content
stringlengths
22
815k
id
int64
0
4.91M
def data_fun(times): """Generate time-staggered sinusoids at harmonics of 10Hz""" global n n_samp = len(times) window = np.zeros(n_samp) start, stop = [int(ii * float(n_samp) / (2 * n_dipoles)) for ii in (2 * n, 2 * n + 1)] window[start:stop] = 1. n += 1 data = 1e-7 * np.sin(2. * np.pi * 10. * times) data *= window return data
5,345,100
def bandstructure(target_db_file, insert): """add workflows for bandstructure based on materials collection""" lpad = get_lpad() source = calcdb_from_mgrant(f'{lpad.host}/{lpad.name}') print('connected to source db with', source.collection.count(), 'tasks') target = VaspCalcDb.from_db_file(target_db_file, admin=True) print('connected to target db with', target.collection.count(), 'tasks') materials = target.db["materials.core"] ensure_indexes(['task_id'], [materials]) ensure_indexes(['metadata.task_id'], [lpad.workflows]) print(materials.count(), 'core materials') all_mat_ids = set(materials.distinct('task_id')) existing_mat_ids = set(filter(None, lpad.workflows.distinct('metadata.task_id'))) mat_ids = all_mat_ids.symmetric_difference(existing_mat_ids) print(len(mat_ids), 'bandstructure workflows to add') wflows = [] for mat_id in mat_ids: structure = Structure.from_dict(materials.find_one({'task_id': mat_id}, {'structure': 1})['structure']) dir_name = target.collection.find_one({'task_id': mat_id}, {'dir_name': 1})['dir_name'] subdir = get_subdir(dir_name) subdir_query = {'dir_name': {'$regex': '/{}$'.format(subdir)}} source_task = source.collection.find_one(subdir_query, {'tags': 1}) if not source_task: print('source task not found -> TODO') break # bandstructure task has this year's tag (remove other year tags from source_task) tags = [t for t in source_task['tags'] if t not in year_tags] tags.append(year_tags[-1]) wf = wf_bandstructure(structure, c={'ADD_MODIFY_INCAR': True}) # TODO non-SO bandstructure workflow -> Alex wf = add_trackers(wf) wf = add_tags(wf, tags) wf = add_wf_metadata(wf, structure) wf.metadata["task_id"] = mat_id wflows.append(wf) print(wf.as_dict()) break if insert: lpad.bulk_add_wfs(wflows)
5,345,101
def var(x, axis=None, ddof=0, keepdims=False): """ Computes the variance along the specified axis. The variance is the average of the squared deviations from the mean, i.e., :math:`var = mean(abs(x - x.mean())**2)`. Returns the variance, which is computed for the flattened array by default, otherwise over the specified axis. Note: Numpy arguments `dtype`, `out` and `where` are not supported. Args: x (Tensor): A Tensor to be calculated. axis (Union[None, int, tuple(int)]): Axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. Default: `None`. ddof (int): Means Delta Degrees of Freedom. Default: 0. The divisor used in calculations is :math:`N - ddof`, where :math:`N` represents the number of elements. keepdims (bool): If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the var method of sub-classes of tensor, however any non-default value will be. If the sub-class’ method does not implement keepdims any exceptions will be raised. Default: `False`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Returns: Standard deviation tensor. Examples: >>> import mindspore.numpy as np >>> input_x = np.array([1., 2., 3., 4.]) >>> output = np.var(input_x) >>> print(output) 1.25 """ x = _to_tensor(x) return x.var(axis, ddof, keepdims)
5,345,102
def check_inputs(supplied_inputs): """Check that the inputs are of some correct type and returned as AttributeDict.""" inputs = None if supplied_inputs is None: inputs = AttributeDict() else: if isinstance(supplied_inputs, DataFactory('dict')): inputs = AttributeDict(supplied_inputs.get_dict()) elif isinstance(supplied_inputs, dict): inputs = AttributeDict(supplied_inputs) elif isinstance(supplied_inputs, AttributeDict): inputs = supplied_inputs else: raise ValueError(f'The supplied type {type(inputs)} of inputs is not supported. Supply a dict, Dict or an AttributeDict.') return inputs
5,345,103
def _parse_none(arg, fn=None): """Parse arguments with support for conversion to None. Args: arg (str): Argument to potentially convert. fn (func): Function to apply to the argument if not converted to None. Returns: Any: Arguments that are "none" or "0" are converted to None; otherwise, returns the original value. """ if arg.lower() in ("none", "0"): return None return arg if fn is None else fn(arg)
5,345,104
def generate_constraint(category_id, user): """ generate the proper basic data structure to express a constraint based on the category string """ return {'year': category_id}
5,345,105
def test_zipped_bytes_collection(bytes_coutwildrnp_zip): """Open a zipped stream of bytes as a collection""" with fiona.BytesCollection(bytes_coutwildrnp_zip) as col: assert col.name == 'coutwildrnp' assert len(col) == 67
5,345,106
def get_RIB_IN_capacity(cvg_api, multipath, start_value, step_value, route_type, port_speed,): """ Args: cvg_api (pytest fixture): snappi API temp_tg_port (pytest fixture): Ports mapping info of T0 testbed multipath: ecmp value for BGP config start_value: Start value of the number of BGP routes step_value: Step value of the number of BGP routes to be incremented route_type: IPv4 or IPv6 routes port_speed: speed of the port used in test """ def tgen_capacity(routes): conv_config = cvg_api.convergence_config() config = conv_config.config for i in range(1, 3): config.ports.port(name='Test_Port_%d' % i, location=temp_tg_port[i-1]['location']) c_lag = config.lags.lag(name="lag%d" % i)[-1] lp = c_lag.ports.port(port_name='Test_Port_%d' % i)[-1] lp.ethernet.name = 'lag_eth_%d' % i if len(str(hex(i).split('0x')[1])) == 1: m = '0'+hex(i).split('0x')[1] else: m = hex(i).split('0x')[1] lp.protocol.lacp.actor_system_id = "00:10:00:00:00:%s" % m lp.ethernet.name = "lag_Ethernet %s" % i lp.ethernet.mac = "00:10:01:00:00:%s" % m config.devices.device(name='Topology %d' % i) config.options.port_options.location_preemption = True layer1 = config.layer1.layer1()[-1] layer1.name = 'port settings' layer1.port_names = [port.name for port in config.ports] layer1.ieee_media_defaults = False layer1.auto_negotiation.rs_fec = True layer1.auto_negotiation.link_training = False layer1.speed = port_speed layer1.auto_negotiate = False def create_v4_topo(): eth = config.devices[0].ethernets.add() eth.port_name = config.lags[0].name eth.name = 'Ethernet 1' eth.mac = "00:00:00:00:00:01" ipv4 = eth.ipv4_addresses.add() ipv4.name = 'IPv4 1' ipv4.address = temp_tg_port[0]['ip'] ipv4.gateway = temp_tg_port[0]['peer_ip'] ipv4.prefix = int(temp_tg_port[0]['prefix']) rx_flow_name = [] for i in range(2, 3): if len(str(hex(i).split('0x')[1])) == 1: m = '0'+hex(i).split('0x')[1] else: m = hex(i).split('0x')[1] ethernet_stack = config.devices[i-1].ethernets.add() ethernet_stack.port_name = config.lags[i-1].name ethernet_stack.name = 'Ethernet %d' % i ethernet_stack.mac = "00:00:00:00:00:%s" % m ipv4_stack = ethernet_stack.ipv4_addresses.add() ipv4_stack.name = 'IPv4 %d' % i ipv4_stack.address = temp_tg_port[i-1]['ip'] ipv4_stack.gateway = temp_tg_port[i-1]['peer_ip'] ipv4_stack.prefix = int(temp_tg_port[i-1]['prefix']) bgpv4 = config.devices[i-1].bgp bgpv4.router_id = temp_tg_port[i-1]['peer_ip'] bgpv4_int = bgpv4.ipv4_interfaces.add() bgpv4_int.ipv4_name = ipv4_stack.name bgpv4_peer = bgpv4_int.peers.add() bgpv4_peer.name = 'BGP %d' % i bgpv4_peer.as_type = BGP_TYPE bgpv4_peer.peer_address = temp_tg_port[i-1]['peer_ip'] bgpv4_peer.as_number = int(TGEN_AS_NUM) route_range = bgpv4_peer.v4_routes.add(name="Network_Group%d" % i) #snappi object named Network Group 2 not found in internal db route_range.addresses.add(address='200.1.0.1', prefix=32, count=number_of_routes) as_path = route_range.as_path as_path_segment = as_path.segments.add() as_path_segment.type = as_path_segment.AS_SEQ as_path_segment.as_numbers = aspaths rx_flow_name.append(route_range.name) return rx_flow_name def create_v6_topo(): eth = config.devices[0].ethernets.add() eth.port_name = config.lags[0].name eth.name = 'Ethernet 1' eth.mac = "00:00:00:00:00:01" ipv6 = eth.ipv6_addresses.add() ipv6.name = 'IPv6 1' ipv6.address = temp_tg_port[0]['ipv6'] ipv6.gateway = temp_tg_port[0]['peer_ipv6'] ipv6.prefix = int(temp_tg_port[0]['ipv6_prefix']) rx_flow_name = [] for i in range(2, 3): if len(str(hex(i).split('0x')[1])) == 1: m = '0'+hex(i).split('0x')[1] else: m = hex(i).split('0x')[1] ethernet_stack = config.devices[i-1].ethernets.add() ethernet_stack.port_name = config.lags[i-1].name ethernet_stack.name = 'Ethernet %d' % i ethernet_stack.mac = "00:00:00:00:00:%s" % m ipv6_stack = ethernet_stack.ipv6_addresses.add() ipv6_stack.name = 'IPv6 %d' % i ipv6_stack.address = temp_tg_port[i-1]['ipv6'] ipv6_stack.gateway = temp_tg_port[i-1]['peer_ipv6'] ipv6_stack.prefix = int(temp_tg_port[i-1]['ipv6_prefix']) bgpv6 = config.devices[i-1].bgp bgpv6.router_id = temp_tg_port[i-1]['peer_ip'] bgpv6_int = bgpv6.ipv6_interfaces.add() bgpv6_int.ipv6_name = ipv6_stack.name bgpv6_peer = bgpv6_int.peers.add() bgpv6_peer.name = 'BGP+_%d' % i bgpv6_peer.as_type = BGP_TYPE bgpv6_peer.peer_address = temp_tg_port[i-1]['peer_ipv6'] bgpv6_peer.as_number = int(TGEN_AS_NUM) route_range = bgpv6_peer.v6_routes.add(name="Network Group %d" % i) route_range.addresses.add(address='3000::1', prefix=64, count=number_of_routes) as_path = route_range.as_path as_path_segment = as_path.segments.add() as_path_segment.type = as_path_segment.AS_SEQ as_path_segment.as_numbers = aspaths rx_flow_name.append(route_range.name) return rx_flow_name conv_config.rx_rate_threshold = 90/(multipath) if route_type == 'IPv4': rx_flows = create_v4_topo() flow = config.flows.flow(name='IPv4_Traffic_%d' % routes)[-1] elif route_type == 'IPv6': rx_flows = create_v6_topo() flow = config.flows.flow(name='IPv6_Traffic_%d' % routes)[-1] else: raise Exception('Invalid route type given') flow.tx_rx.device.tx_names = [config.devices[0].name] flow.tx_rx.device.rx_names = rx_flows flow.size.fixed = 1024 flow.rate.percentage = 100 flow.metrics.enable = True flow.metrics.loss = True return conv_config def run_traffic(routes): logger.info('|-------------------- RIB-IN Capacity test, No.of Routes : {} ----|'.format(routes)) conv_config = tgen_capacity(routes) cvg_api.set_config(conv_config) """ Starting Protocols """ logger.info("Starting all protocols ...") cs = cvg_api.convergence_state() cs.protocol.state = cs.protocol.START cvg_api.set_state(cs) wait(TIMEOUT, "For Protocols To start") """ Starting Traffic """ logger.info('Starting Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.START cvg_api.set_state(cs) wait(TIMEOUT, "For Traffic To start") try: for j in range(start_value, 100000000000, step_value): tx_frate, rx_frate = [], [] run_traffic(j) flow_stats = get_flow_stats(cvg_api) logger.info('Loss% : {}'.format(flow_stats[0].loss)) for flow in flow_stats: tx_frate.append(flow.frames_tx_rate) rx_frate.append(flow.frames_rx_rate) logger.info("Tx Frame Rate : {}".format(tx_frate)) logger.info("Rx Frame Rate : {}".format(rx_frate)) if float(flow_stats[0].loss) > 0.001: if j == start_value: raise Exception('Traffic Loss Encountered in first iteration, reduce the start value and run the test') logger.info('Loss greater than 0.001 occured') logger.info('Reducing the routes and running test') b = j-step_value logger.info('Stopping Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Traffic To stop") break logger.info('Stopping Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Traffic To stop") l = [] l.append(b+int(step_value/8)) l.append(b+int(step_value/4)) l.append(b+int(step_value/2)) l.append(b+step_value-int(step_value/4)) l.append(b+step_value-int(step_value/8)) for i in range(0,len(l)): run_traffic(l[i]) flow_stats = get_flow_stats(cvg_api) logger.info('Loss% : {}'.format(flow_stats[0].loss)) if float(flow_stats[0].loss) <= 0.001: max_routes = start_value pass else: max_routes = l[i]-int(step_value/8) break logger.info('Stopping Traffic') cs = cvg_api.convergence_state() cs.transmit.state = cs.transmit.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Traffic To stop") """ Stopping Protocols """ logger.info("Stopping all protocols ...") cs = cvg_api.convergence_state() cs.protocol.state = cs.protocol.STOP cvg_api.set_state(cs) wait(TIMEOUT-20, "For Protocols To STOP") except Exception as e: logger.info(e) finally: columns = ['Test Name', 'Maximum no. of Routes'] logger.info("\n%s" % tabulate([['RIB-IN Capacity Test',max_routes]], headers=columns, tablefmt="psql"))
5,345,107
def input_file_exists(filepath): """ Return True if the file path exists, or is the stdin marker. """ return (filepath == '-') or os.path.exists(filepath)
5,345,108
def ladder_length(beginWord: str, endWord: str, wordList: List[str]) -> int: """ 双端交替迫近目标层,根据一层数量最多节点确定为目标层 :param beginWord: :param endWord: :param wordList: :return: >>> ladder_length('hit', 'cog', ["hot","dot","dog","lot","log","cog"]) 5 >>> ladder_length('hit', 'cog', ["hot","dot","dog","lot","log"]) 0 >>> ladder_length("hit","cog",["hot","dot","dog","lot","log"]) """ if not beginWord or not endWord or endWord not in wordList: return 0 all_chars: List[str] = [chr(i) for i in range(ord('a'), ord('z') + 1)] curr_word_set: Set[str] = {beginWord} # 当前层的节点 end_word_set: Set[str] = {endWord} # 目标层的节点 word_set: Set[str] = set(wordList) # 加速单词是否在字典中的判断 level: int = 1 while curr_word_set: # 避免同层节点临接 level += 1 for cw in curr_word_set: # beginWord不重复出现在wordList(word_set) if cw != beginWord: word_set.remove(cw) tmp_set: Set[str] = set() for curr_word in curr_word_set: for i, w in enumerate(curr_word): for letter in all_chars: if w == letter: continue changed: str = curr_word[:i] + letter + curr_word[i + 1:] if changed in end_word_set: return level if changed in word_set: tmp_set.add(changed) # 让层节点最多的层作为目标层 if len(tmp_set) <= len(end_word_set): curr_word_set = tmp_set else: # 逆转方向 curr_word_set = end_word_set end_word_set = tmp_set return 0
5,345,109
def setup_option(request): """Создаем объект для удобство работы с переменными в тестовых методах """ setup_parameters = {} if request.config.getoption('--site_url'): setup_parameters['site_url'] = request.config.getoption('--site_url') return setup_parameters
5,345,110
