content
stringlengths
22
815k
id
int64
0
4.91M
def _get_stops() -> None: """Import stop words either from a text file or stopwords corpus""" global stops import Settings filename=Settings.dir_name + 'patentstops.txt' if filename: f = File(filename).openText() for line in f.readlines(): stops += line.split() f.close() else: stops = stopwords.words('english')
5,345,400
def failed_revisions_for_case_study( case_study: CaseStudy, result_file_type: MetaReport ) -> tp.List[str]: """ Computes all revisions of this case study that have failed. Args: case_study: to work on result_file_type: report type of the result files Returns: a list of failed revisions """ total_failed_revisions = set( get_failed_revisions(case_study.project_name, result_file_type) ) return [ rev for rev in case_study.revisions if rev[:10] in total_failed_revisions ]
5,345,401
def _removeTwoSentenceCommonNode(syncSrc1, syncSrc2, matchListT1, matchListT2, prefix): """ Identify and remove a node that appears to be in both of the target sentences, and is also a currently active link """ raise DeprecationWarning, "Now finding split points before individual pairs" # a useful rule splits the node into tgt1 and tgt2, # with information on how to structure both src1LinkPos = set([ tuple(syncSrc1.findLink(l)) for l in syncSrc1.links() ]) src2LinkPos = set([ tuple(syncSrc2.findLink(l)) for l in syncSrc2.links() ]) if PRINT_DEBUG_SPLIT: print "Set1 links:",src1LinkPos,"\t\tSet2 links:",src2LinkPos commonAncestorsLinks = set((commonAncestorPositions(p1,p2) for p1 in src1LinkPos for p2 in src2LinkPos)) if PRINT_DEBUG_SPLIT: print "commonAncestorsLinks:", commonAncestorsLinks # not sure if I need this test. It might be enough to get a clean split # if len(src1LinkPos-src2LinkPos)==0: raise ValueError, "No separate information in tgt1" # if len(src2LinkPos-src1LinkPos)==0: raise ValueError, "No separate information in tgt2" if len(src1LinkPos-src2LinkPos)==0 or len(src2LinkPos-src1LinkPos)==0: print "Rule contains nothing to split the sentences" linksToRemove = [ prefix+l for l in (commonAncestorsLinks) ] print "linksToRemove:",linksToRemove refMatchListT1 = [ (ms,mt) for (ms,mt) in matchListT1 if ms.treeposition() not in linksToRemove ] refMatchListT2 = [ (ms,mt) for (ms,mt) in matchListT2 if ms.treeposition() not in linksToRemove ] raise SystemExit,"common nodes" return refMatchListT1, refMatchListT2, False ancestorsIn1 = commonAncestorsLinks&src1LinkPos ancestorsIn2 = commonAncestorsLinks&src2LinkPos crossAncestors1 = [ a for a in ancestorsIn1 for d in src2LinkPos if _isDirectDescendent(d, a) ] crossAncestors2 = [ a for a in ancestorsIn2 for d in src1LinkPos if _isDirectDescendent(d, a) ] if PRINT_DEBUG_SPLIT: print "crossAncestors1:", crossAncestors1 print "crossAncestors2:", crossAncestors2 if len(crossAncestors1)==0 and len(crossAncestors2)==0: # print "Nothing to change" return matchListT1, matchListT2, True # remove the common ancestor nodes linksToRemove = [ prefix+l for l in (crossAncestors1+crossAncestors2) ] if PRINT_DEBUG_SPLIT: print "linksToRemove:",linksToRemove refMatchListT1 = [ (ms,mt) for (ms,mt) in matchListT1 if ms.treeposition() not in linksToRemove ] refMatchListT2 = [ (ms,mt) for (ms,mt) in matchListT2 if ms.treeposition() not in linksToRemove ] if PRINT_DEBUG_SPLIT: print "\nAfter removing common ancestor nodes,\nrefMatchListT1:" printAllMatchListInfo(refMatchListT1) print "refMatchListT2:" printAllMatchListInfo(refMatchListT2) raise SystemExit,"common nodes" return refMatchListT1, refMatchListT2, False
5,345,402
def bytes_load(path): """Load bytest from a file.""" with open(path, 'rb') as f: return f.read()
5,345,403
def get_relationship_length_fam_mean(data): """Calculate mean length of relationship for families DataDef 43 Arguments: data - data frames to fulfill definiton id Modifies: Nothing Returns: added_members mean_relationship_length - mean relationship length of families """ families = data[1] return families['max_days_since_first_service'].mean()
5,345,404
def create_jar(jar_file, entries): """ Create JAR from given entries. :param jar_file: filename of the created JAR :type jar_file: str :param entries: files to put into the JAR :type entries: list[str] :return: None """ # 'jar' adds separate entries for directories, also for empty ones. with ZipFile(jar_file, "w") as jar: jar.writestr("META-INF/", "") jar.writestr("META-INF/MANIFEST.MF", Manifest().get_data()) for entry in entries: jar.write(entry) if os.path.isdir(entry): for root, dirs, files in os.walk(entry): for filename in dirs + files: jar.write(os.path.join(root, filename))
5,345,405
def convert_hapmap(input_dataframe, recode=False, index_col=0): """ Specifically deals with hapmap and 23anMe Output """ complement = {'G/T': 'C/A', 'C/T': 'G/A', "G/A" : "G/A", "C/A": "C/A", "A/G" : "A/G", "A/C": "A/C"} dataframe = input_dataframe.copy() if recode: recode = dataframe.ix[:, index_col].apply(lambda x: complement[x]) dataframe.ix[:,0] = recode new_dataframe = dataframe.apply(_single_column_allele, axis=1) return new_dataframe
5,345,406
def visualize_labels( labels, title="Visualization of labels", mode: str = "lines" ) -> None: """ Plot labels. Parameters ---------- title: str Title of the plot. mode: str Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". """ if len(labels.shape) == 1: labels = pd.DataFrame(labels, columns=["labels"]) fig = go.Figure() fig.update_layout(title=title) fig.update_yaxes(title_text="labels") for i in range(labels.shape[1]): fig.add_trace( go.Scatter( x=labels.index, y=labels.iloc[:, i], name=labels.columns[i], mode=mode, ) ) fig.show()
5,345,407
def to_base64(message): """ Returns the base64 representation of a string or bytes. """ return b64encode(to_bytes(message)).decode('ascii')
5,345,408
def create_alerts(): """ Function to create alerts. """ try: # validate post json data content = request.json print(content) if not content: raise ValueError("Empty value") if not 'timestamp' in content or not 'camera_id' in content or not 'class_id' in content: raise KeyError("Invalid dictionary keys") if not isinstance(content.get('timestamp'), int): raise TypeError("Timestamp must be in int64 type") if not isinstance(content.get('camera_id'), int): raise TypeError("Camera_id must be in int32 type") class_id = content.get('class_id') if not isinstance(class_id, list): raise TypeError("Class_id must be an array") for val in class_id: if not isinstance(val, int): raise TypeError("Array class_id values must be in int32 type") except (ValueError, KeyError, TypeError) as e: traceback.print_exc() resp = Response({"Json format error"}, status=400, mimetype='application/json') return resp try: record_created = db.alerts.insert_one(content) return jsonify(id=str(record_created.inserted_id)), 201 except: #traceback.print_exc() return jsonify(error="Internal server error"), 500
5,345,409
def read_envs(): """Function will read in all environment variables into a dictionary :returns: Dictionary containing all environment variables or defaults :rtype: dict """ envs = {} envs['QUEUE_INIT_TIMEOUT'] = os.environ.get('QUEUE_INIT_TIMEOUT', '3600') envs['VALIDATION_TIMEOUT'] = os.environ.get('VALIDATION_TIMEOUT', '28800') envs['VALIDATION_HOME'] = os.environ.get('VALIDATION_HOME', '/opt/aif-validator') envs['VALIDATION_FLAGS'] = os.environ.get('VALIDATION_FLAGS') envs['S3_VALIDATION_BUCKET'] = os.environ.get('S3_VALIDATION_BUCKET') envs['S3_VALIDATION_PREFIX'] = os.environ.get('S3_VALIDATION_PREFIX') envs['AWS_BATCH_JOB_ID'] = os.environ.get('AWS_BATCH_JOB_ID') envs['AWS_BATCH_JOB_NODE_INDEX'] = os.environ.get('AWS_BATCH_JOB_NODE_INDEX') envs['AWS_DEFAULT_REGION'] = os.environ.get('AWS_DEFAULT_REGION', 'us-east-1') return envs
5,345,410
def generate(env): """Add Builders and construction variables for rmic to an Environment.""" env['BUILDERS']['RMIC'] = RMICBuilder env['RMIC'] = 'rmic' env['RMICFLAGS'] = SCons.Util.CLVar('') env['RMICCOM'] = '$RMIC $RMICFLAGS -d ${TARGET.attributes.java_lookupdir} -classpath ${SOURCE.attributes.java_classdir} ${SOURCES.attributes.java_classname}' env['JAVACLASSSUFFIX'] = '.class'
5,345,411
