|
import json |
|
import math |
|
import os |
|
from argparse import ArgumentParser |
|
from os import listdir |
|
from os.path import isfile |
|
|
|
def get_args(): |
|
parser = ArgumentParser() |
|
|
|
parser.add_argument('--experiment', type=str, required=True, |
|
help='Experiment we want to download.') |
|
parser.add_argument('--result-dir', type=str, required=True, |
|
help='Result directory containing all results, and to store aggregated json results.') |
|
parser.add_argument('--batch-size', type=int, default=512, |
|
help='Experiment training batch size.') |
|
parser.add_argument('--sequence_length', type=int, default=2048, |
|
help='Experiment training sequence length.') |
|
parser.add_argument('--rampup-batch-size', type=lambda s: tuple(int(item) for item in s.split(',')), default=(32, 32, 2_000_000), |
|
help='Experiment training batch size rampup.') |
|
return parser.parse_args() |
|
|
|
def checkpoint_step_to_tokens(checkpoint_step, args) -> int: |
|
def fn(checkpoint_step) -> int: |
|
if not hasattr(checkpoint_step_to_tokens, "CACHE"): |
|
checkpoint_step_to_tokens.CACHE = {} |
|
|
|
BATCH_SIZE=args.batch_size |
|
SEQUENCE_LENGTH=args.sequence_length |
|
|
|
RAMPUP_BATCH_SIZE = args.rampup_batch_size |
|
|
|
|
|
if not hasattr(checkpoint_step_to_tokens, "RAMPUP_OFFSET"): |
|
initial_batch_size, increment_batch_size, sample_limit_for_rampup = RAMPUP_BATCH_SIZE |
|
number_of_increments = (BATCH_SIZE - initial_batch_size) // increment_batch_size |
|
assert (BATCH_SIZE - initial_batch_size) % increment_batch_size == 0 |
|
|
|
offset_step = 0 |
|
start_sample = 0 |
|
for incr in range(number_of_increments): |
|
batch_size = initial_batch_size + incr * increment_batch_size |
|
end_sample = int(math.ceil((incr + 1) * sample_limit_for_rampup / number_of_increments)) |
|
number_of_step_per_increment = int(math.ceil((end_sample - start_sample) / batch_size)) |
|
checkpoint_step_to_tokens.CACHE.update({ |
|
offset_step + i: (start_sample + i * batch_size) * SEQUENCE_LENGTH |
|
for i in range(number_of_step_per_increment) |
|
}) |
|
offset_step += number_of_step_per_increment |
|
start_sample += number_of_step_per_increment * batch_size |
|
|
|
checkpoint_step_to_tokens.CACHE[offset_step] = start_sample * SEQUENCE_LENGTH |
|
checkpoint_step_to_tokens.RAMPUP_OFFSET = offset_step |
|
|
|
if checkpoint_step in checkpoint_step_to_tokens.CACHE: |
|
return checkpoint_step_to_tokens.CACHE[checkpoint_step] |
|
|
|
number_steps_after_rampup = checkpoint_step - checkpoint_step_to_tokens.RAMPUP_OFFSET |
|
assert number_steps_after_rampup >= 0 |
|
|
|
slope = BATCH_SIZE * SEQUENCE_LENGTH |
|
|
|
checkpoint_step_to_tokens.CACHE[checkpoint_step] = \ |
|
checkpoint_step_to_tokens.CACHE[checkpoint_step_to_tokens.RAMPUP_OFFSET] + \ |
|
slope * number_steps_after_rampup |
|
return checkpoint_step_to_tokens.CACHE[checkpoint_step] |
|
return fn(checkpoint_step) |
|
|
|
def main(): |
|
args = get_args() |
|
result_dir = args.result_dir |
|
experiment = args.experiment |
|
|
|
results_file_per_checkpoint = [ |
|
file |
|
for file in listdir(result_dir) |
|
if isfile(os.path.join(result_dir, file)) and file.startswith(experiment) |
|
] |
|
checkpoint_steps = sorted([int(file.split("_")[-1].split(".json")[0]) for file in results_file_per_checkpoint]) |
|
absolute_paths = [f"{result_dir}/{experiment}_{checkpoint_step}.json" for checkpoint_step in checkpoint_steps] |
|
|
|
tokens = [checkpoint_step_to_tokens(checkpoint_step, args) for checkpoint_step in checkpoint_steps] |
|
|
|
result_json = {} |
|
for absolute_path in absolute_paths: |
|
with open(absolute_path, 'r') as fi: |
|
results = json.load(fi)["results"] |
|
|
|
for task in results: |
|
if task not in result_json: |
|
result_json[task] = {} |
|
|
|
for metric in results[task]: |
|
if metric not in result_json[task]: |
|
result_json[task][metric] = [] |
|
|
|
result_json[task][metric].append(results[task][metric]) |
|
|
|
|
|
for task in result_json: |
|
assert len(tokens) == len(checkpoint_steps) |
|
for metric in result_json[task]: |
|
assert len(result_json[task][metric]) == len(checkpoint_steps) |
|
|
|
output_path = os.path.join(result_dir, f"{experiment}_agg.json") |
|
print(f"Printing results to {output_path}") |
|
with open(output_path, 'w') as fo: |
|
json.dump({"tokens": tokens, "checkpoints": checkpoint_steps, "results": result_json}, fo, indent=2) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|