content
stringlengths
22
815k
id
int64
0
4.91M
def action_create(name, args): """create a llvmlab installation""" import llvmlab from optparse import OptionParser, OptionGroup parser = OptionParser("%%prog %s [options] <path>" % name) group = OptionGroup(parser, "CONFIG OPTIONS") group.add_option("", "--admin-login", dest="admin_login", help="administrator login [%default]", default='admin') group.add_option("", "--admin-name", dest="admin_name", help="administrator name [%default]", default='Administrator') group.add_option("", "--admin-password", dest="admin_password", help="administrator password [%default]", default='admin') group.add_option("", "--admin-email", dest="admin_email", help="administrator email [%default]", default='[email protected]') group.add_option("", "--master-url", dest="master_url", help="URL for the buildbot master [%default]", default='http://lab.llvm.org:8013') group.add_option("", "--plugin-module", dest="plugin_module", help="name of the dashboard plugin to load [%default]", default=None) group.add_option("", "--debug-server", dest="debug_server", help="run server in debug mode [%default]", action="store_true", default=False) parser.add_option_group(group) (opts, args) = parser.parse_args(args) if len(args) != 1: parser.error("invalid number of arguments") install_path, = args install_path = os.path.abspath(install_path) cfg_path = os.path.join(install_path, 'lab.cfg') app_path = os.path.join(install_path, 'app.wsgi') # Create the install directory. if os.path.exists(install_path): parser.error("refusing to install: %r exists" % install_path) try: os.mkdir(install_path) except: parser.error("unable to create directory: %r" % install_path) # Construct the config file. sample_cfg_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "lab.cfg.sample") sample_cfg_file = open(sample_cfg_path, "rb") sample_cfg_data = sample_cfg_file.read() sample_cfg_file.close() # Fill in the sample config. secret_key = hashlib.sha1(str(random.getrandbits(256))).hexdigest() cfg_options = dict(opts.__dict__) cfg_options['admin_passhash'] = hashlib.sha256( opts.admin_password + secret_key).hexdigest() cfg_options['secret_key'] = secret_key cfg_options['install_path'] = install_path cfg_options['plugin_module'] = opts.plugin_module cfg_data = sample_cfg_data % cfg_options # Write the initial config file. cfg_file = open(cfg_path, 'w') cfg_file.write(cfg_data) cfg_file.close() # Construct the WSGI app file. app_wsgi_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "app.wsgi.sample") app_wsgi_file = open(app_wsgi_path, "rb") app_wsgi_data = app_wsgi_file.read() app_wsgi_file.close() # Fill in the sample WSGI app. virtual_env = os.environ.get('VIRTUAL_ENV') if virtual_env: site_import_string = """ import site site.addsitedir(%r)\n""" % virtual_env else: site_import_string = "" app_data = app_wsgi_data % { 'site_import_string' : site_import_string, 'lab_config_path' : cfg_path } app_file = open(app_path, 'w') app_file.write(app_data) app_file.close() # Construct the initial database and status files. data = llvmlab.data.Data(users = [], machines = []) status = llvmlab.ci.status.Status(opts.master_url, {}) # Construct an app instance, and save the data. instance = llvmlab.ui.app.App.create_standalone(data = data, status = status, config_path = cfg_path) instance.save_data() instance.save_status()
5,345,900
def convert_to_github_url_with_token(url, token): """ Convert a Github URL to a git+https url that identifies via an Oauth token. This allows for installation of private packages. :param url: The url to convert into a Github access token oauth url. :param token: The Github access token to use for the oauth url. :return: A git+https url with Oauth identification. """ for prefix in [GIT_SSH_PREFIX, GIT_GIT_PREFIX, GIT_HTTPS_PREFIX]: if url.startswith(prefix): return 'git+https://{}:[email protected]/{}'.format(token, url[len(prefix):]) return url
5,345,901
def test_owner_approval_apply_failed(test1_token, empty_device_apply_record, execute_sql): """ owner审批失败,不能审批其他owner的 :param test1_token: :param empty_device_apply_record: :param execute_sql: :return: """ empty_device_apply_record(1, 1) sql = """INSERT INTO device_apply_record VALUES (1, 1, 2, '2019-10-15 09:28:55', '2019-10-30 00:55:55', '测试需要', 1, NULL, NULL, NULL, NULL, 0, 0, '2019-10-15 16:16:48.399755', '2019-10-15 16:16:48.399755'); """ execute_sql(sql) data = {"approval": 1, "reason": "owner审批apply记录,失败"} result = http_post(audit_url.format(apply_id=1), data=data, token=test1_token) assert result.json()['code'] == 3007 assert result.json()['msg'] == "审批失败"
5,345,902
def get_numbers_of_papers(metrics): """ Convert the metrics into a format that is easier to work with. Year-ordered numpy arrays. """ publications = metrics['histograms']['publications'] year, total, year_refereed, refereed = [], [], [], [] y = list(publications['all publications'].keys()) y.sort() for i in range(len(y)): k = y[i] year.append(datetime.strptime(k, '%Y')) total.append(publications['all publications'][k]) refereed.append(publications['refereed publications'][k]) year, total, refereed = \ numpy.array(year), numpy.array(total), numpy.array(refereed) return year, total, refereed
5,345,903
def show_warning(parent, title, message): """ Helper method for opening a simple yes/no dialog and getting the answer """ dialog = Gtk.MessageDialog(parent=parent, flags=0, message_type=Gtk.MessageType.WARNING, buttons=Gtk.ButtonsType.OK, text=title) dialog.format_secondary_text(message) dialog.run() dialog.destroy()
5,345,904
def test_base_provider_get_transform_json_exception(mock_name, mock_value): """ Test BaseProvider.get() with a json transform that raises an exception """ mock_data = json.dumps({mock_name: mock_value}) + "{" class TestProvider(BaseProvider): def _get(self, name: str, **kwargs) -> str: assert name == mock_name return mock_data def _get_multiple(self, path: str, **kwargs) -> Dict[str, str]: raise NotImplementedError() provider = TestProvider() with pytest.raises(parameters.TransformParameterError) as excinfo: provider.get(mock_name, transform="json") assert "Extra data" in str(excinfo)
5,345,905
def load_check_definitions(lang): """ Retrieve Trust Advisor check definitions """ retval = {} resp = TA_C.describe_trusted_advisor_checks(language=lang) if resp: try: checks = resp['checks'] retval = {a['id']:a for a in checks} except ValueError: LOGGER.error('Received invalid check definitions: %s', str(resp)) else: LOGGER.error('No response from check definitions') return retval
5,345,906
def test_register_again_deserializer(deserializer_type): """ Test registering a deserializer again. """ with pytest.raises(ValueError): register_deserializer(*deserializer_type)
5,345,907
def filter_phrase(comments, phrase): """Returns list of comments and replies filtered by substring.""" results = [] for comment in comments: if phrase.lower() in comment.message.lower(): results.append(comment) for reply in comment.replies: if phrase.lower() in reply.message.lower(): results.append(reply) if not results: return None return results
5,345,908
def get_available_plugins(): """ Print a list of available plugins :return: """ print("Available plugins:\n") for instrument, class_name in _working_plugins.items(): print("%s for %s" % (class_name, instrument))
5,345,909
def asses_completeness(language_code: str, sw: ServiceWorker = Depends(get_sw)): """ make a completion test for language: check fe,be, domains and entries @param language_code: @param sw: @return: """ if language_code not in sw.messages.get_added_languages(): raise ApplicationException(HTTP_404_NOT_FOUND, "Language not yet added") return sw.translation.asses_completion(language_code)
5,345,910
def create_intrinsic_node_class(cls): """ Create dynamic sub class """ class intrinsic_class(cls): """Node class created based on the input class""" def is_valid(self): raise TemplateAttributeError('intrisnic class shouldn\'t be directly used') intrinsic_class.__name__ = '%s_intrinsic' % cls.__name__ return intrinsic_class
5,345,911
def delete_assessment_run(assessmentRunArn=None): """ Deletes the assessment run that is specified by the ARN of the assessment run. See also: AWS API Documentation Exceptions Examples Deletes the assessment run that is specified by the ARN of the assessment run. Expected Output: :example: response = client.delete_assessment_run( assessmentRunArn='string' ) :type assessmentRunArn: string :param assessmentRunArn: [REQUIRED]\nThe ARN that specifies the assessment run that you want to delete.\n :return: response = client.delete_assessment_run( assessmentRunArn='arn:aws:inspector:us-west-2:123456789012:target/0-nvgVhaxX/template/0-it5r2S4T/run/0-11LMTAVe', ) print(response) """ pass
5,345,912
def load(provider, config_location=DEFAULT_CONFIG_DIR): """Load provider specific auth info from file """ auth = None auth_file = None try: config_dir = os.path.join(config_location, NOIPY_CONFIG) print("Loading stored auth info [%s]... " % config_dir, end="") auth_file = os.path.join(config_dir, provider) with open(auth_file) as f: auth_key = f.read() auth = ApiAuth.get_instance(auth_key.encode('utf-8')) print("OK.") except IOError as e: print('{0}: "{1}"'.format(e.strerror, auth_file)) raise e return auth
5,345,913
def segment_fish(image): """Attempts to segment the clown fish out of the provided image.""" hsv_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) light_orange = (1, 190, 200) dark_orange = (18, 255, 255) mask = cv2.inRange(hsv_image, light_orange, dark_orange) light_white = (0, 0, 200) dark_white = (145, 60, 255) mask_white = cv2.inRange(hsv_image, light_white, dark_white) final_mask = mask + mask_white result = cv2.bitwise_and(image, image, mask=final_mask) result = cv2.GaussianBlur(result, (7, 7), 0) return result
5,345,914
def get_bugzilla_url(bug_id): """Return bugzilla url for bug_id.""" return u'https://bugzilla.mozilla.org/show_bug.cgi?id=%d' % bug_id
5,345,915
