content
stringlengths
22
815k
id
int64
0
4.91M
def cached_property_named(name, kls=_internal_jit_attr, use_cls_setattr=False): """ variation of `cached_property`, just with the ability to explicitly set the attribute name Primarily of use for when the functor it's wrapping has a generic name ( `functools.partial` instances for example). Example Usage: >>> from snakeoil.klass import cached_property_named >>> class foo: ... ... @cached_property_named("attr") ... def attr(self): ... print("invoked") ... return 1 >>> >>> obj = foo() >>> print(obj.attr) invoked 1 >>> print(obj.attr) 1 """ return post_curry(kls, name, use_singleton=False, use_cls_setattr=False)
5,346,200
def remix(tracks, n_tracks=50, n_steps=60): """Return new tracks generated by remixing given tracks""" time_step = int( np.round(next(dt for dt in sorted(tracks["Time"].diff()) if dt > 0) * 60) ) print( "Generating {} steps from {} steps {}s apart.".format( n_tracks * n_steps, len(tracks), time_step ) ) velocities_only = tracks[tracks["Turning Angle"].isnull()]["Velocity"].dropna() velo_and_turn = tracks[tracks["Plane Angle"].isnull()][ ["Velocity", "Turning Angle"] ].dropna() remaining_data = tracks[["Velocity", "Turning Angle", "Plane Angle"]].dropna() new_tracks = pd.DataFrame() for i in range(n_tracks): track_data = velo_and_turn.sample() track_data = track_data.append( remaining_data.sample(n_steps - 2, replace=True) ) track_data = track_data.append( pd.DataFrame( { "Velocity": velocities_only.sample() } ) ) new_track = silly_steps(track_data, time_step) new_track["Track_ID"] = i new_tracks = new_tracks.append(new_track) if "Condition" in tracks.columns: new_tracks["Condition"] = tracks["Condition"].iloc[0] + " Remixed" else: new_tracks["Condition"] = "Remixed" return new_tracks.reset_index()
5,346,201
def prohibition_served_recently(**args) -> tuple: """ Returns TRUE if the prohibition was served within the previous 3 days; otherwise returns FALSE """ date_served_string = args.get('date_of_service') config = args.get('config') delay_days = int(config.DAYS_TO_DELAY_FOR_VIPS_DATA_ENTRY) # Note: we have to rely on the date_served as submitted by the user -- not the date in VIPS # Check to see if enough time has elapsed to enter the prohibition into VIPS today = args.get('today_date') date_served = helper.localize_timezone(datetime.strptime(date_served_string, '%Y-%m-%d')) very_recently_served = (today - date_served).days < delay_days if very_recently_served: return True, args error = 'prohibition not served within the past {} days'.format(delay_days) args['error_string'] = error logging.info(error) print("date_served: {}, very_recently_served: {}".format(date_served, very_recently_served)) return False, args
5,346,202
def test_check_family_equal_unicode_encodings(mada_ttFonts): """ Fonts have equal unicode encodings ? """ from fontbakery.profiles.cmap import com_google_fonts_check_family_equal_unicode_encodings as check from fontbakery.constants import WindowsEncodingID print('Test PASS with good family.') # our reference Mada family is know to be good here. status, message = list(check(mada_ttFonts))[-1] assert status == PASS bad_ttFonts = mada_ttFonts # introduce mismatching encodings into the first 2 font files: for i, encoding in enumerate([WindowsEncodingID.SYMBOL, WindowsEncodingID.UNICODE_BMP]): for table in bad_ttFonts[i]['cmap'].tables: if table.format == 4: table.platEncID = encoding print('Test FAIL with fonts that diverge on unicode encoding.') status, message = list(check(bad_ttFonts))[-1] assert status == FAIL and message.code == "mismatch"
5,346,203
def project_api(request): """ 创建项目接口 """ if not request.user.has_perm('home_application.can_add_project'): return render(request, '403.html') if request.method == 'POST': groupId=request.POST.get('group-id','') projectName=request.POST.get('project-name','') domain=request.POST.get('domain','') domainId=request.POST.get('domain-id',1) if domainId == '1': main_domain='.a.com.cn' elif domainId == '2': main_domain='.b.com' else: main_domain='' new_domain=domain+main_domain kwargs={ 'groupId':groupId, 'projectName':projectName, 'domain':new_domain, } try: create_project=QuerySet(**kwargs).creat_project() msg={'resultCode':u'200','data':create_project,'info': u'创建成功'} except Exception: msg={'resultCode':'60001','data':'','info': u'数据库操作异常,注意不要重复'} return HttpResponse(json.dumps(msg)) msg={'resultCode':u'60003','data':u'','info':u'不支持的请求'} return HttpResponse(json.dumps(msg))
5,346,204
def impute_missing_values(model, observed_time_series, parameter_samples, include_observation_noise=False): """Runs posterior inference to impute the missing values in a time series. This method computes the posterior marginals `p(latent state | observations)`, given the time series at observed timesteps (a missingness mask should be specified using `tfp.sts.MaskedTimeSeries`). It pushes this posterior back through the observation model to impute a predictive distribution on the observed time series. At unobserved steps, this is an imputed value; at other steps it is interpreted as the model's estimate of the underlying noise-free series. Args: model: `tfp.sts.Sum` instance defining an additive STS model. observed_time_series: `float` `Tensor` of shape `concat([sample_shape, model.batch_shape, [num_timesteps, 1]])` where `sample_shape` corresponds to i.i.d. observations, and the trailing `[1]` dimension may (optionally) be omitted if `num_timesteps > 1`. May optionally be an instance of `tfp.sts.MaskedTimeSeries` including a mask `Tensor` to encode the locations of missing observations. parameter_samples: Python `list` of `Tensors` representing posterior samples of model parameters, with shapes `[concat([ [num_posterior_draws], param.prior.batch_shape, param.prior.event_shape]) for param in model.parameters]`. This may optionally also be a map (Python `dict`) of parameter names to `Tensor` values. include_observation_noise: If `False`, the imputed uncertainties represent the model's estimate of the noise-free time series at each timestep. If `True`, they represent the model's estimate of the range of values that could be *observed* at each timestep, including any i.i.d. observation noise. Default value: `False`. Returns: imputed_series_dist: a `tfd.MixtureSameFamily` instance with event shape [num_timesteps] and batch shape `concat([sample_shape, model.batch_shape])`, with `num_posterior_draws` mixture components. #### Example To specify a time series with missing values, use `tfp.sts.MaskedTimeSeries`: ```python time_series_with_nans = [-1., 1., np.nan, 2.4, np.nan, 5] observed_time_series = tfp.sts.MaskedTimeSeries( time_series=time_series_with_nans, is_missing=tf.math.is_nan(time_series_with_nans)) ``` Masked time series can be passed to `tfp.sts` methods in place of a `observed_time_series` `Tensor`: ```python # Build model using observed time series to set heuristic priors. linear_trend_model = tfp.sts.LocalLinearTrend( observed_time_series=observed_time_series) model = tfp.sts.Sum([linear_trend_model], observed_time_series=observed_time_series) # Fit model to data parameter_samples, _ = tfp.sts.fit_with_hmc(model, observed_time_series) ``` After fitting a model, `impute_missing_values` will return a distribution ```python # Impute missing values imputed_series_distribution = tfp.sts.impute_missing_values( model, observed_time_series) print('imputed means and stddevs: ', imputed_series_distribution.mean(), imputed_series_distribution.stddev()) ``` """ with tf.name_scope('impute_missing_values'): [ observed_time_series, mask ] = sts_util.canonicalize_observed_time_series_with_mask( observed_time_series) # Run smoothing over the training timesteps to extract the # predictive means and variances. num_timesteps = dist_util.prefer_static_value( tf.shape(input=observed_time_series))[-2] lgssm = model.make_state_space_model( num_timesteps=num_timesteps, param_vals=parameter_samples) posterior_means, posterior_covs = lgssm.posterior_marginals( observed_time_series, mask=mask) observation_means, observation_covs = lgssm.latents_to_observations( latent_means=posterior_means, latent_covs=posterior_covs) if not include_observation_noise: # Extract just the variance of observation noise by pushing forward # zero-variance latents. _, observation_noise_covs = lgssm.latents_to_observations( latent_means=posterior_means, latent_covs=tf.zeros_like(posterior_covs)) # Subtract out the observation noise that was added in the original # pushforward. Note that this could cause numerical issues if the # observation noise is very large. If this becomes an issue we could # avoid the subtraction by plumbing `include_observation_noise` through # `lgssm.latents_to_observations`. observation_covs -= observation_noise_covs # Squeeze dims to convert from LGSSM's event shape `[num_timesteps, 1]` # to a scalar time series. return sts_util.mix_over_posterior_draws( means=observation_means[..., 0], variances=observation_covs[..., 0, 0])
5,346,205
def grad_z(y, z, axis=0): """ Compute the vertical gradient "z" can be an array same size as y, or vector along the first axis of "y" Takes the derivative along the dimension specified by axis(=0) """ Nz = z.shape[0] # Reshape the y variable y = y.swapaxes(0, axis) #assert y.shape[0] == Nz z = z.swapaxes(0, axis) #assert z.shape == (Nz,) or z.shape == y.shape dy_dz = np.zeros_like(y) # Second-order accurate for mid-points ymid = 0.5*(y[1:,...]+y[0:-1,...]) zmid = 0.5*(z[1:,...]+z[0:-1,...]) dzmid = zmid[1:,...] - zmid[0:-1,...] dzmidi = 1./dzmid dy_dz[1:-1, ...] = (ymid[1:,...] - ymid[0:-1,...])*\ dzmidi[:,...] # First-order accurate for top and bottom cells dy_dz[0,...] = (y[1,...] - y[0,...])*dzmidi[0,...] dy_dz[-1,...] = (y[-1,...] - y[-2,...])*dzmidi[-1,...] return dy_dz.swapaxes(axis, 0)
5,346,206
def wang_ryzin_reg(h, Xi, x): """ A version for the Wang-Ryzin kernel for nonparametric regression. Suggested by Li and Racine in [1] ch.4 """ return h ** abs(Xi - x)
5,346,207
def _removeBackrefs( senderkey): """Remove all back-references to this senderkey""" try: signals = connections[senderkey] except KeyError: signals = None else: items = signals.items() def allReceivers( ): for signal,set in items: for item in set: yield item for receiver in allReceivers(): _killBackref( receiver, senderkey )
5,346,208
def get_all_input_values(corpus_weights): """ Returns all relevant input values """ azerty = get_azerty() letters = get_letters() characters = get_characters() keyslots = get_keyslots() similarity_c_c = get_character_similarities() similarity_c_l = get_character_letter_similarities() distance_level_0, distance_level_1 = get_distances() # read in single probabilities p_single, p_bigram = get_probabilities(corpus_weights) ergonomics = get_ergonomics() performance = get_performance() return azerty, \ characters, \ keyslots, \ letters, \ p_single, p_bigram, \ performance, \ similarity_c_c, similarity_c_l, \ distance_level_0, distance_level_1, \ ergonomics
5,346,209
def bulk_rename(doctype, rows=None, via_console = False): """Bulk rename documents :param doctype: DocType to be renamed :param rows: list of documents as `((oldname, newname), ..)`""" if not rows: frappe.throw(_("Please select a valid csv file with data")) if not via_console: max_rows = 500 if len(rows) > max_rows: frappe.throw(_("Maximum {0} rows allowed").format(max_rows)) rename_log = [] for row in rows: # if row has some content if len(row) > 1 and row[0] and row[1]: try: if rename_doc(doctype, row[0], row[1], rebuild_search=False): msg = _("Successful: {0} to {1}").format(row[0], row[1]) frappe.db.commit() else: msg = _("Ignored: {0} to {1}").format(row[0], row[1]) except Exception as e: msg = _("** Failed: {0} to {1}: {2}").format(row[0], row[1], repr(e)) frappe.db.rollback() if via_console: print(msg) else: rename_log.append(msg) frappe.enqueue('frappe.utils.global_search.rebuild_for_doctype', doctype=doctype) if not via_console: return rename_log
5,346,210
