content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def get_parent_directory(path):
"""
Get parent directory of the path
"""
return os.path.abspath(os.path.join(path, os.pardir))
| 5,346,000 |
def generate_fig_univariate_categorical(
df_all: pd.DataFrame,
col: str,
hue: str,
nb_cat_max: int = 7,
) -> plt.Figure:
"""
Returns a matplotlib figure containing the distribution of a categorical feature.
If the feature is categorical and contains too many categories, the smallest
categories are grouped into a new 'Other' category so that the graph remains
readable.
Parameters
----------
df_all : pd.DataFrame
The input dataframe that contains the column of interest
col : str
The column of interest
hue : str
The column used to distinguish the values (ex. 'train' and 'test')
nb_cat_max : int
The number max of categories to be displayed. If the number of categories
is greater than nb_cat_max then groups smallest categories into a new
'Other' category
Returns
-------
matplotlib.pyplot.Figure
"""
df_cat = df_all.groupby([col, hue]).agg({col: 'count'})\
.rename(columns={col: "count"}).reset_index()
df_cat['Percent'] = df_cat['count'] * 100 / df_cat.groupby(hue)['count'].transform('sum')
if pd.api.types.is_numeric_dtype(df_cat[col].dtype):
df_cat = df_cat.sort_values(col, ascending=True)
df_cat[col] = df_cat[col].astype(str)
nb_cat = df_cat.groupby([col]).agg({'count': 'sum'}).reset_index()[col].nunique()
if nb_cat > nb_cat_max:
df_cat = _merge_small_categories(df_cat=df_cat, col=col, hue=hue, nb_cat_max=nb_cat_max)
fig, ax = plt.subplots(figsize=(7, 4))
sns.barplot(data=df_cat, x='Percent', y=col, hue=hue,
palette=dict_color_palette, ax=ax)
for p in ax.patches:
ax.annotate("{:.1f}%".format(np.nan_to_num(p.get_width(), nan=0)),
xy=(p.get_width(), p.get_y() + p.get_height() / 2),
xytext=(5, 0), textcoords='offset points', ha="left", va="center")
# Shrink current axis by 20%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
# Put a legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
# Removes plot borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
new_labels = [truncate_str(i.get_text(), maxlen=45) for i in ax.yaxis.get_ticklabels()]
ax.yaxis.set_ticklabels(new_labels)
return fig
| 5,346,001 |
def pt_sharp(x, Ps, Ts, window_half, method='diff'):
"""
Calculate the sharpness of extrema
Parameters
----------
x : array-like 1d
voltage time series
Ps : array-like 1d
time points of oscillatory peaks
Ts : array-like 1d
time points of oscillatory troughs
window_half : int
Number of samples in each direction around extrema to use for sharpness estimation
Returns
-------
Psharps : array-like 1d
sharpness of peaks
Tsharps : array-like 1d
sharpness of troughs
"""
# Assure input has the same number of peaks and troughs
if len(Ts) != len(Ps):
raise ValueError('Length of peaks and troughs arrays must be equal')
# Calculate the sharpness of each peak
P = len(Ps)
Psharps = np.zeros(P)
for e in range(P):
if method == 'deriv':
Edata = x[Ps[e]-window_half: Ps[e]+window_half+1]
Psharps[e] = np.mean(np.abs(np.diff(Edata)))
elif method == 'diff':
Psharps[e] = np.mean((x[Ps[e]]-x[Ps[e]-window_half],x[Ps[e]]-x[Ps[e]+window_half]))
T = len(Ts)
Tsharps = np.zeros(T)
for e in range(T):
if method == 'deriv':
Edata = x[Ts[e]-window_half: Ts[e]+window_half+1]
Tsharps[e] = np.mean(np.abs(np.diff(Edata)))
elif method == 'diff':
Tsharps[e] = np.mean((x[Ts[e]-window_half]-x[Ts[e]],x[Ts[e]+window_half]-x[Ts[e]]))
return Psharps, Tsharps
| 5,346,002 |
def associate_by_email(strategy, details, user=None, *args, **kwargs):
"""Deny duplicate email addresses for new users except in specific cases
If the incoming email is associated with existing user, authentication
is denied. Exceptions are:
* the existing user does not have associated social login
* the incoming email belongs to a trusted domain
* the duplicate email address check has been disabled in the settings
In the first two cases, the incoming social login is associated with the existing user.
In the third case a separate new user is created.
"""
logger.debug(f"starting association by email; user:{user}; details:{details}")
if user:
return
if settings.ALLOW_DUPLICATE_EMAILS:
return
email = details.get('email')
if not email:
return
backend = kwargs['backend']
User = get_user_model() # noqa
existing_users = User.objects.filter(email__iexact=email).order_by('-date_joined')
if not existing_users:
return
logger.debug(f"found existing users with email '{email}': {existing_users}")
user = existing_users[0]
trusted_email_domains = backend.setting('TRUSTED_EMAIL_DOMAINS', [])
explicitly_trusted = False
if trusted_email_domains:
email_domain = email.split('@')[1]
if email_domain in trusted_email_domains or trusted_email_domains == '*':
explicitly_trusted = True
social_set = user.social_auth.all()
# If the account doesn't have any social logins yet, or if we
# explicitly trust the social media provider, allow the signup.
if explicitly_trusted or not social_set:
return {
'user': user,
}
logger.debug(f"'{email}' already in use by existing user and email domain not trusted")
providers = [a.provider for a in social_set]
strategy.request.other_logins = LoginMethod.objects.filter(provider_id__in=providers)
error_view = AuthenticationErrorView(request=strategy.request)
return error_view.get(strategy.request)
| 5,346,003 |
async def test_service_setup(hass):
"""Verify service setup works."""
assert deconz.services.DECONZ_SERVICES not in hass.data
with patch(
"homeassistant.core.ServiceRegistry.async_register", return_value=Mock(True)
) as async_register:
await deconz.services.async_setup_services(hass)
assert hass.data[deconz.services.DECONZ_SERVICES] is True
assert async_register.call_count == 2
| 5,346,004 |
def test_service(host):
"""
Check if database service is started and enabled
"""
service = ''
if host.system_info.distribution in ('debian', 'ubuntu'):
service = 'postgresql'
assert host.service(service).is_enabled
# Systemctl not available with Docker images
if 'docker' != host.backend.NAME:
assert host.service(service).is_running
| 5,346,005 |
def convert_date(string, report_date, bad_dates_rep, bad_dates_for):
"""
Converts date string in format dd/mm/yyyy
to format dd-Mmm-yyyy
"""
x = string.split('/')
try:
date = datetime.datetime(int(x[2]),int(x[1]),int(x[0]))
date_str = date.strftime("%Y-%m-%d")
return(date_str)
# Print out cases that do not match input date convention
except (IndexError, ValueError) as errors:
bad_dates_rep.append(report_date)
bad_dates_for.append(string)
return(string)
pass
| 5,346,006 |
def render_raw(request, paste, data):
"""Renders RAW content."""
return HttpResponse(paste.content, content_type="text/plain")
| 5,346,007 |
def node_avg():
"""get the avg of the node stats"""
node_raw = ["average", 0, 0, 0]
for node in node_stats():
node_raw[1] += float(node[1])
node_raw[2] += float(node[2])
node_raw[3] += float(node[3])
num = len(node_stats())
node_avg = ["average",
"{:.2f}".format(node_raw[1]/num),
"{:.2f}".format(node_raw[2]/num),
"{:.2f}".format(node_raw[3]/num)]
return node_avg
| 5,346,008 |
def decrypt_vault_password(key: bytes, password: Union[str, bytes]) -> Union[str, bool]:
"""Decrypt and return the given vault password.
:param key: The key to be used during the decryption
:param password: The password to decrypt
"""
if isinstance(password, str):
password = password.encode("utf-8")
f = Fernet(key)
try:
return f.decrypt(password).decode()
except InvalidToken:
return False
| 5,346,009 |
def readData(op,filetype,config):
"""
Reads data from Hive or CSV
"""
try:
if filetype=='csv':
print('csv')
csvU=optimusCsvUtils(config)
hr=datetime.now().hour
today=str(datetime.now().date())
path=os.path.join(config['data']['DIR'],'performance_{}_hr_{}.csv'.format(today,hr))
print(path)
df=csvU.readData(op,path=path)
elif filetype=='hive':
print(HQL)
hive=optimusHiveUtils(config)
df=hive.readData(op,HQL)
elif filetype=='jdbc':
print(HQL)
jdbc=optimusJDBC(config)
df=jdbc.readData(op,HQL)
elif filetype=='parquet':
parqU=optimusParquetUtils(config)
path=os.path.join(config['data']['DIR'],'performance_{}_hr_{}.csv'.format(today,hr))
df=parqU.readData(op,path=path)
df=parqU.readData(op)
return df
except Exception as e:
logger.critical('Exception occured during Reading the data - {}'.format(e))
raise Exception('Exception occured during Reading the data - {}'.format(e))
| 5,346,010 |
def get_gv_rng_if_none(rng: Optional[rnd.Generator]) -> rnd.Generator:
"""get gym-gridverse module rng if input is None"""
return get_gv_rng() if rng is None else rng
| 5,346,011 |
def fill_name(f):
"""
Attempts to generate an unique id and a parent from a BioPython SeqRecord.
Mutates the feature dictionary passed in as parameter.
"""
global UNIQUE
# Get the type
ftype = f['type']
# Get gene name
gene_name = first(f, "gene")
# Will attempt to fill in the uid from attributes.
uid = ''
# Deal with known types.
if ftype == 'gene':
name = gene_name or first(f, "locus_tag")
uid = name
elif ftype == 'CDS':
count = get_next_count(ftype=ftype, label=gene_name)
prot = first(f, "protein_id") or f"{gene_name}-CDS-{count}"
uid = f"{prot}"
name = prot
elif ftype == 'mRNA':
count = get_next_count(ftype=ftype, label=gene_name)
uid = first(f, "transcript_id") or f"{gene_name}-mRNA-{count}"
name = uid
elif ftype == "exon":
name = gene_name
else:
name = first(f, "organism") or first(f, "transcript_id") or None
uid = first(f, "transcript_id")
# Set the unique identifier.
f['id'] = uid or f"{ftype}-{next(COUNTER)}"
# Set the feature name.
f['name'] = name or ftype
return f
| 5,346,012 |
def run_single_softmax_experiment(beta, alpha):
"""Run experiment with agent using softmax update rule."""
print('Running a contextual bandit experiment')
cb = ContextualBandit()
ca = ContextualAgent(cb, beta=beta, alpha=alpha)
trials = 360
for _ in range(trials):
ca.run()
df = DataFrame(ca.log, columns=('context', 'action', 'reward', 'Q(c,23)',
'Q(c,14)', 'Q(c,8)', 'Q(c,3)'))
# fn = 'softmax_experiment.csv'
# df.to_csv(fn, index=False)
# print('Sequence written in', fn)
# globals().update(locals()) #
return df
| 5,346,013 |
def test_meta_schedule_local_multiple_runs():
"""Test meta schedule local runner for multiple runs"""
# Build the module
mods = [
MatmulModule,
MatmulReluModule,
BatchMatmulModule,
]
builder = LocalBuilder()
builder_inputs = [BuilderInput(mod, Target("llvm")) for mod in mods]
builder_results = builder.build(builder_inputs)
for builder_result in builder_results:
assert builder_result.artifact_path is not None
assert builder_result.error_msg is None
args_infos = [
[
TensorInfo("float32", (MATMUL_N, MATMUL_N)),
TensorInfo("float32", (MATMUL_N, MATMUL_N)),
TensorInfo("float32", (MATMUL_N, MATMUL_N)),
],
[
TensorInfo("float32", (MATMUL_N, MATMUL_N)),
TensorInfo("float32", (MATMUL_N, MATMUL_N)),
TensorInfo("float32", (MATMUL_N, MATMUL_N)),
],
[
TensorInfo("float32", [16, MATMUL_M, MATMUL_M]),
TensorInfo("float32", [16, MATMUL_M, MATMUL_M]),
TensorInfo("float32", [16, MATMUL_M, MATMUL_M]),
],
]
runner_inputs = [
RunnerInput(builder_results[i].artifact_path, "llvm", args_infos[i])
for i in range(len(mods))
]
evaluator_config = EvaluatorConfig(
number=1,
repeat=1,
min_repeat_ms=0,
enable_cpu_cache_flush=False,
)
runner = LocalRunner(timeout_sec=100, evaluator_config=evaluator_config)
# Run the module
runner_futures = runner.run(runner_inputs)
runner_results = [runner_future.result() for runner_future in runner_futures]
for runner_result in runner_results:
assert runner_result.error_msg is None
for result in runner_result.run_secs:
if isinstance(result, FloatImm):
result = result.value
assert isinstance(result, float)
assert result >= 0.0
for builder_result in builder_results:
_clean_build(builder_result.artifact_path)
| 5,346,014 |
def available(name):
"""
Returns ``True`` if the specified service is available, otherwise returns
``False``.
