Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_117_mp_rank_02_optim_states.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/compat/__init__.py +197 -0
- venv/lib/python3.10/site-packages/pandas/compat/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/__pycache__/_constants.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/__pycache__/_optional.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/__pycache__/compressors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/__pycache__/pickle_compat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/__pycache__/pyarrow.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/_constants.py +30 -0
- venv/lib/python3.10/site-packages/pandas/compat/_optional.py +168 -0
- venv/lib/python3.10/site-packages/pandas/compat/compressors.py +77 -0
- venv/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py +53 -0
- venv/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/function.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/compat/numpy/function.py +418 -0
- venv/lib/python3.10/site-packages/pandas/compat/pickle_compat.py +262 -0
- venv/lib/python3.10/site-packages/pandas/compat/pyarrow.py +27 -0
- venv/lib/python3.10/site-packages/pandas/io/__init__.py +13 -0
- venv/lib/python3.10/site-packages/pandas/io/_util.py +34 -0
- venv/lib/python3.10/site-packages/pandas/io/api.py +65 -0
- venv/lib/python3.10/site-packages/pandas/io/clipboards.py +197 -0
- venv/lib/python3.10/site-packages/pandas/io/common.py +1267 -0
- venv/lib/python3.10/site-packages/pandas/io/feather_format.py +143 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__init__.py +9 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/_color_data.py +157 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/console.py +94 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/css.py +421 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/csvs.py +330 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/excel.py +962 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/format.py +2058 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/html.py +646 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/info.py +1101 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/printing.py +572 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/string.py +206 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/style.py +0 -0
- venv/lib/python3.10/site-packages/pandas/io/formats/style_render.py +2497 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_117_mp_rank_02_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8634498c78ef5764c676db79ff9d360b4afd7e3a4e6c68c11730145ccfab4d01
|
3 |
+
size 41830340
|
venv/lib/python3.10/site-packages/pandas/compat/__init__.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
compat
|
3 |
+
======
|
4 |
+
|
5 |
+
Cross-compatible functions for different versions of Python.
|
6 |
+
|
7 |
+
Other items:
|
8 |
+
* platform checker
|
9 |
+
"""
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import os
|
13 |
+
import platform
|
14 |
+
import sys
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from pandas.compat._constants import (
|
18 |
+
IS64,
|
19 |
+
ISMUSL,
|
20 |
+
PY310,
|
21 |
+
PY311,
|
22 |
+
PY312,
|
23 |
+
PYPY,
|
24 |
+
)
|
25 |
+
import pandas.compat.compressors
|
26 |
+
from pandas.compat.numpy import is_numpy_dev
|
27 |
+
from pandas.compat.pyarrow import (
|
28 |
+
pa_version_under10p1,
|
29 |
+
pa_version_under11p0,
|
30 |
+
pa_version_under13p0,
|
31 |
+
pa_version_under14p0,
|
32 |
+
pa_version_under14p1,
|
33 |
+
pa_version_under16p0,
|
34 |
+
)
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from pandas._typing import F
|
38 |
+
|
39 |
+
|
40 |
+
def set_function_name(f: F, name: str, cls: type) -> F:
|
41 |
+
"""
|
42 |
+
Bind the name/qualname attributes of the function.
|
43 |
+
"""
|
44 |
+
f.__name__ = name
|
45 |
+
f.__qualname__ = f"{cls.__name__}.{name}"
|
46 |
+
f.__module__ = cls.__module__
|
47 |
+
return f
|
48 |
+
|
49 |
+
|
50 |
+
def is_platform_little_endian() -> bool:
|
51 |
+
"""
|
52 |
+
Checking if the running platform is little endian.
|
53 |
+
|
54 |
+
Returns
|
55 |
+
-------
|
56 |
+
bool
|
57 |
+
True if the running platform is little endian.
|
58 |
+
"""
|
59 |
+
return sys.byteorder == "little"
|
60 |
+
|
61 |
+
|
62 |
+
def is_platform_windows() -> bool:
|
63 |
+
"""
|
64 |
+
Checking if the running platform is windows.
|
65 |
+
|
66 |
+
Returns
|
67 |
+
-------
|
68 |
+
bool
|
69 |
+
True if the running platform is windows.
|
70 |
+
"""
|
71 |
+
return sys.platform in ["win32", "cygwin"]
|
72 |
+
|
73 |
+
|
74 |
+
def is_platform_linux() -> bool:
|
75 |
+
"""
|
76 |
+
Checking if the running platform is linux.
|
77 |
+
|
78 |
+
Returns
|
79 |
+
-------
|
80 |
+
bool
|
81 |
+
True if the running platform is linux.
|
82 |
+
"""
|
83 |
+
return sys.platform == "linux"
|
84 |
+
|
85 |
+
|
86 |
+
def is_platform_mac() -> bool:
|
87 |
+
"""
|
88 |
+
Checking if the running platform is mac.
|
89 |
+
|
90 |
+
Returns
|
91 |
+
-------
|
92 |
+
bool
|
93 |
+
True if the running platform is mac.
|
94 |
+
"""
|
95 |
+
return sys.platform == "darwin"
|
96 |
+
|
97 |
+
|
98 |
+
def is_platform_arm() -> bool:
|
99 |
+
"""
|
100 |
+
Checking if the running platform use ARM architecture.
|
101 |
+
|
102 |
+
Returns
|
103 |
+
-------
|
104 |
+
bool
|
105 |
+
True if the running platform uses ARM architecture.
|
106 |
+
"""
|
107 |
+
return platform.machine() in ("arm64", "aarch64") or platform.machine().startswith(
|
108 |
+
"armv"
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def is_platform_power() -> bool:
|
113 |
+
"""
|
114 |
+
Checking if the running platform use Power architecture.
|
115 |
+
|
116 |
+
Returns
|
117 |
+
-------
|
118 |
+
bool
|
119 |
+
True if the running platform uses ARM architecture.
|
120 |
+
"""
|
121 |
+
return platform.machine() in ("ppc64", "ppc64le")
|
122 |
+
|
123 |
+
|
124 |
+
def is_ci_environment() -> bool:
|
125 |
+
"""
|
126 |
+
Checking if running in a continuous integration environment by checking
|
127 |
+
the PANDAS_CI environment variable.
|
128 |
+
|
129 |
+
Returns
|
130 |
+
-------
|
131 |
+
bool
|
132 |
+
True if the running in a continuous integration environment.
|
133 |
+
"""
|
134 |
+
return os.environ.get("PANDAS_CI", "0") == "1"
|
135 |
+
|
136 |
+
|
137 |
+
def get_lzma_file() -> type[pandas.compat.compressors.LZMAFile]:
|
138 |
+
"""
|
139 |
+
Importing the `LZMAFile` class from the `lzma` module.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
class
|
144 |
+
The `LZMAFile` class from the `lzma` module.
|
145 |
+
|
146 |
+
Raises
|
147 |
+
------
|
148 |
+
RuntimeError
|
149 |
+
If the `lzma` module was not imported correctly, or didn't exist.
|
150 |
+
"""
|
151 |
+
if not pandas.compat.compressors.has_lzma:
|
152 |
+
raise RuntimeError(
|
153 |
+
"lzma module not available. "
|
154 |
+
"A Python re-install with the proper dependencies, "
|
155 |
+
"might be required to solve this issue."
|
156 |
+
)
|
157 |
+
return pandas.compat.compressors.LZMAFile
|
158 |
+
|
159 |
+
|
160 |
+
def get_bz2_file() -> type[pandas.compat.compressors.BZ2File]:
|
161 |
+
"""
|
162 |
+
Importing the `BZ2File` class from the `bz2` module.
|
163 |
+
|
164 |
+
Returns
|
165 |
+
-------
|
166 |
+
class
|
167 |
+
The `BZ2File` class from the `bz2` module.
|
168 |
+
|
169 |
+
Raises
|
170 |
+
------
|
171 |
+
RuntimeError
|
172 |
+
If the `bz2` module was not imported correctly, or didn't exist.
|
173 |
+
"""
|
174 |
+
if not pandas.compat.compressors.has_bz2:
|
175 |
+
raise RuntimeError(
|
176 |
+
"bz2 module not available. "
|
177 |
+
"A Python re-install with the proper dependencies, "
|
178 |
+
"might be required to solve this issue."
|
179 |
+
)
|
180 |
+
return pandas.compat.compressors.BZ2File
|
181 |
+
|
182 |
+
|
183 |
+
__all__ = [
|
184 |
+
"is_numpy_dev",
|
185 |
+
"pa_version_under10p1",
|
186 |
+
"pa_version_under11p0",
|
187 |
+
"pa_version_under13p0",
|
188 |
+
"pa_version_under14p0",
|
189 |
+
"pa_version_under14p1",
|
190 |
+
"pa_version_under16p0",
|
191 |
+
"IS64",
|
192 |
+
"ISMUSL",
|
193 |
+
"PY310",
|
194 |
+
"PY311",
|
195 |
+
"PY312",
|
196 |
+
"PYPY",
|
197 |
+
]
|
venv/lib/python3.10/site-packages/pandas/compat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.72 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/__pycache__/_constants.cpython-310.pyc
ADDED
Binary file (719 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/__pycache__/_optional.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/__pycache__/compressors.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/__pycache__/pickle_compat.cpython-310.pyc
ADDED
Binary file (5.68 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/__pycache__/pyarrow.cpython-310.pyc
ADDED
Binary file (860 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/_constants.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
_constants
|
3 |
+
======
|
4 |
+
|
5 |
+
Constants relevant for the Python implementation.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import platform
|
11 |
+
import sys
|
12 |
+
import sysconfig
|
13 |
+
|
14 |
+
IS64 = sys.maxsize > 2**32
|
15 |
+
|
16 |
+
PY310 = sys.version_info >= (3, 10)
|
17 |
+
PY311 = sys.version_info >= (3, 11)
|
18 |
+
PY312 = sys.version_info >= (3, 12)
|
19 |
+
PYPY = platform.python_implementation() == "PyPy"
|
20 |
+
ISMUSL = "musl" in (sysconfig.get_config_var("HOST_GNU_TYPE") or "")
|
21 |
+
REF_COUNT = 2 if PY311 else 3
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"IS64",
|
25 |
+
"ISMUSL",
|
26 |
+
"PY310",
|
27 |
+
"PY311",
|
28 |
+
"PY312",
|
29 |
+
"PYPY",
|
30 |
+
]
|
venv/lib/python3.10/site-packages/pandas/compat/_optional.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import importlib
|
4 |
+
import sys
|
5 |
+
from typing import TYPE_CHECKING
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
from pandas.util._exceptions import find_stack_level
|
9 |
+
|
10 |
+
from pandas.util.version import Version
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
import types
|
14 |
+
|
15 |
+
# Update install.rst & setup.cfg when updating versions!
|
16 |
+
|
17 |
+
VERSIONS = {
|
18 |
+
"adbc-driver-postgresql": "0.8.0",
|
19 |
+
"adbc-driver-sqlite": "0.8.0",
|
20 |
+
"bs4": "4.11.2",
|
21 |
+
"blosc": "1.21.3",
|
22 |
+
"bottleneck": "1.3.6",
|
23 |
+
"dataframe-api-compat": "0.1.7",
|
24 |
+
"fastparquet": "2022.12.0",
|
25 |
+
"fsspec": "2022.11.0",
|
26 |
+
"html5lib": "1.1",
|
27 |
+
"hypothesis": "6.46.1",
|
28 |
+
"gcsfs": "2022.11.0",
|
29 |
+
"jinja2": "3.1.2",
|
30 |
+
"lxml.etree": "4.9.2",
|
31 |
+
"matplotlib": "3.6.3",
|
32 |
+
"numba": "0.56.4",
|
33 |
+
"numexpr": "2.8.4",
|
34 |
+
"odfpy": "1.4.1",
|
35 |
+
"openpyxl": "3.1.0",
|
36 |
+
"pandas_gbq": "0.19.0",
|
37 |
+
"psycopg2": "2.9.6", # (dt dec pq3 ext lo64)
|
38 |
+
"pymysql": "1.0.2",
|
39 |
+
"pyarrow": "10.0.1",
|
40 |
+
"pyreadstat": "1.2.0",
|
41 |
+
"pytest": "7.3.2",
|
42 |
+
"python-calamine": "0.1.7",
|
43 |
+
"pyxlsb": "1.0.10",
|
44 |
+
"s3fs": "2022.11.0",
|
45 |
+
"scipy": "1.10.0",
|
46 |
+
"sqlalchemy": "2.0.0",
|
47 |
+
"tables": "3.8.0",
|
48 |
+
"tabulate": "0.9.0",
|
49 |
+
"xarray": "2022.12.0",
|
50 |
+
"xlrd": "2.0.1",
|
51 |
+
"xlsxwriter": "3.0.5",
|
52 |
+
"zstandard": "0.19.0",
|
53 |
+
"tzdata": "2022.7",
|
54 |
+
"qtpy": "2.3.0",
|
55 |
+
"pyqt5": "5.15.9",
|
56 |
+
}
|
57 |
+
|
58 |
+
# A mapping from import name to package name (on PyPI) for packages where
|
59 |
+
# these two names are different.
|
60 |
+
|
61 |
+
INSTALL_MAPPING = {
|
62 |
+
"bs4": "beautifulsoup4",
|
63 |
+
"bottleneck": "Bottleneck",
|
64 |
+
"jinja2": "Jinja2",
|
65 |
+
"lxml.etree": "lxml",
|
66 |
+
"odf": "odfpy",
|
67 |
+
"pandas_gbq": "pandas-gbq",
|
68 |
+
"python_calamine": "python-calamine",
|
69 |
+
"sqlalchemy": "SQLAlchemy",
|
70 |
+
"tables": "pytables",
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def get_version(module: types.ModuleType) -> str:
|
75 |
+
version = getattr(module, "__version__", None)
|
76 |
+
|
77 |
+
if version is None:
|
78 |
+
raise ImportError(f"Can't determine version for {module.__name__}")
|
79 |
+
if module.__name__ == "psycopg2":
|
80 |
+
# psycopg2 appends " (dt dec pq3 ext lo64)" to it's version
|
81 |
+
version = version.split()[0]
|
82 |
+
return version
|
83 |
+
|
84 |
+
|
85 |
+
def import_optional_dependency(
|
86 |
+
name: str,
|
87 |
+
extra: str = "",
|
88 |
+
errors: str = "raise",
|
89 |
+
min_version: str | None = None,
|
90 |
+
):
|
91 |
+
"""
|
92 |
+
Import an optional dependency.
|
93 |
+
|
94 |
+
By default, if a dependency is missing an ImportError with a nice
|
95 |
+
message will be raised. If a dependency is present, but too old,
|
96 |
+
we raise.
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
name : str
|
101 |
+
The module name.
|
102 |
+
extra : str
|
103 |
+
Additional text to include in the ImportError message.
|
104 |
+
errors : str {'raise', 'warn', 'ignore'}
|
105 |
+
What to do when a dependency is not found or its version is too old.
|
106 |
+
|
107 |
+
* raise : Raise an ImportError
|
108 |
+
* warn : Only applicable when a module's version is to old.
|
109 |
+
Warns that the version is too old and returns None
|
110 |
+
* ignore: If the module is not installed, return None, otherwise,
|
111 |
+
return the module, even if the version is too old.
|
112 |
+
It's expected that users validate the version locally when
|
113 |
+
using ``errors="ignore"`` (see. ``io/html.py``)
|
114 |
+
min_version : str, default None
|
115 |
+
Specify a minimum version that is different from the global pandas
|
116 |
+
minimum version required.
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
maybe_module : Optional[ModuleType]
|
120 |
+
The imported module, when found and the version is correct.
|
121 |
+
None is returned when the package is not found and `errors`
|
122 |
+
is False, or when the package's version is too old and `errors`
|
123 |
+
is ``'warn'`` or ``'ignore'``.
|
124 |
+
"""
|
125 |
+
assert errors in {"warn", "raise", "ignore"}
|
126 |
+
|
127 |
+
package_name = INSTALL_MAPPING.get(name)
|
128 |
+
install_name = package_name if package_name is not None else name
|
129 |
+
|
130 |
+
msg = (
|
131 |
+
f"Missing optional dependency '{install_name}'. {extra} "
|
132 |
+
f"Use pip or conda to install {install_name}."
|
133 |
+
)
|
134 |
+
try:
|
135 |
+
module = importlib.import_module(name)
|
136 |
+
except ImportError:
|
137 |
+
if errors == "raise":
|
138 |
+
raise ImportError(msg)
|
139 |
+
return None
|
140 |
+
|
141 |
+
# Handle submodules: if we have submodule, grab parent module from sys.modules
|
142 |
+
parent = name.split(".")[0]
|
143 |
+
if parent != name:
|
144 |
+
install_name = parent
|
145 |
+
module_to_get = sys.modules[install_name]
|
146 |
+
else:
|
147 |
+
module_to_get = module
|
148 |
+
minimum_version = min_version if min_version is not None else VERSIONS.get(parent)
|
149 |
+
if minimum_version:
|
150 |
+
version = get_version(module_to_get)
|
151 |
+
if version and Version(version) < Version(minimum_version):
|
152 |
+
msg = (
|
153 |
+
f"Pandas requires version '{minimum_version}' or newer of '{parent}' "
|
154 |
+
f"(version '{version}' currently installed)."
|
155 |
+
)
|
156 |
+
if errors == "warn":
|
157 |
+
warnings.warn(
|
158 |
+
msg,
|
159 |
+
UserWarning,
|
160 |
+
stacklevel=find_stack_level(),
|
161 |
+
)
|
162 |
+
return None
|
163 |
+
elif errors == "raise":
|
164 |
+
raise ImportError(msg)
|
165 |
+
else:
|
166 |
+
return None
|
167 |
+
|
168 |
+
return module
|
venv/lib/python3.10/site-packages/pandas/compat/compressors.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Patched ``BZ2File`` and ``LZMAFile`` to handle pickle protocol 5.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from pickle import PickleBuffer
|
8 |
+
|
9 |
+
from pandas.compat._constants import PY310
|
10 |
+
|
11 |
+
try:
|
12 |
+
import bz2
|
13 |
+
|
14 |
+
has_bz2 = True
|
15 |
+
except ImportError:
|
16 |
+
has_bz2 = False
|
17 |
+
|
18 |
+
try:
|
19 |
+
import lzma
|
20 |
+
|
21 |
+
has_lzma = True
|
22 |
+
except ImportError:
|
23 |
+
has_lzma = False
|
24 |
+
|
25 |
+
|
26 |
+
def flatten_buffer(
|
27 |
+
b: bytes | bytearray | memoryview | PickleBuffer,
|
28 |
+
) -> bytes | bytearray | memoryview:
|
29 |
+
"""
|
30 |
+
Return some 1-D `uint8` typed buffer.
|
31 |
+
|
32 |
+
Coerces anything that does not match that description to one that does
|
33 |
+
without copying if possible (otherwise will copy).
|
34 |
+
"""
|
35 |
+
|
36 |
+
if isinstance(b, (bytes, bytearray)):
|
37 |
+
return b
|
38 |
+
|
39 |
+
if not isinstance(b, PickleBuffer):
|
40 |
+
b = PickleBuffer(b)
|
41 |
+
|
42 |
+
try:
|
43 |
+
# coerce to 1-D `uint8` C-contiguous `memoryview` zero-copy
|
44 |
+
return b.raw()
|
45 |
+
except BufferError:
|
46 |
+
# perform in-memory copy if buffer is not contiguous
|
47 |
+
return memoryview(b).tobytes("A")
|
48 |
+
|
49 |
+
|
50 |
+
if has_bz2:
|
51 |
+
|
52 |
+
class BZ2File(bz2.BZ2File):
|
53 |
+
if not PY310:
|
54 |
+
|
55 |
+
def write(self, b) -> int:
|
56 |
+
# Workaround issue where `bz2.BZ2File` expects `len`
|
57 |
+
# to return the number of bytes in `b` by converting
|
58 |
+
# `b` into something that meets that constraint with
|
59 |
+
# minimal copying.
|
60 |
+
#
|
61 |
+
# Note: This is fixed in Python 3.10.
|
62 |
+
return super().write(flatten_buffer(b))
|
63 |
+
|
64 |
+
|
65 |
+
if has_lzma:
|
66 |
+
|
67 |
+
class LZMAFile(lzma.LZMAFile):
|
68 |
+
if not PY310:
|
69 |
+
|
70 |
+
def write(self, b) -> int:
|
71 |
+
# Workaround issue where `lzma.LZMAFile` expects `len`
|
72 |
+
# to return the number of bytes in `b` by converting
|
73 |
+
# `b` into something that meets that constraint with
|
74 |
+
# minimal copying.
|
75 |
+
#
|
76 |
+
# Note: This is fixed in Python 3.10.
|
77 |
+
return super().write(flatten_buffer(b))
|
venv/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" support numpy compatibility across versions """
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas.util.version import Version
|
7 |
+
|
8 |
+
# numpy versioning
|
9 |
+
_np_version = np.__version__
|
10 |
+
_nlv = Version(_np_version)
|
11 |
+
np_version_lt1p23 = _nlv < Version("1.23")
|
12 |
+
np_version_gte1p24 = _nlv >= Version("1.24")
|
13 |
+
np_version_gte1p24p3 = _nlv >= Version("1.24.3")
|
14 |
+
np_version_gte1p25 = _nlv >= Version("1.25")
|
15 |
+
np_version_gt2 = _nlv >= Version("2.0.0.dev0")
|
16 |
+
is_numpy_dev = _nlv.dev is not None
|
17 |
+
_min_numpy_ver = "1.22.4"
|
18 |
+
|
19 |
+
|
20 |
+
if _nlv < Version(_min_numpy_ver):
|
21 |
+
raise ImportError(
|
22 |
+
f"this version of pandas is incompatible with numpy < {_min_numpy_ver}\n"
|
23 |
+
f"your numpy version is {_np_version}.\n"
|
24 |
+
f"Please upgrade numpy to >= {_min_numpy_ver} to use this pandas version"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
np_long: type
|
29 |
+
np_ulong: type
|
30 |
+
|
31 |
+
if np_version_gt2:
|
32 |
+
try:
|
33 |
+
with warnings.catch_warnings():
|
34 |
+
warnings.filterwarnings(
|
35 |
+
"ignore",
|
36 |
+
r".*In the future `np\.long` will be defined as.*",
|
37 |
+
FutureWarning,
|
38 |
+
)
|
39 |
+
np_long = np.long # type: ignore[attr-defined]
|
40 |
+
np_ulong = np.ulong # type: ignore[attr-defined]
|
41 |
+
except AttributeError:
|
42 |
+
np_long = np.int_
|
43 |
+
np_ulong = np.uint
|
44 |
+
else:
|
45 |
+
np_long = np.int_
|
46 |
+
np_ulong = np.uint
|
47 |
+
|
48 |
+
|
49 |
+
__all__ = [
|
50 |
+
"np",
|
51 |
+
"_np_version",
|
52 |
+
"is_numpy_dev",
|
53 |
+
]
|
venv/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.27 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/function.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/compat/numpy/function.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
For compatibility with numpy libraries, pandas functions or methods have to
|
3 |
+
accept '*args' and '**kwargs' parameters to accommodate numpy arguments that
|
4 |
+
are not actually used or respected in the pandas implementation.
|
5 |
+
|
6 |
+
To ensure that users do not abuse these parameters, validation is performed in
|
7 |
+
'validators.py' to make sure that any extra parameters passed correspond ONLY
|
8 |
+
to those in the numpy signature. Part of that validation includes whether or
|
9 |
+
not the user attempted to pass in non-default values for these extraneous
|
10 |
+
parameters. As we want to discourage users from relying on these parameters
|
11 |
+
when calling the pandas implementation, we want them only to pass in the
|
12 |
+
default values for these parameters.
|
13 |
+
|
14 |
+
This module provides a set of commonly used default arguments for functions and
|
15 |
+
methods that are spread throughout the codebase. This module will make it
|
16 |
+
easier to adjust to future upstream changes in the analogous numpy signatures.
|
17 |
+
"""
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import (
|
21 |
+
TYPE_CHECKING,
|
22 |
+
Any,
|
23 |
+
TypeVar,
|
24 |
+
cast,
|
25 |
+
overload,
|
26 |
+
)
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
from numpy import ndarray
|
30 |
+
|
31 |
+
from pandas._libs.lib import (
|
32 |
+
is_bool,
|
33 |
+
is_integer,
|
34 |
+
)
|
35 |
+
from pandas.errors import UnsupportedFunctionCall
|
36 |
+
from pandas.util._validators import (
|
37 |
+
validate_args,
|
38 |
+
validate_args_and_kwargs,
|
39 |
+
validate_kwargs,
|
40 |
+
)
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from pandas._typing import (
|
44 |
+
Axis,
|
45 |
+
AxisInt,
|
46 |
+
)
|
47 |
+
|
48 |
+
AxisNoneT = TypeVar("AxisNoneT", Axis, None)
|
49 |
+
|
50 |
+
|
51 |
+
class CompatValidator:
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
defaults,
|
55 |
+
fname=None,
|
56 |
+
method: str | None = None,
|
57 |
+
max_fname_arg_count=None,
|
58 |
+
) -> None:
|
59 |
+
self.fname = fname
|
60 |
+
self.method = method
|
61 |
+
self.defaults = defaults
|
62 |
+
self.max_fname_arg_count = max_fname_arg_count
|
63 |
+
|
64 |
+
def __call__(
|
65 |
+
self,
|
66 |
+
args,
|
67 |
+
kwargs,
|
68 |
+
fname=None,
|
69 |
+
max_fname_arg_count=None,
|
70 |
+
method: str | None = None,
|
71 |
+
) -> None:
|
72 |
+
if not args and not kwargs:
|
73 |
+
return None
|
74 |
+
|
75 |
+
fname = self.fname if fname is None else fname
|
76 |
+
max_fname_arg_count = (
|
77 |
+
self.max_fname_arg_count
|
78 |
+
if max_fname_arg_count is None
|
79 |
+
else max_fname_arg_count
|
80 |
+
)
|
81 |
+
method = self.method if method is None else method
|
82 |
+
|
83 |
+
if method == "args":
|
84 |
+
validate_args(fname, args, max_fname_arg_count, self.defaults)
|
85 |
+
elif method == "kwargs":
|
86 |
+
validate_kwargs(fname, kwargs, self.defaults)
|
87 |
+
elif method == "both":
|
88 |
+
validate_args_and_kwargs(
|
89 |
+
fname, args, kwargs, max_fname_arg_count, self.defaults
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
raise ValueError(f"invalid validation method '{method}'")
|
93 |
+
|
94 |
+
|
95 |
+
ARGMINMAX_DEFAULTS = {"out": None}
|
96 |
+
validate_argmin = CompatValidator(
|
97 |
+
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
|
98 |
+
)
|
99 |
+
validate_argmax = CompatValidator(
|
100 |
+
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
def process_skipna(skipna: bool | ndarray | None, args) -> tuple[bool, Any]:
|
105 |
+
if isinstance(skipna, ndarray) or skipna is None:
|
106 |
+
args = (skipna,) + args
|
107 |
+
skipna = True
|
108 |
+
|
109 |
+
return skipna, args
|
110 |
+
|
111 |
+
|
112 |
+
def validate_argmin_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
|
113 |
+
"""
|
114 |
+
If 'Series.argmin' is called via the 'numpy' library, the third parameter
|
115 |
+
in its signature is 'out', which takes either an ndarray or 'None', so
|
116 |
+
check if the 'skipna' parameter is either an instance of ndarray or is
|
117 |
+
None, since 'skipna' itself should be a boolean
|
118 |
+
"""
|
119 |
+
skipna, args = process_skipna(skipna, args)
|
120 |
+
validate_argmin(args, kwargs)
|
121 |
+
return skipna
|
122 |
+
|
123 |
+
|
124 |
+
def validate_argmax_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
|
125 |
+
"""
|
126 |
+
If 'Series.argmax' is called via the 'numpy' library, the third parameter
|
127 |
+
in its signature is 'out', which takes either an ndarray or 'None', so
|
128 |
+
check if the 'skipna' parameter is either an instance of ndarray or is
|
129 |
+
None, since 'skipna' itself should be a boolean
|
130 |
+
"""
|
131 |
+
skipna, args = process_skipna(skipna, args)
|
132 |
+
validate_argmax(args, kwargs)
|
133 |
+
return skipna
|
134 |
+
|
135 |
+
|
136 |
+
ARGSORT_DEFAULTS: dict[str, int | str | None] = {}
|
137 |
+
ARGSORT_DEFAULTS["axis"] = -1
|
138 |
+
ARGSORT_DEFAULTS["kind"] = "quicksort"
|
139 |
+
ARGSORT_DEFAULTS["order"] = None
|
140 |
+
ARGSORT_DEFAULTS["kind"] = None
|
141 |
+
ARGSORT_DEFAULTS["stable"] = None
|
142 |
+
|
143 |
+
|
144 |
+
validate_argsort = CompatValidator(
|
145 |
+
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
|
146 |
+
)
|
147 |
+
|
148 |
+
# two different signatures of argsort, this second validation for when the
|
149 |
+
# `kind` param is supported
|
150 |
+
ARGSORT_DEFAULTS_KIND: dict[str, int | None] = {}
|
151 |
+
ARGSORT_DEFAULTS_KIND["axis"] = -1
|
152 |
+
ARGSORT_DEFAULTS_KIND["order"] = None
|
153 |
+
ARGSORT_DEFAULTS_KIND["stable"] = None
|
154 |
+
validate_argsort_kind = CompatValidator(
|
155 |
+
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
def validate_argsort_with_ascending(ascending: bool | int | None, args, kwargs) -> bool:
|
160 |
+
"""
|
161 |
+
If 'Categorical.argsort' is called via the 'numpy' library, the first
|
162 |
+
parameter in its signature is 'axis', which takes either an integer or
|
163 |
+
'None', so check if the 'ascending' parameter has either integer type or is
|
164 |
+
None, since 'ascending' itself should be a boolean
|
165 |
+
"""
|
166 |
+
if is_integer(ascending) or ascending is None:
|
167 |
+
args = (ascending,) + args
|
168 |
+
ascending = True
|
169 |
+
|
170 |
+
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
|
171 |
+
ascending = cast(bool, ascending)
|
172 |
+
return ascending
|
173 |
+
|
174 |
+
|
175 |
+
CLIP_DEFAULTS: dict[str, Any] = {"out": None}
|
176 |
+
validate_clip = CompatValidator(
|
177 |
+
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
@overload
|
182 |
+
def validate_clip_with_axis(axis: ndarray, args, kwargs) -> None:
|
183 |
+
...
|
184 |
+
|
185 |
+
|
186 |
+
@overload
|
187 |
+
def validate_clip_with_axis(axis: AxisNoneT, args, kwargs) -> AxisNoneT:
|
188 |
+
...
|
189 |
+
|
190 |
+
|
191 |
+
def validate_clip_with_axis(
|
192 |
+
axis: ndarray | AxisNoneT, args, kwargs
|
193 |
+
) -> AxisNoneT | None:
|
194 |
+
"""
|
195 |
+
If 'NDFrame.clip' is called via the numpy library, the third parameter in
|
196 |
+
its signature is 'out', which can takes an ndarray, so check if the 'axis'
|
197 |
+
parameter is an instance of ndarray, since 'axis' itself should either be
|
198 |
+
an integer or None
|
199 |
+
"""
|
200 |
+
if isinstance(axis, ndarray):
|
201 |
+
args = (axis,) + args
|
202 |
+
# error: Incompatible types in assignment (expression has type "None",
|
203 |
+
# variable has type "Union[ndarray[Any, Any], str, int]")
|
204 |
+
axis = None # type: ignore[assignment]
|
205 |
+
|
206 |
+
validate_clip(args, kwargs)
|
207 |
+
# error: Incompatible return value type (got "Union[ndarray[Any, Any],
|
208 |
+
# str, int]", expected "Union[str, int, None]")
|
209 |
+
return axis # type: ignore[return-value]
|
210 |
+
|
211 |
+
|
212 |
+
CUM_FUNC_DEFAULTS: dict[str, Any] = {}
|
213 |
+
CUM_FUNC_DEFAULTS["dtype"] = None
|
214 |
+
CUM_FUNC_DEFAULTS["out"] = None
|
215 |
+
validate_cum_func = CompatValidator(
|
216 |
+
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
|
217 |
+
)
|
218 |
+
validate_cumsum = CompatValidator(
|
219 |
+
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
def validate_cum_func_with_skipna(skipna: bool, args, kwargs, name) -> bool:
|
224 |
+
"""
|
225 |
+
If this function is called via the 'numpy' library, the third parameter in
|
226 |
+
its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so
|
227 |
+
check if the 'skipna' parameter is a boolean or not
|
228 |
+
"""
|
229 |
+
if not is_bool(skipna):
|
230 |
+
args = (skipna,) + args
|
231 |
+
skipna = True
|
232 |
+
elif isinstance(skipna, np.bool_):
|
233 |
+
skipna = bool(skipna)
|
234 |
+
|
235 |
+
validate_cum_func(args, kwargs, fname=name)
|
236 |
+
return skipna
|
237 |
+
|
238 |
+
|
239 |
+
ALLANY_DEFAULTS: dict[str, bool | None] = {}
|
240 |
+
ALLANY_DEFAULTS["dtype"] = None
|
241 |
+
ALLANY_DEFAULTS["out"] = None
|
242 |
+
ALLANY_DEFAULTS["keepdims"] = False
|
243 |
+
ALLANY_DEFAULTS["axis"] = None
|
244 |
+
validate_all = CompatValidator(
|
245 |
+
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
|
246 |
+
)
|
247 |
+
validate_any = CompatValidator(
|
248 |
+
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
|
249 |
+
)
|
250 |
+
|
251 |
+
LOGICAL_FUNC_DEFAULTS = {"out": None, "keepdims": False}
|
252 |
+
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
|
253 |
+
|
254 |
+
MINMAX_DEFAULTS = {"axis": None, "dtype": None, "out": None, "keepdims": False}
|
255 |
+
validate_min = CompatValidator(
|
256 |
+
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
|
257 |
+
)
|
258 |
+
validate_max = CompatValidator(
|
259 |
+
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
|
260 |
+
)
|
261 |
+
|
262 |
+
RESHAPE_DEFAULTS: dict[str, str] = {"order": "C"}
|
263 |
+
validate_reshape = CompatValidator(
|
264 |
+
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
|
265 |
+
)
|
266 |
+
|
267 |
+
REPEAT_DEFAULTS: dict[str, Any] = {"axis": None}
|
268 |
+
validate_repeat = CompatValidator(
|
269 |
+
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
|
270 |
+
)
|
271 |
+
|
272 |
+
ROUND_DEFAULTS: dict[str, Any] = {"out": None}
|
273 |
+
validate_round = CompatValidator(
|
274 |
+
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
|
275 |
+
)
|
276 |
+
|
277 |
+
SORT_DEFAULTS: dict[str, int | str | None] = {}
|
278 |
+
SORT_DEFAULTS["axis"] = -1
|
279 |
+
SORT_DEFAULTS["kind"] = "quicksort"
|
280 |
+
SORT_DEFAULTS["order"] = None
|
281 |
+
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
|
282 |
+
|
283 |
+
STAT_FUNC_DEFAULTS: dict[str, Any | None] = {}
|
284 |
+
STAT_FUNC_DEFAULTS["dtype"] = None
|
285 |
+
STAT_FUNC_DEFAULTS["out"] = None
|
286 |
+
|
287 |
+
SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
288 |
+
SUM_DEFAULTS["axis"] = None
|
289 |
+
SUM_DEFAULTS["keepdims"] = False
|
290 |
+
SUM_DEFAULTS["initial"] = None
|
291 |
+
|
292 |
+
PROD_DEFAULTS = SUM_DEFAULTS.copy()
|
293 |
+
|
294 |
+
MEAN_DEFAULTS = SUM_DEFAULTS.copy()
|
295 |
+
|
296 |
+
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
297 |
+
MEDIAN_DEFAULTS["overwrite_input"] = False
|
298 |
+
MEDIAN_DEFAULTS["keepdims"] = False
|
299 |
+
|
300 |
+
STAT_FUNC_DEFAULTS["keepdims"] = False
|
301 |
+
|
302 |
+
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
|
303 |
+
validate_sum = CompatValidator(
|
304 |
+
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
|
305 |
+
)
|
306 |
+
validate_prod = CompatValidator(
|
307 |
+
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
|
308 |
+
)
|
309 |
+
validate_mean = CompatValidator(
|
310 |
+
MEAN_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
|
311 |
+
)
|
312 |
+
validate_median = CompatValidator(
|
313 |
+
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
|
314 |
+
)
|
315 |
+
|
316 |
+
STAT_DDOF_FUNC_DEFAULTS: dict[str, bool | None] = {}
|
317 |
+
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
|
318 |
+
STAT_DDOF_FUNC_DEFAULTS["out"] = None
|
319 |
+
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
|
320 |
+
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
|
321 |
+
|
322 |
+
TAKE_DEFAULTS: dict[str, str | None] = {}
|
323 |
+
TAKE_DEFAULTS["out"] = None
|
324 |
+
TAKE_DEFAULTS["mode"] = "raise"
|
325 |
+
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
326 |
+
|
327 |
+
|
328 |
+
def validate_take_with_convert(convert: ndarray | bool | None, args, kwargs) -> bool:
|
329 |
+
"""
|
330 |
+
If this function is called via the 'numpy' library, the third parameter in
|
331 |
+
its signature is 'axis', which takes either an ndarray or 'None', so check
|
332 |
+
if the 'convert' parameter is either an instance of ndarray or is None
|
333 |
+
"""
|
334 |
+
if isinstance(convert, ndarray) or convert is None:
|
335 |
+
args = (convert,) + args
|
336 |
+
convert = True
|
337 |
+
|
338 |
+
validate_take(args, kwargs, max_fname_arg_count=3, method="both")
|
339 |
+
return convert
|
340 |
+
|
341 |
+
|
342 |
+
TRANSPOSE_DEFAULTS = {"axes": None}
|
343 |
+
validate_transpose = CompatValidator(
|
344 |
+
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
|
345 |
+
)
|
346 |
+
|
347 |
+
|
348 |
+
def validate_groupby_func(name: str, args, kwargs, allowed=None) -> None:
|
349 |
+
"""
|
350 |
+
'args' and 'kwargs' should be empty, except for allowed kwargs because all
|
351 |
+
of their necessary parameters are explicitly listed in the function
|
352 |
+
signature
|
353 |
+
"""
|
354 |
+
if allowed is None:
|
355 |
+
allowed = []
|
356 |
+
|
357 |
+
kwargs = set(kwargs) - set(allowed)
|
358 |
+
|
359 |
+
if len(args) + len(kwargs) > 0:
|
360 |
+
raise UnsupportedFunctionCall(
|
361 |
+
"numpy operations are not valid with groupby. "
|
362 |
+
f"Use .groupby(...).{name}() instead"
|
363 |
+
)
|
364 |
+
|
365 |
+
|
366 |
+
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
|
367 |
+
|
368 |
+
|
369 |
+
def validate_resampler_func(method: str, args, kwargs) -> None:
|
370 |
+
"""
|
371 |
+
'args' and 'kwargs' should be empty because all of their necessary
|
372 |
+
parameters are explicitly listed in the function signature
|
373 |
+
"""
|
374 |
+
if len(args) + len(kwargs) > 0:
|
375 |
+
if method in RESAMPLER_NUMPY_OPS:
|
376 |
+
raise UnsupportedFunctionCall(
|
377 |
+
"numpy operations are not valid with resample. "
|
378 |
+
f"Use .resample(...).{method}() instead"
|
379 |
+
)
|
380 |
+
raise TypeError("too many arguments passed in")
|
381 |
+
|
382 |
+
|
383 |
+
def validate_minmax_axis(axis: AxisInt | None, ndim: int = 1) -> None:
|
384 |
+
"""
|
385 |
+
Ensure that the axis argument passed to min, max, argmin, or argmax is zero
|
386 |
+
or None, as otherwise it will be incorrectly ignored.
|
387 |
+
|
388 |
+
Parameters
|
389 |
+
----------
|
390 |
+
axis : int or None
|
391 |
+
ndim : int, default 1
|
392 |
+
|
393 |
+
Raises
|
394 |
+
------
|
395 |
+
ValueError
|
396 |
+
"""
|
397 |
+
if axis is None:
|
398 |
+
return
|
399 |
+
if axis >= ndim or (axis < 0 and ndim + axis < 0):
|
400 |
+
raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})")
|
401 |
+
|
402 |
+
|
403 |
+
_validation_funcs = {
|
404 |
+
"median": validate_median,
|
405 |
+
"mean": validate_mean,
|
406 |
+
"min": validate_min,
|
407 |
+
"max": validate_max,
|
408 |
+
"sum": validate_sum,
|
409 |
+
"prod": validate_prod,
|
410 |
+
}
|
411 |
+
|
412 |
+
|
413 |
+
def validate_func(fname, args, kwargs) -> None:
|
414 |
+
if fname not in _validation_funcs:
|
415 |
+
return validate_stat_func(args, kwargs, fname=fname)
|
416 |
+
|
417 |
+
validation_func = _validation_funcs[fname]
|
418 |
+
return validation_func(args, kwargs)
|
venv/lib/python3.10/site-packages/pandas/compat/pickle_compat.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Support pre-0.12 series pickle compatibility.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import copy
|
8 |
+
import io
|
9 |
+
import pickle as pkl
|
10 |
+
from typing import TYPE_CHECKING
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from pandas._libs.arrays import NDArrayBacked
|
15 |
+
from pandas._libs.tslibs import BaseOffset
|
16 |
+
|
17 |
+
from pandas import Index
|
18 |
+
from pandas.core.arrays import (
|
19 |
+
DatetimeArray,
|
20 |
+
PeriodArray,
|
21 |
+
TimedeltaArray,
|
22 |
+
)
|
23 |
+
from pandas.core.internals import BlockManager
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from collections.abc import Generator
|
27 |
+
|
28 |
+
|
29 |
+
def load_reduce(self) -> None:
|
30 |
+
stack = self.stack
|
31 |
+
args = stack.pop()
|
32 |
+
func = stack[-1]
|
33 |
+
|
34 |
+
try:
|
35 |
+
stack[-1] = func(*args)
|
36 |
+
return
|
37 |
+
except TypeError as err:
|
38 |
+
# If we have a deprecated function,
|
39 |
+
# try to replace and try again.
|
40 |
+
|
41 |
+
msg = "_reconstruct: First argument must be a sub-type of ndarray"
|
42 |
+
|
43 |
+
if msg in str(err):
|
44 |
+
try:
|
45 |
+
cls = args[0]
|
46 |
+
stack[-1] = object.__new__(cls)
|
47 |
+
return
|
48 |
+
except TypeError:
|
49 |
+
pass
|
50 |
+
elif args and isinstance(args[0], type) and issubclass(args[0], BaseOffset):
|
51 |
+
# TypeError: object.__new__(Day) is not safe, use Day.__new__()
|
52 |
+
cls = args[0]
|
53 |
+
stack[-1] = cls.__new__(*args)
|
54 |
+
return
|
55 |
+
elif args and issubclass(args[0], PeriodArray):
|
56 |
+
cls = args[0]
|
57 |
+
stack[-1] = NDArrayBacked.__new__(*args)
|
58 |
+
return
|
59 |
+
|
60 |
+
raise
|
61 |
+
|
62 |
+
|
63 |
+
# If classes are moved, provide compat here.
|
64 |
+
_class_locations_map = {
|
65 |
+
("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"),
|
66 |
+
# 15477
|
67 |
+
("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"),
|
68 |
+
# Re-routing unpickle block logic to go through _unpickle_block instead
|
69 |
+
# for pandas <= 1.3.5
|
70 |
+
("pandas.core.internals.blocks", "new_block"): (
|
71 |
+
"pandas._libs.internals",
|
72 |
+
"_unpickle_block",
|
73 |
+
),
|
74 |
+
("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"),
|
75 |
+
("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"),
|
76 |
+
# 10890
|
77 |
+
("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"),
|
78 |
+
("pandas.sparse.series", "SparseTimeSeries"): (
|
79 |
+
"pandas.core.sparse.series",
|
80 |
+
"SparseSeries",
|
81 |
+
),
|
82 |
+
# 12588, extensions moving
|
83 |
+
("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"),
|
84 |
+
("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"),
|
85 |
+
# 18543 moving period
|
86 |
+
("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"),
|
87 |
+
("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"),
|
88 |
+
# 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype
|
89 |
+
("pandas.tslib", "__nat_unpickle"): (
|
90 |
+
"pandas._libs.tslibs.nattype",
|
91 |
+
"__nat_unpickle",
|
92 |
+
),
|
93 |
+
("pandas._libs.tslib", "__nat_unpickle"): (
|
94 |
+
"pandas._libs.tslibs.nattype",
|
95 |
+
"__nat_unpickle",
|
96 |
+
),
|
97 |
+
# 15998 top-level dirs moving
|
98 |
+
("pandas.sparse.array", "SparseArray"): (
|
99 |
+
"pandas.core.arrays.sparse",
|
100 |
+
"SparseArray",
|
101 |
+
),
|
102 |
+
("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"),
|
103 |
+
("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"),
|
104 |
+
("pandas.indexes.numeric", "Int64Index"): (
|
105 |
+
"pandas.core.indexes.base",
|
106 |
+
"Index", # updated in 50775
|
107 |
+
),
|
108 |
+
("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"),
|
109 |
+
("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"),
|
110 |
+
("pandas.tseries.index", "_new_DatetimeIndex"): (
|
111 |
+
"pandas.core.indexes.datetimes",
|
112 |
+
"_new_DatetimeIndex",
|
113 |
+
),
|
114 |
+
("pandas.tseries.index", "DatetimeIndex"): (
|
115 |
+
"pandas.core.indexes.datetimes",
|
116 |
+
"DatetimeIndex",
|
117 |
+
),
|
118 |
+
("pandas.tseries.period", "PeriodIndex"): (
|
119 |
+
"pandas.core.indexes.period",
|
120 |
+
"PeriodIndex",
|
121 |
+
),
|
122 |
+
# 19269, arrays moving
|
123 |
+
("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"),
|
124 |
+
# 19939, add timedeltaindex, float64index compat from 15998 move
|
125 |
+
("pandas.tseries.tdi", "TimedeltaIndex"): (
|
126 |
+
"pandas.core.indexes.timedeltas",
|
127 |
+
"TimedeltaIndex",
|
128 |
+
),
|
129 |
+
("pandas.indexes.numeric", "Float64Index"): (
|
130 |
+
"pandas.core.indexes.base",
|
131 |
+
"Index", # updated in 50775
|
132 |
+
),
|
133 |
+
# 50775, remove Int64Index, UInt64Index & Float64Index from codabase
|
134 |
+
("pandas.core.indexes.numeric", "Int64Index"): (
|
135 |
+
"pandas.core.indexes.base",
|
136 |
+
"Index",
|
137 |
+
),
|
138 |
+
("pandas.core.indexes.numeric", "UInt64Index"): (
|
139 |
+
"pandas.core.indexes.base",
|
140 |
+
"Index",
|
141 |
+
),
|
142 |
+
("pandas.core.indexes.numeric", "Float64Index"): (
|
143 |
+
"pandas.core.indexes.base",
|
144 |
+
"Index",
|
145 |
+
),
|
146 |
+
("pandas.core.arrays.sparse.dtype", "SparseDtype"): (
|
147 |
+
"pandas.core.dtypes.dtypes",
|
148 |
+
"SparseDtype",
|
149 |
+
),
|
150 |
+
}
|
151 |
+
|
152 |
+
|
153 |
+
# our Unpickler sub-class to override methods and some dispatcher
|
154 |
+
# functions for compat and uses a non-public class of the pickle module.
|
155 |
+
|
156 |
+
|
157 |
+
class Unpickler(pkl._Unpickler):
|
158 |
+
def find_class(self, module, name):
|
159 |
+
# override superclass
|
160 |
+
key = (module, name)
|
161 |
+
module, name = _class_locations_map.get(key, key)
|
162 |
+
return super().find_class(module, name)
|
163 |
+
|
164 |
+
|
165 |
+
Unpickler.dispatch = copy.copy(Unpickler.dispatch)
|
166 |
+
Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce
|
167 |
+
|
168 |
+
|
169 |
+
def load_newobj(self) -> None:
|
170 |
+
args = self.stack.pop()
|
171 |
+
cls = self.stack[-1]
|
172 |
+
|
173 |
+
# compat
|
174 |
+
if issubclass(cls, Index):
|
175 |
+
obj = object.__new__(cls)
|
176 |
+
elif issubclass(cls, DatetimeArray) and not args:
|
177 |
+
arr = np.array([], dtype="M8[ns]")
|
178 |
+
obj = cls.__new__(cls, arr, arr.dtype)
|
179 |
+
elif issubclass(cls, TimedeltaArray) and not args:
|
180 |
+
arr = np.array([], dtype="m8[ns]")
|
181 |
+
obj = cls.__new__(cls, arr, arr.dtype)
|
182 |
+
elif cls is BlockManager and not args:
|
183 |
+
obj = cls.__new__(cls, (), [], False)
|
184 |
+
else:
|
185 |
+
obj = cls.__new__(cls, *args)
|
186 |
+
|
187 |
+
self.stack[-1] = obj
|
188 |
+
|
189 |
+
|
190 |
+
Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj
|
191 |
+
|
192 |
+
|
193 |
+
def load_newobj_ex(self) -> None:
|
194 |
+
kwargs = self.stack.pop()
|
195 |
+
args = self.stack.pop()
|
196 |
+
cls = self.stack.pop()
|
197 |
+
|
198 |
+
# compat
|
199 |
+
if issubclass(cls, Index):
|
200 |
+
obj = object.__new__(cls)
|
201 |
+
else:
|
202 |
+
obj = cls.__new__(cls, *args, **kwargs)
|
203 |
+
self.append(obj)
|
204 |
+
|
205 |
+
|
206 |
+
try:
|
207 |
+
Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex
|
208 |
+
except (AttributeError, KeyError):
|
209 |
+
pass
|
210 |
+
|
211 |
+
|
212 |
+
def load(fh, encoding: str | None = None, is_verbose: bool = False):
|
213 |
+
"""
|
214 |
+
Load a pickle, with a provided encoding,
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
fh : a filelike object
|
219 |
+
encoding : an optional encoding
|
220 |
+
is_verbose : show exception output
|
221 |
+
"""
|
222 |
+
try:
|
223 |
+
fh.seek(0)
|
224 |
+
if encoding is not None:
|
225 |
+
up = Unpickler(fh, encoding=encoding)
|
226 |
+
else:
|
227 |
+
up = Unpickler(fh)
|
228 |
+
# "Unpickler" has no attribute "is_verbose" [attr-defined]
|
229 |
+
up.is_verbose = is_verbose # type: ignore[attr-defined]
|
230 |
+
|
231 |
+
return up.load()
|
232 |
+
except (ValueError, TypeError):
|
233 |
+
raise
|
234 |
+
|
235 |
+
|
236 |
+
def loads(
|
237 |
+
bytes_object: bytes,
|
238 |
+
*,
|
239 |
+
fix_imports: bool = True,
|
240 |
+
encoding: str = "ASCII",
|
241 |
+
errors: str = "strict",
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
Analogous to pickle._loads.
|
245 |
+
"""
|
246 |
+
fd = io.BytesIO(bytes_object)
|
247 |
+
return Unpickler(
|
248 |
+
fd, fix_imports=fix_imports, encoding=encoding, errors=errors
|
249 |
+
).load()
|
250 |
+
|
251 |
+
|
252 |
+
@contextlib.contextmanager
|
253 |
+
def patch_pickle() -> Generator[None, None, None]:
|
254 |
+
"""
|
255 |
+
Temporarily patch pickle to use our unpickler.
|
256 |
+
"""
|
257 |
+
orig_loads = pkl.loads
|
258 |
+
try:
|
259 |
+
setattr(pkl, "loads", loads)
|
260 |
+
yield
|
261 |
+
finally:
|
262 |
+
setattr(pkl, "loads", orig_loads)
|
venv/lib/python3.10/site-packages/pandas/compat/pyarrow.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" support pyarrow compatibility across versions """
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from pandas.util.version import Version
|
6 |
+
|
7 |
+
try:
|
8 |
+
import pyarrow as pa
|
9 |
+
|
10 |
+
_palv = Version(Version(pa.__version__).base_version)
|
11 |
+
pa_version_under10p1 = _palv < Version("10.0.1")
|
12 |
+
pa_version_under11p0 = _palv < Version("11.0.0")
|
13 |
+
pa_version_under12p0 = _palv < Version("12.0.0")
|
14 |
+
pa_version_under13p0 = _palv < Version("13.0.0")
|
15 |
+
pa_version_under14p0 = _palv < Version("14.0.0")
|
16 |
+
pa_version_under14p1 = _palv < Version("14.0.1")
|
17 |
+
pa_version_under15p0 = _palv < Version("15.0.0")
|
18 |
+
pa_version_under16p0 = _palv < Version("16.0.0")
|
19 |
+
except ImportError:
|
20 |
+
pa_version_under10p1 = True
|
21 |
+
pa_version_under11p0 = True
|
22 |
+
pa_version_under12p0 = True
|
23 |
+
pa_version_under13p0 = True
|
24 |
+
pa_version_under14p0 = True
|
25 |
+
pa_version_under14p1 = True
|
26 |
+
pa_version_under15p0 = True
|
27 |
+
pa_version_under16p0 = True
|
venv/lib/python3.10/site-packages/pandas/io/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ruff: noqa: TCH004
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
+
|
4 |
+
if TYPE_CHECKING:
|
5 |
+
# import modules that have public classes/functions
|
6 |
+
from pandas.io import (
|
7 |
+
formats,
|
8 |
+
json,
|
9 |
+
stata,
|
10 |
+
)
|
11 |
+
|
12 |
+
# mark only those modules as public
|
13 |
+
__all__ = ["formats", "json", "stata"]
|
venv/lib/python3.10/site-packages/pandas/io/_util.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
from pandas.compat._optional import import_optional_dependency
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
|
10 |
+
def _arrow_dtype_mapping() -> dict:
|
11 |
+
pa = import_optional_dependency("pyarrow")
|
12 |
+
return {
|
13 |
+
pa.int8(): pd.Int8Dtype(),
|
14 |
+
pa.int16(): pd.Int16Dtype(),
|
15 |
+
pa.int32(): pd.Int32Dtype(),
|
16 |
+
pa.int64(): pd.Int64Dtype(),
|
17 |
+
pa.uint8(): pd.UInt8Dtype(),
|
18 |
+
pa.uint16(): pd.UInt16Dtype(),
|
19 |
+
pa.uint32(): pd.UInt32Dtype(),
|
20 |
+
pa.uint64(): pd.UInt64Dtype(),
|
21 |
+
pa.bool_(): pd.BooleanDtype(),
|
22 |
+
pa.string(): pd.StringDtype(),
|
23 |
+
pa.float32(): pd.Float32Dtype(),
|
24 |
+
pa.float64(): pd.Float64Dtype(),
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def arrow_string_types_mapper() -> Callable:
|
29 |
+
pa = import_optional_dependency("pyarrow")
|
30 |
+
|
31 |
+
return {
|
32 |
+
pa.string(): pd.StringDtype(storage="pyarrow_numpy"),
|
33 |
+
pa.large_string(): pd.StringDtype(storage="pyarrow_numpy"),
|
34 |
+
}.get
|
venv/lib/python3.10/site-packages/pandas/io/api.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Data IO api
|
3 |
+
"""
|
4 |
+
|
5 |
+
from pandas.io.clipboards import read_clipboard
|
6 |
+
from pandas.io.excel import (
|
7 |
+
ExcelFile,
|
8 |
+
ExcelWriter,
|
9 |
+
read_excel,
|
10 |
+
)
|
11 |
+
from pandas.io.feather_format import read_feather
|
12 |
+
from pandas.io.gbq import read_gbq
|
13 |
+
from pandas.io.html import read_html
|
14 |
+
from pandas.io.json import read_json
|
15 |
+
from pandas.io.orc import read_orc
|
16 |
+
from pandas.io.parquet import read_parquet
|
17 |
+
from pandas.io.parsers import (
|
18 |
+
read_csv,
|
19 |
+
read_fwf,
|
20 |
+
read_table,
|
21 |
+
)
|
22 |
+
from pandas.io.pickle import (
|
23 |
+
read_pickle,
|
24 |
+
to_pickle,
|
25 |
+
)
|
26 |
+
from pandas.io.pytables import (
|
27 |
+
HDFStore,
|
28 |
+
read_hdf,
|
29 |
+
)
|
30 |
+
from pandas.io.sas import read_sas
|
31 |
+
from pandas.io.spss import read_spss
|
32 |
+
from pandas.io.sql import (
|
33 |
+
read_sql,
|
34 |
+
read_sql_query,
|
35 |
+
read_sql_table,
|
36 |
+
)
|
37 |
+
from pandas.io.stata import read_stata
|
38 |
+
from pandas.io.xml import read_xml
|
39 |
+
|
40 |
+
__all__ = [
|
41 |
+
"ExcelFile",
|
42 |
+
"ExcelWriter",
|
43 |
+
"HDFStore",
|
44 |
+
"read_clipboard",
|
45 |
+
"read_csv",
|
46 |
+
"read_excel",
|
47 |
+
"read_feather",
|
48 |
+
"read_fwf",
|
49 |
+
"read_gbq",
|
50 |
+
"read_hdf",
|
51 |
+
"read_html",
|
52 |
+
"read_json",
|
53 |
+
"read_orc",
|
54 |
+
"read_parquet",
|
55 |
+
"read_pickle",
|
56 |
+
"read_sas",
|
57 |
+
"read_spss",
|
58 |
+
"read_sql",
|
59 |
+
"read_sql_query",
|
60 |
+
"read_sql_table",
|
61 |
+
"read_stata",
|
62 |
+
"read_table",
|
63 |
+
"read_xml",
|
64 |
+
"to_pickle",
|
65 |
+
]
|
venv/lib/python3.10/site-packages/pandas/io/clipboards.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" io on the clipboard """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from io import StringIO
|
5 |
+
from typing import TYPE_CHECKING
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
from pandas._libs import lib
|
9 |
+
from pandas.util._exceptions import find_stack_level
|
10 |
+
from pandas.util._validators import check_dtype_backend
|
11 |
+
|
12 |
+
from pandas.core.dtypes.generic import ABCDataFrame
|
13 |
+
|
14 |
+
from pandas import (
|
15 |
+
get_option,
|
16 |
+
option_context,
|
17 |
+
)
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from pandas._typing import DtypeBackend
|
21 |
+
|
22 |
+
|
23 |
+
def read_clipboard(
|
24 |
+
sep: str = r"\s+",
|
25 |
+
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
26 |
+
**kwargs,
|
27 |
+
): # pragma: no cover
|
28 |
+
r"""
|
29 |
+
Read text from clipboard and pass to :func:`~pandas.read_csv`.
|
30 |
+
|
31 |
+
Parses clipboard contents similar to how CSV files are parsed
|
32 |
+
using :func:`~pandas.read_csv`.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
sep : str, default '\\s+'
|
37 |
+
A string or regex delimiter. The default of ``'\\s+'`` denotes
|
38 |
+
one or more whitespace characters.
|
39 |
+
|
40 |
+
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
|
41 |
+
Back-end data type applied to the resultant :class:`DataFrame`
|
42 |
+
(still experimental). Behaviour is as follows:
|
43 |
+
|
44 |
+
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
45 |
+
(default).
|
46 |
+
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
47 |
+
DataFrame.
|
48 |
+
|
49 |
+
.. versionadded:: 2.0
|
50 |
+
|
51 |
+
**kwargs
|
52 |
+
See :func:`~pandas.read_csv` for the full argument list.
|
53 |
+
|
54 |
+
Returns
|
55 |
+
-------
|
56 |
+
DataFrame
|
57 |
+
A parsed :class:`~pandas.DataFrame` object.
|
58 |
+
|
59 |
+
See Also
|
60 |
+
--------
|
61 |
+
DataFrame.to_clipboard : Copy object to the system clipboard.
|
62 |
+
read_csv : Read a comma-separated values (csv) file into DataFrame.
|
63 |
+
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
|
64 |
+
|
65 |
+
Examples
|
66 |
+
--------
|
67 |
+
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
|
68 |
+
>>> df.to_clipboard() # doctest: +SKIP
|
69 |
+
>>> pd.read_clipboard() # doctest: +SKIP
|
70 |
+
A B C
|
71 |
+
0 1 2 3
|
72 |
+
1 4 5 6
|
73 |
+
"""
|
74 |
+
encoding = kwargs.pop("encoding", "utf-8")
|
75 |
+
|
76 |
+
# only utf-8 is valid for passed value because that's what clipboard
|
77 |
+
# supports
|
78 |
+
if encoding is not None and encoding.lower().replace("-", "") != "utf8":
|
79 |
+
raise NotImplementedError("reading from clipboard only supports utf-8 encoding")
|
80 |
+
|
81 |
+
check_dtype_backend(dtype_backend)
|
82 |
+
|
83 |
+
from pandas.io.clipboard import clipboard_get
|
84 |
+
from pandas.io.parsers import read_csv
|
85 |
+
|
86 |
+
text = clipboard_get()
|
87 |
+
|
88 |
+
# Try to decode (if needed, as "text" might already be a string here).
|
89 |
+
try:
|
90 |
+
text = text.decode(kwargs.get("encoding") or get_option("display.encoding"))
|
91 |
+
except AttributeError:
|
92 |
+
pass
|
93 |
+
|
94 |
+
# Excel copies into clipboard with \t separation
|
95 |
+
# inspect no more then the 10 first lines, if they
|
96 |
+
# all contain an equal number (>0) of tabs, infer
|
97 |
+
# that this came from excel and set 'sep' accordingly
|
98 |
+
lines = text[:10000].split("\n")[:-1][:10]
|
99 |
+
|
100 |
+
# Need to remove leading white space, since read_csv
|
101 |
+
# accepts:
|
102 |
+
# a b
|
103 |
+
# 0 1 2
|
104 |
+
# 1 3 4
|
105 |
+
|
106 |
+
counts = {x.lstrip(" ").count("\t") for x in lines}
|
107 |
+
if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0:
|
108 |
+
sep = "\t"
|
109 |
+
# check the number of leading tabs in the first line
|
110 |
+
# to account for index columns
|
111 |
+
index_length = len(lines[0]) - len(lines[0].lstrip(" \t"))
|
112 |
+
if index_length != 0:
|
113 |
+
kwargs.setdefault("index_col", list(range(index_length)))
|
114 |
+
|
115 |
+
# Edge case where sep is specified to be None, return to default
|
116 |
+
if sep is None and kwargs.get("delim_whitespace") is None:
|
117 |
+
sep = r"\s+"
|
118 |
+
|
119 |
+
# Regex separator currently only works with python engine.
|
120 |
+
# Default to python if separator is multi-character (regex)
|
121 |
+
if len(sep) > 1 and kwargs.get("engine") is None:
|
122 |
+
kwargs["engine"] = "python"
|
123 |
+
elif len(sep) > 1 and kwargs.get("engine") == "c":
|
124 |
+
warnings.warn(
|
125 |
+
"read_clipboard with regex separator does not work properly with c engine.",
|
126 |
+
stacklevel=find_stack_level(),
|
127 |
+
)
|
128 |
+
|
129 |
+
return read_csv(StringIO(text), sep=sep, dtype_backend=dtype_backend, **kwargs)
|
130 |
+
|
131 |
+
|
132 |
+
def to_clipboard(
|
133 |
+
obj, excel: bool | None = True, sep: str | None = None, **kwargs
|
134 |
+
) -> None: # pragma: no cover
|
135 |
+
"""
|
136 |
+
Attempt to write text representation of object to the system clipboard
|
137 |
+
The clipboard can be then pasted into Excel for example.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
----------
|
141 |
+
obj : the object to write to the clipboard
|
142 |
+
excel : bool, defaults to True
|
143 |
+
if True, use the provided separator, writing in a csv
|
144 |
+
format for allowing easy pasting into excel.
|
145 |
+
if False, write a string representation of the object
|
146 |
+
to the clipboard
|
147 |
+
sep : optional, defaults to tab
|
148 |
+
other keywords are passed to to_csv
|
149 |
+
|
150 |
+
Notes
|
151 |
+
-----
|
152 |
+
Requirements for your platform
|
153 |
+
- Linux: xclip, or xsel (with PyQt4 modules)
|
154 |
+
- Windows:
|
155 |
+
- OS X:
|
156 |
+
"""
|
157 |
+
encoding = kwargs.pop("encoding", "utf-8")
|
158 |
+
|
159 |
+
# testing if an invalid encoding is passed to clipboard
|
160 |
+
if encoding is not None and encoding.lower().replace("-", "") != "utf8":
|
161 |
+
raise ValueError("clipboard only supports utf-8 encoding")
|
162 |
+
|
163 |
+
from pandas.io.clipboard import clipboard_set
|
164 |
+
|
165 |
+
if excel is None:
|
166 |
+
excel = True
|
167 |
+
|
168 |
+
if excel:
|
169 |
+
try:
|
170 |
+
if sep is None:
|
171 |
+
sep = "\t"
|
172 |
+
buf = StringIO()
|
173 |
+
|
174 |
+
# clipboard_set (pyperclip) expects unicode
|
175 |
+
obj.to_csv(buf, sep=sep, encoding="utf-8", **kwargs)
|
176 |
+
text = buf.getvalue()
|
177 |
+
|
178 |
+
clipboard_set(text)
|
179 |
+
return
|
180 |
+
except TypeError:
|
181 |
+
warnings.warn(
|
182 |
+
"to_clipboard in excel mode requires a single character separator.",
|
183 |
+
stacklevel=find_stack_level(),
|
184 |
+
)
|
185 |
+
elif sep is not None:
|
186 |
+
warnings.warn(
|
187 |
+
"to_clipboard with excel=False ignores the sep argument.",
|
188 |
+
stacklevel=find_stack_level(),
|
189 |
+
)
|
190 |
+
|
191 |
+
if isinstance(obj, ABCDataFrame):
|
192 |
+
# str(df) has various unhelpful defaults, like truncation
|
193 |
+
with option_context("display.max_colwidth", None):
|
194 |
+
objstr = obj.to_string(**kwargs)
|
195 |
+
else:
|
196 |
+
objstr = str(obj)
|
197 |
+
clipboard_set(objstr)
|
venv/lib/python3.10/site-packages/pandas/io/common.py
ADDED
@@ -0,0 +1,1267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Common IO api utilities"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from abc import (
|
5 |
+
ABC,
|
6 |
+
abstractmethod,
|
7 |
+
)
|
8 |
+
import codecs
|
9 |
+
from collections import defaultdict
|
10 |
+
from collections.abc import (
|
11 |
+
Hashable,
|
12 |
+
Mapping,
|
13 |
+
Sequence,
|
14 |
+
)
|
15 |
+
import dataclasses
|
16 |
+
import functools
|
17 |
+
import gzip
|
18 |
+
from io import (
|
19 |
+
BufferedIOBase,
|
20 |
+
BytesIO,
|
21 |
+
RawIOBase,
|
22 |
+
StringIO,
|
23 |
+
TextIOBase,
|
24 |
+
TextIOWrapper,
|
25 |
+
)
|
26 |
+
import mmap
|
27 |
+
import os
|
28 |
+
from pathlib import Path
|
29 |
+
import re
|
30 |
+
import tarfile
|
31 |
+
from typing import (
|
32 |
+
IO,
|
33 |
+
TYPE_CHECKING,
|
34 |
+
Any,
|
35 |
+
AnyStr,
|
36 |
+
DefaultDict,
|
37 |
+
Generic,
|
38 |
+
Literal,
|
39 |
+
TypeVar,
|
40 |
+
cast,
|
41 |
+
overload,
|
42 |
+
)
|
43 |
+
from urllib.parse import (
|
44 |
+
urljoin,
|
45 |
+
urlparse as parse_url,
|
46 |
+
uses_netloc,
|
47 |
+
uses_params,
|
48 |
+
uses_relative,
|
49 |
+
)
|
50 |
+
import warnings
|
51 |
+
import zipfile
|
52 |
+
|
53 |
+
from pandas._typing import (
|
54 |
+
BaseBuffer,
|
55 |
+
ReadCsvBuffer,
|
56 |
+
)
|
57 |
+
from pandas.compat import (
|
58 |
+
get_bz2_file,
|
59 |
+
get_lzma_file,
|
60 |
+
)
|
61 |
+
from pandas.compat._optional import import_optional_dependency
|
62 |
+
from pandas.util._decorators import doc
|
63 |
+
from pandas.util._exceptions import find_stack_level
|
64 |
+
|
65 |
+
from pandas.core.dtypes.common import (
|
66 |
+
is_bool,
|
67 |
+
is_file_like,
|
68 |
+
is_integer,
|
69 |
+
is_list_like,
|
70 |
+
)
|
71 |
+
from pandas.core.dtypes.generic import ABCMultiIndex
|
72 |
+
|
73 |
+
from pandas.core.shared_docs import _shared_docs
|
74 |
+
|
75 |
+
_VALID_URLS = set(uses_relative + uses_netloc + uses_params)
|
76 |
+
_VALID_URLS.discard("")
|
77 |
+
_RFC_3986_PATTERN = re.compile(r"^[A-Za-z][A-Za-z0-9+\-+.]*://")
|
78 |
+
|
79 |
+
BaseBufferT = TypeVar("BaseBufferT", bound=BaseBuffer)
|
80 |
+
|
81 |
+
|
82 |
+
if TYPE_CHECKING:
|
83 |
+
from types import TracebackType
|
84 |
+
|
85 |
+
from pandas._typing import (
|
86 |
+
CompressionDict,
|
87 |
+
CompressionOptions,
|
88 |
+
FilePath,
|
89 |
+
ReadBuffer,
|
90 |
+
StorageOptions,
|
91 |
+
WriteBuffer,
|
92 |
+
)
|
93 |
+
|
94 |
+
from pandas import MultiIndex
|
95 |
+
|
96 |
+
|
97 |
+
@dataclasses.dataclass
|
98 |
+
class IOArgs:
|
99 |
+
"""
|
100 |
+
Return value of io/common.py:_get_filepath_or_buffer.
