Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/scipy/special/__init__.py +863 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_add_newdocs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_lambertw.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_logsumexp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_mptestutils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_orthogonal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_sf_error.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_spfun_stats.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_spherical_bessel.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_support_alternative_backends.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_testutils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/orthogonal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/sf_error.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/specfun.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_add_newdocs.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_basic.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_cdflib.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_comb.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_ellip_harm.py +214 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_logsumexp.py +307 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_mptestutils.py +453 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_orthogonal.py +2605 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_orthogonal.pyi +331 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_sf_error.py +15 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_specfun.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_spfun_stats.py +106 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_spherical_bessel.py +354 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_support_alternative_backends.py +75 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_test_internal.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_testutils.py +321 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyi +526 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyx +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx.pxd +60 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx.pyx +181 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx_defs.h +68 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/add_newdocs.py +15 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/basic.py +87 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/cython_special.pyi +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/cython_special.pyx +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/sf_error.py +20 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/specfun.py +43 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/spfun_stats.py +17 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_basic.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_boxcox.py +106 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_cdflib.py +527 -0
- env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_cython_special.py +363 -0
env-llmeval/lib/python3.10/site-packages/scipy/special/__init__.py
ADDED
@@ -0,0 +1,863 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
========================================
|
3 |
+
Special functions (:mod:`scipy.special`)
|
4 |
+
========================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.special
|
7 |
+
|
8 |
+
Almost all of the functions below accept NumPy arrays as input
|
9 |
+
arguments as well as single numbers. This means they follow
|
10 |
+
broadcasting and automatic array-looping rules. Technically,
|
11 |
+
they are `NumPy universal functions
|
12 |
+
<https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-basics>`_.
|
13 |
+
Functions which do not accept NumPy arrays are marked by a warning
|
14 |
+
in the section description.
|
15 |
+
|
16 |
+
.. seealso::
|
17 |
+
|
18 |
+
`scipy.special.cython_special` -- Typed Cython versions of special functions
|
19 |
+
|
20 |
+
|
21 |
+
Error handling
|
22 |
+
==============
|
23 |
+
|
24 |
+
Errors are handled by returning NaNs or other appropriate values.
|
25 |
+
Some of the special function routines can emit warnings or raise
|
26 |
+
exceptions when an error occurs. By default this is disabled; to
|
27 |
+
query and control the current error handling state the following
|
28 |
+
functions are provided.
|
29 |
+
|
30 |
+
.. autosummary::
|
31 |
+
:toctree: generated/
|
32 |
+
|
33 |
+
geterr -- Get the current way of handling special-function errors.
|
34 |
+
seterr -- Set how special-function errors are handled.
|
35 |
+
errstate -- Context manager for special-function error handling.
|
36 |
+
SpecialFunctionWarning -- Warning that can be emitted by special functions.
|
37 |
+
SpecialFunctionError -- Exception that can be raised by special functions.
|
38 |
+
|
39 |
+
Available functions
|
40 |
+
===================
|
41 |
+
|
42 |
+
Airy functions
|
43 |
+
--------------
|
44 |
+
|
45 |
+
.. autosummary::
|
46 |
+
:toctree: generated/
|
47 |
+
|
48 |
+
airy -- Airy functions and their derivatives.
|
49 |
+
airye -- Exponentially scaled Airy functions and their derivatives.
|
50 |
+
ai_zeros -- Compute `nt` zeros and values of the Airy function Ai and its derivative.
|
51 |
+
bi_zeros -- Compute `nt` zeros and values of the Airy function Bi and its derivative.
|
52 |
+
itairy -- Integrals of Airy functions
|
53 |
+
|
54 |
+
|
55 |
+
Elliptic functions and integrals
|
56 |
+
--------------------------------
|
57 |
+
|
58 |
+
.. autosummary::
|
59 |
+
:toctree: generated/
|
60 |
+
|
61 |
+
ellipj -- Jacobian elliptic functions.
|
62 |
+
ellipk -- Complete elliptic integral of the first kind.
|
63 |
+
ellipkm1 -- Complete elliptic integral of the first kind around `m` = 1.
|
64 |
+
ellipkinc -- Incomplete elliptic integral of the first kind.
|
65 |
+
ellipe -- Complete elliptic integral of the second kind.
|
66 |
+
ellipeinc -- Incomplete elliptic integral of the second kind.
|
67 |
+
elliprc -- Degenerate symmetric integral RC.
|
68 |
+
elliprd -- Symmetric elliptic integral of the second kind.
|
69 |
+
elliprf -- Completely-symmetric elliptic integral of the first kind.
|
70 |
+
elliprg -- Completely-symmetric elliptic integral of the second kind.
|
71 |
+
elliprj -- Symmetric elliptic integral of the third kind.
|
72 |
+
|
73 |
+
Bessel functions
|
74 |
+
----------------
|
75 |
+
|
76 |
+
.. autosummary::
|
77 |
+
:toctree: generated/
|
78 |
+
|
79 |
+
jv -- Bessel function of the first kind of real order and \
|
80 |
+
complex argument.
|
81 |
+
jve -- Exponentially scaled Bessel function of order `v`.
|
82 |
+
yn -- Bessel function of the second kind of integer order and \
|
83 |
+
real argument.
|
84 |
+
yv -- Bessel function of the second kind of real order and \
|
85 |
+
complex argument.
|
86 |
+
yve -- Exponentially scaled Bessel function of the second kind \
|
87 |
+
of real order.
|
88 |
+
kn -- Modified Bessel function of the second kind of integer \
|
89 |
+
order `n`
|
90 |
+
kv -- Modified Bessel function of the second kind of real order \
|
91 |
+
`v`
|
92 |
+
kve -- Exponentially scaled modified Bessel function of the \
|
93 |
+
second kind.
|
94 |
+
iv -- Modified Bessel function of the first kind of real order.
|
95 |
+
ive -- Exponentially scaled modified Bessel function of the \
|
96 |
+
first kind.
|
97 |
+
hankel1 -- Hankel function of the first kind.
|
98 |
+
hankel1e -- Exponentially scaled Hankel function of the first kind.
|
99 |
+
hankel2 -- Hankel function of the second kind.
|
100 |
+
hankel2e -- Exponentially scaled Hankel function of the second kind.
|
101 |
+
wright_bessel -- Wright's generalized Bessel function.
|
102 |
+
|
103 |
+
The following function does not accept NumPy arrays (it is not a
|
104 |
+
universal function):
|
105 |
+
|
106 |
+
.. autosummary::
|
107 |
+
:toctree: generated/
|
108 |
+
|
109 |
+
lmbda -- Jahnke-Emden Lambda function, Lambdav(x).
|
110 |
+
|
111 |
+
Zeros of Bessel functions
|
112 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
113 |
+
|
114 |
+
The following functions do not accept NumPy arrays (they are not
|
115 |
+
universal functions):
|
116 |
+
|
117 |
+
.. autosummary::
|
118 |
+
:toctree: generated/
|
119 |
+
|
120 |
+
jnjnp_zeros -- Compute zeros of integer-order Bessel functions Jn and Jn'.
|
121 |
+
jnyn_zeros -- Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).
|
122 |
+
jn_zeros -- Compute zeros of integer-order Bessel function Jn(x).
|
123 |
+
jnp_zeros -- Compute zeros of integer-order Bessel function derivative Jn'(x).
|
124 |
+
yn_zeros -- Compute zeros of integer-order Bessel function Yn(x).
|
125 |
+
ynp_zeros -- Compute zeros of integer-order Bessel function derivative Yn'(x).
|
126 |
+
y0_zeros -- Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
|
127 |
+
y1_zeros -- Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
|
128 |
+
y1p_zeros -- Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.
|
129 |
+
|
130 |
+
Faster versions of common Bessel functions
|
131 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
132 |
+
|
133 |
+
.. autosummary::
|
134 |
+
:toctree: generated/
|
135 |
+
|
136 |
+
j0 -- Bessel function of the first kind of order 0.
|
137 |
+
j1 -- Bessel function of the first kind of order 1.
|
138 |
+
y0 -- Bessel function of the second kind of order 0.
|
139 |
+
y1 -- Bessel function of the second kind of order 1.
|
140 |
+
i0 -- Modified Bessel function of order 0.
|
141 |
+
i0e -- Exponentially scaled modified Bessel function of order 0.
|
142 |
+
i1 -- Modified Bessel function of order 1.
|
143 |
+
i1e -- Exponentially scaled modified Bessel function of order 1.
|
144 |
+
k0 -- Modified Bessel function of the second kind of order 0, :math:`K_0`.
|
145 |
+
k0e -- Exponentially scaled modified Bessel function K of order 0
|
146 |
+
k1 -- Modified Bessel function of the second kind of order 1, :math:`K_1(x)`.
|
147 |
+
k1e -- Exponentially scaled modified Bessel function K of order 1.
|
148 |
+
|
149 |
+
Integrals of Bessel functions
|
150 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
151 |
+
|
152 |
+
.. autosummary::
|
153 |
+
:toctree: generated/
|
154 |
+
|
155 |
+
itj0y0 -- Integrals of Bessel functions of order 0.
|
156 |
+
it2j0y0 -- Integrals related to Bessel functions of order 0.
|
157 |
+
iti0k0 -- Integrals of modified Bessel functions of order 0.
|
158 |
+
it2i0k0 -- Integrals related to modified Bessel functions of order 0.
|
159 |
+
besselpoly -- Weighted integral of a Bessel function.
|
160 |
+
|
161 |
+
Derivatives of Bessel functions
|
162 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
163 |
+
|
164 |
+
.. autosummary::
|
165 |
+
:toctree: generated/
|
166 |
+
|
167 |
+
jvp -- Compute nth derivative of Bessel function Jv(z) with respect to `z`.
|
168 |
+
yvp -- Compute nth derivative of Bessel function Yv(z) with respect to `z`.
|
169 |
+
kvp -- Compute nth derivative of real-order modified Bessel function Kv(z)
|
170 |
+
ivp -- Compute nth derivative of modified Bessel function Iv(z) with respect to `z`.
|
171 |
+
h1vp -- Compute nth derivative of Hankel function H1v(z) with respect to `z`.
|
172 |
+
h2vp -- Compute nth derivative of Hankel function H2v(z) with respect to `z`.
|
173 |
+
|
174 |
+
Spherical Bessel functions
|
175 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
176 |
+
|
177 |
+
.. autosummary::
|
178 |
+
:toctree: generated/
|
179 |
+
|
180 |
+
spherical_jn -- Spherical Bessel function of the first kind or its derivative.
|
181 |
+
spherical_yn -- Spherical Bessel function of the second kind or its derivative.
|
182 |
+
spherical_in -- Modified spherical Bessel function of the first kind or its derivative.
|
183 |
+
spherical_kn -- Modified spherical Bessel function of the second kind or its derivative.
|
184 |
+
|
185 |
+
Riccati-Bessel functions
|
186 |
+
^^^^^^^^^^^^^^^^^^^^^^^^
|
187 |
+
|
188 |
+
The following functions do not accept NumPy arrays (they are not
|
189 |
+
universal functions):
|
190 |
+
|
191 |
+
.. autosummary::
|
192 |
+
:toctree: generated/
|
193 |
+
|
194 |
+
riccati_jn -- Compute Ricatti-Bessel function of the first kind and its derivative.
|
195 |
+
riccati_yn -- Compute Ricatti-Bessel function of the second kind and its derivative.
|
196 |
+
|
197 |
+
Struve functions
|
198 |
+
----------------
|
199 |
+
|
200 |
+
.. autosummary::
|
201 |
+
:toctree: generated/
|
202 |
+
|
203 |
+
struve -- Struve function.
|
204 |
+
modstruve -- Modified Struve function.
|
205 |
+
itstruve0 -- Integral of the Struve function of order 0.
|
206 |
+
it2struve0 -- Integral related to the Struve function of order 0.
|
207 |
+
itmodstruve0 -- Integral of the modified Struve function of order 0.
|
208 |
+
|
209 |
+
|
210 |
+
Raw statistical functions
|
211 |
+
-------------------------
|
212 |
+
|
213 |
+
.. seealso:: :mod:`scipy.stats`: Friendly versions of these functions.
|
214 |
+
|
215 |
+
Binomial distribution
|
216 |
+
^^^^^^^^^^^^^^^^^^^^^
|
217 |
+
|
218 |
+
.. autosummary::
|
219 |
+
:toctree: generated/
|
220 |
+
|
221 |
+
bdtr -- Binomial distribution cumulative distribution function.
|
222 |
+
bdtrc -- Binomial distribution survival function.
|
223 |
+
bdtri -- Inverse function to `bdtr` with respect to `p`.
|
224 |
+
bdtrik -- Inverse function to `bdtr` with respect to `k`.
|
225 |
+
bdtrin -- Inverse function to `bdtr` with respect to `n`.
|
226 |
+
|
227 |
+
Beta distribution
|
228 |
+
^^^^^^^^^^^^^^^^^
|
229 |
+
|
230 |
+
.. autosummary::
|
231 |
+
:toctree: generated/
|
232 |
+
|
233 |
+
btdtr -- Cumulative distribution function of the beta distribution.
|
234 |
+
btdtri -- The `p`-th quantile of the beta distribution.
|
235 |
+
btdtria -- Inverse of `btdtr` with respect to `a`.
|
236 |
+
btdtrib -- btdtria(a, p, x).
|
237 |
+
|
238 |
+
F distribution
|
239 |
+
^^^^^^^^^^^^^^
|
240 |
+
|
241 |
+
.. autosummary::
|
242 |
+
:toctree: generated/
|
243 |
+
|
244 |
+
fdtr -- F cumulative distribution function.
|
245 |
+
fdtrc -- F survival function.
|
246 |
+
fdtri -- The `p`-th quantile of the F-distribution.
|
247 |
+
fdtridfd -- Inverse to `fdtr` vs dfd.
|
248 |
+
|
249 |
+
Gamma distribution
|
250 |
+
^^^^^^^^^^^^^^^^^^
|
251 |
+
|
252 |
+
.. autosummary::
|
253 |
+
:toctree: generated/
|
254 |
+
|
255 |
+
gdtr -- Gamma distribution cumulative distribution function.
|
256 |
+
gdtrc -- Gamma distribution survival function.
|
257 |
+
gdtria -- Inverse of `gdtr` vs a.
|
258 |
+
gdtrib -- Inverse of `gdtr` vs b.
|
259 |
+
gdtrix -- Inverse of `gdtr` vs x.
|
260 |
+
|
261 |
+
Negative binomial distribution
|
262 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
263 |
+
|
264 |
+
.. autosummary::
|
265 |
+
:toctree: generated/
|
266 |
+
|
267 |
+
nbdtr -- Negative binomial cumulative distribution function.
|
268 |
+
nbdtrc -- Negative binomial survival function.
|
269 |
+
nbdtri -- Inverse of `nbdtr` vs `p`.
|
270 |
+
nbdtrik -- Inverse of `nbdtr` vs `k`.
|
271 |
+
nbdtrin -- Inverse of `nbdtr` vs `n`.
|
272 |
+
|
273 |
+
Noncentral F distribution
|
274 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
275 |
+
|
276 |
+
.. autosummary::
|
277 |
+
:toctree: generated/
|
278 |
+
|
279 |
+
ncfdtr -- Cumulative distribution function of the non-central F distribution.
|
280 |
+
ncfdtridfd -- Calculate degrees of freedom (denominator) for the noncentral F-distribution.
|
281 |
+
ncfdtridfn -- Calculate degrees of freedom (numerator) for the noncentral F-distribution.
|
282 |
+
ncfdtri -- Inverse cumulative distribution function of the non-central F distribution.
|
283 |
+
ncfdtrinc -- Calculate non-centrality parameter for non-central F distribution.
|
284 |
+
|
285 |
+
Noncentral t distribution
|
286 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
287 |
+
|
288 |
+
.. autosummary::
|
289 |
+
:toctree: generated/
|
290 |
+
|
291 |
+
nctdtr -- Cumulative distribution function of the non-central `t` distribution.
|
292 |
+
nctdtridf -- Calculate degrees of freedom for non-central t distribution.
|
293 |
+
nctdtrit -- Inverse cumulative distribution function of the non-central t distribution.
|
294 |
+
nctdtrinc -- Calculate non-centrality parameter for non-central t distribution.
|
295 |
+
|
296 |
+
Normal distribution
|
297 |
+
^^^^^^^^^^^^^^^^^^^
|
298 |
+
|
299 |
+
.. autosummary::
|
300 |
+
:toctree: generated/
|
301 |
+
|
302 |
+
nrdtrimn -- Calculate mean of normal distribution given other params.
|
303 |
+
nrdtrisd -- Calculate standard deviation of normal distribution given other params.
|
304 |
+
ndtr -- Normal cumulative distribution function.
|
305 |
+
log_ndtr -- Logarithm of normal cumulative distribution function.
|
306 |
+
ndtri -- Inverse of `ndtr` vs x.
|
307 |
+
ndtri_exp -- Inverse of `log_ndtr` vs x.
|
308 |
+
|
309 |
+
Poisson distribution
|
310 |
+
^^^^^^^^^^^^^^^^^^^^
|
311 |
+
|
312 |
+
.. autosummary::
|
313 |
+
:toctree: generated/
|
314 |
+
|
315 |
+
pdtr -- Poisson cumulative distribution function.
|
316 |
+
pdtrc -- Poisson survival function.
|
317 |
+
pdtri -- Inverse to `pdtr` vs m.
|
318 |
+
pdtrik -- Inverse to `pdtr` vs k.
|
319 |
+
|
320 |
+
Student t distribution
|
321 |
+
^^^^^^^^^^^^^^^^^^^^^^
|
322 |
+
|
323 |
+
.. autosummary::
|
324 |
+
:toctree: generated/
|
325 |
+
|
326 |
+
stdtr -- Student t distribution cumulative distribution function.
|
327 |
+
stdtridf -- Inverse of `stdtr` vs df.
|
328 |
+
stdtrit -- Inverse of `stdtr` vs `t`.
|
329 |
+
|
330 |
+
Chi square distribution
|
331 |
+
^^^^^^^^^^^^^^^^^^^^^^^
|
332 |
+
|
333 |
+
.. autosummary::
|
334 |
+
:toctree: generated/
|
335 |
+
|
336 |
+
chdtr -- Chi square cumulative distribution function.
|
337 |
+
chdtrc -- Chi square survival function.
|
338 |
+
chdtri -- Inverse to `chdtrc`.
|
339 |
+
chdtriv -- Inverse to `chdtr` vs `v`.
|
340 |
+
|
341 |
+
Non-central chi square distribution
|
342 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
343 |
+
|
344 |
+
.. autosummary::
|
345 |
+
:toctree: generated/
|
346 |
+
|
347 |
+
chndtr -- Non-central chi square cumulative distribution function.
|
348 |
+
chndtridf -- Inverse to `chndtr` vs `df`.
|
349 |
+
chndtrinc -- Inverse to `chndtr` vs `nc`.
|
350 |
+
chndtrix -- Inverse to `chndtr` vs `x`.
|
351 |
+
|
352 |
+
Kolmogorov distribution
|
353 |
+
^^^^^^^^^^^^^^^^^^^^^^^
|
354 |
+
|
355 |
+
.. autosummary::
|
356 |
+
:toctree: generated/
|
357 |
+
|
358 |
+
smirnov -- Kolmogorov-Smirnov complementary cumulative distribution function.
|
359 |
+
smirnovi -- Inverse to `smirnov`.
|
360 |
+
kolmogorov -- Complementary cumulative distribution function of Kolmogorov distribution.
|
361 |
+
kolmogi -- Inverse function to `kolmogorov`.
|
362 |
+
|
363 |
+
Box-Cox transformation
|
364 |
+
^^^^^^^^^^^^^^^^^^^^^^
|
365 |
+
|
366 |
+
.. autosummary::
|
367 |
+
:toctree: generated/
|
368 |
+
|
369 |
+
boxcox -- Compute the Box-Cox transformation.
|
370 |
+
boxcox1p -- Compute the Box-Cox transformation of 1 + `x`.
|
371 |
+
inv_boxcox -- Compute the inverse of the Box-Cox transformation.
|
372 |
+
inv_boxcox1p -- Compute the inverse of the Box-Cox transformation.
|
373 |
+
|
374 |
+
|
375 |
+
Sigmoidal functions
|
376 |
+
^^^^^^^^^^^^^^^^^^^
|
377 |
+
|
378 |
+
.. autosummary::
|
379 |
+
:toctree: generated/
|
380 |
+
|
381 |
+
logit -- Logit ufunc for ndarrays.
|
382 |
+
expit -- Logistic sigmoid function.
|
383 |
+
log_expit -- Logarithm of the logistic sigmoid function.
|
384 |
+
|
385 |
+
Miscellaneous
|
386 |
+
^^^^^^^^^^^^^
|
387 |
+
|
388 |
+
.. autosummary::
|
389 |
+
:toctree: generated/
|
390 |
+
|
391 |
+
tklmbda -- Tukey-Lambda cumulative distribution function.
|
392 |
+
owens_t -- Owen's T Function.
|
393 |
+
|
394 |
+
|
395 |
+
Information Theory functions
|
396 |
+
----------------------------
|
397 |
+
|
398 |
+
.. autosummary::
|
399 |
+
:toctree: generated/
|
400 |
+
|
401 |
+
entr -- Elementwise function for computing entropy.
|
402 |
+
rel_entr -- Elementwise function for computing relative entropy.
|
403 |
+
kl_div -- Elementwise function for computing Kullback-Leibler divergence.
|
404 |
+
huber -- Huber loss function.
|
405 |
+
pseudo_huber -- Pseudo-Huber loss function.
|
406 |
+
|
407 |
+
|
408 |
+
Gamma and related functions
|
409 |
+
---------------------------
|
410 |
+
|
411 |
+
.. autosummary::
|
412 |
+
:toctree: generated/
|
413 |
+
|
414 |
+
gamma -- Gamma function.
|
415 |
+
gammaln -- Logarithm of the absolute value of the Gamma function for real inputs.
|
416 |
+
loggamma -- Principal branch of the logarithm of the Gamma function.
|
417 |
+
gammasgn -- Sign of the gamma function.
|
418 |
+
gammainc -- Regularized lower incomplete gamma function.
|
419 |
+
gammaincinv -- Inverse to `gammainc`.
|
420 |
+
gammaincc -- Regularized upper incomplete gamma function.
|
421 |
+
gammainccinv -- Inverse to `gammaincc`.
|
422 |
+
beta -- Beta function.
|
423 |
+
betaln -- Natural logarithm of absolute value of beta function.
|
424 |
+
betainc -- Incomplete beta integral.
|
425 |
+
betaincc -- Complemented incomplete beta integral.
|
426 |
+
betaincinv -- Inverse function to beta integral.
|
427 |
+
betainccinv -- Inverse of the complemented incomplete beta integral.
|
428 |
+
psi -- The digamma function.
|
429 |
+
rgamma -- Gamma function inverted.
|
430 |
+
polygamma -- Polygamma function n.
|
431 |
+
multigammaln -- Returns the log of multivariate gamma, also sometimes called the generalized gamma.
|
432 |
+
digamma -- psi(x[, out]).
|
433 |
+
poch -- Rising factorial (z)_m.
|
434 |
+
|
435 |
+
|
436 |
+
Error function and Fresnel integrals
|
437 |
+
------------------------------------
|
438 |
+
|
439 |
+
.. autosummary::
|
440 |
+
:toctree: generated/
|
441 |
+
|
442 |
+
erf -- Returns the error function of complex argument.
|
443 |
+
erfc -- Complementary error function, ``1 - erf(x)``.
|
444 |
+
erfcx -- Scaled complementary error function, ``exp(x**2) * erfc(x)``.
|
445 |
+
erfi -- Imaginary error function, ``-i erf(i z)``.
|
446 |
+
erfinv -- Inverse function for erf.
|
447 |
+
erfcinv -- Inverse function for erfc.
|
448 |
+
wofz -- Faddeeva function.
|
449 |
+
dawsn -- Dawson's integral.
|
450 |
+
fresnel -- Fresnel sin and cos integrals.
|
451 |
+
fresnel_zeros -- Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).
|
452 |
+
modfresnelp -- Modified Fresnel positive integrals.
|
453 |
+
modfresnelm -- Modified Fresnel negative integrals.
|
454 |
+
voigt_profile -- Voigt profile.
|
455 |
+
|
456 |
+
The following functions do not accept NumPy arrays (they are not
|
457 |
+
universal functions):
|
458 |
+
|
459 |
+
.. autosummary::
|
460 |
+
:toctree: generated/
|
461 |
+
|
462 |
+
erf_zeros -- Compute nt complex zeros of error function erf(z).
|
463 |
+
fresnelc_zeros -- Compute nt complex zeros of cosine Fresnel integral C(z).
|
464 |
+
fresnels_zeros -- Compute nt complex zeros of sine Fresnel integral S(z).
|
465 |
+
|
466 |
+
Legendre functions
|
467 |
+
------------------
|
468 |
+
|
469 |
+
.. autosummary::
|
470 |
+
:toctree: generated/
|
471 |
+
|
472 |
+
lpmv -- Associated Legendre function of integer order and real degree.
|
473 |
+
sph_harm -- Compute spherical harmonics.
|
474 |
+
|
475 |
+
The following functions do not accept NumPy arrays (they are not
|
476 |
+
universal functions):
|
477 |
+
|
478 |
+
.. autosummary::
|
479 |
+
:toctree: generated/
|
480 |
+
|
481 |
+
clpmn -- Associated Legendre function of the first kind for complex arguments.
|
482 |
+
lpn -- Legendre function of the first kind.
|
483 |
+
lqn -- Legendre function of the second kind.
|
484 |
+
lpmn -- Sequence of associated Legendre functions of the first kind.
|
485 |
+
lqmn -- Sequence of associated Legendre functions of the second kind.
|
486 |
+
|
487 |
+
Ellipsoidal harmonics
|
488 |
+
---------------------
|
489 |
+
|
490 |
+
.. autosummary::
|
491 |
+
:toctree: generated/
|
492 |
+
|
493 |
+
ellip_harm -- Ellipsoidal harmonic functions E^p_n(l).
|
494 |
+
ellip_harm_2 -- Ellipsoidal harmonic functions F^p_n(l).
|
495 |
+
ellip_normal -- Ellipsoidal harmonic normalization constants gamma^p_n.
|
496 |
+
|
497 |
+
Orthogonal polynomials
|
498 |
+
----------------------
|
499 |
+
|
500 |
+
The following functions evaluate values of orthogonal polynomials:
|
501 |
+
|
502 |
+
.. autosummary::
|
503 |
+
:toctree: generated/
|
504 |
+
|
505 |
+
assoc_laguerre -- Compute the generalized (associated) Laguerre polynomial of degree n and order k.
|
506 |
+
eval_legendre -- Evaluate Legendre polynomial at a point.
|
507 |
+
eval_chebyt -- Evaluate Chebyshev polynomial of the first kind at a point.
|
508 |
+
eval_chebyu -- Evaluate Chebyshev polynomial of the second kind at a point.
|
509 |
+
eval_chebyc -- Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a point.
|
510 |
+
eval_chebys -- Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a point.
|
511 |
+
eval_jacobi -- Evaluate Jacobi polynomial at a point.
|
512 |
+
eval_laguerre -- Evaluate Laguerre polynomial at a point.
|
513 |
+
eval_genlaguerre -- Evaluate generalized Laguerre polynomial at a point.
|
514 |
+
eval_hermite -- Evaluate physicist's Hermite polynomial at a point.
|
515 |
+
eval_hermitenorm -- Evaluate probabilist's (normalized) Hermite polynomial at a point.
|
516 |
+
eval_gegenbauer -- Evaluate Gegenbauer polynomial at a point.
|
517 |
+
eval_sh_legendre -- Evaluate shifted Legendre polynomial at a point.
|
518 |
+
eval_sh_chebyt -- Evaluate shifted Chebyshev polynomial of the first kind at a point.
|
519 |
+
eval_sh_chebyu -- Evaluate shifted Chebyshev polynomial of the second kind at a point.
|
520 |
+
eval_sh_jacobi -- Evaluate shifted Jacobi polynomial at a point.
|
521 |
+
|
522 |
+
The following functions compute roots and quadrature weights for
|
523 |
+
orthogonal polynomials:
|
524 |
+
|
525 |
+
.. autosummary::
|
526 |
+
:toctree: generated/
|
527 |
+
|
528 |
+
roots_legendre -- Gauss-Legendre quadrature.
|
529 |
+
roots_chebyt -- Gauss-Chebyshev (first kind) quadrature.
|
530 |
+
roots_chebyu -- Gauss-Chebyshev (second kind) quadrature.
|
531 |
+
roots_chebyc -- Gauss-Chebyshev (first kind) quadrature.
|
532 |
+
roots_chebys -- Gauss-Chebyshev (second kind) quadrature.
|
533 |
+
roots_jacobi -- Gauss-Jacobi quadrature.
|
534 |
+
roots_laguerre -- Gauss-Laguerre quadrature.
|
535 |
+
roots_genlaguerre -- Gauss-generalized Laguerre quadrature.
|
536 |
+
roots_hermite -- Gauss-Hermite (physicst's) quadrature.
|
537 |
+
roots_hermitenorm -- Gauss-Hermite (statistician's) quadrature.
|
538 |
+
roots_gegenbauer -- Gauss-Gegenbauer quadrature.
|
539 |
+
roots_sh_legendre -- Gauss-Legendre (shifted) quadrature.
|
540 |
+
roots_sh_chebyt -- Gauss-Chebyshev (first kind, shifted) quadrature.
|
541 |
+
roots_sh_chebyu -- Gauss-Chebyshev (second kind, shifted) quadrature.
|
542 |
+
roots_sh_jacobi -- Gauss-Jacobi (shifted) quadrature.
|
543 |
+
|
544 |
+
The functions below, in turn, return the polynomial coefficients in
|
545 |
+
``orthopoly1d`` objects, which function similarly as `numpy.poly1d`.
|
546 |
+
The ``orthopoly1d`` class also has an attribute ``weights``, which returns
|
547 |
+
the roots, weights, and total weights for the appropriate form of Gaussian
|
548 |
+
quadrature. These are returned in an ``n x 3`` array with roots in the first
|
549 |
+
column, weights in the second column, and total weights in the final column.
|
550 |
+
Note that ``orthopoly1d`` objects are converted to `~numpy.poly1d` when doing
|
551 |
+
arithmetic, and lose information of the original orthogonal polynomial.
|
552 |
+
|
553 |
+
.. autosummary::
|
554 |
+
:toctree: generated/
|
555 |
+
|
556 |
+
legendre -- Legendre polynomial.
|
557 |
+
chebyt -- Chebyshev polynomial of the first kind.
|
558 |
+
chebyu -- Chebyshev polynomial of the second kind.
|
559 |
+
chebyc -- Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
560 |
+
chebys -- Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
561 |
+
jacobi -- Jacobi polynomial.
|
562 |
+
laguerre -- Laguerre polynomial.
|
563 |
+
genlaguerre -- Generalized (associated) Laguerre polynomial.
|
564 |
+
hermite -- Physicist's Hermite polynomial.
|
565 |
+
hermitenorm -- Normalized (probabilist's) Hermite polynomial.
|
566 |
+
gegenbauer -- Gegenbauer (ultraspherical) polynomial.
|
567 |
+
sh_legendre -- Shifted Legendre polynomial.
|
568 |
+
sh_chebyt -- Shifted Chebyshev polynomial of the first kind.
|
569 |
+
sh_chebyu -- Shifted Chebyshev polynomial of the second kind.
|
570 |
+
sh_jacobi -- Shifted Jacobi polynomial.
|
571 |
+
|
572 |
+
.. warning::
|
573 |
+
|
574 |
+
Computing values of high-order polynomials (around ``order > 20``) using
|
575 |
+
polynomial coefficients is numerically unstable. To evaluate polynomial
|
576 |
+
values, the ``eval_*`` functions should be used instead.
|
577 |
+
|
578 |
+
|
579 |
+
Hypergeometric functions
|
580 |
+
------------------------
|
581 |
+
|
582 |
+
.. autosummary::
|
583 |
+
:toctree: generated/
|
584 |
+
|
585 |
+
hyp2f1 -- Gauss hypergeometric function 2F1(a, b; c; z).
|
586 |
+
hyp1f1 -- Confluent hypergeometric function 1F1(a, b; x).
|
587 |
+
hyperu -- Confluent hypergeometric function U(a, b, x) of the second kind.
|
588 |
+
hyp0f1 -- Confluent hypergeometric limit function 0F1.
|
589 |
+
|
590 |
+
|
591 |
+
Parabolic cylinder functions
|
592 |
+
----------------------------
|
593 |
+
|
594 |
+
.. autosummary::
|
595 |
+
:toctree: generated/
|
596 |
+
|
597 |
+
pbdv -- Parabolic cylinder function D.
|
598 |
+
pbvv -- Parabolic cylinder function V.
|
599 |
+
pbwa -- Parabolic cylinder function W.
|
600 |
+
|
601 |
+
The following functions do not accept NumPy arrays (they are not
|
602 |
+
universal functions):
|
603 |
+
|
604 |
+
.. autosummary::
|
605 |
+
:toctree: generated/
|
606 |
+
|
607 |
+
pbdv_seq -- Parabolic cylinder functions Dv(x) and derivatives.
|
608 |
+
pbvv_seq -- Parabolic cylinder functions Vv(x) and derivatives.
|
609 |
+
pbdn_seq -- Parabolic cylinder functions Dn(z) and derivatives.
|
610 |
+
|
611 |
+
Mathieu and related functions
|
612 |
+
-----------------------------
|
613 |
+
|
614 |
+
.. autosummary::
|
615 |
+
:toctree: generated/
|
616 |
+
|
617 |
+
mathieu_a -- Characteristic value of even Mathieu functions.
|
618 |
+
mathieu_b -- Characteristic value of odd Mathieu functions.
|
619 |
+
|
620 |
+
The following functions do not accept NumPy arrays (they are not
|
621 |
+
universal functions):
|
622 |
+
|
623 |
+
.. autosummary::
|
624 |
+
:toctree: generated/
|
625 |
+
|
626 |
+
mathieu_even_coef -- Fourier coefficients for even Mathieu and modified Mathieu functions.
|
627 |
+
mathieu_odd_coef -- Fourier coefficients for even Mathieu and modified Mathieu functions.
|
628 |
+
|
629 |
+
The following return both function and first derivative:
|
630 |
+
|
631 |
+
.. autosummary::
|
632 |
+
:toctree: generated/
|
633 |
+
|
634 |
+
mathieu_cem -- Even Mathieu function and its derivative.
|
635 |
+
mathieu_sem -- Odd Mathieu function and its derivative.
|
636 |
+
mathieu_modcem1 -- Even modified Mathieu function of the first kind and its derivative.
|
637 |
+
mathieu_modcem2 -- Even modified Mathieu function of the second kind and its derivative.
|
638 |
+
mathieu_modsem1 -- Odd modified Mathieu function of the first kind and its derivative.
|
639 |
+
mathieu_modsem2 -- Odd modified Mathieu function of the second kind and its derivative.
|
640 |
+
|
641 |
+
Spheroidal wave functions
|
642 |
+
-------------------------
|
643 |
+
|
644 |
+
.. autosummary::
|
645 |
+
:toctree: generated/
|
646 |
+
|
647 |
+
pro_ang1 -- Prolate spheroidal angular function of the first kind and its derivative.
|
648 |
+
pro_rad1 -- Prolate spheroidal radial function of the first kind and its derivative.
|
649 |
+
pro_rad2 -- Prolate spheroidal radial function of the second kind and its derivative.
|
650 |
+
obl_ang1 -- Oblate spheroidal angular function of the first kind and its derivative.
|
651 |
+
obl_rad1 -- Oblate spheroidal radial function of the first kind and its derivative.
|
652 |
+
obl_rad2 -- Oblate spheroidal radial function of the second kind and its derivative.
|
653 |
+
pro_cv -- Characteristic value of prolate spheroidal function.
|
654 |
+
obl_cv -- Characteristic value of oblate spheroidal function.
|
655 |
+
pro_cv_seq -- Characteristic values for prolate spheroidal wave functions.
|
656 |
+
obl_cv_seq -- Characteristic values for oblate spheroidal wave functions.
|
657 |
+
|
658 |
+
The following functions require pre-computed characteristic value:
|
659 |
+
|
660 |
+
.. autosummary::
|
661 |
+
:toctree: generated/
|
662 |
+
|
663 |
+
pro_ang1_cv -- Prolate spheroidal angular function pro_ang1 for precomputed characteristic value.
|
664 |
+
pro_rad1_cv -- Prolate spheroidal radial function pro_rad1 for precomputed characteristic value.
|
665 |
+
pro_rad2_cv -- Prolate spheroidal radial function pro_rad2 for precomputed characteristic value.
|
666 |
+
obl_ang1_cv -- Oblate spheroidal angular function obl_ang1 for precomputed characteristic value.
|
667 |
+
obl_rad1_cv -- Oblate spheroidal radial function obl_rad1 for precomputed characteristic value.
|
668 |
+
obl_rad2_cv -- Oblate spheroidal radial function obl_rad2 for precomputed characteristic value.
|
669 |
+
|
670 |
+
Kelvin functions
|
671 |
+
----------------
|
672 |
+
|
673 |
+
.. autosummary::
|
674 |
+
:toctree: generated/
|
675 |
+
|
676 |
+
kelvin -- Kelvin functions as complex numbers.
|
677 |
+
kelvin_zeros -- Compute nt zeros of all Kelvin functions.
|
678 |
+
ber -- Kelvin function ber.
|
679 |
+
bei -- Kelvin function bei
|
680 |
+
berp -- Derivative of the Kelvin function `ber`.
|
681 |
+
beip -- Derivative of the Kelvin function `bei`.
|
682 |
+
ker -- Kelvin function ker.
|
683 |
+
kei -- Kelvin function ker.
|
684 |
+
kerp -- Derivative of the Kelvin function ker.
|
685 |
+
keip -- Derivative of the Kelvin function kei.
|
686 |
+
|
687 |
+
The following functions do not accept NumPy arrays (they are not
|
688 |
+
universal functions):
|
689 |
+
|
690 |
+
.. autosummary::
|
691 |
+
:toctree: generated/
|
692 |
+
|
693 |
+
ber_zeros -- Compute nt zeros of the Kelvin function ber(x).
|
694 |
+
bei_zeros -- Compute nt zeros of the Kelvin function bei(x).
|
695 |
+
berp_zeros -- Compute nt zeros of the Kelvin function ber'(x).
|
696 |
+
beip_zeros -- Compute nt zeros of the Kelvin function bei'(x).
|
697 |
+
ker_zeros -- Compute nt zeros of the Kelvin function ker(x).
|
698 |
+
kei_zeros -- Compute nt zeros of the Kelvin function kei(x).
|
699 |
+
kerp_zeros -- Compute nt zeros of the Kelvin function ker'(x).
|
700 |
+
keip_zeros -- Compute nt zeros of the Kelvin function kei'(x).
|
701 |
+
|
702 |
+
Combinatorics
|
703 |
+
-------------
|
704 |
+
|
705 |
+
.. autosummary::
|
706 |
+
:toctree: generated/
|
707 |
+
|
708 |
+
comb -- The number of combinations of N things taken k at a time.
|
709 |
+
perm -- Permutations of N things taken k at a time, i.e., k-permutations of N.
|
710 |
+
stirling2 -- Stirling numbers of the second kind.
|
711 |
+
|
712 |
+
Lambert W and related functions
|
713 |
+
-------------------------------
|
714 |
+
|
715 |
+
.. autosummary::
|
716 |
+
:toctree: generated/
|
717 |
+
|
718 |
+
lambertw -- Lambert W function.
|
719 |
+
wrightomega -- Wright Omega function.
|
720 |
+
|
721 |
+
Other special functions
|
722 |
+
-----------------------
|
723 |
+
|
724 |
+
.. autosummary::
|
725 |
+
:toctree: generated/
|
726 |
+
|
727 |
+
agm -- Arithmetic, Geometric Mean.
|
728 |
+
bernoulli -- Bernoulli numbers B0..Bn (inclusive).
|
729 |
+
binom -- Binomial coefficient
|
730 |
+
diric -- Periodic sinc function, also called the Dirichlet function.
|
731 |
+
euler -- Euler numbers E0..En (inclusive).
|
732 |
+
expn -- Exponential integral E_n.
|
733 |
+
exp1 -- Exponential integral E_1 of complex argument z.
|
734 |
+
expi -- Exponential integral Ei.
|
735 |
+
factorial -- The factorial of a number or array of numbers.
|
736 |
+
factorial2 -- Double factorial.
|
737 |
+
factorialk -- Multifactorial of n of order k, n(!!...!).
|
738 |
+
shichi -- Hyperbolic sine and cosine integrals.
|
739 |
+
sici -- Sine and cosine integrals.
|
740 |
+
softmax -- Softmax function.
|
741 |
+
log_softmax -- Logarithm of softmax function.
|
742 |
+
spence -- Spence's function, also known as the dilogarithm.
|
743 |
+
zeta -- Riemann zeta function.
|
744 |
+
zetac -- Riemann zeta function minus 1.
|
745 |
+
|
746 |
+
Convenience functions
|
747 |
+
---------------------
|
748 |
+
|
749 |
+
.. autosummary::
|
750 |
+
:toctree: generated/
|
751 |
+
|
752 |
+
cbrt -- Cube root of `x`.
|
753 |
+
exp10 -- 10**x.
|
754 |
+
exp2 -- 2**x.
|
755 |
+
radian -- Convert from degrees to radians.
|
756 |
+
cosdg -- Cosine of the angle `x` given in degrees.
|
757 |
+
sindg -- Sine of angle given in degrees.
|
758 |
+
tandg -- Tangent of angle x given in degrees.
|
759 |
+
cotdg -- Cotangent of the angle `x` given in degrees.
|
760 |
+
log1p -- Calculates log(1+x) for use when `x` is near zero.
|
761 |
+
expm1 -- ``exp(x) - 1`` for use when `x` is near zero.
|
762 |
+
cosm1 -- ``cos(x) - 1`` for use when `x` is near zero.
|
763 |
+
powm1 -- ``x**y - 1`` for use when `y` is near zero or `x` is near 1.
|
764 |
+
round -- Round to nearest integer.
|
765 |
+
xlogy -- Compute ``x*log(y)`` so that the result is 0 if ``x = 0``.
|
766 |
+
xlog1py -- Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``.
|
767 |
+
logsumexp -- Compute the log of the sum of exponentials of input elements.
|
768 |
+
exprel -- Relative error exponential, (exp(x)-1)/x, for use when `x` is near zero.
|
769 |
+
sinc -- Return the sinc function.
|
770 |
+
|
771 |
+
""" # noqa: E501
|
772 |
+
|
773 |
+
import warnings
|
774 |
+
|
775 |
+
from ._sf_error import SpecialFunctionWarning, SpecialFunctionError
|
776 |
+
|
777 |
+
from . import _ufuncs
|
778 |
+
from ._ufuncs import *
|
779 |
+
|
780 |
+
# Replace some function definitions from _ufuncs to add Array API support
|
781 |
+
from ._support_alternative_backends import (
|
782 |
+
log_ndtr, ndtr, ndtri, erf, erfc, i0, i0e, i1, i1e,
|
783 |
+
gammaln, gammainc, gammaincc, logit, expit)
|
784 |
+
|
785 |
+
from . import _basic
|
786 |
+
from ._basic import *
|
787 |
+
|
788 |
+
from ._logsumexp import logsumexp, softmax, log_softmax
|
789 |
+
|
790 |
+
from . import _orthogonal
|
791 |
+
from ._orthogonal import *
|
792 |
+
|
793 |
+
from ._spfun_stats import multigammaln
|
794 |
+
from ._ellip_harm import (
|
795 |
+
ellip_harm,
|
796 |
+
ellip_harm_2,
|
797 |
+
ellip_normal
|
798 |
+
)
|
799 |
+
from ._lambertw import lambertw
|
800 |
+
from ._spherical_bessel import (
|
801 |
+
spherical_jn,
|
802 |
+
spherical_yn,
|
803 |
+
spherical_in,
|
804 |
+
spherical_kn
|
805 |
+
)
|
806 |
+
|
807 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
808 |
+
from . import add_newdocs, basic, orthogonal, specfun, sf_error, spfun_stats
|
809 |
+
|
810 |
+
# We replace some function definitions from _ufuncs with those from
|
811 |
+
# _support_alternative_backends above, but those are all listed in _ufuncs.__all__,
|
812 |
+
# so there is no need to consider _support_alternative_backends.__all__ here.
|
813 |
+
__all__ = _ufuncs.__all__ + _basic.__all__ + _orthogonal.__all__
|
814 |
+
__all__ += [
|
815 |
+
'SpecialFunctionWarning',
|
816 |
+
'SpecialFunctionError',
|
817 |
+
'logsumexp',
|
818 |
+
'softmax',
|
819 |
+
'log_softmax',
|
820 |
+
'multigammaln',
|
821 |
+
'ellip_harm',
|
822 |
+
'ellip_harm_2',
|
823 |
+
'ellip_normal',
|
824 |
+
'lambertw',
|
825 |
+
'spherical_jn',
|
826 |
+
'spherical_yn',
|
827 |
+
'spherical_in',
|
828 |
+
'spherical_kn',
|
829 |
+
]
|
830 |
+
|
831 |
+
from scipy._lib._testutils import PytestTester
|
832 |
+
test = PytestTester(__name__)
|
833 |
+
del PytestTester
|
834 |
+
|
835 |
+
_depr_msg = ('\nThis function was deprecated in SciPy 1.12.0, and will be '
|
836 |
+
'removed in SciPy 1.14.0. Use scipy.special.{} instead.')
|
837 |
+
|
838 |
+
|
839 |
+
def btdtr(*args, **kwargs): # type: ignore [no-redef]
|
840 |
+
warnings.warn(_depr_msg.format('betainc'), category=DeprecationWarning,
|
841 |
+
stacklevel=2)
|
842 |
+
return _ufuncs.btdtr(*args, **kwargs)
|
843 |
+
|
844 |
+
|
845 |
+
btdtr.__doc__ = _ufuncs.btdtr.__doc__ # type: ignore [misc]
|
846 |
+
|
847 |
+
|
848 |
+
def btdtri(*args, **kwargs): # type: ignore [no-redef]
|
849 |
+
warnings.warn(_depr_msg.format('betaincinv'), category=DeprecationWarning,
|
850 |
+
stacklevel=2)
|
851 |
+
return _ufuncs.btdtri(*args, **kwargs)
|
852 |
+
|
853 |
+
|
854 |
+
btdtri.__doc__ = _ufuncs.btdtri.__doc__ # type: ignore [misc]
|
855 |
+
|
856 |
+
|
857 |
+
def _get_include():
|
858 |
+
"""This function is for development purposes only.
|
859 |
+
|
860 |
+
This function could disappear or its behavior could change at any time.
|
861 |
+
"""
|
862 |
+
import os
|
863 |
+
return os.path.dirname(__file__)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (31.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_add_newdocs.cpython-310.pyc
ADDED
Binary file (396 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_basic.cpython-310.pyc
ADDED
Binary file (95.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_lambertw.cpython-310.pyc
ADDED
Binary file (4.15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_logsumexp.cpython-310.pyc
ADDED
Binary file (8.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_mptestutils.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_orthogonal.cpython-310.pyc
ADDED
Binary file (74.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_sf_error.cpython-310.pyc
ADDED
Binary file (759 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_spfun_stats.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_spherical_bessel.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_support_alternative_backends.cpython-310.pyc
ADDED
Binary file (2.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/_testutils.cpython-310.pyc
ADDED
Binary file (8.57 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/basic.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/orthogonal.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/sf_error.cpython-310.pyc
ADDED
Binary file (645 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/__pycache__/specfun.cpython-310.pyc
ADDED
Binary file (757 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_add_newdocs.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_basic.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_cdflib.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (188 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_comb.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (63.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_ellip_harm.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from ._ufuncs import _ellip_harm
|
4 |
+
from ._ellip_harm_2 import _ellipsoid, _ellipsoid_norm
|
5 |
+
|
6 |
+
|
7 |
+
def ellip_harm(h2, k2, n, p, s, signm=1, signn=1):
|
8 |
+
r"""
|
9 |
+
Ellipsoidal harmonic functions E^p_n(l)
|
10 |
+
|
11 |
+
These are also known as Lame functions of the first kind, and are
|
12 |
+
solutions to the Lame equation:
|
13 |
+
|
14 |
+
.. math:: (s^2 - h^2)(s^2 - k^2)E''(s)
|
15 |
+
+ s(2s^2 - h^2 - k^2)E'(s) + (a - q s^2)E(s) = 0
|
16 |
+
|
17 |
+
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
18 |
+
returned) corresponding to the solutions.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
h2 : float
|
23 |
+
``h**2``
|
24 |
+
k2 : float
|
25 |
+
``k**2``; should be larger than ``h**2``
|
26 |
+
n : int
|
27 |
+
Degree
|
28 |
+
s : float
|
29 |
+
Coordinate
|
30 |
+
p : int
|
31 |
+
Order, can range between [1,2n+1]
|
32 |
+
signm : {1, -1}, optional
|
33 |
+
Sign of prefactor of functions. Can be +/-1. See Notes.
|
34 |
+
signn : {1, -1}, optional
|
35 |
+
Sign of prefactor of functions. Can be +/-1. See Notes.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
E : float
|
40 |
+
the harmonic :math:`E^p_n(s)`
|
41 |
+
|
42 |
+
See Also
|
43 |
+
--------
|
44 |
+
ellip_harm_2, ellip_normal
|
45 |
+
|
46 |
+
Notes
|
47 |
+
-----
|
48 |
+
The geometric interpretation of the ellipsoidal functions is
|
49 |
+
explained in [2]_, [3]_, [4]_. The `signm` and `signn` arguments control the
|
50 |
+
sign of prefactors for functions according to their type::
|
51 |
+
|
52 |
+
K : +1
|
53 |
+
L : signm
|
54 |
+
M : signn
|
55 |
+
N : signm*signn
|
56 |
+
|
57 |
+
.. versionadded:: 0.15.0
|
58 |
+
|
59 |
+
References
|
60 |
+
----------
|
61 |
+
.. [1] Digital Library of Mathematical Functions 29.12
|
62 |
+
https://dlmf.nist.gov/29.12
|
63 |
+
.. [2] Bardhan and Knepley, "Computational science and
|
64 |
+
re-discovery: open-source implementations of
|
65 |
+
ellipsoidal harmonics for problems in potential theory",
|
66 |
+
Comput. Sci. Disc. 5, 014006 (2012)
|
67 |
+
:doi:`10.1088/1749-4699/5/1/014006`.
|
68 |
+
.. [3] David J.and Dechambre P, "Computation of Ellipsoidal
|
69 |
+
Gravity Field Harmonics for small solar system bodies"
|
70 |
+
pp. 30-36, 2000
|
71 |
+
.. [4] George Dassios, "Ellipsoidal Harmonics: Theory and Applications"
|
72 |
+
pp. 418, 2012
|
73 |
+
|
74 |
+
Examples
|
75 |
+
--------
|
76 |
+
>>> from scipy.special import ellip_harm
|
77 |
+
>>> w = ellip_harm(5,8,1,1,2.5)
|
78 |
+
>>> w
|
79 |
+
2.5
|
80 |
+
|
81 |
+
Check that the functions indeed are solutions to the Lame equation:
|
82 |
+
|
83 |
+
>>> import numpy as np
|
84 |
+
>>> from scipy.interpolate import UnivariateSpline
|
85 |
+
>>> def eigenvalue(f, df, ddf):
|
86 |
+
... r = (((s**2 - h**2) * (s**2 - k**2) * ddf
|
87 |
+
... + s * (2*s**2 - h**2 - k**2) * df
|
88 |
+
... - n * (n + 1)*s**2*f) / f)
|
89 |
+
... return -r.mean(), r.std()
|
90 |
+
>>> s = np.linspace(0.1, 10, 200)
|
91 |
+
>>> k, h, n, p = 8.0, 2.2, 3, 2
|
92 |
+
>>> E = ellip_harm(h**2, k**2, n, p, s)
|
93 |
+
>>> E_spl = UnivariateSpline(s, E)
|
94 |
+
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
|
95 |
+
>>> a, a_err
|
96 |
+
(583.44366156701483, 6.4580890640310646e-11)
|
97 |
+
|
98 |
+
""" # noqa: E501
|
99 |
+
return _ellip_harm(h2, k2, n, p, s, signm, signn)
|
100 |
+
|
101 |
+
|
102 |
+
_ellip_harm_2_vec = np.vectorize(_ellipsoid, otypes='d')
|
103 |
+
|
104 |
+
|
105 |
+
def ellip_harm_2(h2, k2, n, p, s):
|
106 |
+
r"""
|
107 |
+
Ellipsoidal harmonic functions F^p_n(l)
|
108 |
+
|
109 |
+
These are also known as Lame functions of the second kind, and are
|
110 |
+
solutions to the Lame equation:
|
111 |
+
|
112 |
+
.. math:: (s^2 - h^2)(s^2 - k^2)F''(s)
|
113 |
+
+ s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0
|
114 |
+
|
115 |
+
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
116 |
+
returned) corresponding to the solutions.