def get_platform(): """ Get system platform metadata. """ detected_os = platform.system() detected_distro = platform.platform() if detected_os == "Darwin": return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=True, help_message="", label="") elif detected_os == "Linux": if os.path.isfile('/proc/device-tree/hat/uuid'): return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=False, help_message="%s " "Please visit %s to get started hosting " "machine-payable servers on your Bitcoin " "Computer." % (SUPPORTED_SYSTEMS, PING21_LEARN_URL), label="21bc") elif 'boot2docker' in detected_distro.lower(): return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=False, help_message="The `21 sell` service manager is not " "yet supported within another boot2docker VM.", label="boot2docker") elif (os.path.isfile('/sys/hypervisor/uuid') or os.path.isdir('/var/lib/digitalocean')) and ( 'debian-8.' in detected_distro.lower() or 'ubuntu-14.04' in detected_distro.lower() or 'ubuntu-16.04' in detected_distro.lower()): return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=True, help_message="", label="debian") elif os.path.isfile('/sys/hypervisor/uuid') and ( 'centos-7' in detected_distro.lower()): return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=True, help_message="", label="centos") elif os.path.isfile('/sys/hypervisor/uuid') and ( 'fedora-24' in detected_distro.lower()): return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=True, help_message="", label="fedora") return PlatformDescription(detected_os=detected_os, detected_distro=detected_distro, is_supported=False, help_message=SUPPORTED_SYSTEMS, label="")
5,345,412
def load_catalog_npy(catalog_path): """ Load a numpy catalog (extension ".npy") @param catalog_path: str @return record array """ return numpy.load(catalog_path)
5,345,413
def pgd(fname, n_gg=20, n_mm=20, n_kk=20, n_scale=1001): """ :param fname: data file name :param n_gg: outer iterations :param n_mm: intermediate iterations :param n_kk: inner iterations :param n_scale: number of discretized points, arbitrary :return: """ n_buses, Qmax, Qmin, Y, V_mod, P_pq, Q_pq, P_pv, I0_pq, n_pv, n_pq = read_grid_data(fname) SSk, SSp, SSq = init_apparent_powers_decomposition(n_buses, n_scale, P_pq, Q_pq, Qmin, Qmax) VVk, VVp, VVq = init_voltages_decomposition(n_mm, n_buses, n_scale) IIk, IIp, IIq = init_currents_decomposition(n_gg, n_mm, n_buses, n_scale) n_max = n_gg * n_mm * n_kk iter_count = 1 idx_i = 0 idx_v = 1 for gg in range(n_gg): # outer loop: iterate on γ to solve the power flow as such for mm in range(n_mm): # intermediate loop: iterate on i to find the superposition of terms of the I tensor. # define the new C CCk, CCp, CCq, Nc, Nv, n = fun_C(SSk, SSp, SSq, VVk, VVp, VVq, IIk, IIp, IIq, idx_i, idx_v, n_buses, n_scale) # initialize the residues we have to find IIk1 = (np.random.rand(n_buses) - np.random.rand(n_buses)) * 1 # could also try to set IIk1 = VVk1 IIp1 = (np.random.rand(n_buses) - np.random.rand(n_buses)) * 1 IIq1 = (np.random.rand(n_scale) - np.random.rand(n_scale)) * 1 for kk in range(n_kk): # inner loop: iterate on Γ to find the residues. # compute IIk1 (residues on Ik) RHSk = np.zeros(n_buses, dtype=complex) for ii in range(Nc): prodRK = np.dot(IIp1, CCp[ii]) * np.dot(IIq1, CCq[ii]) RHSk += prodRK * CCk[ii] LHSk = np.zeros(n_buses, dtype=complex) for ii in range(Nv): prodLK = np.dot(IIp1, VVp[ii] * IIp1) * np.dot(IIq1, VVq[ii] * IIq1) LHSk += prodLK * VVk[ii] IIk1 = RHSk / LHSk # compute IIp1 (residues on Ip) RHSp = np.zeros(n_buses, dtype=complex) for ii in range(Nc): prodRP = np.dot(IIk1, CCk[ii]) * np.dot(IIq1, CCq[ii]) RHSp += prodRP * CCp[ii] LHSp = np.zeros(n_buses, dtype=complex) for ii in range(Nv): prodLP = np.dot(IIk1, VVk[ii] * IIk1) * np.dot(IIq1, VVq[ii] * IIq1) LHSp += prodLP * VVp[ii] IIp1 = RHSp / LHSp # compute IIq1 (residues on Iq) RHSq = np.zeros(n_scale, dtype=complex) for ii in range(Nc): prodRQ = np.dot(IIk1, CCk[ii]) * np.dot(IIp1, CCp[ii]) RHSq += prodRQ * CCq[ii] LHSq = np.zeros(n_scale, dtype=complex) for ii in range(Nv): prodLQ = np.dot(IIk1, VVk[ii] * IIk1) * np.dot(IIp1, VVp[ii] * IIp1) LHSq += prodLQ * VVq[ii] IIq1 = RHSq / LHSq progress_bar(iter_count, n_max, 50) # display the inner operations iter_count += 1 IIk[idx_i, :] = IIk1 IIp[idx_i, :] = IIp1 IIq[idx_i, :] = IIq1 idx_i += 1 for ii in range(n_mm): VVk[ii, :] = np.conj(sp_linalg.spsolve(Y, IIk[ii])) VVp[ii, :] = IIp[ii] VVq[ii, :] = IIq[ii] # try to add I0 this way: VVk[n_mm, :] = np.conj(sp_linalg.spsolve(Y, I0_pq)) VVp[n_mm, :] = np.ones(n_buses) VVq[n_mm, :] = np.ones(n_scale) idx_v = n_mm + 1 # VVk: size (n_mm + 1, nbus) # VVp: size (n_mm + 1, nbus) # VVq: size (n_mm + 1, n_scale) v_map = build_map(VVk, VVp, VVq) # SSk: size (2, nbus) # SSp: size (2, nbus) # SSq: size (2, n_scale) s_map = build_map(SSk, SSp, SSq) # IIk: size (n_gg * n_mm, nbus) # IIp: size (n_gg * n_mm, nbus) # IIq: size (n_gg * n_mm, n_scale) i_map = build_map(IIk, IIp, IIq) # the size of the maps is nbus, nbus, n_scale return v_map, s_map, i_map
5,345,414
def test_bingmdx_tr_sanity(): """ test bingmdx_tr sanity. """ assert bingmdx_tr("test") # '试验;检测;考试;测验' assert "试验" in bingmdx_tr("test")
5,345,415
def find_first_empty(rect): """ Scan a rectangle and find first open square @param {Array} rect Board layout (rectangle) @return {tuple} x & y coordinates of the leftmost top blank square """ return _find_first_empty_wrapped(len(rect[0]))(rect)
5,345,416
def parseArticle(text: str) -> str: """ Parses and filters an article. It uses the `wikitextparser` and custom logic. """ # clear the image attachments and links text = re.sub("\[\[Податотека:.+\]\][ \n]", '', text) text = wikipedia.filtering.clearCurlyBrackets(text) # replace everything after "Надворешни врски" links_location = re.search("[\=]+[ ]+(Поврзано|Наводи|Надворешни врски)[ ]+[\=]+", text) if links_location != None: text = text[:links_location.span()[0]] # remove headings and break lines text = re.sub("([\=]+.+[\=]+.+\n)|(<br />)", '\n', text) # parse the file using the wikitextparser parsed = wtp.parse(text) return parsed.plain_text()
5,345,417
def plot_spectrum(x, y, filename, title, con_start_vel, con_end_vel, sigma_tau): """ Output a plot of opacity vs LSR velocity to a specified file. :param x: The velocity data :param y: The opacity values for each velocity step :param filename: The file the plot should be written to. Should be an .eps or .pdf file. :param title: The title for the plot :param con_start_vel: The minimum velocity that the continuum was measured at. :param con_end_vel: The maximum velocity that the continuum was measured at. """ fig = plt.figure() plt.plot(x/1000, y) if len(sigma_tau) > 0: tau_max = 1 + sigma_tau tau_min = 1 - sigma_tau plt.fill_between(x/1000, tau_min, tau_max, facecolor='lightgray', color='lightgray') plt.axhline(1, color='r') plt.axvline(con_start_vel, color='g', linestyle='dashed') plt.axvline(con_end_vel, color='g', linestyle='dashed') plt.xlabel(r'Velocity relative to LSR (km/s)') plt.ylabel(r'$e^{(-\tau)}$') plt.title(title) plt.grid(True) plt.savefig(filename) #plt.show() plt.close() return
5,345,418
def exp2(input, *args, **kwargs): """ Computes the base two exponential function of ``input``. Examples:: >>> import torch >>> import treetensor.torch as ttorch >>> ttorch.exp2(ttorch.tensor([-4.0, -1.0, 0, 2.0, 4.8, 8.0])) tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02]) >>> ttorch.exp2(ttorch.tensor({ ... 'a': [-4.0, -1.0, 0, 2.0, 4.8, 8.0], ... 'b': {'x': [[-2.0, 1.2, 0.25], ... [16.0, 3.75, -2.34]]}, ... })) <Tensor 0x7ff90a4c3af0> ├── a --> tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02]) └── b --> <Tensor 0x7ff90a4c3be0> └── x --> tensor([[2.5000e-01, 2.2974e+00, 1.1892e+00], [6.5536e+04, 1.3454e+01, 1.9751e-01]]) """ return torch.exp2(input, *args, **kwargs)
5,345,419
def list_default_storage_policy_of_datastore( datastore, host=None, vcenter=None, username=None, password=None, protocol=None, port=None, verify_ssl=True, ): """ Returns a list of datastores assign the storage policies. datastore Name of the datastore to assign. The datastore needs to be visible to the VMware entity the proxy points to. service_instance Service instance (vim.ServiceInstance) of the vCenter. Default is None. .. code-block:: bash salt '*' vsphere.list_default_storage_policy_of_datastore datastore=ds1 """ log.trace("Listing the default storage policy of datastore '{}'" "".format(datastore)) if salt.utils.platform.is_proxy(): details = __salt__["vmware_info.get_proxy_connection_details"]() else: details = __salt__["vmware_info.get_connection_details"]( host=host, vcenter=vcenter, username=username, password=password, protocol=protocol, port=port, verify_ssl=verify_ssl, ) service_instance = saltext.vmware.utils.vmware.get_service_instance(**details) # Find datastore target_ref = __salt__["vmware_info.get_proxy_target"](service_instance) ds_refs = saltext.vmware.utils.vmware.get_datastores( service_instance, target_ref, datastore_names=[datastore] ) if not ds_refs: raise VMwareObjectRetrievalError("Datastore '{}' was not " "found".format(datastore)) profile_manager = salt.utils.pbm.get_profile_manager(service_instance) policy = salt.utils.pbm.get_default_storage_policy_of_datastore(profile_manager, ds_refs[0]) return saltext.vmware.utils.get_policy_dict(policy)
5,345,420