|
101 |
+
"""
|
102 |
+
|
103 |
+
filepath_or_buffer: str | BaseBuffer
|
104 |
+
encoding: str
|
105 |
+
mode: str
|
106 |
+
compression: CompressionDict
|
107 |
+
should_close: bool = False
|
108 |
+
|
109 |
+
|
110 |
+
@dataclasses.dataclass
|
111 |
+
class IOHandles(Generic[AnyStr]):
|
112 |
+
"""
|
113 |
+
Return value of io/common.py:get_handle
|
114 |
+
|
115 |
+
Can be used as a context manager.
|
116 |
+
|
117 |
+
This is used to easily close created buffers and to handle corner cases when
|
118 |
+
TextIOWrapper is inserted.
|
119 |
+
|
120 |
+
handle: The file handle to be used.
|
121 |
+
created_handles: All file handles that are created by get_handle
|
122 |
+
is_wrapped: Whether a TextIOWrapper needs to be detached.
|
123 |
+
"""
|
124 |
+
|
125 |
+
# handle might not implement the IO-interface
|
126 |
+
handle: IO[AnyStr]
|
127 |
+
compression: CompressionDict
|
128 |
+
created_handles: list[IO[bytes] | IO[str]] = dataclasses.field(default_factory=list)
|
129 |
+
is_wrapped: bool = False
|
130 |
+
|
131 |
+
def close(self) -> None:
|
132 |
+
"""
|
133 |
+
Close all created buffers.
|
134 |
+
|
135 |
+
Note: If a TextIOWrapper was inserted, it is flushed and detached to
|
136 |
+
avoid closing the potentially user-created buffer.
|
137 |
+
"""
|
138 |
+
if self.is_wrapped:
|
139 |
+
assert isinstance(self.handle, TextIOWrapper)
|
140 |
+
self.handle.flush()
|
141 |
+
self.handle.detach()
|
142 |
+
self.created_handles.remove(self.handle)
|
143 |
+
for handle in self.created_handles:
|
144 |
+
handle.close()
|
145 |
+
self.created_handles = []
|
146 |
+
self.is_wrapped = False
|
147 |
+
|
148 |
+
def __enter__(self) -> IOHandles[AnyStr]:
|
149 |
+
return self
|
150 |
+
|
151 |
+
def __exit__(
|
152 |
+
self,
|
153 |
+
exc_type: type[BaseException] | None,
|
154 |
+
exc_value: BaseException | None,
|
155 |
+
traceback: TracebackType | None,
|
156 |
+
) -> None:
|
157 |
+
self.close()
|
158 |
+
|
159 |
+
|
160 |
+
def is_url(url: object) -> bool:
|
161 |
+
"""
|
162 |
+
Check to see if a URL has a valid protocol.
|
163 |
+
|
164 |
+
Parameters
|
165 |
+
----------
|
166 |
+
url : str or unicode
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
isurl : bool
|
171 |
+
If `url` has a valid protocol return True otherwise False.
|
172 |
+
"""
|
173 |
+
if not isinstance(url, str):
|
174 |
+
return False
|
175 |
+
return parse_url(url).scheme in _VALID_URLS
|
176 |
+
|
177 |
+
|
178 |
+
@overload
|
179 |
+
def _expand_user(filepath_or_buffer: str) -> str:
|
180 |
+
...
|
181 |
+
|
182 |
+
|
183 |
+
@overload
|
184 |
+
def _expand_user(filepath_or_buffer: BaseBufferT) -> BaseBufferT:
|
185 |
+
...
|
186 |
+
|
187 |
+
|
188 |
+
def _expand_user(filepath_or_buffer: str | BaseBufferT) -> str | BaseBufferT:
|
189 |
+
"""
|
190 |
+
Return the argument with an initial component of ~ or ~user
|
191 |
+
replaced by that user's home directory.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
filepath_or_buffer : object to be converted if possible
|
196 |
+
|
197 |
+
Returns
|
198 |
+
-------
|
199 |
+
expanded_filepath_or_buffer : an expanded filepath or the
|
200 |
+
input if not expandable
|
201 |
+
"""
|
202 |
+
if isinstance(filepath_or_buffer, str):
|
203 |
+
return os.path.expanduser(filepath_or_buffer)
|
204 |
+
return filepath_or_buffer
|
205 |
+
|
206 |
+
|
207 |
+
def validate_header_arg(header: object) -> None:
|
208 |
+
if header is None:
|
209 |
+
return
|
210 |
+
if is_integer(header):
|
211 |
+
header = cast(int, header)
|
212 |
+
if header < 0:
|
213 |
+
# GH 27779
|
214 |
+
raise ValueError(
|
215 |
+
"Passing negative integer to header is invalid. "
|
216 |
+
"For no header, use header=None instead"
|
217 |
+
)
|
218 |
+
return
|
219 |
+
if is_list_like(header, allow_sets=False):
|
220 |
+
header = cast(Sequence, header)
|
221 |
+
if not all(map(is_integer, header)):
|
222 |
+
raise ValueError("header must be integer or list of integers")
|
223 |
+
if any(i < 0 for i in header):
|
224 |
+
raise ValueError("cannot specify multi-index header with negative integers")
|
225 |
+
return
|
226 |
+
if is_bool(header):
|
227 |
+
raise TypeError(
|
228 |
+
"Passing a bool to header is invalid. Use header=None for no header or "
|
229 |
+
"header=int or list-like of ints to specify "
|
230 |
+
"the row(s) making up the column names"
|
231 |
+
)
|
232 |
+
# GH 16338
|
233 |
+
raise ValueError("header must be integer or list of integers")
|
234 |
+
|
235 |
+
|
236 |
+
@overload
|
237 |
+
def stringify_path(filepath_or_buffer: FilePath, convert_file_like: bool = ...) -> str:
|
238 |
+
...
|
239 |
+
|
240 |
+
|
241 |
+
@overload
|
242 |
+
def stringify_path(
|
243 |
+
filepath_or_buffer: BaseBufferT, convert_file_like: bool = ...
|
244 |
+
) -> BaseBufferT:
|
245 |
+
...
|
246 |
+
|
247 |
+
|
248 |
+
def stringify_path(
|
249 |
+
filepath_or_buffer: FilePath | BaseBufferT,
|
250 |
+
convert_file_like: bool = False,
|
251 |
+
) -> str | BaseBufferT:
|
252 |
+
"""
|
253 |
+
Attempt to convert a path-like object to a string.
|
254 |
+
|
255 |
+
Parameters
|
256 |
+
----------
|
257 |
+
filepath_or_buffer : object to be converted
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
str_filepath_or_buffer : maybe a string version of the object
|
262 |
+
|
263 |
+
Notes
|
264 |
+
-----
|
265 |
+
Objects supporting the fspath protocol are coerced
|
266 |
+
according to its __fspath__ method.
|
267 |
+
|
268 |
+
Any other object is passed through unchanged, which includes bytes,
|
269 |
+
strings, buffers, or anything else that's not even path-like.
|
270 |
+
"""
|
271 |
+
if not convert_file_like and is_file_like(filepath_or_buffer):
|
272 |
+
# GH 38125: some fsspec objects implement os.PathLike but have already opened a
|
273 |
+
# file. This prevents opening the file a second time. infer_compression calls
|
274 |
+
# this function with convert_file_like=True to infer the compression.
|
275 |
+
return cast(BaseBufferT, filepath_or_buffer)
|
276 |
+
|
277 |
+
if isinstance(filepath_or_buffer, os.PathLike):
|
278 |
+
filepath_or_buffer = filepath_or_buffer.__fspath__()
|
279 |
+
return _expand_user(filepath_or_buffer)
|
280 |
+
|
281 |
+
|
282 |
+
def urlopen(*args, **kwargs):
|
283 |
+
"""
|
284 |
+
Lazy-import wrapper for stdlib urlopen, as that imports a big chunk of
|
285 |
+
the stdlib.
|
286 |
+
"""
|
287 |
+
import urllib.request
|
288 |
+
|
289 |
+
return urllib.request.urlopen(*args, **kwargs)
|
290 |
+
|
291 |
+
|
292 |
+
def is_fsspec_url(url: FilePath | BaseBuffer) -> bool:
|
293 |
+
"""
|
294 |
+
Returns true if the given URL looks like
|
295 |
+
something fsspec can handle
|
296 |
+
"""
|
297 |
+
return (
|
298 |
+
isinstance(url, str)
|
299 |
+
and bool(_RFC_3986_PATTERN.match(url))
|
300 |
+
and not url.startswith(("http://", "https://"))
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
@doc(
|
305 |
+
storage_options=_shared_docs["storage_options"],
|
306 |
+
compression_options=_shared_docs["compression_options"] % "filepath_or_buffer",
|
307 |
+
)
|
308 |
+
def _get_filepath_or_buffer(
|
309 |
+
filepath_or_buffer: FilePath | BaseBuffer,
|
310 |
+
encoding: str = "utf-8",
|
311 |
+
compression: CompressionOptions | None = None,
|
312 |
+
mode: str = "r",
|
313 |
+
storage_options: StorageOptions | None = None,
|
314 |
+
) -> IOArgs:
|
315 |
+
"""
|
316 |
+
If the filepath_or_buffer is a url, translate and return the buffer.
|
317 |
+
Otherwise passthrough.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
----------
|
321 |
+
filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path),
|
322 |
+
or buffer
|
323 |
+
{compression_options}
|
324 |
+
|
325 |
+
.. versionchanged:: 1.4.0 Zstandard support.
|
326 |
+
|
327 |
+
encoding : the encoding to use to decode bytes, default is 'utf-8'
|
328 |
+
mode : str, optional
|
329 |
+
|
330 |
+
{storage_options}
|
331 |
+
|
332 |
+
|
333 |
+
Returns the dataclass IOArgs.
|
334 |
+
"""
|
335 |
+
filepath_or_buffer = stringify_path(filepath_or_buffer)
|
336 |
+
|
337 |
+
# handle compression dict
|
338 |
+
compression_method, compression = get_compression_method(compression)
|
339 |
+
compression_method = infer_compression(filepath_or_buffer, compression_method)
|
340 |
+
|
341 |
+
# GH21227 internal compression is not used for non-binary handles.
|
342 |
+
if compression_method and hasattr(filepath_or_buffer, "write") and "b" not in mode:
|
343 |
+
warnings.warn(
|
344 |
+
"compression has no effect when passing a non-binary object as input.",
|
345 |
+
RuntimeWarning,
|
346 |
+
stacklevel=find_stack_level(),
|
347 |
+
)
|
348 |
+
compression_method = None
|
349 |
+
|
350 |
+
compression = dict(compression, method=compression_method)
|
351 |
+
|
352 |
+
# bz2 and xz do not write the byte order mark for utf-16 and utf-32
|
353 |
+
# print a warning when writing such files
|
354 |
+
if (
|
355 |
+
"w" in mode
|
356 |
+
and compression_method in ["bz2", "xz"]
|
357 |
+
and encoding in ["utf-16", "utf-32"]
|
358 |
+
):
|
359 |
+
warnings.warn(
|
360 |
+
f"{compression} will not write the byte order mark for {encoding}",
|
361 |
+
UnicodeWarning,
|
362 |
+
stacklevel=find_stack_level(),
|
363 |
+
)
|
364 |
+
|
365 |
+
# Use binary mode when converting path-like objects to file-like objects (fsspec)
|
366 |
+
# except when text mode is explicitly requested. The original mode is returned if
|
367 |
+
# fsspec is not used.
|
368 |
+
fsspec_mode = mode
|
369 |
+
if "t" not in fsspec_mode and "b" not in fsspec_mode:
|
370 |
+
fsspec_mode += "b"
|
371 |
+
|
372 |
+
if isinstance(filepath_or_buffer, str) and is_url(filepath_or_buffer):
|
373 |
+
# TODO: fsspec can also handle HTTP via requests, but leaving this
|
374 |
+
# unchanged. using fsspec appears to break the ability to infer if the
|
375 |
+
# server responded with gzipped data
|
376 |
+
storage_options = storage_options or {}
|
377 |
+
|
378 |
+
# waiting until now for importing to match intended lazy logic of
|
379 |
+
# urlopen function defined elsewhere in this module
|
380 |
+
import urllib.request
|
381 |
+
|
382 |
+
# assuming storage_options is to be interpreted as headers
|
383 |
+
req_info = urllib.request.Request(filepath_or_buffer, headers=storage_options)
|
384 |
+
with urlopen(req_info) as req:
|
385 |
+
content_encoding = req.headers.get("Content-Encoding", None)
|
386 |
+
if content_encoding == "gzip":
|
387 |
+
# Override compression based on Content-Encoding header
|
388 |
+
compression = {"method": "gzip"}
|
389 |
+
reader = BytesIO(req.read())
|
390 |
+
return IOArgs(
|
391 |
+
filepath_or_buffer=reader,
|
392 |
+
encoding=encoding,
|
393 |
+
compression=compression,
|
394 |
+
should_close=True,
|
395 |
+
mode=fsspec_mode,
|
396 |
+
)
|
397 |
+
|
398 |
+
if is_fsspec_url(filepath_or_buffer):
|
399 |
+
assert isinstance(
|
400 |
+
filepath_or_buffer, str
|
401 |
+
) # just to appease mypy for this branch
|
402 |
+
# two special-case s3-like protocols; these have special meaning in Hadoop,
|
403 |
+
# but are equivalent to just "s3" from fsspec's point of view
|
404 |
+
# cc #11071
|
405 |
+
if filepath_or_buffer.startswith("s3a://"):
|
406 |
+
filepath_or_buffer = filepath_or_buffer.replace("s3a://", "s3://")
|
407 |
+
if filepath_or_buffer.startswith("s3n://"):
|
408 |
+
filepath_or_buffer = filepath_or_buffer.replace("s3n://", "s3://")
|
409 |
+
fsspec = import_optional_dependency("fsspec")
|
410 |
+
|
411 |
+
# If botocore is installed we fallback to reading with anon=True
|
412 |
+
# to allow reads from public buckets
|
413 |
+
err_types_to_retry_with_anon: list[Any] = []
|
414 |
+
try:
|
415 |
+
import_optional_dependency("botocore")
|
416 |
+
from botocore.exceptions import (
|
417 |
+
ClientError,
|
418 |
+
NoCredentialsError,
|
419 |
+
)
|
420 |
+
|
421 |
+
err_types_to_retry_with_anon = [
|
422 |
+
ClientError,
|
423 |
+
NoCredentialsError,
|
424 |
+
PermissionError,
|
425 |
+
]
|
426 |
+
except ImportError:
|
427 |
+
pass
|
428 |
+
|
429 |
+
try:
|
430 |
+
file_obj = fsspec.open(
|
431 |
+
filepath_or_buffer, mode=fsspec_mode, **(storage_options or {})
|
432 |
+
).open()
|
433 |
+
# GH 34626 Reads from Public Buckets without Credentials needs anon=True
|
434 |
+
except tuple(err_types_to_retry_with_anon):
|
435 |
+
if storage_options is None:
|
436 |
+
storage_options = {"anon": True}
|
437 |
+
else:
|
438 |
+
# don't mutate user input.
|
439 |
+
storage_options = dict(storage_options)
|
440 |
+
storage_options["anon"] = True
|
441 |
+
file_obj = fsspec.open(
|
442 |
+
filepath_or_buffer, mode=fsspec_mode, **(storage_options or {})
|
443 |
+
).open()
|
444 |
+
|
445 |
+
return IOArgs(
|
446 |
+
filepath_or_buffer=file_obj,
|
447 |
+
encoding=encoding,
|
448 |
+
compression=compression,
|
449 |
+
should_close=True,
|
450 |
+
mode=fsspec_mode,
|
451 |
+
)
|
452 |
+
elif storage_options:
|
453 |
+
raise ValueError(
|
454 |
+
"storage_options passed with file object or non-fsspec file path"
|
455 |
+
)
|
456 |
+
|
457 |
+
if isinstance(filepath_or_buffer, (str, bytes, mmap.mmap)):
|
458 |
+
return IOArgs(
|
459 |
+
filepath_or_buffer=_expand_user(filepath_or_buffer),
|
460 |
+
encoding=encoding,
|
461 |
+
compression=compression,
|
462 |
+
should_close=False,
|
463 |
+
mode=mode,
|
464 |
+
)
|
465 |
+
|
466 |
+
# is_file_like requires (read | write) & __iter__ but __iter__ is only
|
467 |
+
# needed for read_csv(engine=python)
|
468 |
+
if not (
|
469 |
+
hasattr(filepath_or_buffer, "read") or hasattr(filepath_or_buffer, "write")
|
470 |
+
):
|
471 |
+
msg = f"Invalid file path or buffer object type: {type(filepath_or_buffer)}"
|
472 |
+
raise ValueError(msg)
|
473 |
+
|
474 |
+
return IOArgs(
|
475 |
+
filepath_or_buffer=filepath_or_buffer,
|
476 |
+
encoding=encoding,
|
477 |
+
compression=compression,
|
478 |
+
should_close=False,
|
479 |
+
mode=mode,
|
480 |
+
)
|
481 |
+
|
482 |
+
|
483 |
+
def file_path_to_url(path: str) -> str:
|
484 |
+
"""
|
485 |
+
converts an absolute native path to a FILE URL.
|
486 |
+
|
487 |
+
Parameters
|
488 |
+
----------
|
489 |
+
path : a path in native format
|
490 |
+
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
a valid FILE URL
|
494 |
+
"""
|
495 |
+
# lazify expensive import (~30ms)
|
496 |
+
from urllib.request import pathname2url
|
497 |
+
|
498 |
+
return urljoin("file:", pathname2url(path))
|
499 |
+
|
500 |
+
|
501 |
+
extension_to_compression = {
|
502 |
+
".tar": "tar",
|
503 |
+
".tar.gz": "tar",
|
504 |
+
".tar.bz2": "tar",
|
505 |
+
".tar.xz": "tar",
|
506 |
+
".gz": "gzip",
|
507 |
+
".bz2": "bz2",
|
508 |
+
".zip": "zip",
|
509 |
+
".xz": "xz",
|
510 |
+
".zst": "zstd",
|
511 |
+
}
|
512 |
+
_supported_compressions = set(extension_to_compression.values())
|
513 |
+
|
514 |
+
|
515 |
+
def get_compression_method(
|
516 |
+
compression: CompressionOptions,
|
517 |
+
) -> tuple[str | None, CompressionDict]:
|
518 |
+
"""
|
519 |
+
Simplifies a compression argument to a compression method string and
|
520 |
+
a mapping containing additional arguments.
|
521 |
+
|
522 |
+
Parameters
|
523 |
+
----------
|
524 |
+
compression : str or mapping
|
525 |
+
If string, specifies the compression method. If mapping, value at key
|
526 |
+
'method' specifies compression method.
|
527 |
+
|
528 |
+
Returns
|
529 |
+
-------
|
530 |
+
tuple of ({compression method}, Optional[str]
|
531 |
+
{compression arguments}, Dict[str, Any])
|
532 |
+
|
533 |
+
Raises
|
534 |
+
------
|
535 |
+
ValueError on mapping missing 'method' key
|
536 |
+
"""
|
537 |
+
compression_method: str | None
|
538 |
+
if isinstance(compression, Mapping):
|
539 |
+
compression_args = dict(compression)
|
540 |
+
try:
|
541 |
+
compression_method = compression_args.pop("method")
|
542 |
+
except KeyError as err:
|
543 |
+
raise ValueError("If mapping, compression must have key 'method'") from err
|
544 |
+
else:
|
545 |
+
compression_args = {}
|
546 |
+
compression_method = compression
|
547 |
+
return compression_method, compression_args
|
548 |
+
|
549 |
+
|
550 |
+
@doc(compression_options=_shared_docs["compression_options"] % "filepath_or_buffer")
|
551 |
+
def infer_compression(
|
552 |
+
filepath_or_buffer: FilePath | BaseBuffer, compression: str | None
|
553 |
+
) -> str | None:
|
554 |
+
"""
|
555 |
+
Get the compression method for filepath_or_buffer. If compression='infer',
|
556 |
+
the inferred compression method is returned. Otherwise, the input
|
557 |
+
compression method is returned unchanged, unless it's invalid, in which
|
558 |
+
case an error is raised.
|
559 |
+
|
560 |
+
Parameters
|
561 |
+
----------
|
562 |
+
filepath_or_buffer : str or file handle
|
563 |
+
File path or object.
|
564 |
+
{compression_options}
|
565 |
+
|
566 |
+
.. versionchanged:: 1.4.0 Zstandard support.
|
567 |
+
|
568 |
+
Returns
|
569 |
+
-------
|
570 |
+
string or None
|
571 |
+
|
572 |
+
Raises
|
573 |
+
------
|
574 |
+
ValueError on invalid compression specified.
|
575 |
+
"""
|
576 |
+
if compression is None:
|
577 |
+
return None
|
578 |
+
|
579 |
+
# Infer compression
|
580 |
+
if compression == "infer":
|
581 |
+
# Convert all path types (e.g. pathlib.Path) to strings
|
582 |
+
filepath_or_buffer = stringify_path(filepath_or_buffer, convert_file_like=True)
|
583 |
+
if not isinstance(filepath_or_buffer, str):
|
584 |
+
# Cannot infer compression of a buffer, assume no compression
|
585 |
+
return None
|
586 |
+
|
587 |
+
# Infer compression from the filename/URL extension
|
588 |
+
for extension, compression in extension_to_compression.items():
|
589 |
+
if filepath_or_buffer.lower().endswith(extension):
|
590 |
+
return compression
|
591 |
+
return None
|
592 |
+
|
593 |
+
# Compression has been specified. Check that it's valid
|
594 |
+
if compression in _supported_compressions:
|
595 |
+
return compression
|
596 |
+
|
597 |
+
valid = ["infer", None] + sorted(_supported_compressions)
|
598 |
+
msg = (
|
599 |
+
f"Unrecognized compression type: {compression}\n"
|
600 |
+
f"Valid compression types are {valid}"
|
601 |
+
)
|
602 |
+
raise ValueError(msg)
|
603 |
+
|
604 |
+
|
605 |
+
def check_parent_directory(path: Path | str) -> None:
|
606 |
+
"""
|
607 |
+
Check if parent directory of a file exists, raise OSError if it does not
|
608 |
+
|
609 |
+
Parameters
|
610 |
+
----------
|
611 |
+
path: Path or str
|
612 |
+
Path to check parent directory of
|
613 |
+
"""
|
614 |
+
parent = Path(path).parent
|
615 |
+
if not parent.is_dir():
|
616 |
+
raise OSError(rf"Cannot save file into a non-existent directory: '{parent}'")
|
617 |
+
|
618 |
+
|
619 |
+
@overload
|
620 |
+
def get_handle(
|
621 |
+
path_or_buf: FilePath | BaseBuffer,
|
622 |
+
mode: str,
|
623 |
+
*,
|
624 |
+
encoding: str | None = ...,
|
625 |
+
compression: CompressionOptions = ...,
|
626 |
+
memory_map: bool = ...,
|
627 |
+
is_text: Literal[False],
|
628 |
+
errors: str | None = ...,
|
629 |
+
storage_options: StorageOptions = ...,
|
630 |
+
) -> IOHandles[bytes]:
|
631 |
+
...
|
632 |
+
|
633 |
+
|
634 |
+
@overload
|
635 |
+
def get_handle(
|
636 |
+
path_or_buf: FilePath | BaseBuffer,
|
637 |
+
mode: str,
|
638 |
+
*,
|
639 |
+
encoding: str | None = ...,
|
640 |
+
compression: CompressionOptions = ...,
|
641 |
+
memory_map: bool = ...,
|
642 |
+
is_text: Literal[True] = ...,
|
643 |
+
errors: str | None = ...,
|
644 |
+
storage_options: StorageOptions = ...,
|
645 |
+
) -> IOHandles[str]:
|
646 |
+
...
|
647 |
+
|
648 |
+
|
649 |
+
@overload
|
650 |
+
def get_handle(
|
651 |
+
path_or_buf: FilePath | BaseBuffer,
|
652 |
+
mode: str,
|
653 |
+
*,
|
654 |
+
encoding: str | None = ...,
|
655 |
+
compression: CompressionOptions = ...,
|
656 |
+
memory_map: bool = ...,
|
657 |
+
is_text: bool = ...,
|
658 |
+
errors: str | None = ...,
|
659 |
+
storage_options: StorageOptions = ...,
|
660 |
+
) -> IOHandles[str] | IOHandles[bytes]:
|
661 |
+
...
|
662 |
+
|
663 |
+
|
664 |
+
@doc(compression_options=_shared_docs["compression_options"] % "path_or_buf")
|
665 |
+
def get_handle(
|
666 |
+
path_or_buf: FilePath | BaseBuffer,
|
667 |
+
mode: str,
|
668 |
+
*,
|
669 |
+
encoding: str | None = None,
|
670 |
+
compression: CompressionOptions | None = None,
|
671 |
+
memory_map: bool = False,
|
672 |
+
is_text: bool = True,
|
673 |
+
errors: str | None = None,
|
674 |
+
storage_options: StorageOptions | None = None,
|
675 |
+
) -> IOHandles[str] | IOHandles[bytes]:
|
676 |
+
"""
|
677 |
+
Get file handle for given path/buffer and mode.
|
678 |
+
|
679 |
+
Parameters
|
680 |
+
----------
|
681 |
+
path_or_buf : str or file handle
|
682 |
+
File path or object.
|
683 |
+
mode : str
|
684 |
+
Mode to open path_or_buf with.
|
685 |
+
encoding : str or None
|
686 |
+
Encoding to use.
|
687 |
+
{compression_options}
|
688 |
+
|
689 |
+
May be a dict with key 'method' as compression mode
|
690 |
+
and other keys as compression options if compression
|
691 |
+
mode is 'zip'.
|
692 |
+
|
693 |
+
Passing compression options as keys in dict is
|
694 |
+
supported for compression modes 'gzip', 'bz2', 'zstd' and 'zip'.
|
695 |
+
|
696 |
+
.. versionchanged:: 1.4.0 Zstandard support.
|
697 |
+
|
698 |
+
memory_map : bool, default False
|
699 |
+
See parsers._parser_params for more information. Only used by read_csv.
|
700 |
+
is_text : bool, default True
|
701 |
+
Whether the type of the content passed to the file/buffer is string or
|
702 |
+
bytes. This is not the same as `"b" not in mode`. If a string content is
|
703 |
+
passed to a binary file/buffer, a wrapper is inserted.
|
704 |
+
errors : str, default 'strict'
|
705 |
+
Specifies how encoding and decoding errors are to be handled.
|
706 |
+
See the errors argument for :func:`open` for a full list
|
707 |
+
of options.
|
708 |
+
storage_options: StorageOptions = None
|
709 |
+
Passed to _get_filepath_or_buffer
|
710 |
+
|
711 |
+
Returns the dataclass IOHandles
|
712 |
+
"""
|
713 |
+
# Windows does not default to utf-8. Set to utf-8 for a consistent behavior
|
714 |
+
encoding = encoding or "utf-8"
|
715 |
+
|
716 |
+
errors = errors or "strict"
|
717 |
+
|
718 |
+
# read_csv does not know whether the buffer is opened in binary/text mode
|
719 |
+
if _is_binary_mode(path_or_buf, mode) and "b" not in mode:
|
720 |
+
mode += "b"
|
721 |
+
|
722 |
+
# validate encoding and errors
|
723 |
+
codecs.lookup(encoding)
|
724 |
+
if isinstance(errors, str):
|
725 |
+
codecs.lookup_error(errors)
|
726 |
+
|
727 |
+
# open URLs
|
728 |
+
ioargs = _get_filepath_or_buffer(
|
729 |
+
path_or_buf,
|
730 |
+
encoding=encoding,
|
731 |
+
compression=compression,
|
732 |
+
mode=mode,
|
733 |
+
storage_options=storage_options,
|
734 |
+
)
|
735 |
+
|
736 |
+
handle = ioargs.filepath_or_buffer
|
737 |
+
handles: list[BaseBuffer]
|
738 |
+
|
739 |
+
# memory mapping needs to be the first step
|
740 |
+
# only used for read_csv
|
741 |
+
handle, memory_map, handles = _maybe_memory_map(handle, memory_map)
|
742 |
+
|
743 |
+
is_path = isinstance(handle, str)
|
744 |
+
compression_args = dict(ioargs.compression)
|
745 |
+
compression = compression_args.pop("method")
|
746 |
+
|
747 |
+
# Only for write methods
|
748 |
+
if "r" not in mode and is_path:
|
749 |
+
check_parent_directory(str(handle))
|
750 |
+
|
751 |
+
if compression:
|
752 |
+
if compression != "zstd":
|
753 |
+
# compression libraries do not like an explicit text-mode
|
754 |
+
ioargs.mode = ioargs.mode.replace("t", "")
|
755 |
+
elif compression == "zstd" and "b" not in ioargs.mode:
|
756 |
+
# python-zstandard defaults to text mode, but we always expect
|
757 |
+
# compression libraries to use binary mode.
|
758 |
+
ioargs.mode += "b"
|
759 |
+
|
760 |
+
# GZ Compression
|
761 |
+
if compression == "gzip":
|
762 |
+
if isinstance(handle, str):
|
763 |
+
# error: Incompatible types in assignment (expression has type
|
764 |
+
# "GzipFile", variable has type "Union[str, BaseBuffer]")
|
765 |
+
handle = gzip.GzipFile( # type: ignore[assignment]
|
766 |
+
filename=handle,
|
767 |
+
mode=ioargs.mode,
|
768 |
+
**compression_args,
|
769 |
+
)
|
770 |
+
else:
|
771 |
+
handle = gzip.GzipFile(
|
772 |
+
# No overload variant of "GzipFile" matches argument types
|
773 |
+
# "Union[str, BaseBuffer]", "str", "Dict[str, Any]"
|
774 |
+
fileobj=handle, # type: ignore[call-overload]
|
775 |
+
mode=ioargs.mode,
|
776 |
+
**compression_args,
|
777 |
+
)
|
778 |
+
|
779 |
+
# BZ Compression
|
780 |
+
elif compression == "bz2":
|
781 |
+
# Overload of "BZ2File" to handle pickle protocol 5
|
782 |
+
# "Union[str, BaseBuffer]", "str", "Dict[str, Any]"
|
783 |
+
handle = get_bz2_file()( # type: ignore[call-overload]
|
784 |
+
handle,
|
785 |
+
mode=ioargs.mode,
|
786 |
+
**compression_args,
|
787 |
+
)
|
788 |
+
|
789 |
+
# ZIP Compression
|
790 |
+
elif compression == "zip":
|
791 |
+
# error: Argument 1 to "_BytesZipFile" has incompatible type
|
792 |
+
# "Union[str, BaseBuffer]"; expected "Union[Union[str, PathLike[str]],
|
793 |
+
# ReadBuffer[bytes], WriteBuffer[bytes]]"
|
794 |
+
handle = _BytesZipFile(
|
795 |
+
handle, ioargs.mode, **compression_args # type: ignore[arg-type]
|
796 |
+
)
|
797 |
+
if handle.buffer.mode == "r":
|
798 |
+
handles.append(handle)
|
799 |
+
zip_names = handle.buffer.namelist()
|
800 |
+
if len(zip_names) == 1:
|
801 |
+
handle = handle.buffer.open(zip_names.pop())
|
802 |
+
elif not zip_names:
|
803 |
+
raise ValueError(f"Zero files found in ZIP file {path_or_buf}")
|
804 |
+
else:
|
805 |
+
raise ValueError(
|
806 |
+
"Multiple files found in ZIP file. "
|
807 |
+
f"Only one file per ZIP: {zip_names}"
|
808 |
+
)
|
809 |
+
|
810 |
+
# TAR Encoding
|
811 |
+
elif compression == "tar":
|
812 |
+
compression_args.setdefault("mode", ioargs.mode)
|
813 |
+
if isinstance(handle, str):
|
814 |
+
handle = _BytesTarFile(name=handle, **compression_args)
|
815 |
+
else:
|
816 |
+
# error: Argument "fileobj" to "_BytesTarFile" has incompatible
|
817 |
+
# type "BaseBuffer"; expected "Union[ReadBuffer[bytes],
|
818 |
+
# WriteBuffer[bytes], None]"
|
819 |
+
handle = _BytesTarFile(
|
820 |
+
fileobj=handle, **compression_args # type: ignore[arg-type]
|
821 |
+
)
|
822 |
+
assert isinstance(handle, _BytesTarFile)
|
823 |
+
if "r" in handle.buffer.mode:
|
824 |
+
handles.append(handle)
|
825 |
+
files = handle.buffer.getnames()
|
826 |
+
if len(files) == 1:
|
827 |
+
file = handle.buffer.extractfile(files[0])
|
828 |
+
assert file is not None
|
829 |
+
handle = file
|
830 |
+
elif not files:
|
831 |
+
raise ValueError(f"Zero files found in TAR archive {path_or_buf}")
|
832 |
+
else:
|
833 |
+
raise ValueError(
|
834 |
+
"Multiple files found in TAR archive. "
|
835 |
+
f"Only one file per TAR archive: {files}"
|
836 |
+
)
|
837 |
+
|
838 |
+
# XZ Compression
|
839 |
+
elif compression == "xz":
|
840 |
+
# error: Argument 1 to "LZMAFile" has incompatible type "Union[str,
|
841 |
+
# BaseBuffer]"; expected "Optional[Union[Union[str, bytes, PathLike[str],
|
842 |
+
# PathLike[bytes]], IO[bytes]], None]"
|
843 |
+
handle = get_lzma_file()(
|
844 |
+
handle, ioargs.mode, **compression_args # type: ignore[arg-type]
|
845 |
+
)
|
846 |
+
|
847 |
+
# Zstd Compression
|
848 |
+
elif compression == "zstd":
|
849 |
+
zstd = import_optional_dependency("zstandard")
|
850 |
+
if "r" in ioargs.mode:
|
851 |
+
open_args = {"dctx": zstd.ZstdDecompressor(**compression_args)}
|
852 |
+
else:
|
853 |
+
open_args = {"cctx": zstd.ZstdCompressor(**compression_args)}
|
854 |
+
handle = zstd.open(
|
855 |
+
handle,
|
856 |
+
mode=ioargs.mode,
|
857 |
+
**open_args,
|
858 |
+
)
|
859 |
+
|
860 |
+
# Unrecognized Compression
|
861 |
+
else:
|
862 |
+
msg = f"Unrecognized compression type: {compression}"
|
863 |
+
raise ValueError(msg)
|
864 |
+
|
865 |
+
assert not isinstance(handle, str)
|
866 |
+
handles.append(handle)
|
867 |
+
|
868 |
+
elif isinstance(handle, str):
|
869 |
+
# Check whether the filename is to be opened in binary mode.
|
870 |
+
# Binary mode does not support 'encoding' and 'newline'.
|
871 |
+
if ioargs.encoding and "b" not in ioargs.mode:
|
872 |
+
# Encoding
|
873 |
+
handle = open(
|
874 |
+
handle,
|
875 |
+
ioargs.mode,
|
876 |
+
encoding=ioargs.encoding,
|
877 |
+
errors=errors,
|
878 |
+
newline="",
|
879 |
+
)
|
880 |
+
else:
|
881 |
+
# Binary mode
|
882 |
+
handle = open(handle, ioargs.mode)
|
883 |
+
handles.append(handle)
|
884 |
+
|
885 |
+
# Convert BytesIO or file objects passed with an encoding
|
886 |
+
is_wrapped = False
|
887 |
+
if not is_text and ioargs.mode == "rb" and isinstance(handle, TextIOBase):
|
888 |
+
# not added to handles as it does not open/buffer resources
|
889 |
+
handle = _BytesIOWrapper(
|
890 |
+
handle,
|
891 |
+
encoding=ioargs.encoding,
|
892 |
+
)
|
893 |
+
elif is_text and (
|
894 |
+
compression or memory_map or _is_binary_mode(handle, ioargs.mode)
|
895 |
+
):
|
896 |
+
if (
|
897 |
+
not hasattr(handle, "readable")
|
898 |
+
or not hasattr(handle, "writable")
|
899 |
+
or not hasattr(handle, "seekable")
|
900 |
+
):
|
901 |
+
handle = _IOWrapper(handle)
|
902 |
+
# error: Argument 1 to "TextIOWrapper" has incompatible type
|
903 |
+
# "_IOWrapper"; expected "IO[bytes]"
|
904 |
+
handle = TextIOWrapper(
|
905 |
+
handle, # type: ignore[arg-type]
|
906 |
+
encoding=ioargs.encoding,
|
907 |
+
errors=errors,
|
908 |
+
newline="",
|
909 |
+
)
|
910 |
+
handles.append(handle)
|
911 |
+
# only marked as wrapped when the caller provided a handle
|
912 |
+
is_wrapped = not (
|
913 |
+
isinstance(ioargs.filepath_or_buffer, str) or ioargs.should_close
|
914 |
+
)
|
915 |
+
|
916 |
+
if "r" in ioargs.mode and not hasattr(handle, "read"):
|
917 |
+
raise TypeError(
|
918 |
+
"Expected file path name or file-like object, "
|
919 |
+
f"got {type(ioargs.filepath_or_buffer)} type"
|
920 |
+
)
|
921 |
+
|
922 |
+
handles.reverse() # close the most recently added buffer first
|
923 |
+
if ioargs.should_close:
|
924 |
+
assert not isinstance(ioargs.filepath_or_buffer, str)
|
925 |
+
handles.append(ioargs.filepath_or_buffer)
|
926 |
+
|
927 |
+
return IOHandles(
|
928 |
+
# error: Argument "handle" to "IOHandles" has incompatible type
|
929 |
+
# "Union[TextIOWrapper, GzipFile, BaseBuffer, typing.IO[bytes],
|
930 |
+
# typing.IO[Any]]"; expected "pandas._typing.IO[Any]"
|
931 |
+
handle=handle, # type: ignore[arg-type]
|
932 |
+
# error: Argument "created_handles" to "IOHandles" has incompatible type
|
933 |
+
# "List[BaseBuffer]"; expected "List[Union[IO[bytes], IO[str]]]"
|
934 |
+
created_handles=handles, # type: ignore[arg-type]
|
935 |
+
is_wrapped=is_wrapped,
|
936 |
+
compression=ioargs.compression,
|
937 |
+
)
|
938 |
+
|
939 |
+
|
940 |
+
# error: Definition of "__enter__" in base class "IOBase" is incompatible
|
941 |
+
# with definition in base class "BinaryIO"
|
942 |
+
class _BufferedWriter(BytesIO, ABC): # type: ignore[misc]
|
943 |
+
"""
|
944 |
+
Some objects do not support multiple .write() calls (TarFile and ZipFile).
|
945 |
+
This wrapper writes to the underlying buffer on close.
|
946 |
+
"""
|
947 |
+
|
948 |
+
buffer = BytesIO()
|
949 |
+
|
950 |
+
@abstractmethod
|
951 |
+
def write_to_buffer(self) -> None:
|
952 |
+
...
|
953 |
+
|
954 |
+
def close(self) -> None:
|
955 |
+
if self.closed:
|
956 |
+
# already closed
|
957 |
+
return
|
958 |
+
if self.getbuffer().nbytes:
|
959 |
+
# write to buffer
|
960 |
+
self.seek(0)
|
961 |
+
with self.buffer:
|
962 |
+
self.write_to_buffer()
|
963 |
+
else:
|
964 |
+
self.buffer.close()
|
965 |
+
super().close()
|
966 |
+
|
967 |
+
|
968 |
+
class _BytesTarFile(_BufferedWriter):
|
969 |
+
def __init__(
|
970 |
+
self,
|
971 |
+
name: str | None = None,
|
972 |
+
mode: Literal["r", "a", "w", "x"] = "r",
|
973 |
+
fileobj: ReadBuffer[bytes] | WriteBuffer[bytes] | None = None,
|
974 |
+
archive_name: str | None = None,
|
975 |
+
**kwargs,
|
976 |
+
) -> None:
|
977 |
+
super().__init__()
|
978 |
+
self.archive_name = archive_name
|
979 |
+
self.name = name
|
980 |
+
# error: Incompatible types in assignment (expression has type "TarFile",
|
981 |
+
# base class "_BufferedWriter" defined the type as "BytesIO")
|
982 |
+
self.buffer: tarfile.TarFile = tarfile.TarFile.open( # type: ignore[assignment]
|
983 |
+
name=name,
|
984 |
+
mode=self.extend_mode(mode),
|
985 |
+
fileobj=fileobj,
|
986 |
+
**kwargs,
|
987 |
+
)
|
988 |
+
|
989 |
+
def extend_mode(self, mode: str) -> str:
|
990 |
+
mode = mode.replace("b", "")
|
991 |
+
if mode != "w":
|
992 |
+
return mode
|
993 |
+
if self.name is not None:
|
994 |
+
suffix = Path(self.name).suffix
|
995 |
+
if suffix in (".gz", ".xz", ".bz2"):
|
996 |
+
mode = f"{mode}:{suffix[1:]}"
|
997 |
+
return mode
|
998 |
+
|
999 |
+
def infer_filename(self) -> str | None:
|
1000 |
+
"""
|
1001 |
+
If an explicit archive_name is not given, we still want the file inside the zip
|
1002 |
+
file not to be named something.tar, because that causes confusion (GH39465).
|
1003 |
+
"""
|
1004 |
+
if self.name is None:
|
1005 |
+
return None
|
1006 |
+
|
1007 |
+
filename = Path(self.name)
|
1008 |
+
if filename.suffix == ".tar":
|
1009 |
+
return filename.with_suffix("").name
|
1010 |
+
elif filename.suffix in (".tar.gz", ".tar.bz2", ".tar.xz"):
|
1011 |
+
return filename.with_suffix("").with_suffix("").name
|
1012 |
+
return filename.name
|
1013 |
+
|
1014 |
+
def write_to_buffer(self) -> None:
|
1015 |
+
# TarFile needs a non-empty string
|
1016 |
+
archive_name = self.archive_name or self.infer_filename() or "tar"
|
1017 |
+
tarinfo = tarfile.TarInfo(name=archive_name)
|
1018 |
+
tarinfo.size = len(self.getvalue())
|
1019 |
+
self.buffer.addfile(tarinfo, self)
|
1020 |
+
|
1021 |
+
|
1022 |
+
class _BytesZipFile(_BufferedWriter):
|
1023 |
+
def __init__(
|
1024 |
+
self,
|
1025 |
+
file: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes],
|
1026 |
+
mode: str,
|
1027 |
+
archive_name: str | None = None,
|
1028 |
+
**kwargs,
|
1029 |
+
) -> None:
|
1030 |
+
super().__init__()
|
1031 |
+
mode = mode.replace("b", "")
|
1032 |
+
self.archive_name = archive_name
|
1033 |
+
|
1034 |
+
kwargs.setdefault("compression", zipfile.ZIP_DEFLATED)
|
1035 |
+
# error: Incompatible types in assignment (expression has type "ZipFile",
|
1036 |
+
# base class "_BufferedWriter" defined the type as "BytesIO")
|
1037 |
+
self.buffer: zipfile.ZipFile = zipfile.ZipFile( # type: ignore[assignment]
|
1038 |
+
file, mode, **kwargs
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
def infer_filename(self) -> str | None:
|
1042 |
+
"""
|
1043 |
+
If an explicit archive_name is not given, we still want the file inside the zip
|
1044 |
+
file not to be named something.zip, because that causes confusion (GH39465).
|
1045 |
+
"""
|
1046 |
+
if isinstance(self.buffer.filename, (os.PathLike, str)):
|
1047 |
+
filename = Path(self.buffer.filename)
|
1048 |
+
if filename.suffix == ".zip":
|
1049 |
+
return filename.with_suffix("").name
|
1050 |
+
return filename.name
|
1051 |
+
return None
|
1052 |
+
|
1053 |
+
def write_to_buffer(self) -> None:
|
1054 |
+
# ZipFile needs a non-empty string
|
1055 |
+
archive_name = self.archive_name or self.infer_filename() or "zip"
|
1056 |
+
self.buffer.writestr(archive_name, self.getvalue())
|
1057 |
+
|
1058 |
+
|
1059 |
+
class _IOWrapper:
|
1060 |
+
# TextIOWrapper is overly strict: it request that the buffer has seekable, readable,
|
1061 |
+
# and writable. If we have a read-only buffer, we shouldn't need writable and vice
|
1062 |
+
# versa. Some buffers, are seek/read/writ-able but they do not have the "-able"
|
1063 |
+
# methods, e.g., tempfile.SpooledTemporaryFile.
|
1064 |
+
# If a buffer does not have the above "-able" methods, we simple assume they are
|
1065 |
+
# seek/read/writ-able.
|
1066 |
+
def __init__(self, buffer: BaseBuffer) -> None:
|
1067 |
+
self.buffer = buffer
|
1068 |
+
|
1069 |
+
def __getattr__(self, name: str):
|
1070 |
+
return getattr(self.buffer, name)
|
1071 |
+
|
1072 |
+
def readable(self) -> bool:
|
1073 |
+
if hasattr(self.buffer, "readable"):
|
1074 |
+
return self.buffer.readable()
|
1075 |
+
return True
|
1076 |
+
|
1077 |
+
def seekable(self) -> bool:
|
1078 |
+
if hasattr(self.buffer, "seekable"):
|
1079 |
+
return self.buffer.seekable()
|
1080 |
+
return True
|
1081 |
+
|
1082 |
+
def writable(self) -> bool:
|
1083 |
+
if hasattr(self.buffer, "writable"):
|
1084 |
+
return self.buffer.writable()
|
1085 |
+
return True
|
1086 |
+
|
1087 |
+
|
1088 |
+
class _BytesIOWrapper:
|
1089 |
+
# Wrapper that wraps a StringIO buffer and reads bytes from it
|
1090 |
+
# Created for compat with pyarrow read_csv
|
1091 |
+
def __init__(self, buffer: StringIO | TextIOBase, encoding: str = "utf-8") -> None:
|
1092 |
+
self.buffer = buffer
|
1093 |
+
self.encoding = encoding
|
1094 |
+
# Because a character can be represented by more than 1 byte,
|
1095 |
+
# it is possible that reading will produce more bytes than n
|
1096 |
+
# We store the extra bytes in this overflow variable, and append the
|
1097 |
+
# overflow to the front of the bytestring the next time reading is performed
|
1098 |
+
self.overflow = b""
|
1099 |
+
|
1100 |
+
def __getattr__(self, attr: str):
|
1101 |
+
return getattr(self.buffer, attr)
|
1102 |
+
|
1103 |
+
def read(self, n: int | None = -1) -> bytes:
|
1104 |
+
assert self.buffer is not None
|
1105 |
+
bytestring = self.buffer.read(n).encode(self.encoding)
|
1106 |
+
# When n=-1/n greater than remaining bytes: Read entire file/rest of file
|
1107 |
+
combined_bytestring = self.overflow + bytestring
|
1108 |
+
if n is None or n < 0 or n >= len(combined_bytestring):
|
1109 |
+
self.overflow = b""
|
1110 |
+
return combined_bytestring
|
1111 |
+
else:
|
1112 |
+
to_return = combined_bytestring[:n]
|
1113 |
+
self.overflow = combined_bytestring[n:]
|
1114 |
+
return to_return
|
1115 |
+
|
1116 |
+
|
1117 |
+
def _maybe_memory_map(
|
1118 |
+
handle: str | BaseBuffer, memory_map: bool
|
1119 |
+
) -> tuple[str | BaseBuffer, bool, list[BaseBuffer]]:
|
1120 |
+
"""Try to memory map file/buffer."""
|
1121 |
+
handles: list[BaseBuffer] = []
|
1122 |
+
memory_map &= hasattr(handle, "fileno") or isinstance(handle, str)
|
1123 |
+
if not memory_map:
|
1124 |
+
return handle, memory_map, handles
|
1125 |
+
|
1126 |
+
# mmap used by only read_csv
|
1127 |
+
handle = cast(ReadCsvBuffer, handle)
|
1128 |
+
|
1129 |
+
# need to open the file first
|
1130 |
+
if isinstance(handle, str):
|
1131 |
+
handle = open(handle, "rb")
|
1132 |
+
handles.append(handle)
|
1133 |
+
|
1134 |
+
try:
|
1135 |
+
# open mmap and adds *-able
|
1136 |
+
# error: Argument 1 to "_IOWrapper" has incompatible type "mmap";
|
1137 |
+
# expected "BaseBuffer"
|
1138 |
+
wrapped = _IOWrapper(
|
1139 |
+
mmap.mmap(
|
1140 |
+
handle.fileno(), 0, access=mmap.ACCESS_READ # type: ignore[arg-type]
|
1141 |
+
)
|
1142 |
+
)
|
1143 |
+
finally:
|
1144 |
+
for handle in reversed(handles):
|
1145 |
+
# error: "BaseBuffer" has no attribute "close"
|
1146 |
+
handle.close() # type: ignore[attr-defined]
|
1147 |
+
|
1148 |
+
return wrapped, memory_map, [wrapped]
|
1149 |
+
|
1150 |
+
|
1151 |
+
def file_exists(filepath_or_buffer: FilePath | BaseBuffer) -> bool:
|
1152 |
+
"""Test whether file exists."""
|
1153 |
+
exists = False
|
1154 |
+
filepath_or_buffer = stringify_path(filepath_or_buffer)
|
1155 |
+
if not isinstance(filepath_or_buffer, str):
|
1156 |
+
return exists
|
1157 |
+
try:
|
1158 |
+
exists = os.path.exists(filepath_or_buffer)
|
1159 |
+
# gh-5874: if the filepath is too long will raise here
|
1160 |
+
except (TypeError, ValueError):
|
1161 |
+
pass
|
1162 |
+
return exists
|
1163 |
+
|
1164 |
+
|
1165 |
+
def _is_binary_mode(handle: FilePath | BaseBuffer, mode: str) -> bool:
|
1166 |
+
"""Whether the handle is opened in binary mode"""
|
1167 |
+
# specified by user
|
1168 |
+
if "t" in mode or "b" in mode:
|
1169 |
+
return "b" in mode
|
1170 |
+
|
1171 |
+
# exceptions
|
1172 |
+
text_classes = (
|
1173 |
+
# classes that expect string but have 'b' in mode
|
1174 |
+
codecs.StreamWriter,
|
1175 |
+
codecs.StreamReader,
|
1176 |
+
codecs.StreamReaderWriter,
|
1177 |
+
)
|
1178 |
+
if issubclass(type(handle), text_classes):
|
1179 |
+
return False
|
1180 |
+
|
1181 |
+
return isinstance(handle, _get_binary_io_classes()) or "b" in getattr(
|
1182 |
+
handle, "mode", mode
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
|
1186 |
+
@functools.lru_cache
|
1187 |
+
def _get_binary_io_classes() -> tuple[type, ...]:
|
1188 |
+
"""IO classes that that expect bytes"""
|
1189 |
+
binary_classes: tuple[type, ...] = (BufferedIOBase, RawIOBase)
|
1190 |
+
|
1191 |
+
# python-zstandard doesn't use any of the builtin base classes; instead we
|
1192 |
+
# have to use the `zstd.ZstdDecompressionReader` class for isinstance checks.
|
1193 |
+
# Unfortunately `zstd.ZstdDecompressionReader` isn't exposed by python-zstandard
|
1194 |
+
# so we have to get it from a `zstd.ZstdDecompressor` instance.
|
1195 |
+
# See also https://github.com/indygreg/python-zstandard/pull/165.
|
1196 |
+
zstd = import_optional_dependency("zstandard", errors="ignore")
|
1197 |
+
if zstd is not None:
|
1198 |
+
with zstd.ZstdDecompressor().stream_reader(b"") as reader:
|
1199 |
+
binary_classes += (type(reader),)
|
1200 |
+
|
1201 |
+
return binary_classes
|
1202 |
+
|
1203 |
+
|
1204 |
+
def is_potential_multi_index(
|
1205 |
+
columns: Sequence[Hashable] | MultiIndex,
|
1206 |
+
index_col: bool | Sequence[int] | None = None,
|
1207 |
+
) -> bool:
|
1208 |
+
"""
|
1209 |
+
Check whether or not the `columns` parameter
|
1210 |
+
could be converted into a MultiIndex.
|
1211 |
+
|
1212 |
+
Parameters
|
1213 |
+
----------
|
1214 |
+
columns : array-like
|
1215 |
+
Object which may or may not be convertible into a MultiIndex
|
1216 |
+
index_col : None, bool or list, optional
|
1217 |
+
Column or columns to use as the (possibly hierarchical) index
|
1218 |
+
|
1219 |
+
Returns
|
1220 |
+
-------
|
1221 |
+
bool : Whether or not columns could become a MultiIndex
|
1222 |
+
"""
|
1223 |
+
if index_col is None or isinstance(index_col, bool):
|
1224 |
+
index_col = []
|
1225 |
+
|
1226 |
+
return bool(
|
1227 |
+
len(columns)
|
1228 |
+
and not isinstance(columns, ABCMultiIndex)
|
1229 |
+
and all(isinstance(c, tuple) for c in columns if c not in list(index_col))
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
|
1233 |
+
def dedup_names(
|
1234 |
+
names: Sequence[Hashable], is_potential_multiindex: bool
|
1235 |
+
) -> Sequence[Hashable]:
|
1236 |
+
"""
|
1237 |
+
Rename column names if duplicates exist.
|
1238 |
+
|
1239 |
+
Currently the renaming is done by appending a period and an autonumeric,
|
1240 |
+
but a custom pattern may be supported in the future.
|
1241 |
+
|
1242 |
+
Examples
|
1243 |
+
--------
|
1244 |
+
>>> dedup_names(["x", "y", "x", "x"], is_potential_multiindex=False)
|
1245 |
+
['x', 'y', 'x.1', 'x.2']
|
1246 |
+
"""
|
1247 |
+
names = list(names) # so we can index
|
1248 |
+
counts: DefaultDict[Hashable, int] = defaultdict(int)
|
1249 |
+
|
1250 |
+
for i, col in enumerate(names):
|
1251 |
+
cur_count = counts[col]
|
1252 |
+
|
1253 |
+
while cur_count > 0:
|
1254 |
+
counts[col] = cur_count + 1
|
1255 |
+
|
1256 |
+
if is_potential_multiindex:
|
1257 |
+
# for mypy
|
1258 |
+
assert isinstance(col, tuple)
|
1259 |
+
col = col[:-1] + (f"{col[-1]}.{cur_count}",)
|
1260 |
+
else:
|
1261 |
+
col = f"{col}.{cur_count}"
|
1262 |
+
cur_count = counts[col]
|
1263 |
+
|
1264 |
+
names[i] = col
|
1265 |
+
counts[col] = cur_count + 1
|
1266 |
+
|
1267 |
+
return names
|
venv/lib/python3.10/site-packages/pandas/io/feather_format.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" feather-format compat """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
Any,
|
7 |
+
)
|
8 |
+
|
9 |
+
from pandas._config import using_pyarrow_string_dtype
|
10 |
+
|
11 |
+
from pandas._libs import lib
|
12 |
+
from pandas.compat._optional import import_optional_dependency
|
13 |
+
from pandas.util._decorators import doc
|
14 |
+
from pandas.util._validators import check_dtype_backend
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
from pandas.core.api import DataFrame
|
18 |
+
from pandas.core.shared_docs import _shared_docs
|
19 |
+
|
20 |
+
from pandas.io._util import arrow_string_types_mapper
|
21 |
+
from pandas.io.common import get_handle
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from collections.abc import (
|
25 |
+
Hashable,
|
26 |
+
Sequence,
|
27 |
+
)
|
28 |
+
|
29 |
+
from pandas._typing import (
|
30 |
+
DtypeBackend,
|
31 |
+
FilePath,
|
32 |
+
ReadBuffer,
|
33 |
+
StorageOptions,
|
34 |
+
WriteBuffer,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
@doc(storage_options=_shared_docs["storage_options"])
|
39 |
+
def to_feather(
|
40 |
+
df: DataFrame,
|
41 |
+
path: FilePath | WriteBuffer[bytes],
|
42 |
+
storage_options: StorageOptions | None = None,
|
43 |
+
**kwargs: Any,
|
44 |
+
) -> None:
|
45 |
+
"""
|
46 |
+
Write a DataFrame to the binary Feather format.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
df : DataFrame
|
51 |
+
path : str, path object, or file-like object
|
52 |
+
{storage_options}
|
53 |
+
**kwargs :
|
54 |
+
Additional keywords passed to `pyarrow.feather.write_feather`.
|
55 |
+
|
56 |
+
"""
|
57 |
+
import_optional_dependency("pyarrow")
|
58 |
+
from pyarrow import feather
|
59 |
+
|
60 |
+
if not isinstance(df, DataFrame):
|
61 |
+
raise ValueError("feather only support IO with DataFrames")
|
62 |
+
|
63 |
+
with get_handle(
|
64 |
+
path, "wb", storage_options=storage_options, is_text=False
|
65 |
+
) as handles:
|
66 |
+
feather.write_feather(df, handles.handle, **kwargs)
|
67 |
+
|
68 |
+
|
69 |
+
@doc(storage_options=_shared_docs["storage_options"])
|
70 |
+
def read_feather(
|
71 |
+
path: FilePath | ReadBuffer[bytes],
|
72 |
+
columns: Sequence[Hashable] | None = None,
|
73 |
+
use_threads: bool = True,
|
74 |
+
storage_options: StorageOptions | None = None,
|
75 |
+
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
76 |
+
) -> DataFrame:
|
77 |
+
"""
|
78 |
+
Load a feather-format object from the file path.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
path : str, path object, or file-like object
|
83 |
+
String, path object (implementing ``os.PathLike[str]``), or file-like
|
84 |
+
object implementing a binary ``read()`` function. The string could be a URL.
|
85 |
+
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
86 |
+
expected. A local file could be: ``file://localhost/path/to/table.feather``.
|
87 |
+
columns : sequence, default None
|
88 |
+
If not provided, all columns are read.
|
89 |
+
use_threads : bool, default True
|
90 |
+
Whether to parallelize reading using multiple threads.
|
91 |
+
{storage_options}
|
92 |
+
|
93 |
+
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
|
94 |
+
Back-end data type applied to the resultant :class:`DataFrame`
|
95 |
+
(still experimental). Behaviour is as follows:
|
96 |
+
|
97 |
+
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
98 |
+
(default).
|
99 |
+
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
100 |
+
DataFrame.
|
101 |
+
|
102 |
+
.. versionadded:: 2.0
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
type of object stored in file
|
107 |
+
|
108 |
+
Examples
|
109 |
+
--------
|
110 |
+
>>> df = pd.read_feather("path/to/file.feather") # doctest: +SKIP
|
111 |
+
"""
|
112 |
+
import_optional_dependency("pyarrow")
|
113 |
+
from pyarrow import feather
|
114 |
+
|
115 |
+
# import utils to register the pyarrow extension types
|
116 |
+
import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401
|
117 |
+
|
118 |
+
check_dtype_backend(dtype_backend)
|
119 |
+
|
120 |
+
with get_handle(
|
121 |
+
path, "rb", storage_options=storage_options, is_text=False
|
122 |
+
) as handles:
|
123 |
+
if dtype_backend is lib.no_default and not using_pyarrow_string_dtype():
|
124 |
+
return feather.read_feather(
|
125 |
+
handles.handle, columns=columns, use_threads=bool(use_threads)
|
126 |
+
)
|
127 |
+
|
128 |
+
pa_table = feather.read_table(
|
129 |
+
handles.handle, columns=columns, use_threads=bool(use_threads)
|
130 |
+
)
|
131 |
+
|
132 |
+
if dtype_backend == "numpy_nullable":
|
133 |
+
from pandas.io._util import _arrow_dtype_mapping
|
134 |
+
|
135 |
+
return pa_table.to_pandas(types_mapper=_arrow_dtype_mapping().get)
|
136 |
+
|
137 |
+
elif dtype_backend == "pyarrow":
|
138 |
+
return pa_table.to_pandas(types_mapper=pd.ArrowDtype)
|
139 |
+
|
140 |
+
elif using_pyarrow_string_dtype():
|
141 |
+
return pa_table.to_pandas(types_mapper=arrow_string_types_mapper())
|
142 |
+
else:
|
143 |
+
raise NotImplementedError
|
venv/lib/python3.10/site-packages/pandas/io/formats/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ruff: noqa: TCH004
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
+
|
4 |
+
if TYPE_CHECKING:
|
5 |
+
# import modules that have public classes/functions
|
6 |
+
from pandas.io.formats import style
|
7 |
+
|
8 |
+
# and mark only those modules as public
|
9 |
+
__all__ = ["style"]
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (310 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc
ADDED
Binary file (4.52 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc
ADDED
Binary file (9.88 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc
ADDED
Binary file (24.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc
ADDED
Binary file (57.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc
ADDED
Binary file (36.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc
ADDED
Binary file (6.49 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc
ADDED
Binary file (137 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc
ADDED
Binary file (75.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/_color_data.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GH37967: Enable the use of CSS named colors, as defined in
|
2 |
+
# matplotlib.colors.CSS4_COLORS, when exporting to Excel.
|
3 |
+
# This data has been copied here, instead of being imported from matplotlib,
|
4 |
+
# not to have ``to_excel`` methods require matplotlib.
|
5 |
+
# source: matplotlib._color_data (3.3.3)
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
CSS4_COLORS = {
|
9 |
+
"aliceblue": "F0F8FF",
|
10 |
+
"antiquewhite": "FAEBD7",
|
11 |
+
"aqua": "00FFFF",
|
12 |
+
"aquamarine": "7FFFD4",
|
13 |
+
"azure": "F0FFFF",
|
14 |
+
"beige": "F5F5DC",
|
15 |
+
"bisque": "FFE4C4",
|
16 |
+
"black": "000000",
|
17 |
+
"blanchedalmond": "FFEBCD",
|
18 |
+
"blue": "0000FF",
|
19 |
+
"blueviolet": "8A2BE2",
|
20 |
+
"brown": "A52A2A",
|
21 |
+
"burlywood": "DEB887",
|
22 |
+
"cadetblue": "5F9EA0",
|
23 |
+
"chartreuse": "7FFF00",
|
24 |
+
"chocolate": "D2691E",
|
25 |
+
"coral": "FF7F50",
|
26 |
+
"cornflowerblue": "6495ED",
|
27 |
+
"cornsilk": "FFF8DC",
|
28 |
+
"crimson": "DC143C",
|
29 |
+
"cyan": "00FFFF",
|
30 |
+
"darkblue": "00008B",
|
31 |
+
"darkcyan": "008B8B",
|
32 |
+
"darkgoldenrod": "B8860B",
|
33 |
+
"darkgray": "A9A9A9",
|
34 |
+
"darkgreen": "006400",
|
35 |
+
"darkgrey": "A9A9A9",
|
36 |
+
"darkkhaki": "BDB76B",
|
37 |
+
"darkmagenta": "8B008B",
|
38 |
+
"darkolivegreen": "556B2F",
|
39 |
+
"darkorange": "FF8C00",
|
40 |
+
"darkorchid": "9932CC",
|
41 |
+
"darkred": "8B0000",
|
42 |
+
"darksalmon": "E9967A",
|
43 |
+
"darkseagreen": "8FBC8F",
|
44 |
+
"darkslateblue": "483D8B",
|
45 |
+
"darkslategray": "2F4F4F",
|
46 |
+
"darkslategrey": "2F4F4F",
|
47 |
+
"darkturquoise": "00CED1",
|
48 |
+
"darkviolet": "9400D3",
|
49 |
+
"deeppink": "FF1493",
|
50 |
+
"deepskyblue": "00BFFF",
|
51 |
+
"dimgray": "696969",
|
52 |
+
"dimgrey": "696969",
|
53 |
+
"dodgerblue": "1E90FF",
|
54 |
+
"firebrick": "B22222",
|
55 |
+
"floralwhite": "FFFAF0",
|
56 |
+
"forestgreen": "228B22",
|
57 |
+
"fuchsia": "FF00FF",
|
58 |
+
"gainsboro": "DCDCDC",
|
59 |
+
"ghostwhite": "F8F8FF",
|
60 |
+
"gold": "FFD700",
|
61 |
+
"goldenrod": "DAA520",
|
62 |
+
"gray": "808080",
|
63 |
+
"green": "008000",
|
64 |
+
"greenyellow": "ADFF2F",
|
65 |
+
"grey": "808080",
|
66 |
+
"honeydew": "F0FFF0",
|
67 |
+
"hotpink": "FF69B4",
|
68 |
+
"indianred": "CD5C5C",
|
69 |
+
"indigo": "4B0082",
|
70 |
+
"ivory": "FFFFF0",
|
71 |
+
"khaki": "F0E68C",
|
72 |
+
"lavender": "E6E6FA",
|
73 |
+
"lavenderblush": "FFF0F5",
|
74 |
+
"lawngreen": "7CFC00",
|
75 |
+
"lemonchiffon": "FFFACD",
|
76 |
+
"lightblue": "ADD8E6",
|
77 |
+
"lightcoral": "F08080",
|
78 |
+
"lightcyan": "E0FFFF",
|
79 |
+
"lightgoldenrodyellow": "FAFAD2",
|
80 |
+
"lightgray": "D3D3D3",
|
81 |
+
"lightgreen": "90EE90",
|
82 |
+
"lightgrey": "D3D3D3",
|
83 |
+
"lightpink": "FFB6C1",
|
84 |
+
"lightsalmon": "FFA07A",
|
85 |
+
"lightseagreen": "20B2AA",
|
86 |
+
"lightskyblue": "87CEFA",
|
87 |
+
"lightslategray": "778899",
|
88 |
+
"lightslategrey": "778899",
|
89 |
+
"lightsteelblue": "B0C4DE",
|
90 |
+
"lightyellow": "FFFFE0",
|
91 |
+
"lime": "00FF00",
|
92 |
+
"limegreen": "32CD32",
|
93 |
+
"linen": "FAF0E6",
|
94 |
+
"magenta": "FF00FF",
|
95 |
+
"maroon": "800000",
|
96 |
+
"mediumaquamarine": "66CDAA",
|
97 |
+
"mediumblue": "0000CD",
|
98 |
+
"mediumorchid": "BA55D3",
|
99 |
+
"mediumpurple": "9370DB",
|
100 |
+
"mediumseagreen": "3CB371",
|
101 |
+
"mediumslateblue": "7B68EE",
|
102 |
+
"mediumspringgreen": "00FA9A",
|
103 |
+
"mediumturquoise": "48D1CC",
|
104 |
+
"mediumvioletred": "C71585",
|
105 |
+
"midnightblue": "191970",
|
106 |
+
"mintcream": "F5FFFA",
|
107 |
+
"mistyrose": "FFE4E1",
|
108 |
+
"moccasin": "FFE4B5",
|
109 |
+
"navajowhite": "FFDEAD",
|
110 |
+
"navy": "000080",
|
111 |
+
"oldlace": "FDF5E6",
|
112 |
+
"olive": "808000",
|
113 |
+
"olivedrab": "6B8E23",
|
114 |
+
"orange": "FFA500",
|
115 |
+
"orangered": "FF4500",
|
116 |
+
"orchid": "DA70D6",
|
117 |
+
"palegoldenrod": "EEE8AA",
|
118 |
+
"palegreen": "98FB98",
|
119 |
+
"paleturquoise": "AFEEEE",
|
120 |
+
"palevioletred": "DB7093",
|
121 |
+
"papayawhip": "FFEFD5",
|
122 |
+
"peachpuff": "FFDAB9",
|
123 |
+
"peru": "CD853F",
|
124 |
+
"pink": "FFC0CB",
|
125 |
+
"plum": "DDA0DD",
|
126 |
+
"powderblue": "B0E0E6",
|
127 |
+
"purple": "800080",
|
128 |
+
"rebeccapurple": "663399",
|
129 |
+
"red": "FF0000",
|
130 |
+
"rosybrown": "BC8F8F",
|
131 |
+
"royalblue": "4169E1",
|
132 |
+
"saddlebrown": "8B4513",
|
133 |
+
"salmon": "FA8072",
|
134 |
+
"sandybrown": "F4A460",
|
135 |
+
"seagreen": "2E8B57",
|
136 |
+
"seashell": "FFF5EE",
|
137 |
+
"sienna": "A0522D",
|
138 |
+
"silver": "C0C0C0",
|
139 |
+
"skyblue": "87CEEB",
|
140 |
+
"slateblue": "6A5ACD",
|
141 |
+
"slategray": "708090",
|
142 |
+
"slategrey": "708090",
|
143 |
+
"snow": "FFFAFA",
|
144 |
+
"springgreen": "00FF7F",
|
145 |
+
"steelblue": "4682B4",
|
146 |
+
"tan": "D2B48C",
|
147 |
+
"teal": "008080",
|
148 |
+
"thistle": "D8BFD8",
|
149 |
+
"tomato": "FF6347",
|
150 |
+
"turquoise": "40E0D0",
|
151 |
+
"violet": "EE82EE",
|
152 |
+
"wheat": "F5DEB3",
|
153 |
+
"white": "FFFFFF",
|
154 |
+
"whitesmoke": "F5F5F5",
|
155 |
+
"yellow": "FFFF00",
|
156 |
+
"yellowgreen": "9ACD32",
|
157 |
+
}
|
venv/lib/python3.10/site-packages/pandas/io/formats/console.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Internal module for console introspection
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from shutil import get_terminal_size
|
7 |
+
|
8 |
+
|
9 |
+
def get_console_size() -> tuple[int | None, int | None]:
|
10 |
+
"""
|
11 |
+
Return console size as tuple = (width, height).
|
12 |
+
|
13 |
+
Returns (None,None) in non-interactive session.
|
14 |
+
"""
|
15 |
+
from pandas import get_option
|
16 |
+
|
17 |
+
display_width = get_option("display.width")
|
18 |
+
display_height = get_option("display.max_rows")
|
19 |
+
|
20 |
+
# Consider
|
21 |
+
# interactive shell terminal, can detect term size
|
22 |
+
# interactive non-shell terminal (ipnb/ipqtconsole), cannot detect term
|
23 |
+
# size non-interactive script, should disregard term size
|
24 |
+
|
25 |
+
# in addition
|
26 |
+
# width,height have default values, but setting to 'None' signals
|
27 |
+
# should use Auto-Detection, But only in interactive shell-terminal.
|
28 |
+
# Simple. yeah.
|
29 |
+
|
30 |
+
if in_interactive_session():
|
31 |
+
if in_ipython_frontend():
|
32 |
+
# sane defaults for interactive non-shell terminal
|
33 |
+
# match default for width,height in config_init
|
34 |
+
from pandas._config.config import get_default_val
|
35 |
+
|
36 |
+
terminal_width = get_default_val("display.width")
|
37 |
+
terminal_height = get_default_val("display.max_rows")
|
38 |
+
else:
|
39 |
+
# pure terminal
|
40 |
+
terminal_width, terminal_height = get_terminal_size()
|
41 |
+
else:
|
42 |
+
terminal_width, terminal_height = None, None
|
43 |
+
|
44 |
+
# Note if the User sets width/Height to None (auto-detection)
|
45 |
+
# and we're in a script (non-inter), this will return (None,None)
|
46 |
+
# caller needs to deal.
|
47 |
+
return display_width or terminal_width, display_height or terminal_height
|
48 |
+
|
49 |
+
|
50 |
+
# ----------------------------------------------------------------------
|
51 |
+
# Detect our environment
|
52 |
+
|
53 |
+
|
54 |
+
def in_interactive_session() -> bool:
|
55 |
+
"""
|
56 |
+
Check if we're running in an interactive shell.
