content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def _try_connect_always_fail(**kwargs): # pylint: disable=unused-argument """Always return False""" return False
320f9d3f737309107c1b8047e894f5ccb1f9b36b
244,622
def byteswap(*arrays): """ Swapping of bytes for provided arrays. Notes ----- arr.newbyteorder('S') swaps dtype interpretation, but not bytes in memory arr.byteswap() swaps bytes in memory, but not dtype interpretation arr.byteswap(True).newbyteorder('S') completely swaps both References ---------- https://docs.scipy.org/doc/numpy/user/basics.byteswapping.html """ return [arr.newbyteorder('S') for arr in arrays]
1fa1c0662fe525c1575365c7bcde5cf9f9ab96b3
631,779
def max_weighted_independent_set_in_path_graph(weights): """ Computes the independent set with maximum total weight for a path graph. A path graph has all vertices are connected in a single path, without cycles. An independent set of vertices is a subset of the graph vertices such that no two vertices are adjacent in the path graph. Complexity: O(n); Space: O(n) Args: weights: list, of vertex weights in the order they are present in the graph. Returns: list, format [max_weight: int, vertices: list] """ # 0. Initialization: A[i] - max total weight of the independent set for # the first i vertices in the graph. a = [0] * (len(weights)+1) a[0] = 0 # Max weight for empty graph. a[1] = weights[0] # Max weight for the graph with only the first weight. # 1. Compute the max total weight possible for any independent set. for i in range(2, len(weights)+1): a[i] = max(a[i-1], a[i-2]+weights[i-1]) max_weight = a[len(weights)] # 2. Trace back from the solution through the subproblems to compute the # vertices in the independent set. vertices = [] i = len(weights) while (i>0): if a[i-2] + weights[i-1] >= a[i-1]: vertices.insert(0, weights[i-1]) i -= 2 else: i -= 1 return [max_weight, vertices]
3be9d7dd54b939260f37ff2c97c18f18df0644b5
675,141
def skin_temperature(upward_longwave_irradiance_W_m2, emissivity=1.0): """ Calculates the radiative skin temperature from the upward longwave irradiance. Args: upward_longwave_irradiance_W_m2: The upward longwave irradiance from the surface emissivity: How much energy is emitted in comparison to a blackbody. Ranges from 0 to 1. Returns: The skin temperature in Kelvin. """ sigma = 5.673067e-8 return (upward_longwave_irradiance_W_m2 / (emissivity * sigma)) ** 0.25
3a391f19b4a8c4b2c78e96639f95e8e6720c8cd1
381,025
def extract_ranges(index_list, range_size_limit=32): """Extract consecutive ranges and singles from index_list. Args: index_list: List of monotone increasing non-negative integers. range_size_limit: Largest size range to return. If a larger consecutive range exists it will be returned as multiple ranges. Returns: ranges, singles where ranges is a list of [first, last] pairs of consecutive elements in index_list, and singles is all of the other elements, in original order. """ if not index_list: return [], [] first = index_list[0] last = first ranges = [] singles = [] for i in index_list[1:]: if i == last + 1 and (last - first) <= range_size_limit: last = i else: if last > first: ranges.append([first, last]) else: singles.append(first) first = i last = i if last > first: ranges.append([first, last]) else: singles.append(first) return ranges, singles
4341f5319fcc80be57a98536eb908960be2bb8bb
223,065
def inc(x): """ Add one to the current value """ return x + 1
c8f9a68fee2e8c1a1d66502ae99e42d6034b6b5c
4,015
import math def slice_int(x, k, d): """ Slices an integer in the domain [0,2**d] to k-bit parts, and returns the respective parts (in range 0-2**k - 1), MSB to LSB. :param x: A positive integer :param k: An integer representing the size of the slices, in bits :param d: The range of x. If x < 2**d - 1, it is treated as left padded with zeros. :return: """ return [(x >> i*k) % 2**k for i in range(int(math.ceil(float(d)/k)))][::-1]
14ca3f70fdd9fbd4c3441402692b8dd6df1e5a11
70,014
def iso_date(year, week, day): """Return the ISO date data structure.""" return [year, week, day]
307bd606b772e696289640a96692fd9134ff3410
218,775
def radius_from_volume(volume: float, dim: int) -> float: """Return the radius of a sphere with a given volume Args: volume (float): Volume of the sphere dim (int): Dimension of the space Returns: float: Radius of the sphere """ if dim == 1: return volume / 2 elif dim == 2: return np.sqrt(volume / π) # type: ignore elif dim == 3: return (3 * volume / (4 * π)) ** (1 / 3) # type: ignore else: raise NotImplementedError(f"Cannot calculate the radius in {dim} dimensions")
22d8c4e6b2567465f0aaf5fd5fac1d4429ec3754
576,473
def _find_paths(graph, root_node, n_transitions): """ Returns a list of paths with n_transitions transitions from root node graph: Is the nx.Graph object which contains the (V, E) graph root_node: it is the node from which we start n_transitions: is the number of transitions """ # recursion base case if n_transitions == 0: return [[root_node]] paths = [] for neighbor in graph.successors(root_node): # recursive step for path in _find_paths(graph, neighbor, n_transitions - 1): paths.append([root_node] + path) return paths
80ed27b16d8af0db3790e4163041fb6d4aaf32ad
516,783
def linear_search(numbers: list, item: int) -> int: """ Algorithm that implement linear search Parameters ---------- numbers : list The numbers list item : int The element to search Returns ------- index int The index of element. Return -1 if element not exists in list """ for (index, number) in enumerate(numbers): if number == item: return index return -1
9c79b0debc4a5355eac0b7122a438587bbf5f4f0
108,537
import struct import socket def ip2long(*args): """ .. function:: ip2long(ip) -> int Converts a decimal dotted quad IP string to long integer IP format. It can take either one column of IP strings or 4 columns each having one part of the IP address. Examples: >>> sql("select ip2long('123.123.123.123')") ip2long('123.123.123.123') -------------------------- 2071690107 >>> sql("select ip2long(123,123,123,123)") ip2long(123,123,123,123) ------------------------ 2071690107 """ if len(args) == 1: try: return struct.unpack('!L', socket.inet_aton(args[0]))[0] except: return elif len(args) == 4: return struct.unpack('!L', socket.inet_aton('.'.join([str(x) for x in args])))[0]
b2759e2c7e33b26311d9df3f94a6898bd0ffecc2
397,288
