content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def display():
""" duisplay the banner """
print(color(" ββββββββββββββββββββββββββββββββββββββββββββ", fg="#b61042"))
print(
color(" β ", fg="#b61042")
+ color(f"Ο-hole 5 list tool v{__version__}", "#FFF")
+ color(" β", fg="#b61042")
)
print(color(" ββββββββββββββββββββββββββββββββββββββββββββ", fg="#b61042"))
utils.info(" https://github.com/jessedp/pihole5-list-tool\n")
| 5,345,600 |
def calculate_class_probabilities(summaries, row) -> dict():
"""
Calculate the probability of a value using the Gaussian Probability Density Function from inputs:
summaries: prepared summaries of dataset
row: a row in the dataset for predicting its label (a row of X_test)
This function uses the statistics calculated from training data to calculate probabilities for the testing dataset (new data). Probabilities are calculated separately for each class. First, we calculate the probability that a new X vector from the testing dataset belongs to the first class. Then, we calculate the probabilities that it belongs to the second class, and so on for all the classes identified in the training dataset.
The probability that a new X vector from the testing dataset belongs to a class is calculated as follows:
P(class|data) = P(X|class) * P(class)
Note we have simplified the Bayes theorem by removing the division as we do not strictly need a number between 0 and 1 to predict the class the new data belongs to as we will be simply taking the maximum result from the above equation for each class.
It returns a dictionary where each key is the class label and the values are the probabibilities of that row belonging to each class on the dataset.
"""
# total number of training records calculated from the counts stored in the summary statistics
# note that the count column has the same value for all rows, and hence picking up item [0] will suffice
total_rows = sum([summaries[label]['count'][0] for label in summaries])
probabilities = dict()
for class_value, class_summaries in summaries.items():
probabilities[class_value] = summaries[class_value]['count'][0]/float(total_rows)
for i in range(len(class_summaries)-1):
mean, stdev, _ = class_summaries.iloc[i]
# probabilities are multiplied together as they accumulate.
probabilities[class_value] *= calculate_probability(row[i], mean, stdev)
# normalize probabilities so that they sum 1
max_prob = probabilities[max(probabilities, key=probabilities.get)]
min_prob = probabilities[min(probabilities, key=probabilities.get)]
for class_value, probability in probabilities.items():
if (max_val - min_val) > 0:
probabilities[class_value] = (probability - min_val) / (max_val - min_val)
else:
probabilities[class_value] = float(0.0)
sum_prob = sum(probabilities.values())
for class_value, probability in probabilities.items():
if sum_prob > 0:
probabilities[class_value] = probability / sum_prob
return probabilities
| 5,345,601 |
def discard_missing_files(df: pd.DataFrame, path_colname: str) -> pd.DataFrame:
"""Discard rows where the indicated file does not exist or has
filesize 0.
Log a warning with the number of rows discarded, if not zero.
Args:
df
path_colname: Name of `df` column that specifies paths to check
"""
logging.info('Discarding missing files')
nrows_before = len(df)
file_exists = df.loc[:, path_colname].progress_apply(
lambda x: os.path.isfile(x) and os.path.getsize(x) > 0
)
nrows_after = file_exists.sum()
if nrows_after < nrows_before:
logging.warning(f'{nrows_before - nrows_after} records discarded '
f'because file does not exist or is empty.'
)
return df.loc[file_exists, :]
| 5,345,602 |
def find(sequence: Sequence, target_element: Any) -> int:
"""Find the index of the first occurrence of target_element in sequence.
Args:
sequence: A sequence which to search through
target_element: An element to search in the sequence
Returns:
The index of target_element's first occurrence, -1 if it was not found or the sequence is empty
"""
if not sequence:
return -1
try:
return sequence.index(target_element)
except ValueError:
return -1
| 5,345,603 |
def read_time_data(fname, unit):
"""
Read time data (csv) from file and load into Numpy array
"""
data = np.loadtxt(fname, delimiter=',')
t = data[:,0]
x = data[:,1]*unit
f = interp1d(t, x, kind='linear', bounds_error=False, fill_value=x[0])
return f
| 5,345,604 |
def configure_concepts(cursor,load_concepts,author):
"""This method configures concepts when a NEW CONFIGURATION is performed"""
if author == 'admin':
to_add = 'Manual and Automatic'
elif author == 'robot':
to_add = 'Automatic'
for usecase in load_concepts:
disease = ''
if usecase.lower() == 'colon':
disease = 'colon carcinoma'
elif usecase.lower() == 'uterine cervix':
disease = 'cervical cancer'
elif usecase.lower() == 'lung':
disease = 'lung cancer'
if disease != '':
workpath = os.path.dirname(os.path.abspath(__file__)) # Returns the Path your .py file is in
r = process_ontology(workpath,disease)
# convert query output to DataFrame
belong_to = []
concept_has_uc = []
conc = []
with transaction.atomic():
cursor.execute("SELECT c.concept_url FROM concept AS c inner join concept_has_uc as ch on ch.concept_url = c.concept_url where annotation_mode in %s and ch.name = %s",[tuple(['Manual','Manual and Automatic']),usecase])
ans = cursor.fetchall()
if len(ans) > 0:
concepts = []
for el in ans:
concepts.append(el[0])
if author == 'admin':
cursor.execute("DELETE FROM ground_truth_log_file WHERE gt_type = %s and (id_report,language) in (SELECT id_report, language FROM contains WHERE concept_url in %s AND ns_id = %s)", ['concepts',tuple(concepts),'Human'])
cursor.execute("DELETE FROM ground_truth_log_file WHERE gt_type = %s and (id_report,language) in (SELECT id_report, language FROM linked WHERE concept_url in %s AND ns_id = %s)", ['concept-mention',tuple(concepts),'Human'])
cursor.execute("DELETE FROM contains WHERE concept_url in %s AND ns_id = %s",[tuple(concepts),'Human'])
cursor.execute("DELETE FROM linked WHERE concept_url in %s AND ns_id = %s", [tuple(concepts),'Human'])
cursor.execute("DELETE FROM belong_to WHERE concept_url in %s ", [tuple(concepts)])
cursor.execute("DELETE FROM concept_has_uc WHERE concept_url in %s", [tuple(concepts)])
cursor.execute("DELETE FROM concept WHERE concept_url in %s", [tuple(concepts)])
cursor.execute(
"SELECT c.concept_url FROM concept AS c inner join concept_has_uc as ch on ch.concept_url = c.concept_url where annotation_mode = %s and ch.name = %s",
['Automatic', usecase])
ans_auto = cursor.fetchall()
if len(ans_auto) > 0:
concepts = []
for el in ans_auto:
concepts.append(el[0])
if author == 'admin':
cursor.execute("UPDATE concept SET annotation_mode = %s WHERE annotation_mode = %s",
['Manual and Automatic', 'Automatic'])
for e in r:
if (e[0] is not None and e[1] is not None and e[2] is not None):
concept = e[0].toPython()
# print(e[2].toPython())
if concept == 'SevereColonDysplasia':
concept = 'https://w3id.org/examode/ontology/SevereColonDysplasia'
elif concept == 'uterusNOS':
concept = 'https://w3id.org/examode/ontology/UterusNOS'
cursor.execute("SELECT * FROM semantic_area WHERE name = %s",[e[2].toPython()])
ans = cursor.fetchall()
if len(ans) == 0:
cursor.execute("INSERT INTO semantic_area VALUES(%s)",[e[2].toPython()])
belong_to.append((concept, e[2].toPython()))
concept_has_uc.append((concept, usecase))
conc.append((concept, e[1].toPython(), None))
cursor.execute('SELECT * FROM concept WHERE concept_url = %s',(concept,))
ans = cursor.fetchall()
if len(ans) == 0:
query = ("INSERT INTO concept (concept_url,name,annotation_mode) VALUES(%s,%s,%s);")
values = (concept, e[1].toPython(),to_add)
cursor.execute(query, values)
# elif author == 'admin':
else:
cursor.execute("UPDATE concept SET annotation_mode = %s WHERE concept_url = %s",
['Manual and Automatic', e[0].toPython()])
cursor.execute('SELECT * FROM belong_to WHERE concept_url = %s AND name=%s',[concept,e[2].toPython()])
if len(cursor.fetchall()) == 0:
query1 = ("INSERT INTO belong_to (name, concept_url) VALUES(%s,%s);")
values1 = (e[2].toPython(), concept)
cursor.execute(query1, values1)
cursor.execute('SELECT * FROM concept_has_uc WHERE concept_url = %s AND name=%s',[concept,usecase.lower()])
if len(cursor.fetchall()) == 0:
query2 = ("INSERT INTO concept_has_uc (concept_url,name) VALUES(%s,%s);")
values2 = (concept, usecase.lower())
cursor.execute(query2, values2)
| 5,345,605 |
def main():
"""run the test suite"""
usage = "usage: %prog [options] file"
nose.run()
| 5,345,606 |
def get_compliance_detail(PolicyId=None, MemberAccount=None):
"""
Returns detailed compliance information about the specified member account. Details include resources that are in and out of compliance with the specified policy. Resources are considered noncompliant for AWS WAF and Shield Advanced policies if the specified policy has not been applied to them. Resources are considered noncompliant for security group policies if they are in scope of the policy, they violate one or more of the policy rules, and remediation is disabled or not possible.
See also: AWS API Documentation
Exceptions
:example: response = client.get_compliance_detail(
PolicyId='string',
MemberAccount='string'
)
:type PolicyId: string
:param PolicyId: [REQUIRED]\nThe ID of the policy that you want to get the details for. PolicyId is returned by PutPolicy and by ListPolicies .\n
:type MemberAccount: string
:param MemberAccount: [REQUIRED]\nThe AWS account that owns the resources that you want to get the details for.\n
:rtype: dict
ReturnsResponse Syntax
{
'PolicyComplianceDetail': {
'PolicyOwner': 'string',
'PolicyId': 'string',
'MemberAccount': 'string',
'Violators': [
{
'ResourceId': 'string',
'ViolationReason': 'WEB_ACL_MISSING_RULE_GROUP'|'RESOURCE_MISSING_WEB_ACL'|'RESOURCE_INCORRECT_WEB_ACL'|'RESOURCE_MISSING_SHIELD_PROTECTION'|'RESOURCE_MISSING_WEB_ACL_OR_SHIELD_PROTECTION'|'RESOURCE_MISSING_SECURITY_GROUP'|'RESOURCE_VIOLATES_AUDIT_SECURITY_GROUP'|'SECURITY_GROUP_UNUSED'|'SECURITY_GROUP_REDUNDANT',
'ResourceType': 'string'
},
],
'EvaluationLimitExceeded': True|False,
'ExpiredAt': datetime(2015, 1, 1),
'IssueInfoMap': {
'string': 'string'
}
}
}
Response Structure
(dict) --
PolicyComplianceDetail (dict) --
Information about the resources and the policy that you specified in the GetComplianceDetail request.
PolicyOwner (string) --
The AWS account that created the AWS Firewall Manager policy.
PolicyId (string) --
The ID of the AWS Firewall Manager policy.
MemberAccount (string) --
The AWS account ID.
Violators (list) --
An array of resources that aren\'t protected by the AWS WAF or Shield Advanced policy or that aren\'t in compliance with the security group policy.
(dict) --
Details of the resource that is not protected by the policy.
ResourceId (string) --
The resource ID.
ViolationReason (string) --
The reason that the resource is not protected by the policy.
ResourceType (string) --
The resource type. This is in the format shown in the AWS Resource Types Reference . For example: AWS::ElasticLoadBalancingV2::LoadBalancer or AWS::CloudFront::Distribution .
