content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def test_directory_origin_configuration_quote_character(sdc_builder, sdc_executor, delimiter_format_type, data_format,
quote_character, shell_executor, delimited_file_writer,
delimiter_character):
"""Verify if directory origin can read delimited data with custom quote character.
This TC check for different escape characters. Input data fields have delimiter characters.
Directory origin should read this data and produce field without escape character.
e.g. ;|Field is value of field with "|" as delimiter character and ";" as quote character
then output field should be "|Field".
"""
file_name = 'custom_delimited_file.csv'
f = lambda ip_string: ip_string.format(quote_character=quote_character, delimiter_character=delimiter_character)
f1 = lambda ip_string: ip_string.replace(quote_character, "")
data = [[f('{quote_character}Field11{delimiter_character}{quote_character}'), 'Field12',
f('{quote_character},Field13{quote_character}')],
[f('{quote_character}Field{delimiter_character}21{quote_character}'), 'Field22', 'Field23']]
try:
files_directory = create_file_and_directory(file_name, data, shell_executor, delimited_file_writer,
delimiter_format_type, delimiter_character)
pipeline_builder = sdc_builder.get_pipeline_builder()
directory = pipeline_builder.add_stage('Directory')
directory.set_attributes(data_format=data_format,
files_directory=files_directory,
file_name_pattern='custom_delimited_*',
file_name_pattern_mode='GLOB',
delimiter_format_type=delimiter_format_type,
delimiter_character=delimiter_character,
quote_character=quote_character)
wiretap = pipeline_builder.add_wiretap()
directory >> wiretap.destination
pipeline = pipeline_builder.build()
sdc_executor.add_pipeline(pipeline)
sdc_executor.start_pipeline(pipeline)
sdc_executor.wait_for_pipeline_metric(pipeline, 'data_batch_count', 1)
sdc_executor.stop_pipeline(pipeline)
expected_output = [map(f1, data[0]), map(f1, data[1])]
verify_delimited_output(wiretap.output_records, expected_output)
finally:
shell_executor(f'rm -r {files_directory}')
| 5,345,800 |
async def test_async_get_config(
aiohttp_session: aiohttp.ClientSession, aiohttp_server: Any
) -> None:
"""Test async_get_event_summary."""
config_in = {"cameras": {"front_door": {"camera_config": "goes here"}}}
config_handler = Mock(return_value=web.json_response(config_in))
server = await start_frigate_server(
aiohttp_server, [web.get("/api/config", config_handler)]
)
frigate_client = FrigateApiClient(str(server.make_url("/")), aiohttp_session)
assert config_in == await frigate_client.async_get_config()
| 5,345,801 |
def project(dim, states):
"""Qiskit wrapper of projection operator.
"""
ket, bra = states
if ket in range(dim) and bra in range(dim):
return st.basis(dim, ket) * st.basis(dim, bra).dag()
else:
raise Exception('States are specified on the outside of Hilbert space %s' % states)
| 5,345,802 |
def check_service_status(ssh_conn_obj, service_name, status="running", device='server'):
"""
Author: Chaitanya Vella ([email protected])
Function to check the service status
:param ssh_conn_obj:
:param service_name:
:param status:
:return:
"""
st.log("##### Checking {} status for {} service ######".format(status, service_name))
command = "status {}".format(service_name)
result = conn_obj.execute_command(ssh_conn_obj, command) if device == 'server' else st.config(ssh_conn_obj, command)
result = utils_obj.remove_last_line_from_string(result)
if "command not found" not in result:
match = "start/running" if status == "running" else "stop/waiting"
if result.find("{}".format(match)) > 1:
return True
else:
command = "service --status-all | grep {}".format(service_name)
result = conn_obj.execute_command(ssh_conn_obj, command)
result = utils_obj.remove_last_line_from_string(result)
operator = "+" if status == "running" else "-"
return True if operator in result and service_name in result else False
return False
| 5,345,803 |
def _persist_block(block_node, block_map):
"""produce persistent binary data for a single block
Children block are assumed to be already persisted and present in
block_map.
"""
data = tuple(_to_value(v, block_map) for v in block_node)
return S_BLOCK.pack(*data)
| 5,345,804 |
def get_graph_names(test_dir):
"""Parse test_dir/*GRAPHFILES and return basenames for all .graph files"""
graph_list = []
GRAPHFILES_files = [f for f in os.listdir(test_dir) if f.endswith("GRAPHFILES")]
for GRAPHFILE in GRAPHFILES_files:
with open(os.path.join(test_dir, GRAPHFILE), 'r') as f:
for l in f.readlines():
l = l.strip()
if not l or l.startswith('#'):
continue
graph_list.append(os.path.basename(l).replace('.graph', ''))
return graph_list
| 5,345,805 |
def get_sagemaker_feature_group(feature_group_name: str):
"""Used to check if there is an existing feature group with a given feature_group_name."""
try:
return sagemaker_client().describe_feature_group(FeatureGroupName=feature_group_name)
except botocore.exceptions.ClientError as error:
logging.error(
f"SageMaker could not find a feature group with the name {feature_group_name}. Error {error}"
)
return None
| 5,345,806 |
def check_system(command, message, exit=0, user=None, stdin=None, shell=False, timeout=None, timeout_signal='TERM'):
"""Runs the command and checks its exit status code.
Handles all of the common steps associated with running a system command:
runs the command, checks its exit status code against the expected result,
and raises an exception if there is an obvious problem.
Returns a tuple of the standard output, standard error, and the failure
message generated by diagnose(). See the system() function for more details
about the command-line options.
"""
status, stdout, stderr = system(command, user, stdin, shell=shell,
timeout=timeout, timeout_signal=timeout_signal,
quiet=False)
fail = diagnose(message, command, status, stdout, stderr)
if timeout and status == -1:
raise osgunittest.TimeoutException(fail)
else:
assert status == exit, fail
return stdout, stderr, fail
| 5,345,807 |
def get_repo_data(api_token):
"""Executes the GraphQL query to get repository data from one or more GitHub orgs.
Parameters
----------
api_token : str
The GH API token retrieved from the gh_key file.
Returns
-------
repo_info_df : pandas.core.frame.DataFrame
"""
import requests
import json
import pandas as pd
from common_functions import read_orgs
url = 'https://api.github.com/graphql'
headers = {'Authorization': 'token %s' % api_token}
repo_info_df = pd.DataFrame()
# Read list of orgs from a file
try:
org_list = read_orgs('orgs.txt')
except:
print("Error reading orgs. This script depends on the existance of a file called orgs.txt containing one org per line. Exiting")
sys.exit()
for org_name in org_list:
has_next_page = True
after_cursor = None
print("Processing", org_name)
while has_next_page:
try:
query = make_query(after_cursor)
variables = {"org_name": org_name}
r = requests.post(url=url, json={'query': query, 'variables': variables}, headers=headers)
json_data = json.loads(r.text)
df_temp = pd.DataFrame(json_data['data']['organization']['repositories']['nodes'])
repo_info_df = pd.concat([repo_info_df, df_temp])
has_next_page = json_data["data"]["organization"]["repositories"]["pageInfo"]["hasNextPage"]
after_cursor = json_data["data"]["organization"]["repositories"]["pageInfo"]["endCursor"]
except:
has_next_page = False
print("ERROR Cannot process", org_name)
return repo_info_df
| 5,345,808 |
def getJson(file, filters={}):
"""Given a specific JSON file (string) and a set of filters (dictionary
key-values pairs), will return a JSON-formatted tree of the matching data
entries from that file (starting as a null-key list of objects).
"""
with open(file, 'r') as f:
j = json.loads(f.read())
all = j['']
dicts = basic.filter(all, filters)
if len(dicts) > 0:
return formatJson(dicts)
else:
raise Exception('No matching data entries found')
| 5,345,809 |
def underline_node_formatter(nodetext, optionstext, caller=None):
"""
Draws a node with underlines '_____' around it.
"""
nodetext_width_max = max(m_len(line) for line in nodetext.split("\n"))
options_width_max = max(m_len(line) for line in optionstext.split("\n"))
total_width = max(options_width_max, nodetext_width_max)
separator1 = "_" * total_width + "\n\n" if nodetext_width_max else ""
separator2 = "\n" + "_" * total_width + "\n\n" if total_width else ""
return separator1 + "|n" + nodetext + "|n" + separator2 + "|n" + optionstext
| 5,345,810 |
def compare(path_to_config, config_file):
"""Rules."""
# This sys.path bookended chunk is common to all entry functions.
sys.path.insert(0, './')
app_pipeline = importlib.import_module(path_to_config + '.app_pipeline')
subproject_name = os.path.basename(os.path.dirname(__file__))
app_configuration, next_subproject_name, next_subproject_module, \
next_entry = app_pipeline.entry_load_next_mod(
app_pipeline, subproject_name, path_to_config, config_file)
plot_plan = importlib.import_module(subproject_name + '.plot_plan')
sequential_run = importlib.import_module(subproject_name + '.sequential_run')
sys.path.remove('./')
plans, ack = plot_plan.get_plans(app_configuration, subproject_name)
sequential_run.all(plans, **ack)
#parallel_run.all(plans)
#cloud_run.all(plans)
if next_subproject_name is not None:
call_next_entry(next_subproject_module, next_entry, path_to_config, config_file)
| 5,345,811 |
def validategeojson(data_input, mode):
"""GeoJSON validation example
>>> import StringIO
>>> class FakeInput(object):
... json = open('point.geojson','w')
... json.write('''{"type":"Feature", "properties":{}, "geometry":{"type":"Point", "coordinates":[8.5781228542328, 22.87500500679]}, "crs":{"type":"name", "properties":{"name":"urn:ogc:def:crs:OGC:1.3:CRS84"}}}''') # noqa
... json.close()
... file = 'point.geojson'
>>> class fake_data_format(object):
... mimetype = 'application/geojson'
>>> fake_input = FakeInput()
>>> fake_input.data_format = fake_data_format()
>>> validategeojson(fake_input, MODE.SIMPLE)
True
"""
LOGGER.info('validating GeoJSON; Mode: {}'.format(mode))
passed = False
if mode >= MODE.NONE:
passed = True
if mode >= MODE.SIMPLE:
name = data_input.file
(mtype, encoding) = mimetypes.guess_type(name, strict=False)
passed = data_input.data_format.mime_type in {mtype, FORMATS.GEOJSON.mime_type}
if mode >= MODE.STRICT:
from pywps.dependencies import ogr
data_source = ogr.Open(data_input.file)
if data_source:
passed = (data_source.GetDriver().GetName() == "GeoJSON")
else:
passed = False
if mode >= MODE.VERYSTRICT:
import jsonschema
import json
# this code comes from
# https://github.com/om-henners/GeoJSON_Validation/blob/master/geojsonvalidation/geojson_validation.py
schema_home = os.path.join(_get_schemas_home(), "geojson")
base_schema = os.path.join(schema_home, "geojson.json")
with open(base_schema) as fh:
geojson_base = json.load(fh)
with open(os.path.join(schema_home, "crs.json")) as fh:
crs_json = json.load(fh)
with open(os.path.join(schema_home, "bbox.json")) as fh:
bbox_json = json.load(fh)
with open(os.path.join(schema_home, "geometry.json")) as fh:
geometry_json = json.load(fh)
cached_json = {
"http://json-schema.org/geojson/crs.json": crs_json,
"http://json-schema.org/geojson/bbox.json": bbox_json,
"http://json-schema.org/geojson/geometry.json": geometry_json
}
resolver = jsonschema.RefResolver(
"http://json-schema.org/geojson/geojson.json",
geojson_base, store=cached_json)
validator = jsonschema.Draft4Validator(geojson_base, resolver=resolver)
try:
validator.validate(json.loads(data_input.stream.read()))
passed = True
except jsonschema.ValidationError:
passed = False
return passed
| 5,345,812 |
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer3_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer7_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
fcn8 = tf.layers.conv2d(vgg_layer7_out, filters=num_classes, kernel_size=1, padding="SAME", name='fcn8')
fcn9 = tf.layers.conv2d_transpose(fcn8, filters=vgg_layer4_out.get_shape().as_list()[-1], kernel_size=4, strides=(2,2), padding="SAME", name='fcn9')
fcn9_skip = tf.add(fcn9, vgg_layer4_out, name='fcn9_plus_layer4')
fcn10 = tf.layers.conv2d_transpose(fcn9_skip, filters=vgg_layer3_out.get_shape().as_list()[-1], kernel_size=4, strides=(2,2), padding="SAME", name='fcn10')
fcn10_skip = tf.add(fcn10, vgg_layer3_out, name='fcn10_plus_layer3')
fcn11 = tf.layers.conv2d_transpose(fcn10_skip, filters=num_classes, kernel_size=16, strides=(8,8), padding="SAME", name='fcn11')
return fcn11
| 5,345,813 |
def determine_issues(project):
"""
Get the list of issues of a project.
:rtype: list
"""
issues = project["Issue"]
if not isinstance(issues, list):
return [issues]
return issues
| 5,345,814 |
def init_parser(subparsers):
""" Initialize the subparser. """
parser = subparsers.add_parser(COMMAND, help="delete a task from the list.")
parser.add_argument("id", type=int, nargs='?', default=-1, help="the id of the task which should be deleted.")
| 5,345,815 |
def find_image_files(path=None):
"""
Used to find image files.
Argument:
path - path to directory of 'img.image' files
"""
if path is None:
path = os.getcwd()
folders = []
for folder in os.listdir(path):
if folder.endswith("img.image"):
folders.append(os.path.join(path, folder))
folders.sort()
return folders
| 5,345,816 |
def get_media_after_date(mountpoint: str, date:str):
"""
Date format in EXIF yyyy:mm:dd, look for EXIF:CreateDate
"""
metadata = get_media_list(mountpoint)
filtered_meta = list()
for m in metadata:
if 'File:FileModifyDate' in m:
if is_after(m['File:FileModifyDate'].split(' ')[0],date):
filtered_meta.append(m)
return filtered_meta
| 5,345,817 |
def failure_message_on_plane(context):
"""Report an informative error message in a popup.
Args:
context: Blender bpy.context instance.
Returns:
Nothing.
"""
pg = context.scene.pdt_pg
pg.error = f"{PDT_ERR_NOINT}"
context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
| 5,345,818 |
def run_normal_game():
"""Run a complex game, like the real thing."""
stage = create_stage()
contestant_first_pick = random.randrange(3)
montys_pick_algorithm(stage, contestant_first_pick)
contestant_second_pick = contestants_second_pick_algorithm(stage, contestant_first_pick)
wins = contestant_wins(stage, contestant_second_pick)
#print (stage, contestant_first_pick, contestant_second_pick, wins)
return wins
| 5,345,819 |
def reformat_wolfram_entries(titles, entries):
"""Reformat Wolfram entries."""
output_list = []
for title, entry in zip(titles, entries):
try:
if ' |' in entry:
entry = '\n\t{0}'.format(entry.replace(' |', ':')
.replace('\n', '\n\t'))
if title == 'Result':
new_entry = entry.encode('utf-8') if PY2 else entry
else:
raw_entry = (title + ': ' + entry)
new_entry = raw_entry.encode('utf-8') if PY2 else raw_entry
output_list.append(new_entry)
except (AttributeError, UnicodeEncodeError):
pass
return output_list
| 5,345,820 |
def project_root() -> str:
"""Returns path to root directory of a project"""
return os.path.join(_file_directory_path(__file__), '..')
| 5,345,821 |
def GetAndValidateRowId(row_dict):
"""Returns the integer ID for a new Row.
This method is also responsible for validating the input fields related
to making the new row ID.
Args:
row_dict: A dictionary obtained from the input JSON.
Returns:
An integer row ID.
Raises:
BadRequestError: The input wasn't formatted properly.
"""
if 'revision' not in row_dict:
raise BadRequestError('Required field "revision" missing.')
try:
return int(row_dict['revision'])
except (ValueError, TypeError) as e:
six.raise_from(
BadRequestError('Bad value for "revision", should be numerical.'), e)
| 5,345,822 |
def generate_test_cases(ukernel, channel_tile, pixel_tile, isa):
"""Generates all tests cases for a BILINEAR micro-kernel.
Args:
ukernel: C name of the micro-kernel function.
channel_tile: Number of channels processed per one iteration of the inner
loop of the micro-kernel.
pixel_tile: Number of pixels processed per one iteration of the outer loop
of the micro-kernel.
isa: instruction set required to run the micro-kernel. Generated unit test
will skip execution if the host processor doesn't support this ISA.
Returns:
Code for the test case.
"""
_, test_name = ukernel.split("_", 1)
_, datatype, ukernel_type, _ = ukernel.split("_", 3)
test_args = [ukernel]
return xngen.preprocess(IBILINEAR_TEST_TEMPLATE, {
"TEST_NAME": test_name.upper().replace("UKERNEL_", ""),
"TEST_FUNC": ukernel,
"UKERNEL_TYPE": ukernel_type.upper(),
"DATATYPE": datatype,
"CHANNEL_TILE": channel_tile,
"PIXEL_TILE": pixel_tile,
"ISA_CHECK": xnncommon.generate_isa_check_macro(isa),
"next_prime": next_prime,
})
| 5,345,823 |
def string_mask(stringvalue: str):
"""Method to divide two divide_two_numbers
ARGUMENTS:
Value1: first value
Value2: second value
"""
for char in stringvalue:
print(ord(char), end=' | ')
| 5,345,824 |
def get_file_range(ase, offsets, timeout=None):
# type: (blobxfer.models.azure.StorageEntity,
# blobxfer.models.download.Offsets, int) -> bytes
"""Retrieve file range
:param blobxfer.models.azure.StorageEntity ase: Azure StorageEntity
:param blobxfer.models.download.Offsets offsets: download offsets
:param int timeout: timeout
:rtype: bytes
:return: content for file range
"""
dir, fpath, _ = parse_file_path(ase.name)
return ase.client._get_file(
share_name=ase.container,
directory_name=dir,
file_name=fpath,
start_range=offsets.range_start,
end_range=offsets.range_end,
validate_content=False, # HTTPS takes care of integrity during xfer
timeout=timeout,
snapshot=ase.snapshot,
).content
| 5,345,825 |
def parse_cli_args():
"""Return parsed command-line arguments."""
parser = ArgumentParser(description='parse and summarize a GLSL file')
parser.add_argument('path')
shader_type_names = [member.name for member in ShaderType]
parser.add_argument('shader_type', nargs='?',
choices=shader_type_names,
default=ShaderType.Fragment.name)
return parser.parse_args()
| 5,345,826 |
def genus_species_name(genus, species):
"""Return name, genus with species if present.
