.Model', 'grb.Model', (['"""VO"""'], {}), "('VO')\n", (26164, 26170), True, 'import gurobipy as grb\n'), ((7713, 7732), 'numpy.copy', 'np.copy', (['self.start'], {}), '(self.start)\n', (7720, 7732), True, 'import numpy as np\n'), ((7784, 7803), 'numpy.copy', 'np.copy', (['self.start'], {}), '(self.start)\n', (7791, 7803), True, 'import numpy as np\n'), ((10998, 11070), 'math.atan2', 'math.atan2', (['(goal[1] - current_position[1])', '(goal[0] - current_position[0])'], {}), '(goal[1] - current_position[1], goal[0] - current_position[0])\n', (11008, 11070), False, 'import math\n'), ((11083, 11122), 'numpy.linalg.norm', 'np.linalg.norm', (['(goal - current_position)'], {}), '(goal - current_position)\n', (11097, 11122), True, 'import numpy as np\n'), ((11379, 11405), 'numpy.copy', 'np.copy', (['self.new_position'], {}), '(self.new_position)\n', (11386, 11405), True, 'import numpy as np\n'), ((11430, 11456), 'numpy.copy', 'np.copy', (['self.new_velocity'], {}), '(self.new_velocity)\n', (11437, 11456), True, 'import numpy as np\n'), ((11665, 11693), 'numpy.linalg.norm', 'np.linalg.norm', (['new_velocity'], {}), '(new_velocity)\n', (11679, 11693), True, 'import numpy as np\n'), ((11714, 11761), 'uam_simulator.my_utils.clamp', 'my_utils.clamp', (['self.minSpeed', 'self.maxSpeed', 'v'], {}), '(self.minSpeed, self.maxSpeed, v)\n', (11728, 11761), False, 'from uam_simulator import my_utils\n'), ((25470, 25493), 'math.cos', 'math.cos', (['(theta + alpha)'], {}), '(theta + alpha)\n', (25478, 25493), False, 'import math\n'), ((25495, 25518), 'math.sin', 'math.sin', (['(theta + alpha)'], {}), '(theta + alpha)\n', (25503, 25518), False, 'import math\n'), ((25535, 25558), 'math.cos', 'math.cos', (['(theta - alpha)'], {}), '(theta - alpha)\n', (25543, 25558), False, 'import math\n'), ((25560, 25583), 'math.sin', 'math.sin', (['(theta - alpha)'], {}), '(theta - alpha)\n', (25568, 25583), False, 'import math\n'), ((493, 508), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (501, 508), True, 'import numpy as np\n'), ((2067, 2100), 'numpy.searchsorted', 'np.searchsorted', (['self.times', 'time'], {}), '(self.times, time)\n', (2082, 2100), True, 'import numpy as np\n'), ((4101, 4174), 'numpy.searchsorted', 'np.searchsorted', (['self.times', '[trajectory_start_time, trajectory_end_time]'], {}), '(self.times, [trajectory_start_time, trajectory_end_time])\n', (4116, 4174), True, 'import numpy as np\n'), ((5371, 5399), 'math.ceil', 'math.ceil', (['start_index_float'], {}), '(start_index_float)\n', (5380, 5399), False, 'import math\n'), ((8111, 8149), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - self.start)'], {}), '(self.goal - self.start)\n', (8125, 8149), True, 'import numpy as np\n'), ((8361, 8399), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - self.start)'], {}), '(self.goal - self.start)\n', (8375, 8399), True, 'import numpy as np\n'), ((10780, 10806), 'numpy.copy', 'np.copy', (['self.new_position'], {}), '(self.new_position)\n', (10787, 10806), True, 'import numpy as np\n'), ((11889, 11936), 'uam_simulator.my_utils.get_angle', 'my_utils.get_angle', (['self.velocity', 'new_velocity'], {}), '(self.velocity, new_velocity)\n', (11907, 11936), False, 'from uam_simulator import my_utils\n'), ((12728, 12746), 'time.time', 'python_time.time', ([], {}), '()\n', (12744, 12746), True, 'import time as python_time\n'), ((12823, 12842), 'numpy.copy', 'np.copy', (['self.start'], {}), '(self.start)\n', (12830, 12842), True, 'import numpy as np\n'), ((12859, 12890), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - pos)'], {}), '(self.goal - pos)\n', (12873, 12890), True, 'import numpy as np\n'), ((13363, 13381), 'time.time', 'python_time.time', ([], {}), '()\n', (13379, 13381), True, 'import time as python_time\n'), ((13536, 13554), 'time.time', 'python_time.time', ([], {}), '()\n', (13552, 13554), True, 'import time as python_time\n'), ((13583, 13705), 'uam_simulator.pathPlanning.Local_VO', 'pathPlanning.Local_VO', (['self.start', 'self.goal', 'self.start_time', 'self.maxSpeed', 'self.centralized_manager', 'self.tolerance'], {}), '(self.start, self.goal, self.start_time, self.maxSpeed,\n self.centralized_manager, self.tolerance)\n', (13604, 13705), False, 'from uam_simulator import pathPlanning\n'), ((14342, 14360), 'time.time', 'python_time.time', ([], {}), '()\n', (14358, 14360), True, 'import time as python_time\n'), ((14517, 14535), 'time.time', 'python_time.time', ([], {}), '()\n', (14533, 14535), True, 'import time as python_time\n'), ((14568, 14700), 'uam_simulator.pathPlanning.DecoupledApproach', 'pathPlanning.DecoupledApproach', (['self.start', 'self.goal', 'self.start_time', 'self.maxSpeed', 'self.centralized_manager', 'self.tolerance'], {}), '(self.start, self.goal, self.start_time, self\n .maxSpeed, self.centralized_manager, self.tolerance)\n', (14598, 14700), False, 'from uam_simulator import pathPlanning\n'), ((15090, 15108), 'time.time', 'python_time.time', ([], {}), '()\n', (15106, 15108), True, 'import time as python_time\n'), ((15260, 15278), 'time.time', 'python_time.time', ([], {}), '()\n', (15276, 15278), True, 'import time as python_time\n'), ((15306, 15424), 'uam_simulator.pathPlanning.SIPP', 'pathPlanning.SIPP', (['self.start', 'self.goal', 'self.start_time', 'self.maxSpeed', 'self.centralized_manager', 'self.tolerance'], {}), '(self.start, self.goal, self.start_time, self.maxSpeed,\n self.centralized_manager, self.tolerance)\n', (15323, 15424), False, 'from uam_simulator import pathPlanning\n'), ((15792, 15810), 'time.time', 'python_time.time', ([], {}), '()\n', (15808, 15810), True, 'import time as python_time\n'), ((15966, 15984), 'time.time', 'python_time.time', ([], {}), '()\n', (15982, 15984), True, 'import time as python_time\n'), ((16013, 16123), 'uam_simulator.pathPlanning.AStar_8grid', 'pathPlanning.AStar_8grid', (['self.start', 'self.goal', 'self.start_time', 'self.maxSpeed', 'self.centralized_manager'], {}), '(self.start, self.goal, self.start_time, self.\n maxSpeed, self.centralized_manager)\n', (16037, 16123), False, 'from uam_simulator import pathPlanning\n'), ((16608, 16626), 'time.time', 'python_time.time', ([], {}), '()\n', (16624, 16626), True, 'import time as python_time\n'), ((17621, 17639), 'time.time', 'python_time.time', ([], {}), '()\n', (17637, 17639), True, 'import time as python_time\n'), ((17715, 17737), 'numpy.asarray', 'np.asarray', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (17725, 17737), True, 'import numpy as np\n'), ((17804, 17829), 'numpy.linalg.norm', 'np.linalg.norm', (['direction'], {}), '(direction)\n', (17818, 17829), True, 'import numpy as np\n'), ((19653, 19671), 'time.time', 'python_time.time', ([], {}), '()\n', (19669, 19671), True, 'import time as python_time\n'), ((1330, 1351), 'math.floor', 'math.floor', (['idx_float'], {}), '(idx_float)\n', (1340, 1351), False, 'import math\n'), ((1387, 1407), 'math.ceil', 'math.ceil', (['idx_float'], {}), '(idx_float)\n', (1396, 1407), False, 'import math\n'), ((2016, 2043), 'numpy.copy', 'np.copy', (['self.positions[-1]'], {}), '(self.positions[-1])\n', (2023, 2043), True, 'import numpy as np\n'), ((5424, 5451), 'math.floor', 'math.floor', (['end_index_float'], {}), '(end_index_float)\n', (5434, 5451), False, 'import math\n'), ((7196, 7234), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.start - self.goal)'], {}), '(self.start - self.goal)\n', (7210, 7234), True, 'import numpy as np\n'), ((8253, 8291), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - self.start)'], {}), '(self.goal - self.start)\n', (8267, 8291), True, 'import numpy as np\n'), ((10670, 10692), 'numpy.copy', 'np.copy', (['self.position'], {}), '(self.position)\n', (10677, 10692), True, 'import numpy as np\n'), ((12118, 12154), 'math.copysign', 'math.copysign', (['max_angle', 'turn_angle'], {}), '(max_angle, turn_angle)\n', (12131, 12154), False, 'import math\n'), ((13144, 13175), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - pos)'], {}), '(self.goal - pos)\n', (13158, 13175), True, 'import numpy as np\n'), ((16335, 16353), 'time.time', 'python_time.time', ([], {}), '()\n', (16351, 16353), True, 'import time as python_time\n'), ((18303, 18328), 'numpy.linalg.norm', 'np.linalg.norm', (['delta_pos'], {}), '(delta_pos)\n', (18317, 18328), True, 'import numpy as np\n'), ((18653, 18673), 'numpy.linalg.norm', 'np.linalg.norm', (['dcpa'], {}), '(dcpa)\n', (18667, 18673), True, 'import numpy as np\n'), ((19858, 19876), 'time.time', 'python_time.time', ([], {}), '()\n', (19874, 19876), True, 'import time as python_time\n'), ((19938, 19979), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - self.position)'], {}), '(self.goal - self.position)\n', (19952, 19979), True, 'import numpy as np\n'), ((20704, 20722), 'time.time', 'python_time.time', ([], {}), '()\n', (20720, 20722), True, 'import time as python_time\n'), ((20816, 20848), 'numpy.array', 'np.array', (['[vars[0].x, vars[1].x]'], {}), '([vars[0].x, vars[1].x])\n', (20824, 20848), True, 'import numpy as np\n'), ((22450, 22467), 'numpy.copy', 'np.copy', (['goal_pos'], {}), '(goal_pos)\n', (22457, 22467), True, 'import numpy as np\n'), ((23586, 23624), 'math.atan2', 'math.atan2', (['direction[1]', 'direction[0]'], {}), '(direction[1], direction[0])\n', (23596, 23624), False, 'import math\n'), ((5620, 5634), 'numpy.copy', 'np.copy', (['pos_0'], {}), '(pos_0)\n', (5627, 5634), True, 'import numpy as np\n'), ((7495, 7533), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.start - self.goal)'], {}), '(self.start - self.goal)\n', (7509, 7533), True, 'import numpy as np\n'), ((12066, 12095), 'numpy.linalg.norm', 'np.linalg.norm', (['self.velocity'], {}), '(self.velocity)\n', (12080, 12095), True, 'import numpy as np\n'), ((14301, 14316), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (14309, 14316), True, 'import numpy as np\n'), ((15049, 15064), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (15057, 15064), True, 'import numpy as np\n'), ((15751, 15766), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (15759, 15766), True, 'import numpy as np\n'), ((16567, 16582), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (16575, 16582), True, 'import numpy as np\n'), ((18413, 18438), 'numpy.linalg.norm', 'np.linalg.norm', (['delta_vel'], {}), '(delta_vel)\n', (18427, 18438), True, 'import numpy as np\n'), ((20909, 20927), 'time.time', 'python_time.time', ([], {}), '()\n', (20925, 20927), True, 'import time as python_time\n'), ((20958, 20969), 'uam_simulator.orca.ORCA', 'orca.ORCA', ([], {}), '()\n', (20967, 20969), False, 'from uam_simulator import orca\n'), ((21057, 21075), 'time.time', 'python_time.time', ([], {}), '()\n', (21073, 21075), True, 'import time as python_time\n'), ((22999, 23037), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - self.start)'], {}), '(self.goal - self.start)\n', (23013, 23037), True, 'import numpy as np\n'), ((23401, 23428), 'numpy.linalg.norm', 'np.linalg.norm', (['(pos - pos_0)'], {}), '(pos - pos_0)\n', (23415, 23428), True, 'import numpy as np\n'), ((23496, 23508), 'numpy.copy', 'np.copy', (['pos'], {}), '(pos)\n', (23503, 23508), True, 'import numpy as np\n'), ((25720, 25736), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (25728, 25736), True, 'import numpy as np\n'), ((25927, 25943), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (25935, 25943), True, 'import numpy as np\n'), ((1627, 1643), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (1635, 1643), True, 'import numpy as np\n'), ((2323, 2339), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (2331, 2339), True, 'import numpy as np\n'), ((11269, 11290), 'math.cos', 'math.cos', (['orientation'], {}), '(orientation)\n', (11277, 11290), False, 'import math\n'), ((11292, 11313), 'math.sin', 'math.sin', (['orientation'], {}), '(orientation)\n', (11300, 11313), False, 'import math\n'), ((18551, 18579), 'numpy.dot', 'np.dot', (['delta_vel', 'delta_vel'], {}), '(delta_vel, delta_vel)\n', (18557, 18579), True, 'import numpy as np\n'), ((21237, 21255), 'time.time', 'python_time.time', ([], {}), '()\n', (21253, 21255), True, 'import time as python_time\n'), ((21272, 21313), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.goal - self.position)'], {}), '(self.goal - self.position)\n', (21286, 21313), True, 'import numpy as np\n'), ((21456, 21474), 'time.time', 'python_time.time', ([], {}), '()\n', (21472, 21474), True, 'import time as python_time\n'), ((18520, 18548), 'numpy.dot', 'np.dot', (['delta_pos', 'delta_vel'], {}), '(delta_pos, delta_vel)\n', (18526, 18548), True, 'import numpy as np\n'), ((12196, 12211), 'math.cos', 'math.cos', (['theta'], {}), '(theta)\n', (12204, 12211), False, 'import math\n'), ((12213, 12228), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (12221, 12228), False, 'import math\n'), ((12250, 12265), 'math.cos', 'math.cos', (['theta'], {}), '(theta)\n', (12258, 12265), False, 'import math\n'), ((19087, 19132), 'numpy.arcsin', 'np.arcsin', (['(self.radius * safety_factor / dist)'], {}), '(self.radius * safety_factor / dist)\n', (19096, 19132), True, 'import numpy as np\n'), ((19135, 19158), 'numpy.arcsin', 'np.arcsin', (['(dabsH / dist)'], {}), '(dabsH / dist)\n', (19144, 19158), True, 'import numpy as np\n'), ((12233, 12248), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (12241, 12248), False, 'import math\n')]
import random import time import numpy as np import copy from itertools import compress random.seed(123) #remove columns from adj matrix. #TODO needs additional scaling? #Be carefull too not modify the initial complete support matrix def get_sub_sampled_support(complete_support, node_to_keep): index_array = complete_support[0][:] # make a copy to avoid modifying complete support values = np.zeros(complete_support[1].shape) index_array_sorted = index_array[:, 1].argsort() j = 0 node_to_keep.sort() for index_to_keep in node_to_keep: while (j < len(index_array_sorted) and index_to_keep >= index_array[index_array_sorted[j]][1]): if (index_to_keep == index_array[index_array_sorted[j]][1]): values[index_array_sorted[j]] = complete_support[1][index_array_sorted[j]] j += 1 sub_sampled_support = (index_array, values, complete_support[2]) return sub_sampled_support # Return a train mask for label_percent of the trainig set. # if maintain_label_balance, keep smallest number of labels per class in training set that respect the label_percent, except for 100 % def get_train_mask(label_percent, y_train, initial_train_mask, maintain_label_balance=False): train_index = np.argwhere(initial_train_mask).reshape(-1) train_mask = np.zeros((initial_train_mask.shape), dtype=bool) # list of False if maintain_label_balance: ones_index = [] for i in range(y_train.shape[1]): # find the ones for each class ones_index.append(train_index[np.argwhere(y_train[train_index, i] > 0).reshape(-1)]) if label_percent < 100: smaller_num = min( int(len(l) * (label_percent / 100)) for l in ones_index) # find smaller number of ones per class that respect the % constraint for ones in ones_index: random_index = random.sample(list(ones), smaller_num) train_mask[random_index] = True # set the same number of ones for each class, so the set is balanced else: for ones in ones_index: train_mask[ones] = True else: random_sampling_set_size = int((label_percent / 100) * train_index.shape[0]) random_list = random.sample(list(train_index), random_sampling_set_size) train_mask[random_list] = True label_percent = (100 * np.sum(train_mask) / train_index.shape[0]) return train_mask, label_percent #returns a random list of indexes of the node to be kept at random. def get_random_percent(num_nodes, percent): if percent > 100: print("This is not how percentage works.") exit() random_sampling_set_size = int((percent * num_nodes) / 100) return random.sample(range(num_nodes), random_sampling_set_size) #returns a list of indexes for the mask def get_list_from_mask(mask): return list(compress(range(len(mask)), mask)) # Set features of node that shouldn't be in the set to crazy things to make sure they are not in the gcnn def modify_features_that_shouldnt_change_anything(features, note_to_keep): note_doesnt_exist = [x for x in range(features[2][0]) if x not in note_to_keep] a = np.where(np.isin(features[0][:, 0], note_doesnt_exist)) features[1][a[0]] = 10000000
[ "numpy.isin", "numpy.sum", "numpy.zeros", "random.seed", "numpy.argwhere" ]
[((89, 105), 'random.seed', 'random.seed', (['(123)'], {}), '(123)\n', (100, 105), False, 'import random\n'), ((403, 438), 'numpy.zeros', 'np.zeros', (['complete_support[1].shape'], {}), '(complete_support[1].shape)\n', (411, 438), True, 'import numpy as np\n'), ((1324, 1370), 'numpy.zeros', 'np.zeros', (['initial_train_mask.shape'], {'dtype': 'bool'}), '(initial_train_mask.shape, dtype=bool)\n', (1332, 1370), True, 'import numpy as np\n'), ((3221, 3266), 'numpy.isin', 'np.isin', (['features[0][:, 0]', 'note_doesnt_exist'], {}), '(features[0][:, 0], note_doesnt_exist)\n', (3228, 3266), True, 'import numpy as np\n'), ((1263, 1294), 'numpy.argwhere', 'np.argwhere', (['initial_train_mask'], {}), '(initial_train_mask)\n', (1274, 1294), True, 'import numpy as np\n'), ((2400, 2418), 'numpy.sum', 'np.sum', (['train_mask'], {}), '(train_mask)\n', (2406, 2418), True, 'import numpy as np\n'), ((1562, 1602), 'numpy.argwhere', 'np.argwhere', (['(y_train[train_index, i] > 0)'], {}), '(y_train[train_index, i] > 0)\n', (1573, 1602), True, 'import numpy as np\n')]
''' precision_and_recall.py Run MATCH with PeTaL data. Last modified on 10 August 2021. DESCRIPTION precision_and_recall.py produces three plots from results in MATCH/PeTaL. These three plots appear in plots/YYYYMMDD_precision_recall and are as follows: - HHMMSS_labels_MATCH_PeTaL.png, which varies threshold and plots number of labels predicted. Higher threshold means fewer labels get past the threshold. - HHMMSS_prc_MATCH_PeTaL.png, which plots a precision-recall curve by varying the threshold. As threshold decreases from 1 to 0, precision goes down but recall goes up (because more labels get past the threshold). - HHMMSS_prf1_MATCH_PeTaL.png, which plots how precision, recall, and F1 score vary as threshold varies from 0 to 1. OPTIONS -m, --match PATH/TO/MATCH Path of MATCH folder. -p, --plots PATH/TO/plots Path of plots folder. -d, --dataset PeTaL Name of dataset, e.g., "PeTaL". -v, --verbose Enable verbosity. USAGE python3 precision_and_recall.py -m ../src/MATCH -p ../plots --verbose Authors: <NAME> (<EMAIL>, <EMAIL>) ''' import click import os import numpy as np import pandas as pd from matplotlib import pyplot as plt from datetime import datetime import logging from collections import namedtuple from tqdm import tqdm Stats = namedtuple("Stats", "threshold topk precision recall f1") @click.command() @click.option('--match', '-m', 'match_path', type=click.Path(exists=True), help='Path of MATCH folder.') @click.option('--plots', '-p', 'plots_path', type=click.Path(exists=True), help='Path of plots folder.') @click.option('--dataset', '-d', 'dataset', default='PeTaL', help='Name of dataset, e.g., "PeTaL".') @click.option('--verbose', '-v', type=click.BOOL, is_flag=True, default=False, required=False, help='Verbose output.') def main(match_path, plots_path, dataset, verbose): """Plots precision and recall and other statistics on graphs. Args: match_path (str): Path of MATCH folder. plots_path (str): Path of plots folder. verbose (bool): Verbose output. """ logging.basicConfig( level=logging.INFO, format="[%(asctime)s:%(name)s] %(message)s" ) PRlogger = logging.getLogger("P&R") DATASET = dataset MODEL = 'MATCH' res_labels = np.load(f"{match_path}/{DATASET}/results/{MODEL}-{DATASET}-labels.npy", allow_pickle=True) res_scores = np.load(f"{match_path}/{DATASET}/results/{MODEL}-{DATASET}-scores.npy", allow_pickle=True) test_labels = np.load(f"{match_path}/{DATASET}/test_labels.npy", allow_pickle=True) train_labels = np.load(f"{match_path}/{DATASET}/train_labels.npy", allow_pickle=True) if verbose: PRlogger.info(f"Computing statistics by varying threshold for {MODEL} on {DATASET}.") thresholds = list(x / 10000 for x in range(1, 10)) + \ list(x / 1000 for x in range(1, 10)) + \ list(x / 100 for x in range(1, 10)) + \ list(x / 20 for x in range(2, 19)) + \ list((90 + x) / 100 for x in range(1, 10)) + \ list((990 + x) / 1000 for x in range(1, 10)) + \ list((9990 + x) / 10000 for x in range(1, 10)) ps = [] rs = [] ts = [] f1s = [] topks = [] for threshold in tqdm(thresholds): stats = compute_stats(threshold, res_labels, res_scores, test_labels) ps.append(stats.precision) rs.append(stats.recall) ts.append(threshold) f1s.append(stats.f1) topks.append(stats.topk) ''' Make the following plots to assess the performance of the model. Precision-recall curve Precision, recall, and F1 score by varying threshold Numbers of labels predicted by varying threshold ''' ALL_PLOTS_PATH = plots_path if not os.path.exists(ALL_PLOTS_PATH): os.mkdir(ALL_PLOTS_PATH) else: if verbose: PRlogger.info(f"You already have a plots directory at {ALL_PLOTS_PATH}.") now = datetime.now() date_str = now.strftime("%Y%m%d") time_str = now.strftime("%H%M%S") comment = f"precision_recall" # "_on_{DATASET}" PLOTS_PATH = os.path.join(ALL_PLOTS_PATH, f"{date_str}_{comment}") if not os.path.exists(PLOTS_PATH): os.mkdir(PLOTS_PATH) if verbose: PRlogger.info(f"New plots directory at {PLOTS_PATH}") else: if verbose: PRlogger.info(f"You already have a plots directory at {PLOTS_PATH}") ######################################## # PRECISION-RECALL CURVE ######################################## plt.grid() plt.title(f'Precision-Recall Curve for {MODEL} on {DATASET}, varying threshold') plt.plot(ps, rs, linestyle='-') plt.xlabel('Recall') plt.xlim(0, 1) plt.ylabel('Precision') plt.ylim(0, 1) PLOT_PATH = os.path.join(PLOTS_PATH, f'{time_str}_prc_{MODEL}_{DATASET}.png') plt.savefig(fname=PLOT_PATH, facecolor='w', transparent=False) PRlogger.info(f"Your plot is saved as {PLOT_PATH}") plt.clf() ######################################## # PRECISION, RECALL, AND F1 SCORE BY THRESHOLD ######################################## plt.grid() plt.title(f'Precision, Recall, and F1 Score by Threshold for {MODEL} on {DATASET}') plt.plot(ts, ps, linestyle='-', label='Precision') plt.plot(ts, rs, linestyle='-', label='Recall') plt.plot(ts, f1s, linestyle='-', label='F1 score') plt.xlabel('Threshold') plt.xlim(0, 1) plt.ylabel('Metrics') plt.ylim(0, 1) plt.legend() PLOT_PATH = os.path.join(PLOTS_PATH, f'{time_str}_prf1_{MODEL}_{DATASET}.png') plt.savefig(fname=PLOT_PATH, facecolor='w', transparent=False) PRlogger.info(f"Your plot is saved as {PLOT_PATH}") plt.clf() ######################################## # NUMBER OF LABELS PREDICTED BY THRESHOLD ######################################## plt.grid() plt.title(f'Number of Labels Predicted by Threshold for {MODEL} on {DATASET}') plt.plot(ts, topks, linestyle='-', label='Number of Labels') plt.xlabel('Threshold') plt.xlim(0, 1) plt.ylabel('Labels') plt.legend() PLOT_PATH = os.path.join(PLOTS_PATH, f'{time_str}_labels_{MODEL}_{DATASET}.png') plt.savefig(fname=PLOT_PATH, facecolor='w', transparent=False) PRlogger.info(f"Your plot is saved as {PLOT_PATH}") plt.clf() def compute_stats(threshold, res_labels, res_scores, test_labels): """ compute_stats(threshold) Parameters: threshold: float, 0.0 < threshold < 1.0 res_labels: numpy array of predicted labels res_scores: numpy array of predicted label scores test_labels: numpy array of target labels Returns: Stats object containing threshold topk: average number of labels above threshold precision: average precision across examples recall: average recall across examples f1: average F1 score across examples Note: precision, recall, and F1 scores are macro (averaged across examples, not labels) """ precisions = [] recalls = [] topks = [] f1s = [] for res_label, res_score, test_label in zip(res_labels, res_scores, test_labels): topk = np.argmax(res_score < threshold) # topk becomes the number of labels scoring above the threshold precision = 1.0 if topk == 0 else np.mean([1 if x in test_label else 0 for x in res_label[:topk]]) recall = np.mean([1 if x in res_label[:topk] else 0 for x in test_label]) f1 = 0 if (precision + recall) == 0 else (2 * precision * recall) / (precision + recall) topks.append(topk) precisions.append(precision) recalls.append(recall) f1s.append(f1) # print(res_label[:topk], precision, recall) return Stats(threshold, np.mean(topks), np.mean(precisions), np.mean(recalls), np.mean(f1s)) if __name__ == '__main__': main()
[ "matplotlib.pyplot.title", "os.mkdir", "numpy.load", "matplotlib.pyplot.clf", "numpy.argmax", "click.option", "logging.getLogger", "numpy.mean", "click.Path", "os.path.join", "os.path.exists", "click.command", "datetime.datetime.now", "tqdm.tqdm", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.xlim", "logging.basicConfig", "matplotlib.pyplot.plot", "collections.namedtuple", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((1459, 1516), 'collections.namedtuple', 'namedtuple', (['"""Stats"""', '"""threshold topk precision recall f1"""'], {}), "('Stats', 'threshold topk precision recall f1')\n", (1469, 1516), False, 'from collections import namedtuple\n'), ((1519, 1534), 'click.command', 'click.command', ([], {}), '()\n', (1532, 1534), False, 'import click\n'), ((1746, 1850), 'click.option', 'click.option', (['"""--dataset"""', '"""-d"""', '"""dataset"""'], {'default': '"""PeTaL"""', 'help': '"""Name of dataset, e.g., "PeTaL"."""'}), '(\'--dataset\', \'-d\', \'dataset\', default=\'PeTaL\', help=\n \'Name of dataset, e.g., "PeTaL".\')\n', (1758, 1850), False, 'import click\n'), ((1847, 1969), 'click.option', 'click.option', (['"""--verbose"""', '"""-v"""'], {'type': 'click.BOOL', 'is_flag': '(True)', 'default': '(False)', 'required': '(False)', 'help': '"""Verbose output."""'}), "('--verbose', '-v', type=click.BOOL, is_flag=True, default=\n False, required=False, help='Verbose output.')\n", (1859, 1969), False, 'import click\n'), ((2244, 2333), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""[%(asctime)s:%(name)s] %(message)s"""'}), "(level=logging.INFO, format=\n '[%(asctime)s:%(name)s] %(message)s')\n", (2263, 2333), False, 'import logging\n'), ((2366, 2390), 'logging.getLogger', 'logging.getLogger', (['"""P&R"""'], {}), "('P&R')\n", (2383, 2390), False, 'import logging\n'), ((2453, 2547), 'numpy.load', 'np.load', (['f"""{match_path}/{DATASET}/results/{MODEL}-{DATASET}-labels.npy"""'], {'allow_pickle': '(True)'}), "(f'{match_path}/{DATASET}/results/{MODEL}-{DATASET}-labels.npy',\n allow_pickle=True)\n", (2460, 2547), True, 'import numpy as np\n'), ((2561, 2655), 'numpy.load', 'np.load', (['f"""{match_path}/{DATASET}/results/{MODEL}-{DATASET}-scores.npy"""'], {'allow_pickle': '(True)'}), "(f'{match_path}/{DATASET}/results/{MODEL}-{DATASET}-scores.npy',\n allow_pickle=True)\n", (2568, 2655), True, 'import numpy as np\n'), ((2670, 2739), 'numpy.load', 'np.load', (['f"""{match_path}/{DATASET}/test_labels.npy"""'], {'allow_pickle': '(True)'}), "(f'{match_path}/{DATASET}/test_labels.npy', allow_pickle=True)\n", (2677, 2739), True, 'import numpy as np\n'), ((2759, 2829), 'numpy.load', 'np.load', (['f"""{match_path}/{DATASET}/train_labels.npy"""'], {'allow_pickle': '(True)'}), "(f'{match_path}/{DATASET}/train_labels.npy', allow_pickle=True)\n", (2766, 2829), True, 'import numpy as np\n'), ((3398, 3414), 'tqdm.tqdm', 'tqdm', (['thresholds'], {}), '(thresholds)\n', (3402, 3414), False, 'from tqdm import tqdm\n'), ((4132, 4146), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4144, 4146), False, 'from datetime import datetime\n'), ((4292, 4345), 'os.path.join', 'os.path.join', (['ALL_PLOTS_PATH', 'f"""{date_str}_{comment}"""'], {}), "(ALL_PLOTS_PATH, f'{date_str}_{comment}')\n", (4304, 4345), False, 'import os\n'), ((4741, 4751), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (4749, 4751), True, 'from matplotlib import pyplot as plt\n'), ((4756, 4841), 'matplotlib.pyplot.title', 'plt.title', (['f"""Precision-Recall Curve for {MODEL} on {DATASET}, varying threshold"""'], {}), "(f'Precision-Recall Curve for {MODEL} on {DATASET}, varying threshold'\n )\n", (4765, 4841), True, 'from matplotlib import pyplot as plt\n'), ((4841, 4872), 'matplotlib.pyplot.plot', 'plt.plot', (['ps', 'rs'], {'linestyle': '"""-"""'}), "(ps, rs, linestyle='-')\n", (4849, 4872), True, 'from matplotlib import pyplot as plt\n'), ((4877, 4897), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Recall"""'], {}), "('Recall')\n", (4887, 4897), True, 'from matplotlib import pyplot as plt\n'), ((4902, 4916), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(1)'], {}), '(0, 1)\n', (4910, 4916), True, 'from matplotlib import pyplot as plt\n'), ((4921, 4944), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Precision"""'], {}), "('Precision')\n", (4931, 4944), True, 'from matplotlib import pyplot as plt\n'), ((4949, 4963), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (4957, 4963), True, 'from matplotlib import pyplot as plt\n'), ((4981, 5046), 'os.path.join', 'os.path.join', (['PLOTS_PATH', 'f"""{time_str}_prc_{MODEL}_{DATASET}.png"""'], {}), "(PLOTS_PATH, f'{time_str}_prc_{MODEL}_{DATASET}.png')\n", (4993, 5046), False, 'import os\n'), ((5051, 5113), 'matplotlib.pyplot.savefig', 'plt.savefig', ([], {'fname': 'PLOT_PATH', 'facecolor': '"""w"""', 'transparent': '(False)'}), "(fname=PLOT_PATH, facecolor='w', transparent=False)\n", (5062, 5113), True, 'from matplotlib import pyplot as plt\n'), ((5174, 5183), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (5181, 5183), True, 'from matplotlib import pyplot as plt\n'), ((5331, 5341), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (5339, 5341), True, 'from matplotlib import pyplot as plt\n'), ((5346, 5434), 'matplotlib.pyplot.title', 'plt.title', (['f"""Precision, Recall, and F1 Score by Threshold for {MODEL} on {DATASET}"""'], {}), "(\n f'Precision, Recall, and F1 Score by Threshold for {MODEL} on {DATASET}')\n", (5355, 5434), True, 'from matplotlib import pyplot as plt\n'), ((5434, 5484), 'matplotlib.pyplot.plot', 'plt.plot', (['ts', 'ps'], {'linestyle': '"""-"""', 'label': '"""Precision"""'}), "(ts, ps, linestyle='-', label='Precision')\n", (5442, 5484), True, 'from matplotlib import pyplot as plt\n'), ((5489, 5536), 'matplotlib.pyplot.plot', 'plt.plot', (['ts', 'rs'], {'linestyle': '"""-"""', 'label': '"""Recall"""'}), "(ts, rs, linestyle='-', label='Recall')\n", (5497, 5536), True, 'from matplotlib import pyplot as plt\n'), ((5541, 5591), 'matplotlib.pyplot.plot', 'plt.plot', (['ts', 'f1s'], {'linestyle': '"""-"""', 'label': '"""F1 score"""'}), "(ts, f1s, linestyle='-', label='F1 score')\n", (5549, 5591), True, 'from matplotlib import pyplot as plt\n'), ((5596, 5619), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Threshold"""'], {}), "('Threshold')\n", (5606, 5619), True, 'from matplotlib import pyplot as plt\n'), ((5624, 5638), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(1)'], {}), '(0, 1)\n', (5632, 5638), True, 'from matplotlib import pyplot as plt\n'), ((5643, 5664), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Metrics"""'], {}), "('Metrics')\n", (5653, 5664), True, 'from matplotlib import pyplot as plt\n'), ((5669, 5683), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (5677, 5683), True, 'from matplotlib import pyplot as plt\n'), ((5688, 5700), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5698, 5700), True, 'from matplotlib import pyplot as plt\n'), ((5718, 5784), 'os.path.join', 'os.path.join', (['PLOTS_PATH', 'f"""{time_str}_prf1_{MODEL}_{DATASET}.png"""'], {}), "(PLOTS_PATH, f'{time_str}_prf1_{MODEL}_{DATASET}.png')\n", (5730, 5784), False, 'import os\n'), ((5789, 5851), 'matplotlib.pyplot.savefig', 'plt.savefig', ([], {'fname': 'PLOT_PATH', 'facecolor': '"""w"""', 'transparent': '(False)'}), "(fname=PLOT_PATH, facecolor='w', transparent=False)\n", (5800, 5851), True, 'from matplotlib import pyplot as plt\n'), ((5912, 5921), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (5919, 5921), True, 'from matplotlib import pyplot as plt\n'), ((6064, 6074), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (6072, 6074), True, 'from matplotlib import pyplot as plt\n'), ((6079, 6157), 'matplotlib.pyplot.title', 'plt.title', (['f"""Number of Labels Predicted by Threshold for {MODEL} on {DATASET}"""'], {}), "(f'Number of Labels Predicted by Threshold for {MODEL} on {DATASET}')\n", (6088, 6157), True, 'from matplotlib import pyplot as plt\n'), ((6162, 6222), 'matplotlib.pyplot.plot', 'plt.plot', (['ts', 'topks'], {'linestyle': '"""-"""', 'label': '"""Number of Labels"""'}), "(ts, topks, linestyle='-', label='Number of Labels')\n", (6170, 6222), True, 'from matplotlib import pyplot as plt\n'), ((6227, 6250), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Threshold"""'], {}), "('Threshold')\n", (6237, 6250), True, 'from matplotlib import pyplot as plt\n'), ((6255, 6269), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(1)'], {}), '(0, 1)\n', (6263, 6269), True, 'from matplotlib import pyplot as plt\n'), ((6274, 6294), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Labels"""'], {}), "('Labels')\n", (6284, 6294), True, 'from matplotlib import pyplot as plt\n'), ((6299, 6311), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6309, 6311), True, 'from matplotlib import pyplot as plt\n'), ((6329, 6397), 'os.path.join', 'os.path.join', (['PLOTS_PATH', 'f"""{time_str}_labels_{MODEL}_{DATASET}.png"""'], {}), "(PLOTS_PATH, f'{time_str}_labels_{MODEL}_{DATASET}.png')\n", (6341, 6397), False, 'import os\n'), ((6402, 6464), 'matplotlib.pyplot.savefig', 'plt.savefig', ([], {'fname': 'PLOT_PATH', 'facecolor': '"""w"""', 'transparent': '(False)'}), "(fname=PLOT_PATH, facecolor='w', transparent=False)\n", (6413, 6464), True, 'from matplotlib import pyplot as plt\n'), ((6525, 6534), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (6532, 6534), True, 'from matplotlib import pyplot as plt\n'), ((3940, 3970), 'os.path.exists', 'os.path.exists', (['ALL_PLOTS_PATH'], {}), '(ALL_PLOTS_PATH)\n', (3954, 3970), False, 'import os\n'), ((3980, 4004), 'os.mkdir', 'os.mkdir', (['ALL_PLOTS_PATH'], {}), '(ALL_PLOTS_PATH)\n', (3988, 4004), False, 'import os\n'), ((4358, 4384), 'os.path.exists', 'os.path.exists', (['PLOTS_PATH'], {}), '(PLOTS_PATH)\n', (4372, 4384), False, 'import os\n'), ((4394, 4414), 'os.mkdir', 'os.mkdir', (['PLOTS_PATH'], {}), '(PLOTS_PATH)\n', (4402, 4414), False, 'import os\n'), ((1585, 1608), 'click.Path', 'click.Path', ([], {'exists': '(True)'}), '(exists=True)\n', (1595, 1608), False, 'import click\n'), ((1690, 1713), 'click.Path', 'click.Path', ([], {'exists': '(True)'}), '(exists=True)\n', (1700, 1713), False, 'import click\n'), ((7500, 7532), 'numpy.argmax', 'np.argmax', (['(res_score < threshold)'], {}), '(res_score < threshold)\n', (7509, 7532), True, 'import numpy as np\n'), ((7721, 7787), 'numpy.mean', 'np.mean', (['[(1 if x in res_label[:topk] else 0) for x in test_label]'], {}), '([(1 if x in res_label[:topk] else 0) for x in test_label])\n', (7728, 7787), True, 'import numpy as np\n'), ((8082, 8096), 'numpy.mean', 'np.mean', (['topks'], {}), '(topks)\n', (8089, 8096), True, 'import numpy as np\n'), ((8098, 8117), 'numpy.mean', 'np.mean', (['precisions'], {}), '(precisions)\n', (8105, 8117), True, 'import numpy as np\n'), ((8119, 8135), 'numpy.mean', 'np.mean', (['recalls'], {}), '(recalls)\n', (8126, 8135), True, 'import numpy as np\n'), ((8137, 8149), 'numpy.mean', 'np.mean', (['f1s'], {}), '(f1s)\n', (8144, 8149), True, 'import numpy as np\n'), ((7639, 7705), 'numpy.mean', 'np.mean', (['[(1 if x in test_label else 0) for x in res_label[:topk]]'], {}), '([(1 if x in test_label else 0) for x in res_label[:topk]])\n', (7646, 7705), True, 'import numpy as np\n')]
####################데이터프레임의 문자열 컬럼들을 합치는 등의 작업으로 새로운 컬럼 생성####################################### #이용함수 apply import pandas as pd import numpy as np from pandas import DataFrame, Series # df = pd.DataFrame({'id' : [1,2,10,20,100,200], # "name":['aaa','bbb','ccc','ddd','eee','fff']}) # print(df) # # #컬럼을 변경하여 새로운 컬럼을 생성 # #새로운 id 컬럼을 원래의 id 컬럼을 기준으로 자리수를 맞춰주기 위해 5자리로 통일(부족한 자릿수는 앞자리에 0을 채워 넣는다.)하며 만듬 # df['id_2']=df['id'].apply(lambda x:"{:0>5d}".format(x)) # print(df) # # id name id_2 # # 0 1 aaa 00001 # # 1 2 bbb 00002 # # 2 10 ccc 00010 # # 3 20 ddd 00020 # # 4 100 eee 00100 # # 5 200 fff 00200 # # # #format():앞자리의 형식으로 ()안의 인자의 모양을 바꿔준다. # # # # x=3.141592 # # print("{:.2f}".format(x)) # # # 3.14 # # # # print("{:+.2f}".format(x)) # # # +3.14 # # # # x=-3.141592 # # print("{:+.2f}".format(x)) # # # -3.14 # # # # x=2.718 # # print("{:.0f}".format(x)) # 정수를 출력하라(소수 점 첫째자리에서 반올림) # # # 3 # # # # x=3.147592 # # print("{:.2f}".format(x)) # .2f(소수 점 셋째자리에서 반올림) # # # 3.15 # # # # x=5 # # print("{:0>2d}".format(x)) # 0>2D(D: 너비가 2, 0으로 채워라 ) # # # 05 # # # # x=7777777777 # # print("{:0>5d}".format(x)) # 0>2D(D: 너비가 5, 0으로 채워라 ,너비 이상은 무시=>원 형태 유지) # # # 7777777777 # # print("{:,}".format(x)) # # # 7,777,777,777 # # # # x=0.25 # # print("{:.2%}".format(x)) # # # 25.00% # # # # #name + id_2 :재구성 => 두개의 컬럼이 결합(apply대상이 2개의 컬럼이 됨) # df['id_name'] = df[['id_2','name']].apply(lambda x: '_'.join(x)) #축을 지정 하지 않으면 안됨 # print(df) # # id name id_2 id_name # # 0 1 aaa 00001 NaN # # 1 2 bbb 00002 NaN # # 2 10 ccc 00010 NaN # # 3 20 ddd 00020 NaN # # 4 100 eee 00100 NaN # # 5 200 fff 00200 NaN # # df['id_name'] = df[['id_2','name']].apply(lambda x: '_'.join(x),axis=1) #축을 1로 지정 # print(df) # # id name id_2 id_name # # 0 1 aaa 00001 00001_aaa # # 1 2 bbb 00002 00002_bbb # # 2 10 ccc 00010 00010_ccc # # 3 20 ddd 00020 00020_ddd # # 4 100 eee 00100 00100_eee # # 5 200 fff 00200 00200_fff # # df['id_name'] = df[['id_2','name']].apply(lambda x: '_'.join(x),axis=1) # print(df) # # id name id_2 id_name # # 0 1 aaa 00001 00001_aaa # # 1 2 bbb 00002 00002_bbb # # 2 10 ccc 00010 00010_ccc # # 3 20 ddd 00020 00020_ddd # # 4 100 eee 00100 00100_eee # # 5 200 fff 00200 00200_fff # # # #id를 소숫점 이하로 나타내는 새로운 열을 추가 # df['id_3']=df['id'].apply(lambda x: "{:.2f}".format(x)) # print(df) # # id name id_2 id_name id_3 # # 0 1 aaa 00001 00001_aaa 1.00 # # 1 2 bbb 00002 00002_bbb 2.00 # # 2 10 ccc 00010 00010_ccc 10.00 # # 3 20 ddd 00020 00020_ddd 20.00 # # 4 100 eee 00100 00100_eee 100.00 # # 5 200 fff 00200 00200_fff 200.00 # # df['name_3']=df['name'].apply(lambda x:x.upper()) #upper() : 대문자로 바꿔줌 # print(df) # # id name id_2 id_name id_3 name_3 # # 0 1 aaa 00001 00001_aaa 1.00 AAA # # 1 2 bbb 00002 00002_bbb 2.00 BBB # # 2 10 ccc 00010 00010_ccc 10.00 CCC # # 3 20 ddd 00020 00020_ddd 20.00 DDD # # 4 100 eee 00100 00100_eee 100.00 EEE # # 5 200 fff 00200 00200_fff 200.00 FFF # # # # id_name_3 컬럼추가 # # id_name_3 => 1.00:AAA # # df['id_name_3'] = df[['id_3','name_3']].apply(lambda x: ':'.join(x),axis=1) # print(df) # # id name id_2 id_name id_3 name_3 id_name_3 # # 0 1 aaa 00001 00001_aaa 1.00 AAA 1.00:AAA # # 1 2 bbb 00002 00002_bbb 2.00 BBB 2.00:BBB # # 2 10 ccc 00010 00010_ccc 10.00 CCC 10.00:CCC # # 3 20 ddd 00020 00020_ddd 20.00 DDD 20.00:DDD # # 4 100 eee 00100 00100_eee 100.00 EEE 100.00:EEE # # 5 200 fff 00200 00200_fff 200.00 FFF 200.00:FFF # ################################################################################################################### #groupby 집계함수 # 1.딕셔너리를 이용해서 그룹화 #위.. 딕셔너리로 만들어서 열을 키로 자료를 밸류로 나타냄 # data= : 데이터를 넣고 컬럼과 인덱스로 자료를 구분. df = DataFrame(data=np.arange(20).reshape(4,5),columns=['c1','c2','c3','c4','c5'],index=['r1','r2','r3','r4']) print(df) # c1 c2 c3 c4 c5 # r1 0 1 2 3 4 # r2 5 6 7 8 9 # r3 10 11 12 13 14 # r4 15 16 17 18 19 # row_g1 = r1+r2 : 행단위 계산으로 새로운 행 생성(같은 열의 성분이 더해진다.: sum()) # row_g2 = r3+r4 mdr = {'r1':'row_g1','r2':'row_g2','r3':'row_g3','r4':'row_g4'} gbr = df.groupby(mdr) print(gbr.sum()) # c1 c2 c3 c4 c5 # row_g1 0 1 2 3 4 # row_g2 5 6 7 8 9 # row_g3 10 11 12 13 14 # row_g4 15 16 17 18 19 mdr = {'r1':'row_g1','r2':'row_g1','r3':'row_g2','r4':'row_g2'} gbr = df.groupby(mdr) print(gbr.sum()) # c1 c2 c3 c4 c5 # row_g1 5 7 9 11 13 # row_g2 25 27 29 31 33 print(gbr.mean()) # c1 c2 c3 c4 c5 # row_g1 2.5 3.5 4.5 5.5 6.5 # row_g2 12.5 13.5 14.5 15.5 16.5 print(gbr.std()) # c1 c2 c3 c4 c5 # row_g1 3.535534 3.535534 3.535534 3.535534 3.535534 # row_g2 3.535534 3.535534 3.535534 3.535534 3.535534 # col_g1 = c1+c2 : 열단위 계산으로 새로운 열 생성(같은 행의 성분이 더해진다.: sum()) : 꼭 axis = 1을주어야 한다. # col_g2 = c3+c4+c5 mdc = {'c1':'col_g1','c2':'col_g1','c3':'col_g2','c4':'col_g2','c5':'col_g2'} gbc = df.groupby(mdc,axis=1) #꼭 axis = 1을주어야 한다. print(gbc.sum()) # col_g1 col_g2 # r1 1 9 # r2 11 24 # r3 21 39 # r4 31 54 print(type(mdr)) # <class 'dict'> print(mdr) # {'r1': 'row_g1', 'r2': 'row_g1', 'r3': 'row_g2', 'r4': 'row_g2'} # dic -> Series # Series를 이용한 그룹화 msr = Series(mdr) print(type(msr)) # <class 'pandas.core.series.Series'> print(msr) # r1 row_g1 # r2 row_g1 # r3 row_g2 # r4 row_g2 # dtype: object print(df.groupby(msr).sum()) # 딕셔너리와 같은 결과 # c1 c2 c3 c4 c5 # row_g1 5 7 9 11 13 # row_g2 25 27 29 31 33 msc = Series(mdc) print(df.groupby(msc,axis=1).sum()) # col_g1 col_g2 # r1 1 9 # r2 11 24 # r3 21 39 # r4 31 54 #함수를 이용한 그룹화 # 딕셔너리나 시리즈 대신 선언되는 rgf로 그룹화(df에 대한 정보가 x에 전달) def rgf(x) : if x == 'r1' or x == 'r2': rg = 'row_g1' else: rg = 'row_g2' return rg # 딕셔너리나 시리즈의 모습에 맞춰서 그룹화 하여 그룹화 계산 함수의 결과에 맞춰 데이터프레임 생성 print(df.groupby(rgf).sum())
[ "numpy.arange", "pandas.Series" ]
[((5890, 5901), 'pandas.Series', 'Series', (['mdr'], {}), '(mdr)\n', (5896, 5901), False, 'from pandas import DataFrame, Series\n'), ((6222, 6233), 'pandas.Series', 'Series', (['mdc'], {}), '(mdc)\n', (6228, 6233), False, 'from pandas import DataFrame, Series\n'), ((4245, 4258), 'numpy.arange', 'np.arange', (['(20)'], {}), '(20)\n', (4254, 4258), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generic evaluation script that evaluates a model using a given dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import click import yaml from collections import Iterable, defaultdict from itertools import cycle import subprocess import PIL import math import os from PIL import Image import cv2 import numpy as np import tensorflow as tf from tensorflow.python.training import monitored_session from datasets.plants import read_label_file from datasets import dataset_factory from nets import nets_factory from preprocessing import preprocessing_factory from matplotlib.font_manager import FontManager import matplotlib if os.environ.get('DISPLAY', '') == '': print('no display found. Using non-interactive Agg backend') matplotlib.use('Agg') import matplotlib.pyplot as plt slim = tf.contrib.slim _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 OUTPUT_MODEL_NODE_NAMES_DICT = { 'resnet_v2_50': 'resnet_v2_50/predictions/Reshape_1', 'mobilenet_v1': 'MobilenetV1/Predictions/Reshape_1', } def define_tf_flags(): BATCH_SIZE = 100 tf.app.flags.DEFINE_integer( 'batch_size', BATCH_SIZE, 'The number of samples in each batch.') tf.app.flags.DEFINE_integer( 'max_num_batches', None, 'Max number of batches to evaluate by default use all.') tf.app.flags.DEFINE_string( 'master', '', 'The address of the TensorFlow master to use.') tf.app.flags.DEFINE_string( 'checkpoint_path', None, 'The directory where the model was written to or an absolute path to a ' 'checkpoint file.') tf.app.flags.DEFINE_string( 'eval_dir', '/tmp/tfmodel/', 'Directory where the results are saved to.') tf.app.flags.DEFINE_integer( 'num_preprocessing_threads', 4, 'The number of threads used to create the batches.') tf.app.flags.DEFINE_string( 'dataset_name', 'plants', 'The name of the dataset to load.') tf.app.flags.DEFINE_string( 'dataset_split_name', 'validation', 'The name of the train/test split.') tf.app.flags.DEFINE_string( 'dataset_dir', None, 'The directory where the dataset files are stored.') tf.app.flags.DEFINE_integer( 'labels_offset', 0, 'An offset for the labels in the dataset. This flag is primarily used to ' 'evaluate the VGG and ResNet architectures which do not use a background ' 'class for the ImageNet dataset.') tf.app.flags.DEFINE_string( 'model_name', 'mobilenet_v1', 'The name of the architecture to evaluate.') tf.app.flags.DEFINE_string( 'preprocessing_name', None, 'The name of the preprocessing to use. If left ' 'as `None`, then the model_name flag is used.') tf.app.flags.DEFINE_float( 'moving_average_decay', None, 'The decay to use for the moving average.' 'If left as None, then moving averages are not used.') tf.app.flags.DEFINE_integer( 'eval_image_size', None, 'Eval image size') FLAGS = tf.app.flags.FLAGS def get_dataset_dir(config): return get_config_value(config, 'dataset_dir') def get_config_value(config, key): return config.get(key) or getattr(FLAGS, key) def get_checkpoint_dir_path(config): return get_config_value(config, 'checkpoint_path') def get_lastest_check_point(config): checkpoint_path = get_checkpoint_dir_path(config) if tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) return checkpoint_path def inspect_tfrecords(tfrecords_filename): record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename) examples = [] for string_record in record_iterator: example = tf.train.Example() example.ParseFromString(string_record) examples.append(example) # print(example) return examples def get_info(config, checkpoint_path=None, calculate_confusion_matrix=False): dataset_dir = get_dataset_dir(config) model_name = get_model_name(config) # tf.logging.set_verbosity(tf.logging.INFO) tf.Graph().as_default() tf_global_step = slim.get_or_create_global_step() ###################### # Select the dataset # ###################### dataset = dataset_factory.get_dataset( FLAGS.dataset_name, FLAGS.dataset_split_name, dataset_dir) #################### # Select the model # #################### num_classes = (dataset.num_classes - FLAGS.labels_offset) network_fn = nets_factory.get_network_fn( model_name, num_classes=num_classes, is_training=False) ############################################################## # Create a dataset provider that loads data from the dataset # ############################################################## provider = slim.dataset_data_provider.DatasetDataProvider( dataset, num_epochs=1, # 每張只讀一次 # num_readers=1, shuffle=False, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) # common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) label -= FLAGS.labels_offset raw_images = image ##################################### # Select the preprocessing function # ##################################### preprocessing_name = FLAGS.preprocessing_name or model_name image_preprocessing_fn = preprocessing_factory.get_preprocessing( preprocessing_name, is_training=False) eval_image_size = FLAGS.eval_image_size or network_fn.default_image_size image = image_preprocessing_fn(image, eval_image_size, eval_image_size) images, labels = tf.train.batch( [image, label], batch_size=FLAGS.batch_size, num_threads=FLAGS.num_preprocessing_threads, allow_smaller_final_batch=True, capacity=5 * FLAGS.batch_size) #################### # Define the model # #################### logits, _ = network_fn(images) if FLAGS.moving_average_decay: variable_averages = tf.train.ExponentialMovingAverage( FLAGS.moving_average_decay, tf_global_step) variables_to_restore = variable_averages.variables_to_restore( slim.get_model_variables()) variables_to_restore[tf_global_step.op.name] = tf_global_step else: variables_to_restore = slim.get_variables_to_restore() predictions = tf.argmax(logits, 1) one_hot_predictions = slim.one_hot_encoding( predictions, dataset.num_classes - FLAGS.labels_offset) labels = tf.squeeze(labels) # Define the metrics: names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'Accuracy': slim.metrics.streaming_accuracy(predictions, labels), 'Recall_5': slim.metrics.streaming_recall_at_k( logits, labels, 5), }) if calculate_confusion_matrix: confusion_matrix = tf.confusion_matrix(labels=labels, num_classes=num_classes, predictions=predictions) else: confusion_matrix = None # Print the summaries to screen. for name, value in names_to_values.items(): summary_name = 'eval/%s' % name op = tf.summary.scalar(summary_name, value, collections=[]) op = tf.Print(op, [value], summary_name) tf.add_to_collection(tf.GraphKeys.SUMMARIES, op) # TODO(sguada) use num_epochs=1 if FLAGS.max_num_batches: num_batches = FLAGS.max_num_batches else: # This ensures that we make a single pass over all of the data. num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size)) checkpoint_path = checkpoint_path or get_lastest_check_point(config) tf.logging.info('Evaluating %s' % checkpoint_path) labels_to_names = read_label_file(dataset_dir) probabilities = tf.nn.softmax(logits) softmax_cross_entropy_loss = tf.losses.softmax_cross_entropy( one_hot_predictions, logits, label_smoothing=0.0, weights=1.0) grad_imgs = tf.gradients(softmax_cross_entropy_loss, images)[0] return { 'labels_to_names': labels_to_names, 'checkpoint_path': checkpoint_path, 'num_batches': num_batches, 'names_to_values': names_to_values, 'names_to_updates': names_to_updates, 'variables_to_restore': variables_to_restore, 'images': images, 'raw_images': raw_images, 'network_fn': network_fn, 'labels': labels, 'logits': logits, 'probabilities': probabilities, 'predictions': predictions, 'confusion_matrix': confusion_matrix, 'loss': softmax_cross_entropy_loss, 'grad_imgs': grad_imgs, } def get_monitored_session(checkpoint_path): session_creator = monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, # scaffold=scaffold, # master=master, # config=config ) return monitored_session.MonitoredSession( session_creator=session_creator) def plot_confusion_matrix(confusion_matrix, labels_to_names=None, save_dir='.'): import seaborn as sns set_matplot_zh_font() # ax = plt.subplot() fig, ax = plt.subplots() # the size of A4 paper fig.set_size_inches(18, 15) # https://stackoverflow.com/questions/22548813/python-color-map-but-with-all-zero-values-mapped-to-black # confusion_matrix = np.ma.masked_where(confusion_matrix < 0.01, # confusion_matrix) cmap = plt.get_cmap('Accent') # cmap = plt.get_cmap('coolwarm') # cmap = plt.get_cmap('plasma') # cmap = plt.get_cmap('Blues') # cmap.set_bad(color='black') mask = np.zeros_like(confusion_matrix) mask[confusion_matrix == 0] = True # sns.set(font_scale=1) with sns.axes_style('darkgrid'): sns.heatmap(confusion_matrix, linewidths=0.2, linecolor='#eeeeee', xticklabels=True, yticklabels=True, mask=mask, annot=False, ax=ax, cmap=cmap) n = confusion_matrix.shape[0] # labels, title and ticks ax.set_xlabel('Predicted labels') ax.set_ylabel('True labels') ax.set_title('Confusion Matrix') axis = [labels_to_names[i] if labels_to_names else i for i in range(n)] ax.xaxis.set_ticklabels(axis, rotation=270) ax.yaxis.set_ticklabels(axis, rotation=0) pic_path = os.path.join(save_dir, 'confusion_matrix.png') plt.savefig(pic_path) print(pic_path, 'saved') print('plot shown') plt.show() def get_matplot_zh_font(): # From https://blog.csdn.net/kesalin/article/details/71214038 fm = FontManager() mat_fonts = set(f.name for f in fm.ttflist) output = subprocess.check_output('fc-list :lang=zh-tw -f "%{family}\n"', shell=True) zh_fonts = set(f.split(',', 1)[0] for f in output.split('\n')) available = list(mat_fonts & zh_fonts) return available def set_matplot_zh_font(): available = get_matplot_zh_font() if len(available) > 0: plt.rcParams['font.sans-serif'] = [available[0]] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False def deprocess_image(x, target_std=0.15): # normalize tensor x = np.abs(x) x = np.max(x, axis=2) x -= x.mean() std = x.std() if std: x /= std x *= target_std x *= 255 x = np.clip(x, 0, 255).astype('uint8') return x def plot_image_in_grids(image_list, n_columns, file_name=None): image_table = chunks(image_list, n_columns) n_row = len(image_table) plt.figure(figsize=(15, 10)) i = 1 for row in image_table: for col in row: plt.subplot(n_row, n_columns, i) plt.imshow(col) i += 1 if file_name: plt.savefig(file_name) print(file_name, 'saved') else: print('plot shown') plt.show() def plot_saliency(saliency, image, file_name=None): plt.figure(figsize=(15, 10)) plot_image_in_grids([ [saliency, image] ], file_name) def _eval_tensors(config, checkpoint_path=None, keys=None, use_cached=False): checkpoint_dir_path = get_checkpoint_dir_path(config) if use_cached: aggregated = load_var(checkpoint_dir_path, 'run_info_result.h5') if aggregated is not None: return aggregated calculate_confusion_matrix = True info = get_info(config, calculate_confusion_matrix=calculate_confusion_matrix) num_batches = info['num_batches'] aggregated = {} checkpoint_path = checkpoint_path or get_lastest_check_point(config) with get_monitored_session(checkpoint_path) as sess: for i in range(int(math.ceil(num_batches))): print('batch #{} of {}'.format(i, num_batches)) params = { k: v for k, v in info.items() if isinstance(v, tf.Tensor) and (not keys or k in keys) } try: feed_dict = {} res = sess.run(params, feed_dict=feed_dict) except: import traceback traceback.print_exc() raise for k in res.keys(): value = res[k] if k == 'confusion_matrix': if k not in aggregated: aggregated[k] = np.matrix(value) else: aggregated[k] += np.matrix(value) else: if k not in aggregated: aggregated[k] = [] if isinstance(value, Iterable): aggregated[k].extend(value) else: aggregated[k].append(value) labels = res['labels'] print('len labels', len(labels)) all_labels = aggregated['labels'] print('all_labels length', len(all_labels)) print('all_labels unique length', len(set(all_labels))) if use_cached: save_var(checkpoint_dir_path, 'run_info_result.h5', aggregated) return aggregated def _run_saliency_maps(config, use_cached=False): checkpoint_path = get_lastest_check_point(config) keys = [ 'labels', 'images', 'grad_imgs', ] aggregated = _eval_tensors(config, keys=keys, use_cached=use_cached) grad_imgs = aggregated['grad_imgs'] images = aggregated['images'] prefix = '' save_saliency_maps(config, grad_imgs, images, prefix, labels=aggregated['labels']) def _run_info(config, use_cached=False): checkpoint_path = get_lastest_check_point(config) keys = [ 'labels', 'images', # 'raw_images', 'logits', 'probabilities', 'predictions', 'confusion_matrix', # 'loss', 'grad_imgs', ] aggregated = _eval_tensors(config, keys=keys, use_cached=use_cached) from collections import Counter all_labels = aggregated['labels'] c = Counter(all_labels) kv_pairs = sorted(dict(c).items(), key=lambda p: p[0]) for k, v in kv_pairs: print(k, v) def save_var(directory, file_name, info): import h5py info_file_path = os.path.join(directory, file_name) f = h5py.File(info_file_path, 'w') for k, v in info.items(): f[k] = v f.close() print(info_file_path, 'saved') def load_var(directory, file_name): import h5py info_file_path = os.path.join(directory, file_name) try: with h5py.File(info_file_path, 'r') as f: return { k: f[k][:] for k in f.keys() } except IOError: return None def chunks(l, n): """Yield successive n-sized chunks from l.""" return [l[i:i + n] for i in range(0, len(l), n)] def save_saliency_maps(config, grad_imgs, images, prefix='', labels=None): n = images.shape[0] save_dir = 'saliency_maps' labels_to_names = read_label_file(get_dataset_dir(config)) label_count_map = defaultdict(int) try: os.makedirs(save_dir) except OSError: pass for j in range(n): image = images[j] grad_img = grad_imgs[j] label = labels[j] label_name = labels_to_names[label] if label_count_map[label] >= 10: continue file_name = '{}/{}{:03d}.jpg'.format( save_dir, '{:02}_{}_{}'.format( label, label_name.encode('utf-8'), prefix) if labels is not None else prefix, label_count_map[label]) saliency = deprocess_image(grad_img, target_std=0.3) restored_image = ((image / 2 + 0.5) * 255).astype('uint8') blend = get_image_with_saliency_map(restored_image, saliency) plot_image_in_grids([ saliency, restored_image, blend, ], n_columns=2, file_name=file_name) label_count_map[label] += 1 def _plot_roc(logits_list, labels, predictions, probabilities, plot_all_classes=False, save_dir=None): from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import label_binarize possible_labels = list(range(max(labels) + 1)) y_binary = label_binarize(labels, classes=possible_labels) output_matrix = np.array(probabilities) y_score_matrix = output_matrix y_score_matrix = np.where( y_score_matrix == np.max(y_score_matrix, axis=1)[:, None], y_score_matrix, 0) tpr = {} fpr = {} roc_auc = {} for i in range(len(possible_labels)): y_scores = y_score_matrix[:, i] fpr[i], tpr[i], _ = roc_curve(y_binary[:, i], y_scores) roc_auc[i] = auc(fpr[i], tpr[i]) # 參考 http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html y_score_matrix_ravel = y_score_matrix.ravel() i_positive = y_score_matrix_ravel != 0 fpr["highest_probability"], tpr[ "highest_probability"], micro_thresholds = roc_curve( y_binary.ravel()[i_positive], y_score_matrix_ravel[i_positive]) roc_auc["highest_probability"] = auc(fpr["highest_probability"], tpr["highest_probability"]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], micro_thresholds = roc_curve( y_binary.ravel(), y_score_matrix.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) lw = 2 n_classes = len(possible_labels) # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # key_series = 'micro' key_series = 'highest_probability' i_optimal_micro = np.argmax(tpr[key_series] - fpr[key_series]) optimal_threshold_fpr = fpr[key_series][i_optimal_micro] optimal_threshold_tpr = tpr[key_series][i_optimal_micro] optimal_threshold = micro_thresholds[i_optimal_micro] print('optimal_threshold_fpr:', optimal_threshold_fpr) print('optimal_threshold_tpr:', optimal_threshold_tpr) print('optimal_threshold:', optimal_threshold) # Plot all ROC curves plt.figure() colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) if plot_all_classes: for i, color in zip(range(n_classes), colors): label = 'ROC curve of class {0} (area = {1:0.2f})'.format( i, roc_auc[i]) label = None plt.plot(fpr[i], tpr[i], color=color, lw=lw, label=label) plt.plot(fpr["highest_probability"], tpr["highest_probability"], label='ROC curve (area = {0:0.2f})' ''.format(roc_auc["highest_probability"]), color='blue', linestyle=':', linewidth=4) # plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curve') plt.legend(loc="lower right") pic_path = os.path.join(save_dir, 'roc_curve.png') plt.savefig(pic_path) print(pic_path, 'saved') print('ROC curve shown') plt.show() def _roc_analysis(config, use_cached=False): checkpoint_dir_path = get_checkpoint_dir_path(config) keys = [ 'logits', 'labels', 'predictions', 'probabilities', ] info = _eval_tensors(config, keys=keys, use_cached=use_cached) logits_list = info['logits'] labels = info['labels'] predictions = info['predictions'] probabilities = info['probabilities'] _plot_roc(logits_list, labels, predictions, probabilities, save_dir=checkpoint_dir_path) return def inspect_datasets(config): dataset_dir = get_dataset_dir(config) examples = [] for i in range(5): tfrecords_filename = os.path.join( dataset_dir, 'plants_validation_{:05d}-of-00005.tfrecord'.format(i)) examples.extend(inspect_tfrecords(tfrecords_filename)) print(len(examples)) examples = [] for i in range(5): tfrecords_filename = os.path.join( dataset_dir, 'plants_train_{:05d}-of-00005.tfrecord'.format(i)) examples.extend(inspect_tfrecords(tfrecords_filename)) print(len(examples)) def resize(im, target_smallest_size): resize_ratio = 1.0 * target_smallest_size / min(list(im.size)) target_size = tuple(int(resize_ratio * l) for l in im.size) return im.resize(target_size, PIL.Image.BILINEAR) def central_crop(im, w, h): half_w = im.size[0] / 2 half_h = im.size[1] / 2 return im.crop( (half_w - w / 2, half_h - h / 2, half_w + w / 2, half_h + h / 2)) def pre_process_resnet(im, coreml=False): target_smallest_size = 224 im1 = resize(im, target_smallest_size) im2 = central_crop(im1, target_smallest_size, target_smallest_size) arr = np.asarray(im2).astype(np.float32) if not coreml: arr[:, :, 0] -= _R_MEAN arr[:, :, 1] -= _G_MEAN arr[:, :, 2] -= _B_MEAN return arr def central_crop_by_fraction(im, central_fraction): w = im.size[0] h = im.size[1] return central_crop(im, w * central_fraction, h * central_fraction) def pre_process_mobilenet(im, coreml=False): # 參考 https://github.com/tensorflow/models/blob/master/research/slim/preprocessing/inception_preprocessing.py # 裡的 preprocess_for_eval im1 = central_crop_by_fraction(im, 0.875) target_smallest_size = 224 im2 = im1.resize((target_smallest_size, target_smallest_size), PIL.Image.BILINEAR) arr = np.asarray(im2).astype(np.float32) if not coreml: arr /= 255.0 arr -= 0.5 arr *= 2.0 return arr def pre_process(config, im, coreml=False): model_name = get_model_name(config) return { 'resnet_v2_50': pre_process_resnet, 'mobilenet_v1': pre_process_mobilenet, }[model_name](im, coreml=coreml) def get_model_name(config): model_name = get_config_value(config, 'model_name') return model_name def test_inference_by_pb(config, pb_file_path=None, dataset_dir=None): # http://www.cnblogs.com/arkenstone/p/7551270.html filenames = [ ('20180330/1lZsRrQzj/1lZsRrQzj_5.jpg', u'通泉草'), ('20180330/iUTbDxEoT/iUTbDxEoT_0.jpg', u'杜鵑花仙子'), # ('20180330/4PdXwYcGt/4PdXwYcGt_5.jpg', u'酢漿草'), ] for filename, label in filenames: filename = dataset_dir_file(config, filename) # image_np = cv2.imread(filename) result = run_inference_on_file_pb( config, filename, pb_file_path=pb_file_path, dataset_dir=dataset_dir) index = result['prediction_label'] print("Prediction label index:", index) prediction_name = result['prediction_name'] print("Prediction name:", prediction_name) print("Top 3 Prediction label index:", ' '.join(result['top_n_names'])) assert prediction_name == label def dataset_dir_file(config, filename): filename = os.path.join(get_dataset_dir(config), filename) return filename def run_inference_by_pb(config, image_np, pb_file_path=None): checkpoint_dir_path = get_checkpoint_dir_path(config) pb_file_path = pb_file_path or '%s/frozen_graph.pb' % checkpoint_dir_path with tf.gfile.GFile(pb_file_path) as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) return _run_inference_by_graph_def(config, graph_def, image_np) def _run_inference_by_graph_def(config, graph_def, image_np, enable_saliency_maps=False): model_name = get_model_name(config) image_size = 224 image_np = pre_process(config, image_np) image_np = cv2.resize(image_np, (image_size, image_size)) # expand dims to shape [None, 299, 299, 3] image_np = np.expand_dims(image_np, 0) graph = tf.import_graph_def(graph_def, name='') with tf.Session(graph=graph) as sess: input_tensor_name = "input:0" # output_tensor_name = "resnet_v2_50/predictions/Reshape_1:0" output_tensor_name = OUTPUT_MODEL_NODE_NAMES_DICT[ model_name] + ":0" input_tensor = sess.graph.get_tensor_by_name( input_tensor_name) # get input tensor output_tensor = sess.graph.get_tensor_by_name( output_tensor_name) # get output tensor tensor_map = { 'logits': output_tensor, } if enable_saliency_maps: tensor_map['grad_imgs'] = sess.graph.get_tensor_by_name( 'gradients/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D_grad/Conv2DBackpropInput:0') result = sess.run(tensor_map, feed_dict={input_tensor: image_np}) return { 'logits': result['logits'], 'grad_imgs': result.get('grad_imgs'), } def test_inference_by_coreml(config, coreml_file_path=None, dataset_dir=None): labels_to_names = read_label_file(get_dataset_dir(config)) dataset_dir = get_dataset_dir(config) filenames = [ ('20180330/1lZsRrQzj/1lZsRrQzj_5.jpg', u'通泉草'), ('20180330/iUTbDxEoT/iUTbDxEoT_0.jpg', u'杜鵑花仙子'), # ('20180330/4PdXwYcGt/4PdXwYcGt_5.jpg', u'酢漿草'), ] for filename, label in filenames: filename = os.path.join(dataset_dir, filename) image_np = PIL.Image.open(filename) logits = run_inference_by_coreml( config, image_np, coreml_file_path=coreml_file_path, ) print('logits', logits) index = np.argmax(logits) print("Prediction label index:", index) prediction_name = labels_to_names[index] print("Prediction name:", prediction_name) index_list = np.argsort(logits) print("Top 3 Prediction label index:", index_list, ' '.join([labels_to_names[i] for i in list(index_list)])) assert prediction_name == label def run_inference_by_coreml(config, image_np, coreml_file_path=None): import coremltools import tfcoreml model_name = get_model_name(config) checkpoint_dir_path = get_checkpoint_dir_path(config) frozen_model_file = '%s/frozen_graph.pb' % checkpoint_dir_path coreml_model_file = coreml_file_path or '%s/plant.mlmodel' % checkpoint_dir_path image_np = pre_process(config, image_np, coreml=True) image = Image.fromarray(image_np.astype('int8'), 'RGB') input_tensor_shapes = { "input:0": [1, image_np.shape[0], image_np.shape[1], 3]} # batch size is 1 output_tensor_name = OUTPUT_MODEL_NODE_NAMES_DICT[model_name] + ":0" coreml_model = coremltools.models.MLModel(coreml_model_file) convert_model = False # convert_model = True if convert_model: extra_args = { 'resnet_v2_50': { 'red_bias': -_R_MEAN, 'green_bias': -_G_MEAN, 'blue_bias': -_B_MEAN, }, 'mobilenet_v1': { 'red_bias': -1.0, 'green_bias': -1.0, 'blue_bias': -1.0, 'image_scale': 2.0 / 255., } }[model_name] coreml_model = tfcoreml.convert( tf_model_path=frozen_model_file, mlmodel_path=coreml_model_file.replace('.mlmodel', '_test.mlmodel'), input_name_shape_dict=input_tensor_shapes, output_feature_names=[output_tensor_name], image_input_names=['input:0'], **extra_args ) coreml_inputs = {'input__0': image} coreml_output = coreml_model.predict(coreml_inputs, useCPUOnly=False) # example output: 'resnet_v2_50__predictions__Reshape_1__0' probs = coreml_output[ output_tensor_name.replace('/', '__').replace(':', '__')].flatten() return probs def run_inference_on_file_pb(config, filename, pb_file_path=None, dataset_dir=None): labels_to_names = read_label_file(get_dataset_dir(config)) image_np = PIL.Image.open(filename) logits = run_inference_by_pb(config, image_np, pb_file_path=pb_file_path)[ 'logits'] index = np.argmax(logits, 1) prediction_name = labels_to_names[index[0]] index_list = np.argsort(logits, 1) top_n_names = list(reversed( [labels_to_names[i] for i in list(index_list[0])])) print('logits', logits) result = { 'prediction_name': prediction_name, 'prediction_label': index[0], 'top_n_names': top_n_names, 'logits': logits.tolist(), } return result def test_inference_by_model_files(config, dataset_dir=None, frozen_graph_path=None, coreml_file_path=None): dataset_dir = dataset_dir or get_dataset_dir(config) test_inference_by_pb(config, pb_file_path=frozen_graph_path, dataset_dir=dataset_dir) test_inference_by_coreml(config, coreml_file_path=coreml_file_path, dataset_dir=dataset_dir) def get_image_with_saliency_map(image_np, saliency): image_np = np.copy(np.asarray(image_np))[:, :] w, h = image_np.shape[0:2] l = min(w, h) saliency = cv2.resize(saliency, (l, l)) saliency = cv2.cvtColor(saliency, cv2.COLOR_GRAY2RGB) canvas = image_np[:, :] w_offset = int((w - l) / 2) h_offset = int((h - l) / 2) roi_img = canvas[w_offset:w_offset + l, h_offset:h_offset + l] intensify_factor = 3 alpha = np.clip(1 - intensify_factor * saliency.astype(float) / 255, 0, 1) paint = np.copy(1 - alpha) * 255 overlap = roi_img[paint > 128] if overlap.mean() + overlap.std() > 128: color = np.array([0, 0, 255]).astype(float) / 255 # blue else: color = np.array([255, 200, 0]).astype(float) / 255 # orange paint[:, :] *= color roi_img = cv2.multiply(alpha, roi_img.astype(float)) roi_img = cv2.add(paint * (1 - alpha), roi_img).astype(int) canvas[w_offset:w_offset + l, h_offset:h_offset + l] = roi_img return canvas def test_frozen_graph_saliency_map(config): checkpoint_dir = config['checkpoint_path'] dataset_dir = get_dataset_dir(config) frozen_graph_path = os.path.join(checkpoint_dir, 'frozen_graph.pb') filename = dataset_dir_file('20180330/1lZsRrQzj/1lZsRrQzj_5.jpg') labels_to_names = read_label_file(dataset_dir) image_np = PIL.Image.open(filename) results = run_inference_by_pb(config, image_np, pb_file_path=frozen_graph_path) logits = results['logits'] index = np.argmax(logits, 1)[0] prediction_name = labels_to_names[index] grad_imgs = results['grad_imgs'] saliency = deprocess_image(grad_imgs[0]) blend = get_image_with_saliency_map(image_np, saliency) print(prediction_name) plot_image_in_grids([ blend, image_np, saliency, ], 2) @click.group() def cli(): pass @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def run_info(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) _run_info(config, use_cached=use_cached) @cli.command() @click.argument('config_file') def test_models(config_file): with open(config_file) as f: config = yaml.load(f) test_inference_by_model_files(config) @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def plot_roc(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) _roc_analysis(config, use_cached=use_cached) @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def saliency_maps(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) _run_saliency_maps(config, use_cached=use_cached) @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def confusion_matrix(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) keys = [ 'confusion_matrix', ] aggregated = _eval_tensors(config, keys=keys, use_cached=use_cached) checkpoint_dir_path = get_checkpoint_dir_path(config) dataset_dir = get_dataset_dir(config) labels_to_names = read_label_file(dataset_dir) plot_confusion_matrix(aggregated['confusion_matrix'], labels_to_names=labels_to_names, save_dir=checkpoint_dir_path) if __name__ == '__main__': define_tf_flags() cli()
[ "tensorflow.app.flags.DEFINE_float", "yaml.load", "click.option", "collections.defaultdict", "numpy.argsort", "matplotlib.pyplot.figure", "numpy.interp", "tensorflow.app.flags.DEFINE_integer", "cv2.cvtColor", "matplotlib.pyplot.imshow", "datasets.dataset_factory.get_dataset", "numpy.max", "tensorflow.squeeze", "preprocessing.preprocessing_factory.get_preprocessing", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "tensorflow.gfile.GFile", "tensorflow.Graph", "matplotlib.pyplot.subplot", "os.makedirs", "tensorflow.argmax", "PIL.Image.open", "numpy.array", "numpy.abs", "itertools.cycle", "tensorflow.python_io.tf_record_iterator", "tensorflow.train.Example", "datasets.plants.read_label_file", "click.group", "math.ceil", "matplotlib.use", "tensorflow.import_graph_def", "tensorflow.python.training.monitored_session.ChiefSessionCreator", "numpy.matrix", "click.argument", "sklearn.metrics.roc_curve", "matplotlib.pyplot.plot", "numpy.expand_dims", "matplotlib.font_manager.FontManager", "tensorflow.Print", "tensorflow.app.flags.DEFINE_string", "matplotlib.pyplot.xlabel", "tensorflow.losses.softmax_cross_entropy", "coremltools.models.MLModel", "matplotlib.pyplot.title", "tensorflow.confusion_matrix", "nets.nets_factory.get_network_fn", "tensorflow.logging.info", "numpy.argmax", "numpy.clip", "os.path.join", "tensorflow.train.ExponentialMovingAverage", "seaborn.axes_style", "numpy.copy", "tensorflow.gradients", "tensorflow.GraphDef", "cv2.resize", "h5py.File", "matplotlib.pyplot.get_cmap", "tensorflow.summary.scalar", "subprocess.check_output", "matplotlib.pyplot.legend", "sklearn.preprocessing.label_binarize", "cv2.add", "matplotlib.pyplot.savefig", "seaborn.heatmap", "tensorflow.train.latest_checkpoint", "tensorflow.train.batch", "tensorflow.nn.softmax", "numpy.zeros_like", "traceback.print_exc", "tensorflow.python.training.monitored_session.MonitoredSession", "collections.Counter", "tensorflow.gfile.IsDirectory", "numpy.asarray", "tensorflow.Session", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "tensorflow.add_to_collection", "os.environ.get", "sklearn.metrics.auc" ]
[((33480, 33493), 'click.group', 'click.group', ([], {}), '()\n', (33491, 33493), False, 'import click\n'), ((33532, 33561), 'click.argument', 'click.argument', (['"""config_file"""'], {}), "('config_file')\n", (33546, 33561), False, 'import click\n'), ((33563, 33605), 'click.option', 'click.option', (['"""--use_cached"""'], {'is_flag': '(True)'}), "('--use_cached', is_flag=True)\n", (33575, 33605), False, 'import click\n'), ((33772, 33801), 'click.argument', 'click.argument', (['"""config_file"""'], {}), "('config_file')\n", (33786, 33801), False, 'import click\n'), ((33956, 33985), 'click.argument', 'click.argument', (['"""config_file"""'], {}), "('config_file')\n", (33970, 33985), False, 'import click\n'), ((33987, 34029), 'click.option', 'click.option', (['"""--use_cached"""'], {'is_flag': '(True)'}), "('--use_cached', is_flag=True)\n", (33999, 34029), False, 'import click\n'), ((34200, 34229), 'click.argument', 'click.argument', (['"""config_file"""'], {}), "('config_file')\n", (34214, 34229), False, 'import click\n'), ((34231, 34273), 'click.option', 'click.option', (['"""--use_cached"""'], {'is_flag': '(True)'}), "('--use_cached', is_flag=True)\n", (34243, 34273), False, 'import click\n'), ((34454, 34483), 'click.argument', 'click.argument', (['"""config_file"""'], {}), "('config_file')\n", (34468, 34483), False, 'import click\n'), ((34485, 34527), 'click.option', 'click.option', (['"""--use_cached"""'], {'is_flag': '(True)'}), "('--use_cached', is_flag=True)\n", (34497, 34527), False, 'import click\n'), ((1415, 1444), 'os.environ.get', 'os.environ.get', (['"""DISPLAY"""', '""""""'], {}), "('DISPLAY', '')\n", (1429, 1444), False, 'import os\n'), ((1521, 1542), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (1535, 1542), False, 'import matplotlib\n'), ((1852, 1949), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', 'BATCH_SIZE', '"""The number of samples in each batch."""'], {}), "('batch_size', BATCH_SIZE,\n 'The number of samples in each batch.')\n", (1879, 1949), True, 'import tensorflow as tf\n'), ((1959, 2072), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""max_num_batches"""', 'None', '"""Max number of batches to evaluate by default use all."""'], {}), "('max_num_batches', None,\n 'Max number of batches to evaluate by default use all.')\n", (1986, 2072), True, 'import tensorflow as tf\n'), ((2090, 2182), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""master"""', '""""""', '"""The address of the TensorFlow master to use."""'], {}), "('master', '',\n 'The address of the TensorFlow master to use.')\n", (2116, 2182), True, 'import tensorflow as tf\n'), ((2192, 2342), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""checkpoint_path"""', 'None', '"""The directory where the model was written to or an absolute path to a checkpoint file."""'], {}), "('checkpoint_path', None,\n 'The directory where the model was written to or an absolute path to a checkpoint file.'\n )\n", (2218, 2342), True, 'import tensorflow as tf\n'), ((2366, 2470), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""eval_dir"""', '"""/tmp/tfmodel/"""', '"""Directory where the results are saved to."""'], {}), "('eval_dir', '/tmp/tfmodel/',\n 'Directory where the results are saved to.')\n", (2392, 2470), True, 'import tensorflow as tf\n'), ((2488, 2604), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_preprocessing_threads"""', '(4)', '"""The number of threads used to create the batches."""'], {}), "('num_preprocessing_threads', 4,\n 'The number of threads used to create the batches.')\n", (2515, 2604), True, 'import tensorflow as tf\n'), ((2622, 2714), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""dataset_name"""', '"""plants"""', '"""The name of the dataset to load."""'], {}), "('dataset_name', 'plants',\n 'The name of the dataset to load.')\n", (2648, 2714), True, 'import tensorflow as tf\n'), ((2724, 2827), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""dataset_split_name"""', '"""validation"""', '"""The name of the train/test split."""'], {}), "('dataset_split_name', 'validation',\n 'The name of the train/test split.')\n", (2750, 2827), True, 'import tensorflow as tf\n'), ((2845, 2949), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""dataset_dir"""', 'None', '"""The directory where the dataset files are stored."""'], {}), "('dataset_dir', None,\n 'The directory where the dataset files are stored.')\n", (2871, 2949), True, 'import tensorflow as tf\n'), ((2967, 3202), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""labels_offset"""', '(0)', '"""An offset for the labels in the dataset. This flag is primarily used to evaluate the VGG and ResNet architectures which do not use a background class for the ImageNet dataset."""'], {}), "('labels_offset', 0,\n 'An offset for the labels in the dataset. This flag is primarily used to evaluate the VGG and ResNet architectures which do not use a background class for the ImageNet dataset.'\n )\n", (2994, 3202), True, 'import tensorflow as tf\n'), ((3237, 3342), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""model_name"""', '"""mobilenet_v1"""', '"""The name of the architecture to evaluate."""'], {}), "('model_name', 'mobilenet_v1',\n 'The name of the architecture to evaluate.')\n", (3263, 3342), True, 'import tensorflow as tf\n'), ((3360, 3517), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""preprocessing_name"""', 'None', '"""The name of the preprocessing to use. If left as `None`, then the model_name flag is used."""'], {}), "('preprocessing_name', None,\n 'The name of the preprocessing to use. If left as `None`, then the model_name flag is used.'\n )\n", (3386, 3517), True, 'import tensorflow as tf\n'), ((3541, 3700), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""moving_average_decay"""', 'None', '"""The decay to use for the moving average.If left as None, then moving averages are not used."""'], {}), "('moving_average_decay', None,\n 'The decay to use for the moving average.If left as None, then moving averages are not used.'\n )\n", (3566, 3700), True, 'import tensorflow as tf\n'), ((3724, 3795), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""eval_image_size"""', 'None', '"""Eval image size"""'], {}), "('eval_image_size', None, 'Eval image size')\n", (3751, 3795), True, 'import tensorflow as tf\n'), ((4197, 4234), 'tensorflow.gfile.IsDirectory', 'tf.gfile.IsDirectory', (['checkpoint_path'], {}), '(checkpoint_path)\n', (4217, 4234), True, 'import tensorflow as tf\n'), ((4400, 4456), 'tensorflow.python_io.tf_record_iterator', 'tf.python_io.tf_record_iterator', ([], {'path': 'tfrecords_filename'}), '(path=tfrecords_filename)\n', (4431, 4456), True, 'import tensorflow as tf\n'), ((5083, 5173), 'datasets.dataset_factory.get_dataset', 'dataset_factory.get_dataset', (['FLAGS.dataset_name', 'FLAGS.dataset_split_name', 'dataset_dir'], {}), '(FLAGS.dataset_name, FLAGS.dataset_split_name,\n dataset_dir)\n', (5110, 5173), False, 'from datasets import dataset_factory\n'), ((5334, 5421), 'nets.nets_factory.get_network_fn', 'nets_factory.get_network_fn', (['model_name'], {'num_classes': 'num_classes', 'is_training': '(False)'}), '(model_name, num_classes=num_classes,\n is_training=False)\n', (5361, 5421), False, 'from nets import nets_factory\n'), ((6271, 6349), 'preprocessing.preprocessing_factory.get_preprocessing', 'preprocessing_factory.get_preprocessing', (['preprocessing_name'], {'is_training': '(False)'}), '(preprocessing_name, is_training=False)\n', (6310, 6349), False, 'from preprocessing import preprocessing_factory\n'), ((6544, 6720), 'tensorflow.train.batch', 'tf.train.batch', (['[image, label]'], {'batch_size': 'FLAGS.batch_size', 'num_threads': 'FLAGS.num_preprocessing_threads', 'allow_smaller_final_batch': '(True)', 'capacity': '(5 * FLAGS.batch_size)'}), '([image, label], batch_size=FLAGS.batch_size, num_threads=\n FLAGS.num_preprocessing_threads, allow_smaller_final_batch=True,\n capacity=5 * FLAGS.batch_size)\n', (6558, 6720), True, 'import tensorflow as tf\n'), ((7292, 7312), 'tensorflow.argmax', 'tf.argmax', (['logits', '(1)'], {}), '(logits, 1)\n', (7301, 7312), True, 'import tensorflow as tf\n'), ((7441, 7459), 'tensorflow.squeeze', 'tf.squeeze', (['labels'], {}), '(labels)\n', (7451, 7459), True, 'import tensorflow as tf\n'), ((8667, 8717), 'tensorflow.logging.info', 'tf.logging.info', (["('Evaluating %s' % checkpoint_path)"], {}), "('Evaluating %s' % checkpoint_path)\n", (8682, 8717), True, 'import tensorflow as tf\n'), ((8740, 8768), 'datasets.plants.read_label_file', 'read_label_file', (['dataset_dir'], {}), '(dataset_dir)\n', (8755, 8768), False, 'from datasets.plants import read_label_file\n'), ((8789, 8810), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (8802, 8810), True, 'import tensorflow as tf\n'), ((8844, 8942), 'tensorflow.losses.softmax_cross_entropy', 'tf.losses.softmax_cross_entropy', (['one_hot_predictions', 'logits'], {'label_smoothing': '(0.0)', 'weights': '(1.0)'}), '(one_hot_predictions, logits,\n label_smoothing=0.0, weights=1.0)\n', (8875, 8942), True, 'import tensorflow as tf\n'), ((9745, 9834), 'tensorflow.python.training.monitored_session.ChiefSessionCreator', 'monitored_session.ChiefSessionCreator', ([], {'checkpoint_filename_with_path': 'checkpoint_path'}), '(checkpoint_filename_with_path=\n checkpoint_path)\n', (9782, 9834), False, 'from tensorflow.python.training import monitored_session\n'), ((9934, 10001), 'tensorflow.python.training.monitored_session.MonitoredSession', 'monitored_session.MonitoredSession', ([], {'session_creator': 'session_creator'}), '(session_creator=session_creator)\n', (9968, 10001), False, 'from tensorflow.python.training import monitored_session\n'), ((10211, 10225), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (10223, 10225), True, 'import matplotlib.pyplot as plt\n'), ((10537, 10559), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""Accent"""'], {}), "('Accent')\n", (10549, 10559), True, 'import matplotlib.pyplot as plt\n'), ((10715, 10746), 'numpy.zeros_like', 'np.zeros_like', (['confusion_matrix'], {}), '(confusion_matrix)\n', (10728, 10746), True, 'import numpy as np\n'), ((11475, 11521), 'os.path.join', 'os.path.join', (['save_dir', '"""confusion_matrix.png"""'], {}), "(save_dir, 'confusion_matrix.png')\n", (11487, 11521), False, 'import os\n'), ((11526, 11547), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pic_path'], {}), '(pic_path)\n', (11537, 11547), True, 'import matplotlib.pyplot as plt\n'), ((11605, 11615), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11613, 11615), True, 'import matplotlib.pyplot as plt\n'), ((11720, 11733), 'matplotlib.font_manager.FontManager', 'FontManager', ([], {}), '()\n', (11731, 11733), False, 'from matplotlib.font_manager import FontManager\n'), ((11796, 11875), 'subprocess.check_output', 'subprocess.check_output', (['"""fc-list :lang=zh-tw -f "%{family}\n\\""""'], {'shell': '(True)'}), '("""fc-list :lang=zh-tw -f "%{family}\n\\"""", shell=True)\n', (11819, 11875), False, 'import subprocess\n'), ((12327, 12336), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (12333, 12336), True, 'import numpy as np\n'), ((12345, 12362), 'numpy.max', 'np.max', (['x'], {'axis': '(2)'}), '(x, axis=2)\n', (12351, 12362), True, 'import numpy as np\n'), ((12667, 12695), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (12677, 12695), True, 'import matplotlib.pyplot as plt\n'), ((13049, 13077), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (13059, 13077), True, 'import matplotlib.pyplot as plt\n'), ((16155, 16174), 'collections.Counter', 'Counter', (['all_labels'], {}), '(all_labels)\n', (16162, 16174), False, 'from collections import Counter\n'), ((16361, 16395), 'os.path.join', 'os.path.join', (['directory', 'file_name'], {}), '(directory, file_name)\n', (16373, 16395), False, 'import os\n'), ((16404, 16434), 'h5py.File', 'h5py.File', (['info_file_path', '"""w"""'], {}), "(info_file_path, 'w')\n", (16413, 16434), False, 'import h5py\n'), ((16606, 16640), 'os.path.join', 'os.path.join', (['directory', 'file_name'], {}), '(directory, file_name)\n', (16618, 16640), False, 'import os\n'), ((17161, 17177), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (17172, 17177), False, 'from collections import Iterable, defaultdict\n'), ((18377, 18424), 'sklearn.preprocessing.label_binarize', 'label_binarize', (['labels'], {'classes': 'possible_labels'}), '(labels, classes=possible_labels)\n', (18391, 18424), False, 'from sklearn.preprocessing import label_binarize\n'), ((18446, 18469), 'numpy.array', 'np.array', (['probabilities'], {}), '(probabilities)\n', (18454, 18469), True, 'import numpy as np\n'), ((19248, 19307), 'sklearn.metrics.auc', 'auc', (["fpr['highest_probability']", "tpr['highest_probability']"], {}), "(fpr['highest_probability'], tpr['highest_probability'])\n", (19251, 19307), False, 'from sklearn.metrics import roc_curve, auc\n'), ((19536, 19567), 'sklearn.metrics.auc', 'auc', (["fpr['micro']", "tpr['micro']"], {}), "(fpr['micro'], tpr['micro'])\n", (19539, 19567), False, 'from sklearn.metrics import roc_curve, auc\n'), ((19861, 19883), 'numpy.zeros_like', 'np.zeros_like', (['all_fpr'], {}), '(all_fpr)\n', (19874, 19883), True, 'import numpy as np\n'), ((20117, 20148), 'sklearn.metrics.auc', 'auc', (["fpr['macro']", "tpr['macro']"], {}), "(fpr['macro'], tpr['macro'])\n", (20120, 20148), False, 'from sklearn.metrics import roc_curve, auc\n'), ((20238, 20282), 'numpy.argmax', 'np.argmax', (['(tpr[key_series] - fpr[key_series])'], {}), '(tpr[key_series] - fpr[key_series])\n', (20247, 20282), True, 'import numpy as np\n'), ((20663, 20675), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (20673, 20675), True, 'import matplotlib.pyplot as plt\n'), ((20690, 20737), 'itertools.cycle', 'cycle', (["['aqua', 'darkorange', 'cornflowerblue']"], {}), "(['aqua', 'darkorange', 'cornflowerblue'])\n", (20695, 20737), False, 'from itertools import cycle\n'), ((21322, 21342), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (21330, 21342), True, 'import matplotlib.pyplot as plt\n'), ((21347, 21368), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (21355, 21368), True, 'import matplotlib.pyplot as plt\n'), ((21373, 21406), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False Positive Rate"""'], {}), "('False Positive Rate')\n", (21383, 21406), True, 'import matplotlib.pyplot as plt\n'), ((21411, 21443), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True Positive Rate"""'], {}), "('True Positive Rate')\n", (21421, 21443), True, 'import matplotlib.pyplot as plt\n'), ((21448, 21470), 'matplotlib.pyplot.title', 'plt.title', (['"""ROC curve"""'], {}), "('ROC curve')\n", (21457, 21470), True, 'import matplotlib.pyplot as plt\n'), ((21475, 21504), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (21485, 21504), True, 'import matplotlib.pyplot as plt\n'), ((21520, 21559), 'os.path.join', 'os.path.join', (['save_dir', '"""roc_curve.png"""'], {}), "(save_dir, 'roc_curve.png')\n", (21532, 21559), False, 'import os\n'), ((21564, 21585), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pic_path'], {}), '(pic_path)\n', (21575, 21585), True, 'import matplotlib.pyplot as plt\n'), ((21648, 21658), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (21656, 21658), True, 'import matplotlib.pyplot as plt\n'), ((26251, 26297), 'cv2.resize', 'cv2.resize', (['image_np', '(image_size, image_size)'], {}), '(image_np, (image_size, image_size))\n', (26261, 26297), False, 'import cv2\n'), ((26360, 26387), 'numpy.expand_dims', 'np.expand_dims', (['image_np', '(0)'], {}), '(image_np, 0)\n', (26374, 26387), True, 'import numpy as np\n'), ((26401, 26440), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (26420, 26440), True, 'import tensorflow as tf\n'), ((29154, 29199), 'coremltools.models.MLModel', 'coremltools.models.MLModel', (['coreml_model_file'], {}), '(coreml_model_file)\n', (29180, 29199), False, 'import coremltools\n'), ((30575, 30599), 'PIL.Image.open', 'PIL.Image.open', (['filename'], {}), '(filename)\n', (30589, 30599), False, 'import PIL\n'), ((30709, 30729), 'numpy.argmax', 'np.argmax', (['logits', '(1)'], {}), '(logits, 1)\n', (30718, 30729), True, 'import numpy as np\n'), ((30795, 30816), 'numpy.argsort', 'np.argsort', (['logits', '(1)'], {}), '(logits, 1)\n', (30805, 30816), True, 'import numpy as np\n'), ((31777, 31805), 'cv2.resize', 'cv2.resize', (['saliency', '(l, l)'], {}), '(saliency, (l, l))\n', (31787, 31805), False, 'import cv2\n'), ((31821, 31863), 'cv2.cvtColor', 'cv2.cvtColor', (['saliency', 'cv2.COLOR_GRAY2RGB'], {}), '(saliency, cv2.COLOR_GRAY2RGB)\n', (31833, 31863), False, 'import cv2\n'), ((32785, 32832), 'os.path.join', 'os.path.join', (['checkpoint_dir', '"""frozen_graph.pb"""'], {}), "(checkpoint_dir, 'frozen_graph.pb')\n", (32797, 32832), False, 'import os\n'), ((32927, 32955), 'datasets.plants.read_label_file', 'read_label_file', (['dataset_dir'], {}), '(dataset_dir)\n', (32942, 32955), False, 'from datasets.plants import read_label_file\n'), ((32971, 32995), 'PIL.Image.open', 'PIL.Image.open', (['filename'], {}), '(filename)\n', (32985, 32995), False, 'import PIL\n'), ((34882, 34910), 'datasets.plants.read_label_file', 'read_label_file', (['dataset_dir'], {}), '(dataset_dir)\n', (34897, 34910), False, 'from datasets.plants import read_label_file\n'), ((4262, 4305), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['checkpoint_path'], {}), '(checkpoint_path)\n', (4288, 4305), True, 'import tensorflow as tf\n'), ((4536, 4554), 'tensorflow.train.Example', 'tf.train.Example', ([], {}), '()\n', (4552, 4554), True, 'import tensorflow as tf\n'), ((6928, 7005), 'tensorflow.train.ExponentialMovingAverage', 'tf.train.ExponentialMovingAverage', (['FLAGS.moving_average_decay', 'tf_global_step'], {}), '(FLAGS.moving_average_decay, tf_global_step)\n', (6961, 7005), True, 'import tensorflow as tf\n'), ((7795, 7884), 'tensorflow.confusion_matrix', 'tf.confusion_matrix', ([], {'labels': 'labels', 'num_classes': 'num_classes', 'predictions': 'predictions'}), '(labels=labels, num_classes=num_classes, predictions=\n predictions)\n', (7814, 7884), True, 'import tensorflow as tf\n'), ((8155, 8209), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['summary_name', 'value'], {'collections': '[]'}), '(summary_name, value, collections=[])\n', (8172, 8209), True, 'import tensorflow as tf\n'), ((8223, 8258), 'tensorflow.Print', 'tf.Print', (['op', '[value]', 'summary_name'], {}), '(op, [value], summary_name)\n', (8231, 8258), True, 'import tensorflow as tf\n'), ((8267, 8315), 'tensorflow.add_to_collection', 'tf.add_to_collection', (['tf.GraphKeys.SUMMARIES', 'op'], {}), '(tf.GraphKeys.SUMMARIES, op)\n', (8287, 8315), True, 'import tensorflow as tf\n'), ((8964, 9012), 'tensorflow.gradients', 'tf.gradients', (['softmax_cross_entropy_loss', 'images'], {}), '(softmax_cross_entropy_loss, images)\n', (8976, 9012), True, 'import tensorflow as tf\n'), ((10823, 10849), 'seaborn.axes_style', 'sns.axes_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (10837, 10849), True, 'import seaborn as sns\n'), ((10859, 11012), 'seaborn.heatmap', 'sns.heatmap', (['confusion_matrix'], {'linewidths': '(0.2)', 'linecolor': '"""#eeeeee"""', 'xticklabels': '(True)', 'yticklabels': '(True)', 'mask': 'mask', 'annot': '(False)', 'ax': 'ax', 'cmap': 'cmap'}), "(confusion_matrix, linewidths=0.2, linecolor='#eeeeee',\n xticklabels=True, yticklabels=True, mask=mask, annot=False, ax=ax, cmap\n =cmap)\n", (10870, 11012), True, 'import seaborn as sns\n'), ((12877, 12899), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file_name'], {}), '(file_name)\n', (12888, 12899), True, 'import matplotlib.pyplot as plt\n'), ((12980, 12990), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12988, 12990), True, 'import matplotlib.pyplot as plt\n'), ((17195, 17216), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (17206, 17216), False, 'import os\n'), ((18784, 18819), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_binary[:, i]', 'y_scores'], {}), '(y_binary[:, i], y_scores)\n', (18793, 18819), False, 'from sklearn.metrics import roc_curve, auc\n'), ((18841, 18860), 'sklearn.metrics.auc', 'auc', (['fpr[i]', 'tpr[i]'], {}), '(fpr[i], tpr[i])\n', (18844, 18860), False, 'from sklearn.metrics import roc_curve, auc\n'), ((19935, 19969), 'numpy.interp', 'np.interp', (['all_fpr', 'fpr[i]', 'tpr[i]'], {}), '(all_fpr, fpr[i], tpr[i])\n', (19944, 19969), True, 'import numpy as np\n'), ((25820, 25848), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['pb_file_path'], {}), '(pb_file_path)\n', (25834, 25848), True, 'import tensorflow as tf\n'), ((25875, 25888), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (25886, 25888), True, 'import tensorflow as tf\n'), ((26450, 26473), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (26460, 26473), True, 'import tensorflow as tf\n'), ((27816, 27851), 'os.path.join', 'os.path.join', (['dataset_dir', 'filename'], {}), '(dataset_dir, filename)\n', (27828, 27851), False, 'import os\n'), ((27871, 27895), 'PIL.Image.open', 'PIL.Image.open', (['filename'], {}), '(filename)\n', (27885, 27895), False, 'import PIL\n'), ((28054, 28071), 'numpy.argmax', 'np.argmax', (['logits'], {}), '(logits)\n', (28063, 28071), True, 'import numpy as np\n'), ((28241, 28259), 'numpy.argsort', 'np.argsort', (['logits'], {}), '(logits)\n', (28251, 28259), True, 'import numpy as np\n'), ((32142, 32160), 'numpy.copy', 'np.copy', (['(1 - alpha)'], {}), '(1 - alpha)\n', (32149, 32160), True, 'import numpy as np\n'), ((33158, 33178), 'numpy.argmax', 'np.argmax', (['logits', '(1)'], {}), '(logits, 1)\n', (33167, 33178), True, 'import numpy as np\n'), ((33695, 33707), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (33704, 33707), False, 'import yaml\n'), ((33882, 33894), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (33891, 33894), False, 'import yaml\n'), ((34119, 34131), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (34128, 34131), False, 'import yaml\n'), ((34368, 34380), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (34377, 34380), False, 'import yaml\n'), ((34625, 34637), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (34634, 34637), False, 'import yaml\n'), ((4909, 4919), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4917, 4919), True, 'import tensorflow as tf\n'), ((12472, 12490), 'numpy.clip', 'np.clip', (['x', '(0)', '(255)'], {}), '(x, 0, 255)\n', (12479, 12490), True, 'import numpy as np\n'), ((12770, 12802), 'matplotlib.pyplot.subplot', 'plt.subplot', (['n_row', 'n_columns', 'i'], {}), '(n_row, n_columns, i)\n', (12781, 12802), True, 'import matplotlib.pyplot as plt\n'), ((12815, 12830), 'matplotlib.pyplot.imshow', 'plt.imshow', (['col'], {}), '(col)\n', (12825, 12830), True, 'import matplotlib.pyplot as plt\n'), ((16663, 16693), 'h5py.File', 'h5py.File', (['info_file_path', '"""r"""'], {}), "(info_file_path, 'r')\n", (16672, 16693), False, 'import h5py\n'), ((20957, 21014), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr[i]', 'tpr[i]'], {'color': 'color', 'lw': 'lw', 'label': 'label'}), '(fpr[i], tpr[i], color=color, lw=lw, label=label)\n', (20965, 21014), True, 'import matplotlib.pyplot as plt\n'), ((23399, 23414), 'numpy.asarray', 'np.asarray', (['im2'], {}), '(im2)\n', (23409, 23414), True, 'import numpy as np\n'), ((24113, 24128), 'numpy.asarray', 'np.asarray', (['im2'], {}), '(im2)\n', (24123, 24128), True, 'import numpy as np\n'), ((31684, 31704), 'numpy.asarray', 'np.asarray', (['image_np'], {}), '(image_np)\n', (31694, 31704), True, 'import numpy as np\n'), ((32491, 32528), 'cv2.add', 'cv2.add', (['(paint * (1 - alpha))', 'roi_img'], {}), '(paint * (1 - alpha), roi_img)\n', (32498, 32528), False, 'import cv2\n'), ((13802, 13824), 'math.ceil', 'math.ceil', (['num_batches'], {}), '(num_batches)\n', (13811, 13824), False, 'import math\n'), ((18562, 18592), 'numpy.max', 'np.max', (['y_score_matrix'], {'axis': '(1)'}), '(y_score_matrix, axis=1)\n', (18568, 18592), True, 'import numpy as np\n'), ((14236, 14257), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (14255, 14257), False, 'import traceback\n'), ((32263, 32284), 'numpy.array', 'np.array', (['[0, 0, 255]'], {}), '([0, 0, 255])\n', (32271, 32284), True, 'import numpy as np\n'), ((32339, 32362), 'numpy.array', 'np.array', (['[255, 200, 0]'], {}), '([255, 200, 0])\n', (32347, 32362), True, 'import numpy as np\n'), ((14473, 14489), 'numpy.matrix', 'np.matrix', (['value'], {}), '(value)\n', (14482, 14489), True, 'import numpy as np\n'), ((14557, 14573), 'numpy.matrix', 'np.matrix', (['value'], {}), '(value)\n', (14566, 14573), True, 'import numpy as np\n')]
''' File: \resource.py Project: NumberRecongization Created Date: Monday March 26th 2018 Author: Huisama ----- Last Modified: Saturday March 31st 2018 11:08:21 pm Modified By: Huisama ----- Copyright (c) 2018 Hui ''' import os import scipy.misc as scm import random import numpy as np import PIL # STD_WIDTH = 667 # STD_HEIGHT = 83 STD_WIDTH = 252 STD_HEIGHT = 40 import matplotlib.pyplot as plt ''' This class stands for dataset and provides data processing oparations ''' class DataSet(object): def __init__(self, data_dir, batch_size): self.data_dir = data_dir self.batch_size = batch_size self.train_set_ratio = 0.8 self.validate_set_ratio = 0.1 ''' Get mean width and height of dataset ''' def get_data_mean_size(self): full_width, full_height = 0, 0 count = 0 def dummy(self, dir, file): nonlocal full_width, full_height, count filename = os.path.splitext(file) if filename[1] == '.png': fullfile = os.path.join(self.data_dir, dir, file) width, height = self.get_size(fullfile) full_width += width full_height += height print("%s, %s" % (width, height)) count += 1 self.lookup_dataset_dir(dummy) return full_width / count, full_height / count ''' Get width and height of a single image ''' def get_size(self, image_file_path): img = scm.imread(image_file_path) return img.shape[1], img.shape[0] ''' Load dataset ''' def load_dataset(self): self.neg_data = [] self.pos_data = [] self.poscount = 0 self.negcount = 0 def dummy(self, dir, file): if file == 'dataset.txt': # open and read in with open(os.path.join(self.data_dir, dir, file)) as file: for line in file: newline = line.strip() splittext = newline.split('\t') if int(splittext[2]) == 1: self.pos_data.append(( os.path.join(self.data_dir, dir, splittext[0]), os.path.join(self.data_dir, dir, splittext[1]), int(splittext[2]))) self.poscount += 1 else: self.neg_data.append(( os.path.join(self.data_dir, dir, splittext[0]), os.path.join(self.data_dir, dir, splittext[1]), int(splittext[2]))) self.negcount += 1 self.lookup_dataset_dir(dummy) # print("negcount: %d, poscount: %d" % (self.negcount, self.poscount)) return True ''' Check if image has 4 channel ''' def check_image_channels(self): def dummy(self, dir, file): filename = os.path.splitext(file) if filename[1] == '.png': fullfile = os.path.join(self.data_dir, dir, file) img = scm.imread(fullfile) if img.shape[2] != 3: print("Wrong image: %d", fullfile) self.lookup_dataset_dir(dummy) ''' Generate dataset after loading dataset ''' def generate_dataset(self): random.shuffle(self.neg_data) random.shuffle(self.pos_data) # total = len(self.data) pos_total = len(self.pos_data) pos_train_size = int(pos_total * self.train_set_ratio) pos_validate_size = int(pos_total * self.validate_set_ratio) # pos_test_size = pos_total - pos_train_size - pos_validate_size neg_total = len(self.neg_data) neg_train_size = int(neg_total * self.train_set_ratio) neg_validate_size = int(neg_total * self.validate_set_ratio) # neg_test_size = neg_total - neg_train_size - neg_validate_size self.batch_index = 0 self.pos_train_set = self.pos_data[0 : pos_train_size] pos_validation_set = self.pos_data[pos_train_size : pos_train_size + pos_validate_size] pos_test_set = self.pos_data[pos_train_size + pos_validate_size : pos_total] self.neg_train_set = self.neg_data[0 : neg_train_size] neg_validation_set = self.neg_data[neg_train_size : neg_train_size + neg_validate_size] neg_test_set = self.neg_data[neg_train_size + neg_validate_size : neg_total] dec = len(neg_validation_set) - len(pos_validation_set) for _ in range(dec): pos_validation_set.append(random.choice(self.pos_data)) dec = len(neg_test_set) - len(pos_test_set) for _ in range(dec): pos_test_set.append(random.choice(self.pos_data)) self.validation_set = [] self.validation_set.extend(pos_validation_set) self.validation_set.extend(neg_validation_set) self.test_set = [] self.test_set.extend(pos_test_set) self.test_set.extend(neg_test_set) ''' Ergodic files in dataset dir ''' def lookup_dataset_dir(self, callback): for _, dirs, _ in os.walk(self.data_dir): for dir in dirs: for _, _, files in os.walk(os.path.join(self.data_dir, dir)): for file in files: callback(self, dir, file) ''' Get iamge data ''' def get_image_data(self, tp): image1, image2 = scm.imread(tp[0]), scm.imread(tp[1]) newimg1 = np.array(scm.imresize(image1, (STD_HEIGHT, STD_WIDTH))) newimg2 = np.array(scm.imresize(image2, (STD_HEIGHT, STD_WIDTH))) # img_comb = np.hstack((newimg1, newimg2))[:, :, np.newaxis] img_comb = np.dstack((newimg1, newimg2)) return img_comb / 255.0 ''' Get a batch of dataset ''' def next_batch(self, batch_size): random_neg = batch_size // 2 random_pos = batch_size - random_neg org_pos_data = [] org_neg_data = [] for _ in range(random_pos): org_pos_data.append(random.choice(self.pos_train_set)) for _ in range(random_neg): org_neg_data.append(random.choice(self.neg_train_set)) pos_data = list(map(self.get_image_data, org_pos_data)) pos_labels = list(map(lambda e: e[2], org_pos_data)) neg_data = list(map(self.get_image_data, org_neg_data)) neg_labels = list(map(lambda e: e[2], org_neg_data)) pos_data.extend(neg_data) pos_labels.extend(neg_labels) return np.array(pos_data), np.array(pos_labels) ''' Get validation dataset ''' def get_validation_set(self): data = np.array(list(map(self.get_image_data, self.validation_set))) labels = np.array(list(map(lambda e: e[2], self.validation_set))) return data, labels ''' Get test dataset ''' def get_test_set(self): data = np.array(list(map(self.get_image_data, self.test_set))) labels = np.array(list(map(lambda e: e[2], self.test_set))) return data, labels # obj = DataSet('./Pic', 8) # obj.check_image_channels() # obj.load_dataset() # obj.generate_dataset() # data, labels = obj.next_batch(8) # while done != True: # print(data[0][0].dtype) # data, labels, done = obj.next_batch()
[ "numpy.dstack", "random.shuffle", "os.walk", "random.choice", "numpy.array", "os.path.splitext", "scipy.misc.imresize", "os.path.join", "scipy.misc.imread" ]
[((1508, 1535), 'scipy.misc.imread', 'scm.imread', (['image_file_path'], {}), '(image_file_path)\n', (1518, 1535), True, 'import scipy.misc as scm\n'), ((3505, 3534), 'random.shuffle', 'random.shuffle', (['self.neg_data'], {}), '(self.neg_data)\n', (3519, 3534), False, 'import random\n'), ((3543, 3572), 'random.shuffle', 'random.shuffle', (['self.pos_data'], {}), '(self.pos_data)\n', (3557, 3572), False, 'import random\n'), ((5316, 5338), 'os.walk', 'os.walk', (['self.data_dir'], {}), '(self.data_dir)\n', (5323, 5338), False, 'import os\n'), ((5919, 5948), 'numpy.dstack', 'np.dstack', (['(newimg1, newimg2)'], {}), '((newimg1, newimg2))\n', (5928, 5948), True, 'import numpy as np\n'), ((960, 982), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (976, 982), False, 'import os\n'), ((3097, 3119), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (3113, 3119), False, 'import os\n'), ((5635, 5652), 'scipy.misc.imread', 'scm.imread', (['tp[0]'], {}), '(tp[0])\n', (5645, 5652), True, 'import scipy.misc as scm\n'), ((5654, 5671), 'scipy.misc.imread', 'scm.imread', (['tp[1]'], {}), '(tp[1])\n', (5664, 5671), True, 'import scipy.misc as scm\n'), ((5700, 5745), 'scipy.misc.imresize', 'scm.imresize', (['image1', '(STD_HEIGHT, STD_WIDTH)'], {}), '(image1, (STD_HEIGHT, STD_WIDTH))\n', (5712, 5745), True, 'import scipy.misc as scm\n'), ((5774, 5819), 'scipy.misc.imresize', 'scm.imresize', (['image2', '(STD_HEIGHT, STD_WIDTH)'], {}), '(image2, (STD_HEIGHT, STD_WIDTH))\n', (5786, 5819), True, 'import scipy.misc as scm\n'), ((6750, 6768), 'numpy.array', 'np.array', (['pos_data'], {}), '(pos_data)\n', (6758, 6768), True, 'import numpy as np\n'), ((6770, 6790), 'numpy.array', 'np.array', (['pos_labels'], {}), '(pos_labels)\n', (6778, 6790), True, 'import numpy as np\n'), ((1048, 1086), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'file'], {}), '(self.data_dir, dir, file)\n', (1060, 1086), False, 'import os\n'), ((3185, 3223), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'file'], {}), '(self.data_dir, dir, file)\n', (3197, 3223), False, 'import os\n'), ((3246, 3266), 'scipy.misc.imread', 'scm.imread', (['fullfile'], {}), '(fullfile)\n', (3256, 3266), True, 'import scipy.misc as scm\n'), ((4760, 4788), 'random.choice', 'random.choice', (['self.pos_data'], {}), '(self.pos_data)\n', (4773, 4788), False, 'import random\n'), ((4904, 4932), 'random.choice', 'random.choice', (['self.pos_data'], {}), '(self.pos_data)\n', (4917, 4932), False, 'import random\n'), ((6271, 6304), 'random.choice', 'random.choice', (['self.pos_train_set'], {}), '(self.pos_train_set)\n', (6284, 6304), False, 'import random\n'), ((6375, 6408), 'random.choice', 'random.choice', (['self.neg_train_set'], {}), '(self.neg_train_set)\n', (6388, 6408), False, 'import random\n'), ((5412, 5444), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir'], {}), '(self.data_dir, dir)\n', (5424, 5444), False, 'import os\n'), ((1887, 1925), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'file'], {}), '(self.data_dir, dir, file)\n', (1899, 1925), False, 'import os\n'), ((2240, 2286), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'splittext[0]'], {}), '(self.data_dir, dir, splittext[0])\n', (2252, 2286), False, 'import os\n'), ((2320, 2366), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'splittext[1]'], {}), '(self.data_dir, dir, splittext[1])\n', (2332, 2366), False, 'import os\n'), ((2580, 2626), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'splittext[0]'], {}), '(self.data_dir, dir, splittext[0])\n', (2592, 2626), False, 'import os\n'), ((2660, 2706), 'os.path.join', 'os.path.join', (['self.data_dir', 'dir', 'splittext[1]'], {}), '(self.data_dir, dir, splittext[1])\n', (2672, 2706), False, 'import os\n')]
import tensorflow as tf import numpy as np # training set. Contains a row of size 5 per train example. The row is same as a sentence, with words replaced # by its equivalent unique index. The below dataset contains 6 unique words numbered 0-5. Ideally the word vector for # 4 and 5 indexed words should be same. X_train = np.array([[0,1,4,2,3],[0,1,5,2,3]]) # output dummy for testing purpose y_train = np.array([0,1]) # Create the embeddings with tf.name_scope("embeddings"): # Initiliaze the embedding vector by randomly distributing the weights. embedding = tf.Variable(tf.random_uniform((6, 3), -1, 1)) # create the embedding layer embed = tf.nn.embedding_lookup(embedding, X_train) # So that we can apply a convolution 2d operations on top the expanded single channel embedded vectors embedded_chars_expanded = tf.expand_dims(embed, -1) with tf.Session() as sess: sess.run(tf.global_variables_initializer()); result,result_expanded = sess.run([embed,embedded_chars_expanded]); print(result_expanded.shape) print(result) print(result_expanded) # OUTPUT # result # [[[ 0.89598155 0.4275496 0.00858593] # [ 0.21602225 -0.44228792 -0.20533657] # [ 0.9624436 -0.99176955 0.15964746] # [-0.29004955 0.470721 0.00804782] # [ 0.7497003 0.6044979 -0.5612638 ]] # # [[ 0.89598155 0.4275496 0.00858593] # [ 0.21602225 -0.44228792 -0.20533657] # [-0.48809385 -0.55618596 -0.73995876] # [-0.29004955 0.470721 0.00804782] # [ 0.7497003 0.6044979 -0.5612638 ]]] # result_expanded - has a dimension of (2,5,3,1) # [[[[-0.45975637] # [-0.5756638 ] # [ 0.7002065 ]] # # [[ 0.2708087 ] # [ 0.7985747 ] # [ 0.57897186]] # # [[ 0.6642673 ] # [ 0.6548476 ] # [ 0.00760126]] # # [[-0.7074845 ] # [ 0.5100081 ] # [ 0.7232883 ]] # # [[ 0.19342017] # [-0.46509933] # [ 0.8361807 ]]] # # # [[[-0.45975637] # [-0.5756638 ] # [ 0.7002065 ]] # # [[ 0.2708087 ] # [ 0.7985747 ] # [ 0.57897186]] # # [[-0.90803576] # [ 0.75451994] # [ 0.8864901 ]] # # [[-0.7074845 ] # [ 0.5100081 ] # [ 0.7232883 ]] # # [[ 0.19342017] # [-0.46509933] # [ 0.8361807 ]]]]
