content
stringlengths
22
815k
id
int64
0
4.91M
def all(iterable: object) -> bool: """all.""" for element in iterable: if not element: return False return True
5,345,000
def ind2slice(Is): """Convert boolean and integer index arrays to slices. Integer and boolean arrays are converted to slices that span the selected elements, but may include additional elements. If possible, the slices are stepped. Arguments --------- Is : tuple tuple of indices (slice, integer array, boolean array, or single integer) Returns ------- Js : tuple tuple of slices """ if isinstance(Is, tuple): return tuple(_ind2slice(I) for I in Is) else: return _ind2slice(Is)
5,345,001
def cleanup_mediawiki(text): """Modify mediawiki markup to make it pandoc ready. Long term this needs to be highly configurable on a site-by-site basis, but for now I'll put local hacks here. Returns tuple: cleaned up text, list of any categories """ # This tag was probably setup via SyntaxHighlight GeSHi for biopython.org's wiki # # <python> # import antigravity # </python> # # Replacing it with the following makes pandoc happy, # # <source lang=python> # import antigravity # </source> # # Conversion by pandoc to GitHub Flavour Markdown gives: # # ``` python # import antigravity # ``` # # Which is much nicer. # # ================================================= # # I may have been misled by old links, but right now I don't # think there is an easy way to get a table-of-contents with # (GitHub Flavoured) Markdown which works on GitHub pages. # # Meanwhile the MediaWiki __TOC__ etc get left in the .md # so I'm just going to remove them here. # new = [] categories = [] languages = [ "python", "perl", "sql", "bash", "ruby", "java", "xml", "haskell" ] for line in text.split("\n"): # line is already unicode line = line.replace(b"\xe2\x80\x8e".decode("utf-8"), "") # LEFT-TO-RIGHT # TODO - Would benefit from state tracking (for tag mismatches) for lang in languages: # Easy case <python> etc if line.lower().startswith("<%s>" % lang): line = (("<source lang=%s\n" % lang) + line[len(lang) + 2:]).strip() # Also cope with <python id=example> etc: elif line.startswith("<%s " % lang) and ">" in line: line = (("<source lang=%s " % lang) + line[len(lang) + 2:]).strip() # Want to support <python>print("Hello world")</python> # where open and closing tags are on the same line: if line.rstrip() == "</%s>" % lang: line = "</source>" elif line.rstrip().endswith("</%s>" % lang): line = line.replace("</%s>" % lang, "\n</source>") undiv = un_div(line) if undiv in ["__TOC__", "__FORCETOC__", "__NOTOC__"]: continue elif undiv.startswith("[[Image:") and undiv.endswith("]]"): # Markdown image wrapped in a div does not render on Github Pages, # remove the div and any attempt at styling it (e.g. alignment) line = undiv # Look for any category tag, usually done as a single line: if "[[Category:" in line: tag = line[line.index("[[Category:") + 11:] tag = tag[:tag.index("]]")] assert ("[[Category:%s]]" % tag) in line, "Infered %r from %s" % (tag, line) categories.append(tag) line = line.replace("[[Category:%s]]" % tag, "").strip() if not line: continue # Special case fix for any category links, # See https://github.com/jgm/pandoc/issues/2849 if "[[:Category:" in line: line = line.replace("[[:Category:", "[[Category%3A") if "[[User:" in line: line = line.replace("[[User:", "[[User%3A") new.append(line) return "\n".join(new), categories
5,345,002
def test_constructing_a_priority_q_is_empty(): """Test that a new PriorityQ is empty.""" from electric_slide.scripts.priority_q import PriorityQ q = PriorityQ() assert q.values == {}
5,345,003
def get_popular_authors(): """Return all authors, most popular first.""" print "--Most_Popular_Authors--" query = "select author_name,total_views from popular_author" db = psycopg2.connect(database=DBNAME) c = db.cursor() c.execute(query) for i, row in c: print i, "--", row, "views" db.close()
5,345,004
def select_devices(devices): """ 选择设备 """ device_count = len(devices) print("Device list:") print("0) All devices") for i, d in enumerate(devices, start=1): print("%d) %s\t%s" % (i, d['serial'], d['model'])) print("q) Exit this operation") selected = input("\nselect: ") nums = None if selected == '0': nums = range(0, device_count) elif selected == 'q': print("Exit this operation") exit(-1) else: nums = [] for i in re.split(r'[\s+,]', selected): if i.isdigit(): seq = int(i) - 1 if 0 <= seq < device_count: nums.append(seq) continue print("error input: %s, retry again\n" % i) return select_devices(devices) return nums
5,345,005
async def test_delay_template(hass): """Test the delay as a template.""" event = "test_event" events = [] delay_alias = "delay step" @callback def record_event(event): """Add recorded event to set.""" events.append(event) hass.bus.async_listen(event, record_event) script_obj = script.Script( hass, cv.SCRIPT_SCHEMA( [ {"event": event}, {"delay": "00:00:{{ 5 }}", "alias": delay_alias}, {"event": event}, ] ), ) await script_obj.async_run() await hass.async_block_till_done() assert script_obj.is_running assert script_obj.can_cancel assert script_obj.last_action == delay_alias assert len(events) == 1 future = dt_util.utcnow() + timedelta(seconds=5) async_fire_time_changed(hass, future) await hass.async_block_till_done() assert not script_obj.is_running assert len(events) == 2
5,345,006
def Fill( h ): """fill every empty value in histogram with previous value. """ new_h = [] x,v = h[0] if type(v) == ListType or type(v) == TupleType: l = len(v) previous_v = [0] * l else: previous_v = 0 for x, v in h: if type(v) == ListType or type(v) == TupleType: for i in range(0,l): if v[i] == 0: v[i] = previous_v[i] else: previous_v[i] = v[i] else: if v == 0: v = previous_v else: previous_v = v new_h.append( (x, v) ) return new_h
5,345,007
def pendulum(theta, S, mg, drag) -> ps.Composition: """Draw a free body animation of a pendulum. params: theta: the angle from the vertical at which the pendulum is. S: the force exerted toward the pivot. mg: the force owing to gravity. drag: the force acting against the motion of the pendulum. return: A composition of the pendulum """ a = theta P = ps.Point(W / 2, 0.9 * H) # rotation point path = ps.Arc(P, L, -ps.Angle(np.pi / 2), a) mass_pt = path.end rod = ps.Line(P, mass_pt) theta = ps.AngularDimension( r"$\theta$", P + ps.Point(0, -L / 4), P + (mass_pt - P).unit_vector * (L / 4), P ) theta.extension_lines = False mass = ps.Circle(mass_pt, L / 30.0).set_fill_color(ps.Style.Color.BLUE) rod_vec = rod.end - rod.start length = ps.LinearDimension("$L$", mass_pt, P) # Displace length indication length = length.translate(ps.Point(-np.cos(a), -np.sin(a)) * (L / 15.0)) length.style.line_width = 0.1 gravity_start = ps.Point(0.8 * L, 0) gravity = ps.Gravity(P + gravity_start, L / 3) dashed_thin_black_line = ps.Style() dashed_thin_black_line.line_style = ps.Style.LineStyle.DASHED dashed_thin_black_line.line_color = ps.Style.Color.BLACK dashed_thin_black_line.line_width = 1.0 path.style = dashed_thin_black_line vertical = ps.Line(rod.start, rod.start + ps.Point(0, -L)) vertical.style = dashed_thin_black_line rod.style = dashed_thin_black_line comp = ps.Composition( { "body": mass, "rod": rod, "vertical": vertical, "theta": theta, "path": path, "g": gravity, # "L": length, } ) magnitude = 1.2 * L / 6 # length of a unit force in figure force = mg # constant (scaled eq: about 1) force *= magnitude mg_force = ( ps.Force( "$mg$", mass_pt, mass_pt + ps.Point(0, 1) * force, text_position=ps.TextPosition.END, ) if force != 0 else None ) force = S force *= magnitude rod_force = ( ps.Force( "S", mass_pt, mass_pt - rod_vec.unit_vector * force, text_position=ps.TextPosition.END, ) if force != 0 else None ) force = drag force *= magnitude air_force = ( ps.Force( "", mass_pt, mass_pt - rod_vec.normal * force, ) if force != 0 else None ) x0y0 = ps.Text("$(x_0,y_0)$", P + ps.Point(-0.4, -0.1)) ir = ps.Force( r"$\mathbf{i}_r$", P, P + rod_vec.unit_vector * (L / 10), text_position=ps.TextPosition.END, # spacing=ps.Point(0.015, 0) ) ith = ps.Force( r"$\mathbf{i}_{\theta}$", P, P + rod_vec.normal * (L / 10), text_position=ps.TextPosition.END, # spacing=ps.Point(0.02, 0.005) ) body_diagram = ps.Composition( { "mg": mg_force, "S": rod_force, "air": air_force, "ir": ir, "ith": ith, "origin": x0y0, } ) comp = comp.merge(body_diagram) return comp
5,345,008
def get_items(): """Fetches items from `INITIAL_OFFSET` in batches of `PAGINATION_OFFSET` until there are no more """ offset = INITIAL_OFFSET items = [] while True: batch = get_page_of_items(JSON_ENDPOINT.format(offset)) if not batch: break items.extend(batch) offset += PAGINATION_OFFSET return items
5,345,009
def make_file_directory_internal(base_path): """Generates the database folder structure for internal data.""" # Corrs Data os.mkdir(os.path.join(base_path, 'Corrs')) cor_data = ['Genes', 'Terms'] cor_data_type = ['csv', 'npz'] for cor_dat in cor_data: os.mkdir(os.path.join(base_path, 'Corrs', cor_dat)) for cor_dat_type in cor_data_type: os.mkdir(os.path.join(base_path, 'Corrs', cor_dat, cor_dat_type)) # Maps Data os.mkdir(os.path.join(base_path, 'Maps')) maps_data = ['Genes', 'Oscs', 'Exponents', 'Terms', 'Anat', 'Scouts'] for maps_dat in maps_data: os.mkdir(os.path.join(base_path, 'Maps', maps_dat)) # Processed Data os.mkdir(os.path.join(base_path, 'Processed')) proc_data = ['meg', 'maps'] for proc_dat in proc_data: os.mkdir(os.path.join(base_path, 'Processed', proc_dat))
5,345,010
def test_xgb_categorical_split(): """Test toy XGBoost model with categorical splits""" dataset = 'xgb_toy_categorical' tl_model = treelite.Model.load(dataset_db[dataset].model, model_format='xgboost_json') X, _ = load_svmlight_file(dataset_db[dataset].dtest, zero_based=True) expected_pred = load_txt(dataset_db[dataset].expected_margin) out_pred = treelite.gtil.predict(tl_model, X.toarray()) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
5,345,011