EvaluationLimitExceeded (boolean) --
Indicates if over 100 resources are noncompliant with the AWS Firewall Manager policy.
ExpiredAt (datetime) --
A timestamp that indicates when the returned information should be considered out of date.
IssueInfoMap (dict) --
Details about problems with dependent services, such as AWS WAF or AWS Config, that are causing a resource to be noncompliant. The details include the name of the dependent service and the error message received that indicates the problem with the service.
(string) --
(string) --
Exceptions
FMS.Client.exceptions.ResourceNotFoundException
FMS.Client.exceptions.InternalErrorException
:return: {
'PolicyComplianceDetail': {
'PolicyOwner': 'string',
'PolicyId': 'string',
'MemberAccount': 'string',
'Violators': [
{
'ResourceId': 'string',
'ViolationReason': 'WEB_ACL_MISSING_RULE_GROUP'|'RESOURCE_MISSING_WEB_ACL'|'RESOURCE_INCORRECT_WEB_ACL'|'RESOURCE_MISSING_SHIELD_PROTECTION'|'RESOURCE_MISSING_WEB_ACL_OR_SHIELD_PROTECTION'|'RESOURCE_MISSING_SECURITY_GROUP'|'RESOURCE_VIOLATES_AUDIT_SECURITY_GROUP'|'SECURITY_GROUP_UNUSED'|'SECURITY_GROUP_REDUNDANT',
'ResourceType': 'string'
},
],
'EvaluationLimitExceeded': True|False,
'ExpiredAt': datetime(2015, 1, 1),
'IssueInfoMap': {
'string': 'string'
}
}
}
:returns:
(string) --
(string) --
"""
pass
| 5,345,607 |
async def feature(message: discord.Message, plugin: plugin_in_req, req_id: get_req_id=None):
""" Handle plugin feature requests where plugin is a plugin name.
See `{pre}plugin` for a list of plugins. """
if req_id is not None:
assert feature_exists(plugin, req_id), "There is no such feature."
# The feature request the specified id exists, and we format and send the feature request
await client.say(message, "```diff\n" + format_req(plugin, req_id) + "```")
else:
format_list = "\n".join(format_req(plugin, req_id)
for req_id in range(len(feature_reqs.data[plugin])))
assert format_list, "This plugin has no feature requests!"
# Format a list of all requests for the specified plugin when there are any
await client.say(message, "```diff\n{list}```".format(list=format_list))
| 5,345,608 |
def for_I():
""" Upper case Alphabet letter 'I' pattern using Python for loop"""
for row in range(6):
for col in range(5):
if row in (0,5) or col==2:
print('*', end = ' ')
else:
print(' ', end = ' ')
print()
| 5,345,609 |
def run(connection, args):
"""Prints it out based on command line configuration.
Exceptions:
- SAPCliError:
- when the given type does not belong to the type white list
"""
types = {'program': sap.adt.Program, 'class': sap.adt.Class, 'package': sap.adt.Package}
try:
typ = types[args.type]
except KeyError:
raise SAPCliError(f'Unknown type: {args.type}')
aunit = sap.adt.AUnit(connection)
obj = typ(connection, args.name)
response = aunit.execute(obj)
run_results = sap.adt.aunit.parse_run_results(response.text)
if args.output == 'human':
return print_results_to_stream(run_results, sys.stdout)
if args.output == 'raw':
return print_raw(response.text, run_results)
if args.output == 'junit4':
return print_junit4(run_results, args, sys.stdout)
raise SAPCliError(f'Unsupported output type: {args.output}')
| 5,345,610 |
def read_nli_data(p: Path) -> List[Dict]:
"""Read dataset which has been converted to nli form"""
with open(p) as f:
data = json.load(f)
return data
| 5,345,611 |
def stanley_control(state, cx, cy, cyaw, last_target_idx):
"""
Stanley steering control.
:param state: (State object)
:param cx: ([float])
:param cy: ([float])
:param cyaw: ([float])
:param last_target_idx: (int)
:return: (float, int)
"""
current_target_idx, error_front_axle = calc_target_index(state, cx, cy)
if last_target_idx >= current_target_idx:
current_target_idx = last_target_idx
# theta_e corrects the heading error
theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw)
# theta_d corrects the cross track error
theta_d = np.arctan2(k * error_front_axle, state.v)
# Steering control
delta = theta_e + theta_d
return delta, current_target_idx
| 5,345,612 |
def get_predictions(my_map, reviews, restaurants):
"""
Get the topic predictions for all restaurants.
Parameters:
my_map - the Map object representation of the current city
reviews - a dictionary of reviews with restaurant ids for keys
restaurants - a list of restaurants of the current city
Returns:
A tuple of a dictionary of restaurant ids to topic distributions and the lda model
"""
predictor = LDAPredictor()
lda = predictor.lda
restaurant_ids_to_topics = {}
for restaurant in restaurants:
business_id = restaurant["business_id"]
review = reviews[business_id]
prediction = predictor.predict_topics(review)
restaurant_ids_to_topics[business_id] = make_topic_array_from_tuple_list(prediction, NUM_TOPICS) #topic array of weights for each topic index
normalized_restaurant_ids_to_topics = normalize_predictions(restaurant_ids_to_topics, restaurants)
return normalized_restaurant_ids_to_topics, lda
| 5,345,613 |
def pin_memory_inplace(tensor):
"""Register the tensor into pinned memory in-place (i.e. without copying)."""
if F.backend_name in ['mxnet', 'tensorflow']:
raise DGLError("The {} backend does not support pinning " \
"tensors in-place.".format(F.backend_name))
# needs to be writable to allow in-place modification
try:
F.zerocopy_to_dgl_ndarray_for_write(tensor).pin_memory_()
except Exception as e:
raise DGLError("Failed to pin memory in-place due to: {}".format(e))
| 5,345,614 |
def decode_token(token, secret_key):
"""
θ§£ε―websocket token
:param token:
:param secret_key:
:return:
"""
info = jwt.decode(token, secret_key, algorithms=['HS256'])
return info
| 5,345,615 |
def assertUrisEqual(testcase, expected, actual):
"""Test that URIs are the same, up to reordering of query parameters."""
expected = urllib.parse.urlparse(expected)
actual = urllib.parse.urlparse(actual)
testcase.assertEqual(expected.scheme, actual.scheme)
testcase.assertEqual(expected.netloc, actual.netloc)
testcase.assertEqual(expected.path, actual.path)
testcase.assertEqual(expected.params, actual.params)
testcase.assertEqual(expected.fragment, actual.fragment)
expected_query = urllib.parse.parse_qs(expected.query)
actual_query = urllib.parse.parse_qs(actual.query)
for name in expected_query.keys():
testcase.assertEqual(expected_query[name], actual_query[name])
for name in actual_query.keys():
testcase.assertEqual(expected_query[name], actual_query[name])
| 5,345,616 |
def manning_friction_explicit(domain):
"""Apply (Manning) friction to water momentum
Wrapper for c version
"""
from .shallow_water_ext import manning_friction_flat
from .shallow_water_ext import manning_friction_sloped
xmom = domain.quantities['xmomentum']
ymom = domain.quantities['ymomentum']
x = domain.get_vertex_coordinates()
w = domain.quantities['stage'].centroid_values
z = domain.quantities['elevation'].vertex_values
uh = xmom.centroid_values
vh = ymom.centroid_values
eta = domain.quantities['friction'].centroid_values
xmom_update = xmom.explicit_update
ymom_update = ymom.explicit_update
eps = domain.minimum_allowed_height
if domain.use_sloped_mannings:
manning_friction_sloped(domain.g, eps, x, w, uh, vh, z, eta, xmom_update, \
ymom_update)
else:
manning_friction_flat(domain.g, eps, w, uh, vh, z, eta, xmom_update, \
ymom_update)
| 5,345,617 |
def getPatternID(pattern_url):
"""asssumes pattern_url is a string, representing the URL of a ravelry pattern
e.g.https://www.ravelry.com/patterns/library/velvet-cache-cou
returns an int, the pattern ID
"""
permalink = pattern_url[41:]
with requests.Session() as a_session:
auth_name = "read-046277a3027f680ebe3fa030e755eb34"
auth_pass = "O+mL0KzfjgQ1eLA7K8FO9s28QPvr6QuiL+pOvFHZ"
a_session.auth = (auth_name, auth_pass)
ravelry_adapter = HTTPAdapter(max_retries=3)
a_session.mount('https://ravelry.com', ravelry_adapter)
base_request = "https://api.ravelry.com/patterns/search.json?query="
pattern = a_session.get(base_request+permalink)
if pattern.status_code != 200:
raise RuntimeError("Ravelry not responding as expected.\
Please check your internet connection or try again later")
pattern_id = pattern.json()['patterns'][0]['id']
return pattern_id
| 5,345,618 |
def make_multibonacci_modulo(history_length, limit):
"""Creates a function that generates the Multibonacci sequence modulo n."""
def sequence_fn(seq):
return np.sum(seq[-history_length:]) % limit
return sequence_fn
| 5,345,619 |
def checkpoint_nets(config, shared, task_id, mnet, hnet, hhnet=None, dis=None):
"""Checkpoint the main and (if existing) the current hypernet.
Args:
config (argparse.Namespace): Command-line arguments.
shared (argparse.Namespace): Miscellaneous data shared among training
functions (contains filenames).
task_id (int): On which task have the networks been trained last.
mnet: The main network.
hnet: The hypernetwork. May be ``None``.
hhnet (optional): The hyper-hypernetwork.
dis (optional): The discriminator network.
"""
assert hasattr(shared, 'summary')
if 'regression' in shared.experiment_type:
perf_key = 'during_mse_task_%d' % task_id
perf_val = shared.summary['aa_mse_during'][task_id]
perf_score = -perf_val
else:
# Note, we use the "task-given" during accuracy on purpose, independent
# of the CL scenario, since the during accuracies for "task-inferred"
# scenarios don't make a lot of sense (they depend on the number of
# tasks observed so far).
perf_key = 'during_acc_task_%d' % task_id
perf_val = shared.summary['acc_task_given_during'][task_id]
perf_score = perf_val
ts = time()
tckpt.save_checkpoint({'state_dict': mnet.state_dict(),
perf_key: perf_val},
shared.ckpt_mnet_fn % task_id, perf_score, train_iter=None,
timestamp=ts)
if hnet is not None:
tckpt.save_checkpoint({'state_dict': hnet.state_dict(),
perf_key: perf_val},
shared.ckpt_hnet_fn % task_id, perf_score, train_iter=None,
timestamp=ts)
if hhnet is not None:
tckpt.save_checkpoint({'state_dict': hhnet.state_dict(),
perf_key: perf_val},
shared.ckpt_hhnet_fn % task_id, perf_score, train_iter=None,
timestamp=ts)
if dis is not None:
tckpt.save_checkpoint({'state_dict': dis.state_dict(),
perf_key: perf_val},
shared.ckpt_dis_fn % task_id, perf_score, train_iter=None,
timestamp=ts)
| 5,345,620 |
def _get_key(arguments):
"""
Determine the config key based on the arguments.
:param arguments: A dictionary of arguments already processed through
this file's docstring with docopt
:return: The datastore path for the config key.
"""
# Get the base path.
if arguments.get("felix"):
base = CONFIG_PATH
elif arguments.get("node"):
base = BGP_HOST_PATH % {"hostname": hostname}
else:
base = BGP_GLOBAL_PATH
# Determine the actual name of the field. Look this up from the config
# data, otherwise just use the name.
config_data = _get_config_data(arguments)
name = arguments["<NAME>"]
if name in config_data:
name, _ = config_data[name]
return base + name
| 5,345,621 |
def prepare_data_from_stooq(df, to_prediction = False, return_days = 5):
"""
Prepares data for X, y format from pandas dataframe
downloaded from stooq. Y is created as closing price in return_days
- opening price
Keyword arguments:
df -- data frame contaning data from stooq
return_days -- number of day frame in which to calculate y.