[ "tensorflow.random_uniform", "tensorflow.nn.embedding_lookup", "tensorflow.global_variables_initializer", "tensorflow.Session", "numpy.array", "tensorflow.name_scope", "tensorflow.expand_dims" ]
[((324, 368), 'numpy.array', 'np.array', (['[[0, 1, 4, 2, 3], [0, 1, 5, 2, 3]]'], {}), '([[0, 1, 4, 2, 3], [0, 1, 5, 2, 3]])\n', (332, 368), True, 'import numpy as np\n'), ((406, 422), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (414, 422), True, 'import numpy as np\n'), ((453, 480), 'tensorflow.name_scope', 'tf.name_scope', (['"""embeddings"""'], {}), "('embeddings')\n", (466, 480), True, 'import tensorflow as tf\n'), ((695, 737), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embedding', 'X_train'], {}), '(embedding, X_train)\n', (717, 737), True, 'import tensorflow as tf\n'), ((876, 901), 'tensorflow.expand_dims', 'tf.expand_dims', (['embed', '(-1)'], {}), '(embed, -1)\n', (890, 901), True, 'import tensorflow as tf\n'), ((908, 920), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (918, 920), True, 'import tensorflow as tf\n'), ((586, 618), 'tensorflow.random_uniform', 'tf.random_uniform', (['(6, 3)', '(-1)', '(1)'], {}), '((6, 3), -1, 1)\n', (603, 618), True, 'import tensorflow as tf\n'), ((943, 976), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (974, 976), True, 'import tensorflow as tf\n')]
from astropy.io import ascii, fits from astropy.table import QTable, Table import arviz as az from astropy.coordinates import SkyCoord from astropy import units as u import os import pymoc from astropy import wcs from astropy.table import vstack, hstack import numpy as np import xidplus # # Applying XID+CIGALE to Extreme Starbursts # In this notebook, we read in the data files and prepare them for fitting with XID+CIGALE, the SED prior model extension to XID+. Here we focus on sources in [Rowan-Robinson et al. 2018](https://arxiv.org/abs/1704.07783) and claimed to have a star formation rate of $> 10^{3}\mathrm{M_{\odot}yr^{-1}}$ # In[2]: def process_prior(c,new_Table=None, path_to_data=['../../../data/'], field=['Lockman-SWIRE'], path_to_SPIRE=['/Volumes/pdh_storage/dmu_products/dmu19/dmu19_HELP-SPIRE-maps/data/'], redshift_file=["/Volumes/pdh_storage/dmu_products/dmu24/dmu24_Lockman-SWIRE/data/master_catalogue_Lockman-SWIRE_20170710_photoz_20170802_r_and_irac1_optimised_UPDATED_IDs_20180219.fits"], redshift_prior=[0.1,2.0], radius=6.0, alt_model=False): # Import required modules # In[3]: # In[4]: # Set image and catalogue filenames # In[5]: #Folder containing maps pswfits=path_to_SPIRE[0]+'{}_SPIRE250_v1.0.fits'.format(field[0])#SPIRE 250 map pmwfits=path_to_SPIRE[0]+'{}_SPIRE350_v1.0.fits'.format(field[0])#SPIRE 350 map plwfits=path_to_SPIRE[0]+'{}_SPIRE500_v1.0.fits'.format(field[0])#SPIRE 500 map #output folder output_folder='./' # Load in images, noise maps, header info and WCS information # In[6]: #-----250------------- hdulist = fits.open(pswfits) im250phdu=hdulist[0].header im250hdu=hdulist[1].header im250=hdulist[1].data*1.0E3 #convert to mJy nim250=hdulist[3].data*1.0E3 #convert to mJy w_250 = wcs.WCS(hdulist[1].header) pixsize250=np.abs(3600.0*w_250.wcs.cdelt[0]) #pixel size (in arcseconds) hdulist.close() #-----350------------- hdulist = fits.open(pmwfits) im350phdu=hdulist[0].header im350hdu=hdulist[1].header im350=hdulist[1].data*1.0E3 #convert to mJy nim350=hdulist[3].data*1.0E3 #convert to mJy w_350 = wcs.WCS(hdulist[1].header) pixsize350=np.abs(3600.0*w_350.wcs.cdelt[0]) #pixel size (in arcseconds) hdulist.close() #-----500------------- hdulist = fits.open(plwfits) im500phdu=hdulist[0].header im500hdu=hdulist[1].header im500=hdulist[1].data*1.0E3 #convert to mJy nim500=hdulist[3].data*1.0E3 #convert to mJy w_500 = wcs.WCS(hdulist[1].header) pixsize500=np.abs(3600.0*w_500.wcs.cdelt[0]) #pixel size (in arcseconds) hdulist.close() # XID+ uses Multi Order Coverage (MOC) maps for cutting down maps and catalogues so they cover the same area. It can also take in MOCs as selection functions to carry out additional cuts. Lets use the python module [pymoc](http://pymoc.readthedocs.io/en/latest/) to create a MOC, centered on a specific position we are interested in. We will use a HEALPix order of 15 (the resolution: higher order means higher resolution) moc=pymoc.util.catalog.catalog_to_moc(c,100,15) # Load in catalogue you want to fit (and make any cuts). Here we use HELP's VO database and directly call it using PyVO # In[10]: import pyvo as vo service = vo.dal.TAPService("https://herschel-vos.phys.sussex.ac.uk/__system__/tap/run/tap") # In[11]: resultset = service.search("SELECT TOP 10000 * FROM herschelhelp.main WHERE 1=CONTAINS(POINT('ICRS', ra, dec),CIRCLE('ICRS',"+str(c.ra.deg[0])+", "+str(c.dec.deg[0])+", 0.028 ))") # In[12]: masterlist=resultset.table def construct_prior(Table=None): from astropy.coordinates import SkyCoord #first use standard cut (i.e. not star and is detected in at least 3 opt/nir bands) prior_list=masterlist[(masterlist['flag_gaia']!=3) & (masterlist['flag_optnir_det']>=3)] #make skycoord from masterlist catalog=SkyCoord(ra=masterlist['ra'],dec=masterlist['dec']) #make skycoord from input table c = SkyCoord(ra=Table['ra'], dec=Table['dec']) #search around all of the new sources idxc, idxcatalog, d2d, d3d=catalog.search_around_sky(c,radius*u.arcsec) #for every new sources for src in range(0,len(Table)): #limit to matches around interested sources ind = idxc == src #if there are matches if ind.sum() >0: #choose the closest and check if its in the prior list all ready in_prior=prior_list['help_id']==masterlist[idxcatalog][ind][np.argmin(d2d[ind])]['help_id'] #if its not in prior list if in_prior.sum() <1: print(in_prior.sum()) #add to appended sources prior_list=vstack([prior_list,masterlist[idxcatalog][ind][np.argmin(d2d[ind])]]) return prior_list # In[64]: import astropy.units as u #create table of candidate source t = QTable([c.ra, c.dec], names=('ra', 'dec')) #add candidate source to new sources table, create prior list if new_Table is not None: prior_list=construct_prior(vstack([t,new_Table])) else: prior_list = construct_prior(t) if alt_model==True: sep = 18 separation = c.separation(SkyCoord(prior_list['ra'], prior_list['dec'])).arcsec remove_ind = (separation > np.min(separation)) & (separation < sep) prior_list.remove_rows(remove_ind) # ## Get Redshift and Uncertianty # # <NAME> defines a median and a hierarchical bayes combination redshift. We need uncertianty so lets match via `help_id` # In[26]: photoz=Table.read(redshift_file[0]) # In[27]: #help_id=np.empty((len(photoz)),dtype=np.dtype('U27')) for i in range(0,len(photoz)): photoz['help_id'][i]=str(photoz['help_id'][i].strip()).encode('utf-8') #photoz['help_id']=help_id # In[28]: from astropy.table import Column, MaskedColumn prior_list['redshift']=MaskedColumn(np.full((len(prior_list)),fill_value=redshift_prior[0]),mask=[False]*len(prior_list)) prior_list.add_column(MaskedColumn(np.full((len(prior_list)),fill_value=redshift_prior[1]),mask=[False]*len(prior_list),name='redshift_unc')) # In[29]: photoz # In[30]: ii=0 for i in range(0,len(prior_list)): ind=photoz['help_id'] == prior_list['help_id'][i] try: if photoz['z1_median'][ind]>0.0: prior_list['redshift'][i]=photoz['z1_median'][ind] prior_list['redshift_unc'][i]=np.max(np.array([np.abs(photoz['z1_median'][ind]-photoz['z1_min'][ind]),np.abs(photoz['z1_max'][ind]-photoz['z1_median'][ind])])) #prior_list['redshift_unc'].mask[i]=False #prior_list['redshift'].mask[i]=False except ValueError: None # In[33]: dist_matrix=np.zeros((len(prior_list),len(prior_list))) from astropy.coordinates import SkyCoord from astropy import units as u for i in range(0,len(prior_list)): for j in range(0,len(prior_list)): if i>j: coord1 = SkyCoord(ra=prior_list['ra'][i]*u.deg,dec=prior_list['dec'][i]*u.deg,frame='icrs') coord2=SkyCoord(ra=prior_list['ra'][j]*u.deg,dec=prior_list['dec'][j]*u.deg) dist_matrix[i,j] = coord1.separation(coord2).value # In[35]: ind=(np.tril(dist_matrix)<1.0/3600.0) & (np.tril(dist_matrix)>0) xx,yy=np.meshgrid(np.arange(0,len(prior_list)),np.arange(0,len(prior_list))) yy[ind] # In[36]: prior_list[yy[ind]] # In[37]: prior_list['redshift'].mask[yy[ind]]=True # In[38]: prior_list=prior_list[prior_list['redshift'].mask == False] # In[39]: prior_list # XID+ is built around two python classes. A prior and posterior class. There should be a prior class for each map being fitted. It is initiated with a map, noise map, primary header and map header and can be set with a MOC. It also requires an input prior catalogue and point spread function. # # In[40]: #---prior250-------- prior250=xidplus.prior(im250,nim250,im250phdu,im250hdu, moc=moc)#Initialise with map, uncertianty map, wcs info and primary header prior250.prior_cat(prior_list['ra'],prior_list['dec'],'photoz',ID=prior_list['help_id']) prior250.prior_bkg(-5.0,5)#Set prior on background (assumes Gaussian pdf with mu and sigma) #---prior350-------- prior350=xidplus.prior(im350,nim350,im350phdu,im350hdu, moc=moc) prior350.prior_cat(prior_list['ra'],prior_list['dec'],'photoz',ID=prior_list['help_id']) prior350.prior_bkg(-5.0,5) #---prior500-------- prior500=xidplus.prior(im500,nim500,im500phdu,im500hdu, moc=moc) prior500.prior_cat(prior_list['ra'],prior_list['dec'],'photoz',ID=prior_list['help_id']) prior500.prior_bkg(-5.0,5) # Set PSF. For SPIRE, the PSF can be assumed to be Gaussian with a FWHM of 18.15, 25.15, 36.3 '' for 250, 350 and 500 $\mathrm{\mu m}$ respectively. Lets use the astropy module to construct a Gaussian PSF and assign it to the three XID+ prior classes. # In[41]: #pixsize array (size of pixels in arcseconds) pixsize=np.array([pixsize250,pixsize350,pixsize500]) #point response function for the three bands prfsize=np.array([18.15,25.15,36.3]) #use Gaussian2DKernel to create prf (requires stddev rather than fwhm hence pfwhm/2.355) from astropy.convolution import Gaussian2DKernel ##---------fit using Gaussian beam----------------------- prf250=Gaussian2DKernel(prfsize[0]/2.355,x_size=101,y_size=101) prf250.normalize(mode='peak') prf350=Gaussian2DKernel(prfsize[1]/2.355,x_size=101,y_size=101) prf350.normalize(mode='peak') prf500=Gaussian2DKernel(prfsize[2]/2.355,x_size=101,y_size=101) prf500.normalize(mode='peak') pind250=np.arange(0,101,1)*1.0/pixsize[0] #get 250 scale in terms of pixel scale of map pind350=np.arange(0,101,1)*1.0/pixsize[1] #get 350 scale in terms of pixel scale of map pind500=np.arange(0,101,1)*1.0/pixsize[2] #get 500 scale in terms of pixel scale of map prior250.set_prf(prf250.array,pind250,pind250)#requires psf as 2d grid, and x and y bins for grid (in pixel scale) prior350.set_prf(prf350.array,pind350,pind350) prior500.set_prf(prf500.array,pind500,pind500) print('fitting '+ str(prior250.nsrc)+' sources \n') print('using ' + str(prior250.snpix)+', '+ str(prior350.snpix)+' and '+ str(prior500.snpix)+' pixels') print('source density = {}'.format(prior250.nsrc/moc.area_sq_deg)) # Before fitting, the prior classes need to take the PSF and calculate how muich each source contributes to each pixel. This process provides what we call a pointing matrix. Lets calculate the pointing matrix for each prior class # In[43]: prior250.get_pointing_matrix() prior350.get_pointing_matrix() prior500.get_pointing_matrix() # In[44]: return [prior250,prior350,prior500],prior_list def getSEDs(data, src, nsamp=30,category='posterior'): import subprocess if category=='posterior': d=data.posterior else: d=data.prior subsample = np.random.choice(d.chain.size * d.draw.size, size=nsamp,replace=False) agn = d.agn.values.reshape(d.chain.size * d.draw.size, d.src.size)[subsample, :] z = d.redshift.values.reshape(d.chain.size * d.draw.size, d.src.size)[subsample, :] sfr = d.sfr.values.reshape(d.chain.size * d.draw.size, d.src.size)[subsample, :] fin = open("/Volumes/pdh_storage/cigale/pcigale_orig.ini") fout = open("/Volumes/pdh_storage/cigale/pcigale.ini", "wt") for line in fin: if 'redshift =' in line: fout.write(' redshift = ' + ', '.join(['{:.13f}'.format(i) for i in z[:, src]]) + ' \n') elif 'fracAGN =' in line: fout.write(' fracAGN = ' + ', '.join(['{:.13f}'.format(i) for i in agn[:, src]]) + ' \n') else: fout.write(line) fin.close() fout.close() p = subprocess.Popen(['pcigale', 'run'], cwd='/Volumes/pdh_storage/cigale/') p.wait() SEDs = Table.read('/Volumes/pdh_storage/cigale/out//models-block-0.fits') # set more appropriate units for dust from astropy.constants import L_sun, M_sun SEDs['dust.luminosity'] = SEDs['dust.luminosity'] / L_sun.value SEDs['dust.mass'] = SEDs['dust.mass'] / M_sun.value wavelengths = [] fluxes = [] for i in range(0, nsamp): sed_plot = Table.read('/Volumes/pdh_storage/cigale/out/{}_best_model.fits'.format(+SEDs[i * nsamp + (i)]['id'])) wavelengths.append(sed_plot['wavelength'] / 1E3) fluxes.append(((10.0 ** sfr[i, src]) / SEDs[i * nsamp + (i)]['sfh.sfr']) * sed_plot['Fnu']) from astropy.table import vstack, hstack return hstack(wavelengths), hstack(fluxes)
[ "astropy.convolution.Gaussian2DKernel", "numpy.abs", "numpy.argmin", "numpy.arange", "astropy.table.hstack", "pymoc.util.catalog.catalog_to_moc", "numpy.random.choice", "subprocess.Popen", "astropy.table.QTable", "numpy.min", "astropy.io.fits.open", "pyvo.dal.TAPService", "astropy.table.Table.read", "numpy.tril", "astropy.wcs.WCS", "astropy.table.vstack", "numpy.array", "xidplus.prior", "astropy.coordinates.SkyCoord" ]
[((1773, 1791), 'astropy.io.fits.open', 'fits.open', (['pswfits'], {}), '(pswfits)\n', (1782, 1791), False, 'from astropy.io import ascii, fits\n'), ((1965, 1991), 'astropy.wcs.WCS', 'wcs.WCS', (['hdulist[1].header'], {}), '(hdulist[1].header)\n', (1972, 1991), False, 'from astropy import wcs\n'), ((2007, 2042), 'numpy.abs', 'np.abs', (['(3600.0 * w_250.wcs.cdelt[0])'], {}), '(3600.0 * w_250.wcs.cdelt[0])\n', (2013, 2042), True, 'import numpy as np\n'), ((2130, 2148), 'astropy.io.fits.open', 'fits.open', (['pmwfits'], {}), '(pmwfits)\n', (2139, 2148), False, 'from astropy.io import ascii, fits\n'), ((2322, 2348), 'astropy.wcs.WCS', 'wcs.WCS', (['hdulist[1].header'], {}), '(hdulist[1].header)\n', (2329, 2348), False, 'from astropy import wcs\n'), ((2364, 2399), 'numpy.abs', 'np.abs', (['(3600.0 * w_350.wcs.cdelt[0])'], {}), '(3600.0 * w_350.wcs.cdelt[0])\n', (2370, 2399), True, 'import numpy as np\n'), ((2487, 2505), 'astropy.io.fits.open', 'fits.open', (['plwfits'], {}), '(plwfits)\n', (2496, 2505), False, 'from astropy.io import ascii, fits\n'), ((2678, 2704), 'astropy.wcs.WCS', 'wcs.WCS', (['hdulist[1].header'], {}), '(hdulist[1].header)\n', (2685, 2704), False, 'from astropy import wcs\n'), ((2720, 2755), 'numpy.abs', 'np.abs', (['(3600.0 * w_500.wcs.cdelt[0])'], {}), '(3600.0 * w_500.wcs.cdelt[0])\n', (2726, 2755), True, 'import numpy as np\n'), ((3243, 3288), 'pymoc.util.catalog.catalog_to_moc', 'pymoc.util.catalog.catalog_to_moc', (['c', '(100)', '(15)'], {}), '(c, 100, 15)\n', (3276, 3288), False, 'import pymoc\n'), ((3465, 3552), 'pyvo.dal.TAPService', 'vo.dal.TAPService', (['"""https://herschel-vos.phys.sussex.ac.uk/__system__/tap/run/tap"""'], {}), "(\n 'https://herschel-vos.phys.sussex.ac.uk/__system__/tap/run/tap')\n", (3482, 3552), True, 'import pyvo as vo\n'), ((5204, 5246), 'astropy.table.QTable', 'QTable', (['[c.ra, c.dec]'], {'names': "('ra', 'dec')"}), "([c.ra, c.dec], names=('ra', 'dec'))\n", (5210, 5246), False, 'from astropy.table import QTable, Table\n'), ((5898, 5926), 'astropy.table.Table.read', 'Table.read', (['redshift_file[0]'], {}), '(redshift_file[0])\n', (5908, 5926), False, 'from astropy.table import QTable, Table\n'), ((8375, 8433), 'xidplus.prior', 'xidplus.prior', (['im250', 'nim250', 'im250phdu', 'im250hdu'], {'moc': 'moc'}), '(im250, nim250, im250phdu, im250hdu, moc=moc)\n', (8388, 8433), False, 'import xidplus\n'), ((8724, 8782), 'xidplus.prior', 'xidplus.prior', (['im350', 'nim350', 'im350phdu', 'im350hdu'], {'moc': 'moc'}), '(im350, nim350, im350phdu, im350hdu, moc=moc)\n', (8737, 8782), False, 'import xidplus\n'), ((8942, 9000), 'xidplus.prior', 'xidplus.prior', (['im500', 'nim500', 'im500phdu', 'im500hdu'], {'moc': 'moc'}), '(im500, nim500, im500phdu, im500hdu, moc=moc)\n', (8955, 9000), False, 'import xidplus\n'), ((9458, 9504), 'numpy.array', 'np.array', (['[pixsize250, pixsize350, pixsize500]'], {}), '([pixsize250, pixsize350, pixsize500])\n', (9466, 9504), True, 'import numpy as np\n'), ((9564, 9594), 'numpy.array', 'np.array', (['[18.15, 25.15, 36.3]'], {}), '([18.15, 25.15, 36.3])\n', (9572, 9594), True, 'import numpy as np\n'), ((9813, 9873), 'astropy.convolution.Gaussian2DKernel', 'Gaussian2DKernel', (['(prfsize[0] / 2.355)'], {'x_size': '(101)', 'y_size': '(101)'}), '(prfsize[0] / 2.355, x_size=101, y_size=101)\n', (9829, 9873), False, 'from astropy.convolution import Gaussian2DKernel\n'), ((9915, 9975), 'astropy.convolution.Gaussian2DKernel', 'Gaussian2DKernel', (['(prfsize[1] / 2.355)'], {'x_size': '(101)', 'y_size': '(101)'}), '(prfsize[1] / 2.355, x_size=101, y_size=101)\n', (9931, 9975), False, 'from astropy.convolution import Gaussian2DKernel\n'), ((10017, 10077), 'astropy.convolution.Gaussian2DKernel', 'Gaussian2DKernel', (['(prfsize[2] / 2.355)'], {'x_size': '(101)', 'y_size': '(101)'}), '(prfsize[2] / 2.355, x_size=101, y_size=101)\n', (10033, 10077), False, 'from astropy.convolution import Gaussian2DKernel\n'), ((11452, 11523), 'numpy.random.choice', 'np.random.choice', (['(d.chain.size * d.draw.size)'], {'size': 'nsamp', 'replace': '(False)'}), '(d.chain.size * d.draw.size, size=nsamp, replace=False)\n', (11468, 11523), True, 'import numpy as np\n'), ((12428, 12500), 'subprocess.Popen', 'subprocess.Popen', (["['pcigale', 'run']"], {'cwd': '"""/Volumes/pdh_storage/cigale/"""'}), "(['pcigale', 'run'], cwd='/Volumes/pdh_storage/cigale/')\n", (12444, 12500), False, 'import subprocess\n'), ((12526, 12592), 'astropy.table.Table.read', 'Table.read', (['"""/Volumes/pdh_storage/cigale/out//models-block-0.fits"""'], {}), "('/Volumes/pdh_storage/cigale/out//models-block-0.fits')\n", (12536, 12592), False, 'from astropy.table import QTable, Table\n'), ((4130, 4182), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': "masterlist['ra']", 'dec': "masterlist['dec']"}), "(ra=masterlist['ra'], dec=masterlist['dec'])\n", (4138, 4182), False, 'from astropy.coordinates import SkyCoord\n'), ((4234, 4276), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': "Table['ra']", 'dec': "Table['dec']"}), "(ra=Table['ra'], dec=Table['dec'])\n", (4242, 4276), False, 'from astropy.coordinates import SkyCoord\n'), ((13209, 13228), 'astropy.table.hstack', 'hstack', (['wavelengths'], {}), '(wavelengths)\n', (13215, 13228), False, 'from astropy.table import vstack, hstack\n'), ((13230, 13244), 'astropy.table.hstack', 'hstack', (['fluxes'], {}), '(fluxes)\n', (13236, 13244), False, 'from astropy.table import vstack, hstack\n'), ((5378, 5400), 'astropy.table.vstack', 'vstack', (['[t, new_Table]'], {}), '([t, new_Table])\n', (5384, 5400), False, 'from astropy.table import vstack, hstack\n'), ((7644, 7664), 'numpy.tril', 'np.tril', (['dist_matrix'], {}), '(dist_matrix)\n', (7651, 7664), True, 'import numpy as np\n'), ((7680, 7700), 'numpy.tril', 'np.tril', (['dist_matrix'], {}), '(dist_matrix)\n', (7687, 7700), True, 'import numpy as np\n'), ((10121, 10141), 'numpy.arange', 'np.arange', (['(0)', '(101)', '(1)'], {}), '(0, 101, 1)\n', (10130, 10141), True, 'import numpy as np\n'), ((10213, 10233), 'numpy.arange', 'np.arange', (['(0)', '(101)', '(1)'], {}), '(0, 101, 1)\n', (10222, 10233), True, 'import numpy as np\n'), ((10305, 10325), 'numpy.arange', 'np.arange', (['(0)', '(101)', '(1)'], {}), '(0, 101, 1)\n', (10314, 10325), True, 'import numpy as np\n'), ((5527, 5572), 'astropy.coordinates.SkyCoord', 'SkyCoord', (["prior_list['ra']", "prior_list['dec']"], {}), "(prior_list['ra'], prior_list['dec'])\n", (5535, 5572), False, 'from astropy.coordinates import SkyCoord\n'), ((5616, 5634), 'numpy.min', 'np.min', (['separation'], {}), '(separation)\n', (5622, 5634), True, 'import numpy as np\n'), ((7374, 7466), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': "(prior_list['ra'][i] * u.deg)", 'dec': "(prior_list['dec'][i] * u.deg)", 'frame': '"""icrs"""'}), "(ra=prior_list['ra'][i] * u.deg, dec=prior_list['dec'][i] * u.deg,\n frame='icrs')\n", (7382, 7466), False, 'from astropy.coordinates import SkyCoord\n'), ((7481, 7555), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': "(prior_list['ra'][j] * u.deg)", 'dec': "(prior_list['dec'][j] * u.deg)"}), "(ra=prior_list['ra'][j] * u.deg, dec=prior_list['dec'][j] * u.deg)\n", (7489, 7555), False, 'from astropy.coordinates import SkyCoord\n'), ((4781, 4800), 'numpy.argmin', 'np.argmin', (['d2d[ind]'], {}), '(d2d[ind])\n', (4790, 4800), True, 'import numpy as np\n'), ((6827, 6883), 'numpy.abs', 'np.abs', (["(photoz['z1_median'][ind] - photoz['z1_min'][ind])"], {}), "(photoz['z1_median'][ind] - photoz['z1_min'][ind])\n", (6833, 6883), True, 'import numpy as np\n'), ((6882, 6938), 'numpy.abs', 'np.abs', (["(photoz['z1_max'][ind] - photoz['z1_median'][ind])"], {}), "(photoz['z1_max'][ind] - photoz['z1_median'][ind])\n", (6888, 6938), True, 'import numpy as np\n'), ((5059, 5078), 'numpy.argmin', 'np.argmin', (['d2d[ind]'], {}), '(d2d[ind])\n', (5068, 5078), True, 'import numpy as np\n')]
""" Project: RadarBook File: optimum_binary_example.py Created by: <NAME> On: 10/11/2018 Created with: PyCharm Copyright (C) 2019 Artech House (<EMAIL>) This file is part of Introduction to Radar Using Python and MATLAB and can not be copied and/or distributed without the express permission of Artech House. """ import sys from Chapter06.ui.OptimumBinary_ui import Ui_MainWindow from numpy import arange, ceil from PyQt5.QtWidgets import QApplication, QMainWindow from matplotlib.backends.qt_compat import QtCore from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure class OptimumBinary(QMainWindow, Ui_MainWindow): def __init__(self): super(self.__class__, self).__init__() self.setupUi(self) # Connect to the input boxes, when the user presses enter the form updates self.number_of_pulses.returnPressed.connect(self._update_canvas) self.target_type.currentIndexChanged.connect(self._update_canvas) # Set up a figure for the plotting canvas fig = Figure() self.axes1 = fig.add_subplot(111) self.my_canvas = FigureCanvas(fig) # Add the canvas to the vertical layout self.verticalLayout.addWidget(self.my_canvas) self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(self.my_canvas, self)) # Update the canvas for the first display self._update_canvas() def _update_canvas(self): """ Update the figure when the user changes an input value. :return: """ # Get the parameters from the form number_of_pulses = int(self.number_of_pulses.text()) # Get the selected target type from the form target_type = self.target_type.currentText() if target_type == 'Swerling 0': alpha = 0.8 beta = -0.02 elif target_type == 'Swerling 1': alpha = 0.8 beta = -0.02 elif target_type == 'Swerling 2': alpha = 0.91 beta = -0.38 elif target_type == 'Swerling 3': alpha = 0.8 beta = -0.02 elif target_type == 'Swerling 4': alpha = 0.873 beta = -0.27 # Calculate the optimum choice for M np = arange(1, number_of_pulses+1) m_optimum = [ceil(10.0 ** beta * n ** alpha) for n in np] # Clear the axes for the updated plot self.axes1.clear() # Display the results self.axes1.plot(np, m_optimum, '') # Set the plot title and labels self.axes1.set_title('Optimum M for Binary Integration', size=14) self.axes1.set_xlabel('Number of Pulses', size=12) self.axes1.set_ylabel('M', size=12) # Set the tick label size self.axes1.tick_params(labelsize=12) # Turn on the grid self.axes1.grid(linestyle=':', linewidth=0.5) # Update the canvas self.my_canvas.draw() def start(): form = OptimumBinary() # Set the form form.show() # Show the form def main(): app = QApplication(sys.argv) # A new instance of QApplication form = OptimumBinary() # Set the form form.show() # Show the form app.exec_() # Execute the app if __name__ == '__main__': main()
[ "numpy.ceil", "matplotlib.backends.backend_qt5agg.FigureCanvas", "matplotlib.figure.Figure", "numpy.arange", "matplotlib.backends.backend_qt5agg.NavigationToolbar2QT", "PyQt5.QtWidgets.QApplication" ]
[((3146, 3168), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (3158, 3168), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow\n'), ((1104, 1112), 'matplotlib.figure.Figure', 'Figure', ([], {}), '()\n', (1110, 1112), False, 'from matplotlib.figure import Figure\n'), ((1181, 1198), 'matplotlib.backends.backend_qt5agg.FigureCanvas', 'FigureCanvas', (['fig'], {}), '(fig)\n', (1193, 1198), False, 'from matplotlib.backends.backend_qt5agg import FigureCanvas, NavigationToolbar2QT as NavigationToolbar\n'), ((2337, 2368), 'numpy.arange', 'arange', (['(1)', '(number_of_pulses + 1)'], {}), '(1, number_of_pulses + 1)\n', (2343, 2368), False, 'from numpy import arange, ceil\n'), ((1352, 1391), 'matplotlib.backends.backend_qt5agg.NavigationToolbar2QT', 'NavigationToolbar', (['self.my_canvas', 'self'], {}), '(self.my_canvas, self)\n', (1369, 1391), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvas, NavigationToolbar2QT as NavigationToolbar\n'), ((2388, 2419), 'numpy.ceil', 'ceil', (['(10.0 ** beta * n ** alpha)'], {}), '(10.0 ** beta * n ** alpha)\n', (2392, 2419), False, 'from numpy import arange, ceil\n')]
import math import tensorflow as tf import cv2 import numpy as np from scipy import signal def image_normalization(image: np.ndarray, new_min=0, new_max=255) -> np.ndarray: """ Normalize the input image to a given range set by min and max parameter Args: image ([type]): [description] new_min ([type], optional): [description]. Defaults to 0. new_max ([type], optional): [description]. Defaults to 255. Returns: [np.ndarray]: Normalized image """ original_dtype = image.dtype image = image.astype(np.float32) image_min, image_max = np.min(image), np.max(image) image = tf.cast(image, np.float32) normalized_image = (new_max - new_min) / (image_max - image_min) * (image - image_min) + new_min return tf.cast(normalized_image, original_dtype) def normalize_kernel(kernel: np.array) -> np.ndarray: return kernel / np.sum(kernel, axis=-1) def gaussian_kernel2d(kernel_size: int, sigma: float, dtype=np.float32) -> np.ndarray: krange = np.arange(kernel_size) x, y = np.meshgrid(krange, krange) constant = np.round(kernel_size / 2) x -= constant y -= constant kernel = 1 / (2 * math.pi * sigma**2) * np.math.exp(-(x ** 2 + y ** 2) / (2 * sigma ** 2)) return normalize_kernel(kernel) def gaussian_filter( image: np.ndarray, kernel_size: int, sigma: float, dtype=np.float32, strides: int = 1 ) -> np.ndarray: """ Apply convolution filter to image with gaussian image kernel TODO: Verify this methos with tensorflow https://stackoverflow.com/questions/48097941/strided-convolution-of-2d-in-numpy Args: image ([np.ndarray]): [description] kernel_size ([int]): [description] sigma ([float]): [description] dtype ([type], optional): [description]. Defaults to np.float32. strides ([int], optional): [description]. Defaults to 1. Returns: [np.ndarray]: [description] """ kernel = gaussian_kernel2d(kernel_size, sigma) if len(image.shape) == 3: image = image[np.newaxis, ...] image = tf.cast(image, tf.float32) image = image.astype(np.float32) image = signal.convolve2d(image, kernel[:, :, np.newaxis, np.newaxis], mode='same', )[::strides, ::strides] return image.astype(dtype) def image_shape(image: np.ndarray, dtype=np.int32) -> np.ndarray: shape = image.shape shape = shape[:2] if len(image.shape) == 3 else shape[1:3] return shape def scale_shape(image: np.ndarray, scale: float): shape = image_shape(image, np.float32) shape = np.math.ceil(shape * scale) return shape.astype(np.float32) def rescale(image: np.ndarray, scale: float, dtype=np.float32, **kwargs) -> np.ndarray: assert len(image.shape) in (3, 4), 'The tensor must be of dimension 3 or 4' image = image.astype(np.float32) rescale_size = scale_shape(image, scale) interpolation = kwargs.pop('interpolation', cv2.INTER_CUBIC) rescaled_image = cv2.resize(image, rescale_size, interpolation=interpolation) return rescaled_image.astype(dtype) def read_image(filename: str, **kwargs) -> np.ndarray: mode = kwargs.pop('mode', cv2.IMREAD_UNCHANGED) return cv2.imread(filename, flags=mode) def image_preprocess(image: np.ndarray, SCALING_FACTOR=1 / 4) -> np.ndarray: """ #### Image Normalization The first step for DIQA is to pre-process the images. The image is converted into grayscale, and then a low-pass filter is applied. The low-pass filter is defined as: \begin{align*} \hat{I} = I_{gray} - I^{low} \end{align*} where the low-frequency image is the result of the following algorithm: 1. Blur the grayscale image. 2. Downscale it by a factor of SCALING_FACTOR. 3. Upscale it back to the original size. The main reasons for this normalization are (1) the Human Visual System (HVS) is not sensitive to changes in the low-frequency band, and (2) image distortions barely affect the low-frequency component of images. Arguments: image {np.ndarray} -- [description] Returns: np.ndarray -- [description] """ image = tf.cast(image, tf.float32) image = tf.image.rgb_to_grayscale(image) image_low = gaussian_filter(image, 16, 7 / 6) image_low = rescale(image_low, SCALING_FACTOR, method=tf.image.ResizeMethod.BICUBIC) image_low = tf.image.resize(image_low, size=image_shape(image), method=tf.image.ResizeMethod.BICUBIC) return image - tf.cast(image_low, image.dtype)
[ "numpy.math.exp", "numpy.meshgrid", "tensorflow.image.rgb_to_grayscale", "numpy.sum", "scipy.signal.convolve2d", "tensorflow.cast", "cv2.imread", "numpy.min", "numpy.arange", "numpy.max", "numpy.math.ceil", "numpy.round", "cv2.resize" ]
[((640, 666), 'tensorflow.cast', 'tf.cast', (['image', 'np.float32'], {}), '(image, np.float32)\n', (647, 666), True, 'import tensorflow as tf\n'), ((780, 821), 'tensorflow.cast', 'tf.cast', (['normalized_image', 'original_dtype'], {}), '(normalized_image, original_dtype)\n', (787, 821), True, 'import tensorflow as tf\n'), ((1024, 1046), 'numpy.arange', 'np.arange', (['kernel_size'], {}), '(kernel_size)\n', (1033, 1046), True, 'import numpy as np\n'), ((1058, 1085), 'numpy.meshgrid', 'np.meshgrid', (['krange', 'krange'], {}), '(krange, krange)\n', (1069, 1085), True, 'import numpy as np\n'), ((1101, 1126), 'numpy.round', 'np.round', (['(kernel_size / 2)'], {}), '(kernel_size / 2)\n', (1109, 1126), True, 'import numpy as np\n'), ((2100, 2126), 'tensorflow.cast', 'tf.cast', (['image', 'tf.float32'], {}), '(image, tf.float32)\n', (2107, 2126), True, 'import tensorflow as tf\n'), ((2586, 2613), 'numpy.math.ceil', 'np.math.ceil', (['(shape * scale)'], {}), '(shape * scale)\n', (2598, 2613), True, 'import numpy as np\n'), ((2989, 3049), 'cv2.resize', 'cv2.resize', (['image', 'rescale_size'], {'interpolation': 'interpolation'}), '(image, rescale_size, interpolation=interpolation)\n', (2999, 3049), False, 'import cv2\n'), ((3210, 3242), 'cv2.imread', 'cv2.imread', (['filename'], {'flags': 'mode'}), '(filename, flags=mode)\n', (3220, 3242), False, 'import cv2\n'), ((4164, 4190), 'tensorflow.cast', 'tf.cast', (['image', 'tf.float32'], {}), '(image, tf.float32)\n', (4171, 4190), True, 'import tensorflow as tf\n'), ((4203, 4235), 'tensorflow.image.rgb_to_grayscale', 'tf.image.rgb_to_grayscale', (['image'], {}), '(image)\n', (4228, 4235), True, 'import tensorflow as tf\n'), ((599, 612), 'numpy.min', 'np.min', (['image'], {}), '(image)\n', (605, 612), True, 'import numpy as np\n'), ((614, 627), 'numpy.max', 'np.max', (['image'], {}), '(image)\n', (620, 627), True, 'import numpy as np\n'), ((898, 921), 'numpy.sum', 'np.sum', (['kernel'], {'axis': '(-1)'}), '(kernel, axis=-1)\n', (904, 921), True, 'import numpy as np\n'), ((1207, 1257), 'numpy.math.exp', 'np.math.exp', (['(-(x ** 2 + y ** 2) / (2 * sigma ** 2))'], {}), '(-(x ** 2 + y ** 2) / (2 * sigma ** 2))\n', (1218, 1257), True, 'import numpy as np\n'), ((2176, 2251), 'scipy.signal.convolve2d', 'signal.convolve2d', (['image', 'kernel[:, :, np.newaxis, np.newaxis]'], {'mode': '"""same"""'}), "(image, kernel[:, :, np.newaxis, np.newaxis], mode='same')\n", (2193, 2251), False, 'from scipy import signal\n'), ((4564, 4595), 'tensorflow.cast', 'tf.cast', (['image_low', 'image.dtype'], {}), '(image_low, image.dtype)\n', (4571, 4595), True, 'import tensorflow as tf\n')]
import numpy as np from matplotlib import pyplot as plt def loadFile(filename): f = open(filename,'r') text = f.read() f.close() rewards = [] steps = [] for line in text.split('\n'): pieces = line.split(',') if(len(pieces) == 2): rewards.append(float(pieces[0])) steps.append(int(pieces[1])) return rewards,steps def loadFiles(files): rewards = [] steps = [] for f in files: r,s = loadFile(f) rewards.extend(r) steps.extend(s) return rewards,steps, def plotResults(rewards,steps,outputFile): plt.subplot(2,1,1) plt.plot(rewards) plt.xlabel('number of games played') plt.ylabel('reward received per game') plt.subplot(2,1,2) plt.plot(steps) plt.xlabel('number of games played') plt.ylabel('number of actions taken per game') plt.savefig(outputFile) def Average(rewards,n): return [np.mean(rewards[i:i+n]) for i in range(len(rewards)-n)] if(__name__ == "__main__"): LargeAgent = ['LargeAgent/2018-01-15 11:50:29.380284'] SmallAgent = ['SmallAgent/2018-01-15 13:12:18.774147'] rewards,steps = loadFiles(['./SmallAgent/29-01-2018']) rewards = Average(rewards,10) steps = Average(steps,10) plotResults(rewards,steps,"./test.png")
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.plot", "numpy.mean", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((559, 579), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (570, 579), True, 'from matplotlib import pyplot as plt\n'), ((580, 597), 'matplotlib.pyplot.plot', 'plt.plot', (['rewards'], {}), '(rewards)\n', (588, 597), True, 'from matplotlib import pyplot as plt\n'), ((600, 636), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""number of games played"""'], {}), "('number of games played')\n", (610, 636), True, 'from matplotlib import pyplot as plt\n'), ((639, 677), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""reward received per game"""'], {}), "('reward received per game')\n", (649, 677), True, 'from matplotlib import pyplot as plt\n'), ((683, 703), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (694, 703), True, 'from matplotlib import pyplot as plt\n'), ((704, 719), 'matplotlib.pyplot.plot', 'plt.plot', (['steps'], {}), '(steps)\n', (712, 719), True, 'from matplotlib import pyplot as plt\n'), ((722, 758), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""number of games played"""'], {}), "('number of games played')\n", (732, 758), True, 'from matplotlib import pyplot as plt\n'), ((761, 807), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""number of actions taken per game"""'], {}), "('number of actions taken per game')\n", (771, 807), True, 'from matplotlib import pyplot as plt\n'), ((813, 836), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outputFile'], {}), '(outputFile)\n', (824, 836), True, 'from matplotlib import pyplot as plt\n'), ((872, 897), 'numpy.mean', 'np.mean', (['rewards[i:i + n]'], {}), '(rewards[i:i + n])\n', (879, 897), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2021 Centre National d'Etudes Spatiales (CNES). # # This file is part of PANDORA_MCCNN # # https://github.com/CNES/Pandora_MCCNN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains functions to test the cost volume create by mc_cnn """ import unittest import numpy as np import torch import torch.nn as nn from mc_cnn.run import computes_cost_volume_mc_cnn_fast from mc_cnn.model.mc_cnn_accurate import AccMcCnnInfer from mc_cnn.dataset_generator.middlebury_generator import MiddleburyGenerator from mc_cnn.dataset_generator.datas_fusion_contest_generator import DataFusionContestGenerator # pylint: disable=no-self-use class TestMCCNN(unittest.TestCase): """ TestMCCNN class allows to test the cost volume create by mc_cnn """ def setUp(self): """ Method called to prepare the test fixture """ self.ref_img_0 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) self.sec_img_0 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) + 1 self.ref_img_1 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) self.sec_img_2 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) - 1 def test_computes_cost_volume_mc_cnn_fast(self): """ " Test the computes_cost_volume_mc_cnn_fast function """ # create reference and secondary features ref_feature = torch.randn((64, 4, 4), dtype=torch.float64) sec_features = torch.randn((64, 4, 4), dtype=torch.float64) cos = nn.CosineSimilarity(dim=0, eps=1e-6) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 5), np.nan) # disparity -2 cv_gt[:, 2:, 0] = cos(ref_feature[:, :, 2:], sec_features[:, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 1] = cos(ref_feature[:, :, 1:], sec_features[:, :, 0:3]).cpu().detach().numpy() # disparity 0 cv_gt[:, :, 2] = cos(ref_feature[:, :, :], sec_features[:, :, :]).cpu().detach().numpy() # disparity 1 cv_gt[:, :3, 3] = cos(ref_feature[:, :, :3], sec_features[:, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 4] = cos(ref_feature[:, :, :2], sec_features[:, :, 2:4]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 cv = computes_cost_volume_mc_cnn_fast(ref_feature, sec_features, -2, 2) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_fast_negative_disp(self): """ " Test the computes_cost_volume_mc_cnn_fast function with negative disparities """ # create reference and secondary features ref_feature = torch.randn((64, 4, 4), dtype=torch.float64) sec_features = torch.randn((64, 4, 4), dtype=torch.float64) cos = nn.CosineSimilarity(dim=0, eps=1e-6) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity -4 # all nan # disparity -3 cv_gt[:, 3:, 1] = cos(ref_feature[:, :, 3:], sec_features[:, :, 0:1]).cpu().detach().numpy() # disparity -2 cv_gt[:, 2:, 2] = cos(ref_feature[:, :, 2:], sec_features[:, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 3] = cos(ref_feature[:, :, 1:], sec_features[:, :, 0:3]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 cv = computes_cost_volume_mc_cnn_fast(ref_feature, sec_features, -4, -1) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_fast_positive_disp(self): """ " Test the computes_cost_volume_mc_cnn_fast function with positive disparities """ # create reference and secondary features ref_feature = torch.randn((64, 4, 4), dtype=torch.float64) sec_features = torch.randn((64, 4, 4), dtype=torch.float64) cos = nn.CosineSimilarity(dim=0, eps=1e-6) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity 1 cv_gt[:, :3, 0] = cos(ref_feature[:, :, :3], sec_features[:, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 1] = cos(ref_feature[:, :, :2], sec_features[:, :, 2:4]).cpu().detach().numpy() # disparity 3 cv_gt[:, :1, 2] = cos(ref_feature[:, :, :1], sec_features[:, :, 3:]).cpu().detach().numpy() # disparity 4 # all nan # The minus sign converts the similarity score to a matching cost cv_gt *= -1 cv = computes_cost_volume_mc_cnn_fast(ref_feature, sec_features, 1, 4) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def sad_cost(self, ref_features, sec_features): """ Useful to test the computes_cost_volume_mc_cnn_accurate function """ return torch.sum(abs(ref_features[0, :, :, :] - sec_features[0, :, :, :]), dim=0) def test_computes_cost_volume_mc_cnn_accurate(self): """ " Test the computes_cost_volume_mc_cnn_accurate function """ # create reference and secondary features ref_feature = torch.randn((1, 112, 4, 4), dtype=torch.float64) sec_features = torch.randn((1, 112, 4, 4), dtype=torch.float64) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 5), np.nan) # disparity -2 cv_gt[:, 2:, 0] = self.sad_cost(ref_feature[:, :, :, 2:], sec_features[:, :, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 1] = self.sad_cost(ref_feature[:, :, :, 1:], sec_features[:, :, :, 0:3]).cpu().detach().numpy() # disparity 0 cv_gt[:, :, 2] = self.sad_cost(ref_feature[:, :, :, :], sec_features[:, :, :, :]).cpu().detach().numpy() # disparity 1 cv_gt[:, :3, 3] = self.sad_cost(ref_feature[:, :, :, :3], sec_features[:, :, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 4] = self.sad_cost(ref_feature[:, :, :, :2], sec_features[:, :, :, 2:4]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 acc = AccMcCnnInfer() # Because input shape of nn.Conv2d is (Batch_size, Channel, H, W), we add 1 dimensions cv = acc.computes_cost_volume_mc_cnn_accurate(ref_feature, sec_features, -2, 2, self.sad_cost) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_accuratenegative_disp(self): """ " Test the computes_cost_volume_mc_cnn_accurate function with negative disparities """ # create reference and secondary features ref_feature = torch.randn((1, 112, 4, 4), dtype=torch.float64) sec_features = torch.randn((1, 112, 4, 4), dtype=torch.float64) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity -4 # all nan # disparity -3 cv_gt[:, 3:, 1] = self.sad_cost(ref_feature[:, :, :, 3:], sec_features[:, :, :, 0:1]).cpu().detach().numpy() # disparity -2 cv_gt[:, 2:, 2] = self.sad_cost(ref_feature[:, :, :, 2:], sec_features[:, :, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 3] = self.sad_cost(ref_feature[:, :, :, 1:], sec_features[:, :, :, 0:3]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 acc = AccMcCnnInfer() # Because input shape of nn.Conv2d is (Batch_size, Channel, H, W), we add 1 dimensions cv = acc.computes_cost_volume_mc_cnn_accurate(ref_feature, sec_features, -4, -1, self.sad_cost) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_accurate_positive_disp(self): """ " Test the computes_cost_volume_mc_cnn_accurate function with positive disparities """ # create reference and secondary features ref_feature = torch.randn((1, 112, 4, 4), dtype=torch.float64) sec_features = torch.randn((1, 112, 4, 4), dtype=torch.float64) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity 1 cv_gt[:, :3, 0] = self.sad_cost(ref_feature[:, :, :, :3], sec_features[:, :, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 1] = self.sad_cost(ref_feature[:, :, :, :2], sec_features[:, :, :, 2:4]).cpu().detach().numpy() # disparity 3 cv_gt[:, :1, 2] = self.sad_cost(ref_feature[:, :, :, :1], sec_features[:, :, :, 3:]).cpu().detach().numpy() # disparity 4 # all nan # The minus sign converts the similarity score to a matching cost cv_gt *= -1 acc = AccMcCnnInfer() # Because input shape of nn.Conv2d is (Batch_size, Channel, H, W), we add 1 dimensions cv = acc.computes_cost_volume_mc_cnn_accurate(ref_feature, sec_features, 1, 4, self.sad_cost) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) # pylint: disable=invalid-name # -> because changing the name here loses the reference to the actual name of the checked function def test_MiddleburyGenerator(self): """ test the function MiddleburyGenerator """ # Script use to create images_middlebury and samples_middlebury : # pylint: disable=pointless-string-statement """ # shape 1, 2, 13, 13 : 1 exposures, 2 = left and right images image_pairs_0 = np.zeros((1, 2, 13, 13)) # left image_pairs_0[0, 0, :, :] = np.tile(np.arange(13), (13, 1)) # right image_pairs_0[0, 1, :, :] = np.tile(np.arange(13), (13, 1)) + 1 image_pairs_1 = np.zeros((1, 2, 13, 13)) image_pairs_1[0, 0, :, :] = np.tile(np.arange(13), (13, 1)) image_pairs_1[0, 1, :, :] = np.tile(np.arange(13), (13, 1)) - 1 img_file = h5py.File('images_middlebury.hdf5', 'w') img_0 = [image_pairs_0] grp = img_file.create_group(str(0)) # 1 illumination for light in range(len(img_0)): dset = grp.create_dataset(str(light), data=img_0[light]) img_1 = [image_pairs_1] grp = img_file.create_group(str(1)) for light in range(len(img_1)): dset = grp.create_dataset(str(light), data=img_1[light]) sampl_file = h5py.File('sample_middlebury.hdf5', 'w') # disparity of image_pairs_0 x0 = np.array([[0., 5., 6., 1.] [0., 7., 7., 1.]]) # disparity of image_pairs_1 x1 = np.array([[ 1., 7., 5., -1.] [ 0., 0., 0., 0.]]) sampl_file.create_dataset(str(0), data=x0) sampl_file.create_dataset(str(1), data=x1) """ # Positive disparity cfg = { "data_augmentation": False, "dataset_neg_low": 1, "dataset_neg_high": 1, "dataset_pos": 0, "augmentation_param": { "vertical_disp": 0, "scale": 0.8, "hscale": 0.8, "hshear": 0.1, "trans": 0, "rotate": 28, "brightness": 1.3, "contrast": 1.1, "d_hscale": 0.9, "d_hshear": 0.3, "d_vtrans": 1, "d_rotate": 3, "d_brightness": 0.7, "d_contrast": 1.1, }, } training_loader = MiddleburyGenerator("tests/sample_middlebury.hdf5", "tests/images_middlebury.hdf5", cfg) # Patch of shape 3, 11, 11 # With the firt dimension = left patch, right positive patch, right negative patch patch = training_loader.__getitem__(0) x_ref_patch = 6 y_ref_patch = 5 patch_size = 5 gt_ref_patch = self.ref_img_0[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = 1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 5 gt_sec_pos_patch = self.sec_img_0[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 5 gt_sec_neg_patch = self.sec_img_0[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) # negative disparity patch = training_loader.__getitem__(2) x_ref_patch = 5 y_ref_patch = 7 patch_size = 5 gt_ref_patch = self.ref_img_0[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = -1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = -1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 5 gt_sec_pos_patch = self.sec_img_0[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 5 gt_sec_neg_patch = self.sec_img_0[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) # pylint: disable=invalid-name # -> because changing the name here loses the reference to the actual name of the checked function def test_DataFusionContestGenerator(self): """ test the function DataFusionContestGenerator """ # pylint: disable=pointless-string-statement """ # Script use to create images_middlebury and samples_middlebury : # shape 2, 13, 13 : 2 = left and right images, row, col image_pairs_0 = np.zeros((2, 13, 13)) # left image_pairs_0[0, :, :] = np.tile(np.arange(13), (13, 1)) # right image_pairs_0[1, :, :] = np.tile(np.arange(13), (13, 1)) + 1 image_pairs_1 = np.zeros((2, 13, 13)) image_pairs_1[0, :, :] = np.tile(np.arange(13), (13, 1)) image_pairs_1[1, :, :] = np.tile(np.arange(13), (13, 1)) - 1 img_file = h5py.File('images_dfc.hdf5', 'w') img_file.create_dataset(str(0), data=image_pairs_0) img_file.create_dataset(str(1), data=image_pairs_1) sampl_file = h5py.File('sample_dfc.hdf5', 'w') # disparity of image_pairs_0 x0 = np.array([[0., 5., 6., 1.], [0., 7., 7., 1.]]) # disparity of image_pairs_1 x1 = np.array([[ 1., 7., 5., -1.], [ 0., 0., 0., 0.]]) sampl_file.create_dataset(str(0), data=x0) sampl_file.create_dataset(str(1), data=x1) """ # Positive disparity cfg = { "data_augmentation": False, "dataset_neg_low": 1, "dataset_neg_high": 1, "dataset_pos": 0, "vertical_disp": 0, "augmentation_param": { "scale": 0.8, "hscale": 0.8, "hshear": 0.1, "trans": 0, "rotate": 28, "brightness": 1.3, "contrast": 1.1, "d_hscale": 0.9, "d_hshear": 0.3, "d_vtrans": 1, "d_rotate": 3, "d_brightness": 0.7, "d_contrast": 1.1, }, } training_loader = DataFusionContestGenerator("tests/sample_dfc.hdf5", "tests/images_dfc.hdf5", cfg) # Patch of shape 3, 11, 11 # With the firt dimension = left patch, right positive patch, right negative patch patch = training_loader.__getitem__(0) x_ref_patch = 6 y_ref_patch = 5 patch_size = 5 gt_ref_patch = self.ref_img_0[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = 1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 5 gt_sec_pos_patch = self.sec_img_0[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 5 gt_sec_neg_patch = self.sec_img_0[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) # negative disparity patch = training_loader.__getitem__(2) x_ref_patch = 5 y_ref_patch = 7 patch_size = 5 gt_ref_patch = self.ref_img_1[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = -1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = -1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 7 gt_sec_pos_patch = self.sec_img_2[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 7 gt_sec_neg_patch = self.sec_img_2[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) if __name__ == "__main__": unittest.main()
[ "unittest.main", "numpy.full", "numpy.stack", "numpy.testing.assert_array_equal", "torch.randn", "torch.nn.CosineSimilarity", "mc_cnn.run.computes_cost_volume_mc_cnn_fast", "mc_cnn.dataset_generator.middlebury_generator.MiddleburyGenerator", "numpy.arange", "numpy.testing.assert_allclose", "mc_cnn.dataset_generator.datas_fusion_contest_generator.DataFusionContestGenerator", "mc_cnn.model.mc_cnn_accurate.AccMcCnnInfer" ]
[((21139, 21154), 'unittest.main', 'unittest.main', ([], {}), '()\n', (21152, 21154), False, 'import unittest\n'), ((1942, 1986), 'torch.randn', 'torch.randn', (['(64, 4, 4)'], {'dtype': 'torch.float64'}), '((64, 4, 4), dtype=torch.float64)\n', (1953, 1986), False, 'import torch\n'), ((2010, 2054), 'torch.randn', 'torch.randn', (['(64, 4, 4)'], {'dtype': 'torch.float64'}), '((64, 4, 4), dtype=torch.float64)\n', (2021, 2054), False, 'import torch\n'), ((2070, 2107), 'torch.nn.CosineSimilarity', 'nn.CosineSimilarity', ([], {'dim': '(0)', 'eps': '(1e-06)'}), '(dim=0, eps=1e-06)\n', (2089, 2107), True, 'import torch.nn as nn\n'), ((2187, 2213), 'numpy.full', 'np.full', (['(4, 4, 5)', 'np.nan'], {}), '((4, 4, 5), np.nan)\n', (2194, 2213), True, 'import numpy as np\n'), ((2937, 3003), 'mc_cnn.run.computes_cost_volume_mc_cnn_fast', 'computes_cost_volume_mc_cnn_fast', (['ref_feature', 'sec_features', '(-2)', '(2)'], {}), '(ref_feature, sec_features, -2, 2)\n', (2969, 3003), False, 'from mc_cnn.run import computes_cost_volume_mc_cnn_fast\n'), ((3125, 3174), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['cv', 'cv_gt'], {'rtol': '(1e-05)'}), '(cv, cv_gt, rtol=1e-05)\n', (3151, 3174), True, 'import numpy as np\n'), ((3427, 3471), 'torch.randn', 'torch.randn', (['(64, 4, 4)'], {'dtype': 'torch.float64'}), '((64, 4, 4), dtype=torch.float64)\n', (3438, 3471), False, 'import torch\n'), ((3495, 3539), 'torch.randn', 'torch.randn', (['(64, 4, 4)'], {'dtype': 'torch.float64'}), '((64, 4, 4), dtype=torch.float64)\n', (3506, 3539), False, 'import torch\n'), ((3555, 3592), 'torch.nn.CosineSimilarity', 'nn.CosineSimilarity', ([], {'dim': '(0)', 'eps': '(1e-06)'}), '(dim=0, eps=1e-06)\n', (3574, 3592), True, 'import torch.nn as nn\n'), ((3672, 3698), 'numpy.full', 'np.full', (['(4, 4, 4)', 'np.nan'], {}), '((4, 4, 4), np.nan)\n', (3679, 3698), True, 'import numpy as np\n'), ((4222, 4289), 'mc_cnn.run.computes_cost_volume_mc_cnn_fast', 'computes_cost_volume_mc_cnn_fast', (['ref_feature', 'sec_features', '(-4)', '(-1)'], {}), '(ref_feature, sec_features, -4, -1)\n', (4254, 4289), False, 'from mc_cnn.run import computes_cost_volume_mc_cnn_fast\n'), ((4411, 4460), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['cv', 'cv_gt'], {'rtol': '(1e-05)'}), '(cv, cv_gt, rtol=1e-05)\n', (4437, 4460), True, 'import numpy as np\n'), ((4713, 4757), 'torch.randn', 'torch.randn', (['(64, 4, 4)'], {'dtype': 'torch.float64'}), '((64, 4, 4), dtype=torch.float64)\n', (4724, 4757), False, 'import torch\n'), ((4781, 4825), 'torch.randn', 'torch.randn', (['(64, 4, 4)'], {'dtype': 'torch.float64'}), '((64, 4, 4), dtype=torch.float64)\n', (4792, 4825), False, 'import torch\n'), ((4841, 4878), 'torch.nn.CosineSimilarity', 'nn.CosineSimilarity', ([], {'dim': '(0)', 'eps': '(1e-06)'}), '(dim=0, eps=1e-06)\n', (4860, 4878), True, 'import torch.nn as nn\n'), ((4958, 4984), 'numpy.full', 'np.full', (['(4, 4, 4)', 'np.nan'], {}), '((4, 4, 4), np.nan)\n', (4965, 4984), True, 'import numpy as np\n'), ((5503, 5568), 'mc_cnn.run.computes_cost_volume_mc_cnn_fast', 'computes_cost_volume_mc_cnn_fast', (['ref_feature', 'sec_features', '(1)', '(4)'], {}), '(ref_feature, sec_features, 1, 4)\n', (5535, 5568), False, 'from mc_cnn.run import computes_cost_volume_mc_cnn_fast\n'), ((5690, 5739), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['cv', 'cv_gt'], {'rtol': '(1e-05)'}), '(cv, cv_gt, rtol=1e-05)\n', (5716, 5739), True, 'import numpy as np\n'), ((6200, 6248), 'torch.randn', 'torch.randn', (['(1, 112, 4, 4)'], {'dtype': 'torch.float64'}), '((1, 112, 4, 4), dtype=torch.float64)\n', (6211, 6248), False, 'import torch\n'), ((6272, 6320), 'torch.randn', 'torch.randn', (['(1, 112, 4, 4)'], {'dtype': 'torch.float64'}), '((1, 112, 4, 4), dtype=torch.float64)\n', (6283, 6320), False, 'import torch\n'), ((6401, 6427), 'numpy.full', 'np.full', (['(4, 4, 5)', 'np.nan'], {}), '((4, 4, 5), np.nan)\n', (6408, 6427), True, 'import numpy as np\n'), ((7232, 7247), 'mc_cnn.model.mc_cnn_accurate.AccMcCnnInfer', 'AccMcCnnInfer', ([], {}), '()\n', (7245, 7247), False, 'from mc_cnn.model.mc_cnn_accurate import AccMcCnnInfer\n'), ((7567, 7616), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['cv', 'cv_gt'], {'rtol': '(1e-05)'}), '(cv, cv_gt, rtol=1e-05)\n', (7593, 7616), True, 'import numpy as np\n'), ((7876, 7924), 'torch.randn', 'torch.randn', (['(1, 112, 4, 4)'], {'dtype': 'torch.float64'}), '((1, 112, 4, 4), dtype=torch.float64)\n', (7887, 7924), False, 'import torch\n'), ((7948, 7996), 'torch.randn', 'torch.randn', (['(1, 112, 4, 4)'], {'dtype': 'torch.float64'}), '((1, 112, 4, 4), dtype=torch.float64)\n', (7959, 7996), False, 'import torch\n'), ((8077, 8103), 'numpy.full', 'np.full', (['(4, 4, 4)', 'np.nan'], {}), '((4, 4, 4), np.nan)\n', (8084, 8103), True, 'import numpy as np\n'), ((8676, 8691), 'mc_cnn.model.mc_cnn_accurate.AccMcCnnInfer', 'AccMcCnnInfer', ([], {}), '()\n', (8689, 8691), False, 'from mc_cnn.model.mc_cnn_accurate import AccMcCnnInfer\n'), ((9012, 9061), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['cv', 'cv_gt'], {'rtol': '(1e-05)'}), '(cv, cv_gt, rtol=1e-05)\n', (9038, 9061), True, 'import numpy as np\n'), ((9322, 9370), 'torch.randn', 'torch.randn', (['(1, 112, 4, 4)'], {'dtype': 'torch.float64'}), '((1, 112, 4, 4), dtype=torch.float64)\n', (9333, 9370), False, 'import torch\n'), ((9394, 9442), 'torch.randn', 'torch.randn', (['(1, 112, 4, 4)'], {'dtype': 'torch.float64'}), '((1, 112, 4, 4), dtype=torch.float64)\n', (9405, 9442), False, 'import torch\n'), ((9523, 9549), 'numpy.full', 'np.full', (['(4, 4, 4)', 'np.nan'], {}), '((4, 4, 4), np.nan)\n', (9530, 9549), True, 'import numpy as np\n'), ((10117, 10132), 'mc_cnn.model.mc_cnn_accurate.AccMcCnnInfer', 'AccMcCnnInfer', ([], {}), '()\n', (10130, 10132), False, 'from mc_cnn.model.mc_cnn_accurate import AccMcCnnInfer\n'), ((10451, 10500), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['cv', 'cv_gt'], {'rtol': '(1e-05)'}), '(cv, cv_gt, rtol=1e-05)\n', (10477, 10500), True, 'import numpy as np\n'), ((12976, 13068), 'mc_cnn.dataset_generator.middlebury_generator.MiddleburyGenerator', 'MiddleburyGenerator', (['"""tests/sample_middlebury.hdf5"""', '"""tests/images_middlebury.hdf5"""', 'cfg'], {}), "('tests/sample_middlebury.hdf5',\n 'tests/images_middlebury.hdf5', cfg)\n", (12995, 13068), False, 'from mc_cnn.dataset_generator.middlebury_generator import MiddleburyGenerator\n'), ((14329, 14397), 'numpy.stack', 'np.stack', (['(gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch)'], {'axis': '(0)'}), '((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0)\n', (14337, 14397), True, 'import numpy as np\n'), ((14513, 14558), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['patch', 'gt_path'], {}), '(patch, gt_path)\n', (14542, 14558), True, 'import numpy as np\n'), ((15729, 15797), 'numpy.stack', 'np.stack', (['(gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch)'], {'axis': '(0)'}), '((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0)\n', (15737, 15797), True, 'import numpy as np\n'), ((15913, 15958), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['patch', 'gt_path'], {}), '(patch, gt_path)\n', (15942, 15958), True, 'import numpy as np\n'), ((18131, 18216), 'mc_cnn.dataset_generator.datas_fusion_contest_generator.DataFusionContestGenerator', 'DataFusionContestGenerator', (['"""tests/sample_dfc.hdf5"""', '"""tests/images_dfc.hdf5"""', 'cfg'], {}), "('tests/sample_dfc.hdf5', 'tests/images_dfc.hdf5',\n cfg)\n", (18157, 18216), False, 'from mc_cnn.dataset_generator.datas_fusion_contest_generator import DataFusionContestGenerator\n'), ((19476, 19544), 'numpy.stack', 'np.stack', (['(gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch)'], {'axis': '(0)'}), '((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0)\n', (19484, 19544), True, 'import numpy as np\n'), ((19660, 19705), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['patch', 'gt_path'], {}), '(patch, gt_path)\n', (19689, 19705), True, 'import numpy as np\n'), ((20876, 20944), 'numpy.stack', 'np.stack', (['(gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch)'], {'axis': '(0)'}), '((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0)\n', (20884, 20944), True, 'import numpy as np\n'), ((21060, 21105), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['patch', 'gt_path'], {}), '(patch, gt_path)\n', (21089, 21105), True, 'import numpy as np\n'), ((1454, 1485), 'numpy.arange', 'np.arange', (['(13)'], {'dtype': 'np.float32'}), '(13, dtype=np.float32)\n', (1463, 1485), True, 'import numpy as np\n'), ((1609, 1640), 'numpy.arange', 'np.arange', (['(13)'], {'dtype': 'np.float32'}), '(13, dtype=np.float32)\n', (1618, 1640), True, 'import numpy as np\n'), ((1529, 1560), 'numpy.arange', 'np.arange', (['(13)'], {'dtype': 'np.float32'}), '(13, dtype=np.float32)\n', (1538, 1560), True, 'import numpy as np\n'), ((1684, 1715), 'numpy.arange', 'np.arange', (['(13)'], {'dtype': 'np.float32'}), '(13, dtype=np.float32)\n', (1693, 1715), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import sqlite3 from sklearn.metrics import auc from sklearn.metrics import roc_curve def add_truth(data, database): data = data.sort_values('event_no').reset_index(drop = True) with sqlite3.connect(database) as con: query = 'select event_no, energy, interaction_type, pid from truth where event_no in %s'%str(tuple(data['event_no'])) truth = pd.read_sql(query,con).sort_values('event_no').reset_index(drop = True) truth['track'] = 0 truth.loc[(abs(truth['pid']) == 14) & (truth['interaction_type'] == 1), 'track'] = 1 add_these = [] for key in truth.columns: if key not in data.columns: add_these.append(key) for key in add_these: data[key] = truth[key] return data def get_interaction_type(row): if row["interaction_type"] == 1: # CC particle_type = "nu_" + {12: 'e', 14: 'mu', 16: 'tau'}[abs(row['pid'])] return f"{particle_type} CC" else: return "NC" def resolution_fn(r): if len(r) > 1: return (np.percentile(r, 84) - np.percentile(r, 16)) / 2. else: return np.nan def add_energylog10(df): df['energy_log10'] = np.log10(df['energy']) return df def get_error(residual): rng = np.random.default_rng(42) w = [] for i in range(150): new_sample = rng.choice(residual, size = len(residual), replace = True) w.append(resolution_fn(new_sample)) return np.std(w) def get_roc_and_auc(data, target): fpr, tpr, _ = roc_curve(data[target], data[target+'_pred']) auc_score = auc(fpr,tpr) return fpr,tpr,auc_score def plot_roc(target, runids, save_dir, save_as_csv = False): width = 3.176*2 height = 2.388*2 fig = plt.figure(figsize = (width,height)) for runid in runids: data = pd.read_csv('/home/iwsatlas1/oersoe/phd/upgrade_noise/results/dev_step4_numu_%s_second_run/upgrade_%s_regression_45e_GraphSagePulses/results.csv'%(runid,target)) database = '/mnt/scratch/rasmus_orsoe/databases/dev_step4_numu_%s_second_run/data/dev_step4_numu_%s_second_run.db'%(runid, runid) if save_as_csv: data = add_truth(data, database) data = add_energylog10(data) data.to_csv(save_dir + '/%s_%s.csv'%(runid, target)) pulses_cut_val = 20 if runid == 140021: pulses_cut_val = 10 fpr, tpr, auc = get_roc_and_auc(data, target) plt.plot(fpr,tpr, label =' %s : %s'%(runid,round(auc,3))) plt.legend() plt.title('Track/Cascade Classification') plt.ylabel('True Positive Rate', fontsize = 12) plt.xlabel('False Positive Rate', fontsize = 12) ymax = 0.3 x_text = 0.2 y_text = ymax - 0.05 y_sep = 0.1 plt.text(x_text, y_text - 0 * y_sep, "IceCubeUpgrade/nu_simulation/detector/step4/(%s,%s)"%(runids[0], runids[1]), va='top', fontsize = 8) plt.text(x_text, y_text - 1 * y_sep, "Pulsemaps used: SplitInIcePulses_GraphSage_Pulses ", va='top', fontsize = 8) plt.text(x_text, y_text - 2 * y_sep, "n_pulses > (%s, %s) selection applied during training"%(10,20), va='top', fontsize = 8) fig.savefig('/home/iwsatlas1/oersoe/phd/upgrade_noise/plots/preliminary_upgrade_performance_%s.pdf'%(target),bbox_inches="tight") return def calculate_width(data_sliced, target): track =data_sliced.loc[data_sliced['track'] == 1,:].reset_index(drop = True) cascade =data_sliced.loc[data_sliced['track'] == 0,:].reset_index(drop = True) if target == 'energy': residual_track = ((track[target + '_pred'] - track[target])/track[target])*100 residual_cascade = ((cascade[target + '_pred'] - cascade[target])/cascade[target])*100 elif target == 'zenith': residual_track = (track[target + '_pred'] - track[target])*(360/(2*np.pi)) residual_cascade = (cascade[target + '_pred'] - cascade[target])*(360/(2*np.pi)) else: residual_track = (track[target + '_pred'] - track[target]) residual_cascade = (cascade[target + '_pred'] - cascade[target]) return resolution_fn(residual_track), resolution_fn(residual_cascade), get_error(residual_track), get_error(residual_cascade) def get_width(df, target): track_widths = [] cascade_widths = [] track_errors = [] cascade_errors = [] energy = [] bins = np.arange(0,3.1,0.1) if target in ['zenith', 'energy', 'XYZ']: for i in range(1,len(bins)): print(bins[i]) idx = (df['energy_log10']> bins[i-1]) & (df['energy_log10'] < bins[i]) data_sliced = df.loc[idx, :].reset_index(drop = True) energy.append(np.mean(data_sliced['energy_log10'])) track_width, cascade_width, track_error, cascade_error = calculate_width(data_sliced, target) track_widths.append(track_width) cascade_widths.append(cascade_width) track_errors.append(track_error) cascade_errors.append(cascade_error) track_plot_data = pd.DataFrame({'mean': energy, 'width': track_widths, 'width_error': track_errors}) cascade_plot_data = pd.DataFrame({'mean': energy, 'width': cascade_widths, 'width_error': cascade_errors}) return track_plot_data, cascade_plot_data else: print('target not supported: %s'%target) # Load data def make_plot(target, runids, save_dir, save_as_csv = False): colors = {140021: 'tab:blue', 140022: 'tab:orange'} fig = plt.figure(constrained_layout = True) ax1 = plt.subplot2grid((6, 6), (0, 0), colspan = 6, rowspan= 6) for runid in runids: predictions_path = '/home/iwsatlas1/oersoe/phd/upgrade_noise/results/dev_step4_numu_%s_second_run/upgrade_%s_regression_45e_GraphSagePulses/results.csv'%(runid,target) database = '/mnt/scratch/rasmus_orsoe/databases/dev_step4_numu_%s_second_run/data/dev_step4_numu_%s_second_run.db'%(runid, runid) pulses_cut_val = 20 if runid == 140021: pulses_cut_val = 10 df = pd.read_csv(predictions_path).sort_values('event_no').reset_index(drop = True) df = add_truth(df, database) df = add_energylog10(df) if save_as_csv: df.to_csv(save_dir + '/%s_%s.csv'%(runid, target)) plot_data_track, plot_data_cascade = get_width(df, target) ax1.plot(plot_data_track['mean'],plot_data_track['width'],linestyle='solid', lw = 0.5, color = 'black', alpha = 1) ax1.fill_between(plot_data_track['mean'],plot_data_track['width'] - plot_data_track['width_error'], plot_data_track['width'] + plot_data_track['width_error'],color = colors[runid], alpha = 0.8 ,label = 'Track %s'%runid) ax1.plot(plot_data_cascade['mean'],plot_data_cascade['width'],linestyle='dashed', color = 'tab:blue', lw = 0.5, alpha = 1) ax1.fill_between(plot_data_cascade['mean'], plot_data_cascade['width']- plot_data_cascade['width_error'], plot_data_cascade['width']+ plot_data_cascade['width_error'], color = colors[runid], alpha = 0.3, label = 'Cascade %s'%runid ) ax2 = ax1.twinx() ax2.hist(df['energy_log10'], histtype = 'step', label = 'deposited energy', color = colors[runid]) #plt.title('$\\nu_{v,u,e}$', size = 20) ax1.tick_params(axis='x', labelsize=6) ax1.tick_params(axis='y', labelsize=6) ax1.set_xlim((0,3.1)) leg = ax1.legend(frameon=False, fontsize = 8) for line in leg.get_lines(): line.set_linewidth(4.0) if target == 'energy': ax1.set_ylim((0,175)) ymax = 23. y_sep = 8 unit_tag = '(%)' else: unit_tag = '(deg.)' if target == 'angular_res': target = 'direction' if target == 'XYZ': target = 'vertex' unit_tag = '(m)' if target == 'zenith': ymax = 10. y_sep = 2.3 ax1.set_ylim((0,45)) plt.tick_params(right=False,labelright=False) ax1.set_ylabel('%s Resolution %s'%(target.capitalize(), unit_tag), size = 10) ax1.set_xlabel('Energy (log10 GeV)', size = 10) x_text = 0.5 y_text = ymax - 2. ax1.text(x_text, y_text - 0 * y_sep, "IceCubeUpgrade/nu_simulation/detector/step4/(%s,%s)"%(runids[0], runids[1]), va='top', fontsize = 8) ax1.text(x_text, y_text - 1 * y_sep, "Pulsemaps used: SplitInIcePulses_GraphSage_Pulses ", va='top', fontsize = 8) ax1.text(x_text, y_text - 2 * y_sep, "n_pulses > (%s, %s) selection applied during training"%(10,20), va='top', fontsize = 8) fig.suptitle("%s regression Upgrade MC using GNN"%target) #fig.suptitle('%s Resolution'%target.capitalize(), size = 12) fig.savefig('/home/iwsatlas1/oersoe/phd/upgrade_noise/plots/preliminary_upgrade_performance_%s.pdf'%(target))#,bbox_inches="tight") return runids = [140021, 140022] targets = ['zenith', 'energy', 'track'] save_as_csv = True save_dir = '/home/iwsatlas1/oersoe/phd/tmp/upgrade_csv' for target in targets: if target != 'track': make_plot(target, runids, save_dir, save_as_csv) else: plot_roc(target, runids, save_dir, save_as_csv)
[ "matplotlib.pyplot.title", "pandas.read_csv", "matplotlib.pyplot.subplot2grid", "numpy.random.default_rng", "matplotlib.pyplot.figure", "numpy.mean", "numpy.arange", "matplotlib.pyplot.tick_params", "pandas.DataFrame", "numpy.std", "numpy.log10", "matplotlib.pyplot.legend", "matplotlib.pyplot.text", "numpy.percentile", "sqlite3.connect", "matplotlib.pyplot.ylabel", "sklearn.metrics.roc_curve", "sklearn.metrics.auc", "pandas.read_sql", "matplotlib.pyplot.xlabel" ]
[((1250, 1272), 'numpy.log10', 'np.log10', (["df['energy']"], {}), "(df['energy'])\n", (1258, 1272), True, 'import numpy as np\n'), ((1323, 1348), 'numpy.random.default_rng', 'np.random.default_rng', (['(42)'], {}), '(42)\n', (1344, 1348), True, 'import numpy as np\n'), ((1520, 1529), 'numpy.std', 'np.std', (['w'], {}), '(w)\n', (1526, 1529), True, 'import numpy as np\n'), ((1584, 1631), 'sklearn.metrics.roc_curve', 'roc_curve', (['data[target]', "data[target + '_pred']"], {}), "(data[target], data[target + '_pred'])\n", (1593, 1631), False, 'from sklearn.metrics import roc_curve\n'), ((1646, 1659), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (1649, 1659), False, 'from sklearn.metrics import auc\n'), ((1803, 1838), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(width, height)'}), '(figsize=(width, height))\n', (1813, 1838), True, 'import matplotlib.pyplot as plt\n'), ((2568, 2580), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2578, 2580), True, 'import matplotlib.pyplot as plt\n'), ((2585, 2626), 'matplotlib.pyplot.title', 'plt.title', (['"""Track/Cascade Classification"""'], {}), "('Track/Cascade Classification')\n", (2594, 2626), True, 'import matplotlib.pyplot as plt\n'), ((2631, 2676), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True Positive Rate"""'], {'fontsize': '(12)'}), "('True Positive Rate', fontsize=12)\n", (2641, 2676), True, 'import matplotlib.pyplot as plt\n'), ((2683, 2729), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False Positive Rate"""'], {'fontsize': '(12)'}), "('False Positive Rate', fontsize=12)\n", (2693, 2729), True, 'import matplotlib.pyplot as plt\n'), ((2809, 2956), 'matplotlib.pyplot.text', 'plt.text', (['x_text', '(y_text - 0 * y_sep)', "('IceCubeUpgrade/nu_simulation/detector/step4/(%s,%s)' % (runids[0], runids[1])\n )"], {'va': '"""top"""', 'fontsize': '(8)'}), "(x_text, y_text - 0 * y_sep, \n 'IceCubeUpgrade/nu_simulation/detector/step4/(%s,%s)' % (runids[0],\n runids[1]), va='top', fontsize=8)\n", (2817, 2956), True, 'import matplotlib.pyplot as plt\n'), ((2952, 3068), 'matplotlib.pyplot.text', 'plt.text', (['x_text', '(y_text - 1 * y_sep)', '"""Pulsemaps used: SplitInIcePulses_GraphSage_Pulses """'], {'va': '"""top"""', 'fontsize': '(8)'}), "(x_text, y_text - 1 * y_sep,\n 'Pulsemaps used: SplitInIcePulses_GraphSage_Pulses ', va='top', fontsize=8)\n", (2960, 3068), True, 'import matplotlib.pyplot as plt\n'), ((3071, 3207), 'matplotlib.pyplot.text', 'plt.text', (['x_text', '(y_text - 2 * y_sep)', "('n_pulses > (%s, %s) selection applied during training' % (10, 20))"], {'va': '"""top"""', 'fontsize': '(8)'}), "(x_text, y_text - 2 * y_sep, \n 'n_pulses > (%s, %s) selection applied during training' % (10, 20), va=\n 'top', fontsize=8)\n", (3079, 3207), True, 'import matplotlib.pyplot as plt\n'), ((4393, 4415), 'numpy.arange', 'np.arange', (['(0)', '(3.1)', '(0.1)'], {}), '(0, 3.1, 0.1)\n', (4402, 4415), True, 'import numpy as np\n'), ((5514, 5549), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(True)'}), '(constrained_layout=True)\n', (5524, 5549), True, 'import matplotlib.pyplot as plt\n'), ((5562, 5616), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(6, 6)', '(0, 0)'], {'colspan': '(6)', 'rowspan': '(6)'}), '((6, 6), (0, 0), colspan=6, rowspan=6)\n', (5578, 5616), True, 'import matplotlib.pyplot as plt\n'), ((7910, 7956), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'right': '(False)', 'labelright': '(False)'}), '(right=False, labelright=False)\n', (7925, 7956), True, 'import matplotlib.pyplot as plt\n'), ((262, 287), 'sqlite3.connect', 'sqlite3.connect', (['database'], {}), '(database)\n', (277, 287), False, 'import sqlite3\n'), ((1880, 2054), 'pandas.read_csv', 'pd.read_csv', (["('/home/iwsatlas1/oersoe/phd/upgrade_noise/results/dev_step4_numu_%s_second_run/upgrade_%s_regression_45e_GraphSagePulses/results.csv'\n % (runid, target))"], {}), "(\n '/home/iwsatlas1/oersoe/phd/upgrade_noise/results/dev_step4_numu_%s_second_run/upgrade_%s_regression_45e_GraphSagePulses/results.csv'\n % (runid, target))\n", (1891, 2054), True, 'import pandas as pd\n'), ((5058, 5144), 'pandas.DataFrame', 'pd.DataFrame', (["{'mean': energy, 'width': track_widths, 'width_error': track_errors}"], {}), "({'mean': energy, 'width': track_widths, 'width_error':\n track_errors})\n", (5070, 5144), True, 'import pandas as pd\n'), ((5169, 5259), 'pandas.DataFrame', 'pd.DataFrame', (["{'mean': energy, 'width': cascade_widths, 'width_error': cascade_errors}"], {}), "({'mean': energy, 'width': cascade_widths, 'width_error':\n cascade_errors})\n", (5181, 5259), True, 'import pandas as pd\n'), ((1109, 1129), 'numpy.percentile', 'np.percentile', (['r', '(84)'], {}), '(r, 84)\n', (1122, 1129), True, 'import numpy as np\n'), ((1132, 1152), 'numpy.percentile', 'np.percentile', (['r', '(16)'], {}), '(r, 16)\n', (1145, 1152), True, 'import numpy as np\n'), ((4700, 4736), 'numpy.mean', 'np.mean', (["data_sliced['energy_log10']"], {}), "(data_sliced['energy_log10'])\n", (4707, 4736), True, 'import numpy as np\n'), ((438, 461), 'pandas.read_sql', 'pd.read_sql', (['query', 'con'], {}), '(query, con)\n', (449, 461), True, 'import pandas as pd\n'), ((6060, 6089), 'pandas.read_csv', 'pd.read_csv', (['predictions_path'], {}), '(predictions_path)\n', (6071, 6089), True, 'import pandas as pd\n')]
from preprocessing.vectorizers import Doc2VecVectorizer from nnframework.data_builder import DataBuilder import pandas as pd import constants as const import numpy as np def generate_d2v_vectors(source_file): df = pd.read_csv(source_file) messages = df["Message"].values vectorizer = Doc2VecVectorizer() vectors = vectorizer.vectorize(messages) return np.c_[df.iloc[:,0].values, vectors] if __name__ == '__main__': # Generate vectors (with index) output = generate_d2v_vectors(const.FILE_UNIQUE_UNLABELLED) # Save vectors as npy file np.save(const.FILE_DOC2VEC_INPUTS_UNLABELLED, output)
[ "pandas.read_csv", "numpy.save", "preprocessing.vectorizers.Doc2VecVectorizer" ]
[((219, 243), 'pandas.read_csv', 'pd.read_csv', (['source_file'], {}), '(source_file)\n', (230, 243), True, 'import pandas as pd\n'), ((298, 317), 'preprocessing.vectorizers.Doc2VecVectorizer', 'Doc2VecVectorizer', ([], {}), '()\n', (315, 317), False, 'from preprocessing.vectorizers import Doc2VecVectorizer\n'), ((579, 632), 'numpy.save', 'np.save', (['const.FILE_DOC2VEC_INPUTS_UNLABELLED', 'output'], {}), '(const.FILE_DOC2VEC_INPUTS_UNLABELLED, output)\n', (586, 632), True, 'import numpy as np\n')]
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="M_qo7DmLJKLP" # #Class-Conditional Bernoulli Mixture Model for EMNIST # + [markdown] id="TU1pCzcIJHTm" # ## Setup # # + id="400WanLyGA2C" # !git clone --depth 1 https://github.com/probml/pyprobml /pyprobml &> /dev/null # %cd -q /pyprobml/scripts # + id="k1rLl6dHH7Wh" # !pip install -q superimport # !pip install -q distrax # + id="cLpBn5KQeB46" from conditional_bernoulli_mix_lib import ClassConditionalBMM from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class from noisy_spelling_hmm import Word from jax import vmap import jax.numpy as jnp import jax from jax.random import PRNGKey, split import numpy as np from matplotlib import pyplot as plt # + colab={"base_uri": "https://localhost:8080/"} id="ey9k06RweuKc" outputId="38131e5a-82fb-49db-c4d3-f4364a643152" select_n = 25 dataset, targets = get_emnist_images_per_class(select_n) dataset, targets = jnp.array(dataset), jnp.array(targets) # + [markdown] id="KwNq7HYYLPO9" # ## Initialization of Class Conditional BMMs # + colab={"base_uri": "https://localhost:8080/"} id="UABtUDPjffFt" outputId="d873a708-542c-44e6-8c72-2c5908c7bbad" n_mix = 30 n_char = 52 mixing_coeffs = jnp.array(np.full((n_char, n_mix), 1./n_mix)) p_min, p_max = 0.4, 0.6 n_pixels = 28 * 28 probs = jnp.array(np.random.uniform(p_min, p_max, (n_char, n_mix, n_pixels))) class_priors = jnp.array(np.full((n_char,), 1./n_char)) cbm_gd = ClassConditionalBMM(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=class_priors, n_char=n_char) cbm_em = ClassConditionalBMM(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=class_priors, n_char=n_char) # + [markdown] id="Qa95Fua5Kc3i" # ## Full Batch Gradient Descentt # + colab={"base_uri": "https://localhost:8080/", "height": 336} id="PDzuEjs9Kewi" outputId="c81916c0-c6b7-45bd-d308-eab878afe281" num_epochs, batch_size = 100, len(dataset) losses = cbm_gd.fit_sgd(dataset.reshape((-1, n_pixels)), targets, batch_size, num_epochs = num_epochs) plt.plot(losses, color="k", linewidth=3) plt.xlabel("Iteration") plt.ylabel("Negative Log Likelihood") plt.show() # + [markdown] id="37mNMNrpInfh" # ## EM Algorithm # + colab={"base_uri": "https://localhost:8080/", "height": 336} id="FJeBzIKYfsUk" outputId="9d8db485-a251-4b1a-a6e5-93833c83dce6" losses = cbm_em.fit_em(dataset, targets, 8) plt.plot(losses, color="k", linewidth=3) plt.xlabel("Iteration") plt.ylabel("Negative Log Likelihood") plt.show() # + [markdown] id="NjCQpoH1Iuuf" # ## Plot of the Probabilities of Components Distribution # + id="KkyAHDW4JgyM" def plot_components_dist(cbm, n_mix): fig = plt.figure(figsize=(45, 20)) for k in range(n_mix): for cls in range(cbm.num_of_classes): plt.subplot(n_mix ,cbm.num_of_classes, cbm.num_of_classes*k + cls +1) plt.imshow(1 - cbm.model.components_distribution.distribution.probs[cls][k,:].reshape((28,28)), cmap = "gray") plt.axis('off') plt.tight_layout() plt.show() # + [markdown] id="J8KLkCWpNAeF" # ### GD # + colab={"base_uri": "https://localhost:8080/", "height": 666} id="DSOiuNeAM8gl" outputId="dce9416a-b646-423d-b4bf-c78728db1cab" plot_components_dist(cbm_gd, n_mix) # + [markdown] id="FO31plUVNDSO" # ### EM # + id="ZM43qs6FfvlP" colab={"base_uri": "https://localhost:8080/", "height": 666} outputId="81a095f1-1099-4809-90a8-272dbed11662" plot_components_dist(cbm_em, n_mix) # + [markdown] id="IqRdcklzOeAY" # ## Sampling # + id="wgI6sFWKN4ax" p1, p2, p3 = 0.4, 0.1, 2e-3 n_misspelled = 1 # number of misspelled words created for each class vocab = ['book', 'bird', 'bond', 'bone', 'bank', 'byte', 'pond', 'mind', 'song', 'band'] rng_key = PRNGKey(0) keys = [dev_array for dev_array in split(rng_key, len(vocab))] # + id="x3GpZ8jbf11N" colab={"base_uri": "https://localhost:8080/"} outputId="5a348b69-bdf4-4f80-f059-1062ba2fbb88" hmms = {word: Word(word, p1, p2, p3, n_char, "all", mixing_coeffs=cbm_em.model.mixture_distribution.probs, initial_probs=cbm_em.model.components_distribution.distribution.probs, n_mix=n_mix) for word in vocab} samples = jax.tree_multimap(lambda word, key: hmms[word].n_sample(n_misspelled, key), vocab, keys) # + id="7VXVsobcg_KO" colab={"base_uri": "https://localhost:8080/"} outputId="3e915a79-7f5c-4131-d6ee-97f11c83d86f" decoded_words = vmap(decode, in_axes = (0, None, None))(jnp.array(samples)[:, :, :, -1].reshape((n_misspelled * len(vocab), -1)), n_char + 1, "all") get_decoded_samples(decoded_words) # + [markdown] id="xrRy8MG0afR8" # ### Figure # + id="O0-HaN5rQAvP" def plot_samples(samples): samples = np.array(samples)[:, :, :, :-1].reshape((-1, 28, 28)) fig, axes = plt.subplots(ncols=4, nrows=10, figsize=(4, 10)) fig.subplots_adjust(hspace = .2, wspace=.001) for i, ax in enumerate(axes.flatten()): ax.imshow(samples[i], cmap="gray") ax.set_axis_off() fig.tight_layout() plt.show() # + id="EbZn9vrfhei4" colab={"base_uri": "https://localhost:8080/", "height": 728} outputId="114217bf-cadb-4331-82ef-b4844c038342" plot_samples(samples) # + [markdown] id="eNDmwV7EPyrR" # ## Calculation of Log Likelihoods for Test Data # + id="525MUl5HPe1K" # noisy words test_words = ['bo--', '-On-', 'b-N-', 'B---', '-OnD', 'b--D', '---D', '--Nd', 'B-nD', '-O--', 'b--d', '--n-'] test_images = fake_test_data(test_words, dataset, targets, n_char + 1, "all") # + id="1dFCdVNgPYtJ" def plot_log_likelihood(hmms, test_words, test_images, vocab): fig, axes = plt.subplots(4, 3, figsize=(20, 10)) for i, (ax, img, word) in enumerate(zip(axes.flat, test_images, test_words)): flattened_img = img.reshape((len(img), -1)) loglikelihoods = jax.tree_map(lambda w: jnp.sum(hmms[w].loglikelihood(word, flattened_img)), vocab) loglikelihoods = jnp.array(loglikelihoods) ax.bar(vocab, jnp.exp(jax.nn.log_softmax(loglikelihoods)), color="black") ax.set_title(f'{word}') plt.tight_layout() plt.show() # + id="qv-Df8GEhfC4" colab={"base_uri": "https://localhost:8080/", "height": 784} outputId="9be6abf3-0ecc-4ef5-e301-380c5eac38ff" plot_log_likelihood(hmms, test_words, test_images, vocab)
[ "jax.nn.log_softmax", "conditional_bernoulli_mix_utils.fake_test_data", "jax.random.PRNGKey", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "numpy.full", "conditional_bernoulli_mix_utils.get_decoded_samples", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "jax.vmap", "matplotlib.pyplot.ylabel", "noisy_spelling_hmm.Word", "conditional_bernoulli_mix_utils.get_emnist_images_per_class", "jax.numpy.array", "numpy.random.uniform", "conditional_bernoulli_mix_lib.ClassConditionalBMM", "matplotlib.pyplot.subplot", "matplotlib.pyplot.plot", "matplotlib.pyplot.axis", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((1137, 1174), 'conditional_bernoulli_mix_utils.get_emnist_images_per_class', 'get_emnist_images_per_class', (['select_n'], {}), '(select_n)\n', (1164, 1174), False, 'from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class\n'), ((1705, 1813), 'conditional_bernoulli_mix_lib.ClassConditionalBMM', 'ClassConditionalBMM', ([], {'mixing_coeffs': 'mixing_coeffs', 'probs': 'probs', 'class_priors': 'class_priors', 'n_char': 'n_char'}), '(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=\n class_priors, n_char=n_char)\n', (1724, 1813), False, 'from conditional_bernoulli_mix_lib import ClassConditionalBMM\n'), ((1818, 1926), 'conditional_bernoulli_mix_lib.ClassConditionalBMM', 'ClassConditionalBMM', ([], {'mixing_coeffs': 'mixing_coeffs', 'probs': 'probs', 'class_priors': 'class_priors', 'n_char': 'n_char'}), '(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=\n class_priors, n_char=n_char)\n', (1837, 1926), False, 'from conditional_bernoulli_mix_lib import ClassConditionalBMM\n'), ((2270, 2310), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {'color': '"""k"""', 'linewidth': '(3)'}), "(losses, color='k', linewidth=3)\n", (2278, 2310), True, 'from matplotlib import pyplot as plt\n'), ((2311, 2334), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (2321, 2334), True, 'from matplotlib import pyplot as plt\n'), ((2335, 2372), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Negative Log Likelihood"""'], {}), "('Negative Log Likelihood')\n", (2345, 2372), True, 'from matplotlib import pyplot as plt\n'), ((2373, 2383), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2381, 2383), True, 'from matplotlib import pyplot as plt\n'), ((2613, 2653), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {'color': '"""k"""', 'linewidth': '(3)'}), "(losses, color='k', linewidth=3)\n", (2621, 2653), True, 'from matplotlib import pyplot as plt\n'), ((2654, 2677), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (2664, 2677), True, 'from matplotlib import pyplot as plt\n'), ((2678, 2715), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Negative Log Likelihood"""'], {}), "('Negative Log Likelihood')\n", (2688, 2715), True, 'from matplotlib import pyplot as plt\n'), ((2716, 2726), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2724, 2726), True, 'from matplotlib import pyplot as plt\n'), ((3944, 3954), 'jax.random.PRNGKey', 'PRNGKey', (['(0)'], {}), '(0)\n', (3951, 3954), False, 'from jax.random import PRNGKey, split\n'), ((4733, 4767), 'conditional_bernoulli_mix_utils.get_decoded_samples', 'get_decoded_samples', (['decoded_words'], {}), '(decoded_words)\n', (4752, 4767), False, 'from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class\n'), ((5598, 5661), 'conditional_bernoulli_mix_utils.fake_test_data', 'fake_test_data', (['test_words', 'dataset', 'targets', '(n_char + 1)', '"""all"""'], {}), "(test_words, dataset, targets, n_char + 1, 'all')\n", (5612, 5661), False, 'from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class\n'), ((1194, 1212), 'jax.numpy.array', 'jnp.array', (['dataset'], {}), '(dataset)\n', (1203, 1212), True, 'import jax.numpy as jnp\n'), ((1214, 1232), 'jax.numpy.array', 'jnp.array', (['targets'], {}), '(targets)\n', (1223, 1232), True, 'import jax.numpy as jnp\n'), ((1480, 1517), 'numpy.full', 'np.full', (['(n_char, n_mix)', '(1.0 / n_mix)'], {}), '((n_char, n_mix), 1.0 / n_mix)\n', (1487, 1517), True, 'import numpy as np\n'), ((1578, 1636), 'numpy.random.uniform', 'np.random.uniform', (['p_min', 'p_max', '(n_char, n_mix, n_pixels)'], {}), '(p_min, p_max, (n_char, n_mix, n_pixels))\n', (1595, 1636), True, 'import numpy as np\n'), ((1664, 1696), 'numpy.full', 'np.full', (['(n_char,)', '(1.0 / n_char)'], {}), '((n_char,), 1.0 / n_char)\n', (1671, 1696), True, 'import numpy as np\n'), ((2889, 2917), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(45, 20)'}), '(figsize=(45, 20))\n', (2899, 2917), True, 'from matplotlib import pyplot as plt\n'), ((3218, 3236), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3234, 3236), True, 'from matplotlib import pyplot as plt\n'), ((3239, 3249), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3247, 3249), True, 'from matplotlib import pyplot as plt\n'), ((4149, 4335), 'noisy_spelling_hmm.Word', 'Word', (['word', 'p1', 'p2', 'p3', 'n_char', '"""all"""'], {'mixing_coeffs': 'cbm_em.model.mixture_distribution.probs', 'initial_probs': 'cbm_em.model.components_distribution.distribution.probs', 'n_mix': 'n_mix'}), "(word, p1, p2, p3, n_char, 'all', mixing_coeffs=cbm_em.model.\n mixture_distribution.probs, initial_probs=cbm_em.model.\n components_distribution.distribution.probs, n_mix=n_mix)\n", (4153, 4335), False, 'from noisy_spelling_hmm import Word\n'), ((4600, 4637), 'jax.vmap', 'vmap', (['decode'], {'in_axes': '(0, None, None)'}), '(decode, in_axes=(0, None, None))\n', (4604, 4637), False, 'from jax import vmap\n'), ((4950, 4998), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': '(4)', 'nrows': '(10)', 'figsize': '(4, 10)'}), '(ncols=4, nrows=10, figsize=(4, 10))\n', (4962, 4998), True, 'from matplotlib import pyplot as plt\n'), ((5187, 5197), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5195, 5197), True, 'from matplotlib import pyplot as plt\n'), ((5765, 5801), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(4)', '(3)'], {'figsize': '(20, 10)'}), '(4, 3, figsize=(20, 10))\n', (5777, 5801), True, 'from matplotlib import pyplot as plt\n'), ((6223, 6241), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6239, 6241), True, 'from matplotlib import pyplot as plt\n'), ((6246, 6256), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6254, 6256), True, 'from matplotlib import pyplot as plt\n'), ((6071, 6096), 'jax.numpy.array', 'jnp.array', (['loglikelihoods'], {}), '(loglikelihoods)\n', (6080, 6096), True, 'import jax.numpy as jnp\n'), ((2997, 3069), 'matplotlib.pyplot.subplot', 'plt.subplot', (['n_mix', 'cbm.num_of_classes', '(cbm.num_of_classes * k + cls + 1)'], {}), '(n_mix, cbm.num_of_classes, cbm.num_of_classes * k + cls + 1)\n', (3008, 3069), True, 'from matplotlib import pyplot as plt\n'), ((3199, 3214), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3207, 3214), True, 'from matplotlib import pyplot as plt\n'), ((4640, 4658), 'jax.numpy.array', 'jnp.array', (['samples'], {}), '(samples)\n', (4649, 4658), True, 'import jax.numpy as jnp\n'), ((4880, 4897), 'numpy.array', 'np.array', (['samples'], {}), '(samples)\n', (4888, 4897), True, 'import numpy as np\n'), ((6134, 6168), 'jax.nn.log_softmax', 'jax.nn.log_softmax', (['loglikelihoods'], {}), '(loglikelihoods)\n', (6152, 6168), False, 'import jax\n')]
__author__ = 'palmer' # every method in smoothing should accept (im,**args) def median(im, **kwargs): from scipy import ndimage im = ndimage.filters.median_filter(im,**kwargs) return im def hot_spot_removal(xic, q=99.): import numpy as np xic_q = np.percentile(xic, q) xic[xic > xic_q] = xic_q return xic
[ "numpy.percentile", "scipy.ndimage.filters.median_filter" ]
[((141, 184), 'scipy.ndimage.filters.median_filter', 'ndimage.filters.median_filter', (['im'], {}), '(im, **kwargs)\n', (170, 184), False, 'from scipy import ndimage\n'), ((268, 289), 'numpy.percentile', 'np.percentile', (['xic', 'q'], {}), '(xic, q)\n', (281, 289), True, 'import numpy as np\n')]
# coding: utf-8 # MultiPerceptron # queueを使った学習 # 学習step数を記録 # 学習データはCSVの代わりにジェネレータを搭載 # 3x11x4のNNモデルに変更 # scoreを追加 import os _FILE_DIR=os.path.abspath(os.path.dirname(__file__)) import time import tensorflow as tf import threading from sklearn.utils import shuffle import sys sys.path.append(_FILE_DIR+'/..') from generator import SensorGenerator import numpy as np tf.reset_default_graph() MODEL_DIR=_FILE_DIR+"/model" SUMMARY_LOG_DIR=_FILE_DIR+"/log" if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) n_nodes_hl1 = 11 data_cols = 3 # センサーの数。left45,front,right45 n_classes = 4 # 予測結果の数。stop,left,forward,right batch_size = 100 # バッチサイズは10〜100前後に chunk_size = 100 # FIFOQueueのcapacity target_step = 10000000 # ステップ数 TEST_NUM = 10000 # テストデータ件数 generator = SensorGenerator() def generate_random_train_data(batch_size): CSVDATA=[] # 10m以内の判定を学習させる #sensors = np.random.randint(0,1000,[batch_size,3]) # 前方20cm以内の判定を学習させる #LEFT45 = np.random.randint(0,1000,batch_size) #FRONT = np.random.randint(0,20,batch_size) #RIGHT45 = np.random.randint(0,1000,batch_size) # 前方20cm-100cm、左右100cm以内のの判定を学習させる #LEFT45 = np.random.randint(0,100,batch_size) #FRONT = np.random.randint(20,200,batch_size) #RIGHT45 = np.random.randint(0,100,batch_size) # 2m以内の判定を学習させる #LEFT45 = np.random.randint(0,200,batch_size) #FRONT = np.random.randint(0,200,batch_size) #RIGHT45 = np.random.randint(0,200,batch_size) # 1m以内の判定を学習させる #LEFT45 = np.random.randint(0,100,batch_size) #FRONT = np.random.randint(0,100,batch_size) #RIGHT45 = np.random.randint(0,100,batch_size) # 2m以内の判定を学習させる sensors = np.random.randint(0,200,[batch_size,3]) #sensors = np.c_[LEFT45,FRONT,RIGHT45] for i in range(batch_size): GENERATOR_RESULT = generator.driving_instruction(sensors[i]) CSVROW = np.hstack((sensors[i],GENERATOR_RESULT[0:4])) CSVDATA.append(CSVROW) CSVDATA = np.array(CSVDATA) batch_data = CSVDATA[0:batch_size,0:data_cols] batch_target = CSVDATA[0:batch_size,data_cols:] return batch_data, batch_target def load_and_enqueue(sess): while True: try: batch_data, batch_target = generate_random_train_data(batch_size) sess.run(enqueue_op, feed_dict={placeholder_input_data:batch_data, placeholder_input_target:batch_target}) except tf.errors.CancelledError as e: break print("finished enqueueing") def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) with tf.variable_scope("input"): placeholder_input_data = tf.placeholder('float', [None, data_cols], name='input_data') # for load_and_enqueue. use dequeue_data_op for prediction placeholder_input_target = tf.placeholder('float', name='input_target') # for load_and_enqueue. use dequeue_target_op for prediction placeholder_batch_size = tf.placeholder(tf.int32, name='batch_size') # need feed_dict in training sess.run(). don't need for prediction. with tf.variable_scope("step"): placeholder_step = tf.placeholder(tf.int32, name='input_step') # step値入力用 variable_step = tf.Variable(initial_value=0, name="step") # step記録用 step_op = variable_step.assign(placeholder_step) with tf.variable_scope("queue"): queue = tf.FIFOQueue( capacity=chunk_size, # enqueue size dtypes=['float', 'float'], shapes=[[data_cols], [n_classes]], name='FIFOQueue' ) # Enqueue and dequeue operations enqueue_op = queue.enqueue_many([placeholder_input_data, placeholder_input_target], name='enqueue_op') dequeue_data_op, dequeue_target_op = queue.dequeue_many(placeholder_batch_size, name='dequeue_op') # instead of data/target placeholder with tf.variable_scope('neural_network_model'): hidden_1_layer = {'weights':tf.Variable(weight_variable([data_cols, n_nodes_hl1])), 'biases':tf.Variable(bias_variable([n_nodes_hl1]))} output_layer = {'weights':tf.Variable(weight_variable([n_nodes_hl1, n_classes])), 'biases':tf.Variable(bias_variable([n_classes])),} l1 = tf.add(tf.matmul(dequeue_data_op,hidden_1_layer['weights']), hidden_1_layer['biases']) l1 = tf.nn.relu(l1) # 予測結果 prediction = tf.add(tf.matmul(l1,output_layer['weights']), output_layer['biases'], name='output_y') # スコア score = tf.nn.softmax(prediction, name='score') with tf.variable_scope('loss'): losses = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=dequeue_target_op) loss_op = tf.reduce_mean(losses, name='cost') tf.summary.scalar('loss', loss_op) with tf.variable_scope('accuracy'): correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(dequeue_target_op, 1)) accuracy = tf.reduce_mean(tf.cast(correct, 'float'), name='accuracy') tf.summary.scalar('accuracy', accuracy) summary_op = tf.summary.merge_all() train_op = tf.train.AdamOptimizer(0.0001).minimize(loss_op, name='train_op') saver = tf.train.Saver(max_to_keep=1000) test_data, test_target =generate_random_train_data(TEST_NUM) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(MODEL_DIR) if ckpt: # checkpointファイルから最後に保存したモデルへのパスを取得する last_model = ckpt.model_checkpoint_path print("load {0}".format(last_model)) # 学習済みモデルを読み込む saver.restore(sess, last_model) LOAD_MODEL = True else: print("initialization") # 初期化処理 init_op = tf.global_variables_initializer() sess.run(init_op) writer = tf.summary.FileWriter(SUMMARY_LOG_DIR, sess.graph) start_time, start_clock = time.time(), time.clock() # Start a thread to enqueue data asynchronously, and hide I/O latency. coord = tf.train.Coordinator() enqueue_thread = threading.Thread(target=load_and_enqueue, args=[sess]) enqueue_thread.isDaemon() enqueue_thread.start() threads = tf.train.start_queue_runners(coord=coord, sess=sess) step = 0 # 最後にstep数をモデルに記録するために変数を用意しておく try: # check the accuracy before training (without feed_dict!) print(sess.run(accuracy, feed_dict={placeholder_batch_size:chunk_size})) # check batch_size's data # step取得 _step = sess.run(variable_step) print("learned step:{}".format(_step)) for step in range(_step+1, target_step+1): batch_loss=0 w_summary=None _, batch_loss, w_summary = sess.run([train_op, loss_op, summary_op], feed_dict={placeholder_batch_size:batch_size}) if step % 1000 == 0: if not w_summary is None: writer.add_summary(w_summary, step) ac = sess.run(accuracy, feed_dict={placeholder_batch_size:chunk_size}) # check batch_size's data # テストデータでの精度を確認する test_accuracy = accuracy.eval({'queue/dequeue_op:0':test_data, 'queue/dequeue_op:1':test_target}) if step % 10000 == 0: print("Step:%d accuracy:%.8f test_accuracy:%.8f loss:%.8f time:%.8f clock:%.14f" % (step,ac,test_accuracy,batch_loss,time.time()-start_time,time.clock()-start_clock)) # 1000000 step毎にsaveする if step % 1000000 == 0: _step = sess.run(step_op,feed_dict={placeholder_step:step}) # variable_stepにstepを記録する saver.save(sess, MODEL_DIR + '/model-'+str(step)+'.ckpt') sess.run(queue.close(cancel_pending_enqueues=True)) except Exception as e: # Report exceptions to the coodinator. print(e) coord.request_stop(e) finally: coord.request_stop() coord.join(threads) # ステップ学習時、保存する if step > _step: _step = sess.run(step_op,feed_dict={placeholder_step:step}) # variable_stepにstepを記録する saver.save(sess, MODEL_DIR + '/model-'+str(step)+'.ckpt') # テストデータを新たに生成し、精度を確認する test_data, test_target =generate_random_train_data(TEST_NUM) print('Accuracy:',accuracy.eval({dequeue_data_op:test_data, dequeue_target_op:test_target})) # 総step数を表示する print('step:{}'.format(sess.run(variable_step))) print("end")
[ "tensorflow.train.Coordinator", "tensorflow.reset_default_graph", "tensorflow.matmul", "numpy.random.randint", "tensorflow.Variable", "tensorflow.truncated_normal", "sys.path.append", "tensorflow.nn.softmax", "tensorflow.nn.relu", "tensorflow.nn.softmax_cross_entropy_with_logits", "os.path.dirname", "os.path.exists", "tensorflow.variable_scope", "time.clock", "tensorflow.train.start_queue_runners", "generator.SensorGenerator", "tensorflow.placeholder", "tensorflow.summary.FileWriter", "tensorflow.cast", "tensorflow.FIFOQueue", "tensorflow.summary.merge_all", "tensorflow.train.get_checkpoint_state", "threading.Thread", "tensorflow.train.Saver", "tensorflow.summary.scalar", "tensorflow.global_variables_initializer", "tensorflow.reduce_mean", "tensorflow.Session", "tensorflow.constant", "numpy.hstack", "os.makedirs", "tensorflow.argmax", "time.time", "numpy.array", "tensorflow.train.AdamOptimizer" ]
[((278, 312), 'sys.path.append', 'sys.path.append', (["(_FILE_DIR + '/..')"], {}), "(_FILE_DIR + '/..')\n", (293, 312), False, 'import sys\n'), ((369, 393), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (391, 393), True, 'import tensorflow as tf\n'), ((776, 793), 'generator.SensorGenerator', 'SensorGenerator', ([], {}), '()\n', (791, 793), False, 'from generator import SensorGenerator\n'), ((5030, 5052), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (5050, 5052), True, 'import tensorflow as tf\n'), ((5140, 5172), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(1000)'}), '(max_to_keep=1000)\n', (5154, 5172), True, 'import tensorflow as tf\n'), ((153, 178), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (168, 178), False, 'import os\n'), ((464, 489), 'os.path.exists', 'os.path.exists', (['MODEL_DIR'], {}), '(MODEL_DIR)\n', (478, 489), False, 'import os\n'), ((495, 517), 'os.makedirs', 'os.makedirs', (['MODEL_DIR'], {}), '(MODEL_DIR)\n', (506, 517), False, 'import os\n'), ((1670, 1712), 'numpy.random.randint', 'np.random.randint', (['(0)', '(200)', '[batch_size, 3]'], {}), '(0, 200, [batch_size, 3])\n', (1687, 1712), True, 'import numpy as np\n'), ((1964, 1981), 'numpy.array', 'np.array', (['CSVDATA'], {}), '(CSVDATA)\n', (1972, 1981), True, 'import numpy as np\n'), ((2518, 2556), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.1)'}), '(shape, stddev=0.1)\n', (2537, 2556), True, 'import tensorflow as tf\n'), ((2568, 2588), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (2579, 2588), True, 'import tensorflow as tf\n'), ((2630, 2659), 'tensorflow.constant', 'tf.constant', (['(0.1)'], {'shape': 'shape'}), '(0.1, shape=shape)\n', (2641, 2659), True, 'import tensorflow as tf\n'), ((2671, 2691), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (2682, 2691), True, 'import tensorflow as tf\n'), ((2698, 2724), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""input"""'], {}), "('input')\n", (2715, 2724), True, 'import tensorflow as tf\n'), ((2755, 2816), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""', '[None, data_cols]'], {'name': '"""input_data"""'}), "('float', [None, data_cols], name='input_data')\n", (2769, 2816), True, 'import tensorflow as tf\n'), ((2907, 2951), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""'], {'name': '"""input_target"""'}), "('float', name='input_target')\n", (2921, 2951), True, 'import tensorflow as tf\n'), ((3042, 3085), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'name': '"""batch_size"""'}), "(tf.int32, name='batch_size')\n", (3056, 3085), True, 'import tensorflow as tf\n'), ((3161, 3186), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""step"""'], {}), "('step')\n", (3178, 3186), True, 'import tensorflow as tf\n'), ((3211, 3254), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'name': '"""input_step"""'}), "(tf.int32, name='input_step')\n", (3225, 3254), True, 'import tensorflow as tf\n'), ((3286, 3327), 'tensorflow.Variable', 'tf.Variable', ([], {'initial_value': '(0)', 'name': '"""step"""'}), "(initial_value=0, name='step')\n", (3297, 3327), True, 'import tensorflow as tf\n'), ((3397, 3423), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""queue"""'], {}), "('queue')\n", (3414, 3423), True, 'import tensorflow as tf\n'), ((3437, 3555), 'tensorflow.FIFOQueue', 'tf.FIFOQueue', ([], {'capacity': 'chunk_size', 'dtypes': "['float', 'float']", 'shapes': '[[data_cols], [n_classes]]', 'name': '"""FIFOQueue"""'}), "(capacity=chunk_size, dtypes=['float', 'float'], shapes=[[\n data_cols], [n_classes]], name='FIFOQueue')\n", (3449, 3555), True, 'import tensorflow as tf\n'), ((3896, 3937), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""neural_network_model"""'], {}), "('neural_network_model')\n", (3913, 3937), True, 'import tensorflow as tf\n'), ((4366, 4380), 'tensorflow.nn.relu', 'tf.nn.relu', (['l1'], {}), '(l1)\n', (4376, 4380), True, 'import tensorflow as tf\n'), ((4519, 4558), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['prediction'], {'name': '"""score"""'}), "(prediction, name='score')\n", (4532, 4558), True, 'import tensorflow as tf\n'), ((4565, 4590), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""loss"""'], {}), "('loss')\n", (4582, 4590), True, 'import tensorflow as tf\n'), ((4605, 4694), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'prediction', 'labels': 'dequeue_target_op'}), '(logits=prediction, labels=\n dequeue_target_op)\n', (4644, 4694), True, 'import tensorflow as tf\n'), ((4704, 4739), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['losses'], {'name': '"""cost"""'}), "(losses, name='cost')\n", (4718, 4739), True, 'import tensorflow as tf\n'), ((4744, 4778), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'loss_op'], {}), "('loss', loss_op)\n", (4761, 4778), True, 'import tensorflow as tf\n'), ((4785, 4814), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""accuracy"""'], {}), "('accuracy')\n", (4802, 4814), True, 'import tensorflow as tf\n'), ((4976, 5015), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy"""', 'accuracy'], {}), "('accuracy', accuracy)\n", (4993, 5015), True, 'import tensorflow as tf\n'), ((5239, 5251), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5249, 5251), True, 'import tensorflow as tf\n'), ((5272, 5312), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['MODEL_DIR'], {}), '(MODEL_DIR)\n', (5301, 5312), True, 'import tensorflow as tf\n'), ((5704, 5754), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['SUMMARY_LOG_DIR', 'sess.graph'], {}), '(SUMMARY_LOG_DIR, sess.graph)\n', (5725, 5754), True, 'import tensorflow as tf\n'), ((5899, 5921), 'tensorflow.train.Coordinator', 'tf.train.Coordinator', ([], {}), '()\n', (5919, 5921), True, 'import tensorflow as tf\n'), ((5943, 5997), 'threading.Thread', 'threading.Thread', ([], {'target': 'load_and_enqueue', 'args': '[sess]'}), '(target=load_and_enqueue, args=[sess])\n', (5959, 5997), False, 'import threading\n'), ((6069, 6121), 'tensorflow.train.start_queue_runners', 'tf.train.start_queue_runners', ([], {'coord': 'coord', 'sess': 'sess'}), '(coord=coord, sess=sess)\n', (6097, 6121), True, 'import tensorflow as tf\n'), ((1873, 1919), 'numpy.hstack', 'np.hstack', (['(sensors[i], GENERATOR_RESULT[0:4])'], {}), '((sensors[i], GENERATOR_RESULT[0:4]))\n', (1882, 1919), True, 'import numpy as np\n'), ((4277, 4330), 'tensorflow.matmul', 'tf.matmul', (['dequeue_data_op', "hidden_1_layer['weights']"], {}), "(dequeue_data_op, hidden_1_layer['weights'])\n", (4286, 4330), True, 'import tensorflow as tf\n'), ((4417, 4455), 'tensorflow.matmul', 'tf.matmul', (['l1', "output_layer['weights']"], {}), "(l1, output_layer['weights'])\n", (4426, 4455), True, 'import tensorflow as tf\n'), ((4839, 4863), 'tensorflow.argmax', 'tf.argmax', (['prediction', '(1)'], {}), '(prediction, 1)\n', (4848, 4863), True, 'import tensorflow as tf\n'), ((4865, 4896), 'tensorflow.argmax', 'tf.argmax', (['dequeue_target_op', '(1)'], {}), '(dequeue_target_op, 1)\n', (4874, 4896), True, 'import tensorflow as tf\n'), ((4928, 4953), 'tensorflow.cast', 'tf.cast', (['correct', '"""float"""'], {}), "(correct, 'float')\n", (4935, 4953), True, 'import tensorflow as tf\n'), ((5065, 5095), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['(0.0001)'], {}), '(0.0001)\n', (5087, 5095), True, 'import tensorflow as tf\n'), ((5630, 5663), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5661, 5663), True, 'import tensorflow as tf\n'), ((5785, 5796), 'time.time', 'time.time', ([], {}), '()\n', (5794, 5796), False, 'import time\n'), ((5798, 5810), 'time.clock', 'time.clock', ([], {}), '()\n', (5808, 5810), False, 'import time\n'), ((7344, 7355), 'time.time', 'time.time', ([], {}), '()\n', (7353, 7355), False, 'import time\n'), ((7367, 7379), 'time.clock', 'time.clock', ([], {}), '()\n', (7377, 7379), False, 'import time\n')]
# # Copyright (c) 2022 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # from abc import ABC import logging import os from os.path import abspath, dirname, join import sys import unittest import torch import random import numpy as np import pandas as pd from merlion.models.defaults import DefaultDetector, DefaultDetectorConfig from merlion.plot import plot_anoms_plotly from merlion.post_process.threshold import AggregateAlarms from merlion.utils import TimeSeries from ts_datasets.anomaly import * rootdir = dirname(dirname(dirname(abspath(__file__)))) logger = logging.getLogger(__name__) def set_random_seeds(): torch.manual_seed(12345) random.seed(12345) np.random.seed(12345) def get_train_test_splits(df: pd.DataFrame, metadata: pd.DataFrame, n: int) -> (pd.DataFrame, pd.DataFrame, np.ndarray): train_df = df[metadata.trainval] test_df = df[~metadata.trainval] test_labels = pd.DataFrame(metadata[~metadata.trainval].anomaly) return train_df.tail(n), test_df.head(n), test_labels[:n] class Mixin(ABC): def test_score(self): print("-" * 80) logger.info("test_score\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) test_ts = TimeSeries.from_pd(self.test_df) score_ts = self.model.get_anomaly_score(test_ts) scores = score_ts.to_pd().values.flatten() min_score, max_score, sum_score = min(scores), max(scores), sum(scores) logger.info(f"scores look like: {scores[:10]}") logger.info(f"min score = {min_score}") logger.info(f"max score = {max_score}") logger.info(f"sum score = {sum_score}") def test_save_load(self): print("-" * 80) logger.info("test_save_load\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) multi = train_ts.dim > 1 path = join(rootdir, "tmp", "default", "anom", "multi" if multi else "uni") self.model.save(dirname=path) loaded_model = DefaultDetector.load(dirname=path) test_ts = TimeSeries.from_pd(self.test_df) scores = self.model.get_anomaly_score(test_ts) scores_np = scores.to_pd().values.flatten() loaded_model_scores = loaded_model.get_anomaly_score(test_ts) loaded_model_scores = loaded_model_scores.to_pd().values.flatten() self.assertEqual(len(scores_np), len(loaded_model_scores)) alarms = self.model.post_rule(scores) loaded_model_alarms = loaded_model.post_rule(scores) self.assertSequenceEqual(list(alarms), list(loaded_model_alarms)) def test_plot(self): try: import plotly print("-" * 80) logger.info("test_plot\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) multi = train_ts.dim > 1 savedir = join(rootdir, "tmp", "default", "anom") os.makedirs(savedir, exist_ok=True) path = join(savedir, ("multi" if multi else "uni") + ".png") test_ts = TimeSeries.from_pd(self.test_df) fig = self.model.plot_anomaly_plotly( time_series=test_ts, time_series_prev=train_ts, plot_time_series_prev=True ) plot_anoms_plotly(fig, TimeSeries.from_pd(self.test_labels)) try: import kaleido fig.write_image(path, engine="kaleido") except ImportError: logger.info("kaleido not installed, not trying to save image") except ImportError: logger.info("plotly not installed, skipping test case") class TestUnivariate(unittest.TestCase, Mixin): def run_init(self): set_random_seeds() self.model = DefaultDetector( DefaultDetectorConfig(granularity="1h", threshold=AggregateAlarms(alm_threshold=1.5)) ) # Time series with anomalies in both train split and test split df = pd.read_csv(join(rootdir, "data", "synthetic_anomaly", "horizontal_spike_anomaly.csv")) df.timestamp = pd.to_datetime(df.timestamp, unit="s") df = df.set_index("timestamp") # Get training & testing splits self.train_df = df.iloc[: -len(df) // 2, :1] self.test_df = df.iloc[-len(df) // 2 :, :1] self.test_labels = df.iloc[-len(df) // 2 :, -1:] class TestMultivariate(unittest.TestCase, Mixin): def run_init(self): set_random_seeds() self.model = DefaultDetector(DefaultDetectorConfig(threshold=AggregateAlarms(alm_threshold=2))) self.dataset = MSL(rootdir=join(rootdir, "data", "smap")) df, metadata = self.dataset[0] self.train_df, self.test_df, self.test_labels = get_train_test_splits(df, metadata, 2000) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", stream=sys.stdout, level=logging.INFO ) unittest.main()
[ "pandas.DataFrame", "unittest.main", "os.path.abspath", "numpy.random.seed", "os.makedirs", "logging.basicConfig", "torch.manual_seed", "merlion.utils.TimeSeries.from_pd", "merlion.models.defaults.DefaultDetector.load", "merlion.post_process.threshold.AggregateAlarms", "random.seed", "pandas.to_datetime", "os.path.join", "logging.getLogger" ]