def action_stats(env, md_action, cont_action): """ Get information on `env`'s action space. Parameters ---------- md_action : bool Whether the `env`'s action space is multidimensional. cont_action : bool Whether the `env`'s action space is continuous. Returns ------- n_actions_per_dim : list of length (action_dim,) The number of possible actions for each dimension of the action space. action_ids : list or None A list of all valid actions within the space. If `cont_action` is True, this value will be None. action_dim : int or None The number of dimensions in a single action. """ if cont_action: action_dim = 1 action_ids = None n_actions_per_dim = [numpy.inf] if md_action: action_dim = env.action_space.shape[0] n_actions_per_dim = [numpy.inf for _ in range(action_dim)] else: if md_action: n_actions_per_dim = [ space.n if hasattr(space, "n") else numpy.inf for space in env.action_space.spaces ] action_ids = ( None if numpy.inf in n_actions_per_dim else list(product(*[range(i) for i in n_actions_per_dim])) ) action_dim = len(n_actions_per_dim) else: action_dim = 1 n_actions_per_dim = [env.action_space.n] action_ids = list(range(n_actions_per_dim[0])) return n_actions_per_dim, action_ids, action_dim
5,345,421
def count(pred: Pred, seq: Seq) -> int: """ Count the number of occurrences in which predicate is true. """ pred = to_callable(pred) return sum(1 for x in seq if pred(x))
5,345,422
def lambda_k(W, Z, k): """Coulomb function $\lambda_k$ as per Behrens et al. :param W: Total electron energy in units of its rest mass :param Z: Proton number of daughter :param k: absolute value of kappa """ #return 1. gammak = np.sqrt(k**2.0-(ALPHA*Z)**2.0) gamma1 = np.sqrt(1.-(ALPHA*Z)**2.0) R = 1.2e-15*(2.5*Z)**(1./3.)/NATURALLENGTH return generalizedFermiFunction(W, Z, R, k)/generalizedFermiFunction(W, Z, R, 1)*(k+gammak)/(k*(1+gamma1))
5,345,423
def tryJsonOrPlain(text): """Return json formatted, if possible. Otherwise just return.""" try: return pprint.pformat( json.loads( text ), indent=1 ) except: return text
5,345,424
def test_get_yesterday_alias(): """Test getting date object for 'yesterday' alias""" assert helpers.get_date_object_for_alias('yesterday') == date(2021, 12, 31)
5,345,425
def create_signaling(args): """ Create a signaling method based on command-line arguments. """ if args.signaling == "apprtc": if aiohttp is None or websockets is None: # pragma: no cover raise Exception("Please install aiohttp and websockets to use appr.tc") if not args.signaling_room: args.signaling_room = "".join( [random.choice("0123456789") for x in range(10)] ) return ApprtcSignaling(args.signaling_room) elif args.signaling == "tcp-socket": return TcpSocketSignaling(args.signaling_host, args.signaling_port) elif args.signaling == "unix-socket": return UnixSocketSignaling(args.signaling_path) else: return CopyAndPasteSignaling()
5,345,426
def fitswrite(img, imgname, **kwargs): """ Write FITS image to disk. Parameters ---------- img : numpy array 2D or 3D numpy array imgname : string Name of the output FITS image Optional Keywords ----------------- header : pyFITS header FITS header object Return ------ None """ try: if kwargs.has_key('header'): hdu = pyfits.PrimaryHDU(img, header = kwargs['header']) else: hdu = pyfits.PrimaryHDU(img) hdu.writeto(imgname) except IOError: print "FITSWRITE: Unable to write FITS image %s. Stopping." %imgname return
5,345,427
def signup(DB_MAN: DB_manager, DB_CONN: Connection) -> None: """This function represents a view to the signup page. Args: DB_MAN (DB_manager): database manager. DB_CONN (Connection): database connection. """ # signup form to retrieve the information from the user. st.subheader("Signup") with st.form("signup"): name = st.text_input("Full name *") email = st.text_input("Email") username = st.text_input("Username *") password = st.text_input("Password *", type="password") submit = st.form_submit_button("signup") # if user clicks on the submit button, the information is saved in the database. if submit: user = User( id=1, name=name, username=username, password=password, created_at=date.today(), email=email if email else None, ) user_created = DB_MAN.create_user(DB_CONN, user) if user_created: st.success(f"Welcome {user.name}") st.session_state["user"] = user st.experimental_rerun() else: st.error("Username/password is incorrect")
5,345,428
def get_corpus_gene_adjacency(corpus_id): """Generate a nugget table.""" corpus = get_corpus(corpus_id) data = get_gene_adjacency(corpus) return jsonify(data), 200
5,345,429
def get_pool_health(pool): """ Get ZFS list info. """ pool_name = pool.split()[0] pool_capacity = pool.split()[6] pool_health = pool.split()[9] return pool_name, pool_capacity, pool_health
5,345,430
def resize_short(img, target_size): """ resize_short """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) resized_width = normwidth(resized_width) resized_height = normwidth(resized_height) resized = cv2.resize(img, (resized_width, resized_height)) return resized
5,345,431
def _scale(aesthetic, name=None, breaks=None, labels=None, limits=None, expand=None, na_value=None, guide=None, trans=None, **other): """ Create a scale (discrete or continuous) :param aesthetic The name of the aesthetic that this scale works with :param name The name of the scale - used as the axis label or the legend title :param breaks A numeric vector of positions (of ticks) :param labels A vector of labels (on ticks) :param limits A numeric vector of length two providing limits of the scale. :param expand A numeric vector of length two giving multiplicative and additive expansion constants. :param na_value Value to use for missing values :param guide Type of legend. Use 'colorbar' for continuous color bar, or 'legend' for discrete values. :param trans Name of built-in transformation. ('identity', 'log10', 'sqrt', 'reverse') :return: """ # flatten the 'other' sub-dictionary args = locals().copy() args.pop('other') return FeatureSpec('scale', **args, **other)
5,345,432
def test_del_alarm(): """Tests del_alarm method """ #WARNING: This test will clear all the alarms that have been saved test_alarm1 = {"title":"test_alarm1","content":"content"} test_alarm2 = {"title":"test_alarm2","content":"content"} test_alarm3 = {"title":"test_alarm3","content":"content"} COVID_briefing_application.undismissed_alarms = [test_alarm1,test_alarm2,test_alarm3] del_alarm("test_alarm2") assert len(COVID_briefing_application.undismissed_alarms) == 2 assert test_alarm2 not in COVID_briefing_application.undismissed_alarms reset_persistent_data()
5,345,433
def logsubexp(x, y): """ Helper function to compute the exponential of a difference between two numbers Computes: ``x + np.log1p(-np.exp(y-x))`` Parameters ---------- x, y : float or array_like Inputs """ if np.any(x < y): raise RuntimeError('cannot take log of negative number ' f'{str(x)!s} - {str(y)!s}') return x + np.log1p(-np.exp(y - x))
5,345,434
async def test_exception_handling(): """Test handling of exceptions.""" send_messages = [] user = MockUser() refresh_token = Mock() conn = websocket_api.ActiveConnection( logging.getLogger(__name__), None, send_messages.append, user, refresh_token ) for (exc, code, err) in ( (exceptions.Unauthorized(), websocket_api.ERR_UNAUTHORIZED, "Unauthorized"), ( vol.Invalid("Invalid something"), websocket_api.ERR_INVALID_FORMAT, "Invalid something. Got {'id': 5}", ), (asyncio.TimeoutError(), websocket_api.ERR_TIMEOUT, "Timeout"), ( exceptions.HomeAssistantError("Failed to do X"), websocket_api.ERR_UNKNOWN_ERROR, "Failed to do X", ), (ValueError("Really bad"), websocket_api.ERR_UNKNOWN_ERROR, "Unknown error"), ): send_messages.clear() conn.async_handle_exception({"id": 5}, exc) assert len(send_messages) == 1 assert send_messages[0]["error"]["code"] == code assert send_messages[0]["error"]["message"] == err
5,345,435
def is_sequence_of_list(items): """Verify that the sequence contains only items of type list. Parameters ---------- items : sequence The items. Returns ------- bool True if all items in the sequence are of type list. False otherwise. Examples -------- >>> is_sequence_of_list([[1], [1], [1]]) True """ return all(isinstance(item, list) for item in items)
5,345,436
def sum_fib_dp(m, n): """ A dynamic programming version. """ if m > n: m, n = n, m large, small = 1, 0 # a running sum for Fibbo m ~ n + 1 running = 0 # dynamically update the two variables for i in range(n): large, small = large + small, large # note that (i + 1) -> small is basically mapping m -> F[m] if m <= i + 1 <= n: running += small return running
5,345,437
def fibo_dyn2(n): """ return the n-th fibonacci number """ if n < 2: return 1 else: a, b = 1, 1 for _ in range(1,n): a, b = b, a+b return b
5,345,438
def upload_model(source, destination, tmpfile): """Uploads a file to the bucket.""" urllib.request.urlretrieve(source, tmpfile) storage_client = storage.Client() bucket = storage_client.get_bucket(BUCKET_NAME) blob = bucket.blob("/".join([FOLDER_NAME, destination])) blob.upload_from_filename(tmpfile)