def parse_file( input_file, output_file, xsd_file, xpaths, excludepaths, delete_xml, block_size, file_info, ): """ :param input_file: input file :param output_file: output file :param xsd_file: xsd file :param xpaths: whether to parse a specific xml path :param excludepaths: paths to exclude :param delete_xml: optional delete xml file after converting :param block_size: memory needed to read xml :param file_info: capture file information metadata in parquet file """ _logger.debug("Generating schema from " + xsd_file) my_schema = xmlschema.XMLSchema(xsd_file, converter=NestedParqConverter) _logger.debug("Parsing " + input_file) xpaths_set = set() xparents_set = set() if xpaths: xpaths = xpaths.split(",") xpaths_list = [v.split("/")[1:] for v in xpaths] xpaths_set = {tuple(v) for v in xpaths_list} start = -1 while True: x_set = {tuple(v[:start]) for v in xpaths_list if len(v[:start]) > 0} xparents_set.update(x_set) start = start - 1 if not x_set: break excludepaths_set = set() excludeparents_set = set() if excludepaths: excludepaths = excludepaths.split(",") excludepaths_list = [v.split("/")[1:] for v in excludepaths] excludepaths_set = {tuple(v) for v in excludepaths_list} excludeparents_set = {tuple(v[:-1]) for v in excludepaths_list} if input_file.endswith(".tar.gz"): zip_file = tarfile.open(input_file, "r") zip_file_list = zip_file.getmembers() for member in zip_file_list: with zip_file.extractfile(member) as xml_file: if file_info: file_info_meta = member.get_info() file_info_meta["tarfile"] = os.path.basename(input_file) else: file_info_meta = None parse_xml( xml_file, output_file + "." + member.name + ".parquet", my_schema, xpaths_set, xparents_set, excludepaths_set, excludeparents_set, block_size, file_info_meta, ) elif input_file.endswith(".zip"): zip_file = ZipFile(input_file, "r") if zip_file.testzip(): logging.info("Zip File is Corrupt:" + input_file) return zip_file_list = zip_file.infolist() for i in range(len(zip_file_list)): with zip_file.open(zip_file_list[i].filename) as xml_file: if file_info: file_info_meta = { "filename": zip_file_list[i].filename, "date_time": zip_file_list[i].date_time, "compress_size": zip_file_list[i].compress_size, "zipfile": os.path.basename(input_file), } else: file_info_meta = None parse_xml( xml_file, output_file + "." + zip_file_list[i].filename + ".parquet", my_schema, xpaths_set, xparents_set, excludepaths_set, excludeparents_set, block_size, file_info_meta, ) elif input_file.endswith(".gz"): with gzip.open(input_file) as xml_file: if file_info: file_info_meta = { "filename": os.path.basename(input_file), "modified": datetime.fromtimestamp(os.path.getmtime(input_file)), "size": os.path.getsize(input_file), } else: file_info_meta = None parse_xml( xml_file, output_file + "." + input_file[:-3] + ".parquet", my_schema, xpaths_set, xparents_set, excludepaths_set, excludeparents_set, block_size, file_info_meta, ) else: if file_info: file_info_meta = { "filename": os.path.basename(input_file), "modified": datetime.fromtimestamp(os.path.getmtime(input_file)), "size": os.path.getsize(input_file), } else: file_info_meta = None parse_xml( input_file, output_file + ".xml.parquet", my_schema, xpaths_set, xparents_set, excludepaths_set, excludeparents_set, block_size, file_info_meta, ) if delete_xml: os.remove(input_file) _logger.debug("Completed " + input_file)
5,346,211
def mag_to_flux_AB(mag, mag_err): """Calculate flux in erg s-1 cm-2 Hz-1.""" flux = 10 ** (-.4 * (mag + 48.6)) flux_err = abs(-.4 * flux * sp.log(10) * mag_err) return flux, flux_err
5,346,212
def add_count_records(df, count_type): """Add count records for the count type.""" log(f'Adding {DATASET_ID} count records for {count_type}') has_count = pd.to_numeric(df[count_type], errors='coerce').notna() df = df.loc[has_count, :].copy() df[count_type] = df[count_type].astype(int) df['count_id'] = db.create_ids(df, 'counts') df['dataset_id'] = DATASET_ID df['count'] = df[count_type] df['count_type'] = count_type df['count_json'] = util.json_object(df, COUNT_FIELDS) df.loc[df['count'].notna(), db.COUNT_FIELDS].to_sql( 'counts', db.connect(), if_exists='append', index=False)
5,346,213
def rasterizeTimesliceMultipleDays(timeslices_range: dict, perform_rasterization): """ Rasterize timeslices over multiple days while keeping consistent color scheme across rasters timeslices_range shall for each day contain a dictioanry with keys: - timeslices - startTime - endTime - imagePath - rasterPath :param timeslices_range: dictionary containing timeslices and metadata for each day :param perform_rasterization: whether or not to raster GDAL layers or just create and store them """ xres = 1000 yres = 1000 multproc = True min_agents_range = 4000 max_agents_range = 0 log.info(f"Calculating min and max agents over all timeslices") for day in timeslices_range: timeslices = timeslices_range[day]["timeslices"] for hour in sorted(list(timeslices.keys())): for minute in timeslices[hour]: min_agents_range = min(min_agents_range, timeslices[hour][minute][timeslices[hour][minute].countReachable > 3].countReachable.min()) max_agents_range = max(max_agents_range, timeslices[hour][minute].countReachable.max()) log.info(f"min agents: {min_agents_range}, max agents: {max_agents_range}") hours = range(0,24) minutes = range(0, 60, 10) log.info(f"Rasterizing timeslices from {timeslices_range[list(timeslices_range.keys())[0]]['startTime']} to {timeslices_range[list(timeslices_range.keys())[-1]]['startTime']}") for day in timeslices_range: timeslices = timeslices_range[day]["timeslices"] rasterPath = timeslices_range[day]["rasterPath"] imagePath = timeslices_range[day]["imagePath"] slice_datetime = timeslices_range[day]["startTime"] log.info(f"Rasterizing timeslices on day {day}") if not os.path.isdir(rasterPath): log.warning(f"{rasterPath} does not exist, attempting to create folder..") os.mkdir(rasterPath) if not os.path.isdir(imagePath): log.warning(f"{imagePath} does not exist, attempting to create folder..") os.mkdir(imagePath) global parsed parsed = 0 maxParsed = len(hours)*len(minutes) steps = 10 iter = int(maxParsed / steps) def callback(result): dt = result c_hour = dt.hour c_minute = dt.minute global parsed parsed += 1 numBlocks = int(parsed / (iter + 1)) if parsed != maxParsed else steps print(f"\rRendering timeslices [" + ''.join(['#' for _ in range(numBlocks)]).ljust(steps) + f"] ({str(c_hour).rjust(2)} {str(c_minute).rjust(2)})", end="", flush=True) if multproc: pool = multiprocessing.Pool() for hour in hours: for minute in minutes: dt = datetime.datetime(year=slice_datetime.year, month=slice_datetime.month, day=slice_datetime.day, hour=hour, minute=minute) pool.apply_async(_rasterizeTimesliceWorker, (timeslices[hour][minute], rasterPath, imagePath, min_agents_range, max_agents_range, dt, xres, yres, perform_rasterization), callback=callback) pool.close() pool.join() else: for hour in hours: for minute in minutes: dt = datetime.datetime(year=slice_datetime.year, month=slice_datetime.month, day=slice_datetime.day, hour=hour, minute=minute) callback(_rasterizeTimesliceWorker(timeslices[hour][minute], rasterPath, imagePath, min_agents_range, max_agents_range, dt, xres, yres, perform_rasterization)) print() shutil.rmtree(rasterPath)
5,346,214
def django_admin_navtree(request, context): """show menu""" if request and request.user.is_staff: coop_cms_navtrees = context.get('coop_cms_navtrees', None) or [] tree_class = get_navtree_class() admin_tree_name = "{0}_{1}".format(get_model_app(tree_class), get_model_name(tree_class)) if len(coop_cms_navtrees) == 1: tree = coop_cms_navtrees[0] url = reverse('admin:{0}_change'.format(admin_tree_name), args=[tree.id]) label = _('Navigation tree') else: url = reverse('admin:{0}_changelist'.format(admin_tree_name)) label = _('Navigation trees') return make_link( url, label, 'leaf', classes=['icon', 'alert_on_click'] )
5,346,215
def get_pos_tags(student_comment: str) -> pd.DataFrame: """Get the POS (part of speech) tags for each of the words in the student comments Keyword arguments student_comment -- a spacy.tokens.doc.Doc object """ # Count how many of each pos tags are in each comment pos_tags = student_comment.apply(lambda x: Counter([token.pos_ for token in x])) # Expand the list column into several columns pos_tags_df = pos_tags.apply(pd.Series).fillna(0) return pos_tags_df
5,346,216
def compute_descriptor_digest(fields, descriptors, entry, flavor): """ (details of the parser – private API) Plugs into our consumer to compute extra "digest" fields that expose the (micro-)descriptor's (micro-)digest, enabling us to easily fetch associated entries within a consensus. :param list fields: "fields" accumulator used by the consumer :param bytes descriptors: remaining input to be parsed by the consumer :param bytes entry: last line being parsed by the consumer :param str flavor: flavor used by the consumer :returns: updated (or not) fields accumulator """ if flavor == 'unflavored': digest_name = 'digest' pivot_field = 'router' starts_hash = b'router ' ends_hasher = b'router-signature' base_offset = 1 base_legacy = 0 shalgorithm = hashlib.sha1 # https://github.com/plcp/tor-scripts/blob/master/torspec/dir-spec-4d0d42f.txt#L602 else: digest_name = 'micro-digest' pivot_field = 'onion-key' starts_hash = b'onion-key' ends_hasher = b'id ' base_offset = 7 + 1 + 43 + 1 # 'ed25519 [identity]\n' base_legacy = 7 + 1 + 27 + 1 # 'rsa1024 [identity]\n' shalgorithm = hashlib.sha256 # https://github.com/plcp/tor-scripts/blob/master/torspec/dir-spec-4d0d42f.txt#L3202 # 1. check if we're starting to parse a fresh entry before computing digest if digest_name not in fields[-1] or ( entry.startswith(starts_hash) and pivot_field in fields[-1]): if pivot_field in fields[-1]: fields.append(dict()) # 1.5 (extra sanity checks: double-check that we have what we need) if not entry.startswith(starts_hash): raise RuntimeError('Expecting {} to start the payload: {}'.format( starts_hash, entry)) if not ends_hasher in descriptors: raise RuntimeError( 'Expecting {} within: {}'.format(ends_hasher, descriptors)) try: # 2. compute the offset to the ends what goes into the hash sigoffset = descriptors.index(ends_hasher) # TODO: better support? sigoffset += len(ends_hasher) + base_offset if b'rsa1024' in descriptors[:sigoffset]: sigoffset -= base_offset sigoffset += base_legacy # 3. rebuild the original (including its first line being parsed) full_desc = entry + b'\n' + descriptors[:sigoffset] # 4. compute the base64-encoded hash with the right algorithm digest = base64.b64encode(shalgorithm(full_desc).digest()) # 5. strips the trailing '=' as specified fields[-1][digest_name] = str(digest.rstrip(b'='), 'utf8') except ValueError: pass if not digest_name in fields[-1]: raise RuntimeError('Was unable to generate proper sum.') return fields
5,346,217
def main(): """The Main Function.""" parser = argparse.ArgumentParser() parser.add_argument("-v", "--validation", type=int, default=1, help="turn on to cal the index") parser.add_argument("-d", "--dataset", type=str, default="3T3", help="choose mode") parser.add_argument("--n_model", type=int, default=1, help="how many models you want to train") parser.add_argument("--cyto_prefix", type=str, default="2017-10-29_3T3_bn_feature_net_61x61_", help="the prefix of your cyto modle") parser.add_argument("--nuclear_prefix", type=str, default="2017-10-29_nuclei_bn_feature_net_61x61_", help="the prefix of your nuclear modle") parser.add_argument("--win_cyto", type=int, default=30, help="window size of cyto model") parser.add_argument("--win_nuclear", type=int, default=30, help="window size of nuclear model") args = parser.parse_args() root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) if args.validation: direc_name = os.path.join(root, "DATA/validation/" + args.dataset) else: direc_name = os.path.join(root, "DATA/test/" + args.dataset) data_location = os.path.join(direc_name, 'RawImages') cyto_location = os.path.join(direc_name, 'Cytoplasm') nuclear_location = os.path.join(direc_name, 'Nuclear') mask_location = os.path.join(direc_name, 'Masks') cyto_channel_names = [x[:-4] for x in os.listdir(data_location)] nuclear_channel_names = [x[:-4] for x in os.listdir(data_location) if 'hase' not in x] trained_network_cyto_dir = os.path.join(root, "MODEL/cyto") trained_network_nuclear_dir = os.path.join(root, "MODEL/nuclear") n_model = args.n_model cyto_prefix = args.cyto_prefix nuclear_prefix = args.nuclear_prefix win_cyto = args.win_cyto win_nuclear = args.win_nuclear image_size_x, image_size_y = get_image_sizes(data_location, cyto_channel_names) """ Define model """ list_of_cyto_weights = [] for j in xrange(n_model): cyto_weights = os.path.join(trained_network_cyto_dir, cyto_prefix + str(j) + ".h5") list_of_cyto_weights += [cyto_weights] list_of_nuclear_weights = [] for j in xrange(n_model): nuclear_weights = os.path.join(trained_network_nuclear_dir, nuclear_prefix + str(j) + ".h5") list_of_nuclear_weights += [nuclear_weights] """ Run model on directory """ cytoplasm_predictions = run_models_on_directory(data_location, cyto_channel_names, cyto_location, n_features=3, model_fn=network, list_of_weights=list_of_cyto_weights, image_size_x=image_size_x, image_size_y=image_size_y, win_x=win_cyto, win_y=win_cyto, std=True, split=True) run_models_on_directory(data_location, nuclear_channel_names, nuclear_location, model_fn=network, list_of_weights=list_of_nuclear_weights, image_size_x=image_size_x, image_size_y=image_size_y, win_x=win_nuclear, win_y=win_nuclear, std=False, split=False) """ Refine segmentation with active contours """ nuclear_masks = segment_nuclei(img=None, color_image=True, load_from_direc=nuclear_location, mask_location=mask_location, area_threshold=100, solidity_threshold=0, eccentricity_threshold=1) cytoplasm_masks = segment_cytoplasm(img=None, load_from_direc=cyto_location, color_image=True, nuclear_masks=nuclear_masks, mask_location=mask_location, smoothing=1, num_iters=120) """ Compute validation metrics (optional) """ if args.validation: direc_val = os.path.join(direc_name, 'Validation') imglist_val = nikon_getfiles(direc_val, 'interior') val_name = os.path.join(direc_val, imglist_val[0]) print(val_name) val = get_image(val_name) val = val[win_cyto:-win_cyto, win_cyto:-win_cyto] cyto = cytoplasm_masks[0, win_cyto:-win_cyto, win_cyto:-win_cyto] nuc = nuclear_masks[0, win_cyto:-win_cyto, win_cyto:-win_cyto] print(val.shape, cyto.shape, nuc.shape) print(dice_jaccard_indices(cyto, val, nuc)) # Compute cell categorization prediction for each cell interior1 = cytoplasm_predictions[0, 1, :, :] interior2 = cytoplasm_predictions[0, 2, :, :] seg = label(cytoplasm_masks[0, :, :]) num_of_cells = np.amax(seg) prediction = np.zeros(interior1.shape, dtype=np.float32) prediction_color = np.zeros((interior1.shape[0], interior1.shape[1], 3), dtype=np.float32) bound = segmentation.find_boundaries(seg) for cell_no in xrange(1, num_of_cells): class_1_pred = interior1[seg == cell_no] class_2_pred = interior2[seg == cell_no] # class_1_score = np.sum(class_1_pred) / (np.sum(class_1_pred) + np.sum(class_2_pred)) class_2_score = np.sum(class_2_pred) / (np.sum(class_1_pred) + np.sum(class_2_pred)) prediction[seg == cell_no] = class_2_score prediction_color[seg == cell_no, 0] = plt.cm.coolwarm(class_2_score)[0] prediction_color[seg == cell_no, 1] = plt.cm.coolwarm(class_2_score)[1] prediction_color[seg == cell_no, 2] = plt.cm.coolwarm(class_2_score)[2] prediction_color[bound, 0] = 0 prediction_color[bound, 1] = 0 prediction_color[bound, 2] = 0 cnnout_name = os.path.join(mask_location, 'segmentation_rgb_new.tif') scipy.misc.imsave(cnnout_name, np.float16(prediction_color))
5,346,218
def add_auth(instance): """Add authentication to VM.""" if not instance: sys.exit(click.style("Need to provide an instance to before " "we can add authentication.", fg="red")) if instance.provider == 'vmware' and instance.vmx is None: sys.exit(click.style("Need to provide vmx before we can add authentication.", fg="red")) if instance.provider == 'virtualbox' and instance.vbox is None: sys.exit(click.style("Need to provide vbox before we can add authentication.", fg="red")) if instance.user is None or instance.user == '': sys.exit(click.style("Need to provide user to add authentication.", fg="red")) if instance.password is None or instance.password == '': sys.exit(click.style("Need to provide password to add authentication.", fg="red")) click.secho('Adding auth to instance:{}'.format(instance.name), fg="green") vmrun = VMrun(instance.vmx, instance.user, instance.password) # cannot run if vmware tools are not installed if not vmrun.installed_tools(): sys.exit(click.style("Cannot add authentication if VMware Tools " "are not installed.", fg="red")) if instance.auth: username = instance.auth.get('username', None) pub_key = instance.auth.get('pub_key', None) if username and pub_key: pub_key_path = os.path.expanduser(pub_key) LOGGER.debug("pub_key_path:%s pub_key:%s", pub_key_path, pub_key) with open(pub_key_path, 'r') as the_file: pub_key_contents = the_file.read().strip() if pub_key_contents: # set the password to some random string # user should never need it (sudo should not prompt for a # password) password = random_string() cmd = ('sudo useradd -m -s /bin/bash -p "{password}" {username};' 'sudo mkdir /home/{username}/.ssh;' 'sudo usermod -aG sudo {username};' 'echo "{username} ALL=(ALL) NOPASSWD: ALL" | ' 'sudo tee -a /etc/sudoers;' 'echo "{pub_key_contents}" | ' 'sudo tee -a /home/{username}/.ssh/authorized_keys;' 'sudo chmod 700 /home/{username}/.ssh;' 'sudo chown {username}:{username} /home/{username}/.ssh;' 'sudo chmod 600 /home/{username}/.ssh/authorized_keys;' 'sudo chown {username}:{username} /home/{username}/.ssh/authorized_keys' ).format(username=username, pub_key_contents=pub_key_contents, password=password) LOGGER.debug('cmd:%s', cmd) results = vmrun.run_script_in_guest('/bin/sh', cmd, quiet=True) LOGGER.debug('results:%s', results) if results is None: click.secho("Did not add auth", fg="red") else: click.secho("Added auth.", fg="red") else: click.secho("Could not read contents of the pub_key" " file:{}".format(pub_key), fg="green") else: click.secho("Warning: Need a username and pub_key in auth.", fg="blue") else: click.secho("No auth to add.", fg="blue")
5,346,219
def test_docker_registry_htpasswd_list( docker_registry_htpasswd_list: List[Path], docker_registry_password_list: List[str], docker_registry_username_list: List[str], pdrf_scale_factor: int, ): """Test that a htpasswd can be provided.""" for i in range(pdrf_scale_factor): assert docker_registry_htpasswd_list[i].exists() content = docker_registry_htpasswd_list[i].read_text("utf-8") assert docker_registry_username_list[i] in content assert docker_registry_password_list[i] not in content assert no_duplicates(docker_registry_htpasswd_list) assert no_duplicates(docker_registry_password_list) assert no_duplicates(docker_registry_username_list)
5,346,220
def get_axis(array, axis, slice_num): """Returns a fixed axis""" slice_list = [slice(None)] * array.ndim slice_list[axis] = slice_num slice_data = array[tuple(slice_list)].T # transpose for proper orientation return slice_data
5,346,221
def test_integrity(param_test): """ Test integrity of function """ # open result file f = open(os.path.join(param_test.path_output, 'ernst_angle.txt'), 'r') angle_result = float(f.read()) f.close() # compare with GT if abs(angle_result - param_test.angle_gt) < param_test.threshold: param_test.output += '--> PASSED' else: param_test.output += '--> FAILED' param_test.status = 99 return param_test
5,346,222
def expand_name_df(df,old_col,new_col): """Takes a dataframe df with an API JSON object with nested elements in old_col, extracts the name, and saves it in a new dataframe column called new_col Parameters ---------- df : dataframe old_col : str new_col : str Returns ------- df : dataframe """ import pandas as pd def expand_name(nested_name): """Takes an API JSON object with nested elements and extracts the name Parameters ---------- nested_name : JSON API object Returns ------- object_name : str """ if pd.isnull(nested_name): object_name = 'Likely Missing' else: object_name = nested_name['name'] return object_name df[new_col] = df[old_col].apply(expand_name) return df
5,346,223
def image_rpms_remove_if_exists(rpmlist): """ `image.rpms_remove_if_exists(["baz"])` removes `baz.rpm` if exists. Note that removals may only be applied against the parent layer -- if your current layer includes features both removing and installing the same package, this will cause a build failure. """ return _build_rpm_feature( rpmlist, "remove_if_exists", needs_version_set = False, )
5,346,224
def expand_set(mySet): """ pass in a set of genome coords, and it will 'expand' the indels within the set by adding +/- 3 bp copies for each one """ returnSet = [] for entry in mySet: l0 = [] l1 = [] try: sub0 = entry.split('-')[0] # split on `-` sub1 = entry.split('-')[1] # this guy is good sub00 = sub0.split(':')[1] # split on :, need to get rid of chrom chrom = sub0.split(':')[0] if sub00 != sub1: # got an indel sub00_1 = int(sub00) + 1 sub00_2 = int(sub00) + 2 sub00_3 = int(sub00) + 3 sub00_4 = int(sub00) - 1 sub00_5 = int(sub00) - 2 sub00_6 = int(sub00) - 3 l0.extend((sub00_1, sub00_2, sub00_3, sub00_4, sub00_5, sub00_6)) try: sub1_1 = int(sub1) + 1 sub1_2 = int(sub1) + 2 sub1_3 = int(sub1) + 3 sub1_4 = int(sub1) - 1 sub1_5 = int(sub1) - 2 sub1_6 = int(sub1) - 3 l1.extend((sub1_1, sub1_2, sub1_3, sub1_4, sub1_5, sub1_6)) except ValueError: continue coord_combos = list(itertools.product(l0, l1)) for pair in coord_combos: toAdd = chrom + ':' + str(pair[0]) + '-' + str(pair[1]) returnSet.append(toAdd) else: returnSet.append(entry) except IndexError: continue return returnSet
5,346,225
def trapezoid(t, depth, bigT, littleT): """Trapezoid shape for model INPUT: t - [float] vector of independent values to evaluate trapezoid model depth - [float] depth of trapezoid bigT - [float] full trapezoid duration littleT - [float] 'ingress/egress' duration OUTPUT: output - [float] vector of trapezoid model values """ output = np.full_like(t, 1.0) t = np.abs(t) output = np.where(t <= bigT/2.0 - littleT/2.0, 1.0 - depth, output) output = np.where(np.logical_and(t > bigT/2.0 - littleT/2.0, \ t < bigT/2.0 + littleT/2.0), \ 1.0 - depth + ((depth/littleT)* \ (t-bigT/2.0 + littleT/2.0)), output) return output
5,346,226
def destroy(ctx, config, name, force): """Destroy a machine.""" name = drifter.commands.validate_name(ctx, name) # Destroy the named machine only if name: _destroy(ctx, config, name, force) return # Destroy all machines for machine in drifter.commands.list_machines(config): _destroy(ctx, config, machine, force)
5,346,227
def clean_username(username=''): """ Simple helper method to ensure a username is compatible with our system requirements. """ return ('_').join(re.findall(r'[a-zA-Z0-9\-]+', username))[:USERNAME_MAX_LENGTH]
5,346,228
def hy_compile(tree, module_name, root=ast.Module, get_expr=False): """ Compile a HyObject tree into a Python AST Module. If `get_expr` is True, return a tuple (module, last_expression), where `last_expression` is the. """ body = [] expr = None if not isinstance(tree, HyObject): tree = wrap_value(tree) if not isinstance(tree, HyObject): raise HyCompileError("`tree` must be a HyObject or capable of " "being promoted to one") spoof_positions(tree) compiler = HyASTCompiler(module_name) result = compiler.compile(tree) expr = result.force_expr if not get_expr: result += result.expr_as_stmt() module_docstring = None if (PY37 and result.stmts and isinstance(result.stmts[0], ast.Expr) and isinstance(result.stmts[0].value, ast.Str)): module_docstring = result.stmts.pop(0).value.s body = compiler.imports_as_stmts(tree) + result.stmts ret = root(body=body, docstring=( None if module_docstring is None else module_docstring)) if get_expr: expr = ast.Expression(body=expr) ret = (ret, expr) return ret
5,346,229
def make_expt_parser(): """ Parses arguments from the command line for running experiments returns args (argparse NameSpace) """ parser = argparse.ArgumentParser( description='energy_py dict expt parser' ) # required parser.add_argument('expt_name', default=None, type=str) # optional parser.add_argument('--run_name', default=None, type=str) parser.add_argument('--seed', default=None, type=int) args = parser.parse_args() return args
5,346,230
def user_dss_clients(dss_clients, dss_target): """ Fixture that narrows down the dss clients to only the ones that are relevant considering the curent DSS target. Args: dss_clients (fixture): All the instanciated dss client for each user and dss targets dss_target (fixture): The considered DSS target for the test to be executed Returns: A dict of dss client instances for the current DSS target and each of its specified users. """ return dss_clients[dss_target]
5,346,231
def build_log(x: np.ndarray) -> np.ndarray: """ Logarithmic expansion. :param x: features :return: augmented features """ expanded = np.ones((x.shape[0], 1)) expanded = np.hstack((expanded, np.nan_to_num(np.log(x)))) return expanded
5,346,232
