content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
from typing import Union from typing import List def str_to_list(text: Union[str, None]) -> Union[List, None]: """Split string by comma and return list""" return text.split(",") if isinstance(text, str) else text
a032383dea16c6594893dcd7f1507a73657958ac
224,361
def extract_version(package_name): """ Extracts the version from the package_name. The version is defined as one of the following: -3245s -ab434 -1.1-343s -2.3-4 -134-minimal-24 but not: -ab-13 -ab-ab -m14-m16 The leading "-" is discarded. Example: >>> extract_version("jinja-2.5") '2.5' """ def numeric(c): if c in ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]: return True return False first_dash = package_name.find("-") last_dash = package_name.rfind("-") if first_dash == last_dash: return package_name[first_dash+1:] while not numeric(package_name[first_dash + 1]): package_name = package_name[first_dash+1:] first_dash = package_name.find("-") last_dash = package_name.rfind("-") if first_dash == last_dash: return package_name[first_dash+1:] return package_name[first_dash + 1:]
d0f5686f9b9e81654a6c9a8004c6c549fb49ac62
264,427
def resize_halo_datasets(halos_dset, new_size, write_halo_props_cont, dtype): """ Resizes the halo datasets Parameters ----------- halos_dset: dictionary, required new_size: scalar integer, required write_halo_props_cont: boolean, required Controls if the individual halo properties are written as distinct datasets such that any given property for ALL halos is written contiguously (structure of arrays, SOA). dtype: numpy datatype Returns ------- Returns ``True`` on successful completion """ if write_halo_props_cont: for name in dtype.names: dset = halos_dset[name] dset.resize((new_size, )) else: halos_dset.resize((new_size, )) return True
a5461a776a0991eda04fc5d0e1d2a2a14e6e1f5f
24,780
def bind_ack(data): """ Ensure the data is a bind ack and that the """ # packet type == bind ack (12)? if data[2] != b"\x0c": return False # ack result == acceptance? if data[36:38] != b"\x00\x00": return False return True
0ce51d3b9611cca24116815d282bd2b3df2e43d0
363,284
def get_invite_account_id(event): """Return account id for invite account events.""" return event["detail"]["requestParameters"]["target"]["id"]
9eb49305920d7cdd7cd61005592a4569404be770
136,295
import re def _quantity_to_bytes(quantity): """Return a quantity with a unit converted into a number of bytes. Examples: >>> quantity_to_bytes('42Gi') 45097156608 >>> quantity_to_bytes('100M') 100000000 >>> quantity_to_bytes('1024') 1024 Args: quantity (str): a quantity, composed of a count and an optional unit Returns: int: the capacity (in bytes) """ UNIT_FACTOR = { None: 1, 'Ki': 2 ** 10, 'Mi': 2 ** 20, 'Gi': 2 ** 30, 'Ti': 2 ** 40, 'Pi': 2 ** 50, 'k': 10 ** 3, 'M': 10 ** 6, 'G': 10 ** 9, 'T': 10 ** 12, 'P': 10 ** 15, } size_regex = r'^(?P<size>[1-9][0-9]*)(?P<unit>[kKMGTP]i?)?$' match = re.match(size_regex, quantity) assert match is not None, 'invalid resource.Quantity value' size = int(match.groupdict()['size']) unit = match.groupdict().get('unit') return size * UNIT_FACTOR[unit]
2ddfc61bf02772110e5b0e675b415285319f6747
453,571
from typing import List def get_stuff_class_ids(num_thing_stuff_classes: int, thing_class_ids: List[int], void_label: int) -> List[int]: """Computes stuff_class_ids. The stuff_class_ids are computed from the num_thing_stuff_classes, the thing_class_ids and the void_label. Args: num_thing_stuff_classes: An integer specifying the number of stuff and thing classes, not including `void` class. thing_class_ids: A List of integers of length [num_thing_classes] containing thing class indices. void_label: An integer specifying the void label. Returns: stuff_class_ids: A sorted List of integers of shape [num_stuff_classes] containing stuff class indices. """ if void_label >= num_thing_stuff_classes: thing_stuff_class_ids = list(range(num_thing_stuff_classes)) else: thing_stuff_class_ids = [_ for _ in range(num_thing_stuff_classes + 1) if _ is not void_label] return sorted(set(thing_stuff_class_ids) - set(thing_class_ids))
89e1ffa143d70c03d49cfab1603bdd85af2533be
185,074
import math def calc_angle_between_two_locs(lon1_deg, lat1_deg, lon2_deg, lat2_deg): """ This function reads in two coordinates (in degrees) on the surface of a sphere and calculates the angle (in degrees) between them. """ # Import modules ... # Convert to radians ... lon1_rad = math.radians(lon1_deg) # [rad] lat1_rad = math.radians(lat1_deg) # [rad] lon2_rad = math.radians(lon2_deg) # [rad] lat2_rad = math.radians(lat2_deg) # [rad] # Calculate angle in radians ... distance_rad = 2.0 * math.asin( math.hypot( math.sin((lat1_rad - lat2_rad) / 2.0), math.cos(lat1_rad) * math.cos(lat2_rad) * math.sin((lon1_rad - lon2_rad) / 2.0) ) ) # [rad] # Return angle ... return math.degrees(distance_rad)
1ffa72e64696fc800de3fbf93bfb01a13ce14d22
60,709
def apply_first(seq): """Call the first item in a sequence with the remaining sequence as positional arguments.""" f, *args = seq return f(*args)
0f7353b66ea677e4b4090dc2824556952daaa7c9
658,980
def path(service): """ Return path — or route pattern — for the given REST service. """ return '/-/{0}'.format(service.lower())
8f5386ee6c0b43c0692920ac91182c03b9429ea3
308,881
import re def re_find(s, r, pos=0, endpos=9223372036854775807): """ Returns the match of the first occurrence of the regular expression `r` in string (or byte-sequence) `s`. This is essentially a wrapper for `re.finditer()` to avoid a try-catch StopIteration block. If `r` cannot be found, `None` will be returned. """ if isinstance(r, (str, bytes)): if (pos, endpos) != (0, 9223372036854775807): rx = re.compile(r) else: try: m = next(re.finditer(r, s)) return m except StopIteration: return None elif r: try: m = next(r.finditer(s, pos, endpos)) return m except StopIteration: return None
cb726156d009956e20576757cad24fe8a6fa9279
513,510
def count_object(network, class_ids, scores, bounding_boxes, object_label, threshold=0.75): """ Counts objects of a given type that are predicted by the network. :param network: object detection network :type network: mx.gluon.nn.Block :param class_ids: predicted object class indexes (e.g. 123) :type class_ids: mx.nd.NDArrays :param scores: predicted object confidence :type scores: mx.nd.NDArrays :param bounding_boxes: predicted object locations :type bounding_boxes: mx.nd.NDArrays :param object_label: object to be counted (e.g. "person") :type object_label: str :param threshold: required confidence for object to be counted :type threshold: float :return: number of objects that are predicted by the network. :rtype: int """ detected_objects=0 while(scores[0][detected_objects]>threshold): detected_objects+=1 count=0 reqd_idx = network.classes.index(object_label) for idx in class_ids[0][:detected_objects]: if (idx==reqd_idx): count+=1 return count
