code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
from __future__ import print_function import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator try: import cPickle as pickle except ImportError: import pickle import copy import numpy as np from src.SpectralAnalysis import utils from src.SpectralAnalysis import powerspectrum from src.SpectralAnalysis import mcmc from src.SpectralAnalysis import mle from src.SpectralAnalysis import posterior ########################################## # # class Bayes: Bayesian data analysis for time series # # This class defines a Bayes object that can: # - pick between two models using likelihood ratio tests # - find periodicities by picking out the largest power in # an observation/set of fake periodograms # - search for QPOs via a model selection approach using LRTs # # # TO DO: Need to add smoothing for picking out narrow signals # # # class Bayes(object): """ Bayesian time series analysis This class defines a Bayes object that can: - pick between two models using likelihood ratio tests - find periodicities by picking out the largest power in an observation/set of fake periodograms - search for QPOs via a model selection approach using LRTs Parameters ---------- ps : powerspectrum.Powerspectrum A periodogram object that is to be searched for QPOs namestr: string, optional, default "test" The string that will be used to identify this periodogram when saving output (text files and plots) plot: boolean, optional, default True If True, several diagnostic plots will be saved to disk m: integer, optional, default 1 If the periodogram used is the result of averaging several individual periodograms (or bins), this changes the statistical distributions. Set m to the number of periodograms averaged to be sure to use the right distribution Attributes ---------- Examples -------- """ def __init__(self, ps, namestr='test', plot=True, m=1): assert isinstance(ps, powerspectrum.PowerSpectrum), "ps must be of type powerspectrum.PowerSpectrum!" self.ps = ps self.namestr = namestr self.plot = plot self.m = m def choose_noise_model(self, func1, par1, func2, par2, fitmethod='bfgs', nchain=10, niter=5000, nsim=1000, covfactor=1.0, use_emcee=True, parname=None, noise1=-1, noise2=-1, writefile=True): """ Fit two models func1 and func2, compute the likelihood ratio at the maximum-a-posteriori paramters. If func1 and func2 differ in complexity, the less complex should be func1. Then sample the posterior distribution for the the simpler model (func1), pick parameter sets from the posterior to create fake periodograms. Fit each fake periodogram with the same models as the data, and compute the likelihood ratios such that it is possible to build up a posterior distribution for the likelihood ratios and compute a posterior predictive p-value that the data can be explained sufficiently with the simpler model. Parameters ---------- func1 : function Parametric model for the periodogram. Needs to be a function that takes an array of frequencies and k parameters, and returns an array of model powers. The function should include a parameter setting a constant background level, and this parameter should be last! par1 : {list, array-like} Input guesses for the MAP fit using func1. The number of elements *must* equal the number of parameters k taken by func1. func2 : function Parametric model for the periodogram. Needs to be a function that takes an array of frequencies and n parameters, and returns an array of model powers The function should include a parameter setting a constant background level, and this parameter should be last! par2 : {list, array-like} Input guesses for the MAP fit using func2. The number of elements *must* equal the number of parameters n taken by func2. fitmethod : string, optional, default bfgs Allows the choice of different minimization algorithms. Default uses BFGS, which is pretty robust for most purposes. nchain : int, optional, default 10 The number of chains or walkers to use in MCMC. For Metropolis-Hastings, use ~10-20 and many samples For emcee, use as many as you can afford (~500) and fewer samples niter : int, optional, default 5000 Sets the length of the Markov chains. For Metropolis-Hastings, this needs to be large (>10000) For emcee, this can be smaller, but it's a good idea to verify that the chains have mixed. nsim : int, optional, default 1000 The number of simulations to use when computing the posterior distribution of the likelihood ratio. Note that this also sets the maximum precision of the posterior predictive p-value (for 1000 simulations, the p-value can be constrained only to 0.001). covfactor : float, optional, default 1.0 A tuning parameter for the MCMC step. Used only in Metropolis-Hastings. use_emcee : boolean, optional, default True If True (STRONGLY RECOMMENDED), use the emcee package for running MCMC. If False, use Metropolis-Hastings. parname : list, optional, default None Include a list of strings here to set parameter names for plotting noise1, noise2 : int, optional, default -1 The index for the noise parameter in func1 and func2. In the pre-defined models, this index is *always* -1. """ resfilename = self.namestr + "_choosenoisemodel.dat" resfile = utils.TwoPrint(resfilename) ### make strings for function names from function definition func1name = "model1" func2name = "model2" ### step 1: fit both models to observation and compute LRT psfit = mle.PerMaxLike(self.ps, fitmethod=fitmethod, obs=True) obslrt = psfit.compute_lrt(func1, par1, func2, par2, noise1=noise1, noise2=noise2, m=self.m) ### get out best fit parameters and associated quantities fitpars1 = getattr(psfit, func1name + 'fit') fitpars2 = getattr(psfit, func2name + 'fit') if self.plot: ### plot the periodogram and best fit models psfit.plotfits(fitpars1, fitpars2, namestr=self.namestr, log=True) if self.m == 1: lpost = posterior.PerPosterior(self.ps, func1) else: lpost = posterior.StackPerPosterior(self.ps, func1, self.m) ### Step 2: Set up Markov Chain Monte Carlo Simulations ### of model 1: mcobs = mcmc.MarkovChainMonteCarlo(self.ps.freq, self.ps.ps, lpost, topt=fitpars1['popt'], tcov=fitpars1['cov'], covfactor=covfactor, niter=niter, nchain=nchain, parname=parname, check_conv=True, namestr=self.namestr, use_emcee=use_emcee, plot=self.plot, printobj=resfile, m=self.m) ### Step 3: create fake periodograms out of MCMCs fakeper = mcobs.simulate_periodogram(nsim=nsim) ### empty lists for simulated quantities of interest: sim_lrt, sim_deviance, sim_ksp, sim_maxpow, sim_merit, sim_fpeak, sim_y0, sim_srat = [], [], [], [], [], [], [], [] ### Step 4: Fit fake periodograms and read out parameters of interest from each fit: for i, x in enumerate(fakeper): try: fitfake = mle.PerMaxLike(x, fitmethod=fitmethod, obs=False) lrt = fitfake.compute_lrt(func1, par1, func2, par2, noise1=noise1, noise2=noise2, m=self.m) # resfile('Fitting of fake periodogram ' + str(i) + ' failed! Returning ...') # return psfit, fakeper, mcobs sim_pars1 = getattr(fitfake, func1name + 'fit') sim_pars2 = getattr(fitfake, func2name + 'fit') # if lrt > 20: # fitfake.plotfits(sim_pars1, sim_pars2, namestr=self.namestr+'_'+str(i)) sim_lrt.append(lrt) sim_deviance.append(sim_pars1['deviance']) sim_ksp.append(sim_pars1['ksp']) sim_maxpow.append(sim_pars1['maxpow']) sim_merit.append(sim_pars1['merit']) sim_fpeak.append(sim_pars1['maxfreq']) sim_y0.append(sim_pars1['mfit'][sim_pars1['maxind']]) sim_srat.append(sim_pars1['sobs']) except KeyboardInterrupt: break if len(sim_maxpow) == 0: resfile("Analysis of Burst failed! Returning ...") return False, False, False else: ### Step 5: Compute Bayesian posterior probabilities of individual quantities p_maxpow = float(len([x for x in sim_maxpow if x > fitpars1['maxpow']])) / float(len(sim_maxpow)) p_deviance = float(len([x for x in sim_deviance if x > fitpars1['deviance']])) / float(len(sim_deviance)) p_ksp = float(len([x for x in sim_ksp if x > fitpars1['ksp']])) / float(len(sim_ksp)) p_merit = float(len([x for x in sim_merit if x > fitpars1['merit']])) / float(len(sim_merit)) p_lrt = float(len([x for x in sim_lrt if x > obslrt])) / float(len(sim_lrt)) p_srat = float(len([x for x in sim_srat if x > fitpars1['sobs']])) / float(len(sim_srat)) resfile('simulated srat: ' + str(sim_srat)) resfile('observed srat: ' + str(fitpars1['sobs'])) resfile("p(LRT) = " + str(p_lrt)) resfile("KSP(obs) = " + str(fitpars1['ksp'])) resfile("mean(sim_ksp) = " + str(np.mean(sim_ksp))) resfile("Merit(obs) = " + str(fitpars1['merit'])) resfile("mean(sim_merit) = " + str(np.mean(sim_merit))) resfile("Srat(obs) = " + str(fitpars1['sobs'])) resfile("mean(sim_srat) = " + str(np.mean(sim_srat))) ### Step 6: Compute errors of Bayesian posterior probabilities pmaxpow_err = np.sqrt(p_maxpow * (1.0 - p_maxpow) / float(len(sim_ksp))) pdeviance_err = np.sqrt(p_deviance * (1.0 - p_deviance) / float(len(sim_ksp))) pksp_err = np.sqrt(p_ksp * (1.0 - p_ksp) / float(len(sim_ksp))) pmerit_err = np.sqrt(p_merit * (1.0 - p_merit) / float(len(sim_ksp))) plrt_err = np.sqrt(p_lrt * (1.0 - p_lrt) / float(len(sim_ksp))) psrat_err = np.sqrt(p_srat * (1.0 - p_srat) / float(len(sim_ksp))) ### Display results on screen and make funky plots resfile("Bayesian p-value for maximum power P_max = " + str(p_maxpow) + " +/- " + str(pmaxpow_err)) resfile("Bayesian p-value for deviance D = " + str(p_deviance) + " +/- " + str(pdeviance_err)) resfile("Bayesian p-value for KS test: " + str(p_ksp) + " +/- " + str(pksp_err)) resfile("Bayesian p-value for Merit function: " + str(p_merit) + " +/- " + str(pmerit_err)) resfile("Bayesian p-value for the np.sum of residuals: " + str(p_srat) + " +/- " + str(psrat_err)) resfile("Bayesian p-value for Likelihood Ratio: " + str(p_lrt) + " +/- " + str(plrt_err)) if self.plot: n, bins, patches = plt.hist(sim_lrt, bins=100, normed=True, color="cyan", histtype='stepfilled') plt.vlines(obslrt, 0.0, 0.8 * max(n), lw=4, color='navy') plt.savefig(self.namestr + '_lrt.png', format='png') plt.close() summary = {"p_lrt": [p_lrt, plrt_err], "p_maxpow": [p_maxpow, pmaxpow_err], "p_deviance": [p_deviance, pdeviance_err], "p_ksp": [p_ksp, pksp_err], "p_merit": [p_merit, pmerit_err], "p_srat": [p_srat, psrat_err], "postmean": mcobs.mean, "posterr": mcobs.std, "postquantiles": mcobs.ci, "rhat": mcobs.rhat, "acor": mcobs.acor, "acceptance": mcobs.acceptance} return psfit, fakeper, summary def find_periodicity(self, func, par, fitmethod='bfgs', nchain=10, niter=5000, nsim=1000, covfactor=1.0, parname=None, noise=-1, use_emcee=True, searchfreq=None): """ Find periodicities in observed data and compute significance via MCMCs. First, fit the periodogram with func and compute the maximum-a-posteriori (MAP) estimate. Divide the data by the MAP model; for a perfect data-model fit, the resulting residuals should follow a chi-square distribution with two degrees of freedom. Find the highest power in the residuals and its frequency. Sample the posterior distribution of parameters for func using MCMC, and create fake periodograms from samples of the posterior. For each fake periodogram, find the MAP estimate, divide out the MAP model and find the highest power in that periodogram. Create a posterior distribution of maximum powers and compute a posterior predictive p-value of seeing the maximum power in the data under the null hypothesis (no QPO). Parameters ---------- func : function Parametric model for the periodogram. Needs to be a function that takes an array of frequencies and k parameters, and returns an array of model powers. The function should include a parameter setting a constant background level, and this parameter should be last! par : {list, array-like} Input guesses for the parameters taken by func. The number of elements in this list or array must match the number of parameters k taken by func. fitmethod : string, optional, default "bfgs" Choose the optimization algorithm used when minimizing the -log-likelihood. Choices are listed in mle.py, but the default (bfgs) should be sufficient for most applications. nchain : int, optional, default 10 The number of chains or walkers to use in MCMC. For Metropolis-Hastings, use ~10-20 and many samples For emcee, use as many as you can afford (~500) and fewer samples niter : int, optional, default 5000 Sets the length of the Markov chains. For Metropolis-Hastings, this needs to be large (>10000) For emcee, this can be smaller, but it's a good idea to verify that the chains have mixed. nsim : int, optional, default 1000 The number of simulations to use when computing the posterior distribution of the likelihood ratio. Note that this also sets the maximum precision of the posterior predictive p-value (for 1000 simulations, the p-value can be constrained only to 0.001). covfactor : float, optional, default 1.0 A tuning parameter for the MCMC step. Used only in Metropolis-Hastings. parname : list, optional, default None Include a list of strings here to set parameter names for plotting noise: int, optional, default -1 The index for the noise parameter in func. In the pre-defined models, this index is *always* -1. use_emcee : boolean, optional, default True If True (STRONGLY RECOMMENDED), use the emcee package for running MCMC. If False, use Metropolis-Hastings. """ ## the file name where the output will be stored resfilename = self.namestr + "_findperiodicity_results.dat" ## open the output log file resfile = utils.TwoPrint(resfilename) ### step 1: fit model to observation psfit = mle.PerMaxLike(self.ps, fitmethod=fitmethod, obs=True) fitpars = psfit.mlest(func, par, obs=True, noise=noise, m=self.m) bindict = fitpars['bindict'] # print('popt: ' + str(fitpars['popt'])) ## which posterior do I need to use? if self.m == 1: lpost = posterior.PerPosterior(self.ps, func) else: lpost = posterior.StackPerPosterior(self.ps, func, self.m) ### Step 2: Set up Markov Chain Monte Carlo Simulations ### of model 1: mcobs = mcmc.MarkovChainMonteCarlo(self.ps.freq, self.ps.ps, lpost, topt=fitpars['popt'], tcov=fitpars['cov'], covfactor=covfactor, niter=niter, nchain=nchain, parname=parname, check_conv=True, namestr=self.namestr, use_emcee=True, plot=self.plot, printobj=resfile, m=self.m) ### Step 3: create fake periodograms out of MCMCs fakeper = mcobs.simulate_periodogram(nsim=nsim) sim_pars_all, sim_deviance, sim_ksp, sim_fpeak, sim_srat, \ sim_maxpow, sim_merit, sim_y0, sim_s3max, sim_s5max, sim_s11max = [], [], [], [], [], [], [], [], [], [], [] bmax = int(self.ps.freq[-1] / (2.0 * (self.ps.freq[1] - self.ps.freq[0]))) bins = [1, 3, 5, 7, 10, 15, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000] binlist = [r for r in fitpars["bindict"].keys()] nbins = len(binlist) / 4 sain = copy.copy(fitpars['popt']) # print('popt2: ' + str(fitpars['popt'])) ### Step 4: Fit fake periodograms: for i, x in enumerate(fakeper): try: # print('popt' + str(i) + 'a : ' + str(fitpars['popt'])) fitfake = mle.PerMaxLike(x, fitmethod=fitmethod, obs=False) # print('popt' + str(i) + 'b : ' + str(fitpars['popt'])) sim_pars = fitfake.mlest(func, sain, obs=False, noise=noise, m=self.m) # print('popt' + str(i) + 'c : ' + str(fitpars['popt'])) sim_pars_all.append(sim_pars) sim_deviance.append(sim_pars['deviance']) sim_ksp.append(sim_pars['ksp']) sim_maxpow.append(sim_pars['maxpow']) sim_merit.append(sim_pars['merit']) sim_fpeak.append(sim_pars['maxfreq']) sim_y0.append(sim_pars['mfit'][sim_pars['maxind']]) sim_srat.append(sim_pars['sobs']) sim_s3max.append(sim_pars['s3max']) sim_s5max.append(sim_pars['s5max']) sim_s11max.append(sim_pars['s11max']) except KeyboardInterrupt: break # except: # print("Simulation failed! Continuing ...") # continue # print('popt' + str(i) + 'd : ' + str(fitpars['popt'])) # print('popt3: ' + str(fitpars['popt'])) ### upper limit is the power in the sorted array where p_maxpow would be 0.05 ### i.e. when only 0.05*nsim simulations are higher than this ### note: sometimes simulations fail, therefore the 5% limit should be 0.05*len(sims) fiveperlim = int(0.05 * len(sim_maxpow)) if fiveperlim == 0: resfile('Warning! Too few simulations to compute five percent limit reliably!') fiveperlim = 1 ninetyfiveperlim = len(sim_maxpow) - fiveperlim # print('popt4: ' + str(fitpars['popt'])) bindicts = [x["bindict"] for x in sim_pars_all] ### get out binned powers: maxpows_all = {} binprob = {} for b in bins[:nbins]: binps = fitpars['bindict']['bin' + str(b)] bmaxpow = np.array([x["bmax" + str(b)] for x in bindicts]) maxpows_all["bin" + str(b)] = bmaxpow bindict['sim_bmaxpow' + str(b)] = bmaxpow p_bmaxpow = float(len([x for x in bmaxpow if x > fitpars['bindict']["bmax" + str(b)]])) / float( len(bmaxpow)) bindict["p_maxpow" + str(b)] = p_bmaxpow bmaxpow_err = np.sqrt(p_bmaxpow * (1.0 - p_bmaxpow) / float(len(bmaxpow))) bindict['p_maxpow' + str(b) + 'err'] = bmaxpow_err sim_bmaxpow_sort = np.msort(bmaxpow) ### note: this is the limit for 2*I/S --> multiply by S to get powers for each frequency ### Like everything else, this is n-trial corrected! # print('len(bmaxpow_sort) : ' + str(len(sim_bmaxpow_sort))) resfile('ninetyfiveperlim: ' + str(ninetyfiveperlim)) bmaxpow_ul = sim_bmaxpow_sort[ninetyfiveperlim] bindict['bmax' + str(b) + '_ul'] = bmaxpow_ul resfile('The posterior p-value for the maximum residual power for a binning of ' + str( self.ps.df * b) + 'Hz is p = ' + str(p_bmaxpow) + ' +/- ' + str(bmaxpow_err)) resfile('The corresponding value of the T_R statistic at frequency f = ' + str( fitpars["bindict"]["bmaxfreq" + str(b)]) + ' is 2I/S = ' + str(fitpars['bindict']["bmax" + str(b)])) resfile('The upper limit on the T_R statistic is 2I/S = ' + str(bmaxpow_ul)) ### now turn upper limit into an rms amplitude: ## first compute broadband noise model for binned frequencies bintemplate = func(fitpars['bindict']['bin' + str(b)].freq, *fitpars['popt']) resfile("bintemplate[0]: " + str(bintemplate[0])) ## then compute upper limits for powers I_j depending on frequency binpowers = bmaxpow_ul * bintemplate / 2.0 - bintemplate ## now compute rms amplitude at 40, 70, 100 and 300 Hz ## first, convert powers into rms normalization, if they're not already if self.ps.norm == 'leahy': binpowers = binpowers / (self.ps.df * b * self.ps.nphots) elif self.ps.norm == 'variance': binpowers = binpowers * self.ps.n ** 2.0 / (self.ps.df * b * self.ps.nphots ** 2.0) # print('len(binps.freq): ' + str(len(binps.freq))) # print('len(binpowers): ' + str(len(binpowers))) if searchfreq is None: searchfreq = [40.0, 70.0, 100.0, 300.0, 500.0, 1000.0] ## for 40 Hz: print(searchfreq) for bc in searchfreq: if bc > (binps.freq[1] - binps.freq[0]): bind = np.searchsorted(binps.freq, bc) - 1 bpow = binpowers[bind] brms = np.sqrt(bpow * b * self.ps.df) resfile('The upper limit on the power at ' + str(bc) + 'Hz for a binning of ' + str(b) + ' is P = ' + str(bpow * (self.ps.df * b * self.ps.nphots))) resfile('The upper limit on the rms amplitude at ' + str(bc) + 'Hz for a binning of ' + str(b) + ' is rms = ' + str(brms)) bindict['bin' + str(b) + '_ul_%.4fHz' % bc] = brms else: continue ### Step 5: Compute Bayesian posterior probabilities of individual quantities p_maxpow = float(len([x for x in sim_maxpow if x > fitpars['maxpow']])) / float(len(sim_maxpow)) p_deviance = float(len([x for x in sim_deviance if x > fitpars['deviance']])) / float(len(sim_deviance)) p_ksp = float(len([x for x in sim_ksp if x > fitpars['ksp']])) / float(len(sim_ksp)) p_merit = float(len([x for x in sim_merit if x > fitpars['merit']])) / float(len(sim_merit)) p_srat = float(len([x for x in sim_srat if x > fitpars['sobs']])) / float(len(sim_srat)) p_s3max = float(len([x for x in sim_s3max if x > fitpars['s3max']])) / float(len(sim_s3max)) p_s5max = float(len([x for x in sim_s5max if x > fitpars['s5max']])) / float(len(sim_s5max)) p_s11max = float(len([x for x in sim_s11max if x > fitpars['s11max']])) / float(len(sim_s11max)) ### sort maximum powers from lowest to highest sim_maxpow_sort = np.msort(sim_maxpow) sim_s3max_sort = np.msort(sim_s3max) sim_s5max_sort = np.msort(sim_s5max) sim_s11max_sort = np.msort(sim_s11max) ### note: this is the limit for 2*I/S --> multiply by S to get powers for each frequency ### Like everything else, this is n-trial corrected! maxpow_ul = sim_maxpow_sort[ninetyfiveperlim] ### Step 6: Compute errors of Bayesian posterior probabilities pmaxpow_err = np.sqrt(p_maxpow * (1.0 - p_maxpow) / float(len(sim_ksp))) pdeviance_err = np.sqrt(p_deviance * (1.0 - p_deviance) / float(len(sim_ksp))) pksp_err = np.sqrt(p_ksp * (1.0 - p_ksp) / float(len(sim_ksp))) pmerit_err = np.sqrt(p_merit * (1.0 - p_merit) / float(len(sim_ksp))) psrat_err = np.sqrt(p_srat * (1.0 - p_srat) / float(len(sim_ksp))) ps3max_err = np.sqrt(p_s3max * (1.0 - p_s3max) / float(len(sim_ksp))) ps5max_err = np.sqrt(p_s5max * (1.0 - p_s5max) / float(len(sim_ksp))) ps11max_err = np.sqrt(p_s11max * (1.0 - p_s11max) / float(len(sim_ksp))) ### Display results on screen and make funky plots resfile("Bayesian p-value for maximum power P_max = " + str(p_maxpow) + " +/- " + str(pmaxpow_err)) # resfile('Upper limit on maximum signal power P_max_ul = ' + str(maxpow_ul)) resfile("Bayesian p-value for maximum power P_max = " + str(p_s3max) + " +/- " + str(ps3max_err)) # resfile('Upper limit on maximum signal power P_max_ul = ' + str(s3max_ul)) resfile("Bayesian p-value for maximum power P_max = " + str(p_s5max) + " +/- " + str(ps5max_err)) # resfile('Upper limit on maximum signal power P_max_ul = ' + str(s5max_ul)) resfile("Bayesian p-value for maximum power P_max = " + str(p_s11max) + " +/- " + str(ps11max_err)) # resfile('Upper limit on maximum signal power P_max_ul = ' + str(s11max_ul)) resfile("Bayesian p-value for deviance D = " + str(p_deviance) + " +/- " + str(pdeviance_err)) resfile("Bayesian p-value for KS test: " + str(p_ksp) + " +/- " + str(pksp_err)) resfile("Bayesian p-value for Merit function: " + str(p_merit) + " +/- " + str(pmerit_err)) resfile("Bayesian p-value for the np.sum of residuals: " + str(p_srat) + " +/- " + str(psrat_err)) if self.plot: plt.subplot(2, 2, 1) n, bins, patches = plt.hist(sim_maxpow, bins=100, normed=True, color="cyan", histtype='stepfilled') xmin, xmax = min(min(bins), fitpars['maxpow']) / 1.2, max(25, fitpars['maxpow'] * 1.2) plt.axis([xmin, xmax, 0.0, max(n)]) plt.vlines(fitpars['maxpow'], 0.0, max(n), lw=2, color='navy') plt.title('unsmoothed data', fontsize=12) plt.subplot(2, 2, 2) n, bins, patches = plt.hist(sim_s3max, bins=100, normed=True, color="cyan", histtype='stepfilled') xmin, xmax = min(min(bins), fitpars['s3max']) / 1.2, max(25, fitpars['s3max'] * 1.2) plt.axis([xmin, xmax, 0.0, max(n)]) plt.vlines(fitpars['s3max'], 0.0, max(n), lw=2, color='navy') plt.title('smoothed (3) data', fontsize=12) plt.subplot(2, 2, 3) n, bins, patches = plt.hist(sim_s3max, bins=100, normed=True, color="cyan", histtype='stepfilled') xmin, xmax = min(min(bins), fitpars['s5max']) / 1.2, max(25, fitpars['s5max'] * 1.2) plt.axis([xmin, xmax, 0.0, max(n)]) plt.vlines(fitpars['s5max'], 0.0, max(n), lw=2, color='navy') plt.title('smoothed (5) data/model outlier', fontsize=12) plt.subplot(2, 2, 4) n, bins, patches = plt.hist(sim_s3max, bins=100, normed=True, color="cyan", histtype='stepfilled') xmin, xmax = min(min(bins), fitpars['s11max']) / 1.2, max(25, fitpars['s3max'] * 1.2) plt.axis([xmin, xmax, 0.0, max(n)]) plt.vlines(fitpars['s11max'], 0.0, max(n), lw=2, color='navy') plt.title('smoothed (11) data', fontsize=12) plt.savefig(self.namestr + '_maxpow.png', format='png') plt.close() results = {"fitpars": fitpars, 'bindict': bindict, 'maxpows_all': maxpows_all, 'mcobs': mcobs, 'p_maxpow': [sim_maxpow, p_maxpow, pmaxpow_err], 'maxpow_ul': maxpow_ul, 'p_s3max': [sim_s3max, p_s3max, ps3max_err], 'p_s5max': [sim_s5max, p_s5max, ps5max_err], 'p_s11max': [sim_s11max, p_s11max, ps11max_err], 'p_merit': [p_merit, pmerit_err], 'p_srat': [p_srat, psrat_err], 'p_deviance': [p_deviance, pdeviance_err], 'fitpars': fitpars, "postmean": mcobs.mean, "posterr": mcobs.std, "postquantiles": mcobs.ci, "rhat": mcobs.rhat, "acor": mcobs.acor, "acceptance": mcobs.acceptance} return results def find_qpo(self, func, ain, fitmethod='constbfgs', nchain=10, niter=5000, nsim=1000, covfactor=1.0, parname=None, plotstr=None, use_emcee=True): """ Find QPOs by fitting a QPO + background model to *every* frequency. NOTE: I rarely ever use this because it's really computationally expensive. Parameters ---------- func : function Parametric model for the periodogram. Needs to be a function that takes an array of frequencies and k parameters, and returns an array of model powers. The function should include a parameter setting a constant background level, and this parameter should be last! par : {list, array-like} Input guesses for the parameters taken by func. The number of elements in this list or array must match the number of parameters k taken by func. fitmethod : string, optional, default "bfgs" Choose the optimization algorithm used when minimizing the -log-likelihood. Choices are listed in mle.py, but the default (bfgs) should be sufficient for most applications. nchain : int, optional, default 10 The number of chains or walkers to use in MCMC. For Metropolis-Hastings, use ~10-20 and many samples For emcee, use as many as you can afford (~500) and fewer samples niter : int, optional, default 5000 Sets the length of the Markov chains. For Metropolis-Hastings, this needs to be large (>10000) For emcee, this can be smaller, but it's a good idea to verify that the chains have mixed. nsim : int, optional, default 1000 The number of simulations to use when computing the posterior distribution of the likelihood ratio. Note that this also sets the maximum precision of the posterior predictive p-value (for 1000 simulations, the p-value can be constrained only to 0.001). covfactor : float, optional, default 1.0 A tuning parameter for the MCMC step. Used only in Metropolis-Hastings. parname : list, optional, default None Include a list of strings here to set parameter names for plotting noise: int, optional, default -1 The index for the noise parameter in func. In the pre-defined models, this index is *always* -1. use_emcee : boolean, optional, default True If True (STRONGLY RECOMMENDED), use the emcee package for running MCMC. If False, use Metropolis-Hastings. """ if plotstr == None: plotstr = self.namestr funcname = str(func).split()[1] # print("<< --- len(self.ps beginning): " + str(len(self.ps.ps))) ### step 1: fit model to observation psfit = mle.PerMaxLike(self.ps, fitmethod=fitmethod, obs=True) fitpars = psfit.mlest(func, ain, obs=True, noise=-1, m=self.m) # print("<< --- len(self.ps beginning): " + str(len(self.ps.ps))) if self.m == 1: lpost = posterior.PerPosterior(self.ps, func) else: lpost = posterior.StackPerPosterior(self.ps, func, self.m) ### Step 2: Set up Markov Chain Monte Carlo Simulations ### of model 1: mcobs = mcmc.MarkovChainMonteCarlo(self.ps.freq, self.ps.ps, lpost, topt=fitpars['popt'], tcov=fitpars['cov'], covfactor=covfactor, niter=niter, nchain=nchain, parname=parname, check_conv=True, namestr=self.namestr, use_emcee=True, plot=self.plot, m=self.m) ### find optimum QPO values for the real data obslrt, optpars, qpopars = psfit.find_qpo(func, ain, plot=True, obs=True, plotname=self.namestr + '_loglikes') ### simulate lots of realizations of the broadband noise model from MCMCs funcfake = mcobs.simulate_periodogram(nsim=nsim) ### empty lists to store simulated LRTS and parameters in sim_lrt, sim_optpars, sim_qpopars, sim_deviance, sim_ksp, sim_merit, sim_srat = [], [], [], [], [], [], [] simno = 0 ### run QPO search on each and return likelihood ratios parameters for each for x in funcfake: try: simno = simno + 1 sim_psfit = mle.PerMaxLike(x, fitmethod='constbfgs', obs=False) slrt, soptpars, sqpopars = sim_psfit.find_qpo(func, ain, obs=False, plot=True, plotname=plotstr + '_sim' + str(simno) + '_qposearch') sim_lrt.append(slrt) sim_optpars.append(soptpars) sim_qpopars.append(sqpopars) sim_deviance.append(soptpars['deviance']) sim_ksp.append(soptpars['ksp']) sim_merit.append(soptpars['merit']) sim_srat.append(soptpars['sobs']) except KeyboardInterrupt: break ### Step 5: Compute Bayesian posterior probabilities of individual quantities p_deviance = float(len([x for x in sim_deviance if x > optpars['deviance']])) / float(len(sim_deviance)) p_ksp = float(len([x for x in sim_ksp if x > optpars['ksp']])) / float(len(sim_ksp)) p_merit = float(len([x for x in sim_merit if x > optpars['merit']])) / float(len(sim_merit)) p_lrt = float(len([x for x in sim_lrt if x > obslrt])) / float(len(sim_lrt)) p_srat = float(len([x for x in sim_srat if x > optpars['sobs']])) / float(len(sim_srat)) print("p(LRT) = " + str(p_lrt)) # print("LRT(obs) = " + str(obslrt)) # print("mean(sim_lrt) = " + str(np.mean(sim_lrt))) # print("Deviance(obs) = " + str(fitpars1['deviance'])) # print("mean(sim_deviance) = " + str(np.mean(sim_deviance))) print("KSP(obs) = " + str(optpars['ksp'])) print("mean(sim_ksp) = " + str(np.mean(sim_ksp))) print("Merit(obs) = " + str(optpars['merit'])) print("mean(sim_merit) = " + str(np.mean(sim_merit))) print("Srat(obs) = " + str(optpars['sobs'])) print("mean(sim_srat) = " + str(np.mean(sim_srat))) ### Step 6: Compute errors of Bayesian posterior probabilities pdeviance_err = np.sqrt(p_deviance * (1.0 - p_deviance) / float(len(sim_ksp))) pksp_err = np.sqrt(p_ksp * (1.0 - p_ksp) / float(len(sim_ksp))) pmerit_err = np.sqrt(p_merit * (1.0 - p_merit) / float(len(sim_ksp))) plrt_err = np.sqrt(p_lrt * (1.0 - p_lrt) / float(len(sim_ksp))) psrat_err = np.sqrt(p_srat * (1.0 - p_srat) / float(len(sim_ksp))) ### Display results on screen and make funky plots print("Bayesian p-value for deviance D = " + str(p_deviance) + " +/- " + str(pdeviance_err)) print("Bayesian p-value for KS test: " + str(p_ksp) + " +/- " + str(pksp_err)) print("Bayesian p-value for Merit function: " + str(p_merit) + " +/- " + str(pmerit_err)) print("Bayesian p-value for the np.sum of residuals: " + str(p_srat) + " +/- " + str(psrat_err)) print("Bayesian p-value for Likelihood Ratio: " + str(p_lrt) + " +/- " + str(plrt_err)) if self.plot: n, bins, patches = plt.hist(sim_lrt, bins=100, normed=True, histtype='stepfilled') plt.vlines(obslrt, 0.0, 0.8 * max(n), lw=4, color='m') plt.savefig(self.namestr + '_qpolrt.png', format='png') plt.close() summary = {"p_lrt": [p_lrt, plrt_err], "p_deviance": [p_deviance, pdeviance_err], "p_ksp": [p_ksp, pksp_err], "p_merit": [p_merit, pmerit_err], "p_srat": [p_srat, psrat_err], "postmean": mcobs.mean, "posterr": mcobs.std, "postquantiles": mcobs.ci, "rhat": mcobs.rhat, "acor": mcobs.acor, "acceptance": mcobs.acceptance} return summary def print_summary(self, summary): """ Print a summary of the results. NOT USED! """ try: keys = summary.keys() except AttributeError: raise Exception("Summary must be a dictionary!") probs = dict() postpars = dict() ### sort out p-values and posterior distribution of parameters for x in keys: if x[:2] == 'p_': probs[x] = summary[x] else: postpars[x] = summary[x] print("The ensemble acceptance rate is " + str(postpars["acceptance"]) + " .") try: print("The autocorrelation times are: " + str(postpars["acor"])) except KeyError: print("Module Acor not found. Cannot compute autocorrelation times for the parameters") for i, x in enumerate(postpars["rhat"]): print("The $R_hat$ value for Parameter " + str(i) + " is " + str(x)) ### print posterior summary of parameters: print("-- Posterior Summary of Parameters: \n") print("parameter \t mean \t\t sd \t\t 5% \t\t 95% \n") print("---------------------------------------------\n") for i in range(len(postpars['postmean'])): print("theta[" + str(i) + "] \t " + str(postpars['postmean'][i]) + "\t" + str( postpars['posterr'][i]) + "\t" + str(postpars['postquantiles'][i][0]) + "\t" + str( postpars["postquantiles"][i][1]) + "\n") for x in probs.keys(): if x == 'p_lrt': print("Bayesian p-value for Likelihood Ratio: " + str(probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_deviance': print("Bayesian p-value for deviance D = " + str(probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_ksp': print("Bayesian p-value for KS test: " + str(probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_merit': print("Bayesian p-value for Merit function: " + str(probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_srat': print("Bayesian p-value for the sum of residuals: " + str(probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_maxpow': if "fitpars" in probs.keys(): print("Highest [unsmoothed] data/model outlier at frequency F=" + str( probs["fitpars"]["maxfreq"]) + "Hz with power P=" + str(probs["fitpars"]["maxpow"])) print("Bayesian p-value for the highest [unsmoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_s3max': if "fitpars" in probs.keys(): print("Highest [3 bin smoothed] data/model outlier at frequency F=" + str( probs["fitpars"]["s3maxfreq"]) + "Hz with power P=" + str(probs["fitpars"]["s3max"])) print("Bayesian p-value for the highest [3 bin smoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_s5max': if "fitpars" in probs.keys(): print("Highest [5 bin smoothed] data/model outlier at frequency F=" + str( probs["fitpars"]["s5maxfreq"]) + "Hz with power P=" + str(probs["fitpars"]["s5max"])) print("Bayesian p-value for the highest [5 bin smoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1])) elif x == 'p_s11max': if "fitpars" in probs.keys(): print("Highest [11 bin smoothed] data/model outlier at frequency F=" + str( probs["fitpars"]["s11maxfreq"]) + "Hz with power P=" + str(probs["fitpars"]["s11max"])) print("Bayesian p-value for the highest [11 bin smoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1])) return def write_summary(self, summary, namestr=None): """ Write a summary of the analysis to file. NOT USED! :param summary: :param namestr: :return: """ if not namestr: namestr = self.namestr try: keys = summary.keys() except AttributeError: raise Exception("Summary must be a dictionary!") probs = dict() postpars = dict() ### sort out p-values and posterior distribution of parameters for x in keys: if x[:2] == 'p_': probs[x] = summary[x] else: postpars[x] = summary[x] picklefile = open(namestr + "_summary_pickle.dat", "w") pickle.dump(summary, picklefile) picklefile.close() file = open(namestr + "_summary.dat", "w") file.write("The ensemble acceptance rate is " + str(postpars["acceptance"]) + " .\n") try: file.write("The autocorrelation times are: " + str(postpars["acor"]) + "\n") except KeyError: file.write("Module Acor not found. Cannot compute autocorrelation times for the parameters \n") for i, x in enumerate(postpars["rhat"]): file.write("The $R_hat$ value for Parameter " + str(i) + " is " + str(x) + "\n") ### print posterior summary of parameters: file.write("-- Posterior Summary of Parameters: \n") file.write("parameter \t mean \t\t sd \t\t 5% \t\t 95% \n") file.write("---------------------------------------------\n") for i in range(len(postpars['postmean'])): file.write("theta[" + str(i) + "] \t " + str(postpars['postmean'][i]) + "\t" + str( postpars['posterr'][i]) + "\t" + str(postpars['postquantiles'][i][0]) + "\t" + str( postpars["postquantiles"][i][1]) + "\n") for x in probs.keys(): if x == 'p_lrt': file.write( "Bayesian p-value for Likelihood Ratio: " + str(probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") elif x == 'p_deviance': file.write("Bayesian p-value for deviance D = " + str(probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") elif x == 'p_ksp': file.write("Bayesian p-value for KS test: " + str(probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") elif x == 'p_merit': file.write( "Bayesian p-value for Merit function: " + str(probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") elif x == 'p_srat': file.write("Bayesian p-value for the sum of residuals: " + str(probs[x][0]) + " +/- " + str( probs[x][1]) + "\n") elif x == 'p_maxpow': file.write("Bayesian p-value for the highest [unsmoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") file.write( "Upper limit for highest [unsmoothed] data/model outlier: " + str(summary['maxpow_ul']) + "\n") elif x == 'p_s3max': file.write("Bayesian p-value for the highest [3 bin smoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") file.write( "Upper limit for highest [unsmoothed] data/model outlier: " + str(summary['s3max_ul']) + "\n") elif x == 'p_s5max': file.write("Bayesian p-value for the highest [5 bin smoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") file.write( "Upper limit for highest [unsmoothed] data/model outlier: " + str(summary['s5max_ul']) + "\n") elif x == 'p_s11max': file.write("Bayesian p-value for the highest [11 bin smoothed] data/model outlier: " + str( probs[x][0]) + " +/- " + str(probs[x][1]) + "\n") file.write( "Upper limit for highest [unsmoothed] data/model outlier: " + str(summary['s11max_ul']) + "\n") return def plot_posteriors(namestr='test', **pars): plotkeys = pars.keys() N = len(plotkeys) ### number of parameters fig = plt.figure(figsize=(2, N / 2 + 1)) plt.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95, wspace=0.2, hspace=0.2) for i in range(N): ax = fig.add_subplot(N / 2 + 1, 2, i) n, bins, patches = ax.hist(pars[plotkeys[i]][0], 30) ax.vlines(pars[plotkeys[i]][0], 0.0, 0.8 * max(n), lw=4) ax.figtext(pars[plotkeys[i]][0] + 0.01 * pars[plotkeys[i]][0], 0.8 * n, "p = " + str(pars[plotkeys[i]][1])) ax.title("Posterior for " + plotkeys[i]) return
[ "matplotlib.pyplot.title", "src.SpectralAnalysis.posterior.StackPerPosterior", "pickle.dump", "src.SpectralAnalysis.utils.TwoPrint", "matplotlib.pyplot.subplot", "matplotlib.pyplot.hist", "matplotlib.pyplot.close", "src.SpectralAnalysis.mle.PerMaxLike", "src.SpectralAnalysis.posterior.PerPosterior", "copy.copy", "numpy.searchsorted", "matplotlib.pyplot.figure", "numpy.mean", "src.SpectralAnalysis.mcmc.MarkovChainMonteCarlo", "matplotlib.pyplot.subplots_adjust", "numpy.msort", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((6349, 6376), 'src.SpectralAnalysis.utils.TwoPrint', 'utils.TwoPrint', (['resfilename'], {}), '(resfilename)\n', (6363, 6376), False, 'from src.SpectralAnalysis import utils\n'), ((6589, 6643), 'src.SpectralAnalysis.mle.PerMaxLike', 'mle.PerMaxLike', (['self.ps'], {'fitmethod': 'fitmethod', 'obs': '(True)'}), '(self.ps, fitmethod=fitmethod, obs=True)\n', (6603, 6643), False, 'from src.SpectralAnalysis import mle\n'), ((7352, 7640), 'src.SpectralAnalysis.mcmc.MarkovChainMonteCarlo', 'mcmc.MarkovChainMonteCarlo', (['self.ps.freq', 'self.ps.ps', 'lpost'], {'topt': "fitpars1['popt']", 'tcov': "fitpars1['cov']", 'covfactor': 'covfactor', 'niter': 'niter', 'nchain': 'nchain', 'parname': 'parname', 'check_conv': '(True)', 'namestr': 'self.namestr', 'use_emcee': 'use_emcee', 'plot': 'self.plot', 'printobj': 'resfile', 'm': 'self.m'}), "(self.ps.freq, self.ps.ps, lpost, topt=fitpars1[\n 'popt'], tcov=fitpars1['cov'], covfactor=covfactor, niter=niter, nchain\n =nchain, parname=parname, check_conv=True, namestr=self.namestr,\n use_emcee=use_emcee, plot=self.plot, printobj=resfile, m=self.m)\n", (7378, 7640), False, 'from src.SpectralAnalysis import mcmc\n'), ((17049, 17076), 'src.SpectralAnalysis.utils.TwoPrint', 'utils.TwoPrint', (['resfilename'], {}), '(resfilename)\n', (17063, 17076), False, 'from src.SpectralAnalysis import utils\n'), ((17139, 17193), 'src.SpectralAnalysis.mle.PerMaxLike', 'mle.PerMaxLike', (['self.ps'], {'fitmethod': 'fitmethod', 'obs': '(True)'}), '(self.ps, fitmethod=fitmethod, obs=True)\n', (17153, 17193), False, 'from src.SpectralAnalysis import mle\n'), ((17672, 17953), 'src.SpectralAnalysis.mcmc.MarkovChainMonteCarlo', 'mcmc.MarkovChainMonteCarlo', (['self.ps.freq', 'self.ps.ps', 'lpost'], {'topt': "fitpars['popt']", 'tcov': "fitpars['cov']", 'covfactor': 'covfactor', 'niter': 'niter', 'nchain': 'nchain', 'parname': 'parname', 'check_conv': '(True)', 'namestr': 'self.namestr', 'use_emcee': '(True)', 'plot': 'self.plot', 'printobj': 'resfile', 'm': 'self.m'}), "(self.ps.freq, self.ps.ps, lpost, topt=fitpars[\n 'popt'], tcov=fitpars['cov'], covfactor=covfactor, niter=niter, nchain=\n nchain, parname=parname, check_conv=True, namestr=self.namestr,\n use_emcee=True, plot=self.plot, printobj=resfile, m=self.m)\n", (17698, 17953), False, 'from src.SpectralAnalysis import mcmc\n'), ((19030, 19056), 'copy.copy', 'copy.copy', (["fitpars['popt']"], {}), "(fitpars['popt'])\n", (19039, 19056), False, 'import copy\n'), ((25727, 25747), 'numpy.msort', 'np.msort', (['sim_maxpow'], {}), '(sim_maxpow)\n', (25735, 25747), True, 'import numpy as np\n'), ((25773, 25792), 'numpy.msort', 'np.msort', (['sim_s3max'], {}), '(sim_s3max)\n', (25781, 25792), True, 'import numpy as np\n'), ((25818, 25837), 'numpy.msort', 'np.msort', (['sim_s5max'], {}), '(sim_s5max)\n', (25826, 25837), True, 'import numpy as np\n'), ((25864, 25884), 'numpy.msort', 'np.msort', (['sim_s11max'], {}), '(sim_s11max)\n', (25872, 25884), True, 'import numpy as np\n'), ((33685, 33739), 'src.SpectralAnalysis.mle.PerMaxLike', 'mle.PerMaxLike', (['self.ps'], {'fitmethod': 'fitmethod', 'obs': '(True)'}), '(self.ps, fitmethod=fitmethod, obs=True)\n', (33699, 33739), False, 'from src.SpectralAnalysis import mle\n'), ((34163, 34426), 'src.SpectralAnalysis.mcmc.MarkovChainMonteCarlo', 'mcmc.MarkovChainMonteCarlo', (['self.ps.freq', 'self.ps.ps', 'lpost'], {'topt': "fitpars['popt']", 'tcov': "fitpars['cov']", 'covfactor': 'covfactor', 'niter': 'niter', 'nchain': 'nchain', 'parname': 'parname', 'check_conv': '(True)', 'namestr': 'self.namestr', 'use_emcee': '(True)', 'plot': 'self.plot', 'm': 'self.m'}), "(self.ps.freq, self.ps.ps, lpost, topt=fitpars[\n 'popt'], tcov=fitpars['cov'], covfactor=covfactor, niter=niter, nchain=\n nchain, parname=parname, check_conv=True, namestr=self.namestr,\n use_emcee=True, plot=self.plot, m=self.m)\n", (34189, 34426), False, 'from src.SpectralAnalysis import mcmc\n'), ((44092, 44124), 'pickle.dump', 'pickle.dump', (['summary', 'picklefile'], {}), '(summary, picklefile)\n', (44103, 44124), False, 'import pickle\n'), ((47690, 47724), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(2, N / 2 + 1)'}), '(figsize=(2, N / 2 + 1))\n', (47700, 47724), True, 'import matplotlib.pyplot as plt\n'), ((47733, 47827), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.95)', 'bottom': '(0.05)', 'left': '(0.05)', 'right': '(0.95)', 'wspace': '(0.2)', 'hspace': '(0.2)'}), '(top=0.95, bottom=0.05, left=0.05, right=0.95, wspace=\n 0.2, hspace=0.2)\n', (47752, 47827), True, 'import matplotlib.pyplot as plt\n'), ((7122, 7160), 'src.SpectralAnalysis.posterior.PerPosterior', 'posterior.PerPosterior', (['self.ps', 'func1'], {}), '(self.ps, func1)\n', (7144, 7160), False, 'from src.SpectralAnalysis import posterior\n'), ((7195, 7246), 'src.SpectralAnalysis.posterior.StackPerPosterior', 'posterior.StackPerPosterior', (['self.ps', 'func1', 'self.m'], {}), '(self.ps, func1, self.m)\n', (7222, 7246), False, 'from src.SpectralAnalysis import posterior\n'), ((17444, 17481), 'src.SpectralAnalysis.posterior.PerPosterior', 'posterior.PerPosterior', (['self.ps', 'func'], {}), '(self.ps, func)\n', (17466, 17481), False, 'from src.SpectralAnalysis import posterior\n'), ((17516, 17566), 'src.SpectralAnalysis.posterior.StackPerPosterior', 'posterior.StackPerPosterior', (['self.ps', 'func', 'self.m'], {}), '(self.ps, func, self.m)\n', (17543, 17566), False, 'from src.SpectralAnalysis import posterior\n'), ((21893, 21910), 'numpy.msort', 'np.msort', (['bmaxpow'], {}), '(bmaxpow)\n', (21901, 21910), True, 'import numpy as np\n'), ((28075, 28095), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (28086, 28095), True, 'import matplotlib.pyplot as plt\n'), ((28127, 28212), 'matplotlib.pyplot.hist', 'plt.hist', (['sim_maxpow'], {'bins': '(100)', 'normed': '(True)', 'color': '"""cyan"""', 'histtype': '"""stepfilled"""'}), "(sim_maxpow, bins=100, normed=True, color='cyan', histtype='stepfilled'\n )\n", (28135, 28212), True, 'import matplotlib.pyplot as plt\n'), ((28442, 28483), 'matplotlib.pyplot.title', 'plt.title', (['"""unsmoothed data"""'], {'fontsize': '(12)'}), "('unsmoothed data', fontsize=12)\n", (28451, 28483), True, 'import matplotlib.pyplot as plt\n'), ((28497, 28517), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (28508, 28517), True, 'import matplotlib.pyplot as plt\n'), ((28549, 28628), 'matplotlib.pyplot.hist', 'plt.hist', (['sim_s3max'], {'bins': '(100)', 'normed': '(True)', 'color': '"""cyan"""', 'histtype': '"""stepfilled"""'}), "(sim_s3max, bins=100, normed=True, color='cyan', histtype='stepfilled')\n", (28557, 28628), True, 'import matplotlib.pyplot as plt\n'), ((28860, 28903), 'matplotlib.pyplot.title', 'plt.title', (['"""smoothed (3) data"""'], {'fontsize': '(12)'}), "('smoothed (3) data', fontsize=12)\n", (28869, 28903), True, 'import matplotlib.pyplot as plt\n'), ((28917, 28937), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (28928, 28937), True, 'import matplotlib.pyplot as plt\n'), ((28969, 29048), 'matplotlib.pyplot.hist', 'plt.hist', (['sim_s3max'], {'bins': '(100)', 'normed': '(True)', 'color': '"""cyan"""', 'histtype': '"""stepfilled"""'}), "(sim_s3max, bins=100, normed=True, color='cyan', histtype='stepfilled')\n", (28977, 29048), True, 'import matplotlib.pyplot as plt\n'), ((29281, 29338), 'matplotlib.pyplot.title', 'plt.title', (['"""smoothed (5) data/model outlier"""'], {'fontsize': '(12)'}), "('smoothed (5) data/model outlier', fontsize=12)\n", (29290, 29338), True, 'import matplotlib.pyplot as plt\n'), ((29352, 29372), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (29363, 29372), True, 'import matplotlib.pyplot as plt\n'), ((29404, 29483), 'matplotlib.pyplot.hist', 'plt.hist', (['sim_s3max'], {'bins': '(100)', 'normed': '(True)', 'color': '"""cyan"""', 'histtype': '"""stepfilled"""'}), "(sim_s3max, bins=100, normed=True, color='cyan', histtype='stepfilled')\n", (29412, 29483), True, 'import matplotlib.pyplot as plt\n'), ((29718, 29762), 'matplotlib.pyplot.title', 'plt.title', (['"""smoothed (11) data"""'], {'fontsize': '(12)'}), "('smoothed (11) data', fontsize=12)\n", (29727, 29762), True, 'import matplotlib.pyplot as plt\n'), ((29776, 29831), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(self.namestr + '_maxpow.png')"], {'format': '"""png"""'}), "(self.namestr + '_maxpow.png', format='png')\n", (29787, 29831), True, 'import matplotlib.pyplot as plt\n'), ((29844, 29855), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (29853, 29855), True, 'import matplotlib.pyplot as plt\n'), ((33935, 33972), 'src.SpectralAnalysis.posterior.PerPosterior', 'posterior.PerPosterior', (['self.ps', 'func'], {}), '(self.ps, func)\n', (33957, 33972), False, 'from src.SpectralAnalysis import posterior\n'), ((34007, 34057), 'src.SpectralAnalysis.posterior.StackPerPosterior', 'posterior.StackPerPosterior', (['self.ps', 'func', 'self.m'], {}), '(self.ps, func, self.m)\n', (34034, 34057), False, 'from src.SpectralAnalysis import posterior\n'), ((38509, 38572), 'matplotlib.pyplot.hist', 'plt.hist', (['sim_lrt'], {'bins': '(100)', 'normed': '(True)', 'histtype': '"""stepfilled"""'}), "(sim_lrt, bins=100, normed=True, histtype='stepfilled')\n", (38517, 38572), True, 'import matplotlib.pyplot as plt\n'), ((38652, 38707), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(self.namestr + '_qpolrt.png')"], {'format': '"""png"""'}), "(self.namestr + '_qpolrt.png', format='png')\n", (38663, 38707), True, 'import matplotlib.pyplot as plt\n'), ((38720, 38731), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (38729, 38731), True, 'import matplotlib.pyplot as plt\n'), ((8622, 8671), 'src.SpectralAnalysis.mle.PerMaxLike', 'mle.PerMaxLike', (['x'], {'fitmethod': 'fitmethod', 'obs': '(False)'}), '(x, fitmethod=fitmethod, obs=False)\n', (8636, 8671), False, 'from src.SpectralAnalysis import mle\n'), ((12413, 12490), 'matplotlib.pyplot.hist', 'plt.hist', (['sim_lrt'], {'bins': '(100)', 'normed': '(True)', 'color': '"""cyan"""', 'histtype': '"""stepfilled"""'}), "(sim_lrt, bins=100, normed=True, color='cyan', histtype='stepfilled')\n", (12421, 12490), True, 'import matplotlib.pyplot as plt\n'), ((12581, 12633), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(self.namestr + '_lrt.png')"], {'format': '"""png"""'}), "(self.namestr + '_lrt.png', format='png')\n", (12592, 12633), True, 'import matplotlib.pyplot as plt\n'), ((12650, 12661), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (12659, 12661), True, 'import matplotlib.pyplot as plt\n'), ((19326, 19375), 'src.SpectralAnalysis.mle.PerMaxLike', 'mle.PerMaxLike', (['x'], {'fitmethod': 'fitmethod', 'obs': '(False)'}), '(x, fitmethod=fitmethod, obs=False)\n', (19340, 19375), False, 'from src.SpectralAnalysis import mle\n'), ((35592, 35643), 'src.SpectralAnalysis.mle.PerMaxLike', 'mle.PerMaxLike', (['x'], {'fitmethod': '"""constbfgs"""', 'obs': '(False)'}), "(x, fitmethod='constbfgs', obs=False)\n", (35606, 35643), False, 'from src.SpectralAnalysis import mle\n'), ((24189, 24219), 'numpy.sqrt', 'np.sqrt', (['(bpow * b * self.ps.df)'], {}), '(bpow * b * self.ps.df)\n', (24196, 24219), True, 'import numpy as np\n'), ((37200, 37216), 'numpy.mean', 'np.mean', (['sim_ksp'], {}), '(sim_ksp)\n', (37207, 37216), True, 'import numpy as np\n'), ((37316, 37334), 'numpy.mean', 'np.mean', (['sim_merit'], {}), '(sim_merit)\n', (37323, 37334), True, 'import numpy as np\n'), ((37431, 37448), 'numpy.mean', 'np.mean', (['sim_srat'], {}), '(sim_srat)\n', (37438, 37448), True, 'import numpy as np\n'), ((10814, 10830), 'numpy.mean', 'np.mean', (['sim_ksp'], {}), '(sim_ksp)\n', (10821, 10830), True, 'import numpy as np\n'), ((10943, 10961), 'numpy.mean', 'np.mean', (['sim_merit'], {}), '(sim_merit)\n', (10950, 10961), True, 'import numpy as np\n'), ((11071, 11088), 'numpy.mean', 'np.mean', (['sim_srat'], {}), '(sim_srat)\n', (11078, 11088), True, 'import numpy as np\n'), ((24083, 24114), 'numpy.searchsorted', 'np.searchsorted', (['binps.freq', 'bc'], {}), '(binps.freq, bc)\n', (24098, 24114), True, 'import numpy as np\n')]
from math import pi import numpy as np from aleph.consts import * from reamber.algorithms.generate.sv.generators.svOsuMeasureLineMD import svOsuMeasureLineMD, SvOsuMeasureLineEvent from reamber.osu.OsuMap import OsuMap # notes: 01:37:742 (97742|2,125moves993|2) - SHAKES = np.array( [100560, 100790, 101018, 101245, 104124, 104340, 104556, 104770, 107487, 107692, 107896, 108099, 110674, 110867, 111059, 111156, 111252, 111348, 113698, 113882, 114065, 114248, 116577, 116753, 116928, 117103, 119326, 119494, 119661, 119827, 121953, 122114, 122275, 122434, 122594, 122673, 122752, 122831, 123068, 123147, 123226, 123304, 123383, 123539, 123618, 123696, 123773, 123851, 124007, 124084, 124162, 124239, 124316, 124471, 124547, 124624, 124701, 124778, 124932, 125008, 125084, 125160, 125236, 125388, 125464, 125540, 125616, 125692, 125767, 125842, 125918, 125993]) def f247(m: OsuMap): notes = sorted([n for n in m.notes.hits() if 97742 < n.offset <= 125993]) BASE_SHAKE_AMP = 0.010 INC_SHAKE_AMP = 0.0010 SHAKE_WINDOW = 250 NOTE_DURATION = 2000 # noinspection PyTypeChecker events = [ *[SvOsuMeasureLineEvent( firstOffset=n.offset - NOTE_DURATION - t, lastOffset=n.offset - t, startX=n.offset - NOTE_DURATION - t, endX=n.offset - t, startY=-1 + en / 500 , endY=1 - en / 500, funcs=[ lambda x, n=n, t=t: # This flips the board if it's < 2 (-1 if n.column < 2 else 1) * ( np.piecewise(x, [(i <= x) & (x < i + SHAKE_WINDOW) for i in SHAKES], [*[lambda x, i=i, es=es: (BASE_SHAKE_AMP + es * INC_SHAKE_AMP) * np.sin((x - i) * pi / (SHAKE_WINDOW - es * 3)) for es, i in enumerate(SHAKES)], lambda x: 0]) + (x - (n.offset - t)) / NOTE_DURATION ) ]) for en, n in enumerate(notes) for t in np.linspace(0, 24, NOTE_THICKNESS)] ] svs, bpms = svOsuMeasureLineMD(events, scalingFactor=SCALE, firstOffset=97742, lastOffset=125993, paddingSize=PADDING, endBpm=250) m.svs.extend(svs) m.bpms.extend(bpms)
[ "numpy.sin", "numpy.array", "numpy.linspace", "reamber.algorithms.generate.sv.generators.svOsuMeasureLineMD.svOsuMeasureLineMD" ]
[((277, 896), 'numpy.array', 'np.array', (['[100560, 100790, 101018, 101245, 104124, 104340, 104556, 104770, 107487, \n 107692, 107896, 108099, 110674, 110867, 111059, 111156, 111252, 111348,\n 113698, 113882, 114065, 114248, 116577, 116753, 116928, 117103, 119326,\n 119494, 119661, 119827, 121953, 122114, 122275, 122434, 122594, 122673,\n 122752, 122831, 123068, 123147, 123226, 123304, 123383, 123539, 123618,\n 123696, 123773, 123851, 124007, 124084, 124162, 124239, 124316, 124471,\n 124547, 124624, 124701, 124778, 124932, 125008, 125084, 125160, 125236,\n 125388, 125464, 125540, 125616, 125692, 125767, 125842, 125918, 125993]'], {}), '([100560, 100790, 101018, 101245, 104124, 104340, 104556, 104770, \n 107487, 107692, 107896, 108099, 110674, 110867, 111059, 111156, 111252,\n 111348, 113698, 113882, 114065, 114248, 116577, 116753, 116928, 117103,\n 119326, 119494, 119661, 119827, 121953, 122114, 122275, 122434, 122594,\n 122673, 122752, 122831, 123068, 123147, 123226, 123304, 123383, 123539,\n 123618, 123696, 123773, 123851, 124007, 124084, 124162, 124239, 124316,\n 124471, 124547, 124624, 124701, 124778, 124932, 125008, 125084, 125160,\n 125236, 125388, 125464, 125540, 125616, 125692, 125767, 125842, 125918,\n 125993])\n', (285, 896), True, 'import numpy as np\n'), ((2302, 2424), 'reamber.algorithms.generate.sv.generators.svOsuMeasureLineMD.svOsuMeasureLineMD', 'svOsuMeasureLineMD', (['events'], {'scalingFactor': 'SCALE', 'firstOffset': '(97742)', 'lastOffset': '(125993)', 'paddingSize': 'PADDING', 'endBpm': '(250)'}), '(events, scalingFactor=SCALE, firstOffset=97742,\n lastOffset=125993, paddingSize=PADDING, endBpm=250)\n', (2320, 2424), False, 'from reamber.algorithms.generate.sv.generators.svOsuMeasureLineMD import svOsuMeasureLineMD, SvOsuMeasureLineEvent\n'), ((2243, 2277), 'numpy.linspace', 'np.linspace', (['(0)', '(24)', 'NOTE_THICKNESS'], {}), '(0, 24, NOTE_THICKNESS)\n', (2254, 2277), True, 'import numpy as np\n'), ((1948, 1994), 'numpy.sin', 'np.sin', (['((x - i) * pi / (SHAKE_WINDOW - es * 3))'], {}), '((x - i) * pi / (SHAKE_WINDOW - es * 3))\n', (1954, 1994), True, 'import numpy as np\n')]
from __future__ import division, print_function, unicode_literals import streamlit as st from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import matplotlib.pyplot as plt st.title('Mô hình dự đoán giá nhà đất tại hồ gươm ') # x1 là diện tích của lô đất(m2) # x2 là chiều dài mặt tiền (m) # x3 là số tầng nhà # x4 là khoảng cách tới hồ gươm (m) X = np.array([[40, 8, 2, 1800], [36, 3.5, 6, 450], [35, 4.5, 6, 450], [39, 9, 2, 1800], [40, 9, 1, 1800], [36, 4.5, 5, 450], [36, 4.5, 6, 450], [40, 9, 2, 1800], [36, 4.5, 7, 450], [40, 9, 3, 1800], [44, 4, 5, 350], [41, 9, 2, 1800], [37, 4.5, 6, 450], [36, 5.5, 6, 450], [40, 10, 2, 1800], [45, 3, 4, 350], [45, 4, 3, 350], [45, 4, 4, 350], [45, 4, 5, 350], [45, 5, 4, 350], [45, 3, 4, 350], [60, 2.3, 5, 450], [59, 3.3, 5, 450], [60, 3.3, 4, 450], [85, 4, 4, 950], [85, 4, 5, 950], [60, 3.3, 5, 450], [61, 6, 1, 800], [62, 5, 1, 800], [85, 4, 6, 950], [84, 6, 5, 950], [86, 2.5, 3, 900], [60, 3.3, 6, 450], [85, 5, 5, 950], [85, 3.5, 3, 900], [86, 3.5, 2, 900], [31.2, 3, 4, 450], [61, 3.3, 5, 450], [62, 6, 1, 800], [85, 6, 5, 950], [86, 3.5, 3, 900], [62, 6, 2, 800], [86, 3.5, 4, 900], [87, 3.5, 3, 900], [30.2, 4, 4, 450], [62, 6, 3, 800], [86, 4.5, 3, 900], [86, 6, 5, 950], [60, 4.3, 5, 450], [62, 7, 1, 800], [63, 6, 1, 800], [31.2, 4, 4, 450], [31.2, 4, 3, 450], [62, 4, 5, 550], [31.2, 4, 5, 450], [63, 5, 3, 550], [63, 4, 5, 550], [32.2, 4 , 4, 450], [31.2, 5, 4, 450], [63, 5, 5, 550], [64, 4, 5, 550], [63, 5, 6 , 550], [63, 6, 4, 550], [80, 5.8, 7, 1100], [80, 4.8, 8, 1100], [80, 5.8, 8, 1100], [79, 5.8, 8, 1100], [80, 5.8, 9, 1100], [81, 5.8, 8, 1100], [80, 6.8, 8, 1100], [80, 3.5, 6, 300], [80, 4.5, 5, 300], [80, 4.5, 6, 300], [79, 4.5, 6, 300], [81, 4.5, 6, 300], [88, 3.5, 4, 850], [88, 4.5, 3, 850], [88, 4.5, 4, 850], [87, 4.5, 4, 850], [88, 4.5, 5, 850], [89, 4.5, 4, 850], [88, 5.5, 4, 850], [80, 5.5, 7, 300], [63, 6, 4, 250], [62, 7, 4, 250], [63, 7, 3, 250], [63, 7, 4, 250], [63, 7, 5, 250], [64, 7, 4, 250], [63, 8, 4, 250], [140, 4.5, 5, 500], [139, 5.5, 5, 500], [140, 5.5, 4, 500], [140, 5.5, 5, 500], [140, 5.5, 6, 500], [141, 5.5, 5, 500], [140, 6.5, 5, 500]]) Y = np.array([[ 19, 19.3, 19.45, 19.48, 19.5, 19.7, 20, 20, 20.3, 20.5, 20.5, 20.52, 20.55, 20.7, 21, 21, 21.3, 21.5, 21.7, 22, 22.5, 29, 30, 30.5, 30.5, 30.8, 31, 31, 31, 31, 31.3, 31.35, 31.5, 31.5, 31.63, 31.7, 32, 32, 32, 32, 32, 32.3, 32.3, 32.37, 32.4, 32.5, 32.65, 32.7, 33, 33, 33, 33.5, 33.5, 33.6, 34, 34, 34.3, 34.6, 35, 35, 35, 35.5, 35.7, 42.5, 42.9, 43, 43.463, 43.5, 43.537, 44.1, 50, 52.3, 53, 53.38, 53.62, 54, 54.5, 55, 55.46, 55.5, 55.54, 56, 56.7, 60, 62.3, 62.5, 63, 63.5, 63.7, 66, 96.5, 97.3, 97.5, 98, 98.5, 98.7, 99.5 ]]).T def duel_plot(X1, X2, Y): fig = plt.figure(figsize=(15, 5)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.plot(Y, X[:, 0]) ax1.set_title('xét diện tích với giá tiền') ax1.set_xlabel('giá tiền') ax1.set_ylabel('Diện tích m2') ax2.plot(Y, X[:, 1]) ax2.set_title('xét số mét mặt tiền với giá tiền') ax2.set_xlabel('giá tiền') ax2.set_ylabel('số mét mặt tiền') return fig def duel_plot2(X4, X5, Y): fig = plt.figure(figsize=(15, 5)) ax3 = fig.add_subplot(1, 2, 1) ax4 = fig.add_subplot(1, 2, 2) ax3.plot(Y, X[:, 2]) ax3.set_title('xét số tầng nhà với giá tiền') ax3.set_xlabel('giá tiền') ax3.set_ylabel('số tầng nhà') ax4.plot(Y, X[:, 3]) ax4.set_title('xét khoảng cách với giá tiền') ax4.set_xlabel('giá tiền') ax4.set_ylabel('khoảng cách tới hồ gươm') return fig st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot(duel_plot(X[:, 0], X[:, 1], Y)) st.pyplot(duel_plot2(X[:, 2], X[:, 3], Y)) st.sidebar.title('Dự đoán giá các mẫu nhà') dt_name = st.sidebar.text_input('Nhập diện tích đất(m2) ') cd_name = st.sidebar.text_input('Nhập chiều dài mặt tiền(m) ') tn_name = st.sidebar.text_input('Nhập số tầng nhà(tầng) ') kc_name = st.sidebar.text_input('Nhập khoảng cách nhà tới hồ gươm(m) ') one = np.ones((X.shape[0], 1)) Xbar = np.concatenate((one, X), axis=1) x_train, x_test, y_train, y_test = train_test_split(Xbar, Y, test_size=0.2) A = np.dot(Xbar.T, Xbar) b = np.dot(Xbar.T, Y) w = np.dot(np.linalg.pinv(A), b) w_0 = w[0][0] w_1 = w[1][0] w_2 = w[2][0] w_3 = w[3][0] w_4 = w[4][0] st.write("Độ chính xác (R2 square) : ", r2_score(y_test, np.dot(x_test, w))) vd = np.array([dt_name, cd_name, tn_name, kc_name, 1]) if st.sidebar.button('Dự đoán'): y1 = w_1*float(dt_name)+w_2*float(cd_name)+w_3 * \ float(tn_name)+w_4*float(kc_name) + w_0 st.sidebar.write('Giá của ngôi nhà là : ', y1, 'tỷ đồng')
[ "streamlit.set_option", "streamlit.sidebar.write", "sklearn.model_selection.train_test_split", "numpy.ones", "streamlit.title", "streamlit.sidebar.title", "matplotlib.pyplot.figure", "numpy.array", "numpy.dot", "streamlit.sidebar.text_input", "streamlit.sidebar.button", "numpy.linalg.pinv", "numpy.concatenate" ]
[((271, 323), 'streamlit.title', 'st.title', (['"""Mô hình dự đoán giá nhà đất tại hồ gươm """'], {}), "('Mô hình dự đoán giá nhà đất tại hồ gươm ')\n", (279, 323), True, 'import streamlit as st\n'), ((449, 2354), 'numpy.array', 'np.array', (['[[40, 8, 2, 1800], [36, 3.5, 6, 450], [35, 4.5, 6, 450], [39, 9, 2, 1800],\n [40, 9, 1, 1800], [36, 4.5, 5, 450], [36, 4.5, 6, 450], [40, 9, 2, 1800\n ], [36, 4.5, 7, 450], [40, 9, 3, 1800], [44, 4, 5, 350], [41, 9, 2, \n 1800], [37, 4.5, 6, 450], [36, 5.5, 6, 450], [40, 10, 2, 1800], [45, 3,\n 4, 350], [45, 4, 3, 350], [45, 4, 4, 350], [45, 4, 5, 350], [45, 5, 4, \n 350], [45, 3, 4, 350], [60, 2.3, 5, 450], [59, 3.3, 5, 450], [60, 3.3, \n 4, 450], [85, 4, 4, 950], [85, 4, 5, 950], [60, 3.3, 5, 450], [61, 6, 1,\n 800], [62, 5, 1, 800], [85, 4, 6, 950], [84, 6, 5, 950], [86, 2.5, 3, \n 900], [60, 3.3, 6, 450], [85, 5, 5, 950], [85, 3.5, 3, 900], [86, 3.5, \n 2, 900], [31.2, 3, 4, 450], [61, 3.3, 5, 450], [62, 6, 1, 800], [85, 6,\n 5, 950], [86, 3.5, 3, 900], [62, 6, 2, 800], [86, 3.5, 4, 900], [87, \n 3.5, 3, 900], [30.2, 4, 4, 450], [62, 6, 3, 800], [86, 4.5, 3, 900], [\n 86, 6, 5, 950], [60, 4.3, 5, 450], [62, 7, 1, 800], [63, 6, 1, 800], [\n 31.2, 4, 4, 450], [31.2, 4, 3, 450], [62, 4, 5, 550], [31.2, 4, 5, 450],\n [63, 5, 3, 550], [63, 4, 5, 550], [32.2, 4, 4, 450], [31.2, 5, 4, 450],\n [63, 5, 5, 550], [64, 4, 5, 550], [63, 5, 6, 550], [63, 6, 4, 550], [80,\n 5.8, 7, 1100], [80, 4.8, 8, 1100], [80, 5.8, 8, 1100], [79, 5.8, 8, \n 1100], [80, 5.8, 9, 1100], [81, 5.8, 8, 1100], [80, 6.8, 8, 1100], [80,\n 3.5, 6, 300], [80, 4.5, 5, 300], [80, 4.5, 6, 300], [79, 4.5, 6, 300],\n [81, 4.5, 6, 300], [88, 3.5, 4, 850], [88, 4.5, 3, 850], [88, 4.5, 4, \n 850], [87, 4.5, 4, 850], [88, 4.5, 5, 850], [89, 4.5, 4, 850], [88, 5.5,\n 4, 850], [80, 5.5, 7, 300], [63, 6, 4, 250], [62, 7, 4, 250], [63, 7, 3,\n 250], [63, 7, 4, 250], [63, 7, 5, 250], [64, 7, 4, 250], [63, 8, 4, 250\n ], [140, 4.5, 5, 500], [139, 5.5, 5, 500], [140, 5.5, 4, 500], [140, \n 5.5, 5, 500], [140, 5.5, 6, 500], [141, 5.5, 5, 500], [140, 6.5, 5, 500]]'], {}), '([[40, 8, 2, 1800], [36, 3.5, 6, 450], [35, 4.5, 6, 450], [39, 9, 2,\n 1800], [40, 9, 1, 1800], [36, 4.5, 5, 450], [36, 4.5, 6, 450], [40, 9, \n 2, 1800], [36, 4.5, 7, 450], [40, 9, 3, 1800], [44, 4, 5, 350], [41, 9,\n 2, 1800], [37, 4.5, 6, 450], [36, 5.5, 6, 450], [40, 10, 2, 1800], [45,\n 3, 4, 350], [45, 4, 3, 350], [45, 4, 4, 350], [45, 4, 5, 350], [45, 5, \n 4, 350], [45, 3, 4, 350], [60, 2.3, 5, 450], [59, 3.3, 5, 450], [60, \n 3.3, 4, 450], [85, 4, 4, 950], [85, 4, 5, 950], [60, 3.3, 5, 450], [61,\n 6, 1, 800], [62, 5, 1, 800], [85, 4, 6, 950], [84, 6, 5, 950], [86, 2.5,\n 3, 900], [60, 3.3, 6, 450], [85, 5, 5, 950], [85, 3.5, 3, 900], [86, \n 3.5, 2, 900], [31.2, 3, 4, 450], [61, 3.3, 5, 450], [62, 6, 1, 800], [\n 85, 6, 5, 950], [86, 3.5, 3, 900], [62, 6, 2, 800], [86, 3.5, 4, 900],\n [87, 3.5, 3, 900], [30.2, 4, 4, 450], [62, 6, 3, 800], [86, 4.5, 3, 900\n ], [86, 6, 5, 950], [60, 4.3, 5, 450], [62, 7, 1, 800], [63, 6, 1, 800],\n [31.2, 4, 4, 450], [31.2, 4, 3, 450], [62, 4, 5, 550], [31.2, 4, 5, 450\n ], [63, 5, 3, 550], [63, 4, 5, 550], [32.2, 4, 4, 450], [31.2, 5, 4, \n 450], [63, 5, 5, 550], [64, 4, 5, 550], [63, 5, 6, 550], [63, 6, 4, 550\n ], [80, 5.8, 7, 1100], [80, 4.8, 8, 1100], [80, 5.8, 8, 1100], [79, 5.8,\n 8, 1100], [80, 5.8, 9, 1100], [81, 5.8, 8, 1100], [80, 6.8, 8, 1100], [\n 80, 3.5, 6, 300], [80, 4.5, 5, 300], [80, 4.5, 6, 300], [79, 4.5, 6, \n 300], [81, 4.5, 6, 300], [88, 3.5, 4, 850], [88, 4.5, 3, 850], [88, 4.5,\n 4, 850], [87, 4.5, 4, 850], [88, 4.5, 5, 850], [89, 4.5, 4, 850], [88, \n 5.5, 4, 850], [80, 5.5, 7, 300], [63, 6, 4, 250], [62, 7, 4, 250], [63,\n 7, 3, 250], [63, 7, 4, 250], [63, 7, 5, 250], [64, 7, 4, 250], [63, 8, \n 4, 250], [140, 4.5, 5, 500], [139, 5.5, 5, 500], [140, 5.5, 4, 500], [\n 140, 5.5, 5, 500], [140, 5.5, 6, 500], [141, 5.5, 5, 500], [140, 6.5, 5,\n 500]])\n', (457, 2354), True, 'import numpy as np\n'), ((5056, 5111), 'streamlit.set_option', 'st.set_option', (['"""deprecation.showPyplotGlobalUse"""', '(False)'], {}), "('deprecation.showPyplotGlobalUse', False)\n", (5069, 5111), True, 'import streamlit as st\n'), ((5199, 5242), 'streamlit.sidebar.title', 'st.sidebar.title', (['"""Dự đoán giá các mẫu nhà"""'], {}), "('Dự đoán giá các mẫu nhà')\n", (5215, 5242), True, 'import streamlit as st\n'), ((5253, 5301), 'streamlit.sidebar.text_input', 'st.sidebar.text_input', (['"""Nhập diện tích đất(m2) """'], {}), "('Nhập diện tích đất(m2) ')\n", (5274, 5301), True, 'import streamlit as st\n'), ((5312, 5364), 'streamlit.sidebar.text_input', 'st.sidebar.text_input', (['"""Nhập chiều dài mặt tiền(m) """'], {}), "('Nhập chiều dài mặt tiền(m) ')\n", (5333, 5364), True, 'import streamlit as st\n'), ((5375, 5423), 'streamlit.sidebar.text_input', 'st.sidebar.text_input', (['"""Nhập số tầng nhà(tầng) """'], {}), "('Nhập số tầng nhà(tầng) ')\n", (5396, 5423), True, 'import streamlit as st\n'), ((5434, 5495), 'streamlit.sidebar.text_input', 'st.sidebar.text_input', (['"""Nhập khoảng cách nhà tới hồ gươm(m) """'], {}), "('Nhập khoảng cách nhà tới hồ gươm(m) ')\n", (5455, 5495), True, 'import streamlit as st\n'), ((5502, 5526), 'numpy.ones', 'np.ones', (['(X.shape[0], 1)'], {}), '((X.shape[0], 1))\n', (5509, 5526), True, 'import numpy as np\n'), ((5534, 5566), 'numpy.concatenate', 'np.concatenate', (['(one, X)'], {'axis': '(1)'}), '((one, X), axis=1)\n', (5548, 5566), True, 'import numpy as np\n'), ((5603, 5643), 'sklearn.model_selection.train_test_split', 'train_test_split', (['Xbar', 'Y'], {'test_size': '(0.2)'}), '(Xbar, Y, test_size=0.2)\n', (5619, 5643), False, 'from sklearn.model_selection import train_test_split\n'), ((5649, 5669), 'numpy.dot', 'np.dot', (['Xbar.T', 'Xbar'], {}), '(Xbar.T, Xbar)\n', (5655, 5669), True, 'import numpy as np\n'), ((5674, 5691), 'numpy.dot', 'np.dot', (['Xbar.T', 'Y'], {}), '(Xbar.T, Y)\n', (5680, 5691), True, 'import numpy as np\n'), ((5881, 5930), 'numpy.array', 'np.array', (['[dt_name, cd_name, tn_name, kc_name, 1]'], {}), '([dt_name, cd_name, tn_name, kc_name, 1])\n', (5889, 5930), True, 'import numpy as np\n'), ((5934, 5962), 'streamlit.sidebar.button', 'st.sidebar.button', (['"""Dự đoán"""'], {}), "('Dự đoán')\n", (5951, 5962), True, 'import streamlit as st\n'), ((3591, 4164), 'numpy.array', 'np.array', (['[[19, 19.3, 19.45, 19.48, 19.5, 19.7, 20, 20, 20.3, 20.5, 20.5, 20.52, \n 20.55, 20.7, 21, 21, 21.3, 21.5, 21.7, 22, 22.5, 29, 30, 30.5, 30.5, \n 30.8, 31, 31, 31, 31, 31.3, 31.35, 31.5, 31.5, 31.63, 31.7, 32, 32, 32,\n 32, 32, 32.3, 32.3, 32.37, 32.4, 32.5, 32.65, 32.7, 33, 33, 33, 33.5, \n 33.5, 33.6, 34, 34, 34.3, 34.6, 35, 35, 35, 35.5, 35.7, 42.5, 42.9, 43,\n 43.463, 43.5, 43.537, 44.1, 50, 52.3, 53, 53.38, 53.62, 54, 54.5, 55, \n 55.46, 55.5, 55.54, 56, 56.7, 60, 62.3, 62.5, 63, 63.5, 63.7, 66, 96.5,\n 97.3, 97.5, 98, 98.5, 98.7, 99.5]]'], {}), '([[19, 19.3, 19.45, 19.48, 19.5, 19.7, 20, 20, 20.3, 20.5, 20.5, \n 20.52, 20.55, 20.7, 21, 21, 21.3, 21.5, 21.7, 22, 22.5, 29, 30, 30.5, \n 30.5, 30.8, 31, 31, 31, 31, 31.3, 31.35, 31.5, 31.5, 31.63, 31.7, 32, \n 32, 32, 32, 32, 32.3, 32.3, 32.37, 32.4, 32.5, 32.65, 32.7, 33, 33, 33,\n 33.5, 33.5, 33.6, 34, 34, 34.3, 34.6, 35, 35, 35, 35.5, 35.7, 42.5, \n 42.9, 43, 43.463, 43.5, 43.537, 44.1, 50, 52.3, 53, 53.38, 53.62, 54, \n 54.5, 55, 55.46, 55.5, 55.54, 56, 56.7, 60, 62.3, 62.5, 63, 63.5, 63.7,\n 66, 96.5, 97.3, 97.5, 98, 98.5, 98.7, 99.5]])\n', (3599, 4164), True, 'import numpy as np\n'), ((4206, 4233), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 5)'}), '(figsize=(15, 5))\n', (4216, 4233), True, 'import matplotlib.pyplot as plt\n'), ((4648, 4675), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 5)'}), '(figsize=(15, 5))\n', (4658, 4675), True, 'import matplotlib.pyplot as plt\n'), ((5703, 5720), 'numpy.linalg.pinv', 'np.linalg.pinv', (['A'], {}), '(A)\n', (5717, 5720), True, 'import numpy as np\n'), ((6071, 6128), 'streamlit.sidebar.write', 'st.sidebar.write', (['"""Giá của ngôi nhà là : """', 'y1', '"""tỷ đồng"""'], {}), "('Giá của ngôi nhà là : ', y1, 'tỷ đồng')\n", (6087, 6128), True, 'import streamlit as st\n'), ((5860, 5877), 'numpy.dot', 'np.dot', (['x_test', 'w'], {}), '(x_test, w)\n', (5866, 5877), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- #/usr/bin/python2 ''' June 2017 by <NAME>. <EMAIL>. https://www.github.com/kyubyong/transformer ''' from __future__ import print_function import codecs import os import tensorflow as tf import numpy as np from hyperparams import Hyperparams as hp from data_load import load_test_data, load_de_vocab, load_en_vocab from train import Graph #from nltk.translate.bleu_score import corpus_bleu def eval(): # Load graph g = Graph(is_training=False) print("Graph loaded") # Load data # X, Sources, Targets = load_test_data() """ x_list, y_list, Sources, Targets = [], [], [], [] for source_sent, target_sent in zip(source_sents, target_sents): x = [de2idx.get(word, 1) for word in (source_sent + u" </S>").split()] # 1: OOV, </S>: End of Text y = [en2idx.get(word, 1) for word in (target_sent + u" </S>").split()] if max(len(x), len(y)) <=hp.maxlen: x_list.append(np.array(x)) y_list.append(np.array(y)) Sources.append(source_sent) Targets.append(target_sent) # Pad X = np.zeros([len(x_list), hp.maxlen], np.int32) Y = np.zeros([len(y_list), hp.maxlen], np.int32) for i, (x, y) in enumerate(zip(x_list, y_list)): X[i] = np.lib.pad(x, [0, hp.maxlen-len(x)], 'constant', constant_values=(0, 0)) """ en2idx, idx2en = load_en_vocab() # Start session with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: ## Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)) while(True): prompt = raw_input() xlist = [] xval = [en2idx.get(word, 1) for word in (target_sent + u" </S>").split()] if (len(xval) <= hp.maxlen): xlist.append(np.array(xval)) X = np.zeros([len(xlist), hp.maxlen], np.int32) for i, xi in enumerate(xlist): X[i] = np.lib.pad(x, [0, hp.maxlen - len(x)], 'constant', constant_values=(0, 0)) list_of_refs, hypotheses = [], [] for i in range(len(X) // hp.batch_size): ### Get mini-batches x = X[i*hp.batch_size: (i+1)*hp.batch_size] prompt = raw_input() ### Autoregressive inference preds = np.zeros((hp.batch_size, hp.maxlen), np.int32) for j in range(hp.maxlen): #print("j: " + str(j)) _preds = sess.run(g.preds, {g.x: x, g.y: preds}) preds[:, j] = _preds[:, j] #print(pred) # pred should be length 1 each time due to the cycling of the while loop in main for pred in preds: got = " ".join(idx2en[idx] for idx in pred).split("</S>")[0].strip() #return got print(got) if __name__ == '__main__': eval()
[ "train.Graph", "data_load.load_en_vocab", "numpy.zeros", "tensorflow.train.Supervisor", "tensorflow.ConfigProto", "tensorflow.train.latest_checkpoint", "numpy.array" ]
[((456, 480), 'train.Graph', 'Graph', ([], {'is_training': '(False)'}), '(is_training=False)\n', (461, 480), False, 'from train import Graph\n'), ((1395, 1410), 'data_load.load_en_vocab', 'load_en_vocab', ([], {}), '()\n', (1408, 1410), False, 'from data_load import load_test_data, load_de_vocab, load_en_vocab\n'), ((1494, 1515), 'tensorflow.train.Supervisor', 'tf.train.Supervisor', ([], {}), '()\n', (1513, 1515), True, 'import tensorflow as tf\n'), ((1676, 1713), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['hp.logdir'], {}), '(hp.logdir)\n', (1702, 1713), True, 'import tensorflow as tf\n'), ((1555, 1596), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (1569, 1596), True, 'import tensorflow as tf\n'), ((2533, 2579), 'numpy.zeros', 'np.zeros', (['(hp.batch_size, hp.maxlen)', 'np.int32'], {}), '((hp.batch_size, hp.maxlen), np.int32)\n', (2541, 2579), True, 'import numpy as np\n'), ((1973, 1987), 'numpy.array', 'np.array', (['xval'], {}), '(xval)\n', (1981, 1987), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import division import unittest import odelab from odelab.scheme.stochastic import * from odelab.system import * from odelab.solver import * import numpy as np class Test_OU(unittest.TestCase): def test_run(self): sys = OrnsteinUhlenbeck() scheme = EulerMaruyama() scheme.h = .01 self.s = SingleStepSolver(scheme, sys) self.s.initialize(u0=np.array([1.])) self.s.run(time=1.) class Test_Differentiator(unittest.TestCase): t0 = 5e-9 V0 = .01 def test_run(self): sys = Differentiator(LinBumpSignal(self.V0,self.t0)) ## sys.kT = 0. # no noise scheme = EulerMaruyama() ## scheme.h = 2.5e-11 scheme.h = self.t0 self.s = SingleStepSolver(scheme, sys) self.s.initialize(u0 = np.array([0,0,0,0,0.])) self.s.run(time=5*self.t0)
[ "numpy.array" ]
[((397, 412), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (405, 412), True, 'import numpy as np\n'), ((745, 772), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0.0]'], {}), '([0, 0, 0, 0, 0.0])\n', (753, 772), True, 'import numpy as np\n')]
import numpy as np from collections import namedtuple import skimage.measure #import matplotlib.pyplot as plt #import ipdb # could maybe turn this into a generic mutable namedtuple class Point2D(object): __slots__ = "x", "y" def __init__(self, x, y): self.x = x self.y = y def __iter__(self): '''iterate over fields tuple/list style''' for field_name in self.__slots__: yield getattr(self, field_name) def __getitem__(self, index): '''tuple/list style getitem''' return getattr(self, self.__slots__[index]) # NOTE IterateOverWindows and IterateOverSuperpixels must share the same iter() interface # TODO create IterateOverOverlappingWindows(IterateOverWindows), which enforces # pixel_stride <= pixels_per_cell # # NOTE if pixel_stride > pixels_per_cell/2, it is possible to leave data unseen on the # right/bottom boarder of an image # # this is similar to matlab's im2col class IterateOverWindows(object): def __init__(self, pixels_per_cell, pixel_stride=None, image=None, mode='constant', cval=0, start_pt=(0, 0), stop_pt=(None, None)): ''' Sliding window iterator. Parameters ---------- pixels_per_cell : array_like x,y - let x,y be odd so the window can be easily centered pixel_stride : array_like, optional x,y image : array_like, optional like numpy.array (ndim == 2 or 3) mode : str, optional Points outside the boundaries of the input are filled according to the given mode. Only ``mode='constant'``, ``mode='discard'`` and ``mode='reflect'`` are currently supported, although others could be added (e.g., 'nearest' and 'wrap') cval : float, optional Value used for points outside the boundaries of the input if ``mode='constant'``. Default is 0.0 start_pt : array_like, optional (x,y) stop_pt : array_like, optional (x,y) >>> tot = 0; im = np.arange(100).reshape((10,10)) >>> for i,ret in enumerate(IterateOverWindows((5,5),(2,2),cval=1).iter(im)): ... tot += ret[0].sum() ... #print(i, ':\n', ret[0]) >>> print(tot) # weak test 22647 >>> tot = 0; im = np.arange(81).reshape((9,9)).T >>> for i,ret in enumerate(IterateOverWindows((5,5),(2,2),mode='reflect').iter(im)): ... tot += ret[0].sum() ... #print(i, ':\n', ret[0]) >>> print(tot) # weak test 25000 ''' assert pixels_per_cell[0] % 2 == 1 and pixels_per_cell[1] % 2 == 1, \ 'provide an odd number for pixels_per_cell to easily center the window' self.pixels_per_cell = tuple(pixels_per_cell) self.pixel_stride = self.pixels_per_cell if pixel_stride is None else pixel_stride self.image = image self.mode = mode self.cval = cval self.start_pt = Point2D(*(int(s) for s in start_pt)) self.stop_pt = Point2D(*(stop_pt)) def setImage(self, image): ''' Parameters ---------- image : array_like like numpy.array (ndim == 2 or 3) ''' self.image = image return self def shape(self): if self.image is None: raise TypeError("self.image cannot be of type NoneType") nrows, ncols = self.image.shape[0:2] stop_x = ncols if self.stop_pt.x is None else int(self.stop_pt.x) stop_y = nrows if self.stop_pt.y is None else int(self.stop_pt.y) roi_height = stop_y-self.start_pt.y roi_width = stop_x-self.start_pt.x #print(roi_width, roi_height, self.pixel_stride) nrows = np.ceil(float(roi_height)/self.pixel_stride[1]).astype(int) ncols = np.ceil(float(roi_width)/self.pixel_stride[0]).astype(int) return (nrows, ncols) def iter(self,image=None): '''Next window generator Parameters ---------- image : array_like like numpy.array (ndim == 2 or 3) Returns ------- numpy.array, optional chip : pixels within the current window. Points outside the boundaries of the input are filled according to the given mode. numpy.array mask : the binary mask of the window within the chip BoundingBox bbox : the inclusive extents of the chip (which may exceed the bounds of the image) MODIFICATIONS sgr : turned into a class sgr : added mode='reflect' ''' if image is not None: self.image = image elif self.image is None: raise TypeError("self.image cannot be of type NoneType") nrows, ncols = self.image.shape[0:2] # NOTE could iterate over the interior of the image without bounds checking # for additional speedup BoundingBox = namedtuple("BoundingBox", "min_x max_x min_y max_y") pixels_per_half_cell = self.pixels_per_cell[0]//2, self.pixels_per_cell[1]//2 ystrides_per_image, xstrides_per_image = self.shape() # iterate around the boarder of the image for r in xrange(ystrides_per_image): for c in xrange(xstrides_per_image): # chip out pixels in this sliding window min_x = self.start_pt.x + self.pixel_stride[0]*c - pixels_per_half_cell[0] max_x = min_x+self.pixels_per_cell[0] min_y = self.start_pt.y + self.pixel_stride[1]*r - pixels_per_half_cell[1] max_y = min_y+self.pixels_per_cell[1] bbox = BoundingBox(min_x,max_x,min_y,max_y) min_x, max_x = max(0, bbox.min_x), min(ncols, bbox.max_x) min_y, max_y = max(0, bbox.min_y), min(nrows, bbox.max_y) #print('c=%d'%c, 'r=%d'%r, min_x, max_x, min_y, max_y) chip = self.image[min_y:max_y, min_x:max_x, ...] # couch chip in a fixed-size window # REVIEW I could refactor handling the boarder into pad_image(). then mode wouldn't # be necessary here and I could simply loop over the image. # RE this is more efficient though if self.mode == 'constant' or self.mode == 'reflect': chunk = np.empty( self.pixels_per_cell + ((self.image.shape[2],) if self.image.ndim == 3 else ()), dtype=self.image.dtype.type) chunk[:] = self.cval mask = np.zeros(self.pixels_per_cell) min_x = self.start_pt.x + self.pixel_stride[0]*c - pixels_per_half_cell[0] max_x = min(self.pixels_per_cell[0], ncols - min_x) min_x = max(0, -min_x) min_y = self.start_pt.y + self.pixel_stride[1]*r - pixels_per_half_cell[1] max_y = min(self.pixels_per_cell[1], nrows - min_y) min_y = max(0, -min_y) #print('c=%d'%c, 'r=%d'%r, min_x, max_x, min_y, max_y) #print() chunk[min_y:max_y, min_x:max_x, ...] = chip mask[min_y:max_y, min_x:max_x] = 1 if self.mode == 'reflect': nrows_chunk, ncols_chunk = chunk.shape[0:2] # NOTE assume the points outside the boundaries of input can be filled from chip. # this seems harder than it should be... chunk[:min_y, min_x:max_x, ...] = np.flipud(np.atleast_2d( # top border chip[:min_y, :, ...])) chunk[min_y:max_y, :min_x, ...] = np.fliplr(np.atleast_2d( # left border chip[:, :min_x, ...])) # NOTE neg indice trikery (flipping first simplifies indexing) chunk[max_y:, min_x:max_x, ...] = np.atleast_2d( # bottom border np.flipud(chip)[:nrows_chunk-max_y, :, ...]) chunk[min_y:max_y, max_x:, ...] = np.atleast_2d( # right border np.fliplr(chip)[:, :ncols_chunk-max_x, ...]) chunk[:min_y, :min_x, ...] = np.fliplr(np.flipud(np.atleast_2d( # top-left corner chip[:min_y, :min_x, ...]))) chunk[:min_y, max_x:, ...] = np.flipud(np.atleast_2d( # top-right corner np.fliplr(chip)[:min_y, :ncols_chunk-max_x, ...])) chunk[max_y:, max_x:, ...] = np.atleast_2d( # bottom-right corner np.flipud(np.fliplr(chip))[:nrows_chunk-max_y, :ncols_chunk-max_x, ...]) chunk[max_y:, :min_x, ...] = np.fliplr(np.atleast_2d( # bottom-left corner np.flipud(chip)[:nrows_chunk-max_y, :min_x, ...])) elif self.mode == 'discard': mask = np.ones_like(chip) chunk = chip else: assert False, 'unrecognized mode' # FIXME should bbox be max-1 like in the superpixel version yield chunk, mask, bbox class IterateOverSuperpixels(object): def __init__(self, segmented, image=None): self.segmented = segmented self.image = image ''' Parameters ---------- segmented : array_like Superpixel labeled segmentation (like numpy.array) NOTE regionprops expects labels to be sequential and start at 1: {1,2,...}. label 0 is treated as unlabeled. image : array_like, optional like numpy.array (ndim == 2 or 3) ''' def setImage(self, image): ''' Parameters ---------- image : array_like like numpy.array (ndim == 2 or 3) ''' self.image = image return self def iter(self, image=None): '''Next superpixel generator Parameters ---------- image : array_like, optional like numpy.array (ndim == 2 or 3) Returns ------- numpy.array, optional chip : pixels within the current window. Points outside the boundaries of the input are filled according to the given mode. numpy.array mask : the binary mask of the window within the chip BoundingBox bbox : the inclusive extents of the chip (which may exceed the bounds of the image) MODIFICATIONS sgr : optimized sgr : turned into a class ''' if image is not None: self.image = image elif self.image is None: raise TypeError("self.image cannot be of type NoneType") # regionprops() treats label zero (0) as unlabeled and ignores it # TODO remove small, unconnected components properties = skimage.measure.regionprops(self.segmented) BoundingBox = namedtuple("BoundingBox", "min_x max_x min_y max_y") for rp in properties: if rp._slice is None: continue (min_y,min_x,max_y,max_x) = rp.bbox chip = image[min_y:max_y, min_x:max_x,...] mask = rp.filled_image bbox = BoundingBox(min_x,max_x-1,min_y,max_y-1) yield (chip, mask, bbox)
[ "numpy.ones_like", "numpy.empty", "numpy.zeros", "numpy.flipud", "numpy.fliplr", "collections.namedtuple", "numpy.atleast_2d" ]
[((4577, 4629), 'collections.namedtuple', 'namedtuple', (['"""BoundingBox"""', '"""min_x max_x min_y max_y"""'], {}), "('BoundingBox', 'min_x max_x min_y max_y')\n", (4587, 4629), False, 'from collections import namedtuple\n'), ((9981, 10033), 'collections.namedtuple', 'namedtuple', (['"""BoundingBox"""', '"""min_x max_x min_y max_y"""'], {}), "('BoundingBox', 'min_x max_x min_y max_y')\n", (9991, 10033), False, 'from collections import namedtuple\n'), ((5839, 5961), 'numpy.empty', 'np.empty', (['(self.pixels_per_cell + ((self.image.shape[2],) if self.image.ndim == 3 else\n ()))'], {'dtype': 'self.image.dtype.type'}), '(self.pixels_per_cell + ((self.image.shape[2],) if self.image.ndim ==\n 3 else ()), dtype=self.image.dtype.type)\n', (5847, 5961), True, 'import numpy as np\n'), ((6035, 6065), 'numpy.zeros', 'np.zeros', (['self.pixels_per_cell'], {}), '(self.pixels_per_cell)\n', (6043, 6065), True, 'import numpy as np\n'), ((8168, 8186), 'numpy.ones_like', 'np.ones_like', (['chip'], {}), '(chip)\n', (8180, 8186), True, 'import numpy as np\n'), ((6908, 6943), 'numpy.atleast_2d', 'np.atleast_2d', (['chip[:min_y, :, ...]'], {}), '(chip[:min_y, :, ...])\n', (6921, 6943), True, 'import numpy as np\n'), ((7032, 7067), 'numpy.atleast_2d', 'np.atleast_2d', (['chip[:, :min_x, ...]'], {}), '(chip[:, :min_x, ...])\n', (7045, 7067), True, 'import numpy as np\n'), ((7280, 7295), 'numpy.flipud', 'np.flipud', (['chip'], {}), '(chip)\n', (7289, 7295), True, 'import numpy as np\n'), ((7428, 7443), 'numpy.fliplr', 'np.fliplr', (['chip'], {}), '(chip)\n', (7437, 7443), True, 'import numpy as np\n'), ((7534, 7574), 'numpy.atleast_2d', 'np.atleast_2d', (['chip[:min_y, :min_x, ...]'], {}), '(chip[:min_y, :min_x, ...])\n', (7547, 7574), True, 'import numpy as np\n'), ((7719, 7734), 'numpy.fliplr', 'np.fliplr', (['chip'], {}), '(chip)\n', (7728, 7734), True, 'import numpy as np\n'), ((7890, 7905), 'numpy.fliplr', 'np.fliplr', (['chip'], {}), '(chip)\n', (7899, 7905), True, 'import numpy as np\n'), ((8062, 8077), 'numpy.flipud', 'np.flipud', (['chip'], {}), '(chip)\n', (8071, 8077), True, 'import numpy as np\n')]
import mxnet as mx from mxnet import nd, autograd import numpy as np ##################################3 # X, y - training data # n - number of data points in dataset # Py - desired label distribution ################################### def tweak_dist(X, y, num_labels, n, Py): shape = (n, *X.shape[1:]) Xshift = np.zeros(shape) yshift = np.zeros(n, dtype=np.int8) # get indices for each label indices_by_label = [(y==k).nonzero()[0] for k in range(10)] labels = np.argmax( np.random.multinomial(1, Py, n), axis=1) for i in range(n): # sample an example from X with replacement idx = np.random.choice(indices_by_label[labels[i]]) Xshift[i] = X[idx] yshift[i] = y[idx] return Xshift, yshift def tweak_one(X, y, num_labels, n, knockout_label, p): # create Py # call down to tweak_dist Py = np.full(num_labels, (1.-p)/(num_labels-1)) Py[knockout_label] = p print(Py) return tweak_dist(X, y, num_labels, n, Py)
[ "numpy.full", "numpy.random.multinomial", "numpy.zeros", "numpy.random.choice" ]
[((326, 341), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (334, 341), True, 'import numpy as np\n'), ((355, 381), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': 'np.int8'}), '(n, dtype=np.int8)\n', (363, 381), True, 'import numpy as np\n'), ((899, 948), 'numpy.full', 'np.full', (['num_labels', '((1.0 - p) / (num_labels - 1))'], {}), '(num_labels, (1.0 - p) / (num_labels - 1))\n', (906, 948), True, 'import numpy as np\n'), ((517, 548), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', 'Py', 'n'], {}), '(1, Py, n)\n', (538, 548), True, 'import numpy as np\n'), ((656, 701), 'numpy.random.choice', 'np.random.choice', (['indices_by_label[labels[i]]'], {}), '(indices_by_label[labels[i]])\n', (672, 701), True, 'import numpy as np\n')]
""" Test functions for GEE External comparisons are to R. The statmodels GEE implementation should generally agree with the R GEE implementation for the independence and exchangeable correlation structures. For other correlation structures, the details of the correlation estimation differ among implementations and the results will not agree exactly. """ from __future__ import print_function from statsmodels.compat import lrange import numpy as np import os from numpy.testing import assert_almost_equal from statsmodels.genmod.generalized_estimating_equations import (GEE, GEEMargins, Multinomial) from statsmodels.genmod.families import Gaussian, Binomial, Poisson from statsmodels.genmod.dependence_structures import (Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested) import pandas as pd import statsmodels.formula.api as sm def load_data(fname, icept=True): """ Load a data set from the results directory. The data set should be a CSV file with the following format: Column 0: Group indicator Column 1: endog variable Columns 2-end: exog variables If `icept` is True, an intercept is prepended to the exog variables. """ cur_dir = os.path.dirname(os.path.abspath(__file__)) Z = np.genfromtxt(os.path.join(cur_dir, 'results', fname), delimiter=",") group = Z[:,0] endog = Z[:,1] exog = Z[:,2:] if icept: exog = np.concatenate((np.ones((exog.shape[0],1)), exog), axis=1) return endog,exog,group class TestGEE(object): def test_margins(self): n = 300 exog = np.random.normal(size=(n, 4)) exog[:,0] = 1 exog[:,1] = 1*(exog[:,2] < 0) group = np.kron(np.arange(n/4), np.ones(4)) time = np.zeros((n, 1)) beta = np.r_[0, 1, -1, 0.5] lpr = np.dot(exog, beta) prob = 1 / (1 + np.exp(-lpr)) endog = 1*(np.random.uniform(size=n) < prob) fa = Binomial() ex = Exchangeable() md = GEE(endog, exog, group, time, fa, ex) mdf = md.fit() marg = GEEMargins(mdf, ()) marg.summary() # This is in the release announcement for version 0.6. def test_poisson_epil(self): cur_dir = os.path.dirname(os.path.abspath(__file__)) fname = os.path.join(cur_dir, "results", "epil.csv") data = pd.read_csv(fname) fam = Poisson() ind = Independence() md1 = GEE.from_formula("y ~ age + trt + base", data, groups=data["subject"], cov_struct=ind, family=fam) mdf1 = md1.fit() # Coefficients should agree with GLM from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families md2 = GLM.from_formula("y ~ age + trt + base", data, family=families.Poisson()) mdf2 = md2.fit(scale="X2") assert_almost_equal(mdf1.params, mdf2.params, decimal=6) assert_almost_equal(mdf1.scale, mdf2.scale, decimal=6) # TODO: why does this test fail? def t_est_missing(self): Y = np.random.normal(size=100) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.kron(lrange(20), np.ones(5)) Y[0] = np.nan Y[5:7] = np.nan X2[10:12] = np.nan D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3, "groups": groups}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D["groups"], missing='drop') mdf = md.fit() assert(len(md.endog) == 95) assert(md.exog.shape) == (95,4) def test_default_time(self): """ Check that the time defaults work correctly. """ endog,exog,group = load_data("gee_logistic_1.csv") # Time values for the autoregressive model T = np.zeros(len(endog)) idx = set(group) for ii in idx: jj = np.flatnonzero(group == ii) T[jj] = lrange(len(jj)) family = Binomial() va = Autoregressive() md1 = GEE(endog, exog, group, family=family, cov_struct=va) mdf1 = md1.fit() md2 = GEE(endog, exog, group, time=T, family=family, cov_struct=va) mdf2 = md2.fit() assert_almost_equal(mdf1.params, mdf2.params, decimal=6) assert_almost_equal(mdf1.standard_errors(), mdf2.standard_errors(), decimal=6) def test_logistic(self): """ R code for comparing results: library(gee) Z = read.csv("results/gee_logistic_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] mi = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="independence") smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="exchangeable") sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") ma = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="AR-M") sma = summary(ma) u = coefficients(sma) cfa = paste(u[,1], collapse=",") sea = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s],[%s]]", cfi, cfe, cfa) sprintf("se = [[%s],[%s],[%s]]", sei, see, sea) """ endog,exog,group = load_data("gee_logistic_1.csv") # Time values for the autoregressive model T = np.zeros(len(endog)) idx = set(group) for ii in idx: jj = np.flatnonzero(group == ii) T[jj] = lrange(len(jj)) family = Binomial() ve = Exchangeable() vi = Independence() va = Autoregressive() # From R gee cf = [[0.0167272965285882,1.13038654425893, -1.86896345082962,1.09397608331333], [0.0178982283915449,1.13118798191788, -1.86133518416017,1.08944256230299], [0.0109621937947958,1.13226505028438, -1.88278757333046,1.09954623769449]] se = [[0.127291720283049,0.166725808326067, 0.192430061340865,0.173141068839597], [0.127045031730155,0.165470678232842, 0.192052750030501,0.173174779369249], [0.127240302296444,0.170554083928117, 0.191045527104503,0.169776150974586]] for j,v in enumerate((vi,ve,va)): md = GEE(endog, exog, group, T, family, v) mdf = md.fit() if id(v) != id(va): assert_almost_equal(mdf.params, cf[j], decimal=6) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Test with formulas D = np.concatenate((endog[:,None], group[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=6) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Check for run-time exceptions in summary # print(mdf.summary()) def test_autoregressive(self): dep_params_true = [0, 0.589208623896, 0.559823804948] params_true = [[1.08043787, 1.12709319, 0.90133927], [0.9613677, 1.05826987, 0.90832055], [1.05370439, 0.96084864, 0.93923374]] np.random.seed(342837482) num_group = 100 ar_param = 0.5 k = 3 ga = Gaussian() for gsize in 1,2,3: ix = np.arange(gsize)[:,None] - np.arange(gsize)[None,:] ix = np.abs(ix) cmat = ar_param ** ix cmat_r = np.linalg.cholesky(cmat) endog = [] exog = [] groups = [] for i in range(num_group): x = np.random.normal(size=(gsize,k)) exog.append(x) expval = x.sum(1) errors = np.dot(cmat_r, np.random.normal(size=gsize)) endog.append(expval + errors) groups.append(i*np.ones(gsize)) endog = np.concatenate(endog) groups = np.concatenate(groups) exog = np.concatenate(exog, axis=0) ar = Autoregressive() md = GEE(endog, exog, groups, family=ga, cov_struct = ar) mdf = md.fit() assert_almost_equal(ar.dep_params, dep_params_true[gsize-1]) assert_almost_equal(mdf.params, params_true[gsize-1]) def test_post_estimation(self): family = Gaussian() endog,exog,group = load_data("gee_linear_1.csv") ve = Exchangeable() md = GEE(endog, exog, group, None, family, ve) mdf = md.fit() assert_almost_equal(np.dot(exog, mdf.params), mdf.fittedvalues) assert_almost_equal(endog - np.dot(exog, mdf.params), mdf.resid) def test_linear(self): """ library(gee) Z = read.csv("results/gee_linear_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] mi = gee(Y ~ X1 + X2 + X3, id=Id, family=gaussian, corstr="independence", tol=1e-8, maxit=100) smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3, id=Id, family=gaussian, corstr="exchangeable", tol=1e-8, maxit=100) sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s]]", cfi, cfe) sprintf("se = [[%s],[%s]]", sei, see) """ family = Gaussian() endog,exog,group = load_data("gee_linear_1.csv") vi = Independence() ve = Exchangeable() # From R gee cf = [[-0.01850226507491,0.81436304278962, -1.56167635393184,0.794239361055003], [-0.0182920577154767,0.814898414022467, -1.56194040106201,0.793499517527478]] se = [[0.0440733554189401,0.0479993639119261, 0.0496045952071308,0.0479467597161284], [0.0440369906460754,0.0480069787567662, 0.049519758758187,0.0479760443027526]] for j,v in enumerate((vi, ve)): md = GEE(endog, exog, group, None, family, v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=10) assert_almost_equal(mdf.standard_errors(), se[j], decimal=10) # Test with formulas D = np.concatenate((endog[:,None], group[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=10) assert_almost_equal(mdf.standard_errors(), se[j], decimal=10) def test_linear_constrained(self): family = Gaussian() exog = np.random.normal(size=(300,4)) exog[:,0] = 1 endog = np.dot(exog, np.r_[1, 1, 0, 0.2]) +\ np.random.normal(size=300) group = np.kron(np.arange(100), np.r_[1,1,1]) vi = Independence() ve = Exchangeable() L = np.r_[[[0, 0, 0, 1]]] R = np.r_[0,] for j,v in enumerate((vi,ve)): md = GEE(endog, exog, group, None, family, v, constraint=(L,R)) mdf = md.fit() assert_almost_equal(mdf.params[3], 0, decimal=10) def test_nested_linear(self): family = Gaussian() endog,exog,group = load_data("gee_nested_linear_1.csv") group_n = [] for i in range(endog.shape[0]//10): group_n.extend([0,]*5) group_n.extend([1,]*5) group_n = np.array(group_n)[:,None] dp = Independence() md = GEE(endog, exog, group, None, family, dp) mdf1 = md.fit() # From statsmodels.GEE (not an independent test) cf = np.r_[-0.1671073 , 1.00467426, -2.01723004, 0.97297106] se = np.r_[0.08629606, 0.04058653, 0.04067038, 0.03777989] assert_almost_equal(mdf1.params, cf, decimal=6) assert_almost_equal(mdf1.standard_errors(), se, decimal=6) ne = Nested() md = GEE(endog, exog, group, None, family, ne, dep_data=group_n) mdf2 = md.fit(start_params=mdf1.params) # From statsmodels.GEE (not an independent test) cf = np.r_[-0.16655319, 1.02183688, -2.00858719, 1.00101969] se = np.r_[0.08632616, 0.02913582, 0.03114428, 0.02893991] assert_almost_equal(mdf2.params, cf, decimal=6) assert_almost_equal(mdf2.standard_errors(), se, decimal=6) def test_ordinal(self): family = Binomial() endog, exog, groups = load_data("gee_ordinal_1.csv", icept=False) v = GlobalOddsRatio("ordinal") md = GEE(endog, exog, groups, None, family, v) md.setup_ordinal() mdf = md.fit() cf = np.r_[1.09238131, 0.02148193, -0.39879146, -0.01855666, 0.02983409, 1.18123172, 0.01845318, -1.10233886] se = np.r_[0.10878752, 0.10326078, 0.11171241, 0.05488705, 0.05995019, 0.0916574, 0.05951445, 0.08539281] assert_almost_equal(mdf.params, cf, decimal=5) assert_almost_equal(mdf.bse, se, decimal=5) def test_nominal(self): family = Multinomial(3) endog, exog, groups = load_data("gee_nominal_1.csv", icept=False) # Test with independence correlation v = Independence() md = GEE(endog, exog, groups, None, family, v) md.setup_nominal() mdf1 = md.fit() # From statsmodels.GEE (not an independent test) cf1 = np.r_[0.44944752, 0.45569985, -0.92007064, -0.46766728] se1 = np.r_[0.09801821, 0.07718842, 0.13229421, 0.08544553] assert_almost_equal(mdf1.params, cf1, decimal=5) assert_almost_equal(mdf1.standard_errors(), se1, decimal=5) # Test with global odds ratio dependence v = GlobalOddsRatio("nominal") md = GEE(endog, exog, groups, None, family, v) md.setup_nominal() mdf2 = md.fit(start_params=mdf1.params) # From statsmodels.GEE (not an independent test) cf2 = np.r_[0.45397549, 0.42278345, -0.91997131, -0.50115943] se2 = np.r_[0.09646057, 0.07405713, 0.1324629 , 0.09025019] assert_almost_equal(mdf2.params, cf2, decimal=5) assert_almost_equal(mdf2.standard_errors(), se2, decimal=5) def test_poisson(self): """ library(gee) Z = read.csv("results/gee_poisson_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] X4 = Z[,6] X5 = Z[,7] mi = gee(Y ~ X1 + X2 + X3 + X4 + X5, id=Id, family=poisson, corstr="independence", scale.fix=TRUE) smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3 + X4 + X5, id=Id, family=poisson, corstr="exchangeable", scale.fix=TRUE) sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s]]", cfi, cfe) sprintf("se = [[%s],[%s]]", sei, see) """ family = Poisson() endog,exog,group_n = load_data("gee_poisson_1.csv") vi = Independence() ve = Exchangeable() # From R gee cf = [[-0.0364450410793481,-0.0543209391301178, 0.0156642711741052,0.57628591338724, -0.00465659951186211,-0.477093153099256], [-0.0315615554826533,-0.0562589480840004, 0.0178419412298561,0.571512795340481, -0.00363255566297332,-0.475971696727736]] se = [[0.0611309237214186,0.0390680524493108, 0.0334234174505518,0.0366860768962715, 0.0304758505008105,0.0316348058881079], [0.0610840153582275,0.0376887268649102, 0.0325168379415177,0.0369786751362213, 0.0296141014225009,0.0306115470200955]] for j,v in enumerate((vi,ve)): md = GEE(endog, exog, group_n, None, family, v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=5) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Test with formulas D = np.concatenate((endog[:,None], group_n[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3 + X4 + X5", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=5) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # print(mdf.params) def test_compare_OLS(self): """ Gaussian GEE with independence correlation should agree exactly with OLS for parameter estimates and standard errors derived from the naive covariance estimate. """ vs = Independence() family = Gaussian() Y = np.random.normal(size=100) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.kron(lrange(20), np.ones(5)) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs) mdf = md.fit() ols = sm.ols("Y ~ X1 + X2 + X3", data=D).fit() assert_almost_equal(ols.params.values, mdf.params, decimal=10) se = mdf.standard_errors(covariance_type="naive") assert_almost_equal(ols.bse, se, decimal=10) naive_tvalues = mdf.params / \ np.sqrt(np.diag(mdf.naive_covariance)) assert_almost_equal(naive_tvalues, ols.tvalues, decimal=10) def test_compare_logit(self): vs = Independence() family = Binomial() Y = 1*(np.random.normal(size=100) < 0) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.random.randint(0, 4, size=100) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs).fit() sml = sm.logit("Y ~ X1 + X2 + X3", data=D).fit(disp=False) assert_almost_equal(sml.params.values, md.params, decimal=10) def test_compare_poisson(self): vs = Independence() family = Poisson() Y = np.ceil(-np.log(np.random.uniform(size=100))) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.random.randint(0, 4, size=100) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs).fit() sml = sm.poisson("Y ~ X1 + X2 + X3", data=D).fit(disp=False) assert_almost_equal(sml.params.values, md.params, decimal=10) if __name__=="__main__": import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False)
[ "numpy.random.seed", "numpy.abs", "pandas.read_csv", "numpy.ones", "statsmodels.genmod.generalized_estimating_equations.Multinomial", "numpy.random.randint", "numpy.arange", "numpy.exp", "numpy.random.normal", "statsmodels.genmod.families.Gaussian", "numpy.diag", "os.path.join", "pandas.DataFrame", "os.path.abspath", "numpy.testing.assert_almost_equal", "statsmodels.compat.lrange", "statsmodels.genmod.dependence_structures.Autoregressive", "statsmodels.genmod.dependence_structures.GlobalOddsRatio", "statsmodels.formula.api.ols", "statsmodels.genmod.generalized_estimating_equations.GEEMargins", "numpy.linalg.cholesky", "statsmodels.genmod.dependence_structures.Independence", "nose.runmodule", "statsmodels.genmod.generalized_estimating_equations.GEE.from_formula", "numpy.dot", "statsmodels.genmod.generalized_estimating_equations.GEE", "numpy.concatenate", "numpy.random.uniform", "statsmodels.formula.api.poisson", "statsmodels.genmod.dependence_structures.Exchangeable", "numpy.flatnonzero", "numpy.zeros", "statsmodels.genmod.families.Poisson", "numpy.array", "statsmodels.formula.api.logit", "statsmodels.genmod.families.Binomial", "statsmodels.genmod.dependence_structures.Nested" ]
[((21322, 21409), 'nose.runmodule', 'nose.runmodule', ([], {'argv': "[__file__, '-vvs', '-x', '--pdb', '--pdb-failure']", 'exit': '(False)'}), "(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],\n exit=False)\n", (21336, 21409), False, 'import nose\n'), ((1230, 1255), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1245, 1255), False, 'import os\n'), ((1279, 1318), 'os.path.join', 'os.path.join', (['cur_dir', '"""results"""', 'fname'], {}), "(cur_dir, 'results', fname)\n", (1291, 1318), False, 'import os\n'), ((1650, 1679), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(n, 4)'}), '(size=(n, 4))\n', (1666, 1679), True, 'import numpy as np\n'), ((1808, 1824), 'numpy.zeros', 'np.zeros', (['(n, 1)'], {}), '((n, 1))\n', (1816, 1824), True, 'import numpy as np\n'), ((1876, 1894), 'numpy.dot', 'np.dot', (['exog', 'beta'], {}), '(exog, beta)\n', (1882, 1894), True, 'import numpy as np\n'), ((2001, 2011), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (2009, 2011), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((2025, 2039), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (2037, 2039), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((2054, 2091), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'time', 'fa', 'ex'], {}), '(endog, exog, group, time, fa, ex)\n', (2057, 2091), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((2131, 2150), 'statsmodels.genmod.generalized_estimating_equations.GEEMargins', 'GEEMargins', (['mdf', '()'], {}), '(mdf, ())\n', (2141, 2150), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((2346, 2390), 'os.path.join', 'os.path.join', (['cur_dir', '"""results"""', '"""epil.csv"""'], {}), "(cur_dir, 'results', 'epil.csv')\n", (2358, 2390), False, 'import os\n'), ((2406, 2424), 'pandas.read_csv', 'pd.read_csv', (['fname'], {}), '(fname)\n', (2417, 2424), True, 'import pandas as pd\n'), ((2440, 2449), 'statsmodels.genmod.families.Poisson', 'Poisson', ([], {}), '()\n', (2447, 2449), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((2464, 2478), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (2476, 2478), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((2493, 2595), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""y ~ age + trt + base"""', 'data'], {'groups': "data['subject']", 'cov_struct': 'ind', 'family': 'fam'}), "('y ~ age + trt + base', data, groups=data['subject'],\n cov_struct=ind, family=fam)\n", (2509, 2595), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((3005, 3061), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'mdf2.params'], {'decimal': '(6)'}), '(mdf1.params, mdf2.params, decimal=6)\n', (3024, 3061), False, 'from numpy.testing import assert_almost_equal\n'), ((3070, 3124), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.scale', 'mdf2.scale'], {'decimal': '(6)'}), '(mdf1.scale, mdf2.scale, decimal=6)\n', (3089, 3124), False, 'from numpy.testing import assert_almost_equal\n'), ((3207, 3233), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3223, 3233), True, 'import numpy as np\n'), ((3247, 3273), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3263, 3273), True, 'import numpy as np\n'), ((3287, 3313), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3303, 3313), True, 'import numpy as np\n'), ((3327, 3353), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3343, 3353), True, 'import numpy as np\n'), ((3490, 3560), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3, 'groups': groups}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3, 'groups': groups})\n", (3502, 3560), True, 'import pandas as pd\n'), ((3601, 3687), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': "D['groups']", 'missing': '"""drop"""'}), "('Y ~ X1 + X2 + X3', D, None, groups=D['groups'], missing=\n 'drop')\n", (3617, 3687), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((4216, 4226), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (4224, 4226), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((4240, 4256), 'statsmodels.genmod.dependence_structures.Autoregressive', 'Autoregressive', ([], {}), '()\n', (4254, 4256), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((4273, 4326), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group'], {'family': 'family', 'cov_struct': 'va'}), '(endog, exog, group, family=family, cov_struct=va)\n', (4276, 4326), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((4367, 4428), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group'], {'time': 'T', 'family': 'family', 'cov_struct': 'va'}), '(endog, exog, group, time=T, family=family, cov_struct=va)\n', (4370, 4428), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((4481, 4537), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'mdf2.params'], {'decimal': '(6)'}), '(mdf1.params, mdf2.params, decimal=6)\n', (4500, 4537), False, 'from numpy.testing import assert_almost_equal\n'), ((6039, 6049), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (6047, 6049), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((6063, 6077), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (6075, 6077), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((6091, 6105), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (6103, 6105), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((6119, 6135), 'statsmodels.genmod.dependence_structures.Autoregressive', 'Autoregressive', ([], {}), '()\n', (6133, 6135), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((7163, 7232), 'numpy.concatenate', 'np.concatenate', (['(endog[:, None], group[:, None], exog[:, 1:])'], {'axis': '(1)'}), '((endog[:, None], group[:, None], exog[:, 1:]), axis=1)\n', (7177, 7232), True, 'import numpy as np\n'), ((7269, 7284), 'pandas.DataFrame', 'pd.DataFrame', (['D'], {}), '(D)\n', (7281, 7284), True, 'import pandas as pd\n'), ((8198, 8223), 'numpy.random.seed', 'np.random.seed', (['(342837482)'], {}), '(342837482)\n', (8212, 8223), True, 'import numpy as np\n'), ((8300, 8310), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (8308, 8310), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((9371, 9381), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (9379, 9381), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((9453, 9467), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (9465, 9467), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((9482, 9523), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 've'], {}), '(endog, exog, group, None, family, ve)\n', (9485, 9523), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((10612, 10622), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (10620, 10622), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((10695, 10709), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (10707, 10709), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((10723, 10737), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (10735, 10737), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((11527, 11596), 'numpy.concatenate', 'np.concatenate', (['(endog[:, None], group[:, None], exog[:, 1:])'], {'axis': '(1)'}), '((endog[:, None], group[:, None], exog[:, 1:]), axis=1)\n', (11541, 11596), True, 'import numpy as np\n'), ((11633, 11648), 'pandas.DataFrame', 'pd.DataFrame', (['D'], {}), '(D)\n', (11645, 11648), True, 'import pandas as pd\n'), ((12241, 12251), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (12249, 12251), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((12268, 12299), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(300, 4)'}), '(size=(300, 4))\n', (12284, 12299), True, 'import numpy as np\n'), ((12481, 12495), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (12493, 12495), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((12509, 12523), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (12521, 12523), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((12861, 12871), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (12869, 12871), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((13131, 13145), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (13143, 13145), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((13159, 13200), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'dp'], {}), '(endog, exog, group, None, family, dp)\n', (13162, 13200), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((13432, 13479), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'cf'], {'decimal': '(6)'}), '(mdf1.params, cf, decimal=6)\n', (13451, 13479), False, 'from numpy.testing import assert_almost_equal\n'), ((13589, 13597), 'statsmodels.genmod.dependence_structures.Nested', 'Nested', ([], {}), '()\n', (13595, 13597), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((13611, 13670), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'ne'], {'dep_data': 'group_n'}), '(endog, exog, group, None, family, ne, dep_data=group_n)\n', (13614, 13670), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((13943, 13990), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf2.params', 'cf'], {'decimal': '(6)'}), '(mdf2.params, cf, decimal=6)\n', (13962, 13990), False, 'from numpy.testing import assert_almost_equal\n'), ((14134, 14144), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (14142, 14144), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((14273, 14299), 'statsmodels.genmod.dependence_structures.GlobalOddsRatio', 'GlobalOddsRatio', (['"""ordinal"""'], {}), "('ordinal')\n", (14288, 14299), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((14314, 14355), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups', 'None', 'family', 'v'], {}), '(endog, exog, groups, None, family, v)\n', (14317, 14355), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((14691, 14737), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf'], {'decimal': '(5)'}), '(mdf.params, cf, decimal=5)\n', (14710, 14737), False, 'from numpy.testing import assert_almost_equal\n'), ((14746, 14789), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.bse', 'se'], {'decimal': '(5)'}), '(mdf.bse, se, decimal=5)\n', (14765, 14789), False, 'from numpy.testing import assert_almost_equal\n'), ((14838, 14852), 'statsmodels.genmod.generalized_estimating_equations.Multinomial', 'Multinomial', (['(3)'], {}), '(3)\n', (14849, 14852), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((15026, 15040), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (15038, 15040), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((15054, 15095), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups', 'None', 'family', 'v'], {}), '(endog, exog, groups, None, family, v)\n', (15057, 15095), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((15355, 15403), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'cf1'], {'decimal': '(5)'}), '(mdf1.params, cf1, decimal=5)\n', (15374, 15403), False, 'from numpy.testing import assert_almost_equal\n'), ((15534, 15560), 'statsmodels.genmod.dependence_structures.GlobalOddsRatio', 'GlobalOddsRatio', (['"""nominal"""'], {}), "('nominal')\n", (15549, 15560), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((15574, 15615), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups', 'None', 'family', 'v'], {}), '(endog, exog, groups, None, family, v)\n', (15577, 15615), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((15899, 15947), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf2.params', 'cf2'], {'decimal': '(5)'}), '(mdf2.params, cf2, decimal=5)\n', (15918, 15947), False, 'from numpy.testing import assert_almost_equal\n'), ((16924, 16933), 'statsmodels.genmod.families.Poisson', 'Poisson', ([], {}), '()\n', (16931, 16933), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((17009, 17023), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (17021, 17023), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((17037, 17051), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (17049, 17051), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((18071, 18142), 'numpy.concatenate', 'np.concatenate', (['(endog[:, None], group_n[:, None], exog[:, 1:])'], {'axis': '(1)'}), '((endog[:, None], group_n[:, None], exog[:, 1:]), axis=1)\n', (18085, 18142), True, 'import numpy as np\n'), ((18180, 18195), 'pandas.DataFrame', 'pd.DataFrame', (['D'], {}), '(D)\n', (18192, 18195), True, 'import pandas as pd\n'), ((19035, 19049), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (19047, 19049), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((19067, 19077), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (19075, 19077), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((19091, 19117), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19107, 19117), True, 'import numpy as np\n'), ((19131, 19157), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19147, 19157), True, 'import numpy as np\n'), ((19171, 19197), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19187, 19197), True, 'import numpy as np\n'), ((19211, 19237), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19227, 19237), True, 'import numpy as np\n'), ((19300, 19352), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3})\n", (19312, 19352), True, 'import pandas as pd\n'), ((19367, 19461), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': 'groups', 'family': 'family', 'cov_struct': 'vs'}), "('Y ~ X1 + X2 + X3', D, None, groups=groups, family=family,\n cov_struct=vs)\n", (19383, 19461), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((19606, 19668), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ols.params.values', 'mdf.params'], {'decimal': '(10)'}), '(ols.params.values, mdf.params, decimal=10)\n', (19625, 19668), False, 'from numpy.testing import assert_almost_equal\n'), ((19736, 19780), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ols.bse', 'se'], {'decimal': '(10)'}), '(ols.bse, se, decimal=10)\n', (19755, 19780), False, 'from numpy.testing import assert_almost_equal\n'), ((19880, 19939), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['naive_tvalues', 'ols.tvalues'], {'decimal': '(10)'}), '(naive_tvalues, ols.tvalues, decimal=10)\n', (19899, 19939), False, 'from numpy.testing import assert_almost_equal\n'), ((19990, 20004), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (20002, 20004), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((20022, 20032), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (20030, 20032), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((20094, 20120), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20110, 20120), True, 'import numpy as np\n'), ((20134, 20160), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20150, 20160), True, 'import numpy as np\n'), ((20174, 20200), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20190, 20200), True, 'import numpy as np\n'), ((20218, 20251), 'numpy.random.randint', 'np.random.randint', (['(0)', '(4)'], {'size': '(100)'}), '(0, 4, size=100)\n', (20235, 20251), True, 'import numpy as np\n'), ((20265, 20317), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3})\n", (20277, 20317), True, 'import pandas as pd\n'), ((20537, 20598), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sml.params.values', 'md.params'], {'decimal': '(10)'}), '(sml.params.values, md.params, decimal=10)\n', (20556, 20598), False, 'from numpy.testing import assert_almost_equal\n'), ((20651, 20665), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (20663, 20665), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((20683, 20692), 'statsmodels.genmod.families.Poisson', 'Poisson', ([], {}), '()\n', (20690, 20692), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((20765, 20791), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20781, 20791), True, 'import numpy as np\n'), ((20805, 20831), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20821, 20831), True, 'import numpy as np\n'), ((20845, 20871), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20861, 20871), True, 'import numpy as np\n'), ((20889, 20922), 'numpy.random.randint', 'np.random.randint', (['(0)', '(4)'], {'size': '(100)'}), '(0, 4, size=100)\n', (20906, 20922), True, 'import numpy as np\n'), ((20936, 20988), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3})\n", (20948, 20988), True, 'import pandas as pd\n'), ((21210, 21271), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sml.params.values', 'md.params'], {'decimal': '(10)'}), '(sml.params.values, md.params, decimal=10)\n', (21229, 21271), False, 'from numpy.testing import assert_almost_equal\n'), ((1765, 1781), 'numpy.arange', 'np.arange', (['(n / 4)'], {}), '(n / 4)\n', (1774, 1781), True, 'import numpy as np\n'), ((1781, 1791), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (1788, 1791), True, 'import numpy as np\n'), ((2303, 2328), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (2318, 2328), False, 'import os\n'), ((3379, 3389), 'statsmodels.compat.lrange', 'lrange', (['(20)'], {}), '(20)\n', (3385, 3389), False, 'from statsmodels.compat import lrange\n'), ((3391, 3401), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (3398, 3401), True, 'import numpy as np\n'), ((4134, 4161), 'numpy.flatnonzero', 'np.flatnonzero', (['(group == ii)'], {}), '(group == ii)\n', (4148, 4161), True, 'import numpy as np\n'), ((5957, 5984), 'numpy.flatnonzero', 'np.flatnonzero', (['(group == ii)'], {}), '(group == ii)\n', (5971, 5984), True, 'import numpy as np\n'), ((6845, 6882), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'T', 'family', 'v'], {}), '(endog, exog, group, T, family, v)\n', (6848, 6882), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((7459, 7561), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': "D.loc[:, 'Id']", 'family': 'family', 'cov_struct': 'v'}), "('Y ~ X1 + X2 + X3', D, None, groups=D.loc[:, 'Id'], family\n =family, cov_struct=v)\n", (7475, 7561), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((7667, 7716), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(6)'}), '(mdf.params, cf[j], decimal=6)\n', (7686, 7716), False, 'from numpy.testing import assert_almost_equal\n'), ((8427, 8437), 'numpy.abs', 'np.abs', (['ix'], {}), '(ix)\n', (8433, 8437), True, 'import numpy as np\n'), ((8493, 8517), 'numpy.linalg.cholesky', 'np.linalg.cholesky', (['cmat'], {}), '(cmat)\n', (8511, 8517), True, 'import numpy as np\n'), ((8930, 8951), 'numpy.concatenate', 'np.concatenate', (['endog'], {}), '(endog)\n', (8944, 8951), True, 'import numpy as np\n'), ((8973, 8995), 'numpy.concatenate', 'np.concatenate', (['groups'], {}), '(groups)\n', (8987, 8995), True, 'import numpy as np\n'), ((9015, 9043), 'numpy.concatenate', 'np.concatenate', (['exog'], {'axis': '(0)'}), '(exog, axis=0)\n', (9029, 9043), True, 'import numpy as np\n'), ((9062, 9078), 'statsmodels.genmod.dependence_structures.Autoregressive', 'Autoregressive', ([], {}), '()\n', (9076, 9078), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((9096, 9146), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups'], {'family': 'ga', 'cov_struct': 'ar'}), '(endog, exog, groups, family=ga, cov_struct=ar)\n', (9099, 9146), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((9189, 9251), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ar.dep_params', 'dep_params_true[gsize - 1]'], {}), '(ar.dep_params, dep_params_true[gsize - 1])\n', (9208, 9251), False, 'from numpy.testing import assert_almost_equal\n'), ((9262, 9317), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'params_true[gsize - 1]'], {}), '(mdf.params, params_true[gsize - 1])\n', (9281, 9317), False, 'from numpy.testing import assert_almost_equal\n'), ((9576, 9600), 'numpy.dot', 'np.dot', (['exog', 'mdf.params'], {}), '(exog, mdf.params)\n', (9582, 9600), True, 'import numpy as np\n'), ((11248, 11288), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'v'], {}), '(endog, exog, group, None, family, v)\n', (11251, 11288), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((11328, 11378), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(10)'}), '(mdf.params, cf[j], decimal=10)\n', (11347, 11378), False, 'from numpy.testing import assert_almost_equal\n'), ((11822, 11924), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': "D.loc[:, 'Id']", 'family': 'family', 'cov_struct': 'v'}), "('Y ~ X1 + X2 + X3', D, None, groups=D.loc[:, 'Id'], family\n =family, cov_struct=v)\n", (11838, 11924), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((12026, 12076), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(10)'}), '(mdf.params, cf[j], decimal=10)\n', (12045, 12076), False, 'from numpy.testing import assert_almost_equal\n'), ((12337, 12370), 'numpy.dot', 'np.dot', (['exog', 'np.r_[1, 1, 0, 0.2]'], {}), '(exog, np.r_[1, 1, 0, 0.2])\n', (12343, 12370), True, 'import numpy as np\n'), ((12386, 12412), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(300)'}), '(size=300)\n', (12402, 12412), True, 'import numpy as np\n'), ((12437, 12451), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (12446, 12451), True, 'import numpy as np\n'), ((12638, 12697), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'v'], {'constraint': '(L, R)'}), '(endog, exog, group, None, family, v, constraint=(L, R))\n', (12641, 12697), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((12757, 12806), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params[3]', '(0)'], {'decimal': '(10)'}), '(mdf.params[3], 0, decimal=10)\n', (12776, 12806), False, 'from numpy.testing import assert_almost_equal\n'), ((13091, 13108), 'numpy.array', 'np.array', (['group_n'], {}), '(group_n)\n', (13099, 13108), True, 'import numpy as np\n'), ((17792, 17834), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group_n', 'None', 'family', 'v'], {}), '(endog, exog, group_n, None, family, v)\n', (17795, 17834), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((17874, 17923), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(5)'}), '(mdf.params, cf[j], decimal=5)\n', (17893, 17923), False, 'from numpy.testing import assert_almost_equal\n'), ((18370, 18481), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3 + X4 + X5"""', 'D', 'None'], {'groups': "D.loc[:, 'Id']", 'family': 'family', 'cov_struct': 'v'}), "('Y ~ X1 + X2 + X3 + X4 + X5', D, None, groups=D.loc[:,\n 'Id'], family=family, cov_struct=v)\n", (18386, 18481), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((18588, 18637), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(5)'}), '(mdf.params, cf[j], decimal=5)\n', (18607, 18637), False, 'from numpy.testing import assert_almost_equal\n'), ((19263, 19273), 'statsmodels.compat.lrange', 'lrange', (['(20)'], {}), '(20)\n', (19269, 19273), False, 'from statsmodels.compat import lrange\n'), ((19275, 19285), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (19282, 19285), True, 'import numpy as np\n'), ((1461, 1488), 'numpy.ones', 'np.ones', (['(exog.shape[0], 1)'], {}), '((exog.shape[0], 1))\n', (1468, 1488), True, 'import numpy as np\n'), ((1919, 1931), 'numpy.exp', 'np.exp', (['(-lpr)'], {}), '(-lpr)\n', (1925, 1931), True, 'import numpy as np\n'), ((1953, 1978), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'n'}), '(size=n)\n', (1970, 1978), True, 'import numpy as np\n'), ((2941, 2959), 'statsmodels.genmod.families.Poisson', 'families.Poisson', ([], {}), '()\n', (2957, 2959), False, 'from statsmodels.genmod import families\n'), ((6958, 7007), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(6)'}), '(mdf.params, cf[j], decimal=6)\n', (6977, 7007), False, 'from numpy.testing import assert_almost_equal\n'), ((8647, 8680), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(gsize, k)'}), '(size=(gsize, k))\n', (8663, 8680), True, 'import numpy as np\n'), ((9684, 9708), 'numpy.dot', 'np.dot', (['exog', 'mdf.params'], {}), '(exog, mdf.params)\n', (9690, 9708), True, 'import numpy as np\n'), ((19556, 19590), 'statsmodels.formula.api.ols', 'sm.ols', (['"""Y ~ X1 + X2 + X3"""'], {'data': 'D'}), "('Y ~ X1 + X2 + X3', data=D)\n", (19562, 19590), True, 'import statsmodels.formula.api as sm\n'), ((19841, 19870), 'numpy.diag', 'np.diag', (['mdf.naive_covariance'], {}), '(mdf.naive_covariance)\n', (19848, 19870), True, 'import numpy as np\n'), ((20049, 20075), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20065, 20075), True, 'import numpy as np\n'), ((20332, 20426), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': 'groups', 'family': 'family', 'cov_struct': 'vs'}), "('Y ~ X1 + X2 + X3', D, None, groups=groups, family=family,\n cov_struct=vs)\n", (20348, 20426), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((20475, 20511), 'statsmodels.formula.api.logit', 'sm.logit', (['"""Y ~ X1 + X2 + X3"""'], {'data': 'D'}), "('Y ~ X1 + X2 + X3', data=D)\n", (20483, 20511), True, 'import statsmodels.formula.api as sm\n'), ((21003, 21097), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': 'groups', 'family': 'family', 'cov_struct': 'vs'}), "('Y ~ X1 + X2 + X3', D, None, groups=groups, family=family,\n cov_struct=vs)\n", (21019, 21097), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((21146, 21184), 'statsmodels.formula.api.poisson', 'sm.poisson', (['"""Y ~ X1 + X2 + X3"""'], {'data': 'D'}), "('Y ~ X1 + X2 + X3', data=D)\n", (21156, 21184), True, 'import statsmodels.formula.api as sm\n'), ((8358, 8374), 'numpy.arange', 'np.arange', (['gsize'], {}), '(gsize)\n', (8367, 8374), True, 'import numpy as np\n'), ((8385, 8401), 'numpy.arange', 'np.arange', (['gsize'], {}), '(gsize)\n', (8394, 8401), True, 'import numpy as np\n'), ((8785, 8813), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'gsize'}), '(size=gsize)\n', (8801, 8813), True, 'import numpy as np\n'), ((20722, 20749), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(100)'}), '(size=100)\n', (20739, 20749), True, 'import numpy as np\n'), ((8893, 8907), 'numpy.ones', 'np.ones', (['gsize'], {}), '(gsize)\n', (8900, 8907), True, 'import numpy as np\n')]
