applied-ai-018's picture
Add files using upload-large-folder tool
804c12f verified
import random
import re
from functools import partial
from collections import Counter
from datasets import load_dataset, Dataset, concatenate_datasets
import numpy as np
import pandas as pd
import tqdm
import yaml
from chat_data_pipeline.pipeline import Pipeline, logger
from chat_data_pipeline import cleaners as cln
from chat_data_pipeline import filters as ftr
from chat_data_pipeline.kenlm_model import KenlmModel
def load_yaml(config_path):
with open(config_path, "r") as f:
return yaml.safe_load(f)
def get_cleaners_from_config(config):
cleaner_funcs = []
cleaners = {}
if config.get("cleaners") is not None:
cleaners = config.get("cleaners", {})
for cleaner, do_clean in cleaners.items():
if do_clean:
cleaner_funcs.append(
getattr(cln, cleaner)
)
return cleaner_funcs
def get_filters_from_config(config):
filter_funcs = []
filters = {}
if config.get("filters") is not None:
filters = config.get("filters", {})
for filter, value in filters.items():
args = {}
if value is not None:
args = value.get("args", {})
filter_func = custom_partial(
getattr(ftr, filter),
**args
)
filter_funcs.append(filter_func)
return filter_funcs
def get_output_text_cleaners():
cleaners = [
cln.normalize_whitespace,
cln.normalize_punctuation,
cln.fix_utf8_encoding,
cln.remove_empty_lines
]
return cleaners
def get_input_text_cleaners():
cleaners = [
cln.normalize_whitespace,
cln.remove_empty_lines
]
return cleaners
def get_output_text_filters(filter_nsfw, filter_perplexity):
filters = [
custom_partial(
ftr.check_word_number,
min_word_threshold=5,
max_word_threshold=128,
),
custom_partial(
ftr.check_completion,
),
custom_partial(
ftr.check_char_repetition,
char_repetition_len=10,
char_repetition_threshold=0.2,
),
custom_partial(
ftr.check_lowercase_ratio,
lowercase_threshold=0.75,
),
]
if filter_nsfw:
filters.append(
custom_partial(
ftr.check_nsfw_words,
flagged_words_threshold=0.025,
),
)
if filter_perplexity:
filters.append(
custom_partial(
ftr.check_perplexity,
kenlm_model=_get_kenlm_model(),
min_perplexity_threshold=300,
max_perplexity_threshold=10_000
)
)
return filters
def _get_kenlm_model():
kenlm_model = KenlmModel.from_pretrained(
model_dataset="wikipedia",
language="en",
lower_case=True,
remove_accents=True,
normalize_numbers=True,
punctuation=1,
)
return kenlm_model
def get_input_text_filters():
filters = [
custom_partial(
ftr.check_lowercase_ratio,
lowercase_threshold=0.55,
),
]
return filters
def get_truncation_filters(splitter_token):
filters = [
custom_partial(
ftr.check_truncation,
splitter_token=splitter_token
),
]
return filters
def custom_partial(func, **args):
partial_func = partial(func, **args)
partial_func.__name__ = func.__name__
partial_func.__module__ = func.__module__
return partial_func
def print_sample_dropped_examples(dataset, new_dataset, num_samples=5):
original_ids = dataset["ids"]
new_ids = new_dataset["ids"]
dropped_ids = set(original_ids) - set(new_ids)
num_samples = min(len(dropped_ids), num_samples)
ids_to_show = random.sample(list(dropped_ids), num_samples)
for id in ids_to_show:
logger.info(f"Dropped sample: {dataset[id]}")
# Pipeline does not add column_name to newly added column with scores
def rename_dry_run_columns(dataset, filter_column_name):
column_names = set(dataset.column_names)
column_names = column_names - {"output_text", "input_text", "summary", "user_id"}
columns_mapping = dict()
for column_name in column_names:
# Check if column already renamed by previous call of this function
if "__" not in column_name:
columns_mapping[column_name] = filter_column_name + "__" + column_name
dataset = dataset.rename_columns(columns_mapping)
return dataset
def get_edit_dataset(dataset_path):
dataset = load_dataset(dataset_path, split="train", keep_in_memory=False)
dataset = prepare_edit_dataset(dataset)
return dataset
def prepare_edit_dataset(dataset):
columns_mapping = {
"model_input": "input_text",
"edited_response": "output_text",
}
dataset = dataset.rename_columns(columns_mapping)
columns_to_keep = list(columns_mapping.values()) + ["user_id", "response"]
columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
dataset = dataset.remove_columns(columns_to_remove)
return dataset
def remove_unused_columns(dataset):
columns_to_keep = ["user_id", "input_text", "output_text"]
columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
dataset = dataset.remove_columns(columns_to_remove)
return dataset
def post_process_output_text(dataset):
df = dataset.to_pandas()
func = lambda x: " " + cln.clean_new_lines(x["output_text"]) + "\n"
df["output_text"] = df.progress_apply(func, axis=1)
dataset = Dataset.from_pandas(df)
return dataset
def sample_datasets(datasets, proportions, target_size):
target_size = min(
[target_size] + [len(dataset) / proportion for proportion, dataset in zip(proportions, datasets)]
)
sampled_datasets = []
for proportion, dataset in zip(proportions, datasets):
sample_proportion = (target_size * proportion) / len(dataset)
sampled_dataset = sample_dataset(dataset, sample_proportion)
sampled_datasets.append(sampled_dataset)
merged_dataset = concatenate_datasets(sampled_datasets)
return merged_dataset
def sample_dataset(dataset, size):
df = dataset.to_pandas()
grouped = df.groupby('user_id')
sample_groups = []
for _, sub_group in tqdm.tqdm(grouped):
sample_groups.append(_get_sample_group(sub_group, size=size))
df_subset = pd.concat(sample_groups)
df_subset = df_subset.drop(['__index_level_0__'], axis=1, errors='ignore')
dataset_subset = Dataset.from_pandas(df_subset)
return dataset_subset
def _get_sample_group(group, size):
# helps with sampling superusers and do not touch small groups
if len(group) >= 5:
num_samples = int(len(group) * size)
group = group.sample(num_samples)
return group
def split_dataset_by_filter(dataset, column_name, filter_func):
dataset_length = len(dataset)
ids = range(dataset_length)
dataset = dataset.add_column("ids", ids)
filtered_dataset = run_filter(dataset, column_name, filter_func, dry_run=False)
difference_dataset = _dataset_subtraction(dataset, filtered_dataset)
filtered_dataset = filtered_dataset.remove_columns("ids")
difference_dataset = difference_dataset.remove_columns("ids")
return filtered_dataset, difference_dataset
def run_filter(dataset, column_name, filter_func, dry_run):
datasources = [
{
"dataset": dataset,
"name": "dataset",
"columns": [column_name],
"filters": [filter_func],
"cleaners": [],
},
]
pipeline = Pipeline(datasources)
pipeline.run(dry_run=dry_run)
filtered_dataset = pipeline.datasources[0]["dataset"]
return filtered_dataset
def run_cleaner(dataset, column_name, cleaners):
datasources = [
{
"dataset": dataset,
"name": "dataset",
"columns": [column_name],
"filters": [],
"cleaners": cleaners,
},
]
pipeline = Pipeline(datasources)
pipeline.run(dry_run=True)
dataset = pipeline.datasources[0]["dataset"]
return dataset
def _dataset_subtraction(minuend_dataset, subtrahend_dataset):
original_ids = minuend_dataset["ids"]
filtered_ids = subtrahend_dataset["ids"]
dropped_ids = set(original_ids) - set(filtered_ids)
original_df = minuend_dataset.to_pandas()
difference_df = original_df[original_df.ids.isin(dropped_ids)]
difference_df = difference_df.drop(['__index_level_0__'], axis=1, errors='ignore')
difference_dataset = Dataset.from_pandas(difference_df)
return difference_dataset
def add_concatenated_column(dataset, column_name, special_token):
dataframe = dataset.to_pandas()
func = lambda x: x["response"] + special_token + x["output_text"]
dataframe[column_name] = dataframe.progress_apply(func, axis=1)
dataset = Dataset.from_pandas(dataframe)
return dataset
def get_words(text):
return re.findall(r'\w+', text.lower())
# Adapted from:
# https://github.com/CarperAI/squeakily/blob/ba81f6e11fab424794d46cbf06d398ea2ad4a7f1/squeakily/filter.py#L81
def get_char_repetition_ratio(doc, char_rep_len):
freq_char_ngrams = _get_frequency_ngrams(
doc, char_rep_len
)
if len(freq_char_ngrams) == 0:
return 0
char_rep_ratio = _calculate_char_repetition_ratio(freq_char_ngrams)
return char_rep_ratio
def _calculate_char_repetition_ratio(freq_char_ngrams):
freq_char_ngrams = list(freq_char_ngrams.values())
freq_char_ngrams = sorted(freq_char_ngrams, reverse=True)
val_one = len([el for el in freq_char_ngrams if el == 1])
num_rep_char_ngrams = min(
int(np.sqrt(len(freq_char_ngrams))),
len(freq_char_ngrams) - val_one,
)
char_rep_ratio = sum(
freq_char_ngrams[:num_rep_char_ngrams]
) / sum(freq_char_ngrams)
return char_rep_ratio
def _get_frequency_ngrams(doc, n):
char_ngrams = [
doc[i: i + n] for i in range(len(doc) - n + 1)
]
freq_char_ngrams = Counter(char_ngrams)
return freq_char_ngrams