"""
if 'Wolumen' in df.columns:
df = df.drop(['Data', 'Wolumen', 'LOP'], axis=1)
else:
df = df.drop('Data', axis = 1)
y = df['Zamkniecie'].shift(-return_days) - df['Otwarcie']
if not to_prediction:
df = df.iloc[:-return_days,:]
y = y[:-return_days]/df['Otwarcie']
return df.values, y
| 5,345,622 |
def represents_int_above_0(s: str) -> bool:
"""Returns value evaluating if a string is an integer > 0.
Args:
s: A string to check if it wil be a float.
Returns:
True if it converts to float, False otherwise.
"""
try:
val = int(s)
if val > 0:
return True
else:
return False
except ValueError:
return False
| 5,345,623 |
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet18-5c106cde.pth'))
return model
| 5,345,624 |
def sydney():
"""Import most recent Sydney dataset"""
d = {
'zip':'Sydney_geol_100k_shape',
'snap':-1,
}
return(d)
| 5,345,625 |
def test_vm_entrypoint_stdin(mock_vm_from_stdin,
mock_vm_parser):
""" Test the vm entrypoint with stdin input. """
test_program = StringIO("""
A DATA 0
HLT A
""")
with patch("sys.stdin", test_program):
with patch("sys.stdout", new_callable=StringIO):
vm()
assert mock_vm_from_stdin.called
| 5,345,626 |
async def apiAdminRoleNotExists(cls:"PhaazebotWeb", WebRequest:ExtendedRequest, **kwargs) -> Response:
"""
Optional keywords:
------------------
* msg `str` : (Default: None) * [Overwrites default]
* name `str` *
* role_id `str` *
Default message (*gets altered by optional keywords):
----------------------------------------------------
No role has been found
"""
res:dict = dict(status=400, error="admin_role_not_exists")
name:str = kwargs.get("name", "")
if name:
res["name"] = name
role_id:str = kwargs.get("role_id", "")
if role_id:
res["role_id"] = role_id
# build message
default_msg:str = "No command has been found"
if name:
default_msg += f" with name '{name}'"
if role_id:
default_msg += f" (Role ID: {role_id})"
msg:str = kwargs.get("msg", default_msg)
res["msg"] = msg
cls.BASE.Logger.debug(f"(API/Admin) 400 Role not found: {WebRequest.path}", require="api:400")
return cls.response(
text=json.dumps(res),
content_type="application/json",
status=400
)
| 5,345,627 |
def format_non_date(value):
"""Return non-date value as string."""
return_value = None
if value:
return_value = value
return return_value
| 5,345,628 |
def get_loss(loss_str):
"""Get loss type from config"""
def _get_one_loss(cur_loss_str):
if hasattr(keras_losses, cur_loss_str):
loss_cls = getattr(keras_losses, cur_loss_str)
elif hasattr(custom_losses, cur_loss_str):
loss_cls = getattr(custom_losses, cur_loss_str)
else:
raise ValueError('%s is not a valid loss' % cur_loss_str)
return loss_cls
if not isinstance(loss_str, list):
loss_cls = _get_one_loss(loss_str)
return loss_cls
else:
loss_cls_list = []
for cur_loss in loss_str:
loss_cls = _get_one_loss(cur_loss)
loss_cls_list.append(loss_cls)
return loss_cls_list
| 5,345,629 |
def read(filename, columns, row_num):
"""test file reade"""
if not pd:
raise Exception("Module pandas is not found, please use pip install it.")
df = pd.read_csv(CSV_FILE)
count = 0
reader = FileReader(filename)
for _, x in enumerate(reader.get_next()):
for col in columns:
assert x[col] == df[col].iloc[count]
assert len(x) == len(columns)
count = count + 1
if count == 1:
logger.info("data: {}".format(x))
assert count == row_num
reader.close()
| 5,345,630 |
def _hashable_policy(policy, policy_list):
"""
Takes a policy and returns a list, the contents of which are all hashable and sorted.
Example input policy:
{'Version': '2012-10-17',
'Statement': [{'Action': 's3:PutObjectAcl',
'Sid': 'AddCannedAcl2',
'Resource': 'arn:aws:s3:::test_policy/*',
'Effect': 'Allow',
'Principal': {'AWS': ['arn:aws:iam::XXXXXXXXXXXX:user/username1', 'arn:aws:iam::XXXXXXXXXXXX:user/username2']}
}]}
Returned value:
[('Statement', ((('Action', (u's3:PutObjectAcl',)),
('Effect', (u'Allow',)),
('Principal', ('AWS', ((u'arn:aws:iam::XXXXXXXXXXXX:user/username1',), (u'arn:aws:iam::XXXXXXXXXXXX:user/username2',)))),
('Resource', (u'arn:aws:s3:::test_policy/*',)), ('Sid', (u'AddCannedAcl2',)))),
('Version', (u'2012-10-17',)))]
"""
# Amazon will automatically convert bool and int to strings for us
if isinstance(policy, bool):
return tuple([str(policy).lower()])
elif isinstance(policy, int):
return tuple([str(policy)])
if isinstance(policy, list):
for each in policy:
tupleified = _hashable_policy(each, [])
if isinstance(tupleified, list):
tupleified = tuple(tupleified)
policy_list.append(tupleified)
elif isinstance(policy, string_types) or isinstance(policy, binary_type):
policy = to_text(policy)
# convert root account ARNs to just account IDs
if policy.startswith('arn:aws:iam::') and policy.endswith(':root'):
policy = policy.split(':')[4]
return [policy]
elif isinstance(policy, dict):
sorted_keys = list(policy.keys())
sorted_keys.sort()
for key in sorted_keys:
element = policy[key]
# Special case defined in
# https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
if key in ["NotPrincipal", "Principal"] and policy[key] == "*":
element = {"AWS": "*"}
tupleified = _hashable_policy(element, [])
if isinstance(tupleified, list):
tupleified = tuple(tupleified)
policy_list.append((key, tupleified))
# ensure we aren't returning deeply nested structures of length 1
if len(policy_list) == 1 and isinstance(policy_list[0], tuple):
policy_list = policy_list[0]
if isinstance(policy_list, list):
policy_list.sort(key=cmp_to_key(_py3cmp))
return policy_list
| 5,345,631 |
def test_database(test_session):
"""Tests that the mock database was set up correctly"""
# execute
surveys = test_session.query(Survey).all()
# validation
assert len(surveys) == 2
for survey in surveys:
assert survey.name in ["survey1", "survey2"]
assert len(survey.responses) == 2
assert survey.questions.count() == 3 # needs count() b/c dynamic load
assert survey.created_date is not None
| 5,345,632 |
def LF_CD_NO_VERB(c):
"""
This label function is designed to fire if a given
sentence doesn't contain a verb. Helps cut out some of the titles
hidden in Pubtator abstracts
"""
if len([x for x in nltk.pos_tag(word_tokenize(c.get_parent().text)) if "VB" in x[1]]) == 0:
if "correlates with" in c.get_parent().text:
return 0
return -1
return 0
| 5,345,633 |
def has_file_allowed_extension(filename: PATH_TYPE, extensions: Tuple[str, ...]) -> bool:
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
extensions (tuple of strings): extensions to consider (lowercase)
Returns:
bool: True if the filename ends with one of given extensions
"""
return str(filename).lower().endswith(extensions)
| 5,345,634 |
def get_account_html(netid, timestamp=None):
"""
The Libraries object has a method for getting information
about a user's library account
"""
return _get_resource(netid, timestamp=timestamp, style='html')
| 5,345,635 |
def AddBookkeepingOperators(model):
"""This adds a few bookkeeping operators that we can inspect later.
These operators do not affect the training procedure: they only collect
statistics and prints them to file or to logs.
"""
# Print basically prints out the content of the blob. to_file=1 routes the
# printed output to a file. The file is going to be stored under
# root_folder/[blob name]
model.Print('accuracy', [], to_file=1)
model.Print('loss', [], to_file=1)
# Summarizes the parameters. Different from Print, Summarize gives some
# statistics of the parameter, such as mean, std, min and max.
for param in model.params:
model.Summarize(param, [], to_file=1)
model.Summarize(model.param_to_grad[param], [], to_file=1)
# Now, if we really want to be verbose, we can summarize EVERY blob
# that the model produces; it is probably not a good idea, because that
# is going to take time - summarization do not come for free. For this
# demo, we will only show how to summarize the parameters and their
# gradients.
| 5,345,636 |
def gcd_multiple(*args) -> int:
"""Return greatest common divisor of integers in args"""
return functools.reduce(math.gcd, args)
| 5,345,637 |
def sleep_countdown(duration, steps=1):
"""Sleep that prints a countdown in specified steps
Input
duration: int for seconds of sleep duration
steps: in which steps the countdown is printed
Return
None: sys.stdout output in console
"""
sys.stdout.write("\r Seconds remaining:")
for remaining in range(duration, 0, -1):
# display only steps
if remaining % steps == 0:
sys.stdout.write("\r")
sys.stdout.write("{:2d}".format(remaining))
sys.stdout.flush()
time.sleep(1)
sys.stdout.write("\r Complete!\n")
| 5,345,638 |
def chars_to_family(chars):
"""Takes a list of characters and constructs a family from them. So, A1B2
would be created from ['B', 'A', 'B'] for example."""
counter = Counter(chars)
return "".join(sorted([char + str(n) for char, n in counter.items()]))
| 5,345,639 |
def get_config_properties(config_file="config.properties", sections_to_fetch = None):
"""
Returns the list of properties as a dict of key/value pairs in the file config.properties.
:param config_file: filename (string).
:param section: name of section to fetch properties from (if specified); all sections are returned by default (iterable).
:return: A flat (no sections) Python dictionary of properties.