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
----------
|
120 |
+
h2 : float
|
121 |
+
``h**2``
|
122 |
+
k2 : float
|
123 |
+
``k**2``; should be larger than ``h**2``
|
124 |
+
n : int
|
125 |
+
Degree.
|
126 |
+
p : int
|
127 |
+
Order, can range between [1,2n+1].
|
128 |
+
s : float
|
129 |
+
Coordinate
|
130 |
+
|
131 |
+
Returns
|
132 |
+
-------
|
133 |
+
F : float
|
134 |
+
The harmonic :math:`F^p_n(s)`
|
135 |
+
|
136 |
+
See Also
|
137 |
+
--------
|
138 |
+
ellip_harm, ellip_normal
|
139 |
+
|
140 |
+
Notes
|
141 |
+
-----
|
142 |
+
Lame functions of the second kind are related to the functions of the first kind:
|
143 |
+
|
144 |
+
.. math::
|
145 |
+
|
146 |
+
F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s}
|
147 |
+
\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}}
|
148 |
+
|
149 |
+
.. versionadded:: 0.15.0
|
150 |
+
|
151 |
+
Examples
|
152 |
+
--------
|
153 |
+
>>> from scipy.special import ellip_harm_2
|
154 |
+
>>> w = ellip_harm_2(5,8,2,1,10)
|
155 |
+
>>> w
|
156 |
+
0.00108056853382
|
157 |
+
|
158 |
+
"""
|
159 |
+
with np.errstate(all='ignore'):
|
160 |
+
return _ellip_harm_2_vec(h2, k2, n, p, s)
|
161 |
+
|
162 |
+
|
163 |
+
def _ellip_normal_vec(h2, k2, n, p):
|
164 |
+
return _ellipsoid_norm(h2, k2, n, p)
|
165 |
+
|
166 |
+
|
167 |
+
_ellip_normal_vec = np.vectorize(_ellip_normal_vec, otypes='d')
|
168 |
+
|
169 |
+
|
170 |
+
def ellip_normal(h2, k2, n, p):
|
171 |
+
r"""
|
172 |
+
Ellipsoidal harmonic normalization constants gamma^p_n
|
173 |
+
|
174 |
+
The normalization constant is defined as
|
175 |
+
|
176 |
+
.. math::
|
177 |
+
|
178 |
+
\gamma^p_n=8\int_{0}^{h}dx\int_{h}^{k}dy
|
179 |
+
\frac{(y^2-x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt((k^2-y^2)(y^2-h^2)(h^2-x^2)(k^2-x^2)}
|
180 |
+
|
181 |
+
Parameters
|
182 |
+
----------
|
183 |
+
h2 : float
|
184 |
+
``h**2``
|
185 |
+
k2 : float
|
186 |
+
``k**2``; should be larger than ``h**2``
|
187 |
+
n : int
|
188 |
+
Degree.
|
189 |
+
p : int
|
190 |
+
Order, can range between [1,2n+1].
|
191 |
+
|
192 |
+
Returns
|
193 |
+
-------
|
194 |
+
gamma : float
|
195 |
+
The normalization constant :math:`\gamma^p_n`
|
196 |
+
|
197 |
+
See Also
|
198 |
+
--------
|
199 |
+
ellip_harm, ellip_harm_2
|
200 |
+
|
201 |
+
Notes
|
202 |
+
-----
|
203 |
+
.. versionadded:: 0.15.0
|
204 |
+
|
205 |
+
Examples
|
206 |
+
--------
|
207 |
+
>>> from scipy.special import ellip_normal
|
208 |
+
>>> w = ellip_normal(5,8,3,7)
|
209 |
+
>>> w
|
210 |
+
1723.38796997
|
211 |
+
|
212 |
+
"""
|
213 |
+
with np.errstate(all='ignore'):
|
214 |
+
return _ellip_normal_vec(h2, k2, n, p)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_logsumexp.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy._lib._util import _asarray_validated
|
3 |
+
|
4 |
+
__all__ = ["logsumexp", "softmax", "log_softmax"]
|
5 |
+
|
6 |
+
|
7 |
+
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
|
8 |
+
"""Compute the log of the sum of exponentials of input elements.
|
9 |
+
|
10 |
+
Parameters
|
11 |
+
----------
|
12 |
+
a : array_like
|
13 |
+
Input array.
|
14 |
+
axis : None or int or tuple of ints, optional
|
15 |
+
Axis or axes over which the sum is taken. By default `axis` is None,
|
16 |
+
and all elements are summed.
|
17 |
+
|
18 |
+
.. versionadded:: 0.11.0
|
19 |
+
b : array-like, optional
|
20 |
+
Scaling factor for exp(`a`) must be of the same shape as `a` or
|
21 |
+
broadcastable to `a`. These values may be negative in order to
|
22 |
+
implement subtraction.
|
23 |
+
|
24 |
+
.. versionadded:: 0.12.0
|
25 |
+
keepdims : bool, optional
|
26 |
+
If this is set to True, the axes which are reduced are left in the
|
27 |
+
result as dimensions with size one. With this option, the result
|
28 |
+
will broadcast correctly against the original array.
|
29 |
+
|
30 |
+
.. versionadded:: 0.15.0
|
31 |
+
return_sign : bool, optional
|
32 |
+
If this is set to True, the result will be a pair containing sign
|
33 |
+
information; if False, results that are negative will be returned
|
34 |
+
as NaN. Default is False (no sign information).
|
35 |
+
|
36 |
+
.. versionadded:: 0.16.0
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
res : ndarray
|
41 |
+
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
|
42 |
+
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
|
43 |
+
is returned. If ``return_sign`` is True, ``res`` contains the log of
|
44 |
+
the absolute value of the argument.
|
45 |
+
sgn : ndarray
|
46 |
+
If ``return_sign`` is True, this will be an array of floating-point
|
47 |
+
numbers matching res containing +1, 0, -1 (for real-valued inputs)
|
48 |
+
or a complex phase (for complex inputs). This gives the sign of the
|
49 |
+
argument of the logarithm in ``res``.
|
50 |
+
If ``return_sign`` is False, only one result is returned.
|
51 |
+
|
52 |
+
See Also
|
53 |
+
--------
|
54 |
+
numpy.logaddexp, numpy.logaddexp2
|
55 |
+
|
56 |
+
Notes
|
57 |
+
-----
|
58 |
+
NumPy has a logaddexp function which is very similar to `logsumexp`, but
|
59 |
+
only handles two arguments. `logaddexp.reduce` is similar to this
|
60 |
+
function, but may be less stable.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
>>> import numpy as np
|
65 |
+
>>> from scipy.special import logsumexp
|
66 |
+
>>> a = np.arange(10)
|
67 |
+
>>> logsumexp(a)
|
68 |
+
9.4586297444267107
|
69 |
+
>>> np.log(np.sum(np.exp(a)))
|
70 |
+
9.4586297444267107
|
71 |
+
|
72 |
+
With weights
|
73 |
+
|
74 |
+
>>> a = np.arange(10)
|
75 |
+
>>> b = np.arange(10, 0, -1)
|
76 |
+
>>> logsumexp(a, b=b)
|
77 |
+
9.9170178533034665
|
78 |
+
>>> np.log(np.sum(b*np.exp(a)))
|
79 |
+
9.9170178533034647
|
80 |
+
|
81 |
+
Returning a sign flag
|
82 |
+
|
83 |
+
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
|
84 |
+
(1.5413248546129181, -1.0)
|
85 |
+
|
86 |
+
Notice that `logsumexp` does not directly support masked arrays. To use it
|
87 |
+
on a masked array, convert the mask into zero weights:
|
88 |
+
|
89 |
+
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
|
90 |
+
... mask=[False, True, False])
|
91 |
+
>>> b = (~a.mask).astype(int)
|
92 |
+
>>> logsumexp(a.data, b=b), np.log(5)
|
93 |
+
1.6094379124341005, 1.6094379124341005
|
94 |
+
|
95 |
+
"""
|
96 |
+
a = _asarray_validated(a, check_finite=False)
|
97 |
+
if b is not None:
|
98 |
+
a, b = np.broadcast_arrays(a, b)
|
99 |
+
if np.any(b == 0):
|
100 |
+
a = a + 0. # promote to at least float
|
101 |
+
a[b == 0] = -np.inf
|
102 |
+
|
103 |
+
# Scale by real part for complex inputs, because this affects
|
104 |
+
# the magnitude of the exponential.
|
105 |
+
a_max = np.amax(a.real, axis=axis, keepdims=True)
|
106 |
+
|
107 |
+
if a_max.ndim > 0:
|
108 |
+
a_max[~np.isfinite(a_max)] = 0
|
109 |
+
elif not np.isfinite(a_max):
|
110 |
+
a_max = 0
|
111 |
+
|
112 |
+
if b is not None:
|
113 |
+
b = np.asarray(b)
|
114 |
+
tmp = b * np.exp(a - a_max)
|
115 |
+
else:
|
116 |
+
tmp = np.exp(a - a_max)
|
117 |
+
|
118 |
+
# suppress warnings about log of zero
|
119 |
+
with np.errstate(divide='ignore'):
|
120 |
+
s = np.sum(tmp, axis=axis, keepdims=keepdims)
|
121 |
+
if return_sign:
|
122 |
+
# For complex, use the numpy>=2.0 convention for sign.
|
123 |
+
if np.issubdtype(s.dtype, np.complexfloating):
|
124 |
+
sgn = s / np.where(s == 0, 1, abs(s))
|
125 |
+
else:
|
126 |
+
sgn = np.sign(s)
|
127 |
+
s = abs(s)
|
128 |
+
out = np.log(s)
|
129 |
+
|
130 |
+
if not keepdims:
|
131 |
+
a_max = np.squeeze(a_max, axis=axis)
|
132 |
+
out += a_max
|
133 |
+
|
134 |
+
if return_sign:
|
135 |
+
return out, sgn
|
136 |
+
else:
|
137 |
+
return out
|
138 |
+
|
139 |
+
|
140 |
+
def softmax(x, axis=None):
|
141 |
+
r"""Compute the softmax function.
|
142 |
+
|
143 |
+
The softmax function transforms each element of a collection by
|
144 |
+
computing the exponential of each element divided by the sum of the
|
145 |
+
exponentials of all the elements. That is, if `x` is a one-dimensional
|
146 |
+
numpy array::
|
147 |
+
|
148 |
+
softmax(x) = np.exp(x)/sum(np.exp(x))
|
149 |
+
|
150 |
+
Parameters
|
151 |
+
----------
|
152 |
+
x : array_like
|
153 |
+
Input array.
|
154 |
+
axis : int or tuple of ints, optional
|
155 |
+
Axis to compute values along. Default is None and softmax will be
|
156 |
+
computed over the entire array `x`.
|
157 |
+
|
158 |
+
Returns
|
159 |
+
-------
|
160 |
+
s : ndarray
|
161 |
+
An array the same shape as `x`. The result will sum to 1 along the
|
162 |
+
specified axis.
|
163 |
+
|
164 |
+
Notes
|
165 |
+
-----
|
166 |
+
The formula for the softmax function :math:`\sigma(x)` for a vector
|
167 |
+
:math:`x = \{x_0, x_1, ..., x_{n-1}\}` is
|
168 |
+
|
169 |
+
.. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}
|
170 |
+
|
171 |
+
The `softmax` function is the gradient of `logsumexp`.
|
172 |
+
|
173 |
+
The implementation uses shifting to avoid overflow. See [1]_ for more
|
174 |
+
details.
|
175 |
+
|
176 |
+
.. versionadded:: 1.2.0
|
177 |
+
|
178 |
+
References
|
179 |
+
----------
|
180 |
+
.. [1] P. Blanchard, D.J. Higham, N.J. Higham, "Accurately computing the
|
181 |
+
log-sum-exp and softmax functions", IMA Journal of Numerical Analysis,
|
182 |
+
Vol.41(4), :doi:`10.1093/imanum/draa038`.
|
183 |
+
|
184 |
+
Examples
|
185 |
+
--------
|
186 |
+
>>> import numpy as np
|
187 |
+
>>> from scipy.special import softmax
|
188 |
+
>>> np.set_printoptions(precision=5)
|
189 |
+
|
190 |
+
>>> x = np.array([[1, 0.5, 0.2, 3],
|
191 |
+
... [1, -1, 7, 3],
|
192 |
+
... [2, 12, 13, 3]])
|
193 |
+
...
|
194 |
+
|
195 |
+
Compute the softmax transformation over the entire array.
|
196 |
+
|
197 |
+
>>> m = softmax(x)
|
198 |
+
>>> m
|
199 |
+
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],
|
200 |
+
[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
|
201 |
+
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])
|
202 |
+
|
203 |
+
>>> m.sum()
|
204 |
+
1.0
|
205 |
+
|
206 |
+
Compute the softmax transformation along the first axis (i.e., the
|
207 |
+
columns).
|
208 |
+
|
209 |
+
>>> m = softmax(x, axis=0)
|
210 |
+
|
211 |
+
>>> m
|
212 |
+
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],
|
213 |
+
[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
|
214 |
+
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])
|
215 |
+
|
216 |
+
>>> m.sum(axis=0)
|
217 |
+
array([ 1., 1., 1., 1.])
|
218 |
+
|
219 |
+
Compute the softmax transformation along the second axis (i.e., the rows).
|
220 |
+
|
221 |
+
>>> m = softmax(x, axis=1)
|
222 |
+
>>> m
|
223 |
+
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],
|
224 |
+
[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
|
225 |
+
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])
|
226 |
+
|
227 |
+
>>> m.sum(axis=1)
|
228 |
+
array([ 1., 1., 1.])
|
229 |
+
|
230 |
+
"""
|
231 |
+
x = _asarray_validated(x, check_finite=False)
|
232 |
+
x_max = np.amax(x, axis=axis, keepdims=True)
|
233 |
+
exp_x_shifted = np.exp(x - x_max)
|
234 |
+
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
|
235 |
+
|
236 |
+
|
237 |
+
def log_softmax(x, axis=None):
|
238 |
+
r"""Compute the logarithm of the softmax function.
|
239 |
+
|
240 |
+
In principle::
|
241 |
+
|
242 |
+
log_softmax(x) = log(softmax(x))
|
243 |
+
|
244 |
+
but using a more accurate implementation.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
x : array_like
|
249 |
+
Input array.
|
250 |
+
axis : int or tuple of ints, optional
|
251 |
+
Axis to compute values along. Default is None and softmax will be
|
252 |
+
computed over the entire array `x`.
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
s : ndarray or scalar
|
257 |
+
An array with the same shape as `x`. Exponential of the result will
|
258 |
+
sum to 1 along the specified axis. If `x` is a scalar, a scalar is
|
259 |
+
returned.
|
260 |
+
|
261 |
+
Notes
|
262 |
+
-----
|
263 |
+
`log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that
|
264 |
+
make `softmax` saturate (see examples below).
|
265 |
+
|
266 |
+
.. versionadded:: 1.5.0
|
267 |
+
|
268 |
+
Examples
|
269 |
+
--------
|
270 |
+
>>> import numpy as np
|
271 |
+
>>> from scipy.special import log_softmax
|
272 |
+
>>> from scipy.special import softmax
|
273 |
+
>>> np.set_printoptions(precision=5)
|
274 |
+
|
275 |
+
>>> x = np.array([1000.0, 1.0])
|
276 |
+
|
277 |
+
>>> y = log_softmax(x)
|
278 |
+
>>> y
|
279 |
+
array([ 0., -999.])
|
280 |
+
|
281 |
+
>>> with np.errstate(divide='ignore'):
|
282 |
+
... y = np.log(softmax(x))
|
283 |
+
...
|
284 |
+
>>> y
|
285 |
+
array([ 0., -inf])
|
286 |
+
|
287 |
+
"""
|
288 |
+
|
289 |
+
x = _asarray_validated(x, check_finite=False)
|
290 |
+
|
291 |
+
x_max = np.amax(x, axis=axis, keepdims=True)
|
292 |
+
|
293 |
+
if x_max.ndim > 0:
|
294 |
+
x_max[~np.isfinite(x_max)] = 0
|
295 |
+
elif not np.isfinite(x_max):
|
296 |
+
x_max = 0
|
297 |
+
|
298 |
+
tmp = x - x_max
|
299 |
+
exp_tmp = np.exp(tmp)
|
300 |
+
|
301 |
+
# suppress warnings about log of zero
|
302 |
+
with np.errstate(divide='ignore'):
|
303 |
+
s = np.sum(exp_tmp, axis=axis, keepdims=True)
|
304 |
+
out = np.log(s)
|
305 |
+
|
306 |
+
out = tmp - out
|
307 |
+
return out
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_mptestutils.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import time
|
4 |
+
from itertools import zip_longest
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from numpy.testing import assert_
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
from scipy.special._testutils import assert_func_equal
|
11 |
+
|
12 |
+
try:
|
13 |
+
import mpmath
|
14 |
+
except ImportError:
|
15 |
+
pass
|
16 |
+
|
17 |
+
|
18 |
+
# ------------------------------------------------------------------------------
|
19 |
+
# Machinery for systematic tests with mpmath
|
20 |
+
# ------------------------------------------------------------------------------
|
21 |
+
|
22 |
+
class Arg:
|
23 |
+
"""Generate a set of numbers on the real axis, concentrating on
|
24 |
+
'interesting' regions and covering all orders of magnitude.
|
25 |
+
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, a=-np.inf, b=np.inf, inclusive_a=True, inclusive_b=True):
|
29 |
+
if a > b:
|
30 |
+
raise ValueError("a should be less than or equal to b")
|
31 |
+
if a == -np.inf:
|
32 |
+
a = -0.5*np.finfo(float).max
|
33 |
+
if b == np.inf:
|
34 |
+
b = 0.5*np.finfo(float).max
|
35 |
+
self.a, self.b = a, b
|
36 |
+
|
37 |
+
self.inclusive_a, self.inclusive_b = inclusive_a, inclusive_b
|
38 |
+
|
39 |
+
def _positive_values(self, a, b, n):
|
40 |
+
if a < 0:
|
41 |
+
raise ValueError("a should be positive")
|
42 |
+
|
43 |
+
# Try to put half of the points into a linspace between a and
|
44 |
+
# 10 the other half in a logspace.
|
45 |
+
if n % 2 == 0:
|
46 |
+
nlogpts = n//2
|
47 |
+
nlinpts = nlogpts
|
48 |
+
else:
|
49 |
+
nlogpts = n//2
|
50 |
+
nlinpts = nlogpts + 1
|
51 |
+
|
52 |
+
if a >= 10:
|
53 |
+
# Outside of linspace range; just return a logspace.
|
54 |
+
pts = np.logspace(np.log10(a), np.log10(b), n)
|
55 |
+
elif a > 0 and b < 10:
|
56 |
+
# Outside of logspace range; just return a linspace
|
57 |
+
pts = np.linspace(a, b, n)
|
58 |
+
elif a > 0:
|
59 |
+
# Linspace between a and 10 and a logspace between 10 and
|
60 |
+
# b.
|
61 |
+
linpts = np.linspace(a, 10, nlinpts, endpoint=False)
|
62 |
+
logpts = np.logspace(1, np.log10(b), nlogpts)
|
63 |
+
pts = np.hstack((linpts, logpts))
|
64 |
+
elif a == 0 and b <= 10:
|
65 |
+
# Linspace between 0 and b and a logspace between 0 and
|
66 |
+
# the smallest positive point of the linspace
|
67 |
+
linpts = np.linspace(0, b, nlinpts)
|
68 |
+
if linpts.size > 1:
|
69 |
+
right = np.log10(linpts[1])
|
70 |
+
else:
|
71 |
+
right = -30
|
72 |
+
logpts = np.logspace(-30, right, nlogpts, endpoint=False)
|
73 |
+
pts = np.hstack((logpts, linpts))
|
74 |
+
else:
|
75 |
+
# Linspace between 0 and 10, logspace between 0 and the
|
76 |
+
# smallest positive point of the linspace, and a logspace
|
77 |
+
# between 10 and b.
|
78 |
+
if nlogpts % 2 == 0:
|
79 |
+
nlogpts1 = nlogpts//2
|
80 |
+
nlogpts2 = nlogpts1
|
81 |
+
else:
|
82 |
+
nlogpts1 = nlogpts//2
|
83 |
+
nlogpts2 = nlogpts1 + 1
|
84 |
+
linpts = np.linspace(0, 10, nlinpts, endpoint=False)
|
85 |
+
if linpts.size > 1:
|
86 |
+
right = np.log10(linpts[1])
|
87 |
+
else:
|
88 |
+
right = -30
|
89 |
+
logpts1 = np.logspace(-30, right, nlogpts1, endpoint=False)
|
90 |
+
logpts2 = np.logspace(1, np.log10(b), nlogpts2)
|
91 |
+
pts = np.hstack((logpts1, linpts, logpts2))
|
92 |
+
|
93 |
+
return np.sort(pts)
|
94 |
+
|
95 |
+
def values(self, n):
|
96 |
+
"""Return an array containing n numbers."""
|
97 |
+
a, b = self.a, self.b
|
98 |
+
if a == b:
|
99 |
+
return np.zeros(n)
|
100 |
+
|
101 |
+
if not self.inclusive_a:
|
102 |
+
n += 1
|
103 |
+
if not self.inclusive_b:
|
104 |
+
n += 1
|
105 |
+
|
106 |
+
if n % 2 == 0:
|
107 |
+
n1 = n//2
|
108 |
+
n2 = n1
|
109 |
+
else:
|
110 |
+
n1 = n//2
|
111 |
+
n2 = n1 + 1
|
112 |
+
|
113 |
+
if a >= 0:
|
114 |
+
pospts = self._positive_values(a, b, n)
|
115 |
+
negpts = []
|
116 |
+
elif b <= 0:
|
117 |
+
pospts = []
|
118 |
+
negpts = -self._positive_values(-b, -a, n)
|
119 |
+
else:
|
120 |
+
pospts = self._positive_values(0, b, n1)
|
121 |
+
negpts = -self._positive_values(0, -a, n2 + 1)
|
122 |
+
# Don't want to get zero twice
|
123 |
+
negpts = negpts[1:]
|
124 |
+
pts = np.hstack((negpts[::-1], pospts))
|
125 |
+
|
126 |
+
if not self.inclusive_a:
|
127 |
+
pts = pts[1:]
|
128 |
+
if not self.inclusive_b:
|
129 |
+
pts = pts[:-1]
|
130 |
+
return pts
|
131 |
+
|
132 |
+
|
133 |
+
class FixedArg:
|
134 |
+
def __init__(self, values):
|
135 |
+
self._values = np.asarray(values)
|
136 |
+
|
137 |
+
def values(self, n):
|
138 |
+
return self._values
|
139 |
+
|
140 |
+
|
141 |
+
class ComplexArg:
|
142 |
+
def __init__(self, a=complex(-np.inf, -np.inf), b=complex(np.inf, np.inf)):
|
143 |
+
self.real = Arg(a.real, b.real)
|
144 |
+
self.imag = Arg(a.imag, b.imag)
|
145 |
+
|
146 |
+
def values(self, n):
|
147 |
+
m = int(np.floor(np.sqrt(n)))
|
148 |
+
x = self.real.values(m)
|
149 |
+
y = self.imag.values(m + 1)
|
150 |
+
return (x[:,None] + 1j*y[None,:]).ravel()
|
151 |
+
|
152 |
+
|
153 |
+
class IntArg:
|
154 |
+
def __init__(self, a=-1000, b=1000):
|
155 |
+
self.a = a
|
156 |
+
self.b = b
|
157 |
+
|
158 |
+
def values(self, n):
|
159 |
+
v1 = Arg(self.a, self.b).values(max(1 + n//2, n-5)).astype(int)
|
160 |
+
v2 = np.arange(-5, 5)
|
161 |
+
v = np.unique(np.r_[v1, v2])
|
162 |
+
v = v[(v >= self.a) & (v < self.b)]
|
163 |
+
return v
|
164 |
+
|
165 |
+
|
166 |
+
def get_args(argspec, n):
|
167 |
+
if isinstance(argspec, np.ndarray):
|
168 |
+
args = argspec.copy()
|
169 |
+
else:
|
170 |
+
nargs = len(argspec)
|
171 |
+
ms = np.asarray(
|
172 |
+
[1.5 if isinstance(spec, ComplexArg) else 1.0 for spec in argspec]
|
173 |
+
)
|
174 |
+
ms = (n**(ms/sum(ms))).astype(int) + 1
|
175 |
+
|
176 |
+
args = [spec.values(m) for spec, m in zip(argspec, ms)]
|
177 |
+
args = np.array(np.broadcast_arrays(*np.ix_(*args))).reshape(nargs, -1).T
|
178 |
+
|
179 |
+
return args
|
180 |
+
|
181 |
+
|
182 |
+
class MpmathData:
|
183 |
+
def __init__(self, scipy_func, mpmath_func, arg_spec, name=None,
|
184 |
+
dps=None, prec=None, n=None, rtol=1e-7, atol=1e-300,
|
185 |
+
ignore_inf_sign=False, distinguish_nan_and_inf=True,
|
186 |
+
nan_ok=True, param_filter=None):
|
187 |
+
|
188 |
+
# mpmath tests are really slow (see gh-6989). Use a small number of
|
189 |
+
# points by default, increase back to 5000 (old default) if XSLOW is
|
190 |
+
# set
|
191 |
+
if n is None:
|
192 |
+
try:
|
193 |
+
is_xslow = int(os.environ.get('SCIPY_XSLOW', '0'))
|
194 |
+
except ValueError:
|
195 |
+
is_xslow = False
|
196 |
+
|
197 |
+
n = 5000 if is_xslow else 500
|
198 |
+
|
199 |
+
self.scipy_func = scipy_func
|
200 |
+
self.mpmath_func = mpmath_func
|
201 |
+
self.arg_spec = arg_spec
|
202 |
+
self.dps = dps
|
203 |
+
self.prec = prec
|
204 |
+
self.n = n
|
205 |
+
self.rtol = rtol
|
206 |
+
self.atol = atol
|
207 |
+
self.ignore_inf_sign = ignore_inf_sign
|
208 |
+
self.nan_ok = nan_ok
|
209 |
+
if isinstance(self.arg_spec, np.ndarray):
|
210 |
+
self.is_complex = np.issubdtype(self.arg_spec.dtype, np.complexfloating)
|
211 |
+
else:
|
212 |
+
self.is_complex = any(
|
213 |
+
[isinstance(arg, ComplexArg) for arg in self.arg_spec]
|
214 |
+
)
|
215 |
+
self.ignore_inf_sign = ignore_inf_sign
|
216 |
+
self.distinguish_nan_and_inf = distinguish_nan_and_inf
|
217 |
+
if not name or name == '<lambda>':
|
218 |
+
name = getattr(scipy_func, '__name__', None)
|
219 |
+
if not name or name == '<lambda>':
|
220 |
+
name = getattr(mpmath_func, '__name__', None)
|
221 |
+
self.name = name
|
222 |
+
self.param_filter = param_filter
|
223 |
+
|
224 |
+
def check(self):
|
225 |
+
np.random.seed(1234)
|
226 |
+
|
227 |
+
# Generate values for the arguments
|
228 |
+
argarr = get_args(self.arg_spec, self.n)
|
229 |
+
|
230 |
+
# Check
|
231 |
+
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
|
232 |
+
try:
|
233 |
+
if self.dps is not None:
|
234 |
+
dps_list = [self.dps]
|
235 |
+
else:
|
236 |
+
dps_list = [20]
|
237 |
+
if self.prec is not None:
|
238 |
+
mpmath.mp.prec = self.prec
|
239 |
+
|
240 |
+
# Proper casting of mpmath input and output types. Using
|
241 |
+
# native mpmath types as inputs gives improved precision
|
242 |
+
# in some cases.
|
243 |
+
if np.issubdtype(argarr.dtype, np.complexfloating):
|
244 |
+
pytype = mpc2complex
|
245 |
+
|
246 |
+
def mptype(x):
|
247 |
+
return mpmath.mpc(complex(x))
|
248 |
+
else:
|
249 |
+
def mptype(x):
|
250 |
+
return mpmath.mpf(float(x))
|
251 |
+
|
252 |
+
def pytype(x):
|
253 |
+
if abs(x.imag) > 1e-16*(1 + abs(x.real)):
|
254 |
+
return np.nan
|
255 |
+
else:
|
256 |
+
return mpf2float(x.real)
|
257 |
+
|
258 |
+
# Try out different dps until one (or none) works
|
259 |
+
for j, dps in enumerate(dps_list):
|
260 |
+
mpmath.mp.dps = dps
|
261 |
+
|
262 |
+
try:
|
263 |
+
assert_func_equal(
|
264 |
+
self.scipy_func,
|
265 |
+
lambda *a: pytype(self.mpmath_func(*map(mptype, a))),
|
266 |
+
argarr,
|
267 |
+
vectorized=False,
|
268 |
+
rtol=self.rtol,
|
269 |
+
atol=self.atol,
|
270 |
+
ignore_inf_sign=self.ignore_inf_sign,
|
271 |
+
distinguish_nan_and_inf=self.distinguish_nan_and_inf,
|
272 |
+
nan_ok=self.nan_ok,
|
273 |
+
param_filter=self.param_filter
|
274 |
+
)
|
275 |
+
break
|
276 |
+
except AssertionError:
|
277 |
+
if j >= len(dps_list)-1:
|
278 |
+
# reraise the Exception
|
279 |
+
tp, value, tb = sys.exc_info()
|
280 |
+
if value.__traceback__ is not tb:
|
281 |
+
raise value.with_traceback(tb)
|
282 |
+
raise value
|
283 |
+
finally:
|
284 |
+
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
|
285 |
+
|
286 |
+
def __repr__(self):
|
287 |
+
if self.is_complex:
|
288 |
+
return f"<MpmathData: {self.name} (complex)>"
|
289 |
+
else:
|
290 |
+
return f"<MpmathData: {self.name}>"
|
291 |
+
|
292 |
+
|
293 |
+
def assert_mpmath_equal(*a, **kw):
|
294 |
+
d = MpmathData(*a, **kw)
|
295 |
+
d.check()
|
296 |
+
|
297 |
+
|
298 |
+
def nonfunctional_tooslow(func):
|
299 |
+
return pytest.mark.skip(
|
300 |
+
reason=" Test not yet functional (too slow), needs more work."
|
301 |
+
)(func)
|
302 |
+
|
303 |
+
|
304 |
+
# ------------------------------------------------------------------------------
|
305 |
+
# Tools for dealing with mpmath quirks
|
306 |
+
# ------------------------------------------------------------------------------
|
307 |
+
|
308 |
+
def mpf2float(x):
|
309 |
+
"""
|
310 |
+
Convert an mpf to the nearest floating point number. Just using
|
311 |
+
float directly doesn't work because of results like this:
|
312 |
+
|
313 |
+
with mp.workdps(50):
|
314 |
+
float(mpf("0.99999999999999999")) = 0.9999999999999999
|
315 |
+
|
316 |
+
"""
|
317 |
+
return float(mpmath.nstr(x, 17, min_fixed=0, max_fixed=0))
|
318 |
+
|
319 |
+
|
320 |
+
def mpc2complex(x):
|
321 |
+
return complex(mpf2float(x.real), mpf2float(x.imag))
|
322 |
+
|
323 |
+
|
324 |
+
def trace_args(func):
|
325 |
+
def tofloat(x):
|
326 |
+
if isinstance(x, mpmath.mpc):
|
327 |
+
return complex(x)
|
328 |
+
else:
|
329 |
+
return float(x)
|
330 |
+
|
331 |
+
def wrap(*a, **kw):
|
332 |
+
sys.stderr.write(f"{tuple(map(tofloat, a))!r}: ")
|
333 |
+
sys.stderr.flush()
|
334 |
+
try:
|
335 |
+
r = func(*a, **kw)
|
336 |
+
sys.stderr.write("-> %r" % r)
|
337 |
+
finally:
|
338 |
+
sys.stderr.write("\n")
|
339 |
+
sys.stderr.flush()
|
340 |
+
return r
|
341 |
+
return wrap
|
342 |
+
|
343 |
+
|
344 |
+
try:
|
345 |
+
import signal
|
346 |
+
POSIX = ('setitimer' in dir(signal))
|
347 |
+
except ImportError:
|
348 |
+
POSIX = False
|
349 |
+
|
350 |
+
|
351 |
+
class TimeoutError(Exception):
|
352 |
+
pass
|
353 |
+
|
354 |
+
|
355 |
+
def time_limited(timeout=0.5, return_val=np.nan, use_sigalrm=True):
|
356 |
+
"""
|
357 |
+
Decorator for setting a timeout for pure-Python functions.
|
358 |
+
|
359 |
+
If the function does not return within `timeout` seconds, the
|
360 |
+
value `return_val` is returned instead.
|
361 |
+
|
362 |
+
On POSIX this uses SIGALRM by default. On non-POSIX, settrace is
|
363 |
+
used. Do not use this with threads: the SIGALRM implementation
|
364 |
+
does probably not work well. The settrace implementation only
|
365 |
+
traces the current thread.
|
366 |
+
|
367 |
+
The settrace implementation slows down execution speed. Slowdown
|
368 |
+
by a factor around 10 is probably typical.
|
369 |
+
"""
|
370 |
+
if POSIX and use_sigalrm:
|
371 |
+
def sigalrm_handler(signum, frame):
|
372 |
+
raise TimeoutError()
|
373 |
+
|
374 |
+
def deco(func):
|
375 |
+
def wrap(*a, **kw):
|
376 |
+
old_handler = signal.signal(signal.SIGALRM, sigalrm_handler)
|
377 |
+
signal.setitimer(signal.ITIMER_REAL, timeout)
|
378 |
+
try:
|
379 |
+
return func(*a, **kw)
|
380 |
+
except TimeoutError:
|
381 |
+
return return_val
|
382 |
+
finally:
|
383 |
+
signal.setitimer(signal.ITIMER_REAL, 0)
|
384 |
+
signal.signal(signal.SIGALRM, old_handler)
|
385 |
+
return wrap
|
386 |
+
else:
|
387 |
+
def deco(func):
|
388 |
+
def wrap(*a, **kw):
|
389 |
+
start_time = time.time()
|
390 |
+
|
391 |
+
def trace(frame, event, arg):
|
392 |
+
if time.time() - start_time > timeout:
|
393 |
+
raise TimeoutError()
|
394 |
+
return trace
|
395 |
+
sys.settrace(trace)
|
396 |
+
try:
|
397 |
+
return func(*a, **kw)
|
398 |
+
except TimeoutError:
|
399 |
+
sys.settrace(None)
|
400 |
+
return return_val
|
401 |
+
finally:
|
402 |
+
sys.settrace(None)
|
403 |
+
return wrap
|
404 |
+
return deco
|
405 |
+
|
406 |
+
|
407 |
+
def exception_to_nan(func):
|
408 |
+
"""Decorate function to return nan if it raises an exception"""
|
409 |
+
def wrap(*a, **kw):
|
410 |
+
try:
|
411 |
+
return func(*a, **kw)
|
412 |
+
except Exception:
|
413 |
+
return np.nan
|
414 |
+
return wrap
|
415 |
+
|
416 |
+
|
417 |
+
def inf_to_nan(func):
|
418 |
+
"""Decorate function to return nan if it returns inf"""
|
419 |
+
def wrap(*a, **kw):
|
420 |
+
v = func(*a, **kw)
|
421 |
+
if not np.isfinite(v):
|
422 |
+
return np.nan
|
423 |
+
return v
|
424 |
+
return wrap
|
425 |
+
|
426 |
+
|
427 |
+
def mp_assert_allclose(res, std, atol=0, rtol=1e-17):
|
428 |
+
"""
|
429 |
+
Compare lists of mpmath.mpf's or mpmath.mpc's directly so that it
|
430 |
+
can be done to higher precision than double.
|
431 |
+
"""
|
432 |
+
failures = []
|
433 |
+
for k, (resval, stdval) in enumerate(zip_longest(res, std)):
|
434 |
+
if resval is None or stdval is None:
|
435 |
+
raise ValueError('Lengths of inputs res and std are not equal.')
|
436 |
+
if mpmath.fabs(resval - stdval) > atol + rtol*mpmath.fabs(stdval):
|
437 |
+
failures.append((k, resval, stdval))
|
438 |
+
|
439 |
+
nfail = len(failures)
|
440 |
+
if nfail > 0:
|
441 |
+
ndigits = int(abs(np.log10(rtol)))
|
442 |
+
msg = [""]
|
443 |
+
msg.append(f"Bad results ({nfail} out of {k + 1}) for the following points:")
|
444 |
+
for k, resval, stdval in failures:
|
445 |
+
resrep = mpmath.nstr(resval, ndigits, min_fixed=0, max_fixed=0)
|
446 |
+
stdrep = mpmath.nstr(stdval, ndigits, min_fixed=0, max_fixed=0)
|
447 |
+
if stdval == 0:
|
448 |
+
rdiff = "inf"
|
449 |
+
else:
|
450 |
+
rdiff = mpmath.fabs((resval - stdval)/stdval)
|
451 |
+
rdiff = mpmath.nstr(rdiff, 3)
|
452 |
+
msg.append(f"{k}: {resrep} != {stdrep} (rdiff {rdiff})")
|
453 |
+
assert_(False, "\n".join(msg))
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_orthogonal.py
ADDED
@@ -0,0 +1,2605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A collection of functions to find the weights and abscissas for
|
3 |
+
Gaussian Quadrature.
|
4 |
+
|
5 |
+
These calculations are done by finding the eigenvalues of a
|
6 |
+
tridiagonal matrix whose entries are dependent on the coefficients
|
7 |
+
in the recursion formula for the orthogonal polynomials with the
|
8 |
+
corresponding weighting function over the interval.
|
9 |
+
|
10 |
+
Many recursion relations for orthogonal polynomials are given:
|
11 |
+
|
12 |
+
.. math::
|
13 |
+
|
14 |
+
a1n f_{n+1} (x) = (a2n + a3n x ) f_n (x) - a4n f_{n-1} (x)
|
15 |
+
|
16 |
+
The recursion relation of interest is
|
17 |
+
|
18 |
+
.. math::
|
19 |
+
|
20 |
+
P_{n+1} (x) = (x - A_n) P_n (x) - B_n P_{n-1} (x)
|
21 |
+
|
22 |
+
where :math:`P` has a different normalization than :math:`f`.
|
23 |
+
|
24 |
+
The coefficients can be found as:
|
25 |
+
|
26 |
+
.. math::
|
27 |
+
|
28 |
+
A_n = -a2n / a3n
|
29 |
+
\\qquad
|
30 |
+
B_n = ( a4n / a3n \\sqrt{h_n-1 / h_n})^2
|
31 |
+
|
32 |
+
where
|
33 |
+
|
34 |
+
.. math::
|
35 |
+
|
36 |
+
h_n = \\int_a^b w(x) f_n(x)^2
|
37 |
+
|
38 |
+
assume:
|
39 |
+
|
40 |
+
.. math::
|
41 |
+
|
42 |
+
P_0 (x) = 1
|
43 |
+
\\qquad
|
44 |
+
P_{-1} (x) == 0
|
45 |
+
|
46 |
+
For the mathematical background, see [golub.welsch-1969-mathcomp]_ and
|
47 |
+
[abramowitz.stegun-1965]_.
|
48 |
+
|
49 |
+
References
|
50 |
+
----------
|
51 |
+
.. [golub.welsch-1969-mathcomp]
|
52 |
+
Golub, Gene H, and John H Welsch. 1969. Calculation of Gauss
|
53 |
+
Quadrature Rules. *Mathematics of Computation* 23, 221-230+s1--s10.
|
54 |
+
|
55 |
+
.. [abramowitz.stegun-1965]
|
56 |
+
Abramowitz, Milton, and Irene A Stegun. (1965) *Handbook of
|
57 |
+
Mathematical Functions: with Formulas, Graphs, and Mathematical
|
58 |
+
Tables*. Gaithersburg, MD: National Bureau of Standards.
|
59 |
+
http://www.math.sfu.ca/~cbm/aands/
|
60 |
+
|
61 |
+
.. [townsend.trogdon.olver-2014]
|
62 |
+
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
63 |
+
*Fast computation of Gauss quadrature nodes and
|
64 |
+
weights on the whole real line*. :arXiv:`1410.5286`.
|
65 |
+
|
66 |
+
.. [townsend.trogdon.olver-2015]
|
67 |
+
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
68 |
+
*Fast computation of Gauss quadrature nodes and
|
69 |
+
weights on the whole real line*.
|
70 |
+
IMA Journal of Numerical Analysis
|
71 |
+
:doi:`10.1093/imanum/drv002`.
|
72 |
+
"""
|
73 |
+
#
|
74 |
+
# Author: Travis Oliphant 2000
|
75 |
+
# Updated Sep. 2003 (fixed bugs --- tested to be accurate)
|
76 |
+
|
77 |
+
# SciPy imports.
|
78 |
+
import numpy as np
|
79 |
+
from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around,
|
80 |
+
hstack, arccos, arange)
|
81 |
+
from scipy import linalg
|
82 |
+
from scipy.special import airy
|
83 |
+
|
84 |
+
# Local imports.
|
85 |
+
# There is no .pyi file for _specfun
|
86 |
+
from . import _specfun # type: ignore
|
87 |
+
from . import _ufuncs
|
88 |
+
_gam = _ufuncs.gamma
|
89 |
+
|
90 |
+
_polyfuns = ['legendre', 'chebyt', 'chebyu', 'chebyc', 'chebys',
|
91 |
+
'jacobi', 'laguerre', 'genlaguerre', 'hermite',
|
92 |
+
'hermitenorm', 'gegenbauer', 'sh_legendre', 'sh_chebyt',
|
93 |
+
'sh_chebyu', 'sh_jacobi']
|
94 |
+
|
95 |
+
# Correspondence between new and old names of root functions
|
96 |
+
_rootfuns_map = {'roots_legendre': 'p_roots',
|
97 |
+
'roots_chebyt': 't_roots',
|
98 |
+
'roots_chebyu': 'u_roots',
|
99 |
+
'roots_chebyc': 'c_roots',
|
100 |
+
'roots_chebys': 's_roots',
|
101 |
+
'roots_jacobi': 'j_roots',
|
102 |
+
'roots_laguerre': 'l_roots',
|
103 |
+
'roots_genlaguerre': 'la_roots',
|
104 |
+
'roots_hermite': 'h_roots',
|
105 |
+
'roots_hermitenorm': 'he_roots',
|
106 |
+
'roots_gegenbauer': 'cg_roots',
|
107 |
+
'roots_sh_legendre': 'ps_roots',
|
108 |
+
'roots_sh_chebyt': 'ts_roots',
|
109 |
+
'roots_sh_chebyu': 'us_roots',
|
110 |
+
'roots_sh_jacobi': 'js_roots'}
|
111 |
+
|
112 |
+
__all__ = _polyfuns + list(_rootfuns_map.keys())
|
113 |
+
|
114 |
+
|
115 |
+
class orthopoly1d(np.poly1d):
|
116 |
+
|
117 |
+
def __init__(self, roots, weights=None, hn=1.0, kn=1.0, wfunc=None,
|
118 |
+
limits=None, monic=False, eval_func=None):
|
119 |
+
equiv_weights = [weights[k] / wfunc(roots[k]) for
|
120 |
+
k in range(len(roots))]
|
121 |
+
mu = sqrt(hn)
|
122 |
+
if monic:
|
123 |
+
evf = eval_func
|
124 |
+
if evf:
|
125 |
+
knn = kn
|
126 |
+
def eval_func(x):
|
127 |
+
return evf(x) / knn
|
128 |
+
mu = mu / abs(kn)
|
129 |
+
kn = 1.0
|
130 |
+
|
131 |
+
# compute coefficients from roots, then scale
|
132 |
+
poly = np.poly1d(roots, r=True)
|
133 |
+
np.poly1d.__init__(self, poly.coeffs * float(kn))
|
134 |
+
|
135 |
+
self.weights = np.array(list(zip(roots, weights, equiv_weights)))
|
136 |
+
self.weight_func = wfunc
|
137 |
+
self.limits = limits
|
138 |
+
self.normcoef = mu
|
139 |
+
|
140 |
+
# Note: eval_func will be discarded on arithmetic
|
141 |
+
self._eval_func = eval_func
|
142 |
+
|
143 |
+
def __call__(self, v):
|
144 |
+
if self._eval_func and not isinstance(v, np.poly1d):
|
145 |
+
return self._eval_func(v)
|
146 |
+
else:
|
147 |
+
return np.poly1d.__call__(self, v)
|
148 |
+
|
149 |
+
def _scale(self, p):
|
150 |
+
if p == 1.0:
|
151 |
+
return
|
152 |
+
self._coeffs *= p
|
153 |
+
|
154 |
+
evf = self._eval_func
|
155 |
+
if evf:
|
156 |
+
self._eval_func = lambda x: evf(x) * p
|
157 |
+
self.normcoef *= p
|
158 |
+
|
159 |
+
|
160 |
+
def _gen_roots_and_weights(n, mu0, an_func, bn_func, f, df, symmetrize, mu):
|
161 |
+
"""[x,w] = gen_roots_and_weights(n,an_func,sqrt_bn_func,mu)
|
162 |
+
|
163 |
+
Returns the roots (x) of an nth order orthogonal polynomial,
|
164 |
+
and weights (w) to use in appropriate Gaussian quadrature with that
|
165 |
+
orthogonal polynomial.
|
166 |
+
|
167 |
+
The polynomials have the recurrence relation
|
168 |
+
P_n+1(x) = (x - A_n) P_n(x) - B_n P_n-1(x)
|
169 |
+
|
170 |
+
an_func(n) should return A_n
|
171 |
+
sqrt_bn_func(n) should return sqrt(B_n)
|
172 |
+
mu ( = h_0 ) is the integral of the weight over the orthogonal
|
173 |
+
interval
|
174 |
+
"""
|
175 |
+
k = np.arange(n, dtype='d')
|
176 |
+
c = np.zeros((2, n))
|
177 |
+
c[0,1:] = bn_func(k[1:])
|
178 |
+
c[1,:] = an_func(k)
|
179 |
+
x = linalg.eigvals_banded(c, overwrite_a_band=True)
|
180 |
+
|
181 |
+
# improve roots by one application of Newton's method
|
182 |
+
y = f(n, x)
|
183 |
+
dy = df(n, x)
|
184 |
+
x -= y/dy
|
185 |
+
|
186 |
+
# fm and dy may contain very large/small values, so we
|
187 |
+
# log-normalize them to maintain precision in the product fm*dy
|
188 |
+
fm = f(n-1, x)
|
189 |
+
log_fm = np.log(np.abs(fm))
|
190 |
+
log_dy = np.log(np.abs(dy))
|
191 |
+
fm /= np.exp((log_fm.max() + log_fm.min()) / 2.)
|
192 |
+
dy /= np.exp((log_dy.max() + log_dy.min()) / 2.)
|
193 |
+
w = 1.0 / (fm * dy)
|
194 |
+
|
195 |
+
if symmetrize:
|
196 |
+
w = (w + w[::-1]) / 2
|
197 |
+
x = (x - x[::-1]) / 2
|
198 |
+
|
199 |
+
w *= mu0 / w.sum()
|
200 |
+
|
201 |
+
if mu:
|
202 |
+
return x, w, mu0
|
203 |
+
else:
|
204 |
+
return x, w
|
205 |
+
|
206 |
+
# Jacobi Polynomials 1 P^(alpha,beta)_n(x)
|
207 |
+
|
208 |
+
|
209 |
+
def roots_jacobi(n, alpha, beta, mu=False):
|
210 |
+
r"""Gauss-Jacobi quadrature.
|
211 |
+
|
212 |
+
Compute the sample points and weights for Gauss-Jacobi
|
213 |
+
quadrature. The sample points are the roots of the nth degree
|
214 |
+
Jacobi polynomial, :math:`P^{\alpha, \beta}_n(x)`. These sample
|
215 |
+
points and weights correctly integrate polynomials of degree
|
216 |
+
:math:`2n - 1` or less over the interval :math:`[-1, 1]` with
|
217 |
+
weight function :math:`w(x) = (1 - x)^{\alpha} (1 +
|
218 |
+
x)^{\beta}`. See 22.2.1 in [AS]_ for details.
|
219 |
+
|
220 |
+
Parameters
|
221 |
+
----------
|
222 |
+
n : int
|
223 |
+
quadrature order
|
224 |
+
alpha : float
|
225 |
+
alpha must be > -1
|
226 |
+
beta : float
|
227 |
+
beta must be > -1
|
228 |
+
mu : bool, optional
|
229 |
+
If True, return the sum of the weights, optional.
