content
stringlengths
22
815k
id
int64
0
4.91M
def gen_certs(): """ Generate self-signed TLS certtificate """ os.mkdir("./remote/certs") cmd = 'cd ./remote/certs && openssl req -new -newkey rsa:4096 -days 365 -nodes -x509 -subj "/C=US/ST=Denial/L=Springfield/O=Dis/CN=workspace.com" -keyout cert.key -out cert.crt' subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout.read() return
5,344,900
def prune_deg_one_nodes(sampled_graph): """ prune out degree one nodes from graph """ deg_one_nodes = [] for v in sampled_graph.nodes(): if sampled_graph.degree(v) == 1: deg_one_nodes.append(v) for v in deg_one_nodes: sampled_graph.remove_node(v) return sampled_graph
5,344,901
def process_all_bpch_files_in_dir(folder=None, ext_str=None): """ Process all bpch files in a given directory (Warpper of process_bpch_files_in_dir2NetCDF for *ts*bpch* and *ctm*bpch* files) folder (str): directory address for folder contain files ext_str (str): extra str to inc. in monthly filenames Returns ------- (None) """ # - Process *ctm*bpch* files # Temporary variables bpch_file_type = '*ctm.bpch.*' filename = 'ctm.nc' file_prefix = 'ctm_' # process *ctm*bpch* to NetCDF process_bpch_files_in_dir2NetCDF(folder=folder, filename=filename, ext_str=ext_str, file_prefix=file_prefix, bpch_file_type=bpch_file_type, split_by_month=True) # - Process *ts*bpch* files # Temporary variables bpch_file_type = 'ts*bpch*' filename = 'ts_ctm.nc' file_prefix = 'ts_ctm_' # Process *ts*bpch* to netCDF4 process_bpch_files_in_dir2NetCDF(folder=folder, filename=filename, ext_str=ext_str, file_prefix=file_prefix, bpch_file_type=bpch_file_type, split_by_month=True)
5,344,902
def reduce_clauses(clauses): """ Reduce a clause set by eliminating redundant clauses """ used = [] unexplored = clauses while unexplored: cl, unexplored = unexplored[0], unexplored[1:] if not subsume(used, cl) and not subsume(unexplored,cl): used.append(cl) return used
5,344,903
def get_pretrained_t2v(name, model_dir=MODEL_DIR): """ It is a good idea if you want to switch token list to vector earily. Parameters ---------- name:str select the pretrained model e.g.: d2v_all_256, d2v_sci_256, d2v_eng_256, d2v_lit_256, w2v_eng_300, w2v_lit_300. model_dir:str the path of model, default: MODEL_DIR = '~/.EduNLP/model' Returns ------- t2v model: T2V Examples -------- >>> item = [{'ques_content':'有公式$\\FormFigureID{wrong1?}$和公式$\\FormFigureBase64{wrong2?}$,\ ... 如图$\\FigureID{088f15ea-8b7c-11eb-897e-b46bfc50aa29}$,若$x,y$满足约束条件$\\SIFSep$,则$z=x+7 y$的最大值为$\\SIFBlank$'}] >>> i2v = get_pretrained_t2v("test_d2v", "examples/test_model/data/d2v") # doctest: +ELLIPSIS >>> print(i2v(item)) # doctest: +ELLIPSIS [array([...dtype=float32)] """ if name not in PRETRAINED_MODELS: raise KeyError( "Unknown pretrained model %s, use one of the provided pretrained models: %s" % ( name, ", ".join(PRETRAINED_MODELS.keys())) ) url, model_name, *args = PRETRAINED_MODELS[name] model_path = get_data(url, model_dir) if model_name in ["d2v", "w2v"]: postfix = ".bin" if model_name == "d2v" else ".kv" model_path = path_append(model_path, os.path.basename(model_path) + postfix, to_str=True) return T2V(model_name, model_path, *args)
5,344,904
def get_np_io(arr, **kwargs) -> BytesIO: """Get the numpy object as bytes. :param arr: Array-like :param kwargs: Additional kwargs to pass to :func:`numpy.save`. :return: A bytes object that can be used as a file. """ import numpy as np bio = BytesIO() np.save(bio, arr, **kwargs) bio.seek(0) return bio
5,344,905
def get_deep_attr(obj, keys): """ Helper for DeepKey""" cur = obj for k in keys: if isinstance(cur, Mapping) and k in cur: cur = cur[k] continue else: try: cur = getattr(cur, k) continue except AttributeError: pass raise DataError(error='Unexistent key') return cur
5,344,906
def fork_node_item_inline_editor(item, view, pos=None) -> bool: """Text edit support for Named items.""" @transactional def update_text(text): item.subject.joinSpec = text return True def escape(): item.subject.joinSpec = join_spec subject = item.subject if not subject: return False join_spec = subject.joinSpec or "" box = view.get_item_bounding_box(view.hovered_item) entry = popup_entry(join_spec, update_text) show_popover(entry, view, box, escape) return True
5,344,907
def get_selfies_alphabet(smiles_list): """Returns a sorted list of all SELFIES tokens required to build a SELFIES string for each molecule.""" selfies_list = list(map(sf.encoder, smiles_list)) all_selfies_symbols = sf.get_alphabet_from_selfies(selfies_list) all_selfies_symbols.add('[nop]') selfies_alphabet = list(all_selfies_symbols) selfies_alphabet.sort() return selfies_alphabet
5,344,908
def update_dependencies_simple(): """ Updates all parameter dependencies """ # Number of input neurons par['n_input'] = par['num_motion_tuned'] + par['num_fix_tuned'] + par['num_rule_tuned'] # General network shape par['shape'] = (par['n_input'], par['n_hidden'], par['n_output']) # If num_inh_units is set > 0, then neurons can be either excitatory or # inihibitory; is num_inh_units = 0, then the weights projecting from # a single neuron can be a mixture of excitatory or inhibitory if par['exc_inh_prop'] < 1: par['EI'] = True else: par['EI'] = False par['num_exc_units'] = int(np.round(par['n_hidden']*par['exc_inh_prop'])) par['num_inh_units'] = par['n_hidden'] - par['num_exc_units'] par['EI_list'] = np.ones(par['n_hidden'], dtype=np.float32) par['EI_list'][-par['num_inh_units']:] = -1. par['EI_matrix'] = np.diag(par['EI_list']) par['ind_inh'] = np.where(par['EI_list'] == -1)[0] # Membrane time constant of RNN neurons par['alpha_neuron'] = np.float32(par['dt'])/par['membrane_time_constant'] # The standard deviation of the Gaussian noise added to each RNN neuron # at each time step par['noise_rnn'] = np.sqrt(2*par['alpha_neuron'])*par['noise_rnn_sd'] par['noise_in'] = np.sqrt(2/par['alpha_neuron'])*par['noise_in_sd'] # since term will be multiplied by par['alpha_neuron'] par['num_exc'] = int(par['n_hidden']*par['exc_inh_prop']) par['num_inh'] = int(par['n_hidden'] - par['num_exc']) # General event profile info #par['name_of_stimulus'], par['date_stimulus_created'], par['author_of_stimulus_profile'] = get_profile(par['profile_path']) # List of events that occur for the network #par['events'] = get_events(par['profile_path']) # The time step in seconds par['dt_sec'] = par['dt']/1000 # Length of each trial in ms if par['trial_type'] == 'dualDMS' and not par['dualDMS_single_test']: par['trial_length'] = par['dead_time']+par['fix_time']+par['sample_time']+2*par['delay_time']+2*par['test_time'] else: par['trial_length'] = par['dead_time']+par['fix_time']+par['sample_time']+par['delay_time']+par['test_time'] # Length of each trial in time steps par['num_time_steps'] = par['trial_length']//par['dt'] #################################################################### ### Setting up assorted intial weights, biases, and other values ### #################################################################### par['h_init'] = 0.1*np.ones((par['n_hidden'], par['batch_train_size']), dtype=np.float32) par['h_init'][par['ind_inh']] = 0.4 par['input_to_hidden_dims'] = [par['n_hidden'], par['num_motion_tuned']] par['hidden_to_hidden_dims'] = [par['n_hidden'], par['n_hidden']] par['w_out_mask'] = np.ones((par['n_output'], par['n_hidden']), dtype=np.float32) if par['EI']: par['w_out_mask'][:, par['ind_inh']] = 0 #par['w_out_mask'][:,:25] = 0 # neurons receiving input from input layer cannot project to output layer par['w_rule_mask'] = np.ones((par['n_hidden'], par['num_rule_tuned']), dtype=np.float32) #par['w_rule_mask'][:25, :] = 0. print('Generating random initial weights...') par['w_in0'] = initialize([par['n_hidden'], par['n_input']], par['connection_prob']) par['w_out0'] = initialize([par['n_output'], par['n_hidden']], par['connection_prob']) if par['EI']: par['w_rnn0'] = initialize(par['hidden_to_hidden_dims'], par['connection_prob'])/4 par['w_rnn0'][:, par['ind_inh']] *= 4 par['w_out0'][:, par['ind_inh']] = 0 for i in range(par['n_hidden']): par['w_rnn0'][i,i] = 0 par['w_rnn_mask'] = np.ones((par['hidden_to_hidden_dims']), dtype=np.float32) - np.eye(par['n_hidden']) else: par['w_rnn0'] = 0.54*np.eye(par['n_hidden']) par['w_rnn_mask'] = np.ones((par['hidden_to_hidden_dims']), dtype=np.float32) """ Setting up synaptic parameters 0 = static 1 = facilitating 2 = depressing """ par['synapse_type'] = np.zeros(par['n_hidden'], dtype=np.int8) # only facilitating synapses if par['synapse_config'] == 'stf': par['synapse_type'] = np.ones(par['n_hidden'], dtype=np.int8) # only depressing synapses elif par['synapse_config'] == 'std': par['synapse_type'] = 2*np.ones(par['n_hidden'], dtype=np.int8) # even numbers facilitating, odd numbers depressing elif par['synapse_config'] == 'std_stf': par['synapse_type'] = np.ones(par['n_hidden'], dtype=np.int8) par['ind'] = range(1,par['n_hidden'],2) par['synapse_type'][par['ind']] = 2 par['alpha_stf'] = np.ones((par['n_hidden'], 1), dtype=np.float32) par['alpha_std'] = np.ones((par['n_hidden'], 1), dtype=np.float32) par['U'] = np.ones((par['n_hidden'], 1), dtype=np.float32) # initial synaptic values par['syn_x_init'] = np.zeros((par['n_hidden'], par['batch_train_size']), dtype=np.float32) par['syn_u_init'] = np.zeros((par['n_hidden'], par['batch_train_size']), dtype=np.float32) for i in range(par['n_hidden']): if par['synapse_type'][i] == 1: par['alpha_stf'][i,0] = par['dt']/par['tau_slow'] par['alpha_std'][i,0] = par['dt']/par['tau_fast'] par['U'][i,0] = 0.15 par['syn_x_init'][i,:] = 1 par['syn_u_init'][i,:] = par['U'][i,0] elif par['synapse_type'][i] == 2: par['alpha_stf'][i,0] = par['dt']/par['tau_fast'] par['alpha_std'][i,0] = par['dt']/par['tau_slow'] par['U'][i,0] = 0.45 par['syn_x_init'][i,:] = 1 par['syn_u_init'][i,:] = par['U'][i,0]
5,344,909
def get_face_angular_dataloader(dataset_path, input_size, batch_size, num_workers, train_portion=1): """ Prepare dataset for training and evaluating pipeline Args: dataset_path (str) input_size (int) batch_size (int) num_workers (int) train_portion (float) Return: train_loader (torch.utils.data.DataLoader) val_loader (torch.utils.data.DataLoader) test_loader (torch.utils.data.DataLoader) """ train_transform = transforms.Compose([ transforms.Resize(input_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(FACE_MEAN, FACE_STD) ]) test_transform = transforms.Compose([ transforms.ToTensor(), ]) train_dataset = datasets.ImageFolder(root=osp.join(dataset_path, "face", "train", "CASIA-WebFace"), transform=train_transform) test_dataset = PairFaceDataset(root=osp.join(dataset_path, "face", "test", "LFW"), transform=test_transform) if train_portion != 1: train_len = len(train_dataset) indices = list(range(train_len)) random.shuffle(indices) split = int(np.floor(train_portion * train_len)) train_idx, val_idx = indices[:split], indices[split:] train_sampler = SubsetRandomSampler(train_idx) val_sampler = SubsetRandomSampler(val_idx) train_loader = DataLoader( train_dataset, num_workers=num_workers, batch_size=batch_size, sampler=train_sampler, pin_memory=True) val_loader = DataLoader( train_dataset, num_workers=num_workers, batch_size=batch_size, sampler=val_sampler, pin_memory=True) else: train_loader = DataLoader( train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True) val_loader = None test_loader = DataLoader( dataset=test_dataset, shuffle=False, batch_size=batch_size, num_workers=num_workers) return train_loader, val_loader, test_loader