5,345,439
def test_get_offline_wikis(fs): """Local wiki names are found.""" fs.create_file("/data1/frwiki-20201020-md5sums.txt") fs.create_file("/data2/enwiki-20201020-md5sums.txt") wct = ww.CorporaTracker(local_dirs=["/data1", "/data2"], online=False, verbose=False) assert len(wct.list_local_wikis()) == 2 assert "enwiki" in wct.list_local_wikis()
5,345,440
def build_all(box, request_list): """ box is [handle, left, top, bottom] \n request_list is the array about dic \n ****** Attention before running the function, you should be index. After build_all, function will close the windows about train troop """ # get the box of windows left = box[1] top = box[2] positions = init_pos_army() # get the information about request request = request_deal(request_list[0]['str']) num_army = int(request_list[0]['army']['max']) num_spells = int(request_list[0]['spells']['max']) num_devices = int(request_list[0]['device']['max']) num_army_fill_in = int(request_list[0]['army']['fill_in']) num_spells_fill_in = int(request_list[0]['spells']['fill_in']) num_device_fill_in = int(request_list[0]['device']['fill_in']) # open army time.sleep(0.2) Click(left + positions['army'][0], top + positions['army'][1]) # select dragon if request[0] != None: # open train troops time.sleep(0.2) Click(left + positions['train_troops'][0], top + positions['train_troops'][1]) if ( num_army - num_army_fill_in ) >= num_housing_space[request[0]]: for index in range( math.floor( ( num_army - num_army_fill_in ) / num_housing_space[request[0]] ) ): time.sleep(0.2) Click(left + positions[request[0]][0], top + positions[request[0]][1]) # select speed increase if request[1] != None: # open brew spells time.sleep(0.2) Click(left + positions['Brew_spells'][0], top + positions['Brew_spells'][1]) if ( num_spells - num_spells_fill_in ) >= num_housing_space[request[1]]: for index in range( math.floor( ( num_spells - num_spells_fill_in ) / num_housing_space[request[1]] ) ): time.sleep(0.2) Click(left + positions[request[1]][0], top + positions[request[1]][1]) # select device # if request[2] != None: # open brew spells ## # close the army time.sleep(0.2) Click(left + positions['close_army'][0], top + positions['close_army'][1]) print('close the army') return True
5,345,441
def select_results(results): """Select relevant images from results Selects most recent image for location, and results with positive fit index. """ # Select results with positive bestFitIndex results = [x for x in results['items'] if x['bestFitIndex'] > 0] # counter_dict schema: # counter_dict = { # bounds: { # 'dateCreated': date, # 'downloadURL' # } # } counter_dict = {} for result in results: bounds = result_to_bounds(result) # does something already exist with these bounds? existing = counter_dict.get(bounds) # If exists, check if newer if existing is not None: existing_date = existing['dateCreated'] this_date = date_parse(result['dateCreated']) if this_date < existing_date: continue # Doesn't exist yet or is newer, so add to dict counter_dict[bounds] = { 'dateCreated': date_parse(result['dateCreated']), 'downloadURL': result['downloadURL']} return [x['downloadURL'] for x in counter_dict.values()]
5,345,442
def dc_session(virtual_smoothie_env, monkeypatch): """ Mock session manager for deck calibation """ ses = endpoints.SessionManager() monkeypatch.setattr(endpoints, 'session', ses) return ses
5,345,443
def is_available(_cache={}): """Return version tuple and None if OmnisciDB server is accessible or recent enough. Otherwise return None and the reason about unavailability. """ if not _cache: omnisci = next(global_omnisci_singleton) try: version = omnisci.version except Exception as msg: _cache['reason'] = 'failed to get OmniSci version: %s' % (msg) else: print(' OmnisciDB version', version) if version[:2] >= (4, 6): _cache['version'] = version else: _cache['reason'] = ( 'expected OmniSci version 4.6 or greater, got %s' % (version,)) return _cache.get('version', ()), _cache.get('reason', '')
5,345,444
def pitch_info_from_pitch_string(pitch_str: str) -> PitchInfo: """ Parse a pitch string representation. E.g. C#4, A#5, Gb8 """ parts = tuple((c for c in pitch_str)) size = len(parts) pitch_class = register = accidental = None if size == 1: (pitch_class,) = parts elif size == 2: (pitch_class, register) = parts elif size >= 3: (pitch_class, accidental, register) = parts[:3] accidental = Accidental.SHARP if accidental == '#' \ else Accidental.FLAT if accidental == 'b' \ else Accidental.NATURAL register = int(register) pitch_info = PitchInfo(pitch_class=pitch_class, accidental=accidental) matching_chromatic_pitch_info, _ = next( matching_pitch_info_generator(pitch_info, CHROMATIC_PITCHES_INFO) ) final_pitch_info = copy.deepcopy(matching_chromatic_pitch_info) final_pitch_info.register = register if is_enharmonic_match(pitch_info, matching_chromatic_pitch_info): final_pitch_info.swap_enharmonic() return final_pitch_info
5,345,445
def test_multiple_meta() -> None: """Test parsing multiple meta.""" docstring = parse( """ Short description Parameters ---------- spam asd 1 2 3 Raises ------ bla herp yay derp """ ) assert docstring.short_description == "Short description" assert len(docstring.meta) == 3 assert docstring.meta[0].args == ["param", "spam"] assert docstring.meta[0].arg_name == "spam" assert docstring.meta[0].description == "asd\n1\n 2\n3" assert docstring.meta[1].args == ["raises", "bla"] assert docstring.meta[1].type_name == "bla" assert docstring.meta[1].description == "herp" assert docstring.meta[2].args == ["raises", "yay"] assert docstring.meta[2].type_name == "yay" assert docstring.meta[2].description == "derp"
5,345,446
def dump_one_page(title: str, page_id: str, content: str): """ 保存文章 $title: 文章标题 $page_id: 文章的 id $content: 文章的 html 文档 """ print(f"\n***[SAVING {page_id}]***") html_file = f"files/{title} - {page_id}.html" md_file = f"files/{title} - {page_id}.md" print(f"Saving the article to {html_file}...") with open(f"{html_file}", "w", encoding="utf-8") as f: f.write(content) print("Converting html to md...") os.system(f'pandoc -o "{md_file}" "{html_file}"') print("Cleaning the md...") with open(f"{md_file}") as f: lines = f.readlines() text = re.sub(r"{\..*?}", "", "".join(lines), flags=re.S) while re.search(r"{\..*?}", text, flags=re.S): text = re.sub(r"{\..*?}", "", text, flags=re.S) text = text.replace("\\\n", "").replace(":::", "") with open(f"{md_file}", "w", encoding="utf-8") as f: f.write(text) if DEL_HTML: print(f"Removing {html_file}...") os.remove(f"{html_file}")
5,345,447
def determine_word_type(tag): """ Determines the word type by checking the tag returned by the nltk.pos_tag(arr[str]) function. Each word in the array is marked with a special tag which can be used to find the correct type of a word. A selection is given in the dictionaries. Args: tag : String tag from the nltk.pos_tag(str) function that classified the particular word with a tag Returns: str: Word type as a string """ types = { "noun" : {"NN", "NNS", "NNPS", "FW"}, "adjective" : {"JJ", "JJR", "JJS"}, "verb" : {"VB", "VBD", "VBG", "VBN", "VBP", "VBZ"}, "adverb" : {"RB", "RBR"} } for type_, set_ in types.iteritems(): if tag in set_: return type_ return "noun"
5,345,448
def get_normalized_map_from_google(normalization_type, connection=None, n_header_lines=0): """ get normalized voci or titoli mapping from gdoc spreadsheets :param: normalization_type (t|v) :param: connection - (optional) a connection to the google account (singleton) :param: n_header_lines - (optional) n. of lines to ignore :ret: a dict, containing the consuntivo and preventivo sheets """ # get all gdocs keys gdoc_keys = settings.GDOC_KEYS if normalization_type == 't': gdoc_key = gdoc_keys['titoli_map'] elif normalization_type == 'v': gdoc_key = gdoc_keys['voci_map'] else: raise Exception("normalization_type arg accepts 't' or 'v' as possible values") if connection is None: connection = get_connection() # open the list worksheet list_sheet = None try: list_sheet = connection.open_by_key(gdoc_key) except exceptions.SpreadsheetNotFound: raise Exception("Error: gdoc url not found: {0}".format( gdoc_key )) logger.info("normalized mapping gdoc read. key: {0}".format( gdoc_key )) # put the mapping into the voci_map dict # preventivo and consuntivo sheets are appended in a single list # the first two rows are removed (labels) try: logger.info("reading preventivo ...") voci_map_preventivo = list_sheet.worksheet("preventivo").get_all_values()[n_header_lines:] logger.info("reading consuntivo ...") voci_map_consuntivo = list_sheet.worksheet("consuntivo").get_all_values()[n_header_lines:] except URLError: raise Exception("Connection error to Gdrive") logger.info("done with reading the mapping list.") return { 'preventivo': voci_map_preventivo, 'consuntivo': voci_map_consuntivo, }