def tcombinations_with_replacement(iterable, r): """ >>> tcombinations_with_replacement('ABCD', 0) ((),) >>> tcombinations_with_replacement('ABCD', 1) (('A',), ('B',), ('C',), ('D',)) >>> tcombinations_with_replacement('ABCD', 2) (('A', 'A'), ('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'C'), ('C', 'D'), ('D', 'D')) >>> tcombinations_with_replacement('ABCD', 3) (('A', 'A', 'A'), ('A', 'A', 'B'), ('A', 'A', 'C'), ('A', 'A', 'D'), ('A', 'B', 'B'), ('A', 'B', 'C'), ('A', 'B', 'D'), ('A', 'C', 'C'), ('A', 'C', 'D'), ('A', 'D', 'D'), ('B', 'B', 'B'), ('B', 'B', 'C'), ('B', 'B', 'D'), ('B', 'C', 'C'), ('B', 'C', 'D'), ('B', 'D', 'D'), ('C', 'C', 'C'), ('C', 'C', 'D'), ('C', 'D', 'D'), ('D', 'D', 'D')) >>> tcombinations_with_replacement('ABCD', 4) (('A', 'A', 'A', 'A'), ('A', 'A', 'A', 'B'), ('A', 'A', 'A', 'C'), ('A', 'A', 'A', 'D'), ('A', 'A', 'B', 'B'), ('A', 'A', 'B', 'C'), ('A', 'A', 'B', 'D'), ('A', 'A', 'C', 'C'), ('A', 'A', 'C', 'D'), ('A', 'A', 'D', 'D'), ('A', 'B', 'B', 'B'), ('A', 'B', 'B', 'C'), ('A', 'B', 'B', 'D'), ('A', 'B', 'C', 'C'), ('A', 'B', 'C', 'D'), ('A', 'B', 'D', 'D'), ('A', 'C', 'C', 'C'), ('A', 'C', 'C', 'D'), ('A', 'C', 'D', 'D'), ('A', 'D', 'D', 'D'), ('B', 'B', 'B', 'B'), ('B', 'B', 'B', 'C'), ('B', 'B', 'B', 'D'), ('B', 'B', 'C', 'C'), ('B', 'B', 'C', 'D'), ('B', 'B', 'D', 'D'), ('B', 'C', 'C', 'C'), ('B', 'C', 'C', 'D'), ('B', 'C', 'D', 'D'), ('B', 'D', 'D', 'D'), ('C', 'C', 'C', 'C'), ('C', 'C', 'C', 'D'), ('C', 'C', 'D', 'D'), ('C', 'D', 'D', 'D'), ('D', 'D', 'D', 'D')) >>> tcombinations_with_replacement('ABC', 4) (('A', 'A', 'A', 'A'), ('A', 'A', 'A', 'B'), ('A', 'A', 'A', 'C'), ('A', 'A', 'B', 'B'), ('A', 'A', 'B', 'C'), ('A', 'A', 'C', 'C'), ('A', 'B', 'B', 'B'), ('A', 'B', 'B', 'C'), ('A', 'B', 'C', 'C'), ('A', 'C', 'C', 'C'), ('B', 'B', 'B', 'B'), ('B', 'B', 'B', 'C'), ('B', 'B', 'C', 'C'), ('B', 'C', 'C', 'C'), ('C', 'C', 'C', 'C')) """ return tuple(combinations_with_replacement(iterable, r))
5,345,012
def discreteFiber(c, s, B=I3, ndiv=120, invert=False, csym=None, ssym=None): """ Generate symmetrically reduced discrete orientation fiber. Parameters ---------- c : TYPE DESCRIPTION. s : TYPE DESCRIPTION. B : TYPE, optional DESCRIPTION. The default is I3. ndiv : TYPE, optional DESCRIPTION. The default is 120. invert : TYPE, optional DESCRIPTION. The default is False. csym : TYPE, optional DESCRIPTION. The default is None. ssym : TYPE, optional DESCRIPTION. The default is None. Raises ------ RuntimeError DESCRIPTION. Returns ------- retval : TYPE DESCRIPTION. """ ztol = cnst.sqrt_epsf # arg handling for c if hasattr(c, '__len__'): if hasattr(c, 'shape'): assert c.shape[0] == 3, \ 'scattering vector must be 3-d; yours is %d-d' \ % (c.shape[0]) if len(c.shape) == 1: c = c.reshape(3, 1) elif len(c.shape) > 2: raise RuntimeError( 'incorrect arg shape; must be 1-d or 2-d, yours is %d-d' % (len(c.shape)) ) else: # convert list input to array and transpose if len(c) == 3 and isscalar(c[0]): c = asarray(c).reshape(3, 1) else: c = asarray(c).T else: raise RuntimeError('input must be array-like') # arg handling for s if hasattr(s, '__len__'): if hasattr(s, 'shape'): assert s.shape[0] == 3, \ 'scattering vector must be 3-d; yours is %d-d' \ % (s.shape[0]) if len(s.shape) == 1: s = s.reshape(3, 1) elif len(s.shape) > 2: raise RuntimeError( 'incorrect arg shape; must be 1-d or 2-d, yours is %d-d' % (len(s.shape))) else: # convert list input to array and transpose if len(s) == 3 and isscalar(s[0]): s = asarray(s).reshape(3, 1) else: s = asarray(s).T else: raise RuntimeError('input must be array-like') nptc = c.shape[1] npts = s.shape[1] c = unitVector(dot(B, c)) # turn c hkls into unit vector in crys frame s = unitVector(s) # convert s to unit vector in samp frame retval = [] for i_c in range(nptc): dupl_c = tile(c[:, i_c], (npts, 1)).T ax = s + dupl_c anrm = columnNorm(ax).squeeze() # should be 1-d okay = anrm > ztol nokay = okay.sum() if nokay == npts: ax = ax / tile(anrm, (3, 1)) else: nspace = nullSpace(c[:, i_c].reshape(3, 1)) hperp = nspace[:, 0].reshape(3, 1) if nokay == 0: ax = tile(hperp, (1, npts)) else: ax[:, okay] = ax[:, okay] / tile(anrm[okay], (3, 1)) ax[:, not okay] = tile(hperp, (1, npts - nokay)) q0 = vstack([zeros(npts), ax]) # find rotations # note: the following line fixes bug with use of arange # with float increments phi = arange(0, ndiv) * (2*pi/float(ndiv)) qh = quatOfAngleAxis(phi, tile(c[:, i_c], (ndiv, 1)).T) # the fibers, arraged as (npts, 4, ndiv) qfib = dot( quatProductMatrix(qh, mult='right'), q0 ).transpose(2, 1, 0) if csym is not None: retval.append( toFundamentalRegion( qfib.squeeze(), crysSym=csym, sampSym=ssym ) ) else: retval.append(fixQuat(qfib).squeeze()) return retval
5,345,013
def random_organism(invalid_data): """ Generate Random Organism return: string containing "organism" name from CanCOGeN vocabulary. """ return random.choice(covid19_vocab_dict.get('organism')), global_valid_data
5,345,014
def test_confirm_user_family(app, session, monkeypatch): """Ensure a user is automatically confirmed in family mode.""" monkeypatch.setitem(app.config, '_JT_SERVER_MODE', 'family') u = auth_service.register_user(session, '[email protected]', 'hunter2JT', 'Test User') assert u.id == 1 assert u.uid_hash is not None assert u.active is True assert u.confirmed is True assert u.confirmed_at is not None
5,345,015
def test_set_output_volume(): """ Test if it set the volume of sound (range 0 to 100) """ mock = MagicMock(return_value={"retcode": 0}) with patch.dict(mac_desktop.__salt__, {"cmd.run_all": mock}), patch( "salt.modules.mac_desktop.get_output_volume", MagicMock(return_value="25") ): assert mac_desktop.set_output_volume("25")
5,345,016
def fate_bias(adata, group, basis='umap', fate_bias_df=None, figsize=(6, 4), save_show_or_return='show', save_kwargs={}, **cluster_maps_kwargs ): """Plot the lineage (fate) bias of cells states whose vector field trajectories are predicted. This function internally calls `dyn.tl.fate_bias` to calculate fate bias dataframe. You can also visualize the data frame via pandas stlying (https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html), for example: >>> df = dyn.tl.fate_bias(adata) >>> df.style.background_gradient(cmap='viridis') Parameters ---------- adata: :class:`~anndata.AnnData` AnnData object that contains the predicted fate trajectories in the `uns` attribute. group: `str` The column key that corresponds to the cell type or other group information for quantifying the bias of cell state. basis: `str` or None (default: `None`) The embedding data space that cell fates were predicted and cell fates will be quantified. fate_bias_df: `pandas.DataFrame` or None (default: `None`) The DataFrame that stores the fate bias information, calculated via fate_bias_df = dyn.tl.fate_bias(adata). figsize: `None` or `[float, float]` (default: None) The width and height of a figure. save_show_or_return: {'show', 'save', 'return'} (default: `show`) Whether to save, show or return the figure. save_kwargs: `dict` (default: `{}`) A dictionary that will passed to the save_fig function. By default it is an empty dictionary and the save_fig function will use the {"path": None, "prefix": 'fate_bias', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True} as its parameters. Otherwise you can provide a dictionary that properly modify those keys according to your needs. cluster_maps_kwargs: Additional arguments passed to sns.clustermap. Returns ------- Nothing but plot a heatmap shows the fate bias of each cell state to each of the cell group. """ import matplotlib.pyplot as plt fate_bias = fate_bias_pd(adata, group=group, basis=basis) if fate_bias_df is None else fate_bias_df if 'confidence' in fate_bias.keys(): fate_bias.set_index([fate_bias.index, fate_bias.confidence], inplace=True) ax = sns.clustermap(fate_bias, col_cluster=True, row_cluster=True, figsize=figsize, yticklabels=False, **cluster_maps_kwargs) if save_show_or_return == "save": s_kwargs = {"path": None, "prefix": 'fate_bias', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True} s_kwargs = update_dict(s_kwargs, save_kwargs) save_fig(**s_kwargs) elif save_show_or_return == "show": plt.tight_layout() plt.show() elif save_show_or_return == "return": return ax
5,345,017
def test_roundtrip(): """Assert that forward/inverse Rosenblatt transforms is non-destructive.""" corr = numpy.array([[ 1.0, -0.9, 0.3], [-0.9, 1.0, 0.0], [ 0.3, 0.0, 1.0]]) dists = chaospy.J(chaospy.Uniform(0, 1), chaospy.Uniform(1, 2), chaospy.Uniform(2, 3), rotation=[0, 1, 2]) dist1 = chaospy.Nataf(dists, corr) dists = chaospy.J(chaospy.Uniform(0, 1), chaospy.Uniform(1, 2), chaospy.Uniform(2, 3), rotation=[2, 1, 0]) dist2 = chaospy.Nataf(dists, corr) dists = chaospy.J(chaospy.Uniform(0, 1), chaospy.Uniform(1, 2), chaospy.Uniform(2, 3), rotation=[2, 0, 1]) dist3 = chaospy.Nataf(dists, corr) mesh = numpy.mgrid[0.25:0.75:3j, 0.25:0.75:5j, 0.25:0.75:4j].reshape(3, -1) assert not numpy.allclose(dist1.fwd(dist2.inv(mesh)), mesh) assert numpy.allclose(dist1.fwd(dist1.inv(mesh)), mesh) assert numpy.allclose(dist2.fwd(dist2.inv(mesh)), mesh) assert numpy.allclose(dist3.fwd(dist3.inv(mesh)), mesh)
5,345,018
def build_psa_platform(target, toolchain, delivery_dir, debug, git_commit, skip_tests, args): """ Calls the correct build function and commits if requested. :param target: Target name. :param toolchain: Toolchain to be used. :param delivery_dir: Artifact directory, where images should be placed. :param debug: Build with debug profile. :param git_commit: Commit the changes. :param skip_tests: skip the test images build phase. :param args: list of extra arguments. """ profile = 'debug' if debug else 'release' if not skip_tests: if _psa_backend(target) is 'TFM': build_tests_tfm_platform(target, toolchain, profile, args) else: build_tests_mbed_spm_platform(target, toolchain, profile, args) logger.info("Building default image for {} using {} with {} profile".format( target, toolchain, profile)) cmd = _get_default_image_build_command(target, toolchain, profile, args) verbose_check_call(cmd) logger.info( "Finished building default image for {} successfully".format(target)) if git_commit: commit_binaries(target, delivery_dir)
5,345,019
def comput_mean_ndcg(df, k): """ Input:rating_info (usr_id, movie_id, rating) output: 平均ndcg 对每一种人 得到他真实分数和预测分数的dataframe 然后得到values """ #df.insert(df.shape[1], 'pred', pred) #print(df.groupby('user_id')) piece = dict(list(df.groupby('user_id'))) ndcg_list = [] for user in df["user_id"].unique(): user_rating = piece[user]["rating"].values user_pred_rating = piece[user]['pred'].values ndcg_score = ndcg(user_pred_rating, user_rating, k) ndcg_list.append(ndcg_score) ndcg_list = np.array(ndcg_list) #return ndcg_list.mean() return ndcg_list
5,345,020
def test_warning(prob): """Test that a warning is raised when the probability is not between 0 and 1.""" code = SurfaceCode(3) with pytest.raises(Exception) as exc: IidNoise(code, prob) assert str(exc.value) == "Probability is not between 0 and 1."