5,344,910
def compile_sql_numericize(element, compiler, **kw): """ Turn common number formatting into a number. use metric abbreviations, remove stuff like $, etc. """ arg, = list(element.clauses) def sql_only_numeric(text): # Returns substring of numeric values only (-, ., numbers, scientific notation) # return func.nullif(func.substring(text, r'([+\-]?(\d\.?\d*[Ee][+\-]?\d+|(\d+\.\d*|\d*\.\d+)|\d+))'), '') return func.coalesce( func.substring(text, r'([+\-]?(\d+\.?\d*[Ee][+\-]?\d+))'), # check for valid scientific notation func.nullif( func.regexp_replace(text, r'[^0-9\.\+\-]+', '', 'g'), # remove all the non-numeric characters '' ) ) return compiler.process(sql_only_numeric(arg), **kw)
5,344,911
def run_sgd(model, epochs): """ Runs SGD for a predefined number of epochs and saves the resulting model. """ print("Training full network") weights_rand_init = model.optimize(epochs=epochs) # weights_rand_init = model.optimize(epochs=epochs, batch_size=55000, learning_rate=0.1) print("Model optimized!!!") return [model.get_model_weights(), weights_rand_init]
5,344,912
def get_all_outcome_links_for_context_courses(request_ctx, course_id, outcome_style=None, outcome_group_style=None, per_page=None, **request_kwargs): """ :param request_ctx: The request context :type request_ctx: :class:RequestContext :param course_id: (required) ID :type course_id: string :param outcome_style: (optional) The detail level of the outcomes. Defaults to "abbrev". Specify "full" for more information. :type outcome_style: string or None :param outcome_group_style: (optional) The detail level of the outcome groups. Defaults to "abbrev". Specify "full" for more information. :type outcome_group_style: string or None :param per_page: (optional) Set how many results canvas should return, defaults to config.LIMIT_PER_PAGE :type per_page: integer or None :return: Get all outcome links for context :rtype: requests.Response (with array data) """ if per_page is None: per_page = request_ctx.per_page path = '/v1/courses/{course_id}/outcome_group_links' payload = { 'outcome_style' : outcome_style, 'outcome_group_style' : outcome_group_style, 'per_page' : per_page, } url = request_ctx.base_api_url + path.format(course_id=course_id) response = client.get(request_ctx, url, payload=payload, **request_kwargs) return response
5,344,913
def GetContentResourceSpec(): """Gets Content resource spec.""" return concepts.ResourceSpec( 'dataplex.projects.locations.lakes.content', resource_name='content', projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG, locationsId=LocationAttributeConfig(), lakesId=LakeAttributeConfig(), contentId=ContentAttributeConfig())
5,344,914
def softplus( x: oneflow._oneflow_internal.BlobDesc, name: Optional[str] = None ) -> oneflow._oneflow_internal.BlobDesc: """This operator computes the softplus value of Blob. The equation is: .. math:: out = log(e^x+1) Args: x (oneflow._oneflow_internal.BlobDesc): A Blob name (Optional[str], optional): The name for the operation. Defaults to None. Returns: oneflow._oneflow_internal.BlobDesc: The result Blob For example: .. code-block:: python import oneflow.compatible.single_client as flow import numpy as np import oneflow.compatible.single_client.typing as tp @flow.global_function() def softplus_Job(x: tp.Numpy.Placeholder((3,)) ) -> tp.Numpy: return flow.math.softplus(x) x = np.array([-1, 0, 1]).astype(np.float32) out = softplus_Job(x) # out [0.31326166 0.6931472 1.3132616 ] """ return build_unary_elemwise_math_op("softplus", x, name)
5,344,915
def test_basic_knn(alg_list, datasets, textkey="cv-basic", testname="BASIC", seed=28): """ Evaluates the algorithms specified in the datasets provided. Parameters ---------- alg_list : list The list of algorithms. Each item must be a quadruple (alg, name, key, ks, cons), where 'alg' is the algorithm, 'name' is the string name, 'key' is a key-name for the alg, 'ks' is the list of neighbors to consider in k-NN, and cons is the initialization code of the algorithm. datasets : list The list of datasets to use. Each item must be a pair (str, frac), where 'str' is the name of the dataset and 'frac' is the fraction of the dataset to take (for big datasets). """ print("* " + testname + " TEST STARTED") mms = MinMaxScaler() rownames = ["FOLD " + str(i + 1) for i in range(10)] results = {} for dset, f in datasets: print("** DATASET ", dset) folds, [n, d, c] = ds.reduced_dobscv10(dset, f) print("** SIZE ", n, " x ", d, " [", c, " classes]") results[dset] = {} norm_folds = [] for i, (xtr, ytr, xtst, ytst) in enumerate(folds): print("*** NORMALIZING FOLD ", i + 1) # Normalizing xtr = mms.fit_transform(xtr) xtst = mms.transform(xtst) norm_folds.append((xtr, ytr, xtst, ytst)) for j, (dml, dml_name, dml_key, ks, cons) in enumerate(alg_list): print("*** EVALUATING DML ", dml_name) results[dset][dml_key] = defaultdict(lambda: np.zeros([12, 3])) for i, (xtr, ytr, xtst, ytst) in enumerate(norm_folds): print("**** FOLD ", i + 1) np.random.seed(seed) try: print("***** TRAINING") start = time.time() # Start timer dml.fit(xtr, ytr) # Fitting distance end = time.time() # Stop timer elapsed = end - start # Timer measurement for k in ks: print("****** TEST K = ", k) knn = kNN(k, dml) knn.fit(xtr, ytr) results[dset][dml_key][k][i, 0] = knn.score() # Train score results[dset][dml_key][k][i, 1] = knn.score(xtst, ytst) # Test score results[dset][dml_key][k][i, 2] = elapsed # Time score except: print("--- ERROR IN DML ", dml_name) for k in ks: results[dset][dml_key][k][i, 0] = np.nan # Train score results[dset][dml_key][k][i, 1] = np.nan # Test score results[dset][dml_key][k][i, 2] = np.nan # Time score traceback.print_exc() for k in ks: results[dset][dml_key][k][10, :] = np.mean(results[dset][dml_key][k][:10, :], axis=0) results[dset][dml_key][k][11, :] = np.std(results[dset][dml_key][k][:10, :], axis=0) # Saving results r = pd.DataFrame(results[dset][dml_key][k], columns=['TRAIN', 'TEST', 'TIME'], index=rownames + ["MEAN", "STD"]) r.to_csv("../results/" + textkey + "-" + dml_key + "-" + str(k) + "nn-" + dset + ".csv") r.to_html("../results/" + textkey + "-" + dml_key + "-" + str(k) + "nn-" + dset + ".html", classes=[table_css(), "kfoldtable meanstd"]) print("RESULTS: ", dset, ", dml = ", dml_name, ", k = ", k) print(r)
5,344,916
def diff_gcs_directories( base_directory_url: str, target_directory_url: str ) -> Tuple[List[str], List[str], List[str]]: """ Compare objects under different GCS prefixes. :param base_directory_url: URL for base directory :param target_directory_url: URL for target directory :returns: Tuple with 3 elements: List of objects in base directory that are not present in target directory List of objects in target directory that are not present in base directory List of objects with different content in base and target directory """ base = urlparse(base_directory_url) target = urlparse(target_directory_url) if base.scheme != "gs": raise ValueError("base_directory_url must be a gs:// URL") if target.scheme != "gs": raise ValueError("target_directory_url must be a gs:// URL") client = Client(project=None) base_blobs = client.list_blobs(base.hostname, prefix=base.path.strip("/") + "/") base_blobs = { _remove_prefix(blob.name, base.path.strip("/")): blob for blob in base_blobs } missing_objects = set(base_blobs.keys()) extra_objects = [] changed_objects = [] target_blobs = client.list_blobs( target.hostname, prefix=target.path.strip("/") + "/" ) for blob in target_blobs: key = _remove_prefix(blob.name, target.path.strip("/")) missing_objects.discard(key) try: if blob.md5_hash != base_blobs[key].md5_hash: changed_objects.append(key) except KeyError: extra_objects.append(key) return GCSDiffResult(list(missing_objects), extra_objects, changed_objects)
5,344,917
def main(): """Run devappserver and the user's application in separate containers. The application must be started with the proper environment variables, port bindings, and volume bindings. The devappserver image runs a standalone api server. """ logging.getLogger('appstart').setLevel(logging.INFO) # args should include all the args to the sandbox, as well as a # parser_type arg, which indicates which subparser was used. args = vars(parsing.make_appstart_parser().parse_args()) # Find out what parser was used (and remove the entry from the args). parser_type = args.pop('parser_type') # In response to 'appstart init', create a new devappserver base image. if parser_type == 'init': utils.build_from_directory(os.path.dirname(devappserver_init.__file__), constants.DEVAPPSERVER_IMAGE, **args) utils.build_from_directory(os.path.dirname(pinger.__file__), constants.PINGER_IMAGE, **args) # In response to 'appstart run', create a container sandbox and run it. elif parser_type == 'run': try: with warnings.catch_warnings(): # Suppress the InsecurePlatformWarning generated by urllib3 # see: http://stackoverflow.com/questions/29134512/ warnings.simplefilter('ignore') with container_sandbox.ContainerSandbox(**args): while True: # Sleeping like this is hacky, but it works. Note # that signal.pause is not compatible with Windows... time.sleep(10000) except KeyboardInterrupt: utils.get_logger().info('Exiting') sys.exit(0) except utils.AppstartAbort as err: if err.message: utils.get_logger().warning(str(err.message)) sys.exit(1) # In response to 'appstart validate', attempt to perform validation. elif parser_type == 'validate': logfile = args.pop('log_file') threshold = args.pop('threshold') tags = args.pop('tags') verbose = args.pop('verbose') list_clauses = args.pop('list_clauses') success = False utils.get_logger().setLevel(logging.INFO) try: with warnings.catch_warnings(): warnings.simplefilter('ignore') validator = contract.ContractValidator(runtime_contract, **args) if list_clauses: validator.list_clauses() sys.exit(0) success = validator.validate(tags, threshold, logfile, verbose) except KeyboardInterrupt: utils.get_logger().info('Exiting') except utils.AppstartAbort as err: if err.message: utils.get_logger().warning(err.message) if success: sys.exit(0) sys.exit('Validation failed') else: # This should not be reached sys.exit(1)
5,344,918
def load_compatible_apps(file_name: str) -> List[Product]: """Loads from file and from github and merges results""" local_list = load_installable_apps_from_file(file_name) try: github_list = load_compatible_apps_from_github() except (URLError, IOError): github_list = [] return list(set(local_list) | set(github_list))
5,344,919
def delete(page_id): """Delete a page.""" page = _get_page(page_id) page_name = page.name site_id = page.site_id success, event = page_service.delete_page(page.id, initiator_id=g.user.id) if not success: flash_error( gettext('Page "%(name)s" could not be deleted.', name=page_name) ) return url_for('.view_current_version', page_id=page.id) flash_success(gettext('Page "%(name)s" has been deleted.', name=page_name)) page_signals.page_deleted.send(None, event=event) return url_for('.index_for_site', site_id=site_id)
5,344,920