def enable_faster_encoder(self, need_build=True, use_fp16=False): """ Compiles fusion encoder operator intergrated FasterTransformer using the method of JIT(Just-In-Time) and replaces the `forward` function of `paddle.nn.TransformerEncoder` and `paddle.nn.TransformerEncoderLayer` objects inherited from `self` to support inference using FasterTransformer. Examples: .. code-block:: python from paddlenlp.ops import enable_faster_encoder, disable_faster_encoder model.eval() model = enable_faster_encoder(model) enc_out = model(src, src_mask) model = disable_faster_encoder(model) """ def init_func(layer): if isinstance(layer, TransformerEncoderLayer): is_usable = True if layer._config['bias_attr'] == False: logger.warning("`False` for paddle.nn.TransformerEncoder's" \ " parameter `bias_attr` is not supported in " \ "FasterTransformer by now. The original forward" \ " will be involved.") is_usable = False if layer._config['activation'] not in ('relu', 'gelu'): logger.warning("Only 'relu' or 'gelu' is supported by now. " \ "The original forward will be involved.") is_usable = False if is_usable: layer.forward = layer._ft_forward elif isinstance(layer, TransformerEncoder): layer.forward = layer._ft_forward if use_fp16: convert_to_fp16(layer) if not self.training: if need_build: try: load("FasterTransformer", verbose=True) except Exception: logger.warning( "Exception occurs when using FasterTransformer. " \ "The original forward will be involved. ") return self for layer in self.children(): layer.apply(init_func) return self
5,345,916
def func(*x): """ Compute the function to minimise. Vector reshaped for more readability. """ res = 0 x = np.array(x) x = x.reshape((n, 2)) for i in range(n): for j in range(i+1, n): (x1, y1), (x2, y2) = x[i, :], x[j, :] delta = (x2 - x1)**2 + (y2 - y1)**2 - distances[i, j]**2 res += delta**2 return res
5,345,917
def transform_target(target, classes=None): """ Accepts target value either single dimensional torch.Tensor or (int, float) :param target: :param classes: :return: """ if isinstance(target, torch.Tensor): if target.ndim == 1: target = target.item() if target.shape[0] == 1 else target if target.ndim == 0 and classes is None: return round(target.item(), 2) if target.shape[0] == 1 and type(classes) in (list, tuple) and classes: return classes[target] # Multi-label if target.shape[0] > 1 and type(classes) in (list, tuple) and classes: return ",".join([classes[index] for index, value in enumerate(target) if value]) elif isinstance(target, int) and classes: target = classes[target] return target
5,345,918
def test_delete_without_resource_typeerror(): """If entity= is not a Resource, create() should raise TypeError""" auth = mock_auth() base = Rest(auth) # Resource without change resource = Mock(Collection) assert_raises(TypeError, base.delete, resource)
5,345,919
def called_on_joined(): """ Loop sending the state of this machine using WAMP every x seconds. This function is executed when the client joins the router, which means it's connected and authenticated, ready to send WAMP messages. """ print("Connected") # Then we make a POST request to the server to notify it we are active # and to retrieve the configuration values for our client. response = requests.post('https://' + SERVER + ':8888/clients/', data={'ip': app._params['ip']}) if response.status_code == 200: app._params.update(response.json()) else: print("Could not retrieve configuration for client: {} ({})".format(response.reason, response.status_code)) # The we loop for ever. print("Entering stats loop ..") while True: print("Tick") try: # Every time we loop, we get the stats for our machine stats = {'ip': app._params['ip'], 'name': app._params['name']} stats.update(get_stats(app._params)) # If we are requested to send the stats, we publish them using WAMP. if not app._params['disabled']: app.session.publish('clientstats', stats) print("Stats published: {}".format(stats)) # Then we wait. Thanks to @inlineCallbacks, using yield means we # won't block here, so our client can still listen to WAMP events # and react to them. yield sleep(app._params['frequency']) except Exception as e: print("Error in stats loop: {}".format(e)) break
5,345,920
def toggle_display_backlight_brightness(low_brightness=12): """Reads Raspberry pi touch display's current brightness values from system file and toggles it between low and max (255) values depending on the current value. """ old = _get_current_display_backlight_brightness() # set to furthest away from current brightness if abs(old-low_brightness) < abs(old-HIGH_BRIGHTNESS): new = HIGH_BRIGHTNESS else: new = low_brightness set_display_backlight_brightness(new)
5,345,921
def merge_all_regions(out_path: str, id_regions: List[Tuple[int, File]]) -> Tuple[int, int, File]: """ Recursively merge a list of region files. """ if len(id_regions) == 1: # Base case 1. [(sample_id, region_file)] = id_regions return (sample_id, sample_id, region_file) elif len(id_regions) == 2: # Base case 2. [(sample1_id, region1_file), (sample2_id, region2_file)] = id_regions else: # Recursive case. k = find_midpoint(len(id_regions)) sample1_id, _, region1_file = merge_all_regions(out_path, id_regions[:k]) _, sample2_id, region2_file = merge_all_regions(out_path, id_regions[k:]) return ( sample1_id, sample2_id, merge_regions(out_path, sample1_id, region1_file, sample2_id, region2_file), )
5,345,922
def write_champ_file_geometry(filename, nucleus_num, nucleus_label, nucleus_coord): """Writes the geometry data from the quantum chemistry calculation to a champ v2.0 format file. Returns: None as a function value """ if filename is not None: if isinstance(filename, str): ## Write down a geometry file in the new champ v2.0 format filename_geometry = os.path.splitext("champ_v2_" + filename)[0]+'_geom.xyz' with open(filename_geometry, 'w') as file: file.write("{} \n".format(nucleus_num)) # header line printed below file.write("# Converted from the trexio file using trex2champ converter https://github.com/TREX-CoE/trexio_tools \n") for element in range(nucleus_num): file.write("{:5s} {: 0.6f} {: 0.6f} {: 0.6f} \n".format(nucleus_label[element], nucleus_coord[element][0], nucleus_coord[element][1], nucleus_coord[element][2])) file.write("\n") file.close() else: raise ValueError # If filename is None, return a string representation of the output. else: return None
5,345,923
def check_for_collision(sprite1: arcade.Sprite, sprite2: arcade.Sprite) -> bool: """Check for collision between two sprites. Used instead of Arcade's default implementation as we need a hack to return False if there is just a one pixel overlap, if it's not multiplayer... """ allowed_overlap = 0 if isinstance(sprite1, player.Player): if isinstance(sprite1.game, game.Game): allowed_overlap = 1 x_collision = ( sprite1.right - allowed_overlap > sprite2.left + allowed_overlap and sprite1.left + allowed_overlap < sprite2.right - allowed_overlap ) if not x_collision: return False return ( sprite1.top - allowed_overlap > sprite2.bottom + allowed_overlap and sprite1.bottom + allowed_overlap < sprite2.top - allowed_overlap )
5,345,924
def maybe_insert_input_equalization_observers_for_node( node: Node, equalization_qconfig: Any, model: torch.nn.Module, modules: Dict[str, torch.nn.Module], graph: Graph, node_name_to_target_dtype: Dict[str, Any], is_branch: bool, ) -> None: """ If `node` needs to be equalized, find the input/weight observers it needs in `equalization_qconfig`, creates them, and inserts it into `graph`. If `node` does not need an equalization observer, returns None. """ if equalization_qconfig is None or not node_supports_equalization(node, modules): return if is_branch: warnings.warn( f"Cannot equalize {node} because it is part of a branch." ) return new_args = [] for arg in node.args: if not isinstance(arg, Node) or node_arg_is_bias(node, arg): new_args.append(arg) continue is_weight = node_arg_is_weight(node, arg) act_eq_process_ctr = equalization_qconfig.weight if is_weight else \ equalization_qconfig.input_activation new_eq_obs_mod = act_eq_process_ctr() new_eq_obs_node = insert_observer( arg, new_eq_obs_mod, model, modules, graph) # set the type, so the next node can read it node_name_to_target_dtype[new_eq_obs_node.name] = node_name_to_target_dtype[arg.name] new_args.append(new_eq_obs_node) # assign the new args and kwargs to the node, inplace node.args = tuple(new_args)
5,345,925
def _bootstrap0(registry_client, executor_manager, store_client, store_command, release_store, formation): """Bootstrap the scheduler. The steps (and hops) we need to go through to get this up and running: 1. read the release manifest (release.yml) 2. create instances based on the release manifest. 3. deploy the _store instance. 4. when up and running, create formation in the _store. 5. deploy the rest of the instances. 6. hope for the best. """ data = os.getenv('RELEASE') if data: release = yaml.load(data) else: with open(os.path.join(os.path.dirname(__file__), '../release.yml')) as fp: release = yaml.load(fp) release['name'] = _INITIAL_RELEASE_NAME services = release['services'] insts = {name: _create(store_command, formation, name, _INITIAL_RELEASE_NAME, services[name]) for name in services if name != '_bootstrap'} executor = _select_executor(registry_client) _deploy_instance(executor_manager, insts['_store'], executor) # the instance is now up and running, so now we can do a proper # "assign". logging.info("waiting for _store to start ...") time.sleep(4) store_client.start() insts['_store'].update(state=store.Instance.STATE_RUNNING, assigned_to=executor) # write our release to the store. release_store.create(formation, _INITIAL_RELEASE_NAME, release) leader_lock = util.Lock(store_client, 'leader', 'bootstrapper') with leader_lock: _create_formation(store_command, insts.values()) for name, inst in insts.items(): if name != '_store': executor = _select_executor(registry_client) _deploy_instance(executor_manager, inst, executor) inst.update(state=store.Instance.STATE_RUNNING, assigned_to=executor) logging.info("done! scheduler should be up and running!")