[((716, 743), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (733, 743), False, 'import logging\n'), ((774, 798), 'torch.manual_seed', 'torch.manual_seed', (['(12345)'], {}), '(12345)\n', (791, 798), False, 'import torch\n'), ((803, 821), 'random.seed', 'random.seed', (['(12345)'], {}), '(12345)\n', (814, 821), False, 'import random\n'), ((826, 847), 'numpy.random.seed', 'np.random.seed', (['(12345)'], {}), '(12345)\n', (840, 847), True, 'import numpy as np\n'), ((1063, 1113), 'pandas.DataFrame', 'pd.DataFrame', (['metadata[~metadata.trainval].anomaly'], {}), '(metadata[~metadata.trainval].anomaly)\n', (1075, 1113), True, 'import pandas as pd\n'), ((5241, 5381), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"""', 'stream': 'sys.stdout', 'level': 'logging.INFO'}), "(format=\n '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',\n stream=sys.stdout, level=logging.INFO)\n", (5260, 5381), False, 'import logging\n'), ((5391, 5406), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5404, 5406), False, 'import unittest\n'), ((1387, 1420), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.train_df'], {}), '(self.train_df)\n', (1405, 1420), False, 'from merlion.utils import TimeSeries\n'), ((1475, 1507), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_df'], {}), '(self.test_df)\n', (1493, 1507), False, 'from merlion.utils import TimeSeries\n'), ((2097, 2130), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.train_df'], {}), '(self.train_df)\n', (2115, 2130), False, 'from merlion.utils import TimeSeries\n'), ((2215, 2283), 'os.path.join', 'join', (['rootdir', '"""tmp"""', '"""default"""', '"""anom"""', "('multi' if multi else 'uni')"], {}), "(rootdir, 'tmp', 'default', 'anom', 'multi' if multi else 'uni')\n", (2219, 2283), False, 'from os.path import abspath, dirname, join\n'), ((2345, 2379), 'merlion.models.defaults.DefaultDetector.load', 'DefaultDetector.load', ([], {'dirname': 'path'}), '(dirname=path)\n', (2365, 2379), False, 'from merlion.models.defaults import DefaultDetector, DefaultDetectorConfig\n'), ((2399, 2431), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_df'], {}), '(self.test_df)\n', (2417, 2431), False, 'from merlion.utils import TimeSeries\n'), ((4517, 4555), 'pandas.to_datetime', 'pd.to_datetime', (['df.timestamp'], {'unit': '"""s"""'}), "(df.timestamp, unit='s')\n", (4531, 4555), True, 'import pandas as pd\n'), ((686, 703), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (693, 703), False, 'from os.path import abspath, dirname, join\n'), ((3182, 3215), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.train_df'], {}), '(self.train_df)\n', (3200, 3215), False, 'from merlion.utils import TimeSeries\n'), ((3315, 3354), 'os.path.join', 'join', (['rootdir', '"""tmp"""', '"""default"""', '"""anom"""'], {}), "(rootdir, 'tmp', 'default', 'anom')\n", (3319, 3354), False, 'from os.path import abspath, dirname, join\n'), ((3367, 3402), 'os.makedirs', 'os.makedirs', (['savedir'], {'exist_ok': '(True)'}), '(savedir, exist_ok=True)\n', (3378, 3402), False, 'import os\n'), ((3422, 3475), 'os.path.join', 'join', (['savedir', "(('multi' if multi else 'uni') + '.png')"], {}), "(savedir, ('multi' if multi else 'uni') + '.png')\n", (3426, 3475), False, 'from os.path import abspath, dirname, join\n'), ((3499, 3531), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_df'], {}), '(self.test_df)\n', (3517, 3531), False, 'from merlion.utils import TimeSeries\n'), ((4418, 4492), 'os.path.join', 'join', (['rootdir', '"""data"""', '"""synthetic_anomaly"""', '"""horizontal_spike_anomaly.csv"""'], {}), "(rootdir, 'data', 'synthetic_anomaly', 'horizontal_spike_anomaly.csv')\n", (4422, 4492), False, 'from os.path import abspath, dirname, join\n'), ((3722, 3758), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_labels'], {}), '(self.test_labels)\n', (3740, 3758), False, 'from merlion.utils import TimeSeries\n'), ((5040, 5069), 'os.path.join', 'join', (['rootdir', '"""data"""', '"""smap"""'], {}), "(rootdir, 'data', 'smap')\n", (5044, 5069), False, 'from os.path import abspath, dirname, join\n'), ((4274, 4308), 'merlion.post_process.threshold.AggregateAlarms', 'AggregateAlarms', ([], {'alm_threshold': '(1.5)'}), '(alm_threshold=1.5)\n', (4289, 4308), False, 'from merlion.post_process.threshold import AggregateAlarms\n'), ((4970, 5002), 'merlion.post_process.threshold.AggregateAlarms', 'AggregateAlarms', ([], {'alm_threshold': '(2)'}), '(alm_threshold=2)\n', (4985, 5002), False, 'from merlion.post_process.threshold import AggregateAlarms\n')]
# treemodels.py from __future__ import division import gtk from debug import * import numpy as np import matplotlib.pyplot as plt class CountingActivitiesModel (gtk.GenericTreeModel): """Gtk TreeModel for CountingActivity's in a Log.""" def __init__ (self, log): gtk.GenericTreeModel.__init__ (self) self.log = log @property def n_rows (self): return len (self.log.counting_activities) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 2 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.log.counting_activities): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if len (self.log.counting_activities) == 0: return None activity = sorted (self.log.counting_activities)[row] if col == 0: return activity.name elif col == 1: return activity.unit else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class TimingActivitiesModel (gtk.GenericTreeModel): """Gtk TreeModel for TimingActivity's in a Log.""" def __init__ (self, log): gtk.GenericTreeModel.__init__ (self) self.log = log @property def n_rows (self): return len (self.log.timing_activities) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 1 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.log.timing_activities): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if len (self.log.timing_activities) == 0: return None activity = sorted (self.log.timing_activities)[row] if col == 0: return activity.name else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class CountingEntriesModel (gtk.GenericTreeModel): """Gtk TreeModel for CountingEntry's in a Log.""" def __init__ (self, log, activity_name): gtk.GenericTreeModel.__init__ (self) self.log = log self.activity_name = activity_name @property def entries (self): return self.log.get_entries (self.activity_name) @property def n_rows (self): return len (self.entries) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 3 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.entries): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if self.n_rows == 0: return None entry = self.entries[row] if col == 0: return str (entry.date) elif col == 1: return str (entry.n) elif col == 2: return str (entry.error) elif col == 3: return str (entry.note) else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class TimingEntriesModel (gtk.GenericTreeModel): """Gtk TreeModel for TimingEntry's in a Log.""" def __init__ (self, log, activity_name): gtk.GenericTreeModel.__init__ (self) self.log = log self.activity_name = activity_name @property def entries (self): return self.log.get_entries (self.activity_name) @property def n_rows (self): return len (self.entries) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 2 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.entries): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): def fmt (t): return '{0:04d}-{1:02d}-{2:02d} {3:02d}:{4:02d}'.format ( t.year, t.month, t.day, t.hour, t.minute) if self.n_rows == 0: return None entry = self.entries[row] if col == 0: return fmt (entry.start_time) elif col == 1: return fmt (entry.end_time) elif col == 2: return str (entry.note) else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class ActivityDrawModel (gtk.GenericTreeModel): """Gtk TreeModel for drawing Activity's in a Log.""" def __init__ (self, activities): gtk.GenericTreeModel.__init__ (self) self.activities = sorted (activities) self.checks = [ False for activity in self.activities] n = len (self.activities) ##mpl_colors = [ ## (0.0, 0.0, 1.0), ## (0.0, 0.5, 0.0), ## (1.0, 0.0, 0.0), ## (0.0, 0.75, 0.75), ## (0.75, 0.0, 0.75), ## (0.75, 0.75, 0.0), ## (0.0, 0.0, 0.0), ## (0.0, 0.0, 1.0) ] ##n_color = len (mpl_colors) ##self.colors = [ ## gtk.gdk.Color (*mpl_colors[i % n_color]) for i in xrange (n)] cm = plt.get_cmap ('rainbow') self.colors = [ gtk.gdk.Color (*cm (i / n)[:3]) for i in xrange (n)] self.color_tuples = [ cm (i / n)[:3] for i in xrange (n)] self.alphas = [ int (.8 * 65535) for activity in self.activities] @property def n_rows (self): return len (self.activities) # toggle def toggle (self, path): row = int (path) self.checks[row] = not self.checks[row] def toggle_all (self): if np.sum (self.checks) == len (self.checks): value = False else: value = True for row in xrange (len (self.checks)): self.checks[row] = value # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 3 def on_get_column_type (self, index): if index == 0: return bool elif index == 1: return str elif index == 2: return gtk.gdk.Pixbuf def on_get_iter (self, path): if self.n_rows: return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if self.n_rows == 0: return None activity = sorted (self.activities)[row] if col == 0: return self.checks[row] elif col == 1: return activity.name else: pb = gtk.gdk.Pixbuf ( gtk.gdk.COLORSPACE_RGB, True, 8, 16, 16) color = self.colors[row] color_str = '{0:02x}{1:02x}{2:02x}{3:02x}'.format ( *map (int, (color.red / 256, color.green / 256, color.blue / 256, self.alphas[row] / 256))) pb.fill (int (color_str, 16)) return pb def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None
[ "gtk.GenericTreeModel.__init__", "gtk.gdk.Pixbuf", "numpy.sum", "matplotlib.pyplot.get_cmap" ]
[((286, 321), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (315, 321), False, 'import gtk\n'), ((1999, 2034), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (2028, 2034), False, 'import gtk\n'), ((3661, 3696), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (3690, 3696), False, 'import gtk\n'), ((5561, 5596), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (5590, 5596), False, 'import gtk\n'), ((7563, 7598), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (7592, 7598), False, 'import gtk\n'), ((8227, 8250), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""rainbow"""'], {}), "('rainbow')\n", (8239, 8250), True, 'import matplotlib.pyplot as plt\n'), ((8763, 8782), 'numpy.sum', 'np.sum', (['self.checks'], {}), '(self.checks)\n', (8769, 8782), True, 'import numpy as np\n'), ((9753, 9808), 'gtk.gdk.Pixbuf', 'gtk.gdk.Pixbuf', (['gtk.gdk.COLORSPACE_RGB', '(True)', '(8)', '(16)', '(16)'], {}), '(gtk.gdk.COLORSPACE_RGB, True, 8, 16, 16)\n', (9767, 9808), False, 'import gtk\n')]
import sys import torch from torch.autograd import Variable import numpy as np import os from os import path import argparse import random import copy from tqdm import tqdm import pickle from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, \ read_processed_scores, read_scores from scipy.stats import spearmanr, pearsonr, kendalltau import math from torchvision import models from resources import MODEL_WEIGHT_DIR from resources import OUTPUTS_DIR from matplotlib import pyplot as plt import csv def parse_split_data(sorted_scores, train_percent, dev_percent, prompt='structure'): train = {} dev = {} test = {} all = {} topic_count = 0 for article_id, scores_list in tqdm(sorted_scores.items()): entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: entry['sys_summ' + repr(sid)] = [s['scores'][prompt] for s in scores_list if s['summ_id'] == sid][ 0] # that can be done more efficiently, but who cares... rand = random.random() all[article_id] = entry if rand < train_percent: train[article_id] = entry elif rand < train_percent + dev_percent: dev[article_id] = entry else: test[article_id] = entry topic_count += 1 print("topics in parse_split_data", topic_count) return train, dev, test, all def parse_split_data_balanced(sorted_scores, train_percent, dev_percent, prompt='structure'): train = {} dev = {} test = {} all = {} topic_count = 0 article_ids = list(sorted_scores.keys()) random.shuffle(article_ids) num_articles = len(article_ids) train_ids = article_ids[0:int(train_percent * num_articles)] dev_ids = article_ids[int(train_percent * num_articles):int((train_percent + dev_percent) * num_articles)] # test_ids=article_ids[int((train_percent+dev_percent)*num_articles):] for article_id, scores_list in tqdm(sorted_scores.items()): entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: entry['sys_summ' + repr(sid)] = [s['scores'][prompt] for s in scores_list if s['summ_id'] == sid][ 0] # that can be done more efficiently, but who cares... # rand = random.random() all[article_id] = entry if article_id in train_ids: train[article_id] = entry elif article_id in dev_ids: dev[article_id] = entry else: test[article_id] = entry topic_count += 1 print("topics in parse_split_data", topic_count) return train, dev, test, all def build_model(model_type, vec_length, learn_rate=None): if 'linear' in model_type: deep_model = torch.nn.Sequential( torch.nn.Linear(vec_length, 1), ) else: deep_model = torch.nn.Sequential( torch.nn.Linear(vec_length, int(vec_length / 2)), torch.nn.ReLU(), torch.nn.Linear(int(vec_length / 2), 1), ) if learn_rate is not None: optimiser = torch.optim.Adam(deep_model.parameters(), lr=learn_rate) return deep_model, optimiser else: return deep_model def deep_pair_train(vec_list, target, deep_model, optimiser, device): # print(np.array(vec_list).shape) input = Variable(torch.from_numpy(np.array(vec_list)).float()) # print(input) if 'gpu' in device: input = input.to('cuda') value_variables = deep_model(input) # print(value_variables) softmax_layer = torch.nn.Softmax(dim=1) pred = softmax_layer(value_variables) # print(pred) # print(np.array(target).shape, np.array(target).reshape(-1, 2, 1).shape) target_variables = Variable(torch.from_numpy(np.array(target)).float()).view(-1, 2, 1) # print(target_variables) if 'gpu' in device: target_variables = target_variables.to('cuda') loss_fn = torch.nn.BCELoss() loss = loss_fn(pred, target_variables) # print(loss) optimiser.zero_grad() loss.backward() optimiser.step() return loss.cpu().item() def deep_pair_train_loss_only(vec_list, target, deep_model, optimiser, device): # print(np.array(vec_list).shape) input = Variable(torch.from_numpy(np.array(vec_list)).float()) # print(input) if 'gpu' in device: input = input.to('cuda') value_variables = deep_model(input) # print(value_variables) softmax_layer = torch.nn.Softmax(dim=1) pred = softmax_layer(value_variables) # print(pred) # print(np.array(target).shape, np.array(target).reshape(-1, 2, 1).shape) target_variables = Variable(torch.from_numpy(np.array(target)).float()).view(-1, 2, 1) # print(target_variables) if 'gpu' in device: target_variables = target_variables.to('cuda') loss_fn = torch.nn.BCELoss() loss = loss_fn(pred, target_variables) # print(loss) return loss.cpu().item() def build_pairs(entries): pair_list = [] topic_count = 0 summ_count = 0 for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): if i == j: continue if entry[summ_ids[i]] > entry[summ_ids[j]]: pref = [1, 0] elif entry[summ_ids[i]] < entry[summ_ids[j]]: pref = [0, 1] else: pref = [0.5, 0.5] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) # print(pair_list) topic_count += 1 summ_count = summ_count + len(summ_ids) print("topics", topic_count) print("summ", summ_count) return pair_list def build_anno_pairs(entries, pair_anno_scores): pair_list = [] topic_count = 0 summ_count = 0 for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): if i == j: continue # get keys from dictionary entry_keys = list(entry.keys()) # get pair preference from pair_anno_scores for pair in pair_anno_scores[article_id]: if pair['summ_id_i'] == int(entry_keys[i][8]) and pair['summ_id_j'] == int(entry_keys[j][8]): if pair['pref'] == 1: pref = [1, 0] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue else: pref = [0, 1] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue elif pair['summ_id_j'] == int(entry_keys[i][8]) and pair['summ_id_i'] == int(entry_keys[j][8]): if pair['pref'] == 1: pref = [0, 1] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue else: pref = [1, 0] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue topic_count += 1 summ_count = summ_count + len(summ_ids) print("topics", topic_count) print("summ", summ_count) # print(pair_list) return pair_list def build_human_pair_scores(pair_list): human_pair_scores = {} for entry in pair_list: article_id = str(entry[0]) sum_id_i = str(entry[1]) sum_id_j = str(entry[2]) pref = entry[3] summ_entry = {} if article_id in human_pair_scores: if pref == [1, 0]: if sum_id_i in human_pair_scores[article_id]: human_pair_scores[article_id][sum_id_i] + 1 else: human_pair_scores[article_id][sum_id_i] = 1 else: if sum_id_j in human_pair_scores[article_id]: human_pair_scores[article_id][sum_id_j] + 1 else: human_pair_scores[article_id][sum_id_j] = 1 else: if pref == [1, 0]: summ_entry[sum_id_i] = 1 summ_entry[sum_id_j] = 0 else: summ_entry[sum_id_i] = 0 summ_entry[sum_id_j] = 1 human_pair_scores[article_id] = summ_entry return human_pair_scores # randomize_pref_order and double_prefs are only relevant if the learning function learns f(s0,s1)=pref. in our case, we learn f(s0)=pref[0] and f(s1)=pref[1], so this should be set to False def build_pairs_majority_preferences(entries, sorted_scores, target_type='graded', ignore_ties=False, randomize_pref_order=False, double_prefs=False): pair_list = [] topic_count = 0 anno_count = 0 summ_count = 0 entries_text = {} # get summary text and matching id for article_id, scores_list in tqdm(sorted_scores.items()): temp_entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: # get summary text s_text = [s['sys_summ'] for s in scores_list if s['summ_id'] == sid][0] temp_entry['sys_summ' + repr(sid)] = s_text # save in dictionary entries_text[article_id] = temp_entry for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # mapping from summary text to last summary id with that text. that's the one we will use summ2id = {entries_text[article_id][summ_id]: summ_id for summ_id in summ_ids} # put here the prefs for this article article_prefs = {} # still run through all pairs # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): # run through dictionary containing summ_ids and matching text # for key, value in entries_text[article_id].items(): # get text for current summaries i and j # if key == summ_ids[i]: # text_i = value # elif key == summ_ids[j]: # text_j = value text_i = entries_text[article_id][summ_ids[i]] text_j = entries_text[article_id][summ_ids[j]] # check if text is identical, if yes skip if i == j or text_i == text_j: # print("DUPLICATE FOUND: TEXT i", text_i, "TEXT j", text_i) continue # get the unique summ ids unique_summ_id_pair = [summ2id[text_i], summ2id[text_j]] # some debug output # noinspection PyUnreachableCode if False: print("%s vs. %s (IDs %s vs. %s)" % ( summ_ids[i], summ_ids[j], unique_summ_id_pair[0], unique_summ_id_pair[1])) full_entry = sorted_scores[article_id] print(" system %s with score %s (%s) vs." % ( full_entry[i]['sys_name'], full_entry[i]['scores']['redundancy'], entry[summ_ids[i]])) print(" system %s with score %s (%s)" % ( full_entry[j]['sys_name'], full_entry[j]['scores']['redundancy'], entry[summ_ids[j]])) print( " \"%s...\" vs. \"%s...\"" % (full_entry[i]['sys_summ'][:20], full_entry[j]['sys_summ'][:20])) # unique_summ_id_pair.sort() if entry[summ_ids[i]] > entry[summ_ids[j]]: pref = [1, 0] elif entry[summ_ids[i]] < entry[summ_ids[j]]: pref = [0, 1] else: pref = [0.5, 0.5] # if entry[unique_summ_id_pair[0]] > entry[unique_summ_id_pair[1]]: # pref = [1, 0] # elif entry[unique_summ_id_pair[0]] > entry[unique_summ_id_pair[1]]: # pref = [0, 1] # else: # # todo we could completely ignore ties. doesnt change much. low prio # pref = [0.5, 0.5] # sort the ids so that we get a unique key, so that (sys_summ0,sys_summ1) and (sys_summ1,sys_summ0) are the same if unique_summ_id_pair[1] < unique_summ_id_pair[0]: unique_summ_id_pair = unique_summ_id_pair[::-1] pref = pref[::-1] # convert to tuple, otherwise its not hashable for the dict unique_summ_id_pair = tuple(unique_summ_id_pair) # add up the pref to the total pref vector of the specific summary pair. create a new entry if not existing article_prefs[unique_summ_id_pair] = article_prefs.get(unique_summ_id_pair, np.array([0, 0])) + np.array(pref) # transform to target for unique_summ_id_pair, pref in article_prefs.items(): # depending on the mode, use binary target, or graded one pref = (pref / (pref[0] + pref[1])).tolist() if target_type == 'binary': if pref[0] > pref[1]: pref = [1, 0] elif pref[0] < pref[1]: pref = [1, 0] else: pref = [0.5, 0.5] # skip if it is a tie and you want to ignore ties if pref[0] != 0.5 or not ignore_ties: # include the pref two times, once in one direction and once in the other direction if double_prefs: pair_list.append((article_id, unique_summ_id_pair[1], unique_summ_id_pair[0], pref[::-1])) pair_list.append((article_id, unique_summ_id_pair[0], unique_summ_id_pair[1], pref)) else: # include the pref in the reverse order by chance. this might be necessary if there is a bias in the distribution of the score, e.g. if they are ordered if randomize_pref_order and bool(random.getrandbits(1)): pair_list.append((article_id, unique_summ_id_pair[1], unique_summ_id_pair[0], pref[::-1])) else: pair_list.append((article_id, unique_summ_id_pair[0], unique_summ_id_pair[1], pref)) topic_count += 1 anno_count += len(summ_ids) summ_count += len(summ2id) print("topics", topic_count) print("annotations", anno_count) print("summ", summ_count) print("summ pairs", len(pair_list)) return pair_list def build_pair_vecs(vecs, pairs): pair_vec_list = [] for aid, sid1, sid2, _ in pairs: article_vec = list(vecs[aid]['article']) s1_vec = list(vecs[aid][sid1]) s2_vec = list(vecs[aid][sid2]) pair_vec_list.append([article_vec + s1_vec, article_vec + s2_vec]) return pair_vec_list def pair_train_rewarder(vec_dic, pairs, deep_model, optimiser, loss_only, batch_size=32, device='cpu'): loss_list = [] shuffled_pairs = pairs[:] np.random.shuffle(shuffled_pairs) vec_pairs = build_pair_vecs(vec_dic, shuffled_pairs) # print('total number of pairs built: {}'.format(len(vec_pairs))) for pointer in range(int((len( pairs) - 1) / batch_size) + 1): # there was a bug here. when len(pairs) was a vielfaches of 32, then there was a last batch with [] causing an exception vec_batch = vec_pairs[pointer * batch_size:(pointer + 1) * batch_size] target_batch = shuffled_pairs[pointer * batch_size:(pointer + 1) * batch_size] target_batch = [ee[-1] for ee in target_batch] if loss_only: loss = deep_pair_train_loss_only(vec_batch, target_batch, deep_model, optimiser, device) else: loss = deep_pair_train(vec_batch, target_batch, deep_model, optimiser, device) loss_list.append(loss) return np.mean(loss_list) def test_rewarder(vec_list, human_scores, model, device, plot_file=None): results = {'rho': [], 'rho_p': [], 'pcc': [], 'pcc_p': [], 'tau': [], 'tau_p': [], 'rho_global': [], 'pcc_global': [], 'tau_global': []} true_scores_all = [] pred_scores_all = np.array([]) # print(human_scores) # pred_scores_all = [] for article_id in human_scores: entry = human_scores[article_id] summ_ids = list(entry.keys()) if len(summ_ids) < 2: continue concat_vecs = [] true_scores = [] for i in range(len(summ_ids)): article_vec = list(vec_list[article_id]['article']) summ_vec = list(vec_list[article_id][summ_ids[i]]) # print(np.array(concat_vecs).shape, np.array(article_vec).shape, np.array(summ_vec).shape) concat_vecs.append(article_vec + summ_vec) # print(np.array(concat_vecs).shape) # print(entry[summ_ids[i]]) true_scores.append(entry[summ_ids[i]]) true_scores_all += true_scores # add scores for topic to list of all scores input = Variable(torch.from_numpy(np.array(concat_vecs)).float()) if 'gpu' in device: input = input.to('cuda') model.eval() with torch.no_grad(): # print(true_scores) # print(np.array(true_scores).shape) # print(input) # print(input.shape) # print(model(input).data.cpu().numpy()) # print(model(input).data.cpu().numpy().shape) pred_scores = model(input).data.cpu().numpy().reshape(1, -1)[0] pred_scores_all = np.concatenate((pred_scores_all, pred_scores), axis=0) # pred_scores_all += pred_scores.tolist() rho, rho_p = spearmanr(true_scores, pred_scores) pcc, pcc_p = pearsonr(true_scores, pred_scores) tau, tau_p = kendalltau(true_scores, pred_scores) if not (math.isnan(rho) or math.isnan(pcc) or math.isnan(tau)): results['rho'].append(rho) results['rho_p'].append(rho_p) results['pcc'].append(pcc) results['pcc_p'].append(pcc_p) results['tau'].append(tau) results['tau_p'].append(tau_p) rho = spearmanr(true_scores_all, pred_scores_all)[0] pcc = pearsonr(true_scores_all, pred_scores_all)[0] tau = kendalltau(true_scores_all, pred_scores_all)[0] if not (math.isnan(rho) or math.isnan(pcc) or math.isnan(tau)): results['rho_global'].append(rho) results['pcc_global'].append(pcc) results['tau_global'].append(tau) if plot_file is not None: fig, ax = plt.subplots() # true_scores_all=np.array(true_scores_all) # pred_scores_all=np.array(pred_scores_all) unique = np.sort(np.unique(true_scores_all)) data_to_plot = [pred_scores_all[true_score == true_scores_all] for true_score in unique] # bw_methods determines how soft the distribution curve will be. lower values are more sharp ax.violinplot(data_to_plot, showmeans=True, showmedians=True, bw_method=0.2) ax.scatter(true_scores_all + np.random.normal(0, 0.1, pred_scores_all.shape[0]), pred_scores_all, marker=".", s=3, alpha=0.5) ax.set_title('Comparison and distributions of true values to predicted score') ax.set_xlabel('true scores') ax.set_ylabel('predicted scores') xticklabels = true_scores_all ax.set_xticks(true_scores_all) print("violin plot written to: %s" % plot_file) plt.savefig(plot_file) return results def parse_args(argv): ap = argparse.ArgumentParser("arguments for summary sampler") ap.add_argument('-e', '--epoch_num', type=int, default=50) ap.add_argument('-b', '--batch_size', type=int, default=32) ap.add_argument('-tt', '--train_type', type=str, help='pairwise or regression', default='pairwise') ap.add_argument('-tp', '--train_percent', type=float, help='how many data used for training', default=.64) ap.add_argument('-dp', '--dev_percent', type=float, help='how many data used for dev', default=.16) ap.add_argument('-lr', '--learn_rate', type=float, help='learning rate', default=3e-4) ap.add_argument('-mt', '--model_type', type=str, help='deep/linear', default='linear') ap.add_argument('-dv', '--device', type=str, help='cpu/gpu', default='gpu') ap.add_argument('-se', '--seed', type=int, help='random seed number', default='1') ap.add_argument('-fn', '--file_name', type=str, help='file name for csv output', default='BetterRewardsStatistics_test.csv') args = ap.parse_args(argv) return args.epoch_num, args.batch_size, args.train_type, args.train_percent, args.dev_percent, args.learn_rate, args.model_type, args.device, args.seed, args.file_name def main(argv): epoch_num, batch_size, train_type, train_percent, dev_percent, learn_rate, model_type, device, seed, file_name = parse_args( argv[1:]) print('\n=====Arguments====') print('epoch num {}'.format(epoch_num)) print('batch size {}'.format(batch_size)) print('train type {}'.format(train_type)) print('train percent {}'.format(train_percent)) print('dev percent {}'.format(dev_percent)) print('learn rate {}'.format(learn_rate)) print('model type {}'.format(model_type)) print('device {}'.format(device)) print('seed {}'.format(seed)) print('file name {}'.format(file_name)) print('=====Arguments====\n') csv_column_names = ['seed', 'learn_rate', 'model_type', 'train_pairs', 'dev_pairs', 'test_pairs', 'epoch_num', 'loss_train', 'loss_dev', 'loss_test', 'rho_train', 'rho_p_train', 'pcc_train', 'pcc_p_train', 'tau_train', 'tau_p_train', 'rho_train_global', 'pcc_train_global', 'tau_train_global', 'rho_dev', 'rho_p_dev', 'pcc_dev', 'pcc_p_dev', 'tau_dev', 'tau_p_dev', 'rho_dev_global', 'pcc_dev_global', 'tau_dev_global', 'rho_test', 'rho_p_test', 'pcc_test', 'pcc_p_test', 'tau_test', 'tau_p_test', 'rho_test_global', 'pcc_test_global', 'tau_test_global'] # check if csv_file exists if path.exists(file_name): csv_exists = True else: csv_exists = False with open(file_name, 'a', newline='') as csv_file: writer = csv.writer(csv_file) # if a new csv_file is generated, write column names if csv_exists is False: writer.writerow(csv_column_names) np.random.seed(seed=seed) random.seed(seed) torch.random.manual_seed(seed) torch.manual_seed(seed) if train_percent + dev_percent >= 1.: print('ERROR! Train data percentage plus dev data percentage is {}! Make sure the sum is below 1.0!'.format( train_percent + dev_percent)) exit(1) BERT_VEC_LENGTH = 1024 # change this to 768 if you use bert-base deep_model, optimiser = build_model(model_type, BERT_VEC_LENGTH * 2, learn_rate) if 'gpu' in device: deep_model.to('cuda') torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # read human scores and vectors for summaries/docs, and split the train/dev/test set sorted_scores = read_sorted_scores() # read pair anno scores pair_anno_scores = read_pair_anno_scores() # train, dev, test, all = parse_split_data(sorted_scores, train_percent, dev_percent) train, dev, test, all = parse_split_data_balanced(sorted_scores, train_percent, dev_percent) # without majority preferences # train_pairs = build_pairs(train) # dev_pairs = build_pairs(dev) # test_pairs = build_pairs(test) # without majority preferences but with pair anno train_pairs = build_anno_pairs(train, pair_anno_scores) dev_pairs = build_anno_pairs(dev, pair_anno_scores) test_pairs = build_anno_pairs(test, pair_anno_scores) # with majority preferences # train_pairs = build_pairs_majority_preferences(train, sorted_scores) # dev_pairs = build_pairs_majority_preferences(dev, sorted_scores) # test_pairs = build_pairs_majority_preferences(test, sorted_scores) # with majority preferences and pair anno # train_pairs = build_anno_pairs_majority_preferences(train, sorted_scores, pair_anno_scores) # dev_pairs = build_anno_pairs_majority_preferences(dev, sorted_scores, pair_anno_scores) # test_pairs = build_anno_pairs_majority_preferences(test, sorted_scores, pair_anno_scores) # build human pair scores for pairs train_anno = build_human_pair_scores(train_pairs) dev_anno = build_human_pair_scores(dev_pairs) test_anno = build_human_pair_scores(test_pairs) print(len(train_pairs), len(dev_pairs), len(test_pairs)) # read bert vectors with open('data/doc_summ_bert_vectors.pkl', 'rb') as ff: all_vec_dic = pickle.load(ff) pcc_list = [] weights_list = [] for ii in range(epoch_num + 1): print('\n=====EPOCH {}====='.format(ii)) if ii == 0: # do not train in epoch 0, just evaluate the performance of the randomly initialized model (sanity check and baseline) loss_train = pair_train_rewarder(all_vec_dic, train_pairs, deep_model, optimiser, True, batch_size, device) else: # from epoch 1 on, receive the data and learn from it. the loss is still the loss before fed with the training examples loss_train = pair_train_rewarder(all_vec_dic, train_pairs, deep_model, optimiser, False, batch_size, device) loss_dev = pair_train_rewarder(all_vec_dic, dev_pairs, deep_model, optimiser, True, batch_size, device) loss_test = pair_train_rewarder(all_vec_dic, test_pairs, deep_model, optimiser, True, batch_size, device) csv_row = [seed, learn_rate, model_type, len(train_pairs), len(dev_pairs), len(test_pairs), ii, loss_train, loss_dev, loss_test] print('--> losses (train,dev,test)', loss_train, loss_dev, loss_test) # Train-Data only print("==Train==") # results_train = test_rewarder(all_vec_dic, train, deep_model, device) results_train = test_rewarder(all_vec_dic, train_anno, deep_model, device) for metric in results_train: print('{}\t{}'.format(metric, np.mean(results_train[metric]))) csv_row.append(np.mean(results_train[metric])) print("==Dev==") # results = test_rewarder(all_vec_dic, dev, deep_model, device) results = test_rewarder(all_vec_dic, dev_anno, deep_model, device) for metric in results: print('{}\t{}'.format(metric, np.mean(results[metric]))) csv_row.append(np.mean(results[metric])) # Test-Data only print("==Test==") # results_test = test_rewarder(all_vec_dic, test, deep_model, device) results_test = test_rewarder(all_vec_dic, test_anno, deep_model, device) for metric in results_test: print('{}\t{}'.format(metric, np.mean(results_test[metric]))) csv_row.append(np.mean(results_test[metric])) writer.writerow(csv_row) pcc_list.append(np.mean(results['pcc'])) weights_list.append(copy.deepcopy(deep_model.state_dict())) idx = np.argmax(pcc_list) best_result = pcc_list[idx] print('\n======Best results come from epoch no. {}====='.format(idx)) deep_model.load_state_dict(weights_list[idx]) output_pattern = 'batch{}_{}_trainPercent{}_seed{}_lrate{}_{}_epoch{}'.format( batch_size, train_type, train_percent, seed, learn_rate, model_type, epoch_num ) test_results = test_rewarder(all_vec_dic, test, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onTest.pdf')) test_rewarder(all_vec_dic, train, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onTrain.pdf')) test_rewarder(all_vec_dic, dev, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onDev.pdf')) print('Its performance on the test set is:') for metric in test_results: print('{}\t{}'.format(metric, np.mean(test_results[metric]))) model_weight_name = 'pcc{0:.4f}_'.format(np.mean(test_results['pcc'])) model_weight_name += 'seed{}_epoch{}_batch{}_{}_trainPercent{}_lrate{}_{}.model'.format( seed, epoch_num, batch_size, train_type, train_percent, learn_rate, model_type ) torch.save(weights_list[idx], os.path.join(MODEL_WEIGHT_DIR, model_weight_name)) print('\nbest model weight saved to: {}'.format(os.path.join(MODEL_WEIGHT_DIR, model_weight_name))) if __name__ == '__main__': main(sys.argv)
[ "numpy.random.seed", "argparse.ArgumentParser", "numpy.argmax", "random.shuffle", "numpy.mean", "torch.nn.Softmax", "pickle.load", "numpy.random.normal", "scipy.stats.kendalltau", "torch.no_grad", "os.path.join", "numpy.unique", "torch.nn.BCELoss", "os.path.exists", "random.seed", "torch.nn.Linear", "matplotlib.pyplot.subplots", "numpy.random.shuffle", "math.isnan", "scorer.data_helper.json_reader.read_pair_anno_scores", "csv.writer", "torch.random.manual_seed", "torch.manual_seed", "scipy.stats.pearsonr", "random.random", "numpy.concatenate", "torch.nn.ReLU", "scipy.stats.spearmanr", "scorer.data_helper.json_reader.read_sorted_scores", "numpy.array", "random.getrandbits", "matplotlib.pyplot.savefig" ]
[((1669, 1696), 'random.shuffle', 'random.shuffle', (['article_ids'], {}), '(article_ids)\n', (1683, 1696), False, 'import random\n'), ((3637, 3660), 'torch.nn.Softmax', 'torch.nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (3653, 3660), False, 'import torch\n'), ((4015, 4033), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {}), '()\n', (4031, 4033), False, 'import torch\n'), ((4545, 4568), 'torch.nn.Softmax', 'torch.nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (4561, 4568), False, 'import torch\n'), ((4923, 4941), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {}), '()\n', (4939, 4941), False, 'import torch\n'), ((16061, 16094), 'numpy.random.shuffle', 'np.random.shuffle', (['shuffled_pairs'], {}), '(shuffled_pairs)\n', (16078, 16094), True, 'import numpy as np\n'), ((16916, 16934), 'numpy.mean', 'np.mean', (['loss_list'], {}), '(loss_list)\n', (16923, 16934), True, 'import numpy as np\n'), ((17214, 17226), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (17222, 17226), True, 'import numpy as np\n'), ((20592, 20648), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""arguments for summary sampler"""'], {}), "('arguments for summary sampler')\n", (20615, 20648), False, 'import argparse\n'), ((23194, 23216), 'os.path.exists', 'path.exists', (['file_name'], {}), '(file_name)\n', (23205, 23216), False, 'from os import path\n'), ((1080, 1095), 'random.random', 'random.random', ([], {}), '()\n', (1093, 1095), False, 'import random\n'), ((18715, 18750), 'scipy.stats.spearmanr', 'spearmanr', (['true_scores', 'pred_scores'], {}), '(true_scores, pred_scores)\n', (18724, 18750), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((18772, 18806), 'scipy.stats.pearsonr', 'pearsonr', (['true_scores', 'pred_scores'], {}), '(true_scores, pred_scores)\n', (18780, 18806), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((18828, 18864), 'scipy.stats.kendalltau', 'kendalltau', (['true_scores', 'pred_scores'], {}), '(true_scores, pred_scores)\n', (18838, 18864), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19193, 19236), 'scipy.stats.spearmanr', 'spearmanr', (['true_scores_all', 'pred_scores_all'], {}), '(true_scores_all, pred_scores_all)\n', (19202, 19236), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19250, 19292), 'scipy.stats.pearsonr', 'pearsonr', (['true_scores_all', 'pred_scores_all'], {}), '(true_scores_all, pred_scores_all)\n', (19258, 19292), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19306, 19350), 'scipy.stats.kendalltau', 'kendalltau', (['true_scores_all', 'pred_scores_all'], {}), '(true_scores_all, pred_scores_all)\n', (19316, 19350), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19597, 19611), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (19609, 19611), True, 'from matplotlib import pyplot as plt\n'), ((20516, 20538), 'matplotlib.pyplot.savefig', 'plt.savefig', (['plot_file'], {}), '(plot_file)\n', (20527, 20538), True, 'from matplotlib import pyplot as plt\n'), ((23354, 23374), 'csv.writer', 'csv.writer', (['csv_file'], {}), '(csv_file)\n', (23364, 23374), False, 'import csv\n'), ((23523, 23548), 'numpy.random.seed', 'np.random.seed', ([], {'seed': 'seed'}), '(seed=seed)\n', (23537, 23548), True, 'import numpy as np\n'), ((23557, 23574), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (23568, 23574), False, 'import random\n'), ((23583, 23613), 'torch.random.manual_seed', 'torch.random.manual_seed', (['seed'], {}), '(seed)\n', (23607, 23613), False, 'import torch\n'), ((23622, 23645), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (23639, 23645), False, 'import torch\n'), ((24329, 24349), 'scorer.data_helper.json_reader.read_sorted_scores', 'read_sorted_scores', ([], {}), '()\n', (24347, 24349), False, 'from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, read_processed_scores, read_scores\n'), ((24411, 24434), 'scorer.data_helper.json_reader.read_pair_anno_scores', 'read_pair_anno_scores', ([], {}), '()\n', (24432, 24434), False, 'from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, read_processed_scores, read_scores\n'), ((28711, 28730), 'numpy.argmax', 'np.argmax', (['pcc_list'], {}), '(pcc_list)\n', (28720, 28730), True, 'import numpy as np\n'), ((2866, 2896), 'torch.nn.Linear', 'torch.nn.Linear', (['vec_length', '(1)'], {}), '(vec_length, 1)\n', (2881, 2896), False, 'import torch\n'), ((3034, 3049), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {}), '()\n', (3047, 3049), False, 'import torch\n'), ((18207, 18222), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18220, 18222), False, 'import torch\n'), ((18584, 18638), 'numpy.concatenate', 'np.concatenate', (['(pred_scores_all, pred_scores)'], {'axis': '(0)'}), '((pred_scores_all, pred_scores), axis=0)\n', (18598, 18638), True, 'import numpy as np\n'), ((19366, 19381), 'math.isnan', 'math.isnan', (['rho'], {}), '(rho)\n', (19376, 19381), False, 'import math\n'), ((19385, 19400), 'math.isnan', 'math.isnan', (['pcc'], {}), '(pcc)\n', (19395, 19400), False, 'import math\n'), ((19404, 19419), 'math.isnan', 'math.isnan', (['tau'], {}), '(tau)\n', (19414, 19419), False, 'import math\n'), ((19743, 19769), 'numpy.unique', 'np.unique', (['true_scores_all'], {}), '(true_scores_all)\n', (19752, 19769), True, 'import numpy as np\n'), ((26057, 26072), 'pickle.load', 'pickle.load', (['ff'], {}), '(ff)\n', (26068, 26072), False, 'import pickle\n'), ((29201, 29258), 'os.path.join', 'os.path.join', (['OUTPUTS_DIR', "(output_pattern + '_onTest.pdf')"], {}), "(OUTPUTS_DIR, output_pattern + '_onTest.pdf')\n", (29213, 29258), False, 'import os\n'), ((29344, 29402), 'os.path.join', 'os.path.join', (['OUTPUTS_DIR', "(output_pattern + '_onTrain.pdf')"], {}), "(OUTPUTS_DIR, output_pattern + '_onTrain.pdf')\n", (29356, 29402), False, 'import os\n'), ((29464, 29520), 'os.path.join', 'os.path.join', (['OUTPUTS_DIR', "(output_pattern + '_onDev.pdf')"], {}), "(OUTPUTS_DIR, output_pattern + '_onDev.pdf')\n", (29476, 29520), False, 'import os\n'), ((29734, 29762), 'numpy.mean', 'np.mean', (["test_results['pcc']"], {}), "(test_results['pcc'])\n", (29741, 29762), True, 'import numpy as np\n'), ((30001, 30050), 'os.path.join', 'os.path.join', (['MODEL_WEIGHT_DIR', 'model_weight_name'], {}), '(MODEL_WEIGHT_DIR, model_weight_name)\n', (30013, 30050), False, 'import os\n'), ((18881, 18896), 'math.isnan', 'math.isnan', (['rho'], {}), '(rho)\n', (18891, 18896), False, 'import math\n'), ((18900, 18915), 'math.isnan', 'math.isnan', (['pcc'], {}), '(pcc)\n', (18910, 18915), False, 'import math\n'), ((18919, 18934), 'math.isnan', 'math.isnan', (['tau'], {}), '(tau)\n', (18929, 18934), False, 'import math\n'), ((20092, 20142), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)', 'pred_scores_all.shape[0]'], {}), '(0, 0.1, pred_scores_all.shape[0])\n', (20108, 20142), True, 'import numpy as np\n'), ((28599, 28622), 'numpy.mean', 'np.mean', (["results['pcc']"], {}), "(results['pcc'])\n", (28606, 28622), True, 'import numpy as np\n'), ((30108, 30157), 'os.path.join', 'os.path.join', (['MODEL_WEIGHT_DIR', 'model_weight_name'], {}), '(MODEL_WEIGHT_DIR, model_weight_name)\n', (30120, 30157), False, 'import os\n'), ((3443, 3461), 'numpy.array', 'np.array', (['vec_list'], {}), '(vec_list)\n', (3451, 3461), True, 'import numpy as np\n'), ((4351, 4369), 'numpy.array', 'np.array', (['vec_list'], {}), '(vec_list)\n', (4359, 4369), True, 'import numpy as np\n'), ((13857, 13871), 'numpy.array', 'np.array', (['pref'], {}), '(pref)\n', (13865, 13871), True, 'import numpy as np\n'), ((27744, 27774), 'numpy.mean', 'np.mean', (['results_train[metric]'], {}), '(results_train[metric])\n', (27751, 27774), True, 'import numpy as np\n'), ((28100, 28124), 'numpy.mean', 'np.mean', (['results[metric]'], {}), '(results[metric])\n', (28107, 28124), True, 'import numpy as np\n'), ((28502, 28531), 'numpy.mean', 'np.mean', (['results_test[metric]'], {}), '(results_test[metric])\n', (28509, 28531), True, 'import numpy as np\n'), ((29653, 29682), 'numpy.mean', 'np.mean', (['test_results[metric]'], {}), '(test_results[metric])\n', (29660, 29682), True, 'import numpy as np\n'), ((13837, 13853), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (13845, 13853), True, 'import numpy as np\n'), ((18076, 18097), 'numpy.array', 'np.array', (['concat_vecs'], {}), '(concat_vecs)\n', (18084, 18097), True, 'import numpy as np\n'), ((27680, 27710), 'numpy.mean', 'np.mean', (['results_train[metric]'], {}), '(results_train[metric])\n', (27687, 27710), True, 'import numpy as np\n'), ((28042, 28066), 'numpy.mean', 'np.mean', (['results[metric]'], {}), '(results[metric])\n', (28049, 28066), True, 'import numpy as np\n'), ((28439, 28468), 'numpy.mean', 'np.mean', (['results_test[metric]'], {}), '(results_test[metric])\n', (28446, 28468), True, 'import numpy as np\n'), ((3848, 3864), 'numpy.array', 'np.array', (['target'], {}), '(target)\n', (3856, 3864), True, 'import numpy as np\n'), ((4756, 4772), 'numpy.array', 'np.array', (['target'], {}), '(target)\n', (4764, 4772), True, 'import numpy as np\n'), ((15048, 15069), 'random.getrandbits', 'random.getrandbits', (['(1)'], {}), '(1)\n', (15066, 15069), False, 'import random\n')]
import numpy as np from matplotlib import pyplot as plt n = 100 x = range(0,n) y = range(0,n) for k in range(0, n): y[k] = y[k] + 3*np.random.randn() + 100 plt.figure(figsize=(20,10)) plt.scatter(x, y) plt.savefig("./images/rawData.png") X = np.zeros([n,1]) target = np.zeros([n,1]) X[:,0] = x target[:,0] = y np.savetxt("X.txt", X, delimiter=",", fmt='%f') np.savetxt("y.txt", target, delimiter=",", fmt='%f')
[ "numpy.random.randn", "matplotlib.pyplot.scatter", "numpy.savetxt", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.pyplot.savefig" ]
[((162, 190), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 10)'}), '(figsize=(20, 10))\n', (172, 190), True, 'from matplotlib import pyplot as plt\n'), ((190, 207), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {}), '(x, y)\n', (201, 207), True, 'from matplotlib import pyplot as plt\n'), ((208, 243), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./images/rawData.png"""'], {}), "('./images/rawData.png')\n", (219, 243), True, 'from matplotlib import pyplot as plt\n'), ((249, 265), 'numpy.zeros', 'np.zeros', (['[n, 1]'], {}), '([n, 1])\n', (257, 265), True, 'import numpy as np\n'), ((274, 290), 'numpy.zeros', 'np.zeros', (['[n, 1]'], {}), '([n, 1])\n', (282, 290), True, 'import numpy as np\n'), ((317, 364), 'numpy.savetxt', 'np.savetxt', (['"""X.txt"""', 'X'], {'delimiter': '""","""', 'fmt': '"""%f"""'}), "('X.txt', X, delimiter=',', fmt='%f')\n", (327, 364), True, 'import numpy as np\n'), ((365, 417), 'numpy.savetxt', 'np.savetxt', (['"""y.txt"""', 'target'], {'delimiter': '""","""', 'fmt': '"""%f"""'}), "('y.txt', target, delimiter=',', fmt='%f')\n", (375, 417), True, 'import numpy as np\n'), ((137, 154), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (152, 154), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # basic import import os import os.path as op import sys import time sys.path.insert(0, op.join(op.dirname(__file__),'..','..')) # python libs import numpy as np import xarray as xr # custom libs from teslakit.project_site import PathControl from teslakit.extremes import FitGEV_KMA_Frechet # -------------------------------------- # Test data storage pc = PathControl() p_tests = pc.p_test_data p_test = op.join(p_tests, 'ClimateEmulator', 'gev_fit_kma_fretchet') # input p_npz = op.join(p_test, 'swell_1_Hs.npz') # -------------------------------------- # Load data npzf = np.load(p_npz) bmus = npzf['arr_0'] n_clusters = npzf['arr_1'] var_wvs = npzf['arr_2'] print(bmus) print(n_clusters) print(var_wvs) print() # TODO: small differences with ML at nlogl_1-nlogl_2 = 1.92 gp_pars = FitGEV_KMA_Frechet( bmus, n_clusters, var_wvs) print(gp_pars)
[ "numpy.load", "os.path.dirname", "teslakit.extremes.FitGEV_KMA_Frechet", "teslakit.project_site.PathControl", "os.path.join" ]
[((408, 421), 'teslakit.project_site.PathControl', 'PathControl', ([], {}), '()\n', (419, 421), False, 'from teslakit.project_site import PathControl\n'), ((456, 515), 'os.path.join', 'op.join', (['p_tests', '"""ClimateEmulator"""', '"""gev_fit_kma_fretchet"""'], {}), "(p_tests, 'ClimateEmulator', 'gev_fit_kma_fretchet')\n", (463, 515), True, 'import os.path as op\n'), ((533, 566), 'os.path.join', 'op.join', (['p_test', '"""swell_1_Hs.npz"""'], {}), "(p_test, 'swell_1_Hs.npz')\n", (540, 566), True, 'import os.path as op\n'), ((629, 643), 'numpy.load', 'np.load', (['p_npz'], {}), '(p_npz)\n', (636, 643), True, 'import numpy as np\n'), ((842, 887), 'teslakit.extremes.FitGEV_KMA_Frechet', 'FitGEV_KMA_Frechet', (['bmus', 'n_clusters', 'var_wvs'], {}), '(bmus, n_clusters, var_wvs)\n', (860, 887), False, 'from teslakit.extremes import FitGEV_KMA_Frechet\n'), ((143, 163), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (153, 163), True, 'import os.path as op\n')]
import os import sys import cv2 import time import caffe import numpy as np import config sys.path.append('../') from fast_mtcnn import fast_mtcnn from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72 from baidu import call_baidu_api def create_net(model_dir, iter_num): model_path = os.path.join(model_dir, 'landmark_iter_%d.caffemodel' % iter_num) proto_path = 'landmark.prototxt' return caffe.Net(proto_path, model_path, caffe.TEST) if __name__ == '__main__': iter_num = int(sys.argv[1]) img_path = sys.argv[2] model_dir = config.MODEL_DIR if len(sys.argv) > 3: model_dir = sys.argv[3] img = cv2.imread(img_path) net = create_net(model_dir, iter_num) mtcnn = fast_mtcnn() boxes = mtcnn(img_path) for box in boxes: if not is_valid_facebox(box): continue exp_box = expand_mtcnn_box(img, box) cropped = img[exp_box[1]:exp_box[3], exp_box[0]:exp_box[2]] baidu_result = call_baidu_api(cropped, '') baidu_lm = extract_baidu_lm72(baidu_result[0][-1]) for x, y in baidu_lm: x = int(x + exp_box[0]) y = int(y + exp_box[1]) cv2.circle(img, (int(x), int(y)), 1, (255, 0, 0), 1) h, w, _ = cropped.shape cropped = cv2.resize(cropped, (config.IMG_SIZE, config.IMG_SIZE)) cropped = np.swapaxes(cropped, 0, 2) cropped = (cropped - 127.5) / 127.5 net.blobs['data'].data[0] = cropped out = net.forward() landmark = out['Dense2'][0] for pt in landmark.reshape((config.LANDMARK_SIZE, 2)): x, y = pt x = x * w + exp_box[0] y = y * h + exp_box[1] cv2.circle(img, (int(x), int(y)), 1, (255, 255, 0), 1) time.sleep(0.5) cv2.imwrite('result.jpg', img)
[ "sys.path.append", "gen_landmark.extract_baidu_lm72", "fast_mtcnn.fast_mtcnn", "baidu.call_baidu_api", "gen_landmark.is_valid_facebox", "cv2.imwrite", "gen_landmark.expand_mtcnn_box", "time.sleep", "cv2.imread", "numpy.swapaxes", "caffe.Net", "os.path.join", "cv2.resize" ]
[((90, 112), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (105, 112), False, 'import sys\n'), ((315, 380), 'os.path.join', 'os.path.join', (['model_dir', "('landmark_iter_%d.caffemodel' % iter_num)"], {}), "(model_dir, 'landmark_iter_%d.caffemodel' % iter_num)\n", (327, 380), False, 'import os\n'), ((429, 474), 'caffe.Net', 'caffe.Net', (['proto_path', 'model_path', 'caffe.TEST'], {}), '(proto_path, model_path, caffe.TEST)\n', (438, 474), False, 'import caffe\n'), ((664, 684), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (674, 684), False, 'import cv2\n'), ((740, 752), 'fast_mtcnn.fast_mtcnn', 'fast_mtcnn', ([], {}), '()\n', (750, 752), False, 'from fast_mtcnn import fast_mtcnn\n'), ((1807, 1837), 'cv2.imwrite', 'cv2.imwrite', (['"""result.jpg"""', 'img'], {}), "('result.jpg', img)\n", (1818, 1837), False, 'import cv2\n'), ((880, 906), 'gen_landmark.expand_mtcnn_box', 'expand_mtcnn_box', (['img', 'box'], {}), '(img, box)\n', (896, 906), False, 'from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72\n'), ((998, 1025), 'baidu.call_baidu_api', 'call_baidu_api', (['cropped', '""""""'], {}), "(cropped, '')\n", (1012, 1025), False, 'from baidu import call_baidu_api\n'), ((1045, 1084), 'gen_landmark.extract_baidu_lm72', 'extract_baidu_lm72', (['baidu_result[0][-1]'], {}), '(baidu_result[0][-1])\n', (1063, 1084), False, 'from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72\n'), ((1303, 1358), 'cv2.resize', 'cv2.resize', (['cropped', '(config.IMG_SIZE, config.IMG_SIZE)'], {}), '(cropped, (config.IMG_SIZE, config.IMG_SIZE))\n', (1313, 1358), False, 'import cv2\n'), ((1377, 1403), 'numpy.swapaxes', 'np.swapaxes', (['cropped', '(0)', '(2)'], {}), '(cropped, 0, 2)\n', (1388, 1403), True, 'import numpy as np\n'), ((1786, 1801), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (1796, 1801), False, 'import time\n'), ((818, 839), 'gen_landmark.is_valid_facebox', 'is_valid_facebox', (['box'], {}), '(box)\n', (834, 839), False, 'from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72\n')]
import numpy import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import r2_score x = [1,2,3,4] x=numpy.array(x) print(x.shape) x=x.reshape(2,-1) print(x.shape) print(x) x=x.reshape(-1) print(x.shape) print(x) y = [2,4,6,8] #x*2=[2,4,6,8] #x*x=[1,4,9,16] #sum(x) = 10 pf=numpy.polyfit(x,y,3) print(pf) print(type(pf)) model = numpy.poly1d(pf) drv=model.deriv() print(model([1,2,3,4])) print(type(drv)) print(model) print(drv) coeff=r2_score(y, model(x)) print(coeff)
[ "numpy.poly1d", "numpy.array", "numpy.polyfit" ]
[((119, 133), 'numpy.array', 'numpy.array', (['x'], {}), '(x)\n', (130, 133), False, 'import numpy\n'), ((294, 316), 'numpy.polyfit', 'numpy.polyfit', (['x', 'y', '(3)'], {}), '(x, y, 3)\n', (307, 316), False, 'import numpy\n'), ((349, 365), 'numpy.poly1d', 'numpy.poly1d', (['pf'], {}), '(pf)\n', (361, 365), False, 'import numpy\n')]
import numpy as np import tensorflow as tf import random import _pickle as pkl import matplotlib.pyplot as plt from pylab import rcParams import scipy import scipy.stats as stats from tensorflow.python.ops import gen_nn_ops config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True MEAN_IMAGE = np.zeros((1, 227, 227, 3)).astype(np.float32) MEAN_IMAGE[:, :, :, 0] = 103.939 MEAN_IMAGE[:, :, :, 1] = 116.779 MEAN_IMAGE[:, :, :, 2] = 123.68 EPSILON = 1e-12 MIN_INPUT = -MEAN_IMAGE MAX_INPUT = 255 * np.ones_like(MEAN_IMAGE).astype(np.float32) - MEAN_IMAGE def dataReader(): X = np.zeros((100, 227, 227, 3)) y = np.zeros(100) for num in range(4): with open( "./ImagenetValidationSamples/imagenet_sample_{}.pkl".format( num), "rb") as inputs: dic_temp = pkl.load(inputs) X[num * 20:num * 20 + 20] = dic_temp["X"] y[num * 20:num * 20 + 20] = dic_temp["y"] labels = dic_temp["labels"] return X, y.astype(int), labels class SimpleGradientAttack(object): def __init__(self, mean_image, sess, test_image, original_label, NET, NET2=None, k_top=1000, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) pixel_max: the maximum pixel value in the image. """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if NET.input.get_shape()[-3]!=test_image.shape[-3] or NET.input.get_shape()[-2]!=test_image.shape[-2] or\ NET.input.get_shape()[-1]!=test_image.shape[-1]: raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if NET2.input.get_shape()[-3]!=test_image.shape[-3] or NET2.input.get_shape()[-2]!=test_image.shape[-2] or\ NET2.input.get_shape()[-1]!=test_image.shape[-1]: raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.create_attack_ops(NET2, test_image.shape[-3], test_image.shape[-2]) self.update_new_image(test_image, original_label) def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], self.test_image, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, self.test_image, self.NET).astype(int) self.original_mass_center = self.mass_center1 def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") return True else: self.original_confidence = np.max(predicted_scores) return False def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) self.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.topK_direction, in_image, self.NET2) perturbation = np.reshape(perturbation, [w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.mass_center_direction, in_image, self.NET2) perturbation = np.reshape(perturbation, [w, h, c]) elif attack_method == "target": self.use_target = True if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, in_image, self.NET2) debug = self.run_model(self.sess, self.debug, in_image, self.NET2) print("MSE: ", debug) perturbation = np.reshape(perturbation, [w, h, c]) return np.sign(perturbation) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * np.sign(pert) - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, test_image_pert, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, test_image_pert, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1. def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection", target=None): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: Allowed maximum $ell_infty$ of perturbations, eg:8 iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") beta_0: parameter for manipulate (target) attack beta_1: parameter for manipulate (target) attack Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ self.beta_0 = beta_0 self.beta_1 = beta_1 w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() min_criterion = 1. perturb_size = 0. last_image = None for counter in range(iters): pert = self.give_simple_perturbation(attack_method, test_image_pert) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: pass if criterion == 1.: return None predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], self.perturbed_image, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class IntegratedGradientsAttack(object): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, reference_image=None, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) num_steps: Number of steps in Integrated Gradients Algorithm reference_image: Mean subtracted reference image of Integrated Gradients Algorithm pixel_max: the maximum pixel value in the image. """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if sum([ NET.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if sum([ NET2.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top self.num_steps = num_steps self.reference_image = np.zeros_like( test_image) if reference_image is None else reference_image w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.create_attack_ops(self.NET2, test_image.shape[-3], test_image.shape[-2]) def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") return True else: self.original_confidence = np.max(predicted_scores) return False def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) counterfactuals = self.create_counterfactuals(test_image) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], counterfactuals, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) self.original_mass_center = self.mass_center1 def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.debug = topK_loss NET.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) NET.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def create_counterfactuals(self, in_image): ref_subtracted = in_image - self.reference_image counterfactuals = np.array([(float(i+1)/self.num_steps) * ref_subtracted + self.reference_image\ for i in range(self.num_steps)]) return np.array(counterfactuals) def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, NET.reference_image: self.reference_image, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.reference_image: self.reference_image, NET.label_ph: self.original_label, self.target_map_ph: self.target_map }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.reference_image: self.reference_image, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): counterfactuals = self.create_counterfactuals(in_image) w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(self.num_steps, w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.NET2.topK_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.NET2.mass_center_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "target": self.use_target = True if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) perturbation_summed = np.sum(np.array([float(i+1)/self.num_steps*perturbation[i]\ for i in range(self.num_steps)]),0) return np.sign(perturbation_summed) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * np.sign(pert) - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: counterfactuals = self.create_counterfactuals(test_image_pert) if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, counterfactuals, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, counterfactuals, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1 def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection"): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: set of allowed maximum $ell_infty$ of perturbations, eg:[2,4] iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ self.beta_0 = beta_0 self.beta_1 = beta_1 w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() min_criterion = 1. for counter in range(iters): # if counter % int(iters / 5) == 0: # print("Iteration : {}".format(counter)) pert = self.give_simple_perturbation(attack_method, test_image_pert) # print(pert.sum()) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: # print("attack") min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: # print("labels is changed") pass if min_criterion == 1.: # print( # "The attack was not successfull for maximum allowed perturbation size equal to {}" # .format(epsilon)) # return 1., 1., self.original_confidence, 0. return None # print( # '''For maximum allowed perturbation size equal to {}, the resulting perturbation size was equal to {} # '''.format(epsilon, # np.max(np.abs(self.test_image - self.perturbed_image)))) predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) counterfactuals = self.create_counterfactuals(self.perturbed_image) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], counterfactuals, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class SmoothGradientsAttack(object): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, reference_image=None, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) num_steps: Number of steps in Integrated Gradients Algorithm reference_image: not used pixel_max: maximum pixel value in the input image """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if sum([ NET.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if sum([ NET2.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top self.num_steps = num_steps self.reference_image = np.zeros_like( test_image) if reference_image is None else reference_image w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.create_attack_ops(self.NET2, test_image.shape[-3], test_image.shape[-2]) self.update_new_image(test_image, original_label) def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) counterfactuals = self.create_counterfactuals(test_image) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], counterfactuals, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) self.original_mass_center = self.mass_center1 def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") print("Pred: ", np.argmax(predicted_scores, 1)) print("Label: ", original_label) return True else: self.original_confidence = np.max(predicted_scores) return False def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.debug = topK_loss NET.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) NET.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def create_counterfactuals(self, in_image, noise_ratio=0.1): counterfactuals = np.array([ in_image + np.random.normal(scale=0.1 * (in_image.max() - in_image.min()), size=in_image.shape) for _ in range(self.num_steps) ]) return np.array(counterfactuals) def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.target_map_ph: self.target_map }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): counterfactuals = self.create_counterfactuals(in_image) w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(self.num_steps, w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.NET2.topK_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.NET2.mass_center_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "target": if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) perturbation_summed = np.mean(perturbation, 0) return np.sign(perturbation_summed) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * pert - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: counterfactuals = self.create_counterfactuals(test_image_pert) if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, counterfactuals, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, counterfactuals, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1. def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection"): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: set of allowed maximum $ell_infty$ of perturbations, eg:[2,4] iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() self.original = self.test_image.copy() if attack_method == 'target': self.use_target = True else: self.use_target = False self.beta_0 = beta_0 self.beta_1 = beta_1 min_criterion = 1. last_image = None for counter in range(iters): pert = self.give_simple_perturbation(attack_method, test_image_pert) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: pass if criterion == 1.: return None predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) counterfactuals = self.create_counterfactuals(self.perturbed_image) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], counterfactuals, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class UniGradientsAttack(SmoothGradientsAttack): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, radii=4, reference_image=None, target_map=None, pixel_max=255.): self.radii = radii / (255. / pixel_max) super(UniGradientsAttack, self).__init__(sess, mean_image, test_image, original_label, NET, NET2=NET2, k_top=1000, num_steps=num_steps, reference_image=reference_image, target_map=target_map, pixel_max=255.) def create_counterfactuals(self, in_image): counterfactuals = np.array([ in_image + np.random.uniform(-1, 1, size=in_image.shape) * self.radii for _ in range(self.num_steps) ]) return np.array(counterfactuals)
[ "tensorflow.reduce_sum", "numpy.abs", "tensorflow.keras.losses.MSE", "numpy.argmax", "numpy.clip", "tensorflow.ConfigProto", "numpy.mean", "numpy.arange", "numpy.linalg.norm", "numpy.random.normal", "_pickle.load", "numpy.zeros_like", "tensorflow.nn.top_k", "tensorflow.placeholder", "numpy.max", "numpy.reshape", "tensorflow.gradients", "numpy.intersect1d", "numpy.ones_like", "tensorflow.reduce_mean", "numpy.random.uniform", "scipy.spatial.distance.cosine", "scipy.stats.spearmanr", "numpy.zeros", "numpy.array", "numpy.sign" ]
[((237, 253), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (251, 253), True, 'import tensorflow as tf\n'), ((598, 626), 'numpy.zeros', 'np.zeros', (['(100, 227, 227, 3)'], {}), '((100, 227, 227, 3))\n', (606, 626), True, 'import numpy as np\n'), ((635, 648), 'numpy.zeros', 'np.zeros', (['(100)'], {}), '(100)\n', (643, 648), True, 'import numpy as np\n'), ((311, 337), 'numpy.zeros', 'np.zeros', (['(1, 227, 227, 3)'], {}), '((1, 227, 227, 3))\n', (319, 337), True, 'import numpy as np\n'), ((3924, 3981), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w * h]', 'name': '"""topk_ph"""'}), "(tf.float32, shape=[w * h], name='topk_ph')\n", (3938, 3981), True, 'import tensorflow as tf\n'), ((4088, 4148), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[2]', 'name': '"""mass_center_ph"""'}), "(tf.float32, shape=[2], name='mass_center_ph')\n", (4102, 4148), True, 'import tensorflow as tf\n'), ((4268, 4330), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w, h]', 'name': '"""target_map_ph"""'}), "(tf.float32, shape=[w, h], name='target_map_ph')\n", (4282, 4330), True, 'import tensorflow as tf\n'), ((4574, 4652), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_class]', 'name': '"""original_output_ph"""'}), "(tf.float32, shape=[None, num_class], name='original_output_ph')\n", (4588, 4652), True, 'import tensorflow as tf\n'), ((4740, 4781), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_0"""'}), "(tf.float32, name='beta_0')\n", (4754, 4781), True, 'import tensorflow as tf\n'), ((4807, 4848), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_1"""'}), "(tf.float32, name='beta_1')\n", (4821, 4848), True, 'import tensorflow as tf\n'), ((5682, 5755), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[test_image.shape[-3] * test_image.shape[-2]]'], {}), '(self.saliency1, [test_image.shape[-3] * test_image.shape[-2]])\n', (5692, 5755), True, 'import numpy as np\n'), ((5872, 5887), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (5880, 5887), True, 'import numpy as np\n'), ((6866, 6906), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['NET.saliency_flatten', 'k_top'], {}), '(NET.saliency_flatten, k_top)\n', (6877, 6906), True, 'import tensorflow as tf\n'), ((7204, 7254), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency_flatten * self.topk_ph)'], {}), '(NET.saliency_flatten * self.topk_ph)\n', (7217, 7254), True, 'import tensorflow as tf\n'), ((13282, 13303), 'numpy.sign', 'np.sign', (['perturbation'], {}), '(perturbation)\n', (13289, 13303), True, 'import numpy as np\n'), ((13932, 14002), 'numpy.clip', 'np.clip', (['out_image', '(-self.mean_image)', '(self.pixel_max - self.mean_image)'], {}), '(out_image, -self.mean_image, self.pixel_max - self.mean_image)\n', (13939, 14002), True, 'import numpy as np\n'), ((18257, 18281), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (18263, 18281), True, 'import numpy as np\n'), ((22283, 22340), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w * h]', 'name': '"""topk_ph"""'}), "(tf.float32, shape=[w * h], name='topk_ph')\n", (22297, 22340), True, 'import tensorflow as tf\n'), ((22447, 22507), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[2]', 'name': '"""mass_center_ph"""'}), "(tf.float32, shape=[2], name='mass_center_ph')\n", (22461, 22507), True, 'import tensorflow as tf\n'), ((22627, 22689), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w, h]', 'name': '"""target_map_ph"""'}), "(tf.float32, shape=[w, h], name='target_map_ph')\n", (22641, 22689), True, 'import tensorflow as tf\n'), ((22803, 22844), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_0"""'}), "(tf.float32, name='beta_0')\n", (22817, 22844), True, 'import tensorflow as tf\n'), ((22870, 22911), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_1"""'}), "(tf.float32, name='beta_1')\n", (22884, 22911), True, 'import tensorflow as tf\n'), ((23066, 23144), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_class]', 'name': '"""original_output_ph"""'}), "(tf.float32, shape=[None, num_class], name='original_output_ph')\n", (23080, 23144), True, 'import tensorflow as tf\n'), ((24615, 24688), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[test_image.shape[-3] * test_image.shape[-2]]'], {}), '(self.saliency1, [test_image.shape[-3] * test_image.shape[-2]])\n', (24625, 24688), True, 'import numpy as np\n'), ((24805, 24820), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (24813, 24820), True, 'import numpy as np\n'), ((25238, 25278), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['NET.saliency_flatten', 'k_top'], {}), '(NET.saliency_flatten, k_top)\n', (25249, 25278), True, 'import tensorflow as tf\n'), ((25576, 25626), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency_flatten * self.topk_ph)'], {}), '(NET.saliency_flatten * self.topk_ph)\n', (25589, 25626), True, 'import tensorflow as tf\n'), ((26771, 26796), 'numpy.array', 'np.array', (['counterfactuals'], {}), '(counterfactuals)\n', (26779, 26796), True, 'import numpy as np\n'), ((32895, 32923), 'numpy.sign', 'np.sign', (['perturbation_summed'], {}), '(perturbation_summed)\n', (32902, 32923), True, 'import numpy as np\n'), ((33552, 33622), 'numpy.clip', 'np.clip', (['out_image', '(-self.mean_image)', '(self.pixel_max - self.mean_image)'], {}), '(out_image, -self.mean_image, self.pixel_max - self.mean_image)\n', (33559, 33622), True, 'import numpy as np\n'), ((38426, 38450), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (38432, 38450), True, 'import numpy as np\n'), ((42463, 42520), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w * h]', 'name': '"""topk_ph"""'}), "(tf.float32, shape=[w * h], name='topk_ph')\n", (42477, 42520), True, 'import tensorflow as tf\n'), ((42627, 42687), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[2]', 'name': '"""mass_center_ph"""'}), "(tf.float32, shape=[2], name='mass_center_ph')\n", (42641, 42687), True, 'import tensorflow as tf\n'), ((42807, 42869), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w, h]', 'name': '"""target_map_ph"""'}), "(tf.float32, shape=[w, h], name='target_map_ph')\n", (42821, 42869), True, 'import tensorflow as tf\n'), ((42983, 43024), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_0"""'}), "(tf.float32, name='beta_0')\n", (42997, 43024), True, 'import tensorflow as tf\n'), ((43050, 43091), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_1"""'}), "(tf.float32, name='beta_1')\n", (43064, 43091), True, 'import tensorflow as tf\n'), ((43246, 43324), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_class]', 'name': '"""original_output_ph"""'}), "(tf.float32, shape=[None, num_class], name='original_output_ph')\n", (43260, 43324), True, 'import tensorflow as tf\n'), ((44291, 44364), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[test_image.shape[-3] * test_image.shape[-2]]'], {}), '(self.saliency1, [test_image.shape[-3] * test_image.shape[-2]])\n', (44301, 44364), True, 'import numpy as np\n'), ((44481, 44496), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (44489, 44496), True, 'import numpy as np\n'), ((45581, 45621), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['NET.saliency_flatten', 'k_top'], {}), '(NET.saliency_flatten, k_top)\n', (45592, 45621), True, 'import tensorflow as tf\n'), ((45919, 45969), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency_flatten * self.topk_ph)'], {}), '(NET.saliency_flatten * self.topk_ph)\n', (45932, 45969), True, 'import tensorflow as tf\n'), ((47179, 47204), 'numpy.array', 'np.array', (['counterfactuals'], {}), '(counterfactuals)\n', (47187, 47204), True, 'import numpy as np\n'), ((52460, 52484), 'numpy.mean', 'np.mean', (['perturbation', '(0)'], {}), '(perturbation, 0)\n', (52467, 52484), True, 'import numpy as np\n'), ((52500, 52528), 'numpy.sign', 'np.sign', (['perturbation_summed'], {}), '(perturbation_summed)\n', (52507, 52528), True, 'import numpy as np\n'), ((53148, 53218), 'numpy.clip', 'np.clip', (['out_image', '(-self.mean_image)', '(self.pixel_max - self.mean_image)'], {}), '(out_image, -self.mean_image, self.pixel_max - self.mean_image)\n', (53155, 53218), True, 'import numpy as np\n'), ((57542, 57566), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (57548, 57566), True, 'import numpy as np\n'), ((59693, 59718), 'numpy.array', 'np.array', (['counterfactuals'], {}), '(counterfactuals)\n', (59701, 59718), True, 'import numpy as np\n'), ((836, 852), '_pickle.load', 'pkl.load', (['inputs'], {}), '(inputs)\n', (844, 852), True, 'import _pickle as pkl\n'), ((6542, 6572), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (6551, 6572), True, 'import numpy as np\n'), ((6733, 6757), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (6739, 6757), True, 'import numpy as np\n'), ((6944, 6956), 'numpy.arange', 'np.arange', (['h'], {}), '(h)\n', (6953, 6956), True, 'import numpy as np\n'), ((6958, 6970), 'numpy.arange', 'np.arange', (['w'], {}), '(w)\n', (6967, 6970), True, 'import numpy as np\n'), ((7355, 7414), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['((NET.mass_center - self.mass_center_ph) ** 2)'], {}), '((NET.mass_center - self.mass_center_ph) ** 2)\n', (7368, 7414), True, 'import tensorflow as tf\n'), ((7625, 7678), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.target_map_ph', 'NET.saliency'], {}), '(self.target_map_ph, NET.saliency)\n', (7644, 7678), True, 'import tensorflow as tf\n'), ((7704, 7760), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.original_output_ph', 'NET.output'], {}), '(self.original_output_ph, NET.output)\n', (7723, 7760), True, 'import tensorflow as tf\n'), ((12130, 12162), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(w, h, c)'}), '(size=(w, h, c))\n', (12146, 12162), True, 'import numpy as np\n'), ((13450, 13473), 'numpy.zeros_like', 'np.zeros_like', (['in_image'], {}), '(in_image)\n', (13463, 13473), True, 'import numpy as np\n'), ((14239, 14257), 'numpy.argmax', 'np.argmax', (['prob', '(1)'], {}), '(prob, 1)\n', (14248, 14257), True, 'import numpy as np\n'), ((18948, 18983), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (18958, 18983), True, 'import numpy as np\n'), ((22132, 22157), 'numpy.zeros_like', 'np.zeros_like', (['test_image'], {}), '(test_image)\n', (22145, 22157), True, 'import numpy as np\n'), ((23645, 23675), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (23654, 23675), True, 'import numpy as np\n'), ((23836, 23860), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (23842, 23860), True, 'import numpy as np\n'), ((25316, 25328), 'numpy.arange', 'np.arange', (['h'], {}), '(h)\n', (25325, 25328), True, 'import numpy as np\n'), ((25330, 25342), 'numpy.arange', 'np.arange', (['w'], {}), '(w)\n', (25339, 25342), True, 'import numpy as np\n'), ((25757, 25816), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['((NET.mass_center - self.mass_center_ph) ** 2)'], {}), '((NET.mass_center - self.mass_center_ph) ** 2)\n', (25770, 25816), True, 'import tensorflow as tf\n'), ((26025, 26078), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.target_map_ph', 'NET.saliency'], {}), '(self.target_map_ph, NET.saliency)\n', (26044, 26078), True, 'import tensorflow as tf\n'), ((26104, 26160), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.original_output_ph', 'NET.output'], {}), '(self.original_output_ph, NET.output)\n', (26123, 26160), True, 'import tensorflow as tf\n'), ((31593, 31641), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(self.num_steps, w, h, c)'}), '(size=(self.num_steps, w, h, c))\n', (31609, 31641), True, 'import numpy as np\n'), ((33070, 33093), 'numpy.zeros_like', 'np.zeros_like', (['in_image'], {}), '(in_image)\n', (33083, 33093), True, 'import numpy as np\n'), ((33859, 33877), 'numpy.argmax', 'np.argmax', (['prob', '(1)'], {}), '(prob, 1)\n', (33868, 33877), True, 'import numpy as np\n'), ((39188, 39223), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (39198, 39223), True, 'import numpy as np\n'), ((42312, 42337), 'numpy.zeros_like', 'np.zeros_like', (['test_image'], {}), '(test_image)\n', (42325, 42337), True, 'import numpy as np\n'), ((45152, 45182), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (45161, 45182), True, 'import numpy as np\n'), ((45448, 45472), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (45454, 45472), True, 'import numpy as np\n'), ((45659, 45671), 'numpy.arange', 'np.arange', (['h'], {}), '(h)\n', (45668, 45671), True, 'import numpy as np\n'), ((45673, 45685), 'numpy.arange', 'np.arange', (['w'], {}), '(w)\n', (45682, 45685), True, 'import numpy as np\n'), ((46100, 46159), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['((NET.mass_center - self.mass_center_ph) ** 2)'], {}), '((NET.mass_center - self.mass_center_ph) ** 2)\n', (46113, 46159), True, 'import tensorflow as tf\n'), ((46368, 46421), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.target_map_ph', 'NET.saliency'], {}), '(self.target_map_ph, NET.saliency)\n', (46387, 46421), True, 'import tensorflow as tf\n'), ((46447, 46503), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.original_output_ph', 'NET.output'], {}), '(self.original_output_ph, NET.output)\n', (46466, 46503), True, 'import tensorflow as tf\n'), ((51351, 51399), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(self.num_steps, w, h, c)'}), '(size=(self.num_steps, w, h, c))\n', (51367, 51399), True, 'import numpy as np\n'), ((52675, 52698), 'numpy.zeros_like', 'np.zeros_like', (['in_image'], {}), '(in_image)\n', (52688, 52698), True, 'import numpy as np\n'), ((53455, 53473), 'numpy.argmax', 'np.argmax', (['prob', '(1)'], {}), '(prob, 1)\n', (53464, 53473), True, 'import numpy as np\n'), ((58304, 58339), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (58314, 58339), True, 'import numpy as np\n'), ((513, 537), 'numpy.ones_like', 'np.ones_like', (['MEAN_IMAGE'], {}), '(MEAN_IMAGE)\n', (525, 537), True, 'import numpy as np\n'), ((5796, 5831), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[w * h]'], {}), '(self.saliency1, [w * h])\n', (5806, 5831), True, 'import numpy as np\n'), ((7288, 7322), 'tensorflow.gradients', 'tf.gradients', (['topK_loss', 'NET.input'], {}), '(topK_loss, NET.input)\n', (7300, 7322), True, 'import tensorflow as tf\n'), ((7464, 7505), 'tensorflow.gradients', 'tf.gradients', (['mass_center_loss', 'NET.input'], {}), '(mass_center_loss, NET.input)\n', (7476, 7505), True, 'import tensorflow as tf\n'), ((12365, 12400), 'numpy.reshape', 'np.reshape', (['perturbation', '[w, h, c]'], {}), '(perturbation, [w, h, c])\n', (12375, 12400), True, 'import numpy as np\n'), ((18546, 18581), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (18556, 18581), True, 'import numpy as np\n'), ((24729, 24764), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[w * h]'], {}), '(self.saliency1, [w * h])\n', (24739, 24764), True, 'import numpy as np\n'), ((25690, 25724), 'tensorflow.gradients', 'tf.gradients', (['topK_loss', 'NET.input'], {}), '(topK_loss, NET.input)\n', (25702, 25724), True, 'import tensorflow as tf\n'), ((25865, 25906), 'tensorflow.gradients', 'tf.gradients', (['mass_center_loss', 'NET.input'], {}), '(mass_center_loss, NET.input)\n', (25877, 25906), True, 'import tensorflow as tf\n'), ((31856, 31907), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (31866, 31907), True, 'import numpy as np\n'), ((38786, 38821), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (38796, 38821), True, 'import numpy as np\n'), ((44405, 44440), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[w * h]'], {}), '(self.saliency1, [w * h])\n', (44415, 44440), True, 'import numpy as np\n'), ((45294, 45324), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (45303, 45324), True, 'import numpy as np\n'), ((46033, 46067), 'tensorflow.gradients', 'tf.gradients', (['topK_loss', 'NET.input'], {}), '(topK_loss, NET.input)\n', (46045, 46067), True, 'import tensorflow as tf\n'), ((46208, 46249), 'tensorflow.gradients', 'tf.gradients', (['mass_center_loss', 'NET.input'], {}), '(mass_center_loss, NET.input)\n', (46220, 46249), True, 'import tensorflow as tf\n'), ((51614, 51665), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (51624, 51665), True, 'import numpy as np\n'), ((57902, 57937), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (57912, 57937), True, 'import numpy as np\n'), ((7021, 7057), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * x_mesh)'], {}), '(NET.saliency * x_mesh)\n', (7034, 7057), True, 'import tensorflow as tf\n'), ((7081, 7117), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * y_mesh)'], {}), '(NET.saliency * y_mesh)\n', (7094, 7117), True, 'import tensorflow as tf\n'), ((7832, 7858), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target_dis'], {}), '(target_dis)\n', (7846, 7858), True, 'import tensorflow as tf\n'), ((7912, 7938), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['output_dis'], {}), '(output_dis)\n', (7926, 7938), True, 'import tensorflow as tf\n'), ((8035, 8071), 'tensorflow.gradients', 'tf.gradients', (['target_loss', 'NET.input'], {}), '(target_loss, NET.input)\n', (8047, 8071), True, 'import tensorflow as tf\n'), ((12659, 12694), 'numpy.reshape', 'np.reshape', (['perturbation', '[w, h, c]'], {}), '(perturbation, [w, h, c])\n', (12669, 12694), True, 'import numpy as np\n'), ((13635, 13648), 'numpy.sign', 'np.sign', (['pert'], {}), '(pert)\n', (13642, 13648), True, 'import numpy as np\n'), ((17952, 17998), 'numpy.abs', 'np.abs', (['(self.test_image - self.perturbed_image)'], {}), '(self.test_image - self.perturbed_image)\n', (17958, 17998), True, 'import numpy as np\n'), ((18619, 18655), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'self.top2'], {}), '(self.topK, self.top2)\n', (18633, 18655), True, 'import numpy as np\n'), ((25393, 25429), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * x_mesh)'], {}), '(NET.saliency * x_mesh)\n', (25406, 25429), True, 'import tensorflow as tf\n'), ((25453, 25489), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * y_mesh)'], {}), '(NET.saliency * y_mesh)\n', (25466, 25489), True, 'import tensorflow as tf\n'), ((26232, 26258), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target_dis'], {}), '(target_dis)\n', (26246, 26258), True, 'import tensorflow as tf\n'), ((26312, 26338), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['output_dis'], {}), '(output_dis)\n', (26326, 26338), True, 'import tensorflow as tf\n'), ((26435, 26471), 'tensorflow.gradients', 'tf.gradients', (['target_loss', 'NET.input'], {}), '(target_loss, NET.input)\n', (26447, 26471), True, 'import tensorflow as tf\n'), ((32178, 32229), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (32188, 32229), True, 'import numpy as np\n'), ((33255, 33268), 'numpy.sign', 'np.sign', (['pert'], {}), '(pert)\n', (33262, 33268), True, 'import numpy as np\n'), ((37615, 37661), 'numpy.abs', 'np.abs', (['(self.test_image - self.perturbed_image)'], {}), '(self.test_image - self.perturbed_image)\n', (37621, 37661), True, 'import numpy as np\n'), ((38859, 38895), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'self.top2'], {}), '(self.topK, self.top2)\n', (38873, 38895), True, 'import numpy as np\n'), ((45736, 45772), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * x_mesh)'], {}), '(NET.saliency * x_mesh)\n', (45749, 45772), True, 'import tensorflow as tf\n'), ((45796, 45832), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * y_mesh)'], {}), '(NET.saliency * y_mesh)\n', (45809, 45832), True, 'import tensorflow as tf\n'), ((46575, 46601), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target_dis'], {}), '(target_dis)\n', (46589, 46601), True, 'import tensorflow as tf\n'), ((46655, 46681), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['output_dis'], {}), '(output_dis)\n', (46669, 46681), True, 'import tensorflow as tf\n'), ((46778, 46814), 'tensorflow.gradients', 'tf.gradients', (['target_loss', 'NET.input'], {}), '(target_loss, NET.input)\n', (46790, 46814), True, 'import tensorflow as tf\n'), ((51936, 51987), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (51946, 51987), True, 'import numpy as np\n'), ((57236, 57282), 'numpy.abs', 'np.abs', (['(self.test_image - self.perturbed_image)'], {}), '(self.test_image - self.perturbed_image)\n', (57242, 57282), True, 'import numpy as np\n'), ((57975, 58011), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'self.top2'], {}), '(self.topK, self.top2)\n', (57989, 58011), True, 'import numpy as np\n'), ((14883, 14947), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (14904, 14947), False, 'import scipy\n'), ((34578, 34642), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (34599, 34642), False, 'import scipy\n'), ((54174, 54238), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (54195, 54238), False, 'import scipy\n'), ((59564, 59609), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)'], {'size': 'in_image.shape'}), '(-1, 1, size=in_image.shape)\n', (59581, 59609), True, 'import numpy as np\n'), ((13231, 13266), 'numpy.reshape', 'np.reshape', (['perturbation', '[w, h, c]'], {}), '(perturbation, [w, h, c])\n', (13241, 13266), True, 'import numpy as np\n'), ((14494, 14525), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'top2'], {}), '(self.topK, top2)\n', (14508, 14525), True, 'import numpy as np\n'), ((15227, 15270), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.mass_center1 - center2)'], {}), '(self.mass_center1 - center2)\n', (15241, 15270), True, 'import numpy as np\n'), ((15556, 15628), 'scipy.spatial.distance.cosine', 'scipy.spatial.distance.cosine', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (15585, 15628), False, 'import scipy\n'), ((32613, 32664), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (32623, 32664), True, 'import numpy as np\n'), ((34189, 34220), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'top2'], {}), '(self.topK, top2)\n', (34203, 34220), True, 'import numpy as np\n'), ((34922, 34965), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.mass_center1 - center2)'], {}), '(self.mass_center1 - center2)\n', (34936, 34965), True, 'import numpy as np\n'), ((35251, 35323), 'scipy.spatial.distance.cosine', 'scipy.spatial.distance.cosine', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (35280, 35323), False, 'import scipy\n'), ((52336, 52387), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (52346, 52387), True, 'import numpy as np\n'), ((53785, 53816), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'top2'], {}), '(self.topK, top2)\n', (53799, 53816), True, 'import numpy as np\n'), ((54518, 54561), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.mass_center1 - center2)'], {}), '(self.mass_center1 - center2)\n', (54532, 54561), True, 'import numpy as np\n'), ((54847, 54919), 'scipy.spatial.distance.cosine', 'scipy.spatial.distance.cosine', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (54876, 54919), False, 'import scipy\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 21 15:05:24 2018 @author: Hendry """ from read_data import * from TokenizeSentences import * import numpy as np def onehot(data,nClass): data2 = np.zeros([len(data),nClass]) for i in range(nClass): data2[np.where(data==i),i]= 1 return data2 def get_text_idx(text,vocab,max_document_length): text_array = np.zeros([len(text), max_document_length],dtype=np.int32) for i,x in enumerate(text): words = x for j, w in enumerate(words): if w in vocab: text_array[i, j] = vocab[w] else : text_array[i, j] = vocab['the'] return text_array def loaddata(w2v_model,typeOfClassify = 0,useTextsum= 1): train_bodies = readRawData('train_bodies.csv') if useTextsum == 0: trainDocs = TokenizeSentences(splitData(train_bodies,1)) else: f = open('./fnc_data/train_1.txt','r') data = f.readlines() f.close() trainDocs = TokenizeSentences(data) trainDocsIdx = np.array(splitData(train_bodies,0)).astype('int') train_stances = readRawData('train_stances.csv') trainTitle = TokenizeSentences(splitData(train_stances,0)) trainTitleIdx = np.array(splitData(train_stances,1)).astype('int') trainRes = np.array(splitData(train_stances,2)) trainRes[np.where(trainRes=='unrelated')]='0' trainRes[np.where(trainRes=='agree')]='1' trainRes[np.where(trainRes=='disagree')]='2' trainRes[np.where(trainRes=='discuss')]='3' trainRes =trainRes.astype('int') maxDocLength = 0 for i in range(len(trainDocs)): maxDocLength = max(maxDocLength,len(trainDocs[i])) maxTitleLength = 0 for i in range(len(trainTitle)): maxTitleLength = max(maxTitleLength,len(trainTitle[i])) trainDocs = get_text_idx(trainDocs,w2v_model.vocab_hash,maxDocLength) trainTitle = get_text_idx(trainTitle,w2v_model.vocab_hash,maxTitleLength) trainTitleDocs = [[] for i in range(len(trainTitle))] for i in range(len(trainTitle)): idx = np.where(trainDocsIdx==trainTitleIdx[i]) trainTitleDocs[i]=trainDocs[int(idx[0])] trainTitleDocs = np.array(trainTitleDocs) trainDocs = np.array(trainDocs) trainTitle = np.array(trainTitle) uniIdx = np.unique(trainTitleIdx) uniIdxTest = uniIdx[round(0.95*len(uniIdx)):] validIdx = np.argwhere(trainTitleIdx == uniIdxTest[0]) for i in range(len(uniIdxTest)-1): validIdx = np.append(validIdx,np.argwhere(trainTitleIdx == uniIdxTest[i+1])) validIdx = sorted(validIdx) fullIdx = list(range(len(trainTitleIdx))) trainIdx = list(set(fullIdx).difference(set(validIdx))) x1Train = trainTitleDocs[trainIdx] x2Train = trainTitle[trainIdx] trainRes = np.array(trainRes) y0Train = trainRes[trainIdx] x1Valid = trainTitleDocs[validIdx] x2Valid = trainTitle[validIdx] y0Valid = trainRes[validIdx] if typeOfClassify==0: yValid = onehot(y0Valid,4) yTrain = onehot(y0Train,4) elif typeOfClassify==1: y0Train[y0Train>0]=1 y0Valid[y0Valid>0]=1 yValid = onehot(y0Valid,2) yTrain = onehot(y0Train,2) elif typeOfClassify==2: x1Train = x1Train[y0Train>0] x2Train = x2Train[y0Train>0] y0Train = y0Train[y0Train>0]-1 x1Valid = x1Valid[y0Valid>0] x2Valid = x2Valid[y0Valid>0] y0Valid = y0Valid[y0Valid>0]-1 yValid = onehot(y0Valid,3) yTrain = onehot(y0Train,3) vocab_size = len(w2v_model.vocab_hash) return x1Train, x1Valid, x2Train, x2Valid, yTrain, yValid, vocab_size
[ "numpy.argwhere", "numpy.where", "numpy.array", "numpy.unique" ]
[((2079, 2103), 'numpy.array', 'np.array', (['trainTitleDocs'], {}), '(trainTitleDocs)\n', (2087, 2103), True, 'import numpy as np\n'), ((2117, 2136), 'numpy.array', 'np.array', (['trainDocs'], {}), '(trainDocs)\n', (2125, 2136), True, 'import numpy as np\n'), ((2151, 2171), 'numpy.array', 'np.array', (['trainTitle'], {}), '(trainTitle)\n', (2159, 2171), True, 'import numpy as np\n'), ((2182, 2206), 'numpy.unique', 'np.unique', (['trainTitleIdx'], {}), '(trainTitleIdx)\n', (2191, 2206), True, 'import numpy as np\n'), ((2267, 2310), 'numpy.argwhere', 'np.argwhere', (['(trainTitleIdx == uniIdxTest[0])'], {}), '(trainTitleIdx == uniIdxTest[0])\n', (2278, 2310), True, 'import numpy as np\n'), ((2639, 2657), 'numpy.array', 'np.array', (['trainRes'], {}), '(trainRes)\n', (2647, 2657), True, 'import numpy as np\n'), ((1307, 1340), 'numpy.where', 'np.where', (["(trainRes == 'unrelated')"], {}), "(trainRes == 'unrelated')\n", (1315, 1340), True, 'import numpy as np\n'), ((1354, 1383), 'numpy.where', 'np.where', (["(trainRes == 'agree')"], {}), "(trainRes == 'agree')\n", (1362, 1383), True, 'import numpy as np\n'), ((1397, 1429), 'numpy.where', 'np.where', (["(trainRes == 'disagree')"], {}), "(trainRes == 'disagree')\n", (1405, 1429), True, 'import numpy as np\n'), ((1443, 1474), 'numpy.where', 'np.where', (["(trainRes == 'discuss')"], {}), "(trainRes == 'discuss')\n", (1451, 1474), True, 'import numpy as np\n'), ((1974, 2016), 'numpy.where', 'np.where', (['(trainDocsIdx == trainTitleIdx[i])'], {}), '(trainDocsIdx == trainTitleIdx[i])\n', (1982, 2016), True, 'import numpy as np\n'), ((2382, 2429), 'numpy.argwhere', 'np.argwhere', (['(trainTitleIdx == uniIdxTest[i + 1])'], {}), '(trainTitleIdx == uniIdxTest[i + 1])\n', (2393, 2429), True, 'import numpy as np\n'), ((280, 299), 'numpy.where', 'np.where', (['(data == i)'], {}), '(data == i)\n', (288, 299), True, 'import numpy as np\n')]
#!/usr/bin/env python # # Author: <NAME>. # Created: Dec 11, 2014. """Some utility functions to handle images.""" import math import numpy as np import PIL.Image from PIL.Image import ROTATE_180, ROTATE_90, ROTATE_270, FLIP_TOP_BOTTOM, FLIP_LEFT_RIGHT import skimage.transform def imcast(img, dtype, color_space="default"): """Cast the input image to a given data type. Parameters ---------- img: ndarray The input image. dtype: np.dtype The type that output image to be cast into. color_space: string, optional The color space of the input image, which affects the casting operation. Returns ------- The output image that is cast into `dtype`. Notes ----- * For `color_space=="default"`, we perform a linear scaling with following range conventions: * `np.uint8`: `[0, 255]`; * `np.uint16`: `[0, 65535]`; * `np.float32` and `np.float64`: `[0.0, 1.0]`. For example, if the input `img` is of `np.uint8` type and the expected `dtype` is `np.float32`, then the output will be `np.asarray(img / 255., np.float32)`. * For `color_space=="CIE-L*a*b*"`, the "normal" value ranges are `0 <= L <= 100, -127 <= a, b <= 127`, and we perform the following cast: * `np.uint8`: `L <- L * 255 / 100, a <- a + 128, b <- b + 128`; * `np.uint16`: currently not supported; * `np.float32` and `np.float64`: left as is. """ if img.dtype == dtype: return img if color_space == "default": if dtype == np.uint8: if img.dtype == np.uint16: return np.asarray(img / 257, np.uint8) elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img * 255., np.uint8) elif dtype == np.uint16: if img.dtype == np.uint8: return np.asarray(img, np.uint16) * 257 elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img * 65535., np.uint16) elif dtype == np.float32 or dtype == np.float64: if img.dtype == np.uint8: return np.asarray(img, dtype) / 255. elif img.dtype == np.uint16: return np.asarray(img, dtype) / 65535. elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img, dtype) elif color_space == "CIE-L*a*b*": if dtype == np.uint8: if img.dtype == np.float32 or img.dtype == np.float64: dst = np.empty(img.shape, np.uint8) dst[:,:,0] = img[:,:,0] * 255. / 100. dst[:,:,1] = img[:,:,1] + 128. dst[:,:,2] = img[:,:,2] + 128. return dst elif dtype == np.float32 or dtype == np.float64: if img.dtype == np.uint8: dst = np.empty(img.shape, dtype) dst[:,:,0] = np.asarray(img[:,:,0], dtype) / 255. * 100. dst[:,:,1] = np.asarray(img[:,:,1], dtype) - 128. dst[:,:,2] = np.asarray(img[:,:,2], dtype) - 128. return dst raise Exception( "Unexpected conversion from '%s' to '%s' with '%s' color space" % \ (img.dtype, dtype, color_space)) def imread(filename, dtype=np.uint8, color_space="default"): """Read the image followed by an :py:func:`imcast`.""" img = PIL.Image.open(filename) if img.mode != "RGB": img = img.convert("RGB") if hasattr(img, "_getexif"): try: exif = img._getexif() or {} except IOError: exif = {} orientation = exif.get(0x0112) if orientation: # see http://park2.wakwak.com/~tsuruzoh/Computer/Digicams/exif-e.html # for explanation of the magical constants # or see http://jpegclub.org/exif_orientation.html for a nice visual explanation # also, rotations are counter-clockwise in PIL orientation = int(orientation) rotation = [None, None, ROTATE_180, None, ROTATE_270, ROTATE_270, ROTATE_90, ROTATE_90] flip = [None, FLIP_LEFT_RIGHT, None, FLIP_TOP_BOTTOM, FLIP_LEFT_RIGHT, None, FLIP_LEFT_RIGHT, None] orientation0 = orientation - 1 # it's 1-indexed per the EXIF spec if 0 <= orientation0 < len(rotation): if rotation[orientation0] is not None: img = img.transpose(rotation[orientation0]) if flip[orientation0] is not None: img = img.transpose(flip[orientation0]) return imcast(np.array(img), dtype, color_space) def imwrite(filename, img, dtype=np.uint8, color_space="default"): """Perform an :py:func:`imcast` before writing to the output file.""" import scipy.misc return scipy.misc.imsave(filename, imcast(img, dtype, color_space)) def imresize(img, size): """Resize the input image. Parameters ---------- img: ndarray The input image to be resized. size: a scalar for `scale` or a 2-tuple for `(num_rows, num_cols)` One of the `num_rows` or `num_cols` can be -1, which will be inferred such that the output image has the same aspect ratio as the input. Returns ------- The resized image. """ if hasattr(size, "__len__"): num_rows, num_cols = size assert (num_rows > 0) or (num_cols > 0) if num_rows < 0: num_rows = num_cols * img.shape[0] / img.shape[1] if num_cols < 0: num_cols = num_rows * img.shape[1] / img.shape[0] else: num_rows = int(round(img.shape[0] * size)) num_cols = int(round(img.shape[1] * size)) return skimage.transform.resize(img, (num_rows, num_cols)) def create_icon_mosaic(icons, icon_shape=None, border_size=1, border_color=None, empty_color=None, mosaic_shape=None, mosaic_dtype=np.float): """Create a mosaic of image icons. Parameters ---------- icons: a list of `ndarray`s A list of icons to be put together for mosaic. Currently we require all icons to be multi-channel images of the same size. icon_shape: 3-tuple, optional The shape of icons in the output mosaic as `(num_rows, num_cols, num_channels)`. If not specified, use the shape of first image in `icons`. border_size: int, optional The size of border. border_color: 3-tuple, optional The color of border, black if not specified. empty_color: 3-tuple, optional The color for empty cells, black if not specified. mosaic_shape: 2-tuple, optional The shape of output mosaic as `(num_icons_per_row, num_icons_per_col)`. If not specified, try to make a square mosaic according to number of icons. mosaic_dtype: dtype The data type of output mosaic. Returns ------- The created mosaic image. """ # Set default parameters. num_icons = len(icons) assert num_icons > 0 if icon_shape is None: icon_shape = icons[0].shape assert len(icon_shape) == 3 num_channels = icon_shape[2] if border_color is None: border_color = np.zeros(num_channels) if empty_color is None: empty_color = np.zeros(num_channels) if mosaic_shape is None: num_cols = int(math.ceil(math.sqrt(num_icons))) num_rows = int(math.ceil(float(num_icons) / num_cols)) mosaic_shape = (num_rows, num_cols) mosaic_image_shape = ( mosaic_shape[0] * icon_shape[0] + (mosaic_shape[0]-1) * border_size, mosaic_shape[1] * icon_shape[1] + (mosaic_shape[1]-1) * border_size, icon_shape[2]) # Create mosaic image and fill with border color. mosaic_image = np.empty(mosaic_image_shape, dtype=mosaic_dtype) for c in xrange(mosaic_image.shape[2]): mosaic_image[:,:,c] = border_color[c] # Fill in the input icons. for idx in xrange(num_icons): i = idx / mosaic_shape[1] j = idx % mosaic_shape[1] iStart = i * (icon_shape[0] + border_size) jStart = j * (icon_shape[1] + border_size) mosaic_image[iStart:iStart+icon_shape[0], jStart:jStart+icon_shape[1],:] = icons[idx] # Fill the empty icons with empty colors. for idx in xrange(num_icons, mosaic_shape[0]*mosaic_shape[1]): i = idx / mosaic_shape[1] j = idx % mosaic_shape[1] iStart = i * (icon_shape[0] + border_size) jStart = j * (icon_shape[1] + border_size) for c in xrange(mosaic_image.shape[2]): mosaic_image[iStart:iStart+icon_shape[0], jStart:jStart+icon_shape[1],c] = empty_color[c] return mosaic_image def image_size_from_file(filename): """Read the image size from a file. This function only loads but the image header (rather than the whole rasterized data) in order to determine its dimension. Parameters ---------- filename: string The input image file. Returns ------- The 2-tuple for image size `(num_rows, num_cols)`. """ with PIL.Image.open(filename) as img: width, height = img.size return height, width
[ "math.sqrt", "numpy.empty", "numpy.asarray", "numpy.zeros", "numpy.array" ]
[((7824, 7872), 'numpy.empty', 'np.empty', (['mosaic_image_shape'], {'dtype': 'mosaic_dtype'}), '(mosaic_image_shape, dtype=mosaic_dtype)\n', (7832, 7872), True, 'import numpy as np\n'), ((4631, 4644), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (4639, 4644), True, 'import numpy as np\n'), ((7259, 7281), 'numpy.zeros', 'np.zeros', (['num_channels'], {}), '(num_channels)\n', (7267, 7281), True, 'import numpy as np\n'), ((7332, 7354), 'numpy.zeros', 'np.zeros', (['num_channels'], {}), '(num_channels)\n', (7340, 7354), True, 'import numpy as np\n'), ((1634, 1665), 'numpy.asarray', 'np.asarray', (['(img / 257)', 'np.uint8'], {}), '(img / 257, np.uint8)\n', (1644, 1665), True, 'import numpy as np\n'), ((7417, 7437), 'math.sqrt', 'math.sqrt', (['num_icons'], {}), '(num_icons)\n', (7426, 7437), False, 'import math\n'), ((1758, 1791), 'numpy.asarray', 'np.asarray', (['(img * 255.0)', 'np.uint8'], {}), '(img * 255.0, np.uint8)\n', (1768, 1791), True, 'import numpy as np\n'), ((2562, 2591), 'numpy.empty', 'np.empty', (['img.shape', 'np.uint8'], {}), '(img.shape, np.uint8)\n', (2570, 2591), True, 'import numpy as np\n'), ((1885, 1911), 'numpy.asarray', 'np.asarray', (['img', 'np.uint16'], {}), '(img, np.uint16)\n', (1895, 1911), True, 'import numpy as np\n'), ((2010, 2046), 'numpy.asarray', 'np.asarray', (['(img * 65535.0)', 'np.uint16'], {}), '(img * 65535.0, np.uint16)\n', (2020, 2046), True, 'import numpy as np\n'), ((2884, 2910), 'numpy.empty', 'np.empty', (['img.shape', 'dtype'], {}), '(img.shape, dtype)\n', (2892, 2910), True, 'import numpy as np\n'), ((2164, 2186), 'numpy.asarray', 'np.asarray', (['img', 'dtype'], {}), '(img, dtype)\n', (2174, 2186), True, 'import numpy as np\n'), ((3013, 3044), 'numpy.asarray', 'np.asarray', (['img[:, :, 1]', 'dtype'], {}), '(img[:, :, 1], dtype)\n', (3023, 3044), True, 'import numpy as np\n'), ((3079, 3110), 'numpy.asarray', 'np.asarray', (['img[:, :, 2]', 'dtype'], {}), '(img[:, :, 2], dtype)\n', (3089, 3110), True, 'import numpy as np\n'), ((2258, 2280), 'numpy.asarray', 'np.asarray', (['img', 'dtype'], {}), '(img, dtype)\n', (2268, 2280), True, 'import numpy as np\n'), ((2382, 2404), 'numpy.asarray', 'np.asarray', (['img', 'dtype'], {}), '(img, dtype)\n', (2392, 2404), True, 'import numpy as np\n'), ((2940, 2971), 'numpy.asarray', 'np.asarray', (['img[:, :, 0]', 'dtype'], {}), '(img[:, :, 0], dtype)\n', (2950, 2971), True, 'import numpy as np\n')]
# -*- coding:utf-8 -*- import os import sys import numpy as np from simulater import Simulater from play_back import PlayBack, PlayBacks COMMAND = ['UP', 'DOWN', 'LEFT', 'RIGHT'] def get_max_command(target_dict): return max([(v,k) for k,v in target_dict.items()])[1] def simplify(command): return command[0] def print_Q(Q, x, y): ret = [] for i in range(y): ret.append(['0' for _ in range(x)]) for k in Q: ret[k[1]][k[0]] = simplify(get_max_command(Q[k])) for this_line in ret: print(''.join(this_line)) if __name__ == '__main__': # parameters file_name = 'default.txt' epoch_num = 1000 max_trial = 5000 gamma = 0.1 alpha = 0.1 epsilon = 0.5 # make simulater sim = Simulater(file_name) # initialize Q value x, y = sim.map_size() Q = {} for i in range(x): for j in range(y): Q[(i, j)] = {_:np.random.normal() for _ in COMMAND} #Q[(i, j)] = {_:0.0 for _ in COMMAND} # main minimum_pbs = None for epoch in range(epoch_num): sim.reset() this_pbs = PlayBacks() for i in range(max_trial): # get current current_x, current_y = sim.get_current() # select_command tmp_Q = Q[(current_x, current_y)] command = get_max_command(tmp_Q) if np.random.uniform() > epsilon else np.random.choice(COMMAND) current_value = tmp_Q[command] # reward reward = sim(command) # update next_x, next_y = sim.get_current() next_max_command = get_max_command(Q[(next_x, next_y)]) next_value = Q[(next_x, next_y)][next_max_command] tmp_Q[command] += alpha * (reward + gamma * next_value - current_value) # play back this_pbs.append(PlayBack((current_x, current_y), command, (next_x, next_y), reward)) # end check if sim.end_episode(): print('find goal') epsilon *= 0.95 if epsilon < 0.05: epsilon = 0.05 if minimum_pbs is None: minimum_pbs = this_pbs elif len(minimum_pbs) > len(this_pbs): minimum_pbs = this_pbs print(epsilon) break # update with minimum_pbs if minimum_pbs is not None: for pb in minimum_pbs: tmp_Q = Q[pb.state] current_value = tmp_Q[pb.action] next_Q = Q[pb.next_state] next_max_command = get_max_command(next_Q) next_value = next_Q[next_max_command] tmp_Q[pb.action] += alpha * (pb.reward + gamma * next_value - current_value) sim.printing() print('---') print_Q(Q, x, y) print('---')
[ "numpy.random.uniform", "simulater.Simulater", "play_back.PlayBacks", "numpy.random.normal", "numpy.random.choice", "play_back.PlayBack" ]
[((768, 788), 'simulater.Simulater', 'Simulater', (['file_name'], {}), '(file_name)\n', (777, 788), False, 'from simulater import Simulater\n'), ((1127, 1138), 'play_back.PlayBacks', 'PlayBacks', ([], {}), '()\n', (1136, 1138), False, 'from play_back import PlayBack, PlayBacks\n'), ((929, 947), 'numpy.random.normal', 'np.random.normal', ([], {}), '()\n', (945, 947), True, 'import numpy as np\n'), ((1412, 1437), 'numpy.random.choice', 'np.random.choice', (['COMMAND'], {}), '(COMMAND)\n', (1428, 1437), True, 'import numpy as np\n'), ((1898, 1965), 'play_back.PlayBack', 'PlayBack', (['(current_x, current_y)', 'command', '(next_x, next_y)', 'reward'], {}), '((current_x, current_y), command, (next_x, next_y), reward)\n', (1906, 1965), False, 'from play_back import PlayBack, PlayBacks\n'), ((1377, 1396), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (1394, 1396), True, 'import numpy as np\n')]
from numpy.linalg import cholesky import numpy as np def senti2cate(x): if x<=-0.6: return 0 elif x>-0.6 and x<=-0.2: return 1 elif x>-0.2 and x<0.2: return 2 elif x>=0.2 and x<0.6: return 3 elif x>=0.6: return 4 def dcg_score(y_true, y_score, k=10): order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) gains = 2 ** y_true - 1 discounts = np.log2(np.arange(len(y_true)) + 2) return np.sum(gains / discounts) def ndcg_score(y_true, y_score, k=10): best = dcg_score(y_true, y_true, k) actual = dcg_score(y_true, y_score, k) return actual / best def mrr_score(y_true, y_score): order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order) rr_score = y_true / (np.arange(len(y_true)) + 1) return np.sum(rr_score) / np.sum(y_true) def auc(label,score): label=np.array(label) score=np.array(score) false_score = score[label==0] positive_score = score[label==1] num_positive = (label==1).sum() num_negative = (label==0).sum() positive_score = positive_score.reshape((num_positive,1)) positive_score = np.repeat(positive_score,num_negative,axis=1) false_score = false_score.reshape((1,num_negative)) false_score = np.repeat(false_score,num_positive,axis=0) return 1-((positive_score<false_score).mean()+0.5*(positive_score==false_score).mean()) def embedding(embfile,word_dict): emb_dict = {} with open(embfile,'rb')as f: while True: line = f.readline() if len(line) == 0: break data = line.split() word = data[0].decode() if len(word) != 0: vec = [float(x) for x in data[1:]] if word in word_dict: emb_dict[word] = vec emb_table = [0]*len(word_dict) dummy = np.zeros(300,dtype='float32') all_emb = [] for i in emb_dict: emb_table[word_dict[i][0]] = np.array(emb_dict[i],dtype='float32') all_emb.append(emb_table[word_dict[i][0]]) all_emb = np.array(all_emb,dtype='float32') mu = np.mean(all_emb, axis=0) Sigma = np.cov(all_emb.T) norm = np.random.multivariate_normal(mu, Sigma, 1) for i in range(len(emb_table)): if type(emb_table[i]) == int: emb_table[i] = np.reshape(norm, 300) emb_table[0] = np.random.uniform(-0.03,0.03,size=(300,)) emb_table = np.array(emb_table,dtype='float32') return emb_table