5,345,021
def main(): """ Pre-processes all texts in the corpus, tokenizing, lemmatizing, and replacing all NE's by their CoreNLP NER label. The output texts are saved to a specified folder mimicing the corpus texts directory structure. """ cm = CorpusManager() for root, subdirnames, fnames in os.walk(cm.CORENLP_DIRPATH): for fname in fnames: if fname.endswith('.xml'): in_path = os.path.join(root, fname) out_path = in_path.replace(cm.CORENLP_DIRPATH, cm.PREPROCESSED_DIRPATH)[:-4] + '.txt' if os.path.exists(out_path): logging.info("%s already exists. Skipping %s..." % (out_path, in_path)) continue # If the parent directory doesn't exist, create it. par_dirpath = os.path.split(out_path)[0] if not os.path.exists(par_dirpath): os.makedirs(par_dirpath) # Temporary. if not par_dirpath.endswith('piper'): continue logging.info("Pre-processing %s..." % in_path) preprocessed_text = preprocess(in_path) logging.info("Outputting to %s..." % out_path) with open(out_path, 'w') as f: f.write(preprocessed_text.encode('utf-8'))
5,345,022
def to_im_list(IMs: List[str]): """Converts a list of string to IM Objects""" return [IM.from_str(im) for im in IMs]
5,345,023
def ref_ellipsoid(refell, UNITS='MKS'): """ Computes parameters for a reference ellipsoid Arguments --------- refell: reference ellipsoid name Keyword arguments ----------------- UNITS: output units MKS: meters, kilograms, seconds CGS: centimeters, grams, seconds """ if refell.upper() in ('CLK66','NAD27'): #-- Clarke 1866 a_axis = 6378206.4#-- [m] semimajor axis of the ellipsoid flat = 1.0/294.9786982#-- flattening of the ellipsoid elif refell.upper() in ('GRS80','NAD83'): #-- Geodetic Reference System 1980 #-- North American Datum 1983 a_axis = 6378135.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.26#-- flattening of the ellipsoid GM = 3.986005e14#-- [m^3/s^2] Geocentric Gravitational Constant elif (refell.upper() == 'GRS67'): #-- Geodetic Reference System 1967 #-- International Astronomical Union (IAU ellipsoid) a_axis = 6378160.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.247167427#-- flattening of the ellipsoid GM = 3.98603e14#-- [m^3/s^2] Geocentric Gravitational Constant omega = 7292115.1467e-11#-- angular velocity of the Earth [rad/s] elif (refell.upper() == 'WGS72'): #-- World Geodetic System 1972 a_axis = 6378135.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.26#-- flattening of the ellipsoid elif (refell.upper() == 'WGS84'): #-- World Geodetic System 1984 a_axis = 6378137.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.257223563#-- flattening of the ellipsoid elif (refell.upper() == 'ATS77'): #-- Quasi-earth centred ellipsoid for ATS77 a_axis = 6378135.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.257#-- flattening of the ellipsoid elif (refell.upper() == 'KRASS'): #-- Krassovsky (USSR) a_axis = 6378245.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.3#-- flattening of the ellipsoid elif (refell.upper() == 'INTER'): #-- International a_axis = 6378388.0#-- [m] semimajor axis of the ellipsoid flat = 1/297.0#-- flattening of the ellipsoid elif (refell.upper() == 'MAIRY'): #-- Modified Airy (Ireland 1965/1975) a_axis = 6377340.189#-- [m] semimajor axis of the ellipsoid flat = 1/299.3249646#-- flattening of the ellipsoid elif (refell.upper() == 'TOPEX'): #-- TOPEX/POSEIDON ellipsoid a_axis = 6378136.3#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.257#-- flattening of the ellipsoid GM = 3.986004415e14#-- [m^3/s^2] elif (refell.upper() == 'EGM96'): #-- EGM 1996 gravity model a_axis = 6378136.3#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.256415099#-- flattening of the ellipsoid GM = 3.986004415e14#-- [m^3/s^2] elif (refell.upper() == 'HGH80'): #-- Hughes 1980 Ellipsoid used in some NSIDC data a_axis = 6378273.0#-- [m] semimajor axis of the ellipsoid flat = 1.0/298.279411123064#-- flattening of the ellipsoid else: raise ValueError('Incorrect reference ellipsoid Name') if refell.upper() not in ('GRS80','GRS67','NAD83','TOPEX','EGM96'): #-- for ellipsoids not listing the Geocentric Gravitational Constant GM = 3.986004418e14#-- [m^3/s^2] if refell.upper() not in ('GRS67'): #-- for ellipsoids not listing the angular velocity of the Earth omega = 7292115e-11#-- [rad/s] #-- convert units to CGS if (UNITS == 'CGS'): a_axis *= 100.0 GM *= 10e6 #-- DERIVED PARAMETERS: #-- mean radius of the Earth having the same volume #-- (4pi/3)R^3 = (4pi/3)(a^2)b = (4pi/3)(a^3)(1D -f) rad_e = a_axis*(1.0 -flat)**(1.0/3.0) #-- semiminor axis of the ellipsoid b_axis = (1.0 -flat)*a_axis#-- [m] #-- Ratio between ellipsoidal axes ratio = (1.0 -flat) #-- Polar radius of curvature pol_rad=a_axis/(1.0 -flat) #-- Linear eccentricity lin_ecc = np.sqrt((2.0*flat - flat**2)*a_axis**2) #-- first numerical eccentricity ecc1 = lin_ecc/a_axis #-- second numerical eccentricity ecc2 = lin_ecc/b_axis #-- m parameter [omega^2*a^2*b/(GM)] #-- p. 70, Eqn.(2-137) mp = omega**2*((1 -flat)*a_axis**3)/GM #-- q, q_0 #-- p. 67, Eqn.(2-113) q = 0.5*((1.0 + 3.0/(ecc2**2))*np.arctan(ecc2)-3.0/ecc2) q_0 = 3*(1.0 +1.0/(ecc2**2))*(1.0 -1.0/ecc2*np.arctan(ecc2))-1.0 #-- J_2 p. 75 Eqn.(2-167), p. 76 Eqn.(2-172) j_2 = (ecc1**2)*(1.0 - 2.0*mp*ecc2/(15.0*q))/3.0 #-- Normalized C20 terms. #-- p. 60, Eqn.(2-80) C20 = -j_2/np.sqrt(5.0) #-- Normal gravity at the equator. #-- p. 71, Eqn.(2-141) ga = GM/(a_axis*b_axis)*(1.0 -mp -mp*ecc2*q_0/(6.0*q)) #-- Normal gravity at the pole. #-- p. 71, Eqn.(2-142) gb = GM/(a_axis**2.0)*(1.0 +mp*ecc2*q_0/(3.0*q)) #-- ratio between gravity at pole versus gravity at equator dk = b_axis*gb/(a_axis*ga) - 1.0 #-- Normal potential at the ellipsoid #-- p. 68, Eqn.(2-123) U0 = GM/lin_ecc*np.arctan(ecc2)+(1.0/3.0)*omega**2*a_axis**2 #-- Surface area of the reference ellipsoid [m^2] area = np.pi*a_axis**2.*(2.+((1.-ecc1**2)/ecc1)*np.log((1.+ecc1)/(1.-ecc1))) #-- Volume of the reference ellipsoid [m^3] vol = (4.0*np.pi/3.0)*(a_axis**3.0)*(1.0-ecc1**2.0)**0.5 return {'a':a_axis, 'b':b_axis, 'f':flat, 'rad_p':pol_rad, 'rad_e':rad_e, 'ratio':ratio, 'GM':GM, 'omega':omega, 'C20':C20, 'J2':j_2, 'U0':U0, 'dk':dk, 'norm_a':ga, 'norm_b':gb, 'mp':mp, 'q':q, 'q0':q_0, 'ecc':lin_ecc, 'ecc1':ecc1,'ecc2':ecc2, 'area':area, 'volume':vol}
5,345,024
def is_number(s): """ Check if it is a number. Args: s: The variable that needs to be checked. Returns: bool: True if float, False otherwise. """ try: float(s) return True except ValueError: return False
5,345,025
def emit(*args, **kwargs): """ The action allows users to add particles to an existing particle object without the use of an emitter. Returns: `int[]` `Integer array containing the list of the particleId attribute values for the created particles in the same order that the position flags were passed.` """ pass
5,345,026
def index(): """ 搜索提示功能 根据输入的值自动联想,支持中文,英文,英文首字母 :return: response """ start_time = time.time() # 输入词转小写 wd = request.args.get('wd').lower() user_id = request.args.get('user_id') if user_id and user_id != 'None': print(user_id) print(type(user_id)) if not wd: return make_response("""queryList({"q":"","p":false,"bs":"","csor":"0","status":770,"s":[]});""") # 搜索词(支持中文,英文,英文首字母) s = wd # result = search_script_conf.get_tips_word(search_script_conf.sug, search_script_conf.data, s) # # print('前缀:',result) global TREE if TREE is None: # 第一次为空,需要在接口中加载一次已经生成好的字典树,pickle.loads这一步耗时接近1s temp = r.get('tree') TREE = pickle.loads(temp) # 内容中有字典树,直接获取 suggest = get_tips_word(TREE[0], TREE[1], s) print('前缀:', suggest) data_top = {} if len(suggest) > 0: # 从redis获取热度值 heat_list = r_decode.hmget("hot_word_heat", suggest) _map = dict(zip(suggest, heat_list)) # 按照热度值排序 data = dict(sorted(_map.items(), key=lambda x: int(x[1]), reverse=True)) print("热度值排序:", data) # TODO 获取个性化搜索结果展示 suggest = list(data.keys())[:15] data_top = {i: data[i] for i in suggest} response = make_response( """queryList({'q':'""" + wd + """','p':false,'s':""" + str(suggest) + """});""") response.headers['Content-Type'] = 'text/javascript; charset=utf-8' end_time = time.time() # 记录日志 ret = dict() ret['code'] = 200 ret['msg'] = "ok" ret['search_word'] = wd ret['search_suggest'] = suggest ret['heat_rank'] = data_top ret['search_type'] = 'search_suggest' ret['gmt_created'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) ret['user_id'] = '' ret['platformCode'] = '' ret['total_time'] = end_time - start_time info(json.dumps(ret, ensure_ascii=False)) return response
5,345,027
def combineSets(listOfSets): """ Combines sets of strings by taking the cross product of the sets and \ concatenating the elements in the resulting tuples :param listOfSets: 2-D list of strings :returns: a list of strings """ totalCrossProduct = [''] for i in range(len(listOfSets)): currentProduct = [] for crossProduct in itertools.product(totalCrossProduct, listOfSets[i]): currentProduct.append((crossProduct[0].strip() + ' ' + crossProduct[1].strip()).strip()) totalCrossProduct = currentProduct return totalCrossProduct
5,345,028
def list_all_connections(pg_id='root', descendants=True): """ Lists all connections for a given Process Group ID Args: pg_id (str): ID of the Process Group to retrieve Connections from descendants (bool): True to recurse child PGs, False to not Returns: (list): List of ConnectionEntity objects """ return list_all_by_kind('connections', pg_id, descendants)
5,345,029
def find_file(fname): """ Return the full file name (path plus name) to file fname. fname is the name of the file to find. If the file fname is not found, then simply return None. """ for d in get_cli_search_dirs(): full_filename = os.path.join(d, fname) if os.path.exists(full_filename): return full_filename raise Exception('[WARN] Could not find {}; skipping.'.format(fname))
5,345,030
def save_uptime(machine_config, num_seconds, idle_time, data_log_date): """ Create Uptime record and save it in DB. """ uptime = Uptime( stats_machine_config=machine_config, date=data_log_date, number_of_seconds=num_seconds, idle_time=idle_time) uptime.save()
5,345,031
def _GetTombstoneData(device, tombstone_file): """Retrieve the tombstone data from the device Args: device: An instance of DeviceUtils. tombstone_file: the tombstone to retrieve Returns: A list of lines """ return device.old_interface.GetProtectedFileContents( '/data/tombstones/' + tombstone_file)
5,345,032
def _strTogYear(v): """Test gYear value @param v: the literal string @return v @raise ValueError: invalid value """ try: time.strptime(v+"-01-01", "%Y-%m-%d") return v except: raise ValueError("Invalid gYear %s" % v)
5,345,033
def aca_full_pivoting(A, epsilon): """ACA with full pivoting as in the lecture Takes in a matrix, and returns the CUR decomposition """ # R0 = A Rk = A.copy() I_list = [] J_list = [] while frobenius_norm(Rk) > epsilon*frobenius_norm(A): i, j = np.unravel_index(np.argmax(np.abs(Rk), axis=None), Rk.shape) I_list.append(i) J_list.append(j) delta = Rk[i, j] u = Rk[:, j] v = Rk[i, :].T / delta Rk = Rk - np.outer(u, v) R = A[I_list, :] U = np.linalg.inv(A[I_list, :][:, J_list]) C = A[:, J_list] return C, U, R
5,345,034
def get_word_cloud(words: List[str], max_words=500, image_path=None, image_name=None): """ Create a word cloud based on a set of words. Args: words (List[str]): List of words to be included in the word cloud. max_words (int): Maximum number of words to be included in the word cloud. image_path (str): Path to the image file where to save the word cloud. image_name (str): Name of the image where to save the word cloud. """ # change the value to black def black_color_func( word, font_size, position, orientation, random_state=None, **kwargs ): return "hsl(0,100%, 1%)" # set the wordcloud background color to white # set width and height to higher quality, 3000 x 2000 wordcloud = WordCloud( font_path="/Library/Fonts/Arial Unicode.ttf", background_color="white", width=3000, height=2000, max_words=max_words, ).generate(" ".join(words)) # set the word color to black wordcloud.recolor(color_func=black_color_func) # set the figsize plt.figure(figsize=[15, 10]) # plot the wordcloud plt.imshow(wordcloud, interpolation="bilinear") # remove plot axes plt.axis("off") if image_path is not None and image_name is not None: # save the image plt.savefig(os.path.join(image_path, image_name), bbox_inches="tight")
5,345,035