31dd31319a6d579d98929ec9a57892a560b058f3
626,060
def get_attr_resolver(obj_type, model_attr): """ In order to support field renaming via `ORMField.model_attr`, we need to define resolver functions for each field. :param SQLAlchemyObjectType obj_type: :param str model_attr: the name of the SQLAlchemy attribute :rtype: Callable """ return lambda root, _info: getattr(root, model_attr, None)
23376addb0b5a3ab600e251e512f9174a27a66b6
650,766
def impedance(vp, rho): """ Compute acoustic impedance. """ return vp * rho
6be115c3d92b394a5b98cbf502d2bc753522a8a6
67,309
def make_matrix(num_rows, num_columns, entry_fn): """ creates a num_rows * num_columns matrix whose (i,j) entry is an entry_fn """ return [[entry_fn(i, j) for j in range(num_columns)] for i in range(num_rows)]
a1dccfe0d5d62bb58c956d56e691d1898e275134
184,441
def partial_fittable_instance(obj, name=None, **kwargs): """Asserts that obj has a partial_fit, and instantiates it with **kwargs if obj is given as a type""" if name is None: if isinstance(obj, type): name = obj.__name__ else: name = type(obj).__name__ assert hasattr(obj, 'partial_fit'), f"{name} doesn't have a partial_fit: {obj} " if isinstance(obj, type): obj = obj(**kwargs) return obj
2dc94bccd3dca4710ca1ee0d732fe9f98485a46c
339,615
def map_file_to_plot_id(file_path: str, season_id: str, seasons: list) -> str: """Find the plot that is associated with the file Arguments: file_path: the path to the file season_id: the ID of the season associated with the file seasons: the list of seasons Return: Returns the found plot ID Exceptions: Raises RuntimeError if the plot ID isn't found """ found_plot_id = None file_parts = file_path.split('/') for one_season in seasons: if 'id' not in one_season or 'sites' not in one_season or not one_season['id'] == season_id: continue for one_site in one_season['sites']: if 'site' not in one_site or 'sitename' not in one_site['site']: continue if one_site['site']['sitename'] in file_parts: found_plot_id = one_site['site']['id'] break if found_plot_id is None: raise RuntimeError("Unable to find plot ID for file %s" % file_path) return found_plot_id
7f5d955ee130835724a1f56ae66252fa264bde29
289,683
import json def from_json(value): """ Decodes a JSON string into an object. :param str value: String to decode :returns: Decoded JSON object """ return json.loads(value)
8ab44eb73063fce49dbcc5f1ad51768f27620a41
645,349
def computechangesetcopies(ctx): """return the copies data for a changeset The copies data are returned as a pair of dictionnary (p1copies, p2copies). Each dictionnary are in the form: `{newname: oldname}` """ p1copies = {} p2copies = {} p1 = ctx.p1() p2 = ctx.p2() narrowmatch = ctx._repo.narrowmatch() for dst in ctx.files(): if not narrowmatch(dst) or dst not in ctx: continue copied = ctx[dst].renamed() if not copied: continue src, srcnode = copied if src in p1 and p1[src].filenode() == srcnode: p1copies[dst] = src elif src in p2 and p2[src].filenode() == srcnode: p2copies[dst] = src return p1copies, p2copies
c1e0cd4df1fff9bea2d5184fe7dab78fc37695ee
385,052
def get_id(id_): """Allow specifying old or new style IDs and convert old style to new style IDs Old style: 123-the-slug New style: 123 or the-slug-123 """ if isinstance(id_, int): return id_ elif "-" in id_: front = id_.split("-", 1)[0] if front.isdigit(): return front back = id_.rsplit("-", 1)[-1] if back.isdigit(): return back return id_
1d895bd7d96b52e3772c4a34a5630ffc9a06b7d2
523,296
def binomial_coefficient(n, r): """ Find binomial coefficient using pascals triangle. >>> binomial_coefficient(10, 5) 252 """ C = [0 for i in range(r + 1)] # nc0 = 1 C[0] = 1 for i in range(1, n + 1): # to compute current row from previous row. j = min(i, r) while j > 0: C[j] += C[j - 1] j -= 1 return C[r]
6a3e88cf757535b03c59a6e482e0b432adaec0db
121,923
def find_subsequence(iterable, predicate): """ find the subsequence in iterable which predicted return true for example: >>> find_subsequence([1, 10, 2, 3, 5, 8, 9], lambda x: x in [1, 0, 2, 3, 4, 5, 8, 9]) [[1], [2, 3, 5, 8, 9]] >>> find_subsequence([1, 10, 2, 3, 5, 8, 9], lambda x: x not in [1, 0, 2, 3, 4, 5, 8, 9]) [[10]] """ seqs = [] seq = [] continuous = False for i in iterable: if predicate(i): if continuous: seq.append(i) else: seq = [i] continuous = True elif continuous: seqs.append(seq) seq = [] continuous = False if len(seq): seqs.append(seq) return seqs
784e509b742643fbee1a32226da1d0fb9ec3bd21
144,379
def fmt_option_key(key, value): """Format a single keyword option.""" if value is None: return "" return f"{key}={value}"
271519544ac6b10840898782bb74904e03a16197
317,480
def get_case_form_ids(couch_case): """Get the set of form ids that touched the given couch case object""" form_ids = set(couch_case.xform_ids) for action in couch_case.actions: if action.xform_id: form_ids.add(action.xform_id) return form_ids
f3e5822f5be0822808719fa184fdc263ceb73d62
182,662
import re def youtube_url_validator(url): """ ## youtube_url_validator Validates & extracts Youtube video ID from URL. Parameters: url (string): inputs URL. **Returns:** A valid Youtube video string ID. """ youtube_regex = ( r"(?:http:|https:)*?\/\/(?:www\.|)(?:youtube\.com|m\.youtube\.com|youtu\.|youtube-nocookie\.com).*" r"(?:v=|v%3D|v\/|(?:a|p)\/(?:a|u)\/\d.*\/|watch\?|vi(?:=|\/)|\/embed\/|oembed\?|be\/|e\/)([^&?%#\/\n]*)" ) matched = re.search(youtube_regex, url) # check for None-type if not (matched is None): return matched.groups()[0] else: return ""
ff2779844ed1cb74125cac285e197ef23bfb8f11
240,079
def is_prime(nb: int) -> bool: """Check if a number is a prime number or not :param nb: the number to check :return: True if prime, False otherwise """ # even numbers are not prime if nb % 2 == 0 and nb > 2: return False # checking all numbers up to the square root of the number # full explanation: # https://stackoverflow.com/questions/18833759/python-prime-number-checker/18833870#18833870 return all(nb % i for i in range(3, int(nb ** .5) + 1, 2))
4368fd20eadd4d773d5f5af06f8717ef633d48b8
698,329
def _is_public(name: str) -> bool: """Return true if the name is not private, i.e. is public. :param name: name of an attribute """ return not name.startswith('_')
280bd1636ad3a08d51c95165ac15e7a6e75b745b
320,336