[ "numpy.random.uniform", "numpy.sum", "numpy.zeros", "numpy.argsort", "numpy.mean", "numpy.array", "numpy.take", "numpy.random.multivariate_normal", "numpy.reshape", "numpy.cov", "numpy.repeat" ]
[((379, 405), 'numpy.take', 'np.take', (['y_true', 'order[:k]'], {}), '(y_true, order[:k])\n', (386, 405), True, 'import numpy as np\n'), ((497, 522), 'numpy.sum', 'np.sum', (['(gains / discounts)'], {}), '(gains / discounts)\n', (503, 522), True, 'import numpy as np\n'), ((757, 779), 'numpy.take', 'np.take', (['y_true', 'order'], {}), '(y_true, order)\n', (764, 779), True, 'import numpy as np\n'), ((911, 926), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (919, 926), True, 'import numpy as np\n'), ((937, 952), 'numpy.array', 'np.array', (['score'], {}), '(score)\n', (945, 952), True, 'import numpy as np\n'), ((1179, 1226), 'numpy.repeat', 'np.repeat', (['positive_score', 'num_negative'], {'axis': '(1)'}), '(positive_score, num_negative, axis=1)\n', (1188, 1226), True, 'import numpy as np\n'), ((1299, 1343), 'numpy.repeat', 'np.repeat', (['false_score', 'num_positive'], {'axis': '(0)'}), '(false_score, num_positive, axis=0)\n', (1308, 1343), True, 'import numpy as np\n'), ((1916, 1946), 'numpy.zeros', 'np.zeros', (['(300)'], {'dtype': '"""float32"""'}), "(300, dtype='float32')\n", (1924, 1946), True, 'import numpy as np\n'), ((2131, 2165), 'numpy.array', 'np.array', (['all_emb'], {'dtype': '"""float32"""'}), "(all_emb, dtype='float32')\n", (2139, 2165), True, 'import numpy as np\n'), ((2174, 2198), 'numpy.mean', 'np.mean', (['all_emb'], {'axis': '(0)'}), '(all_emb, axis=0)\n', (2181, 2198), True, 'import numpy as np\n'), ((2211, 2228), 'numpy.cov', 'np.cov', (['all_emb.T'], {}), '(all_emb.T)\n', (2217, 2228), True, 'import numpy as np\n'), ((2242, 2285), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu', 'Sigma', '(1)'], {}), '(mu, Sigma, 1)\n', (2271, 2285), True, 'import numpy as np\n'), ((2428, 2471), 'numpy.random.uniform', 'np.random.uniform', (['(-0.03)', '(0.03)'], {'size': '(300,)'}), '(-0.03, 0.03, size=(300,))\n', (2445, 2471), True, 'import numpy as np\n'), ((2486, 2522), 'numpy.array', 'np.array', (['emb_table'], {'dtype': '"""float32"""'}), "(emb_table, dtype='float32')\n", (2494, 2522), True, 'import numpy as np\n'), ((340, 359), 'numpy.argsort', 'np.argsort', (['y_score'], {}), '(y_score)\n', (350, 359), True, 'import numpy as np\n'), ((718, 737), 'numpy.argsort', 'np.argsort', (['y_score'], {}), '(y_score)\n', (728, 737), True, 'import numpy as np\n'), ((844, 860), 'numpy.sum', 'np.sum', (['rr_score'], {}), '(rr_score)\n', (850, 860), True, 'import numpy as np\n'), ((863, 877), 'numpy.sum', 'np.sum', (['y_true'], {}), '(y_true)\n', (869, 877), True, 'import numpy as np\n'), ((2028, 2066), 'numpy.array', 'np.array', (['emb_dict[i]'], {'dtype': '"""float32"""'}), "(emb_dict[i], dtype='float32')\n", (2036, 2066), True, 'import numpy as np\n'), ((2387, 2408), 'numpy.reshape', 'np.reshape', (['norm', '(300)'], {}), '(norm, 300)\n', (2397, 2408), True, 'import numpy as np\n')]
import numpy as np import re lineRegex = re.compile(r"(turn on|turn off|toggle) (\d+),(\d+) through (\d+),(\d+)") def day6(fileName): lights = np.zeros((1000, 1000), dtype=bool) with open(fileName) as infile: for line in infile: match = lineRegex.match(line) if match: for x in range(int(match[2]), int(match[4]) + 1): for y in range(int(match[3]), int(match[5]) + 1): if match[1] == "turn on": lights[y, x] = True elif match[1] == "turn off": lights[y, x] = False elif match[1] == "toggle": lights[y, x] = not lights[y, x] else: raise ValueError(f"Unknown directive: {match[1]}") print(f"There are {lights.sum()} lights!") def day6b(fileName): lights = np.zeros((1000, 1000), dtype=int) with open(fileName) as infile: for line in infile: match = lineRegex.match(line) if match: x1 = int(match[2]) x2 = int(match[4]) y1 = int(match[3]) y2 = int(match[5]) if match[1] == "turn on": lights[y1:y2 + 1, x1:x2 + 1] += 1 elif match[1] == "turn off": for x in range(x1, x2 + 1): for y in range(y1, y2 + 1): lights[y, x] = max(lights[y, x] - 1, 0) elif match[1] == "toggle": lights[y1:y2 + 1, x1:x2 + 1] += 2 else: raise ValueError(f"Unknown directive: {match[1]}") print(f"Brightness: {lights.sum()}") #day6("6test.txt") #day6("6.txt") day6b("6btest.txt") day6b("6.txt") #15343601
[ "numpy.zeros", "re.compile" ]
[((42, 117), 're.compile', 're.compile', (['"""(turn on|turn off|toggle) (\\\\d+),(\\\\d+) through (\\\\d+),(\\\\d+)"""'], {}), "('(turn on|turn off|toggle) (\\\\d+),(\\\\d+) through (\\\\d+),(\\\\d+)')\n", (52, 117), False, 'import re\n'), ((146, 180), 'numpy.zeros', 'np.zeros', (['(1000, 1000)'], {'dtype': 'bool'}), '((1000, 1000), dtype=bool)\n', (154, 180), True, 'import numpy as np\n'), ((734, 767), 'numpy.zeros', 'np.zeros', (['(1000, 1000)'], {'dtype': 'int'}), '((1000, 1000), dtype=int)\n', (742, 767), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf def discretize(value,action_dim,n_outputs): discretization = tf.round(value) discretization = tf.minimum(tf.constant(n_outputs-1, dtype=tf.float32,shape=[1,action_dim]), tf.maximum(tf.constant(0, dtype=tf.float32,shape=[1,action_dim]), tf.to_float(discretization))) return tf.to_int32(discretization) if __name__=='__main__': value=np.array((0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)) a=discretize(value,value.shape[0],2) with tf.Session() as sess: print(a.eval())
[ "tensorflow.Session", "tensorflow.constant", "tensorflow.round", "tensorflow.to_int32", "numpy.array", "tensorflow.to_float" ]
[((113, 128), 'tensorflow.round', 'tf.round', (['value'], {}), '(value)\n', (121, 128), True, 'import tensorflow as tf\n'), ((359, 386), 'tensorflow.to_int32', 'tf.to_int32', (['discretization'], {}), '(discretization)\n', (370, 386), True, 'import tensorflow as tf\n'), ((426, 484), 'numpy.array', 'np.array', (['(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)'], {}), '((0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9))\n', (434, 484), True, 'import numpy as np\n'), ((162, 229), 'tensorflow.constant', 'tf.constant', (['(n_outputs - 1)'], {'dtype': 'tf.float32', 'shape': '[1, action_dim]'}), '(n_outputs - 1, dtype=tf.float32, shape=[1, action_dim])\n', (173, 229), True, 'import tensorflow as tf\n'), ((534, 546), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (544, 546), True, 'import tensorflow as tf\n'), ((262, 317), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.float32', 'shape': '[1, action_dim]'}), '(0, dtype=tf.float32, shape=[1, action_dim])\n', (273, 317), True, 'import tensorflow as tf\n'), ((317, 344), 'tensorflow.to_float', 'tf.to_float', (['discretization'], {}), '(discretization)\n', (328, 344), True, 'import tensorflow as tf\n')]
import numpy as np from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter """ Elastic deformation of images as described in <NAME>, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Modified from: https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a https://github.com/fcalvet/image_tools/blob/master/image_augmentation.py#L62 Modified to take 3D inputs Deforms both the image and corresponding label file Label volumes are interpolated via nearest neighbour """ def elastic_transform_3d(img_numpy, labels=None, alpha=1, sigma=20, c_val=0.0, method="linear"): """ :param img_numpy: 3D medical image modality :param labels: 3D medical image labels :param alpha: scaling factor of gaussian filter :param sigma: standard deviation of random gaussian filter :param c_val: fill value :param method: interpolation method. supported methods : ("linear", "nearest") :return: deformed image and/or label """ assert img_numpy.ndim == 3 , 'Wrong img shape, provide 3D img' if labels is not None: assert img_numpy.shape == labels.shape , "Shapes of img and label do not much!" shape = img_numpy.shape # Define 3D coordinate system coords = np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]) # Interpolated img im_intrps = RegularGridInterpolator(coords, img_numpy, method=method, bounds_error=False, fill_value=c_val) # Get random elastic deformations dx = gaussian_filter((np.random.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dy = gaussian_filter((np.random.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dz = gaussian_filter((np.random.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0.) * alpha # Define sample points x, y, z = np.mgrid[0:shape[0], 0:shape[1], 0:shape[2]] indices = np.reshape(x + dx, (-1, 1)), \ np.reshape(y + dy, (-1, 1)), \ np.reshape(z + dz, (-1, 1)) # Interpolate 3D image image img_numpy = im_intrps(indices).reshape(shape) # Interpolate labels if labels is not None: lab_intrp = RegularGridInterpolator(coords, labels, method="nearest", bounds_error=False, fill_value=0) labels = lab_intrp(indices).reshape(shape).astype(labels.dtype) return img_numpy, labels return img_numpy
[ "numpy.random.rand", "scipy.interpolate.RegularGridInterpolator", "numpy.arange", "numpy.reshape" ]
[((1499, 1599), 'scipy.interpolate.RegularGridInterpolator', 'RegularGridInterpolator', (['coords', 'img_numpy'], {'method': 'method', 'bounds_error': '(False)', 'fill_value': 'c_val'}), '(coords, img_numpy, method=method, bounds_error=\n False, fill_value=c_val)\n', (1522, 1599), False, 'from scipy.interpolate import RegularGridInterpolator\n'), ((1397, 1416), 'numpy.arange', 'np.arange', (['shape[0]'], {}), '(shape[0])\n', (1406, 1416), True, 'import numpy as np\n'), ((1418, 1437), 'numpy.arange', 'np.arange', (['shape[1]'], {}), '(shape[1])\n', (1427, 1437), True, 'import numpy as np\n'), ((1439, 1458), 'numpy.arange', 'np.arange', (['shape[2]'], {}), '(shape[2])\n', (1448, 1458), True, 'import numpy as np\n'), ((2230, 2257), 'numpy.reshape', 'np.reshape', (['(x + dx)', '(-1, 1)'], {}), '(x + dx, (-1, 1))\n', (2240, 2257), True, 'import numpy as np\n'), ((2275, 2302), 'numpy.reshape', 'np.reshape', (['(y + dy)', '(-1, 1)'], {}), '(y + dy, (-1, 1))\n', (2285, 2302), True, 'import numpy as np\n'), ((2320, 2347), 'numpy.reshape', 'np.reshape', (['(z + dz)', '(-1, 1)'], {}), '(z + dz, (-1, 1))\n', (2330, 2347), True, 'import numpy as np\n'), ((2505, 2601), 'scipy.interpolate.RegularGridInterpolator', 'RegularGridInterpolator', (['coords', 'labels'], {'method': '"""nearest"""', 'bounds_error': '(False)', 'fill_value': '(0)'}), "(coords, labels, method='nearest', bounds_error=\n False, fill_value=0)\n", (2528, 2601), False, 'from scipy.interpolate import RegularGridInterpolator\n'), ((1780, 1802), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (1794, 1802), True, 'import numpy as np\n'), ((1905, 1927), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (1919, 1927), True, 'import numpy as np\n'), ((2030, 2052), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (2044, 2052), True, 'import numpy as np\n')]
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General helper functions.""" from os import path import numpy as np from skimage import measure import tensorflow.compat.v1 as tf from tensorflow_graphics.projects.cvxnet.lib.libmise import mise from tensorflow_graphics.projects.nasa.lib import datasets from tensorflow_graphics.projects.nasa.lib import models import tensorflow_probability as tfp from tqdm import trange import trimesh tf.disable_eager_execution() tfd = tfp.distributions def define_flags(): """Define command line flags.""" flags = tf.app.flags # Dataset Parameters flags.DEFINE_enum("dataset", "amass", list(k for k in datasets.dataset_dict.keys()), "Name of the dataset.") flags.DEFINE_string("data_dir", None, "Directory to load data from.") flags.mark_flag_as_required("data_dir") flags.DEFINE_integer("sample_bbox", 1024, "Number of bbox samples.") flags.DEFINE_integer("sample_surf", 1024, "Number of surface samples.") flags.DEFINE_integer("batch_size", 12, "Batch size.") flags.DEFINE_integer("motion", 0, "Index of the motion for evaluation.") flags.DEFINE_integer("subject", 0, "Index of the subject for training.") # Model Parameters flags.DEFINE_enum("model", "nasa", list(k for k in models.model_dict.keys()), "Name of the model.") flags.DEFINE_integer("n_parts", 24, "Number of parts.") flags.DEFINE_integer("total_dim", 960, "Dimension of the latent vector (in total).") flags.DEFINE_bool("shared_decoder", False, "Whether to use shared decoder.") flags.DEFINE_float("soft_blend", 5., "The constant to blend parts.") flags.DEFINE_bool("projection", True, "Whether to use projected shape features.") flags.DEFINE_float("level_set", 0.5, "The value of the level_set.") flags.DEFINE_integer("n_dims", 3, "The dimension of the query points.") # Training Parameters flags.DEFINE_float("lr", 1e-4, "Learning rate") flags.DEFINE_string("train_dir", None, "Training directory.") flags.mark_flag_as_required("train_dir") flags.DEFINE_integer("max_steps", 200000, "Number of optimization steps.") flags.DEFINE_integer("save_every", 5000, "Number of steps to save checkpoint.") flags.DEFINE_integer("summary_every", 500, "Number of steps to save checkpoint.") flags.DEFINE_float("label_w", 0.5, "Weight of labed vertices loss.") flags.DEFINE_float("minimal_w", 0.05, "Weight of minimal loss.") flags.DEFINE_bool("use_vert", True, "Whether to use vertices on the mesh for training.") flags.DEFINE_bool("use_joint", True, "Whether to use joint-based transformation.") flags.DEFINE_integer("sample_vert", 2048, "Number of vertex samples.") # Evalulation Parameters flags.DEFINE_bool("gen_mesh_only", False, "Whether to generate meshes only.") # Tracking Parameters flags.DEFINE_float("theta_lr", 5e-4, "Learning rate") flags.DEFINE_integer("max_steps_per_frame", 1792, "Number of optimization steps for tracking each frame.") flags.DEFINE_enum("gradient_type", "reparam", ["vanilla", "reparam"], "Type of gradient to use in theta optimization.") flags.DEFINE_integer("sample_track_vert", 1024, "Number of vertex samples for tracking each frame.") flags.DEFINE_integer("n_noisy_samples", 8, "Number of noisy samples per vertex") flags.DEFINE_float("bandwidth", 1e-2, "Bandwidth of the gaussian noises.") flags.DEFINE_bool( "left_trans", False, "Whether to use left side transformation (True) or right side (False).") flags.DEFINE_string("joint_data", None, "Path to load joint data.") flags.DEFINE_float("glue_w", 20., "Weight of length constraint loss.") flags.DEFINE_float("trans_range", 1., "The range of allowed translations.") def gen_mesh(sess, feed_dict, latent_holder, point_holder, latent, occ, batch_val, hparams, idx=0): """Generating meshes given a trained NASA model.""" scale = 1.1 # Scale of the padded bbox regarding the tight one. level_set = hparams.level_set latent_val = sess.run(latent, feed_dict) mesh_extractor = mise.MISE(32, 3, level_set) points = mesh_extractor.query() gt_verts = batch_val["vert"].reshape([-1, 3]) gt_bbox = np.stack([gt_verts.min(axis=0), gt_verts.max(axis=0)], axis=0) gt_center = (gt_bbox[0] + gt_bbox[1]) * 0.5 gt_scale = (gt_bbox[1] - gt_bbox[0]).max() while points.shape[0] != 0: orig_points = points points = points.astype(np.float32) points = (np.expand_dims(points, axis=0) / mesh_extractor.resolution - 0.5) * scale points = points * gt_scale + gt_center n_points = points.shape[1] values = [] for i in range(0, n_points, 100000): # Add this to prevent OOM due to points overload. feed_dict[latent_holder] = latent_val feed_dict[point_holder] = np.expand_dims(points[:, i:i + 100000], axis=1) value = sess.run(occ[:, idx], feed_dict) values.append(value) values = np.concatenate(values, axis=1) values = values[0, :, 0].astype(np.float64) mesh_extractor.update(orig_points, values) points = mesh_extractor.query() value_grid = mesh_extractor.to_dense() try: value_grid = np.pad(value_grid, 1, "constant", constant_values=-1e6) verts, faces, normals, unused_var = measure.marching_cubes_lewiner( value_grid, min(level_set, value_grid.max())) del normals verts -= 1 verts /= np.array([ value_grid.shape[0] - 3, value_grid.shape[1] - 3, value_grid.shape[2] - 3 ], dtype=np.float32) verts = scale * (verts - 0.5) verts = verts * gt_scale + gt_center faces = np.stack([faces[..., 1], faces[..., 0], faces[..., 2]], axis=-1) mesh = trimesh.Trimesh(vertices=verts, faces=faces) return mesh except: # pylint: disable=bare-except return None def save_mesh(sess, feed_dict, latent_holder, point_holder, latent, occ, batch_val, hparams, pth="meshes"): """Generate and save meshes to disk given a trained NASA model.""" name = batch_val["name"][0].decode("utf-8") subject, motion, frame = amass_name_helper(name) pth = path.join(hparams.train_dir, pth, frame) if not tf.io.gfile.isdir(pth): tf.io.gfile.makedirs(pth) start = hparams.n_parts for i in range(start, hparams.n_parts + 1): mesh_model = gen_mesh( sess, feed_dict, latent_holder, point_holder, latent, occ, batch_val, hparams, idx=i) mesh_name = "full_pred.obj" if mesh_model is not None: with tf.io.gfile.GFile(path.join(pth, mesh_name), "w") as fout: mesh_model.export(fout, file_type="obj") return subject, motion, frame, mesh_model def save_pointcloud(data, hparams, pth="pointcloud"): """Save pointcloud to disk.""" name = data["name"][0].decode("utf-8") unused_subject, unused_motion, frame = amass_name_helper(name) pth = path.join(hparams.train_dir, pth, frame) if not tf.io.gfile.isdir(pth): tf.io.gfile.makedirs(pth) mesh_name = "pointcloud.obj" with tf.io.gfile.GFile(path.join(pth, mesh_name), "w") as fout: pointcloud = data["vert"].reshape([-1, 3]) for v in pointcloud: fout.write("v {0} {1} {2}\n".format(*v.tolist())) def amass_name_helper(name): name, frame = name.split("-") subject = name[:5] motion = name[6:] return subject, motion, frame def make_summary_feed_dict( iou_hook, iou, best_hook, best_iou, ): feed_dict = {} feed_dict[iou_hook] = iou feed_dict[best_hook] = best_iou return feed_dict def parse_global_step(ckpt): basename = path.basename(ckpt) return int(basename.split("-")[-1]) def compute_iou(sess, feed_dict, latent_holder, point_holder, latent, occ, point, label, hparams): """Compute IoU.""" iou = 0. eps = 1e-9 latent_val = sess.run(latent, feed_dict) n_points = point.shape[2] preds = [] for start in range(0, n_points, 100000): feed_dict[point_holder] = point[:, :, start:start + 100000] feed_dict[latent_holder] = latent_val pred = sess.run(occ, feed_dict) preds.append(pred) pred = np.concatenate(preds, axis=2) pred = (pred >= hparams.level_set).astype(np.float32) label = (label[:, :1] >= 0.5).astype(np.float32).squeeze(axis=1) iou += np.sum(pred * label) / np.maximum(np.sum(np.maximum(pred, label)), eps) return iou def compute_glue_loss(connect, end_pts, inv_transforms, inv_first_frame_trans, joints, hparams): """Compute the prior term as a glue loss.""" n_dims = hparams.n_dims # Invert the transformation r_inv = inv_transforms[..., :n_dims, :n_dims] t_inv = inv_transforms[..., :n_dims, -1:] r = tf.transpose(r_inv, [0, 2, 1]) t = -tf.matmul(r, t_inv) transforms = tf.concat( [tf.concat([r, t], axis=-1), inv_transforms[..., -1:, :]], axis=-2) transforms = tf.matmul(transforms, inv_first_frame_trans) # Compute transformations of father joints and apply it to vectors from frame0 father_transforms = tf.reduce_sum( tf.expand_dims(transforms, axis=1) * connect.reshape([hparams.n_parts, hparams.n_parts, 1, 1]), axis=0) end_pts_homo = tf.expand_dims( tf.concat([end_pts, tf.ones_like(end_pts[..., :1])], axis=-1), axis=-1) end_pts_transformed = tf.matmul(father_transforms, end_pts_homo) end_pts_transformed = tf.squeeze(end_pts_transformed, axis=-1)[..., :n_dims] # Compute vectors in current configuration pred_links = tf.reshape(joints, [hparams.n_parts, n_dims]) # Compute distance between links and transformed vectors return tf.reduce_sum(tf.square(pred_links - end_pts_transformed)) def vanilla_theta_gradient(model_fn, batch_holder, hparams): """A vanilla gradient estimator for the pose, theta.""" latent_holder, latent, occ_eval = model_fn(batch_holder, None, None, "gen_mesh") if hparams.sample_vert > 0: points = batch_holder["point"] weights = batch_holder["weight"] n_vert = tf.shape(points)[2] sample_indices = tf.random.uniform([1, 1, hparams.sample_vert], minval=0, maxval=n_vert, dtype=tf.int32) points = tf.gather(points, sample_indices, axis=2, batch_dims=2) weights = tf.gather(weights, sample_indices, axis=2, batch_dims=2) batch_holder["point"] = points batch_holder["weight"] = weights unused_var0, unused_var1, occ = model_fn(batch_holder, None, None, "gen_mesh") return latent_holder, latent, occ_eval, tf.reduce_mean( tf.square(occ - hparams.level_set)) def reparam_theta_gradient(model_fn, batch_holder, hparams): """A gradient estimaor for the pose, theta, using the reparam trick.""" sigma = hparams.bandwidth n_samples = hparams.n_noisy_samples latent_holder, latent, occ_eval = model_fn(batch_holder, None, None, "gen_mesh") if hparams.sample_vert > 0: points = batch_holder["point"] weights = batch_holder["weight"] n_vert = tf.shape(points)[2] sample_indices = tf.random.uniform([1, 1, hparams.sample_vert], minval=0, maxval=n_vert, dtype=tf.int32) points = tf.gather(points, sample_indices, axis=2, batch_dims=2) weights = tf.gather(weights, sample_indices, axis=2, batch_dims=2) batch_holder["point"] = points batch_holder["weight"] = weights dist = tfd.Normal(loc=0., scale=sigma) n_pts = hparams.sample_vert if hparams.sample_vert > 0 else hparams.n_vert noises = dist.sample((1, hparams.n_parts, n_pts, n_samples, hparams.n_dims)) unused_var0, unused_var1, occ = model_fn(batch_holder, noises, None, "gen_mesh") occ = tf.reshape(occ, [1, hparams.n_parts + 1, -1, n_samples, 1]) occ = tf.reduce_mean(occ[:, hparams.n_parts:], axis=3) return latent_holder, latent, occ_eval, tf.reduce_mean( tf.square(occ - hparams.level_set)) def optimize_theta(feed_dict, loss, reset_op, train_op, rec_loss, glue_loss, sess, k, hparams): """Optimize the pose, theta, during tracking.""" sess.run(reset_op) loss_val = 0 glue_val = 0 with trange(hparams.max_steps_per_frame) as t: for unused_i in t: loss_val, unused_var, rec_val, glue_val = sess.run( [loss, train_op, rec_loss, glue_loss], feed_dict) t.set_description("Frame_{0} {1:.4f}|{2:.4f}".format( k, rec_val, glue_val)) return loss_val, glue_val
[ "numpy.sum", "numpy.maximum", "tensorflow.compat.v1.reduce_mean", "tensorflow.compat.v1.transpose", "tensorflow.compat.v1.matmul", "tensorflow.compat.v1.gather", "tensorflow.compat.v1.disable_eager_execution", "os.path.join", "numpy.pad", "tensorflow.compat.v1.square", "tensorflow.compat.v1.squeeze", "tensorflow.compat.v1.expand_dims", "tensorflow.compat.v1.io.gfile.makedirs", "numpy.stack", "trimesh.Trimesh", "os.path.basename", "tqdm.trange", "tensorflow.compat.v1.shape", "tensorflow.compat.v1.reshape", "numpy.concatenate", "tensorflow.compat.v1.io.gfile.isdir", "tensorflow_graphics.projects.nasa.lib.datasets.dataset_dict.keys", "tensorflow_graphics.projects.nasa.lib.models.model_dict.keys", "tensorflow.compat.v1.concat", "numpy.expand_dims", "tensorflow.compat.v1.random.uniform", "tensorflow.compat.v1.ones_like", "tensorflow_graphics.projects.cvxnet.lib.libmise.mise.MISE", "numpy.array" ]
[((980, 1008), 'tensorflow.compat.v1.disable_eager_execution', 'tf.disable_eager_execution', ([], {}), '()\n', (1006, 1008), True, 'import tensorflow.compat.v1 as tf\n'), ((4902, 4929), 'tensorflow_graphics.projects.cvxnet.lib.libmise.mise.MISE', 'mise.MISE', (['(32)', '(3)', 'level_set'], {}), '(32, 3, level_set)\n', (4911, 4929), False, 'from tensorflow_graphics.projects.cvxnet.lib.libmise import mise\n'), ((7066, 7106), 'os.path.join', 'path.join', (['hparams.train_dir', 'pth', 'frame'], {}), '(hparams.train_dir, pth, frame)\n', (7075, 7106), False, 'from os import path\n'), ((7858, 7898), 'os.path.join', 'path.join', (['hparams.train_dir', 'pth', 'frame'], {}), '(hparams.train_dir, pth, frame)\n', (7867, 7898), False, 'from os import path\n'), ((8551, 8570), 'os.path.basename', 'path.basename', (['ckpt'], {}), '(ckpt)\n', (8564, 8570), False, 'from os import path\n'), ((9072, 9101), 'numpy.concatenate', 'np.concatenate', (['preds'], {'axis': '(2)'}), '(preds, axis=2)\n', (9086, 9101), True, 'import numpy as np\n'), ((9642, 9672), 'tensorflow.compat.v1.transpose', 'tf.transpose', (['r_inv', '[0, 2, 1]'], {}), '(r_inv, [0, 2, 1])\n', (9654, 9672), True, 'import tensorflow.compat.v1 as tf\n'), ((9815, 9859), 'tensorflow.compat.v1.matmul', 'tf.matmul', (['transforms', 'inv_first_frame_trans'], {}), '(transforms, inv_first_frame_trans)\n', (9824, 9859), True, 'import tensorflow.compat.v1 as tf\n'), ((10236, 10278), 'tensorflow.compat.v1.matmul', 'tf.matmul', (['father_transforms', 'end_pts_homo'], {}), '(father_transforms, end_pts_homo)\n', (10245, 10278), True, 'import tensorflow.compat.v1 as tf\n'), ((10419, 10464), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['joints', '[hparams.n_parts, n_dims]'], {}), '(joints, [hparams.n_parts, n_dims])\n', (10429, 10464), True, 'import tensorflow.compat.v1 as tf\n'), ((12832, 12891), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['occ', '[1, hparams.n_parts + 1, -1, n_samples, 1]'], {}), '(occ, [1, hparams.n_parts + 1, -1, n_samples, 1])\n', (12842, 12891), True, 'import tensorflow.compat.v1 as tf\n'), ((12901, 12949), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['occ[:, hparams.n_parts:]'], {'axis': '(3)'}), '(occ[:, hparams.n_parts:], axis=3)\n', (12915, 12949), True, 'import tensorflow.compat.v1 as tf\n'), ((5787, 5817), 'numpy.concatenate', 'np.concatenate', (['values'], {'axis': '(1)'}), '(values, axis=1)\n', (5801, 5817), True, 'import numpy as np\n'), ((6015, 6076), 'numpy.pad', 'np.pad', (['value_grid', '(1)', '"""constant"""'], {'constant_values': '(-1000000.0)'}), "(value_grid, 1, 'constant', constant_values=-1000000.0)\n", (6021, 6076), True, 'import numpy as np\n'), ((6241, 6349), 'numpy.array', 'np.array', (['[value_grid.shape[0] - 3, value_grid.shape[1] - 3, value_grid.shape[2] - 3]'], {'dtype': 'np.float32'}), '([value_grid.shape[0] - 3, value_grid.shape[1] - 3, value_grid.\n shape[2] - 3], dtype=np.float32)\n', (6249, 6349), True, 'import numpy as np\n'), ((6476, 6540), 'numpy.stack', 'np.stack', (['[faces[..., 1], faces[..., 0], faces[..., 2]]'], {'axis': '(-1)'}), '([faces[..., 1], faces[..., 0], faces[..., 2]], axis=-1)\n', (6484, 6540), True, 'import numpy as np\n'), ((6552, 6596), 'trimesh.Trimesh', 'trimesh.Trimesh', ([], {'vertices': 'verts', 'faces': 'faces'}), '(vertices=verts, faces=faces)\n', (6567, 6596), False, 'import trimesh\n'), ((7116, 7138), 'tensorflow.compat.v1.io.gfile.isdir', 'tf.io.gfile.isdir', (['pth'], {}), '(pth)\n', (7133, 7138), True, 'import tensorflow.compat.v1 as tf\n'), ((7144, 7169), 'tensorflow.compat.v1.io.gfile.makedirs', 'tf.io.gfile.makedirs', (['pth'], {}), '(pth)\n', (7164, 7169), True, 'import tensorflow.compat.v1 as tf\n'), ((7908, 7930), 'tensorflow.compat.v1.io.gfile.isdir', 'tf.io.gfile.isdir', (['pth'], {}), '(pth)\n', (7925, 7930), True, 'import tensorflow.compat.v1 as tf\n'), ((7936, 7961), 'tensorflow.compat.v1.io.gfile.makedirs', 'tf.io.gfile.makedirs', (['pth'], {}), '(pth)\n', (7956, 7961), True, 'import tensorflow.compat.v1 as tf\n'), ((9234, 9254), 'numpy.sum', 'np.sum', (['(pred * label)'], {}), '(pred * label)\n', (9240, 9254), True, 'import numpy as np\n'), ((9680, 9699), 'tensorflow.compat.v1.matmul', 'tf.matmul', (['r', 't_inv'], {}), '(r, t_inv)\n', (9689, 9699), True, 'import tensorflow.compat.v1 as tf\n'), ((10303, 10343), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['end_pts_transformed'], {'axis': '(-1)'}), '(end_pts_transformed, axis=-1)\n', (10313, 10343), True, 'import tensorflow.compat.v1 as tf\n'), ((10548, 10591), 'tensorflow.compat.v1.square', 'tf.square', (['(pred_links - end_pts_transformed)'], {}), '(pred_links - end_pts_transformed)\n', (10557, 10591), True, 'import tensorflow.compat.v1 as tf\n'), ((10998, 11089), 'tensorflow.compat.v1.random.uniform', 'tf.random.uniform', (['[1, 1, hparams.sample_vert]'], {'minval': '(0)', 'maxval': 'n_vert', 'dtype': 'tf.int32'}), '([1, 1, hparams.sample_vert], minval=0, maxval=n_vert,\n dtype=tf.int32)\n', (11015, 11089), True, 'import tensorflow.compat.v1 as tf\n'), ((11216, 11271), 'tensorflow.compat.v1.gather', 'tf.gather', (['points', 'sample_indices'], {'axis': '(2)', 'batch_dims': '(2)'}), '(points, sample_indices, axis=2, batch_dims=2)\n', (11225, 11271), True, 'import tensorflow.compat.v1 as tf\n'), ((11286, 11342), 'tensorflow.compat.v1.gather', 'tf.gather', (['weights', 'sample_indices'], {'axis': '(2)', 'batch_dims': '(2)'}), '(weights, sample_indices, axis=2, batch_dims=2)\n', (11295, 11342), True, 'import tensorflow.compat.v1 as tf\n'), ((12084, 12175), 'tensorflow.compat.v1.random.uniform', 'tf.random.uniform', (['[1, 1, hparams.sample_vert]'], {'minval': '(0)', 'maxval': 'n_vert', 'dtype': 'tf.int32'}), '([1, 1, hparams.sample_vert], minval=0, maxval=n_vert,\n dtype=tf.int32)\n', (12101, 12175), True, 'import tensorflow.compat.v1 as tf\n'), ((12302, 12357), 'tensorflow.compat.v1.gather', 'tf.gather', (['points', 'sample_indices'], {'axis': '(2)', 'batch_dims': '(2)'}), '(points, sample_indices, axis=2, batch_dims=2)\n', (12311, 12357), True, 'import tensorflow.compat.v1 as tf\n'), ((12372, 12428), 'tensorflow.compat.v1.gather', 'tf.gather', (['weights', 'sample_indices'], {'axis': '(2)', 'batch_dims': '(2)'}), '(weights, sample_indices, axis=2, batch_dims=2)\n', (12381, 12428), True, 'import tensorflow.compat.v1 as tf\n'), ((13276, 13311), 'tqdm.trange', 'trange', (['hparams.max_steps_per_frame'], {}), '(hparams.max_steps_per_frame)\n', (13282, 13311), False, 'from tqdm import trange\n'), ((5652, 5699), 'numpy.expand_dims', 'np.expand_dims', (['points[:, i:i + 100000]'], {'axis': '(1)'}), '(points[:, i:i + 100000], axis=1)\n', (5666, 5699), True, 'import numpy as np\n'), ((8019, 8044), 'os.path.join', 'path.join', (['pth', 'mesh_name'], {}), '(pth, mesh_name)\n', (8028, 8044), False, 'from os import path\n'), ((9733, 9759), 'tensorflow.compat.v1.concat', 'tf.concat', (['[r, t]'], {'axis': '(-1)'}), '([r, t], axis=-1)\n', (9742, 9759), True, 'import tensorflow.compat.v1 as tf\n'), ((9985, 10019), 'tensorflow.compat.v1.expand_dims', 'tf.expand_dims', (['transforms'], {'axis': '(1)'}), '(transforms, axis=1)\n', (9999, 10019), True, 'import tensorflow.compat.v1 as tf\n'), ((10957, 10973), 'tensorflow.compat.v1.shape', 'tf.shape', (['points'], {}), '(points)\n', (10965, 10973), True, 'import tensorflow.compat.v1 as tf\n'), ((11560, 11594), 'tensorflow.compat.v1.square', 'tf.square', (['(occ - hparams.level_set)'], {}), '(occ - hparams.level_set)\n', (11569, 11594), True, 'import tensorflow.compat.v1 as tf\n'), ((12043, 12059), 'tensorflow.compat.v1.shape', 'tf.shape', (['points'], {}), '(points)\n', (12051, 12059), True, 'import tensorflow.compat.v1 as tf\n'), ((13014, 13048), 'tensorflow.compat.v1.square', 'tf.square', (['(occ - hparams.level_set)'], {}), '(occ - hparams.level_set)\n', (13023, 13048), True, 'import tensorflow.compat.v1 as tf\n'), ((9275, 9298), 'numpy.maximum', 'np.maximum', (['pred', 'label'], {}), '(pred, label)\n', (9285, 9298), True, 'import numpy as np\n'), ((10160, 10190), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['end_pts[..., :1]'], {}), '(end_pts[..., :1])\n', (10172, 10190), True, 'import tensorflow.compat.v1 as tf\n'), ((1213, 1241), 'tensorflow_graphics.projects.nasa.lib.datasets.dataset_dict.keys', 'datasets.dataset_dict.keys', ([], {}), '()\n', (1239, 1241), False, 'from tensorflow_graphics.projects.nasa.lib import datasets\n'), ((1828, 1852), 'tensorflow_graphics.projects.nasa.lib.models.model_dict.keys', 'models.model_dict.keys', ([], {}), '()\n', (1850, 1852), False, 'from tensorflow_graphics.projects.nasa.lib import models\n'), ((5287, 5317), 'numpy.expand_dims', 'np.expand_dims', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (5301, 5317), True, 'import numpy as np\n'), ((7520, 7545), 'os.path.join', 'path.join', (['pth', 'mesh_name'], {}), '(pth, mesh_name)\n', (7529, 7545), False, 'from os import path\n')]
import keras import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.datasets import mnist x_train = None y_train = None x_test = None y_test = None def init(): global x_train, y_train, x_test, y_test (x_train_tmp, y_train_tmp), (x_test_tmp, y_test_tmp) = mnist.load_data() x_train = x_train_tmp.reshape(-1, 784) x_test = x_test_tmp.reshape(-1, 784) train_size = x_train.shape[0] test_size = x_test.shape[0] y_train = np.zeros((train_size, 10)) for i in range(train_size): y_train[i][y_train_tmp[i]] = 1 y_test = np.zeros((test_size, 10)) for i in range(test_size): y_test[i][y_test_tmp[i]] = 1 pass if __name__ == '__main__': import time init() model = Sequential() model.add(Dense(units=1000, activation='sigmoid', input_dim=784)) model.add(Dense(units=500, activation='sigmoid')) model.add(Dense(units=10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) start_time = time.time() model.fit(x_train, y_train, epochs=10, batch_size=1000) loss_and_metrics = model.evaluate(x_test, y_test, batch_size=1000) print(loss_and_metrics) print('Total Time: ', (time.time() - start_time))
[ "keras.datasets.mnist.load_data", "numpy.zeros", "time.time", "keras.layers.Dense", "keras.models.Sequential" ]
[((308, 325), 'keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (323, 325), False, 'from keras.datasets import mnist\n'), ((490, 516), 'numpy.zeros', 'np.zeros', (['(train_size, 10)'], {}), '((train_size, 10))\n', (498, 516), True, 'import numpy as np\n'), ((601, 626), 'numpy.zeros', 'np.zeros', (['(test_size, 10)'], {}), '((test_size, 10))\n', (609, 626), True, 'import numpy as np\n'), ((773, 785), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (783, 785), False, 'from keras.models import Sequential\n'), ((1073, 1084), 'time.time', 'time.time', ([], {}), '()\n', (1082, 1084), False, 'import time\n'), ((800, 854), 'keras.layers.Dense', 'Dense', ([], {'units': '(1000)', 'activation': '"""sigmoid"""', 'input_dim': '(784)'}), "(units=1000, activation='sigmoid', input_dim=784)\n", (805, 854), False, 'from keras.layers import Dense\n'), ((870, 908), 'keras.layers.Dense', 'Dense', ([], {'units': '(500)', 'activation': '"""sigmoid"""'}), "(units=500, activation='sigmoid')\n", (875, 908), False, 'from keras.layers import Dense\n'), ((924, 961), 'keras.layers.Dense', 'Dense', ([], {'units': '(10)', 'activation': '"""softmax"""'}), "(units=10, activation='softmax')\n", (929, 961), False, 'from keras.layers import Dense\n'), ((1271, 1282), 'time.time', 'time.time', ([], {}), '()\n', (1280, 1282), False, 'import time\n')]
from __future__ import print_function import sys, h5py as h5, numpy as np, yt, csv from time import time, sleep from PreFRBLE.file_system import * from PreFRBLE.parameter import * from time import time def TimeElapsed( func, *args, **kwargs ): """ measure time taken to compute function """ def MeasureTime(): t0 = time() res = func( *args, **kwargs) print( "{} took {} s".format( func.__name__, time()-t0 ) ) return res return MeasureTime() from time import sleep ## wrapper to write hdf5 files consistently def Write2h5( filename='', datas=[], keys=[] ): """ conveniently write datas to keys in filename. overwrite existing entries """ if type(keys) is str: sys.exit( 'Write2h5 needs list of datas and keys' ) ### small workaround to allow for parallel computation. Use with caution, might corrupt nodes in your h5 file. in that case, visit: ### https://stackoverflow.com/questions/47979751/recover-data-from-corrupted-file/61147632?noredirect=1#comment108190378_61147632 tries = 0 while tries < 30: #try: with h5.File( filename, 'a' ) as f: for data, key in zip( datas, keys ): try: f[key][()] f.__delitem__( key ) except: pass f.create_dataset( key, data=data ) break #except: sleep(3e-2) tries += 1 pass else: print( "couldn't write ", keys ) sys.exit(1) ## Read FRBcat #FRB_dtype = [('ID','S'),('DM','f'),('DM_gal','f'), ('RM','f'),('tau','f'),('host_redshift','S'), ('tele','S')] #FRB_dtype = [('ID','U9'),('DM','f'),('DM_gal','f'), ('RM','U10'),('tau','U10'),('host_redshift','U4'), ('tele','U10')] FRB_dtype = [('ID','U9'),('DM','f'),('DM_gal','f'), ('RM','f'),('tau','f'),('host_redshift','f'), ('tele','U10')] def GetFRBcat( telescopes=None, RM=None, tau=None, print_number=False ): """ read all FRBs in FRBcat, downloaded to frbcat_file Parameters ---------- telescopes : list list of considered telescopes, FRBs of other telescopes are ignored RM : boolean if True, only return FRBs observed with RM tau : boolean if True, only return FRBs observed with temproal broadening print_number : boolean if True, print number of extractet FRBs Returns ------- FRBs : array structured numpy.array containing values listed in FRBcat """ ### read all FRBs from FRBcat ### optional: read only those FRBs observed by telescope with RM and tau ### print_number:True print number of extracted FRBs FRBs = [] with open( frbcat_file, 'r') as f: reader = csv.reader( f ) header = np.array(next(reader)) # header = np.array(reader.next()) i_ID = 0 i_DM = np.where( header == 'rmp_dm' )[0][0] i_DM_gal = np.where( header == 'rop_mw_dm_limit' )[0][0] i_RM = np.where( header == 'rmp_rm' )[0][0] i_tau = np.where( header == 'rmp_scattering' )[0][0] i_zs = np.where( header == 'rmp_redshift_host' )[0][0] i_tele = np.where( header == 'telescope' )[0][0] i_s = [i_ID, i_DM, i_DM_gal, i_RM, i_tau, i_zs, i_tele] ## order must fit order of FRB_dtype for row in reader: if telescopes and ( row[i_tele] not in [telescopes_FRBcat[tele] for tele in telescopes] ) : continue if tau and ( row[i_tau] == 'null' ) : continue if RM and ( row[i_RM] == 'null' ) : continue FRBs.append( tuple( [ decode(row[i].split('&')[0], dtype) for i, dtype in zip( i_s, np.array(FRB_dtype)[:,1] ) ] ) ) return np.array( FRBs, dtype=FRB_dtype ) def decode( string, dtype='U' ): """ short wrapper to decode byte-strings read from FRBcat """ if 'f' in dtype: if 'null' in string: return float('NaN') return float(string) return string def GetFRBsMeasures( measure='DM', FRBs=None ): """ returns measures of FRBs in FRBcat read with GetFRBcat() """ if measure == 'DM': return FRBs['DM']-FRBs['DM_gal'] elif measure == 'RM': return FRBs['RM'] ## flocker to keep parallel processes from writing to same file simultaneously ## provided by derpston, https://github.com/derpston/python-simpleflock/blob/master/src/simpleflock.py#L14 import os, fcntl, errno class SimpleFlock: """Provides the simplest possible interface to flock-based file locking. Intended for use with the `with` syntax. It will create/truncate/delete the lock file as necessary.""" def __init__(self, path, timeout = None): self._path = path self._timeout = timeout self._fd = None def __enter__(self): self._fd = os.open(self._path, os.O_CREAT) start_lock_search = time() while True: try: fcntl.flock(self._fd, fcntl.LOCK_EX | fcntl.LOCK_NB) # Lock acquired! return except (OSError, IOError) as ex: if ex.errno != errno.EAGAIN: # Resource temporarily unavailable raise elif self._timeout is not None and time() > (start_lock_search + self._timeout): # Exceeded the user-specified timeout. print( "timeout exceeded" ) raise # TODO It would be nice to avoid an arbitrary sleep here, but spinning # without a delay is also undesirable. sleep(0.1) def __exit__(self, *args): fcntl.flock(self._fd, fcntl.LOCK_UN) os.close(self._fd) self._fd = None # Try to remove the lock file, but don't try too hard because it is # unnecessary. This is mostly to help the user see whether a lock # exists by examining the filesystem. try: os.unlink(self._path) except: pass ''' USAGE with SimpleFlock("locktest", 2): ## "locktest" is a temporary file that tells whether the lock is active ## perform action on the locked file(s) ## file is locked when with starts until its left ## if file is locked, code is paused until lock is released, then with is performed ''' def first(iterable, condition = lambda x: True): """ Returns the first item in the `iterable` that satisfies the `condition`. If the condition is not given, returns the first item of the iterable. Returns -1 if no item satysfing the condition is found. >>> first( (1,2,3), condition=lambda x: x % 2 == 0) 2 >>> first(range(3, 100)) 3 >>> first( (1,2,3), condition=lambda x: x > 9) -1 THANKS TO Caridorc https://stackoverflow.com/questions/2361426/get-the-first-item-from-an-iterable-that-matches-a-condition """ try: return next(x for x in iterable if condition(x)) except: return -1 ## wrapper to show time needed for some function ''' def HowLong( f, *args, print_additional='', **kwargs ): """ wrapper to print the time needed to call function f """ t0 = time() ret = f( *args, **kwargs ) t = time() - t0 print( "Running %s took %i minutes and %.1f seconds %s" % (f.__name__, t//60, t%60, print_additional ) ) return ret '''
[ "os.open", "h5py.File", "csv.reader", "os.unlink", "fcntl.flock", "time.sleep", "time.time", "numpy.where", "numpy.array", "os.close", "sys.exit" ]
[((3834, 3865), 'numpy.array', 'np.array', (['FRBs'], {'dtype': 'FRB_dtype'}), '(FRBs, dtype=FRB_dtype)\n', (3842, 3865), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((333, 339), 'time.time', 'time', ([], {}), '()\n', (337, 339), False, 'from time import time\n'), ((735, 784), 'sys.exit', 'sys.exit', (['"""Write2h5 needs list of datas and keys"""'], {}), "('Write2h5 needs list of datas and keys')\n", (743, 784), False, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((1473, 1484), 'time.sleep', 'sleep', (['(0.03)'], {}), '(0.03)\n', (1478, 1484), False, 'from time import sleep\n'), ((1585, 1596), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1593, 1596), False, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((2814, 2827), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (2824, 2827), False, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((4911, 4942), 'os.open', 'os.open', (['self._path', 'os.O_CREAT'], {}), '(self._path, os.O_CREAT)\n', (4918, 4942), False, 'import os, fcntl, errno\n'), ((4969, 4975), 'time.time', 'time', ([], {}), '()\n', (4973, 4975), False, 'from time import time\n'), ((5667, 5703), 'fcntl.flock', 'fcntl.flock', (['self._fd', 'fcntl.LOCK_UN'], {}), '(self._fd, fcntl.LOCK_UN)\n', (5678, 5703), False, 'import os, fcntl, errno\n'), ((5710, 5728), 'os.close', 'os.close', (['self._fd'], {}), '(self._fd)\n', (5718, 5728), False, 'import os, fcntl, errno\n'), ((1124, 1146), 'h5py.File', 'h5.File', (['filename', '"""a"""'], {}), "(filename, 'a')\n", (1131, 1146), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((5619, 5629), 'time.sleep', 'sleep', (['(0.1)'], {}), '(0.1)\n', (5624, 5629), False, 'from time import sleep\n'), ((5962, 5983), 'os.unlink', 'os.unlink', (['self._path'], {}), '(self._path)\n', (5971, 5983), False, 'import os, fcntl, errno\n'), ((2953, 2981), 'numpy.where', 'np.where', (["(header == 'rmp_dm')"], {}), "(header == 'rmp_dm')\n", (2961, 2981), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((3009, 3046), 'numpy.where', 'np.where', (["(header == 'rop_mw_dm_limit')"], {}), "(header == 'rop_mw_dm_limit')\n", (3017, 3046), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((3070, 3098), 'numpy.where', 'np.where', (["(header == 'rmp_rm')"], {}), "(header == 'rmp_rm')\n", (3078, 3098), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((3123, 3159), 'numpy.where', 'np.where', (["(header == 'rmp_scattering')"], {}), "(header == 'rmp_scattering')\n", (3131, 3159), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((3183, 3222), 'numpy.where', 'np.where', (["(header == 'rmp_redshift_host')"], {}), "(header == 'rmp_redshift_host')\n", (3191, 3222), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((3248, 3279), 'numpy.where', 'np.where', (["(header == 'telescope')"], {}), "(header == 'telescope')\n", (3256, 3279), True, 'import sys, h5py as h5, numpy as np, yt, csv\n'), ((5020, 5072), 'fcntl.flock', 'fcntl.flock', (['self._fd', '(fcntl.LOCK_EX | fcntl.LOCK_NB)'], {}), '(self._fd, fcntl.LOCK_EX | fcntl.LOCK_NB)\n', (5031, 5072), False, 'import os, fcntl, errno\n'), ((430, 436), 'time.time', 'time', ([], {}), '()\n', (434, 436), False, 'from time import time\n'), ((5307, 5313), 'time.time', 'time', ([], {}), '()\n', (5311, 5313), False, 'from time import time\n'), ((3790, 3809), 'numpy.array', 'np.array', (['FRB_dtype'], {}), '(FRB_dtype)\n', (3798, 3809), True, 'import sys, h5py as h5, numpy as np, yt, csv\n')]
#!/usr/bin/env python """SequenceMotifDecomposer is a motif finder algorithm. @author: <NAME> @email: <EMAIL> """ import logging import multiprocessing as mp import os from collections import defaultdict from eden import apply_async import numpy as np from scipy.sparse import vstack from eden.util.iterated_maximum_subarray import compute_max_subarrays_sequence from itertools import izip import time from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.linear_model import SGDClassifier from sklearn.cluster import MiniBatchKMeans from eden.sequence import Vectorizer from StringIO import StringIO from Bio import SeqIO from Bio.Align.Applications import MuscleCommandline from Bio.Alphabet import IUPAC from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from corebio.seq import Alphabet, SeqList import weblogolib as wbl from scipy.cluster.hierarchy import linkage import regex as re from collections import Counter from sklearn import metrics from eden.util.NeedlemanWunsh import edit_distance import random import pylab as plt import joblib from scipy.optimize import curve_fit import multiprocessing logger = logging.getLogger(__name__) def sigmoid(x, a, b): """sigmoid.""" return 1 / (1 + np.exp(-(x - a) / b)) class PValueEvaluator(object): """Fit a parametrized sigmoid on the empirical cumulative distribution.""" def __init__(self, random_state=1): """Constructor.""" self.random_state = random_state self.a = -4 self.b = 1 def ecdf(self, x): """Empirical cumulative distribution function.""" xs = np.sort(x) ys = np.arange(1, len(xs) + 1) / float(len(xs)) return xs, ys def fit(self, scores): """fit.""" if scores: xs, ys = self.ecdf(scores) popt, pcov = curve_fit(sigmoid, xs, ys) self.a, self.b = popt else: logger.debug('Warning: reverting to default values') logger.debug('ECDF fit on %d values' % (len(scores))) logger.debug('Optimal params: a:%.2f b:%.2f' % (self.a, self.b)) def predict(self, value): """pvalue.""" y = sigmoid(value, self.a, self.b) p_val = 1 - y return p_val def ecdf(x): """Empirical cumulative distribution function.""" xs = np.sort(x) ys = np.arange(1, len(xs) + 1) / float(len(xs)) return xs, ys def letter_regex(k, size, regex_th=0.3): """letter_regex.""" code = [] for letter, count in k: if count / float(size) > regex_th: if letter != '-': code.append(letter) if len(code) == 0: code_str = None elif len(code) == 1: code_str = code[0] else: code_str = '(' + '|'.join(code) + ')' return code_str def consensus_regex(trimmed_align_seqs, regex_th): """consensus_regex.""" cluster = [] for h, align_seq in trimmed_align_seqs: str_list = [c for c in align_seq] concat_str = np.array(str_list, dtype=np.dtype('a')) cluster.append(concat_str) cluster = np.vstack(cluster) size = len(trimmed_align_seqs) for i, row in enumerate(cluster.T): c = Counter(row) k = c.most_common() code = '' for i, row in enumerate(cluster.T): c = Counter(row) k = c.most_common() l = letter_regex(k, size, regex_th=regex_th) if l: code += l return code def find_occurrences(needle, haystack): """find_occurrences.""" for h, s in haystack: matches = re.findall(needle, s, overlapped=True) if len(matches): yield 1 else: yield 0 def occurrences(needle, haystack): """occurrences.""" counts = sum(find_occurrences(needle, haystack)) size = len(haystack) return counts, float(counts) / size def extract_consensus(seqs, motives, regex_th): """extract_consensus.""" for id in motives: c_regex = consensus_regex(motives[id]['trimmed_align_seqs'], regex_th) counts, freq = occurrences(c_regex, seqs) yield freq, id, c_regex, counts, motives[id]['consensus_seq'] def plot_location(needle, haystack, cluster_id=None, nbins=20, size=(17, 2), fname=None): """plot_location.""" locs = [] for h, s in haystack: for match in re.finditer(needle, s): s = match.start() e = match.end() m = s + (e - s) / 2 locs.append(m) plt.figure(figsize=size) n, bins, patches = plt.hist( locs, nbins, normed=0, facecolor='blue', alpha=0.3) plt.grid() plt.title(needle) plt.xlabel('Position') plt.ylabel('Num occurrences') if fname: plt.draw() figname = '%s_loc_%d.png' % (fname, cluster_id) plt.savefig( figname, bbox_inches='tight', transparent=True, pad_inches=0) else: figname = None plt.show() plt.close() return figname def extract_location(needle, haystack): """extract_location.""" locs = [] for h, s in haystack: for match in re.finditer(needle, s): s = match.start() e = match.end() m = s + (e - s) / 2 locs.append(m) if locs: avg_loc = np.percentile(locs, 50) std_loc = np.percentile(locs, 70) - np.percentile(locs, 30) else: avg_loc = -1 std_loc = 0 return avg_loc, std_loc def hits(motives, ids=None): """hits.""" for i in ids: for h, s in motives[i]['seqs']: tokens = h.split('<loc>') seq_id = tokens[0] begin, end = tokens[1].split(':') yield (seq_id, int(begin), int(end), i) def compute_cooccurence(motives, ids=None): """compute_cooccurence.""" if ids is None: ids = [id for id in motives] seqs_summary = defaultdict(list) for seq_id, begin, end, i in hits(motives, ids=ids): seqs_summary[seq_id].append((begin, end, i)) distances = defaultdict(list) size = max(id for id in motives) + 1 cooccurence_mtx = np.zeros((size, size)) for seq_id in sorted(seqs_summary): cluster_ids = [cluster_id for begin, end, cluster_id in seqs_summary[seq_id]] centers = defaultdict(list) for begin, end, cluster_id in seqs_summary[seq_id]: centers[cluster_id].append(begin + (end - begin) / 2) cluster_ids = set(cluster_ids) for i in cluster_ids: for j in cluster_ids: cooccurence_mtx[i, j] += 1 if i != j: # find closest instance j from any instance in i d_ij = [] for c_i in centers[i]: for c_j in centers[j]: d_ij.append(abs(c_i - c_j)) selected_abs = min(d_ij) for c_i in centers[i]: for c_j in centers[j]: if selected_abs == abs(c_i - c_j): selected = c_i - c_j distances[(i, j)].append(selected) cooccurence_mtx = np.nan_to_num(cooccurence_mtx) orig_cooccurence_mtx = cooccurence_mtx.copy() cooccurence_list = [] for i, row in enumerate(cooccurence_mtx): norm = row[i] if norm != 0: row /= norm else: row = np.zeros(row.shape) row[i] = 0 cooccurence_list.append(row) norm_cooccurence_mtx = np.vstack(cooccurence_list) return orig_cooccurence_mtx, norm_cooccurence_mtx, distances def plot_distance(cluster_id_i, cluster_id_j, regex_i, regex_j, distances, nbins=5, size=(6, 2), fname=None): """plot_distance.""" ds = distances[(cluster_id_i, cluster_id_j)] plt.figure(figsize=size) n, bins, patches = plt.hist( ds, nbins, normed=0, facecolor='green', alpha=0.3) plt.grid() plt.title('%s vs %s' % (regex_i, regex_j)) plt.xlabel('Relative position') plt.ylabel('Num occurrences') if fname: plt.draw() figname = '%s_dist_%d_vs_%d.png' % (fname, cluster_id_i, cluster_id_j) plt.savefig( figname, bbox_inches='tight', transparent=True, pad_inches=0) else: figname = None plt.show() plt.close() return figname def mean_shift_decomposition(sig, half_windw_size=5): """mean_shift_decomposition.""" sig_len = len(sig) for i in range(half_windw_size, sig_len - half_windw_size): min_sig = np.min(sig[i - half_windw_size:i + half_windw_size]) if min_sig == sig[i]: yield i def box_decomposition(sig, half_windw_size=5): """box_decomposition.""" ids = list(mean_shift_decomposition(sig, half_windw_size)) for i in range(len(ids) - 1): start = ids[i] end = ids[i + 1] width = end - start val = sum(sig[start:end]) yield val, start, end, width def cumulative_score(seqs, smod): """cumulative_score.""" median_len = np.median([len(s) for h, s in seqs]) sigs = None for scores in smod.score(seqs): sig = np.array(scores) if len(sig) != median_len: logger.debug('Length mismatch: %d != %d' % (len(sig), median_len)) if sigs is None: if len(sig) >= median_len: sigs = sig[:median_len] else: if len(sig) >= median_len: sigs = sigs + sig[:median_len] sig = np.array(sigs) / float(len(seqs)) return sig def trim_seqs(seqs, smod, half_windw_size=7): """trim_seqs.""" sig = cumulative_score(seqs, smod) val, start, end, width = max(box_decomposition(sig, half_windw_size)) logger.debug('val:%.1f beg:%s end:%s width:%s' % (val, start, end, width)) for h, s in seqs: if s[start:end]: yield (h, s[start:end]) def plot_cumulative_score(smod, seqs, size=(6, 2), fname=None): """plot_cumulative_score.""" sig = cumulative_score(seqs, smod) plt.figure(figsize=size) sigp = np.copy(sig) sigp[sigp < 0] = 0 plt.bar(range(len(sigp)), sigp, alpha=0.3, color='g') sign = np.copy(sig) sign[sign >= 0] = 0 plt.bar(range(len(sign)), sign, alpha=0.3, color='r') plt.grid() plt.xlabel('Position') plt.ylabel('Importance score') if fname: plt.draw() figname = '%s_importance.png' % (fname) plt.savefig( figname, bbox_inches='tight', transparent=True, pad_inches=0) else: figname = None plt.show() plt.close() return figname # ------------------------------------------------------------------------------ def serial_pre_process(iterable, vectorizer=None): """serial_pre_process.""" data_matrix = vectorizer.transform(iterable) return data_matrix def chunks(iterable, n): """chunks.""" iterable = iter(iterable) while True: items = [] for i in range(n): it = iterable.next() items.append(it) yield items def multiprocess_vectorize(iterable, vectorizer=None, pos_block_size=100, n_jobs=-1): """multiprocess_vectorize.""" start_time = time.time() if n_jobs == -1: pool = mp.Pool() else: pool = mp.Pool(n_jobs) results = [apply_async( pool, serial_pre_process, args=(seqs, vectorizer)) for seqs in chunks(iterable, pos_block_size)] logger.debug('Setup %.2f secs' % (time.time() - start_time)) logger.debug('Vectorizing') start_time = time.time() matrices = [] for i, p in enumerate(results): loc_start_time = time.time() pos_data_matrix = p.get() matrices += pos_data_matrix d_time = time.time() - start_time d_loc_time = time.time() - loc_start_time size = pos_data_matrix.shape logger.debug('%d %s (%.2f secs) (delta: %.2f)' % (i, size, d_time, d_loc_time)) pool.close() pool.join() data_matrix = vstack(matrices) return data_matrix def multiprocess_fit(pos_iterable, neg_iterable, vectorizer=None, estimator=None, pos_block_size=100, neg_block_size=100, n_jobs=-1): """multiprocess_fit.""" start_time = time.time() classes = np.array([1, -1]) if n_jobs == -1: pool = mp.Pool() else: pool = mp.Pool(n_jobs) pos_results = [apply_async( pool, serial_pre_process, args=(seqs, vectorizer)) for seqs in chunks(pos_iterable, pos_block_size)] neg_results = [apply_async( pool, serial_pre_process, args=(seqs, vectorizer)) for seqs in chunks(neg_iterable, neg_block_size)] logger.debug('Setup %.2f secs' % (time.time() - start_time)) logger.debug('Fitting') start_time = time.time() for i, (p, n) in enumerate(izip(pos_results, neg_results)): loc_start_time = time.time() pos_data_matrix = p.get() y = [1] * pos_data_matrix.shape[0] neg_data_matrix = n.get() y += [-1] * neg_data_matrix.shape[0] y = np.array(y) data_matrix = vstack([pos_data_matrix, neg_data_matrix]) estimator.partial_fit(data_matrix, y, classes=classes) d_time = time.time() - start_time d_loc_time = time.time() - loc_start_time size = pos_data_matrix.shape logger.debug('%d %s (%.2f secs) (delta: %.2f)' % (i, size, d_time, d_loc_time)) pool.close() pool.join() return estimator def multiprocess_performance(pos_iterable, neg_iterable, vectorizer=None, estimator=None, pos_block_size=100, neg_block_size=100, n_jobs=-1): """multiprocess_performance.""" start_time = time.time() if n_jobs == -1: pool = mp.Pool() else: pool = mp.Pool(n_jobs) pos_results = [apply_async( pool, serial_pre_process, args=(seqs, vectorizer)) for seqs in chunks(pos_iterable, pos_block_size)] neg_results = [apply_async( pool, serial_pre_process, args=(seqs, vectorizer)) for seqs in chunks(neg_iterable, neg_block_size)] logger.debug('Setup %.2f secs' % (time.time() - start_time)) logger.debug('Performance evaluation') start_time = time.time() preds = [] binary_preds = [] true_targets = [] for i, (p, n) in enumerate(izip(pos_results, neg_results)): loc_start_time = time.time() pos_data_matrix = p.get() y = [1] * pos_data_matrix.shape[0] neg_data_matrix = n.get() y += [-1] * neg_data_matrix.shape[0] y = np.array(y) true_targets.append(y) data_matrix = vstack([pos_data_matrix, neg_data_matrix]) pred = estimator.decision_function(data_matrix) preds.append(pred) binary_pred = estimator.predict(data_matrix) binary_preds.append(binary_pred) d_time = time.time() - start_time d_loc_time = time.time() - loc_start_time size = pos_data_matrix.shape logger.debug('%d %s (%.2f secs) (delta: %.2f)' % (i, size, d_time, d_loc_time)) pool.close() pool.join() preds = np.hstack(preds) binary_preds = np.hstack(binary_preds) true_targets = np.hstack(true_targets) return preds, binary_preds, true_targets def serial_subarray(iterable, vectorizer=None, estimator=None, min_subarray_size=5, max_subarray_size=10): """serial_subarray.""" annotated_seqs = vectorizer.annotate(iterable, estimator=estimator) subarrays_items = [] for (orig_header, orig_seq), (seq, score) in zip(iterable, annotated_seqs): subarrays = compute_max_subarrays_sequence( seq=seq, score=score, min_subarray_size=min_subarray_size, max_subarray_size=max_subarray_size, margin=1, output='all') subseqs = [] for subarray in subarrays: subseq_seq = subarray['subarray_string'] begin = subarray['begin'] end = subarray['end'] score = subarray['score'] header = orig_header header += '<loc>%d:%d<loc>' % (begin, end) header += '<score>%.4f<score>' % (score) header += '<subseq>%s<subseq>' % (subseq_seq) subseq = (header, seq) subseqs.append(subseq) subarrays_items += subseqs return subarrays_items def multiprocess_subarray(iterable, vectorizer=None, estimator=None, min_subarray_size=5, max_subarray_size=10, block_size=100, n_jobs=-1): """multiprocess_subarray.""" start_time = time.time() if n_jobs == -1: pool = mp.Pool() else: pool = mp.Pool(n_jobs) results = [apply_async( pool, serial_subarray, args=(seqs, vectorizer, estimator, min_subarray_size, max_subarray_size)) for seqs in chunks(iterable, block_size)] logger.debug('Setup %.2f secs' % (time.time() - start_time)) logger.debug('Annotating') start_time = time.time() subarrays_items = [] for i, p in enumerate(results): loc_start_time = time.time() subarrays_item = p.get() subarrays_items += subarrays_item d_time = time.time() - start_time d_loc_time = time.time() - loc_start_time logger.debug('%d (%.2f secs) (delta: %.2f)' % (i, d_time, d_loc_time)) pool.close() pool.join() return subarrays_items def serial_score(iterable, vectorizer=None, estimator=None): """serial_score.""" annotated_seqs = vectorizer.annotate(iterable, estimator=estimator) scores = [score for seq, score in annotated_seqs] return scores def multiprocess_score(iterable, vectorizer=None, estimator=None, block_size=100, n_jobs=-1): """multiprocess_score.""" start_time = time.time() if n_jobs == -1: pool = mp.Pool() else: pool = mp.Pool(n_jobs) results = [apply_async( pool, serial_score, args=(seqs, vectorizer, estimator)) for seqs in chunks(iterable, block_size)] logger.debug('Setup %.2f secs' % (time.time() - start_time)) logger.debug('Predicting') start_time = time.time() scores_items = [] for i, p in enumerate(results): loc_start_time = time.time() scores = p.get() scores_items += scores d_time = time.time() - start_time d_loc_time = time.time() - loc_start_time logger.debug('%d (%.2f secs) (delta: %.2f)' % (i, d_time, d_loc_time)) pool.close() pool.join() return scores_items # ------------------------------------------------------------------------------ def _fasta_to_fasta(lines): seq = "" for line in lines: if line: if line[0] == '>': if seq: yield seq seq = "" line_str = str(line) yield line_str.strip() else: line_str = line.split() if line_str: seq += str(line_str[0]).strip() if seq: yield seq # ------------------------------------------------------------------------------ class MuscleAlignWrapper(object): """A wrapper to perform Muscle Alignment on sequences.""" def __init__(self, diags=False, maxiters=16, maxhours=None, # TODO: check if this alphabet is required # it over-rides tool.alphabet alphabet='dna', # ['dna', 'rna', 'protein'] ): """Initialize an instance.""" self.diags = diags self.maxiters = maxiters self.maxhours = maxhours if alphabet == 'protein': self.alphabet = IUPAC.protein elif alphabet == 'rna': self.alphabet = IUPAC.unambiguous_rna else: self.alphabet = IUPAC.unambiguous_dna def _seq_to_stdin_fasta(self, seqs): # seperating headers headers, instances = [list(x) for x in zip(*seqs)] instances_seqrecord = [] for i, j in enumerate(instances): instances_seqrecord.append( SeqRecord(Seq(j, self.alphabet), id=str(i))) handle = StringIO() SeqIO.write(instances_seqrecord, handle, "fasta") data = handle.getvalue() return headers, data def _perform_ma(self, data): params = {'maxiters': 7} if self.diags is True: params['diags'] = True if self.maxhours is not None: params['maxhours'] = self.maxhours muscle_cline = MuscleCommandline(**params) stdout, stderr = muscle_cline(stdin=data) return stdout def _fasta_to_seqs(self, headers, stdout): out = list(_fasta_to_fasta(stdout.split('\n'))) motif_seqs = [''] * len(headers) for i in range(len(out[:-1]))[::2]: id = int(out[i].split(' ')[0].split('>')[1]) motif_seqs[id] = out[i + 1] return zip(headers, motif_seqs) def transform(self, seqs=[]): """Carry out alignment.""" headers, data = self._seq_to_stdin_fasta(seqs) stdout = self._perform_ma(data) aligned_seqs = self._fasta_to_seqs(headers, stdout) return aligned_seqs # ------------------------------------------------------------------------------ class Weblogo(object): """A wrapper of weblogolib for creating sequence.""" def __init__(self, output_format='png', # ['eps','png','png_print','jpeg'] stacks_per_line=40, sequence_type='dna', # ['protein','dna','rna'] ignore_lower_case=False, # ['bits','nats','digits','kT','kJ/mol','kcal/mol','probability'] units='bits', first_position=1, logo_range=list(), # composition = 'auto', scale_stack_widths=True, error_bars=True, title='', figure_label='', show_x_axis=True, x_label='', show_y_axis=True, y_label='', y_axis_tic_spacing=1.0, show_ends=False, # ['auto','base','pairing','charge','chemistry','classic','monochrome'] color_scheme='classic', resolution=96, fineprint='', ): """Initialize an instance.""" options = wbl.LogoOptions() options.stacks_per_line = stacks_per_line options.sequence_type = sequence_type options.ignore_lower_case = ignore_lower_case options.unit_name = units options.first_index = first_position if logo_range: options.logo_start = logo_range[0] options.logo_end = logo_range[1] options.scale_width = scale_stack_widths options.show_errorbars = error_bars if title: options.title = title if figure_label: options.logo_label = figure_label options.show_xaxis = show_x_axis if x_label: options.xaxis_label = x_label options.show_yaxis = show_y_axis if y_label: options.yaxis_label = y_label options.yaxis_tic_interval = y_axis_tic_spacing options.show_ends = show_ends options.color_scheme = wbl.std_color_schemes[color_scheme] options.resolution = resolution if fineprint: options.fineprint = fineprint self.options = options self.output_format = output_format def create_logo(self, seqs=[]): """Create sequence logo for input sequences.""" # seperate headers headers, instances = [list(x) for x in zip(*seqs)] if self.options.sequence_type is 'rna': alphabet = Alphabet('ACGU') elif self.options.sequence_type is 'protein': alphabet = Alphabet('ACDEFGHIKLMNPQRSTVWY') else: alphabet = Alphabet('AGCT') motif_corebio = SeqList(alist=instances, alphabet=alphabet) data = wbl.LogoData().from_seqs(motif_corebio) format = wbl.LogoFormat(data, self.options) if self.output_format == 'png': return wbl.png_formatter(data, format) elif self.output_format == 'png_print': return wbl.png_print_formatter(data, format) elif self.output_format == 'jpeg': return wbl.jpeg_formatter(data, format) else: return wbl.eps_formatter(data, format) # ------------------------------------------------------------------------------ class SequenceMotifDecomposer(BaseEstimator, ClassifierMixin): """SequenceMotifDecomposer.""" def __init__(self, complexity=5, n_clusters=10, min_subarray_size=4, max_subarray_size=10, estimator=SGDClassifier(warm_start=True), class_estimator=SGDClassifier(), clusterer=MiniBatchKMeans(), pos_block_size=300, neg_block_size=300, n_jobs=-1): """Construct.""" self.complexity = complexity self.n_clusters = n_clusters self.min_subarray_size = min_subarray_size self.max_subarray_size = max_subarray_size self.pos_block_size = pos_block_size self.neg_block_size = neg_block_size self.n_jobs = n_jobs self.vectorizer = Vectorizer(complexity=complexity, auto_weights=True, nbits=15) self.estimator = estimator self.class_estimator = class_estimator self.clusterer = clusterer self.clusterer_is_fit = False def save(self, model_name): """save.""" joblib.dump(self, model_name, compress=1) def load(self, obj): """load.""" self.__dict__.update(joblib.load(obj).__dict__) def fit(self, pos_seqs=None, neg_seqs=None): """fit.""" try: self.estimator = multiprocess_fit( pos_seqs, neg_seqs, vectorizer=self.vectorizer, estimator=self.estimator, pos_block_size=self.pos_block_size, neg_block_size=self.neg_block_size, n_jobs=self.n_jobs) self.fit_decomposition(neg_seqs) return self except Exception as e: logger.debug('Failed iteration. Reason: %s' % e) logger.debug('Exception', exc_info=True) def performance(self, pos_seqs=None, neg_seqs=None): """performance.""" try: y_pred, y_binary, y_test = multiprocess_performance( pos_seqs, neg_seqs, vectorizer=self.vectorizer, estimator=self.estimator, pos_block_size=self.pos_block_size, neg_block_size=self.neg_block_size, n_jobs=self.n_jobs) # confusion matrix cm = metrics.confusion_matrix(y_test, y_binary) np.set_printoptions(precision=2) logger.info('Confusion matrix:') logger.info(cm) # classification logger.info('Classification:') logger.info(metrics.classification_report(y_test, y_binary)) # roc logger.info('ROC: %.3f' % (metrics.roc_auc_score(y_test, y_pred))) except Exception as e: logger.debug('Failed iteration. Reason: %s' % e) logger.debug('Exception', exc_info=True) def _decompose_header(self, header): score = header.split('<score>')[1] score = float(score) loc = header.split('<loc>')[1] begin, end = loc.split(':') begin = int(begin) end = int(end) subseq = header.split('<subseq>')[1] orig_header = header.split('<loc>')[0] return orig_header, score, begin, end, subseq def decompose(self, seqs=None, p_value=0.05): """decomposition_scores.""" try: subarrays_items = multiprocess_subarray( seqs, vectorizer=self.vectorizer, estimator=self.estimator, min_subarray_size=self.min_subarray_size, max_subarray_size=self.max_subarray_size, block_size=self.pos_block_size, n_jobs=self.n_jobs) for header, seq in subarrays_items: components = self._decompose_header(header) orig_header, score, begin, end, subseq = components p = self.compute_p_value(score) if p <= p_value: yield orig_header, begin, end, p, subseq except Exception as e: logger.debug('Failed iteration. Reason: %s' % e) logger.debug('Exception', exc_info=True) def decomposition_scores(self, seqs=None): """decomposition_scores.""" try: subarrays_items = multiprocess_subarray( seqs, vectorizer=self.vectorizer, estimator=self.estimator, min_subarray_size=self.min_subarray_size, max_subarray_size=self.max_subarray_size, block_size=self.pos_block_size, n_jobs=self.n_jobs) for header, seq in subarrays_items: yield self._decompose_header(header) except Exception as e: logger.debug('Failed iteration. Reason: %s' % e) logger.debug('Exception', exc_info=True) def fit_decomposition(self, seqs=None): """fit_decomposition.""" self.a, self.b = -4, 1 scores = [score for header, score, begin, end, subseq in self.decomposition_scores(seqs)] if scores: xs, ys = ecdf(scores) popt, pcov = curve_fit(sigmoid, xs, ys) self.a, self.b = popt else: logger.debug('Warning: reverting to default values') logger.debug('ECDF fit on %d values' % (len(scores))) logger.debug('Optimal params: a:%.2f b:%.2f' % (self.a, self.b)) def compute_p_value(self, value): """p_value.""" y = sigmoid(value, self.a, self.b) p_val = 1 - y return p_val def compute_clusters(self, seqs=None, p_value=0.05): """compute_clusters.""" try: subsequences = [] iterable = self.decompose(seqs, p_value=p_value) for header, begin, end, p, subseq in iterable: new_header = header new_header += '<loc>' + str(begin) + ':' new_header += str(end) + '<loc>' subsequences.append((new_header, subseq)) if not subsequences: raise Exception('No subarray was selected. Increase p_value.') logger.debug('Working on: %d fragments' % len(subsequences)) n = multiprocessing.cpu_count() pos_block_size = len(subsequences) / n data_matrix = multiprocess_vectorize( subsequences, vectorizer=self.vectorizer, pos_block_size=pos_block_size, n_jobs=self.n_jobs) logger.debug('Clustering') logger.debug('working on %d instances' % data_matrix.shape[0]) start_time = time.time() self.clusterer.set_params(n_clusters=self.n_clusters) if self.clusterer_is_fit: preds = self.class_estimator.predict(data_matrix) else: preds = self.clusterer.fit_predict(data_matrix) self.class_estimator.fit(data_matrix, preds) self.clusterer_is_fit = True dtime = time.time() - start_time logger.debug('...done in %.2f secs' % (dtime)) self.clusters = defaultdict(list) for pred, seq in zip(preds, subsequences): self.clusters[pred].append(seq) logger.debug('After clustering, %d motives' % len(self.clusters)) return self.clusters except Exception as e: logger.debug('Failed iteration. Reason: %s' % e) logger.debug('Exception', exc_info=True) def score(self, seqs=None): """fit.""" try: for score in multiprocess_score(seqs, vectorizer=self.vectorizer, estimator=self.estimator, block_size=self.pos_block_size, n_jobs=self.n_jobs): yield score except Exception as e: logger.debug('Failed iteration. Reason: %s' % e) logger.debug('Exception', exc_info=True) def _order_clusters(self, clusters, complexity=3): sep = ' ' * (complexity * 2) # join all sequences in a cluster with enough space that # kmers dont interfere cluster_seqs = [] for cluster_id in clusters: if len(clusters[cluster_id]) > 0: seqs = [s for h, s in clusters[cluster_id]] seq = sep.join(seqs) cluster_seqs.append(seq) # vectorize the seqs and compute their gram matrix K cluster_vecs = Vectorizer(complexity).transform(cluster_seqs) gram_matrix = metrics.pairwise.pairwise_kernels( cluster_vecs, metric='linear') c = linkage(gram_matrix, method='single') orders = [] for id1, id2 in c[:, 0:2]: if id1 < len(cluster_seqs): orders.append(int(id1)) if id2 < len(cluster_seqs): orders.append(int(id2)) return orders def _compute_consensus_seq(self, align_seqs): cluster = [] for h, align_seq in align_seqs: str_list = [c for c in align_seq] concat_str = np.array(str_list, dtype=np.dtype('a')) cluster.append(concat_str) cluster = np.vstack(cluster) seq = '' for i, row in enumerate(cluster.T): c = Counter(row) k = c.most_common() seq += k[0][0] return seq def _compute_score(self, align_seqs, min_freq=0.8): dim = len(align_seqs) cluster = [] for h, align_seq in align_seqs: str_list = [c for c in align_seq] concat_str = np.array(str_list, dtype=np.dtype('a')) cluster.append(concat_str) cluster = np.vstack(cluster) score = 0 to_be_removed = [] for i, row in enumerate(cluster.T): c = Counter(row) k = c.most_common() if k[0][0] == '-': to_be_removed.append(i) val = k[1][1] else: val = k[0][1] if float(val) / dim >= min_freq: score += 1 trimmed_align_seqs = [] for h, align_seq in align_seqs: trimmed_align_seq = [a for i, a in enumerate(align_seq) if i not in to_be_removed] trimmed_align_seqs.append((h, ''.join(trimmed_align_seq))) return score, trimmed_align_seqs def _is_high_quality(self, seqs, min_score=4, min_freq=0.6, min_cluster_size=10, sample_size=200): ma = MuscleAlignWrapper(alphabet='rna') if len(seqs) > sample_size: sample_seqs = random.sample(seqs, sample_size) else: sample_seqs = seqs align_seqs = ma.transform(seqs=sample_seqs) score, trimmed_align_seqs = self._compute_score(align_seqs, min_freq=min_freq) if score >= min_score and len(align_seqs) > min_cluster_size: return True else: return False def compute_motif(self, seqs=None, min_score=4, min_freq=0.6, min_cluster_size=10, regex_th=.3, sample_size=200): """compute_motif.""" ma = MuscleAlignWrapper(alphabet='rna') if len(seqs) > sample_size: sample_seqs = random.sample(seqs, sample_size) else: sample_seqs = seqs align_seqs = ma.transform(seqs=sample_seqs) score, trimmed_align_seqs = self._compute_score(align_seqs, min_freq=min_freq) if score >= min_score and len(align_seqs) > min_cluster_size: consensus_seq = self._compute_consensus_seq(trimmed_align_seqs) regex_seq = consensus_regex(trimmed_align_seqs, regex_th) motif = {'consensus_seq': consensus_seq, 'regex_seq': regex_seq, 'trimmed_align_seqs': trimmed_align_seqs, 'align_seqs': align_seqs, 'seqs': seqs} return True, motif else: return False, None def compute_motives(self, clusters, min_score=4, min_freq=0.6, min_cluster_size=10, regex_th=.3, sample_size=200): """compute_motives.""" if not clusters: raise Exception('Error: No clusters.') mcs = min_cluster_size logger.debug('Alignment') motives = dict() for cluster_id in clusters: start_time = time.time() # align with muscle is_high_quality, motif = self.compute_motif( seqs=clusters[cluster_id], min_score=min_score, min_freq=min_freq, min_cluster_size=mcs, regex_th=regex_th, sample_size=sample_size) if is_high_quality: motives[cluster_id] = motif dtime = time.time() - start_time logger.debug( 'Cluster %d (#%d) (%.2f secs)' % (cluster_id, len(clusters[cluster_id]), dtime)) logger.debug('After motives computation, %d motives' % len(motives)) return motives def _identify_mergeable_clusters(self, motives, similarity_th=0.8): for i in motives: for j in motives: if j > i: seq_i = motives[i]['consensus_seq'] seq_j = motives[j]['consensus_seq'] nw_score = edit_distance(seq_i, seq_j, gap_penalty=-1) rel_nw_score = 2 * nw_score / (len(seq_i) + len(seq_j)) if rel_nw_score > similarity_th: yield rel_nw_score, i, j def merge(self, motives, similarity_th=0.5, min_score=4, min_freq=0.5, min_cluster_size=10, regex_th=.3, sample_size=200): """merge.""" while True: ms = sorted([m for m in self._identify_mergeable_clusters( motives, similarity_th=similarity_th)], reverse=True) success = False for rel_nw_score, i, j in ms: if motives.get(i, None) and motives.get(j, None): n_i = len(motives[i]['seqs']) n_j = len(motives[j]['seqs']) seqs = motives[i]['seqs'] + motives[j]['seqs'] is_high_quality, motif = self.compute_motif( seqs=seqs, min_score=min_score, min_freq=min_freq, min_cluster_size=min_cluster_size, regex_th=regex_th, sample_size=sample_size) if is_high_quality: info1 = 'Joining: %d (#%d), %d (#%d) score: %.2f' % \ (i, n_i, j, n_j, rel_nw_score) info2 = ' deleting: %d [%d is now #%d]' % \ (j, i, n_i + n_j) logger.debug(info1 + info2) # update motives motives[i] = motif del motives[j] success = True if success is False: break # TODO: run the predictor to learn the new class definition logger.debug('After merge, %d motives' % len(motives)) return motives def quality_filter(self, seqs=None, motives=None, freq_th=None, std_th=None): """quality_filter.""" _motives = dict() for cluster_id in motives: regex_seq = motives[cluster_id]['regex_seq'] counts, freq = occurrences(regex_seq, seqs) motives[cluster_id]['freq'] = freq motives[cluster_id]['counts'] = counts avg, std = extract_location(regex_seq, seqs) motives[cluster_id]['avg_pos'] = avg motives[cluster_id]['std_pos'] = std if freq_th is None or freq >= freq_th: if std_th is None or std <= std_th: _motives[cluster_id] = motives[cluster_id] if len(_motives) == 0: logger.warning('Quality filter is too strict. Ignoring filter.') return motives else: logger.debug('After quality filter, %d motives' % len(_motives)) return _motives def select_motives(self, seqs=None, p_value=0.05, similarity_th=0.5, min_score=4, min_freq=0.5, min_cluster_size=10, regex_th=.3, sample_size=200, freq_th=None, std_th=None): """select_motives.""" orig_clusters = self.compute_clusters(seqs, p_value=p_value) motives = self.compute_motives( orig_clusters, min_score=min_score, min_freq=min_freq, min_cluster_size=min_cluster_size, regex_th=regex_th, sample_size=sample_size) motives = self.merge( motives, similarity_th=similarity_th, min_score=min_score, min_freq=min_freq, min_cluster_size=min_cluster_size, regex_th=regex_th, sample_size=sample_size) motives = self.quality_filter( seqs, motives, freq_th=freq_th, std_th=std_th) return motives def compute_logo(self, cluster_id=None, motif=None): """compute_logo.""" alphabet = 'rna' color_scheme = 'classic' wb = Weblogo(output_format='png', sequence_type=alphabet, resolution=200, stacks_per_line=60, units='bits', color_scheme=color_scheme) logo_image = wb.create_logo(seqs=motif['trimmed_align_seqs']) logo_txt = [] info = ' - num subarrays: %d' % len(motif['seqs']) logo_txt.append(info) info = ' - consensus sequence: %s' % motif['consensus_seq'] logo_txt.append(info) info = ' - consensus regex: %s' % motif['regex_seq'] logo_txt.append(info) return logo_image, logo_txt def compute_logos(self, motives, ids=None): """compute_logos.""" if motives: if ids is None: ids = [cluster_id for cluster_id in motives] logos = dict() for cluster_id in ids: logo_image, logo_txt = self.compute_logo( cluster_id=cluster_id, motif=motives[cluster_id]) logos[cluster_id] = (logo_image, logo_txt) return logos else: logger.warning( 'No logo to compute. Try more permissive parameters.') def _save_logo(self, logo, cluster_id, fname): imagename = '%s_logo_cl_%d.png' % (fname, cluster_id) with open(imagename, 'wb') as f: f.write(logo) return imagename def _wrap_image(self, fname, fill_width=True, output_type='screen'): pwd = os.getcwd() url = pwd + '/' + fname txt = [] if fill_width: if output_type == 'pdf': txt.append('<p align="left"><img src="file://' + url + '" style="width: 100%"></p>') else: txt.append('<p align="left"><img src="' + fname + '" style="width: 100%"></p>') else: if output_type == 'pdf': txt.append('<p align="left"><img src="file://' + url + '"></p>') else: txt.append('<p align="left"><img src="' + fname + '"></p>') return '\n'.join(txt) def report(self, pos_seqs, all_seqs, motives, nbins=40, size=(17, 2), output_type='screen', fname=None): """Report in markdown format.""" txt = [] if motives: _, norm_cooccurence_mtx, distances = compute_cooccurence(motives) info = '### Summary: %d motives' % len(motives) txt.append(info) figname = plot_cumulative_score( self, pos_seqs, size=size, fname=fname) txt.append(self._wrap_image(figname, output_type=output_type)) for freq, cluster_id in sorted([(motives[i]['freq'], i) for i in motives], reverse=True): info = ' - %.2s %s' % \ (cluster_id, motives[cluster_id]['consensus_seq']) txt.append(info) for freq, cluster_id in sorted([(motives[i]['freq'], i) for i in motives], reverse=True): info = '#### Motif id: %d' % cluster_id txt.append(info) logo_image, logo_txts = self.compute_logo( cluster_id, motif=motives[cluster_id]) figname = self._save_logo(logo_image, cluster_id, fname) for logo_txt in logo_txts: txt.append(logo_txt) co = motives[cluster_id]['counts'] fr = motives[cluster_id]['freq'] info = ' - num occurrences of regex: %d' % (co) txt.append(info) info = ' - freq of occurrences of regex: %.2f' % (fr) txt.append(info) av = motives[cluster_id]['avg_pos'] st = motives[cluster_id]['std_pos'] info = ' - average location: %.1f +- %.1f' % (av, st) txt.append(info) txt.append(self._wrap_image(figname, fill_width=False, output_type=output_type)) regex_i = motives[cluster_id]['regex_seq'] figname = plot_location( regex_i, all_seqs, cluster_id=cluster_id, nbins=nbins, size=size, fname=fname) txt.append(self._wrap_image(figname, output_type=output_type)) for j in motives: regex_i = motives[i]['regex_seq'] if j != cluster_id: regex_j = motives[j]['regex_seq'] ds = distances[(cluster_id, j)] info = ' - num co-occurences %d %s vs %d %s: %d' % \ (cluster_id, regex_i, j, regex_j, len(ds)) txt.append(info) if len(ds): figname = plot_distance( cluster_id, j, regex_i, regex_j, distances, nbins=nbins, size=size, fname=fname) txt.append(self._wrap_image( figname, output_type=output_type)) txt.append('_' * 100) else: logger.warning( 'No motives to report. Try more permissive parameters.') txt = '\n'.join(txt) return txt
[ "pylab.close", "sklearn.cluster.MiniBatchKMeans", "weblogolib.jpeg_formatter", "Bio.Seq.Seq", "Bio.SeqIO.write", "numpy.nan_to_num", "weblogolib.eps_formatter", "random.sample", "scipy.cluster.hierarchy.linkage", "joblib.dump", "eden.apply_async", "sklearn.metrics.classification_report", "collections.defaultdict", "pylab.figure", "numpy.exp", "StringIO.StringIO", "multiprocessing.cpu_count", "pylab.title", "numpy.set_printoptions", "numpy.copy", "sklearn.linear_model.SGDClassifier", "eden.util.iterated_maximum_subarray.compute_max_subarrays_sequence", "pylab.draw", "pylab.ylabel", "weblogolib.LogoData", "pylab.xlabel", "collections.Counter", "pylab.hist", "sklearn.metrics.roc_auc_score", "corebio.seq.SeqList", "pylab.grid", "numpy.hstack", "numpy.percentile", "numpy.sort", "pylab.savefig", "numpy.min", "Bio.Align.Applications.MuscleCommandline", "sklearn.metrics.pairwise.pairwise_kernels", "scipy.optimize.curve_fit", "multiprocessing.Pool", "weblogolib.png_formatter", "eden.util.NeedlemanWunsh.edit_distance", "numpy.vstack", "weblogolib.LogoFormat", "weblogolib.LogoOptions", "pylab.show", "scipy.sparse.vstack", "regex.findall", "os.getcwd", "numpy.dtype", "numpy.zeros", "eden.sequence.Vectorizer", "time.time", "corebio.seq.Alphabet", "numpy.array", "itertools.izip", "sklearn.metrics.confusion_matrix", "joblib.load", "weblogolib.png_print_formatter", "logging.getLogger", "regex.finditer" ]
[((1145, 1172), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1162, 1172), False, 'import logging\n'), ((2325, 2335), 'numpy.sort', 'np.sort', (['x'], {}), '(x)\n', (2332, 2335), True, 'import numpy as np\n'), ((3092, 3110), 'numpy.vstack', 'np.vstack', (['cluster'], {}), '(cluster)\n', (3101, 3110), True, 'import numpy as np\n'), ((4503, 4527), 'pylab.figure', 'plt.figure', ([], {'figsize': 'size'}), '(figsize=size)\n', (4513, 4527), True, 'import pylab as plt\n'), ((4551, 4611), 'pylab.hist', 'plt.hist', (['locs', 'nbins'], {'normed': '(0)', 'facecolor': '"""blue"""', 'alpha': '(0.3)'}), "(locs, nbins, normed=0, facecolor='blue', alpha=0.3)\n", (4559, 4611), True, 'import pylab as plt\n'), ((4625, 4635), 'pylab.grid', 'plt.grid', ([], {}), '()\n', (4633, 4635), True, 'import pylab as plt\n'), ((4640, 4657), 'pylab.title', 'plt.title', (['needle'], {}), '(needle)\n', (4649, 4657), True, 'import pylab as plt\n'), ((4662, 4684), 'pylab.xlabel', 'plt.xlabel', (['"""Position"""'], {}), "('Position')\n", (4672, 4684), True, 'import pylab as plt\n'), ((4689, 4718), 'pylab.ylabel', 'plt.ylabel', (['"""Num occurrences"""'], {}), "('Num occurrences')\n", (4699, 4718), True, 'import pylab as plt\n'), ((4959, 4970), 'pylab.close', 'plt.close', ([], {}), '()\n', (4968, 4970), True, 'import pylab as plt\n'), ((5889, 5906), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (5900, 5906), False, 'from collections import defaultdict\n'), ((6034, 6051), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6045, 6051), False, 'from collections import defaultdict\n'), ((6115, 6137), 'numpy.zeros', 'np.zeros', (['(size, size)'], {}), '((size, size))\n', (6123, 6137), True, 'import numpy as np\n'), ((7196, 7226), 'numpy.nan_to_num', 'np.nan_to_num', (['cooccurence_mtx'], {}), '(cooccurence_mtx)\n', (7209, 7226), True, 'import numpy as np\n'), ((7552, 7579), 'numpy.vstack', 'np.vstack', (['cooccurence_list'], {}), '(cooccurence_list)\n', (7561, 7579), True, 'import numpy as np\n'), ((7961, 7985), 'pylab.figure', 'plt.figure', ([], {'figsize': 'size'}), '(figsize=size)\n', (7971, 7985), True, 'import pylab as plt\n'), ((8009, 8068), 'pylab.hist', 'plt.hist', (['ds', 'nbins'], {'normed': '(0)', 'facecolor': '"""green"""', 'alpha': '(0.3)'}), "(ds, nbins, normed=0, facecolor='green', alpha=0.3)\n", (8017, 8068), True, 'import pylab as plt\n'), ((8082, 8092), 'pylab.grid', 'plt.grid', ([], {}), '()\n', (8090, 8092), True, 'import pylab as plt\n'), ((8097, 8139), 'pylab.title', 'plt.title', (["('%s vs %s' % (regex_i, regex_j))"], {}), "('%s vs %s' % (regex_i, regex_j))\n", (8106, 8139), True, 'import pylab as plt\n'), ((8144, 8175), 'pylab.xlabel', 'plt.xlabel', (['"""Relative position"""'], {}), "('Relative position')\n", (8154, 8175), True, 'import pylab as plt\n'), ((8180, 8209), 'pylab.ylabel', 'plt.ylabel', (['"""Num occurrences"""'], {}), "('Num occurrences')\n", (8190, 8209), True, 'import pylab as plt\n'), ((8473, 8484), 'pylab.close', 'plt.close', ([], {}), '()\n', (8482, 8484), True, 'import pylab as plt\n'), ((10268, 10292), 'pylab.figure', 'plt.figure', ([], {'figsize': 'size'}), '(figsize=size)\n', (10278, 10292), True, 'import pylab as plt\n'), ((10304, 10316), 'numpy.copy', 'np.copy', (['sig'], {}), '(sig)\n', (10311, 10316), True, 'import numpy as np\n'), ((10409, 10421), 'numpy.copy', 'np.copy', (['sig'], {}), '(sig)\n', (10416, 10421), True, 'import numpy as np\n'), ((10508, 10518), 'pylab.grid', 'plt.grid', ([], {}), '()\n', (10516, 10518), True, 'import pylab as plt\n'), ((10523, 10545), 'pylab.xlabel', 'plt.xlabel', (['"""Position"""'], {}), "('Position')\n", (10533, 10545), True, 'import pylab as plt\n'), ((10550, 10580), 'pylab.ylabel', 'plt.ylabel', (['"""Importance score"""'], {}), "('Importance score')\n", (10560, 10580), True, 'import pylab as plt\n'), ((10813, 10824), 'pylab.close', 'plt.close', ([], {}), '()\n', (10822, 10824), True, 'import pylab as plt\n'), ((11519, 11530), 'time.time', 'time.time', ([], {}), '()\n', (11528, 11530), False, 'import time\n'), ((11883, 11894), 'time.time', 'time.time', ([], {}), '()\n', (11892, 11894), False, 'import time\n'), ((12346, 12362), 'scipy.sparse.vstack', 'vstack', (['matrices'], {}), '(matrices)\n', (12352, 12362), False, 'from scipy.sparse import vstack\n'), ((12672, 12683), 'time.time', 'time.time', ([], {}), '()\n', (12681, 12683), False, 'import time\n'), ((12698, 12715), 'numpy.array', 'np.array', (['[1, -1]'], {}), '([1, -1])\n', (12706, 12715), True, 'import numpy as np\n'), ((13229, 13240), 'time.time', 'time.time', ([], {}), '()\n', (13238, 13240), False, 'import time\n'), ((14286, 14297), 'time.time', 'time.time', ([], {}), '()\n', (14295, 14297), False, 'import time\n'), ((14826, 14837), 'time.time', 'time.time', ([], {}), '()\n', (14835, 14837), False, 'import time\n'), ((15735, 15751), 'numpy.hstack', 'np.hstack', (['preds'], {}), '(preds)\n', (15744, 15751), True, 'import numpy as np\n'), ((15771, 15794), 'numpy.hstack', 'np.hstack', (['binary_preds'], {}), '(binary_preds)\n', (15780, 15794), True, 'import numpy as np\n'), ((15814, 15837), 'numpy.hstack', 'np.hstack', (['true_targets'], {}), '(true_targets)\n', (15823, 15837), True, 'import numpy as np\n'), ((17406, 17417), 'time.time', 'time.time', ([], {}), '()\n', (17415, 17417), False, 'import time\n'), ((17867, 17878), 'time.time', 'time.time', ([], {}), '()\n', (17876, 17878), False, 'import time\n'), ((18805, 18816), 'time.time', 'time.time', ([], {}), '()\n', (18814, 18816), False, 'import time\n'), ((19197, 19208), 'time.time', 'time.time', ([], {}), '()\n', (19206, 19208), False, 'import time\n'), ((1613, 1623), 'numpy.sort', 'np.sort', (['x'], {}), '(x)\n', (1620, 1623), True, 'import numpy as np\n'), ((3198, 3210), 'collections.Counter', 'Counter', (['row'], {}), '(row)\n', (3205, 3210), False, 'from collections import Counter\n'), ((3305, 3317), 'collections.Counter', 'Counter', (['row'], {}), '(row)\n', (3312, 3317), False, 'from collections import Counter\n'), ((3565, 3603), 'regex.findall', 're.findall', (['needle', 's'], {'overlapped': '(True)'}), '(needle, s, overlapped=True)\n', (3575, 3603), True, 'import regex as re\n'), ((4358, 4380), 'regex.finditer', 're.finditer', (['needle', 's'], {}), '(needle, s)\n', (4369, 4380), True, 'import regex as re\n'), ((4741, 4751), 'pylab.draw', 'plt.draw', ([], {}), '()\n', (4749, 4751), True, 'import pylab as plt\n'), ((4816, 4889), 'pylab.savefig', 'plt.savefig', (['figname'], {'bbox_inches': '"""tight"""', 'transparent': '(True)', 'pad_inches': '(0)'}), "(figname, bbox_inches='tight', transparent=True, pad_inches=0)\n", (4827, 4889), True, 'import pylab as plt\n'), ((4944, 4954), 'pylab.show', 'plt.show', ([], {}), '()\n', (4952, 4954), True, 'import pylab as plt\n'), ((5121, 5143), 'regex.finditer', 're.finditer', (['needle', 's'], {}), '(needle, s)\n', (5132, 5143), True, 'import regex as re\n'), ((5293, 5316), 'numpy.percentile', 'np.percentile', (['locs', '(50)'], {}), '(locs, 50)\n', (5306, 5316), True, 'import numpy as np\n'), ((6305, 6322), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6316, 6322), False, 'from collections import defaultdict\n'), ((8232, 8242), 'pylab.draw', 'plt.draw', ([], {}), '()\n', (8240, 8242), True, 'import pylab as plt\n'), ((8330, 8403), 'pylab.savefig', 'plt.savefig', (['figname'], {'bbox_inches': '"""tight"""', 'transparent': '(True)', 'pad_inches': '(0)'}), "(figname, bbox_inches='tight', transparent=True, pad_inches=0)\n", (8341, 8403), True, 'import pylab as plt\n'), ((8458, 8468), 'pylab.show', 'plt.show', ([], {}), '()\n', (8466, 8468), True, 'import pylab as plt\n'), ((8701, 8753), 'numpy.min', 'np.min', (['sig[i - half_windw_size:i + half_windw_size]'], {}), '(sig[i - half_windw_size:i + half_windw_size])\n', (8707, 8753), True, 'import numpy as np\n'), ((9310, 9326), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (9318, 9326), True, 'import numpy as np\n'), ((9655, 9669), 'numpy.array', 'np.array', (['sigs'], {}), '(sigs)\n', (9663, 9669), True, 'import numpy as np\n'), ((10603, 10613), 'pylab.draw', 'plt.draw', ([], {}), '()\n', (10611, 10613), True, 'import pylab as plt\n'), ((10670, 10743), 'pylab.savefig', 'plt.savefig', (['figname'], {'bbox_inches': '"""tight"""', 'transparent': '(True)', 'pad_inches': '(0)'}), "(figname, bbox_inches='tight', transparent=True, pad_inches=0)\n", (10681, 10743), True, 'import pylab as plt\n'), ((10798, 10808), 'pylab.show', 'plt.show', ([], {}), '()\n', (10806, 10808), True, 'import pylab as plt\n'), ((11567, 11576), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (11574, 11576), True, 'import multiprocessing as mp\n'), ((11602, 11617), 'multiprocessing.Pool', 'mp.Pool', (['n_jobs'], {}), '(n_jobs)\n', (11609, 11617), True, 'import multiprocessing as mp\n'), ((11634, 11696), 'eden.apply_async', 'apply_async', (['pool', 'serial_pre_process'], {'args': '(seqs, vectorizer)'}), '(pool, serial_pre_process, args=(seqs, vectorizer))\n', (11645, 11696), False, 'from eden import apply_async\n'), ((11974, 11985), 'time.time', 'time.time', ([], {}), '()\n', (11983, 11985), False, 'import time\n'), ((12752, 12761), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (12759, 12761), True, 'import multiprocessing as mp\n'), ((12787, 12802), 'multiprocessing.Pool', 'mp.Pool', (['n_jobs'], {}), '(n_jobs)\n', (12794, 12802), True, 'import multiprocessing as mp\n'), ((12823, 12885), 'eden.apply_async', 'apply_async', (['pool', 'serial_pre_process'], {'args': '(seqs, vectorizer)'}), '(pool, serial_pre_process, args=(seqs, vectorizer))\n', (12834, 12885), False, 'from eden import apply_async\n'), ((12980, 13042), 'eden.apply_async', 'apply_async', (['pool', 'serial_pre_process'], {'args': '(seqs, vectorizer)'}), '(pool, serial_pre_process, args=(seqs, vectorizer))\n', (12991, 13042), False, 'from eden import apply_async\n'), ((13272, 13302), 'itertools.izip', 'izip', (['pos_results', 'neg_results'], {}), '(pos_results, neg_results)\n', (13276, 13302), False, 'from itertools import izip\n'), ((13330, 13341), 'time.time', 'time.time', ([], {}), '()\n', (13339, 13341), False, 'import time\n'), ((13510, 13521), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (13518, 13521), True, 'import numpy as np\n'), ((13544, 13586), 'scipy.sparse.vstack', 'vstack', (['[pos_data_matrix, neg_data_matrix]'], {}), '([pos_data_matrix, neg_data_matrix])\n', (13550, 13586), False, 'from scipy.sparse import vstack\n'), ((14334, 14343), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (14341, 14343), True, 'import multiprocessing as mp\n'), ((14369, 14384), 'multiprocessing.Pool', 'mp.Pool', (['n_jobs'], {}), '(n_jobs)\n', (14376, 14384), True, 'import multiprocessing as mp\n'), ((14405, 14467), 'eden.apply_async', 'apply_async', (['pool', 'serial_pre_process'], {'args': '(seqs, vectorizer)'}), '(pool, serial_pre_process, args=(seqs, vectorizer))\n', (14416, 14467), False, 'from eden import apply_async\n'), ((14562, 14624), 'eden.apply_async', 'apply_async', (['pool', 'serial_pre_process'], {'args': '(seqs, vectorizer)'}), '(pool, serial_pre_process, args=(seqs, vectorizer))\n', (14573, 14624), False, 'from eden import apply_async\n'), ((14928, 14958), 'itertools.izip', 'izip', (['pos_results', 'neg_results'], {}), '(pos_results, neg_results)\n', (14932, 14958), False, 'from itertools import izip\n'), ((14986, 14997), 'time.time', 'time.time', ([], {}), '()\n', (14995, 14997), False, 'import time\n'), ((15166, 15177), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (15174, 15177), True, 'import numpy as np\n'), ((15231, 15273), 'scipy.sparse.vstack', 'vstack', (['[pos_data_matrix, neg_data_matrix]'], {}), '([pos_data_matrix, neg_data_matrix])\n', (15237, 15273), False, 'from scipy.sparse import vstack\n'), ((16296, 16455), 'eden.util.iterated_maximum_subarray.compute_max_subarrays_sequence', 'compute_max_subarrays_sequence', ([], {'seq': 'seq', 'score': 'score', 'min_subarray_size': 'min_subarray_size', 'max_subarray_size': 'max_subarray_size', 'margin': '(1)', 'output': '"""all"""'}), "(seq=seq, score=score, min_subarray_size=\n min_subarray_size, max_subarray_size=max_subarray_size, margin=1,\n output='all')\n", (16326, 16455), False, 'from eden.util.iterated_maximum_subarray import compute_max_subarrays_sequence\n'), ((17454, 17463), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (17461, 17463), True, 'import multiprocessing as mp\n'), ((17489, 17504), 'multiprocessing.Pool', 'mp.Pool', (['n_jobs'], {}), '(n_jobs)\n', (17496, 17504), True, 'import multiprocessing as mp\n'), ((17521, 17633), 'eden.apply_async', 'apply_async', (['pool', 'serial_subarray'], {'args': '(seqs, vectorizer, estimator, min_subarray_size, max_subarray_size)'}), '(pool, serial_subarray, args=(seqs, vectorizer, estimator,\n min_subarray_size, max_subarray_size))\n', (17532, 17633), False, 'from eden import apply_async\n'), ((17965, 17976), 'time.time', 'time.time', ([], {}), '()\n', (17974, 17976), False, 'import time\n'), ((18853, 18862), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (18860, 18862), True, 'import multiprocessing as mp\n'), ((18888, 18903), 'multiprocessing.Pool', 'mp.Pool', (['n_jobs'], {}), '(n_jobs)\n', (18895, 18903), True, 'import multiprocessing as mp\n'), ((18920, 18987), 'eden.apply_async', 'apply_async', (['pool', 'serial_score'], {'args': '(seqs, vectorizer, estimator)'}), '(pool, serial_score, args=(seqs, vectorizer, estimator))\n', (18931, 18987), False, 'from eden import apply_async\n'), ((19292, 19303), 'time.time', 'time.time', ([], {}), '()\n', (19301, 19303), False, 'import time\n'), ((21299, 21309), 'StringIO.StringIO', 'StringIO', ([], {}), '()\n', (21307, 21309), False, 'from StringIO import StringIO\n'), ((21318, 21367), 'Bio.SeqIO.write', 'SeqIO.write', (['instances_seqrecord', 'handle', '"""fasta"""'], {}), "(instances_seqrecord, handle, 'fasta')\n", (21329, 21367), False, 'from Bio import SeqIO\n'), ((21672, 21699), 'Bio.Align.Applications.MuscleCommandline', 'MuscleCommandline', ([], {}), '(**params)\n', (21689, 21699), False, 'from Bio.Align.Applications import MuscleCommandline\n'), ((23594, 23611), 'weblogolib.LogoOptions', 'wbl.LogoOptions', ([], {}), '()\n', (23609, 23611), True, 'import weblogolib as wbl\n'), ((25205, 25248), 'corebio.seq.SeqList', 'SeqList', ([], {'alist': 'instances', 'alphabet': 'alphabet'}), '(alist=instances, alphabet=alphabet)\n', (25212, 25248), False, 'from corebio.seq import Alphabet, SeqList\n'), ((25322, 25356), 'weblogolib.LogoFormat', 'wbl.LogoFormat', (['data', 'self.options'], {}), '(data, self.options)\n', (25336, 25356), True, 'import weblogolib as wbl\n'), ((26088, 26118), 'sklearn.linear_model.SGDClassifier', 'SGDClassifier', ([], {'warm_start': '(True)'}), '(warm_start=True)\n', (26101, 26118), False, 'from sklearn.linear_model import SGDClassifier\n'), ((26153, 26168), 'sklearn.linear_model.SGDClassifier', 'SGDClassifier', ([], {}), '()\n', (26166, 26168), False, 'from sklearn.linear_model import SGDClassifier\n'), ((26197, 26214), 'sklearn.cluster.MiniBatchKMeans', 'MiniBatchKMeans', ([], {}), '()\n', (26212, 26214), False, 'from sklearn.cluster import MiniBatchKMeans\n'), ((26665, 26727), 'eden.sequence.Vectorizer', 'Vectorizer', ([], {'complexity': 'complexity', 'auto_weights': '(True)', 'nbits': '(15)'}), '(complexity=complexity, auto_weights=True, nbits=15)\n', (26675, 26727), False, 'from eden.sequence import Vectorizer\n'), ((27018, 27059), 'joblib.dump', 'joblib.dump', (['self', 'model_name'], {'compress': '(1)'}), '(self, model_name, compress=1)\n', (27029, 27059), False, 'import joblib\n'), ((34655, 34719), 'sklearn.metrics.pairwise.pairwise_kernels', 'metrics.pairwise.pairwise_kernels', (['cluster_vecs'], {'metric': '"""linear"""'}), "(cluster_vecs, metric='linear')\n", (34688, 34719), False, 'from sklearn import metrics\n'), ((34745, 34782), 'scipy.cluster.hierarchy.linkage', 'linkage', (['gram_matrix'], {'method': '"""single"""'}), "(gram_matrix, method='single')\n", (34752, 34782), False, 'from scipy.cluster.hierarchy import linkage\n'), ((35300, 35318), 'numpy.vstack', 'np.vstack', (['cluster'], {}), '(cluster)\n', (35309, 35318), True, 'import numpy as np\n'), ((35803, 35821), 'numpy.vstack', 'np.vstack', (['cluster'], {}), '(cluster)\n', (35812, 35821), True, 'import numpy as np\n'), ((45971, 45982), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (45980, 45982), False, 'import os\n'), ((1236, 1256), 'numpy.exp', 'np.exp', (['(-(x - a) / b)'], {}), '(-(x - a) / b)\n', (1242, 1256), True, 'import numpy as np\n'), ((1832, 1858), 'scipy.optimize.curve_fit', 'curve_fit', (['sigmoid', 'xs', 'ys'], {}), '(sigmoid, xs, ys)\n', (1841, 1858), False, 'from scipy.optimize import curve_fit\n'), ((5335, 5358), 'numpy.percentile', 'np.percentile', (['locs', '(70)'], {}), '(locs, 70)\n', (5348, 5358), True, 'import numpy as np\n'), ((5361, 5384), 'numpy.percentile', 'np.percentile', (['locs', '(30)'], {}), '(locs, 30)\n', (5374, 5384), True, 'import numpy as np\n'), ((7449, 7468), 'numpy.zeros', 'np.zeros', (['row.shape'], {}), '(row.shape)\n', (7457, 7468), True, 'import numpy as np\n'), ((12073, 12084), 'time.time', 'time.time', ([], {}), '()\n', (12082, 12084), False, 'import time\n'), ((12119, 12130), 'time.time', 'time.time', ([], {}), '()\n', (12128, 12130), False, 'import time\n'), ((13667, 13678), 'time.time', 'time.time', ([], {}), '()\n', (13676, 13678), False, 'import time\n'), ((13713, 13724), 'time.time', 'time.time', ([], {}), '()\n', (13722, 13724), False, 'import time\n'), ((15468, 15479), 'time.time', 'time.time', ([], {}), '()\n', (15477, 15479), False, 'import time\n'), ((15514, 15525), 'time.time', 'time.time', ([], {}), '()\n', (15523, 15525), False, 'import time\n'), ((18069, 18080), 'time.time', 'time.time', ([], {}), '()\n', (18078, 18080), False, 'import time\n'), ((18115, 18126), 'time.time', 'time.time', ([], {}), '()\n', (18124, 18126), False, 'import time\n'), ((19377, 19388), 'time.time', 'time.time', ([], {}), '()\n', (19386, 19388), False, 'import time\n'), ((19423, 19434), 'time.time', 'time.time', ([], {}), '()\n', (19432, 19434), False, 'import time\n'), ((25000, 25016), 'corebio.seq.Alphabet', 'Alphabet', (['"""ACGU"""'], {}), "('ACGU')\n", (25008, 25016), False, 'from corebio.seq import Alphabet, SeqList\n'), ((25417, 25448), 'weblogolib.png_formatter', 'wbl.png_formatter', (['data', 'format'], {}), '(data, format)\n', (25434, 25448), True, 'import weblogolib as wbl\n'), ((28240, 28282), 'sklearn.metrics.confusion_matrix', 'metrics.confusion_matrix', (['y_test', 'y_binary'], {}), '(y_test, y_binary)\n', (28264, 28282), False, 'from sklearn import metrics\n'), ((28295, 28327), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (28314, 28327), True, 'import numpy as np\n'), ((31111, 31137), 'scipy.optimize.curve_fit', 'curve_fit', (['sigmoid', 'xs', 'ys'], {}), '(sigmoid, xs, ys)\n', (31120, 31137), False, 'from scipy.optimize import curve_fit\n'), ((32189, 32216), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (32214, 32216), False, 'import multiprocessing\n'), ((32614, 32625), 'time.time', 'time.time', ([], {}), '()\n', (32623, 32625), False, 'import time\n'), ((33118, 33135), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (33129, 33135), False, 'from collections import defaultdict\n'), ((35396, 35408), 'collections.Counter', 'Counter', (['row'], {}), '(row)\n', (35403, 35408), False, 'from collections import Counter\n'), ((35927, 35939), 'collections.Counter', 'Counter', (['row'], {}), '(row)\n', (35934, 35939), False, 'from collections import Counter\n'), ((36844, 36876), 'random.sample', 'random.sample', (['seqs', 'sample_size'], {}), '(seqs, sample_size)\n', (36857, 36876), False, 'import random\n'), ((37640, 37672), 'random.sample', 'random.sample', (['seqs', 'sample_size'], {}), '(seqs, sample_size)\n', (37653, 37672), False, 'import random\n'), ((38970, 38981), 'time.time', 'time.time', ([], {}), '()\n', (38979, 38981), False, 'import time\n'), ((3028, 3041), 'numpy.dtype', 'np.dtype', (['"""a"""'], {}), "('a')\n", (3036, 3041), True, 'import numpy as np\n'), ((11806, 11817), 'time.time', 'time.time', ([], {}), '()\n', (11815, 11817), False, 'import time\n'), ((13156, 13167), 'time.time', 'time.time', ([], {}), '()\n', (13165, 13167), False, 'import time\n'), ((14738, 14749), 'time.time', 'time.time', ([], {}), '()\n', (14747, 14749), False, 'import time\n'), ((17791, 17802), 'time.time', 'time.time', ([], {}), '()\n', (17800, 17802), False, 'import time\n'), ((19121, 19132), 'time.time', 'time.time', ([], {}), '()\n', (19130, 19132), False, 'import time\n'), ((25094, 25126), 'corebio.seq.Alphabet', 'Alphabet', (['"""ACDEFGHIKLMNPQRSTVWY"""'], {}), "('ACDEFGHIKLMNPQRSTVWY')\n", (25102, 25126), False, 'from corebio.seq import Alphabet, SeqList\n'), ((25164, 25180), 'corebio.seq.Alphabet', 'Alphabet', (['"""AGCT"""'], {}), "('AGCT')\n", (25172, 25180), False, 'from corebio.seq import Alphabet, SeqList\n'), ((25264, 25278), 'weblogolib.LogoData', 'wbl.LogoData', ([], {}), '()\n', (25276, 25278), True, 'import weblogolib as wbl\n'), ((25516, 25553), 'weblogolib.png_print_formatter', 'wbl.png_print_formatter', (['data', 'format'], {}), '(data, format)\n', (25539, 25553), True, 'import weblogolib as wbl\n'), ((27135, 27151), 'joblib.load', 'joblib.load', (['obj'], {}), '(obj)\n', (27146, 27151), False, 'import joblib\n'), ((28498, 28545), 'sklearn.metrics.classification_report', 'metrics.classification_report', (['y_test', 'y_binary'], {}), '(y_test, y_binary)\n', (28527, 28545), False, 'from sklearn import metrics\n'), ((33004, 33015), 'time.time', 'time.time', ([], {}), '()\n', (33013, 33015), False, 'import time\n'), ((34586, 34608), 'eden.sequence.Vectorizer', 'Vectorizer', (['complexity'], {}), '(complexity)\n', (34596, 34608), False, 'from eden.sequence import Vectorizer\n'), ((21246, 21267), 'Bio.Seq.Seq', 'Seq', (['j', 'self.alphabet'], {}), '(j, self.alphabet)\n', (21249, 21267), False, 'from Bio.Seq import Seq\n'), ((25616, 25648), 'weblogolib.jpeg_formatter', 'wbl.jpeg_formatter', (['data', 'format'], {}), '(data, format)\n', (25634, 25648), True, 'import weblogolib as wbl\n'), ((25682, 25713), 'weblogolib.eps_formatter', 'wbl.eps_formatter', (['data', 'format'], {}), '(data, format)\n', (25699, 25713), True, 'import weblogolib as wbl\n'), ((28605, 28642), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (28626, 28642), False, 'from sklearn import metrics\n'), ((35228, 35241), 'numpy.dtype', 'np.dtype', (['"""a"""'], {}), "('a')\n", (35236, 35241), True, 'import numpy as np\n'), ((35731, 35744), 'numpy.dtype', 'np.dtype', (['"""a"""'], {}), "('a')\n", (35739, 35744), True, 'import numpy as np\n'), ((39400, 39411), 'time.time', 'time.time', ([], {}), '()\n', (39409, 39411), False, 'import time\n'), ((39974, 40017), 'eden.util.NeedlemanWunsh.edit_distance', 'edit_distance', (['seq_i', 'seq_j'], {'gap_penalty': '(-1)'}), '(seq_i, seq_j, gap_penalty=-1)\n', (39987, 40017), False, 'from eden.util.NeedlemanWunsh import edit_distance\n')]