def get_data_sets(cnn_n_input, data_directory="data_set/", n_data_sets=5): """ Retrieve data and partition it into n_data_sets for cross-validation. """ print("Partitioning data into", str(n_data_sets), "splits.") # Get list of labels list_labels = extract_data.get_labels(data_directory + "labels.txt") n_labels = len(list_labels) # Dictionary that gives labels ID label_to_int = dict() for i in range(n_labels): label_to_int[list_labels[i]] = i # Dictionary that will count how many times each label appears count_labels = dict() # Data partitions : (time series, labels) data_partition = [(list(), list()) for _ in range(n_data_sets)] # Loop over data_set directory files = [f for f in os.listdir(data_directory) if fnmatch.fnmatch(f, "*_label.txt")] for file in files: # Get label label = extract_data.extract_label_from_txt(data_directory + file)[1] # Increment label count if label in count_labels: count_labels[label] += 1 else: count_labels[label] = 1 # Label_id label_id = label_to_int[label] # Get time series (data) data = extract_data.extract_data_from_txt(data_directory + "MIN " + file.split('_')[0] + ".txt")\ .Value.values.astype(dtype="uint16", copy=False) # Split data into samples data = create_samples(data, cnn_n_input) # Create labels labels = [label_id] * len(data) # Append to partition data_partition[count_labels[label] % n_data_sets][0].extend(data) # Add data data_partition[count_labels[label] % n_data_sets][1].extend(labels) # Add labels print("--\nBuilding types inventory :") print(count_labels) print("--\nNumber of samples in each split :") for x in data_partition: print('\t' + str(len(x[0]))) return data_partition
5,345,036
def on_disconnect(unused_client, obj, rc): """Paho callback for when a device disconnects.""" obj.connected = False obj.led.off() print('on_disconnect', error_str(rc))
5,345,037
def _get_pyo_codes(fmt='', dtype='int16', file_out=''): """Convert file and data formats to int codes, e.g., wav int16 -> (0, 0). """ if not fmt: dot_ext = os.path.splitext(file_out)[1] fmt = dot_ext.lower().strip('.') if fmt in pyo_formats: file_fmt = pyo_formats[fmt] else: msg = 'format `{0}` not supported'.format(file_out) raise PyoFormatException(msg) if fmt in ['sd2', 'flac']: ok_dfmt = {'int16': 0, 'int24': 1} else: ok_dfmt = pyo_dtype if dtype in ok_dfmt: data_fmt = pyo_dtype[dtype] else: msg = 'data format `{0}` not supported for `{1}`'.format( dtype, file_out) raise PyoFormatException(msg) return file_fmt, data_fmt
5,345,038
def catch_gpu_memory_error( f ): """ Decorator that calls the function `f` and catches any GPU memory error, during the execution of f. If a memory error occurs, this decorator prints a corresponding message and aborts the simulation (using MPI abort if needed) """ # Redefine the original function by calling it within a try/except def g(*args, **kwargs): try: return f(*args, **kwargs) except OutOfMemoryError as e: handle_cuda_memory_error( e, f.__name__ ) # Decorator: return the new function return(g)
5,345,039
def horizontal_tail_planform_raymer(horizontal_stabilizer, wing, l_ht,c_ht): """Adjusts reference area before calling generic wing planform function to compute wing planform values. Assumptions: None Source: Raymer Inputs: horizontal_stabilizer [SUAVE data structure] wing [SUAVE data structure] (should be the main wing) l_ht [m] length from wing mean aerodynamic chord (MAC) to horizontal stabilizer MAC c_ht [-] horizontal tail coefficient (Raymer specific) .5 = Sailplane, .5 = homebuilt, .7 = GA single engine, .8 = GA twin engine .5 = agricultural, .9 = twin turboprop, .7 = flying boat, .7 = jet trainer, .4 = jet fighter, 1. = military cargo/bomber, 1. = jet transport Outputs: horizontal_stabilier.areas.reference [m^2] Other changes to horizontal_stabilizer (see wing_planform) Properties Used: N/A """ horizontal_stabilizer.areas.reference = wing.chords.mean_aerodynamic*c_ht*wing.areas.reference/l_ht wing_planform(horizontal_stabilizer) return 0
5,345,040
def inherit_check(role_s, permission): """ Check if the role class has the following permission in inherit mode. """ from improved_permissions.roles import ALLOW_MODE role = get_roleclass(role_s) if role.inherit is True: if role.get_inherit_mode() == ALLOW_MODE: return True if permission in role.inherit_allow else False return False if permission in role.inherit_deny else True return False
5,345,041
def giveHint(indexValue, myBoard): """Return a random matching card given the index of a card and a game board""" validMatches = [] card = myBoard[indexValue] for c in myBoard: if (card[0] == c[0]) and (myBoard.index(c) != indexValue): validMatches.append(myBoard.index(c)) return random.choice(validMatches)
5,345,042
async def make_getmatch_embed(data): """Generate the embed description and other components for a getmatch() command. As with its parent, remember that this currently does not support non team-vs. `data` is expected to be the output of `get_individual_match_data()`. The following `dict` is returned: ``` { "embed_description": str, "footer": str, "embed_color": int (as color hex), } ``` """ scores = data["individual_scores"] team_1_score_strings = [] team_2_score_strings = [] for individual_score in scores: #at first i thought doing this would make the actual score_string more readable #now i'm not very sure player_name = individual_score["user_name"] score_val = individual_score["score"] maxcombo = individual_score["combo"] accuracy = individual_score["accuracy"] count_300 = individual_score["hits"]["300_count"] count_100 = individual_score["hits"]["100_count"] count_50 = individual_score["hits"]["50_count"] count_miss = individual_score["hits"]["miss_count"] accuracy = '{:.2%}'.format(accuracy) score_val = "{:,}".format(score_val) maxcombo = "{:,}".format(maxcombo) score_string = (f'**{player_name}** - {score_val} ({maxcombo}x) ({accuracy} - {count_300}/{count_100}/{count_50}/{count_miss})') team_1_score_strings.append(score_string) if individual_score["team"] == "1" else team_2_score_strings.append(score_string) team_1_score_string = "\n".join(team_1_score_strings) team_2_score_string = "\n".join(team_2_score_strings) winner_string = { "Blue": f"Blue team wins by {'{:,}'.format(data['score_difference'])}!", "Red": f"Red team wins by {'{:,}'.format(data['score_difference'])}!", "Tie": "Tie!"} winner_color = { "Blue": 0x0000FF, "Red": 0xFF0000, "Tie": 0x808080} embed_desc = ( f'**{winner_string[data["winner"]]}**\n\n' f'__Blue Team__ ({"{:,}".format(data["team_1_score"])} points, {"{:,}".format(data["team_1_score_avg"])} average)\n' f'{team_1_score_string}\n\n' f'__Red Team__ ({"{:,}".format(data["team_2_score"])} points, {"{:,}".format(data["team_2_score_avg"])} average)\n' f'{team_2_score_string}') #footer stuff scoring_types = { '0': 'Score', '1': 'Accuracy', '2': 'Combo', '3': 'Score v2'} team_types = { '0': 'Head-to-head', '1': 'Tag Co-op', '2': 'Team VS', '3': 'Tag Team VS'} play_modes = { '0': 'osu!', '1': 'Taiko', '2': 'CTB', '3': 'osu!mania'} embed_footer = (f'Played at {data["start_time"]} UTC | ' f'Win condition: {scoring_types[data["scoring_type"]]} | ' f'{team_types[data["team_type"]]} | ' f'{play_modes[data["play_mode"]]}') final = { "embed_description": embed_desc, "footer": embed_footer, "embed_color": winner_color[data["winner"]], } return final
5,345,043
def allreduceCommunicate_op(node, comm): """Make a new instance of AllReduceCommunicateOp and call the instance. Parameters: ---- node : Node The Node to do allreduce Returns: ---- A new Node instance created by Op. """ return AllReduceCommunicateOp(node, comm)
5,345,044
def _micronaut_library(name, srcs = [], deps = [], proto_deps = [], runtime_deps = [], data = [], templates = [], exports = [], **kwargs): """ Wraps a regular JDK library with injected Micronaut dependencies and plugins. """ _jdk_library( name = name, srcs = srcs, deps = _dedupe_deps(deps + INJECTED_MICRONAUT_DEPS + [("%s-%s" % ( p, JAVAPROTO_POSTFIX_ )) for p in proto_deps] + [ ("%s-java" % t) for t in templates ] + [ ("%s-java_jcompiled" % t) for t in templates ]), runtime_deps = _dedupe_deps(runtime_deps + INJECTED_MICRONAUT_RUNTIME_DEPS + [ ("%s-java" % t) for t in templates ] + [ ("%s-java_jcompiled" % t) for t in templates ]), exports = _dedupe_deps([("%s-%s" % ( p, JAVAPROTO_POSTFIX_ )) for p in proto_deps] + [ ("%s-java" % t) for t in templates ] + [ ("%s-java_jcompiled" % t) for t in templates ] + exports), data = data, **kwargs )
5,345,045
def test_list_all(fake_client): """pye Test organization class 'list_all()' Method """ org = Organizations(fake_client, "https://api.buildkite.com/v2/") org.list_all() fake_client.get.assert_called_with( org.path, query_params={"page": 0}, with_pagination=False )
5,345,046
def compute_scales(work_dir=".", downscaling_method="average", options={}): """Generate lower scales following an input info file""" accessor = neuroglancer_scripts.accessor.get_accessor_for_url( work_dir, options ) pyramid_io = precomputed_io.get_IO_for_existing_dataset( accessor, encoder_options=options ) downscaler = neuroglancer_scripts.downscaling.get_downscaler( downscaling_method, pyramid_io.info, options ) neuroglancer_scripts.dyadic_pyramid.compute_dyadic_scales( pyramid_io, downscaler )
5,345,047
def reduce_fn(state, values): """tf.data.Dataset-friendly implementation of mean and variance.""" k, n, ex, ex2 = state # If this is the first iteration, we pick the first value to be 'k', # which helps with precision - we assume that k is close to an average # value and calculate mean and variance with respect to that. k = tf.cond(tf.equal(n, 0), lambda: values[0], lambda: k) sum_v = tf.reduce_sum(values, axis=0) sum_v2 = tf.reduce_sum(tf.square(values), axis=0) ones = tf.ones_like(values, dtype=tf.int32) batch_size = tf.reduce_sum(ones, axis=0) batch_size_f = tf.cast(batch_size, tf.float32) ex = 0 + sum_v - tf.multiply(batch_size_f, k) ex2 = 0 + sum_v2 + tf.multiply( batch_size_f, (tf.square(k) - tf.multiply(tf.multiply(2.0, k), sum_v))) return (k, n + batch_size, ex, ex2)
5,345,048
def winged_edge( face_features: np.ndarray, edge_features: np.ndarray, coedge_features: np.ndarray, coedge_to_next: np.ndarray, coedge_to_mate: np.ndarray, coedge_to_face: np.ndarray, coedge_to_edge: np.ndarray, ): """Create graph according to the `winged edge` configuration.""" coedge_to_prev = np.zeros_like(coedge_to_next) for (from_ix, to_ix) in enumerate(coedge_to_next): coedge_to_prev[to_ix] = from_ix faces_num = face_features.shape[0] edges_num = edge_features.shape[0] coedges_num = coedge_features.shape[0] face_to_node = np.arange(faces_num) edge_to_node = np.arange(edges_num) + faces_num coedge_to_node = np.arange(coedges_num) + (faces_num + edges_num) edges = [] # Faces _f(coedge_to_face, coedge_to_node, face_to_node, edges) _mf(coedge_to_mate, coedge_to_node, coedge_to_face, face_to_node, edges) # Edges _e(coedge_to_edge, coedge_to_node, edge_to_node, edges) _ne(coedge_to_next, coedge_to_node, coedge_to_edge, edges) _pe(coedge_to_prev, coedge_to_node, coedge_to_edge, edges) _mne(coedge_to_next, coedge_to_node, coedge_to_mate, coedge_to_edge, edges) _mpe(coedge_to_prev, coedge_to_node, coedge_to_mate, coedge_to_edge, edges) # CoEdges _i(coedges_num, coedge_to_node, edges) _m(coedge_to_mate, coedge_to_node, edges) _n(coedge_to_next, coedge_to_node, edges) _p(coedge_to_prev, coedge_to_node, edges) _mn(coedge_to_next, coedge_to_node, coedge_to_mate, edges) _mp(coedge_to_prev, coedge_to_node, coedge_to_mate, edges) return _create_graph(face_features, edge_features, coedge_features, edges)
5,345,049
def dollar_format(dollars): """ Args: dollars (any): A dollar value (Any value that can be turned into a float can be used - int, Decimal, str, etc.) Returns: str: The formatted string """ decimal_dollars = Decimal(dollars) if decimal_dollars < 0: return "-${:,.2f}".format(-decimal_dollars) else: return "${:,.2f}".format(decimal_dollars)
5,345,050
def test_delete_training_view_with_deployment(test_app, create_deployment): """ Tests deleting a training view where a model has been deployed """ APP.dependency_overrides[crud.get_db] = lambda: (yield create_deployment) # Give the "server" the same db session assert len(create_deployment.query(TrainingView).all()) == 1, 'setup' assert len(create_deployment.query(TrainingViewKey).all()) == 2, 'setup' assert len(create_deployment.query(TrainingSet).all()) == 1, 'setup' assert len(create_deployment.query(TrainingSetFeature).all()) == 1, 'setup' response = test_app.delete(ROUTE, params=name, auth=basic_auth) logger.info(f'status: {response.status_code}, -- message: {response.json()}') assert len(create_deployment.query(TrainingView).all()) == 1, 'should still be there' assert len(create_deployment.query(TrainingViewKey).all()) == 2, 'should still be there' assert len(create_deployment.query(TrainingSet).all()) == 1, 'should still be there' assert len(create_deployment.query(TrainingSetFeature).all()) == 1, 'should still be there' # postgres has case sensitivity issues that seem incompatible with Splice for testing # assert not DatabaseFunctions.table_exists('test_fs', '"FSET_1"', create_fset_with_features.get_bind()), \ # 'Table should be dropped!'