We look up the name with the svcs command to get back the FMRI
This allows users to use simpler service names
CLI Example:
.. code-block:: bash
salt '*' service.available net-snmp
"""
cmd = "/usr/bin/svcs -H -o FMRI {0}".format(name)
name = __salt__["cmd.run"](cmd, python_shell=False)
return name in get_all()
| 5,346,015 |
def coincidence_rate(text):
""" Return the coincidence rate of the given text
Args:
text (string): the text to get measured
Returns:
the coincidence rate
"""
ko = 0
# measure the frequency of each letter in the cipher text
for letter in _VOCAB:
count = text.count(letter)
ko = ko + (count * (count - 1))
return ko / (len(text) * (len(text) - 1))
| 5,346,016 |
def convert_bytes_to_ints(in_bytes, num):
"""Convert a byte array into an integer array. The number of bytes forming an integer
is defined by num
:param in_bytes: the input bytes
:param num: the number of bytes per int
:return the integer array"""
dt = numpy.dtype('>i' + str(num))
return numpy.frombuffer(in_bytes, dt)
| 5,346,017 |
def test_es_connection(es):
"""Tests health and presence of connection to elasticsearch."""
try:
health = es.cluster.health()
except elasticsearch.exceptions.ConnectionError:
current_app.logger.error(
"Elasticsearch does not seem to be running on "
f"{current_app.config['SEARCH_CONF']['url']}. Please start "
"it, for example with: sudo service elasticsearch restart"
)
current_app.logger.error(
"You can disable Elasticsearch by modifying the `enabled` variable "
f"in {str(Path(current_app.config['INTERNAL_DIR']) / 'config.yml')}"
)
sys.exit(1)
if health["status"] not in ("yellow", "green"):
current_app.logger.warning(
"Elasticsearch reports that it is not working "
"properly. Search might not work. You can disable "
"Elasticsearch by setting ELASTICSEARCH_ENABLED to 0."
)
| 5,346,018 |
def search_spec(spec, search_key, recurse_key):
"""
Recursively scans spec structure and returns a list of values
keyed with 'search_key' or and empty list. Assumes values
are either list or str.
"""
value = []
if search_key in spec and spec[search_key]:
if isinstance(spec[search_key], str):
value.append(spec[search_key])
else:
value += spec[search_key]
if recurse_key in spec and spec[recurse_key]:
for child_spec in spec[recurse_key]:
value += search_spec(child_spec, search_key, recurse_key)
return sorted(value)
| 5,346,019 |
def before_class(home=None, **kwargs):
"""Like @test but indicates this should run before other class methods.
All of the arguments sent to @test work with this decorator as well.
"""
kwargs.update({'run_before_class':True})
return test(home=home, **kwargs)
| 5,346,020 |
async def setuExecutor(bot: Bot, event: MessageEvent, state: T_State) -> None:
"""获取response"""
keyword: str = state['keyword']
member_id: int = event.sender.user_id
if cd.check(member_id) is False:
resp = SetuResp(code=-3, msg='技能冷却中')
else:
resp = await SetuResp.get(keyword)
state['setu_resp'] = resp
| 5,346,021 |
def get_airports(force_download=False):
"""
Gets or downloads the airports.csv in ~/.config/mss and returns all airports within
"""
global _airports, _airports_mtime
file_exists = os.path.exists(os.path.join(MSS_CONFIG_PATH, "airports.csv"))
if _airports and file_exists and os.path.getmtime(os.path.join(MSS_CONFIG_PATH, "airports.csv")) == _airports_mtime:
return _airports
is_outdated = file_exists \
and (time.time() - os.path.getmtime(os.path.join(MSS_CONFIG_PATH, "airports.csv"))) > 60 * 60 * 24 * 30
if (force_download or is_outdated or not file_exists) \
and QtWidgets.QMessageBox.question(None, "Allow download", f"You selected airports to be "
f"{'drawn' if not force_download else 'downloaded (~10 MB)'}." +
("\nThe airports file first needs to be downloaded or updated (~10 MB)."
if not force_download else "") + "\nIs now a good time?",
QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) \
== QtWidgets.QMessageBox.Yes:
download_progress(os.path.join(MSS_CONFIG_PATH, "airports.csv"), "https://ourairports.com/data/airports.csv")
if os.path.exists(os.path.join(MSS_CONFIG_PATH, "airports.csv")):
with open(os.path.join(MSS_CONFIG_PATH, "airports.csv"), "r", encoding="utf8") as file:
_airports_mtime = os.path.getmtime(os.path.join(MSS_CONFIG_PATH, "airports.csv"))
return list(csv.DictReader(file, delimiter=","))
else:
return []
| 5,346,022 |
def hellinger_distance_poisson_variants(a_means, b_means, n_samples, sample_distances):
"""
a - The coverage vec for a variant over n_samples
b - The coverage vec for a variant over n_samples
returns average hellinger distance of multiple poisson distributions
"""
# generate distirbutions for each sample
# and calculate divergence between them
# Get the means for each contig
h_geom_mean = []
both_present = []
for i in range(0, n_samples):
# Use this indexing method as zip does not seem to work so well in njit
# Add tiny value to each to avoid division by zero
a_mean = a_means[i] + 1e-6
b_mean = b_means[i] + 1e-6
if a_mean > 1e-6 and b_mean > 1e-6:
both_present.append(i)
if a_mean > 1e-6 or b_mean > 1e-6:
# First component of hellinger distance
h1 = math.exp(-0.5 * ((np.sqrt(a_mean) - np.sqrt(b_mean))**2))
h_geom_mean.append(1 - h1)
if len(h_geom_mean) >= 1:
# convert to log space to avoid overflow errors
d = np.log(np.array(h_geom_mean))
# return the geometric mean
d = np.exp(d.sum() / len(d))
geom_sim = geom_sim_calc(both_present, sample_distances)
d = d ** (1/geom_sim)
else:
d = 1
return d
| 5,346,023 |
def min_threshold(x, thresh, fallback):
"""Returns x or `fallback` if it doesn't meet the threshold. Note, if you want to turn a hyper "off" below,
set it to "outside the threshold", rather than 0.
"""
return x if (x and x > thresh) else fallback
| 5,346,024 |
def get_command(command, meta):
"""Construct the command."""
bits = []
# command to run
bits.append(command)
# connection params
bits.extend(connect_bits(meta))
# database name
if command == 'mysqladmin':
# these commands shouldn't take a database name
return bits
if command == 'pg_restore':
bits.append('--dbname')
if command == 'mysql':
bits.append('--database')
bits.append(meta['path'][1:])
return bits
| 5,346,025 |
def main(): # pragma: no cover
"""Executes model."""
import sys
try:
infile = sys.argv[1]
except IndexError:
print("Must include input file name on command line")
sys.exit(1)
em = BasicDdSt.from_file(infile)
em.run()
| 5,346,026 |
def get_common_count(list1, list2):
"""
Get count of common between two lists
:param list1: list
:param list2: list
:return: number
"""
return len(list(set(list1).intersection(list2)))
| 5,346,027 |
def text_present(nbwidget, text="Test"):
"""Check if a text is present in the notebook."""
if WEBENGINE:
def callback(data):
global html
html = data
nbwidget.dom.toHtml(callback)
try:
return text in html
except NameError:
return False
else:
return text in nbwidget.dom.toHtml()
| 5,346,028 |
def multiFilm(layers, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=defaultCharFluor, bf=defaultBremFluor, xtraParams=defaultXtraParams):
"""multiFilm(layers, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=defaultCharFluor, bf=defaultBremFluor, xtraParams={}):
Monte Carlo simulate a spectrum from a multilayer thin film. Layers is a iterable list of \
[material,thickness]. Note the materials must have associated densities."""
tmp = u"MC simulation of a multilayer film [%s] at %0.1f keV%s%s" % (",".join("%0.0f nm of %s" % (1.0e9 * layer[1], layer[0]) for layer in layers), e0, (" + CSF" if sf else ""), (" + BSF" if bf else ""))
return base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildFilm, {"Layers": layers }, xtraParams)
| 5,346,029 |
def basis_lattice(lattice: str) -> np.ndarray:
"""
Description
-----------
Return a matrix whose column space is the three lattice vector
m = | a_1 b_1 c_1 |
| a_2 b_2 c_2 |
| a_3 b_3 c_3 |
the covariances (a|b|c_i) are in the crystal frame
Parameters
----------
lattice: str
lattice name
Returns
-------
np.ndarray
column space matrix
"""
pass
| 5,346,030 |
def main(url: str, **options) -> None:
"""
Displays information on a Github repository.
URL_OR_REPO_PATH must be either some form of Github Url or path
starting with username and repo such as `user/repo/whatever`.
"""
if options["set_token"]:
set_token(url)
token = get_token()
owner, repo = get_url_info(url)
query_variables = {
"owner": owner,
"repo": repo,
"branch": f"{options['branch'] if options['branch'] else 'HEAD'}"
}
if options["file_tree"]:
depth = ""
for i in range(options["depth"] - 1):
depth = f"... on Tree {{ entries {{ name type object {{... on Blob {{ byteSize }} {depth} }} }} }}"
query_variables["path"] = f"{options['branch'] if options['branch'] else 'HEAD'}:{options['path']}"
error, data, _ = get_data(FILE_QUERY_1 + depth + FILE_QUERY_2, token, query_variables)
if error:
print(data)
return
if not data["object"]:
print("No files available")
return
entries = data["object"]["entries"]
branch_name = data["defaultBranchRef"]["name"]
entries = sort_entries(entries)
path = (
f"/{owner}"
f"/{repo}"
f"/tree"
f"/{options['branch'] if options['branch'] else branch_name}"
f"/{options['path']}"
) if options["path"] else f"/{owner}/{repo}"
root = populate_tree(
f"[blue link https://github.com{path}]{path}[/]",
entries,
options["collapse"]
)
for pre, fill, node in RenderTree(root, style=ContRoundStyle()):
tree = "%s%s" % (pre, node.name)
print(tree)
elif options["lang"]:
error, data, rate_limit = get_data(LANG_QUERY, token, query_variables)
if error:
print(data)
return
data = data["languages"]
if not data["edges"]:
print("Languages not available")
return
total_size = data["totalSize"]
total_count = data["totalCount"]
grid = Table(
show_header=False,
header_style=None,
box=ROUNDED_BORDER,
title=f'[green]{owner}/{repo}[/] - Ratelimit: [blue]{rate_limit}[/]'
)
langs = []
matrix = []
for lang in data["edges"]:
langs.append(
f"[{lang['node']['color'] if lang['node']['color'] else '#FFFFFF'}]"
f"{lang['node']['name']}[/] - "
f"{Number(round(100 * lang['size'] / total_size, 2))}%"
)
start = 0
end = 3
for i in range(total_count // 3 + 1):
matrix.append(langs[start:end])
start += 3
end += 3
for row in matrix:
grid.add_row(*row)
print(grid)
else:
error, data, rate_limit = get_data(INFO_QUERY, token, query_variables)
if error:
print(data)
return
grid = Table(
show_header=False,
header_style=None,
box=ROUNDED_BORDER,
title=f'[green]{owner}/{repo}[/] - Ratelimit: [blue]{rate_limit}[/]'
)
latestRelease = data["latestRelease"] or {
"url": "",
"name": "None"
}
licenseInfo = data["licenseInfo"] or {
"url": "",
"spdxId": "None"
}
if data['languages']['nodes']:
language = data['languages']['nodes'][0]['name']
else:
language = "Not available"
disk_usage = data["diskUsage"] or 0
if data["object"]:
commit_count = data['object']['history']['totalCount']
else:
commit_count = "Not available"
if options["long"]:
grid.add_row(
f"Owner - {Link(f'https://github.com/{owner}', owner)} ",
f"Created at - {Date(data['createdAt'])} ",
f"Is archived - {Bool(data['isArchived'])} "
)
grid.add_row(
f"URL - {Link(data['url'], 'Link')} ",
f"Updated at - {Date(data['updatedAt'])} ",
f"Is disabled - {Bool(data['isDisabled'])} "
)
grid.add_row(
f"License - {Link(licenseInfo['url'], licenseInfo['spdxId'])} ",
f"Pushed at - {Date(data['pushedAt'])} ",
f"Is fork - {Bool(data['isFork'])} "
)
grid.add_row(
f"Latest Release - {Link(latestRelease['url'], latestRelease['name'])} ",
f"Disk usage - {Size(disk_usage * 1024)} ",
f"Is in org. - {Bool(data['isInOrganization'])} "
)
grid.add_row(
f"Forks - {Number(data['forkCount'])} ",
f"Watchers - {Number(data['watchers']['totalCount'])} ",
f"Is locked - {Bool(data['isLocked'])} "
)
grid.add_row(
f"Star count - {Number(data['stargazerCount'])} ",
f"Open Issues - {Number(data['openIssues']['totalCount'])} ",
f"Is mirror - {Bool(data['isMirror'])} "
)
grid.add_row(
f"Commit count - {Number(commit_count)} ",
f"Closed Issues - {Number(data['issues']['totalCount'] - data['openIssues']['totalCount'])}",
f"Is private - {Bool(data['isPrivate'])} "
)
grid.add_row(
f"Open p.r. - {Number(data['open_pr']['totalCount'])} ",
f"Closed p.r. - {Number(data['closed_pr']['totalCount'])} ",
f"Merged p.r. - {Number(data['merged_pr']['totalCount'])} ",
)
else:
grid.add_row(
f"Owner - {Link(f'https://github.com/{owner}', owner)} ",
f"Disk usage - {Size(disk_usage * 1024)} ",
f"Created at - {Date(data['createdAt'])} ",
)
grid.add_row(
f"URL - {Link(data['url'], 'Link')} ",
f"Stars - {Number(data['stargazerCount'])} ",
f"Updated at - {Date(data['updatedAt'])} ",
)
grid.add_row(
f"License - {Link(licenseInfo['url'], licenseInfo['spdxId'])} ",
f"Forks - {Number(data['forkCount'])} ",
f"Pushed at - {Date(data['pushedAt'])} ",
)
grid.add_row(
f"Language - [green]{language}[/] ",
f"Watchers - {Number(data['watchers']['totalCount'])} ",
f"Open issues - {Number(data['openIssues']['totalCount'])} "
)
print(grid)
| 5,346,031 |
def value_iteration(R, P, gamma, epsilon=1e-6):
"""
Value iteration for discounted problems.
