content
stringlengths
22
815k
id
int64
0
4.91M
def upload_object( self, key, body, metadata=None, acl=None, content_type="application/json" ): """Upload an arbitrary object to an S3 bucket. Parameters ---------- S3 key : `str` The Object's key identifier. body : `str` or `bytes` Object data metadata : `dict` Header metadata values. These keys will appear in headers as ``x-amz-meta-*``. acl : `str`, optional A pre-canned access control list. See http://boto3.readthedocs.io/en/latest/reference/services/s3.html#bucket Default is `None`, meaning that no ACL is applied to the object. content_type : `str`, optional The object's content type. Default is 'application/json' Returns ------- S3 URI of the uploaded object: `str` The location of the S3 object uploaded in the form: s3://<S3_BUCKET>/<key> Note: ----- Boto3 will check these environment variables for credentials: AWS_ACCESS_KEY_ID The access key for your AWS account. AWS_SECRET_ACCESS_KEY The secret key for your AWS account. """ s3 = boto3.resource("s3") object = s3.Object(S3_BUCKET, key) args = {} if metadata is not None: args["Metadata"] = metadata if acl is not None: args["ACL"] = acl if content_type is not None: args["ContentType"] = content_type self.update_state(state="STARTED") object.put(Body=body, **args) s3_uri = get_s3_uri(key) return s3_uri
5,346,100
def min_ui_count(proteins): """ Counts the minimum number of unique identifier peptides across all proteins in a set input: proteins: list of protein sequences as strings ['protein_seq', ...] output: minimum number of unique identifier peptides across all proteins in a set """ temp = [] for p in peptides_per_protein(unique_identifiers(proteins)): temp.append(len(p[1])) if len(proteins) > len(temp): return 0 else: return min(temp)
5,346,101
def check_normalize_py(method): """A wrapper that wrap a parameter checker to the original function(normalize operation written in Python).""" @wraps(method) def new_method(self, *args, **kwargs): [mean, std], _ = parse_user_args(method, *args, **kwargs) check_normalize_py_param(mean, std) return method(self, *args, **kwargs) return new_method
5,346,102
def GetOS(build_id, builder_name, step_name, partial_match=False): # pylint:disable=unused-argument """Returns the operating system in the step_metadata. Args: build_id (int): Build id of the build. builder_name (str): Builder name of the build. step_name (str): The original step name used to get the step metadata. Returns: The operating system if it exists, otherwise, None. """ step_metadata = GetStepMetadata(build_id, step_name, partial_match) return step_metadata.get('dimensions', {}).get('os') if step_metadata else None
5,346,103
def _list(state, format, filter): """Lists the users on the Departing Employees list.""" employee_generator = _get_departing_employees(state.sdk, filter) list_employees( employee_generator, format, {"departureDate": "Departure Date"}, )
5,346,104
def __add_registration_args(parser): """ keywords defined for image registration :param parser: :return: """ parser.add_argument( "--label_normalisation", metavar='', help="whether to map unique labels in the training set to " "consecutive integers (the smallest label will be mapped to 0)", type=str2boolean, default=False) from niftynet.application.label_driven_registration import SUPPORTED_INPUT parser = add_input_name_args(parser, SUPPORTED_INPUT) return parser
5,346,105
def get_catalog_item(catalog_id: Optional[str] = None, catalog_item_id: Optional[str] = None, location: Optional[str] = None, project: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetCatalogItemResult: """ Gets a specific catalog item. """ __args__ = dict() __args__['catalogId'] = catalog_id __args__['catalogItemId'] = catalog_item_id __args__['location'] = location __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('google-native:recommendationengine/v1beta1:getCatalogItem', __args__, opts=opts, typ=GetCatalogItemResult).value return AwaitableGetCatalogItemResult( category_hierarchies=__ret__.category_hierarchies, description=__ret__.description, item_attributes=__ret__.item_attributes, item_group_id=__ret__.item_group_id, product_metadata=__ret__.product_metadata, tags=__ret__.tags, title=__ret__.title)
5,346,106
def get_ext_suffix() -> str: """Get the extension suffix""" return get_config_vars()["EXT_SUFFIX"]
5,346,107