5,345,926
def test_equality_numpy_scalar(): """ A regression test to ensure that numpy scalars are correctly compared (which originally failed due to the lack of ``__array_priority__``). """ assert 10 != 10. * u.m assert np.int64(10) != 10 * u.m assert 10 * u.m != np.int64(10)
5,345,927
def modify_color(hsbk, **kwargs): """ Helper function to make new colors from an existing color by modifying it. :param hsbk: The base color :param hue: The new Hue value (optional) :param saturation: The new Saturation value (optional) :param brightness: The new Brightness value (optional) :param kelvin: The new Kelvin value (optional) """ return hsbk._replace(**kwargs)
5,345,928
def train_val_test_split(df, train_p=0.8, val_p=0.1, state=1, shuffle=True): """Wrapper to split data into train, validation, and test sets. Parameters ----------- df: pd.DataFrame, np.ndarray Dataframe containing features (X) and labels (y). train_p: float Percent of data to assign to train set. val_p: float Percent of data to assign to validation set. state: int or None Int will make the split repeatable. None will give a different random split each time. shuffle: bool If True, randomly shuffle the data before splitting. """ test_p = 1 - val_p / (1 - train_p) train, val = train_test_split(df, train_size=train_p, shuffle=shuffle, random_state=state) test = None if not np.isclose(test_p, 0): val, test = train_test_split(val, test_size=test_p, random_state=state) return train, val, test
5,345,929
def add_logs_to_table_heads(max_logs): """Adds log headers to table data depending on the maximum number of logs from trees within the stand""" master = [] for i in range(2, max_logs + 1): for name in ['Length', 'Grade', 'Defect']: master.append(f'Log {i} {name}') if i < max_logs: master.append('Between Logs Feet') return master
5,345,930
def stations_at_risk(stations, level): """Returns a list of tuples, (station, risk_level) for all stations with risk above level""" level = risk_level(level) stations = [(i, station_flood_risk(i)) for i in stations] return [i for i in stations if risk_level(i[1]) >= level]
5,345,931
def try_to_acquire_archive_contents(pull_from: str, extract_to: Path) -> bool: """Try to acquire the contents of the archive. Priority: 1. (already extracted) local contents 2. adress-specified (local|remote) archive through fsspec Returns: True if success_acquisition else False """ # validation if extract_to.is_file(): msg = f"contents ({str(extract_to)}) should be directory or empty, but it is file." raise RuntimeError(msg) # contents directory already exists. if extract_to.exists(): return True else: file_system: fsspec.AbstractFileSystem = fsspec.filesystem(get_protocol(pull_from)) # todo: get_protocol with cache archive_exists = file_system.exists(pull_from) archive_is_file = file_system.isfile(pull_from) # No corresponding archive. Failed to acquire. if not archive_exists: return False else: # validation if not archive_is_file: msg = f"Archive ({pull_from}) should be file or empty, but is directory." raise RuntimeError(msg) # A dataset file exists, so pull and extract. pull_from_with_cache = f"simplecache::{pull_from}" extract_to.mkdir(parents=True, exist_ok=True) print("Accessing the archive in the adress...") with fsspec.open(pull_from_with_cache, "rb") as archive: with NamedTemporaryFile("ab") as tmp: print("Reading the archive in the adress...") while True: # Read every 100 MB for large corpus. d = archive.read(100*1000*1000) if d: tmp.write(d) else: break tmp.seek(0) print("Read.") print("Extracting...") extract_archive(tmp.name, str(extract_to)) print("Extracted.") return True
5,345,932
def unproxy(proxy): """Return a new copy of the original function of method behind a proxy. The result behaves like the original function in that calling it does not trigger compilation nor execution of any compiled code.""" if isinstance(proxy, types.FunctionType): return _psyco.unproxycode(proxy.func_code) if isinstance(proxy, types.MethodType): f = unproxy(proxy.im_func) return new.instancemethod(f, proxy.im_self, proxy.im_class) raise TypeError, "%s objects cannot be proxies" % type(proxy).__name__
5,345,933
def get_measured_attribute(data_model, metric_type: str, source_type: str) -> Optional[str]: """Return the attribute of the entities of a source that are measured in the context of a metric. For example, when using Jira as source for user story points, the points of user stories (the source entities) are summed to arrive at the total number of user story points. """ attribute = ( data_model["sources"].get(source_type, {}).get("entities", {}).get(metric_type, {}).get("measured_attribute") ) return str(attribute) if attribute else attribute
5,345,934
def collect_app_manager_information(ID_person, subtitle): """ Method that is able to collect data and call personal information page constructor :param ID_person: id inserted by the app manager """ # no integer or empty try: ID = int(ID_person) except ValueError: canvas.itemconfig(subtitle, text="The following field must be fulfilled with a number", fill="red") canvas.coords(subtitle, 160, 363) return global session global personal_information find_person_by_ID(session, ID) # id is not link to any person (also negative ) if len(personal_information) < 3: canvas.itemconfig(subtitle, text="The following field must be fulfilled with an existing ID", fill="red") canvas.coords(subtitle, 140, 363) return canvas.delete("all") global button_list for x in button_list: x.destroy() global entry_list for x in entry_list: x.destroy() entry_list = [] button_list = [] create_add_ct()
5,345,935
def get_one_frame_stack_dynamic(sp, idx): """ for a given sp and index number in a dynamic caller operand_stack data, return its data type and value. Note, at runtime, caller.operand_stack is dynamic, sp, idx, types and values are all changing during the run time. """ if idx > sp: return None, None # get the caller.operand_stack length length = None try: buffer = m_util.gdb_exec_to_str('p func.operand_stack.size()') except: return None, None if buffer[0] != '$': return None, None if ' = ' in buffer: try: length = int(buffer.split(' = ')[1]) except: return None, None else: return None, None if m_debug.Debug: m_debug.dbg_print("length=", length) if length <= sp or length < idx: return None, None try: maple_type = m_util.gdb_exec_to_str('p func.operand_stack[' + str(idx) + '].ptyp') except: return None, None maple_type = maple_type.split(' = ')[1].split('maple::PTY_')[1].rstrip() try: buffer = m_util.gdb_exec_to_str('p func.operand_stack[' + str(idx) + ']') except: return None, None value = buffer.split('x = ')[1][1:].split('}')[0] if maple_type in value: v = value.split(maple_type + ' = ')[1].split(',')[0] else: return None, None if m_debug.Debug: m_debug.dbg_print("return maple_type=", maple_type, "v=", v) return maple_type, v
5,345,936
def getIntArg(arg, optional=False): """ Similar to "getArg" but return the integer value of the arg. Args: arg (str): arg to get optional (bool): argument to get Returns: int: arg value """ return(int(getArg(arg, optional)))
5,345,937
def erase_all_simulators(path=None): """Erases all simulator devices. Args: path: (str) A path with simulators """ command = ['xcrun', 'simctl'] if path: command += ['--set', path] LOGGER.info('Erasing all simulators from folder %s.' % path) else: LOGGER.info('Erasing all simulators.') try: subprocess.check_call(command + ['erase', 'all']) except subprocess.CalledProcessError as e: # Logging error instead of throwing so we don't cause failures in case # this was indeed failing to clean up. message = 'Failed to erase all simulators. Error: %s' % e.output LOGGER.error(message)
5,345,938
def test_sync_bulk(mocker): """Test the hubspot bulk sync function""" mock_request = mocker.patch("hubspot.tasks.send_hubspot_request") profile = ProfileFactory.create() sync_bulk_with_hubspot([profile.user], make_contact_sync_message, "CONTACT") mock_request.assert_called_once()
5,345,939
def get_in_with_default(keys: Iterable, default): """`get_in` function, returning `default` if a key is not there. >>> get_in_with_default(["a", "b", 1], 0)({"a": {"b": [0, 1, 2]}}) 1 >>> get_in_with_default(["a", "c", 1], 0)({"a": {"b": [0, 1, 2]}}) 0 """ getter = get_in(keys) def get_in_with_default(x): try: return getter(x) except (KeyError, IndexError, TypeError): return default return get_in_with_default
5,345,940
def conv_HSV2BGR(hsv_img): """HSV画像をBGR画像に変換します。 Arguments: hsv_img {numpy.ndarray} -- HSV画像(3ch) Returns: numpy.ndarray -- BGR画像(3ch) """ V = hsv_img[:, :, 2] C = hsv_img[:, :, 1] H_p = hsv_img[:, :, 0] / 60 X = C * (1 - np.abs(H_p % 2 - 1)) Z = np.zeros_like(C) vals = [[Z, X, C], [Z, C, X], [X, C, Z], [C, X, Z], [C, Z, X], [X, Z, C]] bgr_img = np.zeros_like(hsv_img) for i in range(6): idx = (i <= H_p) * (H_p < (i + 1)) bgr_img[:, :, 0][idx] = (V - C)[idx] + vals[i][0][idx] bgr_img[:, :, 1][idx] = (V - C)[idx] + vals[i][1][idx] bgr_img[:, :, 2][idx] = (V - C)[idx] + vals[i][2][idx] return (bgr_img * 255).astype(np.uint8)