Parameters
----------
R : numpy.ndarray
array of shape (S, A) contaning the rewards, where S is the number
of states and A is the number of actions
P : numpy.ndarray
array of shape (S, A, S) such that P[s,a,ns] is the probability of
arriving at ns by taking action a in state s.
gamma : double
discount factor
epsilon : double
precision
Returns
--------
tuple (Q, V, n_it) containing the epsilon-optimal Q and V functions,
of shapes (S, A) and (S,), respectively, and n_it, the number of iterations
"""
S, A = R.shape
Q = np.zeros((S, A))
Q_aux = np.full((S, A), np.inf)
n_it = 0
while np.abs(Q - Q_aux).max() > epsilon:
Q_aux = Q
Q = bellman_operator(Q, R, P, gamma)
n_it += 1
V = np.zeros(S)
# numba does not support np.max(Q, axis=1)
for ss in range(S):
V[ss] = Q[ss, :].max()
return Q, V, n_it
| 5,346,032 |
def write_quadruple(f, ent, rel, tim, q, S, P, O, T):
"""Write a quadruple to a file."""
f.write(
str(ent[q[S]])
+ "\t"
+ str(rel[q[P]])
+ "\t"
+ str(ent[q[O]])
+ "\t"
+ str(tim[q[T]])
+ "\n"
)
| 5,346,033 |
def mock_api_response(response_config={}):
"""Create a mock response from the Github API."""
headers = {
'ETag': 'W/"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"',
'Cache-Control': 'public, max-age=60, s-maxage=60',
'Content-Type': 'application/json; charset=utf-8'
}
api_response = MagicMock(spec=Response)
api_response.content_type = 'application/json'
for k, v in response_config.iteritems():
if k == 'headers':
headers.update(v)
setattr(api_response, k, v)
# Request headers are case insensitive dicts,
# so we need to turn our mock headers into one.
api_response.headers = CaseInsensitiveDict(headers)
return api_response
| 5,346,034 |
def shouty(src, dest):
"""
Takes a string and makes it SHOUTY.
"""
dest.write(src.read().upper())
| 5,346,035 |
def files_with_extension(path: str,extension: str):
"""
Gives a list of the files in the given directory that have the given extension
Parameters
----------
path: str
The full path to the folder where the files are stored
extension: str
The extension of the files
Returns
-------
List[str]
A list containing the files
"""
from os import listdir
return [f for f in listdir(path) if f.endswith(extension)]
| 5,346,036 |
def get_inputs_repl_cluster_or_vol():
"""
This input is for clusters that have replication
"""
parser = argparse.ArgumentParser()
parser.add_argument('-m', type=str,
required=True,
metavar='mvip',
help='MVIP/node name or IP')
parser.add_argument('-u', type=str,
required=True,
metavar='user',
help='username to connect with')
parser.add_argument('-p', type=str,
required=False,
metavar='user_pass',
help='password for user')
parser.add_argument('-o', type=str,
required=False,
metavar='check_opt',
choices=['cluster', 'volume'],
help='option for cluster or volume')
args = parser.parse_args()
mvip = args.m
user = args.u
check_opt = args.o
if not args.p:
user_pass = getpass("Enter password for user {} "
"on cluster {}: ".format(user,
mvip))
else:
user_pass = args.p
return mvip, user, user_pass, check_opt
| 5,346,037 |
def write_cases_to_latex(cases: dict, output_file: Path):
"""
Write a formatted conditionally colored table to a file
"""
for case in cases.values():
case.calculate_metric_terms()
case_keys = list(cases.keys())
n_cases = len(cases)
make_colorbar(
cell_clip=5.0, label="$d_j$", output_path=output_file.parent / "colorbar.png"
)
with open(output_file, "w") as f:
# Header
f.write(f"\\begin{{tabular}}{{ll{n_cases * 'cc'}}}\n")
f.write(f"\\toprule\n")
case_header = " & ".join(
[
f"\\multicolumn{{2}}{{c}}{{{process_case_key(case_key)}}}"
for case_key in case_keys
]
)
f.write(f" & & {case_header} \\\\ \n")
case_header = " & ".join(n_cases * ["$d_j$ & $S$"])
f.write(f"Diagnostic & observable & {case_header} \\\\ \n")
f.write(f"\\midrule\n")
# Write the results in
for diagnostic, diagnostic_styled in diagnostics_latex.items():
# Assume that all cases have the same hierarchies, so take
# the first value
hierarchies = cases[case_keys[0]].hierarchy[diagnostic]
n_observables = len(hierarchies)
f.write(
f"\\multirow{{{n_observables + 1}}}{{*}}{{\\makecell{{{diagnostic_styled}}}}}\n"
)
d = np.nan * np.ones((n_observables, n_cases))
S = np.nan * np.ones((n_observables, n_cases))
H = np.nan * np.ones(n_observables)
i = -1
for observable, observable_styled in observable_latex.items():
if observable in hierarchies.keys():
i += 1
H[i] = 1.0 / hierarchies[observable]
f.write(f"& {observable_styled:40} & ")
for j, case in enumerate(cases.values()):
d[i, j] = case.distance[diagnostic][observable]
write_number_w_color(d[i, j], file=f, cell_clip=5.0)
f.write(" & ")
S[i, j] = case.sensitivity[diagnostic][observable]
write_number_w_color(S[i, j], file=f)
if not j == n_cases - 1:
# Don't write an alignment character for the last entry on a line
f.write(" & ")
f.write("\\\\\n")
f.write(f"\\cline{{2-{2 * n_cases + 2}}}\n")
Q = np.nansum(H[:, np.newaxis] * S, axis=0)
chi = (
np.nansum(H[:, np.newaxis] * S * level_of_agreement_function(d), axis=0)
/ Q
)
# Write diagnostic chi and Q
diagnostic_summary = (
"$\\left(\\chi; Q\\right)$\\textsubscript" + f"{{{diagnostic}}}"
)
f.write(f"& {diagnostic_summary:40} & ")
for j in range(n_cases):
f.write(
"\\multicolumn{{2}}{{c}}{{$ \\textbf{{({chi:.2}; \\ {Q:.3})}} $ }}".format(
chi=chi[j], Q=Q[j]
)
)
if not j == n_cases - 1:
# Don't write an alignment character for the last entry on a line
f.write(" & ")
f.write("\\\\\n")
f.write("\\midrule\n")
# Write the overall agreement
f.write(f"Overall\n& {chi_latex + '; $Q$':40} & ")
for j, case in enumerate(cases.values()):
chi, Q = case.compute_chi()
f.write(
"\\multicolumn{{2}}{{c}}{{$ \\textbf{{({chi:.2}; \\ {Q:.3})}} $ }}".format(
chi=chi, Q=Q
)
)
if not j == n_cases - 1:
# Don't write an alignment character for the last entry on a line
f.write(" & ")
else:
f.write("\\\\\n")
# Footer
f.write("\\bottomrule\n")
f.write("\\end{tabular}")
| 5,346,038 |
def load_jsonl(file_path):
""" Load file.jsonl ."""
data_list = []
with open(file_path, mode='r', encoding='utf-8') as fi:
for idx, line in enumerate(tqdm(fi)):
jsonl = json.loads(line)
data_list.append(jsonl)
return data_list
| 5,346,039 |
def aurora_forecast():
"""
Get the latest Aurora Forecast from http://swpc.noaa.gov.
Returns
-------
img : numpy array
The pixels of the image in a numpy array.
img_proj : cartopy CRS
The rectangular coordinate system of the image.
img_extent : tuple of floats
The extent of the image ``(x0, y0, x1, y1)`` referenced in
the ``img_proj`` coordinate system.
origin : str
The origin of the image to be passed through to matplotlib's imshow.
dt : datetime
Time of forecast validity.
"""
# GitHub gist to download the example data from
#url = ('https://gist.githubusercontent.com/belteshassar/'
# 'c7ea9e02a3e3934a9ddc/raw/aurora-nowcast-map.txt')
# To plot the current forecast instead, uncomment the following line
url = 'http://services.swpc.noaa.gov/text/aurora-nowcast-map.txt'
response_text = StringIO(urlopen(url).read().decode('utf-8'))
img = np.loadtxt(response_text)
# Read forecast date and time
response_text.seek(0)
for line in response_text:
if line.startswith('Product Valid At:', 2):
dt = datetime.strptime(line[-17:-1], '%Y-%m-%d %H:%M')
img_proj = ccrs.PlateCarree()
img_extent = (-180, 180, -90, 90)
return img, img_proj, img_extent, 'lower', dt
| 5,346,040 |
def get_number_trips(grouped_counts):
"""
Gets the frequency of number of trips the customers make
Args:
grouped_counts (Pandas.DataFrame): The grouped dataframe returned from
a get_trips method call
Returns:
Pandas.DataFrame: the dataframe containing the frequencies for each
number of trips
"""
return frequency(grouped_counts.groupby('cust_id').count(), 0)
| 5,346,041 |
def process_text(text, max_features=200, stopwords=None):
"""Splits a long text into words, eliminates the stopwords and returns
(words, counts) which is necessary for make_wordcloud().
Parameters
----------
text : string
The text to be processed.
max_features : number (default=200)
The maximum number of words.
stopwords : set of strings
The words that will be eliminated.
Notes
-----
There are better ways to do word tokenization, but I don't want to include
all those things.