5,345,449
def parse_file(fname, is_true=True): """Parse file to get labels.""" labels = [] with io.open(fname, "r", encoding="utf-8", errors="igore") as fin: for line in fin: label = line.strip().split()[0] if is_true: assert label[:9] == "__label__" label = label[9:] labels.append(label) return labels
5,345,450
def main(event, context): """ Args: package: Python Package to build and deploy return: execution_arn: ARN of the state machine execution that is building the package """ packages = get_config.get_packages() execution_arns =[] for package in packages: client = boto3.client('stepfunctions') execution_time = datetime.now().isoformat().replace('-', '').replace(':', '')[:14] response = client.start_execution( stateMachineArn=os.environ['PIPELINE_ARN'], name=f"{package}_{execution_time}", input=json.dumps({"package": package}) ) execution_arns.append(response['executionArn']) return {"arns": execution_arns}
5,345,451
def make_mesh(object_name, object_colour=(0.25, 0.25, 0.25, 1.0), collection="Collection"): """ Create a mesh then return the object reference and the mesh object :param object_name: Name of the object :type object_name: str :param object_colour: RGBA colour of the object, defaults to a shade of grey :type object_colour: (float, float, float, float) :param collection: Where you want the objected to be added, defaults to Collection :type collection: str :return: Object reference and mesh reference """ # Make the block mesh = bpy.data.meshes.new(object_name) # add the new mesh obj = bpy.data.objects.new(mesh.name, mesh) create_emission_node(obj, object_colour) col = bpy.data.collections.get(collection) col.objects.link(obj) bpy.context.view_layer.objects.active = obj return obj, mesh
5,345,452
def _OptionParser(): """Returns the options parser for run-bisect-perf-regression.py.""" usage = ('%prog [options] [-- chromium-options]\n' 'Used by a try bot to run the bisection script using the parameters' ' provided in the auto_bisect/bisect.cfg file.') parser = optparse.OptionParser(usage=usage) parser.add_option('-w', '--working_directory', type='str', help='A working directory to supply to the bisection ' 'script, which will use it as the location to checkout ' 'a copy of the chromium depot.') parser.add_option('-p', '--path_to_goma', type='str', help='Path to goma directory. If this is supplied, goma ' 'builds will be enabled.') parser.add_option('--path_to_config', type='str', help='Path to the config file to use. If this is supplied, ' 'the bisect script will use this to override the default ' 'config file path. The script will attempt to load it ' 'as a bisect config first, then a perf config.') parser.add_option('--extra_src', type='str', help='Path to extra source file. If this is supplied, ' 'bisect script will use this to override default behavior.') parser.add_option('--dry_run', action="store_true", help='The script will perform the full bisect, but ' 'without syncing, building, or running the performance ' 'tests.') return parser
5,345,453
def calc_radiance(wavel, Temp): """ Calculate the blackbody radiance Parameters ---------- wavel: float or array wavelength (meters) Temp: float temperature (K) Returns ------- Llambda: float or arr monochromatic radiance (W/m^2/m/sr) """ Llambda_val = c1 / (wavel**5. * (np.exp(c2 / (wavel * Temp)) - 1)) return Llambda_val
5,345,454
def load_config(filename): """ Returns: dict """ config = json.load(open(filename, 'r')) # back-compat if 'csvFile' in config: config['modelCategoryFile'] = config['csvFile'] del config['csvFile'] required_files = ["prefix", "modelCategoryFile", "colorFile"] for f in required_files: assert f in config, 'Invalid config! key <{}> is missing!'.format(f) assert os.path.exists(config[f]), 'Invalid config! path <{}> not exists!'.format(config[f]) if ('File' in f): assert os.path.isfile(config[f]), 'Invalid config! <{}> is not a valid file!'.format(config[f]) return config
5,345,455
def _JMS_to_Fierz_III_IV_V(C, qqqq): """From JMS to 4-quark Fierz basis for Classes III, IV and V. `qqqq` should be of the form 'sbuc', 'sdcc', 'ucuu' etc.""" #case dduu classIII = ['sbuc', 'sbcu', 'dbuc', 'dbcu', 'dsuc', 'dscu'] classVdduu = ['sbuu' , 'dbuu', 'dsuu', 'sbcc' , 'dbcc', 'dscc'] if qqqq in classIII + classVdduu: f1 = dflav[qqqq[0]] f2 = dflav[qqqq[1]] f3 = uflav[qqqq[2]] f4 = uflav[qqqq[3]] return { 'F' + qqqq + '1' : C["V1udLL"][f3, f4, f1, f2] - C["V8udLL"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2' : C["V8udLL"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3' : C["V1duLR"][f1, f2, f3, f4] - C["V8duLR"][f1, f2, f3, f4] / (2 * Nc), 'F' + qqqq + '4' : C["V8duLR"][f1, f2, f3, f4] / 2, 'F' + qqqq + '5' : C["S1udRR"][f3, f4, f1, f2] - C["S8udduRR"][f3, f2, f1, f4] / 4 - C["S8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '6' : -C["S1udduRR"][f3, f2, f1, f4] / 2 + C["S8udduRR"][f3, f2, f1, f4] /(4 * Nc) + C["S8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '7' : -C["V8udduLR"][f4, f1, f2, f3].conj(), 'F' + qqqq + '8' : -2 * C["V1udduLR"][f4, f1, f2, f3].conj() + C["V8udduLR"][f4, f1, f2, f3].conj() / Nc, 'F' + qqqq + '9' : -C["S8udduRR"][f3, f2, f1, f4] / 16, 'F' + qqqq + '10' : -C["S1udduRR"][f3, f2, f1, f4] / 8 + C["S8udduRR"][f3, f2, f1, f4] / (16 * Nc), 'F' + qqqq + '1p' : C["V1udRR"][f3, f4, f1, f2] - C["V8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2p' : C["V8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3p' : C["V1udLR"][f3, f4, f1, f2] - C["V8udLR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '4p' : C["V8udLR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '5p' : C["S1udRR"][f4, f3, f2, f1].conj() - C["S8udduRR"][f4, f1, f2, f3].conj() / 4 - C["S8udRR"][f4, f3, f2, f1].conj() / (2 * Nc), 'F' + qqqq + '6p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 2 + C["S8udduRR"][f4, f1, f2, f3].conj()/(4 * Nc) + C["S8udRR"][f4, f3, f2, f1].conj() / 2, 'F' + qqqq + '7p' : -C["V8udduLR"][f3, f2, f1, f4], 'F' + qqqq + '8p' : - 2 * C["V1udduLR"][f3, f2, f1, f4] + C["V8udduLR"][f3, f2, f1, f4] / Nc, 'F' + qqqq + '9p' : -C["S8udduRR"][f4, f1, f2, f3].conj() / 16, 'F' + qqqq + '10p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 8 + C["S8udduRR"][f4, f1, f2, f3].conj() / 16 / Nc } classVuudd = ['ucdd', 'ucss', 'ucbb'] if qqqq in classVuudd: f3 = uflav[qqqq[0]] f4 = uflav[qqqq[1]] f1 = dflav[qqqq[2]] f2 = dflav[qqqq[3]] return { 'F' + qqqq + '1' : C["V1udLL"][f3, f4, f1, f2] - C["V8udLL"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2' : C["V8udLL"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3p' : C["V1duLR"][f1, f2, f3, f4] - C["V8duLR"][f1, f2, f3, f4] / (2 * Nc), 'F' + qqqq + '4p' : C["V8duLR"][f1, f2, f3, f4] / 2, 'F' + qqqq + '5' : C["S1udRR"][f3, f4, f1, f2] - C["S8udduRR"][f3, f2, f1, f4] / 4 - C["S8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '6' : -C["S1udduRR"][f3, f2, f1, f4] / 2 + C["S8udduRR"][f3, f2, f1, f4] /(4 * Nc) + C["S8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '7p' : -C["V8udduLR"][f4, f1, f2, f3].conj(), 'F' + qqqq + '8p' : -2 * C["V1udduLR"][f4, f1, f2, f3].conj() + C["V8udduLR"][f4, f1, f2, f3].conj() / Nc, 'F' + qqqq + '9' : -C["S8udduRR"][f3, f2, f1, f4] / 16, 'F' + qqqq + '10' : -C["S1udduRR"][f3, f2, f1, f4] / 8 + C["S8udduRR"][f3, f2, f1, f4] / (16 * Nc), 'F' + qqqq + '1p' : C["V1udRR"][f3, f4, f1, f2] - C["V8udRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '2p' : C["V8udRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '3' : C["V1udLR"][f3, f4, f1, f2] - C["V8udLR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '4' : C["V8udLR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '5p' : C["S1udRR"][f4, f3, f2, f1].conj() - C["S8udduRR"][f4, f1, f2, f3].conj() / 4 - C["S8udRR"][f4, f3, f2, f1].conj() / (2 * Nc), 'F' + qqqq + '6p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 2 + C["S8udduRR"][f4, f1, f2, f3].conj()/(4 * Nc) + C["S8udRR"][f4, f3, f2, f1].conj() / 2, 'F' + qqqq + '7' : -C["V8udduLR"][f3, f2, f1, f4], 'F' + qqqq + '8' : - 2 * C["V1udduLR"][f3, f2, f1, f4] + C["V8udduLR"][f3, f2, f1, f4] / Nc, 'F' + qqqq + '9p' : -C["S8udduRR"][f4, f1, f2, f3].conj() / 16, 'F' + qqqq + '10p' : -C["S1udduRR"][f4, f1, f2, f3].conj() / 8 + C["S8udduRR"][f4, f1, f2, f3].conj() / 16 / Nc } #case dddd classIV = ['sbsd', 'dbds', 'bsbd'] classVdddd = ['sbss', 'dbdd', 'dsdd', 'sbbb', 'dbbb', 'dsss'] classVddddind = ['sbdd', 'dsbb', 'dbss'] if qqqq in classIV + classVdddd + classVddddind: f1 = dflav[qqqq[0]] f2 = dflav[qqqq[1]] f3 = dflav[qqqq[2]] f4 = dflav[qqqq[3]] return { 'F'+ qqqq +'1' : C["VddLL"][f3, f4, f1, f2], 'F'+ qqqq +'2' : C["VddLL"][f1, f4, f3, f2], 'F'+ qqqq +'3' : C["V1ddLR"][f1, f2, f3, f4] - C["V8ddLR"][f1, f2, f3, f4]/(2 * Nc), 'F'+ qqqq +'4' : C["V8ddLR"][f1, f2, f3, f4] / 2, 'F'+ qqqq +'5' : C["S1ddRR"][f3, f4, f1, f2] - C["S8ddRR"][f3, f2, f1,f4] / 