def install_nbextension(extension: str, *flags, py=True, sys_prefix=True, symlink=False, overwrite=True, config: str = '', log_level: Union[int, str] = logging.INFO): """Install nbextension. :param extension: path to the extension or Python package name (if py=True) :param py: bool, Whether to install from Python package (default: True) :param sys_prefix: bool, Whether to use sys prefix, use this in virtual envs (default: True) :param symlink: bool, Whether to create symlink to package data (default: False) :param overwrite: bool, Whether to overwrite current files (default: True) :param config: str, full path to a config file :param log_level: enum, application log level :param flags: str, additional flags """ version = subprocess.check_output( args=shlex.split("jupyter nbextension --version"), stderr=subprocess.STDOUT, universal_newlines=True, ) logger.debug("Jupyter nbextension version: %s", version.strip()) install_cmd = "jupyter nbextension install" opts = '' opts += ' --py' if py else '' opts += ' --sys-prefix' if sys_prefix else '' opts += ' --symlink' if symlink else '' opts += ' --overwrite' if overwrite else '' args = '' args += f' --config {config}' if config else '' args += f' --log-level {log_level}' flags = ' '.join(flags) cmd = ' '.join([install_cmd, opts, args, flags, extension]) p = subprocess.Popen( args=shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, ) logger.debug("Installing extension: %s", extension) out, err = p.communicate(timeout=60) logger.info(out) if err: logger.error(err) logger.debug("Success.") return p.returncode
5,346,108
def confusion_matrix(y_true, y_pred): """ Args: y_true: pd.Series or array or list, ground truth (correct) labels. y_pred: pd.Series or array or list, predicted labels, as returned by a classifier. Returns: Confusion matrix. """ t = pd.DataFrame({'actual':y_true, 'predict':y_pred}) t = pd.crosstab(t.predict, t.actual) return t
5,346,109
def p_method_arg_optional_array(p): """ method_arg_optional_array : method_arg_array method_arg_optional_array | """ if len(p) > 1: p[0] = '%s%s' % (p[1], p[2]) else: p[0] = ''
5,346,110
def load_currency_abbreviation_file(path: str) -> List[str]: """ Return a list of currency abbreviations present as one value per line in a file. """ with open( os.path.join(__location__, path), "r", encoding="utf-8" ) as _file: file_content = _file.read() result = file_content.split("\n") if result[-1] == "": return result[:-1] return result
5,346,111
def encode_boxes(boxes, im_shape, encode=True, dim_position=64, wave_length=1000, normalize=False, quantify=-1): """ modified from PositionalEmbedding in: Args: boxes: [bs, num_nodes, 4] or [num_nodes, 4] im_shape: 2D tensor, [bs, 2] or [2], the size of image is represented as [width, height] encode: bool, whether to encode the box dim_position: int, the dimension for position embedding wave_length: the wave length for the position embedding normalize: bool, whether to normalize the embedded features quantify: int, if it is > 0, it will be used to quantify the position of objects """ batch = boxes.dim() > 2 if not batch: boxes = boxes.unsqueeze(dim=0) im_shape = im_shape.unsqueeze(dim=0) if quantify > 1: boxes = boxes // quantify # in this case, the last 2 dims of input data is num_samples and 4. # we compute the pairwise relative postion embedings for each box if boxes.dim() == 3: # [bs, num_sample, 4] # in this case, the boxes should be tlbr: [x1, y1, x2, y2] device = boxes.device bs, num_sample, pos_dim = boxes.size(0), boxes.size(1), boxes.size(2) # pos_dim should be 4 x_min, y_min, x_max, y_max = torch.chunk(boxes, 4, dim=2) # each has the size [bs, num_sample, 1] # handle some invalid box x_max[x_max<x_min] = x_min[x_max<x_min] y_max[y_max<y_min] = y_min[y_max<y_min] cx_a = (x_min + x_max) * 0.5 # [bs, num_sample_a, 1] cy_a = (y_min + y_max) * 0.5 # [bs, num_sample_a, 1] w_a = (x_max - x_min) + 1. # [bs, num_sample_a, 1] h_a = (y_max - y_min) + 1. # [bs, num_sample_a, 1] cx_b = cx_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] cy_b = cy_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] w_b = w_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] h_b = h_a.view(bs, 1, num_sample) # [bs, 1, num_sample_b] delta_x = ((cx_b - cx_a) / w_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] delta_y = ((cy_b - cy_a) / h_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] delta_w = torch.log(w_b / w_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] delta_h = torch.log(h_b / h_a).