import yaml import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import torch import torchvision import matplotlib.pyplot as plt import seaborn as sns import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms from torchvision import datasets,models import math import torch.optim as optim from torch.optim import lr_scheduler import copy import time from PIL import Image from datetime import datetime from utils import * data_dir = '.' test_path = os.path.join(data_dir, 'test') sample_sub = pd.read_csv(os.path.join(data_dir, 'sample_submission.csv')) sample_sub['path'] = sample_sub['file_name'].apply(lambda x: os.path.join(test_path, x)) # Get configs from config file stream = open("config.yaml", 'r') config_dict = yaml.safe_load(stream) batch_size = config_dict['batch_size'] learning_rate = config_dict['lr'] model_pth = config_dict['model_pth'] train_data = config_dict['train_data'] valid_data = config_dict['valid_data'] test_data = config_dict['test_data'] # Apply transforms normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) data_transforms = { 'train': transforms.Compose([ transforms.Resize((230, 230)), transforms.RandomRotation(30,), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), normalize ]), 'valid': transforms.Compose([ transforms.Resize((400, 400)), transforms.CenterCrop((224, 224)), transforms.ToTensor(), normalize ]), 'test': transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), normalize ]), } # Load dataloaders image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle= True, num_workers=0) for x in ['train', 'valid']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Trains Model def train_model2(model, criterion, optimizer, num_epochs=3, dataloaders= dataloaders, print_progress=False): """ :param model: Model type object :param criterion: Loss function :param optimizer: Optimizer :param num_epochs: Number of epochs :param dataloaders: Dataloaders, must be a dictionary having train and val as keys :param print_progress: prints progress if true :return: trained model object """ min_val_loss = np.Inf best_model_wts = copy.deepcopy(model.state_dict()) since = time.time() best_epoch = -1 for epoch in range(num_epochs): valid_loss = 0.0 train_loss = 0.0 model.train() running_corrects = 0 for iter1, (inputs, labels) in enumerate(dataloaders['train']): inputs = inputs.to(device) inputs = inputs.type(torch.float) labels = labels.to(device) labels = labels.type(torch.long) optimizer.zero_grad() out = model(inputs) _, preds = torch.max(out, 1) # out = torch.mul(out,100) loss = criterion(out, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) # running_corrects += torch.sum(preds == labels.data) if print_progress: print( f"Epoch: {epoch}\t{100 * (iter1 + 1) / len(dataloaders['train']):.2f}" + '%', end='\r') else: print() with torch.no_grad(): model.eval() for iter2, (inputs, labels) in enumerate(dataloaders['valid']): inputs = inputs.to(device) inputs = inputs.type(torch.float) labels = labels.to(device) labels = labels.type(torch.long) output1 = model(inputs) _, preds1 = torch.max(output1, 1) # output1 = torch.mul(output1,100).to(device) loss = criterion(output1, labels) valid_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds1 == labels.data) print( f'Epoch: {epoch}\t{100 * (iter2 + 1) / len(dataloaders["valid"]):.2f} %', end='\r') len_train1 = 6552 len_val1 = len(dataloaders['valid'].dataset) train_loss = train_loss / len_train1 valid_loss = valid_loss / len_val1 if print_progress: print( f'\nEpoch: {epoch + 1} \tTraining Loss: {math.sqrt(train_loss):.4f} \tValidation Loss: {math.sqrt(valid_loss):.4f}') time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print(f'Accuracy : {100 * running_corrects / len_val1} %') if valid_loss < min_val_loss: min_val_loss = valid_loss best_epoch = epoch best_model_wts = copy.deepcopy(model.state_dict()) print('Best val Loss: {:4f}'.format(math.sqrt(min_val_loss))) print(f'Epoch completed: {epoch+1}') print(f'Best Epoch: {best_epoch+1}') model.load_state_dict(best_model_wts) return model def process_image(img_path): """ :param img_path: Path of image to be processed :returns processed numpy array Scales, crops, and normalizes a PIL image for a PyTorch model, returns a Numpy array """ img = Image.open(img_path) # Resize if img.size[0] > img.size[1]: img.thumbnail((10000, 256)) else: img.thumbnail((256, 10000)) # Crop Image left_margin = (img.width - 224) / 2 bottom_margin = (img.height - 224) / 2 right_margin = left_margin + 224 top_margin = bottom_margin + 224 img = img.crop((left_margin, bottom_margin, right_margin, top_margin)) # Normalize img = np.array(img) / 255 mean = np.array([0.485, 0.456, 0.406]) # provided mean std = np.array([0.229, 0.224, 0.225]) # provided std img = (img - mean) / std return img # Load test dataset from class defined in utils test_dataset = TestDataset(data_dir+'test', sample_sub,data_transforms['test']) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # Load Class to idx dictionary class_to_idx = image_datasets['valid'].class_to_idx idx_to_class = {val: key for key, val in class_to_idx.items()} def predict(model_path, dataloader, print_progress=False): """ :param model_path: Path of Model used for prediction :param dataloader: Test DataLoader :param print_progress: Prints progress if True :return: Prediction(as a list) on test folder defined by config file """ model = torch.load(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() predictions = {} with torch.no_grad(): for ii, (images, _, img_names) in enumerate(dataloader, start=1): if print_progress: if ii % 5 == 0: print('Batch {}/{}'.format(ii, len(dataloader))) images = images.to(device) logps = model(images) ps = torch.exp(logps) # Top indices _, top_indices = ps.topk(1) top_indices = top_indices.detach().cpu().numpy().tolist() # Convert indices to classes top_classes = [idx_to_class[idx[0]] for idx in top_indices] # print("Img:" ,img_names) for i, img_name in enumerate(img_names): predictions[img_name] = top_classes[i] print('\nPrediction Generation Completed') return predictions
[ "yaml.safe_load", "torchvision.transforms.Normalize", "torch.no_grad", "os.path.join", "torch.utils.data.DataLoader", "torchvision.transforms.RandomRotation", "torch.load", "torch.exp", "torchvision.transforms.CenterCrop", "torchvision.transforms.RandomHorizontalFlip", "math.sqrt", "torch.cuda.is_available", "torch.max", "torch.sum", "torchvision.transforms.RandomCrop", "torchvision.transforms.Resize", "torchvision.transforms.RandomVerticalFlip", "time.time", "PIL.Image.open", "numpy.array", "torchvision.transforms.ToTensor" ]
[((596, 626), 'os.path.join', 'os.path.join', (['data_dir', '"""test"""'], {}), "(data_dir, 'test')\n", (608, 626), False, 'import os\n'), ((876, 898), 'yaml.safe_load', 'yaml.safe_load', (['stream'], {}), '(stream)\n', (890, 898), False, 'import yaml\n'), ((1167, 1242), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (1187, 1242), True, 'import torchvision.transforms as transforms\n'), ((6924, 7003), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['test_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)'}), '(test_dataset, batch_size=batch_size, shuffle=False)\n', (6951, 7003), False, 'import torch\n'), ((653, 700), 'os.path.join', 'os.path.join', (['data_dir', '"""sample_submission.csv"""'], {}), "(data_dir, 'sample_submission.csv')\n", (665, 700), False, 'import os\n'), ((2101, 2203), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['image_datasets[x]'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(0)'}), '(image_datasets[x], batch_size=batch_size,\n shuffle=True, num_workers=0)\n', (2128, 2203), False, 'import torch\n'), ((3033, 3044), 'time.time', 'time.time', ([], {}), '()\n', (3042, 3044), False, 'import time\n'), ((6118, 6138), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (6128, 6138), False, 'from PIL import Image\n'), ((6617, 6648), 'numpy.array', 'np.array', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (6625, 6648), True, 'import numpy as np\n'), ((6677, 6708), 'numpy.array', 'np.array', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (6685, 6708), True, 'import numpy as np\n'), ((7482, 7504), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (7492, 7504), False, 'import torch\n'), ((764, 790), 'os.path.join', 'os.path.join', (['test_path', 'x'], {}), '(test_path, x)\n', (776, 790), False, 'import os\n'), ((1944, 1969), 'os.path.join', 'os.path.join', (['data_dir', 'x'], {}), '(data_dir, x)\n', (1956, 1969), False, 'import os\n'), ((2402, 2427), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2425, 2427), False, 'import torch\n'), ((6585, 6598), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (6593, 6598), True, 'import numpy as np\n'), ((7656, 7671), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7669, 7671), False, 'import torch\n'), ((1308, 1337), 'torchvision.transforms.Resize', 'transforms.Resize', (['(230, 230)'], {}), '((230, 230))\n', (1325, 1337), True, 'import torchvision.transforms as transforms\n'), ((1348, 1377), 'torchvision.transforms.RandomRotation', 'transforms.RandomRotation', (['(30)'], {}), '(30)\n', (1373, 1377), True, 'import torchvision.transforms as transforms\n'), ((1389, 1415), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['(224)'], {}), '(224)\n', (1410, 1415), True, 'import torchvision.transforms as transforms\n'), ((1426, 1459), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (1457, 1459), True, 'import torchvision.transforms as transforms\n'), ((1470, 1501), 'torchvision.transforms.RandomVerticalFlip', 'transforms.RandomVerticalFlip', ([], {}), '()\n', (1499, 1501), True, 'import torchvision.transforms as transforms\n'), ((1512, 1533), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1531, 1533), True, 'import torchvision.transforms as transforms\n'), ((1607, 1636), 'torchvision.transforms.Resize', 'transforms.Resize', (['(400, 400)'], {}), '((400, 400))\n', (1624, 1636), True, 'import torchvision.transforms as transforms\n'), ((1647, 1680), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['(224, 224)'], {}), '((224, 224))\n', (1668, 1680), True, 'import torchvision.transforms as transforms\n'), ((1691, 1712), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1710, 1712), True, 'import torchvision.transforms as transforms\n'), ((1785, 1814), 'torchvision.transforms.Resize', 'transforms.Resize', (['(224, 224)'], {}), '((224, 224))\n', (1802, 1814), True, 'import torchvision.transforms as transforms\n'), ((1825, 1846), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1844, 1846), True, 'import torchvision.transforms as transforms\n'), ((3554, 3571), 'torch.max', 'torch.max', (['out', '(1)'], {}), '(out, 1)\n', (3563, 3571), False, 'import torch\n'), ((5261, 5272), 'time.time', 'time.time', ([], {}), '()\n', (5270, 5272), False, 'import time\n'), ((7542, 7567), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (7565, 7567), False, 'import torch\n'), ((7978, 7994), 'torch.exp', 'torch.exp', (['logps'], {}), '(logps)\n', (7987, 7994), False, 'import torch\n'), ((4081, 4096), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4094, 4096), False, 'import torch\n'), ((4468, 4489), 'torch.max', 'torch.max', (['output1', '(1)'], {}), '(output1, 1)\n', (4477, 4489), False, 'import torch\n'), ((4701, 4733), 'torch.sum', 'torch.sum', (['(preds1 == labels.data)'], {}), '(preds1 == labels.data)\n', (4710, 4733), False, 'import torch\n'), ((5669, 5692), 'math.sqrt', 'math.sqrt', (['min_val_loss'], {}), '(min_val_loss)\n', (5678, 5692), False, 'import math\n'), ((5161, 5182), 'math.sqrt', 'math.sqrt', (['train_loss'], {}), '(train_loss)\n', (5170, 5182), False, 'import math\n'), ((5208, 5229), 'math.sqrt', 'math.sqrt', (['valid_loss'], {}), '(valid_loss)\n', (5217, 5229), False, 'import math\n')]
import more_itertools as mit import numpy as np # Methods to do dynamic error thresholding on timeseries data # Implementation inspired by: https://arxiv.org/pdf/1802.04431.pdf def get_forecast_errors(y_hat, y_true, window_size=5, batch_size=30, smoothing_percent=0.05, smoothed=True): """ Calculates the forecasting error for two arrays of data. If smoothed errors desired, runs EWMA. Args: y_hat (list): forecasted values. len(y_hat)==len(y_true). y_true (list): true values. len(y_hat)==len(y_true). window_size (int): batch_size (int): smoothing_percent (float): smoothed (bool): whether the returned errors should be smoothed with EWMA. Returns: (list): error residuals. Smoothed if specified by user. """ errors = [abs(y_h - y_t) for y_h, y_t in zip(y_hat, y_true)] if not smoothed: return errors historical_error_window = int(window_size * batch_size * smoothing_percent) moving_avg = [] for i in range(len(errors)): left_window = i - historical_error_window right_window = i + historical_error_window + 1 if left_window < 0: left_window = 0 if right_window > len(errors): right_window = len(errors) moving_avg.append(np.mean(errors[left_window:right_window])) return moving_avg def extract_anomalies(y_true, smoothed_errors, window_size, batch_size, error_buffer): """ Extracts anomalies from the errors. Args: y_true (): smoothed_errors (): window_size (int): batch_size (int): error_buffer (int): Returns: """ if len(y_true) <= batch_size * window_size: raise ValueError("Window size (%s) larger than y_true (len=%s)." % (batch_size, len(y_true))) num_windows = int((len(y_true) - (batch_size * window_size)) / batch_size) anomalies_indices = [] for i in range(num_windows + 1): prev_index = i * batch_size curr_index = (window_size * batch_size) + (i * batch_size) if i == num_windows + 1: curr_index = len(y_true) window_smoothed_errors = smoothed_errors[prev_index:curr_index] window_y_true = y_true[prev_index:curr_index] epsilon, sd_threshold = compute_threshold(window_smoothed_errors, error_buffer) window_anom_indices = get_anomalies( window_smoothed_errors, window_y_true, sd_threshold, i, anomalies_indices, error_buffer ) # get anomalies from inverse of smoothed errors # This was done in the implementation of NASA paper but # wasn't referenced in the paper # we get the inverse by flipping around the mean mu = np.mean(window_smoothed_errors) smoothed_errors_inv = [mu + (mu - e) for e in window_smoothed_errors] epsilon_inv, sd_inv = compute_threshold(smoothed_errors_inv, error_buffer) inv_anom_indices = get_anomalies( smoothed_errors_inv, window_y_true, sd_inv, i, anomalies_indices, len(y_true) ) anomalies_indices = list(set(anomalies_indices + inv_anom_indices)) anomalies_indices.extend([i_a + i * batch_size for i_a in window_anom_indices]) # group anomalies anomalies_indices = sorted(list(set(anomalies_indices))) anomalies_groups = [list(group) for group in mit.consecutive_groups(anomalies_indices)] anomaly_sequences = [(g[0], g[-1]) for g in anomalies_groups if not g[0] == g[-1]] # generate "scores" for anomalies based on the max distance from epsilon for each sequence anomalies_scores = [] for e_seq in anomaly_sequences: denominator = np.mean(smoothed_errors) + np.std(smoothed_errors) score = max([ abs(smoothed_errors[x] - epsilon) / denominator for x in range(e_seq[0], e_seq[1]) ]) anomalies_scores.append(score) return anomaly_sequences, anomalies_scores def compute_threshold(smoothed_errors, error_buffer, sd_limit=12.0): """Helper method for `extract_anomalies` method. Calculates the epsilon (threshold) for anomalies. """ mu = np.mean(smoothed_errors) sigma = np.std(smoothed_errors) max_epsilon = 0 sd_threshold = sd_limit # The treshold is determined dynamically by testing multiple Zs. # z is drawn from an ordered set of positive values representing the # number of standard deviations above mean(smoothed_errors) # here we iterate in increments of 0.5 on the range that the NASA paper found to be good for z in np.arange(2.5, sd_limit, 0.5): epsilon = mu + (sigma * z) below_epsilon, below_indices, above_epsilon = [], [], [] for i in range(len(smoothed_errors)): e = smoothed_errors[i] if e < epsilon: # save to compute delta mean and delta std # these are important for epsilon calculation below_epsilon.append(e) below_indices.append(i) if e > epsilon: # above_epsilon values are anomalies for j in range(0, error_buffer): if (i + j) not in above_epsilon and (i + j) < len(smoothed_errors): above_epsilon.append(i + j) if (i - j) not in above_epsilon and (i - j) >= 0: above_epsilon.append(i - j) if len(above_epsilon) == 0: continue # generate sequences above_epsilon = sorted(list(set(above_epsilon))) groups = [list(group) for group in mit.consecutive_groups(above_epsilon)] above_sequences = [(g[0], g[-1]) for g in groups if not g[0] == g[-1]] mean_perc_decrease = (mu - np.mean(below_epsilon)) / mu sd_perc_decrease = (sigma - np.std(below_epsilon)) / sigma epsilon = (mean_perc_decrease + sd_perc_decrease) /\ (len(above_sequences)**2 + len(above_epsilon)) # update the largest epsilon we've seen so far if epsilon > max_epsilon: sd_threshold = z max_epsilon = epsilon # sd_threshold can be multiplied by sigma to get epsilon return max_epsilon, sd_threshold def get_anomalies(smoothed_errors, y_true, z, window, all_anomalies, error_buffer): """ Helper method to get anomalies. """ mu = np.mean(smoothed_errors) sigma = np.std(smoothed_errors) epsilon = mu + (z * sigma) # compare to epsilon errors_seq, anomaly_indices, max_error_below_e = group_consecutive_anomalies( smoothed_errors, epsilon, y_true, error_buffer, window, all_anomalies ) if len(errors_seq) > 0: anomaly_indices = prune_anomalies( errors_seq, smoothed_errors, max_error_below_e, anomaly_indices ) return anomaly_indices def group_consecutive_anomalies(smoothed_errors, epsilon, y_true, error_buffer, window, all_anomalies, batch_size=30): upper_percentile, lower_percentile = np.percentile(y_true, [95, 5]) accepted_range = upper_percentile - lower_percentile minimum_index = 100 # have a cutoff value for anomalies until model is trained enough anomaly_indices = [] max_error_below_e = 0 for i in range(len(smoothed_errors)): if smoothed_errors[i] <= epsilon or smoothed_errors[i] <= 0.05 * accepted_range: # not an anomaly continue for j in range(error_buffer): if (i + j) < len(smoothed_errors) and (i + j) not in anomaly_indices: if (i + j) > minimum_index: anomaly_indices.append(i + j) if (i - j) < len(smoothed_errors) and (i - j) not in anomaly_indices: if (i - j) > minimum_index: anomaly_indices.append(i - j) # get all the errors that are below epsilon and which # weren't identified as anomalies to process them for i in range(len(smoothed_errors)): adjusted_index = i + (window - 1) * batch_size if smoothed_errors[i] > max_error_below_e and adjusted_index not in all_anomalies: if i not in anomaly_indices: max_error_below_e = smoothed_errors[i] # group anomalies into continuous sequences anomaly_indices = sorted(list(set(anomaly_indices))) groups = [list(group) for group in mit.consecutive_groups(anomaly_indices)] e_seq = [(g[0], g[-1]) for g in groups if g[0] != g[-1]] return e_seq, anomaly_indices, max_error_below_e def prune_anomalies(e_seq, smoothed_errors, max_error_below_e, anomaly_indices): """ Helper method that removes anomalies which don't meet a minimum separation from next anomaly. """ # min accepted perc decrease btwn max errors in anomalous sequences MIN_PERCENT_DECREASE = 0.05 e_seq_max, smoothed_errors_max = [], [] for error_seq in e_seq: if len(smoothed_errors[error_seq[0]:error_seq[1]]) > 0: sliced_errors = smoothed_errors[error_seq[0]:error_seq[1]] e_seq_max.append(max(sliced_errors)) smoothed_errors_max.append(max(sliced_errors)) smoothed_errors_max.sort(reverse=True) if max_error_below_e > 0: smoothed_errors_max.append(max_error_below_e) indices_remove = [] for i in range(len(smoothed_errors_max)): if i < len(smoothed_errors_max) - 1: delta = smoothed_errors_max[i] - smoothed_errors_max[i + 1] perc_change = delta / smoothed_errors_max[i] if perc_change < MIN_PERCENT_DECREASE: indices_remove.append(e_seq_max.index(smoothed_errors_max[i])) for index in sorted(indices_remove, reverse=True): del e_seq[index] pruned_indices = [] for i in anomaly_indices: for error_seq in e_seq: if i >= error_seq[0] and i <= error_seq[1]: pruned_indices.append(i) return pruned_indices
[ "numpy.std", "more_itertools.consecutive_groups", "numpy.percentile", "numpy.mean", "numpy.arange" ]
[((4460, 4484), 'numpy.mean', 'np.mean', (['smoothed_errors'], {}), '(smoothed_errors)\n', (4467, 4484), True, 'import numpy as np\n'), ((4497, 4520), 'numpy.std', 'np.std', (['smoothed_errors'], {}), '(smoothed_errors)\n', (4503, 4520), True, 'import numpy as np\n'), ((4884, 4913), 'numpy.arange', 'np.arange', (['(2.5)', 'sd_limit', '(0.5)'], {}), '(2.5, sd_limit, 0.5)\n', (4893, 4913), True, 'import numpy as np\n'), ((6688, 6712), 'numpy.mean', 'np.mean', (['smoothed_errors'], {}), '(smoothed_errors)\n', (6695, 6712), True, 'import numpy as np\n'), ((6725, 6748), 'numpy.std', 'np.std', (['smoothed_errors'], {}), '(smoothed_errors)\n', (6731, 6748), True, 'import numpy as np\n'), ((7589, 7619), 'numpy.percentile', 'np.percentile', (['y_true', '[95, 5]'], {}), '(y_true, [95, 5])\n', (7602, 7619), True, 'import numpy as np\n'), ((2982, 3013), 'numpy.mean', 'np.mean', (['window_smoothed_errors'], {}), '(window_smoothed_errors)\n', (2989, 3013), True, 'import numpy as np\n'), ((1428, 1469), 'numpy.mean', 'np.mean', (['errors[left_window:right_window]'], {}), '(errors[left_window:right_window])\n', (1435, 1469), True, 'import numpy as np\n'), ((3676, 3717), 'more_itertools.consecutive_groups', 'mit.consecutive_groups', (['anomalies_indices'], {}), '(anomalies_indices)\n', (3698, 3717), True, 'import more_itertools as mit\n'), ((3986, 4010), 'numpy.mean', 'np.mean', (['smoothed_errors'], {}), '(smoothed_errors)\n', (3993, 4010), True, 'import numpy as np\n'), ((4013, 4036), 'numpy.std', 'np.std', (['smoothed_errors'], {}), '(smoothed_errors)\n', (4019, 4036), True, 'import numpy as np\n'), ((8938, 8977), 'more_itertools.consecutive_groups', 'mit.consecutive_groups', (['anomaly_indices'], {}), '(anomaly_indices)\n', (8960, 8977), True, 'import more_itertools as mit\n'), ((5908, 5945), 'more_itertools.consecutive_groups', 'mit.consecutive_groups', (['above_epsilon'], {}), '(above_epsilon)\n', (5930, 5945), True, 'import more_itertools as mit\n'), ((6062, 6084), 'numpy.mean', 'np.mean', (['below_epsilon'], {}), '(below_epsilon)\n', (6069, 6084), True, 'import numpy as np\n'), ((6127, 6148), 'numpy.std', 'np.std', (['below_epsilon'], {}), '(below_epsilon)\n', (6133, 6148), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Thu Nov 7 21:27:18 2019 @author: biyef """ from PIL import Image, ImageFilter import tensorflow as tf import matplotlib.pyplot as plt import mnist_lenet5_backward import mnist_lenet5_forward import numpy as np def imageprepare(): im = Image.open('D:/workspace/machine-learning/mnist/img/origin-9.png') plt.imshow(im) plt.show() #print(type(im.getdata())) tv = list(im.getdata()) tva = [(255-x)*1.0/255.0 for x in tv] #return np.asarray(im) return tva result=imageprepare() #x = tf.placeholder(tf.float32, [None, 784]) #x = result with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32,[1, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS]) #x = tf.placeholder(tf.float32, [None, 784]) #ipt = imageprepare() #y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE]) #y = mnist_lenet5_forward.forward(x,False,None) # x = tf.placeholder(tf.float32,[ # [ipt], # mnist_lenet5_forward.IMAGE_SIZE, # mnist_lenet5_forward.IMAGE_SIZE, # mnist_lenet5_forward.NUM_CHANNELS]) # y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE]) # y = mnist_lenet5_forward.forward(x,False,None) # # ema = tf.train.ExponentialMovingAverage(mnist_lenet5_backward.MOVING_AVERAGE_DECAY) # ema_restore = ema.variables_to_restore() # saver = tf.train.Saver(ema_restore) # # correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #image = tf.image.decode_png('D:/workspace/machine-learning/mnist/img/origin-2.png') # image = tf.cast(image, tf.float32) y_conv = mnist_lenet5_forward.forward(x,False,None) #eva = mnist_lenet5_forward.forward([image],False,None) #prediction = tf.argmax(y,1) saver = tf.train.Saver() with tf.Session(graph=g) as sess: init_op = tf.global_variables_initializer() sess.run(init_op) ckpt = tf.train.get_checkpoint_state(mnist_lenet5_backward.MODEL_SAVE_PATH) saver.restore(sess, ckpt.model_checkpoint_path) reshaped_xs = np.reshape([result],( 1, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS)) # reshaped_x = np.reshape([ipt],( # [ipt], # mnist_lenet5_forward.IMAGE_SIZE, # mnist_lenet5_forward.IMAGE_SIZE, # mnist_lenet5_forward.NUM_CHANNELS)) # accuracy_score = sess.run(accuracy, feed_dict={x:reshaped_x,y_:[2]}) prediction=tf.argmax(y_conv,1) predint=prediction.eval(feed_dict={x: reshaped_xs}, session=sess) print('recognize result:') print(predint[0])
[ "matplotlib.pyplot.show", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "matplotlib.pyplot.imshow", "tensorflow.argmax", "tensorflow.Session", "PIL.Image.open", "mnist_lenet5_forward.forward", "tensorflow.placeholder", "numpy.reshape", "tensorflow.Graph", "tensorflow.train.get_checkpoint_state" ]
[((282, 348), 'PIL.Image.open', 'Image.open', (['"""D:/workspace/machine-learning/mnist/img/origin-9.png"""'], {}), "('D:/workspace/machine-learning/mnist/img/origin-9.png')\n", (292, 348), False, 'from PIL import Image, ImageFilter\n'), ((353, 367), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {}), '(im)\n', (363, 367), True, 'import matplotlib.pyplot as plt\n'), ((372, 382), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (380, 382), True, 'import matplotlib.pyplot as plt\n'), ((653, 789), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[1, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE,\n mnist_lenet5_forward.NUM_CHANNELS]'], {}), '(tf.float32, [1, mnist_lenet5_forward.IMAGE_SIZE,\n mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS])\n', (667, 789), True, 'import tensorflow as tf\n'), ((1805, 1849), 'mnist_lenet5_forward.forward', 'mnist_lenet5_forward.forward', (['x', '(False)', 'None'], {}), '(x, False, None)\n', (1833, 1849), False, 'import mnist_lenet5_forward\n'), ((1954, 1970), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1968, 1970), True, 'import tensorflow as tf\n'), ((1981, 2000), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'g'}), '(graph=g)\n', (1991, 2000), True, 'import tensorflow as tf\n'), ((2028, 2061), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2059, 2061), True, 'import tensorflow as tf\n'), ((2104, 2172), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['mnist_lenet5_backward.MODEL_SAVE_PATH'], {}), '(mnist_lenet5_backward.MODEL_SAVE_PATH)\n', (2133, 2172), True, 'import tensorflow as tf\n'), ((2251, 2381), 'numpy.reshape', 'np.reshape', (['[result]', '(1, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE,\n mnist_lenet5_forward.NUM_CHANNELS)'], {}), '([result], (1, mnist_lenet5_forward.IMAGE_SIZE,\n mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS))\n', (2261, 2381), True, 'import numpy as np\n'), ((2748, 2768), 'tensorflow.argmax', 'tf.argmax', (['y_conv', '(1)'], {}), '(y_conv, 1)\n', (2757, 2768), True, 'import tensorflow as tf\n'), ((614, 624), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (622, 624), True, 'import tensorflow as tf\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import jsonlines import torch import random import numpy as np import _pickle as cPickle class Flickr30kRetrievalDatabase(torch.utils.data.Dataset): def __init__(self, imdb_path, dataset_type, test_id_file_path, hard_neg_file_path): super().__init__() self._dataset_type = dataset_type self._load_annotations(imdb_path, test_id_file_path, hard_neg_file_path) self._metadata = {} @property def metadata(self): return self._metadata @metadata.setter def metadata(self, x): self._metadata = x def _load_annotations(self, imdb_path, test_id_path, hard_neg_file_path): if self._dataset_type != "train": self.imgs = [] with jsonlines.open(imdb_path) as reader: # Build an index which maps image id with a list of caption annotations. entries = [] imgid2entry = {} count = 0 remove_ids = [] if test_id_path: remove_ids = np.load(test_id_path) remove_ids = [int(x) for x in remove_ids] for annotation in reader: image_id = int(annotation["img_path"].split(".")[0]) if self._dataset_type != "train": self.imgs.append(image_id) if self._dataset_type == "train" and int(image_id) in remove_ids: continue imgid2entry[image_id] = [] for sentences in annotation["sentences"]: entries.append({"caption": sentences, "image_id": image_id}) imgid2entry[image_id].append(count) count += 1 self._entries = entries self.imgid2entry = imgid2entry self.image_id_list = [*self.imgid2entry] if self._dataset_type == "train": with open(hard_neg_file_path, "rb") as f: image_info = cPickle.load(f) for key, value in image_info.items(): setattr(self, key, value) self.train_imgId2pool = { imageId: i for i, imageId in enumerate(self.train_image_list) } self.db_size = len(self._entries) def __len__(self): return self.db_size def __getitem__(self, idx): entry = self._entries[idx] if self._dataset_type != "train": return entry, self.imgs image_id = entry["image_id"] while True: # sample a random image: img_id2 = random.choice(self.image_id_list) if img_id2 != image_id: break entry2 = self._entries[random.choice(self.imgid2entry[img_id2])] # random image wrong while True: # sample a random image: img_id3 = random.choice(self.image_id_list) if img_id3 != image_id: break entry3 = self._entries[self.imgid2entry[img_id3][0]] if self._dataset_type == "train": # random hard caption. rand_img_id_pool = self.train_hard_pool[self.train_imgId2pool[image_id]] pool_img_idx = int( rand_img_id_pool[np.random.randint(1, len(rand_img_id_pool))] ) img_id4 = self.train_image_list[pool_img_idx] else: while True: # sample a random image: img_id4 = random.choice(self.image_id_list) if img_id4 != image_id: break entry4 = self._entries[random.choice(self.imgid2entry[img_id4])] return [entry, entry2, entry3, entry4]
[ "_pickle.load", "numpy.load", "jsonlines.open", "random.choice" ]
[((902, 927), 'jsonlines.open', 'jsonlines.open', (['imdb_path'], {}), '(imdb_path)\n', (916, 927), False, 'import jsonlines\n'), ((2703, 2736), 'random.choice', 'random.choice', (['self.image_id_list'], {}), '(self.image_id_list)\n', (2716, 2736), False, 'import random\n'), ((2827, 2867), 'random.choice', 'random.choice', (['self.imgid2entry[img_id2]'], {}), '(self.imgid2entry[img_id2])\n', (2840, 2867), False, 'import random\n'), ((2978, 3011), 'random.choice', 'random.choice', (['self.image_id_list'], {}), '(self.image_id_list)\n', (2991, 3011), False, 'import random\n'), ((3714, 3754), 'random.choice', 'random.choice', (['self.imgid2entry[img_id4]'], {}), '(self.imgid2entry[img_id4])\n', (3727, 3754), False, 'import random\n'), ((1189, 1210), 'numpy.load', 'np.load', (['test_id_path'], {}), '(test_id_path)\n', (1196, 1210), True, 'import numpy as np\n'), ((2104, 2119), '_pickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (2116, 2119), True, 'import _pickle as cPickle\n'), ((3582, 3615), 'random.choice', 'random.choice', (['self.image_id_list'], {}), '(self.image_id_list)\n', (3595, 3615), False, 'import random\n')]
""" Script for generating a reversed dictionary """ import argparse import numpy as np import sys def parse_arguments(args_to_parse): description = "Load a *.npy archive of a dictionary and swap (reverse) the dictionary keys and values around" parser = argparse.ArgumentParser(description=description) general = parser.add_argument_group('General options') general.add_argument( '-i', '--input-file', type=str, required=True, help="The file path to the word vector dictionary into *.npy format" ) general.add_argument( '-o', '--output-file', type=str, required=True, help="The target file to save the reversed dictionary" ) args = parser.parse_args(args_to_parse) return args def main(args): wordvec = np.load(args.input_file).item() reversed_wordvec = {str(v): k for k, v in wordvec.items()} np.save(args.output_file, reversed_wordvec) if __name__=='__main__': args = parse_arguments(sys.argv[1:]) main(args)
[ "numpy.load", "numpy.save", "argparse.ArgumentParser" ]
[((264, 312), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'description'}), '(description=description)\n', (287, 312), False, 'import argparse\n'), ((877, 920), 'numpy.save', 'np.save', (['args.output_file', 'reversed_wordvec'], {}), '(args.output_file, reversed_wordvec)\n', (884, 920), True, 'import numpy as np\n'), ((778, 802), 'numpy.load', 'np.load', (['args.input_file'], {}), '(args.input_file)\n', (785, 802), True, 'import numpy as np\n')]
import numpy as np import cv2 import glob import sys sys.path.append("../") import calipy Rt_path = "./CameraData/Rt.json" TVRt_path = "./Cameradata/TVRt.json" Rt_back_to_front = calipy.Transform(Rt_path).inv() Rt_TV_to_back = calipy.Transform(TVRt_path) Rt_TV_to_front = Rt_back_to_front.dot(Rt_TV_to_back) #origin = calipy.Transform() #ren = calipy.vtkRenderer() #ren.addCamera("front_cam", Rt_TV_to_front.inv().R, Rt_TV_to_front.inv().T, cs=0.3) #ren.addCamera("back_cam", Rt_TV_to_back.inv().R, Rt_TV_to_back.inv().T, cs=0.5) #TV_width = 1.70 #TV_height = 0.95 #objectPoints = np.array( [ [0,0,0], # [TV_width, 0, 0], # [0, TV_height,0], # [TV_width, TV_height, 0] ] ).astype(np.float64) #tvpoints_on_camera = np.transpose(objectPoints) #ren.addLines("TV", np.transpose(tvpoints_on_camera), [0,1,3,2,0]) ##ren.addCamera("TV_origin", TVRt.R, TVRt.T, cs=0.5) #ren.render() #exit() origin = calipy.Transform() ren = calipy.vtkRenderer() ren.addCamera("front_cam", cs=0.5) ren.addCamera("back_cam", Rt_back_to_front.R, Rt_back_to_front.T, cs=0.5) TV_width = 1.70 TV_height = 0.95 objectPoints = np.array( [ [0,0,0], [TV_width, 0, 0], [0, TV_height,0], [TV_width, TV_height, 0] ] ).astype(np.float64) tvpoints_on_camera = Rt_TV_to_front.move(np.transpose(objectPoints)) ren.addLines("TV", np.transpose(tvpoints_on_camera), [0,1,3,2,0]) #ren.addCamera("TV_origin", TVRt.R, TVRt.T, cs=0.5) ren.render() Rt_back_to_front.saveJson("./CameraData/Rt_back_to_front.json") Rt_TV_to_front.saveJson("./CameraData/Rt_TV_to_front.json")
[ "sys.path.append", "numpy.transpose", "calipy.Transform", "calipy.vtkRenderer", "numpy.array" ]
[((53, 75), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (68, 75), False, 'import sys\n'), ((229, 256), 'calipy.Transform', 'calipy.Transform', (['TVRt_path'], {}), '(TVRt_path)\n', (245, 256), False, 'import calipy\n'), ((950, 968), 'calipy.Transform', 'calipy.Transform', ([], {}), '()\n', (966, 968), False, 'import calipy\n'), ((975, 995), 'calipy.vtkRenderer', 'calipy.vtkRenderer', ([], {}), '()\n', (993, 995), False, 'import calipy\n'), ((1353, 1379), 'numpy.transpose', 'np.transpose', (['objectPoints'], {}), '(objectPoints)\n', (1365, 1379), True, 'import numpy as np\n'), ((1400, 1432), 'numpy.transpose', 'np.transpose', (['tvpoints_on_camera'], {}), '(tvpoints_on_camera)\n', (1412, 1432), True, 'import numpy as np\n'), ((181, 206), 'calipy.Transform', 'calipy.Transform', (['Rt_path'], {}), '(Rt_path)\n', (197, 206), False, 'import calipy\n'), ((1155, 1243), 'numpy.array', 'np.array', (['[[0, 0, 0], [TV_width, 0, 0], [0, TV_height, 0], [TV_width, TV_height, 0]]'], {}), '([[0, 0, 0], [TV_width, 0, 0], [0, TV_height, 0], [TV_width,\n TV_height, 0]])\n', (1163, 1243), True, 'import numpy as np\n')]
from .generator_traj import generate_traj, EmptyError from .motion_type import random_rot from ..features.prePostTools import traj_to_dist import numpy as np def generate_n_steps(N, nstep, ndim, sub=False, noise_level=0.25): add = 0 if ndim == 3: add = 1 size = nstep X_train = np.zeros((N, size, (5 + add))) if sub: Y_trains = np.zeros((N, size, 10)) Y_train_cat = np.zeros((N, 27)) else: Y_trains = np.zeros((N, size, 7)) Y_train_cat = np.zeros((N, 12)) Y_train_traj = [] # 12 for i in range(N): # for i in range(1000): # if i % 1000 == 0: # print i sigma = max(np.random.normal(0.5, 1), 0.05) step = max(np.random.normal(1, 1), 0.2) tryagain = True while tryagain: try: clean = 4 if size >= 50: clean = 8 clean = False """ ModelN,Model_num,s,sc,real_traj,norm,Z = generate_traj(size,sub=True, clean=clean,diff_sigma=2.0, delta_sigma_directed=1.,ndim=ndim, anisentropy=0.1,deltav=0.2,rho_fixed=False) """ clean = 4 ModelN, Model_num, s, sc, real_traj, norm, Z = generate_traj(size, sub=sub, clean=clean, diff_sigma=2.0, delta_sigma_directed=6., ndim=ndim, anisentropy=0.1, deltav=.4, rho_fixed=False, random_rotation=False) mu = 2 Ra0 = [0, 1.] alpharot = 2 * 3.14 * np.random.random() dt = real_traj[1:] - real_traj[:-1] std = np.mean(np.sum(dt**2, axis=1) / 3)**0.5 noise_l = noise_level * np.random.rand() real_traj += np.random.normal(0, noise_l * std, real_traj.shape) real_traj = random_rot(real_traj, alpharot, ndim=ndim) # print real_traj.shape alligned_traj, normed, alpha, _ = traj_to_dist(real_traj, ndim=ndim) simple = True if not simple: real_traj1 = np.array([Propertie(real_traj[::, 0]).smooth(2), Propertie(real_traj[::, 1]).smooth(2)]) alligned_traj1, normed1, alpha1, _ = traj_to_dist(real_traj1.T, ndim=ndim) real_traj2 = np.array([Propertie(real_traj[::, 0]).smooth(5), Propertie(real_traj[::, 1]).smooth(5)]) alligned_traj2, normed2, alpha2, _ = traj_to_dist(real_traj2.T, ndim=ndim) normed = np.concatenate((normed[::, :4], normed1[::, :4], normed2), axis=1) for zero in Z: normed[zero, ::] = 0 tryagain = False except: tryagain = True Y_train_traj.append(real_traj) X_train[i] = normed Y_trains[i][range(size), np.array(sc, dtype=np.int)] = 1 Y_train_cat[i, Model_num] = 1 return X_train, Y_trains, Y_train_cat, Y_train_traj # print np.sum(np.isnan(X_train))
[ "numpy.sum", "numpy.zeros", "numpy.random.random", "numpy.array", "numpy.random.normal", "numpy.random.rand", "numpy.concatenate" ]
[((307, 335), 'numpy.zeros', 'np.zeros', (['(N, size, 5 + add)'], {}), '((N, size, 5 + add))\n', (315, 335), True, 'import numpy as np\n'), ((370, 393), 'numpy.zeros', 'np.zeros', (['(N, size, 10)'], {}), '((N, size, 10))\n', (378, 393), True, 'import numpy as np\n'), ((416, 433), 'numpy.zeros', 'np.zeros', (['(N, 27)'], {}), '((N, 27))\n', (424, 433), True, 'import numpy as np\n'), ((463, 485), 'numpy.zeros', 'np.zeros', (['(N, size, 7)'], {}), '((N, size, 7))\n', (471, 485), True, 'import numpy as np\n'), ((508, 525), 'numpy.zeros', 'np.zeros', (['(N, 12)'], {}), '((N, 12))\n', (516, 525), True, 'import numpy as np\n'), ((683, 707), 'numpy.random.normal', 'np.random.normal', (['(0.5)', '(1)'], {}), '(0.5, 1)\n', (699, 707), True, 'import numpy as np\n'), ((734, 756), 'numpy.random.normal', 'np.random.normal', (['(1)', '(1)'], {}), '(1, 1)\n', (750, 756), True, 'import numpy as np\n'), ((2264, 2315), 'numpy.random.normal', 'np.random.normal', (['(0)', '(noise_l * std)', 'real_traj.shape'], {}), '(0, noise_l * std, real_traj.shape)\n', (2280, 2315), True, 'import numpy as np\n'), ((3454, 3480), 'numpy.array', 'np.array', (['sc'], {'dtype': 'np.int'}), '(sc, dtype=np.int)\n', (3462, 3480), True, 'import numpy as np\n'), ((2043, 2061), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (2059, 2061), True, 'import numpy as np\n'), ((2218, 2234), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2232, 2234), True, 'import numpy as np\n'), ((3125, 3189), 'numpy.concatenate', 'np.concatenate', (['(normed[:, :4], normed1[:, :4], normed2)'], {'axis': '(1)'}), '((normed[:, :4], normed1[:, :4], normed2), axis=1)\n', (3139, 3189), True, 'import numpy as np\n'), ((2145, 2168), 'numpy.sum', 'np.sum', (['(dt ** 2)'], {'axis': '(1)'}), '(dt ** 2, axis=1)\n', (2151, 2168), True, 'import numpy as np\n')]
import numpy as np, networkx as nx, math from scipy.sparse.csgraph import dijkstra from scipy.sparse import csr_matrix, identity def make_Zs(Y,ind1,ind0,pscores1,pscores0,subsample=False): """Generates vector of Z_i's, used to construct HT estimator. Parameters ---------- Y : numpy float array n-dimensional outcome vector. ind1 : numpy boolean array n-dimensional vector of indicators for first exposure mapping. ind0 : numpy boolean array n-dimensional vector of indicators for second exposure mapping. pscores1 : numpy float array n-dimensional vector of probabilities of first exposure mapping for each unit. pscores0 : numpy float array n-dimensional vector of probabilities of second exposure mapping for each unit subsample : numpy boolean array When set to an object that's not a numpy array, the function will define subsample to be an n-dimensional array of ones, meaning it is assumed that all n units are included in the population. Otherwise, it must be an boolean array of the same dimension as Z where True components indicate population inclusion. Returns ------- n-dimensional numpy float array, where entries corresponding to the True entries of subsample are equal to the desired Z's, and entries corresponding to False subsample entries are set to -1000. """ if type(subsample) != np.ndarray: subsample = np.ones(Y.size, dtype=bool) i1 = ind1[subsample] i0 = ind0[subsample] ps1 = pscores1[subsample] ps0 = pscores0[subsample] weight1 = i1.copy().astype('float') weight0 = i0.copy().astype('float') weight1[weight1 == 1] = i1[weight1 == 1] / ps1[weight1 == 1] weight0[weight0 == 1] = i0[weight0 == 1] / ps0[weight0 == 1] Z = np.ones(Y.size) * (-1000) # filler entries that won't be used Z[subsample] = Y[subsample] * (weight1 - weight0) return Z def network_SE(Zs, A, subsample=False, K=0, exp_nbhd=True, disp=False, b=-1): """Network-dependence robust standard errors. Returns our standard errors for the sample mean of each array in Zs. Parameters ---------- Zs : a list of numpy float arrays Each array is n-dimensional. A : NetworkX undirected graph Graph on n nodes. NOTE: Assumes nodes are labeled 0 through n-1, so that the data for node i is given by the ith component of each array in Zs. subsample : numpy boolean array When set to an object that's not a numpy array, the function will define subsample to be an n-dimensional array of ones, meaning it is assumed that all n units are included in the population. Otherwise, it must be an boolean array of the same dimension as each array in Zs where True components indicate population inclusion. K : integer K used to define the K-neighborhood exposure mapping. exp_nbhd : boolean Boolean for whether neighborhood growth is exponential (True) or polynomial (False). Used to determine recommended bandwidth. b : float User-specified bandwidth. If a negative value is specified, function will compute our recommended bandwidth choice. disp : boolean Boolean for whether to also return more than just the SE (see below). Returns ------- SE : float List of network-dependence robust standard error, one for each array of Zs. APL : float Average path length of A. b : int Bandwidth. PSD_failure : list of booleans True if substitute PSD variance estimator needed to be used for that component of Zs. """ if type(Zs) == np.ndarray: is_list = False Z_list = [Zs] # handle case where Zs is just an array else: is_list = True Z_list = Zs if type(subsample) != np.ndarray: subsample = np.ones(Z_list[0].size, dtype=bool) # handle case where subsample is False n = subsample.sum() SEs = [] PSD_failures = [] if b == 0: for Z in Z_list: SEs.append(Z[subsample].std() / math.sqrt(subsample.sum())) # iid SE APL = 0 PSD_failures.append(False) else: # compute path distances G = nx.to_scipy_sparse_matrix(A, nodelist=range(A.number_of_nodes()), format='csr') dist_matrix = dijkstra(csgraph=G, directed=False, unweighted=True) Gcc = [A.subgraph(c).copy() for c in sorted(nx.connected_components(A), key=len, reverse=True)] giant = [i for i in Gcc[0]] # set of nodes in giant component APL = dist_matrix[np.ix_(giant,giant)].sum() / len(giant) / (len(giant)-1) # average path length # default bandwidth if b < 0: b = round(APL/2) if exp_nbhd else round(APL**(1/3)) # rec bandwidth b = max(2*K,b) weights = dist_matrix <= b # weight matrix for Z in Z_list: Zc = Z[subsample] - Z[subsample].mean() # demeaned data # default variance estimator (not guaranteed PSD) var_est = Zc.dot(weights[np.ix_(subsample,subsample)].dot(Zc[:,None])) / n # PSD variance estimator from the older draft (Leung, 2019) if var_est <= 0: PSD_failures.append(True) if b < 0: b = round(APL/4) if exp_nbhd else round(APL**(1/3)) # rec bandwidth b = max(K,b) b_neighbors = dist_matrix <= b row_sums = np.squeeze(b_neighbors.dot(np.ones(Z.size)[:,None])) b_norm = b_neighbors / np.sqrt(row_sums)[:,None] weights = b_norm.dot(b_norm.T) var_est = Zc.dot(weights[np.ix_(subsample,subsample)].dot(Zc[:,None])) / n else: PSD_failures.append(False) SEs.append(math.sqrt(var_est / n)) if disp: if is_list: return SEs, APL, b, PSD_failures else: return SEs[0], APL, b, PSD_failures else: if is_list: return SEs else: return SEs[0]
[ "math.sqrt", "numpy.ix_", "numpy.ones", "networkx.connected_components", "scipy.sparse.csgraph.dijkstra", "numpy.sqrt" ]
[((1433, 1460), 'numpy.ones', 'np.ones', (['Y.size'], {'dtype': 'bool'}), '(Y.size, dtype=bool)\n', (1440, 1460), True, 'import numpy as np, networkx as nx, math\n'), ((1789, 1804), 'numpy.ones', 'np.ones', (['Y.size'], {}), '(Y.size)\n', (1796, 1804), True, 'import numpy as np, networkx as nx, math\n'), ((3827, 3862), 'numpy.ones', 'np.ones', (['Z_list[0].size'], {'dtype': 'bool'}), '(Z_list[0].size, dtype=bool)\n', (3834, 3862), True, 'import numpy as np, networkx as nx, math\n'), ((4299, 4351), 'scipy.sparse.csgraph.dijkstra', 'dijkstra', ([], {'csgraph': 'G', 'directed': '(False)', 'unweighted': '(True)'}), '(csgraph=G, directed=False, unweighted=True)\n', (4307, 4351), False, 'from scipy.sparse.csgraph import dijkstra\n'), ((5764, 5786), 'math.sqrt', 'math.sqrt', (['(var_est / n)'], {}), '(var_est / n)\n', (5773, 5786), False, 'import numpy as np, networkx as nx, math\n'), ((4404, 4430), 'networkx.connected_components', 'nx.connected_components', (['A'], {}), '(A)\n', (4427, 4430), True, 'import numpy as np, networkx as nx, math\n'), ((5515, 5532), 'numpy.sqrt', 'np.sqrt', (['row_sums'], {}), '(row_sums)\n', (5522, 5532), True, 'import numpy as np, networkx as nx, math\n'), ((4552, 4572), 'numpy.ix_', 'np.ix_', (['giant', 'giant'], {}), '(giant, giant)\n', (4558, 4572), True, 'import numpy as np, networkx as nx, math\n'), ((5450, 5465), 'numpy.ones', 'np.ones', (['Z.size'], {}), '(Z.size)\n', (5457, 5465), True, 'import numpy as np, networkx as nx, math\n'), ((5031, 5059), 'numpy.ix_', 'np.ix_', (['subsample', 'subsample'], {}), '(subsample, subsample)\n', (5037, 5059), True, 'import numpy as np, networkx as nx, math\n'), ((5629, 5657), 'numpy.ix_', 'np.ix_', (['subsample', 'subsample'], {}), '(subsample, subsample)\n', (5635, 5657), True, 'import numpy as np, networkx as nx, math\n')]
# THE FOLLOWING CODE CAN BE USED IN YOUR SAGEMAKER NOTEBOOK TO TEST AN UPLOADED IMAGE TO YOUR S3 BUCKET AGAINST YOUR MODEL import os import urllib.request import boto3 from IPython.display import Image import cv2 import json import numpy as np # input the S3 bucket you are using for this project and the file path for a folder and file that contains your uploaded test image test_image_bucket = 'deeplens-sagemaker-socksortingeast' test_image_name = 'testimages/image0.jpeg' tmp_file_name = 'tmp-test-image-jpg' resized_file_name = 'resized-test-image.jpg' s3 = boto3.client('s3') with open(tmp_file_name, 'wb') as f: s3.download_fileobj(test_image_bucket, test_image_name, f) # width W = 500 oriimg = cv2.imread(tmp_file_name) height, width, depth = oriimg.shape # scale the image imgScale = W/width newX,newY = oriimg.shape[1].imgScale, oriimg.shape[0]*imgScale newimg = cv2.resize(oriimg, (int(newX),int(newY))) cv2.imwrite(resized_file_name, newimg) with open(resized_file_name, 'rb') as f: payload = f.read() payload = bytearray(payload) result = json.loads(ic_classifier.predict(payload, initial_args={'ContentType': 'application/x-image'})) # find the index of the class that matches the test image with the highest probability index = np.argmax(result) # input your own output categories object_categories = ['BlueStripes', 'DarkGray', 'IronMan'] print("Result: label - " + object_categories[index] + ", probability - " + str(result[index])) print() print(result) print(ic._current_job_name) Image(resized_file_name)
[ "boto3.client", "numpy.argmax", "cv2.imwrite", "cv2.imread", "IPython.display.Image" ]
[((567, 585), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (579, 585), False, 'import boto3\n'), ((712, 737), 'cv2.imread', 'cv2.imread', (['tmp_file_name'], {}), '(tmp_file_name)\n', (722, 737), False, 'import cv2\n'), ((925, 963), 'cv2.imwrite', 'cv2.imwrite', (['resized_file_name', 'newimg'], {}), '(resized_file_name, newimg)\n', (936, 963), False, 'import cv2\n'), ((1263, 1280), 'numpy.argmax', 'np.argmax', (['result'], {}), '(result)\n', (1272, 1280), True, 'import numpy as np\n'), ((1520, 1544), 'IPython.display.Image', 'Image', (['resized_file_name'], {}), '(resized_file_name)\n', (1525, 1544), False, 'from IPython.display import Image\n')]
import numpy as np from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import auc from sklearn.metrics import matthews_corrcoef from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from scripts.visualization import plot_roc_curve from scripts.visualization import plot_precision_recall_curve from scripts.visualization import plot_confusion_matrix def to_labels(pos_probs, threshold): return (pos_probs >= threshold).astype('int') def get_cut_off_threshold_from_precision_recall(precision:list, recall:list, thresholds:list)->int: try: # convert to f score fscore = (2 * precision * recall) / (precision + recall) # locate the index of the largest f score ix = np.argmax(fscore) print('PR-curve threshold=%f, F-Score=%.3f' % (thresholds[ix], fscore[ix])) return ix except Exception as error: raise Exception('Caught this error: ' + repr(error)) def get_cut_off_threshold_through_iteration(pos_probs:list, y_test:list)->float: """ Extracts cut off thresholds by itrating all possible values up to 3 decimal places from 0.0001-1. Returns the value maximizes macro f1 score. """ try: # define thresholds thresholds = np.arange(0, 1, 0.0001) # evaluate each threshold scores = [f1_score(y_test, to_labels(pos_probs, t), average='macro') for t in thresholds] # get best threshold ix = np.argmax(scores) print('Threshold=%.3f, Best macro F1-Score=%.5f' % (thresholds[ix], scores[ix])) return thresholds[ix] except Exception as error: raise Exception('Caught this error: ' + repr(error)) def get_evaluation_report(test_set:list, prediction_proba:list, labels:list, threshold:float = None, plot:str='precision-recall', save_path:str = None)->dict: """ Args: test_set:list -> original target values prediction_proba:list -> extension to use for serializing labels:list -> target label names threshold:float -> Probability cut off threshold plot:str -> roc or precision-recall save_path:str -> save directory """ try: auc_score = 0 if plot=='roc': fpr, tpr, _ = roc_curve(test_set, prediction_proba) auc_score = roc_auc_score(test_set, prediction_proba) plot_roc_curve(auc_score, fpr, tpr) elif plot=='precision-recall': precision, recall, thresholds = precision_recall_curve(test_set, prediction_proba) auc_score = auc(recall, precision) no_skill = np.sum(test_set==1)/test_set.shape ix = get_cut_off_threshold_from_precision_recall(precision, recall, thresholds) best_threshold_pos = (recall[ix], precision[ix]) plot_precision_recall_curve(auc_score, recall, precision, best_threshold_pos, round(no_skill[0], 2), save_path) #threshold = round(thresholds[ix], 3) if not threshold else None if not threshold: threshold = get_cut_off_threshold_through_iteration(prediction_proba, test_set) predictions = prediction_proba>threshold cr = classification_report(test_set, predictions, target_names=labels) cm = confusion_matrix(test_set, predictions) mcc = matthews_corrcoef(test_set, predictions) print('\n',cr) print('Matthews correlation coefficient: ', mcc) plot_confusion_matrix(cm, labels, save_path=save_path) return {'threshold':threshold, 'auc':auc_score, 'mcc':mcc, 'confusion_matrix': cm, 'classification_report':classification_report(test_set, predictions, target_names=labels, output_dict=True)} except Exception as error: raise Exception('Caught this error: ' + repr(error))
[ "numpy.sum", "scripts.visualization.plot_roc_curve", "sklearn.metrics.roc_curve", "numpy.argmax", "scripts.visualization.plot_confusion_matrix", "sklearn.metrics.classification_report", "sklearn.metrics.roc_auc_score", "sklearn.metrics.precision_recall_curve", "sklearn.metrics.auc", "sklearn.metrics.matthews_corrcoef", "numpy.arange", "sklearn.metrics.confusion_matrix" ]
[((1023, 1040), 'numpy.argmax', 'np.argmax', (['fscore'], {}), '(fscore)\n', (1032, 1040), True, 'import numpy as np\n'), ((1546, 1569), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.0001)'], {}), '(0, 1, 0.0001)\n', (1555, 1569), True, 'import numpy as np\n'), ((1746, 1763), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (1755, 1763), True, 'import numpy as np\n'), ((3875, 3940), 'sklearn.metrics.classification_report', 'classification_report', (['test_set', 'predictions'], {'target_names': 'labels'}), '(test_set, predictions, target_names=labels)\n', (3896, 3940), False, 'from sklearn.metrics import classification_report\n'), ((3954, 3993), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['test_set', 'predictions'], {}), '(test_set, predictions)\n', (3970, 3993), False, 'from sklearn.metrics import confusion_matrix\n'), ((4009, 4049), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', (['test_set', 'predictions'], {}), '(test_set, predictions)\n', (4026, 4049), False, 'from sklearn.metrics import matthews_corrcoef\n'), ((4149, 4203), 'scripts.visualization.plot_confusion_matrix', 'plot_confusion_matrix', (['cm', 'labels'], {'save_path': 'save_path'}), '(cm, labels, save_path=save_path)\n', (4170, 4203), False, 'from scripts.visualization import plot_confusion_matrix\n'), ((2725, 2762), 'sklearn.metrics.roc_curve', 'roc_curve', (['test_set', 'prediction_proba'], {}), '(test_set, prediction_proba)\n', (2734, 2762), False, 'from sklearn.metrics import roc_curve\n'), ((2787, 2828), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['test_set', 'prediction_proba'], {}), '(test_set, prediction_proba)\n', (2800, 2828), False, 'from sklearn.metrics import roc_auc_score\n'), ((2841, 2876), 'scripts.visualization.plot_roc_curve', 'plot_roc_curve', (['auc_score', 'fpr', 'tpr'], {}), '(auc_score, fpr, tpr)\n', (2855, 2876), False, 'from scripts.visualization import plot_roc_curve\n'), ((4456, 4543), 'sklearn.metrics.classification_report', 'classification_report', (['test_set', 'predictions'], {'target_names': 'labels', 'output_dict': '(True)'}), '(test_set, predictions, target_names=labels,\n output_dict=True)\n', (4477, 4543), False, 'from sklearn.metrics import classification_report\n'), ((2962, 3012), 'sklearn.metrics.precision_recall_curve', 'precision_recall_curve', (['test_set', 'prediction_proba'], {}), '(test_set, prediction_proba)\n', (2984, 3012), False, 'from sklearn.metrics import precision_recall_curve\n'), ((3037, 3059), 'sklearn.metrics.auc', 'auc', (['recall', 'precision'], {}), '(recall, precision)\n', (3040, 3059), False, 'from sklearn.metrics import auc\n'), ((3083, 3104), 'numpy.sum', 'np.sum', (['(test_set == 1)'], {}), '(test_set == 1)\n', (3089, 3104), True, 'import numpy as np\n')]
##################################################################################################################### ##################################################################################################################### # See how TROPOMI NO2 responds to the Suez Canal blockage # When downloading the data, look at a larger domain (Suez and its surrounding + Mediterranean Sea) import os import glob import numpy as np import pandas as pd from netCDF4 import Dataset import xarray as xr ''' Note on this Suez Canal blockage Blockage period: 23-29 March 2021 Data download period: 5 January - 26 April 2021 Domain (lon_min,lat_min,lon_max,lat_max): -20,5,60,50 Corresponding hour windows for data donwload: [6,7,8,9,10,11,12,13,14] First test: sample weekly data before, during and after the blockage, get maps and time serires plot Second test: get daily maps and combine with GeoViews ''' ##################################################################################################################### # build a function to read oversampled TROPOMI NO2 as pandas dataframes def read_oversampled_NO2(TROPOMI_oversampled_NO2_output_file): '''read the output file for oversampled TROPOMI NO2''' df = pd.read_csv(TROPOMI_oversampled_NO2_output_file,sep="\s+",header=None) df = df.iloc[:,2:7] df.columns = ['lat','lon','NO2','Count','NO2_uncertainty'] return df ##################################################################################################################### # the spatial coverage may not be consistent on different days or during different weeks # read all the data from the weekly results os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output') Oversampled_NO2_files = sorted(glob.glob("Oversample_output_Suez_NO2_week*"), key=lambda x: int(x.split("_")[-2])) print(*Oversampled_NO2_files,sep="\n") oversampled_data = [read_oversampled_NO2(file) for file in Oversampled_NO2_files] # use all the data ever sampled to decide the max dimension lat_min = [] lat_max = [] lon_min = [] lon_max = [] for i in range(len(oversampled_data)): lat_min.append(oversampled_data[i].lat.min()) lat_max.append(oversampled_data[i].lat.max()) lon_min.append(oversampled_data[i].lon.min()) lon_max.append(oversampled_data[i].lon.max()) lat_min = min(lat_min) lat_max = max(lat_max) lon_min = min(lon_min) lon_max = max(lon_max) # check the full dimension print("lat_min:",lat_min) print("lat_max:",lat_max) print("lon_min:",lon_min) print("lon_max:",lon_max) # With the dimension above and the resolution, we can create a consistent domain ("the full grid") # so that we can combine the data from different days/weeks together # first list all the lats and lons: use (min,max+1/2 resolutions, resolution) to keep the max value in Python # just round the floats created by Python to be safe # as the "pd.merge" step later will require the values of "keys" to be excatly the same Res = 0.05 domain_lat = np.arange(lat_min,lat_max+Res/2,Res,dtype=None) domain_lon = np.arange(lon_min,lon_max+Res/2,Res,dtype=None) domain_lat = np.round(domain_lat,3) domain_lon = np.round(domain_lon,3) # build a function to create a "full grid" by listing the full combinations of lats and lons in the domain def expand_grid(lat,lon): '''list all combinations of lats and lons using expand_grid(lat,lon)''' test = [(A,B) for A in lat for B in lon] test = np.array(test) test_lat = test[:,0] test_lon = test[:,1] full_grid = pd.DataFrame({'lat': test_lat, 'lon': test_lon}) return full_grid # create the "full grid" domain_grid = expand_grid(domain_lat,domain_lon) print(domain_grid) ################################################################################################ # Now we can read each single dataset and match it with the full grid # Step 1> select the oversampled data os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output') # change input time to read daily data or weekly data time = 'week_1' Oversampled_NO2_file = "Oversample_output_Suez_NO2_"+str(time)+"_0.05" # check the selected data print(Oversampled_NO2_file) # Step 2> feed the oversampled data into this data cleaning routine # read oversampled NO2 data NO2_data = read_oversampled_NO2(Oversampled_NO2_file) # combine the data with the full domain grids NO2_data = pd.merge(domain_grid,NO2_data,how='left', on=['lat','lon']) NO2_data = NO2_data.sort_values(by=['lat','lon'], ascending=[True, True]) # reshape the variables from 1D in the dataframe to the map dimension NO2 = NO2_data['NO2'].values.reshape(len(domain_lat),len(domain_lon)) NO2_uncertainty = NO2_data['NO2_uncertainty'].values.reshape(len(domain_lat),len(domain_lon)) Count = NO2_data['Count'].values.reshape(len(domain_lat),len(domain_lon)) # convert to xarray for plotting NO2_xarray = xr.DataArray(NO2, coords=[('lat', domain_lat),('lon', domain_lon)]) NO2_uncertainty_xarray = xr.DataArray(NO2_uncertainty, coords=[('lat', domain_lat),('lon', domain_lon)]) Count_xarray = xr.DataArray(Count, coords=[('lat', domain_lat),('lon', domain_lon)]) # but it is complicated to save out the results one by one for multiple days or weeks ################################################################################################ ################################################################################################ # So here we use the list comprehensions to process multiple files ################# # weekly data os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output') # select the files and sort them numerically Oversampled_NO2_files_weekly = sorted(glob.glob("Oversample_output_Suez_NO2_week*"), key=lambda x: int(x.split("_")[-2])) print(*Oversampled_NO2_files_weekly,sep="\n") # read oversampled data and match with the "full grid" Oversampled_NO2_week = [read_oversampled_NO2(file) for file in Oversampled_NO2_files_weekly] Oversampled_NO2_week = [pd.merge(domain_grid,data,how='left', on=['lat','lon']) for data in Oversampled_NO2_week] Oversampled_NO2_week = [data.sort_values(by=['lat','lon'], ascending=[True, True]) for data in Oversampled_NO2_week] # convert the data to the xarray format for plotting NO2_week = [data['NO2'].values.reshape(len(domain_lat),len(domain_lon)) for data in Oversampled_NO2_week] NO2_week_xr = [xr.DataArray(data, coords=[('lat', domain_lat),('lon', domain_lon)]) for data in NO2_week] ################# # daily data os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output') # select the files and sort them numerically Oversampled_NO2_files_daily = sorted(glob.glob("Oversample_output_Suez_NO2_day*"), key=lambda x: int(x.split("_")[-2])) print(*Oversampled_NO2_files_daily,sep="\n") # read oversampled data and match with the "full grid" Oversampled_NO2_day = [read_oversampled_NO2(file) for file in Oversampled_NO2_files_daily] Oversampled_NO2_day = [pd.merge(domain_grid,data,how='left', on=['lat','lon']) for data in Oversampled_NO2_day] Oversampled_NO2_day = [data.sort_values(by=['lat','lon'], ascending=[True, True]) for data in Oversampled_NO2_day] # convert the data to the xarray format for plotting NO2_day = [data['NO2'].values.reshape(len(domain_lat),len(domain_lon)) for data in Oversampled_NO2_day] NO2_day_xr = [xr.DataArray(data, coords=[('lat', domain_lat),('lon', domain_lon)]) for data in NO2_day] ################################################################################################ # Start making maps to have a quick look at the results # avoid setting "%matplotlib inline" as it is time consuming when we need to produce many figures import matplotlib.pyplot as plt import cartopy.crs as crs import geopandas as gpd # read shape file (Global high resolution shoreline database from NOAA: https://www.ngdc.noaa.gov/mgg/shorelines/) # use "full reolution" here to avoid misrepresentation of land and water os.chdir("/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/shapefiles/gshhg-shp-2.3.7/GSHHS_shp/f") world_shore = gpd.read_file("GSHHS_f_L1.shp") ################################################################################################ # build a function to quickly generate maps without a legend to save space on a slide def quick_plot(input_xr,plot_domain,var_min,var_max,output_figure_name): ''' Input a xarray data array, define the map domain, provide the min and max of the values on map. Provide a outputfile name. ''' # set the figure size, the aspect ratio is set to be 2:1 due to the sampling region fig = plt.figure(figsize=[20,10]) # set the map projection and domain: https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html#cartopy-projection ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent(plot_domain) # plot the value on map im = input_xr.plot(ax=ax,cmap='jet',vmin=var_min,vmax=var_max) # add shapefile ax.add_geometries(world_shore.geometry, crs=ccrs.PlateCarree(),edgecolor='black',facecolor='none') # remove the colorbar and tile plt.delaxes(fig.axes[1]) ax.set_title('') # save out fig.savefig(output_figure_name, dpi=100,bbox_inches='tight') # close the figure to avoid taking CPU memory plt.close() ################################################################################################ # build a function to generatet the bar for the figures above def plot_color_bar(input_xr,plot_domain,label,var_min,var_max,output_figure_name): ''' Draw the figure in the same way as above, but remove the plot rather than the colorbar. ''' fig = plt.figure(figsize=[20,10]) cbar_keys = {'shrink': 1, 'pad' : 0.05,'orientation':'horizontal','label':label} # set the map projection: https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html#cartopy-projection ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent(plot_domain) # plotthe value on map im = input_xr.plot(ax=ax,cmap='jet',cbar_kwargs=cbar_keys,vmin=var_min,vmax=var_max) # set color bar label size plt.rcParams.update({'font.size':25}) ax.xaxis.label.set_size(25) # remove the plot plt.delaxes(fig.axes[0]) # save out fig.savefig(output_figure_name, dpi=100,bbox_inches='tight') # close the figure to avoid taking CPU memory plt.close() ################################################################################################ # check again the data for plotting print("weekly data:",len(NO2_week_xr)) print("daily data:",len(NO2_day_xr)) # generate corresponding output file names # weekly maps Suez_weeks = list(range(1,17)) Suez_weeks = [str('Suez_NO2_map_week_') + str(week_number) for week_number in Suez_weeks] print(*Suez_weeks,sep="\n") # daily maps Suez_days = list(range(1,29)) Suez_days = [str('Suez_NO2_map_day_') + str(date_number) for date_number in Suez_days] print(*Suez_days,sep="\n") ################################################################################################ # output multiple plots together os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures') # maps during the blockage # week 12 # day 8-14 # plot weekly data # plot over the big domain [lon_min,lon_max,lat_min,lat_max] Suez_domain_big = [-20,60,5,50] for i in range(len(NO2_week_xr)): quick_plot(NO2_week_xr[i],Suez_domain_big,0,2,Suez_weeks[i]+str('_big')) # plot over the small domain [lon_min,lon_max,lat_min,lat_max] Suez_domain_small = [26,60,10,35] for i in range(len(NO2_week_xr)): quick_plot(NO2_week_xr[i],Suez_domain_small,0,2,Suez_weeks[i]+str('_small')) # generate the color bar at the end plot_color_bar(NO2_week_xr[0],Suez_domain_small,'NO$_2$ tropospheric column [$10^{15}$ molec. cm$^{-2}$]',0,2,"Suez_NO2_color_bar") # plot daily data # plot over the small domain [lon_min,lon_max,lat_min,lat_max] Suez_domain_small = [26,60,10,35] for i in range(len(NO2_day_xr)): quick_plot(NO2_day_xr[i],Suez_domain_small,0,2,Suez_days[i]+str('_small')) ################################################################################################ ################################################################################################ # Use GeoViews to combine the maps together in time series # load GeoViews package import geoviews as gv import geoviews.feature as gf import cartopy.crs as crs # it is important to check your geoviews version, some commands may not work in a wrong version # this script is written under version 1.9.1 print(gv.__version__) # there are two backends ('bokeh', 'matplotlib') for the GeoViews # later we will use "bokeh" for interactive plots ################################################################################################ # weekly maps # list all the weeks Suez_weeks = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16'] print(*Suez_weeks,sep="\n") # combine the xarray data arrays from weekly results # make a copy first weekly_data = NO2_week_xr.copy() # add the variable name weekly_data = [data.rename('NO2') for data in weekly_data] # add a time dimension to the data for i in range(len(NO2_week_xr)): NO2_week_xr[i] = NO2_week_xr[i].assign_coords(week=Suez_weeks[i]) NO2_week_xr[i] = NO2_week_xr[i].expand_dims('week') # combine the data together NO2_week_xr_combined = xr.concat(NO2_week_xr,'week') # you can zoom in and change maps, so normally there is no need to make a small map # but if you have to reduce the file size, you can subset over the small domain # weekly_data = [data.sel(lat=slice(10,35),lon = slice(26,60)) for data in weekly_data] # check the results NO2_week_xr_combined # output the plots # first move to the output directory os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures') # turn on "bokeh" backend to enable interactive map gv.extension('bokeh') # extract data from the combined xarray gv_data = gv.Dataset(NO2_week_xr_combined,['lon','lat','week'],'NO2',crs=crs.PlateCarree()) # use the data to generate the geoviews image gv_image = gv_data.to(gv.Image) # decide features of the output figure gv_image_out = gv_image.opts(cmap='jet', clim=(0,2), colorbar=True, width=800, height=500) * gf.coastline # save out the interactive map renderer = gv.renderer('bokeh') renderer.save(gv_image_out, 'weekly_maps') ################################################################################################ # daily maps # list all the dates def list_dates_between(start_date,end_date): '''Select TROPOMI files within the start date ('yyyymmdd') and end date ('yyyymmdd')''' # list all the dates between the start and the end from datetime import date, timedelta start_date = date(int(start_date[0:4]),int(start_date[4:6]),int(start_date[6:8])) end_date = date(int(end_date[0:4]),int(end_date[4:6]),int(end_date[6:8])) delta = end_date - start_date sampling_dates = [] for i in range(delta.days + 1): sampling_dates.append((start_date + timedelta(days=i)).strftime('%Y%m%d')) # print out all the sampling dates return sampling_dates # list all the dates Suez_days = list_dates_between("20210316","20210412") print("number of days:",len(Suez_days)) print(*Suez_days,sep="\n") # combine the xarray data arrays from daily results # make a copy first daily_data = NO2_day_xr.copy() # add the variable name daily_data = [data.rename('NO2') for data in daily_data] # add a time dimension to the data for i in range(len(NO2_day_xr)): NO2_day_xr[i] = NO2_day_xr[i].assign_coords(date=Suez_days[i]) NO2_day_xr[i] = NO2_day_xr[i].expand_dims('date') # combine the data together NO2_day_xr_combined = xr.concat(NO2_day_xr,'date') # check the results NO2_day_xr_combined # output the plots # first move to the output directory os.chdir('/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures') # turn on "bokeh" backend to enable interactive map gv.extension('bokeh') # extract data from the combined xarray gv_data = gv.Dataset(NO2_day_xr_combined,['lon','lat','date'],'NO2',crs=crs.PlateCarree()) # use the data to generate the geoviews image gv_image = gv_data.to(gv.Image) # decide features of the output figure gv_image_out = gv_image.opts(cmap='jet', clim=(0,2), colorbar=True, width=800, height=500) * gf.coastline # save out the interactive map renderer = gv.renderer('bokeh') renderer.save(gv_image_out, 'daily_maps') # For now, the default coastline from GeoViews is used # If you can crop and create your own shapefile, you should be able to use high resolution shorelines from NOAA # Think about how to do this with geopandas ##################################################################################################################### #####################################################################################################################
[ "pandas.read_csv", "geoviews.extension", "matplotlib.pyplot.figure", "numpy.arange", "glob.glob", "geoviews.renderer", "numpy.round", "os.chdir", "pandas.DataFrame", "matplotlib.pyplot.close", "pandas.merge", "matplotlib.pyplot.rcParams.update", "datetime.timedelta", "geopandas.read_file", "xarray.concat", "matplotlib.pyplot.delaxes", "numpy.array", "xarray.DataArray", "cartopy.crs.PlateCarree" ]
[((1696, 1819), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output'\n )\n", (1704, 1819), False, 'import os\n'), ((3108, 3162), 'numpy.arange', 'np.arange', (['lat_min', '(lat_max + Res / 2)', 'Res'], {'dtype': 'None'}), '(lat_min, lat_max + Res / 2, Res, dtype=None)\n', (3117, 3162), True, 'import numpy as np\n'), ((3170, 3224), 'numpy.arange', 'np.arange', (['lon_min', '(lon_max + Res / 2)', 'Res'], {'dtype': 'None'}), '(lon_min, lon_max + Res / 2, Res, dtype=None)\n', (3179, 3224), True, 'import numpy as np\n'), ((3235, 3258), 'numpy.round', 'np.round', (['domain_lat', '(3)'], {}), '(domain_lat, 3)\n', (3243, 3258), True, 'import numpy as np\n'), ((3272, 3295), 'numpy.round', 'np.round', (['domain_lon', '(3)'], {}), '(domain_lon, 3)\n', (3280, 3295), True, 'import numpy as np\n'), ((4033, 4156), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output'\n )\n", (4041, 4156), False, 'import os\n'), ((4573, 4635), 'pandas.merge', 'pd.merge', (['domain_grid', 'NO2_data'], {'how': '"""left"""', 'on': "['lat', 'lon']"}), "(domain_grid, NO2_data, how='left', on=['lat', 'lon'])\n", (4581, 4635), True, 'import pandas as pd\n'), ((5072, 5140), 'xarray.DataArray', 'xr.DataArray', (['NO2'], {'coords': "[('lat', domain_lat), ('lon', domain_lon)]"}), "(NO2, coords=[('lat', domain_lat), ('lon', domain_lon)])\n", (5084, 5140), True, 'import xarray as xr\n'), ((5166, 5251), 'xarray.DataArray', 'xr.DataArray', (['NO2_uncertainty'], {'coords': "[('lat', domain_lat), ('lon', domain_lon)]"}), "(NO2_uncertainty, coords=[('lat', domain_lat), ('lon', domain_lon)]\n )\n", (5178, 5251), True, 'import xarray as xr\n'), ((5262, 5332), 'xarray.DataArray', 'xr.DataArray', (['Count'], {'coords': "[('lat', domain_lat), ('lon', domain_lon)]"}), "(Count, coords=[('lat', domain_lat), ('lon', domain_lon)])\n", (5274, 5332), True, 'import xarray as xr\n'), ((5723, 5846), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output'\n )\n", (5731, 5846), False, 'import os\n'), ((6746, 6869), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Oversample_output'\n )\n", (6754, 6869), False, 'import os\n'), ((8257, 8380), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/shapefiles/gshhg-shp-2.3.7/GSHHS_shp/f"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/shapefiles/gshhg-shp-2.3.7/GSHHS_shp/f'\n )\n", (8265, 8380), False, 'import os\n'), ((8386, 8417), 'geopandas.read_file', 'gpd.read_file', (['"""GSHHS_f_L1.shp"""'], {}), "('GSHHS_f_L1.shp')\n", (8399, 8417), True, 'import geopandas as gpd\n'), ((11533, 11646), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures'\n )\n", (11541, 11646), False, 'import os\n'), ((13932, 13962), 'xarray.concat', 'xr.concat', (['NO2_week_xr', '"""week"""'], {}), "(NO2_week_xr, 'week')\n", (13941, 13962), True, 'import xarray as xr\n'), ((14327, 14440), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures'\n )\n", (14335, 14440), False, 'import os\n'), ((14487, 14508), 'geoviews.extension', 'gv.extension', (['"""bokeh"""'], {}), "('bokeh')\n", (14499, 14508), True, 'import geoviews as gv\n'), ((14924, 14944), 'geoviews.renderer', 'gv.renderer', (['"""bokeh"""'], {}), "('bokeh')\n", (14935, 14944), True, 'import geoviews as gv\n'), ((16385, 16414), 'xarray.concat', 'xr.concat', (['NO2_day_xr', '"""date"""'], {}), "(NO2_day_xr, 'date')\n", (16394, 16414), True, 'import xarray as xr\n'), ((16521, 16634), 'os.chdir', 'os.chdir', (['"""/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures"""'], {}), "(\n '/rds/projects/2018/maraisea-glu-01/Study/Research_Data/TROPOMI/project_2_Suez_Canal/Figures'\n )\n", (16529, 16634), False, 'import os\n'), ((16681, 16702), 'geoviews.extension', 'gv.extension', (['"""bokeh"""'], {}), "('bokeh')\n", (16693, 16702), True, 'import geoviews as gv\n'), ((17117, 17137), 'geoviews.renderer', 'gv.renderer', (['"""bokeh"""'], {}), "('bokeh')\n", (17128, 17137), True, 'import geoviews as gv\n'), ((1262, 1335), 'pandas.read_csv', 'pd.read_csv', (['TROPOMI_oversampled_NO2_output_file'], {'sep': '"""\\\\s+"""', 'header': 'None'}), "(TROPOMI_oversampled_NO2_output_file, sep='\\\\s+', header=None)\n", (1273, 1335), True, 'import pandas as pd\n'), ((1842, 1887), 'glob.glob', 'glob.glob', (['"""Oversample_output_Suez_NO2_week*"""'], {}), "('Oversample_output_Suez_NO2_week*')\n", (1851, 1887), False, 'import glob\n'), ((3567, 3581), 'numpy.array', 'np.array', (['test'], {}), '(test)\n', (3575, 3581), True, 'import numpy as np\n'), ((3651, 3699), 'pandas.DataFrame', 'pd.DataFrame', (["{'lat': test_lat, 'lon': test_lon}"], {}), "({'lat': test_lat, 'lon': test_lon})\n", (3663, 3699), True, 'import pandas as pd\n'), ((5924, 5969), 'glob.glob', 'glob.glob', (['"""Oversample_output_Suez_NO2_week*"""'], {}), "('Oversample_output_Suez_NO2_week*')\n", (5933, 5969), False, 'import glob\n'), ((6232, 6290), 'pandas.merge', 'pd.merge', (['domain_grid', 'data'], {'how': '"""left"""', 'on': "['lat', 'lon']"}), "(domain_grid, data, how='left', on=['lat', 'lon'])\n", (6240, 6290), True, 'import pandas as pd\n'), ((6619, 6688), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('lat', domain_lat), ('lon', domain_lon)]"}), "(data, coords=[('lat', domain_lat), ('lon', domain_lon)])\n", (6631, 6688), True, 'import xarray as xr\n'), ((6946, 6990), 'glob.glob', 'glob.glob', (['"""Oversample_output_Suez_NO2_day*"""'], {}), "('Oversample_output_Suez_NO2_day*')\n", (6955, 6990), False, 'import glob\n'), ((7249, 7307), 'pandas.merge', 'pd.merge', (['domain_grid', 'data'], {'how': '"""left"""', 'on': "['lat', 'lon']"}), "(domain_grid, data, how='left', on=['lat', 'lon'])\n", (7257, 7307), True, 'import pandas as pd\n'), ((7630, 7699), 'xarray.DataArray', 'xr.DataArray', (['data'], {'coords': "[('lat', domain_lat), ('lon', domain_lon)]"}), "(data, coords=[('lat', domain_lat), ('lon', domain_lon)])\n", (7642, 7699), True, 'import xarray as xr\n'), ((8927, 8955), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[20, 10]'}), '(figsize=[20, 10])\n', (8937, 8955), True, 'import matplotlib.pyplot as plt\n'), ((9449, 9473), 'matplotlib.pyplot.delaxes', 'plt.delaxes', (['fig.axes[1]'], {}), '(fig.axes[1])\n', (9460, 9473), True, 'import matplotlib.pyplot as plt\n'), ((9638, 9649), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (9647, 9649), True, 'import matplotlib.pyplot as plt\n'), ((10025, 10053), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[20, 10]'}), '(figsize=[20, 10])\n', (10035, 10053), True, 'import matplotlib.pyplot as plt\n'), ((10509, 10547), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 25}"], {}), "({'font.size': 25})\n", (10528, 10547), True, 'import matplotlib.pyplot as plt\n'), ((10614, 10638), 'matplotlib.pyplot.delaxes', 'plt.delaxes', (['fig.axes[0]'], {}), '(fig.axes[0])\n', (10625, 10638), True, 'import matplotlib.pyplot as plt\n'), ((10789, 10800), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10798, 10800), True, 'import matplotlib.pyplot as plt\n'), ((14627, 14644), 'cartopy.crs.PlateCarree', 'crs.PlateCarree', ([], {}), '()\n', (14642, 14644), True, 'import cartopy.crs as crs\n'), ((16820, 16837), 'cartopy.crs.PlateCarree', 'crs.PlateCarree', ([], {}), '()\n', (16835, 16837), True, 'import cartopy.crs as crs\n'), ((15677, 15694), 'datetime.timedelta', 'timedelta', ([], {'days': 'i'}), '(days=i)\n', (15686, 15694), False, 'from datetime import date, timedelta\n')]
import torch import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.distributions as dists import numpy as np import scipy.io import foolbox import input_data import argparse from tqdm import tqdm import data_loader import math import os import tensorflow as tf from cleverhans.attacks import FastGradientMethod from cleverhans.model import CallableModelWrapper from cleverhans.utils import AccuracyReport from cleverhans.utils_pytorch import convert_pytorch_model_to_tf parser = argparse.ArgumentParser() parser.add_argument('--use_dropout', default=False, action='store_true') parser.add_argument('--normalize', default=False, action='store_true') parser.add_argument('--load', default=False, action='store_true') parser.add_argument('--train_samples', type=int, default=1) parser.add_argument('--n_samples', type=int, default=100) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--wd', type=float, default=0) parser.add_argument('--lam', type=float, default=1e-7) parser.add_argument('--n_hidden', type=int, default=100) parser.add_argument('--n_hidden_hypernet', type=int, default=50) parser.add_argument('--batch_size', type=int, default=200) parser.add_argument('--n_iter', type=int, default=100) parser.add_argument('--randseed', type=int, default=9999) args = parser.parse_args() np.random.seed(args.randseed) torch.manual_seed(args.randseed) name = 'mlcdn' if args.use_dropout: name = 'dropout' os.makedirs('./results/cifar', exist_ok=True) os.makedirs('./models/cifar', exist_ok=True) # Load training data trainset, testset = data_loader.load_dataset('cifar10_pretrained') class ProbHypernet(nn.Module): def __init__(self, in_dim, out_dim, h_dim=100): super(ProbHypernet, self).__init__() self.in_dim = in_dim + 1 self.out_dim = out_dim self.h_dim = h_dim self.M = nn.Parameter(torch.randn(self.in_dim, out_dim)) self.fc_xh = nn.Linear(in_dim, h_dim) nn.init.uniform_(self.fc_xh.weight, -0.0001, 0.0001) self.fc_hmu = nn.Linear(h_dim, self.in_dim) nn.init.uniform_(self.fc_hmu.weight, -0.0001, 0.0001) self.fc_hlogvar_in = nn.Linear(h_dim, self.in_dim) nn.init.uniform_(self.fc_hlogvar_in.weight, -0.0001, 0.0001) self.fc_hlogvar_out = nn.Linear(h_dim, out_dim) nn.init.uniform_(self.fc_hlogvar_out.weight, -0.0001, 0.0001) def forward(self, x, output_weight_params=False): m = x.shape[0] r, c = self.in_dim, self.out_dim h = self.fc_xh(x) h = F.relu(h) mu_scaling = self.fc_hmu(h) logvar_r = self.fc_hlogvar_in(h) logvar_c = self.fc_hlogvar_out(h) M = self.M M = mu_scaling.view(m, r, 1) * M # Broadcasted: M is (m, r, c) var_r = torch.exp(logvar_r) var_c = torch.exp(logvar_c) E = torch.randn(m, r, c, device='cuda') # Reparametrization trick W = M + torch.sqrt(var_r).view(m, r, 1) * E * torch.sqrt(var_c).view(m, 1, c) # KL divergence to prior MVN(0, I, I) D_KL = torch.mean( 1/2 * (torch.sum(var_r, 1)*torch.sum(var_c, 1) \ + torch.norm(M.view(m, -1), dim=1)**2 \ - r*c - c*torch.sum(logvar_r, 1) - r*torch.sum(logvar_c, 1)) ) x = torch.cat([x, torch.ones(m, 1, device='cuda')], 1) h = torch.bmm(x.unsqueeze(1), W).squeeze() if output_weight_params: return h, D_KL, (M, var_r, var_c) else: return h, D_KL class Model(nn.Module): def __init__(self, h_dim=100, h_dim_hypernet=50, use_dropout=False): super(Model, self).__init__() self.use_dropout = use_dropout if not self.use_dropout: self.fc_xh = ProbHypernet(1024, h_dim, h_dim_hypernet) self.fc_hy = ProbHypernet(h_dim, 10, h_dim_hypernet) else: self.fc_xh = nn.Linear(1024, h_dim) self.fc_hy = nn.Linear(h_dim, 10) def forward(self, X): X = X.squeeze() if not self.use_dropout: h, D_KL1 = self.fc_xh(X) h = F.relu(h) y, D_KL2 = self.fc_hy(h) return (y, D_KL1+D_KL2) if self.training else y else: h = F.relu(self.fc_xh(X)) if self.use_dropout: h = F.dropout(h, p=0.5, training=True) y = self.fc_hy(h) return y def validate(m=args.batch_size): model.eval() val_acc = 0 total = 0 for x, y in testset: x = x.cuda() y_i = model.forward(x) val_acc += np.sum(y_i.argmax(dim=1).cpu().numpy() == y.numpy()) total += x.shape[0] model.train() return val_acc/total """ Training """ S = args.train_samples m = args.batch_size lr = args.lr lam = args.lam h_dim = args.n_hidden h_dim_hypernet = args.n_hidden_hypernet model = Model(h_dim, h_dim_hypernet, args.use_dropout).cuda() print(f'Parameter count: {np.sum([value.numel() for value in model.parameters()])}') if args.load: model.load_state_dict(torch.load(f'models/cifar/model_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.bin')) else: opt = optim.Adam(model.parameters(), lr, weight_decay=args.wd) pbar = tqdm(range(args.n_iter)) for i in pbar: for x, y in trainset: x = x.cuda() y = y.cuda() if not args.use_dropout: log_p_y = [] D_KL = 0 for _ in range(S): y_s, D_KL = model.forward(x) log_p_y_s = dists.Categorical(logits=y_s).log_prob(y) log_p_y.append(log_p_y_s) loss = -torch.mean(torch.logsumexp(torch.stack(log_p_y), 0) - math.log(S)) loss += args.lam*D_KL else: out = model.forward(x) loss = F.cross_entropy(out, y) loss.backward() nn.utils.clip_grad_value_(model.parameters(), 5) opt.step() opt.zero_grad() val_acc = validate(m) pbar.set_description(f'[Loss: {loss.data.item():.3f}; val acc: {val_acc:.3f}]') # Save model if not args.load: torch.save(model.state_dict(), f'models/cifar/model_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.bin') """ =============================== Validate ======================================= """ def test(): model.eval() y = [] t = [] for x_test, y_test in testset: x_test = x_test.cuda() y_i = model.forward(x_test) y.append(F.softmax(y_i, dim=1).cpu().data.numpy()) t.append(y_test) y = np.concatenate(y, 0) t = np.concatenate(t) return y, t y_val = 0 for _ in tqdm(range(args.n_samples)): y_s, t = test() y_val += 1/args.n_samples*y_s # Print accuracy acc = np.mean(y_val.argmax(1) == t) print(f'Test accuracy on CIFAR-10: {acc:.3f}') """ ======================= Adversarial examples experiments ======================= """ model.eval() input_shape = (None, 3, 32, 32) trainset, testset = data_loader.load_dataset('cifar10') pretrained_model = torchvision.models.densenet121(pretrained=True).cuda() pretrained_model = torch.nn.Sequential(*(list(pretrained_model.children())[:-1])) pretrained_model.eval() model = nn.Sequential(pretrained_model, model) model.eval() # We use tf for evaluation on adversarial data config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) x_op = tf.placeholder(tf.float32, shape=input_shape) # Convert pytorch model to a tf_model and wrap it in cleverhans tf_model_fn = convert_pytorch_model_to_tf(model, out_dims=10) cleverhans_model = CallableModelWrapper(tf_model_fn, output_layer='logits') adv_accs = [] adv_ents = [] def test_tf(use_adv=True): preds = [] y_test = [] total = 0 for x, y in testset: x = x.permute(0, 3, 1, 2) if use_adv: pred = sess.run(adv_preds_op, feed_dict={x_op: x}) pred = F.softmax(torch.from_numpy(pred), 1).numpy() else: pred = model.forward(x.cuda()) pred = F.softmax(pred, 1).cpu().data.numpy() preds.append(pred) y_test.append(y) total += x.shape[0] if total >= 1000: break preds = np.concatenate(preds, 0) y_test = np.concatenate(y_test, 0) return np.nan_to_num(preds), y_test adv_preds = 0 for _ in tqdm(range(args.n_samples)): preds, y_test = test_tf(False) adv_preds += 1/args.n_samples * preds # Compute acc and entropy acc = (np.argmax(adv_preds, axis=1) == y_test).mean() ent = (-adv_preds*np.log(adv_preds+1e-8)).sum(1).mean() adv_accs.append(acc) adv_ents.append(ent) print('Adv accuracy: {:.3f}'.format(acc)) print('Avg entropy: {:.3f}'.format(ent)) for eps in np.arange(0.1, 1.01, 0.1): # Create an FGSM attack fgsm_op = FastGradientMethod(cleverhans_model, sess=sess) fgsm_params = {'eps': eps, 'clip_min': 0., 'clip_max': 1.} adv_x_op = fgsm_op.generate(x_op, **fgsm_params) adv_preds_op = tf_model_fn(adv_x_op) # Run an evaluation of our model against fgsm # Use M data adv_preds = 0 for _ in tqdm(range(args.n_samples)): preds, y_test = test_tf() adv_preds += 1/args.n_samples * preds # Compute acc and entropy acc = (np.argmax(adv_preds, axis=1) == y_test).mean() ent = (-adv_preds*np.log(adv_preds+1e-8)).sum(1).mean() adv_accs.append(acc) adv_ents.append(ent) print('Adv accuracy: {:.3f}'.format(acc)) print('Avg entropy: {:.3f}'.format(ent)) sess.close() # Save data np.save(f'results/cifar/accs_adv_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.npy', adv_accs) np.save(f'results/cifar/ents_adv_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.npy', adv_ents)
[ "numpy.random.seed", "argparse.ArgumentParser", "data_loader.load_dataset", "numpy.nan_to_num", "numpy.argmax", "torch.sqrt", "torch.nn.init.uniform_", "cleverhans.attacks.FastGradientMethod", "torch.nn.functional.dropout", "torch.randn", "tensorflow.ConfigProto", "numpy.arange", "cleverhans.utils_pytorch.convert_pytorch_model_to_tf", "torch.ones", "torch.load", "tensorflow.placeholder", "torch.exp", "torch.nn.Linear", "torch.nn.functional.relu", "math.log", "numpy.save", "torch.manual_seed", "tensorflow.Session", "torch.nn.functional.cross_entropy", "cleverhans.model.CallableModelWrapper", "torch.sum", "numpy.concatenate", "torch.from_numpy", "os.makedirs", "numpy.log", "torch.nn.Sequential", "torch.stack", "torchvision.models.densenet121", "torch.nn.functional.softmax", "torch.distributions.Categorical" ]
[((542, 567), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (565, 567), False, 'import argparse\n'), ((1379, 1408), 'numpy.random.seed', 'np.random.seed', (['args.randseed'], {}), '(args.randseed)\n', (1393, 1408), True, 'import numpy as np\n'), ((1409, 1441), 'torch.manual_seed', 'torch.manual_seed', (['args.randseed'], {}), '(args.randseed)\n', (1426, 1441), False, 'import torch\n'), ((1502, 1547), 'os.makedirs', 'os.makedirs', (['"""./results/cifar"""'], {'exist_ok': '(True)'}), "('./results/cifar', exist_ok=True)\n", (1513, 1547), False, 'import os\n'), ((1548, 1592), 'os.makedirs', 'os.makedirs', (['"""./models/cifar"""'], {'exist_ok': '(True)'}), "('./models/cifar', exist_ok=True)\n", (1559, 1592), False, 'import os\n'), ((1635, 1681), 'data_loader.load_dataset', 'data_loader.load_dataset', (['"""cifar10_pretrained"""'], {}), "('cifar10_pretrained')\n", (1659, 1681), False, 'import data_loader\n'), ((7165, 7200), 'data_loader.load_dataset', 'data_loader.load_dataset', (['"""cifar10"""'], {}), "('cifar10')\n", (7189, 7200), False, 'import data_loader\n'), ((7389, 7427), 'torch.nn.Sequential', 'nn.Sequential', (['pretrained_model', 'model'], {}), '(pretrained_model, model)\n', (7402, 7427), True, 'import torch.nn as nn\n'), ((7499, 7515), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (7513, 7515), True, 'import tensorflow as tf\n'), ((7562, 7587), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (7572, 7587), True, 'import tensorflow as tf\n'), ((7595, 7640), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': 'input_shape'}), '(tf.float32, shape=input_shape)\n', (7609, 7640), True, 'import tensorflow as tf\n'), ((7721, 7768), 'cleverhans.utils_pytorch.convert_pytorch_model_to_tf', 'convert_pytorch_model_to_tf', (['model'], {'out_dims': '(10)'}), '(model, out_dims=10)\n', (7748, 7768), False, 'from cleverhans.utils_pytorch import convert_pytorch_model_to_tf\n'), ((7788, 7844), 'cleverhans.model.CallableModelWrapper', 'CallableModelWrapper', (['tf_model_fn'], {'output_layer': '"""logits"""'}), "(tf_model_fn, output_layer='logits')\n", (7808, 7844), False, 'from cleverhans.model import CallableModelWrapper\n'), ((8923, 8948), 'numpy.arange', 'np.arange', (['(0.1)', '(1.01)', '(0.1)'], {}), '(0.1, 1.01, 0.1)\n', (8932, 8948), True, 'import numpy as np\n'), ((9766, 9890), 'numpy.save', 'np.save', (['f"""results/cifar/accs_adv_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.npy"""', 'adv_accs'], {}), "(\n f'results/cifar/accs_adv_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.npy'\n , adv_accs)\n", (9773, 9890), True, 'import numpy as np\n'), ((9881, 10005), 'numpy.save', 'np.save', (['f"""results/cifar/ents_adv_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.npy"""', 'adv_ents'], {}), "(\n f'results/cifar/ents_adv_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.npy'\n , adv_ents)\n", (9888, 10005), True, 'import numpy as np\n'), ((6736, 6756), 'numpy.concatenate', 'np.concatenate', (['y', '(0)'], {}), '(y, 0)\n', (6750, 6756), True, 'import numpy as np\n'), ((6765, 6782), 'numpy.concatenate', 'np.concatenate', (['t'], {}), '(t)\n', (6779, 6782), True, 'import numpy as np\n'), ((8409, 8433), 'numpy.concatenate', 'np.concatenate', (['preds', '(0)'], {}), '(preds, 0)\n', (8423, 8433), True, 'import numpy as np\n'), ((8447, 8472), 'numpy.concatenate', 'np.concatenate', (['y_test', '(0)'], {}), '(y_test, 0)\n', (8461, 8472), True, 'import numpy as np\n'), ((8993, 9040), 'cleverhans.attacks.FastGradientMethod', 'FastGradientMethod', (['cleverhans_model'], {'sess': 'sess'}), '(cleverhans_model, sess=sess)\n', (9011, 9040), False, 'from cleverhans.attacks import FastGradientMethod\n'), ((1993, 2017), 'torch.nn.Linear', 'nn.Linear', (['in_dim', 'h_dim'], {}), '(in_dim, h_dim)\n', (2002, 2017), True, 'import torch.nn as nn\n'), ((2026, 2078), 'torch.nn.init.uniform_', 'nn.init.uniform_', (['self.fc_xh.weight', '(-0.0001)', '(0.0001)'], {}), '(self.fc_xh.weight, -0.0001, 0.0001)\n', (2042, 2078), True, 'import torch.nn as nn\n'), ((2102, 2131), 'torch.nn.Linear', 'nn.Linear', (['h_dim', 'self.in_dim'], {}), '(h_dim, self.in_dim)\n', (2111, 2131), True, 'import torch.nn as nn\n'), ((2140, 2193), 'torch.nn.init.uniform_', 'nn.init.uniform_', (['self.fc_hmu.weight', '(-0.0001)', '(0.0001)'], {}), '(self.fc_hmu.weight, -0.0001, 0.0001)\n', (2156, 2193), True, 'import torch.nn as nn\n'), ((2224, 2253), 'torch.nn.Linear', 'nn.Linear', (['h_dim', 'self.in_dim'], {}), '(h_dim, self.in_dim)\n', (2233, 2253), True, 'import torch.nn as nn\n'), ((2262, 2322), 'torch.nn.init.uniform_', 'nn.init.uniform_', (['self.fc_hlogvar_in.weight', '(-0.0001)', '(0.0001)'], {}), '(self.fc_hlogvar_in.weight, -0.0001, 0.0001)\n', (2278, 2322), True, 'import torch.nn as nn\n'), ((2354, 2379), 'torch.nn.Linear', 'nn.Linear', (['h_dim', 'out_dim'], {}), '(h_dim, out_dim)\n', (2363, 2379), True, 'import torch.nn as nn\n'), ((2388, 2449), 'torch.nn.init.uniform_', 'nn.init.uniform_', (['self.fc_hlogvar_out.weight', '(-0.0001)', '(0.0001)'], {}), '(self.fc_hlogvar_out.weight, -0.0001, 0.0001)\n', (2404, 2449), True, 'import torch.nn as nn\n'), ((2608, 2617), 'torch.nn.functional.relu', 'F.relu', (['h'], {}), '(h)\n', (2614, 2617), True, 'import torch.nn.functional as F\n'), ((2846, 2865), 'torch.exp', 'torch.exp', (['logvar_r'], {}), '(logvar_r)\n', (2855, 2865), False, 'import torch\n'), ((2882, 2901), 'torch.exp', 'torch.exp', (['logvar_c'], {}), '(logvar_c)\n', (2891, 2901), False, 'import torch\n'), ((2915, 2950), 'torch.randn', 'torch.randn', (['m', 'r', 'c'], {'device': '"""cuda"""'}), "(m, r, c, device='cuda')\n", (2926, 2950), False, 'import torch\n'), ((5133, 5246), 'torch.load', 'torch.load', (['f"""models/cifar/model_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.bin"""'], {}), "(\n f'models/cifar/model_{name}_{h_dim}_{h_dim_hypernet}_{m}_{lr}_{args.wd}_{args.lam}_{S}.bin'\n )\n", (5143, 5246), False, 'import torch\n'), ((7220, 7267), 'torchvision.models.densenet121', 'torchvision.models.densenet121', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (7250, 7267), False, 'import torchvision\n'), ((8485, 8505), 'numpy.nan_to_num', 'np.nan_to_num', (['preds'], {}), '(preds)\n', (8498, 8505), True, 'import numpy as np\n'), ((1936, 1969), 'torch.randn', 'torch.randn', (['self.in_dim', 'out_dim'], {}), '(self.in_dim, out_dim)\n', (1947, 1969), False, 'import torch\n'), ((3978, 4000), 'torch.nn.Linear', 'nn.Linear', (['(1024)', 'h_dim'], {}), '(1024, h_dim)\n', (3987, 4000), True, 'import torch.nn as nn\n'), ((4026, 4046), 'torch.nn.Linear', 'nn.Linear', (['h_dim', '(10)'], {}), '(h_dim, 10)\n', (4035, 4046), True, 'import torch.nn as nn\n'), ((4185, 4194), 'torch.nn.functional.relu', 'F.relu', (['h'], {}), '(h)\n', (4191, 4194), True, 'import torch.nn.functional as F\n'), ((8680, 8708), 'numpy.argmax', 'np.argmax', (['adv_preds'], {'axis': '(1)'}), '(adv_preds, axis=1)\n', (8689, 8708), True, 'import numpy as np\n'), ((3386, 3417), 'torch.ones', 'torch.ones', (['m', '(1)'], {'device': '"""cuda"""'}), "(m, 1, device='cuda')\n", (3396, 3417), False, 'import torch\n'), ((4399, 4433), 'torch.nn.functional.dropout', 'F.dropout', (['h'], {'p': '(0.5)', 'training': '(True)'}), '(h, p=0.5, training=True)\n', (4408, 4433), True, 'import torch.nn.functional as F\n'), ((5954, 5977), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['out', 'y'], {}), '(out, y)\n', (5969, 5977), True, 'import torch.nn.functional as F\n'), ((9489, 9517), 'numpy.argmax', 'np.argmax', (['adv_preds'], {'axis': '(1)'}), '(adv_preds, axis=1)\n', (9498, 9517), True, 'import numpy as np\n'), ((8745, 8770), 'numpy.log', 'np.log', (['(adv_preds + 1e-08)'], {}), '(adv_preds + 1e-08)\n', (8751, 8770), True, 'import numpy as np\n'), ((3040, 3057), 'torch.sqrt', 'torch.sqrt', (['var_c'], {}), '(var_c)\n', (3050, 3057), False, 'import torch\n'), ((3325, 3347), 'torch.sum', 'torch.sum', (['logvar_c', '(1)'], {}), '(logvar_c, 1)\n', (3334, 3347), False, 'import torch\n'), ((8121, 8143), 'torch.from_numpy', 'torch.from_numpy', (['pred'], {}), '(pred)\n', (8137, 8143), False, 'import torch\n'), ((9558, 9583), 'numpy.log', 'np.log', (['(adv_preds + 1e-08)'], {}), '(adv_preds + 1e-08)\n', (9564, 9583), True, 'import numpy as np\n'), ((3002, 3019), 'torch.sqrt', 'torch.sqrt', (['var_r'], {}), '(var_r)\n', (3012, 3019), False, 'import torch\n'), ((3298, 3320), 'torch.sum', 'torch.sum', (['logvar_r', '(1)'], {}), '(logvar_r, 1)\n', (3307, 3320), False, 'import torch\n'), ((5656, 5685), 'torch.distributions.Categorical', 'dists.Categorical', ([], {'logits': 'y_s'}), '(logits=y_s)\n', (5673, 5685), True, 'import torch.distributions as dists\n'), ((5823, 5834), 'math.log', 'math.log', (['S'], {}), '(S)\n', (5831, 5834), False, 'import math\n'), ((5796, 5816), 'torch.stack', 'torch.stack', (['log_p_y'], {}), '(log_p_y)\n', (5807, 5816), False, 'import torch\n'), ((6660, 6681), 'torch.nn.functional.softmax', 'F.softmax', (['y_i'], {'dim': '(1)'}), '(y_i, dim=1)\n', (6669, 6681), True, 'import torch.nn.functional as F\n'), ((8232, 8250), 'torch.nn.functional.softmax', 'F.softmax', (['pred', '(1)'], {}), '(pred, 1)\n', (8241, 8250), True, 'import torch.nn.functional as F\n'), ((3166, 3185), 'torch.sum', 'torch.sum', (['var_r', '(1)'], {}), '(var_r, 1)\n', (3175, 3185), False, 'import torch\n'), ((3186, 3205), 'torch.sum', 'torch.sum', (['var_c', '(1)'], {}), '(var_c, 1)\n', (3195, 3205), False, 'import torch\n')]
""" From http://arxiv.org/pdf/1204.0375.pdf """ from numpy import dot, sum, tile, linalg from numpy.linalg import inv def kf_predict(X, P, A, Q, B, U): """ X: The mean state estimate of the previous step (k−1). P: The state covariance of previous step (k−1). A: The transition n × n matrix. Q: The process noise covariance matrix. B: The input effect matrix. U: The control input. """ X = dot(A, X) + dot(B, U) P = dot(A, dot(P, A.T)) + Q return(X,P) def kf_update(X, P, Y, H, R): """ K: the Kalman Gain matrix IM: the Mean of predictive distribution of Y IS: the Covariance or predictive mean of Y LH: the Predictive probability (likelihood) of measurement which is computed using the Python function gauss_pdf. """ IM = dot(H, X) IS = R + dot(H, dot(P, H.T)) K = dot(P, dot(H.T, inv(IS))) X = X + dot(K, (Y-IM)) P = P - dot(K, dot(IS, K.T)) LH = gauss_pdf(Y, IM, IS) return (X,P,K,IM,IS,LH) def gauss_pdf(X, M, S): if M.shape()[1] == 1: DX = X - tile(M, X.shape()[1]) E = 0.5 * sum(DX * (dot(inv(S), DX)), axis=0) E = E + 0.5 * M.shape()[0] * log(2 * pi) + 0.5 * log(det(S)) P = exp(-E) elif X.shape()[1] == 1: DX = tile(X, M.shape()[1])- M E = 0.5 * sum(DX * (dot(inv(S), DX)), axis=0) E = E + 0.5 * M.shape()[0] * log(2 * pi) + 0.5 * log(det(S)) P = exp(-E) else: DX = X-M E = 0.5 * dot(DX.T, dot(inv(S), DX)) E = E + 0.5 * M.shape()[0] * log(2 * pi) + 0.5 * log(det(S)) P = exp(-E) return (P[0],E[0]) from numpy import * from numpy.linalg import inv #time step of mobile movement dt = 0.1 # Initialization of state matrices X = array([[0.0], [0.0], [0.1], [0.1]]) P = diag((0.01, 0.01, 0.01, 0.01)) A = array([[1, 0, dt , 0], [0, 1, 0, dt], [0, 0, 1, 0], [0, 0, 0, 1]]) Q = eye(X.shape()[0]) B = eye(X.shape()[0]) U = zeros((X.shape()[0],1)) # Measurement matrices Y = array([[X[0,0] + abs(randn(1)[0])], [X[1,0] + abs(randn(1)[0])]]) H = array([[1, 0, 0, 0], [0, 1, 0, 0]]) R = eye(Y.shape()[0]) # Number of iterations in Kalman Filter N_iter = 50 # Applying the Kalman Filter for i in arange(0, N_iter): (X, P) = kf_predict(X, P, A, Q, B, U) (X, P, K, IM, IS, LH) = kf_update(X, P, Y, H, R) Y = array([[X[0,0] + abs(0.1 * randn(1)[0])],[X[1, 0] + abs(0.1 * randn(1)[0])]])
[ "numpy.dot", "numpy.linalg.inv" ]
[((811, 820), 'numpy.dot', 'dot', (['H', 'X'], {}), '(H, X)\n', (814, 820), False, 'from numpy import dot, sum, tile, linalg\n'), ((427, 436), 'numpy.dot', 'dot', (['A', 'X'], {}), '(A, X)\n', (430, 436), False, 'from numpy import dot, sum, tile, linalg\n'), ((439, 448), 'numpy.dot', 'dot', (['B', 'U'], {}), '(B, U)\n', (442, 448), False, 'from numpy import dot, sum, tile, linalg\n'), ((900, 914), 'numpy.dot', 'dot', (['K', '(Y - IM)'], {}), '(K, Y - IM)\n', (903, 914), False, 'from numpy import dot, sum, tile, linalg\n'), ((464, 475), 'numpy.dot', 'dot', (['P', 'A.T'], {}), '(P, A.T)\n', (467, 475), False, 'from numpy import dot, sum, tile, linalg\n'), ((841, 852), 'numpy.dot', 'dot', (['P', 'H.T'], {}), '(P, H.T)\n', (844, 852), False, 'from numpy import dot, sum, tile, linalg\n'), ((878, 885), 'numpy.linalg.inv', 'inv', (['IS'], {}), '(IS)\n', (881, 885), False, 'from numpy.linalg import inv\n'), ((934, 946), 'numpy.dot', 'dot', (['IS', 'K.T'], {}), '(IS, K.T)\n', (937, 946), False, 'from numpy import dot, sum, tile, linalg\n'), ((1128, 1134), 'numpy.linalg.inv', 'inv', (['S'], {}), '(S)\n', (1131, 1134), False, 'from numpy.linalg import inv\n'), ((1507, 1513), 'numpy.linalg.inv', 'inv', (['S'], {}), '(S)\n', (1510, 1513), False, 'from numpy.linalg import inv\n'), ((1337, 1343), 'numpy.linalg.inv', 'inv', (['S'], {}), '(S)\n', (1340, 1343), False, 'from numpy.linalg import inv\n')]
import numpy as np def LoadData(FileName): ''' Loads hollow data into structured numpy array of floats and returns a tuple of column headers along with the structured array. ''' data = np.genfromtxt(FileName, names=True, delimiter=',') return data.dtype.names, data def SegmentDataByAspect(FileName): ''' Loads hollow data into structured numpy array of floats, and splits the data into separate structured arrays by aspect band and returns a tuple of column headers along with the structured arrays. ''' Headers, A = LoadData(FileName) NE = A[(A['Aspect'] >= 0) & (A['Aspect'] <= 85)] SE = A[(A['Aspect'] > 85) & (A['Aspect'] <= 165)] E = A[(A['Aspect'] >= 0) & (A['Aspect'] <= 165)] W = A[(A['Aspect'] > 165)] return Headers, NE, SE, E, W def DataFilter(DataFile, Parameter, Value): ''' Split hollows around Value of a given property. returns Small and Large, two lists of IDs corresponding to hollows above and below the median. ''' Headers, A = LoadData(DataFile) Small = A[(A[Parameter] < Value)]['ID'] Large = A[(A[Parameter] >= Value)]['ID'] return Small, Large def VegDataFilter(DataFile): ''' Split hollows into vegetation categories of a given property. returns 4 lists of IDs corresponding to specific vegetation types ''' Headers, A = LoadData(DataFile) a = A[(A['Veg'] == 1)]['ID'] b = A[(A['Veg'] == 2)]['ID'] c = A[(A['Veg'] == 3)]['ID'] d = A[(A['Veg'] == 4)]['ID'] return a, b, c, d
[ "numpy.genfromtxt" ]
[((208, 258), 'numpy.genfromtxt', 'np.genfromtxt', (['FileName'], {'names': '(True)', 'delimiter': '""","""'}), "(FileName, names=True, delimiter=',')\n", (221, 258), True, 'import numpy as np\n')]
import os from os.path import join import cv2 import pickle import torch import numpy as np import pandas as pd import torch.utils.data as data class InteriorNet(data.Dataset): def __init__(self, root_dir, label_name='_raycastingV2', pred_dir='pred', method_name='sharpnet_pred', gt_dir='data', depth_ext='-depth-plane.png', normal_ext='-normal.png', im_ext='-rgb.png', label_dir='label', label_ext='-order-pix.npy'): super(InteriorNet, self).__init__() self.root_dir = root_dir self.label_name = label_name self.method_name = method_name self.im_ext = im_ext self.gt_dir = gt_dir self.label_dir = label_dir self.pred_dir = pred_dir self.depth_ext = depth_ext self.normal_ext = normal_ext self.label_ext = label_ext self.df = pd.read_csv(join(root_dir, 'InteriorNet.txt')) def __len__(self): return len(self.df) def __getitem__(self, index): depth_gt, depth_pred, label, normal, img = self._fetch_data(index) depth_gt = torch.from_numpy(np.ascontiguousarray(depth_gt)).float().unsqueeze(0) depth_pred = torch.from_numpy(np.ascontiguousarray(depth_pred)).float().unsqueeze(0) label = torch.from_numpy(np.ascontiguousarray(label)).float().permute(2, 0, 1) normal = torch.from_numpy(np.ascontiguousarray(normal)).float().permute(2, 0, 1) img = torch.from_numpy(np.ascontiguousarray(img)).float().permute(2, 0, 1) return depth_gt, depth_pred, label, normal, img def _fetch_data(self, index): # fetch predicted depth map in meters depth_pred_path = join(self.root_dir, self.pred_dir, self.df.iloc[index]['scene'], self.method_name, 'data', '{}.pkl'.format(self.df.iloc[index]['image'])) with open(depth_pred_path, 'rb') as f: depth_pred = pickle.load(f) # fetch ground truth depth map in meters depth_gt_path = join(self.root_dir, self.gt_dir, '{}{}'.format(self.df.iloc[index]['scene'], self.label_name), '{:04d}{}'.format(self.df.iloc[index]['image'], self.depth_ext)) if not os.path.exists(depth_gt_path): print(depth_gt_path) depth_gt = cv2.imread(depth_gt_path, -1) / 1000 # fetch normal map in norm-1 vectors normal_path = join(self.root_dir, self.gt_dir, '{}{}'.format(self.df.iloc[index]['scene'], self.label_name), '{:04d}{}'.format(self.df.iloc[index]['image'], self.normal_ext)) normal = cv2.imread(normal_path, -1) / (2 ** 16 - 1) * 2 - 1 normal = normal[:, :, ::-1] # fetch rgb image image_path = join(self.root_dir, self.gt_dir, '{}{}'.format(self.df.iloc[index]['scene'], self.label_name), '{:04d}{}'.format(self.df.iloc[index]['image'], self.im_ext)) img = cv2.imread(image_path, -1) / 255 img = img[:, :, ::-1] # fetch occlusion orientation labels label_path = join(self.root_dir, self.label_dir, '{}{}'.format(self.df.iloc[index]['scene'], self.label_name), '{:04d}{}'.format(self.df.iloc[index]['image'], self.label_ext)) label = np.load(label_path) return depth_gt, depth_pred, label, normal, img if __name__ == "__main__": root_dir = '/space_sdd/InteriorNet' dataset = InteriorNet(root_dir) print(len(dataset)) from tqdm import tqdm from torch.utils.data import DataLoader import sys test_loader = DataLoader(dataset, batch_size=4, shuffle=False) for i, data in tqdm(enumerate(test_loader)): if i == 0: print(data[0].shape, data[1].shape, data[2].shape, data[3].shape, data[4].shape) sys.exit()
[ "numpy.load", "torch.utils.data.DataLoader", "numpy.ascontiguousarray", "os.path.exists", "cv2.imread", "pickle.load", "os.path.join", "sys.exit" ]