Copes with species being None (or empty string).
"""
# This is a simple function, centralising it for consistency
assert genus and genus == genus.strip(), repr(genus)
if species:
assert species == species.strip(), repr(species)
return f"{genus} {species}"
else:
return genus
| 5,345,827 |
def _native_set_to_python_list(typ, payload, c):
"""
Create a Python list from a native set's items.
"""
nitems = payload.used
listobj = c.pyapi.list_new(nitems)
ok = cgutils.is_not_null(c.builder, listobj)
with c.builder.if_then(ok, likely=True):
index = cgutils.alloca_once_value(c.builder,
ir.Constant(nitems.type, 0))
with payload._iterate() as loop:
i = c.builder.load(index)
item = loop.entry.key
itemobj = c.box(typ.dtype, item)
c.pyapi.list_setitem(listobj, i, itemobj)
i = c.builder.add(i, ir.Constant(i.type, 1))
c.builder.store(i, index)
return ok, listobj
| 5,345,828 |
def asm(code, arch='x86', mode='32'):
"""Assemble instructions to bytecode""
Args:
code: str, eg: add eax, ebx; pop ecx
arch: str, default value: 'x86'
mode: str, default value: '32'
"""
arch = get_kt_arch(arch)
if arch is None:
print('Unsupported architecture')
return
mode = get_kt_mod(mode)
if mode is None:
print('Unsupported mode')
return
try:
ks = kt.Ks(arch, mode) # Initialize engine in X86-32bit mode
encoding, count = ks.asm(code)
print("%s = %s \n(number of instructions: %u)" % (code, [hex(x) for x in encoding], count))
except:
print("ERROR ASSEMBLING")
| 5,345,829 |
def JointAngleCalc(frame,vsk):
""" Joint Angle Calculation function.
Calculates the Joint angles of plugingait and stores the data in array
Stores:
RPel_angle = []
LPel_angle = []
RHip_angle = []
LHip_angle = []
RKnee_angle = []
LKnee_angle = []
RAnkle_angle = []
LAnkle_angle = []
Joint Axis store like below form
The axis is in the form [[origin], [axis]]
Origin defines the position of axis and axis is the direction vector of
x, y, z axis attached to the origin
If it is just single one (Pelvis, Hip, Head, Thorax)
Axis = [[origin_x, origin_y, origin_z],[[Xaxis_x,Xaxis_y,Xaxis_z],
[Yaxis_x,Yaxis_y,Yaxis_z],
[Zaxis_x,Zaxis_y,Zaxis_z]]]
If it has both of Right and Left ( knee, angle, foot, clavicle, humerus, radius, hand)
Axis = [[[R_origin_x,R_origin_y,R_origin_z],
[L_origin_x,L_origin_y,L_origin_z]],[[[R_Xaxis_x,R_Xaxis_y,R_Xaxis_z],
[R_Yaxis_x,R_Yaxis_y,R_Yaxis_z],
[R_Zaxis_x,R_Zaxis_y,R_Zaxis_z]],
[[L_Xaxis_x,L_Xaxis_y,L_Xaxis_z],
[L_Yaxis_x,L_Yaxis_y,L_Yaxis_z],
[L_Zaxis_x,L_Zaxis_y,L_Zaxis_z]]]]
Parameters
----------
frame : dict
Dictionaries of marker lists.
vsk : dict
A dictionary containing subject measurements.
Returns
-------
r, jc : tuple
Returns a tuple containing an array that holds the result of all the joint calculations,
followed by a dictionary for joint center marker positions.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import JointAngleCalc
>>> from .pycgmIO import loadC3D, loadVSK
>>> from .pycgmStatic import getStatic
>>> from .pyCGM_Helpers import getfilenames
>>> import os
>>> fileNames=getfilenames(2)
>>> c3dFile = fileNames[1]
>>> vskFile = fileNames[2]
>>> result = loadC3D(c3dFile)
>>> data = result[0]
>>> frame = result[0][0]
>>> vskData = loadVSK(vskFile, False)
>>> vsk = getStatic(data,vskData,flat_foot=False)
>>> results = JointAngleCalc(frame, vsk)[1]
>>> np.around(results['Pelvis'], 2)
array([ 246.15, 353.26, 1031.71])
>>> np.around(results['Thorax'], 2)
array([ 250.56, 303.23, 1461.17])
>>> np.around(results['Head'], 2)
array([ 244.9 , 325.06, 1730.16])
>>> np.around(results['RHand'], 2)
array([ 770.93, 591.05, 1079.05])
"""
# THIS IS FOOT PROGRESS ANGLE
rfoot_prox,rfoot_proy,rfoot_proz,lfoot_prox,lfoot_proy,lfoot_proz = [None]*6
#First Calculate Pelvis
pelvis_axis = pelvisJointCenter(frame)
kin_Pelvis_axis = pelvis_axis
kin_Pelvis_JC = pelvis_axis[0] #quick fix for storing JC
#change to same format
Pelvis_vectors = pelvis_axis[1]
Pelvis_origin = pelvis_axis[0]
#need to update this based on the file
global_Axis = vsk['GCS']
#make the array which will be the input of findangle function
pelvis_Axis_mod = np.vstack([np.subtract(Pelvis_vectors[0],Pelvis_origin),
np.subtract(Pelvis_vectors[1],Pelvis_origin),
np.subtract(Pelvis_vectors[2],Pelvis_origin)])
global_pelvis_angle = getangle(global_Axis,pelvis_Axis_mod)
pelx=global_pelvis_angle[0]
pely=global_pelvis_angle[1]
pelz=global_pelvis_angle[2]
# and then find hip JC
hip_JC = hipJointCenter(frame,pelvis_axis[0],pelvis_axis[1][0],pelvis_axis[1][1],pelvis_axis[1][2],vsk=vsk)
kin_L_Hip_JC = hip_JC[0] #quick fix for storing JC
kin_R_Hip_JC = hip_JC[1] #quick fix for storing JC
hip_axis = hipAxisCenter(hip_JC[0],hip_JC[1],pelvis_axis)
knee_JC = kneeJointCenter(frame,hip_JC,0,vsk=vsk)
kin_R_Knee_JC = knee_JC[0] #quick fix for storing JC
kin_L_Knee_JC = knee_JC[1] #quick fix for storing JC
#change to same format
Hip_axis_form = hip_axis[1]
Hip_center_form = hip_axis[0]
R_Knee_axis_form = knee_JC[2][0]
R_Knee_center_form = knee_JC[0]
L_Knee_axis_form = knee_JC[2][1]
L_Knee_center_form = knee_JC[1]
#make the array which will be the input of findangle function
hip_Axis = np.vstack([np.subtract(Hip_axis_form[0],Hip_center_form),
np.subtract(Hip_axis_form[1],Hip_center_form),
np.subtract(Hip_axis_form[2],Hip_center_form)])
R_knee_Axis = np.vstack([np.subtract(R_Knee_axis_form[0],R_Knee_center_form),
np.subtract(R_Knee_axis_form[1],R_Knee_center_form),
np.subtract(R_Knee_axis_form[2],R_Knee_center_form)])
L_knee_Axis = np.vstack([np.subtract(L_Knee_axis_form[0],L_Knee_center_form),
np.subtract(L_Knee_axis_form[1],L_Knee_center_form),
np.subtract(L_Knee_axis_form[2],L_Knee_center_form)])
R_pelvis_knee_angle = getangle(hip_Axis,R_knee_Axis)
L_pelvis_knee_angle = getangle(hip_Axis,L_knee_Axis)
rhipx=R_pelvis_knee_angle[0]*-1
rhipy=R_pelvis_knee_angle[1]
rhipz=R_pelvis_knee_angle[2]*-1+90
lhipx=L_pelvis_knee_angle[0]*-1
lhipy=L_pelvis_knee_angle[1]*-1
lhipz=L_pelvis_knee_angle[2]-90
ankle_JC = ankleJointCenter(frame,knee_JC,0,vsk=vsk)
kin_R_Ankle_JC = ankle_JC[0] #quick fix for storing JC
kin_L_Ankle_JC = ankle_JC[1] #quick fix for storing JC
#change to same format
R_Ankle_axis_form = ankle_JC[2][0]
R_Ankle_center_form = ankle_JC[0]
L_Ankle_axis_form = ankle_JC[2][1]
L_Ankle_center_form = ankle_JC[1]
#make the array which will be the input of findangle function
# In case of knee axis I mentioned it before as R_knee_Axis and L_knee_Axis
R_ankle_Axis = np.vstack([np.subtract(R_Ankle_axis_form[0],R_Ankle_center_form),
np.subtract(R_Ankle_axis_form[1],R_Ankle_center_form),
np.subtract(R_Ankle_axis_form[2],R_Ankle_center_form)])
L_ankle_Axis = np.vstack([np.subtract(L_Ankle_axis_form[0],L_Ankle_center_form),
np.subtract(L_Ankle_axis_form[1],L_Ankle_center_form),
np.subtract(L_Ankle_axis_form[2],L_Ankle_center_form)])
R_knee_ankle_angle = getangle(R_knee_Axis,R_ankle_Axis)
L_knee_ankle_angle = getangle(L_knee_Axis,L_ankle_Axis)
rkneex=R_knee_ankle_angle[0]
rkneey=R_knee_ankle_angle[1]
rkneez=R_knee_ankle_angle[2]*-1+90
lkneex=L_knee_ankle_angle[0]
lkneey=L_knee_ankle_angle[1]*-1
lkneez=L_knee_ankle_angle[2] - 90
# ANKLE ANGLE
offset = 0
foot_JC = footJointCenter(frame,vsk,ankle_JC,knee_JC,offset)
kin_R_Foot_JC = foot_JC[0] #quick fix for storing JC
kin_L_Foot_JC = foot_JC[1] #quick fix for storing JC
kin_RHEE = frame['RHEE']
kin_LHEE = frame['LHEE']
# Change to same format
R_Foot_axis_form = foot_JC[2][0]
R_Foot_center_form = foot_JC[0]
L_Foot_axis_form = foot_JC[2][1]
L_Foot_center_form = foot_JC[1]
R_foot_Axis = np.vstack([np.subtract(R_Foot_axis_form[0],R_Foot_center_form),
np.subtract(R_Foot_axis_form[1],R_Foot_center_form),
np.subtract(R_Foot_axis_form[2],R_Foot_center_form)])
L_foot_Axis = np.vstack([np.subtract(L_Foot_axis_form[0],L_Foot_center_form),
np.subtract(L_Foot_axis_form[1],L_Foot_center_form),
np.subtract(L_Foot_axis_form[2],L_Foot_center_form)])
R_ankle_foot_angle = getangle(R_ankle_Axis,R_foot_Axis)
L_ankle_foot_angle = getangle(L_ankle_Axis,L_foot_Axis)
ranklex=R_ankle_foot_angle[0]*(-1)-90
rankley=R_ankle_foot_angle[2]*(-1)+90
ranklez=R_ankle_foot_angle[1]
lanklex=L_ankle_foot_angle[0]*(-1)-90
lankley=L_ankle_foot_angle[2]-90
lanklez=L_ankle_foot_angle[1]*(-1)
# ABSOLUTE FOOT ANGLE
R_global_foot_angle = getangle(global_Axis,R_foot_Axis)
L_global_foot_angle = getangle(global_Axis,L_foot_Axis)
rfootx=R_global_foot_angle[0]
rfooty=R_global_foot_angle[2]-90
rfootz=R_global_foot_angle[1]
lfootx=L_global_foot_angle[0]
lfooty=(L_global_foot_angle[2]-90)*-1
lfootz=L_global_foot_angle[1]*-1
#First Calculate HEAD
head_axis = headJC(frame,vsk=vsk)
kin_Head_JC = head_axis[1] #quick fix for storing JC
LFHD = frame['LFHD'] #as above
RFHD = frame['RFHD']
LBHD = frame['LBHD']
RBHD = frame['RBHD']
kin_Head_Front = np.array((LFHD+RFHD)/2)
kin_Head_Back = np.array((LBHD+RBHD)/2)
#change to same format
Head_axis_form = head_axis[0]
Head_center_form = head_axis[1]
#Global_axis_form = [[0,1,0],[-1,0,0],[0,0,1]]
Global_center_form = [0,0,0]
#***********************************************************
Global_axis_form = vsk['GCS']
#Global_axis_form = rotmat(x=0,y=0,z=180) #this is some weird fix to global axis
#make the array which will be the input of findangle function
head_Axis_mod = np.vstack([np.subtract(Head_axis_form[0],Head_center_form),
np.subtract(Head_axis_form[1],Head_center_form),
np.subtract(Head_axis_form[2],Head_center_form)])
global_Axis = np.vstack([np.subtract(Global_axis_form[0],Global_center_form),
np.subtract(Global_axis_form[1],Global_center_form),
np.subtract(Global_axis_form[2],Global_center_form)])
global_head_angle = getHeadangle(global_Axis,head_Axis_mod)
headx=(global_head_angle[0]*-1)# + 24.8
if headx <-180:
headx = headx+360
heady=global_head_angle[1]*-1
headz=global_head_angle[2]#+180
if headz <-180:
headz = headz-360
# Calculate THORAX
thorax_axis = thoraxJC(frame)
kin_Thorax_JC = thorax_axis[1] #quick fix for storing JC
kin_Thorax_axis = thorax_axis
# Change to same format
Thorax_axis_form = thorax_axis[0]
Thorax_center_form = thorax_axis[1]
Global_axis_form = [[0,1,0],[-1,0,0],[0,0,1]]
Global_center_form = [0,0,0]
#*******************************************************
Global_axis_form = rotmat(x=0,y=0,z=180) #this needs to be fixed for the global rotation
#make the array which will be the input of findangle function
thorax_Axis_mod = np.vstack([np.subtract(Thorax_axis_form[0],Thorax_center_form),
np.subtract(Thorax_axis_form[1],Thorax_center_form),
np.subtract(Thorax_axis_form[2],Thorax_center_form)])
global_Axis = np.vstack([np.subtract(Global_axis_form[0],Global_center_form),
np.subtract(Global_axis_form[1],Global_center_form),
np.subtract(Global_axis_form[2],Global_center_form)])
global_thorax_angle = getangle(global_Axis,thorax_Axis_mod)
if global_thorax_angle[0] > 0:
global_thorax_angle[0] = global_thorax_angle[0] - 180
elif global_thorax_angle[0] < 0:
global_thorax_angle[0] = global_thorax_angle[0] + 180
thox=global_thorax_angle[0]
thoy=global_thorax_angle[1]
thoz=global_thorax_angle[2]+90
# Calculate NECK
head_thorax_angle = getHeadangle(head_Axis_mod,thorax_Axis_mod)
neckx=(head_thorax_angle[0]-180)*-1# - 24.9
necky=head_thorax_angle[1]
neckz=head_thorax_angle[2]*-1
kin_C7 = frame['C7']#quick fix to calculate CoM
kin_CLAV = frame['CLAV']
kin_STRN = frame['STRN']
kin_T10 = frame['T10']
# Calculate SPINE
pel_tho_angle = getangle_spi(pelvis_Axis_mod,thorax_Axis_mod)
spix=pel_tho_angle[0]
spiy=pel_tho_angle[2]*-1
spiz=pel_tho_angle[1]
# Calculate SHOULDER
wand = findwandmarker(frame,thorax_axis)
shoulder_JC = findshoulderJC(frame,thorax_axis,wand,vsk=vsk)
kin_R_Shoulder_JC = shoulder_JC[0] #quick fix for storing JC
kin_L_Shoulder_JC = shoulder_JC[1] #quick fix for storing JC
shoulder_axis = shoulderAxisCalc(frame,thorax_axis,shoulder_JC,wand)
humerus_JC = elbowJointCenter(frame,thorax_axis,shoulder_JC,wand,vsk=vsk)
kin_R_Humerus_JC = humerus_JC[0][0] #quick fix for storing JC
kin_L_Humerus_JC = humerus_JC[0][1] #quick fix for storing JC
# Change to same format
R_Clavicle_axis_form = shoulder_axis[1][0]
L_Clavicle_axis_form = shoulder_axis[1][1]
R_Clavicle_center_form = shoulder_axis[0][0]
L_Clavicle_center_form = shoulder_axis[0][1]
# Change to same format
R_Humerus_axis_form = humerus_JC[1][0]
L_Humerus_axis_form = humerus_JC[1][1]
R_Humerus_center_form = humerus_JC[0][0]
L_Humerus_center_form = humerus_JC[0][1]
# make the array which will be the input of findangle function
R_humerus_Axis_mod = np.vstack([np.subtract(R_Humerus_axis_form[0],R_Humerus_center_form),
np.subtract(R_Humerus_axis_form[1],R_Humerus_center_form),
np.subtract(R_Humerus_axis_form[2],R_Humerus_center_form)])
L_humerus_Axis_mod = np.vstack([np.subtract(L_Humerus_axis_form[0],L_Humerus_center_form),
np.subtract(L_Humerus_axis_form[1],L_Humerus_center_form),
np.subtract(L_Humerus_axis_form[2],L_Humerus_center_form)])