5,345,941
def remap(tensor, map_x, map_y, align_corners=False): """ Applies a generic geometrical transformation to a tensor. """ if not tensor.shape[-2:] == map_x.shape[-2:] == map_y.shape[-2:]: raise ValueError("Inputs last two dimensions must match.") batch_size, _, height, width = tensor.shape # grid_sample need the grid between -1/1 map_xy = torch.stack([map_x, map_y], dim=-1) map_xy_norm = normalize_pixel_coordinates(map_xy, height, width) # simulate broadcasting since grid_sample does not support it map_xy_norm = map_xy_norm.expand(batch_size, -1, -1, -1) # warp ans return tensor_warped = F.grid_sample(tensor, map_xy_norm, align_corners=align_corners) return tensor_warped
5,345,942
def run_zero_filled_sense(args, data_loader): """ Run Adjoint (zero-filled SENSE) reconstruction """ logging.info('Run zero-filled SENSE reconstruction') logging.info(f'Arguments: {args}') reconstructions = defaultdict(list) with torch.no_grad(): for sample in tqdm(iter(data_loader)): sample = data_batch._read_data(sample) rec_x = sample['attrs']['metadata']['rec_x'] rec_y = sample['attrs']['metadata']['rec_y'] x = sample['input'] recons = postprocess(x, (rec_x, rec_y)) # mask background using background mean value if args.mask_bg: fg_mask = center_crop( sample['fg_mask'], (rec_x, rec_y), ).squeeze(1) if args.use_bg_noise_mean: bg_mean = sample['input_rss_mean'].reshape(-1, 1, 1) recons = recons * fg_mask + (1 - fg_mask) * bg_mean else: recons = recons * fg_mask # renormalize norm = sample['attrs']['norm'].numpy()[:, np.newaxis, np.newaxis] recons = recons.numpy() * norm for bidx in range(recons.shape[0]): reconstructions[sample['fname']].append( (sample['slidx'][bidx], recons[bidx]) ) reconstructions = { fname: np.stack([pred for _, pred in sorted(slice_preds)]) for fname, slice_preds in reconstructions.items()} save_reconstructions(reconstructions, args.out_dir)
5,345,943
def main(): """Parameter handling main method.""" parser = argparse.ArgumentParser(description="Mel spectrograph using librosa.") parser.add_argument("-f", "--filename", type=str, help="mp3 or wav file to analyze") parser.add_argument("--full_mel", action="store_true", help="full mel spectrograph") parser.add_argument("--split_mel", action="store_true", help="per source mel spectrograph") args = vars(parser.parse_args()) filename = args["filename"] if filename is not None: print(f"Filename: {filename}") # y = loaded audio as waveform # sr = sampling rate y, sr = librosa.load(filename, sr=44100) if args["full_mel"]: mel_spectrograph(y, sr) if args["split_mel"]: _, _ = mel_spectrograph_by_source(y, sr)
5,345,944
def AutoRegression(df_input, target_column, time_column, epochs_to_forecast=1, epochs_to_test=1, hyper_params_ar={}): """ This function performs regression using feature augmentation and then training XGB with Crossvalidation. Parameters: - df_input (pandas.DataFrame): Input Time Series. - target_column (str): name of the column containing the target feature - time_column (str): name of the column containing the pandas Timestamps - frequency_data (str): string representing the time frequency of record, e.g. "h" (hours), "D" (days), "M" (months) - epochs_to_forecast (int): number of steps for predicting future data - epochs_to_test (int): number of steps corresponding to most recent records to test on - hyper_params_ar: Parameters of AR model Returns: - df_output (pandas.DataFrame): Output DataFrame with forecast """ # create and evaluate an updated autoregressive model # load dataset input_series = df_input[:-(epochs_to_forecast+epochs_to_test)].set_index(time_column, 1)[target_column] # split dataset model = ar_select_order(input_series, **hyper_params_ar) for hyp_param in ["maxlag","glob","ic"]: if hyp_param in hyper_params_ar.keys(): del hyper_params_ar[hyp_param] model = AutoReg(input_series, lags=model.ar_lags, **hyper_params_ar) res = model.fit() print(res.summary()) #start_idx = df_input[:-(epochs_to_forecast+epochs_to_test)][time_column].max() start_idx = df_input[-(epochs_to_forecast+epochs_to_test):][time_column].min() end_idx = df_input[-(epochs_to_forecast+epochs_to_test):][time_column].max() # ============================================================================= # ### for statsmodels< 0.12.0 # #forecast_steps = model.predict(res.params, start=start_idx, end=end_idx, dynamic=True) # forecast = df_input[target_column] * np.nan # forecast[-(epochs_to_forecast+epochs_to_test):] = forecast_steps # df_output = df_input.copy() # df_output["forecast"] = forecast # df_output["forecast_up"] = forecast * 1.1 # df_output["forecast_low"] = forecast * 0.9 # ============================================================================= ### for statsmodels>= 0.12.0 forecast_steps = res.get_prediction(start=start_idx, end=end_idx) forecast_steps_mean = forecast_steps.predicted_mean forecast_steps_low = forecast_steps.conf_int()["lower"] forecast_steps_up = forecast_steps.conf_int()["upper"] forecast = df_input[target_column] * np.nan forecast_low = df_input[target_column] * np.nan forecast_up = df_input[target_column] * np.nan forecast[-(epochs_to_forecast+epochs_to_test):] = forecast_steps_mean forecast_low[-(epochs_to_forecast+epochs_to_test):] = forecast_steps_low forecast_up[-(epochs_to_forecast+epochs_to_test):] = forecast_steps_up df_output = df_input.copy() df_output["forecast"] = forecast df_output["forecast_low"] = forecast_low df_output["forecast_up"] = forecast_up return df_output
5,345,945
def VMACD(prices, timeperiod1=12, timeperiod2=26, timeperiod3=9): """ 39. VMACD量指数平滑异同移动平均线 (Vol Moving Average Convergence and Divergence,VMACD) 说明: 量平滑异同移动平均线(VMACD)用于衡量量能的发展趋势,属于量能引趋向指标。 MACD称为指数平滑异同平均线。分析的数学公式都是一样的,只是分析的物理量不同。 VMACD对成交量VOL进行分析计算,而MACD对收盘价CLOSE进行分析计算。 计算方法: SHORT=EMA(VOL,N1) LONG=EMA(VOL,N2) DIFF=SHORT-LONG DEA=EMA(DIFF,M) VMACD=DIFF-DEA 通常N1=12,N2=26,M=9 :param prices: :param timeperiod1: N1 :param timeperiod2: N2 :param timeperiod3: N3 :return: """ assert prices is not None timeperiod = max(timeperiod1, timeperiod2, timeperiod3) _assert_greater_or_equal(len(prices), timeperiod) assert isinstance(timeperiod1, int) assert isinstance(timeperiod2, int) assert isinstance(timeperiod3, int) df_price = prices.copy() df_price = df_price.sort_index(ascending=True) EMA = ta.EMA short = EMA(df_price['volume'].values.astype(float), timeperiod1) long = EMA(df_price['volume'].values.astype(float), timeperiod2) diff = short - long dea = EMA(diff, timeperiod3) vmacd = diff - dea df_price['VMACD'] = vmacd return df_price['VMACD']
5,345,946
def try_compress_numbers_to_range(elements): """ Map the "number" attribute of any element in `elements` to the most compact range possible (starting from 1). If the resulting numbers are within [MIN_RANGE, MAX_RANGE], return True, otherwise, return False. If it is not possible to obtain a mapping within [MIN_RANGE, MAX_RANGE], the number attributes not modified. """ numbers = set(int(e.get('number')) for e in elements) if len(numbers) <= ((MAX_RANGE - MIN_RANGE) + 1): actual_nrs = sorted(numbers) ideal_nrs = range(MIN_RANGE, MIN_RANGE + len(numbers)) if np.any(np.array(actual_nrs) != np.array(ideal_nrs)): nr_map = dict(zip(actual_nrs, ideal_nrs)) LOGGER.debug(u'compressing number range {}' .format(', '.join(u'{} → {}'.format(k, v) for k, v in nr_map.items()))) for e in elements: old_nr = int(e.get('number')) new_nr = nr_map[old_nr] e.set('number', str(new_nr)) all_within_range = True else: all_within_range = False return all_within_range
5,345,947
def merge_all_mods(list_of_mods, gfx=None): """Merges the specified list of mods, starting with graphics if set to pre-merge (or if a pack is specified explicitly). Params: list_of_mods a list of the names of mods to merge gfx a graphics pack to be merged in Returns: A list of status ints for each mod given: -1: Unmerged 0: Merge was successful, all well 1: Potential compatibility issues, no merge problems 2: Non-fatal error, overlapping lines or non-existent mod etc 3: Fatal error, not returned (rebuilds to previous, rest unmerged) """ from . import graphics clear_temp() if gfx: add_graphics(gfx) elif will_premerge_gfx(): add_graphics(graphics.current_pack()) ret_list = [] for i, mod in enumerate(list_of_mods): status = merge_a_mod(mod) ret_list.append(status) if status == 3: log.i('Mod {}, in {}, could not be merged.'.format( mod, str(list_of_mods))) merged = merge_all_mods(list_of_mods[:i-1], gfx) return merged + [-1]*len(list_of_mods[i:]) return ret_list
5,345,948