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
bool
|
61 |
+
True if running under python/ipython interactive shell.
|
62 |
+
"""
|
63 |
+
from pandas import get_option
|
64 |
+
|
65 |
+
def check_main():
|
66 |
+
try:
|
67 |
+
import __main__ as main
|
68 |
+
except ModuleNotFoundError:
|
69 |
+
return get_option("mode.sim_interactive")
|
70 |
+
return not hasattr(main, "__file__") or get_option("mode.sim_interactive")
|
71 |
+
|
72 |
+
try:
|
73 |
+
# error: Name '__IPYTHON__' is not defined
|
74 |
+
return __IPYTHON__ or check_main() # type: ignore[name-defined]
|
75 |
+
except NameError:
|
76 |
+
return check_main()
|
77 |
+
|
78 |
+
|
79 |
+
def in_ipython_frontend() -> bool:
|
80 |
+
"""
|
81 |
+
Check if we're inside an IPython zmq frontend.
|
82 |
+
|
83 |
+
Returns
|
84 |
+
-------
|
85 |
+
bool
|
86 |
+
"""
|
87 |
+
try:
|
88 |
+
# error: Name 'get_ipython' is not defined
|
89 |
+
ip = get_ipython() # type: ignore[name-defined]
|
90 |
+
return "zmq" in str(type(ip)).lower()
|
91 |
+
except NameError:
|
92 |
+
pass
|
93 |
+
|
94 |
+
return False
|
venv/lib/python3.10/site-packages/pandas/io/formats/css.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for interpreting CSS from Stylers for formatting non-HTML outputs.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import re
|
7 |
+
from typing import (
|
8 |
+
TYPE_CHECKING,
|
9 |
+
Callable,
|
10 |
+
)
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
from pandas.errors import CSSWarning
|
14 |
+
from pandas.util._exceptions import find_stack_level
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from collections.abc import (
|
18 |
+
Generator,
|
19 |
+
Iterable,
|
20 |
+
Iterator,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def _side_expander(prop_fmt: str) -> Callable:
|
25 |
+
"""
|
26 |
+
Wrapper to expand shorthand property into top, right, bottom, left properties
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
side : str
|
31 |
+
The border side to expand into properties
|
32 |
+
|
33 |
+
Returns
|
34 |
+
-------
|
35 |
+
function: Return to call when a 'border(-{side}): {value}' string is encountered
|
36 |
+
"""
|
37 |
+
|
38 |
+
def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]:
|
39 |
+
"""
|
40 |
+
Expand shorthand property into side-specific property (top, right, bottom, left)
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
prop (str): CSS property name
|
45 |
+
value (str): String token for property
|
46 |
+
|
47 |
+
Yields
|
48 |
+
------
|
49 |
+
Tuple (str, str): Expanded property, value
|
50 |
+
"""
|
51 |
+
tokens = value.split()
|
52 |
+
try:
|
53 |
+
mapping = self.SIDE_SHORTHANDS[len(tokens)]
|
54 |
+
except KeyError:
|
55 |
+
warnings.warn(
|
56 |
+
f'Could not expand "{prop}: {value}"',
|
57 |
+
CSSWarning,
|
58 |
+
stacklevel=find_stack_level(),
|
59 |
+
)
|
60 |
+
return
|
61 |
+
for key, idx in zip(self.SIDES, mapping):
|
62 |
+
yield prop_fmt.format(key), tokens[idx]
|
63 |
+
|
64 |
+
return expand
|
65 |
+
|
66 |
+
|
67 |
+
def _border_expander(side: str = "") -> Callable:
|
68 |
+
"""
|
69 |
+
Wrapper to expand 'border' property into border color, style, and width properties
|
70 |
+
|
71 |
+
Parameters
|
72 |
+
----------
|
73 |
+
side : str
|
74 |
+
The border side to expand into properties
|
75 |
+
|
76 |
+
Returns
|
77 |
+
-------
|
78 |
+
function: Return to call when a 'border(-{side}): {value}' string is encountered
|
79 |
+
"""
|
80 |
+
if side != "":
|
81 |
+
side = f"-{side}"
|
82 |
+
|
83 |
+
def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]:
|
84 |
+
"""
|
85 |
+
Expand border into color, style, and width tuples
|
86 |
+
|
87 |
+
Parameters
|
88 |
+
----------
|
89 |
+
prop : str
|
90 |
+
CSS property name passed to styler
|
91 |
+
value : str
|
92 |
+
Value passed to styler for property
|
93 |
+
|
94 |
+
Yields
|
95 |
+
------
|
96 |
+
Tuple (str, str): Expanded property, value
|
97 |
+
"""
|
98 |
+
tokens = value.split()
|
99 |
+
if len(tokens) == 0 or len(tokens) > 3:
|
100 |
+
warnings.warn(
|
101 |
+
f'Too many tokens provided to "{prop}" (expected 1-3)',
|
102 |
+
CSSWarning,
|
103 |
+
stacklevel=find_stack_level(),
|
104 |
+
)
|
105 |
+
|
106 |
+
# TODO: Can we use current color as initial value to comply with CSS standards?
|
107 |
+
border_declarations = {
|
108 |
+
f"border{side}-color": "black",
|
109 |
+
f"border{side}-style": "none",
|
110 |
+
f"border{side}-width": "medium",
|
111 |
+
}
|
112 |
+
for token in tokens:
|
113 |
+
if token.lower() in self.BORDER_STYLES:
|
114 |
+
border_declarations[f"border{side}-style"] = token
|
115 |
+
elif any(ratio in token.lower() for ratio in self.BORDER_WIDTH_RATIOS):
|
116 |
+
border_declarations[f"border{side}-width"] = token
|
117 |
+
else:
|
118 |
+
border_declarations[f"border{side}-color"] = token
|
119 |
+
# TODO: Warn user if item entered more than once (e.g. "border: red green")
|
120 |
+
|
121 |
+
# Per CSS, "border" will reset previous "border-*" definitions
|
122 |
+
yield from self.atomize(border_declarations.items())
|
123 |
+
|
124 |
+
return expand
|
125 |
+
|
126 |
+
|
127 |
+
class CSSResolver:
|
128 |
+
"""
|
129 |
+
A callable for parsing and resolving CSS to atomic properties.
|
130 |
+
"""
|
131 |
+
|
132 |
+
UNIT_RATIOS = {
|
133 |
+
"pt": ("pt", 1),
|
134 |
+
"em": ("em", 1),
|
135 |
+
"rem": ("pt", 12),
|
136 |
+
"ex": ("em", 0.5),
|
137 |
+
# 'ch':
|
138 |
+
"px": ("pt", 0.75),
|
139 |
+
"pc": ("pt", 12),
|
140 |
+
"in": ("pt", 72),
|
141 |
+
"cm": ("in", 1 / 2.54),
|
142 |
+
"mm": ("in", 1 / 25.4),
|
143 |
+
"q": ("mm", 0.25),
|
144 |
+
"!!default": ("em", 0),
|
145 |
+
}
|
146 |
+
|
147 |
+
FONT_SIZE_RATIOS = UNIT_RATIOS.copy()
|
148 |
+
FONT_SIZE_RATIOS.update(
|
149 |
+
{
|
150 |
+
"%": ("em", 0.01),
|
151 |
+
"xx-small": ("rem", 0.5),
|
152 |
+
"x-small": ("rem", 0.625),
|
153 |
+
"small": ("rem", 0.8),
|
154 |
+
"medium": ("rem", 1),
|
155 |
+
"large": ("rem", 1.125),
|
156 |
+
"x-large": ("rem", 1.5),
|
157 |
+
"xx-large": ("rem", 2),
|
158 |
+
"smaller": ("em", 1 / 1.2),
|
159 |
+
"larger": ("em", 1.2),
|
160 |
+
"!!default": ("em", 1),
|
161 |
+
}
|
162 |
+
)
|
163 |
+
|
164 |
+
MARGIN_RATIOS = UNIT_RATIOS.copy()
|
165 |
+
MARGIN_RATIOS.update({"none": ("pt", 0)})
|
166 |
+
|
167 |
+
BORDER_WIDTH_RATIOS = UNIT_RATIOS.copy()
|
168 |
+
BORDER_WIDTH_RATIOS.update(
|
169 |
+
{
|
170 |
+
"none": ("pt", 0),
|
171 |
+
"thick": ("px", 4),
|
172 |
+
"medium": ("px", 2),
|
173 |
+
"thin": ("px", 1),
|
174 |
+
# Default: medium only if solid
|
175 |
+
}
|
176 |
+
)
|
177 |
+
|
178 |
+
BORDER_STYLES = [
|
179 |
+
"none",
|
180 |
+
"hidden",
|
181 |
+
"dotted",
|
182 |
+
"dashed",
|
183 |
+
"solid",
|
184 |
+
"double",
|
185 |
+
"groove",
|
186 |
+
"ridge",
|
187 |
+
"inset",
|
188 |
+
"outset",
|
189 |
+
"mediumdashdot",
|
190 |
+
"dashdotdot",
|
191 |
+
"hair",
|
192 |
+
"mediumdashdotdot",
|
193 |
+
"dashdot",
|
194 |
+
"slantdashdot",
|
195 |
+
"mediumdashed",
|
196 |
+
]
|
197 |
+
|
198 |
+
SIDE_SHORTHANDS = {
|
199 |
+
1: [0, 0, 0, 0],
|
200 |
+
2: [0, 1, 0, 1],
|
201 |
+
3: [0, 1, 2, 1],
|
202 |
+
4: [0, 1, 2, 3],
|
203 |
+
}
|
204 |
+
|
205 |
+
SIDES = ("top", "right", "bottom", "left")
|
206 |
+
|
207 |
+
CSS_EXPANSIONS = {
|
208 |
+
**{
|
209 |
+
(f"border-{prop}" if prop else "border"): _border_expander(prop)
|
210 |
+
for prop in ["", "top", "right", "bottom", "left"]
|
211 |
+
},
|
212 |
+
**{
|
213 |
+
f"border-{prop}": _side_expander(f"border-{{:s}}-{prop}")
|
214 |
+
for prop in ["color", "style", "width"]
|
215 |
+
},
|
216 |
+
"margin": _side_expander("margin-{:s}"),
|
217 |
+
"padding": _side_expander("padding-{:s}"),
|
218 |
+
}
|
219 |
+
|
220 |
+
def __call__(
|
221 |
+
self,
|
222 |
+
declarations: str | Iterable[tuple[str, str]],
|
223 |
+
inherited: dict[str, str] | None = None,
|
224 |
+
) -> dict[str, str]:
|
225 |
+
"""
|
226 |
+
The given declarations to atomic properties.
|
227 |
+
|
228 |
+
Parameters
|
229 |
+
----------
|
230 |
+
declarations_str : str | Iterable[tuple[str, str]]
|
231 |
+
A CSS string or set of CSS declaration tuples
|
232 |
+
e.g. "font-weight: bold; background: blue" or
|
233 |
+
{("font-weight", "bold"), ("background", "blue")}
|
234 |
+
inherited : dict, optional
|
235 |
+
Atomic properties indicating the inherited style context in which
|
236 |
+
declarations_str is to be resolved. ``inherited`` should already
|
237 |
+
be resolved, i.e. valid output of this method.
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
dict
|
242 |
+
Atomic CSS 2.2 properties.
|
243 |
+
|
244 |
+
Examples
|
245 |
+
--------
|
246 |
+
>>> resolve = CSSResolver()
|
247 |
+
>>> inherited = {'font-family': 'serif', 'font-weight': 'bold'}
|
248 |
+
>>> out = resolve('''
|
249 |
+
... border-color: BLUE RED;
|
250 |
+
... font-size: 1em;
|
251 |
+
... font-size: 2em;
|
252 |
+
... font-weight: normal;
|
253 |
+
... font-weight: inherit;
|
254 |
+
... ''', inherited)
|
255 |
+
>>> sorted(out.items()) # doctest: +NORMALIZE_WHITESPACE
|
256 |
+
[('border-bottom-color', 'blue'),
|
257 |
+
('border-left-color', 'red'),
|
258 |
+
('border-right-color', 'red'),
|
259 |
+
('border-top-color', 'blue'),
|
260 |
+
('font-family', 'serif'),
|
261 |
+
('font-size', '24pt'),
|
262 |
+
('font-weight', 'bold')]
|
263 |
+
"""
|
264 |
+
if isinstance(declarations, str):
|
265 |
+
declarations = self.parse(declarations)
|
266 |
+
props = dict(self.atomize(declarations))
|
267 |
+
if inherited is None:
|
268 |
+
inherited = {}
|
269 |
+
|
270 |
+
props = self._update_initial(props, inherited)
|
271 |
+
props = self._update_font_size(props, inherited)
|
272 |
+
return self._update_other_units(props)
|
273 |
+
|
274 |
+
def _update_initial(
|
275 |
+
self,
|
276 |
+
props: dict[str, str],
|
277 |
+
inherited: dict[str, str],
|
278 |
+
) -> dict[str, str]:
|
279 |
+
# 1. resolve inherited, initial
|
280 |
+
for prop, val in inherited.items():
|
281 |
+
if prop not in props:
|
282 |
+
props[prop] = val
|
283 |
+
|
284 |
+
new_props = props.copy()
|
285 |
+
for prop, val in props.items():
|
286 |
+
if val == "inherit":
|
287 |
+
val = inherited.get(prop, "initial")
|
288 |
+
|
289 |
+
if val in ("initial", None):
|
290 |
+
# we do not define a complete initial stylesheet
|
291 |
+
del new_props[prop]
|
292 |
+
else:
|
293 |
+
new_props[prop] = val
|
294 |
+
return new_props
|
295 |
+
|
296 |
+
def _update_font_size(
|
297 |
+
self,
|
298 |
+
props: dict[str, str],
|
299 |
+
inherited: dict[str, str],
|
300 |
+
) -> dict[str, str]:
|
301 |
+
# 2. resolve relative font size
|
302 |
+
if props.get("font-size"):
|
303 |
+
props["font-size"] = self.size_to_pt(
|
304 |
+
props["font-size"],
|
305 |
+
self._get_font_size(inherited),
|
306 |
+
conversions=self.FONT_SIZE_RATIOS,
|
307 |
+
)
|
308 |
+
return props
|
309 |
+
|
310 |
+
def _get_font_size(self, props: dict[str, str]) -> float | None:
|
311 |
+
if props.get("font-size"):
|
312 |
+
font_size_string = props["font-size"]
|
313 |
+
return self._get_float_font_size_from_pt(font_size_string)
|
314 |
+
return None
|
315 |
+
|
316 |
+
def _get_float_font_size_from_pt(self, font_size_string: str) -> float:
|
317 |
+
assert font_size_string.endswith("pt")
|
318 |
+
return float(font_size_string.rstrip("pt"))
|
319 |
+
|
320 |
+
def _update_other_units(self, props: dict[str, str]) -> dict[str, str]:
|
321 |
+
font_size = self._get_font_size(props)
|
322 |
+
# 3. TODO: resolve other font-relative units
|
323 |
+
for side in self.SIDES:
|
324 |
+
prop = f"border-{side}-width"
|
325 |
+
if prop in props:
|
326 |
+
props[prop] = self.size_to_pt(
|
327 |
+
props[prop],
|
328 |
+
em_pt=font_size,
|
329 |
+
conversions=self.BORDER_WIDTH_RATIOS,
|
330 |
+
)
|
331 |
+
|
332 |
+
for prop in [f"margin-{side}", f"padding-{side}"]:
|
333 |
+
if prop in props:
|
334 |
+
# TODO: support %
|
335 |
+
props[prop] = self.size_to_pt(
|
336 |
+
props[prop],
|
337 |
+
em_pt=font_size,
|
338 |
+
conversions=self.MARGIN_RATIOS,
|
339 |
+
)
|
340 |
+
return props
|
341 |
+
|
342 |
+
def size_to_pt(self, in_val, em_pt=None, conversions=UNIT_RATIOS) -> str:
|
343 |
+
def _error():
|
344 |
+
warnings.warn(
|
345 |
+
f"Unhandled size: {repr(in_val)}",
|
346 |
+
CSSWarning,
|
347 |
+
stacklevel=find_stack_level(),
|
348 |
+
)
|
349 |
+
return self.size_to_pt("1!!default", conversions=conversions)
|
350 |
+
|
351 |
+
match = re.match(r"^(\S*?)([a-zA-Z%!].*)", in_val)
|
352 |
+
if match is None:
|
353 |
+
return _error()
|
354 |
+
|
355 |
+
val, unit = match.groups()
|
356 |
+
if val == "":
|
357 |
+
# hack for 'large' etc.
|
358 |
+
val = 1
|
359 |
+
else:
|
360 |
+
try:
|
361 |
+
val = float(val)
|
362 |
+
except ValueError:
|
363 |
+
return _error()
|
364 |
+
|
365 |
+
while unit != "pt":
|
366 |
+
if unit == "em":
|
367 |
+
if em_pt is None:
|
368 |
+
unit = "rem"
|
369 |
+
else:
|
370 |
+
val *= em_pt
|
371 |
+
unit = "pt"
|
372 |
+
continue
|
373 |
+
|
374 |
+
try:
|
375 |
+
unit, mul = conversions[unit]
|
376 |
+
except KeyError:
|
377 |
+
return _error()
|
378 |
+
val *= mul
|
379 |
+
|
380 |
+
val = round(val, 5)
|
381 |
+
if int(val) == val:
|
382 |
+
size_fmt = f"{int(val):d}pt"
|
383 |
+
else:
|
384 |
+
size_fmt = f"{val:f}pt"
|
385 |
+
return size_fmt
|
386 |
+
|
387 |
+
def atomize(self, declarations: Iterable) -> Generator[tuple[str, str], None, None]:
|
388 |
+
for prop, value in declarations:
|
389 |
+
prop = prop.lower()
|
390 |
+
value = value.lower()
|
391 |
+
if prop in self.CSS_EXPANSIONS:
|
392 |
+
expand = self.CSS_EXPANSIONS[prop]
|
393 |
+
yield from expand(self, prop, value)
|
394 |
+
else:
|
395 |
+
yield prop, value
|
396 |
+
|
397 |
+
def parse(self, declarations_str: str) -> Iterator[tuple[str, str]]:
|
398 |
+
"""
|
399 |
+
Generates (prop, value) pairs from declarations.
|
400 |
+
|
401 |
+
In a future version may generate parsed tokens from tinycss/tinycss2
|
402 |
+
|
403 |
+
Parameters
|
404 |
+
----------
|
405 |
+
declarations_str : str
|
406 |
+
"""
|
407 |
+
for decl in declarations_str.split(";"):
|
408 |
+
if not decl.strip():
|
409 |
+
continue
|
410 |
+
prop, sep, val = decl.partition(":")
|
411 |
+
prop = prop.strip().lower()
|
412 |
+
# TODO: don't lowercase case sensitive parts of values (strings)
|
413 |
+
val = val.strip().lower()
|
414 |
+
if sep:
|
415 |
+
yield prop, val
|
416 |
+
else:
|
417 |
+
warnings.warn(
|
418 |
+
f"Ill-formatted attribute: expected a colon in {repr(decl)}",
|
419 |
+
CSSWarning,
|
420 |
+
stacklevel=find_stack_level(),
|
421 |
+
)
|
venv/lib/python3.10/site-packages/pandas/io/formats/csvs.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module for formatting output data into CSV files.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from collections.abc import (
|
8 |
+
Hashable,
|
9 |
+
Iterable,
|
10 |
+
Iterator,
|
11 |
+
Sequence,
|
12 |
+
)
|
13 |
+
import csv as csvlib
|
14 |
+
import os
|
15 |
+
from typing import (
|
16 |
+
TYPE_CHECKING,
|
17 |
+
Any,
|
18 |
+
cast,
|
19 |
+
)
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from pandas._libs import writers as libwriters
|
24 |
+
from pandas._typing import SequenceNotStr
|
25 |
+
from pandas.util._decorators import cache_readonly
|
26 |
+
|
27 |
+
from pandas.core.dtypes.generic import (
|
28 |
+
ABCDatetimeIndex,
|
29 |
+
ABCIndex,
|
30 |
+
ABCMultiIndex,
|
31 |
+
ABCPeriodIndex,
|
32 |
+
)
|
33 |
+
from pandas.core.dtypes.missing import notna
|
34 |
+
|
35 |
+
from pandas.core.indexes.api import Index
|
36 |
+
|
37 |
+
from pandas.io.common import get_handle
|
38 |
+
|
39 |
+
if TYPE_CHECKING:
|
40 |
+
from pandas._typing import (
|
41 |
+
CompressionOptions,
|
42 |
+
FilePath,
|
43 |
+
FloatFormatType,
|
44 |
+
IndexLabel,
|
45 |
+
StorageOptions,
|
46 |
+
WriteBuffer,
|
47 |
+
npt,
|
48 |
+
)
|
49 |
+
|
50 |
+
from pandas.io.formats.format import DataFrameFormatter
|
51 |
+
|
52 |
+
|
53 |
+
_DEFAULT_CHUNKSIZE_CELLS = 100_000
|
54 |
+
|
55 |
+
|
56 |
+
class CSVFormatter:
|
57 |
+
cols: npt.NDArray[np.object_]
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
formatter: DataFrameFormatter,
|
62 |
+
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
|
63 |
+
sep: str = ",",
|
64 |
+
cols: Sequence[Hashable] | None = None,
|
65 |
+
index_label: IndexLabel | None = None,
|
66 |
+
mode: str = "w",
|
67 |
+
encoding: str | None = None,
|
68 |
+
errors: str = "strict",
|
69 |
+
compression: CompressionOptions = "infer",
|
70 |
+
quoting: int | None = None,
|
71 |
+
lineterminator: str | None = "\n",
|
72 |
+
chunksize: int | None = None,
|
73 |
+
quotechar: str | None = '"',
|
74 |
+
date_format: str | None = None,
|
75 |
+
doublequote: bool = True,
|
76 |
+
escapechar: str | None = None,
|
77 |
+
storage_options: StorageOptions | None = None,
|
78 |
+
) -> None:
|
79 |
+
self.fmt = formatter
|
80 |
+
|
81 |
+
self.obj = self.fmt.frame
|
82 |
+
|
83 |
+
self.filepath_or_buffer = path_or_buf
|
84 |
+
self.encoding = encoding
|
85 |
+
self.compression: CompressionOptions = compression
|
86 |
+
self.mode = mode
|
87 |
+
self.storage_options = storage_options
|
88 |
+
|
89 |
+
self.sep = sep
|
90 |
+
self.index_label = self._initialize_index_label(index_label)
|
91 |
+
self.errors = errors
|
92 |
+
self.quoting = quoting or csvlib.QUOTE_MINIMAL
|
93 |
+
self.quotechar = self._initialize_quotechar(quotechar)
|
94 |
+
self.doublequote = doublequote
|
95 |
+
self.escapechar = escapechar
|
96 |
+
self.lineterminator = lineterminator or os.linesep
|
97 |
+
self.date_format = date_format
|
98 |
+
self.cols = self._initialize_columns(cols)
|
99 |
+
self.chunksize = self._initialize_chunksize(chunksize)
|
100 |
+
|
101 |
+
@property
|
102 |
+
def na_rep(self) -> str:
|
103 |
+
return self.fmt.na_rep
|
104 |
+
|
105 |
+
@property
|
106 |
+
def float_format(self) -> FloatFormatType | None:
|
107 |
+
return self.fmt.float_format
|
108 |
+
|
109 |
+
@property
|
110 |
+
def decimal(self) -> str:
|
111 |
+
return self.fmt.decimal
|
112 |
+
|
113 |
+
@property
|
114 |
+
def header(self) -> bool | SequenceNotStr[str]:
|
115 |
+
return self.fmt.header
|
116 |
+
|
117 |
+
@property
|
118 |
+
def index(self) -> bool:
|
119 |
+
return self.fmt.index
|
120 |
+
|
121 |
+
def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
|
122 |
+
if index_label is not False:
|
123 |
+
if index_label is None:
|
124 |
+
return self._get_index_label_from_obj()
|
125 |
+
elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
|
126 |
+
# given a string for a DF with Index
|
127 |
+
return [index_label]
|
128 |
+
return index_label
|
129 |
+
|
130 |
+
def _get_index_label_from_obj(self) -> Sequence[Hashable]:
|
131 |
+
if isinstance(self.obj.index, ABCMultiIndex):
|
132 |
+
return self._get_index_label_multiindex()
|
133 |
+
else:
|
134 |
+
return self._get_index_label_flat()
|
135 |
+
|
136 |
+
def _get_index_label_multiindex(self) -> Sequence[Hashable]:
|
137 |
+
return [name or "" for name in self.obj.index.names]
|
138 |
+
|
139 |
+
def _get_index_label_flat(self) -> Sequence[Hashable]:
|
140 |
+
index_label = self.obj.index.name
|
141 |
+
return [""] if index_label is None else [index_label]
|
142 |
+
|
143 |
+
def _initialize_quotechar(self, quotechar: str | None) -> str | None:
|
144 |
+
if self.quoting != csvlib.QUOTE_NONE:
|
145 |
+
# prevents crash in _csv
|
146 |
+
return quotechar
|
147 |
+
return None
|
148 |
+
|
149 |
+
@property
|
150 |
+
def has_mi_columns(self) -> bool:
|
151 |
+
return bool(isinstance(self.obj.columns, ABCMultiIndex))
|
152 |
+
|
153 |
+
def _initialize_columns(
|
154 |
+
self, cols: Iterable[Hashable] | None
|
155 |
+
) -> npt.NDArray[np.object_]:
|
156 |
+
# validate mi options
|
157 |
+
if self.has_mi_columns:
|
158 |
+
if cols is not None:
|
159 |
+
msg = "cannot specify cols with a MultiIndex on the columns"
|
160 |
+
raise TypeError(msg)
|
161 |
+
|
162 |
+
if cols is not None:
|
163 |
+
if isinstance(cols, ABCIndex):
|
164 |
+
cols = cols._get_values_for_csv(**self._number_format)
|
165 |
+
else:
|
166 |
+
cols = list(cols)
|
167 |
+
self.obj = self.obj.loc[:, cols]
|
168 |
+
|
169 |
+
# update columns to include possible multiplicity of dupes
|
170 |
+
# and make sure cols is just a list of labels
|
171 |
+
new_cols = self.obj.columns
|
172 |
+
return new_cols._get_values_for_csv(**self._number_format)
|
173 |
+
|
174 |
+
def _initialize_chunksize(self, chunksize: int | None) -> int:
|
175 |
+
if chunksize is None:
|
176 |
+
return (_DEFAULT_CHUNKSIZE_CELLS // (len(self.cols) or 1)) or 1
|
177 |
+
return int(chunksize)
|
178 |
+
|
179 |
+
@property
|
180 |
+
def _number_format(self) -> dict[str, Any]:
|
181 |
+
"""Dictionary used for storing number formatting settings."""
|
182 |
+
return {
|
183 |
+
"na_rep": self.na_rep,
|
184 |
+
"float_format": self.float_format,
|
185 |
+
"date_format": self.date_format,
|
186 |
+
"quoting": self.quoting,
|
187 |
+
"decimal": self.decimal,
|
188 |
+
}
|
189 |
+
|
190 |
+
@cache_readonly
|
191 |
+
def data_index(self) -> Index:
|
192 |
+
data_index = self.obj.index
|
193 |
+
if (
|
194 |
+
isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
|
195 |
+
and self.date_format is not None
|
196 |
+
):
|
197 |
+
data_index = Index(
|
198 |
+
[x.strftime(self.date_format) if notna(x) else "" for x in data_index]
|
199 |
+
)
|
200 |
+
elif isinstance(data_index, ABCMultiIndex):
|
201 |
+
data_index = data_index.remove_unused_levels()
|
202 |
+
return data_index
|
203 |
+
|
204 |
+
@property
|
205 |
+
def nlevels(self) -> int:
|
206 |
+
if self.index:
|
207 |
+
return getattr(self.data_index, "nlevels", 1)
|
208 |
+
else:
|
209 |
+
return 0
|
210 |
+
|
211 |
+
@property
|
212 |
+
def _has_aliases(self) -> bool:
|
213 |
+
return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))
|
214 |
+
|
215 |
+
@property
|
216 |
+
def _need_to_save_header(self) -> bool:
|
217 |
+
return bool(self._has_aliases or self.header)
|
218 |
+
|
219 |
+
@property
|
220 |
+
def write_cols(self) -> SequenceNotStr[Hashable]:
|
221 |
+
if self._has_aliases:
|
222 |
+
assert not isinstance(self.header, bool)
|
223 |
+
if len(self.header) != len(self.cols):
|
224 |
+
raise ValueError(
|
225 |
+
f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
|
226 |
+
)
|
227 |
+
return self.header
|
228 |
+
else:
|
229 |
+
# self.cols is an ndarray derived from Index._get_values_for_csv,
|
230 |
+
# so its entries are strings, i.e. hashable
|
231 |
+
return cast(SequenceNotStr[Hashable], self.cols)
|
232 |
+
|
233 |
+
@property
|
234 |
+
def encoded_labels(self) -> list[Hashable]:
|
235 |
+
encoded_labels: list[Hashable] = []
|
236 |
+
|
237 |
+
if self.index and self.index_label:
|
238 |
+
assert isinstance(self.index_label, Sequence)
|
239 |
+
encoded_labels = list(self.index_label)
|
240 |
+
|
241 |
+
if not self.has_mi_columns or self._has_aliases:
|
242 |
+
encoded_labels += list(self.write_cols)
|
243 |
+
|
244 |
+
return encoded_labels
|
245 |
+
|
246 |
+
def save(self) -> None:
|
247 |
+
"""
|
248 |
+
Create the writer & save.
|
249 |
+
"""
|
250 |
+
# apply compression and byte/text conversion
|
251 |
+
with get_handle(
|
252 |
+
self.filepath_or_buffer,
|
253 |
+
self.mode,
|
254 |
+
encoding=self.encoding,
|
255 |
+
errors=self.errors,
|
256 |
+
compression=self.compression,
|
257 |
+
storage_options=self.storage_options,
|
258 |
+
) as handles:
|
259 |
+
# Note: self.encoding is irrelevant here
|
260 |
+
self.writer = csvlib.writer(
|
261 |
+
handles.handle,
|
262 |
+
lineterminator=self.lineterminator,
|
263 |
+
delimiter=self.sep,
|
264 |
+
quoting=self.quoting,
|
265 |
+
doublequote=self.doublequote,
|
266 |
+
escapechar=self.escapechar,
|
267 |
+
quotechar=self.quotechar,
|
268 |
+
)
|
269 |
+
|
270 |
+
self._save()
|
271 |
+
|
272 |
+
def _save(self) -> None:
|
273 |
+
if self._need_to_save_header:
|
274 |
+
self._save_header()
|
275 |
+
self._save_body()
|
276 |
+
|
277 |
+
def _save_header(self) -> None:
|
278 |
+
if not self.has_mi_columns or self._has_aliases:
|
279 |
+
self.writer.writerow(self.encoded_labels)
|
280 |
+
else:
|
281 |
+
for row in self._generate_multiindex_header_rows():
|
282 |
+
self.writer.writerow(row)
|
283 |
+
|
284 |
+
def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
|
285 |
+
columns = self.obj.columns
|
286 |
+
for i in range(columns.nlevels):
|
287 |
+
# we need at least 1 index column to write our col names
|
288 |
+
col_line = []
|
289 |
+
if self.index:
|
290 |
+
# name is the first column
|
291 |
+
col_line.append(columns.names[i])
|
292 |
+
|
293 |
+
if isinstance(self.index_label, list) and len(self.index_label) > 1:
|
294 |
+
col_line.extend([""] * (len(self.index_label) - 1))
|
295 |
+
|
296 |
+
col_line.extend(columns._get_level_values(i))
|
297 |
+
yield col_line
|
298 |
+
|
299 |
+
# Write out the index line if it's not empty.
|
300 |
+
# Otherwise, we will print out an extraneous
|
301 |
+
# blank line between the mi and the data rows.
|
302 |
+
if self.encoded_labels and set(self.encoded_labels) != {""}:
|
303 |
+
yield self.encoded_labels + [""] * len(columns)
|
304 |
+
|
305 |
+
def _save_body(self) -> None:
|
306 |
+
nrows = len(self.data_index)
|
307 |
+
chunks = (nrows // self.chunksize) + 1
|
308 |
+
for i in range(chunks):
|
309 |
+
start_i = i * self.chunksize
|
310 |
+
end_i = min(start_i + self.chunksize, nrows)
|
311 |
+
if start_i >= end_i:
|
312 |
+
break
|
313 |
+
self._save_chunk(start_i, end_i)
|
314 |
+
|
315 |
+
def _save_chunk(self, start_i: int, end_i: int) -> None:
|
316 |
+
# create the data for a chunk
|
317 |
+
slicer = slice(start_i, end_i)
|
318 |
+
df = self.obj.iloc[slicer]
|
319 |
+
|
320 |
+
res = df._get_values_for_csv(**self._number_format)
|
321 |
+
data = list(res._iter_column_arrays())
|
322 |
+
|
323 |
+
ix = self.data_index[slicer]._get_values_for_csv(**self._number_format)
|
324 |
+
libwriters.write_csv_rows(
|
325 |
+
data,
|
326 |
+
ix,
|
327 |
+
self.nlevels,
|
328 |
+
self.cols,
|
329 |
+
self.writer,
|
330 |
+
)
|
venv/lib/python3.10/site-packages/pandas/io/formats/excel.py
ADDED
@@ -0,0 +1,962 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for conversion to writer-agnostic Excel representation.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from collections.abc import (
|
7 |
+
Hashable,
|
8 |
+
Iterable,
|
9 |
+
Mapping,
|
10 |
+
Sequence,
|
11 |
+
)
|
12 |
+
import functools
|
13 |
+
import itertools
|
14 |
+
import re
|
15 |
+
from typing import (
|
16 |
+
TYPE_CHECKING,
|
17 |
+
Any,
|
18 |
+
Callable,
|
19 |
+
cast,
|
20 |
+
)
|
21 |
+
import warnings
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
from pandas._libs.lib import is_list_like
|
26 |
+
from pandas.util._decorators import doc
|
27 |
+
from pandas.util._exceptions import find_stack_level
|
28 |
+
|
29 |
+
from pandas.core.dtypes import missing
|
30 |
+
from pandas.core.dtypes.common import (
|
31 |
+
is_float,
|
32 |
+
is_scalar,
|
33 |
+
)
|
34 |
+
|
35 |
+
from pandas import (
|
36 |
+
DataFrame,
|
37 |
+
Index,
|
38 |
+
MultiIndex,
|
39 |
+
PeriodIndex,
|
40 |
+
)
|
41 |
+
import pandas.core.common as com
|
42 |
+
from pandas.core.shared_docs import _shared_docs
|
43 |
+
|
44 |
+
from pandas.io.formats._color_data import CSS4_COLORS
|
45 |
+
from pandas.io.formats.css import (
|
46 |
+
CSSResolver,
|
47 |
+
CSSWarning,
|
48 |
+
)
|
49 |
+
from pandas.io.formats.format import get_level_lengths
|
50 |
+
from pandas.io.formats.printing import pprint_thing
|
51 |
+
|
52 |
+
if TYPE_CHECKING:
|
53 |
+
from pandas._typing import (
|
54 |
+
FilePath,
|
55 |
+
IndexLabel,
|
56 |
+
StorageOptions,
|
57 |
+
WriteExcelBuffer,
|
58 |
+
)
|
59 |
+
|
60 |
+
from pandas import ExcelWriter
|
61 |
+
|
62 |
+
|
63 |
+
class ExcelCell:
|
64 |
+
__fields__ = ("row", "col", "val", "style", "mergestart", "mergeend")
|
65 |
+
__slots__ = __fields__
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
row: int,
|
70 |
+
col: int,
|
71 |
+
val,
|
72 |
+
style=None,
|
73 |
+
mergestart: int | None = None,
|
74 |
+
mergeend: int | None = None,
|
75 |
+
) -> None:
|
76 |
+
self.row = row
|
77 |
+
self.col = col
|
78 |
+
self.val = val
|
79 |
+
self.style = style
|
80 |
+
self.mergestart = mergestart
|
81 |
+
self.mergeend = mergeend
|
82 |
+
|
83 |
+
|
84 |
+
class CssExcelCell(ExcelCell):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
row: int,
|
88 |
+
col: int,
|
89 |
+
val,
|
90 |
+
style: dict | None,
|
91 |
+
css_styles: dict[tuple[int, int], list[tuple[str, Any]]] | None,
|
92 |
+
css_row: int,
|
93 |
+
css_col: int,
|
94 |
+
css_converter: Callable | None,
|
95 |
+
**kwargs,
|
96 |
+
) -> None:
|
97 |
+
if css_styles and css_converter:
|
98 |
+
# Use dict to get only one (case-insensitive) declaration per property
|
99 |
+
declaration_dict = {
|
100 |
+
prop.lower(): val for prop, val in css_styles[css_row, css_col]
|
101 |
+
}
|
102 |
+
# Convert to frozenset for order-invariant caching
|
103 |
+
unique_declarations = frozenset(declaration_dict.items())
|
104 |
+
style = css_converter(unique_declarations)
|
105 |
+
|
106 |
+
super().__init__(row=row, col=col, val=val, style=style, **kwargs)
|
107 |
+
|
108 |
+
|
109 |
+
class CSSToExcelConverter:
|
110 |
+
"""
|
111 |
+
A callable for converting CSS declarations to ExcelWriter styles
|
112 |
+
|
113 |
+
Supports parts of CSS 2.2, with minimal CSS 3.0 support (e.g. text-shadow),
|
114 |
+
focusing on font styling, backgrounds, borders and alignment.
|
115 |
+
|
116 |
+
Operates by first computing CSS styles in a fairly generic
|
117 |
+
way (see :meth:`compute_css`) then determining Excel style
|
118 |
+
properties from CSS properties (see :meth:`build_xlstyle`).
|
119 |
+
|
120 |
+
Parameters
|
121 |
+
----------
|
122 |
+
inherited : str, optional
|
123 |
+
CSS declarations understood to be the containing scope for the
|
124 |
+
CSS processed by :meth:`__call__`.
|
125 |
+
"""
|
126 |
+
|
127 |
+
NAMED_COLORS = CSS4_COLORS
|
128 |
+
|
129 |
+
VERTICAL_MAP = {
|
130 |
+
"top": "top",
|
131 |
+
"text-top": "top",
|
132 |
+
"middle": "center",
|
133 |
+
"baseline": "bottom",
|
134 |
+
"bottom": "bottom",
|
135 |
+
"text-bottom": "bottom",
|
136 |
+
# OpenXML also has 'justify', 'distributed'
|
137 |
+
}
|
138 |
+
|
139 |
+
BOLD_MAP = {
|
140 |
+
"bold": True,
|
141 |
+
"bolder": True,
|
142 |
+
"600": True,
|
143 |
+
"700": True,
|
144 |
+
"800": True,
|
145 |
+
"900": True,
|
146 |
+
"normal": False,
|
147 |
+
"lighter": False,
|
148 |
+
"100": False,
|
149 |
+
"200": False,
|
150 |
+
"300": False,
|
151 |
+
"400": False,
|
152 |
+
"500": False,
|
153 |
+
}
|
154 |
+
|
155 |
+
ITALIC_MAP = {
|
156 |
+
"normal": False,
|
157 |
+
"italic": True,
|
158 |
+
"oblique": True,
|
159 |
+
}
|
160 |
+
|
161 |
+
FAMILY_MAP = {
|
162 |
+
"serif": 1, # roman
|
163 |
+
"sans-serif": 2, # swiss
|
164 |
+
"cursive": 4, # script
|
165 |
+
"fantasy": 5, # decorative
|
166 |
+
}
|
167 |
+
|
168 |
+
BORDER_STYLE_MAP = {
|
169 |
+
style.lower(): style
|
170 |
+
for style in [
|
171 |
+
"dashed",
|
172 |
+
"mediumDashDot",
|
173 |
+
"dashDotDot",
|
174 |
+
"hair",
|
175 |
+
"dotted",
|
176 |
+
"mediumDashDotDot",
|
177 |
+
"double",
|
178 |
+
"dashDot",
|
179 |
+
"slantDashDot",
|
180 |
+
"mediumDashed",
|
181 |
+
]
|
182 |
+
}
|
183 |
+
|
184 |
+
# NB: Most of the methods here could be classmethods, as only __init__
|
185 |
+
# and __call__ make use of instance attributes. We leave them as
|
186 |
+
# instancemethods so that users can easily experiment with extensions
|
187 |
+
# without monkey-patching.
|
188 |
+
inherited: dict[str, str] | None
|
189 |
+
|
190 |
+
def __init__(self, inherited: str | None = None) -> None:
|
191 |
+
if inherited is not None:
|
192 |
+
self.inherited = self.compute_css(inherited)
|
193 |
+
else:
|
194 |
+
self.inherited = None
|
195 |
+
# We should avoid cache on the __call__ method.
|
196 |
+
# Otherwise once the method __call__ has been called
|
197 |
+
# garbage collection no longer deletes the instance.
|
198 |
+
self._call_cached = functools.cache(self._call_uncached)
|
199 |
+
|
200 |
+
compute_css = CSSResolver()
|
201 |
+
|
202 |
+
def __call__(
|
203 |
+
self, declarations: str | frozenset[tuple[str, str]]
|
204 |
+
) -> dict[str, dict[str, str]]:
|
205 |
+
"""
|
206 |
+
Convert CSS declarations to ExcelWriter style.
|
207 |
+
|
208 |
+
Parameters
|
209 |
+
----------
|
210 |
+
declarations : str | frozenset[tuple[str, str]]
|
211 |
+
CSS string or set of CSS declaration tuples.
|
212 |
+
e.g. "font-weight: bold; background: blue" or
|
213 |
+
{("font-weight", "bold"), ("background", "blue")}
|
214 |
+
|
215 |
+
Returns
|
216 |
+
-------
|
217 |
+
xlstyle : dict
|
218 |
+
A style as interpreted by ExcelWriter when found in
|
219 |
+
ExcelCell.style.
|
220 |
+
"""
|
221 |
+
return self._call_cached(declarations)
|
222 |
+
|
223 |
+
def _call_uncached(
|
224 |
+
self, declarations: str | frozenset[tuple[str, str]]
|
225 |
+
) -> dict[str, dict[str, str]]:
|
226 |
+
properties = self.compute_css(declarations, self.inherited)
|
227 |
+
return self.build_xlstyle(properties)
|
228 |
+
|
229 |
+
def build_xlstyle(self, props: Mapping[str, str]) -> dict[str, dict[str, str]]:
|
230 |
+
out = {
|
231 |
+
"alignment": self.build_alignment(props),
|
232 |
+
"border": self.build_border(props),
|
233 |
+
"fill": self.build_fill(props),
|
234 |
+
"font": self.build_font(props),
|
235 |
+
"number_format": self.build_number_format(props),
|
236 |
+
}
|
237 |
+
|
238 |
+
# TODO: handle cell width and height: needs support in pandas.io.excel
|
239 |
+
|
240 |
+
def remove_none(d: dict[str, str | None]) -> None:
|
241 |
+
"""Remove key where value is None, through nested dicts"""
|
242 |
+
for k, v in list(d.items()):
|
243 |
+
if v is None:
|
244 |
+
del d[k]
|
245 |
+
elif isinstance(v, dict):
|
246 |
+
remove_none(v)
|
247 |
+
if not v:
|
248 |
+
del d[k]
|
249 |
+
|
250 |
+
remove_none(out)
|
251 |
+
return out
|
252 |
+
|
253 |
+
def build_alignment(self, props: Mapping[str, str]) -> dict[str, bool | str | None]:
|
254 |
+
# TODO: text-indent, padding-left -> alignment.indent
|
255 |
+
return {
|
256 |
+
"horizontal": props.get("text-align"),
|
257 |
+
"vertical": self._get_vertical_alignment(props),
|
258 |
+
"wrap_text": self._get_is_wrap_text(props),
|
259 |
+
}
|
260 |
+
|
261 |
+
def _get_vertical_alignment(self, props: Mapping[str, str]) -> str | None:
|
262 |
+
vertical_align = props.get("vertical-align")
|
263 |
+
if vertical_align:
|
264 |
+
return self.VERTICAL_MAP.get(vertical_align)
|
265 |
+
return None
|
266 |
+
|
267 |
+
def _get_is_wrap_text(self, props: Mapping[str, str]) -> bool | None:
|
268 |
+
if props.get("white-space") is None:
|
269 |
+
return None
|
270 |
+
return bool(props["white-space"] not in ("nowrap", "pre", "pre-line"))
|
271 |
+
|
272 |
+
def build_border(
|
273 |
+
self, props: Mapping[str, str]
|
274 |
+
) -> dict[str, dict[str, str | None]]:
|
275 |
+
return {
|
276 |
+
side: {
|
277 |
+
"style": self._border_style(
|
278 |
+
props.get(f"border-{side}-style"),
|
279 |
+
props.get(f"border-{side}-width"),
|
280 |
+
self.color_to_excel(props.get(f"border-{side}-color")),
|
281 |
+
),
|
282 |
+
"color": self.color_to_excel(props.get(f"border-{side}-color")),
|
283 |
+
}
|
284 |
+
for side in ["top", "right", "bottom", "left"]
|
285 |
+
}
|
286 |
+
|
287 |
+
def _border_style(self, style: str | None, width: str | None, color: str | None):
|
288 |
+
# convert styles and widths to openxml, one of:
|
289 |
+
# 'dashDot'
|
290 |
+
# 'dashDotDot'
|
291 |
+
# 'dashed'
|
292 |
+
# 'dotted'
|
293 |
+
# 'double'
|
294 |
+
# 'hair'
|
295 |
+
# 'medium'
|
296 |
+
# 'mediumDashDot'
|
297 |
+
# 'mediumDashDotDot'
|
298 |
+
# 'mediumDashed'
|
299 |
+
# 'slantDashDot'
|
300 |
+
# 'thick'
|
301 |
+
# 'thin'
|
302 |
+
if width is None and style is None and color is None:
|
303 |
+
# Return None will remove "border" from style dictionary
|
304 |
+
return None
|
305 |
+
|
306 |
+
if width is None and style is None:
|
307 |
+
# Return "none" will keep "border" in style dictionary
|
308 |
+
return "none"
|
309 |
+
|
310 |
+
if style in ("none", "hidden"):
|
311 |
+
return "none"
|
312 |
+
|
313 |
+
width_name = self._get_width_name(width)
|
314 |
+
if width_name is None:
|
315 |
+
return "none"
|
316 |
+
|
317 |
+
if style in (None, "groove", "ridge", "inset", "outset", "solid"):
|
318 |
+
# not handled
|
319 |
+
return width_name
|
320 |
+
|
321 |
+
if style == "double":
|
322 |
+
return "double"
|
323 |
+
if style == "dotted":
|
324 |
+
if width_name in ("hair", "thin"):
|
325 |
+
return "dotted"
|
326 |
+
return "mediumDashDotDot"
|
327 |
+
if style == "dashed":
|
328 |
+
if width_name in ("hair", "thin"):
|
329 |
+
return "dashed"
|
330 |
+
return "mediumDashed"
|
331 |
+
elif style in self.BORDER_STYLE_MAP:
|
332 |
+
# Excel-specific styles
|
333 |
+
return self.BORDER_STYLE_MAP[style]
|
334 |
+
else:
|
335 |
+
warnings.warn(
|
336 |
+
f"Unhandled border style format: {repr(style)}",
|
337 |
+
CSSWarning,
|
338 |
+
stacklevel=find_stack_level(),
|
339 |
+
)
|
340 |
+
return "none"
|
341 |
+
|
342 |
+
def _get_width_name(self, width_input: str | None) -> str | None:
|
343 |
+
width = self._width_to_float(width_input)
|
344 |
+
if width < 1e-5:
|
345 |
+
return None
|
346 |
+
elif width < 1.3:
|
347 |
+
return "thin"
|
348 |
+
elif width < 2.8:
|
349 |
+
return "medium"
|
350 |
+
return "thick"
|
351 |
+
|
352 |
+
def _width_to_float(self, width: str | None) -> float:
|
353 |
+
if width is None:
|
354 |
+
width = "2pt"
|
355 |
+
return self._pt_to_float(width)
|
356 |
+
|
357 |
+
def _pt_to_float(self, pt_string: str) -> float:
|
358 |
+
assert pt_string.endswith("pt")
|
359 |
+
return float(pt_string.rstrip("pt"))
|
360 |
+
|
361 |
+
def build_fill(self, props: Mapping[str, str]):
|
362 |
+
# TODO: perhaps allow for special properties
|
363 |
+
# -excel-pattern-bgcolor and -excel-pattern-type
|
364 |
+
fill_color = props.get("background-color")
|
365 |
+
if fill_color not in (None, "transparent", "none"):
|
366 |
+
return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"}
|
367 |
+
|
368 |
+
def build_number_format(self, props: Mapping[str, str]) -> dict[str, str | None]:
|
369 |
+
fc = props.get("number-format")
|
370 |
+
fc = fc.replace("§", ";") if isinstance(fc, str) else fc
|
371 |
+
return {"format_code": fc}
|
372 |
+
|
373 |
+
def build_font(
|
374 |
+
self, props: Mapping[str, str]
|
375 |
+
) -> dict[str, bool | float | str | None]:
|
376 |
+
font_names = self._get_font_names(props)
|
377 |
+
decoration = self._get_decoration(props)
|
378 |
+
return {
|
379 |
+
"name": font_names[0] if font_names else None,
|
380 |
+
"family": self._select_font_family(font_names),
|
381 |
+
"size": self._get_font_size(props),
|
382 |
+
"bold": self._get_is_bold(props),
|
383 |
+
"italic": self._get_is_italic(props),
|
384 |
+
"underline": ("single" if "underline" in decoration else None),
|
385 |
+
"strike": ("line-through" in decoration) or None,
|
386 |
+
"color": self.color_to_excel(props.get("color")),
|
387 |
+
# shadow if nonzero digit before shadow color
|
388 |
+
"shadow": self._get_shadow(props),
|
389 |
+
}
|
390 |
+
|
391 |
+
def _get_is_bold(self, props: Mapping[str, str]) -> bool | None:
|
392 |
+
weight = props.get("font-weight")
|
393 |
+
if weight:
|
394 |
+
return self.BOLD_MAP.get(weight)
|
395 |
+
return None
|
396 |
+
|
397 |
+
def _get_is_italic(self, props: Mapping[str, str]) -> bool | None:
|
398 |
+
font_style = props.get("font-style")
|
399 |
+
if font_style:
|
400 |
+
return self.ITALIC_MAP.get(font_style)
|
401 |
+
return None
|
402 |
+
|
403 |
+
def _get_decoration(self, props: Mapping[str, str]) -> Sequence[str]:
|
404 |
+
decoration = props.get("text-decoration")
|
405 |
+
if decoration is not None:
|
406 |
+
return decoration.split()
|
407 |
+
else:
|
408 |
+
return ()
|
409 |
+
|
410 |
+
def _get_underline(self, decoration: Sequence[str]) -> str | None:
|
411 |
+
if "underline" in decoration:
|
412 |
+
return "single"
|
413 |
+
return None
|
414 |
+
|
415 |
+
def _get_shadow(self, props: Mapping[str, str]) -> bool | None:
|
416 |
+
if "text-shadow" in props:
|
417 |
+
return bool(re.search("^[^#(]*[1-9]", props["text-shadow"]))
|
418 |
+
return None
|
419 |
+
|
420 |
+
def _get_font_names(self, props: Mapping[str, str]) -> Sequence[str]:
|
421 |
+
font_names_tmp = re.findall(
|
422 |
+
r"""(?x)
|
423 |
+
(
|
424 |
+
"(?:[^"]|\\")+"
|
425 |
+
|
|
426 |
+
'(?:[^']|\\')+'
|
427 |
+
|
|
428 |
+
[^'",]+
|
429 |
+
)(?=,|\s*$)
|
430 |
+
""",
|
431 |
+
props.get("font-family", ""),
|
432 |
+
)
|
433 |
+
|
434 |
+
font_names = []
|
435 |
+
for name in font_names_tmp:
|
436 |
+
if name[:1] == '"':
|
437 |
+
name = name[1:-1].replace('\\"', '"')
|
438 |
+
elif name[:1] == "'":
|
439 |
+
name = name[1:-1].replace("\\'", "'")
|
440 |
+
else:
|
441 |
+
name = name.strip()
|
442 |
+
if name:
|
443 |
+
font_names.append(name)
|
444 |
+
return font_names
|
445 |
+
|
446 |
+
def _get_font_size(self, props: Mapping[str, str]) -> float | None:
|
447 |
+
size = props.get("font-size")
|
448 |
+
if size is None:
|
449 |
+
return size
|
450 |
+
return self._pt_to_float(size)
|
451 |
+
|
452 |
+
def _select_font_family(self, font_names: Sequence[str]) -> int | None:
|
453 |
+
family = None
|
454 |
+
for name in font_names:
|
455 |
+
family = self.FAMILY_MAP.get(name)
|
456 |
+
if family:
|
457 |
+
break
|
458 |
+
|
459 |
+
return family
|
460 |
+
|
461 |
+
def color_to_excel(self, val: str | None) -> str | None:
|
462 |
+
if val is None:
|
463 |
+
return None
|
464 |
+
|
465 |
+
if self._is_hex_color(val):
|
466 |
+
return self._convert_hex_to_excel(val)
|
467 |
+
|
468 |
+
try:
|
469 |
+
return self.NAMED_COLORS[val]
|
470 |
+
except KeyError:
|
471 |
+
warnings.warn(
|
472 |
+
f"Unhandled color format: {repr(val)}",
|
473 |
+
CSSWarning,
|
474 |
+
stacklevel=find_stack_level(),
|
475 |
+
)
|
476 |
+
return None
|
477 |
+
|
478 |
+
def _is_hex_color(self, color_string: str) -> bool:
|
479 |
+
return bool(color_string.startswith("#"))
|
480 |
+
|
481 |
+
def _convert_hex_to_excel(self, color_string: str) -> str:
|
482 |
+
code = color_string.lstrip("#")
|
483 |
+
if self._is_shorthand_color(color_string):
|
484 |
+
return (code[0] * 2 + code[1] * 2 + code[2] * 2).upper()
|
485 |
+
else:
|
486 |
+
return code.upper()
|
487 |
+
|
488 |
+
def _is_shorthand_color(self, color_string: str) -> bool:
|
489 |
+
"""Check if color code is shorthand.
|
490 |
+
|
491 |
+
#FFF is a shorthand as opposed to full #FFFFFF.
|
492 |
+
"""
|
493 |
+
code = color_string.lstrip("#")
|
494 |
+
if len(code) == 3:
|
495 |
+
return True
|
496 |
+
elif len(code) == 6:
|
497 |
+
return False
|
498 |
+
else:
|
499 |
+
raise ValueError(f"Unexpected color {color_string}")
|
500 |
+
|
501 |
+
|
502 |
+
class ExcelFormatter:
|
503 |
+
"""
|
504 |
+
Class for formatting a DataFrame to a list of ExcelCells,
|
505 |
+
|
506 |
+
Parameters
|
507 |
+
----------
|
508 |
+
df : DataFrame or Styler
|
509 |
+
na_rep: na representation
|
510 |
+
float_format : str, default None
|
511 |
+
Format string for floating point numbers
|
512 |
+
cols : sequence, optional
|
513 |
+
Columns to write
|
514 |
+
header : bool or sequence of str, default True
|
515 |
+
Write out column names. If a list of string is given it is
|
516 |
+
assumed to be aliases for the column names
|
517 |
+
index : bool, default True
|
518 |
+
output row names (index)
|
519 |
+
index_label : str or sequence, default None
|
520 |
+
Column label for index column(s) if desired. If None is given, and
|
521 |
+
`header` and `index` are True, then the index names are used. A
|
522 |
+
sequence should be given if the DataFrame uses MultiIndex.
|
523 |
+
merge_cells : bool, default False
|
524 |
+
Format MultiIndex and Hierarchical Rows as merged cells.
|
525 |
+
inf_rep : str, default `'inf'`
|
526 |
+
representation for np.inf values (which aren't representable in Excel)
|
527 |
+
A `'-'` sign will be added in front of -inf.
|
528 |
+
style_converter : callable, optional
|
529 |
+
This translates Styler styles (CSS) into ExcelWriter styles.
|
530 |
+
Defaults to ``CSSToExcelConverter()``.
|
531 |
+
It should have signature css_declarations string -> excel style.
|
532 |
+
This is only called for body cells.
|
533 |
+
"""
|
534 |
+
|
535 |
+
max_rows = 2**20
|
536 |
+
max_cols = 2**14
|
537 |
+
|
538 |
+
def __init__(
|
539 |
+
self,
|
540 |
+
df,
|
541 |
+
na_rep: str = "",
|
542 |
+
float_format: str | None = None,
|
543 |
+
cols: Sequence[Hashable] | None = None,
|
544 |
+
header: Sequence[Hashable] | bool = True,
|
545 |
+
index: bool = True,
|
546 |
+
index_label: IndexLabel | None = None,
|
547 |
+
merge_cells: bool = False,
|
548 |
+
inf_rep: str = "inf",
|
549 |
+
style_converter: Callable | None = None,
|
550 |
+
) -> None:
|
551 |
+
self.rowcounter = 0
|
552 |
+
self.na_rep = na_rep
|
553 |
+
if not isinstance(df, DataFrame):
|
554 |
+
self.styler = df
|
555 |
+
self.styler._compute() # calculate applied styles
|
556 |
+
df = df.data
|
557 |
+
if style_converter is None:
|
558 |
+
style_converter = CSSToExcelConverter()
|
559 |
+
self.style_converter: Callable | None = style_converter
|
560 |
+
else:
|
561 |
+
self.styler = None
|
562 |
+
self.style_converter = None
|
563 |
+
self.df = df
|
564 |
+
if cols is not None:
|
565 |
+
# all missing, raise
|
566 |
+
if not len(Index(cols).intersection(df.columns)):
|
567 |
+
raise KeyError("passes columns are not ALL present dataframe")
|
568 |
+
|
569 |
+
if len(Index(cols).intersection(df.columns)) != len(set(cols)):
|
570 |
+
# Deprecated in GH#17295, enforced in 1.0.0
|
571 |
+
raise KeyError("Not all names specified in 'columns' are found")
|
572 |
+
|
573 |
+
self.df = df.reindex(columns=cols)
|
574 |
+
|
575 |
+
self.columns = self.df.columns
|
576 |
+
self.float_format = float_format
|
577 |
+
self.index = index
|
578 |
+
self.index_label = index_label
|
579 |
+
self.header = header
|
580 |
+
self.merge_cells = merge_cells
|
581 |
+
self.inf_rep = inf_rep
|
582 |
+
|
583 |
+
@property
|
584 |
+
def header_style(self) -> dict[str, dict[str, str | bool]]:
|
585 |
+
return {
|
586 |
+
"font": {"bold": True},
|
587 |
+
"borders": {
|
588 |
+
"top": "thin",
|
589 |
+
"right": "thin",
|
590 |
+
"bottom": "thin",
|
591 |
+
"left": "thin",
|
592 |
+
},
|
593 |
+
"alignment": {"horizontal": "center", "vertical": "top"},
|
594 |
+
}
|
595 |
+
|
596 |
+
def _format_value(self, val):
|
597 |
+
if is_scalar(val) and missing.isna(val):
|
598 |
+
val = self.na_rep
|
599 |
+
elif is_float(val):
|
600 |
+
if missing.isposinf_scalar(val):
|
601 |
+
val = self.inf_rep
|
602 |
+
elif missing.isneginf_scalar(val):
|
603 |
+
val = f"-{self.inf_rep}"
|
604 |
+
elif self.float_format is not None:
|
605 |
+
val = float(self.float_format % val)
|
606 |
+
if getattr(val, "tzinfo", None) is not None:
|
607 |
+
raise ValueError(
|
608 |
+
"Excel does not support datetimes with "
|
609 |
+
"timezones. Please ensure that datetimes "
|
610 |
+
"are timezone unaware before writing to Excel."
|
611 |
+
)
|
612 |
+
return val
|
613 |
+
|
614 |
+
def _format_header_mi(self) -> Iterable[ExcelCell]:
|
615 |
+
if self.columns.nlevels > 1:
|
616 |
+
if not self.index:
|
617 |
+
raise NotImplementedError(
|
618 |
+
"Writing to Excel with MultiIndex columns and no "
|
619 |
+
"index ('index'=False) is not yet implemented."
