content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import click def d_reduce_options(f): """Create common options for dimensionality reduction""" f = click.option('--axes', nargs=2, type=click.Tuple([int, int]), help='Plot the projection along which projection axes.', default=[0, 1])(f) f = click.option('--dimension', '-d', help='Number of the dimensions to keep in the output XYZ file.', default=10)(f) f = click.option('--scale/--no-scale', help='Standard scaling of the coordinates.', default=True)(f) return f
97577d5d52b777ea33d4d47a80cbacc0f394ad00
43,525
def _is_url_without_path_query_or_fragment(url_parts): """ Determines if a URL has a blank path, query string and fragment. :param url_parts: A URL. :type url_parts: :class:`urlparse.ParseResult` """ return url_parts.path.strip('/') in ['', 'search'] and url_parts.query == '' \ and url_parts.fragment == ''
4bad1f230adfa77df019519db276a181d57682dd
299
def apim_api_release_show(client, resource_group_name, service_name, api_id, release_id): """Returns the details of an API release.""" return client.api_release.get(resource_group_name, service_name, api_id, release_id)
174e8d6bf55a3f66e549cfb8047a8b6e48e1d98a
523,305
def factorial(n): """Computes factorial of n.""" if n == 0: return 1 else: recurse = factorial(n-1) result = n * recurse return result
16894444b052095b255574aa1ab355e12fa37ef4
658,573
def decode_default(value): """Default decoder. It tries to convert into an integer value and, if it fails, just returns the string. """ try: ival = int(value, 0) return ival except ValueError: return value
93df67ae96ac19c634f173b8b9082741411cc137
210,363
import re def uncamel(s): """ Convert CamelCase class names into lower_snake_case. Taken from http://stackoverflow.com/a/1176023/3288364 """ return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s).lower()
21990e0df7d590e03d8b9ea61bb2bb4ef4b6e6d6
76,100
def gen_hpack_huffman(data): """Generates the hpack_huffman array and returns a tuple with the length of the array and the content of the array both as strings""" content = "" for d in data: content += " { " + str(d['bit_len']) + ", 0x" + d['LSB_hex'] + "u },\n" # We remove the last comma and new line return (str(len(data)), content[:-2])
448845d9bb8a375aa82d1a07c2e2c7759f4d259f
259,147
def cat_charsets(cs): """Combine a set into an alphabetically sorted list in written English, using commas and 'and'. """ d = sorted(cs) if len(d) > 2: d[-1] = "and " + d[-1] d = ", ".join(d) else: d = " and ".join(d) return d
1d5992529b64a8427c353f330c2f47185701a49e
235,656
import itertools def flatten(iterable): """Reduce dimensionality of iterable containing iterables Args: iterable: A multi-dimensional iterable Returns: A one dimensional iterable """ return itertools.chain.from_iterable(iterable)
3869bbc5f2e1377d5c893ce7e35c3b91988916a7
26,945
def matchline(allregex, line): """ Apply regexes to line Parameters ---------- allregex : List[(regex, patinfo)] a list of tuples line : Line to be matched Returns ------- tuple : (ip, matching pattern) if a match is found None : None if no match """ for reg, pattern in allregex: ma = reg.search(line) if ma: return (ma.group(1), pattern) return None
b3db70c120b3394b15902e45c7f11b0b4a01acdc
515,166
def rev_comp(seq: str) -> str: """ Returns reverse complementary sequence of the input DNA string """ comp = { 'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', 'M': 'K', # M = A C 'K': 'M', # K = G T 'R': 'Y', # R = A G 'Y': 'R', # Y = C T 'S': 'S', # S = C G 'W': 'W', # W = A T 'B': 'V', # B = C G T 'V': 'B', # V = A C G 'D': 'H', # D = A G T 'H': 'D', # H = A C T 'a': 't', 'c': 'g', 'g': 'c', 't': 'a', 'n': 'n', 'm': 'k', 'k': 'm', 'r': 'y', 'y': 'r', 's': 's', 'w': 'w', 'b': 'v', 'v': 'b', 'd': 'h', 'h': 'd' } return ''.join([comp[base] for base in seq[::-1]])
c1c9b8666f6a07e1f7eab588881bc40a61b0cbff
485,539
import json def get_stadiums(infile): """ Reads a dict of stadium data from a filename. Args: infile: Filename where stadium map data is stored (string). Returns: Dict of stadium names (strings) to stadium map data records (dicts). """ stadium_dict = {} with open(infile, "r") as file: stadiums = json.load(file) for stadium in stadiums: stadium_dict[stadium["stadium"]] = stadium return stadium_dict
883c463baf011ab8cfe57bc445bfd2954d995b84
252,412
def get_cart_location(env, screen_width): """ Returns the position of the middle of the cart :param env: :param screen_width: :return: """ world_width = env.x_threshold * 2 scale = screen_width / world_width return int(env.state[0] * scale + screen_width / 2.0)
2b245964e1ce8b70a7964766a13a14e7759e48bf
18,188
def isTrue(val): """Determines if a textual value represents 'true'. Args: val: A string, which may be 'true', 'yes', 't', '1' to indicate True. Returns: True or False """ val = val.lower() return val == 'true' or val == 't' or val == '1' or val == 'yes'
04f8b87148991ba54a052700ba39481cc17e1fb7
558,950
def recvall(sock, nbytes): """Receive all nbytes from socket. Parameters ---------- sock: Socket The socket nbytes : int Number of bytes to be received. """ res = [] nread = 0 while nread < nbytes: chunk = sock.recv(min(nbytes - nread, 1024)) if not chunk: raise IOError("connection reset") nread += len(chunk) res.append(chunk) return b"".join(res)
7498b5de4d4fd068b606d3209583681f0beaa3ab
477,719