def train_one_epoch(img_input,model,optimizer,writer,epoch,args): """ Finish 1.train for one epoch 2.print process, total loss, data time in terminal 3.save loss, lr, output img in tensorboard Note 1.you can change the save frequency """ loss_train = 0 model.train() length = len(img_input) print("iteration:",length) train_time = time.time() begin = time.time() '''loss control''' loss_for_control = torch.zeros([6,args.paf_num+args.heatmap_num]) weight_con = torch.ones([1,args.paf_num+args.heatmap_num]) weight_con = weight_con.cuda() '''start training''' for each_batch, (img, target_heatmap, target_paf) in enumerate(img_input): data_time = time.time() - begin img = img.cuda() target_heatmap = target_heatmap.cuda() target_paf = target_paf.cuda() # heat_mask = heat_mask.cuda() # paf_mask = paf_mask.cuda() _, saved_for_loss = model(img) #loss = CMUnet_loss.get_loss(saved_for_loss,target_heatmap,target_paf,args,weight_con) loss = resnet_loss.get_loss(saved_for_loss,target_heatmap,target_paf,args,weight_con) # for i in range(args.paf_stage): # for j in range(args.paf_num): # loss_for_control[i][j] += loss['stage_{0}_{1}'.format(i,j)] # for i in range(len(saved_for_loss)-args.paf_stage): # for j in range(args.heatmap_num): # loss_for_control[i][j] += loss['stage_{0}_{1}'.format(i,j)] optimizer.zero_grad() loss["final"].backward() optimizer.step() loss_train += loss["final"] if each_batch % args.print_fre == 0: print_to_terminal(epoch,each_batch,length,loss,loss_train,data_time) #print_to_terminal(epoch,each_batch,length,loss,loss_train,data_time) #writer.add_scalar("train_loss_iterations", loss_train, each_batch + epoch * length) begin = time.time() '''for short test''' # if each_batch == 5: # break #weight_con = Online_weight_control(loss_for_control) loss_train /= length train_time = time.time() - train_time print('total training time:',train_time) return loss_train
5,345,111
def get_unique_tokens(texts): """ Returns a set of unique tokens. >>> get_unique_tokens(['oeffentl', 'ist', 'oeffentl']) {'oeffentl', 'ist'} """ unique_tokens = set() for text in texts: for token in text: unique_tokens.add(token) return unique_tokens
5,345,112
def do_set(): """Callback to set the color on the keyboard.""" w.setb['state'] = tk.DISABLED msg = static_color_msg(state.red, state.green, state.blue) # 0x21: request_type USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT # 0x09: request HID_REQ_SET_REPORT # 0x300: value # 0x01: report index HID_REQ_GET_REPORT read = state.dev.ctrl_transfer(0x21, 0x09, 0x300, 0x01, msg) if read != 90: messagebox.showerror('Set color', 'Operation failed.') w.setb['state'] = tk.NORMAL
5,345,113
def _symmetric_difference(provided: dict, chosen: dict) -> dict: """ Returns the fields that are not in common between provided and chosen JSON schema. :param provided: the JSON schema to removed the chosen schema from. :param chosen: the JSON schema to remove from the provided schema. :return: a JSON schema with the chosen JSON schema removed. """ remove_keys = [] for k, vp in provided.items(): vc = chosen.get(k) if vc is not None: if isinstance(vp, dict): vc = chosen.get(k, {}) assert isinstance(vc, dict), type_not_matching_str provided[k] = _symmetric_difference(vp, vc) elif isinstance(vp, list): vc = chosen.get(k, []) assert isinstance(vc, list), type_not_matching_str provided[k] = [i for i in vp if i not in vc] # quadratic performance, optimize else: remove_keys.append(k) for k in remove_keys: provided.pop(k) return provided
5,345,114
def check_pv_name_in_rados(arg, image_id, pvc_name, pool_name): """ validate pvc information in rados """ omapkey = 'csi.volume.%s' % pvc_name cmd = ['rados', 'getomapval', 'csi.volumes.default', omapkey, "--pool", pool_name] if not arg.userkey: cmd += ["--id", arg.userid, "--key", arg.userkey] if arg.toolboxdeployed is True: tool_box_name = get_tool_box_pod_name(arg) kube = [arg.command] if arg.kubeconfig != "": if arg.command == "oc": kube += ["--config", arg.kubeconfig] else: kube += ["--kubeconfig", arg.kubeconfig] kube += ['exec', '-it', tool_box_name, '-n', arg.rooknamespace, '--'] cmd = kube+cmd out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = out.communicate() if stderr is not None: return False name = '' lines = [x.strip() for x in stdout.split("\n")] for line in lines: if ' ' not in line: continue if 'value' in line and 'bytes' in line: continue part = re.findall(r'[A-Za-z0-9\-]+', line) if part: name += part[-1] if name != image_id: if arg.debug: print("expected image Id %s found Id in rados %s" % (image_id, name)) return False return True
5,345,115
def moved_in(nn_orig, nn_proj, i, k): """Determine points that are neighbours in the projection space, but were not neighbours in the original space. nn_orig neighbourhood matrix for original data nn_proj neighbourhood matrix for projection data i index of the point considered k size of the neighbourhood considered Return a list of indices for points which are 'moved in' to point i """ pp = list(nn_proj[i, 1:k + 1]) oo = list(nn_orig[i, 1:k + 1]) for j in oo: if (j in oo) and (j in pp): pp.remove(j) return pp
5,345,116
def _get_lines_changed(line_summary): """ Parse the line diff summary into a list of numbers representing line numbers added or changed :param line_summary: the summary from a git diff of lines that have changed (ex: @@ -1,40 +1,23 @@) :return: a list of integers indicating which lines changed for that summary """ lines = re.search(r"\@\@.*?\+(.+?) \@\@", line_summary).group(1) if "," in lines: start, count = [int(x) for x in lines.split(",")] return list(range(start, start + count)) return [int(lines)]
5,345,117
def tj_agri_sup(): """ Real Name: b'Tj Agri Sup' Original Eqn: b'MIN(Tj Agri Dem *Agri Tajan Dam Coef, (Tj Outflow-Tj Dom Sup-Tj Env Sup-Tj Ind Sup))' Units: b'' Limits: (None, None) Type: component b'' """ return np.minimum(tj_agri_dem() * agri_tajan_dam_coef(), (tj_outflow() - tj_dom_sup() - tj_env_sup() - tj_ind_sup()))
5,345,118
def correlation_coefficient(y_true, y_pred): """The CC, is the Pearson’s correlation coefficient and treats the saliency and ground truth density maps, as random variables measuring the linear relationship between them.Values are first divided by their sum for each image to yield a distribution that adds to 1. Args: y_true (tensor, float32): A 4d tensor that holds the ground truth saliency maps with values between 0 and 255. y_pred (tensor, float32): A 4d tensor that holds the predicted saliency maps with values between 0 and 1. Returns: tensor, float32: A 0D tensor that holds the averaged error. """ sum_y_true = tf.reduce_sum(y_true, axis=[1, 2, 3], keep_dims=True) sum_y_pred = tf.reduce_sum(y_pred, axis=[1, 2, 3], keep_dims=True) y_true /= (sum_y_true + 1e-7) y_pred /= (sum_y_pred + 1e-7) N = shape_r_out * shape_c_out sum_prod = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3]) sum_x = tf.reduce_sum(y_true, axis=[1, 2, 3]) sum_y = tf.reduce_sum(y_pred * y_pred, axis=[1, 2, 3]) sum_x_square = tf.reduce_sum(tf.square(y_true), axis=[1, 2, 3]) sum_y_square = tf.reduce_sum(tf.square(y_pred), axis=[1, 2, 3]) num = sum_prod - ((sum_x * sum_y) / N) den = tf.sqrt((sum_x_square - tf.square(sum_x) / N) * (sum_y_square - tf.square(sum_y) / N)) return -tf.reduce_mean(num / den)
5,345,119
def check_hbase_table(params, table): """ Validates that an HBase table exists. An exception is raised if the table does not exist. :param params: :param table: The name of the HBase table. """ Logger.info("Checking HBase table '{0}'".format(table)) # if needed kinit as 'hbase' if params.security_enabled: kinit(params.kinit_path_local, params.hbase_keytab_path, params.hbase_principal_name, execute_user=params.hbase_user) template = "echo \"exists '{0}'\" | hbase shell -n | grep 'Table {1} does exist'" cmd = template.format(table, table) err_msg = "Missing HBase table; table={0}".format(table) execute(cmd, user=params.hbase_user, err_msg=err_msg)
5,345,120
def init_args(): """Init command line args used for configuration.""" parser = init_main_args() return parser.parse_args()
5,345,121
def _fit_binary(estimator, X, y, classes=None, **kwargs): """Fit a single binary estimator with kwargs.""" unique_y = np.unique(y) if len(unique_y) == 1: if classes is not None: if y[0] == -1: c = 0 else: c = y[0] warnings.warn("Label %s is present in all training examples." % str(classes[c])) estimator = _ConstantPredictor().fit(X, unique_y) else: estimator = clone(estimator) estimator.fit(X, y, **kwargs) return estimator
5,345,122
def lint(ctx): """ Lint code using flake8 tools. """ status("linting code ...") ctx.run("flake8 --show-source --statistics --count")
5,345,123
def data_index(person, dim): """ Output sequence of eye gaze (x, y) positions from the dataset for a person and a dimension of that person (task, session, etc) Index starts at 0. The vectors are [x, y, flag], flag being if it's null """ session = "S1" if dim % 2 == 0 else "S2" # S1_Balura_Game S1_Fixations S1_Horizontal_Saccades S1_Random_Saccades S1_Reading S1_Video_1 S1_Video_2 for exc in exceptions: person += (exc-1 <= person) num = str(person+1).rjust(3, "0") #global info, tasks, tasks_code dir = "data/Round_1/id_1" + num + "/" + session + "/" + session + tasks[dim//2] + \ "/S_1" + num + "_" + session + "_" + tasks_code[dim//2] + \ ".csv" pos = [] mask = [] with open(dir) as csvfile: spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|') vecs = [] pads = [] for i, row in enumerate(spamreader): if i < 1: continue row = ''.join(row).split(",") if (i-1) % config['Hz'] == 0 and (i-1) != 0: vecs = np.stack(vecs) pads = np.stack(pads) pos.append(vecs) mask.append(pads) vecs = [] pads = [] if (i-1) % (config['Hz'] // config['second_split']) == 0: flag = (row[1] == 'NaN' or row[2] == 'NaN') arr = np.array([0, 0, flag]) if flag else np.array([float(row[1]), float(row[2]), flag]) vecs.append(arr) arr2 = np.array([0]*(info.feature_size-1)+[info.feature_size]) if flag else np.ones(info.feature_size) # the info.feature_size instead of 1 is to rescale and give it equal "weight" pads.append(arr2) pos=np.stack(pos) mask=np.stack(mask) return pos, mask, [tasks[dim//2]]
5,345,124
def fairmot_config(): """Yields config while forcing the model to run on CPU.""" with open(PKD_DIR / "configs" / "model" / "fairmot.yml") as infile: node_config = yaml.safe_load(infile) node_config["root"] = Path.cwd() with mock.patch("torch.cuda.is_available", return_value=False): yield node_config
5,345,125
def getStatic(): """ These are "static" params for a smoother application flow and fine tuning of some params Not all functions are implemented yet Returns the necessary Params to run this application """ VISU_PAR = { # ============================================================================= # More general Params # ============================================================================= # does not consider samples which are longer than this value in [s] "delteSampleAbove[s]": 5, # flag for extractring/considering long Samples "extractLongs" : False, # does not consider samples which are longer than this value in [s] "toShort[s]": 0.003, # flag for extractring/considering too short Samples "extractShort" : False, # this might indicate a loop !! "bpmConfidence" : 1, # flag for extractring/considering potential Loops "extractLoops" : False, #compress all features to a range from (0,..,1) ->getFeatureStack() "compress": True, # invert all negative feature values with a total negative correlation ->getPandasCorrelation() "invNegative" : True, # ============================================================================= # Application Modes # ============================================================================= # scriptMode := ("clustering", "get_N_Closest", "analyseWithGT", "optimizer") # "clustering" := group samples into 'n Cluster' not regarding their GT # "get_N_Closest" := select N most similar samples to a reference sample not regarding their GT # requires path of a JSON file which contains the features of one sample (compareFilePath) # requires a number (N) (n_mostSimilar) # "analyseWithGT" := analyse a set of features and evaluate with GT-Labels # it is still possible to cluster within this option and save a landmap and restructure files # "optimizer" := trys a new subset of features and save the new subset, Needs GTs # # the hiearchy of the application mode is: analyseWithGT (when true, most params below are usefull) # clustering (There will be no option to select features compared to GT) # get_N_Closest There will be no option to select features compared to GT) # -> The best Features calculated and saved will be used ->(getBestFile,getBestFeatureSelektion) "scriptMode" : "get_N_Closest", #for get_N_Closest -> This should only contain one file and only the features for one Sample, "compareFilePath" : "../json_data/singleFile/Dirt-SamplesSingle2020-10-06.17:26:55.json", "n_mostSimilar": 25, # path to json files "dirName" : "../json_data/", # saved Features of a sample-library "fileName": "Dirt-Samples2020-09-14.20:53:18.json", # ============================================================================= # Feature selection and Feature subset creation modes # ============================================================================= # A fixed set of Features to select by (the names my vary from old JSON-Files to new ones) "predefinedFeatures" : False, # You can select Features by yourself if you want. It will refers to the predefined featrues # the default set can be generated from the Dirst-samples with suboptimalSearchs default values. "defineYoureOwnFeatureSet" : ['Har-Log_-FACM_10', 'MFCC-4', 'MFCC-7', 'Har-RecChr_-FACM_12','TriChr_Centroid', 'ZeroCrossingRate', 'MFCC-8'], # "defineYoureOwnFeatureSet" : ["Har-TriChr_-FACM_12", "MFCC-10"], # Select all features with correlation > suboptimalSearch.second to GT-Labels # And discard all features with cross correlation > suboptimalSearch.third "suboptimalSearch" : (True,0.3, 0.8), # Only take the nBest Features from suboptimaSearch (-1 := all) "nBest" : 7, # Consider all Features or take an approach of above. "calcAllFeatures": False, #("HillClimber", "Random") optimize features with a) hillclimber b) totaly random # maxxHill is the maximum iterationof the hillclimber/ max repeat for Random # probHill is the probability for each individual feature to get selected # modeHill := ("small", "big", "medium") affects HillClimber # small -> small steps (1-2 changes at a time) # big -> every permutation has equal probability # bigChoice -> bigger steps than "small" but not everything possibe like "big" "optimizer" : "HillClimber", "maxHill" : 500, "probHill": 0.0000001, "modeHill" : "medium", # amount of cluster to consider with Hierarch "nCluster" : 40, # (Hierarch/OPTICS/AffinityPropagation/SpectralClustering) 1st is hierarchial clustering, 2nd is Density based->getClusteringLabels() "clusterAlgo" : "Hierarch", # The mode for hierarchichal clustering. ward = minimum variance, average = minimum of average, complete = maximum of each cluster, single = minimum of each cluster "hierarchMode" : "average", # ============================================================================= # Output Params (save files to folder | draw landmap) # ============================================================================= # save folder for copying all audio files "saveFolder" : '../estimateSongs/', # restructure all files within their new assigned cluster Group/ # if mode is n_mostSimilar, it is an folder which contains the n_mostSimilar samples "copyFilesToFolder" : True, # draw a distance landmap with graphviz. "graphviz": False, # graphvizMode := ("clusterBased", "oneFilePerCluster", "minimalSpan") : # "minimalSpan" = draw one big landmap without clusters as minimal span tree (not recommended for all Files) # "clusterBased" = draw seperate clusters in one big landmap | # "oneFilePerCluster" = generate one landmap file per cluster) "graphvizMode" : "minimalSpan" } # Same Params for Spectral Clustering. This approach be will not be taken further SpectralClusterParam = {"assign_labels":"kmeans", #{‘kmeans’, ‘discretize’} default kmeans, "eigen_solver": "amg", } VISU_PAR = {**VISU_PAR, **SpectralClusterParam} return VISU_PAR