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] relative_pos = torch.cat((delta_x, delta_y, delta_w, delta_h), dim=-1) # [bs, num_sample_a, num_sample_b, 4] # if im_shape is not None: im_shape = im_shape.unsqueeze(dim=-1) # [bs, 2, 1] im_width, im_height = torch.chunk(im_shape, 2, dim=1) # each has the size [bs, 1, 1] x = ((cx_b - cx_a) / im_width).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] y = ((cy_b - cy_a) / im_height).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] # w = ((w_b + w_a) / (2 * im_width)).unsqueeze(dim=-1) - 0.5 # [bs, num_sample_a, num_sample_b, 1] # h = ((h_b + h_a) / (2 * im_height)).unsqueeze(dim=-1) - 0.5 # [bs, num_sample_a. num_sample_b, 1] w = ((w_b - w_a) / im_width).unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 1] h = ((h_b - h_a) / im_height).unsqueeze(dim=-1) # [bs, num_sample_a. num_sample_b, 1] relative_pos = torch.cat((relative_pos, x, y, w, h), dim=-1) # [bs, num_sample_a, num_sample_b, 8] if not encode: embedding = relative_pos else: position_mat = relative_pos # [bs, num_sample_a, num_sample_b, 8] pos_dim = position_mat.size(-1) feat_range = torch.arange(dim_position / (2*pos_dim)).to(device) # [self.dim_position / 16] dim_mat = feat_range / (dim_position / (2*pos_dim)) dim_mat = 1. / (torch.pow(wave_length, dim_mat)) # [self.dim_position / 16] dim_mat = dim_mat.view(1, 1, 1, 1, -1) # [1, 1, 1, 1, self.dim_position / 16] # position_mat = position_mat.view(bs, num_sample, num_sample, pos_dim, -1) # [bs, num_sample_a, num_sample_b, 4, 1] position_mat = position_mat.unsqueeze(dim=-1) # [bs, num_sample_a, num_sample_b, 8, 1] position_mat = 100. * position_mat # [bs, num_sample_a, num_sample_b, 8, 1] mul_mat = position_mat * dim_mat # [bs, num_sample_a, num_sample_b, 8, dim_position / 16] mul_mat = mul_mat.view(bs, num_sample, num_sample, -1) # [bs, num_sample_a, num_sample_b, dim_position / 2] sin_mat = torch.sin(mul_mat)# [bs, num_sample_a, num_sample_b, dim_position / 2] cos_mat = torch.cos(mul_mat)# [bs, num_sample_a, num_sample_b, dim_position / 2] embedding = torch.cat((sin_mat, cos_mat), -1)# [bs, num_sample_a, num_sample_b, dim_position] if normalize: embedding = embedding / torch.clamp(torch.norm(embedding, dim=-1, p=2, keepdim=True), 1e-6) else: raise ValueError("Invalid input of boxes.") if not batch: # 2D tensor, [num_boxes, 4] embedding = embedding.squeeze(dim=0) return relative_pos, embedding
5,346,112
def get_docstring_and_version_via_import(target): """ Return a tuple like (docstring, version) for the given module, extracted by importing the module and pulling __doc__ & __version__ from it. """ log.debug("Loading module %s", target.file) sl = SourceFileLoader(target.name, str(target.file)) with _module_load_ctx(): m = sl.load_module() docstring = m.__dict__.get('__doc__', None) version = m.__dict__.get('__version__', None) return docstring, version
5,346,113
def plot_t1(times: List[float], contrast: List[float], fname: str = None) -> Figure: """ Plot T1 relaxation figure along with laser delay time intervals :param times: frequencies, unit: ns :param contrast: contrast, range between 0 and 1 :param fname: if assigned, a '.png' file will be saved :return: a matplotlib Figure instance """ fig = plt.figure() plt.plot(times, contrast, 'o-') plt.title('T1 Relaxometry') plt.xlabel('Relaxation time (ns)') plt.ylabel('Contrast $N_{sig}/N_{ref}$') if fname is not None: plt.savefig(fname, dpi=350) return fig
5,346,114
def init(linter): """For each module get `rules` dictionary and visitors. Instantiate each visitor and map it to the rule class instance using `reports` visitor attribute.""" for module in get_modules(linter.config.ext_rules): classes = inspect.getmembers(module, inspect.isclass) module_rules = {rule.name: rule for rule in getattr(module, "rules", {}).values()} for checker in classes: if issubclass(checker[1], BaseChecker) and getattr(checker[1], "reports", False): checker_instance = checker[1]() for reported_rule in checker_instance.reports: if reported_rule not in module_rules: raise RuleReportsNotFoundError(reported_rule, checker_instance) from None checker_instance.rules[reported_rule] = module_rules[reported_rule] linter.register_checker(checker_instance)
5,346,115