import six def get_strings(value): """ Getting tuple of available string values (byte string and unicode string) for given value """ if isinstance(value, six.text_type): return value, value.encode('utf-8') if isinstance(value, six.binary_type): return value, value.decode('utf-8') return value,
6517c5e2053d1facaf4282da720aaa91ca0ab2e7
38,635
def _get_reason(summons): """ Returns reason for summons or summons request. Arguments: summons (SummonRequest|Summons) Returns: str """ return ( ( 'Conversation outcome: ' + summons.outcomes + '\nFurther action required because: ' + summons.standards_action ) if summons.spokeWith else summons.special_circumstance )
a34ce18edc68f123ff25193733d489d5185bb11b
564,709
import uuid def create_writer_commands( nexus_structure, output_filename, broker, job_id="", start_time=None, stop_time=None, use_hdf_swmr=True, service_id=None, abort_on_uninitialised_stream=False, ): """ :param nexus_structure: dictionary containing nexus file structure :param output_filename: the nexus file output filename :param broker: default broker to consume from :param job_id: filewriter job_id :param start_time: ms from unix epoch :param stop_time: ms from unix epoch :param abort_on_uninitialised_stream: Whether to abort if the stream cannot be initialised :param service_id: The identifier for the instance of the file-writer that should handle this command. Only needed if multiple file-writers present :param use_hdf_swmr: Whether to use HDF5's Single Writer Multiple Reader (SWMR) capabilities. Default is true in the filewriter :return: A write command and stop command with specified job_id. """ if not job_id: job_id = str(uuid.uuid1()) write_cmd = { "cmd": "FileWriter_new", "broker": broker, "job_id": job_id, "file_attributes": {"file_name": output_filename}, "nexus_structure": nexus_structure, } if start_time is not None: write_cmd["start_time"] = start_time if not use_hdf_swmr: write_cmd["use_hdf_swmr"] = use_hdf_swmr if abort_on_uninitialised_stream: write_cmd["abort_on_uninitialised_stream"] = abort_on_uninitialised_stream stop_cmd = {"cmd": "FileWriter_stop", "job_id": job_id} if stop_time is not None: write_cmd["stop_time"] = stop_time stop_cmd["stop_time"] = stop_time if service_id is not None and service_id: write_cmd["service_id"] = service_id stop_cmd["service_id"] = service_id return write_cmd, stop_cmd
09b90bef6532b40c28109ed8246b3584f3c19e48
122,438
def read(texname): """ A function to read the .tex file @ In, texname, str, LaTeX file name @ Out, filler_text, str, tex contents """ with open(texname, 'r') as fd: filler_text = fd.read() return filler_text
35a687836fba6dc37689b4c5d2fb85f0841eb4e9
74,377
def add_slash(m): """ Helper function that appends a / if one does not exist. Prameters: m: The string to append to. """ if m[-1] != "/": return m + "/" else: return m
9a64d8b481c7fd61a232795f26d67b963f81ec65
533,112
def cliproi(shape, roi): """Make sure that a ROI does not exceeds the maximal size. Args: shape (n-tuple): array shape (n1, n2, ...) roi (n-2-tuple): array range indices ((a1,b1),(a2,b2),...) Returns: n-2-list: clipped ROI [[a1,b1],[a2,b2],...] """ if len(shape) != len(roi): raise ValueError("Dimensions for shape and ROI should be the same") roinew = [] for n, (a, b) in zip(shape, roi): if a is None: a = 0 else: if a < 0: a += n a = max(0, min(a, n - 1)) if b is None: b = n else: if b < 0: b += n b = max(0, min(b, n)) roinew += [[a, b]] return roinew
17c82966400342657f26b92f352a22c66a8c27c8
319,868
import re def snake_case(camel_case): """ Transform camel was to snake case :param camel_case: Camel case string :type camel_case: str :return: Snake case string :rtype: str """ snake_case = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', camel_case) snake_case = re.sub('([a-z0-9])([A-Z])', r'\1_\2', snake_case).lower() return snake_case
0a09cd04b5c5a917004139c6d44aa8c03e52ee32
172,347
import requests def send_request(body, url, token): """ Sends a request to a SOS using POST method :param body: body of the request formatted as JSON :param token: Authorization Token for an existing SOS. :param url: URL to the endpoint where the SOS can be accessed :return: Server response to response formatted as JSON """ # Add headers: headers = {'Authorization': str(token), 'Accept': 'application/json'} response = requests.post(url, headers=headers, json=body) response.raise_for_status() # raise HTTP errors return response
ec092d7ebf7f8f2002795465f04804f19f094c90
61,351
def _dictmerge(d1, d2): """ Recursive merges d2 into d1 if they are dictionaries (by keys), otherwise returns d2 """ if isinstance(d1, dict) and isinstance(d2, dict): rd = d1 for k in d2: if k in d1: rd[k] = _dictmerge(d1[k], d2[k]) else: rd[k] = d2[k] return rd return d2
592b89bebe40dfca385b3fde70cdcd445bd3a9c1
352,830
def flip_boxes(boxes, im_width): """ Horizontally flip the boxes. Args: boxes (array): box to flip. im_width (int): width of the image. Returns: boxes_flipped (array): flipped box. """ boxes_flipped = boxes.copy() boxes_flipped[:, 0::4] = im_width - boxes[:, 2::4] - 1 boxes_flipped[:, 2::4] = im_width - boxes[:, 0::4] - 1 return boxes_flipped
29f46827844c3e292ab0377f16ffeca069082ae9
485,704
def batchify(instances, batch_size=32): """splits instances into batches, each of which contains at most batch_size""" batches = [instances[i:i + batch_size] if i + batch_size <= len(instances) else instances[i:] for i in range(0, len(instances), batch_size)] return batches