def get_plot_name(name_idx, data): """Returns the plot name taken from the data parameter Args: name_idx(str or list): the plot column name to look for, or an array of plot names data(obj): index-able object containing the values that make up the plot name Return: Returns the found plot name or None if not found Note: If the plot name consists of more than one index, the values are concatenated to make up the returned plot name. Indexes that are missing in the data are ignored. If the data doesn't contain any of the indexes, None is returned """ plot_name = "" if isinstance(name_idx, list): for idx in name_idx: if idx in data: plot_name += str(data[idx]) + "_" plot_name = plot_name.rstrip("_") elif name_idx in data: plot_name = str(data[name_idx]) if plot_name == "": plot_name = None return plot_name
41fd2f76374f8388ac2ed6527bfa03437e77aeaa
150,445
def powerlaw(r,L,extra=False): """ POWERLAW Powerlaw function and derivatives. f = powerlaw(R,L) is the powerlaw function with length scale parameter L evaluated at R. The length scale L is defined here as L = sqrt(-1/f''(0)). f,df,ddf = powerlaw(R,L,extra=True) also returns df = (1/r) df/dr and ddf = r d/dr (1/r) df/dr = r d/dr df. Based on Matlab script of 14Nov97 by Dick Dee. """ f = 1./(1. + 0.5*(r/L)**2) if extra: df = (-1/(L**2))*(f**2); ddf = (-2*(r/L)**2)*(f*df); return (f,df,ddf) else: return f
1fa3ecbc9483ac90ede3b1a2ee7c6280da31f005
182,310
def _format(string): """ Formats a class name correctly for checking function and class names. Strips all non-alphanumeric chars and makes lowercase. """ return ''.join(list(filter(str.isalnum, string))).lower()
0fbff1d0da8c3bd4b318613dfa039dcef664f11f
688,160
from typing import List def lcs(a: List[str], b: List[str]) -> int: """Get LCS (Longest Common Subsequence). Args: a: List of numbers. b: List of numbers. Returns: LCS Landau notation: O(a_count * b_count). """ n = len(a) m = len(b) dp = [[0 for _ in range(m + 1)] for _ in range(n + 1)] for i, ai in enumerate(a): for j, bj in enumerate(b): if ai == bj: dp[i + 1][j + 1] = dp[i][j] + 1 else: dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]) return dp[n][m]
90a902d4a03532760fa9b8f33ce9a839bef32c43
212,158
def GetValuesFromList(array, key): """[Gets values from dictionary and returns them as a list, to use at plot.] Arguments: array {[dict]} -- [Dict we get from ] key {[string]} -- [Key for ExchangeRate currency, EUR to KEY] Returns: [array] -- [Array of values to show on plot.] """ vals = [] for i in array: vals.append(i['rates'][key]) return vals
e5dc96966b6f7626079241819170ab20ee22a135
407,209
from typing import Union def create_choice(value: Union[str, int], name: str): """ Creates choices used for creating command option. :param value: Value of the choice. :param name: Name of the choice. :return: dict """ return { "value": value, "name": name }
7fba604f4bf5a5bbbf15a602c767f4973befc3c3
661,907
def escape_characters(markdown): """Takes some markdown and replaces escaped characters with the substition character. This is returned along with a list of escaped characters. You cannot escape line breaks - the backslash will be removed but not the line break. :param str markdown: The string to break up. :rtype: ``str``, ``list``""" characters = [] while "\\" in markdown: loc = markdown.find("\\") if loc != len(markdown) - 1: character = markdown[loc + 1] if character != "\n": characters.append(character) markdown = markdown[:loc] + "\x1A" + markdown[loc + 2:] else: markdown = markdown[:loc] + markdown[loc + 1:] else: break return markdown, characters
f90376ae46585ef531dff9d412602ebf5d99a3cd
321,897
def move_to_tile(location, tile): """ Return the action that moves in the direction of the tile. """ # actions = ['', 'u', 'd', 'l', 'r', 'p'] print(f"my tile: {tile}") # see where the tile is relative to our current location diff = tuple(x - y for x, y in zip(location, tile)) if diff == (0, 1): action = 'd' elif diff == (1, 0): action = 'l' elif diff == (0, -1): action = 'u' elif diff == (-1, 0): action = 'r' else: action = '' return action
d2fd8ecb913f4fa09cf4536fa3729e8abff86634
603,927
def apply_format(data_frame, column_names, format_method): """Apply a formatting function to a DataFrame column and return. Simplify applying format modifications to the data stored in columns of `data_frame`. Check if the parameters are of the right type, apply `format_method` to the columns of `data_frame` whose labels are passed in `column names`. Return the DataFrame with the applied changes. Parameters ---------- data_frame : pandas.DataFrame DataFrame containing the data to be modified. column_names : list List of string labels of columns in `data_frame` to be modified. format_method : function Function to be applied to the columns of `data_frame`, whose labels are listed in `column_names`. Returns ------- data_frame : pandas.DataFrame The passed in DataFrame with the formatting changes applied to its columns. See Also -------- pandas.apply Examples -------- >>> data = pd.read_csv("data.csv") >>> print(data[['Wage']][0:3]) #print first few lines Wage 0 €565K 1 €405K 2 €290K >>> data = apply_format(data, ['Wage'], money_format) >>> print(data[['Wage']][0:3]) Wage 0 565 1 405 2 290 """ for column in column_names: if isinstance(column, str) and (column in data_frame) and callable(format_method): data_frame.loc[:, column] = data_frame[column].apply(format_method) return data_frame
af8f09d57e1f48da79c576ae542bfc5cc6cd837b
12,143
def tokenize_mnemonic(instr): """ Returns a list of tokens The first token is the operation and all subsequent tokens are operands """ tokens = instr.mnemonic.split() base = tokens[0] dst = src = None if len(tokens) < 2: # Only single token (the operation) return ( base ,) else: op_tks = tokens[1] if ',' in op_tks: dst, src = op_tks.split(',') return (base, dst, src) else: return (base, op_tks) #end if-else on tokens
b0e237e9486475a44b54cdc3fa0dcccc2b42349e
366,758
def drop(i_list: list,n:int) -> list: """ Drop at multiple of n from the list :param n: Drop from the list i_list every N element :param i_list: The source list :return: The returned list """ assert(n>0) _shallow_list = [] k=1 for element in i_list: if k % n != 0: _shallow_list.append(element) k+=1 return _shallow_list
666329bfa9a6f9c55c6dc2d7bdcb53c44cb35a60
404,049