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
x : ndarray
|
234 |
+
Sample points
|
235 |
+
w : ndarray
|
236 |
+
Weights
|
237 |
+
mu : float
|
238 |
+
Sum of the weights
|
239 |
+
|
240 |
+
See Also
|
241 |
+
--------
|
242 |
+
scipy.integrate.quadrature
|
243 |
+
scipy.integrate.fixed_quad
|
244 |
+
|
245 |
+
References
|
246 |
+
----------
|
247 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
248 |
+
Handbook of Mathematical Functions with Formulas,
|
249 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
250 |
+
|
251 |
+
"""
|
252 |
+
m = int(n)
|
253 |
+
if n < 1 or n != m:
|
254 |
+
raise ValueError("n must be a positive integer.")
|
255 |
+
if alpha <= -1 or beta <= -1:
|
256 |
+
raise ValueError("alpha and beta must be greater than -1.")
|
257 |
+
|
258 |
+
if alpha == 0.0 and beta == 0.0:
|
259 |
+
return roots_legendre(m, mu)
|
260 |
+
if alpha == beta:
|
261 |
+
return roots_gegenbauer(m, alpha+0.5, mu)
|
262 |
+
|
263 |
+
if (alpha + beta) <= 1000:
|
264 |
+
mu0 = 2.0**(alpha+beta+1) * _ufuncs.beta(alpha+1, beta+1)
|
265 |
+
else:
|
266 |
+
# Avoid overflows in pow and beta for very large parameters
|
267 |
+
mu0 = np.exp((alpha + beta + 1) * np.log(2.0)
|
268 |
+
+ _ufuncs.betaln(alpha+1, beta+1))
|
269 |
+
a = alpha
|
270 |
+
b = beta
|
271 |
+
if a + b == 0.0:
|
272 |
+
def an_func(k):
|
273 |
+
return np.where(k == 0, (b - a) / (2 + a + b), 0.0)
|
274 |
+
else:
|
275 |
+
def an_func(k):
|
276 |
+
return np.where(
|
277 |
+
k == 0,
|
278 |
+
(b - a) / (2 + a + b),
|
279 |
+
(b * b - a * a) / ((2.0 * k + a + b) * (2.0 * k + a + b + 2))
|
280 |
+
)
|
281 |
+
|
282 |
+
def bn_func(k):
|
283 |
+
return (
|
284 |
+
2.0 / (2.0 * k + a + b)
|
285 |
+
* np.sqrt((k + a) * (k + b) / (2 * k + a + b + 1))
|
286 |
+
* np.where(k == 1, 1.0, np.sqrt(k * (k + a + b) / (2.0 * k + a + b - 1)))
|
287 |
+
)
|
288 |
+
|
289 |
+
def f(n, x):
|
290 |
+
return _ufuncs.eval_jacobi(n, a, b, x)
|
291 |
+
def df(n, x):
|
292 |
+
return 0.5 * (n + a + b + 1) * _ufuncs.eval_jacobi(n - 1, a + 1, b + 1, x)
|
293 |
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)
|
294 |
+
|
295 |
+
|
296 |
+
def jacobi(n, alpha, beta, monic=False):
|
297 |
+
r"""Jacobi polynomial.
|
298 |
+
|
299 |
+
Defined to be the solution of
|
300 |
+
|
301 |
+
.. math::
|
302 |
+
(1 - x^2)\frac{d^2}{dx^2}P_n^{(\alpha, \beta)}
|
303 |
+
+ (\beta - \alpha - (\alpha + \beta + 2)x)
|
304 |
+
\frac{d}{dx}P_n^{(\alpha, \beta)}
|
305 |
+
+ n(n + \alpha + \beta + 1)P_n^{(\alpha, \beta)} = 0
|
306 |
+
|
307 |
+
for :math:`\alpha, \beta > -1`; :math:`P_n^{(\alpha, \beta)}` is a
|
308 |
+
polynomial of degree :math:`n`.
|
309 |
+
|
310 |
+
Parameters
|
311 |
+
----------
|
312 |
+
n : int
|
313 |
+
Degree of the polynomial.
|
314 |
+
alpha : float
|
315 |
+
Parameter, must be greater than -1.
|
316 |
+
beta : float
|
317 |
+
Parameter, must be greater than -1.
|
318 |
+
monic : bool, optional
|
319 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
320 |
+
`False`.
|
321 |
+
|
322 |
+
Returns
|
323 |
+
-------
|
324 |
+
P : orthopoly1d
|
325 |
+
Jacobi polynomial.
|
326 |
+
|
327 |
+
Notes
|
328 |
+
-----
|
329 |
+
For fixed :math:`\alpha, \beta`, the polynomials
|
330 |
+
:math:`P_n^{(\alpha, \beta)}` are orthogonal over :math:`[-1, 1]`
|
331 |
+
with weight function :math:`(1 - x)^\alpha(1 + x)^\beta`.
|
332 |
+
|
333 |
+
References
|
334 |
+
----------
|
335 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
336 |
+
Handbook of Mathematical Functions with Formulas,
|
337 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
338 |
+
|
339 |
+
Examples
|
340 |
+
--------
|
341 |
+
The Jacobi polynomials satisfy the recurrence relation:
|
342 |
+
|
343 |
+
.. math::
|
344 |
+
P_n^{(\alpha, \beta-1)}(x) - P_n^{(\alpha-1, \beta)}(x)
|
345 |
+
= P_{n-1}^{(\alpha, \beta)}(x)
|
346 |
+
|
347 |
+
This can be verified, for example, for :math:`\alpha = \beta = 2`
|
348 |
+
and :math:`n = 1` over the interval :math:`[-1, 1]`:
|
349 |
+
|
350 |
+
>>> import numpy as np
|
351 |
+
>>> from scipy.special import jacobi
|
352 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
353 |
+
>>> np.allclose(jacobi(0, 2, 2)(x),
|
354 |
+
... jacobi(1, 2, 1)(x) - jacobi(1, 1, 2)(x))
|
355 |
+
True
|
356 |
+
|
357 |
+
Plot of the Jacobi polynomial :math:`P_5^{(\alpha, -0.5)}` for
|
358 |
+
different values of :math:`\alpha`:
|
359 |
+
|
360 |
+
>>> import matplotlib.pyplot as plt
|
361 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
362 |
+
>>> fig, ax = plt.subplots()
|
363 |
+
>>> ax.set_ylim(-2.0, 2.0)
|
364 |
+
>>> ax.set_title(r'Jacobi polynomials $P_5^{(\alpha, -0.5)}$')
|
365 |
+
>>> for alpha in np.arange(0, 4, 1):
|
366 |
+
... ax.plot(x, jacobi(5, alpha, -0.5)(x), label=rf'$\alpha={alpha}$')
|
367 |
+
>>> plt.legend(loc='best')
|
368 |
+
>>> plt.show()
|
369 |
+
|
370 |
+
"""
|
371 |
+
if n < 0:
|
372 |
+
raise ValueError("n must be nonnegative.")
|
373 |
+
|
374 |
+
def wfunc(x):
|
375 |
+
return (1 - x) ** alpha * (1 + x) ** beta
|
376 |
+
if n == 0:
|
377 |
+
return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
|
378 |
+
eval_func=np.ones_like)
|
379 |
+
x, w, mu = roots_jacobi(n, alpha, beta, mu=True)
|
380 |
+
ab1 = alpha + beta + 1.0
|
381 |
+
hn = 2**ab1 / (2 * n + ab1) * _gam(n + alpha + 1)
|
382 |
+
hn *= _gam(n + beta + 1.0) / _gam(n + 1) / _gam(n + ab1)
|
383 |
+
kn = _gam(2 * n + ab1) / 2.0**n / _gam(n + 1) / _gam(n + ab1)
|
384 |
+
# here kn = coefficient on x^n term
|
385 |
+
p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
|
386 |
+
lambda x: _ufuncs.eval_jacobi(n, alpha, beta, x))
|
387 |
+
return p
|
388 |
+
|
389 |
+
# Jacobi Polynomials shifted G_n(p,q,x)
|
390 |
+
|
391 |
+
|
392 |
+
def roots_sh_jacobi(n, p1, q1, mu=False):
|
393 |
+
"""Gauss-Jacobi (shifted) quadrature.
|
394 |
+
|
395 |
+
Compute the sample points and weights for Gauss-Jacobi (shifted)
|
396 |
+
quadrature. The sample points are the roots of the nth degree
|
397 |
+
shifted Jacobi polynomial, :math:`G^{p,q}_n(x)`. These sample
|
398 |
+
points and weights correctly integrate polynomials of degree
|
399 |
+
:math:`2n - 1` or less over the interval :math:`[0, 1]` with
|
400 |
+
weight function :math:`w(x) = (1 - x)^{p-q} x^{q-1}`. See 22.2.2
|
401 |
+
in [AS]_ for details.
|
402 |
+
|
403 |
+
Parameters
|
404 |
+
----------
|
405 |
+
n : int
|
406 |
+
quadrature order
|
407 |
+
p1 : float
|
408 |
+
(p1 - q1) must be > -1
|
409 |
+
q1 : float
|
410 |
+
q1 must be > 0
|
411 |
+
mu : bool, optional
|
412 |
+
If True, return the sum of the weights, optional.
|
413 |
+
|
414 |
+
Returns
|
415 |
+
-------
|
416 |
+
x : ndarray
|
417 |
+
Sample points
|
418 |
+
w : ndarray
|
419 |
+
Weights
|
420 |
+
mu : float
|
421 |
+
Sum of the weights
|
422 |
+
|
423 |
+
See Also
|
424 |
+
--------
|
425 |
+
scipy.integrate.quadrature
|
426 |
+
scipy.integrate.fixed_quad
|
427 |
+
|
428 |
+
References
|
429 |
+
----------
|
430 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
431 |
+
Handbook of Mathematical Functions with Formulas,
|
432 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
433 |
+
|
434 |
+
"""
|
435 |
+
if (p1-q1) <= -1 or q1 <= 0:
|
436 |
+
message = "(p - q) must be greater than -1, and q must be greater than 0."
|
437 |
+
raise ValueError(message)
|
438 |
+
x, w, m = roots_jacobi(n, p1-q1, q1-1, True)
|
439 |
+
x = (x + 1) / 2
|
440 |
+
scale = 2.0**p1
|
441 |
+
w /= scale
|
442 |
+
m /= scale
|
443 |
+
if mu:
|
444 |
+
return x, w, m
|
445 |
+
else:
|
446 |
+
return x, w
|
447 |
+
|
448 |
+
|
449 |
+
def sh_jacobi(n, p, q, monic=False):
|
450 |
+
r"""Shifted Jacobi polynomial.
|
451 |
+
|
452 |
+
Defined by
|
453 |
+
|
454 |
+
.. math::
|
455 |
+
|
456 |
+
G_n^{(p, q)}(x)
|
457 |
+
= \binom{2n + p - 1}{n}^{-1}P_n^{(p - q, q - 1)}(2x - 1),
|
458 |
+
|
459 |
+
where :math:`P_n^{(\cdot, \cdot)}` is the nth Jacobi polynomial.
|
460 |
+
|
461 |
+
Parameters
|
462 |
+
----------
|
463 |
+
n : int
|
464 |
+
Degree of the polynomial.
|
465 |
+
p : float
|
466 |
+
Parameter, must have :math:`p > q - 1`.
|
467 |
+
q : float
|
468 |
+
Parameter, must be greater than 0.
|
469 |
+
monic : bool, optional
|
470 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
471 |
+
`False`.
|
472 |
+
|
473 |
+
Returns
|
474 |
+
-------
|
475 |
+
G : orthopoly1d
|
476 |
+
Shifted Jacobi polynomial.
|
477 |
+
|
478 |
+
Notes
|
479 |
+
-----
|
480 |
+
For fixed :math:`p, q`, the polynomials :math:`G_n^{(p, q)}` are
|
481 |
+
orthogonal over :math:`[0, 1]` with weight function :math:`(1 -
|
482 |
+
x)^{p - q}x^{q - 1}`.
|
483 |
+
|
484 |
+
"""
|
485 |
+
if n < 0:
|
486 |
+
raise ValueError("n must be nonnegative.")
|
487 |
+
|
488 |
+
def wfunc(x):
|
489 |
+
return (1.0 - x) ** (p - q) * x ** (q - 1.0)
|
490 |
+
if n == 0:
|
491 |
+
return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
|
492 |
+
eval_func=np.ones_like)
|
493 |
+
n1 = n
|
494 |
+
x, w = roots_sh_jacobi(n1, p, q)
|
495 |
+
hn = _gam(n + 1) * _gam(n + q) * _gam(n + p) * _gam(n + p - q + 1)
|
496 |
+
hn /= (2 * n + p) * (_gam(2 * n + p)**2)
|
497 |
+
# kn = 1.0 in standard form so monic is redundant. Kept for compatibility.
|
498 |
+
kn = 1.0
|
499 |
+
pp = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(0, 1), monic=monic,
|
500 |
+
eval_func=lambda x: _ufuncs.eval_sh_jacobi(n, p, q, x))
|
501 |
+
return pp
|
502 |
+
|
503 |
+
# Generalized Laguerre L^(alpha)_n(x)
|
504 |
+
|
505 |
+
|
506 |
+
def roots_genlaguerre(n, alpha, mu=False):
|
507 |
+
r"""Gauss-generalized Laguerre quadrature.
|
508 |
+
|
509 |
+
Compute the sample points and weights for Gauss-generalized
|
510 |
+
Laguerre quadrature. The sample points are the roots of the nth
|
511 |
+
degree generalized Laguerre polynomial, :math:`L^{\alpha}_n(x)`.
|
512 |
+
These sample points and weights correctly integrate polynomials of
|
513 |
+
degree :math:`2n - 1` or less over the interval :math:`[0,
|
514 |
+
\infty]` with weight function :math:`w(x) = x^{\alpha}
|
515 |
+
e^{-x}`. See 22.3.9 in [AS]_ for details.
|
516 |
+
|
517 |
+
Parameters
|
518 |
+
----------
|
519 |
+
n : int
|
520 |
+
quadrature order
|
521 |
+
alpha : float
|
522 |
+
alpha must be > -1
|
523 |
+
mu : bool, optional
|
524 |
+
If True, return the sum of the weights, optional.
|
525 |
+
|
526 |
+
Returns
|
527 |
+
-------
|
528 |
+
x : ndarray
|
529 |
+
Sample points
|
530 |
+
w : ndarray
|
531 |
+
Weights
|
532 |
+
mu : float
|
533 |
+
Sum of the weights
|
534 |
+
|
535 |
+
See Also
|
536 |
+
--------
|
537 |
+
scipy.integrate.quadrature
|
538 |
+
scipy.integrate.fixed_quad
|
539 |
+
|
540 |
+
References
|
541 |
+
----------
|
542 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
543 |
+
Handbook of Mathematical Functions with Formulas,
|
544 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
545 |
+
|
546 |
+
"""
|
547 |
+
m = int(n)
|
548 |
+
if n < 1 or n != m:
|
549 |
+
raise ValueError("n must be a positive integer.")
|
550 |
+
if alpha < -1:
|
551 |
+
raise ValueError("alpha must be greater than -1.")
|
552 |
+
|
553 |
+
mu0 = _ufuncs.gamma(alpha + 1)
|
554 |
+
|
555 |
+
if m == 1:
|
556 |
+
x = np.array([alpha+1.0], 'd')
|
557 |
+
w = np.array([mu0], 'd')
|
558 |
+
if mu:
|
559 |
+
return x, w, mu0
|
560 |
+
else:
|
561 |
+
return x, w
|
562 |
+
|
563 |
+
def an_func(k):
|
564 |
+
return 2 * k + alpha + 1
|
565 |
+
def bn_func(k):
|
566 |
+
return -np.sqrt(k * (k + alpha))
|
567 |
+
def f(n, x):
|
568 |
+
return _ufuncs.eval_genlaguerre(n, alpha, x)
|
569 |
+
def df(n, x):
|
570 |
+
return (n * _ufuncs.eval_genlaguerre(n, alpha, x)
|
571 |
+
- (n + alpha) * _ufuncs.eval_genlaguerre(n - 1, alpha, x)) / x
|
572 |
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)
|
573 |
+
|
574 |
+
|
575 |
+
def genlaguerre(n, alpha, monic=False):
|
576 |
+
r"""Generalized (associated) Laguerre polynomial.
|
577 |
+
|
578 |
+
Defined to be the solution of
|
579 |
+
|
580 |
+
.. math::
|
581 |
+
x\frac{d^2}{dx^2}L_n^{(\alpha)}
|
582 |
+
+ (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)}
|
583 |
+
+ nL_n^{(\alpha)} = 0,
|
584 |
+
|
585 |
+
where :math:`\alpha > -1`; :math:`L_n^{(\alpha)}` is a polynomial
|
586 |
+
of degree :math:`n`.
|
587 |
+
|
588 |
+
Parameters
|
589 |
+
----------
|
590 |
+
n : int
|
591 |
+
Degree of the polynomial.
|
592 |
+
alpha : float
|
593 |
+
Parameter, must be greater than -1.
|
594 |
+
monic : bool, optional
|
595 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
596 |
+
`False`.
|
597 |
+
|
598 |
+
Returns
|
599 |
+
-------
|
600 |
+
L : orthopoly1d
|
601 |
+
Generalized Laguerre polynomial.
|
602 |
+
|
603 |
+
See Also
|
604 |
+
--------
|
605 |
+
laguerre : Laguerre polynomial.
|
606 |
+
hyp1f1 : confluent hypergeometric function
|
607 |
+
|
608 |
+
Notes
|
609 |
+
-----
|
610 |
+
For fixed :math:`\alpha`, the polynomials :math:`L_n^{(\alpha)}`
|
611 |
+
are orthogonal over :math:`[0, \infty)` with weight function
|
612 |
+
:math:`e^{-x}x^\alpha`.
|
613 |
+
|
614 |
+
The Laguerre polynomials are the special case where :math:`\alpha
|
615 |
+
= 0`.
|
616 |
+
|
617 |
+
References
|
618 |
+
----------
|
619 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
620 |
+
Handbook of Mathematical Functions with Formulas,
|
621 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
622 |
+
|
623 |
+
Examples
|
624 |
+
--------
|
625 |
+
The generalized Laguerre polynomials are closely related to the confluent
|
626 |
+
hypergeometric function :math:`{}_1F_1`:
|
627 |
+
|
628 |
+
.. math::
|
629 |
+
L_n^{(\alpha)} = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha +1, x)
|
630 |
+
|
631 |
+
This can be verified, for example, for :math:`n = \alpha = 3` over the
|
632 |
+
interval :math:`[-1, 1]`:
|
633 |
+
|
634 |
+
>>> import numpy as np
|
635 |
+
>>> from scipy.special import binom
|
636 |
+
>>> from scipy.special import genlaguerre
|
637 |
+
>>> from scipy.special import hyp1f1
|
638 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
639 |
+
>>> np.allclose(genlaguerre(3, 3)(x), binom(6, 3) * hyp1f1(-3, 4, x))
|
640 |
+
True
|
641 |
+
|
642 |
+
This is the plot of the generalized Laguerre polynomials
|
643 |
+
:math:`L_3^{(\alpha)}` for some values of :math:`\alpha`:
|
644 |
+
|
645 |
+
>>> import matplotlib.pyplot as plt
|
646 |
+
>>> x = np.arange(-4.0, 12.0, 0.01)
|
647 |
+
>>> fig, ax = plt.subplots()
|
648 |
+
>>> ax.set_ylim(-5.0, 10.0)
|
649 |
+
>>> ax.set_title(r'Generalized Laguerre polynomials $L_3^{\alpha}$')
|
650 |
+
>>> for alpha in np.arange(0, 5):
|
651 |
+
... ax.plot(x, genlaguerre(3, alpha)(x), label=rf'$L_3^{(alpha)}$')
|
652 |
+
>>> plt.legend(loc='best')
|
653 |
+
>>> plt.show()
|
654 |
+
|
655 |
+
"""
|
656 |
+
if alpha <= -1:
|
657 |
+
raise ValueError("alpha must be > -1")
|
658 |
+
if n < 0:
|
659 |
+
raise ValueError("n must be nonnegative.")
|
660 |
+
|
661 |
+
if n == 0:
|
662 |
+
n1 = n + 1
|
663 |
+
else:
|
664 |
+
n1 = n
|
665 |
+
x, w = roots_genlaguerre(n1, alpha)
|
666 |
+
def wfunc(x):
|
667 |
+
return exp(-x) * x ** alpha
|
668 |
+
if n == 0:
|
669 |
+
x, w = [], []
|
670 |
+
hn = _gam(n + alpha + 1) / _gam(n + 1)
|
671 |
+
kn = (-1)**n / _gam(n + 1)
|
672 |
+
p = orthopoly1d(x, w, hn, kn, wfunc, (0, inf), monic,
|
673 |
+
lambda x: _ufuncs.eval_genlaguerre(n, alpha, x))
|
674 |
+
return p
|
675 |
+
|
676 |
+
# Laguerre L_n(x)
|
677 |
+
|
678 |
+
|
679 |
+
def roots_laguerre(n, mu=False):
|
680 |
+
r"""Gauss-Laguerre quadrature.
|
681 |
+
|
682 |
+
Compute the sample points and weights for Gauss-Laguerre
|
683 |
+
quadrature. The sample points are the roots of the nth degree
|
684 |
+
Laguerre polynomial, :math:`L_n(x)`. These sample points and
|
685 |
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
686 |
+
or less over the interval :math:`[0, \infty]` with weight function
|
687 |
+
:math:`w(x) = e^{-x}`. See 22.2.13 in [AS]_ for details.
|
688 |
+
|
689 |
+
Parameters
|
690 |
+
----------
|
691 |
+
n : int
|
692 |
+
quadrature order
|
693 |
+
mu : bool, optional
|
694 |
+
If True, return the sum of the weights, optional.
|
695 |
+
|
696 |
+
Returns
|
697 |
+
-------
|
698 |
+
x : ndarray
|
699 |
+
Sample points
|
700 |
+
w : ndarray
|
701 |
+
Weights
|
702 |
+
mu : float
|
703 |
+
Sum of the weights
|
704 |
+
|
705 |
+
See Also
|
706 |
+
--------
|
707 |
+
scipy.integrate.quadrature
|
708 |
+
scipy.integrate.fixed_quad
|
709 |
+
numpy.polynomial.laguerre.laggauss
|
710 |
+
|
711 |
+
References
|
712 |
+
----------
|
713 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
714 |
+
Handbook of Mathematical Functions with Formulas,
|
715 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
716 |
+
|
717 |
+
"""
|
718 |
+
return roots_genlaguerre(n, 0.0, mu=mu)
|
719 |
+
|
720 |
+
|
721 |
+
def laguerre(n, monic=False):
|
722 |
+
r"""Laguerre polynomial.
|
723 |
+
|
724 |
+
Defined to be the solution of
|
725 |
+
|
726 |
+
.. math::
|
727 |
+
x\frac{d^2}{dx^2}L_n + (1 - x)\frac{d}{dx}L_n + nL_n = 0;
|
728 |
+
|
729 |
+
:math:`L_n` is a polynomial of degree :math:`n`.
|
730 |
+
|
731 |
+
Parameters
|
732 |
+
----------
|
733 |
+
n : int
|
734 |
+
Degree of the polynomial.
|
735 |
+
monic : bool, optional
|
736 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
737 |
+
`False`.
|
738 |
+
|
739 |
+
Returns
|
740 |
+
-------
|
741 |
+
L : orthopoly1d
|
742 |
+
Laguerre Polynomial.
|
743 |
+
|
744 |
+
See Also
|
745 |
+
--------
|
746 |
+
genlaguerre : Generalized (associated) Laguerre polynomial.
|
747 |
+
|
748 |
+
Notes
|
749 |
+
-----
|
750 |
+
The polynomials :math:`L_n` are orthogonal over :math:`[0,
|
751 |
+
\infty)` with weight function :math:`e^{-x}`.
|
752 |
+
|
753 |
+
References
|
754 |
+
----------
|
755 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
756 |
+
Handbook of Mathematical Functions with Formulas,
|
757 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
758 |
+
|
759 |
+
Examples
|
760 |
+
--------
|
761 |
+
The Laguerre polynomials :math:`L_n` are the special case
|
762 |
+
:math:`\alpha = 0` of the generalized Laguerre polynomials
|
763 |
+
:math:`L_n^{(\alpha)}`.
|
764 |
+
Let's verify it on the interval :math:`[-1, 1]`:
|
765 |
+
|
766 |
+
>>> import numpy as np
|
767 |
+
>>> from scipy.special import genlaguerre
|
768 |
+
>>> from scipy.special import laguerre
|
769 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
770 |
+
>>> np.allclose(genlaguerre(3, 0)(x), laguerre(3)(x))
|
771 |
+
True
|
772 |
+
|
773 |
+
The polynomials :math:`L_n` also satisfy the recurrence relation:
|
774 |
+
|
775 |
+
.. math::
|
776 |
+
(n + 1)L_{n+1}(x) = (2n +1 -x)L_n(x) - nL_{n-1}(x)
|
777 |
+
|
778 |
+
This can be easily checked on :math:`[0, 1]` for :math:`n = 3`:
|
779 |
+
|
780 |
+
>>> x = np.arange(0.0, 1.0, 0.01)
|
781 |
+
>>> np.allclose(4 * laguerre(4)(x),
|
782 |
+
... (7 - x) * laguerre(3)(x) - 3 * laguerre(2)(x))
|
783 |
+
True
|
784 |
+
|
785 |
+
This is the plot of the first few Laguerre polynomials :math:`L_n`:
|
786 |
+
|
787 |
+
>>> import matplotlib.pyplot as plt
|
788 |
+
>>> x = np.arange(-1.0, 5.0, 0.01)
|
789 |
+
>>> fig, ax = plt.subplots()
|
790 |
+
>>> ax.set_ylim(-5.0, 5.0)
|
791 |
+
>>> ax.set_title(r'Laguerre polynomials $L_n$')
|
792 |
+
>>> for n in np.arange(0, 5):
|
793 |
+
... ax.plot(x, laguerre(n)(x), label=rf'$L_{n}$')
|
794 |
+
>>> plt.legend(loc='best')
|
795 |
+
>>> plt.show()
|
796 |
+
|
797 |
+
"""
|
798 |
+
if n < 0:
|
799 |
+
raise ValueError("n must be nonnegative.")
|
800 |
+
|
801 |
+
if n == 0:
|
802 |
+
n1 = n + 1
|
803 |
+
else:
|
804 |
+
n1 = n
|
805 |
+
x, w = roots_laguerre(n1)
|
806 |
+
if n == 0:
|
807 |
+
x, w = [], []
|
808 |
+
hn = 1.0
|
809 |
+
kn = (-1)**n / _gam(n + 1)
|
810 |
+
p = orthopoly1d(x, w, hn, kn, lambda x: exp(-x), (0, inf), monic,
|
811 |
+
lambda x: _ufuncs.eval_laguerre(n, x))
|
812 |
+
return p
|
813 |
+
|
814 |
+
# Hermite 1 H_n(x)
|
815 |
+
|
816 |
+
|
817 |
+
def roots_hermite(n, mu=False):
|
818 |
+
r"""Gauss-Hermite (physicist's) quadrature.
|
819 |
+
|
820 |
+
Compute the sample points and weights for Gauss-Hermite
|
821 |
+
quadrature. The sample points are the roots of the nth degree
|
822 |
+
Hermite polynomial, :math:`H_n(x)`. These sample points and
|
823 |
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
824 |
+
or less over the interval :math:`[-\infty, \infty]` with weight
|
825 |
+
function :math:`w(x) = e^{-x^2}`. See 22.2.14 in [AS]_ for
|
826 |
+
details.
|
827 |
+
|
828 |
+
Parameters
|
829 |
+
----------
|
830 |
+
n : int
|
831 |
+
quadrature order
|
832 |
+
mu : bool, optional
|
833 |
+
If True, return the sum of the weights, optional.
|
834 |
+
|
835 |
+
Returns
|
836 |
+
-------
|
837 |
+
x : ndarray
|
838 |
+
Sample points
|
839 |
+
w : ndarray
|
840 |
+
Weights
|
841 |
+
mu : float
|
842 |
+
Sum of the weights
|
843 |
+
|
844 |
+
See Also
|
845 |
+
--------
|
846 |
+
scipy.integrate.quadrature
|
847 |
+
scipy.integrate.fixed_quad
|
848 |
+
numpy.polynomial.hermite.hermgauss
|
849 |
+
roots_hermitenorm
|
850 |
+
|
851 |
+
Notes
|
852 |
+
-----
|
853 |
+
For small n up to 150 a modified version of the Golub-Welsch
|
854 |
+
algorithm is used. Nodes are computed from the eigenvalue
|
855 |
+
problem and improved by one step of a Newton iteration.
|
856 |
+
The weights are computed from the well-known analytical formula.
|
857 |
+
|
858 |
+
For n larger than 150 an optimal asymptotic algorithm is applied
|
859 |
+
which computes nodes and weights in a numerically stable manner.
|
860 |
+
The algorithm has linear runtime making computation for very
|
861 |
+
large n (several thousand or more) feasible.
|
862 |
+
|
863 |
+
References
|
864 |
+
----------
|
865 |
+
.. [townsend.trogdon.olver-2014]
|
866 |
+
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
867 |
+
*Fast computation of Gauss quadrature nodes and
|
868 |
+
weights on the whole real line*. :arXiv:`1410.5286`.
|
869 |
+
.. [townsend.trogdon.olver-2015]
|
870 |
+
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
871 |
+
*Fast computation of Gauss quadrature nodes and
|
872 |
+
weights on the whole real line*.
|
873 |
+
IMA Journal of Numerical Analysis
|
874 |
+
:doi:`10.1093/imanum/drv002`.
|
875 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
876 |
+
Handbook of Mathematical Functions with Formulas,
|
877 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
878 |
+
|
879 |
+
"""
|
880 |
+
m = int(n)
|
881 |
+
if n < 1 or n != m:
|
882 |
+
raise ValueError("n must be a positive integer.")
|
883 |
+
|
884 |
+
mu0 = np.sqrt(np.pi)
|
885 |
+
if n <= 150:
|
886 |
+
def an_func(k):
|
887 |
+
return 0.0 * k
|
888 |
+
def bn_func(k):
|
889 |
+
return np.sqrt(k / 2.0)
|
890 |
+
f = _ufuncs.eval_hermite
|
891 |
+
def df(n, x):
|
892 |
+
return 2.0 * n * _ufuncs.eval_hermite(n - 1, x)
|
893 |
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
894 |
+
else:
|
895 |
+
nodes, weights = _roots_hermite_asy(m)
|
896 |
+
if mu:
|
897 |
+
return nodes, weights, mu0
|
898 |
+
else:
|
899 |
+
return nodes, weights
|
900 |
+
|
901 |
+
|
902 |
+
def _compute_tauk(n, k, maxit=5):
|
903 |
+
"""Helper function for Tricomi initial guesses
|
904 |
+
|
905 |
+
For details, see formula 3.1 in lemma 3.1 in the
|
906 |
+
original paper.
|
907 |
+
|
908 |
+
Parameters
|
909 |
+
----------
|
910 |
+
n : int
|
911 |
+
Quadrature order
|
912 |
+
k : ndarray of type int
|
913 |
+
Index of roots :math:`\tau_k` to compute
|
914 |
+
maxit : int
|
915 |
+
Number of Newton maxit performed, the default
|
916 |
+
value of 5 is sufficient.
|
917 |
+
|
918 |
+
Returns
|
919 |
+
-------
|
920 |
+
tauk : ndarray
|
921 |
+
Roots of equation 3.1
|
922 |
+
|
923 |
+
See Also
|
924 |
+
--------
|
925 |
+
initial_nodes_a
|
926 |
+
roots_hermite_asy
|
927 |
+
"""
|
928 |
+
a = n % 2 - 0.5
|
929 |
+
c = (4.0*floor(n/2.0) - 4.0*k + 3.0)*pi / (4.0*floor(n/2.0) + 2.0*a + 2.0)
|
930 |
+
def f(x):
|
931 |
+
return x - sin(x) - c
|
932 |
+
def df(x):
|
933 |
+
return 1.0 - cos(x)
|
934 |
+
xi = 0.5*pi
|
935 |
+
for i in range(maxit):
|
936 |
+
xi = xi - f(xi)/df(xi)
|
937 |
+
return xi
|
938 |
+
|
939 |
+
|
940 |
+
def _initial_nodes_a(n, k):
|
941 |
+
r"""Tricomi initial guesses
|
942 |
+
|
943 |
+
Computes an initial approximation to the square of the `k`-th
|
944 |
+
(positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
|
945 |
+
of order :math:`n`. The formula is the one from lemma 3.1 in the
|
946 |
+
original paper. The guesses are accurate except in the region
|
947 |
+
near :math:`\sqrt{2n + 1}`.
|
948 |
+
|
949 |
+
Parameters
|
950 |
+
----------
|
951 |
+
n : int
|
952 |
+
Quadrature order
|
953 |
+
k : ndarray of type int
|
954 |
+
Index of roots to compute
|
955 |
+
|
956 |
+
Returns
|
957 |
+
-------
|
958 |
+
xksq : ndarray
|
959 |
+
Square of the approximate roots
|
960 |
+
|
961 |
+
See Also
|
962 |
+
--------
|
963 |
+
initial_nodes
|
964 |
+
roots_hermite_asy
|
965 |
+
"""
|
966 |
+
tauk = _compute_tauk(n, k)
|
967 |
+
sigk = cos(0.5*tauk)**2
|
968 |
+
a = n % 2 - 0.5
|
969 |
+
nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
|
970 |
+
# Initial approximation of Hermite roots (square)
|
971 |
+
xksq = nu*sigk - 1.0/(3.0*nu) * (5.0/(4.0*(1.0-sigk)**2) - 1.0/(1.0-sigk) - 0.25)
|
972 |
+
return xksq
|
973 |
+
|
974 |
+
|
975 |
+
def _initial_nodes_b(n, k):
|
976 |
+
r"""Gatteschi initial guesses
|
977 |
+
|
978 |
+
Computes an initial approximation to the square of the kth
|
979 |
+
(positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
|
980 |
+
of order :math:`n`. The formula is the one from lemma 3.2 in the
|
981 |
+
original paper. The guesses are accurate in the region just
|
982 |
+
below :math:`\sqrt{2n + 1}`.
|
983 |
+
|
984 |
+
Parameters
|
985 |
+
----------
|
986 |
+
n : int
|
987 |
+
Quadrature order
|
988 |
+
k : ndarray of type int
|
989 |
+
Index of roots to compute
|
990 |
+
|
991 |
+
Returns
|
992 |
+
-------
|
993 |
+
xksq : ndarray
|
994 |
+
Square of the approximate root
|
995 |
+
|
996 |
+
See Also
|
997 |
+
--------
|
998 |
+
initial_nodes
|
999 |
+
roots_hermite_asy
|
1000 |
+
"""
|
1001 |
+
a = n % 2 - 0.5
|
1002 |
+
nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
|
1003 |
+
# Airy roots by approximation
|
1004 |
+
ak = _specfun.airyzo(k.max(), 1)[0][::-1]
|
1005 |
+
# Initial approximation of Hermite roots (square)
|
1006 |
+
xksq = (nu
|
1007 |
+
+ 2.0**(2.0/3.0) * ak * nu**(1.0/3.0)
|
1008 |
+
+ 1.0/5.0 * 2.0**(4.0/3.0) * ak**2 * nu**(-1.0/3.0)
|
1009 |
+
+ (9.0/140.0 - 12.0/175.0 * ak**3) * nu**(-1.0)
|
1010 |
+
+ (16.0/1575.0 * ak + 92.0/7875.0 * ak**4) * 2.0**(2.0/3.0) * nu**(-5.0/3.0)
|
1011 |
+
- (15152.0/3031875.0 * ak**5 + 1088.0/121275.0 * ak**2)
|
1012 |
+
* 2.0**(1.0/3.0) * nu**(-7.0/3.0))
|
1013 |
+
return xksq
|
1014 |
+
|
1015 |
+
|
1016 |
+
def _initial_nodes(n):
|
1017 |
+
"""Initial guesses for the Hermite roots
|
1018 |
+
|
1019 |
+
Computes an initial approximation to the non-negative
|
1020 |
+
roots :math:`x_k` of the Hermite polynomial :math:`H_n`
|
1021 |
+
of order :math:`n`. The Tricomi and Gatteschi initial
|
1022 |
+
guesses are used in the region where they are accurate.
|
1023 |
+
|
1024 |
+
Parameters
|
1025 |
+
----------
|
1026 |
+
n : int
|
1027 |
+
Quadrature order
|
1028 |
+
|
1029 |
+
Returns
|
1030 |
+
-------
|
1031 |
+
xk : ndarray
|
1032 |
+
Approximate roots
|
1033 |
+
|
1034 |
+
See Also
|
1035 |
+
--------
|
1036 |
+
roots_hermite_asy
|
1037 |
+
"""
|
1038 |
+
# Turnover point
|
1039 |
+
# linear polynomial fit to error of 10, 25, 40, ..., 1000 point rules
|
1040 |
+
fit = 0.49082003*n - 4.37859653
|
1041 |
+
turnover = around(fit).astype(int)
|
1042 |
+
# Compute all approximations
|
1043 |
+
ia = arange(1, int(floor(n*0.5)+1))
|
1044 |
+
ib = ia[::-1]
|
1045 |
+
xasq = _initial_nodes_a(n, ia[:turnover+1])
|
1046 |
+
xbsq = _initial_nodes_b(n, ib[turnover+1:])
|
1047 |
+
# Combine
|
1048 |
+
iv = sqrt(hstack([xasq, xbsq]))
|
1049 |
+
# Central node is always zero
|
1050 |
+
if n % 2 == 1:
|
1051 |
+
iv = hstack([0.0, iv])
|
1052 |
+
return iv
|
1053 |
+
|
1054 |
+
|
1055 |
+
def _pbcf(n, theta):
|
1056 |
+
r"""Asymptotic series expansion of parabolic cylinder function
|
1057 |
+
|
1058 |
+
The implementation is based on sections 3.2 and 3.3 from the
|
1059 |
+
original paper. Compared to the published version this code
|
1060 |
+
adds one more term to the asymptotic series. The detailed
|
1061 |
+
formulas can be found at [parabolic-asymptotics]_. The evaluation
|
1062 |
+
is done in a transformed variable :math:`\theta := \arccos(t)`
|
1063 |
+
where :math:`t := x / \mu` and :math:`\mu := \sqrt{2n + 1}`.
|
1064 |
+
|
1065 |
+
Parameters
|
1066 |
+
----------
|
1067 |
+
n : int
|
1068 |
+
Quadrature order
|
1069 |
+
theta : ndarray
|
1070 |
+
Transformed position variable
|
1071 |
+
|
1072 |
+
Returns
|
1073 |
+
-------
|
1074 |
+
U : ndarray
|
1075 |
+
Value of the parabolic cylinder function :math:`U(a, \theta)`.
|
1076 |
+
Ud : ndarray
|
1077 |
+
Value of the derivative :math:`U^{\prime}(a, \theta)` of
|
1078 |
+
the parabolic cylinder function.