"""
if stopwords is None:
stopwords = STOPWORDS
d = {}
flags = re.UNICODE if type(text) is unicode else 0
for word in re.findall(r"\w[\w']*", text, flags=flags):
if word.isdigit():
continue
word_lower = word.lower()
if word_lower in stopwords:
continue
# Look in lowercase dict.
if word_lower in d:
d2 = d[word_lower]
else:
d2 = {}
d[word_lower] = d2
# Look in any case dict.
d2[word] = d2.get(word, 0) + 1
d3 = {}
for d2 in d.values():
# Get the most popular case.
first = max(d2.iteritems(), key=item1)[0]
d3[first] = sum(d2.values())
# merge plurals into the singular count (simple cases only)
for key in d3.keys():
if key.endswith('s'):
key_singular = key[:-1]
if key_singular in d3:
val_plural = d3[key]
val_singular = d3[key_singular]
d3[key_singular] = val_singular + val_plural
del d3[key]
words = sorted(d3.iteritems(), key=item1, reverse=True)
words = words[:max_features]
maximum = float(max(d3.values()))
for i, (word, count) in enumerate(words):
words[i] = word, count/maximum
return words
| 5,346,042 |
def update_graph_map(n):
"""Update the graph rail network mapbox map.
Returns:
go.Figure: Scattermapbox of rail network graph
"""
return get_graph_map()
| 5,346,043 |
def get_party_leads_sql_string_for_state(party_id, state_id):
"""
:type party_id: integer
"""
str = """ select
lr.candidate_id,
c.fullname as winning_candidate,
lr.constituency_id,
cons.name as constituency,
lr.party_id,
lr.max_votes,
(lr.max_votes-sr.votes) as lead,
sr.candidate_id,
loosing_candidate.fullname as runner_up,
loosing_party.name as runner_up_party,
sr.party_id,
ltr.party_id
from latest_results lr
inner join
latest_runners_up as sr
on
sr.constituency_id = lr.constituency_id
inner join
candidate c
on
c.id = lr.candidate_id
inner join
constituency cons
on
cons.id = lr.constituency_id
inner join party loosing_party
on
loosing_party.id = sr.party_id
inner join candidate loosing_candidate
on
loosing_candidate.id = sr.candidate_id
inner join last_time_winners ltr
on
ltr.constituency_id=lr.constituency_id
where
lr.party_id = %s
and
cons.state_id = %s
and
lr.status = 'COUNTING'
order by
lead DESC""" % (party_id, state_id)
return str;
| 5,346,044 |
def test_read_crux(real_crux_txt):
"""Test that we parse crux files correctly"""
psms = crema.read_crux(real_crux_txt)
assert isinstance(psms.data, pd.DataFrame)
assert psms.data.shape == (21818, 11)
assert list(psms.spectra.columns) == ["scan", "spectrum precursor m/z"]
scores = {
"refactored xcorr",
"combined p-value",
"exact p-value",
"sp score",
"delta_cn",
"delta_lcn",
"res-ev p-value",
}
assert set(psms.score_columns) == scores
assert psms.scores.shape == (21818, len(scores))
assert psms.targets.shape == (21818,)
assert psms.targets.sum() == 10909
assert (~psms.targets).sum() == 10909
| 5,346,045 |
def test_hash():
"""
"""
| 5,346,046 |
def opcode_J(renderer, line_cap):
"""Set line cap style (see p. 216)"""
renderer.gs.line_cap = line_cap
| 5,346,047 |
def dt_dataset():
"""
command line parameter checking filter for dataset files plausibility only.
>>> old_state = test_config.setup()
>>> cmdline.dataset("foo.nothing")
Traceback (most recent call last):
...
ValueError: Parameter 'foo.nothing' does not appear to be a dataset filename.
>>> cmdline.dataset("data/j8bt05njq_raw.fits")
'data/j8bt05njq_raw.fits'
>>> test_config.cleanup(old_state)
"""
| 5,346,048 |
def _check_nonint(logfile):
"""Do not allow opening of files through file descriptors"""
if isinstance(logfile, int):
raise TypeError('Integer logfiles not allowed')
| 5,346,049 |
def add_stored_files(srr_file, store_files, in_folder="", save_paths=False,
usenet=False):
"""Add one or more files to a SRR reconstruction file.
srr_file: the srr file to add files to
store_files: a list of files to store in the srr
first file will be at the top
Wildcards are accepted for paths and file names.
in_folder: root folder for relative paths to store
necessary when save_paths is True
#or paths are relative to in_folder in store_files
save_paths: if the path relative to in_folder
must be stored with the file name
usenet: Don't try to add dupes and keep working quietly
Will skip files that cannot be read when usenet=True.
TODO: try to process the list like for usenet
instead of failing completely?
Raises ArchiveNotFoundError, DupeFileName, NotSrrFile, AttributeError
"""
if not isinstance(store_files, (list, tuple)): # we need a list
store_files = [store_files]
# Make it more likely to find duplicates
store_files = list(map(os.path.normpath, store_files))
rr = RarReader(srr_file) # ArchiveNotFoundError
if rr.file_type() != RarReader.SRR:
raise NotSrrFile("Not an SRR file.")
if _DEBUG: print("Checking for dupes before adding files.")
for block in rr.read_all():
if block.rawtype == BlockType.SrrStoredFile:
existing = block.os_file_name()
if existing in store_files:
msg = "There already is a file with the same name stored."
_fire(MsgCode.DUPE, message=msg)
if usenet:
# don't try to add dupes and keep working quietly
store_files.remove(existing)
else:
raise DupeFileName(msg)
# create a temporarily file
tmpfd, tmpname = mkstemp(prefix="srr_", suffix=".tmp",
dir=os.path.dirname(srr_file))
tmpfile = os.fdopen(tmpfd, "wb")
in_folder = in_folder if in_folder else os.path.dirname(srr_file)
location = False # whether we've added the files or not
if _DEBUG: print("Reading blocks for adding files.")
try:
for block in rr.read_all():
# add the files before the srr rar blocks
if block.rawtype == BlockType.SrrRarFile and not location:
location = True
if not usenet:
amount_added = 0
for f in _search(store_files, in_folder):
_store(f, tmpfile, save_paths, in_folder)
amount_added += 1
if not amount_added:
_fire(MsgCode.NO_FILES,
message="No files found to add.")
else: #TODO: make it nicer
for f in store_files:
_store_fh(f, tmpfile)
tmpfile.write(block.block_bytes())
# we need to copy the contents from blocks too
if block.rawtype == BlockType.SrrStoredFile:
tmpfile.write(block.srr_data())
# XXX: will this always work correct?
if not location: # music video SRR file: add to end
if not usenet:
amount_added = 0
for f in _search(store_files, in_folder):
_store(f, tmpfile, save_paths, in_folder)
amount_added += 1
if not amount_added:
_fire(MsgCode.NO_FILES,
message="No files found to add.")
else: #TODO: make it nicer
for f in store_files:
_store_fh(f, tmpfile)
except:
tmpfile.close()
os.unlink(tmpname)
raise
else:
tmpfile.close()
# if not location:
# # Bad SRR file or RAR file given.
# os.remove(tmpname)
# raise NotSrrFile("No SrrRarFile blocks detected. -> Not SRR. "
# "Zero files added.")
# original srr file is replaced by the temp file
os.remove(srr_file)
os.rename(tmpname, srr_file)
| 5,346,050 |
def goods_images(goods_url):
"""
获得商品晒图
Parameters:
goods_url - str 商品链接
Returns:
image_urls - list 图片链接
"""
image_urls = []
productId = goods_url.split('/')[-1].split('.')[0]
# 评论url
comment_url = 'https://sclub.jd.com/comment/productPageComments.action'
comment_params = {'productId':productId,
'score':'0',
'sortType':'5',
'page':'0',
'pageSize':'10',
'isShadowSku':'0',
'fold':'1'}
comment_headers = {'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'zh-CN,zh;q=0.9',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.167 Safari/537.36',
'Referer':goods_url,
'Host': 'sclub.jd.com'}
comment_req = requests.get(url=comment_url, params=comment_params, headers=comment_headers, verify=False)
html = json.loads(comment_req.text)
# 获得晒图个数
imageListCount = html['imageListCount']
# 计算晒图页数,向上取整
pages = math.ceil(imageListCount / 10)
for page in range(1, pages+1):
# 获取晒图图片url
club_url = 'https://club.jd.com/discussion/getProductPageImageCommentList.action'
now = time.time()
now_str = str(now).split('.')
now = now_str[0] + now_str[-1][:3]
club_params = {'productId':productId,
'isShadowSku':'0',
'page':page,
'pageSize':'10',
'_':now}
club_headers = comment_headers
club_req = requests.get(url=club_url, params=club_params, headers=club_headers, verify=False)
html = json.loads(club_req.text)
for img in html['imgComments']['imgList']:
image_urls.append(img['imageUrl'])
# 去重
image_urls = list(set(image_urls))
# 链接合成
image_urls = list(map(lambda x: 'http:'+x, image_urls))
return image_urls
| 5,346,051 |
def delete_index_list(base_list, index_list):
"""
根据index_list删除base_list中指定元素
:param base_list:
:param index_list:
:return:
"""
if base_list and index_list:
return [base_list[i] for i in range(len(base_list)) if (i not in index_list)]
| 5,346,052 |
def generate_mutated_template(template, outfile, changes_file, header, seedval=None):
"""Generate a mutated template and writes fasta and changes file"""
if seedval:
np.random.seed(seedval)
seed(seedval)
else:
np.random.seed()
seed()
mutated_template, changes = mutate_template(template)
write_fasta(outfile, mutated_template, header)
write_changes(changes_file, changes)
return
| 5,346,053 |
def not_found():
"""Page not found."""
return make_response(
render_template("404.html"),
404
)
| 5,346,054 |
def _traverseAgg(e, visitor=lambda n, v: None):
"""
Traverse a parse-tree, visit each node
if visit functions return a value, replace current node
"""
res = []
if isinstance(e, (list, ParseResults, tuple)):
res = [_traverseAgg(x, visitor) for x in e]
elif isinstance(e, CompValue):
for k, val in e.iteritems():
if val != None:
res.append(_traverseAgg(val, visitor))
return visitor(e, res)
| 5,346,055 |
def roll(image, delta):
"""Roll an image sideways
(A more detailed explanation goes here.)
"""
xsize, ysize = image.size
delta = delta % xsize
if delta == 0:
print("the delta was 0!")
return image
part1 = image.crop((0, 0, delta, ysize))
part2 = image.crop((delta, 0, xsize, ysize))
image.paste(part2, (0, 0, xsize-delta, ysize))
image.paste(part1, (xsize-delta, 0, xsize, ysize))
return image
| 5,346,056 |
def make_long_format(path_list, args):
"""Output list of strings in informative line-by-line format like ls -l
Args:
path_list (list of (str, zipfile.Zipinfo)): tuples, one per file
component of zipfile, with relative file path and zipinfo
args (argparse.Namespace): user arguments to script, esp. switches
Returns:
list of str: list of lines to be printed out one at a time
"""
path_str_list = []
if args.human_readable:
# by design of human-readable formatting
max_size_str_len = 4
else:
# find longest length of size str to determine width of string field
max_size_str_len = 0
for path in path_list:
# find longest size string of all paths in pathlist
size_str_len = len(format_file_size(path[1].file_size, args))
if size_str_len > max_size_str_len:
max_size_str_len = size_str_len
for path in path_list:
# extra_data = path[1].extra
# os_creator = path[1].create_system # 3-unix
if path[1].is_dir():
dir_str = "d"
else:
dir_str = "-"
perm_octal = get_zip_perms(path[1])
perm_str = perm_octal2str(perm_octal) + " "
size_str = format_file_size(path[1].file_size, args, max_size_str_len)
size_str += " "
date_str = get_zip_mtime(path[1])
path_str = color_classify(path, args)
path_str_list.append(dir_str + perm_str + size_str + date_str + path_str)
return path_str_list
| 5,346,057 |
def is_name_a_title(name, content):
"""Determine whether the name property represents an explicit title.
Typically when parsing an h-entry, we check whether p-name ==
e-content (value). If they are non-equal, then p-name likely
represents a title.
However, occasionally we come across an h-entry that does not
provide an explicit p-name. In this case, the name is
automatically generated by converting the entire h-entry content
to plain text. This definitely does not represent a title, and
looks very bad when displayed as such.
To handle this case, we broaden the equality check to see if
content is a subset of name. We also strip out non-alphanumeric
characters just to make the check a little more forgiving.