R_thorax_shoulder_angle = getangle_sho(thorax_Axis_mod,R_humerus_Axis_mod)
L_thorax_shoulder_angle = getangle_sho(thorax_Axis_mod,L_humerus_Axis_mod)
if R_thorax_shoulder_angle[2] < 0:
R_thorax_shoulder_angle[2]=R_thorax_shoulder_angle[2]+180
elif R_thorax_shoulder_angle[2] >0:
R_thorax_shoulder_angle[2] = R_thorax_shoulder_angle[2]-180
if R_thorax_shoulder_angle[1] > 0:
R_thorax_shoulder_angle[1] = R_thorax_shoulder_angle[1]-180
elif R_thorax_shoulder_angle[1] <0:
R_thorax_shoulder_angle[1] = R_thorax_shoulder_angle[1]*-1-180
if L_thorax_shoulder_angle[1] < 0:
L_thorax_shoulder_angle[1]=L_thorax_shoulder_angle[1]+180
elif L_thorax_shoulder_angle[1] >0:
L_thorax_shoulder_angle[1] = L_thorax_shoulder_angle[1]-180
rshox=R_thorax_shoulder_angle[0]*-1
rshoy=R_thorax_shoulder_angle[1]*-1
rshoz=R_thorax_shoulder_angle[2]
lshox=L_thorax_shoulder_angle[0]*-1
lshoy=L_thorax_shoulder_angle[1]
lshoz=(L_thorax_shoulder_angle[2]-180)*-1
if lshoz >180:
lshoz = lshoz - 360
# Calculate ELBOW
radius_JC = wristJointCenter(frame,shoulder_JC,wand,humerus_JC)
kin_R_Radius_JC = radius_JC[0][0] #quick fix for storing JC
kin_L_Radius_JC = radius_JC[0][1] #quick fix for storing JC
# Change to same format
R_Radius_axis_form = radius_JC[1][0]
L_Radius_axis_form = radius_JC[1][1]
R_Radius_center_form = radius_JC[0][0]
L_Radius_center_form = radius_JC[0][1]
# make the array which will be the input of findangle function
R_radius_Axis_mod = np.vstack([np.subtract(R_Radius_axis_form[0],R_Radius_center_form),
np.subtract(R_Radius_axis_form[1],R_Radius_center_form),
np.subtract(R_Radius_axis_form[2],R_Radius_center_form)])
L_radius_Axis_mod = np.vstack([np.subtract(L_Radius_axis_form[0],L_Radius_center_form),
np.subtract(L_Radius_axis_form[1],L_Radius_center_form),
np.subtract(L_Radius_axis_form[2],L_Radius_center_form)])
R_humerus_radius_angle = getangle(R_humerus_Axis_mod,R_radius_Axis_mod)
L_humerus_radius_angle = getangle(L_humerus_Axis_mod,L_radius_Axis_mod)
relbx=R_humerus_radius_angle[0]
relby=R_humerus_radius_angle[1]
relbz=R_humerus_radius_angle[2]-90.0
lelbx=L_humerus_radius_angle[0]
lelby=L_humerus_radius_angle[1]
lelbz=L_humerus_radius_angle[2]-90.0
# Calculate WRIST
hand_JC = handJointCenter(frame,humerus_JC,radius_JC,vsk=vsk)
kin_R_Hand_JC = hand_JC[0][0] #quick fix for storing JC
kin_L_Hand_JC = hand_JC[0][1] #quick fix for storing JC
# Change to same format
R_Hand_axis_form = hand_JC[1][0]
L_Hand_axis_form = hand_JC[1][1]
R_Hand_center_form = hand_JC[0][0]
L_Hand_center_form = hand_JC[0][1]
# make the array which will be the input of findangle function
R_hand_Axis_mod = np.vstack([np.subtract(R_Hand_axis_form[0],R_Hand_center_form),
np.subtract(R_Hand_axis_form[1],R_Hand_center_form),
np.subtract(R_Hand_axis_form[2],R_Hand_center_form)])
L_hand_Axis_mod = np.vstack([np.subtract(L_Hand_axis_form[0],L_Hand_center_form),
np.subtract(L_Hand_axis_form[1],L_Hand_center_form),
np.subtract(L_Hand_axis_form[2],L_Hand_center_form)])
R_radius_hand_angle = getangle(R_radius_Axis_mod,R_hand_Axis_mod)
L_radius_hand_angle = getangle(L_radius_Axis_mod,L_hand_Axis_mod)
rwrtx=R_radius_hand_angle[0]
rwrty=R_radius_hand_angle[1]
rwrtz=R_radius_hand_angle[2]*-1 + 90
lwrtx=L_radius_hand_angle[0]
lwrty=L_radius_hand_angle[1]*-1
lwrtz=L_radius_hand_angle[2]-90
if lwrtz < -180:
lwrtz = lwrtz + 360
# make each axis as same format to store
# Pelvis
# origin
pel_origin = Pelvis_origin
pel_ox=pel_origin[0]
pel_oy=pel_origin[1]
pel_oz=pel_origin[2]
# xaxis
pel_x_axis = Pelvis_vectors[0]
pel_xx=pel_x_axis[0]
pel_xy=pel_x_axis[1]
pel_xz=pel_x_axis[2]
# yaxis
pel_y_axis = Pelvis_vectors[1]
pel_yx=pel_y_axis[0]
pel_yy=pel_y_axis[1]
pel_yz=pel_y_axis[2]
# zaxis
pel_z_axis = Pelvis_vectors[2]
pel_zx=pel_z_axis[0]
pel_zy=pel_z_axis[1]
pel_zz=pel_z_axis[2]
# Hip
# origin
hip_origin = Hip_center_form
hip_ox=hip_origin[0]
hip_oy=hip_origin[1]
hip_oz=hip_origin[2]
# xaxis
hip_x_axis = Hip_axis_form[0]
hip_xx=hip_x_axis[0]
hip_xy=hip_x_axis[1]
hip_xz=hip_x_axis[2]
# yaxis
hip_y_axis = Hip_axis_form[1]
hip_yx=hip_y_axis[0]
hip_yy=hip_y_axis[1]
hip_yz=hip_y_axis[2]
# zaxis
hip_z_axis = Hip_axis_form[2]
hip_zx=hip_z_axis[0]
hip_zy=hip_z_axis[1]
hip_zz=hip_z_axis[2]
# R KNEE
# origin
rknee_origin = R_Knee_center_form
rknee_ox=rknee_origin[0]
rknee_oy=rknee_origin[1]
rknee_oz=rknee_origin[2]
# xaxis
rknee_x_axis = R_Knee_axis_form[0]
rknee_xx=rknee_x_axis[0]
rknee_xy=rknee_x_axis[1]
rknee_xz=rknee_x_axis[2]
# yaxis
rknee_y_axis = R_Knee_axis_form[1]
rknee_yx=rknee_y_axis[0]
rknee_yy=rknee_y_axis[1]
rknee_yz=rknee_y_axis[2]
# zaxis
rknee_z_axis = R_Knee_axis_form[2]
rknee_zx=rknee_z_axis[0]
rknee_zy=rknee_z_axis[1]
rknee_zz=rknee_z_axis[2]
# L KNEE
# origin
lknee_origin = L_Knee_center_form
lknee_ox=lknee_origin[0]
lknee_oy=lknee_origin[1]
lknee_oz=lknee_origin[2]
# xaxis
lknee_x_axis = L_Knee_axis_form[0]
lknee_xx=lknee_x_axis[0]
lknee_xy=lknee_x_axis[1]
lknee_xz=lknee_x_axis[2]
# yaxis
lknee_y_axis = L_Knee_axis_form[1]
lknee_yx=lknee_y_axis[0]
lknee_yy=lknee_y_axis[1]
lknee_yz=lknee_y_axis[2]
# zaxis
lknee_z_axis = L_Knee_axis_form[2]
lknee_zx=lknee_z_axis[0]
lknee_zy=lknee_z_axis[1]
lknee_zz=lknee_z_axis[2]
# R ANKLE
# origin
rank_origin = R_Ankle_center_form
rank_ox=rank_origin[0]
rank_oy=rank_origin[1]
rank_oz=rank_origin[2]
# xaxis
rank_x_axis = R_Ankle_axis_form[0]
rank_xx=rank_x_axis[0]
rank_xy=rank_x_axis[1]
rank_xz=rank_x_axis[2]
# yaxis
rank_y_axis = R_Ankle_axis_form[1]
rank_yx=rank_y_axis[0]
rank_yy=rank_y_axis[1]
rank_yz=rank_y_axis[2]
# zaxis
rank_z_axis = R_Ankle_axis_form[2]
rank_zx=rank_z_axis[0]
rank_zy=rank_z_axis[1]
rank_zz=rank_z_axis[2]
# L ANKLE
# origin
lank_origin = L_Ankle_center_form
lank_ox=lank_origin[0]
lank_oy=lank_origin[1]
lank_oz=lank_origin[2]
# xaxis
lank_x_axis = L_Ankle_axis_form[0]
lank_xx=lank_x_axis[0]
lank_xy=lank_x_axis[1]
lank_xz=lank_x_axis[2]
# yaxis
lank_y_axis = L_Ankle_axis_form[1]
lank_yx=lank_y_axis[0]
lank_yy=lank_y_axis[1]
lank_yz=lank_y_axis[2]
# zaxis
lank_z_axis = L_Ankle_axis_form[2]
lank_zx=lank_z_axis[0]
lank_zy=lank_z_axis[1]
lank_zz=lank_z_axis[2]
# R FOOT
# origin
rfoot_origin = R_Foot_center_form
rfoot_ox=rfoot_origin[0]
rfoot_oy=rfoot_origin[1]
rfoot_oz=rfoot_origin[2]
# xaxis
rfoot_x_axis = R_Foot_axis_form[0]
rfoot_xx=rfoot_x_axis[0]
rfoot_xy=rfoot_x_axis[1]
rfoot_xz=rfoot_x_axis[2]
# yaxis
rfoot_y_axis = R_Foot_axis_form[1]
rfoot_yx=rfoot_y_axis[0]
rfoot_yy=rfoot_y_axis[1]
rfoot_yz=rfoot_y_axis[2]
# zaxis
rfoot_z_axis = R_Foot_axis_form[2]
rfoot_zx=rfoot_z_axis[0]
rfoot_zy=rfoot_z_axis[1]
rfoot_zz=rfoot_z_axis[2]
# L FOOT
# origin
lfoot_origin = L_Foot_center_form
lfoot_ox=lfoot_origin[0]
lfoot_oy=lfoot_origin[1]
lfoot_oz=lfoot_origin[2]
# xaxis
lfoot_x_axis = L_Foot_axis_form[0]
lfoot_xx=lfoot_x_axis[0]
lfoot_xy=lfoot_x_axis[1]
lfoot_xz=lfoot_x_axis[2]
# yaxis
lfoot_y_axis = L_Foot_axis_form[1]
lfoot_yx=lfoot_y_axis[0]
lfoot_yy=lfoot_y_axis[1]
lfoot_yz=lfoot_y_axis[2]
# zaxis
lfoot_z_axis = L_Foot_axis_form[2]
lfoot_zx=lfoot_z_axis[0]
lfoot_zy=lfoot_z_axis[1]
lfoot_zz=lfoot_z_axis[2]
# HEAD
# origin
head_origin = Head_center_form
head_ox=head_origin[0]
head_oy=head_origin[1]
head_oz=head_origin[2]
# xaxis
head_x_axis = Head_axis_form[0]
head_xx=head_x_axis[0]
head_xy=head_x_axis[1]
head_xz=head_x_axis[2]
# yaxis
head_y_axis = Head_axis_form[1]
head_yx=head_y_axis[0]
head_yy=head_y_axis[1]
head_yz=head_y_axis[2]
# zaxis
head_z_axis = Head_axis_form[2]
head_zx=head_z_axis[0]
head_zy=head_z_axis[1]
head_zz=head_z_axis[2]
# THORAX
# origin
tho_origin = Thorax_center_form
tho_ox=tho_origin[0]
tho_oy=tho_origin[1]
tho_oz=tho_origin[2]
# xaxis
tho_x_axis = Thorax_axis_form[0]
tho_xx=tho_x_axis[0]
tho_xy=tho_x_axis[1]
tho_xz=tho_x_axis[2]
# yaxis
tho_y_axis = Thorax_axis_form[1]
tho_yx=tho_y_axis[0]
tho_yy=tho_y_axis[1]
tho_yz=tho_y_axis[2]
# zaxis
tho_z_axis = Thorax_axis_form[2]
tho_zx=tho_z_axis[0]
tho_zy=tho_z_axis[1]
tho_zz=tho_z_axis[2]
# R CLAVICLE
# origin
rclav_origin = R_Clavicle_center_form
rclav_ox=rclav_origin[0]
rclav_oy=rclav_origin[1]
rclav_oz=rclav_origin[2]
# xaxis
rclav_x_axis = R_Clavicle_axis_form[0]
rclav_xx=rclav_x_axis[0]
rclav_xy=rclav_x_axis[1]
rclav_xz=rclav_x_axis[2]
# yaxis
rclav_y_axis = R_Clavicle_axis_form[1]
rclav_yx=rclav_y_axis[0]
rclav_yy=rclav_y_axis[1]
rclav_yz=rclav_y_axis[2]
# zaxis
rclav_z_axis = R_Clavicle_axis_form[2]
rclav_zx=rclav_z_axis[0]
rclav_zy=rclav_z_axis[1]
rclav_zz=rclav_z_axis[2]
# L CLAVICLE
# origin
lclav_origin = L_Clavicle_center_form
lclav_ox=lclav_origin[0]
lclav_oy=lclav_origin[1]
lclav_oz=lclav_origin[2]
# xaxis
lclav_x_axis = L_Clavicle_axis_form[0]
lclav_xx=lclav_x_axis[0]
lclav_xy=lclav_x_axis[1]
lclav_xz=lclav_x_axis[2]
# yaxis
lclav_y_axis = L_Clavicle_axis_form[1]
lclav_yx=lclav_y_axis[0]
lclav_yy=lclav_y_axis[1]
lclav_yz=lclav_y_axis[2]
# zaxis
lclav_z_axis = L_Clavicle_axis_form[2]
lclav_zx=lclav_z_axis[0]
lclav_zy=lclav_z_axis[1]
lclav_zz=lclav_z_axis[2]
# R HUMERUS
# origin
rhum_origin = R_Humerus_center_form
rhum_ox=rhum_origin[0]
rhum_oy=rhum_origin[1]
rhum_oz=rhum_origin[2]
# xaxis
rhum_x_axis = R_Humerus_axis_form[0]
rhum_xx=rhum_x_axis[0]
rhum_xy=rhum_x_axis[1]
rhum_xz=rhum_x_axis[2]
# yaxis
rhum_y_axis = R_Humerus_axis_form[1]
rhum_yx=rhum_y_axis[0]
rhum_yy=rhum_y_axis[1]
rhum_yz=rhum_y_axis[2]
# zaxis
rhum_z_axis = R_Humerus_axis_form[2]
rhum_zx=rhum_z_axis[0]
rhum_zy=rhum_z_axis[1]
rhum_zz=rhum_z_axis[2]
# L HUMERUS
# origin
lhum_origin = L_Humerus_center_form
lhum_ox=lhum_origin[0]
lhum_oy=lhum_origin[1]
lhum_oz=lhum_origin[2]
# xaxis
lhum_x_axis = L_Humerus_axis_form[0]
lhum_xx=lhum_x_axis[0]
lhum_xy=lhum_x_axis[1]
lhum_xz=lhum_x_axis[2]
# yaxis
lhum_y_axis = L_Humerus_axis_form[1]
lhum_yx=lhum_y_axis[0]
lhum_yy=lhum_y_axis[1]
lhum_yz=lhum_y_axis[2]
# zaxis
lhum_z_axis = L_Humerus_axis_form[2]
lhum_zx=lhum_z_axis[0]
lhum_zy=lhum_z_axis[1]
lhum_zz=lhum_z_axis[2]
# R RADIUS
# origin
rrad_origin = R_Radius_center_form
rrad_ox=rrad_origin[0]
rrad_oy=rrad_origin[1]
rrad_oz=rrad_origin[2]
# xaxis
rrad_x_axis = R_Radius_axis_form[0]
rrad_xx=rrad_x_axis[0]
rrad_xy=rrad_x_axis[1]
rrad_xz=rrad_x_axis[2]
# yaxis
rrad_y_axis = R_Radius_axis_form[1]
rrad_yx=rrad_y_axis[0]
rrad_yy=rrad_y_axis[1]
rrad_yz=rrad_y_axis[2]
# zaxis
rrad_z_axis = R_Radius_axis_form[2]
rrad_zx=rrad_z_axis[0]
rrad_zy=rrad_z_axis[1]
rrad_zz=rrad_z_axis[2]
# L RADIUS
# origin
lrad_origin = L_Radius_center_form
lrad_ox=lrad_origin[0]
lrad_oy=lrad_origin[1]
lrad_oz=lrad_origin[2]
# xaxis
lrad_x_axis = L_Radius_axis_form[0]
lrad_xx=lrad_x_axis[0]
lrad_xy=lrad_x_axis[1]
lrad_xz=lrad_x_axis[2]
# yaxis
lrad_y_axis = L_Radius_axis_form[1]
lrad_yx=lrad_y_axis[0]
lrad_yy=lrad_y_axis[1]
lrad_yz=lrad_y_axis[2]
# zaxis
lrad_z_axis = L_Radius_axis_form[2]
lrad_zx=lrad_z_axis[0]
lrad_zy=lrad_z_axis[1]
lrad_zz=lrad_z_axis[2]
# R HAND
# origin
rhand_origin = R_Hand_center_form
rhand_ox=rhand_origin[0]
rhand_oy=rhand_origin[1]
rhand_oz=rhand_origin[2]
# xaxis
rhand_x_axis= R_Hand_axis_form[0]
rhand_xx=rhand_x_axis[0]
rhand_xy=rhand_x_axis[1]
rhand_xz=rhand_x_axis[2]
# yaxis
rhand_y_axis= R_Hand_axis_form[1]
rhand_yx=rhand_y_axis[0]
rhand_yy=rhand_y_axis[1]
rhand_yz=rhand_y_axis[2]
# zaxis
rhand_z_axis= R_Hand_axis_form[2]
rhand_zx=rhand_z_axis[0]
rhand_zy=rhand_z_axis[1]
rhand_zz=rhand_z_axis[2]
# L HAND
# origin
lhand_origin = L_Hand_center_form
lhand_ox=lhand_origin[0]
lhand_oy=lhand_origin[1]
lhand_oz=lhand_origin[2]
# xaxis
lhand_x_axis = L_Hand_axis_form[0]
lhand_xx=lhand_x_axis[0]
lhand_xy=lhand_x_axis[1]
lhand_xz=lhand_x_axis[2]
# yaxis
lhand_y_axis = L_Hand_axis_form[1]
lhand_yx=lhand_y_axis[0]
lhand_yy=lhand_y_axis[1]
lhand_yz=lhand_y_axis[2]
# zaxis
lhand_z_axis = L_Hand_axis_form[2]
lhand_zx=lhand_z_axis[0]
lhand_zy=lhand_z_axis[1]
lhand_zz=lhand_z_axis[2]
#-----------------------------------------------------
#Store everything in an array to send back to results of process
r=[
pelx,pely,pelz,
rhipx,rhipy,rhipz,
lhipx,lhipy,lhipz,
rkneex,rkneey,rkneez,
lkneex,lkneey,lkneez,
ranklex,rankley,ranklez,
lanklex,lankley,lanklez,
rfootx,rfooty,rfootz,
lfootx,lfooty,lfootz,
headx,heady,headz,
thox,thoy,thoz,
neckx,necky,neckz,
spix,spiy,spiz,
rshox,rshoy,rshoz,
lshox,lshoy,lshoz,
relbx,relby,relbz,
lelbx,lelby,lelbz,
rwrtx,rwrty,rwrtz,
lwrtx,lwrty,lwrtz,
pel_ox,pel_oy,pel_oz,pel_xx,pel_xy,pel_xz,pel_yx,pel_yy,pel_yz,pel_zx,pel_zy,pel_zz,
hip_ox,hip_oy,hip_oz,hip_xx,hip_xy,hip_xz,hip_yx,hip_yy,hip_yz,hip_zx,hip_zy,hip_zz,
rknee_ox,rknee_oy,rknee_oz,rknee_xx,rknee_xy,rknee_xz,rknee_yx,rknee_yy,rknee_yz,rknee_zx,rknee_zy,rknee_zz,
lknee_ox,lknee_oy,lknee_oz,lknee_xx,lknee_xy,lknee_xz,lknee_yx,lknee_yy,lknee_yz,lknee_zx,lknee_zy,lknee_zz,
rank_ox,rank_oy,rank_oz,rank_xx,rank_xy,rank_xz,rank_yx,rank_yy,rank_yz,rank_zx,rank_zy,rank_zz,
lank_ox,lank_oy,lank_oz,lank_xx,lank_xy,lank_xz,lank_yx,lank_yy,lank_yz,lank_zx,lank_zy,lank_zz,