5,345,051
def check_aea_project( f: Callable, check_aea_version: bool = True, check_finger_prints: bool = False ) -> Callable: """ Check the consistency of the project as a decorator. - try to load agent configuration file - iterate over all the agent packages and check for consistency. """ def wrapper(*args: Any, **kwargs: Any) -> Callable: _check_aea_project( args, check_aea_version=check_aea_version, check_finger_prints=check_finger_prints, ) return f(*args, **kwargs) return update_wrapper(wrapper, f)
5,345,052
def solve_scene(kb_db_name, obj_file_path): """ Solve manipulation for the target object in the scene using analogy. Args: kb_db_name(str): The knowledge base database file name. obj_file_path(str): File path to the .obj file. """ # create vpython scene that is used for graphical representation of a scene # for the user vpython_scene = vpython.canvas( title='', width=800, height=600, center=vpython.vector(0, 0, 0), background=vpython.color.black) # Draw XYZ axis in the scene vpython_drawings.draw_xyz_arrows(300.0) scene = file_parsers.read_obj_file(obj_file_path) # collision detection for each mesh in the scene min_distance = 3 for mesh_1 in scene.values(): for mesh_2 in scene.values(): if mesh_1.name != mesh_2.name: aabb_collision = aabb_col.aabb_intersect( mesh_1, mesh_2, min_distance=min_distance) if aabb_collision: for surface in mesh_1.surfaces: intersect = aabb_col.aabb_intersect_vertex( mesh_2, surface.collider, min_distance=min_distance) if intersect: surface.collided_objects[mesh_2.name] = True surface.collision = True mesh_1.collision = True mesh_1.collided_objects[mesh_2.name] = True for side, surfaces in mesh_1.aabb.closest_surfaces.items(): counter = 0 for surface in surfaces: if surface.collision: counter += 1 if counter == len(surfaces): mesh_1.aabb.collided_sides[side] = 2 elif counter > 0 and counter < len(surfaces): mesh_1.aabb.collided_sides[side] = 1 # vpython_drawings.draw_colliders(mesh_list=scene.values()) vpython_drawings.draw_aabb_colliders(mesh_list=scene.values()) # vpython_drawings.draw_mesh(mesh_list=scene.values()) vpython_drawings.draw_aabb(mesh_list=scene.values(), opacity=0.4) # select target object picked_vpython_obj = user_inputs.select_object(vpython_scene) picked_obj = scene[picked_vpython_obj.name[:-5]] # get aabbs from KB db = sqlitedb.sqlitedb(name=kb_db_name) db_aabbs = db.select_all_aabbs() # rebuild aabb from db as an AABB object aabbs = {} for db_aabb in db_aabbs: # get positions of manipulation points and vector forces from DB pos = db.select_position_id(db_aabb[2]) push_point = db.select_position_id( int(db.select_push_point_id(int(db_aabb[3]))[1])) push_vec = db.select_push_vec_id(int(db_aabb[4])) pull_point = db.select_position_id( int(db.select_pull_point_id(int(db_aabb[5]))[1])) pull_vec = db.select_pull_vec_id(int(db_aabb[6])) spatula_point = db.select_position_id( int(db.select_spatula_point_id(int(db_aabb[7]))[1])) spatula_vec = db.select_spatula_vec_id(int(db_aabb[8])) # Create AABB object and assign collided sides aabb = AABB([pos[1], pos[2], pos[3]], [db_aabb[9], db_aabb[10], db_aabb[11]]) aabb.collided_sides['top'] = db_aabb[12] aabb.collided_sides['bottom'] = db_aabb[13] aabb.collided_sides['front'] = db_aabb[14] aabb.collided_sides['back'] = db_aabb[15] aabb.collided_sides['right'] = db_aabb[16] aabb.collided_sides['left'] = db_aabb[17] # assign manipulation points and force vectors for the AABB object if push_point[1] is not None: aabb.manipulation_points['push'] = [ float(push_point[1]), float(push_point[2]), float(push_point[3]) ] aabb.manipulation_vectors['push'] = [ int(push_vec[1]), int(push_vec[2]), int(push_vec[3]) ] else: aabb.manipulation_points['push'] = None aabb.manipulation_vectors['push'] = None if pull_point[1] is not None: aabb.manipulation_points['pull'] = [ float(pull_point[1]), float(pull_point[2]), float(pull_point[3]) ] aabb.manipulation_vectors['pull'] = [ int(pull_vec[1]), int(pull_vec[2]), int(pull_vec[3]) ] else: aabb.manipulation_points['pull'] = None aabb.manipulation_vectors['pull'] = None if spatula_point[1] is not None: aabb.manipulation_points['spatula'] = [ float(spatula_point[1]), float(spatula_point[2]), float(spatula_point[3]) ] aabb.manipulation_vectors['spatula'] = [ int(spatula_vec[1]), int(spatula_vec[2]), int(spatula_vec[3]) ] else: aabb.manipulation_points['spatula'] = None aabb.manipulation_vectors['spatula'] = None aabbs[db_aabb[0]] = aabb # get all mappings and their scores. Sort them based on highest score analogy_mapping = Mapping() mappings_scores = [] for aabb_id, aabb in aabbs.items(): new_aabb_scores = analogy_mapping.get_mappings_score( target_aabb=picked_obj.aabb, source_aabb=aabb) # save only top 3 rotation sequences based on highest score top_3_scores = heapq.nlargest( 3, new_aabb_scores, key=operator.itemgetter(0)) # The result is saved as tuple in a form # (aabb_id, top score from all 3, list of best 3 rotation sequences with their scores) mappings_scores.append((aabb_id, top_3_scores[0][0], top_3_scores)) # sort the mapping scores based on the top scores mappings_scores = sorted( mappings_scores, key=operator.itemgetter(1), reverse=True) # print out info about best mapping print(':' * 120) for aabb_mapping in mappings_scores: print('=' * 120) print('aabb id:', aabb_mapping[0], 'scene:', db.select_aabb_id(aabb_mapping[0])[1]) print('max score for the AABB:', aabb_mapping[1]) for score in aabb_mapping[2]: print('-' * 120) print('score:', score[0], '\nsequence:', score[1], '\nmapping:', analogy_mapping.all_permutations[score[1]]) # rotate vectors based on the permutation sequence best_sequence = mappings_scores[0][2][0][1] rotated_manipulation_vec = {} for operation, vec in aabbs[mappings_scores[0] [0]].manipulation_vectors.items(): if vec is not None: vpython_vec = vpython.vec(vec[0], vec[1], vec[2]) # best_sequence not reversed because we want to rotate the manipulation vectors from # source scenario to target one. Best sequence is from target to source. # For example (x,y) means first transform y and then x. # Since we want to go backwards it is already in the correct order. for rotation in best_sequence: if rotation == 'x': vpython_vec = vpython.rotate( vpython_vec, angle=vpython.radians(90), axis=vpython.vec(1, 0, 0)) elif rotation == 'y': vpython_vec = vpython.rotate( vpython_vec, angle=vpython.radians(90), axis=vpython.vec(0, 1, 0)) rotated_manipulation_vec[operation] = [ vpython_vec.x, vpython_vec.y, vpython_vec.z ] else: rotated_manipulation_vec[operation] = [None, None, None] picked_obj.aabb.manipulation_vectors = rotated_manipulation_vec # get dict that maps surfaces from target to source # For example 'top':'left' top surface is going to be left to map to source mapping_sides = analogy_mapping.all_permutations[best_sequence] aabb_half_size = aabbs[mappings_scores[0][0]].half_size aabb_pos = aabbs[mappings_scores[0][0]].pos # determine x,y,z ratios for scaling factor that is applied # for manipulation points positions. It is important to determine which # rotation took place in order to determine correct scaling ratios. x_ratio = 0 y_ratio = 0 z_ratio = 0 if (mapping_sides['top'] == 'top' or mapping_sides['top'] == 'bottom') and ( mapping_sides['front'] == 'front' or mapping_sides['front'] == 'back'): x_ratio = picked_obj.aabb.half_size[0] / aabb_half_size[0] y_ratio = picked_obj.aabb.half_size[1] / aabb_half_size[1] z_ratio = picked_obj.aabb.half_size[2] / aabb_half_size[2] elif (mapping_sides['top'] == 'top' or mapping_sides['top'] == 'bottom' ) and (mapping_sides['front'] == 'right' or mapping_sides['front'] == 'left'): x_ratio = picked_obj.aabb.half_size[2] / aabb_half_size[0] y_ratio = picked_obj.aabb.half_size[1] / aabb_half_size[1] z_ratio = picked_obj.aabb.half_size[0] / aabb_half_size[2] elif (mapping_sides['top'] == 'left' or mapping_sides['top'] == 'right' ) and (mapping_sides['front'] == 'front' or mapping_sides['front'] == 'back'): x_ratio = picked_obj.aabb.half_size[1] / aabb_half_size[0] y_ratio = picked_obj.aabb.half_size[0] / aabb_half_size[1] z_ratio = picked_obj.aabb.half_size[2] / aabb_half_size[2] elif (mapping_sides['top'] == 'left' or mapping_sides['top'] == 'right' ) and (mapping_sides['front'] == 'top' or mapping_sides['front'] == 'bottom'): x_ratio = picked_obj.aabb.half_size[1] / aabb_half_size[0] y_ratio = picked_obj.aabb.half_size[2] / aabb_half_size[1] z_ratio = picked_obj.aabb.half_size[0] / aabb_half_size[2] elif (mapping_sides['top'] == 'front' or mapping_sides['top'] == 'back' ) and (mapping_sides['front'] == 'bottom' or mapping_sides['front'] == 'top'): x_ratio = picked_obj.aabb.half_size[0] / aabb_half_size[0] y_ratio = picked_obj.aabb.half_size[2] / aabb_half_size[1] z_ratio = picked_obj.aabb.half_size[1] / aabb_half_size[2] elif (mapping_sides['top'] == 'front' or mapping_sides['top'] == 'back' ) and (mapping_sides['front'] == 'right' or mapping_sides['front'] == 'left'): x_ratio = picked_obj.aabb.half_size[2] / aabb_half_size[0] y_ratio = picked_obj.aabb.half_size[0] / aabb_half_size[1] z_ratio = picked_obj.aabb.half_size[1] / aabb_half_size[2] else: raise ValueError rotated_manipulation_points = {} # iterate through all manipulation points and rotate them based on the best sequence for operation, pos in aabbs[mappings_scores[0] [0]].manipulation_points.items(): if pos is not None: # calculate relative position from manipulation point to centre of AABB relative_pos = [ pos[0] - aabb_pos[0], pos[1] - aabb_pos[1], pos[2] - aabb_pos[2] ] # Scale the position to match the size of our target AABB scaled_relative_pos = [ relative_pos[0] * x_ratio, relative_pos[1] * y_ratio, relative_pos[2] * z_ratio ] # create vpython vec that is used in rotation method vpython_vec = vpython.vec(scaled_relative_pos[0], scaled_relative_pos[1], scaled_relative_pos[2]) # rotate the manipulation points positions from source to target scene for rotation in best_sequence: if rotation == 'x': vpython_vec = vpython.rotate( vpython_vec, angle=vpython.radians(90), axis=vpython.vec(1, 0, 0)) elif rotation == 'y': vpython_vec = vpython.rotate( vpython_vec, angle=vpython.radians(90), axis=vpython.vec(0, 1, 0)) # Shift the manipulation point position from relative pos to absolute pos in the scene scaled__rotated_abs_pos = [ vpython_vec.x + picked_obj.aabb.pos[0], vpython_vec.y + picked_obj.aabb.pos[1], vpython_vec.z + picked_obj.aabb.pos[2] ] rotated_manipulation_points[operation] = scaled__rotated_abs_pos # Draw rotated manipulation points and vectors on the screen radius = stat.mean(picked_obj.aabb.half_size) / 10 if operation == 'push': color = vpython.color.cyan elif operation == 'pull': color = vpython.color.purple else: color = vpython.color.orange vpython_drawings.draw_point( rotated_manipulation_points[operation], radius, color=color) vector_length = stat.mean(picked_obj.aabb.half_size) vpython_drawings.draw_arrow( rotated_manipulation_points[operation], picked_obj.aabb.manipulation_vectors[operation], vector_length, color=color) else: rotated_manipulation_points[operation] = [None, None, None] # assig the calculated manipulation points to the target AABB picked_obj.aabb.manipulation_points = rotated_manipulation_points # save it to the DB if it is correct. correct_result = input( 'Are these manipulation points and vectors correct? Yes/No: ') if correct_result.lower() == 'y' or correct_result.lower() == 'yes': file_path_list = obj_file_path.split('/') file_name_obj = file_path_list[-1] file_name_list = file_name_obj.split('.') scene_name = file_name_list[0] db.save_scene(scene, scene_name, picked_obj) print('Successfully Saved in knowledge base DB.') else: print('This is not going to be saved in the knowledge base DB.') print('Done') # close DB db.conn.close()
5,345,053
def sftp(): """ Fixture allowing setup of a mocked remote SFTP session. Yields a 3-tuple of: Transfer() object, SFTPClient object, and mocked OS module. For many/most tests which only want the Transfer and/or SFTPClient objects, see `sftp_objs` and `transfer` which wrap this fixture. """ mock = MockSFTP(autostart=False) client, mock_os = mock.start() transfer = Transfer(Connection("host")) yield transfer, client, mock_os # TODO: old mock_sftp() lacked any 'stop'...why? feels bad man
5,345,054
async def test_bike_is_in_use(rental_manager, random_rental, random_bike, random_bike_factory, bike_connection_manager): """Assert that you can check if a bike is in use.""" assert rental_manager.is_in_use(random_bike) assert not rental_manager.is_in_use(await random_bike_factory(bike_connection_manager))