def glyph_contour_count(font, name): """Contour count for specified glyph. This implementation will also return contour count for composite glyphs. """ contour_count = 0 items = [font['glyf'][name]] while items: g = items.pop(0) if g.isComposite(): for comp in g.components: if comp.glyphName != ".ttfautohint": items.append(font['glyf'][comp.glyphName]) if g.numberOfContours != -1: contour_count += g.numberOfContours return contour_count
65469809aa789ca48778f95fbb6e661f6c74259d
570,220
def ops_to_dict(session, ops): """Converts canonical dict of TF ops to an actual dict. Runs ops first. Args: session: tf session ops: dict mapping name to tf operation Returns: dict """ dict_ = dict(list(zip(list(ops.keys()), session.run(list(ops.values()))))) return dict_
cf34434a23ce62f9c628c4b76f09a19380e8fe8a
191,030
import pickle def load_model(model_path="model/best_model.pkl"): """ Model loader Args: model_path (str, optional): Path to file model name, default to `model/best_model.pkl` """ return pickle.load(open(model_path, "rb"))
32be408c3d618e25aa30e673b7106905553bb1db
486,407
def hexify_string(text: str) -> str: """Replace each character in a string by the corresponding HTML character entity.""" return ''.join('&#x{:x};'.format(ord(c)) for c in text)
8cb233d4a16415234d3bc9257794d2152b7740d3
443,276
def get_geometries(data_frame): """ Returns a geopandas GeoSeries object with geometries from a DataFrame. """ return data_frame['geometry']
ed44e100732f181619973f0e247136643f78d1d1
377,410
def pass_empty(_, value, *args): """ Used for EMPTY production alternative in collect. """ return []
c22c1131d4dde36325aef287183c858a82e33ed7
539,908
def validate_file(rules: dict, fname: dict): """ Validates files by BIDS-compatible identifiers Parameters ---------- rules : dict Dictionary with keys of BIDS-recognized key and their accepted values. fname : str File to validate. """ valid = [] for key, value in rules.items(): if f"{key}-{value}" in fname: valid.append(True) else: valid.append(False) return all(valid)
92b82ea9d65f6037a7aef45995399cb137996240
486,168
def test_user(user_num): """Pre-defined user variables for testing purposes""" users = { "1": (5, "", 3, True, True, True, True, True), "2": (0, "", 3, False, False, False, False, False), "3": (2, "", 4, True, True, False, False, True), "4": (1, "", 5, False, False, True, True, False) } return users[str(user_num)]
b98d0fea48a1bb96a14c46528ee0754dd90f7d0e
648,113
def calculate_center(S): """ Calculate the center of a list of points, S """ cx = 0. cy = 0. n = len(S) for p in S: cx += p[0] / n cy += p[1] / n return (cx, cy)
8206845e2fe941c19f3454214144993a03ff1c64
457,679
def parse_date(date): """Parse date int string into to date int (no-op).""" if date is None: return 0 return int(date)
46cba9bcc9a0ba90028579994df4e92b9165a1b8
48,984
def timePoint_hierarchy(nb_TP): """ Convert the number of time points in a list with all the time points. This list can be used by many others functions. The time points columns in the input dataset should be write like : "tp* s" * is the time point number (the first time point must be 1). @type nb_TP: int @param nb_TP: the number of time points @rtype : list @return : all the time points name (string) """ TPs = [] for i in range(nb_TP): TP_name = "tp" + str(i+1) + " s" TPs.append(TP_name) return TPs
8941db47aac0d765b4fdb15ebabd6ebacdda0eb8
469,159
def parse_team_stats(stat_obj: dict) -> str: """ Currently, individual team's stats look like this from Dynamo: "Hotshots": { "GA": "25", "GF": "27", "GP": "7", "L": "3", "OTL": "0", "PTS": "8", "SOL": "0", "T": "0", "W": "4" } we turn these into a nice human readable line. :param stat_obj: dict containing a team's stats :return: strified version of this data """ line = "" for stat, val in stat_obj.items(): line += f"{stat}: {val}\t" return line + "\n"
7ee324c0bcdda2903be2fd82679dae7c7d46ed75
685,084
def get_as_list(parameter): """Make sure 'parameter' is a list.""" if not isinstance(parameter, list): return [parameter] return parameter
59262dd33d9b95826532d00de015b1c1a68effd3
324,533
import json import hashlib def dict_hash(a_dict): """Return a hash for a dict. See https://stackoverflow.com/a/22003440.""" dict_str = json.dumps(a_dict, sort_keys=True, default=str) return hashlib.md5(dict_str.encode('utf8')).hexdigest()
6c526fe4e2d62a59e2330e1c84ee4fa72e34f35b
90,441
import math def angle(dx, dy): """ Returns angle from in x- and y-coordinates. Parameters ---------- dx : float x-coordinate or difference in x-coordinate. dy : float y-coordinate or difference in y-coordinate. Returns ------- ang : float Corresponding angle in radians. """ return math.atan2(dy, dx)
23e16bd7a8550cdcba71ae45f3a1be9b22c77325
385,253
import json def load_metrics(source_file): """Reads the json file of metric definitions and returns a map of metric names to metric definitions""" raw_metrics = json.loads(open(source_file).read()) metrics = { } for m in raw_metrics: if m['key'] in metrics: assert False, "Metric key %s already used, check definition of %s" % (m['key'], m) m['kind'] = "Metrics.TMetricKind.%s" % m['kind'] m['units'] = "Metrics.TUnit.%s" % m['units'] metrics[m['key']] = m return metrics
02a3390d25f2f5b18a6a231d7cd94d83b9fa048e
602,084
def make_samplers(distances, sampler_factory): """Construct samplers for each informative subset of the summary statistic. Parameters ---------- distances : dict A dictionary with discrepancy nodes corresponding to each subset of the summary statistic. sampler_factory A function which takes a discrepancy node as an argument and returns an ELFI ABC sampler (e.g. elfi.Rejection). Returns ------- samplers : dict A mapping from the marginals of the parameter to the corresponding sampler. """ return {k: sampler_factory(dist) for (k, dist) in distances.items()}
1e3ce6763e591b8342ed81b427b6b60524402feb
159,102
def time_format(num, digits=1, align_unit=False): # type: (float, int, bool) -> str """Format and scale output according to standard time units. Example ------- >>> time_format(0) '0.0 s' >>> time_format(0, align_unit=True) '0.0 s ' >>> time_format(0.002) '2.0 ms' >>> time_format(2001) '33.4 m' >>> time_format(2001, digits=3) '33.350 m' """ if num is None: return "<unknown>" unit = "s" if (num >= 1.0) or (num == 0.0): if num >= 60.0: num /= 60.0 unit = "m" if num >= 60.0: num /= 60.0 unit = "h" if num >= 24.0: num /= 24.0 unit = "d" else: num *= 1000.0 for p in ["ms", "us", "ns", "ps", "fs"]: unit = p if abs(round(num, digits + 3)) >= 1: break num *= 1000.0 if (len(unit) == 1) and align_unit: return ("%." + str(digits) + "f %s ") % (num, unit) else: return ("%." + str(digits) + "f %s") % (num, unit)