############################################## README ################################################# # This calculates threshold for an image depending upon its spiking activity. ######################################################################################################## import numpy as np from snn.neuron import neuron import random from matplotlib import pyplot as plt from snn.recep_field import rf from snn.spike_train import encode from snn.rl import rl from snn.rl import update from snn.reconstruct import reconst_weights from snn.parameters import param as par import os def threshold(train): tu = np.shape(train[0])[0] thresh = 0 for i in range(tu): simul_active = sum(train[:,i]) if simul_active>thresh: thresh = simul_active return (thresh/3)*par.scale if __name__ == '__main__': # img = cv2.imread("mnist1/" + str(1) + ".png", 0) img = np.array(Image.open("mnist1/" + str(1) + ".png", 0)) print(img) # pot = rf(img) # train = np.array(encode(pot)) # print threshold(train)
[ "numpy.shape" ]
[((630, 648), 'numpy.shape', 'np.shape', (['train[0]'], {}), '(train[0])\n', (638, 648), True, 'import numpy as np\n')]
# all the data from train data set, k-fold validation import numpy as np import onnxruntime import torch from pandas import read_csv from tensorflow.python.keras.utils.np_utils import to_categorical from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score # load a single file as a numpy array def load_file(filepath): dataframe = read_csv(filepath, header=None, delim_whitespace=True) return dataframe.values # load a list of files into a 3D array of [samples, timesteps, features] def load_group(filenames, prefix=''): loaded = list() for name in filenames: data = load_file(prefix + name) loaded.append(data) # stack group so that features are the 3rd dimension loaded = np.dstack(loaded) return loaded # load a dataset group, such as train or test def load_dataset_group(group, prefix=''): filepath = prefix + group + '/Inertial Signals/' # load all 9 files as a single array filenames = list() # total acceleration filenames += ['total_acc_x_' + group + '.txt', 'total_acc_y_' + group + '.txt', 'total_acc_z_' + group + '.txt'] # body acceleration filenames += ['body_acc_x_' + group + '.txt', 'body_acc_y_' + group + '.txt', 'body_acc_z_' + group + '.txt'] # body gyroscope filenames += ['body_gyro_x_' + group + '.txt', 'body_gyro_y_' + group + '.txt', 'body_gyro_z_' + group + '.txt'] # load input data X = load_group(filenames, filepath) # load class output y = load_file(prefix + group + '/y_' + group + '.txt') return X, y # load the dataset, returns train and test X and y elements def load_dataset(prefix=''): # load all train trainX, trainy = load_dataset_group('train', prefix + 'UCI HAR Dataset/') # print(trainX.shape, trainy.shape) # load all test testX, testy = load_dataset_group('test', prefix + 'UCI HAR Dataset/') # print(testX.shape, testy.shape) # zero-offset class values trainy = trainy - 1 testy = testy - 1 # one hot encode y trainy = to_categorical(trainy) testy = to_categorical(testy) print(trainX.shape, trainy.shape, testX.shape, testy.shape) return trainX, trainy, testX, testy # summarize scores def summarize_results(scores): print('scores:', scores) mean, std = np.mean(scores), np.std(scores) return [mean, std] # run an experiment def run_experiment(repeats=10): # load data trainX, trainy, testX, testy = load_dataset() # sess = onnxruntime.InferenceSession('./models/model1.onnx') sess = onnxruntime.InferenceSession('./cnn-pytorch.onnx') for i in sess.get_inputs(): print(i.name) print(i.shape) for i in sess.get_outputs(): print(i.name) print(i.shape) # y_predict = sess.run(None, {sess.get_inputs()[0].name: testX.astype(np.float32)}) testX = np.transpose(testX, (0, 2, 1)) testX = torch.utils.data.DataLoader(testX, batch_size=32, shuffle=True, num_workers=0) testy = torch.utils.data.DataLoader(testy, batch_size=32, shuffle=True, num_workers=0) for features, labels in zip(testX, testy): y_predict = sess.run(None, {sess.get_inputs()[0].name: features.float().numpy()}) print('y_predict', y_predict) # y_predict = np.array(y_predict) # y_predict = np.argmax(y_predict, axis=2) # testy = labels # y_true = np.reshape(testy, [-1]) # y_pred = np.reshape(y_predict, [-1]) # accuracy = accuracy_score(y_true, y_pred) # precision = precision_score(y_true, y_pred, average='macro') # recall = recall_score(y_true, y_pred, average='macro') # f1score = f1_score(y_true, y_pred, average='macro') # print(accuracy, precision, recall, f1score) run_experiment()
[ "numpy.dstack", "torch.utils.data.DataLoader", "pandas.read_csv", "numpy.std", "numpy.transpose", "tensorflow.python.keras.utils.np_utils.to_categorical", "onnxruntime.InferenceSession", "numpy.mean" ]
[((365, 419), 'pandas.read_csv', 'read_csv', (['filepath'], {'header': 'None', 'delim_whitespace': '(True)'}), '(filepath, header=None, delim_whitespace=True)\n', (373, 419), False, 'from pandas import read_csv\n'), ((746, 763), 'numpy.dstack', 'np.dstack', (['loaded'], {}), '(loaded)\n', (755, 763), True, 'import numpy as np\n'), ((2044, 2066), 'tensorflow.python.keras.utils.np_utils.to_categorical', 'to_categorical', (['trainy'], {}), '(trainy)\n', (2058, 2066), False, 'from tensorflow.python.keras.utils.np_utils import to_categorical\n'), ((2079, 2100), 'tensorflow.python.keras.utils.np_utils.to_categorical', 'to_categorical', (['testy'], {}), '(testy)\n', (2093, 2100), False, 'from tensorflow.python.keras.utils.np_utils import to_categorical\n'), ((2554, 2604), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['"""./cnn-pytorch.onnx"""'], {}), "('./cnn-pytorch.onnx')\n", (2582, 2604), False, 'import onnxruntime\n'), ((2860, 2890), 'numpy.transpose', 'np.transpose', (['testX', '(0, 2, 1)'], {}), '(testX, (0, 2, 1))\n', (2872, 2890), True, 'import numpy as np\n'), ((2903, 2981), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testX'], {'batch_size': '(32)', 'shuffle': '(True)', 'num_workers': '(0)'}), '(testX, batch_size=32, shuffle=True, num_workers=0)\n', (2930, 2981), False, 'import torch\n'), ((2994, 3072), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testy'], {'batch_size': '(32)', 'shuffle': '(True)', 'num_workers': '(0)'}), '(testy, batch_size=32, shuffle=True, num_workers=0)\n', (3021, 3072), False, 'import torch\n'), ((2302, 2317), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (2309, 2317), True, 'import numpy as np\n'), ((2319, 2333), 'numpy.std', 'np.std', (['scores'], {}), '(scores)\n', (2325, 2333), True, 'import numpy as np\n')]
#! /usr/bin/enc python # -*- coding: utf-8 -*- # author: <NAME> # email: <EMAIL> """ Swin Transformer 1. 类似CNN的层次化构建方法(Hierarchical Feature Maps),特征图尺寸中有对图像下采样4倍、8倍、以及16倍; 这样的Backbone有助于再此基础上构建目标检测、实例分割等任务。 2. 使用Windows Multi-Head Self-Attention (W-MSA)概念。减少计算量。计算复杂度从指数级降到线性级,Multi-head Self-Attention只在每个Windows内部进行。相对于ViT直接对整个Global进行MSA,计算复杂度更低;但是会隔绝不同 窗口之间的信息传递,通过Shifted Windows Multi-head Self-Atten来让信息在相邻窗口进行传递。 A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Code/weights from https://github.com/microsoft/Swin-Transformer """ import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import numpy as np from typing import Optional from BasicModule import PatchMerging, DropPath, PatchEmbed from BasicModule import Mlp from BasicModule import window_partition, window_reverse """SwinT window_size = 7 img_size = 224 Trained ImageNet-1k depths->2,2,6,2 """ def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), num_classes=num_classes, **kwargs) return model """Swin-S depths->2,2,18,2 """ def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), num_classes=num_classes, **kwargs) return model """Swin-B""" def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model """Swin-Large""" def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), num_classes=num_classes, **kwargs) return model def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), num_classes=num_classes, **kwargs) return model """Swin Transformer""" class SwinTransformer(nn.Module): """Swin Transformer结构 这里有个不同之处,就是每个Stage Layer中, """ def __init__(self, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm # 输出特征矩阵的Channels (C) # H/4 x W/4 x 48 -> H/4 x W/4 x C(Stage1) -> H/8 x W/8 x 2C(Stage2) -> H/16 x W/16 x 4C(stage3) ... self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # 将image切分为不重合的Patches # input: (Bs, 224, 224, 3) # output: (e.g patch_size=4: Bs, 56x56, 4x4x3) self.patch_embed = PatchEmbed( patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth # Drop Path dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # bulid layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): # 注意这里构建的stage和论文图中有些差异 # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的 layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layers) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self,x): # x:[B, L, C] x,H,W = self.patch_embed(x) x = self.pos_drop(x) # 多尺度分层Multi-Stage for layer in self.layers: x,H,W = layer(x,H,W) x = self.norm(x) # [B, L, C] x = self.avgpool(x.transpose(1, 2)) # [B, C, 1] x = torch.flatten(x, 1) x = self.head(x) # 分类头 return x """一个Stage内的基本SwinTransformer模块""" class BasicLayer(nn.Module): """ One Stage SwinTransformer Layer包括: """ def __init__(self, dim, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): """ Args: dim (int): Number of input channels. depth (int): Number of blocks. block数量 num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ super(BasicLayer, self).__init__() self.dim = dim self.depth = depth self.window_size = window_size self.use_checkpoint = use_checkpoint # pre-trained self.shift_size = window_size // 2 # 构建SwinTransformer Block self.blocks = nn.ModuleList([ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else self.shift_size, #当i为偶,就是W-MSA,i为奇,就是SW-MSA,与论文一致, 保证窗口之间通信 mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # Patch Merging Layer 类似于Pooling下采样 if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def create_mask(self,x,H,W): """ SW-MSA后,对于移位后左上角的窗口(也就是移位前最中间的窗口)来说,里面的元素都是互相紧挨着的, 他们之间可以互相两两做自注意力,但是对于剩下几个窗口来说,它们里面的元素是从别的很远的地方搬过来的, 所以他们之间,按道理来说是不应该去做自注意力,也就是说他们之间不应该有什么太大的联系 以14x14个patch为例进行 H: Feature Map Height W: Feature Map Width x: Feature Map """ # 为SW-MSA计算Attention Mask. # 保证Hp和Wp是window_size的整数倍 Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size # 拥有和feature map一样的通道排列顺序,方便后续window_partition img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1] # 准备进行区域生成,方便生成Mask h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) # 区域编码 cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 # Shift Window 混合区域的窗口分割 mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw] # 掩码生成 attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1] # [nW, Mh*Mw, Mh*Mw] attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask def forward(self,x,H,W): # [nW, Mh*Mw, Mh*Mw] nW:窗口数 attn_mask = self.create_mask(x,H,W) for blk in self.blocks: blk.H, blk.W = H, W # self.H = H, self.W = W if not torch.jit.is_scripting() and self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) if self.downsample is not None: x = self.downsample(x, H, W) H, W = (H + 1) // 2, (W + 1) // 2 # DownSample之后,H,W应该减半 return x, H, W """一个基本的SwinTransformerBlock的构成Model""" class SwinTransformerBlock(nn.Module): """ Swin Transformer Block包括: Feature Map Input -> LayerNorm -> SW-MSA/W-MSA -> LayerNorm-> MLP --------> |--------------------------------------||----------------------| """ def __init__(self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): """ Args参数定义: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ super(SwinTransformerBlock, self).__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio # shift_size必须小于windows_size assert 0 <= self.shift_size < self.window_size, "shift_size must in 0~window_size" # LN1 self.norm1 = norm_layer(dim) # Windows_Multi-head Self Attention self.attn = WindowsAttention( dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # LN2 self.norm2 = norm_layer(dim) # MLP Layer mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, attn_mask): # feature map的Height & Width H, W = self.H, self.W # Batch, length, channel B, L, C = x.shape assert L == H * W, "input feature has wrong size" # Skip Connect shortcut = x x = self.norm1(x) # reshape feature map x = x.view(B, H, W, C) # 对feature map进行pad,pad到windows size的整数倍 pad_l = 0 pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x,(0,0,pad_l,pad_r,pad_t,pad_b)) # Hp, Wp代表pad后的feature map的Height和Width _, Hp, Wp, _ = x.shape # 是W-MSA 还是 SW-MSA ? # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x attn_mask = None # 窗口划分 # Windows Partition x_windows = window_partition(shifted_x,self.window_size) #[nW*B, Mh, Mw, C] x_windows = x_windows.view(-1, self.window_size*self.window_size,C) # [nW*B, Mh*Mw, C] # W-MSA / SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C] # 将分割的Windows进行还原 attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C] shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C] # 如果是SW-MSA,需要逆shift过程 # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x # 移除Pad数据 if pad_r > 0 or pad_b > 0: # 把前面pad的数据移除掉 x = x[:, :H, :W, :].contiguous() x = x.view(B,H*W,C) # FFN # 两个Skip Connect x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class WindowsAttention(nn.Module): """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. VIT中注意力是全局的,复杂度随着图片尺寸的增加指数增加,样当去做视觉里的下游任务,尤其是密集 预测型的任务,或者说遇到非常大尺寸的图片时候,这种全局算自注意力的计算复杂度就非常贵了 SwinTransformer中,采用Windows-based Attention来将计算复杂度与图片尺寸的关系变为线性关系。 General Model: W-MSA / SW-MSA Shift 操作但如果加上 shift 的操作,每个 patch 原来只能跟它所在的窗口里的别的 patch 进行 交互,但是 shift 之后,这个 patch就可以跟新的窗口里的别的 patch就进行交互了,而这个新的窗 口里所有的 patch 其实来自于上一层别的窗口里的 patch,这也就是作者说的能起到 cross-window connection,就是窗口和窗口之间可以交互了 上述过程配合之后的Patch Merging,合并到Transformer最后几层的时候,每一个patch本身的感受 野就已经很大了。 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.): """ Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ # Mh: Windows Size Height # Mw: Windows Size Width # nH: num_heads super(WindowsAttention, self).__init__() self.dim = dim self.window_size = window_size # [Mh, Mw] self.num_heads = num_heads head_dim = dim // num_heads # 每个head的dim self.scale = head_dim ** -0.5 # scale # 定义一个parameter table来存放relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH] # 相对位置索引获得方法 # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw] coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw] # [2, Mh*Mw, 1] - [2, 1, Mh*Mw] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Mh*Mw, Mh*Mw] relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2] relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw] # Register_buffer: 应该就是在内存中定一个常量,同时,模型保存和加载的时候可以写入和读出。 # 不需要学习,但是可以灵活读写 self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) nn.init.trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self,x,mask=None): """ Args: x: input features with shape of (num_windows*B, Mh*Mw, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None x的输入维度是(num_windows窗口数*Batch Size) 在窗口内进行Attention Op """ # [batch_size*num_windows, Mh*Mw, total_embed_dim] B_, N, C = x.shape # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim] # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head] # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] q,k,v = qkv.unbind(0) # QK^T/sqrt(d) # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw] # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw] q = q * self.scale attn = (q @ k.transpose(-2, -1)) # QK^T/sqrt(d) + B # B: # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH] relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw] # [Bs*nW, nH, Mh*Mw, Mh*Mw] attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] # SW-MSA 需要做attention Mask # mask: [nW, Mh*Mw, Mh*Mw] # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw] # # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head] # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim] x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x if __name__ == "__main__": pass
[ "torch.nn.Dropout", "BasicModule.Mlp", "torch.jit.is_scripting", "torch.roll", "torch.nn.init.constant_", "torch.nn.Softmax", "torch.arange", "torch.nn.functional.pad", "torch.flatten", "torch.nn.Linear", "BasicModule.window_reverse", "torch.zeros", "BasicModule.DropPath", "numpy.ceil", "BasicModule.window_partition", "torch.nn.ModuleList", "BasicModule.PatchEmbed", "torch.utils.checkpoint.checkpoint", "torch.nn.Identity", "torch.nn.AdaptiveAvgPool1d", "torch.nn.init.trunc_normal_", "torch.meshgrid" ]
[((6893, 7018), 'BasicModule.PatchEmbed', 'PatchEmbed', ([], {'patch_size': 'patch_size', 'in_c': 'in_chans', 'embed_dim': 'embed_dim', 'norm_layer': '(norm_layer if self.patch_norm else None)'}), '(patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,\n norm_layer=norm_layer if self.patch_norm else None)\n', (6903, 7018), False, 'from BasicModule import PatchMerging, DropPath, PatchEmbed\n'), ((7064, 7087), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'drop_rate'}), '(p=drop_rate)\n', (7074, 7087), True, 'import torch.nn as nn\n'), ((7294, 7309), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (7307, 7309), True, 'import torch.nn as nn\n'), ((8338, 8361), 'torch.nn.AdaptiveAvgPool1d', 'nn.AdaptiveAvgPool1d', (['(1)'], {}), '(1)\n', (8358, 8361), True, 'import torch.nn as nn\n'), ((9178, 9197), 'torch.flatten', 'torch.flatten', (['x', '(1)'], {}), '(x, 1)\n', (9191, 9197), False, 'import torch\n'), ((12159, 12203), 'torch.zeros', 'torch.zeros', (['(1, Hp, Wp, 1)'], {'device': 'x.device'}), '((1, Hp, Wp, 1), device=x.device)\n', (12170, 12203), False, 'import torch\n'), ((12794, 12838), 'BasicModule.window_partition', 'window_partition', (['img_mask', 'self.window_size'], {}), '(img_mask, self.window_size)\n', (12810, 12838), False, 'from BasicModule import window_partition, window_reverse\n'), ((15934, 16022), 'BasicModule.Mlp', 'Mlp', ([], {'in_features': 'dim', 'hidden_features': 'mlp_hidden_dim', 'act_layer': 'act_layer', 'drop': 'drop'}), '(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer,\n drop=drop)\n', (15937, 16022), False, 'from BasicModule import Mlp\n'), ((16625, 16669), 'torch.nn.functional.pad', 'F.pad', (['x', '(0, 0, pad_l, pad_r, pad_t, pad_b)'], {}), '(x, (0, 0, pad_l, pad_r, pad_t, pad_b))\n', (16630, 16669), True, 'import torch.nn.functional as F\n'), ((17057, 17102), 'BasicModule.window_partition', 'window_partition', (['shifted_x', 'self.window_size'], {}), '(shifted_x, self.window_size)\n', (17073, 17102), False, 'from BasicModule import window_partition, window_reverse\n'), ((17474, 17528), 'BasicModule.window_reverse', 'window_reverse', (['attn_windows', 'self.window_size', 'Hp', 'Wp'], {}), '(attn_windows, self.window_size, Hp, Wp)\n', (17488, 17528), False, 'from BasicModule import window_partition, window_reverse\n'), ((20037, 20070), 'torch.arange', 'torch.arange', (['self.window_size[0]'], {}), '(self.window_size[0])\n', (20049, 20070), False, 'import torch\n'), ((20090, 20123), 'torch.arange', 'torch.arange', (['self.window_size[1]'], {}), '(self.window_size[1])\n', (20102, 20123), False, 'import torch\n'), ((20246, 20270), 'torch.flatten', 'torch.flatten', (['coords', '(1)'], {}), '(coords, 1)\n', (20259, 20270), False, 'import torch\n'), ((20996, 21034), 'torch.nn.Linear', 'nn.Linear', (['dim', '(dim * 3)'], {'bias': 'qkv_bias'}), '(dim, dim * 3, bias=qkv_bias)\n', (21005, 21034), True, 'import torch.nn as nn\n'), ((21060, 21081), 'torch.nn.Dropout', 'nn.Dropout', (['attn_drop'], {}), '(attn_drop)\n', (21070, 21081), True, 'import torch.nn as nn\n'), ((21102, 21121), 'torch.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (21111, 21121), True, 'import torch.nn as nn\n'), ((21147, 21168), 'torch.nn.Dropout', 'nn.Dropout', (['proj_drop'], {}), '(proj_drop)\n', (21157, 21168), True, 'import torch.nn as nn\n'), ((21178, 21244), 'torch.nn.init.trunc_normal_', 'nn.init.trunc_normal_', (['self.relative_position_bias_table'], {'std': '(0.02)'}), '(self.relative_position_bias_table, std=0.02)\n', (21199, 21244), True, 'import torch.nn as nn\n'), ((21267, 21285), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (21277, 21285), True, 'import torch.nn as nn\n'), ((8382, 8423), 'torch.nn.Linear', 'nn.Linear', (['self.num_features', 'num_classes'], {}), '(self.num_features, num_classes)\n', (8391, 8423), True, 'import torch.nn as nn\n'), ((8448, 8461), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (8459, 8461), True, 'import torch.nn as nn\n'), ((8584, 8625), 'torch.nn.init.trunc_normal_', 'nn.init.trunc_normal_', (['m.weight'], {'std': '(0.02)'}), '(m.weight, std=0.02)\n', (8605, 8625), True, 'import torch.nn as nn\n'), ((15739, 15758), 'BasicModule.DropPath', 'DropPath', (['drop_path'], {}), '(drop_path)\n', (15747, 15758), False, 'from BasicModule import PatchMerging, DropPath, PatchEmbed\n'), ((15782, 15795), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (15793, 15795), True, 'import torch.nn as nn\n'), ((16852, 16923), 'torch.roll', 'torch.roll', (['x'], {'shifts': '(-self.shift_size, -self.shift_size)', 'dims': '(1, 2)'}), '(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))\n', (16862, 16923), False, 'import torch\n'), ((17658, 17735), 'torch.roll', 'torch.roll', (['shifted_x'], {'shifts': '(self.shift_size, self.shift_size)', 'dims': '(1, 2)'}), '(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))\n', (17668, 17735), False, 'import torch\n'), ((19813, 19888), 'torch.zeros', 'torch.zeros', (['((2 * window_size[0] - 1) * (2 * window_size[1] - 1))', 'num_heads'], {}), '((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)\n', (19824, 19888), False, 'import torch\n'), ((20153, 20204), 'torch.meshgrid', 'torch.meshgrid', (['[coords_h, coords_w]'], {'indexing': '"""ij"""'}), "([coords_h, coords_w], indexing='ij')\n", (20167, 20204), False, 'import torch\n'), ((8705, 8733), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (8722, 8733), True, 'import torch.nn as nn\n'), ((8788, 8816), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (8805, 8816), True, 'import torch.nn as nn\n'), ((8829, 8861), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight', '(1.0)'], {}), '(m.weight, 1.0)\n', (8846, 8861), True, 'import torch.nn as nn\n'), ((11967, 11996), 'numpy.ceil', 'np.ceil', (['(H / self.window_size)'], {}), '(H / self.window_size)\n', (11974, 11996), True, 'import numpy as np\n'), ((12034, 12063), 'numpy.ceil', 'np.ceil', (['(W / self.window_size)'], {}), '(W / self.window_size)\n', (12041, 12063), True, 'import numpy as np\n'), ((13536, 13576), 'torch.utils.checkpoint.checkpoint', 'checkpoint.checkpoint', (['blk', 'x', 'attn_mask'], {}), '(blk, x, attn_mask)\n', (13557, 13576), True, 'import torch.utils.checkpoint as checkpoint\n'), ((13466, 13490), 'torch.jit.is_scripting', 'torch.jit.is_scripting', ([], {}), '()\n', (13488, 13490), False, 'import torch\n')]
# -*- coding:utf-8 -*- import six import numpy as np from pyproj import Proj import operator from .exceptions import * class NullProj(object): """ Similar to pyproj.Proj, but NullProj does not do actual conversion. """ @property def srs(self): return '' def __call__(self, x, y, **kwargs): return x, y class GridderBase(object): """Gridder is a helper for i, j <-> x, y conversion, etc.""" def i2x(self, *args): """Convert i, j, ... -> x, y, ...""" raise NotImplementedError def x2i(self, *args, **kwargs): """Convert x, y, ... -> i, j, ...""" raise NotImplementedError def copy(self, **kwargs): kws = self.dump() kws.update(kwargs) new_gridder = self.__class__(**kws) return new_gridder def calibrate(self, x0, y0, x1=None, y1=None): return def dump(self): return {} class XYGridderBase(GridderBase): """ Requires self.X & self.Y. """ @property def bbox(self): return (np.min(self.X), np.min(self.Y), np.max(self.X), np.max(self.Y)) def get_bounding_ij(self, x1, y1, x2, y2, **kwargs): bbox = self.bbox if x1 is None: x1 = bbox[0] if y1 is None: y1 = bbox[1] if x2 is None: x2 = bbox[2] if y2 is None: y2 = bbox[3] bad = ~((self.X >= x1) & (self.X <= x2) & (self.Y >= y1) & (self.Y <= y2)) x_bad = np.alltrue(bad, axis=0) y_bad = np.alltrue(bad, axis=1) x_points = np.argwhere(np.diff(np.r_[True, x_bad, True])).reshape(-1, 2) y_points = np.argwhere(np.diff(np.r_[True, y_bad, True])).reshape(-1, 2) i1, i2 = (-1, -1) if x_points.shape[0] == 0 else x_points[0] j1, j2 = (-1, -1) if y_points.shape[0] == 0 else y_points[0] return i1, j1, i2, j2 def check_bound(self, i, j, int_index=True): start = -0.5 subtracted = 1 if int_index: start = 0 if int_index in ('lowerleft', 'll'): subtracted = 2 if np.isscalar(i): if (i >= start and i <= self.nx-subtracted) and (j >= start and j <= self.ny-subtracted): return i, j else: raise OutOfGridBound("i: {}, j: {} is out of bound!".format(i, j)) else: i = np.where((i >= start) & (i <= self.nx - subtracted), i, np.nan) j = np.where((j >= start) & (j <= self.ny - subtracted), j, np.nan) return i, j class XYProjGridder(XYGridderBase): def __init__(self, proj=None, x=None, y=None, nx=None, ny=None, dx=None, dy=None, x_orig=0.0, y_orig=0.0, **kwargs): self.proj = proj self._reset_raw_xy() if x is not None and y is not None: self.set_xy(x, y) else: self._init_with_para(nx, ny, dx, dy, x_orig, y_orig) @property def proj(self): return self._proj @proj.setter def proj(self, p): if p is None: self._proj = NullProj() elif isinstance(p, (Proj, NullProj)): self._proj = p elif isinstance(p, dict): self._proj = Proj(**p) else: # Treat as proj_string self._proj = Proj(str(p)) # TODO: check PY3 compatibility. self._reset_raw_xy() if all([hasattr(self, attr) for attr in ('_nx', '_ny', '_dx', '_dy', '_x_orig', '_y_orig')]): self._updateXY() @property def X(self): return self._X @X.setter def X(self, x): if self._raw_y is None: raise ValueError("Cannot set x alone when no raw y presents.") ndim_x = np.ndim(x) if ndim_x == 1 and np.ndim(self._raw_y) == 1: self.set_xy(x, self._raw_y) elif ndim_x == 2 and np.shape(x) == np.shape(self.Y): self.set_xy(x, self.Y) else: self._raise_invalid_shape(x, self.Y) @property def Y(self): return self._Y @Y.setter def Y(self, y): if self._raw_x is None: raise ValueError("Cannot set y alone when no raw x presents.") ndim_y = np.ndim(y) if ndim_y == 1 and np.ndim(self._raw_x) == 1: self.set_xy(self._raw_x, y) elif ndim_y == 2 and np.shape(y) == np.shape(self.X): self.set_xy(self.X, y) else: self._raise_invalid_shape(self.X, y) @property def CX(self): return self._CX @property def CY(self): return self._CY @property def x(self): return self._raw_x if self._raw_x is not None else self._X @property def y(self): return self._raw_y if self._raw_y is not None else self._Y @property def cx(self): return self._raw_cx if self._raw_cx is not None else self._CX @property def cy(self): return self._raw_cy if self._raw_cy is not None else self._CY @property def nx(self): return self._nx @nx.setter def nx(self, value): self._nx = value self._reset_raw_xy() self._updateXY() @property def ny(self): return self._ny @ny.setter def ny(self, value): self._ny = value self._reset_raw_xy() self._updateXY() @property def dx(self): return self._dx @dx.setter def dx(self, value): self._dx = value self._reset_raw_xy() self._updateXY() @property def dy(self): return self._dy @dy.setter def dy(self, value): self._dy = value self._reset_raw_xy() self._updateXY() @property def x_orig(self): return self._x_orig @x_orig.setter def x_orig(self, value): self._x_orig = value self._reset_raw_xy() self._updateXY() @property def y_orig(self): return self._y_orig @y_orig.setter def y_orig(self, value): self._y_orig = value self._reset_raw_xy() self._updateXY() @property def bbox(self): return self._bbox @property def cbox(self): """corner box""" return self._cbox def _init_with_para(self, nx, ny, dx, dy, x_orig, y_orig): self._nx = nx self._ny = ny self._dx = dx self._dy = dy self._x_orig = x_orig self._y_orig = y_orig self._updateXY() @property def has_null_proj(self): return isinstance(self.proj, NullProj) def set_xy(self, x, y): ndim_x, ndim_y = np.ndim(x), np.ndim(y) if ndim_x == 1 and ndim_y == 1: self._nx, self._ny = len(x), len(y) elif ndim_x == 2 and ndim_y == 2: self._ny, self._nx = np.shape(x) else: self._raise_invalid_shape(x, y) self._raw_x, self._raw_y = np.asarray(x), np.asarray(y) self.calibrate(x, y) def _raise_invalid_shape(self, x, y): raise ValueError("Invalid x, y shape: {}, {}".format(np.shape(x), np.shape(y))) def _reset_raw_xy(self): self._raw_x, self._raw_y = None, None def _updateXY(self): jj, ii = np.mgrid[0:self.ny, 0:self.nx] cjj, cii = np.mgrid[-0.5:self.ny, -0.5:self.nx] xx, yy = self.i2x(ii, jj) cxx, cyy = self.i2x(cii, cjj) self._X, self._Y = xx, yy self._CX, self._CY = cxx, cyy if self._raw_x is not None and self._raw_x.ndim == 1: self._raw_cx = self._CX[0] else: self._raw_cx = None if self._raw_y is not None and self._raw_y.ndim == 1: self._raw_cy = self._CY[:, 0] else: self._raw_cy = None self._bbox = (np.min(self._X), np.min(self._Y), np.max(self._X), np.max(self._Y)) self._cbox = (np.min(self._CX), np.min(self._CY), np.max(self._CX), np.max(self._CY)) return xx, yy def i2x(self, i, j): px = i * self.dx + self.x_orig py = j * self.dy + self.y_orig return self.proj(px, py, inverse=True) def x2i(self, x, y, int_index=True, check_bound=None): px, py = self.proj(x, y) i = (px - self.x_orig) / self.dx j = (py - self.y_orig) / self.dy if int_index: if int_index in ('lowerleft', 'll'): i = np.floor(i) j = np.floor(j) else: i = np.round(i) j = np.round(j) if np.isscalar(i): i = int(i) j = int(j) else: i = i.astype('i') j = j.astype('i') if check_bound: return self.check_bound(i, j, int_index=int_index) else: return i, j def calibrate(self, x, y, x1=None, y1=None): ndim_x, ndim_y = np.ndim(x), np.ndim(y) if ndim_x == 0 and ndim_y == 0: x0, y0 = x, y if ndim_x == 1 and ndim_y == 1: x0, x1 = x[0], x[1] y0, y1 = y[0], y[1] elif ndim_x == 2 and ndim_y == 2: x0, x1 = x[0, 0], x[1, 1] y0, y1 = y[0, 0], y[1, 1] else: self._raise_invalid_shape(x, y) px0, py0 = self.proj(x0, y0) self._x_orig = px0 self._y_orig = py0 if x1 is not None and y1 is not None: px1, py1 = self.proj(x1, y1) self._dx = px1 - px0 self._dy = py1 - py0 self._updateXY() def dump(self): return { "proj": self.proj.srs, "nx": self.nx, "ny": self.ny, "dx": self.dx, "dy": self.dy, "x_orig": self.x_orig, "y_orig": self.y_orig } class LonLatSurroundingGridder(XYGridderBase): def __init__(self, lon0, lat0, rmin, rmax, nr, ntheta, theta0=0.0, r_earth=6371): self.lon0 = lon0 self.lat0 = lat0 self.rmin = rmin self.rmax = rmax self.nr = nr self.ntheta = ntheta self.theta0 = theta0 self.r_earth = r_earth self.dtheta = np.pi * 2 / self.ntheta self.dr = (self.rmax - self.rmin) / (self.nr - 1) self._updateXY() def _updateXY(self): r = np.linspace(self.rmin, self.rmax, self.nr) theta = np.arange(self.ntheta) * self.dtheta + self.theta0 THETA, R = np.meshgrid(theta, r) LON, LAT = self.r_theta_to_lon_lat(R, THETA) self._X = LON self._Y = LAT return self._X, self._Y def r_theta_to_lon_lat(self, r, theta): r_ = r / self.r_earth sin_r = np.sin(r_) cos_r = np.cos(r_) lat0_ = np.deg2rad(self.lat0) lon0_ = np.deg2rad(self.lon0) sin_lat0 = np.sin(lat0_) cos_lat0 = np.cos(lat0_) sin_lat = sin_lat0 * cos_r + cos_lat0 * sin_r * np.cos(theta) lat_ = np.arcsin(sin_lat) lon_ = lon0_ + np.arctan2(np.sin(theta) * sin_r * cos_lat0, cos_r - sin_lat0 * sin_lat) lon = np.rad2deg(lon_) lat = np.rad2deg(lat_) return lon, lat @property def nx(self): return self.ntheta @property def ny(self): return self.nr @property def X(self): return self._X @property def Y(self): return self._Y @property def x(self): return self._X @property def y(self): return self._Y def i2x(self, i, j): theta = self.theta0 + i * self.dtheta r = self.rmin + j * self.dr lon, lat = self.r_theta_to_lon_lat(r, theta) return lon, lat def x2i(self, x, y, int_index=True, check_bound=None): lon2, lat2 = np.deg2rad(x), np.deg2rad(y) lon1, lat1 = np.deg2rad(self.lon0), np.deg2rad(self.lat0) dlon = lon2 - lon1 dlat = lat2 - lat1 sin_dlon = np.sin(dlon) cos_dlon = np.cos(dlon) sin_lat1 = np.sin(lat1) cos_lat1 = np.cos(lat1) sin_lat2 = np.sin(lat2) cos_lat2 = np.cos(lat2) a = cos_lat2 * sin_dlon b = cos_lat1 * sin_lat2 - sin_lat1 * cos_lat2 * cos_dlon theta = np.arctan2(a, b) c = np.sin(dlat / 2) ** 2 + cos_lat1 * cos_lat2 * np.sin(dlon / 2) ** 2 d = 2 * np.arcsin(np.sqrt(c)) r = d * self.r_earth i = (theta - self.theta0) / self.dtheta % self.ntheta j = (r - self.rmin) / self.dr if int_index: i = np.round(i) j = np.round(j) if np.isscalar(i): i = int(i) j = int(j) else: i = i.astype('i') j = j.astype('i') if check_bound: return self.check_bound(i, j, int_index=int_index) else: return i, j class XYIrregularGridder(XYGridderBase): # TODO: use kdtree. def __init__(self, X, Y): X = np.array(X) Y = np.array(Y) if X.ndim == 1: self.X, self.Y = np.meshgrid(X, Y) else: self.X, self.Y = X, Y self.ny, self.nx = X.shape def i2x(self, i, j, *args, **kwargs): return self.X[j, i], self.Y[j, i] def x2i(self, x, y, *args, **kwargs): distances = np.hypot(self.X-x, self.Y-y) flat_i = np.argmin(distances) nx = self.X.shape[1] return flat_i / self.nx, flat_i % self.nx def dump(self): return { "X": self.X, "Y": self.Y, "nx": self.nx, "ny": self.ny, }
[ "numpy.arctan2", "numpy.floor", "numpy.argmin", "numpy.shape", "numpy.sin", "numpy.arange", "numpy.round", "numpy.meshgrid", "numpy.ndim", "numpy.arcsin", "numpy.max", "numpy.linspace", "numpy.asarray", "numpy.hypot", "numpy.min", "numpy.cos", "numpy.alltrue", "numpy.deg2rad", "numpy.isscalar", "numpy.rad2deg", "numpy.where", "numpy.array", "numpy.diff", "pyproj.Proj", "numpy.sqrt" ]
[((1494, 1517), 'numpy.alltrue', 'np.alltrue', (['bad'], {'axis': '(0)'}), '(bad, axis=0)\n', (1504, 1517), True, 'import numpy as np\n'), ((1534, 1557), 'numpy.alltrue', 'np.alltrue', (['bad'], {'axis': '(1)'}), '(bad, axis=1)\n', (1544, 1557), True, 'import numpy as np\n'), ((2117, 2131), 'numpy.isscalar', 'np.isscalar', (['i'], {}), '(i)\n', (2128, 2131), True, 'import numpy as np\n'), ((3714, 3724), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (3721, 3724), True, 'import numpy as np\n'), ((4193, 4203), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (4200, 4203), True, 'import numpy as np\n'), ((10223, 10265), 'numpy.linspace', 'np.linspace', (['self.rmin', 'self.rmax', 'self.nr'], {}), '(self.rmin, self.rmax, self.nr)\n', (10234, 10265), True, 'import numpy as np\n'), ((10353, 10374), 'numpy.meshgrid', 'np.meshgrid', (['theta', 'r'], {}), '(theta, r)\n', (10364, 10374), True, 'import numpy as np\n'), ((10597, 10607), 'numpy.sin', 'np.sin', (['r_'], {}), '(r_)\n', (10603, 10607), True, 'import numpy as np\n'), ((10624, 10634), 'numpy.cos', 'np.cos', (['r_'], {}), '(r_)\n', (10630, 10634), True, 'import numpy as np\n'), ((10651, 10672), 'numpy.deg2rad', 'np.deg2rad', (['self.lat0'], {}), '(self.lat0)\n', (10661, 10672), True, 'import numpy as np\n'), ((10689, 10710), 'numpy.deg2rad', 'np.deg2rad', (['self.lon0'], {}), '(self.lon0)\n', (10699, 10710), True, 'import numpy as np\n'), ((10730, 10743), 'numpy.sin', 'np.sin', (['lat0_'], {}), '(lat0_)\n', (10736, 10743), True, 'import numpy as np\n'), ((10763, 10776), 'numpy.cos', 'np.cos', (['lat0_'], {}), '(lat0_)\n', (10769, 10776), True, 'import numpy as np\n'), ((10863, 10881), 'numpy.arcsin', 'np.arcsin', (['sin_lat'], {}), '(sin_lat)\n', (10872, 10881), True, 'import numpy as np\n'), ((10993, 11009), 'numpy.rad2deg', 'np.rad2deg', (['lon_'], {}), '(lon_)\n', (11003, 11009), True, 'import numpy as np\n'), ((11024, 11040), 'numpy.rad2deg', 'np.rad2deg', (['lat_'], {}), '(lat_)\n', (11034, 11040), True, 'import numpy as np\n'), ((11836, 11848), 'numpy.sin', 'np.sin', (['dlon'], {}), '(dlon)\n', (11842, 11848), True, 'import numpy as np\n'), ((11868, 11880), 'numpy.cos', 'np.cos', (['dlon'], {}), '(dlon)\n', (11874, 11880), True, 'import numpy as np\n'), ((11900, 11912), 'numpy.sin', 'np.sin', (['lat1'], {}), '(lat1)\n', (11906, 11912), True, 'import numpy as np\n'), ((11932, 11944), 'numpy.cos', 'np.cos', (['lat1'], {}), '(lat1)\n', (11938, 11944), True, 'import numpy as np\n'), ((11964, 11976), 'numpy.sin', 'np.sin', (['lat2'], {}), '(lat2)\n', (11970, 11976), True, 'import numpy as np\n'), ((11996, 12008), 'numpy.cos', 'np.cos', (['lat2'], {}), '(lat2)\n', (12002, 12008), True, 'import numpy as np\n'), ((12124, 12140), 'numpy.arctan2', 'np.arctan2', (['a', 'b'], {}), '(a, b)\n', (12134, 12140), True, 'import numpy as np\n'), ((12877, 12888), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (12885, 12888), True, 'import numpy as np\n'), ((12901, 12912), 'numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (12909, 12912), True, 'import numpy as np\n'), ((13216, 13248), 'numpy.hypot', 'np.hypot', (['(self.X - x)', '(self.Y - y)'], {}), '(self.X - x, self.Y - y)\n', (13224, 13248), True, 'import numpy as np\n'), ((13262, 13282), 'numpy.argmin', 'np.argmin', (['distances'], {}), '(distances)\n', (13271, 13282), True, 'import numpy as np\n'), ((1055, 1069), 'numpy.min', 'np.min', (['self.X'], {}), '(self.X)\n', (1061, 1069), True, 'import numpy as np\n'), ((1071, 1085), 'numpy.min', 'np.min', (['self.Y'], {}), '(self.Y)\n', (1077, 1085), True, 'import numpy as np\n'), ((1087, 1101), 'numpy.max', 'np.max', (['self.X'], {}), '(self.X)\n', (1093, 1101), True, 'import numpy as np\n'), ((1103, 1117), 'numpy.max', 'np.max', (['self.Y'], {}), '(self.Y)\n', (1109, 1117), True, 'import numpy as np\n'), ((2394, 2457), 'numpy.where', 'np.where', (['((i >= start) & (i <= self.nx - subtracted))', 'i', 'np.nan'], {}), '((i >= start) & (i <= self.nx - subtracted), i, np.nan)\n', (2402, 2457), True, 'import numpy as np\n'), ((2474, 2537), 'numpy.where', 'np.where', (['((j >= start) & (j <= self.ny - subtracted))', 'j', 'np.nan'], {}), '((j >= start) & (j <= self.ny - subtracted), j, np.nan)\n', (2482, 2537), True, 'import numpy as np\n'), ((6602, 6612), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (6609, 6612), True, 'import numpy as np\n'), ((6614, 6624), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (6621, 6624), True, 'import numpy as np\n'), ((6894, 6907), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (6904, 6907), True, 'import numpy as np\n'), ((6909, 6922), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (6919, 6922), True, 'import numpy as np\n'), ((7756, 7771), 'numpy.min', 'np.min', (['self._X'], {}), '(self._X)\n', (7762, 7771), True, 'import numpy as np\n'), ((7773, 7788), 'numpy.min', 'np.min', (['self._Y'], {}), '(self._Y)\n', (7779, 7788), True, 'import numpy as np\n'), ((7790, 7805), 'numpy.max', 'np.max', (['self._X'], {}), '(self._X)\n', (7796, 7805), True, 'import numpy as np\n'), ((7807, 7822), 'numpy.max', 'np.max', (['self._Y'], {}), '(self._Y)\n', (7813, 7822), True, 'import numpy as np\n'), ((7846, 7862), 'numpy.min', 'np.min', (['self._CX'], {}), '(self._CX)\n', (7852, 7862), True, 'import numpy as np\n'), ((7864, 7880), 'numpy.min', 'np.min', (['self._CY'], {}), '(self._CY)\n', (7870, 7880), True, 'import numpy as np\n'), ((7882, 7898), 'numpy.max', 'np.max', (['self._CX'], {}), '(self._CX)\n', (7888, 7898), True, 'import numpy as np\n'), ((7900, 7916), 'numpy.max', 'np.max', (['self._CY'], {}), '(self._CY)\n', (7906, 7916), True, 'import numpy as np\n'), ((8499, 8513), 'numpy.isscalar', 'np.isscalar', (['i'], {}), '(i)\n', (8510, 8513), True, 'import numpy as np\n'), ((8856, 8866), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (8863, 8866), True, 'import numpy as np\n'), ((8868, 8878), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (8875, 8878), True, 'import numpy as np\n'), ((11667, 11680), 'numpy.deg2rad', 'np.deg2rad', (['x'], {}), '(x)\n', (11677, 11680), True, 'import numpy as np\n'), ((11682, 11695), 'numpy.deg2rad', 'np.deg2rad', (['y'], {}), '(y)\n', (11692, 11695), True, 'import numpy as np\n'), ((11717, 11738), 'numpy.deg2rad', 'np.deg2rad', (['self.lon0'], {}), '(self.lon0)\n', (11727, 11738), True, 'import numpy as np\n'), ((11740, 11761), 'numpy.deg2rad', 'np.deg2rad', (['self.lat0'], {}), '(self.lat0)\n', (11750, 11761), True, 'import numpy as np\n'), ((12430, 12441), 'numpy.round', 'np.round', (['i'], {}), '(i)\n', (12438, 12441), True, 'import numpy as np\n'), ((12458, 12469), 'numpy.round', 'np.round', (['j'], {}), '(j)\n', (12466, 12469), True, 'import numpy as np\n'), ((12486, 12500), 'numpy.isscalar', 'np.isscalar', (['i'], {}), '(i)\n', (12497, 12500), True, 'import numpy as np\n'), ((12966, 12983), 'numpy.meshgrid', 'np.meshgrid', (['X', 'Y'], {}), '(X, Y)\n', (12977, 12983), True, 'import numpy as np\n'), ((3752, 3772), 'numpy.ndim', 'np.ndim', (['self._raw_y'], {}), '(self._raw_y)\n', (3759, 3772), True, 'import numpy as np\n'), ((4231, 4251), 'numpy.ndim', 'np.ndim', (['self._raw_x'], {}), '(self._raw_x)\n', (4238, 4251), True, 'import numpy as np\n'), ((6788, 6799), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (6796, 6799), True, 'import numpy as np\n'), ((7056, 7067), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (7064, 7067), True, 'import numpy as np\n'), ((7069, 7080), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (7077, 7080), True, 'import numpy as np\n'), ((8358, 8369), 'numpy.floor', 'np.floor', (['i'], {}), '(i)\n', (8366, 8369), True, 'import numpy as np\n'), ((8390, 8401), 'numpy.floor', 'np.floor', (['j'], {}), '(j)\n', (8398, 8401), True, 'import numpy as np\n'), ((8440, 8451), 'numpy.round', 'np.round', (['i'], {}), '(i)\n', (8448, 8451), True, 'import numpy as np\n'), ((8472, 8483), 'numpy.round', 'np.round', (['j'], {}), '(j)\n', (8480, 8483), True, 'import numpy as np\n'), ((10282, 10304), 'numpy.arange', 'np.arange', (['self.ntheta'], {}), '(self.ntheta)\n', (10291, 10304), True, 'import numpy as np\n'), ((10834, 10847), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (10840, 10847), True, 'import numpy as np\n'), ((12154, 12170), 'numpy.sin', 'np.sin', (['(dlat / 2)'], {}), '(dlat / 2)\n', (12160, 12170), True, 'import numpy as np\n'), ((12248, 12258), 'numpy.sqrt', 'np.sqrt', (['c'], {}), '(c)\n', (12255, 12258), True, 'import numpy as np\n'), ((1589, 1622), 'numpy.diff', 'np.diff', (['np.r_[True, x_bad, True]'], {}), '(np.r_[True, x_bad, True])\n', (1596, 1622), True, 'import numpy as np\n'), ((1670, 1703), 'numpy.diff', 'np.diff', (['np.r_[True, y_bad, True]'], {}), '(np.r_[True, y_bad, True])\n', (1677, 1703), True, 'import numpy as np\n'), ((3219, 3228), 'pyproj.Proj', 'Proj', ([], {}), '(**p)\n', (3223, 3228), False, 'from pyproj import Proj\n'), ((3848, 3859), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (3856, 3859), True, 'import numpy as np\n'), ((3863, 3879), 'numpy.shape', 'np.shape', (['self.Y'], {}), '(self.Y)\n', (3871, 3879), True, 'import numpy as np\n'), ((4327, 4338), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (4335, 4338), True, 'import numpy as np\n'), ((4342, 4358), 'numpy.shape', 'np.shape', (['self.X'], {}), '(self.X)\n', (4350, 4358), True, 'import numpy as np\n'), ((12200, 12216), 'numpy.sin', 'np.sin', (['(dlon / 2)'], {}), '(dlon / 2)\n', (12206, 12216), True, 'import numpy as np\n'), ((10916, 10929), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (10922, 10929), True, 'import numpy as np\n')]
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common code for the simple cnn example.""" import functools import os from absl import logging from flax import serialization import haiku as hk import jax import jax.numpy as jnp from learned_optimization import filesystem import numpy as onp import optax import tensorflow_datasets as tfds HKTree = hk.data_structures.to_immutable_dict({}).__class__ # We use flax for serialization but haiku's data struct is not registered. def _ty_to_state_dict(v): return serialization.to_state_dict( {k: v for k, v in hk.data_structures.to_mutable_dict(v).items()}) def _ty_from_state_dict(target, d): return HKTree( ** {k: serialization.from_state_dict(target[k], v) for (k, v) in d.items()}) serialization.register_serialization_state( HKTree, _ty_to_state_dict, _ty_from_state_dict, override=True) def hk_forward_fn(batch): """Forward function for haiku.""" x = batch["image"].astype(jnp.float32) / 255. mlp = hk.Sequential([ hk.Conv2D(64, (3, 3), stride=2), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=1), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=2), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=1), jax.nn.relu, functools.partial(jnp.mean, axis=(1, 2)), hk.Linear(10), ]) return mlp(x) @jax.jit def loss(params, key, batch): net = hk.transform(hk_forward_fn) logits = net.apply(params, key, batch) labels = jax.nn.one_hot(batch["label"], 10) softmax_xent = -jnp.sum(labels * jax.nn.log_softmax(logits)) softmax_xent /= labels.shape[0] return softmax_xent @jax.jit def update(params, key, state, batch, meta_params): opt = optax.adam(meta_params["learning_rate"]) l, grad = jax.value_and_grad(loss)(params, key, batch) updates, new_state = opt.update(grad, state, params) new_params = optax.apply_updates(params, updates) return new_params, new_state, l def save_state(path, state): filesystem.make_dirs(os.path.dirname(path)) with filesystem.file_open(path, "wb") as fp: fp.write(serialization.to_bytes(state)) def load_state(path, state): logging.info("Restoring state %s:", path) with filesystem.file_open(path, "rb") as fp: state_new = serialization.from_bytes(state, fp.read()) tree = jax.tree_structure(state) leaves_new = jax.tree_leaves(state_new) return jax.tree_unflatten(tree, leaves_new) def get_data_iterators(fake_data=False): """Get training and test data iterators.""" batch_size = 128 if not fake_data: remap_label = lambda x: {"image": x["image"], "label": x["label"]} def data(split): dataset = tfds.load("cifar10", split=split) iterator = iter( tfds.as_numpy( dataset.repeat(-1).shuffle( batch_size * 10).batch(batch_size).map(remap_label))) return iterator return data("train"), data("test") else: def data(): while True: yield { "image": onp.zeros([batch_size, 32, 32, 3]), "label": onp.zeros([batch_size], dtype=onp.int32) } return data(), data()
[ "optax.adam", "tensorflow_datasets.load", "jax.nn.log_softmax", "absl.logging.info", "flax.serialization.register_serialization_state", "flax.serialization.from_state_dict", "jax.nn.one_hot", "os.path.dirname", "optax.apply_updates", "haiku.data_structures.to_immutable_dict", "haiku.Conv2D", "haiku.data_structures.to_mutable_dict", "haiku.Linear", "functools.partial", "haiku.transform", "jax.tree_leaves", "jax.tree_unflatten", "jax.tree_structure", "numpy.zeros", "jax.value_and_grad", "flax.serialization.to_bytes", "learned_optimization.filesystem.file_open" ]
[((1307, 1416), 'flax.serialization.register_serialization_state', 'serialization.register_serialization_state', (['HKTree', '_ty_to_state_dict', '_ty_from_state_dict'], {'override': '(True)'}), '(HKTree, _ty_to_state_dict,\n _ty_from_state_dict, override=True)\n', (1349, 1416), False, 'from flax import serialization\n'), ((897, 937), 'haiku.data_structures.to_immutable_dict', 'hk.data_structures.to_immutable_dict', (['{}'], {}), '({})\n', (933, 937), True, 'import haiku as hk\n'), ((1925, 1952), 'haiku.transform', 'hk.transform', (['hk_forward_fn'], {}), '(hk_forward_fn)\n', (1937, 1952), True, 'import haiku as hk\n'), ((2005, 2039), 'jax.nn.one_hot', 'jax.nn.one_hot', (["batch['label']", '(10)'], {}), "(batch['label'], 10)\n", (2019, 2039), False, 'import jax\n'), ((2231, 2271), 'optax.adam', 'optax.adam', (["meta_params['learning_rate']"], {}), "(meta_params['learning_rate'])\n", (2241, 2271), False, 'import optax\n'), ((2399, 2435), 'optax.apply_updates', 'optax.apply_updates', (['params', 'updates'], {}), '(params, updates)\n', (2418, 2435), False, 'import optax\n'), ((2672, 2713), 'absl.logging.info', 'logging.info', (['"""Restoring state %s:"""', 'path'], {}), "('Restoring state %s:', path)\n", (2684, 2713), False, 'from absl import logging\n'), ((2829, 2854), 'jax.tree_structure', 'jax.tree_structure', (['state'], {}), '(state)\n', (2847, 2854), False, 'import jax\n'), ((2870, 2896), 'jax.tree_leaves', 'jax.tree_leaves', (['state_new'], {}), '(state_new)\n', (2885, 2896), False, 'import jax\n'), ((2906, 2942), 'jax.tree_unflatten', 'jax.tree_unflatten', (['tree', 'leaves_new'], {}), '(tree, leaves_new)\n', (2924, 2942), False, 'import jax\n'), ((2284, 2308), 'jax.value_and_grad', 'jax.value_and_grad', (['loss'], {}), '(loss)\n', (2302, 2308), False, 'import jax\n'), ((2525, 2546), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (2540, 2546), False, 'import os\n'), ((2555, 2587), 'learned_optimization.filesystem.file_open', 'filesystem.file_open', (['path', '"""wb"""'], {}), "(path, 'wb')\n", (2575, 2587), False, 'from learned_optimization import filesystem\n'), ((2721, 2753), 'learned_optimization.filesystem.file_open', 'filesystem.file_open', (['path', '"""rb"""'], {}), "(path, 'rb')\n", (2741, 2753), False, 'from learned_optimization import filesystem\n'), ((1560, 1591), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(2)'}), '(64, (3, 3), stride=2)\n', (1569, 1591), True, 'import haiku as hk\n'), ((1618, 1649), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(1)'}), '(64, (3, 3), stride=1)\n', (1627, 1649), True, 'import haiku as hk\n'), ((1676, 1707), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(2)'}), '(64, (3, 3), stride=2)\n', (1685, 1707), True, 'import haiku as hk\n'), ((1734, 1765), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(1)'}), '(64, (3, 3), stride=1)\n', (1743, 1765), True, 'import haiku as hk\n'), ((1792, 1832), 'functools.partial', 'functools.partial', (['jnp.mean'], {'axis': '(1, 2)'}), '(jnp.mean, axis=(1, 2))\n', (1809, 1832), False, 'import functools\n'), ((1840, 1853), 'haiku.Linear', 'hk.Linear', (['(10)'], {}), '(10)\n', (1849, 1853), True, 'import haiku as hk\n'), ((2608, 2637), 'flax.serialization.to_bytes', 'serialization.to_bytes', (['state'], {}), '(state)\n', (2630, 2637), False, 'from flax import serialization\n'), ((3180, 3213), 'tensorflow_datasets.load', 'tfds.load', (['"""cifar10"""'], {'split': 'split'}), "('cifar10', split=split)\n", (3189, 3213), True, 'import tensorflow_datasets as tfds\n'), ((1235, 1278), 'flax.serialization.from_state_dict', 'serialization.from_state_dict', (['target[k]', 'v'], {}), '(target[k], v)\n', (1264, 1278), False, 'from flax import serialization\n'), ((2076, 2102), 'jax.nn.log_softmax', 'jax.nn.log_softmax', (['logits'], {}), '(logits)\n', (2094, 2102), False, 'import jax\n'), ((1113, 1150), 'haiku.data_structures.to_mutable_dict', 'hk.data_structures.to_mutable_dict', (['v'], {}), '(v)\n', (1147, 1150), True, 'import haiku as hk\n'), ((3518, 3552), 'numpy.zeros', 'onp.zeros', (['[batch_size, 32, 32, 3]'], {}), '([batch_size, 32, 32, 3])\n', (3527, 3552), True, 'import numpy as onp\n'), ((3575, 3615), 'numpy.zeros', 'onp.zeros', (['[batch_size]'], {'dtype': 'onp.int32'}), '([batch_size], dtype=onp.int32)\n', (3584, 3615), True, 'import numpy as onp\n')]
import os import math import time import functools import random from tqdm import tqdm import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw from pylab import rcParams rcParams['figure.figsize'] = 20, 20 # noqa from consts import FONT_SIZE from utils import ( make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font ) from grpc_utils import ( KuzuSegment, KuzuClassify ) if __name__ == '__main__': img_dir = "./images" img_fp = os.path.join(img_dir, random.choice(os.listdir(img_dir))) print(img_fp) filter_polygon = True kuzu_seg = KuzuSegment() kuzu_cls = KuzuClassify() img, origin_image, origin_h, origin_w = kuzu_seg.load_image(img_fp) pred_bbox, pred_center = kuzu_seg.predict(img) # get all polygon area in image polygon_contours = make_contours(pred_bbox) # get all center points by contour method center_coords = get_centers(pred_center.astype(np.uint8)) no_center_points = len(center_coords) final_center = vis_pred_center(center_coords, rad=2) # filter polygon if filter_polygon: filtered_contours = filter_polygons_points_intersection(polygon_contours, center_coords) # noqa pred_bbox = vis_pred_bbox_polygon(pred_bbox, filtered_contours) final_bbox = vis_pred_bbox(pred_bbox, center_coords, width=2) y_ratio = origin_h / 512 x_ratio = origin_w / 512 pil_img = Image.fromarray(origin_image).convert('RGBA') char_canvas = Image.new('RGBA', pil_img.size) char_draw = ImageDraw.Draw(char_canvas) print(">>> {}".format(no_center_points)) if no_center_points > 0: bbox_cluster = get_labels(center_coords, pred_bbox) # ignore background hex color (=0) for cluster_index in tqdm(range(len(center_coords))[1:]): char_pixel = (bbox_cluster == cluster_index).astype(np.float32) try: horizontal_indicies = np.where(np.any(char_pixel, axis=0))[0] vertical_indicies = np.where(np.any(char_pixel, axis=1))[0] x_min, x_max = horizontal_indicies[[0, -1]] y_min, y_max = vertical_indicies[[0, -1]] except IndexError: continue x = x_min y = y_min w = x_max - x_min h = y_max - y_min # convert to original coordinates x = int(x * x_ratio) w = int(w * x_ratio) y = int(y * y_ratio) h = int(h * y_ratio) # set offset to crop character offset = 5 # percentage y_diff = math.ceil(h * offset / 100) x_diff = math.ceil(w * offset / 100) # expand area y_from = y - y_diff y_to = y + h + y_diff x_from = x - x_diff x_to = x + w + x_diff # tune y_from, y_to, x_from, x_to = \ list(map(functools.partial(np.maximum, 0), [y_from, y_to, x_from, x_to])) try: char_img = origin_image[y_from:y_to, x_from:x_to] char_img = kuzu_cls.load_image(char_img) pred_label = kuzu_cls.predict(char_img) # print(pred_label) char_draw.text( (x + w + FONT_SIZE / 4, y + h / 2 - FONT_SIZE), pred_label, fill=(0, 0, 255, 255), font=font ) except Exception as e: print(e) continue char_img = Image.alpha_composite(pil_img, char_canvas) char_img = char_img.convert("RGB") char_img = np.asarray(char_img) final_bbox = cv2.resize(final_bbox, (origin_w, origin_h)) final_center = cv2.resize(final_center, (origin_w, origin_h)) plt.imshow(char_img) plt.imshow(final_bbox, cmap="jet", alpha=0.50) plt.savefig("./assets/{}.jpg".format(time.time()), bbox_inches='tight')
[ "PIL.Image.new", "grpc_utils.KuzuClassify", "utils.make_contours", "matplotlib.pyplot.imshow", "utils.filter_polygons_points_intersection", "utils.vis_pred_center", "utils.vis_pred_bbox_polygon", "PIL.ImageDraw.Draw", "cv2.resize", "functools.partial", "math.ceil", "numpy.asarray", "os.listdir", "time.time", "numpy.any", "PIL.Image.alpha_composite", "utils.get_labels", "PIL.Image.fromarray", "grpc_utils.KuzuSegment", "utils.vis_pred_bbox" ]
[((720, 733), 'grpc_utils.KuzuSegment', 'KuzuSegment', ([], {}), '()\n', (731, 733), False, 'from grpc_utils import KuzuSegment, KuzuClassify\n'), ((749, 763), 'grpc_utils.KuzuClassify', 'KuzuClassify', ([], {}), '()\n', (761, 763), False, 'from grpc_utils import KuzuSegment, KuzuClassify\n'), ((947, 971), 'utils.make_contours', 'make_contours', (['pred_bbox'], {}), '(pred_bbox)\n', (960, 971), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1142, 1179), 'utils.vis_pred_center', 'vis_pred_center', (['center_coords'], {'rad': '(2)'}), '(center_coords, rad=2)\n', (1157, 1179), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1419, 1467), 'utils.vis_pred_bbox', 'vis_pred_bbox', (['pred_bbox', 'center_coords'], {'width': '(2)'}), '(pred_bbox, center_coords, width=2)\n', (1432, 1467), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1606, 1637), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'pil_img.size'], {}), "('RGBA', pil_img.size)\n", (1615, 1637), False, 'from PIL import Image, ImageDraw\n'), ((1654, 1681), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['char_canvas'], {}), '(char_canvas)\n', (1668, 1681), False, 'from PIL import Image, ImageDraw\n'), ((3689, 3732), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['pil_img', 'char_canvas'], {}), '(pil_img, char_canvas)\n', (3710, 3732), False, 'from PIL import Image, ImageDraw\n'), ((3787, 3807), 'numpy.asarray', 'np.asarray', (['char_img'], {}), '(char_img)\n', (3797, 3807), True, 'import numpy as np\n'), ((3826, 3870), 'cv2.resize', 'cv2.resize', (['final_bbox', '(origin_w, origin_h)'], {}), '(final_bbox, (origin_w, origin_h))\n', (3836, 3870), False, 'import cv2\n'), ((3890, 3936), 'cv2.resize', 'cv2.resize', (['final_center', '(origin_w, origin_h)'], {}), '(final_center, (origin_w, origin_h))\n', (3900, 3936), False, 'import cv2\n'), ((3942, 3962), 'matplotlib.pyplot.imshow', 'plt.imshow', (['char_img'], {}), '(char_img)\n', (3952, 3962), True, 'import matplotlib.pyplot as plt\n'), ((3967, 4012), 'matplotlib.pyplot.imshow', 'plt.imshow', (['final_bbox'], {'cmap': '"""jet"""', 'alpha': '(0.5)'}), "(final_bbox, cmap='jet', alpha=0.5)\n", (3977, 4012), True, 'import matplotlib.pyplot as plt\n'), ((1253, 1321), 'utils.filter_polygons_points_intersection', 'filter_polygons_points_intersection', (['polygon_contours', 'center_coords'], {}), '(polygon_contours, center_coords)\n', (1288, 1321), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1350, 1401), 'utils.vis_pred_bbox_polygon', 'vis_pred_bbox_polygon', (['pred_bbox', 'filtered_contours'], {}), '(pred_bbox, filtered_contours)\n', (1371, 1401), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1780, 1816), 'utils.get_labels', 'get_labels', (['center_coords', 'pred_bbox'], {}), '(center_coords, pred_bbox)\n', (1790, 1816), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((639, 658), 'os.listdir', 'os.listdir', (['img_dir'], {}), '(img_dir)\n', (649, 658), False, 'import os\n'), ((1542, 1571), 'PIL.Image.fromarray', 'Image.fromarray', (['origin_image'], {}), '(origin_image)\n', (1557, 1571), False, 'from PIL import Image, ImageDraw\n'), ((2736, 2763), 'math.ceil', 'math.ceil', (['(h * offset / 100)'], {}), '(h * offset / 100)\n', (2745, 2763), False, 'import math\n'), ((2785, 2812), 'math.ceil', 'math.ceil', (['(w * offset / 100)'], {}), '(w * offset / 100)\n', (2794, 2812), False, 'import math\n'), ((4055, 4066), 'time.time', 'time.time', ([], {}), '()\n', (4064, 4066), False, 'import time\n'), ((3060, 3092), 'functools.partial', 'functools.partial', (['np.maximum', '(0)'], {}), '(np.maximum, 0)\n', (3077, 3092), False, 'import functools\n'), ((2069, 2095), 'numpy.any', 'np.any', (['char_pixel'], {'axis': '(0)'}), '(char_pixel, axis=0)\n', (2075, 2095), True, 'import numpy as np\n'), ((2145, 2171), 'numpy.any', 'np.any', (['char_pixel'], {'axis': '(1)'}), '(char_pixel, axis=1)\n', (2151, 2171), True, 'import numpy as np\n')]
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_allclose, assert_equal import astropy.units as u from astropy.table import Table from gammapy.astro.population import ( add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere, ) def test_make_catalog_random_positions_cube(): table = make_catalog_random_positions_cube(random_state=0) d = table[0] assert len(table) == 100 assert len(table.colnames) == 3 assert table["x"].unit == "pc" assert_allclose(d["x"], 0.0976270078546495) assert table["y"].unit == "pc" assert_allclose(d["y"], 0.3556330735924602) assert table["z"].unit == "pc" assert_allclose(d["z"], -0.37640823601179485) table = make_catalog_random_positions_cube(dimension=2, random_state=0) assert_equal(table["z"], 0) table = make_catalog_random_positions_cube(dimension=1, random_state=0) assert_equal(table["y"], 0) assert_equal(table["z"], 0) def test_make_catalog_random_positions_sphere(): table = make_catalog_random_positions_sphere(random_state=0) d = table[0] assert len(table) == 100 assert len(table.colnames) == 3 assert table["lon"].unit == "rad" assert_allclose(d["lon"], 3.4482969442579128) assert table["lat"].unit == "rad" assert_allclose(d["lat"], 0.36359133530192267) assert table["distance"].unit == "pc" assert_allclose(d["distance"], 0.6780943487897606) def test_make_base_catalog_galactic(): table = make_base_catalog_galactic(n_sources=10, random_state=0) d = table[0] assert len(table) == 10 assert len(table.colnames) == 13 assert table["age"].unit == "yr" assert_allclose(d["age"], 548813.50392732478) assert table["n_ISM"].unit == "cm-3" assert_allclose(d["n_ISM"], 1.0) assert table["spiralarm"].unit is None assert d["spiralarm"] == "Crux Scutum" assert table["x_birth"].unit == "kpc" assert_allclose(d["x_birth"], -5.856461, atol=1e-5) assert table["y_birth"].unit == "kpc" assert_allclose(d["y_birth"], 3.017292, atol=1e-5) assert table["z_birth"].unit == "kpc" assert_allclose(d["z_birth"], 0.049088, atol=1e-5) assert table["x"].unit == "kpc" assert_allclose(d["x"], -5.941061, atol=1e-5) assert table["y"].unit == "kpc" assert_allclose(d["y"], 3.081642, atol=1e-5) assert table["z"].unit == "kpc" assert_allclose(d["z"], 0.023161, atol=1e-5) assert table["vx"].unit == "km/s" assert_allclose(d["vx"], -150.727104, atol=1e-5) assert table["vy"].unit == "km/s" assert_allclose(d["vy"], 114.648494, atol=1e-5) assert table["vz"].unit == "km/s" assert_allclose(d["vz"], -46.193814, atol=1e-5) assert table["v_abs"].unit == "km/s" assert_allclose(d["v_abs"], 194.927693, atol=1e-5) def test_add_snr_parameters(): table = Table() table["age"] = [100, 1000] * u.yr table["n_ISM"] = u.Quantity(1, "cm-3") table = add_snr_parameters(table) assert len(table) == 2 assert table.colnames == ["age", "n_ISM", "E_SN", "r_out", "r_in", "L_SNR"] assert table["E_SN"].unit == "erg" assert_allclose(table["E_SN"], 1e51) assert table["r_out"].unit == "pc" assert_allclose(table["r_out"], [1, 3.80730787743]) assert table["r_in"].unit == "pc" assert_allclose(table["r_in"], [0.9086, 3.45931993743]) assert table["L_SNR"].unit == "1 / s" assert_allclose(table["L_SNR"], [0, 1.0768e33]) def test_add_pulsar_parameters(): table = Table() table["age"] = [100, 1000] * u.yr table = add_pulsar_parameters(table, random_state=0) assert len(table) == 2 assert len(table.colnames) == 10 assert table["age"].unit == "yr" assert_allclose(table["age"], [100, 1000]) assert table["P0"].unit == "s" assert_allclose(table["P0"], [0.214478, 0.246349], atol=1e-5) assert table["P1"].unit == "" assert_allclose(table["P1"], [6.310423e-13, 4.198294e-16], atol=1e-5) assert table["P0_birth"].unit == "s" assert_allclose(table["P0_birth"], [0.212418, 0.246336], atol=1e-5) assert table["P1_birth"].unit == "" assert_allclose(table["P1_birth"], [6.558773e-13, 4.199198e-16], atol=1e-5) assert table["CharAge"].unit == "yr" assert_allclose(table["CharAge"], [2.207394e-21, 1.638930e-24], atol=1e-5) assert table["Tau0"].unit == "yr" assert_allclose(table["Tau0"], [5.131385e03, 9.294538e06], atol=1e-5) assert table["L_PSR"].unit == "erg / s" assert_allclose(table["L_PSR"], [2.599229e36, 1.108788e33], rtol=1e-5) assert table["L0_PSR"].unit == "erg / s" assert_allclose(table["L0_PSR"], [2.701524e36, 1.109026e33], rtol=1e-5) assert table["B_PSR"].unit == "G" assert_allclose(table["B_PSR"], [1.194420e13, 3.254597e11], rtol=1e-5) def test_add_pwn_parameters(): table = make_base_catalog_galactic(n_sources=10, random_state=0) # To compute PWN parameters we need PSR and SNR parameters first table = add_snr_parameters(table) table = add_pulsar_parameters(table, random_state=0) table = add_pwn_parameters(table) d = table[0] assert len(table) == 10 assert len(table.colnames) == 27 assert table["r_out_PWN"].unit == "pc" assert_allclose(d["r_out_PWN"], 1.378224, atol=1e-4) def test_add_observed_parameters(): table = make_base_catalog_galactic(n_sources=10, random_state=0) table = add_observed_parameters(table) d = table[0] assert len(table) == 10 assert len(table.colnames) == 20 assert table["distance"].unit == "pc" assert_allclose(d["distance"], 13016.572756, atol=1e-5) assert table["GLON"].unit == "deg" assert_allclose(d["GLON"], -27.156565, atol=1e-5) assert table["GLAT"].unit == "deg" assert_allclose(d["GLAT"], 0.101948, atol=1e-5) assert table["VGLON"].unit == "deg / Myr" assert_allclose(d["VGLON"], 0.368166, atol=1e-5) assert table["VGLAT"].unit == "deg / Myr" assert_allclose(d["VGLAT"], -0.209514, atol=1e-5) assert table["RA"].unit == "deg" assert_allclose(d["RA"], 244.347149, atol=1e-5) assert table["DEC"].unit == "deg" assert_allclose(d["DEC"], -50.410142, atol=1e-5) def test_chain_all(): # Test that running the simulation functions in chain works table = make_base_catalog_galactic(n_sources=10, random_state=0) table = add_snr_parameters(table) table = add_pulsar_parameters(table, random_state=0) table = add_pwn_parameters(table) table = add_observed_parameters(table) d = table[0] # Note: the individual functions are tested above. # Here we just run them in a chain and do very basic asserts # on the output so that we make sure we notice changes. assert len(table) == 10 assert len(table.colnames) == 34 assert table["r_out_PWN"].unit == "pc" assert_allclose(d["r_out_PWN"], 1.378224, atol=1e-4) assert table["RA"].unit == "deg" assert_allclose(d["RA"], 244.347149, atol=1e-5)
[ "gammapy.astro.population.make_catalog_random_positions_cube", "astropy.table.Table", "astropy.units.Quantity", "gammapy.astro.population.add_observed_parameters", "gammapy.astro.population.make_base_catalog_galactic", "gammapy.astro.population.add_pulsar_parameters", "gammapy.astro.population.add_pwn_parameters", "gammapy.astro.population.make_catalog_random_positions_sphere", "numpy.testing.assert_equal", "numpy.testing.assert_allclose", "gammapy.astro.population.add_snr_parameters" ]
[((498, 548), 'gammapy.astro.population.make_catalog_random_positions_cube', 'make_catalog_random_positions_cube', ([], {'random_state': '(0)'}), '(random_state=0)\n', (532, 548), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((672, 715), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['x']", '(0.0976270078546495)'], {}), "(d['x'], 0.0976270078546495)\n", (687, 715), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((755, 798), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['y']", '(0.3556330735924602)'], {}), "(d['y'], 0.3556330735924602)\n", (770, 798), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((838, 883), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['z']", '(-0.37640823601179485)'], {}), "(d['z'], -0.37640823601179485)\n", (853, 883), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((897, 960), 'gammapy.astro.population.make_catalog_random_positions_cube', 'make_catalog_random_positions_cube', ([], {'dimension': '(2)', 'random_state': '(0)'}), '(dimension=2, random_state=0)\n', (931, 960), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((965, 992), 'numpy.testing.assert_equal', 'assert_equal', (["table['z']", '(0)'], {}), "(table['z'], 0)\n", (977, 992), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1006, 1069), 'gammapy.astro.population.make_catalog_random_positions_cube', 'make_catalog_random_positions_cube', ([], {'dimension': '(1)', 'random_state': '(0)'}), '(dimension=1, random_state=0)\n', (1040, 1069), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((1074, 1101), 'numpy.testing.assert_equal', 'assert_equal', (["table['y']", '(0)'], {}), "(table['y'], 0)\n", (1086, 1101), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1106, 1133), 'numpy.testing.assert_equal', 'assert_equal', (["table['z']", '(0)'], {}), "(table['z'], 0)\n", (1118, 1133), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1197, 1249), 'gammapy.astro.population.make_catalog_random_positions_sphere', 'make_catalog_random_positions_sphere', ([], {'random_state': '(0)'}), '(random_state=0)\n', (1233, 1249), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((1376, 1421), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['lon']", '(3.4482969442579128)'], {}), "(d['lon'], 3.4482969442579128)\n", (1391, 1421), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1464, 1510), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['lat']", '(0.36359133530192267)'], {}), "(d['lat'], 0.36359133530192267)\n", (1479, 1510), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1557, 1607), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['distance']", '(0.6780943487897606)'], {}), "(d['distance'], 0.6780943487897606)\n", (1572, 1607), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1661, 1717), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (1687, 1717), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((1843, 1887), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['age']", '(548813.5039273248)'], {}), "(d['age'], 548813.5039273248)\n", (1858, 1887), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1934, 1966), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['n_ISM']", '(1.0)'], {}), "(d['n_ISM'], 1.0)\n", (1949, 1966), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2099, 2151), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['x_birth']", '(-5.856461)'], {'atol': '(1e-05)'}), "(d['x_birth'], -5.856461, atol=1e-05)\n", (2114, 2151), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2197, 2248), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['y_birth']", '(3.017292)'], {'atol': '(1e-05)'}), "(d['y_birth'], 3.017292, atol=1e-05)\n", (2212, 2248), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2294, 2345), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['z_birth']", '(0.049088)'], {'atol': '(1e-05)'}), "(d['z_birth'], 0.049088, atol=1e-05)\n", (2309, 2345), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2385, 2431), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['x']", '(-5.941061)'], {'atol': '(1e-05)'}), "(d['x'], -5.941061, atol=1e-05)\n", (2400, 2431), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2471, 2516), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['y']", '(3.081642)'], {'atol': '(1e-05)'}), "(d['y'], 3.081642, atol=1e-05)\n", (2486, 2516), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2556, 2601), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['z']", '(0.023161)'], {'atol': '(1e-05)'}), "(d['z'], 0.023161, atol=1e-05)\n", (2571, 2601), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2643, 2692), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['vx']", '(-150.727104)'], {'atol': '(1e-05)'}), "(d['vx'], -150.727104, atol=1e-05)\n", (2658, 2692), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2734, 2782), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['vy']", '(114.648494)'], {'atol': '(1e-05)'}), "(d['vy'], 114.648494, atol=1e-05)\n", (2749, 2782), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2824, 2872), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['vz']", '(-46.193814)'], {'atol': '(1e-05)'}), "(d['vz'], -46.193814, atol=1e-05)\n", (2839, 2872), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2917, 2968), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['v_abs']", '(194.927693)'], {'atol': '(1e-05)'}), "(d['v_abs'], 194.927693, atol=1e-05)\n", (2932, 2968), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3013, 3020), 'astropy.table.Table', 'Table', ([], {}), '()\n', (3018, 3020), False, 'from astropy.table import Table\n'), ((3080, 3101), 'astropy.units.Quantity', 'u.Quantity', (['(1)', '"""cm-3"""'], {}), "(1, 'cm-3')\n", (3090, 3101), True, 'import astropy.units as u\n'), ((3115, 3140), 'gammapy.astro.population.add_snr_parameters', 'add_snr_parameters', (['table'], {}), '(table)\n', (3133, 3140), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((3293, 3330), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['E_SN']", '(1e+51)'], {}), "(table['E_SN'], 1e+51)\n", (3308, 3330), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3373, 3424), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['r_out']", '[1, 3.80730787743]'], {}), "(table['r_out'], [1, 3.80730787743])\n", (3388, 3424), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3467, 3522), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['r_in']", '[0.9086, 3.45931993743]'], {}), "(table['r_in'], [0.9086, 3.45931993743])\n", (3482, 3522), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3569, 3617), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['L_SNR']", '[0, 1.0768e+33]'], {}), "(table['L_SNR'], [0, 1.0768e+33])\n", (3584, 3617), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3665, 3672), 'astropy.table.Table', 'Table', ([], {}), '()\n', (3670, 3672), False, 'from astropy.table import Table\n'), ((3724, 3768), 'gammapy.astro.population.add_pulsar_parameters', 'add_pulsar_parameters', (['table'], {'random_state': '(0)'}), '(table, random_state=0)\n', (3745, 3768), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((3876, 3918), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['age']", '[100, 1000]'], {}), "(table['age'], [100, 1000])\n", (3891, 3918), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3958, 4020), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P0']", '[0.214478, 0.246349]'], {'atol': '(1e-05)'}), "(table['P0'], [0.214478, 0.246349], atol=1e-05)\n", (3973, 4020), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4058, 4128), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P1']", '[6.310423e-13, 4.198294e-16]'], {'atol': '(1e-05)'}), "(table['P1'], [6.310423e-13, 4.198294e-16], atol=1e-05)\n", (4073, 4128), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4173, 4241), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P0_birth']", '[0.212418, 0.246336]'], {'atol': '(1e-05)'}), "(table['P0_birth'], [0.212418, 0.246336], atol=1e-05)\n", (4188, 4241), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4285, 4361), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P1_birth']", '[6.558773e-13, 4.199198e-16]'], {'atol': '(1e-05)'}), "(table['P1_birth'], [6.558773e-13, 4.199198e-16], atol=1e-05)\n", (4300, 4361), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4406, 4480), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['CharAge']", '[2.207394e-21, 1.63893e-24]'], {'atol': '(1e-05)'}), "(table['CharAge'], [2.207394e-21, 1.63893e-24], atol=1e-05)\n", (4421, 4480), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4523, 4588), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['Tau0']", '[5131.385, 9294538.0]'], {'atol': '(1e-05)'}), "(table['Tau0'], [5131.385, 9294538.0], atol=1e-05)\n", (4538, 4588), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4641, 4714), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['L_PSR']", '[2.599229e+36, 1.108788e+33]'], {'rtol': '(1e-05)'}), "(table['L_PSR'], [2.599229e+36, 1.108788e+33], rtol=1e-05)\n", (4656, 4714), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4761, 4835), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['L0_PSR']", '[2.701524e+36, 1.109026e+33]'], {'rtol': '(1e-05)'}), "(table['L0_PSR'], [2.701524e+36, 1.109026e+33], rtol=1e-05)\n", (4776, 4835), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4875, 4954), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['B_PSR']", '[11944200000000.0, 325459700000.0]'], {'rtol': '(1e-05)'}), "(table['B_PSR'], [11944200000000.0, 325459700000.0], rtol=1e-05)\n", (4890, 4954), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4991, 5047), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (5017, 5047), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5129, 5154), 'gammapy.astro.population.add_snr_parameters', 'add_snr_parameters', (['table'], {}), '(table)\n', (5147, 5154), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5167, 5211), 'gammapy.astro.population.add_pulsar_parameters', 'add_pulsar_parameters', (['table'], {'random_state': '(0)'}), '(table, random_state=0)\n', (5188, 5211), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5224, 5249), 'gammapy.astro.population.add_pwn_parameters', 'add_pwn_parameters', (['table'], {}), '(table)\n', (5242, 5249), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5381, 5435), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['r_out_PWN']", '(1.378224)'], {'atol': '(0.0001)'}), "(d['r_out_PWN'], 1.378224, atol=0.0001)\n", (5396, 5435), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((5484, 5540), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (5510, 5540), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5553, 5583), 'gammapy.astro.population.add_observed_parameters', 'add_observed_parameters', (['table'], {}), '(table)\n', (5576, 5583), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5714, 5770), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['distance']", '(13016.572756)'], {'atol': '(1e-05)'}), "(d['distance'], 13016.572756, atol=1e-05)\n", (5729, 5770), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((5813, 5863), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['GLON']", '(-27.156565)'], {'atol': '(1e-05)'}), "(d['GLON'], -27.156565, atol=1e-05)\n", (5828, 5863), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((5906, 5954), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['GLAT']", '(0.101948)'], {'atol': '(1e-05)'}), "(d['GLAT'], 0.101948, atol=1e-05)\n", (5921, 5954), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6004, 6053), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['VGLON']", '(0.368166)'], {'atol': '(1e-05)'}), "(d['VGLON'], 0.368166, atol=1e-05)\n", (6019, 6053), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6103, 6153), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['VGLAT']", '(-0.209514)'], {'atol': '(1e-05)'}), "(d['VGLAT'], -0.209514, atol=1e-05)\n", (6118, 6153), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6194, 6242), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['RA']", '(244.347149)'], {'atol': '(1e-05)'}), "(d['RA'], 244.347149, atol=1e-05)\n", (6209, 6242), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6284, 6333), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['DEC']", '(-50.410142)'], {'atol': '(1e-05)'}), "(d['DEC'], -50.410142, atol=1e-05)\n", (6299, 6333), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6433, 6489), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (6459, 6489), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6502, 6527), 'gammapy.astro.population.add_snr_parameters', 'add_snr_parameters', (['table'], {}), '(table)\n', (6520, 6527), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6540, 6584), 'gammapy.astro.population.add_pulsar_parameters', 'add_pulsar_parameters', (['table'], {'random_state': '(0)'}), '(table, random_state=0)\n', (6561, 6584), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6597, 6622), 'gammapy.astro.population.add_pwn_parameters', 'add_pwn_parameters', (['table'], {}), '(table)\n', (6615, 6622), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6635, 6665), 'gammapy.astro.population.add_observed_parameters', 'add_observed_parameters', (['table'], {}), '(table)\n', (6658, 6665), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6977, 7031), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['r_out_PWN']", '(1.378224)'], {'atol': '(0.0001)'}), "(d['r_out_PWN'], 1.378224, atol=0.0001)\n", (6992, 7031), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((7071, 7119), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['RA']", '(244.347149)'], {'atol': '(1e-05)'}), "(d['RA'], 244.347149, atol=1e-05)\n", (7086, 7119), False, 'from numpy.testing import assert_allclose, assert_equal\n')]
import numpy as np import matplotlib.pyplot as plt PI = np.pi # =========================define sinc # ---------------normalized def sinc1(x): PI = np.pi x = np.array(x) y = np.where(np.abs(PI * x) < 1e-38, 1.0, np.sin(PI * x) / (PI * x)) return y def sinc_interpolation(x, t, T): ns = np.arange(x.size) print(ns, "============") y = [] for tt in t: y.append(np.sum(x * sinc1((tt - ns * T) / T))) return np.array(y) # =========================test sinc definition f0 = 100 Ns = 2000 Tp = 20.0 / Ns t = np.linspace(-10, 10, Ns) t2 = np.linspace(-10, 10, Ns * 2) y1 = sinc1(t / Tp) x = np.sin(2 * PI * f0 * t) print(x.shape) y = sinc_interpolation(x, t2, Tp) print(y.shape, "===") yfft = np.fft.fftshift(np.fft.fft(y)) plt.figure() plt.subplot(131) plt.plot(t, x, '^b') plt.plot(t2, y, '+r') plt.legend(['original', 'sinc interpolated']) plt.title('sinc(t/Tp), ' + "Tp=" + str(Tp)) plt.xlabel('Time/s') plt.ylabel('Amplitude') plt.grid() plt.show()
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "numpy.abs", "matplotlib.pyplot.plot", "numpy.fft.fft", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.sin", "numpy.array", "numpy.arange", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((556, 580), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', 'Ns'], {}), '(-10, 10, Ns)\n', (567, 580), True, 'import numpy as np\n'), ((586, 614), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', '(Ns * 2)'], {}), '(-10, 10, Ns * 2)\n', (597, 614), True, 'import numpy as np\n'), ((640, 663), 'numpy.sin', 'np.sin', (['(2 * PI * f0 * t)'], {}), '(2 * PI * f0 * t)\n', (646, 663), True, 'import numpy as np\n'), ((777, 789), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (787, 789), True, 'import matplotlib.pyplot as plt\n'), ((790, 806), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(131)'], {}), '(131)\n', (801, 806), True, 'import matplotlib.pyplot as plt\n'), ((807, 827), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x', '"""^b"""'], {}), "(t, x, '^b')\n", (815, 827), True, 'import matplotlib.pyplot as plt\n'), ((828, 849), 'matplotlib.pyplot.plot', 'plt.plot', (['t2', 'y', '"""+r"""'], {}), "(t2, y, '+r')\n", (836, 849), True, 'import matplotlib.pyplot as plt\n'), ((850, 895), 'matplotlib.pyplot.legend', 'plt.legend', (["['original', 'sinc interpolated']"], {}), "(['original', 'sinc interpolated'])\n", (860, 895), True, 'import matplotlib.pyplot as plt\n'), ((940, 960), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time/s"""'], {}), "('Time/s')\n", (950, 960), True, 'import matplotlib.pyplot as plt\n'), ((961, 984), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude"""'], {}), "('Amplitude')\n", (971, 984), True, 'import matplotlib.pyplot as plt\n'), ((985, 995), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (993, 995), True, 'import matplotlib.pyplot as plt\n'), ((998, 1008), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1006, 1008), True, 'import matplotlib.pyplot as plt\n'), ((169, 180), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (177, 180), True, 'import numpy as np\n'), ((311, 328), 'numpy.arange', 'np.arange', (['x.size'], {}), '(x.size)\n', (320, 328), True, 'import numpy as np\n'), ((455, 466), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (463, 466), True, 'import numpy as np\n'), ((761, 774), 'numpy.fft.fft', 'np.fft.fft', (['y'], {}), '(y)\n', (771, 774), True, 'import numpy as np\n'), ((198, 212), 'numpy.abs', 'np.abs', (['(PI * x)'], {}), '(PI * x)\n', (204, 212), True, 'import numpy as np\n'), ((227, 241), 'numpy.sin', 'np.sin', (['(PI * x)'], {}), '(PI * x)\n', (233, 241), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 2*np.pi, 10) y = np.sin(x) #Función original xvals = np.linspace(0, 2*np.pi, 50) yinterp = np.interp(xvals, x, y) plt.plot(x, y, 'o') plt.plot(xvals, yinterp, '-x') plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.sin", "numpy.linspace", "numpy.interp" ]
[((56, 85), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(10)'], {}), '(0, 2 * np.pi, 10)\n', (67, 85), True, 'import numpy as np\n'), ((88, 97), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (94, 97), True, 'import numpy as np\n'), ((124, 153), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(50)'], {}), '(0, 2 * np.pi, 50)\n', (135, 153), True, 'import numpy as np\n'), ((162, 184), 'numpy.interp', 'np.interp', (['xvals', 'x', 'y'], {}), '(xvals, x, y)\n', (171, 184), True, 'import numpy as np\n'), ((185, 204), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""o"""'], {}), "(x, y, 'o')\n", (193, 204), True, 'import matplotlib.pyplot as plt\n'), ((205, 235), 'matplotlib.pyplot.plot', 'plt.plot', (['xvals', 'yinterp', '"""-x"""'], {}), "(xvals, yinterp, '-x')\n", (213, 235), True, 'import matplotlib.pyplot as plt\n'), ((236, 246), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (244, 246), True, 'import matplotlib.pyplot as plt\n')]
# Copyright 2019 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import argparse import sys import itertools import numpy as np sphere_radius = 5 #Take output of cell detect step, split into two streams- one list of cells, the other the map of cells def split_cells(args): cells = np.load(args.input) cell_map = cells[1] cell_list = cells[0] with open(args.map_output, 'wb') as f: np.save(f, cell_map) # Make volume out of cell_list cell_centroid_volume = np.zeros(cell_map.shape) for cell in cell_list: axes_range = [[],[],[]] for i,axes in enumerate(cell[:3]): min_range = max(int(axes-args.sphere_size), 0) max_range = min(int(axes+args.sphere_size), cell_map.shape[i]-1) axes_range[i]=range(min_range, max_range) coords = list(itertools.product(*axes_range)) for pixel in coords: if np.linalg.norm(np.array(cell[:3])-np.array(pixel)) <= args.sphere_size: cell_centroid_volume[pixel] = 1 with open(args.list_output, 'wb') as f: np.save(f, cell_list) with open(args.centroid_volume_output, 'wb') as f: np.save(f, cell_centroid_volume) def main(): parser = argparse.ArgumentParser(description='cell results splitting script') parser.set_defaults(func=lambda _: parser.print_help()) parser.add_argument('-i', '--input', required=True, help='Input file') parser.add_argument('--map_output', required=True, help='Map Output file') parser.add_argument('--list_output', required=True, help='List Output file') parser.add_argument('--centroid_volume_output', required=True, help='Output volume with spheres') parser.add_argument('--sphere_size', required=False, help='Size of the spheres in the centroids volume', default=5, type=int) args = parser.parse_args() split_cells(args) if __name__ == '__main__': main()
[ "numpy.load", "numpy.save", "argparse.ArgumentParser", "numpy.zeros", "numpy.array", "itertools.product" ]
[((862, 881), 'numpy.load', 'np.load', (['args.input'], {}), '(args.input)\n', (869, 881), True, 'import numpy as np\n'), ((1066, 1090), 'numpy.zeros', 'np.zeros', (['cell_map.shape'], {}), '(cell_map.shape)\n', (1074, 1090), True, 'import numpy as np\n'), ((1804, 1872), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""cell results splitting script"""'}), "(description='cell results splitting script')\n", (1827, 1872), False, 'import argparse\n'), ((982, 1002), 'numpy.save', 'np.save', (['f', 'cell_map'], {}), '(f, cell_map)\n', (989, 1002), True, 'import numpy as np\n'), ((1655, 1676), 'numpy.save', 'np.save', (['f', 'cell_list'], {}), '(f, cell_list)\n', (1662, 1676), True, 'import numpy as np\n'), ((1740, 1772), 'numpy.save', 'np.save', (['f', 'cell_centroid_volume'], {}), '(f, cell_centroid_volume)\n', (1747, 1772), True, 'import numpy as np\n'), ((1406, 1436), 'itertools.product', 'itertools.product', (['*axes_range'], {}), '(*axes_range)\n', (1423, 1436), False, 'import itertools\n'), ((1497, 1515), 'numpy.array', 'np.array', (['cell[:3]'], {}), '(cell[:3])\n', (1505, 1515), True, 'import numpy as np\n'), ((1516, 1531), 'numpy.array', 'np.array', (['pixel'], {}), '(pixel)\n', (1524, 1531), True, 'import numpy as np\n')]
__copyright__ = """This code is licensed under the 3-clause BSD license. Copyright ETH Zurich, Laboratory of Physical Chemistry, Reiher Group. See LICENSE.txt for details. """ import pytest import scine_utilities as scine import numpy as np import os class SigmaVectorEvaluatorPython(scine.SigmaVectorEvaluator): def __init__(self, matrix): scine.SigmaVectorEvaluator.__init__(self) self.matrix = matrix def evaluate(self, guess_vectors): return np.dot(self.matrix, guess_vectors) def collapsed(self, newSubspaceDimension): return def swap(self, i, j): return def create_matrix(): # create a selfadjoint matrix matrix = np.random.rand(100,100) matrix = 0.5*(matrix + np.transpose(matrix)) matrix[np.diag_indices_from(matrix)] += 1 return matrix def initialize_diagonalizer(matrix): # Create sigma vector evaluator and preconditioner sve = scine.IndirectSigmaVectorEvaluator(matrix) prec = scine.IndirectPreconditionerEvaluator(matrix[np.diag_indices_from(matrix)]) # Create and fill Non Orthogonal Davidson diag = scine.NonOrthogonalDavidson(5,100) diag.sigma_vector_evaluator = sve diag.set_preconditioner(prec) return diag def test_SigmaVectorEvaluator(): ref = create_matrix() sve = scine.IndirectSigmaVectorEvaluator(ref) result = sve.evaluate(2.0 * np.identity(100)) assert np.all(2.0 * ref[:,:] == result[:,:]) def test_Preconditioner(): ''' Test that if you try to precondition a vector of ones, you just get -1.0 / (difference btw the diagonal and the current eigenvalue) ''' ref = create_matrix() diag = ref[np.diag_indices_from(ref)] ones_vector = np.ones(100) arbitrary_eigenvalue = 3.5 prec = scine.IndirectPreconditionerEvaluator(diag) result = prec.evaluate(ones_vector, arbitrary_eigenvalue) assert np.all(result[:] == -1.0 / (diag - arbitrary_eigenvalue)) def test_InitializeDiagonalizer(): diag = initialize_diagonalizer(create_matrix()) def test_DiagonalizeWithNonOrthogonalDavidson(): ref = create_matrix() diag = initialize_diagonalizer(ref) result = diag.solve(scine.core.Log.silent()) # Get reference numbers w, v = np.linalg.eig(ref) assert np.all(result.eigenvalues[:] - sorted(w)[:5] <= 1.0e-5) def test_DiagonalizeWithOrthogonalDavidson(): ref = create_matrix() # Create sigma vector evaluator and preconditioner sve = scine.IndirectSigmaVectorEvaluator(ref) prec = scine.IndirectPreconditionerEvaluator(ref[np.diag_indices_from(ref)]) # Create and fill Non Orthogonal Davidson diag = scine.OrthogonalDavidson(5,100) diag.sigma_vector_evaluator = sve diag.set_preconditioner(prec) result = diag.solve(scine.core.Log.silent()) # Get reference numbers w, v = np.linalg.eig(ref) assert np.all(result.eigenvalues[:] - sorted(w)[:5] <= 1.0e-5) def test_DiagonalizeWithPythonSigmaVectorEvaluator(): ref = create_matrix() diag = initialize_diagonalizer(ref) # Set python specific sigma vector evaluator # Note: first initialize, then assign to prevent auto casting. # If I write diag.sigma_vector_evaluator = SigmaVectorEvaluatorPython(ref) # then it it tried to look for the method SigmaVectorEvaluator::evaluate() # instead of SigmaVectorEvaluatorPython::evaluate() sve = SigmaVectorEvaluatorPython(ref) diag.sigma_vector_evaluator = sve result = diag.solve(scine.core.Log.silent()) # Get reference numbers w, v = np.linalg.eig(ref) assert np.all(result.eigenvalues[:] - sorted(w)[:5] <= 1.0e-5)
[ "scine_utilities.NonOrthogonalDavidson", "scine_utilities.OrthogonalDavidson", "numpy.diag_indices_from", "scine_utilities.core.Log.silent", "numpy.transpose", "numpy.ones", "numpy.linalg.eig", "scine_utilities.SigmaVectorEvaluator.__init__", "numpy.identity", "scine_utilities.IndirectSigmaVectorEvaluator", "numpy.random.rand", "numpy.dot", "scine_utilities.IndirectPreconditionerEvaluator", "numpy.all" ]
[((687, 711), 'numpy.random.rand', 'np.random.rand', (['(100)', '(100)'], {}), '(100, 100)\n', (701, 711), True, 'import numpy as np\n'), ((927, 969), 'scine_utilities.IndirectSigmaVectorEvaluator', 'scine.IndirectSigmaVectorEvaluator', (['matrix'], {}), '(matrix)\n', (961, 969), True, 'import scine_utilities as scine\n'), ((1115, 1150), 'scine_utilities.NonOrthogonalDavidson', 'scine.NonOrthogonalDavidson', (['(5)', '(100)'], {}), '(5, 100)\n', (1142, 1150), True, 'import scine_utilities as scine\n'), ((1309, 1348), 'scine_utilities.IndirectSigmaVectorEvaluator', 'scine.IndirectSigmaVectorEvaluator', (['ref'], {}), '(ref)\n', (1343, 1348), True, 'import scine_utilities as scine\n'), ((1410, 1449), 'numpy.all', 'np.all', (['(2.0 * ref[:, :] == result[:, :])'], {}), '(2.0 * ref[:, :] == result[:, :])\n', (1416, 1449), True, 'import numpy as np\n'), ((1718, 1730), 'numpy.ones', 'np.ones', (['(100)'], {}), '(100)\n', (1725, 1730), True, 'import numpy as np\n'), ((1773, 1816), 'scine_utilities.IndirectPreconditionerEvaluator', 'scine.IndirectPreconditionerEvaluator', (['diag'], {}), '(diag)\n', (1810, 1816), True, 'import scine_utilities as scine\n'), ((1890, 1947), 'numpy.all', 'np.all', (['(result[:] == -1.0 / (diag - arbitrary_eigenvalue))'], {}), '(result[:] == -1.0 / (diag - arbitrary_eigenvalue))\n', (1896, 1947), True, 'import numpy as np\n'), ((2240, 2258), 'numpy.linalg.eig', 'np.linalg.eig', (['ref'], {}), '(ref)\n', (2253, 2258), True, 'import numpy as np\n'), ((2464, 2503), 'scine_utilities.IndirectSigmaVectorEvaluator', 'scine.IndirectSigmaVectorEvaluator', (['ref'], {}), '(ref)\n', (2498, 2503), True, 'import scine_utilities as scine\n'), ((2643, 2675), 'scine_utilities.OrthogonalDavidson', 'scine.OrthogonalDavidson', (['(5)', '(100)'], {}), '(5, 100)\n', (2667, 2675), True, 'import scine_utilities as scine\n'), ((2835, 2853), 'numpy.linalg.eig', 'np.linalg.eig', (['ref'], {}), '(ref)\n', (2848, 2853), True, 'import numpy as np\n'), ((3558, 3576), 'numpy.linalg.eig', 'np.linalg.eig', (['ref'], {}), '(ref)\n', (3571, 3576), True, 'import numpy as np\n'), ((355, 396), 'scine_utilities.SigmaVectorEvaluator.__init__', 'scine.SigmaVectorEvaluator.__init__', (['self'], {}), '(self)\n', (390, 396), True, 'import scine_utilities as scine\n'), ((480, 514), 'numpy.dot', 'np.dot', (['self.matrix', 'guess_vectors'], {}), '(self.matrix, guess_vectors)\n', (486, 514), True, 'import numpy as np\n'), ((771, 799), 'numpy.diag_indices_from', 'np.diag_indices_from', (['matrix'], {}), '(matrix)\n', (791, 799), True, 'import numpy as np\n'), ((1673, 1698), 'numpy.diag_indices_from', 'np.diag_indices_from', (['ref'], {}), '(ref)\n', (1693, 1698), True, 'import numpy as np\n'), ((2176, 2199), 'scine_utilities.core.Log.silent', 'scine.core.Log.silent', ([], {}), '()\n', (2197, 2199), True, 'import scine_utilities as scine\n'), ((2771, 2794), 'scine_utilities.core.Log.silent', 'scine.core.Log.silent', ([], {}), '()\n', (2792, 2794), True, 'import scine_utilities as scine\n'), ((3494, 3517), 'scine_utilities.core.Log.silent', 'scine.core.Log.silent', ([], {}), '()\n', (3515, 3517), True, 'import scine_utilities as scine\n'), ((738, 758), 'numpy.transpose', 'np.transpose', (['matrix'], {}), '(matrix)\n', (750, 758), True, 'import numpy as np\n'), ((1026, 1054), 'numpy.diag_indices_from', 'np.diag_indices_from', (['matrix'], {}), '(matrix)\n', (1046, 1054), True, 'import numpy as np\n'), ((1381, 1397), 'numpy.identity', 'np.identity', (['(100)'], {}), '(100)\n', (1392, 1397), True, 'import numpy as np\n'), ((2557, 2582), 'numpy.diag_indices_from', 'np.diag_indices_from', (['ref'], {}), '(ref)\n', (2577, 2582), True, 'import numpy as np\n')]
# coding: utf-8 # # 使用预训练的VGG模型Fine-tune CNN # In[1]: # Import packs import numpy as np import os import scipy.io from scipy.misc import imread, imresize import matplotlib.pyplot as plt import skimage.io import skimage.transform import tensorflow as tf get_ipython().magic(u'matplotlib inline') cwd = os.getcwd() print ("Package loaded") print ("Current folder is %s" % (cwd) ) # In[2]: # 下载预先训练好的vgg-19模型,为Matlab的.mat格式,之后会用scipy读取 # (注意此版本模型与此处http://www.vlfeat.org/matconvnet/pretrained/最新版本不同) import os.path if not os.path.isfile('./data/imagenet-vgg-verydeep-19.mat'): get_ipython().system(u'wget -O data/imagenet-vgg-verydeep-19.mat http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat') # # 载入图像,调节尺寸,生成数据集 # In[3]: # Configure the locations of the images and reshaping sizes # ------------------------------------------------------------------- # paths = {"images/cats", "images/dogs"} imgsize = [64, 64] # The reshape size use_gray = 0 # Grayscale data_name = "data4vgg" # Save name valid_exts = [".jpg",".gif",".png",".tga", ".jpeg"] # ------------------------------------------------------------------- # imgcnt = 0 nclass = len(paths) for relpath in paths: fullpath = cwd + "/" + relpath flist = os.listdir(fullpath) for f in flist: if os.path.splitext(f)[1].lower() not in valid_exts: continue fullpath = os.path.join(fullpath, f) imgcnt = imgcnt + 1 # Grayscale def rgb2gray(rgb): if len(rgb.shape) is 3: return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) else: print ("Current Image is GRAY!") return rgb if use_gray: totalimg = np.ndarray((imgcnt, imgsize[0]*imgsize[1])) else: totalimg = np.ndarray((imgcnt, imgsize[0]*imgsize[1]*3)) totallabel = np.ndarray((imgcnt, nclass)) imgcnt = 0 for i, relpath in zip(range(nclass), paths): path = cwd + "/" + relpath flist = os.listdir(path) for f in flist: if os.path.splitext(f)[1].lower() not in valid_exts: continue fullpath = os.path.join(path, f) currimg = imread(fullpath) # Convert to grayscale if use_gray: grayimg = rgb2gray(currimg) else: grayimg = currimg # Reshape graysmall = imresize(grayimg, [imgsize[0], imgsize[1]])/255. grayvec = np.reshape(graysmall, (1, -1)) # Save totalimg[imgcnt, :] = grayvec totallabel[imgcnt, :] = np.eye(nclass, nclass)[i] imgcnt = imgcnt + 1 # Divide total data into training and test set randidx = np.random.randint(imgcnt, size=imgcnt) trainidx = randidx[0:int(4*imgcnt/5)] testidx = randidx[int(4*imgcnt/5):imgcnt] trainimg = totalimg[trainidx, :] trainlabel = totallabel[trainidx, :] testimg = totalimg[testidx, :] testlabel = totallabel[testidx, :] ntrain = trainimg.shape[0] nclass = trainlabel.shape[1] dim = trainimg.shape[1] ntest = testimg.shape[0] print ("Number of total images is %d (train: %d, test: %d)" % (imgcnt, ntrain, ntest)) print ("Shape of an image is (%d, %d, %d)" % (imgsize[0], imgsize[1], 3)) # # 定义VGG网络结构 # In[4]: def net(data_path, input_image): layers = ( 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4' ) data = scipy.io.loadmat(data_path) mean = data['normalization'][0][0][0] mean_pixel = np.mean(mean, axis=(0, 1)) weights = data['layers'][0] net = {} current = input_image for i, name in enumerate(layers): kind = name[:4] if kind == 'conv': kernels, bias = weights[i][0][0][0][0] # matconvnet: weights are [width, height, in_channels, out_channels] # tensorflow: weights are [height, width, in_channels, out_channels] kernels = np.transpose(kernels, (1, 0, 2, 3)) bias = bias.reshape(-1) current = _conv_layer(current, kernels, bias) elif kind == 'relu': current = tf.nn.relu(current) elif kind == 'pool': current = _pool_layer(current) net[name] = current assert len(net) == len(layers) return net, mean_pixel def _conv_layer(input, weights, bias): conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1), padding='SAME') return tf.nn.bias_add(conv, bias) def _pool_layer(input): return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME') def preprocess(image, mean_pixel): return image - mean_pixel def unprocess(image, mean_pixel): return image + mean_pixel print ("VGG net ready") # # 使用VGG计算卷积特征图 # In[5]: # Preprocess trainimg_tensor = np.ndarray((ntrain, imgsize[0], imgsize[1], 3)) testimg_tensor = np.ndarray((ntest, imgsize[0], imgsize[1], 3)) for i in range(ntrain): currimg = trainimg[i, :] currimg = np.reshape(currimg, [imgsize[0], imgsize[1], 3]) trainimg_tensor[i, :, :, :] = currimg print ("Shape of trainimg_tensor is %s" % (trainimg_tensor.shape,)) for i in range(ntest): currimg = testimg[i, :] currimg = np.reshape(currimg, [imgsize[0], imgsize[1], 3]) testimg_tensor[i, :, :, :] = currimg print ("Shape of trainimg_tensor is %s" % (testimg_tensor.shape,)) # Get conv features VGG_PATH = cwd + "/data/imagenet-vgg-verydeep-19.mat" with tf.Graph().as_default(), tf.Session() as sess: with tf.device("/cpu:0"): img_placeholder = tf.placeholder(tf.float32 , shape=(None, imgsize[0], imgsize[1], 3)) nets, mean_pixel = net(VGG_PATH, img_placeholder) train_features = nets['relu5_4'].eval(feed_dict={img_placeholder: trainimg_tensor}) test_features = nets['relu5_4'].eval(feed_dict={img_placeholder: testimg_tensor}) print("Convolutional map extraction done") # # 卷积特征图的形状 # In[6]: print ("Shape of 'train_features' is %s" % (train_features.shape,)) print ("Shape of 'test_features' is %s" % (test_features.shape,)) # # 向量化 # In[7]: # Vectorize train_vectorized = np.ndarray((ntrain, 4*4*512)) test_vectorized = np.ndarray((ntest, 4*4*512)) for i in range(ntrain): curr_feat = train_features[i, :, :, :] curr_feat_vec = np.reshape(curr_feat, (1, -1)) train_vectorized[i, :] = curr_feat_vec for i in range(ntest): curr_feat = test_features[i, :, :, :] curr_feat_vec = np.reshape(curr_feat, (1, -1)) test_vectorized[i, :] = curr_feat_vec print ("Shape of 'train_vectorized' is %s" % (train_features.shape,)) print ("Shape of 'test_vectorized' is %s" % (test_features.shape,)) # # 定义finetuning的结构 # In[8]: # Parameters learning_rate = 0.0001 training_epochs = 100 batch_size = 100 display_step = 10 # tf Graph input x = tf.placeholder(tf.float32, [None, 4*4*512]) y = tf.placeholder(tf.float32, [None, nclass]) keepratio = tf.placeholder(tf.float32) # Network with tf.device("/cpu:0"): n_input = dim n_output = nclass weights = { 'wd1': tf.Variable(tf.random_normal([4*4*512, 1024], stddev=0.1)), 'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1)) } biases = { 'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)), 'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1)) } def conv_basic(_input, _w, _b, _keepratio): # Input _input_r = _input # Vectorize _dense1 = tf.reshape(_input_r, [-1, _w['wd1'].get_shape().as_list()[0]]) # Fc1 _fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1'])) _fc_dr1 = tf.nn.dropout(_fc1, _keepratio) # Fc2 _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2']) # Return everything out = {'input_r': _input_r, 'dense1': _dense1, 'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out } return out # Functions! _pred = conv_basic(x, weights, biases, keepratio)['out'] cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=_pred, labels=y)) optm = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) _corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) init = tf.initialize_all_variables() print ("Network Ready to Go!") # # 优化 # In[9]: # Launch the graph sess = tf.Session() sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. num_batch = int(ntrain/batch_size)+1 # Loop over all batches for i in range(num_batch): randidx = np.random.randint(ntrain, size=batch_size) batch_xs = train_vectorized[randidx, :] batch_ys = trainlabel[randidx, :] # Fit training using batch data sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7}) # Compute average loss avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/num_batch # Display logs per epoch step if epoch % display_step == 0: print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost)) train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.}) print (" Training accuracy: %.3f" % (train_acc)) test_acc = sess.run(accr, feed_dict={x: test_vectorized, y: testlabel, keepratio:1.}) print (" Test accuracy: %.3f" % (test_acc)) print ("Optimization Finished!")