d5676fe90da26ff2c98fffe48b9afd4f3b02a06e
125,371
def simple_mapper(stream): """ Returns a simple list of tuples: [(<key1>, 1), (<key2>, 1)...] based on data in stream """ return list(map(lambda key: (key, 1), stream))
cda4882cdfa0c467637037131f483fee9714b0e8
241,046
def create_environment(**kwargs): """ Format args for AWS environment Writes argument pairs to an array {name, value} objects, which is what AWS wants for environment overrides. """ return [{'name': k, 'value': v} for k, v in kwargs.items()]
cc2458c164ed04b533d73c733d1fd4c2cbb93fdb
607,291
def extract_accessions_and_dates(genbank_query, taxonomy_filters): """Retrieve the GenBank accessions and retrieval dates of existing sequences from the db query. :param genbank_query: sql collection :param taxonomy_filters: set of genera, species and strains to restrict retrieval of sequences Return a dict {GenBank_accession: retrieval_date} """ accessions = {} if taxonomy_filters is None: for item in genbank_query: if item[0].genbank_accession == "NA": # no GenBank accession stored in CAZy continue accessions[item[0].genbank_accession] = item[0].seq_update_date else: for item in genbank_query: if item[0].genbank_accession == "NA": # no GenBank accession stored in CAZy continue source_organism = item[-1].genus + item[-1].species if any(filter in source_organism for filter in taxonomy_filters): accessions[item[0].genbank_accession] = item[0].seq_update_date return accessions
82a6e5a2c3d88efceef19eb7f2366dee1da6c546
287,319
def get_magnification(src2sample, sample2det): """ determine the magnification (M > 1 is a demagnification) :param src2sample: source to sample distance [m] :param sample2det: sample to detector distance [m] """ M = (src2sample+sample2det)/src2sample return M
800b6c2c80b3e81a5e82ae9a44ba15835a6b19eb
488,076
def remove_first_word(text): """Given a string, remove what is found before the first space""" l = text.split(" ", 1) return l[1] if len(l) > 1 else ""
0809a676c60086be6b8186c444550e367b80e26d
143,630
import hashlib def generate_hash(input): """Return an md5 hash of an object by first converting it to bytes.""" return hashlib.md5(repr(input).encode()).hexdigest()
92b90c782631c2ab9618b70ec9451dfa5afbbbfb
536,719
def _extract_target(data, target_col): """Removes the target column from a data frame, returns the target col and a new data frame minus the target.""" target = data[target_col] train_df = data.copy() del train_df[target_col] return target, train_df
726a76e254c1d6dc120b590d9d7128986ddc9227
18,823
def complex_vlass(df, NN_dist=72, SNR_min=None): """Algorithm to select complex VLASS components. Args: df ([pandas.DataFrame]): Table of VLASS components. NN_dist ([float]], optional): Maximum distance (in arcsec) to the nearest component to be considered complex. Defaults to 72. SNR_min ([float]], optional): Minimum signal-to-noise of the component. Defaults to None. Returns: pandas.DataFrame: Subset of the input DataFrame containing only the complex components. """ mask = (df["S_Code"] == "S") & (df["NN_dist"] < NN_dist) mask |= df["S_Code"] == "M" mask |= df["S_Code"] == "C" df = df[mask] if SNR_min is not None: df = df[df["SNR"] >= SNR_min] return df
3dd668b10f2d19729d30a2996cec08c3304aabed
236,781
def extraction_date_hour(date_hour): """ From a string whose structure is : ... :param date_hour: :return: [year, month, day, hour, minute] and each elements are integer """ slash = date_hour.split('-') year = slash[0] month = slash[1] t = slash[2].split("T") day = t[0] two_points = t[1].split(":") hour = two_points[0] minute = two_points[1] return int(year), int(month), int(day), int(hour), int(minute)
1d9c858e4e86bc12b6fd8fb5ab085562e3313717
360,370
def _in_while_loop(control_flow_node_map, op_name): """ Check if a given control flow operator is part of a while loop execution frame. This is based on the fact that there is only one occurrence of `LoopCond` for a loop execution frame and it is only presented in the loop construct. Parameters ---------- control_flow_node_map : Dict[str, Set[str]] A dictionay contains the unique control flow execution frame name to a set of primitive operators mapping. op_name : str The name of a control flow primitive. Returns ------- ret : bool Return true if the operator is in a while loop execution frame, otherwise, return false. """ return op_name in control_flow_node_map and "LoopCond" in control_flow_node_map[op_name]
7016910bf50e6013c908eda310980f9633b642f6
180,670
def SplitNamespace(ref): """Returns (namespace, entity) from |ref|, e.g. app.window.AppWindow -> (app.window, AppWindow). If |ref| isn't qualified then returns (None, ref). """ if '.' in ref: return tuple(ref.rsplit('.', 1)) return (None, ref)
443b3dca2ac56d9997de777716da53d34377b18a
466,791
def _build_projection_expression(clean_table_keys): """Return a projection expression for the DynamoDB lookup. Args: clean_table_keys (Dict[str, Any]): Keys without the data types attached. Returns: str: A projection expression for the DynamoDB lookup. """ projection_expression = '' for key in clean_table_keys[:-1]: projection_expression += ('{},').format(key) projection_expression += clean_table_keys[-1] return projection_expression
5b22b55a6649aabee6f51878c03430f55c890e88
479,408