def partition_girvan_newman(graph, max_depth): """ Use your approximate_betweenness implementation to partition a graph. Unlike in class, here you will not implement this recursively. Instead, just remove edges until more than one component is created, then return those components. That is, compute the approximate betweenness of all edges, and remove them until multiple components are created. You only need to compute the betweenness once. If there are ties in edge betweenness, break by edge name (e.g., (('A', 'B'), 1.0) comes before (('B', 'C'), 1.0)). Note: the original graph variable should not be modified. Instead, make a copy of the original graph prior to removing edges. See the Graph.copy method https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.Graph.copy.html Params: graph.......A networkx Graph max_depth...An integer representing the maximum depth to search. Returns: A list of networkx Graph objects, one per partition. >>> components = partition_girvan_newman(example_graph(), 5) >>> components = sorted(components, key=lambda x: sorted(x.nodes())[0]) >>> sorted(components[0].nodes()) ['A', 'B', 'C'] >>> sorted(components[1].nodes()) ['D', 'E', 'F', 'G'] """ graph_copy = graph.copy() between_list = approximate_betweenness(graph_copy, max_depth) between_list_ordered = sorted(between_list.items(), key=lambda i: i[1], reverse=True) while len(get_components(graph_copy))==1: graph_copy.remove_edge(*between_list_ordered[0][0]) del between_list_ordered[0] components = get_components(graph_copy) # [n.nodes() for n in components] return components ###TODO
5,346,116
def start(ctx): """ Start the API according to the config file """ module = ctx.config.get("api", "poloniex") # unlockWallet if module == "poloniex": from .apis import poloniex poloniex.run(ctx, port=5000) else: print_message("Unkown 'api'!", "error")
5,346,117
def inspect_project(dirpath=None): """Fetch various information about an already-initialized project""" if dirpath is None: dirpath = Path() else: dirpath = Path(dirpath) def exists(*fname): return Path(dirpath, *fname).exists() if not exists("pyproject.toml"): raise InvalidProjectError("Project is missing pyproject.toml file") if not exists("setup.cfg"): raise InvalidProjectError("Project is missing setup.cfg file") if not exists("src"): raise InvalidProjectError("Project does not have src/ layout") cfg = read_configuration(str(dirpath / "setup.cfg")) env = { "name": cfg["metadata"]["name"], "short_description": cfg["metadata"]["description"], "author": cfg["metadata"]["author"], "author_email": cfg["metadata"]["author_email"], "python_requires": util.sort_specifier(cfg["options"]["python_requires"]), "install_requires": cfg["options"].get("install_requires", []), # Until <https://github.com/pypa/setuptools/issues/2575> is fixed, we # have to determine versions via read_version() instead of # read_configuration(). # "version": cfg["metadata"].get("version"), "keywords": cfg["metadata"].get("keywords", []), "supports_pypy3": False, "default_branch": get_default_branch(dirpath), } # if env["version"] is None: # raise InvalidProjectError("Cannot determine project version") if cfg["options"].get("packages"): env["is_flat_module"] = False env["import_name"] = cfg["options"]["packages"][0] env["version"] = read_version( (dirpath / "src" / env["import_name"] / "__init__.py").resolve() ) else: env["is_flat_module"] = True env["import_name"] = cfg["options"]["py_modules"][0] env["version"] = read_version( (dirpath / "src" / (env["import_name"] + ".py")).resolve() ) env["python_versions"] = [] for clsfr in cfg["metadata"]["classifiers"]: m = re.fullmatch(r"Programming Language :: Python :: (\d+\.\d+)", clsfr) if m: env["python_versions"].append(m.group(1)) if clsfr == "Programming Language :: Python :: Implementation :: PyPy": env["supports_pypy3"] = True env["commands"] = {} try: commands = cfg["options"]["entry_points"]["console_scripts"] except KeyError: pass else: for cmd in commands: k, v = re.split(r"\s*=\s*", cmd, maxsplit=1) env["commands"][k] = v m = re.fullmatch( r"https://github.com/([^/]+)/([^/]+)", cfg["metadata"]["url"], ) assert m, "Project URL is not a GitHub URL" env["github_user"] = m.group(1) env["repo_name"] = m.group(2) if "Documentation" in cfg["metadata"]["project_urls"]: m = re.fullmatch( r"https?://([-a-zA-Z0-9]+)\.