5,345,126
def current_device(): """Return the index of the current active device. Returns ------- int The index of device. """ return dragon.cuda.GetDevice()
5,345,127
def test_create(ldap): """ Test create LDAP object. """ # Create the object. account_1 = Account({ 'uid': "tux1", 'givenName': "Tux", 'sn': "Torvalds", 'cn': "Tux Torvalds", 'telephoneNumber': "000", 'mail': "[email protected]", 'o': "Linux Rules", 'userPassword': "silly", 'homeDirectory': "/home/tux", 'gidNumber': 10, }) account_1 = tldap.database.insert(account_1) assert account_1['uidNumber'] == [10000] account_2 = Account({ 'uid': "tux2", 'givenName': "Tux", 'sn': "Torvalds", 'cn': "Tux Torvalds", 'telephoneNumber': "000", 'mail': "[email protected]", 'o': "Linux Rules", 'userPassword': "silly", 'homeDirectory': "/home/tux", 'gidNumber': 10, }) account_2 = tldap.database.insert(account_2) assert account_2['uidNumber'] == [10001] account_3 = Account({ 'uid': "tux3", 'givenName': "Tux", 'sn': "Torvalds", 'cn': "Tux Torvalds", 'telephoneNumber': "000", 'mail': "[email protected]", 'o': "Linux Rules", 'userPassword': "silly", 'homeDirectory': "/home/tux", 'gidNumber': 10, }) account_3 = tldap.database.insert(account_3) assert account_3['uidNumber'] == [10002]
5,345,128
async def access_logger(app, handler): """Simple logging middleware to report info about each request/response. """ async def logging_handler(request): start_time = time.time() request_name = hex(int(start_time * 10000))[-6:] client_ip, _ = request.transport.get_extra_info( 'peername', ('UNKNOWN', None)) # log request LOGGER.info( 'Request %s: "%s %s" from %s', request_name, request.method, request.rel_url, client_ip) def log_response(response): # pylint: disable=protected-access content_length = response._headers.get('Content-Length', 'UNKNOWN') if content_length == 'UNKNOWN': LOGGER.info( 'Response %s: %s status, %s size, in %.3fs', request_name, response._status, content_length, time.time() - start_time) else: LOGGER.info( 'Response %s: %s status, %sB size, in %.3fs', request_name, response._status, content_length, time.time() - start_time) try: response = await handler(request) log_response(response) return response except web.HTTPError as e: log_response(e) raise e return logging_handler
5,345,129
def main(source: str) -> Tuple[astroid.Module, TypeInferer]: """Parse a string representing source text, and perform a typecheck. Return the astroid Module node (with the type_constraints attribute set on all nodes in the tree) and TypeInferer object. """ module = astroid.parse(source) type_inferer = TypeInferer() type_inferer.environment_transformer().visit(module) type_inferer.type_inference_transformer().visit(module) return module, type_inferer
5,345,130
def wait_until_active(tol=5): """Wait until awakened by user activity. This function will block and wait until some user activity is detected. Because of the polling method used, it may return `tol` seconds (or less) after user activity actually began. """ liinfo = LASTINPUTINFO() liinfo.cbSize = ctypes.sizeof(liinfo) lasttime = None delay = 1 # ms maxdelay = int(tol*1000) while True: GetLastInputInfo(ctypes.byref(liinfo)) if lasttime is None: lasttime = liinfo.dwTime if lasttime != liinfo.dwTime: break delay = min(2*delay, maxdelay) Sleep(delay)
5,345,131
def test_generate_cloud(): """Test plotting of word cloud""" tweets = [ "Make America Great Again! @DonaldTrump #America", "It's rocket-science tier investment~~ #LoveElonMusk", "America America America #USA #USA" ] expected_words = { 'america': 1.0, 'usa': 0.4, 'make': 0.2, 'great': 0.2, 'again': 0.2, 'donaldtrump': 0.2, 'it': 0.2, 'rocket': 0.2, 'science': 0.2, 'tier': 0.2, 'investment': 0.2, 'loveelonmusk': 0.2} expected_stopwords = { 'america': 1.0, 'usa': 0.4, 'make': 0.2, 'great': 0.2, 'donaldtrump': 0.2, 'rocket': 0.2, 'science': 0.2, 'tier': 0.2, 'investment': 0.2, 'loveelonmusk': 0.2} expected_hashtag = { 'usa': 1.0, 'america': 0.5, 'loveelonmusk': 0.5} fig_words, wc_words = generate_cloud(tweets, type="words") fig_stop, wc_stop = generate_cloud(tweets, type="stopwords") fig_ht, wc_ht = generate_cloud(tweets, type="hashtag") with pytest.raises(ValueError): generate_cloud(tweets, type="incorrect-type") with pytest.raises(ValueError): generate_cloud([]) with pytest.raises(ValueError): generate_cloud(["vaild", 3, "valid"]) assert isinstance(fig_words, matplotlib.figure.Figure), \ "Wrong output type" assert isinstance(fig_stop, matplotlib.figure.Figure), \ "Wrong output type" assert isinstance(fig_ht, matplotlib.figure.Figure), \ "Wrong output type" assert wc_words.words_ == expected_words, "Wordcloud shows words with wrong proportions" assert wc_stop.words_ == expected_stopwords, "Wordcloud (type=stopwords) shows words with wrong proportions" assert wc_ht.words_ == expected_hashtag, "Wordcloud (type=hashtag) shows words with wrong proportions"
5,345,132
def to_literal_scalar(a_str): """Helper function to enforce literal scalar block (ruamel.yaml).""" return ruamel.yaml.scalarstring.LiteralScalarString(a_str)
5,345,133
def get_first_free_address(subnet_id: Optional[int] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetFirstFreeAddressResult: """ Use this data source to access information about an existing resource. """ __args__ = dict() __args__['subnetId'] = subnet_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('phpipam:index/getFirstFreeAddress:getFirstFreeAddress', __args__, opts=opts, typ=GetFirstFreeAddressResult).value return AwaitableGetFirstFreeAddressResult( id=__ret__.id, ip_address=__ret__.ip_address, subnet_id=__ret__.subnet_id)
5,345,134
def pagenav(object_list, base_url, order_by, reverse, cur_month, is_paginated, paginator): """Display page navigation for given list of objects""" return {'object_list': object_list, 'base_url': base_url, 'order_by': order_by, 'reverse': reverse, 'cur_month': cur_month, 'is_paginated': is_paginated, 'paginator': paginator}
5,345,135
def read_input(path: str): """ Read game board file from path. Return list of str. >>> read_input("skyscrapers1.txt") ['***21**', '412453*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***'] """ with open(path, 'r') as f: game_lst = f.readlines() for idx, line in enumerate(game_lst): game_lst[idx] = line.strip('\n') return game_lst
5,345,136
def run_tweeter(): """ Captures image and sends tweet """ capture_image_and_tweet() return schedule.CancelJob
5,345,137
def get_retro_results( outdir, recos_basedir, events_basedir, recompute_estimate=False, overwrite=False, ): """Extract all rectro reco results from a reco directory tree, merging with original event information from correspoding source events directory tree. Results are populated to a Pandas DataFrame, saved to disk, and this is returned to the user. Parameters ---------- outdir : string recos_basedir : string events_basedir : string recompute_estimate : bool, optional overwrite : bool, optional """ t0 = time.time() outdir = abspath(expand(outdir)) if not isdir(outdir): mkdir(outdir) outfile_path = join(outdir, 'reconstructed_events.feather') if not overwrite and isfile(outfile_path): raise IOError('Output file path already exists at "{}"'.format(outfile_path)) cluster = LocalCluster(threads_per_worker=1, diagnostics_port=None) client = Client(cluster) try: # Walk directory hierarchy futures = [] for reco_dirpath, _, files in walk(recos_basedir, followlinks=True): is_leafdir = False for f in files: if f[-3:] == 'pkl' and f[:3] in ('slc', 'evt'): is_leafdir = True break if not is_leafdir: continue rel_dirpath = relpath(path=reco_dirpath, start=recos_basedir) if events_basedir is not None: event_dirpath = join(events_basedir, rel_dirpath) if not isdir(event_dirpath): raise IOError('Event directory does not exist: "{}"' .format(event_dirpath)) abs_reco_dirpath = abspath(reco_dirpath) filenum = basename(abs_reco_dirpath) flavdir = basename(dirname(abs_reco_dirpath)) futures.append( client.submit( extract_from_leaf_dir, recodir=reco_dirpath, eventdir=event_dirpath, flavdir=flavdir, filenum=filenum, recompute_estimate=recompute_estimate, ) ) results = [f.result() for f in as_completed(futures)] finally: cluster.close() client.close() del client del cluster # Convert to a single list containing all events all_events = reduce(add, results, []) # Convert to pandas DataFrame all_events = pd.DataFrame(all_events) # Save to disk all_events.to_feather(outfile_path) print('\nAll_events saved to "{}"\n'.format(outfile_path)) nevents = len(all_events) dt = time.time() - t0 print('\nTook {:.3f} s to extract {} events'.format(dt, nevents)) return all_events
5,345,138
def split_surface_v(obj, t, **kwargs): """ Splits the surface at the input parametric coordinate on the v-direction. This method splits the surface into two pieces at the given parametric coordinate on the v-direction, generates two different surface objects and returns them. It does not modify the input surface. :param obj: surface :type obj: BSpline.Surface or NURBS.Surface :param t: parametric coordinate on the v-direction :type t: float :return: a list of surface as the split pieces of the initial surface :rtype: Multi.MultiSurface """ # Validate input if not isinstance(obj, Abstract.Surface): raise TypeError("Input shape must be an instance of any Surface class") if t == 0.0 or t == 1.0: raise ValueError("Cannot split on the corner points") utilities.check_uv(t) # Keyword arguments span_func = kwargs.get('find_span_func', helpers.find_span_linear) # Find multiplicity of the knot ks = span_func(obj.degree_v, obj.knotvector_v, obj.ctrlpts_size_v, t) - obj.degree_v + 1 s = helpers.find_multiplicity(t, obj.knotvector_v) r = obj.degree_v - s # Create backups of the original surface temp_obj = copy.deepcopy(obj) # Split the original surface temp_obj.insert_knot(v=t, rv=r, check_r=False) # Knot vectors knot_span = span_func(temp_obj.degree_v, temp_obj.knotvector_v, temp_obj.ctrlpts_size_v, t) + 1 surf1_kv = list(temp_obj.knotvector_v[0:knot_span]) surf1_kv.append(t) surf2_kv = list(temp_obj.knotvector_v[knot_span:]) for _ in range(0, temp_obj.degree_v + 1): surf2_kv.insert(0, t) # Control points surf1_ctrlpts = [] for v_row in temp_obj.ctrlpts2d: temp = v_row[0:ks + r] surf1_ctrlpts.append(temp) surf2_ctrlpts = [] for v_row in temp_obj.ctrlpts2d: temp = v_row[ks + r - 1:] surf2_ctrlpts.append(temp) # Create a new surface for the first half surf1 = temp_obj.__class__() surf1.degree_u = temp_obj.degree_u surf1.degree_v = temp_obj.degree_v surf1.ctrlpts2d = surf1_ctrlpts surf1.knotvector_v = surf1_kv surf1.knotvector_u = temp_obj.knotvector_u # Create another surface fot the second half surf2 = temp_obj.__class__() surf2.degree_u = temp_obj.degree_u surf2.degree_v = temp_obj.degree_v surf2.ctrlpts2d = surf2_ctrlpts surf2.knotvector_v = surf2_kv surf2.knotvector_u = temp_obj.knotvector_u # Create a MultiSurface ret_val = Multi.MultiSurface() ret_val.add(surf1) ret_val.add(surf2) # Return the new surfaces return ret_val
5,345,139
def test_stable_read( subject: RadwagScale, scale_connection: MagicMock, masses: List[float], expected: float, ) -> None: """It should read samples.""" scale_connection.readline.side_effect = [ create_radwag_result_line("SU", v) for v in masses ] mass = subject.stable_read(len(masses)) assert mass == expected assert scale_connection.readline.call_count == len(masses)
5,345,140
def oidc_userprofile_test(request): """ OIDC-style userinfo """ user = request.user profile, g_o_c = UserProfile.objects.get_or_create(user=user) data = OrderedDict() data['sub'] = user.username data['name'] = "%s %s" % (user.first_name, user.last_name) data['nickname'] = profile.nickname data['given_name'] = user.first_name data['family_name'] = user.last_name data['email'] = user.email data['email_verified'] = profile.email_verified data['phone_number'] = profile.mobile_phone_number data['phone_verified'] = profile.phone_verified data['picture'] = profile.picture_url data['gender'] = profile.gender data['birthdate'] = str(profile.birth_date) data['patient'] = get_fhir_id(user) data['iat'] = user.date_joined data['call_member'] = settings.CALL_MEMBER data['call_member_plural'] = settings.CALL_MEMBER data['call_organization'] = settings.CALL_ORGANIZATION data['call_organization_plural'] = settings.CALL_ORGANIZATION_PLURAL data['ial'] = profile.identity_assurance_level return JsonResponse(data)
5,345,141
def split_idx( idx,a,b): """ Shuffle and split a list of indexes into training and test data with a fixed random seed for reproducibility run: index of the current split (zero based) nruns: number of splits (> run) idx: list of indices to split """ rs = np.random.RandomState() rs.shuffle(idx) start = int(a / 10. * len(idx)) end = int((b+a) / 10. * len(idx)) train_idx = idx[0:start] test_idx = idx[start:end] val_idx = idx[end:] return train_idx, val_idx, test_idx # return train_idx, test_idx
5,345,142
def scale(val, src, dst): """ Scale the given value from the scale of src to the scale of dst. val: float or int src: tuple dst: tuple example: print(scale(99, (0.0, 99.0), (-1.0, +1.0))) """ return (float(val - src[0]) / (src[1] - src[0])) * (dst[1] - dst[0]) + dst[0]