:param str name: the p-name property that may represent a title
:param str content: the plain-text version of an e-content property
:return: True if the name likely represents a separate, explicit title
"""
def normalize(s):
if not isinstance(s, string_type):
s = s.decode('utf-8')
s = unicodedata.normalize('NFKD', s)
s = s.lower()
s = re.sub('[^a-z0-9]', '', s)
return s
if not content:
return True
if not name:
return False
return normalize(content) not in normalize(name)
| 5,346,058 |
def insertTweet(details, insertDuplicates=True):
""" Adds tweet to database
@param details {Dict} contains tweet details
@param insertDuplicates {Boolean} optional, if true it
will insert even if already exists
"""
try:
if not insertDuplicates:
tweet_results = get_tweet_by_id(details['itemid'])
if tweet_results != None:
logger.info(tweet_results)
return False
tweet = Tweet(
twitter_handle=details['handle'],
tweet_time=datetime.datetime.utcfromtimestamp(details['time']),
tweet_text=details['text'],
data_type=details['type'],
data_id=details['itemid'],
retweets=details['retweets'],
favorites=details['favorites'],
status=1
)
session.add(tweet)
session.commit()
addTweetToHandler(tweet,details['handle'])
return True
except Exception as e:
traceback.print_exc()
traceback.print_stack()
print("ERROR OCCURED WHEN INSERTING TWEET")
print(e)
session.rollback()
return False
| 5,346,059 |
def dump_yaml(file_path, data):
"""Dump data to a file.
:param file_path: File path to dump data to
:type file_path: String
:param data: Dictionary|List data to dump
:type data: Dictionary|List
"""
with open(os.path.abspath(os.path.expanduser(file_path)), "w") as f:
yaml.safe_dump(data, f, default_flow_style=False)
return file_path
| 5,346,060 |
def pull_apk(package=None, regex=None, devices=None, local_dir=None,
force=False):
"""
Downloads the package apk.
If regex matches multiple packages and force is True, each package apk
will be downloaded.
Args:
package: package name as string.
regex: string.
devices: list of device serials.
local_dir: local directory as string.
force: boolean.
"""
_ensure_package_or_regex_given(package, regex)
if devices is None:
devices = attached_devices()
if local_dir is None:
local_dir = os.getcwd()
if package is not None:
for device in devices:
_pull_apk(package, device, local_dir)
else:
_package_iter(regex, devices, _pull_apk, force, local_dir)
| 5,346,061 |
def return_embeddings(embedding: str, vocabulary_size: int, embedding_dim: int,
worddicts: OrderedDict) -> np.ndarray:
"""Create array of word embeddings."""
word_embeddings = np.zeros((vocabulary_size, dim_word))
with open(embedding, 'r') as f:
for line in f:
words=line.split()
word = words[0]
vector = words[1:]
len_vec = len(vector)
if(len_vec>300):
diff = len_vec-300
word = word.join(vector[:diff])
vector = vector[diff:]
if word in worddicts and worddicts[word] < vocabulary_size:
vector = [float(x) for x in vector]
word_embeddings[worddicts[word], :] = vector[0:300]
return word_embeddings
| 5,346,062 |
def symLink(twist, dist, angle, offset):
"""
Transform matrix of this link with DH parameters.
(Use symbols)
"""
twist = twist * sympy.pi / 180
T1 = sympy.Matrix([
[1, 0, 0, dist],
[0, sympy.cos(twist), -sympy.sin(twist), 0],
[0, sympy.sin(twist), sympy.cos(twist), 0],
[0, 0, 0, 1]])
# T1[sympy.abs(T1) < 1e-3] = 0
T2 = sympy.Matrix([
[sympy.cos(angle), -sympy.sin(angle), 0, 0],
[sympy.sin(angle), sympy.cos(angle), 0, 0],
[0, 0, 1, offset],
[0, 0, 0, 1]])
return T1 * T2
| 5,346,063 |
async def _parse_action_body(service: UpnpServerService, request: aiohttp.web.Request) -> Tuple[str, Dict[str, Any]]:
"""Parse action body."""
# Parse call.
soap = request.headers.get("SOAPAction", "").strip('"')
try:
_, action_name = soap.split("#")
data = await request.text()
root_el: ET.Element = DET.fromstring(data)
body_els: Sequence[ET.Element] = root_el.find("s:Body", NAMESPACES)
rpc_el = body_els[0]
except Exception as exc:
raise aiohttp.web.HTTPBadRequest(reason="InvalidSoap") from exc
if action_name not in service.actions:
raise aiohttp.web.HTTPBadRequest(reason="InvalidAction")
kwargs: Dict[str, Any] = {}
action = service.action(action_name)
for arg in rpc_el:
action_arg = action.argument(arg.tag, direction="in")
if action_arg is None:
raise aiohttp.web.HTTPBadRequest(reason="InvalidArg")
state_var = action_arg.related_state_variable
kwargs[arg.tag] = state_var.coerce_python(arg.text)
return action_name, kwargs
| 5,346,064 |
def get_tc_json():
"""Get the json for this testcase."""
try:
with open(GLOBAL_INPUT_JSON_PATH) as json_file:
tc = json.load(json_file)
except Exception:
return_error('Could not custom_validator_input.json')
return tc
| 5,346,065 |
def dualgauss(x, x1, x2, w1, w2, a1, a2, c=0):
"""
Sum of two Gaussian distributions. For curve fitting.
Parameters
----------
x: np.array
Axis
x1: float
Center of 1st Gaussian curve
x2: float
Center of 2nd Gaussian curve
w1: float
Width of 1st Gaussian curve
w2: float
Width of 2nd Gaussian curve
a1: float
Amplitude of 1st Gaussian curve
a2: float
Amplitude of 2nd Gaussian curve
c: float, optional
Offset, defaults to 0
"""
return a1*np.exp(-0.5*((x-x1)/w1)**2)+a2*np.exp(-0.5*((x-x2)/w2)**2) + c
| 5,346,066 |
def pdg_format3( value , error1 , error2 , error3 , latex = False , mode = 'total' ) :
"""Round value/error accoridng to PDG prescription and format it for print
@see http://pdg.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf
@see section 5.3 of doi:10.1088/0954-3899/33/1/001
Quote:
The basic rule states that
- if the three highest order digits of the error lie between 100 and 354, we round to two significant digits.
- If they lie between 355 and 949, we round to one significant digit.
- Finally, if they lie between 950 and 999, we round up to 1000 and keep two significant digits.
In all cases, the central value is given with a precision that matches that of the error.
>>> value, error1, error2 = ...
>>> print ' Rounded value/error is %s ' % pdg_format2 ( value , error1 , error2 , True )
"""
error = ref_error ( mode , error1 , error2 , error3 )
val , err , q , ecase = pdg_round__ ( value , error )
if ecase <= 0 or ( not isfinite ( error1 ) ) or ( not isfinite ( error2 ) ) or ( not isfinite ( error3 ) ) :
if not isfinite ( val ) :
return ( '%+g \\pm %-g \\pm %-g \\pm %-g ' % ( val , error1 , error2 , error3 ) ) if latex else \
( '%+g +/- %-g +/- %-g +/- %-g' % ( val , error1 , error2 , error3 ) )
else :
qv , bv = _frexp10_ ( val )
if 0 != bv :
scale = 1.0 / 10**bv
if latex : return '(%+.2f \\pm %-s \\pm %-s)\\times 10^{%d}' % ( qv , error1 * scale , error2 * scale , error3 * scale , bv )
else : return ' %+.2f +/- %-s +/ %-s +/- %-s )*10^{%d} ' % ( qv , error1 * scale , error2 * scale , error3 * scale , bv )
else :
if latex : return ' %+.2f \\pm %-s \\pm %-s \\pm %-s ' % ( qv , error1 , error2 , error3 )
else : return ' %+.2f +/- %-s +/- %-s +/- %-s ' % ( qv , error1 , error2 , error3 )
qe , be = _frexp10_ ( error )
a , b = divmod ( be , 3 )
if 1 == ecase :
err1 = round_N ( error1 , 2 ) if isclose ( error1 , error , 1.e-2 ) else err
err2 = round_N ( error2 , 2 ) if isclose ( error2 , error , 1.e-2 ) else err
err3 = round_N ( error3 , 2 ) if isclose ( error3 , error , 1.e-2 ) else err
if 0 == b :
nd = 1
elif 1 == b :
nd = 3
a += 1
elif 2 == b :
a += 1
nd = 2
elif 2 == ecase :
err1 = round_N ( error1 , 1 ) if isclose ( error1 , error , 1.e-2 ) else err
err2 = round_N ( error2 , 1 ) if isclose ( error2 , error , 1.e-2 ) else err
err3 = round_N ( error3 , 1 ) if isclose ( error3 , error , 1.e-2 ) else err
if 0 == b :
nd = 0
if 2 == a % 3 :
nd = 3
a = a + 1
elif 1 == b :
nd = 2
a += 1
elif 2 == b :
nd = 1
a += 1
elif 3 == ecase :
err1 = round_N ( error1 , 2 ) if isclose ( error1 , error , 1.e-2 ) else err
err2 = round_N ( error2 , 2 ) if isclose ( error2 , error , 1.e-2 ) else err
err3 = round_N ( error3 , 2 ) if isclose ( error3 , error , 1.e-2 ) else err
if 0 == b :
nd = 0
if 2 == a % 3 :
nd = 3
a = a + 1
elif 1 == b :
nd = 2
a += 1
elif 2 == b :
nd = 1
a += 1
if 0 == a :
if latex: fmt = '(%%+.%df \\pm %%.%df \\pm %%.%df \\pm %%.%df)' % ( nd , nd , nd , nd )
else : fmt = ' %%+.%df +/- %%.%df +/- %%.%df +/- %%.%df ' % ( nd , nd , nd . nd )
return fmt % ( val , err )
if latex: fmt = '(%%+.%df \\pm %%.%df \\pm %%.%df \\pm %%.%df)\\times 10^{%%d}' % ( nd , nd , nd , nd )
else : fmt = '(%%+.%df +/- %%.%df +/- %%.%df +/- %%.%df)*10^{%%d}' % ( nd , nd , nd , nd )
scale = 1.0/10**(3*a)
return fmt % ( val * scale , err1 * scale , err2 * scale , err3 * scale , 3 * a )
| 5,346,067 |
def getChinaHoliday(t):
"""找出距离输入日期最近的中国节日,输出距离的天数"""
date_time = datetime.datetime.strptime(t, '%d %B %Y')
y = date_time.year
# 中国阳历节日
sh = [
(y, 1, 1), # 元旦
(y, 4, 5), # 清明
(y, 5, 1), # 五一劳动节
(y, 10, 1) # 国庆节
]
# 中国阴历节日
lh = [
(y, 1, 1), # 大年初一(春节)
(y, 5, 5), # 端午节
(y, 8, 15) # 中秋节
]
res = 365
for h in sh:
hd = datetime.datetime(h[0], h[1], h[2], 0, 0, 0)
ds = (date_time-hd).days
if abs(ds) < res: # 距离输入的日期最近的阳历节日
res = abs(ds)
for h in lh:
ld = lunardate.LunarDate(h[0], h[1], h[2], 0).toSolarDate()
hd = datetime.datetime(ld.year, ld.month, ld.day, 0, 0, 0)
ds = (date_time-hd).days
if abs(ds) < res: # 距离输入的日期最近的阴历节日
res = abs(ds)
# print t,res
return res
pass
| 5,346,068 |
def parse_mimetype(mimetype):
"""Parses a MIME type into its components.