def pearson_r_p_value(a, b, dim): """ 2-tailed p-value associated with pearson's correlation coefficient. Parameters ---------- a : Dataset, DataArray, GroupBy, Variable, numpy/dask arrays or scalars Mix of labeled and/or unlabeled arrays to which to apply the function. b : Dataset, DataArray, GroupBy, Variable, numpy/dask arrays or scalars Mix of labeled and/or unlabeled arrays to which to apply the function. dim : str The dimension to apply the correlation along. Returns ------- Single value or tuple of Dataset, DataArray, Variable, dask.array.Array or numpy.ndarray, the first type on that list to appear on an input. 2-tailed p-value. See Also -------- scipy.stats.pearsonr xarray.apply_unfunc """ return xr.apply_ufunc(_pearson_r_p_value, a, b, input_core_dims=[[dim], [dim]], kwargs={'axis': -1})
5,345,949
def get_ceilometer_usages(date, connection_string): """ Function which talks with openstack """ today = datetime.datetime.combine(date, datetime.datetime.min.time()) yesterday = today - datetime.timedelta(days=1) engine = create_engine(connection_string) connection = engine.connect() query = CEILOMETER_QUERY.format( from_ts=time.mktime(yesterday.timetuple()), to_ts=time.mktime(today.timetuple()) ) return connection.execute(query)
5,345,950
def _do_artifact_mapping(query_definition, event_message, metadata, response, res_client, context_token, additional_map_data=None): """ Map query results to new artifact and add to Resilient """ incident = event_message.get("incident", {}) incident_id = incident.get("id") if not response: return existing_artifacts = [_artifact_key(artifact) for artifact in _get_artifacts(incident_id, res_client)] LOG.debug(u"Existing Artifacts:\n%s", u"\n".join(existing_artifacts)) if query_definition.result_container: # Create an artifact for each query result row for row in response: for artifact_template in query_definition.artifact_mapping: mapdata = {"result": row} # Add in any query result metadata mapdata.update(metadata) if additional_map_data: mapdata.update(additional_map_data) artifact = template_functions.render_json(artifact_template, mapdata) if artifact.get("value") and _unique_artifact(artifact, existing_artifacts): _add_artifact(res_client, incident_id, artifact, context_token) existing_artifacts.append(_artifact_key(artifact)) else: # Create a single artifact from the query result for artifact_template in query_definition.artifact_mapping: artifact = template_functions.render_json(artifact_template, response) if artifact.get("value") and _unique_artifact(artifact, existing_artifacts): _add_artifact(res_client, incident_id, artifact, context_token) existing_artifacts.append(_artifact_key(artifact))
5,345,951
def fit_kij(kij_bounds, eos, mix, datavle=None, datalle=None, datavlle=None, weights_vle=[1., 1.], weights_lle=[1., 1.], weights_vlle=[1., 1., 1., 1.], minimize_options={}): """ fit_kij: attemps to fit kij to VLE, LLE, VLLE Parameters ---------- kij_bounds : tuple bounds for kij correction eos : function cubic eos to fit kij for qmr mixrule mix: object binary mixture datavle: tuple, optional (Xexp, Yexp, Texp, Pexp) datalle: tuple, optional (Xexp, Wexp, Texp, Pexp) datavlle: tuple, optional (Xexp, Wexp, Yexp, Texp, Pexp) weights_vle: list or array_like, optional weights_vle[0] = weight for Y composition error, default to 1. weights_vle[1] = weight for bubble pressure error, default to 1. weights_lle: list or array_like, optional weights_lle[0] = weight for X (liquid 1) composition error, default to 1. weights_lle[1] = weight for W (liquid 2) composition error, default to 1. weights_vlle: list or array_like, optional weights_vlle[0] = weight for X (liquid 1) composition error, default to 1. weights_vlle[1] = weight for W (liquid 2) composition error, default to 1. weights_vlle[2] = weight for Y (vapor) composition error, default to 1. weights_vlle[3] = weight for equilibrium pressure error, default to 1. minimize_options: dict Dictionary of any additional spefication for scipy minimize_scalar Returns ------- fit : OptimizeResult Result of SciPy minimize """ fit = minimize_scalar(fobj_kij, kij_bounds, args=(eos, mix, datavle, datalle, datavlle, weights_vle, weights_lle, weights_vlle), **minimize_options) return fit
5,345,952
def pickle_photospheres(photosphere_filenames, kind, meta=None): """ Load all model photospheres, parse the points and photospheric structures. """ if meta is None: meta = { "kind": kind, "source_directory": os.path.dirname(photosphere_filenames[0]) } elif not isinstance(meta, dict): raise TypeError("meta must be a dictionary or None") # Get the names from the first filename parsers = { "marcs": marcs, "castelli/kurucz": castelli_kurucz } try: parser = parsers[kind.lower()] except KeyError: raise ValueError("don't recognise photosphere kind '{0}'; available kinds" " are {1}".format(kind, ", ".join(parsers.keys()))) _, parameter_names = parser.parse_filename(photosphere_filenames[0], True) # Get the parameters of all the points parameters = np.core.records.fromrecords( map(parser.parse_filename, photosphere_filenames), names=parameter_names) # Verify there are no duplicates. array_view = parameters.view(float).reshape(parameters.size, -1) _ = np.ascontiguousarray(array_view).view(np.dtype((np.void, array_view.dtype.itemsize * array_view.shape[1]))) _, idx = np.unique(_, return_index=True) if idx.size != parameters.size: raise ValueError("{} duplicate stellar parameters found".format( parameters.size - idx.size)) # Now sort the array by the left most columns. Keep track of the indices # because we will load the photospheres in this order. i = np.argsort(parameters, order=parameter_names) parameters = parameters[i] _, photosphere_columns = parser.parse_photospheric_structure( photosphere_filenames[0], full_output=True) d = np.array([parser.parse_photospheric_structure(photosphere_filenames[_]) \ for _ in i]) return (parameters, d, photosphere_columns, meta)
5,345,953
def get_pid_and_server(): """Find process id and name of server the analysis is running on Use the platform.uname to find servername instead of os.uname because the latter is not supported on Windows. """ pid = os.getpid() server = platform.uname().node return f"{pid}@{server}"
5,345,954
def cal_embedding(sents, model_path, word_idx, mode='mean'): """Calculate the embedding for each sentence Args: sents (list): a list of sentences model_path (str): keras model path word_idx (dict): a dictionary of mapping between words and indices mode (str): current support mean and concatenate word vectors """ # check the mode if mode not in ['mean', 'concatenate']: print('Only mean and concatenate are allowed currently!') sys.exit(0) # get weights of embedding layer from the model from keras.models import load_model k_model = load_model(model_path) embd_weights = k_model.layers[0].get_weights()[0] # loop through the sentences to calculate embedding for each sentence for sent in sents: sent = sent.strip() if len(sent) < 1: # control the length of sentences continue # simple tokenization by whitespace idx_list = [word_idx.get(word.strip().lower(), -1) for word in sent.split(' ') if len(word.strip()) > 0] # calculate embeddings sent_embedding = [] if mode == 'mean': for tmp_idx in idx_list: if tmp_idx == -1 or tmp_idx > len(embd_weights) - 1: sent_embedding.append(list(np.zeros(len(embd_weights[0])))) else: sent_embedding.append(embd_weights[tmp_idx]) sent_embedding = np.mean(sent_embedding, axis=0) elif mode == 'concatenate': for tmp_idx in idx_list: if tmp_idx == -1 or tmp_idx > len(embd_weights) - 1: sent_embedding.extend(list(np.zeros(len(embd_weights[0])))) else: sent_embedding.extend(embd_weights[tmp_idx]) yield sent_embedding
5,345,955
def MemGetSize(BlockID): """ Returns the size of a memory block (Also useful for determining if a memory block already exists Output: Returns the size of the memory block. Returns 0 if data block could not be found. """ pass
5,345,956
def calc_ac_score(labels_true, labels_pred): """calculate unsupervised accuracy score Parameters ---------- labels_true: labels from ground truth labels_pred: labels form clustering Return ------- ac: accuracy score """ nclass = len(np.unique(labels_true)) labels_size = len(labels_true) mat = labels_size * np.ones((nclass, nclass)) idx = 0 for i in range(labels_size): mat[labels_pred[i], labels_true[i]] -= 1.0 munkres = Munkres() mapping = munkres.compute(mat) ac = 0.0 for i in range(labels_size): val = mapping[labels_pred[i]][1] if val == labels_true[i]: ac += 1.0 ac = ac / labels_size return ac
5,345,957
def main(**kwargs): """Update info in AWS_EC2 and AWS_IP redis-helper collections""" if kwargs['all'] is True: for profile in get_profiles(): ec2 = EC2(profile) ec2.update_collection() else: ec2 = EC2(kwargs['profile']) ec2.update_collection() if kwargs['non_interactive'] is not True: ih.start_ipython(ec2=AWS_EC2, ip=AWS_IP)
5,345,958
def wave_ode_gamma_neq0(t, X, *f_args): """ Right hand side of the wave equation ODE when gamma > 0 """ C = f_args[0] D = f_args[1] CD = C*D x, y, z = X return np.array([-(1./(1.+y) + CD)*x + C*(1+D*CD)*(z-y), x, CD*(z-y)])
5,345,959