[((3710, 3758), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(4)', 'shuffle': '(False)'}), '(dataset, batch_size=4, shuffle=False)\n', (3720, 3758), False, 'from torch.utils.data import DataLoader\n'), ((3400, 3419), 'numpy.load', 'np.load', (['label_path'], {}), '(label_path)\n', (3407, 3419), True, 'import numpy as np\n'), ((892, 925), 'os.path.join', 'join', (['root_dir', '"""InteriorNet.txt"""'], {}), "(root_dir, 'InteriorNet.txt')\n", (896, 925), False, 'from os.path import join\n'), ((1936, 1950), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1947, 1950), False, 'import pickle\n'), ((2259, 2288), 'os.path.exists', 'os.path.exists', (['depth_gt_path'], {}), '(depth_gt_path)\n', (2273, 2288), False, 'import os\n'), ((2342, 2371), 'cv2.imread', 'cv2.imread', (['depth_gt_path', '(-1)'], {}), '(depth_gt_path, -1)\n', (2352, 2371), False, 'import cv2\n'), ((3038, 3064), 'cv2.imread', 'cv2.imread', (['image_path', '(-1)'], {}), '(image_path, -1)\n', (3048, 3064), False, 'import cv2\n'), ((3933, 3943), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3941, 3943), False, 'import sys\n'), ((2679, 2706), 'cv2.imread', 'cv2.imread', (['normal_path', '(-1)'], {}), '(normal_path, -1)\n', (2689, 2706), False, 'import cv2\n'), ((1126, 1156), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['depth_gt'], {}), '(depth_gt)\n', (1146, 1156), True, 'import numpy as np\n'), ((1217, 1249), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['depth_pred'], {}), '(depth_pred)\n', (1237, 1249), True, 'import numpy as np\n'), ((1305, 1332), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['label'], {}), '(label)\n', (1325, 1332), True, 'import numpy as np\n'), ((1393, 1421), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['normal'], {}), '(normal)\n', (1413, 1421), True, 'import numpy as np\n'), ((1479, 1504), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['img'], {}), '(img)\n', (1499, 1504), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Aug 29 15:47:36 2018 @author: akurnizk """ import flopy import numpy as np import sys,os import matplotlib.pyplot as plt # Location of BitBucket folder containing cgw folder cgw_code_dir = 'E:\python' sys.path.insert(0,cgw_code_dir) from cgw.utils import general_utils as genu from cgw.utils import feature_utils as shpu from cgw.utils import raster_utils as rastu # Assign name and create modflow model object modelname = 'CheqModel1' work_dir = r'E:\Herring' mf = flopy.modflow.Modflow(modelname, exe_name='mf2005',model_ws=work_dir) swt = flopy.seawat.Seawat(modelname, exe_name='swtv4') print(swt.namefile) mean_sea_level = 0.843 # in meters at closest NOAA station #%% # Example of making a MODFLOW-like grid from a shapefile data_dir = r'E:\ArcGIS' shp_fname = os.path.join(data_dir,'Chequesset_Model_Area_UTM.shp') cell_spacing = 10. # model grid cell spacing in meters # Define inputs for shp_to_grid function shp_to_grid_dict = {'shp':shp_fname,'cell_spacing':cell_spacing} grid_outputs = shpu.shp_to_grid(**shp_to_grid_dict) # Pop out all of the outputs into individual variables [X_nodes,Y_nodes],model_polygon,[out_proj,[xshift,yshift],min_angle] = grid_outputs grid_transform = [out_proj,[xshift,yshift],min_angle] # make transform list # Can calculate cell centers (where heads are calculated), in different coordinates cc,cc_proj,cc_ll = shpu.nodes_to_cc([X_nodes,Y_nodes],grid_transform) # Use model_polygon to define active cells in the model ir,ic,_ = shpu.gridpts_in_shp(model_polygon,cc) active_cells = genu.define_mask(cc,[ir,ic]) """ Plot active cells """ #fig,ax = genu.plt.subplots(1,2) #genu.quick_plot(active_cells.astype(int),ax=ax[0]) # in row, column space #ax[0].set_xlabel('column #') #ax[0].set_ylabel('row #') #c1=ax[1].pcolormesh(cc[0],cc[1],active_cells.astype(int)) # in model coordinates #genu.plt.colorbar(c1,ax=ax[1],orientation='horizontal') #ax[1].set_xlabel('X [m]') #ax[1].set_ylabel('Y [m]') #%% Example of loading DEM data for that area dem_fname = os.path.join(data_dir,'Cheq10mx10m_UTM.tif') # Experimental part \/ dem_X,dem_Y,dem_da = rastu.load_geotif(dem_fname) # da is an xarray data array dem_vals = dem_da.values.squeeze() #dem_X, dem_Y, dem_vals = rastu.read_griddata(dem_fname) # Know that dem is way higher resolution...can decimate it to save time decimate_by_ncells = 1 # by every n cells #dem_X = dem_X[::decimate_by_ncells,::decimate_by_ncells] #dem_Y = dem_Y[::decimate_by_ncells,::decimate_by_ncells] #dem_vals = dem_vals[::decimate_by_ncells,::decimate_by_ncells] # Set no-data value to nan dem_vals[dem_vals==dem_da.nodatavals[0]] = genu.np.nan # Transform dem to model coordinates with linear interpolation trans_dict = {'orig_xy':[dem_X,dem_Y],'orig_val':dem_vals,'active_method':'linear', 'new_xy':cc_proj} # if dem in same projection as model boundary shp dem_trans = rastu.subsection_griddata(**trans_dict) dem_trans[dem_trans<-1000] = genu.np.nan genu.quick_plot(dem_trans) #%% DEM model inputs Lx = np.amax(dem_X)-np.amin(dem_X) Ly = np.amax(dem_Y)-np.amin(dem_Y) zbot = -100 # if bottom of model is horizontal, approx. bedrock (check Masterson) nlay = 1 # 1 layer model nrow, ncol = cc[0].shape # to use when cheq_griddev is implemented delr = cell_spacing delc = cell_spacing delv = (dem_trans - zbot) / nlay botm = zbot # Tutorial 1 model domain and grid definition #Lx = 1000. #Ly = 1000. #ztop = 0. #zbot = -50. #nlay = 1 #nrow = 10 #ncol = 10 #delr = Lx/ncol #delc = Ly/nrow #delv = (ztop - zbot) / nlay #botm = np.linspace(ztop, zbot, nlay + 1) #%% """ Time Stepping """ # Time step parameters total_length = 10 # days dt = 6 # stress period time step, hrs perlen_days = dt/24. # stress period time step, days nper = int(total_length/perlen_days) # the number of stress periods in the simulation nstp_default = dt/0.5 # stress period time step divided by step time length (to better interpolate tidal changes, set to 0.5 hrs) perlen = [perlen_days]*nper # length of a stress period; each item in the matrix is the amount # of elapsed time since the previous point (need to change the first) perlen[0] = 1 # set first step as steady state steady = [False]*nper steady[0] = True # first step steady state nstp = [nstp_default]*nper # number of time steps in a stress period nstp[0] = 1 #Tutorial 2 default time step parameters #nper = 3 #perlen = [1, 100, 100] #nstp = [1, 100, 100] #steady = [True, False, False] #%% # Create the discretization (DIS) object dis = flopy.modflow.ModflowDis(mf, nlay, nrow, ncol, delr=delr, delc=delc, top=dem_trans, botm=botm) # Tutorial 1 DIS object #dis = flopy.modflow.ModflowDis(mf, nlay, nrow, ncol, delr=delr, delc=delc, #top=dem_vals, botm=botm[1:]) # Tutorial 2 DIS object when transient conditions are implemented # dis = flopy.modflow.ModflowDis(mf, nlay, nrow, ncol, delr=delr, delc=delc, # top=ztop, botm=botm[1:], # nper=nper, perlen=perlen, nstp=nstp, steady=steady) #%% # Variables for the BAS (basic) package # Added 5/28/19 """ Active cells and the like are defined with the Basic package (BAS), which is required for every MOD-FLOW model. It contains the ibound array, which is used to specify which cells are active (value is positive), inactive (value is 0), or fixed head (value is negative). The numpy package (aliased as np) can be used to quickly initialize the ibound array with values of 1, and then set the ibound value for the first and last columns to −1. The numpy package (and Python, in general) uses zero-based indexing and supports negative indexing so that row 1 and column 1, and row 1 and column 201, can be referenced as [0,0], and [0,−1], respectively. Although this simulation is for steady flow, starting heads still need to be specified. They are used as the head for fixed-head cells (where ibound is negative), and as a starting point to compute the saturated thickness for cases of unconfined flow. ibound = np.ones((1, 201)) ibound[0, 0] = ibound[0, -1] = -1 """ ibound = np.ones((nlay, nrow, ncol), dtype=np.int32) ibound[:,~active_cells] = 0 # far offshore cells are inactive ibound[0,dem_trans<mean_sea_level] = -1 # fixed head for everything less than msl ibound[:,np.isnan(dem_trans)] = 0 # nan cells are inactive genu.quick_plot(ibound) # plots boundary condition: 1 is above mean sea level (msl), 0 is msl, -1 is under msl. strt = np.ones((nlay, nrow, ncol), dtype=np.float32) active_dem_heights = dem_trans[active_cells & ~np.isnan(dem_trans)] strt[0, active_cells & ~np.isnan(dem_trans)] = active_dem_heights # start with freshwater at surface elevation strt[0, dem_trans<mean_sea_level] = mean_sea_level # start with water at sea level genu.quick_plot(strt) # plots starting condition bas = flopy.modflow.ModflowBas(mf, ibound=ibound, strt=strt) #%% # added 3/8/19 - creates matrix where hydraulic conductivities (hk = horiz, vk = vert) can be implemented hk1 = np.ones((nlay,nrow,ncol), np.float) hk1[:,:,:]=10. # everything set to 10 - use data? calculate? vka1 = np.ones((nlay,nrow,ncol), np.float) vka1[:,:,:]=10. # everything set to 10. # Add LPF package to the MODFLOW model lpf = flopy.modflow.ModflowLpf(mf, hk=hk1, vka=vka1, ipakcb=53) #%% """ Transient General-Head Boundary Package First, we will create the GHB object, which is of the following type: flopy.modflow.ModflowGhb. The key to creating Flopy transient boundary packages is recognizing that the boundary data is stored in a dictionary with key values equal to the zero-based stress period number and values equal to the boundary conditions for that stress period. For a GHB the values can be a two-dimensional nested list of [layer, row, column, stage, conductance]: Datums for 8447435, Chatham, Lydia Cove MA https://tidesandcurrents.noaa.gov/datums.html?units=1&epoch=0&id=8447435&name=Chatham%2C+Lydia+Cove&state=MA """ # Make list for stress period 1 # Using Mean Sea Level (MSL) in meters at closest NOAA station for stages #stageleft = mean_sea_level #stageright = mean_sea_level #bound_sp1 = [] #for il in range(nlay): # # Figure out looping through hk1 array to get hk values at each cell for changing conductance. # condleft = hk1[0,0,0] * (stageleft - zbot) * delc # condright = hk1[0,0,0] * (stageright - zbot) * delc # for ir in range(nrow): # bound_sp1.append([il, ir, 0, stageleft, condleft]) # bound_sp1.append([il, ir, ncol - 1, stageright, condright]) ## Only 1 stress period for steady-state model #print('Adding ', len(bound_sp1), 'GHBs for stress period 1.') # #stress_period_data = {0: bound_sp1} #ghb = flopy.modflow.ModflowGhb(mf, stress_period_data=stress_period_data) # using single conductance value (see drain for modification based on Masterson, 2004) conductance = 1000. # (modify 1000 to actual conductance) bound_sp1 = [] stress_period_data = {0: bound_sp1} ghb = flopy.modflow.ModflowGhb(mf, stress_period_data=stress_period_data) #%% # Add drain condition #Darcy's law states that #Q = -KA(h1 - h0)/(X1 - X0) #Where Q is the flow (L3/T) #K is the hydraulic conductivity (L/T) #A is the area perpendicular to flow (L2) #h is head (L) #X is the position at which head is measured (L) #Conductance combines the K, A and X terms so that Darcy's law can be expressed as #Q = -C(h1 - h0) #where C is the conductance (L2/T) # https://water.usgs.gov/nrp/gwsoftware/modflow2000/MFDOC/index.html?drn.htm # from Masterson, 2004 # C = KWL/M where #C is hydraulic conductance of the seabed (ft2/d); #K is vertical hydraulic conductivity of seabed deposits #(ft/d); #W is width of the model cell containing the seabed (ft); #L is length of the model cell containing the seabed (ft); #and #M is thickness of seabed deposits (ft). #The vertical hydraulic conductivity (K) of the seabed #deposits in most of the study area was assumed to be 1 ft/d, #which is consistent with model simulations of similar coastal #discharge areas in other areas on Cape Cod (Masterson and #others, 1998). In the area occupied by Salt Pond and Nauset #Marsh, it was assumed that there were thick deposits of lowpermeability #material (<NAME>, U.S. Geological Survey, #oral commun., 2002) and the vertical hydraulic conductivity #was set to 0.1 ft/d. The thickness of the seabed deposits was #assumed to be half the thickness of the model cell containing the #boundary. # still using simple conductance land_cells = active_cells & ~np.isnan(dem_trans) & (dem_trans>mean_sea_level) landrows, landcols = land_cells.nonzero() lrcec = {0:np.column_stack([np.zeros_like(landrows),landrows,landcols,dem_trans[land_cells],conductance*np.ones_like(landrows)])} # this drain will be applied to all stress periods drn = flopy.modflow.ModflowDrn(mf, stress_period_data=lrcec) #%% # Add recharge condition # steady state, units in [m/day]? rch = flopy.modflow.ModflowRch(mf, nrchop=3, rech=1.4e-3) # from https://pubs.usgs.gov/wsp/2447/report.pdf #%% # Add OC package to the MODFLOW model spd = {(0, 0): ['print head', 'print budget', 'save head', 'save budget']} oc = flopy.modflow.ModflowOc(mf, stress_period_data=spd, compact=True) #%% # Add PCG package to the MODFLOW model pcg = flopy.modflow.ModflowPcg(mf) #%% # Write the MODFLOW model input files mf.write_input() #%% # Run the MODFLOW model success, buff = mf.run_model() #%% """ Post-Processing the Results Now that we have successfully built and run our MODFLOW model, we can look at the results. MODFLOW writes the simulated heads to a binary data output file. We cannot look at these heads with a text editor, but flopy has a binary utility that can be used to read the heads. The following statements will read the binary head file and create a plot of simulated heads for layer 1: """ import flopy.utils.binaryfile as bf from mpl_toolkits.axes_grid1 import make_axes_locatable plt.subplot(1,1,1,aspect='equal') hds = bf.HeadFile(os.path.join(work_dir,modelname+'.hds')) head = hds.get_data(totim=hds.get_times()[-1]) head[head<-100] = np.nan #levels = np.arange(1,10,1) extent = (delr/2., Lx - delr/2., Ly - delc/2., delc/2.) # headplot = plt.contour(head[0, :, :], levels=levels, extent=extent) # headplot = plt.contour(head[0, :, :], extent=extent) plt.xlabel('Lx') plt.ylabel('Ly') plt.colorbar(headplot) # plots heads as contours #plt.colorbar.set_label('heads') plt.savefig('CheqModel1a.png') genu.quick_plot(head) # plots heads with color gradient genu.quick_plot(dem_trans) # plots elevations #%% """ Flopy also has some pre-canned plotting capabilities can can be accessed using the ModelMap class. The following code shows how to use the modelmap class to plot boundary conditions (IBOUND), plot the grid, plot head contours, and plot vectors: """ fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(1, 1, 1, aspect='equal') hds = bf.HeadFile(modelname+'.hds') times = hds.get_times() head = hds.get_data(totim=times[-1]) levels = np.linspace(0, 10, 11) cbb = bf.CellBudgetFile(modelname+'.cbc') kstpkper_list = cbb.get_kstpkper() frf = cbb.get_data(text='FLOW RIGHT FACE', totim=times[-1])[0] fff = cbb.get_data(text='FLOW FRONT FACE', totim=times[-1])[0] #%% """ The pre-canned plotting doesn't seem to be able to allow averaging to reduce nrow and ncol on the plot, making it difficult to plot a large grid. The commented section below uses the modelmap class from Tutorial 1, followed by use of the plotting from the Henry Problem. """ #modelmap = flopy.plot.ModelMap(model=mf, layer=0) #qm = modelmap.plot_ibound() #lc = modelmap.plot_grid() # Need to fix grid to have fewer rows and columns #cs = modelmap.contour_array(head, levels=levels) #quiver = modelmap.plot_discharge(frf, fff, head=head) #plt.savefig('CheqModel1b.png') """ # Load data (when implementing SEAWAT) ucnobj = bf.UcnFile('MT3D001.UCN', model=swt) times = ucnobj.get_times() concentration = ucnobj.get_data(totim=times[-1]) """ # Average flows to cell centers qx_avg = np.empty(frf.shape, dtype=frf.dtype) qx_avg[:, :, 1:] = 0.5 * (frf[:, :, 0:ncol-1] + frf[:, :, 1:ncol]) qx_avg[:, :, 0] = 0.5 * frf[:, :, 0] qy_avg = np.empty(fff.shape, dtype=fff.dtype) qy_avg[1:, :, :] = 0.5 * (fff[0:nlay-1, :, :] + fff[1:nlay, :, :]) qy_avg[0, :, :] = 0.5 * fff[0, :, :] # Make the plot fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1, aspect='equal') #ax.imshow(concentration[:, 0, :], interpolation='nearest', # extent=(0, Lx, 0, Ly)) y, x, z = dis.get_node_coordinates() X, Y = np.meshgrid(x, y) iskip = 3 ax.quiver(X[::iskip, ::iskip], Y[::iskip, ::iskip], qx_avg[::iskip, 0, ::iskip], -qy_avg[::iskip, 0, ::iskip], color='k', scale=5, headwidth=3, headlength=2, headaxislength=2, width=0.0025) plt.savefig('CheqModel1b.png') plt.show() #%% """ Post-Processing the Results Once again, we can read heads from the MODFLOW binary output file, using the flopy.utils.binaryfile module. Included with the HeadFile object are several methods that we will use here: * get_times() will return a list of times contained in the binary head file * get_data() will return a three-dimensional head array for the specified time * get_ts() will return a time series array [ntimes, headval] for the specified cell Using these methods, we can create head plots and hydrographs from the model results.: """ # headfile and budget file objects already created # Setup contour parameters (levels already set) extent = (delr/2., Lx - delr/2., delc/2., Ly - delc/2.) print('Levels: ', levels) print('Extent: ', extent) # Make the plots #Print statistics print('Head statistics') print(' min: ', head.min()) print(' max: ', head.max()) print(' std: ', head.std()) """ Again, commented out section using modelmap """ ## Flow right face and flow front face already extracted ##%% ##Create the plot #f = plt.figure() #plt.subplot(1, 1, 1, aspect='equal') # # #modelmap = flopy.plot.ModelMap(model=mf, layer=0) #qm = modelmap.plot_ibound() ## ## lc = modelmap.plot_grid() #qm = modelmap.plot_bc('GHB', alpha=0.5) #cs = modelmap.contour_array(head, levels=levels) #plt.clabel(cs, inline=1, fontsize=10, fmt='%1.1f', zorder=11) #quiver = modelmap.plot_discharge(frf, fff, head=head) # #mfc='black' #plt.plot(lw=0, marker='o', markersize=8, # markeredgewidth=0.5, # markeredgecolor='black', markerfacecolor=mfc, zorder=9) #plt.savefig('CheqModel2-{}.png') """ From <NAME> """ fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1, aspect='equal') im = ax.imshow(head[:, 0, :], interpolation='nearest', extent=(0, Lx, 0, Ly)) ax.set_title('Simulated Heads')
[ "flopy.modflow.ModflowOc", "numpy.amin", "cgw.utils.raster_utils.subsection_griddata", "numpy.empty", "numpy.ones", "numpy.isnan", "cgw.utils.general_utils.quick_plot", "matplotlib.pyplot.figure", "matplotlib.pyplot.contour", "cgw.utils.feature_utils.nodes_to_cc", "os.path.join", "numpy.meshgrid", "numpy.zeros_like", "flopy.modflow.ModflowPcg", "flopy.utils.binaryfile.HeadFile", "flopy.modflow.ModflowGhb", "matplotlib.pyplot.colorbar", "numpy.linspace", "flopy.modflow.ModflowDrn", "cgw.utils.feature_utils.gridpts_in_shp", "flopy.modflow.Modflow", "flopy.modflow.ModflowRch", "matplotlib.pyplot.show", "numpy.ones_like", "cgw.utils.feature_utils.shp_to_grid", "flopy.utils.binaryfile.CellBudgetFile", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplot", "cgw.utils.raster_utils.load_geotif", "flopy.modflow.ModflowDis", "sys.path.insert", "flopy.modflow.ModflowLpf", "numpy.amax", "flopy.modflow.ModflowBas", "flopy.seawat.Seawat", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig", "cgw.utils.general_utils.define_mask" ]
[((261, 293), 'sys.path.insert', 'sys.path.insert', (['(0)', 'cgw_code_dir'], {}), '(0, cgw_code_dir)\n', (276, 293), False, 'import sys, os\n'), ((537, 607), 'flopy.modflow.Modflow', 'flopy.modflow.Modflow', (['modelname'], {'exe_name': '"""mf2005"""', 'model_ws': 'work_dir'}), "(modelname, exe_name='mf2005', model_ws=work_dir)\n", (558, 607), False, 'import flopy\n'), ((614, 662), 'flopy.seawat.Seawat', 'flopy.seawat.Seawat', (['modelname'], {'exe_name': '"""swtv4"""'}), "(modelname, exe_name='swtv4')\n", (633, 662), False, 'import flopy\n'), ((849, 904), 'os.path.join', 'os.path.join', (['data_dir', '"""Chequesset_Model_Area_UTM.shp"""'], {}), "(data_dir, 'Chequesset_Model_Area_UTM.shp')\n", (861, 904), False, 'import sys, os\n'), ((1088, 1124), 'cgw.utils.feature_utils.shp_to_grid', 'shpu.shp_to_grid', ([], {}), '(**shp_to_grid_dict)\n', (1104, 1124), True, 'from cgw.utils import feature_utils as shpu\n'), ((1454, 1506), 'cgw.utils.feature_utils.nodes_to_cc', 'shpu.nodes_to_cc', (['[X_nodes, Y_nodes]', 'grid_transform'], {}), '([X_nodes, Y_nodes], grid_transform)\n', (1470, 1506), True, 'from cgw.utils import feature_utils as shpu\n'), ((1575, 1613), 'cgw.utils.feature_utils.gridpts_in_shp', 'shpu.gridpts_in_shp', (['model_polygon', 'cc'], {}), '(model_polygon, cc)\n', (1594, 1613), True, 'from cgw.utils import feature_utils as shpu\n'), ((1629, 1659), 'cgw.utils.general_utils.define_mask', 'genu.define_mask', (['cc', '[ir, ic]'], {}), '(cc, [ir, ic])\n', (1645, 1659), True, 'from cgw.utils import general_utils as genu\n'), ((2117, 2162), 'os.path.join', 'os.path.join', (['data_dir', '"""Cheq10mx10m_UTM.tif"""'], {}), "(data_dir, 'Cheq10mx10m_UTM.tif')\n", (2129, 2162), False, 'import sys, os\n'), ((2210, 2238), 'cgw.utils.raster_utils.load_geotif', 'rastu.load_geotif', (['dem_fname'], {}), '(dem_fname)\n', (2227, 2238), True, 'from cgw.utils import raster_utils as rastu\n'), ((2996, 3035), 'cgw.utils.raster_utils.subsection_griddata', 'rastu.subsection_griddata', ([], {}), '(**trans_dict)\n', (3021, 3035), True, 'from cgw.utils import raster_utils as rastu\n'), ((3081, 3107), 'cgw.utils.general_utils.quick_plot', 'genu.quick_plot', (['dem_trans'], {}), '(dem_trans)\n', (3096, 3107), True, 'from cgw.utils import general_utils as genu\n'), ((4694, 4793), 'flopy.modflow.ModflowDis', 'flopy.modflow.ModflowDis', (['mf', 'nlay', 'nrow', 'ncol'], {'delr': 'delr', 'delc': 'delc', 'top': 'dem_trans', 'botm': 'botm'}), '(mf, nlay, nrow, ncol, delr=delr, delc=delc, top=\n dem_trans, botm=botm)\n', (4718, 4793), False, 'import flopy\n'), ((6408, 6451), 'numpy.ones', 'np.ones', (['(nlay, nrow, ncol)'], {'dtype': 'np.int32'}), '((nlay, nrow, ncol), dtype=np.int32)\n', (6415, 6451), True, 'import numpy as np\n'), ((6661, 6684), 'cgw.utils.general_utils.quick_plot', 'genu.quick_plot', (['ibound'], {}), '(ibound)\n', (6676, 6684), True, 'from cgw.utils import general_utils as genu\n'), ((6783, 6828), 'numpy.ones', 'np.ones', (['(nlay, nrow, ncol)'], {'dtype': 'np.float32'}), '((nlay, nrow, ncol), dtype=np.float32)\n', (6790, 6828), True, 'import numpy as np\n'), ((7097, 7118), 'cgw.utils.general_utils.quick_plot', 'genu.quick_plot', (['strt'], {}), '(strt)\n', (7112, 7118), True, 'from cgw.utils import general_utils as genu\n'), ((7155, 7209), 'flopy.modflow.ModflowBas', 'flopy.modflow.ModflowBas', (['mf'], {'ibound': 'ibound', 'strt': 'strt'}), '(mf, ibound=ibound, strt=strt)\n', (7179, 7209), False, 'import flopy\n'), ((7330, 7367), 'numpy.ones', 'np.ones', (['(nlay, nrow, ncol)', 'np.float'], {}), '((nlay, nrow, ncol), np.float)\n', (7337, 7367), True, 'import numpy as np\n'), ((7436, 7473), 'numpy.ones', 'np.ones', (['(nlay, nrow, ncol)', 'np.float'], {}), '((nlay, nrow, ncol), np.float)\n', (7443, 7473), True, 'import numpy as np\n'), ((7562, 7619), 'flopy.modflow.ModflowLpf', 'flopy.modflow.ModflowLpf', (['mf'], {'hk': 'hk1', 'vka': 'vka1', 'ipakcb': '(53)'}), '(mf, hk=hk1, vka=vka1, ipakcb=53)\n', (7586, 7619), False, 'import flopy\n'), ((9327, 9394), 'flopy.modflow.ModflowGhb', 'flopy.modflow.ModflowGhb', (['mf'], {'stress_period_data': 'stress_period_data'}), '(mf, stress_period_data=stress_period_data)\n', (9351, 9394), False, 'import flopy\n'), ((11186, 11240), 'flopy.modflow.ModflowDrn', 'flopy.modflow.ModflowDrn', (['mf'], {'stress_period_data': 'lrcec'}), '(mf, stress_period_data=lrcec)\n', (11210, 11240), False, 'import flopy\n'), ((11450, 11501), 'flopy.modflow.ModflowRch', 'flopy.modflow.ModflowRch', (['mf'], {'nrchop': '(3)', 'rech': '(0.0014)'}), '(mf, nrchop=3, rech=0.0014)\n', (11474, 11501), False, 'import flopy\n'), ((11678, 11743), 'flopy.modflow.ModflowOc', 'flopy.modflow.ModflowOc', (['mf'], {'stress_period_data': 'spd', 'compact': '(True)'}), '(mf, stress_period_data=spd, compact=True)\n', (11701, 11743), False, 'import flopy\n'), ((11797, 11825), 'flopy.modflow.ModflowPcg', 'flopy.modflow.ModflowPcg', (['mf'], {}), '(mf)\n', (11821, 11825), False, 'import flopy\n'), ((12479, 12515), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(1)', '(1)'], {'aspect': '"""equal"""'}), "(1, 1, 1, aspect='equal')\n", (12490, 12515), True, 'import matplotlib.pyplot as plt\n'), ((12819, 12860), 'matplotlib.pyplot.contour', 'plt.contour', (['head[0, :, :]'], {'extent': 'extent'}), '(head[0, :, :], extent=extent)\n', (12830, 12860), True, 'import matplotlib.pyplot as plt\n'), ((12862, 12878), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Lx"""'], {}), "('Lx')\n", (12872, 12878), True, 'import matplotlib.pyplot as plt\n'), ((12880, 12896), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Ly"""'], {}), "('Ly')\n", (12890, 12896), True, 'import matplotlib.pyplot as plt\n'), ((12898, 12920), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['headplot'], {}), '(headplot)\n', (12910, 12920), True, 'import matplotlib.pyplot as plt\n'), ((12982, 13012), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""CheqModel1a.png"""'], {}), "('CheqModel1a.png')\n", (12993, 13012), True, 'import matplotlib.pyplot as plt\n'), ((13014, 13035), 'cgw.utils.general_utils.quick_plot', 'genu.quick_plot', (['head'], {}), '(head)\n', (13029, 13035), True, 'from cgw.utils import general_utils as genu\n'), ((13071, 13097), 'cgw.utils.general_utils.quick_plot', 'genu.quick_plot', (['dem_trans'], {}), '(dem_trans)\n', (13086, 13097), True, 'from cgw.utils import general_utils as genu\n'), ((13391, 13419), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (13401, 13419), True, 'import matplotlib.pyplot as plt\n'), ((13475, 13506), 'flopy.utils.binaryfile.HeadFile', 'bf.HeadFile', (["(modelname + '.hds')"], {}), "(modelname + '.hds')\n", (13486, 13506), True, 'import flopy.utils.binaryfile as bf\n'), ((13578, 13600), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(11)'], {}), '(0, 10, 11)\n', (13589, 13600), True, 'import numpy as np\n'), ((13610, 13647), 'flopy.utils.binaryfile.CellBudgetFile', 'bf.CellBudgetFile', (["(modelname + '.cbc')"], {}), "(modelname + '.cbc')\n", (13627, 13647), True, 'import flopy.utils.binaryfile as bf\n'), ((14623, 14659), 'numpy.empty', 'np.empty', (['frf.shape'], {'dtype': 'frf.dtype'}), '(frf.shape, dtype=frf.dtype)\n', (14631, 14659), True, 'import numpy as np\n'), ((14776, 14812), 'numpy.empty', 'np.empty', (['fff.shape'], {'dtype': 'fff.dtype'}), '(fff.shape, dtype=fff.dtype)\n', (14784, 14812), True, 'import numpy as np\n'), ((14945, 14973), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (14955, 14973), True, 'import matplotlib.pyplot as plt\n'), ((15166, 15183), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (15177, 15183), True, 'import numpy as np\n'), ((15423, 15453), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""CheqModel1b.png"""'], {}), "('CheqModel1b.png')\n", (15434, 15453), True, 'import matplotlib.pyplot as plt\n'), ((15455, 15465), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15463, 15465), True, 'import matplotlib.pyplot as plt\n'), ((17164, 17192), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (17174, 17192), True, 'import matplotlib.pyplot as plt\n'), ((3138, 3152), 'numpy.amax', 'np.amax', (['dem_X'], {}), '(dem_X)\n', (3145, 3152), True, 'import numpy as np\n'), ((3153, 3167), 'numpy.amin', 'np.amin', (['dem_X'], {}), '(dem_X)\n', (3160, 3167), True, 'import numpy as np\n'), ((3174, 3188), 'numpy.amax', 'np.amax', (['dem_Y'], {}), '(dem_Y)\n', (3181, 3188), True, 'import numpy as np\n'), ((3189, 3203), 'numpy.amin', 'np.amin', (['dem_Y'], {}), '(dem_Y)\n', (3196, 3203), True, 'import numpy as np\n'), ((12532, 12574), 'os.path.join', 'os.path.join', (['work_dir', "(modelname + '.hds')"], {}), "(work_dir, modelname + '.hds')\n", (12544, 12574), False, 'import sys, os\n'), ((6608, 6627), 'numpy.isnan', 'np.isnan', (['dem_trans'], {}), '(dem_trans)\n', (6616, 6627), True, 'import numpy as np\n'), ((6877, 6896), 'numpy.isnan', 'np.isnan', (['dem_trans'], {}), '(dem_trans)\n', (6885, 6896), True, 'import numpy as np\n'), ((10905, 10924), 'numpy.isnan', 'np.isnan', (['dem_trans'], {}), '(dem_trans)\n', (10913, 10924), True, 'import numpy as np\n'), ((11026, 11049), 'numpy.zeros_like', 'np.zeros_like', (['landrows'], {}), '(landrows)\n', (11039, 11049), True, 'import numpy as np\n'), ((6923, 6942), 'numpy.isnan', 'np.isnan', (['dem_trans'], {}), '(dem_trans)\n', (6931, 6942), True, 'import numpy as np\n'), ((11102, 11124), 'numpy.ones_like', 'np.ones_like', (['landrows'], {}), '(landrows)\n', (11114, 11124), True, 'import numpy as np\n')]
# Functions of img processing. from functools import total_ordering import config import numpy as np import copy import torch import cv2 from skimage.color import rgb2gray from XCSLBP import XCSLBP def extractPixelBlock(originalImg, labels): ''' input_param: originalImg: Original pixels matrix that squeezed to 2 dimentions of input img. np.ndarray labels: label matrix of input img. np.ndarray output_param: pixelBlockList: a list contains all pixelblock which incoporates same label pixels. ''' # Copy a new labels due to max() function alters dimentions of its parameter newLabels = copy.deepcopy(labels) maxLabel = max(newLabels) pixelBlockList = [] labels = labels.reshape(-1,1) blankBlock = np.array([255, 255, 255]) for i in range(maxLabel + 1): # Uncomment line24 and comment line25 to visualize pixelBlock. # pixelBlock = [pixel if label == i else blankBlock for pixel, label in zip(originalImg, labels)] pixelBlock = [pixel if label == i else config.blankBlock for pixel, label in zip(originalImg, labels)] pixelBlock = np.array(pixelBlock) pixelBlock = pixelBlock.reshape(config.imgSize[0], config.imgSize[1], -1) pixelBlockList.append(pixelBlock) return pixelBlockList def extractFeature(pixelBlockList): ''' input_param: pixelBlockList: A list contains all element. output_param: featureList: A list contains each element's feature. feature contains 3 channel's mean value and mean position info. ''' featureList = [] for i in range(len(pixelBlockList)): pixelList = [] locationList = [] for y in range(len(pixelBlockList[0])): for x in range(len(pixelBlockList[1])): if (pixelBlockList[i][y][x] != config.blankBlock).any(): pixelList.append(list(pixelBlockList[i][y][x])) locationList.append((x,y)) colorFeature = np.mean(np.array(pixelList), axis=0) locationFeature = np.mean(np.array(locationList), axis=0) features = np.append(colorFeature, locationFeature) featureList.append(features) featureList = np.array(featureList) return featureList # Optimized version def regionColorFeatures(img, labels): ''' input_param: img: img matrix. torch.tensor labels: Kmeans clustering labels. torch.tensor output_param: colorFeatureList: A list contains each element's feature. feature contains 3 channel's mean value. ''' numlab = max(labels) rlabels = labels.view(config.imgSize) colorFeatureList = [] grayFrame = torch.tensor(rgb2gray(img)) redFrame = img[:, :, 0] greenFrame = img[:, :, 1] blueFrame = img[:, :, 2] for i in range(numlab + 1): f = torch.eq(rlabels, i) graySpLocal = torch.mean(grayFrame[f].float()) redSpLocal = torch.mean(redFrame[f].float()) greenSpLocal = torch.mean(greenFrame[f].float()) blueSpLocal = torch.mean(blueFrame[f].float()) colorFeature = [redSpLocal, greenSpLocal, blueSpLocal, graySpLocal] colorFeatureList.append(colorFeature) colorFeatureList = torch.tensor(colorFeatureList) return colorFeatureList def regionTextureFeatures(img, labels): ''' input_param: img: CV2.imread labels ''' numlab = max(labels) rlabels = labels.view(config.imgSize) # I = rgb2gray(img) XCS = XCSLBP(img) XCS = XCS * (255/ 16) XCSframe = torch.tensor(XCS) textureFeatureList = [] for i in range(numlab + 1): f = torch.eq(rlabels, i) XCSSpLocal = torch.mean(XCSframe[f].float()) textureFeatureList.append(XCSSpLocal) textureFeatureList = torch.tensor(textureFeatureList) textureFeatureList = textureFeatureList.unsqueeze(1) return textureFeatureList def regionEdgeFeatures(img, labels): ''' input_param: img: CV2.imread labels ''' numlab = max(labels) rlabels = labels.view(config.imgSize) # frame = rgb2gray(img) Gx = cv2.Sobel(img, cv2.CV_64F, 1, 0) Gy = cv2.Sobel(img, cv2.CV_64F, 0, 1) Gmag = np.sqrt(Gx**2.0 + Gy**2.0) Gdir = np.arctan2(Gy, Gx) * (180 / np.pi) Gx, Gy, Gmag, Gdir = torch.tensor(Gx), torch.tensor(Gy), torch.tensor(Gmag), torch.tensor(Gdir) edgeFeatureList = [] for i in range(numlab + 1): f = torch.eq(rlabels, i) GxSpLocal = torch.mean(Gx[f].float()) GySpLocal = torch.mean(Gy[f].float()) GmagSpLocal = torch.mean(Gmag[f].float()) GdirSpLocal = torch.mean(Gdir[f].float()) edgeFeature = [GxSpLocal, GySpLocal, GmagSpLocal, GdirSpLocal] edgeFeatureList.append(edgeFeature) edgeFeatureList = torch.tensor(edgeFeatureList) return edgeFeatureList def regionSpatialFeatures(labels): numlab = max(labels) rlabels = labels.view(config.imgSize) col, row = config.imgSize x = range(1, col + 1) y = range(1, row + 1) Sx, Sy = np.meshgrid(y, x) Sx, Sy = torch.tensor(Sx), torch.tensor(Sy) spatialFeatureList = [] for i in range(numlab + 1): f = torch.eq(rlabels, i) SxSpLocal = torch.mean(Sx[f].float()) SySpLocal = torch.mean(Sy[f].float()) spatialFeature = [SxSpLocal, SySpLocal] spatialFeatureList.append(spatialFeature) spatialFeatureList = torch.tensor(spatialFeatureList) return spatialFeatureList
[ "torch.eq", "copy.deepcopy", "numpy.meshgrid", "skimage.color.rgb2gray", "numpy.arctan2", "numpy.append", "numpy.array", "numpy.sqrt", "cv2.Sobel", "torch.tensor", "XCSLBP.XCSLBP" ]
[((637, 658), 'copy.deepcopy', 'copy.deepcopy', (['labels'], {}), '(labels)\n', (650, 658), False, 'import copy\n'), ((766, 791), 'numpy.array', 'np.array', (['[255, 255, 255]'], {}), '([255, 255, 255])\n', (774, 791), True, 'import numpy as np\n'), ((2226, 2247), 'numpy.array', 'np.array', (['featureList'], {}), '(featureList)\n', (2234, 2247), True, 'import numpy as np\n'), ((3242, 3272), 'torch.tensor', 'torch.tensor', (['colorFeatureList'], {}), '(colorFeatureList)\n', (3254, 3272), False, 'import torch\n'), ((3521, 3532), 'XCSLBP.XCSLBP', 'XCSLBP', (['img'], {}), '(img)\n', (3527, 3532), False, 'from XCSLBP import XCSLBP\n'), ((3575, 3592), 'torch.tensor', 'torch.tensor', (['XCS'], {}), '(XCS)\n', (3587, 3592), False, 'import torch\n'), ((3816, 3848), 'torch.tensor', 'torch.tensor', (['textureFeatureList'], {}), '(textureFeatureList)\n', (3828, 3848), False, 'import torch\n'), ((4156, 4188), 'cv2.Sobel', 'cv2.Sobel', (['img', 'cv2.CV_64F', '(1)', '(0)'], {}), '(img, cv2.CV_64F, 1, 0)\n', (4165, 4188), False, 'import cv2\n'), ((4198, 4230), 'cv2.Sobel', 'cv2.Sobel', (['img', 'cv2.CV_64F', '(0)', '(1)'], {}), '(img, cv2.CV_64F, 0, 1)\n', (4207, 4230), False, 'import cv2\n'), ((4243, 4273), 'numpy.sqrt', 'np.sqrt', (['(Gx ** 2.0 + Gy ** 2.0)'], {}), '(Gx ** 2.0 + Gy ** 2.0)\n', (4250, 4273), True, 'import numpy as np\n'), ((4839, 4868), 'torch.tensor', 'torch.tensor', (['edgeFeatureList'], {}), '(edgeFeatureList)\n', (4851, 4868), False, 'import torch\n'), ((5096, 5113), 'numpy.meshgrid', 'np.meshgrid', (['y', 'x'], {}), '(y, x)\n', (5107, 5113), True, 'import numpy as np\n'), ((5473, 5505), 'torch.tensor', 'torch.tensor', (['spatialFeatureList'], {}), '(spatialFeatureList)\n', (5485, 5505), False, 'import torch\n'), ((1135, 1155), 'numpy.array', 'np.array', (['pixelBlock'], {}), '(pixelBlock)\n', (1143, 1155), True, 'import numpy as np\n'), ((2124, 2164), 'numpy.append', 'np.append', (['colorFeature', 'locationFeature'], {}), '(colorFeature, locationFeature)\n', (2133, 2164), True, 'import numpy as np\n'), ((2709, 2722), 'skimage.color.rgb2gray', 'rgb2gray', (['img'], {}), '(img)\n', (2717, 2722), False, 'from skimage.color import rgb2gray\n'), ((2855, 2875), 'torch.eq', 'torch.eq', (['rlabels', 'i'], {}), '(rlabels, i)\n', (2863, 2875), False, 'import torch\n'), ((3670, 3690), 'torch.eq', 'torch.eq', (['rlabels', 'i'], {}), '(rlabels, i)\n', (3678, 3690), False, 'import torch\n'), ((4281, 4299), 'numpy.arctan2', 'np.arctan2', (['Gy', 'Gx'], {}), '(Gy, Gx)\n', (4291, 4299), True, 'import numpy as np\n'), ((4342, 4358), 'torch.tensor', 'torch.tensor', (['Gx'], {}), '(Gx)\n', (4354, 4358), False, 'import torch\n'), ((4360, 4376), 'torch.tensor', 'torch.tensor', (['Gy'], {}), '(Gy)\n', (4372, 4376), False, 'import torch\n'), ((4378, 4396), 'torch.tensor', 'torch.tensor', (['Gmag'], {}), '(Gmag)\n', (4390, 4396), False, 'import torch\n'), ((4398, 4416), 'torch.tensor', 'torch.tensor', (['Gdir'], {}), '(Gdir)\n', (4410, 4416), False, 'import torch\n'), ((4488, 4508), 'torch.eq', 'torch.eq', (['rlabels', 'i'], {}), '(rlabels, i)\n', (4496, 4508), False, 'import torch\n'), ((5127, 5143), 'torch.tensor', 'torch.tensor', (['Sx'], {}), '(Sx)\n', (5139, 5143), False, 'import torch\n'), ((5145, 5161), 'torch.tensor', 'torch.tensor', (['Sy'], {}), '(Sy)\n', (5157, 5161), False, 'import torch\n'), ((5236, 5256), 'torch.eq', 'torch.eq', (['rlabels', 'i'], {}), '(rlabels, i)\n', (5244, 5256), False, 'import torch\n'), ((2010, 2029), 'numpy.array', 'np.array', (['pixelList'], {}), '(pixelList)\n', (2018, 2029), True, 'import numpy as np\n'), ((2073, 2095), 'numpy.array', 'np.array', (['locationList'], {}), '(locationList)\n', (2081, 2095), True, 'import numpy as np\n')]
#fuzzytest.py #<NAME> #<NAME> #fuzzy clustering for testFun.dat from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt import skfuzzy as fuzz colors = ['b', 'orange', 'g', 'r', 'c', 'm', 'y', 'k', 'Brown', 'ForestGreen'] # Insert his test data instead !!!! # Then our data # Collect Test Data with open("testFun.dat") as textFile: y = [line.split() for line in textFile] y = np.array(y) X = np.zeros(shape=(200,2)) # stores test data as number in array X (converts from strings) for i in range(0,len(y)): # num rows for j in range(0,len(y[0])): # num columns X[i,j] = float(y[i,j]) xpts = np.zeros(len(y)) ypts = np.zeros(len(y)) labels = np.zeros(len(y)) # no labels # xpts = x[all rows][0] for i in range (0, len(y)): xpts[i] = X[i][0] # ypts = x[all rows][1] for i in range (0, len(y)): ypts[i] = X[i][1] # Visualize the test data fig0, ax0 = plt.subplots() for label in range(2): # need 2 different kinds of labels, only have 1 cuz theyre not labeled... ax0.plot(xpts[labels == label], ypts[labels == label], '.', color=colors[label]) ax0.set_title('Test data: 200 points x2 clusters.') plt.show() # Set up the loop and plot fig1, axes1 = plt.subplots(2, 1, figsize=(8, 8)) #number of figures alldata = np.vstack((xpts, ypts)) fpcs = [] for ncenters, ax in enumerate(axes1.reshape(-1), 2): cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( alldata, ncenters, 2, error=0.005, maxiter=1000, init=None) print("Centers = ", str(ncenters), "\n") # u0 is the array of the memberiship functions for i in range (len(y)): # columns print ("Data point: ",xpts[i], ",", ypts[i]) #data point print("Membership: ") for j in range(ncenters): #number of clusters print("Cluster: ", j, "\n", u0[j][i]) #membership for cluster print() # Store fpc values for later fpcs.append(fpc) # Plot assigned clusters, for each data point in training set cluster_membership = np.argmax(u, axis=0) for j in range(ncenters): ax.plot(xpts[cluster_membership == j], ypts[cluster_membership == j], '.', color=colors[j]) # Mark the center of each fuzzy cluster for pt in cntr: ax.plot(pt[0], pt[1], 'rs') ax.set_title('Centers = {0}; FPC = {1:.2f}'.format(ncenters, fpc)) ax.axis('off') fig1.tight_layout() plt.show()
[ "matplotlib.pyplot.show", "numpy.argmax", "numpy.zeros", "skfuzzy.cluster.cmeans", "numpy.array", "matplotlib.pyplot.subplots", "numpy.vstack" ]
[((430, 441), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (438, 441), True, 'import numpy as np\n'), ((446, 470), 'numpy.zeros', 'np.zeros', ([], {'shape': '(200, 2)'}), '(shape=(200, 2))\n', (454, 470), True, 'import numpy as np\n'), ((925, 939), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (937, 939), True, 'import matplotlib.pyplot as plt\n'), ((1187, 1197), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1195, 1197), True, 'import matplotlib.pyplot as plt\n'), ((1240, 1274), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'figsize': '(8, 8)'}), '(2, 1, figsize=(8, 8))\n', (1252, 1274), True, 'import matplotlib.pyplot as plt\n'), ((1304, 1327), 'numpy.vstack', 'np.vstack', (['(xpts, ypts)'], {}), '((xpts, ypts))\n', (1313, 1327), True, 'import numpy as np\n'), ((2400, 2410), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2408, 2410), True, 'import matplotlib.pyplot as plt\n'), ((1425, 1504), 'skfuzzy.cluster.cmeans', 'fuzz.cluster.cmeans', (['alldata', 'ncenters', '(2)'], {'error': '(0.005)', 'maxiter': '(1000)', 'init': 'None'}), '(alldata, ncenters, 2, error=0.005, maxiter=1000, init=None)\n', (1444, 1504), True, 'import skfuzzy as fuzz\n'), ((2020, 2040), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (2029, 2040), True, 'import numpy as np\n')]
from sklearn.neighbors import NearestNeighbors import Sv import logging import pandas as pd import numpy as np import functools import os import math logger = logging.getLogger('marin') logger.setLevel(logging.DEBUG) def point_processing(tracks_data): """ input: tracking data matrix ouput: column of distances to nearest neighbors in meters """ tracks = tracks_data.loc[:, ['x_gps', 'y_gps', 'z_gps']] # get position of each tracks tracks['long_m'] = tracks.y_gps * ( 40075000 * np.cos(tracks.x_gps) / 360) # Get the equivalent of the longitude in meters tracks['lat_m'] = tracks.x_gps * 60 * 1852 # Get the equivalent of the latitude in meters array = np.vstack( [tracks.lat_m, tracks.long_m, tracks.z_gps]) # preparing the array for nearest neighbors algorithm array = np.transpose(array) nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(array) # nearest neighbors algorithm distances, indices = nbrs.kneighbors(array) return distances[:, 1] def conjunction(*conditions): """Multiple conditions filter for panda""" return functools.reduce(np.logical_and, conditions) def calc_distance_lat(lat1, lat2): """Returns a distance between 2 latitudes""" dlat = lat2 - lat1 dist = dlat * 60 * 1852 return dist def calc_distance_long(lat, lon1, lon2): """Returns a distance between 2 longitudes for a given latitude""" dlon = lon2 - lon1 dist = dlon * (40075000 * math.cos(lat) / 360) return dist def unit_vector(vector): """ Returns the unit vector of the vector. """ return vector / np.linalg.norm(vector) def pickle_processing(path_pickle, path_output, transducer, freq_TS, TS_parameters, hac_info, orient): """ Process the pickle file from pymovies tracking and returns several key parameters for each track. input: - path_pickle: path to a pickle file, output of movies TS analysis - path_output: path to store output csv - transducer; name of the used transducer - freq_TS: reference frequence for TS extraction - TS_parameters: parameter for the TS detection and tracks selection - hac_info: complementary info on the different runs, same for all tracks of each run - orient: orientation ('H' or 'V') outputs: multiple csv - tracks: matrix of tracks with: - track, target: relative and absolute index for each tracks - TSrange: mean distance in m to transducer - TSalong, TSarthwart: mean angle in the transducer beam - x, y, z, x_gps, y_gps, z_gps: relative and absolute position - TScomp_mean, TScomp: mean TS of all frequencies or for the closest frequency from reference frequency - nb_target: number of targets per tracks - timeInt and Time: mean time in ns since 1970 and in string formats - k_dist: distance in m to the nearest neighbour - State, Abrv, tailleMoyenne: variables from the hac info file - b20: b20 value - Nv: Nv value - dist_x, dist_y, dist_z, dist_range, dist_tot: mean displacement in m following different axis - tilt_angle, cap_rel, cap_abs: tilt or heading angle (absolute and relative) in degrees (according to orientation) - vit_x, vit_y, vit_z, vit_range: speed following different axis - sd_x, sd_y, sd_z, sd_range, sd_ta: standard deviation of previous displacement and angle - sd_tot: sum of standard deviation - targets: matrix of all targets - freq: mean TScomp for each frequency """ if path_pickle[-7:] != ".pickle": # Check the pickle file logger.error("Not a pickle file !") return name_transect = os.path.basename(path_pickle)[:-18] logger.info("reading...") if os.path.getsize(path_pickle) > 0: result = pd.read_pickle(path_pickle) # read the pickle file else: logger.error("File empty !") # Si le fichier Pickle est vide logger.info("done !") for i in range(len(result[10])): # get index for the sounder and transducer according to given transducer for j in range(len(result[10][i])): if result[10][i][j] == transducer: indexSounder = i indexTransducer = j logger.info("creating tables...") # Extract the pickle data in several panda tables. nb_target = len(result[0][indexSounder][indexTransducer]) # number of targets for the given sounder and transducer if nb_target > 0: # check if any targets nb_freq = int(len(result[9][indexSounder][indexTransducer]) / nb_target) index_targets = [] for i in range(nb_target): index_targets += [i for j in range(nb_freq)] targets = pd.DataFrame( # individual target data { "track": np.array(result[8][indexSounder][indexTransducer]), "target": range(nb_target), "timeTarget": np.array(result[0][indexSounder][indexTransducer]), "TSrange": np.array(result[1][indexSounder][indexTransducer]), "TSalong": np.array(result[4][indexSounder][indexTransducer]), "TSathwart": np.array(result[5][indexSounder][indexTransducer]), }, index=range(nb_target) ) freq = pd.DataFrame( # TS and frequency data { "target": index_targets, "TScomp": np.array(result[2][indexSounder][indexTransducer]), "TSucomp": np.array(result[3][indexSounder][indexTransducer]), "TSfreq": np.array(result[9][indexSounder][indexTransducer]), }, index=range(nb_freq * nb_target) ) # get the position of each targets (relative and absolute) position = pd.DataFrame(result[6][indexSounder][indexTransducer], index=range(0, len(result[0][indexSounder][indexTransducer])), columns=['x', 'y', 'z']) positionGPS = pd.DataFrame(result[7][indexSounder][indexTransducer], index=range(0, len(result[0][indexSounder][indexTransducer])), columns=['x_gps', 'y_gps', 'z_gps']) TS_means = freq.groupby(by="target").mean() # get the TScomp_mean: mean TScomp for all frequencies TS_means = TS_means.rename(columns={'TScomp': 'TScomp_mean'}) freq_TS = min(list(freq['TSfreq']), key=lambda x: abs(x - freq_TS)) # closest frequency from the reference # frequency freq_TS TS_freq = freq[freq.TSfreq == freq_TS] # get the TScomp for the given reference frequency TS_freq.index = range(len(TS_freq)) logger.info("done !") targets = pd.concat([targets, position, positionGPS, TS_means['TScomp_mean'], TS_freq['TScomp']], axis=1) # merge of all the data tracks = targets.groupby(by="track").target.agg('count') # get number of target per tracks tracks_len = pd.DataFrame( {'track': tracks.index, 'nb_target': tracks.values}, index=range(len(tracks.index)) ) targets = pd.merge(targets, tracks_len, how='inner', on='track') # add the track length to the target data targets_selected = targets.loc[targets['nb_target'] >= TS_parameters['MinEchoNumber']] # Select by track length targets_data = targets_selected.sort_values('track') targets_data['timeInt'] = targets_data['timeTarget'].apply(lambda x: x.value) # convert time to int (ns, 1970) logger.info("targets ready !") ##### Tracks grouping and analysis logger.info('Gathering tracks data...') tracks_data = targets_data.groupby('track').mean() # group targets by tracks, keep each parameters as mean tracks_data['Time'] = pd.to_datetime(tracks_data['timeInt']) # panda's datetime tracks_data['k_dist'] = point_processing(tracks_data) # Distance to closest neighbor for index, row in hac_info.iterrows(): # add the hac_info columns (same for each run) if row.Name == name_transect: for header in hac_info.columns[1:]: tracks_data[header] = row[header] tracks_data['b20'] = tracks_data['TScomp'] - ( 20 * np.log10(tracks_data['tailleMoyenne'])) # get the b20 from TScomp and taille moyenne # get the Nv value for each track path_Nv = path_output + '/' + name_transect + "_Nv.csv" if os.path.exists(path_Nv): Nv = pd.read_csv(path_Nv) tracks_data['Nv'] = Sv.get_nv(tracks_data, Nv) else: tracks_data['Nv'] = -999 # No Nv data provided # tracks movement analysis tracks_id = list(targets_data.groupby('track').groups) scores = [] for i in tracks_id: # for each track track_i = targets_data.loc[ targets_data['track'] == i, ['timeTarget', 'x', 'y', 'z', 'TSrange', 'x_gps', 'y_gps']] track_i = track_i.sort_values('timeTarget') # Sort by time deltas = [[], [], [], [], [], [], [], [], []] for j in range(1, len(track_i)): deltas[0].append(track_i.x.iloc[j] - track_i.x.iloc[j - 1]) # delta in x axis deltas[1].append(track_i.y.iloc[j] - track_i.y.iloc[j - 1]) # delta in y axis deltas[2].append(track_i.z.iloc[j] - track_i.z.iloc[j - 1]) # delta in z axis deltas[3].append(track_i.TSrange.iloc[j] - track_i.TSrange.iloc[j - 1]) # delta in range deltas[4].append(calc_distance_lat(track_i.x_gps.iloc[j], track_i.x_gps.iloc[j - 1])) # distance between the 2 latitudes deltas[5].append(calc_distance_long(track_i.x_gps.iloc[j], track_i.y_gps.iloc[j], track_i.y_gps.iloc[j - 1])) # distance between the 2 longitudes if orient == 'H': #Horizontal echo sounder if track_i.x.iloc[ j] > 0: # check if x is coherent (beam is oriented on starboard), corrects direction # accordingly cap_rel = abs(math.degrees( math.atan2(deltas[1][j - 1], - deltas[0][j - 1]))) # heading relative to the boat else: cap_rel = abs(math.degrees(math.atan2(deltas[1][j - 1], deltas[0][j - 1]))) cap_abs = math.degrees( math.atan2(deltas[5][j - 1], deltas[4][j - 1])) # absolute (geographical) heading if cap_abs < 0: cap_abs = 360 + cap_abs # correct to have 0-360° headings tilt_angle = (math.degrees( math.atan2(math.sqrt(deltas[0][j - 1] ** 2 + deltas[1][j - 1] ** 2), deltas[2][j - 1])) - 90) # tilt angle of the track deltas[6].append(tilt_angle) deltas[7].append(cap_rel) deltas[8].append(cap_abs) else: #vertical echo sounder tilt_angle = (math.degrees( math.atan2(math.sqrt(deltas[0][j - 1] ** 2 + deltas[1][j - 1] ** 2), deltas[2][j - 1])) - 90) # tilt angle of the track deltas[6].append(tilt_angle) deltas[7].append(999) # relative and absolute heading is irrelevant on vertical echo sounder deltas[8].append(999) delta_t = track_i.timeTarget.iloc[len(track_i) - 1] - track_i.timeTarget.iloc[0] delta_t = delta_t.total_seconds() # time length of the track (s) dist_x = np.sum(deltas[4]) # dist is the length of the track on several dimensions dist_y = np.sum(deltas[5]) dist_z = np.sum(deltas[2]) dist_range = np.sum(deltas[3]) dist_tot = dist_x + dist_y + dist_z tilt_angle = np.mean(deltas[6]) # mean tilt angle of the track cap_rel = np.mean(deltas[7]) # mean relative heading of the track cap_abs = np.mean(deltas[8]) # mean absolute heading of the track vit_x = dist_x / delta_t # speed vit_y = dist_y / delta_t vit_z = dist_z / delta_t vit_range = dist_range / delta_t sd_x = np.std(deltas[4]) # standard deviation sd_y = np.std(deltas[5]) sd_z = np.std(deltas[2]) sd_range = np.std(deltas[3]) sd_ta = np.std(deltas[6]) sd_cr = np.std(deltas[7]) sd_ca = np.std(deltas[8]) sd_tot = sd_x + sd_y + sd_z scores.append( [i, dist_x / len(track_i), dist_y / len(track_i), dist_z / len(track_i), dist_range, dist_tot, tilt_angle, cap_rel, cap_abs, vit_x, vit_y, vit_z, vit_range, sd_x, sd_y, sd_z, sd_range, sd_tot, sd_ta, sd_cr, sd_ca] ) dist_scores = pd.DataFrame(scores, index=range(len(scores)), # storing values as a panda data frame columns=['track', 'dist_x', 'dist_y', 'dist_z', 'dist_range', 'dist_tot', 'tilt_angle', 'cap_rel', 'cap_abs', 'vit_x', 'vit_y', 'vit_z', 'vit_range', 'sd_x', 'sd_y', 'sd_z', 'sd_range', 'sd_tot', 'sd_ta', 'sd_cr', 'sd_ca']) tracks_data = pd.merge(tracks_data, dist_scores, how='inner', on='track') # merge with the main data frame logger.info("Done !") logger.debug('Tracks summary :') logger.debug(str(tracks_data.describe())) # Storing 2 different data frames as csv: # - targets, with individual targets of each points # - tracks, with the run track data filename_1 = path_output + "/" + name_transect + "_tracks.csv" filename_2 = path_output + "/" + name_transect + "_targets.csv" tracks_data.to_csv(filename_1, index=False) targets_data.to_csv(filename_2, index=False) logger.info("files saved !") freq_data = freq.groupby('TSfreq').mean() freq_data['freq'] = freq_data.index filename_3 = path_output + "/" + name_transect + "_freq.csv" freq_data.to_csv(filename_3, index=False) else: logger.error("No targets !!!")
[ "numpy.sum", "math.atan2", "pandas.read_csv", "numpy.mean", "numpy.linalg.norm", "numpy.std", "pandas.merge", "numpy.transpose", "os.path.exists", "sklearn.neighbors.NearestNeighbors", "math.cos", "numpy.log10", "pandas.concat", "math.sqrt", "os.path.basename", "os.path.getsize", "functools.reduce", "pandas.to_datetime", "numpy.cos", "numpy.vstack", "Sv.get_nv", "numpy.array", "pandas.read_pickle", "logging.getLogger" ]
[((160, 186), 'logging.getLogger', 'logging.getLogger', (['"""marin"""'], {}), "('marin')\n", (177, 186), False, 'import logging\n'), ((705, 759), 'numpy.vstack', 'np.vstack', (['[tracks.lat_m, tracks.long_m, tracks.z_gps]'], {}), '([tracks.lat_m, tracks.long_m, tracks.z_gps])\n', (714, 759), True, 'import numpy as np\n'), ((836, 855), 'numpy.transpose', 'np.transpose', (['array'], {}), '(array)\n', (848, 855), True, 'import numpy as np\n'), ((1129, 1173), 'functools.reduce', 'functools.reduce', (['np.logical_and', 'conditions'], {}), '(np.logical_and, conditions)\n', (1145, 1173), False, 'import functools\n'), ((1630, 1652), 'numpy.linalg.norm', 'np.linalg.norm', (['vector'], {}), '(vector)\n', (1644, 1652), True, 'import numpy as np\n'), ((3811, 3840), 'os.path.basename', 'os.path.basename', (['path_pickle'], {}), '(path_pickle)\n', (3827, 3840), False, 'import os\n'), ((3885, 3913), 'os.path.getsize', 'os.path.getsize', (['path_pickle'], {}), '(path_pickle)\n', (3900, 3913), False, 'import os\n'), ((3936, 3963), 'pandas.read_pickle', 'pd.read_pickle', (['path_pickle'], {}), '(path_pickle)\n', (3950, 3963), True, 'import pandas as pd\n'), ((6835, 6935), 'pandas.concat', 'pd.concat', (["[targets, position, positionGPS, TS_means['TScomp_mean'], TS_freq['TScomp']]"], {'axis': '(1)'}), "([targets, position, positionGPS, TS_means['TScomp_mean'], TS_freq\n ['TScomp']], axis=1)\n", (6844, 6935), True, 'import pandas as pd\n'), ((7270, 7324), 'pandas.merge', 'pd.merge', (['targets', 'tracks_len'], {'how': '"""inner"""', 'on': '"""track"""'}), "(targets, tracks_len, how='inner', on='track')\n", (7278, 7324), True, 'import pandas as pd\n'), ((7950, 7988), 'pandas.to_datetime', 'pd.to_datetime', (["tracks_data['timeInt']"], {}), "(tracks_data['timeInt'])\n", (7964, 7988), True, 'import pandas as pd\n'), ((8628, 8651), 'os.path.exists', 'os.path.exists', (['path_Nv'], {}), '(path_Nv)\n', (8642, 8651), False, 'import os\n'), ((13745, 13804), 'pandas.merge', 'pd.merge', (['tracks_data', 'dist_scores'], {'how': '"""inner"""', 'on': '"""track"""'}), "(tracks_data, dist_scores, how='inner', on='track')\n", (13753, 13804), True, 'import pandas as pd\n'), ((867, 921), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': '(2)', 'algorithm': '"""ball_tree"""'}), "(n_neighbors=2, algorithm='ball_tree')\n", (883, 921), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((8670, 8690), 'pandas.read_csv', 'pd.read_csv', (['path_Nv'], {}), '(path_Nv)\n', (8681, 8690), True, 'import pandas as pd\n'), ((8723, 8749), 'Sv.get_nv', 'Sv.get_nv', (['tracks_data', 'Nv'], {}), '(tracks_data, Nv)\n', (8732, 8749), False, 'import Sv\n'), ((11946, 11963), 'numpy.sum', 'np.sum', (['deltas[4]'], {}), '(deltas[4])\n', (11952, 11963), True, 'import numpy as np\n'), ((12042, 12059), 'numpy.sum', 'np.sum', (['deltas[5]'], {}), '(deltas[5])\n', (12048, 12059), True, 'import numpy as np\n'), ((12081, 12098), 'numpy.sum', 'np.sum', (['deltas[2]'], {}), '(deltas[2])\n', (12087, 12098), True, 'import numpy as np\n'), ((12124, 12141), 'numpy.sum', 'np.sum', (['deltas[3]'], {}), '(deltas[3])\n', (12130, 12141), True, 'import numpy as np\n'), ((12215, 12233), 'numpy.mean', 'np.mean', (['deltas[6]'], {}), '(deltas[6])\n', (12222, 12233), True, 'import numpy as np\n'), ((12288, 12306), 'numpy.mean', 'np.mean', (['deltas[7]'], {}), '(deltas[7])\n', (12295, 12306), True, 'import numpy as np\n'), ((12367, 12385), 'numpy.mean', 'np.mean', (['deltas[8]'], {}), '(deltas[8])\n', (12374, 12385), True, 'import numpy as np\n'), ((12608, 12625), 'numpy.std', 'np.std', (['deltas[4]'], {}), '(deltas[4])\n', (12614, 12625), True, 'import numpy as np\n'), ((12667, 12684), 'numpy.std', 'np.std', (['deltas[5]'], {}), '(deltas[5])\n', (12673, 12684), True, 'import numpy as np\n'), ((12704, 12721), 'numpy.std', 'np.std', (['deltas[2]'], {}), '(deltas[2])\n', (12710, 12721), True, 'import numpy as np\n'), ((12745, 12762), 'numpy.std', 'np.std', (['deltas[3]'], {}), '(deltas[3])\n', (12751, 12762), True, 'import numpy as np\n'), ((12783, 12800), 'numpy.std', 'np.std', (['deltas[6]'], {}), '(deltas[6])\n', (12789, 12800), True, 'import numpy as np\n'), ((12821, 12838), 'numpy.std', 'np.std', (['deltas[7]'], {}), '(deltas[7])\n', (12827, 12838), True, 'import numpy as np\n'), ((12859, 12876), 'numpy.std', 'np.std', (['deltas[8]'], {}), '(deltas[8])\n', (12865, 12876), True, 'import numpy as np\n'), ((520, 540), 'numpy.cos', 'np.cos', (['tracks.x_gps'], {}), '(tracks.x_gps)\n', (526, 540), True, 'import numpy as np\n'), ((1494, 1507), 'math.cos', 'math.cos', (['lat'], {}), '(lat)\n', (1502, 1507), False, 'import math\n'), ((4919, 4969), 'numpy.array', 'np.array', (['result[8][indexSounder][indexTransducer]'], {}), '(result[8][indexSounder][indexTransducer])\n', (4927, 4969), True, 'import numpy as np\n'), ((5045, 5095), 'numpy.array', 'np.array', (['result[0][indexSounder][indexTransducer]'], {}), '(result[0][indexSounder][indexTransducer])\n', (5053, 5095), True, 'import numpy as np\n'), ((5124, 5174), 'numpy.array', 'np.array', (['result[1][indexSounder][indexTransducer]'], {}), '(result[1][indexSounder][indexTransducer])\n', (5132, 5174), True, 'import numpy as np\n'), ((5203, 5253), 'numpy.array', 'np.array', (['result[4][indexSounder][indexTransducer]'], {}), '(result[4][indexSounder][indexTransducer])\n', (5211, 5253), True, 'import numpy as np\n'), ((5284, 5334), 'numpy.array', 'np.array', (['result[5][indexSounder][indexTransducer]'], {}), '(result[5][indexSounder][indexTransducer])\n', (5292, 5334), True, 'import numpy as np\n'), ((5532, 5582), 'numpy.array', 'np.array', (['result[2][indexSounder][indexTransducer]'], {}), '(result[2][indexSounder][indexTransducer])\n', (5540, 5582), True, 'import numpy as np\n'), ((5611, 5661), 'numpy.array', 'np.array', (['result[3][indexSounder][indexTransducer]'], {}), '(result[3][indexSounder][indexTransducer])\n', (5619, 5661), True, 'import numpy as np\n'), ((5689, 5739), 'numpy.array', 'np.array', (['result[9][indexSounder][indexTransducer]'], {}), '(result[9][indexSounder][indexTransducer])\n', (5697, 5739), True, 'import numpy as np\n'), ((8424, 8462), 'numpy.log10', 'np.log10', (["tracks_data['tailleMoyenne']"], {}), "(tracks_data['tailleMoyenne'])\n", (8432, 8462), True, 'import numpy as np\n'), ((10705, 10751), 'math.atan2', 'math.atan2', (['deltas[5][j - 1]', 'deltas[4][j - 1]'], {}), '(deltas[5][j - 1], deltas[4][j - 1])\n', (10715, 10751), False, 'import math\n'), ((10428, 10475), 'math.atan2', 'math.atan2', (['deltas[1][j - 1]', '(-deltas[0][j - 1])'], {}), '(deltas[1][j - 1], -deltas[0][j - 1])\n', (10438, 10475), False, 'import math\n'), ((10588, 10634), 'math.atan2', 'math.atan2', (['deltas[1][j - 1]', 'deltas[0][j - 1]'], {}), '(deltas[1][j - 1], deltas[0][j - 1])\n', (10598, 10634), False, 'import math\n'), ((10990, 11046), 'math.sqrt', 'math.sqrt', (['(deltas[0][j - 1] ** 2 + deltas[1][j - 1] ** 2)'], {}), '(deltas[0][j - 1] ** 2 + deltas[1][j - 1] ** 2)\n', (10999, 11046), False, 'import math\n'), ((11404, 11460), 'math.sqrt', 'math.sqrt', (['(deltas[0][j - 1] ** 2 + deltas[1][j - 1] ** 2)'], {}), '(deltas[0][j - 1] ** 2 + deltas[1][j - 1] ** 2)\n', (11413, 11460), False, 'import math\n')]
# This is sample baseline for CIKM Personalization Cup 2016 # by <NAME> & <NAME> import numpy as np import pandas as pd import datetime start_time = datetime.datetime.now() print("Running baseline. Now it's", start_time.isoformat()) # Loading queries (assuming data placed in <dataset-train/> queries = pd.read_csv('dataset-train/train-queries.csv', sep=';')[['queryId', 'items', 'is.test']] print('Total queries', len(queries)) # Leaving only test queries (the ones which items we have to sort) queries = queries[queries['is.test'] == True][['queryId', 'items']] print('Test queries', len(queries)) queries.reset_index(inplace=True) queries.drop(['index'], axis=1, inplace=True) # Loading item views; taking itemId column item_views = pd.read_csv('dataset-train/train-item-views.csv', sep=';')[['itemId']] print('Item views', len(item_views)) # Loading clicks; taking itemId column clicks = pd.read_csv('dataset-train/train-clicks.csv', sep=';')[['itemId']] print('Clicks', len(clicks)) # Loading purchases; taking itemId column purchases = pd.read_csv('dataset-train/train-purchases.csv', sep=';')[['itemId']] print('Purchases', len(purchases)) # Calculating popularity as [Amount of views] * 1 + Amount of clicks * 2 + [Amount of purchases] * 3 print('Scoring popularity for each item ...') prod_pop = {} for cost, container in enumerate([item_views, clicks, purchases]): for prod in container.values: product = str(prod[0]) if product not in prod_pop: prod_pop[product] = cost else: prod_pop[product] += cost print('Popularity scored for', len(prod_pop), 'products') # For each query: # parse items (comma-separated values in last column) # sort them by score; # write them to the submission file. # This is longest part; it usually takes around 5 minutes. print('Sorting items per query by popularity...') answers = [] step = int(len(queries) / 20) with open('submission.txt', 'w+') as submission: for i, q in enumerate(queries.values): # Fancy progressbar if i % step == 0: print(5 * i / step, '%...') # Splitting last column which contains comma-separated items items = q[-1].split(',') # Getting scores for each item. Also, inverting scores here, so we can use argsort items_scores = list(map(lambda x: -prod_pop.get(x, 0), items)) # Sorting items using items_scores order permutation sorted_items = np.array(items)[np.array(items_scores).argsort()] # Squashing items together s = ','.join(sorted_items) # and writing them to submission submission.write(str(q[0]) + " " + s + "\n") end_time = datetime.datetime.now() print("Done. Now it's ", end_time.isoformat()) print("Calculated baseline in ", (end_time - start_time).seconds, " seconds")
[ "pandas.read_csv", "datetime.datetime.now", "numpy.array" ]
[((151, 174), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (172, 174), False, 'import datetime\n'), ((2686, 2709), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2707, 2709), False, 'import datetime\n'), ((306, 361), 'pandas.read_csv', 'pd.read_csv', (['"""dataset-train/train-queries.csv"""'], {'sep': '""";"""'}), "('dataset-train/train-queries.csv', sep=';')\n", (317, 361), True, 'import pandas as pd\n'), ((741, 799), 'pandas.read_csv', 'pd.read_csv', (['"""dataset-train/train-item-views.csv"""'], {'sep': '""";"""'}), "('dataset-train/train-item-views.csv', sep=';')\n", (752, 799), True, 'import pandas as pd\n'), ((898, 952), 'pandas.read_csv', 'pd.read_csv', (['"""dataset-train/train-clicks.csv"""'], {'sep': '""";"""'}), "('dataset-train/train-clicks.csv', sep=';')\n", (909, 952), True, 'import pandas as pd\n'), ((1049, 1106), 'pandas.read_csv', 'pd.read_csv', (['"""dataset-train/train-purchases.csv"""'], {'sep': '""";"""'}), "('dataset-train/train-purchases.csv', sep=';')\n", (1060, 1106), True, 'import pandas as pd\n'), ((2460, 2475), 'numpy.array', 'np.array', (['items'], {}), '(items)\n', (2468, 2475), True, 'import numpy as np\n'), ((2476, 2498), 'numpy.array', 'np.array', (['items_scores'], {}), '(items_scores)\n', (2484, 2498), True, 'import numpy as np\n')]
# python import warnings # Third party imports import numpy as np # grAdapt from .base import Initial from grAdapt.utils.sampling import sample_corner_bounds class VerticesForceRandom(Initial): """ Samples all vertices if n_evals >= 2 ** len(bounds). Else, a subset of vertices is sampled. """ def __init__(self, sampling_method): """ Parameters ---------- sampling_method : grAdapt.sampling.equidistributed Object Sample low discrepancy sequences when initial point method is not feasible """ super().__init__(sampling_method) def sample(self, bounds, n_evals): """Returns a numpy array of sampled points. Does not include corner points of the hypercube/search space. Parameters ---------- bounds : list of tuples or list of grAdapt.space.datatype.base Each tuple in the list defines the bounds for the corresponding variable Example: [(1, 2), (2, 3), (-1, 4)...] n_evals : int number of initial points sampled by method Returns ------- (self.n_evals, len(self.bounds)) numpy array """ super().sample(bounds, n_evals) if 2 ** len(self.bounds) >= self.n_evals: # sample corner points first which fits in n_evals d_tilde = int(np.floor(np.log2(self.n_evals))) corners_d_tilde = sample_corner_bounds(self.bounds[:d_tilde]) # (2 ** d_tilde, d_tilde) array n_tilde = 2 ** d_tilde # sample random fixed corner points random_binary_array = np.random.randint(2, size=(len(self.bounds),)) remainder_bounds = self.bounds[d_tilde:] fix_corners = np.zeros((1, len(remainder_bounds))) for i in range(len(remainder_bounds)): if random_binary_array[i] == 0: fix_corners[0][i] = remainder_bounds[i][0] else: fix_corners[0][i] = remainder_bounds[i][1] fix_corners_2d = np.tile(fix_corners, (n_tilde, 1)) # (n, d-d_tilde) # corner points with fixed rest dimensions corner_points_fixed = np.hstack((corners_d_tilde, fix_corners_2d)) # because 2 ** n_tilde <= n, sample n - n_tilde if self.n_evals - n_tilde > 0: random_points = self.sampling_method.sample(bounds=self.bounds, n=(self.n_evals - n_tilde), x_history=corner_points_fixed) return np.vstack((corner_points_fixed, random_points)) else: return corner_points_fixed else: corner_points = sample_corner_bounds(self.bounds) num_corner_points = corner_points.shape[0] random_points = self.sampling_method.sample(bounds=self.bounds, n=(self.n_evals - num_corner_points), x_history=corner_points) return np.vstack((corner_points, random_points))
[ "numpy.log2", "numpy.hstack", "grAdapt.utils.sampling.sample_corner_bounds", "numpy.tile", "numpy.vstack" ]
[((1438, 1481), 'grAdapt.utils.sampling.sample_corner_bounds', 'sample_corner_bounds', (['self.bounds[:d_tilde]'], {}), '(self.bounds[:d_tilde])\n', (1458, 1481), False, 'from grAdapt.utils.sampling import sample_corner_bounds\n'), ((2071, 2105), 'numpy.tile', 'np.tile', (['fix_corners', '(n_tilde, 1)'], {}), '(fix_corners, (n_tilde, 1))\n', (2078, 2105), True, 'import numpy as np\n'), ((2214, 2258), 'numpy.hstack', 'np.hstack', (['(corners_d_tilde, fix_corners_2d)'], {}), '((corners_d_tilde, fix_corners_2d))\n', (2223, 2258), True, 'import numpy as np\n'), ((2797, 2830), 'grAdapt.utils.sampling.sample_corner_bounds', 'sample_corner_bounds', (['self.bounds'], {}), '(self.bounds)\n', (2817, 2830), False, 'from grAdapt.utils.sampling import sample_corner_bounds\n'), ((3157, 3198), 'numpy.vstack', 'np.vstack', (['(corner_points, random_points)'], {}), '((corner_points, random_points))\n', (3166, 3198), True, 'import numpy as np\n'), ((2645, 2692), 'numpy.vstack', 'np.vstack', (['(corner_points_fixed, random_points)'], {}), '((corner_points_fixed, random_points))\n', (2654, 2692), True, 'import numpy as np\n'), ((1384, 1405), 'numpy.log2', 'np.log2', (['self.n_evals'], {}), '(self.n_evals)\n', (1391, 1405), True, 'import numpy as np\n')]
import numpy as np import pickle class onehot: def __init__(self, sentences): self.__sentences = sentences self.__data = {} self.__count = {} self.__build() def __build(self): self.__word_num = 1 for sentence in self.__sentences: for word in sentence: if word in self.__data: self.__count[word] += 1 else: self.__count[word] = 1 self.__data[word] = self.__word_num self.__word_num += 1 def __getitem__(self, word): if word not in self.__data: print('Error! The word not in it\'s map!') else: ret = np.zeros((self.__word_num - 1, 1)) ret[self.__data[word] - 1] = 1 return ret def get_voca_size(self): return self.__word_num - 1 def get_word_frequency(self, word): if word not in self.__data: print('Error! The word not in it\'s map!') else: return self.__count[word] def get_index_of_word(self, word): if word not in self.__data: print('Error! The word not in it\'s map!') else: return self.__data[word] - 1
[ "numpy.zeros" ]
[((748, 782), 'numpy.zeros', 'np.zeros', (['(self.__word_num - 1, 1)'], {}), '((self.__word_num - 1, 1))\n', (756, 782), True, 'import numpy as np\n')]
import torch import torch.nn.functional as F import gym import gym.spaces import numpy as np def autocrop_observations(observations, cell_size, output_size=None): shape = observations.size()[3:] if output_size is None: new_shape = tuple(map(lambda x: (x // cell_size) * cell_size, shape)) else: new_shape = tuple(map(lambda x: x * cell_size, output_size)) margin3_top = (shape[0] - new_shape[0]) // 2 margin3_bottom = -(shape[0] - new_shape[0] - margin3_top) margin4_top = (shape[1] - new_shape[1]) // 2 margin4_bottom = -(shape[1] - new_shape[1] - margin4_top) if margin3_bottom == 0: margin3_bottom = None if margin4_bottom == 0: margin4_bottom = None return observations[:, :, :, margin3_top:margin3_bottom, margin4_top:margin4_bottom] def pixel_control_reward(observations, cell_size=4, output_size=None): ''' Args: observations: A tensor of shape `[B,T+1,C,H,W]`, where * `T` is the sequence length, `B` is the batch size. * `H` is height, `W` is width. * `C...` is at least one channel dimension (e.g., colour, stack). * `T` and `B` can be statically unknown. cell_size: The size of each cell. Returns: shape (B, T, 1, H / cell_size, W / cell_size) ''' with torch.no_grad(): observations = autocrop_observations(observations, cell_size, output_size=output_size) abs_observation_diff = observations[:, 1:] - observations[:, :-1] abs_observation_diff.abs_() obs_shape = abs_observation_diff.size() abs_diff = abs_observation_diff.view(-1, *obs_shape[2:]) avg_abs_diff = F.avg_pool2d(abs_diff, cell_size, stride=cell_size) avg_abs_diff = avg_abs_diff.mean(1, keepdim=True) return avg_abs_diff.view(*obs_shape[:2] + avg_abs_diff.size()[1:]) def pixel_control_loss(observations, actions, action_values, gamma=0.9, cell_size=4): action_value_shape = action_values.size() batch_shape = actions.size()[:2] with torch.no_grad(): T = observations.size()[1] - 1 pseudo_rewards = pixel_control_reward(observations, cell_size, output_size=action_values.size()[-2:]) last_rewards = action_values[:, -1].max(1, keepdim=True)[0] for i in reversed(range(T)): previous_rewards = last_rewards if i + 1 == T else pseudo_rewards[:, i + 1] pseudo_rewards[:, i].add_(gamma, previous_rewards) q_actions = actions.view(*batch_shape + (1, 1, 1)).repeat(1, 1, 1, action_value_shape[3], action_value_shape[4]) q_actions = torch.gather(action_values[:, :-1], 2, q_actions) loss = F.mse_loss(pseudo_rewards, q_actions) return loss def reward_prediction_loss(predictions, rewards): with torch.no_grad(): target = torch.zeros(predictions.size(), dtype=torch.float32, device=predictions.device) target[:, 0] = rewards == 0 target[:, 1] = rewards > 0 target[:, 2] = rewards < 0 return F.binary_cross_entropy_with_logits(predictions, target) def discounted_commulative_reward(rewards, base_value, gamma): cummulative_reward = rewards.clone() max_t = cummulative_reward.size()[1] for i in reversed(range(max_t)): next_values = base_value if i + 1 == max_t else cummulative_reward[:, i + 1] cummulative_reward[:, i].add_(gamma, next_values) return cummulative_reward def value_loss(values, rewards, gamma): base_value = values[:, -1] with torch.no_grad(): cummulative_reward = discounted_commulative_reward(rewards, base_value, gamma) return F.mse_loss(values[:, :-1], cummulative_reward) class UnrealEnvBaseWrapper(gym.Wrapper): def __init__(self, env): super().__init__(env) self.last_action_reward = None self.observation_space = gym.spaces.Tuple(( env.observation_space, gym.spaces.Box(0.0, 1.0, (env.action_space.n + 1,), dtype=np.float32) )) def reset(self): self.last_action_reward = np.zeros(self.action_space.n + 1, dtype=np.float32) return self.observation(self.env.reset()) def step(self, action): observation, reward, done, stats = self.env.step(action) self.last_action_reward = np.zeros(self.action_space.n + 1, dtype=np.float32) self.last_action_reward[action] = 1.0 self.last_action_reward[-1] = np.clip(reward, -1, 1) return self.observation(observation), reward, done, stats def observation(self, observation): return (observation, self.last_action_reward)
[ "torch.gather", "torch.nn.functional.avg_pool2d", "torch.nn.functional.mse_loss", "numpy.zeros", "torch.nn.functional.binary_cross_entropy_with_logits", "numpy.clip", "gym.spaces.Box", "torch.no_grad" ]
[((2582, 2631), 'torch.gather', 'torch.gather', (['action_values[:, :-1]', '(2)', 'q_actions'], {}), '(action_values[:, :-1], 2, q_actions)\n', (2594, 2631), False, 'import torch\n'), ((2644, 2681), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['pseudo_rewards', 'q_actions'], {}), '(pseudo_rewards, q_actions)\n', (2654, 2681), True, 'import torch.nn.functional as F\n'), ((2991, 3046), 'torch.nn.functional.binary_cross_entropy_with_logits', 'F.binary_cross_entropy_with_logits', (['predictions', 'target'], {}), '(predictions, target)\n', (3025, 3046), True, 'import torch.nn.functional as F\n'), ((3602, 3648), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['values[:, :-1]', 'cummulative_reward'], {}), '(values[:, :-1], cummulative_reward)\n', (3612, 3648), True, 'import torch.nn.functional as F\n'), ((1302, 1317), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1315, 1317), False, 'import torch\n'), ((1661, 1712), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['abs_diff', 'cell_size'], {'stride': 'cell_size'}), '(abs_diff, cell_size, stride=cell_size)\n', (1673, 1712), True, 'import torch.nn.functional as F\n'), ((2026, 2041), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2039, 2041), False, 'import torch\n'), ((2759, 2774), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2772, 2774), False, 'import torch\n'), ((3487, 3502), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3500, 3502), False, 'import torch\n'), ((4026, 4077), 'numpy.zeros', 'np.zeros', (['(self.action_space.n + 1)'], {'dtype': 'np.float32'}), '(self.action_space.n + 1, dtype=np.float32)\n', (4034, 4077), True, 'import numpy as np\n'), ((4256, 4307), 'numpy.zeros', 'np.zeros', (['(self.action_space.n + 1)'], {'dtype': 'np.float32'}), '(self.action_space.n + 1, dtype=np.float32)\n', (4264, 4307), True, 'import numpy as np\n'), ((4392, 4414), 'numpy.clip', 'np.clip', (['reward', '(-1)', '(1)'], {}), '(reward, -1, 1)\n', (4399, 4414), True, 'import numpy as np\n'), ((3889, 3958), 'gym.spaces.Box', 'gym.spaces.Box', (['(0.0)', '(1.0)', '(env.action_space.n + 1,)'], {'dtype': 'np.float32'}), '(0.0, 1.0, (env.action_space.n + 1,), dtype=np.float32)\n', (3903, 3958), False, 'import gym\n')]
import numpy as np from scipy.spatial.transform import Rotation import numpy as np import pybullet as p def todegree(w): return w*180/np.pi def torad(w): return w*np.pi/180 def angle(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def unit_vector(vector): """ Returns the unit vector of the vector. """ return vector / np.linalg.norm(vector) def add_one(index): if index+1 == 3: index_out = 0 else: index_out = index+1 return index_out def to_H(R, T=np.zeros(3)): H = np.eye(4) H[:-1,:-1] = R H[:-1,-1] = T return H def closest_axis_2_userdefined(H, vec): #print (H) #print (np.linalg.inv(H[:-1,:-1])) min_angle = 190 x_des = np.array(vec) index = 0 sign = 0 reverse = False for i in range(3): x = H[:-1, i] theta = todegree(angle(x, x_des)) #print (theta) if theta > 90: theta = theta - 180 if theta ==0: reverse = True if min_angle > np.abs(theta): min_angle = np.abs(theta) index = i if theta == 0.: if reverse: sign = -1 else: sign = 1 else: sign = np.sign(theta) return min_angle, index, sign def R_2vect(vector_orig, vector_fin): """Calculate the rotation matrix required to rotate from one vector to another. For the rotation of one vector to another, there are an infinit series of rotation matrices possible. Due to axially symmetry, the rotation axis can be any vector lying in the symmetry plane between the two vectors. Hence the axis-angle convention will be used to construct the matrix with the rotation axis defined as the cross product of the two vectors. The rotation angle is the arccosine of the dot product of the two unit vectors. Given a unit vector parallel to the rotation axis, w = [x, y, z] and the rotation angle a, the rotation matrix R is:: | 1 + (1-cos(a))*(x*x-1) -z*sin(a)+(1-cos(a))*x*y y*sin(a)+(1-cos(a))*x*z | R = | z*sin(a)+(1-cos(a))*x*y 1 + (1-cos(a))*(y*y-1) -x*sin(a)+(1-cos(a))*y*z | | -y*sin(a)+(1-cos(a))*x*z x*sin(a)+(1-cos(a))*y*z 1 + (1-cos(a))*(z*z-1) | @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array @param vector_orig: The unrotated vector defined in the reference frame. @type vector_orig: numpy array, len 3 @param vector_fin: The rotated vector defined in the reference frame. @type vector_fin: numpy array, len 3 """ # Convert the vectors to unit vectors. vector_orig = vector_orig / np.linalg.norm(vector_orig) vector_fin = vector_fin / np.linalg.norm(vector_fin) # The rotation axis (normalised). axis = np.cross(vector_orig, vector_fin) axis_len = np.linalg.norm(axis) if axis_len != 0.0: axis = axis / axis_len # Alias the axis coordinates. x = axis[0] y = axis[1] z = axis[2] if x==0 and y==0 and z==0: z=1 # The rotation angle. angle = np.arccos(np.clip(np.dot(vector_orig, vector_fin),-1,1)) # Trig functions (only need to do this maths once!). ca = np.cos(angle) sa = np.sin(angle) R = np.eye(4) # Calculate the rotation matrix elements. R[0, 0] = 1.0 + (1.0 - ca) * (x ** 2 - 1.0) R[0, 1] = -z * sa + (1.0 - ca) * x * y R[0, 2] = y * sa + (1.0 - ca) * x * z R[1, 0] = z * sa + (1.0 - ca) * x * y R[1, 1] = 1.0 + (1.0 - ca) * (y ** 2 - 1.0) R[1, 2] = -x * sa + (1.0 - ca) * y * z R[2, 0] = -y * sa + (1.0 - ca) * x * z R[2, 1] = x * sa + (1.0 - ca) * y * z R[2, 2] = 1.0 + (1.0 - ca) * (z ** 2 - 1.0) return R, axis, angle class RotationPrimitives(): def __init__(self, H0, Hg): self.H0 = H0 self.Hg = Hg def set_goal(self, Hg): self.Hg = Hg def set_current_pose(self,H0): self.H0 = H0 def get_control_seq(self, ax=None): ## Control Sequence will provide rotation vector and desired rotation to achieve target ## ################## Goal to Viapoint 2 ################################### theta, index, sign = self.closest_axis_2_normal(self.Hg) des_vec = np.array([0, 0, sign * 1]) R, r_vec_via2gw, ang_via = self.R_2vect(self.Hg[:-1, index], des_vec) H_via2 = np.matmul(R, self.Hg) H_via2[:-1,-1] = self.Hg[:-1,-1] H_via2[2, -1] = 0. r_vec_via2g = np.matmul(H_via2[:-1,:-1].T, r_vec_via2gw) c2g = [r_vec_via2g, -ang_via, r_vec_via2gw] ######################################################################### ############# From Floor to Viapoint 1 #################### index_H0, sign_H0 = self.find_index_z(self.H0) #theta_0 ,index_H0, sign_H0 = self.closest_axis_2_normal(self.H0) # print (index_H0, sign_H0, index, sign) # input ("WAIT") rot_index, ang_floor = self.find_rot_z(index_H0, sign_H0, index, sign) if rot_index is not None: r_vec_floor = np.zeros(3) r_vec_floor[rot_index] = 1 rotation_floor = Rotation.from_rotvec(ang_floor * r_vec_floor) R_floor_1 = rotation_floor.as_matrix() R_floor_1 = to_H(R=R_floor_1) H_via1 = np.matmul(self.H0, R_floor_1) #H_via1[1,-1] = 0.3 else: r_vec_floor = np.zeros(3) r_vec_floor[index] = 1 ang_floor = 0. H_via1 = self.H0 r_vec_floor_w = np.matmul(self.H0[:-1,:-1], r_vec_floor) c01 = [r_vec_floor, ang_floor, r_vec_floor_w] #################################################### ############ From Viapoint 1 to Viapoint 2 ################ if index == 0: vec_1 = H_via1[:-1, 1] vec_2 = H_via2[:-1, 1] else: vec_1 = H_via1[:-1, 0] vec_2 = H_via2[:-1, 0] R12, r_vec_via12_p, ang_via12 = self.R_2vect(vec_1, vec_2) r_vec_via12w = np.zeros(3) r_vec_via12w[2] = np.sign(r_vec_via12_p[2]) r_vec_via12 = np.matmul(H_via1[:-1,:-1].T, r_vec_via12w) c12 = [r_vec_via12, ang_via12, r_vec_via12w] ########################################################### ##### COMPUTE SHORTCUT: ######## rot_12 = to_H(Rotation.from_rotvec(c12[0]*c12[1]).as_matrix()) rot2g = to_H(Rotation.from_rotvec(c2g[0]*c2g[1]).as_matrix()) rot1g = np.matmul(rot_12,rot2g) if np.allclose(rot1g, np.eye(4)): c1g = [np.array([0,0,1]), 0.] else: rot1g = Rotation.from_matrix(rot1g[:-1,:-1]).as_rotvec() c1g = [rot1g / np.linalg.norm(rot1g,ord=2), np.linalg.norm(rot1g,ord=2)] ##### Compute rotation from start to Via-2 ## R_via2 = H_via2[:-1,:-1] R_init = self.H0[:-1,:-1] R_to_2 = np.matmul(R_init.T, R_via2) if np.allclose(R_to_2, np.eye(3)): c_to_2 = [np.array([0, 0, 1]), 0.] else: rot_to_2 = Rotation.from_matrix(R_to_2).as_rotvec() c_to_2 = [rot_to_2 / np.linalg.norm(rot_to_2, ord=2), np.linalg.norm(rot_to_2, ord=2)] ##### Compute rotation from start to Goal ### R_g = self.Hg[:-1, :-1] R_init = self.H0[:-1, :-1] R_to_g = np.matmul(R_init.T, R_g) if np.allclose(R_to_g, np.eye(3)): c_to_g = [np.array([0, 0, 1]), 0.] else: rot_to_g = Rotation.from_matrix(R_to_g).as_rotvec() c_to_g = [rot_to_g / np.linalg.norm(rot_to_g, ord=2), np.linalg.norm(rot_to_g, ord=2)] command_seq = [c01, c12,c2g] return command_seq, [c1g], [c_to_2, c_to_g] def find_index_z(self, H): big_Z = 0.0 index = 0 for i in range(3): z = H[2, i] # print(z) if np.abs(z) > big_Z: big_Z = np.abs(z) sign = np.sign(z) index = i return index, sign def find_rot_z(self, index_H0, sign_H0, index, sign): if index == index_H0: if sign == sign_H0: return None, None else: angle = np.pi if index == 0: rot_over = 1 else: rot_over = 0 return rot_over, angle else: rot_over = 0 while (rot_over == index or rot_over == index_H0): rot_over += 1 if sign == sign_H0: angle = -np.pi / 2 if add_one(rot_over) != index_H0: angle = -angle else: angle = np.pi / 2 if add_one(rot_over) != index_H0: angle = -angle return rot_over, angle def closest_axis_2_normal(self, H): # print (H) # print (np.linalg.inv(H[:-1,:-1])) min_angle = 190 x_des = np.array([0, 0, 1]) index = 0 sign = 0 reverse = False for i in range(3): x = H[:-1, i] theta = todegree(angle(x, x_des)) # print (theta) if theta > 90: theta = theta - 180 if theta ==0: reverse = True if min_angle > np.abs(theta): min_angle = np.abs(theta) index = i if theta == 0.: if reverse: sign = -1 else: sign = 1 else: sign = np.sign(theta) return min_angle, index, sign def R_2vect(self, vector_orig, vector_fin): """Calculate the rotation matrix required to rotate from one vector to another. For the rotation of one vector to another, there are an infinit series of rotation matrices possible. Due to axially symmetry, the rotation axis can be any vector lying in the symmetry plane between the two vectors. Hence the axis-angle convention will be used to construct the matrix with the rotation axis defined as the cross product of the two vectors. The rotation angle is the arccosine of the dot product of the two unit vectors. Given a unit vector parallel to the rotation axis, w = [x, y, z] and the rotation angle a, the rotation matrix R is:: | 1 + (1-cos(a))*(x*x-1) -z*sin(a)+(1-cos(a))*x*y y*sin(a)+(1-cos(a))*x*z | R = | z*sin(a)+(1-cos(a))*x*y 1 + (1-cos(a))*(y*y-1) -x*sin(a)+(1-cos(a))*y*z | | -y*sin(a)+(1-cos(a))*x*z x*sin(a)+(1-cos(a))*y*z 1 + (1-cos(a))*(z*z-1) | @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array @param vector_orig: The unrotated vector defined in the reference frame. @type vector_orig: numpy array, len 3 @param vector_fin: The rotated vector defined in the reference frame. @type vector_fin: numpy array, len 3 """ # Convert the vectors to unit vectors. vector_orig = vector_orig / np.linalg.norm(vector_orig) vector_fin = vector_fin / np.linalg.norm(vector_fin) # The rotation axis (normalised). axis = np.cross(vector_orig, vector_fin) axis_len = np.linalg.norm(axis) if axis_len != 0.0: axis = axis / axis_len # Alias the axis coordinates. x = axis[0] y = axis[1] z = axis[2] if x==0 and y==0 and z==0: z=1 # The rotation angle. angle = np.arccos(np.clip(np.dot(vector_orig, vector_fin),-1,1)) # Trig functions (only need to do this maths once!). ca = np.cos(angle) sa = np.sin(angle) R = np.eye(4) # Calculate the rotation matrix elements. R[0, 0] = 1.0 + (1.0 - ca) * (x ** 2 - 1.0) R[0, 1] = -z * sa + (1.0 - ca) * x * y R[0, 2] = y * sa + (1.0 - ca) * x * z R[1, 0] = z * sa + (1.0 - ca) * x * y R[1, 1] = 1.0 + (1.0 - ca) * (y ** 2 - 1.0) R[1, 2] = -x * sa + (1.0 - ca) * y * z R[2, 0] = -y * sa + (1.0 - ca) * x * z R[2, 1] = x * sa + (1.0 - ca) * y * z R[2, 2] = 1.0 + (1.0 - ca) * (z ** 2 - 1.0) return R, axis, angle def calculate_mutltiple_goals(init_information, obs): goal_orients = [] # This first calcuation step allows to calculate a viapoint! I.e. it yields a goal orientation for some axis alignment init_orient = np.zeros(3) init_orient[:2] = np.asarray(init_information[:2]) init_orient = init_orient / np.linalg.norm(init_orient) current_orient = np.asarray(p.getMatrixFromQuaternion(obs["object_orientation"])).reshape(3, 3) theta, index, sign = closest_axis_2_userdefined(to_H(current_orient), init_orient) des_vec = sign * np.array(init_orient) Rot1, r_vec_via2gw, ang_via = R_2vect(current_orient[:, index], des_vec) first_goal = np.matmul(Rot1[:-1, :-1], current_orient) first_goal = Rotation.from_matrix(first_goal) goal_orients.append([first_goal.as_quat()+[0.001,0.001,0.001,0.001],[0,0,0.0325]]) #addition of noise needed since otherwise problems code,... # this second calculation applies the relative transformation which is desired based on the current observation!!! # now take into account the desired rotation from the target information: des_rotation = np.asarray(p.getMatrixFromQuaternion(init_information[10:14])).reshape(3, 3) init_orient = np.asarray([1,0,0]) theta, index, sign = closest_axis_2_userdefined( to_H(current_orient), init_orient) des_vec = sign * np.array(init_orient) Rot1, r_vec_via2gw, ang_via = R_2vect(current_orient[:, index], des_vec) second_goal = np.matmul(Rot1[:-1, :-1], current_orient) # now apply rotation: second_goal = np.matmul(des_rotation, second_goal) # now rotate back to orientation that we are now at: second_goal = np.matmul(Rot1[:-1, :-1].T, second_goal) second_goal = Rotation.from_matrix(second_goal) goal_orients.append([second_goal.as_quat()+[0.001,0.001,0.001,0.001],[init_information[7],init_information[8],init_information[9]]]) #addition of noise needed since otherwise problems code,... return goal_orients
[ "numpy.abs", "numpy.dot", "numpy.asarray", "pybullet.getMatrixFromQuaternion", "numpy.cross", "numpy.zeros", "numpy.sign", "numpy.sin", "numpy.array", "numpy.linalg.norm", "numpy.cos", "numpy.matmul", "scipy.spatial.transform.Rotation.from_matrix", "numpy.eye", "scipy.spatial.transform.Rotation.from_rotvec" ]
[((583, 594), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (591, 594), True, 'import numpy as np\n'), ((605, 614), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (611, 614), True, 'import numpy as np\n'), ((792, 805), 'numpy.array', 'np.array', (['vec'], {}), '(vec)\n', (800, 805), True, 'import numpy as np\n'), ((2950, 2983), 'numpy.cross', 'np.cross', (['vector_orig', 'vector_fin'], {}), '(vector_orig, vector_fin)\n', (2958, 2983), True, 'import numpy as np\n'), ((2999, 3019), 'numpy.linalg.norm', 'np.linalg.norm', (['axis'], {}), '(axis)\n', (3013, 3019), True, 'import numpy as np\n'), ((3364, 3377), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (3370, 3377), True, 'import numpy as np\n'), ((3387, 3400), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (3393, 3400), True, 'import numpy as np\n'), ((3410, 3419), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (3416, 3419), True, 'import numpy as np\n'), ((12756, 12767), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (12764, 12767), True, 'import numpy as np\n'), ((12790, 12822), 'numpy.asarray', 'np.asarray', (['init_information[:2]'], {}), '(init_information[:2])\n', (12800, 12822), True, 'import numpy as np\n'), ((13207, 13248), 'numpy.matmul', 'np.matmul', (['Rot1[:-1, :-1]', 'current_orient'], {}), '(Rot1[:-1, :-1], current_orient)\n', (13216, 13248), True, 'import numpy as np\n'), ((13266, 13298), 'scipy.spatial.transform.Rotation.from_matrix', 'Rotation.from_matrix', (['first_goal'], {}), '(first_goal)\n', (13286, 13298), False, 'from scipy.spatial.transform import Rotation\n'), ((13758, 13779), 'numpy.asarray', 'np.asarray', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (13768, 13779), True, 'import numpy as np\n'), ((14012, 14053), 'numpy.matmul', 'np.matmul', (['Rot1[:-1, :-1]', 'current_orient'], {}), '(Rot1[:-1, :-1], current_orient)\n', (14021, 14053), True, 'import numpy as np\n'), ((14098, 14134), 'numpy.matmul', 'np.matmul', (['des_rotation', 'second_goal'], {}), '(des_rotation, second_goal)\n', (14107, 14134), True, 'import numpy as np\n'), ((14210, 14250), 'numpy.matmul', 'np.matmul', (['Rot1[:-1, :-1].T', 'second_goal'], {}), '(Rot1[:-1, :-1].T, second_goal)\n', (14219, 14250), True, 'import numpy as np\n'), ((14269, 14302), 'scipy.spatial.transform.Rotation.from_matrix', 'Rotation.from_matrix', (['second_goal'], {}), '(second_goal)\n', (14289, 14302), False, 'from scipy.spatial.transform import Rotation\n'), ((420, 442), 'numpy.linalg.norm', 'np.linalg.norm', (['vector'], {}), '(vector)\n', (434, 442), True, 'import numpy as np\n'), ((2815, 2842), 'numpy.linalg.norm', 'np.linalg.norm', (['vector_orig'], {}), '(vector_orig)\n', (2829, 2842), True, 'import numpy as np\n'), ((2873, 2899), 'numpy.linalg.norm', 'np.linalg.norm', (['vector_fin'], {}), '(vector_fin)\n', (2887, 2899), True, 'import numpy as np\n'), ((4410, 4436), 'numpy.array', 'np.array', (['[0, 0, sign * 1]'], {}), '([0, 0, sign * 1])\n', (4418, 4436), True, 'import numpy as np\n'), ((4532, 4553), 'numpy.matmul', 'np.matmul', (['R', 'self.Hg'], {}), '(R, self.Hg)\n', (4541, 4553), True, 'import numpy as np\n'), ((4644, 4687), 'numpy.matmul', 'np.matmul', (['H_via2[:-1, :-1].T', 'r_vec_via2gw'], {}), '(H_via2[:-1, :-1].T, r_vec_via2gw)\n', (4653, 4687), True, 'import numpy as np\n'), ((5702, 5743), 'numpy.matmul', 'np.matmul', (['self.H0[:-1, :-1]', 'r_vec_floor'], {}), '(self.H0[:-1, :-1], r_vec_floor)\n', (5711, 5743), True, 'import numpy as np\n'), ((6194, 6205), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (6202, 6205), True, 'import numpy as np\n'), ((6232, 6257), 'numpy.sign', 'np.sign', (['r_vec_via12_p[2]'], {}), '(r_vec_via12_p[2])\n', (6239, 6257), True, 'import numpy as np\n'), ((6280, 6323), 'numpy.matmul', 'np.matmul', (['H_via1[:-1, :-1].T', 'r_vec_via12w'], {}), '(H_via1[:-1, :-1].T, r_vec_via12w)\n', (6289, 6323), True, 'import numpy as np\n'), ((6643, 6667), 'numpy.matmul', 'np.matmul', (['rot_12', 'rot2g'], {}), '(rot_12, rot2g)\n', (6652, 6667), True, 'import numpy as np\n'), ((7058, 7085), 'numpy.matmul', 'np.matmul', (['R_init.T', 'R_via2'], {}), '(R_init.T, R_via2)\n', (7067, 7085), True, 'import numpy as np\n'), ((7492, 7516), 'numpy.matmul', 'np.matmul', (['R_init.T', 'R_g'], {}), '(R_init.T, R_g)\n', (7501, 7516), True, 'import numpy as np\n'), ((9135, 9154), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (9143, 9154), True, 'import numpy as np\n'), ((11491, 11524), 'numpy.cross', 'np.cross', (['vector_orig', 'vector_fin'], {}), '(vector_orig, vector_fin)\n', (11499, 11524), True, 'import numpy as np\n'), ((11544, 11564), 'numpy.linalg.norm', 'np.linalg.norm', (['axis'], {}), '(axis)\n', (11558, 11564), True, 'import numpy as np\n'), ((11957, 11970), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (11963, 11970), True, 'import numpy as np\n'), ((11984, 11997), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (11990, 11997), True, 'import numpy as np\n'), ((12011, 12020), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (12017, 12020), True, 'import numpy as np\n'), ((12855, 12882), 'numpy.linalg.norm', 'np.linalg.norm', (['init_orient'], {}), '(init_orient)\n', (12869, 12882), True, 'import numpy as np\n'), ((13091, 13112), 'numpy.array', 'np.array', (['init_orient'], {}), '(init_orient)\n', (13099, 13112), True, 'import numpy as np\n'), ((13895, 13916), 'numpy.array', 'np.array', (['init_orient'], {}), '(init_orient)\n', (13903, 13916), True, 'import numpy as np\n'), ((289, 307), 'numpy.dot', 'np.dot', (['v1_u', 'v2_u'], {}), '(v1_u, v2_u)\n', (295, 307), True, 'import numpy as np\n'), ((1098, 1111), 'numpy.abs', 'np.abs', (['theta'], {}), '(theta)\n', (1104, 1111), True, 'import numpy as np\n'), ((1137, 1150), 'numpy.abs', 'np.abs', (['theta'], {}), '(theta)\n', (1143, 1150), True, 'import numpy as np\n'), ((3258, 3289), 'numpy.dot', 'np.dot', (['vector_orig', 'vector_fin'], {}), '(vector_orig, vector_fin)\n', (3264, 3289), True, 'import numpy as np\n'), ((5233, 5244), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (5241, 5244), True, 'import numpy as np\n'), ((5313, 5358), 'scipy.spatial.transform.Rotation.from_rotvec', 'Rotation.from_rotvec', (['(ang_floor * r_vec_floor)'], {}), '(ang_floor * r_vec_floor)\n', (5333, 5358), False, 'from scipy.spatial.transform import Rotation\n'), ((5473, 5502), 'numpy.matmul', 'np.matmul', (['self.H0', 'R_floor_1'], {}), '(self.H0, R_floor_1)\n', (5482, 5502), True, 'import numpy as np\n'), ((5575, 5586), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (5583, 5586), True, 'import numpy as np\n'), ((6697, 6706), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (6703, 6706), True, 'import numpy as np\n'), ((7117, 7126), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (7123, 7126), True, 'import numpy as np\n'), ((7548, 7557), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (7554, 7557), True, 'import numpy as np\n'), ((11344, 11371), 'numpy.linalg.norm', 'np.linalg.norm', (['vector_orig'], {}), '(vector_orig)\n', (11358, 11371), True, 'import numpy as np\n'), ((11406, 11432), 'numpy.linalg.norm', 'np.linalg.norm', (['vector_fin'], {}), '(vector_fin)\n', (11420, 11432), True, 'import numpy as np\n'), ((1351, 1365), 'numpy.sign', 'np.sign', (['theta'], {}), '(theta)\n', (1358, 1365), True, 'import numpy as np\n'), ((6728, 6747), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (6736, 6747), True, 'import numpy as np\n'), ((6890, 6918), 'numpy.linalg.norm', 'np.linalg.norm', (['rot1g'], {'ord': '(2)'}), '(rot1g, ord=2)\n', (6904, 6918), True, 'import numpy as np\n'), ((7151, 7170), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (7159, 7170), True, 'import numpy as np\n'), ((7320, 7351), 'numpy.linalg.norm', 'np.linalg.norm', (['rot_to_2'], {'ord': '(2)'}), '(rot_to_2, ord=2)\n', (7334, 7351), True, 'import numpy as np\n'), ((7582, 7601), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (7590, 7601), True, 'import numpy as np\n'), ((7751, 7782), 'numpy.linalg.norm', 'np.linalg.norm', (['rot_to_g'], {'ord': '(2)'}), '(rot_to_g, ord=2)\n', (7765, 7782), True, 'import numpy as np\n'), ((8033, 8042), 'numpy.abs', 'np.abs', (['z'], {}), '(z)\n', (8039, 8042), True, 'import numpy as np\n'), ((8076, 8085), 'numpy.abs', 'np.abs', (['z'], {}), '(z)\n', (8082, 8085), True, 'import numpy as np\n'), ((8109, 8119), 'numpy.sign', 'np.sign', (['z'], {}), '(z)\n', (8116, 8119), True, 'import numpy as np\n'), ((9496, 9509), 'numpy.abs', 'np.abs', (['theta'], {}), '(theta)\n', (9502, 9509), True, 'import numpy as np\n'), ((9539, 9552), 'numpy.abs', 'np.abs', (['theta'], {}), '(theta)\n', (9545, 9552), True, 'import numpy as np\n'), ((11843, 11874), 'numpy.dot', 'np.dot', (['vector_orig', 'vector_fin'], {}), '(vector_orig, vector_fin)\n', (11849, 11874), True, 'import numpy as np\n'), ((12915, 12967), 'pybullet.getMatrixFromQuaternion', 'p.getMatrixFromQuaternion', (["obs['object_orientation']"], {}), "(obs['object_orientation'])\n", (12940, 12967), True, 'import pybullet as p\n'), ((13674, 13724), 'pybullet.getMatrixFromQuaternion', 'p.getMatrixFromQuaternion', (['init_information[10:14]'], {}), '(init_information[10:14])\n', (13699, 13724), True, 'import pybullet as p\n'), ((6508, 6545), 'scipy.spatial.transform.Rotation.from_rotvec', 'Rotation.from_rotvec', (['(c12[0] * c12[1])'], {}), '(c12[0] * c12[1])\n', (6528, 6545), False, 'from scipy.spatial.transform import Rotation\n'), ((6578, 6615), 'scipy.spatial.transform.Rotation.from_rotvec', 'Rotation.from_rotvec', (['(c2g[0] * c2g[1])'], {}), '(c2g[0] * c2g[1])\n', (6598, 6615), False, 'from scipy.spatial.transform import Rotation\n'), ((6785, 6822), 'scipy.spatial.transform.Rotation.from_matrix', 'Rotation.from_matrix', (['rot1g[:-1, :-1]'], {}), '(rot1g[:-1, :-1])\n', (6805, 6822), False, 'from scipy.spatial.transform import Rotation\n'), ((6861, 6889), 'numpy.linalg.norm', 'np.linalg.norm', (['rot1g'], {'ord': '(2)'}), '(rot1g, ord=2)\n', (6875, 6889), True, 'import numpy as np\n'), ((7213, 7241), 'scipy.spatial.transform.Rotation.from_matrix', 'Rotation.from_matrix', (['R_to_2'], {}), '(R_to_2)\n', (7233, 7241), False, 'from scipy.spatial.transform import Rotation\n'), ((7287, 7318), 'numpy.linalg.norm', 'np.linalg.norm', (['rot_to_2'], {'ord': '(2)'}), '(rot_to_2, ord=2)\n', (7301, 7318), True, 'import numpy as np\n'), ((7644, 7672), 'scipy.spatial.transform.Rotation.from_matrix', 'Rotation.from_matrix', (['R_to_g'], {}), '(R_to_g)\n', (7664, 7672), False, 'from scipy.spatial.transform import Rotation\n'), ((7718, 7749), 'numpy.linalg.norm', 'np.linalg.norm', (['rot_to_g'], {'ord': '(2)'}), '(rot_to_g, ord=2)\n', (7732, 7749), True, 'import numpy as np\n'), ((9785, 9799), 'numpy.sign', 'np.sign', (['theta'], {}), '(theta)\n', (9792, 9799), True, 'import numpy as np\n')]
from collections.abc import Iterable import numpy as np import pandas as pd import param import xarray as xr from matplotlib.colors import LinearSegmentedColormap, rgb2hex from .configuration import DEFAULTS, EASES, INTERPS, PRECEDENCES, REVERTS from .util import is_str class Easing(param.Parameterized): interp = param.ClassSelector( default=None, class_=Iterable, doc=f"Interpolation method; {INTERPS}", precedence=PRECEDENCES["interp"], ) ease = param.ClassSelector( default="in_out", class_=Iterable, doc=f"Type of easing; {EASES}", precedence=PRECEDENCES["interp"], ) frames = param.Integer( default=None, bounds=(1, None), doc="Number of frames between each base state", precedence=PRECEDENCES["interp"], ) revert = param.ObjectSelector( default=None, objects=REVERTS, doc="Method for reverting to the initial state; " "boomerang finds the shortest path to the initial state, " "traceback backtracks the original path to the initial state, and " "rollback is like traceback, but disregards the " "original's path durations", precedence=PRECEDENCES["interp"], ) num_states = param.Integer(doc="Number of states", **DEFAULTS["num_kwds"]) num_steps = param.Integer( doc="Number of frames between each base state", **DEFAULTS["num_kwds"] ) def __init__(self, **kwds): super().__init__(**kwds) def interpolate(self, da, name=""): interp = self.interp or "cubic" ease = self.ease da_origin = da.copy() is_xarray = isinstance(da, xr.DataArray) is_bar = False if is_xarray: if "state" not in da.dims: return da_origin ( da, name, dims, coords, interp, ease, is_bar, is_errorbar_morph, ) = self._prep_xarray(da) array = self._prep_array(da) num_items, num_states, num_steps, num_result = self._calc_shapes(array) if (num_steps == 1 or num_states == 1) and self.revert is None: return da_origin steps = np.linspace(0, 1, num_steps) interp_args = (steps, interp, ease, num_states, num_steps, num_items) array_dtype = array.dtype if name in ["duration", "remark", "xerr", "yerr"] and not is_errorbar_morph: result = self._interp_first( array, num_states, num_steps, num_items, num_result, name ) elif interp == "fill" or name.endswith( ("zoom", "discrete_trail", "morph_trail", "tick_label", "bar_label") ): result = self._interp_fill(array, num_states, num_steps, name) elif np.issubdtype(array_dtype, np.datetime64): result = self._interp_time(array, pd.to_datetime, *interp_args) elif np.issubdtype(array_dtype, np.timedelta64): result = self._interp_time(array, pd.to_timedelta, *interp_args) elif np.issubdtype(array_dtype, np.number) and not is_bar: if name == "central_longitude": interp = "linear" result = self._interp_numeric(array, *interp_args) elif name in "c": # must be after number result = self._interp_color(array, num_result) elif is_bar: result = self._interp_fill(array, num_states, num_steps, name) else: # str result = self._interp_text(array, num_states, num_steps, num_result) if self.revert in ["traceback", "rollback"]: result = self._apply_revert(result, name) if is_xarray: result = self._rebuild_da(result, da, dims, coords) return result def _prep_xarray(self, da): name = da.name interp = da.attrs.get("interp") ease = da.attrs.get("ease") for item_dim in da.dims: if "item" in item_dim: if "batch" in da.dims: da = da.transpose(item_dim, "batch", "state", ...) else: da = da.transpose(item_dim, "state", ...) break dims = da.dims if da.ndim > 2: # more than (item, state) if "grid_item" in dims: da = da.stack({"stacked": ["grid_item", "grid_y", "grid_x"]}) elif "batch" in dims: da = da.stack({"stacked": [item_dim, "batch"]}) da = da.transpose("stacked", "state") coords = da.drop_vars("state", errors="ignore").coords is_bar = da.attrs.get("is_bar") is_errorbar_morph = da.attrs.get("is_errorbar_morph") return da, name, dims, coords, interp, ease, is_bar, is_errorbar_morph def _prep_array(self, da): array = np.array(da) if array.ndim == 1: array = array[np.newaxis, :] if self.revert == "boomerang": array = np.hstack([array, array[:, :1]]) return array def _calc_shapes(self, array): num_items, num_states = array.shape if self.frames is None: if num_states < 10: num_steps = int(np.ceil(60 / num_states)) else: num_steps = int(np.ceil(100 / num_states)) else: num_steps = self.frames with param.edit_constant(self): self.num_steps = num_steps num_result = (num_states - 1) * num_steps return num_items, num_states, num_steps, num_result def _apply_revert(self, result, name): if result.ndim == 1: result_back = result[::-1] else: result_back = result[:, ::-1] if name == "duration" and self.revert == "rollback": result_back = np.repeat(1 / 60, result_back.shape[-1])[np.newaxis, :] result = np.hstack([result, result_back]) return result def _rebuild_da(self, result, da, dims, coords): if len(dims) == 1: result = result.squeeze() result = xr.DataArray( result, dims=da.dims, coords=coords, name=da.name, attrs=da.attrs, ) if "stacked" in result.dims: result = result.unstack().transpose(*dims) return result def _interp_first(self, array, num_states, num_steps, num_items, num_result, name): if is_str(array): fill = "" dtype = np.object else: fill = 0.0 dtype = None result = np.full((num_items, num_result), fill, dtype=dtype) indices = np.arange(num_states) * num_steps indices[-1] -= 1 result[:, indices] = array # (1, num_states) return result def _interp_fill(self, array, num_states, num_steps, name): indices = np.arange(num_states * num_steps - num_steps) result = ( pd.DataFrame( array, columns=np.arange(0, num_states * num_steps, num_steps), ) .T.reindex(indices) .T ) if not name.endswith("discrete_trail"): result = result.ffill(axis=1).fillna("").values result[:, -1] = array[:, -1] else: result = result.values return result def _interp_color(self, array, num_result): results = [] for colors in array: # item, state cmap = LinearSegmentedColormap.from_list("eased", colors, N=num_result) results.append([rgb2hex(rgb) for rgb in cmap(np.arange(num_result))]) result = np.array(results) return result def _interp_text(self, array, num_states, num_steps, num_result): result = np.repeat(array, num_steps, axis=-1) num_roll = -int(np.ceil(num_steps / num_states * 2)) if num_states > 2: result = np.roll(result, num_roll, axis=-1) result = result[:, :num_result] else: half_way = int(num_result / 2) result = result[:, half_way:-half_way] if num_steps % 2 != 0: result = result[:, :-1] return result def _interp_time( self, array, conversion, steps, interp, ease, num_states, num_steps, num_items ): array = array.astype(float) result = self._interp_numeric( array, steps, interp, ease, num_states, num_steps, num_items ) result = conversion(result.ravel()).values result = result.reshape(num_items, -1) return result def _interp_numeric( self, array, steps, interp, ease, num_states, num_steps, num_items ): init = np.repeat(array[:, :-1], num_steps, axis=-1) init_nans = np.isnan(init) init[init_nans] = 0 # temporarily fill the nans stop = np.repeat(array[:, 1:], num_steps, axis=-1) stop_nans = np.isnan(stop) tiled_steps = np.tile(steps, (num_states - 1) * num_items).reshape( num_items, -1 ) weights = getattr(self, f"_{interp.lower()}")(tiled_steps, ease) result = stop * weights + init * (1 - weights) result[init_nans | stop_nans] = np.nan # replace nans return result def _linear(self, ts, ease): return ts def _quadratic(self, ts, ease): if ease == "in": ts = ts * ts elif ease == "out": ts = -(ts * (ts - 2)) elif ease == "in_out": index = ts < 0.5 ts[index] = 2 * ts[index] * ts[index] ts[~index] = (-2 * ts[~index] * ts[~index]) + (4 * ts[~index]) - 1 return ts def _cubic(self, ts, ease): if ease == "in": ts = ts * ts * ts elif ease == "out": ts = (ts - 1) * (ts - 1) * (ts - 1) + 1 elif ease == "in_out": index = ts < 0.5 ts[index] = 4 * ts[index] * ts[index] * ts[index] ts[~index] = 2 * ts[~index] - 2 ts[~index] = 0.5 * ts[~index] * ts[~index] * ts[~index] + 1 return ts def _quartic(self, ts, ease): if ease == "in": ts = ts * ts * ts * ts elif ease == "out": ts = (ts - 1) * (ts - 1) * (ts - 1) * (1 - ts) + 1 elif ease == "in_out": index = ts < 0.5 ts[index] = 8 * ts[index] * ts[index] * ts[index] * ts[index] ts[~index] = ts[~index] - 1 ts[~index] = -8 * ts[~index] * ts[~index] * ts[~index] * ts[~index] + 1 return ts def _quintic(self, ts, ease): if ease == "in": ts = ts * ts * ts * ts * ts elif ease == "out": ts = (ts - 1) * (ts - 1) * (ts - 1) * (ts - 1) * (ts - 1) + 1 elif ease == "in_out": index = ts < 0.5 ts[index] = 16 * ts[index] * ts[index] * ts[index] * ts[index] * ts[index] ts[~index] = (2 * ts[~index]) - 2 ts[~index] = ( 0.5 * ts[~index] * ts[~index] * ts[~index] * ts[~index] * ts[~index] + 1 ) return ts def _sine(self, ts, ease): if ease == "in": ts = np.sin((ts - 1) * np.pi / 2) + 1 elif ease == "out": ts = np.sin(ts * np.pi / 2) elif ease == "in_out": ts = 0.5 * (1 - np.cos(ts * np.pi)) return ts def _circular(self, ts, ease): if ease == "in": ts = 1 - np.sqrt(1 - (ts * ts)) elif ease == "out": ts = np.sqrt((2 - ts) * ts) elif ease == "in_out": index = ts < 0.5 ts[index] = 0.5 * (1 - np.sqrt(1 - 4 * (ts[index] * ts[index]))) ts[~index] = 0.5 * ( np.sqrt(-((2 * ts[~index]) - 3) * ((2 * ts[~index]) - 1)) + 1 ) return ts def _exponential(self, ts, ease): if ease == "in": index = ts != 0 ts[~index] = 0 ts[index] = np.power(2, 10 * (ts[index] - 1)) elif ease == "out": index = ts != 1 ts[~index] = 1 ts[index] = 1 - np.power(2, -10 * ts[index]) elif ease == "in_out": index0 = (ts != 0) & (ts < 0.5) & (ts != 1) index1 = (ts != 0) & (ts >= 0.5) & (ts != 1) ts[index0] = 0.5 * np.power(2, (20 * ts[index0]) - 10) ts[index1] = -0.5 * np.power(2, (-20 * ts[index1]) + 10) + 1 return ts def _elastic(self, ts, ease): if ease == "in": ts = np.sin(13 * np.pi / 2 * ts) * np.power(2, 10 * (ts - 1)) elif ease == "out": ts = np.sin(-13 * np.pi / 2 * (ts + 1)) * np.power(2, -10 * ts) + 1 elif ease == "in_out": index = ts < 0.5 ts[index] = ( 0.5 * np.sin(13 * np.pi / 2 * (2 * ts[index])) * np.power(2, 10 * ((2 * ts[index]) - 1)) ) ts[~index] = 0.5 * ( np.sin(-13 * np.pi / 2 * ((2 * ts[~index] - 1) + 1)) * np.power(2, -10 * (2 * ts[~index] - 1)) + 2 ) return ts def _back(self, ts, ease): if ease == "in": ts = ts * ts * ts - ts * np.sin(ts * np.pi) elif ease == "out": ts = 1 - ts ts = 1 - (ts * ts * ts - ts * np.sin(ts * np.pi)) elif ease == "in_out": index = ts < 0.5 ts[index] = 2 * ts[index] ts[index] = 0.5 * ( ts[index] * ts[index] * ts[index] - ts[index] * np.sin(ts[index] * np.pi) ) ts[~index] = 1 - (2 * ts[~index] - 1) ts[~index] = ( 0.5 * ( 1 - ( ts[~index] * ts[~index] * ts[~index] - ts[~index] * np.sin(ts[~index] * np.pi) ) ) + 0.5 ) return ts def _bounce(self, ts, ease): index = ts < 0.5 if ease == "in": ts = 1 - ts elif ease == "in_out": ts[index] = 1 - (ts[index] * 2) ts[~index] = ts[~index] * 2 - 1 index0 = ts < 4 / 11 index1 = (ts < 8 / 11) & ~index0 index2 = (ts < 9 / 10) & ~index1 & ~index0 index3 = ts >= 9 / 10 ts[index0] = 121 * ts[index0] * ts[index0] / 16 ts[index1] = ( (363 / 40.0 * ts[index1] * ts[index1]) - (99 / 10.0 * ts[index1]) + 17 / 5.0 ) ts[index2] = ( (4356 / 361.0 * ts[index2] * ts[index2]) - (35442 / 1805.0 * ts[index2]) + 16061 / 1805.0 ) ts[index3] = ( (54 / 5.0 * ts[index3] * ts[index3]) - (513 / 25.0 * ts[index3]) + 268 / 25.0 ) if ease == "in": ts = 1 - ts elif ease == "out": pass elif ease == "in_out": ts[index] = 0.5 * (1 - ts[index]) ts[~index] = 0.5 * ts[~index] + 0.5 return ts