async def test_config_schema(hass): """Test that config schema is imported properly.""" config = { konnected.DOMAIN: { konnected.CONF_API_HOST: "http://1.1.1.1:8888", konnected.CONF_ACCESS_TOKEN: "abcdefgh", konnected.CONF_DEVICES: [{konnected.CONF_ID: "aabbccddeeff"}], } } assert konnected.CONFIG_SCHEMA(config) == { "konnected": { "access_token": "abcdefgh", "api_host": "http://1.1.1.1:8888", "devices": [ { "default_options": { "blink": True, "api_host": "http://1.1.1.1:8888", "discovery": True, "io": { "1": "Disabled", "10": "Disabled", "11": "Disabled", "12": "Disabled", "2": "Disabled", "3": "Disabled", "4": "Disabled", "5": "Disabled", "6": "Disabled", "7": "Disabled", "8": "Disabled", "9": "Disabled", "alarm1": "Disabled", "alarm2_out2": "Disabled", "out": "Disabled", "out1": "Disabled", }, }, "id": "aabbccddeeff", } ], } } # check with host info config = { konnected.DOMAIN: { konnected.CONF_ACCESS_TOKEN: "abcdefgh", konnected.CONF_DEVICES: [ {konnected.CONF_ID: "aabbccddeeff", "host": "192.168.1.1", "port": 1234} ], } } assert konnected.CONFIG_SCHEMA(config) == { "konnected": { "access_token": "abcdefgh", "devices": [ { "default_options": { "blink": True, "api_host": "", "discovery": True, "io": { "1": "Disabled", "10": "Disabled", "11": "Disabled", "12": "Disabled", "2": "Disabled", "3": "Disabled", "4": "Disabled", "5": "Disabled", "6": "Disabled", "7": "Disabled", "8": "Disabled", "9": "Disabled", "alarm1": "Disabled", "alarm2_out2": "Disabled", "out": "Disabled", "out1": "Disabled", }, }, "id": "aabbccddeeff", "host": "192.168.1.1", "port": 1234, } ], } } # check pin to zone and multiple output config = { konnected.DOMAIN: { konnected.CONF_ACCESS_TOKEN: "abcdefgh", konnected.CONF_DEVICES: [ { konnected.CONF_ID: "aabbccddeeff", "binary_sensors": [ {"pin": 2, "type": "door"}, {"zone": 1, "type": "door"}, ], "switches": [ { "zone": 3, "name": "Beep Beep", "momentary": 65, "pause": 55, "repeat": 4, }, { "zone": 3, "name": "Warning", "momentary": 100, "pause": 100, "repeat": -1, }, ], } ], } } assert konnected.CONFIG_SCHEMA(config) == { "konnected": { "access_token": "abcdefgh", "devices": [ { "default_options": { "blink": True, "api_host": "", "discovery": True, "io": { "1": "Binary Sensor", "10": "Disabled", "11": "Disabled", "12": "Disabled", "2": "Binary Sensor", "3": "Switchable Output", "4": "Disabled", "5": "Disabled", "6": "Disabled", "7": "Disabled", "8": "Disabled", "9": "Disabled", "alarm1": "Disabled", "alarm2_out2": "Disabled", "out": "Disabled", "out1": "Disabled", }, "binary_sensors": [ {"inverse": False, "type": "door", "zone": "2"}, {"inverse": False, "type": "door", "zone": "1"}, ], "switches": [ { "zone": "3", "activation": "high", "name": "Beep Beep", "momentary": 65, "pause": 55, "repeat": 4, }, { "zone": "3", "activation": "high", "name": "Warning", "momentary": 100, "pause": 100, "repeat": -1, }, ], }, "id": "aabbccddeeff", } ], } }
5,344,921
def save_mission(aFileName): """ Save a mission in the Waypoint file format (http://qgroundcontrol.org/mavlink/waypoint_protocol#waypoint_file_format). """ print "\nSave mission from Vehicle to file: %s" % export_mission_filename #Download mission from vehicle missionlist = download_mission() #Add file-format information output='QGC WPL 110\n' #Add home location as 0th waypoint home = vehicle.home_location output+="%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (0,1,0,16,0,0,0,0,home.lat,home.lon,home.alt,1) #Add commands for cmd in missionlist: commandline="%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (cmd.seq,cmd.current,cmd.frame,cmd.command,cmd.param1,cmd.param2,cmd.param3,cmd.param4,cmd.x,cmd.y,cmd.z,cmd.autocontinue) output+=commandline with open(aFileName, 'w') as file_: print " Write mission to file" file_.write(output)
5,344,922
def drift_var(): """ Concept drift: 1. n_drifts 2. concept_sigmoid_spacing (None for sudden) 3. incremental [True] or gradual [False] 4. recurring [True] or non-recurring [False] """ return [(10, None, False, False), (10, 5, False, False), (10, 5, True, False)]
5,344,923
def get_generators(matrix): """ Given a matrix in H-rep, gets the v-rep Turns out, the code is the same as get_inequalities, since lrs determines the directions based on the input. Left like this for readability. """ return get_inequalities(matrix)
5,344,924
def num_instances(diff, flag=False): """returns the number of times the mother and daughter have pallindromic ages in their lives, given the difference in age. If flag==True, prints the details.""" daughter = 0 count = 0 while True: mother = daughter + diff if are_reversed(daughter, mother) or are_reversed(daughter, mother+1): count = count + 1 if flag: print daughter, mother if mother > 120: break daughter = daughter + 1 return count
5,344,925
def bench(args): """ Run game of life benchmarks. """ raise ConsoleError("not implemented yet")
5,344,926
def get_dipy_workflows(module): """Search for DIPY workflow class. Parameters ---------- module : object module object Returns ------- l_wkflw : list of tuple This a list of tuple containing 2 elements: Worflow name, Workflow class obj Examples -------- >>> from dipy.workflows import align # doctest: +SKIP >>> get_dipy_workflows(align) # doctest: +SKIP """ return [ (m, obj) for m, obj in inspect.getmembers(module) if inspect.isclass(obj) and issubclass(obj, module.Workflow) and m not in SKIP_WORKFLOWS_LIST ]
5,344,927
def test_service_to_rdf_without_identifier_should_raise_error( minimal_spec: str, ) -> None: """It raises a RequiredFieldMissingError.""" with pytest.raises(RequiredFieldMissingError): catalog = Catalog() catalog.identifier = "http://example.com/catalogs/1" url = "http://example.com/specifications/1" oas = yaml.safe_load(minimal_spec) oas_spec = OASDataService(url, oas, "") for dataservice in oas_spec.dataservices: catalog.services.append(dataservice) catalog.to_rdf()
5,344,928
def azel_fit(coo_ref, coo_meas, nsamp=2000, ntune=2000, target_accept=0.95, random_seed=8675309): """ Fit full az/el pointing model using PyMC3. The terms are analogous to those used by TPOINT(tm). This fit includes the eight normal terms used in `~pytelpoint.transform.azel` with additional terms, az_sigma and el_sigma, that describes the intrinsic scatter. Parameters ---------- coo_ref : `~astropy.coordinates.SkyCoord` instance Reference coordinates coo_meas : `~astropy.coordinates.SkyCoord` instance Measured coordinates nsamp : int (default: 2000) Number of inference samples ntune : int (default: 2000) Number of burn-in samples target_accept : float (default: 0.95) Sets acceptance probability target for determining step size random_seed : int (default: 8675309) Seed number for random number generator Returns ------- idata : `~arviz.InferenceData` Inference data from the pointing model """ pointing_model = pm.Model() deg2rad = np.pi / 180 with pointing_model: # az/el are the astrometric reference values. az_raw/el_raw are the observed encoder values. az = pm.Data('az', coo_ref.az) el = pm.Data('el', coo_ref.alt) az_raw = pm.Data('az_raw', coo_meas.az) el_raw = pm.Data('el_raw', coo_meas.alt) ia = pm.Normal('ia', 1200., 100) ie = pm.Normal('ie', 0., 50.) an = pm.Normal('an', 0., 20.) aw = pm.Normal('aw', 0., 20.) ca = pm.Normal('ca', 0., 30.) npae = pm.Normal('npae', 0., 30.) tf = pm.Normal('tf', 0., 50.) tx = pm.Normal('tx', 0., 20.) az_sigma = pm.HalfNormal('az_sigma', sigma=1.) el_sigma = pm.HalfNormal('el_sigma', sigma=1.) daz = -ia daz -= an * pm.math.sin(deg2rad * az) * pm.math.tan(deg2rad * el) daz -= aw * pm.math.cos(deg2rad * az) * pm.math.tan(deg2rad * el) daz -= ca / pm.math.cos(deg2rad * el) daz -= npae * pm.math.tan(deg2rad * el) dalt = ie dalt -= an * pm.math.cos(deg2rad * az) dalt += aw * pm.math.sin(deg2rad * az) dalt -= tf * pm.math.cos(deg2rad * el) dalt -= tx / pm.math.tan(deg2rad * el) _ = pm.Normal('azerr', mu=0., sigma=az_sigma/3600, observed=pm.math.cos(deg2rad * el) * (az - (az_raw + daz/3600.))) _ = pm.Normal('elerr', mu=0., sigma=el_sigma/3600, observed=el - (el_raw + dalt/3600.)) idata = pm.sample( nsamp, tune=ntune, target_accept=target_accept, return_inferencedata=True, random_seed=random_seed ) return idata
5,344,929
def repository_path(relative_path: str) -> Path: """ Resolve `relative_path` relative to the root of the repository. """ return Path(os.path.join(REPOSITORY_ROOT), relative_path).resolve()
5,344,930
def geojson_to_labels(geojson_dict, crs_transformer, extent=None): """Convert GeoJSON to ObjectDetectionLabels object. If extent is provided, filter out the boxes that lie "more than a little bit" outside the extent. Args: geojson_dict: dict in GeoJSON format crs_transformer: used to convert map coords in geojson to pixel coords in labels object extent: Box in pixel coords Returns: ObjectDetectionLabels """ features = geojson_dict['features'] boxes = [] class_ids = [] scores = [] def polygon_to_label(polygon, crs_transformer): polygon = [crs_transformer.map_to_pixel(p) for p in polygon] xmin, ymin = np.min(polygon, axis=0) xmax, ymax = np.max(polygon, axis=0) boxes.append(Box(ymin, xmin, ymax, xmax)) properties = feature['properties'] class_ids.append(properties['class_id']) scores.append(properties.get('score', 1.0)) for feature in features: geom_type = feature['geometry']['type'] coordinates = feature['geometry']['coordinates'] if geom_type == 'MultiPolygon': for polygon in coordinates: polygon_to_label(polygon[0], crs_transformer) elif geom_type == 'Polygon': polygon_to_label(coordinates[0], crs_transformer) else: raise Exception( "Geometries of type {} are not supported in object detection \ labels.".format(geom_type)) if len(boxes): boxes = np.array([box.npbox_format() for box in boxes], dtype=float) class_ids = np.array(class_ids) scores = np.array(scores) labels = ObjectDetectionLabels(boxes, class_ids, scores=scores) else: labels = ObjectDetectionLabels.make_empty() if extent is not None: labels = ObjectDetectionLabels.get_overlapping( labels, extent, ioa_thresh=0.8, clip=True) return labels
5,344,931
def processed_transcript(df): """ Cleans the Transcript table by splitting value fileds and replacing nan values, drop extra columns PARAMETERS: transcript dataframe RETURNS: Cleaned transcript dataframe """ #expand the dictionary to coulmns (reward, amount, offre id) from value field df['offer_id'] = df['value'].apply(lambda x: x.get('offer_id')) df['offer id'] = df['value'].apply(lambda x: x.get('offer id')) df['reward'] = df['value'].apply(lambda x: x.get('reward')) df['amount'] = df['value'].apply(lambda x: x.get('amount')) #move 'offer id' values into 'offer_id' df['offer_id'] = df.apply(lambda x : x['offer id'] if x['offer_id'] == None else x['offer_id'], axis=1) #drop 'offer id' column df.drop(['offer id' , 'value'] , axis=1, inplace=True) #replace nan df.fillna(0 , inplace=True) return df
5,344,932
def _TestSuiteName(dash_json_dict): """Extracts a test suite name from Dashboard JSON. The dashboard JSON may contain a field "test_suite_name". If this is not present or it is None, the dashboard will fall back to using "benchmark_name" in the "chart_data" dict. """ name = None if dash_json_dict.get('test_suite_name'): name = dash_json_dict['test_suite_name'] else: try: name = dash_json_dict['chart_data']['benchmark_name'] except KeyError as e: six.raise_from( BadRequestError('Could not find test suite name. ' + str(e)), e) _ValidateNameString(name, 'test_suite_name') return name
5,344,933