|
620 |
+
)
|
621 |
+
|
622 |
+
if not (self._has_aliases or self.header):
|
623 |
+
return
|
624 |
+
|
625 |
+
columns = self.columns
|
626 |
+
level_strs = columns._format_multi(
|
627 |
+
sparsify=self.merge_cells, include_names=False
|
628 |
+
)
|
629 |
+
level_lengths = get_level_lengths(level_strs)
|
630 |
+
coloffset = 0
|
631 |
+
lnum = 0
|
632 |
+
|
633 |
+
if self.index and isinstance(self.df.index, MultiIndex):
|
634 |
+
coloffset = len(self.df.index[0]) - 1
|
635 |
+
|
636 |
+
if self.merge_cells:
|
637 |
+
# Format multi-index as a merged cells.
|
638 |
+
for lnum, name in enumerate(columns.names):
|
639 |
+
yield ExcelCell(
|
640 |
+
row=lnum,
|
641 |
+
col=coloffset,
|
642 |
+
val=name,
|
643 |
+
style=self.header_style,
|
644 |
+
)
|
645 |
+
|
646 |
+
for lnum, (spans, levels, level_codes) in enumerate(
|
647 |
+
zip(level_lengths, columns.levels, columns.codes)
|
648 |
+
):
|
649 |
+
values = levels.take(level_codes)
|
650 |
+
for i, span_val in spans.items():
|
651 |
+
mergestart, mergeend = None, None
|
652 |
+
if span_val > 1:
|
653 |
+
mergestart, mergeend = lnum, coloffset + i + span_val
|
654 |
+
yield CssExcelCell(
|
655 |
+
row=lnum,
|
656 |
+
col=coloffset + i + 1,
|
657 |
+
val=values[i],
|
658 |
+
style=self.header_style,
|
659 |
+
css_styles=getattr(self.styler, "ctx_columns", None),
|
660 |
+
css_row=lnum,
|
661 |
+
css_col=i,
|
662 |
+
css_converter=self.style_converter,
|
663 |
+
mergestart=mergestart,
|
664 |
+
mergeend=mergeend,
|
665 |
+
)
|
666 |
+
else:
|
667 |
+
# Format in legacy format with dots to indicate levels.
|
668 |
+
for i, values in enumerate(zip(*level_strs)):
|
669 |
+
v = ".".join(map(pprint_thing, values))
|
670 |
+
yield CssExcelCell(
|
671 |
+
row=lnum,
|
672 |
+
col=coloffset + i + 1,
|
673 |
+
val=v,
|
674 |
+
style=self.header_style,
|
675 |
+
css_styles=getattr(self.styler, "ctx_columns", None),
|
676 |
+
css_row=lnum,
|
677 |
+
css_col=i,
|
678 |
+
css_converter=self.style_converter,
|
679 |
+
)
|
680 |
+
|
681 |
+
self.rowcounter = lnum
|
682 |
+
|
683 |
+
def _format_header_regular(self) -> Iterable[ExcelCell]:
|
684 |
+
if self._has_aliases or self.header:
|
685 |
+
coloffset = 0
|
686 |
+
|
687 |
+
if self.index:
|
688 |
+
coloffset = 1
|
689 |
+
if isinstance(self.df.index, MultiIndex):
|
690 |
+
coloffset = len(self.df.index.names)
|
691 |
+
|
692 |
+
colnames = self.columns
|
693 |
+
if self._has_aliases:
|
694 |
+
self.header = cast(Sequence, self.header)
|
695 |
+
if len(self.header) != len(self.columns):
|
696 |
+
raise ValueError(
|
697 |
+
f"Writing {len(self.columns)} cols "
|
698 |
+
f"but got {len(self.header)} aliases"
|
699 |
+
)
|
700 |
+
colnames = self.header
|
701 |
+
|
702 |
+
for colindex, colname in enumerate(colnames):
|
703 |
+
yield CssExcelCell(
|
704 |
+
row=self.rowcounter,
|
705 |
+
col=colindex + coloffset,
|
706 |
+
val=colname,
|
707 |
+
style=self.header_style,
|
708 |
+
css_styles=getattr(self.styler, "ctx_columns", None),
|
709 |
+
css_row=0,
|
710 |
+
css_col=colindex,
|
711 |
+
css_converter=self.style_converter,
|
712 |
+
)
|
713 |
+
|
714 |
+
def _format_header(self) -> Iterable[ExcelCell]:
|
715 |
+
gen: Iterable[ExcelCell]
|
716 |
+
|
717 |
+
if isinstance(self.columns, MultiIndex):
|
718 |
+
gen = self._format_header_mi()
|
719 |
+
else:
|
720 |
+
gen = self._format_header_regular()
|
721 |
+
|
722 |
+
gen2: Iterable[ExcelCell] = ()
|
723 |
+
|
724 |
+
if self.df.index.names:
|
725 |
+
row = [x if x is not None else "" for x in self.df.index.names] + [
|
726 |
+
""
|
727 |
+
] * len(self.columns)
|
728 |
+
if functools.reduce(lambda x, y: x and y, (x != "" for x in row)):
|
729 |
+
gen2 = (
|
730 |
+
ExcelCell(self.rowcounter, colindex, val, self.header_style)
|
731 |
+
for colindex, val in enumerate(row)
|
732 |
+
)
|
733 |
+
self.rowcounter += 1
|
734 |
+
return itertools.chain(gen, gen2)
|
735 |
+
|
736 |
+
def _format_body(self) -> Iterable[ExcelCell]:
|
737 |
+
if isinstance(self.df.index, MultiIndex):
|
738 |
+
return self._format_hierarchical_rows()
|
739 |
+
else:
|
740 |
+
return self._format_regular_rows()
|
741 |
+
|
742 |
+
def _format_regular_rows(self) -> Iterable[ExcelCell]:
|
743 |
+
if self._has_aliases or self.header:
|
744 |
+
self.rowcounter += 1
|
745 |
+
|
746 |
+
# output index and index_label?
|
747 |
+
if self.index:
|
748 |
+
# check aliases
|
749 |
+
# if list only take first as this is not a MultiIndex
|
750 |
+
if self.index_label and isinstance(
|
751 |
+
self.index_label, (list, tuple, np.ndarray, Index)
|
752 |
+
):
|
753 |
+
index_label = self.index_label[0]
|
754 |
+
# if string good to go
|
755 |
+
elif self.index_label and isinstance(self.index_label, str):
|
756 |
+
index_label = self.index_label
|
757 |
+
else:
|
758 |
+
index_label = self.df.index.names[0]
|
759 |
+
|
760 |
+
if isinstance(self.columns, MultiIndex):
|
761 |
+
self.rowcounter += 1
|
762 |
+
|
763 |
+
if index_label and self.header is not False:
|
764 |
+
yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style)
|
765 |
+
|
766 |
+
# write index_values
|
767 |
+
index_values = self.df.index
|
768 |
+
if isinstance(self.df.index, PeriodIndex):
|
769 |
+
index_values = self.df.index.to_timestamp()
|
770 |
+
|
771 |
+
for idx, idxval in enumerate(index_values):
|
772 |
+
yield CssExcelCell(
|
773 |
+
row=self.rowcounter + idx,
|
774 |
+
col=0,
|
775 |
+
val=idxval,
|
776 |
+
style=self.header_style,
|
777 |
+
css_styles=getattr(self.styler, "ctx_index", None),
|
778 |
+
css_row=idx,
|
779 |
+
css_col=0,
|
780 |
+
css_converter=self.style_converter,
|
781 |
+
)
|
782 |
+
coloffset = 1
|
783 |
+
else:
|
784 |
+
coloffset = 0
|
785 |
+
|
786 |
+
yield from self._generate_body(coloffset)
|
787 |
+
|
788 |
+
def _format_hierarchical_rows(self) -> Iterable[ExcelCell]:
|
789 |
+
if self._has_aliases or self.header:
|
790 |
+
self.rowcounter += 1
|
791 |
+
|
792 |
+
gcolidx = 0
|
793 |
+
|
794 |
+
if self.index:
|
795 |
+
index_labels = self.df.index.names
|
796 |
+
# check for aliases
|
797 |
+
if self.index_label and isinstance(
|
798 |
+
self.index_label, (list, tuple, np.ndarray, Index)
|
799 |
+
):
|
800 |
+
index_labels = self.index_label
|
801 |
+
|
802 |
+
# MultiIndex columns require an extra row
|
803 |
+
# with index names (blank if None) for
|
804 |
+
# unambiguous round-trip, unless not merging,
|
805 |
+
# in which case the names all go on one row Issue #11328
|
806 |
+
if isinstance(self.columns, MultiIndex) and self.merge_cells:
|
807 |
+
self.rowcounter += 1
|
808 |
+
|
809 |
+
# if index labels are not empty go ahead and dump
|
810 |
+
if com.any_not_none(*index_labels) and self.header is not False:
|
811 |
+
for cidx, name in enumerate(index_labels):
|
812 |
+
yield ExcelCell(self.rowcounter - 1, cidx, name, self.header_style)
|
813 |
+
|
814 |
+
if self.merge_cells:
|
815 |
+
# Format hierarchical rows as merged cells.
|
816 |
+
level_strs = self.df.index._format_multi(
|
817 |
+
sparsify=True, include_names=False
|
818 |
+
)
|
819 |
+
level_lengths = get_level_lengths(level_strs)
|
820 |
+
|
821 |
+
for spans, levels, level_codes in zip(
|
822 |
+
level_lengths, self.df.index.levels, self.df.index.codes
|
823 |
+
):
|
824 |
+
values = levels.take(
|
825 |
+
level_codes,
|
826 |
+
allow_fill=levels._can_hold_na,
|
827 |
+
fill_value=levels._na_value,
|
828 |
+
)
|
829 |
+
|
830 |
+
for i, span_val in spans.items():
|
831 |
+
mergestart, mergeend = None, None
|
832 |
+
if span_val > 1:
|
833 |
+
mergestart = self.rowcounter + i + span_val - 1
|
834 |
+
mergeend = gcolidx
|
835 |
+
yield CssExcelCell(
|
836 |
+
row=self.rowcounter + i,
|
837 |
+
col=gcolidx,
|
838 |
+
val=values[i],
|
839 |
+
style=self.header_style,
|
840 |
+
css_styles=getattr(self.styler, "ctx_index", None),
|
841 |
+
css_row=i,
|
842 |
+
css_col=gcolidx,
|
843 |
+
css_converter=self.style_converter,
|
844 |
+
mergestart=mergestart,
|
845 |
+
mergeend=mergeend,
|
846 |
+
)
|
847 |
+
gcolidx += 1
|
848 |
+
|
849 |
+
else:
|
850 |
+
# Format hierarchical rows with non-merged values.
|
851 |
+
for indexcolvals in zip(*self.df.index):
|
852 |
+
for idx, indexcolval in enumerate(indexcolvals):
|
853 |
+
yield CssExcelCell(
|
854 |
+
row=self.rowcounter + idx,
|
855 |
+
col=gcolidx,
|
856 |
+
val=indexcolval,
|
857 |
+
style=self.header_style,
|
858 |
+
css_styles=getattr(self.styler, "ctx_index", None),
|
859 |
+
css_row=idx,
|
860 |
+
css_col=gcolidx,
|
861 |
+
css_converter=self.style_converter,
|
862 |
+
)
|
863 |
+
gcolidx += 1
|
864 |
+
|
865 |
+
yield from self._generate_body(gcolidx)
|
866 |
+
|
867 |
+
@property
|
868 |
+
def _has_aliases(self) -> bool:
|
869 |
+
"""Whether the aliases for column names are present."""
|
870 |
+
return is_list_like(self.header)
|
871 |
+
|
872 |
+
def _generate_body(self, coloffset: int) -> Iterable[ExcelCell]:
|
873 |
+
# Write the body of the frame data series by series.
|
874 |
+
for colidx in range(len(self.columns)):
|
875 |
+
series = self.df.iloc[:, colidx]
|
876 |
+
for i, val in enumerate(series):
|
877 |
+
yield CssExcelCell(
|
878 |
+
row=self.rowcounter + i,
|
879 |
+
col=colidx + coloffset,
|
880 |
+
val=val,
|
881 |
+
style=None,
|
882 |
+
css_styles=getattr(self.styler, "ctx", None),
|
883 |
+
css_row=i,
|
884 |
+
css_col=colidx,
|
885 |
+
css_converter=self.style_converter,
|
886 |
+
)
|
887 |
+
|
888 |
+
def get_formatted_cells(self) -> Iterable[ExcelCell]:
|
889 |
+
for cell in itertools.chain(self._format_header(), self._format_body()):
|
890 |
+
cell.val = self._format_value(cell.val)
|
891 |
+
yield cell
|
892 |
+
|
893 |
+
@doc(storage_options=_shared_docs["storage_options"])
|
894 |
+
def write(
|
895 |
+
self,
|
896 |
+
writer: FilePath | WriteExcelBuffer | ExcelWriter,
|
897 |
+
sheet_name: str = "Sheet1",
|
898 |
+
startrow: int = 0,
|
899 |
+
startcol: int = 0,
|
900 |
+
freeze_panes: tuple[int, int] | None = None,
|
901 |
+
engine: str | None = None,
|
902 |
+
storage_options: StorageOptions | None = None,
|
903 |
+
engine_kwargs: dict | None = None,
|
904 |
+
) -> None:
|
905 |
+
"""
|
906 |
+
writer : path-like, file-like, or ExcelWriter object
|
907 |
+
File path or existing ExcelWriter
|
908 |
+
sheet_name : str, default 'Sheet1'
|
909 |
+
Name of sheet which will contain DataFrame
|
910 |
+
startrow :
|
911 |
+
upper left cell row to dump data frame
|
912 |
+
startcol :
|
913 |
+
upper left cell column to dump data frame
|
914 |
+
freeze_panes : tuple of integer (length 2), default None
|
915 |
+
Specifies the one-based bottommost row and rightmost column that
|
916 |
+
is to be frozen
|
917 |
+
engine : string, default None
|
918 |
+
write engine to use if writer is a path - you can also set this
|
919 |
+
via the options ``io.excel.xlsx.writer``,
|
920 |
+
or ``io.excel.xlsm.writer``.
|
921 |
+
|
922 |
+
{storage_options}
|
923 |
+
|
924 |
+
engine_kwargs: dict, optional
|
925 |
+
Arbitrary keyword arguments passed to excel engine.
|
926 |
+
"""
|
927 |
+
from pandas.io.excel import ExcelWriter
|
928 |
+
|
929 |
+
num_rows, num_cols = self.df.shape
|
930 |
+
if num_rows > self.max_rows or num_cols > self.max_cols:
|
931 |
+
raise ValueError(
|
932 |
+
f"This sheet is too large! Your sheet size is: {num_rows}, {num_cols} "
|
933 |
+
f"Max sheet size is: {self.max_rows}, {self.max_cols}"
|
934 |
+
)
|
935 |
+
|
936 |
+
if engine_kwargs is None:
|
937 |
+
engine_kwargs = {}
|
938 |
+
|
939 |
+
formatted_cells = self.get_formatted_cells()
|
940 |
+
if isinstance(writer, ExcelWriter):
|
941 |
+
need_save = False
|
942 |
+
else:
|
943 |
+
writer = ExcelWriter(
|
944 |
+
writer,
|
945 |
+
engine=engine,
|
946 |
+
storage_options=storage_options,
|
947 |
+
engine_kwargs=engine_kwargs,
|
948 |
+
)
|
949 |
+
need_save = True
|
950 |
+
|
951 |
+
try:
|
952 |
+
writer._write_cells(
|
953 |
+
formatted_cells,
|
954 |
+
sheet_name,
|
955 |
+
startrow=startrow,
|
956 |
+
startcol=startcol,
|
957 |
+
freeze_panes=freeze_panes,
|
958 |
+
)
|
959 |
+
finally:
|
960 |
+
# make sure to close opened file handles
|
961 |
+
if need_save:
|
962 |
+
writer.close()
|
venv/lib/python3.10/site-packages/pandas/io/formats/format.py
ADDED
@@ -0,0 +1,2058 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Internal module for formatting output data in csv, html, xml,
|
3 |
+
and latex files. This module also applies to display formatting.
|
4 |
+
"""
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from collections.abc import (
|
8 |
+
Generator,
|
9 |
+
Hashable,
|
10 |
+
Mapping,
|
11 |
+
Sequence,
|
12 |
+
)
|
13 |
+
from contextlib import contextmanager
|
14 |
+
from csv import QUOTE_NONE
|
15 |
+
from decimal import Decimal
|
16 |
+
from functools import partial
|
17 |
+
from io import StringIO
|
18 |
+
import math
|
19 |
+
import re
|
20 |
+
from shutil import get_terminal_size
|
21 |
+
from typing import (
|
22 |
+
TYPE_CHECKING,
|
23 |
+
Any,
|
24 |
+
Callable,
|
25 |
+
Final,
|
26 |
+
cast,
|
27 |
+
)
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
from pandas._config.config import (
|
32 |
+
get_option,
|
33 |
+
set_option,
|
34 |
+
)
|
35 |
+
|
36 |
+
from pandas._libs import lib
|
37 |
+
from pandas._libs.missing import NA
|
38 |
+
from pandas._libs.tslibs import (
|
39 |
+
NaT,
|
40 |
+
Timedelta,
|
41 |
+
Timestamp,
|
42 |
+
)
|
43 |
+
from pandas._libs.tslibs.nattype import NaTType
|
44 |
+
|
45 |
+
from pandas.core.dtypes.common import (
|
46 |
+
is_complex_dtype,
|
47 |
+
is_float,
|
48 |
+
is_integer,
|
49 |
+
is_list_like,
|
50 |
+
is_numeric_dtype,
|
51 |
+
is_scalar,
|
52 |
+
)
|
53 |
+
from pandas.core.dtypes.dtypes import (
|
54 |
+
CategoricalDtype,
|
55 |
+
DatetimeTZDtype,
|
56 |
+
ExtensionDtype,
|
57 |
+
)
|
58 |
+
from pandas.core.dtypes.missing import (
|
59 |
+
isna,
|
60 |
+
notna,
|
61 |
+
)
|
62 |
+
|
63 |
+
from pandas.core.arrays import (
|
64 |
+
Categorical,
|
65 |
+
DatetimeArray,
|
66 |
+
ExtensionArray,
|
67 |
+
TimedeltaArray,
|
68 |
+
)
|
69 |
+
from pandas.core.arrays.string_ import StringDtype
|
70 |
+
from pandas.core.base import PandasObject
|
71 |
+
import pandas.core.common as com
|
72 |
+
from pandas.core.indexes.api import (
|
73 |
+
Index,
|
74 |
+
MultiIndex,
|
75 |
+
PeriodIndex,
|
76 |
+
ensure_index,
|
77 |
+
)
|
78 |
+
from pandas.core.indexes.datetimes import DatetimeIndex
|
79 |
+
from pandas.core.indexes.timedeltas import TimedeltaIndex
|
80 |
+
from pandas.core.reshape.concat import concat
|
81 |
+
|
82 |
+
from pandas.io.common import (
|
83 |
+
check_parent_directory,
|
84 |
+
stringify_path,
|
85 |
+
)
|
86 |
+
from pandas.io.formats import printing
|
87 |
+
|
88 |
+
if TYPE_CHECKING:
|
89 |
+
from pandas._typing import (
|
90 |
+
ArrayLike,
|
91 |
+
Axes,
|
92 |
+
ColspaceArgType,
|
93 |
+
ColspaceType,
|
94 |
+
CompressionOptions,
|
95 |
+
FilePath,
|
96 |
+
FloatFormatType,
|
97 |
+
FormattersType,
|
98 |
+
IndexLabel,
|
99 |
+
SequenceNotStr,
|
100 |
+
StorageOptions,
|
101 |
+
WriteBuffer,
|
102 |
+
)
|
103 |
+
|
104 |
+
from pandas import (
|
105 |
+
DataFrame,
|
106 |
+
Series,
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
common_docstring: Final = """
|
111 |
+
Parameters
|
112 |
+
----------
|
113 |
+
buf : str, Path or StringIO-like, optional, default None
|
114 |
+
Buffer to write to. If None, the output is returned as a string.
|
115 |
+
columns : array-like, optional, default None
|
116 |
+
The subset of columns to write. Writes all columns by default.
|
117 |
+
col_space : %(col_space_type)s, optional
|
118 |
+
%(col_space)s.
|
119 |
+
header : %(header_type)s, optional
|
120 |
+
%(header)s.
|
121 |
+
index : bool, optional, default True
|
122 |
+
Whether to print index (row) labels.
|
123 |
+
na_rep : str, optional, default 'NaN'
|
124 |
+
String representation of ``NaN`` to use.
|
125 |
+
formatters : list, tuple or dict of one-param. functions, optional
|
126 |
+
Formatter functions to apply to columns' elements by position or
|
127 |
+
name.
|
128 |
+
The result of each function must be a unicode string.
|
129 |
+
List/tuple must be of length equal to the number of columns.
|
130 |
+
float_format : one-parameter function, optional, default None
|
131 |
+
Formatter function to apply to columns' elements if they are
|
132 |
+
floats. This function must return a unicode string and will be
|
133 |
+
applied only to the non-``NaN`` elements, with ``NaN`` being
|
134 |
+
handled by ``na_rep``.
|
135 |
+
sparsify : bool, optional, default True
|
136 |
+
Set to False for a DataFrame with a hierarchical index to print
|
137 |
+
every multiindex key at each row.
|
138 |
+
index_names : bool, optional, default True
|
139 |
+
Prints the names of the indexes.
|
140 |
+
justify : str, default None
|
141 |
+
How to justify the column labels. If None uses the option from
|
142 |
+
the print configuration (controlled by set_option), 'right' out
|
143 |
+
of the box. Valid values are
|
144 |
+
|
145 |
+
* left
|
146 |
+
* right
|
147 |
+
* center
|
148 |
+
* justify
|
149 |
+
* justify-all
|
150 |
+
* start
|
151 |
+
* end
|
152 |
+
* inherit
|
153 |
+
* match-parent
|
154 |
+
* initial
|
155 |
+
* unset.
|
156 |
+
max_rows : int, optional
|
157 |
+
Maximum number of rows to display in the console.
|
158 |
+
max_cols : int, optional
|
159 |
+
Maximum number of columns to display in the console.
|
160 |
+
show_dimensions : bool, default False
|
161 |
+
Display DataFrame dimensions (number of rows by number of columns).
|
162 |
+
decimal : str, default '.'
|
163 |
+
Character recognized as decimal separator, e.g. ',' in Europe.
|
164 |
+
"""
|
165 |
+
|
166 |
+
VALID_JUSTIFY_PARAMETERS = (
|
167 |
+
"left",
|
168 |
+
"right",
|
169 |
+
"center",
|
170 |
+
"justify",
|
171 |
+
"justify-all",
|
172 |
+
"start",
|
173 |
+
"end",
|
174 |
+
"inherit",
|
175 |
+
"match-parent",
|
176 |
+
"initial",
|
177 |
+
"unset",
|
178 |
+
)
|
179 |
+
|
180 |
+
return_docstring: Final = """
|
181 |
+
Returns
|
182 |
+
-------
|
183 |
+
str or None
|
184 |
+
If buf is None, returns the result as a string. Otherwise returns
|
185 |
+
None.
|
186 |
+
"""
|
187 |
+
|
188 |
+
|
189 |
+
class SeriesFormatter:
|
190 |
+
"""
|
191 |
+
Implement the main logic of Series.to_string, which underlies
|
192 |
+
Series.__repr__.
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
series: Series,
|
198 |
+
*,
|
199 |
+
length: bool | str = True,
|
200 |
+
header: bool = True,
|
201 |
+
index: bool = True,
|
202 |
+
na_rep: str = "NaN",
|
203 |
+
name: bool = False,
|
204 |
+
float_format: str | None = None,
|
205 |
+
dtype: bool = True,
|
206 |
+
max_rows: int | None = None,
|
207 |
+
min_rows: int | None = None,
|
208 |
+
) -> None:
|
209 |
+
self.series = series
|
210 |
+
self.buf = StringIO()
|
211 |
+
self.name = name
|
212 |
+
self.na_rep = na_rep
|
213 |
+
self.header = header
|
214 |
+
self.length = length
|
215 |
+
self.index = index
|
216 |
+
self.max_rows = max_rows
|
217 |
+
self.min_rows = min_rows
|
218 |
+
|
219 |
+
if float_format is None:
|
220 |
+
float_format = get_option("display.float_format")
|
221 |
+
self.float_format = float_format
|
222 |
+
self.dtype = dtype
|
223 |
+
self.adj = printing.get_adjustment()
|
224 |
+
|
225 |
+
self._chk_truncate()
|
226 |
+
|
227 |
+
def _chk_truncate(self) -> None:
|
228 |
+
self.tr_row_num: int | None
|
229 |
+
|
230 |
+
min_rows = self.min_rows
|
231 |
+
max_rows = self.max_rows
|
232 |
+
# truncation determined by max_rows, actual truncated number of rows
|
233 |
+
# used below by min_rows
|
234 |
+
is_truncated_vertically = max_rows and (len(self.series) > max_rows)
|
235 |
+
series = self.series
|
236 |
+
if is_truncated_vertically:
|
237 |
+
max_rows = cast(int, max_rows)
|
238 |
+
if min_rows:
|
239 |
+
# if min_rows is set (not None or 0), set max_rows to minimum
|
240 |
+
# of both
|
241 |
+
max_rows = min(min_rows, max_rows)
|
242 |
+
if max_rows == 1:
|
243 |
+
row_num = max_rows
|
244 |
+
series = series.iloc[:max_rows]
|
245 |
+
else:
|
246 |
+
row_num = max_rows // 2
|
247 |
+
series = concat((series.iloc[:row_num], series.iloc[-row_num:]))
|
248 |
+
self.tr_row_num = row_num
|
249 |
+
else:
|
250 |
+
self.tr_row_num = None
|
251 |
+
self.tr_series = series
|
252 |
+
self.is_truncated_vertically = is_truncated_vertically
|
253 |
+
|
254 |
+
def _get_footer(self) -> str:
|
255 |
+
name = self.series.name
|
256 |
+
footer = ""
|
257 |
+
|
258 |
+
index = self.series.index
|
259 |
+
if (
|
260 |
+
isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex))
|
261 |
+
and index.freq is not None
|
262 |
+
):
|
263 |
+
footer += f"Freq: {index.freqstr}"
|
264 |
+
|
265 |
+
if self.name is not False and name is not None:
|
266 |
+
if footer:
|
267 |
+
footer += ", "
|
268 |
+
|
269 |
+
series_name = printing.pprint_thing(name, escape_chars=("\t", "\r", "\n"))
|
270 |
+
footer += f"Name: {series_name}"
|
271 |
+
|
272 |
+
if self.length is True or (
|
273 |
+
self.length == "truncate" and self.is_truncated_vertically
|
274 |
+
):
|
275 |
+
if footer:
|
276 |
+
footer += ", "
|
277 |
+
footer += f"Length: {len(self.series)}"
|
278 |
+
|
279 |
+
if self.dtype is not False and self.dtype is not None:
|
280 |
+
dtype_name = getattr(self.tr_series.dtype, "name", None)
|
281 |
+
if dtype_name:
|
282 |
+
if footer:
|
283 |
+
footer += ", "
|
284 |
+
footer += f"dtype: {printing.pprint_thing(dtype_name)}"
|
285 |
+
|
286 |
+
# level infos are added to the end and in a new line, like it is done
|
287 |
+
# for Categoricals
|
288 |
+
if isinstance(self.tr_series.dtype, CategoricalDtype):
|
289 |
+
level_info = self.tr_series._values._get_repr_footer()
|
290 |
+
if footer:
|
291 |
+
footer += "\n"
|
292 |
+
footer += level_info
|
293 |
+
|
294 |
+
return str(footer)
|
295 |
+
|
296 |
+
def _get_formatted_values(self) -> list[str]:
|
297 |
+
return format_array(
|
298 |
+
self.tr_series._values,
|
299 |
+
None,
|
300 |
+
float_format=self.float_format,
|
301 |
+
na_rep=self.na_rep,
|
302 |
+
leading_space=self.index,
|
303 |
+
)
|
304 |
+
|
305 |
+
def to_string(self) -> str:
|
306 |
+
series = self.tr_series
|
307 |
+
footer = self._get_footer()
|
308 |
+
|
309 |
+
if len(series) == 0:
|
310 |
+
return f"{type(self.series).__name__}([], {footer})"
|
311 |
+
|
312 |
+
index = series.index
|
313 |
+
have_header = _has_names(index)
|
314 |
+
if isinstance(index, MultiIndex):
|
315 |
+
fmt_index = index._format_multi(include_names=True, sparsify=None)
|
316 |
+
adj = printing.get_adjustment()
|
317 |
+
fmt_index = adj.adjoin(2, *fmt_index).split("\n")
|
318 |
+
else:
|
319 |
+
fmt_index = index._format_flat(include_name=True)
|
320 |
+
fmt_values = self._get_formatted_values()
|
321 |
+
|
322 |
+
if self.is_truncated_vertically:
|
323 |
+
n_header_rows = 0
|
324 |
+
row_num = self.tr_row_num
|
325 |
+
row_num = cast(int, row_num)
|
326 |
+
width = self.adj.len(fmt_values[row_num - 1])
|
327 |
+
if width > 3:
|
328 |
+
dot_str = "..."
|
329 |
+
else:
|
330 |
+
dot_str = ".."
|
331 |
+
# Series uses mode=center because it has single value columns
|
332 |
+
# DataFrame uses mode=left
|
333 |
+
dot_str = self.adj.justify([dot_str], width, mode="center")[0]
|
334 |
+
fmt_values.insert(row_num + n_header_rows, dot_str)
|
335 |
+
fmt_index.insert(row_num + 1, "")
|
336 |
+
|
337 |
+
if self.index:
|
338 |
+
result = self.adj.adjoin(3, *[fmt_index[1:], fmt_values])
|
339 |
+
else:
|
340 |
+
result = self.adj.adjoin(3, fmt_values)
|
341 |
+
|
342 |
+
if self.header and have_header:
|
343 |
+
result = fmt_index[0] + "\n" + result
|
344 |
+
|
345 |
+
if footer:
|
346 |
+
result += "\n" + footer
|
347 |
+
|
348 |
+
return str("".join(result))
|
349 |
+
|
350 |
+
|
351 |
+
def get_dataframe_repr_params() -> dict[str, Any]:
|
352 |
+
"""Get the parameters used to repr(dataFrame) calls using DataFrame.to_string.
|
353 |
+
|
354 |
+
Supplying these parameters to DataFrame.to_string is equivalent to calling
|
355 |
+
``repr(DataFrame)``. This is useful if you want to adjust the repr output.
|
356 |
+
|
357 |
+
.. versionadded:: 1.4.0
|
358 |
+
|
359 |
+
Example
|
360 |
+
-------
|
361 |
+
>>> import pandas as pd
|
362 |
+
>>>
|
363 |
+
>>> df = pd.DataFrame([[1, 2], [3, 4]])
|
364 |
+
>>> repr_params = pd.io.formats.format.get_dataframe_repr_params()
|
365 |
+
>>> repr(df) == df.to_string(**repr_params)
|
366 |
+
True
|
367 |
+
"""
|
368 |
+
from pandas.io.formats import console
|
369 |
+
|
370 |
+
if get_option("display.expand_frame_repr"):
|
371 |
+
line_width, _ = console.get_console_size()
|
372 |
+
else:
|
373 |
+
line_width = None
|
374 |
+
return {
|
375 |
+
"max_rows": get_option("display.max_rows"),
|
376 |
+
"min_rows": get_option("display.min_rows"),
|
377 |
+
"max_cols": get_option("display.max_columns"),
|
378 |
+
"max_colwidth": get_option("display.max_colwidth"),
|
379 |
+
"show_dimensions": get_option("display.show_dimensions"),
|
380 |
+
"line_width": line_width,
|
381 |
+
}
|
382 |
+
|
383 |
+
|
384 |
+
def get_series_repr_params() -> dict[str, Any]:
|
385 |
+
"""Get the parameters used to repr(Series) calls using Series.to_string.
|
386 |
+
|
387 |
+
Supplying these parameters to Series.to_string is equivalent to calling
|
388 |
+
``repr(series)``. This is useful if you want to adjust the series repr output.
|
389 |
+
|
390 |
+
.. versionadded:: 1.4.0
|
391 |
+
|
392 |
+
Example
|
393 |
+
-------
|
394 |
+
>>> import pandas as pd
|
395 |
+
>>>
|
396 |
+
>>> ser = pd.Series([1, 2, 3, 4])
|
397 |
+
>>> repr_params = pd.io.formats.format.get_series_repr_params()
|
398 |
+
>>> repr(ser) == ser.to_string(**repr_params)
|
399 |
+
True
|
400 |
+
"""
|
401 |
+
width, height = get_terminal_size()
|
402 |
+
max_rows_opt = get_option("display.max_rows")
|
403 |
+
max_rows = height if max_rows_opt == 0 else max_rows_opt
|
404 |
+
min_rows = height if max_rows_opt == 0 else get_option("display.min_rows")
|
405 |
+
|
406 |
+
return {
|
407 |
+
"name": True,
|
408 |
+
"dtype": True,
|
409 |
+
"min_rows": min_rows,
|
410 |
+
"max_rows": max_rows,
|
411 |
+
"length": get_option("display.show_dimensions"),
|
412 |
+
}
|
413 |
+
|
414 |
+
|
415 |
+
class DataFrameFormatter:
|
416 |
+
"""
|
417 |
+
Class for processing dataframe formatting options and data.
|
418 |
+
|
419 |
+
Used by DataFrame.to_string, which backs DataFrame.__repr__.
|
420 |
+
"""
|
421 |
+
|
422 |
+
__doc__ = __doc__ if __doc__ else ""
|
423 |
+
__doc__ += common_docstring + return_docstring
|
424 |
+
|
425 |
+
def __init__(
|
426 |
+
self,
|
427 |
+
frame: DataFrame,
|
428 |
+
columns: Axes | None = None,
|
429 |
+
col_space: ColspaceArgType | None = None,
|
430 |
+
header: bool | SequenceNotStr[str] = True,
|
431 |
+
index: bool = True,
|
432 |
+
na_rep: str = "NaN",
|
433 |
+
formatters: FormattersType | None = None,
|
434 |
+
justify: str | None = None,
|
435 |
+
float_format: FloatFormatType | None = None,
|
436 |
+
sparsify: bool | None = None,
|
437 |
+
index_names: bool = True,
|
438 |
+
max_rows: int | None = None,
|
439 |
+
min_rows: int | None = None,
|
440 |
+
max_cols: int | None = None,
|
441 |
+
show_dimensions: bool | str = False,
|
442 |
+
decimal: str = ".",
|
443 |
+
bold_rows: bool = False,
|
444 |
+
escape: bool = True,
|
445 |
+
) -> None:
|
446 |
+
self.frame = frame
|
447 |
+
self.columns = self._initialize_columns(columns)
|
448 |
+
self.col_space = self._initialize_colspace(col_space)
|
449 |
+
self.header = header
|
450 |
+
self.index = index
|
451 |
+
self.na_rep = na_rep
|
452 |
+
self.formatters = self._initialize_formatters(formatters)
|
453 |
+
self.justify = self._initialize_justify(justify)
|
454 |
+
self.float_format = float_format
|
455 |
+
self.sparsify = self._initialize_sparsify(sparsify)
|
456 |
+
self.show_index_names = index_names
|
457 |
+
self.decimal = decimal
|
458 |
+
self.bold_rows = bold_rows
|
459 |
+
self.escape = escape
|
460 |
+
self.max_rows = max_rows
|
461 |
+
self.min_rows = min_rows
|
462 |
+
self.max_cols = max_cols
|
463 |
+
self.show_dimensions = show_dimensions
|
464 |
+
|
465 |
+
self.max_cols_fitted = self._calc_max_cols_fitted()
|
466 |
+
self.max_rows_fitted = self._calc_max_rows_fitted()
|
467 |
+
|
468 |
+
self.tr_frame = self.frame
|
469 |
+
self.truncate()
|
470 |
+
self.adj = printing.get_adjustment()
|
471 |
+
|
472 |
+
def get_strcols(self) -> list[list[str]]:
|
473 |
+
"""
|
474 |
+
Render a DataFrame to a list of columns (as lists of strings).
|
475 |
+
"""
|
476 |
+
strcols = self._get_strcols_without_index()
|
477 |
+
|
478 |
+
if self.index:
|
479 |
+
str_index = self._get_formatted_index(self.tr_frame)
|
480 |
+
strcols.insert(0, str_index)
|
481 |
+
|
482 |
+
return strcols
|
483 |
+
|
484 |
+
@property
|
485 |
+
def should_show_dimensions(self) -> bool:
|
486 |
+
return self.show_dimensions is True or (
|
487 |
+
self.show_dimensions == "truncate" and self.is_truncated
|
488 |
+
)
|
489 |
+
|
490 |
+
@property
|
491 |
+
def is_truncated(self) -> bool:
|
492 |
+
return bool(self.is_truncated_horizontally or self.is_truncated_vertically)
|
493 |
+
|
494 |
+
@property
|
495 |
+
def is_truncated_horizontally(self) -> bool:
|
496 |
+
return bool(self.max_cols_fitted and (len(self.columns) > self.max_cols_fitted))
|
497 |
+
|
498 |
+
@property
|
499 |
+
def is_truncated_vertically(self) -> bool:
|
500 |
+
return bool(self.max_rows_fitted and (len(self.frame) > self.max_rows_fitted))
|
501 |
+
|
502 |
+
@property
|
503 |
+
def dimensions_info(self) -> str:
|
504 |
+
return f"\n\n[{len(self.frame)} rows x {len(self.frame.columns)} columns]"
|
505 |
+
|
506 |
+
@property
|
507 |
+
def has_index_names(self) -> bool:
|
508 |
+
return _has_names(self.frame.index)
|
509 |
+
|
510 |
+
@property
|
511 |
+
def has_column_names(self) -> bool:
|
512 |
+
return _has_names(self.frame.columns)
|
513 |
+
|
514 |
+
@property
|
515 |
+
def show_row_idx_names(self) -> bool:
|
516 |
+
return all((self.has_index_names, self.index, self.show_index_names))
|
517 |
+
|
518 |
+
@property
|
519 |
+
def show_col_idx_names(self) -> bool:
|
520 |
+
return all((self.has_column_names, self.show_index_names, self.header))
|
521 |
+
|
522 |
+
@property
|
523 |
+
def max_rows_displayed(self) -> int:
|
524 |
+
return min(self.max_rows or len(self.frame), len(self.frame))
|
525 |
+
|
526 |
+
def _initialize_sparsify(self, sparsify: bool | None) -> bool:
|
527 |
+
if sparsify is None:
|
528 |
+
return get_option("display.multi_sparse")
|
529 |
+
return sparsify
|
530 |
+
|
531 |
+
def _initialize_formatters(
|
532 |
+
self, formatters: FormattersType | None
|
533 |
+
) -> FormattersType:
|
534 |
+
if formatters is None:
|
535 |
+
return {}
|
536 |
+
elif len(self.frame.columns) == len(formatters) or isinstance(formatters, dict):
|
537 |
+
return formatters
|
538 |
+
else:
|
539 |
+
raise ValueError(
|
540 |
+
f"Formatters length({len(formatters)}) should match "
|
541 |
+
f"DataFrame number of columns({len(self.frame.columns)})"
|
542 |
+
)
|
543 |
+
|
544 |
+
def _initialize_justify(self, justify: str | None) -> str:
|
545 |
+
if justify is None:
|
546 |
+
return get_option("display.colheader_justify")
|
547 |
+
else:
|
548 |
+
return justify
|
549 |
+
|
550 |
+
def _initialize_columns(self, columns: Axes | None) -> Index:
|
551 |
+
if columns is not None:
|
552 |
+
cols = ensure_index(columns)
|
553 |
+
self.frame = self.frame[cols]
|
554 |
+
return cols
|
555 |
+
else:
|
556 |
+
return self.frame.columns
|
557 |
+
|
558 |
+
def _initialize_colspace(self, col_space: ColspaceArgType | None) -> ColspaceType:
|
559 |
+
result: ColspaceType
|
560 |
+
|
561 |
+
if col_space is None:
|
562 |
+
result = {}
|
563 |
+
elif isinstance(col_space, (int, str)):
|
564 |
+
result = {"": col_space}
|
565 |
+
result.update({column: col_space for column in self.frame.columns})
|
566 |
+
elif isinstance(col_space, Mapping):
|
567 |
+
for column in col_space.keys():
|
568 |
+
if column not in self.frame.columns and column != "":
|
569 |
+
raise ValueError(
|
570 |
+
f"Col_space is defined for an unknown column: {column}"
|
571 |
+
)
|
572 |
+
result = col_space
|
573 |
+
else:
|
574 |
+
if len(self.frame.columns) != len(col_space):
|
575 |
+
raise ValueError(
|
576 |
+
f"Col_space length({len(col_space)}) should match "
|
577 |
+
f"DataFrame number of columns({len(self.frame.columns)})"
|
578 |
+
)
|
579 |
+
result = dict(zip(self.frame.columns, col_space))
|
580 |
+
return result
|
581 |
+
|
582 |
+
def _calc_max_cols_fitted(self) -> int | None:
|
583 |
+
"""Number of columns fitting the screen."""
|
584 |
+
if not self._is_in_terminal():
|
585 |
+
return self.max_cols
|
586 |
+
|
587 |
+
width, _ = get_terminal_size()
|
588 |
+
if self._is_screen_narrow(width):
|
589 |
+
return width
|
590 |
+
else:
|
591 |
+
return self.max_cols
|
592 |
+
|
593 |
+
def _calc_max_rows_fitted(self) -> int | None:
|
594 |
+
"""Number of rows with data fitting the screen."""
|
595 |
+
max_rows: int | None
|
596 |
+
|
597 |
+
if self._is_in_terminal():
|
598 |
+
_, height = get_terminal_size()
|
599 |
+
if self.max_rows == 0:
|
600 |
+
# rows available to fill with actual data
|
601 |
+
return height - self._get_number_of_auxiliary_rows()
|
602 |
+
|
603 |
+
if self._is_screen_short(height):
|
604 |
+
max_rows = height
|
605 |
+
else:
|
606 |
+
max_rows = self.max_rows
|
607 |
+
else:
|
608 |
+
max_rows = self.max_rows
|
609 |
+
|
610 |
+
return self._adjust_max_rows(max_rows)
|
611 |
+
|
612 |
+
def _adjust_max_rows(self, max_rows: int | None) -> int | None:
|
613 |
+
"""Adjust max_rows using display logic.
|
614 |
+
|
615 |
+
See description here:
|
616 |
+
https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options
|
617 |
+
|
618 |
+
GH #37359
|
619 |
+
"""
|
620 |
+
if max_rows:
|
621 |
+
if (len(self.frame) > max_rows) and self.min_rows:
|
622 |
+
# if truncated, set max_rows showed to min_rows
|
623 |
+
max_rows = min(self.min_rows, max_rows)
|
624 |
+
return max_rows
|
625 |
+
|
626 |
+
def _is_in_terminal(self) -> bool:
|
627 |
+
"""Check if the output is to be shown in terminal."""
|
628 |
+
return bool(self.max_cols == 0 or self.max_rows == 0)
|
629 |
+
|
630 |
+
def _is_screen_narrow(self, max_width) -> bool:
|
631 |
+
return bool(self.max_cols == 0 and len(self.frame.columns) > max_width)
|
632 |
+
|
633 |
+
def _is_screen_short(self, max_height) -> bool:
|
634 |
+
return bool(self.max_rows == 0 and len(self.frame) > max_height)
|
635 |
+
|
636 |
+
def _get_number_of_auxiliary_rows(self) -> int:
|
637 |
+
"""Get number of rows occupied by prompt, dots and dimension info."""
|
638 |
+
dot_row = 1
|
639 |
+
prompt_row = 1
|
640 |
+
num_rows = dot_row + prompt_row
|
641 |
+
|
642 |
+
if self.show_dimensions:
|
643 |
+
num_rows += len(self.dimensions_info.splitlines())
|
644 |
+
|
645 |
+
if self.header:
|
646 |
+
num_rows += 1
|
647 |
+
|
648 |
+
return num_rows
|
649 |
+
|
650 |
+
def truncate(self) -> None:
|
651 |
+
"""
|
652 |
+
Check whether the frame should be truncated. If so, slice the frame up.
|
653 |
+
"""
|
654 |
+
if self.is_truncated_horizontally:
|
655 |
+
self._truncate_horizontally()
|
656 |
+
|
657 |
+
if self.is_truncated_vertically:
|
658 |
+
self._truncate_vertically()
|
659 |
+
|
660 |
+
def _truncate_horizontally(self) -> None:
|
661 |
+
"""Remove columns, which are not to be displayed and adjust formatters.
|
662 |
+
|
663 |
+
Attributes affected:
|
664 |
+
- tr_frame
|
665 |
+
- formatters
|
666 |
+
- tr_col_num
|
667 |
+
"""
|
668 |
+
assert self.max_cols_fitted is not None
|
669 |
+
col_num = self.max_cols_fitted // 2
|
670 |
+
if col_num >= 1:
|
671 |
+
left = self.tr_frame.iloc[:, :col_num]
|
672 |
+
right = self.tr_frame.iloc[:, -col_num:]
|
673 |
+
self.tr_frame = concat((left, right), axis=1)
|
674 |
+
|
675 |
+
# truncate formatter
|
676 |
+
if isinstance(self.formatters, (list, tuple)):
|
677 |
+
self.formatters = [
|
678 |
+
*self.formatters[:col_num],
|
679 |
+
*self.formatters[-col_num:],
|
680 |
+
]
|
681 |
+
else:
|
682 |
+
col_num = cast(int, self.max_cols)
|
683 |
+
self.tr_frame = self.tr_frame.iloc[:, :col_num]
|
684 |
+
self.tr_col_num = col_num
|
685 |
+
|
686 |
+
def _truncate_vertically(self) -> None:
|
687 |
+
"""Remove rows, which are not to be displayed.
|
688 |
+
|
689 |
+
Attributes affected:
|
690 |
+
- tr_frame
|
691 |
+
- tr_row_num
|
692 |
+
"""
|
693 |
+
assert self.max_rows_fitted is not None
|
694 |
+
row_num = self.max_rows_fitted // 2
|
695 |
+
if row_num >= 1:
|
696 |
+
_len = len(self.tr_frame)
|
697 |
+
_slice = np.hstack([np.arange(row_num), np.arange(_len - row_num, _len)])
|
698 |
+
self.tr_frame = self.tr_frame.iloc[_slice]
|
699 |
+
else:
|
700 |
+
row_num = cast(int, self.max_rows)
|
701 |
+
self.tr_frame = self.tr_frame.iloc[:row_num, :]
|
702 |
+
self.tr_row_num = row_num
|
703 |
+
|
704 |
+
def _get_strcols_without_index(self) -> list[list[str]]:
|
705 |
+
strcols: list[list[str]] = []
|
706 |
+
|
707 |
+
if not is_list_like(self.header) and not self.header:
|
708 |
+
for i, c in enumerate(self.tr_frame):
|
709 |
+
fmt_values = self.format_col(i)
|
710 |
+
fmt_values = _make_fixed_width(
|
711 |
+
strings=fmt_values,
|
712 |
+
justify=self.justify,
|
713 |
+
minimum=int(self.col_space.get(c, 0)),
|
714 |
+
adj=self.adj,
|
715 |
+
)
|
716 |
+
strcols.append(fmt_values)
|
717 |
+
return strcols
|
718 |
+
|
719 |
+
if is_list_like(self.header):
|
720 |
+
# cast here since can't be bool if is_list_like
|
721 |
+
self.header = cast(list[str], self.header)
|
722 |
+
if len(self.header) != len(self.columns):
|
723 |
+
raise ValueError(
|
724 |
+
f"Writing {len(self.columns)} cols "
|
725 |
+
f"but got {len(self.header)} aliases"
|
726 |
+
)
|
727 |
+
str_columns = [[label] for label in self.header]
|
728 |
+
else:
|
729 |
+
str_columns = self._get_formatted_column_labels(self.tr_frame)
|
730 |
+
|
731 |
+
if self.show_row_idx_names:
|
732 |
+
for x in str_columns:
|
733 |
+
x.append("")
|
734 |
+
|
735 |
+
for i, c in enumerate(self.tr_frame):
|
736 |
+
cheader = str_columns[i]
|
737 |
+
header_colwidth = max(
|
738 |
+
int(self.col_space.get(c, 0)), *(self.adj.len(x) for x in cheader)
|
739 |
+
)
|
740 |
+
fmt_values = self.format_col(i)
|
741 |
+
fmt_values = _make_fixed_width(
|
742 |
+
fmt_values, self.justify, minimum=header_colwidth, adj=self.adj
|
743 |
+
)
|
744 |
+
|
745 |
+
max_len = max(*(self.adj.len(x) for x in fmt_values), header_colwidth)
|
746 |
+
cheader = self.adj.justify(cheader, max_len, mode=self.justify)
|
747 |
+
strcols.append(cheader + fmt_values)
|
748 |
+
|
749 |
+
return strcols
|
750 |
+
|
751 |
+
def format_col(self, i: int) -> list[str]:
|
752 |
+
frame = self.tr_frame
|
753 |
+
formatter = self._get_formatter(i)
|
754 |
+
return format_array(
|
755 |
+
frame.iloc[:, i]._values,
|
756 |
+
formatter,
|
757 |
+
float_format=self.float_format,
|
758 |
+
na_rep=self.na_rep,
|
759 |
+
space=self.col_space.get(frame.columns[i]),
|
760 |
+
decimal=self.decimal,
|
761 |
+
leading_space=self.index,
|
762 |
+
)
|
763 |
+
|
764 |
+
def _get_formatter(self, i: str | int) -> Callable | None:
|
765 |
+
if isinstance(self.formatters, (list, tuple)):
|
766 |
+
if is_integer(i):
|
767 |
+
i = cast(int, i)
|
768 |
+
return self.formatters[i]
|
769 |
+
else:
|
770 |
+
return None
|
771 |
+
else:
|
772 |
+
if is_integer(i) and i not in self.columns:
|
773 |
+
i = self.columns[i]
|
774 |
+
return self.formatters.get(i, None)
|
775 |
+
|
776 |
+
def _get_formatted_column_labels(self, frame: DataFrame) -> list[list[str]]:
|
777 |
+
from pandas.core.indexes.multi import sparsify_labels
|
778 |
+
|
779 |
+
columns = frame.columns
|
780 |
+
|
781 |
+
if isinstance(columns, MultiIndex):
|
782 |
+
fmt_columns = columns._format_multi(sparsify=False, include_names=False)
|
783 |
+
fmt_columns = list(zip(*fmt_columns))
|
784 |
+
dtypes = self.frame.dtypes._values
|
785 |
+
|
786 |
+
# if we have a Float level, they don't use leading space at all
|
787 |
+
restrict_formatting = any(level.is_floating for level in columns.levels)
|
788 |
+
need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes)))
|
789 |
+
|
790 |
+
def space_format(x, y):
|
791 |
+
if (
|
792 |
+
y not in self.formatters
|
793 |
+
and need_leadsp[x]
|
794 |
+
and not restrict_formatting
|
795 |
+
):
|
796 |
+
return " " + y
|
797 |
+
return y
|
798 |
+
|
799 |
+
str_columns_tuple = list(
|
800 |
+
zip(*([space_format(x, y) for y in x] for x in fmt_columns))
|
801 |
+
)
|
802 |
+
if self.sparsify and len(str_columns_tuple):
|
803 |
+
str_columns_tuple = sparsify_labels(str_columns_tuple)
|
804 |
+
|
805 |
+
str_columns = [list(x) for x in zip(*str_columns_tuple)]
|
806 |
+
else:
|
807 |
+
fmt_columns = columns._format_flat(include_name=False)
|
808 |
+
dtypes = self.frame.dtypes
|
809 |
+
need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes)))
|
810 |
+
str_columns = [
|
811 |
+
[" " + x if not self._get_formatter(i) and need_leadsp[x] else x]
|
812 |
+
for i, x in enumerate(fmt_columns)
|
813 |
+
]
|
814 |
+
# self.str_columns = str_columns
|
815 |
+
return str_columns
|
816 |
+
|
817 |
+
def _get_formatted_index(self, frame: DataFrame) -> list[str]:
|
818 |
+
# Note: this is only used by to_string() and to_latex(), not by
|
819 |
+
# to_html(). so safe to cast col_space here.
|
820 |
+
col_space = {k: cast(int, v) for k, v in self.col_space.items()}
|
821 |
+
index = frame.index
|
822 |
+
columns = frame.columns
|
823 |
+
fmt = self._get_formatter("__index__")
|
824 |
+
|
825 |
+
if isinstance(index, MultiIndex):
|
826 |
+
fmt_index = index._format_multi(
|
827 |
+
sparsify=self.sparsify,
|
828 |
+
include_names=self.show_row_idx_names,
|
829 |
+
formatter=fmt,
|
830 |
+
)
|
831 |
+
else:
|
832 |
+
fmt_index = [
|
833 |
+
index._format_flat(include_name=self.show_row_idx_names, formatter=fmt)
|
834 |
+
]
|
835 |
+
|
836 |
+
fmt_index = [
|
837 |
+
tuple(
|
838 |
+
_make_fixed_width(
|
839 |
+
list(x), justify="left", minimum=col_space.get("", 0), adj=self.adj
|
840 |
+
)
|
841 |
+
)
|
842 |
+
for x in fmt_index
|
843 |
+
]
|
844 |
+
|
845 |
+
adjoined = self.adj.adjoin(1, *fmt_index).split("\n")
|
846 |
+
|
847 |
+
# empty space for columns
|
848 |
+
if self.show_col_idx_names:
|
849 |
+
col_header = [str(x) for x in self._get_column_name_list()]
|
850 |
+
else:
|
851 |
+
col_header = [""] * columns.nlevels
|
852 |
+
|
853 |
+
if self.header:
|
854 |
+
return col_header + adjoined
|
855 |
+
else:
|
856 |
+
return adjoined
|
857 |
+
|
858 |
+
def _get_column_name_list(self) -> list[Hashable]:
|
859 |
+
names: list[Hashable] = []
|
860 |
+
columns = self.frame.columns
|
861 |
+
if isinstance(columns, MultiIndex):
|
862 |
+
names.extend("" if name is None else name for name in columns.names)
|
863 |
+
else:
|
864 |
+
names.append("" if columns.name is None else columns.name)
|
865 |
+
return names
|
866 |
+
|
867 |
+
|
868 |
+
class DataFrameRenderer:
|
869 |
+
"""Class for creating dataframe output in multiple formats.
|
870 |
+
|
871 |
+
Called in pandas.core.generic.NDFrame:
|
872 |
+
- to_csv
|
873 |
+
- to_latex
|
874 |
+
|
875 |
+
Called in pandas.core.frame.DataFrame:
|
876 |
+
- to_html
|
877 |
+
- to_string
|
878 |
+
|
879 |
+
Parameters
|
880 |
+
----------
|
881 |
+
fmt : DataFrameFormatter
|
882 |
+
Formatter with the formatting options.
|
883 |
+
"""
|
884 |
+
|
885 |
+
def __init__(self, fmt: DataFrameFormatter) -> None:
|
886 |
+
self.fmt = fmt
|
887 |
+
|
888 |
+
def to_html(
|
889 |
+
self,
|
890 |
+
buf: FilePath | WriteBuffer[str] | None = None,
|
891 |
+
encoding: str | None = None,
|
892 |
+
classes: str | list | tuple | None = None,
|
893 |
+
notebook: bool = False,
|
894 |
+
border: int | bool | None = None,
|
895 |
+
table_id: str | None = None,
|
896 |
+
render_links: bool = False,
|
897 |
+
) -> str | None:
|
898 |
+
"""
|
899 |
+
Render a DataFrame to a html table.
|
900 |
+
|
901 |
+
Parameters
|
902 |
+
----------
|
903 |
+
buf : str, path object, file-like object, or None, default None
|
904 |
+
String, path object (implementing ``os.PathLike[str]``), or file-like
|
905 |
+
object implementing a string ``write()`` function. If None, the result is
|
906 |
+
returned as a string.
|
907 |
+
encoding : str, default “utf-8”
|
908 |
+
Set character encoding.
|
909 |
+
classes : str or list-like
|
910 |
+
classes to include in the `class` attribute of the opening
|
911 |
+
``<table>`` tag, in addition to the default "dataframe".
|
912 |
+
notebook : {True, False}, optional, default False
|
913 |
+
Whether the generated HTML is for IPython Notebook.
|
914 |
+
border : int
|
915 |
+
A ``border=border`` attribute is included in the opening
|
916 |
+
``<table>`` tag. Default ``pd.options.display.html.border``.
|
917 |
+
table_id : str, optional
|
918 |
+
A css id is included in the opening `<table>` tag if specified.
|
919 |
+
render_links : bool, default False
|
920 |
+
Convert URLs to HTML links.
|
921 |
+
"""
|
922 |
+
from pandas.io.formats.html import (
|
923 |
+
HTMLFormatter,
|
924 |
+
NotebookFormatter,
|
925 |
+
)
|
926 |
+
|
927 |
+
Klass = NotebookFormatter if notebook else HTMLFormatter
|
928 |
+
|
929 |
+
html_formatter = Klass(
|
930 |
+
self.fmt,
|
931 |
+
classes=classes,
|
932 |
+
border=border,
|
933 |
+
table_id=table_id,
|
934 |
+
render_links=render_links,
|
935 |
+
)
|
936 |
+
string = html_formatter.to_string()
|
937 |
+
return save_to_buffer(string, buf=buf, encoding=encoding)
|
938 |
+
|
939 |
+
def to_string(
|
940 |
+
self,
|
941 |
+
buf: FilePath | WriteBuffer[str] | None = None,
|
942 |
+
encoding: str | None = None,
|
943 |
+
line_width: int | None = None,
|
944 |
+
) -> str | None:
|
945 |
+
"""
|
946 |
+
Render a DataFrame to a console-friendly tabular output.
|
947 |
+
|
948 |
+
Parameters
|
949 |
+
----------
|
950 |
+
buf : str, path object, file-like object, or None, default None
|
951 |
+
String, path object (implementing ``os.PathLike[str]``), or file-like
|
952 |
+
object implementing a string ``write()`` function. If None, the result is
|
953 |
+
returned as a string.
|
954 |
+
encoding: str, default “utf-8”
|
955 |
+
Set character encoding.
|
956 |
+
line_width : int, optional
|
957 |
+
Width to wrap a line in characters.
|
958 |
+
"""
|
959 |
+
from pandas.io.formats.string import StringFormatter
|
960 |
+
|
961 |
+
string_formatter = StringFormatter(self.fmt, line_width=line_width)
|
962 |
+
string = string_formatter.to_string()
|
963 |
+
return save_to_buffer(string, buf=buf, encoding=encoding)
|
964 |
+
|
965 |
+
def to_csv(
|
966 |
+
self,
|
967 |
+
path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,
|
968 |
+
encoding: str | None = None,
|
969 |
+
sep: str = ",",
|
970 |
+
columns: Sequence[Hashable] | None = None,
|
971 |
+
index_label: IndexLabel | None = None,
|
972 |
+
mode: str = "w",
|
973 |
+
compression: CompressionOptions = "infer",
|
974 |
+
quoting: int | None = None,
|
975 |
+
quotechar: str = '"',
|
976 |
+
lineterminator: str | None = None,
|
977 |
+
chunksize: int | None = None,
|
978 |
+
date_format: str | None = None,
|
979 |
+
doublequote: bool = True,
|
980 |
+
escapechar: str | None = None,
|
981 |
+
errors: str = "strict",
|
982 |
+
storage_options: StorageOptions | None = None,
|
983 |
+
) -> str | None:
|
984 |
+
"""
|
985 |
+
Render dataframe as comma-separated file.
|
986 |
+
"""
|
987 |
+
from pandas.io.formats.csvs import CSVFormatter
|
988 |
+
|
989 |
+
if path_or_buf is None:
|
990 |
+
created_buffer = True
|
991 |
+
path_or_buf = StringIO()
|
992 |
+
else:
|
993 |
+
created_buffer = False
|
994 |
+
|
995 |
+
csv_formatter = CSVFormatter(
|
996 |
+
path_or_buf=path_or_buf,
|
997 |
+
lineterminator=lineterminator,
|
998 |
+
sep=sep,
|
999 |
+
encoding=encoding,
|
1000 |
+
errors=errors,
|
1001 |
+
compression=compression,
|
1002 |
+
quoting=quoting,
|
1003 |
+
cols=columns,
|
1004 |
+
index_label=index_label,
|
1005 |
+
mode=mode,
|
1006 |
+
chunksize=chunksize,
|
1007 |
+
quotechar=quotechar,
|
1008 |
+
date_format=date_format,
|
1009 |
+
doublequote=doublequote,
|
1010 |
+
escapechar=escapechar,
|
1011 |
+
storage_options=storage_options,
|
1012 |
+
formatter=self.fmt,
|
1013 |
+
)
|
1014 |
+
csv_formatter.save()
|
1015 |
+
|
1016 |
+
if created_buffer:
|
1017 |
+
assert isinstance(path_or_buf, StringIO)
|
1018 |
+
content = path_or_buf.getvalue()
|
1019 |
+
path_or_buf.close()
|
1020 |
+
return content
|
1021 |
+
|
1022 |
+
return None
|
1023 |
+
|
1024 |
+
|
1025 |
+
def save_to_buffer(
|
1026 |
+
string: str,
|
1027 |
+
buf: FilePath | WriteBuffer[str] | None = None,
|
1028 |
+
encoding: str | None = None,
|
1029 |
+
) -> str | None:
|
1030 |
+
"""
|
1031 |
+
Perform serialization. Write to buf or return as string if buf is None.
|
1032 |
+
"""
|
1033 |
+
with _get_buffer(buf, encoding=encoding) as fd:
|
1034 |
+
fd.write(string)
|
1035 |
+
if buf is None:
|
1036 |
+
# error: "WriteBuffer[str]" has no attribute "getvalue"
|
1037 |
+
return fd.getvalue() # type: ignore[attr-defined]
|
1038 |
+
return None
|
1039 |
+
|
1040 |
+
|
1041 |
+
@contextmanager
|
1042 |
+
def _get_buffer(
|
1043 |
+
buf: FilePath | WriteBuffer[str] | None, encoding: str | None = None
|
1044 |
+
) -> Generator[WriteBuffer[str], None, None] | Generator[StringIO, None, None]:
|
1045 |
+
"""
|
1046 |
+
Context manager to open, yield and close buffer for filenames or Path-like
|
1047 |
+
objects, otherwise yield buf unchanged.
|
1048 |
+
"""
|
1049 |
+
if buf is not None:
|
1050 |
+
buf = stringify_path(buf)
|
1051 |
+
else:
|
1052 |
+
buf = StringIO()
|
1053 |
+
|
1054 |
+
if encoding is None:
|
1055 |
+
encoding = "utf-8"
|
1056 |
+
elif not isinstance(buf, str):
|
1057 |
+
raise ValueError("buf is not a file name and encoding is specified.")
|
1058 |
+
|
1059 |
+
if hasattr(buf, "write"):
|
1060 |
+
# Incompatible types in "yield" (actual type "Union[str, WriteBuffer[str],
|
1061 |
+
# StringIO]", expected type "Union[WriteBuffer[str], StringIO]")
|
1062 |
+
yield buf # type: ignore[misc]
|
1063 |
+
elif isinstance(buf, str):
|
1064 |
+
check_parent_directory(str(buf))
|
1065 |
+
with open(buf, "w", encoding=encoding, newline="") as f:
|
1066 |
+
# GH#30034 open instead of codecs.open prevents a file leak
|
1067 |
+
# if we have an invalid encoding argument.
|
1068 |
+
# newline="" is needed to roundtrip correctly on
|
1069 |
+
# windows test_to_latex_filename
|
1070 |
+
yield f
|
1071 |
+
else:
|
1072 |
+
raise TypeError("buf is not a file name and it has no write method")
|
1073 |
+
|
1074 |
+
|
1075 |
+
# ----------------------------------------------------------------------
|
1076 |
+
# Array formatters
|
1077 |
+
|
1078 |
+
|
1079 |
+
def format_array(
|
1080 |
+
values: ArrayLike,
|
1081 |
+
formatter: Callable | None,
|
1082 |
+
float_format: FloatFormatType | None = None,
|
1083 |
+
na_rep: str = "NaN",
|
1084 |
+
digits: int | None = None,
|
1085 |
+
space: str | int | None = None,
|
1086 |
+
justify: str = "right",
|
1087 |
+
decimal: str = ".",
|
1088 |
+
leading_space: bool | None = True,
|
1089 |
+
quoting: int | None = None,
|
1090 |
+
fallback_formatter: Callable | None = None,
|
1091 |
+
) -> list[str]:
|
1092 |
+
"""
|
1093 |
+
Format an array for printing.
|
1094 |
+
|
1095 |
+
Parameters
|
1096 |
+
----------
|
1097 |
+
values : np.ndarray or ExtensionArray
|
1098 |
+
formatter
|
1099 |
+
float_format
|
1100 |
+
na_rep
|
1101 |
+
digits
|
1102 |
+
space
|
1103 |
+
justify
|
1104 |
+
decimal
|
1105 |
+
leading_space : bool, optional, default True
|
1106 |
+
Whether the array should be formatted with a leading space.
|
1107 |
+
When an array as a column of a Series or DataFrame, we do want
|
1108 |
+
the leading space to pad between columns.
|
1109 |
+
|
1110 |
+
When formatting an Index subclass
|
1111 |
+
(e.g. IntervalIndex._get_values_for_csv), we don't want the
|
1112 |
+
leading space since it should be left-aligned.