4 - C["S8ddRR"][f3, f4, f1, f2] / (2 * Nc), 'F'+ qqqq +'6' : -C["S1ddRR"][f1, f4, f3, f2] / 2 + C["S8ddRR"][f3, f2, f1, f4] / (4 * Nc) + C["S8ddRR"][f3, f4, f1, f2] / 2, 'F'+ qqqq +'7' : -C["V8ddLR"][f1, f4, f3, f2], 'F'+ qqqq +'8' : -2 * C["V1ddLR"][f1, f4, f3, f2] + C["V8ddLR"][f1, f4, f3, f2] / Nc, 'F'+ qqqq +'9' : -C["S8ddRR"][f3, f2, f1, f4] / 16, 'F'+ qqqq +'10' : -C["S1ddRR"][f1, f4, f3, f2] / 8 + C["S8ddRR"][f3, f2, f1, f4] / (16 * Nc), 'F'+ qqqq +'1p' : C["VddRR"][f3, f4, f1, f2], 'F'+ qqqq +'2p' : C["VddRR"][f1, f4, f3, f2], 'F'+ qqqq +'3p' : C["V1ddLR"][f3, f4, f1, f2] - C["V8ddLR"][f3, f4, f1,f2] / (2 * Nc), 'F'+ qqqq +'4p' : C["V8ddLR"][f3, f4, f1, f2] / 2, 'F'+ qqqq +'5p' : C["S1ddRR"][f4, f3, f2, f1].conj() - C["S8ddRR"][f4, f1, f2, f3].conj() / 4 -C["S8ddRR"][f4, f3, f2, f1].conj() / 2 / Nc, 'F'+ qqqq +'6p' : -C["S1ddRR"][f4, f1, f2, f3].conj() / 2 + C["S8ddRR"][f4, f1, f2, f3].conj() / 4 / Nc + C["S8ddRR"][f4, f3, f2, f1].conj() / 2, 'F'+ qqqq +'7p' : -C["V8ddLR"][f3, f2, f1, f4], 'F'+ qqqq +'8p' : -2 * C["V1ddLR"][f3, f2, f1, f4] + C["V8ddLR"][f3, f2, f1, f4] / Nc, 'F'+ qqqq +'9p' : -C["S8ddRR"][f4, f1, f2, f3].conj() / 16, 'F'+ qqqq +'10p' : -C["S1ddRR"][f4, f1, f2, f3].conj() / 8 + C["S8ddRR"][f4, f1, f2, f3].conj() / 16 / Nc } #case uuuu classVuuuu = ['ucuu', 'cucc', 'cuuu', 'uccc'] if qqqq in classVuuuu: f1 = uflav[qqqq[0]] f2 = uflav[qqqq[1]] f3 = uflav[qqqq[2]] f4 = uflav[qqqq[3]] return { 'F' + qqqq + '1' : C["VuuLL"][f3, f4, f1, f2], 'F' + qqqq + '2' : C["VuuLL"][f1, f4, f3, f2], 'F' + qqqq + '3' : C["V1uuLR"][f1, f2, f3, f4] - C["V8uuLR"][f1, f2, f3, f4] / (2 * Nc), 'F' + qqqq + '4' : C["V8uuLR"][f1, f2, f3, f4] / 2, 'F' + qqqq + '5' : C["S1uuRR"][f3, f4, f1, f2] - C["S8uuRR"][f3, f2, f1, f4] / 4 - C["S8uuRR"][f3, f4, f1, f2] / (2 * Nc), 'F' + qqqq + '6' : -C["S1uuRR"][f1, f4, f3, f2] / 2 + C["S8uuRR"][f3, f2, f1, f4] / (4 * Nc) + C["S8uuRR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '7' : -C["V8uuLR"][f1, f4, f3, f2], 'F' + qqqq + '8' : -2 * C["V1uuLR"][f1, f4, f3, f2] + C["V8uuLR"][f1, f4, f3, f2] / Nc, 'F' + qqqq + '9' : -C["S8uuRR"][f3, f2, f1, f4] / 16, 'F' + qqqq + '10' : -C["S1uuRR"][f1, f4, f3, f2] / 8 + C["S8uuRR"][f3, f2, f1, f4] / (16 * Nc), 'F'+ qqqq + '1p': C["VuuRR"][f3, f4, f1, f2], 'F' + qqqq + '2p': C["VuuRR"][f1, f3, f4, f2], 'F' + qqqq + '3p' : C["V1uuLR"][f3, f4, f1, f2] - C["V8uuLR"][f3, f4, f1,f2] / (2 * Nc), 'F' + qqqq + '4p' : C["V8uuLR"][f3, f4, f1, f2] / 2, 'F' + qqqq + '5p' : C["S1uuRR"][f4, f3, f2, f1].conj() - C["S8uuRR"][f4, f1, f2, f3].conj() / 4 - C["S8uuRR"][f4, f3, f2, f1].conj() / 2 / Nc, 'F' + qqqq + '6p' : -C["S1uuRR"][f4, f1, f2, f3].conj() / 2 + C["S8uuRR"][f4, f1, f2, f3].conj() / 4 / Nc + C["S8uuRR"][f4, f3, f2, f1].conj() / 2, 'F' + qqqq + '7p' : -C["V8uuLR"][f3, f2, f1, f4], 'F' + qqqq + '8p' : -2 * C["V1uuLR"][f3, f2, f1, f4] + C["V8uuLR"][f3, f2, f1, f4] / Nc, 'F' + qqqq + '9p' : -C["S8uuRR"][f4, f1, f2, f3].conj() / 16, 'F' + qqqq + '10p' : -C["S1uuRR"][f4, f1, f2, f3].conj() / 8 + C["S8uuRR"][f4, f1, f2, f3].conj() / 16 / Nc } else: raise ValueError(f"Case not implemented: {qqqq}")
5,345,456
def get_parsed_args() -> Any: """Return Porcupine's arguments as returned by :func:`argparse.parse_args`.""" assert _parsed_args is not None return _parsed_args
5,345,457
def get_license_description(license_code): """ Gets the description of the given license code. For example, license code '1002' results in 'Accessory Garage' :param license_code: The license code :return: The license description """ global _cached_license_desc return _cached_license_desc[license_code]
5,345,458
def db_keys_unlock(passphrase) -> bool: """Unlock secret key with pass phrase""" global _secretkeyfile try: with open(_secretkeyfile, "rb") as f: secretkey = pickle.load(f) if not secretkey["locked"]: print("Secret key file is already unlocked") return True if passphrase: usepass = passphrase else: usepass = getpass("Enter pass phrase: ") print("") if usepass: if secretkey["hash"] == blake2b(str.encode(usepass)).hexdigest(): k = Fernet(password_to_key(usepass)) secretkey["secret"] = k.decrypt(str.encode(secretkey["secret"])).decode() secretkey["locked"] = False db_keys_set(secretkey, False) else: print("Pass phrase did not match, secret key remains locked") return False except Exception: print("Error locking secret key content") return False print("Secret key successfully unlocked") return True
5,345,459
def list_domains(): """ Return a list of the salt_id names of all available Vagrant VMs on this host without regard to the path where they are defined. CLI Example: .. code-block:: bash salt '*' vagrant.list_domains --log-level=info The log shows information about all known Vagrant environments on this machine. This data is cached and may not be completely up-to-date. """ vms = [] cmd = 'vagrant global-status' reply = __salt__['cmd.shell'](cmd) log.info('--->\n%s', reply) for line in reply.split('\n'): # build a list of the text reply tokens = line.strip().split() try: _ = int(tokens[0], 16) # valid id numbers are hexadecimal except (ValueError, IndexError): continue # skip lines without valid id numbers machine = tokens[1] cwd = tokens[-1] name = get_machine_id(machine, cwd) if name: vms.append(name) return vms
5,345,460
def get_old_options(cli, image): """ Returns Dockerfile values for CMD and Entrypoint """ return { 'cmd': dockerapi.inspect_config(cli, image, 'Cmd'), 'entrypoint': dockerapi.inspect_config(cli, image, 'Entrypoint'), }
5,345,461
def line_crops_and_labels(iam: IAM, split: str): """Load IAM line labels and regions, and load line image crops.""" crops = [] labels = [] for filename in iam.form_filenames: if not iam.split_by_id[filename.stem] == split: continue image = util.read_image_pil(filename) image = ImageOps.grayscale(image) image = ImageOps.invert(image) labels += iam.line_strings_by_id[filename.stem] crops += [ image.crop([region[_] for _ in ["x1", "y1", "x2", "y2"]]) for region in iam.line_regions_by_id[filename.stem] ] assert len(crops) == len(labels) return crops, labels
5,345,462
def convert(chinese): """converts Chinese numbers to int in: string out: string """ numbers = {'零':0, '一':1, '二':2, '三':3, '四':4, '五':5, '六':6, '七':7, '八':8, '九':9, '壹':1, '贰':2, '叁':3, '肆':4, '伍':5, '陆':6, '柒':7, '捌':8, '玖':9, '两':2, '廿':20, '卅':30, '卌':40, '虚':50, '圆':60, '近':70, '枯':80, '无':90} units = {'个':1, '十':10, '百':100, '千':1000, '万':10000, '亿':100000000,'万亿':1000000000000, '拾':10, '佰':100, '仟':1000} number, pureNumber = 0, True for i in range(len(chinese)): if chinese[i] in units or chinese[i] in ['廿', '卅', '卌', '虚', '圆', '近', '枯', '无']: pureNumber = False break if chinese[i] in numbers: number = number * 10 + numbers[chinese[i]] if pureNumber: return number number = 0 for i in range(len(chinese)): if chinese[i] in numbers or chinese[i] == '十' and (i == 0 or chinese[i - 1] not in numbers or chinese[i - 1] == '零'): base, currentUnit = 10 if chinese[i] == '十' and (i == 0 or chinese[i] == '十' and chinese[i - 1] not in numbers or chinese[i - 1] == '零') else numbers[chinese[i]], '个' for j in range(i + 1, len(chinese)): if chinese[j] in units: if units[chinese[j]] >= units[currentUnit]: base, currentUnit = base * units[chinese[j]], chinese[j] number = number + base return number
5,345,463
def computeZvector(idata, hue, control, features_to_eval): """ :param all_data: dataframe :return: """ all_data = idata.copy() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] m_indexes = list(all_data[hue].unique().astype('str')) query_one = "" for el in control: if el in m_indexes: query_one = query_one + hue + "==\'" + str(el) + "\'|" else: break query_one = query_one[:-1] # remove last character df_q = all_data.query(query_one).copy() eps = 1e-15 # Compute average for each feature, per each treatment avg_vec = pd.DataFrame() for el in m_indexes: data_calc = all_data.query(hue + "==\'" + str(el) + "\'").copy() for col in data_calc.select_dtypes(include=numerics): if col in features_to_eval: avg_vec.loc[el, col] = data_calc[col].mean() # Compute length of vector all_data.loc[:, 'length'] = 0 for feature in features_to_eval: all_data['length'] = all_data['length'] + all_data[feature] ** 2 all_data['length'] = np.sqrt(all_data['length']) # Compute cosine # Dot product of each vector per each mean v*w all_data.loc[:, 'cosine'] = 0 for el in m_indexes: for feature in features_to_eval: all_data.loc[all_data['Gene'] == el, 'cosine'] = all_data.loc[all_data['Gene'] == el, 'cosine'] + \ all_data[all_data['Gene'] == el][feature] * avg_vec.loc[ el, feature] # Norm of avg_vec v_avg_norm = np.sqrt(np.sum(avg_vec ** 2, axis=1)) for el in m_indexes: all_data.loc[all_data['Gene'] == el, 'cosine'] = all_data.loc[all_data['Gene'] == el, 'cosine'] / ( all_data.loc[all_data['Gene'] == el, 'length'] * v_avg_norm[el]) all_data['projection'] = all_data['length'] * all_data['cosine'] return all_data