def create_default_prior(name, default_priors_file=None): """Make a default prior for a parameter with a known name. Parameters ---------- name: str Parameter name default_priors_file: str, optional If given, a file containing the default priors. Return ------ prior: Prior Default prior distribution for that parameter, if unknown None is returned. """ if default_priors_file is None: logger.debug( "No prior file given.") prior = None else: default_priors = PriorDict(filename=default_priors_file) if name in default_priors.keys(): prior = default_priors[name] else: logger.debug( "No default prior found for variable {}.".format(name)) prior = None return prior
5,344,934
def set_polling_interval(duthosts, enum_rand_one_per_hwsku_frontend_hostname): """ Set CRM polling interval to 1 second """ duthost = duthosts[enum_rand_one_per_hwsku_frontend_hostname] wait_time = 2 duthost.command("crm config polling interval {}".format(CRM_POLLING_INTERVAL))["stdout"] logger.info("Waiting {} sec for CRM counters to become updated".format(wait_time)) time.sleep(wait_time)
5,344,935
def client(): """Provide the client session used by tests.""" with app.app.test_client() as client: yield client
5,344,936
def clean_data(list_in): """ Inputs: list_in - filtered list of ticket orders Outputs: Return list of tuples, each tuple contains (last name, first name, note,[tickets]) """ notes_list = [] data_out = [] for row in list_in: trimmed_row = row[row.index('Purchaser Name: ')+16:] name = trimmed_row[:trimmed_row.index('<br/>')].strip().title() first_name = name[:name.rindex(' ')] #get first name last_name = name[name.rindex(' '):] #get last name trimmed_row = trimmed_row[len(name+'<br/>')+1:] if 'Special Instructions:' in row: #get notes note = trimmed_row[22:trimmed_row.index('<br/>')] trimmed_row = trimmed_row[trimmed_row.index('<br/>')+5:] notes_list.append((last_name,first_name,note)) else: note = '' orders = trimmed_row.split('<br/>') tickets = [] for order in orders: #get ticket orders if ('Membership Dues' in order) or ('Donation' in order): continue else: tickets.append(order) data_out.append([last_name, first_name, note, tickets]) # print(last_name, first_name,note,tickets) # print() data_out.sort(key=lambda item: item[1]) #sort by first name (to break last name ties) data_out.sort(key=lambda item: item[0]) #sort by last name # for idx, note in enumerate(notes_list): #optional print of all notes # print(idx,note) return data_out
5,344,937
def adfuller( vdf, column: str, ts: str, by: list = [], p: int = 1, with_trend: bool = False, regresults: bool = False, ): """ --------------------------------------------------------------------------- Augmented Dickey Fuller test (Time Series stationarity). Parameters ---------- vdf: vDataFrame input vDataFrame. column: str Input vcolumn to test. ts: str vcolumn used as timeline. It will be to use to order the data. It can be a numerical or type date like (date, datetime, timestamp...) vcolumn. by: list, optional vcolumns used in the partition. p: int, optional Number of lags to consider in the test. with_trend: bool, optional Add a trend in the Regression. regresults: bool, optional If True, the full regression results are returned. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. """ def critical_value(alpha, N, with_trend): if not (with_trend): if N <= 25: if alpha == 0.01: return -3.75 elif alpha == 0.10: return -2.62 elif alpha == 0.025: return -3.33 else: return -3.00 elif N <= 50: if alpha == 0.01: return -3.58 elif alpha == 0.10: return -2.60 elif alpha == 0.025: return -3.22 else: return -2.93 elif N <= 100: if alpha == 0.01: return -3.51 elif alpha == 0.10: return -2.58 elif alpha == 0.025: return -3.17 else: return -2.89 elif N <= 250: if alpha == 0.01: return -3.46 elif alpha == 0.10: return -2.57 elif alpha == 0.025: return -3.14 else: return -2.88 elif N <= 500: if alpha == 0.01: return -3.44 elif alpha == 0.10: return -2.57 elif alpha == 0.025: return -3.13 else: return -2.87 else: if alpha == 0.01: return -3.43 elif alpha == 0.10: return -2.57 elif alpha == 0.025: return -3.12 else: return -2.86 else: if N <= 25: if alpha == 0.01: return -4.38 elif alpha == 0.10: return -3.24 elif alpha == 0.025: return -3.95 else: return -3.60 elif N <= 50: if alpha == 0.01: return -4.15 elif alpha == 0.10: return -3.18 elif alpha == 0.025: return -3.80 else: return -3.50 elif N <= 100: if alpha == 0.01: return -4.04 elif alpha == 0.10: return -3.15 elif alpha == 0.025: return -3.73 else: return -5.45 elif N <= 250: if alpha == 0.01: return -3.99 elif alpha == 0.10: return -3.13 elif alpha == 0.025: return -3.69 else: return -3.43 elif N <= 500: if alpha == 0.01: return 3.98 elif alpha == 0.10: return -3.13 elif alpha == 0.025: return -3.68 else: return -3.42 else: if alpha == 0.01: return -3.96 elif alpha == 0.10: return -3.12 elif alpha == 0.025: return -3.66 else: return -3.41 check_types( [ ("ts", ts, [str],), ("column", column, [str],), ("p", p, [int, float],), ("by", by, [list],), ("with_trend", with_trend, [bool],), ("regresults", regresults, [bool],), ], vdf=["vdf", vdf], ) columns_check([ts, column] + by, vdf) ts = vdf_columns_names([ts], vdf)[0] column = vdf_columns_names([column], vdf)[0] by = vdf_columns_names(by, vdf) schema = vdf._VERTICAPY_VARIABLES_["schema_writing"] if not (schema): schema = "public" name = "{}.VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format( schema, gen_name([column]).upper() ) relation_name = "{}.VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_VIEW_{}".format( schema, gen_name([column]).upper() ) try: vdf._VERTICAPY_VARIABLES_["cursor"].execute( "DROP MODEL IF EXISTS {}".format(name) ) vdf._VERTICAPY_VARIABLES_["cursor"].execute( "DROP VIEW IF EXISTS {}".format(relation_name) ) except: pass lag = [ "LAG({}, 1) OVER ({}ORDER BY {}) AS lag1".format( column, "PARTITION BY {}".format(", ".join(by)) if (by) else "", ts ) ] lag += [ "LAG({}, {}) OVER ({}ORDER BY {}) - LAG({}, {}) OVER ({}ORDER BY {}) AS delta{}".format( column, i, "PARTITION BY {}".format(", ".join(by)) if (by) else "", ts, column, i + 1, "PARTITION BY {}".format(", ".join(by)) if (by) else "", ts, i, ) for i in range(1, p + 1) ] lag += [ "{} - LAG({}, 1) OVER ({}ORDER BY {}) AS delta".format( column, column, "PARTITION BY {}".format(", ".join(by)) if (by) else "", ts ) ] query = "CREATE VIEW {} AS SELECT {}, {} AS ts FROM {}".format( relation_name, ", ".join(lag), "TIMESTAMPDIFF(SECOND, {}, MIN({}) OVER ())".format(ts, ts) if vdf[ts].isdate() else ts, vdf.__genSQL__(), ) vdf._VERTICAPY_VARIABLES_["cursor"].execute(query) model = LinearRegression(name, vdf._VERTICAPY_VARIABLES_["cursor"]) model.fit( relation_name, ["ts"] + ["lag1"] + ["delta{}".format(i) for i in range(1, p + 1)], "delta", ) coef = model.coef_ vdf._VERTICAPY_VARIABLES_["cursor"].execute("DROP MODEL IF EXISTS {}".format(name)) vdf._VERTICAPY_VARIABLES_["cursor"].execute( "DROP VIEW IF EXISTS {}".format(relation_name) ) if regresults: return coef coef = coef.transpose() DF = coef.values["lag1"][0] / (max(coef.values["lag1"][1], 1e-99)) p_value = coef.values["lag1"][3] count = vdf.shape()[0] result = tablesample( { "index": [ "ADF Test Statistic", "p_value", "# Lags used", "# Observations Used", "Critical Value (1%)", "Critical Value (2.5%)", "Critical Value (5%)", "Critical Value (10%)", "Stationarity (alpha = 1%)", ], "value": [ DF, p_value, p, count, critical_value(0.01, count, with_trend), critical_value(0.025, count, with_trend), critical_value(0.05, count, with_trend), critical_value(0.10, count, with_trend), DF < critical_value(0.01, count, with_trend) and p_value < 0.01, ], } ) return result
5,344,938
def get_routes_bend180( ports: Union[List[Port], Dict[str, Port]], bend: ComponentOrFactory = bend_euler, cross_section: CrossSectionFactory = strip, bend_port1: Optional[str] = None, bend_port2: Optional[str] = None, **kwargs, ) -> Routes: """Returns routes made by 180 degree bends. Args: ports: List or dict of ports bend: function for bend cross_section: **kwargs: bend settings """ ports = list(ports.values()) if isinstance(ports, dict) else ports bend = bend(angle=180, cross_section=cross_section, **kwargs) bend_ports = bend.get_ports_list() bend_port1 = bend_port1 or bend_ports[0].name bend_port2 = bend_port2 or bend_ports[1].name references = [bend.ref() for port in ports] references = [ref.connect(bend_port1, port) for port, ref in zip(ports, references)] ports = [ref.ports[bend_port2] for i, ref in enumerate(references)] lengths = [bend.info.length] * len(ports) return Routes(references=references, ports=ports, lengths=lengths)
5,344,939
def list_datasets(github_repo="Ouranosinc/xclim-testdata", branch="main"): """Return a DataFrame listing all xclim test datasets available on the GitHub repo for the given branch. The result includes the filepath, as passed to `open_dataset`, the file size (in KB) and the html url to the file. This uses an unauthenticated call to GitHub's REST API, so it is limited to 60 requests per hour (per IP). A single call of this function triggers one request per subdirectory, so use with parsimony. """ res = urlopen( # nosec f"https://api.github.com/repos/{github_repo}/contents?ref={branch}" ) base = json.loads(res.read().decode()) records = [] for folder in base: if folder["path"].startswith(".") or folder["size"] > 0: # drop hidden folders and other files. continue res = urlopen(folder["url"]) # nosec listing = json.loads(res.read().decode()) for file in listing: if file["path"].endswith(".nc"): records.append( { "name": file["path"], "size": file["size"] / 2**10, "url": file["html_url"], } ) df = pd.DataFrame.from_records(records).set_index("name") print(f"Found {len(df)} datasets.") return df
5,344,940
def make_layerwise_projection_unshrink(*, server_state_type, client_update_output_type, server_update_fn, server_model_fn, client_model_fn, shrink_unshrink_info): """Creates an unshrink function which unshrinks by unprojecting weight matrices corresponding to make_layerwise_projection_shrink. Args: server_state_type: the type of server_state. client_update_output_type: the type of client_outputs. server_update_fn: a function which evolves the server_state. server_model_fn: a `tf.keras.Model' which specifies the server-side model. client_model_fn: a `tf.keras.Model' which specifies the client-side model. shrink_unshrink_info: an object specifying how the shrink and unshrink operations are performed. Returns: A corresponding shrink and unshrink functions. """ left_mask = shrink_unshrink_info.left_mask right_mask = shrink_unshrink_info.right_mask tf.debugging.assert_equal(len(left_mask), len(right_mask)) tf.debugging.assert_equal( len(left_mask), len(get_model_weights(server_model_fn()).trainable)) tf.debugging.assert_equal( len(left_mask), len(get_model_weights(client_model_fn()).trainable)) build_projection_matrix = shrink_unshrink_info.build_projection_matrix federated_server_state_type = tff.type_at_server(server_state_type) federated_client_outputs_type = tff.type_at_clients(client_update_output_type) @tff.tf_computation(client_update_output_type) def unproject_client_weights_fn(client_output): whimsy_server_weights = get_model_weights(server_model_fn()).trainable whimsy_client_weights = get_model_weights(client_model_fn()).trainable left_maskval_to_projmat_dict = create_left_maskval_to_projmat_dict( client_output.round_num // shrink_unshrink_info.new_projection_dict_decimate, whimsy_server_weights, whimsy_client_weights, left_mask, right_mask, build_projection_matrix=build_projection_matrix) return unproject_client_weights(client_output, left_maskval_to_projmat_dict, left_mask, right_mask) @tff.tf_computation def reshape_a(client_ouput_weight_delta): whimsy_server_weights = get_model_weights(server_model_fn()).trainable return tf.nest.map_structure(lambda a, b: tf.reshape(a, tf.shape(b)), client_ouput_weight_delta, whimsy_server_weights) @tff.federated_computation(federated_server_state_type, federated_client_outputs_type) def unshrink(server_state, client_outputs): client_outputs = tff.federated_map(unproject_client_weights_fn, client_outputs) my_weights_delta = tff.federated_map(reshape_a, client_outputs.weights_delta) round_model_delta = tff.federated_mean( my_weights_delta, weight=client_outputs.client_weight) logging.info("finished computing mean") return tff.federated_map(server_update_fn, (server_state, round_model_delta)) return unshrink