[ "numpy.isnan", "numpy.sin", "numpy.arange", "numpy.tile", "matplotlib.colors.rgb2hex", "param.Integer", "numpy.full", "matplotlib.colors.LinearSegmentedColormap.from_list", "numpy.power", "param.edit_constant", "numpy.linspace", "numpy.repeat", "numpy.ceil", "numpy.roll", "numpy.hstack", "numpy.cos", "numpy.issubdtype", "numpy.array", "xarray.DataArray", "param.ClassSelector", "param.ObjectSelector", "numpy.sqrt" ]
[((324, 453), 'param.ClassSelector', 'param.ClassSelector', ([], {'default': 'None', 'class_': 'Iterable', 'doc': 'f"""Interpolation method; {INTERPS}"""', 'precedence': "PRECEDENCES['interp']"}), "(default=None, class_=Iterable, doc=\n f'Interpolation method; {INTERPS}', precedence=PRECEDENCES['interp'])\n", (343, 453), False, 'import param\n'), ((499, 624), 'param.ClassSelector', 'param.ClassSelector', ([], {'default': '"""in_out"""', 'class_': 'Iterable', 'doc': 'f"""Type of easing; {EASES}"""', 'precedence': "PRECEDENCES['interp']"}), "(default='in_out', class_=Iterable, doc=\n f'Type of easing; {EASES}', precedence=PRECEDENCES['interp'])\n", (518, 624), False, 'import param\n'), ((672, 809), 'param.Integer', 'param.Integer', ([], {'default': 'None', 'bounds': '(1, None)', 'doc': '"""Number of frames between each base state"""', 'precedence': "PRECEDENCES['interp']"}), "(default=None, bounds=(1, None), doc=\n 'Number of frames between each base state', precedence=PRECEDENCES[\n 'interp'])\n", (685, 809), False, 'import param\n'), ((852, 1191), 'param.ObjectSelector', 'param.ObjectSelector', ([], {'default': 'None', 'objects': 'REVERTS', 'doc': '"""Method for reverting to the initial state; boomerang finds the shortest path to the initial state, traceback backtracks the original path to the initial state, and rollback is like traceback, but disregards the original\'s path durations"""', 'precedence': "PRECEDENCES['interp']"}), '(default=None, objects=REVERTS, doc=\n "Method for reverting to the initial state; boomerang finds the shortest path to the initial state, traceback backtracks the original path to the initial state, and rollback is like traceback, but disregards the original\'s path durations"\n , precedence=PRECEDENCES[\'interp\'])\n', (872, 1191), False, 'import param\n'), ((1283, 1344), 'param.Integer', 'param.Integer', ([], {'doc': '"""Number of states"""'}), "(doc='Number of states', **DEFAULTS['num_kwds'])\n", (1296, 1344), False, 'import param\n'), ((1361, 1451), 'param.Integer', 'param.Integer', ([], {'doc': '"""Number of frames between each base state"""'}), "(doc='Number of frames between each base state', **DEFAULTS[\n 'num_kwds'])\n", (1374, 1451), False, 'import param\n'), ((2313, 2341), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'num_steps'], {}), '(0, 1, num_steps)\n', (2324, 2341), True, 'import numpy as np\n'), ((4928, 4940), 'numpy.array', 'np.array', (['da'], {}), '(da)\n', (4936, 4940), True, 'import numpy as np\n'), ((5975, 6007), 'numpy.hstack', 'np.hstack', (['[result, result_back]'], {}), '([result, result_back])\n', (5984, 6007), True, 'import numpy as np\n'), ((6166, 6245), 'xarray.DataArray', 'xr.DataArray', (['result'], {'dims': 'da.dims', 'coords': 'coords', 'name': 'da.name', 'attrs': 'da.attrs'}), '(result, dims=da.dims, coords=coords, name=da.name, attrs=da.attrs)\n', (6178, 6245), True, 'import xarray as xr\n'), ((6677, 6728), 'numpy.full', 'np.full', (['(num_items, num_result)', 'fill'], {'dtype': 'dtype'}), '((num_items, num_result), fill, dtype=dtype)\n', (6684, 6728), True, 'import numpy as np\n'), ((6965, 7010), 'numpy.arange', 'np.arange', (['(num_states * num_steps - num_steps)'], {}), '(num_states * num_steps - num_steps)\n', (6974, 7010), True, 'import numpy as np\n'), ((7740, 7757), 'numpy.array', 'np.array', (['results'], {}), '(results)\n', (7748, 7757), True, 'import numpy as np\n'), ((7868, 7904), 'numpy.repeat', 'np.repeat', (['array', 'num_steps'], {'axis': '(-1)'}), '(array, num_steps, axis=-1)\n', (7877, 7904), True, 'import numpy as np\n'), ((8816, 8860), 'numpy.repeat', 'np.repeat', (['array[:, :-1]', 'num_steps'], {'axis': '(-1)'}), '(array[:, :-1], num_steps, axis=-1)\n', (8825, 8860), True, 'import numpy as np\n'), ((8881, 8895), 'numpy.isnan', 'np.isnan', (['init'], {}), '(init)\n', (8889, 8895), True, 'import numpy as np\n'), ((8968, 9011), 'numpy.repeat', 'np.repeat', (['array[:, 1:]', 'num_steps'], {'axis': '(-1)'}), '(array[:, 1:], num_steps, axis=-1)\n', (8977, 9011), True, 'import numpy as np\n'), ((9032, 9046), 'numpy.isnan', 'np.isnan', (['stop'], {}), '(stop)\n', (9040, 9046), True, 'import numpy as np\n'), ((5071, 5103), 'numpy.hstack', 'np.hstack', (['[array, array[:, :1]]'], {}), '([array, array[:, :1]])\n', (5080, 5103), True, 'import numpy as np\n'), ((5470, 5495), 'param.edit_constant', 'param.edit_constant', (['self'], {}), '(self)\n', (5489, 5495), False, 'import param\n'), ((6747, 6768), 'numpy.arange', 'np.arange', (['num_states'], {}), '(num_states)\n', (6756, 6768), True, 'import numpy as np\n'), ((7576, 7640), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'LinearSegmentedColormap.from_list', (['"""eased"""', 'colors'], {'N': 'num_result'}), "('eased', colors, N=num_result)\n", (7609, 7640), False, 'from matplotlib.colors import LinearSegmentedColormap, rgb2hex\n'), ((8014, 8048), 'numpy.roll', 'np.roll', (['result', 'num_roll'], {'axis': '(-1)'}), '(result, num_roll, axis=-1)\n', (8021, 8048), True, 'import numpy as np\n'), ((12077, 12110), 'numpy.power', 'np.power', (['(2)', '(10 * (ts[index] - 1))'], {}), '(2, 10 * (ts[index] - 1))\n', (12085, 12110), True, 'import numpy as np\n'), ((2896, 2937), 'numpy.issubdtype', 'np.issubdtype', (['array_dtype', 'np.datetime64'], {}), '(array_dtype, np.datetime64)\n', (2909, 2937), True, 'import numpy as np\n'), ((5902, 5942), 'numpy.repeat', 'np.repeat', (['(1 / 60)', 'result_back.shape[-1]'], {}), '(1 / 60, result_back.shape[-1])\n', (5911, 5942), True, 'import numpy as np\n'), ((7929, 7964), 'numpy.ceil', 'np.ceil', (['(num_steps / num_states * 2)'], {}), '(num_steps / num_states * 2)\n', (7936, 7964), True, 'import numpy as np\n'), ((9069, 9113), 'numpy.tile', 'np.tile', (['steps', '((num_states - 1) * num_items)'], {}), '(steps, (num_states - 1) * num_items)\n', (9076, 9113), True, 'import numpy as np\n'), ((11283, 11311), 'numpy.sin', 'np.sin', (['((ts - 1) * np.pi / 2)'], {}), '((ts - 1) * np.pi / 2)\n', (11289, 11311), True, 'import numpy as np\n'), ((11361, 11383), 'numpy.sin', 'np.sin', (['(ts * np.pi / 2)'], {}), '(ts * np.pi / 2)\n', (11367, 11383), True, 'import numpy as np\n'), ((11563, 11583), 'numpy.sqrt', 'np.sqrt', (['(1 - ts * ts)'], {}), '(1 - ts * ts)\n', (11570, 11583), True, 'import numpy as np\n'), ((11631, 11653), 'numpy.sqrt', 'np.sqrt', (['((2 - ts) * ts)'], {}), '((2 - ts) * ts)\n', (11638, 11653), True, 'import numpy as np\n'), ((12630, 12657), 'numpy.sin', 'np.sin', (['(13 * np.pi / 2 * ts)'], {}), '(13 * np.pi / 2 * ts)\n', (12636, 12657), True, 'import numpy as np\n'), ((12660, 12686), 'numpy.power', 'np.power', (['(2)', '(10 * (ts - 1))'], {}), '(2, 10 * (ts - 1))\n', (12668, 12686), True, 'import numpy as np\n'), ((3028, 3070), 'numpy.issubdtype', 'np.issubdtype', (['array_dtype', 'np.timedelta64'], {}), '(array_dtype, np.timedelta64)\n', (3041, 3070), True, 'import numpy as np\n'), ((5303, 5327), 'numpy.ceil', 'np.ceil', (['(60 / num_states)'], {}), '(60 / num_states)\n', (5310, 5327), True, 'import numpy as np\n'), ((5379, 5404), 'numpy.ceil', 'np.ceil', (['(100 / num_states)'], {}), '(100 / num_states)\n', (5386, 5404), True, 'import numpy as np\n'), ((7669, 7681), 'matplotlib.colors.rgb2hex', 'rgb2hex', (['rgb'], {}), '(rgb)\n', (7676, 7681), False, 'from matplotlib.colors import LinearSegmentedColormap, rgb2hex\n'), ((12222, 12250), 'numpy.power', 'np.power', (['(2)', '(-10 * ts[index])'], {}), '(2, -10 * ts[index])\n', (12230, 12250), True, 'import numpy as np\n'), ((13338, 13356), 'numpy.sin', 'np.sin', (['(ts * np.pi)'], {}), '(ts * np.pi)\n', (13344, 13356), True, 'import numpy as np\n'), ((12426, 12459), 'numpy.power', 'np.power', (['(2)', '(20 * ts[index0] - 10)'], {}), '(2, 20 * ts[index0] - 10)\n', (12434, 12459), True, 'import numpy as np\n'), ((12732, 12766), 'numpy.sin', 'np.sin', (['(-13 * np.pi / 2 * (ts + 1))'], {}), '(-13 * np.pi / 2 * (ts + 1))\n', (12738, 12766), True, 'import numpy as np\n'), ((12769, 12790), 'numpy.power', 'np.power', (['(2)', '(-10 * ts)'], {}), '(2, -10 * ts)\n', (12777, 12790), True, 'import numpy as np\n'), ((12978, 13015), 'numpy.power', 'np.power', (['(2)', '(10 * (2 * ts[index] - 1))'], {}), '(2, 10 * (2 * ts[index] - 1))\n', (12986, 13015), True, 'import numpy as np\n'), ((3162, 3199), 'numpy.issubdtype', 'np.issubdtype', (['array_dtype', 'np.number'], {}), '(array_dtype, np.number)\n', (3175, 3199), True, 'import numpy as np\n'), ((7698, 7719), 'numpy.arange', 'np.arange', (['num_result'], {}), '(num_result)\n', (7707, 7719), True, 'import numpy as np\n'), ((11443, 11461), 'numpy.cos', 'np.cos', (['(ts * np.pi)'], {}), '(ts * np.pi)\n', (11449, 11461), True, 'import numpy as np\n'), ((11749, 11789), 'numpy.sqrt', 'np.sqrt', (['(1 - 4 * (ts[index] * ts[index]))'], {}), '(1 - 4 * (ts[index] * ts[index]))\n', (11756, 11789), True, 'import numpy as np\n'), ((11840, 11893), 'numpy.sqrt', 'np.sqrt', (['(-(2 * ts[~index] - 3) * (2 * ts[~index] - 1))'], {}), '(-(2 * ts[~index] - 3) * (2 * ts[~index] - 1))\n', (11847, 11893), True, 'import numpy as np\n'), ((12494, 12528), 'numpy.power', 'np.power', (['(2)', '(-20 * ts[index1] + 10)'], {}), '(2, -20 * ts[index1] + 10)\n', (12502, 12528), True, 'import numpy as np\n'), ((12919, 12959), 'numpy.sin', 'np.sin', (['(13 * np.pi / 2 * (2 * ts[index]))'], {}), '(13 * np.pi / 2 * (2 * ts[index]))\n', (12925, 12959), True, 'import numpy as np\n'), ((13451, 13469), 'numpy.sin', 'np.sin', (['(ts * np.pi)'], {}), '(ts * np.pi)\n', (13457, 13469), True, 'import numpy as np\n'), ((7103, 7150), 'numpy.arange', 'np.arange', (['(0)', '(num_states * num_steps)', 'num_steps'], {}), '(0, num_states * num_steps, num_steps)\n', (7112, 7150), True, 'import numpy as np\n'), ((13081, 13131), 'numpy.sin', 'np.sin', (['(-13 * np.pi / 2 * (2 * ts[~index] - 1 + 1))'], {}), '(-13 * np.pi / 2 * (2 * ts[~index] - 1 + 1))\n', (13087, 13131), True, 'import numpy as np\n'), ((13152, 13191), 'numpy.power', 'np.power', (['(2)', '(-10 * (2 * ts[~index] - 1))'], {}), '(2, -10 * (2 * ts[~index] - 1))\n', (13160, 13191), True, 'import numpy as np\n'), ((13681, 13706), 'numpy.sin', 'np.sin', (['(ts[index] * np.pi)'], {}), '(ts[index] * np.pi)\n', (13687, 13706), True, 'import numpy as np\n'), ((13984, 14010), 'numpy.sin', 'np.sin', (['(ts[~index] * np.pi)'], {}), '(ts[~index] * np.pi)\n', (13990, 14010), True, 'import numpy as np\n')]
from mmdnn.conversion.rewriter.rewriter import UnitRewriterBase import numpy as np import re class LSTMRewriter(UnitRewriterBase): def __init__(self, graph, weights_dict): return super(LSTMRewriter, self).__init__(graph, weights_dict) def process_lstm_cell(self, match_result): if 'lstm_cell' not in match_result._pattern_to_op.keys(): return kwargs = dict() top_node = match_result._pattern_to_op[match_result._name_to_pattern['lstm_cell']] w_e = match_result.get_op("cell_kernel") w = self._weights_dict[w_e.name.replace('/read', '')] num_units = w.shape[1]//4 [wx, wh] = np.split(w, [-1 * num_units]) input_size = wx.shape[0] kwargs['num_units'] = num_units kwargs['input_size'] = input_size if hasattr(top_node, 'kwargs'): top_node.kwargs.update(kwargs) else: top_node.kwargs = kwargs def process_rnn_h_zero(self, match_result): if 'h_zero' not in match_result._name_to_pattern.keys(): return kwargs = dict() top_node = match_result._pattern_to_op[match_result._name_to_pattern['h_zero']] fill_size = match_result.get_op('fill_size') fill_value = match_result.get_op('fill_value') kwargs['fill_size'] = fill_size.get_attr('value').int_val[0] kwargs['fill_value'] = fill_value.get_attr('value').float_val[0] if hasattr(top_node, 'kwargs'): top_node.kwargs.update(kwargs) else: top_node.kwargs = kwargs def process_match_result(self, match_result, pattern_name): if pattern_name == 'lstm_cell': self.process_lstm_cell(match_result) elif pattern_name == 'h_zero': if self.check_match_scope(match_result, 'LSTMCellZeroState'): self.process_rnn_h_zero(match_result) '''For some short pattern, to avoid match other pattern, check it's scope''' def check_match_scope(self, match_result, scope_name): ops = match_result._pattern_to_op.values() for op in ops: op_name_splits = op.name.split('/') if len(op_name_splits) < 2: return False if re.sub(r'(_\d+)*$', '', op_name_splits[-2]) != scope_name: if len(op_name_splits) > 2: if re.sub(r'(_\d+)*$', '', op_name_splits[-3]) != scope_name: return False else: return False return True def run(self): return super(LSTMRewriter, self).run(['lstm_cell', 'h_zero'], 'tensorflow')
[ "re.sub", "numpy.split" ]
[((666, 695), 'numpy.split', 'np.split', (['w', '[-1 * num_units]'], {}), '(w, [-1 * num_units])\n', (674, 695), True, 'import numpy as np\n'), ((2259, 2302), 're.sub', 're.sub', (['"""(_\\\\d+)*$"""', '""""""', 'op_name_splits[-2]'], {}), "('(_\\\\d+)*$', '', op_name_splits[-2])\n", (2265, 2302), False, 'import re\n'), ((2385, 2428), 're.sub', 're.sub', (['"""(_\\\\d+)*$"""', '""""""', 'op_name_splits[-3]'], {}), "('(_\\\\d+)*$', '', op_name_splits[-3])\n", (2391, 2428), False, 'import re\n')]
from spefit.pdf.base import PDFParameter, PDF from spefit.common.stats import normal_pdf import numpy as np from numpy.testing import assert_allclose import pytest def test_pdf_parameter(): initial = 1 limits = (0, 4) fixed = True multi = True param = PDFParameter(initial=initial, limits=limits, fixed=fixed, multi=multi) assert param.initial == initial assert param.limits == limits assert param.fixed is fixed assert param.multi is multi param = PDFParameter(initial=initial, limits=limits) assert param.initial == initial assert param.limits == limits assert param.fixed is False assert param.multi is False def test_pdf_class(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2)), ) pdf = PDF(1, normal_pdf, parameters) assert pdf.function == normal_pdf assert pdf.n_illuminations == 1 assert len(pdf.parameters) == 2 assert pdf.parameters["sigma"].initial == 0.1 assert np.array_equal(pdf._lookup, np.array([[0, 1]])) pdf = PDF(2, normal_pdf, parameters) assert pdf.function == normal_pdf assert pdf.n_illuminations == 2 assert len(pdf.parameters) == 2 assert pdf.parameters["sigma"].initial == 0.1 assert np.array_equal(pdf._lookup, np.array([[0, 1], [0, 1]])) parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) assert pdf.function == normal_pdf assert pdf.n_illuminations == 2 assert len(pdf.parameters) == 3 assert pdf.parameters["sigma0"].initial == 0.1 assert pdf.parameters["sigma1"].initial == 0.1 assert np.array_equal(pdf._lookup, np.array([[0, 1], [0, 2]])) parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2), multi=True), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) assert pdf.function == normal_pdf assert pdf.n_illuminations == 2 assert len(pdf.parameters) == 4 assert pdf.parameters["sigma0"].initial == 0.1 assert pdf.parameters["sigma1"].initial == 0.1 assert np.array_equal(pdf._lookup, np.array([[0, 2], [1, 3]])) key_array = np.array(list(pdf.parameters.keys())) assert np.array_equal(key_array[pdf._lookup[0]], ["mean0", "sigma0"]) assert np.array_equal(key_array[pdf._lookup[1]], ["mean1", "sigma1"]) def test_lookup_parameters(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) pdf.update_parameters_initial(sigma1=0.3) initial = np.array(list(pdf.initial.values())) assert np.array_equal(pdf._lookup_parameters(initial, 0), np.array([0, 0.1])) assert np.array_equal(pdf._lookup_parameters(initial, 1), np.array([0, 0.3])) def test_call(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) x = np.linspace(-1, 6, 100) assert_allclose(pdf(x, np.array([0, 0.1, 0.2]), 0), pdf._function(x, 0, 0.1)) assert_allclose(pdf(x, np.array([0, 0.1, 0.2]), 1), pdf._function(x, 0, 0.2)) with pytest.raises(IndexError): pdf(x, np.array([0, 0.1, 0.2]), 2) with pytest.raises(IndexError): pdf(x, np.array([0, 0.1]), 1) with pytest.raises(TypeError): # noinspection PyTypeChecker pdf(x, [0, 0.1, 0.2], 1) def test_update_parameters_initial(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2)), ) pdf = PDF(2, normal_pdf, parameters) assert pdf.parameters["mean"].initial == 0 assert pdf.parameters["sigma"].initial == 0.1 pdf.update_parameters_initial(mean=2, sigma=0.4) assert pdf.parameters["mean"].initial == 2 assert pdf.parameters["sigma"].initial == 0.4 parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) assert pdf.parameters["mean"].initial == 0 assert pdf.parameters["sigma0"].initial == 0.1 assert pdf.parameters["sigma1"].initial == 0.1 pdf.update_parameters_initial(mean=2, sigma=0.4) assert pdf.parameters["mean"].initial == 2 assert pdf.parameters["sigma0"].initial == 0.4 assert pdf.parameters["sigma1"].initial == 0.4 pdf.update_parameters_initial(mean=2, sigma0=0.4, sigma1=0.5) assert pdf.parameters["mean"].initial == 2 assert pdf.parameters["sigma0"].initial == 0.4 assert pdf.parameters["sigma1"].initial == 0.5 with pytest.raises(ValueError): pdf.update_parameters_initial(mean0=2, sigma0=0.4, sigma1=0.5) with pytest.raises(ValueError): pdf.update_parameters_initial(mean=2, sigma0=0.4, sigma1=0.5, sigma2=0.5) def test_update_parameters_limits(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2)), ) pdf = PDF(1, normal_pdf, parameters) assert pdf.parameters["mean"].limits == (-2, 2) assert pdf.parameters["sigma"].limits == (0, 2) pdf.update_parameters_limits(mean=(-3, 3), sigma=(0, 4)) assert pdf.parameters["mean"].limits == (-3, 3) assert pdf.parameters["sigma"].limits == (0, 4) # Test mutable limit = [2, 3] # noinspection PyTypeChecker pdf.update_parameters_limits(mean=limit) assert tuple(pdf.parameters["mean"].limits) == (2, 3) limit[0] = 1 assert tuple(pdf.parameters["mean"].limits) == (2, 3) def test_update_parameters_fixed(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2)), ) pdf = PDF(1, normal_pdf, parameters) assert pdf.parameters["mean"].fixed is False assert pdf.parameters["sigma"].fixed is False pdf.update_parameters_fixed(mean=True, sigma=True) assert pdf.parameters["mean"].fixed is True assert pdf.parameters["sigma"].fixed is True # noinspection DuplicatedCode def test_prepare_multi_illumination_parameters(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2)), ) results = PDF._prepare_parameters(parameters, 1) parameters, is_multi, lookup = results assert len(parameters) == 2 assert len(is_multi) == 2 assert len(lookup) == 1 assert len(lookup[0]) == 2 parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2), multi=True), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) results = PDF._prepare_parameters(parameters, 1) parameters, is_multi, lookup = results assert len(parameters) == 2 assert len(is_multi) == 2 assert len(lookup) == 1 assert len(lookup[0]) == 2 parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2), multi=True), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) results = PDF._prepare_parameters(parameters, 2) parameters, is_multi, lookup = results assert len(parameters) == 4 assert len(is_multi) == 2 assert len(lookup) == 2 assert len(lookup[0]) == 2 def test_initial(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) pdf.update_parameters_initial(sigma1=0.2) assert pdf.initial == dict(mean=0, sigma0=0.1, sigma1=0.2) def test_n_free_parameters(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) assert pdf.n_free_parameters == 3 pdf.update_parameters_fixed(sigma1=True) assert pdf.n_free_parameters == 2 def test_parameter_names(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) assert pdf.parameter_names == ["mean", "sigma0", "sigma1"] def test_iminuit_kwargs(): parameters = dict( mean=PDFParameter(initial=0, limits=(-2, 2)), sigma=PDFParameter(initial=0.1, limits=(0, 2), multi=True), ) pdf = PDF(2, normal_pdf, parameters) pdf.update_parameters_initial(sigma1=0.2) pdf.update_parameters_limits(sigma1=(1, 2)) pdf.update_parameters_fixed(sigma1=True) iminuit_kwargs = pdf.iminuit_kwargs assert len(iminuit_kwargs) == 9 assert iminuit_kwargs["mean"] == 0 assert iminuit_kwargs["sigma0"] == 0.1 assert iminuit_kwargs["sigma1"] == 0.2 assert iminuit_kwargs["limit_mean"] == (-2, 2) assert iminuit_kwargs["limit_sigma0"] == (0, 2) assert iminuit_kwargs["limit_sigma1"] == (1, 2) assert iminuit_kwargs["fix_mean"] is False assert iminuit_kwargs["fix_sigma0"] is False assert iminuit_kwargs["fix_sigma1"] is True # noinspection PyPep8Naming,PyArgumentList @pytest.mark.parametrize("PDFSubclass", PDF.__subclasses__()) def test_pdf_subclasses(PDFSubclass): pdf = PDFSubclass(n_illuminations=1) x = np.linspace(-5, 100, 1000) y = pdf(x, np.array(list(pdf.initial.values())), 0) np.testing.assert_allclose(np.trapz(y, x), 1, rtol=1e-3) # noinspection PyPep8Naming,PyArgumentList @pytest.mark.parametrize("PDFSubclass", PDF.__subclasses__()) def test_disable_pedestal(PDFSubclass): pdf = PDFSubclass(n_illuminations=1, disable_pedestal=True) x = np.linspace(-5, 100, 1000) y = pdf(x, np.array(list(pdf.initial.values())), 0) lambda_ = pdf.initial["lambda_0"] pedestal_contribution = np.exp(-lambda_) np.testing.assert_allclose(np.trapz(y, x), 1 - pedestal_contribution, rtol=1e-3) def test_from_name(): pdf = PDF.from_name("SiPMGentile", n_illuminations=1) assert pdf.__class__.__name__ == "SiPMGentile" with pytest.raises(ValueError): PDF.from_name("NULL", n_illuminations=1)
[ "spefit.pdf.base.PDF.__subclasses__", "numpy.trapz", "spefit.pdf.base.PDF", "spefit.pdf.base.PDF._prepare_parameters", "spefit.pdf.base.PDFParameter", "spefit.pdf.base.PDF.from_name", "pytest.raises", "numpy.array", "numpy.exp", "numpy.linspace", "numpy.array_equal" ]
[((275, 345), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': 'initial', 'limits': 'limits', 'fixed': 'fixed', 'multi': 'multi'}), '(initial=initial, limits=limits, fixed=fixed, multi=multi)\n', (287, 345), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((493, 537), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': 'initial', 'limits': 'limits'}), '(initial=initial, limits=limits)\n', (505, 537), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((845, 875), 'spefit.pdf.base.PDF', 'PDF', (['(1)', 'normal_pdf', 'parameters'], {}), '(1, normal_pdf, parameters)\n', (848, 875), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1106, 1136), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (1109, 1136), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1526, 1556), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (1529, 1556), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((2010, 2040), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (2013, 2040), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((2385, 2447), 'numpy.array_equal', 'np.array_equal', (['key_array[pdf._lookup[0]]', "['mean0', 'sigma0']"], {}), "(key_array[pdf._lookup[0]], ['mean0', 'sigma0'])\n", (2399, 2447), True, 'import numpy as np\n'), ((2459, 2521), 'numpy.array_equal', 'np.array_equal', (['key_array[pdf._lookup[1]]', "['mean1', 'sigma1']"], {}), "(key_array[pdf._lookup[1]], ['mean1', 'sigma1'])\n", (2473, 2521), True, 'import numpy as np\n'), ((2715, 2745), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (2718, 2745), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((3187, 3217), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (3190, 3217), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((3227, 3250), 'numpy.linspace', 'np.linspace', (['(-1)', '(6)', '(100)'], {}), '(-1, 6, 100)\n', (3238, 3250), True, 'import numpy as np\n'), ((3865, 3895), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (3868, 3895), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((4305, 4335), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (4308, 4335), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((5317, 5347), 'spefit.pdf.base.PDF', 'PDF', (['(1)', 'normal_pdf', 'parameters'], {}), '(1, normal_pdf, parameters)\n', (5320, 5347), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6054, 6084), 'spefit.pdf.base.PDF', 'PDF', (['(1)', 'normal_pdf', 'parameters'], {}), '(1, normal_pdf, parameters)\n', (6057, 6084), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6571, 6609), 'spefit.pdf.base.PDF._prepare_parameters', 'PDF._prepare_parameters', (['parameters', '(1)'], {}), '(parameters, 1)\n', (6594, 6609), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6952, 6990), 'spefit.pdf.base.PDF._prepare_parameters', 'PDF._prepare_parameters', (['parameters', '(1)'], {}), '(parameters, 1)\n', (6975, 6990), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7333, 7371), 'spefit.pdf.base.PDF._prepare_parameters', 'PDF._prepare_parameters', (['parameters', '(2)'], {}), '(parameters, 2)\n', (7356, 7371), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7719, 7749), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (7722, 7749), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8052, 8082), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (8055, 8082), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8395, 8425), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (8398, 8425), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8679, 8709), 'spefit.pdf.base.PDF', 'PDF', (['(2)', 'normal_pdf', 'parameters'], {}), '(2, normal_pdf, parameters)\n', (8682, 8709), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((9543, 9569), 'numpy.linspace', 'np.linspace', (['(-5)', '(100)', '(1000)'], {}), '(-5, 100, 1000)\n', (9554, 9569), True, 'import numpy as np\n'), ((9434, 9454), 'spefit.pdf.base.PDF.__subclasses__', 'PDF.__subclasses__', ([], {}), '()\n', (9452, 9454), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((9906, 9932), 'numpy.linspace', 'np.linspace', (['(-5)', '(100)', '(1000)'], {}), '(-5, 100, 1000)\n', (9917, 9932), True, 'import numpy as np\n'), ((10055, 10071), 'numpy.exp', 'np.exp', (['(-lambda_)'], {}), '(-lambda_)\n', (10061, 10071), True, 'import numpy as np\n'), ((9772, 9792), 'spefit.pdf.base.PDF.__subclasses__', 'PDF.__subclasses__', ([], {}), '()\n', (9790, 9792), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((10191, 10238), 'spefit.pdf.base.PDF.from_name', 'PDF.from_name', (['"""SiPMGentile"""'], {'n_illuminations': '(1)'}), "('SiPMGentile', n_illuminations=1)\n", (10204, 10238), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1075, 1093), 'numpy.array', 'np.array', (['[[0, 1]]'], {}), '([[0, 1]])\n', (1083, 1093), True, 'import numpy as np\n'), ((1336, 1362), 'numpy.array', 'np.array', (['[[0, 1], [0, 1]]'], {}), '([[0, 1], [0, 1]])\n', (1344, 1362), True, 'import numpy as np\n'), ((1808, 1834), 'numpy.array', 'np.array', (['[[0, 1], [0, 2]]'], {}), '([[0, 1], [0, 2]])\n', (1816, 1834), True, 'import numpy as np\n'), ((2292, 2318), 'numpy.array', 'np.array', (['[[0, 2], [1, 3]]'], {}), '([[0, 2], [1, 3]])\n', (2300, 2318), True, 'import numpy as np\n'), ((2905, 2923), 'numpy.array', 'np.array', (['[0, 0.1]'], {}), '([0, 0.1])\n', (2913, 2923), True, 'import numpy as np\n'), ((2987, 3005), 'numpy.array', 'np.array', (['[0, 0.3]'], {}), '([0, 0.3])\n', (2995, 3005), True, 'import numpy as np\n'), ((3425, 3450), 'pytest.raises', 'pytest.raises', (['IndexError'], {}), '(IndexError)\n', (3438, 3450), False, 'import pytest\n'), ((3505, 3530), 'pytest.raises', 'pytest.raises', (['IndexError'], {}), '(IndexError)\n', (3518, 3530), False, 'import pytest\n'), ((3580, 3604), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3593, 3604), False, 'import pytest\n'), ((4912, 4937), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4925, 4937), False, 'import pytest\n'), ((5020, 5045), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5033, 5045), False, 'import pytest\n'), ((9657, 9671), 'numpy.trapz', 'np.trapz', (['y', 'x'], {}), '(y, x)\n', (9665, 9671), True, 'import numpy as np\n'), ((10103, 10117), 'numpy.trapz', 'np.trapz', (['y', 'x'], {}), '(y, x)\n', (10111, 10117), True, 'import numpy as np\n'), ((10300, 10325), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (10313, 10325), False, 'import pytest\n'), ((10335, 10375), 'spefit.pdf.base.PDF.from_name', 'PDF.from_name', (['"""NULL"""'], {'n_illuminations': '(1)'}), "('NULL', n_illuminations=1)\n", (10348, 10375), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((732, 771), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (744, 771), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((787, 827), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)'}), '(initial=0.1, limits=(0, 2))\n', (799, 827), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1401, 1440), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (1413, 1440), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1456, 1508), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (1468, 1508), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1873, 1924), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)', 'multi': '(True)'}), '(initial=0, limits=(-2, 2), multi=True)\n', (1885, 1924), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((1940, 1992), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (1952, 1992), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((2590, 2629), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (2602, 2629), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((2645, 2697), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (2657, 2697), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((3062, 3101), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (3074, 3101), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((3117, 3169), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (3129, 3169), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((3278, 3301), 'numpy.array', 'np.array', (['[0, 0.1, 0.2]'], {}), '([0, 0.1, 0.2])\n', (3286, 3301), True, 'import numpy as np\n'), ((3360, 3383), 'numpy.array', 'np.array', (['[0, 0.1, 0.2]'], {}), '([0, 0.1, 0.2])\n', (3368, 3383), True, 'import numpy as np\n'), ((3467, 3490), 'numpy.array', 'np.array', (['[0, 0.1, 0.2]'], {}), '([0, 0.1, 0.2])\n', (3475, 3490), True, 'import numpy as np\n'), ((3547, 3565), 'numpy.array', 'np.array', (['[0, 0.1]'], {}), '([0, 0.1])\n', (3555, 3565), True, 'import numpy as np\n'), ((3752, 3791), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (3764, 3791), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((3807, 3847), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)'}), '(initial=0.1, limits=(0, 2))\n', (3819, 3847), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((4180, 4219), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (4192, 4219), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((4235, 4287), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (4247, 4287), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((5204, 5243), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (5216, 5243), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((5259, 5299), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)'}), '(initial=0.1, limits=(0, 2))\n', (5271, 5299), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((5941, 5980), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (5953, 5980), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((5996, 6036), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)'}), '(initial=0.1, limits=(0, 2))\n', (6008, 6036), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6454, 6493), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (6466, 6493), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6509, 6549), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)'}), '(initial=0.1, limits=(0, 2))\n', (6521, 6549), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6811, 6862), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)', 'multi': '(True)'}), '(initial=0, limits=(-2, 2), multi=True)\n', (6823, 6862), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((6878, 6930), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (6890, 6930), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7192, 7243), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)', 'multi': '(True)'}), '(initial=0, limits=(-2, 2), multi=True)\n', (7204, 7243), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7259, 7311), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (7271, 7311), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7594, 7633), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (7606, 7633), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7649, 7701), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (7661, 7701), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7927, 7966), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (7939, 7966), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((7982, 8034), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (7994, 8034), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8270, 8309), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (8282, 8309), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8325, 8377), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (8337, 8377), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8554, 8593), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0)', 'limits': '(-2, 2)'}), '(initial=0, limits=(-2, 2))\n', (8566, 8593), False, 'from spefit.pdf.base import PDFParameter, PDF\n'), ((8609, 8661), 'spefit.pdf.base.PDFParameter', 'PDFParameter', ([], {'initial': '(0.1)', 'limits': '(0, 2)', 'multi': '(True)'}), '(initial=0.1, limits=(0, 2), multi=True)\n', (8621, 8661), False, 'from spefit.pdf.base import PDFParameter, PDF\n')]
# Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tf_euler.python.euler_ops import base from tf_euler.python.euler_ops import type_ops import numpy as np gen_pair = base._LIB_OP.gen_pair _random_walk = base._LIB_OP.random_walk def random_walk(nodes, edge_types, p=1.0, q=1.0, default_node=-1): ''' Random walk from a list of nodes. Args: nodes: start node ids, 1-d Tensor edge_types: list of 1-d Tensor of edge types p: back probality q: forward probality default_node: default fill nodes ''' if base.nebula_ops['random_walk']: return nebula_random_walk(nodes, edge_types, p, q, default_node) edge_types = [type_ops.get_edge_type_id(edge_type) for edge_type in edge_types] return _random_walk(nodes, edge_types, p, q, default_node) def nebula_random_walk(nodes, edge_types, p=1.0, q=1.0, default_node=-1): result = tf.py_func( _nebula_random_walk, [nodes, edge_types, p, q, default_node], [tf.int64], True, 'NebulaRandomWalk' ) result[0].set_shape((nodes.shape.dims[0].value, len(edge_types) + 1)) return result[0] def _nebula_random_walk(nodes, edge_types, p, q, default_node): paths = [] uniq_nodes = {}.fromkeys(nodes).keys() nql = 'USE {}; randomwalk {} from {} over {} where p=={} and q=={}'.format( base.nebula_space, len(edge_types), ', '.join(str(x) for x in uniq_nodes), ', '.join(str('e_' + x) for x in edge_types[0]), p, q ) path_cache = {} resp = base.nebula_client.execute_query(nql) if resp.rows is not None: for row in resp.rows: path = row.columns[0].get_str() path_nodes = map(lambda x: long(x if x != '-1' else default_node), path.split('#')) path_cache[path_nodes[0]] = path_nodes for node in nodes: paths.append(path_cache[node]) return np.asarray(paths, np.int64)
[ "numpy.asarray", "tf_euler.python.euler_ops.type_ops.get_edge_type_id", "tf_euler.python.euler_ops.base.nebula_client.execute_query", "tensorflow.py_func" ]
[((1686, 1801), 'tensorflow.py_func', 'tf.py_func', (['_nebula_random_walk', '[nodes, edge_types, p, q, default_node]', '[tf.int64]', '(True)', '"""NebulaRandomWalk"""'], {}), "(_nebula_random_walk, [nodes, edge_types, p, q, default_node], [\n tf.int64], True, 'NebulaRandomWalk')\n", (1696, 1801), True, 'import tensorflow as tf\n'), ((2358, 2395), 'tf_euler.python.euler_ops.base.nebula_client.execute_query', 'base.nebula_client.execute_query', (['nql'], {}), '(nql)\n', (2390, 2395), False, 'from tf_euler.python.euler_ops import base\n'), ((2720, 2747), 'numpy.asarray', 'np.asarray', (['paths', 'np.int64'], {}), '(paths, np.int64)\n', (2730, 2747), True, 'import numpy as np\n'), ((1451, 1487), 'tf_euler.python.euler_ops.type_ops.get_edge_type_id', 'type_ops.get_edge_type_id', (['edge_type'], {}), '(edge_type)\n', (1476, 1487), False, 'from tf_euler.python.euler_ops import type_ops\n')]
import numpy as np from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import torch from torch.autograd import Variable from load_memmap import * class AxonDataset(Dataset): """" Inherits pytorch Dataset class to load Axon Dataset """ def __init__(self, data_name='crops64_axons_only', folder='axon_data', type='train', transform=None, resize=None, normalise=False, read='npy'): """ :param data_name (string)- data name to load/ save :param folder- location of dataset :param type - train or test dataset """ self.data_name = data_name self.read = read self.transform = transform self.resize = resize self.normalise = normalise __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) if self.read == 'npy': self.x_data, self.y_data, _ = load_dataset(type, folder, data_name) self.len_data = len(self.x_data) elif self.read == 'image': self.folder = os.path.join(__location__,self.data_name,'train') images_original = [img for img in os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), self.folder, "original"))] images_mask = [img for img in os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), self.folder, "mask"))] self.images_mask = images_mask self.images_original = images_original self.images_mask.sort() self.images_original.sort() self.len_data = len(images_original) def __len__(self): """ get length of data example: len(data) """ return self.len_data def __getitem__(self, idx): """gets samples from data according to idx :param idx- index to take example: data[10] -to get the 10th data sample""" __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) if self.read == 'npy': if self.resize: sample_x_data = np.resize(np.array([self.x_data[idx]]), (1, self.resize,self.resize)) sample_y_data = np.resize(np.array([self.y_data[idx]]), (1, self.resize,self.resize)) else: sample_x_data = self.x_data[idx] sample_y_data = self.y_data[idx] elif self.read == 'image': data_path = self.images_original[idx] mask_path = self.images_mask[idx] sample_x_data = plt.imread( os.path.join(os.path.dirname(os.path.abspath(__file__)), self.folder, "original", data_path)) sample_y_data = (plt.imread( os.path.join(os.path.dirname(os.path.abspath(__file__)), self.folder, "mask", mask_path))).astype( float) sample_x_data = torch.Tensor(sample_x_data) sample_y_data = torch.Tensor(sample_y_data) if len(sample_x_data.shape) == 2: sample_x_data.unsqueeze_(0) if len(sample_y_data.shape) == 2: sample_y_data.unsqueeze_(0) # normalise between [-1,1] if self.normalise: sample_x_data = 2*((sample_x_data - torch.min(sample_x_data))/ (torch.max(sample_x_data) - torch.min(sample_x_data)) ) - 1 data = [sample_x_data, sample_y_data] return data class SyntheticDataset(Dataset): """" Inherits pytorch Dataset class to load Synthetic Axon Dataset """ def __init__(self, num=50000, data_name='syn256', type='val', transform=None, resize=None): """ :param num - number of data to generate :param data_name (string)- data name to load/ save :param type - train or test dataset """ __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) name_x = os.path.join(__location__, 'npy_data/' + data_name + '_x_data_' + type + '.npy') name_y = os.path.join(__location__,'npy_data/' + data_name + '_y_data_' + type + '.npy') name_y_points = os.path.join(__location__,'npy_data/' + data_name + '_y_points_data_' + type + '.npy') try: self.x_data = np.load(name_x, mmap_mode='r') self.y_data = np.load(name_y, mmap_mode='r') self.y_data_points = np.load(name_y_points) except: # if no dataset currently created, generate a new synthetic dataset with parameters args print('no dataset with the name') self.data_name = data_name self.transform = transform self.resize = resize def read_tensor_dataset(self): """ converts dataset to tensors """ tt = ToTensor() x_data = tt(self.x_data) y_data = tt(self.y_data) return x_data, y_data def __len__(self): """ get length of data example: len(data) """ return (len(self.x_data)) def __getitem__(self, idx): """gets samples from data according to idx :param idx- index to take example: data[10] -to get the 10th data sample""" if self.resize: sample_x_data = np.resize(np.array([self.x_data[idx]]), (1, self.resize,self.resize)) sample_y_data = np.resize(np.array([self.y_data[idx]]), (1, self.resize,self.resize)) else: sample_x_data = self.x_data[idx] sample_y_data = self.y_data[idx] sample_x_data = np.expand_dims(sample_x_data, axis=0) sample_y_data = np.expand_dims(sample_y_data, axis=0) sample_x_data = torch.Tensor(sample_x_data) sample_y_data = torch.Tensor(sample_y_data) data = [sample_x_data, sample_y_data] return data class ToTensor: """Convert ndarrays in data to Tensors.""" @staticmethod def __call__(data): # swap color axis because # numpy image: H x W x C # torch image: C X H X W #data = data.transpose((1, 0)) data = np.array([data]) data = torch.Tensor(data) if torch.cuda.is_available(): data = data.cuda() return data @staticmethod def data_to_tensor(x_data, y_data): """takes data and splits into a list of tensors- of which each list contains tensors of several samples (i.e. one id) :param x_data - the data :param y_data - the labels """ tt = ToTensor() x_train_temp = tt(x_data) y_train_temp = tt(y_data) data = [x_train_temp, y_train_temp] return data @staticmethod def data_ids_to_tensor_list(x_data, y_data, ids): """takes data and splits into a list of tensors- of which each list contains tensors of several samples (i.e. one id) :param x_data - the data :param y_data - the labels :param ids - the ids corresponding to each sample """ tt = ToTensor() unique_ids = np.unique(ids) data = [None] * unique_ids.size len = np.zeros(unique_ids.size).astype(int) for i in np.arange(unique_ids.size): ind_id = np.nonzero(unique_ids[i] == ids)[0].astype(int) len[i] = int(ind_id.size) x_train_temp = tt(x_data[ind_id]) y_train_temp = tt(y_data[ind_id]) data[i] = [x_train_temp[0], y_train_temp[0], len[i]] max_len = int(np.max(len)) return data, max_len @staticmethod def create_variable(tensor): """creates a Variable tensor with gpu if available :param tensor - the tensor to wrap with Variable """ # Do cuda() before wrapping with variable if torch.cuda.is_available(): return Variable(tensor.cuda()) else: return Variable(tensor)
[ "numpy.load", "torch.autograd.Variable", "numpy.zeros", "numpy.expand_dims", "numpy.nonzero", "numpy.max", "torch.Tensor", "numpy.array", "numpy.arange", "torch.cuda.is_available", "torch.max", "torch.min", "numpy.unique" ]
[((2945, 2972), 'torch.Tensor', 'torch.Tensor', (['sample_x_data'], {}), '(sample_x_data)\n', (2957, 2972), False, 'import torch\n'), ((2997, 3024), 'torch.Tensor', 'torch.Tensor', (['sample_y_data'], {}), '(sample_y_data)\n', (3009, 3024), False, 'import torch\n'), ((5674, 5701), 'torch.Tensor', 'torch.Tensor', (['sample_x_data'], {}), '(sample_x_data)\n', (5686, 5701), False, 'import torch\n'), ((5726, 5753), 'torch.Tensor', 'torch.Tensor', (['sample_y_data'], {}), '(sample_y_data)\n', (5738, 5753), False, 'import torch\n'), ((6085, 6101), 'numpy.array', 'np.array', (['[data]'], {}), '([data])\n', (6093, 6101), True, 'import numpy as np\n'), ((6117, 6135), 'torch.Tensor', 'torch.Tensor', (['data'], {}), '(data)\n', (6129, 6135), False, 'import torch\n'), ((6147, 6172), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6170, 6172), False, 'import torch\n'), ((7048, 7062), 'numpy.unique', 'np.unique', (['ids'], {}), '(ids)\n', (7057, 7062), True, 'import numpy as np\n'), ((7172, 7198), 'numpy.arange', 'np.arange', (['unique_ids.size'], {}), '(unique_ids.size)\n', (7181, 7198), True, 'import numpy as np\n'), ((7762, 7787), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (7785, 7787), False, 'import torch\n'), ((4289, 4319), 'numpy.load', 'np.load', (['name_x'], {'mmap_mode': '"""r"""'}), "(name_x, mmap_mode='r')\n", (4296, 4319), True, 'import numpy as np\n'), ((4346, 4376), 'numpy.load', 'np.load', (['name_y'], {'mmap_mode': '"""r"""'}), "(name_y, mmap_mode='r')\n", (4353, 4376), True, 'import numpy as np\n'), ((4410, 4432), 'numpy.load', 'np.load', (['name_y_points'], {}), '(name_y_points)\n', (4417, 4432), True, 'import numpy as np\n'), ((5545, 5582), 'numpy.expand_dims', 'np.expand_dims', (['sample_x_data'], {'axis': '(0)'}), '(sample_x_data, axis=0)\n', (5559, 5582), True, 'import numpy as np\n'), ((5611, 5648), 'numpy.expand_dims', 'np.expand_dims', (['sample_y_data'], {'axis': '(0)'}), '(sample_y_data, axis=0)\n', (5625, 5648), True, 'import numpy as np\n'), ((7486, 7497), 'numpy.max', 'np.max', (['len'], {}), '(len)\n', (7492, 7497), True, 'import numpy as np\n'), ((7865, 7881), 'torch.autograd.Variable', 'Variable', (['tensor'], {}), '(tensor)\n', (7873, 7881), False, 'from torch.autograd import Variable\n'), ((5255, 5283), 'numpy.array', 'np.array', (['[self.x_data[idx]]'], {}), '([self.x_data[idx]])\n', (5263, 5283), True, 'import numpy as np\n'), ((5353, 5381), 'numpy.array', 'np.array', (['[self.y_data[idx]]'], {}), '([self.y_data[idx]])\n', (5361, 5381), True, 'import numpy as np\n'), ((7117, 7142), 'numpy.zeros', 'np.zeros', (['unique_ids.size'], {}), '(unique_ids.size)\n', (7125, 7142), True, 'import numpy as np\n'), ((2183, 2211), 'numpy.array', 'np.array', (['[self.x_data[idx]]'], {}), '([self.x_data[idx]])\n', (2191, 2211), True, 'import numpy as np\n'), ((2285, 2313), 'numpy.array', 'np.array', (['[self.y_data[idx]]'], {}), '([self.y_data[idx]])\n', (2293, 2313), True, 'import numpy as np\n'), ((7221, 7253), 'numpy.nonzero', 'np.nonzero', (['(unique_ids[i] == ids)'], {}), '(unique_ids[i] == ids)\n', (7231, 7253), True, 'import numpy as np\n'), ((3301, 3325), 'torch.min', 'torch.min', (['sample_x_data'], {}), '(sample_x_data)\n', (3310, 3325), False, 'import torch\n'), ((3329, 3353), 'torch.max', 'torch.max', (['sample_x_data'], {}), '(sample_x_data)\n', (3338, 3353), False, 'import torch\n'), ((3356, 3380), 'torch.min', 'torch.min', (['sample_x_data'], {}), '(sample_x_data)\n', (3365, 3380), False, 'import torch\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for Truthcoin's consensus functions. Verifies that the consensus algorithm works as expected. Check test_answers.txt for expected results. """ from __future__ import division, unicode_literals, absolute_import import os import sys import platform import json import numpy as np import numpy.ma as ma if platform.python_version() < "2.7": unittest = __import__("unittest2") else: import unittest HERE = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(HERE, os.pardir)) import consensus def prp(o): print(json.dumps(outcome, indent=3, sort_keys=True)) class TestConsensus(unittest.TestCase): def setUp(self): self.votes_unmasked = np.array([ [1, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 0, 1, 1], [0, 0, 1, 1], ]) self.votes = ma.masked_array(self.votes_unmasked, np.isnan(self.votes_unmasked)) def test_Factory(self): outcome = consensus.Factory(self.votes) self.assertAlmostEquals(outcome["Certainty"], 0.228237569613, places=11) def test_Factory_scaled(self): scalar_decision_params = [ {"scaled": True, "min": 0.1, "max": 0.5}, {"scaled": True, "min": 0.2, "max": 0.7}, {"scaled": False, "min": 0, "max": 1}, {"scaled": False, "min": 0, "max": 1}, ] outcome = consensus.Factory(self.votes, Scales=scalar_decision_params) self.assertAlmostEquals(outcome["Certainty"], 0.618113325804, places=11) def tearDown(self): del self.votes_unmasked del self.votes if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(TestConsensus) unittest.TextTestRunner(verbosity=2).run(suite)
[ "platform.python_version", "unittest.TextTestRunner", "os.path.realpath", "json.dumps", "numpy.isnan", "numpy.array", "unittest.TestLoader", "os.path.join", "consensus.Factory" ]
[((360, 385), 'platform.python_version', 'platform.python_version', ([], {}), '()\n', (383, 385), False, 'import platform\n'), ((484, 510), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (500, 510), False, 'import os\n'), ((531, 560), 'os.path.join', 'os.path.join', (['HERE', 'os.pardir'], {}), '(HERE, os.pardir)\n', (543, 560), False, 'import os\n'), ((603, 648), 'json.dumps', 'json.dumps', (['outcome'], {'indent': '(3)', 'sort_keys': '(True)'}), '(outcome, indent=3, sort_keys=True)\n', (613, 648), False, 'import json\n'), ((743, 841), 'numpy.array', 'np.array', (['[[1, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 0, 1, 1], [0, \n 0, 1, 1]]'], {}), '([[1, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 0, 1,\n 1], [0, 0, 1, 1]])\n', (751, 841), True, 'import numpy as np\n'), ((1057, 1086), 'consensus.Factory', 'consensus.Factory', (['self.votes'], {}), '(self.votes)\n', (1074, 1086), False, 'import consensus\n'), ((1477, 1537), 'consensus.Factory', 'consensus.Factory', (['self.votes'], {'Scales': 'scalar_decision_params'}), '(self.votes, Scales=scalar_decision_params)\n', (1494, 1537), False, 'import consensus\n'), ((979, 1008), 'numpy.isnan', 'np.isnan', (['self.votes_unmasked'], {}), '(self.votes_unmasked)\n', (987, 1008), True, 'import numpy as np\n'), ((1739, 1760), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (1758, 1760), False, 'import unittest\n'), ((1802, 1838), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (1825, 1838), False, 'import unittest\n')]
""" Comparing different kernels using cv2.filter2D() """ # Import required packages: import cv2 import numpy as np import matplotlib.pyplot as plt def show_with_matplotlib(color_img, title, pos): """Shows an image using matplotlib capabilities""" # Convert BGR image to RGB img_RGB = color_img[:, :, ::-1] ax = plt.subplot(3, 4, pos) plt.imshow(img_RGB) plt.title(title) plt.axis('off') # Create the dimensions of the figure and set title: plt.figure(figsize=(12, 6)) plt.suptitle("Comparing different kernels using cv2.filter2D()", fontsize=14, fontweight='bold') # Load the original image: image = cv2.imread('cat-face.png') # We try different kernels # Identify kernel (does not modify the image) kernel_identity = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) # Try different kernels for edge detection: kernel_edge_detection_1 = np.array([[1, 0, -1], [0, 0, 0], [-1, 0, 1]]) kernel_edge_detection_2 = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) kernel_edge_detection_3 = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]) # Try different kernels for sharpening: kernel_sharpen = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) kernel_unsharp_masking = -1 / 256 * np.array([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, -476, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]]) # Try different kernels for smoothing: kernel_blur = 1 / 9 * np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) gaussian_blur = 1 / 16 * np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) # Try a kernel for embossing: kernel_emboss = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]]) # Try different kernels for edge detection: sobel_x_kernel = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) sobel_y_kernel = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) outline_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]) # Apply all the kernels: original_image = cv2.filter2D(image, -1, kernel_identity) edge_image_1 = cv2.filter2D(image, -1, kernel_edge_detection_1) edge_image_2 = cv2.filter2D(image, -1, kernel_edge_detection_2) edge_image_3 = cv2.filter2D(image, -1, kernel_edge_detection_3) sharpen_image = cv2.filter2D(image, -1, kernel_sharpen) unsharp_masking_image = cv2.filter2D(image, -1, kernel_unsharp_masking) blur_image = cv2.filter2D(image, -1, kernel_blur) gaussian_blur_image = cv2.filter2D(image, -1, gaussian_blur) emboss_image = cv2.filter2D(image, -1, kernel_emboss) sobel_x_image = cv2.filter2D(image, -1, sobel_x_kernel) sobel_y_image = cv2.filter2D(image, -1, sobel_y_kernel) outline_image = cv2.filter2D(image, -1, outline_kernel) # Show all the images: show_with_matplotlib(original_image, "identity kernel", 1) show_with_matplotlib(edge_image_1, "edge detection 1", 2) show_with_matplotlib(edge_image_2, "edge detection 2", 3) show_with_matplotlib(edge_image_3, "edge detection 3", 4) show_with_matplotlib(sharpen_image, "sharpen", 5) show_with_matplotlib(unsharp_masking_image, "unsharp masking", 6) show_with_matplotlib(blur_image, "blur image", 7) show_with_matplotlib(gaussian_blur_image, "gaussian blur image", 8) show_with_matplotlib(emboss_image, "emboss image", 9) show_with_matplotlib(sobel_x_image, "sobel x image", 10) show_with_matplotlib(sobel_y_image, "sobel y image", 11) show_with_matplotlib(outline_image, "outline image", 12) # Show the Figure: plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "cv2.filter2D", "matplotlib.pyplot.suptitle", "matplotlib.pyplot.imshow", "matplotlib.pyplot.axis", "cv2.imread", "matplotlib.pyplot.figure", "numpy.array" ]
[((475, 502), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (485, 502), True, 'import matplotlib.pyplot as plt\n'), ((503, 604), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Comparing different kernels using cv2.filter2D()"""'], {'fontsize': '(14)', 'fontweight': '"""bold"""'}), "('Comparing different kernels using cv2.filter2D()', fontsize=\n 14, fontweight='bold')\n", (515, 604), True, 'import matplotlib.pyplot as plt\n'), ((636, 662), 'cv2.imread', 'cv2.imread', (['"""cat-face.png"""'], {}), "('cat-face.png')\n", (646, 662), False, 'import cv2\n'), ((755, 798), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 1, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 1, 0], [0, 0, 0]])\n', (763, 798), True, 'import numpy as np\n'), ((926, 971), 'numpy.array', 'np.array', (['[[1, 0, -1], [0, 0, 0], [-1, 0, 1]]'], {}), '([[1, 0, -1], [0, 0, 0], [-1, 0, 1]])\n', (934, 971), True, 'import numpy as np\n'), ((1071, 1115), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, -4, 1], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, -4, 1], [0, 1, 0]])\n', (1079, 1115), True, 'import numpy as np\n'), ((1215, 1266), 'numpy.array', 'np.array', (['[[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]'], {}), '([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])\n', (1223, 1266), True, 'import numpy as np\n'), ((1397, 1444), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 5, -1], [0, -1, 0]]'], {}), '([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])\n', (1405, 1444), True, 'import numpy as np\n'), ((2184, 2230), 'numpy.array', 'np.array', (['[[-2, -1, 0], [-1, 1, 1], [0, 1, 2]]'], {}), '([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])\n', (2192, 2230), True, 'import numpy as np\n'), ((2345, 2391), 'numpy.array', 'np.array', (['[[1, 0, -1], [2, 0, -2], [1, 0, -1]]'], {}), '([[1, 0, -1], [2, 0, -2], [1, 0, -1]])\n', (2353, 2391), True, 'import numpy as np\n'), ((2464, 2510), 'numpy.array', 'np.array', (['[[1, 2, 1], [0, 0, 0], [-1, -2, -1]]'], {}), '([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])\n', (2472, 2510), True, 'import numpy as np\n'), ((2583, 2634), 'numpy.array', 'np.array', (['[[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]'], {}), '([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])\n', (2591, 2634), True, 'import numpy as np\n'), ((2732, 2772), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_identity'], {}), '(image, -1, kernel_identity)\n', (2744, 2772), False, 'import cv2\n'), ((2788, 2836), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_edge_detection_1'], {}), '(image, -1, kernel_edge_detection_1)\n', (2800, 2836), False, 'import cv2\n'), ((2852, 2900), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_edge_detection_2'], {}), '(image, -1, kernel_edge_detection_2)\n', (2864, 2900), False, 'import cv2\n'), ((2916, 2964), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_edge_detection_3'], {}), '(image, -1, kernel_edge_detection_3)\n', (2928, 2964), False, 'import cv2\n'), ((2981, 3020), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_sharpen'], {}), '(image, -1, kernel_sharpen)\n', (2993, 3020), False, 'import cv2\n'), ((3045, 3092), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_unsharp_masking'], {}), '(image, -1, kernel_unsharp_masking)\n', (3057, 3092), False, 'import cv2\n'), ((3106, 3142), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_blur'], {}), '(image, -1, kernel_blur)\n', (3118, 3142), False, 'import cv2\n'), ((3165, 3203), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'gaussian_blur'], {}), '(image, -1, gaussian_blur)\n', (3177, 3203), False, 'import cv2\n'), ((3219, 3257), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel_emboss'], {}), '(image, -1, kernel_emboss)\n', (3231, 3257), False, 'import cv2\n'), ((3274, 3313), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'sobel_x_kernel'], {}), '(image, -1, sobel_x_kernel)\n', (3286, 3313), False, 'import cv2\n'), ((3330, 3369), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'sobel_y_kernel'], {}), '(image, -1, sobel_y_kernel)\n', (3342, 3369), False, 'import cv2\n'), ((3386, 3425), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'outline_kernel'], {}), '(image, -1, outline_kernel)\n', (3398, 3425), False, 'import cv2\n'), ((4162, 4172), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4170, 4172), True, 'import matplotlib.pyplot as plt\n'), ((332, 354), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(4)', 'pos'], {}), '(3, 4, pos)\n', (343, 354), True, 'import matplotlib.pyplot as plt\n'), ((359, 378), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img_RGB'], {}), '(img_RGB)\n', (369, 378), True, 'import matplotlib.pyplot as plt\n'), ((383, 399), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (392, 399), True, 'import matplotlib.pyplot as plt\n'), ((404, 419), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (412, 419), True, 'import matplotlib.pyplot as plt\n'), ((1536, 1646), 'numpy.array', 'np.array', (['[[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, -476, 24, 6], [4, 16, 24, 16,\n 4], [1, 4, 6, 4, 1]]'], {}), '([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, -476, 24, 6], [4, 16,\n 24, 16, 4], [1, 4, 6, 4, 1]])\n', (1544, 1646), True, 'import numpy as np\n'), ((1889, 1932), 'numpy.array', 'np.array', (['[[1, 1, 1], [1, 1, 1], [1, 1, 1]]'], {}), '([[1, 1, 1], [1, 1, 1], [1, 1, 1]])\n', (1897, 1932), True, 'import numpy as np\n'), ((2023, 2066), 'numpy.array', 'np.array', (['[[1, 2, 1], [2, 4, 2], [1, 2, 1]]'], {}), '([[1, 2, 1], [2, 4, 2], [1, 2, 1]])\n', (2031, 2066), True, 'import numpy as np\n')]
import os import re import sys import argparse import json import numpy as np from glob import glob import cv2 from utils.plot_utils import RandomColor def parse_args(): parser = argparse.ArgumentParser( description='Monocular 3D Tracking Visualizer', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('set', choices=['gta', 'kitti']) parser.add_argument('split', choices=['train', 'val', 'test'], help='Which data split to use in testing') parser.add_argument('--session', default='623', help='Name of the session, to separate exp') parser.add_argument('--epoch', default='100', help='How many epochs you used to separate exp') parser.add_argument('--flag', default='kf3doccdeep_age15_aff0.1_hit0_80m_pd', help='Flags for running evaluation code') parser.add_argument('--save_vid', action='store_true', default=False, help='Flags for saving video') parser.add_argument('--save_txt', action='store_true', default=False, help='Flags for saving txt') parser.add_argument('--dry_run', action='store_true', default=False, help='Show command without running') parser.add_argument('--overwrite', action='store_true', default=False, help='Overwrite the output files') args = parser.parse_args() return args print(' '.join(sys.argv)) args = parse_args() if args.set == 'kitti': IMAGE_PATH = 'data/kitti_tracking/{SPLIT}ing/image_02/{SEQ}/*.png'.format(**{'SPLIT': args.split, 'SEQ': '{:04d}'}) re_pattern = re.compile('[0-9]{4}') else: IMAGE_PATH = 'data/gta5_tracking/{SPLIT}/image/{SEQ}/*.jpg'.format(**{'SPLIT': args.split, 'SEQ': '{}'}) re_pattern = re.compile('rec_(.{8})_(.+)_(.+)h(.+)m_(.+[0-9])') SAVE_PATH = 'output/{SESS}_{EP}_{SET}_{SPLIT}_set/'.format( **{'SESS': args.session, 'EP': args.epoch, 'SET': args.set, 'SPLIT': args.split}) out_name = '{SESS}_{EP}_{SET}_{SETTING}'.format( **{'SESS': args.session, 'EP': args.epoch, 'SET': args.set, 'SETTING': args.flag}) FONT = cv2.FONT_HERSHEY_SIMPLEX FOURCC = cv2.VideoWriter_fourcc(*'mp4v') fps = 15 np.random.seed(777) rm_color = RandomColor(30) tid2color = {} def mkdir(path): if not os.path.isdir(path): print("Making directory {}".format(path)) os.makedirs(path) # Use with care def gen_result(out_path, out_name, save_vid=False, save_txt=True, dry_run=False, overwrite=False): print("Reading meta data...") info = json.load(open('{}{}.json'.format(out_path, out_name), 'r')) if not dry_run: mkdir('{}{}/data/'.format(out_path, out_name)) for seqid in range(len(info)): file_seq = re_pattern.search(info[seqid]['filename']).group(0) print('Reading {} from {}{}...'.format(file_seq, out_path, out_name)) if dry_run: continue seqout = [] vid_name = '{}{}/data/{}.mp4'.format(out_path, out_name, file_seq) txt_name = '{}{}/data/{}.txt'.format(out_path, out_name, file_seq) if not overwrite: if not os.path.isfile(txt_name) and save_txt: pass elif not os.path.isfile(vid_name) and save_vid: pass else: print("SKIP running. Generated file {} Found".format(txt_name)) continue if save_vid: images = sorted(glob(IMAGE_PATH.format(file_seq))) img = cv2.imread(images[0]) vidsize = (img.shape[1], img.shape[0]) # height, width out = cv2.VideoWriter(vid_name, FOURCC, fps, vidsize) demoinfo = info[seqid]['frames'] for idx, frame in enumerate(demoinfo): if save_vid: img = cv2.imread(images[idx]) img = cv2.putText(img, str(idx), (20, 30), cv2.FONT_HERSHEY_COMPLEX, 1, (180, 180, 180), 2) for trk in frame['hypotheses']: x1, y1, x2, y2, conf = trk['det_box'] xc, yc = trk['xc'], trk['yc'] if save_vid: if trk['id'] not in tid2color: tid2color[trk['id']] = rm_color.get_random_color(scale=255) img = cv2.rectangle(img, (int(xc-1), int(yc-1)), (int(xc+1), int(yc+1)), tid2color[trk['id']], 2) img = cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), tid2color[trk['id']], 4) img = cv2.putText(img, str(int(trk['id'])), (int(x1), int(y1)), cv2.FONT_HERSHEY_COMPLEX, 1, tid2color[trk['id']], 2) img = cv2.putText(img, str(int(trk['depth'])), (int(x2)-14, int(y2)), cv2.FONT_HERSHEY_COMPLEX, 0.8, tid2color[trk['id']], 2) if save_txt: ''' submit_txt = ' '.join([ str(idx), str(int(trk['id'])), 'Car', '-1 -1', trk['alpha'], str(x1), str(y1), str(x2), str(y2), trk['dim'], trk['loc'], trk['rot'], str(conf)]) ''' submit_txt = ' '.join([ str(idx), str(int(trk['id'])), 'Car', '-1 -1 -10', str(x1), str(y1), str(x2), str(y2), '-1 -1 -1', '-1000 -1000 -1000 -10', str(conf)]) #''' submit_txt += '\n' seqout.append(submit_txt) if save_vid: out.write(img) if save_txt: print("{} saved.".format(txt_name)) with open(txt_name, 'w') as f: f.writelines(seqout) if save_vid: print("{} saved.".format(vid_name)) out.release() if __name__ == '__main__': # Not using out_name, too slow output_list = [os.path.splitext(item)[0] for item in os.listdir(SAVE_PATH) if item.endswith('_pd.json')] my_list = ['none', 'kf2ddeep', 'kf3doccdeep', 'lstmdeep', 'lstmoccdeep'] for dir_name in output_list: print(dir_name) save_vid = args.save_vid if save_vid: is_in = False for ml in my_list: is_in = is_in or (ml in dir_name) save_vid = is_in gen_result(SAVE_PATH, dir_name, save_vid=save_vid, save_txt=args.save_txt, dry_run=args.dry_run, overwrite=args.overwrite )
[ "numpy.random.seed", "cv2.VideoWriter_fourcc", "argparse.ArgumentParser", "os.makedirs", "os.path.isdir", "utils.plot_utils.RandomColor", "cv2.imread", "os.path.isfile", "os.path.splitext", "cv2.VideoWriter", "os.listdir", "re.compile" ]
[((2253, 2284), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (2275, 2284), False, 'import cv2\n'), ((2295, 2314), 'numpy.random.seed', 'np.random.seed', (['(777)'], {}), '(777)\n', (2309, 2314), True, 'import numpy as np\n'), ((2326, 2341), 'utils.plot_utils.RandomColor', 'RandomColor', (['(30)'], {}), '(30)\n', (2337, 2341), False, 'from utils.plot_utils import RandomColor\n'), ((186, 317), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Monocular 3D Tracking Visualizer"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description='Monocular 3D Tracking Visualizer',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (209, 317), False, 'import argparse\n'), ((1721, 1743), 're.compile', 're.compile', (['"""[0-9]{4}"""'], {}), "('[0-9]{4}')\n", (1731, 1743), False, 'import re\n'), ((1876, 1926), 're.compile', 're.compile', (['"""rec_(.{8})_(.+)_(.+)h(.+)m_(.+[0-9])"""'], {}), "('rec_(.{8})_(.+)_(.+)h(.+)m_(.+[0-9])')\n", (1886, 1926), False, 'import re\n'), ((2386, 2405), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (2399, 2405), False, 'import os\n'), ((2465, 2482), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (2476, 2482), False, 'import os\n'), ((3620, 3641), 'cv2.imread', 'cv2.imread', (['images[0]'], {}), '(images[0])\n', (3630, 3641), False, 'import cv2\n'), ((3727, 3774), 'cv2.VideoWriter', 'cv2.VideoWriter', (['vid_name', 'FOURCC', 'fps', 'vidsize'], {}), '(vid_name, FOURCC, fps, vidsize)\n', (3742, 3774), False, 'import cv2\n'), ((6804, 6826), 'os.path.splitext', 'os.path.splitext', (['item'], {}), '(item)\n', (6820, 6826), False, 'import os\n'), ((6842, 6863), 'os.listdir', 'os.listdir', (['SAVE_PATH'], {}), '(SAVE_PATH)\n', (6852, 6863), False, 'import os\n'), ((3912, 3935), 'cv2.imread', 'cv2.imread', (['images[idx]'], {}), '(images[idx])\n', (3922, 3935), False, 'import cv2\n'), ((3253, 3277), 'os.path.isfile', 'os.path.isfile', (['txt_name'], {}), '(txt_name)\n', (3267, 3277), False, 'import os\n'), ((3334, 3358), 'os.path.isfile', 'os.path.isfile', (['vid_name'], {}), '(vid_name)\n', (3348, 3358), False, 'import os\n')]
# -------------- #Importing header files import pandas as pd from sklearn.model_selection import train_test_split as tts # Code starts here data= pd.read_csv(path) X= data.drop(['customer.id','paid.back.loan'],1) y=data['paid.back.loan'] X_train, X_test, y_train, y_test = tts(X,y,random_state=0,test_size=0.3) # Code ends here # -------------- #Importing header files import matplotlib.pyplot as plt # Code starts here import pandas as pd from sklearn.model_selection import train_test_split as tts # Code starts here fully_paid = y_train.value_counts() plt.figure() fully_paid.plot(kind='bar') # Code ends here # -------------- #Importing header files import numpy as np from sklearn.preprocessing import LabelEncoder # Code starts here X_train['int.rate'] = X_train['int.rate'].str.replace('%','').astype(float) X_train['int.rate'] = X_train['int.rate']/100 X_test['int.rate'] = X_test['int.rate'].str.replace('%','').astype(float) X_test['int.rate'] = X_test['int.rate']/100 num_df = X_train.select_dtypes(include = np.number) cat_df = X_train.select_dtypes(exclude = np.number) # Code ends here # -------------- #Importing header files import seaborn as sns # Code starts here # Code ends cols = list(num_df) fig, axes = plt.subplots(nrows =9, ncols= 1) for i in range(1,9): sns.boxplot(x=y_train, y=num_df[cols[i]], ax=axes[i]) # -------------- # Code starts here # Code ends here cols= list(cat_df) fig, axes = plt.subplots(nrows = 2, ncols= 2) for i in range (0,2): for j in range(0,2): sns.countplot(x=X_train[cols[i*2+j]], hue=y_train, ax=axes[i,j]) # -------------- #Importing header files from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import LabelEncoder # Code starts here for i in list(cat_df): X_train[i].fillna('NA') le = LabelEncoder() X_train[i] = le.fit_transform(X_train[i]) X_test[i].fillna('NA') le = LabelEncoder() X_test[i] = le.fit_transform(X_test[i]) #y_test = y_test.str.replace('No',0) y_train.replace({'No':0,'Yes':1},inplace=True) y_test.replace({'No':0,'Yes':1},inplace=True) # Code ends here from sklearn.metrics import accuracy_score model = DecisionTreeClassifier(random_state = 0) model.fit(X_train, y_train) y_preds = model.predict(X_test) acc= accuracy_score(y_test, y_preds) # -------------- #Importing header files from sklearn.model_selection import GridSearchCV #Parameter grid parameter_grid = {'max_depth': np.arange(3,10), 'min_samples_leaf': range(10,50,10)} # Code starts here model_2 = DecisionTreeClassifier(random_state =0) p_tree = GridSearchCV(estimator=model_2, param_grid=parameter_grid, cv=5) p_tree.fit(X_train,y_train) # Code ends here ypreds2 = p_tree.predict(X_test) acc_2 = accuracy_score(y_test, ypreds2) acc_2 # -------------- #Importing header files from io import StringIO from sklearn.tree import export_graphviz from sklearn import tree from sklearn import metrics from IPython.display import Image import pydotplus # Code starts here dot_data = export_graphviz(decision_tree=p_tree.best_estimator_, out_file=None, feature_names=X.columns, filled = True, class_names=['loan_paid_back_yes','loan_paid_back_no']) graph_big=pydotplus.graph_from_dot_data(dot_data) # show graph - do not delete/modify the code below this line img_path = user_data_dir+'/file.png' graph_big.write_png(img_path) plt.figure(figsize=(20,15)) plt.imshow(plt.imread(img_path)) plt.axis('off') plt.show() # Code ends here
[ "sklearn.model_selection.GridSearchCV", "matplotlib.pyplot.show", "pandas.read_csv", "sklearn.model_selection.train_test_split", "sklearn.metrics.accuracy_score", "matplotlib.pyplot.axis", "sklearn.tree.DecisionTreeClassifier", "sklearn.tree.export_graphviz", "sklearn.preprocessing.LabelEncoder", "pydotplus.graph_from_dot_data", "matplotlib.pyplot.figure", "seaborn.boxplot", "numpy.arange", "seaborn.countplot", "matplotlib.pyplot.imread", "matplotlib.pyplot.subplots" ]
[((150, 167), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (161, 167), True, 'import pandas as pd\n'), ((279, 319), 'sklearn.model_selection.train_test_split', 'tts', (['X', 'y'], {'random_state': '(0)', 'test_size': '(0.3)'}), '(X, y, random_state=0, test_size=0.3)\n', (282, 319), True, 'from sklearn.model_selection import train_test_split as tts\n'), ((569, 581), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (579, 581), True, 'import matplotlib.pyplot as plt\n'), ((1258, 1288), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(9)', 'ncols': '(1)'}), '(nrows=9, ncols=1)\n', (1270, 1288), True, 'import matplotlib.pyplot as plt\n'), ((1459, 1489), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)'}), '(nrows=2, ncols=2)\n', (1471, 1489), True, 'import matplotlib.pyplot as plt\n'), ((2185, 2223), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (2207, 2223), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((2291, 2322), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_preds'], {}), '(y_test, y_preds)\n', (2305, 2322), False, 'from sklearn.metrics import accuracy_score\n'), ((2547, 2585), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (2569, 2585), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((2596, 2660), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', ([], {'estimator': 'model_2', 'param_grid': 'parameter_grid', 'cv': '(5)'}), '(estimator=model_2, param_grid=parameter_grid, cv=5)\n', (2608, 2660), False, 'from sklearn.model_selection import GridSearchCV\n'), ((2748, 2779), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'ypreds2'], {}), '(y_test, ypreds2)\n', (2762, 2779), False, 'from sklearn.metrics import accuracy_score\n'), ((3032, 3203), 'sklearn.tree.export_graphviz', 'export_graphviz', ([], {'decision_tree': 'p_tree.best_estimator_', 'out_file': 'None', 'feature_names': 'X.columns', 'filled': '(True)', 'class_names': "['loan_paid_back_yes', 'loan_paid_back_no']"}), "(decision_tree=p_tree.best_estimator_, out_file=None,\n feature_names=X.columns, filled=True, class_names=['loan_paid_back_yes',\n 'loan_paid_back_no'])\n", (3047, 3203), False, 'from sklearn.tree import export_graphviz\n'), ((3208, 3247), 'pydotplus.graph_from_dot_data', 'pydotplus.graph_from_dot_data', (['dot_data'], {}), '(dot_data)\n', (3237, 3247), False, 'import pydotplus\n'), ((3380, 3408), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 15)'}), '(figsize=(20, 15))\n', (3390, 3408), True, 'import matplotlib.pyplot as plt\n'), ((3441, 3456), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3449, 3456), True, 'import matplotlib.pyplot as plt\n'), ((3457, 3467), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3465, 3467), True, 'import matplotlib.pyplot as plt\n'), ((1316, 1369), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': 'y_train', 'y': 'num_df[cols[i]]', 'ax': 'axes[i]'}), '(x=y_train, y=num_df[cols[i]], ax=axes[i])\n', (1327, 1369), True, 'import seaborn as sns\n'), ((1828, 1842), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (1840, 1842), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((1926, 1940), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (1938, 1940), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((2463, 2479), 'numpy.arange', 'np.arange', (['(3)', '(10)'], {}), '(3, 10)\n', (2472, 2479), True, 'import numpy as np\n'), ((3419, 3439), 'matplotlib.pyplot.imread', 'plt.imread', (['img_path'], {}), '(img_path)\n', (3429, 3439), True, 'import matplotlib.pyplot as plt\n'), ((1543, 1612), 'seaborn.countplot', 'sns.countplot', ([], {'x': 'X_train[cols[i * 2 + j]]', 'hue': 'y_train', 'ax': 'axes[i, j]'}), '(x=X_train[cols[i * 2 + j]], hue=y_train, ax=axes[i, j])\n', (1556, 1612), True, 'import seaborn as sns\n')]
# -*- coding: utf-8 -*- # @Time : 19-11-19 22:25 # @Author : <NAME> # @Reference : None # @File : cut_twist_join.py # @IDE : PyCharm Community Edition """ 将身份证正反面从原始图片中切分出来。 需要的参数有: 1.图片所在路径。 输出结果为: 切分后的身份证正反面图片。 """ import os import cv2 import numpy as np def point_judge(center, bbox): """ 用于将矩形框的边界按顺序排列 :param center: 矩形中心的坐标[x, y] :param bbox: 矩形顶点坐标[[x1, y1], [x2, y2], [x3, y3], [x4, y4]] :return: 矩形顶点坐标,依次是 左下, 右下, 左上, 右上 """ left = [] right = [] for i in range(4): if bbox[i][0] > center[0]: # 只要是x坐标比中心点坐标大,一定是右边 right.append(bbox[i]) else: left.append(bbox[i]) if right[0][1] > right[1][1]: # 如果y点坐标大,则是右上 right_down = right[1] right_up = right[0] else: right_down = right[0] right_up = right[1] if left[0][1] > left[1][1]: # 如果y点坐标大,则是左上 left_down = left[1] left_up = left[0] else: left_down = left[0] left_up = left[1] return left_down, right_down, left_up, right_up def gray_and_fliter(img, image_name='1.jpg', save_path='./'): # 转为灰度图并滤波,后面两个参数调试用 """ 将图片灰度化,并滤波 :param img: 输入RGB图片 :param image_name: 输入图片名称,测试时使用 :param save_path: 滤波结果保存路径,测试时使用 :return: 灰度化、滤波后图片 """ # img = cv2.imread(image_path + image_name) # 读取图片 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换为灰度图片 # cv2.imwrite(os.path.join(save_path, image_name + '_gray.jpg'), img_gray) # 保存,方便查看 img_blurred = cv2.filter2D(img_gray, -1, kernel=np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)) # 对图像进行滤波,是锐化操作 img_blurred = cv2.filter2D(img_blurred, -1, kernel=np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)) # cv2.imwrite(os.path.join(save_path, img_name + '_blurred.jpg'), img_blurred) # 锐化, 这里的卷积核可以更改 return img_blurred def gradient_and_binary(img_blurred, image_name='1.jpg', save_path='./'): # 将灰度图二值化,后面两个参数调试用 """ 求取梯度,二值化 :param img_blurred: 滤波后的图片 :param image_name: 图片名,测试用 :param save_path: 保存路径,测试用 :return: 二值化后的图片 """ gradX = cv2.Sobel(img_blurred, ddepth=cv2.CV_32F, dx=1, dy=0) gradY = cv2.Sobel(img_blurred, ddepth=cv2.CV_32F, dx=0, dy=1) img_gradient = cv2.subtract(gradX, gradY) img_gradient = cv2.convertScaleAbs(img_gradient) # sobel算子,计算梯度, 也可以用canny算子替代 # 这里改进成自适应阈值,貌似没用 img_thresh = cv2.adaptiveThreshold(img_gradient, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, -3) # cv2.imwrite(os.path.join(save_path, img_name + '_binary.jpg'), img_thresh) # 二值化 阈值未调整好 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) img_closed = cv2.morphologyEx(img_thresh, cv2.MORPH_CLOSE, kernel) img_closed = cv2.morphologyEx(img_closed, cv2.MORPH_OPEN, kernel) img_closed = cv2.erode(img_closed, None, iterations=9) img_closed = cv2.dilate(img_closed, None, iterations=9) # 腐蚀膨胀 # 这里调整了kernel大小(减小),腐蚀膨胀次数后(增大),出错的概率大幅减小 return img_closed def find_bbox(img, img_closed): # 寻找身份证正反面区域 """ 根据二值化结果判定并裁剪出身份证正反面区域 :param img: 原始RGB图片 :param img_closed: 二值化后的图片 :return: 身份证正反面区域 """ (contours, _) = cv2.findContours(img_closed.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # 求出框的个数 # 这里opencv如果版本不对(4.0或以上)会报错,只需把(contours, _)改成 (_, contours, _) contours = sorted(contours, key=cv2.contourArea, reverse=True) # 按照面积大小排序 countours_res = [] for i in range(0, len(contours)): area = cv2.contourArea(contours[i]) # 计算面积 if (area <= 0.4 * img.shape[0] * img.shape[1]) and (area >= 0.05 * img.shape[0] * img.shape[1]): # 人为设定,身份证正反面框的大小不会超过整张图片大小的0.4,不会小于0.05(这个参数随便设置的) rect = cv2.minAreaRect(contours[i]) # 最小外接矩,返回值有中心点坐标,矩形宽高,倾斜角度三个参数 box = cv2.boxPoints(rect) left_down, right_down, left_up, right_up = point_judge([int(rect[0][0]), int(rect[0][1])], box) src = np.float32([left_down, right_down, left_up, right_up]) # 这里注意必须对应 dst = np.float32([[0, 0], [int(max(rect[1][0], rect[1][1])), 0], [0, int(min(rect[1][0], rect[1][1]))], [int(max(rect[1][0], rect[1][1])), int(min(rect[1][0], rect[1][1]))]]) # rect中的宽高不清楚是个怎么机制,但是对于身份证,肯定是宽大于高,因此加个判定 m = cv2.getPerspectiveTransform(src, dst) # 得到投影变换矩阵 result = cv2.warpPerspective(img, m, (int(max(rect[1][0], rect[1][1])), int(min(rect[1][0], rect[1][1]))), flags=cv2.INTER_CUBIC) # 投影变换 countours_res.append(result) return countours_res # 返回身份证区域 def find_cut_line(img_closed_original): # 对于正反面粘连情况的处理,求取最小点作为中线 """ 根据规则,强行将粘连的区域切分 :param img_closed_original: 二值化图片 :return: 处理后的二值化图片 """ img_closed = img_closed_original.copy() img_closed = img_closed // 250 #print(img_closed.shape) width_sum = img_closed.sum(axis=1) # 沿宽度方向求和,统计宽度方向白点个数 start_region_flag = 0 start_region_index = 0 # 身份证起始点高度值 end_region_index = 0 # 身份证结束点高度值 for i in range(img_closed_original.shape[0]): # 1000是原始图片高度值,当然, 这里也可以用 img_closed_original.shape[0]替代 if start_region_flag == 0 and width_sum[i] > 330: start_region_flag = 1 start_region_index = i # 判定第一个白点个数大于330的是身份证区域的起始点 if width_sum[i] > 330: end_region_index = i # 只要白点个数大于330,便认为是身份证区域,更新结束点 # 身份证区域中白点最少的高度值,认为这是正反面的交点 # argsort函数中,只取width_sum中判定区域开始和结束的部分,因此结果要加上开始点的高度值 min_line_position = start_region_index + np.argsort(width_sum[start_region_index:end_region_index])[0] img_closed_original[min_line_position][:] = 0 for i in range(1, 11): # 参数可变,分割10个点 temp_line_position = start_region_index + np.argsort(width_sum[start_region_index:end_region_index])[i] if abs(temp_line_position - min_line_position) < 30: # 限定范围,在最小点距离【-30, 30】的区域内 img_closed_original[temp_line_position][:] = 0 # 强制变为0 return img_closed_original def cut_part_img(img, cut_percent): """ # 从宽度和高度两个方向,裁剪身份证边缘 :param img: 身份证区域 :param cut_percent: 裁剪的比例 :return: 裁剪后的身份证区域 """ height, width, _ = img.shape height_num = int(height * cut_percent) # 需要裁剪的高度值 h_start = 0 + height_num // 2 # 左右等比例切分 h_end = height - height_num // 2 - 1 width_num = int(width * cut_percent) # 需要裁剪的宽度值 w_start = 0 + width_num // 2 w_end = width - width_num // 2 - 1 return img[h_start:h_end, w_start:w_end] # 返回裁剪后的图片 def preprocess_cut_one_img(img_path, img_name, save_path='./save_imgs/', problem_path='./problem_save/'): # 处理一张图片 """ 裁剪出一张图片中的身份证正反面区域 :param img_path: 图片所在路径 :param img_name: 图片名称 :param save_path: 结果保存路径 测试用 :param problem_path: 出错图片中间结果保存 测试用 :return: 身份证正反面图片 """ img_path_name = os.path.join(img_path, img_name) if not os.path.exists(img_path_name): # 判断图片是否存在 print('img {name} is not exits'.format(name=img_path_name)) return 1, [] # 图片不存在,直接返回,报错加一 img = cv2.imread(img_path_name) # 读取图片 img_blurred = gray_and_fliter(img, img_name) # 灰度化并滤波 img_t = cv2.filter2D(img, -1, kernel=np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)) # 对图像进行锐化 img_binary = gradient_and_binary(img_blurred) # 二值化 res_bbox = find_bbox(img_t, img_binary) # 切分正反面 if len(res_bbox) != 2: # 异常处理 print('Error happened when cut img {name}, try exception cut program '.format(name=img_path_name)) # cv2.imwrite(os.path.join(problem_path, img_name.split('.')[0] + '_blurred.jpg'), img_blurred) # cv2.imwrite(os.path.join(problem_path, img_name.split('.')[0] + '_binary.jpg'), img_binary) # cv2.imwrite(os.path.join(problem_path, img_name), img) # 调试用,保存中间处理结果 img_binary = find_cut_line(img_binary) # 强制分割正反面 res_bbox = find_bbox(img_t, img_binary) if len(res_bbox) != 2: # 纠正失败 print('Failed to cut img {name}, exception program end'.format(name=img_path_name)) return 1, None else: # 纠正成功 print('Correctly cut img {name}, exception program end'.format(name=img_path_name)) return 0, res_bbox else: # 裁剪过程正常 # cv2.imwrite(os.path.join(save_path, img_name.split('.')[0] + '_0.jpg'), cut_part_img(res_bbox[0], 0.0)) # cv2.imwrite(os.path.join(save_path, img_name.split('.')[0] + '_1.jpg'), cut_part_img(res_bbox[1], 0.0)) # cv2.imwrite(os.path.join(save_path, img_name.split('.')[0] + '_original.jpg'), img) return 0, res_bbox def process_img(img_path, save_path, problem_path): """ 切分一个目录下的所有图片 :param img_path: 图片所在路径 :param save_path: 结果保存路径 :param problem_path: 问题图片保存路径 :return: None """ if not os.path.exists(img_path): # 判断图片路径是否存在 print('img path {name} is not exits, program break.'.format(name=img_path)) return if not os.path.exists(save_path): # 保存路径不存在,则创建路径 os.makedirs(save_path) if not os.path.exists(problem_path): # 保存路径不存在,则创建路径 os.makedirs(problem_path) img_names = os.listdir(img_path) error_count = 0 error_names = [] for img_name in img_names: error_temp, res_bbox = preprocess_cut_one_img(img_path, img_name, save_path, problem_path) error_count += error_temp if error_temp == 0: cv2.imwrite(os.path.join(save_path, img_name.split('.')[0] + '_0.jpg'), cut_part_img(res_bbox[0], 0.0)) cv2.imwrite(os.path.join(save_path, img_name.split('.')[0] + '_1.jpg'), cut_part_img(res_bbox[1], 0.0)) else: error_names.append(img_name) print('total error number is: ', error_count) print('error images mame :') for error_img_name in error_names: print(error_img_name) return if __name__ == '__main__': origin_img_path = './problem_imgs/' cutted_save_path = './res_imgs/' cut_problem_path = './temp_imgs/' #process_img(img_path=origin_img_path, save_path=cutted_save_path, problem_path=cut_problem_path)
[ "cv2.getPerspectiveTransform", "cv2.adaptiveThreshold", "numpy.argsort", "cv2.boxPoints", "cv2.minAreaRect", "cv2.erode", "os.path.join", "cv2.contourArea", "cv2.subtract", "cv2.dilate", "cv2.cvtColor", "os.path.exists", "cv2.convertScaleAbs", "cv2.morphologyEx", "os.listdir", "cv2.Sobel", "os.makedirs", "cv2.getStructuringElement", "numpy.float32", "cv2.imread", "numpy.array" ]
[((1470, 1507), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (1482, 1507), False, 'import cv2\n'), ((2259, 2312), 'cv2.Sobel', 'cv2.Sobel', (['img_blurred'], {'ddepth': 'cv2.CV_32F', 'dx': '(1)', 'dy': '(0)'}), '(img_blurred, ddepth=cv2.CV_32F, dx=1, dy=0)\n', (2268, 2312), False, 'import cv2\n'), ((2326, 2379), 'cv2.Sobel', 'cv2.Sobel', (['img_blurred'], {'ddepth': 'cv2.CV_32F', 'dx': '(0)', 'dy': '(1)'}), '(img_blurred, ddepth=cv2.CV_32F, dx=0, dy=1)\n', (2335, 2379), False, 'import cv2\n'), ((2400, 2426), 'cv2.subtract', 'cv2.subtract', (['gradX', 'gradY'], {}), '(gradX, gradY)\n', (2412, 2426), False, 'import cv2\n'), ((2447, 2480), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['img_gradient'], {}), '(img_gradient)\n', (2466, 2480), False, 'import cv2\n'), ((2555, 2654), 'cv2.adaptiveThreshold', 'cv2.adaptiveThreshold', (['img_gradient', '(255)', 'cv2.ADAPTIVE_THRESH_MEAN_C', 'cv2.THRESH_BINARY', '(3)', '(-3)'], {}), '(img_gradient, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.\n THRESH_BINARY, 3, -3)\n', (2576, 2654), False, 'import cv2\n'), ((2762, 2814), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_ELLIPSE', '(5, 5)'], {}), '(cv2.MORPH_ELLIPSE, (5, 5))\n', (2787, 2814), False, 'import cv2\n'), ((2833, 2886), 'cv2.morphologyEx', 'cv2.morphologyEx', (['img_thresh', 'cv2.MORPH_CLOSE', 'kernel'], {}), '(img_thresh, cv2.MORPH_CLOSE, kernel)\n', (2849, 2886), False, 'import cv2\n'), ((2905, 2957), 'cv2.morphologyEx', 'cv2.morphologyEx', (['img_closed', 'cv2.MORPH_OPEN', 'kernel'], {}), '(img_closed, cv2.MORPH_OPEN, kernel)\n', (2921, 2957), False, 'import cv2\n'), ((2976, 3017), 'cv2.erode', 'cv2.erode', (['img_closed', 'None'], {'iterations': '(9)'}), '(img_closed, None, iterations=9)\n', (2985, 3017), False, 'import cv2\n'), ((3036, 3078), 'cv2.dilate', 'cv2.dilate', (['img_closed', 'None'], {'iterations': '(9)'}), '(img_closed, None, iterations=9)\n', (3046, 3078), False, 'import cv2\n'), ((7141, 7173), 'os.path.join', 'os.path.join', (['img_path', 'img_name'], {}), '(img_path, img_name)\n', (7153, 7173), False, 'import os\n'), ((7350, 7375), 'cv2.imread', 'cv2.imread', (['img_path_name'], {}), '(img_path_name)\n', (7360, 7375), False, 'import cv2\n'), ((9477, 9497), 'os.listdir', 'os.listdir', (['img_path'], {}), '(img_path)\n', (9487, 9497), False, 'import os\n'), ((3674, 3702), 'cv2.contourArea', 'cv2.contourArea', (['contours[i]'], {}), '(contours[i])\n', (3689, 3702), False, 'import cv2\n'), ((7186, 7215), 'os.path.exists', 'os.path.exists', (['img_path_name'], {}), '(img_path_name)\n', (7200, 7215), False, 'import os\n'), ((9135, 9159), 'os.path.exists', 'os.path.exists', (['img_path'], {}), '(img_path)\n', (9149, 9159), False, 'import os\n'), ((9288, 9313), 'os.path.exists', 'os.path.exists', (['save_path'], {}), '(save_path)\n', (9302, 9313), False, 'import os\n'), ((9341, 9363), 'os.makedirs', 'os.makedirs', (['save_path'], {}), '(save_path)\n', (9352, 9363), False, 'import os\n'), ((9376, 9404), 'os.path.exists', 'os.path.exists', (['problem_path'], {}), '(problem_path)\n', (9390, 9404), False, 'import os\n'), ((9432, 9457), 'os.makedirs', 'os.makedirs', (['problem_path'], {}), '(problem_path)\n', (9443, 9457), False, 'import os\n'), ((1674, 1733), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 5, -1], [0, -1, 0]]', 'np.float32'], {}), '([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)\n', (1682, 1733), True, 'import numpy as np\n'), ((1808, 1867), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 5, -1], [0, -1, 0]]', 'np.float32'], {}), '([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)\n', (1816, 1867), True, 'import numpy as np\n'), ((3904, 3932), 'cv2.minAreaRect', 'cv2.minAreaRect', (['contours[i]'], {}), '(contours[i])\n', (3919, 3932), False, 'import cv2\n'), ((3985, 4004), 'cv2.boxPoints', 'cv2.boxPoints', (['rect'], {}), '(rect)\n', (3998, 4004), False, 'import cv2\n'), ((4133, 4187), 'numpy.float32', 'np.float32', (['[left_down, right_down, left_up, right_up]'], {}), '([left_down, right_down, left_up, right_up])\n', (4143, 4187), True, 'import numpy as np\n'), ((4514, 4551), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (4541, 4551), False, 'import cv2\n'), ((5798, 5856), 'numpy.argsort', 'np.argsort', (['width_sum[start_region_index:end_region_index]'], {}), '(width_sum[start_region_index:end_region_index])\n', (5808, 5856), True, 'import numpy as np\n'), ((7486, 7545), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 5, -1], [0, -1, 0]]', 'np.float32'], {}), '([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)\n', (7494, 7545), True, 'import numpy as np\n'), ((6005, 6063), 'numpy.argsort', 'np.argsort', (['width_sum[start_region_index:end_region_index]'], {}), '(width_sum[start_region_index:end_region_index])\n', (6015, 6063), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # # Desafio 4 # # Neste desafio, vamos praticar um pouco sobre testes de hipóteses. Utilizaremos o _data set_ [2016 Olympics in Rio de Janeiro](https://www.kaggle.com/rio2016/olympic-games/), que contém dados sobre os atletas das Olimpíadas de 2016 no Rio de Janeiro. # # Esse _data set_ conta com informações gerais sobre 11538 atletas como nome, nacionalidade, altura, peso e esporte praticado. Estaremos especialmente interessados nas variáveis numéricas altura (`height`) e peso (`weight`). As análises feitas aqui são parte de uma Análise Exploratória de Dados (EDA). # # > Obs.: Por favor, não modifique o nome das funções de resposta. # ## _Setup_ geral # In[1]: import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.stats as sct import seaborn as sns import statsmodels.api as sm # In[2]: #%matplotlib inline from IPython.core.pylabtools import figsize figsize(12, 8) sns.set() # In[3]: athletes = pd.read_csv("athletes.csv") # In[4]: athletes.info() # In[5]: athletes.head() # In[6]: athletes[['height','weight']].describe() # In[7]: athletes[['height','weight']].hist() # In[8]: def get_sample(df, col_name, n=100, seed=42): """Get a sample from a column of a dataframe. It drops any numpy.nan entries before sampling. The sampling is performed without replacement. Example of numpydoc for those who haven't seen yet. Parameters ---------- df : pandas.DataFrame Source dataframe. col_name : str Name of the column to be sampled. n : int Sample size. Default is 100. seed : int Random seed. Default is 42. Returns ------- pandas.Series Sample of size n from dataframe's column. """ np.random.seed(seed) random_idx = np.random.choice(df[col_name].dropna().index, size=n, replace=False) #retorna uma array com index das colunas return df.loc[random_idx, col_name] #retorna uma series com index e valor da coluna # ## Inicia sua análise a partir daqui # In[9]: # Sua análise começa aqui. # ## Questão 1 # # Considerando uma amostra de tamanho 3000 da coluna `height` obtida com a função `get_sample()`, execute o teste de normalidade de Shapiro-Wilk com a função `scipy.stats.shapiro()`. Podemos afirmar que as alturas são normalmente distribuídas com base nesse teste (ao nível de significância de 5%)? Responda com um boolean (`True` ou `False`). # In[10]: def q1(): amostra_q1 = get_sample(athletes,'height', n=3000, seed=42) stat, p = sct.shapiro(amostra_q1) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[11]: q1() # __Para refletir__: # # * Plote o histograma dessa variável (com, por exemplo, `bins=25`). A forma do gráfico e o resultado do teste são condizentes? Por que? # * Plote o qq-plot para essa variável e a analise. # * Existe algum nível de significância razoável que nos dê outro resultado no teste? (Não faça isso na prática. Isso é chamado _p-value hacking_, e não é legal). # In[12]: amostra_q1 = get_sample(athletes,'height', n=3000, seed=42) # In[13]: sns.distplot(amostra_q1, bins=25, hist_kws={"density": True}) plt.show () # In[14]: sm.qqplot(amostra_q1, fit=True, line="45") plt.show () # In[15]: amostra_q1 = get_sample(athletes,'height', n=3000, seed=42) stat, p = sct.shapiro(amostra_q1) p > 0.0000001 # ## Questão 2 # # Repita o mesmo procedimento acima, mas agora utilizando o teste de normalidade de Jarque-Bera através da função `scipy.stats.jarque_bera()`. Agora podemos afirmar que as alturas são normalmente distribuídas (ao nível de significância de 5%)? Responda com um boolean (`True` ou `False`). # In[16]: def q2(): amostra_q2 = get_sample(athletes,'height', n=3000, seed=42) stat, p = sct.jarque_bera(amostra_q2) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[17]: q2() # __Para refletir__: # # * Esse resultado faz sentido? # In[18]: amostra_q2 = get_sample(athletes,'height', n=3000, seed=42) sm.qqplot(amostra_q2, fit=True, line="45") plt.show () # ## Questão 3 # # Considerando agora uma amostra de tamanho 3000 da coluna `weight` obtida com a função `get_sample()`. Faça o teste de normalidade de D'Agostino-Pearson utilizando a função `scipy.stats.normaltest()`. Podemos afirmar que os pesos vêm de uma distribuição normal ao nível de significância de 5%? Responda com um boolean (`True` ou `False`). # In[19]: def q3(): amostra_q3 = get_sample(athletes,'weight', n=3000, seed=42) stat, p = sct.normaltest(amostra_q3) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[20]: q3() # __Para refletir__: # # * Plote o histograma dessa variável (com, por exemplo, `bins=25`). A forma do gráfico e o resultado do teste são condizentes? Por que? # * Um _box plot_ também poderia ajudar a entender a resposta. # In[21]: amostra_q3 = get_sample(athletes,'weight', n=3000, seed=42) sns.distplot(amostra_q3, bins=25, hist_kws={"density": True}) plt.show () # In[22]: sns.boxplot(data = amostra_q3) # ## Questão 4 # # Realize uma transformação logarítmica em na amostra de `weight` da questão 3 e repita o mesmo procedimento. Podemos afirmar a normalidade da variável transformada ao nível de significância de 5%? Responda com um boolean (`True` ou `False`). # In[23]: def q4(): amostra_q4 = get_sample(athletes,'weight', n=3000, seed=42) amostra_q4_transformada = np.log(amostra_q4) stat, p = sct.normaltest(amostra_q4_transformada) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[24]: q4() # __Para refletir__: # # * Plote o histograma dessa variável (com, por exemplo, `bins=25`). A forma do gráfico e o resultado do teste são condizentes? Por que? # * Você esperava um resultado diferente agora? # In[25]: amostra_q4 = get_sample(athletes,'weight', n=3000, seed=42) amostra_q4_transformada = np.log(amostra_q4) sns.distplot(amostra_q4_transformada, bins=25, hist_kws={"density": True}) plt.show () # In[26]: sns.boxplot(data = amostra_q4_transformada) # > __Para as questão 5 6 e 7 a seguir considere todos testes efetuados ao nível de significância de 5%__. # ## Questão 5 # # Obtenha todos atletas brasileiros, norte-americanos e canadenses em `DataFrame`s chamados `bra`, `usa` e `can`,respectivamente. Realize um teste de hipóteses para comparação das médias das alturas (`height`) para amostras independentes e variâncias diferentes com a função `scipy.stats.ttest_ind()` entre `bra` e `usa`. Podemos afirmar que as médias são estatisticamente iguais? Responda com um boolean (`True` ou `False`). # In[27]: athletes.columns # In[45]: athletes[(athletes.nationality == 'BRA') | (athletes.nationality == 'USA') | (athletes.nationality == 'CAN')] # In[28]: bra = athletes[athletes.nationality == 'BRA'] usa = athletes[athletes.nationality == 'USA'] can = athletes[athletes.nationality == 'CAN'] # In[29]: bra['height'].describe() # In[30]: bra.isna().sum() # In[31]: usa['height'].describe() # In[32]: usa.isna().sum() # In[46]: can['height'].describe() # In[47]: can.isna().sum() # In[33]: def q5(): stat, p = sct.ttest_ind(bra['height'], usa['height'], equal_var = False, nan_policy = 'omit') #False: se falso, execute o teste t de Welch, que não assume igual variação populaciona print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[34]: q5() # In[35]: sns.distplot(bra['height'], bins=25, hist=False, rug=True, label='BRA') sns.distplot(usa['height'], bins=25, hist=False, rug=True, label='USA') # ## Questão 6 # # Repita o procedimento da questão 5, mas agora entre as alturas de `bra` e `can`. Podemos afimar agora que as médias são estatisticamente iguais? Reponda com um boolean (`True` ou `False`). # In[48]: def q6(): stat, p = sct.ttest_ind(bra['height'], can['height'], equal_var = False, nan_policy = 'omit') #False: se falso, execute o teste t de Welch, que não assume igual variação populaciona print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[49]: q6() # In[50]: sns.distplot(bra['height'], bins=25, hist=False, rug=True, label='BRA') sns.distplot(can['height'], bins=25, hist=False, rug=True, label='CAN') # ## Questão 7 # # Repita o procedimento da questão 6, mas agora entre as alturas de `usa` e `can`. Qual o valor do p-valor retornado? Responda como um único escalar arredondado para oito casas decimais. # In[87]: def q7(): stat, p = sct.ttest_ind(usa['height'], can['height'], equal_var = False, nan_policy = 'omit') #False: se falso, execute o teste t de Welch, que não assume igual variação populaciona print('stat= {}, p={}'.format(stat,p)) if p > 0.05: print('Probably the same distribution') else: print('Probably different distributions') return float(np.round(p, 8)) # In[88]: q7() # __Para refletir__: # # * O resultado faz sentido? # * Você consegue interpretar esse p-valor? # * Você consegue chegar a esse valor de p-valor a partir da variável de estatística? # In[72]: stat, p = sct.ttest_ind(usa['height'], can['height'], equal_var = True, nan_policy = 'omit') print('stat= {}, p={}'.format(stat,p)) # In[69]: #grau de liberdade para o teste t independente com variancias semelhantes: df = n1 + n2 - 2 gl = len(usa) + len(can) - 2 print(f"Graus de liberdade: {gl}") q7_sf = sct.t.sf(stat, gl)*2 #Para Hipótese Bicaudal print(q7_sf) # In[77]: sns.distplot(usa['height'], bins=25, hist=False, rug=True, label='USA') sns.distplot(can['height'], bins=25, hist=False, rug=True, label='CAN')
[ "matplotlib.pyplot.show", "numpy.log", "numpy.random.seed", "scipy.stats.shapiro", "pandas.read_csv", "scipy.stats.normaltest", "scipy.stats.ttest_ind", "IPython.core.pylabtools.figsize", "seaborn.boxplot", "seaborn.distplot", "statsmodels.api.qqplot", "scipy.stats.t.sf", "scipy.stats.jarque_bera", "numpy.round", "seaborn.set" ]
[((944, 958), 'IPython.core.pylabtools.figsize', 'figsize', (['(12)', '(8)'], {}), '(12, 8)\n', (951, 958), False, 'from IPython.core.pylabtools import figsize\n'), ((960, 969), 'seaborn.set', 'sns.set', ([], {}), '()\n', (967, 969), True, 'import seaborn as sns\n'), ((994, 1021), 'pandas.read_csv', 'pd.read_csv', (['"""athletes.csv"""'], {}), "('athletes.csv')\n", (1005, 1021), True, 'import pandas as pd\n'), ((3187, 3248), 'seaborn.distplot', 'sns.distplot', (['amostra_q1'], {'bins': '(25)', 'hist_kws': "{'density': True}"}), "(amostra_q1, bins=25, hist_kws={'density': True})\n", (3199, 3248), True, 'import seaborn as sns\n'), ((3249, 3259), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3257, 3259), True, 'import matplotlib.pyplot as plt\n'), ((3275, 3317), 'statsmodels.api.qqplot', 'sm.qqplot', (['amostra_q1'], {'fit': '(True)', 'line': '"""45"""'}), "(amostra_q1, fit=True, line='45')\n", (3284, 3317), True, 'import statsmodels.api as sm\n'), ((3318, 3328), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3326, 3328), True, 'import matplotlib.pyplot as plt\n'), ((3414, 3437), 'scipy.stats.shapiro', 'sct.shapiro', (['amostra_q1'], {}), '(amostra_q1)\n', (3425, 3437), True, 'import scipy.stats as sct\n'), ((4108, 4150), 'statsmodels.api.qqplot', 'sm.qqplot', (['amostra_q2'], {'fit': '(True)', 'line': '"""45"""'}), "(amostra_q2, fit=True, line='45')\n", (4117, 4150), True, 'import statsmodels.api as sm\n'), ((4151, 4161), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4159, 4161), True, 'import matplotlib.pyplot as plt\n'), ((5037, 5098), 'seaborn.distplot', 'sns.distplot', (['amostra_q3'], {'bins': '(25)', 'hist_kws': "{'density': True}"}), "(amostra_q3, bins=25, hist_kws={'density': True})\n", (5049, 5098), True, 'import seaborn as sns\n'), ((5099, 5109), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5107, 5109), True, 'import matplotlib.pyplot as plt\n'), ((5125, 5153), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'amostra_q3'}), '(data=amostra_q3)\n', (5136, 5153), True, 'import seaborn as sns\n'), ((6010, 6028), 'numpy.log', 'np.log', (['amostra_q4'], {}), '(amostra_q4)\n', (6016, 6028), True, 'import numpy as np\n'), ((6029, 6103), 'seaborn.distplot', 'sns.distplot', (['amostra_q4_transformada'], {'bins': '(25)', 'hist_kws': "{'density': True}"}), "(amostra_q4_transformada, bins=25, hist_kws={'density': True})\n", (6041, 6103), True, 'import seaborn as sns\n'), ((6104, 6114), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6112, 6114), True, 'import matplotlib.pyplot as plt\n'), ((6130, 6171), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'amostra_q4_transformada'}), '(data=amostra_q4_transformada)\n', (6141, 6171), True, 'import seaborn as sns\n'), ((7556, 7627), 'seaborn.distplot', 'sns.distplot', (["bra['height']"], {'bins': '(25)', 'hist': '(False)', 'rug': '(True)', 'label': '"""BRA"""'}), "(bra['height'], bins=25, hist=False, rug=True, label='BRA')\n", (7568, 7627), True, 'import seaborn as sns\n'), ((7628, 7699), 'seaborn.distplot', 'sns.distplot', (["usa['height']"], {'bins': '(25)', 'hist': '(False)', 'rug': '(True)', 'label': '"""USA"""'}), "(usa['height'], bins=25, hist=False, rug=True, label='USA')\n", (7640, 7699), True, 'import seaborn as sns\n'), ((8222, 8293), 'seaborn.distplot', 'sns.distplot', (["bra['height']"], {'bins': '(25)', 'hist': '(False)', 'rug': '(True)', 'label': '"""BRA"""'}), "(bra['height'], bins=25, hist=False, rug=True, label='BRA')\n", (8234, 8293), True, 'import seaborn as sns\n'), ((8294, 8365), 'seaborn.distplot', 'sns.distplot', (["can['height']"], {'bins': '(25)', 'hist': '(False)', 'rug': '(True)', 'label': '"""CAN"""'}), "(can['height'], bins=25, hist=False, rug=True, label='CAN')\n", (8306, 8365), True, 'import seaborn as sns\n'), ((9212, 9290), 'scipy.stats.ttest_ind', 'sct.ttest_ind', (["usa['height']", "can['height']"], {'equal_var': '(True)', 'nan_policy': '"""omit"""'}), "(usa['height'], can['height'], equal_var=True, nan_policy='omit')\n", (9225, 9290), True, 'import scipy.stats as sct\n'), ((9585, 9656), 'seaborn.distplot', 'sns.distplot', (["usa['height']"], {'bins': '(25)', 'hist': '(False)', 'rug': '(True)', 'label': '"""USA"""'}), "(usa['height'], bins=25, hist=False, rug=True, label='USA')\n", (9597, 9656), True, 'import seaborn as sns\n'), ((9657, 9728), 'seaborn.distplot', 'sns.distplot', (["can['height']"], {'bins': '(25)', 'hist': '(False)', 'rug': '(True)', 'label': '"""CAN"""'}), "(can['height'], bins=25, hist=False, rug=True, label='CAN')\n", (9669, 9728), True, 'import seaborn as sns\n'), ((1819, 1839), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1833, 1839), True, 'import numpy as np\n'), ((2611, 2634), 'scipy.stats.shapiro', 'sct.shapiro', (['amostra_q1'], {}), '(amostra_q1)\n', (2622, 2634), True, 'import scipy.stats as sct\n'), ((3862, 3889), 'scipy.stats.jarque_bera', 'sct.jarque_bera', (['amostra_q2'], {}), '(amostra_q2)\n', (3877, 3889), True, 'import scipy.stats as sct\n'), ((4624, 4650), 'scipy.stats.normaltest', 'sct.normaltest', (['amostra_q3'], {}), '(amostra_q3)\n', (4638, 4650), True, 'import scipy.stats as sct\n'), ((5536, 5554), 'numpy.log', 'np.log', (['amostra_q4'], {}), '(amostra_q4)\n', (5542, 5554), True, 'import numpy as np\n'), ((5569, 5608), 'scipy.stats.normaltest', 'sct.normaltest', (['amostra_q4_transformada'], {}), '(amostra_q4_transformada)\n', (5583, 5608), True, 'import scipy.stats as sct\n'), ((7282, 7361), 'scipy.stats.ttest_ind', 'sct.ttest_ind', (["bra['height']", "usa['height']"], {'equal_var': '(False)', 'nan_policy': '"""omit"""'}), "(bra['height'], usa['height'], equal_var=False, nan_policy='omit')\n", (7295, 7361), True, 'import scipy.stats as sct\n'), ((7948, 8027), 'scipy.stats.ttest_ind', 'sct.ttest_ind', (["bra['height']", "can['height']"], {'equal_var': '(False)', 'nan_policy': '"""omit"""'}), "(bra['height'], can['height'], equal_var=False, nan_policy='omit')\n", (7961, 8027), True, 'import scipy.stats as sct\n'), ((8610, 8689), 'scipy.stats.ttest_ind', 'sct.ttest_ind', (["usa['height']", "can['height']"], {'equal_var': '(False)', 'nan_policy': '"""omit"""'}), "(usa['height'], can['height'], equal_var=False, nan_policy='omit')\n", (8623, 8689), True, 'import scipy.stats as sct\n'), ((9513, 9531), 'scipy.stats.t.sf', 'sct.t.sf', (['stat', 'gl'], {}), '(stat, gl)\n', (9521, 9531), True, 'import scipy.stats as sct\n'), ((8968, 8982), 'numpy.round', 'np.round', (['p', '(8)'], {}), '(p, 8)\n', (8976, 8982), True, 'import numpy as np\n')]
import numpy as np from tensorflow import keras import pandas as pd import os class DcmDataGenerator(keras.utils.Sequence): """Generates data for Keras Sequence based data generator. Suitable for building data generator for training and prediction. """ def __init__(self, images_path, dim=(15, 512, 512), window=None): """Initialization :param images_path: path to images location :param dim: tuple indicating image dimension in format CHW """ self.list_IDs = os.listdir(images_path) self.images_path = images_path self.dim = dim self.indexes = np.arange(len(self.list_IDs)) self.on_epoch_end() self.window = window def __len__(self): """Denotes the number of batches per epoch :return: number of batches per epoch """ return len(self.list_IDs) def on_epoch_end(self): """Updates indexes after each epoch """ self.indexes = np.arange(len(self.list_IDs)) def flow(self, seed): np.random.seed(seed) i = int(np.random.randint(0, self.__len__(), size=(1,))) while True: yield self.__getitem__(i % self.__len__()) i += 1 def __getitem__(self, index): """Generate one patient's data :param index: index of the patient :return: X_dcm """ # Find list of IDs patient_ID = self.list_IDs[index] # Generate data X_dcm = self._generate_X(patient_ID) return X_dcm, np.array([1, ]) def _generate_X(self, patient_ID): """Generates data containing patient's images :param patient_ID: ID of the patient :return: patient's images """ # Initialization X_dcm = np.empty((1, *self.dim), dtype=np.float32) patient_path = os.path.join(self.images_path, patient_ID) dcm_names = np.array([dcm_name[:-4] for dcm_name in os.listdir(patient_path)], dtype=int) dcm_names = sorted(list(dcm_names)) patient_dcm_paths = [f'{self.images_path}/{patient_ID}/{dcm_num}.npy' for dcm_num in dcm_names] # Generate data for j, dcm_path in enumerate(patient_dcm_paths): X_dcm[0, j] = self._load_dcm(dcm_path) X_dcm = np.moveaxis(X_dcm, 1, -1) return X_dcm def _load_dcm(self, image_path): """Load grayscale image :param image_path: path to image to load :return: loaded image """ img = np.load(image_path, allow_pickle=True) if self.window: lb = self.window[0] ub = self.window[1] img[img < lb] = lb img[img > ub] = ub img = (img - lb) / (ub - lb) return img class CsvDataGenerator(keras.utils.Sequence): """Generates data for Keras Sequence based data generator. Suitable for building data generator for training and prediction. """ def __init__(self, csv_path, to_fit=True, to_normalize=True): """Initialization :param to_normalize: True to normalize, False otherwise :param csv_path: path to csv file location :param to_fit: True to return X and y, False to return X only """ self.to_normalize = to_normalize self.list_IDs = os.listdir(csv_path[:-4]) self.csv_path = csv_path self.to_fit = to_fit self.indexes = np.arange(len(self.list_IDs)) self.on_epoch_end() def __len__(self): """Denotes the number of batches per epoch :return: number of batches per epoch """ return len(self.list_IDs) def on_epoch_end(self): """Updates indexes after each epoch """ self.indexes = np.arange(len(self.list_IDs)) def flow(self, seed): np.random.seed(seed) i = int(np.random.randint(0, self.__len__(), size=(1,))) while True: yield self.__getitem__(i % self.__len__()) i += 1 def __getitem__(self, index): """Generate one patient's data :param index: index of the patient :return: X """ # Find list of IDs patient_ID = self.list_IDs[index] # Generate data X = self._generate_X(patient_ID) if self.to_fit: y = self._generate_y(patient_ID) return X, y else: return X def _generate_X(self, patient_ID): """Generates data containing patient's first csv record :param patient_ID: ID of the patient :return: patient's first csv record """ X = np.empty(shape=(1, 7), dtype=np.float32) # Generate data X[0] = self._load_X(self.csv_path, patient_ID) return X def _load_X(self, csv_path, patient_ID): """Load csv with patient's weeks and corresponding FVC :param csv_path: path to csv file with weeks and FVC file to load :return: loaded csv file with weeks and FVC file to load """ patients_df = pd.read_csv(csv_path) patient = patients_df[patients_df['Patient'] == patient_ID] patient.reset_index(inplace=True) X_columns = ['Weeks', 'FVC', 'Age', 'Ex-smoker', 'Never smoked', 'Currently smokes', 'Sex_n'] X_patient = patient.loc[0, X_columns] if self.to_normalize: X_patient['Age'] = (X_patient['Age'] - 67.18850871530019) / 7.055116199848975 X_patient['FVC'] = (X_patient['FVC'] - 2690.479018721756) / 832.5021066817238 X_patient['Weeks'] = (X_patient['Weeks'] - 31.861846352485475) / 23.265510111399017 X_patient = X_patient.to_numpy() return X_patient def _generate_y(self, patient_ID): """Generates data containing patient's [1:] csv records :param patient_ID: ID of the patient :return: patient's [1:] csv records """ y = np.empty(shape=(1, 146, 2), dtype=np.float32) # Generate data y[0] = self._load_y(self.csv_path, patient_ID) return y def _load_y(self, csv_path, patient_ID): """Load csv with patient's weeks and corresponding FVC :param csv_path: path to csv file with weeks and FVC file to load :return: loaded csv file with weeks and FVC file to load """ patients_df = pd.read_csv(csv_path) patient = patients_df[patients_df['Patient'] == patient_ID] patient.reset_index(inplace=True) weeks_FVC = patient.loc[1:, ['Weeks', 'FVC']] weeks_FVC = weeks_FVC[~weeks_FVC.duplicated(['Weeks'])] weeks_FVC = self.pad_y(weeks_FVC) weeks_FVC = weeks_FVC.to_numpy() return weeks_FVC def pad_y(self, csv_df): csv_df['isRecord'] = 1 for i in range(-12, 134): if not np.any(csv_df['Weeks'] == i): csv_df = csv_df.append({'Weeks': i, 'FVC': 0, 'isRecord': 0}, ignore_index=True) csv_df.sort_values('Weeks', inplace=True) csv_df.drop(columns='Weeks', inplace=True) if self.to_normalize: csv_df.loc[:, 'FVC'] = (csv_df.loc[:, 'FVC'] - 2690.479018721756) / 832.5021066817238 csv_df.reset_index(drop=True, inplace=True) return csv_df # ==================================# # Creating datagen def _merge_datagens(csv_gen, dcm_gen, shuffle=True, is_patient_record=True): seed = 0 while True: csv_flow = csv_gen.flow(seed) dcm_flow = dcm_gen.flow(seed) patient_num = 1 while True: csv_data = next(csv_flow) dcm_data = next(dcm_flow) csv_X = csv_data[0] dcm_X_img = dcm_data[0] csv_y = csv_data[1][:, :, 0] csv_is_patient_record = csv_data[1][:, :, 1] if is_patient_record: yield [csv_X, dcm_X_img], csv_y, csv_is_patient_record else: yield [csv_X, dcm_X_img], csv_y patient_num += 1 if patient_num > 175: break if shuffle: seed += 1 def create_datagen(shuffle=True, window=None, is_patient_record=True): """Returns generator that yields [csv_X, dcm_X_img], csv_y, csv_is_patient_record""" csv_datagen = CsvDataGenerator('../../data/processed/train.csv', to_normalize=True) dcm_datagen = DcmDataGenerator('../../data/processed/train', window=window) merged_gen = _merge_datagens(csv_datagen, dcm_datagen, shuffle=shuffle, is_patient_record=is_patient_record) return merged_gen # def gen_train_test_split(datagen): # datagen. # gen = create_datagen(shuffle=True) # x1, y1, is_p_r1 = next(gen)