rfoot_ox,rfoot_oy,rfoot_oz,rfoot_xx,rfoot_xy,rfoot_xz,rfoot_yx,rfoot_yy,rfoot_yz,rfoot_zx,rfoot_zy,rfoot_zz,
lfoot_ox,lfoot_oy,lfoot_oz,lfoot_xx,lfoot_xy,lfoot_xz,lfoot_yx,lfoot_yy,lfoot_yz,lfoot_zx,lfoot_zy,lfoot_zz,
head_ox,head_oy,head_oz,head_xx,head_xy,head_xz,head_yx,head_yy,head_yz,head_zx,head_zy,head_zz,
tho_ox,tho_oy,tho_oz,tho_xx,tho_xy,tho_xz,tho_yx,tho_yy,tho_yz,tho_zx,tho_zy,tho_zz,
rclav_ox,rclav_oy,rclav_oz,rclav_xx,rclav_xy,rclav_xz,rclav_yx,rclav_yy,rclav_yz,rclav_zx,rclav_zy,rclav_zz,
lclav_ox,lclav_oy,lclav_oz,lclav_xx,lclav_xy,lclav_xz,lclav_yx,lclav_yy,lclav_yz,lclav_zx,lclav_zy,lclav_zz,
rhum_ox,rhum_oy,rhum_oz,rhum_xx,rhum_xy,rhum_xz,rhum_yx,rhum_yy,rhum_yz,rhum_zx,rhum_zy,rhum_zz,
lhum_ox,lhum_oy,lhum_oz,lhum_xx,lhum_xy,lhum_xz,lhum_yx,lhum_yy,lhum_yz,lhum_zx,lhum_zy,lhum_zz,
rrad_ox,rrad_oy,rrad_oz,rrad_xx,rrad_xy,rrad_xz,rrad_yx,rrad_yy,rrad_yz,rrad_zx,rrad_zy,rrad_zz,
lrad_ox,lrad_oy,lrad_oz,lrad_xx,lrad_xy,lrad_xz,lrad_yx,lrad_yy,lrad_yz,lrad_zx,lrad_zy,lrad_zz,
rhand_ox,rhand_oy,rhand_oz,rhand_xx,rhand_xy,rhand_xz,rhand_yx,rhand_yy,rhand_yz,rhand_zx,rhand_zy,rhand_zz,
lhand_ox,lhand_oy,lhand_oz,lhand_xx,lhand_xy,lhand_xz,lhand_yx,lhand_yy,lhand_yz,lhand_zx,lhand_zy,lhand_zz
]
r=np.array(r,dtype=np.float64)
#Put temporary dictionary for joint centers to return for now, then modify later
jc = {}
jc['Pelvis_axis'] = kin_Pelvis_axis
jc['Thorax_axis'] = kin_Thorax_axis
jc['Pelvis'] = kin_Pelvis_JC
jc['RHip'] = kin_R_Hip_JC
jc['LHip'] = kin_L_Hip_JC
jc['RKnee'] = kin_R_Knee_JC
jc['LKnee'] = kin_L_Knee_JC
jc['RAnkle'] = kin_R_Ankle_JC
jc['LAnkle'] = kin_L_Ankle_JC
jc['RFoot'] = kin_R_Foot_JC
jc['LFoot'] = kin_L_Foot_JC
jc['RHEE'] = kin_RHEE
jc['LHEE'] = kin_LHEE
jc['C7'] = kin_C7
jc['CLAV'] = kin_CLAV
jc['STRN'] = kin_STRN
jc['T10'] = kin_T10
jc['Front_Head'] = kin_Head_Front
jc['Back_Head'] = kin_Head_Back
jc['Head'] = kin_Head_JC
jc['Thorax'] = kin_Thorax_JC
jc['RShoulder'] = kin_R_Shoulder_JC
jc['LShoulder'] = kin_L_Shoulder_JC
jc['RHumerus'] = kin_R_Humerus_JC
jc['LHumerus'] = kin_L_Humerus_JC
jc['RRadius'] = kin_R_Radius_JC
jc['LRadius'] = kin_L_Radius_JC
jc['RHand'] = kin_R_Hand_JC
jc['LHand'] = kin_L_Hand_JC
return r,jc
| 5,345,830 |
def confidence_thresholding_2thresholds_2d(
probabilities_per_model: List[np.array],
ground_truths: Union[List[np.array], List[pd.Series]],
metadata,
threshold_output_feature_names: List[str],
labels_limit: int,
model_names: Union[str, List[str]] = None,
output_directory: str = None,
file_format: str = 'pdf',
**kwargs
) -> None:
"""Show confidence threshold data vs accuracy for two output feature names.
The first plot shows several semi transparent lines. They summarize the
3d surfaces displayed by confidence_thresholding_2thresholds_3d that have
thresholds on the confidence of the predictions of the two
`threshold_output_feature_names` as x and y axes and either the data
coverage percentage or
the accuracy as z axis. Each line represents a slice of the data
coverage surface projected onto the accuracy surface.
# Inputs
:param probabilities_per_model: (List[numpy.array]) list of model
probabilities.
:param ground_truth: (Union[List[np.array], List[pd.Series]]) containing
ground truth data
:param metadata: (dict) feature metadata dictionary
:param threshold_output_feature_names: (List[str]) List containing two output
feature names for visualization.
:param labels_limit: (int) upper limit on the numeric encoded label value.
Encoded numeric label values in dataset that are higher than
`label_limit` are considered to be "rare" labels.
:param model_names: (Union[str, List[str]], default: `None`) model name or
list of the model names to use as labels.
:param output_directory: (str, default: `None`) directory where to save
plots. If not specified, plots will be displayed in a window
:param file_format: (str, default: `'pdf'`) file format of output plots -
`'pdf'` or `'png'`.
# Return
:return: (None)
"""
try:
validate_conf_treshholds_and_probabilities_2d_3d(
probabilities_per_model,
threshold_output_feature_names
)
except RuntimeError:
return
probs = probabilities_per_model
model_names_list = convert_to_list(model_names)
filename_template = \
'confidence_thresholding_2thresholds_2d_{}.' + file_format
filename_template_path = generate_filename_template_path(
output_directory,
filename_template
)
if not isinstance(ground_truths[0], np.ndarray):
# not np array, assume we need to translate raw value to encoded value
feature_metadata = metadata[threshold_output_feature_names[0]]
vfunc = np.vectorize(_encode_categorical_feature)
gt_1 = vfunc(ground_truths[0], feature_metadata['str2idx'])
feature_metadata = metadata[threshold_output_feature_names[1]]
gt_2 = vfunc(ground_truths[1], feature_metadata['str2idx'])
else:
gt_1 = ground_truths[0]
gt_2 = ground_truths[1]
if labels_limit > 0:
gt_1[gt_1 > labels_limit] = labels_limit
gt_2[gt_2 > labels_limit] = labels_limit
thresholds = [t / 100 for t in range(0, 101, 5)]
fixed_step_coverage = thresholds
name_t1 = '{} threshold'.format(threshold_output_feature_names[0])
name_t2 = '{} threshold'.format(threshold_output_feature_names[1])
accuracies = []
dataset_kept = []
interps = []
table = [[name_t1, name_t2, 'coverage', ACCURACY]]
if labels_limit > 0 and probs[0].shape[1] > labels_limit + 1:
prob_limit = probs[0][:, :labels_limit + 1]
prob_limit[:, labels_limit] = probs[0][:, labels_limit:].sum(1)
probs[0] = prob_limit
if labels_limit > 0 and probs[1].shape[1] > labels_limit + 1:
prob_limit = probs[1][:, :labels_limit + 1]
prob_limit[:, labels_limit] = probs[1][:, labels_limit:].sum(1)
probs[1] = prob_limit
max_prob_1 = np.max(probs[0], axis=1)
predictions_1 = np.argmax(probs[0], axis=1)
max_prob_2 = np.max(probs[1], axis=1)
predictions_2 = np.argmax(probs[1], axis=1)
for threshold_1 in thresholds:
threshold_1 = threshold_1 if threshold_1 < 1 else 0.999
curr_accuracies = []
curr_dataset_kept = []
for threshold_2 in thresholds:
threshold_2 = threshold_2 if threshold_2 < 1 else 0.999
filtered_indices = np.logical_and(
max_prob_1 >= threshold_1,
max_prob_2 >= threshold_2
)
filtered_gt_1 = gt_1[filtered_indices]
filtered_predictions_1 = predictions_1[filtered_indices]
filtered_gt_2 = gt_2[filtered_indices]
filtered_predictions_2 = predictions_2[filtered_indices]
coverage = len(filtered_gt_1) / len(gt_1)
accuracy = (
np.logical_and(
filtered_gt_1 == filtered_predictions_1,
filtered_gt_2 == filtered_predictions_2
)
).sum() / len(filtered_gt_1)
curr_accuracies.append(accuracy)
curr_dataset_kept.append(coverage)
table.append([threshold_1, threshold_2, coverage, accuracy])
accuracies.append(curr_accuracies)
dataset_kept.append(curr_dataset_kept)
interps.append(
np.interp(
fixed_step_coverage,
list(reversed(curr_dataset_kept)),
list(reversed(curr_accuracies)),
left=1,
right=0
)
)
logger.info('CSV table')
for row in table:
logger.info(','.join([str(e) for e in row]))
# ===========#
# Multiline #
# ===========#
filename = None
if filename_template_path:
os.makedirs(output_directory, exist_ok=True)
filename = filename_template_path.format('multiline')
visualization_utils.confidence_fitlering_data_vs_acc_multiline_plot(
accuracies,
dataset_kept,
model_names_list,
title='Coverage vs Accuracy, two thresholds',
filename=filename
)
# ==========#
# Max line #
# ==========#
filename = None
if filename_template_path:
filename = filename_template_path.format('maxline')
max_accuracies = np.amax(np.array(interps), 0)
visualization_utils.confidence_fitlering_data_vs_acc_plot(
[max_accuracies],
[thresholds],
model_names_list,
title='Coverage vs Accuracy, two thresholds',
filename=filename
)
# ==========================#
# Max line with thresholds #
# ==========================#
acc_matrix = np.array(accuracies)
cov_matrix = np.array(dataset_kept)
t1_maxes = [1]
t2_maxes = [1]
for i in range(len(fixed_step_coverage) - 1):
lower = fixed_step_coverage[i]
upper = fixed_step_coverage[i + 1]
indices = np.logical_and(cov_matrix >= lower, cov_matrix < upper)
selected_acc = acc_matrix.copy()
selected_acc[np.logical_not(indices)] = -1
threshold_indices = np.unravel_index(
np.argmax(selected_acc, axis=None),
selected_acc.shape)
t1_maxes.append(thresholds[threshold_indices[0]])
t2_maxes.append(thresholds[threshold_indices[1]])
model_name = model_names_list[0] if model_names_list is not None and len(
model_names_list) > 0 else ''
filename = None
if filename_template_path:
os.makedirs(output_directory, exist_ok=True)
filename = filename_template_path.format('maxline_with_thresholds')
visualization_utils.confidence_fitlering_data_vs_acc_plot(
[max_accuracies, t1_maxes, t2_maxes],
[fixed_step_coverage, fixed_step_coverage, fixed_step_coverage],
model_names=[model_name + ' accuracy', name_t1, name_t2],
dotted=[False, True, True],
y_label='',
title='Coverage vs Accuracy & Threshold',
filename=filename
)
| 5,345,831 |
def var_to_str(var):
"""Returns a string representation of the variable of a Jax expression."""
if isinstance(var, jax.core.Literal):
return str(var)
elif isinstance(var, jax.core.UnitVar):
return "*"
elif not isinstance(var, jax.core.Var):
raise ValueError(f"Idk what to do with this {type(var)}?")
c = int(var.count)
if c == -1:
return "_"
str_rep = ""
while c > 25:
str_rep += chr(c % 26 + ord("a"))
c = c // 26
str_rep += chr(c + ord("a"))
return str_rep[::-1]
| 5,345,832 |
def cut_reset():
""" Select the reference Plane to cut the Object from.
"""
global myDialog
global m_cut_selectObjects
del m_cut_selectObjects[:]
m_text = ""
# deActivate the button_cut_select_line
myDialog.ui.button_cut_select_line.setEnabled(False)
# deActivate the button_cut_select_plane
myDialog.ui.button_cut_select_plane.setEnabled(False)
# deActivate the button_cut_apply
myDialog.ui.button_cut_apply.setEnabled(False)
myDialog.ui.info_cut_select_object.setText(_translate("Form", m_text, None))
myDialog.ui.info_cut_select_axis.setText(_translate("Form", m_text, None))
myDialog.ui.info_cut_select_plane.setText(_translate("Form", m_text, None))
| 5,345,833 |
def lal_binary_neutron_star(
frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, lambda_1, lambda_2,
**kwargs):
""" A Binary Neutron Star waveform model using lalsimulation
Parameters
----------
frequency_array: array_like
The frequencies at which we want to calculate the strain
mass_1: float
The mass of the heavier object in solar masses
mass_2: float
The mass of the lighter object in solar masses
luminosity_distance: float
The luminosity distance in megaparsec
a_1: float
Dimensionless primary spin magnitude
tilt_1: float
Primary tilt angle
phi_12: float
Azimuthal angle between the two component spins
a_2: float
Dimensionless secondary spin magnitude
tilt_2: float
Secondary tilt angle
phi_jl: float
Azimuthal angle between the total binary angular momentum and the
orbital angular momentum
theta_jn: float
Orbital inclination
phase: float
The phase at coalescence
lambda_1: float
Dimensionless tidal deformability of mass_1
lambda_2: float
Dimensionless tidal deformability of mass_2
kwargs: dict
Optional keyword arguments
Supported arguments:
waveform_approximant
reference_frequency
minimum_frequency
maximum_frequency
catch_waveform_errors
pn_spin_order
pn_tidal_order
pn_phase_order
pn_amplitude_order
mode_array:
Activate a specific mode array and evaluate the model using those
modes only. e.g. waveform_arguments =
dict(waveform_approximant='IMRPhenomHM', modearray=[[2,2],[2,-2])
returns the 22 and 2-2 modes only of IMRPhenomHM. You can only
specify modes that are included in that particular model. e.g.
waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
modearray=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
55 modes are not included in this model. Be aware that some models
only take positive modes and return the positive and the negative
mode together, while others need to call both. e.g.
waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
modearray=[[2,2],[4,-4]]) returns the 22 a\nd 2-2 of IMRPhenomHM.
However, waveform_arguments =
dict(waveform_approximant='IMRPhenomXHM', modearray=[[2,2],[4,-4]])
returns the 22 and 4-4 of IMRPhenomXHM.
Returns
-------
dict: A dictionary with the plus and cross polarisation strain modes
"""
waveform_kwargs = dict(
waveform_approximant='IMRPhenomPv2_NRTidal', reference_frequency=50.0,
minimum_frequency=20.0, maximum_frequency=frequency_array[-1],
catch_waveform_errors=False, pn_spin_order=-1, pn_tidal_order=-1,
pn_phase_order=-1, pn_amplitude_order=0)
waveform_kwargs.update(kwargs)
return _base_lal_cbc_fd_waveform(
frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2,
luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase,
a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_12=phi_12,
phi_jl=phi_jl, lambda_1=lambda_1, lambda_2=lambda_2, **waveform_kwargs)
| 5,345,834 |
def handledisc(tree):
"""Binarize discontinuous substitution sites.