806cefcd7c9ddeff8214031bbbdfee09ad7fa27f
669,104
def format_types(types): """Format types for SQL statements""" return ["\"{}\"".format(type_) for type_ in types]
f4207ad13fbace48aa7f0fa93c8fe90ca82289b1
212,274
def _get_feed_index_definition(number_of_shards, number_of_replicas): """ Constructs the Feed index with a given number of shards and replicas. Feeds are stored in an atomic form and are based as much as possible on http://activitystrea.ms/ :param number_of_shards: Number of shards for the feeds index. :param number_of_replicas: Number of replicas for the feeds index. The index has the following parts: published: Date when the feed was published. Stored in ISO 8601 format. See https://docs.python.org/3.6/library/datetime.html#datetime.date.isoformat for more info. published_date: Date section of the published date. YYY-MM-DD. E.g., 2002-12-04 published_time: Time section of the published date. HH:MM:SS. E.g., 13:00:23 type: Single word in infinitive. Also know as "verb", it describes some form of action that may happen, is currently happening, or has already happened. See https://www.w3.org/TR/activitystreams-vocabulary/#dfn-activity for more info. actor: Describes the entity that is performing the activity. See https://www.w3.org/TR/activitystreams-vocabulary/#dfn-actor for more info. actor.id: The unique id of the actor. Only one ID is accepted. actor.type: Single word. The type of actor performing the activity. E.g., Person, User, Member. See https://www.w3.org/TR/activitystreams-vocabulary/#actor-types for more info. actor.extra: Use this field to store extra information at actor level. IMPORTANT NOTE: This field is "non-analyzable" which means that ES does not perform any operations on it thus it cannot be used to order, aggregate, or filter query results. object: Describes an object of any kind linked to the action itself. See https://www.w3.org/TR/activitystreams-vocabulary/#dfn-object for more info. object.id: Single ID. The unique id of the object object.type: Single word. Provides some degree of specificity to the object. E.g., Document, Project, Form. See https://www.w3.org/TR/activitystreams-vocabulary/#object-types for more info object.extra: Use this field to store extra information at object level. IMPORTANT NOTE: This field is "non-analyzable" which means that ES does not perform any operations on it thus it cannot be used to order, aggregate, or filter query results. origin [optional]: The origin is applicable to any type of activity for which the English preposition "from" can be considered applicable in the sense of identifying the origin, source or provenance of the activity's object. See https://www.w3.org/TR/activitystreams-vocabulary/#origin-target for more information origin.id: The unique ID the origin. Only one ID is accepted. origin.type: Single word. Provides some degree of specificity to the origin. E.g., Collection origin.extra: Use this field to store extra information at origin level. IMPORTANT NOTE: This field is "non-analyzable" which means that ES does not perform any operations on it thus it cannot be used to order, aggregate, or filter query results. target [optional]: The target is applicable to any type of activity for which the English preposition "to" can be considered applicable in the sense of identifying the indirect object or destination of the activity's object. See https://www.w3.org/TR/activitystreams-vocabulary/#origin-target for more information target.id: The unique ID the target. Only one ID is accepted. target.type: Single word. Provides some degree of specificity to the target. E.g., Collection target.extra: Use this field to store extra information at target level. IMPORTANT NOTE: This field is "non-analyzable" which means that ES does not perform any operations on it thus it cannot be used to order, aggregate, or filter query results. extra: Use this field to store extra information at activity level. IMPORTANT NOTE: This field is "non-analyzable" which means that ES does not perform any operations on it thus it cannot be used to order, aggregate, or filter query results. :return: Dict. """ # noinspection SpellCheckingInspection _json = { "settings": { "index": { "number_of_shards": number_of_shards, "number_of_replicas": number_of_replicas, } }, "mappings": { "properties": { "published": {"type": "date"}, "published_date": {"type": "date", "format": "yyyy-MM-dd"}, "published_time": {"type": "date", "format": "HH:mm:ss"}, "published_year": {"type": "integer"}, "published_month": {"type": "integer"}, "type": {"type": "keyword"}, "actor": { "properties": { "id": {"type": "keyword"}, "type": {"type": "keyword"}, "extra": {"type": "object", "enabled": "false"}, } }, "object": { "properties": { "id": {"type": "keyword"}, "type": {"type": "keyword"}, "extra": {"type": "object", "enabled": "false"}, } }, "origin": { "properties": { "id": {"type": "keyword"}, "type": {"type": "keyword"}, "extra": {"type": "object", "enabled": "false"}, } }, "target": { "properties": { "id": {"type": "keyword"}, "type": {"type": "keyword"}, "extra": {"type": "object", "enabled": "false"}, } }, "extra": {"type": "object", "enabled": "false"}, } }, } return _json
b5c5d13f3b25c36b8de5b64d08f0bd1946366441
330,065
def spawn_dates_times(df, spawn_dates=True, spawn_times=False): """ Build date/times column from a timeseries dataframe :param df: (pd.DataFrame) - dataframe with datetime index :param spawn_dates: (boolean) - whether to spawn year, month, day cols :param spawn_times: (boolean) - whether to spawn hour, minute, second cols :return df: (pd.DataFrame) - dataframe with datetime index """ if spawn_dates: ind = df.index df = df.assign(year=ind.year, month=ind.month, day=ind.day) if spawn_times: ind = df.index df = df.assign(hour=ind.hour, minute=ind.minute, second=ind.second) return df
ee58b5117d65fa3f217b16973dcdc06918c5474b
10,645
from typing import OrderedDict def arr_to_dict(arr, ref_dict): """ Transform an array of data into a dictionary keyed by the same keys in ref_dict, with data divided into chunks of the same length as in ref_dict. Requires that the length of the array is the sum of the lengths of the arrays in each entry of ref_dict. The other dimensions of the input array and reference dict can differ. Arguments --------- arr : array Input array to be transformed into dictionary. ref_dict : dict Reference dictionary containing the keys used to construct the output dictionary. Returns ------- out : dict Dictionary of values from arr keyed with keys from ref_dict. """ out = OrderedDict() idx = 0 assert len(arr) == sum([len(v) for v in ref_dict.values()]) for k, bd in ref_dict.items(): out[k] = arr[idx : idx + len(bd)] idx += len(bd) return out