def print_pqr(args, pqr_lines, header_lines, missing_lines, is_cif): """Print PQR-format output to specified file .. todo:: Move this to another module (io) :param argparse.Namespace args: command-line arguments :param [str] pqr_lines: output lines (records) :param [str] header_lines: header lines :param [str] missing_lines: lines describing missing atoms (should go in header) :param bool is_cif: flag indicating CIF format """ with open(args.output_pqr, "wt") as outfile: # Adding whitespaces if --whitespace is in the options if header_lines: _LOGGER.warning( f"Ignoring {len(header_lines)} header lines in output." ) if missing_lines: _LOGGER.warning( f"Ignoring {len(missing_lines)} missing lines in output." ) for line in pqr_lines: if args.whitespace: if line[0:4] == "ATOM" or line[0:6] == "HETATM": newline = ( line[0:6] + " " + line[6:16] + " " + line[16:38] + " " + line[38:46] + " " + line[46:] ) outfile.write(newline) else: if line[0:3] != "TER" or not is_cif: outfile.write(line) if is_cif: outfile.write("#\n")
5,346,233
def all_multibert_finetune_glue(m:Manager, task_name:str='MRPC')->BertGlue: """ Finetune milti-lingual base-BERT on GLUE dataset Ref. https://github.com/google-research/bert/blob/master/multilingual.md """ refbert=all_fetch_multibert(m) refglue=all_fetchglue(m) vocab=mklens(refbert).bert_vocab.refpath glueref=glue_tfrecords(m, task_name, bert_vocab=vocab, lower_case=mklens(refbert).cased.val==False, refdataset=refglue) return bert_finetune_glue(m,refbert,glueref)
5,346,234
def hash_eth2(data: Union[bytes, bytearray]) -> Hash32: """ Return SHA-256 hashed result. Note: this API is currently under active research/development so is subject to change without a major version bump. Note: it's a placeholder and we aim to migrate to a S[T/N]ARK-friendly hash function in a future Ethereum 2.0 deployment phase. """ return Hash32(hashlib.sha256(data).digest())
5,346,235
def read_data(data_dir="../main/datasets/", data_file=DATA_FILE): """Returns the data, in order infos, items, orders""" with zipfile.ZipFile(data_dir+DATA_FILE) as z: dfs = [] for name in ["infos", "items", "orders"]: dfs.append(pd.read_csv(z.open(f"1.0v/{name}.csv"), sep="|")) return dfs
5,346,236
def get_sprints(root_project_id, rally_number=None): """Get list of sprint projects. Args: root_project_id: Synapse Project ID with admin annotations, including the sprint table ID. rally_number: An integer rally number. If None, return sprints from all rallies. Returns: A Pandas data frame of sprint information from the Sprint Synapse table. """ syn = Synapse().client() root_project = syn.get(root_project_id) table_id = root_project.annotations.sprintTableId[0] tbl = syn.tableQuery("select * from %s" % (table_id, )) data_frame = tbl.asDataFrame() if rally_number: data_frame = data_frame[data_frame.rally == rally_number] return data_frame
5,346,237
async def cmd_viewdb(self, message, scopes): """ `$!_viewdb [scopes...]` : Displays the current database state If scopes are provided, then only show the requested scopes """ async with DBView() as db: if scopes is None or not len(scopes): await self.send_message( message.channel, json.dumps( {key:DBView.serializable(db[key]) for key in iter(db)}, indent=2, sort_keys=False ) ) else: await self.send_message( message.channel, json.dumps( {key:DBView.serializable(db[key]) for key in scopes if key in db}, indent=2, sort_keys=False ) )
5,346,238
def prep_bbox(sess, logits_scalar, x, y, X_train, Y_train, X_test, Y_test, img_rows, img_cols, channels, nb_epochs, batch_size, learning_rate, rng, phase=None, binary=False, scale=False, nb_filters=64, model_path=None, adv=0, delay=0, eps=0.3): """ Define and train a model that simulates the "remote" black-box oracle described in the original paper. :param sess: the TF session :param x: the input placeholder for MNIST :param y: the ouput placeholder for MNIST :param X_train: the training data for the oracle :param Y_train: the training labels for the oracle :param X_test: the testing data for the oracle :param Y_test: the testing labels for the oracle :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param learning_rate: learning rate for training :param rng: numpy.random.RandomState :return: """ # Define TF model graph (for the black-box model) save = False train_from_scratch = False if model_path is not None: if os.path.exists(model_path): # check for existing model in immediate subfolder if any(f.endswith('.meta') for f in os.listdir(model_path)): binary, scale, nb_filters, batch_size, learning_rate, nb_epochs, adv = parse_model_settings( model_path) train_from_scratch = False else: model_path = build_model_save_path( model_path, binary, batch_size, nb_filters, learning_rate, nb_epochs, adv, delay, scale) print(model_path) save = True train_from_scratch = True else: train_from_scratch = True # train from scratch, but don't save since no path given if binary: if scale: #from cleverhans_tutorials.tutorial_models import make_scaled_binary_cnn # model = make_scaled_binary_cnn(phase, 'bb_binsc_', input_shape=( from cleverhans_tutorials.tutorial_models import make_scaled_binary_rand_cnn model = make_scaled_binary_rand_cnn(phase, logits_scalar, 'bb_binsc_', input_shape=( None, img_rows, img_cols, channels), nb_filters=nb_filters) else: from cleverhans_tutorials.tutorial_models import make_basic_binary_cnn model = make_basic_binary_cnn(phase, logits_scalar, 'bb_bin_', input_shape=( None, img_rows, img_cols, channels), nb_filters=nb_filters) else: from cleverhans_tutorials.tutorial_models import make_basic_cnn model = make_basic_cnn(phase, logits_scalar, 'bb_fp_', input_shape=( None, img_rows, img_cols, channels), nb_filters=nb_filters) preds = model(x, reuse=False) print("Defined TensorFlow model graph.") def evaluate(): # Print out the accuracy on legitimate data eval_params = {'batch_size': batch_size} acc = model_eval( sess, x, y, preds, X_test, Y_test, phase=phase, args=eval_params) print('Test accuracy of black-box on legitimate test ' 'examples: %.4f' % acc) # Train an MNIST model train_params = { 'binary': binary, 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate, 'loss_name': 'bb train loss', 'filename': 'bb_model', 'train_scope': 'bb_model', 'reuse_global_step': False, 'is_training': True } if adv != 0: if adv == ADVERSARIAL_TRAINING_MADRYETAL: from cleverhans.attacks import MadryEtAl nb_iter = 20 train_attack_params = {'eps': MAX_EPS, 'eps_iter': 0.01, 'nb_iter': nb_iter} train_attacker = MadryEtAl(model, sess=sess) if adv == ADVERSARIAL_TRAINING_FGSM: from cleverhans.attacks import FastGradientMethod train_attacker = FastGradientMethod(model, back='tf', sess=sess) # create the adversarial trainer train_attack_params.update({'clip_min': 0., 'clip_max': 1.}) adv_x_train = train_attacker.generate(x, phase, **train_attack_params) preds_adv = model.get_probs(adv_x_train) if train_from_scratch: if save: train_params.update({'log_dir': model_path}) if adv and delay > 0: train_params.update({'nb_epochs': delay}) # do clean training for 'nb_epochs' or 'delay' epochs model_train(sess, x, y, preds, X_train, Y_train, phase=phase, evaluate=evaluate, args=train_params, save=save, rng=rng) # optionally do additional adversarial training if adv: print("Adversarial training for %d epochs" % (nb_epochs - delay)) train_params.update({'nb_epochs': nb_epochs - delay}) train_params.update({'reuse_global_step': True}) model_train(sess, x, y, preds, X_train, Y_train, phase=phase, predictions_adv=preds_adv, evaluate=evaluate, args=train_params, save=save, rng=rng) else: tf_model_load(sess, model_path) print('Restored model from %s' % model_path) accuracy = evaluate() return model, preds, accuracy, model_path
5,346,239
def out_of_bounds(maze: Array, x: int, y: int): """ Return true if x, y is out of bounds """ w, h = maze.shape is_x_out = (x < 0) + (x >= w) is_y_out = (y < 0) + (y >= h) return is_x_out + is_y_out
5,346,240
def run_test(test_name, module_dict, print_test_case=False, display=None): """Run a given test.""" import test_parser import test_classes for module in module_dict: setattr(sys.modules[__name__], module, module_dict[module]) test_dict = test_parser.TestParser(test_name + ".test").parse() solution_dict = test_parser.TestParser(test_name + ".solution").parse() test_out_file = os.path.join('%s.test_output' % test_name) test_dict['test_out_file'] = test_out_file test_class = getattr(project_test_classes, test_dict['class']) question_class = getattr(test_classes, 'Question') question = question_class({'max_points': 0}, display) test_case = test_class(question, test_dict) if print_test_case: print_test(test_dict, solution_dict) # This is a fragile hack to create a stub grades object grades = grading.Grades(project_params.PROJECT_NAME, [(None, 0)]) test_case.execute(grades, module_dict, solution_dict)
5,346,241
def cache_set(apollo_client, name, val): """ 保存数据到redis :return: """ r = redis_handler(apollo_client) try: res = r.set(name=name, value=json.dumps(val)) except Exception as e: logger.error("Storage {} to cache failed!{}".format(name, e.__str__())) return None else: logger.info("{} values {}".format(name, val)) return res
5,346,242
def guess_pyramid(data): """If shape of arrays along first axis is strictly decreasing. """ # If the data has ndim and is not one-dimensional then cannot be pyramid if hasattr(data, 'ndim') and data.ndim > 1: return False size = np.array([np.prod(d.shape, dtype=np.uint64) for d in data]) if len(size) > 1: return np.all(size[:-1] > size[1:]) else: return False
5,346,243
def __clear_archive_file(model_context): """ Remove any binaries already in the archive file. :param model_context: the model context :raises DiscoverException: if an error occurs while removing the binaries """ _method_name = '__clear_archive_file' __logger.entering(class_name=_class_name, method_name=_method_name) archive_file = model_context.get_archive_file() if archive_file is None: de = exception_helper.create_discover_exception('WLSDPLY-06004', model_context.get_archive_file_name()) __logger.throwing(class_name=_class_name, method_name=_method_name, error=de) raise de try: archive_file.removeAllBinaries() except WLSDeployArchiveIOException, wioe: de = exception_helper.create_discover_exception('WLSDPLY-06005', wioe.getLocalizedMessage()) __logger.throwing(class_name=_class_name, method_name=_method_name, error=de) raise de return
5,346,244
def test_object_properties_match_xml(person_xml, mini_mock): """ Test the object is modified to include attributes for elements from the XML tree. """ tree = etree.fromstring(person_xml) # Set up some blank object attributes. person0 = mini_mock() person0.nickname = None person0.first_name = None person1 = mini_mock() person1.nickname = None person1.first_name = None # The mappings for XML -> Object translation. This will tell the function # to get the firstName element and assign it to the first_name attribute on # the object. It will do the same for nickname. mapping = { '@namespaces': {'x': 'http://example.com/namespace'}, 'nickname': ['x:nickname'], 'first_name': ['x:firstName'] } bagatom.updateObjectFromXML(tree, person1, mapping) assert person0.nickname != person1.nickname assert person0.first_name != person1.first_name assert person1.nickname == 'Jim' assert person1.first_name == 'James'
5,346,245
def test_interdependency_constrained(): """ Test a model with interdependent components, and with constraints which depend on the Model's output. This is done in the MatrixSymbol formalism, using a Tikhonov regularization as an example. In this, a matrix inverse has to be calculated and is used multiple times. Therefore we split that term of into a seperate component, so the inverse only has to be computed once per model call. See https://arxiv.org/abs/1901.05348 for a more detailed background. """ N = Symbol('N', integer=True) M = MatrixSymbol('M', N, N) W = MatrixSymbol('W', N, N) I = MatrixSymbol('I', N, N) y = MatrixSymbol('y', N, 1) c = MatrixSymbol('c', N, 1) a, = parameters('a') z, = variables('z') i = Idx('i') model_dict = { W: Inverse(I + M / a ** 2), c: - W * y, z: sqrt(c.T * c) } # Sympy currently does not support derivatives of matrix expressions, # so we use CallableModel instead of Model. model = CallableModel(model_dict) # Generate data iden = np.eye(2) M_mat = np.array([[2, 1], [3, 4]]) y_vec = np.array([[3], [5]]) eval_model = model(I=iden, M=M_mat, y=y_vec, a=0.1) # Calculate the answers 'manually' so I know it was done properly W_manual = np.linalg.inv(iden + M_mat / 0.1 ** 2) c_manual = - np.atleast_2d(W_manual.dot(y_vec)) z_manual = np.atleast_1d(np.sqrt(c_manual.T.dot(c_manual))) assert y_vec.shape == (2, 1) assert M_mat.shape == (2, 2) assert iden.shape == (2, 2) assert W_manual.shape == (2, 2) assert c_manual.shape == (2, 1) assert z_manual.shape == (1, 1) assert W_manual == pytest.approx(eval_model.W) assert c_manual == pytest.approx(eval_model.c) assert z_manual == pytest.approx(eval_model.z) fit = Fit(model, z=z_manual, I=iden, M=M_mat, y=y_vec) fit_result = fit.execute() # See if a == 0.1 was reconstructed properly. Since only a**2 features # in the equations, we check for the absolute value. Setting a.min = 0.0 # is not appreciated by the Minimizer, it seems. assert np.abs(fit_result.value(a)) == pytest.approx(0.1)