(?:readthedocs|rtfd)\.io", cfg["metadata"]["project_urls"]["Documentation"], ) assert m, "Documentation URL is not a Read the Docs URL" env["rtfd_name"] = m.group(1) else: env["rtfd_name"] = env["name"] toxcfg = ConfigParser(interpolation=None) toxcfg.read(str(dirpath / "tox.ini")) # No-op when tox.ini doesn't exist env["has_tests"] = toxcfg.has_section("testenv") env["has_doctests"] = False for pyfile in (dirpath / "src").rglob("*.py"): if re.search(r"^\s*>>>\s+", pyfile.read_text(), flags=re.M): env["has_doctests"] = True break env["has_typing"] = exists("src", env["import_name"], "py.typed") env["has_ci"] = exists(".github", "workflows", "test.yml") env["has_docs"] = exists("docs", "index.rst") env["codecov_user"] = env["github_user"] try: with (dirpath / "README.rst").open(encoding="utf-8") as fp: rdme = Readme.parse(fp) except FileNotFoundError: env["has_pypi"] = False else: for badge in rdme.badges: m = re.fullmatch( r"https://codecov\.io/gh/([^/]+)/[^/]+/branch/.+" r"/graph/badge\.svg", badge.href, ) if m: env["codecov_user"] = m.group(1) env["has_pypi"] = any(link["label"] == "PyPI" for link in rdme.header_links) with (dirpath / "LICENSE").open(encoding="utf-8") as fp: for line in fp: m = re.match(r"^Copyright \(c\) (\d[-,\d\s]+\d) \w+", line) if m: env["copyright_years"] = list(intspan(m.group(1))) break else: raise InvalidProjectError("Copyright years not found in LICENSE") env["extra_testenvs"] = parse_extra_testenvs( dirpath / ".github" / "workflows" / "test.yml" ) return env
5,346,118
def test_bidirectional_mode(target_data): """ Testing NetGear's Bidirectional Mode with different datatypes """ try: logger.debug('Given Input Data: {}'.format(target_data)) #open strem stream = VideoGear(source=return_testvideo_path()).start() #activate bidirectional_mode options = {'bidirectional_mode': True} #define params client = NetGear(receive_mode = True, logging = True, **options) server = NetGear(logging = True, **options) #get frame from stream frame_server = stream.read() assert not(frame_server is None) #sent frame and data from server to client server.send(frame_server, message = target_data) #client recieves the data and frame and send its data server_data, frame_client = client.recv(return_data = target_data) #server recieves the data and cycle continues client_data = server.send(frame_server, message = target_data) #clean resources stream.stop() server.close() client.close() #logger.debug data recieved at client-end and server-end logger.debug('Data recieved at Server-end: {}'.format(server_data)) logger.debug('Data recieved at Client-end: {}'.format(client_data)) #check if recieved frame exactly matches input frame assert np.array_equal(frame_server, frame_client) #check if client-end data exactly matches server-end data assert client_data == server_data except Exception as e: if isinstance(e, (ZMQError, ValueError)): logger.error(traceback.print_tb(e.__traceback__)) else: pytest.fail(str(e))
5,346,119
def requirements(ctx): """Write the `requirements-agent-release.txt` file at the root of the repo listing all the Agent-based integrations pinned at the version they currently have in HEAD. """ echo_info('Freezing check releases') checks = get_valid_checks() checks.remove('stackstate_checks_dev') entries = [] for check in checks: if check in AGENT_V5_ONLY: echo_info('Check `{}` is only shipped with Agent 5, skipping'.format(check)) continue try: version = get_version_string(check) entries.append('{}\n'.format(get_agent_requirement_line(check, version))) except Exception as e: echo_failure('Error generating line: {}'.format(e)) continue lines = sorted(entries) req_file = get_agent_release_requirements() write_file_lines(req_file, lines) echo_success('Successfully wrote to `{}`!'.format(req_file))
5,346,120
def current_user(request): """ Returning the current user with data use of token """ serializer = UserSerializer(request.user) return Response(serializer.data)
5,346,121
def getPercentileLevels(h, frac=[0.5, 0.65, 0.95, 0.975]): """ Return image levels that corresponds to given percentiles values Uses the cumulative distribution of the sorted image density values Hence this works also for any nd-arrays inputs: h array outputs: res array containing level values keywords: frac sample fractions (percentiles) could be scalar or iterable default: 50%, 65%, 95%, and 97.5% """ if getattr(frac, '__iter__', False): return numpy.asarray( [getPercentileLevels(h, fk) for fk in frac]) assert( (frac >= 0.) & (frac <1.)), "Expecting a sample fraction in 'frac' and got %f" %frac # flatten the array to a 1d list val = h.ravel() # inplace sort val.sort() #reverse order rval = val[::-1] #cumulative values cval = rval.cumsum() #retrieve the largest indice up to the fraction of the sample we want ind = numpy.where(cval <= cval[-1]*float(frac))[0].max() res = rval[ind] del val, cval, ind, rval return res