55339447226cdd2adafe714fa12e144c6b38faa2
706,830
def sol(arr, n, k): """ Store the position of the element in a hash and keep updating it as we go forward. If the element already exists in the hash check the distance between them and return True if it is <= k """ h = {} for i in range(n): if arr[i] in h: pos = h[arr[i]] if pos+k >= i: return True h[arr[i]] = i return False
7022dbe564505cd8c02373d1620b78fe39a1f53c
412,970
def underscore_to_camelcase(s): """ Convert lowercase_with_underscore names to CamelCase. """ return ''.join(x.capitalize() or '_' for x in s.split('_'))
8de189007ac25b53037cb17e267ec4b81ee80f8f
664,628
def getXYCoords(geometry, coord_type): """ Returns either x or y coordinates from geometry coordinate sequence. Used with LineString and Polygon geometries. """ if coord_type == 'x': return geometry.coords.xy[0] elif coord_type == 'y': return geometry.coords.xy[1]
ae9b713632150c3b811a172ec0716db0486d0a87
385,420
def any_in_dict(key_tuple, dict_obj): """Return whether any of the given keys is in the given dict. Parameters ---------- key_tuple : tuple The keys for which to check inclusion. dict_obj : dict The dict to examine. Returns ------- bool True if any of the given keys is in the given dict. False otherwise. Example ------- >>> dict_obj = {'a': 1, 'c': 2} >>> any_in_dict(('a', 'b'), dict_obj) True >>> any_in_dict(('b', 'g'), dict_obj) False """ return any([key in dict_obj for key in key_tuple])
03208035392d884ab7b41e4229bbf995a4b78f9e
226,359
from typing import List def score( source_confidence: List[float], score: List[float], mentioned_feeds_count: int ) -> int: """ Function calculates final score for the IoC Parameters: source_confidence (List[float], 0..1) — a list `source_confindence` of all CTI feeds where the IoC has been mentioned. score (List[float], 0..1) — a list `score` of all CTI feeds where the IoC has been mentioned. mentioned_feeds_count (int) — count of feeds that mentioned the IoC. Returns: IoC final score (int, 0..100) """ x: float = 0 y: float = 0 for i in range(0, mentioned_feeds_count): x += (source_confidence[i] ** 2) * score[i] y += source_confidence[i] return round(x / y * 100)
0d268c5b23c8f82d1f507b2923acd41775d021aa
104,884
import torch from typing import Optional from typing import Union from typing import Tuple def wmean( x: torch.Tensor, weight: Optional[torch.Tensor] = None, dim: Union[int, Tuple[int]] = -2, keepdim: bool = True, eps: float = 1e-9, ) -> torch.Tensor: """ Finds the mean of the input tensor across the specified dimension. If the `weight` argument is provided, computes weighted mean. Args: x: tensor of shape `(*, D)`, where D is assumed to be spatial; weights: if given, non-negative tensor of shape `(*,)`. It must be broadcastable to `x.shape[:-1]`. Note that the weights for the last (spatial) dimension are assumed same; dim: dimension(s) in `x` to average over; keepdim: tells whether to keep the resulting singleton dimension. eps: minimum clamping value in the denominator. Returns: the mean tensor: * if `weights` is None => `mean(x, dim)`, * otherwise => `sum(x*w, dim) / max{sum(w, dim), eps}`. """ args = {"dim": dim, "keepdim": keepdim} if weight is None: return x.mean(**args) if any( xd != wd and xd != 1 and wd != 1 for xd, wd in zip(x.shape[-2::-1], weight.shape[::-1]) ): raise ValueError("wmean: weights are not compatible with the tensor") return (x * weight[..., None]).sum(**args) / weight[..., None].sum(**args).clamp( eps )
db742eb5d899b190609a8e40cd9e4a65f52a45cd
701,186
import itertools def run_return_final_tissue(simulation,N_step): """run given simulation for N_step iterations returns final tissue object""" return next(itertools.islice(simulation,N_step,None))
408b0a36e1526bd83087702001b089e2d8097ea2
335,989
import re def isCmdOption(arg): """Returns True if the string is a command line option, False otherwise (if it is an argument)""" # An option must start with '-' and not consist of all numbers if ( arg.startswith('-') and not re.match('^-[0-9.]+$', arg) ): return True else: return False
5bc27819415dedae2e45df16fd66616ee8820f1e
404,494
def remove_virtual_slot_cmd(lpar_id, slot_num): """ Generate HMC command to remove virtual slot. :param lpar_id: LPAR id :param slot_num: virtual adapter slot number :returns: A HMC command to remove the virtual slot. """ return ("chhwres -r virtualio --rsubtype eth -o r -s %(slot)s " "--id %(lparid)s" % {'slot': slot_num, 'lparid': lpar_id})
2c6f14949910865f3a60c0016b4587088441572e
7,948
def analyzeCharCategory(char, char_cat_def): """Analyze a given character category by checking code points Parameters ---------- char_cat_def: dictionary Dcitionary which is obtained by loadCharDef function. char: string A character to analyze Returns ------- cat_name: string Category name """ assert len(char) == 1 cp = ord(char) for cat_name, params in char_cat_def.items(): if 'code_points' in params: for cand_cp in params['code_points']: cp_beg, cp_end = cand_cp if cp >= int(cp_beg, 16) and cp <= int(cp_end, 16): return cat_name
ba25843463710e974330015f180e77fa1f1eea84
198,642
def append_heatmap(tokens, scores, latex, gamma, caption, pad_token, formatting="colorbox", truncate_pad=True): """ Produce a heatmap for LaTeX Format options: colorbox, text""" if gamma != 1: raise NotImplementedError latex += "\n\\begin{figure}[!htb]" for token, score in zip(tokens, scores): if token == pad_token and truncate_pad: continue color = "blue" if score >= 0: color = "red" latex += f"\\{formatting}" + "{" + f"{color}!{abs(score) * 100}" + "}" + "{" + token + "}" latex += "\\caption{" + f"{caption}" + "}" latex += "\\end{figure}\n" return latex
a558988606fe7bd0514f2697fb6644fc47e6c9c4
684,176
def get_middle(self): """Return the point at the middle of the Segment Parameters ---------- self : Segment A Segment object Returns ------- Zmid: complex Complex coordinates of the middle of the Segment """ Z1 = self.begin Z2 = self.end Zmid = (Z1 + Z2) / 2.0 # Return (0,0) if the point is too close from 0 if abs(Zmid) < 1e-6: Zmid = 0 return Zmid
d23e8403026a9af5d39752f60631e95ceb60069d