|
1079 |
+
|
1080 |
+
See Also
|
1081 |
+
--------
|
1082 |
+
roots_hermite_asy
|
1083 |
+
|
1084 |
+
References
|
1085 |
+
----------
|
1086 |
+
.. [parabolic-asymptotics]
|
1087 |
+
https://dlmf.nist.gov/12.10#vii
|
1088 |
+
"""
|
1089 |
+
st = sin(theta)
|
1090 |
+
ct = cos(theta)
|
1091 |
+
# https://dlmf.nist.gov/12.10#vii
|
1092 |
+
mu = 2.0*n + 1.0
|
1093 |
+
# https://dlmf.nist.gov/12.10#E23
|
1094 |
+
eta = 0.5*theta - 0.5*st*ct
|
1095 |
+
# https://dlmf.nist.gov/12.10#E39
|
1096 |
+
zeta = -(3.0*eta/2.0) ** (2.0/3.0)
|
1097 |
+
# https://dlmf.nist.gov/12.10#E40
|
1098 |
+
phi = (-zeta / st**2) ** (0.25)
|
1099 |
+
# Coefficients
|
1100 |
+
# https://dlmf.nist.gov/12.10#E43
|
1101 |
+
a0 = 1.0
|
1102 |
+
a1 = 0.10416666666666666667
|
1103 |
+
a2 = 0.08355034722222222222
|
1104 |
+
a3 = 0.12822657455632716049
|
1105 |
+
a4 = 0.29184902646414046425
|
1106 |
+
a5 = 0.88162726744375765242
|
1107 |
+
b0 = 1.0
|
1108 |
+
b1 = -0.14583333333333333333
|
1109 |
+
b2 = -0.09874131944444444444
|
1110 |
+
b3 = -0.14331205391589506173
|
1111 |
+
b4 = -0.31722720267841354810
|
1112 |
+
b5 = -0.94242914795712024914
|
1113 |
+
# Polynomials
|
1114 |
+
# https://dlmf.nist.gov/12.10#E9
|
1115 |
+
# https://dlmf.nist.gov/12.10#E10
|
1116 |
+
ctp = ct ** arange(16).reshape((-1,1))
|
1117 |
+
u0 = 1.0
|
1118 |
+
u1 = (1.0*ctp[3,:] - 6.0*ct) / 24.0
|
1119 |
+
u2 = (-9.0*ctp[4,:] + 249.0*ctp[2,:] + 145.0) / 1152.0
|
1120 |
+
u3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 28287.0*ctp[5,:]
|
1121 |
+
- 151995.0*ctp[3,:] - 259290.0*ct) / 414720.0
|
1122 |
+
u4 = (72756.0*ctp[10,:] - 321339.0*ctp[8,:] - 154982.0*ctp[6,:]
|
1123 |
+
+ 50938215.0*ctp[4,:] + 122602962.0*ctp[2,:] + 12773113.0) / 39813120.0
|
1124 |
+
u5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 1994971575.0*ctp[11,:]
|
1125 |
+
- 3630137104.0*ctp[9,:] + 4433574213.0*ctp[7,:] - 37370295816.0*ctp[5,:]
|
1126 |
+
- 119582875013.0*ctp[3,:] - 34009066266.0*ct) / 6688604160.0
|
1127 |
+
v0 = 1.0
|
1128 |
+
v1 = (1.0*ctp[3,:] + 6.0*ct) / 24.0
|
1129 |
+
v2 = (15.0*ctp[4,:] - 327.0*ctp[2,:] - 143.0) / 1152.0
|
1130 |
+
v3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 36387.0*ctp[5,:]
|
1131 |
+
+ 238425.0*ctp[3,:] + 259290.0*ct) / 414720.0
|
1132 |
+
v4 = (-121260.0*ctp[10,:] + 551733.0*ctp[8,:] - 151958.0*ctp[6,:]
|
1133 |
+
- 57484425.0*ctp[4,:] - 132752238.0*ctp[2,:] - 12118727) / 39813120.0
|
1134 |
+
v5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 2025529095.0*ctp[11,:]
|
1135 |
+
- 3750839308.0*ctp[9,:] + 3832454253.0*ctp[7,:] + 35213253348.0*ctp[5,:]
|
1136 |
+
+ 130919230435.0*ctp[3,:] + 34009066266*ct) / 6688604160.0
|
1137 |
+
# Airy Evaluation (Bi and Bip unused)
|
1138 |
+
Ai, Aip, Bi, Bip = airy(mu**(4.0/6.0) * zeta)
|
1139 |
+
# Prefactor for U
|
1140 |
+
P = 2.0*sqrt(pi) * mu**(1.0/6.0) * phi
|
1141 |
+
# Terms for U
|
1142 |
+
# https://dlmf.nist.gov/12.10#E42
|
1143 |
+
phip = phi ** arange(6, 31, 6).reshape((-1,1))
|
1144 |
+
A0 = b0*u0
|
1145 |
+
A1 = (b2*u0 + phip[0,:]*b1*u1 + phip[1,:]*b0*u2) / zeta**3
|
1146 |
+
A2 = (b4*u0 + phip[0,:]*b3*u1 + phip[1,:]*b2*u2 + phip[2,:]*b1*u3
|
1147 |
+
+ phip[3,:]*b0*u4) / zeta**6
|
1148 |
+
B0 = -(a1*u0 + phip[0,:]*a0*u1) / zeta**2
|
1149 |
+
B1 = -(a3*u0 + phip[0,:]*a2*u1 + phip[1,:]*a1*u2 + phip[2,:]*a0*u3) / zeta**5
|
1150 |
+
B2 = -(a5*u0 + phip[0,:]*a4*u1 + phip[1,:]*a3*u2 + phip[2,:]*a2*u3
|
1151 |
+
+ phip[3,:]*a1*u4 + phip[4,:]*a0*u5) / zeta**8
|
1152 |
+
# U
|
1153 |
+
# https://dlmf.nist.gov/12.10#E35
|
1154 |
+
U = P * (Ai * (A0 + A1/mu**2.0 + A2/mu**4.0) +
|
1155 |
+
Aip * (B0 + B1/mu**2.0 + B2/mu**4.0) / mu**(8.0/6.0))
|
1156 |
+
# Prefactor for derivative of U
|
1157 |
+
Pd = sqrt(2.0*pi) * mu**(2.0/6.0) / phi
|
1158 |
+
# Terms for derivative of U
|
1159 |
+
# https://dlmf.nist.gov/12.10#E46
|
1160 |
+
C0 = -(b1*v0 + phip[0,:]*b0*v1) / zeta
|
1161 |
+
C1 = -(b3*v0 + phip[0,:]*b2*v1 + phip[1,:]*b1*v2 + phip[2,:]*b0*v3) / zeta**4
|
1162 |
+
C2 = -(b5*v0 + phip[0,:]*b4*v1 + phip[1,:]*b3*v2 + phip[2,:]*b2*v3
|
1163 |
+
+ phip[3,:]*b1*v4 + phip[4,:]*b0*v5) / zeta**7
|
1164 |
+
D0 = a0*v0
|
1165 |
+
D1 = (a2*v0 + phip[0,:]*a1*v1 + phip[1,:]*a0*v2) / zeta**3
|
1166 |
+
D2 = (a4*v0 + phip[0,:]*a3*v1 + phip[1,:]*a2*v2 + phip[2,:]*a1*v3
|
1167 |
+
+ phip[3,:]*a0*v4) / zeta**6
|
1168 |
+
# Derivative of U
|
1169 |
+
# https://dlmf.nist.gov/12.10#E36
|
1170 |
+
Ud = Pd * (Ai * (C0 + C1/mu**2.0 + C2/mu**4.0) / mu**(4.0/6.0) +
|
1171 |
+
Aip * (D0 + D1/mu**2.0 + D2/mu**4.0))
|
1172 |
+
return U, Ud
|
1173 |
+
|
1174 |
+
|
1175 |
+
def _newton(n, x_initial, maxit=5):
|
1176 |
+
"""Newton iteration for polishing the asymptotic approximation
|
1177 |
+
to the zeros of the Hermite polynomials.
|
1178 |
+
|
1179 |
+
Parameters
|
1180 |
+
----------
|
1181 |
+
n : int
|
1182 |
+
Quadrature order
|
1183 |
+
x_initial : ndarray
|
1184 |
+
Initial guesses for the roots
|
1185 |
+
maxit : int
|
1186 |
+
Maximal number of Newton iterations.
|
1187 |
+
The default 5 is sufficient, usually
|
1188 |
+
only one or two steps are needed.
|
1189 |
+
|
1190 |
+
Returns
|
1191 |
+
-------
|
1192 |
+
nodes : ndarray
|
1193 |
+
Quadrature nodes
|
1194 |
+
weights : ndarray
|
1195 |
+
Quadrature weights
|
1196 |
+
|
1197 |
+
See Also
|
1198 |
+
--------
|
1199 |
+
roots_hermite_asy
|
1200 |
+
"""
|
1201 |
+
# Variable transformation
|
1202 |
+
mu = sqrt(2.0*n + 1.0)
|
1203 |
+
t = x_initial / mu
|
1204 |
+
theta = arccos(t)
|
1205 |
+
# Newton iteration
|
1206 |
+
for i in range(maxit):
|
1207 |
+
u, ud = _pbcf(n, theta)
|
1208 |
+
dtheta = u / (sqrt(2.0) * mu * sin(theta) * ud)
|
1209 |
+
theta = theta + dtheta
|
1210 |
+
if max(abs(dtheta)) < 1e-14:
|
1211 |
+
break
|
1212 |
+
# Undo variable transformation
|
1213 |
+
x = mu * cos(theta)
|
1214 |
+
# Central node is always zero
|
1215 |
+
if n % 2 == 1:
|
1216 |
+
x[0] = 0.0
|
1217 |
+
# Compute weights
|
1218 |
+
w = exp(-x**2) / (2.0*ud**2)
|
1219 |
+
return x, w
|
1220 |
+
|
1221 |
+
|
1222 |
+
def _roots_hermite_asy(n):
|
1223 |
+
r"""Gauss-Hermite (physicist's) quadrature for large n.
|
1224 |
+
|
1225 |
+
Computes the sample points and weights for Gauss-Hermite quadrature.
|
1226 |
+
The sample points are the roots of the nth degree Hermite polynomial,
|
1227 |
+
:math:`H_n(x)`. These sample points and weights correctly integrate
|
1228 |
+
polynomials of degree :math:`2n - 1` or less over the interval
|
1229 |
+
:math:`[-\infty, \infty]` with weight function :math:`f(x) = e^{-x^2}`.
|
1230 |
+
|
1231 |
+
This method relies on asymptotic expansions which work best for n > 150.
|
1232 |
+
The algorithm has linear runtime making computation for very large n
|
1233 |
+
feasible.
|
1234 |
+
|
1235 |
+
Parameters
|
1236 |
+
----------
|
1237 |
+
n : int
|
1238 |
+
quadrature order
|
1239 |
+
|
1240 |
+
Returns
|
1241 |
+
-------
|
1242 |
+
nodes : ndarray
|
1243 |
+
Quadrature nodes
|
1244 |
+
weights : ndarray
|
1245 |
+
Quadrature weights
|
1246 |
+
|
1247 |
+
See Also
|
1248 |
+
--------
|
1249 |
+
roots_hermite
|
1250 |
+
|
1251 |
+
References
|
1252 |
+
----------
|
1253 |
+
.. [townsend.trogdon.olver-2014]
|
1254 |
+
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
1255 |
+
*Fast computation of Gauss quadrature nodes and
|
1256 |
+
weights on the whole real line*. :arXiv:`1410.5286`.
|
1257 |
+
|
1258 |
+
.. [townsend.trogdon.olver-2015]
|
1259 |
+
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
1260 |
+
*Fast computation of Gauss quadrature nodes and
|
1261 |
+
weights on the whole real line*.
|
1262 |
+
IMA Journal of Numerical Analysis
|
1263 |
+
:doi:`10.1093/imanum/drv002`.
|
1264 |
+
"""
|
1265 |
+
iv = _initial_nodes(n)
|
1266 |
+
nodes, weights = _newton(n, iv)
|
1267 |
+
# Combine with negative parts
|
1268 |
+
if n % 2 == 0:
|
1269 |
+
nodes = hstack([-nodes[::-1], nodes])
|
1270 |
+
weights = hstack([weights[::-1], weights])
|
1271 |
+
else:
|
1272 |
+
nodes = hstack([-nodes[-1:0:-1], nodes])
|
1273 |
+
weights = hstack([weights[-1:0:-1], weights])
|
1274 |
+
# Scale weights
|
1275 |
+
weights *= sqrt(pi) / sum(weights)
|
1276 |
+
return nodes, weights
|
1277 |
+
|
1278 |
+
|
1279 |
+
def hermite(n, monic=False):
|
1280 |
+
r"""Physicist's Hermite polynomial.
|
1281 |
+
|
1282 |
+
Defined by
|
1283 |
+
|
1284 |
+
.. math::
|
1285 |
+
|
1286 |
+
H_n(x) = (-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2};
|
1287 |
+
|
1288 |
+
:math:`H_n` is a polynomial of degree :math:`n`.
|
1289 |
+
|
1290 |
+
Parameters
|
1291 |
+
----------
|
1292 |
+
n : int
|
1293 |
+
Degree of the polynomial.
|
1294 |
+
monic : bool, optional
|
1295 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
1296 |
+
`False`.
|
1297 |
+
|
1298 |
+
Returns
|
1299 |
+
-------
|
1300 |
+
H : orthopoly1d
|
1301 |
+
Hermite polynomial.
|
1302 |
+
|
1303 |
+
Notes
|
1304 |
+
-----
|
1305 |
+
The polynomials :math:`H_n` are orthogonal over :math:`(-\infty,
|
1306 |
+
\infty)` with weight function :math:`e^{-x^2}`.
|
1307 |
+
|
1308 |
+
Examples
|
1309 |
+
--------
|
1310 |
+
>>> from scipy import special
|
1311 |
+
>>> import matplotlib.pyplot as plt
|
1312 |
+
>>> import numpy as np
|
1313 |
+
|
1314 |
+
>>> p_monic = special.hermite(3, monic=True)
|
1315 |
+
>>> p_monic
|
1316 |
+
poly1d([ 1. , 0. , -1.5, 0. ])
|
1317 |
+
>>> p_monic(1)
|
1318 |
+
-0.49999999999999983
|
1319 |
+
>>> x = np.linspace(-3, 3, 400)
|
1320 |
+
>>> y = p_monic(x)
|
1321 |
+
>>> plt.plot(x, y)
|
1322 |
+
>>> plt.title("Monic Hermite polynomial of degree 3")
|
1323 |
+
>>> plt.xlabel("x")
|
1324 |
+
>>> plt.ylabel("H_3(x)")
|
1325 |
+
>>> plt.show()
|
1326 |
+
|
1327 |
+
"""
|
1328 |
+
if n < 0:
|
1329 |
+
raise ValueError("n must be nonnegative.")
|
1330 |
+
|
1331 |
+
if n == 0:
|
1332 |
+
n1 = n + 1
|
1333 |
+
else:
|
1334 |
+
n1 = n
|
1335 |
+
x, w = roots_hermite(n1)
|
1336 |
+
def wfunc(x):
|
1337 |
+
return exp(-x * x)
|
1338 |
+
if n == 0:
|
1339 |
+
x, w = [], []
|
1340 |
+
hn = 2**n * _gam(n + 1) * sqrt(pi)
|
1341 |
+
kn = 2**n
|
1342 |
+
p = orthopoly1d(x, w, hn, kn, wfunc, (-inf, inf), monic,
|
1343 |
+
lambda x: _ufuncs.eval_hermite(n, x))
|
1344 |
+
return p
|
1345 |
+
|
1346 |
+
# Hermite 2 He_n(x)
|
1347 |
+
|
1348 |
+
|
1349 |
+
def roots_hermitenorm(n, mu=False):
|
1350 |
+
r"""Gauss-Hermite (statistician's) quadrature.
|
1351 |
+
|
1352 |
+
Compute the sample points and weights for Gauss-Hermite
|
1353 |
+
quadrature. The sample points are the roots of the nth degree
|
1354 |
+
Hermite polynomial, :math:`He_n(x)`. These sample points and
|
1355 |
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
1356 |
+
or less over the interval :math:`[-\infty, \infty]` with weight
|
1357 |
+
function :math:`w(x) = e^{-x^2/2}`. See 22.2.15 in [AS]_ for more
|
1358 |
+
details.
|
1359 |
+
|
1360 |
+
Parameters
|
1361 |
+
----------
|
1362 |
+
n : int
|
1363 |
+
quadrature order
|
1364 |
+
mu : bool, optional
|
1365 |
+
If True, return the sum of the weights, optional.
|
1366 |
+
|
1367 |
+
Returns
|
1368 |
+
-------
|
1369 |
+
x : ndarray
|
1370 |
+
Sample points
|
1371 |
+
w : ndarray
|
1372 |
+
Weights
|
1373 |
+
mu : float
|
1374 |
+
Sum of the weights
|
1375 |
+
|
1376 |
+
See Also
|
1377 |
+
--------
|
1378 |
+
scipy.integrate.quadrature
|
1379 |
+
scipy.integrate.fixed_quad
|
1380 |
+
numpy.polynomial.hermite_e.hermegauss
|
1381 |
+
|
1382 |
+
Notes
|
1383 |
+
-----
|
1384 |
+
For small n up to 150 a modified version of the Golub-Welsch
|
1385 |
+
algorithm is used. Nodes are computed from the eigenvalue
|
1386 |
+
problem and improved by one step of a Newton iteration.
|
1387 |
+
The weights are computed from the well-known analytical formula.
|
1388 |
+
|
1389 |
+
For n larger than 150 an optimal asymptotic algorithm is used
|
1390 |
+
which computes nodes and weights in a numerical stable manner.
|
1391 |
+
The algorithm has linear runtime making computation for very
|
1392 |
+
large n (several thousand or more) feasible.
|
1393 |
+
|
1394 |
+
References
|
1395 |
+
----------
|
1396 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1397 |
+
Handbook of Mathematical Functions with Formulas,
|
1398 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1399 |
+
|
1400 |
+
"""
|
1401 |
+
m = int(n)
|
1402 |
+
if n < 1 or n != m:
|
1403 |
+
raise ValueError("n must be a positive integer.")
|
1404 |
+
|
1405 |
+
mu0 = np.sqrt(2.0*np.pi)
|
1406 |
+
if n <= 150:
|
1407 |
+
def an_func(k):
|
1408 |
+
return 0.0 * k
|
1409 |
+
def bn_func(k):
|
1410 |
+
return np.sqrt(k)
|
1411 |
+
f = _ufuncs.eval_hermitenorm
|
1412 |
+
def df(n, x):
|
1413 |
+
return n * _ufuncs.eval_hermitenorm(n - 1, x)
|
1414 |
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
1415 |
+
else:
|
1416 |
+
nodes, weights = _roots_hermite_asy(m)
|
1417 |
+
# Transform
|
1418 |
+
nodes *= sqrt(2)
|
1419 |
+
weights *= sqrt(2)
|
1420 |
+
if mu:
|
1421 |
+
return nodes, weights, mu0
|
1422 |
+
else:
|
1423 |
+
return nodes, weights
|
1424 |
+
|
1425 |
+
|
1426 |
+
def hermitenorm(n, monic=False):
|
1427 |
+
r"""Normalized (probabilist's) Hermite polynomial.
|
1428 |
+
|
1429 |
+
Defined by
|
1430 |
+
|
1431 |
+
.. math::
|
1432 |
+
|
1433 |
+
He_n(x) = (-1)^ne^{x^2/2}\frac{d^n}{dx^n}e^{-x^2/2};
|
1434 |
+
|
1435 |
+
:math:`He_n` is a polynomial of degree :math:`n`.
|
1436 |
+
|
1437 |
+
Parameters
|
1438 |
+
----------
|
1439 |
+
n : int
|
1440 |
+
Degree of the polynomial.
|
1441 |
+
monic : bool, optional
|
1442 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
1443 |
+
`False`.
|
1444 |
+
|
1445 |
+
Returns
|
1446 |
+
-------
|
1447 |
+
He : orthopoly1d
|
1448 |
+
Hermite polynomial.
|
1449 |
+
|
1450 |
+
Notes
|
1451 |
+
-----
|
1452 |
+
|
1453 |
+
The polynomials :math:`He_n` are orthogonal over :math:`(-\infty,
|
1454 |
+
\infty)` with weight function :math:`e^{-x^2/2}`.
|
1455 |
+
|
1456 |
+
"""
|
1457 |
+
if n < 0:
|
1458 |
+
raise ValueError("n must be nonnegative.")
|
1459 |
+
|
1460 |
+
if n == 0:
|
1461 |
+
n1 = n + 1
|
1462 |
+
else:
|
1463 |
+
n1 = n
|
1464 |
+
x, w = roots_hermitenorm(n1)
|
1465 |
+
def wfunc(x):
|
1466 |
+
return exp(-x * x / 2.0)
|
1467 |
+
if n == 0:
|
1468 |
+
x, w = [], []
|
1469 |
+
hn = sqrt(2 * pi) * _gam(n + 1)
|
1470 |
+
kn = 1.0
|
1471 |
+
p = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(-inf, inf), monic=monic,
|
1472 |
+
eval_func=lambda x: _ufuncs.eval_hermitenorm(n, x))
|
1473 |
+
return p
|
1474 |
+
|
1475 |
+
# The remainder of the polynomials can be derived from the ones above.
|
1476 |
+
|
1477 |
+
# Ultraspherical (Gegenbauer) C^(alpha)_n(x)
|
1478 |
+
|
1479 |
+
|
1480 |
+
def roots_gegenbauer(n, alpha, mu=False):
|
1481 |
+
r"""Gauss-Gegenbauer quadrature.
|
1482 |
+
|
1483 |
+
Compute the sample points and weights for Gauss-Gegenbauer
|
1484 |
+
quadrature. The sample points are the roots of the nth degree
|
1485 |
+
Gegenbauer polynomial, :math:`C^{\alpha}_n(x)`. These sample
|
1486 |
+
points and weights correctly integrate polynomials of degree
|
1487 |
+
:math:`2n - 1` or less over the interval :math:`[-1, 1]` with
|
1488 |
+
weight function :math:`w(x) = (1 - x^2)^{\alpha - 1/2}`. See
|
1489 |
+
22.2.3 in [AS]_ for more details.
|
1490 |
+
|
1491 |
+
Parameters
|
1492 |
+
----------
|
1493 |
+
n : int
|
1494 |
+
quadrature order
|
1495 |
+
alpha : float
|
1496 |
+
alpha must be > -0.5
|
1497 |
+
mu : bool, optional
|
1498 |
+
If True, return the sum of the weights, optional.
|
1499 |
+
|
1500 |
+
Returns
|
1501 |
+
-------
|
1502 |
+
x : ndarray
|
1503 |
+
Sample points
|
1504 |
+
w : ndarray
|
1505 |
+
Weights
|
1506 |
+
mu : float
|
1507 |
+
Sum of the weights
|
1508 |
+
|
1509 |
+
See Also
|
1510 |
+
--------
|
1511 |
+
scipy.integrate.quadrature
|
1512 |
+
scipy.integrate.fixed_quad
|
1513 |
+
|
1514 |
+
References
|
1515 |
+
----------
|
1516 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1517 |
+
Handbook of Mathematical Functions with Formulas,
|
1518 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1519 |
+
|
1520 |
+
"""
|
1521 |
+
m = int(n)
|
1522 |
+
if n < 1 or n != m:
|
1523 |
+
raise ValueError("n must be a positive integer.")
|
1524 |
+
if alpha < -0.5:
|
1525 |
+
raise ValueError("alpha must be greater than -0.5.")
|
1526 |
+
elif alpha == 0.0:
|
1527 |
+
# C(n,0,x) == 0 uniformly, however, as alpha->0, C(n,alpha,x)->T(n,x)
|
1528 |
+
# strictly, we should just error out here, since the roots are not
|
1529 |
+
# really defined, but we used to return something useful, so let's
|
1530 |
+
# keep doing so.
|
1531 |
+
return roots_chebyt(n, mu)
|
1532 |
+
|
1533 |
+
if alpha <= 170:
|
1534 |
+
mu0 = (np.sqrt(np.pi) * _ufuncs.gamma(alpha + 0.5)) \
|
1535 |
+
/ _ufuncs.gamma(alpha + 1)
|
1536 |
+
else:
|
1537 |
+
# For large alpha we use a Taylor series expansion around inf,
|
1538 |
+
# expressed as a 6th order polynomial of a^-1 and using Horner's
|
1539 |
+
# method to minimize computation and maximize precision
|
1540 |
+
inv_alpha = 1. / alpha
|
1541 |
+
coeffs = np.array([0.000207186, -0.00152206, -0.000640869,
|
1542 |
+
0.00488281, 0.0078125, -0.125, 1.])
|
1543 |
+
mu0 = coeffs[0]
|
1544 |
+
for term in range(1, len(coeffs)):
|
1545 |
+
mu0 = mu0 * inv_alpha + coeffs[term]
|
1546 |
+
mu0 = mu0 * np.sqrt(np.pi / alpha)
|
1547 |
+
def an_func(k):
|
1548 |
+
return 0.0 * k
|
1549 |
+
def bn_func(k):
|
1550 |
+
return np.sqrt(k * (k + 2 * alpha - 1) / (4 * (k + alpha) * (k + alpha - 1)))
|
1551 |
+
def f(n, x):
|
1552 |
+
return _ufuncs.eval_gegenbauer(n, alpha, x)
|
1553 |
+
def df(n, x):
|
1554 |
+
return (
|
1555 |
+
-n * x * _ufuncs.eval_gegenbauer(n, alpha, x)
|
1556 |
+
+ (n + 2 * alpha - 1) * _ufuncs.eval_gegenbauer(n - 1, alpha, x)
|
1557 |
+
) / (1 - x ** 2)
|
1558 |
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
1559 |
+
|
1560 |
+
|
1561 |
+
def gegenbauer(n, alpha, monic=False):
|
1562 |
+
r"""Gegenbauer (ultraspherical) polynomial.
|
1563 |
+
|
1564 |
+
Defined to be the solution of
|
1565 |
+
|
1566 |
+
.. math::
|
1567 |
+
(1 - x^2)\frac{d^2}{dx^2}C_n^{(\alpha)}
|
1568 |
+
- (2\alpha + 1)x\frac{d}{dx}C_n^{(\alpha)}
|
1569 |
+
+ n(n + 2\alpha)C_n^{(\alpha)} = 0
|
1570 |
+
|
1571 |
+
for :math:`\alpha > -1/2`; :math:`C_n^{(\alpha)}` is a polynomial
|
1572 |
+
of degree :math:`n`.
|
1573 |
+
|
1574 |
+
Parameters
|
1575 |
+
----------
|
1576 |
+
n : int
|
1577 |
+
Degree of the polynomial.
|
1578 |
+
alpha : float
|
1579 |
+
Parameter, must be greater than -0.5.
|
1580 |
+
monic : bool, optional
|
1581 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
1582 |
+
`False`.
|
1583 |
+
|
1584 |
+
Returns
|
1585 |
+
-------
|
1586 |
+
C : orthopoly1d
|
1587 |
+
Gegenbauer polynomial.
|
1588 |
+
|
1589 |
+
Notes
|
1590 |
+
-----
|
1591 |
+
The polynomials :math:`C_n^{(\alpha)}` are orthogonal over
|
1592 |
+
:math:`[-1,1]` with weight function :math:`(1 - x^2)^{(\alpha -
|
1593 |
+
1/2)}`.
|
1594 |
+
|
1595 |
+
Examples
|
1596 |
+
--------
|
1597 |
+
>>> import numpy as np
|
1598 |
+
>>> from scipy import special
|
1599 |
+
>>> import matplotlib.pyplot as plt
|
1600 |
+
|
1601 |
+
We can initialize a variable ``p`` as a Gegenbauer polynomial using the
|
1602 |
+
`gegenbauer` function and evaluate at a point ``x = 1``.
|
1603 |
+
|
1604 |
+
>>> p = special.gegenbauer(3, 0.5, monic=False)
|
1605 |
+
>>> p
|
1606 |
+
poly1d([ 2.5, 0. , -1.5, 0. ])
|
1607 |
+
>>> p(1)
|
1608 |
+
1.0
|
1609 |
+
|
1610 |
+
To evaluate ``p`` at various points ``x`` in the interval ``(-3, 3)``,
|
1611 |
+
simply pass an array ``x`` to ``p`` as follows:
|
1612 |
+
|
1613 |
+
>>> x = np.linspace(-3, 3, 400)
|
1614 |
+
>>> y = p(x)
|
1615 |
+
|
1616 |
+
We can then visualize ``x, y`` using `matplotlib.pyplot`.
|
1617 |
+
|
1618 |
+
>>> fig, ax = plt.subplots()
|
1619 |
+
>>> ax.plot(x, y)
|
1620 |
+
>>> ax.set_title("Gegenbauer (ultraspherical) polynomial of degree 3")
|
1621 |
+
>>> ax.set_xlabel("x")
|
1622 |
+
>>> ax.set_ylabel("G_3(x)")
|
1623 |
+
>>> plt.show()
|
1624 |
+
|
1625 |
+
"""
|
1626 |
+
base = jacobi(n, alpha - 0.5, alpha - 0.5, monic=monic)
|
1627 |
+
if monic:
|
1628 |
+
return base
|
1629 |
+
# Abrahmowitz and Stegan 22.5.20
|
1630 |
+
factor = (_gam(2*alpha + n) * _gam(alpha + 0.5) /
|
1631 |
+
_gam(2*alpha) / _gam(alpha + 0.5 + n))
|
1632 |
+
base._scale(factor)
|
1633 |
+
base.__dict__['_eval_func'] = lambda x: _ufuncs.eval_gegenbauer(float(n),
|
1634 |
+
alpha, x)
|
1635 |
+
return base
|
1636 |
+
|
1637 |
+
# Chebyshev of the first kind: T_n(x) =
|
1638 |
+
# n! sqrt(pi) / _gam(n+1./2)* P^(-1/2,-1/2)_n(x)
|
1639 |
+
# Computed anew.
|
1640 |
+
|
1641 |
+
|
1642 |
+
def roots_chebyt(n, mu=False):
|
1643 |
+
r"""Gauss-Chebyshev (first kind) quadrature.
|
1644 |
+
|
1645 |
+
Computes the sample points and weights for Gauss-Chebyshev
|
1646 |
+
quadrature. The sample points are the roots of the nth degree
|
1647 |
+
Chebyshev polynomial of the first kind, :math:`T_n(x)`. These
|
1648 |
+
sample points and weights correctly integrate polynomials of
|
1649 |
+
degree :math:`2n - 1` or less over the interval :math:`[-1, 1]`
|
1650 |
+
with weight function :math:`w(x) = 1/\sqrt{1 - x^2}`. See 22.2.4
|
1651 |
+
in [AS]_ for more details.
|
1652 |
+
|
1653 |
+
Parameters
|
1654 |
+
----------
|
1655 |
+
n : int
|
1656 |
+
quadrature order
|
1657 |
+
mu : bool, optional
|
1658 |
+
If True, return the sum of the weights, optional.
|
1659 |
+
|
1660 |
+
Returns
|
1661 |
+
-------
|
1662 |
+
x : ndarray
|
1663 |
+
Sample points
|
1664 |
+
w : ndarray
|
1665 |
+
Weights
|
1666 |
+
mu : float
|
1667 |
+
Sum of the weights
|
1668 |
+
|
1669 |
+
See Also
|
1670 |
+
--------
|
1671 |
+
scipy.integrate.quadrature
|
1672 |
+
scipy.integrate.fixed_quad
|
1673 |
+
numpy.polynomial.chebyshev.chebgauss
|
1674 |
+
|
1675 |
+
References
|
1676 |
+
----------
|
1677 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1678 |
+
Handbook of Mathematical Functions with Formulas,
|
1679 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1680 |
+
|
1681 |
+
"""
|
1682 |
+
m = int(n)
|
1683 |
+
if n < 1 or n != m:
|
1684 |
+
raise ValueError('n must be a positive integer.')
|
1685 |
+
x = _ufuncs._sinpi(np.arange(-m + 1, m, 2) / (2*m))
|
1686 |
+
w = np.full_like(x, pi/m)
|
1687 |
+
if mu:
|
1688 |
+
return x, w, pi
|
1689 |
+
else:
|
1690 |
+
return x, w
|
1691 |
+
|
1692 |
+
|
1693 |
+
def chebyt(n, monic=False):
|
1694 |
+
r"""Chebyshev polynomial of the first kind.
|
1695 |
+
|
1696 |
+
Defined to be the solution of
|
1697 |
+
|
1698 |
+
.. math::
|
1699 |
+
(1 - x^2)\frac{d^2}{dx^2}T_n - x\frac{d}{dx}T_n + n^2T_n = 0;
|
1700 |
+
|
1701 |
+
:math:`T_n` is a polynomial of degree :math:`n`.
|
1702 |
+
|
1703 |
+
Parameters
|
1704 |
+
----------
|
1705 |
+
n : int
|
1706 |
+
Degree of the polynomial.
|
1707 |
+
monic : bool, optional
|
1708 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
1709 |
+
`False`.
|
1710 |
+
|
1711 |
+
Returns
|
1712 |
+
-------
|
1713 |
+
T : orthopoly1d
|
1714 |
+
Chebyshev polynomial of the first kind.
|
1715 |
+
|
1716 |
+
See Also
|
1717 |
+
--------
|
1718 |
+
chebyu : Chebyshev polynomial of the second kind.
|
1719 |
+
|
1720 |
+
Notes
|
1721 |
+
-----
|
1722 |
+
The polynomials :math:`T_n` are orthogonal over :math:`[-1, 1]`
|
1723 |
+
with weight function :math:`(1 - x^2)^{-1/2}`.
|
1724 |
+
|
1725 |
+
References
|
1726 |
+
----------
|
1727 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1728 |
+
Handbook of Mathematical Functions with Formulas,
|
1729 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1730 |
+
|
1731 |
+
Examples
|
1732 |
+
--------
|
1733 |
+
Chebyshev polynomials of the first kind of order :math:`n` can
|
1734 |
+
be obtained as the determinant of specific :math:`n \times n`
|
1735 |
+
matrices. As an example we can check how the points obtained from
|
1736 |
+
the determinant of the following :math:`3 \times 3` matrix
|
1737 |
+
lay exactly on :math:`T_3`:
|
1738 |
+
|
1739 |
+
>>> import numpy as np
|
1740 |
+
>>> import matplotlib.pyplot as plt
|
1741 |
+
>>> from scipy.linalg import det
|
1742 |
+
>>> from scipy.special import chebyt
|
1743 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1744 |
+
>>> fig, ax = plt.subplots()
|
1745 |
+
>>> ax.set_ylim(-2.0, 2.0)
|
1746 |
+
>>> ax.set_title(r'Chebyshev polynomial $T_3$')
|
1747 |
+
>>> ax.plot(x, chebyt(3)(x), label=rf'$T_3$')
|
1748 |
+
>>> for p in np.arange(-1.0, 1.0, 0.1):
|
1749 |
+
... ax.plot(p,
|
1750 |
+
... det(np.array([[p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
|
1751 |
+
... 'rx')
|
1752 |
+
>>> plt.legend(loc='best')
|
1753 |
+
>>> plt.show()
|
1754 |
+
|
1755 |
+
They are also related to the Jacobi Polynomials
|
1756 |
+
:math:`P_n^{(-0.5, -0.5)}` through the relation:
|
1757 |
+
|
1758 |
+
.. math::
|
1759 |
+
P_n^{(-0.5, -0.5)}(x) = \frac{1}{4^n} \binom{2n}{n} T_n(x)
|
1760 |
+
|
1761 |
+
Let's verify it for :math:`n = 3`:
|
1762 |
+
|
1763 |
+
>>> from scipy.special import binom
|
1764 |
+
>>> from scipy.special import jacobi
|
1765 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1766 |
+
>>> np.allclose(jacobi(3, -0.5, -0.5)(x),
|
1767 |
+
... 1/64 * binom(6, 3) * chebyt(3)(x))
|
1768 |
+
True
|
1769 |
+
|
1770 |
+
We can plot the Chebyshev polynomials :math:`T_n` for some values
|
1771 |
+
of :math:`n`:
|
1772 |
+
|
1773 |
+
>>> x = np.arange(-1.5, 1.5, 0.01)
|
1774 |
+
>>> fig, ax = plt.subplots()
|
1775 |
+
>>> ax.set_ylim(-4.0, 4.0)
|
1776 |
+
>>> ax.set_title(r'Chebyshev polynomials $T_n$')
|
1777 |
+
>>> for n in np.arange(2,5):
|
1778 |
+
... ax.plot(x, chebyt(n)(x), label=rf'$T_n={n}$')
|
1779 |
+
>>> plt.legend(loc='best')
|
1780 |
+
>>> plt.show()
|
1781 |
+
|
1782 |
+
"""
|
1783 |
+
if n < 0:
|
1784 |
+
raise ValueError("n must be nonnegative.")
|
1785 |
+
|
1786 |
+
def wfunc(x):
|
1787 |
+
return 1.0 / sqrt(1 - x * x)
|
1788 |
+
if n == 0:
|
1789 |
+
return orthopoly1d([], [], pi, 1.0, wfunc, (-1, 1), monic,
|
1790 |
+
lambda x: _ufuncs.eval_chebyt(n, x))
|
1791 |
+
n1 = n
|
1792 |
+
x, w, mu = roots_chebyt(n1, mu=True)
|
1793 |
+
hn = pi / 2
|
1794 |
+
kn = 2**(n - 1)
|
1795 |
+
p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
|
1796 |
+
lambda x: _ufuncs.eval_chebyt(n, x))
|
1797 |
+
return p
|
1798 |
+
|
1799 |
+
# Chebyshev of the second kind
|
1800 |
+
# U_n(x) = (n+1)! sqrt(pi) / (2*_gam(n+3./2)) * P^(1/2,1/2)_n(x)
|
1801 |
+
|
1802 |
+
|
1803 |
+
def roots_chebyu(n, mu=False):
|
1804 |
+
r"""Gauss-Chebyshev (second kind) quadrature.
|
1805 |
+
|
1806 |
+
Computes the sample points and weights for Gauss-Chebyshev
|
1807 |
+
quadrature. The sample points are the roots of the nth degree
|
1808 |
+
Chebyshev polynomial of the second kind, :math:`U_n(x)`. These
|
1809 |
+
sample points and weights correctly integrate polynomials of
|
1810 |
+
degree :math:`2n - 1` or less over the interval :math:`[-1, 1]`
|
1811 |
+
with weight function :math:`w(x) = \sqrt{1 - x^2}`. See 22.2.5 in
|
1812 |
+
[AS]_ for details.
|
1813 |
+
|
1814 |
+
Parameters
|
1815 |
+
----------
|
1816 |
+
n : int
|
1817 |
+
quadrature order
|
1818 |
+
mu : bool, optional
|
1819 |
+
If True, return the sum of the weights, optional.
|
1820 |
+
|
1821 |
+
Returns
|
1822 |
+
-------
|
1823 |
+
x : ndarray
|
1824 |
+
Sample points
|
1825 |
+
w : ndarray
|
1826 |
+
Weights
|
1827 |
+
mu : float
|
1828 |
+
Sum of the weights
|
1829 |
+
|
1830 |
+
See Also
|
1831 |
+
--------
|
1832 |
+
scipy.integrate.quadrature
|
1833 |
+
scipy.integrate.fixed_quad
|
1834 |
+
|
1835 |
+
References
|
1836 |
+
----------
|
1837 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1838 |
+
Handbook of Mathematical Functions with Formulas,
|
1839 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1840 |
+
|
1841 |
+
"""
|
1842 |
+
m = int(n)
|
1843 |
+
if n < 1 or n != m:
|
1844 |
+
raise ValueError('n must be a positive integer.')
|
1845 |
+
t = np.arange(m, 0, -1) * pi / (m + 1)
|
1846 |
+
x = np.cos(t)
|
1847 |
+
w = pi * np.sin(t)**2 / (m + 1)
|
1848 |
+
if mu:
|
1849 |
+
return x, w, pi / 2
|
1850 |
+
else:
|
1851 |
+
return x, w
|
1852 |
+
|
1853 |
+
|
1854 |
+
def chebyu(n, monic=False):
|
1855 |
+
r"""Chebyshev polynomial of the second kind.
|
1856 |
+
|
1857 |
+
Defined to be the solution of
|
1858 |
+
|
1859 |
+
.. math::
|
1860 |
+
(1 - x^2)\frac{d^2}{dx^2}U_n - 3x\frac{d}{dx}U_n
|
1861 |
+
+ n(n + 2)U_n = 0;
|
1862 |
+
|
1863 |
+
:math:`U_n` is a polynomial of degree :math:`n`.
|
1864 |
+
|
1865 |
+
Parameters
|
1866 |
+
----------
|
1867 |
+
n : int
|
1868 |
+
Degree of the polynomial.
|
1869 |
+
monic : bool, optional
|
1870 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
1871 |
+
`False`.
|
1872 |
+
|
1873 |
+
Returns
|
1874 |
+
-------
|
1875 |
+
U : orthopoly1d
|
1876 |
+
Chebyshev polynomial of the second kind.
|
1877 |
+
|
1878 |
+
See Also
|
1879 |
+
--------
|
1880 |
+
chebyt : Chebyshev polynomial of the first kind.
|
1881 |
+
|
1882 |
+
Notes
|
1883 |
+
-----
|
1884 |
+
The polynomials :math:`U_n` are orthogonal over :math:`[-1, 1]`
|
1885 |
+
with weight function :math:`(1 - x^2)^{1/2}`.
|
1886 |
+
|
1887 |
+
References
|
1888 |
+
----------
|
1889 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1890 |
+
Handbook of Mathematical Functions with Formulas,
|
1891 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1892 |
+
|
1893 |
+
Examples
|
1894 |
+
--------
|
1895 |
+
Chebyshev polynomials of the second kind of order :math:`n` can
|
1896 |
+
be obtained as the determinant of specific :math:`n \times n`
|
1897 |
+
matrices. As an example we can check how the points obtained from
|
1898 |
+
the determinant of the following :math:`3 \times 3` matrix
|
1899 |
+
lay exactly on :math:`U_3`:
|
1900 |
+
|
1901 |
+
>>> import numpy as np
|
1902 |
+
>>> import matplotlib.pyplot as plt
|
1903 |
+
>>> from scipy.linalg import det
|
1904 |
+
>>> from scipy.special import chebyu
|
1905 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1906 |
+
>>> fig, ax = plt.subplots()
|
1907 |
+
>>> ax.set_ylim(-2.0, 2.0)
|
1908 |
+
>>> ax.set_title(r'Chebyshev polynomial $U_3$')
|
1909 |
+
>>> ax.plot(x, chebyu(3)(x), label=rf'$U_3$')
|
1910 |
+
>>> for p in np.arange(-1.0, 1.0, 0.1):
|
1911 |
+
... ax.plot(p,
|
1912 |
+
... det(np.array([[2*p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
|
1913 |
+
... 'rx')
|
1914 |
+
>>> plt.legend(loc='best')
|
1915 |
+
>>> plt.show()
|
1916 |
+
|
1917 |
+
They satisfy the recurrence relation:
|
1918 |
+
|
1919 |
+
.. math::
|
1920 |
+
U_{2n-1}(x) = 2 T_n(x)U_{n-1}(x)
|
1921 |
+
|
1922 |
+
where the :math:`T_n` are the Chebyshev polynomial of the first kind.
|
1923 |
+
Let's verify it for :math:`n = 2`:
|
1924 |
+
|
1925 |
+
>>> from scipy.special import chebyt
|
1926 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1927 |
+
>>> np.allclose(chebyu(3)(x), 2 * chebyt(2)(x) * chebyu(1)(x))
|
1928 |
+
True
|
1929 |
+
|
1930 |
+
We can plot the Chebyshev polynomials :math:`U_n` for some values
|
1931 |
+
of :math:`n`:
|
1932 |
+
|
1933 |
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1934 |
+
>>> fig, ax = plt.subplots()
|
1935 |
+
>>> ax.set_ylim(-1.5, 1.5)
|
1936 |
+
>>> ax.set_title(r'Chebyshev polynomials $U_n$')
|
1937 |
+
>>> for n in np.arange(1,5):
|
1938 |
+
... ax.plot(x, chebyu(n)(x), label=rf'$U_n={n}$')
|
1939 |
+
>>> plt.legend(loc='best')
|
1940 |
+
>>> plt.show()
|
1941 |
+
|
1942 |
+
"""
|
1943 |
+
base = jacobi(n, 0.5, 0.5, monic=monic)
|
1944 |
+
if monic:
|
1945 |
+
return base
|
1946 |
+
factor = sqrt(pi) / 2.0 * _gam(n + 2) / _gam(n + 1.5)
|
1947 |
+
base._scale(factor)
|
1948 |
+
return base
|
1949 |
+
|
1950 |
+
# Chebyshev of the first kind C_n(x)
|
1951 |
+
|
1952 |
+
|
1953 |
+
def roots_chebyc(n, mu=False):
|
1954 |
+
r"""Gauss-Chebyshev (first kind) quadrature.
|
1955 |
+
|
1956 |
+
Compute the sample points and weights for Gauss-Chebyshev
|
1957 |
+
quadrature. The sample points are the roots of the nth degree
|
1958 |
+
Chebyshev polynomial of the first kind, :math:`C_n(x)`. These
|
1959 |
+
sample points and weights correctly integrate polynomials of
|
1960 |
+
degree :math:`2n - 1` or less over the interval :math:`[-2, 2]`
|
1961 |
+
with weight function :math:`w(x) = 1 / \sqrt{1 - (x/2)^2}`. See
|
1962 |
+
22.2.6 in [AS]_ for more details.
|
1963 |
+
|
1964 |
+
Parameters
|
1965 |
+
----------
|
1966 |
+
n : int
|
1967 |
+
quadrature order
|
1968 |
+
mu : bool, optional
|
1969 |
+
If True, return the sum of the weights, optional.
|
1970 |
+
|
1971 |
+
Returns
|
1972 |
+
-------
|
1973 |
+
x : ndarray
|
1974 |
+
Sample points
|
1975 |
+
w : ndarray
|
1976 |
+
Weights
|
1977 |
+
mu : float
|
1978 |
+
Sum of the weights
|
1979 |
+
|
1980 |
+
See Also
|
1981 |
+
--------
|
1982 |
+
scipy.integrate.quadrature
|
1983 |
+
scipy.integrate.fixed_quad
|
1984 |
+
|
1985 |
+
References
|
1986 |
+
----------
|
1987 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1988 |
+
Handbook of Mathematical Functions with Formulas,
|
1989 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1990 |
+
|
1991 |
+
"""
|
1992 |
+
x, w, m = roots_chebyt(n, True)
|
1993 |
+
x *= 2
|
1994 |
+
w *= 2
|
1995 |
+
m *= 2
|
1996 |
+
if mu:
|
1997 |
+
return x, w, m
|
1998 |
+
else:
|
1999 |
+
return x, w
|
2000 |
+
|
2001 |
+
|
2002 |
+
def chebyc(n, monic=False):
|
2003 |
+
r"""Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
2004 |
+
|
2005 |
+
Defined as :math:`C_n(x) = 2T_n(x/2)`, where :math:`T_n` is the
|
2006 |
+
nth Chebychev polynomial of the first kind.
|
2007 |
+
|
2008 |
+
Parameters
|
2009 |
+
----------
|
2010 |
+
n : int
|
2011 |
+
Degree of the polynomial.
|
2012 |
+
monic : bool, optional
|
2013 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
2014 |
+
`False`.
|
2015 |
+
|
2016 |
+
Returns
|
2017 |
+
-------
|
2018 |
+
C : orthopoly1d
|
2019 |
+
Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
2020 |
+
|
2021 |
+
See Also
|
2022 |
+
--------
|
2023 |
+
chebyt : Chebyshev polynomial of the first kind.
|
2024 |
+
|
2025 |
+
Notes
|
2026 |
+
-----
|
2027 |
+
The polynomials :math:`C_n(x)` are orthogonal over :math:`[-2, 2]`
|
2028 |
+
with weight function :math:`1/\sqrt{1 - (x/2)^2}`.
|
2029 |
+
|
2030 |
+
References
|
2031 |
+
----------
|
2032 |
+
.. [1] Abramowitz and Stegun, "Handbook of Mathematical Functions"
|
2033 |
+
Section 22. National Bureau of Standards, 1972.
|
2034 |
+
|
2035 |
+
"""
|
2036 |
+
if n < 0:
|
2037 |
+
raise ValueError("n must be nonnegative.")
|
2038 |
+
|
2039 |
+
if n == 0:
|
2040 |
+
n1 = n + 1
|
2041 |
+
else:
|
2042 |
+
n1 = n
|
2043 |
+
x, w = roots_chebyc(n1)
|
2044 |
+
if n == 0:
|
2045 |
+
x, w = [], []
|
2046 |
+
hn = 4 * pi * ((n == 0) + 1)
|
2047 |
+
kn = 1.0
|
2048 |
+
p = orthopoly1d(x, w, hn, kn,
|
2049 |
+
wfunc=lambda x: 1.0 / sqrt(1 - x * x / 4.0),
|
2050 |
+
limits=(-2, 2), monic=monic)
|
2051 |
+
if not monic:
|
2052 |
+
p._scale(2.0 / p(2))
|
2053 |
+
p.__dict__['_eval_func'] = lambda x: _ufuncs.eval_chebyc(n, x)
|
2054 |
+
return p
|
2055 |
+
|
2056 |
+
# Chebyshev of the second kind S_n(x)
|
2057 |
+
|
2058 |
+
|
2059 |
+
def roots_chebys(n, mu=False):
|
2060 |
+
r"""Gauss-Chebyshev (second kind) quadrature.