5,346,122
def test_submission_validate_invalid_no_payload_dict(): """ Test process_answer.submission_validate function. """ submission: dict = { "xqueue_files": {"student_response.txt": "http://captive.apple.com"}, "xqueue_body": {"student_response": "5", "grader_payload": {"test": "1"}}, } with pytest.raises(InvalidSubmissionException): process_answer.submission_validate(submission)
5,346,123
def _rasterize_polygon(lon, lat, i, method): """ routine to rasterize polygon as separate function to allow for parallel operations """ global THE_POLYGONS global THE_MASK P = THE_POLYGONS[i] if not isinstance(P, Polygon): raise ValueError('No Polygon object provided!') if P.id < 0: raise ValueError('ERROR: ID value must not be negative!') if method != 'full': raise ValueError('Only FULL method currently thoroughly validated!') # check if data across the dateline. This is currently not supported yet! if method != 'full': if P.across_dateline(): # check routine not existing yet! print('WARNING: seems that polygon is across the dateline. This is currently not supported yet! SKIPPING polygon with ID: ', P.id) return id = float(P.id) # check if id already existing msk = THE_MASK == float(id) if msk.sum() > 0: raise ValueError('The ID value is already existing!') if method == 'full': #~ hlp = np.ones_like(THE_MASK)*np.nan #~ uvals = np.unique(THE_MASK[~np.isnan(THE_MASK)]) #~ print 'THE_MASK before: ', i, P.id, len(uvals) # use fast cython based method get_point_in_poly_mask(THE_MASK, lon, lat, P) #~ print 'THE_MASK after: ', hlp #~ mm = ~np.isnan(hlp) #~ print 'N-valid: ', np.sum(mm) #~ THE_MASK[mm] = hlp[mm]*1. #~ uvals = np.unique(THE_MASK[~np.isnan(THE_MASK)]) #~ print 'THEMASK-after: ', i, len(uvals) #~ del hlpe elif method == 'fullold': assert False ny, nx = lon.shape for i in range(ny): #~ if i % 1 == 0: print('Rasterization complete by ', np.round(100. * float(i) / float(ny), 0), '% \r',) for j in range(nx): if P.point_in_poly(lon[i, j], lat[i, j]): if np.isnan(mask[i, j]): mask[i, j] = id else: print(i, j, lon[i, j], lat[i, j]) raise ValueError( 'Overlapping polygons not supported yet!') else: pass # an alternative implementation. This is however not necessarily faster # than 'full' elif method == 'faster': assert False, 'Option currently not supported!' print('Using CYTHON method for rasterization!') mask = fast_point_in_poly(lon, lat, P) elif method == 'fast': assert False xmin, xmax, ymin, ymax = P.bbox() # determine bounding box very roughly NOT THAT THIS MIGHT BE NOT # CORRECT valid_points = (lon >= xmin) & ( lon <= xmax) & (lat >= ymin) & (lat <= ymax) # preselect points that are likely to fall within polygon plon = lon[valid_points] plat = lat[valid_points] resmsk = np.zeros_like(plon) * np.nan for i in range(len(plon)): #~ if i % 500 == 0: #~ print i, len(plon) if P.point_in_poly(plon[i], plat[i]): if np.isnan(resmsk[i]): resmsk[i] = id else: raise ValueError('Overlapping polygons not supported yet!') # reassign mask newmsk = np.ones_like(lon) * np.nan newmsk[valid_points] = resmsk newvalues = ~np.isnan(newmsk) if np.any(~np.isnan(mask[newvalues])): print(newmsk[newvalues]) print(sum(~np.isnan(mask[newvalues]))) raise ValueError('Some values had been set already before!') mask[newvalues] = newmsk[newvalues] else: raise ValueError('ERROR: Invalid method')
5,346,124
def main(argv): """ Main entry point of this utility application. This is simply a function called by the checking of namespace __main__, at the end of this script (in order to execute only when this script is ran directly). Parameters ------ argv: list of str Arguments received from the command line. """ annotationPath = 'C:/Users/luigi/Dropbox/Doutorado/dataset/annotation-all' print('Reading data...') fileName = '{}/../subjects.csv'.format(annotationPath) games = pd.read_csv(fileName, sep=',', usecols=[0, 5], index_col=0) subjects = [] data = pd.DataFrame(columns=['subject', 'frame', 'game', 'emotion', 'value']) for dirpath, _, filenames in os.walk(annotationPath): for