5,346,246
def create_menu(menu_items, parent=None): """ Create the navigation nodes based on a passed list of dicts """ nodes = [] for menu_dict in menu_items: try: label = menu_dict['label'] except KeyError: raise ImproperlyConfigured( "No label specified for menu item in dashboard") children = menu_dict.get('children', []) if children: node = Node(label=label, icon=menu_dict.get('icon', None), access_fn=menu_dict.get('access_fn', None)) create_menu(children, parent=node) else: node = Node(label=label, icon=menu_dict.get('icon', None), url_name=menu_dict.get('url_name', None), url_kwargs=menu_dict.get('url_kwargs', None), url_args=menu_dict.get('url_args', None), access_fn=menu_dict.get('access_fn', None)) if parent is None: nodes.append(node) else: parent.add_child(node) return nodes
5,346,247
def imsave(f, img): """Save an image to file. :param string|file f: Filename or file-like object. :param numpy.ndarray img: Image to save. Of shape (M,N) or (M,N,3) or (M,N,4). """ # Ensure we use PIL so we can guarantee that imsave will accept file-like object as well as filename skio.imsave(f, img, plugin='pil')
5,346,248
def find_contact(name): """Selects existing contact details based on the provided name.""" # Uses the LIKE operator to perform case insensitive searching. Also allows # for the use of the % and _ wildcards. conn = sqlite3.connect('contacts.db') c = conn.cursor() c.execute('SELECT contact_id, name, address, phone, email ' 'FROM contacts WHERE name LIKE ?', (name,)) results = c.fetchall() conn.close() display_contact_details(results)
5,346,249
def get_tg_ids(db): """Obtain a list of recognized Telegram user IDs. Args: db: Database connector Returns: Query results for later iteration """ return db.query(QUERY_TG_IDS)
5,346,250
async def _casino( ctx: commands.Context, bet: int = None, # type: ignore number_of_games: int = 1 ) -> None: """ Casino, generates lines with sectors depending on <number of games> (last argument, default: 1). :param ctx: commands.Context :param bet: Bet of the user, but if it is None, then the command will fail. :param number_of_games: (1 <= x <= 3) affects the number of lines with sectors and multiplies the bet. :return: None """ if bet is None or bet <= 0: await ctx.send('Specify the correct bet you want to play!') elif not 1 <= number_of_games <= 3: await ctx.send('You cannot play more than three games and less than one!') else: data: Container = await Casino(number_of_games).start() win: bool = True if data.multiplier > 0 else False to_footer: str = "Emoji\tCount\tPoints\n" for emoji, count in data.emoji_stats.items(): # creating emoji stats in footer to_footer += f"{ScoreUnicode[emoji].value}\t\t:\t" \ f"{count}\t:\t" \ f"{int(ScoreChances[emoji]) // 2}\n" embed: discord.Embed = discord.Embed( title=f'Total points: {data.total_points}. ' + ( f'You have won `{bet * data.multiplier * number_of_games}` coins.' if win else f'You have lose `{bet * number_of_games}` coins.' ), description="\n".join(data.board), color=discord.Color.green() if win else discord.Color.red() ).set_footer( text=to_footer, icon_url=ctx.author.avatar_url ).add_field( name=f'For x2 odds you had to score `<= {data.required_points[1]}` ' f'points, and for lose `>= {data.required_points[0]}.`', value=f'**You got:** `{data.total_points}`' ) await ctx.send(embed=embed)
5,346,251
def solve_with_log(board, out_fname): """Wrapper for solve: write log to out_fname""" log = [] ret = solve(board, log) with open(out_fname, 'w') as f: f.write(json.dumps({'model': log}, indent=4)) return ret
5,346,252
def discrepancy(sample, bounds=None): """Discrepancy. Compute the centered discrepancy on a given sample. It is a measure of the uniformity of the points in the parameter space. The lower the value is, the better the coverage of the parameter space is. Parameters ---------- sample : array_like (n_samples, k_vars) The sample to compute the discrepancy from. bounds : tuple or array_like ([min, k_vars], [max, k_vars]) Desired range of transformed data. The transformation apply the bounds on the sample and not the theoretical space, unit cube. Thus min and max values of the sample will coincide with the bounds. Returns ------- discrepancy : float Centered discrepancy. References ---------- [1] Fang et al. "Design and modeling for computer experiments", Computer Science and Data Analysis Series Science and Data Analysis Series, 2006. """ sample = np.asarray(sample) n_sample, dim = sample.shape # Sample scaling from bounds to unit hypercube if bounds is not None: min_ = bounds.min(axis=0) max_ = bounds.max(axis=0) sample = (sample - min_) / (max_ - min_) abs_ = abs(sample - 0.5) disc1 = np.sum(np.prod(1 + 0.5 * abs_ - 0.5 * abs_ ** 2, axis=1)) prod_arr = 1 for i in range(dim): s0 = sample[:, i] prod_arr *= (1 + 0.5 * abs(s0[:, None] - 0.5) + 0.5 * abs(s0 - 0.5) - 0.5 * abs(s0[:, None] - s0)) disc2 = prod_arr.sum() c2 = ((13.0 / 12.0) ** dim - 2.0 / n_sample * disc1 + 1.0 / (n_sample ** 2) * disc2) return c2
5,346,253
def rz(psi, r): """ Wrapper for ERFA function ``eraRz``. Parameters ---------- psi : double array r : double array Returns ------- r : double array Notes ----- The ERFA documentation is below. - - - - - - e r a R z - - - - - - Rotate an r-matrix about the z-axis. Given: psi double angle (radians) Given and returned: r double[3][3] r-matrix, rotated Notes: 1) Calling this function with positive psi incorporates in the supplied r-matrix r an additional rotation, about the z-axis, anticlockwise as seen looking towards the origin from positive z. 2) The additional rotation can be represented by this matrix: ( + cos(psi) + sin(psi) 0 ) ( ) ( - sin(psi) + cos(psi) 0 ) ( ) ( 0 0 1 ) Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ r = ufunc.rz(psi, r, r) return r
5,346,254
def VisualizeCollapsedGraph(trace, node_names, edges, fuzzy): """ Visualize the collapsed graph and save the output. @params trace: the trace for which to visualize a collapsed graph @params node_names: names for the collapsed nodes @params edges: list of edges connecting the nodes """ # get relavent information for output filename dataset = trace.dataset base_id = trace.base_id if not os.path.exists('dots'): os.mkdir('dots') if not os.path.exists('dots/{}'.format(dataset)): os.mkdir('dots/{}'.format(dataset)) # create the digraph graph = nx.DiGraph() for index, name in enumerate(node_names): graph.add_node(index, label=name) # populate the edges in the graph for (source_index, destination_index) in edges: graph.add_edge(source_index, destination_index) # get the output filename for this collapsed graph if fuzzy: output_filename = 'dots/{}/{}-fuzzy-collapsed.dot'.format(dataset, base_id) else: output_filename = 'dots/{}/{}-collapsed.dot'.format(dataset, base_id) # save the graph into dot format A = nx.nx_agraph.to_agraph(graph) A.layout('dot') A.draw(output_filename)
5,346,255
def _get_ticklabels(band_type, kHz, separator): """ Return a list with all tick labels for octave or third octave bands cases. """ if separator is None: import locale separator = locale.localeconv()['decimal_point'] if band_type == 'octave': if kHz is True: ticklabels = TICKS_OCTAVE_KHZ else: ticklabels = TICKS_OCTAVE else: if kHz is True: ticklabels = TICKS_THIRD_OCTAVE_KHZ else: ticklabels = TICKS_THIRD_OCTAVE ticklabels = _set_separator(ticklabels, separator) return ticklabels
5,346,256
def test_scrapping(): """ Function that will test if the data was scrapped successfully """ scrapper = Scrapper() scrapped_data = scrapper.scrape_fb_page("nous.sommes.les.ingenieurs", 5) assert len(scrapped_data) > 0 assert len(scrapped_data[0]["text"]) > 0
5,346,257
def SpearmanP(predicted, observed): """abstracts out p from stats.spearmanr""" if np.isnan(np.min(predicted)) or np.isnan(np.min(observed)): return np.asarray([np.nan]) coef, p = stats.spearmanr(np.squeeze(predicted).astype(float), np.squeeze(observed).astype(float)) return p
5,346,258
def get_zebra_route_type_by_name(route_type='BGP'): """ Returns the constant value for Zebra route type named "ZEBRA_ROUTE_*" from its name. See "ZEBRA_ROUTE_*" constants in "ryu.lib.packet.zebra" module. :param route_type: Route type name (e.g., Kernel, BGP). :return: Constant value for Zebra route type. """ return getattr(zebra, "ZEBRA_ROUTE_%s" % route_type.upper())
5,346,259
def preprocess(arr): """Preprocess image array with simple normalization. Arguments: ---------- arr (np.array): image array Returns: -------- arr (np.array): preprocessed image array """ arr = arr / 255.0 arr = arr * 2.0 - 1.0 return arr
5,346,260
def remove_const(type): """removes const from the type definition If type is not const type, it will be returned as is """ nake_type = remove_alias(type) if not is_const(nake_type): return type else: return nake_type.base
5,346,261
def populate_institute_form(form, institute_obj): """Populate institute settings form Args: form(scout.server.blueprints.institutes.models.InstituteForm) institute_obj(dict) An institute object """ # get all other institutes to populate the select of the possible collaborators institutes_tuples = [] for inst in store.institutes(): if not inst["_id"] == institute_obj["_id"]: institutes_tuples.append(((inst["_id"], inst["display_name"]))) form.display_name.default = institute_obj.get("display_name") form.institutes.choices = institutes_tuples form.coverage_cutoff.default = institute_obj.get("coverage_cutoff") form.frequency_cutoff.default = institute_obj.get("frequency_cutoff") # collect all available default HPO terms and populate the pheno_groups form select with these values default_phenotypes = [choice[0].split(" ")[0] for choice in form.pheno_groups.choices] if institute_obj.get("phenotype_groups"): for key, value in institute_obj["phenotype_groups"].items(): if not key in default_phenotypes: custom_group = " ".join( [key, ",", value.get("name"), "( {} )".format(value.get("abbr"))] ) form.pheno_groups.choices.append((custom_group, custom_group)) # populate gene panels multiselect with panels from institute available_panels = list(store.latest_panels(institute_obj["_id"])) # And from institute's collaborators for collaborator in institute_obj.get("collaborators", []): available_panels += list(store.latest_panels(collaborator)) panel_set = set() for panel in available_panels: panel_set.add((panel["panel_name"], panel["display_name"])) form.gene_panels.choices = list(panel_set) return default_phenotypes
5,346,262
def test_output_overview_path(output, tmpdir): """Testing if overview HTML file path is created correctly.""" expected_path = os.path.join(tmpdir, "overview.html") actual_path = output.overview_file() assert actual_path == expected_path
5,346,263
def closestMedioidI(active_site, medioids, distD): """ returns the index of the closest medioid in medioids to active_site input: active_site, an ActiveSite instance medioids, a list of ActiveSite instances distD, a dictionary of distances output: the index of the ActiveSite closest to active_site in medioids """ closest = (float('Inf'), None) for i, medioid in enumerate(medioids): thisDist = distD[frozenset([active_site, medioid])] if thisDist < closest[0]: closest = (thisDist, i) return closest[1]
5,346,264
def watchPoint(filename, lineno, event="call"): """whenever we hit this line, print a stack trace. event='call' for lines that are function definitions, like what a profiler gives you. Switch to 'line' to match lines inside functions. Execution speed will be much slower.""" seenTraces: Dict[Any, int] = {} # trace contents : count def trace(frame, ev, arg): if ev == event: if (frame.f_code.co_filename, frame.f_lineno) == (filename, lineno): stack = ''.join(traceback.format_stack(frame)) if stack not in seenTraces: print("watchPoint hit") print(stack) seenTraces[stack] = 1 else: seenTraces[stack] += 1 return trace sys.settrace(trace) # atexit, print the frequencies?
