peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/evaluate
/evaluator
/text_classification.py
# Copyright 2022 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from numbers import Number | |
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union | |
from datasets import Dataset, load_dataset | |
from typing_extensions import Literal | |
from ..module import EvaluationModule | |
from ..utils.file_utils import add_end_docstrings, add_start_docstrings | |
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator | |
from .utils import DatasetColumnPair | |
if TYPE_CHECKING: | |
from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel | |
TASK_DOCUMENTATION = r""" | |
Examples: | |
```python | |
>>> from evaluate import evaluator | |
>>> from datasets import load_dataset | |
>>> task_evaluator = evaluator("text-classification") | |
>>> data = load_dataset("imdb", split="test[:2]") | |
>>> results = task_evaluator.compute( | |
>>> model_or_pipeline="huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli", | |
>>> data=data, | |
>>> metric="accuracy", | |
>>> label_mapping={"LABEL_0": 0.0, "LABEL_1": 1.0}, | |
>>> strategy="bootstrap", | |
>>> n_resamples=10, | |
>>> random_state=0 | |
>>> ) | |
``` | |
""" | |
class TextClassificationEvaluator(Evaluator): | |
""" | |
Text classification evaluator. | |
This text classification evaluator can currently be loaded from [`evaluator`] using the default task name | |
`text-classification` or with a `"sentiment-analysis"` alias. | |
Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual | |
feature as input and a categorical label as output. | |
""" | |
PIPELINE_KWARGS = {"truncation": True} | |
def __init__(self, task="text-classification", default_metric_name=None): | |
super().__init__(task, default_metric_name=default_metric_name) | |
def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str): | |
if data is None: | |
raise ValueError( | |
"Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." | |
) | |
self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) | |
if second_input_column is not None: | |
self.check_required_columns(data, {"second_input_column": second_input_column}) | |
data = load_dataset(data) if isinstance(data, str) else data | |
return {"references": data[label_column]}, DatasetColumnPair( | |
data, input_column, second_input_column, "text", "text_pair" | |
) | |
def predictions_processor(self, predictions, label_mapping): | |
predictions = [ | |
label_mapping[element["label"]] if label_mapping is not None else element["label"] | |
for element in predictions | |
] | |
return {"predictions": predictions} | |
def compute( | |
self, | |
model_or_pipeline: Union[ | |
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 | |
] = None, | |
data: Union[str, Dataset] = None, | |
subset: Optional[str] = None, | |
split: Optional[str] = None, | |
metric: Union[str, EvaluationModule] = None, | |
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 | |
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 | |
strategy: Literal["simple", "bootstrap"] = "simple", | |
confidence_level: float = 0.95, | |
n_resamples: int = 9999, | |
device: int = None, | |
random_state: Optional[int] = None, | |
input_column: str = "text", | |
second_input_column: Optional[str] = None, | |
label_column: str = "label", | |
label_mapping: Optional[Dict[str, Number]] = None, | |
) -> Tuple[Dict[str, float], Any]: | |
""" | |
input_column (`str`, *optional*, defaults to `"text"`): | |
The name of the column containing the text feature in the dataset specified by `data`. | |
second_input_column (`str`, *optional*, defaults to `None`): | |
The name of the second column containing the text features. This may be useful for classification tasks | |
as MNLI, where two columns are used. | |
label_column (`str`, defaults to `"label"`): | |
The name of the column containing the labels in the dataset specified by `data`. | |
label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): | |
We want to map class labels defined by the model in the pipeline to values consistent with those | |
defined in the `label_column` of the `data` dataset. | |
""" | |
result = {} | |
self.check_for_mismatch_in_device_setup(device, model_or_pipeline) | |
# Prepare inputs | |
data = self.load_data(data=data, subset=subset, split=split) | |
metric_inputs, pipe_inputs = self.prepare_data( | |
data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column | |
) | |
pipe = self.prepare_pipeline( | |
model_or_pipeline=model_or_pipeline, | |
tokenizer=tokenizer, | |
feature_extractor=feature_extractor, | |
device=device, | |
) | |
metric = self.prepare_metric(metric) | |
# Compute predictions | |
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) | |
predictions = self.predictions_processor(predictions, label_mapping) | |
metric_inputs.update(predictions) | |
# Compute metrics from references and predictions | |
metric_results = self.compute_metric( | |
metric=metric, | |
metric_inputs=metric_inputs, | |
strategy=strategy, | |
confidence_level=confidence_level, | |
n_resamples=n_resamples, | |
random_state=random_state, | |
) | |
result.update(metric_results) | |
result.update(perf_results) | |
return result | |