[ "tensorflow.matmul", "os.path.isfile", "numpy.random.randint", "numpy.mean", "os.path.join", "numpy.ndarray", "tensorflow.nn.relu", "tensorflow.nn.softmax_cross_entropy_with_logits", "numpy.transpose", "tensorflow.placeholder", "tensorflow.cast", "numpy.reshape", "tensorflow.initialize_all_variables", "tensorflow.nn.bias_add", "tensorflow.Session", "tensorflow.constant", "tensorflow.nn.max_pool", "tensorflow.random_normal", "tensorflow.Graph", "scipy.misc.imresize", "numpy.dot", "os.listdir", "scipy.misc.imread", "os.getcwd", "tensorflow.argmax", "tensorflow.device", "os.path.splitext", "numpy.eye", "tensorflow.train.AdamOptimizer", "tensorflow.nn.dropout" ]
[((305, 316), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (314, 316), False, 'import os\n'), ((1812, 1840), 'numpy.ndarray', 'np.ndarray', (['(imgcnt, nclass)'], {}), '((imgcnt, nclass))\n', (1822, 1840), True, 'import numpy as np\n'), ((2630, 2668), 'numpy.random.randint', 'np.random.randint', (['imgcnt'], {'size': 'imgcnt'}), '(imgcnt, size=imgcnt)\n', (2647, 2668), True, 'import numpy as np\n'), ((5128, 5175), 'numpy.ndarray', 'np.ndarray', (['(ntrain, imgsize[0], imgsize[1], 3)'], {}), '((ntrain, imgsize[0], imgsize[1], 3))\n', (5138, 5175), True, 'import numpy as np\n'), ((5193, 5239), 'numpy.ndarray', 'np.ndarray', (['(ntest, imgsize[0], imgsize[1], 3)'], {}), '((ntest, imgsize[0], imgsize[1], 3))\n', (5203, 5239), True, 'import numpy as np\n'), ((6489, 6522), 'numpy.ndarray', 'np.ndarray', (['(ntrain, 4 * 4 * 512)'], {}), '((ntrain, 4 * 4 * 512))\n', (6499, 6522), True, 'import numpy as np\n'), ((6538, 6570), 'numpy.ndarray', 'np.ndarray', (['(ntest, 4 * 4 * 512)'], {}), '((ntest, 4 * 4 * 512))\n', (6548, 6570), True, 'import numpy as np\n'), ((7186, 7233), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 4 * 4 * 512]'], {}), '(tf.float32, [None, 4 * 4 * 512])\n', (7200, 7233), True, 'import tensorflow as tf\n'), ((7234, 7276), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, nclass]'], {}), '(tf.float32, [None, nclass])\n', (7248, 7276), True, 'import tensorflow as tf\n'), ((7289, 7315), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (7303, 7315), True, 'import tensorflow as tf\n'), ((8773, 8785), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8783, 8785), True, 'import tensorflow as tf\n'), ((527, 580), 'os.path.isfile', 'os.path.isfile', (['"""./data/imagenet-vgg-verydeep-19.mat"""'], {}), "('./data/imagenet-vgg-verydeep-19.mat')\n", (541, 580), False, 'import os\n'), ((1273, 1293), 'os.listdir', 'os.listdir', (['fullpath'], {}), '(fullpath)\n', (1283, 1293), False, 'import os\n'), ((1686, 1731), 'numpy.ndarray', 'np.ndarray', (['(imgcnt, imgsize[0] * imgsize[1])'], {}), '((imgcnt, imgsize[0] * imgsize[1]))\n', (1696, 1731), True, 'import numpy as np\n'), ((1753, 1802), 'numpy.ndarray', 'np.ndarray', (['(imgcnt, imgsize[0] * imgsize[1] * 3)'], {}), '((imgcnt, imgsize[0] * imgsize[1] * 3))\n', (1763, 1802), True, 'import numpy as np\n'), ((1944, 1960), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (1954, 1960), False, 'import os\n'), ((3822, 3848), 'numpy.mean', 'np.mean', (['mean'], {'axis': '(0, 1)'}), '(mean, axis=(0, 1))\n', (3829, 3848), True, 'import numpy as np\n'), ((4760, 4786), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['conv', 'bias'], {}), '(conv, bias)\n', (4774, 4786), True, 'import tensorflow as tf\n'), ((4822, 4901), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['input'], {'ksize': '(1, 2, 2, 1)', 'strides': '(1, 2, 2, 1)', 'padding': '"""SAME"""'}), "(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME')\n", (4836, 4901), True, 'import tensorflow as tf\n'), ((5307, 5355), 'numpy.reshape', 'np.reshape', (['currimg', '[imgsize[0], imgsize[1], 3]'], {}), '(currimg, [imgsize[0], imgsize[1], 3])\n', (5317, 5355), True, 'import numpy as np\n'), ((5537, 5585), 'numpy.reshape', 'np.reshape', (['currimg', '[imgsize[0], imgsize[1], 3]'], {}), '(currimg, [imgsize[0], imgsize[1], 3])\n', (5547, 5585), True, 'import numpy as np\n'), ((5804, 5816), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5814, 5816), True, 'import tensorflow as tf\n'), ((6654, 6684), 'numpy.reshape', 'np.reshape', (['curr_feat', '(1, -1)'], {}), '(curr_feat, (1, -1))\n', (6664, 6684), True, 'import numpy as np\n'), ((6813, 6843), 'numpy.reshape', 'np.reshape', (['curr_feat', '(1, -1)'], {}), '(curr_feat, (1, -1))\n', (6823, 6843), True, 'import numpy as np\n'), ((7331, 7350), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (7340, 7350), True, 'import tensorflow as tf\n'), ((8665, 8694), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (8692, 8694), True, 'import tensorflow as tf\n'), ((1415, 1440), 'os.path.join', 'os.path.join', (['fullpath', 'f'], {}), '(fullpath, f)\n', (1427, 1440), False, 'import os\n'), ((1543, 1586), 'numpy.dot', 'np.dot', (['rgb[..., :3]', '[0.299, 0.587, 0.114]'], {}), '(rgb[..., :3], [0.299, 0.587, 0.114])\n', (1549, 1586), True, 'import numpy as np\n'), ((2082, 2103), 'os.path.join', 'os.path.join', (['path', 'f'], {}), '(path, f)\n', (2094, 2103), False, 'import os\n'), ((2123, 2139), 'scipy.misc.imread', 'imread', (['fullpath'], {}), '(fullpath)\n', (2129, 2139), False, 'from scipy.misc import imread, imresize\n'), ((2387, 2417), 'numpy.reshape', 'np.reshape', (['graysmall', '(1, -1)'], {}), '(graysmall, (1, -1))\n', (2397, 2417), True, 'import numpy as np\n'), ((4677, 4697), 'tensorflow.constant', 'tf.constant', (['weights'], {}), '(weights)\n', (4688, 4697), True, 'import tensorflow as tf\n'), ((5835, 5854), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (5844, 5854), True, 'import tensorflow as tf\n'), ((5882, 5949), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(None, imgsize[0], imgsize[1], 3)'}), '(tf.float32, shape=(None, imgsize[0], imgsize[1], 3))\n', (5896, 5949), True, 'import tensorflow as tf\n'), ((8023, 8054), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['_fc1', '_keepratio'], {}), '(_fc1, _keepratio)\n', (8036, 8054), True, 'import tensorflow as tf\n'), ((8398, 8461), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': '_pred', 'labels': 'y'}), '(logits=_pred, labels=y)\n', (8437, 8461), True, 'import tensorflow as tf\n'), ((8562, 8581), 'tensorflow.argmax', 'tf.argmax', (['_pred', '(1)'], {}), '(_pred, 1)\n', (8571, 8581), True, 'import tensorflow as tf\n'), ((8582, 8597), 'tensorflow.argmax', 'tf.argmax', (['y', '(1)'], {}), '(y, 1)\n', (8591, 8597), True, 'import tensorflow as tf\n'), ((8625, 8651), 'tensorflow.cast', 'tf.cast', (['_corr', 'tf.float32'], {}), '(_corr, tf.float32)\n', (8632, 8651), True, 'import tensorflow as tf\n'), ((8994, 9036), 'numpy.random.randint', 'np.random.randint', (['ntrain'], {'size': 'batch_size'}), '(ntrain, size=batch_size)\n', (9011, 9036), True, 'import numpy as np\n'), ((2318, 2361), 'scipy.misc.imresize', 'imresize', (['grayimg', '[imgsize[0], imgsize[1]]'], {}), '(grayimg, [imgsize[0], imgsize[1]])\n', (2326, 2361), False, 'from scipy.misc import imread, imresize\n'), ((2504, 2526), 'numpy.eye', 'np.eye', (['nclass', 'nclass'], {}), '(nclass, nclass)\n', (2510, 2526), True, 'import numpy as np\n'), ((4244, 4279), 'numpy.transpose', 'np.transpose', (['kernels', '(1, 0, 2, 3)'], {}), '(kernels, (1, 0, 2, 3))\n', (4256, 4279), True, 'import numpy as np\n'), ((5779, 5789), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (5787, 5789), True, 'import tensorflow as tf\n'), ((7437, 7486), 'tensorflow.random_normal', 'tf.random_normal', (['[4 * 4 * 512, 1024]'], {'stddev': '(0.1)'}), '([4 * 4 * 512, 1024], stddev=0.1)\n', (7453, 7486), True, 'import tensorflow as tf\n'), ((7512, 7558), 'tensorflow.random_normal', 'tf.random_normal', (['[1024, n_output]'], {'stddev': '(0.1)'}), '([1024, n_output], stddev=0.1)\n', (7528, 7558), True, 'import tensorflow as tf\n'), ((7610, 7646), 'tensorflow.random_normal', 'tf.random_normal', (['[1024]'], {'stddev': '(0.1)'}), '([1024], stddev=0.1)\n', (7626, 7646), True, 'import tensorflow as tf\n'), ((7676, 7716), 'tensorflow.random_normal', 'tf.random_normal', (['[n_output]'], {'stddev': '(0.1)'}), '([n_output], stddev=0.1)\n', (7692, 7716), True, 'import tensorflow as tf\n'), ((8091, 8120), 'tensorflow.matmul', 'tf.matmul', (['_fc_dr1', "_w['wd2']"], {}), "(_fc_dr1, _w['wd2'])\n", (8100, 8120), True, 'import tensorflow as tf\n'), ((8474, 8525), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (8496, 8525), True, 'import tensorflow as tf\n'), ((4425, 4444), 'tensorflow.nn.relu', 'tf.nn.relu', (['current'], {}), '(current)\n', (4435, 4444), True, 'import tensorflow as tf\n'), ((7962, 7991), 'tensorflow.matmul', 'tf.matmul', (['_dense1', "_w['wd1']"], {}), "(_dense1, _w['wd1'])\n", (7971, 7991), True, 'import tensorflow as tf\n'), ((1325, 1344), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (1341, 1344), False, 'import os\n'), ((1992, 2011), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (2008, 2011), False, 'import os\n')]
"""A population model that creates samples with more and more variants. Suitable for the aligner paper experiments ^ = intersection E = subset vx ^ v0 = v0 vx ^ v1 = v0 ... vx ^ vn = v0 v0 E v1 v1 E v2 v2 E v3 ... v(n-1) E vn This plugin does not honor the site frequency spectrum model and ignores the original 'p' values """ import numpy as np __example_param_text = """ { "vn": { "p_vx": 0.2, "p_vn": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], } } """ _description = __doc__ + '\nExample parameters:\n' + __example_param_text #_example_params = json.loads(__example_param_text) _example_params = eval(__example_param_text) class Model: def __init__(self, p_vx, p_vn): """A population model that creates samples with more and more variants. Suitable for the aligner paper experiments :param p_vx: probability value for vx set :param p_vn: probability values for v0, v1, v2, v3 .... set """ self.p_vx, self.p_vn = p_vx, p_vn def samples(self, chrom_no=None, ml=None, rng_seed=1, **kwargs): """This returns an iterator :param chrom_no: number of the chromosome being considered [1,2,3 ...] (ignored here) :param ml: VariantList. master list of variants as created by genomes program :param rng_seed: seed for random number generators :return: A generator returning (generation no, serial_no, chromosome, % samples done) for each sample in population Algorithm: (Repeat for each chromosome copy) Generate random numbers r same size as variants list Select vx <= r < p_vx Pick a random subset of v0 as v1 size(v1)/size(v0) = p_v1/p_v0 Set all r corresponding to v0 - v1 as 1.0 so we never select these again Pick v2, v3 ... by comparing r to p_v2, p_v3 and so on """ assert 0 <= self.p_vx <= 1.0, 'p_vx needs to be >= 0 and <= 1.0' assert self.p_vx > self.p_vn[0], 'p_vx needs to be > p_vn[0]' for n in range(len(self.p_vn) - 1): assert self.p_vn[n] < self.p_vn[n + 1], 'p_vn needs to be in ascending order' assert 0 <= self.p_vn[n] <= 1.0, 'p_vn needs to be >= 0 and <= 1.0' rng = np.random.RandomState(rng_seed) r = rng.rand(ml.variants.shape[0], 2) idx_vx = [None, None] for cpy in [0, 1]: idx_vx[cpy] = np.sort(rng.choice(ml.variants.shape[0], size=int(ml.variants.shape[0] * self.p_vx), replace=False)) # Take elements in vx that are not going to be in v0 completely out of circulation r[idx_vx[cpy][(r[idx_vx[cpy]] >= self.p_vn[0]).nonzero()[0]], cpy] = 1.1 # Now all elements for r < 1.0 are either in vx ^ v0 or not in vx for n in range(len(self.p_vn) + 1): if n == 0: this_idx, sample_name = idx_vx, 'vx' else: this_idx, sample_name = [(r[:, cpy] < self.p_vn[n - 1]).nonzero()[0] for cpy in [0, 1]], 'v{:d}'.format(n - 1) yield sample_name, ml.zip_up_chromosome(*this_idx), float(n + 1) / self.get_sample_count_estimate() def get_sample_count_estimate(self): """Give us an as exact as possible estimate of how many samples we will produce""" return 1 + len(self.p_vn)
[ "numpy.random.RandomState" ]
[((2112, 2143), 'numpy.random.RandomState', 'np.random.RandomState', (['rng_seed'], {}), '(rng_seed)\n', (2133, 2143), True, 'import numpy as np\n')]
""" Functions to rotate a point by a known euler pole. """ import numpy as np from . import fault_vector_functions def point_rotation_by_Euler_Pole(Point, Euler_Pole): """ Compute the velocity of rotation of a point about an Euler pole on a spherical earth. This function is useful for computing the velocity of a stationary point in one reference frame with respect to another reference frame. The resulting velocity is assumed to be horizontal. :param Point: [longitude, latitude] of observation point, in degrees :type Point: array_like :param Euler_Pole: [longitude, latitude, omega] of Euler Pole, in degrees and degrees/Ma :type Euler_Pole: array_like :returns: [e_velocity, n_velocity, u_velocity] of point in rotated reference frame, in mm/yr :rtype: array_like """ R_point = get_r(Point[0], Point[1]); R_ep = get_r(Euler_Pole[0], Euler_Pole[1]); unit_ep = fault_vector_functions.get_unit_vector(R_ep); omega_raw = degma2radyr(Euler_Pole[2]); omega = omega_raw * unit_ep; # in radians per year velocity_of_transformation = np.cross(omega, R_point); # velocity at the station from the euler pole rotation velocity_of_transformation = velocity_of_transformation * 1000; # mm/yr in x, y, z xvel = velocity_of_transformation[0]; yvel = velocity_of_transformation[1]; zvel = velocity_of_transformation[2]; [east_transform, north_transform] = xyz2en(xvel, yvel, zvel, Point[0]); up_transform = 0; # by definition the velocity will be horizontal return [east_transform, north_transform, up_transform]; def degma2radyr(omega): """Convert omega from degrees/Ma to radians/yr""" radyr = omega * (np.pi / 180) * 1e-6; return radyr; def get_r(lon, lat): """ Vector from center of earth to the point in question assuming a spherical earth. The XYZ coordinate system has x=0 at longitude=0 and z=0 at the equator with positive to the north. :param lon: Longitude of initial point, in degrees :type lon: float :param lat: Latitude of initial point, in degrees :type lat: float :returns: [X, Y, Z] coordinates in meters. :rtype: [float, float, float] """ R_fixed = 6378000; # In meters R_equatorial_disk = R_fixed * np.cos(np.deg2rad(lat)); T_equatorial_disk = np.deg2rad(lon); X = R_equatorial_disk * np.cos(T_equatorial_disk); Y = R_equatorial_disk * np.sin(T_equatorial_disk); Z = np.sqrt(R_fixed * R_fixed - X * X - Y * Y); if lat < 0: Z = Z * -1; return [X, Y, Z]; def get_unit_east(lon): """ Unit east vector from a point on earth's surface in XYZ coordinates. The XYZ coordinate system has x=0 at longitude=0 and z=0 at the equator with positive to the north. The return value of Z is zero for eastward motion. :param lon: Longitude of initial point, in degrees :type lon: float :returns: [X, Y, Z] components :rtype: [float, float, float] """ T_equatorial_disk = np.deg2rad(lon); x = -np.sin(T_equatorial_disk); y = np.cos(T_equatorial_disk); return [x, y, 0]; def xyz2en(x, y, z, lon): """ Convert velocities from xyz to horizontal east and north, assuming spherical earth and no vertical motion. We take the dot product of the velocity with the unit east vector and the north component is the remainder. A more complex function xyz2enu(X, Y, Z, lon, lat) could be written later. :param x: x velocity at observation point :type x: float :param y: y velocity at observation point :type y: float :param z: z velocity at observation point :type z: float :param lon: Longitude of observation point, in degrees :type lon: float :returns: [east_vel, north_vel] :rtype: [float, float] """ vel_vector = [x, y, z]; unit_east = get_unit_east(lon); e = np.dot(vel_vector, unit_east); n = np.sqrt(x * x + y * y + z * z - e * e); if z < 0: n = n * -1; return [e, n]; if __name__ == "__main__": Euler_Pole = [69.9, -12.3, 0.55]; # Lon, Lat, Deg/Ma Point = [-124, 40.5]; # Lon, Lat [east_transform, north_transform, up_transform] = point_rotation_by_Euler_Pole(Point, Euler_Pole); total = np.sqrt(east_transform * east_transform + north_transform * north_transform); print("%.2f east, %.2f north, %.2f up, %.2f mm/yr total" % (east_transform, north_transform, up_transform, total));
[ "numpy.deg2rad", "numpy.cross", "numpy.sin", "numpy.cos", "numpy.dot", "numpy.sqrt" ]
[((1109, 1133), 'numpy.cross', 'np.cross', (['omega', 'R_point'], {}), '(omega, R_point)\n', (1117, 1133), True, 'import numpy as np\n'), ((2334, 2349), 'numpy.deg2rad', 'np.deg2rad', (['lon'], {}), '(lon)\n', (2344, 2349), True, 'import numpy as np\n'), ((2469, 2511), 'numpy.sqrt', 'np.sqrt', (['(R_fixed * R_fixed - X * X - Y * Y)'], {}), '(R_fixed * R_fixed - X * X - Y * Y)\n', (2476, 2511), True, 'import numpy as np\n'), ((3015, 3030), 'numpy.deg2rad', 'np.deg2rad', (['lon'], {}), '(lon)\n', (3025, 3030), True, 'import numpy as np\n'), ((3076, 3101), 'numpy.cos', 'np.cos', (['T_equatorial_disk'], {}), '(T_equatorial_disk)\n', (3082, 3101), True, 'import numpy as np\n'), ((3882, 3911), 'numpy.dot', 'np.dot', (['vel_vector', 'unit_east'], {}), '(vel_vector, unit_east)\n', (3888, 3911), True, 'import numpy as np\n'), ((3921, 3959), 'numpy.sqrt', 'np.sqrt', (['(x * x + y * y + z * z - e * e)'], {}), '(x * x + y * y + z * z - e * e)\n', (3928, 3959), True, 'import numpy as np\n'), ((4254, 4330), 'numpy.sqrt', 'np.sqrt', (['(east_transform * east_transform + north_transform * north_transform)'], {}), '(east_transform * east_transform + north_transform * north_transform)\n', (4261, 4330), True, 'import numpy as np\n'), ((2379, 2404), 'numpy.cos', 'np.cos', (['T_equatorial_disk'], {}), '(T_equatorial_disk)\n', (2385, 2404), True, 'import numpy as np\n'), ((2434, 2459), 'numpy.sin', 'np.sin', (['T_equatorial_disk'], {}), '(T_equatorial_disk)\n', (2440, 2459), True, 'import numpy as np\n'), ((3041, 3066), 'numpy.sin', 'np.sin', (['T_equatorial_disk'], {}), '(T_equatorial_disk)\n', (3047, 3066), True, 'import numpy as np\n'), ((2292, 2307), 'numpy.deg2rad', 'np.deg2rad', (['lat'], {}), '(lat)\n', (2302, 2307), True, 'import numpy as np\n')]
import numpy as np import random import os, sys from scipy import ndimage import healpy as hp from astropy.io import fits import matplotlib.pyplot as plt from scipy.signal import savgol_filter from astropy.io import fits from importlib import reload from pycs.misc.cosmostat_init import * from pycs.misc.mr_prog import * def make_healpix_map(ra, dec, weights, nside): pixels= hp.ang2pix(nside,theta = 0.5*np.pi - np.deg2rad(dec), phi = np.deg2rad(ra)) bincount = np.bincount(pixels, minlength = hp.nside2npix(nside)) bincount_weighted = np.bincount(pixels, minlength = hp.nside2npix(nside), weights=weights) return np.where(bincount>0.5, bincount_weighted/bincount, hp.UNSEEN) def get_bincount(ra, dec, nside): pixels= hp.ang2pix(nside,theta = 0.5*np.pi - np.deg2rad(dec), phi = np.deg2rad(ra)) bincount = np.bincount(pixels, minlength = hp.nside2npix(nside)) return bincount def mrs_read(FN): return hp.read_map(FN) def mrs_write(FN, mapin): hp.write_map(FN, mapin, overwrite=True) def rims(FN): return hp.read_map(FN) def mrs_resize(mapin, nsideout): k = hp.ud_grade(mapin, nsideout) return k # smoothing with sigma in arcmin def smooth(map, sigma): s= hp.smoothing(mapin, sigma=sigma/(360.*60.) * (np.pi*2),pol=False) # lut='rainbow' # 'inferno' 'gist_stern' def tvs(mapin,min=None,max=None,title=None,sigma=None,lut=None): if sigma is None: hp.mollview(mapin,max=max,min=min, title=title,cmap=lut) else: s= hp.smoothing(mapin, sigma=sigma/(360.*60.) * (np.pi*2),pol=False) hp.mollview(s,max=max,min=min, title=title,cmap=lut) hp.mollview def get_nside(Npix): return hp.npix2nside(Npix) def gnside(data): npix = data.shape[0] nside = hp.npix2nside(npix) return nside def pixel_size(nside): # Return the pixel size of a healpix map in arc minutes # SKI_SURFACE IN SQUARE DEGREES = 4. * !PI * (360. / (2*!PI))^2 = 41253 psize = 41253. / (float(nside)**2.*12.) * 60.**2. return np.sqrt(psize) def l2amin(l): a = 1. / l a = a * 180.* 60. / np.pi return a def amin2l(a): ar = a / (180.* 60.) * np.pi l = 1. / ar return l def g2eb(g1,g2): nside = gnside(g1) (ae,ab) = hp.map2alm_spin((g1,g2), 2) ke= hp.alm2map(ae, nside, pol=False) kb= hp.alm2map(ab, nside, pol=False) return ke,kb def g2k(g1,g2): nside = gnside(g1) (ae,ab) = hp.map2alm_spin((g1,g2), 2) ke= hp.alm2map(ae, nside, pol=False) return ke def k2g(ke): nside = gnside(ke) ae = hp.map2alm(ke, 1,pol=False) ab = np.copy(ae) * 0. (g1,g2) = hp.alm2map_spin((ae,ab), 2, lmax=lmax) return g1,g2 # it seems that hp.alm2map_spin crashes. def eb2g(ke,kb): nside = gnside(ke) lmax=nside*3 - 1 ae = hp.map2alm(ke, 1, pol=False) ab = hp.map2alm(kb, 1, pol=False) (g1,g2) = hp.alm2map_spin( (ae,ab), nside, 2, lmax) return g1,g2 def mrs_prog(data, prog="mrs_powspec", opt=None, path='./', remove_files=True, verbose=False, FileOut=None, InputFormatisHealpix=True, OutputFormatisHealpix=True): # Create a unique string using the current date and time. # print('mr_filter ', opt) unique_string = datetime.now().strftime('%Y.%m.%d_%H.%M.%S') result=0 # Set the ouput file names. file_name = path + 'mr_temp_' + unique_string file_fits = file_name + '.fits' if FileOut is not None: file_out = FileOut else: file_out = file_name + '_out.fits' # Write the input data to a fits file. if InputFormatisHealpix: mrs_write(file_fits, data) else: writefits(file_fits, data) # print("PROG: ", prog) cmd = prog if isinstance(opt, type(None)): optF=' ' else: optF= opt if verbose: optF = optF + " -v " cmd = cmd + " " + optF + " " + file_fits + " " + file_out if verbose: print ('CMD = ', cmd) args = shlex.split(cmd) # print('args ', args) call(args) # Retrieve wavelet filtered data. if OutputFormatisHealpix: result = mrs_read(file_out) else: result = readfits(file_out) # Return the mr_transform results (and the output file names). if remove_files: remove(file_fits) remove(file_out) return result else: return result def mrs_powspec(map, verbose=False): p = mrs_prog(map, prog="mrs_powspec", verbose=verbose, OutputFormatisHealpix=False) return p def mrs_smooth(map, opt=None, verbose=False): p = mrs_prog(map, prog="mrs_smooth", verbose=verbose, opt=opt, OutputFormatisHealpix=True) return p def mrs_almtrans(map, lmax=None, opt=None, verbose=False): optParam = ' -T ' if opt is not None: optParam = ' -T ' + opt if lmax is not None: optParam = ' -l ' + str(lmax) + optParam p = mrs_prog(map, prog="mrs_almtrans", verbose=verbose, opt=optParam, OutputFormatisHealpix=False) return p def mrs_almrec(map, opt=None, verbose=False,nside=None): optParam = ' -T ' if opt is not None: optParam = ' -T ' + opt if nside is not None: optParam = ' -n ' + str(nside) + optParam p = mrs_prog(map, prog="mrs_almrec", verbose=verbose, opt=optParam, InputFormatisHealpix=False, OutputFormatisHealpix=True) return p def tol(map,lmax_amin,amin=False): ns= gnside(map) lmax=lmax_amin if amin is True: lmax=amin2l(lmax_amin) a = mrs_almtrans(map, lmax=lmax) b = mrs_almrec(a, nside=ns) return b def mrs_uwttrans(map, lmax=None, opt=None, verbose=False, path='./',progpath=None): optParam = ' ' if opt is not None: optParam = ' ' + opt if lmax is not None: optParam = ' -l ' + str(lmax) + optParam if progpath is None: prog="mrs_uwttrans" else: prog=progpath+"mrs_uwttrans" p = mrs_prog(map, prog=prog, verbose=verbose, opt=optParam, OutputFormatisHealpix=False,path=path) return p def mrs_uwtrecons(Tmap, lmax=None, opt=None, verbose=False, path='./',progpath=None): optParam = ' ' if opt is not None: optParam = ' ' + opt if lmax is not None: optParam = ' -l ' + str(lmax) + optParam if progpath is None: prog="mrs_uwttrans" else: prog=progpath+"mrs_uwttrans -r " p = mrs_prog(Tmap, prog=prog, verbose=verbose, opt=optParam, InputFormatisHealpix=False, OutputFormatisHealpix=True,path=path) return p
[ "healpy.write_map", "healpy.alm2map", "healpy.mollview", "numpy.copy", "healpy.map2alm", "numpy.deg2rad", "healpy.ud_grade", "healpy.nside2npix", "numpy.where", "healpy.npix2nside", "healpy.map2alm_spin", "healpy.alm2map_spin", "healpy.smoothing", "healpy.read_map", "numpy.sqrt" ]
[((634, 699), 'numpy.where', 'np.where', (['(bincount > 0.5)', '(bincount_weighted / bincount)', 'hp.UNSEEN'], {}), '(bincount > 0.5, bincount_weighted / bincount, hp.UNSEEN)\n', (642, 699), True, 'import numpy as np\n'), ((938, 953), 'healpy.read_map', 'hp.read_map', (['FN'], {}), '(FN)\n', (949, 953), True, 'import healpy as hp\n'), ((985, 1024), 'healpy.write_map', 'hp.write_map', (['FN', 'mapin'], {'overwrite': '(True)'}), '(FN, mapin, overwrite=True)\n', (997, 1024), True, 'import healpy as hp\n'), ((1051, 1066), 'healpy.read_map', 'hp.read_map', (['FN'], {}), '(FN)\n', (1062, 1066), True, 'import healpy as hp\n'), ((1109, 1137), 'healpy.ud_grade', 'hp.ud_grade', (['mapin', 'nsideout'], {}), '(mapin, nsideout)\n', (1120, 1137), True, 'import healpy as hp\n'), ((1216, 1290), 'healpy.smoothing', 'hp.smoothing', (['mapin'], {'sigma': '(sigma / (360.0 * 60.0) * (np.pi * 2))', 'pol': '(False)'}), '(mapin, sigma=sigma / (360.0 * 60.0) * (np.pi * 2), pol=False)\n', (1228, 1290), True, 'import healpy as hp\n'), ((1685, 1704), 'healpy.npix2nside', 'hp.npix2nside', (['Npix'], {}), '(Npix)\n', (1698, 1704), True, 'import healpy as hp\n'), ((1761, 1780), 'healpy.npix2nside', 'hp.npix2nside', (['npix'], {}), '(npix)\n', (1774, 1780), True, 'import healpy as hp\n'), ((2024, 2038), 'numpy.sqrt', 'np.sqrt', (['psize'], {}), '(psize)\n', (2031, 2038), True, 'import numpy as np\n'), ((2249, 2277), 'healpy.map2alm_spin', 'hp.map2alm_spin', (['(g1, g2)', '(2)'], {}), '((g1, g2), 2)\n', (2264, 2277), True, 'import healpy as hp\n'), ((2285, 2317), 'healpy.alm2map', 'hp.alm2map', (['ae', 'nside'], {'pol': '(False)'}), '(ae, nside, pol=False)\n', (2295, 2317), True, 'import healpy as hp\n'), ((2326, 2358), 'healpy.alm2map', 'hp.alm2map', (['ab', 'nside'], {'pol': '(False)'}), '(ab, nside, pol=False)\n', (2336, 2358), True, 'import healpy as hp\n'), ((2430, 2458), 'healpy.map2alm_spin', 'hp.map2alm_spin', (['(g1, g2)', '(2)'], {}), '((g1, g2), 2)\n', (2445, 2458), True, 'import healpy as hp\n'), ((2466, 2498), 'healpy.alm2map', 'hp.alm2map', (['ae', 'nside'], {'pol': '(False)'}), '(ae, nside, pol=False)\n', (2476, 2498), True, 'import healpy as hp\n'), ((2559, 2587), 'healpy.map2alm', 'hp.map2alm', (['ke', '(1)'], {'pol': '(False)'}), '(ke, 1, pol=False)\n', (2569, 2587), True, 'import healpy as hp\n'), ((2627, 2666), 'healpy.alm2map_spin', 'hp.alm2map_spin', (['(ae, ab)', '(2)'], {'lmax': 'lmax'}), '((ae, ab), 2, lmax=lmax)\n', (2642, 2666), True, 'import healpy as hp\n'), ((2795, 2823), 'healpy.map2alm', 'hp.map2alm', (['ke', '(1)'], {'pol': '(False)'}), '(ke, 1, pol=False)\n', (2805, 2823), True, 'import healpy as hp\n'), ((2833, 2861), 'healpy.map2alm', 'hp.map2alm', (['kb', '(1)'], {'pol': '(False)'}), '(kb, 1, pol=False)\n', (2843, 2861), True, 'import healpy as hp\n'), ((2876, 2917), 'healpy.alm2map_spin', 'hp.alm2map_spin', (['(ae, ab)', 'nside', '(2)', 'lmax'], {}), '((ae, ab), nside, 2, lmax)\n', (2891, 2917), True, 'import healpy as hp\n'), ((1430, 1489), 'healpy.mollview', 'hp.mollview', (['mapin'], {'max': 'max', 'min': 'min', 'title': 'title', 'cmap': 'lut'}), '(mapin, max=max, min=min, title=title, cmap=lut)\n', (1441, 1489), True, 'import healpy as hp\n'), ((1507, 1581), 'healpy.smoothing', 'hp.smoothing', (['mapin'], {'sigma': '(sigma / (360.0 * 60.0) * (np.pi * 2))', 'pol': '(False)'}), '(mapin, sigma=sigma / (360.0 * 60.0) * (np.pi * 2), pol=False)\n', (1519, 1581), True, 'import healpy as hp\n'), ((1580, 1635), 'healpy.mollview', 'hp.mollview', (['s'], {'max': 'max', 'min': 'min', 'title': 'title', 'cmap': 'lut'}), '(s, max=max, min=min, title=title, cmap=lut)\n', (1591, 1635), True, 'import healpy as hp\n'), ((2596, 2607), 'numpy.copy', 'np.copy', (['ae'], {}), '(ae)\n', (2603, 2607), True, 'import numpy as np\n'), ((443, 457), 'numpy.deg2rad', 'np.deg2rad', (['ra'], {}), '(ra)\n', (453, 457), True, 'import numpy as np\n'), ((506, 526), 'healpy.nside2npix', 'hp.nside2npix', (['nside'], {}), '(nside)\n', (519, 526), True, 'import healpy as hp\n'), ((584, 604), 'healpy.nside2npix', 'hp.nside2npix', (['nside'], {}), '(nside)\n', (597, 604), True, 'import healpy as hp\n'), ((803, 817), 'numpy.deg2rad', 'np.deg2rad', (['ra'], {}), '(ra)\n', (813, 817), True, 'import numpy as np\n'), ((866, 886), 'healpy.nside2npix', 'hp.nside2npix', (['nside'], {}), '(nside)\n', (879, 886), True, 'import healpy as hp\n'), ((420, 435), 'numpy.deg2rad', 'np.deg2rad', (['dec'], {}), '(dec)\n', (430, 435), True, 'import numpy as np\n'), ((780, 795), 'numpy.deg2rad', 'np.deg2rad', (['dec'], {}), '(dec)\n', (790, 795), True, 'import numpy as np\n')]
import mobula.layers as L import numpy as np def test_sigmoid(): X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1)) data = L.Data(X, "data") data.reshape() l = L.Sigmoid(data) l.reshape() assert l.Y.shape == X.shape l.forward() l.dY = np.random.random(l.Y.shape) * 10 l.backward() enx = np.exp(-X) assert np.allclose(l.Y.ravel(), (1.0 / (1.0 + enx)).ravel()) assert np.allclose(l.dX.ravel(), (enx / np.square(1 + enx) * l.dY).ravel()) def test_relu(): X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1)) data = L.Data(X, "data") data.reshape() l = L.ReLU(data) l.reshape() assert l.Y.shape == X.shape l.forward() l.dY = np.random.random(l.Y.shape) * 10 l.backward() Y = np.zeros(X.shape) b = (X > 0) Y[b] = X[b] dX = np.zeros(X.shape) dX[b] = l.dY[b] ''' d = (l.dX != dX) print (l.dX[d], dX[d]) ''' assert np.allclose(l.Y.ravel(), Y.ravel()) assert np.allclose(l.dX.ravel(), dX.ravel()) def test_selu(): X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1)) data = L.Data(X, "data") data.reshape() l = L.SELU(data) y = l.eval() ty = np.zeros(X.shape) ty[X > 0] = l.scale * X[X>0] ty[X<=0] = l.scale * (l.alpha * np.exp(X[X<=0]) - l.alpha) assert np.allclose(y, ty) l.dY = np.random.random(l.Y.shape) l.backward() dX = np.zeros(X.shape) dX[X > 0] = l.scale dX[X <= 0] = l.scale * l.alpha * np.exp(X[X<=0]) dX *= l.dY assert np.allclose(dX, l.dX) def test_PReLU(): X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1)) data = L.Data(X, "data") data.reshape() l = L.PReLU(data) y = l.eval() ty = np.zeros(X.shape) ty[X>0] = X[X>0] ty[X<=0] = l.alpha * X[X<=0] assert np.allclose(y, ty) l.dY = np.random.random(l.Y.shape) l.backward() dX = np.zeros(X.shape) dX[X>0] = 1 dX[X<=0] = l.alpha dX *= l.dY print (dX, l.dX) assert np.allclose(dX, l.dX) def test_tanh(): X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1)) data = L.Data(X, "data") data.reshape() l = L.Tanh(data) y = l.eval() p = np.exp(X) n = np.exp(-X) ty = (p - n) / (p + n) assert np.allclose(y, ty) l.dY = np.random.random(l.Y.shape) l.backward() dX = 1.0 - np.square(p - n) / np.square(p + n) dX *= l.dY assert np.allclose(dX, l.dX)
[ "mobula.layers.PReLU", "mobula.layers.Tanh", "numpy.allclose", "mobula.layers.ReLU", "numpy.zeros", "numpy.square", "numpy.random.random", "numpy.arange", "numpy.exp", "mobula.layers.Data", "mobula.layers.SELU", "mobula.layers.Sigmoid" ]
[((145, 162), 'mobula.layers.Data', 'L.Data', (['X', '"""data"""'], {}), "(X, 'data')\n", (151, 162), True, 'import mobula.layers as L\n'), ((190, 205), 'mobula.layers.Sigmoid', 'L.Sigmoid', (['data'], {}), '(data)\n', (199, 205), True, 'import mobula.layers as L\n'), ((342, 352), 'numpy.exp', 'np.exp', (['(-X)'], {}), '(-X)\n', (348, 352), True, 'import numpy as np\n'), ((595, 612), 'mobula.layers.Data', 'L.Data', (['X', '"""data"""'], {}), "(X, 'data')\n", (601, 612), True, 'import mobula.layers as L\n'), ((640, 652), 'mobula.layers.ReLU', 'L.ReLU', (['data'], {}), '(data)\n', (646, 652), True, 'import mobula.layers as L\n'), ((786, 803), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (794, 803), True, 'import numpy as np\n'), ((845, 862), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (853, 862), True, 'import numpy as np\n'), ((1140, 1157), 'mobula.layers.Data', 'L.Data', (['X', '"""data"""'], {}), "(X, 'data')\n", (1146, 1157), True, 'import mobula.layers as L\n'), ((1185, 1197), 'mobula.layers.SELU', 'L.SELU', (['data'], {}), '(data)\n', (1191, 1197), True, 'import mobula.layers as L\n'), ((1224, 1241), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (1232, 1241), True, 'import numpy as np\n'), ((1350, 1368), 'numpy.allclose', 'np.allclose', (['y', 'ty'], {}), '(y, ty)\n', (1361, 1368), True, 'import numpy as np\n'), ((1380, 1407), 'numpy.random.random', 'np.random.random', (['l.Y.shape'], {}), '(l.Y.shape)\n', (1396, 1407), True, 'import numpy as np\n'), ((1434, 1451), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (1442, 1451), True, 'import numpy as np\n'), ((1555, 1576), 'numpy.allclose', 'np.allclose', (['dX', 'l.dX'], {}), '(dX, l.dX)\n', (1566, 1576), True, 'import numpy as np\n'), ((1675, 1692), 'mobula.layers.Data', 'L.Data', (['X', '"""data"""'], {}), "(X, 'data')\n", (1681, 1692), True, 'import mobula.layers as L\n'), ((1720, 1733), 'mobula.layers.PReLU', 'L.PReLU', (['data'], {}), '(data)\n', (1727, 1733), True, 'import mobula.layers as L\n'), ((1760, 1777), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (1768, 1777), True, 'import numpy as np\n'), ((1843, 1861), 'numpy.allclose', 'np.allclose', (['y', 'ty'], {}), '(y, ty)\n', (1854, 1861), True, 'import numpy as np\n'), ((1873, 1900), 'numpy.random.random', 'np.random.random', (['l.Y.shape'], {}), '(l.Y.shape)\n', (1889, 1900), True, 'import numpy as np\n'), ((1927, 1944), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (1935, 1944), True, 'import numpy as np\n'), ((2031, 2052), 'numpy.allclose', 'np.allclose', (['dX', 'l.dX'], {}), '(dX, l.dX)\n', (2042, 2052), True, 'import numpy as np\n'), ((2150, 2167), 'mobula.layers.Data', 'L.Data', (['X', '"""data"""'], {}), "(X, 'data')\n", (2156, 2167), True, 'import mobula.layers as L\n'), ((2195, 2207), 'mobula.layers.Tanh', 'L.Tanh', (['data'], {}), '(data)\n', (2201, 2207), True, 'import mobula.layers as L\n'), ((2233, 2242), 'numpy.exp', 'np.exp', (['X'], {}), '(X)\n', (2239, 2242), True, 'import numpy as np\n'), ((2251, 2261), 'numpy.exp', 'np.exp', (['(-X)'], {}), '(-X)\n', (2257, 2261), True, 'import numpy as np\n'), ((2300, 2318), 'numpy.allclose', 'np.allclose', (['y', 'ty'], {}), '(y, ty)\n', (2311, 2318), True, 'import numpy as np\n'), ((2330, 2357), 'numpy.random.random', 'np.random.random', (['l.Y.shape'], {}), '(l.Y.shape)\n', (2346, 2357), True, 'import numpy as np\n'), ((2452, 2473), 'numpy.allclose', 'np.allclose', (['dX', 'l.dX'], {}), '(dX, l.dX)\n', (2463, 2473), True, 'import numpy as np\n'), ((281, 308), 'numpy.random.random', 'np.random.random', (['l.Y.shape'], {}), '(l.Y.shape)\n', (297, 308), True, 'import numpy as np\n'), ((728, 755), 'numpy.random.random', 'np.random.random', (['l.Y.shape'], {}), '(l.Y.shape)\n', (744, 755), True, 'import numpy as np\n'), ((1513, 1530), 'numpy.exp', 'np.exp', (['X[X <= 0]'], {}), '(X[X <= 0])\n', (1519, 1530), True, 'import numpy as np\n'), ((2390, 2406), 'numpy.square', 'np.square', (['(p - n)'], {}), '(p - n)\n', (2399, 2406), True, 'import numpy as np\n'), ((2409, 2425), 'numpy.square', 'np.square', (['(p + n)'], {}), '(p + n)\n', (2418, 2425), True, 'import numpy as np\n'), ((1312, 1329), 'numpy.exp', 'np.exp', (['X[X <= 0]'], {}), '(X[X <= 0])\n', (1318, 1329), True, 'import numpy as np\n'), ((76, 92), 'numpy.arange', 'np.arange', (['(10000)'], {}), '(10000)\n', (85, 92), True, 'import numpy as np\n'), ((526, 542), 'numpy.arange', 'np.arange', (['(10000)'], {}), '(10000)\n', (535, 542), True, 'import numpy as np\n'), ((1071, 1087), 'numpy.arange', 'np.arange', (['(10000)'], {}), '(10000)\n', (1080, 1087), True, 'import numpy as np\n'), ((1606, 1622), 'numpy.arange', 'np.arange', (['(10000)'], {}), '(10000)\n', (1615, 1622), True, 'import numpy as np\n'), ((2081, 2097), 'numpy.arange', 'np.arange', (['(10000)'], {}), '(10000)\n', (2090, 2097), True, 'import numpy as np\n'), ((462, 480), 'numpy.square', 'np.square', (['(1 + enx)'], {}), '(1 + enx)\n', (471, 480), True, 'import numpy as np\n')]
import model3 as M import numpy as np import tensorflow as tf params = np.load('lstmpm_d1.npy').item() params2 = np.load('lstmpm_d2.npy').item() def get_conv(name): res = [] # print(params[name]) res.append(params[name]['weights']) res.append(params[name]['bias']) # print(res[0].shape) return res def get_conv2(name): res = [] # print(params[name]) res.append(params2[name]['weights']) res.append(params2[name]['bias']) # print(res[0].shape) return res class Stage0(M.Model): def initialize(self): # init encoding self.c1_s1 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv1_stage1')) self.p1_s1 = M.MaxPool(3, 2, pad='VALID') self.c2_s1 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv2_stage1')) self.p2_s1 = M.MaxPool(3, 2, pad='VALID') self.c3_s1 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv3_stage1')) self.p3_s1 = M.MaxPool(3, 2, pad='VALID') self.c4_s1 = M.ConvLayer(5, 32, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv4_stage1')) self.c5_s1 = M.ConvLayer(9, 512, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv5_stage1')) self.c6_s1 = M.ConvLayer(1, 512, activation=M.PARAM_RELU, values=get_conv('conv6_stage1')) self.c7_s1 = M.ConvLayer(1, 15, values=get_conv('conv7_stage1')) # frame encoding self.c1_s2 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv1_stage2')) self.p1_s2 = M.MaxPool(3, 2, pad='VALID') self.c2_s2 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv2_stage2')) self.p2_s2 = M.MaxPool(3, 2, pad='VALID') self.c3_s2 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv3_stage2')) self.p3_s2 = M.MaxPool(3, 2, pad='VALID') self.c4_s2 = M.ConvLayer(5, 32, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('conv4_stage2')) # center map self.pool = M.AvgPool(9,8, pad='VALID') # LSTM0 self.g = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv('g_x_stage2')) self.gb = tf.convert_to_tensor(params['g_stage2'][1].astype(np.float32)) self.gb = tf.Variable(self.gb) self.i = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv('i_x_stage2')) self.ib = tf.convert_to_tensor(params['i_stage2'][1].astype(np.float32)) self.ib = tf.Variable(self.ib) self.o = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv('o_x_stage2')) self.ob = tf.convert_to_tensor(params['o_stage2'][1].astype(np.float32)) self.ob = tf.Variable(self.ob) # decoder branch self.mc1 = M.ConvLayer(11, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('Mconv1_stage2')) self.mc2 = M.ConvLayer(11, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('Mconv2_stage2')) self.mc3 = M.ConvLayer(11, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv('Mconv3_stage2')) self.mc4 = M.ConvLayer(1, 128, activation=M.PARAM_RELU, values=get_conv('Mconv4_stage2')) self.mc5 = M.ConvLayer(1, 15, values=get_conv('Mconv5_stage2')) def forward(self, dt1, dt2, centermap): #init enc e = dt1 e = self.c1_s1(e) e = tf.pad(e, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') e = self.p1_s1(e) e = self.c2_s1(e) e = tf.pad(e, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') e = self.p2_s1(e) e = self.c3_s1(e) e = tf.pad(e, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') e = self.p3_s1(e) e = self.c4_s1(e) e = self.c5_s1(e) e = self.c6_s1(e) e = self.c7_s1(e) # frame encoding f = dt2 f = self.c1_s2(f) f = tf.pad(f, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') f = self.p1_s2(f) f = self.c2_s2(f) f = tf.pad(f, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') f = self.p2_s2(f) f = self.c3_s2(f) f = tf.pad(f, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') f = self.p3_s2(f) f = self.c4_s2(f) # centermap pooling x = tf.pad(centermap, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') x = self.pool(x) # LSTM branch x = tf.concat([f, e, x], axis=-1) g = self.g(x) + self.gb i = self.i(x) + self.ib o = self.o(x) + self.ob g = tf.tanh(g) i = tf.sigmoid(i) o = tf.sigmoid(o) c = g * i h = o * tf.tanh(c) # decoder branch x = self.mc1(h) x = self.mc2(x) x = self.mc3(x) x = self.mc4(x) out = self.mc5(x) return out class Stage1(M.Model): def initialize(self): # frame encoding self.c1_s2 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('conv1_stage2')) self.p1_s2 = M.MaxPool(3, 2, pad='VALID') self.c2_s2 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('conv2_stage2')) self.p2_s2 = M.MaxPool(3, 2, pad='VALID') self.c3_s2 = M.ConvLayer(9, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('conv3_stage2')) self.p3_s2 = M.MaxPool(3, 2, pad='VALID') self.c4_s2 = M.ConvLayer(5, 32, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('conv4_stage2')) # center map self.pool = M.AvgPool(9,8, pad='VALID') # lstm self.gx = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('g_x_stage3')) self.gh = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('g_h_stage3')) self.gb = tf.convert_to_tensor(params2['g_stage3'][1].astype(np.float32)) self.gb = tf.Variable(self.gb) self.fx = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('f_x_stage3')) self.fh = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('f_h_stage3')) self.fb = tf.convert_to_tensor(params2['f_stage3'][1].astype(np.float32)) self.fb = tf.Variable(self.fb) self.ox = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('o_x_stage3')) self.oh = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('o_h_stage3')) self.ob = tf.convert_to_tensor(params2['o_stage3'][1].astype(np.float32)) self.ob = tf.Variable(self.ob) self.ix = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('i_x_stage3')) self.ih = M.ConvLayer(3, 48, pad='SAME_LEFT', values=get_conv2('i_h_stage3')) self.ib = tf.convert_to_tensor(params2['i_stage3'][1].astype(np.float32)) self.ib = tf.Variable(self.ib) # decoder branch self.mc1 = M.ConvLayer(11, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('Mres1_stage3')) self.mc2 = M.ConvLayer(11, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('Mres2_stage3')) self.mc3 = M.ConvLayer(11, 128, pad='SAME_LEFT', activation=M.PARAM_RELU, values=get_conv2('Mres3_stage3')) self.mc4 = M.ConvLayer(1, 128, activation=M.PARAM_RELU, values=get_conv2('Mres4_stage3')) self.mc5 = M.ConvLayer(1, 15, values=get_conv2('Mres5_stage3')) def forward(self, x, hmap, centermap, h, c): # frame encoding f = x f = self.c1_s2(f) f = tf.pad(f, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') f = self.p1_s2(f) f = self.c2_s2(f) f = tf.pad(f, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') f = self.p2_s2(f) f = self.c3_s2(f) f = tf.pad(f, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') f = self.p3_s2(f) f = self.c4_s2(f) # centermap pooling ce = tf.pad(centermap, [[0,0],[0,1],[0,1],[0,0]], mode='SYMMETRIC') ce = self.pool(ce) # lstm branch x = tf.concat([f, hmap, ce], axis=-1) gx = self.gx(x) gh = self.gh(h) ox = self.ox(x) oh = self.oh(h) fx = self.fx(x) fh = self.fh(h) ix = self.ix(x) ih = self.ih(h) g = tf.tanh(gx + gh + self.gb) o = tf.sigmoid(ox + oh + self.ob) i = tf.sigmoid(ix + ih + self.ib) f = tf.sigmoid(fx + fh + self.fb) c = f*c + i*g h = o * tf.tanh(c) # decoder branch x = self.mc1(h) x = self.mc2(x) x = self.mc3(x) x = self.mc4(x) out = self.mc5(x) return out class ModelBundle(M.Model): def initialize(self): self.s0 = Stage0() self.s1 = Stage1() if __name__=='__main__': mods = ModelBundle() mod = mods.s0 x = np.ones([1,368,368,3]).astype(np.float32) cent = np.ones([1,368,368,1]).astype(np.float32) x = mod(x, x, cent) out = np.transpose(x,[0,3,1,2]) print(out) print(out.shape) input('Test deploy1 finished. Input for testing deploy2') mod = mods.s1 x = np.ones([1,368,368,3]).astype(np.float32) cent = np.ones([1,368,368,1]).astype(np.float32) h = c = np.ones([1,46,46, 48]).astype(np.float32) hmap = np.ones([1,46,46, 15]).astype(np.float32) x[:,-1] = 0 x = mod(x, hmap, cent, h, c) out = np.transpose(x,[0,3,1,2]) print(out) print(out.shape) input('Test deploy2 finished. Input for saving converted weights ') saver = M.Saver(mods) saver.save('./LSTMPM/lstmpm.ckpt')
[ "model3.Saver", "numpy.load", "model3.AvgPool", "model3.MaxPool", "tensorflow.pad", "numpy.transpose", "tensorflow.concat", "numpy.ones", "tensorflow.Variable", "tensorflow.tanh", "tensorflow.sigmoid" ]
[((7984, 8013), 'numpy.transpose', 'np.transpose', (['x', '[0, 3, 1, 2]'], {}), '(x, [0, 3, 1, 2])\n', (7996, 8013), True, 'import numpy as np\n'), ((8365, 8394), 'numpy.transpose', 'np.transpose', (['x', '[0, 3, 1, 2]'], {}), '(x, [0, 3, 1, 2])\n', (8377, 8394), True, 'import numpy as np\n'), ((8500, 8513), 'model3.Saver', 'M.Saver', (['mods'], {}), '(mods)\n', (8507, 8513), True, 'import model3 as M\n'), ((75, 99), 'numpy.load', 'np.load', (['"""lstmpm_d1.npy"""'], {}), "('lstmpm_d1.npy')\n", (82, 99), True, 'import numpy as np\n'), ((117, 141), 'numpy.load', 'np.load', (['"""lstmpm_d2.npy"""'], {}), "('lstmpm_d2.npy')\n", (124, 141), True, 'import numpy as np\n'), ((665, 693), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (674, 693), True, 'import model3 as M\n'), ((819, 847), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (828, 847), True, 'import model3 as M\n'), ((973, 1001), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (982, 1001), True, 'import model3 as M\n'), ((1527, 1555), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (1536, 1555), True, 'import model3 as M\n'), ((1681, 1709), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (1690, 1709), True, 'import model3 as M\n'), ((1835, 1863), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (1844, 1863), True, 'import model3 as M\n'), ((2003, 2031), 'model3.AvgPool', 'M.AvgPool', (['(9)', '(8)'], {'pad': '"""VALID"""'}), "(9, 8, pad='VALID')\n", (2012, 2031), True, 'import model3 as M\n'), ((2207, 2227), 'tensorflow.Variable', 'tf.Variable', (['self.gb'], {}), '(self.gb)\n', (2218, 2227), True, 'import tensorflow as tf\n'), ((2393, 2413), 'tensorflow.Variable', 'tf.Variable', (['self.ib'], {}), '(self.ib)\n', (2404, 2413), True, 'import tensorflow as tf\n'), ((2579, 2599), 'tensorflow.Variable', 'tf.Variable', (['self.ob'], {}), '(self.ob)\n', (2590, 2599), True, 'import tensorflow as tf\n'), ((3201, 3262), 'tensorflow.pad', 'tf.pad', (['e', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(e, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3207, 3262), True, 'import tensorflow as tf\n'), ((3302, 3363), 'tensorflow.pad', 'tf.pad', (['e', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(e, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3308, 3363), True, 'import tensorflow as tf\n'), ((3403, 3464), 'tensorflow.pad', 'tf.pad', (['e', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(e, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3409, 3464), True, 'import tensorflow as tf\n'), ((3616, 3677), 'tensorflow.pad', 'tf.pad', (['f', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(f, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3622, 3677), True, 'import tensorflow as tf\n'), ((3717, 3778), 'tensorflow.pad', 'tf.pad', (['f', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(f, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3723, 3778), True, 'import tensorflow as tf\n'), ((3818, 3879), 'tensorflow.pad', 'tf.pad', (['f', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(f, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3824, 3879), True, 'import tensorflow as tf\n'), ((3943, 4012), 'tensorflow.pad', 'tf.pad', (['centermap', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(centermap, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (3949, 4012), True, 'import tensorflow as tf\n'), ((4049, 4078), 'tensorflow.concat', 'tf.concat', (['[f, e, x]'], {'axis': '(-1)'}), '([f, e, x], axis=-1)\n', (4058, 4078), True, 'import tensorflow as tf\n'), ((4165, 4175), 'tensorflow.tanh', 'tf.tanh', (['g'], {}), '(g)\n', (4172, 4175), True, 'import tensorflow as tf\n'), ((4182, 4195), 'tensorflow.sigmoid', 'tf.sigmoid', (['i'], {}), '(i)\n', (4192, 4195), True, 'import tensorflow as tf\n'), ((4202, 4215), 'tensorflow.sigmoid', 'tf.sigmoid', (['o'], {}), '(o)\n', (4212, 4215), True, 'import tensorflow as tf\n'), ((4572, 4600), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (4581, 4600), True, 'import model3 as M\n'), ((4727, 4755), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (4736, 4755), True, 'import model3 as M\n'), ((4882, 4910), 'model3.MaxPool', 'M.MaxPool', (['(3)', '(2)'], {'pad': '"""VALID"""'}), "(3, 2, pad='VALID')\n", (4891, 4910), True, 'import model3 as M\n'), ((5051, 5079), 'model3.AvgPool', 'M.AvgPool', (['(9)', '(8)'], {'pad': '"""VALID"""'}), "(9, 8, pad='VALID')\n", (5060, 5079), True, 'import model3 as M\n'), ((5337, 5357), 'tensorflow.Variable', 'tf.Variable', (['self.gb'], {}), '(self.gb)\n', (5348, 5357), True, 'import tensorflow as tf\n'), ((5606, 5626), 'tensorflow.Variable', 'tf.Variable', (['self.fb'], {}), '(self.fb)\n', (5617, 5626), True, 'import tensorflow as tf\n'), ((5875, 5895), 'tensorflow.Variable', 'tf.Variable', (['self.ob'], {}), '(self.ob)\n', (5886, 5895), True, 'import tensorflow as tf\n'), ((6144, 6164), 'tensorflow.Variable', 'tf.Variable', (['self.ib'], {}), '(self.ib)\n', (6155, 6164), True, 'import tensorflow as tf\n'), ((6776, 6837), 'tensorflow.pad', 'tf.pad', (['f', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(f, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (6782, 6837), True, 'import tensorflow as tf\n'), ((6877, 6938), 'tensorflow.pad', 'tf.pad', (['f', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(f, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (6883, 6938), True, 'import tensorflow as tf\n'), ((6978, 7039), 'tensorflow.pad', 'tf.pad', (['f', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(f, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (6984, 7039), True, 'import tensorflow as tf\n'), ((7104, 7173), 'tensorflow.pad', 'tf.pad', (['centermap', '[[0, 0], [0, 1], [0, 1], [0, 0]]'], {'mode': '"""SYMMETRIC"""'}), "(centermap, [[0, 0], [0, 1], [0, 1], [0, 0]], mode='SYMMETRIC')\n", (7110, 7173), True, 'import tensorflow as tf\n'), ((7212, 7245), 'tensorflow.concat', 'tf.concat', (['[f, hmap, ce]'], {'axis': '(-1)'}), '([f, hmap, ce], axis=-1)\n', (7221, 7245), True, 'import tensorflow as tf\n'), ((7400, 7426), 'tensorflow.tanh', 'tf.tanh', (['(gx + gh + self.gb)'], {}), '(gx + gh + self.gb)\n', (7407, 7426), True, 'import tensorflow as tf\n'), ((7433, 7462), 'tensorflow.sigmoid', 'tf.sigmoid', (['(ox + oh + self.ob)'], {}), '(ox + oh + self.ob)\n', (7443, 7462), True, 'import tensorflow as tf\n'), ((7469, 7498), 'tensorflow.sigmoid', 'tf.sigmoid', (['(ix + ih + self.ib)'], {}), '(ix + ih + self.ib)\n', (7479, 7498), True, 'import tensorflow as tf\n'), ((7505, 7534), 'tensorflow.sigmoid', 'tf.sigmoid', (['(fx + fh + self.fb)'], {}), '(fx + fh + self.fb)\n', (7515, 7534), True, 'import tensorflow as tf\n'), ((4240, 4250), 'tensorflow.tanh', 'tf.tanh', (['c'], {}), '(c)\n', (4247, 4250), True, 'import tensorflow as tf\n'), ((7563, 7573), 'tensorflow.tanh', 'tf.tanh', (['c'], {}), '(c)\n', (7570, 7573), True, 'import tensorflow as tf\n'), ((7864, 7889), 'numpy.ones', 'np.ones', (['[1, 368, 368, 3]'], {}), '([1, 368, 368, 3])\n', (7871, 7889), True, 'import numpy as np\n'), ((7914, 7939), 'numpy.ones', 'np.ones', (['[1, 368, 368, 1]'], {}), '([1, 368, 368, 1])\n', (7921, 7939), True, 'import numpy as np\n'), ((8120, 8145), 'numpy.ones', 'np.ones', (['[1, 368, 368, 3]'], {}), '([1, 368, 368, 3])\n', (8127, 8145), True, 'import numpy as np\n'), ((8170, 8195), 'numpy.ones', 'np.ones', (['[1, 368, 368, 1]'], {}), '([1, 368, 368, 1])\n', (8177, 8195), True, 'import numpy as np\n'), ((8221, 8245), 'numpy.ones', 'np.ones', (['[1, 46, 46, 48]'], {}), '([1, 46, 46, 48])\n', (8228, 8245), True, 'import numpy as np\n'), ((8271, 8295), 'numpy.ones', 'np.ones', (['[1, 46, 46, 15]'], {}), '([1, 46, 46, 15])\n', (8278, 8295), True, 'import numpy as np\n')]
import gpflow import matplotlib.pyplot as plt import numpy as np from robustgp import ConditionalVariance X = np.random.rand(150, 1) Y = 0.8 * np.cos(10 * X) + 1.2 * np.sin(8 * X + 0.3) + np.cos(17 * X) * 1.2 + np.random.randn(*X.shape) * 0.1 gpr = gpflow.models.GPR((X, Y), gpflow.kernels.SquaredExponential()) opt = gpflow.optimizers.Scipy() opt_logs = opt.minimize(gpr.training_loss, gpr.trainable_variables, options=dict(maxiter=100)) k = gpflow.kernels.SquaredExponential() gpflow.utilities.multiple_assign(k, gpflow.utilities.read_values(gpr.kernel)) Z_initer = ConditionalVariance() sp = gpflow.models.SGPR((X, Y), k, Z_initer.compute_initialisation(X, 6, k)[0]) gpflow.utilities.multiple_assign(sp, gpflow.utilities.read_values(gpr)) pX = np.linspace(0, 1, 3000)[:, None] m, v = sp.predict_f(pX) ipm, _ = sp.predict_f(sp.inducing_variable.Z.value()) fig, (ax1, ax2) = plt.subplots(2, 1) ax1.plot(X, Y, 'x') ax1.plot(pX, m) ax1.plot(sp.inducing_variable.Z.value(), ipm, 'o', color='C3') deviation = (2 * (v + sp.likelihood.variance.value()) ** 0.5).numpy().flatten() ax1.fill_between(pX.flatten(), m.numpy().flatten() - deviation, m.numpy().flatten() + deviation, alpha=0.3) ax1.axvline(pX[np.argmax(v)].item(), color='C2') ax1.set_ylabel("y") ax2.plot(pX, v ** 0.5) ax2.plot(sp.inducing_variable.Z.value(), sp.inducing_variable.Z.value() * 0.0, 'o', color='C3') ax2.axvline(pX[np.argmax(v)].item(), color='C2') ax2.set_xlabel("input $x$") ax2.set_ylabel("$\mathbb{V}\,[p(f(x) | \mathbf{u}]^{0.5}$") plt.show()
[ "robustgp.ConditionalVariance", "gpflow.kernels.SquaredExponential", "matplotlib.pyplot.show", "numpy.random.randn", "numpy.argmax", "gpflow.optimizers.Scipy", "gpflow.utilities.read_values", "numpy.sin", "numpy.linspace", "numpy.cos", "numpy.random.rand", "matplotlib.pyplot.subplots" ]
[((111, 133), 'numpy.random.rand', 'np.random.rand', (['(150)', '(1)'], {}), '(150, 1)\n', (125, 133), True, 'import numpy as np\n'), ((320, 345), 'gpflow.optimizers.Scipy', 'gpflow.optimizers.Scipy', ([], {}), '()\n', (343, 345), False, 'import gpflow\n'), ((446, 481), 'gpflow.kernels.SquaredExponential', 'gpflow.kernels.SquaredExponential', ([], {}), '()\n', (479, 481), False, 'import gpflow\n'), ((572, 593), 'robustgp.ConditionalVariance', 'ConditionalVariance', ([], {}), '()\n', (591, 593), False, 'from robustgp import ConditionalVariance\n'), ((882, 900), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {}), '(2, 1)\n', (894, 900), True, 'import matplotlib.pyplot as plt\n'), ((1513, 1523), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1521, 1523), True, 'import matplotlib.pyplot as plt\n'), ((277, 312), 'gpflow.kernels.SquaredExponential', 'gpflow.kernels.SquaredExponential', ([], {}), '()\n', (310, 312), False, 'import gpflow\n'), ((518, 558), 'gpflow.utilities.read_values', 'gpflow.utilities.read_values', (['gpr.kernel'], {}), '(gpr.kernel)\n', (546, 558), False, 'import gpflow\n'), ((711, 744), 'gpflow.utilities.read_values', 'gpflow.utilities.read_values', (['gpr'], {}), '(gpr)\n', (739, 744), False, 'import gpflow\n'), ((752, 775), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(3000)'], {}), '(0, 1, 3000)\n', (763, 775), True, 'import numpy as np\n'), ((212, 237), 'numpy.random.randn', 'np.random.randn', (['*X.shape'], {}), '(*X.shape)\n', (227, 237), True, 'import numpy as np\n'), ((189, 203), 'numpy.cos', 'np.cos', (['(17 * X)'], {}), '(17 * X)\n', (195, 203), True, 'import numpy as np\n'), ((144, 158), 'numpy.cos', 'np.cos', (['(10 * X)'], {}), '(10 * X)\n', (150, 158), True, 'import numpy as np\n'), ((167, 186), 'numpy.sin', 'np.sin', (['(8 * X + 0.3)'], {}), '(8 * X + 0.3)\n', (173, 186), True, 'import numpy as np\n'), ((1203, 1215), 'numpy.argmax', 'np.argmax', (['v'], {}), '(v)\n', (1212, 1215), True, 'import numpy as np\n'), ((1391, 1403), 'numpy.argmax', 'np.argmax', (['v'], {}), '(v)\n', (1400, 1403), True, 'import numpy as np\n')]
import pdb import time import lib.tf_silent import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import Normalize from matplotlib.gridspec import GridSpec import os import pickle import argparse from lib.pinn import PINN from lib.network import Network from lib.optimizer import Optimizer def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--maxiter', type=int, default=2000) parser.add_argument('-ntr', '--num-train-samples', type=int, default=10000) parser.add_argument('-nte', '--num-test-samples', type=int, default=100) parser.add_argument('-n', '--network', type=str, default='pinn') parser.add_argument('-l', '--loss', type=str, default='l2') parser.add_argument('-gi', '--gradient-interval', type=int, default=100) parser.add_argument('--gt-path', type=str, default='data/pinn.pkl') return parser.parse_known_args()[0] def uv(network, xy): """ Compute flow velocities (u, v) for the network with output (psi, p). Args: xy: network input variables as ndarray. Returns: (u, v) as ndarray. """ xy = tf.constant(xy) with tf.GradientTape() as g: g.watch(xy) psi_p = network(xy) psi_p_j = g.batch_jacobian(psi_p, xy) u = psi_p_j[..., 0, 1] v = -psi_p_j[..., 0, 0] return u.numpy(), v.numpy() def contour(grid, x, y, z, title, levels=50): """ Contour plot. Args: grid: plot position. x: x-array. y: y-array. z: z-array. title: title string. levels: number of contour lines. """ # get the value range vmin = -2e-1 vmax = 2e-1 if (title == 'psi'): vmax = 1.2e-1 vmin = -1e-1 if (title == 'p'): vmax = 6.1e-1 vmin = -5e-1 if (title == 'u'): vmax = 1.1e+0 vmin = -2e-1 if (title == 'v'): vmax = 2.1e-1 vmin = -2e-1 if (title == 'dpsi'): vmax = 1.1e-2 vmin = 0.0 if (title == 'dp'): vmax = 4.1e-1 vmin = 0.0 if (title == 'du'): vmax = 1.1e-1 vmin = 0.0 if (title == 'dv'): vmax = 8.1e-2 vmin = 0.0 # plot a contour plt.subplot(grid) print(title, vmin, vmax) plt.contour(x, y, z, colors='k', linewidths=0.2, levels=levels, vmin=vmin, vmax=vmax) plt.contourf(x, y, z, cmap='rainbow', levels=levels, vmin=vmin, vmax=vmax) plt.title(title) m = plt.cm.ScalarMappable(cmap='rainbow', norm=Normalize(vmin=vmin, vmax=vmax)) m.set_array(z) m.set_clim(vmin, vmax) cbar = plt.colorbar(m, pad=0.03, aspect=25, format='%.0e') cbar.mappable.set_clim(vmin, vmax) if __name__ == '__main__': """ Test the physics informed neural network (PINN) model for the cavity flow governed by the steady Navier-Stokes equation. """ args = parse_args() # number of training samples num_train_samples = args.num_train_samples # number of test samples num_test_samples = args.num_test_samples # inlet flow velocity u0 = 1 # density rho = 1 # viscosity nu = 0.01 # build a core network model network = Network().build() network.summary() # build a PINN model model = PINN(network, rho=rho, nu=nu).build() # create training input xy_eqn = np.random.rand(num_train_samples, 2) xy_ub = np.random.rand(num_train_samples//2, 2) # top-bottom boundaries xy_ub[..., 1] = np.round(xy_ub[..., 1]) # y-position is 0 or 1 xy_lr = np.random.rand(num_train_samples//2, 2) # left-right boundaries xy_lr[..., 0] = np.round(xy_lr[..., 0]) # x-position is 0 or 1 xy_bnd = np.random.permutation(np.concatenate([xy_ub, xy_lr])) x_train = [xy_eqn, xy_bnd] # create training output zeros = np.zeros((num_train_samples, 2)) uv_bnd = np.zeros((num_train_samples, 2)) uv_bnd[..., 0] = u0 * np.floor(xy_bnd[..., 1]) y_train = [zeros, zeros, uv_bnd] # train the model using L-BFGS-B algorithm optimizer = Optimizer(model=model, x_train=x_train, y_train=y_train, dict_params=args.__dict__) optimizer.fit() # create meshgrid coordinates (x, y) for test plots x = np.linspace(0, 1, num_test_samples) y = np.linspace(0, 1, num_test_samples) x, y = np.meshgrid(x, y) xy = np.stack([x.flatten(), y.flatten()], axis=-1) # predict (psi, p) psi_p = network.predict(xy, batch_size=len(xy)) psi, p = [ psi_p[..., i].reshape(x.shape) for i in range(psi_p.shape[-1]) ] # compute (u, v) u, v = uv(network, xy) u = u.reshape(x.shape) v = v.reshape(x.shape) if os.path.isfile(args.gt_path): with open(args.gt_path, 'rb') as f: data = pickle.load(f) x_gt, y_gt, psi_gt, p_gt, u_gt, v_gt = data fig = plt.figure(figsize=(6, 5)) gs = GridSpec(2, 2) contour(gs[0, 0], x, y, np.abs(psi - psi_gt), 'dpsi') contour(gs[0, 1], x, y, np.abs(p - p_gt), 'dp') contour(gs[1, 0], x, y, np.abs(u - u_gt), 'du') contour(gs[1, 1], x, y, np.abs(v - v_gt), 'dv') plt.tight_layout() plt.savefig(os.path.join('figures', list(args.__dict__.values())[:-1].__str__() + str(time.time()) + '_error.png')) plt.show() plt.close() fig = plt.figure(figsize=(6, 5)) gs = GridSpec(2, 2) contour(gs[0, 0], x, y, psi, 'psi') contour(gs[0, 1], x, y, p, 'p') contour(gs[1, 0], x, y, u, 'u') contour(gs[1, 1], x, y, v, 'v') plt.tight_layout() plt.savefig(os.path.join('figures', list(args.__dict__.values())[:-1].__str__() + str(time.time()) + '.png')) plt.show() plt.close() else: # plot test results fig = plt.figure(figsize=(6, 5)) gs = GridSpec(2, 2) contour(gs[0, 0], x, y, psi, 'psi') contour(gs[0, 1], x, y, p, 'p') contour(gs[1, 0], x, y, u, 'u') contour(gs[1, 1], x, y, v, 'v') data = [x, y, psi, p, u, v] with open(args.gt_path, 'wb') as f: pickle.dump(data, f) plt.tight_layout() plt.savefig(os.path.join('figures', list(args.__dict__.values())[:-1].__str__() + str(time.time()) + '.png')) plt.show() plt.close()
[ "matplotlib.pyplot.title", "pickle.dump", "numpy.abs", "argparse.ArgumentParser", "numpy.floor", "os.path.isfile", "matplotlib.pyplot.figure", "matplotlib.pyplot.contourf", "matplotlib.pyplot.contour", "pickle.load", "numpy.round", "matplotlib.pyplot.tight_layout", "numpy.meshgrid", "matplotlib.colors.Normalize", "matplotlib.pyplot.close", "matplotlib.pyplot.colorbar", "numpy.linspace", "lib.pinn.PINN", "matplotlib.pyplot.show", "lib.network.Network", "tensorflow.constant", "numpy.concatenate", "matplotlib.pyplot.subplot", "lib.optimizer.Optimizer", "numpy.zeros", "time.time", "numpy.random.rand", "matplotlib.gridspec.GridSpec", "tensorflow.GradientTape" ]
[((395, 420), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (418, 420), False, 'import argparse\n'), ((1189, 1204), 'tensorflow.constant', 'tf.constant', (['xy'], {}), '(xy)\n', (1200, 1204), True, 'import tensorflow as tf\n'), ((2285, 2302), 'matplotlib.pyplot.subplot', 'plt.subplot', (['grid'], {}), '(grid)\n', (2296, 2302), True, 'import matplotlib.pyplot as plt\n'), ((2336, 2425), 'matplotlib.pyplot.contour', 'plt.contour', (['x', 'y', 'z'], {'colors': '"""k"""', 'linewidths': '(0.2)', 'levels': 'levels', 'vmin': 'vmin', 'vmax': 'vmax'}), "(x, y, z, colors='k', linewidths=0.2, levels=levels, vmin=vmin,\n vmax=vmax)\n", (2347, 2425), True, 'import matplotlib.pyplot as plt\n'), ((2426, 2500), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', 'z'], {'cmap': '"""rainbow"""', 'levels': 'levels', 'vmin': 'vmin', 'vmax': 'vmax'}), "(x, y, z, cmap='rainbow', levels=levels, vmin=vmin, vmax=vmax)\n", (2438, 2500), True, 'import matplotlib.pyplot as plt\n'), ((2505, 2521), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (2514, 2521), True, 'import matplotlib.pyplot as plt\n'), ((2666, 2717), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['m'], {'pad': '(0.03)', 'aspect': '(25)', 'format': '"""%.0e"""'}), "(m, pad=0.03, aspect=25, format='%.0e')\n", (2678, 2717), True, 'import matplotlib.pyplot as plt\n'), ((3409, 3445), 'numpy.random.rand', 'np.random.rand', (['num_train_samples', '(2)'], {}), '(num_train_samples, 2)\n', (3423, 3445), True, 'import numpy as np\n'), ((3458, 3499), 'numpy.random.rand', 'np.random.rand', (['(num_train_samples // 2)', '(2)'], {}), '(num_train_samples // 2, 2)\n', (3472, 3499), True, 'import numpy as np\n'), ((3543, 3566), 'numpy.round', 'np.round', (['xy_ub[..., 1]'], {}), '(xy_ub[..., 1])\n', (3551, 3566), True, 'import numpy as np\n'), ((3611, 3652), 'numpy.random.rand', 'np.random.rand', (['(num_train_samples // 2)', '(2)'], {}), '(num_train_samples // 2, 2)\n', (3625, 3652), True, 'import numpy as np\n'), ((3696, 3719), 'numpy.round', 'np.round', (['xy_lr[..., 0]'], {}), '(xy_lr[..., 0])\n', (3704, 3719), True, 'import numpy as np\n'), ((3892, 3924), 'numpy.zeros', 'np.zeros', (['(num_train_samples, 2)'], {}), '((num_train_samples, 2))\n', (3900, 3924), True, 'import numpy as np\n'), ((3938, 3970), 'numpy.zeros', 'np.zeros', (['(num_train_samples, 2)'], {}), '((num_train_samples, 2))\n', (3946, 3970), True, 'import numpy as np\n'), ((4123, 4211), 'lib.optimizer.Optimizer', 'Optimizer', ([], {'model': 'model', 'x_train': 'x_train', 'y_train': 'y_train', 'dict_params': 'args.__dict__'}), '(model=model, x_train=x_train, y_train=y_train, dict_params=args.\n __dict__)\n', (4132, 4211), False, 'from lib.optimizer import Optimizer\n'), ((4292, 4327), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'num_test_samples'], {}), '(0, 1, num_test_samples)\n', (4303, 4327), True, 'import numpy as np\n'), ((4336, 4371), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'num_test_samples'], {}), '(0, 1, num_test_samples)\n', (4347, 4371), True, 'import numpy as np\n'), ((4383, 4400), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (4394, 4400), True, 'import numpy as np\n'), ((4720, 4748), 'os.path.isfile', 'os.path.isfile', (['args.gt_path'], {}), '(args.gt_path)\n', (4734, 4748), False, 'import os\n'), ((1214, 1231), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (1229, 1231), True, 'import tensorflow as tf\n'), ((3787, 3817), 'numpy.concatenate', 'np.concatenate', (['[xy_ub, xy_lr]'], {}), '([xy_ub, xy_lr])\n', (3801, 3817), True, 'import numpy as np\n'), ((3997, 4021), 'numpy.floor', 'np.floor', (['xy_bnd[..., 1]'], {}), '(xy_bnd[..., 1])\n', (4005, 4021), True, 'import numpy as np\n'), ((4894, 4920), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 5)'}), '(figsize=(6, 5))\n', (4904, 4920), True, 'import matplotlib.pyplot as plt\n'), ((4934, 4948), 'matplotlib.gridspec.GridSpec', 'GridSpec', (['(2)', '(2)'], {}), '(2, 2)\n', (4942, 4948), False, 'from matplotlib.gridspec import GridSpec\n'), ((5187, 5205), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5203, 5205), True, 'import matplotlib.pyplot as plt\n'), ((5371, 5381), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5379, 5381), True, 'import matplotlib.pyplot as plt\n'), ((5390, 5401), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5399, 5401), True, 'import matplotlib.pyplot as plt\n'), ((5417, 5443), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 5)'}), '(figsize=(6, 5))\n', (5427, 5443), True, 'import matplotlib.pyplot as plt\n'), ((5457, 5471), 'matplotlib.gridspec.GridSpec', 'GridSpec', (['(2)', '(2)'], {}), '(2, 2)\n', (5465, 5471), False, 'from matplotlib.gridspec import GridSpec\n'), ((5644, 5662), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5660, 5662), True, 'import matplotlib.pyplot as plt\n'), ((5789, 5799), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5797, 5799), True, 'import matplotlib.pyplot as plt\n'), ((5808, 5819), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5817, 5819), True, 'import matplotlib.pyplot as plt\n'), ((5872, 5898), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 5)'}), '(figsize=(6, 5))\n', (5882, 5898), True, 'import matplotlib.pyplot as plt\n'), ((5912, 5926), 'matplotlib.gridspec.GridSpec', 'GridSpec', (['(2)', '(2)'], {}), '(2, 2)\n', (5920, 5926), False, 'from matplotlib.gridspec import GridSpec\n'), ((6212, 6230), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6228, 6230), True, 'import matplotlib.pyplot as plt\n'), ((6357, 6367), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6365, 6367), True, 'import matplotlib.pyplot as plt\n'), ((6376, 6387), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6385, 6387), True, 'import matplotlib.pyplot as plt\n'), ((2573, 2604), 'matplotlib.colors.Normalize', 'Normalize', ([], {'vmin': 'vmin', 'vmax': 'vmax'}), '(vmin=vmin, vmax=vmax)\n', (2582, 2604), False, 'from matplotlib.colors import Normalize\n'), ((3252, 3261), 'lib.network.Network', 'Network', ([], {}), '()\n', (3259, 3261), False, 'from lib.network import Network\n'), ((3329, 3358), 'lib.pinn.PINN', 'PINN', (['network'], {'rho': 'rho', 'nu': 'nu'}), '(network, rho=rho, nu=nu)\n', (3333, 3358), False, 'from lib.pinn import PINN\n'), ((4813, 4827), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (4824, 4827), False, 'import pickle\n'), ((4981, 5001), 'numpy.abs', 'np.abs', (['(psi - psi_gt)'], {}), '(psi - psi_gt)\n', (4987, 5001), True, 'import numpy as np\n'), ((5043, 5059), 'numpy.abs', 'np.abs', (['(p - p_gt)'], {}), '(p - p_gt)\n', (5049, 5059), True, 'import numpy as np\n'), ((5099, 5115), 'numpy.abs', 'np.abs', (['(u - u_gt)'], {}), '(u - u_gt)\n', (5105, 5115), True, 'import numpy as np\n'), ((5155, 5171), 'numpy.abs', 'np.abs', (['(v - v_gt)'], {}), '(v - v_gt)\n', (5161, 5171), True, 'import numpy as np\n'), ((6183, 6203), 'pickle.dump', 'pickle.dump', (['data', 'f'], {}), '(data, f)\n', (6194, 6203), False, 'import pickle\n'), ((5300, 5311), 'time.time', 'time.time', ([], {}), '()\n', (5309, 5311), False, 'import time\n'), ((5757, 5768), 'time.time', 'time.time', ([], {}), '()\n', (5766, 5768), False, 'import time\n'), ((6325, 6336), 'time.time', 'time.time', ([], {}), '()\n', (6334, 6336), False, 'import time\n')]
import gzip import pandas as pd import numpy as np import io import os import re import torch import torch.utils.data as data_utils import subprocess import zipfile import zlib from Bio import AlignIO from Bio.SeqIO.FastaIO import FastaIterator, as_fasta from Bio.Align.Applications import MuscleCommandline class IndexTensorDataset: """ Identical to torch.utils.data.Dataset.TensorDataset, but __getitem__ also returns indices as last value in tuple """ def __init__(self, *tensors): assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors) self.tensors = tensors def __getitem__(self, index): t = [tensor[index] for tensor in self.tensors] t.append(index) return(tuple(t)) def __len__(self): return self.tensors[0].size(0) class GeneDataset: """ Container object that provides access to the PyTorch Dataset and Dataloader objects needed for one experiment """ def __init__(self, data_file, batch_size, test_split, shuffle_dataset, random_seed, validation_split=0): # Load tensor data data = torch.load(data_file) dataset = IndexTensorDataset(data['X'], data['y']) # Test / train split dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(test_split * dataset_size)) if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, test_indices = indices[split:], indices[:split] # Initialize Dataloaders train_sampler = data_utils.SubsetRandomSampler(train_indices) test_sampler = data_utils.SubsetRandomSampler(test_indices) self.train_loader = data_utils.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) self.test_loader = data_utils.DataLoader(dataset, batch_size=batch_size, sampler=test_sampler) self.isolates = data['isolates'] def transform(input, output): """Snakemake function Split and transform input data """ genesdf = pd.read_csv(input[1], index_col=0, header=0) metadf = pd.read_csv(input[0]) all_isolates = metadf["Isolate"].to_numpy('U') encoding = { 'S': 0, 'I': 0.5, 'R': 1 } pattern = re.compile("(\w{3}).pt$") for f in output: m = pattern.match(f, len(f)-6) d = m.group(1) # print(d) y = metadf[d] omit = pd.isnull(y) isolates = all_isolates[~omit] y = y.loc[~omit] X = genesdf.loc[isolates].to_numpy() ylabels = np.array([ encoding[v] for v in y ]) # print(ylabels.shape) # print(X.shape) # print(isolates.shape) # print(isolates[0]) # print(isolates.dtype) y_tensor = torch.from_numpy(ylabels) X_tensor = torch.from_numpy(X) torch.save({'y': y_tensor, 'X': X_tensor, 'isolates': isolates}, f) def align(fh, transl=True): """ Translate and align pangenome cluster fasta file """ align_exe = MuscleCommandline( r'C:\Users\matthewwhiteside\workspace\b_ecoli\muscle\muscle3.8.31_i86win32.exe', clwstrict=True) # Align on stdin/stdout proc = subprocess.Popen(str(align_exe), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=False) sequences = FastaIterator(fh) inp = [ ">"+record.id+"\n"+str(record.translate(table="Bacterial").seq)+"\n" for record in sequences ] inp = "".join(inp) align, err = proc.communicate(input=inp) return(align) def decompress(zipf, transl=True): """ Decompress gzipped fasta files in zip archive """ with zipfile.ZipFile(zipf, "r") as zh: i = 0 for z in zh.infolist(): if not z.is_dir(): print(z.filename) gz = zh.read(z.filename) fh = io.BytesIO(gz) with gzip.open(fh, 'rb') as gz: fn = gz.read() yield fn.decode('utf-8') if __name__ == "__main__": for fn in decompress("data/raw/ecoli/pan_genome_sequences.zip"): with io.StringIO(fn) as ifh: with open('data/tmp/test.aln', 'w') as ofh: ofh.write(align(ifh)) break
[ "torch.from_numpy", "io.StringIO", "zipfile.ZipFile", "numpy.random.seed", "torch.utils.data.DataLoader", "io.BytesIO", "pandas.read_csv", "Bio.SeqIO.FastaIO.FastaIterator", "torch.load", "numpy.floor", "gzip.open", "pandas.isnull", "Bio.Align.Applications.MuscleCommandline", "torch.save", "numpy.array", "torch.utils.data.SubsetRandomSampler", "numpy.random.shuffle", "re.compile" ]
[((2335, 2379), 'pandas.read_csv', 'pd.read_csv', (['input[1]'], {'index_col': '(0)', 'header': '(0)'}), '(input[1], index_col=0, header=0)\n', (2346, 2379), True, 'import pandas as pd\n'), ((2393, 2414), 'pandas.read_csv', 'pd.read_csv', (['input[0]'], {}), '(input[0])\n', (2404, 2414), True, 'import pandas as pd\n'), ((2549, 2575), 're.compile', 're.compile', (['"""(\\\\w{3}).pt$"""'], {}), "('(\\\\w{3}).pt$')\n", (2559, 2575), False, 'import re\n'), ((3328, 3457), 'Bio.Align.Applications.MuscleCommandline', 'MuscleCommandline', (['"""C:\\\\Users\\\\matthewwhiteside\\\\workspace\\\\b_ecoli\\\\muscle\\\\muscle3.8.31_i86win32.exe"""'], {'clwstrict': '(True)'}), "(\n 'C:\\\\Users\\\\matthewwhiteside\\\\workspace\\\\b_ecoli\\\\muscle\\\\muscle3.8.31_i86win32.exe'\n , clwstrict=True)\n", (3345, 3457), False, 'from Bio.Align.Applications import MuscleCommandline\n'), ((3699, 3716), 'Bio.SeqIO.FastaIO.FastaIterator', 'FastaIterator', (['fh'], {}), '(fh)\n', (3712, 3716), False, 'from Bio.SeqIO.FastaIO import FastaIterator, as_fasta\n'), ((1166, 1187), 'torch.load', 'torch.load', (['data_file'], {}), '(data_file)\n', (1176, 1187), False, 'import torch\n'), ((1650, 1695), 'torch.utils.data.SubsetRandomSampler', 'data_utils.SubsetRandomSampler', (['train_indices'], {}), '(train_indices)\n', (1680, 1695), True, 'import torch.utils.data as data_utils\n'), ((1719, 1763), 'torch.utils.data.SubsetRandomSampler', 'data_utils.SubsetRandomSampler', (['test_indices'], {}), '(test_indices)\n', (1749, 1763), True, 'import torch.utils.data as data_utils\n'), ((1793, 1869), 'torch.utils.data.DataLoader', 'data_utils.DataLoader', (['dataset'], {'batch_size': 'batch_size', 'sampler': 'train_sampler'}), '(dataset, batch_size=batch_size, sampler=train_sampler)\n', (1814, 1869), True, 'import torch.utils.data as data_utils\n'), ((1997, 2072), 'torch.utils.data.DataLoader', 'data_utils.DataLoader', (['dataset'], {'batch_size': 'batch_size', 'sampler': 'test_sampler'}), '(dataset, batch_size=batch_size, sampler=test_sampler)\n', (2018, 2072), True, 'import torch.utils.data as data_utils\n'), ((2715, 2727), 'pandas.isnull', 'pd.isnull', (['y'], {}), '(y)\n', (2724, 2727), True, 'import pandas as pd\n'), ((2856, 2890), 'numpy.array', 'np.array', (['[encoding[v] for v in y]'], {}), '([encoding[v] for v in y])\n', (2864, 2890), True, 'import numpy as np\n'), ((3063, 3088), 'torch.from_numpy', 'torch.from_numpy', (['ylabels'], {}), '(ylabels)\n', (3079, 3088), False, 'import torch\n'), ((3108, 3127), 'torch.from_numpy', 'torch.from_numpy', (['X'], {}), '(X)\n', (3124, 3127), False, 'import torch\n'), ((3137, 3204), 'torch.save', 'torch.save', (["{'y': y_tensor, 'X': X_tensor, 'isolates': isolates}", 'f'], {}), "({'y': y_tensor, 'X': X_tensor, 'isolates': isolates}, f)\n", (3147, 3204), False, 'import torch\n'), ((4029, 4055), 'zipfile.ZipFile', 'zipfile.ZipFile', (['zipf', '"""r"""'], {}), "(zipf, 'r')\n", (4044, 4055), False, 'import zipfile\n'), ((1377, 1412), 'numpy.floor', 'np.floor', (['(test_split * dataset_size)'], {}), '(test_split * dataset_size)\n', (1385, 1412), True, 'import numpy as np\n'), ((1454, 1481), 'numpy.random.seed', 'np.random.seed', (['random_seed'], {}), '(random_seed)\n', (1468, 1481), True, 'import numpy as np\n'), ((1494, 1520), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (1511, 1520), True, 'import numpy as np\n'), ((4491, 4506), 'io.StringIO', 'io.StringIO', (['fn'], {}), '(fn)\n', (4502, 4506), False, 'import io\n'), ((4236, 4250), 'io.BytesIO', 'io.BytesIO', (['gz'], {}), '(gz)\n', (4246, 4250), False, 'import io\n'), ((4272, 4291), 'gzip.open', 'gzip.open', (['fh', '"""rb"""'], {}), "(fh, 'rb')\n", (4281, 4291), False, 'import gzip\n')]
#!/usr/bin/python # This file is licensed under MIT license. # See the LICENSE file in the project root for more information. import unittest import rostest import rosunit import numpy as np from numpy.testing import assert_almost_equal from std_msgs.msg import Header from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion from nav_msgs.msg import Path from car_core.common import msgs_helpers, geom_helpers def get_poses_helper(points): poses = [] for p in points: pose = PoseStamped() pose.pose.position = Point(p[0], p[1], p[2]) poses.append(pose) return poses class TestMsgsHelpers(unittest.TestCase): def test_quaterion_to_array_ok(self): q = Quaternion(1,2,3,4) arr = msgs_helpers.quaterion_to_array(q) assert_almost_equal(arr, np.array([1,2, 3, 4])) self.assertTrue(True) def test_point_to_array_ok(self): p = Point(1,2,3) arr = msgs_helpers.point_to_array(p) assert_almost_equal(arr, np.array([1,2])) self.assertTrue(True) def test_path_poses_to_array_ok(self): poses = get_poses_helper([[1,2,3], [4,5,6], [7,8,9]]) arr = msgs_helpers.path_poses_to_array(poses) assert_almost_equal(arr, np.array([[1,2], [4,5], [7,8]])) self.assertTrue(True) def test_array_to_point_ok(self): arr = np.array([1,2]) point = msgs_helpers.array_to_point(arr) self.assertEqual(point, Point(1,2,0)) def test_array_to_path_poses_ok(self): arr = np.array([[1,2], [4,5], [6,7]]) poses = msgs_helpers.array_to_path_poses(arr) poses_true = get_poses_helper([[1,2,0], [4,5,0], [6,7,0]]) self.assertEqual(poses, poses) class TestGeomHelpers(unittest.TestCase): def test_get_closest_path_point_regular(self): poses = np.array([[0,0], [1,1], [2,2], [3,3]]) point = np.array([0.9, 0.9]) index = geom_helpers.get_closest_path_point(poses, point) self.assertEqual(index, 1) def test_get_closest_path_point_far(self): poses = np.array([[0,0], [1,1], [2,2], [3,3]]) point = np.array([-1, 3]) index = geom_helpers.get_closest_path_point(poses, point) self.assertEqual(index, 1) def test_get_closest_path_point_first(self): poses = np.array([[0,0], [1,1], [2,2], [3,3]]) point = np.array([-1, 1]) index = geom_helpers.get_closest_path_point(poses, point) self.assertEqual(index, 0) def test_get_closest_path_point_last(self): poses = np.array([[0,0], [1,1], [2,2], [3,3]]) point = np.array([4, 4]) index = geom_helpers.get_closest_path_point(poses, point) self.assertEqual(index, 3) def test_get_closest_path_point_single_point(self): poses = np.array([[0,0]]) point = np.array([4, 4]) index = geom_helpers.get_closest_path_point(poses, point) self.assertEqual(index, 0) def test_get_closest_path_point_matching_points(self): poses = np.array([[0,0], [1,1], [1,1], [3,3]]) point = np.array([1.1, 1.1]) index = geom_helpers.get_closest_path_point(poses, point) self.assertEqual(index, 1) if __name__ == '__main__': import rosunit rosunit.unitrun("car_core", 'test_msgs_helpers', TestMsgsHelpers) rosunit.unitrun("car_core", 'test_geom_helpers', TestGeomHelpers)
[ "geometry_msgs.msg.PoseStamped", "car_core.common.msgs_helpers.path_poses_to_array", "car_core.common.msgs_helpers.array_to_point", "rosunit.unitrun", "car_core.common.msgs_helpers.array_to_path_poses", "car_core.common.geom_helpers.get_closest_path_point", "car_core.common.msgs_helpers.point_to_array", "geometry_msgs.msg.Quaternion", "geometry_msgs.msg.Point", "numpy.array", "car_core.common.msgs_helpers.quaterion_to_array" ]
[((3932, 3997), 'rosunit.unitrun', 'rosunit.unitrun', (['"""car_core"""', '"""test_msgs_helpers"""', 'TestMsgsHelpers'], {}), "('car_core', 'test_msgs_helpers', TestMsgsHelpers)\n", (3947, 3997), False, 'import rosunit\n'), ((4002, 4067), 'rosunit.unitrun', 'rosunit.unitrun', (['"""car_core"""', '"""test_geom_helpers"""', 'TestGeomHelpers'], {}), "('car_core', 'test_geom_helpers', TestGeomHelpers)\n", (4017, 4067), False, 'import rosunit\n'), ((506, 519), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (517, 519), False, 'from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion\n'), ((549, 572), 'geometry_msgs.msg.Point', 'Point', (['p[0]', 'p[1]', 'p[2]'], {}), '(p[0], p[1], p[2])\n', (554, 572), False, 'from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion\n'), ((715, 737), 'geometry_msgs.msg.Quaternion', 'Quaternion', (['(1)', '(2)', '(3)', '(4)'], {}), '(1, 2, 3, 4)\n', (725, 737), False, 'from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion\n'), ((749, 783), 'car_core.common.msgs_helpers.quaterion_to_array', 'msgs_helpers.quaterion_to_array', (['q'], {}), '(q)\n', (780, 783), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((921, 935), 'geometry_msgs.msg.Point', 'Point', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (926, 935), False, 'from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion\n'), ((948, 978), 'car_core.common.msgs_helpers.point_to_array', 'msgs_helpers.point_to_array', (['p'], {}), '(p)\n', (975, 978), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((1247, 1286), 'car_core.common.msgs_helpers.path_poses_to_array', 'msgs_helpers.path_poses_to_array', (['poses'], {}), '(poses)\n', (1279, 1286), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((1522, 1538), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (1530, 1538), True, 'import numpy as np\n'), ((1554, 1586), 'car_core.common.msgs_helpers.array_to_point', 'msgs_helpers.array_to_point', (['arr'], {}), '(arr)\n', (1581, 1586), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((1691, 1725), 'numpy.array', 'np.array', (['[[1, 2], [4, 5], [6, 7]]'], {}), '([[1, 2], [4, 5], [6, 7]])\n', (1699, 1725), True, 'import numpy as np\n'), ((1787, 1824), 'car_core.common.msgs_helpers.array_to_path_poses', 'msgs_helpers.array_to_path_poses', (['arr'], {}), '(arr)\n', (1819, 1824), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((2119, 2161), 'numpy.array', 'np.array', (['[[0, 0], [1, 1], [2, 2], [3, 3]]'], {}), '([[0, 0], [1, 1], [2, 2], [3, 3]])\n', (2127, 2161), True, 'import numpy as np\n'), ((2252, 2272), 'numpy.array', 'np.array', (['[0.9, 0.9]'], {}), '([0.9, 0.9])\n', (2260, 2272), True, 'import numpy as np\n'), ((2289, 2338), 'car_core.common.geom_helpers.get_closest_path_point', 'geom_helpers.get_closest_path_point', (['poses', 'point'], {}), '(poses, point)\n', (2324, 2338), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((2438, 2480), 'numpy.array', 'np.array', (['[[0, 0], [1, 1], [2, 2], [3, 3]]'], {}), '([[0, 0], [1, 1], [2, 2], [3, 3]])\n', (2446, 2480), True, 'import numpy as np\n'), ((2571, 2588), 'numpy.array', 'np.array', (['[-1, 3]'], {}), '([-1, 3])\n', (2579, 2588), True, 'import numpy as np\n'), ((2605, 2654), 'car_core.common.geom_helpers.get_closest_path_point', 'geom_helpers.get_closest_path_point', (['poses', 'point'], {}), '(poses, point)\n', (2640, 2654), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((2756, 2798), 'numpy.array', 'np.array', (['[[0, 0], [1, 1], [2, 2], [3, 3]]'], {}), '([[0, 0], [1, 1], [2, 2], [3, 3]])\n', (2764, 2798), True, 'import numpy as np\n'), ((2889, 2906), 'numpy.array', 'np.array', (['[-1, 1]'], {}), '([-1, 1])\n', (2897, 2906), True, 'import numpy as np\n'), ((2923, 2972), 'car_core.common.geom_helpers.get_closest_path_point', 'geom_helpers.get_closest_path_point', (['poses', 'point'], {}), '(poses, point)\n', (2958, 2972), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((3073, 3115), 'numpy.array', 'np.array', (['[[0, 0], [1, 1], [2, 2], [3, 3]]'], {}), '([[0, 0], [1, 1], [2, 2], [3, 3]])\n', (3081, 3115), True, 'import numpy as np\n'), ((3206, 3222), 'numpy.array', 'np.array', (['[4, 4]'], {}), '([4, 4])\n', (3214, 3222), True, 'import numpy as np\n'), ((3239, 3288), 'car_core.common.geom_helpers.get_closest_path_point', 'geom_helpers.get_closest_path_point', (['poses', 'point'], {}), '(poses, point)\n', (3274, 3288), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((3397, 3415), 'numpy.array', 'np.array', (['[[0, 0]]'], {}), '([[0, 0]])\n', (3405, 3415), True, 'import numpy as np\n'), ((3431, 3447), 'numpy.array', 'np.array', (['[4, 4]'], {}), '([4, 4])\n', (3439, 3447), True, 'import numpy as np\n'), ((3464, 3513), 'car_core.common.geom_helpers.get_closest_path_point', 'geom_helpers.get_closest_path_point', (['poses', 'point'], {}), '(poses, point)\n', (3499, 3513), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((3625, 3667), 'numpy.array', 'np.array', (['[[0, 0], [1, 1], [1, 1], [3, 3]]'], {}), '([[0, 0], [1, 1], [1, 1], [3, 3]])\n', (3633, 3667), True, 'import numpy as np\n'), ((3758, 3778), 'numpy.array', 'np.array', (['[1.1, 1.1]'], {}), '([1.1, 1.1])\n', (3766, 3778), True, 'import numpy as np\n'), ((3795, 3844), 'car_core.common.geom_helpers.get_closest_path_point', 'geom_helpers.get_closest_path_point', (['poses', 'point'], {}), '(poses, point)\n', (3830, 3844), False, 'from car_core.common import msgs_helpers, geom_helpers\n'), ((817, 839), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (825, 839), True, 'import numpy as np\n'), ((1012, 1028), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (1020, 1028), True, 'import numpy as np\n'), ((1320, 1354), 'numpy.array', 'np.array', (['[[1, 2], [4, 5], [7, 8]]'], {}), '([[1, 2], [4, 5], [7, 8]])\n', (1328, 1354), True, 'import numpy as np\n'), ((1619, 1633), 'geometry_msgs.msg.Point', 'Point', (['(1)', '(2)', '(0)'], {}), '(1, 2, 0)\n', (1624, 1633), False, 'from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion\n')]
import cv2 import numpy as np imagen = cv2.imread('imagen.jpg') imagen = cv2.cvtColor(imagen,cv2.COLOR_BGR2RGB) print(imagen.shape) print(imagen[0][0][0]) imagen = cv2.resize(imagen,(256, 256)) imagen = cv2.imread('imagen.jpg') imagen = cv2.cvtColor(imagen,cv2.COLOR_BGR2GRAY) print(imagen.shape) print(imagen[0][0]) imagen[0][0] = 0 imagen[0][1] = 0 imagen[0][2] = 0 cv2.imwrite('grayimagen.jpg',imagen) matriz = np.zeros((256,256),np.float32) print(matriz.shape) cv2.imwrite('matrizImagen.jpg',matriz) imagen = cv2.cvtColor(matriz,cv2.COLOR_GRAY2BGR) print(imagen.shape) cv2.imwrite('matrizColorImagen.jpg',imagen) #cv2.imwrite('resizeImagen.jpg',imagen) #cv2.imshow('image',imagen) #cv2.waitKey(0)
[ "cv2.cvtColor", "cv2.imwrite", "numpy.zeros", "cv2.imread", "cv2.resize" ]
[((40, 64), 'cv2.imread', 'cv2.imread', (['"""imagen.jpg"""'], {}), "('imagen.jpg')\n", (50, 64), False, 'import cv2\n'), ((74, 113), 'cv2.cvtColor', 'cv2.cvtColor', (['imagen', 'cv2.COLOR_BGR2RGB'], {}), '(imagen, cv2.COLOR_BGR2RGB)\n', (86, 113), False, 'import cv2\n'), ((165, 195), 'cv2.resize', 'cv2.resize', (['imagen', '(256, 256)'], {}), '(imagen, (256, 256))\n', (175, 195), False, 'import cv2\n'), ((205, 229), 'cv2.imread', 'cv2.imread', (['"""imagen.jpg"""'], {}), "('imagen.jpg')\n", (215, 229), False, 'import cv2\n'), ((239, 279), 'cv2.cvtColor', 'cv2.cvtColor', (['imagen', 'cv2.COLOR_BGR2GRAY'], {}), '(imagen, cv2.COLOR_BGR2GRAY)\n', (251, 279), False, 'import cv2\n'), ((372, 409), 'cv2.imwrite', 'cv2.imwrite', (['"""grayimagen.jpg"""', 'imagen'], {}), "('grayimagen.jpg', imagen)\n", (383, 409), False, 'import cv2\n'), ((418, 450), 'numpy.zeros', 'np.zeros', (['(256, 256)', 'np.float32'], {}), '((256, 256), np.float32)\n', (426, 450), True, 'import numpy as np\n'), ((469, 508), 'cv2.imwrite', 'cv2.imwrite', (['"""matrizImagen.jpg"""', 'matriz'], {}), "('matrizImagen.jpg', matriz)\n", (480, 508), False, 'import cv2\n'), ((517, 557), 'cv2.cvtColor', 'cv2.cvtColor', (['matriz', 'cv2.COLOR_GRAY2BGR'], {}), '(matriz, cv2.COLOR_GRAY2BGR)\n', (529, 557), False, 'import cv2\n'), ((577, 621), 'cv2.imwrite', 'cv2.imwrite', (['"""matrizColorImagen.jpg"""', 'imagen'], {}), "('matrizColorImagen.jpg', imagen)\n", (588, 621), False, 'import cv2\n')]
# -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> and <NAME> # -------------------------------------------------------- # -------------------------------------------------------- # Reorganized and modified by <NAME> and <NAME> # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np import numpy.random as npr from ..utils.config import cfg from bbox_transform import bbox_transform, bbox_overlaps, co_bbox_overlaps_batch2, bbox_transform_batch2, bbox_overlaps_batch2 import pdb DEBUG = False class _RelProposalTargetLayer(nn.Module): """ Assign object detection proposals to ground-truth targets. Produces proposal classification labels and bounding-box regression targets. """ def __init__(self, nclasses_rel): super(_RelProposalTargetLayer, self).__init__() self._num_classes_rel = nclasses_rel self.BBOX_NORMALIZE_MEANS = torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) self.BBOX_NORMALIZE_STDS = torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) self.BBOX_INSIDE_WEIGHTS = torch.FloatTensor(cfg.TRAIN.BBOX_INSIDE_WEIGHTS) def forward(self, roi_pairs, gt_boxes, num_boxes): batch_size = gt_boxes.size(0) # compute overlap between gt rel pairs and all roi pairs gt_box_pairs = roi_pairs.new(batch_size, cfg.MAX_ROI_PAIR_NUMBER, 9).zero_() for i in range(batch_size): if (gt_boxes[i, :, 21:] > 0).sum() == 0: # no relation continue gt_pairs_i = (gt_boxes[i, :, 21:] > 0).nonzero() n_rel = min(gt_box_pairs[i].size(0), gt_pairs_i.size(0)) gt_box_pairs[i][:n_rel, 0:4] = gt_boxes[i][gt_pairs_i[:n_rel, 0]][:, :4] gt_box_pairs[i][:n_rel, 4:8] = gt_boxes[i][gt_pairs_i[:n_rel, 1]][:, :4] gt_box_pairs[i][:n_rel, 8] = gt_boxes[i][gt_pairs_i[:n_rel, 0], 21 + gt_pairs_i[:n_rel, 1]] # Include ground-truth boxes in the set of candidate rois # gt_box_pairs_append = roi_pairs.new(batch_size, gt_box_pairs.size(1), roi_pairs.size(2)).zero_() # gt_box_pairs_append[:,:,1:9] = gt_box_pairs[:,:,:8] # for i in range(batch_size): # gt_box_pairs_append[i, :, 0] = i # # roi_pairs = torch.cat([roi_pairs, gt_box_pairs_append], 1) roi_pairs = roi_pairs.contiguous() num_images = 1 rois_per_image = int(cfg.TRAIN.BATCH_SIZE / num_images) fg_rois_per_image = int(np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)) labels, rois, keeps = self._sample_roi_pairs_pytorch(roi_pairs, gt_box_pairs, fg_rois_per_image, rois_per_image, self._num_classes_rel) return rois, labels, keeps def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def _sample_roi_pairs_pytorch(self, all_roi_pairs, gt_box_pairs, fg_rois_per_image, rois_per_image, num_classes): """Generate a random sample of RoIs comprising foreground and background examples. """ # overlaps: (rois x gt_boxes) overlaps = co_bbox_overlaps_batch2(all_roi_pairs[:,:,1:].contiguous(), gt_box_pairs[:,:,:8].contiguous()) max_overlaps, gt_assignment = torch.max(overlaps, 2) batch_size = overlaps.size(0) num_proposal = overlaps.size(1) num_boxes_per_img = overlaps.size(2) offset = torch.arange(0, batch_size) * gt_box_pairs.size(1) offset = offset.view(-1, 1).type_as(gt_assignment) + gt_assignment labels = gt_box_pairs[:,:,8].contiguous().view(-1).index(offset.view(-1))\ .view(batch_size, -1) fg_mask = max_overlaps >= cfg.TRAIN.RELPN_FG_THRESH keep_inds_batch = labels.new(batch_size, rois_per_image).zero_() labels_rel_batch = labels.new(batch_size, rois_per_image).zero_() roi_pairs_batch = all_roi_pairs.new(batch_size, rois_per_image, 9).zero_() # Guard against the case when an image has fewer than max_fg_rois_per_image # foreground RoIs for i in range(batch_size): fg_inds = torch.nonzero(max_overlaps[i] >= cfg.TRAIN.RELPN_FG_THRESH).view(-1) fg_num_rois = fg_inds.numel() # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = torch.nonzero((max_overlaps[i] < cfg.TRAIN.RELPN_BG_THRESH_HI) & (max_overlaps[i] >= cfg.TRAIN.RELPN_BG_THRESH_LO)).view(-1) bg_num_rois = bg_inds.numel() # print(fg_num_rois, bg_num_rois) # pdb.set_trace() if fg_num_rois > 0 and bg_num_rois > 0: # sampling fg fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois) # rand_num = torch.randperm(fg_num_rois).long().cuda() rand_num = torch.from_numpy(np.random.permutation(fg_num_rois)).long().cuda() fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]] # sampling bg bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image # Seems torch.rand has a bug, it will generate very large number and make an error. # We use numpy rand instead. #rand_num = (torch.rand(bg_rois_per_this_image) * bg_num_rois).long().cuda() rand_num = np.floor(np.random.rand(bg_rois_per_this_image) * bg_num_rois) rand_num = torch.from_numpy(rand_num).long().cuda() bg_inds = bg_inds[rand_num] elif fg_num_rois > 0 and bg_num_rois == 0: # sampling fg #rand_num = torch.floor(torch.rand(rois_per_image) * fg_num_rois).long().cuda() rand_num = np.floor(np.random.rand(rois_per_image) * fg_num_rois) rand_num = torch.from_numpy(rand_num).long().cuda() fg_inds = fg_inds[rand_num] fg_rois_per_this_image = rois_per_image bg_rois_per_this_image = 0 elif bg_num_rois > 0 and fg_num_rois == 0: # sampling bg #rand_num = torch.floor(torch.rand(rois_per_image) * bg_num_rois).long().cuda() rand_num = np.floor(np.random.rand(rois_per_image) * bg_num_rois) rand_num = torch.from_numpy(rand_num).long().cuda() bg_inds = bg_inds[rand_num] bg_rois_per_this_image = rois_per_image fg_rois_per_this_image = 0 else: print("relpn: bg_num_rois = 0 and fg_num_rois = 0, this should not happen!") # The indices that we're selecting (both fg and bg) keep_inds = torch.cat([fg_inds, bg_inds], 0) keep_inds_batch[i].copy_(keep_inds) # Select sampled values from various arrays: labels_rel_batch[i].copy_(labels[i][keep_inds]) # Clamp relation labels for the background RoIs to 0 labels_rel_batch[i][fg_rois_per_this_image:] = 0 roi_pairs_batch[i].copy_(all_roi_pairs[i][keep_inds]) roi_pairs_batch[i,:,0] = i return labels_rel_batch, roi_pairs_batch, keep_inds_batch
[ "torch.FloatTensor", "torch.cat", "torch.nonzero", "torch.max", "torch.arange", "numpy.random.permutation", "numpy.random.rand", "numpy.round", "torch.from_numpy" ]
[((1065, 1114), 'torch.FloatTensor', 'torch.FloatTensor', (['cfg.TRAIN.BBOX_NORMALIZE_MEANS'], {}), '(cfg.TRAIN.BBOX_NORMALIZE_MEANS)\n', (1082, 1114), False, 'import torch\n'), ((1150, 1198), 'torch.FloatTensor', 'torch.FloatTensor', (['cfg.TRAIN.BBOX_NORMALIZE_STDS'], {}), '(cfg.TRAIN.BBOX_NORMALIZE_STDS)\n', (1167, 1198), False, 'import torch\n'), ((1234, 1282), 'torch.FloatTensor', 'torch.FloatTensor', (['cfg.TRAIN.BBOX_INSIDE_WEIGHTS'], {}), '(cfg.TRAIN.BBOX_INSIDE_WEIGHTS)\n', (1251, 1282), False, 'import torch\n'), ((3497, 3519), 'torch.max', 'torch.max', (['overlaps', '(2)'], {}), '(overlaps, 2)\n', (3506, 3519), False, 'import torch\n'), ((2625, 2673), 'numpy.round', 'np.round', (['(cfg.TRAIN.FG_FRACTION * rois_per_image)'], {}), '(cfg.TRAIN.FG_FRACTION * rois_per_image)\n', (2633, 2673), True, 'import numpy as np\n'), ((3662, 3689), 'torch.arange', 'torch.arange', (['(0)', 'batch_size'], {}), '(0, batch_size)\n', (3674, 3689), False, 'import torch\n'), ((7012, 7044), 'torch.cat', 'torch.cat', (['[fg_inds, bg_inds]', '(0)'], {}), '([fg_inds, bg_inds], 0)\n', (7021, 7044), False, 'import torch\n'), ((4418, 4477), 'torch.nonzero', 'torch.nonzero', (['(max_overlaps[i] >= cfg.TRAIN.RELPN_FG_THRESH)'], {}), '(max_overlaps[i] >= cfg.TRAIN.RELPN_FG_THRESH)\n', (4431, 4477), False, 'import torch\n'), ((4634, 4754), 'torch.nonzero', 'torch.nonzero', (['((max_overlaps[i] < cfg.TRAIN.RELPN_BG_THRESH_HI) & (max_overlaps[i] >= cfg\n .TRAIN.RELPN_BG_THRESH_LO))'], {}), '((max_overlaps[i] < cfg.TRAIN.RELPN_BG_THRESH_HI) & (\n max_overlaps[i] >= cfg.TRAIN.RELPN_BG_THRESH_LO))\n', (4647, 4754), False, 'import torch\n'), ((5696, 5734), 'numpy.random.rand', 'np.random.rand', (['bg_rois_per_this_image'], {}), '(bg_rois_per_this_image)\n', (5710, 5734), True, 'import numpy as np\n'), ((6080, 6110), 'numpy.random.rand', 'np.random.rand', (['rois_per_image'], {}), '(rois_per_image)\n', (6094, 6110), True, 'import numpy as np\n'), ((5777, 5803), 'torch.from_numpy', 'torch.from_numpy', (['rand_num'], {}), '(rand_num)\n', (5793, 5803), False, 'import torch\n'), ((6554, 6584), 'numpy.random.rand', 'np.random.rand', (['rois_per_image'], {}), '(rois_per_image)\n', (6568, 6584), True, 'import numpy as np\n'), ((5190, 5224), 'numpy.random.permutation', 'np.random.permutation', (['fg_num_rois'], {}), '(fg_num_rois)\n', (5211, 5224), True, 'import numpy as np\n'), ((6153, 6179), 'torch.from_numpy', 'torch.from_numpy', (['rand_num'], {}), '(rand_num)\n', (6169, 6179), False, 'import torch\n'), ((6627, 6653), 'torch.from_numpy', 'torch.from_numpy', (['rand_num'], {}), '(rand_num)\n', (6643, 6653), False, 'import torch\n')]
# -*- coding: utf-8 -*- """Model.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1QPnK5YOh8kRYPOOue6txwrgUqwKOMS0I """ # # Use seaborn for pairplot # !pip install -q seaborn # !pip install tensorflow==2.0.0 # # Use some functions from tensorflow_docs # !pip install -q git+https://github.com/tensorflow/docs # !pip install h5py pyyaml from __future__ import absolute_import, division, print_function, unicode_literals import pathlib import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf from tensorflow import keras import tensorflow_docs as tfdocs import tensorflow_docs.plots import tensorflow_docs.modeling # Commented out IPython magic to ensure Python compatibility. import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import ConnectionPatch from collections import OrderedDict from matplotlib.gridspec import GridSpec from sklearn import metrics, linear_model from sklearn.preprocessing import PolynomialFeatures, StandardScaler, normalize from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from scipy.optimize import curve_fit import warnings plt.rcParams["patch.force_edgecolor"] = True plt.style.use('fivethirtyeight') mpl.rc('patch', edgecolor = 'dimgray', linewidth=1) # from IPython.core.interactiveshell import InteractiveShell # InteractiveShell.ast_node_interactivity = "last_expr" pd.options.display.max_columns = 50 # %matplotlib inline warnings.filterwarnings("ignore") # import pickle # create and save all the models airlines = pd.read_csv('airlines.csv') carriers = list(airlines['IATA_CODE']) # print(carriers) global train_stats def norm(x): global train_stats return (x - train_stats['mean']) / train_stats['std'] def ret_stats(): return train_stats def build_model(train_ds): model = keras.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=[len(train_ds.keys())]), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1) ]) optimizer = tf.keras.optimizers.RMSprop(0.001) model.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse']) return model def do_create_models(): for carrier in carriers: # create a model and save it for each carrier global train_stats df = pd.read_csv('carriers/carrier' + str(carrier) + 'data.csv') df.drop(['Unnamed: 0'], axis=1, inplace=True) # encode the origin encoder = LabelEncoder() encoder.fit(df['ORIGIN_AIRPORT']) encoded_data_map = dict(zip(encoder.classes_, encoder.transform(encoder.classes_))) df['ORIGIN_AIRPORT'] = encoder.fit_transform(df['ORIGIN_AIRPORT']) # create the train and test dataset train_dataset = df.sample(frac=0.8,random_state=0) test_dataset = df.drop(train_dataset.index) # getting the stats train_stats = train_dataset.describe() train_stats.pop("ARRIVAL_DELAY") train_stats = train_stats.transpose() train_stats.to_csv('stats/train_stats' + str(carrier) + '.csv') # defining the train and test labels train_labels = train_dataset.pop('ARRIVAL_DELAY') test_labels = test_dataset.pop('ARRIVAL_DELAY') # normalize the data normed_train_data = norm(train_dataset) normed_test_data = norm(test_dataset) # # define the model # model = build_model(train_dataset) # # train the model # EPOCHS = 100 # # The patience parameter is the amount of epochs to check for improvement # early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) # early_history = model.fit(normed_train_data, train_labels, # epochs=EPOCHS, validation_split = 0.2, verbose=0, # callbacks=[early_stop, tfdocs.modeling.EpochDots()]) # # calculating the loss # loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2) # # weights = model.get_weights() # # fpkl = open('drive/My Drive/pickle_models/model-' + str(carrier) + '-weights.pkl', 'wb') # # pickle.dump(weights, fpkl, protocol=pickle.HIGHEST_PROTOCOL) # print("Testing set Mean Abs Error: {:5.2f} minutes".format(mae)) # model.save('models/model-' + str(carrier) + '.h5') print('OK ' + str(carrier)) # let's create the input pipeline from datetime import datetime def conv_to_datetime(str_): return datetime.strptime(str_, '%Y-%m-%d %H:%M:%S') def conv_to_time(str_): return datetime.strptime(str_, '%H:%M:%S') import datetime def string_to_time(time_string): if pd.isnull(time_string): return np.nan else: if time_string == 2400: time_string = 0 time_string = "{0:04d}".format(int(time_string)) time_ = datetime.time(int(time_string[0:2]), int(time_string[2:4])) return time_ def func(x): return x.hour * 3600 + x.minute * 60 + x.second dayOfWeek = 6 airline = 'AA' origin = 'LAX' dest = 'SEA' sd = 200 ddelay = -10 sa = 800 dist = 1200 do_create_models() # global train_stats # stats = ret_stats() # print(stats) def processInput(input_): global train_stats processed = [] time_sd = string_to_time(np.int64(input_["sd"])) time_sa = string_to_time(np.int64(input_["sa"])) time_sd = func(time_sd) time_sa = func(time_sa) # encode airlines to their numbers df = pd.read_csv('carriers/carrier' + str(input_["carrier"]) + 'data.csv') df.drop(['Unnamed: 0'], axis=1, inplace=True) encoder = LabelEncoder() encoder.fit(df['ORIGIN_AIRPORT']) encoded_data_map = dict(zip(encoder.classes_, encoder.transform(encoder.classes_))) carrier = input_["carrier"] for carr_ in carriers: # create a model and save it for each carrier if carr_ == carrier: df = pd.read_csv('carriers/carrier' + str(carr_) + 'data.csv') df.drop(['Unnamed: 0'], axis=1, inplace=True) # encode the origin encoder = LabelEncoder() encoder.fit(df['ORIGIN_AIRPORT']) encoded_data_map = dict(zip(encoder.classes_, encoder.transform(encoder.classes_))) # print(encoded_data_map) df['ORIGIN_AIRPORT'] = encoder.fit_transform(df['ORIGIN_AIRPORT']) # # create the train and test dataset # train_dataset = df.sample(frac=0.8,random_state=0) # test_dataset = df.drop(train_dataset.index) # # getting the stats # train_stats = train_dataset.describe() # train_stats.pop("ARRIVAL_DELAY") # train_stats = train_stats.transpose() # # defining the train and test labels # train_labels = train_dataset.pop('ARRIVAL_DELAY') # test_labels = test_dataset.pop('ARRIVAL_DELAY') # # normalize the data # normed_train_data = norm(train_dataset) # normed_test_data = norm(test_dataset) # # define the model # model = build_model(train_dataset) # # train the model # EPOCHS = 100 # # The patience parameter is the amount of epochs to check for improvement # early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) # early_history = model.fit(normed_train_data, train_labels, # epochs=EPOCHS, validation_split = 0.2, verbose=0, # callbacks=[early_stop, tfdocs.modeling.EpochDots()]) # # calculating the loss # loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2) # print("Testing set Mean Abs Error: {:5.2f} minutes".format(mae)) # model.save('models/model-' + str(carrier) + '.h5') # weights = model.get_weights() # fpkl = open('model-' + str(carrier) + '-weights.pkl', 'wb') # pickle.dump(weights, fpkl, protocol=pickle.HIGHEST_PROTOCOL) # print('OK ' + str(carrier)) origin = input_["origin"] ddelay = input_["ddelay"] origin_ = encoded_data_map[origin] dist = input_["dist"] weekday = input_["dayOfWeek"] input_ = {"time_insec_dep" : time_sd, "time_insec_arr": time_sa, "ORIGIN_AIRPORT": origin_, "DEPARTURE_DELAY": ddelay, "DISTANCE": dist, "weekday": weekday } df = pd.DataFrame([input_]) df = norm(df) model = keras.models.load_model('models/model-' + str(carrier) +'.h5') print("OK") return df, model # input_ = { # "dayOfWeek": dayOfWeek, # "carrier": airline, # "origin": origin, # "sd": sd, # "ddelay": ddelay, # "sa": sa, # "dist": dist # } # test_input, model = processInput(input_) # from google.colab import drive # drive.mount('/content/drive') # !ls # test_predictions_input = model.predict(test_input).flatten() # print("The delay is: ", test_predictions_input[0], " minutes")
[ "pandas.DataFrame", "matplotlib.rc", "warnings.filterwarnings", "pandas.read_csv", "datetime.strptime", "tensorflow.keras.layers.Dense", "pandas.isnull", "sklearn.preprocessing.LabelEncoder", "matplotlib.pyplot.style.use", "numpy.int64", "tensorflow.keras.optimizers.RMSprop" ]
[((1373, 1405), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (1386, 1405), True, 'import matplotlib.pyplot as plt\n'), ((1406, 1455), 'matplotlib.rc', 'mpl.rc', (['"""patch"""'], {'edgecolor': '"""dimgray"""', 'linewidth': '(1)'}), "('patch', edgecolor='dimgray', linewidth=1)\n", (1412, 1455), True, 'import matplotlib as mpl\n'), ((1633, 1666), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1656, 1666), False, 'import warnings\n'), ((1728, 1755), 'pandas.read_csv', 'pd.read_csv', (['"""airlines.csv"""'], {}), "('airlines.csv')\n", (1739, 1755), True, 'import pandas as pd\n'), ((2252, 2286), 'tensorflow.keras.optimizers.RMSprop', 'tf.keras.optimizers.RMSprop', (['(0.001)'], {}), '(0.001)\n', (2279, 2286), True, 'import tensorflow as tf\n'), ((4598, 4642), 'datetime.strptime', 'datetime.strptime', (['str_', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(str_, '%Y-%m-%d %H:%M:%S')\n", (4615, 4642), False, 'import datetime\n'), ((4679, 4714), 'datetime.strptime', 'datetime.strptime', (['str_', '"""%H:%M:%S"""'], {}), "(str_, '%H:%M:%S')\n", (4696, 4714), False, 'import datetime\n'), ((4773, 4795), 'pandas.isnull', 'pd.isnull', (['time_string'], {}), '(time_string)\n', (4782, 4795), True, 'import pandas as pd\n'), ((5703, 5717), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (5715, 5717), False, 'from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n'), ((8420, 8442), 'pandas.DataFrame', 'pd.DataFrame', (['[input_]'], {}), '([input_])\n', (8432, 8442), True, 'import pandas as pd\n'), ((2691, 2705), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (2703, 2705), False, 'from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n'), ((5388, 5410), 'numpy.int64', 'np.int64', (["input_['sd']"], {}), "(input_['sd'])\n", (5396, 5410), True, 'import numpy as np\n'), ((5441, 5463), 'numpy.int64', 'np.int64', (["input_['sa']"], {}), "(input_['sa'])\n", (5449, 5463), True, 'import numpy as np\n'), ((2107, 2151), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (2128, 2151), True, 'import tensorflow as tf\n'), ((2157, 2201), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (2178, 2201), True, 'import tensorflow as tf\n'), ((2207, 2231), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {}), '(1)\n', (2228, 2231), True, 'import tensorflow as tf\n'), ((6162, 6176), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (6174, 6176), False, 'from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n')]
from __future__ import absolute_import # -------------------------------------------------------- # Spatial Attention Network withFeature Mimicking # Copyright (c) 2018 University of Illinois # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- # -------------------------------------------------------- # Reorganized and modified Modified by <NAME> # ------------------------------------------------------- import torch import torch.nn as nn import numpy as np import math import yaml from model.utils.config import cfg from model.rpn.generate_anchors import generate_anchors # from model.rpn.bbox_transform import bbox_transform_inv, clip_boxes, clip_boxes_batch from .bbox.bbox_transform import bbox_pred, clip_boxes, bbox_overlaps # from model.nms.nms_wrapper import nms from model.roi_layers import nms import pdb DEBUG = False class _DCRProposalLayer(nn.Module): def __init__(self, class_agnostic): super(_DCRProposalLayer, self).__init__() self.class_agnostic = class_agnostic self._top = cfg.DCR.TOP def forward(self, rois, cls_prob, bbox_pred_tensor, im_info): num_keep_index = int(rois.shape[0] * self._top) rois = rois[0].cpu().detach().numpy()[:, 1:] bbox_deltas = bbox_pred_tensor.cpu().detach().numpy()[:, 4:8] im_info = im_info.cpu().detach().numpy()[0, :] cls_prob = cls_prob.cpu().detach().numpy()[:, 1:] # ignore bg # sort scores max_scores = np.amax(cls_prob, axis=1) # keep top scores keep_index = np.argsort(-max_scores)[:num_keep_index] proposals = bbox_pred(rois, bbox_deltas) proposals = clip_boxes(proposals, im_info[:2]) batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32) blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False))) return blob[keep_index, :], keep_index def backward(self, req, out_grad, in_data, out_data, in_grad, aux): pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass
[ "numpy.amax", "numpy.argsort", "numpy.zeros" ]
[((1534, 1559), 'numpy.amax', 'np.amax', (['cls_prob'], {'axis': '(1)'}), '(cls_prob, axis=1)\n', (1541, 1559), True, 'import numpy as np\n'), ((1775, 1826), 'numpy.zeros', 'np.zeros', (['(proposals.shape[0], 1)'], {'dtype': 'np.float32'}), '((proposals.shape[0], 1), dtype=np.float32)\n', (1783, 1826), True, 'import numpy as np\n'), ((1607, 1630), 'numpy.argsort', 'np.argsort', (['(-max_scores)'], {}), '(-max_scores)\n', (1617, 1630), True, 'import numpy as np\n')]
"""SentencePiece Tokenization for Wiki Dataset Example: * python scripts/wiki_sp_tokenize_json.py --word --unigram """ import gzip import json import subprocess from pathlib import Path import sentencepiece as spm import joblib import numpy as np import click from tqdm import tqdm from opencc import OpenCC from wiki_tokenize_json import clean_text, filter_texts, SECTION_BLACKLIST DATAPATH = "/mnt/Intel/zhwiki.json.gz" TMPPATH = "/mnt/Intel/tmp_texts.txt" TMPPATH_WORD = "/mnt/Intel/tmp_words.txt" MODEL_PREFIX = "data/{algorithm}_{seg_word}_model" CC = OpenCC('t2s') VOC_SIZE = 7500 PAD = 1 UNK = 0 def json_to_txt(): with gzip.open(DATAPATH) as f: with open(TMPPATH, "w") as fw: for _, line in tqdm(enumerate(f.readlines())): article = json.loads(line) if "年表" in article["title"] or "列表" in article["title"]: continue for title, section in zip(article["section_titles"], article["section_texts"]): title = CC.convert(title) if title in SECTION_BLACKLIST: continue for paragraph in [x for x in section.split("\n") if len(x) > 50]: paragraph = clean_text(paragraph) if len(paragraph) < 200 or filter_texts(paragraph): continue for sentence in [x for x in paragraph.split("。") if len(x) > 10]: fw.write(sentence + "。\n") def fit_model(seg_word=True, algorithm="bpe"): if not Path(TMPPATH).exists(): json_to_txt() if seg_word: print("Performing word segmentation...") res = subprocess.run([ "thulac", "-model_dir", "/mnt/SSD_Data/openai_nlp/THULAC/models/", "-seg_only", "-input", TMPPATH, "-output", TMPPATH_WORD ], stdout=subprocess.PIPE) print(res) # Train Model print("Training model...") spm.SentencePieceTrainer.Train( '--input={} --model_prefix={} --vocab_size={} ' '--input_sentence_size=20000000 ' '--character_coverage=0.995 --model_type={algorithm}'.format( TMPPATH_WORD if seg_word else TMPPATH, MODEL_PREFIX.format(algorithm=algorithm, seg_word=seg_word), VOC_SIZE, algorithm="unigram" ) ) def tokenize(seg_word=True, algorithm="bpe"): print("Tokenizing...") sp = spm.SentencePieceProcessor() sp.Load(MODEL_PREFIX.format( algorithm=algorithm, seg_word=seg_word) + ".model") tokens = [] with open(TMPPATH_WORD if seg_word else TMPPATH) as f: for _, sentence in tqdm(enumerate(f.readlines())): tokens.append( np.array(sp.EncodeAsIds(sentence)) ) joblib.dump(np.array(tokens), f"data/tokens_{algorithm}_{seg_word}.pkl") @click.command() @click.option("--word", is_flag=True) @click.option("--bpe/--unigram", default=True) def main(word, bpe): seg_word = True if word else False algorithm = "bpe" if bpe else "unigram" # fit_model(seg_word, algorithm) tokenize(seg_word, algorithm) if __name__ == "__main__": # pylint: disable=no-value-for-parameter main()
[ "subprocess.run", "gzip.open", "sentencepiece.SentencePieceProcessor", "json.loads", "wiki_tokenize_json.clean_text", "click.option", "click.command", "opencc.OpenCC", "pathlib.Path", "numpy.array", "wiki_tokenize_json.filter_texts" ]
[((564, 577), 'opencc.OpenCC', 'OpenCC', (['"""t2s"""'], {}), "('t2s')\n", (570, 577), False, 'from opencc import OpenCC\n'), ((2890, 2905), 'click.command', 'click.command', ([], {}), '()\n', (2903, 2905), False, 'import click\n'), ((2907, 2943), 'click.option', 'click.option', (['"""--word"""'], {'is_flag': '(True)'}), "('--word', is_flag=True)\n", (2919, 2943), False, 'import click\n'), ((2945, 2990), 'click.option', 'click.option', (['"""--bpe/--unigram"""'], {'default': '(True)'}), "('--bpe/--unigram', default=True)\n", (2957, 2990), False, 'import click\n'), ((2462, 2490), 'sentencepiece.SentencePieceProcessor', 'spm.SentencePieceProcessor', ([], {}), '()\n', (2488, 2490), True, 'import sentencepiece as spm\n'), ((640, 659), 'gzip.open', 'gzip.open', (['DATAPATH'], {}), '(DATAPATH)\n', (649, 659), False, 'import gzip\n'), ((1724, 1896), 'subprocess.run', 'subprocess.run', (["['thulac', '-model_dir', '/mnt/SSD_Data/openai_nlp/THULAC/models/',\n '-seg_only', '-input', TMPPATH, '-output', TMPPATH_WORD]"], {'stdout': 'subprocess.PIPE'}), "(['thulac', '-model_dir',\n '/mnt/SSD_Data/openai_nlp/THULAC/models/', '-seg_only', '-input',\n TMPPATH, '-output', TMPPATH_WORD], stdout=subprocess.PIPE)\n", (1738, 1896), False, 'import subprocess\n'), ((2826, 2842), 'numpy.array', 'np.array', (['tokens'], {}), '(tokens)\n', (2834, 2842), True, 'import numpy as np\n'), ((790, 806), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (800, 806), False, 'import json\n'), ((1597, 1610), 'pathlib.Path', 'Path', (['TMPPATH'], {}), '(TMPPATH)\n', (1601, 1610), False, 'from pathlib import Path\n'), ((1257, 1278), 'wiki_tokenize_json.clean_text', 'clean_text', (['paragraph'], {}), '(paragraph)\n', (1267, 1278), False, 'from wiki_tokenize_json import clean_text, filter_texts, SECTION_BLACKLIST\n'), ((1330, 1353), 'wiki_tokenize_json.filter_texts', 'filter_texts', (['paragraph'], {}), '(paragraph)\n', (1342, 1353), False, 'from wiki_tokenize_json import clean_text, filter_texts, SECTION_BLACKLIST\n')]