def count_parameters(model, tunable_only: bool = True) -> int: """ Count the number of parameters in the given model. Parameters ---------- model : torch.nn.Module PyTorch model (deep network) tunable_only : bool, optional Count only tunable network parameters References ---------- https://stackoverflow.com/questions/49201236/check-the-total-number-of-parameters-in-a-pytorch-model """ if tunable_only: return sum(p.numel() for p in model.parameters() if p.requires_grad) else: return sum(p.numel() for p in model.parameters())
ef825fab61760d7d5e5778f6c85c33fddf4db5d5
431,880
def transform_optional(node, **kwargs): """Sets the optional flag. """ return "optional"
229ad2e6911c714b17bbfe295a964b3438b7f377
243,848
import math def sum_digits_factorial(n): """ Compute sum of factorials of each digit in the number n """ sum_fact = 0 while n > 0: sum_fact += math.factorial(n % 10) n //= 10 return sum_fact
994878df3e8337c482f46f0ae6a7419f4454bf04
436,746
def remove_non_latin(input_string, also_keep=None): """Remove non-Latin characters. `also_keep` should be a list which will add chars (e.g. punctuation) that will not be filtered. """ if also_keep: also_keep += [' '] else: also_keep = [' '] latin_chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' latin_chars += latin_chars.lower() latin_chars += ''.join(also_keep) no_latin = "".join([char for char in input_string if char in latin_chars]) return no_latin
d29d3928e128fba5d6a773a11746fe6fc6b0b7a2
310,589
def is_valid_directed_joint_degree(in_degrees, out_degrees, nkk): """ Checks whether the given directed joint degree input is realizable Parameters ---------- in_degrees : list of integers in degree sequence contains the in degrees of nodes. out_degrees : list of integers out degree sequence contains the out degrees of nodes. nkk : dictionary of dictionary of integers directed joint degree dictionary. for nodes of out degree k (first level of dict) and nodes of in degree l (seconnd level of dict) describes the number of edges. Returns ------- boolean returns true if given input is realizable, else returns false. Notes ----- Here is the list of conditions that the inputs (in/out degree sequences, nkk) need to satisfy for simple directed graph realizability: - Condition 0: in_degrees and out_degrees have the same length - Condition 1: nkk[k][l] is integer for all k,l - Condition 2: sum(nkk[k])/k = number of nodes with partition id k, is an integer and matching degree sequence - Condition 3: number of edges and non-chords between k and l cannot exceed maximum possible number of edges References ---------- [1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka, "Construction of Directed 2K Graphs". In Proc. of KDD 2017. """ V = {} # number of nodes with in/out degree. forbidden = {} if len(in_degrees) != len(out_degrees): return False for idx in range(0, len(in_degrees)): i = in_degrees[idx] o = out_degrees[idx] V[(i, 0)] = V.get((i, 0), 0) + 1 V[(o, 1)] = V.get((o, 1), 0) + 1 forbidden[(o, i)] = forbidden.get((o, i), 0) + 1 S = {} # number of edges going from in/out degree nodes. for k in nkk: for l in nkk[k]: val = nkk[k][l] if not float(val).is_integer(): # condition 1 return False if val > 0: S[(k, 1)] = S.get((k, 1), 0) + val S[(l, 0)] = S.get((l, 0), 0) + val # condition 3 if val + forbidden.get((k, l), 0) > V[(k, 1)] * V[(l, 0)]: return False for s in S: if not float(S[s]) / s[0] == V[s]: # condition 2 return False # if all conditions abive have been satisfied then the input nkk is # realizable as a simple graph. return True
c144816f286894e6e4df9adb107d02be630576f2
104,367
def get_gb_acc_id(year, case_index): """ Returns global accident id for GB, year and index of accident. GB ids will be in form 2200700000001234 2 at the beginning means it is from Great Britain 2007 means the year 1234 means the case ID as in original data """ try: acc_id = 2000000000000000 acc_id += year * 100000000000 acc_id += case_index except KeyError: raise ValueError("Country code incorrect") return acc_id
a4e919866018635c7de0a8a3b66b8e3a16c61fc5
177,509
def get_source_url(j): """ return URL for source file for the latest version return "" in errors """ v = j["info"]["version"] rs = j["releases"][v] for r in rs: if r["packagetype"] == "sdist": return r["url"] return ""
c9a44fe7829a908772611d60884b402ef9452e67
155,657
import logging def remediate_iam_policy(sa_iam_policy, sa_resource_name, risky_roles): """Remove risky IAM roles from the service account IAM policy. Args: sa_iam_policy ([dict]): The IAM policy attached to the sa_resource_name. sa_resource_name ([str]): The GCP service account full resource name. risky_roles ([list]): A list of risky roles to check current attached roles against. Returns: [dict]: An updated non-risky IAM policy. All risky roles removed. """ # We iterate in reverse due to removing entries for binding in reversed(sa_iam_policy["bindings"]): if binding["role"] in risky_roles: role = binding["role"] logging.info( f"Removing risky role: {role} from {sa_resource_name}" ) sa_iam_policy["bindings"].remove(binding) else: logging.info(f"IAM binding: {binding} does not contain risky role.") return sa_iam_policy
f5de29116a4f25dd49c2a8b48a64e44b9cdb9794
606,338
def create_mapping(dict_times): """ If times are not integers, transform them into integers. :param dict_times: Dict where keys are times. :return: A mapping which is a dictionary maps from current names of time stamps to integers (by their index) """ keys = list(dict_times.keys()) mapping = {} for i in range(len(keys)): mapping.update({keys[i]: i}) return mapping
75893a6419b61d86bc0d4d0693bbc1b25f111a75
32,512
from typing import Union from typing import Callable import torch def get_activation(fn: Union[Callable, str]): """Get a PyTorch activation function, specified either directly or as a string. This function simplifies allowing users to specify activation functions by name. If a function is provided, it is simply returned unchanged. If a string is provided, the corresponding function in torch.nn.functional is returned. """ if isinstance(fn, str): return getattr(torch.nn.functional, fn) return fn
af66502925599653e7f7c577c7754e0323ee93d7
125,441
def rain(walls): """ walls is a list of non-negative integers. Return: Integer indicating total amount of rainwater retained. Assume that the ends of the list (before index 0 and after index walls[-1]) are not walls, meaning they will not retain water. If the list is empty return 0. """ n = len(walls) wtr = 0 for i in range(1, n - 1): lft = walls[i] for j in range(i): lft = max(lft, walls[j]) rgt = walls[i] for j in range(i + 1, n): rgt = max(rgt, walls[j]) wtr = wtr + (min(lft, rgt) - walls[i]) return wtr