f in filenames: name = os.path.splitext(f)[0] parts = name.split('-') if len(parts) != 2 or parts[1] != 'emotions': continue parts = parts[0].split('_') subject = int(parts[1]) subjects.append(subject) # Get the subject's game game = games.loc[subject]['Game Played'] # Read the emotions fileName = os.path.join(dirpath, f) df = pd.read_csv(fileName, sep=',') df.columns = ['frame', 'neutral', 'happiness', 'sadness', 'anger', 'fear', 'surprise', 'disgust'] df = pd.melt(df, id_vars=['frame'], var_name='emotion', value_name='value') #df = df[df['value'] != 0] df['subject'] = [subject for _ in range(len(df))] df['game'] = [game for _ in range(len(df))] #df.columns = ['subject', 'frame', 'game', 'emotion', 'value'] df = df[['subject', 'frame', 'game', 'emotion', 'value']] data = data.append(df) data['subject'] = data['subject'].astype(int) data['frame'] = data['frame'].astype(int) #plotStack(data, 'neutral') #plotStack(data, 'happiness') #plotStack(data, 'sadness') #plotStack(data, 'anger') #plotStack(data, 'fear') #plotStack(data, 'surprise') #plotStack(data, 'disgust') plotCountings(data) #sns.violinplot(x='emotion', y='value', hue='game', data=data) #plt.show()
5,346,125
def _ParseSparse(data): """Concat sparse tensors together. Args: data: A dict of name -> Tensor. Returns: A single sparse tensor and a 1-D input spec Tensor. Raises: NotImplementedError: Combining dense and sparse tensors is not supported. ValueError: If data contains non-string Tensors. """ for k in sorted(data.keys()): if not isinstance(data[k], sparse_tensor.SparseTensor): raise NotImplementedError( 'Features should be either all sparse or all dense. Use a ' 'feature engineering function to convert some of them.') data_spec = [ constants.DATA_CATEGORICAL if data[data.keys()[0]].dtype == dtypes.string else constants.DATA_FLOAT ] return sparse_ops.sparse_concat(1, data.values()), data_spec
5,346,126
def get_spectra2(X, E_in, p_dict, outputs=None): """ Calls get_Efield() to get Electric field, then use Jones matrices to calculate experimentally useful quantities. Alias for the get_spectra2 method in libs.spectra. Inputs: detuning_range [ numpy 1D array ] The independent variable and defines the detuning points over which to calculate. Values in MHz E_in [ numpy 1/2D array ] Defines the input electric field vector in the xyz basis. The z-axis is always the direction of propagation (independent of the magnetic field axis), and therefore the electric field should be a plane wave in the x,y plane. The array passed to this method should be in one of two formats: (1) A 1D array of (Ex,Ey,Ez) which is the input electric field for all detuning values; or (2) A 2D array with dimensions (3,len(detuning_range)) - i.e. each detuning has a different electric field associated with it - which will happen on propagation through a birefringent/dichroic medium p_dict [ dictionary ] Dictionary containing all parameters (the order of parameters is therefore not important) Dictionary keys: Key DataType Unit Description --- --------- ---- ----------- Elem str -- The chosen alkali element. Dline str -- Specifies which D-line transition to calculate for (D1 or D2) # Experimental parameters Bfield float Gauss Magnitude of the applied magnetic field T float Celsius Temperature used to calculate atomic number density GammaBuf float MHz Extra lorentzian broadening (usually from buffer gas but can be any extra homogeneous broadening) shift float MHz A global frequency shift of the atomic resonance frequencies DoppTemp float Celsius Temperature linked to the Doppler width (used for independent Doppler width and number density) Constrain bool -- If True, overides the DoppTemp value and sets it to T # Elemental abundancies, where applicable rb85frac float % percentage of rubidium-85 atoms K40frac float % percentage of potassium-40 atoms K41frac float % percentage of potassium-41 atoms lcell float m length of the vapour cell theta0 float degrees Linear polarisation angle w.r.t. to the x-axis Pol float % Percentage of probe beam that drives sigma minus (50% = linear polarisation) NOTE: If keys are missing from p_dict, default values contained in p_dict_defaults will be loaded. outputs: an iterable (list,tuple...) of strings that defines which spectra are returned, and in which order. If not specified, defaults to None, in which case a default set of outputs is returned, which