:param str mimetype: MIME type
:returns: 4 element tuple for MIME type, subtype, suffix and parameters
:rtype: tuple
Example:
>>> parse_mimetype('text/html; charset=utf-8')
('text', 'html', '', {'charset': 'utf-8'})
"""
if not mimetype:
return '', '', '', {}
parts = mimetype.split(';')
params = []
for item in parts[1:]:
if not item:
continue
key, value = item.split('=', 1) if '=' in item else (item, '')
params.append((key.lower().strip(), value.strip(' "')))
params = dict(params)
fulltype = parts[0].strip().lower()
if fulltype == '*':
fulltype = '*/*'
mtype, stype = fulltype.split('/', 1) \
if '/' in fulltype else (fulltype, '')
stype, suffix = stype.split('+', 1) if '+' in stype else (stype, '')
return mtype, stype, suffix, params
| 5,346,069 |
def terraform_state_bucket(config):
"""Get the bucket name to be used for the remote Terraform state
Args:
config (dict): The loaded config from the 'conf/' directory
Returns:
string: The bucket name to be used for the remote Terraform state
"""
# If a bucket name is specified for the remote Terraform state, we can assume the bucket
# should NOT be created
default_name = DEFAULT_TERRAFORM_STATE_BUCKET_SUFFIX.format(
config['global']['account']['prefix']
)
if 'terraform' not in config['global']:
return default_name, True # Use the default name and create the bucket
bucket_name = config['global']['terraform'].get(
'bucket_name',
default_name
)
return bucket_name, bucket_name == default_name
| 5,346,070 |
def get_binary_matrix(gene_expr, libraries):
"""
Get binary matrix with genes as rows and pathways as columns.
If a gene is found in a given pathway, it is given a value of
1. Else, 0. Only the list of genes in common between that found
in the gene set libraries and the current dataset are used.
"""
function_to_genes = {}
set_genes = set()
for lib in libraries:
f2g, genes = gene_set_dictionaries(lib)
function_to_genes.update(f2g)
set_genes = set_genes | set(genes)
common_genes = list(set_genes & set(gene_expr))
binary_matrix = gs_binary_matrix(function_to_genes, set_genes).loc[common_genes]
return binary_matrix
| 5,346,071 |
def _delete_policy(policy_name):
"""
deletes a policy
:param str policy_name: the policy name
"""
url = urljoin(_base_url, 'policies/{vhost}/{name}'.format(vhost=quote(VHOST), name=quote(policy_name)))
response = requests.delete(url)
if not response.ok:
error = "Can't delete policy. error: {}".format(response.content)
logging.error(error)
raise Exception(error)
| 5,346,072 |
def get_tip_downvotes(tips_id):
"""
GET function for retrieving all User objects that have downvoted a tip
"""
tip = Tips.objects.get(id=tips_id)
tips_downvotes = (tip.to_mongo())["downvotes"]
tips_downvotes_list = [
User.objects.get(id=str(user)).to_mongo() for user in tips_downvotes
]
response = {"users": tips_downvotes_list}
return create_response(data=response)
| 5,346,073 |
def count_str_in_read(read_data, string, id_map):
""" Count occuerances of a string in a read.
"""
x = np.zeros(len(read_data))
y = np.zeros_like(x)
c = np.zeros_like(x)
for i, doc in enumerate(read_data):
x[i], y[i] = id_map[doc["barcode"]]
c[i] = doc["Read"].count(string)
| 5,346,074 |
def get_placements(
big_graph: nx.Graph, small_graph: nx.Graph, max_placements=100_000
) -> List[Dict]:
"""Get 'placements' mapping small_graph nodes onto those of `big_graph`.
This function considers monomorphisms with a restriction: we restrict only to unique set
of `big_graph` qubits. Some monomorphisms may be basically
the same mapping just rotated/flipped which we purposefully exclude. This could
exclude meaningful differences like using the same qubits but having the edges assigned
differently, but it prevents the number of placements from blowing up.
Args:
big_graph: The parent, super-graph. We often consider the case where this is a
nx.Graph representation of a Device whose nodes are `cirq.Qid`s like `GridQubit`s.
small_graph: The subgraph. We often consider the case where this is a NamedTopology
graph.
max_placements: Raise a value error if there are more than this many placement
possibilities. It is possible to use `big_graph`, `small_graph` combinations
that result in an intractable number of placements.
Raises:
ValueError: if the number of placements exceeds `max_placements`.
Returns:
A list of placement dictionaries. Each dictionary maps the nodes in `small_graph` to
nodes in `big_graph` with a monomorphic relationship. That's to say: if an edge exists
in `small_graph` between two nodes, it will exist in `big_graph` between the mapped nodes.
"""
matcher = nx.algorithms.isomorphism.GraphMatcher(big_graph, small_graph)
# de-duplicate rotations, see docstring.
dedupe = {}
for big_to_small_map in matcher.subgraph_monomorphisms_iter():
dedupe[frozenset(big_to_small_map.keys())] = big_to_small_map
if len(dedupe) > max_placements:
# coverage: ignore
raise ValueError(
f"We found more than {max_placements} placements. Please use a "
f"more constraining `big_graph` or a more constrained `small_graph`."
)
small_to_bigs = []
for big in sorted(dedupe.keys()):
big_to_small_map = dedupe[big]
small_to_big_map = {v: k for k, v in big_to_small_map.items()}
small_to_bigs.append(small_to_big_map)
return small_to_bigs
| 5,346,075 |
def normalise(hists, integration_range=None, norm_scale=1.):
"""
Wrapper for normalisation of histograms to a given scale in a given interval
:param hists: histograms
:type hists: list of dictionary of histograms
:param integration_range: range in which integration should be performed (default fill range)
:type integration_range: list (default: None)
:param norm_scale: normalisation scale (default 1.)
:type norm_scale: float
:return: nothing
:rtype: None
"""
if integration_range is None:
integration_range = [-1, -1]
if type(hists) == dict:
for h in list(hists.keys()):
hists[h] = normalise_hist(hists[h], integration_range, norm_scale)
elif type(hists) == list:
for h in hists:
h = normalise_hist(h, integration_range, norm_scale)
else:
hists = normalise_hist(hists, integration_range, norm_scale)
| 5,346,076 |
def make_static_server_url_stop(root, host=HOST, port=PORT):
"""start a tornado static file server"""
server_args = [
"python",
str(PA11Y / "serve.py"),
f"--host={host}",
f"--port={port}",
f"--path={root}",
]
url = f"http://{host}:{port}/"
def stop():
server.terminate()
server.wait()
server = subprocess.Popen(server_args)
return server, url, stop
| 5,346,077 |
def request_url(url):
"""
get the resource associated with a url.
"""
try:
# -- todo; eliminate pesky assignment so can be put into chain of Ok then's.
user_agent = 'Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.43 Safari/537.31'
response = requests.get(
urllib.parse.unquote(url), headers = {
'User-agent': user_agent,
'Connection': 'close'
}, timeout = 30)
return Ok(response)
except http.client.BadStatusLine as err:
return Err({
'message': "%s returned an unrecognised status." % (url, ),
'code': 404
})
except requests.exceptions.ConnectionError as err:
return Err({
'message': "%s refused the connection." % (url, ),
'code': 404
})
except requests.exceptions.Timeout as err:
return Err({
'message': "%s timed out." % (url, ),
'code': 404
})
except Exception as err:
return Err(err)
| 5,346,078 |
def makecall(call, stdout=None, stderr=None, stdin=None):
"""Simplifies running system calls using the subprocess module.
stdout and sterr are written to files automatically.
"""
# streams are ignored
if stdout == None and stderr == None and stdin == None:
subprocess.call(call)
elif stdout != None:
with open(stdout, 'w') as outfl:
if stderr != None:
with open(stderr, 'w') as errfl:
# stderr is written to a new file
if stdin == None:
subprocess.call(call, stdout=outfl, stderr=errfl)
# receives a stream from stdin and writes stdin and
# stdout are written to files
else:
with open(stdin, 'r') as inFl:
subprocess.call(call, stdin=inFl, stdout=outfl,
stderr=errfl)
elif stderr == None:
# stdout is written to a file
if stdin == None:
subprocess.call(call, stdout=outfl)
# receives a stream from stdin and writes stdout to a
# new file
else:
with open(stdin, 'r') as inFl:
subprocess.call(call, stdin=inFl, stdout=outfl)
elif stderr != None and stdout == None:
with open(stderr, 'w') as errfl:
# stderr is written to a file
if stdin == None:
subprocess.call(call, stderr=errfl)
else:
# receives a stream from stdin and writes stdout to a
# new file
with open(stdin, 'r') as inFl:
subprocess.call(call, stdin=inFl, stderr=errfl)
# receives a stream from stdin
elif stdin != None and stderr == None and stdout == None:
with open(stdin, 'r') as inFl:
subprocess.call(call, stdin=inFl)
| 5,346,079 |
def _filter_baseanalysis_kwargs(function, kwargs):
"""
create two dictionaries with kwargs separated for function and AnalysisBase
Parameters
----------
function : callable
function to be called
kwargs : dict
keyword argument dictionary
Returns
-------
base_args : dict
dictionary of AnalysisBase kwargs
kwargs : dict
kwargs without AnalysisBase kwargs
Raises
------
ValueError : if ``function`` has the same kwargs as ``BaseAnalysis``
"""
base_argspec = inspect.getargspec(AnalysisBase.__init__)
n_base_defaults = len(base_argspec.defaults)
base_kwargs = {name: val
for name, val in zip(base_argspec.args[-n_base_defaults:],
base_argspec.defaults)}
argspec = inspect.getargspec(function)
for base_kw in six.iterkeys(base_kwargs):
if base_kw in argspec.args:
raise ValueError(
"argument name '{}' clashes with AnalysisBase argument."
"Now allowed are: {}".format(base_kw, list(base_kwargs.keys())))
base_args = {}
for argname, default in six.iteritems(base_kwargs):
base_args[argname] = kwargs.pop(argname, default)
return base_args, kwargs
| 5,346,080 |
def torch_to_flax(torch_params, get_flax_keys):
"""Convert PyTorch parameters to nested dictionaries"""
def add_to_params(params_dict, nested_keys, param, is_conv=False):
if len(nested_keys) == 1:
key, = nested_keys
params_dict[key] = np.transpose(param, (2, 3, 1, 0)) if is_conv else np.transpose(param)
else:
assert len(nested_keys) > 1
first_key = nested_keys[0]
if first_key not in params_dict:
params_dict[first_key] = {}
add_to_params(params_dict[first_key], nested_keys[1:], param, ('conv' in first_key and \
nested_keys[-1] != 'bias'))
def add_to_state(state_dict, keys, param):
key_str = ''
for k in keys[:-1]:
key_str += f"/{k}"
if key_str not in state_dict:
state_dict[key_str] = {}
state_dict[key_str][keys[-1]] = param
flax_params, flax_state = {}, {}
for key, tensor in torch_params.items():
if flax_keys[-1] is None:
continue
flax_keys = get_flax_keys(key.split('.'))
if flax_keys[-1] == 'mean' or flax_keys[-1] == 'var':
add_to_state(flax_state, flax_keys, tensor.detach().numpy())
else:
add_to_params(flax_params, flax_keys, tensor.detach().numpy())
return flax_params, flax_state
| 5,346,081 |
def subset_shape(
ds: Union[xarray.DataArray, xarray.Dataset],
shape: Union[str, Path, gpd.GeoDataFrame],
raster_crs: Optional[Union[str, int]] = None,
shape_crs: Optional[Union[str, int]] = None,
buffer: Optional[Union[int, float]] = None,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
first_level: Optional[Union[float, int]] = None,
last_level: Optional[Union[float, int]] = None,
) -> Union[xarray.DataArray, xarray.Dataset]:
"""Subset a DataArray or Dataset spatially (and temporally) using a vector shape and date selection.
Return a subset of a DataArray or Dataset for grid points falling within the area of a Polygon and/or
MultiPolygon shape, or grid points along the path of a LineString and/or MultiLineString. If the shape
consists of several disjoint polygons, the output is cut to the smallest bbox including all
polygons.
Parameters
----------
ds : Union[xarray.DataArray, xarray.Dataset]
Input values.
shape : Union[str, Path, gpd.GeoDataFrame]
Path to shape file, or directly a geodataframe. Supports formats compatible with geopandas.
raster_crs : Optional[Union[str, int]]
EPSG number or PROJ4 string.
shape_crs : Optional[Union[str, int]]
EPSG number or PROJ4 string.
buffer : Optional[Union[int, float]]
Buffer the shape in order to select a larger region stemming from it. Units are based on the shape degrees/metres.
start_date : Optional[str]
Start date of the subset.
Date string format -- can be year ("%Y"), year-month ("%Y-%m") or year-month-day("%Y-%m-%d").
Defaults to first day of input data-array.
end_date : Optional[str]
End date of the subset.
Date string format -- can be year ("%Y"), year-month ("%Y-%m") or year-month-day("%Y-%m-%d").
Defaults to last day of input data-array.
first_level : Optional[Union[int, float]]
First level of the subset.
Can be either an integer or float.