e26b22f09823f4a09b8f209780152ed739bf78bd
635,099
def _ensureListOfLists(iterable): """ Given an iterable, make sure it is at least a 2D array (i.e. list of lists): >>> _ensureListOfLists([[1, 2], [3, 4], [5, 6]]) [[1, 2], [3, 4], [5, 6]] >>> _ensureListOfLists([1, 2]) [[1, 2]] >>> _ensureListOfLists(1) [[1]] :param iterable: The iterable of which to make sure it is 2D :return: A guaranteed 2D version of ``iterable`` """ try: if len(iterable) > 0: try: if len(iterable[0]) > 0: return iterable except TypeError: return [iterable] except TypeError: return [[iterable]]
7600d2d1bdbe20addf86a39d3d20dc8ab30586c0
365,711
import torch import math def compute_particle_xyz_from_internal(particle_1_xyz, particle_2_xyz, particle_3_xyz, bond, angle, dihedral): """ Compute the Cartesian coordinate of a particle based on its internal coordinate with respect to three other particles and the Cartesian coordinates of these three particles. This function runs a batch mode, which mean that it compute the Cartensian coordinates of a batch of particles based on a batch of three other particles. Parameters: ----------- particle_1_xyz: torch.Tensor the Cartesian coordinate of atom 1. particle_2_xyz: torch.Tensor the Cartesian coordinate of atom 2. particle_3_xyz: torch.Tensor the Cartesian coordinate of atom 3. Note particle_1_xyz, particle_2_xyz and particle_3_xyz should the same size: [batch_size, 3]. bond: torch.Tensor the length of the bond between atom 3 and atom 4 angle: torch.Tensor the value of the angle between atom 2, atom 3 and atom 4 dihedral: torch.Tensor the value of the dihedral angle between atom 1, atom 2, atom3 and atom 4 Note bond, angle and dihedral have the same size: [batch_size] Returns: -------- particle_4_xyz: torch.Tensor the Cartensian coordiante of atom 4. Its size is [batch_size, 3] logabsdet: the logarithm of the absolute value of the determinant of the transformation from the internal coordinates of particle 4 to its Cartesian coordinates """ ## calculate the coordinate of the forth atom wi, wj, wk = particle_1_xyz, particle_2_xyz, particle_3_xyz e1 = wk - wj e1 = e1 / torch.norm(e1, dim = -1, keepdim = True) e3 = torch.cross(e1, wj - wi, dim = -1) e3 = e3 / torch.norm(e3, dim = -1, keepdim = True) e2 = torch.cross(e3, e1, dim = -1) bond = torch.unsqueeze(bond, -1) angle = torch.unsqueeze(angle, -1) dihedral = torch.unsqueeze(dihedral, -1) dw = torch.cos(math.pi-angle)*e1 + \ (-1)*torch.sin(math.pi-angle)*torch.cos(dihedral)*e2 + \ (-1)*torch.sin(math.pi-angle)*torch.sin(dihedral)*e3 wl = wk + bond*dw particle_4_xyz = wl ## calculate the Jacobian of the transform logabsdet = torch.log(torch.abs(bond**2*torch.sin(math.pi - angle))) logabsdet = torch.squeeze(logabsdet) return particle_4_xyz, logabsdet
9a3b59d5c29a0c8ac9c5f498925698b8ab29bd16
572,388
from pathlib import Path def new_name_if_exists(file: Path): """Make a new filename that avoids name collisions. example: filename(xx).ext where xx is incremented until unused filename is created. Args: file (Path): proposed unique filename. Returns: Path_obj: Guaranteed unique filename. """ new_name = file i = 1 while True: if not new_name.is_file(): return new_name else: new_name = file.with_name(f"{file.stem}({i}){file.suffix}") i += 1
89f639e2a5ef12941c8d50b8a4313f71cf1dbe94
357,979
import math def calc_overlap(params): """ Function to calculate the number of pixels requires in overlap, based on chunk_size and overlap percentage, if provided in the config file :param params: (dict) Parameters found in the yaml config file. :return: (int) number of pixel required for overlap """ chunk_size = 512 overlap = 10 if params['inference']['chunk_size']: chunk_size = int(params['inference']['chunk_size']) if params['inference']['overlap']: overlap = int(params['inference']['overlap']) nbr_pix_overlap = int(math.floor(overlap / 100 * chunk_size)) return chunk_size, nbr_pix_overlap
f6dd348cf2299100d30e12c1ebf71c84d5f80183
278,512
def number_of_short_term_peaks(n, t, t_st): """ Estimate the number of peaks in a specified period. Parameters ---------- n : int Number of peaks in analyzed timeseries. t : float Length of time of analyzed timeseries. t_st: float Short-term period for which to estimate the number of peaks. Returns ------- n_st : float Number of peaks in short term period. """ assert isinstance(n, int), 'n must be of type int' assert isinstance(t, float), 't must be of type float' assert isinstance(t_st, float), 't_st must be of type float' return n * t_st / t
4118409bd4d330e68f41bf1e51d3940478a7f76e
365,943
def onBoard(top, left=0): """Simplifies a lot of logic to tell if the coords are within the board""" return 0 <= top <= 9 and 0 <= left <= 9
2b2007ae2e3acdbb9c04c3df1397cffce97c6717
10,247
import torch def haschildren(obj): """Check if the object has children Arguments: obj {object} -- the object to check Returns: bool -- True if the object has children """ ommit_type = [torch.nn.parameter.Parameter, torch.Tensor] if type(obj) in ommit_type: return False else: return hasattr(obj, '__dict__') or hasattr(obj, 'keys')
03ef8ef009565a437a99beed4f1f6076ac6ffa1a
604,067
def addon(options): """ This function constructs a command line invocation that needs to be passed for invoking for a sub workflow. Only a certain subset of options are propogated to the sub workflow invocations if passed. """ cmd_line_args = "" if options.recurse_mode: cmd_line_args += "--recurse " if options.quiet_mode: cmd_line_args += "--quiet " if options.summary_mode: cmd_line_args += "--summary " if options.use_files: cmd_line_args += "--files " new_indent = 1 if options.indent_length is not None: new_indent = options.indent_length + 1 cmd_line_args += "--indent " + str(new_indent) + " " return cmd_line_args
41e556f2d34d71cb09f0f7db4b5a3aa2b99a9a11
295,044
import struct import pickle async def read_and_unserialize_socket_msg(reader): """ Read and unserialize the message bytestream received from ScrubCam. Parameters ---------- reader : asyncio.StreamReader A reader object that provides APIs to read data from the IO stream Returns ------- msg : str or int or bool or list The object representation of the bytestream message. This could be a message header, timestamp, flag, lbox list, or filter class list. """ # Read size of msg bytestream msg_struct = await reader.read(struct.calcsize('<L')) msg_size = struct.unpack('<L', msg_struct)[0] # Read in msg bytestream msg_bytes = await reader.readexactly(msg_size) msg = pickle.loads(msg_bytes) return msg
7d549c847d98897d65caeb0b720b07b2580bb6d9
405,271