5,344,941
def main(fasta_in, fasta_out, report): """Insert repetitive sequences into a fasta file.""" tbls = [] recs = [rec for rec in parse(fasta_in, 'fasta') if len(rec.seq) >= TENMIL] with click.progressbar(recs) as seq_recs: for rec in seq_recs: tbls.append(insert_repetitive_regions(rec)) tbl = pd.concat(tbls) tbl.to_csv(report) write(recs, fasta_out, 'fasta')
5,344,942
def embed_terms(args, classes, dest, use_cache=True, path_to_json='ebd_cache.json'): """ Embeds class strings into word representations. :param args :param classes: (list of str) topic classes :param dest: (str) path to destination file :param path_to_json: (str) path to json file containing word embeddings :return: dict {newsgroup class (int id) : embedded vector (nparray of float)} """ if use_cache: with open(dest) as json_file: return classes, json.load(json_file) # Not using cache: extract vectors from global set with open(path_to_json) as json_file: mappings = json.load(json_file) input() input(mappings) # Cache topic reps cache = dict(zip(classes, [mappings[topic] for topic in classes])) with open(dest, 'w') as fp: json.dump(cache, fp)
5,344,943
def wf_paths(reachable): """ Construct all well-formed paths satisfying a given condition. The condition is as follows: all the paths have height equal to the ceiling of log_2(`reachable` + 1). `reachable` is interpreted as a bitfield, with 1 meaning that the corresponding leaf on the floor of the path should be reachable from the root, 0 meaning the opposite. This function has been used to count well-formed paths and guess the link with Gelfand-Zetlin polytopes. """ if reachable <= 0: raise ValueError elif reachable == 1: return [Path([])] else: floors = [reachable & 1] reachable >>= 1 left = 2; right = 4 while reachable > 1: if reachable & 1: floors = [f | left for f in floors] + [f | right for f in floors] left <<= 2; right <<= 2 reachable >>= 1 floors = [f | left for f in floors] paths = [] for f in floors: paths.extend([p.cat(f) for p in wf_paths(_h4(f))]) return paths
5,344,944
def get_imagemodel_in_rar(rar_path, mode): """ 압축파일(rar_path)의 이미지파일의 name, width, height를 모아서 반환한다.""" image_models = [] with rarfile.RarFile(rar_path) as rf: for name in rf.namelist(): if is_hidden_or_trash(name): continue if is_extensions_allow_image(name): model = BaseImageModel() model._name = name app.logger.info("fileName: " + name) if mode == "1": try: with rf.read(name) as f: data = BytesIO() data.write(f) data.seek(0) size = get_image_size_from_bytes(data) model._width = size[0] model._height = size[1] except Exception: app.logger.error("Can not getting width, height >> " + name) image_models.append(model) return image_models
5,344,945
async def test_create_new_credential(provider: SynologyAuthProvider): """Test that we create a new credential.""" credentials = await provider.async_get_or_create_credentials( { "account": "test-user", } ) assert credentials.is_new is True assert credentials.data["account"] == "test-user"
5,344,946
def run_single(i,threshold_area_fraction,death_to_birth_rate_ratio,domain_size_multiplier,return_history=False): """run a single voronoi tessellation model simulation""" rates = (DEATH_RATE,DEATH_RATE/death_to_birth_rate_ratio) rand = np.random.RandomState() history = lib.run_simulation(simulation,L,TIMESTEP,TIMEND,rand,progress_on=False, init_time=INIT_TIME,til_fix=False,save_areas=True, return_events=False,save_cell_histories=False,N_limit=MAX_POP_SIZE, domain_size_multiplier=domain_size_multiplier,rates=rates,threshold_area_fraction=threshold_area_fraction) return number_proliferating_neighbours_distribution(history,threshold_area_fraction,death_to_birth_rate_ratio)
5,344,947
def matrixmult (A, B): """Matrix multiplication function This function returns the product of a matrix multiplication given two matrices. Let the dimension of the matrix A be: m by n, let the dimension of the matrix B be: p by q, multiplication will only possible if n = p, thus creating a matrix of m by q size. Parameters ---------- A : list First matrix, in a 2D array format. B : list Second matrix, in a 2D array format. Returns ------- C : list The product of the matrix multiplication. Examples -------- >>> from .pycgmStatic import matrixmult >>> A = [[11,12,13],[14,15,16]] >>> B = [[1,2],[3,4],[5,6]] >>> matrixmult(A, B) [[112, 148], [139, 184]] """ C = [[0 for row in range(len(A))] for col in range(len(B[0]))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): C[i][j] += A[i][k]*B[k][j] return C
5,344,948
def TorsLattice(data = None, *args, **kwargs): """ Construct a lattice of torsion classes from various forms of input data This raises an error if the constructed lattice is not semidistributive, since the lattice of torsion classes is semidistributive. INPUT: - ``data``, ``*args``, ``**kwargs`` -- data and options that will be passed down to :func:`LatticePoset` to construct a poset that is also a lattice. OUTPUT: An instance of :class:`FiniteTorsLattice` """ if isinstance(data, FiniteTorsLattice) and not args and not kwargs: return data L = LatticePoset(data, *args, **kwargs) if not L.is_semidistributive(): raise ValueError("This lattice is not semidistributive.") return FiniteTorsLattice(L)
5,344,949
def test_dupes_no_cache(mock_DirInfo): """ dupes command does populate if necessary. """ mock_DirInfo.cached.return_value.file_count = 0 with pytest.raises(SystemExit, match='0'): main() mock_DirInfo.cached.assert_called_once_with(os.path.abspath('.')) mock_DirInfo.cached.return_value.populate.assert_called_once_with( **dupes_options() ) mock_DirInfo.cached.return_value.dupe_groups.assert_called()
5,344,950
def get_accumulated_report(trigger_id, mission='fermi'): """ Return the last value for each keyword on the summary page for a given trigger_id :param trigger_id: :param mission: 'fermi' or 'swift' :return: """ if 'fermi' in mission: site = fermi_grb_site elif 'swift' in mission: site = swift_grb_site else: print "Uknown mission {0}".format(mission) sys.exit() html = urllib.urlopen(site.format(trigger_id)) rs = page_to_reports(html) fs = None for r in rs: fs = report_to_fields(r, fs) return fs
5,344,951
def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): """ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in the sequence, feeding the predictions back into the model each time. Clearly the sampling has quadratic complexity unlike an RNN that is only linear, and has a finite context window of block_size, unlike an RNN that has an infinite context window. """ block_size = model.get_block_size() model.eval() for k in range(steps): x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed logits, _ = model(x_cond) # pluck the logits at the final step and scale by temperature logits = logits[:, -1, :] / temperature # optionally crop probabilities to only the top k options if top_k is not None: logits = top_k_logits(logits, top_k) # apply softmax to convert to probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution or take the most likely if sample: ix = torch.multinomial(probs, num_samples=1) else: _, ix = torch.topk(probs, k=1, dim=-1) # append to the sequence and continue x = torch.cat((x, ix), dim=1) return x
5,344,952
def get_numbers(number, size, *, fg=DEFAULT_FGCHARACTER, bg=DEFAULT_BGCHARACTER): """Creates a shape of numbers. Positional arguments: number - number to print. size - size of the shape. Keyword arguments: fg - foreground character. bg - background character. """ _validate_positive_params(number+1,size) width = int(size+1) height = int(size*2+1) x = range(width) y = range(height) # https://en.wikipedia.org/wiki/Seven-segment_display l = [ f"y == {size*2} and x<={size}", # A f"x == {size} and y>{size} and y<={size*2}", # B f"x == {size} and y<={size}", # C f"y == 0 and x<={size}", # D f"x == 0 and y<={size}", # E f"x == 0 and y>{size} and y<={size*2}", # F f"y == {size} and x<={size}", # G ] numbers = [ {l[0],l[1],l[2],l[3],l[4],l[5] }, # 0 { l[1],l[2] }, # 1 {l[0],l[1], l[3],l[4], l[6]}, # 2 {l[0],l[1],l[2],l[3], l[6]}, # 3 { l[1],l[2], l[5],l[6]}, # 4 {l[0], l[2],l[3], l[5],l[6]}, # 5 {l[0], l[2],l[3],l[4],l[5],l[6]}, # 6 {l[0],l[1],l[2] }, # 7 {l[0],l[1],l[2],l[3],l[4],l[5],l[6]}, # 8 {l[0],l[1],l[2],l[3], l[5],l[6]}, # 9 ] res = "" for digit in str(number): feqs = numbers[int(digit)] s_digit = _make_shape(x, y, feqs, [], fg=fg, bg=bg) if res: new_res = "" for i,j in zip(res.split("\n"),s_digit.split("\n")): if i and j: new_res += i+" "+j+'\n' res=new_res else: res = s_digit return res
5,344,953
def load_external_data_for_model(model, base_dir): # type: (ModelProto, Text) -> None """ Loads external tensors into model @params model: ModelProto to load external data to base_dir: directory that contains external data """ for tensor in _get_all_tensors(model): if uses_external_data(tensor): load_external_data_for_tensor(tensor, base_dir) # After loading raw_data from external_data, change the state of tensors tensor.data_location = TensorProto.DEFAULT # and remove external data del tensor.external_data[:]
5,344,954
def config_from_env(key, config_schema=None): """Read config from a file path in os.env. Args: key (str) : Key represents an evironment variable to read config path config_schema (trafaret): Trafaret object that defines the schema of the config. If None, then trafaret validation is not used. Example: ``` import trafaret as tr config_schema = tr.Dict({ tr.Key('project_name'): tr.Dict({ 'db_path': tr.String(), 'username': tr.String(), 'password': tr.String(), }), }) ``` Trafaret docs: http://trafaret.readthedocs.io/en/latest/ Return: config json """ filepath = os.getenv(key, default=None) if not filepath: sys.stderr.write("Passed key does not exist: {0}".format(key)) raise AttributeError('Key {} does not exist in environment.'.format(key)) return config_from_path(filepath, config_schema)
5,344,955
def to_cmyk(r: int, g: int, b: int) -> _cmyk: """ Takes RGB values 0->255 and returns their values in the CMYK namespace. https://www.rapidtables.com/convert/color/rgb-to-cmyk.html """ r, g, b = to_float(r, g, b) k = 1 - max(r, g, b) c = (1 - r - k) / (1 - k) m = (1 - g - k) / (1 - k) y = (1 - b - k) / (1 - k) return (c, m, y, k)
5,344,956