import re def read_data_names(filepath: str): """ function to read class names & attributes :param filepath: the relative path to the file containing the specifications of the attribute_values :return: a tuple of lists classes: is a one-dimensional list containing the class names attributes: is a one-dimensional list containing the attribute names attribute_values: is a two-dimensional list where each row respresents one attribute(in the order of 'attributes') and the possible values """ with open(filepath, "r") as f: lines = f.read().splitlines() classes = re.sub(r'^' + re.escape("class values: "), '', lines.pop(0)) classes = classes.split(", ") attributes = re.sub(r'^' + re.escape("attributes: "), '', lines.pop(0)) attributes = attributes.split(", ") attribute_values = [] for i in range(0, len(attributes)): values = re.sub(r'^' + re.escape(attributes[i] + ": "), '', lines.pop(0)) attribute_values.append(values.split(", ")) return classes, attributes, attribute_values
1111bd25970e5d41c596eaefa9517992186fba8d
65,280
def get_routes(open_api_spec: dict) -> list: """Returns the specific route names for an openapi spec Args: open_api_spec (dict): an OpenAPI specification Returns: list: a list of strings representing the paths found, no information about what methods are available for a path are returned """ return open_api_spec["paths"].keys()
4fa41dc64bd07aea6ff5ae7d7bcfb8bbd4132c00
222,688
def pr_name(payload): """Returns the name (ex. optee_os) of the Git project.""" return payload['repository']['name']
8b6e5548bea0913a10701db4d8c798181c14751c
406,361
import pathlib def make_report_file_names(proj_full_path): """ make the directory and file names for a report Args: proj_full_path (string): the path of the results directory Returns: report_dir (pathlib.Path) html_outfile (pathlib.Path) hash_file (pathlib.Path) """ report_dir = pathlib.Path(proj_full_path).joinpath("report") html_outfile = report_dir.joinpath("report.html") hash_file = report_dir.joinpath("results_hash.json") return (report_dir, html_outfile, hash_file)
8d995bb15c2b8710ad2fb16e2476b5a96421f379
695,780
def get_teacher() -> str: """ Acquire teacher name """ teacher_name = input("Teacher name: ") return teacher_name
bf4b6757ec2d1eebce3f7751f75ea2a42fb67fd0
153,689
import pathlib import configparser def load_config(path: pathlib.Path) -> configparser.ConfigParser: """Load config file.""" conf = configparser.ConfigParser() with path.open() as f: conf.read_file(f) return conf
0ff93929350a8086ed0e25922fbf413d6f013763
549,748
def _get_id(param): """Returns a parameter ID. If param is a Parameter object, then we get the ID from it. Otherwise, we assume param is an integer. """ try: # If this is a Parameter object, then return its _id attr. return param._id except AttributeError: # Otherwise, we assume it's an integer. return param
c9532a110e537121e223eb28e73e8238c3cc2ddb
200,497
from typing import List from typing import Dict import importlib def get_package_versions( packages: List[str], *, na_str="not available" ) -> Dict[str, str]: """tries to load certain python packages and returns their version Args: na_str (str): Text to return if package is not available Returns: dict: Dictionary with version for each package name """ versions: Dict[str, str] = {} for name in sorted(packages): try: module = importlib.import_module(name) except ImportError: versions[name] = na_str else: versions[name] = module.__version__ # type: ignore return versions
bc51ef38a2bac20156a5e6b935e18369a5a46119
115,535
def get_user_group(user_group): """ Formats a user and group in the format ``user:group``, as needed for `chown`. If user_group is a tuple, this is used for the fomatting. If a string or integer is given, it will be formatted as ``user:user``. Otherwise the input is returned - this method does not perform any more checks. :param user_group: User name, user id, user and group in format ``user:group``, ``user_id:group_id``, or tuple of ``(user, group)``. :type user_group: unicode, int, or tuple :return: Formatted string with in the format ``user:group``. :rtype: unicode """ if isinstance(user_group, tuple): return '{0}:{1}'.format(*user_group) elif isinstance(user_group, int) or not ':' in user_group: return '{0}:{0}'.format(user_group) else: return user_group
cc04bc3a572d50c8147ee6b66c83c957a84670c9
183,227
def conformer_eligible_for_topology_detection(conformer): """Returns whether this conformer is worthy of topology detection. Simple duplicate marking or conformers with unreliable geometries are not generally useful to do topology detection. Args: conformer: dataset_pb2.Conformer Returns: bool """ return (conformer.duplicated_by == 0 and conformer.properties.errors.status >= 0 and conformer.properties.errors.status < 512)
34ef2f72d4f4430edd7b76e0f2701b19d4e5a1e9
339,982
def string_tag(name, value): """Create a DMAP tag with string data.""" return name.encode('utf-8') + \ len(value).to_bytes(4, byteorder='big') + \ value.encode('utf-8')
21e041195fb986cbdcb7d9eabcc57018eb111c05
623,894
def text(label, posx, posy): """Returns list of commands to draw text at (posx, posy)""" return ["PU;", "PA{},{}".format(posx, posy), "LB{}\3;".format(label)]
434ef059aa75570be59289d35ae0216c942aef7d
489,608