from typing import List def linvectors_list( pitches: List, ) -> List: """Returns the linvectors of a list of MIDI pitches. """ result = [] first_linvector = [pitches[0]] result.append(first_linvector) for pitch in pitches[1:]: next_linvector = [] for element in result[-1]: if abs(pitch-element) <= 2: pass else: next_linvector.append(element) next_linvector.append(pitch) result.append(next_linvector) return result
ee92d979427f55b161517422ecee79d5c633b834
200,002
import torch def my_l1(x, x_recon): """Calculate l1 loss Parameters ---------- x : torch.cuda.FloatTensor or torch.FloatTensor Input data x_recon : torch.cuda.FloatTensor or torch.FloatTensor Reconstructed input Returns ------- torch.cuda.FloatTensor or torch.FloatTensor """ return torch.mean(torch.abs(x-x_recon))
a7736bd2d4160546176520a6adbd1c218dc5cc14
689,723
def time_to_seconds(timestring): """ Transform (D-)HH:MM:SS time format to seconds. Parameters ---------- timestring: str or None Time in format (D-)HH:MM:SS Returns ------- Seconds that correspond to (D-)HH:MM:SS """ if timestring is None: timestring = "00:00:00" if "-" in timestring: # Day is also specified (D-)HH:MM:SS days, hhmmss = timestring.split("-") hours, minutes, seconds = hhmmss.split(":") return ( int(days) * 24 * 3600 + int(hours) * 3600 + int(minutes) * 60 + int(seconds) ) split_time = timestring.split(":") if len(split_time) == 2: # MM:SS minutes, seconds = split_time hours = 0 elif len(split_time) == 3: # HH:MM:SS hours, minutes, seconds = split_time else: raise ValueError("Time format not recognized.") return int(hours) * 3600 + int(minutes) * 60 + int(seconds)
60ba0e0a78e4eff1ae443923da7b22fccc695576
456,439
def read_column_tagged_file(filename: str, tag_col: int = -1): """Reads column tagged (CONLL) style file (tab separated and token per line) tag_col is the column number to use as tag of the token (defualts to the last in line) return format : [ ['token', 'TAG'], ['token', 'TAG2'],... ] """ data = [] sentence = [] labels = [] with open(filename) as fp: for line in fp: line = line.strip() if len(line) == 0: if len(sentence) > 0: data.append((sentence, labels)) sentence = [] labels = [] continue splits = line.split() sentence.append(splits[0]) labels.append(splits[tag_col]) if len(sentence) > 0: data.append((sentence, labels)) return data
3143548e3df1258b743faa65ccf4bb727846f5e4
190,537
from typing import List from typing import Any from typing import Iterable def as_list(item_or_sequence) -> List[Any]: """Turns an arbitrary sequence or a single item into a list. In case of a single item, the list contains this element as its sole item.""" if isinstance(item_or_sequence, Iterable): return list(item_or_sequence) return [item_or_sequence]
2edf2d9adb03c0efb16e59a507a918149fdae524
39,727
import random def random_class_ids(lower, upper): """ Get two random integers that are not equal. Note: In some cases (such as there being only one sample of a class) there may be an endless loop here. This will only happen on fairly exotic datasets though. May have to address in future. :param lower: Lower limit inclusive of the random integer. :param upper: Upper limit inclusive of the random integer. Need to use -1 for random indices. :return: Tuple of (integer, integer) """ int_1 = random.randint(lower, upper) int_2 = random.randint(lower, upper) while int_1 == int_2: int_1 = random.randint(lower, upper) int_2 = random.randint(lower, upper) return int_1, int_2
dcb351efbf772f2408213b362b9a5af4bfabc8cb
651,651
def vector_subtract(u, v): """returns the difference (vector) of vectors u and v""" return (u[0]-v[0], u[1]-v[1], u[2]-v[2])
034c07a1e459725744112b51933c2c0c73c60f68
663,204
def head_table(rule): """Table name of the head of a rule""" return rule.head.table
aaf0bc25382ad0192de8c826a3cbfc5da4535b27
333,011
def callMultiF(f,n,cache): """ Try to get n unique results by calling f() multiple times >>> import random >>> random.seed(0) >>> callMultiF(lambda : random.randint(0,10), 9, set()) [9, 8, 4, 2, 5, 3, 6, 10] >>> random.seed(0) >>> callMultiF(lambda : random.randint(0,10), 9, set([8,9,10])) [4, 2, 5, 3, 6, 7] """ rs = [] rs_s = set() if cache: for c in cache: rs_s.add(c) for _ in range(n): c = f() c_iter = 0 while c in rs_s and c_iter < 3: c_iter += 1 c = f() if c not in rs_s: rs_s.add(c) rs.append(c) assert len(rs) <= n return rs
ce38fe79c311c60753432b2606216bdd47c8db41
535,727
def prep_sub_id(sub_id_input): """Processes subscription ID Args: sub_id_input: raw subscription id Returns: Processed subscription id """ if not isinstance(sub_id_input, str): return "" if len(sub_id_input) == 0: return "" return "{" + sub_id_input.strip().upper() + "}"
719693c2a11d1e8611fceec80b34b07a157e91ad
676,067
def read_file(filename: str) -> str: """Reads contents of given file""" with open(filename, "r") as content_file: return content_file.read()
b2989f88849ac9f77a38435b8bdba497d7d9699a
296,628
def blocks_table_m() -> dict[int, int]: """The table is the number of blocks for the correction level M. Returns: dict[int, int]: Dictionary of the form {version: number of blocks} """ table = { 1: 1, 2: 1, 3: 1, 4: 2, 5: 2, 6: 4, 7: 4, 8: 4, 9: 5, 10: 5, 11: 5, 12: 8, 13: 9, 14: 9, 15: 10, 16: 10, 17: 11, 18: 13, 19: 14, 20: 16, 21: 17, 22: 17, 23: 18, 24: 20, 25: 21, 26: 23, 27: 25, 28: 26, 29: 28, 30: 29, 31: 31, 32: 33, 33: 35, 34: 37, 35: 38, 36: 40, 37: 43, 38: 45, 39: 47, 40: 49 } return table
a964fc403146bf8078659c898226f8b86bb230fd
348,041
def validate_move(move, turn, board): """ Determine if the next move is valid for the current player :param move: :param turn: :param board: :return: boolean flag for if the move is valid as well as the current gamestate dictionary """ if turn == 1: piece = 'X' else: piece = 'O' try: if board[move[:-1]][move] not in ('X', 'O'): board[move[:-1]][move] = piece return True, board else: return False, board except KeyError: return False, board
b3117e72a8377aaceb5ee8c887a272bcb15ea553
690,518
import uuid def generate_dtids(registry: str, number: int) -> list: """ Generate a list of DTIDs. Args: number: The number of generated DTIDs. registry: Base URL of the DTID registry. Returns: List of DTIDs """ dtids = [] for _ in range(number): dtids.append(registry + str(uuid.uuid4())) return dtids
3efcc7dd8ab4bd6edd4b3256c7e973df8f15e7fc
108,357
def photon_generation(wave_len, energy): """Determine number of photons in a bundle Parameters ---------- wave_len : float Wavelength associated with a particular bundle energy : float Energy in a bundle Returns ------- nphoton : float Number of photons in a bundle as a function of wavelength Notes ----- """ nphoton = 0 h = 6.626e-34 # [joule*s] planck's constant c = 2.998e8 # [m/s] speed of light ephoton = (h*c)/(wave_len*1e-9) # find energy in a photon if wave_len <= 1107: nphoton = energy/ephoton return nphoton