5,345,143
def celeba_samples( file_paths: List , crop_size: int = 178): """ Create CelebaA samples by center cropping into 178x178 Args: file_paths : List of file paths of CelebA images crop_size : Crop size of image """ y1, y2, x1, x2 = crop_celeba_image_coords(crop_size) for fname in file_paths: image = np.array(Image.open(fname))[y1:y2, x1:x2, :] sample = { "__key__" : fname.split('/')[-1].split('.')[0], "png" : image } yield sample
5,345,144
def add(c1, c2): """Add two encrypted counters""" a1, b1 = c1 a2, b2 = c2 return (a1 + a2, b1 + b2)
5,345,145
def fsevent_callback(stream_ref, full_path, event_count, paths, masks, ids): """Process an FSEvent (consult the Cocoa docs) and call each of our handlers which monitors that path or a parent""" for i in range(event_count): path = os.path.dirname(paths[i]) if masks[i] & kFSEventStreamEventFlagMustScanSubDirs: recursive = True if masks[i] & kFSEventStreamEventFlagUserDropped: logging.error("We were too slow processing FSEvents and some events were dropped") recursive = True if masks[i] & kFSEventStreamEventFlagKernelDropped: logging.error("The kernel was too slow processing FSEvents and some events were dropped!") recursive = True else: recursive = False for i in [k for k in FS_WATCHED_FILES if path.startswith(k)]: logging.debug("FSEvent: %s: processing %d callback(s) for path %s" % (i, len(FS_WATCHED_FILES[i]), path)) for j in FS_WATCHED_FILES[i]: j(i, path=path, recursive=recursive)
5,345,146
async def wait_all_tasks_blocked(cushion=0.0): """Block until there are no runnable tasks. This is useful in testing code when you want to give other tasks a chance to "settle down". The calling task is blocked, and doesn't wake up until all other tasks are also blocked for at least ``cushion`` seconds. (Setting a non-zero ``cushion`` is intended to handle cases like two tasks talking to each other over a local socket, where we want to ignore the potential brief moment between a send and receive when all tasks are blocked.) Note that ``cushion`` is measured in *real* time, not the Trio clock time. If there are multiple tasks blocked in :func:`wait_all_tasks_blocked`, then the one with the shortest ``cushion`` is the one woken (and this task becoming unblocked resets the timers for the remaining tasks). If there are multiple tasks that have exactly the same ``cushion``, then all are woken. You should also consider :class:`trio.testing.Sequencer`, which provides a more explicit way to control execution ordering within a test, and will often produce more readable tests. Example: Here's an example of one way to test that Trio's locks are fair: we take the lock in the parent, start a child, wait for the child to be blocked waiting for the lock (!), and then check that we can't release and immediately re-acquire the lock:: async def lock_taker(lock): await lock.acquire() lock.release() async def test_lock_fairness(): lock = trio.Lock() await lock.acquire() async with trio.open_nursery() as nursery: nursery.start_soon(lock_taker, lock) # child hasn't run yet, we have the lock assert lock.locked() assert lock._owner is trio.lowlevel.current_task() await trio.testing.wait_all_tasks_blocked() # now the child has run and is blocked on lock.acquire(), we # still have the lock assert lock.locked() assert lock._owner is trio.lowlevel.current_task() lock.release() try: # The child has a prior claim, so we can't have it lock.acquire_nowait() except trio.WouldBlock: assert lock._owner is not trio.lowlevel.current_task() print("PASS") else: print("FAIL") """ locals()[LOCALS_KEY_KI_PROTECTION_ENABLED] = True try: return await GLOBAL_RUN_CONTEXT.runner.wait_all_tasks_blocked(cushion) except AttributeError: raise RuntimeError("must be called from async context")
5,345,147
def get_chisq_grid(data, type, forecast=False, errors=None): """ Generates 2d meshgrid for chisq values of a given type (i.e. BBN, CMB etc) """ masses = np.unique(data['mass']) omegabs = np.unique(data['OmegaB']) MASS, OMEGAB = np.meshgrid(masses, omegabs) OMEGABDAT = data['OmegaB'].reshape(len(masses), -1).T YP = data['Yp'].reshape(len(masses), -1).T DH = data['D/H'].reshape(len(masses), -1).T NEFF = data['Neff'].reshape(len(masses), -1).T return chisq(YP, DH, OMEGABDAT, NEFF, type, forecast, errors)
5,345,148
def collect_samples_clouds_video(upsampling, opt, deferred_shading=False): """ Collect samples of cloud videos. opt is expected to be a dict. Output: DatasetData - samples: list of Sample - images_high: num_frames x output_channels x H*upsampling x W*upsampling - images_low: num_frames x input_channels x H x W - flow_low: num_frames x 2 x H x W """ number_of_samples = opt['samples'] number_of_images = opt['numberOfImages'] use_input_depth = deferred_shading or opt['useInputDepth'] use_input_normal = deferred_shading or opt['useInputNormal'] INPUT_PATH_SHADED = opt['inputPathShaded'] or'../../data/clouds/rendering_video/' INPUT_PATH_UNSHADED = opt['inputPathUnshaded'] or '../../data/clouds/rendering_video3/' inputPath = INPUT_PATH_UNSHADED if deferred_shading else INPUT_PATH_SHADED inputExtension = '.exr' if load_arrays and deferred_shading: # load directly from numpy arrays def get_image_name(i,mode,p): if mode=='high': return os.path.join(p, "high_%05d.npy" % i) if mode=='low': return os.path.join(p, "low_%05d.npy" % i) elif mode=='flow': return os.path.join(p, "flow_%05d.npy" % i) # Collect number of images and paths image_paths = [] print("dataset path:", inputPath) if os.path.isfile(inputPath): # input path points to a file where each line is a subdirectory of sets with open(inputPath, 'r') as fp: while True: line = fp.readline() if line is None or len(line)==0: break p = os.path.join(os.path.dirname(inputPath), line[:-1]) print("Check path '%s'"%p) num_images = 0 while True: if not os.path.exists(get_image_name(num_images, 'low', p)): break image_paths.append(( get_image_name(num_images, 'high', p), get_image_name(num_images, 'low', p), get_image_name(num_images, 'flow', p) )) num_images += 1 else: # input path is directly a folder num_images = 0 while True: if not os.path.exists(get_image_name(num_images, 'low', inputPath)): break image_paths.append(( get_image_name(num_images, 'high', inputPath), get_image_name(num_images, 'low', inputPath), get_image_name(num_images, 'flow', inputPath) )) num_images += 1 num_images = len(image_paths) if num_images==0: raise ValueError("No image found") num_frames = np.load(image_paths[0][1]).shape[0] print('Number of images found: %d, each with %d frames' % (num_images, num_frames)) if number_of_images is not None and number_of_images>0: num_images = min(num_images, number_of_images) print('But limited to %d images'%number_of_images) # load all images pg = ProgressBar(num_images, 'Load all images (npy)', length=50) images_high = [None]*num_images images_low = [None]*num_images flow_low = [None]*num_images for i in range(num_images): pg.print_progress_bar(i) images_high[i] = np.load(image_paths[i][0]) images_low[i] = np.load(image_paths[i][1]) flow_low[i] = np.load(image_paths[i][2]) pg.print_progress_bar(num_images) input_channels = 5 output_channels = images_high[0].shape[1] else: #old version, load images seperately def get_image_name(i,j,mode): if mode=='high': return os.path.join(inputPath, "high_%05d_%05d%s" % (i, j, inputExtension)) if mode=='highdn': return os.path.join(inputPath, "high_%05d_%05d_depth%s" % (i, j, inputExtension)) elif mode=='low': return os.path.join(inputPath, "low_%05d_%05d%s" % (i, j, inputExtension)) elif mode=='dn': return os.path.join(inputPath, "low_%05d_%05d_depth%s" % (i, j, inputExtension)) elif mode=='flow': return os.path.join(inputPath, "low_%05d_%05d_flow%s" % (i, j, inputExtension)) # Collect number of images num_images = 0 num_frames = 0 while True: if not os.path.exists(get_image_name(num_images, 0, 'low')): break num_images += 1 while True: if not os.path.exists(get_image_name(0, num_frames, 'low')): break num_frames += 1 print('Number of images found: %d, each with %d frames' % (num_images, num_frames)) if number_of_images is not None and number_of_images>0: num_images = min(num_images, number_of_images) print('But limited to %d images'%number_of_images) # load all images #print('Load all images') pg = ProgressBar(num_images, 'Load all images', length=50) images_high = [None]*num_images images_low = [None]*num_images flow_low = [None]*num_images output_channels = 3 for i in range(num_images): pg.print_progress_bar(i) high = [None]*num_frames low = [None]*num_frames flow = [None]*num_frames for j in range(num_frames): if not deferred_shading: high[j] = np.clip(np.asarray(imageio.imread(get_image_name(i, j, 'high'))).transpose((2, 0, 1)), 0, 1) else: high_rgb = np.clip(np.asarray(imageio.imread(get_image_name(i, j, 'high'))).transpose((2, 0, 1)), 0, 1) high_dn = np.asarray(imageio.imread(get_image_name(i, j, 'highdn'))).transpose((2, 0, 1)) high[j] = np.concatenate((high_rgb, high_dn), axis=0) low_rgb = np.clip(np.asarray(imageio.imread(get_image_name(i, j, 'low'))).transpose((2, 0, 1)), 0, 1) if use_input_depth or use_input_normal: low_dn = np.asarray(imageio.imread(get_image_name(i, j, 'dn'))).transpose((2, 0, 1)) if use_input_depth and use_input_normal: low[j] = np.concatenate((low_rgb, low_dn), axis=0) elif use_input_depth: #not use_input_normal low[j] = np.concatenate((low_rgb, low_dn[3:4,:,:]), axis=0) elif use_input_normal: #not use_input_depth low[j] = np.concatenate((low_rgb, low_dn[0:3,:,:]), axis=0) else: low[j] = low_rgb flow_xy = imageio.imread(get_image_name(i, j, 'flow'))[:,:,0:2] flow_inpaint = np.stack(( cv.inpaint(flow_xy[:,:,0], np.uint8(low_rgb[3,:,:]==0), 3, cv.INPAINT_NS), cv.inpaint(flow_xy[:,:,1], np.uint8(low_rgb[3,:,:]==0), 3, cv.INPAINT_NS)), axis=0) low[j][3,:,:] = low[j][3,:,:] * 2 - 1 # transform mask to [-1,1] high[j][3,:,:] = high[j][3,:,:] * 2 - 1 if deferred_shading: channel_mask = [3, 4, 5, 6, 7] # mask, normal x, y, z, depth low[j] = low[j][channel_mask,:,:] high[j] = high[j][channel_mask,:,:] flow[j] = flow_inpaint images_high[i] = np.stack(high, axis=0) images_low[i] = np.stack(low, axis=0) flow_low[i] = np.stack(flow, axis=0) pg.print_progress_bar(num_images) if deferred_shading: input_channels = 5 output_channels = 5 else: input_channels = 4 if use_input_depth: input_channels += 1 if use_input_normal: input_channels += 3 # find crops def randomPointOnSphere(): vec = np.random.randn(3) vec /= np.linalg.norm(vec) return vec; print('Find crops') fill_ratio = 0.5 * video_crop_size * video_crop_size # at least 50% of that crop has to be filled samples = [None]*number_of_samples sample = 0 while sample < number_of_samples: while True: index = random.randint(0, num_images-1) w = images_low[index].shape[2] h = images_low[index].shape[3] x = random.randint(0, w - video_crop_size - 1) y = random.randint(0, h - video_crop_size - 1) # check if it is filled crop_mask1 = (images_low[index][0,0,x:x+video_crop_size,y:y+video_crop_size] + images_low[index][0,1,x:x+video_crop_size,y:y+video_crop_size] + images_low[index][0,2,x:x+video_crop_size,y:y+video_crop_size]) > 0 crop_mask2 = (images_low[index][num_frames-1,0,x:x+video_crop_size,y:y+video_crop_size] + images_low[index][num_frames-1,1,x:x+video_crop_size,y:y+video_crop_size] + images_low[index][num_frames-1,2,x:x+video_crop_size,y:y+video_crop_size]) > 0 if np.sum(crop_mask1) >= fill_ratio and np.sum(crop_mask2) >= fill_ratio: # we found our sample samples[sample] = Sample( index=index, crop_low=(x,x+video_crop_size,y,y+video_crop_size), crop_high=(upsampling*x,upsampling*(x+video_crop_size),upsampling*y,upsampling*(y+video_crop_size)), augmentation=np.random.randint(MAX_AUGMENTATION_MODE), ambient_color=np.array([random.uniform(0.05,0.2)]*3), # color + light only needed for deferred shading diffuse_color=np.array([random.uniform(0.4,1.0)]*3), light_direction=np.array([0,0,1]*3) if random.uniform(0,1)<0.5 else randomPointOnSphere() ) #print(samples[sample]) sample += 1 break #sort samples by image index for proper sepearation between test and training samples.sort(key = lambda s: s.index) print('All samples collected') return DatasetData(samples=samples, images_high=images_high, images_low=images_low, flow_low=flow_low, input_channels=input_channels, output_channels=output_channels, crop_size = video_crop_size, num_frames = num_frames)
5,345,149
def spectrl2(units, location, datetime, weather, orientation, atmospheric_conditions, albedo): """ Calculate solar spectrum by calling functions exported by :data:`SPECTRL2DLL`. :param units: set ``units`` = 1 for W/m\ :sup:`2`/micron :type units: int :param location: latitude, longitude and UTC-timezone :type location: float :param datetime: year, month, day, hour, minute and second :type datetime: int :param weather: ambient-pressure [mB] and ambient-temperature [C] :type weather: float :param orientation: tilt and aspect [degrees] :type orientation: float :param atmospheric_conditions: alpha, assym, ozone, tau500 and watvap :type atmospheric_conditions: float :param albedo: 6 wavelengths and 6 reflectivities :type albedo: float :returns: spectral decomposition, x-coordinate :rtype: float :raises: :exc:`~solar_utils.exceptions.SPECTRL2_Error`, :exc:`~solar_utils.exceptions.SOLPOS_Error` Returns the diffuse, direct, extraterrestrial and global spectral components on the tilted surface in as a function of x-coordinate specified by units. ===== =============================================================== units output units ===== =============================================================== 1 irradiance (W/sq m/micron) per wavelength (microns) 2 photon flux (10.0E+16 /sq cm/s/micron) per wavelength (microns) 3 photon flux density (10.0E+16 /sq cm/s/eV) per energy (eV) ===== =============================================================== See `NREL SPECTRL2 Documentation <http://rredc.nrel.gov/solar/models/spectral/spectrl2/documentation.html>`_ for more detail. .. seealso:: :func:`solposAM` **Examples:** >>> units = 1 >>> location = [33.65, -84.43, -5.0] >>> datetime = [1999, 7, 22, 9, 45, 37] >>> weather = [1006.0, 27.0] >>> orientation = [33.65, 135.0] >>> atmospheric_conditions = [1.14, 0.65, -1.0, 0.2, 1.36] >>> albedo = [0.3, 0.7, 0.8, 1.3, 2.5, 4.0] + ([0.2] * 6) >>> (specdif, specdir, specetr, specglo, specx) = spectrl2(units, location, datetime, weather, orientation, atmospheric_conditions, albedo) """ # load the DLL ctypes.cdll.LoadLibrary(SOLPOSAMDLL) # requires 'solpos.dll' spectrl2_dll = ctypes.cdll.LoadLibrary(SPECTRL2DLL) _spectrl2 = spectrl2_dll.spectrl2 # cast Python types as ctypes _location = (ctypes.c_float * 3)(*location) _datetime = (ctypes.c_int * 6)(*datetime) _weather = (ctypes.c_float * 2)(*weather) _orientation = (ctypes.c_float * 2)(*orientation) _atmospheric_conditions = (ctypes.c_float * 5)(*atmospheric_conditions) _albedo = (ctypes.c_float * 12)(*albedo) # allocate space for results specdif = (ctypes.c_float * 122)() specdir = (ctypes.c_float * 122)() specetr = (ctypes.c_float * 122)() specglo = (ctypes.c_float * 122)() specx = (ctypes.c_float * 122)() angles = (ctypes.c_float * 2)() airmass = (ctypes.c_float * 2)() settings = (ctypes.c_int * 2)() shadowband = (ctypes.c_float * 3)() # call DLL err_code = _spectrl2( units, _location, _datetime, _weather, _orientation, _atmospheric_conditions, _albedo, specdif, specdir, specetr, specglo, specx, angles, airmass, settings, shadowband ) # return results if successful, otherwise raise exception if err_code == 0: return specdif, specdir, specetr, specglo, specx elif err_code < 0: data = {'units': units, 'tau500': atmospheric_conditions[3], 'watvap': atmospheric_conditions[4], 'assym': atmospheric_conditions[1]} raise SPECTRL2_Error(err_code, data) else: # convert err_code to bits _code = _int2bits(err_code) data = {'location': location, 'datetime': datetime, 'weather': weather, 'angles': angles, 'airmass': airmass, 'settings': settings, 'orientation': orientation, 'shadowband': shadowband} raise SOLPOS_Error(_code, data)