from typing import Counter def bigram_counts(sequences): """Return a dictionary keyed to each unique PAIR of values in the input sequences list that counts the number of occurrences of pair in the sequences list. The input should be a 2-dimensional array. For example, if the pair of tags (NOUN, VERB) appear 61582 times, then you should return a dictionary such that your_bigram_counts[(NOUN, VERB)] == 61582 output format: out = {{gram1, gram2}: occurance} """ cnt = Counter() for seq in sequences: # if len >=2 , then should calculate bigram if len(seq) > 1: # index against index -1 for index in range(1, len(seq)): bigram = (seq[index - 1], seq[index]) if bigram not in cnt: cnt[bigram] = 0 cnt[bigram] += 1 output = dict(cnt) return output
31a9e1050b9ae61640a365697e951b28f4a92a8e
133,082
def domain_dn_2_name(dn): """Example: Input" "dc=vsphere,dc=local" Output: "vsphere.local" """ domain_name = dn.replace(" ","").replace("dc=","").replace(",",".") return str(domain_name)
300de71b093277d4b396b2971bef6351639497b8
278,112
def prepend(the_list, the_str): """Add string to the front of each item in a list Args: list (list): List of values str (string): string to prepend """ the_str += "{0}" the_list = [the_str.format(i) for i in the_list] return the_list
7e36e573c5f40e788304afead2811b6037c28863
557,235
def isVowel(letter): """ isVowel checks whether a given letter is a vowel. For purposes of this function, treat y as always a vowel, w never as a vowel. letter should be a string containing a single letter return "error" if the value of the parameter is not a single letter string, return True, if the letter is a vowel, otherwise False """ if (type(letter) != str): # letter must be a string return "error" if (len(letter) != 1): # letter must only be a single character return "error" # return True if letter is a vowel (capital or lowercase) if (letter in ["a","e","i","o","u","y","A","E","I","O","U","Y"]): return True return False
5ba6917c80c4679a59580b8f3a05513d0904cd63
698,531
import uuid def get_visitor_id(guid, cookie): """Generate a visitor id for this hit. If there is a visitor id in the cookie, use that, otherwise use the guid if we have one, otherwise use a random number. """ if cookie: return cookie if guid: # create the visitor id using the guid. cid = guid else: # otherwise this is a new user, create a new random id. cid = str(uuid.uuid4()) return cid
962e9fe10c8ecec5ca98316feee02302f7e965e3
491,958
def dispatch(split, *funcs): """takes a tuple of items and delivers each item to a different function /--> item1 --> double(item1) -----> \ / \ split ----> item2 --> triple(item2) -----> _OUTPUT \\ / \\--> item3 --> quadruple(item3) --> / One way to construct such a flow in code would be:: split = ('bar', 'baz', 'qux') double = lambda word: word * 2 triple = lambda word: word * 3 quadruple = lambda word: word * 4 _OUTPUT = dispatch(split, double, triple, quadruple) _OUTPUT == ('barbar', 'bazbazbaz', 'quxquxquxqux') """ return [func(item) for item, func in zip(split, funcs)]
5a04ea68cc218c116436783a9c27866e4297b0fd
599,211
import torch def sum_rightmost(value: torch.Tensor, dim: int): """Sum out ``dim`` many rightmost dimensions of a given tensor. Args: value: A tensor of ``.dim()`` at least ``dim``. dim: The number of rightmost dims to sum out. """ if dim == 0: return value required_shape = value.shape[:-dim] + (-1,) return value.reshape(required_shape).sum(-1)
9214bc18e08cd08efa946ec84740c283901e06f5
639,431
def interbase0_to_humancoords( fmin, fmax, strand ): """ Takes GMOD-standard 0-based inter-base coordinates and transforms them into the typical human-readable coordinates used in places like GBK flat files. Features on the reverse strand have a larger start than stop. The strand values can be: + or 1 for forward features - or -1 for reverse features Returns a list: [start, stop] where start < stop if on forward strand. """ if strand == '+' or strand == 1: return (fmin + 1, fmax) elif strand == '-' or strand == -1: return (fmax, fmin + 1) else: raise Exception("Invalid strand specified ({0}). Expected +, -, 1 or -1".format(strand))
06718284e1d495272944de5ba1cab107db94d102
247,184
import math def delta(l, m, delta0): """Convert a coordinate in l, m into an coordinate in Dec Keyword arguments: l, m -- direction cosines, given by (offset in cells) x cellsi (radians) alpha_0, delta_0 -- centre of the field Return value: delta -- Dec in decimal degrees """ return math.degrees(math.asin(m * math.cos(math.radians(delta0)) + (math.sqrt(1 - (l*l) - (m*m)) * math.sin(math.radians(delta0)))))
63efa0b386304d50e7c14846c8121f33764622ca
116,337
def get_symmetric_pos_th_nb(neg_th): """Compute the positive return that is symmetric to a negative one. For example, 50% down requires 100% to go up to the initial level.""" return neg_th / (1 - neg_th)
3b9af948d6f405147aa7c156bd81556e7e44b8d9
100,303
def _format_page_object_string(page_objects): """Format page object string to store in test case.""" po_string = '' for page in page_objects: po_string = po_string + " '" + page + "',\n" + " " * 8 po_string = "[{}]".format(po_string.strip()[:-1]) return po_string
4c984c300ed0289be073d70ba97a301ee207b998
457,364
from typing import Optional def erd_encode_bool(value: Optional[bool]) -> str: """ Encodes a raw value to a bool, None is encoded as FF """ if value is None: return "FF" return "01" if value else "00"
7d2c5099f6cebcb520c2559601ce765ecbb8ae98
157,543