5,345,464
def getjflag(job): """Returns flag if job in finished state""" return 1 if job['jobstatus'] in ('finished', 'failed', 'cancelled', 'closed') else 0
5,345,465
def describe_snapshot_schedule(VolumeARN=None): """ Describes the snapshot schedule for the specified gateway volume. The snapshot schedule information includes intervals at which snapshots are automatically initiated on the volume. This operation is only supported in the cached volume and stored volume architectures. See also: AWS API Documentation Examples Describes the snapshot schedule for the specified gateway volume including intervals at which snapshots are automatically initiated. Expected Output: :example: response = client.describe_snapshot_schedule( VolumeARN='string' ) :type VolumeARN: string :param VolumeARN: [REQUIRED] The Amazon Resource Name (ARN) of the volume. Use the ListVolumes operation to return a list of gateway volumes. :rtype: dict :return: { 'VolumeARN': 'string', 'StartAt': 123, 'RecurrenceInHours': 123, 'Description': 'string', 'Timezone': 'string' } """ pass
5,345,466
def json_parse(ddict): """ https://github.com/arita37/mlmodels/blob/dev/mlmodels/dataset/test_json/test_functions.json https://github.com/arita37/mlmodels/blob/dev/mlmodels/dataset/json/benchmark_timeseries/gluonts_m5.json "deepar": { "model_pars": { "model_uri" : "model_gluon.gluonts_model", "model_name" : "deepar", "model_pars" : { "prediction_length": 12, "freq": "D", "distr_output" : {"uri" : "gluonts.distribution.neg_binomial:NegativeBinomialOutput"}, "distr_output" : "uri::gluonts.distribution.neg_binomial:NegativeBinomialOutput", """ import copy js = ddict js2 = copy.deepcopy(js) def parse2(d2): if "uri" in d2: # Be careful not to include heavy compute return json_to_object(d2) else: return json_norm(d2) for k, val in js.items(): if isinstance(val, dict): js2[k] = parse2(val) elif "uri::" in val: # Shortcut when nor argument js2[k] = json_to_object({"uri": val.split("uri::")[-1]}) else: js2[k] = json_norm_val(val) return js2
5,345,467
def read_viz_icons(style='icomoon', fname='infinity.png'): """ Read specific icon from specific style Parameters ---------- style : str Current icon style. Default is icomoon. fname : str Filename of icon. This should be found in folder HOME/.dipy/style/. Default is infinity.png. Returns -------- path : str Complete path of icon. """ folder = pjoin(dipy_home, 'icons', style) return pjoin(folder, fname)
5,345,468
def mock_config_entry() -> MockConfigEntry: """Return the default mocked config entry.""" return MockConfigEntry( title="12345", domain=DOMAIN, data={CONF_API_KEY: "tskey-MOCK", CONF_SYSTEM_ID: 12345}, unique_id="12345", )
5,345,469
def get_mnist_loader(batch_size, train, perm=0., Nparts=1, part=0, seed=0, taskid=0, pre_processed=True, **loader_kwargs): """Builds and returns Dataloader for MNIST and SVHN dataset.""" transform = transforms.Compose([ transforms.Grayscale(), transforms.ToTensor(), transforms.Normalize((0.0,), (1.0,)), transforms.Lambda(lambda x: x.view([28,28]))]) dataset = datasets.MNIST(root='./data', download=True, transform=transform, train = train) if perm>0: permute_dataset(dataset, perm, seed=seed) if Nparts>1: partition_dataset(dataset, Nparts,part) if pre_processed: dataset = preprocess_dataset(dataset) DL = DataLoaderPreProcessed else: DL = DataLoader loader = DL(dataset=dataset, batch_size=batch_size, shuffle=train, **loader_kwargs) loader.taskid = taskid loader.name = 'MNIST_{}'.format(taskid,part) loader.short_name = 'MNIST' return loader
5,345,470
def gradients_summary(y, x, norm=tf.abs, name='gradients_y_wrt_x'): """Summary gradients w.r.t. x. Sum of norm of :math:`\\nabla_xy`. :param y: y :param x: w.r.t x :param norm: norm function, default is tf.abs :param name: name of gradients summary :return: None """ grad = tf.reduce_sum(norm(tf.gradients(y, x))) scalar_summary(name, grad)
5,345,471
def read_data(filename): """ Reads orbital map file into a list """ data = [] f = open(filename, 'r') for line in f: data += line.strip().split('\n') f.close() return data
5,345,472
def _form_factor_pipi( self, s: Union[float, npt.NDArray[np.float64]], imode: int = 1 ) -> Union[complex, npt.NDArray[np.complex128]]: """ Compute the pi-pi-V form factor. Parameters ---------- s: Union[float,npt.NDArray[np.float64] Square of the center-of-mass energy in MeV. imode: Optional[int] Iso-spin channel. Default is 1. Returns ------- ff: Union[complex,npt.NDArray[np.complex128]] Form factor from pi-pi-V. """ return __ff_pipi( s * 1e-6, # Convert to GeV self._ff_pipi_params, self._gvuu, self._gvdd, )
5,345,473
def lecture(): """ lecture() Lee archivos "tmdb_5000_credits.csv" y "tmdb_5000_movies.csv" para luego transformarlos en pandas.DataFrame. Parameters ---------- None. Returns ------- credits, movies : [pandas.DataFrame, pandas.DataFrame] Es una lista del DataFrame credits y DataFrame movies. """ try: credits = pd.read_csv(os.path.join("data","tmdb_5000_credits.csv")) movies = pd.read_csv(os.path.join("data","tmdb_5000_movies.csv")) print("Datos correctamente leídos") return credits, movies except: print("Datos incorrectamente leídos") return None, None
5,345,474
def string_to_epoch(s): """ Convert argument string to epoch if possible If argument looks like int + s,h,md (ie, 30d), we'll pass as-is since pushshift can accept this. Per docs, pushshift supports: Epoch value or Integer + "s,m,h,d" (i.e. 30d for 30 days) :param s: str :return: int | str """ if s is not None: s = s.strip() if re.search('^[0-9]+[smhd]$', s): return s try: s = dp.parse(s).timestamp() s = int(s) except ValueError: raise click.BadParameter("could not convert argument to " "a datetime: {}".format(s)) return s
5,345,475
def spline_filter(Iin, lmbda=5.0): """Smoothing spline (cubic) filtering of a rank-2 array. Filter an input data set, `Iin`, using a (cubic) smoothing spline of fall-off `lmbda`. """ intype = Iin.dtype.char hcol = array([1.0,4.0,1.0],'f')/6.0 if intype in ['F','D']: Iin = Iin.astype('F') ckr = cspline2d(Iin.real,lmbda) cki = cspline2d(Iin.imag,lmbda) outr = sepfir2d(ckr,hcol,hcol) outi = sepfir2d(cki,hcol,hcol) out = (outr + 1j*outi).astype(intype) elif intype in ['f','d']: ckr = cspline2d(Iin,lmbda) out = sepfir2d(ckr, hcol, hcol) out = out.astype(intype) else: raise TypeError("Invalid data type for Iin") return out
5,345,476
def set_logging_level(level=logging.INFO): """Sets the log level for the global logger :param level: Log level to set :type level: str """ logger.setLevel(level) ch.setLevel(level)
5,345,477
def _construct_aline_collections(alines, dtix=None): """construct arbitrary line collections Parameters ---------- alines : sequence sequences of segments, which are sequences of lines, which are sequences of two or more points ( date[time], price ) or (x,y) date[time] may be (a) pandas.to_datetime parseable string, (b) pandas Timestamp, or (c) python datetime.datetime or datetime.date alines may also be a dict, containing the following keys: 'alines' : the same as defined above: sequence of price, or dates, or segments 'colors' : colors for the above alines 'linestyle' : line types for the above alines 'linewidths' : line types for the above alines dtix: date index for the x-axis, used for converting the dates when x-values are 'evenly spaced integers' (as when skipping non-trading days) Returns ------- ret : list lines collections """ if alines is None: return None if isinstance(alines,dict): aconfig = _process_kwargs(alines, _valid_lines_kwargs()) alines = aconfig['alines'] else: aconfig = _process_kwargs({}, _valid_lines_kwargs()) #print('aconfig=',aconfig) #print('alines=',alines) alines = _alines_validator(alines, returnStandardizedValue=True) if alines is None: raise ValueError('Unable to standardize alines value: '+str(alines)) alines = _convert_segment_dates(alines,dtix) lw = aconfig['linewidths'] co = aconfig['colors'] ls = aconfig['linestyle'] al = aconfig['alpha'] lcollection = LineCollection(alines,colors=co,linewidths=lw,linestyles=ls,antialiaseds=(0,),alpha=al) return lcollection
5,345,478
def is_mergeable(*ts_or_tsn): """Check if all objects(FermionTensor or FermionTensorNetwork) are part of the same FermionSpace """ if isinstance(ts_or_tsn, (FermionTensor, FermionTensorNetwork)): return True fs_lst = [] site_lst = [] for obj in ts_or_tsn: if isinstance(obj, FermionTensor): if obj.fermion_owner is None: return False hashval, fsobj, tid = obj.fermion_owner fs_lst.append(hashval) site_lst.append(fsobj()[tid][1]) elif isinstance(obj, FermionTensorNetwork): fs_lst.append(hash(obj.fermion_space)) site_lst.extend(obj.filled_sites) else: raise TypeError("unable to find fermionspace") return all([fs==fs_lst[0] for fs in fs_lst]) and len(set(site_lst)) == len(site_lst)