|
2061 |
+
|
2062 |
+
Compute the sample points and weights for Gauss-Chebyshev
|
2063 |
+
quadrature. The sample points are the roots of the nth degree
|
2064 |
+
Chebyshev polynomial of the second kind, :math:`S_n(x)`. These
|
2065 |
+
sample points and weights correctly integrate polynomials of
|
2066 |
+
degree :math:`2n - 1` or less over the interval :math:`[-2, 2]`
|
2067 |
+
with weight function :math:`w(x) = \sqrt{1 - (x/2)^2}`. See 22.2.7
|
2068 |
+
in [AS]_ for more details.
|
2069 |
+
|
2070 |
+
Parameters
|
2071 |
+
----------
|
2072 |
+
n : int
|
2073 |
+
quadrature order
|
2074 |
+
mu : bool, optional
|
2075 |
+
If True, return the sum of the weights, optional.
|
2076 |
+
|
2077 |
+
Returns
|
2078 |
+
-------
|
2079 |
+
x : ndarray
|
2080 |
+
Sample points
|
2081 |
+
w : ndarray
|
2082 |
+
Weights
|
2083 |
+
mu : float
|
2084 |
+
Sum of the weights
|
2085 |
+
|
2086 |
+
See Also
|
2087 |
+
--------
|
2088 |
+
scipy.integrate.quadrature
|
2089 |
+
scipy.integrate.fixed_quad
|
2090 |
+
|
2091 |
+
References
|
2092 |
+
----------
|
2093 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2094 |
+
Handbook of Mathematical Functions with Formulas,
|
2095 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2096 |
+
|
2097 |
+
"""
|
2098 |
+
x, w, m = roots_chebyu(n, True)
|
2099 |
+
x *= 2
|
2100 |
+
w *= 2
|
2101 |
+
m *= 2
|
2102 |
+
if mu:
|
2103 |
+
return x, w, m
|
2104 |
+
else:
|
2105 |
+
return x, w
|
2106 |
+
|
2107 |
+
|
2108 |
+
def chebys(n, monic=False):
|
2109 |
+
r"""Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
2110 |
+
|
2111 |
+
Defined as :math:`S_n(x) = U_n(x/2)` where :math:`U_n` is the
|
2112 |
+
nth Chebychev polynomial of the second kind.
|
2113 |
+
|
2114 |
+
Parameters
|
2115 |
+
----------
|
2116 |
+
n : int
|
2117 |
+
Degree of the polynomial.
|
2118 |
+
monic : bool, optional
|
2119 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
2120 |
+
`False`.
|
2121 |
+
|
2122 |
+
Returns
|
2123 |
+
-------
|
2124 |
+
S : orthopoly1d
|
2125 |
+
Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
2126 |
+
|
2127 |
+
See Also
|
2128 |
+
--------
|
2129 |
+
chebyu : Chebyshev polynomial of the second kind
|
2130 |
+
|
2131 |
+
Notes
|
2132 |
+
-----
|
2133 |
+
The polynomials :math:`S_n(x)` are orthogonal over :math:`[-2, 2]`
|
2134 |
+
with weight function :math:`\sqrt{1 - (x/2)}^2`.
|
2135 |
+
|
2136 |
+
References
|
2137 |
+
----------
|
2138 |
+
.. [1] Abramowitz and Stegun, "Handbook of Mathematical Functions"
|
2139 |
+
Section 22. National Bureau of Standards, 1972.
|
2140 |
+
|
2141 |
+
"""
|
2142 |
+
if n < 0:
|
2143 |
+
raise ValueError("n must be nonnegative.")
|
2144 |
+
|
2145 |
+
if n == 0:
|
2146 |
+
n1 = n + 1
|
2147 |
+
else:
|
2148 |
+
n1 = n
|
2149 |
+
x, w = roots_chebys(n1)
|
2150 |
+
if n == 0:
|
2151 |
+
x, w = [], []
|
2152 |
+
hn = pi
|
2153 |
+
kn = 1.0
|
2154 |
+
p = orthopoly1d(x, w, hn, kn,
|
2155 |
+
wfunc=lambda x: sqrt(1 - x * x / 4.0),
|
2156 |
+
limits=(-2, 2), monic=monic)
|
2157 |
+
if not monic:
|
2158 |
+
factor = (n + 1.0) / p(2)
|
2159 |
+
p._scale(factor)
|
2160 |
+
p.__dict__['_eval_func'] = lambda x: _ufuncs.eval_chebys(n, x)
|
2161 |
+
return p
|
2162 |
+
|
2163 |
+
# Shifted Chebyshev of the first kind T^*_n(x)
|
2164 |
+
|
2165 |
+
|
2166 |
+
def roots_sh_chebyt(n, mu=False):
|
2167 |
+
r"""Gauss-Chebyshev (first kind, shifted) quadrature.
|
2168 |
+
|
2169 |
+
Compute the sample points and weights for Gauss-Chebyshev
|
2170 |
+
quadrature. The sample points are the roots of the nth degree
|
2171 |
+
shifted Chebyshev polynomial of the first kind, :math:`T_n(x)`.
|
2172 |
+
These sample points and weights correctly integrate polynomials of
|
2173 |
+
degree :math:`2n - 1` or less over the interval :math:`[0, 1]`
|
2174 |
+
with weight function :math:`w(x) = 1/\sqrt{x - x^2}`. See 22.2.8
|
2175 |
+
in [AS]_ for more details.
|
2176 |
+
|
2177 |
+
Parameters
|
2178 |
+
----------
|
2179 |
+
n : int
|
2180 |
+
quadrature order
|
2181 |
+
mu : bool, optional
|
2182 |
+
If True, return the sum of the weights, optional.
|
2183 |
+
|
2184 |
+
Returns
|
2185 |
+
-------
|
2186 |
+
x : ndarray
|
2187 |
+
Sample points
|
2188 |
+
w : ndarray
|
2189 |
+
Weights
|
2190 |
+
mu : float
|
2191 |
+
Sum of the weights
|
2192 |
+
|
2193 |
+
See Also
|
2194 |
+
--------
|
2195 |
+
scipy.integrate.quadrature
|
2196 |
+
scipy.integrate.fixed_quad
|
2197 |
+
|
2198 |
+
References
|
2199 |
+
----------
|
2200 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2201 |
+
Handbook of Mathematical Functions with Formulas,
|
2202 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2203 |
+
|
2204 |
+
"""
|
2205 |
+
xw = roots_chebyt(n, mu)
|
2206 |
+
return ((xw[0] + 1) / 2,) + xw[1:]
|
2207 |
+
|
2208 |
+
|
2209 |
+
def sh_chebyt(n, monic=False):
|
2210 |
+
r"""Shifted Chebyshev polynomial of the first kind.
|
2211 |
+
|
2212 |
+
Defined as :math:`T^*_n(x) = T_n(2x - 1)` for :math:`T_n` the nth
|
2213 |
+
Chebyshev polynomial of the first kind.
|
2214 |
+
|
2215 |
+
Parameters
|
2216 |
+
----------
|
2217 |
+
n : int
|
2218 |
+
Degree of the polynomial.
|
2219 |
+
monic : bool, optional
|
2220 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
2221 |
+
`False`.
|
2222 |
+
|
2223 |
+
Returns
|
2224 |
+
-------
|
2225 |
+
T : orthopoly1d
|
2226 |
+
Shifted Chebyshev polynomial of the first kind.
|
2227 |
+
|
2228 |
+
Notes
|
2229 |
+
-----
|
2230 |
+
The polynomials :math:`T^*_n` are orthogonal over :math:`[0, 1]`
|
2231 |
+
with weight function :math:`(x - x^2)^{-1/2}`.
|
2232 |
+
|
2233 |
+
"""
|
2234 |
+
base = sh_jacobi(n, 0.0, 0.5, monic=monic)
|
2235 |
+
if monic:
|
2236 |
+
return base
|
2237 |
+
if n > 0:
|
2238 |
+
factor = 4**n / 2.0
|
2239 |
+
else:
|
2240 |
+
factor = 1.0
|
2241 |
+
base._scale(factor)
|
2242 |
+
return base
|
2243 |
+
|
2244 |
+
|
2245 |
+
# Shifted Chebyshev of the second kind U^*_n(x)
|
2246 |
+
def roots_sh_chebyu(n, mu=False):
|
2247 |
+
r"""Gauss-Chebyshev (second kind, shifted) quadrature.
|
2248 |
+
|
2249 |
+
Computes the sample points and weights for Gauss-Chebyshev
|
2250 |
+
quadrature. The sample points are the roots of the nth degree
|
2251 |
+
shifted Chebyshev polynomial of the second kind, :math:`U_n(x)`.
|
2252 |
+
These sample points and weights correctly integrate polynomials of
|
2253 |
+
degree :math:`2n - 1` or less over the interval :math:`[0, 1]`
|
2254 |
+
with weight function :math:`w(x) = \sqrt{x - x^2}`. See 22.2.9 in
|
2255 |
+
[AS]_ for more details.
|
2256 |
+
|
2257 |
+
Parameters
|
2258 |
+
----------
|
2259 |
+
n : int
|
2260 |
+
quadrature order
|
2261 |
+
mu : bool, optional
|
2262 |
+
If True, return the sum of the weights, optional.
|
2263 |
+
|
2264 |
+
Returns
|
2265 |
+
-------
|
2266 |
+
x : ndarray
|
2267 |
+
Sample points
|
2268 |
+
w : ndarray
|
2269 |
+
Weights
|
2270 |
+
mu : float
|
2271 |
+
Sum of the weights
|
2272 |
+
|
2273 |
+
See Also
|
2274 |
+
--------
|
2275 |
+
scipy.integrate.quadrature
|
2276 |
+
scipy.integrate.fixed_quad
|
2277 |
+
|
2278 |
+
References
|
2279 |
+
----------
|
2280 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2281 |
+
Handbook of Mathematical Functions with Formulas,
|
2282 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2283 |
+
|
2284 |
+
"""
|
2285 |
+
x, w, m = roots_chebyu(n, True)
|
2286 |
+
x = (x + 1) / 2
|
2287 |
+
m_us = _ufuncs.beta(1.5, 1.5)
|
2288 |
+
w *= m_us / m
|
2289 |
+
if mu:
|
2290 |
+
return x, w, m_us
|
2291 |
+
else:
|
2292 |
+
return x, w
|
2293 |
+
|
2294 |
+
|
2295 |
+
def sh_chebyu(n, monic=False):
|
2296 |
+
r"""Shifted Chebyshev polynomial of the second kind.
|
2297 |
+
|
2298 |
+
Defined as :math:`U^*_n(x) = U_n(2x - 1)` for :math:`U_n` the nth
|
2299 |
+
Chebyshev polynomial of the second kind.
|
2300 |
+
|
2301 |
+
Parameters
|
2302 |
+
----------
|
2303 |
+
n : int
|
2304 |
+
Degree of the polynomial.
|
2305 |
+
monic : bool, optional
|
2306 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
2307 |
+
`False`.
|
2308 |
+
|
2309 |
+
Returns
|
2310 |
+
-------
|
2311 |
+
U : orthopoly1d
|
2312 |
+
Shifted Chebyshev polynomial of the second kind.
|
2313 |
+
|
2314 |
+
Notes
|
2315 |
+
-----
|
2316 |
+
The polynomials :math:`U^*_n` are orthogonal over :math:`[0, 1]`
|
2317 |
+
with weight function :math:`(x - x^2)^{1/2}`.
|
2318 |
+
|
2319 |
+
"""
|
2320 |
+
base = sh_jacobi(n, 2.0, 1.5, monic=monic)
|
2321 |
+
if monic:
|
2322 |
+
return base
|
2323 |
+
factor = 4**n
|
2324 |
+
base._scale(factor)
|
2325 |
+
return base
|
2326 |
+
|
2327 |
+
# Legendre
|
2328 |
+
|
2329 |
+
|
2330 |
+
def roots_legendre(n, mu=False):
|
2331 |
+
r"""Gauss-Legendre quadrature.
|
2332 |
+
|
2333 |
+
Compute the sample points and weights for Gauss-Legendre
|
2334 |
+
quadrature [GL]_. The sample points are the roots of the nth degree
|
2335 |
+
Legendre polynomial :math:`P_n(x)`. These sample points and
|
2336 |
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
2337 |
+
or less over the interval :math:`[-1, 1]` with weight function
|
2338 |
+
:math:`w(x) = 1`. See 2.2.10 in [AS]_ for more details.
|
2339 |
+
|
2340 |
+
Parameters
|
2341 |
+
----------
|
2342 |
+
n : int
|
2343 |
+
quadrature order
|
2344 |
+
mu : bool, optional
|
2345 |
+
If True, return the sum of the weights, optional.
|
2346 |
+
|
2347 |
+
Returns
|
2348 |
+
-------
|
2349 |
+
x : ndarray
|
2350 |
+
Sample points
|
2351 |
+
w : ndarray
|
2352 |
+
Weights
|
2353 |
+
mu : float
|
2354 |
+
Sum of the weights
|
2355 |
+
|
2356 |
+
See Also
|
2357 |
+
--------
|
2358 |
+
scipy.integrate.quadrature
|
2359 |
+
scipy.integrate.fixed_quad
|
2360 |
+
numpy.polynomial.legendre.leggauss
|
2361 |
+
|
2362 |
+
References
|
2363 |
+
----------
|
2364 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2365 |
+
Handbook of Mathematical Functions with Formulas,
|
2366 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2367 |
+
.. [GL] Gauss-Legendre quadrature, Wikipedia,
|
2368 |
+
https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature
|
2369 |
+
|
2370 |
+
Examples
|
2371 |
+
--------
|
2372 |
+
>>> import numpy as np
|
2373 |
+
>>> from scipy.special import roots_legendre, eval_legendre
|
2374 |
+
>>> roots, weights = roots_legendre(9)
|
2375 |
+
|
2376 |
+
``roots`` holds the roots, and ``weights`` holds the weights for
|
2377 |
+
Gauss-Legendre quadrature.
|
2378 |
+
|
2379 |
+
>>> roots
|
2380 |
+
array([-0.96816024, -0.83603111, -0.61337143, -0.32425342, 0. ,
|
2381 |
+
0.32425342, 0.61337143, 0.83603111, 0.96816024])
|
2382 |
+
>>> weights
|
2383 |
+
array([0.08127439, 0.18064816, 0.2606107 , 0.31234708, 0.33023936,
|
2384 |
+
0.31234708, 0.2606107 , 0.18064816, 0.08127439])
|
2385 |
+
|
2386 |
+
Verify that we have the roots by evaluating the degree 9 Legendre
|
2387 |
+
polynomial at ``roots``. All the values are approximately zero:
|
2388 |
+
|
2389 |
+
>>> eval_legendre(9, roots)
|
2390 |
+
array([-8.88178420e-16, -2.22044605e-16, 1.11022302e-16, 1.11022302e-16,
|
2391 |
+
0.00000000e+00, -5.55111512e-17, -1.94289029e-16, 1.38777878e-16,
|
2392 |
+
-8.32667268e-17])
|
2393 |
+
|
2394 |
+
Here we'll show how the above values can be used to estimate the
|
2395 |
+
integral from 1 to 2 of f(t) = t + 1/t with Gauss-Legendre
|
2396 |
+
quadrature [GL]_. First define the function and the integration
|
2397 |
+
limits.
|
2398 |
+
|
2399 |
+
>>> def f(t):
|
2400 |
+
... return t + 1/t
|
2401 |
+
...
|
2402 |
+
>>> a = 1
|
2403 |
+
>>> b = 2
|
2404 |
+
|
2405 |
+
We'll use ``integral(f(t), t=a, t=b)`` to denote the definite integral
|
2406 |
+
of f from t=a to t=b. The sample points in ``roots`` are from the
|
2407 |
+
interval [-1, 1], so we'll rewrite the integral with the simple change
|
2408 |
+
of variable::
|
2409 |
+
|
2410 |
+
x = 2/(b - a) * t - (a + b)/(b - a)
|
2411 |
+
|
2412 |
+
with inverse::
|
2413 |
+
|
2414 |
+
t = (b - a)/2 * x + (a + 2)/2
|
2415 |
+
|
2416 |
+
Then::
|
2417 |
+
|
2418 |
+
integral(f(t), a, b) =
|
2419 |
+
(b - a)/2 * integral(f((b-a)/2*x + (a+b)/2), x=-1, x=1)
|
2420 |
+
|
2421 |
+
We can approximate the latter integral with the values returned
|
2422 |
+
by `roots_legendre`.
|
2423 |
+
|
2424 |
+
Map the roots computed above from [-1, 1] to [a, b].
|
2425 |
+
|
2426 |
+
>>> t = (b - a)/2 * roots + (a + b)/2
|
2427 |
+
|
2428 |
+
Approximate the integral as the weighted sum of the function values.
|
2429 |
+
|
2430 |
+
>>> (b - a)/2 * f(t).dot(weights)
|
2431 |
+
2.1931471805599276
|
2432 |
+
|
2433 |
+
Compare that to the exact result, which is 3/2 + log(2):
|
2434 |
+
|
2435 |
+
>>> 1.5 + np.log(2)
|
2436 |
+
2.1931471805599454
|
2437 |
+
|
2438 |
+
"""
|
2439 |
+
m = int(n)
|
2440 |
+
if n < 1 or n != m:
|
2441 |
+
raise ValueError("n must be a positive integer.")
|
2442 |
+
|
2443 |
+
mu0 = 2.0
|
2444 |
+
def an_func(k):
|
2445 |
+
return 0.0 * k
|
2446 |
+
def bn_func(k):
|
2447 |
+
return k * np.sqrt(1.0 / (4 * k * k - 1))
|
2448 |
+
f = _ufuncs.eval_legendre
|
2449 |
+
def df(n, x):
|
2450 |
+
return (-n * x * _ufuncs.eval_legendre(n, x)
|
2451 |
+
+ n * _ufuncs.eval_legendre(n - 1, x)) / (1 - x ** 2)
|
2452 |
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
2453 |
+
|
2454 |
+
|
2455 |
+
def legendre(n, monic=False):
|
2456 |
+
r"""Legendre polynomial.
|
2457 |
+
|
2458 |
+
Defined to be the solution of
|
2459 |
+
|
2460 |
+
.. math::
|
2461 |
+
\frac{d}{dx}\left[(1 - x^2)\frac{d}{dx}P_n(x)\right]
|
2462 |
+
+ n(n + 1)P_n(x) = 0;
|
2463 |
+
|
2464 |
+
:math:`P_n(x)` is a polynomial of degree :math:`n`.
|
2465 |
+
|
2466 |
+
Parameters
|
2467 |
+
----------
|
2468 |
+
n : int
|
2469 |
+
Degree of the polynomial.
|
2470 |
+
monic : bool, optional
|
2471 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
2472 |
+
`False`.
|
2473 |
+
|
2474 |
+
Returns
|
2475 |
+
-------
|
2476 |
+
P : orthopoly1d
|
2477 |
+
Legendre polynomial.
|
2478 |
+
|
2479 |
+
Notes
|
2480 |
+
-----
|
2481 |
+
The polynomials :math:`P_n` are orthogonal over :math:`[-1, 1]`
|
2482 |
+
with weight function 1.
|
2483 |
+
|
2484 |
+
Examples
|
2485 |
+
--------
|
2486 |
+
Generate the 3rd-order Legendre polynomial 1/2*(5x^3 + 0x^2 - 3x + 0):
|
2487 |
+
|
2488 |
+
>>> from scipy.special import legendre
|
2489 |
+
>>> legendre(3)
|
2490 |
+
poly1d([ 2.5, 0. , -1.5, 0. ])
|
2491 |
+
|
2492 |
+
"""
|
2493 |
+
if n < 0:
|
2494 |
+
raise ValueError("n must be nonnegative.")
|
2495 |
+
|
2496 |
+
if n == 0:
|
2497 |
+
n1 = n + 1
|
2498 |
+
else:
|
2499 |
+
n1 = n
|
2500 |
+
x, w = roots_legendre(n1)
|
2501 |
+
if n == 0:
|
2502 |
+
x, w = [], []
|
2503 |
+
hn = 2.0 / (2 * n + 1)
|
2504 |
+
kn = _gam(2 * n + 1) / _gam(n + 1)**2 / 2.0**n
|
2505 |
+
p = orthopoly1d(x, w, hn, kn, wfunc=lambda x: 1.0, limits=(-1, 1),
|
2506 |
+
monic=monic,
|
2507 |
+
eval_func=lambda x: _ufuncs.eval_legendre(n, x))
|
2508 |
+
return p
|
2509 |
+
|
2510 |
+
# Shifted Legendre P^*_n(x)
|
2511 |
+
|
2512 |
+
|
2513 |
+
def roots_sh_legendre(n, mu=False):
|
2514 |
+
r"""Gauss-Legendre (shifted) quadrature.
|
2515 |
+
|
2516 |
+
Compute the sample points and weights for Gauss-Legendre
|
2517 |
+
quadrature. The sample points are the roots of the nth degree
|
2518 |
+
shifted Legendre polynomial :math:`P^*_n(x)`. These sample points
|
2519 |
+
and weights correctly integrate polynomials of degree :math:`2n -
|
2520 |
+
1` or less over the interval :math:`[0, 1]` with weight function
|
2521 |
+
:math:`w(x) = 1.0`. See 2.2.11 in [AS]_ for details.
|
2522 |
+
|
2523 |
+
Parameters
|
2524 |
+
----------
|
2525 |
+
n : int
|
2526 |
+
quadrature order
|
2527 |
+
mu : bool, optional
|
2528 |
+
If True, return the sum of the weights, optional.
|
2529 |
+
|
2530 |
+
Returns
|
2531 |
+
-------
|
2532 |
+
x : ndarray
|
2533 |
+
Sample points
|
2534 |
+
w : ndarray
|
2535 |
+
Weights
|
2536 |
+
mu : float
|
2537 |
+
Sum of the weights
|
2538 |
+
|
2539 |
+
See Also
|
2540 |
+
--------
|
2541 |
+
scipy.integrate.quadrature
|
2542 |
+
scipy.integrate.fixed_quad
|
2543 |
+
|
2544 |
+
References
|
2545 |
+
----------
|
2546 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2547 |
+
Handbook of Mathematical Functions with Formulas,
|
2548 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2549 |
+
|
2550 |
+
"""
|
2551 |
+
x, w = roots_legendre(n)
|
2552 |
+
x = (x + 1) / 2
|
2553 |
+
w /= 2
|
2554 |
+
if mu:
|
2555 |
+
return x, w, 1.0
|
2556 |
+
else:
|
2557 |
+
return x, w
|
2558 |
+
|
2559 |
+
|
2560 |
+
def sh_legendre(n, monic=False):
|
2561 |
+
r"""Shifted Legendre polynomial.
|
2562 |
+
|
2563 |
+
Defined as :math:`P^*_n(x) = P_n(2x - 1)` for :math:`P_n` the nth
|
2564 |
+
Legendre polynomial.
|
2565 |
+
|
2566 |
+
Parameters
|
2567 |
+
----------
|
2568 |
+
n : int
|
2569 |
+
Degree of the polynomial.
|
2570 |
+
monic : bool, optional
|
2571 |
+
If `True`, scale the leading coefficient to be 1. Default is
|
2572 |
+
`False`.
|
2573 |
+
|
2574 |
+
Returns
|
2575 |
+
-------
|
2576 |
+
P : orthopoly1d
|
2577 |
+
Shifted Legendre polynomial.
|
2578 |
+
|
2579 |
+
Notes
|
2580 |
+
-----
|
2581 |
+
The polynomials :math:`P^*_n` are orthogonal over :math:`[0, 1]`
|
2582 |
+
with weight function 1.
|
2583 |
+
|
2584 |
+
"""
|
2585 |
+
if n < 0:
|
2586 |
+
raise ValueError("n must be nonnegative.")
|
2587 |
+
|
2588 |
+
def wfunc(x):
|
2589 |
+
return 0.0 * x + 1.0
|
2590 |
+
if n == 0:
|
2591 |
+
return orthopoly1d([], [], 1.0, 1.0, wfunc, (0, 1), monic,
|
2592 |
+
lambda x: _ufuncs.eval_sh_legendre(n, x))
|
2593 |
+
x, w = roots_sh_legendre(n)
|
2594 |
+
hn = 1.0 / (2 * n + 1.0)
|
2595 |
+
kn = _gam(2 * n + 1) / _gam(n + 1)**2
|
2596 |
+
p = orthopoly1d(x, w, hn, kn, wfunc, limits=(0, 1), monic=monic,
|
2597 |
+
eval_func=lambda x: _ufuncs.eval_sh_legendre(n, x))
|
2598 |
+
return p
|
2599 |
+
|
2600 |
+
|
2601 |
+
# Make the old root function names an alias for the new ones
|
2602 |
+
_modattrs = globals()
|
2603 |
+
for newfun, oldfun in _rootfuns_map.items():
|
2604 |
+
_modattrs[oldfun] = _modattrs[newfun]
|
2605 |
+
__all__.append(oldfun)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_orthogonal.pyi
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
Callable,
|
5 |
+
Literal,
|
6 |
+
Optional,
|
7 |
+
overload,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy
|
11 |
+
|
12 |
+
_IntegerType = int | numpy.integer
|
13 |
+
_FloatingType = float | numpy.floating
|
14 |
+
_PointsAndWeights = tuple[numpy.ndarray, numpy.ndarray]
|
15 |
+
_PointsAndWeightsAndMu = tuple[numpy.ndarray, numpy.ndarray, float]
|
16 |
+
|
17 |
+
_ArrayLike0D = bool | int | float | complex | str | bytes | numpy.generic
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
'legendre',
|
21 |
+
'chebyt',
|
22 |
+
'chebyu',
|
23 |
+
'chebyc',
|
24 |
+
'chebys',
|
25 |
+
'jacobi',
|
26 |
+
'laguerre',
|
27 |
+
'genlaguerre',
|
28 |
+
'hermite',
|
29 |
+
'hermitenorm',
|
30 |
+
'gegenbauer',
|
31 |
+
'sh_legendre',
|
32 |
+
'sh_chebyt',
|
33 |
+
'sh_chebyu',
|
34 |
+
'sh_jacobi',
|
35 |
+
'roots_legendre',
|
36 |
+
'roots_chebyt',
|
37 |
+
'roots_chebyu',
|
38 |
+
'roots_chebyc',
|
39 |
+
'roots_chebys',
|
40 |
+
'roots_jacobi',
|
41 |
+
'roots_laguerre',
|
42 |
+
'roots_genlaguerre',
|
43 |
+
'roots_hermite',
|
44 |
+
'roots_hermitenorm',
|
45 |
+
'roots_gegenbauer',
|
46 |
+
'roots_sh_legendre',
|
47 |
+
'roots_sh_chebyt',
|
48 |
+
'roots_sh_chebyu',
|
49 |
+
'roots_sh_jacobi',
|
50 |
+
]
|
51 |
+
|
52 |
+
@overload
|
53 |
+
def roots_jacobi(
|
54 |
+
n: _IntegerType,
|
55 |
+
alpha: _FloatingType,
|
56 |
+
beta: _FloatingType,
|
57 |
+
) -> _PointsAndWeights: ...
|
58 |
+
@overload
|
59 |
+
def roots_jacobi(
|
60 |
+
n: _IntegerType,
|
61 |
+
alpha: _FloatingType,
|
62 |
+
beta: _FloatingType,
|
63 |
+
mu: Literal[False],
|
64 |
+
) -> _PointsAndWeights: ...
|
65 |
+
@overload
|
66 |
+
def roots_jacobi(
|
67 |
+
n: _IntegerType,
|
68 |
+
alpha: _FloatingType,
|
69 |
+
beta: _FloatingType,
|
70 |
+
mu: Literal[True],
|
71 |
+
) -> _PointsAndWeightsAndMu: ...
|
72 |
+
|
73 |
+
@overload
|
74 |
+
def roots_sh_jacobi(
|
75 |
+
n: _IntegerType,
|
76 |
+
p1: _FloatingType,
|
77 |
+
q1: _FloatingType,
|
78 |
+
) -> _PointsAndWeights: ...
|
79 |
+
@overload
|
80 |
+
def roots_sh_jacobi(
|
81 |
+
n: _IntegerType,
|
82 |
+
p1: _FloatingType,
|
83 |
+
q1: _FloatingType,
|
84 |
+
mu: Literal[False],
|
85 |
+
) -> _PointsAndWeights: ...
|
86 |
+
@overload
|
87 |
+
def roots_sh_jacobi(
|
88 |
+
n: _IntegerType,
|
89 |
+
p1: _FloatingType,
|
90 |
+
q1: _FloatingType,
|
91 |
+
mu: Literal[True],
|
92 |
+
) -> _PointsAndWeightsAndMu: ...
|
93 |
+
|
94 |
+
@overload
|
95 |
+
def roots_genlaguerre(
|
96 |
+
n: _IntegerType,
|
97 |
+
alpha: _FloatingType,
|
98 |
+
) -> _PointsAndWeights: ...
|
99 |
+
@overload
|
100 |
+
def roots_genlaguerre(
|
101 |
+
n: _IntegerType,
|
102 |
+
alpha: _FloatingType,
|
103 |
+
mu: Literal[False],
|
104 |
+
) -> _PointsAndWeights: ...
|
105 |
+
@overload
|
106 |
+
def roots_genlaguerre(
|
107 |
+
n: _IntegerType,
|
108 |
+
alpha: _FloatingType,
|
109 |
+
mu: Literal[True],
|
110 |
+
) -> _PointsAndWeightsAndMu: ...
|
111 |
+
|
112 |
+
@overload
|
113 |
+
def roots_laguerre(n: _IntegerType) -> _PointsAndWeights: ...
|
114 |
+
@overload
|
115 |
+
def roots_laguerre(
|
116 |
+
n: _IntegerType,
|
117 |
+
mu: Literal[False],
|
118 |
+
) -> _PointsAndWeights: ...
|
119 |
+
@overload
|
120 |
+
def roots_laguerre(
|
121 |
+
n: _IntegerType,
|
122 |
+
mu: Literal[True],
|
123 |
+
) -> _PointsAndWeightsAndMu: ...
|
124 |
+
|
125 |
+
@overload
|
126 |
+
def roots_hermite(n: _IntegerType) -> _PointsAndWeights: ...
|
127 |
+
@overload
|
128 |
+
def roots_hermite(
|
129 |
+
n: _IntegerType,
|
130 |
+
mu: Literal[False],
|
131 |
+
) -> _PointsAndWeights: ...
|
132 |
+
@overload
|
133 |
+
def roots_hermite(
|
134 |
+
n: _IntegerType,
|
135 |
+
mu: Literal[True],
|
136 |
+
) -> _PointsAndWeightsAndMu: ...
|
137 |
+
|
138 |
+
@overload
|
139 |
+
def roots_hermitenorm(n: _IntegerType) -> _PointsAndWeights: ...
|
140 |
+
@overload
|
141 |
+
def roots_hermitenorm(
|
142 |
+
n: _IntegerType,
|
143 |
+
mu: Literal[False],
|
144 |
+
) -> _PointsAndWeights: ...
|
145 |
+
@overload
|
146 |
+
def roots_hermitenorm(
|
147 |
+
n: _IntegerType,
|
148 |
+
mu: Literal[True],
|
149 |
+
) -> _PointsAndWeightsAndMu: ...
|
150 |
+
|
151 |
+
@overload
|
152 |
+
def roots_gegenbauer(
|
153 |
+
n: _IntegerType,
|
154 |
+
alpha: _FloatingType,
|
155 |
+
) -> _PointsAndWeights: ...
|
156 |
+
@overload
|
157 |
+
def roots_gegenbauer(
|
158 |
+
n: _IntegerType,
|
159 |
+
alpha: _FloatingType,
|
160 |
+
mu: Literal[False],
|
161 |
+
) -> _PointsAndWeights: ...
|
162 |
+
@overload
|
163 |
+
def roots_gegenbauer(
|
164 |
+
n: _IntegerType,
|
165 |
+
alpha: _FloatingType,
|
166 |
+
mu: Literal[True],
|
167 |
+
) -> _PointsAndWeightsAndMu: ...
|
168 |
+
|
169 |
+
@overload
|
170 |
+
def roots_chebyt(n: _IntegerType) -> _PointsAndWeights: ...
|
171 |
+
@overload
|
172 |
+
def roots_chebyt(
|
173 |
+
n: _IntegerType,
|
174 |
+
mu: Literal[False],
|
175 |
+
) -> _PointsAndWeights: ...
|
176 |
+
@overload
|
177 |
+
def roots_chebyt(
|
178 |
+
n: _IntegerType,
|
179 |
+
mu: Literal[True],
|
180 |
+
) -> _PointsAndWeightsAndMu: ...
|
181 |
+
|
182 |
+
@overload
|
183 |
+
def roots_chebyu(n: _IntegerType) -> _PointsAndWeights: ...
|
184 |
+
@overload
|
185 |
+
def roots_chebyu(
|
186 |
+
n: _IntegerType,
|
187 |
+
mu: Literal[False],
|
188 |
+
) -> _PointsAndWeights: ...
|
189 |
+
@overload
|
190 |
+
def roots_chebyu(
|
191 |
+
n: _IntegerType,
|
192 |
+
mu: Literal[True],
|
193 |
+
) -> _PointsAndWeightsAndMu: ...
|
194 |
+
|
195 |
+
@overload
|
196 |
+
def roots_chebyc(n: _IntegerType) -> _PointsAndWeights: ...
|
197 |
+
@overload
|
198 |
+
def roots_chebyc(
|
199 |
+
n: _IntegerType,
|
200 |
+
mu: Literal[False],
|
201 |
+
) -> _PointsAndWeights: ...
|
202 |
+
@overload
|
203 |
+
def roots_chebyc(
|
204 |
+
n: _IntegerType,
|
205 |
+
mu: Literal[True],
|
206 |
+
) -> _PointsAndWeightsAndMu: ...
|
207 |
+
|
208 |
+
@overload
|
209 |
+
def roots_chebys(n: _IntegerType) -> _PointsAndWeights: ...
|
210 |
+
@overload
|
211 |
+
def roots_chebys(
|
212 |
+
n: _IntegerType,
|
213 |
+
mu: Literal[False],
|
214 |
+
) -> _PointsAndWeights: ...
|
215 |
+
@overload
|
216 |
+
def roots_chebys(
|
217 |
+
n: _IntegerType,
|
218 |
+
mu: Literal[True],
|
219 |
+
) -> _PointsAndWeightsAndMu: ...
|
220 |
+
|
221 |
+
@overload
|
222 |
+
def roots_sh_chebyt(n: _IntegerType) -> _PointsAndWeights: ...
|
223 |
+
@overload
|
224 |
+
def roots_sh_chebyt(
|
225 |
+
n: _IntegerType,
|
226 |
+
mu: Literal[False],
|
227 |
+
) -> _PointsAndWeights: ...
|
228 |
+
@overload
|
229 |
+
def roots_sh_chebyt(
|
230 |
+
n: _IntegerType,
|
231 |
+
mu: Literal[True],
|
232 |
+
) -> _PointsAndWeightsAndMu: ...
|
233 |
+
|
234 |
+
@overload
|
235 |
+
def roots_sh_chebyu(n: _IntegerType) -> _PointsAndWeights: ...
|
236 |
+
@overload
|
237 |
+
def roots_sh_chebyu(
|
238 |
+
n: _IntegerType,
|
239 |
+
mu: Literal[False],
|
240 |
+
) -> _PointsAndWeights: ...
|
241 |
+
@overload
|
242 |
+
def roots_sh_chebyu(
|
243 |
+
n: _IntegerType,
|
244 |
+
mu: Literal[True],
|
245 |
+
) -> _PointsAndWeightsAndMu: ...
|
246 |
+
|
247 |
+
@overload
|
248 |
+
def roots_legendre(n: _IntegerType) -> _PointsAndWeights: ...
|
249 |
+
@overload
|
250 |
+
def roots_legendre(
|
251 |
+
n: _IntegerType,
|
252 |
+
mu: Literal[False],
|
253 |
+
) -> _PointsAndWeights: ...
|
254 |
+
@overload
|
255 |
+
def roots_legendre(
|
256 |
+
n: _IntegerType,
|
257 |
+
mu: Literal[True],
|
258 |
+
) -> _PointsAndWeightsAndMu: ...
|
259 |
+
|
260 |
+
@overload
|
261 |
+
def roots_sh_legendre(n: _IntegerType) -> _PointsAndWeights: ...
|
262 |
+
@overload
|
263 |
+
def roots_sh_legendre(
|
264 |
+
n: _IntegerType,
|
265 |
+
mu: Literal[False],
|
266 |
+
) -> _PointsAndWeights: ...
|
267 |
+
@overload
|
268 |
+
def roots_sh_legendre(
|
269 |
+
n: _IntegerType,
|
270 |
+
mu: Literal[True],
|
271 |
+
) -> _PointsAndWeightsAndMu: ...
|
272 |
+
|
273 |
+
class orthopoly1d(numpy.poly1d):
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
roots: numpy.typing.ArrayLike,
|
277 |
+
weights: numpy.typing.ArrayLike | None,
|
278 |
+
hn: float = ...,
|
279 |
+
kn: float = ...,
|
280 |
+
wfunc = Optional[Callable[[float], float]], # noqa: UP007
|
281 |
+
limits = tuple[float, float] | None,
|
282 |
+
monic: bool = ...,
|
283 |
+
eval_func: numpy.ufunc = ...,
|
284 |
+
) -> None: ...
|
285 |
+
@property
|
286 |
+
def limits(self) -> tuple[float, float]: ...
|
287 |
+
def weight_func(self, x: float) -> float: ...
|
288 |
+
@overload
|
289 |
+
def __call__(self, x: _ArrayLike0D) -> Any: ...
|
290 |
+
@overload
|
291 |
+
def __call__(self, x: numpy.poly1d) -> numpy.poly1d: ... # type: ignore[misc]
|
292 |
+
@overload
|
293 |
+
def __call__(self, x: numpy.typing.ArrayLike) -> numpy.ndarray: ...
|
294 |
+
|
295 |
+
def legendre(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
296 |
+
def chebyt(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
297 |
+
def chebyu(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
298 |
+
def chebyc(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
299 |
+
def chebys(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
300 |
+
def jacobi(
|
301 |
+
n: _IntegerType,
|
302 |
+
alpha: _FloatingType,
|
303 |
+
beta: _FloatingType,
|
304 |
+
monic: bool = ...,
|
305 |
+
) -> orthopoly1d: ...
|
306 |
+
def laguerre(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
307 |
+
def genlaguerre(
|
308 |
+
n: _IntegerType,
|
309 |
+
alpha: _FloatingType,
|
310 |
+
monic: bool = ...,
|
311 |
+
) -> orthopoly1d: ...
|
312 |
+
def hermite(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
313 |
+
def hermitenorm(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
314 |
+
def gegenbauer(
|
315 |
+
n: _IntegerType,
|
316 |
+
alpha: _FloatingType,
|
317 |
+
monic: bool = ...,
|
318 |
+
) -> orthopoly1d: ...
|
319 |
+
def sh_legendre(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
320 |
+
def sh_chebyt(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
321 |
+
def sh_chebyu(n: _IntegerType, monic: bool = ...) -> orthopoly1d: ...
|
322 |
+
def sh_jacobi(
|
323 |
+
n: _IntegerType,
|
324 |
+
p: _FloatingType,
|
325 |
+
q: _FloatingType,
|
326 |
+
monic: bool = ...,
|
327 |
+
) -> orthopoly1d: ...
|
328 |
+
|
329 |
+
# These functions are not public, but still need stubs because they
|
330 |
+
# get checked in the tests.
|
331 |
+
def _roots_hermite_asy(n: _IntegerType) -> _PointsAndWeights: ...
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_sf_error.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Warnings and Exceptions that can be raised by special functions."""
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
|
5 |
+
class SpecialFunctionWarning(Warning):
|
6 |
+
"""Warning that can be emitted by special functions."""
|
7 |
+
pass
|
8 |
+
|
9 |
+
|
10 |
+
warnings.simplefilter("always", category=SpecialFunctionWarning)
|
11 |
+
|
12 |
+
|
13 |
+
class SpecialFunctionError(Exception):
|
14 |
+
"""Exception that can be raised by special functions."""
|
15 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_specfun.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (302 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_spfun_stats.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last Change: Sat Mar 21 02:00 PM 2009 J
|
2 |
+
|
3 |
+
# Copyright (c) 2001, 2002 Enthought, Inc.
|
4 |
+
#
|
5 |
+
# All rights reserved.
|
6 |
+
#
|
7 |
+
# Redistribution and use in source and binary forms, with or without
|
8 |
+
# modification, are permitted provided that the following conditions are met:
|
9 |
+
#
|
10 |
+
# a. Redistributions of source code must retain the above copyright notice,
|
11 |
+
# this list of conditions and the following disclaimer.
|
12 |
+
# b. Redistributions in binary form must reproduce the above copyright
|
13 |
+
# notice, this list of conditions and the following disclaimer in the
|
14 |
+
# documentation and/or other materials provided with the distribution.
|
15 |
+
# c. Neither the name of the Enthought nor the names of its contributors
|
16 |
+
# may be used to endorse or promote products derived from this software
|
17 |
+
# without specific prior written permission.
|
18 |
+
#
|
19 |
+
#
|
20 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
23 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
24 |
+
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
28 |
+
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
29 |
+
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
30 |
+
# DAMAGE.
|
31 |
+
|
32 |
+
"""Some more special functions which may be useful for multivariate statistical
|
33 |
+
analysis."""
|
34 |
+
|
35 |
+
import numpy as np
|
36 |
+
from scipy.special import gammaln as loggam
|
37 |
+
|
38 |
+
|
39 |
+
__all__ = ['multigammaln']
|
40 |
+
|
41 |
+
|
42 |
+
def multigammaln(a, d):
|
43 |
+
r"""Returns the log of multivariate gamma, also sometimes called the
|
44 |
+
generalized gamma.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
a : ndarray
|
49 |
+
The multivariate gamma is computed for each item of `a`.
|
50 |
+
d : int
|
51 |
+
The dimension of the space of integration.
|
52 |
+
|
53 |
+
Returns
|
54 |
+
-------
|
55 |
+
res : ndarray
|
56 |
+
The values of the log multivariate gamma at the given points `a`.
|
57 |
+
|
58 |
+
Notes
|
59 |
+
-----
|
60 |
+
The formal definition of the multivariate gamma of dimension d for a real
|
61 |
+
`a` is
|
62 |
+
|
63 |
+
.. math::
|
64 |
+
|
65 |
+
\Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA
|
66 |
+
|
67 |
+
with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
|
68 |
+
all the positive definite matrices of dimension `d`. Note that `a` is a
|
69 |
+
scalar: the integrand only is multivariate, the argument is not (the
|
70 |
+
function is defined over a subset of the real set).
|
71 |
+
|
72 |
+
This can be proven to be equal to the much friendlier equation
|
73 |
+
|
74 |
+
.. math::
|
75 |
+
|
76 |
+
\Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).
|
77 |
+
|
78 |
+
References
|
79 |
+
----------
|
80 |
+
R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
|
81 |
+
probability and mathematical statistics).
|
82 |
+
|
83 |
+
Examples
|
84 |
+
--------
|
85 |
+
>>> import numpy as np
|
86 |
+
>>> from scipy.special import multigammaln, gammaln
|
87 |
+
>>> a = 23.5
|
88 |
+
>>> d = 10
|
89 |
+
>>> multigammaln(a, d)
|
90 |
+
454.1488605074416
|
91 |
+
|
92 |
+
Verify that the result agrees with the logarithm of the equation
|
93 |
+
shown above:
|
94 |
+
|
95 |
+
>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
|
96 |
+
454.1488605074416
|
97 |
+
"""
|
98 |
+
a = np.asarray(a)
|
99 |
+
if not np.isscalar(d) or (np.floor(d) != d):
|
100 |
+
raise ValueError("d should be a positive integer (dimension)")
|
101 |
+
if np.any(a <= 0.5 * (d - 1)):
|
102 |
+
raise ValueError(f"condition a ({a:f}) > 0.5 * (d-1) ({0.5 * (d-1):f}) not met")
|
103 |
+
|
104 |
+
res = (d * (d-1) * 0.25) * np.log(np.pi)
|
105 |
+
res += np.sum(loggam([(a - (j - 1.)/2) for j in range(1, d+1)]), axis=0)
|
106 |
+
return res
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_spherical_bessel.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from ._ufuncs import (_spherical_jn, _spherical_yn, _spherical_in,
|
3 |
+
_spherical_kn, _spherical_jn_d, _spherical_yn_d,
|
4 |
+
_spherical_in_d, _spherical_kn_d)
|
5 |
+
|
6 |
+
def spherical_jn(n, z, derivative=False):
|
7 |
+
r"""Spherical Bessel function of the first kind or its derivative.
|
8 |
+
|
9 |
+
Defined as [1]_,
|
10 |
+
|
11 |
+
.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),
|
12 |
+
|
13 |
+
where :math:`J_n` is the Bessel function of the first kind.
|
14 |
+
|
15 |
+
Parameters
|
16 |
+
----------
|
17 |
+
n : int, array_like
|
18 |
+
Order of the Bessel function (n >= 0).
|
19 |
+
z : complex or float, array_like
|
20 |
+
Argument of the Bessel function.
|
21 |
+
derivative : bool, optional
|
22 |
+
If True, the value of the derivative (rather than the function
|
23 |
+
itself) is returned.