def populate_daily_metrics_for_site(site_id, date_for, force_update=False): """Collect metrics for the given site and date """ try: site = Site.objects.get(id=site_id) except Site.DoesNotExist as e: msg = ('{prefix}:SITE:FAIL:populate_daily_metrics_for_site:site_id: ' '{site_id} does not exist') logger.exception(msg.format(prefix=FPD_LOG_PREFIX, site_id=site_id)) raise e for course_id in site_course_ids(site): try: populate_single_cdm(course_id=course_id, date_for=date_for, force_update=force_update) except Exception as e: # pylint: disable=broad-except msg = ('{prefix}:SITE:COURSE:FAIL:populate_daily_metrics_for_site.' ' site_id:{site_id}, date_for:{date_for}. course_id:{course_id}' ' exception:{exception}') logger.exception(msg.format(prefix=FPD_LOG_PREFIX, site_id=site_id, date_for=date_for, course_id=str(course_id), exception=e)) populate_single_sdm(site_id=site.id, date_for=date_for, force_update=force_update)
5,345,960
def run_workflow( config: Dict, form_data: ImmutableMultiDict, *args, **kwargs ) -> Dict: """Executes workflow and save info to database; returns unique run id.""" # Validate data and prepare run environment form_data_dict = __immutable_multi_dict_to_nested_dict( multi_dict=form_data ) __validate_run_workflow_request(data=form_data_dict) __check_service_info_compatibility(data=form_data_dict) document = __init_run_document(data=form_data_dict) document = __create_run_environment( config=config, document=document, **kwargs ) # Start workflow run in background __run_workflow( config=config, document=document, **kwargs ) response = {'run_id': document['run_id']} return response
5,345,961
def insertion_stack(nums: List[int]) -> List[int]: """ A helper function that sort the data in an ascending order Args: nums: The original data Returns: a sorted list in ascending order """ left = [] right = [] for num in nums: while left and left[-1] > num: right.append(left.pop()) left.append(num) while right: left.append(right.pop()) return left
5,345,962
def svn_wc_get_pristine_contents(*args): """svn_wc_get_pristine_contents(char const * path, apr_pool_t result_pool, apr_pool_t scratch_pool) -> svn_error_t""" return _wc.svn_wc_get_pristine_contents(*args)
5,345,963
def _FindAllPossibleBrowsers(finder_options, android_platform): """Testable version of FindAllAvailableBrowsers.""" if not android_platform: return [] possible_browsers = [] if finder_options.webview_embedder_apk and not os.path.exists( finder_options.webview_embedder_apk): raise exceptions.PathMissingError( 'Unable to find apk specified by --webview-embedder-apk=%s' % finder_options.browser_executable) # Add the exact APK if given. if _CanPossiblyHandlePath(finder_options.browser_executable): if not os.path.exists(finder_options.browser_executable): raise exceptions.PathMissingError( 'Unable to find exact apk specified by --browser-executable=%s' % finder_options.browser_executable) package_name = apk_helper.GetPackageName(finder_options.browser_executable) try: backend_settings = next( b for b in ANDROID_BACKEND_SETTINGS if b.package == package_name) except StopIteration: raise exceptions.UnknownPackageError( '%s specified by --browser-executable has an unknown package: %s' % (finder_options.browser_executable, package_name)) possible_browsers.append(PossibleAndroidBrowser( 'exact', finder_options, android_platform, backend_settings, finder_options.browser_executable)) # Add the reference build if found. os_version = dependency_util.GetChromeApkOsVersion( android_platform.GetOSVersionName()) arch = android_platform.GetArchName() try: reference_build = binary_manager.FetchPath( 'chrome_stable', arch, 'android', os_version) except (binary_manager.NoPathFoundError, binary_manager.CloudStorageError): reference_build = None if reference_build and os.path.exists(reference_build): # TODO(aiolos): how do we stably map the android chrome_stable apk to the # correct backend settings? possible_browsers.append(PossibleAndroidBrowser( 'reference', finder_options, android_platform, android_browser_backend_settings.ANDROID_CHROME, reference_build)) # Add any other known available browsers. for settings in ANDROID_BACKEND_SETTINGS: p_browser = PossibleAndroidBrowser( settings.browser_type, finder_options, android_platform, settings) if p_browser.IsAvailable(): possible_browsers.append(p_browser) return possible_browsers
5,345,964
def test_populate_intended_for(tmpdir, folder, expected_prefix, simulation_function): """ Test populate_intended_for. Parameters: ---------- tmpdir folder : str or os.path path to BIDS study to be simulated, relative to tmpdir expected_prefix : str expected start of the "IntendedFor" elements simulation_function : function function to create the directory tree and expected results """ session_folder = op.join(str(tmpdir), folder) session_struct, expected_result, _, _ = simulation_function(session_folder) populate_intended_for(session_folder, matching_parameters='Shims', criterion='First') # Now, loop through the jsons in the fmap folder and make sure it matches # the expected result: fmap_folder = op.join(session_folder, 'fmap') for j in session_struct['fmap'].keys(): if j.endswith('.json'): assert j in expected_result.keys() data = load_json(op.join(fmap_folder, j)) if expected_result[j]: assert data['IntendedFor'] == expected_result[j] # Also, make sure the run with random shims is not here: # (It is assured by the assert above, but let's make it # explicit) run_prefix = j.split('_acq')[0] assert '{p}_acq-unmatched_bold.nii.gz'.format(p=run_prefix) not in data['IntendedFor'] else: assert 'IntendedFor' not in data.keys()
5,345,965
def getLanguageSpecification(lang): """ Return a dictionary which contains the specification of a language. Specifically, return the key-value pairs defined in the 'lang.yaml' file as a dictionary, i.e. for the language cpp return the contents of 'plugins/cpp/lang.yaml'. Raise an IOError if the 'lang.yaml' file does not exist. Arguments: lang -- the name of the language """ dirPath = '/'.join([os.path.dirname(__file__), PLUGIN_PATH, lang]) if not exists(dirPath): print('ERROR:', dirPath, 'dir not found.') raise IOError() filePath = '/'.join([dirPath, 'lang.yaml']) if not exists(filePath): print('ERROR: lang.yaml file not found for language', lang) raise IOError() return yaml.load(open(filePath).read().strip())
5,345,966
def run_migrations_online(): """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ with engine().connect() as connection: context.configure(connection=connection, target_metadata=target_metadata) with context.begin_transaction(): context.run_migrations()
5,345,967
def _is_valid_file(file): """Returns whether a file is valid. This means that it is a file and not a directory, but also that it isn't an unnecessary dummy file like `.DS_Store` on MacOS. """ if os.path.isfile(file): if not file.startswith('.git') and file not in ['.DS_Store']: return True return False
5,345,968
def create_cache_key(func, key_dict=None, self=None): """Get a cache namespace and key used by the beaker_cache decorator. Example:: from tg import cache from tg.caching import create_cache_key namespace, key = create_cache_key(MyController.some_method) cache.get_cache(namespace).remove(key) """ kls = None imfunc = im_func(func) if imfunc: kls = im_class(func) func = imfunc cache_key = func.__name__ else: cache_key = func.__name__ if key_dict: cache_key += " " + " ".join("%s=%s" % (k, v) for k, v in key_dict.items()) if not kls and self: kls = getattr(self, '__class__', None) if kls: return '%s.%s' % (kls.__module__, kls.__name__), cache_key else: return func.__module__, cache_key
5,345,969
def longest_common_substring(s, t): """ Find the longest common substring between the given two strings :param s: source string :type s: str :param t: target string :type t: str :return: the length of the longest common substring :rtype: int """ if s == '' or t == '': return 0 f = [[0 for _ in range(len(t) + 1)] for _ in range(len(s) + 1)] for i in range(len(s)): for j in range(len(t)): if s[i] == t[j]: f[i + 1][j + 1] = f[i][j] + 1 return max(map(max, f))
5,345,970
def add_cutoff_freqs(ax, mode, arrow_dir, y_max, c_L, c_S, plt_kwargs={'color': 'k', 'ls': '--', 'lw': 0.5}): """Add vertical lines indicating cutoff frequencies to a matplotlib axes object. Parameters ---------- ax : axes Matplotlib axes in which the plot will be added. mode : str Mode to plot. Can be "A0", "A1", "A2", ..., "An" or "S0", "S1", "S2", ..., "Sn", with 'n' being the order of the corresponding mode. arrow_dir : str Set arrows' direction in the plot. Can be 'up' (for group velocity plots) or 'down' (for phase velocity plots). y_max : float Maximum y value in the plot. Used to position arrows in phase velocity plots. c_L : float Longitudinal wave velocity of the material, in m/s. c_S: float Shear wave velocity of the material, in m/s. plt_kwargs : dict, optional Matplotlib kwargs (to change color, linewidth, linestyle, etc.). """ if arrow_dir == 'down': arrow_y_pos = y_max arrow_str = r'$\downarrow$' arrow_va = 'top' elif arrow_dir == 'up': arrow_y_pos = 0 arrow_str = r'$\uparrow$' arrow_va = 'bottom' n = int(mode[1:]) + 1 ax.axvline(x = n*c_S if mode[0] == 'S' else n*c_L, **plt_kwargs) ax.text(x = n*c_S if mode[0] == 'S' else n*c_L, y=arrow_y_pos, s=arrow_str, va=arrow_va, ha='center', clip_on=True) if n % 2 != 0: ax.axvline(x = n*c_L/2 if mode[0] == 'S' else n*c_S/2, **plt_kwargs) ax.text(x = n*c_L/2 if mode[0] == 'S' else n*c_S/2, y=arrow_y_pos, s=arrow_str, va=arrow_va, ha='center', clip_on=True)