>>> print(handledisc(Tree('(S (X 0 2 4))')))
(S (X 0 (X|<> 2 (X|<> 4))))
>>> print(handledisc(Tree('(S (X 0 2))')))
(S (X 0 (X|<> 2)))
"""
for a in tree.postorder(lambda n: len(n) > 1 and isinstance(n[0], int)):
binarize(a, rightmostunary=True, threshold=1)
return tree
| 5,345,835 |
def check_bounds(shape: Shape, point: Coord) -> bool:
"""Return ``True`` if ``point`` is valid index in ``shape``.
Args:
shape: Shape of two-dimensional array.
point: Two-dimensional coordinate.
Return:
True if ``point`` is within ``shape`` else ``False``.
"""
return (0 <= point[0] < shape[0]) and (0 <= point[1] < shape[1])
| 5,345,836 |
def logout(home=None):
"""
Logs out current session and redirects to home
:param str home: URL to redirect to after logout success
"""
flask_login.logout_user()
return redirect(request.args.get('redirect',
home or url_for('public.home')))
| 5,345,837 |
def N(u,i,p,knots):
"""
u: point for which a spline should be evaluated
i: spline knot
p: spline order
knots: all knots
Evaluates the spline basis of order p defined by knots
at knot i and point u.
"""
if p == 0:
if knots[int(i)] < u and u <=knots[int(i+1)]:
return 1.0
else:
return 0.0
else:
try:
k = ((float((u-knots[int(i)])) / float((knots[int(i+p)] - knots[int(i)]) ))
* N(u,i,p-1,knots))
except ZeroDivisionError:
k = 0.0
try:
q = ((float((knots[int(i+p+1)] - u)) / float((knots[int(i+p+1)] - knots[int(i+1)])))
* N(u,i+1,p-1,knots))
except ZeroDivisionError:
q = 0.0
return float(k + q)
| 5,345,838 |
def infer_growth_rate(data,
od_bounds=None,
convert_time=True,
groupby=None,
cols={'time':'clock_time', 'od':'od_600nm'},
return_opts=True,
print_params=True,
**kwargs):
"""
Infers the maximal a posteriori (MAP) parameter set for the steady state growth
rate given measurements of optical density. This is performed via optimization
by minimization.
Parameters
----------
data : pandas DataFrame
A tidy long-form pandas DataFrame with columns corresponding to the
measurement time and optical density.
od_bounds : list of floats
The lower and upper bounds of the optical density range to be considered.
The default bounds assumed are [0.04, 0.41] inclusive.
convert_time : bool
If `True`, the provided time column needs to be converted to elapsed
time. In this case, the provided time column is assumed to be
the clock time of the measurement and is converted to minutes elapsed.
groupby : list of str, optional
The column names for the groupby operation to operate upon. For example,
if there are multiple strains measured in the data set, a groupby of
`['strain']` will yield a growth rate estimate for each strain in
the data. A groupby of `['strain', 'replicate']` will return a growth
rate estimate for each strain and biological replicate.
cols : dict, keys 'time', and 'od'
The column names of the time and optical density measurements in the
DataFrame.
return_opts : bool
If `True`, the approximated covariance matrix, optimal parameters, and
approximate hessian matrix for each grouping is returned as a dictionary.
print_params : bool
If `True`, the estimated parameters will be printed to the screen when
the estimation is finished.
Returns
-------
data_df : pandas DataFrame
A pandas DataFrame with the converted time measurements cropped to the
provided optical density bounds.
param_df : pandas DataFrame
A pandas DataFrame containing the parameters, values, and their 95% credible
intervals for each obejct in the provided groupby.
opts : dict
If `return_opts = True`, the estimated covariance matrix, optimal parameters,
and approximate Hessian matrix is returned.
Notes
-----
This function infers the "maximal a posteriori" parameter set using a
Bayesian definition of probability. This function calls the posterior
defined by `cremerlab.bayes.steady_state_log_posterior` which contains
more information about the construction of the statistical model.
"""
# TODO: Include type checks
if (groupby is not None) & (type(groupby) is not list):
groupby = [groupby]
# Unpack the time col
time_col = cols['time']
od_col = cols['od']
# Determine the OD bounds to consider
if od_bounds is not None:
data = data[(data[od_col] >= od_bounds[0]) & (data[od_col] <= od_bounds[1])]
faux_groupby = False
if groupby is None:
faux_groupby = True
data['__group_idx'] = 1
groupby=['__group_idx']
iterator = data.groupby(groupby)
else:
iterator = tqdm.tqdm(data.groupby(groupby), desc='Estimating parameters...')
# Iterate through each grouping
data_dfs = []
param_dfs = []
opts = {'groupby':groupby}
iter = 0 # Iterator for opts
output = """\n
============================================================
Parameter Estimate Summary
============================================================
\n
"""
for g, d in iterator:
# Convert time if necessary
if convert_time:
d[time_col] = pd.to_datetime(d[time_col])
d.sort_values(by=time_col, inplace=True)
d['elapsed_time_hr'] = d[time_col].values - d[time_col].values[0]
d['elapsed_time_hr'] = (d['elapsed_time_hr'].astype('timedelta64[m]')
)/60
_time = d['elapsed_time_hr'].values
_od = d[od_col].values
else:
_time = d[time_col].values
_od = d[od_col].values
# Define the arguments and initial guesses of the parameters
# lam_guess = np.mean(np.diff(np.log(_od)) / np.diff(_time))
params = [1, _od.min(), 0.1]
args = (_time, _od)
# Compute the MAP
res = scipy.optimize.minimize(steady_state_growth_rate_log_posterior,
params, args=args, method="powell")
# Get the optimal parameters
popt = res.x
# Compute the Hessian and covariance matrix
hes = smnd.approx_hess(popt, steady_state_growth_rate_log_posterior, args=args)
cov = np.linalg.inv(hes)
# Extract the MAP parameters and CI
lam_MAP, od_init_MAP, sigma_MAP = popt
lam_CI = 1.96 * np.sqrt(cov[0, 0])
od_init_CI = 1.96 * np.sqrt(cov[1, 1])
sigma_CI = 1.96 * np.sqrt(cov[2, 2])
if print_params:
if faux_groupby == False:
header = f"""Parameter Estimates for grouping {groupby}: {g}
------------------------------------------------------------
"""
else:
header = """Parameter Estimates
------------------------------------------------------------
"""
output += header + f"""growth rate, λ = {lam_MAP:0.2f} ± {lam_CI:0.3f} [per unit time]
initial OD, OD_0 = {od_init_MAP:0.2f} ± {lam_CI:0.3f} [a.u.]
homoscedastic error, σ = {sigma_MAP:0.2f} ± {sigma_CI:0.3f} [a.u.]
\n
"""
# Assemble the data dataframe
_data_df = pd.DataFrame([])
if convert_time:
_data_df['elapsed_time_hr'] = _time
else:
_data_df[time_col] = _time
_data_df[od_col] = _od
# Include other columns that were not carried through
colnames = [k for k in d.keys() if k not in [time_col, od_col]]
for c in colnames:
_data_df[c] = d[c].values
if '__group_idx' in _data_df.keys():
_data_df.drop(columns=['__group_idx'], inplace=True)
_data_df.rename(columns={'od':od_col})
# Assemble the parameter dataframe
_param_df = pd.DataFrame([])
for title, MAP, CI in zip(['growth_rate', 'od_init', 'sigma'],
[lam_MAP, od_init_MAP, sigma_MAP],
[lam_CI, od_init_CI, sigma_CI]):
_param_df = _param_df.append({'parameter':title,
'map_val': MAP,
'cred_int': CI},
ignore_index=True)
# Add grouping identifier if provided
if groupby is not None:
# if type(g) is not list:
# _g = [g]
_g = g
for title, value in zip(groupby, _g):
_data_df[title] = value
_param_df[title] = value
# Append the dataframes to the storage lists
param_dfs.append(_param_df)
data_dfs.append(_data_df)
opts[iter] = {'groupby': g, 'cov':cov, 'popt':popt, 'hessian':hes}
iter += 1
# Concatenate the dataframes for return
if len(data_dfs) == 1:
data_df = data_dfs[0]
param_df = param_dfs[0]
else:
data_df = pd.concat(data_dfs, sort=False)
param_df = pd.concat(param_dfs, sort=False)
if print_params:
print(output)
if return_opts:
return_obj = [data_df, param_df, opts]
else:
return_obj = [data_df, param_df]
return return_obj
| 5,345,839 |
def check_merge(s, idn) -> bool:
"""
Check whether a set of nodes is valid to merge
"""
found = False
in_size = None
out_size = None
stride = None
act = None
nds = [idn[i] for i in state2iset(s)]
if len(nds) == 1:
return True
for nd in nds:
if not isinstance(nd, Conv): # current only merge conv
return False
if not found:
in_size = nd.input_shape[1], nd.input_shape[2]
out_size = nd.output_shape[1], nd.output_shape[2]
stride = nd.stride[0], nd.stride[1]
act = nd.act
found = True
else:
# all input resolution, output resolution and stride must be the same
if in_size[0] != nd.input_shape[1] or in_size[1] != nd.input_shape[2]:
return False
if out_size[0] != nd.output_shape[1] or out_size[1] != nd.output_shape[2]:
return False
if stride[0] != nd.stride[0] or stride[1] != nd.stride[1]:
return False
if nd.groups != 1 or act != nd.act:
return False
if len(nd.inputs) > 1 or len(nd.inputs[0]) > 1 or not (nd.inputs[0][0] == nds[0].inputs[0][0]):
return False
return True
| 5,345,840 |
def _run_server(file_store_path, artifact_root, host, port, workers):
"""Run the MLflow server, wrapping it in gunicorn"""
env_map = {}
if file_store_path:
env_map[FILE_STORE_ENV_VAR] = file_store_path
if artifact_root:
env_map[ARTIFACT_ROOT_ENV_VAR] = artifact_root
bind_address = "%s:%s" % (host, port)
exec_cmd(["gunicorn", "-b", bind_address, "-w", "%s" % workers, "mlflow.server:app"],
env=env_map, stream_output=True)
| 5,345,841 |
def typeMap(name, package=None):
""" typeMap(name: str) -> Module
Convert from C/C++ types into VisTrails Module type
"""
if package is None:
package = identifier
if isinstance(name, tuple):
return [typeMap(x, package) for x in name]
if name in typeMapDict:
return typeMapDict[name]
else:
registry = get_module_registry()
if not registry.has_descriptor_with_name(package, name):
return None
else:
return registry.get_descriptor_by_name(package,
name).module
| 5,345,842 |
def _rm_from_diclist(diclist, key_to_check, value_to_check):
"""Function that removes an entry form a list of dictionaries if a key of
an entry matches a given value. If no value of the key_to_check matches the
value_to_check for all of the entries in the diclist, the same diclist will
be returned that was passed to the function.
Parameters:
diclist - A list of dictionaries.
key_to_check - A key of a dictionary whose value should be checked
to determine if a dictionary should be removed from
the diclist.
value_to_check - The value that should be compared to the value of the
key_to_check to determine if a dictionary should be
removed from the diclist.
Returns the diclist passed to the function with an entry removed if its
value of the key_to_check matched the value_to_check.
"""
for i in xrange(len(diclist)):
if diclist[i][key_to_check] == value_to_check:
diclist.pop(i)
break
return diclist
| 5,345,843 |
def fix_colocation_after_import(input_map, absolute_import_scope):
"""Fixes colocation attributes after import according to input_map.
This function is meant to be called after importing a GraphDef, in order
to rewrite colocate_with constrains analogous to how inputs to ops
are rewritten by input_map during import. It also updates devices accordingly.
The nodes in the given import scope of the current default graph have their
colocation attributes (that is, the "loc:@..." values in the "_class" attr)
rewritten as follows: If, before the call, op x has attribute loc:@y, and
`input_map` replaces an output of y with an output of z, then loc:@y gets
replaced by the colocation attributes of z (that is, loc:@z, if no other
constraints are in play).
This style of rewriting requires that the other nodes in the graph express
their colocation with state and input nodes solely in terms of the state
and input nodes themselves, which is what the `input_map` provides. The
reverse direction (e.g., a state node referencing a non-state node in a
colocation attribute) is prevented by `find_state_op_colocation_error()` and
`find_signature_input_colocation_error()`.
Args:
input_map: a dict mapping from tensor names in the imported graph to
existing Tensors, typically the same as passed to tf.import_graph_def().
absolute_import_scope: a string with the full name of the import scope,
comprising the current scope when import_graph_def() as called plus
the import_scope passed to it.
Raises:
ValueError: if one imported op has its multiple outputs replaced by
different existing ops. (This is unexpected, since placeholders and
the current state ops all have only one output.)
"""
attr_map = _build_colocation_attr_map(input_map, absolute_import_scope)
_apply_colocation_attr_map(attr_map, absolute_import_scope)
| 5,345,844 |
def odr_linear(x, y, intercept=None, beta0=None):
"""
Performs orthogonal linear regression on x, y data.
Parameters
----------
x: array_like
x-data, 1D array. Must be the same lengths as `y`.
y: array_like
y-data, 1D array. Must be the same lengths as `x`.
intercept: float, default None
If not None, fixes the intercept.
beta0: array_like, shape (2,)
Guess at the slope and intercept, respectively.
Returns
-------
output: ndarray, shape (2,)
Array containing slope and intercept of ODR line.
"""
def linear_fun(p, x):
return p[0] * x + p[1]
def linear_fun_fixed(p, x):
return p[0] * x + intercept
# Set the model to be used for the ODR fitting
if intercept is None:
model = scipy.odr.Model(linear_fun)
if beta0 is None:
beta0 = (0.0, 1.0)
else:
model = scipy.odr.Model(linear_fun_fixed)
if beta0 is None:
beta0 = (1.0,)
# Make a Data instance
data = scipy.odr.Data(x, y)
# Instantiate ODR
odr = scipy.odr.ODR(data, model, beta0=beta0)
# Perform ODR fit
try:
result = odr.run()
except scipy.odr.odr_error:
raise scipy.odr.odr_error('ORD failed.')
return result.beta
| 5,345,845 |
def get_centroid_world_coordinates(geo_trans, raster_x_size, raster_y_size, x_pixel_size, y_pixel_size):
"""Return the raster centroid in world coordinates
:param geo_trans: geo transformation
:type geo_trans: tuple with six values
:param raster_x_size: number of columns
:type raster_x_size: int
:param raster_y_size: number of rows
:param x_pixel_size: pixel size in x direction
:type: x_pixel_size: float
:param y_pixel_size: pixel size in y direction
:type y_pixel_size: float
:return:
"""
x0, y0 = pixel_to_world(geo_trans, 0, 0)
x1, y1 = pixel_to_world(geo_trans, raster_x_size-1, raster_y_size-1)
x1 += x_pixel_size
y1 -= y_pixel_size
return (x0 + x1) * 0.5, (y0 + y1) * 0.5
| 5,345,846 |
def save_change_item(request):
"""
保存改变项
算法:在rquest_list中查找对应的uuid,找到后将数据更新其中
:param request:
:return:
"""
if request.method != 'POST':
return HttpResponse("数据异常.")
str_data = request.POST.get('jsons')
logger.info("change_item: " + str_data)
jsons = json.loads(str_data)
id = jsons['id']
name = jsons['name']
url = jsons['url']
raw_mode_data = jsons['rawModeData']
method = jsons['method']
logger.info("打印send: {}".format(url))
request_list = JsonConf.json_data['requests']
for item in request_list:
if id == item["id"]:
item["method"] = method
item["rawModeData"] = raw_mode_data
item["name"] = name
item["url"] = url
break
JsonConf.store(settings.INIT_DATA)
return HttpResponse("保存成功.")