|
1113 |
+
fallback_formatter
|
1114 |
+
|
1115 |
+
Returns
|
1116 |
+
-------
|
1117 |
+
List[str]
|
1118 |
+
"""
|
1119 |
+
fmt_klass: type[_GenericArrayFormatter]
|
1120 |
+
if lib.is_np_dtype(values.dtype, "M"):
|
1121 |
+
fmt_klass = _Datetime64Formatter
|
1122 |
+
values = cast(DatetimeArray, values)
|
1123 |
+
elif isinstance(values.dtype, DatetimeTZDtype):
|
1124 |
+
fmt_klass = _Datetime64TZFormatter
|
1125 |
+
values = cast(DatetimeArray, values)
|
1126 |
+
elif lib.is_np_dtype(values.dtype, "m"):
|
1127 |
+
fmt_klass = _Timedelta64Formatter
|
1128 |
+
values = cast(TimedeltaArray, values)
|
1129 |
+
elif isinstance(values.dtype, ExtensionDtype):
|
1130 |
+
fmt_klass = _ExtensionArrayFormatter
|
1131 |
+
elif lib.is_np_dtype(values.dtype, "fc"):
|
1132 |
+
fmt_klass = FloatArrayFormatter
|
1133 |
+
elif lib.is_np_dtype(values.dtype, "iu"):
|
1134 |
+
fmt_klass = _IntArrayFormatter
|
1135 |
+
else:
|
1136 |
+
fmt_klass = _GenericArrayFormatter
|
1137 |
+
|
1138 |
+
if space is None:
|
1139 |
+
space = 12
|
1140 |
+
|
1141 |
+
if float_format is None:
|
1142 |
+
float_format = get_option("display.float_format")
|
1143 |
+
|
1144 |
+
if digits is None:
|
1145 |
+
digits = get_option("display.precision")
|
1146 |
+
|
1147 |
+
fmt_obj = fmt_klass(
|
1148 |
+
values,
|
1149 |
+
digits=digits,
|
1150 |
+
na_rep=na_rep,
|
1151 |
+
float_format=float_format,
|
1152 |
+
formatter=formatter,
|
1153 |
+
space=space,
|
1154 |
+
justify=justify,
|
1155 |
+
decimal=decimal,
|
1156 |
+
leading_space=leading_space,
|
1157 |
+
quoting=quoting,
|
1158 |
+
fallback_formatter=fallback_formatter,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
return fmt_obj.get_result()
|
1162 |
+
|
1163 |
+
|
1164 |
+
class _GenericArrayFormatter:
|
1165 |
+
def __init__(
|
1166 |
+
self,
|
1167 |
+
values: ArrayLike,
|
1168 |
+
digits: int = 7,
|
1169 |
+
formatter: Callable | None = None,
|
1170 |
+
na_rep: str = "NaN",
|
1171 |
+
space: str | int = 12,
|
1172 |
+
float_format: FloatFormatType | None = None,
|
1173 |
+
justify: str = "right",
|
1174 |
+
decimal: str = ".",
|
1175 |
+
quoting: int | None = None,
|
1176 |
+
fixed_width: bool = True,
|
1177 |
+
leading_space: bool | None = True,
|
1178 |
+
fallback_formatter: Callable | None = None,
|
1179 |
+
) -> None:
|
1180 |
+
self.values = values
|
1181 |
+
self.digits = digits
|
1182 |
+
self.na_rep = na_rep
|
1183 |
+
self.space = space
|
1184 |
+
self.formatter = formatter
|
1185 |
+
self.float_format = float_format
|
1186 |
+
self.justify = justify
|
1187 |
+
self.decimal = decimal
|
1188 |
+
self.quoting = quoting
|
1189 |
+
self.fixed_width = fixed_width
|
1190 |
+
self.leading_space = leading_space
|
1191 |
+
self.fallback_formatter = fallback_formatter
|
1192 |
+
|
1193 |
+
def get_result(self) -> list[str]:
|
1194 |
+
fmt_values = self._format_strings()
|
1195 |
+
return _make_fixed_width(fmt_values, self.justify)
|
1196 |
+
|
1197 |
+
def _format_strings(self) -> list[str]:
|
1198 |
+
if self.float_format is None:
|
1199 |
+
float_format = get_option("display.float_format")
|
1200 |
+
if float_format is None:
|
1201 |
+
precision = get_option("display.precision")
|
1202 |
+
float_format = lambda x: _trim_zeros_single_float(
|
1203 |
+
f"{x: .{precision:d}f}"
|
1204 |
+
)
|
1205 |
+
else:
|
1206 |
+
float_format = self.float_format
|
1207 |
+
|
1208 |
+
if self.formatter is not None:
|
1209 |
+
formatter = self.formatter
|
1210 |
+
elif self.fallback_formatter is not None:
|
1211 |
+
formatter = self.fallback_formatter
|
1212 |
+
else:
|
1213 |
+
quote_strings = self.quoting is not None and self.quoting != QUOTE_NONE
|
1214 |
+
formatter = partial(
|
1215 |
+
printing.pprint_thing,
|
1216 |
+
escape_chars=("\t", "\r", "\n"),
|
1217 |
+
quote_strings=quote_strings,
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
def _format(x):
|
1221 |
+
if self.na_rep is not None and is_scalar(x) and isna(x):
|
1222 |
+
if x is None:
|
1223 |
+
return "None"
|
1224 |
+
elif x is NA:
|
1225 |
+
return str(NA)
|
1226 |
+
elif lib.is_float(x) and np.isinf(x):
|
1227 |
+
# TODO(3.0): this will be unreachable when use_inf_as_na
|
1228 |
+
# deprecation is enforced
|
1229 |
+
return str(x)
|
1230 |
+
elif x is NaT or isinstance(x, (np.datetime64, np.timedelta64)):
|
1231 |
+
return "NaT"
|
1232 |
+
return self.na_rep
|
1233 |
+
elif isinstance(x, PandasObject):
|
1234 |
+
return str(x)
|
1235 |
+
elif isinstance(x, StringDtype):
|
1236 |
+
return repr(x)
|
1237 |
+
else:
|
1238 |
+
# object dtype
|
1239 |
+
return str(formatter(x))
|
1240 |
+
|
1241 |
+
vals = self.values
|
1242 |
+
if not isinstance(vals, np.ndarray):
|
1243 |
+
raise TypeError(
|
1244 |
+
"ExtensionArray formatting should use _ExtensionArrayFormatter"
|
1245 |
+
)
|
1246 |
+
inferred = lib.map_infer(vals, is_float)
|
1247 |
+
is_float_type = (
|
1248 |
+
inferred
|
1249 |
+
# vals may have 2 or more dimensions
|
1250 |
+
& np.all(notna(vals), axis=tuple(range(1, len(vals.shape))))
|
1251 |
+
)
|
1252 |
+
leading_space = self.leading_space
|
1253 |
+
if leading_space is None:
|
1254 |
+
leading_space = is_float_type.any()
|
1255 |
+
|
1256 |
+
fmt_values = []
|
1257 |
+
for i, v in enumerate(vals):
|
1258 |
+
if (not is_float_type[i] or self.formatter is not None) and leading_space:
|
1259 |
+
fmt_values.append(f" {_format(v)}")
|
1260 |
+
elif is_float_type[i]:
|
1261 |
+
fmt_values.append(float_format(v))
|
1262 |
+
else:
|
1263 |
+
if leading_space is False:
|
1264 |
+
# False specifically, so that the default is
|
1265 |
+
# to include a space if we get here.
|
1266 |
+
tpl = "{v}"
|
1267 |
+
else:
|
1268 |
+
tpl = " {v}"
|
1269 |
+
fmt_values.append(tpl.format(v=_format(v)))
|
1270 |
+
|
1271 |
+
return fmt_values
|
1272 |
+
|
1273 |
+
|
1274 |
+
class FloatArrayFormatter(_GenericArrayFormatter):
|
1275 |
+
def __init__(self, *args, **kwargs) -> None:
|
1276 |
+
super().__init__(*args, **kwargs)
|
1277 |
+
|
1278 |
+
# float_format is expected to be a string
|
1279 |
+
# formatter should be used to pass a function
|
1280 |
+
if self.float_format is not None and self.formatter is None:
|
1281 |
+
# GH21625, GH22270
|
1282 |
+
self.fixed_width = False
|
1283 |
+
if callable(self.float_format):
|
1284 |
+
self.formatter = self.float_format
|
1285 |
+
self.float_format = None
|
1286 |
+
|
1287 |
+
def _value_formatter(
|
1288 |
+
self,
|
1289 |
+
float_format: FloatFormatType | None = None,
|
1290 |
+
threshold: float | None = None,
|
1291 |
+
) -> Callable:
|
1292 |
+
"""Returns a function to be applied on each value to format it"""
|
1293 |
+
# the float_format parameter supersedes self.float_format
|
1294 |
+
if float_format is None:
|
1295 |
+
float_format = self.float_format
|
1296 |
+
|
1297 |
+
# we are going to compose different functions, to first convert to
|
1298 |
+
# a string, then replace the decimal symbol, and finally chop according
|
1299 |
+
# to the threshold
|
1300 |
+
|
1301 |
+
# when there is no float_format, we use str instead of '%g'
|
1302 |
+
# because str(0.0) = '0.0' while '%g' % 0.0 = '0'
|
1303 |
+
if float_format:
|
1304 |
+
|
1305 |
+
def base_formatter(v):
|
1306 |
+
assert float_format is not None # for mypy
|
1307 |
+
# error: "str" not callable
|
1308 |
+
# error: Unexpected keyword argument "value" for "__call__" of
|
1309 |
+
# "EngFormatter"
|
1310 |
+
return (
|
1311 |
+
float_format(value=v) # type: ignore[operator,call-arg]
|
1312 |
+
if notna(v)
|
1313 |
+
else self.na_rep
|
1314 |
+
)
|
1315 |
+
|
1316 |
+
else:
|
1317 |
+
|
1318 |
+
def base_formatter(v):
|
1319 |
+
return str(v) if notna(v) else self.na_rep
|
1320 |
+
|
1321 |
+
if self.decimal != ".":
|
1322 |
+
|
1323 |
+
def decimal_formatter(v):
|
1324 |
+
return base_formatter(v).replace(".", self.decimal, 1)
|
1325 |
+
|
1326 |
+
else:
|
1327 |
+
decimal_formatter = base_formatter
|
1328 |
+
|
1329 |
+
if threshold is None:
|
1330 |
+
return decimal_formatter
|
1331 |
+
|
1332 |
+
def formatter(value):
|
1333 |
+
if notna(value):
|
1334 |
+
if abs(value) > threshold:
|
1335 |
+
return decimal_formatter(value)
|
1336 |
+
else:
|
1337 |
+
return decimal_formatter(0.0)
|
1338 |
+
else:
|
1339 |
+
return self.na_rep
|
1340 |
+
|
1341 |
+
return formatter
|
1342 |
+
|
1343 |
+
def get_result_as_array(self) -> np.ndarray:
|
1344 |
+
"""
|
1345 |
+
Returns the float values converted into strings using
|
1346 |
+
the parameters given at initialisation, as a numpy array
|
1347 |
+
"""
|
1348 |
+
|
1349 |
+
def format_with_na_rep(values: ArrayLike, formatter: Callable, na_rep: str):
|
1350 |
+
mask = isna(values)
|
1351 |
+
formatted = np.array(
|
1352 |
+
[
|
1353 |
+
formatter(val) if not m else na_rep
|
1354 |
+
for val, m in zip(values.ravel(), mask.ravel())
|
1355 |
+
]
|
1356 |
+
).reshape(values.shape)
|
1357 |
+
return formatted
|
1358 |
+
|
1359 |
+
def format_complex_with_na_rep(
|
1360 |
+
values: ArrayLike, formatter: Callable, na_rep: str
|
1361 |
+
):
|
1362 |
+
real_values = np.real(values).ravel() # type: ignore[arg-type]
|
1363 |
+
imag_values = np.imag(values).ravel() # type: ignore[arg-type]
|
1364 |
+
real_mask, imag_mask = isna(real_values), isna(imag_values)
|
1365 |
+
formatted_lst = []
|
1366 |
+
for val, real_val, imag_val, re_isna, im_isna in zip(
|
1367 |
+
values.ravel(),
|
1368 |
+
real_values,
|
1369 |
+
imag_values,
|
1370 |
+
real_mask,
|
1371 |
+
imag_mask,
|
1372 |
+
):
|
1373 |
+
if not re_isna and not im_isna:
|
1374 |
+
formatted_lst.append(formatter(val))
|
1375 |
+
elif not re_isna: # xxx+nanj
|
1376 |
+
formatted_lst.append(f"{formatter(real_val)}+{na_rep}j")
|
1377 |
+
elif not im_isna: # nan[+/-]xxxj
|
1378 |
+
# The imaginary part may either start with a "-" or a space
|
1379 |
+
imag_formatted = formatter(imag_val).strip()
|
1380 |
+
if imag_formatted.startswith("-"):
|
1381 |
+
formatted_lst.append(f"{na_rep}{imag_formatted}j")
|
1382 |
+
else:
|
1383 |
+
formatted_lst.append(f"{na_rep}+{imag_formatted}j")
|
1384 |
+
else: # nan+nanj
|
1385 |
+
formatted_lst.append(f"{na_rep}+{na_rep}j")
|
1386 |
+
return np.array(formatted_lst).reshape(values.shape)
|
1387 |
+
|
1388 |
+
if self.formatter is not None:
|
1389 |
+
return format_with_na_rep(self.values, self.formatter, self.na_rep)
|
1390 |
+
|
1391 |
+
if self.fixed_width:
|
1392 |
+
threshold = get_option("display.chop_threshold")
|
1393 |
+
else:
|
1394 |
+
threshold = None
|
1395 |
+
|
1396 |
+
# if we have a fixed_width, we'll need to try different float_format
|
1397 |
+
def format_values_with(float_format):
|
1398 |
+
formatter = self._value_formatter(float_format, threshold)
|
1399 |
+
|
1400 |
+
# default formatter leaves a space to the left when formatting
|
1401 |
+
# floats, must be consistent for left-justifying NaNs (GH #25061)
|
1402 |
+
na_rep = " " + self.na_rep if self.justify == "left" else self.na_rep
|
1403 |
+
|
1404 |
+
# different formatting strategies for complex and non-complex data
|
1405 |
+
# need to distinguish complex and float NaNs (GH #53762)
|
1406 |
+
values = self.values
|
1407 |
+
is_complex = is_complex_dtype(values)
|
1408 |
+
|
1409 |
+
# separate the wheat from the chaff
|
1410 |
+
if is_complex:
|
1411 |
+
values = format_complex_with_na_rep(values, formatter, na_rep)
|
1412 |
+
else:
|
1413 |
+
values = format_with_na_rep(values, formatter, na_rep)
|
1414 |
+
|
1415 |
+
if self.fixed_width:
|
1416 |
+
if is_complex:
|
1417 |
+
result = _trim_zeros_complex(values, self.decimal)
|
1418 |
+
else:
|
1419 |
+
result = _trim_zeros_float(values, self.decimal)
|
1420 |
+
return np.asarray(result, dtype="object")
|
1421 |
+
|
1422 |
+
return values
|
1423 |
+
|
1424 |
+
# There is a special default string when we are fixed-width
|
1425 |
+
# The default is otherwise to use str instead of a formatting string
|
1426 |
+
float_format: FloatFormatType | None
|
1427 |
+
if self.float_format is None:
|
1428 |
+
if self.fixed_width:
|
1429 |
+
if self.leading_space is True:
|
1430 |
+
fmt_str = "{value: .{digits:d}f}"
|
1431 |
+
else:
|
1432 |
+
fmt_str = "{value:.{digits:d}f}"
|
1433 |
+
float_format = partial(fmt_str.format, digits=self.digits)
|
1434 |
+
else:
|
1435 |
+
float_format = self.float_format
|
1436 |
+
else:
|
1437 |
+
float_format = lambda value: self.float_format % value
|
1438 |
+
|
1439 |
+
formatted_values = format_values_with(float_format)
|
1440 |
+
|
1441 |
+
if not self.fixed_width:
|
1442 |
+
return formatted_values
|
1443 |
+
|
1444 |
+
# we need do convert to engineering format if some values are too small
|
1445 |
+
# and would appear as 0, or if some values are too big and take too
|
1446 |
+
# much space
|
1447 |
+
|
1448 |
+
if len(formatted_values) > 0:
|
1449 |
+
maxlen = max(len(x) for x in formatted_values)
|
1450 |
+
too_long = maxlen > self.digits + 6
|
1451 |
+
else:
|
1452 |
+
too_long = False
|
1453 |
+
|
1454 |
+
abs_vals = np.abs(self.values)
|
1455 |
+
# this is pretty arbitrary for now
|
1456 |
+
# large values: more that 8 characters including decimal symbol
|
1457 |
+
# and first digit, hence > 1e6
|
1458 |
+
has_large_values = (abs_vals > 1e6).any()
|
1459 |
+
has_small_values = ((abs_vals < 10 ** (-self.digits)) & (abs_vals > 0)).any()
|
1460 |
+
|
1461 |
+
if has_small_values or (too_long and has_large_values):
|
1462 |
+
if self.leading_space is True:
|
1463 |
+
fmt_str = "{value: .{digits:d}e}"
|
1464 |
+
else:
|
1465 |
+
fmt_str = "{value:.{digits:d}e}"
|
1466 |
+
float_format = partial(fmt_str.format, digits=self.digits)
|
1467 |
+
formatted_values = format_values_with(float_format)
|
1468 |
+
|
1469 |
+
return formatted_values
|
1470 |
+
|
1471 |
+
def _format_strings(self) -> list[str]:
|
1472 |
+
return list(self.get_result_as_array())
|
1473 |
+
|
1474 |
+
|
1475 |
+
class _IntArrayFormatter(_GenericArrayFormatter):
|
1476 |
+
def _format_strings(self) -> list[str]:
|
1477 |
+
if self.leading_space is False:
|
1478 |
+
formatter_str = lambda x: f"{x:d}".format(x=x)
|
1479 |
+
else:
|
1480 |
+
formatter_str = lambda x: f"{x: d}".format(x=x)
|
1481 |
+
formatter = self.formatter or formatter_str
|
1482 |
+
fmt_values = [formatter(x) for x in self.values]
|
1483 |
+
return fmt_values
|
1484 |
+
|
1485 |
+
|
1486 |
+
class _Datetime64Formatter(_GenericArrayFormatter):
|
1487 |
+
values: DatetimeArray
|
1488 |
+
|
1489 |
+
def __init__(
|
1490 |
+
self,
|
1491 |
+
values: DatetimeArray,
|
1492 |
+
nat_rep: str = "NaT",
|
1493 |
+
date_format: None = None,
|
1494 |
+
**kwargs,
|
1495 |
+
) -> None:
|
1496 |
+
super().__init__(values, **kwargs)
|
1497 |
+
self.nat_rep = nat_rep
|
1498 |
+
self.date_format = date_format
|
1499 |
+
|
1500 |
+
def _format_strings(self) -> list[str]:
|
1501 |
+
"""we by definition have DO NOT have a TZ"""
|
1502 |
+
values = self.values
|
1503 |
+
|
1504 |
+
if self.formatter is not None:
|
1505 |
+
return [self.formatter(x) for x in values]
|
1506 |
+
|
1507 |
+
fmt_values = values._format_native_types(
|
1508 |
+
na_rep=self.nat_rep, date_format=self.date_format
|
1509 |
+
)
|
1510 |
+
return fmt_values.tolist()
|
1511 |
+
|
1512 |
+
|
1513 |
+
class _ExtensionArrayFormatter(_GenericArrayFormatter):
|
1514 |
+
values: ExtensionArray
|
1515 |
+
|
1516 |
+
def _format_strings(self) -> list[str]:
|
1517 |
+
values = self.values
|
1518 |
+
|
1519 |
+
formatter = self.formatter
|
1520 |
+
fallback_formatter = None
|
1521 |
+
if formatter is None:
|
1522 |
+
fallback_formatter = values._formatter(boxed=True)
|
1523 |
+
|
1524 |
+
if isinstance(values, Categorical):
|
1525 |
+
# Categorical is special for now, so that we can preserve tzinfo
|
1526 |
+
array = values._internal_get_values()
|
1527 |
+
else:
|
1528 |
+
array = np.asarray(values, dtype=object)
|
1529 |
+
|
1530 |
+
fmt_values = format_array(
|
1531 |
+
array,
|
1532 |
+
formatter,
|
1533 |
+
float_format=self.float_format,
|
1534 |
+
na_rep=self.na_rep,
|
1535 |
+
digits=self.digits,
|
1536 |
+
space=self.space,
|
1537 |
+
justify=self.justify,
|
1538 |
+
decimal=self.decimal,
|
1539 |
+
leading_space=self.leading_space,
|
1540 |
+
quoting=self.quoting,
|
1541 |
+
fallback_formatter=fallback_formatter,
|
1542 |
+
)
|
1543 |
+
return fmt_values
|
1544 |
+
|
1545 |
+
|
1546 |
+
def format_percentiles(
|
1547 |
+
percentiles: (np.ndarray | Sequence[float]),
|
1548 |
+
) -> list[str]:
|
1549 |
+
"""
|
1550 |
+
Outputs rounded and formatted percentiles.
|
1551 |
+
|
1552 |
+
Parameters
|
1553 |
+
----------
|
1554 |
+
percentiles : list-like, containing floats from interval [0,1]
|
1555 |
+
|
1556 |
+
Returns
|
1557 |
+
-------
|
1558 |
+
formatted : list of strings
|
1559 |
+
|
1560 |
+
Notes
|
1561 |
+
-----
|
1562 |
+
Rounding precision is chosen so that: (1) if any two elements of
|
1563 |
+
``percentiles`` differ, they remain different after rounding
|
1564 |
+
(2) no entry is *rounded* to 0% or 100%.
|
1565 |
+
Any non-integer is always rounded to at least 1 decimal place.
|
1566 |
+
|
1567 |
+
Examples
|
1568 |
+
--------
|
1569 |
+
Keeps all entries different after rounding:
|
1570 |
+
|
1571 |
+
>>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999])
|
1572 |
+
['1.999%', '2.001%', '50%', '66.667%', '99.99%']
|
1573 |
+
|
1574 |
+
No element is rounded to 0% or 100% (unless already equal to it).
|
1575 |
+
Duplicates are allowed:
|
1576 |
+
|
1577 |
+
>>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999])
|
1578 |
+
['0%', '50%', '2.0%', '50%', '66.67%', '99.99%']
|
1579 |
+
"""
|
1580 |
+
percentiles = np.asarray(percentiles)
|
1581 |
+
|
1582 |
+
# It checks for np.nan as well
|
1583 |
+
if (
|
1584 |
+
not is_numeric_dtype(percentiles)
|
1585 |
+
or not np.all(percentiles >= 0)
|
1586 |
+
or not np.all(percentiles <= 1)
|
1587 |
+
):
|
1588 |
+
raise ValueError("percentiles should all be in the interval [0,1]")
|
1589 |
+
|
1590 |
+
percentiles = 100 * percentiles
|
1591 |
+
prec = get_precision(percentiles)
|
1592 |
+
percentiles_round_type = percentiles.round(prec).astype(int)
|
1593 |
+
|
1594 |
+
int_idx = np.isclose(percentiles_round_type, percentiles)
|
1595 |
+
|
1596 |
+
if np.all(int_idx):
|
1597 |
+
out = percentiles_round_type.astype(str)
|
1598 |
+
return [i + "%" for i in out]
|
1599 |
+
|
1600 |
+
unique_pcts = np.unique(percentiles)
|
1601 |
+
prec = get_precision(unique_pcts)
|
1602 |
+
out = np.empty_like(percentiles, dtype=object)
|
1603 |
+
out[int_idx] = percentiles[int_idx].round().astype(int).astype(str)
|
1604 |
+
|
1605 |
+
out[~int_idx] = percentiles[~int_idx].round(prec).astype(str)
|
1606 |
+
return [i + "%" for i in out]
|
1607 |
+
|
1608 |
+
|
1609 |
+
def get_precision(array: np.ndarray | Sequence[float]) -> int:
|
1610 |
+
to_begin = array[0] if array[0] > 0 else None
|
1611 |
+
to_end = 100 - array[-1] if array[-1] < 100 else None
|
1612 |
+
diff = np.ediff1d(array, to_begin=to_begin, to_end=to_end)
|
1613 |
+
diff = abs(diff)
|
1614 |
+
prec = -np.floor(np.log10(np.min(diff))).astype(int)
|
1615 |
+
prec = max(1, prec)
|
1616 |
+
return prec
|
1617 |
+
|
1618 |
+
|
1619 |
+
def _format_datetime64(x: NaTType | Timestamp, nat_rep: str = "NaT") -> str:
|
1620 |
+
if x is NaT:
|
1621 |
+
return nat_rep
|
1622 |
+
|
1623 |
+
# Timestamp.__str__ falls back to datetime.datetime.__str__ = isoformat(sep=' ')
|
1624 |
+
# so it already uses string formatting rather than strftime (faster).
|
1625 |
+
return str(x)
|
1626 |
+
|
1627 |
+
|
1628 |
+
def _format_datetime64_dateonly(
|
1629 |
+
x: NaTType | Timestamp,
|
1630 |
+
nat_rep: str = "NaT",
|
1631 |
+
date_format: str | None = None,
|
1632 |
+
) -> str:
|
1633 |
+
if isinstance(x, NaTType):
|
1634 |
+
return nat_rep
|
1635 |
+
|
1636 |
+
if date_format:
|
1637 |
+
return x.strftime(date_format)
|
1638 |
+
else:
|
1639 |
+
# Timestamp._date_repr relies on string formatting (faster than strftime)
|
1640 |
+
return x._date_repr
|
1641 |
+
|
1642 |
+
|
1643 |
+
def get_format_datetime64(
|
1644 |
+
is_dates_only: bool, nat_rep: str = "NaT", date_format: str | None = None
|
1645 |
+
) -> Callable:
|
1646 |
+
"""Return a formatter callable taking a datetime64 as input and providing
|
1647 |
+
a string as output"""
|
1648 |
+
|
1649 |
+
if is_dates_only:
|
1650 |
+
return lambda x: _format_datetime64_dateonly(
|
1651 |
+
x, nat_rep=nat_rep, date_format=date_format
|
1652 |
+
)
|
1653 |
+
else:
|
1654 |
+
return lambda x: _format_datetime64(x, nat_rep=nat_rep)
|
1655 |
+
|
1656 |
+
|
1657 |
+
class _Datetime64TZFormatter(_Datetime64Formatter):
|
1658 |
+
values: DatetimeArray
|
1659 |
+
|
1660 |
+
def _format_strings(self) -> list[str]:
|
1661 |
+
"""we by definition have a TZ"""
|
1662 |
+
ido = self.values._is_dates_only
|
1663 |
+
values = self.values.astype(object)
|
1664 |
+
formatter = self.formatter or get_format_datetime64(
|
1665 |
+
ido, date_format=self.date_format
|
1666 |
+
)
|
1667 |
+
fmt_values = [formatter(x) for x in values]
|
1668 |
+
|
1669 |
+
return fmt_values
|
1670 |
+
|
1671 |
+
|
1672 |
+
class _Timedelta64Formatter(_GenericArrayFormatter):
|
1673 |
+
values: TimedeltaArray
|
1674 |
+
|
1675 |
+
def __init__(
|
1676 |
+
self,
|
1677 |
+
values: TimedeltaArray,
|
1678 |
+
nat_rep: str = "NaT",
|
1679 |
+
**kwargs,
|
1680 |
+
) -> None:
|
1681 |
+
# TODO: nat_rep is never passed, na_rep is.
|
1682 |
+
super().__init__(values, **kwargs)
|
1683 |
+
self.nat_rep = nat_rep
|
1684 |
+
|
1685 |
+
def _format_strings(self) -> list[str]:
|
1686 |
+
formatter = self.formatter or get_format_timedelta64(
|
1687 |
+
self.values, nat_rep=self.nat_rep, box=False
|
1688 |
+
)
|
1689 |
+
return [formatter(x) for x in self.values]
|
1690 |
+
|
1691 |
+
|
1692 |
+
def get_format_timedelta64(
|
1693 |
+
values: TimedeltaArray,
|
1694 |
+
nat_rep: str | float = "NaT",
|
1695 |
+
box: bool = False,
|
1696 |
+
) -> Callable:
|
1697 |
+
"""
|
1698 |
+
Return a formatter function for a range of timedeltas.
|
1699 |
+
These will all have the same format argument
|
1700 |
+
|
1701 |
+
If box, then show the return in quotes
|
1702 |
+
"""
|
1703 |
+
even_days = values._is_dates_only
|
1704 |
+
|
1705 |
+
if even_days:
|
1706 |
+
format = None
|
1707 |
+
else:
|
1708 |
+
format = "long"
|
1709 |
+
|
1710 |
+
def _formatter(x):
|
1711 |
+
if x is None or (is_scalar(x) and isna(x)):
|
1712 |
+
return nat_rep
|
1713 |
+
|
1714 |
+
if not isinstance(x, Timedelta):
|
1715 |
+
x = Timedelta(x)
|
1716 |
+
|
1717 |
+
# Timedelta._repr_base uses string formatting (faster than strftime)
|
1718 |
+
result = x._repr_base(format=format)
|
1719 |
+
if box:
|
1720 |
+
result = f"'{result}'"
|
1721 |
+
return result
|
1722 |
+
|
1723 |
+
return _formatter
|
1724 |
+
|
1725 |
+
|
1726 |
+
def _make_fixed_width(
|
1727 |
+
strings: list[str],
|
1728 |
+
justify: str = "right",
|
1729 |
+
minimum: int | None = None,
|
1730 |
+
adj: printing._TextAdjustment | None = None,
|
1731 |
+
) -> list[str]:
|
1732 |
+
if len(strings) == 0 or justify == "all":
|
1733 |
+
return strings
|
1734 |
+
|
1735 |
+
if adj is None:
|
1736 |
+
adjustment = printing.get_adjustment()
|
1737 |
+
else:
|
1738 |
+
adjustment = adj
|
1739 |
+
|
1740 |
+
max_len = max(adjustment.len(x) for x in strings)
|
1741 |
+
|
1742 |
+
if minimum is not None:
|
1743 |
+
max_len = max(minimum, max_len)
|
1744 |
+
|
1745 |
+
conf_max = get_option("display.max_colwidth")
|
1746 |
+
if conf_max is not None and max_len > conf_max:
|
1747 |
+
max_len = conf_max
|
1748 |
+
|
1749 |
+
def just(x: str) -> str:
|
1750 |
+
if conf_max is not None:
|
1751 |
+
if (conf_max > 3) & (adjustment.len(x) > max_len):
|
1752 |
+
x = x[: max_len - 3] + "..."
|
1753 |
+
return x
|
1754 |
+
|
1755 |
+
strings = [just(x) for x in strings]
|
1756 |
+
result = adjustment.justify(strings, max_len, mode=justify)
|
1757 |
+
return result
|
1758 |
+
|
1759 |
+
|
1760 |
+
def _trim_zeros_complex(str_complexes: ArrayLike, decimal: str = ".") -> list[str]:
|
1761 |
+
"""
|
1762 |
+
Separates the real and imaginary parts from the complex number, and
|
1763 |
+
executes the _trim_zeros_float method on each of those.
|
1764 |
+
"""
|
1765 |
+
real_part, imag_part = [], []
|
1766 |
+
for x in str_complexes:
|
1767 |
+
# Complex numbers are represented as "(-)xxx(+/-)xxxj"
|
1768 |
+
# The split will give [{"", "-"}, "xxx", "+/-", "xxx", "j", ""]
|
1769 |
+
# Therefore, the imaginary part is the 4th and 3rd last elements,
|
1770 |
+
# and the real part is everything before the imaginary part
|
1771 |
+
trimmed = re.split(r"([j+-])", x)
|
1772 |
+
real_part.append("".join(trimmed[:-4]))
|
1773 |
+
imag_part.append("".join(trimmed[-4:-2]))
|
1774 |
+
|
1775 |
+
# We want to align the lengths of the real and imaginary parts of each complex
|
1776 |
+
# number, as well as the lengths the real (resp. complex) parts of all numbers
|
1777 |
+
# in the array
|
1778 |
+
n = len(str_complexes)
|
1779 |
+
padded_parts = _trim_zeros_float(real_part + imag_part, decimal)
|
1780 |
+
if len(padded_parts) == 0:
|
1781 |
+
return []
|
1782 |
+
padded_length = max(len(part) for part in padded_parts) - 1
|
1783 |
+
padded = [
|
1784 |
+
real_pt # real part, possibly NaN
|
1785 |
+
+ imag_pt[0] # +/-
|
1786 |
+
+ f"{imag_pt[1:]:>{padded_length}}" # complex part (no sign), possibly nan
|
1787 |
+
+ "j"
|
1788 |
+
for real_pt, imag_pt in zip(padded_parts[:n], padded_parts[n:])
|
1789 |
+
]
|
1790 |
+
return padded
|
1791 |
+
|
1792 |
+
|
1793 |
+
def _trim_zeros_single_float(str_float: str) -> str:
|
1794 |
+
"""
|
1795 |
+
Trims trailing zeros after a decimal point,
|
1796 |
+
leaving just one if necessary.
|
1797 |
+
"""
|
1798 |
+
str_float = str_float.rstrip("0")
|
1799 |
+
if str_float.endswith("."):
|
1800 |
+
str_float += "0"
|
1801 |
+
|
1802 |
+
return str_float
|
1803 |
+
|
1804 |
+
|
1805 |
+
def _trim_zeros_float(
|
1806 |
+
str_floats: ArrayLike | list[str], decimal: str = "."
|
1807 |
+
) -> list[str]:
|
1808 |
+
"""
|
1809 |
+
Trims the maximum number of trailing zeros equally from
|
1810 |
+
all numbers containing decimals, leaving just one if
|
1811 |
+
necessary.
|
1812 |
+
"""
|
1813 |
+
trimmed = str_floats
|
1814 |
+
number_regex = re.compile(rf"^\s*[\+-]?[0-9]+\{decimal}[0-9]*$")
|
1815 |
+
|
1816 |
+
def is_number_with_decimal(x) -> bool:
|
1817 |
+
return re.match(number_regex, x) is not None
|
1818 |
+
|
1819 |
+
def should_trim(values: ArrayLike | list[str]) -> bool:
|
1820 |
+
"""
|
1821 |
+
Determine if an array of strings should be trimmed.
|
1822 |
+
|
1823 |
+
Returns True if all numbers containing decimals (defined by the
|
1824 |
+
above regular expression) within the array end in a zero, otherwise
|
1825 |
+
returns False.
|
1826 |
+
"""
|
1827 |
+
numbers = [x for x in values if is_number_with_decimal(x)]
|
1828 |
+
return len(numbers) > 0 and all(x.endswith("0") for x in numbers)
|
1829 |
+
|
1830 |
+
while should_trim(trimmed):
|
1831 |
+
trimmed = [x[:-1] if is_number_with_decimal(x) else x for x in trimmed]
|
1832 |
+
|
1833 |
+
# leave one 0 after the decimal points if need be.
|
1834 |
+
result = [
|
1835 |
+
x + "0" if is_number_with_decimal(x) and x.endswith(decimal) else x
|
1836 |
+
for x in trimmed
|
1837 |
+
]
|
1838 |
+
return result
|
1839 |
+
|
1840 |
+
|
1841 |
+
def _has_names(index: Index) -> bool:
|
1842 |
+
if isinstance(index, MultiIndex):
|
1843 |
+
return com.any_not_none(*index.names)
|
1844 |
+
else:
|
1845 |
+
return index.name is not None
|
1846 |
+
|
1847 |
+
|
1848 |
+
class EngFormatter:
|
1849 |
+
"""
|
1850 |
+
Formats float values according to engineering format.
|
1851 |
+
|
1852 |
+
Based on matplotlib.ticker.EngFormatter
|
1853 |
+
"""
|
1854 |
+
|
1855 |
+
# The SI engineering prefixes
|
1856 |
+
ENG_PREFIXES = {
|
1857 |
+
-24: "y",
|
1858 |
+
-21: "z",
|
1859 |
+
-18: "a",
|
1860 |
+
-15: "f",
|
1861 |
+
-12: "p",
|
1862 |
+
-9: "n",
|
1863 |
+
-6: "u",
|
1864 |
+
-3: "m",
|
1865 |
+
0: "",
|
1866 |
+
3: "k",
|
1867 |
+
6: "M",
|
1868 |
+
9: "G",
|
1869 |
+
12: "T",
|
1870 |
+
15: "P",
|
1871 |
+
18: "E",
|
1872 |
+
21: "Z",
|
1873 |
+
24: "Y",
|
1874 |
+
}
|
1875 |
+
|
1876 |
+
def __init__(
|
1877 |
+
self, accuracy: int | None = None, use_eng_prefix: bool = False
|
1878 |
+
) -> None:
|
1879 |
+
self.accuracy = accuracy
|
1880 |
+
self.use_eng_prefix = use_eng_prefix
|
1881 |
+
|
1882 |
+
def __call__(self, num: float) -> str:
|
1883 |
+
"""
|
1884 |
+
Formats a number in engineering notation, appending a letter
|
1885 |
+
representing the power of 1000 of the original number. Some examples:
|
1886 |
+
>>> format_eng = EngFormatter(accuracy=0, use_eng_prefix=True)
|
1887 |
+
>>> format_eng(0)
|
1888 |
+
' 0'
|
1889 |
+
>>> format_eng = EngFormatter(accuracy=1, use_eng_prefix=True)
|
1890 |
+
>>> format_eng(1_000_000)
|
1891 |
+
' 1.0M'
|
1892 |
+
>>> format_eng = EngFormatter(accuracy=2, use_eng_prefix=False)
|
1893 |
+
>>> format_eng("-1e-6")
|
1894 |
+
'-1.00E-06'
|
1895 |
+
|
1896 |
+
@param num: the value to represent
|
1897 |
+
@type num: either a numeric value or a string that can be converted to
|
1898 |
+
a numeric value (as per decimal.Decimal constructor)
|
1899 |
+
|
1900 |
+
@return: engineering formatted string
|
1901 |
+
"""
|
1902 |
+
dnum = Decimal(str(num))
|
1903 |
+
|
1904 |
+
if Decimal.is_nan(dnum):
|
1905 |
+
return "NaN"
|
1906 |
+
|
1907 |
+
if Decimal.is_infinite(dnum):
|
1908 |
+
return "inf"
|
1909 |
+
|
1910 |
+
sign = 1
|
1911 |
+
|
1912 |
+
if dnum < 0: # pragma: no cover
|
1913 |
+
sign = -1
|
1914 |
+
dnum = -dnum
|
1915 |
+
|
1916 |
+
if dnum != 0:
|
1917 |
+
pow10 = Decimal(int(math.floor(dnum.log10() / 3) * 3))
|
1918 |
+
else:
|
1919 |
+
pow10 = Decimal(0)
|
1920 |
+
|
1921 |
+
pow10 = pow10.min(max(self.ENG_PREFIXES.keys()))
|
1922 |
+
pow10 = pow10.max(min(self.ENG_PREFIXES.keys()))
|
1923 |
+
int_pow10 = int(pow10)
|
1924 |
+
|
1925 |
+
if self.use_eng_prefix:
|
1926 |
+
prefix = self.ENG_PREFIXES[int_pow10]
|
1927 |
+
elif int_pow10 < 0:
|
1928 |
+
prefix = f"E-{-int_pow10:02d}"
|
1929 |
+
else:
|
1930 |
+
prefix = f"E+{int_pow10:02d}"
|
1931 |
+
|
1932 |
+
mant = sign * dnum / (10**pow10)
|
1933 |
+
|
1934 |
+
if self.accuracy is None: # pragma: no cover
|
1935 |
+
format_str = "{mant: g}{prefix}"
|
1936 |
+
else:
|
1937 |
+
format_str = f"{{mant: .{self.accuracy:d}f}}{{prefix}}"
|
1938 |
+
|
1939 |
+
formatted = format_str.format(mant=mant, prefix=prefix)
|
1940 |
+
|
1941 |
+
return formatted
|
1942 |
+
|
1943 |
+
|
1944 |
+
def set_eng_float_format(accuracy: int = 3, use_eng_prefix: bool = False) -> None:
|
1945 |
+
"""
|
1946 |
+
Format float representation in DataFrame with SI notation.
|
1947 |
+
|
1948 |
+
Parameters
|
1949 |
+
----------
|
1950 |
+
accuracy : int, default 3
|
1951 |
+
Number of decimal digits after the floating point.
|
1952 |
+
use_eng_prefix : bool, default False
|
1953 |
+
Whether to represent a value with SI prefixes.
|
1954 |
+
|
1955 |
+
Returns
|
1956 |
+
-------
|
1957 |
+
None
|
1958 |
+
|
1959 |
+
Examples
|
1960 |
+
--------
|
1961 |
+
>>> df = pd.DataFrame([1e-9, 1e-3, 1, 1e3, 1e6])
|
1962 |
+
>>> df
|
1963 |
+
0
|
1964 |
+
0 1.000000e-09
|
1965 |
+
1 1.000000e-03
|
1966 |
+
2 1.000000e+00
|
1967 |
+
3 1.000000e+03
|
1968 |
+
4 1.000000e+06
|
1969 |
+
|
1970 |
+
>>> pd.set_eng_float_format(accuracy=1)
|
1971 |
+
>>> df
|
1972 |
+
0
|
1973 |
+
0 1.0E-09
|
1974 |
+
1 1.0E-03
|
1975 |
+
2 1.0E+00
|
1976 |
+
3 1.0E+03
|
1977 |
+
4 1.0E+06
|
1978 |
+
|
1979 |
+
>>> pd.set_eng_float_format(use_eng_prefix=True)
|
1980 |
+
>>> df
|
1981 |
+
0
|
1982 |
+
0 1.000n
|
1983 |
+
1 1.000m
|
1984 |
+
2 1.000
|
1985 |
+
3 1.000k
|
1986 |
+
4 1.000M
|
1987 |
+
|
1988 |
+
>>> pd.set_eng_float_format(accuracy=1, use_eng_prefix=True)
|
1989 |
+
>>> df
|
1990 |
+
0
|
1991 |
+
0 1.0n
|
1992 |
+
1 1.0m
|
1993 |
+
2 1.0
|
1994 |
+
3 1.0k
|
1995 |
+
4 1.0M
|
1996 |
+
|
1997 |
+
>>> pd.set_option("display.float_format", None) # unset option
|
1998 |
+
"""
|
1999 |
+
set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix))
|
2000 |
+
|
2001 |
+
|
2002 |
+
def get_level_lengths(
|
2003 |
+
levels: Any, sentinel: bool | object | str = ""
|
2004 |
+
) -> list[dict[int, int]]:
|
2005 |
+
"""
|
2006 |
+
For each index in each level the function returns lengths of indexes.
|
2007 |
+
|
2008 |
+
Parameters
|
2009 |
+
----------
|
2010 |
+
levels : list of lists
|
2011 |
+
List of values on for level.
|
2012 |
+
sentinel : string, optional
|
2013 |
+
Value which states that no new index starts on there.
|
2014 |
+
|
2015 |
+
Returns
|
2016 |
+
-------
|
2017 |
+
Returns list of maps. For each level returns map of indexes (key is index
|
2018 |
+
in row and value is length of index).
|
2019 |
+
"""
|
2020 |
+
if len(levels) == 0:
|
2021 |
+
return []
|
2022 |
+
|
2023 |
+
control = [True] * len(levels[0])
|
2024 |
+
|
2025 |
+
result = []
|
2026 |
+
for level in levels:
|
2027 |
+
last_index = 0
|
2028 |
+
|
2029 |
+
lengths = {}
|
2030 |
+
for i, key in enumerate(level):
|
2031 |
+
if control[i] and key == sentinel:
|
2032 |
+
pass
|
2033 |
+
else:
|
2034 |
+
control[i] = False
|
2035 |
+
lengths[last_index] = i - last_index
|
2036 |
+
last_index = i
|
2037 |
+
|
2038 |
+
lengths[last_index] = len(level) - last_index
|
2039 |
+
|
2040 |
+
result.append(lengths)
|
2041 |
+
|
2042 |
+
return result
|
2043 |
+
|
2044 |
+
|
2045 |
+
def buffer_put_lines(buf: WriteBuffer[str], lines: list[str]) -> None:
|
2046 |
+
"""
|
2047 |
+
Appends lines to a buffer.
|
2048 |
+
|
2049 |
+
Parameters
|
2050 |
+
----------
|
2051 |
+
buf
|
2052 |
+
The buffer to write to
|
2053 |
+
lines
|
2054 |
+
The lines to append.
|
2055 |
+
"""
|
2056 |
+
if any(isinstance(x, str) for x in lines):
|
2057 |
+
lines = [str(x) for x in lines]
|
2058 |
+
buf.write("\n".join(lines))
|
venv/lib/python3.10/site-packages/pandas/io/formats/html.py
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module for formatting output data in HTML.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from textwrap import dedent
|
7 |
+
from typing import (
|
8 |
+
TYPE_CHECKING,
|
9 |
+
Any,
|
10 |
+
Final,
|
11 |
+
cast,
|
12 |
+
)
|
13 |
+
|
14 |
+
from pandas._config import get_option
|
15 |
+
|
16 |
+
from pandas._libs import lib
|
17 |
+
|
18 |
+
from pandas import (
|
19 |
+
MultiIndex,
|
20 |
+
option_context,
|
21 |
+
)
|
22 |
+
|
23 |
+
from pandas.io.common import is_url
|
24 |
+
from pandas.io.formats.format import (
|
25 |
+
DataFrameFormatter,
|
26 |
+
get_level_lengths,
|
27 |
+
)
|
28 |
+
from pandas.io.formats.printing import pprint_thing
|
29 |
+
|
30 |
+
if TYPE_CHECKING:
|
31 |
+
from collections.abc import (
|
32 |
+
Hashable,
|
33 |
+
Iterable,
|
34 |
+
Mapping,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
class HTMLFormatter:
|
39 |
+
"""
|
40 |
+
Internal class for formatting output data in html.
|
41 |
+
This class is intended for shared functionality between
|
42 |
+
DataFrame.to_html() and DataFrame._repr_html_().
|
43 |
+
Any logic in common with other output formatting methods
|
44 |
+
should ideally be inherited from classes in format.py
|
45 |
+
and this class responsible for only producing html markup.
|
46 |
+
"""
|
47 |
+
|
48 |
+
indent_delta: Final = 2
|
49 |
+
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
formatter: DataFrameFormatter,
|
53 |
+
classes: str | list[str] | tuple[str, ...] | None = None,
|
54 |
+
border: int | bool | None = None,
|
55 |
+
table_id: str | None = None,
|
56 |
+
render_links: bool = False,
|
57 |
+
) -> None:
|
58 |
+
self.fmt = formatter
|
59 |
+
self.classes = classes
|
60 |
+
|
61 |
+
self.frame = self.fmt.frame
|
62 |
+
self.columns = self.fmt.tr_frame.columns
|
63 |
+
self.elements: list[str] = []
|
64 |
+
self.bold_rows = self.fmt.bold_rows
|
65 |
+
self.escape = self.fmt.escape
|
66 |
+
self.show_dimensions = self.fmt.show_dimensions
|
67 |
+
if border is None or border is True:
|
68 |
+
border = cast(int, get_option("display.html.border"))
|
69 |
+
elif not border:
|
70 |
+
border = None
|
71 |
+
|
72 |
+
self.border = border
|
73 |
+
self.table_id = table_id
|
74 |
+
self.render_links = render_links
|
75 |
+
|
76 |
+
self.col_space = {}
|
77 |
+
is_multi_index = isinstance(self.columns, MultiIndex)
|
78 |
+
for column, value in self.fmt.col_space.items():
|
79 |
+
col_space_value = f"{value}px" if isinstance(value, int) else value
|
80 |
+
self.col_space[column] = col_space_value
|
81 |
+
# GH 53885: Handling case where column is index
|
82 |
+
# Flatten the data in the multi index and add in the map
|
83 |
+
if is_multi_index and isinstance(column, tuple):
|
84 |
+
for column_index in column:
|
85 |
+
self.col_space[str(column_index)] = col_space_value
|
86 |
+
|
87 |
+
def to_string(self) -> str:
|
88 |
+
lines = self.render()
|
89 |
+
if any(isinstance(x, str) for x in lines):
|
90 |
+
lines = [str(x) for x in lines]
|
91 |
+
return "\n".join(lines)
|
92 |
+
|
93 |
+
def render(self) -> list[str]:
|
94 |
+
self._write_table()
|
95 |
+
|
96 |
+
if self.should_show_dimensions:
|
97 |
+
by = chr(215) # × # noqa: RUF003
|
98 |
+
self.write(
|
99 |
+
f"<p>{len(self.frame)} rows {by} {len(self.frame.columns)} columns</p>"
|
100 |
+
)
|
101 |
+
|
102 |
+
return self.elements
|
103 |
+
|
104 |
+
@property
|
105 |
+
def should_show_dimensions(self) -> bool:
|
106 |
+
return self.fmt.should_show_dimensions
|
107 |
+
|
108 |
+
@property
|
109 |
+
def show_row_idx_names(self) -> bool:
|
110 |
+
return self.fmt.show_row_idx_names
|
111 |
+
|
112 |
+
@property
|
113 |
+
def show_col_idx_names(self) -> bool:
|
114 |
+
return self.fmt.show_col_idx_names
|
115 |
+
|
116 |
+
@property
|
117 |
+
def row_levels(self) -> int:
|
118 |
+
if self.fmt.index:
|
119 |
+
# showing (row) index
|
120 |
+
return self.frame.index.nlevels
|
121 |
+
elif self.show_col_idx_names:
|
122 |
+
# see gh-22579
|
123 |
+
# Column misalignment also occurs for
|
124 |
+
# a standard index when the columns index is named.
|
125 |
+
# If the row index is not displayed a column of
|
126 |
+
# blank cells need to be included before the DataFrame values.
|
127 |
+
return 1
|
128 |
+
# not showing (row) index
|
129 |
+
return 0
|
130 |
+
|
131 |
+
def _get_columns_formatted_values(self) -> Iterable:
|
132 |
+
return self.columns
|
133 |
+
|
134 |
+
@property
|
135 |
+
def is_truncated(self) -> bool:
|
136 |
+
return self.fmt.is_truncated
|
137 |
+
|
138 |
+
@property
|
139 |
+
def ncols(self) -> int:
|
140 |
+
return len(self.fmt.tr_frame.columns)
|
141 |
+
|
142 |
+
def write(self, s: Any, indent: int = 0) -> None:
|
143 |
+
rs = pprint_thing(s)
|
144 |
+
self.elements.append(" " * indent + rs)
|
145 |
+
|
146 |
+
def write_th(
|
147 |
+
self, s: Any, header: bool = False, indent: int = 0, tags: str | None = None
|
148 |
+
) -> None:
|
149 |
+
"""
|
150 |
+
Method for writing a formatted <th> cell.
|
151 |
+
|
152 |
+
If col_space is set on the formatter then that is used for
|
153 |
+
the value of min-width.
|
154 |
+
|
155 |
+
Parameters
|
156 |
+
----------
|
157 |
+
s : object
|
158 |
+
The data to be written inside the cell.
|
159 |
+
header : bool, default False
|
160 |
+
Set to True if the <th> is for use inside <thead>. This will
|
161 |
+
cause min-width to be set if there is one.
|
162 |
+
indent : int, default 0
|
163 |
+
The indentation level of the cell.
|
164 |
+
tags : str, default None
|
165 |
+
Tags to include in the cell.
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
A written <th> cell.
|
170 |
+
"""
|
171 |
+
col_space = self.col_space.get(s, None)
|
172 |
+
|
173 |
+
if header and col_space is not None:
|
174 |
+
tags = tags or ""
|
175 |
+
tags += f'style="min-width: {col_space};"'
|
176 |
+
|
177 |
+
self._write_cell(s, kind="th", indent=indent, tags=tags)
|
178 |
+
|
179 |
+
def write_td(self, s: Any, indent: int = 0, tags: str | None = None) -> None:
|
180 |
+
self._write_cell(s, kind="td", indent=indent, tags=tags)
|
181 |
+
|
182 |
+
def _write_cell(
|
183 |
+
self, s: Any, kind: str = "td", indent: int = 0, tags: str | None = None
|
184 |
+
) -> None:
|
185 |
+
if tags is not None:
|
186 |
+
start_tag = f"<{kind} {tags}>"
|
187 |
+
else:
|
188 |
+
start_tag = f"<{kind}>"
|
189 |
+
|
190 |
+
if self.escape:
|
191 |
+
# escape & first to prevent double escaping of &
|
192 |
+
esc = {"&": r"&", "<": r"<", ">": r">"}
|
193 |
+
else:
|
194 |
+
esc = {}
|
195 |
+
|
196 |
+
rs = pprint_thing(s, escape_chars=esc).strip()
|
197 |
+
|
198 |
+
if self.render_links and is_url(rs):
|
199 |
+
rs_unescaped = pprint_thing(s, escape_chars={}).strip()
|
200 |
+
start_tag += f'<a href="{rs_unescaped}" target="_blank">'
|
201 |
+
end_a = "</a>"
|
202 |
+
else:
|
203 |
+
end_a = ""
|
204 |
+
|
205 |
+
self.write(f"{start_tag}{rs}{end_a}</{kind}>", indent)
|
206 |
+
|
207 |
+
def write_tr(
|
208 |
+
self,
|
209 |
+
line: Iterable,
|
210 |
+
indent: int = 0,
|
211 |
+
indent_delta: int = 0,
|
212 |
+
header: bool = False,
|
213 |
+
align: str | None = None,
|
214 |
+
tags: dict[int, str] | None = None,
|
215 |
+
nindex_levels: int = 0,
|
216 |
+
) -> None:
|
217 |
+
if tags is None:
|
218 |
+
tags = {}
|
219 |
+
|
220 |
+
if align is None:
|
221 |
+
self.write("<tr>", indent)
|
222 |
+
else:
|
223 |
+
self.write(f'<tr style="text-align: {align};">', indent)
|
224 |
+
indent += indent_delta
|
225 |
+
|
226 |
+
for i, s in enumerate(line):
|
227 |
+
val_tag = tags.get(i, None)
|
228 |
+
if header or (self.bold_rows and i < nindex_levels):
|
229 |
+
self.write_th(s, indent=indent, header=header, tags=val_tag)
|
230 |
+
else:
|
231 |
+
self.write_td(s, indent, tags=val_tag)
|
232 |
+
|
233 |
+
indent -= indent_delta
|
234 |
+
self.write("</tr>", indent)
|
235 |
+
|
236 |
+
def _write_table(self, indent: int = 0) -> None:
|
237 |
+
_classes = ["dataframe"] # Default class.
|
238 |
+
use_mathjax = get_option("display.html.use_mathjax")
|
239 |
+
if not use_mathjax:
|
240 |
+
_classes.append("tex2jax_ignore")
|
241 |
+
if self.classes is not None:
|
242 |
+
if isinstance(self.classes, str):
|
243 |
+
self.classes = self.classes.split()
|
244 |
+
if not isinstance(self.classes, (list, tuple)):
|
245 |
+
raise TypeError(
|
246 |
+
"classes must be a string, list, "
|
247 |
+
f"or tuple, not {type(self.classes)}"
|
248 |
+
)
|
249 |
+
_classes.extend(self.classes)
|
250 |
+
|
251 |
+
if self.table_id is None:
|
252 |
+
id_section = ""
|
253 |
+
else:
|
254 |
+
id_section = f' id="{self.table_id}"'
|
255 |
+
|
256 |
+
if self.border is None:
|
257 |
+
border_attr = ""
|
258 |
+
else:
|
259 |
+
border_attr = f' border="{self.border}"'
|
260 |
+
|
261 |
+
self.write(
|
262 |
+
f'<table{border_attr} class="{" ".join(_classes)}"{id_section}>',
|
263 |
+
indent,
|
264 |
+
)
|
265 |
+
|
266 |
+
if self.fmt.header or self.show_row_idx_names:
|
267 |
+
self._write_header(indent + self.indent_delta)
|
268 |
+
|
269 |
+
self._write_body(indent + self.indent_delta)
|
270 |
+
|
271 |
+
self.write("</table>", indent)
|
272 |
+
|
273 |
+
def _write_col_header(self, indent: int) -> None:
|
274 |
+
row: list[Hashable]
|
275 |
+
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
276 |
+
if isinstance(self.columns, MultiIndex):
|
277 |
+
template = 'colspan="{span:d}" halign="left"'
|
278 |
+
|
279 |
+
sentinel: lib.NoDefault | bool
|
280 |
+
if self.fmt.sparsify:
|
281 |
+
# GH3547
|
282 |
+
sentinel = lib.no_default
|
283 |
+
else:
|
284 |
+
sentinel = False
|
285 |
+
levels = self.columns._format_multi(sparsify=sentinel, include_names=False)
|
286 |
+
level_lengths = get_level_lengths(levels, sentinel)
|
287 |
+
inner_lvl = len(level_lengths) - 1
|
288 |
+
for lnum, (records, values) in enumerate(zip(level_lengths, levels)):
|
289 |
+
if is_truncated_horizontally:
|
290 |
+
# modify the header lines
|
291 |
+
ins_col = self.fmt.tr_col_num
|
292 |
+
if self.fmt.sparsify:
|
293 |
+
recs_new = {}
|
294 |
+
# Increment tags after ... col.
|
295 |
+
for tag, span in list(records.items()):
|
296 |
+
if tag >= ins_col:
|
297 |
+
recs_new[tag + 1] = span
|
298 |
+
elif tag + span > ins_col:
|
299 |
+
recs_new[tag] = span + 1
|
300 |
+
if lnum == inner_lvl:
|
301 |
+
values = (
|
302 |
+
values[:ins_col] + ("...",) + values[ins_col:]
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
# sparse col headers do not receive a ...
|
306 |
+
values = (
|
307 |
+
values[:ins_col]
|
308 |
+
+ (values[ins_col - 1],)
|
309 |
+
+ values[ins_col:]
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
recs_new[tag] = span
|
313 |
+
# if ins_col lies between tags, all col headers
|
314 |
+
# get ...
|
315 |
+
if tag + span == ins_col:
|
316 |
+
recs_new[ins_col] = 1
|
317 |
+
values = values[:ins_col] + ("...",) + values[ins_col:]
|
318 |
+
records = recs_new
|
319 |
+
inner_lvl = len(level_lengths) - 1
|
320 |
+
if lnum == inner_lvl:
|
321 |
+
records[ins_col] = 1
|
322 |
+
else:
|
323 |
+
recs_new = {}
|
324 |
+
for tag, span in list(records.items()):
|
325 |
+
if tag >= ins_col:
|
326 |
+
recs_new[tag + 1] = span
|
327 |
+
else:
|
328 |
+
recs_new[tag] = span
|
329 |
+
recs_new[ins_col] = 1
|
330 |
+
records = recs_new
|
331 |
+
values = values[:ins_col] + ["..."] + values[ins_col:]
|
332 |
+
|
333 |
+
# see gh-22579
|
334 |
+
# Column Offset Bug with to_html(index=False) with
|
335 |
+
# MultiIndex Columns and Index.
|
336 |
+
# Initially fill row with blank cells before column names.
|
337 |
+
# TODO: Refactor to remove code duplication with code
|
338 |
+
# block below for standard columns index.
|
339 |
+
row = [""] * (self.row_levels - 1)
|
340 |
+
if self.fmt.index or self.show_col_idx_names:
|
341 |
+
# see gh-22747
|
342 |
+
# If to_html(index_names=False) do not show columns
|
343 |
+
# index names.
|
344 |
+
# TODO: Refactor to use _get_column_name_list from
|
345 |
+
# DataFrameFormatter class and create a
|
346 |
+
# _get_formatted_column_labels function for code
|
347 |
+
# parity with DataFrameFormatter class.
|
348 |
+
if self.fmt.show_index_names:
|
349 |
+
name = self.columns.names[lnum]
|
350 |
+
row.append(pprint_thing(name or ""))
|
351 |
+
else:
|
352 |
+
row.append("")
|
353 |
+
|
354 |
+
tags = {}
|
355 |
+
j = len(row)
|
356 |
+
for i, v in enumerate(values):
|
357 |
+
if i in records:
|
358 |
+
if records[i] > 1:
|
359 |
+
tags[j] = template.format(span=records[i])
|
360 |
+
else:
|
361 |
+
continue
|
362 |
+
j += 1
|
363 |
+
row.append(v)
|
364 |
+
self.write_tr(row, indent, self.indent_delta, tags=tags, header=True)
|
365 |
+
else:
|
366 |
+
# see gh-22579
|
367 |
+
# Column misalignment also occurs for
|
368 |
+
# a standard index when the columns index is named.
|
369 |
+
# Initially fill row with blank cells before column names.
|
370 |
+
# TODO: Refactor to remove code duplication with code block
|
371 |
+
# above for columns MultiIndex.
|
372 |
+
row = [""] * (self.row_levels - 1)
|
373 |
+
if self.fmt.index or self.show_col_idx_names:
|
374 |
+
# see gh-22747
|
375 |
+
# If to_html(index_names=False) do not show columns
|
376 |
+
# index names.
|
377 |
+
# TODO: Refactor to use _get_column_name_list from
|
378 |
+
# DataFrameFormatter class.
|
379 |
+
if self.fmt.show_index_names:
|
380 |
+
row.append(self.columns.name or "")
|
381 |
+
else:
|
382 |
+
row.append("")
|
383 |
+
row.extend(self._get_columns_formatted_values())
|
384 |
+
align = self.fmt.justify
|
385 |
+
|
386 |
+
if is_truncated_horizontally:
|
387 |
+
ins_col = self.row_levels + self.fmt.tr_col_num
|
388 |
+
row.insert(ins_col, "...")
|
389 |
+
|
390 |
+
self.write_tr(row, indent, self.indent_delta, header=True, align=align)
|
391 |
+
|
392 |
+
def _write_row_header(self, indent: int) -> None:
|
393 |
+
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
394 |
+
row = [x if x is not None else "" for x in self.frame.index.names] + [""] * (
|
395 |
+
self.ncols + (1 if is_truncated_horizontally else 0)
|
396 |
+
)
|
397 |
+
self.write_tr(row, indent, self.indent_delta, header=True)
|
398 |
+
|
399 |
+
def _write_header(self, indent: int) -> None:
|
400 |
+
self.write("<thead>", indent)
|
401 |
+
|
402 |
+
if self.fmt.header:
|
403 |
+
self._write_col_header(indent + self.indent_delta)
|
404 |
+
|
405 |
+
if self.show_row_idx_names:
|
406 |
+
self._write_row_header(indent + self.indent_delta)
|
407 |
+
|
408 |
+
self.write("</thead>", indent)
|
409 |
+
|
410 |
+
def _get_formatted_values(self) -> dict[int, list[str]]:
|
411 |
+
with option_context("display.max_colwidth", None):
|
412 |
+
fmt_values = {i: self.fmt.format_col(i) for i in range(self.ncols)}
|
413 |
+
return fmt_values
|
414 |
+
|
415 |
+
def _write_body(self, indent: int) -> None:
|
416 |
+
self.write("<tbody>", indent)
|
417 |
+
fmt_values = self._get_formatted_values()
|
418 |
+
|
419 |
+
# write values
|
420 |
+
if self.fmt.index and isinstance(self.frame.index, MultiIndex):
|
421 |
+
self._write_hierarchical_rows(fmt_values, indent + self.indent_delta)
|
422 |
+
else:
|
423 |
+
self._write_regular_rows(fmt_values, indent + self.indent_delta)
|
424 |
+
|
425 |
+
self.write("</tbody>", indent)
|
426 |
+
|
427 |
+
def _write_regular_rows(
|
428 |
+
self, fmt_values: Mapping[int, list[str]], indent: int
|
429 |
+
) -> None:
|
430 |
+
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
431 |
+
is_truncated_vertically = self.fmt.is_truncated_vertically
|
432 |
+
|
433 |
+
nrows = len(self.fmt.tr_frame)
|
434 |
+
|
435 |
+
if self.fmt.index:
|
436 |
+
fmt = self.fmt._get_formatter("__index__")
|
437 |
+
if fmt is not None:
|
438 |
+
index_values = self.fmt.tr_frame.index.map(fmt)
|
439 |
+
else:
|
440 |
+
# only reached with non-Multi index
|
441 |
+
index_values = self.fmt.tr_frame.index._format_flat(include_name=False)
|
442 |
+
|
443 |
+
row: list[str] = []
|
444 |
+
for i in range(nrows):
|
445 |
+
if is_truncated_vertically and i == (self.fmt.tr_row_num):
|
446 |
+
str_sep_row = ["..."] * len(row)
|
447 |
+
self.write_tr(
|
448 |
+
str_sep_row,
|
449 |
+
indent,
|
450 |
+
self.indent_delta,
|
451 |
+
tags=None,
|
452 |
+
nindex_levels=self.row_levels,
|
453 |
+
)
|
454 |
+
|
455 |
+
row = []
|
456 |
+
if self.fmt.index:
|
457 |
+
row.append(index_values[i])
|
458 |
+
# see gh-22579
|
459 |
+
# Column misalignment also occurs for
|
460 |
+
# a standard index when the columns index is named.
|
461 |
+
# Add blank cell before data cells.
|
462 |
+
elif self.show_col_idx_names:
|
463 |
+
row.append("")
|
464 |
+
row.extend(fmt_values[j][i] for j in range(self.ncols))
|
465 |
+
|
466 |
+
if is_truncated_horizontally:
|
467 |
+
dot_col_ix = self.fmt.tr_col_num + self.row_levels
|
468 |
+
row.insert(dot_col_ix, "...")
|
469 |
+
self.write_tr(
|
470 |
+
row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels
|
471 |
+
)
|
472 |
+
|
473 |
+
def _write_hierarchical_rows(
|
474 |
+
self, fmt_values: Mapping[int, list[str]], indent: int
|
475 |
+
) -> None:
|
476 |
+
template = 'rowspan="{span}" valign="top"'
|
477 |
+
|
478 |
+
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
479 |
+
is_truncated_vertically = self.fmt.is_truncated_vertically
|
480 |
+
frame = self.fmt.tr_frame
|
481 |
+
nrows = len(frame)
|
482 |
+
|
483 |
+
assert isinstance(frame.index, MultiIndex)
|
484 |
+
idx_values = frame.index._format_multi(sparsify=False, include_names=False)
|
485 |
+
idx_values = list(zip(*idx_values))
|
486 |
+
|
487 |
+
if self.fmt.sparsify:
|
488 |
+
# GH3547
|
489 |
+
sentinel = lib.no_default
|
490 |
+
levels = frame.index._format_multi(sparsify=sentinel, include_names=False)
|
491 |
+
|
492 |
+
level_lengths = get_level_lengths(levels, sentinel)
|
493 |
+
inner_lvl = len(level_lengths) - 1
|
494 |
+
if is_truncated_vertically:
|
495 |
+
# Insert ... row and adjust idx_values and
|
496 |
+
# level_lengths to take this into account.
|
497 |
+
ins_row = self.fmt.tr_row_num
|
498 |
+
inserted = False
|
499 |
+
for lnum, records in enumerate(level_lengths):
|
500 |
+
rec_new = {}
|
501 |
+
for tag, span in list(records.items()):
|
502 |
+
if tag >= ins_row:
|
503 |
+
rec_new[tag + 1] = span
|
504 |
+
elif tag + span > ins_row:
|
505 |
+
rec_new[tag] = span + 1
|
506 |
+
|
507 |
+
# GH 14882 - Make sure insertion done once
|
508 |
+
if not inserted:
|
509 |
+
dot_row = list(idx_values[ins_row - 1])
|
510 |
+
dot_row[-1] = "..."
|
511 |
+
idx_values.insert(ins_row, tuple(dot_row))
|
512 |
+
inserted = True
|
513 |
+
else:
|
514 |
+
dot_row = list(idx_values[ins_row])
|
515 |
+
dot_row[inner_lvl - lnum] = "..."
|
516 |
+
idx_values[ins_row] = tuple(dot_row)
|
517 |
+
else:
|
518 |
+
rec_new[tag] = span
|
519 |
+
# If ins_row lies between tags, all cols idx cols
|
520 |
+
# receive ...
|
521 |
+
if tag + span == ins_row:
|
522 |
+
rec_new[ins_row] = 1
|
523 |
+
if lnum == 0:
|
524 |
+
idx_values.insert(
|
525 |
+
ins_row, tuple(["..."] * len(level_lengths))
|
526 |
+
)
|
527 |
+
|
528 |
+
# GH 14882 - Place ... in correct level
|
529 |
+
elif inserted:
|
530 |
+
dot_row = list(idx_values[ins_row])
|
531 |
+
dot_row[inner_lvl - lnum] = "..."
|
532 |
+
idx_values[ins_row] = tuple(dot_row)
|
533 |
+
level_lengths[lnum] = rec_new
|
534 |
+
|
535 |
+
level_lengths[inner_lvl][ins_row] = 1
|
536 |
+
for ix_col in fmt_values:
|
537 |
+
fmt_values[ix_col].insert(ins_row, "...")
|
538 |
+
nrows += 1
|
539 |
+
|
540 |
+
for i in range(nrows):
|
541 |
+
row = []
|
542 |
+
tags = {}
|
543 |
+
|
544 |
+
sparse_offset = 0
|
545 |
+
j = 0
|
546 |
+
for records, v in zip(level_lengths, idx_values[i]):
|
547 |
+
if i in records:
|
548 |
+
if records[i] > 1:
|
549 |
+
tags[j] = template.format(span=records[i])
|
550 |
+
else:
|
551 |
+
sparse_offset += 1
|
552 |
+
continue
|
553 |
+
|
554 |
+
j += 1
|
555 |
+
row.append(v)
|
556 |
+
|
557 |
+
row.extend(fmt_values[j][i] for j in range(self.ncols))
|
558 |
+
if is_truncated_horizontally:
|
559 |
+
row.insert(
|
560 |
+
self.row_levels - sparse_offset + self.fmt.tr_col_num, "..."
|
561 |
+
)
|
562 |
+
self.write_tr(
|
563 |
+
row,
|
564 |
+
indent,
|
565 |
+
self.indent_delta,
|
566 |
+
tags=tags,
|
567 |
+
nindex_levels=len(levels) - sparse_offset,
|
568 |
+
)
|
569 |
+
else:
|
570 |
+
row = []
|
571 |
+
for i in range(len(frame)):
|
572 |
+
if is_truncated_vertically and i == (self.fmt.tr_row_num):
|
573 |
+
str_sep_row = ["..."] * len(row)
|
574 |
+
self.write_tr(
|
575 |
+
str_sep_row,
|
576 |
+
indent,
|
577 |
+
self.indent_delta,
|
578 |
+
tags=None,
|
579 |
+
nindex_levels=self.row_levels,
|
580 |
+
)
|
581 |
+
|
582 |
+
idx_values = list(
|
583 |
+
zip(*frame.index._format_multi(sparsify=False, include_names=False))
|
584 |
+
)
|
585 |
+
row = []
|
586 |
+
row.extend(idx_values[i])
|
587 |
+
row.extend(fmt_values[j][i] for j in range(self.ncols))
|
588 |
+
if is_truncated_horizontally:
|
589 |
+
row.insert(self.row_levels + self.fmt.tr_col_num, "...")
|
590 |
+
self.write_tr(
|
591 |
+
row,
|
592 |
+
indent,
|
593 |
+
self.indent_delta,
|
594 |
+
tags=None,
|
595 |
+
nindex_levels=frame.index.nlevels,
|
596 |
+
)
|
597 |
+
|
598 |
+
|
599 |
+
class NotebookFormatter(HTMLFormatter):
|
600 |
+
"""
|
601 |
+
Internal class for formatting output data in html for display in Jupyter
|
602 |
+
Notebooks. This class is intended for functionality specific to
|
603 |
+
DataFrame._repr_html_() and DataFrame.to_html(notebook=True)
|
604 |
+
"""
|
605 |
+
|
606 |
+
def _get_formatted_values(self) -> dict[int, list[str]]:
|
607 |
+
return {i: self.fmt.format_col(i) for i in range(self.ncols)}
|
608 |
+
|
609 |
+
def _get_columns_formatted_values(self) -> list[str]:
|
610 |
+
# only reached with non-Multi Index
|
611 |
+
return self.columns._format_flat(include_name=False)
|
612 |
+
|
613 |
+
def write_style(self) -> None:
|
614 |
+
# We use the "scoped" attribute here so that the desired
|
615 |
+
# style properties for the data frame are not then applied
|
616 |
+
# throughout the entire notebook.
|
617 |
+
template_first = """\
|
618 |
+
<style scoped>"""
|
619 |
+
template_last = """\
|
620 |
+
</style>"""
|
621 |
+
template_select = """\
|
622 |
+
.dataframe %s {
|
623 |
+
%s: %s;
|
624 |
+
}"""
|
625 |
+
element_props = [
|
626 |
+
("tbody tr th:only-of-type", "vertical-align", "middle"),
|
627 |
+
("tbody tr th", "vertical-align", "top"),
|
628 |
+
]
|
629 |
+
if isinstance(self.columns, MultiIndex):
|
630 |
+
element_props.append(("thead tr th", "text-align", "left"))
|
631 |
+
if self.show_row_idx_names:
|
632 |
+
element_props.append(
|
633 |
+
("thead tr:last-of-type th", "text-align", "right")
|
634 |
+
)
|
635 |
+
else:
|
636 |
+
element_props.append(("thead th", "text-align", "right"))
|
637 |
+
template_mid = "\n\n".join(template_select % t for t in element_props)
|
638 |
+
template = dedent(f"{template_first}\n{template_mid}\n{template_last}")
|
639 |
+
self.write(template)
|
640 |
+
|
641 |
+
def render(self) -> list[str]:
|
642 |
+
self.write("<div>")
|
643 |
+
self.write_style()
|
644 |
+
super().render()
|
645 |
+
self.write("</div>")
|
646 |
+
return self.elements
|
venv/lib/python3.10/site-packages/pandas/io/formats/info.py
ADDED
@@ -0,0 +1,1101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from abc import (
|
4 |
+
ABC,
|
5 |
+
abstractmethod,
|
6 |
+
)
|
7 |
+
import sys
|
8 |
+
from textwrap import dedent
|
9 |
+
from typing import TYPE_CHECKING
|
10 |
+
|
11 |
+
from pandas._config import get_option
|
12 |
+
|
13 |
+
from pandas.io.formats import format as fmt
|
14 |
+
from pandas.io.formats.printing import pprint_thing
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from collections.abc import (
|
18 |
+
Iterable,
|
19 |
+
Iterator,
|
20 |
+
Mapping,
|
21 |
+
Sequence,
|
22 |
+
)
|
23 |
+
|
24 |
+
from pandas._typing import (
|
25 |
+
Dtype,
|
26 |
+
WriteBuffer,
|
27 |
+
)
|
28 |
+
|
29 |
+
from pandas import (
|
30 |
+
DataFrame,
|
31 |
+
Index,
|
32 |
+
Series,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
frame_max_cols_sub = dedent(
|
37 |
+
"""\
|
38 |
+
max_cols : int, optional
|
39 |
+
When to switch from the verbose to the truncated output. If the
|
40 |
+
DataFrame has more than `max_cols` columns, the truncated output
|
41 |
+
is used. By default, the setting in
|
42 |
+
``pandas.options.display.max_info_columns`` is used."""