5,346,265
def no_op_job(): """ A no-op parsl.python_app to return a future for a job that already has its outputs. """ return 0
5,346,266
def identity(dim, shape=None): """Return identity operator with appropriate shape. Parameters ---------- dim : int Dimension of real space. shape : int (optional) Size of the unitary part of the operator. If not provided, U is set to None. Returns ------- id : PointGroupElement """ R = ta.identity(dim, int) if shape is not None: U = np.eye(shape) else: U = None return PointGroupElement(R, False, False, U)
5,346,267
def configure_checkout_session(request): """ Configure the payment session for Stripe. Return the Session ID. Key attributes are: - mode: payment (for one-time charge) or subscription - line_items: including price_data because users configure the donation price. TODOs - Standard amounts could use active Prices, rather than ad-hoc price_data. - Tie Stripe customers to site User accounts. - If a user is logged in, we can create the session for the correct customer. - Stripe's documented flows are VERY keen that we create the customer first, although the session will do that if we don't. - Allow selecting currency. (Smaller task.) Users receive an additional charge making payments in foreign currencies. Stripe will convert all payments without further charge. """ # Form data: # - The interval: which determines the Product and the mode. # - The amount: which goes to the Price data. form = PaymentForm(request.POST) if not form.is_valid(): data = { 'success': False, 'error': form.errors } return JsonResponse(data) amount = form.cleaned_data["amount"] interval = form.cleaned_data["interval"] product_details = settings.PRODUCTS[interval] is_subscription = product_details.get('recurring', True) price_data = { 'currency': 'usd', 'unit_amount': amount * 100, 'product': product_details['product_id'] } if is_subscription: price_data['recurring'] = { 'interval': product_details['interval'], "interval_count": product_details["interval_count"], } try: session = stripe.checkout.Session.create( payment_method_types=['card'], line_items=[{'price_data': price_data, 'quantity': 1}], mode='subscription' if is_subscription else 'payment', success_url=request.build_absolute_uri( reverse('fundraising:thank-you') ), cancel_url=request.build_absolute_uri( reverse('fundraising:index') ), # TODO: Drop this when updating API. stripe_version="2020-08-27", ) return JsonResponse({'success': True, "sessionId": session["id"]}) except Exception as e: logger.exception('Error configuring Stripe session.') return JsonResponse({'success': False, "error": str(e)})
5,346,268
def load_schemas(): """Return all of the schemas in this directory in a dictionary where the keys are the filename (without the .json extension) and the values are the JSON schemas (in dictionary format) :raises jsonschema.exceptions.SchemaError if any of the JSON files in this directory are not valid (Draft 7) JSON schemas""" schemas = {} for filename in os.listdir(THIS_DIR): if ( os.path.isfile(os.path.join(THIS_DIR, filename)) and os.path.splitext(filename)[1].lower() == ".json" ): key = os.path.splitext(filename)[0] with open(os.path.join(THIS_DIR, filename)) as file_obj: value = json.load(file_obj) Draft7Validator.check_schema(value) schemas[key] = value return schemas
5,346,269
def load_separator( model_str_or_path: str = "umxhq", targets: Optional[list] = None, niter: int = 1, residual: bool = False, wiener_win_len: Optional[int] = 300, device: Union[str, torch.device] = "cpu", pretrained: bool = True, filterbank: str = "torch", ): """Separator loader Args: model_str_or_path (str): Model name or path to model _parent_ directory E.g. The following files are assumed to present when loading `model_str_or_path='mymodel', targets=['vocals']` 'mymodel/separator.json', mymodel/vocals.pth', 'mymodel/vocals.json'. Defaults to `umxhq`. targets (list of str or None): list of target names. When loading a pre-trained model, all `targets` can be None as all targets will be loaded niter (int): Number of EM steps for refining initial estimates in a post-processing stage. `--niter 0` skips this step altogether (and thus makes separation significantly faster) More iterations can get better interference reduction at the price of artifacts. Defaults to `1`. residual (bool): Computes a residual target, for custom separation scenarios when not all targets are available (at the expense of slightly less performance). E.g vocal/accompaniment Defaults to `False`. wiener_win_len (int): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. Defaults to `300` device (str): torch device, defaults to `cpu` pretrained (bool): determines if loading pre-trained weights filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment. """ model_path = Path(model_str_or_path).expanduser() # when path exists, we assume its a custom model saved locally if model_path.exists(): if targets is None: raise UserWarning("For custom models, please specify the targets") target_models = load_target_models( targets=targets, model_str_or_path=model_path, pretrained=pretrained ) with open(Path(model_path, "separator.json"), "r") as stream: enc_conf = json.load(stream) separator = model.Separator( target_models=target_models, niter=niter, residual=residual, wiener_win_len=wiener_win_len, sample_rate=enc_conf["sample_rate"], n_fft=enc_conf["nfft"], n_hop=enc_conf["nhop"], nb_channels=enc_conf["nb_channels"], filterbank=filterbank, ).to(device) # otherwise we load the separator from torchhub else: hub_loader = getattr(openunmix, model_str_or_path) separator = hub_loader( targets=targets, device=device, pretrained=True, niter=niter, residual=residual, filterbank=filterbank, ) return separator
5,346,270
def transform_datetime(date_str, site): """ 根据site转换原始的date为正规的date类型存放 :param date_str: 原始的date :param site: 网站标识 :return: 转换后的date """ result = None if site in SITE_MAP: if SITE_MAP[site] in (SiteType.SINA, SiteType.HACKERNEWS): try: time_int = int(date_str) result = datetime.fromtimestamp(time_int).strftime(DATE_FMT) except Exception as e: result = parse(date_str).strftime(DATE_FMT) elif SITE_MAP[site] == SiteType.TENCENT: result = date_str elif SITE_MAP[site] == SiteType.TUICOOL: result = date_str elif SITE_MAP[site] == SiteType.HACKER: result = date_str elif SITE_MAP[site] == SiteType.DMZJ: result = parse(date_str).strftime(DATE_FMT) elif SITE_MAP[site] == SiteType.ACGMH: result = parse(date_str).strftime(DATE_FMT) elif SITE_MAP[site] == SiteType.CTOLIB: result = parse(date_str).strftime(DATE_FMT) elif date_str.strip() == '': result = datetime.now().strftime(DATE_FMT) else: result = parse(date_str).strftime(DATE_FMT) return result
5,346,271
def ParseEventsForTTLs(eventsFileName, TR = 2.0, onset = False, threshold = 5.0): """ Parses the events file from Avotec for TTLs. Use if history file is not available. The events files does not contain save movie start/stops, so use the history file if possible @param eventsFileName: name of events file from avotec @param TR: TR duration in seconds @param onset: use the TTL pulse onset instead of the offset for timestamps? @param threshold: multiple of the TR interval to use as a threshold as a break between runs @type eventsFileName: str @type TR: float @type onset: bool @type threshold: float @return: timestamps of TTLs in each run, each run is a list of TTL timestamps and the number of TTLs @rtype: list<tuple<list<float>, int>> """ eventsFile = open(eventsFileName, 'r') TTLtoken = 'S' if onset else 's' TTLs = [] lastTime = (0, 0, 0, 0) duplicates = 0 runs = [] thisRun = [] line = eventsFile.readline() while line != '': tokens = line.split() if len(tokens) > 0 and tokens[-1] == TTLtoken: time = [] for token in re.split('[:\.]', re.match('[0-9\. ]+:[0-9\. ]+:[0-9 ]+\.[0-9]+', line).group()): if (len(token) > 2): # the milliseconds have rather high precision time.append(int(numpy.round(float(token) * 0.001))) else: time.append(int(token)) time = tuple(time) if (TimeToSeconds(time) - TimeToSeconds(lastTime) > 0.1): # long enough of an interval since last one such that it's not a duplicate TTLs.append(time) lastTime = time else: duplicates += 1 line = eventsFile.readline() nTRs = 1 thisRun.append(TTLs[0]) for i in range(1, len(TTLs) - 1): this = TTLs[i] last = TTLs[i - 1] dt = TimeToSeconds(this) - TimeToSeconds(last) if dt > threshold * TR: runs.append((thisRun, nTRs)) thisRun = [this] nTRs = 1 else: thisRun.append(this) nTRs += 1 runs.append((thisRun, nTRs + 1)) # account for last run without a faraway TTL eventsFile.close() print('{} duplicated TTLs'.format(duplicates)) for i in range(len(runs)): duration = TimeToSeconds(runs[i][0][-1]) - TimeToSeconds(runs[i][0][0]) expectedTRs = int(numpy.round(duration / TR)) if (i == len(runs) - 1): expectedTRs += 1 # account for last run without a faraway TTL print('Run {} expected {} TTLs from duration, actual recorded {} TTLs'.format(i + 1, expectedTRs, len(runs[i][0]))) return runs
5,346,272
def test_tile_valid_pan(landsat_get_mtl, monkeypatch): """ Should work as expected """ monkeypatch.setattr(landsat8, "LANDSAT_BUCKET", LANDSAT_BUCKET) landsat_get_mtl.return_value = LANDSAT_METADATA tile_z = 8 tile_x = 71 tile_y = 102 data, mask = landsat8.tile(LANDSAT_SCENE_C1, tile_x, tile_y, tile_z, pan=True) assert data.shape == (3, 256, 256) assert mask.shape == (256, 256)
5,346,273
def _to_native_string(string, encoding='ascii'): """Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise. """ if isinstance(string, str): out = string else: out = string.decode(encoding) return out
5,346,274
def load(path: str) -> model_lib.Model: """Deserializes a TensorFlow SavedModel at `path` to a `tff.learning.Model`. Args: path: The `str` path pointing to a SavedModel. Returns: A `tff.learning.Model`. """ py_typecheck.check_type(path, str) if not path: raise ValueError('`path` must be a non-empty string, cannot deserialize ' 'models without an output path.') return _LoadedSavedModel(tf.saved_model.load(path))
5,346,275
def plot_feature_importance(obj, top_n=None, save_path=None): """ 输出LGBM模型的feature importance,并绘制条形图 Parameters ---------- obj: lgbm object or DataFrame 训练好的Lightgbm模型,或是已经计算好的feature importan DataFrame top_n: int, default None 展示TOP N的变量,若不填则展示全部变量,为保证显示效果,建议当变量个数多于30个时进行限制 save_path: str, default None 图片存放路径 Returns ------- df_fi: DataFrame 模型的feature importance,包括以下几个指标: 'split': 被节点选为分裂特征的次数 'total_gain': 作为分裂特征时对损失函数的总增益 'cover': 作为分裂特征时平均每次覆盖的样本数量 'avg_gain': 作为分裂特征时平均每次对损失函数的增益 'split_weight': 单个特征的分裂次数占总分裂次数的比例 'gain_weight': 单个特征的增益占总分裂增益的比例 """ if obj.__class__.__name__ == 'LGBMClassifier' or obj.__class__.__name__ == 'Booster': if obj.__class__.