def GetHostsInClusters(datacenter, clusterNames=[], connectionState=None): """ Return list of host objects from given cluster names. @param datacenter: datacenter object @type datacenter: Vim.Datacenter @param clusterNames: cluster name list @type clusterNames: string[] @param connectionState: host connection state ("connected", "disconnected", "notResponding"), None means all states. @typr connectionState: string """ if len(clusterNames) == 0: clusterObjs = GetAllClusters(datacenter) else: clusterObjs = GetClusters(datacenter, clusterNames) hostObjs = [] if connectionState == None: hostObjs = [h for cl in clusterObjs for h in cl.host] else: hostObjs = [h for cl in clusterObjs for h in cl.host if h.runtime.connectionState == connectionState] return hostObjs
5,344,957
def get_gfa_targets(tiles, gfafile, faintlim=99, gaiadr="dr2"): """Returns a list of tables of GFA targets on each tile Args: tiles: table with columns TILEID, RA, DEC; or Tiles object targets: table of targets with columsn RA, DEC gaiadr: string, must be either "dr2" or "edr3" (default to "dr2") MAY NOT BE FULLY IMPLEMENTED Returns: list of tables (one row per input tile) with the subset of targets that are covered by GFAs on each tile. Each table has additional `GFA_LOC` column indicating 0-9 which GFA was covered. Note that a given target could be covered by GFAs on more than one tile. Output is a list of astropy Tables; inputs can be numpy structured arrays or astropy Tables """ log = Logger.get() tm = Timer() tm.start() # Convert tiles to vanilla numpy array if needed if isinstance(tiles, Tiles): tx = np.zeros(len(tiles.ra), dtype=[("RA", "f8"), ("DEC", "f8"), ("TILEID", "i4")]) tx["RA"] = tiles.ra tx["DEC"] = tiles.dec tx["TILEID"] = tiles.id tiles = tx # Load potential GFA targets and GFA locations targets = fitsio.read(gfafile) gfa = desimodel.focalplane.gfa.GFALocations(scale=2) # Pre-filter what GFA targets cover what tiles with some buffer. # find_points_in_tiles returns a list of lists; # convert to dictionary of lists keyed by tileid log.info("Finding overlap of {} GFA targets on {} tiles".format( len(targets), len(tiles))) gfa_tile_indices = dict() ii = desimodel.footprint.find_points_in_tiles( tiles, targets["RA"], targets["DEC"], radius=1.8) for i, tileid in enumerate(tiles["TILEID"]): gfa_tile_indices[tileid] = ii[i] gfa_targets = list() log.info("Generating GFA targets tables") for telra, teldec, tileid in zip(tiles["RA"], tiles["DEC"], tiles["TILEID"]): tmp = gfa.targets_on_gfa(telra, teldec, targets[gfa_tile_indices[tileid]]) t = Table(tmp) # Rename some columns for downstream clarity and consistency for oldname, newname in [ ("TYPE", "MORPHTYPE"), ("RA", "TARGET_RA"), ("DEC", "TARGET_DEC"), ("RA_IVAR", "TARGET_RA_IVAR"), ("DEC_IVAR", "TARGET_DEC_IVAR")]: if oldname in t.colnames: t.rename_column(oldname, newname) # Select which targets are good for ETC / GUIDE / FOCUS # 0 == good flag = np.zeros(len(t), dtype="i2") #- Not PSF-like isPSF = (t["MORPHTYPE"] == "PSF ") | (t["MORPHTYPE"] == "GPSF") | (t["MORPHTYPE"] == "PSF") flag[~isPSF] |= 2**0 #- Not Isolated if len(tmp) > 1: notIsolated = ~isolated(tmp['RA'], tmp['DEC']) flag[notIsolated] |= 2**1 #- Questionable astrometry / proper motion tych = (0 < t['REF_ID']) tych &= ( t['REF_ID'] < 1e10) flag[tych] |= 2**2 #- Too faint faint = t['GAIA_PHOT_G_MEAN_MAG'] > faintlim flag[faint] |= 2**3 # AR not passing the Gaia AEN criterion (PM correction done for AEN targets only) g = t["GAIA_PHOT_G_MEAN_MAG"] aen = t["GAIA_ASTROMETRIC_EXCESS_NOISE"] isaen = np.logical_or( (g <= 19.0) * (aen < 10.0 ** 0.5), (g >= 19.0) * (aen < 10.0 ** (0.5 + 0.2 * (g - 19.0))), ) flag[~isaen] |= 2**4 if len(flag)-np.count_nonzero(flag) == 0: log.error("ERROR: no good GFA targets for " "ETC/GUIDE/FOCUS on tile {}".format(tileid)) t["ETC_FLAG"] = flag t["GUIDE_FLAG"] = flag t["FOCUS_FLAG"] = flag # patch in Gaia-based synthetic r flux for use by ETC t["FLUX_R"] = gaia_synth_r_flux(t, gaiadr=gaiadr) gfa_targets.append(t) tm.stop() tm.report(" Identifying GFA targets") return gfa_targets
5,344,958
def test_set_str_value(): """Test that a string option can have its value set""" config = Configuration() config.add_option('test', option_type=str) with pytest.raises(ConfigurationError): config.test config.test = "1" assert config.test == "1" config.test = 1 assert config.test == "1"
5,344,959
def main(): """Entrypoint of application""" version = sb.utils.get_version() parser = argparse.ArgumentParser(description=f"Shape Bruteforce CLI v{version}") parser.add_argument("image", type=str, nargs='?', default="", help="Image to be processed") parser.add_argument("-s", "--size", default=64, type=int, help="Max size of image during training, smaller = faster") parser.add_argument("-a", "--shapes", default=256, type=int, help="Number of shapes") parser.add_argument("-g", "--generations", default=2000, type=int, help="Generations per shape") parser.add_argument("--egg", action='store_true', help=argparse.SUPPRESS) args = parser.parse_args() if args.egg: egg() return if args.image == "": parser.print_help() return target = sb.utils.load_image(args.image) target = sb.utils.resize_image(target, args.size) target = sb.utils.normalize_image(target) trainer = sb.training.Training(target) trainer.train(shape_count=args.shapes, gens_per_shape=args.generations) result = trainer.parent.to_array() sb.utils.show_image(result)
5,344,960
def meijerint_indefinite(f, x): """ Compute an indefinite integral of ``f`` by rewriting it as a G function. Examples ======== >>> from sympy.integrals.meijerint import meijerint_indefinite >>> from sympy import sin >>> from sympy.abc import x >>> meijerint_indefinite(sin(x), x) -cos(x) """ from sympy import hyper, meijerg results = [] for a in sorted(_find_splitting_points(f, x) | {S(0)}, key=default_sort_key): res = _meijerint_indefinite_1(f.subs(x, x + a), x) if not res: continue res = res.subs(x, x - a) if _has(res, hyper, meijerg): results.append(res) else: return res if f.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_indefinite( _rewrite_hyperbolics_as_exp(f), x) if rv: if not type(rv) is list: return collect(factor_terms(rv), rv.atoms(exp)) results.extend(rv) if results: return next(ordered(results))
5,344,961
def fit_size( img: IMG, size: Tuple[int, int], mode: FitSizeMode = FitSizeMode.INCLUDE, direction: FitSizeDir = FitSizeDir.CENTER, bg_color: Union[str, float, Tuple[float, ...]] = (255, 255, 255, 0), ) -> IMG: """ 调整图片到指定的大小,超出部分裁剪,不足部分设为指定颜色 :params * ``img``: 待调整的图片 * ``size``: 期望图片大小 * ``mode``: FitSizeMode.INSIDE 表示图片必须在指定的大小范围内,不足部分设为指定颜色;FitSizeMode.INCLUDE 表示图片必须包括指定的大小范围,超出部分裁剪 * ``direction``: 调整图片大小时图片的方位;默认为居中 FitSizeDir.CENTER * ``bg_color``: FitSizeMode.INSIDE 时的背景颜色 """ return cut_size(limit_size(img, size, mode), size, direction, bg_color)
5,344,962
def load_iot_config(ini: dict): """ """ if not verify_params(ini, 'iot', ['file', 'filedir']): return {} # Set file directory iot_params = ini['iot'] filedir = iot_params['filedir'] filedir = filedir.strip(" ") if filedir == "": # HOME directory set filedir = os.environ['HOME'] logger.info("IoT configuration dir: '{}'".format(filedir)) iot_config = iot_params['file'] filepath = os.path.join(filedir, iot_config) logger.info("IoT config filepath: '{}'".format(filepath)) if not os.path.exists(filepath): logger.error("IoT config file '{}' not found".format(filepath)) return {} # Load configuration data topics = dict() fieldnames = ["topic", "where", "h", "x", "y", "unit", "notes"] try: csvfd = open(filepath, "r", newline='') reader = csv.DictReader(csvfd, fieldnames=fieldnames, delimiter=";") for row in reader: topic = row['topic'].strip(" ") if topic == 'topic': logger.debug("Skipping header") continue if topic[0] == "#": logger.warning("Line {} commented out".format(reader.line_num)) continue if topic in topics.keys(): logger.warning("Topic '{}' at line {} skipped beacause duplicated ".format(topic, reader.line_num)) continue # Remove 'topic' key and assign remaining to topics dict row.pop('topic') topics[topic] = row logger.debug("Topic '{}' added: {}".format(topic, topics[topic])) except: logger.error("Loading IoT topics failed") logger.error("Reason: {}".format(sys.exc_info())) return {} return topics
5,344,963
def test_submit_except8(mock_ssh): """ Check that jobsubmit exception is raised on generic SSH failure. """ job = { "destdir": "/path/to/destdir", "subfile": "submit.file" } mock_ssh.side_effect = exceptions.SSHError("Error", ("out", "err", 0)) mock_ssh.return_value = ("success", "error", 0) with pytest.raises(exceptions.JobsubmitError): submit(job)
5,344,964
def recordDevice(*args, **kwargs): """ Starts and stops server side device recording. Returns: None """ pass
5,344,965
def test_guitab_loadall(): """Confirm that the custom shell program can correctly load tab data""" test_file = Path(__file__).parent / "test_guitab_file.txt" guitab_shell = GuitabShell() guitab_shell.do_loadall(str(test_file)) assert str(guitab_shell.user_tab) == global_test_data.str_tab_file_load assert guitab_shell.user_tab.info == global_test_data.file_info
5,344,966
def supports_colour(): """ Return True if the running system's terminal supports colour, and False otherwise. Adapted from https://github.com/django/django/blob/master/django/core/management/color.py """ def vt_codes_enabled_in_windows_registry(): """ Check the Windows Registry to see if VT code handling has been enabled by default, see https://superuser.com/a/1300251/447564. """ try: # winreg is only available on Windows. import winreg except ImportError: return False else: reg_key = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Console') try: reg_key_value, _ = winreg.QueryValueEx( reg_key, 'VirtualTerminalLevel') except FileNotFoundError: return False else: return reg_key_value == 1 # isatty is not always implemented, #6223. is_a_tty = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() return is_a_tty and ( sys.platform != 'win32' or HAS_COLORAMA or 'ANSICON' in os.environ or # Windows Terminal supports VT codes. 'WT_SESSION' in os.environ or # Microsoft Visual Studio Code's built-in terminal supports colors. os.environ.get('TERM_PROGRAM') == 'vscode' or vt_codes_enabled_in_windows_registry() )
5,344,967
def next_code(value: int, mul: int = 252533, div: int = 33554393) -> int: """ Returns the value of the next code given the value of the current code The first code is `20151125`. After that, each code is generated by taking the previous one, multiplying it by `252533`, and then keeping the remainder from dividing that value by `33554393` """ return (value * mul) % div
5,344,968
def main() -> int: """Runs a program specified by command-line arguments.""" args = argument_parser().parse_args() if not args.command or args.command[0] != '--': return 1 env = os.environ.copy() # Command starts after the "--". command = args.command[1:] if args.args_file is not None: empty = True for line in args.args_file: empty = False command.append(line.strip()) if args.skip_empty_args and empty: return 0 if args.env_file is not None: for line in args.env_file: apply_env_var(line, env) # Apply command-line overrides at a higher priority than the env file. for string in args.env: apply_env_var(string, env) if args.capture_output: output_args = {'stdout': subprocess.PIPE, 'stderr': subprocess.STDOUT} else: output_args = {} process = subprocess.run(command, env=env, **output_args) # type: ignore if process.returncode != 0 and args.capture_output: _LOG.error('') _LOG.error('Command failed with exit code %d in GN build.', process.returncode) _LOG.error('') _LOG.error('Build target:') _LOG.error('') _LOG.error(' %s', args.target) _LOG.error('') _LOG.error('Full command:') _LOG.error('') _LOG.error(' %s', ' '.join(shlex.quote(arg) for arg in command)) _LOG.error('') _LOG.error('Process output:') print(flush=True) sys.stdout.buffer.write(process.stdout) print(flush=True) _LOG.error('') return process.returncode