Defaults to first level of input data-array.
last_level : Optional[Union[int, float]]
Last level of the subset.
Can be either an integer or float.
Defaults to last level of input data-array.
Returns
-------
Union[xarray.DataArray, xarray.Dataset]
A subset of `ds`
Notes
-----
If no CRS is found in the shape provided (e.g. RFC-7946 GeoJSON, https://en.wikipedia.org/wiki/GeoJSON),
assumes a decimal degree datum (CRS84). Be advised that EPSG:4326 and OGC:CRS84 are not identical as axis order of
lat and long differs between the two (for more information, see: https://github.com/OSGeo/gdal/issues/2035).
Examples
--------
>>> import xarray as xr # doctest: +SKIP
>>> from clisops.core.subset import subset_shape # doctest: +SKIP
>>> pr = xr.open_dataset(path_to_pr_file).pr # doctest: +SKIP
...
# Subset data array by shape
>>> prSub = subset_shape(pr, shape=path_to_shape_file) # doctest: +SKIP
...
# Subset data array by shape and single year
>>> prSub = subset_shape(pr, shape=path_to_shape_file, start_date='1990-01-01', end_date='1990-12-31') # doctest: +SKIP
...
# Subset multiple variables in a single dataset
>>> ds = xr.open_mfdataset([path_to_tasmin_file, path_to_tasmax_file]) # doctest: +SKIP
>>> dsSub = subset_shape(ds, shape=path_to_shape_file) # doctest: +SKIP
"""
wgs84 = CRS(4326)
# PROJ4 definition for WGS84 with longitudes ranged between -180/+180.
wgs84_wrapped = CRS.from_string(
"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs lon_wrap=180"
)
if isinstance(ds, xarray.DataArray):
ds_copy = ds._to_temp_dataset()
else:
ds_copy = ds.copy()
if isinstance(shape, gpd.GeoDataFrame):
poly = shape.copy()
else:
poly = gpd.GeoDataFrame.from_file(shape)
if buffer is not None:
poly.geometry = poly.buffer(buffer)
# Get the shape's bounding box.
minx, miny, maxx, maxy = poly.total_bounds
lon_bnds = (minx, maxx)
lat_bnds = (miny, maxy)
# If polygon doesn't cross prime meridian, subset bbox first to reduce processing time
# Only case not implemented is when lon_bnds cross the 0 deg meridian but dataset grid has all positive lons
try:
ds_copy = subset_bbox(ds_copy, lon_bnds=lon_bnds, lat_bnds=lat_bnds)
except ValueError as e:
raise ValueError(
"No grid cell centroids found within provided polygon bounding box. "
'Try using the "buffer" option to create an expanded area.'
) from e
except NotImplementedError:
pass
lon = get_lon(ds_copy)
lat = get_lat(ds_copy)
if start_date or end_date:
ds_copy = subset_time(ds_copy, start_date=start_date, end_date=end_date)
if first_level or last_level:
ds_copy = subset_level(ds_copy, first_level=first_level, last_level=last_level)
# Determine whether CRS types are the same between shape and raster
if shape_crs is not None:
try:
shape_crs = CRS.from_user_input(shape_crs)
except ValueError:
raise
else:
try:
shape_crs = CRS(poly.crs)
except CRSError:
poly.crs = wgs84
shape_crs = wgs84
wrap_lons = False
if raster_crs is not None:
try:
raster_crs = CRS.from_user_input(raster_crs)
except ValueError:
raise
else:
if np.min(lat_bnds) < -90 or np.max(lat_bnds) > 90:
raise ValueError("Latitudes exceed domain of WGS84 coordinate system.")
if np.min(lon_bnds) < -180 or np.max(lon_bnds) > 180:
raise ValueError("Longitudes exceed domain of WGS84 coordinate system.")
try:
# Extract CF-compliant CRS_WKT from crs variable.
raster_crs = CRS.from_cf(ds_copy.crs.attrs)
except AttributeError as e:
# This is guessing that lons are wrapped around at 180+ but without much information, this might not be true
if np.min(lon) >= -180 and np.max(lon) <= 180:
raster_crs = wgs84
elif np.min(lon) >= 0 and np.max(lon) <= 360:
wrap_lons = True
raster_crs = wgs84_wrapped
else:
raise CRSError(
"Raster CRS is not known and does not resemble WGS84."
) from e
_check_crs_compatibility(shape_crs=shape_crs, raster_crs=raster_crs)
mask_2d = create_mask(x_dim=lon, y_dim=lat, poly=poly, wrap_lons=wrap_lons).clip(
1, 1
)
# 1 on the shapes, NaN elsewhere.
# We simply want to remove the 0s from the zeroth shape, for our outer mask trick below.
if np.all(mask_2d.isnull()):
raise ValueError(
f"No grid cell centroids found within provided polygon bounds ({poly.bounds}). "
'Try using the "buffer" option to create an expanded areas or verify polygon.'
)
sp_dims = set(mask_2d.dims) # Spatial dimensions
# Find the outer mask. When subsetting unconnected shapes,
# we dont want to drop the inner NaN regions, it may cause problems downstream.
inner_mask = xarray.full_like(mask_2d, True, dtype=bool)
for dim in sp_dims:
# For each dimension, propagate shape indexes in either directions
# Then sum on the other dimension. You get a step function going from 0 to X.
# The non-zero part that left and right have in common is the "inner" zone.
left = mask_2d.bfill(dim).sum(sp_dims - {dim})
right = mask_2d.ffill(dim).sum(sp_dims - {dim})
# True in the inner zone, False in the outer
inner_mask = inner_mask & (left != 0) & (right != 0)
# inner_mask including the shapes
inner_mask = mask_2d.notnull() | inner_mask
# loop through variables
for v in ds_copy.data_vars:
if set.issubset(sp_dims, set(ds_copy[v].dims)):
# 1st mask values outside shape, then drop values outside inner_mask
ds_copy[v] = ds_copy[v].where(mask_2d.notnull())
# Remove grid points outside the inner mask
# Then extract the coords.
# Using a where(inner_mask) on ds_copy triggers warnings with dask, sel seems safer.
mask_2d = mask_2d.where(inner_mask, drop=True)
for dim in sp_dims:
ds_copy = ds_copy.sel({dim: mask_2d[dim]})
# Add a CRS definition using CF conventions and as a global attribute in CRS_WKT for reference purposes
ds_copy.attrs["crs"] = raster_crs.to_string()
ds_copy["crs"] = 1
ds_copy["crs"].attrs.update(raster_crs.to_cf())
for v in ds_copy.variables:
if {lat.name, lon.name}.issubset(set(ds_copy[v].dims)):
ds_copy[v].attrs["grid_mapping"] = "crs"
if isinstance(ds, xarray.DataArray):
return ds._from_temp_dataset(ds_copy)
return ds_copy
| 5,346,082 |
def plot_record_static(
record,
save=True,
scale=1000,
select_kw={},
x_prop='wavenumber',
**kwargs
):
"""Figure of Static data from a record.
High level function.
record: Record to get data from
save: Boolean, Save figure
scale: Scale y axis.
select_kw: dict passed to select method
Returns
fig and ax.
"""
fig, ax = plt.subplots(num='{}_static'.format(record.name))
fig.clf()
select_kw.setdefault('delay_mean', True)
select_kw.setdefault('frame_med', True)
select_kw.setdefault('prop', 'unpumped')
data = record.select(**select_kw)
plot_spec(record.select(x_prop), scale*data, **kwargs)
plt.title("{}".format(record.lname))
fname = 'figures/{}_static.pdf'.format(record.name)
print(fname)
if save:
plt.savefig(fname)
print("saved")
return fig, ax
| 5,346,083 |
def logmelspectrogram(wave: np.ndarray, conf: ConfMelspec) -> np.ndarray:
"""Convert a waveform to a scaled mel-frequency log-amplitude spectrogram.
Args:
wave::ndarray[Time,] - waveform
conf - Configuration
Returns::(Time, Mel_freq) - mel-frequency log(Bel)-amplitude spectrogram
"""
# mel-frequency linear-amplitude spectrogram :: [Freq=n_mels, T_mel]
mel_freq_amp_spec = librosa.feature.melspectrogram(
y=wave,
sr=conf.sampling_rate,
n_fft=conf.n_fft,
hop_length=conf.hop_length,
n_mels=conf.n_mels,
fmin=conf.fmin,
fmax=conf.fmax,
# norm=,
power=1,
pad_mode="reflect",
)
# [-inf, `min_db`, `ref_db`, +inf] dB(ref=1,power) => [`min_db_rel`/20, `min_db_rel`/20, 0, +inf]
min_db = conf.ref_db + conf.min_db_rel
ref, amin = db_to_linear(conf.ref_db), db_to_linear(min_db)
# `power_to_db` hack for linear-amplitude spec to log-amplitude spec conversion
mel_freq_log_amp_spec = librosa.power_to_db(mel_freq_amp_spec, ref=ref, amin=amin, top_db=None)
mel_freq_log_amp_spec_bel = mel_freq_log_amp_spec/10.
mel_freq_log_amp_spec_bel = mel_freq_log_amp_spec_bel.T
return mel_freq_log_amp_spec_bel
| 5,346,084 |
def isNumber(self, s):
"""
:type s: str
:rtype: bool
"""
#define a DFA
state = [{},
{'blank': 1, 'sign': 2, 'digit':3, '.':4},
{'digit':3, '.':4},
{'digit':3, '.':5, 'e':6, 'blank':9},
{'digit':5},
{'digit':5, 'e':6, 'blank':9},
{'sign':7, 'digit':8},
{'digit':8},
{'digit':8, 'blank':9},
{'blank':9}]
| 5,346,085 |
def get_trainer_config(env_config, train_policies, num_workers=9, framework="tf2"):
"""Build configuration for 1 run."""
# trainer config
config = {
"env": env_name, "env_config": env_config, "num_workers": num_workers,
# "multiagent": {"policy_mapping_fn": lambda x: x, "policies": policies,
# "policies_to_train": train_policies},
"framework": framework,
"train_batch_size": 512,
'batch_mode': 'truncate_episodes',
"callbacks": TraceMallocCallback,
"lr": 0.0,
"num_gpus": 1,
}
return config
| 5,346,086 |
def SamAng(Tth,Gangls,Sangl,IFCoup):
"""Compute sample orientation angles vs laboratory coord. system
:param Tth: Signed theta
:param Gangls: Sample goniometer angles phi,chi,omega,azmuth
:param Sangl: Sample angle zeros om-0, chi-0, phi-0
:param IFCoup: True if omega & 2-theta coupled in CW scan
:returns:
psi,gam: Sample odf angles
dPSdA,dGMdA: Angle zero derivatives
"""
if IFCoup:
GSomeg = sind(Gangls[2]+Tth)
GComeg = cosd(Gangls[2]+Tth)
else:
GSomeg = sind(Gangls[2])
GComeg = cosd(Gangls[2])
GSTth = sind(Tth)
GCTth = cosd(Tth)
GSazm = sind(Gangls[3])
GCazm = cosd(Gangls[3])
GSchi = sind(Gangls[1])
GCchi = cosd(Gangls[1])
GSphi = sind(Gangls[0]+Sangl[2])
GCphi = cosd(Gangls[0]+Sangl[2])
SSomeg = sind(Sangl[0])
SComeg = cosd(Sangl[0])
SSchi = sind(Sangl[1])
SCchi = cosd(Sangl[1])
AT = -GSTth*GComeg+GCTth*GCazm*GSomeg
BT = GSTth*GSomeg+GCTth*GCazm*GComeg
CT = -GCTth*GSazm*GSchi
DT = -GCTth*GSazm*GCchi
BC1 = -AT*GSphi+(CT+BT*GCchi)*GCphi
BC2 = DT-BT*GSchi
BC3 = AT*GCphi+(CT+BT*GCchi)*GSphi
BC = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg
psi = acosd(BC)
BD = 1.0-BC**2
C = np.where(BD>1.e-6,rpd/np.sqrt(BD),0.)
dPSdA = [-C*(-BC1*SSomeg*SCchi-BC2*SSomeg*SSchi-BC3*SComeg),
-C*(-BC1*SComeg*SSchi+BC2*SComeg*SCchi),
-C*(-BC1*SSomeg-BC3*SComeg*SCchi)]
BA = -BC1*SSchi+BC2*SCchi
BB = BC1*SSomeg*SCchi+BC2*SSomeg*SSchi+BC3*SComeg
gam = atan2d(BB,BA)
BD = (BA**2+BB**2)/rpd
dBAdO = 0
dBAdC = -BC1*SCchi-BC2*SSchi
dBAdF = BC3*SSchi
dBBdO = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg
dBBdC = -BC1*SSomeg*SSchi+BC2*SSomeg*SCchi
dBBdF = BC1*SComeg-BC3*SSomeg*SCchi
dGMdA = np.where(BD > 1.e-6,[(BA*dBBdO-BB*dBAdO)/BD,(BA*dBBdC-BB*dBAdC)/BD, \
(BA*dBBdF-BB*dBAdF)/BD],[np.zeros_like(BD),np.zeros_like(BD),np.zeros_like(BD)])
return psi,gam,dPSdA,dGMdA
| 5,346,087 |
def debye_C_V(T,thetaD,natoms):
"""
Returns the heat capacity at constant volume, C_V, of the Debeye model at a
given temperature, T, in meV/atom/K.