import requests def get_token(username: str, pw: str, filehost: str = "securefileshare.wales.nhs.uk") -> dict: """ Fetch Bearer token for securefileshare Parameters ---------- username: str pw: str filehost: str Returns ------- dict Dictionary. Access token under key "access_token" """ endpoint = f"https://{filehost}/api/v1/token" data = {"grant_type": "password", "username": username, "password": pw} token = requests.post(endpoint, data=data, verify=False) assert token.status_code == 200, f"Request failed. Error code: {token.status_code}" json = token.json() token.close() return json
98593425daaa606c938e63d488ebcd72a314d57d
666,036
def unknown_processor_rules(info_data, rules): """Setup the default keyboard info for unknown boards. """ info_data['bootloader'] = 'unknown' info_data['platform'] = 'unknown' info_data['processor'] = 'unknown' info_data['processor_type'] = 'unknown' info_data['protocol'] = 'unknown' return info_data
6ff076ba40a1d729c5cc7eec68ff6b49482fe87e
536,321
def rotl(x, n): """循环左移函数 Args: x (int): 输入数据 n (int): 左移位数 Returns: int: 循环左移n位后的结果 """ return ((x << n) & 0xffffffff) | ((x >> (32 - n)) & 0xffffffff)
abe22155f0cd9434291872783a8179252407a123
472,778
def list_not_in(lst1, lst2): """ returns values in lst1 not in lst2 """ lst3 = [v for v in lst1 if v not in lst2] return lst3
6805e55b06cc53308462c5b5dfbe10265f84888f
256,220
import torch def test(model, data_loader, silent=False, device=None, test_batch=1000): """ Evaluate model on given data. Args: model (RNDModel): model object data_loader (iterable): iterable of (x, y) samples silent (bool): if True prints nothing device (pt.device): pytorch device to train on test_batch (int): size of the test batch Returns (float): accuracy value """ model.eval() correct = 0 with torch.no_grad(): for batch_i, (x, y) in enumerate(data_loader): x = x.view(-1, 784).to(device) y = y.to(device) predictor_z, target_z = model.predict(x) mses = [] for predict in predictor_z: mses.append((target_z - predict).pow(2).sum(1) / 2) mses_tensor = torch.Tensor(10, test_batch).to(device) torch.cat(mses, out=mses_tensor) mses_tensor = mses_tensor.view(10, test_batch) class_min_mse = torch.argmin(mses_tensor, dim=0) correct += torch.sum(torch.eq(y, class_min_mse)).item() acc = correct / 10_000 if not silent: print('Accuracy: {}/{} ({:.0f}%)\n'.format(correct, 10000, 100. * acc)) return acc
c7b4fff6b14f21631b5233747c9a40a8507d03d6
192,015
def ksw_func( d50, rh=0., rl=1.e-6, theta=0. ): """ Calculate wave roughess Input: d50 - median grain size (m) rh - ripple height (m) rh - ripple wavelength (m) theta - time-averaged absolute Shields stress Returns: ksw - roughness (m) Based on Ribberink (1998) in van der A et al. (2013), Appendix A. """ rh = max(rh,d50) rl = max(rl,d50) # avoid divide-by-zero # Eqn. A.2 mu = 6. d50mm = d50*1.e3 if( d50mm > 0.15 ): mu = 6. - 5.*(d50mm-0.15)/(0.2-0.15) if( d50mm >= 0.2 ): mu = 1. # eqn A.5 ksw = max(d50, d50*(mu+6.*(theta-1.))) + 0.4*rh*rh/rl return ksw
bf19680b928b254a2698a35ed2cd3a113474c9dc
599,435
import socket def free_port() -> int: """ Determines a free port using sockets. """ free_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) free_socket.bind(('127.0.0.1', 0)) free_socket.listen(5) port: int = free_socket.getsockname()[1] free_socket.close() return port
03e33db6943a2e5ae646576edf1d70fce27e031e
581,559
def tuple_set(base, values, indices): """ Creates a new tuple with the given values put at indices and otherwise the same as base. The list of indices must be in sorted order. """ new = base[:indices[0]] for i in range(len(indices)-1): new += (values[i],) + base[indices[i]+1:indices[i+1]] return new + (values[-1],) + base[indices[-1]+1:]
6f594cf189d71754e024f4770ad516f889ad7921
679,322
import ipaddress def netmask(addr): """Return the netmask of an address """ return str(ipaddress.ip_interface(addr).netmask)
6074bf5847ff9b325d1de62477c6dc6b2722c909
441,789
def point_str(x,y=0,z=0): """ Returns a string repr of a point. Example: point_str(1,2,3) returns '(1.0,2.0,3.0)' Parameter x: the x coordinate Precondition: x is a number Parameter y: the y coordinate Precondition: y is a number Parameter z: the x coordinate Precondition: z is a number """ # Convert all numbers to floats x = float(x) y = float(y) z = float(z) result = '('+str(x)+','+ str(y)+','+ str(z)+')' return result
1586e0b789449cb56690d631aca921ca501b4dcb
640,866
def parse_cards_from_board(raw): """ Returns a list of tuples (word, team, flipped). """ out = [] for line in raw.lower().strip().split("\n"): data = line.strip().split(", ") out.append((data[0], data[1], "revealed" in data[2])) return out
828f1c81a99f44fb23fa615ad239db006b280800
513,817
from typing import Any import random def getKeyByWeights(array: dict, item: int = 0) -> Any: """ Returns a weighted random key from array :param array: dict[Any: int | float] :param item: int :return: - key - Any """ return random.choices(list(array.keys()), weights=list(array.values()))[item]
8f1d474c97466407ff643abce1ea0b12b3ebd951
13,512
from pathlib import Path def is_probably_stubs_folder(distribution: str, distribution_path: Path) -> bool: """Validate that `dist_path` is a folder containing stubs""" return distribution != ".mypy_cache" and distribution_path.is_dir()
b62fc9ac350d268d81f942f2885abce537eb694f
374,186
def _correct_phase_wrap(ha): """Ensure hour angle is between -180 and 180 degrees. Parameters ---------- ha : np.ndarray or float Hour angle in degrees. Returns ------- out : same as ha Hour angle between -180 and 180 degrees. """ return ((ha + 180.0) % 360.0) - 180.0