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
jn : ndarray
|
28 |
+
|
29 |
+
Notes
|
30 |
+
-----
|
31 |
+
For real arguments greater than the order, the function is computed
|
32 |
+
using the ascending recurrence [2]_. For small real or complex
|
33 |
+
arguments, the definitional relation to the cylindrical Bessel function
|
34 |
+
of the first kind is used.
|
35 |
+
|
36 |
+
The derivative is computed using the relations [3]_,
|
37 |
+
|
38 |
+
.. math::
|
39 |
+
j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z).
|
40 |
+
|
41 |
+
j_0'(z) = -j_1(z)
|
42 |
+
|
43 |
+
|
44 |
+
.. versionadded:: 0.18.0
|
45 |
+
|
46 |
+
References
|
47 |
+
----------
|
48 |
+
.. [1] https://dlmf.nist.gov/10.47.E3
|
49 |
+
.. [2] https://dlmf.nist.gov/10.51.E1
|
50 |
+
.. [3] https://dlmf.nist.gov/10.51.E2
|
51 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
52 |
+
Handbook of Mathematical Functions with Formulas,
|
53 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
54 |
+
|
55 |
+
Examples
|
56 |
+
--------
|
57 |
+
The spherical Bessel functions of the first kind :math:`j_n` accept
|
58 |
+
both real and complex second argument. They can return a complex type:
|
59 |
+
|
60 |
+
>>> from scipy.special import spherical_jn
|
61 |
+
>>> spherical_jn(0, 3+5j)
|
62 |
+
(-9.878987731663194-8.021894345786002j)
|
63 |
+
>>> type(spherical_jn(0, 3+5j))
|
64 |
+
<class 'numpy.complex128'>
|
65 |
+
|
66 |
+
We can verify the relation for the derivative from the Notes
|
67 |
+
for :math:`n=3` in the interval :math:`[1, 2]`:
|
68 |
+
|
69 |
+
>>> import numpy as np
|
70 |
+
>>> x = np.arange(1.0, 2.0, 0.01)
|
71 |
+
>>> np.allclose(spherical_jn(3, x, True),
|
72 |
+
... spherical_jn(2, x) - 4/x * spherical_jn(3, x))
|
73 |
+
True
|
74 |
+
|
75 |
+
The first few :math:`j_n` with real argument:
|
76 |
+
|
77 |
+
>>> import matplotlib.pyplot as plt
|
78 |
+
>>> x = np.arange(0.0, 10.0, 0.01)
|
79 |
+
>>> fig, ax = plt.subplots()
|
80 |
+
>>> ax.set_ylim(-0.5, 1.5)
|
81 |
+
>>> ax.set_title(r'Spherical Bessel functions $j_n$')
|
82 |
+
>>> for n in np.arange(0, 4):
|
83 |
+
... ax.plot(x, spherical_jn(n, x), label=rf'$j_{n}$')
|
84 |
+
>>> plt.legend(loc='best')
|
85 |
+
>>> plt.show()
|
86 |
+
|
87 |
+
"""
|
88 |
+
n = np.asarray(n, dtype=np.dtype("long"))
|
89 |
+
if derivative:
|
90 |
+
return _spherical_jn_d(n, z)
|
91 |
+
else:
|
92 |
+
return _spherical_jn(n, z)
|
93 |
+
|
94 |
+
|
95 |
+
def spherical_yn(n, z, derivative=False):
|
96 |
+
r"""Spherical Bessel function of the second kind or its derivative.
|
97 |
+
|
98 |
+
Defined as [1]_,
|
99 |
+
|
100 |
+
.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),
|
101 |
+
|
102 |
+
where :math:`Y_n` is the Bessel function of the second kind.
|
103 |
+
|
104 |
+
Parameters
|
105 |
+
----------
|
106 |
+
n : int, array_like
|
107 |
+
Order of the Bessel function (n >= 0).
|
108 |
+
z : complex or float, array_like
|
109 |
+
Argument of the Bessel function.
|
110 |
+
derivative : bool, optional
|
111 |
+
If True, the value of the derivative (rather than the function
|
112 |
+
itself) is returned.
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
yn : ndarray
|
117 |
+
|
118 |
+
Notes
|
119 |
+
-----
|
120 |
+
For real arguments, the function is computed using the ascending
|
121 |
+
recurrence [2]_. For complex arguments, the definitional relation to
|
122 |
+
the cylindrical Bessel function of the second kind is used.
|
123 |
+
|
124 |
+
The derivative is computed using the relations [3]_,
|
125 |
+
|
126 |
+
.. math::
|
127 |
+
y_n' = y_{n-1} - \frac{n + 1}{z} y_n.
|
128 |
+
|
129 |
+
y_0' = -y_1
|
130 |
+
|
131 |
+
|
132 |
+
.. versionadded:: 0.18.0
|
133 |
+
|
134 |
+
References
|
135 |
+
----------
|
136 |
+
.. [1] https://dlmf.nist.gov/10.47.E4
|
137 |
+
.. [2] https://dlmf.nist.gov/10.51.E1
|
138 |
+
.. [3] https://dlmf.nist.gov/10.51.E2
|
139 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
140 |
+
Handbook of Mathematical Functions with Formulas,
|
141 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
142 |
+
|
143 |
+
Examples
|
144 |
+
--------
|
145 |
+
The spherical Bessel functions of the second kind :math:`y_n` accept
|
146 |
+
both real and complex second argument. They can return a complex type:
|
147 |
+
|
148 |
+
>>> from scipy.special import spherical_yn
|
149 |
+
>>> spherical_yn(0, 3+5j)
|
150 |
+
(8.022343088587197-9.880052589376795j)
|
151 |
+
>>> type(spherical_yn(0, 3+5j))
|
152 |
+
<class 'numpy.complex128'>
|
153 |
+
|
154 |
+
We can verify the relation for the derivative from the Notes
|
155 |
+
for :math:`n=3` in the interval :math:`[1, 2]`:
|
156 |
+
|
157 |
+
>>> import numpy as np
|
158 |
+
>>> x = np.arange(1.0, 2.0, 0.01)
|
159 |
+
>>> np.allclose(spherical_yn(3, x, True),
|
160 |
+
... spherical_yn(2, x) - 4/x * spherical_yn(3, x))
|
161 |
+
True
|
162 |
+
|
163 |
+
The first few :math:`y_n` with real argument:
|
164 |
+
|
165 |
+
>>> import matplotlib.pyplot as plt
|
166 |
+
>>> x = np.arange(0.0, 10.0, 0.01)
|
167 |
+
>>> fig, ax = plt.subplots()
|
168 |
+
>>> ax.set_ylim(-2.0, 1.0)
|
169 |
+
>>> ax.set_title(r'Spherical Bessel functions $y_n$')
|
170 |
+
>>> for n in np.arange(0, 4):
|
171 |
+
... ax.plot(x, spherical_yn(n, x), label=rf'$y_{n}$')
|
172 |
+
>>> plt.legend(loc='best')
|
173 |
+
>>> plt.show()
|
174 |
+
|
175 |
+
"""
|
176 |
+
n = np.asarray(n, dtype=np.dtype("long"))
|
177 |
+
if derivative:
|
178 |
+
return _spherical_yn_d(n, z)
|
179 |
+
else:
|
180 |
+
return _spherical_yn(n, z)
|
181 |
+
|
182 |
+
|
183 |
+
def spherical_in(n, z, derivative=False):
|
184 |
+
r"""Modified spherical Bessel function of the first kind or its derivative.
|
185 |
+
|
186 |
+
Defined as [1]_,
|
187 |
+
|
188 |
+
.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z),
|
189 |
+
|
190 |
+
where :math:`I_n` is the modified Bessel function of the first kind.
|
191 |
+
|
192 |
+
Parameters
|
193 |
+
----------
|
194 |
+
n : int, array_like
|
195 |
+
Order of the Bessel function (n >= 0).
|
196 |
+
z : complex or float, array_like
|
197 |
+
Argument of the Bessel function.
|
198 |
+
derivative : bool, optional
|
199 |
+
If True, the value of the derivative (rather than the function
|
200 |
+
itself) is returned.
|
201 |
+
|
202 |
+
Returns
|
203 |
+
-------
|
204 |
+
in : ndarray
|
205 |
+
|
206 |
+
Notes
|
207 |
+
-----
|
208 |
+
The function is computed using its definitional relation to the
|
209 |
+
modified cylindrical Bessel function of the first kind.
|
210 |
+
|
211 |
+
The derivative is computed using the relations [2]_,
|
212 |
+
|
213 |
+
.. math::
|
214 |
+
i_n' = i_{n-1} - \frac{n + 1}{z} i_n.
|
215 |
+
|
216 |
+
i_1' = i_0
|
217 |
+
|
218 |
+
|
219 |
+
.. versionadded:: 0.18.0
|
220 |
+
|
221 |
+
References
|
222 |
+
----------
|
223 |
+
.. [1] https://dlmf.nist.gov/10.47.E7
|
224 |
+
.. [2] https://dlmf.nist.gov/10.51.E5
|
225 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
226 |
+
Handbook of Mathematical Functions with Formulas,
|
227 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
228 |
+
|
229 |
+
Examples
|
230 |
+
--------
|
231 |
+
The modified spherical Bessel functions of the first kind :math:`i_n`
|
232 |
+
accept both real and complex second argument.
|
233 |
+
They can return a complex type:
|
234 |
+
|
235 |
+
>>> from scipy.special import spherical_in
|
236 |
+
>>> spherical_in(0, 3+5j)
|
237 |
+
(-1.1689867793369182-1.2697305267234222j)
|
238 |
+
>>> type(spherical_in(0, 3+5j))
|
239 |
+
<class 'numpy.complex128'>
|
240 |
+
|
241 |
+
We can verify the relation for the derivative from the Notes
|
242 |
+
for :math:`n=3` in the interval :math:`[1, 2]`:
|
243 |
+
|
244 |
+
>>> import numpy as np
|
245 |
+
>>> x = np.arange(1.0, 2.0, 0.01)
|
246 |
+
>>> np.allclose(spherical_in(3, x, True),
|
247 |
+
... spherical_in(2, x) - 4/x * spherical_in(3, x))
|
248 |
+
True
|
249 |
+
|
250 |
+
The first few :math:`i_n` with real argument:
|
251 |
+
|
252 |
+
>>> import matplotlib.pyplot as plt
|
253 |
+
>>> x = np.arange(0.0, 6.0, 0.01)
|
254 |
+
>>> fig, ax = plt.subplots()
|
255 |
+
>>> ax.set_ylim(-0.5, 5.0)
|
256 |
+
>>> ax.set_title(r'Modified spherical Bessel functions $i_n$')
|
257 |
+
>>> for n in np.arange(0, 4):
|
258 |
+
... ax.plot(x, spherical_in(n, x), label=rf'$i_{n}$')
|
259 |
+
>>> plt.legend(loc='best')
|
260 |
+
>>> plt.show()
|
261 |
+
|
262 |
+
"""
|
263 |
+
n = np.asarray(n, dtype=np.dtype("long"))
|
264 |
+
if derivative:
|
265 |
+
return _spherical_in_d(n, z)
|
266 |
+
else:
|
267 |
+
return _spherical_in(n, z)
|
268 |
+
|
269 |
+
|
270 |
+
def spherical_kn(n, z, derivative=False):
|
271 |
+
r"""Modified spherical Bessel function of the second kind or its derivative.
|
272 |
+
|
273 |
+
Defined as [1]_,
|
274 |
+
|
275 |
+
.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z),
|
276 |
+
|
277 |
+
where :math:`K_n` is the modified Bessel function of the second kind.
|
278 |
+
|
279 |
+
Parameters
|
280 |
+
----------
|
281 |
+
n : int, array_like
|
282 |
+
Order of the Bessel function (n >= 0).
|
283 |
+
z : complex or float, array_like
|
284 |
+
Argument of the Bessel function.
|
285 |
+
derivative : bool, optional
|
286 |
+
If True, the value of the derivative (rather than the function
|
287 |
+
itself) is returned.
|
288 |
+
|
289 |
+
Returns
|
290 |
+
-------
|
291 |
+
kn : ndarray
|
292 |
+
|
293 |
+
Notes
|
294 |
+
-----
|
295 |
+
The function is computed using its definitional relation to the
|
296 |
+
modified cylindrical Bessel function of the second kind.
|
297 |
+
|
298 |
+
The derivative is computed using the relations [2]_,
|
299 |
+
|
300 |
+
.. math::
|
301 |
+
k_n' = -k_{n-1} - \frac{n + 1}{z} k_n.
|
302 |
+
|
303 |
+
k_0' = -k_1
|
304 |
+
|
305 |
+
|
306 |
+
.. versionadded:: 0.18.0
|
307 |
+
|
308 |
+
References
|
309 |
+
----------
|
310 |
+
.. [1] https://dlmf.nist.gov/10.47.E9
|
311 |
+
.. [2] https://dlmf.nist.gov/10.51.E5
|
312 |
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
313 |
+
Handbook of Mathematical Functions with Formulas,
|
314 |
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
315 |
+
|
316 |
+
Examples
|
317 |
+
--------
|
318 |
+
The modified spherical Bessel functions of the second kind :math:`k_n`
|
319 |
+
accept both real and complex second argument.
|
320 |
+
They can return a complex type:
|
321 |
+
|
322 |
+
>>> from scipy.special import spherical_kn
|
323 |
+
>>> spherical_kn(0, 3+5j)
|
324 |
+
(0.012985785614001561+0.003354691603137546j)
|
325 |
+
>>> type(spherical_kn(0, 3+5j))
|
326 |
+
<class 'numpy.complex128'>
|
327 |
+
|
328 |
+
We can verify the relation for the derivative from the Notes
|
329 |
+
for :math:`n=3` in the interval :math:`[1, 2]`:
|
330 |
+
|
331 |
+
>>> import numpy as np
|
332 |
+
>>> x = np.arange(1.0, 2.0, 0.01)
|
333 |
+
>>> np.allclose(spherical_kn(3, x, True),
|
334 |
+
... - 4/x * spherical_kn(3, x) - spherical_kn(2, x))
|
335 |
+
True
|
336 |
+
|
337 |
+
The first few :math:`k_n` with real argument:
|
338 |
+
|
339 |
+
>>> import matplotlib.pyplot as plt
|
340 |
+
>>> x = np.arange(0.0, 4.0, 0.01)
|
341 |
+
>>> fig, ax = plt.subplots()
|
342 |
+
>>> ax.set_ylim(0.0, 5.0)
|
343 |
+
>>> ax.set_title(r'Modified spherical Bessel functions $k_n$')
|
344 |
+
>>> for n in np.arange(0, 4):
|
345 |
+
... ax.plot(x, spherical_kn(n, x), label=rf'$k_{n}$')
|
346 |
+
>>> plt.legend(loc='best')
|
347 |
+
>>> plt.show()
|
348 |
+
|
349 |
+
"""
|
350 |
+
n = np.asarray(n, dtype=np.dtype("long"))
|
351 |
+
if derivative:
|
352 |
+
return _spherical_kn_d(n, z)
|
353 |
+
else:
|
354 |
+
return _spherical_kn(n, z)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_support_alternative_backends.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import functools
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from scipy._lib._array_api import array_namespace, is_cupy, is_torch, is_numpy
|
7 |
+
from . import _ufuncs
|
8 |
+
# These don't really need to be imported, but otherwise IDEs might not realize
|
9 |
+
# that these are defined in this file / report an error in __init__.py
|
10 |
+
from ._ufuncs import (
|
11 |
+
log_ndtr, ndtr, ndtri, erf, erfc, i0, i0e, i1, i1e, # noqa: F401
|
12 |
+
gammaln, gammainc, gammaincc, logit, expit) # noqa: F401
|
13 |
+
|
14 |
+
_SCIPY_ARRAY_API = os.environ.get("SCIPY_ARRAY_API", False)
|
15 |
+
array_api_compat_prefix = "scipy._lib.array_api_compat"
|
16 |
+
|
17 |
+
|
18 |
+
def get_array_special_func(f_name, xp, n_array_args):
|
19 |
+
if is_numpy(xp):
|
20 |
+
f = getattr(_ufuncs, f_name, None)
|
21 |
+
elif is_torch(xp):
|
22 |
+
f = getattr(xp.special, f_name, None)
|
23 |
+
elif is_cupy(xp):
|
24 |
+
import cupyx # type: ignore[import]
|
25 |
+
f = getattr(cupyx.scipy.special, f_name, None)
|
26 |
+
elif xp.__name__ == f"{array_api_compat_prefix}.jax":
|
27 |
+
f = getattr(xp.scipy.special, f_name, None)
|
28 |
+
else:
|
29 |
+
f_scipy = getattr(_ufuncs, f_name, None)
|
30 |
+
def f(*args, **kwargs):
|
31 |
+
array_args = args[:n_array_args]
|
32 |
+
other_args = args[n_array_args:]
|
33 |
+
array_args = [np.asarray(arg) for arg in array_args]
|
34 |
+
out = f_scipy(*array_args, *other_args, **kwargs)
|
35 |
+
return xp.asarray(out)
|
36 |
+
|
37 |
+
return f
|
38 |
+
|
39 |
+
# functools.wraps doesn't work because:
|
40 |
+
# 'numpy.ufunc' object has no attribute '__module__'
|
41 |
+
def support_alternative_backends(f_name, n_array_args):
|
42 |
+
func = getattr(_ufuncs, f_name)
|
43 |
+
|
44 |
+
@functools.wraps(func)
|
45 |
+
def wrapped(*args, **kwargs):
|
46 |
+
xp = array_namespace(*args[:n_array_args])
|
47 |
+
f = get_array_special_func(f_name, xp, n_array_args)
|
48 |
+
return f(*args, **kwargs)
|
49 |
+
|
50 |
+
return wrapped
|
51 |
+
|
52 |
+
|
53 |
+
array_special_func_map = {
|
54 |
+
'log_ndtr': 1,
|
55 |
+
'ndtr': 1,
|
56 |
+
'ndtri': 1,
|
57 |
+
'erf': 1,
|
58 |
+
'erfc': 1,
|
59 |
+
'i0': 1,
|
60 |
+
'i0e': 1,
|
61 |
+
'i1': 1,
|
62 |
+
'i1e': 1,
|
63 |
+
'gammaln': 1,
|
64 |
+
'gammainc': 2,
|
65 |
+
'gammaincc': 2,
|
66 |
+
'logit': 1,
|
67 |
+
'expit': 1,
|
68 |
+
}
|
69 |
+
|
70 |
+
for f_name, n_array_args in array_special_func_map.items():
|
71 |
+
f = (support_alternative_backends(f_name, n_array_args) if _SCIPY_ARRAY_API
|
72 |
+
else getattr(_ufuncs, f_name))
|
73 |
+
sys.modules[__name__].__dict__[f_name] = f
|
74 |
+
|
75 |
+
__all__ = list(array_special_func_map)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_test_internal.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (290 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_testutils.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import functools
|
3 |
+
import operator
|
4 |
+
from scipy._lib import _pep440
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from numpy.testing import assert_
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
import scipy.special as sc
|
11 |
+
|
12 |
+
__all__ = ['with_special_errors', 'assert_func_equal', 'FuncData']
|
13 |
+
|
14 |
+
|
15 |
+
#------------------------------------------------------------------------------
|
16 |
+
# Check if a module is present to be used in tests
|
17 |
+
#------------------------------------------------------------------------------
|
18 |
+
|
19 |
+
class MissingModule:
|
20 |
+
def __init__(self, name):
|
21 |
+
self.name = name
|
22 |
+
|
23 |
+
|
24 |
+
def check_version(module, min_ver):
|
25 |
+
if type(module) == MissingModule:
|
26 |
+
return pytest.mark.skip(reason=f"{module.name} is not installed")
|
27 |
+
return pytest.mark.skipif(
|
28 |
+
_pep440.parse(module.__version__) < _pep440.Version(min_ver),
|
29 |
+
reason=f"{module.__name__} version >= {min_ver} required"
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
#------------------------------------------------------------------------------
|
34 |
+
# Enable convergence and loss of precision warnings -- turn off one by one
|
35 |
+
#------------------------------------------------------------------------------
|
36 |
+
|
37 |
+
def with_special_errors(func):
|
38 |
+
"""
|
39 |
+
Enable special function errors (such as underflow, overflow,
|
40 |
+
loss of precision, etc.)
|
41 |
+
"""
|
42 |
+
@functools.wraps(func)
|
43 |
+
def wrapper(*a, **kw):
|
44 |
+
with sc.errstate(all='raise'):
|
45 |
+
res = func(*a, **kw)
|
46 |
+
return res
|
47 |
+
return wrapper
|
48 |
+
|
49 |
+
|
50 |
+
#------------------------------------------------------------------------------
|
51 |
+
# Comparing function values at many data points at once, with helpful
|
52 |
+
# error reports
|
53 |
+
#------------------------------------------------------------------------------
|
54 |
+
|
55 |
+
def assert_func_equal(func, results, points, rtol=None, atol=None,
|
56 |
+
param_filter=None, knownfailure=None,
|
57 |
+
vectorized=True, dtype=None, nan_ok=False,
|
58 |
+
ignore_inf_sign=False, distinguish_nan_and_inf=True):
|
59 |
+
if hasattr(points, 'next'):
|
60 |
+
# it's a generator
|
61 |
+
points = list(points)
|
62 |
+
|
63 |
+
points = np.asarray(points)
|
64 |
+
if points.ndim == 1:
|
65 |
+
points = points[:,None]
|
66 |
+
nparams = points.shape[1]
|
67 |
+
|
68 |
+
if hasattr(results, '__name__'):
|
69 |
+
# function
|
70 |
+
data = points
|
71 |
+
result_columns = None
|
72 |
+
result_func = results
|
73 |
+
else:
|
74 |
+
# dataset
|
75 |
+
data = np.c_[points, results]
|
76 |
+
result_columns = list(range(nparams, data.shape[1]))
|
77 |
+
result_func = None
|
78 |
+
|
79 |
+
fdata = FuncData(func, data, list(range(nparams)),
|
80 |
+
result_columns=result_columns, result_func=result_func,
|
81 |
+
rtol=rtol, atol=atol, param_filter=param_filter,
|
82 |
+
knownfailure=knownfailure, nan_ok=nan_ok, vectorized=vectorized,
|
83 |
+
ignore_inf_sign=ignore_inf_sign,
|
84 |
+
distinguish_nan_and_inf=distinguish_nan_and_inf)
|
85 |
+
fdata.check()
|
86 |
+
|
87 |
+
|
88 |
+
class FuncData:
|
89 |
+
"""
|
90 |
+
Data set for checking a special function.
|
91 |
+
|
92 |
+
Parameters
|
93 |
+
----------
|
94 |
+
func : function
|
95 |
+
Function to test
|
96 |
+
data : numpy array
|
97 |
+
columnar data to use for testing
|
98 |
+
param_columns : int or tuple of ints
|
99 |
+
Columns indices in which the parameters to `func` lie.
|
100 |
+
Can be imaginary integers to indicate that the parameter
|
101 |
+
should be cast to complex.
|
102 |
+
result_columns : int or tuple of ints, optional
|
103 |
+
Column indices for expected results from `func`.
|
104 |
+
result_func : callable, optional
|
105 |
+
Function to call to obtain results.
|
106 |
+
rtol : float, optional
|
107 |
+
Required relative tolerance. Default is 5*eps.
|
108 |
+
atol : float, optional
|
109 |
+
Required absolute tolerance. Default is 5*tiny.
|
110 |
+
param_filter : function, or tuple of functions/Nones, optional
|
111 |
+
Filter functions to exclude some parameter ranges.
|
112 |
+
If omitted, no filtering is done.
|
113 |
+
knownfailure : str, optional
|
114 |
+
Known failure error message to raise when the test is run.
|
115 |
+
If omitted, no exception is raised.
|
116 |
+
nan_ok : bool, optional
|
117 |
+
If nan is always an accepted result.
|
118 |
+
vectorized : bool, optional
|
119 |
+
Whether all functions passed in are vectorized.
|
120 |
+
ignore_inf_sign : bool, optional
|
121 |
+
Whether to ignore signs of infinities.
|
122 |
+
(Doesn't matter for complex-valued functions.)
|
123 |
+
distinguish_nan_and_inf : bool, optional
|
124 |
+
If True, treat numbers which contain nans or infs as
|
125 |
+
equal. Sets ignore_inf_sign to be True.
|
126 |
+
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, func, data, param_columns, result_columns=None,
|
130 |
+
result_func=None, rtol=None, atol=None, param_filter=None,
|
131 |
+
knownfailure=None, dataname=None, nan_ok=False, vectorized=True,
|
132 |
+
ignore_inf_sign=False, distinguish_nan_and_inf=True):
|
133 |
+
self.func = func
|
134 |
+
self.data = data
|
135 |
+
self.dataname = dataname
|
136 |
+
if not hasattr(param_columns, '__len__'):
|
137 |
+
param_columns = (param_columns,)
|
138 |
+
self.param_columns = tuple(param_columns)
|
139 |
+
if result_columns is not None:
|
140 |
+
if not hasattr(result_columns, '__len__'):
|
141 |
+
result_columns = (result_columns,)
|
142 |
+
self.result_columns = tuple(result_columns)
|
143 |
+
if result_func is not None:
|
144 |
+
message = "Only result_func or result_columns should be provided"
|
145 |
+
raise ValueError(message)
|
146 |
+
elif result_func is not None:
|
147 |
+
self.result_columns = None
|
148 |
+
else:
|
149 |
+
raise ValueError("Either result_func or result_columns should be provided")
|
150 |
+
self.result_func = result_func
|
151 |
+
self.rtol = rtol
|
152 |
+
self.atol = atol
|
153 |
+
if not hasattr(param_filter, '__len__'):
|
154 |
+
param_filter = (param_filter,)
|
155 |
+
self.param_filter = param_filter
|
156 |
+
self.knownfailure = knownfailure
|
157 |
+
self.nan_ok = nan_ok
|
158 |
+
self.vectorized = vectorized
|
159 |
+
self.ignore_inf_sign = ignore_inf_sign
|
160 |
+
self.distinguish_nan_and_inf = distinguish_nan_and_inf
|
161 |
+
if not self.distinguish_nan_and_inf:
|
162 |
+
self.ignore_inf_sign = True
|
163 |
+
|
164 |
+
def get_tolerances(self, dtype):
|
165 |
+
if not np.issubdtype(dtype, np.inexact):
|
166 |
+
dtype = np.dtype(float)
|
167 |
+
info = np.finfo(dtype)
|
168 |
+
rtol, atol = self.rtol, self.atol
|
169 |
+
if rtol is None:
|
170 |
+
rtol = 5*info.eps
|
171 |
+
if atol is None:
|
172 |
+
atol = 5*info.tiny
|
173 |
+
return rtol, atol
|
174 |
+
|
175 |
+
def check(self, data=None, dtype=None, dtypes=None):
|
176 |
+
"""Check the special function against the data."""
|
177 |
+
__tracebackhide__ = operator.methodcaller(
|
178 |
+
'errisinstance', AssertionError
|
179 |
+
)
|
180 |
+
|
181 |
+
if self.knownfailure:
|
182 |
+
pytest.xfail(reason=self.knownfailure)
|
183 |
+
|
184 |
+
if data is None:
|
185 |
+
data = self.data
|
186 |
+
|
187 |
+
if dtype is None:
|
188 |
+
dtype = data.dtype
|
189 |
+
else:
|
190 |
+
data = data.astype(dtype)
|
191 |
+
|
192 |
+
rtol, atol = self.get_tolerances(dtype)
|
193 |
+
|
194 |
+
# Apply given filter functions
|
195 |
+
if self.param_filter:
|
196 |
+
param_mask = np.ones((data.shape[0],), np.bool_)
|
197 |
+
for j, filter in zip(self.param_columns, self.param_filter):
|
198 |
+
if filter:
|
199 |
+
param_mask &= list(filter(data[:,j]))
|
200 |
+
data = data[param_mask]
|
201 |
+
|
202 |
+
# Pick parameters from the correct columns
|
203 |
+
params = []
|
204 |
+
for idx, j in enumerate(self.param_columns):
|
205 |
+
if np.iscomplexobj(j):
|
206 |
+
j = int(j.imag)
|
207 |
+
params.append(data[:,j].astype(complex))
|
208 |
+
elif dtypes and idx < len(dtypes):
|
209 |
+
params.append(data[:, j].astype(dtypes[idx]))
|
210 |
+
else:
|
211 |
+
params.append(data[:,j])
|
212 |
+
|
213 |
+
# Helper for evaluating results
|
214 |
+
def eval_func_at_params(func, skip_mask=None):
|
215 |
+
if self.vectorized:
|
216 |
+
got = func(*params)
|
217 |
+
else:
|
218 |
+
got = []
|
219 |
+
for j in range(len(params[0])):
|
220 |
+
if skip_mask is not None and skip_mask[j]:
|
221 |
+
got.append(np.nan)
|
222 |
+
continue
|
223 |
+
got.append(func(*tuple([params[i][j] for i in range(len(params))])))
|
224 |
+
got = np.asarray(got)
|
225 |
+
if not isinstance(got, tuple):
|
226 |
+
got = (got,)
|
227 |
+
return got
|
228 |
+
|
229 |
+
# Evaluate function to be tested
|
230 |
+
got = eval_func_at_params(self.func)
|
231 |
+
|
232 |
+
# Grab the correct results
|
233 |
+
if self.result_columns is not None:
|
234 |
+
# Correct results passed in with the data
|
235 |
+
wanted = tuple([data[:,icol] for icol in self.result_columns])
|
236 |
+
else:
|
237 |
+
# Function producing correct results passed in
|
238 |
+
skip_mask = None
|
239 |
+
if self.nan_ok and len(got) == 1:
|
240 |
+
# Don't spend time evaluating what doesn't need to be evaluated
|
241 |
+
skip_mask = np.isnan(got[0])
|
242 |
+
wanted = eval_func_at_params(self.result_func, skip_mask=skip_mask)
|
243 |
+
|
244 |
+
# Check the validity of each output returned
|
245 |
+
assert_(len(got) == len(wanted))
|
246 |
+
|
247 |
+
for output_num, (x, y) in enumerate(zip(got, wanted)):
|
248 |
+
if np.issubdtype(x.dtype, np.complexfloating) or self.ignore_inf_sign:
|
249 |
+
pinf_x = np.isinf(x)
|
250 |
+
pinf_y = np.isinf(y)
|
251 |
+
minf_x = np.isinf(x)
|
252 |
+
minf_y = np.isinf(y)
|
253 |
+
else:
|
254 |
+
pinf_x = np.isposinf(x)
|
255 |
+
pinf_y = np.isposinf(y)
|
256 |
+
minf_x = np.isneginf(x)
|
257 |
+
minf_y = np.isneginf(y)
|
258 |
+
nan_x = np.isnan(x)
|
259 |
+
nan_y = np.isnan(y)
|
260 |
+
|
261 |
+
with np.errstate(all='ignore'):
|
262 |
+
abs_y = np.absolute(y)
|
263 |
+
abs_y[~np.isfinite(abs_y)] = 0
|
264 |
+
diff = np.absolute(x - y)
|
265 |
+
diff[~np.isfinite(diff)] = 0
|
266 |
+
|
267 |
+
rdiff = diff / np.absolute(y)
|
268 |
+
rdiff[~np.isfinite(rdiff)] = 0
|
269 |
+
|
270 |
+
tol_mask = (diff <= atol + rtol*abs_y)
|
271 |
+
pinf_mask = (pinf_x == pinf_y)
|
272 |
+
minf_mask = (minf_x == minf_y)
|
273 |
+
|
274 |
+
nan_mask = (nan_x == nan_y)
|
275 |
+
|
276 |
+
bad_j = ~(tol_mask & pinf_mask & minf_mask & nan_mask)
|
277 |
+
|
278 |
+
point_count = bad_j.size
|
279 |
+
if self.nan_ok:
|
280 |
+
bad_j &= ~nan_x
|
281 |
+
bad_j &= ~nan_y
|
282 |
+
point_count -= (nan_x | nan_y).sum()
|
283 |
+
|
284 |
+
if not self.distinguish_nan_and_inf and not self.nan_ok:
|
285 |
+
# If nan's are okay we've already covered all these cases
|
286 |
+
inf_x = np.isinf(x)
|
287 |
+
inf_y = np.isinf(y)
|
288 |
+
both_nonfinite = (inf_x & nan_y) | (nan_x & inf_y)
|
289 |
+
bad_j &= ~both_nonfinite
|
290 |
+
point_count -= both_nonfinite.sum()
|
291 |
+
|
292 |
+
if np.any(bad_j):
|
293 |
+
# Some bad results: inform what, where, and how bad
|
294 |
+
msg = [""]
|
295 |
+
msg.append("Max |adiff|: %g" % diff[bad_j].max())
|
296 |
+
msg.append("Max |rdiff|: %g" % rdiff[bad_j].max())
|
297 |
+
msg.append("Bad results (%d out of %d) for the following points "
|
298 |
+
"(in output %d):"
|
299 |
+
% (np.sum(bad_j), point_count, output_num,))
|
300 |
+
for j in np.nonzero(bad_j)[0]:
|
301 |
+
j = int(j)
|
302 |
+
def fmt(x):
|
303 |
+
return '%30s' % np.array2string(x[j], precision=18)
|
304 |
+
a = " ".join(map(fmt, params))
|
305 |
+
b = " ".join(map(fmt, got))
|
306 |
+
c = " ".join(map(fmt, wanted))
|
307 |
+
d = fmt(rdiff)
|
308 |
+
msg.append(f"{a} => {b} != {c} (rdiff {d})")
|
309 |
+
assert_(False, "\n".join(msg))
|
310 |
+
|
311 |
+
def __repr__(self):
|
312 |
+
"""Pretty-printing, esp. for Nose output"""
|
313 |
+
if np.any(list(map(np.iscomplexobj, self.param_columns))):
|
314 |
+
is_complex = " (complex)"
|
315 |
+
else:
|
316 |
+
is_complex = ""
|
317 |
+
if self.dataname:
|
318 |
+
return "<Data for {}{}: {}>".format(self.func.__name__, is_complex,
|
319 |
+
os.path.basename(self.dataname))
|
320 |
+
else:
|
321 |
+
return f"<Data for {self.func.__name__}{is_complex}>"
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyi
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is automatically generated by _generate_pyx.py.
|
2 |
+
# Do not edit manually!
|
3 |
+
|
4 |
+
from typing import Any, Dict
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'geterr',
|
10 |
+
'seterr',
|
11 |
+
'errstate',
|
12 |
+
'agm',
|
13 |
+
'airy',
|
14 |
+
'airye',
|
15 |
+
'bdtr',
|
16 |
+
'bdtrc',
|
17 |
+
'bdtri',
|
18 |
+
'bdtrik',
|
19 |
+
'bdtrin',
|
20 |
+
'bei',
|
21 |
+
'beip',
|
22 |
+
'ber',
|
23 |
+
'berp',
|
24 |
+
'besselpoly',
|
25 |
+
'beta',
|
26 |
+
'betainc',
|
27 |
+
'betaincc',
|
28 |
+
'betainccinv',
|
29 |
+
'betaincinv',
|
30 |
+
'betaln',
|
31 |
+
'binom',
|
32 |
+
'boxcox',
|
33 |
+
'boxcox1p',
|
34 |
+
'btdtr',
|
35 |
+
'btdtri',
|
36 |
+
'btdtria',
|
37 |
+
'btdtrib',
|
38 |
+
'cbrt',
|
39 |
+
'chdtr',
|
40 |
+
'chdtrc',
|
41 |
+
'chdtri',
|
42 |
+
'chdtriv',
|
43 |
+
'chndtr',
|
44 |
+
'chndtridf',
|
45 |
+
'chndtrinc',
|
46 |
+
'chndtrix',
|
47 |
+
'cosdg',
|
48 |
+
'cosm1',
|
49 |
+
'cotdg',
|
50 |
+
'dawsn',
|
51 |
+
'ellipe',
|
52 |
+
'ellipeinc',
|
53 |
+
'ellipj',
|
54 |
+
'ellipk',
|
55 |
+
'ellipkinc',
|
56 |
+
'ellipkm1',
|
57 |
+
'elliprc',
|
58 |
+
'elliprd',
|
59 |
+
'elliprf',
|
60 |
+
'elliprg',
|
61 |
+
'elliprj',
|
62 |
+
'entr',
|
63 |
+
'erf',
|
64 |
+
'erfc',
|
65 |
+
'erfcinv',
|
66 |
+
'erfcx',
|
67 |
+
'erfi',
|
68 |
+
'erfinv',
|
69 |
+
'eval_chebyc',
|
70 |
+
'eval_chebys',
|
71 |
+
'eval_chebyt',
|
72 |
+
'eval_chebyu',
|
73 |
+
'eval_gegenbauer',
|
74 |
+
'eval_genlaguerre',
|
75 |
+
'eval_hermite',
|
76 |
+
'eval_hermitenorm',
|
77 |
+
'eval_jacobi',
|
78 |
+
'eval_laguerre',
|
79 |
+
'eval_legendre',
|
80 |
+
'eval_sh_chebyt',
|
81 |
+
'eval_sh_chebyu',
|
82 |
+
'eval_sh_jacobi',
|
83 |
+
'eval_sh_legendre',
|
84 |
+
'exp1',
|
85 |
+
'exp10',
|
86 |
+
'exp2',
|
87 |
+
'expi',
|
88 |
+
'expit',
|
89 |
+
'expm1',
|
90 |
+
'expn',
|
91 |
+
'exprel',
|
92 |
+
'fdtr',
|
93 |
+
'fdtrc',
|
94 |
+
'fdtri',
|
95 |
+
'fdtridfd',
|
96 |
+
'fresnel',
|
97 |
+
'gamma',
|
98 |
+
'gammainc',
|
99 |
+
'gammaincc',
|
100 |
+
'gammainccinv',
|
101 |
+
'gammaincinv',
|
102 |
+
'gammaln',
|
103 |
+
'gammasgn',
|
104 |
+
'gdtr',
|
105 |
+
'gdtrc',
|
106 |
+
'gdtria',
|
107 |
+
'gdtrib',
|
108 |
+
'gdtrix',
|
109 |
+
'hankel1',
|
110 |
+
'hankel1e',
|
111 |
+
'hankel2',
|
112 |
+
'hankel2e',
|
113 |
+
'huber',
|
114 |
+
'hyp0f1',
|
115 |
+
'hyp1f1',
|
116 |
+
'hyp2f1',
|
117 |
+
'hyperu',
|
118 |
+
'i0',
|
119 |
+
'i0e',
|
120 |
+
'i1',
|
121 |
+
'i1e',
|
122 |
+
'inv_boxcox',
|
123 |
+
'inv_boxcox1p',
|
124 |
+
'it2i0k0',
|
125 |
+
'it2j0y0',
|
126 |
+
'it2struve0',
|
127 |
+
'itairy',
|
128 |
+
'iti0k0',
|
129 |
+
'itj0y0',
|
130 |
+
'itmodstruve0',
|
131 |
+
'itstruve0',
|
132 |
+
'iv',
|
133 |
+
'ive',
|
134 |
+
'j0',
|
135 |
+
'j1',
|
136 |
+
'jn',
|
137 |
+
'jv',
|
138 |
+
'jve',
|
139 |
+
'k0',
|
140 |
+
'k0e',
|
141 |
+
'k1',
|
142 |
+
'k1e',
|
143 |
+
'kei',
|
144 |
+
'keip',
|
145 |
+
'kelvin',
|
146 |
+
'ker',
|
147 |
+
'kerp',
|
148 |
+
'kl_div',
|
149 |
+
'kn',
|
150 |
+
'kolmogi',
|
151 |
+
'kolmogorov',
|
152 |
+
'kv',
|
153 |
+
'kve',
|
154 |
+
'log1p',
|
155 |
+
'log_expit',
|
156 |
+
'log_ndtr',
|
157 |
+
'loggamma',
|
158 |
+
'logit',
|
159 |
+
'lpmv',
|
160 |
+
'mathieu_a',
|
161 |
+
'mathieu_b',
|
162 |
+
'mathieu_cem',
|
163 |
+
'mathieu_modcem1',
|
164 |
+
'mathieu_modcem2',
|
165 |
+
'mathieu_modsem1',
|
166 |
+
'mathieu_modsem2',
|
167 |
+
'mathieu_sem',
|
168 |
+
'modfresnelm',
|
169 |
+
'modfresnelp',
|
170 |
+
'modstruve',
|
171 |
+
'nbdtr',
|
172 |
+
'nbdtrc',
|
173 |
+
'nbdtri',
|
174 |
+
'nbdtrik',
|
175 |
+
'nbdtrin',
|
176 |
+
'ncfdtr',
|
177 |
+
'ncfdtri',
|
178 |
+
'ncfdtridfd',
|
179 |
+
'ncfdtridfn',
|
180 |
+
'ncfdtrinc',
|
181 |
+
'nctdtr',
|
182 |
+
'nctdtridf',
|
183 |
+
'nctdtrinc',
|
184 |
+
'nctdtrit',
|
185 |
+
'ndtr',
|
186 |
+
'ndtri',
|
187 |
+
'ndtri_exp',
|
188 |
+
'nrdtrimn',
|
189 |
+
'nrdtrisd',
|
190 |
+
'obl_ang1',
|
191 |
+
'obl_ang1_cv',
|
192 |
+
'obl_cv',
|
193 |
+
'obl_rad1',
|
194 |
+
'obl_rad1_cv',
|
195 |
+
'obl_rad2',
|
196 |
+
'obl_rad2_cv',
|
197 |
+
'owens_t',
|
198 |
+
'pbdv',
|
199 |
+
'pbvv',
|
200 |
+
'pbwa',
|
201 |
+
'pdtr',
|
202 |
+
'pdtrc',
|
203 |
+
'pdtri',
|
204 |
+
'pdtrik',
|
205 |
+
'poch',
|
206 |
+
'powm1',
|
207 |
+
'pro_ang1',
|
208 |
+
'pro_ang1_cv',
|
209 |
+
'pro_cv',
|
210 |
+
'pro_rad1',
|
211 |
+
'pro_rad1_cv',
|
212 |
+
'pro_rad2',
|
213 |
+
'pro_rad2_cv',
|
214 |
+
'pseudo_huber',
|
215 |
+
'psi',
|
216 |
+
'radian',
|
217 |
+
'rel_entr',
|
218 |
+
'rgamma',
|
219 |
+
'round',
|
220 |
+
'shichi',
|
221 |
+
'sici',
|
222 |
+
'sindg',
|
223 |
+
'smirnov',
|
224 |
+
'smirnovi',
|
225 |
+
'spence',
|
226 |
+
'sph_harm',
|
227 |
+
'stdtr',
|
228 |
+
'stdtridf',
|
229 |
+
'stdtrit',
|
230 |
+
'struve',
|
231 |
+
'tandg',
|
232 |
+
'tklmbda',
|
233 |
+
'voigt_profile',
|
234 |
+
'wofz',
|
235 |
+
'wright_bessel',
|
236 |
+
'wrightomega',
|
237 |
+
'xlog1py',
|
238 |
+
'xlogy',
|
239 |
+
'y0',
|
240 |
+
'y1',
|
241 |
+
'yn',
|
242 |
+
'yv',
|
243 |
+
'yve',
|
244 |
+
'zetac'
|
245 |
+
]
|
246 |
+
|
247 |
+
def geterr() -> Dict[str, str]: ...
|
248 |
+
def seterr(**kwargs: str) -> Dict[str, str]: ...
|
249 |
+
|
250 |
+
class errstate:
|
251 |
+
def __init__(self, **kargs: str) -> None: ...
|
252 |
+
def __enter__(self) -> None: ...
|
253 |
+
def __exit__(
|
254 |
+
self,
|
255 |
+
exc_type: Any, # Unused
|
256 |
+
exc_value: Any, # Unused
|
257 |
+
traceback: Any, # Unused
|
258 |
+
) -> None: ...