217,048
def classify(true_otu, pred_otu): """ Classify a prediction as a true positive (tp), true negative (tn), false positive (fp), or false negataive (fn). """ if true_otu and pred_otu: result = "tp" elif true_otu and not pred_otu: result = "fn" elif not true_otu and pred_otu: result = "fp" elif not true_otu and not pred_otu: result = "tn" else: raise ValueError("this should never ever happen") return result
eba696284b7984685ebae932147ff23608e02fac
493,888
def filter_dict(dictionary, keep_fields): """ Filter a dictionary's entries. :param dictionary: Dictionary that is going to be filtered. :type dictionary: dict :param keep_fields: Dictionary keys that aren't going to be filtered. :type keep_fields: dict or list or set :return: Filtered dictionary. :rtype: dict """ return { key: value for key, value in dictionary.items() if key in keep_fields }
48f0fe632d0b6e056d4049ba5b79009ed63fac62
185,214
from typing import List from typing import Tuple def centroid(vectors: List[List[float]]) -> Tuple[float, float, float]: """ Calculate the centroid from a vectorset X. https://en.wikipedia.org/wiki/Centroid Centroid is the mean position of all the points in all of the coordinate directions. C = sum(X)/len(X) Parameters ---------- vectors : np.array (N,D) matrix, where N is points and D is dimension. Returns ------- C : float centeroid """ s = [0.0, 0.0, 0.0] num = 0 for line in vectors: num += 1 for n, v in enumerate(line): s[n] += v return (s[0] / num, s[1] / num, s[2] / num)
72b8a793bec4e529ffbe34e7a9e5909b72420f7f
555,394
import json def save_json(f, cfg): """ Save JSON-formatted file """ try: with open(f, 'w') as configfile: json.dump(cfg, configfile) except: return False return True
75c232000962a4edbad5131b11f2701157f32d76
682,537
def tle_fmt_float(num,width=10): """ Return a left-aligned signed float string, with no leading zero left of the decimal """ digits = (width-2) ret = "{:<.{DIGITS}f}".format(num,DIGITS=digits) if ret.startswith("0."): return " " + ret[1:] if ret.startswith("-0."): return "-" + ret[2:]
686cb4061e5cf2ad620b85b0e66b96a8cd1c3abf
707,207
def clamp(n, smallest, largest): """ Force n to be between smallest and largest, inclusive """ return max(smallest, min(n, largest))
75afadfc7c49d07f9a2c23074d666cb0b55b0e00
51,693
def get_onat_shifts(full_ids, shifts): """ combines explicit atom ids "ACD_id[MOL block_id]" and chemical shifts to produce a mixonat-formatted list of chemical shifts """ return '\n'.join(["%s \t%s \t" % x for x in zip(full_ids, shifts)])
291737a70bd91d0a9f1929d735d4980deff15a02
462,253
def notas(*nts, sit=False): """ -> Retorna um dicionário com a quantidade de notas informadas, a maior e menor nota, a média e a situação(opcional). :param nts:notas :param sit:operador para adicionar ou não a situação ao dicionário :return:dicionário com as informações sobre as notas """ info = dict() info['quantidade de notas'] = len(nts) info['maior nota'] = max(nts) info['menor nota'] = min(nts) info['média'] = sum(nts)/len(nts) if sit: if info['média'] > 7: info['situação'] = 'BOA' elif info['média'] > 5: info['situação'] = 'RAZOÁVEL' else: info['situação'] = 'RUIM' return info
cb51ed853227df4aadcd7f36f7e4ad4f4ff87f13
402,950
def split_choices(choices_string): """ Convert a comma separated choices string to a list. """ return [x.strip() for x in choices_string.split(",") if x.strip()]
f9efd7151d8a58f5130ab622589afeed5a470d9f
154,873
def parse_number_set(number_set): """ Parse a number set string to a set of integers. The string is a comma-separated range of "atoms", which may be * A single value (`1`) * A range of values (`1-5`) separated with either a dash or double dots. and these may also be negated with a leading exclamation mark. >>> parse_number_set('1-5,8-9') {1, 2, 3, 4, 5, 8, 9} >>> parse_number_set('1-5,!4') {1, 2, 3, 5} >>> parse_number_set('1,2,3') {1, 2, 3} >>> sorted(parse_number_set('-1..-5')) [-5, -4, -3, -2, -1] """ incl = set() excl = set() for atom in number_set.split(','): atom = atom.strip() if not atom: continue if atom.startswith('!'): dest = excl atom = atom[1:] else: dest = incl if '-' in atom[1:] or '..' in atom: start, end = [int(v) for v in atom.split(('..' if '..' in atom else '-'), 1)] if start > end: end, start = start, end dest.update(set(range(start, end + 1))) else: dest.add(int(atom)) return incl - excl
f8967ffa9400268a75ae810e8209241138edbd10
435,721
def axial_n_moves(f, n, col, slant): """ Return coordinate moved n hexes by the action defined in f. f is expected to be an axial move function. """ for _ in range(n): col, slant = f(col, slant) return col, slant
4707df4b678321098b78acae70012bd837946cd6
509,066
def factorial(n): """ Calculates factorial of a number Arguments: n {integer} -- input Returns: factorial {integer} """ assert n >= 0, 'invalid number' if n == 0: return 1 else: return n * factorial(n - 1)
7d5e9b62e4bfbd93f8b35a90a25ebdc40c531fae
510,073
def is_day_of_week(date, day_of_week): """Check if you are on specific day of a week. day_of_week: 0 for Monday, 6 is Sunday. """ return (date.weekday() == day_of_week)
8b6503b3c284bea3dc2d3e82ba1fe0fa7926b8cf
586,610
def LoadDependencyDictionary(filename): """Loads dependencies from the named file, returning a dictionary. Args: filename: name of the file to load the dictionary from. Returns: A dictionary in which each entry key is a library name and the value is a list of all libraries on which that library depends on. """ return eval(open(filename, 'r').read())
a984af27cd7d675ee29f678ea42b3f1d2f489208
407,814
def x_aver_top_mass(xp_mass, xpf_mass): """ Calculates the average mass concentration at the top of column. Parameters ---------- xp_mass : float The mass concentration of distilliat, [kg/kg] xpf_mass : float The mass concentration of point of feed, [kg/kg] Returns ------- x_aver_top_mass : float The average mass concentration at top of column, [kg/kg] References ---------- Дытнерский, стр.230, формула 6.8 """ return (xp_mass + xpf_mass) / 2
a6cf2405f71701f247895f1935a4aaa8e88c7865
86,963
def major_minor_change(old_version, new_version): """Check if a major or minor change occurred.""" major_mismatch = old_version.major != new_version.major minor_mismatch = old_version.minor != new_version.minor if major_mismatch or minor_mismatch: return True return False
effa9f55c82a9edcacd79e07716527f314e41f39
708,818