__name__ == 'LGBMClassifier': booster = obj.booster_ else: booster = obj df_fi = get_feature_importance(booster) df_fi['avg_gain'] = df_fi['total_gain'] / df_fi['split'] df_fi['split_weight'] = df_fi['split'] / df_fi['split'].sum() df_fi['gain_weight'] = df_fi['total_gain'] / df_fi['total_gain'].sum() df_fi['split_rank'] = df_fi['split'].rank(method='first', ascending=False).values.reshape((-1,)) df_fi['gain_rank'] = df_fi['total_gain'].rank(method='first', ascending=False).values.reshape((-1,)) df_fi['avg_gain_rank'] = df_fi['avg_gain'].rank(method='first', ascending=False).values.reshape((-1,)) df_fi['cover_rank'] = df_fi['cover'].rank(method='first', ascending=False).values.reshape((-1,)) elif isinstance(obj, pd.DataFrame): df_fi = obj else: raise ValueError('Unknown object type') if top_n is not None: df_gain_fi = df_fi.loc[df_fi['gain_rank'] <= top_n, :].copy().sort_values(by='gain_rank', ascending=False) df_split_fi = df_fi.loc[df_fi['split_rank'] <= top_n, :].copy().sort_values(by='split_rank', ascending=False) df_cover_fi = df_fi.loc[df_fi['cover_rank'] <= top_n, :].copy().sort_values(by='cover_rank', ascending=False) title1 = 'Weight of Split Gain (Top {0})'.format(top_n) title2 = 'Weight of Split Count (Top {0})'.format(top_n) title3 = 'Sample Coverage across all splits (Top {0})'.format(top_n) else: df_gain_fi = df_fi.copy().sort_values(by='gain_rank', ascending=False) df_split_fi = df_fi.copy().sort_values(by='split_rank', ascending=False) df_cover_fi = df_fi.copy().sort_values(by='cover_rank', ascending=False) title1 = 'Weight of Split Gain' title2 = 'Weight of Split Count' title3 = 'Sample coverage across all splits' plt.figure(figsize=(4, 9), dpi=200) plt.subplot(3, 1, 1) plt.barh(np.arange(df_gain_fi.shape[0]), df_gain_fi['gain_weight'], height=0.6, color='lightskyblue') for i, var in enumerate(df_gain_fi['var_name']): plt.annotate(var, xy=(0.001, i), va='center', ha='left', fontsize=4, color='black', fontweight='normal') ax = plt.gca() for at in ['left', 'right', 'bottom', 'top']: ax.spines[at].set_linewidth(0.7) plt.xticks(fontsize=5) plt.yticks([]) plt.xlabel('gain weight', fontsize=5) plt.title(title1, fontsize=6) plt.subplot(3, 1, 2) plt.barh(np.arange(df_gain_fi.shape[0]), df_split_fi['split_weight'], height=0.6, color='lightgreen') for i, var in enumerate(df_split_fi['var_name']): plt.annotate(var, xy=(0.001, i), va='center', ha='left', fontsize=4, color='black', fontweight='normal') ax = plt.gca() for at in ['left', 'right', 'bottom', 'top']: ax.spines[at].set_linewidth(0.7) plt.xticks(fontsize=5) plt.yticks([]) plt.xlabel('split weight', fontsize=5) plt.title(title2, fontsize=6) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=2.0) plt.subplot(3, 1, 3) plt.barh(np.arange(df_gain_fi.shape[0]), df_cover_fi['cover'], height=0.6, color='Salmon') for i, var in enumerate(df_cover_fi['var_name']): plt.annotate(var, xy=(0.001, i), va='center', ha='left', fontsize=4, color='black', fontweight='normal') ax = plt.gca() for at in ['left', 'right', 'bottom', 'top']: ax.spines[at].set_linewidth(0.7) plt.xticks(fontsize=5) plt.yticks([]) plt.xlabel('sample coverage', fontsize=5) plt.title(title3, fontsize=6) plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=2.0) if save_path is not None: if save_path.endswith('.png') or save_path.endswith('.jpg'): plt.savefig(save_path, bbox_inches='tight') elif os.path.isdir(save_path): plt.savefig(os.path.join(save_path, 'lgbm_feature_importance.png'), bbox_inches='tight') else: raise ValueError('No such file or directory: {0}'.format(save_path)) plt.show() plt.close() return df_fi
5,346,276
def plot_pr(precision, recall, area, name, dst_dir=None): """Plotting ROC curve. Arguments: tpr {list} -- a list of numpy 1D array for true positive rate fpr {list} -- a list of numpy 1D array for false positive rate area {list} -- a list of floats for area under curve name {str} -- text for the legend dst_dir {str} -- output figure directory, file name `roc.pdf` """ if dst_dir is None: dst_dir = '' plt.clf() plt.figure(figsize=(5,5)) plt.rcParams["font.family"] = "Times New Roman" for (x_val, y_val, a_val, string) in zip(recall, precision, area, name): label = string plt.plot(x_val, y_val, label=label) plt.legend(loc='lower right') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.grid() plt.ylabel('Precision') plt.xlabel('Recall') plt.savefig(os.path.join(dst_dir, 'pr.pdf'), bbox_inches='tight') plt.close()
5,346,277
def parameters_from_object_schema(schema, in_='formData'): """Convert object schema to parameters.""" # We can only extract parameters from schema if schema['type'] != 'object': return [] properties = schema.get('properties', {}) required = schema.get('required', []) parameters = [] for name, property in properties.items(): parameter = { 'name': name, 'in_': in_, 'required': (name in required), } parameter.update(property) parameter = Parameter(**parameter) parameters.append(parameter) parameters = sorted(parameters, key=lambda x: x['name']) return parameters
5,346,278
def env_vars(request): """Sets environment variables to use .env and config.json files.""" os.environ["ENV"] = "TEST" os.environ["DOTENV_FILE"] = str(DOTENV_FILE) os.environ["CONFIG_FILE"] = str(CONFIG_FILE) os.environ["DATABASE_URL"] = get_db_url() return True
5,346,279
def any_toggle_enabled(*toggles): """ Return a view decorator for allowing access if any of the given toggles are enabled. Example usage: @toggles.any_toggle_enabled(REPORT_BUILDER, USER_CONFIGURABLE_REPORTS) def delete_custom_report(): pass """ def decorator(view_func): @wraps(view_func) def wrapped_view(request, *args, **kwargs): for t in toggles: if ( (hasattr(request, 'user') and t.enabled(request.user.username)) or (hasattr(request, 'domain') and t.enabled(request.domain)) ): return view_func(request, *args, **kwargs) raise Http404() return wrapped_view return decorator
5,346,280
def moguls(material, height, randomize, coverage, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=True, bf=True, optimize=True, xtraParams=defaultXtraParams): """moguls(material, radius, randomize, det, [e0=20.0], [withPoisson=True], [nTraj=defaultNumTraj], [dose = 120.0], [sf=True], [bf=True], [optimize=True], [xtraParams={}]) Monte Carlo simulate a spectrum from a rough surface made up of close packed spheres. + material - Composition of material + height - mogul height = 0.5 * mogul radius + randomize - randomize the beam start position? + coverage - fractional likelihood of each bump existing (0.0 to 1.0)""" tmp = u"MC simulation of a %0.2lg um %d%% %smogul bed of %s at %0.1f keV%s%s" % (1.0e6 * height, int(100.0*coverage), (" rand " if randomize else " "), material, e0, (" + CSF" if sf else ""), (" + BSF" if bf else "")) return base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildMoguls, { "Coverage" : coverage, "Optimize": optimize, "Height" : height, "Material" : material, "Randomize" : randomize }, xtraParams)
5,346,281
def link_datasets(yelp_results, dj_df, df_type="wages"): """ (Assisted by Record Linkage Toolkit library and documentation) This functions compares the Yelp query results to database results and produces the best matches based on computing the qgram score. Depending on the specific database table characteristics the qgram calculation will be between the zip_code, business name, address strings, latitude, longitude, or a combination of those charateristics. Inputs: - yelp_results: a pandas dataframe of yelp business results based on a user's input - dj_df: a pandas dataframe of django results. Ex. labour statistics, healthcode violations, Divvy, etc. - df_type: a string of which specific dataframe is being passed to be compared to the Yelp results Outputs: - link: a tuple containing the indices of Yelp query results dataframe and the database dataframe AND the best matches qgram scores """ # set thresholds for comparing strings using qgram method name_thresh = 0.55 addr_thresh = 0.55 strong_addr_thresh = 0.90 # initialize a Record Linkage comparison object compare = rl.Compare() # Labour & Food data comparisons to Yelp are made on zip, business name, # and address if df_type == "wages" or df_type == "food": indexer = rl.BlockIndex(on='zip_code') # block on zip code compare.numeric('zip_code', 'zip_code', method='linear', scale=30.0, label='zip_score') compare.string('name', 'name', method='qgram', threshold=name_thresh, label='name_score') compare.string('addr', 'addr', method='qgram', threshold=addr_thresh, label='addr_score') # Environmental data comparisons to Yelp are made on address elif df_type == "enviro": indexer = rl.FullIndex() # no blocking available compare.string('addr', 'addr', method='qgram', threshold=strong_addr_thresh, label='addr_score') # all other data comparisons to Yelp else: indexer = rl.FullIndex() pairs = indexer.index(yelp_results, dj_df) # In addition to above comparisons, ALL data sets are also compared to # Yelp based on latitude and longitude compare.geo('latitude', 'longitude', 'latitude', 'longitude', method='linear', scale=30.0, label='coord_score') # compute record linkage scores features = compare.compute(pairs, yelp_results, dj_df) # set classification thresholds zip_classif_thresh = 1.0 addr_classif_thresh = 1.0 coord_classif_thresh = 0.99 name_classif_thresh = 1.0 # Classification and final filtering if df_type == "wages" or df_type == "food": best_matches = features[(features['zip_score'] == zip_classif_thresh) & (features['name_score'] == name_classif_thresh) & (features['addr_score'] == addr_classif_thresh) & (features['coord_score'] >= coord_classif_thresh)] elif df_type == "enviro": best_matches = features[(features['addr_score'] == addr_classif_thresh) & (features['coord_score'] >= coord_classif_thresh)] else: best_matches = features[(features['coord_score'] >= coord_classif_thresh)] # obtain the index values from best_matches index_array = best_matches.index.values # create tuple of indices and best matches df link = (index_array, best_matches) return link
5,346,282
def hello(): """Say Hello, so that we can check shared code.""" return b"hello"
5,346,283
def copytree(src, dst, symlinks=False, ignore=None): """ Credit: http://stackoverflow.com/questions/1868714/how-do-i-copy-an-entire-directory-of-files-into-an-existing-directory-using-pyth """ for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d)
5,346,284
def loglog_mean_lines(x, ys, axis=0, label=None, alpha=0.1): """ Log-log plot of lines and their mean. """ return _plot_mean_lines(partial(plt.loglog, x), ys, axis, label, alpha)
5,346,285
def read_lines_from_shapefile(fpath): """ Read coordinates of cutting line segments from a ESRI Shapefile containing line features. Parameters ---------- fpath Name of a file containing coordinates of cutting lines Returns -------- list List of coordinates of cutting lines """ import osgeo.ogr driver = osgeo.ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(fpath, 0) if datasource is None: print('Could not open ' + fpath) raise RuntimeError() layer = datasource.GetLayer() feature = layer.GetNextFeature() lines = list() while feature: geometry = feature.GetGeometryRef() line = geometry.GetPoints() lines.append(line) feature = layer.GetNextFeature() return lines
5,346,286
def generate_identifier(endpoint_description: str) -> str: """Generate ID for model.""" return ( Config.fdk_publishers_base_uri() + "/fdk-model-publisher/catalog/" + sha1(bytes(endpoint_description, encoding="utf-8")).hexdigest() # noqa )
5,346,287
def test_instant_memory_statistics(): """ Test the instant memory statistics. """ stats = instant_memory_statistics() # test bounds (percent) assert type(stats) is float assert stats >= 0 assert stats <= 100
5,346,288
def depthFirstSearch(problem): """Search the deepest nodes in the search tree first.""" stack = util.Stack() # Stack used as fringe list stack.push((problem.getStartState(),[],0)) return genericSearch(problem,stack)
5,346,289
def parse_cli_args() -> argparse.Namespace: """ Parse arguments passed via Command Line Interface (CLI). :return: namespace with arguments """ parser = argparse.ArgumentParser(description='Algorithmic composition of dodecaphonic music.') parser.add_argument( '-c', '--config_path', type=str, default=None, help='path to configuration file' ) cli_args = parser.parse_args() return cli_args
5,346,290
def create_app(): """ Method to init and set up the Flask application """ flask_app = MyFlask(import_name="dipp_app") _init_config(flask_app) _setup_context(flask_app) _register_blueprint(flask_app) _register_api_error(flask_app) return flask_app
5,346,291
def read_file(filename=""): """reads text file""" with open(filename, mode='r', encoding='utf-8') as a_file: print(a_file.read(), end='') a_file.close()
5,346,292
def find_consumes(method_type): """ Determine mediaType for input parameters in request body. """ if method_type in ('get', 'delete'): return None return ['application/json']
5,346,293