""" Tests with the Izhikevich neuron model. """ import numpy as np import matplotlib.pyplot as plt import pyNN.nest as sim from pyNN.utility.plotting import Figure, Panel # === Configure the simulator ================================================ duration = 100 dt = 0.01 sim.setup(timestep=dt, min_delay=0.1) # === Build and instrument the network ======================================= phasic_spiking = {'a': 0.02, 'b': 0.25, 'c': -65, 'd': 6} class_2 = {'a': 0.2, 'b': 0.26, 'c': -65, 'd': 0} params = class_2 n = 100 v_init = -64 input_currents = 0.0005 * np.logspace(-4, 6, n, base=np.e) neurons = sim.Population(n, sim.Izhikevich(i_offset=input_currents, **params)) neurons.record(['v', 'u', 'spikes']) neurons.initialize(v=v_init, u=-params['b']*v_init) # === Run the simulation ===================================================== sim.run(duration) # === Save the results, optionally plot a figure ============================= data = neurons.get_data().segments[0] first_spiketimes = [] rates = [] for spiketrain in data.spiketrains: if len(spiketrain) == 0: first_spiketimes.append(np.infty) else: first_spiketimes.append(spiketrain[0]) rates.append(np.count_nonzero(spiketrain) / duration) plt.scatter(input_currents, 1 / np.array(first_spiketimes), label='inverse ttfs') plt.scatter(input_currents, rates, label='avg spikerate') plt.legend() plt.savefig('FI') v = data.filter(name="v")[0] u = data.filter(name="u")[0] Figure(Panel(v, ylabel="Membrane potential (mV)", xticks=True, xlabel="Time (ms)", yticks=True), Panel(u, ylabel="u variable (units?)")).save('mem') # === Clean up and quit ======================================================== sim.end()
[ "pyNN.nest.run", "numpy.count_nonzero", "pyNN.nest.setup", "pyNN.nest.end", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "numpy.logspace", "numpy.array", "pyNN.utility.plotting.Panel", "matplotlib.pyplot.savefig", "pyNN.nest.Izhikevich" ]
[((281, 318), 'pyNN.nest.setup', 'sim.setup', ([], {'timestep': 'dt', 'min_delay': '(0.1)'}), '(timestep=dt, min_delay=0.1)\n', (290, 318), True, 'import pyNN.nest as sim\n'), ((857, 874), 'pyNN.nest.run', 'sim.run', (['duration'], {}), '(duration)\n', (864, 874), True, 'import pyNN.nest as sim\n'), ((1345, 1402), 'matplotlib.pyplot.scatter', 'plt.scatter', (['input_currents', 'rates'], {'label': '"""avg spikerate"""'}), "(input_currents, rates, label='avg spikerate')\n", (1356, 1402), True, 'import matplotlib.pyplot as plt\n'), ((1403, 1415), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1413, 1415), True, 'import matplotlib.pyplot as plt\n'), ((1416, 1433), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""FI"""'], {}), "('FI')\n", (1427, 1433), True, 'import matplotlib.pyplot as plt\n'), ((1745, 1754), 'pyNN.nest.end', 'sim.end', ([], {}), '()\n', (1752, 1754), True, 'import pyNN.nest as sim\n'), ((574, 606), 'numpy.logspace', 'np.logspace', (['(-4)', '(6)', 'n'], {'base': 'np.e'}), '(-4, 6, n, base=np.e)\n', (585, 606), True, 'import numpy as np\n'), ((635, 684), 'pyNN.nest.Izhikevich', 'sim.Izhikevich', ([], {'i_offset': 'input_currents'}), '(i_offset=input_currents, **params)\n', (649, 684), True, 'import pyNN.nest as sim\n'), ((1283, 1309), 'numpy.array', 'np.array', (['first_spiketimes'], {}), '(first_spiketimes)\n', (1291, 1309), True, 'import numpy as np\n'), ((1209, 1237), 'numpy.count_nonzero', 'np.count_nonzero', (['spiketrain'], {}), '(spiketrain)\n', (1225, 1237), True, 'import numpy as np\n'), ((1500, 1592), 'pyNN.utility.plotting.Panel', 'Panel', (['v'], {'ylabel': '"""Membrane potential (mV)"""', 'xticks': '(True)', 'xlabel': '"""Time (ms)"""', 'yticks': '(True)'}), "(v, ylabel='Membrane potential (mV)', xticks=True, xlabel='Time (ms)',\n yticks=True)\n", (1505, 1592), False, 'from pyNN.utility.plotting import Figure, Panel\n'), ((1610, 1648), 'pyNN.utility.plotting.Panel', 'Panel', (['u'], {'ylabel': '"""u variable (units?)"""'}), "(u, ylabel='u variable (units?)')\n", (1615, 1648), False, 'from pyNN.utility.plotting import Figure, Panel\n')]
''' utility functions ''' __author__ = '<NAME>' import os from os.path import join from os.path import abspath import json import pandas as pd import numpy as np from configs import config as cf def is_available(filename): ''' [filename] : str ''' return os.path.isfile(filename) def chunks(lst, n): ''' Yield successive n-sized chunks from list [lst] : python list [n] : int ''' for i in range(0, len(lst), n): yield lst[i:i + n] def read_intent_dataset(verbose=True): ''' Load 'Intent' dataset [verbose] : bool, verbosity level ''' # read as a pandas dataframe data = [] for lang in ['en', 'es', 'fr']: for ds in ['train', 'test', 'eval']: path = abspath(join(cf.INTENT_DIR, lang, '{}.tsv'.format(ds))) df = pd.read_csv(path, header=None, sep='\t', names=['text', 'class']) data.append(df) data = pd.concat(data) # merge certain categories (see configs.py) and rename columns data['class'] = data['class'].replace(cf.intent_label_map) # remove trivial (too easy) categories for cat in ['hi', 'okay_thanks']: data = data[data['class'] != 'intent:{}'.format(cat)] if verbose: print('\t"Intent" data shape={}'.format(data.shape)) return data def read_questions_dataset(verbose=True): ''' Load 'Questions' dataset [verbose] : bool, verbosity level ''' # read as a pandas dataframe data_path = abspath(join(cf.QUESTIONS_DIR, 'final_master_dataset.csv')) data = pd.read_csv(data_path, delimiter=',', usecols=['Question', 'Category']) data.rename(columns={'Question': 'text', 'Category': 'class'}, inplace=True) data = data[~data['class'].isna()] # remove unannotated rows # split label into class and subclass, keep only class data[['class', 'subclass']] = data['class'].str.split('-', 1, expand=True) data['class'] = data['class'].str.strip() data.drop(['subclass'], axis=1, inplace=True) data = data[[i in cf.questions_relevant_categories for i in data['class']]] if verbose: print('\t"Questions" data shape={}'.format(data.shape)) return data def merge_datasets(embeddings='labse', verbose=True): ''' Merge 'Intent' and 'Questions' datasets [embeddings] : str, type of embeddings to load ('bert' or 'labse') [verbose] : bool, verbosity level ''' # load datasets intent = read_intent_dataset(verbose=False) questions = read_questions_dataset(verbose=False) merged = pd.concat([intent, questions]) # load corresponding embeddings if embeddings == 'labse': emb_to_load = (cf.intent_embeddings, cf.questions_embeddings) elif embeddings == 'bert': emb_to_load = (cf.intent_embeddings_bert, cf.questions_embeddings_bert) else: raise ValueError("embeddings argument can be 'bert' or 'labse'") print(f'{embeddings} embeddings loaded.') intent_embeddings = np.load(abspath(join(cf.INTENT_DIR, emb_to_load[0]))) questions_embeddings = np.load(abspath(join(cf.QUESTIONS_DIR, emb_to_load[1]))) merged_embeddings = np.vstack([intent_embeddings, questions_embeddings]) assert merged.shape[0] == merged_embeddings.shape[0] if verbose: print('Full data shape={}'.format(merged.shape)) return merged, merged_embeddings # _____________ Logging related functions _____________ def convert(o): if isinstance(o, np.int64): return int(o) raise TypeError def save_logs(logs_dict, dict_name): ''' Save best hyperparameters dictionary to "logs" directory [logs_dict] : dict [dict_name] : str ''' json.dump(logs_dict, open('{}/{}.json'.format(cf.LOGS_DIR, dict_name), 'w'), default=convert) print('Best hyper-parameters saved...') return None def load_logs(dict_name): ''' Load best hyperparameters dictionary from "logs" directory [dict_name] : str ''' log_path = '{}/{}.json'.format(cf.LOGS_DIR, dict_name) if not is_available(log_path): raise ValueError('Hyperparameters are not available. ' 'Please run train.py in "hyper_opt" mode before full ' 'training.') with open() as logs_json: logs = json.load(logs_json) print('Best hyperparameters loaded...') return logs
[ "json.load", "pandas.read_csv", "os.path.isfile", "os.path.join", "pandas.concat", "numpy.vstack" ]
[((278, 302), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (292, 302), False, 'import os\n'), ((965, 980), 'pandas.concat', 'pd.concat', (['data'], {}), '(data)\n', (974, 980), True, 'import pandas as pd\n'), ((1598, 1669), 'pandas.read_csv', 'pd.read_csv', (['data_path'], {'delimiter': '""","""', 'usecols': "['Question', 'Category']"}), "(data_path, delimiter=',', usecols=['Question', 'Category'])\n", (1609, 1669), True, 'import pandas as pd\n'), ((2630, 2660), 'pandas.concat', 'pd.concat', (['[intent, questions]'], {}), '([intent, questions])\n', (2639, 2660), True, 'import pandas as pd\n'), ((3273, 3325), 'numpy.vstack', 'np.vstack', (['[intent_embeddings, questions_embeddings]'], {}), '([intent_embeddings, questions_embeddings])\n', (3282, 3325), True, 'import numpy as np\n'), ((1535, 1585), 'os.path.join', 'join', (['cf.QUESTIONS_DIR', '"""final_master_dataset.csv"""'], {}), "(cf.QUESTIONS_DIR, 'final_master_dataset.csv')\n", (1539, 1585), False, 'from os.path import join\n'), ((4490, 4510), 'json.load', 'json.load', (['logs_json'], {}), '(logs_json)\n', (4499, 4510), False, 'import json\n'), ((831, 896), 'pandas.read_csv', 'pd.read_csv', (['path'], {'header': 'None', 'sep': '"""\t"""', 'names': "['text', 'class']"}), "(path, header=None, sep='\\t', names=['text', 'class'])\n", (842, 896), True, 'import pandas as pd\n'), ((3079, 3114), 'os.path.join', 'join', (['cf.INTENT_DIR', 'emb_to_load[0]'], {}), '(cf.INTENT_DIR, emb_to_load[0])\n', (3083, 3114), False, 'from os.path import join\n'), ((3160, 3198), 'os.path.join', 'join', (['cf.QUESTIONS_DIR', 'emb_to_load[1]'], {}), '(cf.QUESTIONS_DIR, emb_to_load[1])\n', (3164, 3198), False, 'from os.path import join\n')]
""" Test princomp extraction from CLI """ import argparse import os import numpy as np from demo_utils import get_random_data from hebbnets.networks import MultilayerHahNetwork np.set_printoptions(suppress=True) def _argparse(): parser = argparse.ArgumentParser( prog="Testing HebbNet principal components", description="Testing HebbNet principal components by decomposing random data" ) parser.add_argument( "--num_samples", help="Number of samples for synthetic data", default=25, type=int, required=False ) parser.add_argument( "--data_dimension", help="Dimension of synthetic data", default=100, type=int, required=False ) parser.add_argument( "--data_latent_dimension", help="Latent dimension of synthetic data", default=3, type=int, required=False ) parser.add_argument( "--num_pc", help="Number of principle components to extract", default=2, type=int, required=False ) return parser.parse_args() def get_top_princomps(data_array, num_pcs): U, S, V = np.linalg.svd(np.array(data_array)) _idx = np.argsort(S)[-num_pcs:] return V[_idx, :].T def main(args): # Make data demo_data = get_random_data( args.num_samples, args.data_dimension, latent_dim=args.data_latent_dimension ) # Build/train network hah_network = MultilayerHahNetwork( args.data_dimension, [args.num_pc], has_bias=False, act_type='linear', ) hah_network.train(demo_data, num_epochs=1000) # Build/train network real_princomps = get_top_princomps(demo_data, args.num_pc) hebb_princomps = np.squeeze(hah_network.layers[0].input_weights) hebb_princomps /= np.linalg.norm(hebb_princomps, axis=0, keepdims=True) # Show the inner product of top two PCs with learned input weights inner_prod_mat = real_princomps.T.matmul(hebb_princomps) prod_as_string = np.array_str( inner_prod_mat, suppress_small=True, precision=4 ) print(np.array_str(inner_prod_mat, precision=4)) if __name__ == "__main__": args = _argparse() main(args)
[ "numpy.set_printoptions", "demo_utils.get_random_data", "argparse.ArgumentParser", "hebbnets.networks.MultilayerHahNetwork", "numpy.array_str", "numpy.argsort", "numpy.linalg.norm", "numpy.array", "numpy.squeeze" ]
[((186, 220), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (205, 220), True, 'import numpy as np\n'), ((254, 410), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""Testing HebbNet principal components"""', 'description': '"""Testing HebbNet principal components by decomposing random data"""'}), "(prog='Testing HebbNet principal components',\n description=\n 'Testing HebbNet principal components by decomposing random data')\n", (277, 410), False, 'import argparse\n'), ((1348, 1446), 'demo_utils.get_random_data', 'get_random_data', (['args.num_samples', 'args.data_dimension'], {'latent_dim': 'args.data_latent_dimension'}), '(args.num_samples, args.data_dimension, latent_dim=args.\n data_latent_dimension)\n', (1363, 1446), False, 'from demo_utils import get_random_data\n'), ((1517, 1612), 'hebbnets.networks.MultilayerHahNetwork', 'MultilayerHahNetwork', (['args.data_dimension', '[args.num_pc]'], {'has_bias': '(False)', 'act_type': '"""linear"""'}), "(args.data_dimension, [args.num_pc], has_bias=False,\n act_type='linear')\n", (1537, 1612), False, 'from hebbnets.networks import MultilayerHahNetwork\n'), ((1810, 1857), 'numpy.squeeze', 'np.squeeze', (['hah_network.layers[0].input_weights'], {}), '(hah_network.layers[0].input_weights)\n', (1820, 1857), True, 'import numpy as np\n'), ((1880, 1933), 'numpy.linalg.norm', 'np.linalg.norm', (['hebb_princomps'], {'axis': '(0)', 'keepdims': '(True)'}), '(hebb_princomps, axis=0, keepdims=True)\n', (1894, 1933), True, 'import numpy as np\n'), ((2089, 2151), 'numpy.array_str', 'np.array_str', (['inner_prod_mat'], {'suppress_small': '(True)', 'precision': '(4)'}), '(inner_prod_mat, suppress_small=True, precision=4)\n', (2101, 2151), True, 'import numpy as np\n'), ((1215, 1235), 'numpy.array', 'np.array', (['data_array'], {}), '(data_array)\n', (1223, 1235), True, 'import numpy as np\n'), ((1248, 1261), 'numpy.argsort', 'np.argsort', (['S'], {}), '(S)\n', (1258, 1261), True, 'import numpy as np\n'), ((2193, 2234), 'numpy.array_str', 'np.array_str', (['inner_prod_mat'], {'precision': '(4)'}), '(inner_prod_mat, precision=4)\n', (2205, 2234), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ ## Author: <NAME> ## Copyright: Copyright 2018-2019, Packt Publishing Limited ## Version: 0.0.1 ## Maintainer: <NAME> ## Email: <EMAIL> ## Linkedin: https://www.linkedin.com/in/linus1/ ## Contributor : {if you debug, append your name here} ## Contributor Email : {if you debug, append your email here} ## Status: active """ import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures np.random.seed(0) def true_fun(X): """ given X it will provide its mapping to Y by sing function np.cos(1.5 * np.pi * X) :param X: :return: """ return np.cos(1.5 * np.pi * X) if __name__ == '__main__': n_samples = 30 degrees = [1, 3, 9, 15] X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): """ Evaluating and plotting for each degree of freedom """ ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using cross-validation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) # predicting on test data plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") # plotting the True and predicted function plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, edgecolor='b', s=20, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\n TEST MSE = {:.2e}".format( degrees[i], -scores.mean())) plt.show()
[ "matplotlib.pyplot.xlim", "sklearn.pipeline.Pipeline", "numpy.random.seed", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "numpy.random.randn", "sklearn.model_selection.cross_val_score", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "matplotlib.pyplot.setp", "sklearn.linear_model.LinearRegression", "sklearn.preprocessing.PolynomialFeatures", "matplotlib.pyplot.figure", "numpy.cos", "numpy.linspace", "numpy.random.rand", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((618, 635), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (632, 635), True, 'import numpy as np\n'), ((804, 827), 'numpy.cos', 'np.cos', (['(1.5 * np.pi * X)'], {}), '(1.5 * np.pi * X)\n', (810, 827), True, 'import numpy as np\n'), ((1018, 1045), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 5)'}), '(figsize=(14, 5))\n', (1028, 1045), True, 'import matplotlib.pyplot as plt\n'), ((2428, 2438), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2436, 2438), True, 'import matplotlib.pyplot as plt\n'), ((928, 953), 'numpy.random.rand', 'np.random.rand', (['n_samples'], {}), '(n_samples)\n', (942, 953), True, 'import numpy as np\n'), ((1226, 1260), 'matplotlib.pyplot.setp', 'plt.setp', (['ax'], {'xticks': '()', 'yticks': '()'}), '(ax, xticks=(), yticks=())\n', (1234, 1260), True, 'import matplotlib.pyplot as plt\n'), ((1294, 1351), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': 'degrees[i]', 'include_bias': '(False)'}), '(degree=degrees[i], include_bias=False)\n', (1312, 1351), False, 'from sklearn.preprocessing import PolynomialFeatures\n'), ((1431, 1449), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (1447, 1449), False, 'from sklearn.linear_model import LinearRegression\n'), ((1470, 1573), 'sklearn.pipeline.Pipeline', 'Pipeline', (["[('polynomial_features', polynomial_features), ('linear_regression',\n linear_regression)]"], {}), "([('polynomial_features', polynomial_features), (\n 'linear_regression', linear_regression)])\n", (1478, 1573), False, 'from sklearn.pipeline import Pipeline\n'), ((1716, 1808), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['pipeline', 'X[:, np.newaxis]', 'y'], {'scoring': '"""neg_mean_squared_error"""', 'cv': '(10)'}), "(pipeline, X[:, np.newaxis], y, scoring=\n 'neg_mean_squared_error', cv=10)\n", (1731, 1808), False, 'from sklearn.model_selection import cross_val_score\n'), ((1858, 1880), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (1869, 1880), True, 'import numpy as np\n'), ((2131, 2186), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X', 'y'], {'edgecolor': '"""b"""', 's': '(20)', 'label': '"""Samples"""'}), "(X, y, edgecolor='b', s=20, label='Samples')\n", (2142, 2186), True, 'import matplotlib.pyplot as plt\n'), ((2196, 2211), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (2206, 2211), True, 'import matplotlib.pyplot as plt\n'), ((2221, 2236), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (2231, 2236), True, 'import matplotlib.pyplot as plt\n'), ((2246, 2262), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0, 1)'], {}), '((0, 1))\n', (2254, 2262), True, 'import matplotlib.pyplot as plt\n'), ((2272, 2289), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-2, 2)'], {}), '((-2, 2))\n', (2280, 2289), True, 'import matplotlib.pyplot as plt\n'), ((2299, 2321), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (2309, 2321), True, 'import matplotlib.pyplot as plt\n'), ((978, 1004), 'numpy.random.randn', 'np.random.randn', (['n_samples'], {}), '(n_samples)\n', (993, 1004), True, 'import numpy as np\n')]
import numpy as np import argparse from utils import Audio def sample_wav_audio(path): audio = Audio() mel = audio.audio_to_mel(path) samples = audio.mel_sample(mel, width=128, k=5) return samples def save_embeddings(name, samples): audio = Audio() avg_embed = np.zeros(256, dtype=np.float32) for mel in samples: embed = audio.mel_to_embed(mel) avg_embed += embed avg_embed = avg_embed / 5 np.save(f'./embeddings/{name}.npy', avg_embed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', action='store', type=str, required=True) parser.add_argument('--name', action='store', type=str, required=True) args = parser.parse_args() samples = sample_wav_audio(args.path) save_embeddings(args.name, samples)
[ "utils.Audio", "numpy.save", "numpy.zeros", "argparse.ArgumentParser" ]
[((100, 107), 'utils.Audio', 'Audio', ([], {}), '()\n', (105, 107), False, 'from utils import Audio\n'), ((263, 270), 'utils.Audio', 'Audio', ([], {}), '()\n', (268, 270), False, 'from utils import Audio\n'), ((287, 318), 'numpy.zeros', 'np.zeros', (['(256)'], {'dtype': 'np.float32'}), '(256, dtype=np.float32)\n', (295, 318), True, 'import numpy as np\n'), ((448, 494), 'numpy.save', 'np.save', (['f"""./embeddings/{name}.npy"""', 'avg_embed'], {}), "(f'./embeddings/{name}.npy', avg_embed)\n", (455, 494), True, 'import numpy as np\n'), ((536, 561), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (559, 561), False, 'import argparse\n')]
import argparse import logging import os import pickle import random import ujson import sys import math from ctypes import c_ulong from multiprocessing import Array, Queue from multiprocessing.sharedctypes import RawArray from queue import Empty from time import time import numpy as np import resource from scipy.sparse import csr_matrix from sklearn.metrics import accuracy_score, precision_recall_fscore_support from sklearn.metrics.pairwise import cosine_similarity from data.bug_report_database import BugReportDatabase from data.preprocessing import concatenateSummaryAndDescription from experiments.sparse_vector import TokenizerStemmer from nltk import TreebankWordTokenizer, SnowballStemmer from sklearn.feature_extraction.text import TfidfVectorizer def loadData(filePath): f = open(filePath, 'r') bugIds = set() duplicateByBugId = {} pairs = [] for l in f: l = l.strip() if len(l) == 0: break bug1Id, bug2Id, label = l.split(',') label = int(label) pairs.append((bug1Id, bug2Id, label)) bugIds.add(bug1Id) bugIds.add(bug2Id) if label == 1: duplicateBug1List = duplicateByBugId.get(bug1Id, set()) if len(duplicateBug1List) == 0: duplicateByBugId[bug1Id] = duplicateBug1List duplicateBug1List.add(bug2Id) duplicateBug2List = duplicateByBugId.get(bug2Id, set()) if len(duplicateBug2List) == 0: duplicateByBugId[bug2Id] = duplicateBug2List duplicateBug2List.add(bug1Id) return bugIds, duplicateByBugId, pairs, ujson.loads(f.readline())['validations'] class Obj(object): def __init__(self, dict): for k, v in dict.items(): setattr(self, k, v) def predictDeepLearningModel(bugEmbeddingsById, validationPairs): batchSize = 1024 predictions = [] nBatches = math.ceil(float(len(validationPairs)) / batchSize) firstBugPairs = [] secondBugPairs = [] for bug1, bug2 in validationPairs: firstBugPairs.append(bugEmbeddingsById[bug1]) secondBugPairs.append(bugEmbeddingsById[bug2]) for batchIdx in range(nBatches): batchStart = batchIdx * batchSize bug1s = getVariable(torch.stack(firstBugPairs[batchStart: batchStart + batchSize]), args.cuda) bug2s = getVariable(torch.stack(secondBugPairs[batchStart: batchStart + batchSize]), args.cuda) if arguments.model == 'retrieval': predictionInput = [bug1s, bug2s] elif arguments.model == 'classification': predictionInput = model[1](bug1s, bug2s) output = predictionFunction(predictionInput).data.cpu().numpy() for pr in output: if isinstance(pr, (np.float32, np.uint8)): predictions.append(pr) else: predictions.append(pr[-1]) return predictions def parallel(start, duplicateBugs, q): logger = logging.getLogger() c = time() logger.info( "Process %s started to compute the similarity for %d duplicate bugs. Start idx: %d" % (os.getpid(), len(duplicateBugs), start)) for i, db in enumerate(duplicateBugs): q.put([start + i, calculateSimiliratyScoreTFIDF(str(db), vectorByBug, bugIds)]) if i % 20 == 0 and i != 0: logger.info("TF-IDF: Process %s processed %d Duplicate bug of %d in %f" % ( os.getpid(), i, len(duplicateBugs), time() - c)) c = time() q.put([-1, None]) def calculateSimiliratyScoreTFIDF(duplicateBug, vectorByBug, bugIds): batchSize = 1024 nPairs = len(bugIds) nBatches = math.ceil(float(nPairs) / batchSize) bugEmbedding1 = vectorByBug[duplicateBug] similarityScores = [] nbDim = bugEmbedding1.shape[1] for batchIdx in range(nBatches): batchStart = batchIdx * batchSize data1 = [] indices1 = [] ptrs1 = [0] data2 = [] indices2 = [] ptrs2 = [0] for otherBug in bugIds[batchStart: batchStart + batchSize]: data1.extend(bugEmbedding1.data) indices1.extend(bugEmbedding1.indices) ptrs1.append(len(indices1)) bugEmbedding2 = vectorByBug[otherBug] data2.extend(bugEmbedding2.data) indices2.extend(bugEmbedding2.indices) ptrs2.append(len(indices2)) matrix1 = csr_matrix((data1, indices1, ptrs1), shape=(len(ptrs1) - 1, nbDim)) matrix2 = csr_matrix((data2, indices2, ptrs2), shape=(len(ptrs2) - 1, nbDim)) score = cosine_similarity(matrix1, matrix2) for i in range(score.shape[0]): similarityScores.append(score[i][i]) return similarityScores def predictTFIDF(pairs): batchSize = 8192 nPairs = len(pairs) nBatches = math.ceil(float(nPairs) / batchSize) similarityScores = [] for batchIdx in range(nBatches): batchStart = batchIdx * batchSize data1 = [] indices1 = [] ptrs1 = [0] data2 = [] indices2 = [] ptrs2 = [0] for bug1, bug2 in pairs[batchStart: batchStart + batchSize]: bugEmbedding1 = vectorByBug[bug1] data1.extend(bugEmbedding1.data) indices1.extend(bugEmbedding1.indices) ptrs1.append(len(indices1)) bugEmbedding2 = vectorByBug[bug2] data2.extend(bugEmbedding2.data) indices2.extend(bugEmbedding2.indices) ptrs2.append(len(indices2)) nbDim = vectorByBug[bug1].shape[1] pairBug1 = csr_matrix((data1, indices1, ptrs1), shape=(len(ptrs1) - 1, nbDim)) pairBug2 = csr_matrix((data2, indices2, ptrs2), shape=(len(ptrs2) - 1, nbDim)) score = cosine_similarity(pairBug1, pairBug2) for i in range(score.shape[0]): similarityScores.append(score[i][i]) return (np.asarray(similarityScores) > args.retrieval_threshold).astype(int) def chunks(l, n): chunkSize = int(len(l) / n) remaining = len(l) % n chunks = [] begin = 0 for i in range(n): if remaining != 0: additional = 1 remaining -= 1 else: additional = 0 end = begin + chunkSize + additional chunks.append(l[begin:end]) begin = end return chunks if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--recall_ratio_k', nargs='+', required=True, help="list of the values of k to be used in the recall ratio. If k is empty list so recall rate " "is not calculated") parser.add_argument('--model', help="model") parser.add_argument('--model_type', help="model type") parser.add_argument('--bug_dataset', help="") parser.add_argument('--input', required=True) parser.add_argument('--retrieval_threshold', type=float, default=None, help="") parser.add_argument('--nb_processes', type=int, default=8, help="") parser.add_argument('--cuda', action="store_true", help="enable cuda.") logging.basicConfig(format='%(asctime)s %(levelname)-4s %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S', ) logger = logging.getLogger() args = parser.parse_args() print(args) global bugIds args.recall_ratio_k = [int(k) for k in args.recall_ratio_k] bugIds, duplicateByBugId, pairs, validations = loadData(args.input) biggestValidation = validations[-1] bugReportDataset = BugReportDatabase.fromJson(args.bug_dataset) bugIds = list(bugIds) similarityListByDuplicate = [] if args.model_type == 'tfidf': # Load Model global vectorByBug vectorByBug = {} tfIdfVectorizer = pickle.load(open(args.model, 'rb')) # Generate bag of words representation for each bug texts = [concatenateSummaryAndDescription(bugReportDataset.getBug(bugId)) for bugId in bugIds] vectors = tfIdfVectorizer.transform(texts) for idx, bugId in enumerate(bugIds): vectorByBug[bugId] = vectors[idx] else: # We can't import torch without allocating a GPU in Cedar cluster. from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, \ calculateSimilarityScoresDL, \ CosinePrediction, getDataHandlerLexiconEmb, getModel import torch import torch.nn.functional as F from util.torch_util import softmaxPrediction, getVariable from data.dataset import BugDataExtractor # Load Model and DataHandlers arguments = Obj({ 'load': args.model, 'cuda': args.cuda, 'summary_bidirectional': False, 'classifier_hidden_size': 300, 'classifier_mul_dif': True }) dataHandlers, lexicons, embeddings, arguments = getDataHandlerLexiconEmb(arguments) encoderContainer, model = getModel(dataHandlers, lexicons, embeddings, arguments) encoderContainer.eval() model.eval() # Set the similarity and prediction functions if arguments.model == 'classification': similarityFunction = model[1] if args.cuda: similarityFunction.cuda() predictionFunction = softmaxPrediction elif arguments.model == 'retrieval': similarityFunction = F.cosine_similarity predictionFunction = CosinePrediction(args.retrieval_threshold, args.cuda) if args.cuda: model.cuda() encoderContainer.cuda() # Generate the embedding for each bug logger.info("Generating Embeddings") dataExtractor = BugDataExtractor(bugReportDataset, dataHandlers) bugEmbeddingsById = generateBugEmbeddings(bugIds, dataExtractor, encoderContainer) # Start to calculate all duplicate pairs recommend list c = time() logger.info("Calculating similarity scores") dupDictItems = duplicateByBugId.items() if args.model_type == 'tfidf': # Calculating the score for tf-idf. We had to parallel this step because the sequential version was too slow. import multiprocessing logger.info("Calculating cosine similarity of tf-idf model using %d processes" % (args.nb_processes)) funcArgs = [] duplicateBugs = [duplicateBug for duplicateBug, listOfDuplicates in dupDictItems] q = Queue() processes = [] similarityScoresList = [0] * len(duplicateBugs) startToWrite = 0 for idx, chunk in enumerate(chunks(duplicateBugs, args.nb_processes)): arr = RawArray(c_ulong, [int(bugId) for bugId in chunk]) processes.append(multiprocessing.Process(target=parallel, args=(startToWrite, arr, q))) startToWrite += len(chunk) for p in processes: p.start() count = 0 while True: try: id, scoreList = q.get() if id == -1: # The process send a tuple (-1,None) when it is ending its work. count += 1 # Break the loop when all processes were terminated if count == len(processes): break else: similarityScoresList[id] = scoreList except Empty as e: pass logger.info( "Total time to calculate cosine similarity of %d duplicate bugs: %s " % (len(dupDictItems), time() - c)) c = time() for i, (duplicateBug, listOfDuplicates) in enumerate(dupDictItems): # Calculate the similarity score of duplicate bug with each bug if args.model_type == 'tfidf': similarityScores = similarityScoresList.pop(0) else: similarityScores = calculateSimilarityScoresDL(duplicateBug, similarityFunction, bugEmbeddingsById, bugIds, args.cuda) # Remove pair (duplicateBug, duplicateBug) and create tuples with bug id and its similarity score. bugScores = [(bugId, score) for bugId, score in zip(bugIds, similarityScores) if bugId != duplicateBug] # Sort in descending order the bugs by probability of being duplicate similarityList = sorted(bugScores, key=lambda x: x[1], reverse=True) similarityListByDuplicate.append((duplicateBug, [t[0] for t in similarityList])) if i % 200 == 0 and i != 0: logger.info("Processed %d Duplicate bug of %d in %f" % (i, len(duplicateByBugId), time() - c)) c = time() # For each different proportion, we calculate the recall rate and the precision, recall, accuracy recallKs = sorted([int(k) for k in args.recall_ratio_k]) biggestKValue = recallKs[-1] total = len(duplicateByBugId) for validation in validations: logger.info("Calculating metrics to a validation with proportion: %d" % validation['k']) valitionBugIds = {} # Prepare data to prediction validationPairs = [] targets = [] bugIdsOfValidation = set() for pairIndex in validation['indexes']: bug1, bug2, label = pairs[pairIndex] validationPairs.append((bug1, bug2)) valitionBugIds[bug1] = True valitionBugIds[bug2] = True bugIdsOfValidation.add(bug1) bugIdsOfValidation.add(bug2) targets.append(max(0, label)) logger.debug("Amount of duplicate pairs: %d\tAmount of pairs: %d" % ( np.count_nonzero(np.asarray(targets)), len(targets))) logger.debug("Amount of bugs: %d" % (len(bugIdsOfValidation))) logger.info("Predicting pair labels: %d" % validation['k']) if args.model_type == 'tfidf': predictions = predictTFIDF(validationPairs) else: predictions = predictDeepLearningModel(bugEmbeddingsById, validationPairs) # Calculate Recall Rate hitsPerRateK = [0] * len(recallKs) logger.info("Calculating Recall Rate") for duplicateBug, similarityList in similarityListByDuplicate: pos = biggestKValue + 1 cur = 0 listOfDuplicates = duplicateByBugId[duplicateBug] for bugId in similarityList: if bugId not in bugIdsOfValidation: continue if bugId in listOfDuplicates: pos = cur + 1 break cur += 1 if cur >= biggestKValue: break for idx, k in enumerate(recallKs): if k < pos: continue hitsPerRateK[idx] += 1 logger.info("Recall Rate Results:") for k, hit in zip(recallKs, hitsPerRateK): rate = float(hit) / total logger.info("\t\t k=%d: %.3f (%d/%d) " % (k, rate, hit, total)) # Calculate Acc, precision, recall and f1 accum = accuracy_score(targets, predictions, normalize=False) acc = accum / len(targets) prec, recall, f1, _ = precision_recall_fscore_support(targets, predictions) logger.info("Accuracy: %.3f (%d/%d)" % (acc * 100, accum, len(targets))) logger.info("Precision: {}\tRecall: {}\tF1:{}".format(list(np.around(prec * 100, decimals=3)), list(np.around(recall * 100, decimals=3)), list(np.around(f1 * 100, decimals=3)))) logger.info("")
[ "argparse.ArgumentParser", "experiments.duplicate_bug_detection_deep_learning.getDataHandlerLexiconEmb", "sklearn.metrics.accuracy_score", "numpy.around", "multiprocessing.Queue", "data.bug_report_database.BugReportDatabase.fromJson", "experiments.duplicate_bug_detection_deep_learning.getModel", "sklearn.metrics.precision_recall_fscore_support", "sklearn.metrics.pairwise.cosine_similarity", "experiments.duplicate_bug_detection_deep_learning.calculateSimilarityScoresDL", "data.dataset.BugDataExtractor", "numpy.asarray", "experiments.duplicate_bug_detection_deep_learning.generateBugEmbeddings", "experiments.duplicate_bug_detection_deep_learning.CosinePrediction", "os.getpid", "torch.stack", "logging.basicConfig", "time.time", "multiprocessing.Process", "logging.getLogger" ]
[((2982, 3001), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (2999, 3001), False, 'import logging\n'), ((3010, 3016), 'time.time', 'time', ([], {}), '()\n', (3014, 3016), False, 'from time import time\n'), ((6412, 6437), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6435, 6437), False, 'import argparse\n'), ((7125, 7249), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)-4s %(message)s"""', 'level': 'logging.DEBUG', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(format='%(asctime)s %(levelname)-4s %(message)s', level\n =logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S')\n", (7144, 7249), False, 'import logging\n'), ((7285, 7304), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (7302, 7304), False, 'import logging\n'), ((7572, 7616), 'data.bug_report_database.BugReportDatabase.fromJson', 'BugReportDatabase.fromJson', (['args.bug_dataset'], {}), '(args.bug_dataset)\n', (7598, 7616), False, 'from data.bug_report_database import BugReportDatabase\n'), ((9985, 9991), 'time.time', 'time', ([], {}), '()\n', (9989, 9991), False, 'from time import time\n'), ((11632, 11638), 'time.time', 'time', ([], {}), '()\n', (11636, 11638), False, 'from time import time\n'), ((4602, 4637), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['matrix1', 'matrix2'], {}), '(matrix1, matrix2)\n', (4619, 4637), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((5784, 5821), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['pairBug1', 'pairBug2'], {}), '(pairBug1, pairBug2)\n', (5801, 5821), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((8945, 8980), 'experiments.duplicate_bug_detection_deep_learning.getDataHandlerLexiconEmb', 'getDataHandlerLexiconEmb', (['arguments'], {}), '(arguments)\n', (8969, 8980), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((9015, 9070), 'experiments.duplicate_bug_detection_deep_learning.getModel', 'getModel', (['dataHandlers', 'lexicons', 'embeddings', 'arguments'], {}), '(dataHandlers, lexicons, embeddings, arguments)\n', (9023, 9070), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((9776, 9824), 'data.dataset.BugDataExtractor', 'BugDataExtractor', (['bugReportDataset', 'dataHandlers'], {}), '(bugReportDataset, dataHandlers)\n', (9792, 9824), False, 'from data.dataset import BugDataExtractor\n'), ((9853, 9915), 'experiments.duplicate_bug_detection_deep_learning.generateBugEmbeddings', 'generateBugEmbeddings', (['bugIds', 'dataExtractor', 'encoderContainer'], {}), '(bugIds, dataExtractor, encoderContainer)\n', (9874, 9915), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((10507, 10514), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (10512, 10514), False, 'from multiprocessing import Array, Queue\n'), ((15127, 15180), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['targets', 'predictions'], {'normalize': '(False)'}), '(targets, predictions, normalize=False)\n', (15141, 15180), False, 'from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n'), ((15246, 15299), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['targets', 'predictions'], {}), '(targets, predictions)\n', (15277, 15299), False, 'from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n'), ((2278, 2339), 'torch.stack', 'torch.stack', (['firstBugPairs[batchStart:batchStart + batchSize]'], {}), '(firstBugPairs[batchStart:batchStart + batchSize])\n', (2289, 2339), False, 'import torch\n'), ((2381, 2443), 'torch.stack', 'torch.stack', (['secondBugPairs[batchStart:batchStart + batchSize]'], {}), '(secondBugPairs[batchStart:batchStart + batchSize])\n', (2392, 2443), False, 'import torch\n'), ((3507, 3513), 'time.time', 'time', ([], {}), '()\n', (3511, 3513), False, 'from time import time\n'), ((11926, 12029), 'experiments.duplicate_bug_detection_deep_learning.calculateSimilarityScoresDL', 'calculateSimilarityScoresDL', (['duplicateBug', 'similarityFunction', 'bugEmbeddingsById', 'bugIds', 'args.cuda'], {}), '(duplicateBug, similarityFunction,\n bugEmbeddingsById, bugIds, args.cuda)\n', (11953, 12029), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((12710, 12716), 'time.time', 'time', ([], {}), '()\n', (12714, 12716), False, 'from time import time\n'), ((3129, 3140), 'os.getpid', 'os.getpid', ([], {}), '()\n', (3138, 3140), False, 'import os\n'), ((5925, 5953), 'numpy.asarray', 'np.asarray', (['similarityScores'], {}), '(similarityScores)\n', (5935, 5953), True, 'import numpy as np\n'), ((9522, 9575), 'experiments.duplicate_bug_detection_deep_learning.CosinePrediction', 'CosinePrediction', (['args.retrieval_threshold', 'args.cuda'], {}), '(args.retrieval_threshold, args.cuda)\n', (9538, 9575), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((10797, 10866), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'parallel', 'args': '(startToWrite, arr, q)'}), '(target=parallel, args=(startToWrite, arr, q))\n', (10820, 10866), False, 'import multiprocessing\n'), ((15449, 15482), 'numpy.around', 'np.around', (['(prec * 100)'], {'decimals': '(3)'}), '(prec * 100, decimals=3)\n', (15458, 15482), True, 'import numpy as np\n'), ((15552, 15587), 'numpy.around', 'np.around', (['(recall * 100)'], {'decimals': '(3)'}), '(recall * 100, decimals=3)\n', (15561, 15587), True, 'import numpy as np\n'), ((15657, 15688), 'numpy.around', 'np.around', (['(f1 * 100)'], {'decimals': '(3)'}), '(f1 * 100, decimals=3)\n', (15666, 15688), True, 'import numpy as np\n'), ((3442, 3453), 'os.getpid', 'os.getpid', ([], {}), '()\n', (3451, 3453), False, 'import os\n'), ((11610, 11616), 'time.time', 'time', ([], {}), '()\n', (11614, 11616), False, 'from time import time\n'), ((13695, 13714), 'numpy.asarray', 'np.asarray', (['targets'], {}), '(targets)\n', (13705, 13714), True, 'import numpy as np\n'), ((3478, 3484), 'time.time', 'time', ([], {}), '()\n', (3482, 3484), False, 'from time import time\n'), ((12681, 12687), 'time.time', 'time', ([], {}), '()\n', (12685, 12687), False, 'from time import time\n')]
import glob import numpy as np from matplotlib import pyplot as plt for filename in glob.glob("*.dat"): print(filename) name = filename.split(".")[0] data = np.loadtxt(filename, delimiter=",") size = int(np.sqrt(len(data))) data = data.reshape((size, size)) fig, ax = plt.subplots(figsize=(5.12, 5.12)) ax.imshow(data) plt.tick_params( bottom=False, left=False, right=False, top=False, labelbottom=False, labelleft=False, labelright=False, labeltop=False ) plt.tight_layout() plt.savefig(name + ".png") plt.close()
[ "matplotlib.pyplot.close", "matplotlib.pyplot.subplots", "numpy.loadtxt", "glob.glob", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig" ]
[((85, 103), 'glob.glob', 'glob.glob', (['"""*.dat"""'], {}), "('*.dat')\n", (94, 103), False, 'import glob\n'), ((170, 205), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'delimiter': '""","""'}), "(filename, delimiter=',')\n", (180, 205), True, 'import numpy as np\n'), ((293, 327), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5.12, 5.12)'}), '(figsize=(5.12, 5.12))\n', (305, 327), True, 'from matplotlib import pyplot as plt\n'), ((352, 491), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'bottom': '(False)', 'left': '(False)', 'right': '(False)', 'top': '(False)', 'labelbottom': '(False)', 'labelleft': '(False)', 'labelright': '(False)', 'labeltop': '(False)'}), '(bottom=False, left=False, right=False, top=False,\n labelbottom=False, labelleft=False, labelright=False, labeltop=False)\n', (367, 491), True, 'from matplotlib import pyplot as plt\n'), ((514, 532), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (530, 532), True, 'from matplotlib import pyplot as plt\n'), ((537, 563), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(name + '.png')"], {}), "(name + '.png')\n", (548, 563), True, 'from matplotlib import pyplot as plt\n'), ((568, 579), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (577, 579), True, 'from matplotlib import pyplot as plt\n')]
# -*- coding: utf-8 -*- """ Created on Sun Aug 6 00:25:27 2017 @author: Wayne """ import pandas as pd import xgboost as xgb import numpy as np from sklearn.model_selection import train_test_split import pickle #%% mydf1= mydf[outliers.outliers==False] z = np.log(data.trip_duration+1) X = mydf1 Xtest = testdf data_test = xgb.DMatrix(Xtest) #%% rmse = lambda z,zp:np.sqrt(np.mean((z-zp)**2)) #%% parms = {'max_depth':14, #maximum depth of a tree 'objective':'reg:linear', 'eta' :0.025, 'subsample':0.8,#SGD will use this percentage of data 'lambda ' :4, #L2 regularization term,>1 more conservative 'colsample_bytree ':0.9, 'colsample_bylevel':1, 'min_child_weight': 10, 'nthread' :3} #number of cpu core to use #%% split training set to validation set Xtrain, Xval, Ztrain, Zval = train_test_split(X, z, test_size=0.2, random_state=1) #Xcv,Xv,Zcv,Zv = train_test_split(Xval, Zval, test_size=0.5, random_state=1) data_tr = xgb.DMatrix(Xtrain, label=Ztrain) data_val = xgb.DMatrix(Xval , label=Zval) evallist = [(data_tr, 'train'), (data_val, 'valid')] model = xgb.train(parms, data_tr, num_boost_round=881, evals = evallist, early_stopping_rounds=30, maximize=False, verbose_eval=100) print('score = %1.5f, n_boost_round =%d.'%(model.best_score,model.best_iteration)) #%% training all the data data_train = xgb.DMatrix(X, label=z) evallist = [(data_train, 'train')] model = xgb.train(parms, data_train, num_boost_round=880, evals = evallist, maximize=False, verbose_eval=100) #%% #%% ztest = model.predict(data_test) #%% ytest = np.exp(ztest)-1 submission = pd.DataFrame({'id': test.id, 'trip_duration': ytest}) submission.to_csv('submission_1.csv', index=False) #%% with open('filename.pickle', 'rb') as handle: b = pickle.load(handle) #%% for d in (mydf,testdf): print(d.Temp.mean()) #%% print('Id is unique.') if train.id.nunique() == train.shape[0] else print('oops') print('Train and test sets are distinct.') if len(np.intersect1d(train.id.values, test.id.values))== 0 else print('oops') print('We do not need to worry about missing values.') if train.count().min() == train.shape[0] and test.count().min() == test.shape[0] else print('oops') print('The store_and_fwd_flag has only two values {}.'.format(str(set(train.store_and_fwd_flag.unique()) | set(test.store_and_fwd_flag.unique())))) #%% Kmeans from sklearn.cluster import MiniBatchKMeans coords = np.vstack((mydf[['pickup_latitude', 'pickup_longitude']].values, mydf[['dropoff_latitude', 'dropoff_longitude']].values, testdf[['pickup_latitude', 'pickup_longitude']].values, testdf[['dropoff_latitude', 'dropoff_longitude']].values)) sample_ind = np.random.permutation(len(coords))[:500000] kmeans = MiniBatchKMeans(n_clusters=20, batch_size=10000).fit(coords[sample_ind]) for df in (mydf,testdf): df.loc[:, 'pickup_loc'] = kmeans.predict(df[['pickup_latitude', 'pickup_longitude']]) df.loc[:, 'dropoff_loc'] = kmeans.predict(df[['dropoff_latitude', 'dropoff_longitude']]) #%% train_loc = [None]*2;test_loc=[None]*2 for i,loc in enumerate(['pickup_loc','dropoff_loc']): train_loc[i]= pd.get_dummies(mydf[loc], prefix=loc, prefix_sep='_') test_loc[i] = pd.get_dummies(testdf[loc], prefix=loc, prefix_sep='_') train_loc = pd.concat(train_loc,axis=1) test_loc = pd.concat(test_loc,axis=1) #%% mydf1 = pd.concat([mydf,train_loc],axis = 1) testdf1 = pd.concat([testdf,test_loc],axis = 1) #%% mydf1 = mydf1[mydf1['outliers']==False] mydf1 = mydf1.drop(['id','outliers'],axis=1) z = mydf1.log_trip_duration X = mydf1.drop(['log_trip_duration'],axis=1) Xtest = testdf1.drop('id',axis=1) #%% X = X.drop(['pickup_loc','dropoff_loc'],axis=1) #%% Xtest=Xtest.drop(['pickup_loc','dropoff_loc'],axis=1)
[ "pandas.DataFrame", "sklearn.cluster.MiniBatchKMeans", "numpy.log", "xgboost.train", "sklearn.model_selection.train_test_split", "pandas.get_dummies", "pickle.load", "numpy.mean", "numpy.exp", "numpy.intersect1d", "pandas.concat", "xgboost.DMatrix", "numpy.vstack" ]
[((273, 303), 'numpy.log', 'np.log', (['(data.trip_duration + 1)'], {}), '(data.trip_duration + 1)\n', (279, 303), True, 'import numpy as np\n'), ((342, 360), 'xgboost.DMatrix', 'xgb.DMatrix', (['Xtest'], {}), '(Xtest)\n', (353, 360), True, 'import xgboost as xgb\n'), ((899, 952), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'z'], {'test_size': '(0.2)', 'random_state': '(1)'}), '(X, z, test_size=0.2, random_state=1)\n', (915, 952), False, 'from sklearn.model_selection import train_test_split\n'), ((1043, 1076), 'xgboost.DMatrix', 'xgb.DMatrix', (['Xtrain'], {'label': 'Ztrain'}), '(Xtrain, label=Ztrain)\n', (1054, 1076), True, 'import xgboost as xgb\n'), ((1090, 1119), 'xgboost.DMatrix', 'xgb.DMatrix', (['Xval'], {'label': 'Zval'}), '(Xval, label=Zval)\n', (1101, 1119), True, 'import xgboost as xgb\n'), ((1188, 1314), 'xgboost.train', 'xgb.train', (['parms', 'data_tr'], {'num_boost_round': '(881)', 'evals': 'evallist', 'early_stopping_rounds': '(30)', 'maximize': '(False)', 'verbose_eval': '(100)'}), '(parms, data_tr, num_boost_round=881, evals=evallist,\n early_stopping_rounds=30, maximize=False, verbose_eval=100)\n', (1197, 1314), True, 'import xgboost as xgb\n'), ((1480, 1503), 'xgboost.DMatrix', 'xgb.DMatrix', (['X'], {'label': 'z'}), '(X, label=z)\n', (1491, 1503), True, 'import xgboost as xgb\n'), ((1551, 1655), 'xgboost.train', 'xgb.train', (['parms', 'data_train'], {'num_boost_round': '(880)', 'evals': 'evallist', 'maximize': '(False)', 'verbose_eval': '(100)'}), '(parms, data_train, num_boost_round=880, evals=evallist, maximize=\n False, verbose_eval=100)\n', (1560, 1655), True, 'import xgboost as xgb\n'), ((1784, 1837), 'pandas.DataFrame', 'pd.DataFrame', (["{'id': test.id, 'trip_duration': ytest}"], {}), "({'id': test.id, 'trip_duration': ytest})\n", (1796, 1837), True, 'import pandas as pd\n'), ((2610, 2860), 'numpy.vstack', 'np.vstack', (["(mydf[['pickup_latitude', 'pickup_longitude']].values, mydf[[\n 'dropoff_latitude', 'dropoff_longitude']].values, testdf[[\n 'pickup_latitude', 'pickup_longitude']].values, testdf[[\n 'dropoff_latitude', 'dropoff_longitude']].values)"], {}), "((mydf[['pickup_latitude', 'pickup_longitude']].values, mydf[[\n 'dropoff_latitude', 'dropoff_longitude']].values, testdf[[\n 'pickup_latitude', 'pickup_longitude']].values, testdf[[\n 'dropoff_latitude', 'dropoff_longitude']].values))\n", (2619, 2860), True, 'import numpy as np\n'), ((3526, 3554), 'pandas.concat', 'pd.concat', (['train_loc'], {'axis': '(1)'}), '(train_loc, axis=1)\n', (3535, 3554), True, 'import pandas as pd\n'), ((3567, 3594), 'pandas.concat', 'pd.concat', (['test_loc'], {'axis': '(1)'}), '(test_loc, axis=1)\n', (3576, 3594), True, 'import pandas as pd\n'), ((3610, 3646), 'pandas.concat', 'pd.concat', (['[mydf, train_loc]'], {'axis': '(1)'}), '([mydf, train_loc], axis=1)\n', (3619, 3646), True, 'import pandas as pd\n'), ((3658, 3695), 'pandas.concat', 'pd.concat', (['[testdf, test_loc]'], {'axis': '(1)'}), '([testdf, test_loc], axis=1)\n', (3667, 3695), True, 'import pandas as pd\n'), ((1754, 1767), 'numpy.exp', 'np.exp', (['ztest'], {}), '(ztest)\n', (1760, 1767), True, 'import numpy as np\n'), ((1951, 1970), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1962, 1970), False, 'import pickle\n'), ((3380, 3433), 'pandas.get_dummies', 'pd.get_dummies', (['mydf[loc]'], {'prefix': 'loc', 'prefix_sep': '"""_"""'}), "(mydf[loc], prefix=loc, prefix_sep='_')\n", (3394, 3433), True, 'import pandas as pd\n'), ((3457, 3512), 'pandas.get_dummies', 'pd.get_dummies', (['testdf[loc]'], {'prefix': 'loc', 'prefix_sep': '"""_"""'}), "(testdf[loc], prefix=loc, prefix_sep='_')\n", (3471, 3512), True, 'import pandas as pd\n'), ((394, 416), 'numpy.mean', 'np.mean', (['((z - zp) ** 2)'], {}), '((z - zp) ** 2)\n', (401, 416), True, 'import numpy as np\n'), ((2977, 3025), 'sklearn.cluster.MiniBatchKMeans', 'MiniBatchKMeans', ([], {'n_clusters': '(20)', 'batch_size': '(10000)'}), '(n_clusters=20, batch_size=10000)\n', (2992, 3025), False, 'from sklearn.cluster import MiniBatchKMeans\n'), ((2166, 2213), 'numpy.intersect1d', 'np.intersect1d', (['train.id.values', 'test.id.values'], {}), '(train.id.values, test.id.values)\n', (2180, 2213), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import cPickle import ipdb class Detector(): def __init__(self,weight_file_path,n_labels): self.image_mean=[103.939,116.779,123.68] self.n_labels=n_labels with open(weight_file_path)as f: self.pretrained_weights=cPickle.load(f) def get_weight(self,layer_name): layer=self.pretrained_weights[layer_name] return layer[0] def get_bias(self,layer_name): layer=self.pretrained_weights[layer_name] return layer[1] def get_conv_weight(self,name): f=self.get_weight(name) return f.transpose((2,3,1,0)) def conv_layer(self,bottom,name): with tf.variable_scope(name)as scope: w=self.get_conv_weight(name) b=self.get_bias(name) conv_weights=tf.get_variable("W",shape=w.shape,initializer=tf.constant_initializer(w)) conv_biases=tf.get_variable("b",shape=b.shape,initializer=tf.constant_initializer(b)) conv=tf.nn.conv2d(bottom,conv_weights,[1,1,1,1],padding='SAME') bias=tf.nn.bias_add(conv,conv_biases) relu=tf.nn.relu(bias,name=name) return relu def new_conv_layer(self,bottom,filter_shape,name): with tf.variable_scope(name)as scope: w=tf.get_variable("W",shape=filter_shape,initializer=tf.random_normal_initializer(0.,0.01)) b=tf.get_variable("b",shape=filter_shape[-1],initializer=tf.constant_initializer(0.)) conv=tf.nn.conv2d(bottom,w,[1,1,1,1],padding='SAME') bias=tf.nn.bias_add(conv,b) return bias def fc_layer(self,bottom,name,create=False): shape=bottom.get_shape().as_list() dim=np.prod(shape[1:]) x=tf.reshape(bottom,[-1,dim]) cw=self.get_weight(name) b=self.get_bias(name) if name=="fc6": cw=cw.reshape((4096,512,7,7)) cw=cw.transpose((2,3,1,0)) cw=cw.reshape((25088,4096)) else: cw=cw.transpose((1,0)) with tf.variable_scope(name)as scope: cw=tf.get_variable("W",shape=cw.shape,initializer=tf.constant_initializer(cw)) b=tf.get_variable("b",shape=b.shape,initializer=tf.constant_initializer(b)) fc=tf.nn.bias_add(tf.matmul(x,cw),b,name=scope) return fc def new_fc_layer(self,bottom,input_size,output_size,name): shape=bottom.get_shape().to_list() dim=np.prod(shape[1:]) x=tf.reshape(bottom,[-1,dim]) with tf.variable_scope(name)as scope: w=tf.get_variable("W",shape=[input_size,output_size],initializer=tf.random_normal_initializer(0.,0.01)) b=tf.get_variable("b",shape=[output_size],initializer=tf.constant_initializer(0.)) fc=tf.nn.bias_add(tf.matmul(x,w),b,name=scope) return fc def inference(self,rgb,train=False): rgb*=255. r,g,b=tf.split(rgb,3,3) bgr=tf.concat([b-self.image_mean[0],g-self.image_mean[1],r-self.image_mean[2]],3) relu1_1=self.conv_layer(bgr,"conv1_1") relu1_2=self.conv_layer(relu1_1,"conv1_2") pool1=tf.nn.max_pool(relu1_2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool1') relu2_1=self.conv_layer(pool1,"conv2_1") relu2_2=self.conv_layer(relu2_1,"conv2_2") pool2=tf.nn.max_pool(relu2_2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool2') relu3_1=self.conv_layer(pool2,"conv3_1") relu3_2=self.conv_layer(relu3_1,"conv3_2") relu3_3=self.conv_layer(relu3_2,"conv3_3") pool3=tf.nn.max_pool(relu3_3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool3') relu4_1=self.conv_layer(pool3,"conv4_1") relu4_2=self.conv_layer(relu4_1,"conv4_2") relu4_3=self.conv_layer(relu4_2,"conv4_3") pool4=tf.nn.max_pool(relu4_3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool4') relu5_1=self.conv_layer(pool4,"conv5_1") relu5_2=self.conv_layer(relu5_1,"conv5_2") relu5_3=self.conv_layer(relu5_2,"conv5_3") conv6=self.new_conv_layer(relu5_3,[3,3,512,1024],"conv6") gap=tf.reduce_mean(conv6,[1,2]) with tf.variable_scope("GAP"): gap_w=tf.get_variable("W",shape=[1024,self.n_labels],initializer=tf.random_normal_initializer(0.,0.01)) output=tf.matmul(gap,gap_w) return pool1,pool2,pool3,pool4,relu5_3,conv6,gap,output def get_classmap(self,label,conv6): conv6_resized=tf.image.resize_bilinear(conv6,[224,224]) with tf.variable_scope("GAP",reuse=True): label_w=tf.gather(tf.transpose(tf.get_variable("W")),label) label_w=tf.reshape(label_w,[-1,1024,1]) conv6_resized=tf.reshape(conv6_resized,[-1,224*224,1024]) classmap=tf.matmul(conv6_resized,label_w) classmap=tf.reshape(classmap,[-1,224,224]) return classmap
[ "tensorflow.nn.relu", "tensorflow.constant_initializer", "tensorflow.reshape", "tensorflow.reduce_mean", "tensorflow.concat", "cPickle.load", "tensorflow.variable_scope", "tensorflow.nn.bias_add", "tensorflow.nn.max_pool", "tensorflow.matmul", "tensorflow.get_variable", "tensorflow.random_normal_initializer", "tensorflow.nn.conv2d", "tensorflow.split", "numpy.prod", "tensorflow.image.resize_bilinear" ]
[((1521, 1539), 'numpy.prod', 'np.prod', (['shape[1:]'], {}), '(shape[1:])\n', (1528, 1539), True, 'import numpy as np\n'), ((1544, 1573), 'tensorflow.reshape', 'tf.reshape', (['bottom', '[-1, dim]'], {}), '(bottom, [-1, dim])\n', (1554, 1573), True, 'import tensorflow as tf\n'), ((2136, 2154), 'numpy.prod', 'np.prod', (['shape[1:]'], {}), '(shape[1:])\n', (2143, 2154), True, 'import numpy as np\n'), ((2159, 2188), 'tensorflow.reshape', 'tf.reshape', (['bottom', '[-1, dim]'], {}), '(bottom, [-1, dim])\n', (2169, 2188), True, 'import tensorflow as tf\n'), ((2540, 2559), 'tensorflow.split', 'tf.split', (['rgb', '(3)', '(3)'], {}), '(rgb, 3, 3)\n', (2548, 2559), True, 'import tensorflow as tf\n'), ((2564, 2655), 'tensorflow.concat', 'tf.concat', (['[b - self.image_mean[0], g - self.image_mean[1], r - self.image_mean[2]]', '(3)'], {}), '([b - self.image_mean[0], g - self.image_mean[1], r - self.\n image_mean[2]], 3)\n', (2573, 2655), True, 'import tensorflow as tf\n'), ((2736, 2836), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu1_2'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool1"""'}), "(relu1_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool1')\n", (2750, 2836), True, 'import tensorflow as tf\n'), ((2918, 3018), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu2_2'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool2"""'}), "(relu2_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool2')\n", (2932, 3018), True, 'import tensorflow as tf\n'), ((3145, 3245), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu3_3'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool3"""'}), "(relu3_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool3')\n", (3159, 3245), True, 'import tensorflow as tf\n'), ((3372, 3472), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu4_3'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool4"""'}), "(relu4_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool4')\n", (3386, 3472), True, 'import tensorflow as tf\n'), ((3657, 3686), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['conv6', '[1, 2]'], {}), '(conv6, [1, 2])\n', (3671, 3686), True, 'import tensorflow as tf\n'), ((3834, 3855), 'tensorflow.matmul', 'tf.matmul', (['gap', 'gap_w'], {}), '(gap, gap_w)\n', (3843, 3855), True, 'import tensorflow as tf\n'), ((3966, 4009), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (['conv6', '[224, 224]'], {}), '(conv6, [224, 224])\n', (3990, 4009), True, 'import tensorflow as tf\n'), ((4174, 4222), 'tensorflow.reshape', 'tf.reshape', (['conv6_resized', '[-1, 224 * 224, 1024]'], {}), '(conv6_resized, [-1, 224 * 224, 1024])\n', (4184, 4222), True, 'import tensorflow as tf\n'), ((4229, 4262), 'tensorflow.matmul', 'tf.matmul', (['conv6_resized', 'label_w'], {}), '(conv6_resized, label_w)\n', (4238, 4262), True, 'import tensorflow as tf\n'), ((4273, 4309), 'tensorflow.reshape', 'tf.reshape', (['classmap', '[-1, 224, 224]'], {}), '(classmap, [-1, 224, 224])\n', (4283, 4309), True, 'import tensorflow as tf\n'), ((289, 304), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (301, 304), False, 'import cPickle\n'), ((628, 651), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (645, 651), True, 'import tensorflow as tf\n'), ((905, 969), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['bottom', 'conv_weights', '[1, 1, 1, 1]'], {'padding': '"""SAME"""'}), "(bottom, conv_weights, [1, 1, 1, 1], padding='SAME')\n", (917, 969), True, 'import tensorflow as tf\n'), ((972, 1005), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['conv', 'conv_biases'], {}), '(conv, conv_biases)\n', (986, 1005), True, 'import tensorflow as tf\n'), ((1013, 1040), 'tensorflow.nn.relu', 'tf.nn.relu', (['bias'], {'name': 'name'}), '(bias, name=name)\n', (1023, 1040), True, 'import tensorflow as tf\n'), ((1113, 1136), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (1130, 1136), True, 'import tensorflow as tf\n'), ((1338, 1391), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['bottom', 'w', '[1, 1, 1, 1]'], {'padding': '"""SAME"""'}), "(bottom, w, [1, 1, 1, 1], padding='SAME')\n", (1350, 1391), True, 'import tensorflow as tf\n'), ((1394, 1417), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['conv', 'b'], {}), '(conv, b)\n', (1408, 1417), True, 'import tensorflow as tf\n'), ((1776, 1799), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (1793, 1799), True, 'import tensorflow as tf\n'), ((2194, 2217), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (2211, 2217), True, 'import tensorflow as tf\n'), ((3692, 3716), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""GAP"""'], {}), "('GAP')\n", (3709, 3716), True, 'import tensorflow as tf\n'), ((4015, 4051), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""GAP"""'], {'reuse': '(True)'}), "('GAP', reuse=True)\n", (4032, 4051), True, 'import tensorflow as tf\n'), ((4126, 4160), 'tensorflow.reshape', 'tf.reshape', (['label_w', '[-1, 1024, 1]'], {}), '(label_w, [-1, 1024, 1])\n', (4136, 4160), True, 'import tensorflow as tf\n'), ((1991, 2007), 'tensorflow.matmul', 'tf.matmul', (['x', 'cw'], {}), '(x, cw)\n', (2000, 2007), True, 'import tensorflow as tf\n'), ((2441, 2456), 'tensorflow.matmul', 'tf.matmul', (['x', 'w'], {}), '(x, w)\n', (2450, 2456), True, 'import tensorflow as tf\n'), ((780, 806), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['w'], {}), '(w)\n', (803, 806), True, 'import tensorflow as tf\n'), ((869, 895), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['b'], {}), '(b)\n', (892, 895), True, 'import tensorflow as tf\n'), ((1202, 1241), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0.0)', '(0.01)'], {}), '(0.0, 0.01)\n', (1230, 1241), True, 'import tensorflow as tf\n'), ((1301, 1329), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (1324, 1329), True, 'import tensorflow as tf\n'), ((1862, 1889), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['cw'], {}), '(cw)\n', (1885, 1889), True, 'import tensorflow as tf\n'), ((1942, 1968), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['b'], {}), '(b)\n', (1965, 1968), True, 'import tensorflow as tf\n'), ((2295, 2334), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0.0)', '(0.01)'], {}), '(0.0, 0.01)\n', (2323, 2334), True, 'import tensorflow as tf\n'), ((2391, 2419), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (2414, 2419), True, 'import tensorflow as tf\n'), ((3786, 3825), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0.0)', '(0.01)'], {}), '(0.0, 0.01)\n', (3814, 3825), True, 'import tensorflow as tf\n'), ((4086, 4106), 'tensorflow.get_variable', 'tf.get_variable', (['"""W"""'], {}), "('W')\n", (4101, 4106), True, 'import tensorflow as tf\n')]
import numpy as np import os import torch import torch.nn as nn import pytorch_lightning as pl from data.VOCdevkit.vocdata import VOCDataset from torch.utils.data import DataLoader from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur from torchvision.transforms.functional import InterpolationMode from skimage.measure import label class EvaluateAttnMaps(pl.callbacks.Callback): def __init__(self, voc_root: str, train_input_height: int, attn_batch_size: int, num_workers: int, threshold: float = 0.6): # Setup transforms and dataloader pvoc image_transforms = Compose([Resize((train_input_height, train_input_height)), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) target_transforms = Compose([Resize((train_input_height, train_input_height), interpolation=InterpolationMode.NEAREST), ToTensor()]) self.dataset = VOCDataset(root=os.path.join(voc_root, "VOCSegmentation"), image_set="val", transform=image_transforms, target_transform=target_transforms) self.loader = DataLoader(self.dataset, batch_size=attn_batch_size, shuffle=False, num_workers=num_workers, drop_last=True, pin_memory=True) self.threshold = threshold def on_validation_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule): # Evaluate attention maps. if pl_module.global_rank == 0 and pl_module.local_rank == 0: print("\n" + "#" * 20 + "Evaluating attention maps on VOC2012 with threshold: " + str(self.threshold) + "#" * 20) jacs_merged_attn = 0 jacs_all_heads = 0 # If teacher is present use teacher attention as it is also used during training if hasattr(pl_module, 'teacher'): patch_size = pl_module.teacher.patch_size model = pl_module.teacher else: patch_size = pl_module.model.patch_size model = pl_module.model model.eval() for i, (imgs, maps) in enumerate(self.loader): w_featmap = imgs.shape[-2] // patch_size h_featmap = imgs.shape[-1] // patch_size with torch.no_grad(): attentions = model.get_last_selfattention(imgs.to(pl_module.device)) bs = attentions.shape[0] attentions = attentions[..., 0, 1:] # Evaluate two different protocols: merged attention and best head jacs_merged_attn += self.evaluate_merged_attentions(attentions, bs, w_featmap, h_featmap, patch_size, maps) jacs_all_heads += self.evaluate_best_head(attentions, bs, w_featmap, h_featmap, patch_size, maps) jacs_merged_attn /= len(self.dataset) jacs_all_heads /= len(self.dataset) print(f"Merged Jaccard on VOC12: {jacs_merged_attn.item()}") print(f"All heads Jaccard on VOC12: {jacs_all_heads.item()}") pl_module.logger.experiment.log_metric('attn_jacs_voc', jacs_merged_attn.item()) pl_module.logger.experiment.log_metric('all_heads_jacs_voc', jacs_all_heads.item()) def evaluate_best_head(self, attentions: torch.Tensor, bs: int, w_featmap: int, h_featmap: int, patch_size: int, maps: torch.Tensor) -> torch.Tensor: jacs = 0 nh = attentions.shape[1] # number of heads # we keep only a certain percentage of the mass val, idx = torch.sort(attentions) val /= torch.sum(val, dim=-1, keepdim=True) cumval = torch.cumsum(val, dim=-1) th_attn = cumval > (1 - self.threshold) idx2 = torch.argsort(idx) for head in range(nh): th_attn[:, head] = torch.gather(th_attn[:, head], dim=1, index=idx2[:, head]) th_attn = th_attn.reshape(bs, nh, w_featmap, h_featmap).float() # interpolate th_attn = nn.functional.interpolate(th_attn, scale_factor=patch_size, mode="nearest").cpu().numpy() # Calculate IoU for each image for k, map in enumerate(maps): jac = 0 objects = np.unique(map) objects = np.delete(objects, [0, -1]) for o in objects: masko = map == o intersection = masko * th_attn[k] intersection = torch.sum(torch.sum(intersection, dim=-1), dim=-1) union = (masko + th_attn[k]) > 0 union = torch.sum(torch.sum(union, dim=-1), dim=-1) jaco = intersection / union jac += max(jaco) if len(objects) != 0: jac /= len(objects) jacs += jac return jacs def evaluate_merged_attentions(self, attentions: torch.Tensor, bs: int, w_featmap: int, h_featmap: int, patch_size: int, maps: torch.Tensor) -> torch.Tensor: jacs = 0 # Average attentions attentions = sum(attentions[:, i] * 1 / attentions.size(1) for i in range(attentions.size(1))) nh = 1 # number of heads is one as we merged all heads # Gaussian blurring attentions = GaussianBlur(7, sigma=(.6))(attentions.reshape(bs * nh, 1, w_featmap, h_featmap))\ .reshape(bs, nh, -1) # we keep only a certain percentage of the mass val, idx = torch.sort(attentions) val /= torch.sum(val, dim=-1, keepdim=True) cumval = torch.cumsum(val, dim=-1) th_attn = cumval > (1 - self.threshold) idx2 = torch.argsort(idx) th_attn[:, 0] = torch.gather(th_attn[:, 0], dim=1, index=idx2[:, 0]) th_attn = th_attn.reshape(bs, nh, w_featmap, h_featmap).float() # remove components that are less then 3 pixels for j, th_att in enumerate(th_attn): labelled = label(th_att.cpu().numpy()) for k in range(1, np.max(labelled) + 1): mask = labelled == k if np.sum(mask) <= 2: th_attn[j, 0][mask] = 0 # interpolate th_attn = nn.functional.interpolate(th_attn, scale_factor=patch_size, mode="nearest").cpu().numpy() # Calculate IoU for each image for k, map in enumerate(maps): gt_fg_mask = (map != 0.).float() intersection = gt_fg_mask * th_attn[k] intersection = torch.sum(torch.sum(intersection, dim=-1), dim=-1) union = (gt_fg_mask + th_attn[k]) > 0 union = torch.sum(torch.sum(union, dim=-1), dim=-1) jacs += intersection / union return jacs
[ "numpy.delete", "torch.gather", "torch.utils.data.DataLoader", "os.path.join", "numpy.sum", "torch.argsort", "torchvision.transforms.ToTensor", "torch.cumsum", "numpy.max", "torch.nn.functional.interpolate", "torchvision.transforms.GaussianBlur", "torchvision.transforms.Normalize", "torch.no_grad", "torch.sum", "torch.sort", "numpy.unique", "torchvision.transforms.Resize" ]
[((1354, 1483), 'torch.utils.data.DataLoader', 'DataLoader', (['self.dataset'], {'batch_size': 'attn_batch_size', 'shuffle': '(False)', 'num_workers': 'num_workers', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(self.dataset, batch_size=attn_batch_size, shuffle=False,\n num_workers=num_workers, drop_last=True, pin_memory=True)\n', (1364, 1483), False, 'from torch.utils.data import DataLoader\n'), ((3871, 3893), 'torch.sort', 'torch.sort', (['attentions'], {}), '(attentions)\n', (3881, 3893), False, 'import torch\n'), ((3909, 3945), 'torch.sum', 'torch.sum', (['val'], {'dim': '(-1)', 'keepdim': '(True)'}), '(val, dim=-1, keepdim=True)\n', (3918, 3945), False, 'import torch\n'), ((3963, 3988), 'torch.cumsum', 'torch.cumsum', (['val'], {'dim': '(-1)'}), '(val, dim=-1)\n', (3975, 3988), False, 'import torch\n'), ((4052, 4070), 'torch.argsort', 'torch.argsort', (['idx'], {}), '(idx)\n', (4065, 4070), False, 'import torch\n'), ((5736, 5758), 'torch.sort', 'torch.sort', (['attentions'], {}), '(attentions)\n', (5746, 5758), False, 'import torch\n'), ((5774, 5810), 'torch.sum', 'torch.sum', (['val'], {'dim': '(-1)', 'keepdim': '(True)'}), '(val, dim=-1, keepdim=True)\n', (5783, 5810), False, 'import torch\n'), ((5828, 5853), 'torch.cumsum', 'torch.cumsum', (['val'], {'dim': '(-1)'}), '(val, dim=-1)\n', (5840, 5853), False, 'import torch\n'), ((5917, 5935), 'torch.argsort', 'torch.argsort', (['idx'], {}), '(idx)\n', (5930, 5935), False, 'import torch\n'), ((5960, 6012), 'torch.gather', 'torch.gather', (['th_attn[:, 0]'], {'dim': '(1)', 'index': 'idx2[:, 0]'}), '(th_attn[:, 0], dim=1, index=idx2[:, 0])\n', (5972, 6012), False, 'import torch\n'), ((4133, 4191), 'torch.gather', 'torch.gather', (['th_attn[:, head]'], {'dim': '(1)', 'index': 'idx2[:, head]'}), '(th_attn[:, head], dim=1, index=idx2[:, head])\n', (4145, 4191), False, 'import torch\n'), ((4515, 4529), 'numpy.unique', 'np.unique', (['map'], {}), '(map)\n', (4524, 4529), True, 'import numpy as np\n'), ((4552, 4579), 'numpy.delete', 'np.delete', (['objects', '[0, -1]'], {}), '(objects, [0, -1])\n', (4561, 4579), True, 'import numpy as np\n'), ((712, 760), 'torchvision.transforms.Resize', 'Resize', (['(train_input_height, train_input_height)'], {}), '((train_input_height, train_input_height))\n', (718, 760), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((798, 808), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (806, 808), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((846, 910), 'torchvision.transforms.Normalize', 'Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (855, 910), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((950, 1044), 'torchvision.transforms.Resize', 'Resize', (['(train_input_height, train_input_height)'], {'interpolation': 'InterpolationMode.NEAREST'}), '((train_input_height, train_input_height), interpolation=\n InterpolationMode.NEAREST)\n', (956, 1044), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((1122, 1132), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (1130, 1132), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((1174, 1215), 'os.path.join', 'os.path.join', (['voc_root', '"""VOCSegmentation"""'], {}), "(voc_root, 'VOCSegmentation')\n", (1186, 1215), False, 'import os\n'), ((6753, 6784), 'torch.sum', 'torch.sum', (['intersection'], {'dim': '(-1)'}), '(intersection, dim=-1)\n', (6762, 6784), False, 'import torch\n'), ((6874, 6898), 'torch.sum', 'torch.sum', (['union'], {'dim': '(-1)'}), '(union, dim=-1)\n', (6883, 6898), False, 'import torch\n'), ((2522, 2537), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2535, 2537), False, 'import torch\n'), ((4734, 4765), 'torch.sum', 'torch.sum', (['intersection'], {'dim': '(-1)'}), '(intersection, dim=-1)\n', (4743, 4765), False, 'import torch\n'), ((4858, 4882), 'torch.sum', 'torch.sum', (['union'], {'dim': '(-1)'}), '(union, dim=-1)\n', (4867, 4882), False, 'import torch\n'), ((5544, 5570), 'torchvision.transforms.GaussianBlur', 'GaussianBlur', (['(7)'], {'sigma': '(0.6)'}), '(7, sigma=0.6)\n', (5556, 5570), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((6268, 6284), 'numpy.max', 'np.max', (['labelled'], {}), '(labelled)\n', (6274, 6284), True, 'import numpy as np\n'), ((6347, 6359), 'numpy.sum', 'np.sum', (['mask'], {}), '(mask)\n', (6353, 6359), True, 'import numpy as np\n'), ((4304, 4379), 'torch.nn.functional.interpolate', 'nn.functional.interpolate', (['th_attn'], {'scale_factor': 'patch_size', 'mode': '"""nearest"""'}), "(th_attn, scale_factor=patch_size, mode='nearest')\n", (4329, 4379), True, 'import torch.nn as nn\n'), ((6451, 6526), 'torch.nn.functional.interpolate', 'nn.functional.interpolate', (['th_attn'], {'scale_factor': 'patch_size', 'mode': '"""nearest"""'}), "(th_attn, scale_factor=patch_size, mode='nearest')\n", (6476, 6526), True, 'import torch.nn as nn\n')]
# Autoencoder using convolutional layers # Dataset : MNIST # Requires : PIL, matplotlib # Inspired by https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html # To compress data : net.encode(data) # To decompress data : net.decode(data) # To mutate data : net(data) import os import numpy as np import matplotlib.pyplot as plt import torch as T from torch import nn from torch import cuda import torch.nn.functional as F from torchvision import transforms import torchvision from torchvision.datasets import MNIST from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d import PIL.Image as im from utils import dataset_dir, models_dir # Displays an image (1 dim tensor) # t has values in [0, 1] def imshow(t): transforms.ToPILImage()(t).show() # Show in matplotlib def gridshow(img): npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() class Net(nn.Module): def __init__(self, hidden_size, latent_size): super().__init__() self.latent_size = latent_size self.encodeConv1 = Conv2d(1, 16, 4) self.encodeConv2 = Conv2d(16, 32, 2) self.encodeFC1 = Linear(800, hidden_size) self.encodeFC2 = Linear(hidden_size, self.latent_size) self.decodeFC1 = Linear(self.latent_size, 13 * 13) self.decodeConv1 = ConvTranspose2d(1, 1, 2) self.decodeFC2 = Linear(14 * 14, 28 * 28) def encode(self, x): x = MaxPool2d(2)(F.relu(self.encodeConv1(x))) x = MaxPool2d(2)(F.relu(self.encodeConv2(x))) x = x.view(-1, 800) x = F.relu(self.encodeFC1(x)) x = T.sigmoid(self.encodeFC2(x)) return x def decode(self, x): x = F.relu(self.decodeFC1(x)) x = x.view(-1, 1, 13, 13) x = F.relu(self.decodeConv1(x)) x = x.view(-1, 14 * 14) x = T.sigmoid(self.decodeFC2(x)) x = x.view(-1, 1, 28, 28) return x def forward(self, x): return self.decode(self.encode(x)) # Hyper params latent_size = 10 hidden_size = 256 epochs = 3 batch_size = 10 learning_rate = .0002 train_or_test = 'test' path = models_dir + '/deep_autoencoder' # Training device device = T.device('cuda:0' if cuda.is_available() else 'cpu') # Dataset trans = transforms.ToTensor() dataset = MNIST(root=dataset_dir, train=True, download=True, transform=trans) loader = T.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0) # Model net = Net(hidden_size, latent_size) net.to(device) if train_or_test == 'train': # Load if os.path.exists(path): net.load_state_dict(T.load(path)) print('Model loaded') # Train optim = T.optim.Adam(net.parameters(), lr=learning_rate, betas=(.9, .999)) criterion = nn.MSELoss() for e in range(epochs): avg_loss = 0 for i, data in enumerate(loader, 0): # Only inputs (no labels) inputs, _ = data # Zero the parameter gradients optim.zero_grad() # Predictions x = inputs.to(device) y = net(x) # Back prop loss = criterion(y, x) loss.backward() optim.step() avg_loss += loss.item() # Stats print_freq = 100 if i % print_freq == print_freq - 1: print(f'Epoch {e + 1:2d}, Batch {i + 1:5d}, Loss {avg_loss / print_freq:.3f}') avg_loss = 0.0 # Save T.save(net.state_dict(), path) print('Model trained and saved') else: # Load net.load_state_dict(T.load(path)) # Test dataiter = iter(loader) images, _ = dataiter.next() # Show ground truth gridshow(torchvision.utils.make_grid(images)) # Show predictions with T.no_grad(): preds = T.cat([net(images[i].view(1, 1, 28, 28).to(device)).view(1, 1, 28, 28).cpu() for i in range(batch_size)]) preds = T.tensor(preds) gridshow(torchvision.utils.make_grid(preds))
[ "torch.nn.MSELoss", "matplotlib.pyplot.show", "torch.nn.ConvTranspose2d", "torch.utils.data.DataLoader", "torch.load", "torch.nn.Conv2d", "os.path.exists", "numpy.transpose", "torchvision.transforms.ToPILImage", "torchvision.utils.make_grid", "torch.cuda.is_available", "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.no_grad", "torchvision.datasets.MNIST", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((2274, 2295), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2293, 2295), False, 'from torchvision import transforms\n'), ((2306, 2373), 'torchvision.datasets.MNIST', 'MNIST', ([], {'root': 'dataset_dir', 'train': '(True)', 'download': '(True)', 'transform': 'trans'}), '(root=dataset_dir, train=True, download=True, transform=trans)\n', (2311, 2373), False, 'from torchvision.datasets import MNIST\n'), ((2383, 2471), 'torch.utils.data.DataLoader', 'T.utils.data.DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(0)'}), '(dataset, batch_size=batch_size, shuffle=True,\n num_workers=0)\n', (2406, 2471), True, 'import torch as T\n'), ((901, 911), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (909, 911), True, 'import matplotlib.pyplot as plt\n'), ((2576, 2596), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (2590, 2596), False, 'import os\n'), ((2778, 2790), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (2788, 2790), False, 'from torch import nn\n'), ((3978, 3993), 'torch.tensor', 'T.tensor', (['preds'], {}), '(preds)\n', (3986, 3993), True, 'import torch as T\n'), ((865, 895), 'numpy.transpose', 'np.transpose', (['npimg', '(1, 2, 0)'], {}), '(npimg, (1, 2, 0))\n', (877, 895), True, 'import numpy as np\n'), ((1081, 1097), 'torch.nn.Conv2d', 'Conv2d', (['(1)', '(16)', '(4)'], {}), '(1, 16, 4)\n', (1087, 1097), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1125, 1142), 'torch.nn.Conv2d', 'Conv2d', (['(16)', '(32)', '(2)'], {}), '(16, 32, 2)\n', (1131, 1142), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1168, 1192), 'torch.nn.Linear', 'Linear', (['(800)', 'hidden_size'], {}), '(800, hidden_size)\n', (1174, 1192), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1218, 1255), 'torch.nn.Linear', 'Linear', (['hidden_size', 'self.latent_size'], {}), '(hidden_size, self.latent_size)\n', (1224, 1255), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1282, 1315), 'torch.nn.Linear', 'Linear', (['self.latent_size', '(13 * 13)'], {}), '(self.latent_size, 13 * 13)\n', (1288, 1315), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1343, 1367), 'torch.nn.ConvTranspose2d', 'ConvTranspose2d', (['(1)', '(1)', '(2)'], {}), '(1, 1, 2)\n', (1358, 1367), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1393, 1417), 'torch.nn.Linear', 'Linear', (['(14 * 14)', '(28 * 28)'], {}), '(14 * 14, 28 * 28)\n', (1399, 1417), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((2223, 2242), 'torch.cuda.is_available', 'cuda.is_available', ([], {}), '()\n', (2240, 2242), False, 'from torch import cuda\n'), ((3637, 3649), 'torch.load', 'T.load', (['path'], {}), '(path)\n', (3643, 3649), True, 'import torch as T\n'), ((3761, 3796), 'torchvision.utils.make_grid', 'torchvision.utils.make_grid', (['images'], {}), '(images)\n', (3788, 3796), False, 'import torchvision\n'), ((3831, 3842), 'torch.no_grad', 'T.no_grad', ([], {}), '()\n', (3840, 3842), True, 'import torch as T\n'), ((4007, 4041), 'torchvision.utils.make_grid', 'torchvision.utils.make_grid', (['preds'], {}), '(preds)\n', (4034, 4041), False, 'import torchvision\n'), ((1456, 1468), 'torch.nn.MaxPool2d', 'MaxPool2d', (['(2)'], {}), '(2)\n', (1465, 1468), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1510, 1522), 'torch.nn.MaxPool2d', 'MaxPool2d', (['(2)'], {}), '(2)\n', (1519, 1522), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((2626, 2638), 'torch.load', 'T.load', (['path'], {}), '(path)\n', (2632, 2638), True, 'import torch as T\n'), ((750, 773), 'torchvision.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (771, 773), False, 'from torchvision import transforms\n')]
# Copyright (c) 2018 <NAME> # Copyright (c) 2018 <NAME> # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) from phylanx import Phylanx import numpy as np @Phylanx def foo(): local_a = np.array((2, 1)) local_a[0] += 55 return local_a assert (np.array((57, 1)) == foo()).any()
[ "numpy.array" ]
[((297, 313), 'numpy.array', 'np.array', (['(2, 1)'], {}), '((2, 1))\n', (305, 313), True, 'import numpy as np\n'), ((364, 381), 'numpy.array', 'np.array', (['(57, 1)'], {}), '((57, 1))\n', (372, 381), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import matplotlib import numpy as np import datetime from dateutil.tz import tzutc def plot_water_levels(station, dates, levels): """Task 2E: Plots water level against time""" #Assign variables range_high = [station.typical_range[1]]*len(dates) range_low = [station.typical_range[0]]*len(dates) # Plot plt.plot(dates, levels, label="Water Level") plt.plot(dates, range_high, label="Typical High") plt.plot(dates, range_low, label="Typical Low") # Add axis labels, add legend, rotate date labels and add plot title plt.xlabel('Date') plt.ylabel('Water Level (m)') plt.legend() plt.xticks(rotation=45) plt.title(station.name) # Display plot plt.tight_layout() # This makes sure plot does not cut off date labels return plt.show() def plot_water_level_with_fit(station, dates, levels, p): """Task 2F: Plots the water level data and the best-fit polynomial""" # Convert dates to floats dates_float = matplotlib.dates.date2num(dates) # Create a shifted time list dates_shifted = [] for i in range(len(dates_float)): dates_shifted.append(dates_float[i] - dates_float[0]) # Find coefficients of best-fit polynomial f(x) of degree p p_coeff = np.polyfit(dates_shifted, levels, p) # Convert coefficient into a polynomial that can be evaluated, # e.g. poly(0.3) poly = np.poly1d(p_coeff) # Plot original data points plt.plot(dates_shifted, levels, '.', label='Data Points') # Plot polynomial fit and typical range low/high at 30 points along interval # (note that polynomial is evaluated using the date shift) x = np.linspace(dates_shifted[0], dates_shifted[-1], 30) range_high = [station.typical_range[1]]*len(x) range_low = [station.typical_range[0]]*len(x) plt.plot(x, poly(x - x[0]), label="Polynomial Fit") plt.plot(x, range_high, label="Typical High") plt.plot(x, range_low, label="Typical Low") # Add axis labels, add legend, rotate date labels and add plot title plt.xlabel('Dates from {}'.format(dates[-1])) plt.ylabel('Water Level (m)') plt.legend() plt.xticks(rotation=45) plt.title(station.name) # Display plot plt.tight_layout() # This makes sure plot does not cut off date labels return plt.show()
[ "matplotlib.pyplot.title", "numpy.poly1d", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.polyfit", "matplotlib.pyplot.legend", "matplotlib.pyplot.xticks", "numpy.linspace", "matplotlib.dates.date2num", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout" ]
[((363, 407), 'matplotlib.pyplot.plot', 'plt.plot', (['dates', 'levels'], {'label': '"""Water Level"""'}), "(dates, levels, label='Water Level')\n", (371, 407), True, 'import matplotlib.pyplot as plt\n'), ((412, 461), 'matplotlib.pyplot.plot', 'plt.plot', (['dates', 'range_high'], {'label': '"""Typical High"""'}), "(dates, range_high, label='Typical High')\n", (420, 461), True, 'import matplotlib.pyplot as plt\n'), ((466, 513), 'matplotlib.pyplot.plot', 'plt.plot', (['dates', 'range_low'], {'label': '"""Typical Low"""'}), "(dates, range_low, label='Typical Low')\n", (474, 513), True, 'import matplotlib.pyplot as plt\n'), ((592, 610), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Date"""'], {}), "('Date')\n", (602, 610), True, 'import matplotlib.pyplot as plt\n'), ((615, 644), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water Level (m)"""'], {}), "('Water Level (m)')\n", (625, 644), True, 'import matplotlib.pyplot as plt\n'), ((649, 661), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (659, 661), True, 'import matplotlib.pyplot as plt\n'), ((666, 689), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (676, 689), True, 'import matplotlib.pyplot as plt\n'), ((694, 717), 'matplotlib.pyplot.title', 'plt.title', (['station.name'], {}), '(station.name)\n', (703, 717), True, 'import matplotlib.pyplot as plt\n'), ((742, 760), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (758, 760), True, 'import matplotlib.pyplot as plt\n'), ((826, 836), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (834, 836), True, 'import matplotlib.pyplot as plt\n'), ((1019, 1051), 'matplotlib.dates.date2num', 'matplotlib.dates.date2num', (['dates'], {}), '(dates)\n', (1044, 1051), False, 'import matplotlib\n'), ((1288, 1324), 'numpy.polyfit', 'np.polyfit', (['dates_shifted', 'levels', 'p'], {}), '(dates_shifted, levels, p)\n', (1298, 1324), True, 'import numpy as np\n'), ((1425, 1443), 'numpy.poly1d', 'np.poly1d', (['p_coeff'], {}), '(p_coeff)\n', (1434, 1443), True, 'import numpy as np\n'), ((1481, 1538), 'matplotlib.pyplot.plot', 'plt.plot', (['dates_shifted', 'levels', '"""."""'], {'label': '"""Data Points"""'}), "(dates_shifted, levels, '.', label='Data Points')\n", (1489, 1538), True, 'import matplotlib.pyplot as plt\n'), ((1692, 1744), 'numpy.linspace', 'np.linspace', (['dates_shifted[0]', 'dates_shifted[-1]', '(30)'], {}), '(dates_shifted[0], dates_shifted[-1], 30)\n', (1703, 1744), True, 'import numpy as np\n'), ((1911, 1956), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'range_high'], {'label': '"""Typical High"""'}), "(x, range_high, label='Typical High')\n", (1919, 1956), True, 'import matplotlib.pyplot as plt\n'), ((1961, 2004), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'range_low'], {'label': '"""Typical Low"""'}), "(x, range_low, label='Typical Low')\n", (1969, 2004), True, 'import matplotlib.pyplot as plt\n'), ((2133, 2162), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water Level (m)"""'], {}), "('Water Level (m)')\n", (2143, 2162), True, 'import matplotlib.pyplot as plt\n'), ((2167, 2179), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2177, 2179), True, 'import matplotlib.pyplot as plt\n'), ((2184, 2207), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (2194, 2207), True, 'import matplotlib.pyplot as plt\n'), ((2212, 2235), 'matplotlib.pyplot.title', 'plt.title', (['station.name'], {}), '(station.name)\n', (2221, 2235), True, 'import matplotlib.pyplot as plt\n'), ((2260, 2278), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2276, 2278), True, 'import matplotlib.pyplot as plt\n'), ((2344, 2354), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2352, 2354), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np from scipy.integrate import quad import matplotlib.pyplot as plt def Redshift(n0, n1, n2, z1=3.6, z=np.linspace(0,10,num=1001)): Rlow = np.power((1.0 + z), n1) Rhigh = np.power((1.0 + z), n2) rbrk = np.power((1.0 + z1), n1 - n2) R = Rlow * (z <= z1) + rbrk * Rhigh * (z > z1) R *= n0 / R[0] return z, R z, R = Redshift(0.84, 2.07, -0.7) plt.plot(z,R,'-k') plt.xlabel(r'$z$') plt.ylabel(r'$\mathcal{R}(z)$') plt.grid() #plt.gca().set_yscale('log') plt.show() #### This computes E(z) and int_0^z dz'/E(z') and saves to file def Efunc(z): Omega_m = 0.274 Omega_lambda = 0.726 E = np.sqrt(Omega_m * np.power((1 + z), 3) + Omega_lambda) return E def Efuncinv(z): return 1.0 / Efunc(z) z = np.linspace(0,10,num=1001) dz = z[1] - z[0] E = Efunc(z) Eics = np.zeros(E.shape) for i in range(len(Eics)): Eics[i] = (quad(Efuncinv, 0, z[i])[0])**2.0 #Eics = np.square(np.cumsum(1.0 / E) * dz) #Eics[1:] = Eics[:-1] #Eics[0] = 0 Eall = Eics / E; z = z.reshape(z.shape[0],1) E = E.reshape(E.shape[0],1) Eics = Eics.reshape(Eics.shape[0],1) Eall = Eall.reshape(Eall.shape[0],1) d = np.concatenate((z,E,Eics,Eall),axis=1) np.savetxt('support_data/splines_Ez.txt',d,fmt='%0.9lf') z2, R = Redshift(0.84, 2.07, -0.7, z=z) Rp = R / (1+z) * Eall plt.plot(z,Rp,'-k') plt.plot(z,R/(1+z),'--b') plt.plot(z,Eall,'-.r') #plt.plot(z,np.cumsum(Eall),'-g') plt.xlabel(r'$z$') plt.grid() plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.integrate.quad", "numpy.power", "numpy.savetxt", "numpy.zeros", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "numpy.concatenate" ]
[((365, 385), 'matplotlib.pyplot.plot', 'plt.plot', (['z', 'R', '"""-k"""'], {}), "(z, R, '-k')\n", (373, 385), True, 'import matplotlib.pyplot as plt\n'), ((384, 401), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$z$"""'], {}), "('$z$')\n", (394, 401), True, 'import matplotlib.pyplot as plt\n'), ((403, 434), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mathcal{R}(z)$"""'], {}), "('$\\\\mathcal{R}(z)$')\n", (413, 434), True, 'import matplotlib.pyplot as plt\n'), ((435, 445), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (443, 445), True, 'import matplotlib.pyplot as plt\n'), ((475, 485), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (483, 485), True, 'import matplotlib.pyplot as plt\n'), ((723, 751), 'numpy.linspace', 'np.linspace', (['(0)', '(10)'], {'num': '(1001)'}), '(0, 10, num=1001)\n', (734, 751), True, 'import numpy as np\n'), ((789, 806), 'numpy.zeros', 'np.zeros', (['E.shape'], {}), '(E.shape)\n', (797, 806), True, 'import numpy as np\n'), ((1112, 1154), 'numpy.concatenate', 'np.concatenate', (['(z, E, Eics, Eall)'], {'axis': '(1)'}), '((z, E, Eics, Eall), axis=1)\n', (1126, 1154), True, 'import numpy as np\n'), ((1152, 1210), 'numpy.savetxt', 'np.savetxt', (['"""support_data/splines_Ez.txt"""', 'd'], {'fmt': '"""%0.9lf"""'}), "('support_data/splines_Ez.txt', d, fmt='%0.9lf')\n", (1162, 1210), True, 'import numpy as np\n'), ((1274, 1295), 'matplotlib.pyplot.plot', 'plt.plot', (['z', 'Rp', '"""-k"""'], {}), "(z, Rp, '-k')\n", (1282, 1295), True, 'import matplotlib.pyplot as plt\n'), ((1294, 1325), 'matplotlib.pyplot.plot', 'plt.plot', (['z', '(R / (1 + z))', '"""--b"""'], {}), "(z, R / (1 + z), '--b')\n", (1302, 1325), True, 'import matplotlib.pyplot as plt\n'), ((1320, 1344), 'matplotlib.pyplot.plot', 'plt.plot', (['z', 'Eall', '"""-.r"""'], {}), "(z, Eall, '-.r')\n", (1328, 1344), True, 'import matplotlib.pyplot as plt\n'), ((1377, 1394), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$z$"""'], {}), "('$z$')\n", (1387, 1394), True, 'import matplotlib.pyplot as plt\n'), ((1396, 1406), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1404, 1406), True, 'import matplotlib.pyplot as plt\n'), ((1407, 1417), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1415, 1417), True, 'import matplotlib.pyplot as plt\n'), ((120, 148), 'numpy.linspace', 'np.linspace', (['(0)', '(10)'], {'num': '(1001)'}), '(0, 10, num=1001)\n', (131, 148), True, 'import numpy as np\n'), ((157, 178), 'numpy.power', 'np.power', (['(1.0 + z)', 'n1'], {}), '(1.0 + z, n1)\n', (165, 178), True, 'import numpy as np\n'), ((190, 211), 'numpy.power', 'np.power', (['(1.0 + z)', 'n2'], {}), '(1.0 + z, n2)\n', (198, 211), True, 'import numpy as np\n'), ((222, 249), 'numpy.power', 'np.power', (['(1.0 + z1)', '(n1 - n2)'], {}), '(1.0 + z1, n1 - n2)\n', (230, 249), True, 'import numpy as np\n'), ((846, 869), 'scipy.integrate.quad', 'quad', (['Efuncinv', '(0)', 'z[i]'], {}), '(Efuncinv, 0, z[i])\n', (850, 869), False, 'from scipy.integrate import quad\n'), ((630, 648), 'numpy.power', 'np.power', (['(1 + z)', '(3)'], {}), '(1 + z, 3)\n', (638, 648), True, 'import numpy as np\n')]
import csv import os import logging import argparse import random import collections import operator from tqdm import tqdm, trange import numpy as np import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_pretrained_bert.optimization import BertAdam from tensorboardX import SummaryWriter import pdb import matplotlib.pyplot as plt import seaborn seaborn.set_context(context="talk") logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) ############################################################################### # Data Preprocessing ############################################################################### class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None, prev_label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label # Target slots in this training task self.prev_label = prev_label # trained slots in previous tasks class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_len, label_id, prev_label_id): self.input_ids = input_ids self.input_len = input_len self.label_id = label_id self.prev_label_id = prev_label_id # trained slots in previous tasks class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding='utf-8') as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if len(line) > 0 and line[0][0] == '#': # ignore comments (starting with '#') continue lines.append(line) return lines class Processor(DataProcessor): """Processor for the belief tracking dataset (GLUE version).""" def __init__(self, config): super(Processor, self).__init__() import json if config.data_dir == "data/woz" or config.data_dir=="data/woz-turn": fp_ontology = open(os.path.join(config.data_dir, "ontology_dstc2_en.json"), "r") ontology = json.load(fp_ontology) ontology = ontology["informable"] del ontology["request"] for slot in ontology.keys(): ontology[slot].append("do not care") ontology[slot].append("none") fp_ontology.close() elif config.data_dir == "data/multiwoz": fp_ontology = open(os.path.join(config.data_dir, "ontology.json"), "r") ontology = json.load(fp_ontology) for slot in ontology.keys(): ontology[slot].append("none") fp_ontology.close() if not config.target_slot == 'all': slot_idx = {'attraction':'0:1:2', 'bus':'3:4:5:6', 'hospital':'7', 'hotel':'8:9:10:11:12:13:14:15:16:17',\ 'restaurant':'18:19:20:21:22:23:24', 'taxi':'25:26:27:28', 'train':'29:30:31:32:33:34'} target_slot =[] prev_slot = [] for key, value in slot_idx.items(): if key == config.target_slot: target_slot.append(value) else: prev_slot.append(value) config.target_slot = ':'.join(target_slot) config.prev_slot = ':'.join(prev_slot) else: raise NotImplementedError() # sorting the ontology according to the alphabetic order of the slots self.ontology = collections.OrderedDict(sorted(ontology.items())) # select slots to train self.target_slot = [] self.prev_slot = [] self.target_slot_idx = sorted([ int(x) for x in config.target_slot.split(':')]) self.prev_slot_idx = sorted([ int(x) for x in config.prev_slot.split(':')]) ontology_items = list(self.ontology.items()) for idx, domain in enumerate(ontology_items): slot, value = domain if slot == "pricerange": slot = "price range" if idx in self.target_slot_idx: self.target_slot.append(slot) elif idx in self.prev_slot_idx: self.prev_slot.append(slot) self.all_slot = self.prev_slot + self.target_slot logger.info('Processor: previous slots: ' + ', '.join(self.prev_slot)) logger.info('Processor: target slots: '+ ', '.join(self.target_slot)) def get_train_examples(self, data_dir, accumulation=False): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train", accumulation) def get_dev_examples(self, data_dir, accumulation=False): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev", accumulation) def get_test_examples(self, data_dir, accumulation=False): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test", accumulation) def get_labels(self): """See base class.""" return [ self.ontology[slot] for slot in self.target_slot] def get_prev_labels(self): """See base class.""" return [ self.ontology[slot] for slot in self.prev_slot] def _create_examples(self, lines, set_type, accumulation=False): """Creates examples for the training and dev sets.""" prev_dialogue_index = None examples = [] for (i, line) in enumerate(lines): guid = "%s-%s-%s" % (set_type, line[0], line[1]) # line[0]: dialogue index, line[1]: turn index if accumulation: if prev_dialogue_index is None or prev_dialogue_index != line[0]: text_a = line[2] text_b = line[3] prev_dialogue_index = line[0] else: # The symbol '#' will be replaced with '[SEP]' after tokenization. text_a = line[2] + " # " + text_a text_b = line[3] + " # " + text_b else: text_a = line[2] # line[2]: user utterance text_b = line[3] # line[3]: system response label = [ line[4+idx] for idx in self.target_slot_idx] prev_label = [ line[4+idx] for idx in self.prev_slot_idx] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, prev_label=prev_label)) return examples def convert_examples_to_features(examples, label_list, prev_label_list, max_seq_length, tokenizer, max_turn_length): """Loads a data file into a list of `InputBatch`s.""" slot_dim = len(label_list) prev_slot_dim = len(prev_label_list) def _hard_coding_label(label): return 'do not care' if label=='dontcare' else label def _get_label(label, label_list): label_id = [] label_info = '' label_map = [{_label: i for i, _label in enumerate(labels)} for labels in label_list] for i, label in enumerate(label): label = _hard_coding_label(label) label_id.append(label_map[i][label]) label_info += '%s (id = %d) ' % (label, label_map[i][label]) return label_id, label_info features = [] prev_dialogue_idx = None all_padding = [0] * max_seq_length all_padding_len = [0, 0] max_turn = 0 for (ex_index, example) in enumerate(examples): if max_turn < int(example.guid.split('-')[2]): max_turn = int(example.guid.split('-')[2]) max_turn_length = min(max_turn+1, max_turn_length) logger.info("max_turn_length = %d" % max_turn) for (ex_index, example) in enumerate(examples): tokens_a = [x if x != '#' else '[SEP]' for x in tokenizer.tokenize(example.text_a)] tokens_b = None if example.text_b: tokens_b = [x if x != '#' else '[SEP]' for x in tokenizer.tokenize(example.text_b)] _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] tokens = ["[CLS]"] + tokens_a + ["[SEP]"] input_len = [len(tokens), 0] if tokens_b: tokens += tokens_b + ["[SEP]"] input_len[1] = len(tokens_b) + 1 input_ids = tokenizer.convert_tokens_to_ids(tokens) # Zero-pad up to the sequence length. input_ids += [0] * (max_seq_length - len(input_ids)) # Note: padding idx = 0 assert len(input_ids) == max_seq_length label_id, label_info = _get_label(example.label, label_list) prev_label_id, prev_label_info = _get_label(example.prev_label, prev_label_list) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % example.guid) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_len: %s" % " ".join([str(x) for x in input_len])) logger.info("label: " + label_info) logger.info("previous label: " + prev_label_info) curr_dialogue_idx = example.guid.split('-')[1] curr_turn_idx = int(example.guid.split('-')[2]) if (prev_dialogue_idx is not None) and (prev_dialogue_idx != curr_dialogue_idx): if prev_turn_idx < max_turn_length: features += [InputFeatures(input_ids=all_padding, input_len=all_padding_len, label_id=[-1]*slot_dim, prev_label_id=[-1] * prev_slot_dim)] * (max_turn_length - prev_turn_idx - 1) assert len(features) % max_turn_length == 0 if prev_dialogue_idx is None or prev_turn_idx < max_turn_length: features.append(InputFeatures(input_ids=input_ids, input_len=input_len, label_id=label_id, prev_label_id=prev_label_id, )) prev_dialogue_idx = curr_dialogue_idx prev_turn_idx = curr_turn_idx if prev_turn_idx < max_turn_length: features += [InputFeatures(input_ids=all_padding, input_len=all_padding_len, label_id=[-1]*slot_dim, prev_label_id=[-1]*prev_slot_dim)] * (max_turn_length - prev_turn_idx - 1) assert len(features) % max_turn_length == 0 all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_len= torch.tensor([f.input_len for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) all_prev_label_ids = torch.tensor([f.prev_label_id for f in features], dtype=torch.long) # reshape tensors to [batch, turn, word] all_input_ids = all_input_ids.view(-1, max_turn_length, max_seq_length) all_input_len = all_input_len.view(-1, max_turn_length, 2) all_label_ids = all_label_ids.view(-1, max_turn_length, slot_dim) all_prev_label_ids = all_prev_label_ids.view(-1, max_turn_length, prev_slot_dim) return all_input_ids, all_input_len, all_label_ids, all_prev_label_ids def get_label_embedding(labels, max_seq_length, tokenizer, device): features = [] for label in labels: label_tokens = ["[CLS]"] + tokenizer.tokenize(label) + ["[SEP]"] label_token_ids = tokenizer.convert_tokens_to_ids(label_tokens) label_len = len(label_token_ids) label_padding = [0] * (max_seq_length - len(label_token_ids)) label_token_ids += label_padding assert len(label_token_ids) == max_seq_length features.append((label_token_ids, label_len)) all_label_token_ids = torch.tensor([f[0] for f in features], dtype=torch.long).to(device) all_label_len = torch.tensor([f[1] for f in features], dtype=torch.long).to(device) return all_label_token_ids, all_label_len def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() ############################################################################### # Miscellaneous functions ############################################################################### def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def warmup_linear(x, warmup=0.002): if x < warmup: return x / warmup return 1.0 - x ############################################################################### # Main ############################################################################### def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument('--data_dir', type=str, required=True, help='location of the data corpus') parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--bert_dir", default='/gfs/nlp/.pytorch_pretrained_bert', type=str, required=False, help="The directory of the pretrained BERT model") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train: bert, bert-gru, bert-lstm, " "bert-label-embedding, bert-gru-label-embedding, bert-lstm-label-embedding") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument('--load_path', type=str, default='', help='pretrained model directory name') parser.add_argument("--target_slot", default='', type=str, required=True, help="Target slot idx to train model. ex. '0:1:2 or an excluding slot name 'attraction'" ) parser.add_argument("--prev_slot", default='', type=str, required=True, help="Previous trained slots. ex. '0:1:2 or an excluding slot name 'attraction'" ) parser.add_argument("--tf_dir", default='tensorboard', type=str, required=False, help="Tensorboard directory") parser.add_argument("--nbt", default='rnn', type=str, required=True, help="nbt type: rnn or transformer or turn" ) parser.add_argument("--fix_utterance_encoder", action='store_true', help="Do not train BERT utterance encoder") ## Other parameters parser.add_argument("--max_seq_length", default=64, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--max_label_length", default=32, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--max_turn_length", default=22, type=int, help="The maximum total input turn length. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument('--hidden_dim', type=int, default=100, help="hidden dimension used in belief tracker") parser.add_argument('--num_rnn_layers', type=int, default=1, help="number of RNN layers") parser.add_argument('--zero_init_rnn', action='store_true', help="set initial hidden of rnns zero") parser.add_argument('--skip_connect', type=str, default=False, help="skip-connection") parser.add_argument('--attn_head', type=int, default=4, help="the number of heads in multi-headed attention") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the test set.") parser.add_argument("--do_analyze", action='store_true', help="Whether to run analysis on the test set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--set_label_encoder_trainable", action='store_true', help="Set this flag if you want to set the label encoder trainable. \n" "This option is valid only when using label embeddings. \n") parser.add_argument("--distance_metric", type=str, default="cosine", help="The metric for distance between label embeddings: cosine, euclidean.") parser.add_argument("--train_batch_size", default=4, type=int, help="Total batch size for training.") parser.add_argument("--dev_batch_size", default=1, type=int, help="Total batch size for validation.") parser.add_argument("--eval_batch_size", default=16, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--patience", default=10.0, type=float, help="The number of epochs to allow no further improvement.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--lambda_ewc", default=0.1, type=float, help="Hyper-parameter for EWC") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument("--do_not_use_tensorboard", action='store_true', help="Whether to run eval on the test set.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) task_name = args.task_name.lower() tb_file_name = args.output_dir.split('/')[1] # Tensorboard logging if not args.do_not_use_tensorboard: summary_writer = SummaryWriter("./%s/%s" % (args.tf_dir, tb_file_name)) else: summary_writer = None fileHandler = logging.FileHandler(os.path.join(args.output_dir, "%s.txt"%(tb_file_name))) logger.addHandler(fileHandler) logger.info(args) # CUDA setting if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) # Set the random seed manually for reproducibility. random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval and not args.do_analyze: raise ValueError("At least one of `do_train` or `do_eval` must be True.") ############################################################################### # Load data ############################################################################### # Get Processor processor = Processor(args) prev_label_list = processor.get_prev_labels() # Slot value labels of Previous task target_label_list = processor.get_labels() # Slot value labels of Present task label_list = prev_label_list + target_label_list # All slot value labels num_labels = [len(labels) for labels in label_list] # Number of labels of all slots #prev_slot_id = processor.prev_slot_idx #target_slot_id = processor.target_slot_idx # wrong prev_slot_id = list(range(0, len(processor.prev_slot))) # List of slots in previous task target_slot_id = list(range(len(processor.prev_slot), len(processor.all_slot))) # list of slots in present task # tokenizer vocab_dir = os.path.join(args.bert_dir, '%s-vocab.txt' % args.bert_model) if not os.path.exists(vocab_dir): raise ValueError("Can't find %s " % vocab_dir) tokenizer = BertTokenizer.from_pretrained(vocab_dir, do_lower_case=args.do_lower_case) num_train_steps = None accumulation = False if args.do_train: train_examples = processor.get_train_examples(args.data_dir, accumulation=accumulation) dev_examples = processor.get_dev_examples(args.data_dir, accumulation=accumulation) num_train_steps = int(len(train_examples) / args.train_batch_size * args.num_train_epochs) num_dev_steps = int(len(dev_examples) / args.dev_batch_size * args.num_train_epochs) ## utterances all_input_ids, all_input_len, all_label_ids, all_prev_label_ids = convert_examples_to_features( train_examples, target_label_list, prev_label_list, args.max_seq_length, tokenizer, args.max_turn_length) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_steps) all_input_ids, all_input_len, all_label_ids, all_prev_label_ids \ = all_input_ids.to(device), all_input_len.to(device), all_label_ids.to(device), all_prev_label_ids.to(device) train_data = TensorDataset(all_input_ids, all_input_len, all_label_ids, all_prev_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) ## Dev ## utterances all_input_ids_dev, all_input_len_dev, all_label_ids_dev, all_prev_label_ids_dev = convert_examples_to_features( dev_examples, target_label_list, prev_label_list, args.max_seq_length, tokenizer, args.max_turn_length) logger.info("***** Running validation *****") logger.info(" Num examples = %d", len(dev_examples)) logger.info(" Batch size = %d", args.dev_batch_size) logger.info(" Num steps = %d", num_dev_steps) all_input_ids_dev, all_input_len_dev, all_label_ids_dev, all_prev_label_ids_dev = \ all_input_ids_dev.to(device), all_input_len_dev.to(device), all_label_ids_dev.to(device), all_prev_label_ids_dev.to(device) dev_data = TensorDataset(all_input_ids_dev, all_input_len_dev, all_label_ids_dev, all_prev_label_ids_dev) dev_sampler = SequentialSampler(dev_data) dev_dataloader = DataLoader(dev_data, sampler=dev_sampler, batch_size=args.dev_batch_size) logger.info("Loaded data!") ############################################################################### # Build the models ############################################################################### # Prepare model if args.nbt =='rnn': from BeliefTrackerSlotQueryMultiSlot import BeliefTracker if args.task_name.find("gru") == -1 and args.task_name.find("lstm") == -1: raise ValueError("Task name should include at least \"gru\" or \"lstm\"") elif args.nbt =='turn': from BeliefTrackerSlotQueryMultiSlotTurn import BeliefTracker elif args.nbt == 'transformer': from BeliefTrackerSlotQueryMultiSlotTransformer import BeliefTracker from BeliefTrackerSlotQueryMultiSlotEWC import EWC else: raise ValueError('nbt type should be either rnn or transformer') from BeliefTrackerSlotQueryMultiSlotEWC import EWC model = BeliefTracker(args, num_labels, device) if args.fp16: model.half() # Load pretrained model # in the case that slot and values are different between the training and evaluation ptr_model = torch.load(args.load_path, map_location=device) del_list = [] rename_list = [] for key in ptr_model.keys(): if ('slot_lookup' in key) or ('value_lookup' in key): # remove slot_lookup and value_lookup del_list.append(key) if ('rnn.' in key): # rename rnn -> nbt, rename_list.append(key) for key in del_list: del ptr_model[key] for key in rename_list: new_key = key.replace('rnn.', 'nbt.') ptr_model[new_key] = ptr_model[key] del ptr_model[key] state = model.state_dict() state.update(ptr_model) model.load_state_dict(state) model.to(device) ## Get slot-value embeddings label_token_ids, label_len = [], [] for labels in label_list: token_ids, lens = get_label_embedding(labels, args.max_label_length, tokenizer, device) label_token_ids.append(token_ids) label_len.append(lens) ## Get slot-type embeddings ## Note: slot embeddings are ordered as [previous slots + present target slots] slot_token_ids, slot_len = \ get_label_embedding(processor.all_slot, args.max_label_length, tokenizer, device) model.initialize_slot_value_lookup(label_token_ids, label_len, slot_token_ids, slot_len) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer if args.do_train: def get_optimizer_grouped_parameters(model): param_optimizer = [(n, p) for n, p in model.named_parameters() if p.requires_grad] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01, 'lr': args.learning_rate}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, 'lr': args.learning_rate}, ] return optimizer_grouped_parameters if n_gpu == 1: optimizer_grouped_parameters = get_optimizer_grouped_parameters(model) else: optimizer_grouped_parameters = get_optimizer_grouped_parameters(model.module) t_total = num_train_steps if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=t_total) logger.info(optimizer) ############################################################################### # Training code ############################################################################### if args.do_train: logger.info("Training...") global_step = 0 last_update = None best_loss = None #### EWC: calculate Fisher ewc = EWC(model, dev_dataloader, oldtask=prev_slot_id, num_labels=num_labels, device=device, n_gpu=n_gpu) for epoch in trange(int(args.num_train_epochs), desc="Epoch"): # for epoch in trange(1): #### TRAIN model.train() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_len, label_ids, _ = batch if n_gpu == 1: loss_, loss_slot, acc, acc_slot, _ = model(input_ids, input_len, label_ids, n_gpu, target_slot=target_slot_id) loss_ewc = ewc.penalty(model) loss = loss_ + args.lambda_ewc * loss_ewc else: loss_, _, acc, acc_slot, _ = model(input_ids, input_len, label_ids, n_gpu, target_slot=target_slot_id) loss_ = loss_.mean() acc = acc.mean() acc_slot = acc_slot.mean(0) loss_ewc = ewc.penalty(model) loss = loss_ + args.lambda_ewc * loss_ewc if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() if summary_writer is not None: summary_writer.add_scalar("Epoch", epoch, global_step) summary_writer.add_scalar("Train/Loss", loss_, global_step) summary_writer.add_scalar("Train/Loss_EWC", loss_ewc, global_step) summary_writer.add_scalar("Train/Loss_Total", loss, global_step) summary_writer.add_scalar("Train/JointAcc", acc, global_step) if n_gpu == 1: for i, slot in enumerate(processor.target_slot): summary_writer.add_scalar("Train/Loss_%s" % slot.replace(' ','_'), loss_slot[i], global_step) summary_writer.add_scalar("Train/Acc_%s" % slot.replace(' ','_'), acc_slot[i], global_step) tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: # modify learning rate with special warm up BERT uses lr_this_step = args.learning_rate * warmup_linear(global_step / t_total, args.warmup_proportion) if summary_writer is not None: summary_writer.add_scalar("Train/LearningRate", lr_this_step, global_step) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 # Perform evaluation on validation dataset model.eval() dev_loss = 0 dev_acc = 0 dev_loss_slot, dev_acc_slot = None, None nb_dev_examples, nb_dev_steps = 0, 0 prev_dev_loss = 0 prev_dev_acc = 0 prev_dev_loss_slot, prev_dev_acc_slot = None, None prev_nb_dev_examples = 0 for step, batch in enumerate(tqdm(dev_dataloader, desc="Validation")): batch = tuple(t.to(device) for t in batch) input_ids, input_len, label_ids, prev_label_ids = batch if input_ids.dim() == 2: input_ids = input_ids.unsqueeze(0) input_len = input_len.unsqueeze(0) label_ids = label_ids.unsuqeeze(0) prev_label_ids = prev_label_ids.unsuqeeze(0) with torch.no_grad(): if n_gpu == 1: loss_, loss_slot, acc, acc_slot, _ = model(input_ids, input_len, label_ids, n_gpu, target_slot=target_slot_id) loss = loss_ + args.lambda_ewc * ewc.penalty(model) prev_loss, prev_loss_slot, prev_acc, prev_acc_slot, _ = model(input_ids, input_len, prev_label_ids, n_gpu, target_slot=prev_slot_id) else: loss_, _, acc, acc_slot, _ = model(input_ids, input_len, label_ids, n_gpu, target_slot=target_slot_id) loss_ = loss_.mean() acc = acc.mean() acc_slot = acc_slot.mean(0) loss_ewc = ewc.penalty(model) loss = loss_ + args.lambda_ewc * loss_ewc prev_loss, _, prev_acc, prev_acc_slot, _ = model(input_ids, input_len, prev_label_ids, n_gpu, target_slot=prev_slot_id) prev_loss = prev_loss.mean() prev_acc = prev_acc.mean() prev_acc_slot = prev_acc_slot.mean(0) num_valid_turn = torch.sum(label_ids[:,:,0].view(-1) > -1, 0).item() dev_loss += loss.item() * num_valid_turn dev_acc += acc.item() * num_valid_turn prev_num_valid_turn = torch.sum(prev_label_ids[:,:,0].view(-1) > -1, 0).item() prev_dev_loss += prev_loss.item() * prev_num_valid_turn prev_dev_acc += prev_acc.item() * prev_num_valid_turn if n_gpu == 1: if dev_loss_slot is None: dev_loss_slot = [ l * num_valid_turn for l in loss_slot] dev_acc_slot = acc_slot * num_valid_turn prev_dev_loss_slot = [ l * prev_num_valid_turn for l in prev_loss_slot] prev_dev_acc_slot = prev_acc_slot * prev_num_valid_turn else: for i, l in enumerate(loss_slot): dev_loss_slot[i] = dev_loss_slot[i] + l * num_valid_turn dev_acc_slot += acc_slot * num_valid_turn for i, l in enumerate(prev_loss_slot): prev_dev_loss_slot[i] = prev_dev_loss_slot[i] + l * prev_num_valid_turn prev_dev_acc_slot += prev_acc_slot * prev_num_valid_turn nb_dev_examples += num_valid_turn prev_nb_dev_examples += prev_num_valid_turn dev_loss = dev_loss / nb_dev_examples dev_acc = dev_acc / nb_dev_examples prev_dev_loss = prev_dev_loss / prev_nb_dev_examples prev_dev_acc = prev_dev_acc / prev_nb_dev_examples if n_gpu == 1: dev_acc_slot = dev_acc_slot / nb_dev_examples prev_dev_acc_slot = prev_dev_acc_slot / prev_nb_dev_examples if summary_writer is not None: summary_writer.add_scalar("Validate/Loss", dev_loss, global_step) summary_writer.add_scalar("Validate/Acc", dev_acc, global_step) summary_writer.add_scalar("Validate/Prev_Loss", prev_dev_loss, global_step) summary_writer.add_scalar("Validate/Prev_Acc", prev_dev_acc, global_step) if n_gpu == 1: for i, slot in enumerate(processor.target_slot): summary_writer.add_scalar("Validate/Loss_%s" % slot.replace(' ','_'), dev_loss_slot[i]/nb_dev_examples, global_step) summary_writer.add_scalar("Validate/Acc_%s" % slot.replace(' ','_'), dev_acc_slot[i], global_step) for i, slot in enumerate(processor.prev_slot): summary_writer.add_scalar("Validate/Prev_Loss_%s" % slot.replace(' ','_'), prev_dev_loss_slot[i]/prev_nb_dev_examples, global_step) summary_writer.add_scalar("Validate/Prev_Acc_%s" % slot.replace(' ','_'), prev_dev_acc_slot[i], global_step) logger.info("*** Model Updated: Epoch=%d, Valid loss=%.6f, Valid acc=%.6f, Valid prev loss=%.6f, Valid prev acc=%.6f ***" \ % (epoch, dev_loss, dev_acc, prev_dev_loss, prev_dev_acc)) dev_loss = round(dev_loss, 6) if last_update is None or dev_loss < best_loss: # Save a trained model output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") if args.do_train: if n_gpu == 1: torch.save(model.state_dict(), output_model_file) else: torch.save(model.module.state_dict(), output_model_file) last_update = epoch best_loss = dev_loss best_acc = dev_acc logger.info("*** Model Updated: Epoch=%d, Validation Loss=%.6f, Validation Acc=%.6f ***" % (last_update, best_loss, best_acc)) else: logger.info("*** Model NOT Updated: Epoch=%d, Validation Loss=%.6f, Validation Acc=%.6f ***" % (epoch, dev_loss, dev_acc)) #if epoch > 100 and last_update + args.patience <= epoch: if last_update + args.patience <= epoch: break ############################################################################### # Evaluation ############################################################################### # Test output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") # Load a trained model that you have fine-tuned ptr_model = torch.load(output_model_file, map_location=device) del_list = [] for key in ptr_model.keys(): if ('slot' in key) or ('value' in key): del_list.append(key) for key in del_list: del ptr_model[key] if n_gpu > 1: model = model.module state = model.state_dict() state.update(ptr_model) model.load_state_dict(state) model.to(device) ## Get slot-value embeddings label_token_ids, label_len = [], [] for labels in label_list: token_ids, lens = get_label_embedding(labels, args.max_label_length, tokenizer, device) label_token_ids.append(token_ids) label_len.append(lens) ## Get slot-type embeddings ## Note: slot embeddings are ordered as [previous slots + present target slots] slot_token_ids, slot_len = \ get_label_embedding(processor.all_slot, args.max_label_length, tokenizer, device) model.initialize_slot_value_lookup(label_token_ids, label_len, slot_token_ids, slot_len) if n_gpu > 1: model = torch.nn.DataParallel(model) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_test_examples(args.data_dir, accumulation=accumulation) all_input_ids, all_input_len, all_label_ids, all_prev_label_ids = convert_examples_to_features( eval_examples, target_label_list, prev_label_list, args.max_seq_length, tokenizer, args.max_turn_length) all_input_ids, all_input_len, all_label_ids, all_prev_label_ids \ = all_input_ids.to(device), all_input_len.to(device), all_label_ids.to(device), all_prev_label_ids.to(device) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) eval_data = TensorDataset(all_input_ids, all_input_len, all_label_ids, all_prev_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 eval_loss_slot, eval_acc_slot = None, None nb_eval_steps, nb_eval_examples = 0, 0 prev_eval_loss, prev_eval_accuracy = 0, 0 prev_eval_loss_slot, prev_eval_acc_slot = None, None nb_eval_examples_prev = 0 for input_ids, input_len, label_ids, prev_label_ids in tqdm(eval_dataloader, desc="Evaluating"): if input_ids.dim() == 2: input_ids = input_ids.unsqueeze(0) input_len = input_len.unsqueeze(0) label_ids = label_ids.unsuqeeze(0) prev_label_ids = prev_label_ids.unsuqeeze(0) with torch.no_grad(): if n_gpu == 1: loss, loss_slot, acc, acc_slot, _ = model(input_ids, input_len, label_ids, n_gpu, target_slot=target_slot_id) prev_loss, prev_loss_slot, prev_acc, prev_acc_slot, _ = model(input_ids, input_len, prev_label_ids, n_gpu, target_slot=prev_slot_id) else: loss, loss_slot, acc, acc_slot, _ = model(input_ids, input_len, label_ids, n_gpu, target_slot=target_slot_id) loss = loss.mean() acc = acc.mean() acc_slot = acc_slot.mean(0) prev_loss, prev_loss_slot, prev_acc, prev_acc_slot, _ = model(input_ids, input_len, prev_label_ids, n_gpu, target_slot=prev_slot_id) prev_loss = prev_loss.mean() prev_acc = prev_acc.mean() prev_acc_slot = prev_acc_slot.mean(0) nb_eval_ex_prev = (prev_label_ids[:,:,0].view(-1) != -1).sum().item() nb_eval_examples_prev += nb_eval_ex_prev nb_eval_ex = (label_ids[:,:,0].view(-1) != -1).sum().item() nb_eval_examples += nb_eval_ex nb_eval_steps += 1 def _post_process(eval_loss, eval_loss_slot, eval_accuracy, eval_acc_slot, loss, loss_slot, acc, acc_slot, nb_eval_ex): eval_loss += loss.item() * nb_eval_ex eval_accuracy += acc.item() * nb_eval_ex if loss_slot is not None: if eval_loss_slot is None: eval_loss_slot = [ l * nb_eval_ex for l in loss_slot] else: for i, l in enumerate(loss_slot): eval_loss_slot[i] = eval_loss_slot[i] + l * nb_eval_ex if eval_acc_slot is None: eval_acc_slot = acc_slot * nb_eval_ex else: eval_acc_slot += acc_slot * nb_eval_ex return eval_loss, eval_loss_slot, eval_accuracy, eval_acc_slot eval_loss, eval_loss_slot, eval_accuracy, eval_acc_slot = \ _post_process(eval_loss, eval_loss_slot, eval_accuracy, eval_acc_slot, loss, loss_slot, acc, acc_slot, nb_eval_ex) prev_eval_loss, prev_eval_loss_slot, prev_eval_accuracy, prev_eval_acc_slot = \ _post_process(prev_eval_loss, prev_eval_loss_slot, prev_eval_accuracy, prev_eval_acc_slot, \ prev_loss, prev_loss_slot, prev_acc, prev_acc_slot, nb_eval_ex_prev) eval_loss /= nb_eval_examples if eval_loss_slot is None: # for multi-gpu eval_loss_slot = [0] prev_eval_loss_slot = [0] eval_accuracy = eval_accuracy / nb_eval_examples prev_eval_loss = prev_eval_loss / nb_eval_examples_prev prev_eval_accuracy = prev_eval_accuracy / nb_eval_examples_prev eval_acc_slot = eval_acc_slot / nb_eval_examples prev_eval_acc_slot = prev_eval_acc_slot / nb_eval_examples_prev total_acc_slot = {} for val, idx in zip(torch.cat([eval_acc_slot, prev_eval_acc_slot]), (target_slot_id+prev_slot_id)): total_acc_slot[idx] = val total_acc_slot = sorted(total_acc_slot.items(), key=operator.itemgetter(0)) loss = tr_loss / nb_tr_steps if args.do_train else None result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'loss': loss, 'eval_loss_slot':'\t'.join([ str(val/ nb_eval_examples) for val in eval_loss_slot]), 'eval_acc_slot':'\t'.join([ str((val).item()) for val in eval_acc_slot]), 'prev_eval_loss': prev_eval_loss, 'prev_eval_accuracy': prev_eval_accuracy, 'prev_eval_loss_slot': '\t'.join([str(val / nb_eval_examples_prev) for val in prev_eval_loss_slot]), 'prev_eval_acc_slot': '\t'.join([str((val).item()) for val in prev_eval_acc_slot]), 'total_acc_slot': '\t'.join([str(val[1].item()) for val in total_acc_slot]) } out_file_name = 'eval_results' if args.target_slot=='all': out_file_name += '_all' output_eval_file = os.path.join(args.output_dir, "%s.txt" % out_file_name) with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) ############################################################################### # Analyze: TODO ############################################################################### if args.do_analyze and (args.local_rank == -1 or torch.distributed.get_rank() == 0): pdb.set_trace() def draw(data, x, y, ax): seaborn.heatmap(data, xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, cbar=False, ax=ax) class_correct = [[0 for x in range(num_labels[i])] for i in range(len(num_labels))] class_count = [[0 for x in range(num_labels[i])] for i in range(len(num_labels))] eval_examples = processor.get_test_examples(args.data_dir, accumulation=accumulation) all_input_ids, all_input_len, all_label_ids = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer, args.max_turn_length) all_input_ids, all_input_len, all_label_ids = all_input_ids.to(device), all_input_len.to( device), all_label_ids.to(device) logger.info("***** Running analysis *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", 1) eval_data = TensorDataset(all_input_ids, all_input_len, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() none_value_id = [ len(val)-1 for val in label_list] incorrect_dialogs = [] attention_draw = 5 for input_ids, input_len, label_ids in tqdm(eval_dataloader, desc="Evaluating"): if input_ids.dim() == 2: input_ids = input_ids.unsqueeze(0) input_len = input_len.unsqueeze(0) label_ids = label_ids.unsuqeeze(0) with torch.no_grad(): _, _, acc, _, pred_slot = model(input_ids, input_len, label_ids, 1) nturn = (label_ids[:,:,0].view(-1) != -1).sum().item() nslot = label_ids.size(2) for slot in range(nslot): for turn in range(nturn): class_count[slot][label_ids[0][turn][slot]]+=1 if label_ids[0][turn][slot] == pred_slot[0][turn][slot]: class_correct[slot][label_ids[0][turn][slot]] +=1 drawfig = False print('hotel') print(label_ids[0, 0:10, 8:18].cpu() == torch.Tensor(none_value_id[8:18]).long().repeat(10, 1)) print(pred_slot[0, 0:10, 8:18].cpu() == torch.Tensor(none_value_id[8:18]).long().repeat(10, 1)) print(label_ids[0, 0:10, 0:8].cpu() == torch.Tensor(none_value_id[0:8]).long().repeat(10, 1)) print(label_ids[0, 0:10, 18:].cpu() == torch.Tensor(none_value_id[18:]).long().repeat(10, 1)) pdb.set_trace() if drawfig == True: #if (len(incorrect_dialogs) < attention_draw): max_len = input_ids.size(2) attn_scores = model.attn.get_scores().transpose(1, 2).contiguous().view(label_ids.size(1)*nslot, -1, max_len) for slot in range(0, nslot): fig, axs = plt.subplots(nturn, 1, figsize=(50, 10*nturn)) print("Slot", slot) for turn in range(nturn): draw(attn_scores[slot*label_ids.size(1)+turn,:,:].cpu(), tokenizer.convert_ids_to_tokens(input_ids[0][turn].cpu().numpy()), [*range(0, args.attn_head)], ax=axs[turn]) axs[turn].set_title("turn %d slot: %s label: %s pred: %s" % (turn, processor.target_slot[slot], str(label_list[slot][label_ids[0][turn][slot].item()]), str(label_list[slot][pred_slot[0][turn][slot].item()]) )) plt.show() plt.savefig(os.path.join(args.output_dir, "attention-d%d-slot%s.png"%(len(incorrect_dialogs), slot))) plt.close() if not acc == 1: dialog = [] for input, label, pred in zip(input_ids[0], label_ids[0], pred_slot[0]): if label[0] == -1: break text = {} text['input'] = ' '.join(tokenizer.convert_ids_to_tokens(input.cpu().numpy())).replace(' [PAD]', '') text['label'] = [str(label_list[idx][x]) for idx, x in enumerate(label.cpu().numpy())] text['pred'] = [str(label_list[idx][x]) for idx, x in enumerate(pred.cpu().numpy())] dialog.append(text) incorrect_dialogs.append(dialog) output_eval_incorr_file = os.path.join(args.output_dir, "incorrect_dialog.txt") with open(output_eval_incorr_file, "w") as writer: for dialog in incorrect_dialogs: for turn in dialog: text = turn['input'] + '\t' for label, pred in zip(turn['label'], turn['pred']): text += '%s\t%s\t'%(label, pred) writer.write("%s\n" % text) writer.write("---------- \n") logger.info("Done analysis: %s" % output_eval_incorr_file) output_eval_incorr_file = os.path.join(args.output_dir, "per_class_accuracy.txt") with open(output_eval_incorr_file, "w") as writer: total_class_acc = 0 total_slot_class_acc = [] nlabels = 0 for sid, slot in enumerate(class_count): slot_class_acc = 0 for vid, value in enumerate(slot): if not value == 0: class_acc = class_correct[sid][vid]/value writer.write("%s\t%d\t%d\t%.3f\n"%(label_list[sid][vid], class_correct[sid][vid], value, class_acc) ) slot_class_acc += class_acc nlabels += 1 else: writer.write("%s\t%d\t%d\t%.3f\n"%(label_list[sid][vid], class_correct[sid][vid], value, -1) ) total_slot_class_acc.append(slot_class_acc/(vid+1)) total_class_acc+=slot_class_acc total_class_acc /= nlabels for sid, slot_acc in enumerate(total_slot_class_acc): writer.write("%d\t%.3f\n" % (sid, slot_acc)) writer.write("total class accuracy \t%.3f\n" % total_class_acc) logger.info("Done analysis: %s" % output_eval_incorr_file) print(class_correct) print(class_count) if __name__ == "__main__": main()