c0b1aa263ec81e16b37314b9506b0a2456aa8dfa
580,082
import pkg_resources def get_config(package=__name__, externals=None, api_version=None): """Returns a string containing the configuration information for the given ``package`` name. By default, it returns the configuration of this package. This function can be reused by other packages. If these packages have external C or C++ dependencies, the ``externals`` dictionary can be specified. Also, if the package provides an API version, it can be specified. **Keyword parameters:** package : *str* The name of the package to get the configuration information from. Usually, the ``__name__`` of the package. externals : *{dep: description}* A dictionary of external C or C++ dependencies, with the ``dep``endent package name as key, and a free ``description`` as value. api_version : *int* (usually in hexadecimal) The API version of the ``package``, if any. """ packages = pkg_resources.require(package) this = packages[0] deps = packages[1:] if api_version is not None: retval = "%s: %s [api=0x%04x] (%s)\n" % (this.key, this.version, api_version, this.location) else: retval = "%s: %s (%s)\n" % (this.key, this.version, this.location) if externals is not None: retval += "* C/C++ dependencies:\n" for k in sorted(externals): retval += " - %s: %s\n" % (k, externals[k]) if len(deps): retval += "* Python dependencies:\n" # sort python dependencies and make them unique deps_dict = {} for d in deps: deps_dict[d.key] = d for k in sorted(deps_dict): retval += " - %s: %s (%s)\n" % (deps_dict[k].key, deps_dict[k].version, deps_dict[k].location) return retval.strip()
8d8c95ea4b10cc29bcd7831d2dbdc8f7ad05ff89
533,928
from typing import List def _add_docstring_to_top_level_func(line: str, docstring: str) -> str: """ Add docstring to the top-level function line string. Parameters ---------- line : str Target function line string. e.g., `def sample_func(a: int) -> None:` docstring : str A doctring to add. Returns ------- line : str Docstring added line str. """ line += '\n """' docstring_lines: List[str] = docstring.splitlines() for docstring_line in docstring_lines: if docstring_line == '': line += '\n' continue if not docstring_line.startswith(' '): docstring_line = f' {docstring_line}' line += f'\n{docstring_line}' line += '\n """' return line
e4fcee2a5ac3bae9508174315884aea128dabf93
620,490
def format_time_filter(start, stop, field): """Formats a time filter for a given endpoint type. Args: start (str): An ISO date string, e.g. 2020-04-20. stop (str): An ISO date string, e.g. 2021-04-20. field (str): The time field to filter by. """ start_date = start.split('-') end_date = stop.split('-') y1, m1, d1 = start_date[0], start_date[1], start_date[2] y2, m2, d2 = end_date[0], end_date[1], end_date[2] return f'?f_{field}1={m1}%2F{d1}%2F{y1}&f_{field}2={m2}%2F{d2}%2F{y2}'
6c21bb1ff6f90002d0f7f50d2c82fd081db89213
676,601
def make_good_url(url=None, addition="/"): """Appends addition to url, ensuring the right number of slashes exist and the path doesn't get clobbered. >>> make_good_url('http://www.server.com/anywhere', 'else') 'http://www.server.com/anywhere/else' >>> make_good_url('http://test.com/', '/somewhere/over/the/rainbow/') 'http://test.com/somewhere/over/the/rainbow/' >>> make_good_url('None') 'None/' >>> make_good_url() >>> make_good_url({}) >>> make_good_url(addition='{}') :param url: URL :param addition: Something to add to the URL :return: New URL with addition""" if url is None: return None if isinstance(url, str) and isinstance(addition, str): return "%s/%s" % (url.rstrip('/'), addition.lstrip('/')) else: return None
bc22f403d6e3c999f2b5cf6c9bbaf57e53e67e0b
541,037
def all_true (seq) : """Returns True if all elements of `seq` are true, otherwise returns first non-true element. """ for e in seq : if not e : return e else : return True
26ad964d3c9f53aec547e29e703bf97c8e646219
422,976
import torch def binary_accuracy(preds, y): """ Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8 """ rounded_preds = torch.round(torch.sigmoid(preds)) correct = (rounded_preds == y).float() #convert into float for division acc = correct.sum() / len(correct) return acc
8d3cc42eec8b9fa2f6b2a905bb840abe9e7e5252
531,209
def _generate_spaxel_list(spectrum): """ Generates a list wuth tuples, each one addressing the (x,y) coordinates of a spaxel in a 3-D spectrum cube. Parameters ---------- spectrum : :class:`specutils.spectrum.Spectrum1D` The spectrum that stores the cube in its 'flux' attribute. Returns ------- :list: list with spaxels """ spx = [[(x, y) for x in range(spectrum.flux.shape[0])] for y in range(spectrum.flux.shape[1])] spaxels = [item for sublist in spx for item in sublist] return spaxels
9d4b5339f18022607f349c326dc83e319a690a26
8,488
def query_mission(id): """ Build the Query for a single mission """ query = f''' {{ mission(id:"{id}") {{ id name manufacturers description website }} }} ''' return query
60d0fdf2bbea4307b901e6b2f3917a5dda7aa7a4
589,654
from datetime import datetime def timestamp_ddmmyyyyhhmmss_to_ntp(timestamp_str): """ Converts a timestamp string, in the DD Mon YYYY HH:MM:SS format, to NTP time. :param timestamp_str: a timestamp string in the format DD Mon YYYY HH:MM:SS :return: Time (float64) in seconds from epoch 01-01-1900. """ timestamp = datetime.strptime(timestamp_str, "%d %b %Y %H:%M:%S") return (timestamp - datetime(1900, 1, 1)).total_seconds()
bf2239de21973ae537cee94022e9d2781f7cbd52
681,251
def wgan_d_loss(scores_real, scores_fake): """ Input: - scores_real: Tensor of shape (N,) giving scores for real samples - scores_fake: Tensor of shape (N,) giving scores for fake samples Output: - loss: Tensor of shape (,) giving WGAN discriminator loss """ return scores_fake.mean() - scores_real.mean()
df305b008f6e0e92e917c7f1705cf11e4d78c9f6
556,409
def _extract_variants(address, variants_str): """Return the variants (if any) represented by the given variants_str. :returns: The variants or else `None` if there are none. :rtype: tuple of tuples (key, value) strings """ def entries(): for entry in variants_str.split(','): key, _, value = entry.partition('=') if not key or not value: raise ValueError('Invalid variants after the @ in: {}'.format(address)) yield (key, value) return tuple(entries())
1644b10ec44e04b565b5b2a1bd67062e57750873
505,618