def build_process_trees(processes): """ Build a nested dictionary, based on the relationships between processes. Args: processes: array of the currently-running processes Returns: trees: a multi-level dictionary. The keys are the ids of processes that "may" have children Values are arrays which hold the children (and children of children) Empty arrays indicate that the process has no children """ trees, seen_ppids = {}, {} for row in processes: pid = row['pid'] ppid = row['ppid'] command = row['command'] seen_ppids[pid] = 1 if ppid == 0 or ppid not in seen_ppids: trees[pid] = [] else: # Describe the child and find its parent process (ppid) new_process = {'pid': pid, 'command': command} try: trees[ppid].append([new_process]) except KeyError: for root in trees: for node in trees[root]: # node should be an array holding a dict for counter, process in enumerate(node, start=1): if ppid == process['pid']: # Success. We found the parent of the child process # Append child to parent to indicate relationship node[counter:0] = [new_process] # End of for loop return trees
46d2c2bcedce9f039e5024833bbe9a9b0a9fae84
231,788
import pickle def load_obj(name): """ Method to load pickle objects. input: name: path with the name of the pickle without file extension. """ with open(name + '.pkl', 'rb') as file: return pickle.load(file)
edf99286bb0d2f66cfa3b7d47a7929c7ea86bf30
680,024
def expand_aabb(left, right, top, bottom, delta_pixel): """ Increases size of axis aligned bounding box (aabb). """ left = left - delta_pixel right = right + delta_pixel top = top - delta_pixel bottom = bottom + delta_pixel return left, right, top, bottom
0073df23538892a5ae0262b82f16eabbd1f41da2
43,848
def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = {} with open(vocab_file, 'r') as f: for line in f: token = line.strip().split()[0] if token not in vocab: vocab[token] = len(vocab) return vocab
88d3f353738b7837c77ef2bda30482fc4d0ef454
157,898
def compare_extension(filename: str, expected_extension: str): """ Compare the extension of the given file with the expected extension """ return filename.endswith(expected_extension)
c6021ec04fe287f70a3eadf7f977e8f29a6937fc
689,478
def separate_words_and_numbers(strings): """ Separates words and numbers into two lists. :param strings: List of strings. :return: One list of words and one list of numbers """ filtered_words = [] filtered_numbers = [] for string in strings: if string.isdigit(): filtered_numbers.append(string) else: filtered_words.append(string) return filtered_words, filtered_numbers
d0846effcd81524620ed7d6c3e132a3d44f0f2ef
670,616
from typing import List from typing import Tuple def _count_inversions(ints: List[int]) -> Tuple[List[int], int]: """ Count the number of inversions in the given sequence of integers (ignoring zero), and return the sorted sequence along with the inversion count. This function is only intended to assist |is_solvable|. >>> _count_inversions([3, 7, 1, 4, 0, 2, 6, 8, 5]) ([1, 2, 3, 4, 5, 6, 7, 8], 10) """ if len(ints) <= 1: return ([], 0) if 0 in ints else (ints, 0) midpoint = len(ints) // 2 l_side, l_inv = _count_inversions(ints[:midpoint]) r_side, r_inv = _count_inversions(ints[midpoint:]) inversions = l_inv + r_inv i = j = 0 sorted_tiles = [] while i < len(l_side) and j < len(r_side): if l_side[i] <= r_side[j]: sorted_tiles.append(l_side[i]) i += 1 else: sorted_tiles.append(r_side[j]) inversions += len(l_side[i:]) j += 1 sorted_tiles += l_side[i:] + r_side[j:] return (sorted_tiles, inversions)
e6953d75d6b76ad686f2b476a8ab10ee3a458796
248,936
def assert_is_dict(var): """Assert variable is from the type dictionary.""" if var is None or not isinstance(var, dict): return {} return var
3ed3e970662213a920854e23b6e4a18042daddf0
77,622
import torch def median_heuristic(dnorm2, device): """Compute median heuristic. Inputs: dnorm2: (n x n) tensor of \|X - Y\|_2^2 Return: med(\|X_i - Y_j\|_2^2, 1 \leq i < j \leq n) """ ind_array = torch.triu(torch.ones_like(dnorm2, device=device), diagonal=1) == 1 med_heuristic = torch.median(dnorm2[ind_array]) return med_heuristic
d437aaee4b2a7c867cf6de57938383d35ff98c43
164,419
def cast_tensor_type(tens, dtype): """ tens: pytorch tens dtype: string, eg 'float', 'int', 'byte' """ if dtype is not None: assert hasattr(tens, dtype) return getattr(tens, dtype)() else: return tens
378154acebad9ff080090b6dfad803c03c9ea11b
696,384
import math def get_bearing(origin_point, destination_point): """ Calculate the bearing between two lat-lng points. Each argument tuple should represent (lat, lng) as decimal degrees. Bearing represents angle in degrees (clockwise) between north and the direction from the origin point to the destination point. Parameters ---------- origin_point : tuple (lat, lng) destination_point : tuple (lat, lng) Returns ------- bearing : float the compass bearing in decimal degrees from the origin point to the destination point """ if not (isinstance(origin_point, tuple) and isinstance(destination_point, tuple)): raise TypeError("origin_point and destination_point must be (lat, lng) tuples") # get latitudes and the difference in longitude, as radians lat1 = math.radians(origin_point[0]) lat2 = math.radians(destination_point[0]) diff_lng = math.radians(destination_point[1] - origin_point[1]) # calculate initial bearing from -180 degrees to +180 degrees x = math.sin(diff_lng) * math.cos(lat2) y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1) * math.cos(lat2) * math.cos(diff_lng)) initial_bearing = math.atan2(x, y) # normalize initial bearing to 0-360 degrees to get compass bearing initial_bearing = math.degrees(initial_bearing) bearing = (initial_bearing + 360) % 360 return bearing
cfba6ccd27e0b2e2b8fa34f71611b061692f6dbf
693,852
def default_credit_scorer(score): """Report the underlying score without modification.""" return score
b2b522900666d74f9152ca2c8dea2d9f2ca73dbf
399,995
def _clean_query_string(q): """Clean up a query string for searching. Removes unmatched parentheses and joining operators. Arguments: q (str): Query string to be cleaned Returns: str: The clean query string. """ q = q.replace("()", "").strip() if q.endswith("("): q = q[:-1].strip() # Remove misplaced AND/OR/NOT at end if q[-3:] == "AND" or q[-3:] == "NOT": q = q[:-3] elif q[-2:] == "OR": q = q[:-2] # Balance parentheses while q.count("(") > q.count(")"): q += ")" while q.count(")") > q.count("("): q = "(" + q return q.strip()
655607a0ee33841f34578dd92041b3e7bcb7730c
492,420