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
show_counts_sub = dedent(
|
47 |
+
"""\
|
48 |
+
show_counts : bool, optional
|
49 |
+
Whether to show the non-null counts. By default, this is shown
|
50 |
+
only if the DataFrame is smaller than
|
51 |
+
``pandas.options.display.max_info_rows`` and
|
52 |
+
``pandas.options.display.max_info_columns``. A value of True always
|
53 |
+
shows the counts, and False never shows the counts."""
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
frame_examples_sub = dedent(
|
58 |
+
"""\
|
59 |
+
>>> int_values = [1, 2, 3, 4, 5]
|
60 |
+
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
|
61 |
+
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
|
62 |
+
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
|
63 |
+
... "float_col": float_values})
|
64 |
+
>>> df
|
65 |
+
int_col text_col float_col
|
66 |
+
0 1 alpha 0.00
|
67 |
+
1 2 beta 0.25
|
68 |
+
2 3 gamma 0.50
|
69 |
+
3 4 delta 0.75
|
70 |
+
4 5 epsilon 1.00
|
71 |
+
|
72 |
+
Prints information of all columns:
|
73 |
+
|
74 |
+
>>> df.info(verbose=True)
|
75 |
+
<class 'pandas.core.frame.DataFrame'>
|
76 |
+
RangeIndex: 5 entries, 0 to 4
|
77 |
+
Data columns (total 3 columns):
|
78 |
+
# Column Non-Null Count Dtype
|
79 |
+
--- ------ -------------- -----
|
80 |
+
0 int_col 5 non-null int64
|
81 |
+
1 text_col 5 non-null object
|
82 |
+
2 float_col 5 non-null float64
|
83 |
+
dtypes: float64(1), int64(1), object(1)
|
84 |
+
memory usage: 248.0+ bytes
|
85 |
+
|
86 |
+
Prints a summary of columns count and its dtypes but not per column
|
87 |
+
information:
|
88 |
+
|
89 |
+
>>> df.info(verbose=False)
|
90 |
+
<class 'pandas.core.frame.DataFrame'>
|
91 |
+
RangeIndex: 5 entries, 0 to 4
|
92 |
+
Columns: 3 entries, int_col to float_col
|
93 |
+
dtypes: float64(1), int64(1), object(1)
|
94 |
+
memory usage: 248.0+ bytes
|
95 |
+
|
96 |
+
Pipe output of DataFrame.info to buffer instead of sys.stdout, get
|
97 |
+
buffer content and writes to a text file:
|
98 |
+
|
99 |
+
>>> import io
|
100 |
+
>>> buffer = io.StringIO()
|
101 |
+
>>> df.info(buf=buffer)
|
102 |
+
>>> s = buffer.getvalue()
|
103 |
+
>>> with open("df_info.txt", "w",
|
104 |
+
... encoding="utf-8") as f: # doctest: +SKIP
|
105 |
+
... f.write(s)
|
106 |
+
260
|
107 |
+
|
108 |
+
The `memory_usage` parameter allows deep introspection mode, specially
|
109 |
+
useful for big DataFrames and fine-tune memory optimization:
|
110 |
+
|
111 |
+
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
|
112 |
+
>>> df = pd.DataFrame({
|
113 |
+
... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
|
114 |
+
... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
|
115 |
+
... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
|
116 |
+
... })
|
117 |
+
>>> df.info()
|
118 |
+
<class 'pandas.core.frame.DataFrame'>
|
119 |
+
RangeIndex: 1000000 entries, 0 to 999999
|
120 |
+
Data columns (total 3 columns):
|
121 |
+
# Column Non-Null Count Dtype
|
122 |
+
--- ------ -------------- -----
|
123 |
+
0 column_1 1000000 non-null object
|
124 |
+
1 column_2 1000000 non-null object
|
125 |
+
2 column_3 1000000 non-null object
|
126 |
+
dtypes: object(3)
|
127 |
+
memory usage: 22.9+ MB
|
128 |
+
|
129 |
+
>>> df.info(memory_usage='deep')
|
130 |
+
<class 'pandas.core.frame.DataFrame'>
|
131 |
+
RangeIndex: 1000000 entries, 0 to 999999
|
132 |
+
Data columns (total 3 columns):
|
133 |
+
# Column Non-Null Count Dtype
|
134 |
+
--- ------ -------------- -----
|
135 |
+
0 column_1 1000000 non-null object
|
136 |
+
1 column_2 1000000 non-null object
|
137 |
+
2 column_3 1000000 non-null object
|
138 |
+
dtypes: object(3)
|
139 |
+
memory usage: 165.9 MB"""
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
frame_see_also_sub = dedent(
|
144 |
+
"""\
|
145 |
+
DataFrame.describe: Generate descriptive statistics of DataFrame
|
146 |
+
columns.
|
147 |
+
DataFrame.memory_usage: Memory usage of DataFrame columns."""
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
frame_sub_kwargs = {
|
152 |
+
"klass": "DataFrame",
|
153 |
+
"type_sub": " and columns",
|
154 |
+
"max_cols_sub": frame_max_cols_sub,
|
155 |
+
"show_counts_sub": show_counts_sub,
|
156 |
+
"examples_sub": frame_examples_sub,
|
157 |
+
"see_also_sub": frame_see_also_sub,
|
158 |
+
"version_added_sub": "",
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
series_examples_sub = dedent(
|
163 |
+
"""\
|
164 |
+
>>> int_values = [1, 2, 3, 4, 5]
|
165 |
+
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
|
166 |
+
>>> s = pd.Series(text_values, index=int_values)
|
167 |
+
>>> s.info()
|
168 |
+
<class 'pandas.core.series.Series'>
|
169 |
+
Index: 5 entries, 1 to 5
|
170 |
+
Series name: None
|
171 |
+
Non-Null Count Dtype
|
172 |
+
-------------- -----
|
173 |
+
5 non-null object
|
174 |
+
dtypes: object(1)
|
175 |
+
memory usage: 80.0+ bytes
|
176 |
+
|
177 |
+
Prints a summary excluding information about its values:
|
178 |
+
|
179 |
+
>>> s.info(verbose=False)
|
180 |
+
<class 'pandas.core.series.Series'>
|
181 |
+
Index: 5 entries, 1 to 5
|
182 |
+
dtypes: object(1)
|
183 |
+
memory usage: 80.0+ bytes
|
184 |
+
|
185 |
+
Pipe output of Series.info to buffer instead of sys.stdout, get
|
186 |
+
buffer content and writes to a text file:
|
187 |
+
|
188 |
+
>>> import io
|
189 |
+
>>> buffer = io.StringIO()
|
190 |
+
>>> s.info(buf=buffer)
|
191 |
+
>>> s = buffer.getvalue()
|
192 |
+
>>> with open("df_info.txt", "w",
|
193 |
+
... encoding="utf-8") as f: # doctest: +SKIP
|
194 |
+
... f.write(s)
|
195 |
+
260
|
196 |
+
|
197 |
+
The `memory_usage` parameter allows deep introspection mode, specially
|
198 |
+
useful for big Series and fine-tune memory optimization:
|
199 |
+
|
200 |
+
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
|
201 |
+
>>> s = pd.Series(np.random.choice(['a', 'b', 'c'], 10 ** 6))
|
202 |
+
>>> s.info()
|
203 |
+
<class 'pandas.core.series.Series'>
|
204 |
+
RangeIndex: 1000000 entries, 0 to 999999
|
205 |
+
Series name: None
|
206 |
+
Non-Null Count Dtype
|
207 |
+
-------------- -----
|
208 |
+
1000000 non-null object
|
209 |
+
dtypes: object(1)
|
210 |
+
memory usage: 7.6+ MB
|
211 |
+
|
212 |
+
>>> s.info(memory_usage='deep')
|
213 |
+
<class 'pandas.core.series.Series'>
|
214 |
+
RangeIndex: 1000000 entries, 0 to 999999
|
215 |
+
Series name: None
|
216 |
+
Non-Null Count Dtype
|
217 |
+
-------------- -----
|
218 |
+
1000000 non-null object
|
219 |
+
dtypes: object(1)
|
220 |
+
memory usage: 55.3 MB"""
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
series_see_also_sub = dedent(
|
225 |
+
"""\
|
226 |
+
Series.describe: Generate descriptive statistics of Series.
|
227 |
+
Series.memory_usage: Memory usage of Series."""
|
228 |
+
)
|
229 |
+
|
230 |
+
|
231 |
+
series_sub_kwargs = {
|
232 |
+
"klass": "Series",
|
233 |
+
"type_sub": "",
|
234 |
+
"max_cols_sub": "",
|
235 |
+
"show_counts_sub": show_counts_sub,
|
236 |
+
"examples_sub": series_examples_sub,
|
237 |
+
"see_also_sub": series_see_also_sub,
|
238 |
+
"version_added_sub": "\n.. versionadded:: 1.4.0\n",
|
239 |
+
}
|
240 |
+
|
241 |
+
|
242 |
+
INFO_DOCSTRING = dedent(
|
243 |
+
"""
|
244 |
+
Print a concise summary of a {klass}.
|
245 |
+
|
246 |
+
This method prints information about a {klass} including
|
247 |
+
the index dtype{type_sub}, non-null values and memory usage.
|
248 |
+
{version_added_sub}\
|
249 |
+
|
250 |
+
Parameters
|
251 |
+
----------
|
252 |
+
verbose : bool, optional
|
253 |
+
Whether to print the full summary. By default, the setting in
|
254 |
+
``pandas.options.display.max_info_columns`` is followed.
|
255 |
+
buf : writable buffer, defaults to sys.stdout
|
256 |
+
Where to send the output. By default, the output is printed to
|
257 |
+
sys.stdout. Pass a writable buffer if you need to further process
|
258 |
+
the output.
|
259 |
+
{max_cols_sub}
|
260 |
+
memory_usage : bool, str, optional
|
261 |
+
Specifies whether total memory usage of the {klass}
|
262 |
+
elements (including the index) should be displayed. By default,
|
263 |
+
this follows the ``pandas.options.display.memory_usage`` setting.
|
264 |
+
|
265 |
+
True always show memory usage. False never shows memory usage.
|
266 |
+
A value of 'deep' is equivalent to "True with deep introspection".
|
267 |
+
Memory usage is shown in human-readable units (base-2
|
268 |
+
representation). Without deep introspection a memory estimation is
|
269 |
+
made based in column dtype and number of rows assuming values
|
270 |
+
consume the same memory amount for corresponding dtypes. With deep
|
271 |
+
memory introspection, a real memory usage calculation is performed
|
272 |
+
at the cost of computational resources. See the
|
273 |
+
:ref:`Frequently Asked Questions <df-memory-usage>` for more
|
274 |
+
details.
|
275 |
+
{show_counts_sub}
|
276 |
+
|
277 |
+
Returns
|
278 |
+
-------
|
279 |
+
None
|
280 |
+
This method prints a summary of a {klass} and returns None.
|
281 |
+
|
282 |
+
See Also
|
283 |
+
--------
|
284 |
+
{see_also_sub}
|
285 |
+
|
286 |
+
Examples
|
287 |
+
--------
|
288 |
+
{examples_sub}
|
289 |
+
"""
|
290 |
+
)
|
291 |
+
|
292 |
+
|
293 |
+
def _put_str(s: str | Dtype, space: int) -> str:
|
294 |
+
"""
|
295 |
+
Make string of specified length, padding to the right if necessary.
|
296 |
+
|
297 |
+
Parameters
|
298 |
+
----------
|
299 |
+
s : Union[str, Dtype]
|
300 |
+
String to be formatted.
|
301 |
+
space : int
|
302 |
+
Length to force string to be of.
|
303 |
+
|
304 |
+
Returns
|
305 |
+
-------
|
306 |
+
str
|
307 |
+
String coerced to given length.
|
308 |
+
|
309 |
+
Examples
|
310 |
+
--------
|
311 |
+
>>> pd.io.formats.info._put_str("panda", 6)
|
312 |
+
'panda '
|
313 |
+
>>> pd.io.formats.info._put_str("panda", 4)
|
314 |
+
'pand'
|
315 |
+
"""
|
316 |
+
return str(s)[:space].ljust(space)
|
317 |
+
|
318 |
+
|
319 |
+
def _sizeof_fmt(num: float, size_qualifier: str) -> str:
|
320 |
+
"""
|
321 |
+
Return size in human readable format.
|
322 |
+
|
323 |
+
Parameters
|
324 |
+
----------
|
325 |
+
num : int
|
326 |
+
Size in bytes.
|
327 |
+
size_qualifier : str
|
328 |
+
Either empty, or '+' (if lower bound).
|
329 |
+
|
330 |
+
Returns
|
331 |
+
-------
|
332 |
+
str
|
333 |
+
Size in human readable format.
|
334 |
+
|
335 |
+
Examples
|
336 |
+
--------
|
337 |
+
>>> _sizeof_fmt(23028, '')
|
338 |
+
'22.5 KB'
|
339 |
+
|
340 |
+
>>> _sizeof_fmt(23028, '+')
|
341 |
+
'22.5+ KB'
|
342 |
+
"""
|
343 |
+
for x in ["bytes", "KB", "MB", "GB", "TB"]:
|
344 |
+
if num < 1024.0:
|
345 |
+
return f"{num:3.1f}{size_qualifier} {x}"
|
346 |
+
num /= 1024.0
|
347 |
+
return f"{num:3.1f}{size_qualifier} PB"
|
348 |
+
|
349 |
+
|
350 |
+
def _initialize_memory_usage(
|
351 |
+
memory_usage: bool | str | None = None,
|
352 |
+
) -> bool | str:
|
353 |
+
"""Get memory usage based on inputs and display options."""
|
354 |
+
if memory_usage is None:
|
355 |
+
memory_usage = get_option("display.memory_usage")
|
356 |
+
return memory_usage
|
357 |
+
|
358 |
+
|
359 |
+
class _BaseInfo(ABC):
|
360 |
+
"""
|
361 |
+
Base class for DataFrameInfo and SeriesInfo.
|
362 |
+
|
363 |
+
Parameters
|
364 |
+
----------
|
365 |
+
data : DataFrame or Series
|
366 |
+
Either dataframe or series.
|
367 |
+
memory_usage : bool or str, optional
|
368 |
+
If "deep", introspect the data deeply by interrogating object dtypes
|
369 |
+
for system-level memory consumption, and include it in the returned
|
370 |
+
values.
|
371 |
+
"""
|
372 |
+
|
373 |
+
data: DataFrame | Series
|
374 |
+
memory_usage: bool | str
|
375 |
+
|
376 |
+
@property
|
377 |
+
@abstractmethod
|
378 |
+
def dtypes(self) -> Iterable[Dtype]:
|
379 |
+
"""
|
380 |
+
Dtypes.
|
381 |
+
|
382 |
+
Returns
|
383 |
+
-------
|
384 |
+
dtypes : sequence
|
385 |
+
Dtype of each of the DataFrame's columns (or one series column).
|
386 |
+
"""
|
387 |
+
|
388 |
+
@property
|
389 |
+
@abstractmethod
|
390 |
+
def dtype_counts(self) -> Mapping[str, int]:
|
391 |
+
"""Mapping dtype - number of counts."""
|
392 |
+
|
393 |
+
@property
|
394 |
+
@abstractmethod
|
395 |
+
def non_null_counts(self) -> Sequence[int]:
|
396 |
+
"""Sequence of non-null counts for all columns or column (if series)."""
|
397 |
+
|
398 |
+
@property
|
399 |
+
@abstractmethod
|
400 |
+
def memory_usage_bytes(self) -> int:
|
401 |
+
"""
|
402 |
+
Memory usage in bytes.
|
403 |
+
|
404 |
+
Returns
|
405 |
+
-------
|
406 |
+
memory_usage_bytes : int
|
407 |
+
Object's total memory usage in bytes.
|
408 |
+
"""
|
409 |
+
|
410 |
+
@property
|
411 |
+
def memory_usage_string(self) -> str:
|
412 |
+
"""Memory usage in a form of human readable string."""
|
413 |
+
return f"{_sizeof_fmt(self.memory_usage_bytes, self.size_qualifier)}\n"
|
414 |
+
|
415 |
+
@property
|
416 |
+
def size_qualifier(self) -> str:
|
417 |
+
size_qualifier = ""
|
418 |
+
if self.memory_usage:
|
419 |
+
if self.memory_usage != "deep":
|
420 |
+
# size_qualifier is just a best effort; not guaranteed to catch
|
421 |
+
# all cases (e.g., it misses categorical data even with object
|
422 |
+
# categories)
|
423 |
+
if (
|
424 |
+
"object" in self.dtype_counts
|
425 |
+
or self.data.index._is_memory_usage_qualified()
|
426 |
+
):
|
427 |
+
size_qualifier = "+"
|
428 |
+
return size_qualifier
|
429 |
+
|
430 |
+
@abstractmethod
|
431 |
+
def render(
|
432 |
+
self,
|
433 |
+
*,
|
434 |
+
buf: WriteBuffer[str] | None,
|
435 |
+
max_cols: int | None,
|
436 |
+
verbose: bool | None,
|
437 |
+
show_counts: bool | None,
|
438 |
+
) -> None:
|
439 |
+
pass
|
440 |
+
|
441 |
+
|
442 |
+
class DataFrameInfo(_BaseInfo):
|
443 |
+
"""
|
444 |
+
Class storing dataframe-specific info.
|
445 |
+
"""
|
446 |
+
|
447 |
+
def __init__(
|
448 |
+
self,
|
449 |
+
data: DataFrame,
|
450 |
+
memory_usage: bool | str | None = None,
|
451 |
+
) -> None:
|
452 |
+
self.data: DataFrame = data
|
453 |
+
self.memory_usage = _initialize_memory_usage(memory_usage)
|
454 |
+
|
455 |
+
@property
|
456 |
+
def dtype_counts(self) -> Mapping[str, int]:
|
457 |
+
return _get_dataframe_dtype_counts(self.data)
|
458 |
+
|
459 |
+
@property
|
460 |
+
def dtypes(self) -> Iterable[Dtype]:
|
461 |
+
"""
|
462 |
+
Dtypes.
|
463 |
+
|
464 |
+
Returns
|
465 |
+
-------
|
466 |
+
dtypes
|
467 |
+
Dtype of each of the DataFrame's columns.
|
468 |
+
"""
|
469 |
+
return self.data.dtypes
|
470 |
+
|
471 |
+
@property
|
472 |
+
def ids(self) -> Index:
|
473 |
+
"""
|
474 |
+
Column names.
|
475 |
+
|
476 |
+
Returns
|
477 |
+
-------
|
478 |
+
ids : Index
|
479 |
+
DataFrame's column names.
|
480 |
+
"""
|
481 |
+
return self.data.columns
|
482 |
+
|
483 |
+
@property
|
484 |
+
def col_count(self) -> int:
|
485 |
+
"""Number of columns to be summarized."""
|
486 |
+
return len(self.ids)
|
487 |
+
|
488 |
+
@property
|
489 |
+
def non_null_counts(self) -> Sequence[int]:
|
490 |
+
"""Sequence of non-null counts for all columns or column (if series)."""
|
491 |
+
return self.data.count()
|
492 |
+
|
493 |
+
@property
|
494 |
+
def memory_usage_bytes(self) -> int:
|
495 |
+
deep = self.memory_usage == "deep"
|
496 |
+
return self.data.memory_usage(index=True, deep=deep).sum()
|
497 |
+
|
498 |
+
def render(
|
499 |
+
self,
|
500 |
+
*,
|
501 |
+
buf: WriteBuffer[str] | None,
|
502 |
+
max_cols: int | None,
|
503 |
+
verbose: bool | None,
|
504 |
+
show_counts: bool | None,
|
505 |
+
) -> None:
|
506 |
+
printer = _DataFrameInfoPrinter(
|
507 |
+
info=self,
|
508 |
+
max_cols=max_cols,
|
509 |
+
verbose=verbose,
|
510 |
+
show_counts=show_counts,
|
511 |
+
)
|
512 |
+
printer.to_buffer(buf)
|
513 |
+
|
514 |
+
|
515 |
+
class SeriesInfo(_BaseInfo):
|
516 |
+
"""
|
517 |
+
Class storing series-specific info.
|
518 |
+
"""
|
519 |
+
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
data: Series,
|
523 |
+
memory_usage: bool | str | None = None,
|
524 |
+
) -> None:
|
525 |
+
self.data: Series = data
|
526 |
+
self.memory_usage = _initialize_memory_usage(memory_usage)
|
527 |
+
|
528 |
+
def render(
|
529 |
+
self,
|
530 |
+
*,
|
531 |
+
buf: WriteBuffer[str] | None = None,
|
532 |
+
max_cols: int | None = None,
|
533 |
+
verbose: bool | None = None,
|
534 |
+
show_counts: bool | None = None,
|
535 |
+
) -> None:
|
536 |
+
if max_cols is not None:
|
537 |
+
raise ValueError(
|
538 |
+
"Argument `max_cols` can only be passed "
|
539 |
+
"in DataFrame.info, not Series.info"
|
540 |
+
)
|
541 |
+
printer = _SeriesInfoPrinter(
|
542 |
+
info=self,
|
543 |
+
verbose=verbose,
|
544 |
+
show_counts=show_counts,
|
545 |
+
)
|
546 |
+
printer.to_buffer(buf)
|
547 |
+
|
548 |
+
@property
|
549 |
+
def non_null_counts(self) -> Sequence[int]:
|
550 |
+
return [self.data.count()]
|
551 |
+
|
552 |
+
@property
|
553 |
+
def dtypes(self) -> Iterable[Dtype]:
|
554 |
+
return [self.data.dtypes]
|
555 |
+
|
556 |
+
@property
|
557 |
+
def dtype_counts(self) -> Mapping[str, int]:
|
558 |
+
from pandas.core.frame import DataFrame
|
559 |
+
|
560 |
+
return _get_dataframe_dtype_counts(DataFrame(self.data))
|
561 |
+
|
562 |
+
@property
|
563 |
+
def memory_usage_bytes(self) -> int:
|
564 |
+
"""Memory usage in bytes.
|
565 |
+
|
566 |
+
Returns
|
567 |
+
-------
|
568 |
+
memory_usage_bytes : int
|
569 |
+
Object's total memory usage in bytes.
|
570 |
+
"""
|
571 |
+
deep = self.memory_usage == "deep"
|
572 |
+
return self.data.memory_usage(index=True, deep=deep)
|
573 |
+
|
574 |
+
|
575 |
+
class _InfoPrinterAbstract:
|
576 |
+
"""
|
577 |
+
Class for printing dataframe or series info.
|
578 |
+
"""
|
579 |
+
|
580 |
+
def to_buffer(self, buf: WriteBuffer[str] | None = None) -> None:
|
581 |
+
"""Save dataframe info into buffer."""
|
582 |
+
table_builder = self._create_table_builder()
|
583 |
+
lines = table_builder.get_lines()
|
584 |
+
if buf is None: # pragma: no cover
|
585 |
+
buf = sys.stdout
|
586 |
+
fmt.buffer_put_lines(buf, lines)
|
587 |
+
|
588 |
+
@abstractmethod
|
589 |
+
def _create_table_builder(self) -> _TableBuilderAbstract:
|
590 |
+
"""Create instance of table builder."""
|
591 |
+
|
592 |
+
|
593 |
+
class _DataFrameInfoPrinter(_InfoPrinterAbstract):
|
594 |
+
"""
|
595 |
+
Class for printing dataframe info.
|
596 |
+
|
597 |
+
Parameters
|
598 |
+
----------
|
599 |
+
info : DataFrameInfo
|
600 |
+
Instance of DataFrameInfo.
|
601 |
+
max_cols : int, optional
|
602 |
+
When to switch from the verbose to the truncated output.
|
603 |
+
verbose : bool, optional
|
604 |
+
Whether to print the full summary.
|
605 |
+
show_counts : bool, optional
|
606 |
+
Whether to show the non-null counts.
|
607 |
+
"""
|
608 |
+
|
609 |
+
def __init__(
|
610 |
+
self,
|
611 |
+
info: DataFrameInfo,
|
612 |
+
max_cols: int | None = None,
|
613 |
+
verbose: bool | None = None,
|
614 |
+
show_counts: bool | None = None,
|
615 |
+
) -> None:
|
616 |
+
self.info = info
|
617 |
+
self.data = info.data
|
618 |
+
self.verbose = verbose
|
619 |
+
self.max_cols = self._initialize_max_cols(max_cols)
|
620 |
+
self.show_counts = self._initialize_show_counts(show_counts)
|
621 |
+
|
622 |
+
@property
|
623 |
+
def max_rows(self) -> int:
|
624 |
+
"""Maximum info rows to be displayed."""
|
625 |
+
return get_option("display.max_info_rows", len(self.data) + 1)
|
626 |
+
|
627 |
+
@property
|
628 |
+
def exceeds_info_cols(self) -> bool:
|
629 |
+
"""Check if number of columns to be summarized does not exceed maximum."""
|
630 |
+
return bool(self.col_count > self.max_cols)
|
631 |
+
|
632 |
+
@property
|
633 |
+
def exceeds_info_rows(self) -> bool:
|
634 |
+
"""Check if number of rows to be summarized does not exceed maximum."""
|
635 |
+
return bool(len(self.data) > self.max_rows)
|
636 |
+
|
637 |
+
@property
|
638 |
+
def col_count(self) -> int:
|
639 |
+
"""Number of columns to be summarized."""
|
640 |
+
return self.info.col_count
|
641 |
+
|
642 |
+
def _initialize_max_cols(self, max_cols: int | None) -> int:
|
643 |
+
if max_cols is None:
|
644 |
+
return get_option("display.max_info_columns", self.col_count + 1)
|
645 |
+
return max_cols
|
646 |
+
|
647 |
+
def _initialize_show_counts(self, show_counts: bool | None) -> bool:
|
648 |
+
if show_counts is None:
|
649 |
+
return bool(not self.exceeds_info_cols and not self.exceeds_info_rows)
|
650 |
+
else:
|
651 |
+
return show_counts
|
652 |
+
|
653 |
+
def _create_table_builder(self) -> _DataFrameTableBuilder:
|
654 |
+
"""
|
655 |
+
Create instance of table builder based on verbosity and display settings.
|
656 |
+
"""
|
657 |
+
if self.verbose:
|
658 |
+
return _DataFrameTableBuilderVerbose(
|
659 |
+
info=self.info,
|
660 |
+
with_counts=self.show_counts,
|
661 |
+
)
|
662 |
+
elif self.verbose is False: # specifically set to False, not necessarily None
|
663 |
+
return _DataFrameTableBuilderNonVerbose(info=self.info)
|
664 |
+
elif self.exceeds_info_cols:
|
665 |
+
return _DataFrameTableBuilderNonVerbose(info=self.info)
|
666 |
+
else:
|
667 |
+
return _DataFrameTableBuilderVerbose(
|
668 |
+
info=self.info,
|
669 |
+
with_counts=self.show_counts,
|
670 |
+
)
|
671 |
+
|
672 |
+
|
673 |
+
class _SeriesInfoPrinter(_InfoPrinterAbstract):
|
674 |
+
"""Class for printing series info.
|
675 |
+
|
676 |
+
Parameters
|
677 |
+
----------
|
678 |
+
info : SeriesInfo
|
679 |
+
Instance of SeriesInfo.
|
680 |
+
verbose : bool, optional
|
681 |
+
Whether to print the full summary.
|
682 |
+
show_counts : bool, optional
|
683 |
+
Whether to show the non-null counts.
|
684 |
+
"""
|
685 |
+
|
686 |
+
def __init__(
|
687 |
+
self,
|
688 |
+
info: SeriesInfo,
|
689 |
+
verbose: bool | None = None,
|
690 |
+
show_counts: bool | None = None,
|
691 |
+
) -> None:
|
692 |
+
self.info = info
|
693 |
+
self.data = info.data
|
694 |
+
self.verbose = verbose
|
695 |
+
self.show_counts = self._initialize_show_counts(show_counts)
|
696 |
+
|
697 |
+
def _create_table_builder(self) -> _SeriesTableBuilder:
|
698 |
+
"""
|
699 |
+
Create instance of table builder based on verbosity.
|
700 |
+
"""
|
701 |
+
if self.verbose or self.verbose is None:
|
702 |
+
return _SeriesTableBuilderVerbose(
|
703 |
+
info=self.info,
|
704 |
+
with_counts=self.show_counts,
|
705 |
+
)
|
706 |
+
else:
|
707 |
+
return _SeriesTableBuilderNonVerbose(info=self.info)
|
708 |
+
|
709 |
+
def _initialize_show_counts(self, show_counts: bool | None) -> bool:
|
710 |
+
if show_counts is None:
|
711 |
+
return True
|
712 |
+
else:
|
713 |
+
return show_counts
|
714 |
+
|
715 |
+
|
716 |
+
class _TableBuilderAbstract(ABC):
|
717 |
+
"""
|
718 |
+
Abstract builder for info table.
|
719 |
+
"""
|
720 |
+
|
721 |
+
_lines: list[str]
|
722 |
+
info: _BaseInfo
|
723 |
+
|
724 |
+
@abstractmethod
|
725 |
+
def get_lines(self) -> list[str]:
|
726 |
+
"""Product in a form of list of lines (strings)."""
|
727 |
+
|
728 |
+
@property
|
729 |
+
def data(self) -> DataFrame | Series:
|
730 |
+
return self.info.data
|
731 |
+
|
732 |
+
@property
|
733 |
+
def dtypes(self) -> Iterable[Dtype]:
|
734 |
+
"""Dtypes of each of the DataFrame's columns."""
|
735 |
+
return self.info.dtypes
|
736 |
+
|
737 |
+
@property
|
738 |
+
def dtype_counts(self) -> Mapping[str, int]:
|
739 |
+
"""Mapping dtype - number of counts."""
|
740 |
+
return self.info.dtype_counts
|
741 |
+
|
742 |
+
@property
|
743 |
+
def display_memory_usage(self) -> bool:
|
744 |
+
"""Whether to display memory usage."""
|
745 |
+
return bool(self.info.memory_usage)
|
746 |
+
|
747 |
+
@property
|
748 |
+
def memory_usage_string(self) -> str:
|
749 |
+
"""Memory usage string with proper size qualifier."""
|
750 |
+
return self.info.memory_usage_string
|
751 |
+
|
752 |
+
@property
|
753 |
+
def non_null_counts(self) -> Sequence[int]:
|
754 |
+
return self.info.non_null_counts
|
755 |
+
|
756 |
+
def add_object_type_line(self) -> None:
|
757 |
+
"""Add line with string representation of dataframe to the table."""
|
758 |
+
self._lines.append(str(type(self.data)))
|
759 |
+
|
760 |
+
def add_index_range_line(self) -> None:
|
761 |
+
"""Add line with range of indices to the table."""
|
762 |
+
self._lines.append(self.data.index._summary())
|
763 |
+
|
764 |
+
def add_dtypes_line(self) -> None:
|
765 |
+
"""Add summary line with dtypes present in dataframe."""
|
766 |
+
collected_dtypes = [
|
767 |
+
f"{key}({val:d})" for key, val in sorted(self.dtype_counts.items())
|
768 |
+
]
|
769 |
+
self._lines.append(f"dtypes: {', '.join(collected_dtypes)}")
|
770 |
+
|
771 |
+
|
772 |
+
class _DataFrameTableBuilder(_TableBuilderAbstract):
|
773 |
+
"""
|
774 |
+
Abstract builder for dataframe info table.
|
775 |
+
|
776 |
+
Parameters
|
777 |
+
----------
|
778 |
+
info : DataFrameInfo.
|
779 |
+
Instance of DataFrameInfo.
|
780 |
+
"""
|
781 |
+
|
782 |
+
def __init__(self, *, info: DataFrameInfo) -> None:
|
783 |
+
self.info: DataFrameInfo = info
|
784 |
+
|
785 |
+
def get_lines(self) -> list[str]:
|
786 |
+
self._lines = []
|
787 |
+
if self.col_count == 0:
|
788 |
+
self._fill_empty_info()
|
789 |
+
else:
|
790 |
+
self._fill_non_empty_info()
|
791 |
+
return self._lines
|
792 |
+
|
793 |
+
def _fill_empty_info(self) -> None:
|
794 |
+
"""Add lines to the info table, pertaining to empty dataframe."""
|
795 |
+
self.add_object_type_line()
|
796 |
+
self.add_index_range_line()
|
797 |
+
self._lines.append(f"Empty {type(self.data).__name__}\n")
|
798 |
+
|
799 |
+
@abstractmethod
|
800 |
+
def _fill_non_empty_info(self) -> None:
|
801 |
+
"""Add lines to the info table, pertaining to non-empty dataframe."""
|
802 |
+
|
803 |
+
@property
|
804 |
+
def data(self) -> DataFrame:
|
805 |
+
"""DataFrame."""
|
806 |
+
return self.info.data
|
807 |
+
|
808 |
+
@property
|
809 |
+
def ids(self) -> Index:
|
810 |
+
"""Dataframe columns."""
|
811 |
+
return self.info.ids
|
812 |
+
|
813 |
+
@property
|
814 |
+
def col_count(self) -> int:
|
815 |
+
"""Number of dataframe columns to be summarized."""
|
816 |
+
return self.info.col_count
|
817 |
+
|
818 |
+
def add_memory_usage_line(self) -> None:
|
819 |
+
"""Add line containing memory usage."""
|
820 |
+
self._lines.append(f"memory usage: {self.memory_usage_string}")
|
821 |
+
|
822 |
+
|
823 |
+
class _DataFrameTableBuilderNonVerbose(_DataFrameTableBuilder):
|
824 |
+
"""
|
825 |
+
Dataframe info table builder for non-verbose output.
|
826 |
+
"""
|
827 |
+
|
828 |
+
def _fill_non_empty_info(self) -> None:
|
829 |
+
"""Add lines to the info table, pertaining to non-empty dataframe."""
|
830 |
+
self.add_object_type_line()
|
831 |
+
self.add_index_range_line()
|
832 |
+
self.add_columns_summary_line()
|
833 |
+
self.add_dtypes_line()
|
834 |
+
if self.display_memory_usage:
|
835 |
+
self.add_memory_usage_line()
|
836 |
+
|
837 |
+
def add_columns_summary_line(self) -> None:
|
838 |
+
self._lines.append(self.ids._summary(name="Columns"))
|
839 |
+
|
840 |
+
|
841 |
+
class _TableBuilderVerboseMixin(_TableBuilderAbstract):
|
842 |
+
"""
|
843 |
+
Mixin for verbose info output.
|
844 |
+
"""
|
845 |
+
|
846 |
+
SPACING: str = " " * 2
|
847 |
+
strrows: Sequence[Sequence[str]]
|
848 |
+
gross_column_widths: Sequence[int]
|
849 |
+
with_counts: bool
|
850 |
+
|
851 |
+
@property
|
852 |
+
@abstractmethod
|
853 |
+
def headers(self) -> Sequence[str]:
|
854 |
+
"""Headers names of the columns in verbose table."""
|
855 |
+
|
856 |
+
@property
|
857 |
+
def header_column_widths(self) -> Sequence[int]:
|
858 |
+
"""Widths of header columns (only titles)."""
|
859 |
+
return [len(col) for col in self.headers]
|
860 |
+
|
861 |
+
def _get_gross_column_widths(self) -> Sequence[int]:
|
862 |
+
"""Get widths of columns containing both headers and actual content."""
|
863 |
+
body_column_widths = self._get_body_column_widths()
|
864 |
+
return [
|
865 |
+
max(*widths)
|
866 |
+
for widths in zip(self.header_column_widths, body_column_widths)
|
867 |
+
]
|
868 |
+
|
869 |
+
def _get_body_column_widths(self) -> Sequence[int]:
|
870 |
+
"""Get widths of table content columns."""
|
871 |
+
strcols: Sequence[Sequence[str]] = list(zip(*self.strrows))
|
872 |
+
return [max(len(x) for x in col) for col in strcols]
|
873 |
+
|
874 |
+
def _gen_rows(self) -> Iterator[Sequence[str]]:
|
875 |
+
"""
|
876 |
+
Generator function yielding rows content.
|
877 |
+
|
878 |
+
Each element represents a row comprising a sequence of strings.
|
879 |
+
"""
|
880 |
+
if self.with_counts:
|
881 |
+
return self._gen_rows_with_counts()
|
882 |
+
else:
|
883 |
+
return self._gen_rows_without_counts()
|
884 |
+
|
885 |
+
@abstractmethod
|
886 |
+
def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]:
|
887 |
+
"""Iterator with string representation of body data with counts."""
|
888 |
+
|
889 |
+
@abstractmethod
|
890 |
+
def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]:
|
891 |
+
"""Iterator with string representation of body data without counts."""
|
892 |
+
|
893 |
+
def add_header_line(self) -> None:
|
894 |
+
header_line = self.SPACING.join(
|
895 |
+
[
|
896 |
+
_put_str(header, col_width)
|
897 |
+
for header, col_width in zip(self.headers, self.gross_column_widths)
|
898 |
+
]
|
899 |
+
)
|
900 |
+
self._lines.append(header_line)
|
901 |
+
|
902 |
+
def add_separator_line(self) -> None:
|
903 |
+
separator_line = self.SPACING.join(
|
904 |
+
[
|
905 |
+
_put_str("-" * header_colwidth, gross_colwidth)
|
906 |
+
for header_colwidth, gross_colwidth in zip(
|
907 |
+
self.header_column_widths, self.gross_column_widths
|
908 |
+
)
|
909 |
+
]
|
910 |
+
)
|
911 |
+
self._lines.append(separator_line)
|
912 |
+
|
913 |
+
def add_body_lines(self) -> None:
|
914 |
+
for row in self.strrows:
|
915 |
+
body_line = self.SPACING.join(
|
916 |
+
[
|
917 |
+
_put_str(col, gross_colwidth)
|
918 |
+
for col, gross_colwidth in zip(row, self.gross_column_widths)
|
919 |
+
]
|
920 |
+
)
|
921 |
+
self._lines.append(body_line)
|
922 |
+
|
923 |
+
def _gen_non_null_counts(self) -> Iterator[str]:
|
924 |
+
"""Iterator with string representation of non-null counts."""
|
925 |
+
for count in self.non_null_counts:
|
926 |
+
yield f"{count} non-null"
|
927 |
+
|
928 |
+
def _gen_dtypes(self) -> Iterator[str]:
|
929 |
+
"""Iterator with string representation of column dtypes."""
|
930 |
+
for dtype in self.dtypes:
|
931 |
+
yield pprint_thing(dtype)
|
932 |
+
|
933 |
+
|
934 |
+
class _DataFrameTableBuilderVerbose(_DataFrameTableBuilder, _TableBuilderVerboseMixin):
|
935 |
+
"""
|
936 |
+
Dataframe info table builder for verbose output.
|
937 |
+
"""
|
938 |
+
|
939 |
+
def __init__(
|
940 |
+
self,
|
941 |
+
*,
|
942 |
+
info: DataFrameInfo,
|
943 |
+
with_counts: bool,
|
944 |
+
) -> None:
|
945 |
+
self.info = info
|
946 |
+
self.with_counts = with_counts
|
947 |
+
self.strrows: Sequence[Sequence[str]] = list(self._gen_rows())
|
948 |
+
self.gross_column_widths: Sequence[int] = self._get_gross_column_widths()
|
949 |
+
|
950 |
+
def _fill_non_empty_info(self) -> None:
|
951 |
+
"""Add lines to the info table, pertaining to non-empty dataframe."""
|
952 |
+
self.add_object_type_line()
|
953 |
+
self.add_index_range_line()
|
954 |
+
self.add_columns_summary_line()
|
955 |
+
self.add_header_line()
|
956 |
+
self.add_separator_line()
|
957 |
+
self.add_body_lines()
|
958 |
+
self.add_dtypes_line()
|
959 |
+
if self.display_memory_usage:
|
960 |
+
self.add_memory_usage_line()
|
961 |
+
|
962 |
+
@property
|
963 |
+
def headers(self) -> Sequence[str]:
|
964 |
+
"""Headers names of the columns in verbose table."""
|
965 |
+
if self.with_counts:
|
966 |
+
return [" # ", "Column", "Non-Null Count", "Dtype"]
|
967 |
+
return [" # ", "Column", "Dtype"]
|
968 |
+
|
969 |
+
def add_columns_summary_line(self) -> None:
|
970 |
+
self._lines.append(f"Data columns (total {self.col_count} columns):")
|
971 |
+
|
972 |
+
def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]:
|
973 |
+
"""Iterator with string representation of body data without counts."""
|
974 |
+
yield from zip(
|
975 |
+
self._gen_line_numbers(),
|
976 |
+
self._gen_columns(),
|
977 |
+
self._gen_dtypes(),
|
978 |
+
)
|
979 |
+
|
980 |
+
def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]:
|
981 |
+
"""Iterator with string representation of body data with counts."""
|
982 |
+
yield from zip(
|
983 |
+
self._gen_line_numbers(),
|
984 |
+
self._gen_columns(),
|
985 |
+
self._gen_non_null_counts(),
|
986 |
+
self._gen_dtypes(),
|
987 |
+
)
|
988 |
+
|
989 |
+
def _gen_line_numbers(self) -> Iterator[str]:
|
990 |
+
"""Iterator with string representation of column numbers."""
|
991 |
+
for i, _ in enumerate(self.ids):
|
992 |
+
yield f" {i}"
|
993 |
+
|
994 |
+
def _gen_columns(self) -> Iterator[str]:
|
995 |
+
"""Iterator with string representation of column names."""
|
996 |
+
for col in self.ids:
|
997 |
+
yield pprint_thing(col)
|
998 |
+
|
999 |
+
|
1000 |
+
class _SeriesTableBuilder(_TableBuilderAbstract):
|
1001 |
+
"""
|
1002 |
+
Abstract builder for series info table.
|
1003 |
+
|
1004 |
+
Parameters
|
1005 |
+
----------
|
1006 |
+
info : SeriesInfo.
|
1007 |
+
Instance of SeriesInfo.
|
1008 |
+
"""
|
1009 |
+
|
1010 |
+
def __init__(self, *, info: SeriesInfo) -> None:
|
1011 |
+
self.info: SeriesInfo = info
|
1012 |
+
|
1013 |
+
def get_lines(self) -> list[str]:
|
1014 |
+
self._lines = []
|
1015 |
+
self._fill_non_empty_info()
|
1016 |
+
return self._lines
|
1017 |
+
|
1018 |
+
@property
|
1019 |
+
def data(self) -> Series:
|
1020 |
+
"""Series."""
|
1021 |
+
return self.info.data
|
1022 |
+
|
1023 |
+
def add_memory_usage_line(self) -> None:
|
1024 |
+
"""Add line containing memory usage."""
|
1025 |
+
self._lines.append(f"memory usage: {self.memory_usage_string}")
|
1026 |
+
|
1027 |
+
@abstractmethod
|
1028 |
+
def _fill_non_empty_info(self) -> None:
|
1029 |
+
"""Add lines to the info table, pertaining to non-empty series."""
|
1030 |
+
|
1031 |
+
|
1032 |
+
class _SeriesTableBuilderNonVerbose(_SeriesTableBuilder):
|
1033 |
+
"""
|
1034 |
+
Series info table builder for non-verbose output.
|
1035 |
+
"""
|
1036 |
+
|
1037 |
+
def _fill_non_empty_info(self) -> None:
|
1038 |
+
"""Add lines to the info table, pertaining to non-empty series."""
|
1039 |
+
self.add_object_type_line()
|
1040 |
+
self.add_index_range_line()
|
1041 |
+
self.add_dtypes_line()
|
1042 |
+
if self.display_memory_usage:
|
1043 |
+
self.add_memory_usage_line()
|
1044 |
+
|
1045 |
+
|
1046 |
+
class _SeriesTableBuilderVerbose(_SeriesTableBuilder, _TableBuilderVerboseMixin):
|
1047 |
+
"""
|
1048 |
+
Series info table builder for verbose output.
|
1049 |
+
"""
|
1050 |
+
|
1051 |
+
def __init__(
|
1052 |
+
self,
|
1053 |
+
*,
|
1054 |
+
info: SeriesInfo,
|
1055 |
+
with_counts: bool,
|
1056 |
+
) -> None:
|
1057 |
+
self.info = info
|
1058 |
+
self.with_counts = with_counts
|
1059 |
+
self.strrows: Sequence[Sequence[str]] = list(self._gen_rows())
|
1060 |
+
self.gross_column_widths: Sequence[int] = self._get_gross_column_widths()
|
1061 |
+
|
1062 |
+
def _fill_non_empty_info(self) -> None:
|
1063 |
+
"""Add lines to the info table, pertaining to non-empty series."""
|
1064 |
+
self.add_object_type_line()
|
1065 |
+
self.add_index_range_line()
|
1066 |
+
self.add_series_name_line()
|
1067 |
+
self.add_header_line()
|
1068 |
+
self.add_separator_line()
|
1069 |
+
self.add_body_lines()
|
1070 |
+
self.add_dtypes_line()
|
1071 |
+
if self.display_memory_usage:
|
1072 |
+
self.add_memory_usage_line()
|
1073 |
+
|
1074 |
+
def add_series_name_line(self) -> None:
|
1075 |
+
self._lines.append(f"Series name: {self.data.name}")
|
1076 |
+
|
1077 |
+
@property
|
1078 |
+
def headers(self) -> Sequence[str]:
|
1079 |
+
"""Headers names of the columns in verbose table."""
|
1080 |
+
if self.with_counts:
|
1081 |
+
return ["Non-Null Count", "Dtype"]
|
1082 |
+
return ["Dtype"]
|
1083 |
+
|
1084 |
+
def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]:
|
1085 |
+
"""Iterator with string representation of body data without counts."""
|
1086 |
+
yield from self._gen_dtypes()
|
1087 |
+
|
1088 |
+
def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]:
|
1089 |
+
"""Iterator with string representation of body data with counts."""
|
1090 |
+
yield from zip(
|
1091 |
+
self._gen_non_null_counts(),
|
1092 |
+
self._gen_dtypes(),
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
|
1096 |
+
def _get_dataframe_dtype_counts(df: DataFrame) -> Mapping[str, int]:
|
1097 |
+
"""
|
1098 |
+
Create mapping between datatypes and their number of occurrences.
|
1099 |
+
"""
|
1100 |
+
# groupby dtype.name to collect e.g. Categorical columns
|
1101 |
+
return df.dtypes.value_counts().groupby(lambda x: x.name).sum()
|
venv/lib/python3.10/site-packages/pandas/io/formats/printing.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Printing tools.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from collections.abc import (
|
7 |
+
Iterable,
|
8 |
+
Mapping,
|
9 |
+
Sequence,
|
10 |
+
)
|
11 |
+
import sys
|
12 |
+
from typing import (
|
13 |
+
Any,
|
14 |
+
Callable,
|
15 |
+
TypeVar,
|
16 |
+
Union,
|
17 |
+
)
|
18 |
+
from unicodedata import east_asian_width
|
19 |
+
|
20 |
+
from pandas._config import get_option
|
21 |
+
|
22 |
+
from pandas.core.dtypes.inference import is_sequence
|
23 |
+
|
24 |
+
from pandas.io.formats.console import get_console_size
|
25 |
+
|
26 |
+
EscapeChars = Union[Mapping[str, str], Iterable[str]]
|
27 |
+
_KT = TypeVar("_KT")
|
28 |
+
_VT = TypeVar("_VT")
|
29 |
+
|
30 |
+
|
31 |
+
def adjoin(space: int, *lists: list[str], **kwargs) -> str:
|
32 |
+
"""
|
33 |
+
Glues together two sets of strings using the amount of space requested.
|
34 |
+
The idea is to prettify.
|
35 |
+
|
36 |
+
----------
|
37 |
+
space : int
|
38 |
+
number of spaces for padding
|
39 |
+
lists : str
|
40 |
+
list of str which being joined
|
41 |
+
strlen : callable
|
42 |
+
function used to calculate the length of each str. Needed for unicode
|
43 |
+
handling.
|
44 |
+
justfunc : callable
|
45 |
+
function used to justify str. Needed for unicode handling.
|
46 |
+
"""
|
47 |
+
strlen = kwargs.pop("strlen", len)
|
48 |
+
justfunc = kwargs.pop("justfunc", _adj_justify)
|
49 |
+
|
50 |
+
newLists = []
|
51 |
+
lengths = [max(map(strlen, x)) + space for x in lists[:-1]]
|
52 |
+
# not the last one
|
53 |
+
lengths.append(max(map(len, lists[-1])))
|
54 |
+
maxLen = max(map(len, lists))
|
55 |
+
for i, lst in enumerate(lists):
|
56 |
+
nl = justfunc(lst, lengths[i], mode="left")
|
57 |
+
nl = ([" " * lengths[i]] * (maxLen - len(lst))) + nl
|
58 |
+
newLists.append(nl)
|
59 |
+
toJoin = zip(*newLists)
|
60 |
+
return "\n".join("".join(lines) for lines in toJoin)
|
61 |
+
|
62 |
+
|
63 |
+
def _adj_justify(texts: Iterable[str], max_len: int, mode: str = "right") -> list[str]:
|
64 |
+
"""
|
65 |
+
Perform ljust, center, rjust against string or list-like
|
66 |
+
"""
|
67 |
+
if mode == "left":
|
68 |
+
return [x.ljust(max_len) for x in texts]
|
69 |
+
elif mode == "center":
|
70 |
+
return [x.center(max_len) for x in texts]
|
71 |
+
else:
|
72 |
+
return [x.rjust(max_len) for x in texts]
|
73 |
+
|
74 |
+
|
75 |
+
# Unicode consolidation
|
76 |
+
# ---------------------
|
77 |
+
#
|
78 |
+
# pprinting utility functions for generating Unicode text or
|
79 |
+
# bytes(3.x)/str(2.x) representations of objects.
|
80 |
+
# Try to use these as much as possible rather than rolling your own.
|
81 |
+
#
|
82 |
+
# When to use
|
83 |
+
# -----------
|
84 |
+
#
|
85 |
+
# 1) If you're writing code internal to pandas (no I/O directly involved),
|
86 |
+
# use pprint_thing().
|
87 |
+
#
|
88 |
+
# It will always return unicode text which can handled by other
|
89 |
+
# parts of the package without breakage.
|
90 |
+
#
|
91 |
+
# 2) if you need to write something out to file, use
|
92 |
+
# pprint_thing_encoded(encoding).
|
93 |
+
#
|
94 |
+
# If no encoding is specified, it defaults to utf-8. Since encoding pure
|
95 |
+
# ascii with utf-8 is a no-op you can safely use the default utf-8 if you're
|
96 |
+
# working with straight ascii.
|
97 |
+
|
98 |
+
|
99 |
+
def _pprint_seq(
|
100 |
+
seq: Sequence, _nest_lvl: int = 0, max_seq_items: int | None = None, **kwds
|
101 |
+
) -> str:
|
102 |
+
"""
|
103 |
+
internal. pprinter for iterables. you should probably use pprint_thing()
|
104 |
+
rather than calling this directly.
|
105 |
+
|
106 |
+
bounds length of printed sequence, depending on options
|
107 |
+
"""
|
108 |
+
if isinstance(seq, set):
|
109 |
+
fmt = "{{{body}}}"
|
110 |
+
else:
|
111 |
+
fmt = "[{body}]" if hasattr(seq, "__setitem__") else "({body})"
|
112 |
+
|
113 |
+
if max_seq_items is False:
|
114 |
+
nitems = len(seq)
|
115 |
+
else:
|
116 |
+
nitems = max_seq_items or get_option("max_seq_items") or len(seq)
|
117 |
+
|
118 |
+
s = iter(seq)
|
119 |
+
# handle sets, no slicing
|
120 |
+
r = [
|
121 |
+
pprint_thing(next(s), _nest_lvl + 1, max_seq_items=max_seq_items, **kwds)
|
122 |
+
for i in range(min(nitems, len(seq)))
|
123 |
+
]
|
124 |
+
body = ", ".join(r)
|
125 |
+
|
126 |
+
if nitems < len(seq):
|
127 |
+
body += ", ..."
|
128 |
+
elif isinstance(seq, tuple) and len(seq) == 1:
|
129 |
+
body += ","
|
130 |
+
|
131 |
+
return fmt.format(body=body)
|
132 |
+
|
133 |
+
|
134 |
+
def _pprint_dict(
|
135 |
+
seq: Mapping, _nest_lvl: int = 0, max_seq_items: int | None = None, **kwds
|
136 |
+
) -> str:
|
137 |
+
"""
|
138 |
+
internal. pprinter for iterables. you should probably use pprint_thing()
|
139 |
+
rather than calling this directly.
|
140 |
+
"""
|
141 |
+
fmt = "{{{things}}}"
|
142 |
+
pairs = []
|
143 |
+
|
144 |
+
pfmt = "{key}: {val}"
|
145 |
+
|
146 |
+
if max_seq_items is False:
|
147 |
+
nitems = len(seq)
|
148 |
+
else:
|
149 |
+
nitems = max_seq_items or get_option("max_seq_items") or len(seq)
|
150 |
+
|
151 |
+
for k, v in list(seq.items())[:nitems]:
|
152 |
+
pairs.append(
|
153 |
+
pfmt.format(
|
154 |
+
key=pprint_thing(k, _nest_lvl + 1, max_seq_items=max_seq_items, **kwds),
|
155 |
+
val=pprint_thing(v, _nest_lvl + 1, max_seq_items=max_seq_items, **kwds),
|
156 |
+
)
|
157 |
+
)
|
158 |
+
|
159 |
+
if nitems < len(seq):
|
160 |
+
return fmt.format(things=", ".join(pairs) + ", ...")
|
161 |
+
else:
|
162 |
+
return fmt.format(things=", ".join(pairs))
|
163 |
+
|
164 |
+
|
165 |
+
def pprint_thing(
|
166 |
+
thing: Any,
|
167 |
+
_nest_lvl: int = 0,
|
168 |
+
escape_chars: EscapeChars | None = None,
|
169 |
+
default_escapes: bool = False,
|
170 |
+
quote_strings: bool = False,
|
171 |
+
max_seq_items: int | None = None,
|
172 |
+
) -> str:
|
173 |
+
"""
|
174 |
+
This function is the sanctioned way of converting objects
|
175 |
+
to a string representation and properly handles nested sequences.
|
176 |
+
|
177 |
+
Parameters
|
178 |
+
----------
|
179 |
+
thing : anything to be formatted
|
180 |
+
_nest_lvl : internal use only. pprint_thing() is mutually-recursive
|
181 |
+
with pprint_sequence, this argument is used to keep track of the
|
182 |
+
current nesting level, and limit it.
|
183 |
+
escape_chars : list or dict, optional
|
184 |
+
Characters to escape. If a dict is passed the values are the
|
185 |
+
replacements
|
186 |
+
default_escapes : bool, default False
|
187 |
+
Whether the input escape characters replaces or adds to the defaults
|
188 |
+
max_seq_items : int or None, default None
|
189 |
+
Pass through to other pretty printers to limit sequence printing
|
190 |
+
|
191 |
+
Returns
|
192 |
+
-------
|
193 |
+
str
|
194 |
+
"""
|
195 |
+
|
196 |
+
def as_escaped_string(
|
197 |
+
thing: Any, escape_chars: EscapeChars | None = escape_chars
|
198 |
+
) -> str:
|
199 |
+
translate = {"\t": r"\t", "\n": r"\n", "\r": r"\r"}
|
200 |
+
if isinstance(escape_chars, dict):
|
201 |
+
if default_escapes:
|
202 |
+
translate.update(escape_chars)
|
203 |
+
else:
|
204 |
+
translate = escape_chars
|
205 |
+
escape_chars = list(escape_chars.keys())
|
206 |
+
else:
|
207 |
+
escape_chars = escape_chars or ()
|
208 |
+
|
209 |
+
result = str(thing)
|
210 |
+
for c in escape_chars:
|
211 |
+
result = result.replace(c, translate[c])
|
212 |
+
return result
|
213 |
+
|
214 |
+
if hasattr(thing, "__next__"):
|
215 |
+
return str(thing)
|
216 |
+
elif isinstance(thing, dict) and _nest_lvl < get_option(
|
217 |
+
"display.pprint_nest_depth"
|
218 |
+
):
|
219 |
+
result = _pprint_dict(
|
220 |
+
thing, _nest_lvl, quote_strings=True, max_seq_items=max_seq_items
|
221 |
+
)
|
222 |
+
elif is_sequence(thing) and _nest_lvl < get_option("display.pprint_nest_depth"):
|
223 |
+
result = _pprint_seq(
|
224 |
+
thing,
|
225 |
+
_nest_lvl,
|
226 |
+
escape_chars=escape_chars,
|
227 |
+
quote_strings=quote_strings,
|
228 |
+
max_seq_items=max_seq_items,
|
229 |
+
)
|
230 |
+
elif isinstance(thing, str) and quote_strings:
|
231 |
+
result = f"'{as_escaped_string(thing)}'"
|
232 |
+
else:
|
233 |
+
result = as_escaped_string(thing)
|
234 |
+
|
235 |
+
return result
|
236 |
+
|
237 |
+
|
238 |
+
def pprint_thing_encoded(
|
239 |
+
object, encoding: str = "utf-8", errors: str = "replace"
|
240 |
+
) -> bytes:
|
241 |
+
value = pprint_thing(object) # get unicode representation of object
|
242 |
+
return value.encode(encoding, errors)
|
243 |
+
|
244 |
+
|
245 |
+
def enable_data_resource_formatter(enable: bool) -> None:
|
246 |
+
if "IPython" not in sys.modules:
|
247 |
+
# definitely not in IPython
|
248 |
+
return
|
249 |
+
from IPython import get_ipython
|
250 |
+
|
251 |
+
ip = get_ipython()
|
252 |
+
if ip is None:
|
253 |
+
# still not in IPython
|
254 |
+
return
|
255 |
+
|
256 |
+
formatters = ip.display_formatter.formatters
|
257 |
+
mimetype = "application/vnd.dataresource+json"
|
258 |
+
|
259 |
+
if enable:
|
260 |
+
if mimetype not in formatters:
|
261 |
+
# define tableschema formatter
|
262 |
+
from IPython.core.formatters import BaseFormatter
|
263 |
+
from traitlets import ObjectName
|
264 |
+
|
265 |
+
class TableSchemaFormatter(BaseFormatter):
|
266 |
+
print_method = ObjectName("_repr_data_resource_")
|
267 |
+
_return_type = (dict,)
|
268 |
+
|
269 |
+
# register it:
|
270 |
+
formatters[mimetype] = TableSchemaFormatter()
|
271 |
+
# enable it if it's been disabled:
|
272 |
+
formatters[mimetype].enabled = True
|
273 |
+
# unregister tableschema mime-type
|
274 |
+
elif mimetype in formatters:
|
275 |
+
formatters[mimetype].enabled = False
|
276 |
+
|
277 |
+
|
278 |
+
def default_pprint(thing: Any, max_seq_items: int | None = None) -> str:
|
279 |
+
return pprint_thing(
|
280 |
+
thing,
|
281 |
+
escape_chars=("\t", "\r", "\n"),
|
282 |
+
quote_strings=True,
|
283 |
+
max_seq_items=max_seq_items,
|
284 |
+
)
|
285 |
+
|
286 |
+
|
287 |
+
def format_object_summary(
|
288 |
+
obj,
|
289 |
+
formatter: Callable,
|
290 |
+
is_justify: bool = True,
|
291 |
+
name: str | None = None,
|
292 |
+
indent_for_name: bool = True,
|
293 |
+
line_break_each_value: bool = False,
|
294 |
+
) -> str:
|
295 |
+
"""
|
296 |
+
Return the formatted obj as a unicode string
|
297 |
+
|
298 |
+
Parameters
|
299 |
+
----------
|
300 |
+
obj : object
|
301 |
+
must be iterable and support __getitem__
|
302 |
+
formatter : callable
|
303 |
+
string formatter for an element
|
304 |
+
is_justify : bool
|
305 |
+
should justify the display
|
306 |
+
name : name, optional
|
307 |
+
defaults to the class name of the obj
|
308 |
+
indent_for_name : bool, default True
|
309 |
+
Whether subsequent lines should be indented to
|
310 |
+
align with the name.
|
311 |
+
line_break_each_value : bool, default False
|
312 |
+
If True, inserts a line break for each value of ``obj``.
|
313 |
+
If False, only break lines when the a line of values gets wider
|
314 |
+
than the display width.
|
315 |
+
|
316 |
+
Returns
|
317 |
+
-------
|
318 |
+
summary string
|
319 |
+
"""
|
320 |
+
display_width, _ = get_console_size()
|
321 |
+
if display_width is None:
|
322 |
+
display_width = get_option("display.width") or 80
|
323 |
+
if name is None:
|
324 |
+
name = type(obj).__name__
|
325 |
+
|
326 |
+
if indent_for_name:
|
327 |
+
name_len = len(name)
|
328 |
+
space1 = f'\n{(" " * (name_len + 1))}'
|
329 |
+
space2 = f'\n{(" " * (name_len + 2))}'
|
330 |
+
else:
|
331 |
+
space1 = "\n"
|
332 |
+
space2 = "\n " # space for the opening '['
|
333 |
+
|
334 |
+
n = len(obj)
|
335 |
+
if line_break_each_value:
|
336 |
+
# If we want to vertically align on each value of obj, we need to
|
337 |
+
# separate values by a line break and indent the values
|
338 |
+
sep = ",\n " + " " * len(name)
|
339 |
+
else:
|
340 |
+
sep = ","
|
341 |
+
max_seq_items = get_option("display.max_seq_items") or n
|
342 |
+
|
343 |
+
# are we a truncated display
|
344 |
+
is_truncated = n > max_seq_items
|
345 |
+
|
346 |
+
# adj can optionally handle unicode eastern asian width
|
347 |
+
adj = get_adjustment()
|
348 |
+
|
349 |
+
def _extend_line(
|
350 |
+
s: str, line: str, value: str, display_width: int, next_line_prefix: str
|
351 |
+
) -> tuple[str, str]:
|
352 |
+
if adj.len(line.rstrip()) + adj.len(value.rstrip()) >= display_width:
|
353 |
+
s += line.rstrip()
|
354 |
+
line = next_line_prefix
|
355 |
+
line += value
|
356 |
+
return s, line
|
357 |
+
|
358 |
+
def best_len(values: list[str]) -> int:
|
359 |
+
if values:
|
360 |
+
return max(adj.len(x) for x in values)
|
361 |
+
else:
|
362 |
+
return 0
|
363 |
+
|
364 |
+
close = ", "
|
365 |
+
|
366 |
+
if n == 0:
|
367 |
+
summary = f"[]{close}"
|
368 |
+
elif n == 1 and not line_break_each_value:
|
369 |
+
first = formatter(obj[0])
|
370 |
+
summary = f"[{first}]{close}"
|
371 |
+
elif n == 2 and not line_break_each_value:
|
372 |
+
first = formatter(obj[0])
|
373 |
+
last = formatter(obj[-1])
|
374 |
+
summary = f"[{first}, {last}]{close}"
|
375 |
+
else:
|
376 |
+
if max_seq_items == 1:
|
377 |
+
# If max_seq_items=1 show only last element
|
378 |
+
head = []
|
379 |
+
tail = [formatter(x) for x in obj[-1:]]
|
380 |
+
elif n > max_seq_items:
|
381 |
+
n = min(max_seq_items // 2, 10)
|
382 |
+
head = [formatter(x) for x in obj[:n]]
|
383 |
+
tail = [formatter(x) for x in obj[-n:]]
|
384 |
+
else:
|
385 |
+
head = []
|
386 |
+
tail = [formatter(x) for x in obj]
|
387 |
+
|
388 |
+
# adjust all values to max length if needed
|
389 |
+
if is_justify:
|
390 |
+
if line_break_each_value:
|
391 |
+
# Justify each string in the values of head and tail, so the
|
392 |
+
# strings will right align when head and tail are stacked
|
393 |
+
# vertically.
|
394 |
+
head, tail = _justify(head, tail)
|
395 |
+
elif is_truncated or not (
|
396 |
+
len(", ".join(head)) < display_width
|
397 |
+
and len(", ".join(tail)) < display_width
|
398 |
+
):
|
399 |
+
# Each string in head and tail should align with each other
|
400 |
+
max_length = max(best_len(head), best_len(tail))
|
401 |
+
head = [x.rjust(max_length) for x in head]
|
402 |
+
tail = [x.rjust(max_length) for x in tail]
|
403 |
+
# If we are not truncated and we are only a single
|
404 |
+
# line, then don't justify
|
405 |
+
|
406 |
+
if line_break_each_value:
|
407 |
+
# Now head and tail are of type List[Tuple[str]]. Below we
|
408 |
+
# convert them into List[str], so there will be one string per
|
409 |
+
# value. Also truncate items horizontally if wider than
|
410 |
+
# max_space
|
411 |
+
max_space = display_width - len(space2)
|
412 |
+
value = tail[0]
|
413 |
+
max_items = 1
|
414 |
+
for num_items in reversed(range(1, len(value) + 1)):
|
415 |
+
pprinted_seq = _pprint_seq(value, max_seq_items=num_items)
|
416 |
+
if len(pprinted_seq) < max_space:
|
417 |
+
max_items = num_items
|
418 |
+
break
|
419 |
+
head = [_pprint_seq(x, max_seq_items=max_items) for x in head]
|
420 |
+
tail = [_pprint_seq(x, max_seq_items=max_items) for x in tail]
|
421 |
+
|
422 |
+
summary = ""
|
423 |
+
line = space2
|
424 |
+
|
425 |
+
for head_value in head:
|
426 |
+
word = head_value + sep + " "
|
427 |
+
summary, line = _extend_line(summary, line, word, display_width, space2)
|
428 |
+
|
429 |
+
if is_truncated:
|
430 |
+
# remove trailing space of last line
|
431 |
+
summary += line.rstrip() + space2 + "..."
|
432 |
+
line = space2
|
433 |
+
|
434 |
+
for tail_item in tail[:-1]:
|
435 |
+
word = tail_item + sep + " "
|
436 |
+
summary, line = _extend_line(summary, line, word, display_width, space2)
|
437 |
+
|
438 |
+
# last value: no sep added + 1 space of width used for trailing ','
|
439 |
+
summary, line = _extend_line(summary, line, tail[-1], display_width - 2, space2)
|
440 |
+
summary += line
|
441 |
+
|
442 |
+
# right now close is either '' or ', '
|
443 |
+
# Now we want to include the ']', but not the maybe space.
|
444 |
+
close = "]" + close.rstrip(" ")
|
445 |
+
summary += close
|
446 |
+
|
447 |
+
if len(summary) > (display_width) or line_break_each_value:
|
448 |
+
summary += space1
|
449 |
+
else: # one row
|
450 |
+
summary += " "
|
451 |
+
|
452 |
+
# remove initial space
|
453 |
+
summary = "[" + summary[len(space2) :]
|
454 |
+
|
455 |
+
return summary
|
456 |
+
|
457 |
+
|
458 |
+
def _justify(
|
459 |
+
head: list[Sequence[str]], tail: list[Sequence[str]]
|
460 |
+
) -> tuple[list[tuple[str, ...]], list[tuple[str, ...]]]:
|
461 |
+
"""
|
462 |
+
Justify items in head and tail, so they are right-aligned when stacked.
|
463 |
+
|
464 |
+
Parameters
|
465 |
+
----------
|
466 |
+
head : list-like of list-likes of strings
|
467 |
+
tail : list-like of list-likes of strings
|
468 |
+
|
469 |
+
Returns
|
470 |
+
-------
|
471 |
+
tuple of list of tuples of strings
|
472 |
+
Same as head and tail, but items are right aligned when stacked
|
473 |
+
vertically.
|
474 |
+
|
475 |
+
Examples
|
476 |
+
--------
|
477 |
+
>>> _justify([['a', 'b']], [['abc', 'abcd']])
|
478 |
+
([(' a', ' b')], [('abc', 'abcd')])
|
479 |
+
"""
|
480 |
+
combined = head + tail
|
481 |
+
|
482 |
+
# For each position for the sequences in ``combined``,
|
483 |
+
# find the length of the largest string.
|
484 |
+
max_length = [0] * len(combined[0])
|
485 |
+
for inner_seq in combined:
|
486 |
+
length = [len(item) for item in inner_seq]
|
487 |
+
max_length = [max(x, y) for x, y in zip(max_length, length)]
|
488 |
+
|
489 |
+
# justify each item in each list-like in head and tail using max_length
|
490 |
+
head_tuples = [
|
491 |
+
tuple(x.rjust(max_len) for x, max_len in zip(seq, max_length)) for seq in head
|
492 |
+
]
|
493 |
+
tail_tuples = [
|
494 |
+
tuple(x.rjust(max_len) for x, max_len in zip(seq, max_length)) for seq in tail
|
495 |
+
]
|
496 |
+
return head_tuples, tail_tuples
|
497 |
+
|
498 |
+
|
499 |
+
class PrettyDict(dict[_KT, _VT]):
|
500 |
+
"""Dict extension to support abbreviated __repr__"""
|
501 |
+
|
502 |
+
def __repr__(self) -> str:
|
503 |
+
return pprint_thing(self)
|
504 |
+
|
505 |
+
|
506 |
+
class _TextAdjustment:
|
507 |
+
def __init__(self) -> None:
|
508 |
+
self.encoding = get_option("display.encoding")
|
509 |
+
|
510 |
+
def len(self, text: str) -> int:
|
511 |
+
return len(text)
|
512 |
+
|
513 |
+
def justify(self, texts: Any, max_len: int, mode: str = "right") -> list[str]:
|
514 |
+
"""
|
515 |
+
Perform ljust, center, rjust against string or list-like
|
516 |
+
"""
|
517 |
+
if mode == "left":
|
518 |
+
return [x.ljust(max_len) for x in texts]
|
519 |
+
elif mode == "center":
|
520 |
+
return [x.center(max_len) for x in texts]
|
521 |
+
else:
|
522 |
+
return [x.rjust(max_len) for x in texts]
|
523 |
+
|
524 |
+
def adjoin(self, space: int, *lists, **kwargs) -> str:
|
525 |
+
return adjoin(space, *lists, strlen=self.len, justfunc=self.justify, **kwargs)
|
526 |
+
|
527 |
+
|
528 |
+
class _EastAsianTextAdjustment(_TextAdjustment):
|
529 |
+
def __init__(self) -> None:
|
530 |
+
super().__init__()
|
531 |
+
if get_option("display.unicode.ambiguous_as_wide"):
|
532 |
+
self.ambiguous_width = 2
|
533 |
+
else:
|
534 |
+
self.ambiguous_width = 1
|
535 |
+
|
536 |
+
# Definition of East Asian Width
|
537 |
+
# https://unicode.org/reports/tr11/
|
538 |
+
# Ambiguous width can be changed by option
|
539 |
+
self._EAW_MAP = {"Na": 1, "N": 1, "W": 2, "F": 2, "H": 1}
|
540 |
+
|
541 |
+
def len(self, text: str) -> int:
|
542 |
+
"""
|
543 |
+
Calculate display width considering unicode East Asian Width
|
544 |
+
"""
|
545 |
+
if not isinstance(text, str):
|
546 |
+
return len(text)
|
547 |
+
|
548 |
+
return sum(
|
549 |
+
self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text
|
550 |
+
)
|
551 |
+
|
552 |
+
def justify(
|
553 |
+
self, texts: Iterable[str], max_len: int, mode: str = "right"
|
554 |
+
) -> list[str]:
|
555 |
+
# re-calculate padding space per str considering East Asian Width
|
556 |
+
def _get_pad(t):
|
557 |
+
return max_len - self.len(t) + len(t)
|
558 |
+
|
559 |
+
if mode == "left":
|
560 |
+
return [x.ljust(_get_pad(x)) for x in texts]
|
561 |
+
elif mode == "center":
|
562 |
+
return [x.center(_get_pad(x)) for x in texts]
|
563 |
+
else:
|
564 |
+
return [x.rjust(_get_pad(x)) for x in texts]
|
565 |
+
|
566 |
+
|
567 |
+
def get_adjustment() -> _TextAdjustment:
|
568 |
+
use_east_asian_width = get_option("display.unicode.east_asian_width")
|
569 |
+
if use_east_asian_width:
|
570 |
+
return _EastAsianTextAdjustment()
|
571 |
+
else:
|
572 |
+
return _TextAdjustment()
|
venv/lib/python3.10/site-packages/pandas/io/formats/string.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module for formatting output data in console (to string).