| 5,345,847 |
def test_starg_mroute_p0(request):
"""
1. Verify (*,G) mroute detail on FRR router after BSM rp installed
Topology used:
b1_____
|
|
s1-----f1-----i1-----l1----r1
|
______|
b2
b1 - BSR 1
b2 - BSR 2
s1 - Source
f1 - FHR
i1 - Intermediate Router (also RP)
r1 - Receiver
"""
tgen = get_topogen()
tc_name = request.node.name
write_test_header(tc_name)
# Don"t run this test if we have any failure.
if tgen.routers_have_failure():
pytest.skip(tgen.errors)
app_helper.stop_all_hosts()
clear_ip_mroute(tgen)
reset_config_on_routers(tgen)
clear_ip_pim_interface_traffic(tgen, topo)
reset_config_on_routers(tgen)
result = pre_config_to_bsm(
tgen, topo, tc_name, "b1", "s1", "r1", "f1", "i1", "l1", "packet1"
)
assert result is True, "Testcase {} :Failed \n Error {}".format(tc_name, result)
result = pre_config_to_bsm(
tgen, topo, tc_name, "b2", "s1", "r1", "f1", "i1", "l1", "packet1"
)
assert result is True, "Testcase {} :Failed \n Error {}".format(tc_name, result)
GROUP_ADDRESS = "226.1.1.1"
# Use scapy to send pre-defined packet from senser to receiver
result = scapy_send_bsr_raw_packet(tgen, topo, "b1", "f1", "packet1")
assert result is True, "Testcase {} :Failed \n Error {}".format(tc_name, result)
bsr_ip = topo["routers"]["b1"]["bsm"]["bsr_packets"]["packet1"]["bsr"].split("/")[0]
time.sleep(1)
result = app_helper.run_join("r1", GROUP_ADDRESS, "l1")
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify bsr state in FHR
result = verify_pim_bsr(tgen, topo, "f1", bsr_ip)
assert result is True, "Testcase {} :Failed \n Error {}".format(tc_name, result)
# Check igmp groups
step("Verify IGMP groups in LHR l1")
dut = "l1"
intf = "l1-r1-eth1"
result = verify_igmp_groups(tgen, dut, intf, GROUP_ADDRESS)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
group = "226.1.1.1/32"
src_addr = "*"
# Find the elected rp from bsrp-info
step("Find the elected rp from bsrp-info in LHR in l1")
rp = find_rp_from_bsrp_info(tgen, dut, bsr_ip, group)
assert rp is not {}, "Testcase {} :Failed \n Error {}".format(tc_name, result)
# Check RP detail in LHR
step("Verify RP in LHR in l1")
result = verify_pim_grp_rp_source(tgen, topo, dut, group, "BSR", rp[group])
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify join state and join timer
step("Verify join state and join timer in l1")
iif = "l1-i1-eth0"
result = verify_join_state_and_timer(tgen, dut, iif, src_addr, GROUP_ADDRESS)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify upstream IIF interface
step("Verify upstream IIF interface in l1")
result = verify_upstream_iif(tgen, dut, iif, src_addr, GROUP_ADDRESS)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify IIF/OIL in pim state
oil = "l1-r1-eth1"
result = verify_pim_state(tgen, dut, iif, oil, GROUP_ADDRESS)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify ip mroute
step("Verify ip mroute in l1")
src_addr = "*"
result = verify_ip_mroutes(tgen, dut, src_addr, GROUP_ADDRESS, iif, oil)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Remove the group rp mapping and send bsm
step("Remove the grp-rp mapping by sending bsm with hold time 0 for grp-rp")
result = scapy_send_bsr_raw_packet(tgen, topo, "b1", "f1", "packet2")
assert result is True, "Testcase {} :Failed \n Error {}".format(tc_name, result)
# Check RP unreachable
step("Check RP unreachability in l1")
iif = "Unknown"
result = verify_upstream_iif(
tgen, dut, iif, src_addr, GROUP_ADDRESS, joinState="NotJoined"
)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify that it is not installed
step("Verify that iif is not installed in l1")
iif = "<iif?>"
result = verify_pim_state(tgen, dut, iif, oil, GROUP_ADDRESS, installed_fl=0)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
# Verify mroute not installed
step("Verify mroute not installed in l1")
result = verify_ip_mroutes(
tgen, dut, src_addr, GROUP_ADDRESS, iif, oil, retry_timeout=20, expected=False
)
assert (
result is not True
), "Testcase {} : Failed \n " "mroute installed in l1 \n Error: {}".format(
tc_name, result
)
# Send BSM again to configure rp
step("Add back RP by sending BSM from b1")
result = scapy_send_bsr_raw_packet(tgen, topo, "b1", "f1", "packet1")
assert result is True, "Testcase {} :Failed \n Error {}".format(tc_name, result)
# Verify that (*,G) installed in mroute again
iif = "l1-i1-eth0"
result = verify_ip_mroutes(tgen, dut, src_addr, GROUP_ADDRESS, iif, oil)
assert result is True, "Testcase {}:Failed \n Error: {}".format(tc_name, result)
step("clear BSM database before moving to next case")
clear_bsrp_data(tgen, topo)
write_test_footer(tc_name)
| 5,345,848 |
def test_authorization_received():
"""Assert that authorization received validation works as expected."""
statement = copy.deepcopy(FINANCING_STATEMENT)
del statement['authorizationReceived']
is_valid, errors = validate(statement, 'financingStatement', 'ppr')
assert is_valid
statement['authorizationReceived'] = False
is_valid, errors = validate(statement, 'financingStatement', 'ppr')
assert is_valid
statement['authorizationReceived'] = True
is_valid, errors = validate(statement, 'financingStatement', 'ppr')
assert is_valid
statement['authorizationReceived'] = 'junk'
is_valid, errors = validate(statement, 'financingStatement', 'ppr')
if errors:
for err in errors:
print(err.message)
assert not is_valid
| 5,345,849 |
def update_tests_if_needed():
"""Updates layout tests every day."""
data_directory = environment.get_value('FUZZ_DATA')
error_occured = False
expected_task_duration = 60 * 60 # 1 hour.
retry_limit = environment.get_value('FAIL_RETRIES')
temp_archive = os.path.join(data_directory, 'temp.zip')
tests_url = environment.get_value('WEB_TESTS_URL')
# Check if we have a valid tests url.
if not tests_url:
return
# Layout test updates are usually disabled to speedup local testing.
if environment.get_value('LOCAL_DEVELOPMENT'):
return
# |UPDATE_WEB_TESTS| env variable can be used to control our update behavior.
if not environment.get_value('UPDATE_WEB_TESTS'):
return
last_modified_time = persistent_cache.get_value(
TESTS_LAST_UPDATE_KEY, constructor=datetime.datetime.utcfromtimestamp)
if (last_modified_time is not None and not dates.time_has_expired(
last_modified_time, days=TESTS_UPDATE_INTERVAL_DAYS)):
return
logs.log('Updating layout tests.')
tasks.track_task_start(
tasks.Task('update_tests', '', ''), expected_task_duration)
# Download and unpack the tests archive.
for _ in range(retry_limit):
try:
shell.remove_directory(data_directory, recreate=True)
storage.copy_file_from(tests_url, temp_archive)
archive.unpack(temp_archive, data_directory, trusted=True)
shell.remove_file(temp_archive)
error_occured = False
break
except:
logs.log_error(
'Could not retrieve and unpack layout tests archive. Retrying.')
error_occured = True
if not error_occured:
persistent_cache.set_value(
TESTS_LAST_UPDATE_KEY, time.time(), persist_across_reboots=True)
tasks.track_task_end()
| 5,345,850 |
def save_fig(plot, name):
"""Save figure.
:param plot: Matplotlib's pyplot.
:type plot: matplotlib.pyplot
:param name: File name.
:type name: str
"""
path = figures_dir / f'{name}.png'
plot.savefig(path)
log.info(f'Figure saved: {path}')
path = figures_dir / f'{name}.svg'
plot.savefig(path)
log.info(f'Figure saved: {path}')
| 5,345,851 |
def get_lastest_stocklist():
"""
使用pytdx从网络获取最新券商列表
:return:DF格式,股票清单
"""
import pytdx.hq
import pytdx.util.best_ip
print(f"优选通达信行情服务器 也可直接更改为优选好的 {{'ip': '123.125.108.24', 'port': 7709}}")
# ipinfo = pytdx.util.best_ip.select_best_ip()
api = pytdx.hq.TdxHq_API()
# with api.connect(ipinfo['ip'], ipinfo['port']):
with api.connect('123.125.108.24', 7709):
data = pd.concat([pd.concat(
[api.to_df(api.get_security_list(j, i * 1000)).assign(sse='sz' if j == 0 else 'sh') for i in
range(int(api.get_security_count(j) / 1000) + 1)], axis=0) for j in range(2)], axis=0)
data = data.reindex(columns=['sse', 'code', 'name', 'pre_close', 'volunit', 'decimal_point'])
data.sort_values(by=['sse', 'code'], ascending=True, inplace=True)
data.reset_index(drop=True, inplace=True)
# 这个方法不行 字符串不能运算大于小于,转成int更麻烦
# df = data.loc[((data['sse'] == 'sh') & ((data['code'] >= '600000') | (data['code'] < '700000'))) | \
# ((data['sse'] == 'sz') & ((data['code'] >= '000001') | (data['code'] < '100000'))) | \
# ((data['sse'] == 'sz') & ((data['code'] >= '300000') | (data['code'] < '309999')))]
sh_start_num = data[(data['sse'] == 'sh') & (data['code'] == '600000')].index.tolist()[0]
sh_end_num = data[(data['sse'] == 'sh') & (data['code'] == '706070')].index.tolist()[0]
sz00_start_num = data[(data['sse'] == 'sz') & (data['code'] == '000001')].index.tolist()[0]
sz00_end_num = data[(data['sse'] == 'sz') & (data['code'] == '100303')].index.tolist()[0]
sz30_start_num = data[(data['sse'] == 'sz') & (data['code'] == '300001')].index.tolist()[0]
sz30_end_num = data[(data['sse'] == 'sz') & (data['code'] == '395001')].index.tolist()[0]
df_sh = data.iloc[sh_start_num:sh_end_num]
df_sz00 = data.iloc[sz00_start_num:sz00_end_num]
df_sz30 = data.iloc[sz30_start_num:sz30_end_num]
df = pd.concat([df_sh, df_sz00, df_sz30])
df.reset_index(drop=True, inplace=True)
return df
| 5,345,852 |
def grpc_detect_ledger_id(connection: "GRPCv1Connection") -> str:
"""
Return the ledger ID from the remote server when it becomes available. This method blocks until
a ledger ID has been successfully retrieved, or the timeout is reached (in which case an
exception is thrown).
"""
LOG.debug("Starting a monitor thread for connection: %s", connection)
start_time = datetime.utcnow()
connect_timeout = connection.options.connect_timeout
while connect_timeout is None or (datetime.utcnow() - start_time) < connect_timeout:
if connection.invoker.level >= RunLevel.TERMINATE_GRACEFULLY:
raise UserTerminateRequest()
if connection.closed:
raise Exception("connection closed")
try:
response = connection.ledger_identity_service.GetLedgerIdentity(
lapipb.GetLedgerIdentityRequest()
)
except RpcError as ex:
details_str = ex.details()
# suppress some warning strings because they're not particularly useful and just clutter
# up the logs
if details_str not in GRPC_KNOWN_RETRYABLE_ERRORS:
LOG.exception(
"An unexpected error occurred when trying to fetch the "
"ledger identity; this will be retried."
)
sleep(1)
continue
return response.ledger_id
raise ConnectionTimeoutError(
f"connection timeout exceeded: {connect_timeout.total_seconds()} seconds"
)
| 5,345,853 |
def cross_mcs(input_vectors, value_fields, verbose=False, logger=None):
""" Compute map comparison statistics between input vector features.
MCS (Map Comparison Statistic) indicates the average difference between any
pair of feature polygon values, expressed as a fraction of the highest
value. MCS is calculated between each polygon in the input vector features
and it is required (and checked) that all the inputs are based on the
same vector feature.
For another application of MCS, see:
Schulp, C. J. E., Burkhard, B., Maes, J., Van Vliet, J., & Verburg, P. H.
(2014). Uncertainties in Ecosystem Service Maps: A Comparison on the
European Scale. PLoS ONE, 9(10), e109643.
http://doi.org/10.1371/journal.pone.0109643
:param input_vectors list of input vector paths.
:param value_field list of String names indicating which fields contains
the values to be compared.
:param verbose: Boolean indicating how much information is printed out.
:param logger: logger object to be used.
:return list of GeoPandas Dataframe with MCS between all rasters in field
"mcs".
"""
# 1. Setup --------------------------------------------------------------
all_start = timer()
if not logger:
logging.basicConfig()
llogger = logging.getLogger('cross_mcs')
llogger.setLevel(logging.DEBUG if verbose else logging.INFO)
else:
llogger = logger
# Check the inputs
assert len(input_vectors) > 1, "More than one input vector needed"
assert len(value_fields) == len(input_vectors), "One value field per vector feature needed"
# 2. Calculations --------------------------------------------------------
llogger.info(" [** COMPUTING MCS SCORES **]")
all_mcs = pd.DataFrame({"feature1": [], "feature2": [],
"mcs": []})
n_vectors = len(input_vectors)
# Generate counter information for all the computations. The results
# matrix is always diagonally symmetrical.
n_computations = int((n_vectors * n_vectors - n_vectors) / 2)
no_computation = 1
for i in range(0, n_vectors):
# Read in the data as a GeoPandas dataframe
vector1_path = input_vectors[i]
vector1 = gpd.read_file(vector1_path)
for j in range(i+1, n_vectors):
vector2_path = input_vectors[j]
vector2 = gpd.read_file(vector2_path)
prefix = utils.get_iteration_prefix(no_computation,
n_computations)
llogger.info(("{} Calculating MCS ".format(prefix) +
"between {} ".format(vector1_path) +
"and {}".format(vector2_path)))
mcs_value = compute_mcs(vector1[value_fields[i]],
vector2[value_fields[j]])
mcs = pd.DataFrame({"feature1": [vector1_path],
"feature2": [vector2_path],
"mcs": [mcs_value]})
all_mcs = pd.concat([all_mcs, mcs])
no_computation += 1
all_mcs.index = np.arange(0, len(all_mcs.index), 1)
all_end = timer()
all_elapsed = round(all_end - all_start, 2)
llogger.info(" [TIME] All processing took {} sec".format(all_elapsed))
return all_mcs
| 5,345,854 |
def extrapolate_trace(traces_in, spec_min_max_in, fit_frac=0.2, npoly=1, method='poly'):
"""
Extrapolates trace to fill in pixels that lie outside of the range spec_min, spec_max). This
routine is useful for echelle spectrographs where the orders are shorter than the image by a signfiicant
amount, since the polynomial trace fits often go wild.
Args:
traces (np.ndarray): shape = (nspec,) or (nspec, ntrace)
Array containing object or slit boundary traces
spec_min_max (np.ndarray): shape = (2, ntrace)
Array contaning the minimum and maximum spectral region covered by each trace. If this is an array with
ndim=1 array, the same numbers will be used for all traces in traces_in. If a 2d array, then this must be
an ndarray of shape (2, ntrace,) where the spec_min_max[0,:] are the minimua and spec_min_max[1,:] are the maxima.
fit_frac (float):
fraction of the good pixels to be used to fit when extrapolating traces. The upper fit_frac
pixels are used to extrapolate to larger spectral position, and vice versa for lower spectral
positions.
npoly (int):
Order of polynomial fit used for extrapolation
method (str):
Method used for extrapolation. Options are 'poly' or 'edge'. If 'poly' the code does a polynomial fit. If
'edge' it just attaches the last good pixel everywhere. 'edge' is not currently used.
Returns:
trace_extrap (np.ndarray):
Array with same size as trace containing the linearly extrapolated values for the bad spectral pixels.
"""
#embed()
# This little bit of code allows the input traces to either be (nspec, nslit) arrays or a single
# vectors of size (nspec)
spec_min_max_tmp = np.array(spec_min_max_in)
if traces_in.ndim == 2:
traces = traces_in
nslits = traces.shape[1]
if np.array(spec_min_max_in).ndim == 1:
spec_min_max = np.outer(spec_min_max_tmp, np.ones(nslits))
elif spec_min_max_tmp.ndim == 2:
if (spec_min_max_tmp.shape[1] != nslits):
msgs.error('If input as any arrays, spec_min_max needs to have dimensions (2,nslits)')
spec_min_max = spec_min_max_tmp
else:
msgs.error('Invalid shapes for traces_min and traces_max')
else:
nslits = 1
traces = traces_in.reshape(traces_in.size, 1)
spec_min_max = spec_min_max_tmp
nspec = traces.shape[0]
spec_vec = np.arange(nspec,dtype=float)
xnspecmin1 = spec_vec[-1]
traces_extrap = traces.copy()
# TODO should we be doing a more careful extrapolation here rather than just linearly using the nearest pixel
# values??
for islit in range(nslits):
ibad_max = spec_vec > spec_min_max[1,islit]
ibad_min = spec_vec < spec_min_max[0,islit]
igood = (spec_vec >= spec_min_max[0,islit]) & (spec_vec <= spec_min_max[1,islit])
nfit = int(np.round(fit_frac*np.sum(igood)))
good_ind = np.where(igood)[0]
igood_min = good_ind[0:nfit]
igood_max = good_ind[-nfit:]
if np.any(ibad_min):
if 'poly' in method:
coeff_min = utils.func_fit(spec_vec[igood_min], traces[igood_min, islit], 'legendre', npoly, minx=0.0, maxx=xnspecmin1)
traces_extrap[ibad_min, islit] = utils.func_val(coeff_min, spec_vec[ibad_min], 'legendre', minx=0.0, maxx=xnspecmin1)
elif 'edge' in method:
traces_extrap[ibad_min, islit] = traces[good_ind[0], islit]
if np.any(ibad_max):
if 'poly' in method:
coeff_max = utils.func_fit(spec_vec[igood_max], traces[igood_max, islit], 'legendre', npoly, minx=0.0,maxx=xnspecmin1)
traces_extrap[ibad_max, islit] = utils.func_val(coeff_max, spec_vec[ibad_max], 'legendre', minx=0.0,maxx=xnspecmin1)
elif 'edge' in method:
traces_extrap[ibad_max, islit] = traces[good_ind[-1], islit]
#ibad = np.invert(igood)
#traces_extrap[ibad, islit] = interpolate.interp1d(spec_vec[igood], traces[igood, islit], kind='linear',
#bounds_error=False, fill_value='extrapolate')(spec_vec[ibad])
return traces_extrap
| 5,345,855 |
def getStopWords(stopWordFileName):
"""Reads stop-words text file which is assumed to have one word per line.
Returns stopWordDict.
"""
stopWordDict = {}
stopWordFile = open(stopWordFileName, 'r')
for line in stopWordFile:
word = line.strip().lower()
stopWordDict[word] = None
return stopWordDict
| 5,345,856 |
def metade(valor):
"""
-> Realiza o calculo de metade salárial
:param valor: Valor do dinheiro
:param view: Visualizar ou não retorno formatado
:return: Retorna a metade do valor
"""
if not view:
return moeda(valor / 2)
else:
return valor / 2
return valor / 2
| 5,345,857 |
def monopole(uvecs: [float, np.ndarray], order: int=3) -> [float, np.ndarray]:
"""
Solution for I(r) = 1.
Also handles nonzero-w case.
Parameters
----------
uvecs: float or ndarray of float
The cartesian baselines in units of wavelengths. If a float, assumed to be the magnitude of
the baseline. If an array of one dimension, each entry is assumed to be a magnitude.
If a 2D array, may have shape (Nbls, 2) or (Nbls, 3). In the first case, w is
assumed to be zero.
order: int
Expansion order to use for non-flat array case (w != 0).