"""
cf = configparser.ConfigParser()
try:
cf.read(config_file)
except Exception as e:
print("[ERROR] exception {} reading configurations from file {}".format(e, config_file))
properties = {}
for section in cf.sections():
# only include args section if requested
if (not sections_to_fetch or (section in sections_to_fetch)):
for item in cf.items(section):
properties[item[0]] = item[1]
return properties
| 5,345,640 |
def process_speke():
"""Processes an incoming request from MediaLive, which is using SPEKE
A key is created and stored in DynamoDB."""
input_request = request.get_data()
# Parse request
tree = ET.fromstring(input_request)
content_id = tree.get("id")
kid = tree[0][0].get("kid")
iv = tree[0][0].get("explicitIV") or ""
keyPeriod = tree[2][0].get("id")
index = tree[2][0].get("index")
# Create key
key = base64.b64encode(secrets.token_bytes(16)).decode("ascii")
# Expire key tomorrow
expiry = round(time.time()) + 24 * 60 * 60
# Create the pssh
systems = []
for drmsystem in tree[1]:
if drmsystem.get("systemId") == CLEARKEY_SYSTEM_ID:
pssh = psshgen.genClearkeyPssh([kid])
systems.append(
f"""<!-- ClearKey -->
<cpix:DRMSystem kid="{kid}" systemId="{CLEARKEY_SYSTEM_ID}">
<cpix:PSSH>{pssh}</cpix:PSSH>
</cpix:DRMSystem>"""
)
# Save key info in dynamo
dynamo.put_item(
TableName=TABLE,
Item={
"content_id": {"S": content_id},
"kid": {"S": kid},
"iv": {"S": iv},
"keyPeriod": {"S": keyPeriod},
"index": {"S": index},
"key": {"S": key},
"expiry": {"N": str(expiry)},
},
)
if iv:
iv = f'explicitIV="{iv}"'
# Craft response
response = f"""<cpix:CPIX xmlns:cpix="urn:dashif:org:cpix" xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc" xmlns:speke="urn:aws:amazon:com:speke" id="{content_id}">
<cpix:ContentKeyList>
<cpix:ContentKey {iv} kid="{kid}">
<cpix:Data>
<pskc:Secret>
<pskc:PlainValue>{key}</pskc:PlainValue>
</pskc:Secret>
</cpix:Data>
</cpix:ContentKey>
</cpix:ContentKeyList>
<cpix:DRMSystemList>
{''.join(systems)}
</cpix:DRMSystemList>
<cpix:ContentKeyPeriodList>
<cpix:ContentKeyPeriod id="{keyPeriod}" index="{index}" />
</cpix:ContentKeyPeriodList>
<cpix:ContentKeyUsageRuleList>
<cpix:ContentKeyUsageRule kid="{kid}">
<cpix:KeyPeriodFilter periodId="{keyPeriod}" />
</cpix:ContentKeyUsageRule>
</cpix:ContentKeyUsageRuleList>
</cpix:CPIX>"""
return response
| 5,345,641 |
def yaml_save(filename, data):
"""
Save contents of an OrderedDict structure to a yaml file
:param filename: name of the yaml file to save to
:type filename: str
:param data: configuration data to to save
:type filename: str
:type data: OrderedDict
:returns: Nothing
"""
ordered = type(data).__name__ == "OrderedDict"
dict_type = "dict"
if ordered:
dict_type = "OrderedDict"
LOGGER.info("Saving '{}' to '{}'".format(dict_type, filename))
if ordered:
sdata = _ordered_dump(
data,
Dumper=yaml.SafeDumper,
indent=4,
width=768,
allow_unicode=True,
default_flow_style=False,
)
else:
sdata = yaml.dump(
data,
Dumper=yaml.SafeDumper,
indent=4,
width=768,
allow_unicode=True,
default_flow_style=False,
)
sdata = _format_yaml_dump(sdata)
with open(filename, "w") as outfile:
outfile.write(sdata)
| 5,345,642 |
def start_model_server(handler_service=DEFAULT_HANDLER_SERVICE):
"""Configure and start the model server.
Args:
handler_service (str): python path pointing to a module that defines a class with the following:
- A ``handle`` method, which is invoked for all incoming inference requests to the model server.
- A ``initialize`` method, which is invoked at model server start up for loading the model.
Defaults to ``sagemaker_inference.default_handler_service``.
"""
_adapt_to_mms_format(handler_service)
_create_model_server_config_file()
mxnet_model_server_cmd = ['mxnet-model-server',
'--start',
'--model-store', DEFAULT_MMS_MODEL_DIRECTORY,
'--mms-config', MMS_CONFIG_FILE,
'--log-config', DEFAULT_MMS_LOG_FILE,
]
logger.info(mxnet_model_server_cmd)
mms_process = subprocess.Popen(mxnet_model_server_cmd)
_add_sigterm_handler(mms_process)
subprocess.call(['tail',
'-f',
'/dev/null'])
| 5,345,643 |
def merge(source: Dict, destination: Dict) -> Dict:
"""
Deep merge two dictionaries
Parameters
----------
source: Dict[Any, Any]
Dictionary to merge from
destination: Dict[Any, Any]
Dictionary to merge to
Returns
-------
Dict[Any, Any]
New dictionary with fields in destination overwritten
with values from source
"""
new_dict = {**destination}
for key, value in source.items():
if isinstance(value, dict):
# get node or create one
node = new_dict.get(key, {})
new_dict[key] = merge(value, node)
else:
new_dict[key] = value
return new_dict
| 5,345,644 |
async def async_api_adjust_volume_step(hass, config, directive, context):
"""Process an adjust volume step request."""
# media_player volume up/down service does not support specifying steps
# each component handles it differently e.g. via config.
# For now we use the volumeSteps returned to figure out if we
# should step up/down
volume_step = directive.payload['volumeSteps']
entity = directive.entity
data = {
ATTR_ENTITY_ID: entity.entity_id,
}
if volume_step > 0:
await hass.services.async_call(
entity.domain, SERVICE_VOLUME_UP,
data, blocking=False, context=context)
elif volume_step < 0:
await hass.services.async_call(
entity.domain, SERVICE_VOLUME_DOWN,
data, blocking=False, context=context)
return directive.response()
| 5,345,645 |
def CreateHead(turtle):
"""
Creates the head for the puppy we're making!
:return: none
"""
turtle.penup()
turtle.speed(0)
turtle.setpos(100,-50)
turtle.pendown()
turtle.color("#bd9f60")
turtle.shape('arrow')
turtle.begin_fill()
for head in range(4):
turtle.left(90)
turtle.forward(200)
turtle.end_fill()
| 5,345,646 |
def load_recordings(path: str, activityLabelToIndexMap: dict, limit: int = None) -> 'list[Recording]':
"""
Load the recordings from a folder containing csv files.
"""
recordings = []
recording_files = os.listdir(path)
recording_files = list(filter(lambda file: file.endswith('.csv'), recording_files))
if limit is not None:
recording_files = recording_files[:limit]
recording_files = sorted(recording_files, key=lambda file: int(file.split('_')[0]))
for (index, file) in enumerate(recording_files):
print(f'Loading recording {file}, {index+1} / {len(recording_files)}')
recording_dataframe = pd.read_csv(os.path.join(path, file))
time_frame = recording_dataframe.loc[:, 'SampleTimeFine']
activities = recording_dataframe.loc[:, 'activity'].map(lambda label: activityLabelToIndexMap[label])
sensor_frame = recording_dataframe.loc[:,
recording_dataframe.columns.difference(['SampleTimeFine', 'activity'])]
subject = file.split('_')[1]
recordings.append(Recording(sensor_frame, time_frame, activities, subject, index))
print(f'Loaded {len(recordings)} recordings from {path}')
return recordings
| 5,345,647 |
def minio_prometheus(storage_share):
"""Contact Minio's Prometheus URL to obtain storage information.
Obtains storage stats from Minio's Prometheus URL by extracting these
metrics:
minio_disk_storage_available_bytes
minio_disk_storage_total_bytes
minio_disk_storage_used_bytes
or for newer version >= RELEASE.2019-12-17T23-26-28Z
disk_storage_available
disk_storage_total
disk_storage_used
Attributes:
storage_share -- dynafed_storagestats StorageShare object.
"""
# Generate the URL to contact
_api_url = '{scheme}://{netloc}/minio/prometheus/metrics'.format(
scheme=storage_share.uri['scheme'],
netloc=storage_share.uri['netloc']
)
# We need to initialize "response" to check if it was successful in the
# finally statement.
_response = False
try:
_response = requests.request(
method="GET",
url=_api_url,
verify=storage_share.plugin_settings['ssl_check'],
timeout=int(storage_share.plugin_settings['conn_timeout'])
)
# Save time when data was obtained.
storage_share.stats['endtime'] = int(datetime.datetime.now().timestamp())
# Log contents of response
_logger.debug(
"[%s]Endpoint reply: %s",
storage_share.id,
_response.text
)
except requests.exceptions.InvalidSchema as ERR:
raise dynafed_storagestats.exceptions.ConnectionErrorInvalidSchema(
error='InvalidSchema',
schema=storage_share.uri['scheme'],
debug=str(ERR),
)
except requests.exceptions.SSLError as ERR:
# If ca_path is custom, try the default in case
# a global setting is incorrectly giving the wrong
# ca's to check against.
try:
_response = requests.request(
method="GET",
url=_api_url,
verify=storage_share.plugin_settings['ssl_check'],
timeout=int(storage_share.plugin_settings['conn_timeout'])
)
# Save time when data was obtained.
storage_share.stats['endtime'] = int(datetime.datetime.now().timestamp())
# Log contents of response
_logger.debug(
"[%s]Endpoint reply: %s",
storage_share.id,
_response.text
)
except requests.exceptions.SSLError as ERR:
raise dynafed_storagestats.exceptions.ConnectionError(
error=ERR.__class__.__name__,
status_code="092",
debug=str(ERR),
)
except requests.ConnectionError as ERR:
raise dynafed_storagestats.exceptions.ConnectionError(
error=ERR.__class__.__name__,
debug=str(ERR),
)
finally:
if _response:
try:
_metrics = _response.text
except ValueError:
raise dynafed_storagestats.exceptions.ConnectionErrorS3API(
error="NoContent",
status_code=_response.status_code,
api=storage_share.plugin_settings['storagestats.api'],
debug=_response.text,
)
else:
# Extract the metrics.
for family in text_string_to_metric_families(_metrics):
for sample in family.samples:
if sample.name == 'minio_disk_storage_available_bytes' or \
sample.name == 'disk_storage_available':
storage_share.stats['bytesfree'] = int(sample.value)
elif sample.name == 'minio_disk_storage_used_bytes' or \
sample.name =='disk_storage_used':
storage_share.stats['bytesused'] = int(sample.value)
elif sample.name == 'minio_disk_storage_total_bytes' or \
sample.name == 'disk_storage_total':
storage_share.stats['quota'] = int(sample.value)
# If the quota is overridden in the settings:
if storage_share.plugin_settings['storagestats.quota'] != 'api':
storage_share.stats['quota'] = int(storage_share.plugin_settings['storagestats.quota'])
storage_share.stats['bytesfree'] = storage_share.stats['quota'] - storage_share.stats['bytesused']
| 5,345,648 |
def add_storage_capacity(obj, info):
"""Sets storage parameters in change table.
:param powersimdata.input.change_table.ChangeTable obj: change table
:param list info: each entry is a dictionary. The dictionary gathers
the information needed to create a new storage device.
Required keys: "bus_id", "capacity".
"capacity" denotes the symmetric input and output power limits (MW).
Optional keys: "duration", "min_stor", "max_stor", "energy_value", "InEff",
"OutEff", "LossFactor", "terminal_min", "terminal_max".
"duration" denotes the energy to power ratio (hours).
"min_stor" denotes the minimum energy limit (unitless), e.g. 0.05 = 5%.
"max_stor" denotes the maximum energy limit (unitless), e.g. 0.95 = 95%.
"energy_value" denotes the value of stored energy at interval end ($/MWh).
"InEff" denotes the input efficiency (unitless), e.g. 0.95 = 95%.
"OutEff" denotes the output efficiency (unitless), e.g. 0.95 = 95%.
"LossFactor" denotes the per-hour relative losses,
e.g. 0.01 means that 1% of the current state of charge is lost per hour).
"terminal_min" denotes the minimum state of charge at interval end,
e.g. 0.5 means that the storage must end the interval with at least 50%.
"terminal_max" denotes the maximum state of charge at interval end,
e.g. 0.9 means that the storage must end the interval with no more than 90%.
:raises TypeError: if ``info`` is not a list.
:raises ValueError: if any of the new storages to be added have bad values.