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from shutil import get_terminal_size
|
7 |
+
from typing import TYPE_CHECKING
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from pandas.io.formats.printing import pprint_thing
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
from collections.abc import Iterable
|
15 |
+
|
16 |
+
from pandas.io.formats.format import DataFrameFormatter
|
17 |
+
|
18 |
+
|
19 |
+
class StringFormatter:
|
20 |
+
"""Formatter for string representation of a dataframe."""
|
21 |
+
|
22 |
+
def __init__(self, fmt: DataFrameFormatter, line_width: int | None = None) -> None:
|
23 |
+
self.fmt = fmt
|
24 |
+
self.adj = fmt.adj
|
25 |
+
self.frame = fmt.frame
|
26 |
+
self.line_width = line_width
|
27 |
+
|
28 |
+
def to_string(self) -> str:
|
29 |
+
text = self._get_string_representation()
|
30 |
+
if self.fmt.should_show_dimensions:
|
31 |
+
text = f"{text}{self.fmt.dimensions_info}"
|
32 |
+
return text
|
33 |
+
|
34 |
+
def _get_strcols(self) -> list[list[str]]:
|
35 |
+
strcols = self.fmt.get_strcols()
|
36 |
+
if self.fmt.is_truncated:
|
37 |
+
strcols = self._insert_dot_separators(strcols)
|
38 |
+
return strcols
|
39 |
+
|
40 |
+
def _get_string_representation(self) -> str:
|
41 |
+
if self.fmt.frame.empty:
|
42 |
+
return self._empty_info_line
|
43 |
+
|
44 |
+
strcols = self._get_strcols()
|
45 |
+
|
46 |
+
if self.line_width is None:
|
47 |
+
# no need to wrap around just print the whole frame
|
48 |
+
return self.adj.adjoin(1, *strcols)
|
49 |
+
|
50 |
+
if self._need_to_wrap_around:
|
51 |
+
return self._join_multiline(strcols)
|
52 |
+
|
53 |
+
return self._fit_strcols_to_terminal_width(strcols)
|
54 |
+
|
55 |
+
@property
|
56 |
+
def _empty_info_line(self) -> str:
|
57 |
+
return (
|
58 |
+
f"Empty {type(self.frame).__name__}\n"
|
59 |
+
f"Columns: {pprint_thing(self.frame.columns)}\n"
|
60 |
+
f"Index: {pprint_thing(self.frame.index)}"
|
61 |
+
)
|
62 |
+
|
63 |
+
@property
|
64 |
+
def _need_to_wrap_around(self) -> bool:
|
65 |
+
return bool(self.fmt.max_cols is None or self.fmt.max_cols > 0)
|
66 |
+
|
67 |
+
def _insert_dot_separators(self, strcols: list[list[str]]) -> list[list[str]]:
|
68 |
+
str_index = self.fmt._get_formatted_index(self.fmt.tr_frame)
|
69 |
+
index_length = len(str_index)
|
70 |
+
|
71 |
+
if self.fmt.is_truncated_horizontally:
|
72 |
+
strcols = self._insert_dot_separator_horizontal(strcols, index_length)
|
73 |
+
|
74 |
+
if self.fmt.is_truncated_vertically:
|
75 |
+
strcols = self._insert_dot_separator_vertical(strcols, index_length)
|
76 |
+
|
77 |
+
return strcols
|
78 |
+
|
79 |
+
@property
|
80 |
+
def _adjusted_tr_col_num(self) -> int:
|
81 |
+
return self.fmt.tr_col_num + 1 if self.fmt.index else self.fmt.tr_col_num
|
82 |
+
|
83 |
+
def _insert_dot_separator_horizontal(
|
84 |
+
self, strcols: list[list[str]], index_length: int
|
85 |
+
) -> list[list[str]]:
|
86 |
+
strcols.insert(self._adjusted_tr_col_num, [" ..."] * index_length)
|
87 |
+
return strcols
|
88 |
+
|
89 |
+
def _insert_dot_separator_vertical(
|
90 |
+
self, strcols: list[list[str]], index_length: int
|
91 |
+
) -> list[list[str]]:
|
92 |
+
n_header_rows = index_length - len(self.fmt.tr_frame)
|
93 |
+
row_num = self.fmt.tr_row_num
|
94 |
+
for ix, col in enumerate(strcols):
|
95 |
+
cwidth = self.adj.len(col[row_num])
|
96 |
+
|
97 |
+
if self.fmt.is_truncated_horizontally:
|
98 |
+
is_dot_col = ix == self._adjusted_tr_col_num
|
99 |
+
else:
|
100 |
+
is_dot_col = False
|
101 |
+
|
102 |
+
if cwidth > 3 or is_dot_col:
|
103 |
+
dots = "..."
|
104 |
+
else:
|
105 |
+
dots = ".."
|
106 |
+
|
107 |
+
if ix == 0 and self.fmt.index:
|
108 |
+
dot_mode = "left"
|
109 |
+
elif is_dot_col:
|
110 |
+
cwidth = 4
|
111 |
+
dot_mode = "right"
|
112 |
+
else:
|
113 |
+
dot_mode = "right"
|
114 |
+
|
115 |
+
dot_str = self.adj.justify([dots], cwidth, mode=dot_mode)[0]
|
116 |
+
col.insert(row_num + n_header_rows, dot_str)
|
117 |
+
return strcols
|
118 |
+
|
119 |
+
def _join_multiline(self, strcols_input: Iterable[list[str]]) -> str:
|
120 |
+
lwidth = self.line_width
|
121 |
+
adjoin_width = 1
|
122 |
+
strcols = list(strcols_input)
|
123 |
+
|
124 |
+
if self.fmt.index:
|
125 |
+
idx = strcols.pop(0)
|
126 |
+
lwidth -= np.array([self.adj.len(x) for x in idx]).max() + adjoin_width
|
127 |
+
|
128 |
+
col_widths = [
|
129 |
+
np.array([self.adj.len(x) for x in col]).max() if len(col) > 0 else 0
|
130 |
+
for col in strcols
|
131 |
+
]
|
132 |
+
|
133 |
+
assert lwidth is not None
|
134 |
+
col_bins = _binify(col_widths, lwidth)
|
135 |
+
nbins = len(col_bins)
|
136 |
+
|
137 |
+
str_lst = []
|
138 |
+
start = 0
|
139 |
+
for i, end in enumerate(col_bins):
|
140 |
+
row = strcols[start:end]
|
141 |
+
if self.fmt.index:
|
142 |
+
row.insert(0, idx)
|
143 |
+
if nbins > 1:
|
144 |
+
nrows = len(row[-1])
|
145 |
+
if end <= len(strcols) and i < nbins - 1:
|
146 |
+
row.append([" \\"] + [" "] * (nrows - 1))
|
147 |
+
else:
|
148 |
+
row.append([" "] * nrows)
|
149 |
+
str_lst.append(self.adj.adjoin(adjoin_width, *row))
|
150 |
+
start = end
|
151 |
+
return "\n\n".join(str_lst)
|
152 |
+
|
153 |
+
def _fit_strcols_to_terminal_width(self, strcols: list[list[str]]) -> str:
|
154 |
+
from pandas import Series
|
155 |
+
|
156 |
+
lines = self.adj.adjoin(1, *strcols).split("\n")
|
157 |
+
max_len = Series(lines).str.len().max()
|
158 |
+
# plus truncate dot col
|
159 |
+
width, _ = get_terminal_size()
|
160 |
+
dif = max_len - width
|
161 |
+
# '+ 1' to avoid too wide repr (GH PR #17023)
|
162 |
+
adj_dif = dif + 1
|
163 |
+
col_lens = Series([Series(ele).str.len().max() for ele in strcols])
|
164 |
+
n_cols = len(col_lens)
|
165 |
+
counter = 0
|
166 |
+
while adj_dif > 0 and n_cols > 1:
|
167 |
+
counter += 1
|
168 |
+
mid = round(n_cols / 2)
|
169 |
+
mid_ix = col_lens.index[mid]
|
170 |
+
col_len = col_lens[mid_ix]
|
171 |
+
# adjoin adds one
|
172 |
+
adj_dif -= col_len + 1
|
173 |
+
col_lens = col_lens.drop(mid_ix)
|
174 |
+
n_cols = len(col_lens)
|
175 |
+
|
176 |
+
# subtract index column
|
177 |
+
max_cols_fitted = n_cols - self.fmt.index
|
178 |
+
# GH-21180. Ensure that we print at least two.
|
179 |
+
max_cols_fitted = max(max_cols_fitted, 2)
|
180 |
+
self.fmt.max_cols_fitted = max_cols_fitted
|
181 |
+
|
182 |
+
# Call again _truncate to cut frame appropriately
|
183 |
+
# and then generate string representation
|
184 |
+
self.fmt.truncate()
|
185 |
+
strcols = self._get_strcols()
|
186 |
+
return self.adj.adjoin(1, *strcols)
|
187 |
+
|
188 |
+
|
189 |
+
def _binify(cols: list[int], line_width: int) -> list[int]:
|
190 |
+
adjoin_width = 1
|
191 |
+
bins = []
|
192 |
+
curr_width = 0
|
193 |
+
i_last_column = len(cols) - 1
|
194 |
+
for i, w in enumerate(cols):
|
195 |
+
w_adjoined = w + adjoin_width
|
196 |
+
curr_width += w_adjoined
|
197 |
+
if i_last_column == i:
|
198 |
+
wrap = curr_width + 1 > line_width and i > 0
|
199 |
+
else:
|
200 |
+
wrap = curr_width + 2 > line_width and i > 0
|
201 |
+
if wrap:
|
202 |
+
bins.append(i)
|
203 |
+
curr_width = w_adjoined
|
204 |
+
|
205 |
+
bins.append(len(cols))
|
206 |
+
return bins
|
venv/lib/python3.10/site-packages/pandas/io/formats/style.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/pandas/io/formats/style_render.py
ADDED
@@ -0,0 +1,2497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from collections import defaultdict
|
4 |
+
from collections.abc import Sequence
|
5 |
+
from functools import partial
|
6 |
+
import re
|
7 |
+
from typing import (
|
8 |
+
TYPE_CHECKING,
|
9 |
+
Any,
|
10 |
+
Callable,
|
11 |
+
DefaultDict,
|
12 |
+
Optional,
|
13 |
+
TypedDict,
|
14 |
+
Union,
|
15 |
+
)
|
16 |
+
from uuid import uuid4
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
from pandas._config import get_option
|
21 |
+
|
22 |
+
from pandas._libs import lib
|
23 |
+
from pandas.compat._optional import import_optional_dependency
|
24 |
+
|
25 |
+
from pandas.core.dtypes.common import (
|
26 |
+
is_complex,
|
27 |
+
is_float,
|
28 |
+
is_integer,
|
29 |
+
)
|
30 |
+
from pandas.core.dtypes.generic import ABCSeries
|
31 |
+
|
32 |
+
from pandas import (
|
33 |
+
DataFrame,
|
34 |
+
Index,
|
35 |
+
IndexSlice,
|
36 |
+
MultiIndex,
|
37 |
+
Series,
|
38 |
+
isna,
|
39 |
+
)
|
40 |
+
from pandas.api.types import is_list_like
|
41 |
+
import pandas.core.common as com
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from pandas._typing import (
|
45 |
+
Axis,
|
46 |
+
Level,
|
47 |
+
)
|
48 |
+
jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")
|
49 |
+
from markupsafe import escape as escape_html # markupsafe is jinja2 dependency
|
50 |
+
|
51 |
+
BaseFormatter = Union[str, Callable]
|
52 |
+
ExtFormatter = Union[BaseFormatter, dict[Any, Optional[BaseFormatter]]]
|
53 |
+
CSSPair = tuple[str, Union[str, float]]
|
54 |
+
CSSList = list[CSSPair]
|
55 |
+
CSSProperties = Union[str, CSSList]
|
56 |
+
|
57 |
+
|
58 |
+
class CSSDict(TypedDict):
|
59 |
+
selector: str
|
60 |
+
props: CSSProperties
|
61 |
+
|
62 |
+
|
63 |
+
CSSStyles = list[CSSDict]
|
64 |
+
Subset = Union[slice, Sequence, Index]
|
65 |
+
|
66 |
+
|
67 |
+
class StylerRenderer:
|
68 |
+
"""
|
69 |
+
Base class to process rendering a Styler with a specified jinja2 template.
|
70 |
+
"""
|
71 |
+
|
72 |
+
loader = jinja2.PackageLoader("pandas", "io/formats/templates")
|
73 |
+
env = jinja2.Environment(loader=loader, trim_blocks=True)
|
74 |
+
template_html = env.get_template("html.tpl")
|
75 |
+
template_html_table = env.get_template("html_table.tpl")
|
76 |
+
template_html_style = env.get_template("html_style.tpl")
|
77 |
+
template_latex = env.get_template("latex.tpl")
|
78 |
+
template_string = env.get_template("string.tpl")
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
data: DataFrame | Series,
|
83 |
+
uuid: str | None = None,
|
84 |
+
uuid_len: int = 5,
|
85 |
+
table_styles: CSSStyles | None = None,
|
86 |
+
table_attributes: str | None = None,
|
87 |
+
caption: str | tuple | list | None = None,
|
88 |
+
cell_ids: bool = True,
|
89 |
+
precision: int | None = None,
|
90 |
+
) -> None:
|
91 |
+
# validate ordered args
|
92 |
+
if isinstance(data, Series):
|
93 |
+
data = data.to_frame()
|
94 |
+
if not isinstance(data, DataFrame):
|
95 |
+
raise TypeError("``data`` must be a Series or DataFrame")
|
96 |
+
self.data: DataFrame = data
|
97 |
+
self.index: Index = data.index
|
98 |
+
self.columns: Index = data.columns
|
99 |
+
if not isinstance(uuid_len, int) or uuid_len < 0:
|
100 |
+
raise TypeError("``uuid_len`` must be an integer in range [0, 32].")
|
101 |
+
self.uuid = uuid or uuid4().hex[: min(32, uuid_len)]
|
102 |
+
self.uuid_len = len(self.uuid)
|
103 |
+
self.table_styles = table_styles
|
104 |
+
self.table_attributes = table_attributes
|
105 |
+
self.caption = caption
|
106 |
+
self.cell_ids = cell_ids
|
107 |
+
self.css = {
|
108 |
+
"row_heading": "row_heading",
|
109 |
+
"col_heading": "col_heading",
|
110 |
+
"index_name": "index_name",
|
111 |
+
"col": "col",
|
112 |
+
"row": "row",
|
113 |
+
"col_trim": "col_trim",
|
114 |
+
"row_trim": "row_trim",
|
115 |
+
"level": "level",
|
116 |
+
"data": "data",
|
117 |
+
"blank": "blank",
|
118 |
+
"foot": "foot",
|
119 |
+
}
|
120 |
+
self.concatenated: list[StylerRenderer] = []
|
121 |
+
# add rendering variables
|
122 |
+
self.hide_index_names: bool = False
|
123 |
+
self.hide_column_names: bool = False
|
124 |
+
self.hide_index_: list = [False] * self.index.nlevels
|
125 |
+
self.hide_columns_: list = [False] * self.columns.nlevels
|
126 |
+
self.hidden_rows: Sequence[int] = [] # sequence for specific hidden rows/cols
|
127 |
+
self.hidden_columns: Sequence[int] = []
|
128 |
+
self.ctx: DefaultDict[tuple[int, int], CSSList] = defaultdict(list)
|
129 |
+
self.ctx_index: DefaultDict[tuple[int, int], CSSList] = defaultdict(list)
|
130 |
+
self.ctx_columns: DefaultDict[tuple[int, int], CSSList] = defaultdict(list)
|
131 |
+
self.cell_context: DefaultDict[tuple[int, int], str] = defaultdict(str)
|
132 |
+
self._todo: list[tuple[Callable, tuple, dict]] = []
|
133 |
+
self.tooltips: Tooltips | None = None
|
134 |
+
precision = (
|
135 |
+
get_option("styler.format.precision") if precision is None else precision
|
136 |
+
)
|
137 |
+
self._display_funcs: DefaultDict[ # maps (row, col) -> format func
|
138 |
+
tuple[int, int], Callable[[Any], str]
|
139 |
+
] = defaultdict(lambda: partial(_default_formatter, precision=precision))
|
140 |
+
self._display_funcs_index: DefaultDict[ # maps (row, level) -> format func
|
141 |
+
tuple[int, int], Callable[[Any], str]
|
142 |
+
] = defaultdict(lambda: partial(_default_formatter, precision=precision))
|
143 |
+
self._display_funcs_columns: DefaultDict[ # maps (level, col) -> format func
|
144 |
+
tuple[int, int], Callable[[Any], str]
|
145 |
+
] = defaultdict(lambda: partial(_default_formatter, precision=precision))
|
146 |
+
|
147 |
+
def _render(
|
148 |
+
self,
|
149 |
+
sparse_index: bool,
|
150 |
+
sparse_columns: bool,
|
151 |
+
max_rows: int | None = None,
|
152 |
+
max_cols: int | None = None,
|
153 |
+
blank: str = "",
|
154 |
+
):
|
155 |
+
"""
|
156 |
+
Computes and applies styles and then generates the general render dicts.
|
157 |
+
|
158 |
+
Also extends the `ctx` and `ctx_index` attributes with those of concatenated
|
159 |
+
stylers for use within `_translate_latex`
|
160 |
+
"""
|
161 |
+
self._compute()
|
162 |
+
dxs = []
|
163 |
+
ctx_len = len(self.index)
|
164 |
+
for i, concatenated in enumerate(self.concatenated):
|
165 |
+
concatenated.hide_index_ = self.hide_index_
|
166 |
+
concatenated.hidden_columns = self.hidden_columns
|
167 |
+
foot = f"{self.css['foot']}{i}"
|
168 |
+
concatenated.css = {
|
169 |
+
**self.css,
|
170 |
+
"data": f"{foot}_data",
|
171 |
+
"row_heading": f"{foot}_row_heading",
|
172 |
+
"row": f"{foot}_row",
|
173 |
+
"foot": f"{foot}_foot",
|
174 |
+
}
|
175 |
+
dx = concatenated._render(
|
176 |
+
sparse_index, sparse_columns, max_rows, max_cols, blank
|
177 |
+
)
|
178 |
+
dxs.append(dx)
|
179 |
+
|
180 |
+
for (r, c), v in concatenated.ctx.items():
|
181 |
+
self.ctx[(r + ctx_len, c)] = v
|
182 |
+
for (r, c), v in concatenated.ctx_index.items():
|
183 |
+
self.ctx_index[(r + ctx_len, c)] = v
|
184 |
+
|
185 |
+
ctx_len += len(concatenated.index)
|
186 |
+
|
187 |
+
d = self._translate(
|
188 |
+
sparse_index, sparse_columns, max_rows, max_cols, blank, dxs
|
189 |
+
)
|
190 |
+
return d
|
191 |
+
|
192 |
+
def _render_html(
|
193 |
+
self,
|
194 |
+
sparse_index: bool,
|
195 |
+
sparse_columns: bool,
|
196 |
+
max_rows: int | None = None,
|
197 |
+
max_cols: int | None = None,
|
198 |
+
**kwargs,
|
199 |
+
) -> str:
|
200 |
+
"""
|
201 |
+
Renders the ``Styler`` including all applied styles to HTML.
|
202 |
+
Generates a dict with necessary kwargs passed to jinja2 template.
|
203 |
+
"""
|
204 |
+
d = self._render(sparse_index, sparse_columns, max_rows, max_cols, " ")
|
205 |
+
d.update(kwargs)
|
206 |
+
return self.template_html.render(
|
207 |
+
**d,
|
208 |
+
html_table_tpl=self.template_html_table,
|
209 |
+
html_style_tpl=self.template_html_style,
|
210 |
+
)
|
211 |
+
|
212 |
+
def _render_latex(
|
213 |
+
self, sparse_index: bool, sparse_columns: bool, clines: str | None, **kwargs
|
214 |
+
) -> str:
|
215 |
+
"""
|
216 |
+
Render a Styler in latex format
|
217 |
+
"""
|
218 |
+
d = self._render(sparse_index, sparse_columns, None, None)
|
219 |
+
self._translate_latex(d, clines=clines)
|
220 |
+
self.template_latex.globals["parse_wrap"] = _parse_latex_table_wrapping
|
221 |
+
self.template_latex.globals["parse_table"] = _parse_latex_table_styles
|
222 |
+
self.template_latex.globals["parse_cell"] = _parse_latex_cell_styles
|
223 |
+
self.template_latex.globals["parse_header"] = _parse_latex_header_span
|
224 |
+
d.update(kwargs)
|
225 |
+
return self.template_latex.render(**d)
|
226 |
+
|
227 |
+
def _render_string(
|
228 |
+
self,
|
229 |
+
sparse_index: bool,
|
230 |
+
sparse_columns: bool,
|
231 |
+
max_rows: int | None = None,
|
232 |
+
max_cols: int | None = None,
|
233 |
+
**kwargs,
|
234 |
+
) -> str:
|
235 |
+
"""
|
236 |
+
Render a Styler in string format
|
237 |
+
"""
|
238 |
+
d = self._render(sparse_index, sparse_columns, max_rows, max_cols)
|
239 |
+
d.update(kwargs)
|
240 |
+
return self.template_string.render(**d)
|
241 |
+
|
242 |
+
def _compute(self):
|
243 |
+
"""
|
244 |
+
Execute the style functions built up in `self._todo`.
|
245 |
+
|
246 |
+
Relies on the conventions that all style functions go through
|
247 |
+
.apply or .map. The append styles to apply as tuples of
|
248 |
+
|
249 |
+
(application method, *args, **kwargs)
|
250 |
+
"""
|
251 |
+
self.ctx.clear()
|
252 |
+
self.ctx_index.clear()
|
253 |
+
self.ctx_columns.clear()
|
254 |
+
r = self
|
255 |
+
for func, args, kwargs in self._todo:
|
256 |
+
r = func(self)(*args, **kwargs)
|
257 |
+
return r
|
258 |
+
|
259 |
+
def _translate(
|
260 |
+
self,
|
261 |
+
sparse_index: bool,
|
262 |
+
sparse_cols: bool,
|
263 |
+
max_rows: int | None = None,
|
264 |
+
max_cols: int | None = None,
|
265 |
+
blank: str = " ",
|
266 |
+
dxs: list[dict] | None = None,
|
267 |
+
):
|
268 |
+
"""
|
269 |
+
Process Styler data and settings into a dict for template rendering.
|
270 |
+
|
271 |
+
Convert data and settings from ``Styler`` attributes such as ``self.data``,
|
272 |
+
``self.tooltips`` including applying any methods in ``self._todo``.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
----------
|
276 |
+
sparse_index : bool
|
277 |
+
Whether to sparsify the index or print all hierarchical index elements.
|
278 |
+
Upstream defaults are typically to `pandas.options.styler.sparse.index`.
|
279 |
+
sparse_cols : bool
|
280 |
+
Whether to sparsify the columns or print all hierarchical column elements.
|
281 |
+
Upstream defaults are typically to `pandas.options.styler.sparse.columns`.
|
282 |
+
max_rows, max_cols : int, optional
|
283 |
+
Specific max rows and cols. max_elements always take precedence in render.
|
284 |
+
blank : str
|
285 |
+
Entry to top-left blank cells.
|
286 |
+
dxs : list[dict]
|
287 |
+
The render dicts of the concatenated Stylers.
|
288 |
+
|
289 |
+
Returns
|
290 |
+
-------
|
291 |
+
d : dict
|
292 |
+
The following structure: {uuid, table_styles, caption, head, body,
|
293 |
+
cellstyle, table_attributes}
|
294 |
+
"""
|
295 |
+
if dxs is None:
|
296 |
+
dxs = []
|
297 |
+
self.css["blank_value"] = blank
|
298 |
+
|
299 |
+
# construct render dict
|
300 |
+
d = {
|
301 |
+
"uuid": self.uuid,
|
302 |
+
"table_styles": format_table_styles(self.table_styles or []),
|
303 |
+
"caption": self.caption,
|
304 |
+
}
|
305 |
+
|
306 |
+
max_elements = get_option("styler.render.max_elements")
|
307 |
+
max_rows = max_rows if max_rows else get_option("styler.render.max_rows")
|
308 |
+
max_cols = max_cols if max_cols else get_option("styler.render.max_columns")
|
309 |
+
max_rows, max_cols = _get_trimming_maximums(
|
310 |
+
len(self.data.index),
|
311 |
+
len(self.data.columns),
|
312 |
+
max_elements,
|
313 |
+
max_rows,
|
314 |
+
max_cols,
|
315 |
+
)
|
316 |
+
|
317 |
+
self.cellstyle_map_columns: DefaultDict[
|
318 |
+
tuple[CSSPair, ...], list[str]
|
319 |
+
] = defaultdict(list)
|
320 |
+
head = self._translate_header(sparse_cols, max_cols)
|
321 |
+
d.update({"head": head})
|
322 |
+
|
323 |
+
# for sparsifying a MultiIndex and for use with latex clines
|
324 |
+
idx_lengths = _get_level_lengths(
|
325 |
+
self.index, sparse_index, max_rows, self.hidden_rows
|
326 |
+
)
|
327 |
+
d.update({"index_lengths": idx_lengths})
|
328 |
+
|
329 |
+
self.cellstyle_map: DefaultDict[tuple[CSSPair, ...], list[str]] = defaultdict(
|
330 |
+
list
|
331 |
+
)
|
332 |
+
self.cellstyle_map_index: DefaultDict[
|
333 |
+
tuple[CSSPair, ...], list[str]
|
334 |
+
] = defaultdict(list)
|
335 |
+
body: list = self._translate_body(idx_lengths, max_rows, max_cols)
|
336 |
+
d.update({"body": body})
|
337 |
+
|
338 |
+
ctx_maps = {
|
339 |
+
"cellstyle": "cellstyle_map",
|
340 |
+
"cellstyle_index": "cellstyle_map_index",
|
341 |
+
"cellstyle_columns": "cellstyle_map_columns",
|
342 |
+
} # add the cell_ids styles map to the render dictionary in right format
|
343 |
+
for k, attr in ctx_maps.items():
|
344 |
+
map = [
|
345 |
+
{"props": list(props), "selectors": selectors}
|
346 |
+
for props, selectors in getattr(self, attr).items()
|
347 |
+
]
|
348 |
+
d.update({k: map})
|
349 |
+
|
350 |
+
for dx in dxs: # self.concatenated is not empty
|
351 |
+
d["body"].extend(dx["body"]) # type: ignore[union-attr]
|
352 |
+
d["cellstyle"].extend(dx["cellstyle"]) # type: ignore[union-attr]
|
353 |
+
d["cellstyle_index"].extend( # type: ignore[union-attr]
|
354 |
+
dx["cellstyle_index"]
|
355 |
+
)
|
356 |
+
|
357 |
+
table_attr = self.table_attributes
|
358 |
+
if not get_option("styler.html.mathjax"):
|
359 |
+
table_attr = table_attr or ""
|
360 |
+
if 'class="' in table_attr:
|
361 |
+
table_attr = table_attr.replace('class="', 'class="tex2jax_ignore ')
|
362 |
+
else:
|
363 |
+
table_attr += ' class="tex2jax_ignore"'
|
364 |
+
d.update({"table_attributes": table_attr})
|
365 |
+
|
366 |
+
if self.tooltips:
|
367 |
+
d = self.tooltips._translate(self, d)
|
368 |
+
|
369 |
+
return d
|
370 |
+
|
371 |
+
def _translate_header(self, sparsify_cols: bool, max_cols: int):
|
372 |
+
"""
|
373 |
+
Build each <tr> within table <head> as a list
|
374 |
+
|
375 |
+
Using the structure:
|
376 |
+
+----------------------------+---------------+---------------------------+
|
377 |
+
| index_blanks ... | column_name_0 | column_headers (level_0) |
|
378 |
+
1) | .. | .. | .. |
|
379 |
+
| index_blanks ... | column_name_n | column_headers (level_n) |
|
380 |
+
+----------------------------+---------------+---------------------------+
|
381 |
+
2) | index_names (level_0 to level_n) ... | column_blanks ... |
|
382 |
+
+----------------------------+---------------+---------------------------+
|
383 |
+
|
384 |
+
Parameters
|
385 |
+
----------
|
386 |
+
sparsify_cols : bool
|
387 |
+
Whether column_headers section will add colspan attributes (>1) to elements.
|
388 |
+
max_cols : int
|
389 |
+
Maximum number of columns to render. If exceeded will contain `...` filler.
|
390 |
+
|
391 |
+
Returns
|
392 |
+
-------
|
393 |
+
head : list
|
394 |
+
The associated HTML elements needed for template rendering.
|
395 |
+
"""
|
396 |
+
# for sparsifying a MultiIndex
|
397 |
+
col_lengths = _get_level_lengths(
|
398 |
+
self.columns, sparsify_cols, max_cols, self.hidden_columns
|
399 |
+
)
|
400 |
+
|
401 |
+
clabels = self.data.columns.tolist()
|
402 |
+
if self.data.columns.nlevels == 1:
|
403 |
+
clabels = [[x] for x in clabels]
|
404 |
+
clabels = list(zip(*clabels))
|
405 |
+
|
406 |
+
head = []
|
407 |
+
# 1) column headers
|
408 |
+
for r, hide in enumerate(self.hide_columns_):
|
409 |
+
if hide or not clabels:
|
410 |
+
continue
|
411 |
+
|
412 |
+
header_row = self._generate_col_header_row(
|
413 |
+
(r, clabels), max_cols, col_lengths
|
414 |
+
)
|
415 |
+
head.append(header_row)
|
416 |
+
|
417 |
+
# 2) index names
|
418 |
+
if (
|
419 |
+
self.data.index.names
|
420 |
+
and com.any_not_none(*self.data.index.names)
|
421 |
+
and not all(self.hide_index_)
|
422 |
+
and not self.hide_index_names
|
423 |
+
):
|
424 |
+
index_names_row = self._generate_index_names_row(
|
425 |
+
clabels, max_cols, col_lengths
|
426 |
+
)
|
427 |
+
head.append(index_names_row)
|
428 |
+
|
429 |
+
return head
|
430 |
+
|
431 |
+
def _generate_col_header_row(
|
432 |
+
self, iter: Sequence, max_cols: int, col_lengths: dict
|
433 |
+
):
|
434 |
+
"""
|
435 |
+
Generate the row containing column headers:
|
436 |
+
|
437 |
+
+----------------------------+---------------+---------------------------+
|
438 |
+
| index_blanks ... | column_name_i | column_headers (level_i) |
|
439 |
+
+----------------------------+---------------+---------------------------+
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
----------
|
443 |
+
iter : tuple
|
444 |
+
Looping variables from outer scope
|
445 |
+
max_cols : int
|
446 |
+
Permissible number of columns
|
447 |
+
col_lengths :
|
448 |
+
c
|
449 |
+
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
list of elements
|
453 |
+
"""
|
454 |
+
|
455 |
+
r, clabels = iter
|
456 |
+
|
457 |
+
# number of index blanks is governed by number of hidden index levels
|
458 |
+
index_blanks = [
|
459 |
+
_element("th", self.css["blank"], self.css["blank_value"], True)
|
460 |
+
] * (self.index.nlevels - sum(self.hide_index_) - 1)
|
461 |
+
|
462 |
+
name = self.data.columns.names[r]
|
463 |
+
column_name = [
|
464 |
+
_element(
|
465 |
+
"th",
|
466 |
+
(
|
467 |
+
f"{self.css['blank']} {self.css['level']}{r}"
|
468 |
+
if name is None
|
469 |
+
else f"{self.css['index_name']} {self.css['level']}{r}"
|
470 |
+
),
|
471 |
+
name
|
472 |
+
if (name is not None and not self.hide_column_names)
|
473 |
+
else self.css["blank_value"],
|
474 |
+
not all(self.hide_index_),
|
475 |
+
)
|
476 |
+
]
|
477 |
+
|
478 |
+
column_headers: list = []
|
479 |
+
visible_col_count: int = 0
|
480 |
+
for c, value in enumerate(clabels[r]):
|
481 |
+
header_element_visible = _is_visible(c, r, col_lengths)
|
482 |
+
if header_element_visible:
|
483 |
+
visible_col_count += col_lengths.get((r, c), 0)
|
484 |
+
if self._check_trim(
|
485 |
+
visible_col_count,
|
486 |
+
max_cols,
|
487 |
+
column_headers,
|
488 |
+
"th",
|
489 |
+
f"{self.css['col_heading']} {self.css['level']}{r} "
|
490 |
+
f"{self.css['col_trim']}",
|
491 |
+
):
|
492 |
+
break
|
493 |
+
|
494 |
+
header_element = _element(
|
495 |
+
"th",
|
496 |
+
(
|
497 |
+
f"{self.css['col_heading']} {self.css['level']}{r} "
|
498 |
+
f"{self.css['col']}{c}"
|
499 |
+
),
|
500 |
+
value,
|
501 |
+
header_element_visible,
|
502 |
+
display_value=self._display_funcs_columns[(r, c)](value),
|
503 |
+
attributes=(
|
504 |
+
f'colspan="{col_lengths.get((r, c), 0)}"'
|
505 |
+
if col_lengths.get((r, c), 0) > 1
|
506 |
+
else ""
|
507 |
+
),
|
508 |
+
)
|
509 |
+
|
510 |
+
if self.cell_ids:
|
511 |
+
header_element["id"] = f"{self.css['level']}{r}_{self.css['col']}{c}"
|
512 |
+
if (
|
513 |
+
header_element_visible
|
514 |
+
and (r, c) in self.ctx_columns
|
515 |
+
and self.ctx_columns[r, c]
|
516 |
+
):
|
517 |
+
header_element["id"] = f"{self.css['level']}{r}_{self.css['col']}{c}"
|
518 |
+
self.cellstyle_map_columns[tuple(self.ctx_columns[r, c])].append(
|
519 |
+
f"{self.css['level']}{r}_{self.css['col']}{c}"
|
520 |
+
)
|
521 |
+
|
522 |
+
column_headers.append(header_element)
|
523 |
+
|
524 |
+
return index_blanks + column_name + column_headers
|
525 |
+
|
526 |
+
def _generate_index_names_row(
|
527 |
+
self, iter: Sequence, max_cols: int, col_lengths: dict
|
528 |
+
):
|
529 |
+
"""
|
530 |
+
Generate the row containing index names
|
531 |
+
|
532 |
+
+----------------------------+---------------+---------------------------+
|
533 |
+
| index_names (level_0 to level_n) ... | column_blanks ... |
|
534 |
+
+----------------------------+---------------+---------------------------+
|
535 |
+
|
536 |
+
Parameters
|
537 |
+
----------
|
538 |
+
iter : tuple
|
539 |
+
Looping variables from outer scope
|
540 |
+
max_cols : int
|
541 |
+
Permissible number of columns
|
542 |
+
|
543 |
+
Returns
|
544 |
+
-------
|
545 |
+
list of elements
|
546 |
+
"""
|
547 |
+
|
548 |
+
clabels = iter
|
549 |
+
|
550 |
+
index_names = [
|
551 |
+
_element(
|
552 |
+
"th",
|
553 |
+
f"{self.css['index_name']} {self.css['level']}{c}",
|
554 |
+
self.css["blank_value"] if name is None else name,
|
555 |
+
not self.hide_index_[c],
|
556 |
+
)
|
557 |
+
for c, name in enumerate(self.data.index.names)
|
558 |
+
]
|
559 |
+
|
560 |
+
column_blanks: list = []
|
561 |
+
visible_col_count: int = 0
|
562 |
+
if clabels:
|
563 |
+
last_level = self.columns.nlevels - 1 # use last level since never sparsed
|
564 |
+
for c, value in enumerate(clabels[last_level]):
|
565 |
+
header_element_visible = _is_visible(c, last_level, col_lengths)
|
566 |
+
if header_element_visible:
|
567 |
+
visible_col_count += 1
|
568 |
+
if self._check_trim(
|
569 |
+
visible_col_count,
|
570 |
+
max_cols,
|
571 |
+
column_blanks,
|
572 |
+
"th",
|
573 |
+
f"{self.css['blank']} {self.css['col']}{c} {self.css['col_trim']}",
|
574 |
+
self.css["blank_value"],
|
575 |
+
):
|
576 |
+
break
|
577 |
+
|
578 |
+
column_blanks.append(
|
579 |
+
_element(
|
580 |
+
"th",
|
581 |
+
f"{self.css['blank']} {self.css['col']}{c}",
|
582 |
+
self.css["blank_value"],
|
583 |
+
c not in self.hidden_columns,
|
584 |
+
)
|
585 |
+
)
|
586 |
+
|
587 |
+
return index_names + column_blanks
|
588 |
+
|
589 |
+
def _translate_body(self, idx_lengths: dict, max_rows: int, max_cols: int):
|
590 |
+
"""
|
591 |
+
Build each <tr> within table <body> as a list
|
592 |
+
|
593 |
+
Use the following structure:
|
594 |
+
+--------------------------------------------+---------------------------+
|
595 |
+
| index_header_0 ... index_header_n | data_by_column ... |
|
596 |
+
+--------------------------------------------+---------------------------+
|
597 |
+
|
598 |
+
Also add elements to the cellstyle_map for more efficient grouped elements in
|
599 |
+
<style></style> block
|
600 |
+
|
601 |
+
Parameters
|
602 |
+
----------
|
603 |
+
sparsify_index : bool
|
604 |
+
Whether index_headers section will add rowspan attributes (>1) to elements.
|
605 |
+
|
606 |
+
Returns
|
607 |
+
-------
|
608 |
+
body : list
|
609 |
+
The associated HTML elements needed for template rendering.
|
610 |
+
"""
|
611 |
+
rlabels = self.data.index.tolist()
|
612 |
+
if not isinstance(self.data.index, MultiIndex):
|
613 |
+
rlabels = [[x] for x in rlabels]
|
614 |
+
|
615 |
+
body: list = []
|
616 |
+
visible_row_count: int = 0
|
617 |
+
for r, row_tup in [
|
618 |
+
z for z in enumerate(self.data.itertuples()) if z[0] not in self.hidden_rows
|
619 |
+
]:
|
620 |
+
visible_row_count += 1
|
621 |
+
if self._check_trim(
|
622 |
+
visible_row_count,
|
623 |
+
max_rows,
|
624 |
+
body,
|
625 |
+
"row",
|
626 |
+
):
|
627 |
+
break
|
628 |
+
|
629 |
+
body_row = self._generate_body_row(
|
630 |
+
(r, row_tup, rlabels), max_cols, idx_lengths
|
631 |
+
)
|
632 |
+
body.append(body_row)
|
633 |
+
return body
|
634 |
+
|
635 |
+
def _check_trim(
|
636 |
+
self,
|
637 |
+
count: int,
|
638 |
+
max: int,
|
639 |
+
obj: list,
|
640 |
+
element: str,
|
641 |
+
css: str | None = None,
|
642 |
+
value: str = "...",
|
643 |
+
) -> bool:
|
644 |
+
"""
|
645 |
+
Indicates whether to break render loops and append a trimming indicator
|
646 |
+
|
647 |
+
Parameters
|
648 |
+
----------
|
649 |
+
count : int
|
650 |
+
The loop count of previous visible items.
|
651 |
+
max : int
|
652 |
+
The allowable rendered items in the loop.
|
653 |
+
obj : list
|
654 |
+
The current render collection of the rendered items.
|
655 |
+
element : str
|
656 |
+
The type of element to append in the case a trimming indicator is needed.
|
657 |
+
css : str, optional
|
658 |
+
The css to add to the trimming indicator element.
|
659 |
+
value : str, optional
|
660 |
+
The value of the elements display if necessary.
|
661 |
+
|
662 |
+
Returns
|
663 |
+
-------
|
664 |
+
result : bool
|
665 |
+
Whether a trimming element was required and appended.
|
666 |
+
"""
|
667 |
+
if count > max:
|
668 |
+
if element == "row":
|
669 |
+
obj.append(self._generate_trimmed_row(max))
|
670 |
+
else:
|
671 |
+
obj.append(_element(element, css, value, True, attributes=""))
|
672 |
+
return True
|
673 |
+
return False
|
674 |
+
|
675 |
+
def _generate_trimmed_row(self, max_cols: int) -> list:
|
676 |
+
"""
|
677 |
+
When a render has too many rows we generate a trimming row containing "..."
|
678 |
+
|
679 |
+
Parameters
|
680 |
+
----------
|
681 |
+
max_cols : int
|
682 |
+
Number of permissible columns
|
683 |
+
|
684 |
+
Returns
|
685 |
+
-------
|
686 |
+
list of elements
|
687 |
+
"""
|
688 |
+
index_headers = [
|
689 |
+
_element(
|
690 |
+
"th",
|
691 |
+
(
|
692 |
+
f"{self.css['row_heading']} {self.css['level']}{c} "
|
693 |
+
f"{self.css['row_trim']}"
|
694 |
+
),
|
695 |
+
"...",
|
696 |
+
not self.hide_index_[c],
|
697 |
+
attributes="",
|
698 |
+
)
|
699 |
+
for c in range(self.data.index.nlevels)
|
700 |
+
]
|
701 |
+
|
702 |
+
data: list = []
|
703 |
+
visible_col_count: int = 0
|
704 |
+
for c, _ in enumerate(self.columns):
|
705 |
+
data_element_visible = c not in self.hidden_columns
|
706 |
+
if data_element_visible:
|
707 |
+
visible_col_count += 1
|
708 |
+
if self._check_trim(
|
709 |
+
visible_col_count,
|
710 |
+
max_cols,
|
711 |
+
data,
|
712 |
+
"td",
|
713 |
+
f"{self.css['data']} {self.css['row_trim']} {self.css['col_trim']}",
|
714 |
+
):
|
715 |
+
break
|
716 |
+
|
717 |
+
data.append(
|
718 |
+
_element(
|
719 |
+
"td",
|
720 |
+
f"{self.css['data']} {self.css['col']}{c} {self.css['row_trim']}",
|
721 |
+
"...",
|
722 |
+
data_element_visible,
|
723 |
+
attributes="",
|
724 |
+
)
|
725 |
+
)
|
726 |
+
|
727 |
+
return index_headers + data
|
728 |
+
|
729 |
+
def _generate_body_row(
|
730 |
+
self,
|
731 |
+
iter: tuple,
|
732 |
+
max_cols: int,
|
733 |
+
idx_lengths: dict,
|
734 |
+
):
|
735 |
+
"""
|
736 |
+
Generate a regular row for the body section of appropriate format.
|
737 |
+
|
738 |
+
+--------------------------------------------+---------------------------+
|
739 |
+
| index_header_0 ... index_header_n | data_by_column ... |
|
740 |
+
+--------------------------------------------+---------------------------+
|
741 |
+
|
742 |
+
Parameters
|
743 |
+
----------
|
744 |
+
iter : tuple
|
745 |
+
Iterable from outer scope: row number, row data tuple, row index labels.
|
746 |
+
max_cols : int
|
747 |
+
Number of permissible columns.
|
748 |
+
idx_lengths : dict
|
749 |
+
A map of the sparsification structure of the index
|
750 |
+
|
751 |
+
Returns
|
752 |
+
-------
|
753 |
+
list of elements
|
754 |
+
"""
|
755 |
+
r, row_tup, rlabels = iter
|
756 |
+
|
757 |
+
index_headers = []
|
758 |
+
for c, value in enumerate(rlabels[r]):
|
759 |
+
header_element_visible = (
|
760 |
+
_is_visible(r, c, idx_lengths) and not self.hide_index_[c]
|
761 |
+
)
|
762 |
+
header_element = _element(
|
763 |
+
"th",
|
764 |
+
(
|
765 |
+
f"{self.css['row_heading']} {self.css['level']}{c} "
|
766 |
+
f"{self.css['row']}{r}"
|
767 |
+
),
|
768 |
+
value,
|
769 |
+
header_element_visible,
|
770 |
+
display_value=self._display_funcs_index[(r, c)](value),
|
771 |
+
attributes=(
|
772 |
+
f'rowspan="{idx_lengths.get((c, r), 0)}"'
|
773 |
+
if idx_lengths.get((c, r), 0) > 1
|
774 |
+
else ""
|
775 |
+
),
|
776 |
+
)
|
777 |
+
|
778 |
+
if self.cell_ids:
|
779 |
+
header_element[
|
780 |
+
"id"
|
781 |
+
] = f"{self.css['level']}{c}_{self.css['row']}{r}" # id is given
|
782 |
+
if (
|
783 |
+
header_element_visible
|
784 |
+
and (r, c) in self.ctx_index
|
785 |
+
and self.ctx_index[r, c]
|
786 |
+
):
|
787 |
+
# always add id if a style is specified
|
788 |
+
header_element["id"] = f"{self.css['level']}{c}_{self.css['row']}{r}"
|
789 |
+
self.cellstyle_map_index[tuple(self.ctx_index[r, c])].append(
|
790 |
+
f"{self.css['level']}{c}_{self.css['row']}{r}"
|
791 |
+
)
|
792 |
+
|
793 |
+
index_headers.append(header_element)
|
794 |
+
|
795 |
+
data: list = []
|
796 |
+
visible_col_count: int = 0
|
797 |
+
for c, value in enumerate(row_tup[1:]):
|
798 |
+
data_element_visible = (
|
799 |
+
c not in self.hidden_columns and r not in self.hidden_rows
|
800 |
+
)
|
801 |
+
if data_element_visible:
|
802 |
+
visible_col_count += 1
|
803 |
+
if self._check_trim(
|
804 |
+
visible_col_count,
|
805 |
+
max_cols,
|
806 |
+
data,
|
807 |
+
"td",
|
808 |
+
f"{self.css['data']} {self.css['row']}{r} {self.css['col_trim']}",
|
809 |
+
):
|
810 |
+
break
|
811 |
+
|
812 |
+
# add custom classes from cell context
|
813 |
+
cls = ""
|
814 |
+
if (r, c) in self.cell_context:
|
815 |
+
cls = " " + self.cell_context[r, c]
|
816 |
+
|
817 |
+
data_element = _element(
|
818 |
+
"td",
|
819 |
+
(
|
820 |
+
f"{self.css['data']} {self.css['row']}{r} "
|
821 |
+
f"{self.css['col']}{c}{cls}"
|
822 |
+
),
|
823 |
+
value,
|
824 |
+
data_element_visible,
|
825 |
+
attributes="",
|
826 |
+
display_value=self._display_funcs[(r, c)](value),
|
827 |
+
)
|
828 |
+
|
829 |
+
if self.cell_ids:
|
830 |
+
data_element["id"] = f"{self.css['row']}{r}_{self.css['col']}{c}"
|
831 |
+
if data_element_visible and (r, c) in self.ctx and self.ctx[r, c]:
|
832 |
+
# always add id if needed due to specified style
|
833 |
+
data_element["id"] = f"{self.css['row']}{r}_{self.css['col']}{c}"
|
834 |
+
self.cellstyle_map[tuple(self.ctx[r, c])].append(
|
835 |
+
f"{self.css['row']}{r}_{self.css['col']}{c}"
|
836 |
+
)
|
837 |
+
|
838 |
+
data.append(data_element)
|
839 |
+
|
840 |
+
return index_headers + data
|
841 |
+
|
842 |
+
def _translate_latex(self, d: dict, clines: str | None) -> None:
|
843 |
+
r"""
|
844 |
+
Post-process the default render dict for the LaTeX template format.
|
845 |
+
|
846 |
+
Processing items included are:
|
847 |
+
- Remove hidden columns from the non-headers part of the body.
|
848 |
+
- Place cellstyles directly in td cells rather than use cellstyle_map.
|
849 |
+
- Remove hidden indexes or reinsert missing th elements if part of multiindex
|
850 |
+
or multirow sparsification (so that \multirow and \multicol work correctly).
|
851 |
+
"""
|
852 |
+
index_levels = self.index.nlevels
|
853 |
+
visible_index_level_n = index_levels - sum(self.hide_index_)
|
854 |
+
d["head"] = [
|
855 |
+
[
|
856 |
+
{**col, "cellstyle": self.ctx_columns[r, c - visible_index_level_n]}
|
857 |
+
for c, col in enumerate(row)
|
858 |
+
if col["is_visible"]
|
859 |
+
]
|
860 |
+
for r, row in enumerate(d["head"])
|
861 |
+
]
|
862 |
+
|
863 |
+
def _concatenated_visible_rows(obj, n, row_indices):
|
864 |
+
"""
|
865 |
+
Extract all visible row indices recursively from concatenated stylers.
|
866 |
+
"""
|
867 |
+
row_indices.extend(
|
868 |
+
[r + n for r in range(len(obj.index)) if r not in obj.hidden_rows]
|
869 |
+
)
|
870 |
+
n += len(obj.index)
|
871 |
+
for concatenated in obj.concatenated:
|
872 |
+
n = _concatenated_visible_rows(concatenated, n, row_indices)
|
873 |
+
return n
|
874 |
+
|
875 |
+
def concatenated_visible_rows(obj):
|
876 |
+
row_indices: list[int] = []
|
877 |
+
_concatenated_visible_rows(obj, 0, row_indices)
|
878 |
+
# TODO try to consolidate the concat visible rows
|
879 |
+
# methods to a single function / recursion for simplicity
|
880 |
+
return row_indices
|
881 |
+
|
882 |
+
body = []
|
883 |
+
for r, row in zip(concatenated_visible_rows(self), d["body"]):
|
884 |
+
# note: cannot enumerate d["body"] because rows were dropped if hidden
|
885 |
+
# during _translate_body so must zip to acquire the true r-index associated
|
886 |
+
# with the ctx obj which contains the cell styles.
|
887 |
+
if all(self.hide_index_):
|
888 |
+
row_body_headers = []
|
889 |
+
else:
|
890 |
+
row_body_headers = [
|
891 |
+
{
|
892 |
+
**col,
|
893 |
+
"display_value": col["display_value"]
|
894 |
+
if col["is_visible"]
|
895 |
+
else "",
|
896 |
+
"cellstyle": self.ctx_index[r, c],
|
897 |
+
}
|
898 |
+
for c, col in enumerate(row[:index_levels])
|
899 |
+
if (col["type"] == "th" and not self.hide_index_[c])
|
900 |
+
]
|
901 |
+
|
902 |
+
row_body_cells = [
|
903 |
+
{**col, "cellstyle": self.ctx[r, c]}
|
904 |
+
for c, col in enumerate(row[index_levels:])
|
905 |
+
if (col["is_visible"] and col["type"] == "td")
|
906 |
+
]
|
907 |
+
|
908 |
+
body.append(row_body_headers + row_body_cells)
|
909 |
+
d["body"] = body
|
910 |
+
|
911 |
+
# clines are determined from info on index_lengths and hidden_rows and input
|
912 |
+
# to a dict defining which row clines should be added in the template.
|
913 |
+
if clines not in [
|
914 |
+
None,
|
915 |
+
"all;data",
|
916 |
+
"all;index",
|
917 |
+
"skip-last;data",
|
918 |
+
"skip-last;index",
|
919 |
+
]:
|
920 |
+
raise ValueError(
|
921 |
+
f"`clines` value of {clines} is invalid. Should either be None or one "
|
922 |
+
f"of 'all;data', 'all;index', 'skip-last;data', 'skip-last;index'."
|
923 |
+
)
|
924 |
+
if clines is not None:
|
925 |
+
data_len = len(row_body_cells) if "data" in clines and d["body"] else 0
|
926 |
+
|
927 |
+
d["clines"] = defaultdict(list)
|
928 |
+
visible_row_indexes: list[int] = [
|
929 |
+
r for r in range(len(self.data.index)) if r not in self.hidden_rows
|
930 |
+
]
|
931 |
+
visible_index_levels: list[int] = [
|
932 |
+
i for i in range(index_levels) if not self.hide_index_[i]
|
933 |
+
]
|
934 |
+
for rn, r in enumerate(visible_row_indexes):
|
935 |
+
for lvln, lvl in enumerate(visible_index_levels):
|
936 |
+
if lvl == index_levels - 1 and "skip-last" in clines:
|
937 |
+
continue
|
938 |
+
idx_len = d["index_lengths"].get((lvl, r), None)
|
939 |
+
if idx_len is not None: # i.e. not a sparsified entry
|
940 |
+
d["clines"][rn + idx_len].append(
|
941 |
+
f"\\cline{{{lvln+1}-{len(visible_index_levels)+data_len}}}"
|
942 |
+
)
|
943 |
+
|
944 |
+
def format(
|
945 |
+
self,
|
946 |
+
formatter: ExtFormatter | None = None,
|
947 |
+
subset: Subset | None = None,
|
948 |
+
na_rep: str | None = None,
|
949 |
+
precision: int | None = None,
|
950 |
+
decimal: str = ".",
|
951 |
+
thousands: str | None = None,
|
952 |
+
escape: str | None = None,
|
953 |
+
hyperlinks: str | None = None,
|
954 |
+
) -> StylerRenderer:
|
955 |
+
r"""
|
956 |
+
Format the text display value of cells.
|
957 |
+
|
958 |
+
Parameters
|
959 |
+
----------
|
960 |
+
formatter : str, callable, dict or None
|
961 |
+
Object to define how values are displayed. See notes.
|
962 |
+
subset : label, array-like, IndexSlice, optional
|
963 |
+
A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
|
964 |
+
or single key, to `DataFrame.loc[:, <subset>]` where the columns are
|
965 |
+
prioritised, to limit ``data`` to *before* applying the function.
|
966 |
+
na_rep : str, optional
|
967 |
+
Representation for missing values.
|
968 |
+
If ``na_rep`` is None, no special formatting is applied.
|
969 |
+
precision : int, optional
|
970 |
+
Floating point precision to use for display purposes, if not determined by
|
971 |
+
the specified ``formatter``.
|
972 |
+
|
973 |
+
.. versionadded:: 1.3.0
|
974 |
+
|
975 |
+
decimal : str, default "."
|
976 |
+
Character used as decimal separator for floats, complex and integers.
|
977 |
+
|
978 |
+
.. versionadded:: 1.3.0
|
979 |
+
|
980 |
+
thousands : str, optional, default None
|
981 |
+
Character used as thousands separator for floats, complex and integers.
|
982 |
+
|
983 |
+
.. versionadded:: 1.3.0
|
984 |
+
|
985 |
+
escape : str, optional
|
986 |
+
Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
|
987 |
+
in cell display string with HTML-safe sequences.
|
988 |
+
Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
|
989 |
+
``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
|
990 |
+
LaTeX-safe sequences.
|
991 |
+
Use 'latex-math' to replace the characters the same way as in 'latex' mode,
|
992 |
+
except for math substrings, which either are surrounded
|
993 |
+
by two characters ``$`` or start with the character ``\(`` and
|
994 |
+
end with ``\)``. Escaping is done before ``formatter``.
|
995 |
+
|
996 |
+
.. versionadded:: 1.3.0
|
997 |
+
|
998 |
+
hyperlinks : {"html", "latex"}, optional
|
999 |
+
Convert string patterns containing https://, http://, ftp:// or www. to
|
1000 |
+
HTML <a> tags as clickable URL hyperlinks if "html", or LaTeX \href
|
1001 |
+
commands if "latex".
|
1002 |
+
|
1003 |
+
.. versionadded:: 1.4.0
|
1004 |
+
|
1005 |
+
Returns
|
1006 |
+
-------
|
1007 |
+
Styler
|
1008 |
+
|
1009 |
+
See Also
|
1010 |
+
--------
|
1011 |
+
Styler.format_index: Format the text display value of index labels.
|
1012 |
+
|
1013 |
+
Notes
|
1014 |
+
-----
|
1015 |
+
This method assigns a formatting function, ``formatter``, to each cell in the
|
1016 |
+
DataFrame. If ``formatter`` is ``None``, then the default formatter is used.
|
1017 |
+
If a callable then that function should take a data value as input and return
|
1018 |
+
a displayable representation, such as a string. If ``formatter`` is
|
1019 |
+
given as a string this is assumed to be a valid Python format specification
|
1020 |
+
and is wrapped to a callable as ``string.format(x)``. If a ``dict`` is given,
|
1021 |
+
keys should correspond to column names, and values should be string or
|
1022 |
+
callable, as above.
|
1023 |
+
|
1024 |
+
The default formatter currently expresses floats and complex numbers with the
|
1025 |
+
pandas display precision unless using the ``precision`` argument here. The
|
1026 |
+
default formatter does not adjust the representation of missing values unless
|
1027 |
+
the ``na_rep`` argument is used.
|
1028 |
+
|
1029 |
+
The ``subset`` argument defines which region to apply the formatting function
|
1030 |
+
to. If the ``formatter`` argument is given in dict form but does not include
|
1031 |
+
all columns within the subset then these columns will have the default formatter
|
1032 |
+
applied. Any columns in the formatter dict excluded from the subset will
|
1033 |
+
be ignored.
|
1034 |
+
|
1035 |
+
When using a ``formatter`` string the dtypes must be compatible, otherwise a
|
1036 |
+
`ValueError` will be raised.
|
1037 |
+
|
1038 |
+
When instantiating a Styler, default formatting can be applied be setting the
|
1039 |
+
``pandas.options``:
|
1040 |
+
|
1041 |
+
- ``styler.format.formatter``: default None.
|
1042 |
+
- ``styler.format.na_rep``: default None.
|
1043 |
+
- ``styler.format.precision``: default 6.
|
1044 |
+
- ``styler.format.decimal``: default ".".
|
1045 |
+
- ``styler.format.thousands``: default None.
|
1046 |
+
- ``styler.format.escape``: default None.
|
1047 |
+
|
1048 |
+
.. warning::
|
1049 |
+
`Styler.format` is ignored when using the output format `Styler.to_excel`,
|
1050 |
+
since Excel and Python have inherrently different formatting structures.
|
1051 |
+
However, it is possible to use the `number-format` pseudo CSS attribute
|
1052 |
+
to force Excel permissible formatting. See examples.
|
1053 |
+
|
1054 |
+
Examples
|
1055 |
+
--------
|
1056 |
+
Using ``na_rep`` and ``precision`` with the default ``formatter``
|
1057 |
+
|
1058 |
+
>>> df = pd.DataFrame([[np.nan, 1.0, 'A'], [2.0, np.nan, 3.0]])
|
1059 |
+
>>> df.style.format(na_rep='MISS', precision=3) # doctest: +SKIP
|
1060 |
+
0 1 2
|
1061 |
+
0 MISS 1.000 A
|
1062 |
+
1 2.000 MISS 3.000
|
1063 |
+
|
1064 |
+
Using a ``formatter`` specification on consistent column dtypes
|
1065 |
+
|
1066 |
+
>>> df.style.format('{:.2f}', na_rep='MISS', subset=[0,1]) # doctest: +SKIP
|
1067 |
+
0 1 2
|
1068 |
+
0 MISS 1.00 A
|
1069 |
+
1 2.00 MISS 3.000000
|
1070 |
+
|
1071 |
+
Using the default ``formatter`` for unspecified columns
|
1072 |
+
|
1073 |
+
>>> df.style.format({0: '{:.2f}', 1: '£ {:.1f}'}, na_rep='MISS', precision=1)
|
1074 |
+
... # doctest: +SKIP
|
1075 |
+
0 1 2
|
1076 |
+
0 MISS £ 1.0 A
|
1077 |
+
1 2.00 MISS 3.0
|
1078 |
+
|
1079 |
+
Multiple ``na_rep`` or ``precision`` specifications under the default
|
1080 |
+
``formatter``.
|
1081 |
+
|
1082 |
+
>>> (df.style.format(na_rep='MISS', precision=1, subset=[0])
|
1083 |
+
... .format(na_rep='PASS', precision=2, subset=[1, 2])) # doctest: +SKIP
|
1084 |
+
0 1 2
|
1085 |
+
0 MISS 1.00 A
|
1086 |
+
1 2.0 PASS 3.00
|
1087 |
+
|
1088 |
+
Using a callable ``formatter`` function.
|
1089 |
+
|
1090 |
+
>>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT'
|
1091 |
+
>>> df.style.format({0: '{:.1f}', 2: func}, precision=4, na_rep='MISS')
|
1092 |
+
... # doctest: +SKIP
|
1093 |
+
0 1 2
|
1094 |
+
0 MISS 1.0000 STRING
|
1095 |
+
1 2.0 MISS FLOAT
|
1096 |
+
|
1097 |
+
Using a ``formatter`` with HTML ``escape`` and ``na_rep``.
|
1098 |
+
|
1099 |
+
>>> df = pd.DataFrame([['<div></div>', '"A&B"', None]])
|
1100 |
+
>>> s = df.style.format(
|
1101 |
+
... '<a href="a.com/{0}">{0}</a>', escape="html", na_rep="NA"
|
1102 |
+
... )
|
1103 |
+
>>> s.to_html() # doctest: +SKIP
|
1104 |
+
...
|
1105 |
+
<td .. ><a href="a.com/<div></div>"><div></div></a></td>
|
1106 |
+
<td .. ><a href="a.com/"A&B"">"A&B"</a></td>
|
1107 |
+
<td .. >NA</td>
|
1108 |
+
...
|
1109 |
+
|
1110 |
+
Using a ``formatter`` with ``escape`` in 'latex' mode.
|
1111 |
+
|
1112 |
+
>>> df = pd.DataFrame([["123"], ["~ ^"], ["$%#"]])
|
1113 |
+
>>> df.style.format("\\textbf{{{}}}", escape="latex").to_latex()
|
1114 |
+
... # doctest: +SKIP
|
1115 |
+
\begin{tabular}{ll}
|
1116 |
+
& 0 \\
|
1117 |
+
0 & \textbf{123} \\
|
1118 |
+
1 & \textbf{\textasciitilde \space \textasciicircum } \\
|
1119 |
+
2 & \textbf{\$\%\#} \\
|
1120 |
+
\end{tabular}
|
1121 |
+
|
1122 |
+
Applying ``escape`` in 'latex-math' mode. In the example below
|
1123 |
+
we enter math mode using the character ``$``.
|
1124 |
+
|
1125 |
+
>>> df = pd.DataFrame([[r"$\sum_{i=1}^{10} a_i$ a~b $\alpha \
|
1126 |
+
... = \frac{\beta}{\zeta^2}$"], ["%#^ $ \$x^2 $"]])
|
1127 |
+
>>> df.style.format(escape="latex-math").to_latex()
|
1128 |
+
... # doctest: +SKIP
|
1129 |
+
\begin{tabular}{ll}
|
1130 |
+
& 0 \\
|
1131 |
+
0 & $\sum_{i=1}^{10} a_i$ a\textasciitilde b $\alpha = \frac{\beta}{\zeta^2}$ \\
|
1132 |
+
1 & \%\#\textasciicircum \space $ \$x^2 $ \\
|
1133 |
+
\end{tabular}
|
1134 |
+
|
1135 |
+
We can use the character ``\(`` to enter math mode and the character ``\)``
|
1136 |
+
to close math mode.
|
1137 |
+
|
1138 |
+
>>> df = pd.DataFrame([[r"\(\sum_{i=1}^{10} a_i\) a~b \(\alpha \
|
1139 |
+
... = \frac{\beta}{\zeta^2}\)"], ["%#^ \( \$x^2 \)"]])
|
1140 |
+
>>> df.style.format(escape="latex-math").to_latex()
|
1141 |
+
... # doctest: +SKIP
|
1142 |
+
\begin{tabular}{ll}
|
1143 |
+
& 0 \\
|
1144 |
+
0 & \(\sum_{i=1}^{10} a_i\) a\textasciitilde b \(\alpha
|
1145 |
+
= \frac{\beta}{\zeta^2}\) \\
|
1146 |
+
1 & \%\#\textasciicircum \space \( \$x^2 \) \\
|
1147 |
+
\end{tabular}
|
1148 |
+
|
1149 |
+
If we have in one DataFrame cell a combination of both shorthands
|
1150 |
+
for math formulas, the shorthand with the sign ``$`` will be applied.
|
1151 |
+
|
1152 |
+
>>> df = pd.DataFrame([[r"\( x^2 \) $x^2$"], \
|
1153 |
+
... [r"$\frac{\beta}{\zeta}$ \(\frac{\beta}{\zeta}\)"]])
|
1154 |
+
>>> df.style.format(escape="latex-math").to_latex()
|
1155 |
+
... # doctest: +SKIP
|
1156 |
+
\begin{tabular}{ll}
|
1157 |
+
& 0 \\
|
1158 |
+
0 & \textbackslash ( x\textasciicircum 2 \textbackslash ) $x^2$ \\
|
1159 |
+
1 & $\frac{\beta}{\zeta}$ \textbackslash (\textbackslash
|
1160 |
+
frac\{\textbackslash beta\}\{\textbackslash zeta\}\textbackslash ) \\
|
1161 |
+
\end{tabular}
|
1162 |
+
|
1163 |
+
Pandas defines a `number-format` pseudo CSS attribute instead of the `.format`
|
1164 |
+
method to create `to_excel` permissible formatting. Note that semi-colons are
|
1165 |
+
CSS protected characters but used as separators in Excel's format string.