def extended_gcd(a, b): """Find the solution of ax + by = gcd(x, y), returns (x, y, gcd(x, y))""" if b == 0: return 1, 0, a x, y, gcd = extended_gcd(b, a % b) return y, x - (a // b) * y, gcd
f3dbc95e3b13d89079916948bf76ddba5184d6c6
185,565
def _slice_datetime_repr_prefix(obj_repr): """Takes a default "datetime", "date", or "timedelta" repr and returns it with the module prefix sliced-off:: >>> _slice_datetime_repr_prefix('datetime.date(2020, 12, 25)') 'date(2020, 12, 25)' """ # The following implementation (using "startswith" and "[9:]") # may look clumsy but it can run up to 10 times faster than a # more concise "re.compile()" and "regex.sub()" approach. In # some situations, this function can get called many, many # times. DON'T GET CLEVER--KEEP THIS FUNCTION FAST. if obj_repr.startswith('datetime.datetime(') \ or obj_repr.startswith('datetime.date(') \ or obj_repr.startswith('datetime.timedelta('): return obj_repr[9:] return obj_repr
fa4778ab00caa1996041ad650baecb7b0db47b3b
419,868
def is_permutation(a: int, b: int) -> bool: """Returns boolean if a and b are permutations of each other.""" s_a, s_b = str(a), str(b) if set(s_a) != set(s_b): return False if len(s_a) != len(s_b): return False return sorted(list(s_a)) == sorted(list(s_b))
e3fa9e013f5794ec44d739282d98f72b8b601ed2
679,808
def comb(N,P): """ Calculates the combinations of the integers [0,N-1] taken P at a time. The output is a list of lists of integers where the inner lists are the different combinations. Each combination is sorted in ascending order. """ def rloop(n,p,combs,comb): if p: for i in range(n): newcomb = comb+[i] np = p-1 rloop(i,np,combs,newcomb) else: combs.append(comb) combs = [] rloop(N,P,combs,[]) for comb in combs: comb.sort() return(combs)
b3d6e1e2556ae951a0951c485a691cdb51095070
336,583
from datetime import datetime def _parse_publishing_date(string): """ Parses the publishing date string and returns the publishing date as datetime. Input example (without quotes): "Wed, 09 Nov 2016 17:11:56 +0100" """ return datetime.strptime(string,"%a, %d %b %Y %H:%M:%S +0100")
e0ddc6da2a8acb90cceb4649f0d8491531408fcb
689,821
import textwrap def _dedent_under_first_line(text: str) -> str: """ Apply textwrap.dedent ignoring the first line. """ lines = text.splitlines() other_lines = "\n".join(lines[1:]) if other_lines: return f"{lines[0]}\n{textwrap.dedent(other_lines)}" return text
4abe7db2f67455d3d6453218022c144317936476
273,761
from typing import List def erase_overlap_intervals(intervals: List[List[int]]): """ a variant for LeetCode 435 Given a list of intervals, remove minimal intervals to make the rest of the intervals non-overlapping. 注意:剩余列表中允许打乱原列表的顺序。如果要求保持原顺序,则需要在排序前先记录index。 Examples: 1. intervals: [[1, 2], [2, 3], [3, 4], [1, 3]], return: [[1, 2], [2, 3], [3, 4]], [[1, 3]] 2. intervals: [1, 2], [1, 2], [1, 2]], return: [[1, 2]], [[1, 2], [1, 2]] :param intervals: :return: left_intervals: List[List[int]] remove_intervals: List[List[int]] """ l = len(intervals) if l <= 1: return l, [] intervals = sorted(intervals, key=lambda x: x[1]) left, remove = [], [] interval = intervals[0] end = interval[1] for x in intervals[1:]: if x[0] >= end: left.append(interval) interval = x end = x[1] else: remove.append(x) left.append(interval) return left, remove
8ff2bdf43bff7ce5ff6c90f40474557b79f26acc
204,869
def get_file_extension(filename: str) -> str: """ Finds the extension of a file given its full name. :param filename: Complete filename. :return: The extension file type of the file. """ return filename.split('.')[-1]
740b4345e73d8b7b94a15b2aa2ab338fa4feeab5
483,020
def collect_solution_pool(m, T, n_hat_prime, a_hat_prime): """ This function collect the result (list of repaired nodes and arcs) for all feasible solutions in the solution pool Parameters ---------- m : gurobi.Model The object containing the solved optimization problem. T : int Number of time steps in the optimization (T=1 for iINDP, and T>=1 for td-INDP). n_hat_prime : list List of damaged nodes in controlled network. a_hat_prime : list List of damaged arcs in controlled network. Returns ------- sol_pool_results : dict A dictionary containing one dictionary per solution that contain list of repaired node and arcs in the solution. """ sol_pool_results = {} current_sol_count = 0 for sol in range(m.SolCount): m.setParam('SolutionNumber', sol) # print(m.PoolObjVal) sol_pool_results[sol] = {'nodes': [], 'arcs': []} for t in range(T): # Record node recovery actions. for n, d in n_hat_prime: node_var = 'w_tilde_' + str(n) + "," + str(t) if T == 1: node_var = 'w_' + str(n) + "," + str(t) if round(m.getVarByName(node_var).xn) == 1: sol_pool_results[sol]['nodes'].append(n) # Record edge recovery actions. for u, v, a in a_hat_prime: arc_var = 'y_tilde_' + str(u) + "," + str(v) + "," + str(t) if T == 1: arc_var = 'y_' + str(u) + "," + str(v) + "," + str(t) if round(m.getVarByName(arc_var).x) == 1: sol_pool_results[sol]['arcs'].append((u, v)) if sol > 0 and sol_pool_results[sol] == sol_pool_results[current_sol_count]: del sol_pool_results[sol] elif sol > 0: current_sol_count = sol return sol_pool_results
5eaf9bede69c4c29e412c0311eab74ce1a8bf812
492,157
def calcPv(r, freq, periods, value): """ Parameters ---------- r: discount rate; the expected rate of return if every coupon payment was invested at a fixed interest rate until the bond matures freq: frequency periods: periods to maturity value: future value / value at maturity Returns ------- present_value """ tmp = (1 + r / freq) ** periods return value / tmp
f4ee0a34051a66b46f0d1652ea2c5f3d4d3aae1c
442,563
def get_data_science_bookmarks(bookmarks): """Function to select the top level data science folder of bookmarks. Returns the first element of bookmarks where 'Data Science' is one of the keys. """ for item in bookmarks: if type(item) is dict: if 'Data Science' in item.keys(): return item
ae8eb873e4775c030e67c49dd693fc9ee1fb902e
649,983
import getpass def get_user(prompt=None): """ Prompts the user for his login name, defaulting to the USER environment variable. Returns a string containing the username. May throw an exception if EOF is given by the user. :type prompt: str|None :param prompt: The user prompt or the default one if None. :rtype: string :return: A username. """ # Read username and password. try: env_user = getpass.getuser() except KeyError: env_user = '' if prompt is None: prompt = "Please enter your user name" if env_user is None or env_user == '': user = input('%s: ' % prompt) else: user = input('%s [%s]: ' % (prompt, env_user)) if user == '': user = env_user return user
fc392cfacc931ee915bb218a80e5db46245f2a1f