|
259 |
+
|
260 |
+
_cosine_cdf: np.ufunc
|
261 |
+
_cosine_invcdf: np.ufunc
|
262 |
+
_cospi: np.ufunc
|
263 |
+
_ellip_harm: np.ufunc
|
264 |
+
_factorial: np.ufunc
|
265 |
+
_igam_fac: np.ufunc
|
266 |
+
_kolmogc: np.ufunc
|
267 |
+
_kolmogci: np.ufunc
|
268 |
+
_kolmogp: np.ufunc
|
269 |
+
_lambertw: np.ufunc
|
270 |
+
_lanczos_sum_expg_scaled: np.ufunc
|
271 |
+
_lgam1p: np.ufunc
|
272 |
+
_log1pmx: np.ufunc
|
273 |
+
_riemann_zeta: np.ufunc
|
274 |
+
_scaled_exp1: np.ufunc
|
275 |
+
_sf_error_test_function: np.ufunc
|
276 |
+
_sinpi: np.ufunc
|
277 |
+
_smirnovc: np.ufunc
|
278 |
+
_smirnovci: np.ufunc
|
279 |
+
_smirnovp: np.ufunc
|
280 |
+
_spherical_in: np.ufunc
|
281 |
+
_spherical_in_d: np.ufunc
|
282 |
+
_spherical_jn: np.ufunc
|
283 |
+
_spherical_jn_d: np.ufunc
|
284 |
+
_spherical_kn: np.ufunc
|
285 |
+
_spherical_kn_d: np.ufunc
|
286 |
+
_spherical_yn: np.ufunc
|
287 |
+
_spherical_yn_d: np.ufunc
|
288 |
+
_stirling2_inexact: np.ufunc
|
289 |
+
_struve_asymp_large_z: np.ufunc
|
290 |
+
_struve_bessel_series: np.ufunc
|
291 |
+
_struve_power_series: np.ufunc
|
292 |
+
_zeta: np.ufunc
|
293 |
+
agm: np.ufunc
|
294 |
+
airy: np.ufunc
|
295 |
+
airye: np.ufunc
|
296 |
+
bdtr: np.ufunc
|
297 |
+
bdtrc: np.ufunc
|
298 |
+
bdtri: np.ufunc
|
299 |
+
bdtrik: np.ufunc
|
300 |
+
bdtrin: np.ufunc
|
301 |
+
bei: np.ufunc
|
302 |
+
beip: np.ufunc
|
303 |
+
ber: np.ufunc
|
304 |
+
berp: np.ufunc
|
305 |
+
besselpoly: np.ufunc
|
306 |
+
beta: np.ufunc
|
307 |
+
betainc: np.ufunc
|
308 |
+
betaincc: np.ufunc
|
309 |
+
betainccinv: np.ufunc
|
310 |
+
betaincinv: np.ufunc
|
311 |
+
betaln: np.ufunc
|
312 |
+
binom: np.ufunc
|
313 |
+
boxcox1p: np.ufunc
|
314 |
+
boxcox: np.ufunc
|
315 |
+
btdtr: np.ufunc
|
316 |
+
btdtri: np.ufunc
|
317 |
+
btdtria: np.ufunc
|
318 |
+
btdtrib: np.ufunc
|
319 |
+
cbrt: np.ufunc
|
320 |
+
chdtr: np.ufunc
|
321 |
+
chdtrc: np.ufunc
|
322 |
+
chdtri: np.ufunc
|
323 |
+
chdtriv: np.ufunc
|
324 |
+
chndtr: np.ufunc
|
325 |
+
chndtridf: np.ufunc
|
326 |
+
chndtrinc: np.ufunc
|
327 |
+
chndtrix: np.ufunc
|
328 |
+
cosdg: np.ufunc
|
329 |
+
cosm1: np.ufunc
|
330 |
+
cotdg: np.ufunc
|
331 |
+
dawsn: np.ufunc
|
332 |
+
ellipe: np.ufunc
|
333 |
+
ellipeinc: np.ufunc
|
334 |
+
ellipj: np.ufunc
|
335 |
+
ellipk: np.ufunc
|
336 |
+
ellipkinc: np.ufunc
|
337 |
+
ellipkm1: np.ufunc
|
338 |
+
elliprc: np.ufunc
|
339 |
+
elliprd: np.ufunc
|
340 |
+
elliprf: np.ufunc
|
341 |
+
elliprg: np.ufunc
|
342 |
+
elliprj: np.ufunc
|
343 |
+
entr: np.ufunc
|
344 |
+
erf: np.ufunc
|
345 |
+
erfc: np.ufunc
|
346 |
+
erfcinv: np.ufunc
|
347 |
+
erfcx: np.ufunc
|
348 |
+
erfi: np.ufunc
|
349 |
+
erfinv: np.ufunc
|
350 |
+
eval_chebyc: np.ufunc
|
351 |
+
eval_chebys: np.ufunc
|
352 |
+
eval_chebyt: np.ufunc
|
353 |
+
eval_chebyu: np.ufunc
|
354 |
+
eval_gegenbauer: np.ufunc
|
355 |
+
eval_genlaguerre: np.ufunc
|
356 |
+
eval_hermite: np.ufunc
|
357 |
+
eval_hermitenorm: np.ufunc
|
358 |
+
eval_jacobi: np.ufunc
|
359 |
+
eval_laguerre: np.ufunc
|
360 |
+
eval_legendre: np.ufunc
|
361 |
+
eval_sh_chebyt: np.ufunc
|
362 |
+
eval_sh_chebyu: np.ufunc
|
363 |
+
eval_sh_jacobi: np.ufunc
|
364 |
+
eval_sh_legendre: np.ufunc
|
365 |
+
exp10: np.ufunc
|
366 |
+
exp1: np.ufunc
|
367 |
+
exp2: np.ufunc
|
368 |
+
expi: np.ufunc
|
369 |
+
expit: np.ufunc
|
370 |
+
expm1: np.ufunc
|
371 |
+
expn: np.ufunc
|
372 |
+
exprel: np.ufunc
|
373 |
+
fdtr: np.ufunc
|
374 |
+
fdtrc: np.ufunc
|
375 |
+
fdtri: np.ufunc
|
376 |
+
fdtridfd: np.ufunc
|
377 |
+
fresnel: np.ufunc
|
378 |
+
gamma: np.ufunc
|
379 |
+
gammainc: np.ufunc
|
380 |
+
gammaincc: np.ufunc
|
381 |
+
gammainccinv: np.ufunc
|
382 |
+
gammaincinv: np.ufunc
|
383 |
+
gammaln: np.ufunc
|
384 |
+
gammasgn: np.ufunc
|
385 |
+
gdtr: np.ufunc
|
386 |
+
gdtrc: np.ufunc
|
387 |
+
gdtria: np.ufunc
|
388 |
+
gdtrib: np.ufunc
|
389 |
+
gdtrix: np.ufunc
|
390 |
+
hankel1: np.ufunc
|
391 |
+
hankel1e: np.ufunc
|
392 |
+
hankel2: np.ufunc
|
393 |
+
hankel2e: np.ufunc
|
394 |
+
huber: np.ufunc
|
395 |
+
hyp0f1: np.ufunc
|
396 |
+
hyp1f1: np.ufunc
|
397 |
+
hyp2f1: np.ufunc
|
398 |
+
hyperu: np.ufunc
|
399 |
+
i0: np.ufunc
|
400 |
+
i0e: np.ufunc
|
401 |
+
i1: np.ufunc
|
402 |
+
i1e: np.ufunc
|
403 |
+
inv_boxcox1p: np.ufunc
|
404 |
+
inv_boxcox: np.ufunc
|
405 |
+
it2i0k0: np.ufunc
|
406 |
+
it2j0y0: np.ufunc
|
407 |
+
it2struve0: np.ufunc
|
408 |
+
itairy: np.ufunc
|
409 |
+
iti0k0: np.ufunc
|
410 |
+
itj0y0: np.ufunc
|
411 |
+
itmodstruve0: np.ufunc
|
412 |
+
itstruve0: np.ufunc
|
413 |
+
iv: np.ufunc
|
414 |
+
ive: np.ufunc
|
415 |
+
j0: np.ufunc
|
416 |
+
j1: np.ufunc
|
417 |
+
jn: np.ufunc
|
418 |
+
jv: np.ufunc
|
419 |
+
jve: np.ufunc
|
420 |
+
k0: np.ufunc
|
421 |
+
k0e: np.ufunc
|
422 |
+
k1: np.ufunc
|
423 |
+
k1e: np.ufunc
|
424 |
+
kei: np.ufunc
|
425 |
+
keip: np.ufunc
|
426 |
+
kelvin: np.ufunc
|
427 |
+
ker: np.ufunc
|
428 |
+
kerp: np.ufunc
|
429 |
+
kl_div: np.ufunc
|
430 |
+
kn: np.ufunc
|
431 |
+
kolmogi: np.ufunc
|
432 |
+
kolmogorov: np.ufunc
|
433 |
+
kv: np.ufunc
|
434 |
+
kve: np.ufunc
|
435 |
+
log1p: np.ufunc
|
436 |
+
log_expit: np.ufunc
|
437 |
+
log_ndtr: np.ufunc
|
438 |
+
loggamma: np.ufunc
|
439 |
+
logit: np.ufunc
|
440 |
+
lpmv: np.ufunc
|
441 |
+
mathieu_a: np.ufunc
|
442 |
+
mathieu_b: np.ufunc
|
443 |
+
mathieu_cem: np.ufunc
|
444 |
+
mathieu_modcem1: np.ufunc
|
445 |
+
mathieu_modcem2: np.ufunc
|
446 |
+
mathieu_modsem1: np.ufunc
|
447 |
+
mathieu_modsem2: np.ufunc
|
448 |
+
mathieu_sem: np.ufunc
|
449 |
+
modfresnelm: np.ufunc
|
450 |
+
modfresnelp: np.ufunc
|
451 |
+
modstruve: np.ufunc
|
452 |
+
nbdtr: np.ufunc
|
453 |
+
nbdtrc: np.ufunc
|
454 |
+
nbdtri: np.ufunc
|
455 |
+
nbdtrik: np.ufunc
|
456 |
+
nbdtrin: np.ufunc
|
457 |
+
ncfdtr: np.ufunc
|
458 |
+
ncfdtri: np.ufunc
|
459 |
+
ncfdtridfd: np.ufunc
|
460 |
+
ncfdtridfn: np.ufunc
|
461 |
+
ncfdtrinc: np.ufunc
|
462 |
+
nctdtr: np.ufunc
|
463 |
+
nctdtridf: np.ufunc
|
464 |
+
nctdtrinc: np.ufunc
|
465 |
+
nctdtrit: np.ufunc
|
466 |
+
ndtr: np.ufunc
|
467 |
+
ndtri: np.ufunc
|
468 |
+
ndtri_exp: np.ufunc
|
469 |
+
nrdtrimn: np.ufunc
|
470 |
+
nrdtrisd: np.ufunc
|
471 |
+
obl_ang1: np.ufunc
|
472 |
+
obl_ang1_cv: np.ufunc
|
473 |
+
obl_cv: np.ufunc
|
474 |
+
obl_rad1: np.ufunc
|
475 |
+
obl_rad1_cv: np.ufunc
|
476 |
+
obl_rad2: np.ufunc
|
477 |
+
obl_rad2_cv: np.ufunc
|
478 |
+
owens_t: np.ufunc
|
479 |
+
pbdv: np.ufunc
|
480 |
+
pbvv: np.ufunc
|
481 |
+
pbwa: np.ufunc
|
482 |
+
pdtr: np.ufunc
|
483 |
+
pdtrc: np.ufunc
|
484 |
+
pdtri: np.ufunc
|
485 |
+
pdtrik: np.ufunc
|
486 |
+
poch: np.ufunc
|
487 |
+
powm1: np.ufunc
|
488 |
+
pro_ang1: np.ufunc
|
489 |
+
pro_ang1_cv: np.ufunc
|
490 |
+
pro_cv: np.ufunc
|
491 |
+
pro_rad1: np.ufunc
|
492 |
+
pro_rad1_cv: np.ufunc
|
493 |
+
pro_rad2: np.ufunc
|
494 |
+
pro_rad2_cv: np.ufunc
|
495 |
+
pseudo_huber: np.ufunc
|
496 |
+
psi: np.ufunc
|
497 |
+
radian: np.ufunc
|
498 |
+
rel_entr: np.ufunc
|
499 |
+
rgamma: np.ufunc
|
500 |
+
round: np.ufunc
|
501 |
+
shichi: np.ufunc
|
502 |
+
sici: np.ufunc
|
503 |
+
sindg: np.ufunc
|
504 |
+
smirnov: np.ufunc
|
505 |
+
smirnovi: np.ufunc
|
506 |
+
spence: np.ufunc
|
507 |
+
sph_harm: np.ufunc
|
508 |
+
stdtr: np.ufunc
|
509 |
+
stdtridf: np.ufunc
|
510 |
+
stdtrit: np.ufunc
|
511 |
+
struve: np.ufunc
|
512 |
+
tandg: np.ufunc
|
513 |
+
tklmbda: np.ufunc
|
514 |
+
voigt_profile: np.ufunc
|
515 |
+
wofz: np.ufunc
|
516 |
+
wright_bessel: np.ufunc
|
517 |
+
wrightomega: np.ufunc
|
518 |
+
xlog1py: np.ufunc
|
519 |
+
xlogy: np.ufunc
|
520 |
+
y0: np.ufunc
|
521 |
+
y1: np.ufunc
|
522 |
+
yn: np.ufunc
|
523 |
+
yv: np.ufunc
|
524 |
+
yve: np.ufunc
|
525 |
+
zetac: np.ufunc
|
526 |
+
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyx
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx.pxd
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . cimport sf_error
|
2 |
+
cdef void _set_action(sf_error.sf_error_t, sf_error.sf_action_t) noexcept nogil
|
3 |
+
cdef void *_export_ccospi
|
4 |
+
cdef void *_export_lambertw_scalar
|
5 |
+
cdef void *_export_csinpi
|
6 |
+
cdef void *_export__stirling2_inexact
|
7 |
+
cdef void *_export_ibeta_float
|
8 |
+
cdef void *_export_ibeta_double
|
9 |
+
cdef void *_export_ibetac_float
|
10 |
+
cdef void *_export_ibetac_double
|
11 |
+
cdef void *_export_ibetac_inv_float
|
12 |
+
cdef void *_export_ibetac_inv_double
|
13 |
+
cdef void *_export_ibeta_inv_float
|
14 |
+
cdef void *_export_ibeta_inv_double
|
15 |
+
cdef void *_export_binom
|
16 |
+
cdef void *_export_faddeeva_dawsn
|
17 |
+
cdef void *_export_faddeeva_dawsn_complex
|
18 |
+
cdef void *_export_fellint_RC
|
19 |
+
cdef void *_export_cellint_RC
|
20 |
+
cdef void *_export_fellint_RD
|
21 |
+
cdef void *_export_cellint_RD
|
22 |
+
cdef void *_export_fellint_RF
|
23 |
+
cdef void *_export_cellint_RF
|
24 |
+
cdef void *_export_fellint_RG
|
25 |
+
cdef void *_export_cellint_RG
|
26 |
+
cdef void *_export_fellint_RJ
|
27 |
+
cdef void *_export_cellint_RJ
|
28 |
+
cdef void *_export_faddeeva_erf
|
29 |
+
cdef void *_export_faddeeva_erfc_complex
|
30 |
+
cdef void *_export_faddeeva_erfcx
|
31 |
+
cdef void *_export_faddeeva_erfcx_complex
|
32 |
+
cdef void *_export_faddeeva_erfi
|
33 |
+
cdef void *_export_faddeeva_erfi_complex
|
34 |
+
cdef void *_export_erfinv_float
|
35 |
+
cdef void *_export_erfinv_double
|
36 |
+
cdef void *_export_expit
|
37 |
+
cdef void *_export_expitf
|
38 |
+
cdef void *_export_expitl
|
39 |
+
cdef void *_export_cgamma
|
40 |
+
cdef void *_export_hyp1f1_double
|
41 |
+
cdef void *_export_log_expit
|
42 |
+
cdef void *_export_log_expitf
|
43 |
+
cdef void *_export_log_expitl
|
44 |
+
cdef void *_export_faddeeva_log_ndtr
|
45 |
+
cdef void *_export_faddeeva_log_ndtr_complex
|
46 |
+
cdef void *_export_loggamma_real
|
47 |
+
cdef void *_export_loggamma
|
48 |
+
cdef void *_export_logit
|
49 |
+
cdef void *_export_logitf
|
50 |
+
cdef void *_export_logitl
|
51 |
+
cdef void *_export_faddeeva_ndtr
|
52 |
+
cdef void *_export_powm1_float
|
53 |
+
cdef void *_export_powm1_double
|
54 |
+
cdef void *_export_cdigamma
|
55 |
+
cdef void *_export_digamma
|
56 |
+
cdef void *_export_crgamma
|
57 |
+
cdef void *_export_faddeeva_voigt_profile
|
58 |
+
cdef void *_export_faddeeva_w
|
59 |
+
cdef void *_export_wrightomega
|
60 |
+
cdef void *_export_wrightomega_real
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx.pyx
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is automatically generated by _generate_pyx.py.
|
2 |
+
# Do not edit manually!
|
3 |
+
|
4 |
+
from libc.math cimport NAN
|
5 |
+
|
6 |
+
include "_ufuncs_extra_code_common.pxi"
|
7 |
+
|
8 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
9 |
+
cdef double complex _func_ccospi "ccospi"(double complex) noexcept nogil
|
10 |
+
cdef void *_export_ccospi = <void*>_func_ccospi
|
11 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
12 |
+
cdef double complex _func_lambertw_scalar "lambertw_scalar"(double complex, long, double) noexcept nogil
|
13 |
+
cdef void *_export_lambertw_scalar = <void*>_func_lambertw_scalar
|
14 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
15 |
+
cdef double complex _func_csinpi "csinpi"(double complex) noexcept nogil
|
16 |
+
cdef void *_export_csinpi = <void*>_func_csinpi
|
17 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
18 |
+
cdef double _func__stirling2_inexact "_stirling2_inexact"(double, double) noexcept nogil
|
19 |
+
cdef void *_export__stirling2_inexact = <void*>_func__stirling2_inexact
|
20 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
21 |
+
cdef float _func_ibeta_float "ibeta_float"(float, float, float) noexcept nogil
|
22 |
+
cdef void *_export_ibeta_float = <void*>_func_ibeta_float
|
23 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
24 |
+
cdef double _func_ibeta_double "ibeta_double"(double, double, double) noexcept nogil
|
25 |
+
cdef void *_export_ibeta_double = <void*>_func_ibeta_double
|
26 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
27 |
+
cdef float _func_ibetac_float "ibetac_float"(float, float, float) noexcept nogil
|
28 |
+
cdef void *_export_ibetac_float = <void*>_func_ibetac_float
|
29 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
30 |
+
cdef double _func_ibetac_double "ibetac_double"(double, double, double) noexcept nogil
|
31 |
+
cdef void *_export_ibetac_double = <void*>_func_ibetac_double
|
32 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
33 |
+
cdef float _func_ibetac_inv_float "ibetac_inv_float"(float, float, float) noexcept nogil
|
34 |
+
cdef void *_export_ibetac_inv_float = <void*>_func_ibetac_inv_float
|
35 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
36 |
+
cdef double _func_ibetac_inv_double "ibetac_inv_double"(double, double, double) noexcept nogil
|
37 |
+
cdef void *_export_ibetac_inv_double = <void*>_func_ibetac_inv_double
|
38 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
39 |
+
cdef float _func_ibeta_inv_float "ibeta_inv_float"(float, float, float) noexcept nogil
|
40 |
+
cdef void *_export_ibeta_inv_float = <void*>_func_ibeta_inv_float
|
41 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
42 |
+
cdef double _func_ibeta_inv_double "ibeta_inv_double"(double, double, double) noexcept nogil
|
43 |
+
cdef void *_export_ibeta_inv_double = <void*>_func_ibeta_inv_double
|
44 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
45 |
+
cdef double _func_binom "binom"(double, double) noexcept nogil
|
46 |
+
cdef void *_export_binom = <void*>_func_binom
|
47 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
48 |
+
cdef double _func_faddeeva_dawsn "faddeeva_dawsn"(double) noexcept nogil
|
49 |
+
cdef void *_export_faddeeva_dawsn = <void*>_func_faddeeva_dawsn
|
50 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
51 |
+
cdef double complex _func_faddeeva_dawsn_complex "faddeeva_dawsn_complex"(double complex) noexcept nogil
|
52 |
+
cdef void *_export_faddeeva_dawsn_complex = <void*>_func_faddeeva_dawsn_complex
|
53 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
54 |
+
cdef double _func_fellint_RC "fellint_RC"(double, double) noexcept nogil
|
55 |
+
cdef void *_export_fellint_RC = <void*>_func_fellint_RC
|
56 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
57 |
+
cdef double complex _func_cellint_RC "cellint_RC"(double complex, double complex) noexcept nogil
|
58 |
+
cdef void *_export_cellint_RC = <void*>_func_cellint_RC
|
59 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
60 |
+
cdef double _func_fellint_RD "fellint_RD"(double, double, double) noexcept nogil
|
61 |
+
cdef void *_export_fellint_RD = <void*>_func_fellint_RD
|
62 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
63 |
+
cdef double complex _func_cellint_RD "cellint_RD"(double complex, double complex, double complex) noexcept nogil
|
64 |
+
cdef void *_export_cellint_RD = <void*>_func_cellint_RD
|
65 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
66 |
+
cdef double _func_fellint_RF "fellint_RF"(double, double, double) noexcept nogil
|
67 |
+
cdef void *_export_fellint_RF = <void*>_func_fellint_RF
|
68 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
69 |
+
cdef double complex _func_cellint_RF "cellint_RF"(double complex, double complex, double complex) noexcept nogil
|
70 |
+
cdef void *_export_cellint_RF = <void*>_func_cellint_RF
|
71 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
72 |
+
cdef double _func_fellint_RG "fellint_RG"(double, double, double) noexcept nogil
|
73 |
+
cdef void *_export_fellint_RG = <void*>_func_fellint_RG
|
74 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
75 |
+
cdef double complex _func_cellint_RG "cellint_RG"(double complex, double complex, double complex) noexcept nogil
|
76 |
+
cdef void *_export_cellint_RG = <void*>_func_cellint_RG
|
77 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
78 |
+
cdef double _func_fellint_RJ "fellint_RJ"(double, double, double, double) noexcept nogil
|
79 |
+
cdef void *_export_fellint_RJ = <void*>_func_fellint_RJ
|
80 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
81 |
+
cdef double complex _func_cellint_RJ "cellint_RJ"(double complex, double complex, double complex, double complex) noexcept nogil
|
82 |
+
cdef void *_export_cellint_RJ = <void*>_func_cellint_RJ
|
83 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
84 |
+
cdef double complex _func_faddeeva_erf "faddeeva_erf"(double complex) noexcept nogil
|
85 |
+
cdef void *_export_faddeeva_erf = <void*>_func_faddeeva_erf
|
86 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
87 |
+
cdef double complex _func_faddeeva_erfc_complex "faddeeva_erfc_complex"(double complex) noexcept nogil
|
88 |
+
cdef void *_export_faddeeva_erfc_complex = <void*>_func_faddeeva_erfc_complex
|
89 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
90 |
+
cdef double _func_faddeeva_erfcx "faddeeva_erfcx"(double) noexcept nogil
|
91 |
+
cdef void *_export_faddeeva_erfcx = <void*>_func_faddeeva_erfcx
|
92 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
93 |
+
cdef double complex _func_faddeeva_erfcx_complex "faddeeva_erfcx_complex"(double complex) noexcept nogil
|
94 |
+
cdef void *_export_faddeeva_erfcx_complex = <void*>_func_faddeeva_erfcx_complex
|
95 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
96 |
+
cdef double _func_faddeeva_erfi "faddeeva_erfi"(double) noexcept nogil
|
97 |
+
cdef void *_export_faddeeva_erfi = <void*>_func_faddeeva_erfi
|
98 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
99 |
+
cdef double complex _func_faddeeva_erfi_complex "faddeeva_erfi_complex"(double complex) noexcept nogil
|
100 |
+
cdef void *_export_faddeeva_erfi_complex = <void*>_func_faddeeva_erfi_complex
|
101 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
102 |
+
cdef float _func_erfinv_float "erfinv_float"(float) noexcept nogil
|
103 |
+
cdef void *_export_erfinv_float = <void*>_func_erfinv_float
|
104 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
105 |
+
cdef double _func_erfinv_double "erfinv_double"(double) noexcept nogil
|
106 |
+
cdef void *_export_erfinv_double = <void*>_func_erfinv_double
|
107 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
108 |
+
cdef double _func_expit "expit"(double) noexcept nogil
|
109 |
+
cdef void *_export_expit = <void*>_func_expit
|
110 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
111 |
+
cdef float _func_expitf "expitf"(float) noexcept nogil
|
112 |
+
cdef void *_export_expitf = <void*>_func_expitf
|
113 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
114 |
+
cdef long double _func_expitl "expitl"(long double) noexcept nogil
|
115 |
+
cdef void *_export_expitl = <void*>_func_expitl
|
116 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
117 |
+
cdef double complex _func_cgamma "cgamma"(double complex) noexcept nogil
|
118 |
+
cdef void *_export_cgamma = <void*>_func_cgamma
|
119 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
120 |
+
cdef double _func_hyp1f1_double "hyp1f1_double"(double, double, double) noexcept nogil
|
121 |
+
cdef void *_export_hyp1f1_double = <void*>_func_hyp1f1_double
|
122 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
123 |
+
cdef double _func_log_expit "log_expit"(double) noexcept nogil
|
124 |
+
cdef void *_export_log_expit = <void*>_func_log_expit
|
125 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
126 |
+
cdef float _func_log_expitf "log_expitf"(float) noexcept nogil
|
127 |
+
cdef void *_export_log_expitf = <void*>_func_log_expitf
|
128 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
129 |
+
cdef long double _func_log_expitl "log_expitl"(long double) noexcept nogil
|
130 |
+
cdef void *_export_log_expitl = <void*>_func_log_expitl
|
131 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
132 |
+
cdef double _func_faddeeva_log_ndtr "faddeeva_log_ndtr"(double) noexcept nogil
|
133 |
+
cdef void *_export_faddeeva_log_ndtr = <void*>_func_faddeeva_log_ndtr
|
134 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
135 |
+
cdef double complex _func_faddeeva_log_ndtr_complex "faddeeva_log_ndtr_complex"(double complex) noexcept nogil
|
136 |
+
cdef void *_export_faddeeva_log_ndtr_complex = <void*>_func_faddeeva_log_ndtr_complex
|
137 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
138 |
+
cdef double _func_loggamma_real "loggamma_real"(double) noexcept nogil
|
139 |
+
cdef void *_export_loggamma_real = <void*>_func_loggamma_real
|
140 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
141 |
+
cdef double complex _func_loggamma "loggamma"(double complex) noexcept nogil
|
142 |
+
cdef void *_export_loggamma = <void*>_func_loggamma
|
143 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
144 |
+
cdef double _func_logit "logit"(double) noexcept nogil
|
145 |
+
cdef void *_export_logit = <void*>_func_logit
|
146 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
147 |
+
cdef float _func_logitf "logitf"(float) noexcept nogil
|
148 |
+
cdef void *_export_logitf = <void*>_func_logitf
|
149 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
150 |
+
cdef long double _func_logitl "logitl"(long double) noexcept nogil
|
151 |
+
cdef void *_export_logitl = <void*>_func_logitl
|
152 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
153 |
+
cdef double complex _func_faddeeva_ndtr "faddeeva_ndtr"(double complex) noexcept nogil
|
154 |
+
cdef void *_export_faddeeva_ndtr = <void*>_func_faddeeva_ndtr
|
155 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
156 |
+
cdef float _func_powm1_float "powm1_float"(float, float) noexcept nogil
|
157 |
+
cdef void *_export_powm1_float = <void*>_func_powm1_float
|
158 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
159 |
+
cdef double _func_powm1_double "powm1_double"(double, double) noexcept nogil
|
160 |
+
cdef void *_export_powm1_double = <void*>_func_powm1_double
|
161 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
162 |
+
cdef double complex _func_cdigamma "cdigamma"(double complex) noexcept nogil
|
163 |
+
cdef void *_export_cdigamma = <void*>_func_cdigamma
|
164 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
165 |
+
cdef double _func_digamma "digamma"(double) noexcept nogil
|
166 |
+
cdef void *_export_digamma = <void*>_func_digamma
|
167 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
168 |
+
cdef double complex _func_crgamma "crgamma"(double complex) noexcept nogil
|
169 |
+
cdef void *_export_crgamma = <void*>_func_crgamma
|
170 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
171 |
+
cdef double _func_faddeeva_voigt_profile "faddeeva_voigt_profile"(double, double, double) noexcept nogil
|
172 |
+
cdef void *_export_faddeeva_voigt_profile = <void*>_func_faddeeva_voigt_profile
|
173 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
174 |
+
cdef double complex _func_faddeeva_w "faddeeva_w"(double complex) noexcept nogil
|
175 |
+
cdef void *_export_faddeeva_w = <void*>_func_faddeeva_w
|
176 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
177 |
+
cdef double complex _func_wrightomega "wrightomega"(double complex) noexcept nogil
|
178 |
+
cdef void *_export_wrightomega = <void*>_func_wrightomega
|
179 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
180 |
+
cdef double _func_wrightomega_real "wrightomega_real"(double) noexcept nogil
|
181 |
+
cdef void *_export_wrightomega_real = <void*>_func_wrightomega_real
|
env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx_defs.h
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef UFUNCS_PROTO_H
|
2 |
+
#define UFUNCS_PROTO_H 1
|
3 |
+
#include "_special.h"
|
4 |
+
npy_cdouble ccospi(npy_cdouble);
|
5 |
+
npy_cdouble lambertw_scalar(npy_cdouble, npy_long, npy_double);
|
6 |
+
npy_cdouble csinpi(npy_cdouble);
|
7 |
+
#include "stirling2.h"
|
8 |
+
npy_double _stirling2_inexact(npy_double, npy_double);
|
9 |
+
#include "boost_special_functions.h"
|
10 |
+
npy_float ibeta_float(npy_float, npy_float, npy_float);
|
11 |
+
npy_double ibeta_double(npy_double, npy_double, npy_double);
|
12 |
+
npy_float ibetac_float(npy_float, npy_float, npy_float);
|
13 |
+
npy_double ibetac_double(npy_double, npy_double, npy_double);
|
14 |
+
npy_float ibetac_inv_float(npy_float, npy_float, npy_float);
|
15 |
+
npy_double ibetac_inv_double(npy_double, npy_double, npy_double);
|
16 |
+
npy_float ibeta_inv_float(npy_float, npy_float, npy_float);
|
17 |
+
npy_double ibeta_inv_double(npy_double, npy_double, npy_double);
|
18 |
+
npy_double binom(npy_double, npy_double);
|
19 |
+
#include "_faddeeva.h"
|
20 |
+
npy_double faddeeva_dawsn(npy_double);
|
21 |
+
npy_cdouble faddeeva_dawsn_complex(npy_cdouble);
|
22 |
+
#include "ellint_carlson_wrap.hh"
|
23 |
+
npy_double fellint_RC(npy_double, npy_double);
|
24 |
+
npy_cdouble cellint_RC(npy_cdouble, npy_cdouble);
|
25 |
+
npy_double fellint_RD(npy_double, npy_double, npy_double);
|
26 |
+
npy_cdouble cellint_RD(npy_cdouble, npy_cdouble, npy_cdouble);
|
27 |
+
npy_double fellint_RF(npy_double, npy_double, npy_double);
|
28 |
+
npy_cdouble cellint_RF(npy_cdouble, npy_cdouble, npy_cdouble);
|
29 |
+
npy_double fellint_RG(npy_double, npy_double, npy_double);
|
30 |
+
npy_cdouble cellint_RG(npy_cdouble, npy_cdouble, npy_cdouble);
|
31 |
+
npy_double fellint_RJ(npy_double, npy_double, npy_double, npy_double);
|
32 |
+
npy_cdouble cellint_RJ(npy_cdouble, npy_cdouble, npy_cdouble, npy_cdouble);
|
33 |
+
npy_cdouble faddeeva_erf(npy_cdouble);
|
34 |
+
npy_cdouble faddeeva_erfc_complex(npy_cdouble);
|
35 |
+
npy_double faddeeva_erfcx(npy_double);
|
36 |
+
npy_cdouble faddeeva_erfcx_complex(npy_cdouble);
|
37 |
+
npy_double faddeeva_erfi(npy_double);
|
38 |
+
npy_cdouble faddeeva_erfi_complex(npy_cdouble);
|
39 |
+
npy_float erfinv_float(npy_float);
|
40 |
+
npy_double erfinv_double(npy_double);
|
41 |
+
#include "_logit.h"
|
42 |
+
npy_double expit(npy_double);
|
43 |
+
npy_float expitf(npy_float);
|
44 |
+
npy_longdouble expitl(npy_longdouble);
|
45 |
+
npy_cdouble cgamma(npy_cdouble);
|
46 |
+
npy_double hyp1f1_double(npy_double, npy_double, npy_double);
|
47 |
+
npy_double log_expit(npy_double);
|
48 |
+
npy_float log_expitf(npy_float);
|
49 |
+
npy_longdouble log_expitl(npy_longdouble);
|
50 |
+
npy_double faddeeva_log_ndtr(npy_double);
|
51 |
+
npy_cdouble faddeeva_log_ndtr_complex(npy_cdouble);
|
52 |
+
npy_double loggamma_real(npy_double);
|
53 |
+
npy_cdouble loggamma(npy_cdouble);
|
54 |
+
npy_double logit(npy_double);
|
55 |
+
npy_float logitf(npy_float);
|
56 |
+
npy_longdouble logitl(npy_longdouble);
|
57 |
+
npy_cdouble faddeeva_ndtr(npy_cdouble);
|
58 |
+
npy_float powm1_float(npy_float, npy_float);
|
59 |
+
npy_double powm1_double(npy_double, npy_double);
|
60 |
+
npy_cdouble cdigamma(npy_cdouble);
|
61 |
+
npy_double digamma(npy_double);
|
62 |
+
npy_cdouble crgamma(npy_cdouble);
|
63 |
+
npy_double faddeeva_voigt_profile(npy_double, npy_double, npy_double);
|
64 |
+
npy_cdouble faddeeva_w(npy_cdouble);
|
65 |
+
#include "_wright.h"
|
66 |
+
npy_cdouble wrightomega(npy_cdouble);
|
67 |
+
npy_double wrightomega_real(npy_double);
|
68 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/scipy/special/add_newdocs.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
|
3 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
4 |
+
|
5 |
+
__all__ = ['get', 'add_newdoc', 'docdict'] # noqa: F822
|
6 |
+
|
7 |
+
|
8 |
+
def __dir__():
|
9 |
+
return __all__
|
10 |
+
|
11 |
+
|
12 |
+
def __getattr__(name):
|
13 |
+
return _sub_module_deprecation(sub_package="special", module="add_newdocs",
|
14 |
+
private_modules=["_add_newdocs"], all=__all__,
|
15 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/basic.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.special` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'ai_zeros',
|
10 |
+
'assoc_laguerre',
|
11 |
+
'bei_zeros',
|
12 |
+
'beip_zeros',
|
13 |
+
'ber_zeros',
|
14 |
+
'bernoulli',
|
15 |
+
'berp_zeros',
|
16 |
+
'bi_zeros',
|
17 |
+
'clpmn',
|
18 |
+
'comb',
|
19 |
+
'digamma',
|
20 |
+
'diric',
|
21 |
+
'erf_zeros',
|
22 |
+
'euler',
|
23 |
+
'factorial',
|
24 |
+
'factorial2',
|
25 |
+
'factorialk',
|
26 |
+
'fresnel_zeros',
|
27 |
+
'fresnelc_zeros',
|
28 |
+
'fresnels_zeros',
|
29 |
+
'gamma',
|
30 |
+
'h1vp',
|
31 |
+
'h2vp',
|
32 |
+
'hankel1',
|
33 |
+
'hankel2',
|
34 |
+
'iv',
|
35 |
+
'ivp',
|
36 |
+
'jn_zeros',
|
37 |
+
'jnjnp_zeros',
|
38 |
+
'jnp_zeros',
|
39 |
+
'jnyn_zeros',
|
40 |
+
'jv',
|
41 |
+
'jvp',
|
42 |
+
'kei_zeros',
|
43 |
+
'keip_zeros',
|
44 |
+
'kelvin_zeros',
|
45 |
+
'ker_zeros',
|
46 |
+
'kerp_zeros',
|
47 |
+
'kv',
|
48 |
+
'kvp',
|
49 |
+
'lmbda',
|
50 |
+
'lpmn',
|
51 |
+
'lpn',
|
52 |
+
'lqmn',
|
53 |
+
'lqn',
|
54 |
+
'mathieu_a',
|
55 |
+
'mathieu_b',
|
56 |
+
'mathieu_even_coef',
|
57 |
+
'mathieu_odd_coef',
|
58 |
+
'obl_cv_seq',
|
59 |
+
'pbdn_seq',
|
60 |
+
'pbdv_seq',
|
61 |
+
'pbvv_seq',
|
62 |
+
'perm',
|
63 |
+
'polygamma',
|
64 |
+
'pro_cv_seq',
|
65 |
+
'psi',
|
66 |
+
'riccati_jn',
|
67 |
+
'riccati_yn',
|
68 |
+
'sinc',
|
69 |
+
'y0_zeros',
|
70 |
+
'y1_zeros',
|
71 |
+
'y1p_zeros',
|
72 |
+
'yn_zeros',
|
73 |
+
'ynp_zeros',
|
74 |
+
'yv',
|
75 |
+
'yvp',
|
76 |
+
'zeta'
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
def __dir__():
|
81 |
+
return __all__
|
82 |
+
|
83 |
+
|
84 |
+
def __getattr__(name):
|
85 |
+
return _sub_module_deprecation(sub_package="special", module="basic",
|
86 |
+
private_modules=["_basic", "_ufuncs"], all=__all__,
|
87 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/cython_special.pyi
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
def __getattr__(name) -> Any: ...
|
env-llmeval/lib/python3.10/site-packages/scipy/special/cython_special.pyx
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/sf_error.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.special` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'SpecialFunctionWarning',
|
9 |
+
'SpecialFunctionError'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
def __dir__():
|
14 |
+
return __all__
|
15 |
+
|
16 |
+
|
17 |
+
def __getattr__(name):
|
18 |
+
return _sub_module_deprecation(sub_package="special", module="sf_error",
|
19 |
+
private_modules=["_sf_error"], all=__all__,
|
20 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/specfun.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.special` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'airyzo',
|
9 |
+
'bernob',
|
10 |
+
'cerzo',
|
11 |
+
'clpmn',
|
12 |
+
'clpn',
|
13 |
+
'clqmn',
|
14 |
+
'clqn',
|
15 |
+
'cpbdn',
|
16 |
+
'cyzo',
|
17 |
+
'eulerb',
|
18 |
+
'fcoef',
|
19 |
+
'fcszo',
|
20 |
+
'jdzo',
|
21 |
+
'jyzo',
|
22 |
+
'klvnzo',
|
23 |
+
'lamn',
|
24 |
+
'lamv',
|
25 |
+
'lpmn',
|
26 |
+
'lpn',
|
27 |
+
'lqmn',
|
28 |
+
'lqnb',
|
29 |
+
'pbdv',
|
30 |
+
'rctj',
|
31 |
+
'rcty',
|
32 |
+
'segv'
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
def __dir__():
|
37 |
+
return __all__
|
38 |
+
|
39 |
+
|
40 |
+
def __getattr__(name):
|
41 |
+
return _sub_module_deprecation(sub_package="special", module="specfun",
|
42 |
+
private_modules=["_specfun"], all=__all__,
|
43 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/spfun_stats.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.special` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = ['multigammaln', 'loggam'] # noqa: F822
|
8 |
+
|
9 |
+
|
10 |
+
def __dir__():
|
11 |
+
return __all__
|
12 |
+
|
13 |
+
|
14 |
+
def __getattr__(name):
|
15 |
+
return _sub_module_deprecation(sub_package="special", module="spfun_stats",
|
16 |
+
private_modules=["_spfun_stats"], all=__all__,
|
17 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/special/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_basic.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_boxcox.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_equal, assert_almost_equal, assert_allclose
|
3 |
+
from scipy.special import boxcox, boxcox1p, inv_boxcox, inv_boxcox1p
|
4 |
+
|
5 |
+
|
6 |
+
# There are more tests of boxcox and boxcox1p in test_mpmath.py.
|
7 |
+
|
8 |
+
def test_boxcox_basic():
|
9 |
+
x = np.array([0.5, 1, 2, 4])
|
10 |
+
|
11 |
+
# lambda = 0 => y = log(x)
|
12 |
+
y = boxcox(x, 0)
|
13 |
+
assert_almost_equal(y, np.log(x))
|
14 |
+
|
15 |
+
# lambda = 1 => y = x - 1
|
16 |
+
y = boxcox(x, 1)
|
17 |
+
assert_almost_equal(y, x - 1)
|
18 |
+
|
19 |
+
# lambda = 2 => y = 0.5*(x**2 - 1)
|
20 |
+
y = boxcox(x, 2)
|
21 |
+
assert_almost_equal(y, 0.5*(x**2 - 1))
|
22 |
+
|
23 |
+
# x = 0 and lambda > 0 => y = -1 / lambda
|
24 |
+
lam = np.array([0.5, 1, 2])
|
25 |
+
y = boxcox(0, lam)
|
26 |
+
assert_almost_equal(y, -1.0 / lam)
|
27 |
+
|
28 |
+
def test_boxcox_underflow():
|
29 |
+
x = 1 + 1e-15
|
30 |
+
lmbda = 1e-306
|
31 |
+
y = boxcox(x, lmbda)
|
32 |
+
assert_allclose(y, np.log(x), rtol=1e-14)
|
33 |
+
|
34 |
+
|
35 |
+
def test_boxcox_nonfinite():
|
36 |
+
# x < 0 => y = nan
|
37 |
+
x = np.array([-1, -1, -0.5])
|
38 |
+
y = boxcox(x, [0.5, 2.0, -1.5])
|
39 |
+
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
40 |
+
|
41 |
+
# x = 0 and lambda <= 0 => y = -inf
|
42 |
+
x = 0
|
43 |
+
y = boxcox(x, [-2.5, 0])
|
44 |
+
assert_equal(y, np.array([-np.inf, -np.inf]))
|
45 |
+
|
46 |
+
|
47 |
+
def test_boxcox1p_basic():
|
48 |
+
x = np.array([-0.25, -1e-20, 0, 1e-20, 0.25, 1, 3])
|
49 |
+
|
50 |
+
# lambda = 0 => y = log(1+x)
|
51 |
+
y = boxcox1p(x, 0)
|
52 |
+
assert_almost_equal(y, np.log1p(x))
|
53 |
+
|
54 |
+
# lambda = 1 => y = x
|
55 |
+
y = boxcox1p(x, 1)
|
56 |
+
assert_almost_equal(y, x)
|
57 |
+
|
58 |
+
# lambda = 2 => y = 0.5*((1+x)**2 - 1) = 0.5*x*(2 + x)
|
59 |
+
y = boxcox1p(x, 2)
|
60 |
+
assert_almost_equal(y, 0.5*x*(2 + x))
|
61 |
+
|
62 |
+
# x = -1 and lambda > 0 => y = -1 / lambda
|
63 |
+
lam = np.array([0.5, 1, 2])
|
64 |
+
y = boxcox1p(-1, lam)
|
65 |
+
assert_almost_equal(y, -1.0 / lam)
|
66 |
+
|
67 |
+
|
68 |
+
def test_boxcox1p_underflow():
|
69 |
+
x = np.array([1e-15, 1e-306])
|
70 |
+
lmbda = np.array([1e-306, 1e-18])
|
71 |
+
y = boxcox1p(x, lmbda)
|
72 |
+
assert_allclose(y, np.log1p(x), rtol=1e-14)
|
73 |
+
|
74 |
+
|
75 |
+
def test_boxcox1p_nonfinite():
|
76 |
+
# x < -1 => y = nan
|
77 |
+
x = np.array([-2, -2, -1.5])
|
78 |
+
y = boxcox1p(x, [0.5, 2.0, -1.5])
|
79 |
+
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
80 |
+
|
81 |
+
# x = -1 and lambda <= 0 => y = -inf
|
82 |
+
x = -1
|
83 |
+
y = boxcox1p(x, [-2.5, 0])
|
84 |
+
assert_equal(y, np.array([-np.inf, -np.inf]))
|
85 |
+
|
86 |
+
|
87 |
+
def test_inv_boxcox():
|
88 |
+
x = np.array([0., 1., 2.])
|
89 |
+
lam = np.array([0., 1., 2.])
|
90 |
+
y = boxcox(x, lam)
|
91 |
+
x2 = inv_boxcox(y, lam)
|
92 |
+
assert_almost_equal(x, x2)
|
93 |
+
|
94 |
+
x = np.array([0., 1., 2.])
|
95 |
+
lam = np.array([0., 1., 2.])
|
96 |
+
y = boxcox1p(x, lam)
|
97 |
+
x2 = inv_boxcox1p(y, lam)
|
98 |
+
assert_almost_equal(x, x2)
|
99 |
+
|
100 |
+
|
101 |
+
def test_inv_boxcox1p_underflow():
|
102 |
+
x = 1e-15
|
103 |
+
lam = 1e-306
|
104 |
+
y = inv_boxcox1p(x, lam)
|
105 |
+
assert_allclose(y, x, rtol=1e-14)
|
106 |
+
|
env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_cdflib.py
ADDED
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test cdflib functions versus mpmath, if available.
|
3 |
+
|
4 |
+
The following functions still need tests:
|
5 |
+
|
6 |
+
- ncfdtr
|
7 |
+
- ncfdtri
|
8 |
+
- ncfdtridfn
|
9 |
+
- ncfdtridfd
|
10 |
+
- ncfdtrinc
|
11 |
+
- nbdtrik
|
12 |
+
- nbdtrin
|
13 |
+
- pdtrik
|
14 |
+
- nctdtr
|
15 |
+
- nctdtrit
|
16 |
+
- nctdtridf
|
17 |
+
- nctdtrinc
|
18 |
+
|
19 |
+
"""
|
20 |
+
import itertools
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
from numpy.testing import assert_equal, assert_allclose
|
24 |
+
import pytest
|
25 |
+
|
26 |
+
import scipy.special as sp
|
27 |
+
from scipy.special._testutils import (
|
28 |
+
MissingModule, check_version, FuncData)
|
29 |
+
from scipy.special._mptestutils import (
|
30 |
+
Arg, IntArg, get_args, mpf2float, assert_mpmath_equal)
|
31 |
+
|
32 |
+
try:
|
33 |
+
import mpmath
|
34 |
+
except ImportError:
|
35 |
+
mpmath = MissingModule('mpmath')
|
36 |
+
|
37 |
+
|
38 |
+
class ProbArg:
|
39 |
+
"""Generate a set of probabilities on [0, 1]."""
|
40 |
+
|
41 |
+
def __init__(self):
|
42 |
+
# Include the endpoints for compatibility with Arg et. al.
|
43 |
+
self.a = 0
|
44 |
+
self.b = 1
|
45 |
+
|
46 |
+
def values(self, n):
|
47 |
+
"""Return an array containing approximately n numbers."""