5,345,150
def test_int() -> None: """Test integer type.""" type = data_types.Int(bytearray([0x01, 0x9A, 0xFF, 0xFF])) assert type.value == -26111 assert type.size == 4
5,345,151
def decompile_marketplace_bp( name, version, app_source, bp_name, project, with_secrets, bp_dir ): """decompiles marketplace blueprint""" if not version: LOG.info("Fetching latest version of Marketplace Blueprint {} ".format(name)) version = get_mpi_latest_version( name=name, app_source=app_source, type=MARKETPLACE_ITEM.TYPES.BLUEPRINT ) LOG.info(version) LOG.info("Converting MPI into blueprint") bp_payload = convert_mpi_into_blueprint( name=name, version=version, project_name=project, app_source=app_source ) del bp_payload["status"] client = get_api_client() blueprint_uuid = bp_payload["metadata"]["uuid"] res, err = client.blueprint.export_file(blueprint_uuid) if err: LOG.error("[{}] - {}".format(err["code"], err["error"])) sys.exit(-1) bp_payload = res.json() blueprint = bp_payload["spec"]["resources"] blueprint_name = get_valid_identifier(bp_name or name) if not bp_dir: bp_dir_suffix = bp_name or "mpi_bp_{}_v{}".format(blueprint_name, version) bp_dir = os.path.join(os.getcwd(), bp_dir_suffix) blueprint_description = bp_payload["spec"].get("description", "") LOG.info("Decompiling marketplace blueprint {}".format(name)) for sub_obj in blueprint.get("substrate_definition_list"): sub_type = sub_obj.get("type", "") or "AHV_VM" if sub_type == "K8S_POD": raise NotImplementedError( "Decompilation for k8s pod is not supported right now" ) elif sub_type != "AHV_VM": LOG.warning( "Decompilation support for providers other than AHV is experimental." ) break bp_cls = BlueprintType.decompile(blueprint) bp_cls.__name__ = blueprint_name bp_cls.__doc__ = blueprint_description create_bp_dir(bp_cls=bp_cls, bp_dir=bp_dir, with_secrets=with_secrets) click.echo( "\nSuccessfully decompiled. Directory location: {}. Blueprint location: {}".format( get_bp_dir(), os.path.join(get_bp_dir(), "blueprint.py") ) )
5,345,152
def setup_transition_list(): """ Creates and returns a list of Transition() objects to represent state transitions for an unbiased random walk. Parameters ---------- (none) Returns ------- xn_list : list of Transition objects List of objects that encode information about the link-state transitions. Notes ----- State 0 represents fluid and state 1 represents a particle (such as a sediment grain, tea leaf, or solute molecule). The states and transitions are as follows: Pair state Transition to Process Rate (cells/s) ========== ============= ======= ============== 0 (0-0) (none) - - 1 (0-1) 2 (1-0) left/down motion 10.0 2 (1-0) 1 (0-1) right/up motion 10.0 3 (1-1) (none) - - """ # Create an empty transition list xn_list = [] # Append two transitions to the list. # Note that the arguments to the Transition() object constructor are: # - Tuple representing starting pair state # (left/bottom cell, right/top cell, orientation) # - Tuple representing new pair state # (left/bottom cell, right/top cell, orientation) # - Transition rate (cells per time step, in this case 1 sec) # - Name for transition xn_list.append(Transition((0, 1, 0), (1, 0, 0), 10.0, "left/down motion")) xn_list.append(Transition((1, 0, 0), (0, 1, 0), 10.0, "right/up motion")) return xn_list
5,345,153
def error_message(error, text): """ Gives default or custom text for the error. -------------------- Inputs <datatype>: - error <Error Object>: The error code - text <string>: Custom error text if error has no message Returns <datatype>: - error description <string>: The custom error description or default """ try: return error.description['message'] except TypeError: return text
5,345,154
def maskguard(maskarray, niter=1, xyonly=False, vonly=False): """ Pad a mask by specified number of pixels in all three dimensions. Parameters ---------- maskarray : `~numpy.ndarray` The 3-D mask array with 1s for valid pixels and 0s otherwise. niter : int, optional Number of iterations for expanding mask by binary dilation. Default: 1 xyonly : boolean, optional Whether to expand only in the two sky coordinates Default: False vonly : boolean, optional Whether to expand only in the spectral coordinate Default: False (ignored if xyonly==True) Returns ------- maskarray : `~numpy.ndarray` A copy of the input maskarray after padding. """ s = ndimage.generate_binary_structure(3, 1) if xyonly: s[0,:] = False s[2,:] = False elif vonly: s[1]=s[0] maskarray = ndimage.binary_dilation(maskarray, structure=s, iterations=niter) return maskarray
5,345,155
def validdest(repo, old, new): """Is the new bookmark destination a valid update from the old one""" repo = repo.unfiltered() if old == new: # Old == new -> nothing to update. return False elif not old: # old is nullrev, anything is valid. # (new != nullrev has been excluded by the previous check) return True elif repo.obsstore: return new.node() in obsolete.foreground(repo, [old.node()]) else: # still an independent clause as it is lazier (and therefore faster) return old.descendant(new)
5,345,156
def no_rbac_suffix_in_test_filename(filename): """Check that RBAC filenames end with "_rbac" suffix. P101 """ if "patrole_tempest_plugin/tests/api" in filename: if filename.endswith('rbac_base.py'): return if not filename.endswith('_rbac.py'): return 0, "RBAC test filenames must end in _rbac suffix"
5,345,157
def import_results(results_file, valid_codes=None, session=None): """Take a iterable which yields result lines and add them to the database. If session is None, the global db.session is used. If valid_codes is non-None, it is a set containing the party codes which are allowed in this database. If None, this set is queried from the database. .. note:: This can take a relatively long time when adding several hundred results. Should this become a bottleneck, there are some optimisation opportunities. """ session = session if session is not None else db.session valid_codes = ( valid_codes if valid_codes is not None else _query_valid_party_codes(session) ) diagnostics = [] # This is a relatively straightforward but sub-optimal way to implement a # bulk insert. The main issue is that the DB is queried once per result to # see if the constituency exists. It would be preferable to do a single # query over all of the given constituency names to determine which ones are # present. This would make the flow of this function less obvious. For the # moment, leave the sub-optimal implementation but should we need to # re-visit this function as we deal with greater numbers of results the # strategy above should be tried. for line_idx, line in enumerate(results_file): try: add_constituency_result_line( line, valid_codes=valid_codes, session=session) except ValueError as e: diagnostics.append(Diagnostic( line, e.args[0] % e.args[1:], line_idx + 1 )) # Log the fact that this import happened log('\n'.join([ 'Imported {} result line(s), {} diagnostic(s)'.format( line_idx+1, len(diagnostics)), ] + [str(d) for d in diagnostics])) return diagnostics
5,345,158
def register_plugins(manager: astroid.Manager) -> None: """Apply our transforms to a given astroid manager object.""" # Hmm; is this still necessary? if VERBOSE: manager.register_failed_import_hook(failed_import_hook) # Completely ignore everything under an 'if TYPE_CHECKING' conditional. # That stuff only gets run for mypy, and in general we want to # check code as if it doesn't exist at all. manager.register_transform(astroid.If, ignore_type_check_filter) # We use 'reveal_type()' quite often, which tells mypy to print # the type of an expression. Let's ignore it in Pylint's eyes so # we don't see an ugly error there. manager.register_transform(astroid.Call, ignore_reveal_type_call) # We make use of 'from __future__ import annotations' which causes Python # to receive annotations as strings, and also 'if TYPE_CHECKING:' blocks, # which lets us do imports and whatnot that are limited to type-checking. # Let's make Pylint understand these. manager.register_transform(astroid.AnnAssign, var_annotations_filter) manager.register_transform(astroid.FunctionDef, func_annotations_filter) manager.register_transform(astroid.AsyncFunctionDef, func_annotations_filter) # Pylint doesn't seem to support Generics much right now, and it seems # to lead to some buggy behavior and slowdowns. So let's filter them # out. So instead of this: # class MyClass(MyType[T]): # Pylint will see this: # class MyClass(MyType): # I've opened a github issue related to the problems I was hitting, # so we can revisit the need for this if that gets resolved. # https://github.com/PyCQA/pylint/issues/3605 manager.register_transform(astroid.ClassDef, class_generics_filter)
5,345,159
def fit_lens_data_with_tracer(lens_data, tracer, padded_tracer=None): """Fit lens data with a model tracer, automatically determining the type of fit based on the \ properties of the galaxies in the tracer. Parameters ----------- lens_data : lens_data.LensData or lens_data.LensDataHyper The lens-images that is fitted. tracer : ray_tracing.AbstractTracerNonStack The tracer, which describes the ray-tracing and strong lens configuration. padded_tracer : ray_tracing.Tracer or None A tracer with an identical strong lens configuration to the tracer above, but using the lens data's \ padded grid_stack such that unmasked model-images can be computed. """ if tracer.has_light_profile and not tracer.has_pixelization: return LensProfileFit(lens_data=lens_data, tracer=tracer, padded_tracer=padded_tracer) elif not tracer.has_light_profile and tracer.has_pixelization: return LensInversionFit(lens_data=lens_data, tracer=tracer) elif tracer.has_light_profile and tracer.has_pixelization: return LensProfileInversionFit(lens_data=lens_data, tracer=tracer, padded_tracer=padded_tracer) else: raise exc.FittingException('The fit routine did not call a Fit class - check the ' 'properties of the tracer')
5,345,160
def sround(a, *ndigits): """Termwise round(a) for an iterable. An optional second argument is supported, and passed through to the built-in ``round`` function. As with the built-in, rounding is correct taking into account the float representation, which is base-2. https://docs.python.org/3/library/functions.html#round """ op = _make_termwise_stream_unop(round, ndigits[0]) if ndigits else _round return op(a)
5,345,161
def transform_graph(graph, cpu=None, callcontrol=None, portal_jd=None): """Transform a control flow graph to make it suitable for being flattened in a JitCode. """ constant_fold_ll_issubclass(graph, cpu) t = Transformer(cpu, callcontrol, portal_jd) t.transform(graph)
5,345,162
def test_pb_validation_big_size_number(): """Test if an invalid number, with wrong size, is really invalid""" invalid_number = '0600000151' assert pb.start(invalid_number) == False
5,345,163
def validate_paths(args): """Ensure all of the configured paths actually exist.""" if not path.exists(args.destination): LOGGER.warning('Destination path "%s" does not exist, creating', args.destination) os.makedirs(path.normpath(args.destination)) for file_path in [args.source, args.templates]: if not path.exists(file_path): exit_application('Path {} does not exist'.format(file_path), 1)
5,345,164
def run_insert_data_into_single_table(): """ An example demonstrating a simple single-table Hyper file including table creation and data insertion with different types """ print("EXAMPLE - Insert data into a single table within a new Hyper file") path_to_database = Path("customer.hyper") # Starts the Hyper Process with telemetry enabled to send data to Tableau. # To opt out, simply set telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU. with HyperProcess(telemetry=Telemetry.SEND_USAGE_DATA_TO_TABLEAU) as hyper: # Creates new Hyper file "customer.hyper". # Replaces file with CreateMode.CREATE_AND_REPLACE if it already exists. with Connection(endpoint=hyper.endpoint, database=path_to_database, create_mode=CreateMode.CREATE_AND_REPLACE) as connection: connection.catalog.create_schema(schema=extract_table.table_name.schema_name) connection.catalog.create_table(table_definition=extract_table) # The rows to insert into the "Extract"."Extract" table. data_to_insert = [ ["DK-13375", "Dennis Kane", 518, "Consumer"], ["EB-13705", "Ed Braxton", 815, "Corporate"] ] with Inserter(connection, extract_table) as inserter: inserter.add_rows(rows=data_to_insert) inserter.execute() # The table names in the "Extract" schema (the default schema). table_names = connection.catalog.get_table_names("Extract") print(f"Tables available in {path_to_database} are: {table_names}") # Number of rows in the "Extract"."Extract" table. # `execute_scalar_query` is for executing a query that returns exactly one row with one column. row_count = connection.execute_scalar_query(query=f"SELECT COUNT(*) FROM {extract_table.table_name}") print(f"The number of rows in table {extract_table.table_name} is {row_count}.") print("The connection to the Hyper file has been closed.") print("The Hyper process has been shut down.")