"""
if not isinstance(info, list):
raise TypeError("Argument enclosing new storage(s) must be a list")
info = copy.deepcopy(info)
new_storages = []
required = {"bus_id", "capacity"}
optional = {
"duration",
"min_stor",
"max_stor",
"energy_value",
"InEff",
"OutEff",
"LossFactor",
"terminal_min",
"terminal_max",
}
anticipated_bus = obj._get_transformed_df("bus")
for i, storage in enumerate(info):
obj._check_entry_keys(storage, i, "storage", required, None, optional)
if storage["bus_id"] not in anticipated_bus.index:
raise ValueError(
f"No bus id {storage['bus_id']} available for {ordinal(i)} storage"
)
for o in optional:
if o not in storage:
storage[o] = obj.grid.storage[o]
for k, v in storage.items():
if not isinstance(v, (int, float)):
err_msg = f"values must be numeric, bad type for {ordinal(i)} {k}"
raise ValueError(err_msg)
if v < 0:
raise ValueError(
f"values must be non-negative, bad value for {ordinal(i)} {k}"
)
for k in {"min_stor", "max_stor", "InEff", "OutEff", "LossFactor"}:
if storage[k] > 1:
raise ValueError(
f"value for {k} must be <=1, bad value for {ordinal(i)} storage"
)
new_storages.append(storage)
if "storage" not in obj.ct:
obj.ct["storage"] = []
obj.ct["storage"] += new_storages
| 5,345,649 |
def load_img(path, grayscale=False, color_mode='rgb', target_size=None,
interpolation='nearest'):
"""Loads an image into PIL format.
# Arguments
path: Path to image file.
grayscale: DEPRECATED use `color_mode="grayscale"`.
color_mode: The desired image format. One of "grayscale", "rgb", "rgba".
"grayscale" supports 8-bit images and 32-bit signed integer images.
Default: "rgb".
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation method used to resample the image if the
target size is different from that of the loaded image.
Supported methods are "nearest", "bilinear", and "bicubic".
If PIL version 1.1.3 or newer is installed, "lanczos" is also
supported. If PIL version 3.4.0 or newer is installed, "box" and
"hamming" are also supported.
Default: "nearest".
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
if grayscale is True:
warnings.warn('grayscale is deprecated. Please use '
'color_mode = "grayscale"')
color_mode = 'grayscale'
if pil_image is None:
raise ImportError('Could not import PIL.Image. '
'The use of `load_img` requires PIL.')
with open(path, 'rb') as f:
img = pil_image.open(io.BytesIO(f.read()))
if color_mode == 'grayscale':
# if image is not already an 8-bit, 16-bit or 32-bit grayscale image
# convert it to an 8-bit grayscale image.
if img.mode not in ('L', 'I;16', 'I'):
img = img.convert('L')
elif color_mode == 'rgba':
if img.mode != 'RGBA':
img = img.convert('RGBA')
elif color_mode == 'rgb':
if img.mode != 'RGB':
img = img.convert('RGB')
else:
raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"')
if target_size is not None:
width_height_tuple = (target_size[1], target_size[0])
if img.size != width_height_tuple:
if interpolation not in _PIL_INTERPOLATION_METHODS:
raise ValueError(
'Invalid interpolation method {} specified. Supported '
'methods are {}'.format(
interpolation,
", ".join(_PIL_INTERPOLATION_METHODS.keys())))
resample = _PIL_INTERPOLATION_METHODS[interpolation]
img = img.resize(width_height_tuple, resample)
return img
| 5,345,650 |
def check_compatible_system_and_kernel_and_prepare_profile(args):
"""
Checks if we can do local profiling, that for now is only available
via Linux based platforms and kernel versions >=4.9
Args:
args:
"""
res = True
logging.info("Enabled profilers: {}".format(args.profilers))
logging.info("Checking if system is capable of running those profilers")
if "Linux" not in platform.system():
logging.error(
"Platform needs to be Linux based. Current platform: {}".format(
platform.system()
)
)
res = False
# check for release >= 4.9
release = platform.release()
logging.info("Detected platform release: {}".format(release))
major_minor = release.split(".")[:2]
system_kernel_major_v = major_minor[0]
system_kernel_minor_v = major_minor[1]
if float(system_kernel_major_v) < 4:
logging.error(
"kernel version needs to be >= 4.9. Detected version: {}".format(release)
)
res = False
if float(system_kernel_major_v) == 4 and float(system_kernel_minor_v) < 9:
logging.error(
"kernel version needs to be >= 4.9. Detected version: {}".format(release)
)
res = False
# a map between profiler name and profiler object wrapper
res, profilers_map = get_profilers_map(args.profilers.split(","))
return res, profilers_map
| 5,345,651 |
def crop_file(in_file, out_file, ext):
"""Crop a NetCDF file to give rectangle using NCO.
The file is automatically converted to [0,360] Β°E longitude format.
Args:
in_file: Input file path.
out_file: Output file path. It will not be overwritten.
ext: The rectangular region (extent) to crop to, given as a list of
[lon1, lon2, lat1, lat2]. Longitude in [0,360) Β°E and latitude in
[-90,+90] Β°N.
Returns:
Name of output file (same as `out_file`).
Raises:
FileNotFoundError: `in_file` doesnβt exist.
RuntimeError: Executable `ncks` is not in the PATH.
RuntimeError: NCKS failed or no output file was created.
"""
if not os.path.isfile(in_file):
raise FileNotFoundError("Input file doesnβt exist: '%s'" % in_file)
if skip(in_file, out_file):
return out_file
out_dir = os.path.dirname(out_file)
if not os.path.isdir(out_dir):
cprint(f"Directory '{out_dir}' does not exist yet. I will create it.",
'yellow')
os.makedirs(out_dir)
cprint("Cropping file '%s'..." % in_file, 'yellow')
if shutil.which("ncks") is None:
raise RuntimeError("Executable `ncks` not found.")
try:
# ADJUST LONGITUDE
ext_adj = list()
ext_adj[:] = ext
ext_adj[0] = adjust_longitude(in_file, ext[0])
ext_adj[1] = adjust_longitude(in_file, ext[1])
# CROP
subprocess.run(["ncks",
"--overwrite",
"--dimension", "lon,%.2f,%.2f" % (ext_adj[0],
ext_adj[1]),
"--dimension", "lat,%.2f,%.2f" % (ext_adj[2],
ext_adj[3]),
in_file,
out_file], check=True)
# ROTATE LONGITUDE
# See here for the documentation about rotating longitude:
# http://nco.sourceforge.net/nco.html#msa_usr_rdr
# Unlike in the instructions in the documentation, we donβt need to
# re-order the longitude dimension with --msa_usr_rdr because through
# the `ncks` cropping/hyperslabbing command the longitude is already
# ordered correctly from East to West.
# Note that we rotate after cropping for performance reasons. This way
# only the cropped grid cells need to be rotated.
subprocess.run(['ncap2',
'--overwrite',
'--script', 'where(lon < 0) lon=lon+360',
out_file, out_file], check=True)
except Exception:
print(f'DEBUG: ext = {ext}')
print(f'DEBUG: ext_adj = {ext_adj}')
if os.path.isfile(out_file):
cprint(f"Removing file '{out_file}'.", 'red')
os.remove(out_file)
# Remove temporary file created by ncks.
for g in glob(f'{out_file}.pid*.ncks.tmp'):
cprint(f"Removing file '{g}'.", 'red')
os.remove(g)
raise
if not os.path.isfile(out_file):
raise RuntimeError("Cropping with `ncks` failed: No output file "
"created.")
cprint(f"Successfully created '{out_file}'.", 'green')
return out_file
| 5,345,652 |
def get_instance_string(params):
""" combine the parameters to a string mostly used for debug output
use of OrderedDict is advised
"""
return "_".join([str(i) for i in params.values()])
| 5,345,653 |
def recv_bgpmon_updates(host, port, queue):
"""
Receive and parse the BGP update XML stream of bgpmon
"""
logging.info ("CALL recv_bgpmon_updates (%s:%d)", host, port)
# open connection
sock = _init_bgpmon_sock(host,port)
data = ""
stream = ""
# receive data
logging.info(" + receiving XML update stream ...")
while(True):
data = sock.recv(1024)
if not data:
sock.close()
time.sleep(60)
sock = _init_bgpmon_sock(host,port)
continue
stream += data
stream = str.replace(stream, "<xml>", "")
while (re.search('</BGP_MONITOR_MESSAGE>', stream)):
messages = stream.split('</BGP_MONITOR_MESSAGE>')
msg = messages[0] + '</BGP_MONITOR_MESSAGE>'
stream = '</BGP_MONITOR_MESSAGE>'.join(messages[1:])
result = parse_bgp_message(msg)
if result:
queue.put(result)
return True
| 5,345,654 |
def is_string_expr(expr: ast.AST) -> bool:
"""Check that the expression is a string literal."""
return (
isinstance(expr, ast.Expr)
and isinstance(expr.value, ast.Constant)
and isinstance(expr.value.value, str)
)
| 5,345,655 |
def events_to_img(
xs: np.ndarray,
ys: np.ndarray,
tots: np.ndarray,
cluster_ids: np.ndarray,
x_img: np.ndarray,
y_img: np.ndarray,
minimum_event_num: int = 30,
extinguish_dist: float = 1.41422, # sqrt(2) = 1.41421356237
) -> np.ndarray:
"""
Converting given events into a flatten image array defined by
given image pixel positions
@param xs: event x position, must be float
@param ys: event y position, must be float
@param tots: event time of threshold (as intensity), must be float
@param cluster_ids: ID labels
@param x_img: pixel position of the target image (see np.meshgrid)
@param y_img: pixel position of the target image (see np.meshgrid)
@param minimum_event_num: minimum number of events needed to be included
@param extinguish_dist: signal impact ends outside this range
@returns: the image converted from given events using weighted centroid method
"""
# preparation
unique_cids = np.unique(cluster_ids)
img_shape = x_img.shape
x_img = x_img.flatten()
y_img = y_img.flatten()
img = x_img * 0.0
for i in numba.prange(unique_cids.shape[0]):
cid = unique_cids[i]
idx = np.where(cluster_ids == cid)[0]
# skip cluster with too few events
if idx.shape[0] < minimum_event_num:
continue
# compute the centroid position and weighted equivalent intensity
wgts = tots[idx] / np.sum(tots[idx])
xc = np.dot(wgts, xs[idx])
yc = np.dot(wgts, ys[idx])
# ic = np.dot(wgts, tots[idx])
# propogate the signal to the image
idx = np.where(
np.logical_and(
np.logical_and(
x_img >= xc - extinguish_dist,
x_img < xc + extinguish_dist,
),
np.logical_and(
y_img >= yc - extinguish_dist,
y_img < yc + extinguish_dist,
),
))[0]
wgts = (x_img[idx] - xc)**2 + (y_img[idx] - yc)**2
wgts = 1.0 / wgts
wgts = wgts / np.sum(wgts)
img[idx] += wgts
# return the results
return img.reshape(img_shape)
| 5,345,656 |
def plot_average_spatial_concs4lon(ds, year=2018, vars2use=None,
use_local_CVAO_area=False,
show_plot=False, dpi=320,
verbose=False,):
"""
Make a PDF of average spatial concentrations by level
"""
# Setup PDF to save plots to.
savetitle = 'ARNA_avg_spatial_concs_{}'.format(year)
pdff = AC.plot2pdfmulti(title=savetitle, open=True, dpi=dpi)
# Which variables to plot
if not isinstance(vars2use, list):
vars2use = [i for i in ds.data_vars]
vars2use = ['NOy', 'PM2.5(dust)', ]
# Now loop and plot
for var in vars2use:
# for var in vars2use[:2]: # For testing
# Plot up by level
# for lev2use in ds.lev.values:
for lon2use in list(ds.lon.values):
if verbose:
print(var, lev2use)
# Get units for species
units = ds[var].units
# Select for level and variable, and average over time
ds_tmp = ds.sel(lon=lon2use).mean(dim='time')
# Get the LateX for of the species name
try:
LaTeX_spec = AC.latex_spec_name(var)
except KeyError:
print('WARNING: not converted {} to LaTeX form'.format(var))
LaTeX_spec = var
# Set title
title = 'Average [{}] @ {:.0f}hPa in Feb {}'.format(
LaTeX_spec, lev2use, year)
# Plot up and add title
# quick_map_plt_CV_1layer(ds_tmp, var2plot=var, title=title,
# use_local_CVAO_area=use_local_CVAO_area,
# save_plot=False, units=units)
# vertical plot
del ds_tmp
# Save to PDF
AC.plot2pdfmulti(pdff, savetitle, dpi=dpi, tight=True)
if show_plot:
plt.show()
plt.close()
# Save entire pdf
AC.plot2pdfmulti(pdff, savetitle, close=True, dpi=dpi)
plt.close('all')
| 5,345,657 |
def test_sleep_physionet_age_missing_recordings(physionet_tmpdir, subject,
recording, download_is_error):
"""Test handling of missing recordings in Sleep Physionet age fetcher."""
with pytest.raises(
ValueError, match=f'Requested recording {recording} for subject'):
age.fetch_data(subjects=[subject], recording=[recording],
on_missing='raise', path=physionet_tmpdir)
with pytest.warns(RuntimeWarning,
match=f'Requested recording {recording} for subject'):
age.fetch_data(subjects=[subject], recording=[recording],
on_missing='warn', path=physionet_tmpdir)
paths = age.fetch_data(subjects=[subject], recording=[recording],
on_missing='ignore', path=physionet_tmpdir)
assert paths == []
| 5,345,658 |
def _chromosome_collections(df, y_positions, height, **kwargs):
"""
Yields BrokenBarHCollection of features that can be added to an Axes
object.