5,345,971
def pytest_addoption(parser): """ Load in config path. """ group = parser.getgroup("Agent Test Suite Configuration", "agent", after="general") group.addoption( "--sc", "--suite-config", dest='suite_config', action="store", metavar="SUITE_CONFIG", help="Load suite configuration from SUITE_CONFIG", ) group.addoption( "-F", "--feature-select", dest='select', action='store', metavar='SELECT_REGEX', help='Run tests matching SELECT_REGEX. Overrides tests selected in configuration.' )
5,345,972
def correct_predictions(output_probabilities, targets): """ Compute the number of predictions that match some target classes in the output of a model. Args: output_probabilities: A tensor of probabilities for different output classes. targets: The indices of the actual target classes. Returns: The number of correct predictions in 'output_probabilities'. """ _, out_classes = output_probabilities.max(dim=1) correct = (out_classes == targets).sum() return out_classes, correct.item()
5,345,973
def resolve_all(anno, task): """Resolve all pending annotations.""" return (x for x in (_first_match(anno, task), _first_match_any(anno)) if x)
5,345,974
def get_free_port(): """ Find and returns free port number. """ soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) soc.bind(("", 0)) free_port = soc.getsockname()[1] soc.close() return free_port
5,345,975
def test_upload_subtitles_authentication( mock_user_moira_lists, logged_in_apiclient, mocker ): """ Tests that only authenticated users with collection admin permissions can call UploadVideoSubtitle """ client, user = logged_in_apiclient client.logout() url = reverse("upload-subtitles") moira_list = factories.MoiraListFactory() video = VideoFactory(collection=CollectionFactory(admin_lists=[moira_list])) filename = "file.vtt" input_data = { "collection": video.collection.hexkey, "video": video.hexkey, "language": "en", "filename": filename, "file": SimpleUploadedFile(filename, bytes(1024)), } mocker.patch( "ui.views.cloudapi.upload_subtitle_to_s3", return_value=VideoSubtitle(video=video, filename=filename), ) mocker.patch("ui.utils.cache") # call with anonymous user assert ( client.post(url, input_data, format="multipart").status_code == status.HTTP_403_FORBIDDEN ) # call with another user not on admin list client.force_login(user) assert ( client.post(url, input_data, format="multipart").status_code == status.HTTP_403_FORBIDDEN ) # call with user on admin list mock_user_moira_lists.return_value = {moira_list.name} assert ( client.post(url, input_data, format="multipart").status_code == status.HTTP_202_ACCEPTED )
5,345,976
def get_diff_list(small_list, big_list): """ Get the difference set of the two list. :param small_list: The small data list. :param big_list: The bigger data list. :return: diff_list: The difference set list of the two list. """ # big_list有而small_list没有的元素 diff_list = list(set(big_list).difference(set(small_list))) return diff_list
5,345,977
def blend_weight_arrays(n_weightsA, n_weightsB, value=1.0, weights_pp=None): """ Blend two 2d weight arrays with a global mult factor, and per point weight values. The incoming weights_pp should be a 1d array, as it's reshaped for the number of influences. Args: n_weightsA (np.array): Weight array to blend towards n_weightsB. n_weightsB (np.array): Target weight array to move n_weightsA towards. value (float): Global mult factor. weights_pp (list/float): Per point weight values. This should be a 1d array. Returns (numpy.ndarray): Blended weights array. """ if n_weightsA.shape != n_weightsB.shape: raise ValueError('Shape of both arrays must match: {}, {}'.format(n_weightsA.shape, n_weightsB.shape)) weights_pp = weights_pp or np.ones(n_weightsA.shape[0]) weights_pp = np.repeat(weights_pp, n_weightsA.shape[1]).reshape(-1, n_weightsA.shape[1]) * value n_weights = np_interp_by_weight(n_weightsA, n_weightsB, weights_pp) return n_weights
5,345,978
def weight_kabsch_dist(x1, x2, weights): """ Compute the Mahalabonis distance between positions x1 and x2 given Kabsch weights (inverse variance) x1 (required) : float64 array with dimensions (n_atoms,3) of one molecular configuration x2 (required) : float64 array with dimensions (n_atoms,3) of another molecular configuration weights (required) : float64 matrix with dimensions (n_atoms, n_atoms) of inverse (n_atoms, n_atoms) covariance """ # zero distance dist = 0.0 # compute distance as sum over indepdent (because covar is n_atoms x n_atoms) dimensions for i in range(3): disp = x1[:,i] - x2[:,i] dist += np.dot(disp,np.dot(weights,disp)) # return value return dist
5,345,979
def calc_color_rarity(color_frequencies: dict) -> float: """ Return rarity value normalized to 64. Value ascending from 0 (most rare) to 64 (most common). """ percentages = calc_pixel_percentages(color_frequencies) weighted_rarity = [PERCENTAGES_NORMALIZED.get(k) * v * 64 for k,v in percentages.items()] return sum(weighted_rarity)
5,345,980
def exp_map(x, r, tangent_point=None): """ Let \(\mathcal{M}\) be a CCM of radius `r`, and \(T_{p}\mathcal{M}\) the tangent plane of the CCM at point \(p\) (`tangent_point`). This function maps a point `x` on the tangent plane to the CCM, using the Riemannian exponential map. :param x: np.array, point on the tangent plane (intrinsic coordinates); :param r: float, radius of the CCM; :param tangent_point: np.array, origin of the tangent plane on the CCM (extrinsic coordinates); if `None`, defaults to `[0., ..., 0., r]`. :return: the exp-map of x to the CCM (extrinsic coordinates). """ extrinsic_dim = x.shape[-1] + 1 if tangent_point is None: tangent_point = np.zeros((extrinsic_dim,)) tangent_point[-1] = np.abs(r) if isinstance(tangent_point, np.ndarray): if tangent_point.shape != (extrinsic_dim,) and tangent_point.shape != (1, extrinsic_dim): raise ValueError('Expected tangent_point of shape ({0},) or (1, {0}), got {1}'.format(extrinsic_dim, tangent_point.shape)) if tangent_point.ndim == 1: tangent_point = tangent_point[np.newaxis, ...] if not belongs(tangent_point, r)[0]: raise ValueError('Tangent point must belong to manifold {}'.format(tangent_point)) else: raise TypeError('tangent_point must be np.array or None') if r > 0.: return SphericalManifold.exp_map(tangent_point, x) elif r < 0.: return HyperbolicManifold.exp_map(tangent_point, x) else: return x
5,345,981
def test_parser_read(fresh_aiida_env): """Test to read a INCAR file.""" path = data_path('phonondb', 'INCAR') parser = IncarParser(file_path=path) incar = parser.incar assert incar['prec'] == 'Accurate' assert incar['ibrion'] == -1 assert incar['encut'] == 359.7399 assert incar['lreal'] is False
5,345,982
def get_python_msvcrt_version(): """Return the Visual C runtime version Python is linked to, as an int""" python_version = sys.version_info[0:2] if python_version < (2.4): return 60 if python_version < (2.6): return 71 return 90
5,345,983
def _get_data_column_label_in_name(item_name): """ :param item_name: Name of a group or dataset :return: Data column label or ``None`` :rtype: str on None """ # /1.1/measurement/mca_0 should not be interpreted as the label of a # data column (let's hope no-one ever uses mca_0 as a label) if measurement_mca_group_pattern.match(item_name): return None data_column_match = measurement_data_pattern.match(item_name) if not data_column_match: return None return data_column_match.group(1)
5,345,984
def _auto_backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None, distop_context=None): """ modification is inplaced """ act_no_grad_set = _get_no_grad_set(loss, no_grad_set) assert isinstance(loss, Variable), "The target loss should be an Variable." if callbacks is None: callbacks = [error_clip_callback] else: assert (isinstance(callbacks, list)) assert len(loss.shape) == 1 and loss.shape[0] == 1, \ "The loss.shape should be (1L,), but the current loss.shape is {}. " \ "Maybe that you should call fluid.layers.mean to process the current loss.".format( loss.shape) program = loss.block.program with program_guard(program, startup_program): params_grads = append_backward( loss, parameter_list, act_no_grad_set, callbacks, distop_context=distop_context) return params_grads
5,345,985