5,345,165
def update_usim_inputs_after_warm_start( settings, usim_data_dir=None, warm_start_dir=None): """ TODO: Combine this method with create_usim_input_data() above """ # load usim data if not usim_data_dir: usim_data_dir = settings['usim_local_data_folder'] datastore_name = _get_usim_datastore_fname(settings, io='input') input_store_path = os.path.join(usim_data_dir, datastore_name) if not os.path.exists(input_store_path): raise ValueError('No input data found at {0}'.format(input_store_path)) usim_datastore = pd.HDFStore(input_store_path) p = usim_datastore['persons'] hh = usim_datastore['households'] # load warm start data if not warm_start_dir: warm_start_dir = settings['asim_local_output_folder'] warm_start_persons = pd.read_csv( os.path.join(warm_start_dir, "warm_start_persons.csv"), index_col='person_id', dtype={'workplace_taz': str, 'school_taz': str}) warm_start_households = pd.read_csv( os.path.join(warm_start_dir, "warm_start_households.csv"), index_col='household_id') # replace persons and households with warm start data assert p.shape[0] == warm_start_persons.shape[0] assert hh.shape[0] == warm_start_households.shape[0] p['work_zone_id'] = warm_start_persons['workplace_taz'].reindex(p.index) p['school_zone_id'] = warm_start_persons['school_taz'].reindex(p.index) hh['cars'] = warm_start_households['auto_ownership'].reindex( hh.index) usim_datastore['persons'] = p usim_datastore['households'] = hh usim_datastore.close() return
5,345,166
def part_b(lines): """ For each valid line consider the stack of opening characters that didn't get closed. Compute a score for each line per the question, then return the median value of these scores. """ scores = [] for line in lines: is_line_valid, stack = assess_line(line) if is_line_valid: scores.append(score_completion(stack)) scores.sort() return scores[len(scores) // 2]
5,345,167
def setup_platform(opp, config, add_entities, discovery_info=None): """Set up the ThinkingCleaner platform.""" host = config.get(CONF_HOST) if host: devices = [ThinkingCleaner(host, "unknown")] else: discovery = Discovery() devices = discovery.discover() @util.Throttle(MIN_TIME_BETWEEN_SCANS, MIN_TIME_BETWEEN_FORCED_SCANS) def update_devices(): """Update all devices.""" for device_object in devices: device_object.update() dev = [] for device in devices: for type_name in SENSOR_TYPES: dev.append(ThinkingCleanerSensor(device, type_name, update_devices)) add_entities(dev)
5,345,168
def _get_activation( spec): """Get a rematlib Layer corresponding to a given activation function.""" if spec == mobile_search_space_v3.RELU: result = layers.ReLU() elif spec == mobile_search_space_v3.RELU6: result = layers.ReLU6() elif spec == mobile_search_space_v3.SWISH6: result = layers.Swish6() elif spec == mobile_search_space_v3.SIGMOID: result = layers.Sigmoid() else: raise ValueError('Unrecognized activation function: {}'.format(spec)) return result
5,345,169
def addUpdateCarrierGroups(): """ Add or Update a group of carriers """ db = DummySession() try: if not session.get('logged_in'): return redirect(url_for('index')) if (settings.DEBUG): debugEndpoint() db = SessionLoader() form = stripDictVals(request.form.to_dict()) gwgroup = form['gwgroup'] name = form['name'] new_name = form['new_name'] if 'new_name' in form else '' authtype = form['authtype'] if 'authtype' in form else '' r_username = form['r_username'] if 'r_username' in form else '' auth_username = form['auth_username'] if 'auth_username' in form else '' auth_password = form['auth_password'] if 'auth_password' in form else '' auth_domain = form['auth_domain'] if 'auth_domain' in form else settings.DEFAULT_AUTH_DOMAIN auth_proxy = form['auth_proxy'] if 'auth_proxy' in form else '' # format data if authtype == "userpwd": auth_domain = safeUriToHost(auth_domain) if auth_domain is None: raise http_exceptions.BadRequest("Auth domain hostname/address is malformed") if len(auth_proxy) == 0: auth_proxy = auth_domain auth_proxy = safeFormatSipUri(auth_proxy, default_user=r_username) if auth_proxy is None: raise http_exceptions.BadRequest('Auth domain or proxy is malformed') if len(auth_username) == 0: auth_username = r_username # Adding if len(gwgroup) <= 0: Gwgroup = GatewayGroups(name, type=settings.FLT_CARRIER) db.add(Gwgroup) db.flush() gwgroup = Gwgroup.id # Add auth_domain(aka registration server) to the gateway list if authtype == "userpwd": Uacreg = UAC(gwgroup, r_username, auth_password, realm=auth_domain, auth_username=auth_username, auth_proxy=auth_proxy, local_domain=settings.EXTERNAL_IP_ADDR, remote_domain=auth_domain) Addr = Address(name + "-uac", auth_domain, 32, settings.FLT_CARRIER, gwgroup=gwgroup) db.add(Uacreg) db.add(Addr) # Updating else: # config form if len(new_name) > 0: Gwgroup = db.query(GatewayGroups).filter(GatewayGroups.id == gwgroup).first() gwgroup_fields = strFieldsToDict(Gwgroup.description) old_name = gwgroup_fields['name'] gwgroup_fields['name'] = new_name Gwgroup.description = dictToStrFields(gwgroup_fields) Addr = db.query(Address).filter(Address.tag.contains("name:{}-uac".format(old_name))).first() if Addr is not None: addr_fields = strFieldsToDict(Addr.tag) addr_fields['name'] = 'name:{}-uac'.format(new_name) Addr.tag = dictToStrFields(addr_fields) # auth form else: if authtype == "userpwd": # update uacreg if exists, otherwise create if not db.query(UAC).filter(UAC.l_uuid == gwgroup).update( {'l_username': r_username, 'r_username': r_username, 'auth_username': auth_username, 'auth_password': auth_password, 'r_domain': auth_domain, 'realm': auth_domain, 'auth_proxy': auth_proxy, 'flags': UAC.FLAGS.REG_ENABLED.value}, synchronize_session=False): Uacreg = UAC(gwgroup, r_username, auth_password, realm=auth_domain, auth_username=auth_username, auth_proxy=auth_proxy, local_domain=settings.EXTERNAL_IP_ADDR, remote_domain=auth_domain) db.add(Uacreg) # update address if exists, otherwise create if not db.query(Address).filter(Address.tag.contains("name:{}-uac".format(name))).update( {'ip_addr': auth_domain}, synchronize_session=False): Addr = Address(name + "-uac", auth_domain, 32, settings.FLT_CARRIER, gwgroup=gwgroup) db.add(Addr) else: # delete uacreg and address if they exist db.query(UAC).filter(UAC.l_uuid == gwgroup).delete(synchronize_session=False) db.query(Address).filter(Address.tag.contains("name:{}-uac".format(name))).delete(synchronize_session=False) db.commit() globals.reload_required = True return displayCarrierGroups() except sql_exceptions.SQLAlchemyError as ex: debugException(ex) error = "db" db.rollback() db.flush() return showError(type=error) except http_exceptions.HTTPException as ex: debugException(ex) error = "http" db.rollback() db.flush() return showError(type=error) except Exception as ex: debugException(ex) error = "server" db.rollback() db.flush() return showError(type=error) finally: db.close()
5,345,170
def RT2tq(poses, square=False): """ !!NOT TESETED!! :param poses: N x 3 x 4, (R|T) :return: (N, 7) """ N,_,_ = poses.shape R = poses[:,:,:3] T = poses[:,:,3:] # Nx3x1 q = quaternion.as_float_array(quaternion.from_rotation_matrix(R)) #Nx4 t= T.squeeze(-1) tq = np.concatenate([t,q], axis=-1) return tq
5,345,171
def benchmarking_plot(timeseries, kernel_density=False): """ Plot probability distribution of model outputs """ combined_df = pd.DataFrame() for ts in timeseries: df1 = ts.tp.to_dataframe(name=ts.plot_legend) df2 = df1.reset_index() df3 = df2.drop(["time", "lon", "lat"], axis=1) print(df3.shape) combined_df[ts.plot_legend] = df3[ts.plot_legend] time_ds = timeseries[0].time.to_dataframe(name='time') months_float = np.ceil((time_ds["time"] - np.floor(time_ds["time"])) * 12) df = combined_df.copy() df["time"] = months_float.values df["time"] = df["time"].astype(int) grouped_dfs = [] for m in range(1, 13): month_df = df[df['time'] == m] month_df = month_df.drop(['time'], axis=1) grouped_dfs.append(month_df) # Plot _fig, axs = plt.subplots(3, 4, sharex=True, sharey=True) for i in range(12): x = (i) % 3 y = int(i / 3) for b in list(combined_df): data = grouped_dfs[i][b].values X_plot = np.linspace(0, data.max(), 1000)[:, np.newaxis] if kernel_density is True: bandwidth = np.arange(0.05, 2, .05) X = data.reshape(-1, 1) kde = KernelDensity(kernel='gaussian') grid = GridSearchCV(kde, {'bandwidth': bandwidth}) grid.fit(X) kde = grid.best_estimator_ log_dens = kde.score_samples(X_plot) axs[x, y].fill(X_plot[:, 0], np.exp(log_dens), label=b) else: axs[x, y].hist((grouped_dfs[i])[b], density=True, label=b, bins=np.arange(0, int(combined_df.max().max()))) # alpha=.5) axs[x, y].set_title(month_dict[i]) axs[x, y].set_title(month_dict[i]) axs[x, y].xaxis.set_tick_params(which="both", labelbottom=True) axs[x, y].yaxis.set_tick_params(which="both", labelbottom=True) axs[x, y].set_xlabel("Precipitation (mm/day)") axs[x, y].set_ylabel("Probability density") ''' axs[x, y].axvline( np.percentile((grouped_dfs[i])['ERA5'], 95), color="k", linestyle="dashed", linewidth=1, label="ERA5 95th percentile", ) ''' plt.legend(loc="upper right") plt.show()
5,345,172
def send_msg_less_committer_time(keyword='', since=(datetime.datetime.now() - datetime.timedelta(days=1)).astimezone().isoformat(), until=datetime.datetime.now().astimezone().isoformat(), author_infos=[{"committer": git_cfg['user'], "target_commit_count": 1}]): """특정 시간 전부터 특정 시간 전 까지의 keyword 를 포함하는 commit 수가 n개 미만이면, 해당 사용자에게 멘션을 걸어 슬랙 알람 메시지를 전송합니다. 유효하지 않은 기간 값을 입력할 경우, 잘못된 값 입력 안내 슬랙 메시지를 전송합니다. Keyword arguments: keyword -- regexp. 이 Regexp를 만족하는(포함하는) commit message 만 count 함. since -- 이 시간 이후 commit 만 확인. timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ. e.g. 2021-01-02T01:24:25.944203+09:00 이후 commit 만 확인 until -- 이 시간 이전 commit 만 확인. timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ. e.g. 2021-02-02T01:24:25.944203+09:00 이전 commit 만 확인 author_info -- commit 수를 체크할 committer 와 committer 별 목표 commit 수 e.g. {"committer": "repo-committer-user-name", "target_commit_count": 1} """ if since > until: send_slack_msg(f'{SLACK_MSG_ERROR_PERIOD} 지금으로부터 {since} 전 부터 {until} 전 까지 데이터를 요청하셨습니다.') return commit_cnt = count_repo_commit(since=since, until=until, author_infos=author_infos, keyword=keyword) for info in author_infos: author = info['committer'] target_commit_cnt = info['target_commit_count'] if commit_cnt[author] < target_commit_cnt: msg = slack_cfg['msg']['format'].format(*slack_cfg['msg']['args']) send_slack_mention_msg(author, appended_msg=msg)
5,345,173
def make_callback(subscription_path, project_id): """Return a callback closure""" def callback(message): """Handle Pub/Sub resurrection message. Ignore (and ACK) messages that are not well-formed. Try handle any other message, ACKing it eventually (always). """ logger.info('Handling message from subscription "%s"', subscription_path) # parse the message, ACK on failure to avoid duplicate deliveries try: instance_desc = json.loads(message.data) except: logger.exception('Failed parsing JSON message - ignoring it\n%s', message) else: resurrect_instance(project_id, instance_desc) finally: logger.info('ACKing message\n%s', message) message.ack() return callback
5,345,174
def update_account(self, changes, changes_state): """Update an existing account with changes Args: self: -- OandaClient instance changes: -- Changes from account_changes API call changes_state: ChangesState from account_changes API call Returns: None """ # Add / Replace / Remove items from the AccountChanges object orders = (order if not changes.orders_filled.get_id(order.id) else changes.orders_filled.get_id(order.id) for order in chain(self._account.orders, changes.orders_created) if not changes.orders_cancelled.get_id(order.id) and not changes.orders_filled.get_id(order.id)) trades = (trade if not changes.trades_reduced.get_id(trade.id) else changes.trades_reduced.get_id(trade.id) for trade in chain(self._account.trades, changes.trades_opened) if not changes.trades_closed.get_id(trade.id)) # We need to replace any positions in the stored account with the changed positions # and then we need to update the dynamic state positions = {position.instrument: position for position in self._account.positions} positions.update({ position.instrument: position for position in changes.positions }) positions = ((position, changes_state.positions.get_instrument(instrument)) for instrument, position in positions.items()) # Update the Dynamic state orders = tuple(order if not changes_state.orders.get_id(order.id) else order.replace(**changes_state.orders.get_id(order.id).dict()) for order in orders) trades = tuple(trade if not changes_state.trades.get_id(trade.id) else trade.replace(**changes_state.trades.get_id(trade.id).dict()) for trade in trades) positions = tuple( position.replace( unrealized_pl=0, long=position.long.replace(unrealized_pl=0), short=position.short.replace(unrealized_pl=0)) if not state else position.replace( unrealized_pl=state.net_unrealized_pl, long=position.long.replace(unrealized_pl=state.long_unrealized_pl), short=position.short.replace(unrealized_pl=state.short_unrealized_pl)) for position, state in positions) self._account = self._account.replace(**dict(changes_state.dict(json=False), orders=orders, trades=trades, positions=positions)) self.transactions = ArrayTransaction( *sorted((changes.transactions + self.transactions)[-self.max_transaction_history:], key=lambda x: x.id, reverse=True))
5,345,175
def _assign_course_staff_role(course_key, enrollments, staff_assignments): """ Grant or remove the course staff role for a set of enrollments on a course. For enrollment without a linked user, a CourseAccessRoleAssignment will be created (or removed) for that enrollment. Arguments: enrollments (list): ProgramCourseEnrollments to update staff_assignments (dict): Maps an enrollment's external key to a course staff value """ enrollment_role_assignments_to_delete = [] for enrollment in enrollments: if enrollment.course_key != course_key: continue external_key = enrollment.program_enrollment.external_user_key user = enrollment.program_enrollment.user course_staff = staff_assignments.get(external_key) if user: if course_staff is True: CourseStaffRole(course_key).add_users(user) elif course_staff is False: CourseStaffRole(course_key).remove_users(user) else: if course_staff is True: CourseAccessRoleAssignment.objects.update_or_create( enrollment=enrollment, role=ProgramCourseEnrollmentRoles.COURSE_STAFF ) elif course_staff is False: enrollment_role_assignments_to_delete.append(enrollment) if enrollment_role_assignments_to_delete: CourseAccessRoleAssignment.objects.filter( enrollment__in=enrollment_role_assignments_to_delete ).delete()