Parameters
----------
df : pandas.DataFrame
Must at least have columns ['chrom', 'start', 'end', 'color']. If no
column 'width', it will be calculated from start/end.
y_positions : dict
Keys are chromosomes, values are y-value at which to anchor the
BrokenBarHCollection
height : float
Height of each BrokenBarHCollection
Additional kwargs are passed to BrokenBarHCollection
"""
del_width = False
if "width" not in df.columns:
del_width = True
df["width"] = df["end"] - df["start"]
for chrom, group in df.groupby("chrom"):
yrange = (y_positions["chr" + chrom], height)
xranges = group[["start", "width"]].values
yield BrokenBarHCollection(
xranges, yrange, facecolors=group["colors"], **kwargs
)
if del_width:
del df["width"]
| 5,345,659 |
def connect_colour(scene, attributes, ui_name, ui_mix_with,
ui_mix_spin, ui_mix_slider,
ui_strength_spin, ui_strength_slider):
"""Connect colour."""
ui_name.currentIndexChanged.connect(
lambda x: connect_combobox_abstract(x, scene, attributes, 'name', c.attribute_values(c.Colour), True))
ui_mix_with.currentIndexChanged.connect(
lambda x: connect_combobox_abstract(x, scene, attributes, 'mix_with', c.attribute_values(c.Colour), True))
ui_mix_slider.sliderMoved.connect(
lambda x: connect_slider_moved_abstract(x, scene, attributes, 'mix_percent', lambda x: x, ui_mix_spin))
ui_mix_slider.sliderReleased.connect(
lambda : connect_slider_released_abstract(scene))
ui_strength_slider.sliderMoved.connect(
lambda x: connect_slider_moved_abstract(x, scene, attributes, 'strength', lambda x: x, ui_strength_spin))
ui_strength_slider.sliderReleased.connect(
lambda : connect_slider_released_abstract(scene))
| 5,345,660 |
def worker(job):
"""Run a single download job."""
logger = logging.getLogger("ncbi-genome-download")
ret = False
try:
if job.full_url is not None:
req = requests.get(job.full_url, stream=True)
ret = save_and_check(req, job.local_file, job.expected_checksum)
if not ret:
return ret
ret = create_symlink(job.local_file, job.symlink_path)
except KeyboardInterrupt: # pragma: no cover
# TODO: Actually test this once I figure out how to do this in py.test
logger.debug("Ignoring keyboard interrupt.")
return ret
| 5,345,661 |
def test_upload_findings():
"""Tests uploading of findings"""
responses.add(responses.PUT, get_project_service_mock('add-external-findings'),
body=SUCCESS, status=200)
resp = get_client().upload_findings(_get_test_findings(), datetime.datetime.now(), "Test message", "partition-name")
assert "content" in responses.calls[1].request.body
assert "test-id" in responses.calls[1].request.body
assert resp.text == SUCCESS
| 5,345,662 |
def generate_ar(n_series, n_samples, random_state=0):
"""Generate a linear auto-regressive series.
This simple model is defined as::
X(t) = 0.4 * X(t - 1) - 0.6 * X(t - 4) + 0.5 * N(0, 1)
The task is to predict the current value using all the previous values.
Parameters
----------
n_series : int
Number of time series to generate.
n_samples : int
Number of samples in each time series.
random_state : int, default 0
Seed to use in the random generator.
Returns
-------
X, Y : ndarray, shape (n_series, 1, n_stamps, 1)
Input and output sequences, `Y` is just delayed by 1 sample version
of `X`.
"""
n_init = 4
n_discard = 20
X = np.zeros((n_series, n_init + n_discard + n_samples + 1))
rng = np.random.RandomState(random_state)
X[:, n_init] = rng.randn(n_series)
for i in range(n_init + 1, X.shape[1]):
X[:, i] = (0.4 * X[:, i - 1] - 0.6 * X[:, i - 4] +
0.1 * rng.randn(n_series))
Y = X[:, n_init + n_discard + 1:, None]
X = X[:, n_init + n_discard: -1, None]
return X, Y
| 5,345,663 |
def get_current_commit_id() -> str:
"""Get current commit id.
Returns:
str: current commit id.
"""
command = "git rev-parse HEAD"
commit_id = (
subprocess.check_output(command.split()).strip().decode("utf-8") # noqa: S603
)
return commit_id
| 5,345,664 |
def get_raw_code(file_path):
"""
Removes empty lines, leading and trailing whitespaces, single and multi line comments
:param file_path: path to .java file
:return: list with raw code
"""
raw_code = []
multi_line_comment = False
with open(file_path, "r") as f:
for row in f:
# remove leading and trailing whitespaces
line = row.strip()
# remove '/* comments */'
line = re.sub(r'''
^ # start of string
/\* # "/*" string
.* # any character (except line break) zero or more times
\*/ # "*/" string
\s* # zero or many whitespaces
''', '', line, 0, re.VERBOSE)
# remove '//comments'
line = re.sub(r'''
^ # start of string
// # "//" string
.* # any character (except line break) zero or more times
$ # end of string
''', '', line, 0, re.VERBOSE)
# ignore empty lines
if line != '':
# skip multi-line comments (/*)
if re.search(r'''
^ # start of string
/\* # "/*" string
.* # any character (except line break) zero or more times
''', line, re.VERBOSE):
multi_line_comment = True
continue
# check if multi-line comment was closed (*/)
elif re.search(r'''
.* # any character (except line break) zero or more times
\*/ # "*/" string
$ # end of string
''', line, re.VERBOSE):
multi_line_comment = False
line = re.sub(r'''
.* # any character (except line break) zero or more times
\*/ # "*/" string
\s* # zero or many whitespaces
''', '', line, 0, re.VERBOSE)
if line == '':
continue
# add line if it's not multi-line comment
if not multi_line_comment:
raw_code.append(line)
return raw_code
| 5,345,665 |
def test_is_component_dockerised():
"""Tests for is_component_dockerised()."""
from reana.cli import is_component_dockerised
assert is_component_dockerised(
'reana') is False
| 5,345,666 |
def load_content(file_path):
"""
Loads content from file_path if file_path's extension
is one of allowed ones (See ALLOWED_EXTS).
Throws UnsupportedMetaException on disallowed filetypes.
:param file_path: Absolute path to the file to load content from.
:type file_path: ``str``
:rtype: ``dict``
"""
file_name, file_ext = os.path.splitext(file_path)
if file_ext not in ALLOWED_EXTS:
raise Exception('Unsupported meta type %s, file %s. Allowed: %s' %
(file_ext, file_path, ALLOWED_EXTS))
parser_func = PARSER_FUNCS.get(file_ext, None)
with open(file_path, 'r') as fd:
return parser_func(fd) if parser_func else fd.read()
| 5,345,667 |
def _yaml_comment_regex() -> Pattern:
"""
From https://yaml-multiline.info/, it states that `#` cannot appear *after* a space
or a newline, otherwise it will be a syntax error (for multiline strings that don't
use a block scalar). This applies to single lines as well: for example, `a#b` will be
treated as a single value, but `a #b` will only capture `a`, leaving `#b` as a comment.
For lines that *do* use a block scalar, the YAML parser will throw a syntax error if
there is additional text on the same line as the block scalar. Comments however, are fine.
e.g.
key: | # this is ok
blah
key: | but this is not
blah
Given that we've made it to this stage, we can assume the YAML file is syntactically
correct. Therefore, if we add whitespace before the comment character, we can know that
everything else *after* the comment character is a comment for a given line.
"""
return re.compile(r'(\s+#[\S ]*)')
| 5,345,668 |
def to_list(name: str) -> "Expr":
"""
Aggregate to list
"""
return col(name).list()
| 5,345,669 |
def format_ipc_dimension(number: float, decimal_places: int = 2) -> str:
"""
Format a dimension (e.g. lead span or height) according to IPC rules.
"""
formatted = '{:.2f}'.format(number)
stripped = re.sub(r'^0\.', '', formatted)
return stripped.replace('.', '')
| 5,345,670 |
def mean_test(data, muy0, alternative = 'equal', alpha = 0.95):
"""
This function is used to create a confidence interval of two.sided hypothesis
Input:
data (1D array): the sample of the whole column that you want to evaluate
confidence (float) : confidence_level, must be in (0, 1)
Output:
the dictionary that contains the info of
- Confidence_Interval (tupple)
- T_statistics (float)
- Two-sided p-value.
"""
# convert datapoint to float
a = 1.0 * np.array(data)
confidence = np.round(1 - alpha, 3)
# Number of observations
n = len(a)
# Compute mean and standard_errors
m, se = np.mean(a), stats.sem(a)
# result of testing
T_stat = ((m - muy0) / se)*np.sqrt(n)
# compute the interval_radius
if alternative in ['equal', "two.side"]:
h = se * stats.t.ppf((1 + confidence) / 2., n-1)
conf_itv = (float(m - h), float(m + h))
alt = "true mean (muy) is not equal to muy0 = {}".format(muy0)
cnls = "true mean (muy) = muy0 = {}".format(muy0)
p_val = 2*min(stats.t.cdf(T_stat, n-1), 1 - stats.t.cdf(T_stat, n-1))
elif alternative == 'greater':
h = se * stats.t.ppf(1 - confidence, n-1)
conf_itv = (float(m - h), '+inf')
alt = "true mean (muy) > muy0 = {}".format(muy0)
cnls = "true mean (muy) <= muy0 = {}".format(muy0)
p_val = 1 - stats.t.cdf(T_stat, n-1)
elif alternative == 'less':
h = se * stats.t.ppf(1 - confidence, n-1)
conf_itv = ('-inf', float(m + h))
alt = "true mean (muy) < muy0 = {}".format(muy0)
cnls = "true mean (muy) >= muy0 = {}".format(muy0)
p_val = stats.t.cdf(T_stat, n-1)
# conclusion
if p_val < alpha:
kl = 'reject the hypothesis, {}'.format(alt)
else:
kl = 'can not reject the null hypothesis, so the {}'.format(cnls)
# save all the output-results
dic_data = pd.DataFrame(
{
'alpha / confidence_level': [{'significance level':alpha, 'confidence_level': 1- alpha}],
'Confidence_Interval': [conf_itv],
'T_statistic': T_stat,
'sample_mean': m,
'alternative_hypothesis': alt,
'p_value': p_val,
'conclusion': "For confidence_level = {}%, we {}".format(100*confidence, kl)
}
)
return dic_data
| 5,345,671 |
def __build_command(command, name, background=None, enable=None):
""" Constuct args for systemctl command.