def strip_from_ansi_esc_sequences(text): """ find ANSI escape sequences in text and remove them :param text: str :return: list, should be passed to ListBox """ # esc[ + values + control character # h, l, p commands are complicated, let's ignore them seq_regex = r"\x1b\[[0-9;]*[mKJusDCBAfH]" regex = re.compile(seq_regex) start = 0 response = "" for match in regex.finditer(text): end = match.start() response += text[start:end] start = match.end() response += text[start:len(text)] return response
5,345,986
def test_steamgameentity_extra_state_attributes_property(manager_mock): """Test the device_state_attributes property.""" game_id = "975150" game = util.get_steam_game(game_id, manager_mock.coordinator.data[game_id]) entity = SteamGameEntity(manager_mock, game) expected = { "box_art_url": "https://steamcdn-a.akamaihd.net/steam/apps/975150/header_292x136.jpg?t=1590678003", "normal_price": 19.99, "percent_off": 15, "review_desc": "3 user reviews", "reviews_percent": 100, "reviews_total": "3", "sale_price": 16.99, "steam_id": "975150", "title": "Resolutiion", } assert expected == entity.extra_state_attributes
5,345,987
def periodic_task1(): """ @summary: 周期性任务执行函数 """ now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) try: import requests req = requests.get('http://www.baidu.com') print req.status_code logger.info(u"Celery 周期任务调用成功,当前时间:{}".format(now)) except Exception: logger.error(u"Celery 周期任务调用失败,当前时间:{}".format(now))
5,345,988
def _concat_columns(args: list): """Dispatch function to concatenate DataFrames with axis=1""" if len(args) == 1: return args[0] else: _lib = cudf if HAS_GPU and isinstance(args[0], cudf.DataFrame) else pd return _lib.concat( [a.reset_index(drop=True) for a in args], axis=1, ) return None
5,345,989
def test_grdinfo(): """ Make sure grdinfo works as expected. """ grid = load_earth_relief(registration="gridline") result = grdinfo(grid=grid, force_scan=0, per_column="n") assert result.strip() == "-180 180 -90 90 -8592.5 5559 1 1 361 181 0 1"
5,345,990
def applyRegexToList(list, regex, separator=' '): """Apply a list of regex to list and return result""" if type(regex) != type(list): regex = [regex] regexList = [re.compile(r) for r in regex] for r in regexList: list = [l for l in list if r.match(l)] list = [l.split(separator) for l in list] return [i[0] for i in list]
5,345,991
def tomorrow(event): """ show todo items for tomorrow. """ if not event._parsed.rest: event.reply("tomorrow <txt>") return event.tomorrow = event.txt.replace("tomorrow", "").strip() event.prefix = "tomorrow" event.save() event.ok()
5,345,992
def pathsplit(path): """ This version, in contrast to the original version, permits trailing slashes in the pathname (in the event that it is a directory). It also uses no recursion """ return path.split(os.path.sep)
5,345,993
def GetFileName(path: str) -> str: """Get the name of the file from the path :type path: str :rtype: str """ return splitext(basename(path))[0]
5,345,994
async def test_new_ignored_users_available( hass, caplog, entry, mock_websocket, setup_plex_server ): """Test setting up when new users available on Plex server but are ignored.""" MONITORED_USERS = {"Owner": {"enabled": True}} OPTIONS_WITH_USERS = copy.deepcopy(DEFAULT_OPTIONS) OPTIONS_WITH_USERS[MP_DOMAIN][CONF_MONITORED_USERS] = MONITORED_USERS OPTIONS_WITH_USERS[MP_DOMAIN][CONF_IGNORE_NEW_SHARED_USERS] = True entry.options = OPTIONS_WITH_USERS mock_plex_server = await setup_plex_server(config_entry=entry) server_id = mock_plex_server.machineIdentifier trigger_plex_update(mock_websocket) await hass.async_block_till_done() monitored_users = hass.data[DOMAIN][SERVERS][server_id].option_monitored_users ignored_users = [x for x in mock_plex_server.accounts if x not in monitored_users] assert len(monitored_users) == 1 assert len(ignored_users) == 2 for ignored_user in ignored_users: ignored_client = [ x.players[0] for x in mock_plex_server.sessions() if x.usernames[0] == ignored_user ][0] assert ( f"Ignoring {ignored_client.product} client owned by '{ignored_user}'" in caplog.text ) sensor = hass.states.get("sensor.plex_plex_server_1") assert sensor.state == str(len(mock_plex_server.accounts))
5,345,995
def get_dnssec_output(hosted_zone_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetDNSSECResult]: """ Resource used to control (enable/disable) DNSSEC in a specific hosted zone. :param str hosted_zone_id: The unique string (ID) used to identify a hosted zone. """ ...
5,345,996
def test_reset_password(client, user_info): """A user can reset their password using a link sent to their email.""" new_password = 'New_Password123' assert new_password != user_info['password'] register_user(client, user_info) log_out_current_user(client) with mail.record_messages() as outbox: rv = client.get(url_for('user.password_recovery')) rv = client.post(url_for('user.password_recovery'), data=dict(csrf_token=csrf_token(rv.data), email=user_info['email'], captcha='xyzzy')) message = outbox.pop() assert message.send_to == {user_info['email']} soup = BeautifulSoup(message.html, 'html.parser') token = soup.a['href'].split('/')[-1] rv = client.get(url_for('user.password_reset', token=token), follow_redirects=True) rv = client.post(url_for('do.reset'), data=dict(csrf_token=csrf_token(rv.data), user=get_value(rv.data, 'user'), key=get_value(rv.data, 'key'), password=new_password, confirm=new_password)) log_out_current_user(client) user_info['password'] = new_password log_in_user(client, user_info, expect_success=True)
5,345,997
def main(out_path, ud_dir, check_parse=False, langs=ALL_LANGUAGES, exclude_trained_models=False, exclude_multi=False, hide_freq=False, corpus='train', best_per_language=False): """" Assemble all treebanks and models to run evaluations with. When setting check_parse to True, the default models will not be evaluated as they don't have parsing functionality """ languages = [lang.strip() for lang in langs.split(",")] print_freq_tasks = [] if not hide_freq: print_freq_tasks = ['Tokens'] # fetching all relevant treebank from the directory treebanks = fetch_all_treebanks(ud_dir, languages, corpus, best_per_language) print() print("Loading all relevant models for", languages) models = dict() # multi-lang model multi = None if not exclude_multi and not check_parse: multi = load_model('xx_ent_wiki_sm', add_sentencizer=True) # initialize all models with the multi-lang model for lang in languages: models[lang] = [multi] if multi else [] # add default models if we don't want to evaluate parsing info if not check_parse: # Norwegian is 'nb' in spaCy but 'no' in the UD corpora if lang == 'no': models['no'].append(load_default_model_sentencizer('nb')) else: models[lang].append(load_default_model_sentencizer(lang)) # language-specific trained models if not exclude_trained_models: if 'de' in models: models['de'].append(load_model('de_core_news_sm')) models['de'].append(load_model('de_core_news_md')) if 'el' in models: models['el'].append(load_model('el_core_news_sm')) models['el'].append(load_model('el_core_news_md')) if 'en' in models: models['en'].append(load_model('en_core_web_sm')) models['en'].append(load_model('en_core_web_md')) models['en'].append(load_model('en_core_web_lg')) if 'es' in models: models['es'].append(load_model('es_core_news_sm')) models['es'].append(load_model('es_core_news_md')) if 'fr' in models: models['fr'].append(load_model('fr_core_news_sm')) models['fr'].append(load_model('fr_core_news_md')) if 'it' in models: models['it'].append(load_model('it_core_news_sm')) if 'nl' in models: models['nl'].append(load_model('nl_core_news_sm')) if 'pt' in models: models['pt'].append(load_model('pt_core_news_sm')) with out_path.open(mode='w', encoding='utf-8') as out_file: run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks)
5,345,998
def collapse(individual_refs): """Collapse references like [C1,C2,C3,C7,C10,C11,C12,C13] into 'C1-C3, C7, C10-C13'. Args: individual_refs (string): Uncollapsed references. Returns: string: Collapsed references. """ parts = [] for ref in individual_refs: mtch = re.match(r"(?P<part_prefix>\D+)(?P<number>.+)", ref) if mtch is not None: part_prefix = mtch.group("part_prefix") number = mtch.group("number") try: number = int(mtch.group("number")) except ValueError: pass parts.append((part_prefix, number)) parts.sort() def toRef(part): return "{}{}".format(part[0], part[1]) def make_groups(accumulator, part): prev = None if len(accumulator) > 0: group = accumulator[-1] if len(group) > 0: prev = group[-1] if (prev != None) and (prev[0] == part[0]) and isinstance(prev[1], int) and ((prev[1] + 1) == part[1]): group.append(part) accumulator[-1] = group else: accumulator.append([part]) return accumulator groups = reduce(make_groups, parts, []) groups = map(lambda g: tuple(map(toRef, g)), groups) collapsed = "" for group in groups: if (len(collapsed) > 1) and (collapsed[-2] != ","): collapsed += ", " if len(group) > 2: collapsed += group[0] + "-" + group[-1] else: collapsed += ", ".join(group) return collapsed
5,345,999