5,345,176
def make_partition_table(target_device, part_name, **kwargs): """ Create new GUID partition table on ``target_device``, with two partitions: 1) GRUB second stage partition with type 0xEF02 2) size of rest of the disk with name ``part_name`` Returns path to the boot partition, which would eventually contain GRUB and ISO's """ delete_parttable = 'sgdisk --zap-all ' + target_device create_grub_partition = 'sgdisk --new=1:0:+1M --typecode=1:ef02 ' + target_device create_boot_partition = 'sgdisk --new=2:0:0 --change-name=1:"' + part_name + '" ' create_boot_partition = create_boot_partition + target_device print(delete_parttable) print(create_grub_partition) print(create_boot_partition) if not __debug__ : os.system(delete_parttable) os.system(create_grub_partition) os.system(create_boot_partition) return target_device + '2'
5,345,177
def data_to_bytes(data, encoding): """\ Converts the provided data into bytes. If the data is already a byte sequence, it will be left unchanged. This function tries to use the provided `encoding` (if not ``None``) or the default encoding (ISO/IEC 8859-1). It uses UTF-8 as fallback. Returns the (byte) data, the data length and the encoding of the data. :param data: The data to encode :type data: str or bytes :param encoding: str or ``None`` :rtype: tuple: data, data length, encoding """ if isinstance(data, bytes): return data, len(data), encoding or consts.DEFAULT_BYTE_ENCODING data = str(data) if encoding is not None: # Use the provided encoding; could raise an exception by intention data = data.encode(encoding) else: try: # Try to use the default byte encoding encoding = consts.DEFAULT_BYTE_ENCODING data = data.encode(encoding) except UnicodeError: try: # Try Kanji / Shift_JIS encoding = consts.KANJI_ENCODING data = data.encode(encoding) except UnicodeError: # Use UTF-8 encoding = 'utf-8' data = data.encode(encoding) return data, len(data), encoding
5,345,178
def get_session_store(state: State = Depends(get_app_state)) -> SessionStore: """Get a singleton SessionStore to keep track of created sessions.""" session_store = getattr(state, _SESSION_STORE_KEY, None) if session_store is None: session_store = SessionStore() setattr(state, _SESSION_STORE_KEY, session_store) return session_store
5,345,179
def get_comments(filename): """ Get Julia, Python, R comments. """ comments = [] try: with open(filename, 'r', encoding='utf8') as fp: filename = os.path.basename(filename) for comment, start, end in getcomments.get_comment_blocks(fp): comments.append({ "ln%s" % (start[0]) : comment.rstrip()}) except Exception as e: print(e) return comments
5,345,180
def setup_function(): """Function which is run before each test in this file. ``create_tmp_dir`` will do the following: 1. Create a directory called ``tmp`` (overwrite if already exists) 2. Copy ``data_testing`` -> ``tmp/data_testing`` Add any other things for setup here. """ create_tmp_dir()
5,345,181
def extractCurrentlyTLingBuniMi(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None if item['title'].startswith('[BNM]'): return buildReleaseMessageWithType(item, 'Bu ni Mi wo Sasagete Hyaku to Yonen. Elf de Yarinaosu Musha Shugyou', vol, chp, frag=frag, postfix=postfix) if item['title'].startswith('[DD]'): return buildReleaseMessageWithType(item, 'Doll Dungeon', vol, chp, frag=frag, postfix=postfix) if item['title'].startswith('[HCLS]'): return buildReleaseMessageWithType(item, 'High Comprehension Low Strength', vol, chp, frag=frag, postfix=postfix) tagmap = [ ('Abyss Domination', 'Abyss Domination', 'translated'), ('Nine Yang Sword Saint', 'Nine Yang Sword Saint', 'translated'), ('Mysterious World Beast God', 'Mysterious World Beast God', 'translated'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
5,345,182
def dif_stats(filename, # [<'my/file.txt',...> => name of scored data file] student_id = 'Student_ID', # [<'Student_ID', ...> => student id column label] group = ['Sex', {'focal':0, 'ref':1}], # [<e.g.'Sex', {'focal':'female', 'ref':'male'}]> => column label with assignment to focal and reference] raw_score = 'RawScore', # [<'RawScore',...> => raw score column label] items = 'All', # [<'All', ['item1', 'item3',...]> => items for which to get stats] stats = 'All', # [<'All', [see list in docs]> => desired statistics] strata = ('all_scores', 4), # [(<'all_scores', int>, int) => number of raw score strata, with backup if insufficient] getrows = None, # [<None, {'Get':_,'Labels':_,'Rows':_}> => select rows using extract() syntax] getcols = None, # [<None, {'Get':_,'Labels':_,'Cols':_}> => select cols using extract() syntax] delimiter = '\t', # [<',', '\t'> => column delimiter] ): """Calculate DIF stats for each in a range of items. Returns ------- dif() returns an item by statistic Damon object with a column containing number of score categories. Display results using: >>> print tabulate(dif(...).whole, 'firstrow') Comments -------- "dif" (DIF) stands for "differential item functioning" and reflects the degree to which items have different difficulties for two groups of persons, a "focal" and a "reference" group, after adjusting for the ability of each person. It is used to flag items that "play favorites" with student groups, e.g., that are easy for girls and hard for boys even though the two groups otherwise have similar ability. There are a profusion of DIF statistics, organized mainly by whether they are intended for dichotomous or polytomous items. The Rasch model has its own way of estimating DIF (not included in this function) which yields similar results. dif() supports three categories of DIF statistics plus related variances, z-scores, chi-squares and so on. Any number of combinations of these statistics have been proposed for flagging DIF items. 'MH' => Mantel-Haenszel, for dichotomous data 'M' => Mantel, for dichotomous and polytomous data 'SMD' => standardized mean difference, usually for polytomous Formulas are pulled from Zwick & Thayer (1996) and Wood (2011). A commonly used statistic is the 'Flag' statistic, which gives a code for whether an item should be flagged. ETS's a, b, c DIF flags are reported numerically as 0, 1, 2. See discussion below. The dif_stats() function applies only to unidimensional data. Multidimensional DIF can be evaluated in Damon to a limited degree using the "stability" statistic in conjunction with coord()'s seed parameters. dif() requires a student-by-item data file or array with a group membership column and a column of student raw scores. Thus, column headers should contain a student id column, a group column, a raw score column, and a series of item columns. Any other columns in your dataset should be filtered out using the getcols parameter. References ---------- Zwick, R., Thayer, D. (Autumn, 1996). "Evaluating the Magnitude of Differential Item Functioning in Polytomous Items". Journal of Educational and Behavioral Statistics, Vol. 21, No. 3, pp 187-201. http://www.jstor.org/stable/1165267 Wood, S. W. (2011). "Differential item functioning procedures for polytomous items when examinee sample sizes are small." doctoral PhD diss, University of Iowa, 2011. http://ir.uiowa.edu/etd/1110. Parameters ---------- "filename" is the string name of a person x item file containing integer scores of how each student did on each item, a column containing test-level raw scores for each student, and a column assigning each student to a group. All non-numerical cells are treated as missing. All numerical scores are treated as valid. Numerical scores must be integers whose minimum value is zero. Data must be tabular and field-delimited. filename = '/path/to/my_file.txt' => file is 'my_file.txt' ----------- "student_id' is the header label of the column containing unique student identifiers. student_id = 'Student_ID' => Student identifiers are in the column labels 'Student_ID'. ----------- "group" contains the header label of the group column and assigns one group to be "focal" and the other to be the "reference". group = ['Sex', {'focal':'female', 'ref':'male'}] => Student gender identifiers are in the column labeled 'Sex'. Students labeled "female" will be the focal group. Students labeled "male" will be the reference group. Note: As is typical with DIF statistics, while there can be more than two groups, only two are compared at a time. ----------- "raw_score" is the header label of the raw score column. raw_score = 'RawScore' => Test-level student raw scores are in the column labeled 'RawScore' ----------- "items" is the list of items for which DIF statistics should be calculated. items = 'All' => Calculate DIF for all items in the dataset. items = ['item1', 'item5'] => Calculate DIF for only items 1 and 5. ----------- "stats" is the list of DIF stats to be calculated for each item. If a given statistic cannot be calculated for a given item, the cell is left blank. stats = 'All' => Calculate all possible DIF statistics for all items (see list below). stats = ['MH_d-dif', 'MH_z', 'M_z', 'SMD_z'] => Calculate just the Mantel-Haenszel delta-DIF (defined by ETS), the Mantel-Haenszel z statistic (both for dichotomous items), the Mantel z-statistic (for dichotomous and polytomous items), and the standardized mean difference z-statistic. List of available DIF-related statistics ("MH" means Mantel- Haenszel, "M" means Mantel, "SMD" means standardized mean difference. Mantel-Haenszel (dichotomous data) 'MH_alpha' => odds ratio, dich, 0 -> +inf 'MH_dif' => log-odds ratio, dich, -inf -> +inf 'MH_d-dif' => delta-DIF = -2.35*log-odds, dich, -inf -> +inf, negative implies bias toward reference group. (d-dif > 1.5 implies DIF) 'MH_var' => variance of MH_dif (SE = sqrt(var)) 'MH_d-var' => variance of MH_d-dif 'MH_z' => absolute z-statistic (dif/sqrt(var)), z > 2.0 => p < 0.05 'MH_pval' => p-value associated with z, pval < 0.05 => significance 'MH_chisq' => chi-square = z^2. chisq > 3.84 => p < 0.05 'MH_chisq_pval' => p-value associated with chisq, pval < 0.05 => significance Mantel (dichotomous and polytomous data) 'M_dif' => observed - expected frequencies 'M_var' => variance of M_diff (SE = sqrt(var)) 'M_z' => signed z-statistic, dif/sqrt(var), z > 2.0 => p < 0.05 'M_pval' => p-value associated with z, pval < 0.05 => significance 'M_chisq' => chi-square = z^2. chisq > 3.84 => p < 0.05 'M_chisq_pval' => p-value associated with chisq, pval < 0.05 => significance Standardized mean difference (mainly for polytomous data) 'SMD_dif' => difference between reference and focal groups 'SMD_var' => variance of SMD_dif (SE = sqrt(var)) 'SMD_z' => signed z-statistic, dif/sqrt(var), z > 2.0 => p < 0.05 'SMD_pval' => p-value associated with z, pval < 0.05 => significance 'SMD_chisq' => chi-square = z^2. chisq > 3.84 => p < 0.05 'SMD_chisq_pval'=> p-value associated with chisq, pval < 0.05 => significance Other stats 'SD' => standard deviation of person scores for that item 'SMD/SD' => absolute SMD/SD > 0.25 implies DIF if SMD_chisq_pval < 0.05 'Flag' => flag a DIF item based on the rules described below. 'Counts' => Count valid scores for each item, overall and by group. As mentioned, all statistics that are dependent on sample size (e.g., z, chi-square) will show larger values as sample size increases and their standard errors go to zero. Therefore, DIF decisions should be based on other considerations. One useful rule suggested by Zwick, Thayer, and Mazzeo and used by ETS is as follows. Flag DIF: for dichotomous items: Flag = 2 if: 'MH_d-dif' is greater than 1.5 and significantly greater than 1.0. Flag = 0 if: 'MH_d-dif' is less than 1.0 or the p-value is greater than 0.05. Flag = 1, otherwise. These correspond to ETS a, b, c DIF flags: 'a'=>0, 'b'=>1, 'c'=>2 for polytomous items: Flag = 2 if: 'SMD/SD' is greater than 0.25 and 'M_chisq_pval' is less than 0.05. Flag = 0, otherwise. There is no flag = 1 here. (Note: Zwick refers to this as a Mantel-Haenszel chi-square p-value but the formula resembles the polytomous Mantel chi-square p-value, which is what is used here.) ----------- "strata" is the number of ability strata or levels into which to divide student test raw scores for purposes of matching students of similar abilities. If the number of strata do not divide evenly into the number of potential raw scores, the remainder are stuck in the lowest stratum. "strata" requires a backup strata specification in case the primary specification leads to a count of one or less for a given item: strata = (primary, backup) Examples: strata = ('all_scores', 4) => Let each possible raw score be its own stratum. This is desirable so long as the sample of persons is large enough that all cells in the resulting stratum x score table have fairly large counts. If 'all_scores' yields insufficient data for a given item, use a stratum of 4 for that item. strata = (20, 10) => Divide the raw scores into 20 strata and match students who belong to the same stratum. If this leads to insufficient data, use 10 for that item. Some DIF programs allow no more than five or so stratification levels in order to avoid insufficient counts. This degrades the DIF statistics a little, but not generally enough to be a problem. ----------- "getrows" controls the rows that are loaded from the datafile, making it possible to filter out unneeded rows, e.g., to get a student subsample. The syntax is drawn from Damon's extract() method and can be a bit fancy. To get a full description of what you can do with getrows, see: >>> help(core.Damon.extract) Simple examples: getrows = None => Retain all rows as they are. Non-intuitively, this really means "get all rows". getrows = {'Get':'AllExcept','Labels':'key','Rows':['row_x', 'row_y']} => Extract all rows except those labeled 'row_x' and 'row_y'. getrows = {'Get':'NoneExcept','Labels':'index','Rows':[range(1, 20, 2)]} => Extract only row 1 up to, but not including, row 20. 