5,345,055
def find_closest_cross(wire1_path, wire2_path): """ Compare the coordinates of two wire paths to find the crossing point closest (Manhattan Distance) to the origin (0,0). Returns a list of crossing points, the closest crossing point and its distance to the start point """ best_result = -1 crossing_list = [] for i in range(len(wire1_path)): if wire1_path[i] in wire2_path and wire1_path[i] != [0,0]: test_result = abs(wire1_path[i][0]) + abs(wire1_path[i][1]) crossing_list.append(wire1_path[i]) if best_result == -1: best_cross = wire1_path[i][:] best_result = test_result elif test_result < best_result: best_cross = wire1_path[i][:] best_result = test_result return crossing_list, best_cross, best_result
5,345,056
def test_solution(data: str) -> None: """Test the solution""" solution = Day10() solution.set_input_data(data.split("\n")) assert solution.part_one() == 26397 assert solution.part_two() == 288957
5,345,057
async def check_is_user_exist(user_collection: UserCollection, test_data: dict): """ Check that checking for an existing user is correct. :param user_collection: MongoDB collection. :type user_collection: UserCollection :param test_data: Database test data. :type test_data: dict """ data_setup, data, expected_data = parse_test_sample(test_data) await setup_database(user_collection, data_setup) is_user_exist = await user_collection.is_user_exist(**data) assert_massage = "The saved and found document does not match, should be same." assert is_user_exist == expected_data, assert_massage
5,345,058
def add_signature_source(service, **_): """ Add a signature source for a given service Variables: service => Service to which we want to add the source to Arguments: None Data Block: { "uri": "http://somesite/file_to_get", # URI to fetch for parsing the rules "name": "signature_file.yar", # Name of the file we will parse the rules as "username": null, # Username used to get to the URI "password": null, # Password used to get to the URI "header": { # Header sent during the request to the URI "X_TOKEN": "SOME RANDOM TOKEN" # Exemple of header }, "private_key": null, # Private key used to get to the URI "pattern": "^*.yar$" # Regex pattern use to get appropriate files from the URI } Result example: {"success": True/False} # if the operation succeeded of not """ try: data = request.json except (ValueError, KeyError): return make_api_response({"success": False}, err="Invalid source object data", status_code=400) # Ensure data source doesn't have spaces in name data['name'] = re.sub('[^0-9a-zA-Z_]+', '', data['name'].replace(" ", "_")) # Ensure private_key (if any) ends with a \n if data.get('private_key', None) and not data['private_key'].endswith("\n"): data['private_key'] += "\n" service_data = STORAGE.get_service_with_delta(service, as_obj=False) if not service_data.get('update_config', {}).get('generates_signatures', False): return make_api_response({"success": False}, err="This service does not generate alerts therefor " "you cannot add a source to get the alerts from.", status_code=400) current_sources = service_data.get('update_config', {}).get('sources', []) for source in current_sources: if source['name'] == data['name']: return make_api_response({"success": False}, err=f"Update source name already exist: {data['name']}", status_code=400) current_sources.append(data) service_delta = STORAGE.service_delta.get(service, as_obj=False) if service_delta.get('update_config') is None: service_delta['update_config'] = {"sources": current_sources} else: service_delta['update_config']['sources'] = current_sources _reset_service_updates(service) # Save the signature success = STORAGE.service_delta.save(service, service_delta) if success: service_event_sender.send(data['name'], { 'operation': Operation.Modified, 'name': data['name'] }) return make_api_response({"success": success})
5,345,059
def edit_screen_item(self, request, form): """ Edit a screen. """ layout = ManageScreensLayout(self, request) if form.submitted(request): form.update_model(self) request.message(_('Screen modified.'), 'success') request.app.pages_cache.flush() return redirect(layout.manage_model_link) if not form.errors: form.apply_model(self) return { 'layout': layout, 'form': form, 'title': _( "Screen ${number}", mapping={'number': self.number} ), 'subtitle': _('Edit screen'), 'cancel': layout.manage_model_link }
5,345,060
def get_xyz_t(): """ CIELAB to XYZ の逆関数の中の値を XYZ のぞれぞれについて求める。 """ c, l, h = symbols('c, l, h', real=True) xt = (l + 16) / 116 + (c * cos(h)) / 500 yt = (l + 16) / 116 zt = (l + 16) / 116 - (c * sin(h)) / 200 xyz_t = [xt, yt, zt] return xyz_t, c, l, h
5,345,061
async def home(): """ Home page, welcome Returns: Rendered template of homepage """ return await render_template('home.html')
5,345,062
def compute_inverse_interpolation_img(weights, indices, img, b, h_i, w_i): """ weights: [b, h*w] indices: [b, h*w] img: [b, h*w, a, b, c, ...] """ w0, w1, w2, w3 = weights ff_idx, cf_idx, fc_idx, cc_idx = indices k = len(img.size()) - len(w0.size()) img_0 = w0[(...,) + (None,) * k] * img img_1 = w1[(...,) + (None,) * k] * img img_2 = w2[(...,) + (None,) * k] * img img_3 = w3[(...,) + (None,) * k] * img img_out = torch.zeros(b, h_i * w_i, *img.shape[2:]).type_as(img) ff_idx = torch.clamp(ff_idx, min=0, max=h_i * w_i - 1) cf_idx = torch.clamp(cf_idx, min=0, max=h_i * w_i - 1) fc_idx = torch.clamp(fc_idx, min=0, max=h_i * w_i - 1) cc_idx = torch.clamp(cc_idx, min=0, max=h_i * w_i - 1) img_out.scatter_add_(1, ff_idx[(...,) + (None,) * k].expand_as(img_0), img_0) img_out.scatter_add_(1, cf_idx[(...,) + (None,) * k].expand_as(img_1), img_1) img_out.scatter_add_(1, fc_idx[(...,) + (None,) * k].expand_as(img_2), img_2) img_out.scatter_add_(1, cc_idx[(...,) + (None,) * k].expand_as(img_3), img_3) return img_out
5,345,063
def layer_prepostprocess(previous_value, x, sequence, dropout_rate, norm_type, depth, epsilon, default_name, name=None, dropout_broadcast_dims=None, layer_collection=None): """Apply a sequence of functions to the input or output of a layer. The sequence is specified as a string which may contain the following characters: a: add previous_value n: apply normalization d: apply dropout z: zero add For example, if sequence=="dna", then the output is previous_value + normalize(dropout(x)) Args: previous_value: A Tensor, to be added as a residual connection ('a') x: A Tensor to be transformed. sequence: a string. dropout_rate: a float norm_type: a string (see apply_norm()) depth: an integer (size of last dimension of x). epsilon: a float (parameter for normalization) default_name: a string name: a string dropout_broadcast_dims: an optional list of integers less than 3 specifying in which dimensions to broadcast the dropout decisions. saves memory. layer_collection: A tensorflow_kfac.LayerCollection. Only used by the KFAC optimizer. Default is None. Returns: a Tensor """ with tf.variable_scope(name, default_name=default_name): if sequence == "none": return x for c in sequence: if c == "a": x += previous_value elif c == "z": x = zero_add(previous_value, x) elif c == "n": x = apply_norm( x, norm_type, depth, epsilon, layer_collection=layer_collection) else: assert c == "d", ("Unknown sequence step %s" % c) x = dropout_with_broadcast_dims( x, 1.0 - dropout_rate, broadcast_dims=dropout_broadcast_dims) return x
5,345,064
def build_norm_layer(cfg, num_channels, postfix=''): """ Build normalization layer Args: Returns: layer (fluid.dygrah.Layer): created norm layer """ assert isinstance(cfg, dict) and 'type' in cfg cfg_ = cfg.copy() layer_type = cfg_.pop('type') if layer_type not in norm_cfg: raise KeyError('Unrecognized norm type {}'.format(layer_type)) else: abbr, norm_layer = norm_cfg[layer_type] if norm_layer is None: raise NotImplementedError assert isinstance(postfix, (int, str)) name = abbr + str(postfix) stop_gradient = cfg_.pop('stop_gradient', False) cfg_.setdefault('epsilon', 1e-5) layer = norm_layer(num_channels=num_channels, **cfg_) # for param in layer.parameters(): # param.stop_gradient = stop_gradient return name, layer
5,345,065
def get_split_cifar100_tasks(num_tasks, batch_size): """ Returns data loaders for all tasks of split CIFAR-100 :param num_tasks: :param batch_size: :return: """ datasets = {} # convention: tasks starts from 1 not 0 ! # task_id = 1 (i.e., first task) => start_class = 0, end_class = 4 cifar_transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),]) cifar_train = torchvision.datasets.CIFAR100('./data/', train=True, download=True, transform=cifar_transforms) cifar_test = torchvision.datasets.CIFAR100('./data/', train=False, download=True, transform=cifar_transforms) for task_id in range(1, num_tasks+1): train_loader, test_loader = get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} return datasets
5,345,066
def _find_loose_date(date_string): """Look for four digit numbers in the string. If there's only one, return it.""" if re.search(r'digit', date_string): # Might be something like "digitized 2010", which we want to avoid. return None # find all the (unique) four digit numbers in the date_string. matches = set(re.findall(r'\b\d{4}\b', date_string)) if len(matches) != 1: return None year = list(matches)[0] if is_valid_year(int(year)): LOG.debug('Parsed %s from "%s" as a loose date.' % (year, date_string)) return (year, year)
5,345,067
def invoke(command_requested, timeout=DEFAULT_TIMEOUT): """ """ p = subprocess.Popen(command_requested, shell=True, stdin=subprocess.PIPE, stdout=None, stderr=None) p.stdin.close() # since we do not allow invoked processes to listen to stdin, we close stdin to the subprocess try: return_code = p.wait(timeout) except TypeError: # most likely this is a python version lower than 3.3 start = time.time() while p.poll() is None and (time.time() - start) < timeout: time.sleep(0.1) # nicer than a pass, which would cause a lot of CPU usage return_code = p.poll() if return_code is None: return_code = -1 syslog.syslog('Invocation timed out1') except subprocess.TimeoutExpired: # works on python < 3.3 because a known exception is caught first return_code = -1 syslog.syslog('Invocation timed out') # We are also interested in data sent to stdin. This isn't allowed, and may # be interesting for forensics # Beware, this code is a bit iffy. In fact, reading from stdin seems iffy # to me. if sys.stdin in select.select([sys.stdin], [], [], 0)[0]: stdin_lines = sys.stdin.readline() else: stdin_lines = [] return return_code, stdin_lines
5,345,068
def _cmd_dump(m, line): """Dump entries from the defaults files. Syntax: config dump [*|regex] [section="*|regex"] [ic="1"] Examples: config dump * - dump the entire JSON config data structure. config dump reg[.*] ic="1" - dump variables that match the regular expression 'reg[.*]' ignoring case config dump reg[.*] section="nt|posix" - dumps variables from user.var in either the 'nt' or 'posix' section that match the regular expression 'reg.*' """ myname = funcname(_cmd_dump) logger.debug(f"{myname}: m={m}::m.groups()={m.groups()}::line={line}") msg, varName, parameters, instance = _parseSubCommand(line) if msg is not None: print(f"{myname}: {msg}\n\n", _cmd_get.__doc__) return if varName == "*": instance.dump() return ic = IGNORECASE if parameters.get('ic') == '1' else 0 section = _getSection(parameters) try: if section: instance.dumpSection(section, varName, ic) else: instance.dumpDefault(varName, ic) except Exception as err: print(f"{myname} caught Exception: {err}")
5,345,069