[ "numpy.sum", "argparse.ArgumentParser", "numpy.random.seed", "numpy.argmax", "csv.reader", "torch.utils.data.RandomSampler", "pytorch_pretrained_bert.optimization.BertAdam", "pytorch_pretrained_bert.tokenization.BertTokenizer.from_pretrained", "seaborn.heatmap", "torch.cat", "torch.cuda.device_count", "torch.utils.data.TensorDataset", "torch.distributed.get_world_size", "torch.device", "torch.no_grad", "os.path.join", "torch.utils.data.DataLoader", "torch.distributed.get_rank", "matplotlib.pyplot.close", "torch.load", "os.path.exists", "apex.optimizers.FusedAdam", "apex.optimizers.FP16_Optimizer", "torch.utils.data.distributed.DistributedSampler", "torch.Tensor", "random.seed", "torch.utils.data.SequentialSampler", "torch.cuda.set_device", "matplotlib.pyplot.subplots", "seaborn.set_context", "BeliefTrackerSlotQueryMultiSlotTransformer.BeliefTracker", "tqdm.tqdm", "matplotlib.pyplot.show", "torch.manual_seed", "BeliefTrackerSlotQueryMultiSlotEWC.EWC", "torch.cuda.is_available", "apex.parallel.DistributedDataParallel", "os.listdir", "tensorboardX.SummaryWriter", "json.load", "torch.distributed.init_process_group", "os.makedirs", "logging.basicConfig", "torch.nn.DataParallel", "torch.cuda.manual_seed_all", "pdb.set_trace", "torch.tensor", "operator.itemgetter", "logging.getLogger" ]
[((535, 570), 'seaborn.set_context', 'seaborn.set_context', ([], {'context': '"""talk"""'}), "(context='talk')\n", (554, 570), False, 'import seaborn\n'), ((572, 715), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s - %(levelname)s - %(name)s - %(message)s"""', 'datefmt': '"""%m/%d/%Y %H:%M:%S"""', 'level': 'logging.INFO'}), "(format=\n '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt=\n '%m/%d/%Y %H:%M:%S', level=logging.INFO)\n", (591, 715), False, 'import logging\n'), ((755, 782), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (772, 782), False, 'import logging\n'), ((11829, 11892), 'torch.tensor', 'torch.tensor', (['[f.input_ids for f in features]'], {'dtype': 'torch.long'}), '([f.input_ids for f in features], dtype=torch.long)\n', (11841, 11892), False, 'import torch\n'), ((11912, 11975), 'torch.tensor', 'torch.tensor', (['[f.input_len for f in features]'], {'dtype': 'torch.long'}), '([f.input_len for f in features], dtype=torch.long)\n', (11924, 11975), False, 'import torch\n'), ((11996, 12058), 'torch.tensor', 'torch.tensor', (['[f.label_id for f in features]'], {'dtype': 'torch.long'}), '([f.label_id for f in features], dtype=torch.long)\n', (12008, 12058), False, 'import torch\n'), ((12084, 12151), 'torch.tensor', 'torch.tensor', (['[f.prev_label_id for f in features]'], {'dtype': 'torch.long'}), '([f.prev_label_id for f in features], dtype=torch.long)\n', (12096, 12151), False, 'import torch\n'), ((13909, 13931), 'numpy.argmax', 'np.argmax', (['out'], {'axis': '(1)'}), '(out, axis=1)\n', (13918, 13931), True, 'import numpy as np\n'), ((13943, 13968), 'numpy.sum', 'np.sum', (['(outputs == labels)'], {}), '(outputs == labels)\n', (13949, 13968), True, 'import numpy as np\n'), ((14266, 14291), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (14289, 14291), False, 'import argparse\n'), ((22629, 22672), 'os.makedirs', 'os.makedirs', (['args.output_dir'], {'exist_ok': '(True)'}), '(args.output_dir, exist_ok=True)\n', (22640, 22672), False, 'import os\n'), ((24097, 24119), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (24108, 24119), False, 'import random\n'), ((24124, 24149), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (24138, 24149), True, 'import numpy as np\n'), ((24154, 24182), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (24171, 24182), False, 'import torch\n'), ((25330, 25391), 'os.path.join', 'os.path.join', (['args.bert_dir', "('%s-vocab.txt' % args.bert_model)"], {}), "(args.bert_dir, '%s-vocab.txt' % args.bert_model)\n", (25342, 25391), False, 'import os\n'), ((25501, 25575), 'pytorch_pretrained_bert.tokenization.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['vocab_dir'], {'do_lower_case': 'args.do_lower_case'}), '(vocab_dir, do_lower_case=args.do_lower_case)\n', (25530, 25575), False, 'from pytorch_pretrained_bert.tokenization import BertTokenizer\n'), ((29016, 29055), 'BeliefTrackerSlotQueryMultiSlotTransformer.BeliefTracker', 'BeliefTracker', (['args', 'num_labels', 'device'], {}), '(args, num_labels, device)\n', (29029, 29055), False, 'from BeliefTrackerSlotQueryMultiSlotTransformer import BeliefTracker\n'), ((29229, 29276), 'torch.load', 'torch.load', (['args.load_path'], {'map_location': 'device'}), '(args.load_path, map_location=device)\n', (29239, 29276), False, 'import torch\n'), ((43141, 43191), 'os.path.join', 'os.path.join', (['args.output_dir', '"""pytorch_model.bin"""'], {}), "(args.output_dir, 'pytorch_model.bin')\n", (43153, 43191), False, 'import os\n'), ((43261, 43311), 'torch.load', 'torch.load', (['output_model_file'], {'map_location': 'device'}), '(output_model_file, map_location=device)\n', (43271, 43311), False, 'import torch\n'), ((22435, 22466), 'os.path.exists', 'os.path.exists', (['args.output_dir'], {}), '(args.output_dir)\n', (22449, 22466), False, 'import os\n'), ((22471, 22498), 'os.listdir', 'os.listdir', (['args.output_dir'], {}), '(args.output_dir)\n', (22481, 22498), False, 'import os\n'), ((22854, 22908), 'tensorboardX.SummaryWriter', 'SummaryWriter', (["('./%s/%s' % (args.tf_dir, tb_file_name))"], {}), "('./%s/%s' % (args.tf_dir, tb_file_name))\n", (22867, 22908), False, 'from tensorboardX import SummaryWriter\n'), ((22988, 23042), 'os.path.join', 'os.path.join', (['args.output_dir', "('%s.txt' % tb_file_name)"], {}), "(args.output_dir, '%s.txt' % tb_file_name)\n", (23000, 23042), False, 'import os\n'), ((23282, 23307), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (23305, 23307), False, 'import torch\n'), ((23326, 23364), 'torch.cuda.set_device', 'torch.cuda.set_device', (['args.local_rank'], {}), '(args.local_rank)\n', (23347, 23364), False, 'import torch\n'), ((23382, 23419), 'torch.device', 'torch.device', (['"""cuda"""', 'args.local_rank'], {}), "('cuda', args.local_rank)\n", (23394, 23419), False, 'import torch\n'), ((23540, 23592), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""nccl"""'}), "(backend='nccl')\n", (23576, 23592), False, 'import torch\n'), ((24209, 24246), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (24235, 24246), False, 'import torch\n'), ((25403, 25428), 'os.path.exists', 'os.path.exists', (['vocab_dir'], {}), '(vocab_dir)\n', (25417, 25428), False, 'import os\n'), ((26735, 26813), 'torch.utils.data.TensorDataset', 'TensorDataset', (['all_input_ids', 'all_input_len', 'all_label_ids', 'all_prev_label_ids'], {}), '(all_input_ids, all_input_len, all_label_ids, all_prev_label_ids)\n', (26748, 26813), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((27003, 27082), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'sampler': 'train_sampler', 'batch_size': 'args.train_batch_size'}), '(train_data, sampler=train_sampler, batch_size=args.train_batch_size)\n', (27013, 27082), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((27840, 27938), 'torch.utils.data.TensorDataset', 'TensorDataset', (['all_input_ids_dev', 'all_input_len_dev', 'all_label_ids_dev', 'all_prev_label_ids_dev'], {}), '(all_input_ids_dev, all_input_len_dev, all_label_ids_dev,\n all_prev_label_ids_dev)\n', (27853, 27938), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((27957, 27984), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['dev_data'], {}), '(dev_data)\n', (27974, 27984), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((28010, 28083), 'torch.utils.data.DataLoader', 'DataLoader', (['dev_data'], {'sampler': 'dev_sampler', 'batch_size': 'args.dev_batch_size'}), '(dev_data, sampler=dev_sampler, batch_size=args.dev_batch_size)\n', (28020, 28083), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((30792, 30802), 'apex.parallel.DistributedDataParallel', 'DDP', (['model'], {}), '(model)\n', (30795, 30802), True, 'from apex.parallel import DistributedDataParallel as DDP\n'), ((33363, 33466), 'BeliefTrackerSlotQueryMultiSlotEWC.EWC', 'EWC', (['model', 'dev_dataloader'], {'oldtask': 'prev_slot_id', 'num_labels': 'num_labels', 'device': 'device', 'n_gpu': 'n_gpu'}), '(model, dev_dataloader, oldtask=prev_slot_id, num_labels=num_labels,\n device=device, n_gpu=n_gpu)\n', (33366, 33466), False, 'from BeliefTrackerSlotQueryMultiSlotEWC import EWC\n'), ((44301, 44329), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (44322, 44329), False, 'import torch\n'), ((45131, 45209), 'torch.utils.data.TensorDataset', 'TensorDataset', (['all_input_ids', 'all_input_len', 'all_label_ids', 'all_prev_label_ids'], {}), '(all_input_ids, all_input_len, all_label_ids, all_prev_label_ids)\n', (45144, 45209), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((45273, 45301), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['eval_data'], {}), '(eval_data)\n', (45290, 45301), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((45328, 45404), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_data'], {'sampler': 'eval_sampler', 'batch_size': 'args.eval_batch_size'}), '(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)\n', (45338, 45404), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((45775, 45815), 'tqdm.tqdm', 'tqdm', (['eval_dataloader'], {'desc': '"""Evaluating"""'}), "(eval_dataloader, desc='Evaluating')\n", (45779, 45815), False, 'from tqdm import tqdm, trange\n'), ((50344, 50399), 'os.path.join', 'os.path.join', (['args.output_dir', "('%s.txt' % out_file_name)"], {}), "(args.output_dir, '%s.txt' % out_file_name)\n", (50356, 50399), False, 'import os\n'), ((50971, 50986), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (50984, 50986), False, 'import pdb\n'), ((51972, 52030), 'torch.utils.data.TensorDataset', 'TensorDataset', (['all_input_ids', 'all_input_len', 'all_label_ids'], {}), '(all_input_ids, all_input_len, all_label_ids)\n', (51985, 52030), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((52094, 52122), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['eval_data'], {}), '(eval_data)\n', (52111, 52122), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((52149, 52206), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_data'], {'sampler': 'eval_sampler', 'batch_size': '(1)'}), '(eval_data, sampler=eval_sampler, batch_size=1)\n', (52159, 52206), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((52396, 52436), 'tqdm.tqdm', 'tqdm', (['eval_dataloader'], {'desc': '"""Evaluating"""'}), "(eval_dataloader, desc='Evaluating')\n", (52400, 52436), False, 'from tqdm import tqdm, trange\n'), ((55601, 55654), 'os.path.join', 'os.path.join', (['args.output_dir', '"""incorrect_dialog.txt"""'], {}), "(args.output_dir, 'incorrect_dialog.txt')\n", (55613, 55654), False, 'import os\n'), ((56170, 56225), 'os.path.join', 'os.path.join', (['args.output_dir', '"""per_class_accuracy.txt"""'], {}), "(args.output_dir, 'per_class_accuracy.txt')\n", (56182, 56225), False, 'import os\n'), ((2433, 2483), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""', 'quotechar': 'quotechar'}), "(f, delimiter='\\t', quotechar=quotechar)\n", (2443, 2483), False, 'import csv\n'), ((3119, 3141), 'json.load', 'json.load', (['fp_ontology'], {}), '(fp_ontology)\n', (3128, 3141), False, 'import json\n'), ((13115, 13171), 'torch.tensor', 'torch.tensor', (['[f[0] for f in features]'], {'dtype': 'torch.long'}), '([f[0] for f in features], dtype=torch.long)\n', (13127, 13171), False, 'import torch\n'), ((13203, 13259), 'torch.tensor', 'torch.tensor', (['[f[1] for f in features]'], {'dtype': 'torch.long'}), '([f[1] for f in features], dtype=torch.long)\n', (13215, 13259), False, 'import torch\n'), ((26876, 26901), 'torch.utils.data.RandomSampler', 'RandomSampler', (['train_data'], {}), '(train_data)\n', (26889, 26901), False, 'from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n'), ((26944, 26974), 'torch.utils.data.distributed.DistributedSampler', 'DistributedSampler', (['train_data'], {}), '(train_data)\n', (26962, 26974), False, 'from torch.utils.data.distributed import DistributedSampler\n'), ((30839, 30867), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (30860, 30867), False, 'import torch\n'), ((32280, 32388), 'apex.optimizers.FusedAdam', 'FusedAdam', (['optimizer_grouped_parameters'], {'lr': 'args.learning_rate', 'bias_correction': '(False)', 'max_grad_norm': '(1.0)'}), '(optimizer_grouped_parameters, lr=args.learning_rate,\n bias_correction=False, max_grad_norm=1.0)\n', (32289, 32388), False, 'from apex.optimizers import FusedAdam\n'), ((32749, 32863), 'pytorch_pretrained_bert.optimization.BertAdam', 'BertAdam', (['optimizer_grouped_parameters'], {'lr': 'args.learning_rate', 'warmup': 'args.warmup_proportion', 't_total': 't_total'}), '(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.\n warmup_proportion, t_total=t_total)\n', (32757, 32863), False, 'from pytorch_pretrained_bert.optimization import BertAdam\n'), ((49171, 49217), 'torch.cat', 'torch.cat', (['[eval_acc_slot, prev_eval_acc_slot]'], {}), '([eval_acc_slot, prev_eval_acc_slot])\n', (49180, 49217), False, 'import torch\n'), ((51033, 51140), 'seaborn.heatmap', 'seaborn.heatmap', (['data'], {'xticklabels': 'x', 'square': '(True)', 'yticklabels': 'y', 'vmin': '(0.0)', 'vmax': '(1.0)', 'cbar': '(False)', 'ax': 'ax'}), '(data, xticklabels=x, square=True, yticklabels=y, vmin=0.0,\n vmax=1.0, cbar=False, ax=ax)\n', (51048, 51140), False, 'import seaborn\n'), ((53650, 53665), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (53663, 53665), False, 'import pdb\n'), ((3034, 3089), 'os.path.join', 'os.path.join', (['config.data_dir', '"""ontology_dstc2_en.json"""'], {}), "(config.data_dir, 'ontology_dstc2_en.json')\n", (3046, 3089), False, 'import os\n'), ((3554, 3576), 'json.load', 'json.load', (['fp_ontology'], {}), '(fp_ontology)\n', (3563, 3576), False, 'import json\n'), ((5630, 5665), 'os.path.join', 'os.path.join', (['data_dir', '"""train.tsv"""'], {}), "(data_dir, 'train.tsv')\n", (5642, 5665), False, 'import os\n'), ((5849, 5882), 'os.path.join', 'os.path.join', (['data_dir', '"""dev.tsv"""'], {}), "(data_dir, 'dev.tsv')\n", (5861, 5882), False, 'import os\n'), ((6065, 6099), 'os.path.join', 'os.path.join', (['data_dir', '"""test.tsv"""'], {}), "(data_dir, 'test.tsv')\n", (6077, 6099), False, 'import os\n'), ((31880, 31914), 'torch.distributed.get_world_size', 'torch.distributed.get_world_size', ([], {}), '()\n', (31912, 31914), False, 'import torch\n'), ((32552, 32602), 'apex.optimizers.FP16_Optimizer', 'FP16_Optimizer', (['optimizer'], {'dynamic_loss_scale': '(True)'}), '(optimizer, dynamic_loss_scale=True)\n', (32566, 32602), False, 'from apex.optimizers import FP16_Optimizer\n'), ((32649, 32709), 'apex.optimizers.FP16_Optimizer', 'FP16_Optimizer', (['optimizer'], {'static_loss_scale': 'args.loss_scale'}), '(optimizer, static_loss_scale=args.loss_scale)\n', (32663, 32709), False, 'from apex.optimizers import FP16_Optimizer\n'), ((33731, 33771), 'tqdm.tqdm', 'tqdm', (['train_dataloader'], {'desc': '"""Iteration"""'}), "(train_dataloader, desc='Iteration')\n", (33735, 33771), False, 'from tqdm import tqdm, trange\n'), ((36887, 36926), 'tqdm.tqdm', 'tqdm', (['dev_dataloader'], {'desc': '"""Validation"""'}), "(dev_dataloader, desc='Validation')\n", (36891, 36926), False, 'from tqdm import tqdm, trange\n'), ((42061, 42111), 'os.path.join', 'os.path.join', (['args.output_dir', '"""pytorch_model.bin"""'], {}), "(args.output_dir, 'pytorch_model.bin')\n", (42073, 42111), False, 'import os\n'), ((44381, 44409), 'torch.distributed.get_rank', 'torch.distributed.get_rank', ([], {}), '()\n', (44407, 44409), False, 'import torch\n'), ((46086, 46101), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (46099, 46101), False, 'import torch\n'), ((49350, 49372), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (49369, 49372), False, 'import operator\n'), ((50926, 50954), 'torch.distributed.get_rank', 'torch.distributed.get_rank', ([], {}), '()\n', (50952, 50954), False, 'import torch\n'), ((52646, 52661), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (52659, 52661), False, 'import torch\n'), ((3478, 3524), 'os.path.join', 'os.path.join', (['config.data_dir', '"""ontology.json"""'], {}), "(config.data_dir, 'ontology.json')\n", (3490, 3524), False, 'import os\n'), ((23207, 23232), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (23230, 23232), False, 'import torch\n'), ((37353, 37368), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (37366, 37368), False, 'import torch\n'), ((54005, 54053), 'matplotlib.pyplot.subplots', 'plt.subplots', (['nturn', '(1)'], {'figsize': '(50, 10 * nturn)'}), '(nturn, 1, figsize=(50, 10 * nturn))\n', (54017, 54053), True, 'import matplotlib.pyplot as plt\n'), ((54732, 54742), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (54740, 54742), True, 'import matplotlib.pyplot as plt\n'), ((54885, 54896), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (54894, 54896), True, 'import matplotlib.pyplot as plt\n'), ((53261, 53294), 'torch.Tensor', 'torch.Tensor', (['none_value_id[8:18]'], {}), '(none_value_id[8:18])\n', (53273, 53294), False, 'import torch\n'), ((53369, 53402), 'torch.Tensor', 'torch.Tensor', (['none_value_id[8:18]'], {}), '(none_value_id[8:18])\n', (53381, 53402), False, 'import torch\n'), ((53476, 53508), 'torch.Tensor', 'torch.Tensor', (['none_value_id[0:8]'], {}), '(none_value_id[0:8])\n', (53488, 53508), False, 'import torch\n'), ((53582, 53614), 'torch.Tensor', 'torch.Tensor', (['none_value_id[18:]'], {}), '(none_value_id[18:])\n', (53594, 53614), False, 'import torch\n')]
import numpy as np import os import re import cPickle class read_cifar10(object): def __init__(self, data_path=None, is_training=True): self.data_path = data_path self.is_training = is_training def load_data(self): files = os.listdir(self.data_path) if self.is_training is True: pattern = re.compile('(data_batch_).') to_read = [m.group(0) for i in files for m in [pattern.search(i)] if m] data = [] labels = [] for t in to_read: with open(self.data_path+'/'+t, 'rb') as f: d = cPickle.load(f) data.append(d['data']) labels.append(d['labels']) data = np.vstack(data) labels = np.hstack(labels) else: with open(self.data_path+'/test_batch') as f: d = cPickle.load(f) data = d['data'] labels = d['labels'] return data, labels
[ "cPickle.load", "numpy.hstack", "os.listdir", "numpy.vstack", "re.compile" ]
[((243, 269), 'os.listdir', 'os.listdir', (['self.data_path'], {}), '(self.data_path)\n', (253, 269), False, 'import os\n'), ((320, 348), 're.compile', 're.compile', (['"""(data_batch_)."""'], {}), "('(data_batch_).')\n", (330, 348), False, 'import re\n'), ((655, 670), 'numpy.vstack', 'np.vstack', (['data'], {}), '(data)\n', (664, 670), True, 'import numpy as np\n'), ((686, 703), 'numpy.hstack', 'np.hstack', (['labels'], {}), '(labels)\n', (695, 703), True, 'import numpy as np\n'), ((779, 794), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (791, 794), False, 'import cPickle\n'), ((555, 570), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (567, 570), False, 'import cPickle\n')]
import ast from collections import OrderedDict from .codegen import to_source from .function_compiler_ast import timeshift, StandardizeDatesSimple from dolo.compiler.recipes import recipes from numba import njit class NumericModel: calibration = None calibration_dict = None covariances = None markov_chain = None def __init__(self, symbolic_model, options=None, infos=None): self.symbolic = symbolic_model self.symbols = symbolic_model.symbols self.variables = sum( [tuple(e) for k,e in self.symbols.items() if k not in ('parameters','shocks','values')], ()) self.options = options if options is not None else {} self.infos = infos if infos is not None else {} self.infos['data_layout'] = 'columns' self.name = self.infos['name'] self.model_type = self.infos['type'] # self.model_spec self.__update_from_symbolic__() self.__compile_functions__() def __update_from_symbolic__(self): import numpy # updates calibration according to the symbolic definitions system = self.symbolic.calibration_dict from dolo.compiler.triangular_solver import solve_triangular_system self.calibration_dict = solve_triangular_system( system ) from dolo.compiler.misc import CalibrationDict, calibration_to_vector calib = calibration_to_vector(self.symbols, self.calibration_dict) self.calibration = CalibrationDict(self.symbols, calib) from .symbolic_eval import NumericEval evaluator = NumericEval(self.calibration_dict) # read symbolic structure self.options = evaluator.eval(self.symbolic.options) distribution = evaluator.eval(self.symbolic.distribution) discrete_transition = evaluator.eval(self.symbolic.discrete_transition) covariances = distribution if distribution is None: self.covariances = None else: self.covariances = numpy.atleast_2d(numpy.array(covariances, dtype=float)) markov_chain = discrete_transition if markov_chain is None: self.markov_chain = None else: self.markov_chain = [numpy.atleast_2d(numpy.array(tab, dtype=float)) for tab in markov_chain] def get_calibration(self, pname, *args): if isinstance(pname, list): return [ self.get_calibration(p) for p in pname ] elif isinstance(pname, tuple): return tuple( [ self.get_calibration(p) for p in pname ] ) elif len(args)>0: pnames = (pname,) + args return self.get_calibration(pnames) group = [g for g in self.symbols.keys() if pname in self.symbols[g]] try: group = group[0] except: raise Exception('Unknown symbol {}.'.format(pname)) i = self.symbols[group].index(pname) v = self.calibration[group][i] return v def set_calibration(self, *args, **kwargs): # raise exception if unknown symbol ? if len(args)==2: pname, pvalue = args if isinstance(pname, str): self.set_calibration(**{pname:pvalue}) else: # else ignore pname and pvalue calib = self.symbolic.calibration_dict calib.update(kwargs) self.__update_from_symbolic__() def __str__(self): from dolo.misc.termcolor import colored s = u''' Model object: ------------ - name: "{name}" - type: "{type}" - file: "{filename}\n'''.format(**self.infos) ss = '\n- residuals:\n\n' res = self.residuals() # for eqgroup, eqlist in self.symbolic.equations.items(): for eqgroup in res.keys(): eqlist = self.symbolic.equations[eqgroup] ss += u" {}\n".format(eqgroup) for i, eq in enumerate(eqlist): val = res[eqgroup][i] if abs(val) < 1e-8: val = 0 vals = '{:.4f}'.format(val) if abs(val) > 1e-8: vals = colored(vals, 'red') # eq = eq.replace('|', u"\u27C2") ss += u" {eqn:3} : {vals} : {eqs}\n".format(eqn=str(i+1), vals=vals, eqs=eq) ss += "\n" s += ss # import pprint # s += '- residuals:\n' # s += pprint.pformat(compute_residuals(self),indent=2, depth=1) return s def __repr__(self): return self.__str__() @property def x_bounds(self): if 'controls_ub' in self.functions: fun_lb = self.functions['controls_lb'] fun_ub = self.functions['controls_ub'] return [fun_lb, fun_ub] else: return None def residuals(self, calib=None): if self.model_type == 'dtcscc': from dolo.algos.dtcscc.steady_state import residuals return residuals(self, calib) elif self.model_type == 'dtmscc': from dolo.algos.dtmscc.steady_state import residuals return residuals(self, calib) def eval_formula(self, expr, dataframe=None, calib=None): from dolo.compiler.eval_formula import eval_formula if calib is None: calib = self.calibration return eval_formula(expr, dataframe=dataframe, context=calib) def __compile_functions__(self): from dolo.compiler.function_compiler_ast import compile_function_ast from dolo.compiler.function_compiler import standard_function defs = self.symbolic.definitions # works for fg models only model_type = self.model_type if 'auxiliaries' not in self.symbols: model_type += '_' else: # prepare auxiliaries auxeqs = self.symbolic.equations['auxiliary'] auxdefs = {} for time in [-1,0,1]: dd = OrderedDict() for eq in auxeqs: lhs, rhs = eq.split('=') lhs = ast.parse( str.strip(lhs) ).body[0].value rhs = ast.parse( str.strip(rhs) ).body[0].value tmp = timeshift(rhs, self.variables, time) k = timeshift(lhs, self.variables, time) k = StandardizeDatesSimple(self.variables).visit(k) v = StandardizeDatesSimple(self.variables).visit(tmp) dd[to_source(k)] = to_source(v) auxdefs[time] = dd recipe = recipes[model_type] symbols = self.symbols # should match self.symbols comps = [] functions = {} original_functions = {} original_gufunctions = {} for funname in recipe['specs'].keys(): spec = recipe['specs'][funname] if funname not in self.symbolic.equations: if not spec.get('optional'): raise Exception("The model doesn't contain equations of type '{}'.".format(funname)) else: continue if spec.get('target'): # keep only right-hand side # TODO: restore recursive definitions eqs = self.symbolic.equations[funname] eqs = [eq.split('=')[1] for eq in eqs] eqs = [str.strip(eq) for eq in eqs] target_spec = spec.get('target') n_output = len(self.symbols[target_spec[0]]) # target_short_name = spec.get('target')[2] if spec.get('recursive') is False: target_spec = None else: target_spec[2] = 'out' else: target_spec = None if spec.get('complementarities'): # TODO: Rewrite and simplify comp_spec = spec.get('complementarities') comp_order = comp_spec['middle'] comp_args = comp_spec['left-right'] comps = [] eqs = [] for i,eq in enumerate(self.symbolic.equations[funname]): if '|' in eq: control = self.symbols[comp_order[0]][i] eq, comp = str.split(eq,'|') lhs, rhs = decode_complementarity(comp, control) comps.append([lhs, rhs]) else: comps.append(['-inf', 'inf']) eqs.append(eq) comp_lhs, comp_rhs = zip(*comps) # fb_names = ['{}_lb'.format(funname), '{}_ub'.format(funname)] fb_names = ['controls_lb'.format(funname), 'controls_ub'.format(funname)] ddefs = OrderedDict() for ag in comp_args: if ag[0] == 'auxiliaries': t = ag[1] ddefs.update(auxdefs[t]) ddefs.update(defs) lower_bound, gu_lower_bound = compile_function_ast(comp_lhs, symbols, comp_args, funname=fb_names[0],definitions=defs) upper_bound, gu_upper_bound = compile_function_ast(comp_rhs, symbols, comp_args, funname=fb_names[1],definitions=defs) n_output = len(comp_lhs) functions[fb_names[0]] = standard_function(gu_lower_bound, n_output ) functions[fb_names[1]] = standard_function(gu_upper_bound, n_output ) original_functions[fb_names[0]] = lower_bound original_functions[fb_names[1]] = upper_bound original_gufunctions[fb_names[0]] = gu_lower_bound original_gufunctions[fb_names[1]] = gu_upper_bound # rewrite all equations as rhs - lhs def filter_equal(eq): if '=' in eq: lhs, rhs = str.split(eq,'=') eq = '{} - ( {} )'.format(rhs, lhs) eq = str.strip(eq) return eq else: return eq eqs = [filter_equal(eq) for eq in eqs] arg_names = recipe['specs'][funname]['eqs'] ddefs = OrderedDict() for ag in arg_names: if ag[0] == 'auxiliaries': t = ag[1] ddefs.update(auxdefs[t]) ddefs.update(defs) fun, gufun = compile_function_ast(eqs, symbols, arg_names, output_names=target_spec, funname=funname, definitions=ddefs, ) # print("So far so good !")c n_output = len(eqs) original_functions[funname] = fun functions[funname] = standard_function(gufun, n_output ) original_functions[funname] = fun original_gufunctions[funname] = gufun self.__original_functions__ = original_functions self.__original_gufunctions__ = original_gufunctions self.functions = functions import re regex = re.compile("(.*)<=(.*)<=(.*)") def decode_complementarity(comp, control): ''' # comp can be either: - None - "a<=expr" where a is a controls - "expr<=a" where a is a control - "expr1<=a<=expr2" ''' try: res = regex.match(comp).groups() except: raise Exception("Unable to parse complementarity condition '{}'".format(comp)) res = [r.strip() for r in res] if res[1] != control: msg = "Complementarity condition '{}' incorrect. Expected {} instead of {}.".format(comp, control, res[1]) raise Exception(msg) return [res[0], res[2]]
[ "dolo.compiler.function_compiler_ast.compile_function_ast", "dolo.algos.dtmscc.steady_state.residuals", "dolo.misc.termcolor.colored", "dolo.compiler.eval_formula.eval_formula", "dolo.compiler.misc.calibration_to_vector", "dolo.compiler.triangular_solver.solve_triangular_system", "numpy.array", "dolo.compiler.function_compiler.standard_function", "collections.OrderedDict", "dolo.compiler.misc.CalibrationDict", "re.compile" ]
[((11083, 11113), 're.compile', 're.compile', (['"""(.*)<=(.*)<=(.*)"""'], {}), "('(.*)<=(.*)<=(.*)')\n", (11093, 11113), False, 'import re\n'), ((1256, 1287), 'dolo.compiler.triangular_solver.solve_triangular_system', 'solve_triangular_system', (['system'], {}), '(system)\n', (1279, 1287), False, 'from dolo.compiler.triangular_solver import solve_triangular_system\n'), ((1384, 1442), 'dolo.compiler.misc.calibration_to_vector', 'calibration_to_vector', (['self.symbols', 'self.calibration_dict'], {}), '(self.symbols, self.calibration_dict)\n', (1405, 1442), False, 'from dolo.compiler.misc import CalibrationDict, calibration_to_vector\n'), ((1470, 1506), 'dolo.compiler.misc.CalibrationDict', 'CalibrationDict', (['self.symbols', 'calib'], {}), '(self.symbols, calib)\n', (1485, 1506), False, 'from dolo.compiler.misc import CalibrationDict, calibration_to_vector\n'), ((5332, 5386), 'dolo.compiler.eval_formula.eval_formula', 'eval_formula', (['expr'], {'dataframe': 'dataframe', 'context': 'calib'}), '(expr, dataframe=dataframe, context=calib)\n', (5344, 5386), False, 'from dolo.compiler.eval_formula import eval_formula\n'), ((4958, 4980), 'dolo.algos.dtmscc.steady_state.residuals', 'residuals', (['self', 'calib'], {}), '(self, calib)\n', (4967, 4980), False, 'from dolo.algos.dtmscc.steady_state import residuals\n'), ((10220, 10233), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (10231, 10233), False, 'from collections import OrderedDict\n'), ((10442, 10553), 'dolo.compiler.function_compiler_ast.compile_function_ast', 'compile_function_ast', (['eqs', 'symbols', 'arg_names'], {'output_names': 'target_spec', 'funname': 'funname', 'definitions': 'ddefs'}), '(eqs, symbols, arg_names, output_names=target_spec,\n funname=funname, definitions=ddefs)\n', (10462, 10553), False, 'from dolo.compiler.function_compiler_ast import compile_function_ast\n'), ((10778, 10812), 'dolo.compiler.function_compiler.standard_function', 'standard_function', (['gufun', 'n_output'], {}), '(gufun, n_output)\n', (10795, 10812), False, 'from dolo.compiler.function_compiler import standard_function\n'), ((2020, 2057), 'numpy.array', 'numpy.array', (['covariances'], {'dtype': 'float'}), '(covariances, dtype=float)\n', (2031, 2057), False, 'import numpy\n'), ((5107, 5129), 'dolo.algos.dtmscc.steady_state.residuals', 'residuals', (['self', 'calib'], {}), '(self, calib)\n', (5116, 5129), False, 'from dolo.algos.dtmscc.steady_state import residuals\n'), ((5952, 5965), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (5963, 5965), False, 'from collections import OrderedDict\n'), ((8787, 8800), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (8798, 8800), False, 'from collections import OrderedDict\n'), ((9050, 9143), 'dolo.compiler.function_compiler_ast.compile_function_ast', 'compile_function_ast', (['comp_lhs', 'symbols', 'comp_args'], {'funname': 'fb_names[0]', 'definitions': 'defs'}), '(comp_lhs, symbols, comp_args, funname=fb_names[0],\n definitions=defs)\n', (9070, 9143), False, 'from dolo.compiler.function_compiler_ast import compile_function_ast\n'), ((9185, 9278), 'dolo.compiler.function_compiler_ast.compile_function_ast', 'compile_function_ast', (['comp_rhs', 'symbols', 'comp_args'], {'funname': 'fb_names[1]', 'definitions': 'defs'}), '(comp_rhs, symbols, comp_args, funname=fb_names[1],\n definitions=defs)\n', (9205, 9278), False, 'from dolo.compiler.function_compiler_ast import compile_function_ast\n'), ((9358, 9401), 'dolo.compiler.function_compiler.standard_function', 'standard_function', (['gu_lower_bound', 'n_output'], {}), '(gu_lower_bound, n_output)\n', (9375, 9401), False, 'from dolo.compiler.function_compiler import standard_function\n'), ((9444, 9487), 'dolo.compiler.function_compiler.standard_function', 'standard_function', (['gu_upper_bound', 'n_output'], {}), '(gu_upper_bound, n_output)\n', (9461, 9487), False, 'from dolo.compiler.function_compiler import standard_function\n'), ((2237, 2266), 'numpy.array', 'numpy.array', (['tab'], {'dtype': 'float'}), '(tab, dtype=float)\n', (2248, 2266), False, 'import numpy\n'), ((4119, 4139), 'dolo.misc.termcolor.colored', 'colored', (['vals', '"""red"""'], {}), "(vals, 'red')\n", (4126, 4139), False, 'from dolo.misc.termcolor import colored\n')]
# load in data import helper import numpy as np import torch import torch.nn as nn from string import punctuation from collections import Counter from torch.utils.data import TensorDataset, DataLoader data_dir = './data/Seinfeld_Scripts.txt' text = helper.load_data(data_dir) # Check for a GPU train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('No GPU found. Please use a GPU to train your neural network.') def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return vocab_to_int, int_to_vocab def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenized dictionary where the key is the punctuation and the value is the token """ return { '.': '||PERIOD||', ',': '||COMMA||', '"': '||QUOTATION_MARK||', ';': '||SEMICOLON||', '!': '||EXCLAMATION_MARK||', '?': '||QUESTION_MARK||', '(': '||LEFT_PAREN>||', ')': '||RIGHT_PAREN||', '-': '||DASH||', '\n': '||RETURN||', } helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) def batch_data(words, sequence_length, batch_size): """ Batch the neural network data using DataLoader :param words: The word ids of the TV scripts :param sequence_length: The sequence length of each batch :param batch_size: The size of each batch; the number of sequences in a batch :return: DataLoader with batched data """ n_batches = len(words)//batch_size words = words[:n_batches*batch_size] features = [] targets = [] total = len(words)-sequence_length for idx in range(0, total): x = words[idx:idx+sequence_length] features.append(x) y = words[idx+sequence_length] targets.append(y) train_x = np.array(features) train_y = np.array(targets) train_data = TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y)) train_loader = DataLoader(train_data, shuffle=False, batch_size=batch_size) # return a dataloader return train_loader int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() print(token_dict) print(int_text[:10]) print(list(vocab_to_int.values())[:10]) print(list(int_to_vocab.values())[:10]) class RNN(nn.Module): def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5): """ Initialize the PyTorch RNN Module :param vocab_size: The number of input dimensions of the neural network (the size of the vocabulary) :param output_size: The number of output dimensions of the neural network :param embedding_dim: The size of embeddings, should you choose to use them :param hidden_dim: The size of the hidden layer outputs :param dropout: dropout to add in between LSTM/GRU layers """ super(RNN, self).__init__() # set class variables self.output_size = output_size self.n_layers = n_layers self.hidden_dim = hidden_dim # define model layers self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim, output_size) self.dropout = nn.Dropout(dropout) def forward(self, nn_input, hidden): """ Forward propagation of the neural network :param nn_input: The input to the neural network :param hidden: The hidden state :return: Two Tensors, the output of the neural network and the latest hidden state """ batch_size = nn_input.size(0) x = self.embedding(nn_input) x,h = self.lstm(x, hidden) x = x.contiguous().view(-1, self.hidden_dim) # x = self.dropout(x) x = self.fc(x) x = x.view(batch_size, -1, self.output_size) x = x[:, -1] # return one batch of output word scores and the hidden state return x, h def init_hidden(self, batch_size): ''' Initialize the hidden state of an LSTM/GRU :param batch_size: The batch_size of the hidden state :return: hidden state of dims (n_layers, batch_size, hidden_dim) ''' # Implement function weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) return hidden def forward_back_prop(rnn, optimizer, criterion, inp, target, hidden): """ Forward and backward propagation on the neural network :param decoder: The PyTorch Module that holds the neural network :param decoder_optimizer: The PyTorch optimizer for the neural network :param criterion: The PyTorch loss function :param inp: A batch of input to the neural network :param target: The target output for the batch of input :return: The loss and the latest hidden state Tensor """ # move data to GPU, if available if train_on_gpu: inp, target = inp.cuda(), target.cuda() # perform backpropagation and optimization h = tuple([each.data for each in hidden]) rnn.zero_grad() output, h = rnn(inp, h) loss = criterion(output, target) loss.backward() nn.utils.clip_grad_norm_(rnn.parameters(), 5) optimizer.step() # return the loss over a batch and the hidden state produced by our model return loss.item(), h def train_rnn(rnn, batch_size, optimizer, criterion, n_epochs, show_every_n_batches=100): batch_losses = [] rnn.train() print("Training for %d epoch(s)..." % n_epochs) for epoch_i in range(1, n_epochs + 1): # initialize hidden state hidden = rnn.init_hidden(batch_size) for batch_i, (inputs, labels) in enumerate(train_loader, 1): # make sure you iterate over completely full batches, only n_batches = len(train_loader.dataset)//batch_size if(batch_i > n_batches): break # forward, back prop loss, hidden = forward_back_prop(rnn, optimizer, criterion, inputs, labels, hidden) # record loss batch_losses.append(loss) # printing loss stats if batch_i % show_every_n_batches == 0: print('Epoch: {:>4}/{:<4} Loss: {}\n'.format( epoch_i, n_epochs, np.average(batch_losses))) batch_losses = [] # returns a trained rnn return rnn # Data params # Sequence Length sequence_length = 8 # of words in a sequence # Batch Size batch_size = 100 # data loader - do not change train_loader = batch_data(int_text, sequence_length, batch_size) # Training parameters # Number of Epochs num_epochs = 5 # Learning Rate learning_rate = 0.001 # Model parameters # Vocab size vocab_size = len(vocab_to_int) # Output size output_size = vocab_size # Embedding Dimension embedding_dim = 128 # Hidden Dimension hidden_dim = 512 # Number of RNN Layers n_layers = 2 # Show stats for every n number of batches show_every_n_batches = 500 # create model and move to gpu if available rnn = RNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, dropout=0.5) if train_on_gpu: rnn.cuda() # defining loss and optimization functions for training optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # training the model trained_rnn = train_rnn(rnn, batch_size, optimizer, criterion, num_epochs, show_every_n_batches) # saving the trained model helper.save_model('./trained_tv_script', trained_rnn) print('Model Trained and Saved') _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() trained_rnn = helper.load_model('./trained_tv_script') import torch.nn.functional as F def generate(rnn, prime_id, int_to_vocab, token_dict, pad_value, predict_len=100): """ Generate text using the neural network :param decoder: The PyTorch Module that holds the trained neural network :param prime_id: The word id to start the first prediction :param int_to_vocab: Dict of word id keys to word values :param token_dict: Dict of puncuation tokens keys to puncuation values :param pad_value: The value used to pad a sequence :param predict_len: The length of text to generate :return: The generated text """ rnn.eval() # create a sequence (batch_size=1) with the prime_id current_seq = np.full((1, sequence_length), pad_value) current_seq[-1][-1] = prime_id predicted = [int_to_vocab[prime_id]] for _ in range(predict_len): if train_on_gpu: current_seq = torch.LongTensor(current_seq).cuda() else: current_seq = torch.LongTensor(current_seq) # initialize the hidden state hidden = rnn.init_hidden(current_seq.size(0)) # get the output of the rnn output, _ = rnn(current_seq, hidden) # get the next word probabilities p = F.softmax(output, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # use top_k sampling to get the index of the next word top_k = 5 p, top_i = p.topk(top_k) top_i = top_i.numpy().squeeze() # select the likely next word index with some element of randomness p = p.numpy().squeeze() word_i = np.random.choice(top_i, p=p/p.sum()) # retrieve that word from the dictionary word = int_to_vocab[word_i] predicted.append(word) # the generated word becomes the next "current sequence" and the cycle can continue current_seq = np.roll(current_seq, -1, 1) current_seq[-1][-1] = word_i gen_sentences = ' '.join(predicted) # Replace punctuation tokens for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' gen_sentences = gen_sentences.replace(' ' + token.lower(), key) gen_sentences = gen_sentences.replace('\n ', '\n') gen_sentences = gen_sentences.replace('( ', '(') # return all the sentences return gen_sentences # run the cell multiple times to get different results! gen_length = 400 # modify the length to your preference prime_word = 'jerry' # name for starting the script """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ pad_word = helper.SPECIAL_WORDS['PADDING'] generated_script = generate(trained_rnn, vocab_to_int[prime_word + ':'], int_to_vocab, token_dict, vocab_to_int[pad_word], gen_length) print(generated_script)
[ "torch.nn.Dropout", "torch.nn.Embedding", "numpy.full", "torch.utils.data.DataLoader", "helper.save_model", "helper.load_preprocess", "torch.nn.Linear", "collections.Counter", "torch.nn.LSTM", "numpy.average", "numpy.roll", "torch.cuda.is_available", "torch.from_numpy", "helper.load_data", "torch.LongTensor", "torch.nn.CrossEntropyLoss", "torch.nn.functional.softmax", "numpy.array", "helper.preprocess_and_save_data", "helper.load_model" ]
[((251, 277), 'helper.load_data', 'helper.load_data', (['data_dir'], {}), '(data_dir)\n', (267, 277), False, 'import helper\n'), ((312, 337), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (335, 337), False, 'import torch\n'), ((1432, 1509), 'helper.preprocess_and_save_data', 'helper.preprocess_and_save_data', (['data_dir', 'token_lookup', 'create_lookup_tables'], {}), '(data_dir, token_lookup, create_lookup_tables)\n', (1463, 1509), False, 'import helper\n'), ((2518, 2542), 'helper.load_preprocess', 'helper.load_preprocess', ([], {}), '()\n', (2540, 2542), False, 'import helper\n'), ((8225, 8246), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (8244, 8246), True, 'import torch.nn as nn\n'), ((8394, 8447), 'helper.save_model', 'helper.save_model', (['"""./trained_tv_script"""', 'trained_rnn'], {}), "('./trained_tv_script', trained_rnn)\n", (8411, 8447), False, 'import helper\n'), ((8527, 8551), 'helper.load_preprocess', 'helper.load_preprocess', ([], {}), '()\n', (8549, 8551), False, 'import helper\n'), ((8566, 8606), 'helper.load_model', 'helper.load_model', (['"""./trained_tv_script"""'], {}), "('./trained_tv_script')\n", (8583, 8606), False, 'import helper\n'), ((656, 669), 'collections.Counter', 'Counter', (['text'], {}), '(text)\n', (663, 669), False, 'from collections import Counter\n'), ((2200, 2218), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (2208, 2218), True, 'import numpy as np\n'), ((2233, 2250), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (2241, 2250), True, 'import numpy as np\n'), ((2355, 2415), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data'], {'shuffle': '(False)', 'batch_size': 'batch_size'}), '(train_data, shuffle=False, batch_size=batch_size)\n', (2365, 2415), False, 'from torch.utils.data import TensorDataset, DataLoader\n'), ((9292, 9332), 'numpy.full', 'np.full', (['(1, sequence_length)', 'pad_value'], {}), '((1, sequence_length), pad_value)\n', (9299, 9332), True, 'import numpy as np\n'), ((2282, 2307), 'torch.from_numpy', 'torch.from_numpy', (['train_x'], {}), '(train_x)\n', (2298, 2307), False, 'import torch\n'), ((2309, 2334), 'torch.from_numpy', 'torch.from_numpy', (['train_y'], {}), '(train_y)\n', (2325, 2334), False, 'import torch\n'), ((3504, 3543), 'torch.nn.Embedding', 'nn.Embedding', (['vocab_size', 'embedding_dim'], {}), '(vocab_size, embedding_dim)\n', (3516, 3543), True, 'import torch.nn as nn\n'), ((3564, 3643), 'torch.nn.LSTM', 'nn.LSTM', (['embedding_dim', 'hidden_dim', 'n_layers'], {'dropout': 'dropout', 'batch_first': '(True)'}), '(embedding_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True)\n', (3571, 3643), True, 'import torch.nn as nn\n'), ((3691, 3725), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'output_size'], {}), '(hidden_dim, output_size)\n', (3700, 3725), True, 'import torch.nn as nn\n'), ((3749, 3768), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (3759, 3768), True, 'import torch.nn as nn\n'), ((10475, 10502), 'numpy.roll', 'np.roll', (['current_seq', '(-1)', '(1)'], {}), '(current_seq, -1, 1)\n', (10482, 10502), True, 'import numpy as np\n'), ((9571, 9600), 'torch.LongTensor', 'torch.LongTensor', (['current_seq'], {}), '(current_seq)\n', (9587, 9600), False, 'import torch\n'), ((9831, 9855), 'torch.nn.functional.softmax', 'F.softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (9840, 9855), True, 'import torch.nn.functional as F\n'), ((9494, 9523), 'torch.LongTensor', 'torch.LongTensor', (['current_seq'], {}), '(current_seq)\n', (9510, 9523), False, 'import torch\n'), ((7238, 7262), 'numpy.average', 'np.average', (['batch_losses'], {}), '(batch_losses)\n', (7248, 7262), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """Next-Word Prediction using Universal Sentence Encoder.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1r2ma5P7w2LE30L1o5mAyNPLE7Qi3JxoL # **Google drive for local storage** _NB: All comments are written to facilitate smooth evaluation of the model, that the **Current User** may be less fatigued and see beauty in the good work._ Uncomment text under **PREVIEW OUTPUT** to further scrutinize. """ # Commented out IPython magic to ensure Python compatibility. # This cell will prompt an external url to accept permissions for Colab to access Google Drive from google.colab import drive drive.mount("/gdrive") # %ls """# **Import ***""" # Getting all required libraries import os import re import gdown import numpy import string import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf from absl import logging import tensorflow_hub as hub from tensorflow import keras import matplotlib.pyplot as plt from keras.models import Sequential import tensorflow.keras.backend as K from keras.layers.recurrent import LSTM from keras.layers import Dense, Activation from keras.callbacks import LambdaCallback from keras.utils.data_utils import get_file from keras.layers.embeddings import Embedding from sklearn.model_selection import train_test_split """## **Data preparation - _Generating Corpus_**""" # Download data from Google drive ''' ORIGINAL DATASET URL: https://raw.githubusercontent.com/maxim5/stanford-tensorflow-tutorials/master/data/arxiv_abstracts.txt ''' url = ' https://drive.google.com/uc?id=1YTBR7FiXssaKXHhOZbUbwoWw6jzQxxKW' output = 'corpus.txt' gdown.download(url, output, quiet=False) # sentence_length = 40 # Read local file from directory with open('corpus.txt') as subject: cache = subject.readlines() translator = str.maketrans('', '', string.punctuation) # Remove punctuation lines = [doc.lower().translate(translator) for doc in cache] # Switch to lower case # PREVIEW OUTPUT :: # print(lines[0][:100]) # len(lines) # Generate an list of single/independent words vocabulary = list(set(' '.join(lines).replace('\n','').split(' '))) primary_store = {} for strings, texts in enumerate(vocabulary): primary_store[texts] = strings # PREVIEW OUTPUT :: # print(vocabulary[:50]) # len(vocabulary) # Splitting data into Train sets and test sets X = [] y = [] for c in lines: xxxx = c.replace('\n','').split(' ') X.append(' '.join(xxxx[:-1])) # X from the corpus yyyy = [0 for i in range(len(vocabulary))] # Generate Y from the Vocabulary # yyyy[primary_store[xxxx[-1]]] = 1 yyyy[primary_store[xxxx[-1]]] = 1 y.append(yyyy) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) y_test = numpy.array(y_test) y_train = numpy.array(y_train) # PREVIEW OUTPUT :: # print(X_train[:10]) # print(y_train[:10]) # print(X_test[:10]) # print(y_test[:10]) """## **Embeddings!**""" # Import the Universal Sentence Encoder's TF Hub module (Here we're making use of version 4) # This will take a while but won't be long :) module_url = "https://tfhub.dev/google/universal-sentence-encoder/4" appreciate = hub.load(module_url) # Making it easier - Function for embedding def embed(goodness): return appreciate(goodness) # REVIEW OUTPUT :: # appreciate.variables # Wrapping up with the U-S-E X_train = embed(X_train) X_test = embed(X_test) X_train = X_train.numpy() X_test = X_test.numpy() # PREVIEW OUTPUT :: # print(X_train[:10]) # print(y_train[:10]) # print(X_test[:10]) # print(y_test[:10]) # print(X_train.shape, X_test.shape, y_test.shape, y_train.shape) """# **Building the model**""" model = Sequential() # model.add(Embedding(input_dim=len(vocabulary), output_dim=100)) model = Sequential() # model.add(LSTM(units=100, input_shape=[512])) model.add(Dense(512, input_shape=[512], activation = 'relu')) model.add(Dense(units=len(vocabulary), activation = 'softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) model.summary() # Training the model. model.fit(X_train, y_train, batch_size=512, shuffle=True, epochs=20, validation_data=(X_test, y_test), callbacks=[LambdaCallback()]) """#**Unto the tests!**""" # Create function to predict and show detailed output def next_word(collection=[], extent=1): for item in collection: text = item for i in range(extent): prediction = model.predict(x=embed([item]).numpy()) idx = np.argmax(prediction[-1]) item += ' ' + vocabulary[idx] print(text + ' --> ' + item + '\nNEXT WORD: ' + item.split(' ')[-1] + '\n') # Tests - please feel free to explore single_text = ['and some other essential'] next_word(single_text) # Testing on a collection of words text_collection = ['deep convolutional', 'simple and effective', 'a nonconvex', 'a'] next_word(text_collection) """## **For the record** The Dataset is based on a Tensorflow tutorial from Stanford, so all predicted words will be based on Deep learning and Machine learning _common terms_. """ # Storing data vocabulary = numpy.array(vocabulary) numpy.save('./vocabulary.npy', vocabulary) model.save('./NWP-USE') ## END OF NOTEBOOK
[ "tensorflow_hub.load", "numpy.save", "numpy.argmax", "gdown.download", "sklearn.model_selection.train_test_split", "keras.callbacks.LambdaCallback", "keras.layers.Dense", "numpy.array", "google.colab.drive.mount", "keras.models.Sequential" ]
[((690, 712), 'google.colab.drive.mount', 'drive.mount', (['"""/gdrive"""'], {}), "('/gdrive')\n", (701, 712), False, 'from google.colab import drive\n'), ((1704, 1744), 'gdown.download', 'gdown.download', (['url', 'output'], {'quiet': '(False)'}), '(url, output, quiet=False)\n', (1718, 1744), False, 'import gdown\n'), ((2745, 2800), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.25)', 'random_state': '(42)'}), '(X, y, test_size=0.25, random_state=42)\n', (2761, 2800), False, 'from sklearn.model_selection import train_test_split\n'), ((2810, 2829), 'numpy.array', 'numpy.array', (['y_test'], {}), '(y_test)\n', (2821, 2829), False, 'import numpy\n'), ((2840, 2860), 'numpy.array', 'numpy.array', (['y_train'], {}), '(y_train)\n', (2851, 2860), False, 'import numpy\n'), ((3220, 3240), 'tensorflow_hub.load', 'hub.load', (['module_url'], {}), '(module_url)\n', (3228, 3240), True, 'import tensorflow_hub as hub\n'), ((3725, 3737), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (3735, 3737), False, 'from keras.models import Sequential\n'), ((3812, 3824), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (3822, 3824), False, 'from keras.models import Sequential\n'), ((5145, 5168), 'numpy.array', 'numpy.array', (['vocabulary'], {}), '(vocabulary)\n', (5156, 5168), False, 'import numpy\n'), ((5169, 5211), 'numpy.save', 'numpy.save', (['"""./vocabulary.npy"""', 'vocabulary'], {}), "('./vocabulary.npy', vocabulary)\n", (5179, 5211), False, 'import numpy\n'), ((3883, 3931), 'keras.layers.Dense', 'Dense', (['(512)'], {'input_shape': '[512]', 'activation': '"""relu"""'}), "(512, input_shape=[512], activation='relu')\n", (3888, 3931), False, 'from keras.layers import Dense, Activation\n'), ((4236, 4252), 'keras.callbacks.LambdaCallback', 'LambdaCallback', ([], {}), '()\n', (4250, 4252), False, 'from keras.callbacks import LambdaCallback\n'), ((4520, 4545), 'numpy.argmax', 'np.argmax', (['prediction[-1]'], {}), '(prediction[-1])\n', (4529, 4545), True, 'import numpy as np\n')]
import argparse import os from scipy.special import erf from scipy.stats import truncnorm import numpy as np import data def build_vector_cache(glove_filename, vec_cache_filename, vocab): print("Building vector cache...") with open(glove_filename) as f, open(vec_cache_filename, "w") as f2: for line in f: tok, vec = line.split(" ", 1) if tok in vocab: vocab.remove(tok) f2.write("{} {}".format(tok, vec)) def discrete_tnorm(a, b, tgt_loc, sigma=1, n_steps=100): def phi(zeta): return 1 / (np.sqrt(2 * np.pi)) * np.exp(-0.5 * zeta**2) def Phi(x): return 0.5 * (1 + erf(x / np.sqrt(2))) def tgt_loc_update(x): y1 = phi((a - x) / sigma) y2 = phi((b - x) / sigma) x1 = Phi((b - x) / sigma) x2 = Phi((a - x) / sigma) denom = x1 - x2 + 1E-4 return y1 / denom - y2 / denom x = tgt_loc direction = np.sign(tgt_loc - (b - a)) for _ in range(n_steps): x = tgt_loc - sigma * tgt_loc_update(x) tn = truncnorm((a - x) / sigma, (b - x) / sigma, loc=x, scale=sigma) rrange = np.arange(a, b + 1) pmf = tn.pdf(rrange) pmf /= np.sum(pmf) return pmf def discrete_lerp(a, b, ground_truth): pmf = np.zeros(b - a + 1) c = int(np.ceil(ground_truth + 1E-8)) f = int(np.floor(ground_truth)) pmf[min(c - a, b - a)] = ground_truth - f pmf[f - a] = c - ground_truth return pmf def smoothed_labels(truth, n_labels): return discrete_lerp(1, n_labels, truth) def preprocess(filename, output_name="sim_sparse.txt"): print("Preprocessing {}...".format(filename)) with open(filename) as f: values = [float(l.strip()) for l in f.readlines()] values = [" ".join([str(l) for l in smoothed_labels(v, 5)]) for v in values] with open(os.path.join(os.path.dirname(filename), output_name), "w") as f: f.write("\n".join(values)) def add_vocab(tok_filename, vocab): with open(tok_filename) as f: for line in f: vocab.update(line.strip().split()) def main(): base_conf = data.Configs.base_config() sick_conf = data.Configs.sick_config() sick_folder = sick_conf.sick_data vocab = set() for name in ("train", "dev", "test"): preprocess(os.path.join(sick_folder, name, "sim.txt")) add_vocab(os.path.join(sick_folder, name, "a.toks"), vocab) add_vocab(os.path.join(sick_folder, name, "b.toks"), vocab) build_vector_cache(base_conf.wordvecs_file, sick_conf.sick_cache, vocab) if __name__ == "__main__": main()
[ "numpy.sum", "data.Configs.base_config", "numpy.ceil", "scipy.stats.truncnorm", "numpy.floor", "numpy.zeros", "data.Configs.sick_config", "os.path.dirname", "numpy.arange", "numpy.exp", "numpy.sign", "os.path.join", "numpy.sqrt" ]
[((952, 978), 'numpy.sign', 'np.sign', (['(tgt_loc - (b - a))'], {}), '(tgt_loc - (b - a))\n', (959, 978), True, 'import numpy as np\n'), ((1065, 1128), 'scipy.stats.truncnorm', 'truncnorm', (['((a - x) / sigma)', '((b - x) / sigma)'], {'loc': 'x', 'scale': 'sigma'}), '((a - x) / sigma, (b - x) / sigma, loc=x, scale=sigma)\n', (1074, 1128), False, 'from scipy.stats import truncnorm\n'), ((1142, 1161), 'numpy.arange', 'np.arange', (['a', '(b + 1)'], {}), '(a, b + 1)\n', (1151, 1161), True, 'import numpy as np\n'), ((1198, 1209), 'numpy.sum', 'np.sum', (['pmf'], {}), '(pmf)\n', (1204, 1209), True, 'import numpy as np\n'), ((1275, 1294), 'numpy.zeros', 'np.zeros', (['(b - a + 1)'], {}), '(b - a + 1)\n', (1283, 1294), True, 'import numpy as np\n'), ((2113, 2139), 'data.Configs.base_config', 'data.Configs.base_config', ([], {}), '()\n', (2137, 2139), False, 'import data\n'), ((2156, 2182), 'data.Configs.sick_config', 'data.Configs.sick_config', ([], {}), '()\n', (2180, 2182), False, 'import data\n'), ((1307, 1336), 'numpy.ceil', 'np.ceil', (['(ground_truth + 1e-08)'], {}), '(ground_truth + 1e-08)\n', (1314, 1336), True, 'import numpy as np\n'), ((1349, 1371), 'numpy.floor', 'np.floor', (['ground_truth'], {}), '(ground_truth)\n', (1357, 1371), True, 'import numpy as np\n'), ((600, 624), 'numpy.exp', 'np.exp', (['(-0.5 * zeta ** 2)'], {}), '(-0.5 * zeta ** 2)\n', (606, 624), True, 'import numpy as np\n'), ((2300, 2342), 'os.path.join', 'os.path.join', (['sick_folder', 'name', '"""sim.txt"""'], {}), "(sick_folder, name, 'sim.txt')\n", (2312, 2342), False, 'import os\n'), ((2362, 2403), 'os.path.join', 'os.path.join', (['sick_folder', 'name', '"""a.toks"""'], {}), "(sick_folder, name, 'a.toks')\n", (2374, 2403), False, 'import os\n'), ((2430, 2471), 'os.path.join', 'os.path.join', (['sick_folder', 'name', '"""b.toks"""'], {}), "(sick_folder, name, 'b.toks')\n", (2442, 2471), False, 'import os\n'), ((578, 596), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (585, 596), True, 'import numpy as np\n'), ((1856, 1881), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (1871, 1881), False, 'import os\n'), ((673, 683), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (680, 683), True, 'import numpy as np\n')]
import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import numpy as np pipelines = pd.read_csv('OntoGasGrid/pipeline_owl_generator/pipeline_split.csv').to_numpy() offtakes = pd.read_csv('OntoGasGrid/grid_component_owl_generator/grid_component_data.csv').to_numpy() n_offt = len(offtakes[:,0]) n_cons = len(pipelines[:,0]) closest_connection = np.zeros((n_offt,2),dtype=object) def connection_name_get(i): grid_line = pipelines[i,3] connect_num = pipelines[i,8] return grid_line + ' ' + str(connect_num) + ' Connection' for i in tqdm(range(n_offt)): if offtakes[i,2] != '#VALUE!': dist_store = [] max_dist = 1000 off_lat = float(offtakes[i,2]) off_lng = float(offtakes[i,1]) for ii in range(n_cons): con_lat = float(pipelines[ii,0]) con_lng = float(pipelines[ii,1]) dist = np.sqrt((off_lat-con_lat)**2+(off_lng-con_lng)**2) if dist < max_dist: closest_connection[i,0] = connection_name_get(ii) closest_connection[i,1] = pipelines[ii,2] max_dist = dist closest_connection = pd.DataFrame(closest_connection).to_csv('OntoGasGrid/grid_component_owl_generator/closest connection.csv',index=False,header=False)
[ "pandas.read_csv", "numpy.zeros", "pandas.DataFrame", "numpy.sqrt" ]
[((373, 408), 'numpy.zeros', 'np.zeros', (['(n_offt, 2)'], {'dtype': 'object'}), '((n_offt, 2), dtype=object)\n', (381, 408), True, 'import numpy as np\n'), ((110, 178), 'pandas.read_csv', 'pd.read_csv', (['"""OntoGasGrid/pipeline_owl_generator/pipeline_split.csv"""'], {}), "('OntoGasGrid/pipeline_owl_generator/pipeline_split.csv')\n", (121, 178), True, 'import pandas as pd\n'), ((201, 280), 'pandas.read_csv', 'pd.read_csv', (['"""OntoGasGrid/grid_component_owl_generator/grid_component_data.csv"""'], {}), "('OntoGasGrid/grid_component_owl_generator/grid_component_data.csv')\n", (212, 280), True, 'import pandas as pd\n'), ((1182, 1214), 'pandas.DataFrame', 'pd.DataFrame', (['closest_connection'], {}), '(closest_connection)\n', (1194, 1214), True, 'import pandas as pd\n'), ((904, 964), 'numpy.sqrt', 'np.sqrt', (['((off_lat - con_lat) ** 2 + (off_lng - con_lng) ** 2)'], {}), '((off_lat - con_lat) ** 2 + (off_lng - con_lng) ** 2)\n', (911, 964), True, 'import numpy as np\n')]
from random import shuffle from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import load_iris import numpy as np iris = load_iris() print(type(iris), len(iris.data)) def test1(): XY = np.array(zip(iris.data, iris.target)) np.random.shuffle(XY) X, Y = XY[:, :1][:100], XY[:, 1:][:100] X_test, Y_test = XY[:, :1][100:], XY[:, 1:][100:] X.shape, Y.shape = -1, -1 X_test.shape, Y_test.shape = -1, -1 X = [list(i) for i in X] X_test = [list(i) for i in X_test] print('X:', X) print('Y:', Y) # Train model rf = RandomForestRegressor() rf.fit(X, Y) # Predict new sample Y_pre = rf.predict(X_test) print('Y_test:', Y_test) print('Y_pre:', Y_pre) def test2(): from sklearn.cross_validation import cross_val_score, ShuffleSplit X, Y, names = iris.data, iris.target, iris['feature_names'] rf = RandomForestRegressor() scores = [] for i in range(X.shape[1]): score = cross_val_score(rf, X[:, i:i + 1], Y, scoring='r2', cv=ShuffleSplit(len(X), 3, .3)) scores.append((round(np.mean(score), 3), names[i])) print(sorted(scores, reverse=True)) if __name__ == '__main__': test1() test2()
[ "sklearn.datasets.load_iris", "numpy.mean", "numpy.random.shuffle", "sklearn.ensemble.RandomForestRegressor" ]
[((192, 203), 'sklearn.datasets.load_iris', 'load_iris', ([], {}), '()\n', (201, 203), False, 'from sklearn.datasets import load_iris\n'), ((304, 325), 'numpy.random.shuffle', 'np.random.shuffle', (['XY'], {}), '(XY)\n', (321, 325), True, 'import numpy as np\n'), ((628, 651), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {}), '()\n', (649, 651), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((942, 965), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {}), '()\n', (963, 965), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((1207, 1221), 'numpy.mean', 'np.mean', (['score'], {}), '(score)\n', (1214, 1221), True, 'import numpy as np\n')]
import os import argparse import datetime import numpy as np from glob import glob from typing import List, Set, Tuple """ Author: <NAME> (<EMAIL>) Computes character-level Cohen's kappa and percentage agreement for a set of brat annotated files from two annotators for a sequence labeling task (e.g. NER). """ class BratANN(object): """ A brat annotation. >>> ann = "T1\tent 1 4\tcat" >>> b1 = BratANN("T3", "ent", 1, 4, "cat") >>> b2 = BratANN.from_string(ann) >>> b1 == b2 True >>> b3 = BratANN("T3", "ent", 1, 5, "cat ") >>> b1 == b3 False """ def __init__(self, num: str, label: str, start: int, end: int, text: str): self.num = num self.label = label self.start = int(start) self.end = int(end) self.text = text @classmethod def from_string(cls, string: str): (n, l, s, e, t) = string.split(maxsplit=4) return cls(n, l, int(s), int(e), t) def __str__(self) -> str: return f"{self.num}\t{self.label} {self.start} {self.end}\t{self.text}" # noqa def __repr__(self) -> str: return f"<ira.BratANN '{self.num}, {self.label}, {self.start}, {self.end}, {self.text}'>" # noqa def __eq__(self, other) -> bool: """ Overrides the default implementation Two BratANNs are considering equal iff they have the same label, offset, and text. Equality does not consider the annotation number, e.g. T1 """ if isinstance(other, BratANN): return all([self.label == other.label, self.start == other.start, self.end == other.end, self.text == other.text]) else: return False def parse_args(): def usage(): return """ira.py [--help, Show this help message and exit] [--test, Test the ira function] [--docdir, Directory containing the documents that were annotated. If not specified, looks in indir1.] --indir1, Directory containing first annotators annotations --indir2, Directory containing second annotators annotations --annotation_conf, The brat annotation.conf that was used for this annotation task --disagreements, Whether to suppress, print, or log files in which annotators disagree. Possible values are "suppress", "print", "log". Default is "suppress". If "log", writes file names to "disagreements.log" in the current working directory. """ desc = """Computes Cohen's kappa at the token level for a sequence labeling task.""" parser = argparse.ArgumentParser(description=desc, usage=usage()) parser.add_argument("--test", action="store_true", default=False, help="""Test the ira function.""") args, remainder = parser.parse_known_args() if args.test is True: return args parser = argparse.ArgumentParser(usage=usage()) parser.add_argument("--indir1", type=str, required=True) parser.add_argument("--indir2", type=str, required=True) parser.add_argument("--annotation_conf", type=str, required=True) parser.add_argument("--docdir", type=str, required=False, default=None) parser.add_argument("--disagreements", type=str, required=False, default="suppress", choices=["suppress", "print", "log"]) args = parser.parse_args(remainder) args.test = False return args def main(indir1: str, indir2: str, ann_conf: str, docdir: str = None, disagreements: str = "suppress"): """ param indir{1,2}: Input directories containing the first and second annotators .ann files, respectively. param ann_conf: Path to the annotation.conf file. param docdir: Directory containing the .txt files which were annotated. If None, uses indir1. param disagreements: How disagreements are logged. Possible values are "suppress", "print" and "log". If "suppress", do nothing. If "print", prints files that disagree to the console. If "log", files that disagree will be written to "disagreements.log" in the current working directory. """ # Read in the documents. if docdir is not None: doc_fnames = glob(f"{docdir}/*.txt") else: doc_fnames = glob(f"{indir1}/*.txt") docs = read_docs(doc_fnames) # Read in the annotations. basenames = [os.path.splitext(os.path.basename(fn))[0] for fn in doc_fnames] ann_fnames1 = [os.path.join(indir1, f"{bn}.ann") for bn in basenames] ann_fnames2 = [os.path.join(indir2, f"{bn}.ann") for bn in basenames] anns1 = read_anns(ann_fnames1) anns2 = read_anns(ann_fnames2) if not len(docs) == len(anns1) == len(anns2): raise ValueError("Different numbers of documents and annotations.") # Read the entity labels. labels = read_labels(ann_conf) # Compute inter rater agreement. kappa, agreement, disagree_idxs = ira(docs, anns1, anns2, labels) summary(kappa, "Cohen's Kappa") summary(agreement, "Percentage Agreement") # Do something with disagreements. if disagreements == "print": print("=== Disagreements ===") for (idx, p_o) in disagree_idxs: bn = os.path.basename(doc_fnames[idx]) print(f"{bn}: Agreement={p_o:.3f}") if disagreements == "log": with open("disagreements.log", 'w') as outF: outF.write(str(datetime.datetime.now() + '\n')) for (idx, p_o) in disagree_idxs: bn = os.path.basename(doc_fnames[idx]) outF.write(f"{bn}: Agreement={p_o:.3f}\n") def read_docs(fnames: List[str]) -> List[str]: """ Reads in the documents. param fnames: List of paths to .txt files to read. returns: List of input documents. """ all_docs = [] for docfile in fnames: doc = open(docfile, 'r').read() all_docs.append(doc) return all_docs def read_anns(fnames: List[str]) -> List[List[BratANN]]: """ Reads all .ann files and converts their annotations to BratANN objects. param fnames: List of paths to .ann files to read. returns: List of annotations. """ all_anns = [] for annfile in fnames: anns = [BratANN.from_string(a.strip()) for a in open(annfile, 'r')] all_anns.append(anns) return all_anns def read_labels(ann_conf: str) -> Set[str]: """ Reads the entity labels from annotation.conf. param ann_conf: Path to annotation.conf returns: set of entity labels. """ labels = set() with open(ann_conf, 'r') as infile: copy = False for line in infile: # Skip blank lines and comments. if not line.strip() or line.strip().startswith('#'): continue if line.strip() == "[entities]": copy = True elif line.strip() == "[relations]": copy = False elif copy is True: labels.add(line.strip()) return labels def ira(docs: List[str], anns1: List[List[BratANN]], anns2: List[List[BratANN]], labels: Set[str]) -> Tuple[np.array, np.array, List[Tuple[int, float]]]: # noqa """ Computes Cohen's kappa and percentage agreement between two annotators. param docs: List of documents, output of read_docs(). param anns1: List of first annotators annotations, output of read_anns(). param anns2: List of second annotators annotations, output of read_anns(). param labels: Set of labels annotated, output of read_labels(). returns: Kappa and percentage agreement for each document. """ n_docs = len(docs) p_os = np.zeros(n_docs) kappas = np.zeros(n_docs) disagree_idxs_po = [] for i in range(n_docs): denom = len(docs[i]) v1 = label_vector(docs[i], anns1[i], labels) v2 = label_vector(docs[i], anns2[i], labels) # Observed agreement: How often the two annotators actually agreed. # Equivalent to accuracy. p_o = np.sum(v1 == v2) / denom if p_o != 1.0: disagree_idxs_po.append((i, p_o)) # Expected agreement: How often the two annotators are expected to # agree. For number of items N, labels k, and the number of times # rater j predicted label k, n_j_k: # p_e = (1/N^2) * sum_k (n_1_k * n_2_k) p_e = (1/denom**2) * np.sum([np.sum(v1 == k) * np.sum(v2 == k) for k in range(len(labels)+1)]) if p_e == 1: k = 0.0 else: k = (p_o - p_e) / (1 - p_e) p_os[i] = p_o kappas[i] = k return (kappas, p_os, disagree_idxs_po) def label_vector(doc: List[str], anns: List[List[BratANN]], labels: Set[str]) -> np.array: """ Converts the document into an integer vector. The value of each element corresponds to the entity type of the annotation at that character position, with 0 indicating no annotation. So an annotation task with 3 annotation types would have a vector of 0s, 1s, 2s, and 3s. param doc: Document that was annotated. param anns: Annotations for each document. param labels: Set of entity labels for this task. returns: Vector of character level annotations. """ v = np.zeros(len(doc)) # For each character for (i, lab) in enumerate(labels): i += 1 # 0 is reserved for no label idxs = [np.arange(a.start, a.end) for a in anns if a.label == lab] idxs = [j for mask in idxs for j in mask] v[idxs] = i return v def summary(results: np.array, varname: str = None): """ Prints summary statistics for the supplied results. param results: Numeric array of results (e.g. kappas). param varname: (Optional) Name of the variable being summarized. """ if varname is not None: print(varname) if len(results) == 1: print(f"{results[0]:.3f}") else: rmean = np.mean(results) rmax = np.max(results) rmin = np.min(results) rstd = np.std(results) print(f"""Mean: {rmean:.3f} +/-{rstd:.3f}\nRange: ({rmin:.3f}, {rmax:.3f})""") # noqa def test(): """ A small example to test ira(). """ docs = ["The cats sat on the mat"] ann_strs1 = ["T1\tent 4 8\tcats", "T2\tent 9 12\tsat", "T3\tent 20 23\tmat"] anns1 = [[BratANN.from_string(s) for s in ann_strs1]] ann_strs2 = ["T1\tent 4 7\tcat", "T2\tent 20 23 mat"] anns2 = [[BratANN.from_string(s) for s in ann_strs2]] labels = ["ent"] kappas, agreements, disagreements = ira(docs, anns1, anns2, labels) assert(np.isclose(kappas[0], 0.629, atol=1e-03)) assert(np.isclose(agreements[0], 0.826, atol=1e-03)) print("All tests passed.") if __name__ == "__main__": args = parse_args() if args.test is True: import doctest doctest.testmod() test() else: main(args.indir1, args.indir2, args.annotation_conf, docdir=args.docdir, disagreements=args.disagreements)
[ "numpy.sum", "os.path.basename", "numpy.std", "numpy.zeros", "datetime.datetime.now", "numpy.isclose", "numpy.mean", "numpy.max", "numpy.min", "numpy.arange", "glob.glob", "os.path.join", "doctest.testmod" ]
[((8150, 8166), 'numpy.zeros', 'np.zeros', (['n_docs'], {}), '(n_docs)\n', (8158, 8166), True, 'import numpy as np\n'), ((8180, 8196), 'numpy.zeros', 'np.zeros', (['n_docs'], {}), '(n_docs)\n', (8188, 8196), True, 'import numpy as np\n'), ((11195, 11235), 'numpy.isclose', 'np.isclose', (['kappas[0]', '(0.629)'], {'atol': '(0.001)'}), '(kappas[0], 0.629, atol=0.001)\n', (11205, 11235), True, 'import numpy as np\n'), ((11248, 11292), 'numpy.isclose', 'np.isclose', (['agreements[0]', '(0.826)'], {'atol': '(0.001)'}), '(agreements[0], 0.826, atol=0.001)\n', (11258, 11292), True, 'import numpy as np\n'), ((4683, 4706), 'glob.glob', 'glob', (['f"""{docdir}/*.txt"""'], {}), "(f'{docdir}/*.txt')\n", (4687, 4706), False, 'from glob import glob\n'), ((4738, 4761), 'glob.glob', 'glob', (['f"""{indir1}/*.txt"""'], {}), "(f'{indir1}/*.txt')\n", (4742, 4761), False, 'from glob import glob\n'), ((4943, 4976), 'os.path.join', 'os.path.join', (['indir1', 'f"""{bn}.ann"""'], {}), "(indir1, f'{bn}.ann')\n", (4955, 4976), False, 'import os\n'), ((5017, 5050), 'os.path.join', 'os.path.join', (['indir2', 'f"""{bn}.ann"""'], {}), "(indir2, f'{bn}.ann')\n", (5029, 5050), False, 'import os\n'), ((10493, 10509), 'numpy.mean', 'np.mean', (['results'], {}), '(results)\n', (10500, 10509), True, 'import numpy as np\n'), ((10525, 10540), 'numpy.max', 'np.max', (['results'], {}), '(results)\n', (10531, 10540), True, 'import numpy as np\n'), ((10556, 10571), 'numpy.min', 'np.min', (['results'], {}), '(results)\n', (10562, 10571), True, 'import numpy as np\n'), ((10587, 10602), 'numpy.std', 'np.std', (['results'], {}), '(results)\n', (10593, 10602), True, 'import numpy as np\n'), ((11435, 11452), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (11450, 11452), False, 'import doctest\n'), ((5692, 5725), 'os.path.basename', 'os.path.basename', (['doc_fnames[idx]'], {}), '(doc_fnames[idx])\n', (5708, 5725), False, 'import os\n'), ((8512, 8528), 'numpy.sum', 'np.sum', (['(v1 == v2)'], {}), '(v1 == v2)\n', (8518, 8528), True, 'import numpy as np\n'), ((9957, 9982), 'numpy.arange', 'np.arange', (['a.start', 'a.end'], {}), '(a.start, a.end)\n', (9966, 9982), True, 'import numpy as np\n'), ((4860, 4880), 'os.path.basename', 'os.path.basename', (['fn'], {}), '(fn)\n', (4876, 4880), False, 'import os\n'), ((5984, 6017), 'os.path.basename', 'os.path.basename', (['doc_fnames[idx]'], {}), '(doc_fnames[idx])\n', (6000, 6017), False, 'import os\n'), ((5885, 5908), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5906, 5908), False, 'import datetime\n'), ((8890, 8905), 'numpy.sum', 'np.sum', (['(v1 == k)'], {}), '(v1 == k)\n', (8896, 8905), True, 'import numpy as np\n'), ((8908, 8923), 'numpy.sum', 'np.sum', (['(v2 == k)'], {}), '(v2 == k)\n', (8914, 8923), True, 'import numpy as np\n')]
import datetime import os import keras import numpy as np import pandas as pd from base_model import BaseModel from multivariate_container import MultivariateContainer from typing import Union class MultivariateLSTM(BaseModel): def __init__( self, container: MultivariateContainer, config: bool=None, create_empty: bool=False) -> None: """ Initialization method. """ _, self.time_steps, self.num_fea = container.train_X.shape print(f"MultivariateLSTM Initialized: \ \n\tTime Step: {self.time_steps}\ \n\tFeature: {self.num_fea}") self.config = config self.container = container self.hist = None if create_empty: self.core = None else: self.core = self._construct_lstm_model(self.config) self._gen_file_name() print( f"\tMultivariateLSTM: Current model will be save to ./saved_models/f{self.file_name}/") def _construct_lstm_model( self, config: dict, verbose: bool=True ) -> keras.Model: """ Construct the Stacked lstm model, Note: Modify this method to change model configurations. # TODO: Add arbitray layer support. """ print("MultivariateLSTM: Generating LSTM model using Model API.") input_sequence = keras.layers.Input( shape=(self.time_steps, self.num_fea), dtype="float32", name="input_sequence") normalization = keras.layers.BatchNormalization()(input_sequence) lstm = keras.layers.LSTM( units=config["nn.lstm1"], return_sequences=False )(normalization) dense1 = keras.layers.Dense( units=config["nn.dense1"], name="Dense1" )(lstm) predictions = keras.layers.Dense( 1, name="Prediction" )(dense1) model = keras.Model(inputs=input_sequence, outputs=predictions) model.compile(loss="mse", optimizer="adam") if verbose: print("\tMultivariateLSTM: LSTM model constructed with configuration: ") keras.utils.print_summary(model) return model def _construct_lstm_sequential( self, config: dict, verbose: bool=True ) -> keras.Sequential: """ Construct the Stacked lstm model, Note: Modify this method to change model configurations. # TODO: Add arbitray layer support. """ print("MultivariateLSTM: Generating LSTM model with Keras Sequential API") model = keras.Sequential() model.add(keras.layers.LSTM( units=config["nn.lstm1"], input_shape=(self.time_steps, self.num_fea), return_sequences=True, name="LSTM1" )) model.add( keras.layers.LSTM( units=config["nn.lstm2"], name="LSTM2" )) model.add( keras.layers.Dense( units=config["nn.dense1"], name="Dense1" )) model.add( keras.layers.Dense( units=1, name="Dense_output" )) model.compile(loss="mse", optimizer="adam") if verbose: print("\tMultivariateLSTM: LSTM model constructed with configuration: ") keras.utils.print_summary(model) return model def update_config( self, new_config: dict ) -> None: """ Update the neural network configuration, and re-construct, re-compile the core. """ # TODO: add check configuration method here. print("MultivariateLSTM: Updating neural network configuration...") self.prev_config = self.config self.config = new_config self.core = self._construct_lstm_model(self.config, verbose=False) print("\tDone.") def fit_model( self, epochs: int=10 ) -> None: start_time = datetime.datetime.now() print("MultivariateLSTM: Start fitting.") self.hist = self.core.fit( self.container.train_X, self.container.train_y, epochs=epochs, batch_size=32 if self.config is None else self.config["batch_size"], validation_split=0.1 if self.config is None else self.config["validation_split"] ) finish_time = datetime.datetime.now() time_taken = finish_time - start_time print(f"\tFitting finished, {epochs} epochs for {str(time_taken)}") def predict( self, X_feed: np.ndarray ) -> np.ndarray: y_hat = self.core.predict(X_feed, verbose=1) # y_hat = self.container.scaler_y.inverse_transform(y_hat) # y_hat returned used to compare with self.container.*_X directly. return y_hat def save_model( self, file_dir: str=None ) -> None: if file_dir is None: # If no file directory specified, use the default one. file_dir = self.file_name # Try to create record folder. try: folder = f"./saved_models/{file_dir}/" os.system(f"mkdir {folder}") print(f"Experiment record directory created: {folder}") except: print("Current directory: ") _ = os.system("pwd") raise FileNotFoundError( "Failed to create directory, please create directory ./saved_models/") # Save model structure to JSON print("Saving model structure...") model_json = self.core.to_json() with open(f"{folder}model_structure.json", "w") as json_file: json_file.write(model_json) print("Done.") # Save model weight to h5 print("Saving model weights...") self.core.save_weights(f"{folder}model_weights.h5") print("Done") # Save model illustration to png file. print("Saving model visualization...") try: keras.utils.plot_model( self.core, to_file=f"{folder}model.png", show_shapes=True, show_layer_names=True) except: print("Model illustration cannot be saved.") # Save training history (if any) if self.hist is not None: hist_loss = np.squeeze(np.array(self.hist.history["loss"])) hist_val_loss = np.squeeze(np.array(self.hist.history["val_loss"])) combined = np.stack([hist_loss, hist_val_loss]) combined = np.transpose(combined) df = pd.DataFrame(combined, dtype=np.float32) df.columns = ["loss", "val_loss"] df.to_csv(f"{folder}hist.csv", sep=",") print(f"Training history is saved to {folder}hist.csv...") else: print("No training history found.") print("Done.") def load_model( self, folder_dir: str ) -> None: """ #TODO: doc """ if not folder_dir.endswith("/"): # Assert the correct format, folder_dir should be folder_dir += "/" print(f"Load model from folder {folder_dir}") # construct model from json print("Reconstruct model from Json file...") try: json_file = open(f"{folder_dir}model_structure.json", "r") except FileNotFoundError: raise Warning( f"Json file not found. Expected: {folder_dir}model_structure.json" ) model_file = json_file.read() json_file.close() self.core = keras.models.model_from_json(model_file) print("Done.") # load weights from h5 print("Loading model weights...") try: self.core.load_weights( f"{folder_dir}model_weights.h5", by_name=True) except FileNotFoundError: raise Warning( f"h5 file not found. Expected: {folder_dir}model_weights.h5" ) print("Done.") self.core.compile(loss="mse", optimizer="adam") def summarize_training(self): """ Summarize training result to string file. - Loss - Epochs - Time taken """ raise NotImplementedError def visualize_training(self): """ Visualize the training result: - Plot training set loss and validation set loss. """ # TODO: move visualize training to general methods. raise NotImplementedError
[ "numpy.stack", "pandas.DataFrame", "keras.Model", "keras.Sequential", "keras.layers.LSTM", "numpy.transpose", "os.system", "keras.utils.plot_model", "keras.models.model_from_json", "keras.layers.Dense", "numpy.array", "keras.layers.Input", "keras.utils.print_summary", "datetime.datetime.now", "keras.layers.BatchNormalization" ]
[((1417, 1518), 'keras.layers.Input', 'keras.layers.Input', ([], {'shape': '(self.time_steps, self.num_fea)', 'dtype': '"""float32"""', 'name': '"""input_sequence"""'}), "(shape=(self.time_steps, self.num_fea), dtype='float32',\n name='input_sequence')\n", (1435, 1518), False, 'import keras\n'), ((2002, 2057), 'keras.Model', 'keras.Model', ([], {'inputs': 'input_sequence', 'outputs': 'predictions'}), '(inputs=input_sequence, outputs=predictions)\n', (2013, 2057), False, 'import keras\n'), ((2698, 2716), 'keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (2714, 2716), False, 'import keras\n'), ((4146, 4169), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4167, 4169), False, 'import datetime\n'), ((4560, 4583), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4581, 4583), False, 'import datetime\n'), ((7834, 7874), 'keras.models.model_from_json', 'keras.models.model_from_json', (['model_file'], {}), '(model_file)\n', (7862, 7874), False, 'import keras\n'), ((1577, 1610), 'keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (1608, 1610), False, 'import keras\n'), ((1643, 1710), 'keras.layers.LSTM', 'keras.layers.LSTM', ([], {'units': "config['nn.lstm1']", 'return_sequences': '(False)'}), "(units=config['nn.lstm1'], return_sequences=False)\n", (1660, 1710), False, 'import keras\n'), ((1778, 1838), 'keras.layers.Dense', 'keras.layers.Dense', ([], {'units': "config['nn.dense1']", 'name': '"""Dense1"""'}), "(units=config['nn.dense1'], name='Dense1')\n", (1796, 1838), False, 'import keras\n'), ((1902, 1942), 'keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {'name': '"""Prediction"""'}), "(1, name='Prediction')\n", (1920, 1942), False, 'import keras\n'), ((2229, 2261), 'keras.utils.print_summary', 'keras.utils.print_summary', (['model'], {}), '(model)\n', (2254, 2261), False, 'import keras\n'), ((2735, 2864), 'keras.layers.LSTM', 'keras.layers.LSTM', ([], {'units': "config['nn.lstm1']", 'input_shape': '(self.time_steps, self.num_fea)', 'return_sequences': '(True)', 'name': '"""LSTM1"""'}), "(units=config['nn.lstm1'], input_shape=(self.time_steps,\n self.num_fea), return_sequences=True, name='LSTM1')\n", (2752, 2864), False, 'import keras\n'), ((2951, 3008), 'keras.layers.LSTM', 'keras.layers.LSTM', ([], {'units': "config['nn.lstm2']", 'name': '"""LSTM2"""'}), "(units=config['nn.lstm2'], name='LSTM2')\n", (2968, 3008), False, 'import keras\n'), ((3087, 3147), 'keras.layers.Dense', 'keras.layers.Dense', ([], {'units': "config['nn.dense1']", 'name': '"""Dense1"""'}), "(units=config['nn.dense1'], name='Dense1')\n", (3105, 3147), False, 'import keras\n'), ((3226, 3274), 'keras.layers.Dense', 'keras.layers.Dense', ([], {'units': '(1)', 'name': '"""Dense_output"""'}), "(units=1, name='Dense_output')\n", (3244, 3274), False, 'import keras\n'), ((3492, 3524), 'keras.utils.print_summary', 'keras.utils.print_summary', (['model'], {}), '(model)\n', (3517, 3524), False, 'import keras\n'), ((5346, 5374), 'os.system', 'os.system', (['f"""mkdir {folder}"""'], {}), "(f'mkdir {folder}')\n", (5355, 5374), False, 'import os\n'), ((6192, 6301), 'keras.utils.plot_model', 'keras.utils.plot_model', (['self.core'], {'to_file': 'f"""{folder}model.png"""', 'show_shapes': '(True)', 'show_layer_names': '(True)'}), "(self.core, to_file=f'{folder}model.png', show_shapes\n =True, show_layer_names=True)\n", (6214, 6301), False, 'import keras\n'), ((6694, 6730), 'numpy.stack', 'np.stack', (['[hist_loss, hist_val_loss]'], {}), '([hist_loss, hist_val_loss])\n', (6702, 6730), True, 'import numpy as np\n'), ((6754, 6776), 'numpy.transpose', 'np.transpose', (['combined'], {}), '(combined)\n', (6766, 6776), True, 'import numpy as np\n'), ((6794, 6834), 'pandas.DataFrame', 'pd.DataFrame', (['combined'], {'dtype': 'np.float32'}), '(combined, dtype=np.float32)\n', (6806, 6834), True, 'import pandas as pd\n'), ((5516, 5532), 'os.system', 'os.system', (['"""pwd"""'], {}), "('pwd')\n", (5525, 5532), False, 'import os\n'), ((6554, 6589), 'numpy.array', 'np.array', (["self.hist.history['loss']"], {}), "(self.hist.history['loss'])\n", (6562, 6589), True, 'import numpy as np\n'), ((6630, 6669), 'numpy.array', 'np.array', (["self.hist.history['val_loss']"], {}), "(self.hist.history['val_loss'])\n", (6638, 6669), True, 'import numpy as np\n')]
import pandas as pd import matplotlib.pyplot as plt import numpy as np df = pd.read_csv('medals_data.csv') df[['Gold','Silver','Bronze']].plot(kind='bar',stacked=True) plt.title('India Olympics Medal') plt.xlabel('Years') plt.ylabel('Medals') n = len(df['Games']) labels = df.Games.str.slice(0,4) plt.xticks(np.arange(n),labels,rotation='horizontal') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "pandas.read_csv", "numpy.arange", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((78, 108), 'pandas.read_csv', 'pd.read_csv', (['"""medals_data.csv"""'], {}), "('medals_data.csv')\n", (89, 108), True, 'import pandas as pd\n'), ((171, 204), 'matplotlib.pyplot.title', 'plt.title', (['"""India Olympics Medal"""'], {}), "('India Olympics Medal')\n", (180, 204), True, 'import matplotlib.pyplot as plt\n'), ((205, 224), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Years"""'], {}), "('Years')\n", (215, 224), True, 'import matplotlib.pyplot as plt\n'), ((225, 245), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Medals"""'], {}), "('Medals')\n", (235, 245), True, 'import matplotlib.pyplot as plt\n'), ((354, 364), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (362, 364), True, 'import matplotlib.pyplot as plt\n'), ((311, 323), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (320, 323), True, 'import numpy as np\n')]
''' This code was written by following the following tutorial: Link: https://medium.com/@martinpella/how-to-use-pre-trained-word-embeddings-in-pytorch-71ca59249f76 This script processes and generates GloVe embeddings ''' # coding: utf-8 import pickle from preprocess import Vocabulary import numpy as np import json from scipy import misc import bcolz words = [] idx = 0 word2idx = {} vectors = bcolz.carray(np.zeros(1), rootdir='glove.6B/6B.300.dat', mode='w') with open('glove.6B/glove.6B.300d.txt', 'rb') as f: for l in f: line = l.decode().split() word = line[0] words.append(word) word2idx[word] = idx idx += 1 vect = np.array(line[1:]).astype(np.float) vectors.append(vect) vectors = bcolz.carray(vectors[1:].reshape((400000, 300)), rootdir='glove.6B/6B.300.dat', mode='w') vectors.flush() pickle.dump(words, open('glove.6B/6B.300_words.pkl', 'wb')) pickle.dump(word2idx, open('glove.6B/6B.300_idx.pkl', 'wb')) with open('data/vocab.pkl', 'rb') as f: vocab = pickle.load(f) print('Loading vocab...') vectors = bcolz.open('glove.6B/6B.300.dat')[:] words = pickle.load(open('glove.6B/6B.300_words.pkl', 'rb')) word2idx = pickle.load(open('glove.6B/6B.300_idx.pkl', 'rb')) print('glove is loaded...') glove = {w: vectors[word2idx[w]] for w in words} matrix_len = len(vocab) weights_matrix = np.zeros((matrix_len, 300)) words_found = 0 for i, word in enumerate(vocab.idx2word): try: weights_matrix[i] = glove[word] words_found += 1 except KeyError: weights_matrix[i] = np.random.normal(scale=0.6, size=(300, )) pickle.dump(weights_matrix, open('glove.6B/glove_words.pkl', 'wb'), protocol=2) print('weights_matrix is created')
[ "numpy.zeros", "pickle.load", "numpy.array", "numpy.random.normal", "bcolz.open" ]
[((1372, 1399), 'numpy.zeros', 'np.zeros', (['(matrix_len, 300)'], {}), '((matrix_len, 300))\n', (1380, 1399), True, 'import numpy as np\n'), ((411, 422), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (419, 422), True, 'import numpy as np\n'), ((1039, 1053), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1050, 1053), False, 'import pickle\n'), ((1092, 1125), 'bcolz.open', 'bcolz.open', (['"""glove.6B/6B.300.dat"""'], {}), "('glove.6B/6B.300.dat')\n", (1102, 1125), False, 'import bcolz\n'), ((1583, 1623), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(0.6)', 'size': '(300,)'}), '(scale=0.6, size=(300,))\n', (1599, 1623), True, 'import numpy as np\n'), ((679, 697), 'numpy.array', 'np.array', (['line[1:]'], {}), '(line[1:])\n', (687, 697), True, 'import numpy as np\n')]
#!/usr/bin/env python3.5 import os import dlib import numpy as np import cv2 import time import darknet from ctypes import * import math import random class YOLO_NN: def __init__(self, yoloDataFolder): self.configPath = yoloDataFolder + "/cfg/yolov3-tiny.cfg" self.weightPath = yoloDataFolder + "/yolov3-tiny.weights" self.metaPath = yoloDataFolder + "/cfg/coco.data" print("self.configPath: " + self.configPath) print("self.weightPath: " + self.weightPath) print("self.metaPath: " + self.metaPath) self.netMain = None self.metaMain = None self.altNames = None if not os.path.exists(self.configPath): raise ValueError("Invalid config path `" + os.path.abspath(self.configPath)+"`") if not os.path.exists(self.weightPath): raise ValueError("Invalid weight path `" + os.path.abspath(self.weightPath)+"`") if not os.path.exists(self.metaPath): raise ValueError("Invalid data file path `" + os.path.abspath(self.metaPath)+"`") if self.netMain is None: self.netMain = darknet.load_net_custom(self.configPath.encode( "ascii"), self.weightPath.encode("ascii"), 0, 1) # batch size = 1 if self.metaMain is None: self.metaMain = darknet.load_meta(self.metaPath.encode("ascii")) if self.altNames is None: try: with open(self.metaPath) as metaFH: metaContents = metaFH.read() import re match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE) if match: result = match.group(1) else: result = None try: if os.path.exists(result): with open(result) as namesFH: namesList = namesFH.read().strip().split("\n") self.altNames = [x.strip() for x in namesList] except TypeError: pass except Exception: pass # Create an image we reuse for each detect self.darknet_image = darknet.make_image(darknet.network_width(self.netMain), darknet.network_height(self.netMain),3) self.data_dir = os.path.expanduser(yoloDataFolder+'/face_data') self.faces_folder_path = self.data_dir + '/users/' self.face_detector = dlib.get_frontal_face_detector() self.shape_predictor = dlib.shape_predictor(self.data_dir + '/dlib/shape_predictor_68_face_landmarks.dat') self.face_recognition_model = dlib.face_recognition_model_v1(self.data_dir + '/dlib/dlib_face_recognition_resnet_model_v1.dat') def convertBack(self, x, y, w, h): xmin = int(round(x - (w / 2))) xmax = int(round(x + (w / 2))) ymin = int(round(y - (h / 2))) ymax = int(round(y + (h / 2))) return xmin, ymin, xmax, ymax def cvDrawBoxes(self, detections, img): for detection in detections: x, y, w, h = detection[2][0],\ detection[2][1],\ detection[2][2],\ detection[2][3] xmin, ymin, xmax, ymax = self.convertBack( float(x), float(y), float(w), float(h)) pt1 = (xmin, ymin) pt2 = (xmax, ymax) cv2.rectangle(img, pt1, pt2, (0, 255, 0), 1) cv2.putText(img, detection[0].decode() + " [" + str(round(detection[1] * 100, 2)) + "]", (pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, [0, 255, 0], 2) return img def get_face_encodings(self, face): bounds = self.face_detector(face, 1) faces_landmarks = [self.shape_predictor(face, face_bounds) for face_bounds in bounds] try: h = [np.array(self.face_recognition_model.compute_face_descriptor(face, face_pose, 1)) for face_pose in faces_landmarks] except: return [] return h def get_face_matches(self, known_faces, face): return np.linalg.norm(known_faces - face, axis=1) def find_match(self, known_faces, person_names, face): matches = self.get_face_matches(known_faces, face) # get a list of True/False min_index = matches.argmin() min_value = matches[min_index] if min_value < 0.55: return person_names[min_index]+"! ({0:.2f})".format(min_value) if min_value < 0.58: return person_names[min_index]+" ({0:.2f})".format(min_value) if min_value < 0.65: return person_names[min_index]+"?"+" ({0:.2f})".format(min_value) return 'Not Found' def load_face_encodings(self): image_filenames = filter(lambda x: x.endswith('.jpg'), os.listdir(self.faces_folder_path)) image_filenames = sorted(image_filenames) person_names = [x[:-4] for x in image_filenames] full_paths_to_images = [self.faces_folder_path + x for x in image_filenames] face_encodings = [] win = dlib.image_window() for path_to_image in full_paths_to_images: print("Loading user: " + path_to_image) #face = io.imread(path_to_image) face = cv2.imread(path_to_image) face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) faces_bounds = self.face_detector(face, 1) if len(faces_bounds) != 1: print("Expected one and only one face per image: " + path_to_image + " - it has " + str(len(faces_bounds))) exit() face_bounds = faces_bounds[0] face_landmarks = self.shape_predictor(face, face_bounds) face_encoding = np.array(self.face_recognition_model.compute_face_descriptor(face, face_landmarks, 1)) win.clear_overlay() win.set_image(face) win.add_overlay(face_bounds) win.add_overlay(face_landmarks) face_encodings.append(face_encoding) #print(face_encoding) #dlib.hit_enter_to_continue() return face_encodings, person_names def detect(self, frame_read): prev_time = time.time() frame_resized = cv2.resize(frame_read, (darknet.network_width(rn.netMain), darknet.network_height(rn.netMain)), interpolation=cv2.INTER_LINEAR) frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB) darknet.copy_image_from_bytes(self.darknet_image, frame_rgb.tobytes()) detections = darknet.detect_image(self.netMain, self.metaMain, self.darknet_image, thresh=0.25) #print(1/(time.time()-prev_time)) return detections # function to get the output layer names # in the architecture def get_output_layers(self,net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers # function to draw bounding box on the detected object with class name def draw_bounding_box(self,img, class_id, confidence, x, y, x_plus_w, y_plus_h): cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), (0, 0, 255), 2) #cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) if __name__ == "__main__": # Start Yolo Setup rn = YOLO_NN('.') # initialize video input cap = cv2.VideoCapture(1) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 360) face_encodings, person_names = rn.load_face_encodings() faceClassifier = cv2.CascadeClassifier(rn.data_dir + '/dlib/haarcascade_frontalface_default.xml') #rn.recognize_faces_in_video(face_encodings, person_names) while True: ret, frame_read = cap.read() draw_frame = frame_read.copy() gray = cv2.cvtColor(frame_read, cv2.COLOR_BGR2GRAY) overlay = frame_read.copy() cv2.rectangle(overlay, (0, 0), (640, 35), (0, 0, 0), -1) alpha = 0.8 draw_frame = cv2.addWeighted(overlay, alpha, draw_frame, 1 - alpha, 0) # Yolo Detection detections = rn.detect(frame_read.copy()) filter_detections = [] n_users = 0 n_persons = 0 for detection in detections: if detection[0] == b'person': # It is a person filter_detections.append(detection) if len(filter_detections) == 0: # Case Yolo didn't detected any person, try with dlib face_rects = faceClassifier.detectMultiScale( # Detect faces with dlib gray, scaleFactor = 1.1, minNeighbors = 5, minSize = (50, 50), flags = cv2.CASCADE_SCALE_IMAGE) n_persons = len(face_rects) if len(face_rects) > 0: # Case find any face for (x, y, w, h) in face_rects: face = draw_frame[y:y + h, x:x + w] face_encodings_in_image = rn.get_face_encodings(face) if (face_encodings_in_image): match = rn.find_match(face_encodings, person_names, face_encodings_in_image[0]) if match == "Not Found": cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: cv2.putText(draw_frame, match, (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 255, 0), 2) n_users += 1 else: cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: for detection in filter_detections: x1, y1, w1, h1 = detection[2][0],\ detection[2][1],\ detection[2][2],\ detection[2][3] xmin, ymin, xmax, ymax = rn.convertBack( float(x1), float(y1), float(w1), float(h1)) sx = 640.0/416.0 sy = 360.0/416.0 xmin = int(xmin*sx) ymin = int(ymin*sy) xmax = int(xmax*sx) ymax = int(ymax*sy) pt1 = (xmin, ymin) pt2 = (xmax, ymax) cropped = gray[ymin:ymax, xmin:xmax] face_rects = faceClassifier.detectMultiScale( # Detect faces with dlib gray, scaleFactor = 1.1, minNeighbors = 5, minSize = (50, 50), flags = cv2.CASCADE_SCALE_IMAGE) n_persons += 1 if len(face_rects) > 0: for (x, y, w, h) in face_rects: face = cropped[y:y + h, x:x + w] face_encodings_in_image = rn.get_face_encodings(face) #x += xmin #y += ymin if (face_encodings_in_image): match = rn.find_match(face_encodings, person_names, face_encodings_in_image[0]) if match == "Not Found": cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: cv2.putText(draw_frame, match, (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 255, 0), 2) n_users += 1 else: cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: cv2.rectangle(draw_frame, pt1, pt2, (0, 0, 255), 2) cv2.putText(draw_frame, "Unknow", (pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(draw_frame, "InteliCam Users: " + str(n_users) + " | "+ \ "Persons: " + str(n_persons), (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, [255, 255, 255], 1) cv2.imshow("Frame", draw_frame) key = cv2.waitKey(3) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break cv2.destroyAllWindows()
[ "numpy.linalg.norm", "cv2.rectangle", "darknet.network_height", "dlib.shape_predictor", "cv2.imshow", "os.path.abspath", "cv2.cvtColor", "os.path.exists", "cv2.destroyAllWindows", "re.search", "cv2.waitKey", "cv2.addWeighted", "dlib.face_recognition_model_v1", "dlib.get_frontal_face_detector", "darknet.detect_image", "os.listdir", "dlib.image_window", "cv2.putText", "time.time", "cv2.VideoCapture", "cv2.imread", "cv2.CascadeClassifier", "os.path.expanduser", "darknet.network_width" ]