def _create_ip_to_node_map(meta_map): """ Create IP to NodeId mapping from meta_map """ ip_to_node = {} if not meta_map or not isinstance(meta_map, dict): return ip_to_node for node in meta_map: if not meta_map[node] or not 'ip' in meta_map[node]: continue ip_to_node[meta_map[node]['ip']] = node return ip_to_node
597d15da92bb0ea1efc0098f8b26d7900960a002
292,637
def exceptions_equal(exception1, exception2): """Returns True if the exceptions have the same type and message""" # pylint: disable=unidiomatic-typecheck return type(exception1) == type(exception2) and str(exception1) == str(exception2)
f677191d49e37cb11743743eb099d0594a66a781
308,455
def cli(ctx, data_table_id): """Display information on a single data_table """ return ctx.gi.tool_data.show_data_table(data_table_id)
35bc3a085631713675bc4a9eddc9f8f85b50712b
145,752
def founder_allocation() -> float: """How much tokens are allocated to founders, etc.""" return 0.2
90967e693d9c21c3f729bc9ffdea1472768f58b0
674,185
def _get_displayed_page_numbers(current, final): """ This utility function determines a list of page numbers to display. This gives us a nice contextually relevant set of page numbers. For example: current=14, final=16 -> [1, None, 13, 14, 15, 16] This implementation gives one page to each side of the cursor, or two pages to the side when the cursor is at the edge, then ensures that any breaks between non-continous page numbers never remove only a single page. For an alernativative implementation which gives two pages to each side of the cursor, eg. as in GitHub issue list pagination, see: https://gist.github.com/tomchristie/321140cebb1c4a558b15 """ assert current >= 1 assert final >= current if final <= 5: return list(range(1, final + 1)) # We always include the first two pages, last two pages, and # two pages either side of the current page. included = {1, current - 1, current, current + 1, final} # If the break would only exclude a single page number then we # may as well include the page number instead of the break. if current <= 4: included.add(2) included.add(3) if current >= final - 3: included.add(final - 1) included.add(final - 2) # Now sort the page numbers and drop anything outside the limits. included = [ idx for idx in sorted(list(included)) if idx > 0 and idx <= final ] # Finally insert any `...` breaks if current > 4: included.insert(1, None) if current < final - 3: included.insert(len(included) - 1, None) return included
2c37f9a3de18b3aed22fe0e2cca84aeed4ce327b
633,017
import json def _json_from_message(message): """ Parses a PB2 message into JSON format. """ return json.loads(message.payload_utf8)
710a8dac7889ff7548497a70252f7b3fd5113dc9
480,077
import torch def dt_dqn(s, a, r, ns, d, q_local, q_target, gamma): """Calculate temporal-difference delta_t using fixed Q-targets. This works for batches of tuples. Parameters ---------- s : torch.tensor Current state (size [n * m], where n is the batch size and m is the number of features in the state) a : torch.tensor Action taken (size [n]) r : torch.tensor Reward obtained (size [n]) ns : torch.tensor Next state (size [n * m]) d : torch.tensor True if the episode ended after the action (size [n]) q_local : torch.nn.Module Network used to determine the policy q_target : torch.nn.Module Copy of q_local that is updated less frequently gamma : float Weight of the estimation of future rewards, in range [0, 1] Returns ------- torch.tensor of size [n] where each row is the delta_t of a tuple """ with torch.no_grad(): QT = q_target(ns).max(1)[0] QL = q_local(s).gather(1, a.unsqueeze(1)).squeeze(1) return r + gamma * QT * (1 - d) - QL
00f56871ef0e6fd6680958b9ac456cf5545fad17
589,402
import torch def load_checkpoint(path: str): """Load checkpoint from path. Args: path: checkpoint file to load Returns: checkpoint content """ checkpoint = torch.load(path, map_location=lambda storage, loc: storage) return checkpoint
d4ed6f9c5d0e8dba08f22d360e353280fb5e24b9
283,282
def preproc_meta(metadata): """ For easier access, convert the metadata list into a dictionary where the ids are the keys """ res = {} for x in metadata: try: k = x["_id"] except KeyError: continue res[k] = x return res
e47aeffcf1b1896ee66ca7f70c8ab96d0dbc8d12
103,455
def partition(l, func): """Partition the list by the result of func applied to each element.""" ret = {} for x in l: key = func(x) if key not in ret: ret[key] = [] ret[key].append(x) return ret
fe2ac43d21d2fccce736bf54362ca8bc0ed65065
482,135
def get_max_subarray_sum(nums_array: list) -> int: """ Algorithm for getting the maximum sum of a subarray (Kadane's Algorithm) Complexity --> O(N) :param nums_array: list :return sum: int """ global_sum = local_sum = nums_array[0] for i in range(1, len(nums_array)): if local_sum + nums_array[i] > nums_array[i]: local_sum += nums_array[i] else: local_sum = nums_array[i] if local_sum > global_sum: global_sum = local_sum return global_sum
5ff5e26836c3014c8916057cb4890a70bafb986a
90,638
def get_versions(existings): """ Given gathered path, get all existing versions. """ versions = set() for k, v in existings.items(): versions = versions.union(v) return versions
5f8a1b58c7812a0c2db33e5663d0e82a6dc22011
653,321
def binary_search(list_to_search_in, key_to_search_for, field = lambda item: item["title"]): """ Does a binary search through a list containing dictionaries. Defaults to searching for "title" if no other filed is specified. """ if len(list_to_search_in) == 0: return "Error" #to make the search work with lowercase and uppercase - make everything to lowercase. field_to_use = lambda l: field(l).lower() key_to_search_for = key_to_search_for.lower() #sort the list, because binary only works on sorted lists. list_to_search_in = sorted(list_to_search_in, key = field_to_use) #init low, high. low = 0 high = len(list_to_search_in) - 1 #while we have not found the item yet while low <= high: #get middle of list mid = (low + high) // 2 #if search key is at a lower index than mid if field_to_use(list_to_search_in[mid]) > key_to_search_for: high = mid - 1 #if search key is at a higher index than mid elif field_to_use(list_to_search_in[mid]) < key_to_search_for: low = mid + 1 #item is found else: return list_to_search_in[mid] #if nothing was found in list. return "No such item in list."
8570c4c4189a05b1a5dd64266ccaaed62d191146
205,122
def mse(y,f): """MSE.""" mse = ((y - f)**2).mean(axis=0) return mse
fe2f64b7be8ec280e92481bffee82c09a04d69aa
230,936