def zip_addon(addon: str, addon_dir: str): """ Zips 'addon' dir or '.py' file to 'addon.zip' if not yet zipped, then moves the archive to 'addon_dir'. :param addon: Absolute or relative path to a directory to zip or a .zip file. :param addon_dir: Path to Blender's addon directory to move the zipped archive to. :return (bpy_module, zip_file) Tuple of strings - an importable module name, an addon zip file path. """ addon_path = Path(addon).resolve() addon_basename = addon_path.name # Check if addon is already zipped already_zipped = False if addon_basename.endswith(".zip"): already_zipped = True # Delete target addon dir if exists if os.path.isdir(addon_dir): shutil.rmtree(addon_dir) os.mkdir(addon_dir) print(f"Addon dir is - {os.path.realpath(addon_dir)}") if not already_zipped: # Zip the addon # Get bpy python module from addon file name bpy_module = re.sub(".py", "", addon_basename) # Create zip archive using the module name zfile = Path(f"{bpy_module}.zip").resolve() print(f"Future zip path is - {zfile}") print(f"Zipping addon - {bpy_module}") # Zip addon content # ------------------- zf = zipfile.ZipFile(zfile, "w") if addon_path.is_dir(): # Addon is a directory, zip hierarchy cwd = os.getcwd() temp_dir = Path(gettempdir(), "blender_addon_tester") # Clean temp dir if already exists if temp_dir.is_dir(): shutil.rmtree(temp_dir) # Creating the addon under the temp dir with its hierarchy shutil.copytree(addon_path, temp_dir.joinpath(addon_path.relative_to(addon_path.anchor))) # Move to temp dir os.chdir(temp_dir) # Clear python cache if os.path.isdir("__pycache__"): shutil.rmtree("__pycache__") # Write addon content into archive for dirname, subdirs, files in os.walk(addon_path): for filename in files: filename = os.path.join(dirname, filename) # Clean file clean_file(filename) # Write file into zip under its hierarchy zf.write(filename, arcname=os.path.relpath(filename, addon_path.parent)) # Go back to start dir os.chdir(cwd) # Remove temp dir shutil.rmtree(temp_dir) else: # Addon is a file, zip only the file # Clean file #y = addon_path.as_posix() y = addon_basename #print(y) clean_file(y) # Write single addon file into zip zf.write(y) # End zip building zf.close() else: # Addon is already zipped, take it as it is zfile = addon_path print(f"Detected zip path is - {zfile}. No need to zip the addon beforehand.") # Get bpy python module from zip file name bpy_module = addon_basename.split(".zip")[0] # Copy zipped addon with name extended by blender revision number bl_revision = f"{bpy.app.version[0]}.{bpy.app.version[1]}" bfile = f"{zfile.stem}_{bl_revision}.zip" shutil.copy(zfile, bfile) return bpy_module, bfile
5,345,070
def set_simulation_data( state_energies, T_array, state1_index, state2_index ): """ Create and set SimulationData objects for a pair of specified states """ # Set default UnitData object default_UnitData = UnitData( kb=kB.value_in_unit(unit.kilojoule_per_mole/unit.kelvin), energy_conversion=1, length_conversion=1, volume_conversion=1, temperature_conversion=1, pressure_conversion=1, time_conversion=1, energy_str='KJ/mol', length_str='nm', volume_str='nm^3', temperature_str='K', pressure_str='bar', time_str='ps' ) # State 1 sim_data1 = SimulationData() sim_data1.observables = ObservableData( potential_energy=state_energies[state1_index,:], ) sim_data1.ensemble = EnsembleData( ensemble='NVT', energy=state_energies[state1_index,:], temperature=T_array[state1_index] ) sim_data1.units = default_UnitData # State 2 sim_data2 = SimulationData() sim_data2.observables = ObservableData( potential_energy=state_energies[state2_index,:], ) sim_data2.ensemble = EnsembleData( ensemble='NVT', energy=state_energies[state2_index,:], temperature=T_array[state2_index] ) sim_data2.units = default_UnitData return sim_data1, sim_data2
5,345,071
def card_banlist_status(banlist_status): """Validate banlist status Args: banlist_status {str}: Banlist status Raises: exceptions.BanlistStatusInvalid: Banlist status must be banned, limited, semi-limited or unlimited """ if not constants.BanlistStatus.is_valid_value(banlist_status): raise exceptions.BanlistStatusInvalid()
5,345,072
def pfl(flist, num, reverse = False, end = "\n"): """Print formatted list, accepts list of floats, number of elements to print and bool to print from the end of list.""" if reverse: num = -num [print("{:3.3f}".format(i), end = " ") for i in flist[num:]] else: [print("{:3.3f}".format(i), end = " ") for i in flist[:num]] print(end, end = "")
5,345,073
def park2_euc(x): """ Comutes the park2 function """ max_val = 5.925698 x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] ret = (2.0/3.0) * np.exp(x1 + x2) - x4*np.sin(x3) + x3 return min(ret, max_val)
5,345,074
def num_compositions_jit(m, n): """ Numba jit version of `num_compositions`. Return `0` if the outcome exceeds the maximum value of `np.intp`. """ return comb_jit(n+m-1, m-1)
5,345,075
def _report_failed_challs(failed_achalls): """Notifies the user about failed challenges. :param set failed_achalls: A set of failed :class:`certbot.achallenges.AnnotatedChallenge`. """ problems = dict() for achall in failed_achalls: if achall.error: problems.setdefault(achall.error.typ, []).append(achall) reporter = zope.component.getUtility(interfaces.IReporter) for achalls in six.itervalues(problems): reporter.add_message( _generate_failed_chall_msg(achalls), reporter.MEDIUM_PRIORITY)
5,345,076
def fake_get_vim_object(arg): """Stubs out the VMwareAPISession's get_vim_object method.""" return fake_vmware_api.FakeVim()
5,345,077
def get_version(*file_paths): """Retrieves the version from replicat_documents/__init__.py""" filename = os.path.join(os.path.dirname(__file__), *file_paths) version_file = open(filename).read() version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.")
5,345,078
def get_old_ids(title): """ Returns all the old ids of a particular site given the title of the Wikipedia page """ raw_data = json.loads( readInDataFromURL("https://en.wikipedia.org/w/api.php?action=query&prop=revisions&format=json&rvlimit=100000&titles=" + title) ) old_ids = dict() # initialize for page_id, revisions in data['query']['pages'].items(): print(revisions) # for revision in revisions: # old_ids[revision.] # try: # for extlink in page['extlinks']: # # print to the output file # print('%s\t%s\t%s'%(page_id, name, extlink['*']), file=outputfile) # except: # if options.verbose: # print('Page %s does not have any external links...'%name) # print(data) return old_ids
5,345,079
def max_expectation_under_constraint(f: np.ndarray, q: np.ndarray, c: float, eps: float = 1e-2, display: bool = False) -> np.ndarray: """ Solve the following constrained optimisation problem: max_p E_p[f] s.t. KL(q || p) <= c :param f: an array of values f(x), np.array of size n :param q: a discrete distribution q(x), np.array of size n :param c: a threshold for the KL divergence between p and q. :param eps: desired accuracy on the constraint :param display: plot the function :return: the argmax p* """ np.seterr(all="warn") if np.all(q == 0): q = np.ones(q.size) / q.size x_plus = np.where(q > 0) x_zero = np.where(q == 0) p_star = np.zeros(q.shape) lambda_, z = None, 0 q_p = q[x_plus] f_p = f[x_plus] f_star = np.amax(f) theta = partial(theta_func, q_p=q_p, f_p=f_p, c=c) d_theta_dl = partial(d_theta_dl_func, q_p=q_p, f_p=f_p) if f_star > np.amax(f_p): theta_star = theta_func(f_star, q_p=q_p, f_p=f_p, c=c) if theta_star < 0: lambda_ = f_star z = 1 - np.exp(theta_star) p_star[x_zero] = 1.0 * (f[x_zero] == np.amax(f[x_zero])) p_star[x_zero] *= z / p_star[x_zero].sum() if lambda_ is None: if np.isclose(f_p, f_p[0]).all(): return q else: # Binary search seems slightly (10%) faster than newton # lambda_ = binary_search(theta, eps, a=f_star, display=display) lambda_ = newton_iteration(theta, d_theta_dl, eps, x0=f_star + 1, a=f_star, display=display) # numba jit binary search is twice as fast as python version # lambda_ = binary_search_theta(q_p=q_p, f_p=f_p, c=c, eps=eps, a=f_star) beta = (1 - z) / (q_p @ (1 / (lambda_ - f_p))) if beta == 0: x_uni = np.where((q > 0) & (f == f_star)) if np.size(x_uni) > 0: p_star[x_uni] = (1 - z) / np.size(x_uni) else: p_star[x_plus] = beta * q_p / (lambda_ - f_p) return p_star
5,345,080
def payload_to_plain(payload=None): """ Converts the myADS results into the plain text message payload :param payload: list of dicts :return: plain text formatted payload """ formatted = u'' for p in payload: formatted += u"{0} ({1}) \n".format(p['name'], p['query_url'].format(p['qtype'], p['id'])) for r in p['results']: first_author = _get_first_author_formatted(r) if type(r.get('title', '')) == list: title = r.get('title')[0] else: title = r.get('title', '') formatted += u"\"{0},\" {1} ({2})\n".format(title, first_author, r['bibcode']) formatted += u"\n" return formatted
5,345,081
async def parse_blog_post(blog_link): """ Given a blog post's URL, this function GETs it and pulls the body out. We then analyze each word with NTLK and write some data into redis. :param blog_link: String :return: Raw text from the blog post w/html tags stripped out """ global blogs_scraped_counter global word_count print('Fetching raw text for {}'.format(blog_link)) soup = BeautifulSoup(r.get(blog_link).content, features='html.parser') post_text = soup.find( 'div', attrs={'class': parser_util.POST_BODY_CLASS}).get_text() sanitized_post_text = parser_util.sanitize_blogpost( post_text, translator=parser_util.sentence_translator) print('Successfully parsed post.') if parser_util.DEBUG_MODE: print('\nSanitized blogpost:\n{clean}\n\nOriginal text:{orig}'.format(clean=sanitized_post_text, orig=post_text)) print('Adding sentence information to postgres.') for sentence in sanitized_post_text.split('.'): # TODO: Implement word2vec and send actual vector instead of empty tuple pg.update_sentence_details(sentence, blog_link, '{}') for word in sentence.split(' '): analyze_word(word.strip(), blog_link) blogs_scraped_counter = blogs_scraped_counter + 1
5,345,082
def get_credentials_from_request(cloud, request): """ Extracts and returns the credentials from the current request for a given cloud. Returns an empty dict if not available. """ if request.META.get('HTTP_CL_CREDENTIALS_ID'): return get_credentials_by_id( cloud, request, request.META.get('HTTP_CL_CREDENTIALS_ID')) # In case a base class instance is sent in, attempt to retrieve the actual # subclass. if type(cloud) is models.Cloud: cloud = models.Cloud.objects.get_subclass(slug=cloud.slug) if isinstance(cloud, models.OpenStack): os_username = request.META.get('HTTP_CL_OS_USERNAME') os_password = request.META.get('HTTP_CL_OS_PASSWORD') if os_username or os_password: os_project_name = request.META.get('HTTP_CL_OS_PROJECT_NAME') os_project_domain_name = request.META.get( 'HTTP_CL_OS_PROJECT_DOMAIN_NAME') os_user_domain_name = request.META.get( 'HTTP_CL_OS_USER_DOMAIN_NAME') d = {'os_username': os_username, 'os_password': os_password} if os_project_name: d['os_project_name'] = os_project_name if os_project_domain_name: d['os_project_domain_name'] = os_project_domain_name if os_user_domain_name: d['os_user_domain_name'] = os_user_domain_name return d else: return {} elif isinstance(cloud, models.AWS): aws_access_key = request.META.get('HTTP_CL_AWS_ACCESS_KEY') aws_secret_key = request.META.get('HTTP_CL_AWS_SECRET_KEY') if aws_access_key or aws_secret_key: return {'aws_access_key': aws_access_key, 'aws_secret_key': aws_secret_key, } else: return {} elif isinstance(cloud, models.Azure): azure_subscription_id = request.META.get( 'HTTP_CL_AZURE_SUBSCRIPTION_ID') azure_client_id = request.META.get('HTTP_CL_AZURE_CLIENT_ID') azure_secret = request.META.get('HTTP_CL_AZURE_SECRET') azure_tenant = request.META.get('HTTP_CL_AZURE_TENANT') azure_resource_group = request.META.get('HTTP_CL_AZURE_RESOURCE_GROUP') azure_storage_account = request.META.get( 'HTTP_CL_AZURE_STORAGE_ACCOUNT') azure_vm_default_username = request.META.get( 'HTTP_CL_AZURE_VM_DEFAULT_USERNAME') if (azure_subscription_id and azure_client_id and azure_secret and azure_tenant): return {'azure_subscription_id': azure_subscription_id, 'azure_client_id': azure_client_id, 'azure_secret': azure_secret, 'azure_tenant': azure_tenant, 'azure_resource_group': azure_resource_group, 'azure_storage_account': azure_storage_account, 'azure_vm_default_username': azure_vm_default_username } else: return {} elif isinstance(cloud, models.GCP): gcp_credentials_json = request.META.get('HTTP_CL_GCP_CREDENTIALS_JSON') if gcp_credentials_json: return json.loads(gcp_credentials_json) else: return {} else: raise Exception("Unrecognised cloud provider: %s" % cloud)
5,345,083