[ "numpy.moveaxis", "numpy.load", "numpy.random.seed", "pandas.read_csv", "numpy.empty", "numpy.any", "numpy.array", "os.path.join", "os.listdir" ]
[((519, 542), 'os.listdir', 'os.listdir', (['images_path'], {}), '(images_path)\n', (529, 542), False, 'import os\n'), ((1054, 1074), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1068, 1074), True, 'import numpy as np\n'), ((1791, 1833), 'numpy.empty', 'np.empty', (['(1, *self.dim)'], {'dtype': 'np.float32'}), '((1, *self.dim), dtype=np.float32)\n', (1799, 1833), True, 'import numpy as np\n'), ((1858, 1900), 'os.path.join', 'os.path.join', (['self.images_path', 'patient_ID'], {}), '(self.images_path, patient_ID)\n', (1870, 1900), False, 'import os\n'), ((2298, 2323), 'numpy.moveaxis', 'np.moveaxis', (['X_dcm', '(1)', '(-1)'], {}), '(X_dcm, 1, -1)\n', (2309, 2323), True, 'import numpy as np\n'), ((2521, 2559), 'numpy.load', 'np.load', (['image_path'], {'allow_pickle': '(True)'}), '(image_path, allow_pickle=True)\n', (2528, 2559), True, 'import numpy as np\n'), ((3316, 3341), 'os.listdir', 'os.listdir', (['csv_path[:-4]'], {}), '(csv_path[:-4])\n', (3326, 3341), False, 'import os\n'), ((3824, 3844), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (3838, 3844), True, 'import numpy as np\n'), ((4634, 4674), 'numpy.empty', 'np.empty', ([], {'shape': '(1, 7)', 'dtype': 'np.float32'}), '(shape=(1, 7), dtype=np.float32)\n', (4642, 4674), True, 'import numpy as np\n'), ((5054, 5075), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {}), '(csv_path)\n', (5065, 5075), True, 'import pandas as pd\n'), ((5926, 5971), 'numpy.empty', 'np.empty', ([], {'shape': '(1, 146, 2)', 'dtype': 'np.float32'}), '(shape=(1, 146, 2), dtype=np.float32)\n', (5934, 5971), True, 'import numpy as np\n'), ((6351, 6372), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {}), '(csv_path)\n', (6362, 6372), True, 'import pandas as pd\n'), ((1549, 1562), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (1557, 1562), True, 'import numpy as np\n'), ((6826, 6854), 'numpy.any', 'np.any', (["(csv_df['Weeks'] == i)"], {}), "(csv_df['Weeks'] == i)\n", (6832, 6854), True, 'import numpy as np\n'), ((1961, 1985), 'os.listdir', 'os.listdir', (['patient_path'], {}), '(patient_path)\n', (1971, 1985), False, 'import os\n')]
""" generate periodic boundary condition (PBC). Two methods to detect and partition the surface-nodes: 1. graph-method: (recommended, can deal with arbitrary deformed shape): use dictionary-data-structure to map facet-nodes to element-number, where the surface-facet is shared by only one element. Construct the node-linking graph of surface, and the node-linking graph of the outlines. Using outlines as boundaries, partition the graph into different faces (left-, right-, down-, up-, back-, front- surfaces) by union-find algorithm. 2. method of xMin, xMax, yMin, yMax, zMin, zMax: detect the surface simply by coordinates of all nodes. This method can only be applied to the object with cuboid shape. Two methods match nodes on opposites of the surface: 1. BFS method to match the nodes (time complexity of O(V + E), V and E are number of nodes and edges respectively): Matching nodes during traversing of surface-node-graphs of opposite faces. Given a matched node-pair, use similar vectors (pointed from current node to neighbors) to match their neighbors. 2. nearest-coordinates method: Could be very slow when there are many many nodes on a surface (with time complexity of O(V^2)). """ import torch as tch import numpy as np from elementsBody import * def write_PBC_equation(file, obj, instance): """ write the PBC for the 8 outer vertex, and 12 edges, and 6 faces, with three steps: 1. make the 8 outer vertexes to form a parallel hexahedron (平行六面体)) 2. make 12 edges to satisfy PBC 3. make the inside nodes of face-pair to coincide """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") if not hasattr(obj, 'v_x0y0z0'): obj.getEdgeVertexForPBC() ## 1.1 make the y0face to be parallogram file.write('************************** make the y0face to be parallogram \n') for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.v_x1y0z0, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.v_x0y0z0, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.v_x1y0z1, dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.v_x0y0z1, dm)) ## 1.2 make vertexes of ylines to form parallel hexahedron file.write('************************** make vertexes of 4 ylines to coincide \n') for yline in obj.ylines[1:]: for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, yline['end'], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, yline['beg'], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.ylines[0]['end'], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.ylines[0]['beg'], dm)) # 2. make all outer edges to coincide file.write('************************** make all outer edges to coincide \n') xyzEdges = [obj.xlines, obj.ylines, obj.zlines] for edges in xyzEdges: for edge in edges[1:]: for node in range(len(edge['inside'])): for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, edge['inside'][node], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, edge['beg'], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, edges[0]['inside'][node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, edges[0]['beg'], dm)) # 3. make all corresponding face-pairs to coincide file.write('************************** make all corresponding face-pairs to coincide \n') edgeNodes = set() for edges in [obj.xlines, obj.ylines, obj.zlines]: for edge in edges: edgeNodes |= ({edge['beg']} | {edge['end']} | set(edge['inside'])) for iface, face in enumerate(obj.faceMatch): for node in face: for dm in [1, 2, 3]: if node not in edgeNodes: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, node, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.baseNodes[iface][0], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, face[node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.baseNodes[iface][1], dm)) def write_PBC_equation_byGraph(file, obj, instance): """ use graph-method to get the PBC info, write the PBC for the 8 outer vertex, and 12 edges, and 6 faces, with three steps: 1. make the 8 outer vertexes to form a parallel hexahedron (平行六面体)) 2. make 12 edges to satisfy PBC 3. make the inside nodes of face-pair to coincide the node-number of megaElement (composed of vertex of outer surface) is shown as follows, v3------v7 /| /| v0------v4| | | | | | v2----|-v6 y ^ |/ |/ | v1------v5 ---> / x z """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") obj.getFaceForPBC_byGraph() obj.getEdgeForPBC_byGraph() ## 1.1 make the y0face to be parallogram file.write('************************** make the y0face to be parallogram \n') for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[6], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[2], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[5], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[1], dm)) ## 1.2 make vertexes of ylines to form parallel hexahedron file.write('************************** make vertexes of 4 ylines to coincide \n') for i, j in [[7, 6], [3, 2], [0, 1]]: for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[i], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[j], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[4], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[5], dm)) # 2. make all outer edges to coincide file.write('************************** make all outer edges to coincide \n') edgeId = [ [[0, 4], [3, 7], [2, 6], [1, 5]], # xEdges [[1, 0], [5, 4], [6, 7], [2, 3]], # yEdges [[2, 1], [6, 5], [7, 4], [3, 0]] # zEdges ] for edges in edgeId: # edges = xEdges or yEdges or zEdges edge0 = (obj.megaElement[edges[0][0]], obj.megaElement[edges[0][1]]) if edge0 in obj.outlines: for edge in edges[1:]: edge1 = (obj.megaElement[edge[0]], obj.megaElement[edge[1]]) for node in range(len(obj.outlines[edge0])): for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.outlines[edge1][node], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, edge1[0], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.outlines[edge0][node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, edge0[0], dm)) # 3. make all corresponding face-pairs to coincide file.write('************************** make all corresponding face-pairs to coincide \n') for twoFacets in obj.faceMatch: faceMatch = obj.faceMatch[twoFacets] for node in faceMatch: for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, node, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, twoFacets[0], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, faceMatch[node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, twoFacets[4], dm)) def write_PBC_Nset(file, obj): if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") if not hasattr(obj, 'faceNode'): obj.getFaceNode() for node in obj.getFaceNode(): file.write('*Nset, nset=N{} \n'.format(node)) file.write('{}, \n'.format(node)) def write_nodes(file, obj): nodes = obj.nodes for node in nodes: file.write(' {}, {}, {}, {} \n'.format( node, nodes[node][0], nodes[node][1], nodes[node][2] )) def adjustCoordinatesForPBC_byGraph(obj): """ use graph method to get the node-relation, adjust the nodal coordiantes for periodic boundary condition (PBC) make the nodes at face-pair to be strictly coincide at initial state """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") obj.getFaceForPBC_byGraph() obj.getEdgeForPBC_byGraph() makenp = False for node in obj.nodes: if type(obj.nodes[node]) == type([]): makenp = True break if makenp: for node in obj.nodes: obj.nodes[node] = np.array(obj.nodes[node]) ## 1.1 make the y0face to be parallogram obj.nodes[obj.megaElement[6]] = \ obj.nodes[obj.megaElement[2]] + \ (obj.nodes[obj.megaElement[5]] - obj.nodes[obj.megaElement[1]]) ## 1.2 make vertexes of ylines to form parallel hexahedron for i, j in [[7, 6], [3, 2], [0, 1]]: obj.nodes[obj.megaElement[i]] = \ obj.nodes[obj.megaElement[j]] + \ obj.nodes[obj.megaElement[4]] - obj.nodes[obj.megaElement[5]] # 2. make all outer edges to coincide edgeId = [ [[0, 4], [3, 7], [2, 6], [1, 5]], # xEdges [[1, 0], [5, 4], [6, 7], [2, 3]], # yEdges [[2, 1], [6, 5], [7, 4], [3, 0]] # zEdges ] for edges in edgeId: # edges = xEdges or yEdges or zEdges edge0 = (obj.megaElement[edges[0][0]], obj.megaElement[edges[0][1]]) if edge0 in obj.outlines: for edge in edges[1:]: edge1 = (obj.megaElement[edge[0]], obj.megaElement[edge[1]]) for node in range(len(obj.outlines[edge0])): obj.nodes[obj.outlines[edge1][node]] = \ obj.nodes[edge1[0]] + \ obj.nodes[obj.outlines[edge0][node]] - obj.nodes[edge0[0]] # 3. make all corresponding face-pairs to coincide for twoFacets in obj.faceMatch: faceMatch = obj.faceMatch[twoFacets] for node in faceMatch: obj.nodes[faceMatch[node]] = \ obj.nodes[twoFacets[4]] + \ obj.nodes[node] - obj.nodes[twoFacets[0]] obj.nodesAdjusted = True def adjustCoordinatesForPBC(obj): """ adjust the nodal coordiantes for periodic boundary condition (PBC) make the nodes at face-pair to be strictly coincide at initial state """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") if not hasattr(obj, 'v_x0y0z0'): obj.getEdgeVertexForPBC() makenp = False for node in obj.nodes: if type(obj.nodes[node]) == type([]): makenp = True break if makenp: for node in obj.nodes: obj.nodes[node] = np.array(obj.nodes[node]) ## 1.1 make the y0face to be parallogram obj.nodes[obj.v_x1y0z0] = \ obj.nodes[obj.v_x0y0z0] + \ (obj.nodes[obj.v_x1y0z1] - obj.nodes[obj.v_x0y0z1]) ## 1.2 make vertexes of ylines to form parallel hexahedron for yline in obj.ylines[1:]: obj.nodes[yline['end']] = \ obj.nodes[yline['beg']] + \ obj.nodes[obj.ylines[0]['end']] - obj.nodes[obj.ylines[0]['beg']] # 2. make all outer edges to coincide xyzEdges = [obj.xlines, obj.ylines, obj.zlines] for edges in xyzEdges: for edge in edges[1:]: for node in range(len(edge['inside'])): obj.nodes[edge['inside'][node]] = \ obj.nodes[edge['beg']] + \ obj.nodes[edges[0]['inside'][node]] - obj.nodes[edges[0]['beg']] # 3. make all corresponding face-pairs to coincide edgeNodes = set() for edges in [obj.xlines, obj.ylines, obj.zlines]: for edge in edges: edgeNodes |= ({edge['beg']} | {edge['end']} | set(edge['inside'])) for iface, face in enumerate(obj.faceMatch): for node in face: if node not in edgeNodes: obj.nodes[node] = \ obj.nodes[obj.baseNodes[iface][0]] + \ obj.nodes[face[node]] - obj.nodes[obj.baseNodes[iface][1]] obj.nodesAdjusted = True if __name__ == "__main__": testState = False # get the inp file and the object inpFile = input("\033[0;33;40m{}\033[0m".format("please insert the .inp file name (include the path): ")) job = inpFile.split("/")[-1].split(".inp")[0] if "/" in inpFile else inpFile.split("\\")[-1].split(".inp")[0] path = inpFile.split(job + ".inp")[0] obj = ElementsBody(*readInp(inpFile)) key = input("\033[35;1m{}\033[0m".format( "which method do you want to use? \n" "1: graph-method (recomended); \n" "2: xMin, xMax, yMin, yMax, zMin, zMax; \n(insert 1 or 2): " )) if key == "1": getFaceForPBC = obj.getFaceForPBC_byGraph writeEquations = write_PBC_equation_byGraph adjustCoordinate = adjustCoordinatesForPBC_byGraph elif key == "2": getFaceForPBC = obj.getFaceForPBC writeEquations = write_PBC_equation adjustCoordinate = adjustCoordinatesForPBC getFaceForPBC() adjustCoor = input("do you want to adjust the coordinates for PBC? " "(not recommended)\n\033[33m{}\033[0m".format('(y/n): ')) while adjustCoor not in ['y', 'n']: adjustCoor = input('\033[33m{}\033[0m'.format('please insert "y" or "n": ')) if adjustCoor == 'y': adjustCoordinate(obj) if testState: del obj.faceMatch getFaceForPBC() # find the instance name instance = 'Part-1' with open(inpFile, 'r') as file: for line in file: if '*Instance' in line and 'name=' in line: instance = line.split(',') instance = instance[1].split('=') instance = instance[-1] print('instance =', instance) break writeInp = input( 'ok to write the .inp file with PBC inside the file ? \033[36m{}\033[0m'.format('(y/n): ') ) while writeInp not in ['y', 'n']: writeInp = input('\033[31m{}\033[0m'.format( 'please insert "y" or "n": ' )) if writeInp == 'y': newFileName = path + job + "_PBC.inp" with open(newFileName, 'w') as newFile, open(inpFile, 'r') as oldFile: clone = True for line in oldFile: if "Section:" in line and "**" in line: write_PBC_Nset(newFile, obj) elif '*End Assembly' in line: writeEquations(newFile, obj, instance) if clone == False and '*' in line: clone = True if clone: newFile.write(line) # write the line from old file to new file if "*Node\n" in line: if hasattr(obj, 'nodesAdjusted'): clone = False print("\033[35;1m{}\033[0m".format("write new nodes for obj")) write_nodes(newFile, obj) print("\033[40;36;1m {} {} \033[35;1m {} \033[0m".format( "file", newFileName, "has been written. " )) elif input( "\033[32;1m write nset- and equations- files for PBC? (y/n): \033[0m" ) in ["y", ""]: # write the Nset with open(path + '{}_nset.txt'.format(job), 'w') as file: for node in obj.getFaceNode(): file.write('*Nset, nset=N{} \n'.format(node)) file.write('{}, \n'.format(node)) print("\033[40;36;1m {} {} \033[35;1m {} \033[0m".format( "file", path + '{}_nset.txt'.format(job), "has been written. " )) # write the equation for PBC with open(path + '{}_equation.txt'.format(job), 'w') as file: writeEquations(file, obj, instance) print("\033[40;36;1m {} {} \033[35;1m {} \033[0m".format( "file", path + '{}_equation.txt'.format(job), "has been written. " ))
[ "numpy.array" ]
[((9765, 9790), 'numpy.array', 'np.array', (['obj.nodes[node]'], {}), '(obj.nodes[node])\n', (9773, 9790), True, 'import numpy as np\n'), ((11978, 12003), 'numpy.array', 'np.array', (['obj.nodes[node]'], {}), '(obj.nodes[node])\n', (11986, 12003), True, 'import numpy as np\n')]
import numpy as np import torch from torchvision import datasets, transforms DEFAULT_DATA_DIR = "/is/rg/al/Projects/prob-models/data/" class ReconstructionDataset(torch.utils.data.Dataset): def __init__( self, name, split="train", flatten=True, train_split=0.8, data_dir=None ): assert split in ("train", "val", "test") if data_dir is None: data_dir = DEFAULT_DATA_DIR load_train = split == "train" or split == "val" if name == "mnist": dataset = datasets.MNIST( data_dir, train=load_train, download=True, transform=transforms.ToTensor(), ) elif name == "fashion-mnist": dataset = datasets.FashionMNIST( data_dir, train=load_train, download=True, transform=transforms.ToTensor(), ) else: raise ValueError("Unknown dataset name {name}") self.images = torch.stack([x[0] for x in dataset], axis=0) if split == "train" or split == "val": train_samples = int(train_split * len(self.images)) rng = np.random.RandomState(45) idxs = rng.permutation(len(self.images)) if split == "train": train_idxs = idxs[:train_samples] self.images = self.images[train_idxs] else: val_idxs = idxs[train_samples:] self.images = self.images[val_idxs] self._shape = self.images.shape[1:] if flatten: self.images = self.images.reshape(len(self.images), -1) example = self[0] if flatten: self.input_dim = example[0].shape[0] self.target_dim = example[1].shape[0] else: self.input_dim = example[0] self.target_dim = example[1] @property def shape(self): return self._shape def to_tensors(self): return self.images, self.images def __len__(self): return len(self.images) def __getitem__(self, idx): img = self.images[idx] return img, img
[ "torch.stack", "numpy.random.RandomState", "torchvision.transforms.ToTensor" ]
[((1027, 1071), 'torch.stack', 'torch.stack', (['[x[0] for x in dataset]'], {'axis': '(0)'}), '([x[0] for x in dataset], axis=0)\n', (1038, 1071), False, 'import torch\n'), ((1201, 1226), 'numpy.random.RandomState', 'np.random.RandomState', (['(45)'], {}), '(45)\n', (1222, 1226), True, 'import numpy as np\n'), ((656, 677), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (675, 677), False, 'from torchvision import datasets, transforms\n'), ((893, 914), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (912, 914), False, 'from torchvision import datasets, transforms\n')]
## l2_attack.py -- attack a network optimizing for l_2 distance ## ## Copyright (C) 2016, <NAME> <<EMAIL>>. ## ## This program is licenced under the BSD 2-Clause licence, ## contained in the LICENCE file in this directory. ## Modified by <NAME> 2017 import tensorflow as tf import numpy as np BINARY_SEARCH_STEPS = 9 # number of times to adjust the constant with binary search MAX_ITERATIONS = 10000 # number of iterations to perform gradient descent ABORT_EARLY = True # if we stop improving, abort gradient descent early LEARNING_RATE = 1e-2 # larger values converge faster to less accurate results, default 1e-2 TARGETED = False # should we target one specific class? or just be wrong? CONFIDENCE = 0 # how strong the adversarial example should be INITIAL_CONST = 1e-3 # the initial constant c to pick as a first guess class CarliniL2: def __init__(self, sess, models, batch_size=1, confidence = CONFIDENCE, targeted = TARGETED, learning_rate = LEARNING_RATE, binary_search_steps = BINARY_SEARCH_STEPS, max_iterations = MAX_ITERATIONS, abort_early = ABORT_EARLY, initial_const = INITIAL_CONST, boxmin = -0.5, boxmax = 0.5): """ The L_2 optimized attack. This attack is the most efficient and should be used as the primary attack to evaluate potential defenses. Returns adversarial examples for the supplied model. confidence: Confidence of adversarial examples: higher produces examples that are farther away, but more strongly classified as adversarial. batch_size: Number of attacks to run simultaneously. targeted: True if we should perform a targetted attack, False otherwise. learning_rate: The learning rate for the attack algorithm. Smaller values produce better results but are slower to converge. binary_search_steps: The number of times we perform binary search to find the optimal tradeoff-constant between distance and confidence. max_iterations: The maximum number of iterations. Larger values are more accurate; setting too small will require a large learning rate and will produce poor results. abort_early: If true, allows early aborts if gradient descent gets stuck. initial_const: The initial tradeoff-constant to use to tune the relative importance of distance and confidence. If binary_search_steps is large, the initial constant is not important. boxmin: Minimum pixel value (default -0.5). boxmax: Maximum pixel value (default 0.5). """ image_size, num_channels, num_labels = models[0].image_size, models[0].num_channels, models[0].num_labels self.sess = sess self.TARGETED = targeted self.LEARNING_RATE = learning_rate self.MAX_ITERATIONS = max_iterations self.BINARY_SEARCH_STEPS = binary_search_steps self.ABORT_EARLY = abort_early self.CONFIDENCE = confidence self.initial_const = initial_const self.batch_size = batch_size self.num_models = len(models) self.num_labels = num_labels shape = (batch_size,image_size,image_size,num_channels) # the variable we're going to optimize over modifier = tf.Variable(np.zeros(shape,dtype=np.float32)) # these are variables to be more efficient in sending data to tf self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32) self.tlab = tf.Variable(np.zeros((batch_size,num_labels)), dtype=tf.float32) self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32) self.weights = tf.Variable(np.zeros(self.num_models), dtype=tf.float32) # and here's what we use to assign them self.assign_timg = tf.placeholder(tf.float32, shape) self.assign_tlab = tf.placeholder(tf.float32, (batch_size, num_labels)) self.assign_const = tf.placeholder(tf.float32, [batch_size]) self.assign_weights = tf.placeholder(tf.float32, [self.num_models]) # the resulting image, tanh'd to keep bounded from boxmin to boxmax self.boxmul = (boxmax - boxmin) / 2. self.boxplus = (boxmin + boxmax) / 2. self.newimg = tf.tanh(modifier + self.timg) * self.boxmul + self.boxplus # prediction BEFORE-SOFTMAX of the model self.outputs = [model.predict(self.newimg) for model in models] # distance to the input data self.l2dist = tf.reduce_sum(tf.square(self.newimg-(tf.tanh(self.timg) * self.boxmul + self.boxplus)),[1,2,3]) # compute the probability of the label class versus the maximum other reals = [] others = [] for i in xrange(self.num_models): real = tf.reduce_sum((self.tlab) * self.outputs[i], 1) other = tf.reduce_max((1 - self.tlab)*self.outputs[i] - (self.tlab*10000), 1) reals.append(real) others.append(other) self.reals, self.others = reals, others loss1list = [] if self.TARGETED: # if targetted, optimize for making the other class most likely for i in xrange(self.num_models): loss1list.append(tf.maximum(0.0, self.weights[i] * (others[i] - reals[i] + self.CONFIDENCE))) else: # if untargeted, optimize for making this class least likely. for i in xrange(self.num_models): loss1list.append(tf.maximum(0.0, self.weights[i] * (reals[i] - others[i] + self.CONFIDENCE))) self.loss1list = loss1list # TODO: remove # sum up the losses self.loss2 = tf.reduce_sum(self.l2dist) self.loss1 = tf.reduce_sum(self.const * tf.add_n(self.loss1list)) self.loss = self.loss1 + self.loss2 self.reals = reals self.others = others # Setup the adam optimizer and keep track of variables we're creating start_vars = set(x.name for x in tf.global_variables()) optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE) self.train = optimizer.minimize(self.loss, var_list=[modifier]) end_vars = tf.global_variables() new_vars = [x for x in end_vars if x.name not in start_vars] # these are the variables to initialize when we run self.setup = [] self.setup.append(self.timg.assign(self.assign_timg)) self.setup.append(self.tlab.assign(self.assign_tlab)) self.setup.append(self.const.assign(self.assign_const)) self.setup.append(self.weights.assign(self.assign_weights)) self.init = tf.variables_initializer(var_list=[modifier]+new_vars) def attack(self, imgs, targets, weights): """ Perform the L_2 attack on the given images for the given targets. If self.targeted is true, then the targets represents the target labels. If self.targeted is false, then targets are the original class labels. """ r = [] # print('go up to',len(imgs)) for i in range(0,len(imgs),self.batch_size): # print('tick',i) r.extend(self.attack_batch(imgs[i:i+self.batch_size], targets[i:i+self.batch_size], weights)) return np.array(r) def attack_batch(self, imgs, labs, weights): """ Run the attack on a batch of images and labels. """ def compareLoss(x, y): """ x is an np array of shape num_models x num_classes y is the true label or target label of the class returns a number in [0,1] indicating the expected loss of the learner """ if not isinstance(x, (float, int, np.int64)): x = np.copy(x) for v in x: # update the target scores for each individual prediction if self.TARGETED: v[y] -= self.CONFIDENCE else: v[y] += self.CONFIDENCE x = np.argmax(x, 1) # these are the predictions of each hypothesis if self.TARGETED: return np.dot(x == y, weights) else: return np.dot(x != y, weights) batch_size = self.batch_size # convert to tanh-space imgs = np.arctanh((imgs - self.boxplus) / self.boxmul * 0.999999) # set the lower and upper bounds accordingly lower_bound = np.zeros(batch_size) CONST = np.ones(batch_size)*self.initial_const upper_bound = np.ones(batch_size)*1e10 # the best l2, score, and image attack o_bestl2 = [1e10]*batch_size o_bestscore = [-1]*batch_size o_bestattack = [np.zeros(imgs[0].shape)]*batch_size for outer_step in range(self.BINARY_SEARCH_STEPS): # completely reset adam's internal state. self.sess.run(self.init) batch = imgs[:batch_size] batchlab = labs[:batch_size] bestl2 = [1e10]*batch_size bestscore = [0.0]*batch_size # set the variables so that we don't have to send them over again self.sess.run(self.setup, {self.assign_timg: batch, self.assign_tlab: batchlab, self.assign_const: CONST, self.assign_weights: weights}) # print "Outer Step ", outer_step, "Current C ", CONST, lower_bound, upper_bound prev = 1e10 # used to be e6 for iteration in range(self.MAX_ITERATIONS): # perform the attack _, l, l2s, scores, nimg = self.sess.run([self.train, self.loss, self.l2dist, self.outputs, self.newimg]) scores = np.array(scores).reshape(self.batch_size, self.num_models, self.num_labels) # if iteration % 200 == 0: # print(iteration, self.sess.run((self.loss, self.loss1, self.loss2))) # check if we should abort search if we're getting nowhere. (check every 10%) if self.ABORT_EARLY and iteration%(self.MAX_ITERATIONS * .10) == 0: if l > prev*.9999: break prev = l for e,(l2,sc,ii) in enumerate(zip(l2s,scores,nimg)): currLoss = compareLoss(sc, np.argmax(batchlab[e])) # expected loss of the learner if currLoss > bestscore[e]: # we've found a clear improvement for this value of c bestl2[e] = l2 bestscore[e] = currLoss if currLoss == bestscore[e] and l2 < bestl2[e]: bestl2[e] = l2 if currLoss > o_bestscore[e]: o_bestl2[e] = l2 o_bestscore[e] = currLoss o_bestattack[e] = ii if currLoss == o_bestscore[e] and l2 < o_bestl2[e]: o_bestl2[e] = l2 o_bestattack[e] = ii # finished trying out the adam optimizer for a particular c, now need to decide on the next value # adjust the constant as needed for e in range(batch_size): if bestscore[e] == 1.0: upper_bound[e] = min(upper_bound[e], CONST[e]) if upper_bound[e] < 1e9: CONST[e] = (lower_bound[e] + upper_bound[e])/2 else: lower_bound[e] = max(lower_bound[e],CONST[e]) if upper_bound[e] < 1e9: CONST[e] = (lower_bound[e] + upper_bound[e])/2 else: CONST[e] *= 100 # return the best solution found return o_bestattack
[ "numpy.arctanh", "tensorflow.reduce_sum", "tensorflow.add_n", "numpy.copy", "numpy.argmax", "tensorflow.maximum", "tensorflow.variables_initializer", "numpy.zeros", "numpy.ones", "tensorflow.placeholder", "tensorflow.global_variables", "numpy.array", "tensorflow.tanh", "numpy.dot", "tensorflow.reduce_max", "tensorflow.train.AdamOptimizer" ]
[((3887, 3920), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', 'shape'], {}), '(tf.float32, shape)\n', (3901, 3920), True, 'import tensorflow as tf\n'), ((3948, 4000), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '(batch_size, num_labels)'], {}), '(tf.float32, (batch_size, num_labels))\n', (3962, 4000), True, 'import tensorflow as tf\n'), ((4029, 4069), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[batch_size]'], {}), '(tf.float32, [batch_size])\n', (4043, 4069), True, 'import tensorflow as tf\n'), ((4100, 4145), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[self.num_models]'], {}), '(tf.float32, [self.num_models])\n', (4114, 4145), True, 'import tensorflow as tf\n'), ((5756, 5782), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.l2dist'], {}), '(self.l2dist)\n', (5769, 5782), True, 'import tensorflow as tf\n'), ((6120, 6162), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['self.LEARNING_RATE'], {}), '(self.LEARNING_RATE)\n', (6142, 6162), True, 'import tensorflow as tf\n'), ((6254, 6275), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (6273, 6275), True, 'import tensorflow as tf\n'), ((6707, 6763), 'tensorflow.variables_initializer', 'tf.variables_initializer', ([], {'var_list': '([modifier] + new_vars)'}), '(var_list=[modifier] + new_vars)\n', (6731, 6763), True, 'import tensorflow as tf\n'), ((7325, 7336), 'numpy.array', 'np.array', (['r'], {}), '(r)\n', (7333, 7336), True, 'import numpy as np\n'), ((8384, 8442), 'numpy.arctanh', 'np.arctanh', (['((imgs - self.boxplus) / self.boxmul * 0.999999)'], {}), '((imgs - self.boxplus) / self.boxmul * 0.999999)\n', (8394, 8442), True, 'import numpy as np\n'), ((8519, 8539), 'numpy.zeros', 'np.zeros', (['batch_size'], {}), '(batch_size)\n', (8527, 8539), True, 'import numpy as np\n'), ((3398, 3431), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (3406, 3431), True, 'import numpy as np\n'), ((3538, 3553), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (3546, 3553), True, 'import numpy as np\n'), ((3605, 3639), 'numpy.zeros', 'np.zeros', (['(batch_size, num_labels)'], {}), '((batch_size, num_labels))\n', (3613, 3639), True, 'import numpy as np\n'), ((3691, 3711), 'numpy.zeros', 'np.zeros', (['batch_size'], {}), '(batch_size)\n', (3699, 3711), True, 'import numpy as np\n'), ((3766, 3791), 'numpy.zeros', 'np.zeros', (['self.num_models'], {}), '(self.num_models)\n', (3774, 3791), True, 'import numpy as np\n'), ((4876, 4921), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(self.tlab * self.outputs[i])', '(1)'], {}), '(self.tlab * self.outputs[i], 1)\n', (4889, 4921), True, 'import tensorflow as tf\n'), ((4944, 5015), 'tensorflow.reduce_max', 'tf.reduce_max', (['((1 - self.tlab) * self.outputs[i] - self.tlab * 10000)', '(1)'], {}), '((1 - self.tlab) * self.outputs[i] - self.tlab * 10000, 1)\n', (4957, 5015), True, 'import tensorflow as tf\n'), ((8556, 8575), 'numpy.ones', 'np.ones', (['batch_size'], {}), '(batch_size)\n', (8563, 8575), True, 'import numpy as np\n'), ((8617, 8636), 'numpy.ones', 'np.ones', (['batch_size'], {}), '(batch_size)\n', (8624, 8636), True, 'import numpy as np\n'), ((4336, 4365), 'tensorflow.tanh', 'tf.tanh', (['(modifier + self.timg)'], {}), '(modifier + self.timg)\n', (4343, 4365), True, 'import tensorflow as tf\n'), ((5831, 5855), 'tensorflow.add_n', 'tf.add_n', (['self.loss1list'], {}), '(self.loss1list)\n', (5839, 5855), True, 'import tensorflow as tf\n'), ((7815, 7825), 'numpy.copy', 'np.copy', (['x'], {}), '(x)\n', (7822, 7825), True, 'import numpy as np\n'), ((8092, 8107), 'numpy.argmax', 'np.argmax', (['x', '(1)'], {}), '(x, 1)\n', (8101, 8107), True, 'import numpy as np\n'), ((8209, 8232), 'numpy.dot', 'np.dot', (['(x == y)', 'weights'], {}), '(x == y, weights)\n', (8215, 8232), True, 'import numpy as np\n'), ((8274, 8297), 'numpy.dot', 'np.dot', (['(x != y)', 'weights'], {}), '(x != y, weights)\n', (8280, 8297), True, 'import numpy as np\n'), ((8789, 8812), 'numpy.zeros', 'np.zeros', (['imgs[0].shape'], {}), '(imgs[0].shape)\n', (8797, 8812), True, 'import numpy as np\n'), ((5332, 5407), 'tensorflow.maximum', 'tf.maximum', (['(0.0)', '(self.weights[i] * (others[i] - reals[i] + self.CONFIDENCE))'], {}), '(0.0, self.weights[i] * (others[i] - reals[i] + self.CONFIDENCE))\n', (5342, 5407), True, 'import tensorflow as tf\n'), ((5577, 5652), 'tensorflow.maximum', 'tf.maximum', (['(0.0)', '(self.weights[i] * (reals[i] - others[i] + self.CONFIDENCE))'], {}), '(0.0, self.weights[i] * (reals[i] - others[i] + self.CONFIDENCE))\n', (5587, 5652), True, 'import tensorflow as tf\n'), ((6077, 6098), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (6096, 6098), True, 'import tensorflow as tf\n'), ((9988, 10004), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (9996, 10004), True, 'import numpy as np\n'), ((10595, 10617), 'numpy.argmax', 'np.argmax', (['batchlab[e]'], {}), '(batchlab[e])\n', (10604, 10617), True, 'import numpy as np\n'), ((4630, 4648), 'tensorflow.tanh', 'tf.tanh', (['self.timg'], {}), '(self.timg)\n', (4637, 4648), True, 'import tensorflow as tf\n')]
# -*- encoding:utf-8 -*- """ 买入择时示例因子:动态自适应双均线策略 """ from __future__ import absolute_import from __future__ import print_function from __future__ import division import math import numpy as np from .ABuFactorBuyBase import AbuFactorBuyXD, BuyCallMixin from ..IndicatorBu.ABuNDMa import calc_ma_from_prices from ..CoreBu.ABuPdHelper import pd_resample from ..TLineBu.ABuTL import AbuTLine __author__ = '阿布' __weixin__ = 'abu_quant' # noinspection PyAttributeOutsideInit class AbuDoubleMaBuy(AbuFactorBuyXD, BuyCallMixin): """示例买入动态自适应双均线策略""" def _init_self(self, **kwargs): """ kwargs中可选参数:fast: 均线快线周期,默认不设置,使用自适应动态快线 kwargs中可选参数:slow: 均线慢线周期,默认不设置,使用自适应动态慢线 kwargs中可选参数:resample_max: 动态慢线可设置参数重采样周期最大值,默认100,即动态慢线最大100 kwargs中可选参数:resample_min: 动态慢线可设置参数重采样周期最小值,默认10,即动态慢线最小10 kwargs中可选参数:change_threshold:动态慢线可设置参数代表慢线的选取阀值,默认0.12 """ # 均线快线周期,默认使用5天均线 self.ma_fast = kwargs.pop('fast', -1) self.dynamic_fast = False if self.ma_fast == -1: self.ma_fast = 5 self.dynamic_fast = True # 均线慢线周期,默认使用60天均线 self.ma_slow = kwargs.pop('slow', -1) self.dynamic_slow = False if self.ma_slow == -1: self.ma_slow = 60 self.dynamic_slow = True # 动态慢线可设置参数重采样周期最大值,默认90 self.resample_max = kwargs.pop('resample_max', 100) # 动态慢线可设置参数重采样周期最小值,默认10 self.resample_min = kwargs.pop('resample_min', 10) # 动态慢线可设置参数代表慢线的选取阀值,默认0.12 self.change_threshold = kwargs.pop('change_threshold', 0.12) if self.ma_fast >= self.ma_slow: # 慢线周期必须大于快线 raise ValueError('ma_fast >= self.ma_slow !') # xd周期数据需要比ma_slow大一天,这样计算ma就可以拿到今天和昨天两天的ma,用来判断金叉,死叉 kwargs['xd'] = self.ma_slow + 1 # 设置好xd后可以直接使用基类针对xd的初始化 super(AbuDoubleMaBuy, self)._init_self(**kwargs) # 在输出生成的orders_pd中显示的名字 self.factor_name = '{}:fast={},slow={}'.format(self.__class__.__name__, self.ma_fast, self.ma_slow) def _dynamic_calc_fast(self, today): """ 根据大盘最近一个月走势震荡程度,动态决策快线的值,规则如下: 如果大盘最近一个月走势使用: 一次拟合可以表达:fast=slow * 0.05 eg: slow=60->fast=60*0.05=3 二次拟合可以表达:fast=slow * 0.15 eg: slow=60->fast=60*0.15=9 三次拟合可以表达:fast=slow * 0.3 eg: slow=60->fast=60*0.3=18 四次及以上拟合可以表达:fast=slow * 0.5 eg: slow=60->fast=60*0.5=30 """ # 策略中拥有self.benchmark,即交易基准对象,AbuBenchmark实例对象,benchmark.kl_pd即对应的市场大盘走势 benchmark_df = self.benchmark.kl_pd # 拿出大盘的今天 benchmark_today = benchmark_df[benchmark_df.date == today.date] if benchmark_today.empty: # 默认值为慢线的0.15 return math.ceil(self.ma_slow * 0.15) # 要拿大盘最近一个月的走势,准备切片的start,end end_key = int(benchmark_today.iloc[0].key) start_key = end_key - 20 if start_key < 0: # 默认值为慢线的0.15 return math.ceil(self.ma_slow * 0.15) # 使用切片切出从今天开始向前20天的数据 benchmark_month = benchmark_df[start_key:end_key + 1] # 通过大盘最近一个月的收盘价格做为参数构造AbuTLine对象 benchmark_month_line = AbuTLine(benchmark_month.close, 'benchmark month line') # 计算这个月最少需要几次拟合才能代表走势曲线 least = benchmark_month_line.show_least_valid_poly(show=False) if least == 1: # 一次拟合可以表达:fast=slow * 0.05 eg: slow=60->fast=60*0.05=3 return math.ceil(self.ma_slow * 0.05) elif least == 2: # 二次拟合可以表达:fast=slow * 0.15 eg: slow=60->fast=60*0.15=9 return math.ceil(self.ma_slow * 0.15) elif least == 3: # 三次拟合可以表达:fast=slow * 0.3 eg: slow=60->fast=60*0.3=18 return math.ceil(self.ma_slow * 0.3) else: # 四次及以上拟合可以表达:fast=slow * 0.5 eg: slow=60->fast=60*0.5=30 return math.ceil(self.ma_slow * 0.5) def _dynamic_calc_slow(self, today): """ 动态决策慢线的值,规则如下: 切片最近一段时间的金融时间序列,对金融时间序列进行变换周期重新采样, 对重新采样的结果进行pct_change处理,对pct_change序列取abs绝对值, 对pct_change绝对值序列取平均,即算出重新采样的周期内的平均变化幅度, 上述的变换周期由10, 15,20,30....进行迭代, 直到计算出第一个重新 采样的周期内的平均变化幅度 > 0.12的周期做为slow的取值 """ last_kl = self.past_today_kl(today, self.resample_max) if last_kl.empty: # 返回慢线默认值60 return 60 for slow in np.arange(self.resample_min, self.resample_max, 5): rule = '{}D'.format(slow) change = abs(pd_resample(last_kl.close, rule, how='mean').pct_change()).mean() """ eg: pd_resample(last_kl.close, rule, how='mean') 2014-07-23 249.0728 2014-09-03 258.3640 2014-10-15 240.8663 2014-11-26 220.1552 2015-01-07 206.0070 2015-02-18 198.0932 2015-04-01 217.9791 2015-05-13 251.3640 2015-06-24 266.4511 2015-08-05 244.3334 2015-09-16 236.2250 2015-10-28 222.0441 2015-12-09 222.0574 2016-01-20 177.2303 2016-03-02 226.8766 2016-04-13 230.6000 2016-05-25 216.7596 2016-07-06 222.6420 abs(pd_resample(last_kl.close, rule, how='mean').pct_change()) 2014-09-03 0.037 2014-10-15 0.068 2014-11-26 0.086 2015-01-07 0.064 2015-02-18 0.038 2015-04-01 0.100 2015-05-13 0.153 2015-06-24 0.060 2015-08-05 0.083 2015-09-16 0.033 2015-10-28 0.060 2015-12-09 0.000 2016-01-20 0.202 2016-03-02 0.280 2016-04-13 0.016 2016-05-25 0.060 2016-07-06 0.027 abs(pd_resample(last_kl.close, rule, how='mean').pct_change()).mean(): 0.080 """ if change > self.change_threshold: """ 返回第一个大于change_threshold的slow, change_threshold默认为0.12,以周期突破的策略一般需要在0.08以上,0.12是为快线留出套利空间 """ return slow # 迭代np.arange(min, max, 5)都不符合就返回max return self.resample_max def fit_month(self, today): # fit_month即在回测策略中每一个月执行一次的方法 if self.dynamic_slow: # 一定要先动态算ma_slow,因为动态计算fast依赖slow self.ma_slow = self._dynamic_calc_slow(today) if self.dynamic_fast: # 动态计算快线 self.ma_fast = self._dynamic_calc_fast(today) # 动态重新计算后,改变在输出生成的orders_pd中显示的名字 self.factor_name = '{}:fast={},slow={}'.format(self.__class__.__name__, self.ma_fast, self.ma_slow) # import logging # logging.debug('{}:{}-fast={}|slow={}'.format(self.kl_pd.name, today.date, self.ma_fast, self.ma_slow)) def fit_day(self, today): """双均线买入择时因子,信号快线上穿慢行形成金叉做为买入信号""" # 计算快线 fast_line = calc_ma_from_prices(self.xd_kl.close, int(self.ma_fast), min_periods=1) # 计算慢线 slow_line = calc_ma_from_prices(self.xd_kl.close, int(self.ma_slow), min_periods=1) if len(fast_line) >= 2 and len(slow_line) >= 2: # 今天的快线值 fast_today = fast_line[-1] # 昨天的快线值 fast_yesterday = fast_line[-2] # 今天的慢线值 slow_today = slow_line[-1] # 昨天的慢线值 slow_yesterday = slow_line[-2] if slow_yesterday >= fast_yesterday and fast_today > slow_today: # 快线上穿慢线, 形成买入金叉,使用了今天收盘价格,明天买入 return self.buy_tomorrow() """可以选择是否覆盖AbuFactorBuyXD中的buy_tomorrow来增大交易频率,默认基类中self.skip_days = self.xd降低了频率""" # def buy_tomorrow(self): # return self.make_buy_order(self.today_ind)
[ "numpy.arange", "math.ceil" ]
[((4463, 4513), 'numpy.arange', 'np.arange', (['self.resample_min', 'self.resample_max', '(5)'], {}), '(self.resample_min, self.resample_max, 5)\n', (4472, 4513), True, 'import numpy as np\n'), ((2821, 2851), 'math.ceil', 'math.ceil', (['(self.ma_slow * 0.15)'], {}), '(self.ma_slow * 0.15)\n', (2830, 2851), False, 'import math\n'), ((3046, 3076), 'math.ceil', 'math.ceil', (['(self.ma_slow * 0.15)'], {}), '(self.ma_slow * 0.15)\n', (3055, 3076), False, 'import math\n'), ((3510, 3540), 'math.ceil', 'math.ceil', (['(self.ma_slow * 0.05)'], {}), '(self.ma_slow * 0.05)\n', (3519, 3540), False, 'import math\n'), ((3653, 3683), 'math.ceil', 'math.ceil', (['(self.ma_slow * 0.15)'], {}), '(self.ma_slow * 0.15)\n', (3662, 3683), False, 'import math\n'), ((3795, 3824), 'math.ceil', 'math.ceil', (['(self.ma_slow * 0.3)'], {}), '(self.ma_slow * 0.3)\n', (3804, 3824), False, 'import math\n'), ((3928, 3957), 'math.ceil', 'math.ceil', (['(self.ma_slow * 0.5)'], {}), '(self.ma_slow * 0.5)\n', (3937, 3957), False, 'import math\n')]
import math import click import os.path import shutil import atoms_simulator import numpy import matplotlib.pyplot as plt def get_project_path(): return os.path.dirname(atoms_simulator.__file__) def get_path(path): i = 1 while True: if not os.path.lexists(f"{path}{i}"): return f"{path}{i}" i += 1 @click.group() def ats(): """Allows to perform detailed tests using atoms_simulator module.""" pass @ats.command() def init(): """Creates a settings_ats.toml file in the current directory.""" if not os.path.isfile("settings_ats.toml"): source = os.path.join(get_project_path(), "assets/settings_source.toml") target = os.path.join(os.getcwd(), "settings_ats.toml") shutil.copy(source, target) click.echo("Settings file generated successfully.") else: click.echo("Settings file already exists. Please delete it in order to generate a new configuration file.") @ats.command() @click.option("-g", "--graphics", "graphics", help="Turn on pygame simulation", is_flag=True) @click.option("--no-save", "no_save", help="Disable saving the results of the test.", is_flag=True) def test(graphics, no_save): """Performs a series of tests based on the data in the settings_ats.toml file.""" settings_ats = atoms_simulator.Settings("settings_ats.toml") if not settings_ats.load(): click.echo("No settings file detected. Generate the file first.") return if settings_ats["N_min"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return if settings_ats["N_step"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return if settings_ats["N_number"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return if settings_ats["R"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return click.echo("Starting simulation...") n_stop = settings_ats["N_min"] + settings_ats["N_step"] * (settings_ats["N_number"] - 1) # size = max([settings_ats['h'], settings_ats['w'], math.ceil((4 * (n_stop + 1)) ** 0.5)]) # settings_ats['h'] = size # settings_ats['w'] = size test_cases = [ [i for _ in range(settings_ats['R'])] for i in range(settings_ats["N_min"], n_stop + 1, settings_ats["N_step"]) ] bounce = numpy.empty((len(test_cases), settings_ats['R']), dtype=int) bounce_results = numpy.empty(len(test_cases), dtype=int) cop = numpy.empty((len(test_cases), settings_ats['R']), dtype=float) cop_results = numpy.empty(len(test_cases), dtype=float) settings_ats.new('N', settings_ats["N_min"]) with click.progressbar( range(len(test_cases) * settings_ats['R'] - 1, -1, -1), label="Performing simulations:", show_eta=False ) as progress: for i in progress: settings_ats['N'] = test_cases[i // settings_ats['R']][i % settings_ats['R']] try: bounce[i // settings_ats['R']][i % settings_ats['R']], \ cop[i // settings_ats['R']][i % settings_ats['R']] = atoms_simulator.simulate(settings_ats, graphics) except ValueError as error: click.echo(f"\n{error} Please generate a new settings file.") return if i % settings_ats['R'] == 0: bounce_results[i // settings_ats['R']] = int(bounce[i // settings_ats['R']].mean()) cop_results[i // settings_ats['R']] = cop[i // settings_ats['R']].mean() if not no_save: if not os.path.isdir(results_path := os.path.join(os.getcwd(), "ats_results")): os.mkdir(results_path) target_path = get_path(os.path.join(results_path, "data_batch")) os.mkdir(target_path) numpy.savetxt(os.path.join(target_path, "bounces.csv"), bounce_results) numpy.savetxt(os.path.join(target_path, "change_of_position.csv"), cop_results) settings_ats.save(target=os.path.join(target_path, "used.toml")) @ats.command() @click.option("-b", "--data_batch", "data_batch", prompt=True, help="Name of the previously generated data batch.") def plot(data_batch): """Plots the previously generated data.""" if not os.path.isdir(results_path := os.path.join(os.getcwd(), "ats_results")): click.echo( "The ats_results catalog doesn't exist within the current working directory. Generate some data first." ) return if not os.path.isdir(path := os.path.join(os.getcwd(), "ats_results", data_batch)): click.echo( f"The ats_results/{data_batch} catalog doesn't exist within the current working directory." ) return target_path = get_path(os.path.join(results_path, "figures_batch")) os.mkdir(target_path) settings_ats = atoms_simulator.Settings(os.path.join(path, "used.toml")) if not (settings_ats.load() and os.path.isfile(os.path.join(path, "bounces.csv")) and os.path.isfile(os.path.join(path, "change_of_position.csv"))): click.echo("This data batch is corrupted.") return n_stop = settings_ats["N_min"] + settings_ats["N_step"] * (settings_ats["N_number"] - 1) x = numpy.arange(settings_ats["N_min"], n_stop + 1, settings_ats["N_step"]) bounce = numpy.loadtxt(os.path.join(path, "bounces.csv")) plt.plot(x, bounce, marker='o') plt.title(f"Zależność liczby zderzeń od ilości atomów, M = {settings_ats['M']}") plt.xlabel("Liczba atomów w pojemniku") plt.ylabel("Liczba odbić atomu czerownego") plt.grid(True) plt.savefig(os.path.join(target_path, "bounces.png")) plt.clf() cop = numpy.loadtxt(os.path.join(path, "change_of_position.csv")) plt.plot(x, cop, marker='o') plt.title(f"Zależność średniej drogi swobodnej od ilości atomów, M = {settings_ats['M']}") plt.xlabel("Liczba atomów w pojemniku") plt.ylabel("Średnia droga swobodna atomu czerwonego") plt.grid(True) plt.savefig(os.path.join(target_path, "change_of_position.png")) plt.clf() settings_ats.save(os.path.join(target_path, "used.toml")) click.echo("Figures created successfullly.")
[ "matplotlib.pyplot.title", "atoms_simulator.Settings", "matplotlib.pyplot.plot", "matplotlib.pyplot.clf", "atoms_simulator.simulate", "click.option", "click.echo", "numpy.arange", "matplotlib.pyplot.ylabel", "click.group", "matplotlib.pyplot.grid", "shutil.copy", "matplotlib.pyplot.xlabel" ]
[((345, 358), 'click.group', 'click.group', ([], {}), '()\n', (356, 358), False, 'import click\n'), ((983, 1080), 'click.option', 'click.option', (['"""-g"""', '"""--graphics"""', '"""graphics"""'], {'help': '"""Turn on pygame simulation"""', 'is_flag': '(True)'}), "('-g', '--graphics', 'graphics', help=\n 'Turn on pygame simulation', is_flag=True)\n", (995, 1080), False, 'import click\n'), ((1077, 1180), 'click.option', 'click.option', (['"""--no-save"""', '"""no_save"""'], {'help': '"""Disable saving the results of the test."""', 'is_flag': '(True)'}), "('--no-save', 'no_save', help=\n 'Disable saving the results of the test.', is_flag=True)\n", (1089, 1180), False, 'import click\n'), ((4172, 4291), 'click.option', 'click.option', (['"""-b"""', '"""--data_batch"""', '"""data_batch"""'], {'prompt': '(True)', 'help': '"""Name of the previously generated data batch."""'}), "('-b', '--data_batch', 'data_batch', prompt=True, help=\n 'Name of the previously generated data batch.')\n", (4184, 4291), False, 'import click\n'), ((1310, 1355), 'atoms_simulator.Settings', 'atoms_simulator.Settings', (['"""settings_ats.toml"""'], {}), "('settings_ats.toml')\n", (1334, 1355), False, 'import atoms_simulator\n'), ((2057, 2093), 'click.echo', 'click.echo', (['"""Starting simulation..."""'], {}), "('Starting simulation...')\n", (2067, 2093), False, 'import click\n'), ((5346, 5417), 'numpy.arange', 'numpy.arange', (["settings_ats['N_min']", '(n_stop + 1)', "settings_ats['N_step']"], {}), "(settings_ats['N_min'], n_stop + 1, settings_ats['N_step'])\n", (5358, 5417), False, 'import numpy\n'), ((5484, 5515), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'bounce'], {'marker': '"""o"""'}), "(x, bounce, marker='o')\n", (5492, 5515), True, 'import matplotlib.pyplot as plt\n'), ((5520, 5605), 'matplotlib.pyplot.title', 'plt.title', (['f"""Zależność liczby zderzeń od ilości atomów, M = {settings_ats[\'M\']}"""'], {}), '(f"Zależność liczby zderzeń od ilości atomów, M = {settings_ats[\'M\']}"\n )\n', (5529, 5605), True, 'import matplotlib.pyplot as plt\n'), ((5605, 5644), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Liczba atomów w pojemniku"""'], {}), "('Liczba atomów w pojemniku')\n", (5615, 5644), True, 'import matplotlib.pyplot as plt\n'), ((5649, 5692), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Liczba odbić atomu czerownego"""'], {}), "('Liczba odbić atomu czerownego')\n", (5659, 5692), True, 'import matplotlib.pyplot as plt\n'), ((5697, 5711), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (5705, 5711), True, 'import matplotlib.pyplot as plt\n'), ((5774, 5783), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (5781, 5783), True, 'import matplotlib.pyplot as plt\n'), ((5859, 5887), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'cop'], {'marker': '"""o"""'}), "(x, cop, marker='o')\n", (5867, 5887), True, 'import matplotlib.pyplot as plt\n'), ((5892, 5992), 'matplotlib.pyplot.title', 'plt.title', (['f"""Zależność średniej drogi swobodnej od ilości atomów, M = {settings_ats[\'M\']}"""'], {}), '(\n f"Zależność średniej drogi swobodnej od ilości atomów, M = {settings_ats[\'M\']}"\n )\n', (5901, 5992), True, 'import matplotlib.pyplot as plt\n'), ((5987, 6026), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Liczba atomów w pojemniku"""'], {}), "('Liczba atomów w pojemniku')\n", (5997, 6026), True, 'import matplotlib.pyplot as plt\n'), ((6031, 6084), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Średnia droga swobodna atomu czerwonego"""'], {}), "('Średnia droga swobodna atomu czerwonego')\n", (6041, 6084), True, 'import matplotlib.pyplot as plt\n'), ((6089, 6103), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (6097, 6103), True, 'import matplotlib.pyplot as plt\n'), ((6177, 6186), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (6184, 6186), True, 'import matplotlib.pyplot as plt\n'), ((6254, 6298), 'click.echo', 'click.echo', (['"""Figures created successfullly."""'], {}), "('Figures created successfullly.')\n", (6264, 6298), False, 'import click\n'), ((751, 778), 'shutil.copy', 'shutil.copy', (['source', 'target'], {}), '(source, target)\n', (762, 778), False, 'import shutil\n'), ((787, 838), 'click.echo', 'click.echo', (['"""Settings file generated successfully."""'], {}), "('Settings file generated successfully.')\n", (797, 838), False, 'import click\n'), ((857, 974), 'click.echo', 'click.echo', (['"""Settings file already exists. Please delete it in order to generate a new configuration file."""'], {}), "(\n 'Settings file already exists. Please delete it in order to generate a new configuration file.'\n )\n", (867, 974), False, 'import click\n'), ((1396, 1461), 'click.echo', 'click.echo', (['"""No settings file detected. Generate the file first."""'], {}), "('No settings file detected. Generate the file first.')\n", (1406, 1461), False, 'import click\n'), ((1523, 1610), 'click.echo', 'click.echo', (['"""The settings file is corrupted, please generate a new settings file."""'], {}), "(\n 'The settings file is corrupted, please generate a new settings file.')\n", (1533, 1610), False, 'import click\n'), ((1668, 1755), 'click.echo', 'click.echo', (['"""The settings file is corrupted, please generate a new settings file."""'], {}), "(\n 'The settings file is corrupted, please generate a new settings file.')\n", (1678, 1755), False, 'import click\n'), ((1815, 1902), 'click.echo', 'click.echo', (['"""The settings file is corrupted, please generate a new settings file."""'], {}), "(\n 'The settings file is corrupted, please generate a new settings file.')\n", (1825, 1902), False, 'import click\n'), ((1955, 2042), 'click.echo', 'click.echo', (['"""The settings file is corrupted, please generate a new settings file."""'], {}), "(\n 'The settings file is corrupted, please generate a new settings file.')\n", (1965, 2042), False, 'import click\n'), ((4448, 4573), 'click.echo', 'click.echo', (['"""The ats_results catalog doesn\'t exist within the current working directory. Generate some data first."""'], {}), '(\n "The ats_results catalog doesn\'t exist within the current working directory. Generate some data first."\n )\n', (4458, 4573), False, 'import click\n'), ((4697, 4810), 'click.echo', 'click.echo', (['f"""The ats_results/{data_batch} catalog doesn\'t exist within the current working directory."""'], {}), '(\n f"The ats_results/{data_batch} catalog doesn\'t exist within the current working directory."\n )\n', (4707, 4810), False, 'import click\n'), ((5186, 5229), 'click.echo', 'click.echo', (['"""This data batch is corrupted."""'], {}), "('This data batch is corrupted.')\n", (5196, 5229), False, 'import click\n'), ((3245, 3293), 'atoms_simulator.simulate', 'atoms_simulator.simulate', (['settings_ats', 'graphics'], {}), '(settings_ats, graphics)\n', (3269, 3293), False, 'import atoms_simulator\n'), ((3350, 3414), 'click.echo', 'click.echo', (['f"""\n{error} Please generate a new settings file."""'], {}), '(f"""\n{error} Please generate a new settings file.""")\n', (3360, 3414), False, 'import click\n')]
import pandas as pd import numpy as np import torch def min_max_x(x): for index, col in enumerate(x.T): min_col = np.min(col) max_col = np.max(col) if min_col != max_col: x.T[index] = (x.T[index] - min_col)/(max_col - min_col) else: x.T[index] = x.T[index] - min_col return x def load_dataset(path='./processed_dataset/data.csv', split=0.8, shuffle=True, seed=0): np.random.seed(seed) df = pd.read_csv(path) df = df.values if shuffle: np.random.shuffle(df) train = df[:int(df.shape[0]*split)] validation = df[int(df.shape[0]*split):] train_x, train_y = train.T[:12].T, train.T[12:].T validation_x, validation_y = validation.T[:12].T, validation.T[12:].T train_x, validation_x = min_max_x(train_x), min_max_x(validation_x) train_x, train_y, validation_x, validation_y = train_x.astype(np.float32), train_y.astype(np.float32), validation_x.astype(np.float32), validation_y.astype(np.float32) train_x, train_y, validation_x, validation_y = torch.from_numpy(train_x), torch.from_numpy(train_y), torch.from_numpy(validation_x), torch.from_numpy(validation_y) return train_x, train_y, validation_x, validation_y if __name__ == '__main__': train_x, train_y, validation_x, validation_y = load_dataset() print(train_x.shape, train_y.shape, validation_x.shape, validation_y.shape)
[ "numpy.random.seed", "pandas.read_csv", "numpy.min", "numpy.max", "numpy.random.shuffle", "torch.from_numpy" ]
[((384, 404), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (398, 404), True, 'import numpy as np\n'), ((411, 428), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (422, 428), True, 'import pandas as pd\n'), ((118, 129), 'numpy.min', 'np.min', (['col'], {}), '(col)\n', (124, 129), True, 'import numpy as np\n'), ((142, 153), 'numpy.max', 'np.max', (['col'], {}), '(col)\n', (148, 153), True, 'import numpy as np\n'), ((460, 481), 'numpy.random.shuffle', 'np.random.shuffle', (['df'], {}), '(df)\n', (477, 481), True, 'import numpy as np\n'), ((973, 998), 'torch.from_numpy', 'torch.from_numpy', (['train_x'], {}), '(train_x)\n', (989, 998), False, 'import torch\n'), ((1000, 1025), 'torch.from_numpy', 'torch.from_numpy', (['train_y'], {}), '(train_y)\n', (1016, 1025), False, 'import torch\n'), ((1027, 1057), 'torch.from_numpy', 'torch.from_numpy', (['validation_x'], {}), '(validation_x)\n', (1043, 1057), False, 'import torch\n'), ((1059, 1089), 'torch.from_numpy', 'torch.from_numpy', (['validation_y'], {}), '(validation_y)\n', (1075, 1089), False, 'import torch\n')]
import hashlib import json import numpy as np from jina import Executor, DocumentArray, requests class TagsHasher(Executor): """Convert an arbitrary set of tags into a fixed-dimensional matrix using the hashing trick. Unlike FeatureHashser, you should only use Jaccard/Hamming distance when searching documents embedded with TagsHasher. This is because the closeness of the value of each feature is meaningless it is basically the result of a hash function. Hence, only identity value matters. More info: https://en.wikipedia.org/wiki/Feature_hashing """ def __init__(self, n_dim: int = 256, max_val: int = 65536, sparse: bool = False, **kwargs): """ :param n_dim: the dimensionality of each document in the output embedding. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger overall parameter dimensions. :param sparse: whether the resulting feature matrix should be a sparse csr_matrix or dense ndarray. Note that this feature requires ``scipy`` :param text_attrs: which attributes to be considered as text attributes. :param kwargs: """ super().__init__(**kwargs) self.n_dim = n_dim self.max_val = max_val self.hash = hashlib.md5 self.sparse = sparse def _any_hash(self, v): try: return int(v) # parse int parameter except ValueError: try: return float(v) # parse float parameter except ValueError: if not v: # ignore it when the parameter is empty return 0 if isinstance(v, str): v = v.strip() if v.lower() in {'true', 'yes'}: # parse boolean parameter return 1 if v.lower() in {'false', 'no'}: return 0 if isinstance(v, (tuple, dict, list)): v = json.dumps(v, sort_keys=True) return int(self.hash(str(v).encode('utf-8')).hexdigest(), base=16) @requests def encode(self, docs: DocumentArray, **kwargs): if self.sparse: from scipy.sparse import csr_matrix for idx, doc in enumerate(docs): if doc.tags: idxs, data = [], [] # sparse table = np.zeros(self.n_dim) # dense for k, v in doc.tags.items(): h = self._any_hash(k) sign_h = np.sign(h) col = h % self.n_dim val = self._any_hash(v) sign_v = np.sign(val) val = val % self.max_val idxs.append((0, col)) val = sign_h * sign_v * val data.append(val) table[col] += val if self.sparse: doc.embedding = csr_matrix( (data, zip(*idxs)), shape=(1, self.n_dim) ) else: doc.embedding = table
[ "numpy.zeros", "json.dumps", "numpy.sign" ]
[((2435, 2455), 'numpy.zeros', 'np.zeros', (['self.n_dim'], {}), '(self.n_dim)\n', (2443, 2455), True, 'import numpy as np\n'), ((2582, 2592), 'numpy.sign', 'np.sign', (['h'], {}), '(h)\n', (2589, 2592), True, 'import numpy as np\n'), ((2707, 2719), 'numpy.sign', 'np.sign', (['val'], {}), '(val)\n', (2714, 2719), True, 'import numpy as np\n'), ((2052, 2081), 'json.dumps', 'json.dumps', (['v'], {'sort_keys': '(True)'}), '(v, sort_keys=True)\n', (2062, 2081), False, 'import json\n')]
"""A class with static methods which can be used to access the data about experiments. This includes reading logs to parse success cases, reading images, costs and speed. """ import numpy as np from glob import glob import torch import pandas import re import json from functools import lru_cache import imageio EPISODES = 561 class DataReader: """Container class for the static data access methods""" EXPERIMENTS_MAPPING_FILE = 'experiments_mapping.json' @staticmethod @lru_cache(maxsize=1) def get_experiments_mapping(): """Reads the experiments mapping from a json file EXPERIMENTS_MAPPING_FILE """ with open(DataReader.EXPERIMENTS_MAPPING_FILE, 'r') as f: x = json.load(f) return x @staticmethod def get_images(experiment, seed, checkpoint, episode): """Get simulator images for a given model evaluation on a given episode""" path = DataReader.get_experiments_mapping()[experiment][0] model_name = DataReader.get_experiments_mapping()[experiment][1] image_paths = f'{path}/planning_results/videos_simulator/{model_name}-seed={seed}-novaluestep{checkpoint}.model/ep{episode}/ego/*.png' images = [] for image_path in sorted(glob(image_paths)): with open(image_path, 'rb') as f: images.append(f.read()) return images @staticmethod def get_gradients(experiment, seed, checkpoint, episode): """Get gradients for a given model evaluation on a given episode""" path = DataReader.get_experiments_mapping()[experiment][0] model_name = DataReader.get_experiments_mapping()[experiment][1] gradient_paths = f'{path}/planning_results/grad_videos_simulator/{model_name}-seed={seed}-novaluestep{checkpoint}.model/ep{episode}/*.png' images = [] for image_path in sorted(glob(gradient_paths)): with open(image_path, 'rb') as f: images.append(f.read()) return images @staticmethod def get_last_gradient(experiment, seed, checkpoint, episode): """Get the last gradient for the model and episode Returns: (value, x, y) - tuple, where value is the max value of the gradient, x, y are the location of this max value in the gradient image. """ path = DataReader.get_experiments_mapping()[experiment][0] model_name = DataReader.get_experiments_mapping()[experiment][1] gradient_paths = f'{path}/planning_results/grad_videos_simulator/{model_name}-seed={seed}-novaluestep{checkpoint}.model/ep{episode}/*.png' images = sorted(glob(gradient_paths)) if len(images) == 0: return (0, 0, 0) image_path = sorted(glob(gradient_paths))[-1] image = imageio.imread(image_path) mx_index = np.argmax(image) value = image.flatten()[mx_index] middle_x = image.shape[0] / 2 middle_y = image.shape[1] / 2 x = mx_index // image.shape[1] x -= middle_x y = mx_index % image.shape[1] y -= middle_y if value == 0: return (0, 0, 0) else: return (value, x, y) @staticmethod def get_evaluation_log_file(experiment, seed, step): """Retuns a path to the eval logs for given model""" path = DataReader.get_experiments_mapping()[experiment] regex = path[0] + 'planning_results/' + path[1] + \ f'-seed={seed}-novaluestep{step}' + '.model.log' paths = glob(regex) assert len(paths) == 1, \ f'paths for {regex} is not length of 1, and is equal to {paths}' return paths[0] @staticmethod def get_training_log_file(experiment, seed): """Retuns a path to the eval logs for given model""" path = DataReader.get_experiments_mapping()[experiment] regex = path[0] + 'policy_networks/' + path[1] + \ f'-seed={seed}-novalue' + '.log' paths = glob(regex) assert len(paths) == 1, \ f'paths for {regex} is not length of 1, and is equal to {paths}' return paths[0] @staticmethod @lru_cache(maxsize=100) def find_option_values(option, experiment=None, seed=None, checkpoint=None): """Returns possible values for selected option. Depending on option, returns: if option == 'seed' - returns all seeds for given experiment. experiment has to passed. if option == 'checkpoint' - returns all checkpoints for given experiment and seed. experiment and seed have to be passed. if option == 'episode' - returns all episodes for given model experiment, seed, and checkpoint have to be passed. """ if option == 'seed': path = DataReader.get_experiments_mapping()[experiment] logs = glob(path[0] + 'planning_results/' + path[1] + '*.log') regexp = r"seed=(\d+)-" elif option == 'checkpoint': path = DataReader.get_experiments_mapping()[experiment] logs = glob(path[0] + 'planning_results/' + path[1] + f'-seed={seed}' + '*.model.log') regexp = r'-novaluestep(\d+)\.' elif option == 'episode': path = DataReader.get_experiments_mapping()[experiment] logs = glob(path[0] + 'planning_results/videos_simulator/' + path[1] + f'-seed={seed}-novaluestep{checkpoint}.model/ep*') regexp = r'model/ep(\d+)' values = [] for log in logs: m = re.search(regexp, log) if m: result = m.group(1) values.append(int(result)) else: print(f'{log} doesn\'t contain {option}') # log files for each step are generated for seeds values = list(set(values)) values.sort() return values @staticmethod def get_success_rate(experiment, seed, step): """get the success rate for a given model""" log_file = DataReader.get_evaluation_log_file(experiment, seed, step) with open(log_file, 'r') as f: last_line = f.readlines()[-1] last_colon = last_line.rfind(':') success_rate = float(last_line[(last_colon + 2):]) return success_rate @staticmethod def get_success_rates_for_experiment(experiment): """get success rate arrays for each seed for the given experiment across all checkpoints. The resulting shape of the np array is (seeds, checkpoints), where seeds is the number of seeds, and checkpints is the number of checkpoints. """ seeds = DataReader.find_option_values('seed', experiment) result = {} steps = [] min_length = 100 max_length = 0 for seed in seeds: result[seed] = [] checkpoints = DataReader.find_option_values( 'checkpoint', experiment, seed) if len(steps) < len(checkpoints): steps = checkpoints for checkpoint in checkpoints: success = DataReader.get_success_rate( experiment, seed, checkpoint) result[seed].append(success) min_length = min(min_length, len(result[seed])) max_length = max(max_length, len(result[seed])) if len(result) > 0: result = np.stack([np.pad(np.array(result[seed]), (0, max_length - len(result[seed])), 'edge') for seed in result]) steps = np.array(steps) return steps, result else: return None, None @staticmethod def get_learning_curves_for_seed(experiment, seed): """Gets the training and validation total losses for a given experiment and seed. """ path = DataReader.get_training_log_file(experiment, seed) with open(path, 'r') as f: lines = f.readlines() regex = re.compile(".*step\s(\d+).*\s\[.*\π\:\s(.*)\].*\[.*\π\:\s(.*)\]") steps = [] train_losses = [] validation_losses = [] for line in lines: match = regex.match(line) if match: steps.append(int(match.group(1))) train_losses.append(float(match.group(2))) validation_losses.append(float(match.group(3))) result = dict( steps=steps, train_losses=train_losses, validation_losses=validation_losses, ) return result @staticmethod def get_learning_curves_for_experiment(experiment): seeds = DataReader.find_option_values('seed', experiment) result = {} steps = [] min_length = 100 max_length = 0 train = {} validation = {} for seed in seeds: result[seed] = [] curves = DataReader.get_learning_curves_for_seed(experiment, seed) for i, step in enumerate(curves['steps']): train.setdefault(step, []).append(curves['train_losses'][i]) validation.setdefault(step, []).append(curves['validation_losses'][i]) train_means = [] train_stds = [] validation_means = [] validation_stds = [] for key in train: train_means.append(float(np.mean(train[key]))) train_stds.append(float(np.std(train[key]))) validation_means.append(float(np.mean(validation[key]))) validation_stds.append(float(np.std(validation[key]))) result = dict( steps=list(train.keys()), train=(train_means, train_stds), validation=(validation_means, validation_stds), ) return result @staticmethod def get_episodes_with_outcome(experiment, seed, step, outcome): """Gets episodes with given outcome for a given model. If outcome == 1, returns successful episodes, if outcome == 0, returns failing episodes. """ path = DataReader.get_evaluation_log_file(experiment, seed, step) with open(path, 'r') as f: lines = f.readlines() regex = re.compile(".*ep:\s+(\d+).*\|\ssuccess:\s+(\d).*") result = [] for line in lines: match = regex.match(line) if match: if int(match.group(2)) == outcome: result.append(int(match.group(1))) return result @staticmethod def get_episode_success_map(experiment, seed, step): """Gets a 0-1 array of shape (episodes) where episodes is the number of episodes. Ith value in the result is 0 if the ith episode failed, and 1 otherwise. """ successes = DataReader.get_episodes_with_outcome(experiment, seed, step, 1) successes = np.array(successes) - 1 result = np.zeros(EPISODES) result[successes] = 1 return result @staticmethod def get_episodes_success_counts(experiment): """For a given experiment, for all episodes checks performance of all the models with all possible seeds and checkpoints, and returns an array of shape (episodes) where episodes is the number of episodes, where Ith value is the number of models in this experiment that succeeded in this episode. """ seeds = DataReader.find_option_values('seed', experiment) result = np.zeros(EPISODES) for seed in seeds: checkpoints = DataReader.find_option_values( 'checkpoint', experiment, seed) for checkpoint in checkpoints: success = DataReader.get_episodes_with_outcome(experiment, seed, checkpoint, 1) success = np.array(success) success = success - 1 one_hot = np.zeros((len(success), EPISODES)) one_hot[np.arange(len(success)), success] = 1 one_hot = np.sum(one_hot, axis=0), one_hot = np.squeeze(one_hot) result += one_hot return result @staticmethod def get_episode_speeds(experiment, seed, checkpoint, episode): """ Returns an array of speeds for given model and given episode""" return DataReader.get_model_speeds(experiment, seed, checkpoint)[episode - 1] @staticmethod def get_episode_costs(experiment, seed, checkpoint, episode): """ Returns an array of data frames with all the costs for given evaluation """ costs = DataReader.get_model_costs(experiment, seed, checkpoint) if costs is not None: return costs[episode - 1] else: return None @staticmethod @lru_cache(maxsize=10) def get_model_costs(experiment, seed, checkpoint): """ Returns an array of costs for given model for all episodes""" path = DataReader.get_experiments_mapping()[experiment] regex = path[0] + 'planning_results/' + path[1] + \ f'-seed={seed}-novaluestep{checkpoint}' + '.model.costs' costs_paths = glob(regex) if len(costs_paths) == 0: print( f'costs_paths for {regex} is {costs_paths} and it\'s length is not 1') return None else: raw_costs = torch.load(costs_paths[0]) # list of DataFrame, one per episode costs = [pandas.DataFrame(cost if type(cost) == type([]) else cost.tolist()) for cost in raw_costs] return costs @staticmethod @lru_cache(maxsize=10) def get_model_speeds(experiment, seed, checkpoint): """ Returns an array of speeds for given model for all episodes""" path = DataReader.get_experiments_mapping()[experiment] regex = path[0] + 'planning_results/' + path[1] + \ f'-seed={seed}-novaluestep{checkpoint}' + '.model.states' states_paths = glob(regex) assert len(states_paths) == 1, \ f'states_paths for {regex} is {states_paths} and it\'s length is not 1' states_path = states_paths[0] states = torch.load(states_path) result = [] for i in range(len(states)): episode_states = states[i] episode_states = list(map(lambda x: x[-1], episode_states)) episode_states = torch.stack(episode_states) result.append(episode_states[:, 2:].norm(dim=1)) # is it correct return result @staticmethod @lru_cache(maxsize=10) def get_model_states(experiment, seed, checkpoint): """ Returns an array of states for given model for all episodes""" path = DataReader.get_experiments_mapping()[experiment] regex = path[0] + 'planning_results/' + path[1] + \ f'-seed={seed}-novaluestep{checkpoint}' + '.model.states' states_paths = glob(regex) assert len(states_paths) == 1, \ f'states_paths for {regex} is {states_paths} and it\'s length is not 1' states_path = states_paths[0] states = torch.load(states_path) result = [] for i in range(len(states)): episode_states = states[i] episode_states = list(map(lambda x: x[-1], episode_states)) episode_states = torch.stack(episode_states) result.append(episode_states) return result
[ "json.load", "numpy.sum", "torch.stack", "numpy.argmax", "numpy.std", "imageio.imread", "torch.load", "numpy.zeros", "numpy.mean", "numpy.array", "glob.glob", "numpy.squeeze", "functools.lru_cache", "re.search", "re.compile" ]
[((494, 514), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(1)'}), '(maxsize=1)\n', (503, 514), False, 'from functools import lru_cache\n'), ((4233, 4255), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(100)'}), '(maxsize=100)\n', (4242, 4255), False, 'from functools import lru_cache\n'), ((13831, 13852), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(10)'}), '(maxsize=10)\n', (13840, 13852), False, 'from functools import lru_cache\n'), ((14648, 14669), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(10)'}), '(maxsize=10)\n', (14657, 14669), False, 'from functools import lru_cache\n'), ((15584, 15605), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(10)'}), '(maxsize=10)\n', (15593, 15605), False, 'from functools import lru_cache\n'), ((2863, 2889), 'imageio.imread', 'imageio.imread', (['image_path'], {}), '(image_path)\n', (2877, 2889), False, 'import imageio\n'), ((2909, 2925), 'numpy.argmax', 'np.argmax', (['image'], {}), '(image)\n', (2918, 2925), True, 'import numpy as np\n'), ((3602, 3613), 'glob.glob', 'glob', (['regex'], {}), '(regex)\n', (3606, 3613), False, 'from glob import glob\n'), ((4062, 4073), 'glob.glob', 'glob', (['regex'], {}), '(regex)\n', (4066, 4073), False, 'from glob import glob\n'), ((8529, 8607), 're.compile', 're.compile', (['""".*step\\\\s(\\\\d+).*\\\\s\\\\[.*\\\\π\\\\:\\\\s(.*)\\\\].*\\\\[.*\\\\π\\\\:\\\\s(.*)\\\\]"""'], {}), "('.*step\\\\s(\\\\d+).*\\\\s\\\\[.*\\\\π\\\\:\\\\s(.*)\\\\].*\\\\[.*\\\\π\\\\:\\\\s(.*)\\\\]')\n", (8539, 8607), False, 'import re\n'), ((10741, 10797), 're.compile', 're.compile', (['""".*ep:\\\\s+(\\\\d+).*\\\\|\\\\ssuccess:\\\\s+(\\\\d).*"""'], {}), "('.*ep:\\\\s+(\\\\d+).*\\\\|\\\\ssuccess:\\\\s+(\\\\d).*')\n", (10751, 10797), False, 'import re\n'), ((11619, 11637), 'numpy.zeros', 'np.zeros', (['EPISODES'], {}), '(EPISODES)\n', (11627, 11637), True, 'import numpy as np\n'), ((12189, 12207), 'numpy.zeros', 'np.zeros', (['EPISODES'], {}), '(EPISODES)\n', (12197, 12207), True, 'import numpy as np\n'), ((14197, 14208), 'glob.glob', 'glob', (['regex'], {}), '(regex)\n', (14201, 14208), False, 'from glob import glob\n'), ((15018, 15029), 'glob.glob', 'glob', (['regex'], {}), '(regex)\n', (15022, 15029), False, 'from glob import glob\n'), ((15210, 15233), 'torch.load', 'torch.load', (['states_path'], {}), '(states_path)\n', (15220, 15233), False, 'import torch\n'), ((15954, 15965), 'glob.glob', 'glob', (['regex'], {}), '(regex)\n', (15958, 15965), False, 'from glob import glob\n'), ((16146, 16169), 'torch.load', 'torch.load', (['states_path'], {}), '(states_path)\n', (16156, 16169), False, 'import torch\n'), ((735, 747), 'json.load', 'json.load', (['f'], {}), '(f)\n', (744, 747), False, 'import json\n'), ((1271, 1288), 'glob.glob', 'glob', (['image_paths'], {}), '(image_paths)\n', (1275, 1288), False, 'from glob import glob\n'), ((1896, 1916), 'glob.glob', 'glob', (['gradient_paths'], {}), '(gradient_paths)\n', (1900, 1916), False, 'from glob import glob\n'), ((2713, 2733), 'glob.glob', 'glob', (['gradient_paths'], {}), '(gradient_paths)\n', (2717, 2733), False, 'from glob import glob\n'), ((5274, 5329), 'glob.glob', 'glob', (["(path[0] + 'planning_results/' + path[1] + '*.log')"], {}), "(path[0] + 'planning_results/' + path[1] + '*.log')\n", (5278, 5329), False, 'from glob import glob\n'), ((6047, 6069), 're.search', 're.search', (['regexp', 'log'], {}), '(regexp, log)\n', (6056, 6069), False, 'import re\n'), ((8100, 8115), 'numpy.array', 'np.array', (['steps'], {}), '(steps)\n', (8108, 8115), True, 'import numpy as np\n'), ((11578, 11597), 'numpy.array', 'np.array', (['successes'], {}), '(successes)\n', (11586, 11597), True, 'import numpy as np\n'), ((14411, 14437), 'torch.load', 'torch.load', (['costs_paths[0]'], {}), '(costs_paths[0])\n', (14421, 14437), False, 'import torch\n'), ((15432, 15459), 'torch.stack', 'torch.stack', (['episode_states'], {}), '(episode_states)\n', (15443, 15459), False, 'import torch\n'), ((16368, 16395), 'torch.stack', 'torch.stack', (['episode_states'], {}), '(episode_states)\n', (16379, 16395), False, 'import torch\n'), ((2821, 2841), 'glob.glob', 'glob', (['gradient_paths'], {}), '(gradient_paths)\n', (2825, 2841), False, 'from glob import glob\n'), ((5490, 5569), 'glob.glob', 'glob', (["(path[0] + 'planning_results/' + path[1] + f'-seed={seed}' + '*.model.log')"], {}), "(path[0] + 'planning_results/' + path[1] + f'-seed={seed}' + '*.model.log')\n", (5494, 5569), False, 'from glob import glob\n'), ((12694, 12711), 'numpy.array', 'np.array', (['success'], {}), '(success)\n', (12702, 12711), True, 'import numpy as np\n'), ((12950, 12969), 'numpy.squeeze', 'np.squeeze', (['one_hot'], {}), '(one_hot)\n', (12960, 12969), True, 'import numpy as np\n'), ((5759, 5877), 'glob.glob', 'glob', (["(path[0] + 'planning_results/videos_simulator/' + path[1] +\n f'-seed={seed}-novaluestep{checkpoint}.model/ep*')"], {}), "(path[0] + 'planning_results/videos_simulator/' + path[1] +\n f'-seed={seed}-novaluestep{checkpoint}.model/ep*')\n", (5763, 5877), False, 'from glob import glob\n'), ((9900, 9919), 'numpy.mean', 'np.mean', (['train[key]'], {}), '(train[key])\n', (9907, 9919), True, 'import numpy as np\n'), ((9958, 9976), 'numpy.std', 'np.std', (['train[key]'], {}), '(train[key])\n', (9964, 9976), True, 'import numpy as np\n'), ((10021, 10045), 'numpy.mean', 'np.mean', (['validation[key]'], {}), '(validation[key])\n', (10028, 10045), True, 'import numpy as np\n'), ((10089, 10112), 'numpy.std', 'np.std', (['validation[key]'], {}), '(validation[key])\n', (10095, 10112), True, 'import numpy as np\n'), ((12899, 12922), 'numpy.sum', 'np.sum', (['one_hot'], {'axis': '(0)'}), '(one_hot, axis=0)\n', (12905, 12922), True, 'import numpy as np\n'), ((7959, 7981), 'numpy.array', 'np.array', (['result[seed]'], {}), '(result[seed])\n', (7967, 7981), True, 'import numpy as np\n')]
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mutable QNode, complicated primary parameters benchmark. """ # pylint: disable=invalid-name import numpy as np import pennylane as qml import benchmark_utils as bu def circuit(p, *, aux=0): """A very simple, lightweight mutable quantum circuit.""" qml.RX(p[aux][2], wires=[0]) return qml.expval(qml.PauliZ(0)) class Benchmark(bu.BaseBenchmark): """ This benchmark attempts to measure the efficiency of :meth:`JacobianQNode._construct` for mutable QNodes, using an extreme case where the QNode has lots of primary parameters with a complicated nested structure, but relatively few auxiliary parameters, and only a few of the primary parameters are actually used in the circuit. When the QNode is constructed, a VariableRef is built for each primary parameter, and the qfunc re-evaluated. In this test this is meant to be time-consuming, but it is only strictly necessary if the auxiliary parameters change. The main reasons why there are significant differences in the execution speed of this test between different PL commits: * :meth:`BaseQNode._construct` should only reconstruct the QNode if the auxiliary params have changed. * Most of the primary params are not used in the circuit, hence :meth:`JacobianQNode._construct` should efficiently figure out that partial derivatives wrt. them are always zero. """ name = "mutable qnode, complicated primary params" min_wires = 1 n_vals = range(6, 13, 1) def __init__(self, device=None, verbose=False): super().__init__(device, verbose) self.qnode = None def setup(self): self.qnode = bu.create_qnode(circuit, self.device, mutable=True, interface=None) def benchmark(self, n=8): # n is the number of levels in the primary parameter tree. # Hence the number of primary parameters depends exponentially on n. def create_params(n): """Recursively builds a tree structure with n levels.""" if n <= 0: # the leaves are arrays return np.random.randn(2) # the other nodes have two branches and a scalar return [create_params(n - 1), create_params(n - 1), np.random.randn()] p = create_params(n) def evaluate(aux): """Evaluates the qnode using the given auxiliary params.""" res = self.qnode(p, aux=aux) # check the result assert np.allclose(res, np.cos(p[aux][2])) # first evaluation and construction evaluate(0) # evaluate the node several times more with a different auxiliary argument # (it does not matter if p changes or not, the VariableRefs handle it) for _ in range(1, 10): # If we had evaluate(i % 2) here instead the auxiliary arguments would change # every time, which would negate most possible speedups. evaluate(1) return True
[ "benchmark_utils.create_qnode", "numpy.random.randn", "pennylane.RX", "numpy.cos", "pennylane.PauliZ" ]
[((861, 889), 'pennylane.RX', 'qml.RX', (['p[aux][2]'], {'wires': '[0]'}), '(p[aux][2], wires=[0])\n', (867, 889), True, 'import pennylane as qml\n'), ((912, 925), 'pennylane.PauliZ', 'qml.PauliZ', (['(0)'], {}), '(0)\n', (922, 925), True, 'import pennylane as qml\n'), ((2281, 2348), 'benchmark_utils.create_qnode', 'bu.create_qnode', (['circuit', 'self.device'], {'mutable': '(True)', 'interface': 'None'}), '(circuit, self.device, mutable=True, interface=None)\n', (2296, 2348), True, 'import benchmark_utils as bu\n'), ((2710, 2728), 'numpy.random.randn', 'np.random.randn', (['(2)'], {}), '(2)\n', (2725, 2728), True, 'import numpy as np\n'), ((2854, 2871), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (2869, 2871), True, 'import numpy as np\n'), ((3111, 3128), 'numpy.cos', 'np.cos', (['p[aux][2]'], {}), '(p[aux][2])\n', (3117, 3128), True, 'import numpy as np\n')]
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) dot_product = np.dot(a, b) print(dot_product)
[ "numpy.dot", "numpy.array" ]
[((24, 43), 'numpy.array', 'np.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (32, 43), True, 'import numpy as np\n'), ((48, 67), 'numpy.array', 'np.array', (['[4, 5, 6]'], {}), '([4, 5, 6])\n', (56, 67), True, 'import numpy as np\n'), ((83, 95), 'numpy.dot', 'np.dot', (['a', 'b'], {}), '(a, b)\n', (89, 95), True, 'import numpy as np\n')]
from contextlib import ExitStack as DoesNotRaise from typing import Tuple, Optional import numpy as np import pytest from onemetric.cv.utils.iou import box_iou, mask_iou, box_iou_batch @pytest.mark.parametrize( "box_true, box_detection, expected_result, exception", [ (None, None, None, pytest.raises(ValueError)), ((0., 0., 1.), (0., 0., 1., 1.), None, pytest.raises(ValueError)), ((0., 0., 1., 1.), (0., 0., 1.), None, pytest.raises(ValueError)), ([0., 0., 1., 1.], [0., 0., 1., 1.], None, pytest.raises(ValueError)), ((0., 0., 1., 1.), (0., 1., 1., 2.), 0., DoesNotRaise()), ((0, 1., 1., 2.), (0., 0., 1., 1.), 0., DoesNotRaise()), ((0., 0., 1., 1.), (1., 0., 2., 1.), 0., DoesNotRaise()), ((1., 0., 2., 1.), (0., 0., 1., 1.), 0., DoesNotRaise()), ((0., 0., 1., 1.), (0.25, 0., 1.25, 1.), 0.6, DoesNotRaise()), ((0.25, 0., 1.25, 1.), (0., 0., 1., 1.), 0.6, DoesNotRaise()), ((0., 0., 1., 1.), (0., 0.25, 1., 1.25), 0.6, DoesNotRaise()), ((0., 0.25, 1., 1.25), (0., 0., 1., 1.), 0.6, DoesNotRaise()), ((0., 0., 1., 1.), (0., 0., 1., 1.), 1., DoesNotRaise()), ((0., 0., 3., 3.), (1., 1., 2., 2.), 1/9, DoesNotRaise()), ((1., 1., 2., 2.), (0., 0., 3., 3.), 1/9, DoesNotRaise()) ] ) def test_box_iou( box_true: Tuple[float, float, float, float], box_detection: Tuple[float, float, float, float], expected_result: Optional[float], exception: Exception ) -> None: with exception: result = box_iou(box_true=box_true, box_detection=box_detection) assert result == expected_result @pytest.mark.parametrize( "boxes_true, boxes_detection, expected_result, exception", [ ( None, np.array([ [0., 0.25, 1., 1.25] ]), None, pytest.raises(ValueError) ), ( np.array([ [0., 0.25, 1., 1.25] ]), None, None, pytest.raises(ValueError) ), ( np.array([ [0., 0., 1., 1.], [2., 2., 2.5, 2.5] ]), np.array([ [0., 0., 1., 1.], [2., 2., 2.5, 2.5] ]), np.array([ [1., 0.], [0., 1.] ]), DoesNotRaise() ), ( np.array([ [0., 0., 1., 1.], [0., 0.75, 1., 1.75] ]), np.array([ [0., 0.25, 1., 1.25] ]), np.array([ [0.6], [1/3] ]), DoesNotRaise() ), ( np.array([ [0., 0., 1., 1.], [0., 0.75, 1., 1.75] ]), np.array([ [0., 0.25, 1., 1.25], [0., 0.75, 1., 1.75], [1., 1., 2., 2.] ]), np.array([ [0.6, 1/7, 0], [1/3, 1., 0] ]), DoesNotRaise() ) ] ) def test_box_iou_batch( boxes_true: np.ndarray, boxes_detection: np.ndarray, expected_result: Optional[float], exception: Exception ) -> None: with exception: result = box_iou_batch(boxes_true=boxes_true, boxes_detection=boxes_detection) np.testing.assert_array_equal(result, expected_result) QUARTER_MASK = np.zeros((10, 10)).astype('uint8') QUARTER_MASK[0:5, 0:5] = 1 @pytest.mark.parametrize( "mask_true, mask_detection, expected_result, exception", [ (None, None, None, pytest.raises(ValueError)), (np.zeros((10, 10)).astype('uint8'), np.zeros((20, 20)).astype('uint8'), None, pytest.raises(ValueError)), (np.zeros((20, 20)).astype('uint8'), np.zeros((10, 10)).astype('uint8'), None, pytest.raises(ValueError)), (np.ones((10, 10)).astype('int16'), np.zeros((10, 10)).astype('int16'), None, pytest.raises(ValueError)), (np.ones((10, 10)).astype('uint8') * 2, np.zeros((10, 10)).astype('uint8'), 0., pytest.raises(ValueError)), (np.ones((10, 10)).astype('uint8'), np.zeros((10, 10)).astype('uint8'), 0., DoesNotRaise()), (np.zeros((10, 10)).astype('uint8'), np.ones((10, 10)).astype('uint8'), 0., DoesNotRaise()), (np.zeros((10, 10)).astype('uint8'), np.zeros((10, 10)).astype('uint8'), None, DoesNotRaise()), (np.ones((10, 10)).astype('uint8'), np.ones((10, 10)).astype('uint8'), 1., DoesNotRaise()), (np.ones((10, 10)).astype('uint8'), QUARTER_MASK, 0.25, DoesNotRaise()) ] ) def test_mask_iou(mask_true: np.array, mask_detection: np.array, expected_result: float, exception: Exception) -> None: with exception: result = mask_iou(mask_true=mask_true, mask_detection=mask_detection) assert result == expected_result
[ "numpy.testing.assert_array_equal", "numpy.zeros", "numpy.ones", "contextlib.ExitStack", "pytest.raises", "numpy.array", "onemetric.cv.utils.iou.mask_iou", "onemetric.cv.utils.iou.box_iou_batch", "onemetric.cv.utils.iou.box_iou" ]
[((1550, 1605), 'onemetric.cv.utils.iou.box_iou', 'box_iou', ([], {'box_true': 'box_true', 'box_detection': 'box_detection'}), '(box_true=box_true, box_detection=box_detection)\n', (1557, 1605), False, 'from onemetric.cv.utils.iou import box_iou, mask_iou, box_iou_batch\n'), ((3366, 3435), 'onemetric.cv.utils.iou.box_iou_batch', 'box_iou_batch', ([], {'boxes_true': 'boxes_true', 'boxes_detection': 'boxes_detection'}), '(boxes_true=boxes_true, boxes_detection=boxes_detection)\n', (3379, 3435), False, 'from onemetric.cv.utils.iou import box_iou, mask_iou, box_iou_batch\n'), ((3444, 3498), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['result', 'expected_result'], {}), '(result, expected_result)\n', (3473, 3498), True, 'import numpy as np\n'), ((3516, 3534), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (3524, 3534), True, 'import numpy as np\n'), ((4839, 4899), 'onemetric.cv.utils.iou.mask_iou', 'mask_iou', ([], {'mask_true': 'mask_true', 'mask_detection': 'mask_detection'}), '(mask_true=mask_true, mask_detection=mask_detection)\n', (4847, 4899), False, 'from onemetric.cv.utils.iou import box_iou, mask_iou, box_iou_batch\n'), ((307, 332), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (320, 332), False, 'import pytest\n'), ((382, 407), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (395, 407), False, 'import pytest\n'), ((457, 482), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (470, 482), False, 'import pytest\n'), ((536, 561), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (549, 561), False, 'import pytest\n'), ((613, 627), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (625, 627), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((678, 692), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (690, 692), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((744, 758), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (756, 758), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((810, 824), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (822, 824), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((881, 895), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (893, 895), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((952, 966), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (964, 966), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((1023, 1037), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (1035, 1037), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((1094, 1108), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (1106, 1108), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((1160, 1174), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (1172, 1174), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((1227, 1241), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (1239, 1241), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((1294, 1308), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (1306, 1308), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((1784, 1818), 'numpy.array', 'np.array', (['[[0.0, 0.25, 1.0, 1.25]]'], {}), '([[0.0, 0.25, 1.0, 1.25]])\n', (1792, 1818), True, 'import numpy as np\n'), ((1878, 1903), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1891, 1903), False, 'import pytest\n'), ((1937, 1971), 'numpy.array', 'np.array', (['[[0.0, 0.25, 1.0, 1.25]]'], {}), '([[0.0, 0.25, 1.0, 1.25]])\n', (1945, 1971), True, 'import numpy as np\n'), ((2049, 2074), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2062, 2074), False, 'import pytest\n'), ((2108, 2162), 'numpy.array', 'np.array', (['[[0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 2.5, 2.5]]'], {}), '([[0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 2.5, 2.5]])\n', (2116, 2162), True, 'import numpy as np\n'), ((2216, 2270), 'numpy.array', 'np.array', (['[[0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 2.5, 2.5]]'], {}), '([[0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 2.5, 2.5]])\n', (2224, 2270), True, 'import numpy as np\n'), ((2324, 2358), 'numpy.array', 'np.array', (['[[1.0, 0.0], [0.0, 1.0]]'], {}), '([[1.0, 0.0], [0.0, 1.0]])\n', (2332, 2358), True, 'import numpy as np\n'), ((2414, 2428), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (2426, 2428), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((2462, 2518), 'numpy.array', 'np.array', (['[[0.0, 0.0, 1.0, 1.0], [0.0, 0.75, 1.0, 1.75]]'], {}), '([[0.0, 0.0, 1.0, 1.0], [0.0, 0.75, 1.0, 1.75]])\n', (2470, 2518), True, 'import numpy as np\n'), ((2572, 2606), 'numpy.array', 'np.array', (['[[0.0, 0.25, 1.0, 1.25]]'], {}), '([[0.0, 0.25, 1.0, 1.25]])\n', (2580, 2606), True, 'import numpy as np\n'), ((2648, 2674), 'numpy.array', 'np.array', (['[[0.6], [1 / 3]]'], {}), '([[0.6], [1 / 3]])\n', (2656, 2674), True, 'import numpy as np\n'), ((2732, 2746), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (2744, 2746), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((2780, 2836), 'numpy.array', 'np.array', (['[[0.0, 0.0, 1.0, 1.0], [0.0, 0.75, 1.0, 1.75]]'], {}), '([[0.0, 0.0, 1.0, 1.0], [0.0, 0.75, 1.0, 1.75]])\n', (2788, 2836), True, 'import numpy as np\n'), ((2890, 2975), 'numpy.array', 'np.array', (['[[0.0, 0.25, 1.0, 1.25], [0.0, 0.75, 1.0, 1.75], [1.0, 1.0, 2.0, 2.0]]'], {}), '([[0.0, 0.25, 1.0, 1.25], [0.0, 0.75, 1.0, 1.75], [1.0, 1.0, 2.0, 2.0]]\n )\n', (2898, 2975), True, 'import numpy as np\n'), ((3038, 3082), 'numpy.array', 'np.array', (['[[0.6, 1 / 7, 0], [1 / 3, 1.0, 0]]'], {}), '([[0.6, 1 / 7, 0], [1 / 3, 1.0, 0]])\n', (3046, 3082), True, 'import numpy as np\n'), ((3137, 3151), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (3149, 3151), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((3700, 3725), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3713, 3725), False, 'import pytest\n'), ((3815, 3840), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3828, 3840), False, 'import pytest\n'), ((3930, 3955), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3943, 3955), False, 'import pytest\n'), ((4044, 4069), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4057, 4069), False, 'import pytest\n'), ((4160, 4185), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4173, 4185), False, 'import pytest\n'), ((4272, 4286), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (4284, 4286), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((4373, 4387), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (4385, 4387), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((4477, 4491), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (4489, 4491), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((4577, 4591), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (4589, 4591), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((4658, 4672), 'contextlib.ExitStack', 'DoesNotRaise', ([], {}), '()\n', (4670, 4672), True, 'from contextlib import ExitStack as DoesNotRaise\n'), ((3737, 3755), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (3745, 3755), True, 'import numpy as np\n'), ((3773, 3791), 'numpy.zeros', 'np.zeros', (['(20, 20)'], {}), '((20, 20))\n', (3781, 3791), True, 'import numpy as np\n'), ((3852, 3870), 'numpy.zeros', 'np.zeros', (['(20, 20)'], {}), '((20, 20))\n', (3860, 3870), True, 'import numpy as np\n'), ((3888, 3906), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (3896, 3906), True, 'import numpy as np\n'), ((3967, 3984), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (3974, 3984), True, 'import numpy as np\n'), ((4002, 4020), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (4010, 4020), True, 'import numpy as np\n'), ((4120, 4138), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (4128, 4138), True, 'import numpy as np\n'), ((4197, 4214), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (4204, 4214), True, 'import numpy as np\n'), ((4232, 4250), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (4240, 4250), True, 'import numpy as np\n'), ((4298, 4316), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (4306, 4316), True, 'import numpy as np\n'), ((4334, 4351), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (4341, 4351), True, 'import numpy as np\n'), ((4399, 4417), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (4407, 4417), True, 'import numpy as np\n'), ((4435, 4453), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (4443, 4453), True, 'import numpy as np\n'), ((4503, 4520), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (4510, 4520), True, 'import numpy as np\n'), ((4538, 4555), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (4545, 4555), True, 'import numpy as np\n'), ((4603, 4620), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (4610, 4620), True, 'import numpy as np\n'), ((4081, 4098), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (4088, 4098), True, 'import numpy as np\n')]
""" @author: <NAME>,<NAME> """ import numpy as np import streamlit as st import pandas as pd import plotly.graph_objects as go import plotly.express as px st.title("Synapse Unsupervised Models") uploaded_file = st.file_uploader("Choose a csv file", type="csv") if uploaded_file is not None: data = pd.read_csv(uploaded_file) st.write(data) if uploaded_file is not None: drop_column = st.sidebar.multiselect('X : Features (Selected will be dropped)', data.columns.to_list()) X = data.drop(drop_column,axis = 1) st.header('X : Features') st.write(X) if uploaded_file is not None: if st.sidebar.checkbox("Feature Normalization"): X = (X - np.mean(X))/np.std(X) st.header("X : Features (Normalized)") st.write(X) class Kmeans: def initialize_var(self,X,K=3): X = np.array(X) m,n = X.shape c = np.random.randn(K,n) return X,c,K def assignment_move(self,X,c,K): m = X.shape[0] idx = np.zeros(m) for o in range(10): for i in range(m): temp = np.zeros(K) for j in range(K): temp[j] = np.sum((X[i,:] - c[j,:]) ** 2) idx[i] = np.argmin(temp) for p in range(K): points = [X[j] for j in range(len(X)) if idx[j] == p] c[p] = np.mean(points, axis=0) return idx,c def test(self,X,K=3): self.X,c,self.K = self.initialize_var(X,K) self.idx,self.c = self.assignment_move(self.X,c,self.K) X_ = pd.DataFrame(self.X) idx_ = pd.DataFrame(self.idx) data = pd.concat([X_,idx_],axis =1) return self.c,data def plot_clusters(self,d): a={} if self.X.shape[1]==2: for i in range(2): a['a'+str(i+1)] = self.X[:,i:i+1] a['a1'] = np.reshape(a['a1'],(a['a1']).shape[0],) a['a2'] = np.reshape(a['a2'],(a['a2']).shape[0],) fig = go.Figure(data=go.Scatter(x=a['a1'], y=a['a2'], mode='markers', marker=dict(color=self.idx) )) st.plotly_chart(fig) elif self.X.shape[1]==3: d.columns = ['x','y','z','l'] fig = px.scatter_3d(d, x='x', y='y', z='z',color = 'l') st.plotly_chart(fig) elif self.X.shape[1]==3: print("Incomplete") else: st.error("Your data is in Higher Dimension state") class PCA: def initialization(self,X): X = np.array(X) return X def train(self,X): self.X = self.initialization(X) self.covariance_matrix = np.cov(X.T) self.u,s,v = np.linalg.svd(self.covariance_matrix) sum_s = np.sum(s) self.variance_exp= [] k = 0 for i in s: k = i+k variance = k/sum_s self.variance_exp.append(variance) def K_components(self,n=2): self.X= np.dot(self.X,self.u[:,:n]) return self.X def variance_explained(self): return self.variance_exp if uploaded_file is not None: Algorithms = st.sidebar.selectbox( 'Algorithm', ('None','K-means Clustering','Principal Component Analysis') ) if uploaded_file is not None: if Algorithms == 'K-means Clustering': k_value = st.sidebar.number_input('Enter K value',value = 3) train_button = st.sidebar.checkbox("Click Here for training") if train_button: d = Kmeans() c,data = d.test(X,k_value) st.subheader("Centroids") st.write(c) st.subheader("Clustering Data with labels") st.write(data) d.plot_clusters(data) #except : raise ValueError('graph not computed with NaN values or no. of K value exceeds try again') if Algorithms == 'Principal Component Analysis': k_value = st.sidebar.number_input('Enter K components value',value = 3) train_button = st.sidebar.checkbox("Click Here for training") if train_button: d = PCA() d.train(X) st.header('Variance Explained') st.markdown(d.variance_explained()) st.info('Always Use Feature Normalization when applying PCA') X_pca = d.K_components(k_value) st.header('X : Feature (PCA)') st.write(X_pca)
[ "numpy.sum", "pandas.read_csv", "streamlit.title", "numpy.argmin", "streamlit.sidebar.selectbox", "numpy.linalg.svd", "numpy.mean", "pandas.DataFrame", "streamlit.subheader", "numpy.random.randn", "streamlit.sidebar.checkbox", "numpy.std", "streamlit.info", "numpy.reshape", "numpy.cov", "pandas.concat", "streamlit.error", "streamlit.plotly_chart", "streamlit.header", "plotly.express.scatter_3d", "streamlit.file_uploader", "numpy.dot", "streamlit.sidebar.number_input", "numpy.zeros", "streamlit.write", "numpy.array" ]
[((159, 198), 'streamlit.title', 'st.title', (['"""Synapse Unsupervised Models"""'], {}), "('Synapse Unsupervised Models')\n", (167, 198), True, 'import streamlit as st\n'), ((216, 265), 'streamlit.file_uploader', 'st.file_uploader', (['"""Choose a csv file"""'], {'type': '"""csv"""'}), "('Choose a csv file', type='csv')\n", (232, 265), True, 'import streamlit as st\n'), ((308, 334), 'pandas.read_csv', 'pd.read_csv', (['uploaded_file'], {}), '(uploaded_file)\n', (319, 334), True, 'import pandas as pd\n'), ((339, 353), 'streamlit.write', 'st.write', (['data'], {}), '(data)\n', (347, 353), True, 'import streamlit as st\n'), ((546, 571), 'streamlit.header', 'st.header', (['"""X : Features"""'], {}), "('X : Features')\n", (555, 571), True, 'import streamlit as st\n'), ((576, 587), 'streamlit.write', 'st.write', (['X'], {}), '(X)\n', (584, 587), True, 'import streamlit as st\n'), ((629, 673), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Feature Normalization"""'], {}), "('Feature Normalization')\n", (648, 673), True, 'import streamlit as st\n'), ((3334, 3435), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""Algorithm"""', "('None', 'K-means Clustering', 'Principal Component Analysis')"], {}), "('Algorithm', ('None', 'K-means Clustering',\n 'Principal Component Analysis'))\n", (3354, 3435), True, 'import streamlit as st\n'), ((722, 760), 'streamlit.header', 'st.header', (['"""X : Features (Normalized)"""'], {}), "('X : Features (Normalized)')\n", (731, 760), True, 'import streamlit as st\n'), ((769, 780), 'streamlit.write', 'st.write', (['X'], {}), '(X)\n', (777, 780), True, 'import streamlit as st\n'), ((849, 860), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (857, 860), True, 'import numpy as np\n'), ((895, 916), 'numpy.random.randn', 'np.random.randn', (['K', 'n'], {}), '(K, n)\n', (910, 916), True, 'import numpy as np\n'), ((1012, 1023), 'numpy.zeros', 'np.zeros', (['m'], {}), '(m)\n', (1020, 1023), True, 'import numpy as np\n'), ((1588, 1608), 'pandas.DataFrame', 'pd.DataFrame', (['self.X'], {}), '(self.X)\n', (1600, 1608), True, 'import pandas as pd\n'), ((1624, 1646), 'pandas.DataFrame', 'pd.DataFrame', (['self.idx'], {}), '(self.idx)\n', (1636, 1646), True, 'import pandas as pd\n'), ((1662, 1691), 'pandas.concat', 'pd.concat', (['[X_, idx_]'], {'axis': '(1)'}), '([X_, idx_], axis=1)\n', (1671, 1691), True, 'import pandas as pd\n'), ((2677, 2688), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (2685, 2688), True, 'import numpy as np\n'), ((2817, 2828), 'numpy.cov', 'np.cov', (['X.T'], {}), '(X.T)\n', (2823, 2828), True, 'import numpy as np\n'), ((2850, 2887), 'numpy.linalg.svd', 'np.linalg.svd', (['self.covariance_matrix'], {}), '(self.covariance_matrix)\n', (2863, 2887), True, 'import numpy as np\n'), ((2904, 2913), 'numpy.sum', 'np.sum', (['s'], {}), '(s)\n', (2910, 2913), True, 'import numpy as np\n'), ((3141, 3170), 'numpy.dot', 'np.dot', (['self.X', 'self.u[:, :n]'], {}), '(self.X, self.u[:, :n])\n', (3147, 3170), True, 'import numpy as np\n'), ((3569, 3618), 'streamlit.sidebar.number_input', 'st.sidebar.number_input', (['"""Enter K value"""'], {'value': '(3)'}), "('Enter K value', value=3)\n", (3592, 3618), True, 'import streamlit as st\n'), ((3652, 3698), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Click Here for training"""'], {}), "('Click Here for training')\n", (3671, 3698), True, 'import streamlit as st\n'), ((4161, 4221), 'streamlit.sidebar.number_input', 'st.sidebar.number_input', (['"""Enter K components value"""'], {'value': '(3)'}), "('Enter K components value', value=3)\n", (4184, 4221), True, 'import streamlit as st\n'), ((4246, 4292), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Click Here for training"""'], {}), "('Click Here for training')\n", (4265, 4292), True, 'import streamlit as st\n'), ((704, 713), 'numpy.std', 'np.std', (['X'], {}), '(X)\n', (710, 713), True, 'import numpy as np\n'), ((1901, 1938), 'numpy.reshape', 'np.reshape', (["a['a1']", "a['a1'].shape[0]"], {}), "(a['a1'], a['a1'].shape[0])\n", (1911, 1938), True, 'import numpy as np\n'), ((1963, 2000), 'numpy.reshape', 'np.reshape', (["a['a2']", "a['a2'].shape[0]"], {}), "(a['a2'], a['a2'].shape[0])\n", (1973, 2000), True, 'import numpy as np\n'), ((2255, 2275), 'streamlit.plotly_chart', 'st.plotly_chart', (['fig'], {}), '(fig)\n', (2270, 2275), True, 'import streamlit as st\n'), ((3801, 3826), 'streamlit.subheader', 'st.subheader', (['"""Centroids"""'], {}), "('Centroids')\n", (3813, 3826), True, 'import streamlit as st\n'), ((3839, 3850), 'streamlit.write', 'st.write', (['c'], {}), '(c)\n', (3847, 3850), True, 'import streamlit as st\n'), ((3863, 3906), 'streamlit.subheader', 'st.subheader', (['"""Clustering Data with labels"""'], {}), "('Clustering Data with labels')\n", (3875, 3906), True, 'import streamlit as st\n'), ((3919, 3933), 'streamlit.write', 'st.write', (['data'], {}), '(data)\n', (3927, 3933), True, 'import streamlit as st\n'), ((4384, 4415), 'streamlit.header', 'st.header', (['"""Variance Explained"""'], {}), "('Variance Explained')\n", (4393, 4415), True, 'import streamlit as st\n'), ((4476, 4537), 'streamlit.info', 'st.info', (['"""Always Use Feature Normalization when applying PCA"""'], {}), "('Always Use Feature Normalization when applying PCA')\n", (4483, 4537), True, 'import streamlit as st\n'), ((4594, 4624), 'streamlit.header', 'st.header', (['"""X : Feature (PCA)"""'], {}), "('X : Feature (PCA)')\n", (4603, 4624), True, 'import streamlit as st\n'), ((4637, 4652), 'streamlit.write', 'st.write', (['X_pca'], {}), '(X_pca)\n', (4645, 4652), True, 'import streamlit as st\n'), ((692, 702), 'numpy.mean', 'np.mean', (['X'], {}), '(X)\n', (699, 702), True, 'import numpy as np\n'), ((1106, 1117), 'numpy.zeros', 'np.zeros', (['K'], {}), '(K)\n', (1114, 1117), True, 'import numpy as np\n'), ((1384, 1407), 'numpy.mean', 'np.mean', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (1391, 1407), True, 'import numpy as np\n'), ((2378, 2426), 'plotly.express.scatter_3d', 'px.scatter_3d', (['d'], {'x': '"""x"""', 'y': '"""y"""', 'z': '"""z"""', 'color': '"""l"""'}), "(d, x='x', y='y', z='z', color='l')\n", (2391, 2426), True, 'import plotly.express as px\n'), ((2440, 2460), 'streamlit.plotly_chart', 'st.plotly_chart', (['fig'], {}), '(fig)\n', (2455, 2460), True, 'import streamlit as st\n'), ((1183, 1215), 'numpy.sum', 'np.sum', (['((X[i, :] - c[j, :]) ** 2)'], {}), '((X[i, :] - c[j, :]) ** 2)\n', (1189, 1215), True, 'import numpy as np\n'), ((1244, 1259), 'numpy.argmin', 'np.argmin', (['temp'], {}), '(temp)\n', (1253, 1259), True, 'import numpy as np\n'), ((2565, 2615), 'streamlit.error', 'st.error', (['"""Your data is in Higher Dimension state"""'], {}), "('Your data is in Higher Dimension state')\n", (2573, 2615), True, 'import streamlit as st\n')]