2 is a step parameter, and means get every other row within the range. Counting starts from 0. The 'index' parameter means 'Rows' refers to positions, not 'keys'. ----------- "getcols" controls the columns that are loaded from the datafile, making it possible to filter out unneeded columns, e.g., data columns that are not items or the student raw score. The syntax is drawn from Damon's extract() method and can be a bit fancy. To get a full description of what you can do with getcols, see: >>> help(core.Damon.extract) Simple examples: getcols = None => Retain all columns as they are. Non-intuitively, this really means "get all columns". getcols = {'Get':'AllExcept','Labels':'key','Cols':['col_x', 'col_y']} => Extract all columns except those labeled 'col_x' and 'col_y'. getcols = {'Get':'NoneExcept','Labels':'index','Cols':[range(2, 41)]} => Extract only columns 2 up to, but not including, 41. Counting starts from 0. Note the 'index' parameter. ----------- "delimiter" is the character used to delimit columns in the dataset. delimiter = ',' => File is comma-delimited. delimiter = '\t' => File is tab-delimited. Examples -------- [under construction] Paste Function -------------- dif_stats(filename, # [<'my/file.txt',...> => name of scored data file] student_id = 'Student_ID', # [<'Student_ID', ...> => student id column label] group = ['Sex', {'focal':0, 'ref':1}], # [<e.g.'Sex', {'focal':'female', 'ref':'male'}]> => column label with assignment to focal and reference] raw_score = 'RawScore', # [<'RawScore',...> => raw score column label] items = 'All', # [<'All', ['item1', 'item3',...]> => items for which to get stats] stats = 'All', # [<'All', [see list in docs]> => desired statistics] strata = ('all_scores', 4), # [(<'all_scores', int>, int) => number of raw score strata, with backup if insufficient] getrows = None, # [<None, {'Get':_,'Labels':_,'Rows':_}> => select rows using extract() syntax] getcols = None, # [<None, {'Get':_,'Labels':_,'Cols':_}> => select cols using extract() syntax] delimiter = '\t', # [<',', '\t'> => column delimiter] ) """ args = locals() from dif import dif_stats return dif_stats(**args)
5,345,183
def delete_all_devices_for_user(): """ delete all active devices for the given user """ try: username = get_jwt_identity() with session_scope() as session: user = user_service.get_user(username, session) device_count = user.devices.count() if device_count == 0: resp = { "status": "error", "msg": "no devices found for '%s'" % username } return make_response(jsonify(resp), status.HTTP_404_NOT_FOUND) LOGGER.info("Deleting all devices for '%s'" % username) for device in user.devices: device_service.delete_device(user.username, device.device_id, session) LOGGER.info("Deleted " + device.device_name + ", with device id = " + device.device_id + "!") LOGGER.info("Deleted all devices for '%s'" % username) resp = { "status": "success", "msg": "deleted %d devices for '%s'" % (device_count, username) } return make_response(jsonify(resp), status.HTTP_200_OK) except Exception as e: resp = { "status": "error", "msg": "%s" % str(e) } return make_response(jsonify(resp), status.HTTP_500_INTERNAL_SERVER_ERROR)
5,345,184
def initdb(): """Creates database tables.""" db.create_all()
5,345,185
def _GetNormalizationTuple(url): """Parse a URL into a components tuple. Parse a URL into 6 components: <scheme>://<netloc>/<path>;<params>?<query>#<fragment> Args: url:A URL string. Returns: A 6-tuple: (scheme, netloc, path, params, query, fragment). """ url = encoding_util.EncodeToAscii(url) up = urlparse(url, 'http') authority = up[1] path = up[2] if not authority: end_index = path.find('/') if end_index == -1: end_index = len(path) authority = path[:end_index] path = path[end_index:] path = path.rstrip('/') # Ignore trailing slashes on the path. return (up[0], authority, path, up[3], up[4], up[5])
5,345,186
def chest(cont): """ Wood shield chest """ own = cont.owner big_chest(own, logic.OBJECT_CONSTANT.WOOD_SHIELD, "chest.wood_shield") # end own.endObject()
5,345,187
def gCallback(dataset, geneid, colors): """Callback to set initial value of green slider from dict. Positional arguments: dataset -- Currently selected dataset. geneid -- Not needed, only to register input. colors -- Dictionary containing the color values. """ colorsDict = colors try: colorVal = colorsDict[dataset][4:-1].split(',')[1] return int(colorVal) except KeyError: return 0
5,345,188
def intForcesMoments(sliceZnes,method, direction): """ Loops over the sliceZnes and performs an integration of Forces and moments for each slice (Scalar integrals, variables are depending on the method). Returns a ([dir, dirNormalized,fxNr,fyNr,fzNr,mxNr,myNr,mzNr]*Nslices array) """ #direction, norm_direction, fx,fy,fz,mx,my,mz forcesMoments=np.zeros((8,len(sliceZnes))) ds = sliceZnes[0].dataset fr = ds.frame #Retrieves Forces and Moments variables xAxisNr=ds.variable(direction).index if method == "Pressure": fxNr=ds.variable('px').index+1 fyNr=ds.variable('py').index+1 fzNr=ds.variable('pz').index+1 else: fxNr=ds.variable('taux').index+1 fyNr=ds.variable('tauy').index+1 fzNr=ds.variable('tauz').index+1 mxNr=ds.variable('mx').index+1 myNr=ds.variable('my').index+1 mzNr=ds.variable('mz').index+1 #Populates the returned array with the direction and integrated values for i,slc in enumerate(sliceZnes): forcesMoments[(0,i)]= slc.values(xAxisNr)[0] for j,v in enumerate([fxNr,fyNr,fzNr,mxNr,myNr,mzNr]): intCmde=("Integrate ["+"{}".format(slc.index + 1)+"] VariableOption='Scalar'"\ + " XOrigin=0 YOrigin=0 ZOrigin=0"\ +" ScalarVar=" + "{}".format(v)\ + " Absolute='F' ExcludeBlanked='F' XVariable=1 YVariable=2 ZVariable=3 "\ + "IntegrateOver='Cells' IntegrateBy='Zones'"\ + "IRange={MIN =1 MAX = 0 SKIP = 1}"\ + " JRange={MIN =1 MAX = 0 SKIP = 1}"\ + " KRange={MIN =1 MAX = 0 SKIP = 1}"\ + " PlotResults='F' PlotAs='Result' TimeMin=0 TimeMax=0") tp.macro.execute_extended_command(command_processor_id='CFDAnalyzer4', command=intCmde) forcesMoments[(j+2,i)]=fr.aux_data['CFDA.INTEGRATION_TOTAL'] #Normalized direction: forcesMoments[1]=(forcesMoments[0]-forcesMoments[0].min())/(forcesMoments[0].max()-forcesMoments[0].min()) return (forcesMoments)
5,345,189
def convert(instance) -> dict: """Convert beautifulsoup to dict. This is a typeclass definition."""
5,345,190
def getSecsInTime(time=85460): """calculates the Hour:Minutes:Seconds of the given time in seconds.""" print(strftime(formatTime, gmtime(time)))
5,345,191
def register_event_callback(event, resource_type, callbacks): """Register each callback with the event. :param event: Action being registered :type event: keystone.notifications.ACTIONS :param resource_type: Type of resource being operated on :type resource_type: str :param callbacks: Callback items to be registered with event :type callbacks: list :raises ValueError: If event is not a valid ACTION :raises TypeError: If callback is not callable """ if event not in ACTIONS: raise ValueError(_('%(event)s is not a valid notification event, must ' 'be one of: %(actions)s') % {'event': event, 'actions': ', '.join(ACTIONS)}) if not hasattr(callbacks, '__iter__'): callbacks = [callbacks] for callback in callbacks: if not callable(callback): msg = _('Method not callable: %s') % callback LOG.error(msg) raise TypeError(msg) _SUBSCRIBERS.setdefault(event, {}).setdefault(resource_type, set()) _SUBSCRIBERS[event][resource_type].add(callback) if LOG.logger.getEffectiveLevel() <= log.DEBUG: # Do this only if its going to appear in the logs. msg = 'Callback: `%(callback)s` subscribed to event `%(event)s`.' callback_info = _get_callback_info(callback) callback_str = '.'.join(i for i in callback_info if i is not None) event_str = '.'.join(['identity', resource_type, event]) LOG.debug(msg, {'callback': callback_str, 'event': event_str})
5,345,192
def test_create_task_script_with_inputs(): """Tests that we can create a basic task (run a script using some inputs).""" workspace = Workspace.from_config(path="./config", _file_name="workspace.json") tes_api = TesApi(workspace) # first we submit the task run_id = tes_api.create_task( name="mock_task_script_inputs_" + str(datetime.datetime.now()), description="A mock task created during unit tests (script with inputs).", inputs=["mnist", "irisdata"], outputs=[], compute_target="cpu-cluster", environment="AzureML-minimal-ubuntu18.04-py37-cpu-inference", executors={ "source_directory": "./tests/count_files", "script": "count_files.py", "command": [], "arguments": ["--argument_1", "foo"], }, volumes=None, tags={"test_type": "script_with_inputs"}, task_group="test_TES_API", ) # then we test that we can grab it, and finally we delete it descriptors = tes_api.get_task(run_id, "full") assert descriptors["runId"] assert descriptors["status"] tes_api.cancel_task(run_id)
5,345,193
def _other_members(other_members: List[parser.MemberInfo], title: str): """Returns "other_members" rendered to markdown. `other_members` is used for anything that is not a class, function, module, or method. Args: other_members: A list of `MemberInfo` objects. title: Title of the table. Returns: A markdown string """ items = [] for other_member in other_members: description = [other_member.doc.brief] for doc_part in other_member.doc.docstring_parts: if isinstance(doc_part, parser.TitleBlock): # Use list_view here because description will be part of a table. description.append(str(doc_part)) else: description.append(doc_part) items.append( parser.ITEMS_TEMPLATE.format( name=other_member.short_name, anchor=f'<a id="{other_member.short_name}"></a>', description='\n'.join(description), )) return '\n' + parser.TABLE_TEMPLATE.format( title=title, text='', items=''.join(items)) + '\n'
5,345,194
def full_url(parser, token): """Spits out the full URL""" url_node = url(parser, token) f = url_node.render url_node.render = lambda context: _get_host_from_context(context) + f(context) return url_node
5,345,195
def Chi2CoupleDiffFunc(nzbins, nzcorrs, ntheta, mask, data1, xi_obs_1, xi_theo_1, data2, xi_obs_2, xi_theo_2, inDir_cov12, file_name_cov12): """ Estimate chi^2 for difference between two data vectors Note: this assumes two data vectors have two separated covariance matrices the cross-correlation between two data vectors is also desired the masks for two data vector need to be identical """ # load the full covariance matrix: covmat_block_1 = io_cs.LoadCovarianceFunc(data1, nzbins, nzcorrs, xi_theo_1) covmat_block_2 = io_cs.LoadCovarianceFunc(data2, nzbins, nzcorrs, xi_theo_2) covmat_block_12 = io_cs.LoadCrossCovarianceFunc(inDir_cov12, file_name_cov12, ntheta, nzbins, nzcorrs, xi_theo_1, xi_theo_2) # build a combined cov-mat covmat = covmat_block_1 + covmat_block_2 - covmat_block_12 - covmat_block_12.transpose() # trim covariance matrix to chosen scales: mask_indices = np.where(mask == 1)[0] covmat = covmat[np.ix_(mask_indices, mask_indices)] # precompute Cholesky transform for chi^2 calculation: # don't invert that matrix... # use the Cholesky decomposition instead: cholesky_transform = cholesky(covmat, lower=True) vec = (xi_theo_1[mask_indices] - xi_obs_1[mask_indices]) - (xi_theo_2[mask_indices] - xi_obs_2[mask_indices]) yt = solve_triangular(cholesky_transform, vec, lower=True) chi2 = yt.dot(yt) return chi2, len(vec)
5,345,196
def generate_entity_file(in_file_name, out_entity_file_name, output_query_file_name): """ Generate entity information of hotpotQA like dataset. Using Hanlp for entity recognizing. :param in_file_name: :param out_entity_file_name: :param output_query_file_name: """ with open(in_file_name, 'r', encoding='utf-8') as reader: full_data = json.load(reader) CRFLexicalAnalyzer = JClass("com.hankcs.hanlp.tokenizer.NLPTokenizer") analyzer = CRFLexicalAnalyzer() entity_data = {} query_data = {} for data in tqdm(full_data): key = data['_id'] paras = data['context'] entity_data[key] = {} ques = data["question"] query_entity = [] words = analyzer.analyze(ques) for word in words: if word.label.startswith("n") and str(word.getValue()) not in query_entity: query_entity.append((str(word.getValue()), "1")) query_data[key] = query_entity for para in paras: entities = [] title = para[0] sents = para[1] context = "".join(sents) words = analyzer.analyze(context) for word in words: if word.label.startswith("n") and str(word.getValue())not in entities: entities.append((str(word.getValue()), "1")) entity_data[key][title] = entities with open(out_entity_file_name, 'w', encoding='utf-8') as reader: data = json.dumps(entity_data, indent=4, ensure_ascii=False) reader.write(data) with open(output_query_file_name, 'w', encoding='utf-8') as reader: data = json.dumps(query_data, indent=4, ensure_ascii=False) reader.write(data)
5,345,197
def minimax(just_mapping, mapping): """ Scale the mapping to minimize the maximum error from just intonation. """ least_error = float("inf") best_mapping = mapping for i in range(len(just_mapping)): for j in range(i+1, len(just_mapping)): candidate = mapping / (mapping[i] + mapping[j]) * (just_mapping[i] + just_mapping[j]) error = abs(just_mapping - candidate).max() if error < least_error: least_error = error best_mapping = candidate return best_mapping
5,345,198
def app_used_today(): """Check the session and the backend database for a record of app use from the last 24 hours.""" now = UTC.localize(datetime.datetime.utcnow()) last_app_use = get_last_app_use_date() day_length_in_seconds = 60 * 60 * 24 if last_app_use and (last_app_use.timestamp() + day_length_in_seconds) > now.timestamp(): return True return False
5,345,199