11,108
def parse_lookup_table(lookupfile): """Parse the lookup table that contains AB genotypes.""" ab_geno = {} with open(lookupfile, 'r') as l: for line in l: tmp = line.strip().split(',') snp = tmp[0] # add the line to ab_geno ab_geno[snp] = tmp return(ab_geno)
693b4b11a24b1e57fdfb863c84339bedf6e95883
500,325
def to_http_url(list): """convert [hostname, port] to a http url""" str = '' str = "http://%s:%s" % (list[0], list[1]) return str
021ecc3a32b1646b0dbe0ecf150d91b55d323523
518,223
def get_instance_ids(instances): """ Returns a list of instance ids extract from the output of get_instances() """ return [i["Instances"][0]["InstanceId"] for i in instances]
69720ddf16ccbbee1bb44a780d793ea8b5af60cf
375,174
def _Backward3a_T_Ps(P, s): """Backward equation for region 3a, T=f(P,s) Parameters ---------- P : float Pressure [MPa] s : float Specific entropy [kJ/kgK] Returns ------- T : float Temperature [K] References ---------- IAPWS, Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, http://www.iapws.org/relguide/Supp-Tv%28ph,ps%293-2014.pdf, Eq 6 Examples -------- >>> _Backward3a_T_Ps(20,3.8) 628.2959869 >>> _Backward3a_T_Ps(100,4) 705.6880237 """ I = [-12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -6, -6, -5, -5, -5, -4, -4, -4, -2, -2, -1, -1, 0, 0, 0, 1, 2, 2, 3, 8, 8, 10] J = [28, 32, 4, 10, 12, 14, 5, 7, 8, 28, 2, 6, 32, 0, 14, 32, 6, 10, 36, 1, 4, 1, 6, 0, 1, 4, 0, 0, 3, 2, 0, 1, 2] n = [0.150042008263875e10, -0.159397258480424e12, 0.502181140217975e-3, -0.672057767855466e2, 0.145058545404456e4, -0.823889534888890e4, -0.154852214233853, 0.112305046746695e2, -0.297000213482822e2, 0.438565132635495e11, 0.137837838635464e-2, -0.297478527157462e1, 0.971777947349413e13, -0.571527767052398e-4, 0.288307949778420e5, -0.744428289262703e14, 0.128017324848921e2, -0.368275545889071e3, 0.664768904779177e16, 0.449359251958880e-1, -0.422897836099655e1, -0.240614376434179, -0.474341365254924e1, 0.724093999126110, 0.923874349695897, 0.399043655281015e1, 0.384066651868009e-1, -0.359344365571848e-2, -0.735196448821653, 0.188367048396131, 0.141064266818704e-3, -0.257418501496337e-2, 0.123220024851555e-2] Pr = P/100 sigma = s/4.4 suma = 0 for i, j, ni in zip(I, J, n): suma += ni * (Pr+0.240)**i * (sigma-0.703)**j return 760*suma
cb0b9b55106cf771e95505c00043e5772faaef40
2,748
import re def re_find(txt: str, regexp: str, i: int = 0) -> str: """Utility: search string txt for a regexp and return i-th group (i.e. parenthesis) if match succeds. Default is whole match.""" match = re.search(regexp, txt) if match: return match.group(i) return ''
9bc087852a4fffb226505813304db2c4f0617c13
379,370
def _backslashreplace_backport(ex): """Replace byte sequences that failed to decode with character escapes. Does the same thing as errors="backslashreplace" from Python 3. Python 2 lacks this functionality out of the box, so we need to backport it. Parameters ---------- ex: UnicodeDecodeError contains arguments of the string and start/end indexes of the bad portion. Returns ------- text: unicode The Unicode string corresponding to the decoding of the bad section. end: int The index from which to continue decoding. Note ---- Works on Py2 only. Py3 already has backslashreplace built-in. """ # # Based on: # https://stackoverflow.com/questions/42860186/exact-equivalent-of-b-decodeutf-8-backslashreplace-in-python-2 # bstr, start, end = ex.object, ex.start, ex.end text = u''.join('\\x{:02x}'.format(ord(c)) for c in bstr[start:end]) return text, end
f1100d986e3fabd169bf2e0a387621c900e2428c
540,957
import requests import re def collect_metrics(website, pattern=None): """Retrieve metrics (response time, status code) from a given website. Optionally, search for a regex pattern. Then publish to a Kafka topic. Arguments: website (str): URL of website to collect metrics from pattern (str, optional): Regex pattern to look for Returns: data (dict): Key-value object with desired metrics """ r = requests.get(website) # Try searching for regex pattern if provided match = None if pattern and r.status_code == 200: match = True if re.search(pattern, r.text) else False data = { 'url': website, 'response_time': r.elapsed.total_seconds(), 'status_code': r.status_code, 'regex_found': match } return data
35206802c9af165b7154db3a38207a2d6b438e83
145,538
def descale(data, data_max, data_min): """Reverse normalization Args: data (np.array): Normalized data data_max (float): max value before normalization data_min (float): min value before normalization Returns: [np.array]: Reverse-Normalized data """ data_descaled = data*(data_max-data_min)+data_min return data_descaled
e078dc5eb9613a9106dd2210f467011525dcb646
98,977
def should_skip_build(metadata_tuples): """Takes the output of render_recipe as input and evaluates if this recipe's build should be skipped.""" return all(m[0].skip() for m in metadata_tuples)
0c4c54349bbea32733e9b0459fdfab9466dfdba8
604,147
def determine_scaling_factor(money_endowment: int) -> float: """ Compute the scaling factor based on the money amount. :param money_endowment: the endowment of money for the agent :return: the scaling factor """ scaling_factor = 10.0 ** (len(str(money_endowment)) - 1) return scaling_factor
fed7d4598ee771ac857917010301df2d3722a0cb
254,697
def fitAlgorithm(classifier, trainingData, trainingTarget): """ Fits a given classifier / pipeline """ #train the model return classifier.fit(trainingData, trainingTarget)
ddc6a7b2f5c42e07e212c2a48fd1d35b1c77dab2
71,473
def wien(t): """The peak wavelength of a blackbody. Input in Kelvins, output in nm""" return 2.9e6 / t
b40e6d295a373536d93268d8f7ea90c7b97b824a
469,814
def makeSafeXML( someString:str ) -> str: """ Replaces special characters in a string to make it for XML. """ return someString.replace('&','&amp;').replace('"','&quot;').replace('<','&lt;').replace('>','&gt;')
44b526c5e9e66cef747024f8eddd12cc4fc06cf5
496,319
def as_formatted_lines(lines): """ Return a text formatted for use in a Debian control file with proper continuation for multilines. """ if not lines: return '' formatted = [] for line in lines: stripped = line.strip() if stripped: formatted.append(' ' + line) else: formatted.append(' .') return '\n'.join(formatted).strip()
ba313e3041a971d3756ab7811ffdc23f31bfe8b1
419,325
def get_obj_in_list(obj_name, obj_list): """ Gets an object out of a list (obj_list) whos name matches obj_name. """ for o in obj_list: if o.name == obj_name: return o print("Unable to find object by the name of %s in list:\n%s" % (obj_name, map(lambda o: o.name, obj_list))) exit(1)
42c575087e2148722a48a9735558bbf5ba30ddf7
556,257