[((7846, 7865), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(1)'], {}), '(1)\n', (7862, 7865), False, 'import cv2\n'), ((8035, 8120), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (["(rn.data_dir + '/dlib/haarcascade_frontalface_default.xml')"], {}), "(rn.data_dir + '/dlib/haarcascade_frontalface_default.xml'\n )\n", (8056, 8120), False, 'import cv2\n'), ((13538, 13561), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (13559, 13561), False, 'import cv2\n'), ((2570, 2619), 'os.path.expanduser', 'os.path.expanduser', (["(yoloDataFolder + '/face_data')"], {}), "(yoloDataFolder + '/face_data')\n", (2588, 2619), False, 'import os\n'), ((2707, 2739), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (2737, 2739), False, 'import dlib\n'), ((2771, 2858), 'dlib.shape_predictor', 'dlib.shape_predictor', (["(self.data_dir + '/dlib/shape_predictor_68_face_landmarks.dat')"], {}), "(self.data_dir +\n '/dlib/shape_predictor_68_face_landmarks.dat')\n", (2791, 2858), False, 'import dlib\n'), ((2893, 2994), 'dlib.face_recognition_model_v1', 'dlib.face_recognition_model_v1', (["(self.data_dir + '/dlib/dlib_face_recognition_resnet_model_v1.dat')"], {}), "(self.data_dir +\n '/dlib/dlib_face_recognition_resnet_model_v1.dat')\n", (2923, 2994), False, 'import dlib\n'), ((4428, 4470), 'numpy.linalg.norm', 'np.linalg.norm', (['(known_faces - face)'], {'axis': '(1)'}), '(known_faces - face, axis=1)\n', (4442, 4470), True, 'import numpy as np\n'), ((5407, 5426), 'dlib.image_window', 'dlib.image_window', ([], {}), '()\n', (5424, 5426), False, 'import dlib\n'), ((6524, 6535), 'time.time', 'time.time', ([], {}), '()\n', (6533, 6535), False, 'import time\n'), ((6814, 6860), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_resized', 'cv2.COLOR_BGR2RGB'], {}), '(frame_resized, cv2.COLOR_BGR2RGB)\n', (6826, 6860), False, 'import cv2\n'), ((6962, 7048), 'darknet.detect_image', 'darknet.detect_image', (['self.netMain', 'self.metaMain', 'self.darknet_image'], {'thresh': '(0.25)'}), '(self.netMain, self.metaMain, self.darknet_image,\n thresh=0.25)\n', (6982, 7048), False, 'import darknet\n'), ((7580, 7644), 'cv2.rectangle', 'cv2.rectangle', (['img', '(x, y)', '(x_plus_w, y_plus_h)', '(0, 0, 255)', '(2)'], {}), '(img, (x, y), (x_plus_w, y_plus_h), (0, 0, 255), 2)\n', (7593, 7644), False, 'import cv2\n'), ((8296, 8340), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_read', 'cv2.COLOR_BGR2GRAY'], {}), '(frame_read, cv2.COLOR_BGR2GRAY)\n', (8308, 8340), False, 'import cv2\n'), ((8385, 8441), 'cv2.rectangle', 'cv2.rectangle', (['overlay', '(0, 0)', '(640, 35)', '(0, 0, 0)', '(-1)'], {}), '(overlay, (0, 0), (640, 35), (0, 0, 0), -1)\n', (8398, 8441), False, 'import cv2\n'), ((8483, 8540), 'cv2.addWeighted', 'cv2.addWeighted', (['overlay', 'alpha', 'draw_frame', '(1 - alpha)', '(0)'], {}), '(overlay, alpha, draw_frame, 1 - alpha, 0)\n', (8498, 8540), False, 'import cv2\n'), ((13346, 13377), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'draw_frame'], {}), "('Frame', draw_frame)\n", (13356, 13377), False, 'import cv2\n'), ((659, 690), 'os.path.exists', 'os.path.exists', (['self.configPath'], {}), '(self.configPath)\n', (673, 690), False, 'import os\n'), ((829, 860), 'os.path.exists', 'os.path.exists', (['self.weightPath'], {}), '(self.weightPath)\n', (843, 860), False, 'import os\n'), ((999, 1028), 'os.path.exists', 'os.path.exists', (['self.metaPath'], {}), '(self.metaPath)\n', (1013, 1028), False, 'import os\n'), ((2428, 2463), 'darknet.network_width', 'darknet.network_width', (['self.netMain'], {}), '(self.netMain)\n', (2449, 2463), False, 'import darknet\n'), ((2505, 2541), 'darknet.network_height', 'darknet.network_height', (['self.netMain'], {}), '(self.netMain)\n', (2527, 2541), False, 'import darknet\n'), ((3636, 3680), 'cv2.rectangle', 'cv2.rectangle', (['img', 'pt1', 'pt2', '(0, 255, 0)', '(1)'], {}), '(img, pt1, pt2, (0, 255, 0), 1)\n', (3649, 3680), False, 'import cv2\n'), ((5135, 5169), 'os.listdir', 'os.listdir', (['self.faces_folder_path'], {}), '(self.faces_folder_path)\n', (5145, 5169), False, 'import os\n'), ((5595, 5620), 'cv2.imread', 'cv2.imread', (['path_to_image'], {}), '(path_to_image)\n', (5605, 5620), False, 'import cv2\n'), ((5640, 5677), 'cv2.cvtColor', 'cv2.cvtColor', (['face', 'cv2.COLOR_BGR2RGB'], {}), '(face, cv2.COLOR_BGR2RGB)\n', (5652, 5677), False, 'import cv2\n'), ((13392, 13406), 'cv2.waitKey', 'cv2.waitKey', (['(3)'], {}), '(3)\n', (13403, 13406), False, 'import cv2\n'), ((6619, 6652), 'darknet.network_width', 'darknet.network_width', (['rn.netMain'], {}), '(rn.netMain)\n', (6640, 6652), False, 'import darknet\n'), ((6690, 6724), 'darknet.network_height', 'darknet.network_height', (['rn.netMain'], {}), '(rn.netMain)\n', (6712, 6724), False, 'import darknet\n'), ((1665, 1737), 're.search', 're.search', (['"""names *= *(.*)$"""', 'metaContents', '(re.IGNORECASE | re.MULTILINE)'], {}), "('names *= *(.*)$', metaContents, re.IGNORECASE | re.MULTILINE)\n", (1674, 1737), False, 'import re\n'), ((12851, 12902), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', 'pt1', 'pt2', '(0, 0, 255)', '(2)'], {}), '(draw_frame, pt1, pt2, (0, 0, 255), 2)\n', (12864, 12902), False, 'import cv2\n'), ((12923, 13030), 'cv2.putText', 'cv2.putText', (['draw_frame', '"""Unknow"""', '(pt1[0], pt1[1] - 5)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 0, 255)', '(2)'], {}), "(draw_frame, 'Unknow', (pt1[0], pt1[1] - 5), cv2.\n FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)\n", (12934, 13030), False, 'import cv2\n'), ((776, 808), 'os.path.abspath', 'os.path.abspath', (['self.configPath'], {}), '(self.configPath)\n', (791, 808), False, 'import os\n'), ((946, 978), 'os.path.abspath', 'os.path.abspath', (['self.weightPath'], {}), '(self.weightPath)\n', (961, 978), False, 'import os\n'), ((1117, 1147), 'os.path.abspath', 'os.path.abspath', (['self.metaPath'], {}), '(self.metaPath)\n', (1132, 1147), False, 'import os\n'), ((1970, 1992), 'os.path.exists', 'os.path.exists', (['result'], {}), '(result)\n', (1984, 1992), False, 'import os\n'), ((10306, 10407), 'cv2.putText', 'cv2.putText', (['draw_frame', '"""Unknow"""', '(x + 5, y - 15)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 0, 255)', '(2)'], {}), "(draw_frame, 'Unknow', (x + 5, y - 15), cv2.FONT_HERSHEY_SIMPLEX,\n 0.5, (0, 0, 255), 2)\n", (10317, 10407), False, 'import cv2\n'), ((10424, 10489), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', '(x, y)', '(x + w, y + h)', '(0, 0, 255)', '(2)'], {}), '(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n', (10437, 10489), False, 'import cv2\n'), ((9784, 9885), 'cv2.putText', 'cv2.putText', (['draw_frame', '"""Unknow"""', '(x + 5, y - 15)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 0, 255)', '(2)'], {}), "(draw_frame, 'Unknow', (x + 5, y - 15), cv2.FONT_HERSHEY_SIMPLEX,\n 0.5, (0, 0, 255), 2)\n", (9795, 9885), False, 'import cv2\n'), ((9906, 9971), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', '(x, y)', '(x + w, y + h)', '(0, 0, 255)', '(2)'], {}), '(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n', (9919, 9971), False, 'import cv2\n'), ((10030, 10129), 'cv2.putText', 'cv2.putText', (['draw_frame', 'match', '(x + 5, y - 15)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 255, 0)', '(2)'], {}), '(draw_frame, match, (x + 5, y - 15), cv2.FONT_HERSHEY_SIMPLEX, \n 0.5, (0, 255, 0), 2)\n', (10041, 10129), False, 'import cv2\n'), ((10149, 10214), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(2)'], {}), '(draw_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)\n', (10162, 10214), False, 'import cv2\n'), ((12621, 12722), 'cv2.putText', 'cv2.putText', (['draw_frame', '"""Unknow"""', '(x + 5, y - 15)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 0, 255)', '(2)'], {}), "(draw_frame, 'Unknow', (x + 5, y - 15), cv2.FONT_HERSHEY_SIMPLEX,\n 0.5, (0, 0, 255), 2)\n", (12632, 12722), False, 'import cv2\n'), ((12743, 12808), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', '(x, y)', '(x + w, y + h)', '(0, 0, 255)', '(2)'], {}), '(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n', (12756, 12808), False, 'import cv2\n'), ((12071, 12172), 'cv2.putText', 'cv2.putText', (['draw_frame', '"""Unknow"""', '(x + 5, y - 15)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 0, 255)', '(2)'], {}), "(draw_frame, 'Unknow', (x + 5, y - 15), cv2.FONT_HERSHEY_SIMPLEX,\n 0.5, (0, 0, 255), 2)\n", (12082, 12172), False, 'import cv2\n'), ((12197, 12262), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', '(x, y)', '(x + w, y + h)', '(0, 0, 255)', '(2)'], {}), '(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n', (12210, 12262), False, 'import cv2\n'), ((12329, 12428), 'cv2.putText', 'cv2.putText', (['draw_frame', 'match', '(x + 5, y - 15)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 255, 0)', '(2)'], {}), '(draw_frame, match, (x + 5, y - 15), cv2.FONT_HERSHEY_SIMPLEX, \n 0.5, (0, 255, 0), 2)\n', (12340, 12428), False, 'import cv2\n'), ((12452, 12517), 'cv2.rectangle', 'cv2.rectangle', (['draw_frame', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(2)'], {}), '(draw_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)\n', (12465, 12517), False, 'import cv2\n')]
import numpy as np image_dimensions = (25, 6) def load(image_dims, path: str = "input/08.txt"): with open(path) as file: return np.array([c for c in file.read()]).reshape((-1, image_dims[0] * image_dims[1])) def number_of_values_in_layer(layer, value): return np.count_nonzero(layer == value) def stack_layers(image_layers): final_layer = list() for i in range(len(image_layers[0])): for j in range(len(image_layers)): if image_layers[j][i] != "2": final_layer.append(image_layers[j][i]) break return np.array(final_layer) # Prep layers = load(image_dimensions) # First wanted_layer = None minimum = None for l in layers: n = number_of_values_in_layer(l, "0") if minimum is None or wanted_layer is None or n < minimum: minimum = n wanted_layer = l wanted_1 = number_of_values_in_layer(wanted_layer, "1") * number_of_values_in_layer(wanted_layer, "2") print(f"[1]\t{wanted_1}") # Second stacked_layer = stack_layers(layers).reshape(image_dimensions[::-1]) final_image = list() for row in stacked_layer: r = "" for element in row: r += "##" if element == "1" else " " if element == "0" else " " final_image.append(r) print(f"[2]") for r in final_image: print(r)
[ "numpy.array", "numpy.count_nonzero" ]
[((281, 313), 'numpy.count_nonzero', 'np.count_nonzero', (['(layer == value)'], {}), '(layer == value)\n', (297, 313), True, 'import numpy as np\n'), ((590, 611), 'numpy.array', 'np.array', (['final_layer'], {}), '(final_layer)\n', (598, 611), True, 'import numpy as np\n')]
import argparse import numpy as np from benchmark_statistics import Statistics from benchmark_containers import BenchmarkResultsContainer ############################################################################## def createBenchmarkResults(benchmark_samples, operation): benchmark_results = BenchmarkResultsContainer() benchmark_results.operation = operation # Filter outliers lower_fence, upper_fence = Statistics.getTukeyFences(benchmark_samples) lower_outliers_samples = benchmark_samples[benchmark_samples < lower_fence] benchmark_no_outliers_samples = benchmark_samples[(benchmark_samples >= lower_fence) & (benchmark_samples <= upper_fence)] upper_outliers_samples = benchmark_samples[benchmark_samples > upper_fence] benchmark_results.sorted_lower_outliers_samples = np.sort(lower_outliers_samples).tolist() benchmark_results.sorted_no_outliers_samples = np.sort(benchmark_no_outliers_samples).tolist() benchmark_results.sorted_upper_outliers_samples = np.sort(upper_outliers_samples).tolist() # Create statistics info from benchmark samples for key in benchmark_results.statistics: without_outliers = key == "Without outliers" benchmark_samples_to_process = benchmark_no_outliers_samples if without_outliers else benchmark_samples benchmark_stats = benchmark_results.statistics[key] benchmark_stats.num_analyzed_samples = Statistics.getNumAnalyzedSamples(benchmark_samples_to_process) benchmark_stats.minimum = Statistics.getMin(benchmark_samples_to_process) benchmark_stats.lower_fence = benchmark_results.sorted_no_outliers_samples[0] # Plotly uses first non outlier point, for exact lower_fence set to: lower_fence benchmark_stats.q1 = Statistics.getPercentile(benchmark_samples_to_process, 25) benchmark_stats.mean = Statistics.getMean(benchmark_samples_to_process) benchmark_stats.median = Statistics.getPercentile(benchmark_samples_to_process, 50) benchmark_stats.q3 = Statistics.getPercentile(benchmark_samples_to_process, 75) benchmark_stats.upper_fence = benchmark_results.sorted_no_outliers_samples[-1] # Plotly uses last non outlier point, for exact upper_fence set to: upper_fence benchmark_stats.maximum = Statistics.getMax(benchmark_samples_to_process) benchmark_stats.iqr = Statistics.getIQR(benchmark_samples_to_process) benchmark_stats.std_dev = Statistics.getStdDev(benchmark_samples_to_process) benchmark_stats.std_err = Statistics.getStdErr(benchmark_samples_to_process) benchmark_stats.std_err_percentage = benchmark_stats.std_err / benchmark_stats.mean * 100.0 if benchmark_stats.std_err > 0.0 else 0.0 benchmark_stats.margin = Statistics.getMargin(benchmark_samples_to_process) benchmark_stats.margin_percentage = benchmark_stats.margin / benchmark_stats.mean * 100.0 if benchmark_stats.margin > 0.0 else 0.0 benchmark_stats.confidence_interval = Statistics.getConfidenceInterval(benchmark_samples_to_process) benchmark_stats.skewness = Statistics.getSkewness(benchmark_samples_to_process) benchmark_stats.kurtosis = Statistics.getKurtosis(benchmark_samples_to_process) return benchmark_results ############################################################################## def printBenchmarkResults(benchmark_samples, benchmark_results): print("Samples:") print(benchmark_samples, "\n") print("Sorted Samples:") print(benchmark_results.sorted_lower_outliers_samples, benchmark_results.sorted_no_outliers_samples, benchmark_results.sorted_upper_outliers_samples, "\n") for key in benchmark_results.statistics: without_outliers = key == "Without outliers" statistics_results = benchmark_results.getFormatedStatisticsResultsWithoutOutliers() if without_outliers else benchmark_results.getFormatedStatisticsResultsWithOutliers() text_alignment_offset = len(max(statistics_results, key=len)) + 3 print(key + ":") for stat_key in statistics_results: print(stat_key + "= ".rjust(text_alignment_offset - len(stat_key)) + statistics_results[stat_key]) print("\n") ############################################################################## def runAnalyzer(kwargs=None): # Parse args parser = argparse.ArgumentParser(description="Benchmark Analyzer") parser.add_argument("-in", "--benchmark_samples_file", type=str, required=True, help="File path containing the benchmark observations as comma separated numbers.") parser.add_argument("-out", "--json_output_path", type=str, required=True, help="JSON output path for file containing the statistical information of the analyzed benchmark.") parser.add_argument("-op", "--operation_name", type=str, required=True, help="Name of the operation related to the benchmark observations.") parser.add_argument("-out_name", "--output_file_name", type=str, required=False, help="(Optional) The name of the output file, if this option is not used the file will be called Benchmark_Results_<MONTH>-<DAY>-<YEAR>_<HOUR>h<MINUTE>m<SECOND>s.") args = parser.parse_args() # Input Params benchmark_samples_file = args.benchmark_samples_file json_output_path = args.json_output_path operation_name = args.operation_name output_file_name = args.output_file_name # Create an array from benchmark samples in file with open(benchmark_samples_file) as file: benchmark_samples = np.fromfile(file, dtype=float, sep=",") # Create benchmark results benchmark_results = createBenchmarkResults(benchmark_samples, operation_name) # Print benchmark results printBenchmarkResults(benchmark_samples, benchmark_results) # Export benchmark results to a JSON file benchmark_results.toJSONFile(json_output_path, operation_name, output_file_name) ############################################################################## #----------------------------------------------------------------------------- # Main #----------------------------------------------------------------------------- if __name__ == '__main__': runAnalyzer()
[ "benchmark_containers.BenchmarkResultsContainer", "benchmark_statistics.Statistics.getTukeyFences", "benchmark_statistics.Statistics.getStdErr", "argparse.ArgumentParser", "benchmark_statistics.Statistics.getKurtosis", "benchmark_statistics.Statistics.getIQR", "numpy.fromfile", "benchmark_statistics.Statistics.getConfidenceInterval", "benchmark_statistics.Statistics.getMean", "benchmark_statistics.Statistics.getMax", "numpy.sort", "benchmark_statistics.Statistics.getStdDev", "benchmark_statistics.Statistics.getPercentile", "benchmark_statistics.Statistics.getMin", "benchmark_statistics.Statistics.getSkewness", "benchmark_statistics.Statistics.getMargin", "benchmark_statistics.Statistics.getNumAnalyzedSamples" ]
[((304, 331), 'benchmark_containers.BenchmarkResultsContainer', 'BenchmarkResultsContainer', ([], {}), '()\n', (329, 331), False, 'from benchmark_containers import BenchmarkResultsContainer\n'), ((439, 483), 'benchmark_statistics.Statistics.getTukeyFences', 'Statistics.getTukeyFences', (['benchmark_samples'], {}), '(benchmark_samples)\n', (464, 483), False, 'from benchmark_statistics import Statistics\n'), ((4643, 4700), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Benchmark Analyzer"""'}), "(description='Benchmark Analyzer')\n", (4666, 4700), False, 'import argparse\n'), ((1476, 1538), 'benchmark_statistics.Statistics.getNumAnalyzedSamples', 'Statistics.getNumAnalyzedSamples', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (1508, 1538), False, 'from benchmark_statistics import Statistics\n'), ((1586, 1633), 'benchmark_statistics.Statistics.getMin', 'Statistics.getMin', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (1603, 1633), False, 'from benchmark_statistics import Statistics\n'), ((1858, 1916), 'benchmark_statistics.Statistics.getPercentile', 'Statistics.getPercentile', (['benchmark_samples_to_process', '(25)'], {}), '(benchmark_samples_to_process, 25)\n', (1882, 1916), False, 'from benchmark_statistics import Statistics\n'), ((1964, 2012), 'benchmark_statistics.Statistics.getMean', 'Statistics.getMean', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (1982, 2012), False, 'from benchmark_statistics import Statistics\n'), ((2060, 2118), 'benchmark_statistics.Statistics.getPercentile', 'Statistics.getPercentile', (['benchmark_samples_to_process', '(50)'], {}), '(benchmark_samples_to_process, 50)\n', (2084, 2118), False, 'from benchmark_statistics import Statistics\n'), ((2166, 2224), 'benchmark_statistics.Statistics.getPercentile', 'Statistics.getPercentile', (['benchmark_samples_to_process', '(75)'], {}), '(benchmark_samples_to_process, 75)\n', (2190, 2224), False, 'from benchmark_statistics import Statistics\n'), ((2449, 2496), 'benchmark_statistics.Statistics.getMax', 'Statistics.getMax', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (2466, 2496), False, 'from benchmark_statistics import Statistics\n'), ((2544, 2591), 'benchmark_statistics.Statistics.getIQR', 'Statistics.getIQR', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (2561, 2591), False, 'from benchmark_statistics import Statistics\n'), ((2639, 2689), 'benchmark_statistics.Statistics.getStdDev', 'Statistics.getStdDev', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (2659, 2689), False, 'from benchmark_statistics import Statistics\n'), ((2737, 2787), 'benchmark_statistics.Statistics.getStdErr', 'Statistics.getStdErr', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (2757, 2787), False, 'from benchmark_statistics import Statistics\n'), ((2979, 3029), 'benchmark_statistics.Statistics.getMargin', 'Statistics.getMargin', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (2999, 3029), False, 'from benchmark_statistics import Statistics\n'), ((3219, 3281), 'benchmark_statistics.Statistics.getConfidenceInterval', 'Statistics.getConfidenceInterval', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (3251, 3281), False, 'from benchmark_statistics import Statistics\n'), ((3329, 3381), 'benchmark_statistics.Statistics.getSkewness', 'Statistics.getSkewness', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (3351, 3381), False, 'from benchmark_statistics import Statistics\n'), ((3429, 3481), 'benchmark_statistics.Statistics.getKurtosis', 'Statistics.getKurtosis', (['benchmark_samples_to_process'], {}), '(benchmark_samples_to_process)\n', (3451, 3481), False, 'from benchmark_statistics import Statistics\n'), ((6246, 6285), 'numpy.fromfile', 'np.fromfile', (['file'], {'dtype': 'float', 'sep': '""","""'}), "(file, dtype=float, sep=',')\n", (6257, 6285), True, 'import numpy as np\n'), ((849, 880), 'numpy.sort', 'np.sort', (['lower_outliers_samples'], {}), '(lower_outliers_samples)\n', (856, 880), True, 'import numpy as np\n'), ((944, 982), 'numpy.sort', 'np.sort', (['benchmark_no_outliers_samples'], {}), '(benchmark_no_outliers_samples)\n', (951, 982), True, 'import numpy as np\n'), ((1046, 1077), 'numpy.sort', 'np.sort', (['upper_outliers_samples'], {}), '(upper_outliers_samples)\n', (1053, 1077), True, 'import numpy as np\n')]
import torch import numpy as np from torch.utils.data import DataLoader from torchvision import transforms from data_loader.datasets_custom import TextImageDataset, COCOTextImageDataset from base import BaseDataLoader def text_image_collate_fn(data): collate_data = {} # Sort a data list by right caption length (descending order). data.sort(key=lambda x: x['right_caption'].size(0), reverse=True) collate_data['right_img_id'] = [] collate_data['class_id'] = [] collate_data['right_txt'] = [] class_ids = [] right_captions = [] right_embeds = [] right_images_32 = [] right_images_64 = [] right_images_128 = [] right_images_256 = [] collate_data['wrong_img_id'] = [] collate_data['wrong_txt'] = [] wrong_captions = [] wrong_embeds = [] wrong_images_32 = [] wrong_images_64 = [] wrong_images_128 = [] wrong_images_256 = [] for i in range(len(data)): class_ids.append(data[i]['right_img_id']) collate_data['class_id'].append(data[i]['right_class_id']) collate_data['right_txt'].append(data[i]['right_txt']) right_captions.append(data[i]['right_caption']) right_embeds.append(data[i]['right_embed']) right_images_32.append(data[i]['right_image_32']) right_images_64.append(data[i]['right_image_64']) right_images_128.append(data[i]['right_image_128']) right_images_256.append(data[i]['right_image_256']) collate_data['wrong_txt'].append(data[i]['wrong_txt']) wrong_captions.append(data[i]['wrong_caption']) wrong_embeds.append(data[i]['wrong_embed']) wrong_images_32.append(data[i]['wrong_image_32']) wrong_images_64.append(data[i]['wrong_image_64']) wrong_images_128.append(data[i]['wrong_image_128']) wrong_images_256.append(data[i]['wrong_image_256']) # sort and get captions, lengths, images, embeds, etc. right_caption_lengths = [len(cap) for cap in right_captions] collate_data['right_caption_lengths'] = torch.LongTensor(right_caption_lengths) collate_data['right_captions'] = torch.zeros(len(right_caption_lengths), max(right_caption_lengths)).long() for i, cap in enumerate(right_captions): end = right_caption_lengths[i] collate_data['right_captions'][i, :end] = cap[:end] # sort and get captions, lengths, images, embeds, etc. wrong_captions.sort(key=lambda x: len(x), reverse=True) wrong_caption_lengths = [len(cap) for cap in wrong_captions] collate_data['wrong_caption_lengths'] = torch.LongTensor(wrong_caption_lengths) collate_data['wrong_captions'] = torch.zeros(len(wrong_caption_lengths), max(wrong_caption_lengths)).long() for i, cap in enumerate(wrong_captions): end = wrong_caption_lengths[i] collate_data['wrong_captions'][i, :end] = cap[:end] collate_data['class_id'] = np.stack(class_ids) collate_data['right_embeds'] = torch.stack(right_embeds, 0) collate_data['right_images_32'] = torch.stack(right_images_32, 0) collate_data['right_images_64'] = torch.stack(right_images_64, 0) collate_data['right_images_128'] = torch.stack(right_images_128, 0) collate_data['right_images_256'] = torch.stack(right_images_256, 0) collate_data['wrong_embeds'] = torch.stack(wrong_embeds, 0) collate_data['wrong_images_32'] = torch.stack(wrong_images_32, 0) collate_data['wrong_images_64'] = torch.stack(wrong_images_64, 0) collate_data['wrong_images_128'] = torch.stack(wrong_images_128, 0) collate_data['wrong_images_256'] = torch.stack(wrong_images_256, 0) return collate_data class TextImageDataLoader(DataLoader): def __init__(self, data_dir, dataset_name, which_set, image_size, batch_size, num_workers): self.data_dir = data_dir self.which_set = which_set self.dataset_name = dataset_name assert self.which_set in {'train', 'valid', 'test'} self.image_size = (image_size, image_size) self.batch_size = batch_size self.num_workers = num_workers # transforms.ToTensor convert PIL images in range [0, 255] to a torch in range [-1.0, 1.0] self.transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) self.dataset = TextImageDataset(self.data_dir, self.dataset_name, self.which_set, self.transform, vocab_from_file=False) self.n_samples = len(self.dataset) if self.which_set == 'train' or self.which_set == 'valid': super(TextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, collate_fn=text_image_collate_fn ) else: super(TextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=False, num_workers=0, collate_fn=text_image_collate_fn) class COCOTextImageDataLoader(BaseDataLoader): """ COCO Image Caption Model Data Loader """ def __init__(self, data_dir, which_set, image_size, batch_size, validation_split, num_workers): self.data_dir = data_dir self.which_set = which_set self.validation_split = validation_split assert self.which_set in {'train', 'val', 'test'} self.image_size = (image_size, image_size) self.batch_size = batch_size self.num_workers = num_workers # transforms.ToTensor convert PIL images in range [0, 255] to a torch in range [-1.0, 1.0] mean = torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32) std = torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32) if which_set == 'val' or which_set == 'test': self.transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) else: self.transform = transforms.Compose([ # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) self.dataset = COCOTextImageDataset(self.data_dir, self.which_set, self.transform, vocab_from_file=True) # self.n_samples = len(self.dataset) if self.which_set == 'train': super(COCOTextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=True, validation_split=validation_split, num_workers=self.num_workers, collate_fn=text_image_collate_fn ) else: super(COCOTextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=False, validation_split=0, num_workers=self.num_workers, collate_fn=text_image_collate_fn) if __name__ == '__main__': data_loader = COCOTextImageDataLoader( data_dir='/Users/leon/Projects/I2T2I/data/coco/', # dataset_name="birds", which_set='val', image_size=256, batch_size=16, validation_split=0.05, num_workers=0) print(len(data_loader.dataset.vocab)) print(len(data_loader.dataset.vocab.word2idx)) for i, data in enumerate(data_loader): print(i) print("right_img_id:", data['right_img_id']) # print("class_ids:", data["class_id"]) print('right images 32 shape:', data['right_images_32'].shape) print('right images 64 shape:', data['right_images_64'].shape) print('right images 128 shape:', data['right_images_128'].shape) print('right images 256 shape:', data['right_images_256'].shape) print("right embed shape:", data['right_embeds'].shape) print("right caption shape:", data['right_captions'].shape) print("right caption lengths:", data['right_caption_lengths']) print("right txt:", data["right_txt"]) print("wrong_img_id:", data['wrong_img_id']) print('wrong images 32 shape:', data['wrong_images_32'].shape) print('wrong images 64 shape:', data['wrong_images_64'].shape) print('wrong images 128 shape:', data['wrong_images_128'].shape) print('wrong images 256 shape:', data['wrong_images_256'].shape) print("wrong embed shape:", data['wrong_embeds'].shape) print("wrong caption shape:", data['wrong_captions'].shape) print("wrong caption lengths:", data['wrong_caption_lengths']) print("wrong txt:", data["wrong_txt"]) if i == 10: print("done") break
[ "numpy.stack", "data_loader.datasets_custom.COCOTextImageDataset", "torch.stack", "torchvision.transforms.RandomHorizontalFlip", "torch.LongTensor", "data_loader.datasets_custom.TextImageDataset", "torchvision.transforms.Normalize", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((2042, 2081), 'torch.LongTensor', 'torch.LongTensor', (['right_caption_lengths'], {}), '(right_caption_lengths)\n', (2058, 2081), False, 'import torch\n'), ((2567, 2606), 'torch.LongTensor', 'torch.LongTensor', (['wrong_caption_lengths'], {}), '(wrong_caption_lengths)\n', (2583, 2606), False, 'import torch\n'), ((2895, 2914), 'numpy.stack', 'np.stack', (['class_ids'], {}), '(class_ids)\n', (2903, 2914), True, 'import numpy as np\n'), ((2950, 2978), 'torch.stack', 'torch.stack', (['right_embeds', '(0)'], {}), '(right_embeds, 0)\n', (2961, 2978), False, 'import torch\n'), ((3017, 3048), 'torch.stack', 'torch.stack', (['right_images_32', '(0)'], {}), '(right_images_32, 0)\n', (3028, 3048), False, 'import torch\n'), ((3087, 3118), 'torch.stack', 'torch.stack', (['right_images_64', '(0)'], {}), '(right_images_64, 0)\n', (3098, 3118), False, 'import torch\n'), ((3158, 3190), 'torch.stack', 'torch.stack', (['right_images_128', '(0)'], {}), '(right_images_128, 0)\n', (3169, 3190), False, 'import torch\n'), ((3230, 3262), 'torch.stack', 'torch.stack', (['right_images_256', '(0)'], {}), '(right_images_256, 0)\n', (3241, 3262), False, 'import torch\n'), ((3299, 3327), 'torch.stack', 'torch.stack', (['wrong_embeds', '(0)'], {}), '(wrong_embeds, 0)\n', (3310, 3327), False, 'import torch\n'), ((3366, 3397), 'torch.stack', 'torch.stack', (['wrong_images_32', '(0)'], {}), '(wrong_images_32, 0)\n', (3377, 3397), False, 'import torch\n'), ((3436, 3467), 'torch.stack', 'torch.stack', (['wrong_images_64', '(0)'], {}), '(wrong_images_64, 0)\n', (3447, 3467), False, 'import torch\n'), ((3507, 3539), 'torch.stack', 'torch.stack', (['wrong_images_128', '(0)'], {}), '(wrong_images_128, 0)\n', (3518, 3539), False, 'import torch\n'), ((3579, 3611), 'torch.stack', 'torch.stack', (['wrong_images_256', '(0)'], {}), '(wrong_images_256, 0)\n', (3590, 3611), False, 'import torch\n'), ((4410, 4520), 'data_loader.datasets_custom.TextImageDataset', 'TextImageDataset', (['self.data_dir', 'self.dataset_name', 'self.which_set', 'self.transform'], {'vocab_from_file': '(False)'}), '(self.data_dir, self.dataset_name, self.which_set, self.\n transform, vocab_from_file=False)\n', (4426, 4520), False, 'from data_loader.datasets_custom import TextImageDataset, COCOTextImageDataset\n'), ((5791, 5841), 'torch.tensor', 'torch.tensor', (['[0.5, 0.5, 0.5]'], {'dtype': 'torch.float32'}), '([0.5, 0.5, 0.5], dtype=torch.float32)\n', (5803, 5841), False, 'import torch\n'), ((5856, 5906), 'torch.tensor', 'torch.tensor', (['[0.5, 0.5, 0.5]'], {'dtype': 'torch.float32'}), '([0.5, 0.5, 0.5], dtype=torch.float32)\n', (5868, 5906), False, 'import torch\n'), ((6426, 6519), 'data_loader.datasets_custom.COCOTextImageDataset', 'COCOTextImageDataset', (['self.data_dir', 'self.which_set', 'self.transform'], {'vocab_from_file': '(True)'}), '(self.data_dir, self.which_set, self.transform,\n vocab_from_file=True)\n', (6446, 6519), False, 'from data_loader.datasets_custom import TextImageDataset, COCOTextImageDataset\n'), ((4229, 4262), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (4260, 4262), False, 'from torchvision import transforms\n'), ((4276, 4297), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (4295, 4297), False, 'from torchvision import transforms\n'), ((4311, 4374), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.5, 0.5, 0.5]', 'std': '[0.5, 0.5, 0.5]'}), '(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])\n', (4331, 4374), False, 'from torchvision import transforms\n'), ((6028, 6061), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (6059, 6061), False, 'from torchvision import transforms\n'), ((6079, 6100), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (6098, 6100), False, 'from torchvision import transforms\n'), ((6118, 6158), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': 'mean', 'std': 'std'}), '(mean=mean, std=std)\n', (6138, 6158), False, 'from torchvision import transforms\n'), ((6307, 6328), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (6326, 6328), False, 'from torchvision import transforms\n'), ((6346, 6386), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': 'mean', 'std': 'std'}), '(mean=mean, std=std)\n', (6366, 6386), False, 'from torchvision import transforms\n')]
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "1" import tensorflow as tf from keras.models import model_from_json import json from sklearn.metrics import roc_curve, auc, confusion_matrix import numpy as np import pandas as pd from copy import deepcopy import itertools from utils import load_data # import matplotlib # matplotlib.use('agg') import matplotlib.pyplot as plt def load_model_helper(path, model_base_name): # return load_model(path) with open(os.path.join(path, f'{model_base_name}.architecture.json'), 'r') as json_file: loaded_model_json = json_file.read() m = model_from_json(loaded_model_json) m.load_weights(os.path.join(path, f'{model_base_name}.weights.h5')) return m def thres(v, thr: float = 0.5): v_ = np.array(deepcopy(v)) v_[v_ >= thr] = 1 v_[v_ < thr] = 0 return v_ if __name__ == '__main__': tf.keras.backend.clear_session() # path_base = '/Users/dmitryduev/_caltech/python/deep-asteroids/' path_base = './' with open(os.path.join(path_base, 'service/code/config.json')) as f: config = json.load(f) # models = config['models'] models = config['models_201901'] model_names = list(models.keys()) path_models = os.path.join(path_base, 'service/models') c_families = {'rb': '5b96af9c0354c9000b0aea36', 'sl': '5b99b2c6aec3c500103a14de', 'kd': '5be0ae7958830a0018821794', 'os': '5c05bbdc826480000a95c0bf'} # c_families = {'rb': '5b96af9c0354c9000b0aea36', # 'sl': '5b99b2c6aec3c500103a14de', # 'kd': '5be0ae7958830a0018821794'} # c_families = {'rb': '5b96af9c0354c9000b0aea36'} path_data = './data' # mpl colors: colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # [u'#1f77b4', u'#ff7f0e', u'#2ca02c', u'#d62728', u'#9467bd', # u'#8c564b', u'#e377c2', u'#7f7f7f', u'#bcbd22', u'#17becf'] # line styles: line_styles = ['-', '--', ':'] # thresholds score_thresholds = [0.99, 0.9, 0.5, 0.1, 0.01] # ROC fig = plt.figure(figsize=(14, 5)) fig.subplots_adjust(bottom=0.09, left=0.05, right=0.70, top=0.98, wspace=0.2, hspace=0.2) lw = 1.6 # ROCs ax = fig.add_subplot(1, 2, 1) # zoomed ROCs ax2 = fig.add_subplot(1, 2, 2) ax.plot([0, 1], [0, 1], color='#333333', lw=lw, linestyle='--') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('False Positive Rate (Contamination)') ax.set_ylabel('True Positive Rate (Sensitivity)') # ax.legend(loc="lower right") # ax.legend(loc="best") ax.grid(True) ax2.set_xlim([0.0, .2]) ax2.set_ylim([0.8, 1.0]) ax2.set_xlabel('False Positive Rate (Contamination)') ax2.set_ylabel('True Positive Rate (Sensitivity)') # ax.legend(loc="lower right") # ax2.legend(loc="best") ax2.grid(True) # Confusion matrices fig2 = plt.figure() fig2.subplots_adjust(bottom=0.06, left=0.01, right=1.0, top=0.93, wspace=0.0, hspace=0.12) cn = 0 for cfi, c_family in enumerate(c_families): project_id = c_families[c_family] print(c_family, project_id) # load data x_train, y_train, x_test, y_test, classes = load_data(path=path_data, project_id=project_id, binary=True, grayscale=True, resize=(144, 144), test_size=0.1, verbose=True, random_state=42) mn = [m_ for m_ in model_names if c_family in m_] n_mn = len(mn) for ii, model_name in enumerate(mn): print(f'loading model {model_name}: {models[model_name]}') m = load_model_helper(path_models, models[model_name]) y = m.predict(x_test, batch_size=32, verbose=True) # for thr in (0.5, 0.9): for thr in (0.5,): labels_pred = thres(y, thr=thr) confusion_matr = confusion_matrix(y_test, labels_pred) confusion_matr_normalized = confusion_matr.astype('float') / confusion_matr.sum(axis=1)[:, np.newaxis] print(f'Threshold: {thr}') print('Confusion matrix:') print(confusion_matr) print('Normalized confusion matrix:') print(confusion_matr_normalized) fpr, tpr, thresholds = roc_curve(y_test, y) roc_auc = auc(fpr, tpr) ax.plot(fpr, tpr, line_styles[ii], color=colors[cfi], lw=lw) ax2.plot(fpr, tpr, line_styles[ii], color=colors[cfi], lw=lw, label=f'{model_name} curve (area = {roc_auc:.5f})') # plot thresholds for it, thr in enumerate(score_thresholds): x_ = np.interp(thr, thresholds[::-1], fpr) y_ = np.interp(thr, thresholds[::-1], tpr) # print(thr, x_, y_) if cfi == 0 and ii == 0: ax.plot(x_, y_, '.', markersize=8, color=colors[-(it + 1)], label=f'Threshold: {1-thr:.2f}') else: ax.plot(x_, y_, '.', markersize=8, color=colors[-(it + 1)]) ax2.plot(x_, y_, 'o', markersize=8, color=colors[-(it + 1)]) # plot confusion matrices ax_ = fig2.add_subplot(3, 2 * len(c_families), ii * 8 + cfi * 2 + 1) ax2_ = fig2.add_subplot(3, 2 * len(c_families), ii * 8 + cfi * 2 + 2) ax_.imshow(confusion_matr, interpolation='nearest', cmap=plt.cm.Blues) ax2_.imshow(confusion_matr_normalized, interpolation='nearest', cmap=plt.cm.Blues) tick_marks = np.arange(2) # ax_.set_xticks(tick_marks, tick_marks) # ax_.set_yticks(tick_marks, tick_marks) # ax2_.set_xticks(tick_marks, tick_marks) # ax2_.set_yticks(tick_marks, tick_marks) # # ax_.xaxis.set_visible(False) # ax_.yaxis.set_visible(False) # ax2_.xaxis.set_visible(False) # ax2_.yaxis.set_visible(False) ax_.axis('off') ax2_.axis('off') thresh = confusion_matr.max() / 2. thresh_norm = confusion_matr_normalized.max() / 2. for i, j in itertools.product(range(confusion_matr.shape[0]), range(confusion_matr.shape[1])): ax_.text(j, i, format(confusion_matr[i, j], 'd'), horizontalalignment="center", color="white" if confusion_matr[i, j] > thresh else "black") ax2_.text(j, i, format(confusion_matr_normalized[i, j], '.2f'), horizontalalignment="center", color="white" if confusion_matr_normalized[i, j] > thresh_norm else "black") # if ii == 0: # break ax.legend(loc='lower right') ax2.legend(bbox_to_anchor=(1.04, 1), loc="upper left") fig.savefig(f'./roc_rb_sl_kd.png', dpi=300) fig2.savefig(f'./cm_rb_sl_kd.png', dpi=300) plt.show()
[ "copy.deepcopy", "json.load", "matplotlib.pyplot.show", "utils.load_data", "sklearn.metrics.roc_curve", "tensorflow.keras.backend.clear_session", "sklearn.metrics.auc", "matplotlib.pyplot.figure", "keras.models.model_from_json", "numpy.arange", "numpy.interp", "sklearn.metrics.confusion_matrix", "os.path.join" ]
[((669, 703), 'keras.models.model_from_json', 'model_from_json', (['loaded_model_json'], {}), '(loaded_model_json)\n', (684, 703), False, 'from keras.models import model_from_json\n'), ((948, 980), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (978, 980), True, 'import tensorflow as tf\n'), ((1304, 1345), 'os.path.join', 'os.path.join', (['path_base', '"""service/models"""'], {}), "(path_base, 'service/models')\n", (1316, 1345), False, 'import os\n'), ((2157, 2184), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 5)'}), '(figsize=(14, 5))\n', (2167, 2184), True, 'import matplotlib.pyplot as plt\n'), ((2999, 3011), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3009, 3011), True, 'import matplotlib.pyplot as plt\n'), ((7445, 7455), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7453, 7455), True, 'import matplotlib.pyplot as plt\n'), ((723, 774), 'os.path.join', 'os.path.join', (['path', 'f"""{model_base_name}.weights.h5"""'], {}), "(path, f'{model_base_name}.weights.h5')\n", (735, 774), False, 'import os\n'), ((842, 853), 'copy.deepcopy', 'deepcopy', (['v'], {}), '(v)\n', (850, 853), False, 'from copy import deepcopy\n'), ((1164, 1176), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1173, 1176), False, 'import json\n'), ((3321, 3468), 'utils.load_data', 'load_data', ([], {'path': 'path_data', 'project_id': 'project_id', 'binary': '(True)', 'grayscale': '(True)', 'resize': '(144, 144)', 'test_size': '(0.1)', 'verbose': '(True)', 'random_state': '(42)'}), '(path=path_data, project_id=project_id, binary=True, grayscale=\n True, resize=(144, 144), test_size=0.1, verbose=True, random_state=42)\n', (3330, 3468), False, 'from utils import load_data\n'), ((537, 595), 'os.path.join', 'os.path.join', (['path', 'f"""{model_base_name}.architecture.json"""'], {}), "(path, f'{model_base_name}.architecture.json')\n", (549, 595), False, 'import os\n'), ((1088, 1139), 'os.path.join', 'os.path.join', (['path_base', '"""service/code/config.json"""'], {}), "(path_base, 'service/code/config.json')\n", (1100, 1139), False, 'import os\n'), ((4801, 4821), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_test', 'y'], {}), '(y_test, y)\n', (4810, 4821), False, 'from sklearn.metrics import roc_curve, auc, confusion_matrix\n'), ((4844, 4857), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (4847, 4857), False, 'from sklearn.metrics import roc_curve, auc, confusion_matrix\n'), ((6062, 6074), 'numpy.arange', 'np.arange', (['(2)'], {}), '(2)\n', (6071, 6074), True, 'import numpy as np\n'), ((4379, 4416), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_test', 'labels_pred'], {}), '(y_test, labels_pred)\n', (4395, 4416), False, 'from sklearn.metrics import roc_curve, auc, confusion_matrix\n'), ((5187, 5224), 'numpy.interp', 'np.interp', (['thr', 'thresholds[::-1]', 'fpr'], {}), '(thr, thresholds[::-1], fpr)\n', (5196, 5224), True, 'import numpy as np\n'), ((5246, 5283), 'numpy.interp', 'np.interp', (['thr', 'thresholds[::-1]', 'tpr'], {}), '(thr, thresholds[::-1], tpr)\n', (5255, 5283), True, 'import numpy as np\n')]
import numpy as np import nimfa V = np.random.rand(40, 100) nmf = nimfa.Nmf(V, seed="nndsvd", rank=10, max_iter=12, update='euclidean', objective='fro') nmf_fit = nmf()
[ "numpy.random.rand", "nimfa.Nmf" ]
[((38, 61), 'numpy.random.rand', 'np.random.rand', (['(40)', '(100)'], {}), '(40, 100)\n', (52, 61), True, 'import numpy as np\n'), ((68, 158), 'nimfa.Nmf', 'nimfa.Nmf', (['V'], {'seed': '"""nndsvd"""', 'rank': '(10)', 'max_iter': '(12)', 'update': '"""euclidean"""', 'objective': '"""fro"""'}), "(V, seed='nndsvd', rank=10, max_iter=12, update='euclidean',\n objective='fro')\n", (77, 158), False, 'import nimfa\n')]
import numpy as np import pandas as pd from sklearn import model_selection import tensorflow as tf from pathlib import Path """ <NAME>, WAK2116, ELEN-E6889, Spring 2019 Final Project This python file trains a neural network that predicts an activity level based on a jpg image from a traffic camera This is an initial attempt at doing regression based on image data. It is loosely based on TF image classification examples and "Deep Leaning: Image Recognition" on Lynda.com """ # view sample image img_path = "./labeled_data/" df = pd.read_csv('./labeled_data/labels.txt') #print(df) df_train, df_valid = model_selection.train_test_split(df, test_size=.1) #print(df_train) #print("---") #print(df_valid) def keras_data(data): # Output arrays x = np.empty([0, 160, 160, 3], dtype=np.float32) y = np.empty([data.datetime.count()], dtype=np.float32) #print(x.shape) #print(y.shape) # Read in and preprocess a batch of images sess = tf.Session() for i in range(0, data.datetime.count()): #print(data.people[data.index[i]]) y_value = data.vehicles[data.index[i]] + data.people[data.index[i]] #print(y_value) #y = np.append(y, [y_value]) y[i] = y_value # convert image to a tensor # img_raw = tf.read_file(sample_img_path) image_file = img_path + data.datetime[data.index[i]] img_raw = tf.read_file(image_file) #print(repr(img_raw)[:200]+"...") img_tensor = tf.image.decode_image(img_raw) #print(img_tensor.shape) cropped_tensor = tf.image.crop_to_bounding_box(img_tensor,80, 80, 160, 220) #print(cropped_tensor.shape) #output_image = tf.image.encode_png(cropped_tensor) #file = tf.write_file("text.png",output_image) img_tensor = tf.image.resize(cropped_tensor, [160, 160]) #img_tensor = tf.image.resize(img_tensor, [240, 240]) # squish it down a bit img_tensor /= 255.0 # normalize to [0,1] range # print(img_tensor) #print(img_tensor.shape) # print(img_tensor.dtype) sess = tf.Session() with sess.as_default(): np_array = img_tensor.eval() #print("np from tensor", np_array.shape) indexed_array = np.expand_dims(np_array, axis=0) #print("np from tensor with index",indexed_array.shape) x = np.append(x, indexed_array, axis=0) #print("x shape", x.shape) #print(y.shape) return x, y x_train, y_train = keras_data(df_train) x_test, y_test = keras_data(df_valid) #y_train = tf.keras.utils.to_categorical(y_train, 16) #y_test = tf.keras.utils.to_categorical(y_test, 16) y_train = y_train / 16 y_test = y_test / 16 #(x_train, y_train), (x_test,y_test) = tf.keras.datasets.cifar10.load_data() #x_train = x_train.astype("float32") #x_test = x_test.astype("float32") #x_train = x_train / 255 #x_test = x_test / 255 #y_train = tf.keras.utils.to_categorical(y_train, 10) #y_test = tf.keras.utils.to_categorical(y_test, 10) model = tf.keras.Sequential() #model.add(tf.keras.layers.Conv2D(32,(3,3), padding='same', activation='relu', input_shape=(32, 32, 3))) model.add(tf.keras.layers.Conv2D(32,(3,3), padding='same', activation='relu', input_shape=(160, 160, 3))) model.add(tf.keras.layers.Conv2D(32,(3,3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(2,2)) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Conv2D(64,(3,3), padding='same', activation='relu')) model.add(tf.keras.layers.Conv2D(64,(3,3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(2,2)) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(512, activation="relu")) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(100, activation='relu')) model.add(tf.keras.layers.Dropout(.25)) #model.add(tf.keras.layers.Dense(10, activation="softmax")) model.add(tf.keras.layers.Dense(10, activation="relu")) model.add(tf.keras.layers.Dense(1)) model.compile( #loss='categorical_crossentropy', loss='mse', optimizer='adam', metrics=["accuracy", "mae"] ) model.summary() model.fit( x_train, y_train, batch_size=10, epochs=30, validation_data=[x_test, y_test], shuffle=True #, #steps_per_epoch=1000 ) # save structure model_structure = model.to_json() f = Path("model_structure.json") f.write_text(model_structure) # save weights model.save_weights("model_weights.h5")
[ "tensorflow.image.crop_to_bounding_box", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.Dense", "pandas.read_csv", "sklearn.model_selection.train_test_split", "numpy.empty", "tensorflow.Session", "numpy.expand_dims", "numpy.append", "pathlib.Path", "tensorflow.image.decode_image", "tensorflow.keras.Sequential", "tensorflow.read_file", "tensorflow.image.resize", "tensorflow.keras.layers.Flatten" ]
[((568, 608), 'pandas.read_csv', 'pd.read_csv', (['"""./labeled_data/labels.txt"""'], {}), "('./labeled_data/labels.txt')\n", (579, 608), True, 'import pandas as pd\n'), ((642, 693), 'sklearn.model_selection.train_test_split', 'model_selection.train_test_split', (['df'], {'test_size': '(0.1)'}), '(df, test_size=0.1)\n', (674, 693), False, 'from sklearn import model_selection\n'), ((3077, 3098), 'tensorflow.keras.Sequential', 'tf.keras.Sequential', ([], {}), '()\n', (3096, 3098), True, 'import tensorflow as tf\n'), ((4436, 4464), 'pathlib.Path', 'Path', (['"""model_structure.json"""'], {}), "('model_structure.json')\n", (4440, 4464), False, 'from pathlib import Path\n'), ((794, 838), 'numpy.empty', 'np.empty', (['[0, 160, 160, 3]'], {'dtype': 'np.float32'}), '([0, 160, 160, 3], dtype=np.float32)\n', (802, 838), True, 'import numpy as np\n'), ((998, 1010), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1008, 1010), True, 'import tensorflow as tf\n'), ((3214, 3314), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(32)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""', 'input_shape': '(160, 160, 3)'}), "(32, (3, 3), padding='same', activation='relu',\n input_shape=(160, 160, 3))\n", (3236, 3314), True, 'import tensorflow as tf\n'), ((3321, 3374), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(32)', '(3, 3)'], {'activation': '"""relu"""'}), "(32, (3, 3), activation='relu')\n", (3343, 3374), True, 'import tensorflow as tf\n'), ((3384, 3418), 'tensorflow.keras.layers.MaxPooling2D', 'tf.keras.layers.MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (3412, 3418), True, 'import tensorflow as tf\n'), ((3429, 3458), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(0.25)'], {}), '(0.25)\n', (3452, 3458), True, 'import tensorflow as tf\n'), ((3471, 3540), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(64)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, (3, 3), padding='same', activation='relu')\n", (3493, 3540), True, 'import tensorflow as tf\n'), ((3550, 3603), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""'}), "(64, (3, 3), activation='relu')\n", (3572, 3603), True, 'import tensorflow as tf\n'), ((3613, 3647), 'tensorflow.keras.layers.MaxPooling2D', 'tf.keras.layers.MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (3641, 3647), True, 'import tensorflow as tf\n'), ((3658, 3687), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(0.25)'], {}), '(0.25)\n', (3681, 3687), True, 'import tensorflow as tf\n'), ((3700, 3725), 'tensorflow.keras.layers.Flatten', 'tf.keras.layers.Flatten', ([], {}), '()\n', (3723, 3725), True, 'import tensorflow as tf\n'), ((3738, 3783), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(512)'], {'activation': '"""relu"""'}), "(512, activation='relu')\n", (3759, 3783), True, 'import tensorflow as tf\n'), ((3795, 3823), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(0.5)'], {}), '(0.5)\n', (3818, 3823), True, 'import tensorflow as tf\n'), ((3836, 3881), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(100)'], {'activation': '"""relu"""'}), "(100, activation='relu')\n", (3857, 3881), True, 'import tensorflow as tf\n'), ((3893, 3922), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(0.25)'], {}), '(0.25)\n', (3916, 3922), True, 'import tensorflow as tf\n'), ((3994, 4038), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(10)'], {'activation': '"""relu"""'}), "(10, activation='relu')\n", (4015, 4038), True, 'import tensorflow as tf\n'), ((4050, 4074), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {}), '(1)\n', (4071, 4074), True, 'import tensorflow as tf\n'), ((1427, 1451), 'tensorflow.read_file', 'tf.read_file', (['image_file'], {}), '(image_file)\n', (1439, 1451), True, 'import tensorflow as tf\n'), ((1516, 1546), 'tensorflow.image.decode_image', 'tf.image.decode_image', (['img_raw'], {}), '(img_raw)\n', (1537, 1546), True, 'import tensorflow as tf\n'), ((1605, 1664), 'tensorflow.image.crop_to_bounding_box', 'tf.image.crop_to_bounding_box', (['img_tensor', '(80)', '(80)', '(160)', '(220)'], {}), '(img_tensor, 80, 80, 160, 220)\n', (1634, 1664), True, 'import tensorflow as tf\n'), ((1839, 1882), 'tensorflow.image.resize', 'tf.image.resize', (['cropped_tensor', '[160, 160]'], {}), '(cropped_tensor, [160, 160])\n', (1854, 1882), True, 'import tensorflow as tf\n'), ((2136, 2148), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2146, 2148), True, 'import tensorflow as tf\n'), ((2303, 2335), 'numpy.expand_dims', 'np.expand_dims', (['np_array'], {'axis': '(0)'}), '(np_array, axis=0)\n', (2317, 2335), True, 'import numpy as np\n'), ((2420, 2455), 'numpy.append', 'np.append', (['x', 'indexed_array'], {'axis': '(0)'}), '(x, indexed_array, axis=0)\n', (2429, 2455), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sun Mar 6 18:22:04 2011 @author: - """ import os import numpy from matplotlib import pyplot from neuronpy.graphics import spikeplot from bulbspikes import * from neuronpy.util import spiketrain from params import sim_var homedir = os.path.join(os.path.relpath('..')) analysis_path = homedir def format_axes(ax, dt=1, ylim=(0.,4.)): #ax.set_xticks(numpy.arange(0,num_intervals,(num_intervals-1)/4.)) #ax.set_xticklabels(['$-\pi$','$-\pi/2$','$0$','$\pi/2$','$\pi$'], fontsize=18) xlim = ax.get_xlim() timesteps=int((xlim[1]*dt-xlim[0]*dt)/2.) ax.set_xticks(numpy.linspace(xlim[0],xlim[1],5)) ax.set_xticklabels(numpy.asarray(numpy.linspace(-timesteps,timesteps,5), dtype=int)) ax.set_xlabel('lag (ms)') ax.set_ylim(ylim) ax.set_ylabel('Synchronization magnitude') def draw_cell(cellid, ax, color='black'): xloc = 10+cellid*20 # Lateral dends y = numpy.abs(numpy.subtract(range(101), xloc)) yvec = numpy.log(numpy.add(y,1)) ax.plot(range(101), yvec, color=color) # Soma ax.fill_between(range(101), numpy.ones(101), yvec, \ where=numpy.ma.masked_where(yvec < 1., yvec).mask, \ color=color, linewidth=0.) # Glom ax.plot([xloc], [9], color=color, marker='o', markersize=10, markerfacecolor='white', markeredgecolor=color) ax.plot([xloc], [9], color=color, marker='o', markersize=9, alpha=0.25) ax.plot([xloc], [9], color=color, marker='1', markersize=7, markeredgewidth=2) # Primary dendrite ax.plot([xloc, xloc], [0,8], color=color, linewidth=2) format_schematic_axis(ax) def draw_weights(cellids, ax, color='black',scale=1.): """Draw granule cells""" import synweightsnapshot sws = synweightsnapshot.SynWeightSnapshot( \ nummit=sim_var['num_mitral'], \ numgran=sim_var['num_granule']) raw=sws.read_file(sim_var['wt_input_file'], os.path.join(homedir, sim_var['weight_dir'])) sws.parse_data(raw) for cellid in cellids: wts = sws.m2g[cellid,:,0] wts = wts/numpy.max(wts) for i in range(len(wts)): if wts[i] > 0.0001: cellloc = 10+cellid*20 y = numpy.abs(i - cellloc) yloc = numpy.log(numpy.add(y,1)) gloc = -3.5+((i%2)*1.5) ax.plot([i],[yloc], marker='o', markerfacecolor=color, markersize=4.*scale, markeredgecolor=color) ax.plot([i,i],[yloc, gloc], color=color) ax.plot([i],[gloc], marker='^', markerfacecolor=color, markersize=6.*scale, markeredgecolor=color) format_schematic_axis(ax) def format_schematic_axis(ax): ax.set_xlim((0,100)) xticks = [10,30,50,70,90] ax.set_xticks(xticks) ax.set_xticklabels(numpy.multiply(xticks,10)) ax.set_xlabel('distance in microns') ax.set_ylim((-5,11)) ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.set_yticks([]) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('black') ax.xaxis.set_ticks_position('bottom') def read_weightevents(): M = numpy.loadtxt(os.path.join(analysis_path, 'stimweightevents.txt')) data = [] for i in range(5): data.append([]) for m in M: data[int(m[0])].append(m[1]) return data def read_delayevents(): M = numpy.loadtxt(os.path.join(analysis_path, 'stimdelayevents.txt')) data = [] for i in range(5): data.append([]) for m in M: data[int(m[0])].append(m[1]) return data def raster(pair=[0,4], cluster_width=5, fi=.005, xlim=(1000,2000)): # pos1 = (10+pair[0]*20, cluster_width, 1, pair) # pos2 = (10+pair[1]*20, cluster_width, 1, pair) # stim_odor_mags = numpy.ones(5)*.55 fig = pyplot.figure(figsize=(9.5,5.7)) raster_ax = fig.add_axes([.1,.1,.8,.27]) schematic_ax = fig.add_axes([.1,.85,.8,.1]) syn_ax = fig.add_axes([.1,.45,.8,.225]) draw_cell(pair[0], schematic_ax, color='red') draw_cell(pair[1], schematic_ax, color='blue') draw_weights(pair, schematic_ax, color='black') # Analyze an output file in some_dir bulb_spikes = BulbSpikes(sim_time=sim_var['tstop']) bulb_spikes.read_file(os.path.join(homedir,'spikeout.spk')) breath_events = numpy.loadtxt(os.path.join(homedir, 'breathevents.txt')) wts = read_weightevents() delays = read_delayevents() dt = 1 tstop = xlim[1] x = numpy.arange(0,tstop,dt) y0 = numpy.zeros(tstop/dt) y1 = numpy.zeros(tstop/dt) EXP = numpy.exp(numpy.multiply(x,-1./200.))-numpy.exp( \ numpy.multiply(x,-1./20.)) idx = 0 for b in breath_events: if b >= tstop: break else: dtidx = int((b+delays[pair[0]][idx])/dt) y0[dtidx:] += EXP[:-dtidx]*wts[pair[0]][idx] dtidx = int((b+delays[pair[1]][idx])/dt) y1[dtidx:] += EXP[:-dtidx]*wts[pair[1]][idx] idx += 1 redplt = syn_ax.plot(x,y0, color='red') blueplt = syn_ax.plot(x,y1, color='blue') for breath in breath_events: breathplt = syn_ax.plot([breath, breath], [0,2], linestyle='--', \ color='gray', linewidth=2) syn_ax.set_xlim(xlim) syn_ax.set_ylim(0,1.6) syn_ax.set_yticks([]) syn_ax.set_xticks([]) syn_ax.set_ylabel('EPSC onto tuft') leg = syn_ax.legend([breathplt, redplt, blueplt], \ ['sniff event', 'input onto red', 'input onto blue'], \ bbox_to_anchor=(0, 1.15, 1., .102), loc=1, ncol=3, mode="expand", \ borderaxespad=0., handletextpad=.2) # Mark sniff interval for i in range(len(breath_events)): if breath_events[i] > xlim[0]: span = syn_ax.annotate('', xy=(breath_events[i], .28), xycoords='data', xytext=(breath_events[i+1], .28), \ textcoords='data', \ arrowprops=dict(arrowstyle="|-|", linewidth=2) ) syn_ax.text((breath_events[i]+breath_events[i+1])/2., .53, \ 'sniff every\n150 - 250 ms', \ horizontalalignment='center', verticalalignment='top', \ backgroundcolor='white') break # Mark amplitude interval span = syn_ax.annotate('', xy=(1190, 1.28), xycoords='data', xytext=(1190, 1.12), \ textcoords='data', \ arrowprops=dict(arrowstyle="|-|", linewidth=2) ) syn_ax.text(1215, 1.21, \ '+/- 5%', \ horizontalalignment='left', verticalalignment='center') # Mark delay interval for i in range(len(breath_events)): if breath_events[i] > 1400: span = syn_ax.annotate('', xy=(breath_events[i]-2, .5), xycoords='data', xytext=(breath_events[i]+17, .5), \ textcoords='data', \ arrowprops=dict(arrowstyle="|-|", linewidth=2) ) syn_ax.text(breath_events[i]+7.5, .28, \ 'delay 0-15 ms', \ horizontalalignment='center', verticalalignment='top', \ backgroundcolor='white') break spikes = bulb_spikes.get_mitral_spikes() ref=spikes[pair[0]] comp=spikes[pair[1]] gcspikes = bulb_spikes.get_granule_spikes() mididx = 10+pair[0]*20 gcleft = gcspikes[mididx-int(cluster_width/2.):mididx+int(cluster_width/2.)+1] mididx = 10+pair[1]*20 gcright = gcspikes[mididx-int(cluster_width/2.):mididx+int(cluster_width/2.)+1] sp = spikeplot.SpikePlot(fig=fig, savefig=False) sp.set_markercolor('blue') sp.set_markeredgewidth(2.) sp.set_markerscale(4) sp.plot_spikes([comp], label='comp', cell_offset=cluster_width*2+5, \ draw=False ) sp.set_markercolor('red') sp.plot_spikes([ref], label='ref', cell_offset=cluster_width*2+2, \ draw=False) sp.set_markerscale(1.3) sp.set_markeredgewidth(1.5) sp.set_markercolor('blue') sp.plot_spikes(gcright, label='gcright', cell_offset=cluster_width, \ draw=False) sp.set_markercolor('red') sp.plot_spikes(gcleft, label='gcleft', cell_offset=0, \ draw=False) coincidences, mask_a, mask_b, ratio = \ spiketrain.get_sync_traits(ref, comp, window=5) # idx = 0 # for i in mask_a: # if i == 1: # raster_ax.plot([ref[idx]],[cluster_width*2+1.9], marker='o', color='red') # idx += 1 idx = 0 for i in mask_b: if i == 1: if comp[idx] >= xlim[0] and comp[idx] < xlim[1]: raster_ax.text(comp[idx],cluster_width*2+8.5, '*', \ color='purple', fontweight='bold', \ horizontalalignment='center', verticalalignment='center') #raster_ax.plot([comp[idx]],[cluster_width*2+7], marker='o', color='blue') idx += 1 raster_ax.text(2000,cluster_width*2+8.5, '(synchronized)', color='purple', \ horizontalalignment='center', verticalalignment='center', fontsize=11) raster_ax.set_yticks([]) ylim = (0.5, cluster_width*2+7.5) for breath in breath_events: raster_ax.plot([breath, breath], [ylim[0], ylim[1]], linestyle='--', color='gray', linewidth=2) sp.update_xlim(xlim) raster_ax.set_ylim(ylim) raster_ax.set_xlabel('time (ms)') raster_ax.set_ylabel('spike output\n granule mitral\n\n', horizontalalignment='center') pos = schematic_ax.get_position() schematic_ax.text(.025, pos.ymax+.02, 'A)', transform=fig.transFigure, verticalalignment='baseline') pos = syn_ax.get_position() syn_ax.text(.025, pos.ymax+.07, 'B)', transform=fig.transFigure, verticalalignment='baseline') pos = raster_ax.get_position() raster_ax.text(.025, pos.ymax+.02, 'C)', transform=fig.transFigure, verticalalignment='baseline') # fig.savefig(os.path.join(analysis_path, 'raster_w%d_(%d-%d)_%.3f.pdf') %(cluster_width, pair[0], pair[1], fi)) fig.savefig(os.path.join(analysis_path, 'fig1.pdf')) raster()
[ "numpy.multiply", "numpy.abs", "numpy.ma.masked_where", "synweightsnapshot.SynWeightSnapshot", "neuronpy.graphics.spikeplot.SpikePlot", "numpy.zeros", "numpy.ones", "matplotlib.pyplot.figure", "numpy.max", "numpy.arange", "os.path.relpath", "numpy.linspace", "numpy.add", "os.path.join", "neuronpy.util.spiketrain.get_sync_traits" ]
[((286, 307), 'os.path.relpath', 'os.path.relpath', (['""".."""'], {}), "('..')\n", (301, 307), False, 'import os\n'), ((1748, 1850), 'synweightsnapshot.SynWeightSnapshot', 'synweightsnapshot.SynWeightSnapshot', ([], {'nummit': "sim_var['num_mitral']", 'numgran': "sim_var['num_granule']"}), "(nummit=sim_var['num_mitral'], numgran=\n sim_var['num_granule'])\n", (1783, 1850), False, 'import synweightsnapshot\n'), ((3810, 3843), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {'figsize': '(9.5, 5.7)'}), '(figsize=(9.5, 5.7))\n', (3823, 3843), False, 'from matplotlib import pyplot\n'), ((4480, 4506), 'numpy.arange', 'numpy.arange', (['(0)', 'tstop', 'dt'], {}), '(0, tstop, dt)\n', (4492, 4506), False, 'import numpy\n'), ((4514, 4537), 'numpy.zeros', 'numpy.zeros', (['(tstop / dt)'], {}), '(tstop / dt)\n', (4525, 4537), False, 'import numpy\n'), ((4545, 4568), 'numpy.zeros', 'numpy.zeros', (['(tstop / dt)'], {}), '(tstop / dt)\n', (4556, 4568), False, 'import numpy\n'), ((7775, 7818), 'neuronpy.graphics.spikeplot.SpikePlot', 'spikeplot.SpikePlot', ([], {'fig': 'fig', 'savefig': '(False)'}), '(fig=fig, savefig=False)\n', (7794, 7818), False, 'from neuronpy.graphics import spikeplot\n'), ((8493, 8540), 'neuronpy.util.spiketrain.get_sync_traits', 'spiketrain.get_sync_traits', (['ref', 'comp'], {'window': '(5)'}), '(ref, comp, window=5)\n', (8519, 8540), False, 'from neuronpy.util import spiketrain\n'), ((619, 654), 'numpy.linspace', 'numpy.linspace', (['xlim[0]', 'xlim[1]', '(5)'], {}), '(xlim[0], xlim[1], 5)\n', (633, 654), False, 'import numpy\n'), ((1002, 1017), 'numpy.add', 'numpy.add', (['y', '(1)'], {}), '(y, 1)\n', (1011, 1017), False, 'import numpy\n'), ((1104, 1119), 'numpy.ones', 'numpy.ones', (['(101)'], {}), '(101)\n', (1114, 1119), False, 'import numpy\n'), ((1941, 1985), 'os.path.join', 'os.path.join', (['homedir', "sim_var['weight_dir']"], {}), "(homedir, sim_var['weight_dir'])\n", (1953, 1985), False, 'import os\n'), ((2804, 2830), 'numpy.multiply', 'numpy.multiply', (['xticks', '(10)'], {}), '(xticks, 10)\n', (2818, 2830), False, 'import numpy\n'), ((3173, 3224), 'os.path.join', 'os.path.join', (['analysis_path', '"""stimweightevents.txt"""'], {}), "(analysis_path, 'stimweightevents.txt')\n", (3185, 3224), False, 'import os\n'), ((3403, 3453), 'os.path.join', 'os.path.join', (['analysis_path', '"""stimdelayevents.txt"""'], {}), "(analysis_path, 'stimdelayevents.txt')\n", (3415, 3453), False, 'import os\n'), ((4258, 4295), 'os.path.join', 'os.path.join', (['homedir', '"""spikeout.spk"""'], {}), "(homedir, 'spikeout.spk')\n", (4270, 4295), False, 'import os\n'), ((4330, 4371), 'os.path.join', 'os.path.join', (['homedir', '"""breathevents.txt"""'], {}), "(homedir, 'breathevents.txt')\n", (4342, 4371), False, 'import os\n'), ((10317, 10356), 'os.path.join', 'os.path.join', (['analysis_path', '"""fig1.pdf"""'], {}), "(analysis_path, 'fig1.pdf')\n", (10329, 10356), False, 'import os\n'), ((691, 731), 'numpy.linspace', 'numpy.linspace', (['(-timesteps)', 'timesteps', '(5)'], {}), '(-timesteps, timesteps, 5)\n', (705, 731), False, 'import numpy\n'), ((2090, 2104), 'numpy.max', 'numpy.max', (['wts'], {}), '(wts)\n', (2099, 2104), False, 'import numpy\n'), ((4587, 4618), 'numpy.multiply', 'numpy.multiply', (['x', '(-1.0 / 200.0)'], {}), '(x, -1.0 / 200.0)\n', (4601, 4618), False, 'import numpy\n'), ((4640, 4670), 'numpy.multiply', 'numpy.multiply', (['x', '(-1.0 / 20.0)'], {}), '(x, -1.0 / 20.0)\n', (4654, 4670), False, 'import numpy\n'), ((1143, 1182), 'numpy.ma.masked_where', 'numpy.ma.masked_where', (['(yvec < 1.0)', 'yvec'], {}), '(yvec < 1.0, yvec)\n', (1164, 1182), False, 'import numpy\n'), ((2235, 2257), 'numpy.abs', 'numpy.abs', (['(i - cellloc)'], {}), '(i - cellloc)\n', (2244, 2257), False, 'import numpy\n'), ((2291, 2306), 'numpy.add', 'numpy.add', (['y', '(1)'], {}), '(y, 1)\n', (2300, 2306), False, 'import numpy\n')]
import os from data_loader.data_generator import DataGenerator from models.invariant_basic import invariant_basic from trainers.trainer import Trainer from Utils.config import process_config from Utils.dirs import create_dirs from Utils import doc_utils from Utils.utils import get_args from data_loader import data_helper as helper # capture the config path from the run arguments # then process the json configuration file config = process_config('/Users/jiahe/PycharmProjects/gnn multiple inputs/configs/parameter_search_config.json') os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu import tensorflow.compat.v1 as tf import numpy as np tf.set_random_seed(1) base_summary_folder = config.summary_dir base_exp_name = config.exp_name # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) data = DataGenerator(config) for lr in [0.00008*(2**i) for i in range(2,8)]: for a1d in [[5],[10]]: for a3d in [[5], [10],[15]]: for fully in [[50,50],[20,20]]: config.learning_rate = lr config.architecture2d = a1d config.architecture = a3d config.fc = fully config.exp_name = base_exp_name + " lr={0}_a2d={1}_a3d = {2}_fc = {3}".format(lr, a1d,a3d,fully) curr_dir = os.path.join(base_summary_folder, "lr={0}_a2d={1}_a3d = {2}_fc = {3}".format(lr, a1d, a3d, fully)) config.summary_dir = curr_dir create_dirs([curr_dir]) # create your data generator data.config.learning_rate=lr data.config.architecture2d = a1d data.config.architecture3d = a3d data.config.fc = fully gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpus_list gpuconfig.gpu_options.allow_growth = True sess = tf.Session(config=gpuconfig) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # here you train your model acc, loss, _ = trainer.train() sess.close() tf.reset_default_graph() import pandas as pd def summary_10fold_results(summary_dir): df = pd.read_csv(summary_dir+"/per_epoch_stats.csv") acc = np.array(df["val_accuracy"]) print("Results") print("Mean Accuracy = {0}".format(np.mean(acc))) # print("Mean std = {0}".format(np.std(acc))) return np.mean(acc)
[ "Utils.dirs.create_dirs", "Utils.config.process_config", "pandas.read_csv", "tensorflow.compat.v1.set_random_seed", "tensorflow.compat.v1.Session", "tensorflow.compat.v1.reset_default_graph", "numpy.mean", "data_loader.data_generator.DataGenerator", "numpy.array", "tensorflow.compat.v1.ConfigProto", "models.invariant_basic.invariant_basic", "trainers.trainer.Trainer" ]
[((434, 547), 'Utils.config.process_config', 'process_config', (['"""/Users/jiahe/PycharmProjects/gnn multiple inputs/configs/parameter_search_config.json"""'], {}), "(\n '/Users/jiahe/PycharmProjects/gnn multiple inputs/configs/parameter_search_config.json'\n )\n", (448, 547), False, 'from Utils.config import process_config\n'), ((640, 661), 'tensorflow.compat.v1.set_random_seed', 'tf.set_random_seed', (['(1)'], {}), '(1)\n', (658, 661), True, 'import tensorflow.compat.v1 as tf\n'), ((765, 821), 'Utils.dirs.create_dirs', 'create_dirs', (['[config.summary_dir, config.checkpoint_dir]'], {}), '([config.summary_dir, config.checkpoint_dir])\n', (776, 821), False, 'from Utils.dirs import create_dirs\n'), ((829, 850), 'data_loader.data_generator.DataGenerator', 'DataGenerator', (['config'], {}), '(config)\n', (842, 850), False, 'from data_loader.data_generator import DataGenerator\n'), ((2389, 2438), 'pandas.read_csv', 'pd.read_csv', (["(summary_dir + '/per_epoch_stats.csv')"], {}), "(summary_dir + '/per_epoch_stats.csv')\n", (2400, 2438), True, 'import pandas as pd\n'), ((2447, 2475), 'numpy.array', 'np.array', (["df['val_accuracy']"], {}), "(df['val_accuracy'])\n", (2455, 2475), True, 'import numpy as np\n'), ((2611, 2623), 'numpy.mean', 'np.mean', (['acc'], {}), '(acc)\n', (2618, 2623), True, 'import numpy as np\n'), ((2536, 2548), 'numpy.mean', 'np.mean', (['acc'], {}), '(acc)\n', (2543, 2548), True, 'import numpy as np\n'), ((1438, 1461), 'Utils.dirs.create_dirs', 'create_dirs', (['[curr_dir]'], {}), '([curr_dir])\n', (1449, 1461), False, 'from Utils.dirs import create_dirs\n'), ((1693, 1762), 'tensorflow.compat.v1.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'log_device_placement': '(False)'}), '(allow_soft_placement=True, log_device_placement=False)\n', (1707, 1762), True, 'import tensorflow.compat.v1 as tf\n'), ((1909, 1937), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {'config': 'gpuconfig'}), '(config=gpuconfig)\n', (1919, 1937), True, 'import tensorflow.compat.v1 as tf\n'), ((2013, 2042), 'models.invariant_basic.invariant_basic', 'invariant_basic', (['config', 'data'], {}), '(config, data)\n', (2028, 2042), False, 'from models.invariant_basic import invariant_basic\n'), ((2137, 2171), 'trainers.trainer.Trainer', 'Trainer', (['sess', 'model', 'data', 'config'], {}), '(sess, model, data, config)\n', (2144, 2171), False, 'from trainers.trainer import Trainer\n'), ((2292, 2316), 'tensorflow.compat.v1.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (2314, 2316), True, 'import tensorflow.compat.v1 as tf\n')]
"""Methods used to build ROC.""" import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import roc_curve, auc # seaborn settings sns.set_style("white") sns.set_context("paper") color_palette = sns.color_palette("colorblind") sns.set_palette(color_palette) def _get_total_undirected_interactions(n): return n * (n - 1) / 2 def _check_index(index, labels_set, interaction_symbol='<->'): e1, e2 = index.split(interaction_symbol) return (e1 in labels_set and e2 in labels_set) def _filter_indices_with_labels(indexes, labels, interaction_symbol='<->'): labels_set = set(labels) filtering = pd.Series([ _check_index(index, labels_set, interaction_symbol) for index in indexes ]) return indexes[filtering] def _is_index_diagonal(index, interaction_indices='<->'): a_node, another_node = index.split(interaction_indices) return a_node == another_node def _get_evaluation_on_given_labels( labels, true_interactions, predicted_interactions, no_self_loops=True ): total_interactions = _get_total_undirected_interactions(len(labels)) interaction_indices = list( set( _filter_indices_with_labels(predicted_interactions.index, labels) | _filter_indices_with_labels(true_interactions.index, labels) ) ) if no_self_loops: interaction_indices = [ index for index in interaction_indices if not _is_index_diagonal(index) ] predicted_interactions = predicted_interactions.reindex( interaction_indices ).fillna(0.0) true_interactions = true_interactions.reindex( interaction_indices ).fillna(0.0) zero_interactions = int(total_interactions) - len(interaction_indices) y = np.append(true_interactions.values, np.zeros((zero_interactions))) scores = np.append( predicted_interactions.values, np.zeros((zero_interactions)) ) return y, scores def get_roc_df( pathway_name, method_name, true_interactions, predicted_interactions, number_of_roc_points=100 ): """Return dataframe that can be used to plot a ROC curve.""" labels = { gene for genes in [ true_interactions.e1, predicted_interactions.e1, true_interactions.e2, predicted_interactions.e2 ] for gene in genes } y, scores = _get_evaluation_on_given_labels( labels, true_interactions.intensity, predicted_interactions.intensity ) # print(method_name, y, scores) reference_xx = np.linspace(0, 1, number_of_roc_points) if sum(y) > 0: xx, yy, threshold = roc_curve(y, scores) print(method_name, y, scores, threshold, xx, yy) area_under_curve = auc(xx, yy) yy = np.interp(reference_xx, xx, yy) else: yy = reference_xx area_under_curve = 0.5 # worst roc_df = pd.DataFrame({ 'pathway': number_of_roc_points * [pathway_name], 'method': ( number_of_roc_points * [method_name] ), 'YY': yy, 'XX': reference_xx.tolist() }) return roc_df, area_under_curve def plot_roc_curve_from_df( df, auc_dict_list=None, output_filepath=None, figsize=(6, 6) ): """From a df with multiple methods plot a roc curve using sns.tspot.""" xlabel = 'False Discovery Rate' ylabel = 'True Positive Rate' title = 'Receiver Operating Characteristic' # rename method name to include AUC to show it in legend if auc_dict_list: for method in auc_dict_list.keys(): mean_auc = np.mean(auc_dict_list[method]) method_indices = df['method'] == method df['mean_auc'] = mean_auc df.loc[method_indices, 'method'] = ( '{} '.format( method.capitalize() if method != 'INtERAcT' else method ) + 'AUC=%0.2f' % mean_auc ) df = df.sort_values(by='method') df.rename(columns={'method': ''}, inplace=True) # to avoid legend title plt.figure(figsize=figsize) sns.set_style("whitegrid", {'axes.grid': False}) sns.tsplot( data=df, time='XX', value='YY', condition='', unit='pathway', legend=True ) plt.xlim([0, 1]) plt.ylim([0, 1]) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if output_filepath: plt.savefig(output_filepath, bbox_inches='tight')
[ "matplotlib.pyplot.title", "seaborn.set_style", "matplotlib.pyplot.xlim", "sklearn.metrics.roc_curve", "matplotlib.pyplot.ylim", "seaborn.tsplot", "numpy.zeros", "sklearn.metrics.auc", "matplotlib.pyplot.figure", "numpy.mean", "numpy.linspace", "seaborn.color_palette", "numpy.interp", "matplotlib.pyplot.ylabel", "seaborn.set_palette", "matplotlib.pyplot.xlabel", "seaborn.set_context", "matplotlib.pyplot.savefig" ]
[((190, 212), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (203, 212), True, 'import seaborn as sns\n'), ((213, 237), 'seaborn.set_context', 'sns.set_context', (['"""paper"""'], {}), "('paper')\n", (228, 237), True, 'import seaborn as sns\n'), ((254, 285), 'seaborn.color_palette', 'sns.color_palette', (['"""colorblind"""'], {}), "('colorblind')\n", (271, 285), True, 'import seaborn as sns\n'), ((286, 316), 'seaborn.set_palette', 'sns.set_palette', (['color_palette'], {}), '(color_palette)\n', (301, 316), True, 'import seaborn as sns\n'), ((2613, 2652), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'number_of_roc_points'], {}), '(0, 1, number_of_roc_points)\n', (2624, 2652), True, 'import numpy as np\n'), ((4156, 4183), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (4166, 4183), True, 'import matplotlib.pyplot as plt\n'), ((4188, 4236), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""', "{'axes.grid': False}"], {}), "('whitegrid', {'axes.grid': False})\n", (4201, 4236), True, 'import seaborn as sns\n'), ((4241, 4330), 'seaborn.tsplot', 'sns.tsplot', ([], {'data': 'df', 'time': '"""XX"""', 'value': '"""YY"""', 'condition': '""""""', 'unit': '"""pathway"""', 'legend': '(True)'}), "(data=df, time='XX', value='YY', condition='', unit='pathway',\n legend=True)\n", (4251, 4330), True, 'import seaborn as sns\n'), ((4353, 4369), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 1]'], {}), '([0, 1])\n', (4361, 4369), True, 'import matplotlib.pyplot as plt\n'), ((4374, 4390), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 1]'], {}), '([0, 1])\n', (4382, 4390), True, 'import matplotlib.pyplot as plt\n'), ((4395, 4413), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (4405, 4413), True, 'import matplotlib.pyplot as plt\n'), ((4418, 4436), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (4428, 4436), True, 'import matplotlib.pyplot as plt\n'), ((4441, 4457), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (4450, 4457), True, 'import matplotlib.pyplot as plt\n'), ((1863, 1890), 'numpy.zeros', 'np.zeros', (['zero_interactions'], {}), '(zero_interactions)\n', (1871, 1890), True, 'import numpy as np\n'), ((1957, 1984), 'numpy.zeros', 'np.zeros', (['zero_interactions'], {}), '(zero_interactions)\n', (1965, 1984), True, 'import numpy as np\n'), ((2700, 2720), 'sklearn.metrics.roc_curve', 'roc_curve', (['y', 'scores'], {}), '(y, scores)\n', (2709, 2720), False, 'from sklearn.metrics import roc_curve, auc\n'), ((2805, 2816), 'sklearn.metrics.auc', 'auc', (['xx', 'yy'], {}), '(xx, yy)\n', (2808, 2816), False, 'from sklearn.metrics import roc_curve, auc\n'), ((2830, 2861), 'numpy.interp', 'np.interp', (['reference_xx', 'xx', 'yy'], {}), '(reference_xx, xx, yy)\n', (2839, 2861), True, 'import numpy as np\n'), ((4491, 4540), 'matplotlib.pyplot.savefig', 'plt.savefig', (['output_filepath'], {'bbox_inches': '"""tight"""'}), "(output_filepath, bbox_inches='tight')\n", (4502, 4540), True, 'import matplotlib.pyplot as plt\n'), ((3644, 3674), 'numpy.mean', 'np.mean', (['auc_dict_list[method]'], {}), '(auc_dict_list[method])\n', (3651, 3674), True, 'import numpy as np\n')]
import numpy as np import scipy.sparse import akg from akg import tvm from akg import topi from tests.common.base import get_rtol_atol from tests.common.gen_random import random_gaussian from tests.common.tensorio import compare_tensor from akg.utils import kernel_exec as utils from akg.utils.result_analysis import target_profiling from akg.utils.format_transform import to_tvm_nd_array, get_shape from akg.utils.dsl_create import get_broadcast_shape def csr_mul(dense, sparse_data, col_idx, row_idx, shape): assert len(shape) == 2, "only supports 2-dim sparse tensor" assert len(dense.shape) <= 2 assert dense.dtype == sparse_data.dtype, "data and weight must have the same dtype" num_rows = row_idx.shape[0] - 1 dense_shape = get_shape(dense.shape) sparse_shape = get_shape(shape) broadcast_shape = get_broadcast_shape(dense_shape, sparse_shape) need_expand = tvm.const(len(dense_shape) < len(broadcast_shape)) need_broadcast_first_dim = tvm.const( len(dense_shape) == len(broadcast_shape) and dense_shape[0] < broadcast_shape[0]) need_broadcast_last_dim = tvm.const( len(dense_shape) == len(broadcast_shape) and dense_shape[1] < broadcast_shape[1]) def gen_ir(dense, sparse_data, col_idx, row_idx, output): ib = tvm.ir_builder.create() with ib.for_range(0, num_rows, name='i') as i: start = ib.load(row_idx, i) end = ib.load(row_idx, i + 1) with ib.for_range(0, end - start, name='j') as j: pos = start + j with ib.if_scope(pos < end): val = ib.load(sparse_data, pos) col = ib.load(col_idx, pos) with ib.if_scope(need_expand): ib.store(output, pos, val * ib.load(dense, [col])) with ib.else_scope(): with ib.if_scope(need_broadcast_first_dim): ib.store(output, pos, val * ib.load(dense, [0, col])) with ib.else_scope(): with ib.if_scope(need_broadcast_last_dim): ib.store(output, pos, val * ib.load(dense, [i, 0])) with ib.else_scope(): ib.store(output, pos, val * ib.load(dense, [i, col])) return ib.get() output_name = "T_csr_mul_" + dense.op.name + "_" + sparse_data.op.name out_buf = tvm.decl_buffer(sparse_data.shape, sparse_data.dtype, output_name) return tvm.extern([shape], [dense, sparse_data, col_idx, row_idx], lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], ins[3], outs[0]), dtype=sparse_data.dtype, out_buffers=[out_buf], name=output_name) def gen_data(shape1, shape2, dtype1, dtype2): dense = random_gaussian(shape1).astype(dtype1) sparse_data = scipy.sparse.rand(shape2[0], shape2[1], density=0.2, format='csr', dtype=dtype1) expect = sparse_data.multiply(np.broadcast_to(dense, shape2)) return dense, sparse_data.data, sparse_data.indices.astype(dtype2), sparse_data.indptr.astype(dtype2), expect.data def test_csr_mul(shape1, shape2, dtype1, dtype2, poly_sch=False, attrs=None): if not attrs: attrs = {"target": "cuda"} # gen data op_attrs = [shape2] dense, sparse_data, col_idx, row_idx, expect = gen_data(shape1, shape2, dtype1, dtype2) output_shape = expect.shape attrs["csr_avg_row"] = sparse_data.shape[0] // shape1[0] mod = utils.op_build_test(csr_mul, [shape1, sparse_data.shape, col_idx.shape, row_idx.shape], [dtype1, dtype1, dtype2, dtype2], op_attrs=op_attrs, polyhedral=poly_sch, attrs=attrs, kernel_name="csr_mul") if len(expect.shape) == 0: output_shape = (1, ) output = np.zeros(output_shape, expect.dtype) output = utils.mod_launch(mod, (dense, sparse_data, col_idx, row_idx, output), expect=expect) atol, rtol = get_rtol_atol("csr_mul", dtype1) res = compare_tensor(output, expect, rtol=rtol, atol=atol) print("Test {}".format("Pass" if res else "Failed")) target_name = attrs["target"].split()[0] if not res: mod_source = mod if target_name != "llvm": mod_source = mod.imported_modules[0] print("Error {}:========================".format(target_name)) print(mod_source.get_source()) raise AssertionError("Test fail") if attrs["profiling"]: args_list = to_tvm_nd_array( [dense, sparse_data, col_idx, row_idx, output, expect], akg.tvm.context(target_name, 0)) target_profiling(mod, *args_list, target=target_name, repeat_time=attrs["repeat_time"])
[ "tests.common.tensorio.compare_tensor", "akg.tvm.context", "tests.common.gen_random.random_gaussian", "tests.common.base.get_rtol_atol", "akg.tvm.ir_builder.create", "akg.utils.dsl_create.get_broadcast_shape", "numpy.zeros", "akg.utils.format_transform.get_shape", "akg.tvm.decl_buffer", "akg.utils.kernel_exec.op_build_test", "akg.utils.result_analysis.target_profiling", "numpy.broadcast_to", "akg.utils.kernel_exec.mod_launch" ]
[((753, 775), 'akg.utils.format_transform.get_shape', 'get_shape', (['dense.shape'], {}), '(dense.shape)\n', (762, 775), False, 'from akg.utils.format_transform import to_tvm_nd_array, get_shape\n'), ((795, 811), 'akg.utils.format_transform.get_shape', 'get_shape', (['shape'], {}), '(shape)\n', (804, 811), False, 'from akg.utils.format_transform import to_tvm_nd_array, get_shape\n'), ((834, 880), 'akg.utils.dsl_create.get_broadcast_shape', 'get_broadcast_shape', (['dense_shape', 'sparse_shape'], {}), '(dense_shape, sparse_shape)\n', (853, 880), False, 'from akg.utils.dsl_create import get_broadcast_shape\n'), ((2458, 2524), 'akg.tvm.decl_buffer', 'tvm.decl_buffer', (['sparse_data.shape', 'sparse_data.dtype', 'output_name'], {}), '(sparse_data.shape, sparse_data.dtype, output_name)\n', (2473, 2524), False, 'from akg import tvm\n'), ((3548, 3753), 'akg.utils.kernel_exec.op_build_test', 'utils.op_build_test', (['csr_mul', '[shape1, sparse_data.shape, col_idx.shape, row_idx.shape]', '[dtype1, dtype1, dtype2, dtype2]'], {'op_attrs': 'op_attrs', 'polyhedral': 'poly_sch', 'attrs': 'attrs', 'kernel_name': '"""csr_mul"""'}), "(csr_mul, [shape1, sparse_data.shape, col_idx.shape,\n row_idx.shape], [dtype1, dtype1, dtype2, dtype2], op_attrs=op_attrs,\n polyhedral=poly_sch, attrs=attrs, kernel_name='csr_mul')\n", (3567, 3753), True, 'from akg.utils import kernel_exec as utils\n'), ((3881, 3917), 'numpy.zeros', 'np.zeros', (['output_shape', 'expect.dtype'], {}), '(output_shape, expect.dtype)\n', (3889, 3917), True, 'import numpy as np\n'), ((3931, 4019), 'akg.utils.kernel_exec.mod_launch', 'utils.mod_launch', (['mod', '(dense, sparse_data, col_idx, row_idx, output)'], {'expect': 'expect'}), '(mod, (dense, sparse_data, col_idx, row_idx, output),\n expect=expect)\n', (3947, 4019), True, 'from akg.utils import kernel_exec as utils\n'), ((4033, 4065), 'tests.common.base.get_rtol_atol', 'get_rtol_atol', (['"""csr_mul"""', 'dtype1'], {}), "('csr_mul', dtype1)\n", (4046, 4065), False, 'from tests.common.base import get_rtol_atol\n'), ((4076, 4128), 'tests.common.tensorio.compare_tensor', 'compare_tensor', (['output', 'expect'], {'rtol': 'rtol', 'atol': 'atol'}), '(output, expect, rtol=rtol, atol=atol)\n', (4090, 4128), False, 'from tests.common.tensorio import compare_tensor\n'), ((1289, 1312), 'akg.tvm.ir_builder.create', 'tvm.ir_builder.create', ([], {}), '()\n', (1310, 1312), False, 'from akg import tvm\n'), ((3030, 3060), 'numpy.broadcast_to', 'np.broadcast_to', (['dense', 'shape2'], {}), '(dense, shape2)\n', (3045, 3060), True, 'import numpy as np\n'), ((4680, 4772), 'akg.utils.result_analysis.target_profiling', 'target_profiling', (['mod', '*args_list'], {'target': 'target_name', 'repeat_time': "attrs['repeat_time']"}), "(mod, *args_list, target=target_name, repeat_time=attrs[\n 'repeat_time'])\n", (4696, 4772), False, 'from akg.utils.result_analysis import target_profiling\n'), ((2858, 2881), 'tests.common.gen_random.random_gaussian', 'random_gaussian', (['shape1'], {}), '(shape1)\n', (2873, 2881), False, 'from tests.common.gen_random import random_gaussian\n'), ((4639, 4670), 'akg.tvm.context', 'akg.tvm.context', (['target_name', '(0)'], {}), '(target_name, 0)\n', (4654, 4670), False, 'import akg\n')]
# encoding: utf-8 """ Input/output package. """ from __future__ import absolute_import, division, print_function import io as _io import contextlib import numpy as np from .audio import load_audio_file from .midi import load_midi, write_midi from ..utils import suppress_warnings, string_types ENCODING = 'utf8' # dtype for numpy structured arrays that contain labelled segments # 'label' needs to be castable to str SEGMENT_DTYPE = [('start', np.float), ('end', np.float), ('label', object)] # overwrite the built-in open() to transparently apply some magic file handling @contextlib.contextmanager def open_file(filename, mode='r'): """ Context manager which yields an open file or handle with the given mode and closes it if needed afterwards. Parameters ---------- filename : str or file handle File (handle) to open. mode: {'r', 'w'} Specifies the mode in which the file is opened. Yields ------ Open file (handle). """ # check if we need to open the file if isinstance(filename, string_types): f = fid = _io.open(filename, mode) else: f = filename fid = None # yield an open file handle yield f # close the file if needed if fid: fid.close() @suppress_warnings def load_events(filename): """ Load a events from a text file, one floating point number per line. Parameters ---------- filename : str or file handle File to load the events from. Returns ------- numpy array Events. Notes ----- Comments (lines starting with '#') and additional columns are ignored, i.e. only the first column is returned. """ # read in the events, one per line events = np.loadtxt(filename, ndmin=2) # 1st column is the event's time, the rest is ignored return events[:, 0] def write_events(events, filename, fmt='%.3f', delimiter='\t', header=None): """ Write the events to a file, one event per line. Parameters ---------- events : numpy array Events to be written to file. filename : str or file handle File to write the events to. fmt : str or sequence of strs, optional A single format (e.g. '%.3f'), a sequence of formats, or a multi-format string (e.g. '%.3f %.3f'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. """ events = np.array(events) # reformat fmt to be a single string if needed if isinstance(fmt, (list, tuple)): fmt = delimiter.join(fmt) # write output with open_file(filename, 'wb') as f: # write header if header is not None: f.write(bytes(('# ' + header + '\n').encode(ENCODING))) # write events for e in events: try: string = fmt % tuple(e.tolist()) except AttributeError: string = e except TypeError: string = fmt % e f.write(bytes((string + '\n').encode(ENCODING))) f.flush() load_onsets = load_events write_onsets = write_events @suppress_warnings def load_beats(filename, downbeats=False): """ Load the beats from the given file, one beat per line of format 'beat_time' ['beat_number']. Parameters ---------- filename : str or file handle File to load the beats from. downbeats : bool, optional Load only downbeats instead of beats. Returns ------- numpy array Beats. """ values = np.loadtxt(filename, ndmin=1) if values.ndim > 1: if downbeats: # rows with a "1" in the 2nd column are downbeats return values[values[:, 1] == 1][:, 0] else: # 1st column is the beat time, the rest is ignored return values[:, 0] return values def write_beats(beats, filename, fmt=None, delimiter='\t', header=None): """ Write the beats to a file. Parameters ---------- beats : numpy array Beats to be written to file. filename : str or file handle File to write the beats to. fmt : str or sequence of strs, optional A single format (e.g. '%.3f'), a sequence of formats (e.g. ['%.3f', '%d']), or a multi-format string (e.g. '%.3f %d'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. """ if fmt is None and beats.ndim == 2: fmt = ['%.3f', '%d'] elif fmt is None: fmt = '%.3f' write_events(beats, filename, fmt, delimiter, header) def load_downbeats(filename): """ Load the downbeats from the given file. Parameters ---------- filename : str or file handle File to load the downbeats from. Returns ------- numpy array Downbeats. """ return load_beats(filename, downbeats=True) def write_downbeats(beats, filename, fmt=None, delimiter='\t', header=None): """ Write the downbeats to a file. Parameters ---------- beats : numpy array Beats or downbeats to be written to file. filename : str or file handle File to write the beats to. fmt : str or sequence of strs, optional A single format (e.g. '%.3f'), a sequence of formats (e.g. ['%.3f', '%d']), or a multi-format string (e.g. '%.3f %d'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. Notes ----- If `beats` contains both time and number of the beats, they are filtered to contain only the downbeats (i.e. only the times of those beats with a beat number of 1). """ if beats.ndim == 2: beats = beats[beats[:, 1] == 1][:, 0] if fmt is None: fmt = '%.3f' write_events(beats, filename, fmt, delimiter, header) @suppress_warnings def load_notes(filename): """ Load the notes from the given file, one note per line of format 'onset_time' 'note_number' ['duration' ['velocity']]. Parameters ---------- filename: str or file handle File to load the notes from. Returns ------- numpy array Notes. """ return np.loadtxt(filename, ndmin=2) def write_notes(notes, filename, fmt=None, delimiter='\t', header=None): """ Write the notes to a file. Parameters ---------- notes : numpy array, shape (num_notes, 2) Notes, row format 'onset_time' 'note_number' ['duration' ['velocity']]. filename : str or file handle File to write the notes to. fmt : str or sequence of strs, optional A sequence of formats (e.g. ['%.3f', '%d', '%.3f', '%d']), or a multi-format string, e.g. '%.3f %d %.3f %d', in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. Returns ------- numpy array Notes. """ # set default format if fmt is None: fmt = ['%.3f', '%d', '%.3f', '%d'] if not notes.ndim == 2: raise ValueError('unknown format for `notes`') # truncate format to the number of colums given fmt = delimiter.join(fmt[:notes.shape[1]]) # write the notes write_events(notes, filename, fmt=fmt, delimiter=delimiter, header=header) def load_segments(filename): """ Load labelled segments from file, one segment per line. Each segment is of form <start> <end> <label>, where <start> and <end> are floating point numbers, and <label> is a string. Parameters ---------- filename : str or file handle File to read the labelled segments from. Returns ------- segments : numpy structured array Structured array with columns 'start', 'end', and 'label', containing the beginning, end, and label of segments. """ start, end, label = [], [], [] with open_file(filename) as f: for line in f: s, e, l = line.split() start.append(float(s)) end.append(float(e)) label.append(l) segments = np.zeros(len(start), dtype=SEGMENT_DTYPE) segments['start'] = start segments['end'] = end segments['label'] = label return segments def write_segments(segments, filename, fmt=None, delimiter='\t', header=None): """ Write labelled segments to a file. Parameters ---------- segments : numpy structured array Labelled segments, one per row (column definition see SEGMENT_DTYPE). filename : str or file handle Output filename or handle. fmt : str or sequence of strs, optional A sequence of formats (e.g. ['%.3f', '%.3f', '%s']), or a multi-format string (e.g. '%.3f %.3f %s'), in which case `delimiter` is ignored. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. Returns ------- numpy structured array Labelled segments Notes ----- Labelled segments are represented as numpy structured array with three named columns: 'start' contains the start position (e.g. seconds), 'end' the end position, and 'label' the segment label. """ if fmt is None: fmt = ['%.3f', '%.3f', '%s'] write_events(segments, filename, fmt=fmt, delimiter=delimiter, header=header) load_chords = load_segments write_chords = write_segments def load_key(filename): """ Load the key from the given file. Parameters ---------- filename : str or file handle File to read key information from. Returns ------- str Key. """ with open_file(filename) as f: return f.read().strip() def write_key(key, filename, header=None): """ Write key string to a file. Parameters ---------- key : str Key name. filename : str or file handle Output file. header : str, optional String that will be written at the beginning of the file as comment. Returns ------- key : str Key name. """ write_events([key], filename, fmt='%s', header=header) def load_tempo(filename, split_value=1., sort=None, norm_strengths=None, max_len=None): """ Load tempo information from the given file. Tempo information must have the following format: 'main tempo' ['secondary tempo' ['relative_strength']] Parameters ---------- filename : str or file handle File to load the tempo from. split_value : float, optional Value to distinguish between tempi and strengths. `values` > `split_value` are interpreted as tempi [bpm], `values` <= `split_value` are interpreted as strengths. sort : bool, deprecated Sort the tempi by their strength. norm_strengths : bool, deprecated Normalize the strengths to sum 1. max_len : int, deprecated Return at most `max_len` tempi. Returns ------- tempi : numpy array, shape (num_tempi[, 2]) Array with tempi. If no strength is parsed, a 1-dimensional array of length 'num_tempi' is returned. If strengths are given, a 2D array with tempi (first column) and their relative strengths (second column) is returned. """ # try to load the data from file values = np.loadtxt(filename, ndmin=1) # split the filename according to their filename into tempi and strengths # TODO: this is kind of hack-ish, find a better solution tempi = values[values > split_value] strengths = values[values <= split_value] # make the strengths behave properly strength_sum = np.sum(strengths) # relative strengths are given (one less than tempi) if len(tempi) - len(strengths) == 1: strengths = np.append(strengths, 1. - strength_sum) if np.any(strengths < 0): raise AssertionError('strengths must be positive') # no strength is given, assume an evenly distributed one if strength_sum == 0: strengths = np.ones_like(tempi) / float(len(tempi)) # normalize the strengths if norm_strengths is not None: import warnings warnings.warn('`norm_strengths` is deprecated as of version 0.16 and ' 'will be removed in 0.18. Please normalize strengths ' 'separately.') strengths /= float(strength_sum) # tempi and strengths must have same length if len(tempi) != len(strengths): raise AssertionError('tempi and strengths must have same length') # order the tempi according to their strengths if sort: import warnings warnings.warn('`sort` is deprecated as of version 0.16 and will be ' 'removed in 0.18. Please sort the returned array ' 'separately.') # Note: use 'mergesort', because we want a stable sorting algorithm # which keeps the order of the keys in case of duplicate keys # but we need to apply this '(-strengths)' trick because we want # tempi with uniformly distributed strengths to keep their order sort_idx = (-strengths).argsort(kind='mergesort') tempi = tempi[sort_idx] strengths = strengths[sort_idx] # return at most 'max_len' tempi and their relative strength if max_len is not None: import warnings warnings.warn('`max_len` is deprecated as of version 0.16 and will be ' 'removed in 0.18. Please truncate the returned array ' 'separately.') return np.vstack((tempi[:max_len], strengths[:max_len])).T def write_tempo(tempi, filename, delimiter='\t', header=None, mirex=None): """ Write the most dominant tempi and the relative strength to a file. Parameters ---------- tempi : numpy array Array with the detected tempi (first column) and their strengths (second column). filename : str or file handle Output file. delimiter : str, optional String or character separating columns. header : str, optional String that will be written at the beginning of the file as comment. mirex : bool, deprecated Report the lower tempo first (as required by MIREX). Returns ------- tempo_1 : float The most dominant tempo. tempo_2 : float The second most dominant tempo. strength : float Their relative strength. """ # make the given tempi a 2d array tempi = np.array(tempi, ndmin=2) # default values t1 = t2 = strength = np.nan # only one tempo was detected if len(tempi) == 1: t1 = tempi[0][0] strength = 1. # consider only the two strongest tempi and strengths elif len(tempi) > 1: t1, t2 = tempi[:2, 0] strength = tempi[0, 1] / sum(tempi[:2, 1]) # for MIREX, the lower tempo must be given first if mirex is not None: import warnings warnings.warn('`mirex` argument is deprecated as of version 0.16 ' 'and will be removed in version 0.17. Please sort the ' 'tempi manually') if t1 > t2: t1, t2, strength = t2, t1, 1. - strength # format as a numpy array and write to output out = np.array([t1, t2, strength], ndmin=2) write_events(out, filename, fmt=['%.2f', '%.2f', '%.2f'], delimiter=delimiter, header=header)
[ "numpy.sum", "numpy.ones_like", "numpy.any", "numpy.append", "numpy.array", "numpy.loadtxt", "io.open", "warnings.warn", "numpy.vstack" ]
[((1773, 1802), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(2)'}), '(filename, ndmin=2)\n', (1783, 1802), True, 'import numpy as np\n'), ((2590, 2606), 'numpy.array', 'np.array', (['events'], {}), '(events)\n', (2598, 2606), True, 'import numpy as np\n'), ((3721, 3750), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(1)'}), '(filename, ndmin=1)\n', (3731, 3750), True, 'import numpy as np\n'), ((6644, 6673), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(2)'}), '(filename, ndmin=2)\n', (6654, 6673), True, 'import numpy as np\n'), ((11974, 12003), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'ndmin': '(1)'}), '(filename, ndmin=1)\n', (11984, 12003), True, 'import numpy as np\n'), ((12290, 12307), 'numpy.sum', 'np.sum', (['strengths'], {}), '(strengths)\n', (12296, 12307), True, 'import numpy as np\n'), ((15168, 15192), 'numpy.array', 'np.array', (['tempi'], {'ndmin': '(2)'}), '(tempi, ndmin=2)\n', (15176, 15192), True, 'import numpy as np\n'), ((15944, 15981), 'numpy.array', 'np.array', (['[t1, t2, strength]'], {'ndmin': '(2)'}), '([t1, t2, strength], ndmin=2)\n', (15952, 15981), True, 'import numpy as np\n'), ((1102, 1126), 'io.open', '_io.open', (['filename', 'mode'], {}), '(filename, mode)\n', (1110, 1126), True, 'import io as _io\n'), ((12426, 12466), 'numpy.append', 'np.append', (['strengths', '(1.0 - strength_sum)'], {}), '(strengths, 1.0 - strength_sum)\n', (12435, 12466), True, 'import numpy as np\n'), ((12477, 12498), 'numpy.any', 'np.any', (['(strengths < 0)'], {}), '(strengths < 0)\n', (12483, 12498), True, 'import numpy as np\n'), ((12807, 12951), 'warnings.warn', 'warnings.warn', (['"""`norm_strengths` is deprecated as of version 0.16 and will be removed in 0.18. Please normalize strengths separately."""'], {}), "(\n '`norm_strengths` is deprecated as of version 0.16 and will be removed in 0.18. Please normalize strengths separately.'\n )\n", (12820, 12951), False, 'import warnings\n'), ((13288, 13426), 'warnings.warn', 'warnings.warn', (['"""`sort` is deprecated as of version 0.16 and will be removed in 0.18. Please sort the returned array separately."""'], {}), "(\n '`sort` is deprecated as of version 0.16 and will be removed in 0.18. Please sort the returned array separately.'\n )\n", (13301, 13426), False, 'import warnings\n'), ((14032, 14177), 'warnings.warn', 'warnings.warn', (['"""`max_len` is deprecated as of version 0.16 and will be removed in 0.18. Please truncate the returned array separately."""'], {}), "(\n '`max_len` is deprecated as of version 0.16 and will be removed in 0.18. Please truncate the returned array separately.'\n )\n", (14045, 14177), False, 'import warnings\n'), ((14229, 14278), 'numpy.vstack', 'np.vstack', (['(tempi[:max_len], strengths[:max_len])'], {}), '((tempi[:max_len], strengths[:max_len]))\n', (14238, 14278), True, 'import numpy as np\n'), ((15626, 15770), 'warnings.warn', 'warnings.warn', (['"""`mirex` argument is deprecated as of version 0.16 and will be removed in version 0.17. Please sort the tempi manually"""'], {}), "(\n '`mirex` argument is deprecated as of version 0.16 and will be removed in version 0.17. Please sort the tempi manually'\n )\n", (15639, 15770), False, 'import warnings\n'), ((12670, 12689), 'numpy.ones_like', 'np.ones_like', (['tempi'], {}), '(tempi)\n', (12682, 12689), True, 'import numpy as np\n')]
import os from vibration_compensation import read_gcode, Data import pytest from numpy.testing import * import numpy as np import scipy as sp import vibration_compensation.bokeh_imports as plt @pytest.fixture(scope="module") def figures(): path, filename = os.path.split(os.path.realpath(__file__)) path = os.path.join(path, "output") os.makedirs(path, exist_ok=True) plt.output_file(os.path.join(path, os.path.splitext(filename)[0] + ".html")) ret = [] yield ret plt.save(ret) def generate_curves(gcode, maximum_error): data = read_gcode(gcode, maximum_error) return data @pytest.fixture(scope="function") def plotter(figures, request): def plot(data: Data): p = plt.Figure( plot_width=1000, plot_height=1000, x_range=(-250, 250), y_range=(-250, 250), match_aspect=True, lod_threshold=None, title=request.node.name ) p.segment( x0=data.start_xy[:, 0], x1=data.end_xy[:, 0], y0=data.start_xy[:, 1], y1=data.end_xy[:, 1], line_width=1, line_color="red", line_dash="dotted" ) ts = data.smoothed_toolpath.fixed_curvature_speeds(0, data.smoothed_toolpath.start_xy.shape[0], 0.1) points = data.smoothed_toolpath(ts) p.line( points[:,0], points[:,1], line_width=2, line_color="blue", line_dash="solid" ) p.circle( points[:,0], points[:,1], size=4, fill_color="white" ) figures.append(p) return plot def point_on_line(linea, lineb, point): return np.linalg.norm(linea - point) + np.linalg.norm(lineb - point)\ - np.linalg.norm(linea - lineb) def point_on_middle_of_line(linea, lineb, point): mid = (lineb - linea) * 0.5 + linea return np.linalg.norm(point - mid) class SegmentChecker(object): def __init__(self,data, l, s, start, end, corner): self.data = data self.s = s self.start = start self.end = end self.start_point = data.start_xy[l] self.end_point = data.end_xy[l] if l != data.start_xy.shape[0] - 1: self.next_start_point = data.start_xy[l+1] self.next_end_point = data.end_xy[l+1] self.spline = data.smoothed_toolpath if corner: self.spline_start = data.smoothed_toolpath.segment_start[s] self.spline_mid = l + 1.0 self.spline_end = data.smoothed_toolpath.segment_end[s] else: self.spline_start = data.smoothed_toolpath.segment_start[s] self.spline_end = data.smoothed_toolpath.segment_end[s] self.spline_mid = (self.spline_start + self.spline_end) / 2.0 xy_lengths = np.linalg.norm(data.end_xy - data.start_xy, axis=1) self.start_line_dist = np.sum(xy_lengths[:l]) self.line_length = xy_lengths[l] if l < data.start_xy.shape[0] - 1: self.start_next_line_dist = self.start_line_dist + self.line_length self.next_line_length = xy_lengths[l+1] def check_distance(self, spline, line): msg = "The spline start distance does not match" if line <= 1.0: line_dist = self.start_line_dist + self.line_length * line else: line_dist = self.start_next_line_dist + self.next_line_length * (line-1.0) assert self.spline.distance(spline) <= line_dist and \ self.spline.distance(spline) == pytest.approx(line_dist, abs=0.1), \ msg def check_start_point_start(self): msg = "The start point of the spline segment does not match the line start point" assert_array_almost_equal(self.spline(self.spline_start), self.start_point, err_msg=msg) self.check_distance(self.spline_start, 0) def check_start_point_on(self): msg = "The start point of the spline segment is not on the line" assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_start)) == \ pytest.approx(0, abs=1e-12), msg def check_line_start_point_middle(self): msg = "The start point of the spline segment is not on the middle of the line" assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_start)) == pytest.approx(0, abs=1e-3), msg self.check_distance(self.spline_start, 0.5) def check_line_start_point_end(self): msg = "The start point of the spline segment is not on the end of the line" assert_array_almost_equal(self.spline(self.spline_start), self.end_point, err_msg=msg) self.check_distance(self.spline_start, 1.0) def check_point_on_middle_of_line(self): msg = "The middle point of the spline segment is not on the middle of the line" assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_mid)) == pytest.approx(0, abs=1e-12), msg self.check_distance(self.spline_mid, 0.5) def check_point_on_line(self): msg = "The middle point of the spline segment is not on the line" assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_mid)) == pytest.approx(0, abs=1e-12), msg def check_end_point_end(self): msg = "The end point of the spline segment does not match the line end point" assert_array_almost_equal(self.spline(self.spline_end), self.end_point), msg self.check_distance(self.spline_end, 1.0) end_error_segment = "The end point of the spline segment is not on the line" def check_end_point_on(self): assert point_on_line(self.start_point, self.end_point, self.spline(self.spline_end)) == \ pytest.approx(0, abs=1e-12), SegmentChecker.end_error_segment def check_corner_end_point_on(self): assert point_on_line(self.next_start_point, self.next_end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-12),\ SegmentChecker.end_error_segment end_error_segment_middle = "The end point of the spline segment is not on the middle of the line" def check_end_point_middle(self): assert point_on_middle_of_line(self.start_point, self.end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-3),\ SegmentChecker.end_error_segment_middle self.check_distance(self.spline_end, 0.5) def check_corner_end_point_middle(self): assert point_on_middle_of_line(self.next_start_point, self.next_end_point, self.spline(self.spline_end)) == pytest.approx(0, abs=1e-3),\ SegmentChecker.end_error_segment_middle self.check_distance(self.spline_end, 1.5) def check_continuity(self): msg = "There's a discontinuity at the end of the spline segment" if self.s > 0: prev_end = self.data.smoothed_toolpath.segment_end[self.s-1] assert prev_end == self.spline_start, \ "The previous segment does not end where the current one starts" assert_array_almost_equal(self.spline(self.spline_start-1e-12), self.spline(self.spline_start), err_msg=msg) assert self.spline.distance(self.spline_start-1e-12) <=\ self.spline.distance(self.spline_start) and \ self.spline.distance(self.spline_start-1e-12) == \ pytest.approx(self.spline.distance(self.spline_start), abs=0.001), \ "The previous segment end distance and the current segment start do not match up" def check_corner_spline_order(self): assert self.spline_end > self.spline_mid, \ "The endpoint of the corner spline is before the line segment end" corner_error = "The closest point of the corner is not close enough" def check_corner_middle_normal(self): assert np.linalg.norm(self.end_point - self.spline(self.spline_mid)) <= 0.01,\ SegmentChecker.corner_error self.check_distance(self.spline_mid, 1.0) def check_corner_middle_short(self): assert np.linalg.norm(self.end_point - self.spline(self.spline_mid)) ==\ pytest.approx(0.01, abs=1e-12), \ SegmentChecker.corner_error self.check_distance(self.spline_mid, 1.0) def straight_segment(data, l, s, start, end): checker = SegmentChecker(data, l, s, start, end, False) if start == "start": checker.check_start_point_start() elif start == "on": checker.check_start_point_on() elif start == "middle": checker.check_line_start_point_middle() elif start == "end": checker.check_line_start_point_end() else: assert False, "Invalid start type" if start == "start" and end == "end": checker.check_point_on_middle_of_line() else: checker.check_point_on_line() if end == "end": checker.check_end_point_end() elif end == "on": checker.check_end_point_on() elif end == "middle": checker.check_end_point_middle() else: assert False, "Invalid end type" checker.check_continuity() def corner_segment(data, l, s, start, end): checker = SegmentChecker(data, l, s, start, end, True) checker.check_corner_spline_order() if start == "on": checker.check_start_point_on() elif start == "middle": checker.check_line_start_point_middle() else: assert False, "Invalid start type" if start == "middle" or end == "middle": checker.check_corner_middle_normal() else: checker.check_corner_middle_short() if end == "on": checker.check_corner_end_point_on() elif end == "middle": checker.check_corner_end_point_middle() else: assert False, "Invalid end type" checker.check_continuity() def check_distances(data): t = data.smoothed_toolpath.fixed_distances(0, data.smoothed_toolpath.total_distance(), 10) assert_array_almost_equal(data.smoothed_toolpath.distance(t), np.linspace(0, data.smoothed_toolpath.total_distance(), 10)) def test_straight_line(plotter): data = generate_curves([ "G1 X100 Y200" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 1 straight_segment(data, l=0, s=0, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) ==\ pytest.approx(np.linalg.norm([100, 200])) check_distances(data) plotter(data) def test_two_straight_lines(plotter): data = generate_curves([ "G1 X50 Y50", "G1 X100 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 2 straight_segment(data, l=0, s=0, start="start", end="end") straight_segment(data, l=1, s=1, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx( np.linalg.norm([50, 50]) + np.linalg.norm([50, 50]) ) check_distances(data) plotter(data) def test_90_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 200.0 assert np.sum(data.smoothed_toolpath.segment_lengths) == pytest.approx(200, abs=0.1) check_distances(data) plotter(data) def test_45_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_very_acute_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X0 Y1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 1]), abs=0.1) check_distances(data) plotter(data) def test_135_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X200 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_135_corner_counter_clockwise(plotter): data = generate_curves([ "G1 X-100 Y-100", "G1 X-200 Y-100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 100]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 100]), abs=0.1) check_distances(data) plotter(data) def test_very_obtuse_corner(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X200 Y1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 100 + np.linalg.norm([100, 1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(100 + np.linalg.norm([100, 1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_short_lines(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X20 Y0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="middle") straight_segment(data, l=1, s=2, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 10 + np.linalg.norm([10, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([10, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_shorter_and_longer_line(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X30 Y0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="on") straight_segment(data, l=1, s=2, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 10 + np.linalg.norm([20, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([20, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_obtuse_corner_with_longer_and_shorter_line(plotter): data = generate_curves([ "G1 X20 Y0", "G1 X30 Y-0.1" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 3 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="middle") straight_segment(data, l=1, s=2, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 20 + np.linalg.norm([10, 0.1]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(20 + np.linalg.norm([10, 0.1]), abs=0.1) check_distances(data) plotter(data) def test_three_long_lines(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="on") corner_segment(data, l=1, s=3, start="on", end="on") straight_segment(data, l=2, s=4, start="on", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 300 assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(300, abs=0.1) check_distances(data) plotter(data) def test_three_short_lines(plotter): data = generate_curves([ "G1 X10 Y0", "G1 X20 Y0.1", "G1 X30 Y0.3" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="middle") corner_segment(data, l=0, s=1, start="middle", end="middle") # Note that this line is very short straight_segment(data, l=1, s=2, start="middle", end="middle") corner_segment(data, l=1, s=3, start="middle", end="middle") straight_segment(data, l=2, s=4, start="middle", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) <\ 10 + np.linalg.norm([10, 0.1]) + np.linalg.norm([10, 0.2]) assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(10 + np.linalg.norm([10, 0.1]) + np.linalg.norm([10, 0.2]), abs=0.1) check_distances(data) plotter(data) def test_three_long_lines_with_z_move(plotter): data = generate_curves([ "G1 X100 Y0", "G1 X100 Y100", "G1 Z10", "G1 X0 Y100" ], maximum_error=0.01) assert data.smoothed_toolpath.segment_start.shape[0] == 5 straight_segment(data, l=0, s=0, start="start", end="on") corner_segment(data, l=0, s=1, start="on", end="on") straight_segment(data, l=1, s=2, start="on", end="end") straight_segment(data, l=1, s=3, start="end", end="end") straight_segment(data, l=3, s=4, start="start", end="end") assert np.sum(data.smoothed_toolpath.segment_lengths) < 300 assert np.sum(data.smoothed_toolpath.segment_lengths) == \ pytest.approx(300, abs=0.1) check_distances(data) plotter(data)
[ "numpy.sum", "os.makedirs", "vibration_compensation.read_gcode", "os.path.realpath", "pytest.fixture", "vibration_compensation.bokeh_imports.Figure", "numpy.linalg.norm", "os.path.splitext", "vibration_compensation.bokeh_imports.save", "pytest.approx", "os.path.join" ]