5,345,479
def fetch_file(url, config): """ Fetch a file from a provider. """ # pylint: disable=fixme # FIXME: the handled checking should be in each handler module (possibly handle_file(parsed_url, # config) => bool) parsed_url = urllib.parse.urlparse(url) if parsed_url.scheme == 'github': file_contents = github.fetch_file(parsed_url, config) elif parsed_url.scheme == 'file' or (parsed_url.scheme == '' and parsed_url.netloc == ''): purl = list(parsed_url) purl[0] = 'file' parsed_url = urllib.parse.ParseResult(*purl) file_contents = file.fetch_file(parsed_url, config) elif parsed_url.scheme in ('http', 'https'): file_contents = http.fetch_file(parsed_url, config) else: raise NotImplementedError(f'Unknown fetch backend: {parsed_url.scheme}') return file_contents
5,345,480
def query_for_account(account_rec, region): """ Performs the public ip query for the given account :param account: Account number to query :param session: Initial session :param region: Region to query :param ip_data: Initial list. Appended to and returned :return: update ip_data list """ ip_data = [] session = boto3.session.Session(region_name=region) assume = rolesession.assume_crossact_audit_role( session, account_rec['accountNum'], region) if assume: for ip_addr in assume.client('ec2').describe_addresses()['Addresses']: ip_data.append( dict(PublicIP=(ip_addr.get('PublicIp')), InstanceId=(ip_addr.get('InstanceId')), # Prevents a crash PrivateIP=(ip_addr.get('PrivateIpAddress')), NetworkInterface=(ip_addr.get('NetworkInterfaceId')), AccountNum=account_rec['accountNum'], AccountAlias=(account_rec['alias']))) for instance in assume.resource('ec2').instances.filter(): if instance.public_ip_address: ip_data.append( dict(InstanceId=(instance.instance_id), PublicIP=(instance.public_ip_address), PrivateIP=(instance.private_ip_address), AccountNum=account_rec['accountNum'], AccountAlias=(account_rec['alias']))) else: pass return ip_data
5,345,481
def main(): """Invoke the command-line entrypoint.""" mecha(prog_name="mecha")
5,345,482
def filter_list_of_dicts(list_of_dicts: list, **filters) -> List[dict]: """Filter a list of dicts by any given key-value pair. Support simple logical operators like: '<,>,<=,>=,!'. Supports filtering by providing a list value i.e. openJobsCount=[0, 1, 2]. """ for key, value in filters.items(): filter_function = make_dict_filter(key, value) list_of_dicts = list(filter(filter_function, list_of_dicts)) return list_of_dicts
5,345,483
def test_database_init(): """Test creating a fresh instance of the database.""" db = DB(connect_url=TEST_URL) db.init()
5,345,484
def construct_pos_line(elem, coor, tags): """ Do the opposite of the parse_pos_line """ line = "{elem} {x:.10f} {y:.10f} {z:.10f} {tags}" return line.format(elem=elem, x=coor[0], y=coor[1], z=coor[2], tags=tags)
5,345,485
def compute_pcs(predicts, labels, label_mapper, dataset): """ compute correctly predicted full spans. If cues and scopes are predicted jointly, convert cue labels to I/O labels depending on the annotation scheme for the considered dataset :param predicts: :param labels: :return: """ def trim_and_convert(predict, label, label_mapper, dataset): temp_1 = [] temp_2 = [] for j, m in enumerate(predict): if label_mapper[label[j]] != 'X' and label_mapper[label[j]] != 'CLS' and label_mapper[label[j]] != 'SEP': temp_1.append(label_mapper[label[j]]) temp_2.append(label_mapper[m]) if 'joint' in dataset: if cue_in_scope[dataset] is True: replacement= 'I' else: replacement = 'O' for j, m in enumerate(temp_1): if m == 'C': temp_1[j] = replacement for j, m in enumerate(temp_2): if m == 'C': temp_2[j] = replacement return temp_2, temp_1 tp = 0. for predict, label in zip(predicts, labels): predict, label = trim_and_convert(predict, label, label_mapper,dataset) if predict == label: tp += 1 return tp/len(predicts)
5,345,486
def echoError(msg): """colored cli feedback""" click.echo(click.style(msg, fg="red"))
5,345,487
def pentomino(): """ Main pentomino routine @return {string} solution as rectangles separated by a blank line """ return _stringify( _pent_wrapper1(tree_main_builder())(rect_gen_boards()))
5,345,488
def do_login(request, username, password): """ Check credentials and log in """ if request.access.verify_user(username, password): request.response.headers.extend(remember(request, username)) return {"next": request.app_url()} else: return HTTPForbidden()
5,345,489
def _interpolate(format1): """ Takes a format1 string and returns a list of 2-tuples of the form (boolean, string) where boolean says whether string should be evaled or not. from <http://lfw.org/python/Itpl.py> (public domain, Ka-Ping Yee) """ from tokenize import Token def matchorfail(text, pos): tokenprog = re.compile(Token) match = tokenprog.match(text, pos) if match is None: raise _ItplError(text, pos) return match, match.end() namechars = "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; chunks = [] pos = 0 while 1: dollar = format1.find("$", pos) if dollar < 0: break nextchar = format1[dollar + 1] if nextchar == "{": chunks.append((0, format1[pos:dollar])) pos, level = dollar + 2, 1 while level: match, pos = matchorfail(format1, pos) tstart, tend = match.regs[3] token = format1[tstart:tend] if token == "{": level = level + 1 elif token == "}": level = level - 1 chunks.append((1, format1[dollar + 2:pos - 1])) elif nextchar in namechars: chunks.append((0, format1[pos:dollar])) match, pos = matchorfail(format1, dollar + 1) while pos < len(format1): if format1[pos] == "." and \ pos + 1 < len(format1) and format1[pos + 1] in namechars: match, pos = matchorfail(format1, pos + 1) elif format1[pos] in "([": pos, level = pos + 1, 1 while level: match, pos = matchorfail(format1, pos) tstart, tend = match.regs[3] token = format1[tstart:tend] if token[0] in "([": level = level + 1 elif token[0] in ")]": level = level - 1 else: break chunks.append((1, format1[dollar + 1:pos])) else: chunks.append((0, format1[pos:dollar + 1])) pos = dollar + 1 + (nextchar == "$") if pos < len(format1): chunks.append((0, format1[pos:])) return chunks
5,345,490
def approxIndex(iterable, item, threshold): """Same as the python index() function but with a threshold from wich values are considerated equal.""" for i, iterableItem in rev_enumerate(iterable): if abs(iterableItem - item) < threshold: return i return None
5,345,491
def delete_important_words(word_list, replace=''): """ randomly detele an important word in the query or replace (not in QUERY_SMALL_CHANGE_SETS) """ # replace can be [MASK] important_word_list = set(word_list) - set(QUERY_SMALL_CHANGE_SETS) target = random.sample(important_word_list, 1)[0] if replace: new_word_list = [item if item!=target else item.replace(target, replace) for item in word_list] else: new_word_list = [item for item in word_list if item!=target] return new_word_list
5,345,492
def prot(vsini, st_rad): """ Function to convert stellar rotation velocity vsini in km/s to rotation period in days. Parameters: ---------- vsini: Rotation velocity of star in km/s. st_rad: Stellar radius in units of solar radii Returns ------ Prot: Period of rotation of the star in days. """ import numpy as np vsini=np.array(vsini) prot=(2*np.pi*st_rad*rsun)/(vsini*24*60*60) return prot
5,345,493
def dialog_sleep(): """Return the time to sleep as set by the --exopy-sleep option. """ return DIALOG_SLEEP
5,345,494
def required_overtime (db, user, frm) : """ If required_overtime flag is set for overtime_period of dynamic user record at frm, we return the overtime_period belonging to this dyn user record. Otherwise return None. """ dyn = get_user_dynamic (db, user, frm) if dyn and dyn.overtime_period : otp = db.overtime_period.getnode (dyn.overtime_period) if otp.required_overtime : return otp return None
5,345,495
def get_best_fit_member(*args): """ get_best_fit_member(sptr, offset) -> member_t Get member that is most likely referenced by the specified offset. Useful for offsets > sizeof(struct). @param sptr (C++: const struc_t *) @param offset (C++: asize_t) """ return _ida_struct.get_best_fit_member(*args)
5,345,496
def convert_time(time): """Convert given time to srt format.""" stime = '%(hours)02d:%(minutes)02d:%(seconds)02d,%(milliseconds)03d' % \ {'hours': time / 3600, 'minutes': (time % 3600) / 60, 'seconds': time % 60, 'milliseconds': (time % 1) * 1000} return stime
5,345,497
def Returns1(target_bitrate, result): """Score function that returns a constant value.""" # pylint: disable=W0613 return 1.0
5,345,498
def task_imports(): """find imports from a python module""" base_path = pathlib.Path("youtube_dl_gui") pkg_modules = ModuleSet(base_path.glob("**/*.py")) for name, module in pkg_modules.by_name.items(): yield { "name": name, "file_dep": [module.path], "actions": [(get_imports, (pkg_modules, module.path))], }
5,345,499