def preprocess(text): """ Simple Arabic tokenizer and sentencizer. It is a space-based tokenizer. I use some rules to handle tokenition exception like words containing the preposition 'و'. For example 'ووالدته' is tokenized to 'و والدته' :param text: Arabic text to handle :return: list of tokenized sentences """ try: text = text.decode('utf-8') except(UnicodeDecodeError, AttributeError): pass text = text.strip() tokenizer_exceptions = ["وظف", "وضعها", "وضعه", "وقفنا", "وصفوها", "وجهوا", "والدته", "والده", "وادي", "وضعية", "واجهات", "وفرتها", "وقاية", "وفا", "وزيرنا", "وزارتي", "وجهاها", "واردة", "وضعته", "وضعتها", "وجاهة", "وهمية", "واجهة", "واضعاً", "واقعي", "ودائع", "واعدا", "واع", "واسعا", "ورائها", "وحدها", "وزارتي", "وزارتي", "والدة", "وزرائها", "وسطاء", "وليامز", "وافق", "والدها", "وسم", "وافق", "وجهها", "واسعة", "واسع", "وزنها", "وزنه", "وصلوا", "والدها", "وصولاً", "وضوحاً", "وجّهته", "وضعته", "ويكيليكس", "وحدها", "وزيراً", "وقفات", "وعر", "واقيًا", "وقوف", "وصولهم", "وارسو", "واجهت", "وقائية", "وضعهم", "وسطاء", "وظيفته", "ورائه", "واسع", "ورط", "وظفت", "وقوف", "وافقت", "وفدًا", "وصلتها", "وثائقي", "ويليان", "وساط", "وُقّع", "وَقّع", "وخيمة", "ويست", "والتر", "وهران", "ولاعة", "ولايت", "والي", "واجب", "وظيفتها", "ولايات", "واشنطن", "واصف", "وقح", "وعد", "وقود", "وزن", "وقوع", "ورشة", "وقائع", "وتيرة", "وساطة", "وفود", "وفات", "وصاية", "وشيك", "وثائق", "وطنية", "وجهات", "وجهت", "وعود", "وضعهم", "وون", "وسعها", "وسعه", "ولاية", "واصفاً", "واصلت", "وليان", "وجدتها", "وجدته", "وديتي", "وطأت", "وطأ", "وعودها", "وجوه", "وضوح", "وجيز", "ورثنا", "ورث", "واقع", "وهم", "واسعاً", "وراثية", "وراثي", "والاس", "واجهنا", "وابل", "ويكيميديا", "واضحا", "واضح", "وصفته", "واتساب", "وحدات", "ون", "وورلد", "والد", "وكلاء", "وتر", "وثيق", "وكالة", "وكالات", "و احدة", "واحد", "وصيته", "وصيه", "ويلمينغتون", "ولد", "وزر", "وعي", "وفد", "وصول", "وقف", "وفاة", "ووتش", "وسط", "وزراء", "وزارة", "ودي", "وصيف", "ويمبلدون", "وست", "وهج", "والد", "وليد", "وثار", "وجد", "وجه", "وقت", "ويلز", "وجود", "وجيه", "وحد", "وحيد", "ودا", "وداد", "ودرو", "ودى", "وديع", "وراء", "ورانس", "ورث", "ورَّث", "ورد", "وردة", "ورق", "ورم", "وزير", "وسام", "وسائل", "وستون", "وسط", "وسن", "وسيط", "وسيلة", "وسيم", "وصاف", "وصف", "وصْفَ", "وصل", "وضع", "وطن", "وعاء", "وفاء", "وفق", "وفيق", "وقت", "وقع", "وكال", "وكيل", "ولاء", "ولف", "وهب", "وباء", "ونستون", "وضح", "وجب", "وقّع", "ولنغتون", "وحش", "وفر", "ولادة", "ولي", "وفيات", "وزار", "وجّه", "وهماً", "وجَّه", "وظيفة", "وظائف", "وقائي"] sentence_splitter_exceptions = ["د.", "كي.", "في.", "آر.", "بى.", "جى.", "دى.", "جيه.", "ان.", "ال.", "سى.", "اس.", "اتش.", "اف."] sentence_splitters = ['.', '!', '؟', '\n'] text = text.replace('،', ' ، ') text = text.replace('*', ' * ') text = text.replace('’', ' ’ ') text = text.replace('‘', ' ‘ ') text = text.replace(',', ' , ') text = text.replace('(', ' ( ') text = text.replace(')', ' ) ') text = text.replace('/', ' / ') text = text.replace('[', ' [ ') text = text.replace(']', ' ] ') text = text.replace('|', ' | ') text = text.replace('؛', ' ؛ ') text = text.replace('«', ' « ') text = text.replace('»', ' » ') text = text.replace('!', ' ! ') text = text.replace('-', ' - ') text = text.replace('“', ' “ ') text = text.replace('”', ' ” ') text = text.replace('"', ' " ') text = text.replace('؟', ' ؟ ') text = text.replace(':', ' : ') text = text.replace('…', ' … ') text = text.replace('..', ' .. ') text = text.replace('...', ' ... ') text = text.replace('\'', ' \' ') text = text.replace('\n', ' \n ') text = text.replace(' ', ' ') tokens = text.split() for i, token in enumerate(tokens): if token[-1] in sentence_splitters: is_exceptions = token in sentence_splitter_exceptions if not is_exceptions: tokens[i] = token[:-1] + ' ' + token[-1] + 'SENT_SPLITTER' tokens = ' '.join(tokens).split() for i, token in enumerate(tokens): if token.startswith('و'): is_exceptions = [token.startswith(exception) and len(token) <= len(exception) + 1 for exception in tokenizer_exceptions] if True not in is_exceptions: tokens[i] = token[0] + ' ' + token[1:] text = (' '.join(tokens)) text = text.replace(' وال', ' و ال') text = text.replace(' لل', ' ل ل') text = text.replace(' لإ', ' ل إ') text = text.replace(' بالأ', ' ب الأ') text = text.replace('وفقا ل', 'وفقا ل ') text = text.replace('نسبة ل', 'نسبة ل ') sentences = text.split('SENT_SPLITTER') return sentences
5,346,294
def login(client, password="pass", ): """Helper function to log into our app. Parameters ---------- client : test client object Passed here is the flask test client used to send the request. password : str Dummy password for logging into the app. Return ------- post request object The test client is instructed to send a post request to the /login route. The request contains the fields values to be posted by the form. """ return client.post('/login', data=dict(pass_field=password, remember_me=True), follow_redirects=True)
5,346,295
def define_dagstermill_solid( name, notebook_path, input_defs=None, output_defs=None, config_schema=None, required_resource_keys=None, output_notebook=None, output_notebook_name=None, asset_key_prefix=None, description=None, tags=None, ): """Wrap a Jupyter notebook in a solid. Arguments: name (str): The name of the solid. notebook_path (str): Path to the backing notebook. input_defs (Optional[List[InputDefinition]]): The solid's inputs. output_defs (Optional[List[OutputDefinition]]): The solid's outputs. Your notebook should call :py:func:`~dagstermill.yield_result` to yield each of these outputs. required_resource_keys (Optional[Set[str]]): The string names of any required resources. output_notebook (Optional[str]): If set, will be used as the name of an injected output of type :py:class:`~dagster.FileHandle` that will point to the executed notebook (in addition to the :py:class:`~dagster.AssetMaterialization` that is always created). This respects the :py:class:`~dagster.core.storage.file_manager.FileManager` configured on the pipeline resources via the "file_manager" resource key, so, e.g., if :py:class:`~dagster_aws.s3.s3_file_manager` is configured, the output will be a : py:class:`~dagster_aws.s3.S3FileHandle`. output_notebook_name: (Optional[str]): If set, will be used as the name of an injected output of type of :py:class:`~dagster.BufferedIOBase` that is the file object of the executed notebook (in addition to the :py:class:`~dagster.AssetMaterialization` that is always created). It allows the downstream solids to access the executed notebook via a file object. asset_key_prefix (Optional[Union[List[str], str]]): If set, will be used to prefix the asset keys for materialized notebooks. description (Optional[str]): If set, description used for solid. tags (Optional[Dict[str, str]]): If set, additional tags used to annotate solid. Dagster uses the tag keys `notebook_path` and `kind`, which cannot be overwritten by the user. Returns: :py:class:`~dagster.SolidDefinition` """ check.str_param(name, "name") check.str_param(notebook_path, "notebook_path") input_defs = check.opt_list_param(input_defs, "input_defs", of_type=InputDefinition) output_defs = check.opt_list_param(output_defs, "output_defs", of_type=OutputDefinition) required_resource_keys = check.opt_set_param( required_resource_keys, "required_resource_keys", of_type=str ) extra_output_defs = [] if output_notebook_name is not None: required_resource_keys.add("output_notebook_io_manager") extra_output_defs.append( OutputDefinition(name=output_notebook_name, io_manager_key="output_notebook_io_manager") ) # backcompact if output_notebook is not None: rename_warning( new_name="output_notebook_name", old_name="output_notebook", breaking_version="0.14.0" ) required_resource_keys.add("file_manager") extra_output_defs.append(OutputDefinition(dagster_type=FileHandle, name=output_notebook)) if isinstance(asset_key_prefix, str): asset_key_prefix = [asset_key_prefix] asset_key_prefix = check.opt_list_param(asset_key_prefix, "asset_key_prefix", of_type=str) default_description = f"This solid is backed by the notebook at {notebook_path}" description = check.opt_str_param(description, "description", default=default_description) user_tags = validate_tags(tags) if tags is not None: check.invariant( "notebook_path" not in tags, "user-defined solid tags contains the `notebook_path` key, but the `notebook_path` key is reserved for use by Dagster", ) check.invariant( "kind" not in tags, "user-defined solid tags contains the `kind` key, but the `kind` key is reserved for use by Dagster", ) default_tags = {"notebook_path": notebook_path, "kind": "ipynb"} return SolidDefinition( name=name, input_defs=input_defs, compute_fn=_dm_solid_compute( name, notebook_path, output_notebook_name, asset_key_prefix=asset_key_prefix, output_notebook=output_notebook, # backcompact ), output_defs=output_defs + extra_output_defs, config_schema=config_schema, required_resource_keys=required_resource_keys, description=description, tags={**user_tags, **default_tags}, )
5,346,296
def barycorr(eventfile,outfile,refframe,orbit_file,output_folder): """ General function to perform the barycenter corrections for a Swift event file eventfile - path to the event file. Will extract ObsID from this for the NICER files. outfile - path to the output event file with barycenter corrections applied refframe - reference frame for barycenter corrections (usually ICRS) orbit_file - path to the orbit file of the observation output_folder - path to the folder where the outfile will be """ obsid = eventfile[2:13] logfile = output_folder + 'barycorr_notes.txt' ra,dec = get_ra_dec(eventfile) with open(logfile,'w') as logtextfile: output = subprocess.run(['barycorr',eventfile,'outfile='+outfile,'orbitfiles='+orbit_file,'ra='+str(ra),'dec='+str(dec),'refframe='+str(refframe),'clobber=YES'],capture_output=True,text=True) logtextfile.write(output.stdout) logtextfile.write('*------------------------------* \n') logtextfile.write(output.stderr) logtextfile.close() return
5,346,297
def denormalize_laf(LAF: torch.Tensor, images: torch.Tensor) -> torch.Tensor: """De-normalizes LAFs from scale to image scale. B,N,H,W = images.size() MIN_SIZE = min(H,W) [a11 a21 x] [a21 a22 y] becomes [a11*MIN_SIZE a21*MIN_SIZE x*W] [a21*MIN_SIZE a22*MIN_SIZE y*H] Args: LAF: images: images, LAFs are detected in. Returns: the denormalized lafs. Shape: - Input: :math:`(B, N, 2, 3)` - Output: :math:`(B, N, 2, 3)` """ raise_error_if_laf_is_not_valid(LAF) n, ch, h, w = images.size() wf = float(w) hf = float(h) min_size = min(hf, wf) coef = torch.ones(1, 1, 2, 3).to(LAF.dtype).to(LAF.device) * min_size coef[0, 0, 0, 2] = wf coef[0, 0, 1, 2] = hf return coef.expand_as(LAF) * LAF
5,346,298
def project_main(GIS_files_path, topath): """ This main function reads the GIS-layers in GIS_files_path and separates them by raster and vector data. Projects the data to WGS84 UMT37S Moves all files to ../Projected_files Merges the files named 'kV' to two merged shape file of Transmission and Medium Voltage lines Merges the files named 'MiniGrid' to one merged shape file :param GIS_files_path: :return: """ print(os.getcwd()) basedir = os.getcwd() os.chdir(GIS_files_path) current = os.getcwd() print(os.getcwd()) #All shp-files in all folders in dir current adm = project_vector(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0.shp')) adm.to_file(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0_UMT37S.shp')) shpFiles = [os.path.join(dp, f) for dp, dn, filenames in os.walk(current) for f in filenames if os.path.splitext(f)[1] == '.shp'] for s in shpFiles: path, filename = os.path.split(s) projected = project_vector(s) clip_vector(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0_UMT37S.shp'), projected, s, os.path.join(path, "UMT37S_%s" % (filename))) #All tif-files in all folders in dir current tifFiles = [os.path.join(dp, f) for dp, dn, filenames in os.walk(current) for f in filenames if os.path.splitext(f)[1] == '.tif'] for t in tifFiles: path, filename = os.path.split(t) masking(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0.shp'), t) project_raster(os.path.join(path,'%s' % (filename)), os.path.join(path,"masked_UMT37S_%s" % (filename))) #All files containing "UMT37S" is copied to ../Projected_files dir def create_dir(dir): if not os.path.exists(dir): os.makedirs(dir) create_dir((topath)) allFiles = [os.path.join(dp, f) for dp, dn, filenames in os.walk(current) for f in filenames] keyword = 'UMT37S' for fname in allFiles: if keyword in fname: shutil.copy("\\\\?\\"+fname, os.path.join(current, topath)) #Due to really long name the \\\\?\\ can trick Windows accepting it os.chdir(basedir) merge_transmission(topath) merge_minigrid(topath) merge_mv(topath) return ()
5,346,299