Args:
command: The systemctl command
name: The unit name or name pattern
background: True to have systemctl perform the command in the background
enable: True to enable/disable, False to start/stop only, None for default.
Returns:
The name with type suffix
"""
args = ['--quiet']
if background:
args.append('--no-block')
if ((enable or name.startswith('appscale-'))
and not enable==False
and command in ('start', 'stop')):
args.append('--now')
args.append('--runtime')
if command == 'start':
args.append('enable')
else:
args.append('disable')
else:
args.append(command)
args.append(__expand_name(name))
return args
| 5,345,672 |
def dockerFetchLatestVersion(image_name: str) -> list[str]:
"""
Fetches the latest version of a docker image from hub.docker.com
:param image_name: image to search for
:return: list of version suggestions for the image or 'not found' if error was returned
"""
base_url = "https://hub.docker.com/v2/repositories/library"
request = f"{base_url}/{image_name}/tags"
params = {
"ordering": "last_updated",
"name": "."
}
version_list = []
response = requests.get(request, params=params)
if response.status_code == requests.codes.ok:
json = response.json()
version_list = list(
map(lambda i: i["name"], json["results"])
)[:5]
if len(version_list) == 0:
version_list = [NOT_FOUND]
else:
del params["name"]
response = requests.get(request, params=params)
if response.status_code == requests.codes.ok:
json = response.json()
version_list += list(
map(lambda i: i["name"], json["results"])
)[:5]
return sorted(sorted(list(set(version_list)), reverse=True), key=lambda it: _isfloat(it), reverse=True)
| 5,345,673 |
def _dataset(
dataset_type: str,
transform: str,
train: bool = True
) -> torch.utils.data.Dataset:
"""
Dataset:
mnist: MNIST
cifar10: CIFAR-10
cifar100: CIFAR-100
Transform:
default: the default transform for each data set
simclr: the transform introduced in SimCLR
"""
try:
transform = _get_transform(dataset_type, transform, train)
except KeyError:
raise DatasetNotIncludeError(f"Dataset {dataset_type} or transform {transform} is not included.\n" \
f"Refer to the following: {_dataset.__doc__}")
if dataset_type == "mnist":
dataset = torchvision.datasets.MNIST(
root=ROOT, train=train, download=False,
transform=transform
)
elif dataset_type == "fashionmnist":
dataset = torchvision.datasets.FashionMNIST(
root=ROOT, train=train, download=False,
transform=transform
)
elif dataset_type == "cifar10":
dataset = torchvision.datasets.CIFAR10(
root=ROOT, train=train, download=False,
transform=transform
)
elif dataset_type == "cifar100":
dataset = torchvision.datasets.CIFAR100(
root=ROOT, train=train, download=False,
transform=transform
)
return dataset
| 5,345,674 |
def inferCustomerClasses(param_file, evidence_dir, year):
"""
This function uses the variable elimination algorithm from libpgm to infer the customer class of each AnswerID, given the evidence presented in the socio-demographic survey responses.
It returns a tuple of the dataframe with the probability distribution over all classes for each AnswerID and the BN object.
"""
bn = loadbn(param_file)
evidence, a_id = readEvidence(year, evidence_dir)
query = {"customer_class":''}
cols = bn.Vdata.get('customer_class')['vals']
result = pd.DataFrame(columns=cols) #create empty dataframe in which to store inferred probabilities
count = 0 #set counter
for e in evidence:
bn = loadbn(param_file)
fn = TableCPDFactorization(bn)
try:
inf = fn.condprobve(query, e)
classprobs = list(inf.vals)
result.loc[count] = classprobs
count += 1
except:
result.loc[count] = [None] * len(cols)
count += 1
result['AnswerID'] = a_id
result.set_index(keys='AnswerID',inplace=True)
return result
| 5,345,675 |
def MidiSegInfo(segment):
""" Midi file info saved in config file for speed """
class segInfo:
iMsPerTick = 0
bpm = 4
ppqn = 480
total_ticks = 0
iLengthInMs = 0
iTracks = 0
trackList = []
ver = "1.5"
ret = segInfo()
savedVer = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Ver")
savedDateTime = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "DateTime")
dateTime = FileDateTime(segment.filename)
if ver != savedVer or dateTime != savedDateTime:
mi = GetMidiInfo(segment.filename)
if mi.err == 0:
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Ver", ver)
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "DateTime", str(dateTime))
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "PPQN", str(mi.ppqn))
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "BPM", str(mi.beats_per_measure))
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "totalTicks", str(mi.totalTicks))
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "maxTracks", str(mi.maxTracks))
iLengthInMs = GetMidiFileLength(segment.filename) * 1000
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "LengthInMs", str(iLengthInMs))
if iLengthInMs > 0:
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "MsPerTick", str(iLengthInMs / mi.totalTicks))
#have to write out the tracklist in format that can be saved in INI file
tl = []
for track in mi.trackList:
tl.append((track.track, track.channel, track.name))
IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Tracks", tl)
trackList = []
tl = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Tracks", 'list', [])
for t in tl:
trackList.append(trackGrid(t[0], t[1], t[2],False))
iTracks = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "maxTracks", 'int', 0)
iMsPerTick = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "MsPerTick", 'float', 0)
bpm = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "BPM", 'int', 0)
ppqn = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "PPQN", 'int', 480)
if iMsPerTick == 0 or bpm == 0 or ppqn == 0:
return ret
tb = TimeBase(ppqn, bpm)
total_ticks = tb.ConvertStrTimeToTicks(segment.length)
if total_ticks == 0:
total_ticks = tb.MbtDifference(tb.ConvertStrTimeToTuple(segment.start), tb.ConvertStrTimeToTuple(segment.end))
if total_ticks == 0:
return ret
ret.iTracks = iTracks
ret.iMsPerTick = iMsPerTick
ret.bpm = bpm
ret.ppqn = ppqn
ret.total_ticks = total_ticks
ret.iLengthInMs = total_ticks * iMsPerTick
ret.trackList = trackList
return ret
| 5,345,676 |
def num_in_row(board, row, num):
"""True if num is already in the row, False otherwise"""
return num in board[row]
| 5,345,677 |
def load_mnist(dataset="mnist.pkl.gz"):
"""
dataset: string, the path to dataset (MNIST)
"""
data_dir, data_file = os.path.split(dataset)
# download MNIST if not found
if not os.path.isfile(dataset):
import urllib
origin = (
'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
)
print 'Downloading MNIST from %s' % origin
assert urllib.urlretrieve(origin, dataset)
print "Loading Data ..."
with gzip.open(dataset, 'rb') as handle:
train_set, valid_set, test_set = cPickle.load(handle)
rval = [(train_set[0],to_categorical(train_set[1])),
(valid_set[0],to_categorical(valid_set[1])),
(test_set[0], to_categorical(test_set[1]))]
#train_X, train_y = shared_data(train_set[0]),shared_data_int32(to_categorical(train_set[1]))
#valid_X, valid_y = shared_data(valid_set[0]),shared_data_int32(to_categorical(valid_set[1]))
#test_X, test_y = shared_data(test_set[0]),shared_data_int32(to_categorical(test_set[1]))
#
#rval = [(train_X, train_y), (valid_X, valid_y), (test_X, test_y)]
return rval
| 5,345,678 |
def select_sklearn_training_regiment(model: base.ModelType, cross_validate: int = None, grid_search: dict = None,
**kwargs):
"""
Select the type of sklearn training regime.
:model (base.ModelType): The model to be trained.
:cross_validate (int, default = None): The number of folds to use for cross validation.
:grid_search (dict, default = None): The parameters to search over.
"""
if grid_search is not None:
train_sklearn_gridsearch_model(model, cross_validate = cross_validate, grid_search = grid_search, **kwargs)
elif cross_validate is not None:
train_sklearn_cv_model(model, cross_validate = cross_validate, **kwargs)
else:
train_sklearn_model(**kwargs)
| 5,345,679 |
def test_row_units() -> None:
"""First row unit is as expected"""
first_row = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9']
# pylint: disable=protected-access
assert SB._row_units()[0] == first_row
| 5,345,680 |
def _patch_streams(out: TextIO) -> Iterator[None]:
"""Patch and subsequently reset a text stream."""
sys.stderr = sys.stdout = out
try:
yield
finally:
sys.stderr = sys.__stderr__
sys.stdout = sys.__stdout__
| 5,345,681 |
def colmap_localize(kapture_path: str,
colmap_path: str,
input_database_path: str,
input_reconstruction_path: str,
colmap_binary: str,
pairs_file_path: Optional[str],
keypoints_type: Optional[str],
use_colmap_matches_importer: bool,
image_registrator_options: List[str],
skip_list: List[str],
force: bool) -> None:
"""
Localize images on a colmap model using default SIFT features with the kapture data.
:param kapture_path: path to the kapture to use
:param colmap_path: path to the colmap build
:param input_database_path: path to the map colmap.db
:param input_database_path: path to the map colmap.db
:param input_reconstruction_path: path to the map reconstruction folder
:param colmap_binary: path to the colmap binary executable
:param pairs_file_path: Optional[str],
:param keypoints_type: type of keypoints, name of the keypoints subfolder
:param use_colmap_matches_importer: bool,
:param image_registrator_options: options for the image registrator
:param skip_list: list of steps to skip
:param force: Silently overwrite kapture files if already exists.
"""
# Load input files first to make sure it is OK
logger.info('loading kapture files...')
with kapture.io.csv.get_all_tar_handlers(kapture_path) as tar_handlers:
kapture_data = kapture.io.csv.kapture_from_dir(kapture_path, pairs_file_path, tar_handlers=tar_handlers)
colmap_localize_from_loaded_data(kapture_data,
kapture_path,
tar_handlers,
colmap_path,
input_database_path,
input_reconstruction_path,
colmap_binary,
keypoints_type,
use_colmap_matches_importer,
image_registrator_options,
skip_list,
force)
| 5,345,682 |
def load_hs13_ZSBB_params():
"""Load the standard parameters to generate SocioPatterns HS13
surrogate networks using the ZSBB model.
Returns
-------
:obj:`dict`
The `kwargs` to pass to :func:`tacoma.ZSBB_model`.
"""
fn = os.path.join(path,'ht09_zsbb_params.json')
return tc.load_json_dict(fn)
| 5,345,683 |
def factorial_3(n, acc=1):
"""
Replace all recursive tail calls f(x=x1, y=y1, ...) with (x, y, ...) = (x1, y1, ...); continue
"""
while True:
if n < 2:
return 1 * acc
(n, acc) = (n - 1, acc * n)
continue
break
| 5,345,684 |
def load(filename='haas.cfg'):
"""Load the configuration from the file 'haas.cfg' in the current directory.
This must be called once at program startup; no configuration options will
be available until then.
If the configuration file is not available, this function will simply load
an empty configuration (i.e. one with no options).