[((205, 235), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (219, 235), False, 'import pytest\n'), ((641, 673), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (655, 673), False, 'import pytest\n'), ((328, 356), 'os.path.join', 'os.path.join', (['path', '"""output"""'], {}), "(path, 'output')\n", (340, 356), False, 'import os\n'), ((362, 394), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (373, 394), False, 'import os\n'), ((511, 524), 'vibration_compensation.bokeh_imports.save', 'plt.save', (['ret'], {}), '(ret)\n', (519, 524), True, 'import vibration_compensation.bokeh_imports as plt\n'), ((585, 617), 'vibration_compensation.read_gcode', 'read_gcode', (['gcode', 'maximum_error'], {}), '(gcode, maximum_error)\n', (595, 617), False, 'from vibration_compensation import read_gcode, Data\n'), ((2045, 2072), 'numpy.linalg.norm', 'np.linalg.norm', (['(point - mid)'], {}), '(point - mid)\n', (2059, 2072), True, 'import numpy as np\n'), ((288, 314), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (304, 314), False, 'import os\n'), ((746, 907), 'vibration_compensation.bokeh_imports.Figure', 'plt.Figure', ([], {'plot_width': '(1000)', 'plot_height': '(1000)', 'x_range': '(-250, 250)', 'y_range': '(-250, 250)', 'match_aspect': '(True)', 'lod_threshold': 'None', 'title': 'request.node.name'}), '(plot_width=1000, plot_height=1000, x_range=(-250, 250), y_range=\n (-250, 250), match_aspect=True, lod_threshold=None, title=request.node.name\n )\n', (756, 907), True, 'import vibration_compensation.bokeh_imports as plt\n'), ((1907, 1936), 'numpy.linalg.norm', 'np.linalg.norm', (['(linea - lineb)'], {}), '(linea - lineb)\n', (1921, 1936), True, 'import numpy as np\n'), ((3002, 3053), 'numpy.linalg.norm', 'np.linalg.norm', (['(data.end_xy - data.start_xy)'], {'axis': '(1)'}), '(data.end_xy - data.start_xy, axis=1)\n', (3016, 3053), True, 'import numpy as np\n'), ((3086, 3108), 'numpy.sum', 'np.sum', (['xy_lengths[:l]'], {}), '(xy_lengths[:l])\n', (3092, 3108), True, 'import numpy as np\n'), ((10870, 10916), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (10876, 10916), True, 'import numpy as np\n'), ((11372, 11418), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (11378, 11418), True, 'import numpy as np\n'), ((11975, 12021), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (11981, 12021), True, 'import numpy as np\n'), ((12042, 12088), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (12048, 12088), True, 'import numpy as np\n'), ((12092, 12119), 'pytest.approx', 'pytest.approx', (['(200)'], {'abs': '(0.1)'}), '(200, abs=0.1)\n', (12105, 12119), False, 'import pytest\n'), ((12560, 12606), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (12566, 12606), True, 'import numpy as np\n'), ((12654, 12700), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (12660, 12700), True, 'import numpy as np\n'), ((13219, 13265), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (13225, 13265), True, 'import numpy as np\n'), ((13311, 13357), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (13317, 13357), True, 'import numpy as np\n'), ((13936, 13982), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (13942, 13982), True, 'import numpy as np\n'), ((14030, 14076), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (14036, 14076), True, 'import numpy as np\n'), ((14679, 14725), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (14685, 14725), True, 'import numpy as np\n'), ((14773, 14819), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (14779, 14819), True, 'import numpy as np\n'), ((15343, 15389), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (15349, 15389), True, 'import numpy as np\n'), ((15435, 15481), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (15441, 15481), True, 'import numpy as np\n'), ((16031, 16077), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16037, 16077), True, 'import numpy as np\n'), ((16123, 16169), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16129, 16169), True, 'import numpy as np\n'), ((16723, 16769), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16729, 16769), True, 'import numpy as np\n'), ((16815, 16861), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (16821, 16861), True, 'import numpy as np\n'), ((17416, 17462), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (17422, 17462), True, 'import numpy as np\n'), ((17508, 17554), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (17514, 17554), True, 'import numpy as np\n'), ((18217, 18263), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (18223, 18263), True, 'import numpy as np\n'), ((18282, 18328), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (18288, 18328), True, 'import numpy as np\n'), ((18346, 18373), 'pytest.approx', 'pytest.approx', (['(300)'], {'abs': '(0.1)'}), '(300, abs=0.1)\n', (18359, 18373), False, 'import pytest\n'), ((19037, 19083), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (19043, 19083), True, 'import numpy as np\n'), ((19170, 19216), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (19176, 19216), True, 'import numpy as np\n'), ((19946, 19992), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (19952, 19992), True, 'import numpy as np\n'), ((20011, 20057), 'numpy.sum', 'np.sum', (['data.smoothed_toolpath.segment_lengths'], {}), '(data.smoothed_toolpath.segment_lengths)\n', (20017, 20057), True, 'import numpy as np\n'), ((20075, 20102), 'pytest.approx', 'pytest.approx', (['(300)'], {'abs': '(0.1)'}), '(300, abs=0.1)\n', (20088, 20102), False, 'import pytest\n'), ((1830, 1859), 'numpy.linalg.norm', 'np.linalg.norm', (['(linea - point)'], {}), '(linea - point)\n', (1844, 1859), True, 'import numpy as np\n'), ((1862, 1891), 'numpy.linalg.norm', 'np.linalg.norm', (['(lineb - point)'], {}), '(lineb - point)\n', (1876, 1891), True, 'import numpy as np\n'), ((4341, 4368), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (4354, 4368), False, 'import pytest\n'), ((4632, 4659), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (4645, 4659), False, 'import pytest\n'), ((5253, 5280), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (5266, 5280), False, 'import pytest\n'), ((5560, 5587), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (5573, 5587), False, 'import pytest\n'), ((6086, 6113), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (6099, 6113), False, 'import pytest\n'), ((6312, 6339), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(1e-12)'}), '(0, abs=1e-12)\n', (6325, 6339), False, 'import pytest\n'), ((6652, 6679), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (6665, 6679), False, 'import pytest\n'), ((6963, 6990), 'pytest.approx', 'pytest.approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (6976, 6990), False, 'import pytest\n'), ((8602, 8632), 'pytest.approx', 'pytest.approx', (['(0.01)'], {'abs': '(1e-12)'}), '(0.01, abs=1e-12)\n', (8615, 8632), False, 'import pytest\n'), ((10947, 10973), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 200]'], {}), '([100, 200])\n', (10961, 10973), True, 'import numpy as np\n'), ((12615, 12641), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (12629, 12641), True, 'import numpy as np\n'), ((13274, 13298), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (13288, 13298), True, 'import numpy as np\n'), ((13991, 14017), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14005, 14017), True, 'import numpy as np\n'), ((14734, 14760), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14748, 14760), True, 'import numpy as np\n'), ((15398, 15422), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (15412, 15422), True, 'import numpy as np\n'), ((16085, 16110), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (16099, 16110), True, 'import numpy as np\n'), ((16777, 16802), 'numpy.linalg.norm', 'np.linalg.norm', (['[20, 0.1]'], {}), '([20, 0.1])\n', (16791, 16802), True, 'import numpy as np\n'), ((17470, 17495), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (17484, 17495), True, 'import numpy as np\n'), ((19132, 19157), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.2]'], {}), '([10, 0.2])\n', (19146, 19157), True, 'import numpy as np\n'), ((3743, 3776), 'pytest.approx', 'pytest.approx', (['line_dist'], {'abs': '(0.1)'}), '(line_dist, abs=0.1)\n', (3756, 3776), False, 'import pytest\n'), ((11467, 11491), 'numpy.linalg.norm', 'np.linalg.norm', (['[50, 50]'], {}), '([50, 50])\n', (11481, 11491), True, 'import numpy as np\n'), ((11494, 11518), 'numpy.linalg.norm', 'np.linalg.norm', (['[50, 50]'], {}), '([50, 50])\n', (11508, 11518), True, 'import numpy as np\n'), ((12738, 12764), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (12752, 12764), True, 'import numpy as np\n'), ((13395, 13419), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (13409, 13419), True, 'import numpy as np\n'), ((14114, 14140), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14128, 14140), True, 'import numpy as np\n'), ((14857, 14883), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 100]'], {}), '([100, 100])\n', (14871, 14883), True, 'import numpy as np\n'), ((15519, 15543), 'numpy.linalg.norm', 'np.linalg.norm', (['[100, 1]'], {}), '([100, 1])\n', (15533, 15543), True, 'import numpy as np\n'), ((16206, 16231), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (16220, 16231), True, 'import numpy as np\n'), ((16898, 16923), 'numpy.linalg.norm', 'np.linalg.norm', (['[20, 0.1]'], {}), '([20, 0.1])\n', (16912, 16923), True, 'import numpy as np\n'), ((17591, 17616), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (17605, 17616), True, 'import numpy as np\n'), ((19104, 19129), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (19118, 19129), True, 'import numpy as np\n'), ((19281, 19306), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.2]'], {}), '([10, 0.2])\n', (19295, 19306), True, 'import numpy as np\n'), ((435, 461), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (451, 461), False, 'import os\n'), ((19253, 19278), 'numpy.linalg.norm', 'np.linalg.norm', (['[10, 0.1]'], {}), '([10, 0.1])\n', (19267, 19278), True, 'import numpy as np\n')]
#!/usr/bin/env python import numpy as np import copy import rospy import rospkg import rosparam import threading import argparse from geometry_msgs.msg import Vector3 from std_msgs.msg import Header, Float64 from sub8_msgs.msg import Thrust, ThrusterStatus from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point from sub8_msgs.srv import ThrusterInfo, ThrusterInfoResponse, FailThruster, UnfailThruster from sub8_thruster_comm import thruster_comm_factory from ros_alarms import AlarmBroadcaster, AlarmListener lock = threading.Lock() class BusVoltageMonitor(object): ''' Class that estimates sub8's thruster bus voltage. As of May 2017, this is just a simple rolling average with a constant width sliding window. However add_reading and get_estimate methods are left for when smarter filtering is needed ''' VMAX = 50 # volts VMIN = 0 # volts class VoltageReading(object): def __init__(self, voltage, time): self.v = voltage self.t = time def __init__(self, window_duration): ''' window_duration - float (amount of seconds for which to keep a reading in the buffer) ''' self.bus_voltage_alarm = AlarmBroadcaster("bus-voltage") self.bus_voltage_pub = rospy.Publisher('bus_voltage', Float64, queue_size=1) self.warn_voltage = rospy.get_param("/battery/warn_voltage", 44.5) self.kill_voltage = rospy.get_param("/battery/kill_voltage", 44.0) self.last_estimate_time = rospy.Time.now() self.WINDOW_DURATION = rospy.Duration(window_duration) self.ESTIMATION_PERIOD = rospy.Duration(0.2) self.cached_severity = 0 self.buffer = [] def add_reading(self, voltage, time): ''' Adds voltage readings to buffer ''' voltage = float(voltage) # Only add if it makes sense (the M5's will give nonsense feedback at times) if voltage >= self.VMIN and voltage <= self.VMAX: self.buffer.append(self.VoltageReading(voltage, time)) self.prune_buffer() # check bus voltage if enough time has passed if rospy.Time.now() - self.last_estimate_time > self.ESTIMATION_PERIOD: self.check_bus_voltage() def prune_buffer(self): ''' Removes readings older than the window_duration from buffer ''' for reading in self.buffer: age = rospy.Time.now() - reading.t if age > self.WINDOW_DURATION: self.buffer.remove(reading) def get_voltage_estimate(self): ''' Returns average voltage in buffer ''' voltages = [] if len(self.buffer) == 0: return None for r in self.buffer: voltages.append(r.v) return np.mean(voltages) def check_bus_voltage(self): ''' Publishes bus_voltage estimate and raises alarm if necessary ''' bus_voltage = self.get_voltage_estimate() if bus_voltage is None: return self.bus_voltage_pub.publish(Float64(bus_voltage)) severity = None if bus_voltage < self.warn_voltage: severity = 3 if bus_voltage < self.kill_voltage: severity = 5 if severity is not None and self.cached_severity != severity: self.bus_voltage_alarm.raise_alarm( problem_description='Bus voltage has fallen to {}'.format(bus_voltage), parameters={'bus_voltage': bus_voltage}, severity=severity ) self.cached_severity = severity class ThrusterDriver(object): _dropped_timeout = 1.0 # s _window_duration = 30.0 # s _NODE_NAME = rospy.get_name() def __init__(self, ports_layout, thruster_definitions): '''Thruster driver, an object for commanding all of the sub's thrusters - Gather configuration data and make it available to other nodes - Instantiate ThrusterPorts, (Either simulated or real), for communicating with thrusters - Track a thrust_dict, which maps thruster names to the appropriate port - Given a command message, route that command to the appropriate port/thruster - Send a thruster status message describing the status of the particular thruster ''' self.failed_thrusters = set() # This is only determined by comms self.deactivated_thrusters = set() # These will not come back online even if comms are good (user managed) # Alarms self.thruster_out_alarm = AlarmBroadcaster("thruster-out") AlarmListener("thruster-out", self.check_alarm_status, call_when_raised=False) # Prevent outside interference # Create ThrusterPort objects in a dict indexed by port name self.load_thruster_ports(ports_layout, thruster_definitions) # Feedback on thrusters (thruster mapper blocks until it can use this service) self.thruster_info_service = rospy.Service('thrusters/thruster_info', ThrusterInfo, self.get_thruster_info) self.status_publishers = {name: rospy.Publisher('thrusters/status/' + name, ThrusterStatus, queue_size=10) for name in self.thruster_to_port_map.keys()} # These alarms require this service to be available before things will work rospy.wait_for_service("update_thruster_layout") self.update_thruster_out_alarm() # Bus voltage self.bus_voltage_monitor = BusVoltageMonitor(self._window_duration) # Command thrusters self.thrust_sub = rospy.Subscriber('thrusters/thrust', Thrust, self.thrust_cb, queue_size=1) # To programmatically deactivate thrusters self.fail_thruster_server = rospy.Service('fail_thruster', FailThruster, self.fail_thruster) self.unfail_thruster_server = rospy.Service('unfail_thruster', UnfailThruster, self.unfail_thruster) @thread_lock(lock) def load_thruster_ports(self, ports_layout, thruster_definitions): ''' Loads a dictionary ThrusterPort objects ''' self.ports = {} # ThrusterPort objects self.thruster_to_port_map = {} # node_id to ThrusterPort rospack = rospkg.RosPack() self.make_fake = rospy.get_param('simulate', False) if self.make_fake: rospy.logwarn("Running fake thrusters for simulation, based on parameter '/simulate'") # Instantiate thruster comms port for port_info in ports_layout: port_name = port_info['port'] self.ports[port_name] = thruster_comm_factory(port_info, thruster_definitions, fake=self.make_fake) # Add the thrusters to the thruster dict and configure if present for thruster_name in port_info['thruster_names']: self.thruster_to_port_map[thruster_name] = port_info['port'] if thruster_name not in self.ports[port_name].online_thruster_names: rospy.logerr("ThrusterDriver: {} IS MISSING!".format(thruster_name)) else: rospy.loginfo("ThrusterDriver: {} registered".format(thruster_name)) # Set firmware settings port = self.ports[port_name] node_id = thruster_definitions[thruster_name]['node_id'] config_path = (rospack.get_path('sub8_videoray_m5_thruster') + '/config/firmware_settings/' + thruster_name + '.yaml') rospy.loginfo('Configuring {} with settings specified in {}.'.format(thruster_name, config_path)) port.set_registers_from_dict(node_id=node_id, reg_dict=rosparam.load_file(config_path)[0][0]) port.reboot_thruster(node_id) # Necessary for some settings to take effect def get_thruster_info(self, srv): ''' Get the thruster info for a particular thruster name ''' query_name = srv.thruster_name info = self.ports[self.thruster_to_port_map[query_name]].thruster_info[query_name] thruster_info = ThrusterInfoResponse( node_id=info.node_id, min_force=info.thrust_bounds[0], max_force=info.thrust_bounds[1], position=numpy_to_point(info.position), direction=Vector3(*info.direction) ) return thruster_info def check_alarm_status(self, alarm): # If someone else cleared this alarm, we need to make sure to raise it again if not alarm.raised and alarm.node_name != self._NODE_NAME: self.update_thruster_out_alarm() def update_thruster_out_alarm(self): ''' Raises or clears the thruster out alarm Updates the 'offline_thruster_names' parameter accordingly Sets the severity to the number of failed thrusters (clipped at 5) ''' offline_names = list(self.failed_thrusters) if len(self.failed_thrusters) > 0: self.thruster_out_alarm.raise_alarm( node_name=self._NODE_NAME, parameters={'offline_thruster_names': offline_names}, severity=int(np.clip(len(self.failed_thrusters), 1, 5))) else: self.thruster_out_alarm.clear_alarm( node_name=self._NODE_NAME, parameters={'offline_thruster_names': offline_names}) @thread_lock(lock) def command_thruster(self, name, thrust): ''' Issue a a force command (in Newtons) to a named thruster Example names are BLR, FLH, etc. Raises RuntimeError if a thrust value outside of the configured thrust bounds is commanded Raises UnavailableThrusterException if a thruster that is offline is commanded a non-zero thrust ''' port_name = self.thruster_to_port_map[name] target_port = self.ports[port_name] thruster_model = target_port.thruster_info[name] if thrust < thruster_model.thrust_bounds[0] or thrust > thruster_model.thrust_bounds[1]: rospy.logwarn('Tried to command thrust ({}) outside of physical thrust bounds ({})'.format( thrust, thruster_model.thrust_bounds)) if name in self.failed_thrusters: if not np.isclose(thrust, 0): rospy.logwarn('ThrusterDriver: commanding non-zero thrust to offline thruster (' + name + ')') effort = target_port.thruster_info[name].get_effort_from_thrust(thrust) # We immediately get thruster_status back thruster_status = target_port.command_thruster(name, effort) # Keep track of thrusters going online or offline offline_on_port = target_port.get_offline_thruster_names() for offline in offline_on_port: if offline not in self.failed_thrusters: self.failed_thrusters.add(offline) # Thruster went offline for failed in copy.deepcopy(self.failed_thrusters): if (failed in target_port.get_declared_thruster_names() and failed not in offline_on_port and failed not in self.deactivated_thrusters): self.failed_thrusters.remove(failed) # Thruster came online # Don't try to do anything if the thruster status is bad if thruster_status is None: return message_contents = [ 'rpm', 'bus_v', 'bus_i', 'temp', 'fault', 'command_tx_count', 'status_rx_count', 'command_latency_avg' ] message_keyword_args = {key: thruster_status[key] for key in message_contents} power = thruster_status['bus_v'] * thruster_status['bus_i'] self.status_publishers[name].publish( ThrusterStatus( header=Header(stamp=rospy.Time.now()), name=name, node_id=thruster_model.node_id, power=power, effort=effort, thrust=thrust, **message_keyword_args ) ) # Will publish bus_voltage and raise alarm if necessary self.bus_voltage_monitor.add_reading(message_keyword_args['bus_v'], rospy.Time.now()) # Undervolt/overvolt faults are unreliable (might not still be true - David) if message_keyword_args['fault'] > 2: fault_codes = { (1 << 0): 'UNDERVOLT', (1 << 1): 'OVERRVOLT', (1 << 2): 'OVERCURRENT', (1 << 3): 'OVERTEMP', (1 << 4): 'STALL', (1 << 5): 'STALL_WARN', } fault = int(message_keyword_args['fault']) faults = [] for code, fault_name in fault_codes.items(): if code & fault != 0: faults.append(fault_name) rospy.logwarn("Thruster: {} has entered fault with status {}".format(name, message_keyword_args)) rospy.logwarn("Fault causes are: {}".format(faults)) return def thrust_cb(self, msg): ''' Callback for receiving thrust commands These messages contain a list of instructions, one for each thruster If there are any updates to the list of failed thrusters, it will raise and alarm ''' failed_before = {x for x in self.failed_thrusters} for thrust_cmd in list(msg.thruster_commands): self.command_thruster(thrust_cmd.name, thrust_cmd.thrust) # Raise or clear 'thruster-out' alarm if not self.failed_thrusters == failed_before: rospy.logdebug('Failed thrusters:', self.failed_thrusters) self.update_thruster_out_alarm() def stop(self): ''' Commands 0 thrust to all thrusters ''' for port in self.ports.values(): for thruster_name in port.online_thruster_names.copy(): self.command_thruster(thruster_name, 0.0) def fail_thruster(self, srv): ''' Makes a thruster unavailable for thrust allocation ''' # So that thrust is not allocated to the thruster self.failed_thrusters.add(srv.thruster_name) # So that it won't come back online even if comms are good self.deactivated_thrusters.add(srv.thruster_name) # So that thruster_mapper updates the B-matrix self.update_thruster_out_alarm() return {} def unfail_thruster(self, srv): ''' Undoes effect of self.fail_thruster ''' self.failed_thrusters.remove(srv.thruster_name) self.deactivated_thrusters.remove(srv.thruster_name) self.update_thruster_out_alarm() return {} if __name__ == '__main__': PKG = 'sub8_videoray_m5_thruster' usage_msg = "Interface to Sub8's VideoRay M5 thrusters" desc_msg = "Specify a path to the configuration.json file containing the thrust calibration data" parser = argparse.ArgumentParser(usage=usage_msg, description=desc_msg) args = parser.parse_args(rospy.myargv()[1:]) rospy.init_node('videoray_m5_thruster_driver') layout_parameter = '/thruster_layout' rospy.loginfo("Thruster Driver waiting for parameter, {}".format(layout_parameter)) thruster_layout = wait_for_param(layout_parameter) if thruster_layout is None: raise IOError('/thruster_layout rosparam needs to be set before launching the thruster driver') thruster_driver = ThrusterDriver(thruster_layout['thruster_ports'], thruster_layout['thrusters']) rospy.spin()
[ "geometry_msgs.msg.Vector3", "rosparam.load_file", "rospy.Subscriber", "argparse.ArgumentParser", "mil_ros_tools.thread_lock", "std_msgs.msg.Float64", "numpy.mean", "numpy.isclose", "rospy.get_name", "mil_ros_tools.numpy_to_point", "ros_alarms.AlarmBroadcaster", "rospy.Duration", "rospy.logwarn", "mil_ros_tools.wait_for_param", "rospy.Time.now", "threading.Lock", "rospy.init_node", "rospy.wait_for_service", "copy.deepcopy", "rospy.logdebug", "sub8_thruster_comm.thruster_comm_factory", "rospy.Service", "ros_alarms.AlarmListener", "rospkg.RosPack", "rospy.Publisher", "rospy.get_param", "rospy.spin", "rospy.myargv" ]
[((533, 549), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (547, 549), False, 'import threading\n'), ((3696, 3712), 'rospy.get_name', 'rospy.get_name', ([], {}), '()\n', (3710, 3712), False, 'import rospy\n'), ((5932, 5949), 'mil_ros_tools.thread_lock', 'thread_lock', (['lock'], {}), '(lock)\n', (5943, 5949), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((9489, 9506), 'mil_ros_tools.thread_lock', 'thread_lock', (['lock'], {}), '(lock)\n', (9500, 9506), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((15046, 15108), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'usage': 'usage_msg', 'description': 'desc_msg'}), '(usage=usage_msg, description=desc_msg)\n', (15069, 15108), False, 'import argparse\n'), ((15163, 15209), 'rospy.init_node', 'rospy.init_node', (['"""videoray_m5_thruster_driver"""'], {}), "('videoray_m5_thruster_driver')\n", (15178, 15209), False, 'import rospy\n'), ((15363, 15395), 'mil_ros_tools.wait_for_param', 'wait_for_param', (['layout_parameter'], {}), '(layout_parameter)\n', (15377, 15395), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((15639, 15651), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (15649, 15651), False, 'import rospy\n'), ((1222, 1253), 'ros_alarms.AlarmBroadcaster', 'AlarmBroadcaster', (['"""bus-voltage"""'], {}), "('bus-voltage')\n", (1238, 1253), False, 'from ros_alarms import AlarmBroadcaster, AlarmListener\n'), ((1285, 1338), 'rospy.Publisher', 'rospy.Publisher', (['"""bus_voltage"""', 'Float64'], {'queue_size': '(1)'}), "('bus_voltage', Float64, queue_size=1)\n", (1300, 1338), False, 'import rospy\n'), ((1367, 1413), 'rospy.get_param', 'rospy.get_param', (['"""/battery/warn_voltage"""', '(44.5)'], {}), "('/battery/warn_voltage', 44.5)\n", (1382, 1413), False, 'import rospy\n'), ((1442, 1488), 'rospy.get_param', 'rospy.get_param', (['"""/battery/kill_voltage"""', '(44.0)'], {}), "('/battery/kill_voltage', 44.0)\n", (1457, 1488), False, 'import rospy\n'), ((1523, 1539), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (1537, 1539), False, 'import rospy\n'), ((1571, 1602), 'rospy.Duration', 'rospy.Duration', (['window_duration'], {}), '(window_duration)\n', (1585, 1602), False, 'import rospy\n'), ((1636, 1655), 'rospy.Duration', 'rospy.Duration', (['(0.2)'], {}), '(0.2)\n', (1650, 1655), False, 'import rospy\n'), ((2773, 2790), 'numpy.mean', 'np.mean', (['voltages'], {}), '(voltages)\n', (2780, 2790), True, 'import numpy as np\n'), ((4562, 4594), 'ros_alarms.AlarmBroadcaster', 'AlarmBroadcaster', (['"""thruster-out"""'], {}), "('thruster-out')\n", (4578, 4594), False, 'from ros_alarms import AlarmBroadcaster, AlarmListener\n'), ((4603, 4681), 'ros_alarms.AlarmListener', 'AlarmListener', (['"""thruster-out"""', 'self.check_alarm_status'], {'call_when_raised': '(False)'}), "('thruster-out', self.check_alarm_status, call_when_raised=False)\n", (4616, 4681), False, 'from ros_alarms import AlarmBroadcaster, AlarmListener\n'), ((4978, 5056), 'rospy.Service', 'rospy.Service', (['"""thrusters/thruster_info"""', 'ThrusterInfo', 'self.get_thruster_info'], {}), "('thrusters/thruster_info', ThrusterInfo, self.get_thruster_info)\n", (4991, 5056), False, 'import rospy\n'), ((5345, 5393), 'rospy.wait_for_service', 'rospy.wait_for_service', (['"""update_thruster_layout"""'], {}), "('update_thruster_layout')\n", (5367, 5393), False, 'import rospy\n'), ((5589, 5663), 'rospy.Subscriber', 'rospy.Subscriber', (['"""thrusters/thrust"""', 'Thrust', 'self.thrust_cb'], {'queue_size': '(1)'}), "('thrusters/thrust', Thrust, self.thrust_cb, queue_size=1)\n", (5605, 5663), False, 'import rospy\n'), ((5752, 5816), 'rospy.Service', 'rospy.Service', (['"""fail_thruster"""', 'FailThruster', 'self.fail_thruster'], {}), "('fail_thruster', FailThruster, self.fail_thruster)\n", (5765, 5816), False, 'import rospy\n'), ((5855, 5925), 'rospy.Service', 'rospy.Service', (['"""unfail_thruster"""', 'UnfailThruster', 'self.unfail_thruster'], {}), "('unfail_thruster', UnfailThruster, self.unfail_thruster)\n", (5868, 5925), False, 'import rospy\n'), ((6234, 6250), 'rospkg.RosPack', 'rospkg.RosPack', ([], {}), '()\n', (6248, 6250), False, 'import rospkg\n'), ((6277, 6311), 'rospy.get_param', 'rospy.get_param', (['"""simulate"""', '(False)'], {}), "('simulate', False)\n", (6292, 6311), False, 'import rospy\n'), ((11021, 11057), 'copy.deepcopy', 'copy.deepcopy', (['self.failed_thrusters'], {}), '(self.failed_thrusters)\n', (11034, 11057), False, 'import copy\n'), ((3041, 3061), 'std_msgs.msg.Float64', 'Float64', (['bus_voltage'], {}), '(bus_voltage)\n', (3048, 3061), False, 'from std_msgs.msg import Header, Float64\n'), ((5097, 5171), 'rospy.Publisher', 'rospy.Publisher', (["('thrusters/status/' + name)", 'ThrusterStatus'], {'queue_size': '(10)'}), "('thrusters/status/' + name, ThrusterStatus, queue_size=10)\n", (5112, 5171), False, 'import rospy\n'), ((6351, 6442), 'rospy.logwarn', 'rospy.logwarn', (['"""Running fake thrusters for simulation, based on parameter \'/simulate\'"""'], {}), '(\n "Running fake thrusters for simulation, based on parameter \'/simulate\'")\n', (6364, 6442), False, 'import rospy\n'), ((6598, 6673), 'sub8_thruster_comm.thruster_comm_factory', 'thruster_comm_factory', (['port_info', 'thruster_definitions'], {'fake': 'self.make_fake'}), '(port_info, thruster_definitions, fake=self.make_fake)\n', (6619, 6673), False, 'from sub8_thruster_comm import thruster_comm_factory\n'), ((12340, 12356), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (12354, 12356), False, 'import rospy\n'), ((13742, 13800), 'rospy.logdebug', 'rospy.logdebug', (['"""Failed thrusters:"""', 'self.failed_thrusters'], {}), "('Failed thrusters:', self.failed_thrusters)\n", (13756, 13800), False, 'import rospy\n'), ((15138, 15152), 'rospy.myargv', 'rospy.myargv', ([], {}), '()\n', (15150, 15152), False, 'import rospy\n'), ((2147, 2163), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (2161, 2163), False, 'import rospy\n'), ((2412, 2428), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (2426, 2428), False, 'import rospy\n'), ((8364, 8393), 'mil_ros_tools.numpy_to_point', 'numpy_to_point', (['info.position'], {}), '(info.position)\n', (8378, 8393), False, 'from mil_ros_tools import wait_for_param, thread_lock, numpy_to_point\n'), ((8417, 8441), 'geometry_msgs.msg.Vector3', 'Vector3', (['*info.direction'], {}), '(*info.direction)\n', (8424, 8441), False, 'from geometry_msgs.msg import Vector3\n'), ((10363, 10384), 'numpy.isclose', 'np.isclose', (['thrust', '(0)'], {}), '(thrust, 0)\n', (10373, 10384), True, 'import numpy as np\n'), ((10402, 10505), 'rospy.logwarn', 'rospy.logwarn', (["('ThrusterDriver: commanding non-zero thrust to offline thruster (' + name +\n ')')"], {}), "(\n 'ThrusterDriver: commanding non-zero thrust to offline thruster (' +\n name + ')')\n", (10415, 10505), False, 'import rospy\n'), ((11951, 11967), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (11965, 11967), False, 'import rospy\n'), ((7799, 7830), 'rosparam.load_file', 'rosparam.load_file', (['config_path'], {}), '(config_path)\n', (7817, 7830), False, 'import rosparam\n')]
import torch import numpy as np from torch.autograd import Variable import torch.optim as optim import argparse import random import os import models import torchvision.utils as vutils import utils import dataLoader from torch.utils.data import DataLoader parser = argparse.ArgumentParser() # The locationi of training set parser.add_argument('--dataRoot', default='/home/zhl/SiggraphAsia18/Data/train/', help='path to images') parser.add_argument('--experiment', default=None, help='the path to store samples and models') # The basic training setting parser.add_argument('--nepoch', type=int, default=18, help='the number of epochs for training') parser.add_argument('--batchSize', type=int, default=16, help='input batch size') parser.add_argument('--imageSize', type=int, default=256, help='the height / width of the input image to network') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--deviceIds', type=int, nargs='+', default=[0], help='the gpus used for training network') # The training weight parser.add_argument('--globalIllu2', type=float, default=1, help='the weight of global illumination prediction 2') parser.add_argument('--globalIllu3', type=float, default=1, help='the weight of global illumination prediction 3') # Fine Tune the network parser.add_argument('--isFineTune', action = 'store_true', help='whether to fine-tune the network or not') parser.add_argument('--epochId', type=int, default = -1, help='the training epoch of the network') # The detail network setting parser.add_argument('--cascadeLevel', type=int, default=0, help='how much level of cascades should we use') opt = parser.parse_args() print(opt) assert(opt.cascadeLevel == 0 ) if opt.experiment is None: opt.experiment = 'check_globalillumination' os.system('mkdir {0}'.format(opt.experiment) ) os.system('cp *.py %s' % opt.experiment ) g2W, g3W = opt.globalIllu2, opt.globalIllu3 opt.gpuId = opt.deviceIds[0] opt.seed = random.randint(1, 10000) print("Random Seed: ", opt.seed) random.seed(opt.seed) torch.manual_seed(opt.seed) if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") #################################### # initalize tensors albedoBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) normalBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) roughBatch = Variable(torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) ) segBatch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) depthBatch = Variable(torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) ) imP1Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) imP2Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) imP3Batch = Variable(torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) ) # Global illumination globIllu1to2 = models.globalIllumination() globIllu2to3 = models.globalIllumination() ######################################### if opt.isFineTune: globIllu1to2.load_state_dict(torch.load('{0}/globIllu1to2_{1}.pth'.format(opt.experiment, opt.epochId) ) ) globIllu2to3.load_state_dict(torch.load('{0}/globIllu2to3_{1}.pth'.format(opt.experiment, opt.epochId) ) ) ############## ###################### # Send things into GPU if opt.cuda: albedoBatch = albedoBatch.cuda(opt.gpuId) normalBatch = normalBatch.cuda(opt.gpuId) roughBatch = roughBatch.cuda(opt.gpuId) depthBatch = depthBatch.cuda(opt.gpuId) segBatch = segBatch.cuda(opt.gpuId) imP1Batch = imP1Batch.cuda(opt.gpuId) imP2Batch = imP2Batch.cuda(opt.gpuId) imP3Batch = imP3Batch.cuda(opt.gpuId) globIllu1to2 = globIllu1to2.cuda(opt.gpuId) globIllu2to3 = globIllu2to3.cuda(opt.gpuId) #################################### #################################### # Global Optimier opGlobalIllu1to2 = optim.Adam(globIllu1to2.parameters(), lr=2e-4, betas=(0.5, 0.999) ) opGlobalIllu2to3 = optim.Adam(globIllu2to3.parameters(), lr=2e-4, betas=(0.5, 0.999) ) ##################################### #################################### brdfDataset = dataLoader.BatchLoader(opt.dataRoot, imSize = opt.imageSize) brdfLoader = DataLoader(brdfDataset, batch_size = opt.batchSize, num_workers = 8, shuffle = False) j = 0 globalIllu1ErrsNpList= np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) globalIllu2ErrsNpList = np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) globalIllu3ErrsNpList= np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) renderedErrsNpList = np.ones( [1, 1+opt.cascadeLevel], dtype = np.float32) for epoch in list(range(opt.epochId+1, opt.nepoch) ): trainingLog = open('{0}/trainingLog_{1}.txt'.format(opt.experiment, epoch), 'w') for i, dataBatch in enumerate(brdfLoader): j += 1 # Load data from cpu to gpu albedo_cpu = dataBatch['albedo'] albedoBatch.data.resize_(albedo_cpu.shape) albedoBatch.data.copy_(albedo_cpu ) normal_cpu = dataBatch['normal'] normalBatch.data.resize_(normal_cpu.shape) normalBatch.data.copy_(normal_cpu ) rough_cpu = dataBatch['rough'] roughBatch.data.resize_(rough_cpu.shape) roughBatch.data.copy_(rough_cpu ) seg_cpu = dataBatch['seg'] segBatch.data.resize_(seg_cpu.shape) segBatch.data.copy_(seg_cpu ) depth_cpu = dataBatch['depth'] depthBatch.data.resize_(depth_cpu.shape) depthBatch.data.copy_(depth_cpu ) imP1_cpu = dataBatch['imP1'] imP1Batch.data.resize_(imP1_cpu.shape) imP1Batch.data.copy_(imP1_cpu ) imP2_cpu = dataBatch['imP2'] imP2Batch.data.resize_(imP2_cpu.shape) imP2Batch.data.copy_(imP2_cpu ) imP3_cpu = dataBatch['imP3'] imP3Batch.data.resize_(imP3_cpu.shape) imP3Batch.data.copy_(imP3_cpu ) opGlobalIllu1to2.zero_grad() opGlobalIllu2to3.zero_grad() ######################################################## # Build the cascade network architecture # globalIllu2s = [] globalIllu3s = [] n = 0 inputGlob2 = torch.cat([imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch, segBatch], dim=1) globalIllu2 = globIllu1to2(inputGlob2) globalIllu2s.append(globalIllu2 ) inputGlob3 = torch.cat([globalIllu2s[n], albedoBatch, normalBatch, roughBatch, depthBatch, segBatch], dim=1) globalIllu3 = globIllu2to3(inputGlob3.detach() ) globalIllu3s.append(globalIllu3) ######################################################## globalIllu2Errs = [] globalIllu3Errs = [] pixelNum = torch.sum(segBatch ).cpu().data.item() for m in range(0, n + 1): globalIllu2Errs.append( torch.sum( (globalIllu2s[m] - imP2Batch) * (globalIllu2s[m] - imP2Batch) * segBatch.expand_as(imP2Batch) ) / pixelNum / 3.0 ) globalIllu3Errs.append(torch.sum( (globalIllu3s[m] - imP3Batch) * (globalIllu3s[m] - imP3Batch) * segBatch.expand_as(imP3Batch) ) / pixelNum / 3.0 ) globalIllu2ErrSum = sum(globalIllu2Errs) globalIllu3ErrSum = sum(globalIllu3Errs) totalErr = g2W * globalIllu2ErrSum + g3W * globalIllu3ErrSum totalErr.backward() opGlobalIllu1to2.step() opGlobalIllu2to3.step() # Output training error utils.writeErrToScreen('globalIllu2', globalIllu2Errs, epoch, j) utils.writeErrToScreen('globalIllu3', globalIllu3Errs, epoch, j) utils.writeErrToFile('globalIllu2', globalIllu2Errs, trainingLog, epoch, j) utils.writeErrToFile('globalIllu3', globalIllu3Errs, trainingLog, epoch, j) globalIllu2ErrsNpList = np.concatenate( [globalIllu2ErrsNpList, utils.turnErrorIntoNumpy(globalIllu2Errs)], axis=0) globalIllu3ErrsNpList = np.concatenate( [globalIllu3ErrsNpList, utils.turnErrorIntoNumpy(globalIllu3Errs)], axis=0) if j < 1000: utils.writeNpErrToScreen('globalIllu2_Accu:', np.mean(globalIllu2ErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[1:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[1:j+1, :], axis=0), trainingLog, epoch, j) else: utils.writeNpErrToScreen('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToScreen('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[j-999:j+1, :], axis=0), epoch, j) utils.writeNpErrToFile('globalIllu2_Accu', np.mean(globalIllu2ErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) utils.writeNpErrToFile('globalIllu3_Accu', np.mean(globalIllu3ErrsNpList[j-999:j+1, :], axis=0), trainingLog, epoch, j) if j == 1 or j == 1000 or j% 2000 == 0: # Save the ground truth and the input vutils.save_image( (0.5*(albedoBatch + 1)*segBatch.expand_as(albedoBatch) ).data, '{0}/{1}_albedoGt.png'.format(opt.experiment, j) ) vutils.save_image( (0.5*(normalBatch + 1)*segBatch.expand_as(normalBatch) ).data, '{0}/{1}_normalGt.png'.format(opt.experiment, j) ) vutils.save_image( (0.5*(roughBatch + 1)*segBatch.expand_as(roughBatch) ).data, '{0}/{1}_roughGt.png'.format(opt.experiment, j) ) depthOut = 1 / torch.clamp(depthBatch, 1e-6, 10) * segBatch.expand_as(depthBatch) depthOut = (depthOut - 0.25) /0.8 vutils.save_image( ( depthOut*segBatch.expand_as(depthBatch) ).data, '{0}/{1}_depthGt.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP1Batch + 1)*segBatch.expand_as(imP1Batch))**(1.0/2.2) ).data , '{0}/{1}_imP1.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP2Batch + 1)*segBatch.expand_as(imP2Batch))**(1.0/2.2) ).data , '{0}/{1}_imP2.png'.format(opt.experiment, j) ) vutils.save_image( ( ( 0.5*(imP3Batch + 1)*segBatch.expand_as(imP3Batch))**(1.0/2.2) ).data , '{0}/{1}_imP3.png'.format(opt.experiment, j) ) # Save the predicted results for n in range(0, opt.cascadeLevel + 1): vutils.save_image( ( ( 0.5*(globalIllu2s[n] + 1)*segBatch.expand_as(imP2Batch) )**(1.0/2.2) ).data, '{0}/{1}_imP2Pred_{2}.png'.format(opt.experiment, j, n) ) vutils.save_image( ( ( 0.5*(globalIllu3s[n] + 1)*segBatch.expand_as(imP3Batch) )**(1.0/2.2) ).data, '{0}/{1}_imP3Pred_{2}.png'.format(opt.experiment, j, n) ) trainingLog.close() # Update the training rate if (epoch + 1) % 2 == 0: for param_group in opGlobalIllu1to2.param_groups: param_group['lr'] /= 2 for param_group in opGlobalIllu2to3.param_groups: param_group['lr'] /= 2 np.save('{0}/globalIllu2_{1}.npy'.format(opt.experiment, epoch), globalIllu2ErrsNpList ) np.save('{0}/globalIllu3_{1}.npy'.format(opt.experiment, epoch), globalIllu3ErrsNpList ) torch.save(globIllu1to2.state_dict(), '{0}/globIllu1to2_{1}.pth'.format(opt.experiment, epoch) ) torch.save(globIllu2to3.state_dict(), '{0}/globIllu2to3_{1}.pth'.format(opt.experiment, epoch) )
[ "random.randint", "argparse.ArgumentParser", "torch.utils.data.DataLoader", "torch.manual_seed", "torch.FloatTensor", "os.system", "numpy.ones", "torch.cat", "models.globalIllumination", "utils.writeErrToFile", "utils.turnErrorIntoNumpy", "numpy.mean", "random.seed", "torch.cuda.is_available", "torch.clamp", "utils.writeErrToScreen", "dataLoader.BatchLoader", "torch.sum" ]
[((266, 291), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (289, 291), False, 'import argparse\n'), ((1842, 1882), 'os.system', 'os.system', (["('cp *.py %s' % opt.experiment)"], {}), "('cp *.py %s' % opt.experiment)\n", (1851, 1882), False, 'import os\n'), ((1970, 1994), 'random.randint', 'random.randint', (['(1)', '(10000)'], {}), '(1, 10000)\n', (1984, 1994), False, 'import random\n'), ((2028, 2049), 'random.seed', 'random.seed', (['opt.seed'], {}), '(opt.seed)\n', (2039, 2049), False, 'import random\n'), ((2050, 2077), 'torch.manual_seed', 'torch.manual_seed', (['opt.seed'], {}), '(opt.seed)\n', (2067, 2077), False, 'import torch\n'), ((3026, 3053), 'models.globalIllumination', 'models.globalIllumination', ([], {}), '()\n', (3051, 3053), False, 'import models\n'), ((3069, 3096), 'models.globalIllumination', 'models.globalIllumination', ([], {}), '()\n', (3094, 3096), False, 'import models\n'), ((4260, 4318), 'dataLoader.BatchLoader', 'dataLoader.BatchLoader', (['opt.dataRoot'], {'imSize': 'opt.imageSize'}), '(opt.dataRoot, imSize=opt.imageSize)\n', (4282, 4318), False, 'import dataLoader\n'), ((4334, 4413), 'torch.utils.data.DataLoader', 'DataLoader', (['brdfDataset'], {'batch_size': 'opt.batchSize', 'num_workers': '(8)', 'shuffle': '(False)'}), '(brdfDataset, batch_size=opt.batchSize, num_workers=8, shuffle=False)\n', (4344, 4413), False, 'from torch.utils.data import DataLoader\n'), ((4450, 4502), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4457, 4502), True, 'import numpy as np\n'), ((4528, 4580), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4535, 4580), True, 'import numpy as np\n'), ((4605, 4657), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4612, 4657), True, 'import numpy as np\n'), ((4680, 4732), 'numpy.ones', 'np.ones', (['[1, 1 + opt.cascadeLevel]'], {'dtype': 'np.float32'}), '([1, 1 + opt.cascadeLevel], dtype=np.float32)\n', (4687, 4732), True, 'import numpy as np\n'), ((2082, 2107), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2105, 2107), False, 'import torch\n'), ((2292, 2357), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2309, 2357), False, 'import torch\n'), ((2384, 2449), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2401, 2449), False, 'import torch\n'), ((2474, 2539), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(1)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 1, opt.imageSize, opt.imageSize)\n', (2491, 2539), False, 'import torch\n'), ((2562, 2627), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2579, 2627), False, 'import torch\n'), ((2652, 2717), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(1)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 1, opt.imageSize, opt.imageSize)\n', (2669, 2717), False, 'import torch\n'), ((2742, 2807), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2759, 2807), False, 'import torch\n'), ((2831, 2896), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2848, 2896), False, 'import torch\n'), ((2920, 2985), 'torch.FloatTensor', 'torch.FloatTensor', (['opt.batchSize', '(3)', 'opt.imageSize', 'opt.imageSize'], {}), '(opt.batchSize, 3, opt.imageSize, opt.imageSize)\n', (2937, 2985), False, 'import torch\n'), ((6274, 6367), 'torch.cat', 'torch.cat', (['[imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch, segBatch]'], {'dim': '(1)'}), '([imP1Batch, albedoBatch, normalBatch, roughBatch, depthBatch,\n segBatch], dim=1)\n', (6283, 6367), False, 'import torch\n'), ((6486, 6585), 'torch.cat', 'torch.cat', (['[globalIllu2s[n], albedoBatch, normalBatch, roughBatch, depthBatch, segBatch]'], {'dim': '(1)'}), '([globalIllu2s[n], albedoBatch, normalBatch, roughBatch,\n depthBatch, segBatch], dim=1)\n', (6495, 6585), False, 'import torch\n'), ((7574, 7638), 'utils.writeErrToScreen', 'utils.writeErrToScreen', (['"""globalIllu2"""', 'globalIllu2Errs', 'epoch', 'j'], {}), "('globalIllu2', globalIllu2Errs, epoch, j)\n", (7596, 7638), False, 'import utils\n'), ((7647, 7711), 'utils.writeErrToScreen', 'utils.writeErrToScreen', (['"""globalIllu3"""', 'globalIllu3Errs', 'epoch', 'j'], {}), "('globalIllu3', globalIllu3Errs, epoch, j)\n", (7669, 7711), False, 'import utils\n'), ((7720, 7795), 'utils.writeErrToFile', 'utils.writeErrToFile', (['"""globalIllu2"""', 'globalIllu2Errs', 'trainingLog', 'epoch', 'j'], {}), "('globalIllu2', globalIllu2Errs, trainingLog, epoch, j)\n", (7740, 7795), False, 'import utils\n'), ((7804, 7879), 'utils.writeErrToFile', 'utils.writeErrToFile', (['"""globalIllu3"""', 'globalIllu3Errs', 'trainingLog', 'epoch', 'j'], {}), "('globalIllu3', globalIllu3Errs, trainingLog, epoch, j)\n", (7824, 7879), False, 'import utils\n'), ((7952, 7993), 'utils.turnErrorIntoNumpy', 'utils.turnErrorIntoNumpy', (['globalIllu2Errs'], {}), '(globalIllu2Errs)\n', (7976, 7993), False, 'import utils\n'), ((8076, 8117), 'utils.turnErrorIntoNumpy', 'utils.turnErrorIntoNumpy', (['globalIllu3Errs'], {}), '(globalIllu3Errs)\n', (8100, 8117), False, 'import utils\n'), ((8208, 8258), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[1:j + 1, :], axis=0)\n', (8215, 8258), True, 'import numpy as np\n'), ((8325, 8375), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[1:j + 1, :], axis=0)\n', (8332, 8375), True, 'import numpy as np\n'), ((8440, 8490), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[1:j + 1, :], axis=0)\n', (8447, 8490), True, 'import numpy as np\n'), ((8568, 8618), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[1:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[1:j + 1, :], axis=0)\n', (8575, 8618), True, 'import numpy as np\n'), ((8712, 8768), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[j - 999:j + 1, :], axis=0)\n', (8719, 8768), True, 'import numpy as np\n'), ((8833, 8889), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[j - 999:j + 1, :], axis=0)\n', (8840, 8889), True, 'import numpy as np\n'), ((8952, 9008), 'numpy.mean', 'np.mean', (['globalIllu2ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu2ErrsNpList[j - 999:j + 1, :], axis=0)\n', (8959, 9008), True, 'import numpy as np\n'), ((9084, 9140), 'numpy.mean', 'np.mean', (['globalIllu3ErrsNpList[j - 999:j + 1, :]'], {'axis': '(0)'}), '(globalIllu3ErrsNpList[j - 999:j + 1, :], axis=0)\n', (9091, 9140), True, 'import numpy as np\n'), ((9780, 9814), 'torch.clamp', 'torch.clamp', (['depthBatch', '(1e-06)', '(10)'], {}), '(depthBatch, 1e-06, 10)\n', (9791, 9814), False, 'import torch\n'), ((6835, 6854), 'torch.sum', 'torch.sum', (['segBatch'], {}), '(segBatch)\n', (6844, 6854), False, 'import torch\n')]
import numpy """ Utility variables and functions """ aa2au = 1.8897261249935897 # bohr / AA # converts nuclear charge to atom label Z2LABEL = { 1: 'H', 2: 'He', 3: 'Li', 4: 'Be', 5: 'B', 6: 'C', 7: 'N', 8: 'O', 9: 'F', 10: 'Ne', 11: 'NA', 12: 'Mg', 13: 'Al', 14: 'Si', 15: 'P', 16: 'S', 17: 'Cl', 18: 'Ar' } # converts an atomic label to a nuclear charge LABEL2Z = {} for key in Z2LABEL: LABEL2Z[Z2LABEL[key]] = key # masses from UIPAC: http://www.chem.qmul.ac.uk/iupac/AtWt/ MASSES = {0: 0.00, 1: 1.00784, 2: 4.002602, 3: 6.938, 4: 9.01218, 5: 10.806, 6: 12.0096, 7: 14.00643, 8: 15.99903, 9: 18.998403, 10: 20.1797, 11: 22.9898, 12: 24.304, 13: 26.9815, 14: 28.084, 15: 30.973, 16: 32.059, 17: 35.446, 18: 39.948 } # <NAME>al radii from Alvarez (2013), DOI: 2013/dt/c3dt50599e # all values in Angstrom VDWRADII = {0: 0.00, 1: 1.20, 2: 1.43, 3: 2.12, 4: 1.98, 5: 1.91, 6: 1.77, 7: 1.66, 8: 1.50, 9: 1.46, 10: 1.58, 11: 2.50, 12: 2.51, 13: 2.25, 14: 2.19, 15: 1.90, 16: 1.89, 17: 1.82, 18: 1.83 } # Covalent radii from Pykko and Atsumi (2009), DOI: 0.1002/chem.200800987 # all values in Angstrom COVALENTRADII = {0: 0.00, 1: 0.32, 2: 0.46, 3: 1.33, 4: 1.02, 5: 0.85, 6: 0.75, 7: 0.71, 8: 0.63, 9: 0.64, 10: 0.67, 11: 1.55, 12: 1.39, 13: 1.26, 14: 1.16, 15: 1.11, 16: 1.03, 17: 0.99, 18: 0.96 } # Coordination numbers from Pykko and Atsumi (2009), DOI: 0.1002/chem.200800987 COORDINATION = {0: 0, 1: 1, 2: 1, 3: 1, 4: 2, 5: 3, 6: 4, 7: 3, 8: 2, 9: 1, 10: 1, 11: 1, 12: 2, 13: 3, 14: 4, 15: 3, 16: 2, 17: 1, 18: 1 } def idamax(a): """ Returns the index of maximum absolute value (positive or negative) in the input array a. Note: Loosely based of a subroutine in GAMESS with the same name Arguments: a -- a numpy array where we are to find the maximum value in (either positive or negative) Returns: the index in the array where the maximum value is. """ idx = -1 v = 0.0 for i, value in enumerate(numpy.abs(a)): if value > v: idx = i v = value return idx def idamin(a): """ Returns the index of minimum absolute value (positive or negative) in the input array a. Arguments: a -- a numpy array where we are to find the minimum value in (either positive or negative) Returns: the index in the array where the maximum value is. """ idx = -1 v = 1.0e30 for i, value in enumerate(numpy.abs(a)): if value < v: idx = i v = value return idx
[ "numpy.abs" ]
[((2360, 2372), 'numpy.abs', 'numpy.abs', (['a'], {}), '(a)\n', (2369, 2372), False, 'import numpy\n'), ((2851, 2863), 'numpy.abs', 'numpy.abs', (['a'], {}), '(a)\n', (2860, 2863), False, 'import numpy\n')]
from __future__ import print_function, division import os from os.path import exists import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from collections import OrderedDict from lib.model import ImMatchNet from lib.pf_willow_dataset import PFDataset from lib.normalization import NormalizeImageDict from lib.torch_util import BatchTensorToVars, str_to_bool from lib.point_tnf import corr_to_matches from lib.eval_util import pck_metric from lib.dataloader import default_collate from lib.torch_util import collate_custom import argparse print('NCNet evaluation script - PF Willow dataset') use_cuda = torch.cuda.is_available() # Argument parsing parser = argparse.ArgumentParser(description='Compute PF Willow matches') parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--image_size', type=int, default=400) parser.add_argument('--eval_dataset_path', type=str, default='datasets/', help='path to PF Willow dataset') args = parser.parse_args() # Create model print('Creating CNN model...') model = ImMatchNet(use_cuda=use_cuda, checkpoint=args.checkpoint) # Dataset and dataloader Dataset = PFDataset collate_fn = default_collate csv_file = 'PF-dataset/test_pairs_pf.csv' cnn_image_size = (args.image_size, args.image_size) dataset = Dataset(csv_file=os.path.join(args.eval_dataset_path, csv_file), dataset_path=args.eval_dataset_path, transform=NormalizeImageDict(['source_image', 'target_image']), output_size=cnn_image_size) dataset.pck_procedure = 'scnet' # Only batch_size=1 is supported for evaluation batch_size = 1 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0, collate_fn=collate_fn) batch_tnf = BatchTensorToVars(use_cuda=use_cuda) model.eval() # initialize vector for storing results stats = {} stats['point_tnf'] = {} stats['point_tnf']['pck'] = np.zeros((len(dataset), 1)) # Compute for i, batch in enumerate(dataloader): batch = batch_tnf(batch) batch_start_idx = batch_size * i corr4d = model(batch) # get matches xA, yA, xB, yB, sB = corr_to_matches(corr4d, do_softmax=True) matches = (xA, yA, xB, yB) stats = pck_metric(batch, batch_start_idx, matches, stats, args, use_cuda) print('Batch: [{}/{} ({:.0f}%)]'.format(i, len(dataloader), 100. * i / len(dataloader))) # Print results results = stats['point_tnf']['pck'] good_idx = np.flatnonzero((results != -1) * ~np.isnan(results)) print('Total: ' + str(results.size)) print('Valid: ' + str(good_idx.size)) filtered_results = results[good_idx] print('PCK:', '{:.2%}'.format(np.mean(filtered_results)))
[ "lib.torch_util.BatchTensorToVars", "argparse.ArgumentParser", "torch.utils.data.DataLoader", "os.path.join", "lib.normalization.NormalizeImageDict", "numpy.isnan", "lib.point_tnf.corr_to_matches", "numpy.mean", "torch.cuda.is_available", "lib.model.ImMatchNet", "lib.eval_util.pck_metric" ]
[((656, 681), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (679, 681), False, 'import torch\n'), ((711, 775), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compute PF Willow matches"""'}), "(description='Compute PF Willow matches')\n", (734, 775), False, 'import argparse\n'), ((1084, 1141), 'lib.model.ImMatchNet', 'ImMatchNet', ([], {'use_cuda': 'use_cuda', 'checkpoint': 'args.checkpoint'}), '(use_cuda=use_cuda, checkpoint=args.checkpoint)\n', (1094, 1141), False, 'from lib.model import ImMatchNet\n'), ((1700, 1799), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(0)', 'collate_fn': 'collate_fn'}), '(dataset, batch_size=batch_size, shuffle=False, num_workers=0,\n collate_fn=collate_fn)\n', (1710, 1799), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1857, 1893), 'lib.torch_util.BatchTensorToVars', 'BatchTensorToVars', ([], {'use_cuda': 'use_cuda'}), '(use_cuda=use_cuda)\n', (1874, 1893), False, 'from lib.torch_util import BatchTensorToVars, str_to_bool\n'), ((2227, 2267), 'lib.point_tnf.corr_to_matches', 'corr_to_matches', (['corr4d'], {'do_softmax': '(True)'}), '(corr4d, do_softmax=True)\n', (2242, 2267), False, 'from lib.point_tnf import corr_to_matches\n'), ((2312, 2378), 'lib.eval_util.pck_metric', 'pck_metric', (['batch', 'batch_start_idx', 'matches', 'stats', 'args', 'use_cuda'], {}), '(batch, batch_start_idx, matches, stats, args, use_cuda)\n', (2322, 2378), False, 'from lib.eval_util import pck_metric\n'), ((1359, 1405), 'os.path.join', 'os.path.join', (['args.eval_dataset_path', 'csv_file'], {}), '(args.eval_dataset_path, csv_file)\n', (1371, 1405), False, 'import os\n'), ((1490, 1542), 'lib.normalization.NormalizeImageDict', 'NormalizeImageDict', (["['source_image', 'target_image']"], {}), "(['source_image', 'target_image'])\n", (1508, 1542), False, 'from lib.normalization import NormalizeImageDict\n'), ((2732, 2757), 'numpy.mean', 'np.mean', (['filtered_results'], {}), '(filtered_results)\n', (2739, 2757), True, 'import numpy as np\n'), ((2571, 2588), 'numpy.isnan', 'np.isnan', (['results'], {}), '(results)\n', (2579, 2588), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt from mpl_toolkits.axes_grid.axislines import SubplotZero import numpy as np import cyllene.f_functionclass as f_funct import sympy as sp ''' A lot of problems need to be resolved: 1)Can we keep a record of the graphs graphed? this can be done by just keeping the numpy arrays ? 2)we need to be able to deal with poles of functions ( for example 1/x at x = 0, 1/(x^2-1) at x = -1, 1 ...etc) ''' class graph(): def __init__(self): self.fig = plt.figure(1) self.ax = SubplotZero(self.fig,111) self.fig.add_subplot(self.ax) for direction in ["xzero","yzero"]: self.ax.axis[direction].set_axisline_style("-|>") self.ax.axis[direction].set_visible(True) for direction in ["left","right","bottom","top"]: self.ax.axis[direction].set_visible(False) def make_graph(self, f): I = f.behaviour("largest interval") ps = float(I.args[0]) pe = float(I.args[1]) t = np.arange(ps, pe, 0.01) self.ax.plot(t, f.eval_np(t)) def make_graphs(self, *functions,Interval=None): if(Interval == None): f = functions[0] I = f.behaviour("largest interval") l,r = float(I.args[0]), float(I.args[1]) for f in functions: I = f.behaviour("largest interval") l,r = min(l,float(I.args[0])), max(r,float(I.args[1])) else: l,r = float(Interval.args[0]), float(Interval.args[1]) self.Interval = sp.Interval(l,r) t = np.arange(l,r,.01) for f in functions: self.ax.plot(t,f.eval_np(t)) def make_secent(self,f,x1,x2): I = f.behaviour("largest interval") ps = float(I.args[0]) pe = float(I.args[1]) t = np.arange(ps, pe, 0.01) sec = f.secent_line(x1,x2) self.ax.plot(t, sec.eval_np(t)) self.plot_point(x1, sec.eval_np(x1)) self.plot_point(x2,sec.eval_np(x2)) def make_tangent(self,f,x): I = f.behaviour("largest interval") ps = float(I.args[0]) pe = float(I.args[1]) t = np.arange(ps, pe, 0.01) tan = f.tangent_line(x) self.ax.plot(t, tan.eval_np(t)) self.plot_point(x, tan.eval_np(x)) def plot_point(self, x, y): self.ax.plot(np.array([x]), np.array([y]), 'ro') def zoom_y(self, f, I): self.zoom_x(I) self.zoom_y(f.range(I)) def zoom_x(self,I): ps = float(I.args[0]) pe = float(I.args[1]) self.ax.set_xlim(ps,pe) def zoom_y(self,I): ps = float(I.args[0]) pe = float(I.args[1]) self.ax.set_ylim(ps,pe) def show(self): return self.fig
[ "mpl_toolkits.axes_grid.axislines.SubplotZero", "sympy.Interval", "matplotlib.pyplot.figure", "numpy.array", "numpy.arange" ]
[((486, 499), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (496, 499), True, 'import matplotlib.pyplot as plt\n'), ((512, 538), 'mpl_toolkits.axes_grid.axislines.SubplotZero', 'SubplotZero', (['self.fig', '(111)'], {}), '(self.fig, 111)\n', (523, 538), False, 'from mpl_toolkits.axes_grid.axislines import SubplotZero\n'), ((930, 953), 'numpy.arange', 'np.arange', (['ps', 'pe', '(0.01)'], {}), '(ps, pe, 0.01)\n', (939, 953), True, 'import numpy as np\n'), ((1375, 1392), 'sympy.Interval', 'sp.Interval', (['l', 'r'], {}), '(l, r)\n', (1386, 1392), True, 'import sympy as sp\n'), ((1405, 1426), 'numpy.arange', 'np.arange', (['l', 'r', '(0.01)'], {}), '(l, r, 0.01)\n', (1414, 1426), True, 'import numpy as np\n'), ((1607, 1630), 'numpy.arange', 'np.arange', (['ps', 'pe', '(0.01)'], {}), '(ps, pe, 0.01)\n', (1616, 1630), True, 'import numpy as np\n'), ((1896, 1919), 'numpy.arange', 'np.arange', (['ps', 'pe', '(0.01)'], {}), '(ps, pe, 0.01)\n', (1905, 1919), True, 'import numpy as np\n'), ((2065, 2078), 'numpy.array', 'np.array', (['[x]'], {}), '([x])\n', (2073, 2078), True, 'import numpy as np\n'), ((2080, 2093), 'numpy.array', 'np.array', (['[y]'], {}), '([y])\n', (2088, 2093), True, 'import numpy as np\n')]
import sc_utils import model_factory import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences INPUT_LENGTH = 100 # Prepare data X_train, Y_train, X_test, Y_test = sc_utils.load_data() X_train, Y_train, X_val, Y_val, X_test, Y_test, tokenizer = sc_utils.preprocess_data(X_train, Y_train, X_test, Y_test, INPUT_LENGTH) embedding_matrix = sc_utils.create_embedding_matrix(tokenizer) print("X_train.shape: " + str(X_train.shape)) print("Y_train.shape: " + str(Y_train.shape)) print("X_val.shape: " + str(X_val.shape)) print("Y_val.shape: " + str(Y_val.shape)) print("X_test.shape: " + str(X_test.shape)) print("Y_test.shape: " + str(Y_test.shape)) print("embedding_matrix.shape: " + str(embedding_matrix.shape)) # Create model #model = model_factory.create_baseline_model(embedding_matrix, INPUT_LENGTH) model = model_factory.create_rnn_model(embedding_matrix, INPUT_LENGTH) #model = model_factory.create_bidir_rnn_model(embedding_matrix, INPUT_LENGTH) #model = model_factory.create_train_emb_rnn_model(embedding_matrix, INPUT_LENGTH) model.summary() # Train model model.fit(X_train, Y_train, batch_size=200, epochs=30) # Evaluate model on validation set val_loss, val_accuracy = model.evaluate(X_val, Y_val, verbose=0) print("Accuracy on validation set: " + str(val_accuracy * 100) + "%") # Evaluate model on test set test_loss, test_accuracy = model.evaluate(X_test, Y_test, verbose=0) print("Accuracy on test set: " + str(test_accuracy * 100) + "%") # Test model on my own texts reviews = [ "This movie is bad. I don't like it it all. It's terrible.", "I love this movie. I've seen it many times and it's still awesome.", "I don't think this movie is as bad as most people say. It's actually pretty good." ] print("Testing model on my own texts:") print(reviews) reviews = tokenizer.texts_to_sequences(reviews) reviews = pad_sequences(reviews, maxlen=INPUT_LENGTH, padding="post") reviews = np.array(reviews) pred = model.predict(reviews) print(pred) print("The model predicts:") sentiment_str = "Negative" if pred[0][0] < 0.5 else "Positive" print(sentiment_str + " on the first text") sentiment_str = "Negative" if pred[1][0] < 0.5 else "Positive" print(sentiment_str + " on the second text") sentiment_str = "Negative" if pred[2][0] < 0.5 else "Positive" print(sentiment_str + " on the third text")
[ "keras.preprocessing.sequence.pad_sequences", "sc_utils.load_data", "sc_utils.create_embedding_matrix", "numpy.array", "model_factory.create_rnn_model", "sc_utils.preprocess_data" ]
[((229, 249), 'sc_utils.load_data', 'sc_utils.load_data', ([], {}), '()\n', (247, 249), False, 'import sc_utils\n'), ((310, 382), 'sc_utils.preprocess_data', 'sc_utils.preprocess_data', (['X_train', 'Y_train', 'X_test', 'Y_test', 'INPUT_LENGTH'], {}), '(X_train, Y_train, X_test, Y_test, INPUT_LENGTH)\n', (334, 382), False, 'import sc_utils\n'), ((402, 445), 'sc_utils.create_embedding_matrix', 'sc_utils.create_embedding_matrix', (['tokenizer'], {}), '(tokenizer)\n', (434, 445), False, 'import sc_utils\n'), ((876, 938), 'model_factory.create_rnn_model', 'model_factory.create_rnn_model', (['embedding_matrix', 'INPUT_LENGTH'], {}), '(embedding_matrix, INPUT_LENGTH)\n', (906, 938), False, 'import model_factory\n'), ((1908, 1967), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['reviews'], {'maxlen': 'INPUT_LENGTH', 'padding': '"""post"""'}), "(reviews, maxlen=INPUT_LENGTH, padding='post')\n", (1921, 1967), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((1978, 1995), 'numpy.array', 'np.array', (['reviews'], {}), '(reviews)\n', (1986, 1995), True, 'import numpy as np\n')]
#%% import os import pickle import cloudpickle import itertools import glob import numpy as np import scipy as sp import pandas as pd import git # Import matplotlib stuff for plotting import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib as mpl # Seaborn, useful for graphics import seaborn as sns # Import the project utils import ccutils # Set PBoC plotting format ccutils.viz.set_plotting_style() # Increase dpi #%% # Find home directory for repo repo = git.Repo("./", search_parent_directories=True) homedir = repo.working_dir # Define directories for data and figure figdir = f'{homedir}/fig/si/' datadir = f'{homedir}/data/mRNA_FISH/' mcmcdir = f'{homedir}/data/mcmc/' # %% # Read the data df = pd.read_csv(f'{datadir}Jones_Brewster_2014.csv', index_col=0) # Extract the lacUV5 data dfUV5 = df[df.experiment == 'UV5'] # Load the flat-chain with open(f'{mcmcdir}lacUV5_constitutive_mRNA_prior.pkl', 'rb') as file: unpickler = pickle.Unpickler(file) gauss_flatchain = unpickler.load() gauss_flatlnprobability = unpickler.load() # Generate a Pandas Data Frame with the mcmc chain index = ['kp_on', 'kp_off', 'rm'] # Generate a data frame out of the MCMC chains df_mcmc = pd.DataFrame(gauss_flatchain, columns=index) # rerbsine the index with the new entries index = df_mcmc.columns # map value of the parameters max_idx = np.argmax(gauss_flatlnprobability, axis=0) kp_on, kp_off, rm = df_mcmc.iloc[max_idx, :] # Define bins bins = np.arange(0, dfUV5.mRNA_cell.max()) logp_mRNA = ccutils.model.log_p_m_unreg(bins, kp_on, kp_off, 1, rm) # Plot the histogram of the data with bins of width 1 _ = plt.hist(dfUV5.mRNA_cell, bins=bins, density=1, histtype='stepfilled', alpha=1, label='sm-FISH data', align='left', lw=0) plt.step(bins, np.exp(logp_mRNA), color='r', ls='-', lw=1.5, label='two-state promoter fit') # Label the plot plt.xlabel('mRNA / cell') plt.ylabel('probability') plt.legend() plt.tight_layout() plt.savefig(f'{figdir}/figS03.pdf', bbox_inches='tight')
[ "pandas.DataFrame", "matplotlib.pyplot.hist", "numpy.argmax", "pandas.read_csv", "matplotlib.pyplot.legend", "git.Repo", "ccutils.model.log_p_m_unreg", "ccutils.viz.set_plotting_style", "numpy.exp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "pickle.Unpickler", "matplotlib.pyplot.savefig" ]
[((394, 426), 'ccutils.viz.set_plotting_style', 'ccutils.viz.set_plotting_style', ([], {}), '()\n', (424, 426), False, 'import ccutils\n'), ((486, 532), 'git.Repo', 'git.Repo', (['"""./"""'], {'search_parent_directories': '(True)'}), "('./', search_parent_directories=True)\n", (494, 532), False, 'import git\n'), ((733, 794), 'pandas.read_csv', 'pd.read_csv', (['f"""{datadir}Jones_Brewster_2014.csv"""'], {'index_col': '(0)'}), "(f'{datadir}Jones_Brewster_2014.csv', index_col=0)\n", (744, 794), True, 'import pandas as pd\n'), ((1226, 1270), 'pandas.DataFrame', 'pd.DataFrame', (['gauss_flatchain'], {'columns': 'index'}), '(gauss_flatchain, columns=index)\n', (1238, 1270), True, 'import pandas as pd\n'), ((1379, 1421), 'numpy.argmax', 'np.argmax', (['gauss_flatlnprobability'], {'axis': '(0)'}), '(gauss_flatlnprobability, axis=0)\n', (1388, 1421), True, 'import numpy as np\n'), ((1538, 1593), 'ccutils.model.log_p_m_unreg', 'ccutils.model.log_p_m_unreg', (['bins', 'kp_on', 'kp_off', '(1)', 'rm'], {}), '(bins, kp_on, kp_off, 1, rm)\n', (1565, 1593), False, 'import ccutils\n'), ((1653, 1778), 'matplotlib.pyplot.hist', 'plt.hist', (['dfUV5.mRNA_cell'], {'bins': 'bins', 'density': '(1)', 'histtype': '"""stepfilled"""', 'alpha': '(1)', 'label': '"""sm-FISH data"""', 'align': '"""left"""', 'lw': '(0)'}), "(dfUV5.mRNA_cell, bins=bins, density=1, histtype='stepfilled',\n alpha=1, label='sm-FISH data', align='left', lw=0)\n", (1661, 1778), True, 'import matplotlib.pyplot as plt\n'), ((1909, 1934), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""mRNA / cell"""'], {}), "('mRNA / cell')\n", (1919, 1934), True, 'import matplotlib.pyplot as plt\n'), ((1935, 1960), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""probability"""'], {}), "('probability')\n", (1945, 1960), True, 'import matplotlib.pyplot as plt\n'), ((1961, 1973), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1971, 1973), True, 'import matplotlib.pyplot as plt\n'), ((1974, 1992), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1990, 1992), True, 'import matplotlib.pyplot as plt\n'), ((1993, 2049), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{figdir}/figS03.pdf"""'], {'bbox_inches': '"""tight"""'}), "(f'{figdir}/figS03.pdf', bbox_inches='tight')\n", (2004, 2049), True, 'import matplotlib.pyplot as plt\n'), ((969, 991), 'pickle.Unpickler', 'pickle.Unpickler', (['file'], {}), '(file)\n', (985, 991), False, 'import pickle\n'), ((1804, 1821), 'numpy.exp', 'np.exp', (['logp_mRNA'], {}), '(logp_mRNA)\n', (1810, 1821), True, 'import numpy as np\n')]
import unittest import numpy as np from frozendict import frozendict from msdm.core.distributions import DictDistribution from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid from msdm.domains import GridWorld class MyTestCase(unittest.TestCase): def test_policy_iteration(self): mdp = Counter(3) res = PolicyIteration().plan_on(mdp) out = res.policy.run_on(mdp) assert out.state_traj == (0, 1, 2) assert out.action_traj == (1, 1, 1) assert res.policy.action(0) == 1 assert res.policy.action(1) == 1 assert res.policy.action(2) == 1 def test_policy_iteration_geometric(self): mdp = Geometric(p=1/13) res = PolicyIteration(iterations=500).plan_on(mdp) assert np.isclose(res.V[0], -13), res.V def test_policy_iteration_varying_action_number(self): mdp = VaryingActionNumber() res = PolicyIteration().plan_on(mdp) assert np.isclose(res.V[0], -2), res.V assert res.policy.run_on(mdp).action_traj == (+1, +1) def test_equal_value(self): ''' In this MDP, the value at the non-initial, non-terminal corners is equal. This means the policy at the start state should assign equal probability to either. ''' mdp = GridWorld( tile_array=[ '.g', 's.', ], feature_rewards={'g': 0}, step_cost=-1, ) res = PolicyIteration().plan_on(mdp) assert np.isclose(res.V[frozendict(x=0, y=1)], res.V[frozendict(x=1, y=0)]) assert res.policy.action_dist(frozendict(x=0, y=0)).\ isclose(DictDistribution({ frozendict({'dx': 0, 'dy': 0}): 0, frozendict({'dx': 1, 'dy': 0}): 1/2, frozendict({'dx': -1, 'dy': 0}): 0, frozendict({'dy': 1, 'dx': 0}): 1/2, frozendict({'dy': -1, 'dx': 0}): 0 })) assert res.policy.action_dist(frozendict(x=0, y=1)).isclose(DictDistribution({ frozendict({'dx': 1, 'dy': 0}): 1, })) def test_policy_iteration_gridworld(self): gw = GridWorld( tile_array=[ '......g', '...####', '..##...', '..#....', '.......', '####...', 's......', ]) pi_res = PolicyIteration()(gw) vi_res = ValueIteration()(gw) lrtdp = LRTDP()(gw) assert pi_res.initial_value == vi_res.initial_value == lrtdp.initial_value def test_policy_iteration_gridworld2(self): gw = GridWorld(( '..g..', '.###.', '..#..', '..s..' ), discount_rate=1 - 1e-5) pi = PolicyIteration().plan_on(gw) vi = ValueIteration().plan_on(gw) reachable = sorted(gw.reachable_states(), key=lambda s: (s['x'], s['y'])) pi_mat = pi.policy.as_matrix(reachable, gw.action_list) vi_mat = vi.policy.as_matrix(reachable, gw.action_list) assert (pi_mat == vi_mat).all() assert all([np.isclose(pi.valuefunc[s], vi.valuefunc[s]) for s in reachable]) def test_policy_iteration_and_value_iteration_russell_norvig(self): for discount_rate in [i/10 for i in range(1, 10)] + [.95, .99, 1.0]: for slip_prob in [i/10 for i in range(1, 10)] + [.95, .99, 1.0]: gw = make_russell_norvig_grid( discount_rate=discount_rate, slip_prob=slip_prob, ) vi_res = ValueIteration(iterations=int(1e3)).plan_on(gw) pi_res = PolicyIteration(iterations=int(1e3)).plan_on(gw) assert np.isclose(vi_res._qvaluemat, pi_res._qvaluemat, atol=5e-4).all() def test_policy_iteration_heavenorhell(self): # technically a pomdp, but we can solve underlying mdp from msdm.domains.heavenorhell import HeavenOrHell for discount_rate in [i/10 for i in range(1, 10, 2)] + [.95, .99, .99999]: for coherence in [i/10 for i in range(1, 10, 2)] + [.95, .99, .99999]: print(discount_rate, coherence) hh = HeavenOrHell( coherence=coherence, grid= """ hcg #.# #s# """, discount_rate=discount_rate, heaven_reward=50, hell_reward=-50, ) pi = PolicyIteration().plan_on(hh) vi = ValueIteration().plan_on(hh) reachable = sorted(hh.reachable_states()) pi_mat = pi.policy.as_matrix(reachable, hh.action_list) vi_mat = vi.policy.as_matrix(reachable, hh.action_list) assert (pi_mat == vi_mat).all() assert all([np.isclose(pi.valuefunc[s], vi.valuefunc[s]) for s in reachable]) if __name__ == '__main__': unittest.main()
[ "unittest.main", "msdm.algorithms.PolicyIteration", "msdm.tests.domains.Counter", "msdm.tests.domains.Geometric", "msdm.algorithms.ValueIteration", "msdm.tests.domains.make_russell_norvig_grid", "msdm.algorithms.LRTDP", "numpy.isclose", "msdm.domains.GridWorld", "msdm.domains.heavenorhell.HeavenOrHell", "msdm.tests.domains.VaryingActionNumber", "frozendict.frozendict" ]
[((5289, 5304), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5302, 5304), False, 'import unittest\n'), ((422, 432), 'msdm.tests.domains.Counter', 'Counter', (['(3)'], {}), '(3)\n', (429, 432), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((787, 806), 'msdm.tests.domains.Geometric', 'Geometric', ([], {'p': '(1 / 13)'}), '(p=1 / 13)\n', (796, 806), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((879, 904), 'numpy.isclose', 'np.isclose', (['res.V[0]', '(-13)'], {}), '(res.V[0], -13)\n', (889, 904), True, 'import numpy as np\n'), ((986, 1007), 'msdm.tests.domains.VaryingActionNumber', 'VaryingActionNumber', ([], {}), '()\n', (1005, 1007), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((1068, 1092), 'numpy.isclose', 'np.isclose', (['res.V[0]', '(-2)'], {}), '(res.V[0], -2)\n', (1078, 1092), True, 'import numpy as np\n'), ((1415, 1489), 'msdm.domains.GridWorld', 'GridWorld', ([], {'tile_array': "['.g', 's.']", 'feature_rewards': "{'g': 0}", 'step_cost': '(-1)'}), "(tile_array=['.g', 's.'], feature_rewards={'g': 0}, step_cost=-1)\n", (1424, 1489), False, 'from msdm.domains import GridWorld\n'), ((2297, 2400), 'msdm.domains.GridWorld', 'GridWorld', ([], {'tile_array': "['......g', '...####', '..##...', '..#....', '.......', '####...', 's......']"}), "(tile_array=['......g', '...####', '..##...', '..#....', '.......',\n '####...', 's......'])\n", (2306, 2400), False, 'from msdm.domains import GridWorld\n'), ((2787, 2859), 'msdm.domains.GridWorld', 'GridWorld', (["('..g..', '.###.', '..#..', '..s..')"], {'discount_rate': '(1 - 1e-05)'}), "(('..g..', '.###.', '..#..', '..s..'), discount_rate=1 - 1e-05)\n", (2796, 2859), False, 'from msdm.domains import GridWorld\n'), ((2554, 2571), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (2569, 2571), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((2593, 2609), 'msdm.algorithms.ValueIteration', 'ValueIteration', ([], {}), '()\n', (2607, 2609), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((2630, 2637), 'msdm.algorithms.LRTDP', 'LRTDP', ([], {}), '()\n', (2635, 2637), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((447, 464), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (462, 464), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((819, 850), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {'iterations': '(500)'}), '(iterations=500)\n', (834, 850), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((1022, 1039), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (1037, 1039), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((1598, 1615), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (1613, 1615), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((1661, 1681), 'frozendict.frozendict', 'frozendict', ([], {'x': '(0)', 'y': '(1)'}), '(x=0, y=1)\n', (1671, 1681), False, 'from frozendict import frozendict\n'), ((1690, 1710), 'frozendict.frozendict', 'frozendict', ([], {'x': '(1)', 'y': '(0)'}), '(x=1, y=0)\n', (1700, 1710), False, 'from frozendict import frozendict\n'), ((2930, 2947), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (2945, 2947), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((2973, 2989), 'msdm.algorithms.ValueIteration', 'ValueIteration', ([], {}), '()\n', (2987, 2989), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((3299, 3343), 'numpy.isclose', 'np.isclose', (['pi.valuefunc[s]', 'vi.valuefunc[s]'], {}), '(pi.valuefunc[s], vi.valuefunc[s])\n', (3309, 3343), True, 'import numpy as np\n'), ((3633, 3707), 'msdm.tests.domains.make_russell_norvig_grid', 'make_russell_norvig_grid', ([], {'discount_rate': 'discount_rate', 'slip_prob': 'slip_prob'}), '(discount_rate=discount_rate, slip_prob=slip_prob)\n', (3657, 3707), False, 'from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid\n'), ((4420, 4649), 'msdm.domains.heavenorhell.HeavenOrHell', 'HeavenOrHell', ([], {'coherence': 'coherence', 'grid': '"""\n hcg\n #.#\n #s#\n """', 'discount_rate': 'discount_rate', 'heaven_reward': '(50)', 'hell_reward': '(-50)'}), '(coherence=coherence, grid=\n """\n hcg\n #.#\n #s#\n """\n , discount_rate=discount_rate, heaven_reward=50, hell_reward=-50)\n', (4432, 4649), False, 'from msdm.domains.heavenorhell import HeavenOrHell\n'), ((1751, 1771), 'frozendict.frozendict', 'frozendict', ([], {'x': '(0)', 'y': '(0)'}), '(x=0, y=0)\n', (1761, 1771), False, 'from frozendict import frozendict\n'), ((1830, 1860), 'frozendict.frozendict', 'frozendict', (["{'dx': 0, 'dy': 0}"], {}), "({'dx': 0, 'dy': 0})\n", (1840, 1860), False, 'from frozendict import frozendict\n'), ((1881, 1911), 'frozendict.frozendict', 'frozendict', (["{'dx': 1, 'dy': 0}"], {}), "({'dx': 1, 'dy': 0})\n", (1891, 1911), False, 'from frozendict import frozendict\n'), ((1934, 1965), 'frozendict.frozendict', 'frozendict', (["{'dx': -1, 'dy': 0}"], {}), "({'dx': -1, 'dy': 0})\n", (1944, 1965), False, 'from frozendict import frozendict\n'), ((1986, 2016), 'frozendict.frozendict', 'frozendict', (["{'dy': 1, 'dx': 0}"], {}), "({'dy': 1, 'dx': 0})\n", (1996, 2016), False, 'from frozendict import frozendict\n'), ((2039, 2070), 'frozendict.frozendict', 'frozendict', (["{'dy': -1, 'dx': 0}"], {}), "({'dy': -1, 'dx': 0})\n", (2049, 2070), False, 'from frozendict import frozendict\n'), ((2124, 2144), 'frozendict.frozendict', 'frozendict', ([], {'x': '(0)', 'y': '(1)'}), '(x=0, y=1)\n', (2134, 2144), False, 'from frozendict import frozendict\n'), ((2189, 2219), 'frozendict.frozendict', 'frozendict', (["{'dx': 1, 'dy': 0}"], {}), "({'dx': 1, 'dy': 0})\n", (2199, 2219), False, 'from frozendict import frozendict\n'), ((3945, 4006), 'numpy.isclose', 'np.isclose', (['vi_res._qvaluemat', 'pi_res._qvaluemat'], {'atol': '(0.0005)'}), '(vi_res._qvaluemat, pi_res._qvaluemat, atol=0.0005)\n', (3955, 4006), True, 'import numpy as np\n'), ((4805, 4822), 'msdm.algorithms.PolicyIteration', 'PolicyIteration', ([], {}), '()\n', (4820, 4822), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((4856, 4872), 'msdm.algorithms.ValueIteration', 'ValueIteration', ([], {}), '()\n', (4870, 4872), False, 'from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP\n'), ((5163, 5207), 'numpy.isclose', 'np.isclose', (['pi.valuefunc[s]', 'vi.valuefunc[s]'], {}), '(pi.valuefunc[s], vi.valuefunc[s])\n', (5173, 5207), True, 'import numpy as np\n')]
""" Minimal character-level Vanilla RNN model. Written b_y <NAME> (@karpathy) BSD License """ import numpy as np import unicodedata import string import codecs # data I/O data = codecs.open('data/potter.txt', 'r', encoding='utf8', errors='ignore').read() fake = codecs.open('data/output.txt', 'w', encoding='utf8') chars = list(set(data)) data_size = len(data) # vocab_size = len(chars) print(f'data has {data_size} characters,{vocab_size} unique.') # data has 1109177 characters,80 unique. char_to_ix = { ch:i for i,ch in enumerate(chars) } ix_to_char = { i:ch for i,ch in enumerate(chars) } print(char_to_ix) print(ix_to_char) # hyperparameters hidden_size = 256 # size of hidden layer of neurons seq_length = 128 # number of steps to unroll the RNN for learning_rate = 1e-1 # model parameters W_xh = np.random.randn(hidden_size, vocab_size) * 0.01 # weight: input to hidden W_hh = np.random.randn(hidden_size, hidden_size) * 0.01 # weight: hidden to hidden W_hy = np.random.randn(vocab_size, hidden_size) * 0.01 # weight: hidden to output b_h = np.zeros((hidden_size, 1)) # hidden bias b_y = np.zeros((vocab_size, 1)) # output bias def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) def lossFun(inputs, targets, hprev): """ inputs,targets are both list of integers indicating which unique character. inputs: a seq_length size list hprev is (H x 1) array of initial hidden state returns the loss, gradients on model parameters, and last hidden state """ xs, hs, ys, ps = {}, {}, {}, {} # sx[t] = ys[t] = ps[t] size = vocab_size x 1 hs[-1] = np.copy(hprev) # hs[t] size = hidden_size * 1 loss = 0 # xs: input line; ys: output line; hs: hidden states, multiple of them, # even the weights are reused, the states are different from each other. # forward pass for t in range(len(inputs)): xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation xs[t][inputs[t]] = 1 # inputs[t] is a index number, xs[t] is a vector hs[t] = np.tanh(np.dot(W_xh, xs[t]) + np.dot(W_hh, hs[t-1]) + b_h) # hidden state ys[t] = np.dot(W_hy, hs[t]) + b_y # unnormalized log probabilities for next chars ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # (normalized) probabilities for next chars loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss) print(f'loss: {loss}') # print(f'xs:{len(xs[t])}->{xs[t]}\n hs:{len(hs[t])}->{hs[t]}\n ys:{len(ys[t])}->{ys[t]}\n ps:{len(ps[t])}->{ps[t]}') # backward pass: compute gradients going backwards dW_xh = np.zeros_like(W_xh) # gradient of W_xh, same shape as W_xh dW_hh = np.zeros_like(W_hh) # gradient of W_hh, same shape as W_hh dW_hy = np.zeros_like(W_hy) # gradient of W_hy, same shape as W_hy db_h = np.zeros_like(b_h) # gradient of b_h, same shape as b_h db_y = np.zeros_like(b_y) # gradient of b_y, same shape as b_y dhnext = np.zeros_like(hs[0]) for t in reversed(range(len(inputs))): dy = np.copy(ps[t]) dy[targets[t]] -= 1 # backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here dW_hy += np.dot(dy, hs[t].T) db_y += dy dh = np.dot(W_hy.T, dy) + dhnext # backprop into h dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity db_h += dhraw dW_xh += np.dot(dhraw, xs[t].T) dW_hh += np.dot(dhraw, hs[t-1].T) dhnext = np.dot(W_hh.T, dhraw) for dparam in [dW_xh, dW_hh, dW_hy, db_h, db_y]: np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return loss, dW_xh, dW_hh, dW_hy, db_h, db_y, hs[len(inputs)-1] def sample(h, seed_ix, n): """ sample a sequence of integers from the model h is memory state, seed_ix is seed letter for first time step i.e. do predictions :) """ x = np.zeros((vocab_size, 1)) x[seed_ix] = 1 ixes = [] for t in range(n): h = np.tanh(np.dot(W_xh, x) + np.dot(W_hh, h) + b_h) y = np.dot(W_hy, h) + b_y p = np.exp(y) / np.sum(np.exp(y)) ix = np.random.choice(range(vocab_size), p=p.ravel()) x = np.zeros((vocab_size, 1)) x[ix] = 1 ixes.append(ix) return ixes n, p = 0, 0 mW_xh, mW_hh, mW_hy = np.zeros_like(W_xh), np.zeros_like(W_hh), np.zeros_like(W_hy) mb_h, mb_y = np.zeros_like(b_h), np.zeros_like(b_y) # memory variables for Adagrad smooth_loss = -np.log(1.0 / vocab_size) * seq_length # loss at iteration 0 while True: try: # prepare inputs (we're sweeping from left to right in steps seq_length long) if p + seq_length + 1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 # go from start of data inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] # sample from the model now and then if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix_to_char[ix] for ix in sample_ix) print('----\n %s \n----' % (txt, )) # forward seq_length characters through the net and fetch gradient loss, dW_xh, dW_hh, dW_hy, db_h, db_y, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print(f'iter{n}, loss: {smooth_loss}') # print progress # perform parameter update with Adagrad for param, dparam, mem in zip([W_xh, W_hh, W_hy, b_h, b_y], [dW_xh, dW_hh, dW_hy, db_h, db_y], [mW_xh, mW_hh, mW_hy, mb_h, mb_y]): mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update p += seq_length # move data pointer n += 1 # iteration counter except KeyboardInterrupt: sample_ix = sample(hprev, inputs[0], data_size) txt = ''.join(ix_to_char[ix] for ix in sample_ix) fake.write(txt) break fake.close()
[ "unicodedata.normalize", "numpy.zeros_like", "codecs.open", "numpy.copy", "numpy.random.randn", "numpy.log", "unicodedata.category", "numpy.zeros", "numpy.clip", "numpy.exp", "numpy.dot", "numpy.sqrt" ]
[((263, 315), 'codecs.open', 'codecs.open', (['"""data/output.txt"""', '"""w"""'], {'encoding': '"""utf8"""'}), "('data/output.txt', 'w', encoding='utf8')\n", (274, 315), False, 'import codecs\n'), ((1301, 1327), 'numpy.zeros', 'np.zeros', (['(hidden_size, 1)'], {}), '((hidden_size, 1))\n', (1309, 1327), True, 'import numpy as np\n'), ((1391, 1416), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (1399, 1416), True, 'import numpy as np\n'), ((994, 1034), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'vocab_size'], {}), '(hidden_size, vocab_size)\n', (1009, 1034), True, 'import numpy as np\n'), ((1096, 1137), 'numpy.random.randn', 'np.random.randn', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (1111, 1137), True, 'import numpy as np\n'), ((1199, 1239), 'numpy.random.randn', 'np.random.randn', (['vocab_size', 'hidden_size'], {}), '(vocab_size, hidden_size)\n', (1214, 1239), True, 'import numpy as np\n'), ((2084, 2098), 'numpy.copy', 'np.copy', (['hprev'], {}), '(hprev)\n', (2091, 2098), True, 'import numpy as np\n'), ((3430, 3449), 'numpy.zeros_like', 'np.zeros_like', (['W_xh'], {}), '(W_xh)\n', (3443, 3449), True, 'import numpy as np\n'), ((3545, 3564), 'numpy.zeros_like', 'np.zeros_like', (['W_hh'], {}), '(W_hh)\n', (3558, 3564), True, 'import numpy as np\n'), ((3660, 3679), 'numpy.zeros_like', 'np.zeros_like', (['W_hy'], {}), '(W_hy)\n', (3673, 3679), True, 'import numpy as np\n'), ((3774, 3792), 'numpy.zeros_like', 'np.zeros_like', (['b_h'], {}), '(b_h)\n', (3787, 3792), True, 'import numpy as np\n'), ((3887, 3905), 'numpy.zeros_like', 'np.zeros_like', (['b_y'], {}), '(b_y)\n', (3900, 3905), True, 'import numpy as np\n'), ((4002, 4022), 'numpy.zeros_like', 'np.zeros_like', (['hs[0]'], {}), '(hs[0])\n', (4015, 4022), True, 'import numpy as np\n'), ((5068, 5093), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (5076, 5093), True, 'import numpy as np\n'), ((5482, 5501), 'numpy.zeros_like', 'np.zeros_like', (['W_xh'], {}), '(W_xh)\n', (5495, 5501), True, 'import numpy as np\n'), ((5503, 5522), 'numpy.zeros_like', 'np.zeros_like', (['W_hh'], {}), '(W_hh)\n', (5516, 5522), True, 'import numpy as np\n'), ((5524, 5543), 'numpy.zeros_like', 'np.zeros_like', (['W_hy'], {}), '(W_hy)\n', (5537, 5543), True, 'import numpy as np\n'), ((5557, 5575), 'numpy.zeros_like', 'np.zeros_like', (['b_h'], {}), '(b_h)\n', (5570, 5575), True, 'import numpy as np\n'), ((5577, 5595), 'numpy.zeros_like', 'np.zeros_like', (['b_y'], {}), '(b_y)\n', (5590, 5595), True, 'import numpy as np\n'), ((179, 248), 'codecs.open', 'codecs.open', (['"""data/potter.txt"""', '"""r"""'], {'encoding': '"""utf8"""', 'errors': '"""ignore"""'}), "('data/potter.txt', 'r', encoding='utf8', errors='ignore')\n", (190, 248), False, 'import codecs\n'), ((2544, 2569), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (2552, 2569), True, 'import numpy as np\n'), ((4080, 4094), 'numpy.copy', 'np.copy', (['ps[t]'], {}), '(ps[t])\n', (4087, 4094), True, 'import numpy as np\n'), ((4245, 4264), 'numpy.dot', 'np.dot', (['dy', 'hs[t].T'], {}), '(dy, hs[t].T)\n', (4251, 4264), True, 'import numpy as np\n'), ((4530, 4552), 'numpy.dot', 'np.dot', (['dhraw', 'xs[t].T'], {}), '(dhraw, xs[t].T)\n', (4536, 4552), True, 'import numpy as np\n'), ((4570, 4596), 'numpy.dot', 'np.dot', (['dhraw', 'hs[t - 1].T'], {}), '(dhraw, hs[t - 1].T)\n', (4576, 4596), True, 'import numpy as np\n'), ((4612, 4633), 'numpy.dot', 'np.dot', (['W_hh.T', 'dhraw'], {}), '(W_hh.T, dhraw)\n', (4618, 4633), True, 'import numpy as np\n'), ((4696, 4730), 'numpy.clip', 'np.clip', (['dparam', '(-5)', '(5)'], {'out': 'dparam'}), '(dparam, -5, 5, out=dparam)\n', (4703, 4730), True, 'import numpy as np\n'), ((5361, 5386), 'numpy.zeros', 'np.zeros', (['(vocab_size, 1)'], {}), '((vocab_size, 1))\n', (5369, 5386), True, 'import numpy as np\n'), ((5666, 5690), 'numpy.log', 'np.log', (['(1.0 / vocab_size)'], {}), '(1.0 / vocab_size)\n', (5672, 5690), True, 'import numpy as np\n'), ((2870, 2889), 'numpy.dot', 'np.dot', (['W_hy', 'hs[t]'], {}), '(W_hy, hs[t])\n', (2876, 2889), True, 'import numpy as np\n'), ((2994, 3007), 'numpy.exp', 'np.exp', (['ys[t]'], {}), '(ys[t])\n', (3000, 3007), True, 'import numpy as np\n'), ((3115, 3143), 'numpy.log', 'np.log', (['ps[t][targets[t], 0]'], {}), '(ps[t][targets[t], 0])\n', (3121, 3143), True, 'import numpy as np\n'), ((4297, 4315), 'numpy.dot', 'np.dot', (['W_hy.T', 'dy'], {}), '(W_hy.T, dy)\n', (4303, 4315), True, 'import numpy as np\n'), ((5223, 5238), 'numpy.dot', 'np.dot', (['W_hy', 'h'], {}), '(W_hy, h)\n', (5229, 5238), True, 'import numpy as np\n'), ((5257, 5266), 'numpy.exp', 'np.exp', (['y'], {}), '(y)\n', (5263, 5266), True, 'import numpy as np\n'), ((5931, 5957), 'numpy.zeros', 'np.zeros', (['(hidden_size, 1)'], {}), '((hidden_size, 1))\n', (5939, 5957), True, 'import numpy as np\n'), ((1539, 1570), 'unicodedata.normalize', 'unicodedata.normalize', (['"""NFD"""', 's'], {}), "('NFD', s)\n", (1560, 1570), False, 'import unicodedata\n'), ((3017, 3030), 'numpy.exp', 'np.exp', (['ys[t]'], {}), '(ys[t])\n', (3023, 3030), True, 'import numpy as np\n'), ((5276, 5285), 'numpy.exp', 'np.exp', (['y'], {}), '(y)\n', (5282, 5285), True, 'import numpy as np\n'), ((7170, 7190), 'numpy.sqrt', 'np.sqrt', (['(mem + 1e-08)'], {}), '(mem + 1e-08)\n', (7177, 7190), True, 'import numpy as np\n'), ((2787, 2806), 'numpy.dot', 'np.dot', (['W_xh', 'xs[t]'], {}), '(W_xh, xs[t])\n', (2793, 2806), True, 'import numpy as np\n'), ((2809, 2832), 'numpy.dot', 'np.dot', (['W_hh', 'hs[t - 1]'], {}), '(W_hh, hs[t - 1])\n', (2815, 2832), True, 'import numpy as np\n'), ((5170, 5185), 'numpy.dot', 'np.dot', (['W_xh', 'x'], {}), '(W_xh, x)\n', (5176, 5185), True, 'import numpy as np\n'), ((5188, 5203), 'numpy.dot', 'np.dot', (['W_hh', 'h'], {}), '(W_hh, h)\n', (5194, 5203), True, 'import numpy as np\n'), ((1582, 1605), 'unicodedata.category', 'unicodedata.category', (['c'], {}), '(c)\n', (1602, 1605), False, 'import unicodedata\n')]
"""Optimization result.""" import warnings from collections import Counter from copy import deepcopy from typing import Sequence, Union import numpy as np import pandas as pd from ..objective import History from ..problem import Problem from ..util import assign_clusters, delete_nan_inf OptimizationResult = Union['OptimizerResult', 'OptimizeResult'] class OptimizerResult(dict): """ The result of an optimizer run. Used as a standardized return value to map from the individual result objects returned by the employed optimizers to the format understood by pypesto. Can be used like a dict. Attributes ---------- id: Id of the optimizer run. Usually the start index. x: The best found parameters. fval: The best found function value, `fun(x)`. grad: The gradient at `x`. hess: The Hessian at `x`. res: The residuals at `x`. sres: The residual sensitivities at `x`. n_fval Number of function evaluations. n_grad: Number of gradient evaluations. n_hess: Number of Hessian evaluations. n_res: Number of residuals evaluations. n_sres: Number of residual sensitivity evaluations. x0: The starting parameters. fval0: The starting function value, `fun(x0)`. history: Objective history. exitflag: The exitflag of the optimizer. time: Execution time. message: str Textual comment on the optimization result. optimizer: str The optimizer used for optimization. Notes ----- Any field not supported by the optimizer is filled with None. """ def __init__( self, id: str = None, x: np.ndarray = None, fval: float = None, grad: np.ndarray = None, hess: np.ndarray = None, res: np.ndarray = None, sres: np.ndarray = None, n_fval: int = None, n_grad: int = None, n_hess: int = None, n_res: int = None, n_sres: int = None, x0: np.ndarray = None, fval0: float = None, history: History = None, exitflag: int = None, time: float = None, message: str = None, optimizer: str = None, ): super().__init__() self.id = id self.x: np.ndarray = np.array(x) if x is not None else None self.fval: float = fval self.grad: np.ndarray = np.array(grad) if grad is not None else None self.hess: np.ndarray = np.array(hess) if hess is not None else None self.res: np.ndarray = np.array(res) if res is not None else None self.sres: np.ndarray = np.array(sres) if sres is not None else None self.n_fval: int = n_fval self.n_grad: int = n_grad self.n_hess: int = n_hess self.n_res: int = n_res self.n_sres: int = n_sres self.x0: np.ndarray = np.array(x0) if x0 is not None else None self.fval0: float = fval0 self.history: History = history self.exitflag: int = exitflag self.time: float = time self.message: str = message self.optimizer = optimizer def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def summary(self): """Get summary of the object.""" message = ( "### Optimizer Result \n\n" f"* optimizer used: {self.optimizer} \n" f"* message: {self.message} \n" f"* number of evaluations: {self.n_fval} \n" f"* time taken to optimize: {self.time} \n" f"* startpoint: {self.x0} \n" f"* endpoint: {self.x} \n" ) # add fval, gradient, hessian, res, sres if available if self.fval is not None: message += f"* final objective value: {self.fval} \n" if self.grad is not None: message += f"* final gradient value: {self.grad} \n" if self.hess is not None: message += f"* final hessian value: {self.hess} \n" if self.res is not None: message += f"* final residual value: {self.res} \n" if self.sres is not None: message += f"* final residual sensitivity: {self.sres} \n" return message def update_to_full(self, problem: Problem) -> None: """ Update values to full vectors/matrices. Parameters ---------- problem: problem which contains info about how to convert to full vectors or matrices """ self.x = problem.get_full_vector(self.x, problem.x_fixed_vals) self.grad = problem.get_full_vector(self.grad) self.hess = problem.get_full_matrix(self.hess) self.x0 = problem.get_full_vector(self.x0, problem.x_fixed_vals) class OptimizeResult: """Result of the :py:func:`pypesto.optimize.minimize` function.""" def __init__(self): self.list = [] def __deepcopy__(self, memo): other = OptimizeResult() other.list = deepcopy(self.list) return other def __getattr__(self, key): """Define `optimize_result.key`.""" try: return [res[key] for res in self.list] except KeyError: raise AttributeError(key) def __getitem__(self, index): """Define `optimize_result[i]` to access the i-th result.""" try: return self.list[index] except IndexError: raise IndexError( f"{index} out of range for optimize result of " f"length {len(self.list)}." ) def __len__(self): return len(self.list) def summary(self): """Get summary of the object.""" # perform clustering for better information clust, clustsize = assign_clusters(delete_nan_inf(self.fval)[1]) counter_message = '\n'.join( ["\tCount\tMessage"] + [ f"\t{count}\t{message}" for message, count in Counter(self.message).most_common() ] ) times_message = ( f'\n\tMean execution time: {np.mean(self.time)}s\n' f'\tMaximum execution time: {np.max(self.time)}s,' f'\tid={self[np.argmax(self.time)].id}\n' f'\tMinimum execution time: {np.min(self.time)}s,\t' f'id={self[np.argmin(self.time)].id}' ) summary = ( "## Optimization Result \n\n" f"* number of starts: {len(self)} \n" f"* execution time summary: {times_message}\n" f"* summary of optimizer messages:\n{counter_message}\n" f"* best value found (approximately) {clustsize[0]} time(s) \n" f"* number of plateaus found: " f"{1 + max(clust) - sum(clustsize == 1)} \n" f"* best value: {self[0]['fval']}, " f"worst value: {self[-1]['fval']} \n\n" f"A summary of the best run:\n\n{self[0].summary()}" ) return summary def append( self, optimize_result: OptimizationResult, sort: bool = True, prefix: str = '', ): """ Append an OptimizerResult or an OptimizeResult to the result object. Parameters ---------- optimize_result: The result of one or more (local) optimizer run. sort: Boolean used so we only sort once when appending an optimize_result. prefix: The IDs for all appended results will be prefixed with this. """ current_ids = set(self.id) if isinstance(optimize_result, OptimizeResult): new_ids = [ prefix + identifier for identifier in optimize_result.id if identifier is not None ] if current_ids.isdisjoint(new_ids) and new_ids: raise ValueError( "Some id's you want to merge coincide with " "the existing id's. Please use an " "appropriate prefix such as 'run_2_'." ) for optimizer_result in optimize_result.list: self.append(optimizer_result, sort=False, prefix=prefix) elif isinstance(optimize_result, OptimizerResult): # if id is None, append without checking for duplicate ids if optimize_result.id is None: self.list.append(optimize_result) else: new_id = prefix + optimize_result.id if new_id in current_ids: raise ValueError( "The id you want to merge coincides with " "the existing id's. Please use an " "appropriate prefix such as 'run_2_'." ) optimize_result.id = new_id self.list.append(optimize_result) if sort: self.sort() def sort(self): """Sort the optimizer results by function value fval (ascending).""" def get_fval(res): return res.fval if not np.isnan(res.fval) else np.inf self.list = sorted(self.list, key=get_fval) def as_dataframe(self, keys=None) -> pd.DataFrame: """ Get as pandas DataFrame. If keys is a list, return only the specified values, otherwise all. """ lst = self.as_list(keys) df = pd.DataFrame(lst) return df def as_list(self, keys=None) -> Sequence: """ Get as list. If keys is a list, return only the specified values. Parameters ---------- keys: list(str), optional Labels of the field to extract. """ lst = self.list if keys is not None: lst = [{key: res[key] for key in keys} for res in lst] return lst def get_for_key(self, key) -> list: """Extract the list of values for the specified key as a list.""" warnings.warn( "get_for_key() is deprecated in favour of " "optimize_result['key'] and will be removed in future " "releases." ) return [res[key] for res in self.list]
[ "pandas.DataFrame", "copy.deepcopy", "numpy.argmax", "collections.Counter", "numpy.isnan", "numpy.argmin", "numpy.max", "numpy.mean", "numpy.array", "numpy.min", "warnings.warn" ]
[((5219, 5238), 'copy.deepcopy', 'deepcopy', (['self.list'], {}), '(self.list)\n', (5227, 5238), False, 'from copy import deepcopy\n'), ((9657, 9674), 'pandas.DataFrame', 'pd.DataFrame', (['lst'], {}), '(lst)\n', (9669, 9674), True, 'import pandas as pd\n'), ((10229, 10359), 'warnings.warn', 'warnings.warn', (['"""get_for_key() is deprecated in favour of optimize_result[\'key\'] and will be removed in future releases."""'], {}), '(\n "get_for_key() is deprecated in favour of optimize_result[\'key\'] and will be removed in future releases."\n )\n', (10242, 10359), False, 'import warnings\n'), ((2397, 2408), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2405, 2408), True, 'import numpy as np\n'), ((2500, 2514), 'numpy.array', 'np.array', (['grad'], {}), '(grad)\n', (2508, 2514), True, 'import numpy as np\n'), ((2577, 2591), 'numpy.array', 'np.array', (['hess'], {}), '(hess)\n', (2585, 2591), True, 'import numpy as np\n'), ((2653, 2666), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (2661, 2666), True, 'import numpy as np\n'), ((2728, 2742), 'numpy.array', 'np.array', (['sres'], {}), '(sres)\n', (2736, 2742), True, 'import numpy as np\n'), ((2971, 2983), 'numpy.array', 'np.array', (['x0'], {}), '(x0)\n', (2979, 2983), True, 'import numpy as np\n'), ((6330, 6348), 'numpy.mean', 'np.mean', (['self.time'], {}), '(self.time)\n', (6337, 6348), True, 'import numpy as np\n'), ((6395, 6412), 'numpy.max', 'np.max', (['self.time'], {}), '(self.time)\n', (6401, 6412), True, 'import numpy as np\n'), ((6512, 6529), 'numpy.min', 'np.min', (['self.time'], {}), '(self.time)\n', (6518, 6529), True, 'import numpy as np\n'), ((9336, 9354), 'numpy.isnan', 'np.isnan', (['res.fval'], {}), '(res.fval)\n', (9344, 9354), True, 'import numpy as np\n'), ((6442, 6462), 'numpy.argmax', 'np.argmax', (['self.time'], {}), '(self.time)\n', (6451, 6462), True, 'import numpy as np\n'), ((6559, 6579), 'numpy.argmin', 'np.argmin', (['self.time'], {}), '(self.time)\n', (6568, 6579), True, 'import numpy as np\n'), ((6204, 6225), 'collections.Counter', 'Counter', (['self.message'], {}), '(self.message)\n', (6211, 6225), False, 'from collections import Counter\n')]
import numpy as np import matplotlib.pyplot as plt from typing import Tuple, Union, TypeVar, Iterable, Dict from goa import problems T = TypeVar("T") def plot_population( problem: problems.BaseProblem, X: Union[T, Iterable[T]], ax: plt.Axes = None, c: str = "darkblue", linestyle: str = ":", marker: str = "X", markersize: int = 6, markevery: int = 2, antialiased: bool = True, figsize: Tuple[float, float] = (12, 8), kwargs: Dict = None, ) -> plt.Axes: knobs = dict() if kwargs is not None: knobs.update(kwargs) if not ax: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(projection="3d") if X.shape == (2,): X = [X] for x, y in X: ax.plot( [x, x], [y, y], [problem(np.asarray([x, y])), 0], c=c, linestyle=linestyle, marker=marker, markersize=markersize, markevery=markevery, antialiased=antialiased, **knobs ) return ax def root_mean_squared_error( x: Union[float, np.ndarray], y: Union[float, np.ndarray] ) -> float: return np.sqrt(np.mean(np.power(np.subtract(x, y), 2))) def custom_init_view_function( y: float = 20, x: float = 120, a: float = 30, b: float = 15 ) -> Tuple[float, float]: return a - np.cos(y) * b, x
[ "numpy.subtract", "numpy.asarray", "matplotlib.pyplot.figure", "numpy.cos", "typing.TypeVar" ]
[((141, 153), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (148, 153), False, 'from typing import Tuple, Union, TypeVar, Iterable, Dict\n'), ((608, 635), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (618, 635), True, 'import matplotlib.pyplot as plt\n'), ((1210, 1227), 'numpy.subtract', 'np.subtract', (['x', 'y'], {}), '(x, y)\n', (1221, 1227), True, 'import numpy as np\n'), ((1372, 1381), 'numpy.cos', 'np.cos', (['y'], {}), '(y)\n', (1378, 1381), True, 'import numpy as np\n'), ((819, 837), 'numpy.asarray', 'np.asarray', (['[x, y]'], {}), '([x, y])\n', (829, 837), True, 'import numpy as np\n')]
import numpy as np from casim.calculations import word_entropy def test_word_entropy(): test_arr = np.array([1, 0, 0, 1, 1, 0, 1, 0]) assert np.round(word_entropy(test_arr, 3), decimals=1) == 2.5
[ "casim.calculations.word_entropy", "numpy.array" ]
[((105, 139), 'numpy.array', 'np.array', (['[1, 0, 0, 1, 1, 0, 1, 0]'], {}), '([1, 0, 0, 1, 1, 0, 1, 0])\n', (113, 139), True, 'import numpy as np\n'), ((161, 186), 'casim.calculations.word_entropy', 'word_entropy', (['test_arr', '(3)'], {}), '(test_arr, 3)\n', (173, 186), False, 'from casim.calculations import word_entropy\n')]
import numpy as np import matplotlib.pyplot as plt import glob from sys import argv from os.path import exists as file_exists methods = ['drude', 'c36'] mol1, mol2 = str(argv[1]), str(argv[2]) sysname = mol1+'_'+mol2 def blockavg(x,nblocks=30): lblock = int(len(x)/nblocks) m = [] for i in range(nblocks): start = i*lblock end = (i+1)*lblock m.append(np.mean(x[start:end])) m = np.array(m) return np.mean(m), np.std(m) for method in methods: dirs = sorted(glob.glob('%s_at_*'%(method))) if len(dirs) == 0: continue print(method.upper(),':',mol1.upper(),'-',mol2.upper()) osmp = [] f = open('OSMP_%s_%s_%s.dat'%(mol1,mol2,method), 'w') f.write('# %8s %10s %10s\n'%('Conc (M)','OsmP (bar)','Error')) print('# %8s %10s %10s'%('Conc (M)','OsmP (bar)','Error')) for d in dirs: c = d.split("_")[2] r1 = np.loadtxt('%s/osmp.%s_%s_%s.1.dat'%(d,mol1,mol2,c)) r2 = np.loadtxt('%s/osmp.%s_%s_%s.2.dat'%(d,mol1,mol2,c)) r3 = np.loadtxt('%s/osmp.%s_%s_%s.3.dat'%(d,mol1,mol2,c)) r = np.concatenate((r1,r2,r3))/100000.0 m,s = blockavg(r[:,1]) print("%10.1f %10.3f %10.3f"%(float(c),m,s)) f.write("%10.1f %10.3f %10.3f\n"%(float(c),m,s)) osmp.append((float(c),m,s)) osmp = np.array(osmp) f.close() # plot plt.figure() plt.title(method.upper()+': '+mol1.upper()+' - '+mol2.upper()) plt.errorbar(osmp[:,0],osmp[:,1],yerr=osmp[:,2],marker='o',markersize=5,capsize=3) plt.xlabel('Concentration (M)') plt.ylabel('Osmotic Pressure (bar)') plt.tight_layout() plt.savefig('OSMP_%s_%s_%s.png'%(mol1,mol2,method)) plt.close() if file_exists('OSMP_%s_%s_drude.dat'%(mol1,mol2)) and file_exists('OSMP_%s_%s_c36.dat'%(mol1,mol2)): osmp_drude = np.loadtxt('OSMP_%s_%s_drude.dat'%(mol1,mol2)) osmp_c36 = np.loadtxt('OSMP_%s_%s_c36.dat'%(mol1,mol2)) plt.figure() plt.title(mol1.upper()+' - '+mol2.upper()) plt.errorbar(osmp_drude[:,0],osmp_drude[:,1],yerr=osmp_drude[:,2],marker='o',markersize=5,capsize=3,label='drude') plt.errorbar(osmp_c36[:,0],osmp_c36[:,1],yerr=osmp_c36[:,2],marker='o',markersize=5,capsize=3,label='c36') plt.xlabel('Concentration (M)') plt.ylabel('Osmotic Pressure (bar)') plt.legend() plt.tight_layout() plt.savefig('OSMP_%s_%s_both.png'%(mol1,mol2)) plt.close()
[ "matplotlib.pyplot.savefig", "numpy.concatenate", "numpy.std", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "os.path.exists", "matplotlib.pyplot.figure", "numpy.mean", "numpy.array", "numpy.loadtxt", "glob.glob", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.errorbar" ]
[((420, 431), 'numpy.array', 'np.array', (['m'], {}), '(m)\n', (428, 431), True, 'import numpy as np\n'), ((1330, 1344), 'numpy.array', 'np.array', (['osmp'], {}), '(osmp)\n', (1338, 1344), True, 'import numpy as np\n'), ((1374, 1386), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1384, 1386), True, 'import matplotlib.pyplot as plt\n'), ((1458, 1552), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['osmp[:, 0]', 'osmp[:, 1]'], {'yerr': 'osmp[:, 2]', 'marker': '"""o"""', 'markersize': '(5)', 'capsize': '(3)'}), "(osmp[:, 0], osmp[:, 1], yerr=osmp[:, 2], marker='o',\n markersize=5, capsize=3)\n", (1470, 1552), True, 'import matplotlib.pyplot as plt\n'), ((1545, 1576), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Concentration (M)"""'], {}), "('Concentration (M)')\n", (1555, 1576), True, 'import matplotlib.pyplot as plt\n'), ((1581, 1617), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Osmotic Pressure (bar)"""'], {}), "('Osmotic Pressure (bar)')\n", (1591, 1617), True, 'import matplotlib.pyplot as plt\n'), ((1622, 1640), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1638, 1640), True, 'import matplotlib.pyplot as plt\n'), ((1645, 1700), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('OSMP_%s_%s_%s.png' % (mol1, mol2, method))"], {}), "('OSMP_%s_%s_%s.png' % (mol1, mol2, method))\n", (1656, 1700), True, 'import matplotlib.pyplot as plt\n'), ((1701, 1712), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1710, 1712), True, 'import matplotlib.pyplot as plt\n'), ((1717, 1767), 'os.path.exists', 'file_exists', (["('OSMP_%s_%s_drude.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_drude.dat' % (mol1, mol2))\n", (1728, 1767), True, 'from os.path import exists as file_exists\n'), ((1769, 1817), 'os.path.exists', 'file_exists', (["('OSMP_%s_%s_c36.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_c36.dat' % (mol1, mol2))\n", (1780, 1817), True, 'from os.path import exists as file_exists\n'), ((1833, 1882), 'numpy.loadtxt', 'np.loadtxt', (["('OSMP_%s_%s_drude.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_drude.dat' % (mol1, mol2))\n", (1843, 1882), True, 'import numpy as np\n'), ((1895, 1942), 'numpy.loadtxt', 'np.loadtxt', (["('OSMP_%s_%s_c36.dat' % (mol1, mol2))"], {}), "('OSMP_%s_%s_c36.dat' % (mol1, mol2))\n", (1905, 1942), True, 'import numpy as np\n'), ((1944, 1956), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1954, 1956), True, 'import matplotlib.pyplot as plt\n'), ((2008, 2135), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['osmp_drude[:, 0]', 'osmp_drude[:, 1]'], {'yerr': 'osmp_drude[:, 2]', 'marker': '"""o"""', 'markersize': '(5)', 'capsize': '(3)', 'label': '"""drude"""'}), "(osmp_drude[:, 0], osmp_drude[:, 1], yerr=osmp_drude[:, 2],\n marker='o', markersize=5, capsize=3, label='drude')\n", (2020, 2135), True, 'import matplotlib.pyplot as plt\n'), ((2127, 2247), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['osmp_c36[:, 0]', 'osmp_c36[:, 1]'], {'yerr': 'osmp_c36[:, 2]', 'marker': '"""o"""', 'markersize': '(5)', 'capsize': '(3)', 'label': '"""c36"""'}), "(osmp_c36[:, 0], osmp_c36[:, 1], yerr=osmp_c36[:, 2], marker=\n 'o', markersize=5, capsize=3, label='c36')\n", (2139, 2247), True, 'import matplotlib.pyplot as plt\n'), ((2238, 2269), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Concentration (M)"""'], {}), "('Concentration (M)')\n", (2248, 2269), True, 'import matplotlib.pyplot as plt\n'), ((2274, 2310), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Osmotic Pressure (bar)"""'], {}), "('Osmotic Pressure (bar)')\n", (2284, 2310), True, 'import matplotlib.pyplot as plt\n'), ((2315, 2327), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2325, 2327), True, 'import matplotlib.pyplot as plt\n'), ((2332, 2350), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2348, 2350), True, 'import matplotlib.pyplot as plt\n'), ((2355, 2404), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('OSMP_%s_%s_both.png' % (mol1, mol2))"], {}), "('OSMP_%s_%s_both.png' % (mol1, mol2))\n", (2366, 2404), True, 'import matplotlib.pyplot as plt\n'), ((2406, 2417), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2415, 2417), True, 'import matplotlib.pyplot as plt\n'), ((443, 453), 'numpy.mean', 'np.mean', (['m'], {}), '(m)\n', (450, 453), True, 'import numpy as np\n'), ((455, 464), 'numpy.std', 'np.std', (['m'], {}), '(m)\n', (461, 464), True, 'import numpy as np\n'), ((507, 536), 'glob.glob', 'glob.glob', (["('%s_at_*' % method)"], {}), "('%s_at_*' % method)\n", (516, 536), False, 'import glob\n'), ((900, 957), 'numpy.loadtxt', 'np.loadtxt', (["('%s/osmp.%s_%s_%s.1.dat' % (d, mol1, mol2, c))"], {}), "('%s/osmp.%s_%s_%s.1.dat' % (d, mol1, mol2, c))\n", (910, 957), True, 'import numpy as np\n'), ((966, 1023), 'numpy.loadtxt', 'np.loadtxt', (["('%s/osmp.%s_%s_%s.2.dat' % (d, mol1, mol2, c))"], {}), "('%s/osmp.%s_%s_%s.2.dat' % (d, mol1, mol2, c))\n", (976, 1023), True, 'import numpy as np\n'), ((1032, 1089), 'numpy.loadtxt', 'np.loadtxt', (["('%s/osmp.%s_%s_%s.3.dat' % (d, mol1, mol2, c))"], {}), "('%s/osmp.%s_%s_%s.3.dat' % (d, mol1, mol2, c))\n", (1042, 1089), True, 'import numpy as np\n'), ((389, 410), 'numpy.mean', 'np.mean', (['x[start:end]'], {}), '(x[start:end])\n', (396, 410), True, 'import numpy as np\n'), ((1101, 1129), 'numpy.concatenate', 'np.concatenate', (['(r1, r2, r3)'], {}), '((r1, r2, r3))\n', (1115, 1129), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np #returns the binding energy predicted by nuclear liquid drop model def BE_liquidDrop(N,Z): #N=num of neutrons, Z=num of protons #num of nucleons A = N+Z #physical constants (from Alex's notes, in MeV) a1 = 15.49 a2 = 17.23 a3 = 0.697 a4 = 22.6 #nuclear liquid drop model return a1*A - a2*A**(2./3) - a3*(Z**2)/(A*(1./3)) - a4*(N-Z)**2/A #finds the neutron dripline def findDripLine(Z): #test statement for finding dripline check = False #start with symmetric nucleus N=Z #iterative search for dripline while (check == False): BE_i = BE_liquidDrop(N+1,Z) BE_f = BE_liquidDrop(N,Z) Q = BE_f-BE_i if (Q>0): return N else: N = N+1 def makeMatCores(Zrange): Nstart = 0 Nrange = int(2.3*Zrange) Zstart = 1 mat = np.zeros((Zrange-Zstart,Nrange-Nstart)) for Z in range(Zstart,Zrange): for N in range(Nstart,Nrange): BE_i_up = BE_liquidDrop(N+1,Z) BE_f_up = BE_liquidDrop(N,Z) Qup = BE_f_up-BE_i_up BE_i_down = BE_liquidDrop(N+1,Z) BE_f_down = BE_liquidDrop(N,Z) Qdown = BE_f_down-BE_i_down if (Q<0): mat[Z-Zstart, N-Nstart] = 1 else: mat[Z-Zstart, N-Nstart] = 0 return mat #plt.matshow(makeMatCores(100,100)) #define range of Z's Z_low = 2 Z_top = 150 mat = makeMatCores(Z_top) img2 = plt.imshow(mat,interpolation='nearest', origin='lower') plt.show() #interested in finding the neutron drip line for the range Z=36-44 #Z = range(Z_low, Z_top+1) #N = [] # #for z in Z: # dripline = findDripLine(z) # print "For", z,"protons, the neutron dripline is",dripline, "neutrons" # N.append(dripline) # #mat = np.zeros((max(Z)+1,max(N)+1)) # #for i in range(0,len(Z)): # mat[Z[i],N[i]] = 1 #plt.matshow(mat) #plt.show()
[ "numpy.zeros", "matplotlib.pyplot.imshow", "matplotlib.pyplot.show" ]
[((1336, 1392), 'matplotlib.pyplot.imshow', 'plt.imshow', (['mat'], {'interpolation': '"""nearest"""', 'origin': '"""lower"""'}), "(mat, interpolation='nearest', origin='lower')\n", (1346, 1392), True, 'import matplotlib.pyplot as plt\n'), ((1412, 1422), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1420, 1422), True, 'import matplotlib.pyplot as plt\n'), ((810, 854), 'numpy.zeros', 'np.zeros', (['(Zrange - Zstart, Nrange - Nstart)'], {}), '((Zrange - Zstart, Nrange - Nstart))\n', (818, 854), True, 'import numpy as np\n')]
import pytest from anndata import AnnData from pandas.testing import assert_frame_equal import numpy as np from squidpy.gr import moran, ripley_k, co_occurrence MORAN_K = "moranI" def test_ripley_k(adata: AnnData): """Check ripley score and shape.""" ripley_k(adata, cluster_key="leiden") # assert ripley in adata.uns assert "ripley_k_leiden" in adata.uns.keys() # assert clusters intersection cat_ripley = set(adata.uns["ripley_k_leiden"]["leiden"].unique()) cat_adata = set(adata.obs["leiden"].cat.categories) assert cat_ripley.isdisjoint(cat_adata) is False def test_moran_seq_par(dummy_adata: AnnData): """Check whether moran results are the same for seq. and parallel computation.""" moran(dummy_adata) dummy_adata.var["highly_variable"] = np.random.choice([True, False], size=dummy_adata.var_names.shape) df = moran(dummy_adata, copy=True, n_jobs=1, seed=42, n_perms=50) df_parallel = moran(dummy_adata, copy=True, n_jobs=2, seed=42, n_perms=50) idx_df = df.index.values idx_adata = dummy_adata[:, dummy_adata.var.highly_variable.values].var_names.values assert MORAN_K in dummy_adata.uns.keys() assert "pval_sim_fdr_bh" in dummy_adata.uns[MORAN_K] assert dummy_adata.uns[MORAN_K].columns.shape == (4,) # test highly variable assert dummy_adata.uns[MORAN_K].shape != df.shape # assert idx are sorted and contain same elements assert not np.array_equal(idx_df, idx_adata) np.testing.assert_array_equal(sorted(idx_df), sorted(idx_adata)) # check parallel gives same results with pytest.raises(AssertionError, match=r'.*\(column name="pval_sim"\) are different.*'): # because the seeds will be different, we don't expect the pval_sim values to be the same assert_frame_equal(df, df_parallel) @pytest.mark.parametrize("n_jobs", [1, 2]) def test_moran_reproducibility(dummy_adata: AnnData, n_jobs: int): """Check moran reproducibility results.""" moran(dummy_adata) dummy_adata.var["highly_variable"] = np.random.choice([True, False], size=dummy_adata.var_names.shape) # seed will work only when multiprocessing/loky df_1 = moran(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50) df_2 = moran(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50) idx_df = df_1.index.values idx_adata = dummy_adata[:, dummy_adata.var.highly_variable.values].var_names.values assert MORAN_K in dummy_adata.uns.keys() # assert fdr correction in adata.uns assert "pval_sim_fdr_bh" in dummy_adata.uns[MORAN_K] assert dummy_adata.uns[MORAN_K].columns.shape == (4,) # test highly variable assert dummy_adata.uns[MORAN_K].shape != df_1.shape # assert idx are sorted and contain same elements assert not np.array_equal(idx_df, idx_adata) np.testing.assert_array_equal(sorted(idx_df), sorted(idx_adata)) # check parallel gives same results assert_frame_equal(df_1, df_2) def test_co_occurrence(adata: AnnData): """ check ripley score and shape """ co_occurrence(adata, cluster_key="leiden") # assert occurrence in adata.uns assert "leiden_co_occurrence" in adata.uns.keys() assert "occ" in adata.uns["leiden_co_occurrence"].keys() assert "interval" in adata.uns["leiden_co_occurrence"].keys() # assert shapes arr = adata.uns["leiden_co_occurrence"]["occ"] assert arr.ndim == 3 assert arr.shape[2] == 49 assert arr.shape[1] == arr.shape[0] == adata.obs["leiden"].unique().shape[0] # @pytest.mark.parametrize(("ys", "xs"), [(10, 10), (None, None), (10, 20)]) @pytest.mark.parametrize(("n_jobs", "n_splits"), [(1, 2), (2, 2)]) def test_co_occurrence_reproducibility(adata: AnnData, n_jobs: int, n_splits: int): """Check co_occurrence reproducibility results.""" arr_1, interval_1 = co_occurrence(adata, cluster_key="leiden", copy=True, n_jobs=n_jobs, n_splits=n_splits) arr_2, interval_2 = co_occurrence(adata, cluster_key="leiden", copy=True, n_jobs=n_jobs, n_splits=n_splits) np.testing.assert_array_equal(sorted(interval_1), sorted(interval_2)) np.testing.assert_allclose(arr_1, arr_2)
[ "pandas.testing.assert_frame_equal", "squidpy.gr.co_occurrence", "numpy.testing.assert_allclose", "pytest.raises", "squidpy.gr.ripley_k", "numpy.random.choice", "numpy.array_equal", "pytest.mark.parametrize", "squidpy.gr.moran" ]
[((1825, 1866), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""n_jobs"""', '[1, 2]'], {}), "('n_jobs', [1, 2])\n", (1848, 1866), False, 'import pytest\n'), ((3614, 3679), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('n_jobs', 'n_splits')", '[(1, 2), (2, 2)]'], {}), "(('n_jobs', 'n_splits'), [(1, 2), (2, 2)])\n", (3637, 3679), False, 'import pytest\n'), ((265, 302), 'squidpy.gr.ripley_k', 'ripley_k', (['adata'], {'cluster_key': '"""leiden"""'}), "(adata, cluster_key='leiden')\n", (273, 302), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((738, 756), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {}), '(dummy_adata)\n', (743, 756), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((798, 863), 'numpy.random.choice', 'np.random.choice', (['[True, False]'], {'size': 'dummy_adata.var_names.shape'}), '([True, False], size=dummy_adata.var_names.shape)\n', (814, 863), True, 'import numpy as np\n'), ((873, 933), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': '(1)', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=1, seed=42, n_perms=50)\n', (878, 933), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((952, 1012), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': '(2)', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=2, seed=42, n_perms=50)\n', (957, 1012), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((1985, 2003), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {}), '(dummy_adata)\n', (1990, 2003), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((2045, 2110), 'numpy.random.choice', 'np.random.choice', (['[True, False]'], {'size': 'dummy_adata.var_names.shape'}), '([True, False], size=dummy_adata.var_names.shape)\n', (2061, 2110), True, 'import numpy as np\n'), ((2174, 2239), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': 'n_jobs', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50)\n', (2179, 2239), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((2251, 2316), 'squidpy.gr.moran', 'moran', (['dummy_adata'], {'copy': '(True)', 'n_jobs': 'n_jobs', 'seed': '(42)', 'n_perms': '(50)'}), '(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50)\n', (2256, 2316), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((2938, 2968), 'pandas.testing.assert_frame_equal', 'assert_frame_equal', (['df_1', 'df_2'], {}), '(df_1, df_2)\n', (2956, 2968), False, 'from pandas.testing import assert_frame_equal\n'), ((3064, 3106), 'squidpy.gr.co_occurrence', 'co_occurrence', (['adata'], {'cluster_key': '"""leiden"""'}), "(adata, cluster_key='leiden')\n", (3077, 3106), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((3843, 3934), 'squidpy.gr.co_occurrence', 'co_occurrence', (['adata'], {'cluster_key': '"""leiden"""', 'copy': '(True)', 'n_jobs': 'n_jobs', 'n_splits': 'n_splits'}), "(adata, cluster_key='leiden', copy=True, n_jobs=n_jobs,\n n_splits=n_splits)\n", (3856, 3934), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((3955, 4046), 'squidpy.gr.co_occurrence', 'co_occurrence', (['adata'], {'cluster_key': '"""leiden"""', 'copy': '(True)', 'n_jobs': 'n_jobs', 'n_splits': 'n_splits'}), "(adata, cluster_key='leiden', copy=True, n_jobs=n_jobs,\n n_splits=n_splits)\n", (3968, 4046), False, 'from squidpy.gr import moran, ripley_k, co_occurrence\n'), ((4122, 4162), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['arr_1', 'arr_2'], {}), '(arr_1, arr_2)\n', (4148, 4162), True, 'import numpy as np\n'), ((1442, 1475), 'numpy.array_equal', 'np.array_equal', (['idx_df', 'idx_adata'], {}), '(idx_df, idx_adata)\n', (1456, 1475), True, 'import numpy as np\n'), ((1594, 1684), 'pytest.raises', 'pytest.raises', (['AssertionError'], {'match': '""".*\\\\(column name="pval_sim"\\\\) are different.*"""'}), '(AssertionError, match=\n \'.*\\\\(column name="pval_sim"\\\\) are different.*\')\n', (1607, 1684), False, 'import pytest\n'), ((1786, 1821), 'pandas.testing.assert_frame_equal', 'assert_frame_equal', (['df', 'df_parallel'], {}), '(df, df_parallel)\n', (1804, 1821), False, 'from pandas.testing import assert_frame_equal\n'), ((2791, 2824), 'numpy.array_equal', 'np.array_equal', (['idx_df', 'idx_adata'], {}), '(idx_df, idx_adata)\n', (2805, 2824), True, 'import numpy as np\n')]