dc8d5b2bb414f6829a8794753133e1c5350ff5f8
347,085
import socket def _is_port_in_use(host, port): """Check if a port is already being used.""" with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex((host, port)) == 0
fff00086c61c91d07a942f5918d6706805ffff99
460,867
def files_with_suffix(files, suffix): """Filter files with given suffix.""" return [f for f in files if f.endswith(suffix)]
315866e23d141bb3799e7eff0218c9d475905152
134,671
def get_gap(numberlist: list): """Get gap Can take an integer list returned by :meth:`get_numbers` and determine the missing sequence number. Args: numberlist: List of numbers to find a gap in. Returns: Missing number in the sequence or None if there is no gap. """ seqlist = list(range(numberlist[0], numberlist[-1] + 1)) for element in seqlist: if element not in numberlist: return element return None
1b72de67a29fcc17964e5c10155e93f5fa7b1035
116,975
def recall_pos(y,y_pred): """compute recall of the positive class""" return (y[y == 1] == y_pred[y==1]).sum()/float((y==+1).sum())
357fbce5d7b163bc1812b646c291874ce6204a97
120,139
import re def GetSegPos(string, keyC):#{{{ """ Get segment of a continue keyC state e.g. given a string "0001100022000111100" and keyC = '1' return [(3,5), (13,17)] """ posList = [] ex = "(%s+)"%(keyC) m = re.finditer(ex,string) for i in m: posList.append((i.start(0), i.end(0))) return posList
a0b3fbfb3aa2d4a3b0d93ba3f69fb8bfa9d47ac7
384,858
def hello(name: str) -> str: """Test function that prints hello world :param name: name to be displayed :type name: str, optional :return: hello world string :rtype: str """ return f'Hello World! My name is {name}'
b7f75c2fcce22af030e4575a1b6e6192ef3a1816
541,916
def target_directory(tmpdir_factory): """Set up a tmp directory for writing artifacts.""" return tmpdir_factory.mktemp("target")
af8e1d9c7e421b4662cab52c861b0fcea31b516b
356,783
def orbreap(orb): """Get the next packet from an orb""" return orb.reap()
557ad1ac2af84c0c76cf8865ad560d9728803000
642,878
def __flatten_bookmarks(bookmarks): """ Converts a list of nested dicts (with children) from json file to a flattened, sequential list of all children dicts. Adds only those children of type 'text/x-moz-place' and ignores those of type 'text/x-moz-separator'. :param bookmarks: List of nested dicts, e.g. [ { 'title':'rootFolder', children': [{},{},..] }, { }] (json text) :return: List of bookmarks dicts, e.g. [{'type':'text/x-moz-place', 'uri':'abc', },{'type':'text/x-moz-place', 'uri':'def',},..] """ result = [] if bookmarks is not None: for bookmark in bookmarks: if bookmark.get("type") == "text/x-moz-place-container": children_bookmarks = __flatten_bookmarks(bookmark.get("children")) for child in children_bookmarks: result.append(child) else: if bookmark.get("type") == 'text/x-moz-place': result.append(bookmark) return result
cf1b079384f4d69d1cce32a17ce6c6c8210fc2db
345,514
import pymysql.cursors def mysql_conn( host: str = "localhost", port: int = 3306, user: str = "root", db_name: str = "newbook", ): """Establish a PyMySQL connection object Connect to a MySQL Database to be used with a pnguin RemoteFrame Args: host (str): A hostname port (int): A port number user (str): A DB user db_name (str): The DB name being connected to Returns: pymysql.connections.Connection: Representation of a socket to a MySQL server """ return pymysql.connect( host=host, port=port, db=db_name, user=user, charset="utf8mb4", cursorclass=pymysql.cursors.DictCursor, )
651803e2e4bb0597f9eba0b698eb847a37c19275
598,038
import pickle def loads(o): """Unpickle using cPickle""" return pickle.loads(o)
843b44dad61d29d5cd15eaf13f42bb8e452b59ad
411,468
def check_Nbyzan(opts, P): """ Check and get the number of Byzantine machines that we are going to simulate Parameters : ----------- opts : str Options passed by the command prompt P : int Total number of machines (nodes or workers). 1 coodinator ans the ramaining are workers Return : ------- n_byzantines : int (entire natural) Number of byzantine machines that we are going to simulate """ if len(opts) == 0: n_byzantines = 0; n_byzantines = int(opts[0][1]); if n_byzantines < 0 or n_byzantines > P - 1: raise ValueError("Number of byzantine must be an integer " "< number of workers or >= 0"); return n_byzantines;
aecbcaa8bd7febb59971d27fa81e7d1b678d0ae9
96,477
def get_random_element(faker, elements): """ Get random element from faker using elements list :param faker: Faker Library :param elements: List of elements :return: Single element of the list """ return faker.random_element(elements=elements)
5fa77aa530633a9a157c57a2f8cb58357ca88169
286,939
def count(value, sub, start=None, end=None): """ Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation. """ return value.count(sub, start, end)
1842dec3a1a69a29663afdc956be9e70dc978e81
207,410
def supports_automatic_install(forge_version: str) -> bool: """ Checks if install_forge_version() supports the given forge version """ try: vanilla_version, forge = forge_version.split("-") version_split = vanilla_version.split(".") version_number = int(version_split[1]) if version_number >= 13: return True else: return False except: return False
63122e0fb21e14ef215e2b6564c4739b18887dbc
529,728
def touch(name): """Create a file and return its name.""" with open(name, 'w') as f: return f.name
3cd7296cb801b4c7c8344c8189eb46f1ebf8d3b4