"""
cfg.read(filename)
| 5,345,685 |
async def app(scope, receive, send):
"""Example application which servers a simple HTML page"""
html = b"""
<!doctype html>
<html>
<head>
<title>Hello ASGI!</title>
</head>
<body>
<main>
<h1>Hello ASGI!</h1>
</main>
</body>
</html>
"""
await send(
{
"type": "http.response.start",
"status": 200,
"headers": [[b"content-type", b"text/html"], [b"content-length", b"269"],],
}
)
await send(
{"type": "http.response.body", "body": html, "more_body": False,}
)
| 5,345,686 |
def test_upload_file(mocker):
"""Sanity check upload function."""
runner = CliRunner()
with runner.isolated_filesystem():
with open("foo.txt", "w") as fastq_file:
fastq_file.write("AAABBB")
mocked_s3_client = mocker.Mock()
assert upload_file(
mocked_s3_client,
"foo.txt",
"foo-bucket",
object_name="foo-object.txt",
)
mocked_s3_client.upload_file.assert_called_once()
| 5,345,687 |
def get_all_functions(module: types.ModuleType) -> Iterator[Callable]:
"""
Retrieve all functions defined inside a module, including all it submodules
Args:
module: Module inside which functions are to be searched
Returns:
Iterator over all functions inside the module, and all its submodules
"""
LOGGER.debug("Trying to get all functions inside module %s and it submodules", module.__name__)
all_members: Iterator[List[Tuple[str, Callable]]] = map(
lambda mod: inspect.getmembers(mod, inspect.isfunction),
get_submodules(module))
all_functions: Iterator[List[Tuple[str, Callable]]] = filter(lambda x: len(x) > 1, all_members)
yield from map(lambda func_info: func_info[1], itertools.chain(*all_functions))
| 5,345,688 |
def main(criteria1, criteria2, criteria3, ad_steps, path=DIR, out_freq=FREQ, output=OUTPUT_FOLDER, numfolders=False, topology=None, skip_first=False,
resname="LIG", percentage=30, threshold=None, cpus=1):
"""
Description: Rank the traj found in the report files under path
by the chosen criteria. Finally, output the best n_structs.
Input:
Path: Path to look for *report* files in all its subfolders.
Criteria: Criteria to sort the structures.
Needs to be the name of one of the Pele's report file column.
(Default= "Binding Energy")
n_structs: Numbers of structures to create.
sort_order: "min" if sorting from lower to higher "max" from high to low.
out_freq: "Output frequency of our Pele control file"
Output:
f_out: Name of the n outpu
"""
# Check whether is adaptive simulation or not
adaptive = is_adaptive()
# Find reports
reports = find_reports(path, numfolders)
# Retrieve Column Names from report
steps, crit1_name, crit2_name, crit3_name = get_column_names(reports, STEPS, criteria1, criteria2, criteria3)
# Retrieve Data from reports
data = parse_values(reports, criteria1, criteria2, steps, crit1_name, crit2_name, skip_first)
# Filter values
if threshold:
filter_data = Filter(data, percentage, crit1_name, thresh=threshold)
else:
filter_data = Filter(data, percentage, crit1_name)
# cluster
cluster(filter_data, resname, out_freq, cpus)
| 5,345,689 |
def autocorr(x, axis=0, fast=False):
"""
Estimate the autocorrelation function of a time series using the FFT.
:param x:
The time series. If multidimensional, set the time axis using the
``axis`` keyword argument and the function will be computed for every
other axis.
:param axis: (optional)
The time axis of ``x``. Assumed to be the first axis if not specified.
:param fast: (optional)
If ``True``, only use the largest ``2^n`` entries for efficiency.
(default: False)
"""
x = np.atleast_1d(x)
m = [slice(None), ] * len(x.shape)
# For computational efficiency, crop the chain to the largest power of
# two if requested.
if fast:
n = int(2**np.floor(np.log2(x.shape[axis])))
m[axis] = slice(0, n)
x = x
else:
n = x.shape[axis]
# Compute the FFT and then (from that) the auto-correlation function.
f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis)
m[axis] = slice(0, n)
acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real
m[axis] = 0
return acf / acf[m]
| 5,345,690 |
def decode_element(
elem: "DataElement", dicom_character_set: Optional[Union[str, List[str]]]
) -> None:
"""Apply the DICOM character encoding to a data element
Parameters
----------
elem : dataelem.DataElement
The :class:`DataElement<pydicom.dataelem.DataElement>` instance
containing an encoded byte string value to decode.
dicom_character_set : str or list of str or None
The value of (0008,0005) *Specific Character Set*, which may be a
single value, a multiple value (code extension), or may also be ``''``
or ``None``, in which case ``'ISO_IR 6'`` will be used.
"""
if elem.is_empty:
return
if not dicom_character_set:
dicom_character_set = ['ISO_IR 6']
encodings = convert_encodings(dicom_character_set)
# decode the string value to unicode
# PN is special case as may have 3 components with different chr sets
if elem.VR == "PN":
if elem.VM == 1:
# elem.value: Union[PersonName, bytes]
elem.value = cast(PersonName, elem.value).decode(encodings)
else:
# elem.value: Iterable[Union[PersonName, bytes]]
elem.value = [
cast(PersonName, vv).decode(encodings) for vv in elem.value
]
elif elem.VR in text_VRs:
# You can't re-decode unicode (string literals in py3)
if elem.VM == 1:
if isinstance(elem.value, str):
return
elem.value = decode_bytes(elem.value, encodings, TEXT_VR_DELIMS)
else:
output = list()
for value in elem.value:
if isinstance(value, str):
output.append(value)
else:
output.append(
decode_bytes(value, encodings, TEXT_VR_DELIMS)
)
elem.value = output
| 5,345,691 |
def parse_date(filename_html):
"""Parse a file, and return the date associated with it.
filename_html -- Name of file to parse.
"""
match = re.search(r"\d{4}-\d{2}-\d{2}", filename_html)
if not match:
return None
match_date = match.group()
file_date = dateutil.parser.parse(match_date).date()
return file_date
| 5,345,692 |
def build_static_runtime(
workspace,
compiler,
module,
compiler_options,
executor=None,
extra_libs=None,
):
"""Build the on-device runtime, statically linking the given modules.
Parameters
----------
compiler : tvm.micro.Compiler
Compiler instance used to build the runtime.
module : IRModule
Module to statically link.
compiler_options : dict
The return value of tvm.micro.default_options(), with any keys overridden to inject
compiler options specific to this build. If not given, tvm.micro.default_options() is
used. This dict contains the `options` parameter passed to Compiler.library() and
Compiler.binary() at various stages in the compilation process.
executor : Optional[str]
Executor used for runtime. Based on this we determine the libraries that need to be
linked with runtime.
extra_libs : Optional[List[MicroLibrary|str]]
If specified, extra libraries to be compiled into the binary. If a MicroLibrary, it is
included into the binary directly. If a string, the path to a directory; all direct children
of this directory matching RUNTIME_SRC_REGEX are built into a library. These libraries are
placed before any common CRT libraries in the link order.
Returns
-------
MicroBinary :
The compiled runtime.
"""
mod_build_dir = workspace.relpath(os.path.join("build", "module"))
os.makedirs(mod_build_dir)
mod_src_dir = workspace.relpath(os.path.join("src", "module"))
if not executor:
executor = "host-driven"
libs = []
for mod_or_src_dir in (extra_libs or []) + get_runtime_libs(executor):
if isinstance(mod_or_src_dir, MicroLibrary):
libs.append(mod_or_src_dir)
continue
lib_src_dir = mod_or_src_dir
lib_name = os.path.basename(lib_src_dir)
lib_build_dir = workspace.relpath(f"build/{lib_name}")
os.makedirs(lib_build_dir)
lib_srcs = []
for p in os.listdir(lib_src_dir):
if RUNTIME_SRC_REGEX.match(p):
lib_srcs.append(os.path.join(lib_src_dir, p))
libs.append(compiler.library(lib_build_dir, lib_srcs, compiler_options["lib_opts"]))
mod_src_dir = workspace.relpath(os.path.join("src", "module"))
os.makedirs(mod_src_dir)
libs.append(
module.export_library(
mod_build_dir,
workspace_dir=mod_src_dir,
fcompile=lambda bdir, srcs, **kwargs: compiler.library(
bdir, srcs, compiler_options["generated_lib_opts"]
),
)
)
runtime_build_dir = workspace.relpath(f"build/runtime")
os.makedirs(runtime_build_dir)
return compiler.binary(runtime_build_dir, libs, compiler_options["bin_opts"])
| 5,345,693 |
def mod(a1, a2):
"""
Function to give the remainder
"""
return a1 % a2
| 5,345,694 |
async def autopaginate(
text: str,
limit: int,
ctx: Union[commands.Context, KurisuContext],
codeblock: bool = False,
):
"""Automatic Paginator"""
wrapped_text: list[str] = wrap(text, limit)
embeds: list[discord.Embed] = []
for t in wrapped_text:
embeds.append(
discord.Embed(
description=box(t, "py") if codeblock else t,
color=get_color("ok_color"),
).set_footer(
text=f"Page {wrapped_text.index(t) + 1} out of {len(wrapped_text)}"
)
)
await vbu.Paginator(embeds, per_page=1).start(ctx)
| 5,345,695 |
def _unfreeze_and_add_param_group(module: torch.nn.Module,
optimizer: Optimizer,
lr: Optional[float] = None,
train_bn: bool = True):
"""Unfreezes a module and adds its parameters to an optimizer."""
_make_trainable(module)
params_lr = optimizer.param_groups[0]['lr'] if lr is None else float(lr)
optimizer.add_param_group(
{'params': filter_params(module=module, train_bn=train_bn),
'lr': params_lr / 10.,
})
| 5,345,696 |
def select_theme_dirs():
"""
Load theme templates, if applicable
"""
if settings.THEME_DIR:
return ["themes/" + settings.THEME_DIR + "/templates", "templates"]
else:
return ["templates"]
| 5,345,697 |
def encode_string(s):
"""
Simple utility function to make sure a string is proper
to be used in a SQL query
EXAMPLE:
That's my boy! -> N'That''s my boy!'
"""
res = "N'"+s.replace("'","''")+"'"
res = res.replace("\\''","''")
res = res.replace("\''","''")
return res
| 5,345,698 |
def monitor_submissions(syn, api):
"""Monitoring evaluating submissions"""
evaluation_queue_id = 9614883
sub_bundles = syn.getSubmissionBundles(evaluation_queue_id,
status='EVALUATION_IN_PROGRESS')
for _, sub_status in sub_bundles:
task_id = sub_status.submissionAnnotations['task_id'][0]
synapse_task_folder = sub_status.submissionAnnotations['task_output'][0]
task = api.tasks.get(task_id)
# Update final submission status
if task.status == "INVALID":
sub_status.status = "INVALID"
elif task.status == "QUEUED":
print("Task is queued")
continue
elif task.status == "RUNNING":
execution_details = task.get_execution_details()
jobs_completed = [
job.status == "COMPLETED" for job in execution_details.jobs
]
print(
"Task is running. "
f"{sum(jobs_completed)}/{len(jobs_completed)} jobs completed."
)
continue
elif task.status == "COMPLETED":
sub_status.status = "ACCEPTED"
# Store task outputs if the task is complete
task_outputs = task.outputs
# Download outputs except for bam files (large)
temp_dir = tempfile.TemporaryDirectory()
output_files = []
for _, output_value in task_outputs.items():
if output_value is not None:
if not output_value.name.endswith(".bam"):
output_file = api.files.get(output_value.id)
output_path = os.path.join(temp_dir.name, output_value.name)
output_file.download(output_path)
output_files.append(output_path)
# Unfortunately no recursive store function currently...
for output_file in output_files:
syn.store(
synapseclient.File(path=output_file, parent=synapse_task_folder)
)
temp_dir.cleanup()
else:
raise ValueError(f"status {task.status} not supported:")
sub_status = syn.store(sub_status)
| 5,345,699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.