Returns
-------
ndarray of complex
Visibilities, shape (Nbls,)
"""
if np.isscalar(uvecs) or uvecs.ndim == 1 or uvecs.shape[1] == 2 or np.allclose(uvecs[:, 2], 0):
# w is zero.
uamps = vec_to_amp(uvecs)
return 2 * np.pi * np.sinc(2 * uamps)
uvecs = uvecs[..., None]
ks = np.arange(order)[None, :]
fac0 = (2 * np.pi * 1j * uvecs[:, 2, :])**ks / (gamma(ks + 2))
fac1 = hyp0f1((3 + ks) / 2, -np.pi**2 * (uvecs[:, 0, :]**2 + uvecs[:, 1, :]**2))
return 2 * np.pi * np.sum(fac0 * fac1, axis=-1)
| 5,345,858 |
def get_question(
numbers: OneOrManyOf(NUMBERS_AVAILABLE),
cases: OneOrManyOf(CASES_AVAILABLE),
num: hug.types.in_range(1, MAX_NUM + 1) = 10):
"""When queried for one or multiple numbers and cases, this endpoint returns a random question."""
questions = []
bag = NounCaseQuestionBag(
noun_bag,
adjective_bag,
numbers,
cases)
while len(questions) < num:
question = bag.get_question()
questions.append(
{
'question_elements': question.get_question_elements(),
'answer_elements': question.get_correct_answer_elements()
})
return questions
| 5,345,859 |
def delete(ctx, **_):
"""Deletes a Resource Group"""
if ctx.node.properties.get('use_external_resource', False):
return
azure_config = ctx.node.properties.get('azure_config')
if not azure_config.get("subscription_id"):
azure_config = ctx.node.properties.get('client_config')
else:
ctx.logger.warn("azure_config is deprecated please use client_config, "
"in later version it will be removed")
name = utils.get_resource_name(ctx)
api_version = \
ctx.node.properties.get('api_version', constants.API_VER_RESOURCES)
resource_group = ResourceGroup(azure_config, ctx.logger, api_version)
try:
resource_group.get(name)
except CloudError:
ctx.logger.info("Resource with name {0} doesn't exist".format(name))
return
try:
resource_group.delete(name)
utils.runtime_properties_cleanup(ctx)
except CloudError as cr:
raise cfy_exc.NonRecoverableError(
"delete resource_group '{0}' "
"failed with this error : {1}".format(name,
cr.message)
)
| 5,345,860 |
def test_dpp_proto_auth_resp_invalid_r_proto_key(dev, apdev):
"""DPP protocol testing - invalid R-Proto Key in Auth Resp"""
run_dpp_proto_auth_resp_missing(dev, 67, "Invalid Responder Protocol Key")
| 5,345,861 |
def _print_attrs(attr, html=False):
"""
Given a Attr class will print out each registered attribute.
Parameters
----------
attr : `sunpy.net.attr.Attr`
The attr class/type to print for.
html : bool
Will return a html table instead.
Returns
-------
`str`
String with the registered attributes.
"""
attrs = attr._attr_registry[attr]
# Only sort the attrs if any have been registered
sorted_attrs = _ATTR_TUPLE(*zip(*sorted(zip(*attrs)))) if attrs.name else make_tuple()
*other_row_data, descs = sorted_attrs
descs = [(dsc[:77] + '...') if len(dsc) > 80 else dsc for dsc in descs]
table = Table(names=["Attribute Name", "Client", "Full Name", "Description"],
dtype=["U80", "U80", "U80", "U80"],
data=[*other_row_data, descs])
class_name = f"{(attr.__module__ + '.') or ''}{attr.__name__}"
lines = [class_name]
# If the attr lacks a __doc__ this will error and prevent this from returning anything.
try:
lines.append(dedent(attr.__doc__.partition("\n\n")[0]) + "\n")
except AttributeError:
pass
format_line = "<p>{}</p>" if html else "{}"
width = -1 if html else get_width()
lines = [*[format_line.format(line) for line in lines],
*table.pformat_all(show_dtype=False, max_width=width, align="<", html=html)]
return '\n'.join(lines)
| 5,345,862 |
def create_wave_header(samplerate=44100, channels=2, bitspersample=16, duration=3600):
"""Generate a wave header from given params."""
# pylint: disable=no-member
file = BytesIO()
numsamples = samplerate * duration
# Generate format chunk
format_chunk_spec = b"<4sLHHLLHH"
format_chunk = struct.pack(
format_chunk_spec,
b"fmt ", # Chunk id
16, # Size of this chunk (excluding chunk id and this field)
1, # Audio format, 1 for PCM
channels, # Number of channels
int(samplerate), # Samplerate, 44100, 48000, etc.
int(samplerate * channels * (bitspersample / 8)), # Byterate
int(channels * (bitspersample / 8)), # Blockalign
bitspersample, # 16 bits for two byte samples, etc.
)
# Generate data chunk
data_chunk_spec = b"<4sL"
datasize = int(numsamples * channels * (bitspersample / 8))
data_chunk = struct.pack(
data_chunk_spec,
b"data", # Chunk id
int(datasize), # Chunk size (excluding chunk id and this field)
)
sum_items = [
# "WAVE" string following size field
4,
# "fmt " + chunk size field + chunk size
struct.calcsize(format_chunk_spec),
# Size of data chunk spec + data size
struct.calcsize(data_chunk_spec) + datasize,
]
# Generate main header
all_chunks_size = int(sum(sum_items))
main_header_spec = b"<4sL4s"
main_header = struct.pack(main_header_spec, b"RIFF", all_chunks_size, b"WAVE")
# Write all the contents in
file.write(main_header)
file.write(format_chunk)
file.write(data_chunk)
# return file.getvalue(), all_chunks_size + 8
return file.getvalue()
| 5,345,863 |
def xslugify(value):
"""
Converts to ASCII. Converts spaces to hyphens. Removes characters that
aren't alphanumerics, underscores, slash, or hyphens. Converts to
lowercase. Also strips leading and trailing whitespace.
(I.e., does the same as slugify, but also converts slashes to dashes.)
"""
value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
value = re.sub(r'[^\w\s/-]', '', value).strip().lower()
return mark_safe(re.sub(r'[-\s/]+', '-', value))
| 5,345,864 |
def firstcond(list1, list2):
"""this is a fixture for testing conditions when
the list is a four node list """
ll = LinkedList()
ll.insert(1, 5)
ll.insert(3, 9)
ll.insert(2, 4)
return ll
| 5,345,865 |
def read_bert_vocab(bert_model_path):
"""读取bert词典"""
dict_path = os.path.join(bert_model_path, 'vocab.txt')
token2idx = {}
with open(dict_path, 'r', encoding='utf-8') as f:
tokens = f.read().splitlines()
for word in tokens:
token2idx[word] = len(token2idx)
return token2idx
| 5,345,866 |
def test_get_index(list):
""" Vectors should be subscript-able in a way that mimics lists """
inf_vec = V(list)
fin_vec = V[len(list)](list)
for idx, val in enumerate(list):
assert inf_vec[idx] == fin_vec[idx] == val
| 5,345,867 |
def _template_message(desc, descriptor_registry):
# type: (Descriptor, DescriptorRegistry) -> str
"""
Returns cls_def string, list of fields, list of repeated fields
"""
this_file = desc.file
desc = SimpleDescriptor(desc)
if desc.full_name in WKTBASES:
desc.bases.append(WKTBASES[desc.full_name])
descriptor_registry[desc.identifier] = desc
slots = desc.field_names
# TODO: refactor field partitioning and iskeyword checks
# NOTE: the "pass" statement is a hack to provide a body when args is empty
initialisers = ['pass']
initialisers += [
'self.{} = self.{}() # inner_nonrepeated_fields'.format(field_name, field_type)
for field_name, field_type in desc.inner_nonrepeated_fields
if not iskeyword(field_name)
]
repeated_scalar_fields = [fd.name for fd in desc.fields if is_repeated(fd) and not is_composite(fd)]
initialisers += [
'self.{} = [] # repeated_fields'.format(field_name)
for field_name in repeated_scalar_fields
if not iskeyword(field_name)
]
rcfields = {
fd for fd in desc.fields
if is_repeated(fd) and is_composite(fd) and not is_map_field(fd)
}
repeated_composite_fields = [
(fd.name, fd.message_type.name, desc.is_nested(fd))
for fd in rcfields
]
initialisers += [
_template_composite_field(desc.name, field_name, field_type, is_nested)
for field_name, field_type, is_nested in repeated_composite_fields
if not iskeyword(field_name)
]
# TODO: refactor this
external_fields = [
(f, f.message_type) for f in desc.message_fields
if not desc.is_nested(f)
if f not in rcfields # don't want to double up above
]
siblings = [
(f, f.name, full_name(msg_type))
for f, msg_type in external_fields
if msg_type.file is this_file
]
initialisers += [
'self.{} = {}() # external_fields (siblings)'.format(field_name, field_type)
for _, field_name, field_type in siblings
if not iskeyword(field_name)
]
externals = [
(f, f.name, _to_module_name(msg_type.file.name), full_name(msg_type)) # TODO: look up name instead of heuristic?
for f, msg_type in external_fields
if msg_type.file is not this_file
]
initialisers += [
'self.{} = {}.{}() # external_fields (imports)'.format(field_name, qualifier, field_type)
for _, field_name, qualifier, field_type in externals
if not iskeyword(field_name)
]
# Extensions should show up as attributes on message instances but not
# as keyword arguments in message constructors
initialisers += [
'self.{} = object() # extensions'.format(ext_name)
for ext_name in desc.extensions_by_name
if not iskeyword(ext_name)
]
args = ['self'] + ['{}=None'.format(f) for f in slots if not iskeyword(f)]
init_str = 'def __init__({argspec}):\n{initialisers}\n'.format(
argspec=', '.join(args),
initialisers=textwrap.indent('\n'.join(initialisers), ' '),
)
helpers = ""
if desc.options.map_entry:
# for map <key, value> fields
# This mirrors the _IsMessageMapField check
value_type = desc.fields_by_name['value']
if value_type.cpp_type == FieldDescriptor.CPPTYPE_MESSAGE:
base_class = MessageMap
else:
base_class = ScalarMap
# Rather than (key, value), use the attributes of the correct
# MutableMapping type as the "slots"
slots = tuple(m for m in dir(base_class) if not m.startswith("_"))
helpers = 'def __getitem__(self, idx):\n pass\n'
helpers += 'def __delitem__(self, idx):\n pass\n'
body = ''.join([
_template_enum(d, descriptor_registry) for d in desc.enum_types
] + [
_template_message(d, descriptor_registry) for d in desc.nested_types
])
cls_str = (
'class {name}(object):\n'
' {docstring!r}\n'
' __slots__ = {slots}\n'
'{helpers}{body}{init}\n'
).format(
name=desc.name,
docstring="descriptor={}".format(desc.identifier),
slots=slots,
body=textwrap.indent(body, ' '),
helpers=textwrap.indent(helpers, ' '),
init=textwrap.indent(init_str, ' '),
)
return cls_str
| 5,345,868 |
def random_portfolio(n, k, mu=0., sd=0.01, corr=None, dt=1., nan_pct=0.):
""" Generate asset prices assuming multivariate geometric Brownian motion.
:param n: Number of time steps.
:param k: Number of assets.
:param mu: Drift parameter. Can be scalar or vector. Default is 0.
:param sd: Volatility of single assets. Default is 0.01.
:param corr: Correlation matrix of assets. Default is identity.
:param dt: Time step.
:param nan_pct: Add given percentage of NaN values. Useful for testing
"""
# default values
corr = corr if corr is not None else np.eye(k)
sd = sd * np.ones(k)
mu = mu * np.ones(k)
# drift
nu = mu - sd**2 / 2.
# do a Cholesky factorization on the correlation matrix
R = np.linalg.cholesky(corr).T
# generate uncorrelated random sequence
x = np.matrix(np.random.normal(size=(n - 1,k)))
# correlate the sequences
ep = x * R
# multivariate brownian
W = nu * dt + ep * np.diag(sd) * np.sqrt(dt)
# generate potential path
S = np.vstack([np.ones((1, k)), np.cumprod(np.exp(W), 0)])
# add nan values
if nan_pct > 0:
r = S * 0 + np.random.random(S.shape)
S[r < nan_pct] = np.nan
return pd.DataFrame(S)
| 5,345,869 |
def parse_command_line_arguments() -> None:
"""
Parse command line arguments and save their value in config.py.
:return: None
"""
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset",
default="CBIS-DDSM",
help="The dataset to use. Must be either 'mini-MIAS' or 'CBIS-DDMS'."
)
parser.add_argument("-m", "--model",
default="basic",
help="The model to use. Must be either 'basic' or 'advanced'."
)
parser.add_argument("-r", "--runmode",
default="train",
help="Running mode: train model from scratch and make predictions, otherwise load pre-trained "
"model for predictions. Must be either 'train' or 'test'."
)
parser.add_argument("-i", "--imagesize",
default="small",
help="small: use resized images to 512x512, otherwise use 'large' to use 2048x2048 size image with model with extra convolutions for downsizing."
)
parser.add_argument("-v", "--verbose",
action="store_true",
help="Verbose mode: include this flag additional print statements for debugging purposes."
)
parser.add_argument("-s", "--segmodel",
default="RS50",
help="Segmentation model to be used."
)
parser.add_argument("-p", "--prep",
default="N",
help="Preprocessing of images"
)
args = parser.parse_args()
config.dataset = args.dataset
config.model = args.model
config.run_mode = args.runmode
config.imagesize = args.imagesize
config.verbose_mode = args.verbose
config.segmodel = args.segmodel
config.prep = args.prep
| 5,345,870 |
def vulnerabilities_for_image(image_obj):
"""
Return the list of vulnerabilities for the specified image id by recalculating the matches for the image. Ignores
any persisted matches. Query only, does not update the data. Caller must add returned results to a db session and commit
in order to persist.
:param image_obj: the image
:return: list of ImagePackageVulnerability records for the packages in the given image
"""
# Recompute. Session and persistence in the session is up to the caller
try:
ts = time.time()
computed_vulnerabilties = []
for package in image_obj.packages:
pkg_vulnerabilities = package.vulnerabilities_for_package()
for v in pkg_vulnerabilities:
img_v = ImagePackageVulnerability()
img_v.pkg_image_id = image_obj.id
img_v.pkg_user_id = image_obj.user_id
img_v.pkg_name = package.name
img_v.pkg_type = package.pkg_type
img_v.pkg_arch = package.arch
img_v.pkg_version = package.version
img_v.pkg_path = package.pkg_path
img_v.vulnerability_id = v.vulnerability_id
img_v.vulnerability_namespace_name = v.namespace_name
computed_vulnerabilties.append(img_v)
#log.debug("TIMER VULNERABILITIES: {}".format(time.time() - ts))
return computed_vulnerabilties
except Exception as e:
log.exception('Error computing full vulnerability set for image {}/{}'.format(image_obj.user_id, image_obj.id))
raise
| 5,345,871 |
def update_cg_itp_obj(ns, parameters_set, update_type):
"""Update coarse-grain ITP.
ns requires:
out_itp (edited inplace)
opti_cycle
exec_mode
"""
if update_type == 1: # intermediary
itp_obj = ns.out_itp
elif update_type == 2: # cycles optimized
itp_obj = ns.opti_itp
else:
msg = (
f"Code error in function update_cg_itp_obj.\nPlease consider opening an issue on GitHub "
f"at {config.github_url}."
)
raise exceptions.InvalidArgument(msg)
for i in range(ns.opti_cycle["nb_geoms"]["constraint"]):
if ns.exec_mode == 1:
itp_obj["constraint"][i]["value"] = round(parameters_set[i], 3) # constraint - distance
for i in range(ns.opti_cycle["nb_geoms"]["bond"]):
if ns.exec_mode == 1:
itp_obj["bond"][i]["value"] = round(parameters_set[ns.opti_cycle["nb_geoms"]["constraint"] + i],
3) # bond - distance
itp_obj["bond"][i]["fct"] = round(
parameters_set[ns.opti_cycle["nb_geoms"]["constraint"] + ns.opti_cycle["nb_geoms"]["bond"] + i],
3) # bond - force constant
else:
itp_obj["bond"][i]["fct"] = round(parameters_set[i], 3) # bond - force constant
for i in range(ns.opti_cycle["nb_geoms"]["angle"]):
if ns.exec_mode == 1:
itp_obj["angle"][i]["value"] = round(
parameters_set[ns.opti_cycle["nb_geoms"]["constraint"] + 2 * ns.opti_cycle["nb_geoms"]["bond"] + i],
2) # angle - value
itp_obj["angle"][i]["fct"] = round(parameters_set[ns.opti_cycle["nb_geoms"]["constraint"] + 2 *
ns.opti_cycle["nb_geoms"]["bond"] +
ns.opti_cycle["nb_geoms"]["angle"] + i],
2) # angle - force constant
else:
itp_obj["angle"][i]["fct"] = round(parameters_set[ns.opti_cycle["nb_geoms"]["bond"] + i],
2) # angle - force constant
for i in range(ns.opti_cycle["nb_geoms"]["dihedral"]):
if ns.exec_mode == 1:
itp_obj["dihedral"][i]["value"] = round(parameters_set[ns.opti_cycle["nb_geoms"]["constraint"] + 2 *
ns.opti_cycle["nb_geoms"]["bond"] + 2 *
ns.opti_cycle["nb_geoms"]["angle"] + i],
2) # dihedral - value
itp_obj["dihedral"][i]["fct"] = round(parameters_set[ns.opti_cycle["nb_geoms"]["constraint"] + 2 *
ns.opti_cycle["nb_geoms"]["bond"] + 2 *
ns.opti_cycle["nb_geoms"]["angle"] +
ns.opti_cycle["nb_geoms"]["dihedral"] + i],
2) # dihedral - force constant
else:
itp_obj["dihedral"][i]["fct"] = round(
parameters_set[ns.opti_cycle["nb_geoms"]["bond"] + ns.opti_cycle["nb_geoms"]["angle"] + i],
2)
| 5,345,872 |
def superpose_images(obj, metadata, skip_overlaps=False,
num_frames_for_bkgd=100, every=1,
color_objs=False, disp_R=False, b=1.7, d=2,
false_color=False, cmap='jet', remove_positive_noise=True):
"""
Superposes images of an object onto one frame.
Parameters
----------
vid_path : string
Path to video in which object was tracked. Source folder is `src/`
obj : TrackedObject
Object that has been tracked. Must have 'image', 'local centroid',
'frame_dim', 'bbox', and 'centroid' parameters.
skip_overlaps : bool, optional
If True, will skip superposing images that overlap with each other
to produce a cleaner, though incomplete, image. Default False.
every : int, optional
Superposes every `every` image (so if every = 1, superposes every image;
if every = 2, superposes every *other* image; if every = n, superposes every
nth image). Default = 1
color_objs : bool, optional
If True, will use image processing to highlight objects in each frame
before superposing. Default False
disp_R : bool, optional
If True, will display the radius measured by image-processing in um
above each object.
b : float, optional
Factor by which to scale brightness of superposed images to match background.