136,430
def unpack(group_idx, ret): """ Take an aggregate packed array and uncompress it to the size of group_idx. This is equivalent to ret[group_idx]. """ return ret[group_idx]
e28bc33f5abb83ec2774ac2bf52d3ba9030196f6
215,572
def get_subclasses(klass): """Return list of all subclasses of `klass`. Also recurses into subclasses. """ subclasses = [] for cls in klass.__subclasses__(): subclasses.append(cls) subclasses += get_subclasses(cls) return subclasses
7bf82a53f4b90aa11dcf5a3765eaf8b107ab0111
114,197
import torch def prod_matrix(pts_src: torch.Tensor, pts_dst: torch.Tensor): """ Returns the matrix of "x_i * y_j". :param pts_src: [R, D] matrix :param pts_dst: [C, D] matrix :return: [R, C, D] sum matrix """ x_col = pts_src.unsqueeze(1) y_row = pts_dst.unsqueeze(0) return x_col * y_row
e4dbceedfb489f101ea9e65c1d6e2a3aaf8fbb89
642,371
def getModelFNameFromHyperPars(pref, *hyperParsList, suff=None) : """ Generate a model filename from a list [hyperpar_entry ... ] where each hyperpar_entry is either a dict of hyperparameter values or a tuple (hyperpars_dict, default_hyperpars_dict). In the second case, only the values different from the default are used to generate the filename. The filename is in the format pref_key1_val1_key2_val2... """ res = pref for hyperPars in hyperParsList : if isinstance(hyperPars,tuple) or isinstance(hyperPars,list) : hyperPars, defHyperPars = hyperPars else : defHyperPars = {} for k in sorted(hyperPars.keys()) : if hyperPars[k] != defHyperPars.get(k) : res += '_{}_{}'.format(k,hyperPars[k]).replace('.','_') return res+(('_'+suff) if suff else '')
8dcd4dbeea7a5b1c46833bf25c6cfb0a98f344ab
496,799
def get_agent_deployment_script (api, configuration, api_version, api_exception, platform, dsm_proxy_id = None, validate_certificate = None, activate = None, computer_group_id = None, policy_id = None, relay_id = None, relay_proxy_id = None): """ Obtains an agent deployment script from Deep Security Manager according to the provided parameter values :param api: The Deep Security API modules. :param configuration: Configuration object to pass to the api client. :param api_version: The version of the API to use. :param api_exception: The Deep Security API exception module. :param platform: The platform of the target computer. Valid values are linux, solaris, and windows. :param dsm_proxy_id: The ID of the proxy to use to connect to Deep Security Manager. Default is to use no proxy. :param validate_certificate: True indicates to validate that Deep Security Manager is using a valid TLS certificate from a trusted certificate authority (CA) when downloading the agent installer. Default is False. :param activate: True causes the script to activate the agent. Default is False. :param computer_group_id: The ID of the computer group to which the computer is added. Default is no group. :param policy_id: The ID of the policy to assign to the computer. Default is to assign no policy. :param relay_id: The ID of the relay to assign to the computer for obtaining updates. Default is no relay. :param relay_proxy_id: The ID of the proxy that the agent uses to connect to the relay. Default is to use no proxy. :return: A String that contains the deployment script. """ # Create the AgentDeploymentScript object and configure deployment_script = api.AgentDeploymentScript() deployment_script.platform = platform deployment_script.dsm_proxy_id = dsm_proxy_id deployment_script.validate_certificate_required = validate_certificate deployment_script.activation_required = activate deployment_script.computer_group_id = computer_group_id deployment_script.policy_id = policy_id deployment_script.relay_id = relay_id deployment_script.replay_proxy_id = relay_proxy_id try: deployment_scripts_api = api.AgentDeploymentScriptsApi(api.ApiClient(configuration)) deployment_script = deployment_scripts_api.generate_agent_deployment_script(api_version, agent_deployment_script = deployment_script) return deployment_script.script_body except api_exception as e: return "Exception: " + str(e)
014a41ae97b9d4f19a75202b467df506a35fe30a
612,085
def comp_masses(self): """Compute the masses of the Lamination Parameters ---------- self : Lamination A Lamination object Returns ------- M_dict: dict Lamination mass dictionary (Mtot, Mlam, Mteeth, Myoke) [kg] """ rho = self.mat_type.struct.rho V_dict = self.comp_volumes() M_dict = dict() M_dict["Myoke"] = V_dict["Vyoke"] * self.Kf1 * rho M_dict["Mteeth"] = V_dict["Vteeth"] * self.Kf1 * rho M_dict["Mlam"] = V_dict["Vlam"] * self.Kf1 * rho M_dict["Mtot"] = M_dict["Mlam"] return M_dict
4ef2b61a382f0a1822eae86a8f138ecf85490de1
626,457
def execute_cypher_transaction(tx, query, **kwargs): """Given a Bolt transaction object and a cypher query, execute the query on the transaction object and return all records in the query response as a list. """ if kwargs: verbose = kwargs['verbose'] else: verbose = False records = [] for record in tx.run(query): if verbose: print(record) records.append(record) return records
e61d12e4b617f549be93fc3f823a36b91843ff09
275,219
def quote(text): """Quote Discord's MarkDown special characters""" return text \ .replace("\\", "\\\\") \ .replace("*", "\\*") \ .replace("`", "\\`") \ .replace("[", "\\[") \ .replace("_", "\\_") \ .replace("~", "\\~") \ .replace(":", "\\:") \ .replace("<", "\\<")
e38a0841028418204b0046e10a73b268c536362f
174,309