5,344,969
def read_csv_to_lol(full_path, sep=";"): """ Read csv file into lists of list. Make sure to have a empty line at the bottom """ with open(full_path, 'r') as ff: # read from CSV data = ff.readlines() # New line at the end of each line is removed data = [i.replace("\n", "") for i in data] # Creating lists of list data = [i.split(sep) for i in data] return data
5,344,970
def read_experiment(path): """ Discovers CSV files an experiment produced and construct columns for the experiment's conditions from the sub-directory structure. Args: path: path to the experiment's results. Returns: pd.DataFrame """ objects = list(path.rglob('*.csv')) data = [] path_split = _recursive_split(path) for obj in objects: obj_path_split = _recursive_split(obj) if len(obj_path_split) - len(path_split) > 7: raise Exception("Path depth too long! Provide path to actual experiment or one of its sub-directories.") data.append(obj_path_split) df = pd.DataFrame(data=data) columns = ["experiment", "imputer", "task", "missing_type", "missing_fraction", "strategy", "file_or_dir", "detail_file"] auto_columns = [] for i in range(df.shape[1] - len(columns)): auto_columns.append(f"col{i}") df.columns = auto_columns + columns df.drop(auto_columns, axis=1, inplace=True) df["path"] = objects df["detail_file"] = df["detail_file"].fillna("") return df.reset_index(drop=True)
5,344,971
def single_keyword_search(keyword): """ 구글에 keyword 검색결과를 html로 받아온뒤에 그 안에 일반 게시물 분류에 속하는 class='r' 부분만 모아서 return해주는 함수 입니다. Args: Keyword (String) : 구글에 검색할 Keyword Returns: title_list (bs4.element.ResultSet) : 구글 검색에서 확인된 일반게시물(class='r')들의 모음 """ URL = 'https://www.google.com/search?q=' +keyword_preprocessing(keyword) driver = webdriver.Chrome("C:/Users/ksg/py_tutorial/chromedriver.exe") driver.implicitly_wait(1) driver.get(URL) driver.implicitly_wait(2) html = driver.page_source soup = BeautifulSoup(html, 'html.parser') title_list = soup.find_all(name='div',attrs={'class':'r'}) return title_list
5,344,972
def test_cluttered_table_place_get_gt_nsrts(): """Tests for get_gt_nsrts in ClutteredTablePlaceEnv.""" test_cluttered_table_get_gt_nsrts(place_version=True)
5,344,973
def partial_list(ys, xs, specified_shapes=None): """ Args: ys: A list of tensors. Each tensor will be differentiated with the partial_nd xs: A Tensor to be used for differentiation, or a list of tensors to be used for differentiation with the smae length as ys specified_shapes: A list of specified dynamical shapes of ys. The first element of each shape is dummy as None or -1. """ assert (len(ys) > 0) and (len(xs) > 0), "The length of ys is 0" if specified_shapes is None: if len(xs) == 1: return [partial_nd(y, xs) for y in ys] else: return [partial_nd(y, x) for (y,x) in zip(ys,xs)] else: if len(xs) == 1: return [partial_nd(y, xs, specified_shape) for (y, specified_shape) in (ys, specified_shapes)] else: return [partial_nd(y, x, specified_shape) for (y,x,specified_shape) in zip(ys,xs,specified_shapes)]
5,344,974
def _GuessBrowserName(bisect_bot): """Returns a browser name string for Telemetry to use.""" default = 'release' browser_map = namespaced_stored_object.Get(_BOT_BROWSER_MAP_KEY) if not browser_map: return default for bot_name_prefix, browser_name in browser_map: if bisect_bot.startswith(bot_name_prefix): return browser_name return default
5,344,975
def compile_train_function(network, batch_size, learning_rate): """Compiles the training function. Args: network: The network instance. batch_size: The training batch size. learning_rate: The learning rate. Returns: The update function that takes a batch of images and targets and updates the network weights. """ learning_rate = np.float32(learning_rate) input_var = network.input_layers[0].input_var target_var = T.ftensor4() # Loss function loss_fn = functools.partial( losses.bootstrapped_xentropy, targets=target_var, batch_size=batch_size, multiplier=BOOTSTRAP_MULTIPLIER ) # Update function lr = theano.shared(learning_rate) update_fn = functools.partial(lasagne.updates.adam, learning_rate=lr) pylogging.info("Compile SGD updates") gd_step = hybrid_training.compile_gd_step( network, loss_fn, [input_var, target_var], update_fn) reduce_lr = theano.function( inputs=[], updates=collections.OrderedDict([ (lr, T.maximum(np.float32(5e-5), lr / np.float32(1.25))) ]) ) def _compute_update(imgs, targets, update_counter): if (update_counter + 1) % REDUCE_LR_INTERVAL == 0: reduce_lr() loss = gd_step(imgs, targets) return loss return _compute_update
5,344,976
def json_loads(data): """Load json data, allowing - to represent stdin.""" if data is None: return "" if data == "-": return json.load(sys.stdin) elif os.path.exists(data): with open(data, 'r') as handle: return json.load(handle) else: return json.loads(data)
5,344,977
def filter_values(freq, values, nthOct: int = 3): """ Filters the given values into nthOct bands. Parameters ---------- freq : ndarray Array containing the frequency axis. values : ndarray Array containing the magnitude values to be filtered. nthOct : int, optional Fractional octave bands that the absorption will be filtered to. Returns ------- bands : ndarray An array containing the center frequencies of the available bands. result : ndarray An array containing the filtered values in the available bands. """ bands = fractional_octave_frequencies(nthOct=nthOct) # [band_min, band_center, band_max] bands = bands[np.argwhere((bands[:, 1] >= min(freq)) & (bands[:, 1] <= max(freq)))[:, 0]] idx = np.array([np.argwhere((freq >= bands[a, 0]) & (freq <= bands[a, 2])) for a in np.arange(0, len(bands))], dtype=object) result = np.array([np.sum(values[idx[a]]) / len(idx[a]) for a in np.arange(0, len(bands))], dtype=object) result = np.nan_to_num(result) return bands[:, 1], result.astype(values.dtype)
5,344,978
def create_project(request): """View to create new project""" user = request.user if user.is_annotator: error = ErrorMessage(header="Access denied", message="Only admin and managers can create projects") return render(request, 'error.html', {'error':error}) if request.method == "POST": form = ProjectCreateForm(request.POST) if form.is_valid(): project = form.save(commit=False) project.manager = user project.save() return redirect('projects_list') else: form = ProjectCreateForm() return render(request, 'projects/create.html', {'form': form})
5,344,979
def limit( observed_CLs: np.ndarray, expected_CLs: np.ndarray, poi_values: np.ndarray, figure_path: Optional[pathlib.Path] = None, close_figure: bool = False, ) -> mpl.figure.Figure: """Draws observed and expected CLs values as function of the parameter of interest. Args: observed_CLs (np.ndarray): observed CLs values expected_CLs (np.ndarray): expected CLs values, including 1 and 2 sigma bands poi_values (np.ndarray): parameter of interest values used in scan figure_path (Optional[pathlib.Path], optional): path where figure should be saved, or None to not save it, defaults to None close_figure (bool, optional): whether to close each figure immediately after saving it, defaults to False (enable when producing many figures to avoid memory issues, prevents rendering in notebooks) Returns: matplotlib.figure.Figure: the CLs figure """ fig, ax = plt.subplots() xmin = min(poi_values) xmax = max(poi_values) # line through CLs = 0.05 ax.hlines( 0.05, xmin=xmin, xmax=xmax, linestyle="dashdot", color="red", label=r"CL$_S$ = 5%", ) # 1 and 2 sigma bands ax.fill_between( poi_values, expected_CLs[:, 0], expected_CLs[:, 4], color="yellow", label=r"expected CL$_S$ $\pm 2\sigma$", ) ax.fill_between( poi_values, expected_CLs[:, 1], expected_CLs[:, 3], color="limegreen", label=r"expected CL$_S$ $\pm 1\sigma$", ) # expected CLs ax.plot( poi_values, expected_CLs[:, 2], "--", color="black", label=r"expected CL$_S$", ) # observed CLs values ax.plot(poi_values, observed_CLs, "o-", color="black", label=r"observed CL$_S$") # increase font sizes for item in ( [ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels() ): item.set_fontsize("large") # minor ticks for axis in [ax.xaxis, ax.yaxis]: axis.set_minor_locator(mpl.ticker.AutoMinorLocator()) ax.legend(frameon=False, fontsize="large") ax.set_xlabel(r"$\mu$") ax.set_ylabel(r"$\mathrm{CL}_{s}$") ax.set_xlim([xmin, xmax]) ax.set_ylim([0, 1]) ax.tick_params(axis="both", which="major", pad=8) ax.tick_params(direction="in", top=True, right=True, which="both") fig.tight_layout() utils._save_and_close(fig, figure_path, close_figure) return fig
5,344,980
def get_genlu_code(cursor, label): """Find or create the code for this label.""" if label not in GENLU_CODES: cursor.execute("SELECT max(id) from general_landuse") row = cursor.fetchone() newval = 0 if row[0] is None else row[0] + 1 LOG.debug("Inserting new general landuse code: %s [%s]", newval, label) cursor.execute( "INSERT into general_landuse(id, label) values (%s, %s)", (newval, label), ) GENLU_CODES[label] = newval return GENLU_CODES[label]
5,344,981
def main(): """ Combines all subprograms. :return: """ # Tests ftp connection. ftp,success = connectToFTP(FTP_HOST, FTP_USER, FTP_PASS,1) if not success: return # Creates a queue that will end all other threads when necessary. killThread = queue.Queue() # Initializes the local path initPath(localPath) # Starts the updating thread that will constantly poll the config file on the server checker = threading.Thread(target=configUpdateThreaed, args=(publicPath, localPath, configName, killThread,)) checker.daemon = True checker.start() # Creates the list which is going to be used to store recording data dat = [] initData(dat, channelList) # Initializes mcc hat and respective channels. mcc, channel_mask, options, c = initHat(channelList) # This time.sleep allows the updating thread to download a config file in case there is not one already. time.sleep(1) # Updates the config object from file. updateConfig(localPath, configName) print("\n\nWaiting...") start = False errors =0 while not start: updateConfig(localPath, configName) try: if config['RAS']['Start'] == 'TRUE': start = True except: pass print("Config file received!") # Sets the start recording time and adjusts according to labview formatting. timeM = datetime.datetime.fromtimestamp(float(config['RAS']['Start Time']) / (10 ** 9)) year1 = relativedelta(years=10, days=4, months=0) final = timeM + year1 print(f"\nWaiting until: {final}") # Waits until it is time to record pause.until(final) start = datetime.datetime.now() print("STARTING RECORDING NOW") print(f"Time of Starting: {start}") # Initialize scan rate and start recording. scanRate = (10 ** 6) / (int(config['RAS']['Sample Period'])) print(f"Frequency : {scanRate}") sampPerChan = int(scanRate / 10) mcc.a_in_scan_start(channel_mask, sampPerChan, scanRate, options) # Wait until stop recording command is sent. while config['RAS']['Start'] == 'TRUE': updateConfig(localPath, configName) dat = collectData(mcc, sampPerChan, dat, channelList) mcc.a_in_scan_stop() # Store stop recording time. end = datetime.datetime.now() print(f"Time of stopping: {end}") print(f"Diff: {end - start}") # Write out data to file. success = writeFile(dat, str(start), len(channelList), 'Data0.csv', localPath) if not success: return # Print number of samples print(f"Number of samples: {len(dat[0])}") # Send kill command killThread.put("end") checker.join() try: ftp, success = connectToFTP(FTP_HOST, FTP_USER, FTP_PASS,1) if success: uploadFile(ftp, publicPath, localPath, 'Data0.csv') ftp.close() except Exception as error: print("ERROR while uploading") print(error) print("\n\n")