|
48 |
+
m = max(1, n//3)
|
49 |
+
v1 = np.logspace(-30, np.log10(0.3), m)
|
50 |
+
v2 = np.linspace(0.3, 0.7, m + 1, endpoint=False)[1:]
|
51 |
+
v3 = 1 - np.logspace(np.log10(0.3), -15, m)
|
52 |
+
v = np.r_[v1, v2, v3]
|
53 |
+
return np.unique(v)
|
54 |
+
|
55 |
+
|
56 |
+
class EndpointFilter:
|
57 |
+
def __init__(self, a, b, rtol, atol):
|
58 |
+
self.a = a
|
59 |
+
self.b = b
|
60 |
+
self.rtol = rtol
|
61 |
+
self.atol = atol
|
62 |
+
|
63 |
+
def __call__(self, x):
|
64 |
+
mask1 = np.abs(x - self.a) < self.rtol*np.abs(self.a) + self.atol
|
65 |
+
mask2 = np.abs(x - self.b) < self.rtol*np.abs(self.b) + self.atol
|
66 |
+
return np.where(mask1 | mask2, False, True)
|
67 |
+
|
68 |
+
|
69 |
+
class _CDFData:
|
70 |
+
def __init__(self, spfunc, mpfunc, index, argspec, spfunc_first=True,
|
71 |
+
dps=20, n=5000, rtol=None, atol=None,
|
72 |
+
endpt_rtol=None, endpt_atol=None):
|
73 |
+
self.spfunc = spfunc
|
74 |
+
self.mpfunc = mpfunc
|
75 |
+
self.index = index
|
76 |
+
self.argspec = argspec
|
77 |
+
self.spfunc_first = spfunc_first
|
78 |
+
self.dps = dps
|
79 |
+
self.n = n
|
80 |
+
self.rtol = rtol
|
81 |
+
self.atol = atol
|
82 |
+
|
83 |
+
if not isinstance(argspec, list):
|
84 |
+
self.endpt_rtol = None
|
85 |
+
self.endpt_atol = None
|
86 |
+
elif endpt_rtol is not None or endpt_atol is not None:
|
87 |
+
if isinstance(endpt_rtol, list):
|
88 |
+
self.endpt_rtol = endpt_rtol
|
89 |
+
else:
|
90 |
+
self.endpt_rtol = [endpt_rtol]*len(self.argspec)
|
91 |
+
if isinstance(endpt_atol, list):
|
92 |
+
self.endpt_atol = endpt_atol
|
93 |
+
else:
|
94 |
+
self.endpt_atol = [endpt_atol]*len(self.argspec)
|
95 |
+
else:
|
96 |
+
self.endpt_rtol = None
|
97 |
+
self.endpt_atol = None
|
98 |
+
|
99 |
+
def idmap(self, *args):
|
100 |
+
if self.spfunc_first:
|
101 |
+
res = self.spfunc(*args)
|
102 |
+
if np.isnan(res):
|
103 |
+
return np.nan
|
104 |
+
args = list(args)
|
105 |
+
args[self.index] = res
|
106 |
+
with mpmath.workdps(self.dps):
|
107 |
+
res = self.mpfunc(*tuple(args))
|
108 |
+
# Imaginary parts are spurious
|
109 |
+
res = mpf2float(res.real)
|
110 |
+
else:
|
111 |
+
with mpmath.workdps(self.dps):
|
112 |
+
res = self.mpfunc(*args)
|
113 |
+
res = mpf2float(res.real)
|
114 |
+
args = list(args)
|
115 |
+
args[self.index] = res
|
116 |
+
res = self.spfunc(*tuple(args))
|
117 |
+
return res
|
118 |
+
|
119 |
+
def get_param_filter(self):
|
120 |
+
if self.endpt_rtol is None and self.endpt_atol is None:
|
121 |
+
return None
|
122 |
+
|
123 |
+
filters = []
|
124 |
+
for rtol, atol, spec in zip(self.endpt_rtol, self.endpt_atol, self.argspec):
|
125 |
+
if rtol is None and atol is None:
|
126 |
+
filters.append(None)
|
127 |
+
continue
|
128 |
+
elif rtol is None:
|
129 |
+
rtol = 0.0
|
130 |
+
elif atol is None:
|
131 |
+
atol = 0.0
|
132 |
+
|
133 |
+
filters.append(EndpointFilter(spec.a, spec.b, rtol, atol))
|
134 |
+
return filters
|
135 |
+
|
136 |
+
def check(self):
|
137 |
+
# Generate values for the arguments
|
138 |
+
args = get_args(self.argspec, self.n)
|
139 |
+
param_filter = self.get_param_filter()
|
140 |
+
param_columns = tuple(range(args.shape[1]))
|
141 |
+
result_columns = args.shape[1]
|
142 |
+
args = np.hstack((args, args[:, self.index].reshape(args.shape[0], 1)))
|
143 |
+
FuncData(self.idmap, args,
|
144 |
+
param_columns=param_columns, result_columns=result_columns,
|
145 |
+
rtol=self.rtol, atol=self.atol, vectorized=False,
|
146 |
+
param_filter=param_filter).check()
|
147 |
+
|
148 |
+
|
149 |
+
def _assert_inverts(*a, **kw):
|
150 |
+
d = _CDFData(*a, **kw)
|
151 |
+
d.check()
|
152 |
+
|
153 |
+
|
154 |
+
def _binomial_cdf(k, n, p):
|
155 |
+
k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
|
156 |
+
if k <= 0:
|
157 |
+
return mpmath.mpf(0)
|
158 |
+
elif k >= n:
|
159 |
+
return mpmath.mpf(1)
|
160 |
+
|
161 |
+
onemp = mpmath.fsub(1, p, exact=True)
|
162 |
+
return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)
|
163 |
+
|
164 |
+
|
165 |
+
def _f_cdf(dfn, dfd, x):
|
166 |
+
if x < 0:
|
167 |
+
return mpmath.mpf(0)
|
168 |
+
dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
|
169 |
+
ub = dfn*x/(dfn*x + dfd)
|
170 |
+
res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
|
171 |
+
return res
|
172 |
+
|
173 |
+
|
174 |
+
def _student_t_cdf(df, t, dps=None):
|
175 |
+
if dps is None:
|
176 |
+
dps = mpmath.mp.dps
|
177 |
+
with mpmath.workdps(dps):
|
178 |
+
df, t = mpmath.mpf(df), mpmath.mpf(t)
|
179 |
+
fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df)
|
180 |
+
fac *= t*mpmath.gamma(0.5*(df + 1))
|
181 |
+
fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df)
|
182 |
+
return 0.5 + fac
|
183 |
+
|
184 |
+
|
185 |
+
def _noncentral_chi_pdf(t, df, nc):
|
186 |
+
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
|
187 |
+
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
|
188 |
+
return res
|
189 |
+
|
190 |
+
|
191 |
+
def _noncentral_chi_cdf(x, df, nc, dps=None):
|
192 |
+
if dps is None:
|
193 |
+
dps = mpmath.mp.dps
|
194 |
+
x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
|
195 |
+
with mpmath.workdps(dps):
|
196 |
+
res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
|
197 |
+
return res
|
198 |
+
|
199 |
+
|
200 |
+
def _tukey_lmbda_quantile(p, lmbda):
|
201 |
+
# For lmbda != 0
|
202 |
+
return (p**lmbda - (1 - p)**lmbda)/lmbda
|
203 |
+
|
204 |
+
|
205 |
+
@pytest.mark.slow
|
206 |
+
@check_version(mpmath, '0.19')
|
207 |
+
class TestCDFlib:
|
208 |
+
|
209 |
+
@pytest.mark.xfail(run=False)
|
210 |
+
def test_bdtrik(self):
|
211 |
+
_assert_inverts(
|
212 |
+
sp.bdtrik,
|
213 |
+
_binomial_cdf,
|
214 |
+
0, [ProbArg(), IntArg(1, 1000), ProbArg()],
|
215 |
+
rtol=1e-4)
|
216 |
+
|
217 |
+
def test_bdtrin(self):
|
218 |
+
_assert_inverts(
|
219 |
+
sp.bdtrin,
|
220 |
+
_binomial_cdf,
|
221 |
+
1, [IntArg(1, 1000), ProbArg(), ProbArg()],
|
222 |
+
rtol=1e-4, endpt_atol=[None, None, 1e-6])
|
223 |
+
|
224 |
+
def test_btdtria(self):
|
225 |
+
_assert_inverts(
|
226 |
+
sp.btdtria,
|
227 |
+
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
|
228 |
+
0, [ProbArg(), Arg(0, 1e2, inclusive_a=False),
|
229 |
+
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
|
230 |
+
rtol=1e-6)
|
231 |
+
|
232 |
+
def test_btdtrib(self):
|
233 |
+
# Use small values of a or mpmath doesn't converge
|
234 |
+
_assert_inverts(
|
235 |
+
sp.btdtrib,
|
236 |
+
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
|
237 |
+
1,
|
238 |
+
[Arg(0, 1e2, inclusive_a=False), ProbArg(),
|
239 |
+
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
|
240 |
+
rtol=1e-7,
|
241 |
+
endpt_atol=[None, 1e-18, 1e-15])
|
242 |
+
|
243 |
+
@pytest.mark.xfail(run=False)
|
244 |
+
def test_fdtridfd(self):
|
245 |
+
_assert_inverts(
|
246 |
+
sp.fdtridfd,
|
247 |
+
_f_cdf,
|
248 |
+
1,
|
249 |
+
[IntArg(1, 100), ProbArg(), Arg(0, 100, inclusive_a=False)],
|
250 |
+
rtol=1e-7)
|
251 |
+
|
252 |
+
def test_gdtria(self):
|
253 |
+
_assert_inverts(
|
254 |
+
sp.gdtria,
|
255 |
+
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
256 |
+
0,
|
257 |
+
[ProbArg(), Arg(0, 1e3, inclusive_a=False),
|
258 |
+
Arg(0, 1e4, inclusive_a=False)],
|
259 |
+
rtol=1e-7,
|
260 |
+
endpt_atol=[None, 1e-7, 1e-10])
|
261 |
+
|
262 |
+
def test_gdtrib(self):
|
263 |
+
# Use small values of a and x or mpmath doesn't converge
|
264 |
+
_assert_inverts(
|
265 |
+
sp.gdtrib,
|
266 |
+
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
267 |
+
1,
|
268 |
+
[Arg(0, 1e2, inclusive_a=False), ProbArg(),
|
269 |
+
Arg(0, 1e3, inclusive_a=False)],
|
270 |
+
rtol=1e-5)
|
271 |
+
|
272 |
+
def test_gdtrix(self):
|
273 |
+
_assert_inverts(
|
274 |
+
sp.gdtrix,
|
275 |
+
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
276 |
+
2,
|
277 |
+
[Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
|
278 |
+
ProbArg()],
|
279 |
+
rtol=1e-7,
|
280 |
+
endpt_atol=[None, 1e-7, 1e-10])
|
281 |
+
|
282 |
+
# Overall nrdtrimn and nrdtrisd are not performing well with infeasible/edge
|
283 |
+
# combinations of sigma and x, hence restricted the domains to still use the
|
284 |
+
# testing machinery, also see gh-20069
|
285 |
+
|
286 |
+
# nrdtrimn signature: p, sd, x
|
287 |
+
# nrdtrisd signature: mn, p, x
|
288 |
+
def test_nrdtrimn(self):
|
289 |
+
_assert_inverts(
|
290 |
+
sp.nrdtrimn,
|
291 |
+
lambda x, y, z: mpmath.ncdf(z, x, y),
|
292 |
+
0,
|
293 |
+
[ProbArg(), # CDF value p
|
294 |
+
Arg(0.1, np.inf, inclusive_a=False, inclusive_b=False), # sigma
|
295 |
+
Arg(-1e10, 1e10)], # x
|
296 |
+
rtol=1e-5)
|
297 |
+
|
298 |
+
def test_nrdtrisd(self):
|
299 |
+
_assert_inverts(
|
300 |
+
sp.nrdtrisd,
|
301 |
+
lambda x, y, z: mpmath.ncdf(z, x, y),
|
302 |
+
1,
|
303 |
+
[Arg(-np.inf, 10, inclusive_a=False, inclusive_b=False), # mn
|
304 |
+
ProbArg(), # CDF value p
|
305 |
+
Arg(10, 1e100)], # x
|
306 |
+
rtol=1e-5)
|
307 |
+
|
308 |
+
def test_stdtr(self):
|
309 |
+
# Ideally the left endpoint for Arg() should be 0.
|
310 |
+
assert_mpmath_equal(
|
311 |
+
sp.stdtr,
|
312 |
+
_student_t_cdf,
|
313 |
+
[IntArg(1, 100), Arg(1e-10, np.inf)], rtol=1e-7)
|
314 |
+
|
315 |
+
@pytest.mark.xfail(run=False)
|
316 |
+
def test_stdtridf(self):
|
317 |
+
_assert_inverts(
|
318 |
+
sp.stdtridf,
|
319 |
+
_student_t_cdf,
|
320 |
+
0, [ProbArg(), Arg()], rtol=1e-7)
|
321 |
+
|
322 |
+
def test_stdtrit(self):
|
323 |
+
_assert_inverts(
|
324 |
+
sp.stdtrit,
|
325 |
+
_student_t_cdf,
|
326 |
+
1, [IntArg(1, 100), ProbArg()], rtol=1e-7,
|
327 |
+
endpt_atol=[None, 1e-10])
|
328 |
+
|
329 |
+
def test_chdtriv(self):
|
330 |
+
_assert_inverts(
|
331 |
+
sp.chdtriv,
|
332 |
+
lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True),
|
333 |
+
0, [ProbArg(), IntArg(1, 100)], rtol=1e-4)
|
334 |
+
|
335 |
+
@pytest.mark.xfail(run=False)
|
336 |
+
def test_chndtridf(self):
|
337 |
+
# Use a larger atol since mpmath is doing numerical integration
|
338 |
+
_assert_inverts(
|
339 |
+
sp.chndtridf,
|
340 |
+
_noncentral_chi_cdf,
|
341 |
+
1, [Arg(0, 100, inclusive_a=False), ProbArg(),
|
342 |
+
Arg(0, 100, inclusive_a=False)],
|
343 |
+
n=1000, rtol=1e-4, atol=1e-15)
|
344 |
+
|
345 |
+
@pytest.mark.xfail(run=False)
|
346 |
+
def test_chndtrinc(self):
|
347 |
+
# Use a larger atol since mpmath is doing numerical integration
|
348 |
+
_assert_inverts(
|
349 |
+
sp.chndtrinc,
|
350 |
+
_noncentral_chi_cdf,
|
351 |
+
2, [Arg(0, 100, inclusive_a=False), IntArg(1, 100), ProbArg()],
|
352 |
+
n=1000, rtol=1e-4, atol=1e-15)
|
353 |
+
|
354 |
+
def test_chndtrix(self):
|
355 |
+
# Use a larger atol since mpmath is doing numerical integration
|
356 |
+
_assert_inverts(
|
357 |
+
sp.chndtrix,
|
358 |
+
_noncentral_chi_cdf,
|
359 |
+
0, [ProbArg(), IntArg(1, 100), Arg(0, 100, inclusive_a=False)],
|
360 |
+
n=1000, rtol=1e-4, atol=1e-15,
|
361 |
+
endpt_atol=[1e-6, None, None])
|
362 |
+
|
363 |
+
def test_tklmbda_zero_shape(self):
|
364 |
+
# When lmbda = 0 the CDF has a simple closed form
|
365 |
+
one = mpmath.mpf(1)
|
366 |
+
assert_mpmath_equal(
|
367 |
+
lambda x: sp.tklmbda(x, 0),
|
368 |
+
lambda x: one/(mpmath.exp(-x) + one),
|
369 |
+
[Arg()], rtol=1e-7)
|
370 |
+
|
371 |
+
def test_tklmbda_neg_shape(self):
|
372 |
+
_assert_inverts(
|
373 |
+
sp.tklmbda,
|
374 |
+
_tukey_lmbda_quantile,
|
375 |
+
0, [ProbArg(), Arg(-25, 0, inclusive_b=False)],
|
376 |
+
spfunc_first=False, rtol=1e-5,
|
377 |
+
endpt_atol=[1e-9, 1e-5])
|
378 |
+
|
379 |
+
@pytest.mark.xfail(run=False)
|
380 |
+
def test_tklmbda_pos_shape(self):
|
381 |
+
_assert_inverts(
|
382 |
+
sp.tklmbda,
|
383 |
+
_tukey_lmbda_quantile,
|
384 |
+
0, [ProbArg(), Arg(0, 100, inclusive_a=False)],
|
385 |
+
spfunc_first=False, rtol=1e-5)
|
386 |
+
|
387 |
+
# The values of lmdba are chosen so that 1/lmbda is exact.
|
388 |
+
@pytest.mark.parametrize('lmbda', [0.5, 1.0, 8.0])
|
389 |
+
def test_tklmbda_lmbda1(self, lmbda):
|
390 |
+
bound = 1/lmbda
|
391 |
+
assert_equal(sp.tklmbda([-bound, bound], lmbda), [0.0, 1.0])
|
392 |
+
|
393 |
+
|
394 |
+
funcs = [
|
395 |
+
("btdtria", 3),
|
396 |
+
("btdtrib", 3),
|
397 |
+
("bdtrik", 3),
|
398 |
+
("bdtrin", 3),
|
399 |
+
("chdtriv", 2),
|
400 |
+
("chndtr", 3),
|
401 |
+
("chndtrix", 3),
|
402 |
+
("chndtridf", 3),
|
403 |
+
("chndtrinc", 3),
|
404 |
+
("fdtridfd", 3),
|
405 |
+
("ncfdtr", 4),
|
406 |
+
("ncfdtri", 4),
|
407 |
+
("ncfdtridfn", 4),
|
408 |
+
("ncfdtridfd", 4),
|
409 |
+
("ncfdtrinc", 4),
|
410 |
+
("gdtrix", 3),
|
411 |
+
("gdtrib", 3),
|
412 |
+
("gdtria", 3),
|
413 |
+
("nbdtrik", 3),
|
414 |
+
("nbdtrin", 3),
|
415 |
+
("nrdtrimn", 3),
|
416 |
+
("nrdtrisd", 3),
|
417 |
+
("pdtrik", 2),
|
418 |
+
("stdtr", 2),
|
419 |
+
("stdtrit", 2),
|
420 |
+
("stdtridf", 2),
|
421 |
+
("nctdtr", 3),
|
422 |
+
("nctdtrit", 3),
|
423 |
+
("nctdtridf", 3),
|
424 |
+
("nctdtrinc", 3),
|
425 |
+
("tklmbda", 2),
|
426 |
+
]
|
427 |
+
|
428 |
+
|
429 |
+
@pytest.mark.parametrize('func,numargs', funcs, ids=[x[0] for x in funcs])
|
430 |
+
def test_nonfinite(func, numargs):
|
431 |
+
|
432 |
+
rng = np.random.default_rng(1701299355559735)
|
433 |
+
func = getattr(sp, func)
|
434 |
+
args_choices = [(float(x), np.nan, np.inf, -np.inf) for x in rng.random(numargs)]
|
435 |
+
|
436 |
+
for args in itertools.product(*args_choices):
|
437 |
+
res = func(*args)
|
438 |
+
|
439 |
+
if any(np.isnan(x) for x in args):
|
440 |
+
# Nan inputs should result to nan output
|
441 |
+
assert_equal(res, np.nan)
|
442 |
+
else:
|
443 |
+
# All other inputs should return something (but not
|
444 |
+
# raise exceptions or cause hangs)
|
445 |
+
pass
|
446 |
+
|
447 |
+
|
448 |
+
def test_chndtrix_gh2158():
|
449 |
+
# test that gh-2158 is resolved; previously this blew up
|
450 |
+
res = sp.chndtrix(0.999999, 2, np.arange(20.)+1e-6)
|
451 |
+
|
452 |
+
# Generated in R
|
453 |
+
# options(digits=16)
|
454 |
+
# ncp <- seq(0, 19) + 1e-6
|
455 |
+
# print(qchisq(0.999999, df = 2, ncp = ncp))
|
456 |
+
res_exp = [27.63103493142305, 35.25728589950540, 39.97396073236288,
|
457 |
+
43.88033702110538, 47.35206403482798, 50.54112500166103,
|
458 |
+
53.52720257322766, 56.35830042867810, 59.06600769498512,
|
459 |
+
61.67243118946381, 64.19376191277179, 66.64228141346548,
|
460 |
+
69.02756927200180, 71.35726934749408, 73.63759723904816,
|
461 |
+
75.87368842650227, 78.06984431185720, 80.22971052389806,
|
462 |
+
82.35640899964173, 84.45263768373256]
|
463 |
+
assert_allclose(res, res_exp)
|
464 |
+
|
465 |
+
@pytest.mark.xfail_on_32bit("32bit fails due to algorithm threshold")
|
466 |
+
def test_nctdtr_gh19896():
|
467 |
+
# test that gh-19896 is resolved.
|
468 |
+
# Compared to SciPy 1.11 results from Fortran code.
|
469 |
+
dfarr = [0.98, 9.8, 98, 980]
|
470 |
+
pnoncarr = [-3.8, 0.38, 3.8, 38]
|
471 |
+
tarr = [0.0015, 0.15, 1.5, 15]
|
472 |
+
resarr = [0.9999276519560749, 0.9999276519560749, 0.9999908831755221,
|
473 |
+
0.9999990265452424, 0.3524153312279712, 0.39749697267251416,
|
474 |
+
0.7168629634895805, 0.9656246449259646, 7.234804392512006e-05,
|
475 |
+
7.234804392512006e-05, 0.03538804607509127, 0.795482701508521,
|
476 |
+
0.0, 0.0, 0.0,
|
477 |
+
0.011927908523093889, 0.9999276519560749, 0.9999276519560749,
|
478 |
+
0.9999997441133123, 1.0, 0.3525155979118013,
|
479 |
+
0.4076312014048369, 0.8476794017035086, 0.9999999297116268,
|
480 |
+
7.234804392512006e-05, 7.234804392512006e-05, 0.013477443099785824,
|
481 |
+
0.9998501512331494, 0.0, 0.0,
|
482 |
+
0.0, 6.561112613212572e-07, 0.9999276519560749,
|
483 |
+
0.9999276519560749, 0.9999999313496014, 1.0,
|
484 |
+
0.3525281784865706, 0.40890253001898014, 0.8664672830017024,
|
485 |
+
1.0, 7.234804392512006e-05, 7.234804392512006e-05,
|
486 |
+
0.010990889489704836, 1.0, 0.0,
|
487 |
+
0.0, 0.0, 0.0,
|
488 |
+
0.9999276519560749, 0.9999276519560749, 0.9999999418789304,
|
489 |
+
1.0, 0.35252945487817355, 0.40903153246690993,
|
490 |
+
0.8684247068528264, 1.0, 7.234804392512006e-05,
|
491 |
+
7.234804392512006e-05, 0.01075068918582911, 1.0,
|
492 |
+
0.0, 0.0, 0.0, 0.0]
|
493 |
+
actarr = []
|
494 |
+
for df, p, t in itertools.product(dfarr, pnoncarr, tarr):
|
495 |
+
actarr += [sp.nctdtr(df, p, t)]
|
496 |
+
# The rtol is kept high on purpose to make it pass on 32bit systems
|
497 |
+
assert_allclose(actarr, resarr, rtol=1e-6, atol=0.0)
|
498 |
+
|
499 |
+
|
500 |
+
def test_nctdtrinc_gh19896():
|
501 |
+
# test that gh-19896 is resolved.
|
502 |
+
# Compared to SciPy 1.11 results from Fortran code.
|
503 |
+
dfarr = [0.001, 0.98, 9.8, 98, 980, 10000, 98, 9.8, 0.98, 0.001]
|
504 |
+
parr = [0.001, 0.1, 0.3, 0.8, 0.999, 0.001, 0.1, 0.3, 0.8, 0.999]
|
505 |
+
tarr = [0.0015, 0.15, 1.5, 15, 300, 0.0015, 0.15, 1.5, 15, 300]
|
506 |
+
desired = [3.090232306168629, 1.406141304556198, 2.014225177124157,
|
507 |
+
13.727067118283456, 278.9765683871208, 3.090232306168629,
|
508 |
+
1.4312427877936222, 2.014225177124157, 3.712743137978295,
|
509 |
+
-3.086951096691082]
|
510 |
+
actual = sp.nctdtrinc(dfarr, parr, tarr)
|
511 |
+
assert_allclose(actual, desired, rtol=5e-12, atol=0.0)
|
512 |
+
|
513 |
+
|
514 |
+
def test_stdtr_stdtrit_neg_inf():
|
515 |
+
# -inf was treated as +inf and values from the normal were returned
|
516 |
+
assert np.all(np.isnan(sp.stdtr(-np.inf, [-np.inf, -1.0, 0.0, 1.0, np.inf])))
|
517 |
+
assert np.all(np.isnan(sp.stdtrit(-np.inf, [0.0, 0.25, 0.5, 0.75, 1.0])))
|
518 |
+
|
519 |
+
|
520 |
+
def test_bdtrik_nbdtrik_inf():
|
521 |
+
y = np.array(
|
522 |
+
[np.nan,-np.inf,-10.0, -1.0, 0.0, .00001, .5, 0.9999, 1.0, 10.0, np.inf])
|
523 |
+
y = y[:,None]
|
524 |
+
p = np.atleast_2d(
|
525 |
+
[np.nan, -np.inf, -10.0, -1.0, 0.0, .00001, .5, 1.0, np.inf])
|
526 |
+
assert np.all(np.isnan(sp.bdtrik(y, np.inf, p)))
|
527 |
+
assert np.all(np.isnan(sp.nbdtrik(y, np.inf, p)))
|
env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_cython_special.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
from itertools import product
|
6 |
+
from numpy.testing import assert_allclose, suppress_warnings
|
7 |
+
from scipy import special
|
8 |
+
from scipy.special import cython_special
|
9 |
+
|
10 |
+
|
11 |
+
bint_points = [True, False]
|
12 |
+
int_points = [-10, -1, 1, 10]
|
13 |
+
real_points = [-10.0, -1.0, 1.0, 10.0]
|
14 |
+
complex_points = [complex(*tup) for tup in product(real_points, repeat=2)]
|
15 |
+
|
16 |
+
|
17 |
+
CYTHON_SIGNATURE_MAP = {
|
18 |
+
'b': 'bint',
|
19 |
+
'f': 'float',
|
20 |
+
'd': 'double',
|
21 |
+
'g': 'long double',
|
22 |
+
'F': 'float complex',
|
23 |
+
'D': 'double complex',
|
24 |
+
'G': 'long double complex',
|
25 |
+
'i': 'int',
|
26 |
+
'l': 'long'
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
TEST_POINTS = {
|
31 |
+
'b': bint_points,
|
32 |
+
'f': real_points,
|
33 |
+
'd': real_points,
|
34 |
+
'g': real_points,
|
35 |
+
'F': complex_points,
|
36 |
+
'D': complex_points,
|
37 |
+
'G': complex_points,
|
38 |
+
'i': int_points,
|
39 |
+
'l': int_points,
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
PARAMS: list[tuple[Callable, Callable, tuple[str, ...], str | None]] = [
|
44 |
+
(special.agm, cython_special.agm, ('dd',), None),
|
45 |
+
(special.airy, cython_special._airy_pywrap, ('d', 'D'), None),
|
46 |
+
(special.airye, cython_special._airye_pywrap, ('d', 'D'), None),
|
47 |
+
(special.bdtr, cython_special.bdtr, ('dld', 'ddd'), None),
|
48 |
+
(special.bdtrc, cython_special.bdtrc, ('dld', 'ddd'), None),
|
49 |
+
(special.bdtri, cython_special.bdtri, ('dld', 'ddd'), None),
|
50 |
+
(special.bdtrik, cython_special.bdtrik, ('ddd',), None),
|
51 |
+
(special.bdtrin, cython_special.bdtrin, ('ddd',), None),
|
52 |
+
(special.bei, cython_special.bei, ('d',), None),
|
53 |
+
(special.beip, cython_special.beip, ('d',), None),
|
54 |
+
(special.ber, cython_special.ber, ('d',), None),
|
55 |
+
(special.berp, cython_special.berp, ('d',), None),
|
56 |
+
(special.besselpoly, cython_special.besselpoly, ('ddd',), None),
|
57 |
+
(special.beta, cython_special.beta, ('dd',), None),
|
58 |
+
(special.betainc, cython_special.betainc, ('ddd',), None),
|
59 |
+
(special.betaincc, cython_special.betaincc, ('ddd',), None),
|
60 |
+
(special.betaincinv, cython_special.betaincinv, ('ddd',), None),
|
61 |
+
(special.betainccinv, cython_special.betainccinv, ('ddd',), None),
|
62 |
+
(special.betaln, cython_special.betaln, ('dd',), None),
|
63 |
+
(special.binom, cython_special.binom, ('dd',), None),
|
64 |
+
(special.boxcox, cython_special.boxcox, ('dd',), None),
|
65 |
+
(special.boxcox1p, cython_special.boxcox1p, ('dd',), None),
|
66 |
+
(special.btdtr, cython_special.btdtr, ('ddd',), None),
|
67 |
+
(special.btdtri, cython_special.btdtri, ('ddd',), None),
|
68 |
+
(special.btdtria, cython_special.btdtria, ('ddd',), None),
|
69 |
+
(special.btdtrib, cython_special.btdtrib, ('ddd',), None),
|
70 |
+
(special.cbrt, cython_special.cbrt, ('d',), None),
|
71 |
+
(special.chdtr, cython_special.chdtr, ('dd',), None),
|
72 |
+
(special.chdtrc, cython_special.chdtrc, ('dd',), None),
|
73 |
+
(special.chdtri, cython_special.chdtri, ('dd',), None),
|
74 |
+
(special.chdtriv, cython_special.chdtriv, ('dd',), None),
|
75 |
+
(special.chndtr, cython_special.chndtr, ('ddd',), None),
|
76 |
+
(special.chndtridf, cython_special.chndtridf, ('ddd',), None),
|
77 |
+
(special.chndtrinc, cython_special.chndtrinc, ('ddd',), None),
|
78 |
+
(special.chndtrix, cython_special.chndtrix, ('ddd',), None),
|
79 |
+
(special.cosdg, cython_special.cosdg, ('d',), None),
|
80 |
+
(special.cosm1, cython_special.cosm1, ('d',), None),
|
81 |
+
(special.cotdg, cython_special.cotdg, ('d',), None),
|
82 |
+
(special.dawsn, cython_special.dawsn, ('d', 'D'), None),
|
83 |
+
(special.ellipe, cython_special.ellipe, ('d',), None),
|
84 |
+
(special.ellipeinc, cython_special.ellipeinc, ('dd',), None),
|
85 |
+
(special.ellipj, cython_special._ellipj_pywrap, ('dd',), None),
|
86 |
+
(special.ellipkinc, cython_special.ellipkinc, ('dd',), None),
|
87 |
+
(special.ellipkm1, cython_special.ellipkm1, ('d',), None),
|
88 |
+
(special.ellipk, cython_special.ellipk, ('d',), None),
|
89 |
+
(special.elliprc, cython_special.elliprc, ('dd', 'DD'), None),
|
90 |
+
(special.elliprd, cython_special.elliprd, ('ddd', 'DDD'), None),
|
91 |
+
(special.elliprf, cython_special.elliprf, ('ddd', 'DDD'), None),
|
92 |
+
(special.elliprg, cython_special.elliprg, ('ddd', 'DDD'), None),
|
93 |
+
(special.elliprj, cython_special.elliprj, ('dddd', 'DDDD'), None),
|
94 |
+
(special.entr, cython_special.entr, ('d',), None),
|
95 |
+
(special.erf, cython_special.erf, ('d', 'D'), None),
|
96 |
+
(special.erfc, cython_special.erfc, ('d', 'D'), None),
|
97 |
+
(special.erfcx, cython_special.erfcx, ('d', 'D'), None),
|
98 |
+
(special.erfi, cython_special.erfi, ('d', 'D'), None),
|
99 |
+
(special.erfinv, cython_special.erfinv, ('d',), None),
|
100 |
+
(special.erfcinv, cython_special.erfcinv, ('d',), None),
|
101 |
+
(special.eval_chebyc, cython_special.eval_chebyc, ('dd', 'dD', 'ld'), None),
|
102 |
+
(special.eval_chebys, cython_special.eval_chebys, ('dd', 'dD', 'ld'),
|
103 |
+
'd and l differ for negative int'),
|
104 |
+
(special.eval_chebyt, cython_special.eval_chebyt, ('dd', 'dD', 'ld'),
|
105 |
+
'd and l differ for negative int'),
|
106 |
+
(special.eval_chebyu, cython_special.eval_chebyu, ('dd', 'dD', 'ld'),
|
107 |
+
'd and l differ for negative int'),
|
108 |
+
(special.eval_gegenbauer, cython_special.eval_gegenbauer, ('ddd', 'ddD', 'ldd'),
|
109 |
+
'd and l differ for negative int'),
|
110 |
+
(special.eval_genlaguerre, cython_special.eval_genlaguerre, ('ddd', 'ddD', 'ldd'),
|
111 |
+
'd and l differ for negative int'),
|
112 |
+
(special.eval_hermite, cython_special.eval_hermite, ('ld',), None),
|
113 |
+
(special.eval_hermitenorm, cython_special.eval_hermitenorm, ('ld',), None),
|
114 |
+
(special.eval_jacobi, cython_special.eval_jacobi, ('dddd', 'dddD', 'lddd'),
|
115 |
+
'd and l differ for negative int'),
|
116 |
+
(special.eval_laguerre, cython_special.eval_laguerre, ('dd', 'dD', 'ld'),
|
117 |
+
'd and l differ for negative int'),
|
118 |
+
(special.eval_legendre, cython_special.eval_legendre, ('dd', 'dD', 'ld'), None),
|
119 |
+
(special.eval_sh_chebyt, cython_special.eval_sh_chebyt, ('dd', 'dD', 'ld'), None),
|
120 |
+
(special.eval_sh_chebyu, cython_special.eval_sh_chebyu, ('dd', 'dD', 'ld'),
|
121 |
+
'd and l differ for negative int'),
|
122 |
+
(special.eval_sh_jacobi, cython_special.eval_sh_jacobi, ('dddd', 'dddD', 'lddd'),
|
123 |
+
'd and l differ for negative int'),
|
124 |
+
(special.eval_sh_legendre, cython_special.eval_sh_legendre, ('dd', 'dD', 'ld'),
|
125 |
+
None),
|
126 |
+
(special.exp1, cython_special.exp1, ('d', 'D'), None),
|
127 |
+
(special.exp10, cython_special.exp10, ('d',), None),
|
128 |
+
(special.exp2, cython_special.exp2, ('d',), None),
|
129 |
+
(special.expi, cython_special.expi, ('d', 'D'), None),
|
130 |
+
(special.expit, cython_special.expit, ('f', 'd', 'g'), None),
|
131 |
+
(special.expm1, cython_special.expm1, ('d', 'D'), None),
|
132 |
+
(special.expn, cython_special.expn, ('ld', 'dd'), None),
|
133 |
+
(special.exprel, cython_special.exprel, ('d',), None),
|
134 |
+
(special.fdtr, cython_special.fdtr, ('ddd',), None),
|
135 |
+
(special.fdtrc, cython_special.fdtrc, ('ddd',), None),
|
136 |
+
(special.fdtri, cython_special.fdtri, ('ddd',), None),
|
137 |
+
(special.fdtridfd, cython_special.fdtridfd, ('ddd',), None),
|
138 |
+
(special.fresnel, cython_special._fresnel_pywrap, ('d', 'D'), None),
|
139 |
+
(special.gamma, cython_special.gamma, ('d', 'D'), None),
|
140 |
+
(special.gammainc, cython_special.gammainc, ('dd',), None),
|
141 |
+
(special.gammaincc, cython_special.gammaincc, ('dd',), None),
|
142 |
+
(special.gammainccinv, cython_special.gammainccinv, ('dd',), None),
|
143 |
+
(special.gammaincinv, cython_special.gammaincinv, ('dd',), None),
|
144 |
+
(special.gammaln, cython_special.gammaln, ('d',), None),
|
145 |
+
(special.gammasgn, cython_special.gammasgn, ('d',), None),
|
146 |
+
(special.gdtr, cython_special.gdtr, ('ddd',), None),
|
147 |
+
(special.gdtrc, cython_special.gdtrc, ('ddd',), None),
|
148 |
+
(special.gdtria, cython_special.gdtria, ('ddd',), None),
|
149 |
+
(special.gdtrib, cython_special.gdtrib, ('ddd',), None),
|
150 |
+
(special.gdtrix, cython_special.gdtrix, ('ddd',), None),
|
151 |
+
(special.hankel1, cython_special.hankel1, ('dD',), None),
|
152 |
+
(special.hankel1e, cython_special.hankel1e, ('dD',), None),
|
153 |
+
(special.hankel2, cython_special.hankel2, ('dD',), None),
|
154 |
+
(special.hankel2e, cython_special.hankel2e, ('dD',), None),
|
155 |
+
(special.huber, cython_special.huber, ('dd',), None),
|
156 |
+
(special.hyp0f1, cython_special.hyp0f1, ('dd', 'dD'), None),
|
157 |
+
(special.hyp1f1, cython_special.hyp1f1, ('ddd', 'ddD'), None),
|
158 |
+
(special.hyp2f1, cython_special.hyp2f1, ('dddd', 'dddD'), None),
|
159 |
+
(special.hyperu, cython_special.hyperu, ('ddd',), None),
|
160 |
+
(special.i0, cython_special.i0, ('d',), None),
|
161 |
+
(special.i0e, cython_special.i0e, ('d',), None),
|
162 |
+
(special.i1, cython_special.i1, ('d',), None),
|
163 |
+
(special.i1e, cython_special.i1e, ('d',), None),
|
164 |
+
(special.inv_boxcox, cython_special.inv_boxcox, ('dd',), None),
|
165 |
+
(special.inv_boxcox1p, cython_special.inv_boxcox1p, ('dd',), None),
|
166 |
+
(special.it2i0k0, cython_special._it2i0k0_pywrap, ('d',), None),
|
167 |
+
(special.it2j0y0, cython_special._it2j0y0_pywrap, ('d',), None),
|
168 |
+
(special.it2struve0, cython_special.it2struve0, ('d',), None),
|
169 |
+
(special.itairy, cython_special._itairy_pywrap, ('d',), None),
|
170 |
+
(special.iti0k0, cython_special._iti0k0_pywrap, ('d',), None),
|
171 |
+
(special.itj0y0, cython_special._itj0y0_pywrap, ('d',), None),
|
172 |
+
(special.itmodstruve0, cython_special.itmodstruve0, ('d',), None),
|
173 |
+
(special.itstruve0, cython_special.itstruve0, ('d',), None),
|
174 |
+
(special.iv, cython_special.iv, ('dd', 'dD'), None),
|
175 |
+
(special.ive, cython_special.ive, ('dd', 'dD'), None),
|
176 |
+
(special.j0, cython_special.j0, ('d',), None),
|
177 |
+
(special.j1, cython_special.j1, ('d',), None),
|
178 |
+
(special.jv, cython_special.jv, ('dd', 'dD'), None),
|
179 |
+
(special.jve, cython_special.jve, ('dd', 'dD'), None),
|
180 |
+
(special.k0, cython_special.k0, ('d',), None),
|
181 |
+
(special.k0e, cython_special.k0e, ('d',), None),
|
182 |
+
(special.k1, cython_special.k1, ('d',), None),
|
183 |
+
(special.k1e, cython_special.k1e, ('d',), None),
|
184 |
+
(special.kei, cython_special.kei, ('d',), None),
|
185 |
+
(special.keip, cython_special.keip, ('d',), None),
|
186 |
+
(special.kelvin, cython_special._kelvin_pywrap, ('d',), None),
|
187 |
+
(special.ker, cython_special.ker, ('d',), None),
|
188 |
+
(special.kerp, cython_special.kerp, ('d',), None),
|
189 |
+
(special.kl_div, cython_special.kl_div, ('dd',), None),
|
190 |
+
(special.kn, cython_special.kn, ('ld', 'dd'), None),
|
191 |
+
(special.kolmogi, cython_special.kolmogi, ('d',), None),
|
192 |
+
(special.kolmogorov, cython_special.kolmogorov, ('d',), None),
|
193 |
+
(special.kv, cython_special.kv, ('dd', 'dD'), None),
|
194 |
+
(special.kve, cython_special.kve, ('dd', 'dD'), None),
|
195 |
+
(special.log1p, cython_special.log1p, ('d', 'D'), None),
|
196 |
+
(special.log_expit, cython_special.log_expit, ('f', 'd', 'g'), None),
|
197 |
+
(special.log_ndtr, cython_special.log_ndtr, ('d', 'D'), None),
|
198 |
+
(special.ndtri_exp, cython_special.ndtri_exp, ('d',), None),
|
199 |
+
(special.loggamma, cython_special.loggamma, ('D',), None),
|
200 |
+
(special.logit, cython_special.logit, ('f', 'd', 'g'), None),
|
201 |
+
(special.lpmv, cython_special.lpmv, ('ddd',), None),
|
202 |
+
(special.mathieu_a, cython_special.mathieu_a, ('dd',), None),
|
203 |
+
(special.mathieu_b, cython_special.mathieu_b, ('dd',), None),
|
204 |
+
(special.mathieu_cem, cython_special._mathieu_cem_pywrap, ('ddd',), None),
|
205 |
+
(special.mathieu_modcem1, cython_special._mathieu_modcem1_pywrap, ('ddd',), None),
|
206 |
+
(special.mathieu_modcem2, cython_special._mathieu_modcem2_pywrap, ('ddd',), None),
|
207 |
+
(special.mathieu_modsem1, cython_special._mathieu_modsem1_pywrap, ('ddd',), None),
|
208 |
+
(special.mathieu_modsem2, cython_special._mathieu_modsem2_pywrap, ('ddd',), None),
|
209 |
+
(special.mathieu_sem, cython_special._mathieu_sem_pywrap, ('ddd',), None),
|
210 |
+
(special.modfresnelm, cython_special._modfresnelm_pywrap, ('d',), None),
|
211 |
+
(special.modfresnelp, cython_special._modfresnelp_pywrap, ('d',), None),
|
212 |
+
(special.modstruve, cython_special.modstruve, ('dd',), None),
|
213 |
+
(special.nbdtr, cython_special.nbdtr, ('lld', 'ddd'), None),
|
214 |
+
(special.nbdtrc, cython_special.nbdtrc, ('lld', 'ddd'), None),
|
215 |
+
(special.nbdtri, cython_special.nbdtri, ('lld', 'ddd'), None),
|
216 |
+
(special.nbdtrik, cython_special.nbdtrik, ('ddd',), None),
|
217 |
+
(special.nbdtrin, cython_special.nbdtrin, ('ddd',), None),
|
218 |
+
(special.ncfdtr, cython_special.ncfdtr, ('dddd',), None),
|
219 |
+
(special.ncfdtri, cython_special.ncfdtri, ('dddd',), None),
|
220 |
+
(special.ncfdtridfd, cython_special.ncfdtridfd, ('dddd',), None),
|
221 |
+
(special.ncfdtridfn, cython_special.ncfdtridfn, ('dddd',), None),
|
222 |
+
(special.ncfdtrinc, cython_special.ncfdtrinc, ('dddd',), None),
|
223 |
+
(special.nctdtr, cython_special.nctdtr, ('ddd',), None),
|
224 |
+
(special.nctdtridf, cython_special.nctdtridf, ('ddd',), None),
|
225 |
+
(special.nctdtrinc, cython_special.nctdtrinc, ('ddd',), None),
|
226 |
+
(special.nctdtrit, cython_special.nctdtrit, ('ddd',), None),
|
227 |
+
(special.ndtr, cython_special.ndtr, ('d', 'D'), None),
|
228 |
+
(special.ndtri, cython_special.ndtri, ('d',), None),
|
229 |
+
(special.nrdtrimn, cython_special.nrdtrimn, ('ddd',), None),
|
230 |
+
(special.nrdtrisd, cython_special.nrdtrisd, ('ddd',), None),
|
231 |
+
(special.obl_ang1, cython_special._obl_ang1_pywrap, ('dddd',), None),
|
232 |
+
(special.obl_ang1_cv, cython_special._obl_ang1_cv_pywrap, ('ddddd',), None),
|
233 |
+
(special.obl_cv, cython_special.obl_cv, ('ddd',), None),
|
234 |
+
(special.obl_rad1, cython_special._obl_rad1_pywrap, ('dddd',), "see gh-6211"),
|
235 |
+
(special.obl_rad1_cv, cython_special._obl_rad1_cv_pywrap, ('ddddd',),
|
236 |
+
"see gh-6211"),
|
237 |
+
(special.obl_rad2, cython_special._obl_rad2_pywrap, ('dddd',), "see gh-6211"),
|
238 |
+
(special.obl_rad2_cv, cython_special._obl_rad2_cv_pywrap, ('ddddd',),
|
239 |
+
"see gh-6211"),
|
240 |
+
(special.pbdv, cython_special._pbdv_pywrap, ('dd',), None),
|
241 |
+
(special.pbvv, cython_special._pbvv_pywrap, ('dd',), None),
|
242 |
+
(special.pbwa, cython_special._pbwa_pywrap, ('dd',), None),
|
243 |
+
(special.pdtr, cython_special.pdtr, ('dd', 'dd'), None),
|
244 |
+
(special.pdtrc, cython_special.pdtrc, ('dd', 'dd'), None),
|
245 |
+
(special.pdtri, cython_special.pdtri, ('ld', 'dd'), None),
|
246 |
+
(special.pdtrik, cython_special.pdtrik, ('dd',), None),
|
247 |
+
(special.poch, cython_special.poch, ('dd',), None),
|
248 |
+
(special.powm1, cython_special.powm1, ('dd',), None),
|
249 |
+
(special.pro_ang1, cython_special._pro_ang1_pywrap, ('dddd',), None),
|
250 |
+
(special.pro_ang1_cv, cython_special._pro_ang1_cv_pywrap, ('ddddd',), None),
|
251 |
+
(special.pro_cv, cython_special.pro_cv, ('ddd',), None),
|
252 |
+
(special.pro_rad1, cython_special._pro_rad1_pywrap, ('dddd',), "see gh-6211"),
|
253 |
+
(special.pro_rad1_cv, cython_special._pro_rad1_cv_pywrap, ('ddddd',),
|
254 |
+
"see gh-6211"),
|
255 |
+
(special.pro_rad2, cython_special._pro_rad2_pywrap, ('dddd',), "see gh-6211"),
|
256 |
+
(special.pro_rad2_cv, cython_special._pro_rad2_cv_pywrap, ('ddddd',),
|
257 |
+
"see gh-6211"),
|
258 |
+
(special.pseudo_huber, cython_special.pseudo_huber, ('dd',), None),
|
259 |
+
(special.psi, cython_special.psi, ('d', 'D'), None),
|
260 |
+
(special.radian, cython_special.radian, ('ddd',), None),
|
261 |
+
(special.rel_entr, cython_special.rel_entr, ('dd',), None),
|
262 |
+
(special.rgamma, cython_special.rgamma, ('d', 'D'), None),
|
263 |
+
(special.round, cython_special.round, ('d',), None),
|
264 |
+
(special.spherical_jn, cython_special.spherical_jn, ('ld', 'ldb', 'lD', 'lDb'),
|
265 |
+
None),
|
266 |
+
(special.spherical_yn, cython_special.spherical_yn, ('ld', 'ldb', 'lD', 'lDb'),
|
267 |
+
None),
|
268 |
+
(special.spherical_in, cython_special.spherical_in, ('ld', 'ldb', 'lD', 'lDb'),
|
269 |
+
None),
|
270 |
+
(special.spherical_kn, cython_special.spherical_kn, ('ld', 'ldb', 'lD', 'lDb'),
|
271 |
+
None),
|
272 |
+
(special.shichi, cython_special._shichi_pywrap, ('d', 'D'), None),
|
273 |
+
(special.sici, cython_special._sici_pywrap, ('d', 'D'), None),
|
274 |
+
(special.sindg, cython_special.sindg, ('d',), None),
|
275 |
+
(special.smirnov, cython_special.smirnov, ('ld', 'dd'), None),
|
276 |
+
(special.smirnovi, cython_special.smirnovi, ('ld', 'dd'), None),
|
277 |
+
(special.spence, cython_special.spence, ('d', 'D'), None),
|
278 |
+
(special.sph_harm, cython_special.sph_harm, ('lldd', 'dddd'), None),
|
279 |
+
(special.stdtr, cython_special.stdtr, ('dd',), None),
|
280 |
+
(special.stdtridf, cython_special.stdtridf, ('dd',), None),
|
281 |
+
(special.stdtrit, cython_special.stdtrit, ('dd',), None),
|
282 |
+
(special.struve, cython_special.struve, ('dd',), None),
|
283 |
+
(special.tandg, cython_special.tandg, ('d',), None),
|
284 |
+
(special.tklmbda, cython_special.tklmbda, ('dd',), None),
|
285 |
+
(special.voigt_profile, cython_special.voigt_profile, ('ddd',), None),
|
286 |
+
(special.wofz, cython_special.wofz, ('D',), None),
|
287 |
+
(special.wright_bessel, cython_special.wright_bessel, ('ddd',), None),
|
288 |
+
(special.wrightomega, cython_special.wrightomega, ('D',), None),
|
289 |
+
(special.xlog1py, cython_special.xlog1py, ('dd', 'DD'), None),
|
290 |
+
(special.xlogy, cython_special.xlogy, ('dd', 'DD'), None),
|
291 |
+
(special.y0, cython_special.y0, ('d',), None),
|
292 |
+
(special.y1, cython_special.y1, ('d',), None),
|
293 |
+
(special.yn, cython_special.yn, ('ld', 'dd'), None),
|
294 |
+
(special.yv, cython_special.yv, ('dd', 'dD'), None),
|
295 |
+
(special.yve, cython_special.yve, ('dd', 'dD'), None),
|
296 |
+
(special.zetac, cython_special.zetac, ('d',), None),
|
297 |
+
(special.owens_t, cython_special.owens_t, ('dd',), None)
|
298 |
+
]
|
299 |
+
|
300 |
+
|
301 |
+
IDS = [x[0].__name__ for x in PARAMS]
|
302 |
+
|
303 |
+
|
304 |
+
def _generate_test_points(typecodes):
|
305 |
+
axes = tuple(TEST_POINTS[x] for x in typecodes)
|
306 |
+
pts = list(product(*axes))
|
307 |
+
return pts
|
308 |
+
|
309 |
+
|
310 |
+
def test_cython_api_completeness():
|
311 |
+
# Check that everything is tested
|
312 |
+
for name in dir(cython_special):
|
313 |
+
func = getattr(cython_special, name)
|
314 |
+
if callable(func) and not name.startswith('_'):
|
315 |
+
for _, cyfun, _, _ in PARAMS:
|
316 |
+
if cyfun is func:
|
317 |
+
break
|
318 |
+
else:
|
319 |
+
raise RuntimeError(f"{name} missing from tests!")
|
320 |
+
|
321 |
+
|
322 |
+
@pytest.mark.parametrize("param", PARAMS, ids=IDS)
|
323 |
+
def test_cython_api(param):
|
324 |
+
pyfunc, cyfunc, specializations, knownfailure = param
|
325 |
+
if knownfailure:
|
326 |
+
pytest.xfail(reason=knownfailure)
|
327 |
+
|
328 |
+
# Check which parameters are expected to be fused types
|
329 |
+
max_params = max(len(spec) for spec in specializations)
|
330 |
+
values = [set() for _ in range(max_params)]
|
331 |
+
for typecodes in specializations:
|
332 |
+
for j, v in enumerate(typecodes):
|
333 |
+
values[j].add(v)
|
334 |
+
seen = set()
|
335 |
+
is_fused_code = [False] * len(values)
|
336 |
+
for j, v in enumerate(values):
|
337 |
+
vv = tuple(sorted(v))
|
338 |
+
if vv in seen:
|
339 |
+
continue
|
340 |
+
is_fused_code[j] = (len(v) > 1)
|
341 |
+
seen.add(vv)
|
342 |
+
|
343 |
+
# Check results
|
344 |
+
for typecodes in specializations:
|
345 |
+
# Pick the correct specialized function
|
346 |
+
signature = [CYTHON_SIGNATURE_MAP[code]
|
347 |
+
for j, code in enumerate(typecodes)
|
348 |
+
if is_fused_code[j]]
|
349 |
+
|
350 |
+
if signature:
|
351 |
+
cy_spec_func = cyfunc[tuple(signature)]
|
352 |
+
else:
|
353 |
+
signature = None
|
354 |
+
cy_spec_func = cyfunc
|
355 |
+
|
356 |
+
# Test it
|
357 |
+
pts = _generate_test_points(typecodes)
|
358 |
+
for pt in pts:
|
359 |
+
with suppress_warnings() as sup:
|
360 |
+
sup.filter(DeprecationWarning)
|
361 |
+
pyval = pyfunc(*pt)
|
362 |
+
cyval = cy_spec_func(*pt)
|
363 |
+
assert_allclose(cyval, pyval, err_msg=f"{pt} {typecodes} {signature}")
|