Not sure why they don't automatically appear with the same brightness.
Default is 1.7.
d : int, optional
Number of pixels to around the bounding box of the object to transfer to
the superposed image. Helps ensure the outer edge of the image is bkgd. Default is 2.
Returns
-------
im : (M x N) numpy array of uint8
Image of object over time; each snapshot is superposed
(likely black-and-white)
"""
### initializes image as background ###
# loads parameters
highlight_kwargs = metadata['highlight_kwargs']
mask_data = highlight_kwargs['mask_data']
row_lo, _, row_hi, _ = mask.get_bbox(mask_data)
# computes background
bkgd = improc.compute_bkgd_med_thread(metadata['vid_path'],
vid_is_grayscale=True, #assumes video is already grayscale
num_frames=num_frames_for_bkgd,
crop_y=row_lo,
crop_height=row_hi-row_lo)
# copies background to superpose object images on
im = np.copy(bkgd)
# converts image to 3-channel if highlighting objects (needs color)
if color_objs:
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
# initializes previous bounding box
bbox_prev = (0,0,0,0)
# loads video capture object
cap = cv2.VideoCapture(metadata['vid_path'])
# gets list of frames with object
frame_list = obj.get_props('frame')
### Superposes image from each frame ###
ct = 0
for i, f in enumerate(frame_list):
# only superposes every "every"th image
if (ct % every) != 0:
ct += 1
continue
# loads bounding box and image within it
bbox = obj.get_prop('bbox', f)
# skips images that overlap if requested
if skip_overlaps:
if basic.is_overlapping(bbox_prev, bbox):
continue
else:
bbox_prev = bbox
# highlights objects if requested
if color_objs:
# extracts radius of object
R = obj.get_prop('radius [um]', f)
# not sure why, but brightness must be 1.5 to match rest of image
# selects offset that pushes label out of image
offset = bbox[3]-bbox[1]+5
# reads frame and converts to color
frame = basic.read_frame(cap, f)
# highlights the object in the image
im_obj = highlight.highlight_image(frame,
f, cfg.highlight_method,
metadata, {R : obj}, [R],
brightness=b, offset=offset)
# shows number ID of object in image
centroid = obj.get_prop('centroid', f)
# converts centroid from (row, col) to (x, y) for open-cv
x = int(centroid[1])
y = int(centroid[0])
# superposes object image on overall image (3-channel images)
row_min, col_min, row_max, col_max = bbox
d = 2
im[row_min-d:row_max+d, col_min-d:col_max+d, :] = im_obj[row_min-d:row_max+d,
col_min-d:col_max+d, :]
if disp_R:
# prints label on image (radius [um])
im = cv2.putText(img=im, text='{0:.1f}'.format(R), org=(x-10, y-7),
fontFace=0, fontScale=0.5, color=cfg.white,
thickness=2)
else:
# loads image
im_raw = basic.read_frame(cap, f)
im_obj = cv2.cvtColor(basic.adjust_brightness(im_raw, b), cv2.COLOR_BGR2GRAY)[row_lo:row_hi, :]
# superposes object image on overall image
row_min, col_min, row_max, col_max = bbox
im[row_min:row_max, col_min:col_max] = im_obj[row_min:row_max,
col_min:col_max]
# increments counter
ct += 1
# false-colors objects by taking signed difference with background
if false_color:
signed_diff = im.astype(int) - bkgd.astype(int)
# remove noise above 0 (*assumes object is darker than background)
if remove_positive_noise:
signed_diff[signed_diff > 0] = 0
# defines false-color mapping to range to max difference
max_diff = max(np.max(np.abs(signed_diff)), 1) # ensures >= 1
# normalizes image so -max_diff -> 0 and +max_diff -> 1
im_norm = (signed_diff + max_diff) / (2*max_diff)
# maps normalized image to color image (still as floats from 0 to 1)
color_mapped = cm.get_cmap(cmap)(im_norm)
# converts to OpenCV format (uint8 0 to 255)
im_false_color = basic.cvify(color_mapped)
# converts from RGBA to RGB
im = cv2.cvtColor(im_false_color, cv2.COLOR_RGBA2RGB)
return im
| 5,345,873 |
def gen_s_linear(computed_data, param ):
"""Generate sensitivity matrix for wavelength dependent sensitivity modeled as line"""
mat=np.zeros((computed_data.shape[0],computed_data.shape[0]))
#print(mat.shape)
for i in range(computed_data.shape[0]):
for j in range(computed_data.shape[0]):
v1 = computed_data[i, 0] - scenter # col 0 has position
v2 = computed_data[j, 0] - scenter # col 0 has position
#print(v1, v2)
c1 = param[0]
mat [i,j]=(1+ (c1/scale1)*v1 )/ \
(1+ (c1/scale1)*v2)
return mat
| 5,345,874 |
def upsample2(x):
"""
Up-sample a 2D array by a factor of 2 by interpolation.
Result is scaled by a factor of 4.
"""
n = [x.shape[0] * 2 - 1, x.shape[1] * 2 - 1] + list(x.shape[2:])
y = numpy.empty(n, x.dtype)
y[0::2, 0::2] = 4 * x
y[0::2, 1::2] = 2 * (x[:, :-1] + x[:, 1:])
y[1::2, 0::2] = 2 * (x[:-1, :] + x[1:, :])
y[1::2, 1::2] = x[:-1, :-1] + x[1:, 1:] + x[:-1, 1:] + x[1:, :-1]
return y
| 5,345,875 |
def test_should_return_return_invalid_login_msg(db_session):
"""
Teste deve retornar usuário quando a senha está correta
"""
user = User(
name="John Doe",
username="jd",
email="[email protected]",
)
db_session.add(user)
db_session.commit()
with pytest.raises(UnauthorizedException) as error:
auth.login(username="invalid", password="bla")
assert str(error.value) == "Username or password invalid"
| 5,345,876 |
def test_surf_pipeline_cont_endpoint():
"""Check: Data (Continuous Endpoint): SURF works in a sklearn pipeline"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint,
labels_cont_endpoint, cv=3, n_jobs=-1))) < 0.5
| 5,345,877 |
def mark_safe(s):
"""
Explicitly mark a string as safe for (HTML) output purposes. The returned
object can be used everywhere a string or unicode object is appropriate.
Can be called multiple times on a single string.
"""
if isinstance(s, SafeData):
return s
if isinstance(s, bytes) or (isinstance(s, Promise) and s._delegate_bytes):
return SafeBytes(s)
if isinstance(s, (six.text_type, Promise)):
return SafeText(s)
return SafeString(str(s))
| 5,345,878 |
def ensure_environment_directory(environment_file_directory):
"""Ensure directory for environment files exists and is private"""
# ensure directory exists
os.makedirs(environment_file_directory, mode=0o700, exist_ok=True)
# validate permissions
mode = os.stat(environment_file_directory).st_mode
if mode & 0o077:
warnings.warn(
f"Fixing permissions on environment directory {environment_file_directory}: {oct(mode)}",
RuntimeWarning,
)
os.chmod(environment_file_directory, 0o700)
else:
return
# Check again after supposedly fixing.
# Some filesystems can have weird issues, preventing this from having desired effect
mode = os.stat(environment_file_directory).st_mode
if mode & 0o077:
warnings.warn(
f"Bad permissions on environment directory {environment_file_directory}: {oct(mode)}",
RuntimeWarning,
)
| 5,345,879 |
def _unravel_plug(node, attr):
"""Convert Maya node/attribute combination into an MPlug.
Note:
Tries to break up a parent attribute into its child attributes:
.t -> [tx, ty, tz]
Args:
node (str): Name of the Maya node
attr (str): Name of the attribute on the Maya node
Returns:
MPlug or list: MPlug of the Maya attribute, list of MPlugs
if a parent attribute was unravelled to its child attributes.
"""
LOG.debug("_unravel_plug (%s, %s)", node, attr)
return_value = om_util.get_mplug_of_node_and_attr(node, attr)
# Try to unravel the found MPlug into child attributes
child_plugs = om_util.get_child_mplugs(return_value)
if child_plugs:
return_value = [child_plug for child_plug in child_plugs]
return return_value
| 5,345,880 |
def index():
""" Root URL response """
return jsonify(name='Payment Demo REST API Service', version='1.0'), status.HTTP_200_OK
| 5,345,881 |
def unvoigt(A):
"""
Converts from 6x1 to 3x3
:param A: 6x1 Voigt vector (strain or stress)
:return: 3x3 symmetric tensor (strain or stress)
"""
a=np.zeros(shape=(3,3))
a[0,0]=A[0]
a[0,1]=A[5]
a[0,2]=A[4]
a[1,0]=A[5]
a[1,1]=A[1]
a[1,2]=A[3]
a[2,0]=A[4]
a[2,1]=A[3]
a[2,2]=A[2]
return (a)
| 5,345,882 |
def get_parser():
"""
Creates a new argument parser.
"""
parser = argparse.ArgumentParser('niget_yyyymm.py',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""
help description
"""
)
version = '%(prog)s ' + __version__
parser.add_argument('--version', '-v', action='version', version=version,
help='show version of this command')
parser.add_argument('--csvfile', '-c', type=str, default="nicer_target_segment_table.csv",
help='csvfile')
parser.add_argument('--obsid', '-o', type=str, default=None,
help='target ObsID (default=None)')
return parser
| 5,345,883 |
def create_db():
"""
Creates the db tables
"""
db.create_all()
| 5,345,884 |
def _calculate_rmsd(P, Q):
"""Calculates the root-mean-square distance between the points of P and Q.
The distance is taken as the minimum over all possible matchings. It is
zero if P and Q are identical and non-zero if not.
"""
distance_matrix = cdist(P, Q, metric='sqeuclidean')
matching = linear_sum_assignment(distance_matrix)
return np.sqrt(distance_matrix[matching].sum())
| 5,345,885 |
def use_backend(backend):
"""Select a backend for image decoding.
Args:
backend (str): The image decoding backend type. Options are `cv2`,
`pillow`, `turbojpeg` (see https://github.com/lilohuang/PyTurboJPEG)
and `tifffile`. `turbojpeg` is faster but it only supports `.jpeg`
file format.
"""
assert backend in supported_backends
global imread_backend
imread_backend = backend
if imread_backend == 'turbojpeg':
if TurboJPEG is None:
raise ImportError('`PyTurboJPEG` is not installed')
global jpeg
if jpeg is None:
jpeg = TurboJPEG()
elif imread_backend == 'pillow':
if Image is None:
raise ImportError('`Pillow` is not installed')
elif imread_backend == 'tifffile':
if tifffile is None:
raise ImportError('`tifffile` is not installed')
| 5,345,886 |
def initialize_parameters():
"""
Initializes weight parameters to build a neural network with tensorflow. The shapes are:
W1 : [4, 4, 3, 8]
W2 : [2, 2, 8, 16]
Note that we will hard code the shape values in the function to make the grading simpler.
Normally, functions should take values as inputs rather than hard coding.
Returns:
parameters -- a dictionary of tensors containing W1, W2
"""
tf.set_random_seed(1) # so that your "random" numbers match ours
### START CODE HERE ### (approx. 2 lines of code)
W1 = tf.get_variable("W1",[4,4,3,8],initializer=tf.contrib.layers.xavier_initializer(seed = 0))
W2 = tf.get_variable("W2",[2,2,8,16],initializer=tf.contrib.layers.xavier_initializer(seed = 0))
### END CODE HERE ###
parameters = {"W1": W1,
"W2": W2}
return parameters
| 5,345,887 |
def generate_dynamic_secret(salt: str) -> str:
"""Creates a new overseas dynamic secret
:param salt: A ds salt
"""
t = int(time.time())
r = "".join(random.choices(string.ascii_letters, k=6))
h = hashlib.md5(f"salt={salt}&t={t}&r={r}".encode()).hexdigest()
return f"{t},{r},{h}"
| 5,345,888 |
def upload(slot_id):
"""
Upload a file
"""
form = request.form
# Is the upload using Ajax, or a direct POST by the form?
is_ajax = False
if form.get("__ajax", None) == "true":
is_ajax = True
# Target folder for these uploads.
target = os.path.join(APP_ROOT, UPLOAD_ROOT, slot_id)
if os.path.isdir(target):
shutil.rmtree(target)
os.mkdir(target)
for upload in request.files.getlist("file"):
filename = upload.filename.rsplit("/")[0]
destination = "/".join([target, filename])
upload.save(destination)
# convert the file to syro format
syroconvert(os.path.join(APP_ROOT, destination), slot_id)
return ajax_response(True, slot_id)
| 5,345,889 |
def is_sim_f(ts_kname):
""" Returns True if the TSDist is actually a similarity and not a distance
"""
return ts_kname in ('linear_allpairs',
'linear_crosscor',
'cross_correlation',
'hsdotprod_autocor_truncated',
'hsdotprod_autocor_cyclic')
| 5,345,890 |
def test_coerce() -> None:
"""Test value coercion."""
@dataclass
class _TestClass:
ival: int = 0
fval: float = 0.0
# Float value present for int should never work.
obj = _TestClass()
# noinspection PyTypeHints
obj.ival = 1.0 # type: ignore
with pytest.raises(TypeError):
dataclass_validate(obj, coerce_to_float=True)
with pytest.raises(TypeError):
dataclass_validate(obj, coerce_to_float=False)
# Int value present for float should work only with coerce on.
obj = _TestClass()
obj.fval = 1
dataclass_validate(obj, coerce_to_float=True)
with pytest.raises(TypeError):
dataclass_validate(obj, coerce_to_float=False)
# Likewise, passing in an int for a float field should work only
# with coerce on.
dataclass_from_dict(_TestClass, {'fval': 1}, coerce_to_float=True)
with pytest.raises(TypeError):
dataclass_from_dict(_TestClass, {'fval': 1}, coerce_to_float=False)
# Passing in floats for an int field should never work.
with pytest.raises(TypeError):
dataclass_from_dict(_TestClass, {'ival': 1.0}, coerce_to_float=True)
with pytest.raises(TypeError):
dataclass_from_dict(_TestClass, {'ival': 1.0}, coerce_to_float=False)
| 5,345,891 |
def initialise_pika_connection(
host: Text,
username: Text,
password: Text,
port: Union[Text, int] = 5672,
connection_attempts: int = 20,
retry_delay_in_seconds: float = 5,
) -> "BlockingConnection":
"""Create a Pika `BlockingConnection`.
Args:
host: Pika host
username: username for authentication with Pika host
password: password for authentication with Pika host
port: port of the Pika host
connection_attempts: number of channel attempts before giving up
retry_delay_in_seconds: delay in seconds between channel attempts
Returns:
Pika `BlockingConnection` with provided parameters
"""
import pika
parameters = _get_pika_parameters(
host, username, password, port, connection_attempts, retry_delay_in_seconds
)
return pika.BlockingConnection(parameters)
| 5,345,892 |
def _validate_game_id(game_id):
"""
Test whether a game ID is valid. If it is not, raise a 403 Forbidden.
"""
try:
int(str(game_id))
except ValueError:
abort(403, message="Malformed game ID {}".format(game_id))
| 5,345,893 |
def units(arg_name, unit):
"""Decorator to define units for an input.
Associates a unit of measurement with an input.
Parameters
----------
arg_name : str
Name of the input to attach a unit to.
unit : str
Unit of measurement descriptor to use (e.g. "mm").
Example
--------
Create an operation where its `x` parameter has its units defined in microns.
>>> @OperationPlugin
>>> @units('x', '\u03BC'+'m')
>>> def op(x: float = -1) -> float:
>>> return x *= -1.0
"""
def decorator(func):
_quick_set(func, 'units', arg_name, unit, {})
return func
return decorator
| 5,345,894 |
async def to_thread_task(func: Callable, *args, **kwargs) -> Task:
"""Assign task to thread"""
coro = to_thread(func, *args, **kwargs)
return create_task(coro)
| 5,345,895 |
def setup_logging(stream_or_file=None, debug=False, name=None):
"""
Create a logger for communicating with the user or writing to log files.
By default, creates a root logger that prints to stdout.
:param stream_or_file:
The destination of the log messages. If None, stdout will be used.
:type stream_or_file:
`unicode` or `file` or None
:param debug:
Whether or not the logger will be at the DEBUG level (if False, the logger will be at the INFO level).
:type debug:
`bool` or None
:param name:
The logging channel. If None, a root logger will be created.
:type name:
`unicode` or None
:return:
A logger that's been set up according to the specified parameters.
:rtype:
:class:`Logger`
"""
logger = logging.getLogger(name)
if isinstance(stream_or_file, string_types):
handler = logging.FileHandler(stream_or_file, mode='w')
else:
handler = logging.StreamHandler(stream_or_file or sys.stdout)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG if debug else logging.INFO)
return logger
| 5,345,896 |
def combo2fname(
combo: Dict[str, Any],
folder: Optional[Union[str, Path]] = None,
ext: Optional[str] = ".pickle",
sig_figs: int = 8,
) -> str:
"""Converts a dict into a human readable filename.
Improved version of `combo_to_fname`."""
name_parts = [f"{k}_{maybe_round(v, sig_figs)}" for k, v in sorted(combo.items())]
fname = Path("__".join(name_parts) + ext)
if folder is None:
return fname
return str(folder / fname)
| 5,345,897 |
def insertTopic(datum):
"""Load a single topic."""
_insertSingle(datum, 'topic')
| 5,345,898 |
def cls_from_str(name_str):
"""
Gets class of unit type from a string
Helper function for end-users entering the name of a unit type
and retrieving the class that contains stats for that unit type.
Args:
name_str: str
Returns:
UnitStats
"""
name_str = name_str.lower()
for cls in _UNIT_TYPES.values():
if cls.name.lower() == name_str:
return cls
| 5,345,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.