|
1166 |
+
Replace semi-colons with the section separator character (ASCII-245) when
|
1167 |
+
defining the formatting here.
|
1168 |
+
|
1169 |
+
>>> df = pd.DataFrame({"A": [1, 0, -1]})
|
1170 |
+
>>> pseudo_css = "number-format: 0§[Red](0)§-§@;"
|
1171 |
+
>>> filename = "formatted_file.xlsx"
|
1172 |
+
>>> df.style.map(lambda v: pseudo_css).to_excel(filename) # doctest: +SKIP
|
1173 |
+
|
1174 |
+
.. figure:: ../../_static/style/format_excel_css.png
|
1175 |
+
"""
|
1176 |
+
if all(
|
1177 |
+
(
|
1178 |
+
formatter is None,
|
1179 |
+
subset is None,
|
1180 |
+
precision is None,
|
1181 |
+
decimal == ".",
|
1182 |
+
thousands is None,
|
1183 |
+
na_rep is None,
|
1184 |
+
escape is None,
|
1185 |
+
hyperlinks is None,
|
1186 |
+
)
|
1187 |
+
):
|
1188 |
+
self._display_funcs.clear()
|
1189 |
+
return self # clear the formatter / revert to default and avoid looping
|
1190 |
+
|
1191 |
+
subset = slice(None) if subset is None else subset
|
1192 |
+
subset = non_reducing_slice(subset)
|
1193 |
+
data = self.data.loc[subset]
|
1194 |
+
|
1195 |
+
if not isinstance(formatter, dict):
|
1196 |
+
formatter = {col: formatter for col in data.columns}
|
1197 |
+
|
1198 |
+
cis = self.columns.get_indexer_for(data.columns)
|
1199 |
+
ris = self.index.get_indexer_for(data.index)
|
1200 |
+
for ci in cis:
|
1201 |
+
format_func = _maybe_wrap_formatter(
|
1202 |
+
formatter.get(self.columns[ci]),
|
1203 |
+
na_rep=na_rep,
|
1204 |
+
precision=precision,
|
1205 |
+
decimal=decimal,
|
1206 |
+
thousands=thousands,
|
1207 |
+
escape=escape,
|
1208 |
+
hyperlinks=hyperlinks,
|
1209 |
+
)
|
1210 |
+
for ri in ris:
|
1211 |
+
self._display_funcs[(ri, ci)] = format_func
|
1212 |
+
|
1213 |
+
return self
|
1214 |
+
|
1215 |
+
def format_index(
|
1216 |
+
self,
|
1217 |
+
formatter: ExtFormatter | None = None,
|
1218 |
+
axis: Axis = 0,
|
1219 |
+
level: Level | list[Level] | None = None,
|
1220 |
+
na_rep: str | None = None,
|
1221 |
+
precision: int | None = None,
|
1222 |
+
decimal: str = ".",
|
1223 |
+
thousands: str | None = None,
|
1224 |
+
escape: str | None = None,
|
1225 |
+
hyperlinks: str | None = None,
|
1226 |
+
) -> StylerRenderer:
|
1227 |
+
r"""
|
1228 |
+
Format the text display value of index labels or column headers.
|
1229 |
+
|
1230 |
+
.. versionadded:: 1.4.0
|
1231 |
+
|
1232 |
+
Parameters
|
1233 |
+
----------
|
1234 |
+
formatter : str, callable, dict or None
|
1235 |
+
Object to define how values are displayed. See notes.
|
1236 |
+
axis : {0, "index", 1, "columns"}
|
1237 |
+
Whether to apply the formatter to the index or column headers.
|
1238 |
+
level : int, str, list
|
1239 |
+
The level(s) over which to apply the generic formatter.
|
1240 |
+
na_rep : str, optional
|
1241 |
+
Representation for missing values.
|
1242 |
+
If ``na_rep`` is None, no special formatting is applied.
|
1243 |
+
precision : int, optional
|
1244 |
+
Floating point precision to use for display purposes, if not determined by
|
1245 |
+
the specified ``formatter``.
|
1246 |
+
decimal : str, default "."
|
1247 |
+
Character used as decimal separator for floats, complex and integers.
|
1248 |
+
thousands : str, optional, default None
|
1249 |
+
Character used as thousands separator for floats, complex and integers.
|
1250 |
+
escape : str, optional
|
1251 |
+
Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
|
1252 |
+
in cell display string with HTML-safe sequences.
|
1253 |
+
Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
|
1254 |
+
``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
|
1255 |
+
LaTeX-safe sequences.
|
1256 |
+
Escaping is done before ``formatter``.
|
1257 |
+
hyperlinks : {"html", "latex"}, optional
|
1258 |
+
Convert string patterns containing https://, http://, ftp:// or www. to
|
1259 |
+
HTML <a> tags as clickable URL hyperlinks if "html", or LaTeX \href
|
1260 |
+
commands if "latex".
|
1261 |
+
|
1262 |
+
Returns
|
1263 |
+
-------
|
1264 |
+
Styler
|
1265 |
+
|
1266 |
+
See Also
|
1267 |
+
--------
|
1268 |
+
Styler.format: Format the text display value of data cells.
|
1269 |
+
|
1270 |
+
Notes
|
1271 |
+
-----
|
1272 |
+
This method assigns a formatting function, ``formatter``, to each level label
|
1273 |
+
in the DataFrame's index or column headers. If ``formatter`` is ``None``,
|
1274 |
+
then the default formatter is used.
|
1275 |
+
If a callable then that function should take a label value as input and return
|
1276 |
+
a displayable representation, such as a string. If ``formatter`` is
|
1277 |
+
given as a string this is assumed to be a valid Python format specification
|
1278 |
+
and is wrapped to a callable as ``string.format(x)``. If a ``dict`` is given,
|
1279 |
+
keys should correspond to MultiIndex level numbers or names, and values should
|
1280 |
+
be string or callable, as above.
|
1281 |
+
|
1282 |
+
The default formatter currently expresses floats and complex numbers with the
|
1283 |
+
pandas display precision unless using the ``precision`` argument here. The
|
1284 |
+
default formatter does not adjust the representation of missing values unless
|
1285 |
+
the ``na_rep`` argument is used.
|
1286 |
+
|
1287 |
+
The ``level`` argument defines which levels of a MultiIndex to apply the
|
1288 |
+
method to. If the ``formatter`` argument is given in dict form but does
|
1289 |
+
not include all levels within the level argument then these unspecified levels
|
1290 |
+
will have the default formatter applied. Any levels in the formatter dict
|
1291 |
+
specifically excluded from the level argument will be ignored.
|
1292 |
+
|
1293 |
+
When using a ``formatter`` string the dtypes must be compatible, otherwise a
|
1294 |
+
`ValueError` will be raised.
|
1295 |
+
|
1296 |
+
.. warning::
|
1297 |
+
`Styler.format_index` is ignored when using the output format
|
1298 |
+
`Styler.to_excel`, since Excel and Python have inherrently different
|
1299 |
+
formatting structures.
|
1300 |
+
However, it is possible to use the `number-format` pseudo CSS attribute
|
1301 |
+
to force Excel permissible formatting. See documentation for `Styler.format`.
|
1302 |
+
|
1303 |
+
Examples
|
1304 |
+
--------
|
1305 |
+
Using ``na_rep`` and ``precision`` with the default ``formatter``
|
1306 |
+
|
1307 |
+
>>> df = pd.DataFrame([[1, 2, 3]], columns=[2.0, np.nan, 4.0])
|
1308 |
+
>>> df.style.format_index(axis=1, na_rep='MISS', precision=3) # doctest: +SKIP
|
1309 |
+
2.000 MISS 4.000
|
1310 |
+
0 1 2 3
|
1311 |
+
|
1312 |
+
Using a ``formatter`` specification on consistent dtypes in a level
|
1313 |
+
|
1314 |
+
>>> df.style.format_index('{:.2f}', axis=1, na_rep='MISS') # doctest: +SKIP
|
1315 |
+
2.00 MISS 4.00
|
1316 |
+
0 1 2 3
|
1317 |
+
|
1318 |
+
Using the default ``formatter`` for unspecified levels
|
1319 |
+
|
1320 |
+
>>> df = pd.DataFrame([[1, 2, 3]],
|
1321 |
+
... columns=pd.MultiIndex.from_arrays([["a", "a", "b"],[2, np.nan, 4]]))
|
1322 |
+
>>> df.style.format_index({0: lambda v: v.upper()}, axis=1, precision=1)
|
1323 |
+
... # doctest: +SKIP
|
1324 |
+
A B
|
1325 |
+
2.0 nan 4.0
|
1326 |
+
0 1 2 3
|
1327 |
+
|
1328 |
+
Using a callable ``formatter`` function.
|
1329 |
+
|
1330 |
+
>>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT'
|
1331 |
+
>>> df.style.format_index(func, axis=1, na_rep='MISS')
|
1332 |
+
... # doctest: +SKIP
|
1333 |
+
STRING STRING
|
1334 |
+
FLOAT MISS FLOAT
|
1335 |
+
0 1 2 3
|
1336 |
+
|
1337 |
+
Using a ``formatter`` with HTML ``escape`` and ``na_rep``.
|
1338 |
+
|
1339 |
+
>>> df = pd.DataFrame([[1, 2, 3]], columns=['"A"', 'A&B', None])
|
1340 |
+
>>> s = df.style.format_index('$ {0}', axis=1, escape="html", na_rep="NA")
|
1341 |
+
... # doctest: +SKIP
|
1342 |
+
<th .. >$ "A"</th>
|
1343 |
+
<th .. >$ A&B</th>
|
1344 |
+
<th .. >NA</td>
|
1345 |
+
...
|
1346 |
+
|
1347 |
+
Using a ``formatter`` with LaTeX ``escape``.
|
1348 |
+
|
1349 |
+
>>> df = pd.DataFrame([[1, 2, 3]], columns=["123", "~", "$%#"])
|
1350 |
+
>>> df.style.format_index("\\textbf{{{}}}", escape="latex", axis=1).to_latex()
|
1351 |
+
... # doctest: +SKIP
|
1352 |
+
\begin{tabular}{lrrr}
|
1353 |
+
{} & {\textbf{123}} & {\textbf{\textasciitilde }} & {\textbf{\$\%\#}} \\
|
1354 |
+
0 & 1 & 2 & 3 \\
|
1355 |
+
\end{tabular}
|
1356 |
+
"""
|
1357 |
+
axis = self.data._get_axis_number(axis)
|
1358 |
+
if axis == 0:
|
1359 |
+
display_funcs_, obj = self._display_funcs_index, self.index
|
1360 |
+
else:
|
1361 |
+
display_funcs_, obj = self._display_funcs_columns, self.columns
|
1362 |
+
levels_ = refactor_levels(level, obj)
|
1363 |
+
|
1364 |
+
if all(
|
1365 |
+
(
|
1366 |
+
formatter is None,
|
1367 |
+
level is None,
|
1368 |
+
precision is None,
|
1369 |
+
decimal == ".",
|
1370 |
+
thousands is None,
|
1371 |
+
na_rep is None,
|
1372 |
+
escape is None,
|
1373 |
+
hyperlinks is None,
|
1374 |
+
)
|
1375 |
+
):
|
1376 |
+
display_funcs_.clear()
|
1377 |
+
return self # clear the formatter / revert to default and avoid looping
|
1378 |
+
|
1379 |
+
if not isinstance(formatter, dict):
|
1380 |
+
formatter = {level: formatter for level in levels_}
|
1381 |
+
else:
|
1382 |
+
formatter = {
|
1383 |
+
obj._get_level_number(level): formatter_
|
1384 |
+
for level, formatter_ in formatter.items()
|
1385 |
+
}
|
1386 |
+
|
1387 |
+
for lvl in levels_:
|
1388 |
+
format_func = _maybe_wrap_formatter(
|
1389 |
+
formatter.get(lvl),
|
1390 |
+
na_rep=na_rep,
|
1391 |
+
precision=precision,
|
1392 |
+
decimal=decimal,
|
1393 |
+
thousands=thousands,
|
1394 |
+
escape=escape,
|
1395 |
+
hyperlinks=hyperlinks,
|
1396 |
+
)
|
1397 |
+
|
1398 |
+
for idx in [(i, lvl) if axis == 0 else (lvl, i) for i in range(len(obj))]:
|
1399 |
+
display_funcs_[idx] = format_func
|
1400 |
+
|
1401 |
+
return self
|
1402 |
+
|
1403 |
+
def relabel_index(
|
1404 |
+
self,
|
1405 |
+
labels: Sequence | Index,
|
1406 |
+
axis: Axis = 0,
|
1407 |
+
level: Level | list[Level] | None = None,
|
1408 |
+
) -> StylerRenderer:
|
1409 |
+
r"""
|
1410 |
+
Relabel the index, or column header, keys to display a set of specified values.
|
1411 |
+
|
1412 |
+
.. versionadded:: 1.5.0
|
1413 |
+
|
1414 |
+
Parameters
|
1415 |
+
----------
|
1416 |
+
labels : list-like or Index
|
1417 |
+
New labels to display. Must have same length as the underlying values not
|
1418 |
+
hidden.
|
1419 |
+
axis : {"index", 0, "columns", 1}
|
1420 |
+
Apply to the index or columns.
|
1421 |
+
level : int, str, list, optional
|
1422 |
+
The level(s) over which to apply the new labels. If `None` will apply
|
1423 |
+
to all levels of an Index or MultiIndex which are not hidden.
|
1424 |
+
|
1425 |
+
Returns
|
1426 |
+
-------
|
1427 |
+
Styler
|
1428 |
+
|
1429 |
+
See Also
|
1430 |
+
--------
|
1431 |
+
Styler.format_index: Format the text display value of index or column headers.
|
1432 |
+
Styler.hide: Hide the index, column headers, or specified data from display.
|
1433 |
+
|
1434 |
+
Notes
|
1435 |
+
-----
|
1436 |
+
As part of Styler, this method allows the display of an index to be
|
1437 |
+
completely user-specified without affecting the underlying DataFrame data,
|
1438 |
+
index, or column headers. This means that the flexibility of indexing is
|
1439 |
+
maintained whilst the final display is customisable.
|
1440 |
+
|
1441 |
+
Since Styler is designed to be progressively constructed with method chaining,
|
1442 |
+
this method is adapted to react to the **currently specified hidden elements**.
|
1443 |
+
This is useful because it means one does not have to specify all the new
|
1444 |
+
labels if the majority of an index, or column headers, have already been hidden.
|
1445 |
+
The following produce equivalent display (note the length of ``labels`` in
|
1446 |
+
each case).
|
1447 |
+
|
1448 |
+
.. code-block:: python
|
1449 |
+
|
1450 |
+
# relabel first, then hide
|
1451 |
+
df = pd.DataFrame({"col": ["a", "b", "c"]})
|
1452 |
+
df.style.relabel_index(["A", "B", "C"]).hide([0,1])
|
1453 |
+
# hide first, then relabel
|
1454 |
+
df = pd.DataFrame({"col": ["a", "b", "c"]})
|
1455 |
+
df.style.hide([0,1]).relabel_index(["C"])
|
1456 |
+
|
1457 |
+
This method should be used, rather than :meth:`Styler.format_index`, in one of
|
1458 |
+
the following cases (see examples):
|
1459 |
+
|
1460 |
+
- A specified set of labels are required which are not a function of the
|
1461 |
+
underlying index keys.
|
1462 |
+
- The function of the underlying index keys requires a counter variable,
|
1463 |
+
such as those available upon enumeration.
|
1464 |
+
|
1465 |
+
Examples
|
1466 |
+
--------
|
1467 |
+
Basic use
|
1468 |
+
|
1469 |
+
>>> df = pd.DataFrame({"col": ["a", "b", "c"]})
|
1470 |
+
>>> df.style.relabel_index(["A", "B", "C"]) # doctest: +SKIP
|
1471 |
+
col
|
1472 |
+
A a
|
1473 |
+
B b
|
1474 |
+
C c
|
1475 |
+
|
1476 |
+
Chaining with pre-hidden elements
|
1477 |
+
|
1478 |
+
>>> df.style.hide([0,1]).relabel_index(["C"]) # doctest: +SKIP
|
1479 |
+
col
|
1480 |
+
C c
|
1481 |
+
|
1482 |
+
Using a MultiIndex
|
1483 |
+
|
1484 |
+
>>> midx = pd.MultiIndex.from_product([[0, 1], [0, 1], [0, 1]])
|
1485 |
+
>>> df = pd.DataFrame({"col": list(range(8))}, index=midx)
|
1486 |
+
>>> styler = df.style # doctest: +SKIP
|
1487 |
+
col
|
1488 |
+
0 0 0 0
|
1489 |
+
1 1
|
1490 |
+
1 0 2
|
1491 |
+
1 3
|
1492 |
+
1 0 0 4
|
1493 |
+
1 5
|
1494 |
+
1 0 6
|
1495 |
+
1 7
|
1496 |
+
>>> styler.hide((midx.get_level_values(0)==0)|(midx.get_level_values(1)==0))
|
1497 |
+
... # doctest: +SKIP
|
1498 |
+
>>> styler.hide(level=[0,1]) # doctest: +SKIP
|
1499 |
+
>>> styler.relabel_index(["binary6", "binary7"]) # doctest: +SKIP
|
1500 |
+
col
|
1501 |
+
binary6 6
|
1502 |
+
binary7 7
|
1503 |
+
|
1504 |
+
We can also achieve the above by indexing first and then re-labeling
|
1505 |
+
|
1506 |
+
>>> styler = df.loc[[(1,1,0), (1,1,1)]].style
|
1507 |
+
>>> styler.hide(level=[0,1]).relabel_index(["binary6", "binary7"])
|
1508 |
+
... # doctest: +SKIP
|
1509 |
+
col
|
1510 |
+
binary6 6
|
1511 |
+
binary7 7
|
1512 |
+
|
1513 |
+
Defining a formatting function which uses an enumeration counter. Also note
|
1514 |
+
that the value of the index key is passed in the case of string labels so it
|
1515 |
+
can also be inserted into the label, using curly brackets (or double curly
|
1516 |
+
brackets if the string if pre-formatted),
|
1517 |
+
|
1518 |
+
>>> df = pd.DataFrame({"samples": np.random.rand(10)})
|
1519 |
+
>>> styler = df.loc[np.random.randint(0,10,3)].style
|
1520 |
+
>>> styler.relabel_index([f"sample{i+1} ({{}})" for i in range(3)])
|
1521 |
+
... # doctest: +SKIP
|
1522 |
+
samples
|
1523 |
+
sample1 (5) 0.315811
|
1524 |
+
sample2 (0) 0.495941
|
1525 |
+
sample3 (2) 0.067946
|
1526 |
+
"""
|
1527 |
+
axis = self.data._get_axis_number(axis)
|
1528 |
+
if axis == 0:
|
1529 |
+
display_funcs_, obj = self._display_funcs_index, self.index
|
1530 |
+
hidden_labels, hidden_lvls = self.hidden_rows, self.hide_index_
|
1531 |
+
else:
|
1532 |
+
display_funcs_, obj = self._display_funcs_columns, self.columns
|
1533 |
+
hidden_labels, hidden_lvls = self.hidden_columns, self.hide_columns_
|
1534 |
+
visible_len = len(obj) - len(set(hidden_labels))
|
1535 |
+
if len(labels) != visible_len:
|
1536 |
+
raise ValueError(
|
1537 |
+
"``labels`` must be of length equal to the number of "
|
1538 |
+
f"visible labels along ``axis`` ({visible_len})."
|
1539 |
+
)
|
1540 |
+
|
1541 |
+
if level is None:
|
1542 |
+
level = [i for i in range(obj.nlevels) if not hidden_lvls[i]]
|
1543 |
+
levels_ = refactor_levels(level, obj)
|
1544 |
+
|
1545 |
+
def alias_(x, value):
|
1546 |
+
if isinstance(value, str):
|
1547 |
+
return value.format(x)
|
1548 |
+
return value
|
1549 |
+
|
1550 |
+
for ai, i in enumerate([i for i in range(len(obj)) if i not in hidden_labels]):
|
1551 |
+
if len(levels_) == 1:
|
1552 |
+
idx = (i, levels_[0]) if axis == 0 else (levels_[0], i)
|
1553 |
+
display_funcs_[idx] = partial(alias_, value=labels[ai])
|
1554 |
+
else:
|
1555 |
+
for aj, lvl in enumerate(levels_):
|
1556 |
+
idx = (i, lvl) if axis == 0 else (lvl, i)
|
1557 |
+
display_funcs_[idx] = partial(alias_, value=labels[ai][aj])
|
1558 |
+
|
1559 |
+
return self
|
1560 |
+
|
1561 |
+
|
1562 |
+
def _element(
|
1563 |
+
html_element: str,
|
1564 |
+
html_class: str | None,
|
1565 |
+
value: Any,
|
1566 |
+
is_visible: bool,
|
1567 |
+
**kwargs,
|
1568 |
+
) -> dict:
|
1569 |
+
"""
|
1570 |
+
Template to return container with information for a <td></td> or <th></th> element.
|
1571 |
+
"""
|
1572 |
+
if "display_value" not in kwargs:
|
1573 |
+
kwargs["display_value"] = value
|
1574 |
+
return {
|
1575 |
+
"type": html_element,
|
1576 |
+
"value": value,
|
1577 |
+
"class": html_class,
|
1578 |
+
"is_visible": is_visible,
|
1579 |
+
**kwargs,
|
1580 |
+
}
|
1581 |
+
|
1582 |
+
|
1583 |
+
def _get_trimming_maximums(
|
1584 |
+
rn,
|
1585 |
+
cn,
|
1586 |
+
max_elements,
|
1587 |
+
max_rows=None,
|
1588 |
+
max_cols=None,
|
1589 |
+
scaling_factor: float = 0.8,
|
1590 |
+
) -> tuple[int, int]:
|
1591 |
+
"""
|
1592 |
+
Recursively reduce the number of rows and columns to satisfy max elements.
|
1593 |
+
|
1594 |
+
Parameters
|
1595 |
+
----------
|
1596 |
+
rn, cn : int
|
1597 |
+
The number of input rows / columns
|
1598 |
+
max_elements : int
|
1599 |
+
The number of allowable elements
|
1600 |
+
max_rows, max_cols : int, optional
|
1601 |
+
Directly specify an initial maximum rows or columns before compression.
|
1602 |
+
scaling_factor : float
|
1603 |
+
Factor at which to reduce the number of rows / columns to fit.
|
1604 |
+
|
1605 |
+
Returns
|
1606 |
+
-------
|
1607 |
+
rn, cn : tuple
|
1608 |
+
New rn and cn values that satisfy the max_elements constraint
|
1609 |
+
"""
|
1610 |
+
|
1611 |
+
def scale_down(rn, cn):
|
1612 |
+
if cn >= rn:
|
1613 |
+
return rn, int(cn * scaling_factor)
|
1614 |
+
else:
|
1615 |
+
return int(rn * scaling_factor), cn
|
1616 |
+
|
1617 |
+
if max_rows:
|
1618 |
+
rn = max_rows if rn > max_rows else rn
|
1619 |
+
if max_cols:
|
1620 |
+
cn = max_cols if cn > max_cols else cn
|
1621 |
+
|
1622 |
+
while rn * cn > max_elements:
|
1623 |
+
rn, cn = scale_down(rn, cn)
|
1624 |
+
|
1625 |
+
return rn, cn
|
1626 |
+
|
1627 |
+
|
1628 |
+
def _get_level_lengths(
|
1629 |
+
index: Index,
|
1630 |
+
sparsify: bool,
|
1631 |
+
max_index: int,
|
1632 |
+
hidden_elements: Sequence[int] | None = None,
|
1633 |
+
):
|
1634 |
+
"""
|
1635 |
+
Given an index, find the level length for each element.
|
1636 |
+
|
1637 |
+
Parameters
|
1638 |
+
----------
|
1639 |
+
index : Index
|
1640 |
+
Index or columns to determine lengths of each element
|
1641 |
+
sparsify : bool
|
1642 |
+
Whether to hide or show each distinct element in a MultiIndex
|
1643 |
+
max_index : int
|
1644 |
+
The maximum number of elements to analyse along the index due to trimming
|
1645 |
+
hidden_elements : sequence of int
|
1646 |
+
Index positions of elements hidden from display in the index affecting
|
1647 |
+
length
|
1648 |
+
|
1649 |
+
Returns
|
1650 |
+
-------
|
1651 |
+
Dict :
|
1652 |
+
Result is a dictionary of (level, initial_position): span
|
1653 |
+
"""
|
1654 |
+
if isinstance(index, MultiIndex):
|
1655 |
+
levels = index._format_multi(sparsify=lib.no_default, include_names=False)
|
1656 |
+
else:
|
1657 |
+
levels = index._format_flat(include_name=False)
|
1658 |
+
|
1659 |
+
if hidden_elements is None:
|
1660 |
+
hidden_elements = []
|
1661 |
+
|
1662 |
+
lengths = {}
|
1663 |
+
if not isinstance(index, MultiIndex):
|
1664 |
+
for i, value in enumerate(levels):
|
1665 |
+
if i not in hidden_elements:
|
1666 |
+
lengths[(0, i)] = 1
|
1667 |
+
return lengths
|
1668 |
+
|
1669 |
+
for i, lvl in enumerate(levels):
|
1670 |
+
visible_row_count = 0 # used to break loop due to display trimming
|
1671 |
+
for j, row in enumerate(lvl):
|
1672 |
+
if visible_row_count > max_index:
|
1673 |
+
break
|
1674 |
+
if not sparsify:
|
1675 |
+
# then lengths will always equal 1 since no aggregation.
|
1676 |
+
if j not in hidden_elements:
|
1677 |
+
lengths[(i, j)] = 1
|
1678 |
+
visible_row_count += 1
|
1679 |
+
elif (row is not lib.no_default) and (j not in hidden_elements):
|
1680 |
+
# this element has not been sparsified so must be the start of section
|
1681 |
+
last_label = j
|
1682 |
+
lengths[(i, last_label)] = 1
|
1683 |
+
visible_row_count += 1
|
1684 |
+
elif row is not lib.no_default:
|
1685 |
+
# even if the above is hidden, keep track of it in case length > 1 and
|
1686 |
+
# later elements are visible
|
1687 |
+
last_label = j
|
1688 |
+
lengths[(i, last_label)] = 0
|
1689 |
+
elif j not in hidden_elements:
|
1690 |
+
# then element must be part of sparsified section and is visible
|
1691 |
+
visible_row_count += 1
|
1692 |
+
if visible_row_count > max_index:
|
1693 |
+
break # do not add a length since the render trim limit reached
|
1694 |
+
if lengths[(i, last_label)] == 0:
|
1695 |
+
# if previous iteration was first-of-section but hidden then offset
|
1696 |
+
last_label = j
|
1697 |
+
lengths[(i, last_label)] = 1
|
1698 |
+
else:
|
1699 |
+
# else add to previous iteration
|
1700 |
+
lengths[(i, last_label)] += 1
|
1701 |
+
|
1702 |
+
non_zero_lengths = {
|
1703 |
+
element: length for element, length in lengths.items() if length >= 1
|
1704 |
+
}
|
1705 |
+
|
1706 |
+
return non_zero_lengths
|
1707 |
+
|
1708 |
+
|
1709 |
+
def _is_visible(idx_row, idx_col, lengths) -> bool:
|
1710 |
+
"""
|
1711 |
+
Index -> {(idx_row, idx_col): bool}).
|
1712 |
+
"""
|
1713 |
+
return (idx_col, idx_row) in lengths
|
1714 |
+
|
1715 |
+
|
1716 |
+
def format_table_styles(styles: CSSStyles) -> CSSStyles:
|
1717 |
+
"""
|
1718 |
+
looks for multiple CSS selectors and separates them:
|
1719 |
+
[{'selector': 'td, th', 'props': 'a:v;'}]
|
1720 |
+
---> [{'selector': 'td', 'props': 'a:v;'},
|
1721 |
+
{'selector': 'th', 'props': 'a:v;'}]
|
1722 |
+
"""
|
1723 |
+
return [
|
1724 |
+
{"selector": selector, "props": css_dict["props"]}
|
1725 |
+
for css_dict in styles
|
1726 |
+
for selector in css_dict["selector"].split(",")
|
1727 |
+
]
|
1728 |
+
|
1729 |
+
|
1730 |
+
def _default_formatter(x: Any, precision: int, thousands: bool = False) -> Any:
|
1731 |
+
"""
|
1732 |
+
Format the display of a value
|
1733 |
+
|
1734 |
+
Parameters
|
1735 |
+
----------
|
1736 |
+
x : Any
|
1737 |
+
Input variable to be formatted
|
1738 |
+
precision : Int
|
1739 |
+
Floating point precision used if ``x`` is float or complex.
|
1740 |
+
thousands : bool, default False
|
1741 |
+
Whether to group digits with thousands separated with ",".
|
1742 |
+
|
1743 |
+
Returns
|
1744 |
+
-------
|
1745 |
+
value : Any
|
1746 |
+
Matches input type, or string if input is float or complex or int with sep.
|
1747 |
+
"""
|
1748 |
+
if is_float(x) or is_complex(x):
|
1749 |
+
return f"{x:,.{precision}f}" if thousands else f"{x:.{precision}f}"
|
1750 |
+
elif is_integer(x):
|
1751 |
+
return f"{x:,}" if thousands else str(x)
|
1752 |
+
return x
|
1753 |
+
|
1754 |
+
|
1755 |
+
def _wrap_decimal_thousands(
|
1756 |
+
formatter: Callable, decimal: str, thousands: str | None
|
1757 |
+
) -> Callable:
|
1758 |
+
"""
|
1759 |
+
Takes a string formatting function and wraps logic to deal with thousands and
|
1760 |
+
decimal parameters, in the case that they are non-standard and that the input
|
1761 |
+
is a (float, complex, int).
|
1762 |
+
"""
|
1763 |
+
|
1764 |
+
def wrapper(x):
|
1765 |
+
if is_float(x) or is_integer(x) or is_complex(x):
|
1766 |
+
if decimal != "." and thousands is not None and thousands != ",":
|
1767 |
+
return (
|
1768 |
+
formatter(x)
|
1769 |
+
.replace(",", "§_§-") # rare string to avoid "," <-> "." clash.
|
1770 |
+
.replace(".", decimal)
|
1771 |
+
.replace("§_§-", thousands)
|
1772 |
+
)
|
1773 |
+
elif decimal != "." and (thousands is None or thousands == ","):
|
1774 |
+
return formatter(x).replace(".", decimal)
|
1775 |
+
elif decimal == "." and thousands is not None and thousands != ",":
|
1776 |
+
return formatter(x).replace(",", thousands)
|
1777 |
+
return formatter(x)
|
1778 |
+
|
1779 |
+
return wrapper
|
1780 |
+
|
1781 |
+
|
1782 |
+
def _str_escape(x, escape):
|
1783 |
+
"""if escaping: only use on str, else return input"""
|
1784 |
+
if isinstance(x, str):
|
1785 |
+
if escape == "html":
|
1786 |
+
return escape_html(x)
|
1787 |
+
elif escape == "latex":
|
1788 |
+
return _escape_latex(x)
|
1789 |
+
elif escape == "latex-math":
|
1790 |
+
return _escape_latex_math(x)
|
1791 |
+
else:
|
1792 |
+
raise ValueError(
|
1793 |
+
f"`escape` only permitted in {{'html', 'latex', 'latex-math'}}, \
|
1794 |
+
got {escape}"
|
1795 |
+
)
|
1796 |
+
return x
|
1797 |
+
|
1798 |
+
|
1799 |
+
def _render_href(x, format):
|
1800 |
+
"""uses regex to detect a common URL pattern and converts to href tag in format."""
|
1801 |
+
if isinstance(x, str):
|
1802 |
+
if format == "html":
|
1803 |
+
href = '<a href="{0}" target="_blank">{0}</a>'
|
1804 |
+
elif format == "latex":
|
1805 |
+
href = r"\href{{{0}}}{{{0}}}"
|
1806 |
+
else:
|
1807 |
+
raise ValueError("``hyperlinks`` format can only be 'html' or 'latex'")
|
1808 |
+
pat = r"((http|ftp)s?:\/\/|www.)[\w/\-?=%.:@]+\.[\w/\-&?=%.,':;~!@#$*()\[\]]+"
|
1809 |
+
return re.sub(pat, lambda m: href.format(m.group(0)), x)
|
1810 |
+
return x
|
1811 |
+
|
1812 |
+
|
1813 |
+
def _maybe_wrap_formatter(
|
1814 |
+
formatter: BaseFormatter | None = None,
|
1815 |
+
na_rep: str | None = None,
|
1816 |
+
precision: int | None = None,
|
1817 |
+
decimal: str = ".",
|
1818 |
+
thousands: str | None = None,
|
1819 |
+
escape: str | None = None,
|
1820 |
+
hyperlinks: str | None = None,
|
1821 |
+
) -> Callable:
|
1822 |
+
"""
|
1823 |
+
Allows formatters to be expressed as str, callable or None, where None returns
|
1824 |
+
a default formatting function. wraps with na_rep, and precision where they are
|
1825 |
+
available.
|
1826 |
+
"""
|
1827 |
+
# Get initial func from input string, input callable, or from default factory
|
1828 |
+
if isinstance(formatter, str):
|
1829 |
+
func_0 = lambda x: formatter.format(x)
|
1830 |
+
elif callable(formatter):
|
1831 |
+
func_0 = formatter
|
1832 |
+
elif formatter is None:
|
1833 |
+
precision = (
|
1834 |
+
get_option("styler.format.precision") if precision is None else precision
|
1835 |
+
)
|
1836 |
+
func_0 = partial(
|
1837 |
+
_default_formatter, precision=precision, thousands=(thousands is not None)
|
1838 |
+
)
|
1839 |
+
else:
|
1840 |
+
raise TypeError(f"'formatter' expected str or callable, got {type(formatter)}")
|
1841 |
+
|
1842 |
+
# Replace chars if escaping
|
1843 |
+
if escape is not None:
|
1844 |
+
func_1 = lambda x: func_0(_str_escape(x, escape=escape))
|
1845 |
+
else:
|
1846 |
+
func_1 = func_0
|
1847 |
+
|
1848 |
+
# Replace decimals and thousands if non-standard inputs detected
|
1849 |
+
if decimal != "." or (thousands is not None and thousands != ","):
|
1850 |
+
func_2 = _wrap_decimal_thousands(func_1, decimal=decimal, thousands=thousands)
|
1851 |
+
else:
|
1852 |
+
func_2 = func_1
|
1853 |
+
|
1854 |
+
# Render links
|
1855 |
+
if hyperlinks is not None:
|
1856 |
+
func_3 = lambda x: func_2(_render_href(x, format=hyperlinks))
|
1857 |
+
else:
|
1858 |
+
func_3 = func_2
|
1859 |
+
|
1860 |
+
# Replace missing values if na_rep
|
1861 |
+
if na_rep is None:
|
1862 |
+
return func_3
|
1863 |
+
else:
|
1864 |
+
return lambda x: na_rep if (isna(x) is True) else func_3(x)
|
1865 |
+
|
1866 |
+
|
1867 |
+
def non_reducing_slice(slice_: Subset):
|
1868 |
+
"""
|
1869 |
+
Ensure that a slice doesn't reduce to a Series or Scalar.
|
1870 |
+
|
1871 |
+
Any user-passed `subset` should have this called on it
|
1872 |
+
to make sure we're always working with DataFrames.
|
1873 |
+
"""
|
1874 |
+
# default to column slice, like DataFrame
|
1875 |
+
# ['A', 'B'] -> IndexSlices[:, ['A', 'B']]
|
1876 |
+
kinds = (ABCSeries, np.ndarray, Index, list, str)
|
1877 |
+
if isinstance(slice_, kinds):
|
1878 |
+
slice_ = IndexSlice[:, slice_]
|
1879 |
+
|
1880 |
+
def pred(part) -> bool:
|
1881 |
+
"""
|
1882 |
+
Returns
|
1883 |
+
-------
|
1884 |
+
bool
|
1885 |
+
True if slice does *not* reduce,
|
1886 |
+
False if `part` is a tuple.
|
1887 |
+
"""
|
1888 |
+
# true when slice does *not* reduce, False when part is a tuple,
|
1889 |
+
# i.e. MultiIndex slice
|
1890 |
+
if isinstance(part, tuple):
|
1891 |
+
# GH#39421 check for sub-slice:
|
1892 |
+
return any((isinstance(s, slice) or is_list_like(s)) for s in part)
|
1893 |
+
else:
|
1894 |
+
return isinstance(part, slice) or is_list_like(part)
|
1895 |
+
|
1896 |
+
if not is_list_like(slice_):
|
1897 |
+
if not isinstance(slice_, slice):
|
1898 |
+
# a 1-d slice, like df.loc[1]
|
1899 |
+
slice_ = [[slice_]]
|
1900 |
+
else:
|
1901 |
+
# slice(a, b, c)
|
1902 |
+
slice_ = [slice_] # to tuplize later
|
1903 |
+
else:
|
1904 |
+
# error: Item "slice" of "Union[slice, Sequence[Any]]" has no attribute
|
1905 |
+
# "__iter__" (not iterable) -> is specifically list_like in conditional
|
1906 |
+
slice_ = [p if pred(p) else [p] for p in slice_] # type: ignore[union-attr]
|
1907 |
+
return tuple(slice_)
|
1908 |
+
|
1909 |
+
|
1910 |
+
def maybe_convert_css_to_tuples(style: CSSProperties) -> CSSList:
|
1911 |
+
"""
|
1912 |
+
Convert css-string to sequence of tuples format if needed.
|
1913 |
+
'color:red; border:1px solid black;' -> [('color', 'red'),
|
1914 |
+
('border','1px solid red')]
|
1915 |
+
"""
|
1916 |
+
if isinstance(style, str):
|
1917 |
+
s = style.split(";")
|
1918 |
+
try:
|
1919 |
+
return [
|
1920 |
+
(x.split(":")[0].strip(), x.split(":")[1].strip())
|
1921 |
+
for x in s
|
1922 |
+
if x.strip() != ""
|
1923 |
+
]
|
1924 |
+
except IndexError:
|
1925 |
+
raise ValueError(
|
1926 |
+
"Styles supplied as string must follow CSS rule formats, "
|
1927 |
+
f"for example 'attr: val;'. '{style}' was given."
|
1928 |
+
)
|
1929 |
+
return style
|
1930 |
+
|
1931 |
+
|
1932 |
+
def refactor_levels(
|
1933 |
+
level: Level | list[Level] | None,
|
1934 |
+
obj: Index,
|
1935 |
+
) -> list[int]:
|
1936 |
+
"""
|
1937 |
+
Returns a consistent levels arg for use in ``hide_index`` or ``hide_columns``.
|
1938 |
+
|
1939 |
+
Parameters
|
1940 |
+
----------
|
1941 |
+
level : int, str, list
|
1942 |
+
Original ``level`` arg supplied to above methods.
|
1943 |
+
obj:
|
1944 |
+
Either ``self.index`` or ``self.columns``
|
1945 |
+
|
1946 |
+
Returns
|
1947 |
+
-------
|
1948 |
+
list : refactored arg with a list of levels to hide
|
1949 |
+
"""
|
1950 |
+
if level is None:
|
1951 |
+
levels_: list[int] = list(range(obj.nlevels))
|
1952 |
+
elif isinstance(level, int):
|
1953 |
+
levels_ = [level]
|
1954 |
+
elif isinstance(level, str):
|
1955 |
+
levels_ = [obj._get_level_number(level)]
|
1956 |
+
elif isinstance(level, list):
|
1957 |
+
levels_ = [
|
1958 |
+
obj._get_level_number(lev) if not isinstance(lev, int) else lev
|
1959 |
+
for lev in level
|
1960 |
+
]
|
1961 |
+
else:
|
1962 |
+
raise ValueError("`level` must be of type `int`, `str` or list of such")
|
1963 |
+
return levels_
|
1964 |
+
|
1965 |
+
|
1966 |
+
class Tooltips:
|
1967 |
+
"""
|
1968 |
+
An extension to ``Styler`` that allows for and manipulates tooltips on hover
|
1969 |
+
of ``<td>`` cells in the HTML result.
|
1970 |
+
|
1971 |
+
Parameters
|
1972 |
+
----------
|
1973 |
+
css_name: str, default "pd-t"
|
1974 |
+
Name of the CSS class that controls visualisation of tooltips.
|
1975 |
+
css_props: list-like, default; see Notes
|
1976 |
+
List of (attr, value) tuples defining properties of the CSS class.
|
1977 |
+
tooltips: DataFrame, default empty
|
1978 |
+
DataFrame of strings aligned with underlying Styler data for tooltip
|
1979 |
+
display.
|
1980 |
+
|
1981 |
+
Notes
|
1982 |
+
-----
|
1983 |
+
The default properties for the tooltip CSS class are:
|
1984 |
+
|
1985 |
+
- visibility: hidden
|
1986 |
+
- position: absolute
|
1987 |
+
- z-index: 1
|
1988 |
+
- background-color: black
|
1989 |
+
- color: white
|
1990 |
+
- transform: translate(-20px, -20px)
|
1991 |
+
|
1992 |
+
Hidden visibility is a key prerequisite to the hover functionality, and should
|
1993 |
+
always be included in any manual properties specification.
|
1994 |
+
"""
|
1995 |
+
|
1996 |
+
def __init__(
|
1997 |
+
self,
|
1998 |
+
css_props: CSSProperties = [
|
1999 |
+
("visibility", "hidden"),
|
2000 |
+
("position", "absolute"),
|
2001 |
+
("z-index", 1),
|
2002 |
+
("background-color", "black"),
|
2003 |
+
("color", "white"),
|
2004 |
+
("transform", "translate(-20px, -20px)"),
|
2005 |
+
],
|
2006 |
+
css_name: str = "pd-t",
|
2007 |
+
tooltips: DataFrame = DataFrame(),
|
2008 |
+
) -> None:
|
2009 |
+
self.class_name = css_name
|
2010 |
+
self.class_properties = css_props
|
2011 |
+
self.tt_data = tooltips
|
2012 |
+
self.table_styles: CSSStyles = []
|
2013 |
+
|
2014 |
+
@property
|
2015 |
+
def _class_styles(self):
|
2016 |
+
"""
|
2017 |
+
Combine the ``_Tooltips`` CSS class name and CSS properties to the format
|
2018 |
+
required to extend the underlying ``Styler`` `table_styles` to allow
|
2019 |
+
tooltips to render in HTML.
|
2020 |
+
|
2021 |
+
Returns
|
2022 |
+
-------
|
2023 |
+
styles : List
|
2024 |
+
"""
|
2025 |
+
return [
|
2026 |
+
{
|
2027 |
+
"selector": f".{self.class_name}",
|
2028 |
+
"props": maybe_convert_css_to_tuples(self.class_properties),
|
2029 |
+
}
|
2030 |
+
]
|
2031 |
+
|
2032 |
+
def _pseudo_css(self, uuid: str, name: str, row: int, col: int, text: str):
|
2033 |
+
"""
|
2034 |
+
For every table data-cell that has a valid tooltip (not None, NaN or
|
2035 |
+
empty string) must create two pseudo CSS entries for the specific
|
2036 |
+
<td> element id which are added to overall table styles:
|
2037 |
+
an on hover visibility change and a content change
|
2038 |
+
dependent upon the user's chosen display string.
|
2039 |
+
|
2040 |
+
For example:
|
2041 |
+
[{"selector": "T__row1_col1:hover .pd-t",
|
2042 |
+
"props": [("visibility", "visible")]},
|
2043 |
+
{"selector": "T__row1_col1 .pd-t::after",
|
2044 |
+
"props": [("content", "Some Valid Text String")]}]
|
2045 |
+
|
2046 |
+
Parameters
|
2047 |
+
----------
|
2048 |
+
uuid: str
|
2049 |
+
The uuid of the Styler instance
|
2050 |
+
name: str
|
2051 |
+
The css-name of the class used for styling tooltips
|
2052 |
+
row : int
|
2053 |
+
The row index of the specified tooltip string data
|
2054 |
+
col : int
|
2055 |
+
The col index of the specified tooltip string data
|
2056 |
+
text : str
|
2057 |
+
The textual content of the tooltip to be displayed in HTML.
|
2058 |
+
|
2059 |
+
Returns
|
2060 |
+
-------
|
2061 |
+
pseudo_css : List
|
2062 |
+
"""
|
2063 |
+
selector_id = "#T_" + uuid + "_row" + str(row) + "_col" + str(col)
|
2064 |
+
return [
|
2065 |
+
{
|
2066 |
+
"selector": selector_id + f":hover .{name}",
|
2067 |
+
"props": [("visibility", "visible")],
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"selector": selector_id + f" .{name}::after",
|
2071 |
+
"props": [("content", f'"{text}"')],
|
2072 |
+
},
|
2073 |
+
]
|
2074 |
+
|
2075 |
+
def _translate(self, styler: StylerRenderer, d: dict):
|
2076 |
+
"""
|
2077 |
+
Mutate the render dictionary to allow for tooltips:
|
2078 |
+
|
2079 |
+
- Add ``<span>`` HTML element to each data cells ``display_value``. Ignores
|
2080 |
+
headers.
|
2081 |
+
- Add table level CSS styles to control pseudo classes.
|
2082 |
+
|
2083 |
+
Parameters
|
2084 |
+
----------
|
2085 |
+
styler_data : DataFrame
|
2086 |
+
Underlying ``Styler`` DataFrame used for reindexing.
|
2087 |
+
uuid : str
|
2088 |
+
The underlying ``Styler`` uuid for CSS id.
|
2089 |
+
d : dict
|
2090 |
+
The dictionary prior to final render
|
2091 |
+
|
2092 |
+
Returns
|
2093 |
+
-------
|
2094 |
+
render_dict : Dict
|
2095 |
+
"""
|
2096 |
+
self.tt_data = self.tt_data.reindex_like(styler.data)
|
2097 |
+
if self.tt_data.empty:
|
2098 |
+
return d
|
2099 |
+
|
2100 |
+
name = self.class_name
|
2101 |
+
mask = (self.tt_data.isna()) | (self.tt_data.eq("")) # empty string = no ttip
|
2102 |
+
self.table_styles = [
|
2103 |
+
style
|
2104 |
+
for sublist in [
|
2105 |
+
self._pseudo_css(styler.uuid, name, i, j, str(self.tt_data.iloc[i, j]))
|
2106 |
+
for i in range(len(self.tt_data.index))
|
2107 |
+
for j in range(len(self.tt_data.columns))
|
2108 |
+
if not (
|
2109 |
+
mask.iloc[i, j]
|
2110 |
+
or i in styler.hidden_rows
|
2111 |
+
or j in styler.hidden_columns
|
2112 |
+
)
|
2113 |
+
]
|
2114 |
+
for style in sublist
|
2115 |
+
]
|
2116 |
+
|
2117 |
+
if self.table_styles:
|
2118 |
+
# add span class to every cell only if at least 1 non-empty tooltip
|
2119 |
+
for row in d["body"]:
|
2120 |
+
for item in row:
|
2121 |
+
if item["type"] == "td":
|
2122 |
+
item["display_value"] = (
|
2123 |
+
str(item["display_value"])
|
2124 |
+
+ f'<span class="{self.class_name}"></span>'
|
2125 |
+
)
|
2126 |
+
d["table_styles"].extend(self._class_styles)
|
2127 |
+
d["table_styles"].extend(self.table_styles)
|
2128 |
+
|
2129 |
+
return d
|
2130 |
+
|
2131 |
+
|
2132 |
+
def _parse_latex_table_wrapping(table_styles: CSSStyles, caption: str | None) -> bool:
|
2133 |
+
"""
|
2134 |
+
Indicate whether LaTeX {tabular} should be wrapped with a {table} environment.
|
2135 |
+
|
2136 |
+
Parses the `table_styles` and detects any selectors which must be included outside
|
2137 |
+
of {tabular}, i.e. indicating that wrapping must occur, and therefore return True,
|
2138 |
+
or if a caption exists and requires similar.
|
2139 |
+
"""
|
2140 |
+
IGNORED_WRAPPERS = ["toprule", "midrule", "bottomrule", "column_format"]
|
2141 |
+
# ignored selectors are included with {tabular} so do not need wrapping
|
2142 |
+
return (
|
2143 |
+
table_styles is not None
|
2144 |
+
and any(d["selector"] not in IGNORED_WRAPPERS for d in table_styles)
|
2145 |
+
) or caption is not None
|
2146 |
+
|
2147 |
+
|
2148 |
+
def _parse_latex_table_styles(table_styles: CSSStyles, selector: str) -> str | None:
|
2149 |
+
"""
|
2150 |
+
Return the first 'props' 'value' from ``tables_styles`` identified by ``selector``.
|
2151 |
+
|
2152 |
+
Examples
|
2153 |
+
--------
|
2154 |
+
>>> table_styles = [{'selector': 'foo', 'props': [('attr','value')]},
|
2155 |
+
... {'selector': 'bar', 'props': [('attr', 'overwritten')]},
|
2156 |
+
... {'selector': 'bar', 'props': [('a1', 'baz'), ('a2', 'ignore')]}]
|
2157 |
+
>>> _parse_latex_table_styles(table_styles, selector='bar')
|
2158 |
+
'baz'
|
2159 |
+
|
2160 |
+
Notes
|
2161 |
+
-----
|
2162 |
+
The replacement of "§" with ":" is to avoid the CSS problem where ":" has structural
|
2163 |
+
significance and cannot be used in LaTeX labels, but is often required by them.
|
2164 |
+
"""
|
2165 |
+
for style in table_styles[::-1]: # in reverse for most recently applied style
|
2166 |
+
if style["selector"] == selector:
|
2167 |
+
return str(style["props"][0][1]).replace("§", ":")
|
2168 |
+
return None
|
2169 |
+
|
2170 |
+
|
2171 |
+
def _parse_latex_cell_styles(
|
2172 |
+
latex_styles: CSSList, display_value: str, convert_css: bool = False
|
2173 |
+
) -> str:
|
2174 |
+
r"""
|
2175 |
+
Mutate the ``display_value`` string including LaTeX commands from ``latex_styles``.
|
2176 |
+
|
2177 |
+
This method builds a recursive latex chain of commands based on the
|
2178 |
+
CSSList input, nested around ``display_value``.
|
2179 |
+
|
2180 |
+
If a CSS style is given as ('<command>', '<options>') this is translated to
|
2181 |
+
'\<command><options>{display_value}', and this value is treated as the
|
2182 |
+
display value for the next iteration.
|
2183 |
+
|
2184 |
+
The most recent style forms the inner component, for example for styles:
|
2185 |
+
`[('c1', 'o1'), ('c2', 'o2')]` this returns: `\c1o1{\c2o2{display_value}}`
|
2186 |
+
|
2187 |
+
Sometimes latex commands have to be wrapped with curly braces in different ways:
|
2188 |
+
We create some parsing flags to identify the different behaviours:
|
2189 |
+
|
2190 |
+
- `--rwrap` : `\<command><options>{<display_value>}`
|
2191 |
+
- `--wrap` : `{\<command><options> <display_value>}`
|
2192 |
+
- `--nowrap` : `\<command><options> <display_value>`
|
2193 |
+
- `--lwrap` : `{\<command><options>} <display_value>`
|
2194 |
+
- `--dwrap` : `{\<command><options>}{<display_value>}`
|
2195 |
+
|
2196 |
+
For example for styles:
|
2197 |
+
`[('c1', 'o1--wrap'), ('c2', 'o2')]` this returns: `{\c1o1 \c2o2{display_value}}
|
2198 |
+
"""
|
2199 |
+
if convert_css:
|
2200 |
+
latex_styles = _parse_latex_css_conversion(latex_styles)
|
2201 |
+
for command, options in latex_styles[::-1]: # in reverse for most recent style
|
2202 |
+
formatter = {
|
2203 |
+
"--wrap": f"{{\\{command}--to_parse {display_value}}}",
|
2204 |
+
"--nowrap": f"\\{command}--to_parse {display_value}",
|
2205 |
+
"--lwrap": f"{{\\{command}--to_parse}} {display_value}",
|
2206 |
+
"--rwrap": f"\\{command}--to_parse{{{display_value}}}",
|
2207 |
+
"--dwrap": f"{{\\{command}--to_parse}}{{{display_value}}}",
|
2208 |
+
}
|
2209 |
+
display_value = f"\\{command}{options} {display_value}"
|
2210 |
+
for arg in ["--nowrap", "--wrap", "--lwrap", "--rwrap", "--dwrap"]:
|
2211 |
+
if arg in str(options):
|
2212 |
+
display_value = formatter[arg].replace(
|
2213 |
+
"--to_parse", _parse_latex_options_strip(value=options, arg=arg)
|
2214 |
+
)
|
2215 |
+
break # only ever one purposeful entry
|
2216 |
+
return display_value
|
2217 |
+
|
2218 |
+
|
2219 |
+
def _parse_latex_header_span(
|
2220 |
+
cell: dict[str, Any],
|
2221 |
+
multirow_align: str,
|
2222 |
+
multicol_align: str,
|
2223 |
+
wrap: bool = False,
|
2224 |
+
convert_css: bool = False,
|
2225 |
+
) -> str:
|
2226 |
+
r"""
|
2227 |
+
Refactor the cell `display_value` if a 'colspan' or 'rowspan' attribute is present.
|
2228 |
+
|
2229 |
+
'rowspan' and 'colspan' do not occur simultaneouly. If they are detected then
|
2230 |
+
the `display_value` is altered to a LaTeX `multirow` or `multicol` command
|
2231 |
+
respectively, with the appropriate cell-span.
|
2232 |
+
|
2233 |
+
``wrap`` is used to enclose the `display_value` in braces which is needed for
|
2234 |
+
column headers using an siunitx package.
|
2235 |
+
|
2236 |
+
Requires the package {multirow}, whereas multicol support is usually built in
|
2237 |
+
to the {tabular} environment.
|
2238 |
+
|
2239 |
+
Examples
|
2240 |
+
--------
|
2241 |
+
>>> cell = {'cellstyle': '', 'display_value':'text', 'attributes': 'colspan="3"'}
|
2242 |
+
>>> _parse_latex_header_span(cell, 't', 'c')
|
2243 |
+
'\\multicolumn{3}{c}{text}'
|
2244 |
+
"""
|
2245 |
+
display_val = _parse_latex_cell_styles(
|
2246 |
+
cell["cellstyle"], cell["display_value"], convert_css
|
2247 |
+
)
|
2248 |
+
if "attributes" in cell:
|
2249 |
+
attrs = cell["attributes"]
|
2250 |
+
if 'colspan="' in attrs:
|
2251 |
+
colspan = attrs[attrs.find('colspan="') + 9 :] # len('colspan="') = 9
|
2252 |
+
colspan = int(colspan[: colspan.find('"')])
|
2253 |
+
if "naive-l" == multicol_align:
|
2254 |
+
out = f"{{{display_val}}}" if wrap else f"{display_val}"
|
2255 |
+
blanks = " & {}" if wrap else " &"
|
2256 |
+
return out + blanks * (colspan - 1)
|
2257 |
+
elif "naive-r" == multicol_align:
|
2258 |
+
out = f"{{{display_val}}}" if wrap else f"{display_val}"
|
2259 |
+
blanks = "{} & " if wrap else "& "
|
2260 |
+
return blanks * (colspan - 1) + out
|
2261 |
+
return f"\\multicolumn{{{colspan}}}{{{multicol_align}}}{{{display_val}}}"
|
2262 |
+
elif 'rowspan="' in attrs:
|
2263 |
+
if multirow_align == "naive":
|
2264 |
+
return display_val
|
2265 |
+
rowspan = attrs[attrs.find('rowspan="') + 9 :]
|
2266 |
+
rowspan = int(rowspan[: rowspan.find('"')])
|
2267 |
+
return f"\\multirow[{multirow_align}]{{{rowspan}}}{{*}}{{{display_val}}}"
|
2268 |
+
if wrap:
|
2269 |
+
return f"{{{display_val}}}"
|
2270 |
+
else:
|
2271 |
+
return display_val
|
2272 |
+
|
2273 |
+
|
2274 |
+
def _parse_latex_options_strip(value: str | float, arg: str) -> str:
|
2275 |
+
"""
|
2276 |
+
Strip a css_value which may have latex wrapping arguments, css comment identifiers,
|
2277 |
+
and whitespaces, to a valid string for latex options parsing.
|
2278 |
+
|
2279 |
+
For example: 'red /* --wrap */ ' --> 'red'
|
2280 |
+
"""
|
2281 |
+
return str(value).replace(arg, "").replace("/*", "").replace("*/", "").strip()
|
2282 |
+
|
2283 |
+
|
2284 |
+
def _parse_latex_css_conversion(styles: CSSList) -> CSSList:
|
2285 |
+
"""
|
2286 |
+
Convert CSS (attribute,value) pairs to equivalent LaTeX (command,options) pairs.
|
2287 |
+
|
2288 |
+
Ignore conversion if tagged with `--latex` option, skipped if no conversion found.
|
2289 |
+
"""
|
2290 |
+
|
2291 |
+
def font_weight(value, arg):
|
2292 |
+
if value in ("bold", "bolder"):
|
2293 |
+
return "bfseries", f"{arg}"
|
2294 |
+
return None
|
2295 |
+
|
2296 |
+
def font_style(value, arg):
|
2297 |
+
if value == "italic":
|
2298 |
+
return "itshape", f"{arg}"
|
2299 |
+
if value == "oblique":
|
2300 |
+
return "slshape", f"{arg}"
|
2301 |
+
return None
|
2302 |
+
|
2303 |
+
def color(value, user_arg, command, comm_arg):
|
2304 |
+
"""
|
2305 |
+
CSS colors have 5 formats to process:
|
2306 |
+
|
2307 |
+
- 6 digit hex code: "#ff23ee" --> [HTML]{FF23EE}
|
2308 |
+
- 3 digit hex code: "#f0e" --> [HTML]{FF00EE}
|
2309 |
+
- rgba: rgba(128, 255, 0, 0.5) --> [rgb]{0.502, 1.000, 0.000}
|
2310 |
+
- rgb: rgb(128, 255, 0,) --> [rbg]{0.502, 1.000, 0.000}
|
2311 |
+
- string: red --> {red}
|
2312 |
+
|
2313 |
+
Additionally rgb or rgba can be expressed in % which is also parsed.
|
2314 |
+
"""
|
2315 |
+
arg = user_arg if user_arg != "" else comm_arg
|
2316 |
+
|
2317 |
+
if value[0] == "#" and len(value) == 7: # color is hex code
|
2318 |
+
return command, f"[HTML]{{{value[1:].upper()}}}{arg}"
|
2319 |
+
if value[0] == "#" and len(value) == 4: # color is short hex code
|
2320 |
+
val = f"{value[1].upper()*2}{value[2].upper()*2}{value[3].upper()*2}"
|
2321 |
+
return command, f"[HTML]{{{val}}}{arg}"
|
2322 |
+
elif value[:3] == "rgb": # color is rgb or rgba
|
2323 |
+
r = re.findall("(?<=\\()[0-9\\s%]+(?=,)", value)[0].strip()
|
2324 |
+
r = float(r[:-1]) / 100 if "%" in r else int(r) / 255
|
2325 |
+
g = re.findall("(?<=,)[0-9\\s%]+(?=,)", value)[0].strip()
|
2326 |
+
g = float(g[:-1]) / 100 if "%" in g else int(g) / 255
|
2327 |
+
if value[3] == "a": # color is rgba
|
2328 |
+
b = re.findall("(?<=,)[0-9\\s%]+(?=,)", value)[1].strip()
|
2329 |
+
else: # color is rgb
|
2330 |
+
b = re.findall("(?<=,)[0-9\\s%]+(?=\\))", value)[0].strip()
|
2331 |
+
b = float(b[:-1]) / 100 if "%" in b else int(b) / 255
|
2332 |
+
return command, f"[rgb]{{{r:.3f}, {g:.3f}, {b:.3f}}}{arg}"
|
2333 |
+
else:
|
2334 |
+
return command, f"{{{value}}}{arg}" # color is likely string-named
|
2335 |
+
|
2336 |
+
CONVERTED_ATTRIBUTES: dict[str, Callable] = {
|
2337 |
+
"font-weight": font_weight,
|
2338 |
+
"background-color": partial(color, command="cellcolor", comm_arg="--lwrap"),
|
2339 |
+
"color": partial(color, command="color", comm_arg=""),
|
2340 |
+
"font-style": font_style,
|
2341 |
+
}
|
2342 |
+
|
2343 |
+
latex_styles: CSSList = []
|
2344 |
+
for attribute, value in styles:
|
2345 |
+
if isinstance(value, str) and "--latex" in value:
|
2346 |
+
# return the style without conversion but drop '--latex'
|
2347 |
+
latex_styles.append((attribute, value.replace("--latex", "")))
|
2348 |
+
if attribute in CONVERTED_ATTRIBUTES:
|
2349 |
+
arg = ""
|
2350 |
+
for x in ["--wrap", "--nowrap", "--lwrap", "--dwrap", "--rwrap"]:
|
2351 |
+
if x in str(value):
|
2352 |
+
arg, value = x, _parse_latex_options_strip(value, x)
|
2353 |
+
break
|
2354 |
+
latex_style = CONVERTED_ATTRIBUTES[attribute](value, arg)
|
2355 |
+
if latex_style is not None:
|
2356 |
+
latex_styles.extend([latex_style])
|
2357 |
+
return latex_styles
|
2358 |
+
|
2359 |
+
|
2360 |
+
def _escape_latex(s: str) -> str:
|
2361 |
+
r"""
|
2362 |
+
Replace the characters ``&``, ``%``, ``$``, ``#``, ``_``, ``{``, ``}``,
|
2363 |
+
``~``, ``^``, and ``\`` in the string with LaTeX-safe sequences.
|
2364 |
+
|
2365 |
+
Use this if you need to display text that might contain such characters in LaTeX.
|
2366 |
+
|
2367 |
+
Parameters
|
2368 |
+
----------
|
2369 |
+
s : str
|
2370 |
+
Input to be escaped
|
2371 |
+
|
2372 |
+
Return
|
2373 |
+
------
|
2374 |
+
str :
|
2375 |
+
Escaped string
|
2376 |
+
"""
|
2377 |
+
return (
|
2378 |
+
s.replace("\\", "ab2§=§8yz") # rare string for final conversion: avoid \\ clash
|
2379 |
+
.replace("ab2§=§8yz ", "ab2§=§8yz\\space ") # since \backslash gobbles spaces
|
2380 |
+
.replace("&", "\\&")
|
2381 |
+
.replace("%", "\\%")
|
2382 |
+
.replace("$", "\\$")
|
2383 |
+
.replace("#", "\\#")
|
2384 |
+
.replace("_", "\\_")
|
2385 |
+
.replace("{", "\\{")
|
2386 |
+
.replace("}", "\\}")
|
2387 |
+
.replace("~ ", "~\\space ") # since \textasciitilde gobbles spaces
|
2388 |
+
.replace("~", "\\textasciitilde ")
|
2389 |
+
.replace("^ ", "^\\space ") # since \textasciicircum gobbles spaces
|
2390 |
+
.replace("^", "\\textasciicircum ")
|
2391 |
+
.replace("ab2§=§8yz", "\\textbackslash ")
|
2392 |
+
)
|
2393 |
+
|
2394 |
+
|
2395 |
+
def _math_mode_with_dollar(s: str) -> str:
|
2396 |
+
r"""
|
2397 |
+
All characters in LaTeX math mode are preserved.
|
2398 |
+
|
2399 |
+
The substrings in LaTeX math mode, which start with
|
2400 |
+
the character ``$`` and end with ``$``, are preserved
|
2401 |
+
without escaping. Otherwise regular LaTeX escaping applies.
|
2402 |
+
|
2403 |
+
Parameters
|
2404 |
+
----------
|
2405 |
+
s : str
|
2406 |
+
Input to be escaped
|
2407 |
+
|
2408 |
+
Return
|
2409 |
+
------
|
2410 |
+
str :
|
2411 |
+
Escaped string
|
2412 |
+
"""
|
2413 |
+
s = s.replace(r"\$", r"rt8§=§7wz")
|
2414 |
+
pattern = re.compile(r"\$.*?\$")
|
2415 |
+
pos = 0
|
2416 |
+
ps = pattern.search(s, pos)
|
2417 |
+
res = []
|
2418 |
+
while ps:
|
2419 |
+
res.append(_escape_latex(s[pos : ps.span()[0]]))
|
2420 |
+
res.append(ps.group())
|
2421 |
+
pos = ps.span()[1]
|
2422 |
+
ps = pattern.search(s, pos)
|
2423 |
+
|
2424 |
+
res.append(_escape_latex(s[pos : len(s)]))
|
2425 |
+
return "".join(res).replace(r"rt8§=§7wz", r"\$")
|
2426 |
+
|
2427 |
+
|
2428 |
+
def _math_mode_with_parentheses(s: str) -> str:
|
2429 |
+
r"""
|
2430 |
+
All characters in LaTeX math mode are preserved.
|
2431 |
+
|
2432 |
+
The substrings in LaTeX math mode, which start with
|
2433 |
+
the character ``\(`` and end with ``\)``, are preserved
|
2434 |
+
without escaping. Otherwise regular LaTeX escaping applies.
|
2435 |
+
|
2436 |
+
Parameters
|
2437 |
+
----------
|
2438 |
+
s : str
|
2439 |
+
Input to be escaped
|
2440 |
+
|
2441 |
+
Return
|
2442 |
+
------
|
2443 |
+
str :
|
2444 |
+
Escaped string
|
2445 |
+
"""
|
2446 |
+
s = s.replace(r"\(", r"LEFT§=§6yzLEFT").replace(r"\)", r"RIGHTab5§=§RIGHT")
|
2447 |
+
res = []
|
2448 |
+
for item in re.split(r"LEFT§=§6yz|ab5§=§RIGHT", s):
|
2449 |
+
if item.startswith("LEFT") and item.endswith("RIGHT"):
|
2450 |
+
res.append(item.replace("LEFT", r"\(").replace("RIGHT", r"\)"))
|
2451 |
+
elif "LEFT" in item and "RIGHT" in item:
|
2452 |
+
res.append(
|
2453 |
+
_escape_latex(item).replace("LEFT", r"\(").replace("RIGHT", r"\)")
|
2454 |
+
)
|
2455 |
+
else:
|
2456 |
+
res.append(
|
2457 |
+
_escape_latex(item)
|
2458 |
+
.replace("LEFT", r"\textbackslash (")
|
2459 |
+
.replace("RIGHT", r"\textbackslash )")
|
2460 |
+
)
|
2461 |
+
return "".join(res)
|
2462 |
+
|
2463 |
+
|
2464 |
+
def _escape_latex_math(s: str) -> str:
|
2465 |
+
r"""
|
2466 |
+
All characters in LaTeX math mode are preserved.
|
2467 |
+
|
2468 |
+
The substrings in LaTeX math mode, which either are surrounded
|
2469 |
+
by two characters ``$`` or start with the character ``\(`` and end with ``\)``,
|
2470 |
+
are preserved without escaping. Otherwise regular LaTeX escaping applies.
|
2471 |
+
|
2472 |
+
Parameters
|
2473 |
+
----------
|
2474 |
+
s : str
|
2475 |
+
Input to be escaped
|
2476 |
+
|
2477 |
+
Return
|
2478 |
+
------
|
2479 |
+
str :
|
2480 |
+
Escaped string
|
2481 |
+
"""
|
2482 |
+
s = s.replace(r"\$", r"rt8§=§7wz")
|
2483 |
+
ps_d = re.compile(r"\$.*?\$").search(s, 0)
|
2484 |
+
ps_p = re.compile(r"\(.*?\)").search(s, 0)
|
2485 |
+
mode = []
|
2486 |
+
if ps_d:
|
2487 |
+
mode.append(ps_d.span()[0])
|
2488 |
+
if ps_p:
|
2489 |
+
mode.append(ps_p.span()[0])
|
2490 |
+
if len(mode) == 0:
|
2491 |
+
return _escape_latex(s.replace(r"rt8§=§7wz", r"\$"))
|
2492 |
+
if s[mode[0]] == r"$":
|
2493 |
+
return _math_mode_with_dollar(s.replace(r"rt8§=§7wz", r"\$"))
|
2494 |
+
if s[mode[0] - 1 : mode[0] + 1] == r"\(":
|
2495 |
+
return _math_mode_with_parentheses(s.replace(r"rt8§=§7wz", r"\$"))
|
2496 |
+
else:
|
2497 |
+
return _escape_latex(s.replace(r"rt8§=§7wz", r"\$"))
|