def build_wvc_model(wvc_model_file, atm_lut_file, rdn_header_file, vis=40): """ Build water vapor models. Arguments: wvc_model_file: str Water vapor column model filename. atm_lut_file: str Atmosphere lookup table file. rdn_header_file: str Radiance header filename. vis: float Visibility in [km]. """ if os.path.exists(wvc_model_file): logger.info('Write WVC models to %s.' %wvc_model_file) return from AtmLUT import read_binary_metadata, get_interp_range from ENVI import read_envi_header from Spectra import get_closest_wave, resample_spectra import json # Get sensor wavelengths and fwhms. header = read_envi_header(rdn_header_file) sensor_waves = np.array(header['wavelength']) sensor_fwhms = np.array(header['fwhm']) # Read atmosphere look-up-table metadata. metadata = read_binary_metadata(atm_lut_file+'.meta') metadata['shape'] = tuple([int(v) for v in metadata['shape']]) atm_lut_WVC = np.array([float(v) for v in metadata['WVC']]) atm_lut_VIS = np.array([float(v) for v in metadata['VIS']]) atm_lut_VZA = np.array([float(v) for v in metadata['VZA']]) atm_lut_RAA = np.array([float(v) for v in metadata['RAA']]) atm_lut_WAVE = np.array([float(v) for v in metadata['WAVE']]) # vza index vza_index = np.where(atm_lut_VZA==min(atm_lut_VZA))[0][-1] # raa index raa_index = np.where(atm_lut_RAA==min(atm_lut_RAA))[0][-1] # Load atmosphere look-up-table. atm_lut = np.memmap(atm_lut_file, dtype='float32', mode='r', shape=metadata['shape']) # dimension=[RHO, WVC, VIS, VZA, RAA, WAVE] # Subtract path radiance. atm_lut_rdn = atm_lut[1,:,vza_index,raa_index,:] - atm_lut[0,:,vza_index,raa_index,:] # dimesion=[WVC, VIS, WAVE] atm_lut.flush() del atm_lut # vis intepolation range vis_dict = get_interp_range(atm_lut_VIS, vis) # Do interpolation. interp_rdn = np.zeros((len(atm_lut_WVC), len(atm_lut_WAVE))) for vis_index, vis_delta in vis_dict.items(): interp_rdn += atm_lut_rdn[:,vis_index,:]*vis_delta del atm_lut_rdn, vis_index, vis_delta # Build WVC models. model_waves = [(890, 940, 1000), (1070, 1130, 1200)] wvc_model = dict() for waves in model_waves: # Get model wavelengths. wave_1, wave_2, wave_3 = waves left_wave, left_band = get_closest_wave(sensor_waves, wave_1) middle_wave, middle_band = get_closest_wave(sensor_waves, wave_2) right_wave, right_band = get_closest_wave(sensor_waves, wave_3) # Build the model. if np.abs(left_wave-wave_1)<20 and np.abs(middle_wave-wave_2)<20 and np.abs(right_wave-wave_3)<20: model = dict() # bands model['band'] = [int(left_band), int(middle_band), int(right_band)] # wavelengths model['wavelength'] = [left_wave, middle_wave, right_wave] # weights left_weight = (right_wave-middle_wave)/(right_wave-left_wave) right_weight = (middle_wave-left_wave)/(right_wave-left_wave) model['weight'] = [left_weight, right_weight] # ratios and wvcs resampled_rdn = resample_spectra(interp_rdn, atm_lut_WAVE, sensor_waves[model['band']], sensor_fwhms[model['band']]) ratio = resampled_rdn[:,1]/(left_weight*resampled_rdn[:,0]+right_weight*resampled_rdn[:,2]) index = np.argsort(ratio) model['ratio'] = list(ratio[index]) model['wvc'] = list(atm_lut_WVC[index]) # Save model parameters. wvc_model['WVC_Model_%d' %wave_2] = model # Clear data. del left_weight, right_weight, resampled_rdn, ratio, index, model del interp_rdn # Save WVC models to a json file. with open(wvc_model_file, 'w') as fid: json.dump(wvc_model, fid, indent=4) logger.info('Write WVC models to %s.' %wvc_model_file)
5,345,084
def nCr(n, r): """n-choose-r. Thanks for the "compact" solution go to: http://stackoverflow.com/questions/2096573/counting-combinations-and-permutations-efficiently """ return reduce( lambda x, y: x * y[0] / y[1], izip(xrange(n - r + 1, n + 1), xrange(1, r + 1)), 1)
5,345,085
def test_echo_substitutions_pass(): """Format string interpolations should work.""" context = Context({ 'key1': 'down the', 'echoMe': 'piping {key1} valleys wild'}) with patch_logger( 'pypyr.steps.echo', logging.NOTIFY) as mock_logger_notify: pypyr.steps.echo.run_step(context) mock_logger_notify.assert_called_once_with('piping down the valleys wild')
5,345,086
def check_python_version(conf, minver=None): """ Check if the python interpreter is found matching a given minimum version. minver should be a tuple, eg. to check for python >= 2.4.2 pass (2,4,2) as minver. If successful, PYTHON_VERSION is defined as 'MAJOR.MINOR' (eg. '2.4') of the actual python version found, and PYTHONDIR is defined, pointing to the site-packages directory appropriate for this python version, where modules/packages/extensions should be installed. """ assert minver is None or isinstance(minver, tuple) python = conf.env['PYTHON'] if not python: conf.fatal('could not find the python executable') # Get python version string cmd = [python, "-c", "import sys\nfor x in sys.version_info: print(str(x))"] debug('python: Running python command %r' % cmd) proc = Utils.pproc.Popen(cmd, stdout=Utils.pproc.PIPE) lines = proc.communicate()[0].split() assert len(lines) == 5, "found %i lines, expected 5: %r" % (len(lines), lines) pyver_tuple = (int(lines[0]), int(lines[1]), int(lines[2]), lines[3], int(lines[4])) # compare python version with the minimum required result = (minver is None) or (pyver_tuple >= minver) if result: # define useful environment variables pyver = '.'.join([str(x) for x in pyver_tuple[:2]]) conf.env['PYTHON_VERSION'] = pyver if 'PYTHONDIR' in conf.environ: pydir = conf.environ['PYTHONDIR'] else: if sys.platform == 'win32': (python_LIBDEST, pydir) = \ _get_python_variables(python, ["get_config_var('LIBDEST')", "get_python_lib(standard_lib=0, prefix=%r)" % conf.env['PREFIX']], ['from distutils.sysconfig import get_config_var, get_python_lib']) else: python_LIBDEST = None (pydir,) = \ _get_python_variables(python, ["get_python_lib(standard_lib=0, prefix=%r)" % conf.env['PREFIX']], ['from distutils.sysconfig import get_config_var, get_python_lib']) if python_LIBDEST is None: if conf.env['LIBDIR']: python_LIBDEST = os.path.join(conf.env['LIBDIR'], "python" + pyver) else: python_LIBDEST = os.path.join(conf.env['PREFIX'], "lib", "python" + pyver) if hasattr(conf, 'define'): # conf.define is added by the C tool, so may not exist conf.define('PYTHONDIR', pydir) conf.env['PYTHONDIR'] = pydir # Feedback pyver_full = '.'.join(map(str, pyver_tuple[:3])) if minver is None: conf.check_message_custom('Python version', '', pyver_full) else: minver_str = '.'.join(map(str, minver)) conf.check_message('Python version', ">= %s" % minver_str, result, option=pyver_full) if not result: conf.fatal('The python version is too old (%r)' % pyver_full)
5,345,087
def bcFactory(name): """Factory for boundary condition items. """ from pythia.pyre.inventory import facility from pylith.bc.DirichletTimeDependent import DirichletTimeDependent return facility(name, family="boundary_condition", factory=DirichletTimeDependent)
5,345,088
def decode(value): """Decode utf-8 value to string. Args: value: String to decode Returns: result: decoded value """ # Initialize key variables result = value # Start decode if value is not None: if isinstance(value, bytes) is True: result = value.decode('utf-8') # Return return result
5,345,089
def notebook_display_image_svg(listOfImageNames): """ Takes as input a list of images (e.g. png) and displays them in the current cell """ for imageName in listOfImageNames: display(SVG(filename=imageName))
5,345,090
def sequence_rec_sqrt(x_init, iter, dtype=int): """ Mathematical sequence: x_n = x_{n-1} * sqrt(n) :param x_init: initial values of the sequence :param iter: iteration until the sequence should be evaluated :param dtype: data type to cast to (either int of float) :return: element at the given iteration and array of the whole sequence """ # exponential growth def iter_function(x_seq, i, x_init): return x_seq[i - 1, :] * np.sqrt(i + 1) # i+1 because sqrt(1) = 1 return sequence(x_init, iter, iter_function, dtype)
5,345,091
def convert_string_to_type(string_value, schema_type): """ Attempts to convert a string value into a schema type. This method may evaluate code in order to do the conversion and is therefore not safe! """ # assume that the value is a string unless otherwise stated. if schema_type == "float": evaluated_value = float(string_value) elif schema_type == "int": evaluated_value = int(string_value) elif schema_type == "bool": if string_value == "False": evaluated_value = False elif string_value == "True": evaluated_value = True else: raise TankError("Invalid boolean value %s! Valid values are True and False" % string_value) elif schema_type == "list": evaluated_value = eval(string_value) elif schema_type == "dict": evaluated_value = eval(string_value) else: # assume string-like evaluated_value = string_value return evaluated_value
5,345,092
def plot3d(shower): """ Display a 3d plot of a shower Parameters ---------- shower: list of position points (3-floats arrays) """ X = [] Y = [] Z = [] for points in shower: X.append(points[0]) Y.append(points[1]) Z.append(points[2]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X, Y, Z) plt.show()
5,345,093
def counter(path): """Get number of files by searching directory recursively""" if not os.path.exists(path): return 0 count = 0 for r, dirs, files in os.walk(path): for dr in dirs: count += len(glob.glob(os.path.join(r, dr + "/*"))) return count
5,345,094
def add_square_plot(x_start, x_stop, y_start, y_stop, ax, colour = 'k'): """Draw localization square around an area of interest, x_start etc are in pixels, so (0,0) is top left. Inputs: x_start | int | start of box x_stop | int | etc. y_start | int | y_ stop | int | ax | axes object | axes on which to draw colour | string | colour of bounding box. Useful to change when plotting labels, and predictions from a model. Returns: box on figure History: 2019/??/?? | MEG | Written 2020/04/20 | MEG | Document, copy to from small_plot_functions to LiCSAlert_aux_functions """ ax.plot((x_start, x_start), (y_start, y_stop), c= colour) # left hand side ax.plot((x_start, x_stop), (y_stop, y_stop), c= colour) # bottom ax.plot((x_stop, x_stop), (y_stop, y_start), c= colour) # righ hand side ax.plot((x_stop, x_start), (y_start, y_start), c= colour) # top
5,345,095
def get_local_coordinate_system(time_dep_orientation: bool, time_dep_coordinates: bool): """ Get a local coordinate system. Parameters ---------- time_dep_orientation : If True, the coordinate system has a time dependent orientation. time_dep_coordinates : If True, the coordinate system has a time dependent coordinates. Returns ------- weldx.transformations.LocalCoordinateSystem: A local coordinate system """ if not time_dep_coordinates: coords = Q_(np.asarray([2.0, 5.0, 1.0]), "mm") else: coords = Q_( np.asarray( [[2.0, 5.0, 1.0], [1.0, -4.0, 1.2], [0.3, 4.4, 4.2], [1.1, 2.3, 0.2]] ), "mm", ) if not time_dep_orientation: orientation = tf.rotation_matrix_z(np.pi / 3) else: orientation = tf.rotation_matrix_z(np.pi / 2 * np.array([1, 2, 3, 4])) if not time_dep_orientation and not time_dep_coordinates: return tf.LocalCoordinateSystem(orientation=orientation, coordinates=coords) time = pd.DatetimeIndex(["2000-01-01", "2000-01-02", "2000-01-03", "2000-01-04"]) return tf.LocalCoordinateSystem( orientation=orientation, coordinates=coords, time=time )
5,345,096
def start_debugging(address): """ Connects to debugpy in Maya, then starts the threads needed to send and receive information from it """ log("Connecting to " + address[0] + ":" + str(address[1])) # Create the socket used to communicate with debugpy global debugpy_socket debugpy_socket = socket.create_connection(address) log("Successfully connected to Maya for debugging. Starting...") # Start a thread that sends requests to debugpy run_in_new_thread(debugpy_send_loop) fstream = debugpy_socket.makefile() while True: try: # Wait for the CONTENT_HEADER to show up, # then get the length of the content following it content_length = 0 while True: header = fstream.readline() if header: header = header.strip() if not header: break if header.startswith(CONTENT_HEADER): content_length = int(header[len(CONTENT_HEADER):]) # Read the content of the response, then call the callback if content_length > 0: total_content = "" while content_length > 0: content = fstream.read(content_length) content_length -= len(content) total_content += content if content_length == 0: message = total_content on_receive_from_debugpy(message) except Exception as e: # Problem with socket. Close it then return log("Failure reading maya's debugpy output: \n" + str(e)) debugpy_socket.close() break
5,345,097
def _get_tooltip(tooltip_col, gpd): """Show everything or columns in the list.""" if tooltip_col is not None: tooltip = folium.GeoJsonTooltip(fields=tooltip_col) else: tooltip = tooltip_col return tooltip
5,345,098
def encryption(message: str, key: int) -> str: """Return the ciphertext by xor the message with a repeating key""" return b"".join( [bytes([message[i] ^ key[i % len(key)]]) for i in range(len(message))] )
5,345,099