5,344,982
def make_predictions(clf_object,predictors_str,data_source): """make_predictions comes up with predictions from given input data Input: clf_object object constructed classification model predictors_str nd str array string array containing names of predictors data_source ndarray source of data either from valid or test Output: preds ndarray prediction classes based on given input data """ preds = clf_object.predict(data_source[predictors_str]) return preds
5,344,983
def ticket_queue_asnauto_skipvq(request, org, net, rir_data): """ queue deskro ticket creation for asn automation action: skip vq """ if isinstance(net, dict): net_name = net.get("name") else: net_name = net.name if isinstance(org, dict): org_name = org.get("name") else: org_name = org.name user = get_user_from_request(request) if user: ticket_queue( f"[ASNAUTO] Network '{net_name}' approved for existing Org '{org_name}'", loader.get_template("email/notify-pdb-admin-asnauto-skipvq.txt").render( {"user": user, "org": org, "net": net, "rir_data": rir_data} ), user, ) return org_key = get_org_key_from_request(request) if org_key: ticket_queue_email_only( f"[ASNAUTO] Network '{net_name}' approved for existing Org '{org_name}'", loader.get_template( "email/notify-pdb-admin-asnauto-skipvq-org-key.txt" ).render( {"org_key": org_key, "org": org, "net": net, "rir_data": rir_data} ), org_key.email, )
5,344,984
def no_span_nodes(tree, debug=False, root_id=None): """Return True, iff there is no span node in the given ParentedTree.""" assert isinstance(tree, ParentedTree) if root_id is None: root_id = tree.root_id span_label = debug_root_label('span', debug=debug, root_id=root_id) if tree.label() == span_label: return False for node in tree: if isinstance(node, ParentedTree) : if node.label() == span_label: return False subtree_is_okay = no_span_nodes(node, debug=debug, root_id=root_id) if not subtree_is_okay: return False return True
5,344,985
def get_token_annualized(address, days): """Return annualized returns for a specific token. Args: days [int]: Days ago for which to display annualized returns. address [str]: Ethereum token address. Return: dict: Annualized returns for a specified token. key [str]: Days annualized. value [str]: Annualized returns. """ url = f"{config.URLS['annualized_returns']}/{address}" response = api_call(url, params={'daysBack': days, 'key': POOLS_KEY}) return response
5,344,986
def generate_random_string(N): """ Generate a random string Parameters ------------- N length of the string Returns ------------- random_string Random string """ return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N))
5,344,987
def test_cmat2aset(): """Test cmat2aset.""" assert True
5,344,988
def _save_owner_edge(obj_ver_key, info_tup): """Save the ws_owner_of edge.""" username = info_tup[5] from_id = 'ws_user/' + sanitize_arangodb_key(username) to_id = 'ws_object_version/' + obj_ver_key logger.debug(f'Saving ws_owner_of edge from {from_id} to {to_id}') save('ws_owner_of', [{ '_from': from_id, '_to': to_id }])
5,344,989
def derive_related_properties(): """Derive the list of related properties from property statistics.""" logger.info('Deriving related properties ...') data = statistics.get_json_data('properties') related = {} for pid in data: if 'r' in data[pid] and data[pid]['r']: related[pid] = data[pid]['r'] statistics.update_json_data('properties/related', related) statistics.update_split_json_data('properties/related', related, 10)
5,344,990
def extract_charm_name_from_url(charm_url): """Extract the charm name from the charm url. E.g. Extract 'heat' from local:bionic/heat-12 :param charm_url: Name of model to query. :type charm_url: str :returns: Charm name :rtype: str """ charm_name = re.sub(r'-[0-9]+$', '', charm_url.split('/')[-1]) return charm_name.split(':')[-1]
5,344,991
def class_name(service_name: str) -> str: """Map service name to .pyi class name.""" return f"Service_{service_name}"
5,344,992
def interesting_columns(df): """Returns non-constant column names of a dataframe.""" return sorted(set(df.columns) - set(constant_columns(df)))
5,344,993
def liberty_str(s): """ >>> liberty_str("hello") '"hello"' >>> liberty_str('he"llo') Traceback (most recent call last): ... ValueError: '"' is not allow in the string: 'he"llo' >>> liberty_str(1.0) '"1.0000000000"' >>> liberty_str(1) '"1.0000000000"' >>> liberty_str([]) Traceback (most recent call last): ... ValueError: [] is not a string >>> liberty_str(True) Traceback (most recent call last): ... ValueError: True is not a string """ try: if isinstance(s, (int, float)): s = liberty_float(s) except ValueError: pass if not isinstance(s, str): raise ValueError("%r is not a string" % s) if '"' in s: raise ValueError("'\"' is not allow in the string: %r" % s) return '"'+s+'"'
5,344,994
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False): """ Return True if input array is a valid distance matrix. Distance matrices must be 2-dimensional numpy arrays. They must have a zero-diagonal, and they must be symmetric. Parameters ---------- D : ndarray The candidate object to test for validity. tol : float, optional The distance matrix should be symmetric. `tol` is the maximum difference between entries ``ij`` and ``ji`` for the distance metric to be considered symmetric. throw : bool, optional An exception is thrown if the distance matrix passed is not valid. name : str, optional The name of the variable to checked. This is useful if throw is set to True so the offending variable can be identified in the exception message when an exception is thrown. warning : bool, optional Instead of throwing an exception, a warning message is raised. Returns ------- valid : bool True if the variable `D` passed is a valid distance matrix. Notes ----- Small numerical differences in `D` and `D.T` and non-zeroness of the diagonal are ignored if they are within the tolerance specified by `tol`. """ D = np.asarray(D, order='c') valid = True try: s = D.shape if len(D.shape) != 2: if name: raise ValueError(('Distance matrix \'%s\' must have shape=2 ' '(i.e. be two-dimensional).') % name) else: raise ValueError('Distance matrix must have shape=2 (i.e. ' 'be two-dimensional).') if tol == 0.0: if not (D == D.T).all(): if name: raise ValueError(('Distance matrix \'%s\' must be ' 'symmetric.') % name) else: raise ValueError('Distance matrix must be symmetric.') if not (D[range(0, s[0]), range(0, s[0])] == 0).all(): if name: raise ValueError(('Distance matrix \'%s\' diagonal must ' 'be zero.') % name) else: raise ValueError('Distance matrix diagonal must be zero.') else: if not (D - D.T <= tol).all(): if name: raise ValueError(('Distance matrix \'%s\' must be ' 'symmetric within tolerance %5.5f.') % (name, tol)) else: raise ValueError('Distance matrix must be symmetric within' ' tolerance %5.5f.' % tol) if not (D[range(0, s[0]), range(0, s[0])] <= tol).all(): if name: raise ValueError(('Distance matrix \'%s\' diagonal must be' ' close to zero within tolerance %5.5f.') % (name, tol)) else: raise ValueError(('Distance matrix \'%s\' diagonal must be' ' close to zero within tolerance %5.5f.') % tol) except Exception as e: if throw: raise if warning: warnings.warn(str(e)) valid = False return valid
5,344,995
def solve_gradwavefront(data, excludeself=False, predict_at=None, fix_covar=False, **kw): """Find turbulent contributions to measured fiber positions. Assumes that the turbulent contributions can be modeled as the gradient of a wavefront error. i.e., they are curl free. Args: data : ndarray containing measured positions and residuals from expected locations excludeself : bool do not use this fiber when computing the turbulence affecting this fiber. **kw : additional keywords passed to solve_covar Returns: xturb : turbulent contributions in x direction yturb : turbulent contributions in y direction res : output from scipy.optimize.minimize describing best fit covariance matrix """ if predict_at is not None and excludeself: raise ValueError('predict_at does not make sense in combination with ' 'excludeself') if not fix_covar: covar, res = solve_covar(data, lossfun=loss_gradwavefront, covarfun=make_covar_gradwavefront, **kw) else: from types import SimpleNamespace res = SimpleNamespace() res.x = [5e-3, 5e-3, 100] if kw.get('rq', False): res.x = res.x + [2] covar = make_covar_gradwavefront(data, res.x, **kw) dvec = np.concatenate([data['dx'], data['dy']]) if not excludeself: if predict_at: # K(X*, X)(K(X, X) + C_n)^-1 y # Rasmussen & Williams algorithm 2.1 chol, low = scipy.linalg.cho_factor(covar, check_finite=False, overwrite_a=True) covarpred = make_covar_gradwavefront_nonoise( data['x'], data['y'], predict_at[0], predict_at[1], res.x, **kw) alpha = scipy.linalg.cho_solve((chol, low), dvec) turb = np.dot(covarpred, alpha) xturb, yturb = turb[:len(predict_at[0])], turb[len(predict_at[0]):] else: # remove measurement noise contribution to covar cninv = np.eye(len(dvec))*res.x[0]**(-2) covar -= np.eye(len(dvec))*res.x[0]**2 cpcninv = np.dot(covar, cninv) aa = cpcninv+np.eye(len(dvec)) turb = np.linalg.solve(aa, np.dot(cpcninv, dvec)) xturb, yturb = turb[:len(data)], turb[len(data):] else: # Rasmussen & Williams 5.12 kinv = np.linalg.inv(covar) turb = dvec - kinv.dot(dvec)/np.diag(kinv) xturb, yturb = turb[:len(data)], turb[len(data):] return xturb, yturb, res
5,344,996
def str_to_py(value: str): """Convert an string value to a native python type.""" rv: Any if is_boolean_state(value): rv = get_boolean(value) elif is_integer(value): rv = get_integer(value) elif is_float(value): rv = get_float(value) else: rv = value return rv
5,344,997
def action(request: Dict[str, Any]) -> Tuple[str, int]: """Triggered from Slack action via an HTTPS endpoint. Args: request (dict): Request payload. """ if request.method != 'POST': return 'Only POST requests are accepted', 405 print('Triggered Slack action.') form = json.loads(request.form.get('payload', '')) _verify_web_hook(form) response_url = form.get('response_url') if not response_url: return 'No response URL!', 405 action_to_perform = form.get('actions')[0].get('value') in_office = action_to_perform == 'response_yes' _set_information(in_office) today = _now().strftime('%Y-%m-%d') status_to_response = { True: f'{DOG_NAME} will be in the office today ({today}). :dog:', False: f'{DOG_NAME} will not be in the office today ({today}). :no_entry_sign:', } response_text = f'Thanks for the response! I noted that {status_to_response[in_office]}' response = _format_slack_message(response_text) print(f'Replying with "{response_text}".') response_obj = requests.post( response_url, data=json.dumps(response), headers={'Content-Type': 'application/json'} ) print(f'Slack POST request status code: "{response_obj.status_code}".') return '', 200
5,344,998
def inmemory(): """Returns an xodb database backed by an in-memory xapian database. Does not support spelling correction. """ return open(xapian.inmemory_open(), spelling=False, inmem=True)
5,344,999