import gym import numpy as np import torch import torch.optim as optim from utils_main import make_env, save_files from neural_network import ActorCritic from ppo_method import ppo from common.multiprocessing_env import SubprocVecEnv from itertools import count use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") num_envs = 2 env_name = "CustomEnv-v0" envs = [make_env(env_name) for i in range(num_envs)] envs = SubprocVecEnv(envs) num_inputs = envs.observation_space.shape[0] num_outputs = envs.action_space.shape[0] # Hyper params: hidden_size = 400 lr = 3e-6 num_steps = 20 mini_batch_size = 5 ppo_epochs = 4 threshold_reward = -0.01 model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device) env = gym.make(env_name) my_ppo = ppo(model, env) optimizer = optim.Adam(model.parameters(), lr=lr) max_frames = 1_500_0000 frame_idx = 0 test_rewards = [] save_iteration = 1000 model_save_iteration = 1000 state = envs.reset() early_stop = False def trch_ft_device(input, device): output = torch.FloatTensor(input).to(device) return output saver_model = save_files() while frame_idx < max_frames and not early_stop: log_probs = [] values = [] states = [] actions = [] rewards = [] masks = [] entropy = 0 for _ in range(num_steps): state = trch_ft_device(state, device) dist, value = model(state) action = dist.sample() next_state, reward, done, _ = envs.step(action.cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() # appending log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) states.append(state) actions.append(action) # next iteration init. state = next_state frame_idx += 1 if frame_idx % save_iteration == 0: test_reward = np.mean([my_ppo.test_env() for _ in range(num_envs)]) test_rewards.append(test_reward) # plot(frame_idx, test_rewards) if test_reward > threshold_reward: early_stop = True if frame_idx % model_save_iteration == 0: saver_model.model_save(model) next_state = trch_ft_device(next_state, device) _, next_value = model(next_state) returns = my_ppo.compute_gae(next_value, rewards, masks, values) returns = torch.cat(returns).detach() log_probs = torch.cat(log_probs).detach() values = torch.cat(values).detach() states = torch.cat(states) actions = torch.cat(actions) advantage = returns - values my_ppo.ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantage, optimizer) max_expert_num = 50000 num_steps = 0 expert_traj = [] # building an episode based on the current model. for i_episode in count(): state = env.reset() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) action = dist.sample().cpu().numpy()[0] next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward expert_traj.append(np.hstack([state, action])) num_steps += 1 print("episode:", i_episode, "reward:", total_reward) if num_steps >= max_expert_num: break expert_traj = np.stack(expert_traj) print() print(expert_traj.shape) print() np.save("expert_traj.npy", expert_traj)
[ "numpy.stack", "ppo_method.ppo", "utils_main.save_files", "gym.make", "common.multiprocessing_env.SubprocVecEnv", "numpy.save", "neural_network.ActorCritic", "torch.FloatTensor", "torch.cat", "itertools.count", "numpy.hstack", "torch.cuda.is_available", "torch.device", "utils_main.make_env" ]
[((274, 299), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (297, 299), False, 'import torch\n'), ((309, 352), 'torch.device', 'torch.device', (["('cuda' if use_cuda else 'cpu')"], {}), "('cuda' if use_cuda else 'cpu')\n", (321, 352), False, 'import torch\n'), ((456, 475), 'common.multiprocessing_env.SubprocVecEnv', 'SubprocVecEnv', (['envs'], {}), '(envs)\n', (469, 475), False, 'from common.multiprocessing_env import SubprocVecEnv\n'), ((760, 778), 'gym.make', 'gym.make', (['env_name'], {}), '(env_name)\n', (768, 778), False, 'import gym\n'), ((789, 804), 'ppo_method.ppo', 'ppo', (['model', 'env'], {}), '(model, env)\n', (792, 804), False, 'from ppo_method import ppo\n'), ((1121, 1133), 'utils_main.save_files', 'save_files', ([], {}), '()\n', (1131, 1133), False, 'from utils_main import make_env, save_files\n'), ((2985, 2992), 'itertools.count', 'count', ([], {}), '()\n', (2990, 2992), False, 'from itertools import count\n'), ((3537, 3558), 'numpy.stack', 'np.stack', (['expert_traj'], {}), '(expert_traj)\n', (3545, 3558), True, 'import numpy as np\n'), ((3600, 3639), 'numpy.save', 'np.save', (['"""expert_traj.npy"""', 'expert_traj'], {}), "('expert_traj.npy', expert_traj)\n", (3607, 3639), True, 'import numpy as np\n'), ((404, 422), 'utils_main.make_env', 'make_env', (['env_name'], {}), '(env_name)\n', (412, 422), False, 'from utils_main import make_env, save_files\n'), ((2668, 2685), 'torch.cat', 'torch.cat', (['states'], {}), '(states)\n', (2677, 2685), False, 'import torch\n'), ((2700, 2718), 'torch.cat', 'torch.cat', (['actions'], {}), '(actions)\n', (2709, 2718), False, 'import torch\n'), ((693, 742), 'neural_network.ActorCritic', 'ActorCritic', (['num_inputs', 'num_outputs', 'hidden_size'], {}), '(num_inputs, num_outputs, hidden_size)\n', (704, 742), False, 'from neural_network import ActorCritic\n'), ((1051, 1075), 'torch.FloatTensor', 'torch.FloatTensor', (['input'], {}), '(input)\n', (1068, 1075), False, 'import torch\n'), ((2541, 2559), 'torch.cat', 'torch.cat', (['returns'], {}), '(returns)\n', (2550, 2559), False, 'import torch\n'), ((2585, 2605), 'torch.cat', 'torch.cat', (['log_probs'], {}), '(log_probs)\n', (2594, 2605), False, 'import torch\n'), ((2628, 2645), 'torch.cat', 'torch.cat', (['values'], {}), '(values)\n', (2637, 2645), False, 'import torch\n'), ((3361, 3387), 'numpy.hstack', 'np.hstack', (['[state, action]'], {}), '([state, action])\n', (3370, 3387), True, 'import numpy as np\n'), ((3093, 3117), 'torch.FloatTensor', 'torch.FloatTensor', (['state'], {}), '(state)\n', (3110, 3117), False, 'import torch\n'), ((1706, 1731), 'torch.FloatTensor', 'torch.FloatTensor', (['reward'], {}), '(reward)\n', (1723, 1731), False, 'import torch\n'), ((1778, 1805), 'torch.FloatTensor', 'torch.FloatTensor', (['(1 - done)'], {}), '(1 - done)\n', (1795, 1805), False, 'import torch\n')]
import cotk from cotk._utils.file_utils import get_resource_file_path from cotk.dataloader.dataloader import * from collections import Counter import numpy as np from itertools import chain class Score(DataField): def get_next(self, dataset): r"""read text and returns the next label(integer). Note that it may raise StopIteration. Args:{DataField.GET_NEXT_ARG} Examples: >>> dataset = iter(["1\n", "0\n"]) >>> field = Label() >>> field.get_next(dataset) 1 >>> field.get_next(dataset) 0 """ score = next(dataset) return float(score.strip()) def _map_fun(self, element, convert_ids_to_tokens=None): """ Returns the element itself. Args: element: An element of a dataset. convert_ids_to_tokens: It's useless. This argument exists, just to keep the signature the same as that of super class. """ return element class TranslationWithScore(cotk.dataloader.SingleTurnDialog): @cotk._utils.hooks.hook_dataloader def __init__(self, file_id, min_vocab_times, \ max_sent_length, invalid_vocab_times, \ tokenizer, remains_capital ): super().__init__(file_id, min_vocab_times, \ max_sent_length, invalid_vocab_times, \ tokenizer, remains_capital) def _load_data(self): data_fields = { 'train': [['post', 'Sentence'], ['resp', 'Sentence'], ['score', Score]], 'dev': [['post', 'Sentence'], ['resp', 'Sentence']], 'test': [['post', 'Sentence'], ['resp', 'Sentence']], } return self._general_load_data(self._file_path, data_fields, \ self._min_vocab_times, self._max_sent_length, None, self._invalid_vocab_times) def _general_load_data(self, file_path, data_fields, min_vocab_times, max_sent_length, max_turn_length, invalid_vocab_times): r'''This function implements a general loading process. Arguments: file_path (str): A string indicating the path of dataset. data_fields (dict, list, tuple): If it's a list(tuple), it must be a list of (key, field) pairs. Field must be a DataField instance, or a subclass of DataField(in this case, its instance will be used, assuming its constructor accepts no arguments), or a string(in this case, the instance of the class, whose __name__ is field, will be used). For example, data_fields=[['post', 'Sentence'], ['label', Label]] means that, in the raw file, the first line is a sentence and the second line is a label. They are saved in a dict. dataset = {'post': [line1, line3, line5, ...], 'label': [line2, line4, line6, ...]} data_fields=[['key1', 'Session'], ['key2', Label()]], means that, in the raw file, the first *several lines* is a session, *followed by an empty line*, and the next line is a label. dataset = {'key1': [session1, session2, ...], 'key2': [label1, label2, ...]} If it's a dict, different datasets may have different formats.(If `data_fields` is a list or a tuple, different datasets have the same format). Its keys are the same as `self.key_name` that indicate the datasets, and the values are lists as mentioned above. For example, data_fields = {'train': [['sess', 'Session'], ['label', 'Label']], 'test': [['sess', 'session']]}, means that the train set contains sessions and labels, but the test set only contains sessions. min_vocab_times (int): A cut-off threshold of valid tokens. All tokens appear not less than `min_vocab_times` in **training set** will be marked as valid words. max_sent_length (int): All sentences longer than ``max_sent_length`` will be shortened to first ``max_sent_length`` tokens. max_turn_length (int): All sessions, whose turn length is longer than ``max_turn_length`` will be shorten to first ``max_turn_length`` sentences. If the dataset don't contains sessions, this parameter will be ignored. invalid_vocab_times (int): A cut-off threshold of invalid tokens. All tokens appear not less than ``invalid_vocab_times`` in the **whole dataset** (except valid words) will be marked as invalid words. Otherwise, they are unknown words, which are ignored both for model or metrics. Returns: (tuple): containing: * **all_vocab_list** (list): vocabulary list of the datasets, including valid and invalid vocabs. * **valid_vocab_len** (int): the number of valid vocab. ``vocab_list[:valid_vocab_len]`` will be regarded as valid vocabs, while ``vocab_list[valid_vocab_len:]`` regarded as invalid vocabs. * **data** (dict): a dict contains data. * **data_size** (dict): a dict contains size of each item in data. ''' def get_fields(fields): assert isinstance(fields, list) or isinstance(fields, tuple) return [(data_key, DataField.get_field(field)) for data_key, field in fields] if isinstance(data_fields, dict): no_field_keys = [key for key in self.key_name if key not in data_fields] if no_field_keys: raise ValueError('There is no data fields for dataset(%s) ' % ', '.join(no_field_keys)) try: data_fields = {key: get_fields(data_fields[key]) for key in self.key_name} except AssertionError: raise TypeError('If `data_field` is a dict, its value must be a list(or tuple) of lists(or tuples).') elif isinstance(data_fields, list) or isinstance(data_fields, tuple): data_fields = get_fields(data_fields) data_fields = {key: data_fields for key in self.key_name} else: raise TypeError('`data_fields` must be a dict, or a list, or a tuple.') # now data_fields is a dict. Keys are the same as self.key_name('train', 'test', 'dev', etc.). Each value is # a list(tuple) of lists(tuples), which means (data_key(str), data_field(DataField)) pairs. # For example, # data_fields == {'train': [['sent', Sentence()], ['label', Label()]], # 'test': [['sent', Sentence()], ['label', Label()]]}. # Note, different dataset may have different fields. special_tokens = set(self.ext_vocab) origin_data = {} for key in self.key_name: origin_data[key] = {data_key: [] for data_key, _ in data_fields[key]} with open("%s/%s.txt" % (file_path, key), encoding='utf-8') as f_file: while True: try: for data_key, field in data_fields[key]: element = field.convert_to_tokens(field.get_next(f_file), self.tokenize) for token in field.iter_tokens(element): if token in special_tokens: raise RuntimeError( 'The dataset contains special token "%s". This is not allowed.' % token) origin_data[key][data_key].append(element) except StopIteration: break def chain_allvocab(dic, fields): vocabs = [] for data_key, field in fields: for element in dic[data_key]: vocabs.extend(field.iter_tokens(element)) return vocabs raw_vocab_list = chain_allvocab(origin_data['train'], data_fields['train']) # Important: Sort the words preventing the index changes between # different runs vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = [x[0] for x in vocab if x[1] >= min_vocab_times] vocab_list = self.ext_vocab + list(left_vocab) valid_vocab_len = len(vocab_list) valid_vocab_set = set(vocab_list) for key in self.key_name: if key == 'train': continue raw_vocab_list.extend(chain_allvocab(origin_data[key], data_fields[key])) vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = [x[0] for x in vocab if x[1] >= invalid_vocab_times and x[0] not in valid_vocab_set] vocab_list.extend(left_vocab) print("valid vocab list length = %d" % valid_vocab_len) print("vocab list length = %d" % len(vocab_list)) word2id = {w: i for i, w in enumerate(vocab_list)} data = {} data_size = {} for key in self.key_name: data[key] = {} for data_key, field in data_fields[key]: origin_data[key][data_key] = [field.convert_to_ids(element, word2id, self) for element in origin_data[key][data_key]] data[key][data_key] = [ field.cut(element, max_sent_length=max_sent_length, max_turn_length=max_turn_length) for element in origin_data[key][data_key]] if key not in data_size: data_size[key] = len(data[key][data_key]) elif data_size[key] != len(data[key][data_key]): raise RuntimeError( "The data of input %s.txt contains different numbers of fields" % key) vocab = chain_allvocab(origin_data[key], data_fields[key]) vocab_num = len(vocab) oov_num = sum([word not in word2id for word in vocab]) invalid_num = sum([word not in valid_vocab_set for word in vocab]) - oov_num sent_length = [] for data_key, field in data_fields[key]: sent_length.extend( [len(sent) for element in origin_data[key][data_key] for sent in field.iter_sentence(element)]) cut_word_num = np.sum(np.maximum(np.array(sent_length) - max_sent_length, 0)) session_keys = [data_key for data_key, field in data_fields[key] if field.__class__ == Session] if session_keys: turn_length = list( map(len, chain.from_iterable((origin_data[key][sess_key] for sess_key in session_keys)))) max_turn_length_before_cut = max(turn_length) sent_num = sum(turn_length) cut_sentence_rate = np.sum(np.maximum(np.array(turn_length) - max_turn_length, 0)) / sent_num else: max_turn_length_before_cut = 1 cut_sentence_rate = 0 print(("%s set. invalid rate: %f, unknown rate: %f, max sentence length before cut: %d, " + \ "cut word rate: %f\n\tmax turn length before cut: %d, cut sentence rate: %f") % \ (key, invalid_num / vocab_num, oov_num / vocab_num, max(sent_length), \ cut_word_num / vocab_num, max_turn_length_before_cut, cut_sentence_rate)) # calculate hash value hash_value = DataloaderHash(ignore_tokens=(self.go_id, self.eos_id, self.pad_id), unk_id=self.unk_id).hash_datasets(data, data_fields, vocab_list[len( self.ext_vocab):valid_vocab_len]) self.__hash_value = hash_value return vocab_list, valid_vocab_len, data, data_size def get_batch(self, key, indexes): '''{LanguageProcessingBase.GET_BATCH_DOC_WITHOUT_RETURNS} Returns: (dict): A dict at least contains: * **post_length** (:class:`numpy.ndarray`): A 1-d array, the length of post in each batch. Size: ``[batch_size]`` * **post** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in posts. Only provide valid words. ``unk_id`` will be used if a word is not valid. Size: ``[batch_size, max(sent_length)]`` * **post_allvocabs** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in posts. Provide both valid and invalid vocabs. Size: ``[batch_size, max(sent_length)]`` * **resp_length** (:class:`numpy.ndarray`): A 1-d array, the length of response in each batch. Size: ``[batch_size]`` * **resp** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in responses. Only provide valid vocabs. ``unk_id`` will be used if a word is not valid. Size: ``[batch_size, max(sent_length)]`` * **resp_allvocabs** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in responses. Provide both valid and invalid vocabs. Size: ``[batch_size, max(sent_length)]`` Examples: >>> # all_vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", >>> # "hello", "i", "am", "fine"] >>> # vocab_size = 9 >>> # vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", "hello", "i"] >>> dataloader.get_batch('train', [0, 1]) { "post_allvocabs": numpy.array([ [2, 5, 6, 10, 3], # first post: <go> are you fine <eos> [2, 7, 3, 0, 0], # second post: <go> hello <eos> <pad> <pad> ]), "post": numpy.array([ [2, 5, 6, 1, 3], # first post: <go> are you <unk> <eos> [2, 7, 3, 0, 0], # second post: <go> hello <eos> <pad> <pad> ]), "resp_allvocabs": numpy.array([ [2, 8, 9, 10, 3], # first response: <go> i am fine <eos> [2, 7, 3, 0, 0], # second response: <go> hello <eos> <pad> <pad> ]), "resp": numpy.array([ [2, 8, 1, 1, 3], # first response: <go> i <unk> <unk> <eos> [2, 7, 3, 0, 0], # second response: <go> hello <eos> <pad> <pad> ]), "post_length": numpy.array([5, 3]), # length of posts "resp_length": numpy.array([5, 3]), # length of responses } ''' if key not in self.key_name: raise ValueError("No set named %s." % key) res = {} batch_size = len(indexes) res["post_length"] = np.array(list(map(lambda i: len(self.data[key]['post'][i]), indexes)), dtype=int) res["resp_length"] = np.array(list(map(lambda i: len(self.data[key]['resp'][i]), indexes)), dtype=int) res_post = res["post"] = np.zeros((batch_size, np.max(res["post_length"])), dtype=int) res_resp = res["resp"] = np.zeros((batch_size, np.max(res["resp_length"])), dtype=int) for i, j in enumerate(indexes): post = self.data[key]['post'][j] resp = self.data[key]['resp'][j] res_post[i, :len(post)] = post res_resp[i, :len(resp)] = resp res["post_allvocabs"] = res_post.copy() res["resp_allvocabs"] = res_resp.copy() res_post[res_post >= self.valid_vocab_len] = self.unk_id res_resp[res_resp >= self.valid_vocab_len] = self.unk_id if key=='train': res['score']=np.array([self.data[key]['score'][i] for i in indexes]) return res def main(): max_sent_length = 50 loader = TranslationWithScore('./data/iwslt14_raml', 10, max_sent_length, 0, 'nltk', False) loader.restart("train",batch_size=2,shuffle=True) q=loader.get_next_batch("train") print(len(q['score'])) print(q) if __name__ == '__main__': main()
[ "itertools.chain.from_iterable", "collections.Counter", "numpy.max", "numpy.array" ]
[((15676, 15731), 'numpy.array', 'np.array', (["[self.data[key]['score'][i] for i in indexes]"], {}), "([self.data[key]['score'][i] for i in indexes])\n", (15684, 15731), True, 'import numpy as np\n'), ((15048, 15074), 'numpy.max', 'np.max', (["res['post_length']"], {}), "(res['post_length'])\n", (15054, 15074), True, 'import numpy as np\n'), ((15143, 15169), 'numpy.max', 'np.max', (["res['resp_length']"], {}), "(res['resp_length'])\n", (15149, 15169), True, 'import numpy as np\n'), ((8020, 8043), 'collections.Counter', 'Counter', (['raw_vocab_list'], {}), '(raw_vocab_list)\n', (8027, 8043), False, 'from collections import Counter\n'), ((8532, 8555), 'collections.Counter', 'Counter', (['raw_vocab_list'], {}), '(raw_vocab_list)\n', (8539, 8555), False, 'from collections import Counter\n'), ((10352, 10373), 'numpy.array', 'np.array', (['sent_length'], {}), '(sent_length)\n', (10360, 10373), True, 'import numpy as np\n'), ((10600, 10676), 'itertools.chain.from_iterable', 'chain.from_iterable', (['(origin_data[key][sess_key] for sess_key in session_keys)'], {}), '(origin_data[key][sess_key] for sess_key in session_keys)\n', (10619, 10676), False, 'from itertools import chain\n'), ((10841, 10862), 'numpy.array', 'np.array', (['turn_length'], {}), '(turn_length)\n', (10849, 10862), True, 'import numpy as np\n')]
import string import numpy as np import pandas as pd import pytest from plotnine import (ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme) from plotnine.positions.position import position from plotnine.exceptions import PlotnineError n = 6 m = 10 random_state = np.random.RandomState(1234567890) df1 = pd.DataFrame({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}) df2 = pd.DataFrame({'x': np.repeat(range(n+1), range(n+1)), 'z': np.repeat(range(n//2), range(3, n*2, 4))}) df3 = pd.DataFrame({ 'x': random_state.choice(['A', 'B'], n*m), 'y': random_state.randint(0, 20, n*m), 'c': random_state.choice([False, False, True, False], n*m) }) random_state.seed(1234567890) _theme = theme(subplots_adjust={'right': 0.85}) def test_jitter(): df1 = pd.DataFrame({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}) p = (ggplot(df1, aes('x', 'y')) + geom_point(size=10) + geom_jitter(size=10, color='red', random_state=random_state) + geom_jitter(size=10, color='blue', width=0.1, height=0.1, random_state=random_state)) assert p + _theme == 'jitter' with pytest.raises(PlotnineError): geom_jitter(position=position_jitter(), width=0.1) def test_nudge(): p = (ggplot(df1, aes('x', 'y')) + geom_point(size=10) + geom_point(size=10, color='red', position=position_nudge(.25, .25))) assert p + _theme == 'nudge' def test_stack(): p = (ggplot(df2, aes('factor(z)')) + geom_bar(aes(fill='factor(x)'), position='stack')) assert p + _theme == 'stack' def test_stack_negative(): df = df1.copy() _loc = df.columns.get_loc df.iloc[0, _loc('y')] *= -1 df.iloc[len(df)-1, _loc('y')] *= -1 p = (ggplot(df) + geom_col(aes('factor(x)', 'y', fill='factor(y)'), position='stack') + geom_text(aes('factor(x)', 'y', label='y'), position=position_stack(vjust=0.5)) ) assert p + _theme == 'stack-negative' def test_fill(): p = (ggplot(df2, aes('factor(z)')) + geom_bar(aes(fill='factor(x)'), position='fill')) assert p + _theme == 'fill' def test_dodge(): p = (ggplot(df2, aes('factor(z)')) + geom_bar(aes(fill='factor(x)'), position='dodge')) assert p + _theme == 'dodge' def test_dodge_preserve_single(): df1 = pd.DataFrame({'x': ['a', 'b', 'b'], 'y': ['a', 'a', 'b']}) p = (ggplot(df1, aes('x', fill='y')) + geom_bar(position=position_dodge(preserve='single'))) assert p + _theme == 'dodge_preserve_single' def test_dodge_preserve_single_text(): df1 = pd.DataFrame({'x': ['a', 'b', 'b', 'b'], 'y': ['a', 'a', 'b', 'b']}) d = position_dodge(preserve='single', width=0.9) p = (ggplot(df1, aes('x', fill='y')) + geom_bar(position=d) + geom_text( aes(y=after_stat('count'), label=after_stat('count')), stat='count', position=d, va='bottom') ) assert p + _theme == 'dodge_preserve_single_text' def test_dodge2(): p = (ggplot(df3, aes('x', 'y', color='c')) + geom_boxplot(position='dodge2', size=2)) assert p + _theme == 'dodge2' def test_dodge2_varwidth(): p = (ggplot(df3, aes('x', 'y', color='c')) + geom_boxplot( position=position_dodge2(preserve='single'), varwidth=True, size=2) ) assert p + _theme == 'dodge2_varwidth' def test_jitterdodge(): df = pd.DataFrame({ 'x': np.ones(n*2), 'y': np.repeat(np.arange(n), 2), 'letters': np.repeat(list(string.ascii_lowercase[:n]), 2)}) position = position_jitterdodge(random_state=random_state) p = (ggplot(df, aes('x', 'y', fill='letters')) + geom_point(size=10, fill='black') + geom_point(size=10, position=position)) assert p + _theme == 'jitterdodge' def test_position_from_geom(): geom = geom_point(position='jitter') assert isinstance(position.from_geom(geom), position_jitter) geom = geom_point(position='position_jitter') assert isinstance(position.from_geom(geom), position_jitter) geom = geom_point(position=position_jitter()) assert isinstance(position.from_geom(geom), position_jitter) geom = geom_point(position=position_jitter) assert isinstance(position.from_geom(geom), position_jitter) def test_dodge_empty_data(): empty_df = pd.DataFrame({'x': [], 'y': []}) p = (ggplot(df1, aes('x', 'y')) + geom_point() + geom_rect( empty_df, aes(xmin='x', xmax='x+1', ymin='y', ymax='y+1'), position='dodge') ) p.draw_test()
[ "plotnine.geom_boxplot", "plotnine.position_dodge2", "numpy.ones", "numpy.arange", "plotnine.position_dodge", "plotnine.aes", "plotnine.position_stack", "pandas.DataFrame", "plotnine.position_jitter", "plotnine.after_stat", "numpy.random.RandomState", "plotnine.position_nudge", "pytest.raises", "plotnine.ggplot", "plotnine.position_jitterdodge", "plotnine.theme", "plotnine.positions.position.position.from_geom", "plotnine.geom_bar", "plotnine.geom_point", "plotnine.geom_jitter" ]
[((520, 553), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234567890)'], {}), '(1234567890)\n', (541, 553), True, 'import numpy as np\n'), ((560, 612), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}"], {}), "({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]})\n", (572, 612), True, 'import pandas as pd\n'), ((977, 1015), 'plotnine.theme', 'theme', ([], {'subplots_adjust': "{'right': 0.85}"}), "(subplots_adjust={'right': 0.85})\n", (982, 1015), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1047, 1099), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]}"], {}), "({'x': [1, 2, 1, 2], 'y': [1, 1, 2, 2]})\n", (1059, 1099), True, 'import pandas as pd\n'), ((2675, 2733), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': ['a', 'b', 'b'], 'y': ['a', 'a', 'b']}"], {}), "({'x': ['a', 'b', 'b'], 'y': ['a', 'a', 'b']})\n", (2687, 2733), True, 'import pandas as pd\n'), ((2964, 3032), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': ['a', 'b', 'b', 'b'], 'y': ['a', 'a', 'b', 'b']}"], {}), "({'x': ['a', 'b', 'b', 'b'], 'y': ['a', 'a', 'b', 'b']})\n", (2976, 3032), True, 'import pandas as pd\n'), ((3066, 3110), 'plotnine.position_dodge', 'position_dodge', ([], {'preserve': '"""single"""', 'width': '(0.9)'}), "(preserve='single', width=0.9)\n", (3080, 3110), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4035, 4082), 'plotnine.position_jitterdodge', 'position_jitterdodge', ([], {'random_state': 'random_state'}), '(random_state=random_state)\n', (4055, 4082), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4314, 4343), 'plotnine.geom_point', 'geom_point', ([], {'position': '"""jitter"""'}), "(position='jitter')\n", (4324, 4343), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4421, 4459), 'plotnine.geom_point', 'geom_point', ([], {'position': '"""position_jitter"""'}), "(position='position_jitter')\n", (4431, 4459), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4653, 4689), 'plotnine.geom_point', 'geom_point', ([], {'position': 'position_jitter'}), '(position=position_jitter)\n', (4663, 4689), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4801, 4833), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [], 'y': []}"], {}), "({'x': [], 'y': []})\n", (4813, 4833), True, 'import pandas as pd\n'), ((1274, 1363), 'plotnine.geom_jitter', 'geom_jitter', ([], {'size': '(10)', 'color': '"""blue"""', 'width': '(0.1)', 'height': '(0.1)', 'random_state': 'random_state'}), "(size=10, color='blue', width=0.1, height=0.1, random_state=\n random_state)\n", (1285, 1363), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1425, 1453), 'pytest.raises', 'pytest.raises', (['PlotnineError'], {}), '(PlotnineError)\n', (1438, 1453), False, 'import pytest\n'), ((3496, 3535), 'plotnine.geom_boxplot', 'geom_boxplot', ([], {'position': '"""dodge2"""', 'size': '(2)'}), "(position='dodge2', size=2)\n", (3508, 3535), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4191, 4229), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)', 'position': 'position'}), '(size=10, position=position)\n', (4201, 4229), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4366, 4390), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4384, 4390), False, 'from plotnine.positions.position import position\n'), ((4482, 4506), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4500, 4506), False, 'from plotnine.positions.position import position\n'), ((4598, 4622), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4616, 4622), False, 'from plotnine.positions.position import position\n'), ((4712, 4736), 'plotnine.positions.position.position.from_geom', 'position.from_geom', (['geom'], {}), '(geom)\n', (4730, 4736), False, 'from plotnine.positions.position import position\n'), ((1202, 1262), 'plotnine.geom_jitter', 'geom_jitter', ([], {'size': '(10)', 'color': '"""red"""', 'random_state': 'random_state'}), "(size=10, color='red', random_state=random_state)\n", (1213, 1262), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1581, 1600), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)'}), '(size=10)\n', (1591, 1600), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1775, 1791), 'plotnine.aes', 'aes', (['"""factor(z)"""'], {}), "('factor(z)')\n", (1778, 1791), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1813, 1834), 'plotnine.aes', 'aes', ([], {'fill': '"""factor(x)"""'}), "(fill='factor(x)')\n", (1816, 1834), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2048, 2058), 'plotnine.ggplot', 'ggplot', (['df'], {}), '(df)\n', (2054, 2058), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2179, 2211), 'plotnine.aes', 'aes', (['"""factor(x)"""', '"""y"""'], {'label': '"""y"""'}), "('factor(x)', 'y', label='y')\n", (2182, 2211), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2364, 2380), 'plotnine.aes', 'aes', (['"""factor(z)"""'], {}), "('factor(z)')\n", (2367, 2380), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2402, 2423), 'plotnine.aes', 'aes', ([], {'fill': '"""factor(x)"""'}), "(fill='factor(x)')\n", (2405, 2423), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2516, 2532), 'plotnine.aes', 'aes', (['"""factor(z)"""'], {}), "('factor(z)')\n", (2519, 2532), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2554, 2575), 'plotnine.aes', 'aes', ([], {'fill': '"""factor(x)"""'}), "(fill='factor(x)')\n", (2557, 2575), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2779, 2797), 'plotnine.aes', 'aes', (['"""x"""'], {'fill': '"""y"""'}), "('x', fill='y')\n", (2782, 2797), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3163, 3183), 'plotnine.geom_bar', 'geom_bar', ([], {'position': 'd'}), '(position=d)\n', (3171, 3183), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3459, 3483), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {'color': '"""c"""'}), "('x', 'y', color='c')\n", (3462, 3483), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3622, 3646), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {'color': '"""c"""'}), "('x', 'y', color='c')\n", (3625, 3646), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3897, 3911), 'numpy.ones', 'np.ones', (['(n * 2)'], {}), '(n * 2)\n', (3904, 3911), True, 'import numpy as np\n'), ((4146, 4179), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)', 'fill': '"""black"""'}), "(size=10, fill='black')\n", (4156, 4179), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4557, 4574), 'plotnine.position_jitter', 'position_jitter', ([], {}), '()\n', (4572, 4574), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4881, 4893), 'plotnine.geom_point', 'geom_point', ([], {}), '()\n', (4891, 4893), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4952, 4999), 'plotnine.aes', 'aes', ([], {'xmin': '"""x"""', 'xmax': '"""x+1"""', 'ymin': '"""y"""', 'ymax': '"""y+1"""'}), "(xmin='x', xmax='x+1', ymin='y', ymax='y+1')\n", (4955, 4999), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1171, 1190), 'plotnine.geom_point', 'geom_point', ([], {'size': '(10)'}), '(size=10)\n', (1181, 1190), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1484, 1501), 'plotnine.position_jitter', 'position_jitter', ([], {}), '()\n', (1499, 1501), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1555, 1568), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {}), "('x', 'y')\n", (1558, 1568), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1674, 1700), 'plotnine.position_nudge', 'position_nudge', (['(0.25)', '(0.25)'], {}), '(0.25, 0.25)\n', (1688, 1700), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2079, 2118), 'plotnine.aes', 'aes', (['"""factor(x)"""', '"""y"""'], {'fill': '"""factor(y)"""'}), "('factor(x)', 'y', fill='factor(y)')\n", (2082, 2118), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2243, 2268), 'plotnine.position_stack', 'position_stack', ([], {'vjust': '(0.5)'}), '(vjust=0.5)\n', (2257, 2268), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((2828, 2861), 'plotnine.position_dodge', 'position_dodge', ([], {'preserve': '"""single"""'}), "(preserve='single')\n", (2842, 2861), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3132, 3150), 'plotnine.aes', 'aes', (['"""x"""'], {'fill': '"""y"""'}), "('x', fill='y')\n", (3135, 3150), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3695, 3729), 'plotnine.position_dodge2', 'position_dodge2', ([], {'preserve': '"""single"""'}), "(preserve='single')\n", (3710, 3729), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3934, 3946), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (3943, 3946), True, 'import numpy as np\n'), ((4104, 4133), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {'fill': '"""letters"""'}), "('x', 'y', fill='letters')\n", (4107, 4133), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((4855, 4868), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {}), "('x', 'y')\n", (4858, 4868), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((1145, 1158), 'plotnine.aes', 'aes', (['"""x"""', '"""y"""'], {}), "('x', 'y')\n", (1148, 1158), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3225, 3244), 'plotnine.after_stat', 'after_stat', (['"""count"""'], {}), "('count')\n", (3235, 3244), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n'), ((3252, 3271), 'plotnine.after_stat', 'after_stat', (['"""count"""'], {}), "('count')\n", (3262, 3271), False, 'from plotnine import ggplot, aes, geom_point, geom_jitter, geom_bar, geom_col, geom_boxplot, geom_text, geom_rect, after_stat, position_dodge, position_dodge2, position_jitter, position_jitterdodge, position_nudge, position_stack, theme\n')]
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function) import warnings from math import exp import numpy as np def fit_factory(discard=1): def fit(x, y): p = np.polyfit(x, y, 1) v = np.polyval(p, x) e = np.abs(y - v) drop_idxs = np.argsort(e)[-discard] return np.polyfit(np.delete(x, drop_idxs), np.delete(y, drop_idxs), 1) return fit def integrate_tolerance_series(odesys, atols, rtols, x, y0, params=(), fit=lambda x, y: np.polyfit(x, y, 1), val=np.polyval, **kwargs): """ Parameters ---------- odesys : :class:`ODESys` atols : array_like Positive, monotonically increasing 1D array. rtols : array_like Positive, monotonically increasing 1D array. x : array_like Passed on to ``odesys.integrate`` for first set of tolerances. (subsequent calls will use xout from first integration). y0 : array_like Passed on to ``odesys.integrate``. params : array_like Passed on to ``odesys.integrate``. fit : callable val : callable \\*\\*kwargs: Passed on to ``odesys.integrate``. Returns ------- result0 : Result results : list of Result instances extra : dict errest : 2D array of error estimates for result0.yout """ if atols is None: atols = rtols if rtols is None: rtols = atols atols, rtols = map(np.asarray, (atols, rtols)) if atols.ndim != 1: raise NotImplementedError("Assuming 1-dimensional array") if atols.shape != rtols.shape: raise ValueError("atols & rtols need to be of same length") if 'atol' in kwargs or 'rtol' in kwargs: raise ValueError("Neither atol nor rtol are allowed in kwargs") if not np.all(atols > 0) or not np.all(rtols > 0): raise ValueError("atols & rtols need to > 0") if not np.all(np.diff(atols) > 0) or not np.all(np.diff(rtols) > 0): raise ValueError("atols & rtols need to obey strict positive monotonicity") if atols.size < 4: raise ValueError("Pointless doing linear interpolation on less than 3 points") if atols.size < 6: warnings.warn("Statistics will be (very) shaky when doing linear " "interpolation on less than 5 points.") ntols = atols.size result0 = odesys.integrate(x, y0, params, atol=atols[0], rtol=rtols[0], **kwargs) results = [odesys.integrate(result0.xout, y0, params, atol=atols[i], rtol=rtols[i], **kwargs) for i in range(1, ntols)] errest = [] for ix, vx in enumerate(result0.xout): diffs = np.array([result0.yout[ix, :] - r.yout[ix, :] for r in results]) tols = np.array([atol + rtol*np.abs(r.yout[ix, :]) for r, atol, rtol in zip([result0] + results, atols, rtols)]) ln_tols = np.log(tols).astype(np.float64) ln_absd = np.log(np.abs(diffs)).astype(np.float64) yerrs = [] for iy in range(result0.yout.shape[-1]): if np.all(diffs[:, iy] == 0): yerrs.append(0) else: p = fit(ln_tols[1:, iy], ln_absd[:, iy]) yerrs.append(exp(val(p, ln_tols[0, iy]))) errest.append(yerrs) return result0, results, {'errest': np.array(errest)}
[ "numpy.abs", "numpy.log", "numpy.polyfit", "numpy.polyval", "numpy.argsort", "numpy.diff", "numpy.array", "warnings.warn", "numpy.delete", "numpy.all" ]
[((210, 229), 'numpy.polyfit', 'np.polyfit', (['x', 'y', '(1)'], {}), '(x, y, 1)\n', (220, 229), True, 'import numpy as np\n'), ((242, 258), 'numpy.polyval', 'np.polyval', (['p', 'x'], {}), '(p, x)\n', (252, 258), True, 'import numpy as np\n'), ((271, 284), 'numpy.abs', 'np.abs', (['(y - v)'], {}), '(y - v)\n', (277, 284), True, 'import numpy as np\n'), ((570, 589), 'numpy.polyfit', 'np.polyfit', (['x', 'y', '(1)'], {}), '(x, y, 1)\n', (580, 589), True, 'import numpy as np\n'), ((2252, 2365), 'warnings.warn', 'warnings.warn', (['"""Statistics will be (very) shaky when doing linear interpolation on less than 5 points."""'], {}), "(\n 'Statistics will be (very) shaky when doing linear interpolation on less than 5 points.'\n )\n", (2265, 2365), False, 'import warnings\n'), ((2704, 2770), 'numpy.array', 'np.array', (['[(result0.yout[ix, :] - r.yout[ix, :]) for r in results]'], {}), '([(result0.yout[ix, :] - r.yout[ix, :]) for r in results])\n', (2712, 2770), True, 'import numpy as np\n'), ((305, 318), 'numpy.argsort', 'np.argsort', (['e'], {}), '(e)\n', (315, 318), True, 'import numpy as np\n'), ((355, 378), 'numpy.delete', 'np.delete', (['x', 'drop_idxs'], {}), '(x, drop_idxs)\n', (364, 378), True, 'import numpy as np\n'), ((406, 429), 'numpy.delete', 'np.delete', (['y', 'drop_idxs'], {}), '(y, drop_idxs)\n', (415, 429), True, 'import numpy as np\n'), ((1856, 1873), 'numpy.all', 'np.all', (['(atols > 0)'], {}), '(atols > 0)\n', (1862, 1873), True, 'import numpy as np\n'), ((1881, 1898), 'numpy.all', 'np.all', (['(rtols > 0)'], {}), '(rtols > 0)\n', (1887, 1898), True, 'import numpy as np\n'), ((3107, 3132), 'numpy.all', 'np.all', (['(diffs[:, iy] == 0)'], {}), '(diffs[:, iy] == 0)\n', (3113, 3132), True, 'import numpy as np\n'), ((3368, 3384), 'numpy.array', 'np.array', (['errest'], {}), '(errest)\n', (3376, 3384), True, 'import numpy as np\n'), ((2933, 2945), 'numpy.log', 'np.log', (['tols'], {}), '(tols)\n', (2939, 2945), True, 'import numpy as np\n'), ((1972, 1986), 'numpy.diff', 'np.diff', (['atols'], {}), '(atols)\n', (1979, 1986), True, 'import numpy as np\n'), ((2006, 2020), 'numpy.diff', 'np.diff', (['rtols'], {}), '(rtols)\n', (2013, 2020), True, 'import numpy as np\n'), ((2990, 3003), 'numpy.abs', 'np.abs', (['diffs'], {}), '(diffs)\n', (2996, 3003), True, 'import numpy as np\n'), ((2806, 2827), 'numpy.abs', 'np.abs', (['r.yout[ix, :]'], {}), '(r.yout[ix, :])\n', (2812, 2827), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import os, numpy as np, argparse def relFit(nu, eps): return 7.33972668 * np.power(eps, 1/6.0) / np.sqrt(nu) def etaFit(nu, eps): return np.power(eps, -0.25) * np.power(nu, 0.75) def lambdaFit(nu, eps): return 5.35507603 * np.power(eps,-1/6.0) * np.sqrt(nu); def runspec(nu, eps, run, cs): if cs is not None: return "HITBND_LES_EXT2pi_EPS%.03f_NU%.04f_CS%.02f_RUN%d" \ % (eps, nu, run, cs) else: return "HITBND_DNS_EXT2pi_EPS%.03f_NU%.04f_RUN%d" \ % (eps, nu, run) def getSettings(nu, eps, cs): if cs is not None: options = '-sgs SSM -cs %f -bpdx 4 -bpdy 4 -bpdz 4 -CFL 0.1 ' % cs else: options = '-bpdx 12 -bpdy 12 -bpdz 12 -CFL 0.02 ' tAnalysis = np.sqrt(nu / eps) return options + '-extentx 6.2831853072 -dump2D 0 -dump3D 0 ' \ '-tdump 1 -BC_x periodic -BC_y periodic -BC_z periodic ' \ '-spectralIC fromFit -initCond HITurbulence -tAnalysis %f ' \ '-compute-dissipation 1 -nprocsx 1 -nprocsy 1 -nprocsz 1 ' \ '-spectralForcing 1 -tend 100 -keepMomentumConstant 1 ' \ '-analysis HIT -nu %f -energyInjectionRate %f ' \ % (tAnalysis, nu, eps) def launchEuler(nu, eps, run): runname = runspec(nu, eps, run) print(runname) tAnalysis = np.sqrt(nu / eps) os.system("export NU=%f \n export EPS=%f \n export TANALYSIS=%f \n " \ "echo $NU $EPS \n ./launchEuler.sh settingsHIT_DNS.sh %s " \ % (nu, eps, tAnalysis, runname) ) def launchDaint(nCases, les): SCRATCH = os.getenv('SCRATCH') HOME = os.getenv('HOME') f = open('HIT_sbatch','w') f.write('#!/bin/bash -l \n') if les: f.write('#SBATCH --job-name=LES_HIT \n') else: f.write('#SBATCH --job-name=DNS_HIT \n') f.write('#SBATCH --time=24:00:00 \n') f.write('#SBATCH --output=out.%j.%a.txt \n') f.write('#SBATCH --error=err.%j.%a.txt \n') f.write('#SBATCH --constraint=gpu \n') f.write('#SBATCH --account=s929 \n') f.write('#SBATCH --array=0-%d \n' % (nCases-1)) #f.write('#SBATCH --partition=normal \n') #f.write('#SBATCH --ntasks-per-node=1 \n') f.write('ind=$SLURM_ARRAY_TASK_ID \n') if les: f.write('RUNDIRN=`./launchLESHIT.py --LES --case ${ind} --printName` \n') f.write('OPTIONS=`./launchLESHIT.py --LES --case ${ind} --printOptions` \n') else: f.write('RUNDIRN=`./launchLESHIT.py --case ${ind} --printName` \n') f.write('OPTIONS=`./launchLESHIT.py --case ${ind} --printOptions` \n') f.write('mkdir -p %s/CubismUP3D/${RUNDIRN} \n' % SCRATCH) f.write('cd %s/CubismUP3D/${RUNDIRN} \n' % SCRATCH) f.write('cp %s/CubismUP_3D/bin/simulation ./exec \n' % HOME) f.write('export OMP_NUM_THREADS=12 \n') f.write('export CRAY_CUDA_MPS=1 \n') f.write('srun --ntasks 1 --ntasks-per-node=1 ./exec ${OPTIONS} \n') f.close() os.system('sbatch HIT_sbatch') if __name__ == '__main__': parser = argparse.ArgumentParser( description = "Compute a target file for RL agent from DNS data.") parser.add_argument('--printName', dest='printName', action='store_true', help="Only print run name.") parser.set_defaults(printName=False) parser.add_argument('--printOptions', dest='printOptions', action='store_true', help="Only print run options.") parser.set_defaults(printOptions=False) parser.add_argument('--launchDaint', dest='launchDaint', action='store_true', help="Only print run options.") parser.set_defaults(launchDaint=False) parser.add_argument('--launchEuler', dest='launchEuler', action='store_true', help="Only print run options.") parser.set_defaults(launchEuler=False) parser.add_argument('--LES', dest='LES', action='store_true', help="Triggers LES modeling.") parser.set_defaults(LES=False) parser.add_argument('--case', type = int, default = -1, help="Simulation case.") args = parser.parse_args() if args.LES: rangeles = np.linspace(0.16, 0.24, 9) else: rangeles = [None] NUS, EPS, RUN, CSS = [], [], [], [] h = 2 * np.pi / 16 / 12 for nu in np.logspace(np.log10(0.002), np.log10(0.02), 16) : for eps in np.logspace(np.log10(0.01), np.log10(2.0), 16) : if relFit(nu, eps) > 100 or relFit(nu, eps) < 20: continue if lambdaFit(nu, eps) > 0.1 * 2 * np.pi: continue if etaFit(nu, eps) > h or etaFit(nu, eps) < h/8: continue for les in rangeles : for i in [0, 1, 2] : NUS,EPS,RUN,CSS = NUS+[nu], EPS+[eps], RUN+[i], CSS+[les] nCases = len(NUS) #print('Defined %d cases' % nCases) if args.launchDaint: launchDaint(nCases, args.LES) if args.case < 0: cases = range(nCases) else: cases = [args.case] for i in cases: if args.printOptions: print( getSettings(NUS[i], EPS[i], CSS[i]) ) if args.printName: print( runspec(NUS[i], EPS[i], RUN[i], CSS[i]) ) if args.launchEuler: launchEuler(NUS[i], EPS[i], RUN[i]) #for nu in [0.002, 0.004, 0.008] : # for eps in [0.02, 0.04, 0.08, 0.16, 0.32] : # tke0 = 2.77578963 * np.power(eps, (2.0/3.0) ) # for scal in [2, 3] : # tke0 = 2.77578963 * np.power(eps, (2.0/3.0) ) # for scal in [2] : # ext = scal * np.pi # os.system("\ # export NU=%f \n\ # export EPS=%f \n\ # export TKE0=%f \n\ # export EXT=%f \n\ # echo $NU $EPS $TKE0 $EXT \n\ # ./launchEuler.sh settingsHIT_DNS.sh HIT_DNS_EXT%dpi_EPS%.02f_NU%.03f" # % (nu, eps, tke0, ext, scal, eps, nu)) #for nu in [0.001, 0.002, 0.004, 0.008, 0.016] : # for eps in [0.02, 0.04, 0.08, 0.16, 0.32, 0.64] :
[ "argparse.ArgumentParser", "numpy.power", "os.system", "numpy.linspace", "numpy.log10", "os.getenv", "numpy.sqrt" ]
[((762, 779), 'numpy.sqrt', 'np.sqrt', (['(nu / eps)'], {}), '(nu / eps)\n', (769, 779), True, 'import os, numpy as np, argparse\n'), ((1307, 1324), 'numpy.sqrt', 'np.sqrt', (['(nu / eps)'], {}), '(nu / eps)\n', (1314, 1324), True, 'import os, numpy as np, argparse\n'), ((1329, 1496), 'os.system', 'os.system', (['("""export NU=%f \n export EPS=%f \n export TANALYSIS=%f \n echo $NU $EPS \n ./launchEuler.sh settingsHIT_DNS.sh %s """\n % (nu, eps, tAnalysis, runname))'], {}), '(\n """export NU=%f \n export EPS=%f \n export TANALYSIS=%f \n echo $NU $EPS \n ./launchEuler.sh settingsHIT_DNS.sh %s """\n % (nu, eps, tAnalysis, runname))\n', (1338, 1496), False, 'import os, numpy as np, argparse\n'), ((1569, 1589), 'os.getenv', 'os.getenv', (['"""SCRATCH"""'], {}), "('SCRATCH')\n", (1578, 1589), False, 'import os, numpy as np, argparse\n'), ((1601, 1618), 'os.getenv', 'os.getenv', (['"""HOME"""'], {}), "('HOME')\n", (1610, 1618), False, 'import os, numpy as np, argparse\n'), ((2900, 2930), 'os.system', 'os.system', (['"""sbatch HIT_sbatch"""'], {}), "('sbatch HIT_sbatch')\n", (2909, 2930), False, 'import os, numpy as np, argparse\n'), ((2972, 3065), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Compute a target file for RL agent from DNS data."""'}), "(description=\n 'Compute a target file for RL agent from DNS data.')\n", (2995, 3065), False, 'import os, numpy as np, argparse\n'), ((124, 135), 'numpy.sqrt', 'np.sqrt', (['nu'], {}), '(nu)\n', (131, 135), True, 'import os, numpy as np, argparse\n'), ((168, 188), 'numpy.power', 'np.power', (['eps', '(-0.25)'], {}), '(eps, -0.25)\n', (176, 188), True, 'import os, numpy as np, argparse\n'), ((191, 209), 'numpy.power', 'np.power', (['nu', '(0.75)'], {}), '(nu, 0.75)\n', (199, 209), True, 'import os, numpy as np, argparse\n'), ((278, 289), 'numpy.sqrt', 'np.sqrt', (['nu'], {}), '(nu)\n', (285, 289), True, 'import os, numpy as np, argparse\n'), ((4009, 4035), 'numpy.linspace', 'np.linspace', (['(0.16)', '(0.24)', '(9)'], {}), '(0.16, 0.24, 9)\n', (4020, 4035), True, 'import os, numpy as np, argparse\n'), ((4159, 4174), 'numpy.log10', 'np.log10', (['(0.002)'], {}), '(0.002)\n', (4167, 4174), True, 'import os, numpy as np, argparse\n'), ((4176, 4190), 'numpy.log10', 'np.log10', (['(0.02)'], {}), '(0.02)\n', (4184, 4190), True, 'import os, numpy as np, argparse\n'), ((101, 123), 'numpy.power', 'np.power', (['eps', '(1 / 6.0)'], {}), '(eps, 1 / 6.0)\n', (109, 123), True, 'import os, numpy as np, argparse\n'), ((255, 278), 'numpy.power', 'np.power', (['eps', '(-1 / 6.0)'], {}), '(eps, -1 / 6.0)\n', (263, 278), True, 'import os, numpy as np, argparse\n'), ((4227, 4241), 'numpy.log10', 'np.log10', (['(0.01)'], {}), '(0.01)\n', (4235, 4241), True, 'import os, numpy as np, argparse\n'), ((4243, 4256), 'numpy.log10', 'np.log10', (['(2.0)'], {}), '(2.0)\n', (4251, 4256), True, 'import os, numpy as np, argparse\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import defaultdict import numpy as np def find_smallest_positive(alist): # find first positive value minpos = -1 for x in alist: if x > 0: minpos = x break if minpos > 0: # find smallest positive value for x in alist: if x > 0 and x < minpos: minpos = x return minpos def rebase_to_smallest_positive(alist): base = find_smallest_positive(alist) if base == -1: return None else: return [x - base for x in alist] def compute_maximum_subarray(score_vector=None): begin_temp = begin = end = 0 start_val = score_vector[0] max_ending_here = max_so_far = start_val for pos, x in enumerate(score_vector[1:], 1): if max_ending_here < 0: max_ending_here = x begin_temp = pos else: max_ending_here = max_ending_here + x if max_ending_here > max_so_far: max_so_far = max_ending_here begin = begin_temp end = pos return begin, end def compute_iterated_maximum_subarray(seq=None, score=None, min_subarray_size=None, max_subarray_size=None, output='minimal', margin=1): original_score = score while True: # find (begin,end) of subarray in each element begin, end = compute_maximum_subarray(score_vector=score) # check that the retrieved subarray is larger than min_subarray_size if end - begin < min_subarray_size - 1: break else: # extract maximum subarray # NOTE: in order to account for border effects we expand on the left and on the right by 'margin' first = max(0, begin - margin) # NOTE: we return + 1 for the rightmost postition to be compliant with the 'one after the end' semantics last = min(len(seq), end + margin + 1) subarray = seq[first: last] subarray_size = len(subarray) if max_subarray_size == -1 or subarray_size <= max_subarray_size: # store data acc = 0 for x in original_score[begin: end + 1]: acc += x if output == 'minimal': subarray = {'subarray_string': ''.join(subarray)} else: subarray = {'subarray_string': ''.join(subarray), 'subarray': subarray, 'begin': first, 'end': last, 'size': subarray_size, 'seq': seq, 'score': acc} yield subarray if subarray_size > max_subarray_size: # if the subarray is too large then rebase the score list, i.e. offset by the smallest positive value score = rebase_to_smallest_positive(score) if score is None: break else: # remove current subarray by zeroing importance values of subarray score[first: last] = [0.0] * subarray_size # iterate after removal of current subarray def extract_sequence_and_score(graph=None): # make dict with positions as keys and lists of ids as values pos_to_ids = defaultdict(list) for u in graph.nodes(): if 'position' not in graph.node[u]: # no position attributes in graph, use the vertex id instead raise Exception('Missing "position" attribute in node:%s %s' % (u, graph.node[u])) else: pos = graph.node[u]['position'] # accumulate all node ids pos_to_ids[pos] += [u] # extract sequence of labels and importances seq = [None] * len(pos_to_ids) score = [0] * len(pos_to_ids) for pos in sorted(pos_to_ids): ids = pos_to_ids[pos] labels = [graph.node[u].get('label', 'N/A') for u in ids] # check that all labels for the same position are identical assert(sum([1 for label in labels if label == labels[0]]) == len(labels) ), 'ERROR: non identical labels referring to same position: %s %s' % (pos, labels) seq[pos] = labels[0] # average all importance score for the same position importances = [graph.node[u].get('importance', 0) for u in ids] score[pos] = np.mean(importances) return seq, score def compute_max_subarrays_sequence(seq=None, score=None, min_subarray_size=None, max_subarray_size=None, output='minimal', margin=1): # extract subarrays for subarray in compute_iterated_maximum_subarray(seq=seq, score=score, min_subarray_size=min_subarray_size, max_subarray_size=max_subarray_size, output=output, margin=margin): yield subarray def compute_max_subarrays(graph=None, min_subarray_size=None, max_subarray_size=None, output='minimal', margin=1): seq, score = extract_sequence_and_score(graph) for subarray in compute_max_subarrays_sequence(seq=seq, score=score, min_subarray_size=min_subarray_size, max_subarray_size=max_subarray_size, output=output, margin=margin): yield subarray
[ "collections.defaultdict", "numpy.mean" ]
[((3311, 3328), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3322, 3328), False, 'from collections import defaultdict\n'), ((4362, 4382), 'numpy.mean', 'np.mean', (['importances'], {}), '(importances)\n', (4369, 4382), True, 'import numpy as np\n')]
from __future__ import print_function from create_tree import * import numpy as np import random DATA_DIR = "../data/" def curriculum_depth(i, num_examples, max_depth): curriculum_max_depth= int((max_depth*i)/num_examples) #print(i, curriculum_max_depth,) if curriculum_max_depth > 0: random_depth = 2 + np.random.randint(curriculum_max_depth) else: random_depth = 2 #print("DEPTH = ", random_depth) return random_depth def copy_t2t(depth): my_tree = generate_data(depth-1) change_nts(my_tree) my_list = convert_to_list_inorder(my_tree,[]) infix_tree = ' '.join(str(e) for e in my_list) #print my_tree return ([infix_tree, infix_tree]) def create_examples(num_examples, max_depth, function): data = [] for i in range(num_examples): depth = max_depth if np.random.randint(2) == 0: depth = curriculum_depth(i, num_examples, max_depth) data.append(function(depth)) return data if __name__ == "__main__": num_examples = 1000 max_depth = 5 data_subset = "train" t2t_operation = "COPY" seed = 0 #NOTE: we need both -- for reproducible trees... #numpy.random.seed(seed) #random.seed(seed) if t2t_operation == "COPY": data = create_examples(num_examples,max_depth, function=copy_t2t) trans = open(DATA_DIR + data_subset + '.copy', 'w') elif t2t_operation == "RELABEL_1": data = create_examples(num_examples,max_depth, function=copy_t2t) trans = open(DATA_DIR + data_subset + '.copy', 'w') orig = open(DATA_DIR + data_subset + '.orig', 'w') for i in range(num_examples): print(data[i][0], file=orig) print(data[i][1], file=trans) #orig_vocab = open(DATA_DIR + 'vocab.train.orig', 'w') #trans_vocab = open(DATA_DIR + 'vocab.train.copy', 'w') #max_num = 256 #operators = ['+','-','*','/'] #for i in range(1, max_num+1): # print >> orig_vocab, i, i # print >> trans_vocab, i, i #for i in range(len(operators)): # print >> orig_vocab, operators[i], max_num+i+1 # print >> trans_vocab, operators[i], max_num+i+1 #print >> orig_vocab, '(', max_num + len(operators) + 1 #print >> orig_vocab, ')', max_num + len(operators) + 2 #print >> trans_vocab, '(', max_num + len(operators) + 1 #print >> trans_vocab, ')', max_num + len(operators) + 2
[ "numpy.random.randint" ]
[((326, 365), 'numpy.random.randint', 'np.random.randint', (['curriculum_max_depth'], {}), '(curriculum_max_depth)\n', (343, 365), True, 'import numpy as np\n'), ((857, 877), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (874, 877), True, 'import numpy as np\n')]
# Network import numpy as np import pandas as pd import simulator import random from igraph import * import matplotlib.pyplot as plt class Network(): """docstring for Network""" def __init__(self, simulator): # Genero un grafo random self.g = Graph.Erdos_Renyi(simulator.num_nodi,simulator.p_link) # Inizializzazione dei vettori degli step temporali e degli stati epidemici self.t_state = np.zeros((simulator.num_nodi,1)) self.e_state = np.zeros((simulator.num_nodi,1),dtype=np.int8) # assegnazione iniziale random dei nodi esposti np.put(self.e_state,np.random.choice(range(simulator.num_nodi*1), simulator.exp0, replace=False),1) self.states = {} # Lista degli stati self.data = pd.DataFrame(columns=["index","days","exposed","infected","severe infected","recovered","dead","susceptible","total"]) # Tabella stati def update_states(self,i,simulator): # Aggiornamento degli stati """Lista degli stati: - Susceptible = 0 - Exposed = 1 - Infected = 2 - Severe Infected = 3 - Recovered = 4 - Dead = 5 """ # Copia degli stati epidemici dagli array degli stati epidemici al dizionario self.states = { 'exposed':np.where(np.copy(self.e_state)==1,self.e_state,0), 'infected':np.where(np.copy(self.e_state)==2,self.e_state,0), 'recovered':np.where(np.copy(self.e_state)==4,self.e_state,0), 'severe_infected':np.where(np.copy(self.e_state)==3,self.e_state,0), 'dead':np.where(np.copy(self.e_state)==5,self.e_state,0), 'susceptible':(simulator.num_nodi - np.count_nonzero(np.copy(self.e_state))), 'total_cases':np.count_nonzero(np.copy(self.e_state)) } # Inserimento della somma di ogni stato epidemico nel dataframe self.data.loc[i,:] = [i, i*simulator.dt_state,np.count_nonzero(self.states['exposed']), np.count_nonzero(self.states['infected']), np.count_nonzero(self.states['severe_infected']), np.count_nonzero(self.states['recovered']), np.count_nonzero(self.states['dead']), self.states['susceptible'], self.states['total_cases']] #print(self.data) def plot(self,i,simulator): # Creazione Grafici plt.clf() ax = plt.gca() self.data.plot(x = 'days', y = 'susceptible', kind = 'line', color = 'cyan', ax = ax) self.data.plot(x = 'days', y = 'exposed', kind = 'line', color = 'yellow', ax = ax) self.data.plot(x = 'days', y = 'infected', kind = 'line', color = 'blue', ax = ax) self.data.plot(x = 'days', y = 'severe infected', kind = 'line', color = 'magenta', ax = ax) self.data.plot(x = 'days', y = 'recovered', kind = 'line', color = 'green', ax = ax) self.data.plot(x = 'days', y = 'dead', kind = 'line', color = 'brown', ax = ax) plt.title('link_p: {}; exp0: {}; t_inc: {}; t_inf: {}\n alpha: {}; beta: {}; gamma: {}'.format(simulator.p_link, simulator.exp0,simulator.t_exp,simulator.t_inf,simulator.alfa,simulator.beta,simulator.gamma)) plt.xlabel('Time (days)') plt.ylabel('Number of nodes') plt.savefig('./plots/states.png') def update_nodes(self,i,simulator): # Aggiornamento dei nodi del network (rimozione dei nodi morti e isolamento dei nodi gravemente infetti) pass def get_new_cases(self,i,simulator): # Nuovi casi (aggiornamento dei nodi che propagano l'epidemia) # Trova i vicini degli esposti, infetti e gravemente infetti # Calcola la probabilità che i vicini siano contaggiati con tasso alfa # Nodi esposti n_exp = np.array(np.nonzero(self.states['exposed'])[0]) # Nodi infetti n_inf = np.array(np.nonzero(self.states['infected'])[0]) # Nodi gravemente infetti n_g_inf = np.array(np.nonzero(self.states['severe_infected'])[0]) # Nodi guariti n_rec = np.array(np.nonzero(self.states['recovered'])[0]) # Nodi morti n_dead = np.array(np.nonzero(self.states['dead'])[0]) new_cases = [] # Ciclo i Nodi esposti, infetti e gravemente infetti e trovo i loro vicini suscettibili che vengono contaggiati con tasso alfa contaggiosi = np.concatenate((n_exp,n_inf,n_g_inf), axis=None) for x in contaggiosi: for n in self.g.neighbors(x): Rand = np.random.random() # Condizione per entrare nei nuovi casi di esposto (Rientra nella prob, non è nella categoria contaggiati, ne in quella guariti ne in quella morti, nemmeno doppione) if (Rand<simulator.alfa) and (n not in contaggiosi) and (n not in n_rec) and (n not in n_dead) and (n not in new_cases): new_cases.append(n) #print(new_cases) return new_cases
[ "pandas.DataFrame", "numpy.count_nonzero", "numpy.concatenate", "numpy.copy", "matplotlib.pyplot.clf", "numpy.zeros", "numpy.nonzero", "numpy.random.random", "matplotlib.pyplot.gca", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((408, 441), 'numpy.zeros', 'np.zeros', (['(simulator.num_nodi, 1)'], {}), '((simulator.num_nodi, 1))\n', (416, 441), True, 'import numpy as np\n'), ((458, 506), 'numpy.zeros', 'np.zeros', (['(simulator.num_nodi, 1)'], {'dtype': 'np.int8'}), '((simulator.num_nodi, 1), dtype=np.int8)\n', (466, 506), True, 'import numpy as np\n'), ((718, 848), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['index', 'days', 'exposed', 'infected', 'severe infected', 'recovered',\n 'dead', 'susceptible', 'total']"}), "(columns=['index', 'days', 'exposed', 'infected',\n 'severe infected', 'recovered', 'dead', 'susceptible', 'total'])\n", (730, 848), True, 'import pandas as pd\n'), ((2123, 2132), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2130, 2132), True, 'import matplotlib.pyplot as plt\n'), ((2141, 2150), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2148, 2150), True, 'import matplotlib.pyplot as plt\n'), ((2888, 2913), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (days)"""'], {}), "('Time (days)')\n", (2898, 2913), True, 'import matplotlib.pyplot as plt\n'), ((2916, 2945), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of nodes"""'], {}), "('Number of nodes')\n", (2926, 2945), True, 'import matplotlib.pyplot as plt\n'), ((2948, 2981), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./plots/states.png"""'], {}), "('./plots/states.png')\n", (2959, 2981), True, 'import matplotlib.pyplot as plt\n'), ((3934, 3984), 'numpy.concatenate', 'np.concatenate', (['(n_exp, n_inf, n_g_inf)'], {'axis': 'None'}), '((n_exp, n_inf, n_g_inf), axis=None)\n', (3948, 3984), True, 'import numpy as np\n'), ((1769, 1809), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['exposed']"], {}), "(self.states['exposed'])\n", (1785, 1809), True, 'import numpy as np\n'), ((1811, 1852), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['infected']"], {}), "(self.states['infected'])\n", (1827, 1852), True, 'import numpy as np\n'), ((1856, 1904), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['severe_infected']"], {}), "(self.states['severe_infected'])\n", (1872, 1904), True, 'import numpy as np\n'), ((1906, 1948), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['recovered']"], {}), "(self.states['recovered'])\n", (1922, 1948), True, 'import numpy as np\n'), ((1952, 1989), 'numpy.count_nonzero', 'np.count_nonzero', (["self.states['dead']"], {}), "(self.states['dead'])\n", (1968, 1989), True, 'import numpy as np\n'), ((1628, 1649), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1635, 1649), True, 'import numpy as np\n'), ((3409, 3443), 'numpy.nonzero', 'np.nonzero', (["self.states['exposed']"], {}), "(self.states['exposed'])\n", (3419, 3443), True, 'import numpy as np\n'), ((3484, 3519), 'numpy.nonzero', 'np.nonzero', (["self.states['infected']"], {}), "(self.states['infected'])\n", (3494, 3519), True, 'import numpy as np\n'), ((3573, 3615), 'numpy.nonzero', 'np.nonzero', (["self.states['severe_infected']"], {}), "(self.states['severe_infected'])\n", (3583, 3615), True, 'import numpy as np\n'), ((3656, 3692), 'numpy.nonzero', 'np.nonzero', (["self.states['recovered']"], {}), "(self.states['recovered'])\n", (3666, 3692), True, 'import numpy as np\n'), ((3732, 3763), 'numpy.nonzero', 'np.nonzero', (["self.states['dead']"], {}), "(self.states['dead'])\n", (3742, 3763), True, 'import numpy as np\n'), ((4052, 4070), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (4068, 4070), True, 'import numpy as np\n'), ((1184, 1205), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1191, 1205), True, 'import numpy as np\n'), ((1252, 1273), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1259, 1273), True, 'import numpy as np\n'), ((1322, 1343), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1329, 1343), True, 'import numpy as np\n'), ((1398, 1419), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1405, 1419), True, 'import numpy as np\n'), ((1463, 1484), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1470, 1484), True, 'import numpy as np\n'), ((1565, 1586), 'numpy.copy', 'np.copy', (['self.e_state'], {}), '(self.e_state)\n', (1572, 1586), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # @Author: wqshen # @Email: <EMAIL> # @Date: 2020/6/10 14:43 # @Last Modified by: wqshen import numpy as np from logzero import logger from .point_stat_base import PointStatBase class ContinuousVariableVerification(PointStatBase): def __init__(self, forecast=None, obs=None, fcsterr=None, group=None): if (forecast is None or obs is None) and fcsterr is None: raise Exception("Initialize failed, check forecast and obs and fcsterr values.") elif forecast is not None and obs is not None and fcsterr is not None: logger.warning("You give forecast, obs and fcsterr, but the fcsterr will be ignored.") fcsterr = None self._available_score = ['N', 'ME', 'ME2', 'MSE', 'RMSE', 'ESTDEV', 'BCMSE', 'MAE', 'IQR', 'MAD', 'EPCT'] if fcsterr is not None: self._error = fcsterr[~np.isnan(fcsterr)] if forecast is None: forecast = fcsterr + obs if obs is None: obs = forecast - fcsterr # Not Available, 'BAGSS', 'ANOM_CORR' self._available_score += ['FBAR', 'OBAR', 'FSTDEV', 'OSTDEV', 'PR_CORR', 'SP_CORR', 'KT_CORR', 'MBIAS', ] super(ContinuousVariableVerification, self).__init__(forecast, obs, group) @property def FBAR(self): """**The sample mean forecast, FBAR**""" return self.mean_forecast(self._f) @staticmethod def mean_forecast(forecast): r"""**The sample mean forecast, FBAR** the sample mean forecast (FBAR) is defined as, .. math:: \bar{f} = \frac{1}{n}\sum_{i=1}^{n}f_i Returns ------ numpy.ndarray, the sample mean forecast (FBAR) """ return np.average(forecast) @property def OBAR(self): """**The sample mean observation, OBAR**""" return self.mean_observation(self._o) @staticmethod def mean_observation(obs): r"""**The sample mean observation, OBAR** the sample mean observation (OBAR) is defined as, .. math:: \bar{o} = \frac{1}{n}\sum_{i=1}^{n}o_i Returns ------- numpy.ndarray, the sample mean observation (OBAR) """ return np.average(obs) @property def FSTDEV(self): """**The forecast standard deviation (FSTDEV)**""" return self.forecast_standard_deviation(self._f) @staticmethod def forecast_standard_deviation(forecast): r"""**The forecast standard deviation (FSTDEV)** The sample variance of the forecasts is defined as .. math:: s^{2}_{f} = \frac{1}{T-1}\sum_{i=1}^{T}(f_i - \bar{f})^2 The forecast standard deviation, FSTDEV, is defined as .. math:: s_{f} = \sqrt{s^{2}_{f}} Returns ------- numpy.ndarray, the forecast standard deviation (FSTDEV) """ return np.std(forecast) @property def OSTDEV(self): r"""**The observed standard deviation (OSTDEV)**""" return self.observation_standard_deviation(self._o) @staticmethod def observation_standard_deviation(obs): r"""**The observed standard deviation (OSTDEV)** The sample variance of the observations is defined as .. math:: s^{2}_{o} = \frac{1}{T-1}\sum_{i=1}^{T}(o_i - \bar{o})^2 The observed standard deviation, OSTDEV, is defined as .. math:: s_{o} = \sqrt{s^{2}_{o}} Returns ------- numpy.ndarray, the observed standard deviation (OSTDEV) """ return np.std(obs) @property def PR_CORR(self): r"""**The Pearson correlation coefficient ( :math:`r` , PR_CORR)**""" return self.pearson_correlation_coefficient(self._f, self._o) @staticmethod def pearson_correlation_coefficient(forecast, obs): r"""**The Pearson correlation coefficient ( :math:`r` , PR_CORR)** The Pearson correlation coefficient, **r**, measures the strength of linear association between the forecasts and observations. The Pearson correlation coefficient is defined as: .. math:: r = \frac{\sum^{T}_{i=1}(f_i - \bar{f})(o_i - \bar{o})}{\sqrt{\sum{(f_i - \bar{f})^2}}\sqrt{\sum{(o_i - \bar{o})^2}}} r can range between -1 and 1; a value of 1 indicates perfect correlation and a value of -1 indicates perfect negative correlation. A value of 0 indicates that the forecasts and observations are not correlated. Returns ------- numpy.ndarray, the Pearson correlation coefficient (PR_CORR) """ return np.corrcoef(forecast, obs)[1, 0] @property def SP_CORR(self): r"""**The Spearman rank correlation coefficient ( :math:`\rho_s` , SP_CORR)**""" return self.spearman_rank_correlation_cofficient(self._f, self._o) @staticmethod def spearman_rank_correlation_cofficient(forecast, obs): r"""**The Spearman rank correlation coefficient ( :math:`\rho_s` , SP_CORR)** The Spearman rank correlation cofficient ( :math:`\rho_s` ) is a robust measure of association that is based on the ranks of the forecast and observed values rather than the actual values. That is, the forecast and observed samples are ordered from smallest to largest and rank values (from 1 to **n**, where **n** is the total number of pairs) are assigned. The pairs of forecast-observed ranks are then used to compute a correlation cofficient, analogous to the Pearson correlation cofficient, **r**. A simpler formulation of the Spearman-rank correlation is based on differences between the each of the pairs of ranks (denoted as ( :math:`d_i` ) ): .. math:: \rho_s = \frac{6}{n(n^2 - 1)}\sum^{n}_{i=1}d^{2}_{i} Like **r**, the Spearman rank correlation coecient ranges between -1 and 1; a value of 1 indicates perfect correlation and a value of -1 indicates perfect negative correlation. A value of 0 indicates that the forecasts and observations are not correlated. Returns ------- numpy.ndarray, the Spearman correlation coefficient (SP_CORR) """ from scipy.stats import spearmanr return spearmanr(forecast, obs) @property def KT_CORR(self): r"""**Kendall's Tau statistic ( :math:`\tau` , KT_CORR)**""" return self.kendall_tau_statistic(self._f, self._o) @staticmethod def kendall_tau_statistic(forecast, obs): r"""**Kendall's Tau statistic ( :math:`\tau` , KT_CORR)** Kendall's Tau statistic ( :math:`\tau` ) is a robust measure of the level of association between the forecast and observation pairs. It is defined as .. math:: \tau = \frac{N_c - N_p}{n(n-1)/2} where NC is the number of "concordant" pairs and ND is the number of "discordant" pairs. Concordant pairs are identied by comparing each pair with all other pairs in the sample; this can be done most easily by ordering all of the ( :math:`f_i, o_i` ) pairs according to :math:`f_i`, in which case the :math:`o_i`, values won't necessarily be in order. The number of concordant matches of a particular pair with other pairs is computed by counting the number of pairs (with larger values) for which the value of oi for the current pair is exceeded (that is, pairs for which the values of **f** and **o** are both larger than the value for the current pair). Once this is done, Nc is computed by summing the counts for all pairs. The total number of possible pairs is ; thus, the number of discordant pairs is . Like **r** and :math:`\rho_s` , Kendall's Tau ( :math:`\tau` ) ranges between -1 and 1; a value of 1 indicates perfect association (concor-dance) and a value of -1 indicates perfect negative association. A value of 0 indicates that the forecasts and observations are not associated. Returns ------- numpy.ndarray, Kendall's Tau statistic ( :math:`\tau` , KT_CORR) """ from scipy.stats import kendalltau return kendalltau(forecast, obs) @property def ME(self): """**The Mean Error (ME)**""" return self.mean_error(self.error) @staticmethod def mean_error(error): r"""**The Mean Error (ME)** The Mean Error, ME, is a measure of overall bias for continuous variables; in particular ME = Bias. It is defined as .. math:: ME = \frac{1}{n}\sum^{n}_{i=1}(f_i - o_i) = \bar{f} - \bar{o} A perfect forecast has ME = 0. Returns ------- numpy.ndarray, The Mean Error (ME) """ return np.average(error) @property def ME2(self): """**The Mean Error Squared** (ME2)""" return self.mean_error_squared(self.error) @staticmethod def mean_error_squared(error): """**The Mean Error Squared** (ME2) The Mean Error Squared, ME2, is provided to give a complete breakdown of MSE in terms of squared Bias plus estimated variance of the error, as detailed below in the section on BCMSE. It is defined as ME2 = ME2. A perfect forecast has ME2 = 0. Returns ------- numpy.ndarray, The Mean Error (ME) """ return np.square(np.average(error)) @property def MBIAS(self): """**Multiplicative bias (MBIAS)**""" return self.multiplicative_bias(self._f, self._o) @staticmethod def multiplicative_bias(forecast, error): r"""**Multiplicative bias (MBIAS)** Multiplicative bias is simply the ratio of the means of the forecasts and the observations: .. math:: MBIAS = \frac{\bar{f}}{\bar{o}} Returns ------- numpy.ndarray, Multiplicative bias (MBIAS) """ return np.average(forecast) / np.average(error) @property def MSE(self): """**Mean-squared error (MSE)**""" return self.mean_squared_error(self.error) @staticmethod def mean_squared_error(error): r"""**Mean-squared error (MSE)** MSE measures the average squared error of the forecasts. Specifically, .. math:: MSE = \frac{1}{n}\sum{(f_i - o_i)^2} Returns ------- numpy.ndarray, Mean-squared error (MSE) """ return np.average(error ** 2) @property def RMSE(self): """**Root-mean-squared error (RMSE)**""" return self.root_mean_squared_error(self.error) @staticmethod def root_mean_squared_error(error): """**Root-mean-squared error (RMSE)** RMSE is simply the square root of the MSE, :math:`RMSE = \sqrt{MSE}` Returns ------- numpy.ndarray, Root-mean-squared error (RMSE) """ return np.sqrt(np.average(error ** 2)) @property def ESTDEV(self): """**Standard deviation of the error** (ESTDEV)""" return self.standard_deviation_of_error(self.error) @staticmethod def standard_deviation_of_error(error): """**Standard deviation of the error** (ESTDEV) Returns ------- numpy.ndaray, Standard deviation of the error """ return np.std(error) @property def BCMSE(self): """**Bias-Corrected MSE (BCMSE)**""" return self.bias_corrected_mse(self.error) @staticmethod def bias_corrected_mse(error): r"""**Bias-Corrected MSE (BCMSE)** MSE and RMSE are strongly impacted by large errors. They also are strongly impacted by large bias (ME) values. MSE and RMSE can range from 0 to infinity. A perfect forecast would have MSE = RMSE = 0. MSE can be re-written as, .. math:: MSE = (\bar{f} - \bar{o})^2 + s^{2}_{f} + s^{2}_{o} -2 s_f s_o r_{fo} where :math:`\bar{f} - \bar{o} = ME` and :math:`s^{2}_{f} + s^{2}_{o} -2 s_f s_o r_{fo}` is the estimated variance of the error, :math:`s^{2}_{fo}` . Thus, :math:`MSE = ME^2 + s^{2}_{f-o}` To understand the behavior of MSE, it is important to examine both of the terms of MSE, rather than examining MSE alone. Moreover, MSE can be strongly influenced by ME, as shown by this decomposition. The standard deviation of the error, :math:`s_{f-o}` , is .. math:: s_{f-o}=\sqrt{s^{2}_{f-o}}=\sqrt{s^{2}_{f} + s^{2}_{o} -2 s_f s_o r_{fo}} Note that the square of the standard deviation of the error (ESTDEV2) is sometimes called the "Bias-corrected MSE" (BCMSE) because it removes the effect of overall bias from the forecast-observation squared differences. Returns ------- numpy.ndarray, Bias-Corrected MSE (BCMSE) """ return np.square(np.std(error)) @property def MAE(self): """**Mean Absolute Error (MAE)**""" return self.mean_absolute_error(self.error) @staticmethod def mean_absolute_error(error): r"""**Mean Absolute Error (MAE)** The Mean Absolute Error (MAE) is defined as :math:`MAE = \frac{1}{n}\sum{|f_i - o_i|}` MAE is less inuenced by large errors and also does not depend on the mean error. A perfect forecast would have MAE = 0. Returns ------- numpy.ndarray, Mean Absolute Error (MAE) """ return np.average(np.abs(error)) @property def IQR(self): """"**Inter Quartile Range of the Errors (IQR)**""" return self.inter_quartile_range_of_errors(self.error) @staticmethod def inter_quartile_range_of_errors(error): r"""**Inter Quartile Range of the Errors (IQR)** The Inter Quartile Range of the Errors (IQR) is the difference between the 75th and 25th percentiles of the errors. It is dened as .. math:: IQR = p_{75} (f_i - o_i) - p_{25}(f_i - o_i) IQR is another estimate of spread, similar to standard error, but is less inuenced by large errors and also does not depend on the mean error. A perfect forecast would have IQR = 0. Returns ------- nupmy.ndarray, Inter Quartile Range of the Errors (IQR) """ return np.percentile(error, 75) - np.percentile(error, 25) @property def MAD(self): """Median Absolute Deviation (MAD)""" return self.median_absolute_deviation(self.error) @staticmethod def median_absolute_deviation(error): """Median Absolute Deviation (MAD) The Median Absolute Deviation (MAD) is defined as :math:`MAD=median|f_i - o_i|` MAD is an estimate of spread, similar to standard error, but is less inuenced by large errors and also does not depend on the mean error. A perfect forecast would have MAD = 0. Returns ------- numpy.ndarray, Median Absolute Deviation (MAD) """ return np.median(np.abs(error)) @property def BAGSS(self): """Bias Adjusted Gilbert Skill Score (BAGSS)""" return self.bias_adjusted_gilbert_skill_score(self._f, self._o) @staticmethod def bias_adjusted_gilbert_skill_score(forecast, obs): """Bias Adjusted Gilbert Skill Score (BAGSS) The Bias Adjusted Gilbert Skill Score (BAGSS) is the Gilbert Skill Score, but with the contingency table counts adjusted to eliminate as much bias in the forecast as possible. For details, see `Brill and Messinger, 2009. <https://www.adv-geosci.net/16/137/2008/>`_ Returns ------- Not implemented numpy.ndarray, Bias Adjusted Gilbert Skill Score (BAGSS) """ return @property def EPCT(self): """Percentiles (0.1, 0.25, 0.5, 0.75, 0.9) of the errors""" return self.percentile_errors(self.error) @staticmethod def percentile_errors(error): """Percentiles of the errors Percentiles of the errors provide more information about the distribution of errors than can be obtained from the mean and standard deviations of the errors. Percentiles are computed by ordering the errors from smallest to largest and computing the rank location of each percentile in the ordering, and matching the rank to the actual value. Percentiles can also be used to create box plots of the errors. The 0.10th, 0.25th, 0.50th, 0.75th, and 0.90th quantile values of the errors are computed. Returns ------- numpy.ndarray, Percentiles of the errors """ quantiles = np.array([0.1, 0.25, 0.5, 0.75, 0.9]) return np.quantile(error, quantiles) @property def ANOM_CORR(self): """The Anomaly correlation coefficient (ANOM_CORR)""" return self.anomaly_correlation_coefficient(self._f, self._o, None) @staticmethod def anomaly_correlation_coefficient(forecast, obs, climate): r"""The Anomaly correlation coefficient (ANOM_CORR) The Anomaly correlation coecient is equivalent to the Pearson correlation coefficient, except that both the forecasts and observations are first adjusted according to a climatology value. The anomaly is the difference between the individual forecast or observation and the typical situation, as measured by a climatology (**c**) of some variety. It measures the strength of linear association between the forecast anomolies and observed anomalies. The Anomaly correlation coefficient is defined as: .. math:: Anomoly Correlation = \frac{\sum{(f_i - c)(o_i - c)}} {\sqrt{\sum{(f_i - c)^2}} \sqrt{\sum{(o_i - c)^2}}} Anomaly correlation can range between -1 and 1; - a value of 1 indicates perfect correlation and - a value of -1 indicates perfect negative correlation. - A value of 0 indicates that the forecast and observed anomalies are not correlated. Returns ------- Not implemented """ return def list_score(self): """list all available score""" return {k: np.round(getattr(self, k), self.round) for k in self._available_score}
[ "numpy.quantile", "numpy.average", "numpy.abs", "numpy.std", "numpy.corrcoef", "scipy.stats.spearmanr", "numpy.isnan", "numpy.percentile", "numpy.array", "logzero.logger.warning", "scipy.stats.kendalltau" ]
[((1751, 1771), 'numpy.average', 'np.average', (['forecast'], {}), '(forecast)\n', (1761, 1771), True, 'import numpy as np\n'), ((2252, 2267), 'numpy.average', 'np.average', (['obs'], {}), '(obs)\n', (2262, 2267), True, 'import numpy as np\n'), ((2936, 2952), 'numpy.std', 'np.std', (['forecast'], {}), '(forecast)\n', (2942, 2952), True, 'import numpy as np\n'), ((3626, 3637), 'numpy.std', 'np.std', (['obs'], {}), '(obs)\n', (3632, 3637), True, 'import numpy as np\n'), ((6365, 6389), 'scipy.stats.spearmanr', 'spearmanr', (['forecast', 'obs'], {}), '(forecast, obs)\n', (6374, 6389), False, 'from scipy.stats import spearmanr\n'), ((8305, 8330), 'scipy.stats.kendalltau', 'kendalltau', (['forecast', 'obs'], {}), '(forecast, obs)\n', (8315, 8330), False, 'from scipy.stats import kendalltau\n'), ((8897, 8914), 'numpy.average', 'np.average', (['error'], {}), '(error)\n', (8907, 8914), True, 'import numpy as np\n'), ((10599, 10621), 'numpy.average', 'np.average', (['(error ** 2)'], {}), '(error ** 2)\n', (10609, 10621), True, 'import numpy as np\n'), ((11480, 11493), 'numpy.std', 'np.std', (['error'], {}), '(error)\n', (11486, 11493), True, 'import numpy as np\n'), ((16891, 16928), 'numpy.array', 'np.array', (['[0.1, 0.25, 0.5, 0.75, 0.9]'], {}), '([0.1, 0.25, 0.5, 0.75, 0.9])\n', (16899, 16928), True, 'import numpy as np\n'), ((16944, 16973), 'numpy.quantile', 'np.quantile', (['error', 'quantiles'], {}), '(error, quantiles)\n', (16955, 16973), True, 'import numpy as np\n'), ((4699, 4725), 'numpy.corrcoef', 'np.corrcoef', (['forecast', 'obs'], {}), '(forecast, obs)\n', (4710, 4725), True, 'import numpy as np\n'), ((9536, 9553), 'numpy.average', 'np.average', (['error'], {}), '(error)\n', (9546, 9553), True, 'import numpy as np\n'), ((10079, 10099), 'numpy.average', 'np.average', (['forecast'], {}), '(forecast)\n', (10089, 10099), True, 'import numpy as np\n'), ((10102, 10119), 'numpy.average', 'np.average', (['error'], {}), '(error)\n', (10112, 10119), True, 'import numpy as np\n'), ((11067, 11089), 'numpy.average', 'np.average', (['(error ** 2)'], {}), '(error ** 2)\n', (11077, 11089), True, 'import numpy as np\n'), ((13060, 13073), 'numpy.std', 'np.std', (['error'], {}), '(error)\n', (13066, 13073), True, 'import numpy as np\n'), ((13656, 13669), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (13662, 13669), True, 'import numpy as np\n'), ((14509, 14533), 'numpy.percentile', 'np.percentile', (['error', '(75)'], {}), '(error, 75)\n', (14522, 14533), True, 'import numpy as np\n'), ((14536, 14560), 'numpy.percentile', 'np.percentile', (['error', '(25)'], {}), '(error, 25)\n', (14549, 14560), True, 'import numpy as np\n'), ((15221, 15234), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (15227, 15234), True, 'import numpy as np\n'), ((584, 675), 'logzero.logger.warning', 'logger.warning', (['"""You give forecast, obs and fcsterr, but the fcsterr will be ignored."""'], {}), "(\n 'You give forecast, obs and fcsterr, but the fcsterr will be ignored.')\n", (598, 675), False, 'from logzero import logger\n'), ((879, 896), 'numpy.isnan', 'np.isnan', (['fcsterr'], {}), '(fcsterr)\n', (887, 896), True, 'import numpy as np\n')]
import numpy as np from scipy.integrate import solve_ivp import matplotlib.pyplot as plt from numpy.random import randint, rand from sir import * def SIR_continuous_reinfected(b,k,time,ii,r): """ Simulates continuous SIR model ii = initial percentage of infected time = Days of simulation b = probability that people getting infectious k = probability that people getting recovered r = reinfected probability returns sol from solve_ivp """ def SIR(t, X): #The main set of equations Y = np.zeros((3)) Y[0] = -b * X[0] * X[2] Y[1] = k * X[2] - r * X[1] Y[2] = b * X[0] * X[2] - (k * X[2]) + r * X[1] return Y t_eval = np.linspace(0, time, time) sol1 = solve_ivp(SIR, [0, time], [1-ii, 0, ii], method='RK45', t_eval=t_eval) # solve the equation return sol1 ## Discrete class Person_reinfection(Person): """ An agent representing a person. By default, a person is susceptible but not infectious. They can become infectious by exposing with disease method. Status: 0 = susceptible 1 = infected 2 = removed """ def __init__(self,startpos=None): self.status = 0 if startpos==None: self.pos = np.random.rand(2) else: self.pos = np.array(startpos) self.reinfection=1 def reinfectionrate(self): return self.reinfection def immunization(self,p): q=self.reinfection-p if q<0: q=0 self.reinfection=q def count_susceptible(pop): """ counts number of susceptible """ return sum(p.is_susceptible() for p in pop) def count_infected(pop): """ counts number of infected """ return sum(p.is_infected() for p in pop) def count_removed(pop): """ counts number of removed """ return sum(p.is_removed() for p in pop) def SIR_discrete_reinfection(N,ii,b,T,k): """ Simulates discrete SIR model N = Total number of people ii = initial percentage of infected b = number of contacts per day T = Days of simulation k = probability that people getting recovered returns list of s,i,r """ pop = [Person_reinfection() for i in range(N)] initial_infection = randint(N,size=np.int(N*ii)) for i in initial_infection: pop[i].infection() counts_susceptible = [count_susceptible(pop)] counts_infected = [count_infected(pop)] counts_removed = [count_removed(pop)] for t in range(T): # update the population for i in range(N): if pop[i].is_infected(): # person i infected all their contacts contacts = randint(N, size=b) for j in contacts: if not pop[j].is_removed(): pop[j].infection() #if rand() < p: # pop[j].infection() if pop[j].is_removed(): if rand()<pop[j].reinfectionrate(): pop[j].infection() if rand()< k: pop[i].remove() pop[i].immunization(rand()) # add to our counts counts_susceptible.append(count_susceptible(pop)) counts_infected.append(count_infected(pop)) counts_removed.append(count_removed(pop)) return np.array([counts_susceptible,counts_infected,counts_removed])
[ "numpy.zeros", "scipy.integrate.solve_ivp", "numpy.random.randint", "numpy.array", "numpy.int", "numpy.linspace", "numpy.random.rand" ]
[((717, 743), 'numpy.linspace', 'np.linspace', (['(0)', 'time', 'time'], {}), '(0, time, time)\n', (728, 743), True, 'import numpy as np\n'), ((755, 827), 'scipy.integrate.solve_ivp', 'solve_ivp', (['SIR', '[0, time]', '[1 - ii, 0, ii]'], {'method': '"""RK45"""', 't_eval': 't_eval'}), "(SIR, [0, time], [1 - ii, 0, ii], method='RK45', t_eval=t_eval)\n", (764, 827), False, 'from scipy.integrate import solve_ivp\n'), ((3439, 3502), 'numpy.array', 'np.array', (['[counts_susceptible, counts_infected, counts_removed]'], {}), '([counts_susceptible, counts_infected, counts_removed])\n', (3447, 3502), True, 'import numpy as np\n'), ((551, 562), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (559, 562), True, 'import numpy as np\n'), ((1284, 1301), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (1298, 1301), True, 'import numpy as np\n'), ((1339, 1357), 'numpy.array', 'np.array', (['startpos'], {}), '(startpos)\n', (1347, 1357), True, 'import numpy as np\n'), ((2329, 2343), 'numpy.int', 'np.int', (['(N * ii)'], {}), '(N * ii)\n', (2335, 2343), True, 'import numpy as np\n'), ((2741, 2759), 'numpy.random.randint', 'randint', (['N'], {'size': 'b'}), '(N, size=b)\n', (2748, 2759), False, 'from numpy.random import randint, rand\n'), ((3144, 3150), 'numpy.random.rand', 'rand', ([], {}), '()\n', (3148, 3150), False, 'from numpy.random import randint, rand\n'), ((3231, 3237), 'numpy.random.rand', 'rand', ([], {}), '()\n', (3235, 3237), False, 'from numpy.random import randint, rand\n'), ((3045, 3051), 'numpy.random.rand', 'rand', ([], {}), '()\n', (3049, 3051), False, 'from numpy.random import randint, rand\n')]
""" ================================================================== Compare LogisticRegression solver with sklearn's liblinear backend ================================================================== """ import time import warnings import numpy as np from numpy.linalg import norm import matplotlib.pyplot as plt from sklearn import linear_model from libsvmdata import fetch_libsvm from celer import LogisticRegression warnings.filterwarnings("ignore", message="Objective did not converge") warnings.filterwarnings("ignore", message="Liblinear failed to converge") X, y = fetch_libsvm("news20.binary") C_min = 2 / norm(X.T @ y, ord=np.inf) C = 20 * C_min def pobj_logreg(w): return np.sum(np.log(1 + np.exp(-y * (X @ w)))) + 1. / C * norm(w, ord=1) pobj_celer = [] t_celer = [] for n_iter in range(10): t0 = time.time() clf = LogisticRegression( C=C, solver="celer-pn", max_iter=n_iter, tol=0).fit(X, y) t_celer.append(time.time() - t0) w_celer = clf.coef_.ravel() pobj_celer.append(pobj_logreg(w_celer)) pobj_celer = np.array(pobj_celer) pobj_libl = [] t_libl = [] for n_iter in np.arange(0, 50, 10): t0 = time.time() clf = linear_model.LogisticRegression( C=C, solver="liblinear", penalty='l1', fit_intercept=False, max_iter=n_iter, random_state=0, tol=1e-10).fit(X, y) t_libl.append(time.time() - t0) w_libl = clf.coef_.ravel() pobj_libl.append(pobj_logreg(w_libl)) pobj_libl = np.array(pobj_libl) p_star = min(pobj_celer.min(), pobj_libl.min()) plt.close("all") fig = plt.figure(figsize=(4, 2), constrained_layout=True) plt.semilogy(t_celer, pobj_celer - p_star, label="Celer-PN") plt.semilogy(t_libl, pobj_libl - p_star, label="liblinear") plt.legend() plt.xlabel("Time (s)") plt.ylabel("objective suboptimality") plt.show(block=False)
[ "celer.LogisticRegression", "matplotlib.pyplot.show", "libsvmdata.fetch_libsvm", "warnings.filterwarnings", "matplotlib.pyplot.close", "matplotlib.pyplot.legend", "time.time", "matplotlib.pyplot.figure", "sklearn.linear_model.LogisticRegression", "numpy.arange", "numpy.array", "numpy.linalg.norm", "numpy.exp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.semilogy", "matplotlib.pyplot.xlabel" ]
[((427, 498), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'message': '"""Objective did not converge"""'}), "('ignore', message='Objective did not converge')\n", (450, 498), False, 'import warnings\n'), ((499, 572), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'message': '"""Liblinear failed to converge"""'}), "('ignore', message='Liblinear failed to converge')\n", (522, 572), False, 'import warnings\n'), ((581, 610), 'libsvmdata.fetch_libsvm', 'fetch_libsvm', (['"""news20.binary"""'], {}), "('news20.binary')\n", (593, 610), False, 'from libsvmdata import fetch_libsvm\n'), ((1066, 1086), 'numpy.array', 'np.array', (['pobj_celer'], {}), '(pobj_celer)\n', (1074, 1086), True, 'import numpy as np\n'), ((1131, 1151), 'numpy.arange', 'np.arange', (['(0)', '(50)', '(10)'], {}), '(0, 50, 10)\n', (1140, 1151), True, 'import numpy as np\n'), ((1469, 1488), 'numpy.array', 'np.array', (['pobj_libl'], {}), '(pobj_libl)\n', (1477, 1488), True, 'import numpy as np\n'), ((1539, 1555), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (1548, 1555), True, 'import matplotlib.pyplot as plt\n'), ((1562, 1613), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 2)', 'constrained_layout': '(True)'}), '(figsize=(4, 2), constrained_layout=True)\n', (1572, 1613), True, 'import matplotlib.pyplot as plt\n'), ((1614, 1674), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['t_celer', '(pobj_celer - p_star)'], {'label': '"""Celer-PN"""'}), "(t_celer, pobj_celer - p_star, label='Celer-PN')\n", (1626, 1674), True, 'import matplotlib.pyplot as plt\n'), ((1675, 1734), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['t_libl', '(pobj_libl - p_star)'], {'label': '"""liblinear"""'}), "(t_libl, pobj_libl - p_star, label='liblinear')\n", (1687, 1734), True, 'import matplotlib.pyplot as plt\n'), ((1735, 1747), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1745, 1747), True, 'import matplotlib.pyplot as plt\n'), ((1748, 1770), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (s)"""'], {}), "('Time (s)')\n", (1758, 1770), True, 'import matplotlib.pyplot as plt\n'), ((1771, 1808), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""objective suboptimality"""'], {}), "('objective suboptimality')\n", (1781, 1808), True, 'import matplotlib.pyplot as plt\n'), ((1809, 1830), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (1817, 1830), True, 'import matplotlib.pyplot as plt\n'), ((624, 649), 'numpy.linalg.norm', 'norm', (['(X.T @ y)'], {'ord': 'np.inf'}), '(X.T @ y, ord=np.inf)\n', (628, 649), False, 'from numpy.linalg import norm\n'), ((831, 842), 'time.time', 'time.time', ([], {}), '()\n', (840, 842), False, 'import time\n'), ((1162, 1173), 'time.time', 'time.time', ([], {}), '()\n', (1171, 1173), False, 'import time\n'), ((750, 764), 'numpy.linalg.norm', 'norm', (['w'], {'ord': '(1)'}), '(w, ord=1)\n', (754, 764), False, 'from numpy.linalg import norm\n'), ((853, 919), 'celer.LogisticRegression', 'LogisticRegression', ([], {'C': 'C', 'solver': '"""celer-pn"""', 'max_iter': 'n_iter', 'tol': '(0)'}), "(C=C, solver='celer-pn', max_iter=n_iter, tol=0)\n", (871, 919), False, 'from celer import LogisticRegression\n'), ((958, 969), 'time.time', 'time.time', ([], {}), '()\n', (967, 969), False, 'import time\n'), ((1184, 1323), 'sklearn.linear_model.LogisticRegression', 'linear_model.LogisticRegression', ([], {'C': 'C', 'solver': '"""liblinear"""', 'penalty': '"""l1"""', 'fit_intercept': '(False)', 'max_iter': 'n_iter', 'random_state': '(0)', 'tol': '(1e-10)'}), "(C=C, solver='liblinear', penalty='l1',\n fit_intercept=False, max_iter=n_iter, random_state=0, tol=1e-10)\n", (1215, 1323), False, 'from sklearn import linear_model\n'), ((1365, 1376), 'time.time', 'time.time', ([], {}), '()\n', (1374, 1376), False, 'import time\n'), ((716, 736), 'numpy.exp', 'np.exp', (['(-y * (X @ w))'], {}), '(-y * (X @ w))\n', (722, 736), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Minibatching utilities.""" import itertools import operator import os import pickle import numpy as np import torch from sklearn.utils import shuffle from torch.autograd import Variable # Change to python3+. # from itertools import zip class DataIterator(object): """Data Iterator.""" @staticmethod def _trim_vocab(vocab, vocab_size): """Discard start, end, pad and unk tokens if already present. Args: vocab(list): Vocabulary. vocab_size(int): The size of the vocabulary. Returns: word2id(list): Word to index list. id2word(list): Index to word list. """ if "<s>" in vocab: del vocab["<s>"] if "<pad>" in vocab: del vocab["<pad>"] if "</s>" in vocab: del vocab["</s>"] if "<unk>" in vocab: del vocab["<unk>"] word2id = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} id2word = {0: "<s>", 1: "<pad>", 2: "</s>", 3: "<unk>"} sorted_word2id = sorted( vocab.items(), key=operator.itemgetter(1), reverse=True ) if vocab_size != -1: sorted_words = [x[0] for x in sorted_word2id[:vocab_size]] else: sorted_words = [x[0] for x in sorted_word2id] for ind, word in enumerate(sorted_words): word2id[word] = ind + 4 for ind, word in enumerate(sorted_words): id2word[ind + 4] = word return word2id, id2word def construct_vocab( self, sentences, vocab_size, lowercase=False, charlevel=False ): """Create vocabulary. Args: sentences(list): The list of sentences. vocab_size(int): The size of vocabulary. lowercase(bool): If lowercase the sentences. charlevel(bool): If need to split the sentence with space. Returns: word2id(list): Word to index list. id2word(list): Index to word list. """ vocab = {} for sentence in sentences: if isinstance(sentence, str): if lowercase: sentence = sentence.lower() if not charlevel: sentence = sentence.split() for word in sentence: if word not in vocab: vocab[word] = 1 else: vocab[word] += 1 word2id, id2word = self._trim_vocab(vocab, vocab_size) return word2id, id2word class BufferedDataIterator(DataIterator): """Multi Parallel corpus data iterator.""" def __init__( self, src, trg, src_vocab_size, trg_vocab_size, tasknames, save_dir, buffer_size=1e6, lowercase=False, seed=0, ): """Initialize params. Args: src(list): source dataset. trg(list): target dataset. src_vocab_size(int): The size of source vocab. trg_vocab_size(int): The size of target vocab. tasknames(list): The list of task names. save_dir(str): The saving dir. buffer_size(float): Buffer size. lowercase(bool): if lowercase the data. """ self.seed = seed self.fname_src = src self.fname_trg = trg self.src_vocab_size = src_vocab_size self.trg_vocab_size = trg_vocab_size self.tasknames = tasknames self.save_dir = save_dir self.buffer_size = buffer_size self.lowercase = lowercase # Open a list of file pointers to all the files. self.f_src = [ open(fname, "r", encoding="utf-8") for fname in self.fname_src ] self.f_trg = [ open(fname, "r", encoding="utf-8") for fname in self.fname_trg ] # Initialize dictionaries that contain sentences & word mapping dicts self.src = [ {"data": [], "word2id": None, "id2word": None} for i in range(len(self.fname_src)) ] self.trg = [ {"data": [], "word2id": None, "id2word": None} for i in range(len(self.fname_trg)) ] self.build_vocab() """Reset file pointers to the start after reading the file to build vocabularies.""" for idx in range(len(self.src)): self._reset_filepointer(idx) for idx in range(len(self.src)): self.fetch_buffer(idx) def _reset_filepointer(self, idx): """Reset file pointer. Args: idx(int): Index used to reset file pointer. """ self.f_src[idx] = open(self.fname_src[idx], "r", encoding="utf-8") self.f_trg[idx] = open(self.fname_trg[idx], "r", encoding="utf-8") def fetch_buffer(self, idx, reset=True): """Fetch sentences from the file into the buffer. Args: idx(int): Index used to fetch the sentences. reset(bool): If need to reset the contents of the current buffer. """ # Reset the contents of the current buffer. if reset: self.src[idx]["data"] = [] self.trg[idx]["data"] = [] # Populate buffer for src, trg in zip(self.f_src[idx], self.f_trg[idx]): if len(self.src[idx]["data"]) == self.buffer_size: break if self.lowercase: self.src[idx]["data"].append(src.lower().split()) self.trg[idx]["data"].append(trg.lower().split()) else: self.src[idx]["data"].append(src.split()) self.trg[idx]["data"].append(trg.split()) # Sort sentences by decreasing length (hacky bucketing) self.src[idx]["data"], self.trg[idx]["data"] = zip( *sorted( zip(self.src[idx]["data"], self.trg[idx]["data"]), key=lambda x: len(x[0]), reverse=True, ) ) """If buffer isn't full after reading the contents of the file, cycle around. """ if len(self.src[idx]["data"]) < self.buffer_size: assert len(self.src[idx]["data"]) == len(self.trg[idx]["data"]) # Cast things to list to avoid issue with calling .append above self.src[idx]["data"] = list(self.src[idx]["data"]) self.trg[idx]["data"] = list(self.trg[idx]["data"]) self._reset_filepointer(idx) self.fetch_buffer(idx, reset=False) def build_vocab(self): """Build a memory efficient vocab.""" # Construct common source vocab. # Check if save directory exists. if not os.path.exists(self.save_dir): raise ValueError("Could not find save dir : %s" % self.save_dir) # Check if a cached vocab file exists. if os.path.exists(os.path.join(self.save_dir, "src_vocab.pkl")): vocab = pickle.load( open(os.path.join(self.save_dir, "src_vocab.pkl"), "rb") ) word2id, id2word = vocab["word2id"], vocab["id2word"] # If not, compute the vocab from scratch and store a cache. else: word2id, id2word = self.construct_vocab( itertools.chain.from_iterable(self.f_src), self.src_vocab_size, self.lowercase, ) pickle.dump( {"word2id": word2id, "id2word": id2word}, open(os.path.join(self.save_dir, "src_vocab.pkl"), "wb"), ) for corpus in self.src: corpus["word2id"], corpus["id2word"] = word2id, id2word # Do the same for the target vocabulary. if os.path.exists(os.path.join(self.save_dir, "trg_vocab.pkl")): vocab = pickle.load( open(os.path.join(self.save_dir, "trg_vocab.pkl"), "rb") ) for idx, (corpus, fname) in enumerate(zip(self.trg, self.f_trg)): word2id, id2word = ( vocab[self.tasknames[idx]]["word2id"], vocab[self.tasknames[idx]]["id2word"], ) corpus["word2id"], corpus["id2word"] = word2id, id2word else: trg_vocab_dump = {} for idx, (corpus, fname) in enumerate(zip(self.trg, self.f_trg)): word2id, id2word = self.construct_vocab( fname, self.trg_vocab_size, self.lowercase ) corpus["word2id"], corpus["id2word"] = word2id, id2word trg_vocab_dump[self.tasknames[idx]] = {} trg_vocab_dump[self.tasknames[idx]]["word2id"] = word2id trg_vocab_dump[self.tasknames[idx]]["id2word"] = id2word pickle.dump( trg_vocab_dump, open(os.path.join(self.save_dir, "trg_vocab.pkl"), "wb"), ) def shuffle_dataset(self, idx): """Shuffle current buffer.""" self.src[idx]["data"], self.trg[idx]["data"] = shuffle( self.src[idx]["data"], self.trg[idx]["data"], random_state=self.seed, ) def get_parallel_minibatch( self, corpus_idx, index, batch_size, max_len_src, max_len_trg ): """Prepare minibatch. Args: corpus_idx(int): Corpus Index. index(int): Index. batch_size(int): Batch Size. max_len_src(int): Max length for resource. max_len_trg(int): Max length ofr target. Returns: minibatch of src-trg pairs(dict). """ src_lines = [ ["<s>"] + line[: max_len_src - 2] + ["</s>"] for line in self.src[corpus_idx]["data"][ index : index + batch_size ] ] trg_lines = [ ["<s>"] + line[: max_len_trg - 2] + ["</s>"] for line in self.trg[corpus_idx]["data"][ index : index + batch_size ] ] """Sort sentences by decreasing length within a minibatch for `torch.nn.utils.packed_padded_sequence`""" src_lens = [len(line) for line in src_lines] sorted_indices = np.argsort(src_lens)[::-1] sorted_src_lines = [src_lines[idx] for idx in sorted_indices] sorted_trg_lines = [trg_lines[idx] for idx in sorted_indices] sorted_src_lens = [len(line) for line in sorted_src_lines] sorted_trg_lens = [len(line) for line in sorted_trg_lines] max_src_len = max(sorted_src_lens) max_trg_len = max(sorted_trg_lens) # Map words to indices input_lines_src = [ [ self.src[corpus_idx]["word2id"][w] if w in self.src[corpus_idx]["word2id"] else self.src[corpus_idx]["word2id"]["<unk>"] for w in line ] + [self.src[corpus_idx]["word2id"]["<pad>"]] * (max_src_len - len(line)) for line in sorted_src_lines ] input_lines_trg = [ [ self.trg[corpus_idx]["word2id"][w] if w in self.trg[corpus_idx]["word2id"] else self.trg[corpus_idx]["word2id"]["<unk>"] for w in line[:-1] ] + [self.trg[corpus_idx]["word2id"]["<pad>"]] * (max_trg_len - len(line)) for line in sorted_trg_lines ] output_lines_trg = [ [ self.trg[corpus_idx]["word2id"][w] if w in self.trg[corpus_idx]["word2id"] else self.trg[corpus_idx]["word2id"]["<unk>"] for w in line[1:] ] + [self.trg[corpus_idx]["word2id"]["<pad>"]] * (max_trg_len - len(line)) for line in sorted_trg_lines ] # Cast lists to torch tensors input_lines_src = Variable(torch.LongTensor(input_lines_src)).cuda() input_lines_trg = Variable(torch.LongTensor(input_lines_trg)).cuda() output_lines_trg = Variable(torch.LongTensor(output_lines_trg)).cuda() sorted_src_lens = ( Variable(torch.LongTensor(sorted_src_lens), volatile=True) .squeeze() .cuda() ) # Return minibatch of src-trg pairs return { "input_src": input_lines_src, "input_trg": input_lines_trg, "output_trg": output_lines_trg, "src_lens": sorted_src_lens, "type": "seq2seq", } class NLIIterator(DataIterator): """Data iterator for tokenized NLI datasets.""" def __init__( self, train, dev, test, vocab_size, lowercase=True, vocab=None, seed=0 ): """Initialize params. Each of train/dev/test is a tab-separate file of the form premise \t hypothesis \t label. Args: train(torch.Tensor): Training dataset. dev(torch.Tensor): Validation dataset. test(torch.Tensor): Testing dataset. vocab_size(int): The size of the vocabulary. lowercase(bool): If lowercase the dataset. vocab(Union[bytes,str): The list of the vocabulary. """ self.seed = seed self.train = train self.dev = dev self.test = test self.vocab_size = vocab_size self.lowercase = lowercase self.vocab = vocab self.train_lines = [ line.strip().lower().split("\t") for line in open(self.train, encoding="utf-8") ] self.dev_lines = [ line.strip().lower().split("\t") for line in open(self.dev, encoding="utf-8") ] self.test_lines = [ line.strip().lower().split("\t") for line in open(self.test, encoding="utf-8") ] if self.vocab is not None: # binary mode doesn't take an encoding argument self.vocab = pickle.load(open(self.vocab, "rb")) self.word2id = self.vocab["word2id"] self.id2word = self.vocab["id2word"] self.vocab_size = len(self.word2id) else: self.word2id, self.id2word = self.construct_vocab( [x[0] for x in self.train_lines] + [x[1] for x in self.train_lines], self.vocab_size, lowercase=self.lowercase, ) # Label text to class mapping. self.text2label = {"entailment": 0, "neutral": 1, "contradiction": 2} self.shuffle_dataset() def shuffle_dataset(self): """Shuffle training data.""" self.train_lines = shuffle(self.train_lines, random_state=self.seed) def get_parallel_minibatch(self, index, batch_size, sent_type="train"): """Prepare minibatch. Args: index(int): The index for line. batch_size(int): Batch size. sent_type(str): Type of dataset. Returns: dict for batch training. """ if sent_type == "train": lines = self.train_lines elif sent_type == "dev": lines = self.dev_lines else: lines = self.test_lines sent1 = [ ["<s>"] + line[0].split() + ["</s>"] for line in lines[index : index + batch_size] ] sent2 = [ ["<s>"] + line[1].split() + ["</s>"] for line in lines[index : index + batch_size] ] labels = [ self.text2label[line[2]] for line in lines[index : index + batch_size] ] sent1_lens = [len(line) for line in sent1] sorted_sent1_indices = np.argsort(sent1_lens)[::-1] sorted_sent1_lines = [sent1[idx] for idx in sorted_sent1_indices] rev_sent1 = np.argsort(sorted_sent1_indices) sent2_lens = [len(line) for line in sent2] sorted_sent2_indices = np.argsort(sent2_lens)[::-1] sorted_sent2_lines = [sent2[idx] for idx in sorted_sent2_indices] rev_sent2 = np.argsort(sorted_sent2_indices) sorted_sent1_lens = [len(line) for line in sorted_sent1_lines] sorted_sent2_lens = [len(line) for line in sorted_sent2_lines] max_sent1_len = max(sorted_sent1_lens) max_sent2_len = max(sorted_sent2_lens) sent1 = [ [ self.word2id[w] if w in self.word2id else self.word2id["<unk>"] for w in line ] + [self.word2id["<pad>"]] * (max_sent1_len - len(line)) for line in sorted_sent1_lines ] sent2 = [ [ self.word2id[w] if w in self.word2id else self.word2id["<unk>"] for w in line ] + [self.word2id["<pad>"]] * (max_sent2_len - len(line)) for line in sorted_sent2_lines ] sent1 = Variable(torch.LongTensor(sent1)).cuda() sent2 = Variable(torch.LongTensor(sent2)).cuda() labels = Variable(torch.LongTensor(labels)).cuda() sent1_lens = ( Variable(torch.LongTensor(sorted_sent1_lens), requires_grad=False) .squeeze() .cuda() ) sent2_lens = ( Variable(torch.LongTensor(sorted_sent2_lens), requires_grad=False) .squeeze() .cuda() ) rev_sent1 = ( Variable(torch.LongTensor(rev_sent1), requires_grad=False) .squeeze() .cuda() ) rev_sent2 = ( Variable(torch.LongTensor(rev_sent2), requires_grad=False) .squeeze() .cuda() ) return { "sent1": sent1, "sent2": sent2, "sent1_lens": sent1_lens, "sent2_lens": sent2_lens, "rev_sent1": rev_sent1, "rev_sent2": rev_sent2, "labels": labels, "type": "nli", } def get_validation_minibatch( src, trg, index, batch_size, src_word2id, trg_word2id ): """Prepare minibatch. Args: src(list): source data. trg(list): target data. index(int): index for the file. batch_size(int): batch size. src_word2id(list): Word to index for source. trg_word2id(list): Word to index for target. Returns: Dict for seq2seq model. """ src_lines = [ ["<s>"] + line + ["</s>"] for line in src[index : index + batch_size] ] trg_lines = [ ["<s>"] + line + ["</s>"] for line in trg[index : index + batch_size] ] src_lens = [len(line) for line in src_lines] sorted_indices = np.argsort(src_lens)[::-1] sorted_src_lines = [src_lines[idx] for idx in sorted_indices] sorted_trg_lines = [trg_lines[idx] for idx in sorted_indices] sorted_src_lens = [len(line) for line in sorted_src_lines] sorted_trg_lens = [len(line) for line in sorted_trg_lines] max_src_len = max(sorted_src_lens) max_trg_len = max(sorted_trg_lens) input_lines_src = [ [src_word2id[w] if w in src else src_word2id["<unk>"] for w in line] + [src_word2id["<pad>"]] * (max_src_len - len(line)) for line in sorted_src_lines ] input_lines_trg = [ [ trg_word2id[w] if w in trg_word2id else trg_word2id["<unk>"] for w in line[:-1] ] + [trg_word2id["<pad>"]] * (max_trg_len - len(line)) for line in sorted_trg_lines ] output_lines_trg = [ [ trg_word2id[w] if w in trg_word2id else trg_word2id["<unk>"] for w in line[1:] ] + [trg_word2id["<pad>"]] * (max_trg_len - len(line)) for line in sorted_trg_lines ] # For pytroch 0.4 with torch.no_grad(): input_lines_src = Variable(torch.LongTensor(input_lines_src)).cuda() input_lines_trg = Variable(torch.LongTensor(input_lines_trg)).cuda() output_lines_trg = Variable(torch.LongTensor(output_lines_trg)).cuda() # sorted_src_lens = Variable( # torch.LongTensor(sorted_src_lens) # ).squeeze().cuda() sorted_src_lens = ( Variable(torch.LongTensor(sorted_src_lens)) .view(len(sorted_src_lens)) .cuda() ) return { "input_src": input_lines_src, "input_trg": input_lines_trg, "output_trg": output_lines_trg, "src_lens": sorted_src_lens, "type": "seq2seq", } def compute_validation_loss( config, model, train_iterator, criterion, task_idx, lowercase=False ): """Compute validation loss for a task. Args: config(dict): configuration list. model(MultitaskModel): model. train_iterator(BufferedDataIterator): Multi Parallel corpus data iterator. criterion(nn.CrossEntropyLoss): criterion function for loss. task_idx(int): Task index. lowercase(bool): If lowercase the data. Returns: float as the mean of the loss. """ val_src = config["data"]["paths"][task_idx]["val_src"] val_trg = config["data"]["paths"][task_idx]["val_trg"] if lowercase: val_src = [ line.strip().lower().split() for line in open(val_src, "r", encoding="utf-8") ] val_trg = [ line.strip().lower().split() for line in open(val_trg, "r", encoding="utf-8") ] else: val_src = [ line.strip().split() for line in open(val_src, "r", encoding="utf-8") ] val_trg = [ line.strip().split() for line in open(val_trg, "r", encoding="utf-8") ] batch_size = config["training"]["batch_size"] losses = [] for j in range(0, len(val_src), batch_size): minibatch = get_validation_minibatch( val_src, val_trg, j, batch_size, train_iterator.src[task_idx]["word2id"], train_iterator.trg[task_idx]["word2id"], ) decoder_logit = model(minibatch, task_idx) loss = criterion( decoder_logit.contiguous().view(-1, decoder_logit.size(2)), minibatch["output_trg"].contiguous().view(-1), ) # losses.append(loss.data[0]) losses.append(loss.item()) return np.mean(losses) # Original source: https://github.com/Maluuba/gensen
[ "itertools.chain.from_iterable", "torch.LongTensor", "os.path.exists", "numpy.argsort", "numpy.mean", "sklearn.utils.shuffle", "torch.no_grad", "os.path.join", "operator.itemgetter" ]
[((22510, 22525), 'numpy.mean', 'np.mean', (['losses'], {}), '(losses)\n', (22517, 22525), True, 'import numpy as np\n'), ((9204, 9281), 'sklearn.utils.shuffle', 'shuffle', (["self.src[idx]['data']", "self.trg[idx]['data']"], {'random_state': 'self.seed'}), "(self.src[idx]['data'], self.trg[idx]['data'], random_state=self.seed)\n", (9211, 9281), False, 'from sklearn.utils import shuffle\n'), ((14833, 14882), 'sklearn.utils.shuffle', 'shuffle', (['self.train_lines'], {'random_state': 'self.seed'}), '(self.train_lines, random_state=self.seed)\n', (14840, 14882), False, 'from sklearn.utils import shuffle\n'), ((15993, 16025), 'numpy.argsort', 'np.argsort', (['sorted_sent1_indices'], {}), '(sorted_sent1_indices)\n', (16003, 16025), True, 'import numpy as np\n'), ((16232, 16264), 'numpy.argsort', 'np.argsort', (['sorted_sent2_indices'], {}), '(sorted_sent2_indices)\n', (16242, 16264), True, 'import numpy as np\n'), ((18831, 18851), 'numpy.argsort', 'np.argsort', (['src_lens'], {}), '(src_lens)\n', (18841, 18851), True, 'import numpy as np\n'), ((19940, 19955), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (19953, 19955), False, 'import torch\n'), ((6862, 6891), 'os.path.exists', 'os.path.exists', (['self.save_dir'], {}), '(self.save_dir)\n', (6876, 6891), False, 'import os\n'), ((7044, 7088), 'os.path.join', 'os.path.join', (['self.save_dir', '"""src_vocab.pkl"""'], {}), "(self.save_dir, 'src_vocab.pkl')\n", (7056, 7088), False, 'import os\n'), ((7901, 7945), 'os.path.join', 'os.path.join', (['self.save_dir', '"""trg_vocab.pkl"""'], {}), "(self.save_dir, 'trg_vocab.pkl')\n", (7913, 7945), False, 'import os\n'), ((10373, 10393), 'numpy.argsort', 'np.argsort', (['src_lens'], {}), '(src_lens)\n', (10383, 10393), True, 'import numpy as np\n'), ((15870, 15892), 'numpy.argsort', 'np.argsort', (['sent1_lens'], {}), '(sent1_lens)\n', (15880, 15892), True, 'import numpy as np\n'), ((16109, 16131), 'numpy.argsort', 'np.argsort', (['sent2_lens'], {}), '(sent2_lens)\n', (16119, 16131), True, 'import numpy as np\n'), ((1228, 1250), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (1247, 1250), False, 'import operator\n'), ((7428, 7469), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['self.f_src'], {}), '(self.f_src)\n', (7457, 7469), False, 'import itertools\n'), ((7145, 7189), 'os.path.join', 'os.path.join', (['self.save_dir', '"""src_vocab.pkl"""'], {}), "(self.save_dir, 'src_vocab.pkl')\n", (7157, 7189), False, 'import os\n'), ((7658, 7702), 'os.path.join', 'os.path.join', (['self.save_dir', '"""src_vocab.pkl"""'], {}), "(self.save_dir, 'src_vocab.pkl')\n", (7670, 7702), False, 'import os\n'), ((8002, 8046), 'os.path.join', 'os.path.join', (['self.save_dir', '"""trg_vocab.pkl"""'], {}), "(self.save_dir, 'trg_vocab.pkl')\n", (8014, 8046), False, 'import os\n'), ((9007, 9051), 'os.path.join', 'os.path.join', (['self.save_dir', '"""trg_vocab.pkl"""'], {}), "(self.save_dir, 'trg_vocab.pkl')\n", (9019, 9051), False, 'import os\n'), ((12090, 12123), 'torch.LongTensor', 'torch.LongTensor', (['input_lines_src'], {}), '(input_lines_src)\n', (12106, 12123), False, 'import torch\n'), ((12167, 12200), 'torch.LongTensor', 'torch.LongTensor', (['input_lines_trg'], {}), '(input_lines_trg)\n', (12183, 12200), False, 'import torch\n'), ((12245, 12279), 'torch.LongTensor', 'torch.LongTensor', (['output_lines_trg'], {}), '(output_lines_trg)\n', (12261, 12279), False, 'import torch\n'), ((17085, 17108), 'torch.LongTensor', 'torch.LongTensor', (['sent1'], {}), '(sent1)\n', (17101, 17108), False, 'import torch\n'), ((17142, 17165), 'torch.LongTensor', 'torch.LongTensor', (['sent2'], {}), '(sent2)\n', (17158, 17165), False, 'import torch\n'), ((17200, 17224), 'torch.LongTensor', 'torch.LongTensor', (['labels'], {}), '(labels)\n', (17216, 17224), False, 'import torch\n'), ((19992, 20025), 'torch.LongTensor', 'torch.LongTensor', (['input_lines_src'], {}), '(input_lines_src)\n', (20008, 20025), False, 'import torch\n'), ((20069, 20102), 'torch.LongTensor', 'torch.LongTensor', (['input_lines_trg'], {}), '(input_lines_trg)\n', (20085, 20102), False, 'import torch\n'), ((20147, 20181), 'torch.LongTensor', 'torch.LongTensor', (['output_lines_trg'], {}), '(output_lines_trg)\n', (20163, 20181), False, 'import torch\n'), ((12337, 12370), 'torch.LongTensor', 'torch.LongTensor', (['sorted_src_lens'], {}), '(sorted_src_lens)\n', (12353, 12370), False, 'import torch\n'), ((17277, 17312), 'torch.LongTensor', 'torch.LongTensor', (['sorted_sent1_lens'], {}), '(sorted_sent1_lens)\n', (17293, 17312), False, 'import torch\n'), ((17432, 17467), 'torch.LongTensor', 'torch.LongTensor', (['sorted_sent2_lens'], {}), '(sorted_sent2_lens)\n', (17448, 17467), False, 'import torch\n'), ((17586, 17613), 'torch.LongTensor', 'torch.LongTensor', (['rev_sent1'], {}), '(rev_sent1)\n', (17602, 17613), False, 'import torch\n'), ((17732, 17759), 'torch.LongTensor', 'torch.LongTensor', (['rev_sent2'], {}), '(rev_sent2)\n', (17748, 17759), False, 'import torch\n'), ((20354, 20387), 'torch.LongTensor', 'torch.LongTensor', (['sorted_src_lens'], {}), '(sorted_src_lens)\n', (20370, 20387), False, 'import torch\n')]