"""
C_V = 4*debye_func(thetaD/T)-3*(thetaD/T)/(sp.exp(thetaD/T)-1.)
C_V = 3*natoms*BOLTZCONST*C_V
return C_V
| 5,346,088 |
def setup(clip=True, flip=True):
"""
Project specific data import and setup function
:param clip: bool - use clipping
:param flip: bool - use flipping
:return: data as pandas dataframe, List[LAICPMSData obj]
"""
# calibration
# Zn: y = 0.0395 kcps/(µg/g)* x + 1.308 kcps
# use inverse calibration function to get conc from counts; transformation m = 1/m and b = -1 * b/m
calibration_functions = {
'Zn:64': lambda x: 1/0.0395 * x - 1.308/0.0395,
}
# data files
filenames = ["../data/LA_Data_C1SA1.csv",
"../data/LA_Data_C2SA1.csv",
"../data/LA_Data_C3SA1.csv",
"../data/LA_Data_C4SA1.csv",
"../data/LA_Data_C1SB1.csv",
"../data/LA_Data_C2SB1.csv",
"../data/LA_Data_C3SB1.csv",
"../data/LA_Data_C4SB1.csv",
"../data/LA_Data_C1SC1.csv",
"../data/LA_Data_C2SC1.csv",
"../data/LA_Data_C3SC1.csv",
"../data/LA_Data_C4SC1.csv"]
# short sample names
smpl_names = ["A_1",
"A_2",
"A_3",
"A_4",
"B_1",
"B_2",
"B_3",
"B_4",
"C_1",
"C_2",
"C_3",
"C_4"]
# list on how to flip the data to get matching orientations, h = horizontally, v = vertically
if flip:
flip_list = [
'h',
'v',
'h',
'h',
'h',
'h',
'v',
'v',
'v',
'h',
'h',
'h'
]
else:
flip_list = ['no' for i in range(0, len(filenames))]
# clip data to windows of defined size
# main reason is comparability & tissue folds
if clip:
#100 px x 150 px
clip_list = [
(70,170,30,180),
(70,170,30,180),
(50,150,30,180),
(60,160,50,200),
(30,130,30,180),
(40,140,30,180),
(40,140,30,180),
(40,140,30,180),
(60,160,20,170),
(60,160,20,170),
(60,160,20,170),
(60,160,20,170),
]
else:
clip_list = [None for i in range(0, len(filenames))]
ms_data = []
data = []
# here the data gets processed into LAICPMSData objects - one per file
# data contains all Zn:64 data - masked/segmented based on P:31 content
for smpl, filename, clip, flip in zip(smpl_names, filenames, clip_list, flip_list):
curr_ms_data = LAICPMSData(filename=filename, clip_data_around_center=clip, flip=flip, pixel_dimensions=(15,15))
# only assign directly if you know what you are doing!
curr_ms_data._calibration_functions = calibration_functions
ms_data.append(curr_ms_data)
data.append(curr_ms_data.get_masked_data(element_list=['Zn:64'], discriminator='P:31', only_on_tissue=True))
data[-1]['sample'] = [smpl for i in range(0, len(data[-1]))]
return pd.concat(data, ignore_index=True), ms_data
| 5,346,089 |
def go_test_macro(name, **kwargs):
"""See go/core.rst#go_test for full documentation."""
_cgo(name, kwargs)
go_test(name = name, **kwargs)
| 5,346,090 |
def _verify_all_conflicts(buffer_pool_allocations):
"""Helper to verify liveness conflicts"""
for buffer_info, pool_allocation in buffer_pool_allocations.items():
_verify_conflicts(buffer_info, pool_allocation, buffer_pool_allocations)
| 5,346,091 |
def choi_to_kraus(q_oper):
"""
Takes a Choi matrix and returns a list of Kraus operators.
TODO: Create a new class structure for quantum channels, perhaps as a
strict sub-class of Qobj.
"""
vals, vecs = eig(q_oper.data.todense())
vecs = list(map(array, zip(*vecs)))
return list(map(lambda x: Qobj(inpt=x),
[sqrt(vals[j]) * vec2mat(vecs[j])
for j in range(len(vals))]))
| 5,346,092 |
async def my_edit(event):
"""定义编辑文件操作"""
logger.info(f'即将执行{event.raw_text}命令')
msg_text = event.raw_text.split(' ')
SENDER = event.sender_id
path = JD_DIR
page = 0
if isinstance(msg_text, list) and len(msg_text) == 2:
text = msg_text[-1]
else:
text = None
logger.info(f'命令参数值为:{text}')
if text and os.path.isfile(text):
try:
with open(text, 'r', encoding='utf-8') as f:
lines = f.readlines()
filelist = split_list(lines, 15)
path = text
except Exception as e:
await jdbot.send_message(chat_id, f'something wrong,I\'m sorry\n{str(e)}')
elif text and os.path.isdir(text):
path = text
filelist = None
elif text:
await jdbot.send_message(chat_id, 'please marksure it\'s a dir or a file')
filelist = None
else:
filelist = None
async with jdbot.conversation(SENDER, timeout=120) as conv:
msg = await conv.send_message('正在查询,请稍后')
while path:
path, msg, page, filelist = await edit_file(conv, SENDER, path, msg, page, filelist)
| 5,346,093 |
def plot_df_color_per_unit(data, variables, labels, size=(16, 9), labelsize=17, option='Time', name=None):
"""
"""
plt.clf()
input_dim = len(variables)
# cols = min(np.floor(input_dim ** 0.5).astype(int), 4)
# rows = (np.ceil(input_dim / cols)).astype(int)
cols = 4
rows = 1
gs = gridspec.GridSpec(rows, cols)
leg = []
# fig = plt.figure(figsize=(size, max(size, rows * 2)))
fig = plt.figure(figsize=size)
color_dic_unit = {'Unit 1': 'C0', 'Unit 2': 'C1', 'Unit 3': 'C2', 'Unit 4': 'C3', 'Unit 5': 'C4', 'Unit 6': 'C5',
'Unit 7': 'C6', 'Unit 8': 'C7', 'Unit 9': 'C8', 'Unit 10': 'C9', 'Unit 11': 'C10',
'Unit 12': 'C11', 'Unit 13': 'C12', 'Unit 14': 'C13', 'Unit 15': 'C14', 'Unit 16': 'C15',
'Unit 17': 'C16', 'Unit 18': 'C17', 'Unit 19': 'C18', 'Unit 20': 'C19'}
unit_sel = np.unique(data['unit'])
for n in range(input_dim):
ax = fig.add_subplot(gs[n])
for j in unit_sel:
data_unit = data.loc[data['unit'] == j]
if option == 'cycle':
time_s = data.loc[data['unit'] == j, 'cycle']
label_x = 'Time [cycle]'
else:
time_s = np.arange(len(data_unit))
label_x = 'Time [s]'
ax.plot(time_s, data_unit[variables[n]], '-o', color=color_dic_unit['Unit ' + str(int(j))],
alpha=0.7, markersize=5)
ax.tick_params(axis='x', labelsize=labelsize)
ax.tick_params(axis='y', labelsize=labelsize)
leg.append('Unit ' + str(int(j)))
plt.ylabel(labels[n], fontsize=labelsize)
plt.xlabel(label_x, fontsize=labelsize)
ax.get_xaxis().set_major_formatter(
mpl.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))
if n == 0:
ax.get_yaxis().set_major_formatter(
mpl.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))
plt.legend(leg, loc='best', fontsize=labelsize - 2) # lower left
plt.tight_layout()
if name is not None:
plt.savefig(name, format='png', dpi=300)
plt.show()
plt.close()
| 5,346,094 |
def extract_file_type(file_location:str) -> str:
"""
A function to return the type of file
-> file_location: str = location of a file in string... ex : "C:\\abc\\abc\\file.xyz"
----
=> str: string of the file type, ex : "xyz"
"""
if not isinstance(file_location,str):
raise TypeError("file_location must be a string")
try:
return file_location.rsplit(".", 1)[1]
except IndexError:
raise ValueError(f"Invalid File Location : '{file_location}'")
| 5,346,095 |
def add_sphinx_context_data(sender, data, build_env, **kwargs): # pylint: disable=unused-argument
"""
Provides additional data to the sphinx context.
Data are injected in the provided context
:param sender: sender class
:param data: sphinx context
:param build_env: BuildEnvironment instance
:return: None
"""
from readthedocs.docsitalia.utils import get_subprojects
subprojects = get_subprojects(build_env.project.pk)
data['subprojects'] = subprojects
publisher_project = build_env.project.publisherproject_set.first()
data['publisher_project'] = publisher_project
if publisher_project:
publisher = publisher_project.publisher
data['publisher'] = publisher
metadata = publisher.metadata.get('publisher', {})
data['publisher_logo'] = metadata.get('logo_url')
else:
data['publisher'] = None
data['publisher_logo'] = None
if build_env.project.tagged_items.exists():
data['tags'] = sorted([t.tag.name for t in build_env.project.tagged_items.all()])
| 5,346,096 |
def dualMove(d1, d2, st1, st2, sp1, sp2, ac1, ac2, di1, di2, c1, c2):
"""
Move 2 steppers at the same time
Parameters
----------
d1 : AMIS30543
AMIS30543 Driver
d2 : AMIS30543
AMIS30543 Driver
st1 : int
Steps for motor 1
st2 : int
Steps for motor 2
sp1 : int
Speed for motor 1
sp2 : int
Speed for motor 2
ac1 : int
Acceleration for motor 1
ac2 : int
Acceleration for motor 2
di1 : boolean
direction of motor 1
di2 : boolean
direction of motor 2
c1 : int
Current for motor 1
c2 : int
Current for motor 2
"""
d1.setDirection(di1)
d1.setDirection(di2)
if not baton.locked():
_thread.start_new_thread(secondMove, (d1, st1, sp1, ac1, di1, c1))
d2.moveStepsAcc(st2, sp2, ac2, di2, c2)
# make sure that the other thread has finished before moving on.
while baton.locked():
time.sleep_us(1)
time.sleep_ms(1)
| 5,346,097 |
def re_subm(pat, repl, string):
"""
Like re.sub, but returns the replacement _and_ the match object.
>>> t, m = re_subm('g(oo+)fball', r'f\\1lish', 'goooooofball')
>>> t
'foooooolish'
>>> m.groups()
('oooooo',)
"""
class re_subm_proxy:
def __init__(self):
self.match = None
def __call__(self, match):
self.match = match
return ''
compiled_pat = re_compile(pat)
proxy = re_subm_proxy()
compiled_pat.sub(proxy.__call__, string)
return compiled_pat.sub(repl, string), proxy.match
| 5,346,098 |
def search_view(request):
"""Get user's saved keywords from the database if they exist and render search page."""
if request.method == 'GET':
try:
query = request.dbsession.query(Keyword)
user_keywords = query.filter(Association.user_id == request.authenticated_userid, Association.keyword_id == Keyword.keyword)
except KeyError:
return HTTPFound
# except DBAPIError:
# raise DBAPIError(DB_ERR_MSG, content_type='text/plain', status=500)
keywords = [keyword.keyword for keyword in user_keywords]
if len(keywords) < 1:
return{'message': 'You do not have any keywords saved. Add one!'}
return{'keywords': user_keywords}
| 5,346,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.