are: S0, S1, S2, S3, Ix, Iy, I_P45, I_M45, alphaPlus, alphaMinus, alphaZ Returns: A list of output arrays as defined by the 'outputs' keyword argument. Example usage: To calculate the room temperature absorption of a 75 mm long Cs reference cell in an applied magnetic field of 100 G aligned along the direction of propagation (Faraday geometry), between -10 and +10 GHz, with an input electric field aligned along the x-axis: detuning_range = np.linspace(-10,10,1000)*1e3 # GHz to MHz conversion E_in = np.array([1,0,0]) p_dict = {'Elem':'Cs', 'Dline':'D2', 'Bfield':100, 'T':21, 'lcell':75e-3} [Transmission] = calculate(detuning_range,E_in,p_dict,outputs=['S0']) """ # get some parameters from p dictionary # need in try/except or equiv. if 'Elem' in list(p_dict.keys()): Elem = p_dict['Elem'] else: Elem = p_dict_defaults['Elem'] if 'Dline' in list(p_dict.keys()): Dline = p_dict['Dline'] else: Dline = p_dict_defaults['Dline'] if 'shift' in list(p_dict.keys()): shift = p_dict['shift'] else: shift = p_dict_defaults['shift'] if 'lcell' in list(p_dict.keys()): lcell = p_dict['lcell'] else: lcell = p_dict_defaults['lcell'] if 'theta0' in list(p_dict.keys()): theta0 = p_dict['theta0'] else: theta0 = p_dict_defaults['theta0'] if 'Pol' in list(p_dict.keys()): Pol = p_dict['Pol'] else: Pol = p_dict_defaults['Pol'] # get wavenumber exec('transition = AC.'+Elem+Dline+'Transition') wavenumber = transition.wavevectorMagnitude # Calculate Susceptibility ChiPlus, ChiMinus, ChiZ = calc_chi(X, p_dict) Chi = [ChiPlus, ChiMinus, ChiZ] # Complex refractive index nPlus = sqrt(1.0+ChiPlus) #Complex refractive index driving sigma plus transitions nMinus = sqrt(1.0+ChiMinus) #Complex refractive index driving sigma minus transitions nZ = sqrt(1.0+ChiZ) # Complex index driving pi transitions # convert (if necessary) detuning axis X to np array if type(X) in (int, float, int): X = np.array([X]) else: X = np.array(X) # Calculate E_field E_out, R = get_Efield(X, E_in, Chi, p_dict) #print 'Output E field (Z): \n', E_out[2] ## Apply Jones matrices # Transmission - total intensity - just E_out**2 / E_in**2 E_in = np.array(E_in) if E_in.shape == (3,): E_in = np.array([np.ones(len(X))*E_in[0],np.ones(len(X))*E_in[1],np.ones(len(X))*E_in[2]]) # normalised by input intensity I_in = (E_in * E_in.conjugate()).sum(axis=0) S0 = (E_out * E_out.conjugate()).sum(axis=0) / I_in Iz = (E_out[2] * E_out[2].conjugate()).real / I_in Transmission = S0 ## Some quantities from Faraday geometry don't make sense when B and k not aligned, but leave them here for historical reasons TransLeft = exp(-2.0*nPlus.imag*wavenumber*lcell) TransRight = exp(-2.0*nMinus.imag*wavenumber*lcell) # Faraday rotation angle (including incident linear polarisation angle) phiPlus = wavenumber*nPlus.real*lcell phiMinus = wavenumber*nMinus.real*lcell phi = (phiMinus-phiPlus)/2.0 ## #Stokes parameters #S1# Ex = np.array(JM.HorizPol_xy * E_out[:2]) Ix = (Ex * Ex.conjugate()).sum(axis=0) / I_in Ey = np.array(JM.VertPol_xy * E_out[:2]) Iy = (Ey * Ey.conjugate()).sum(axis=0) / I_in S1 = Ix - Iy #S2# E_P45 = np.array(JM.LPol_P45_xy * E_out[:2]) E_M45 = np.array(JM.LPol_M45_xy * E_out[:2]) I_P45 = (E_P45 * E_P45.conjugate()).sum(axis=0) / I_in I_M45 = (E_M45 * E_M45.conjugate()).sum(axis=0) / I_in S2 = I_P45 - I_M45 #S3# # change to circular basis E_out_lrz = BC.xyz_to_lrz(E_out) El = np.array(JM.CPol_L_lr * E_out_lrz[:2]) Er = np.array(JM.CPol_R_lr * E_out_lrz[:2]) Il = (El * El.conjugate()).sum(axis=0) / I_in Ir = (Er * Er.conjugate()).sum(axis=0) / I_in S3 = Ir - Il Ir = Ir.real Il = Il.real Ix = Ix.real Iy = Iy.real ## (Real part) refractive indices #nMinus = nPlus.real #nPlus = nMinus.real ## Absorption coefficients - again not a physically relevant quantity anymore since propagation is not as simple as k * Im(Chi) * L in a non-Faraday geometry alphaPlus = 2.0*nMinus.imag*wavenumber alphaMinus = 2.0*nPlus.imag*wavenumber alphaZ = 2.0*nZ.imag*wavenumber # Refractive/Group indices for left/right/z also no longer make any sense #d = (array(X)-shift) #Linear detuning #dnWRTv = derivative(d,nMinus.real) #GIPlus = nMinus.real + (X + transition.v0*1.0e-6)*dnWRTv #dnWRTv = derivative(d,nPlus.real) #GIMinus = nPlus.real + (X + transition.v0*1.0e-6)*dnWRTv if (outputs == None) or ('All' in outputs): # Default - return 'all' outputs (as used by GUI) return S0.real,S1.real,S2.real,S3.real,Ix.real,Iy.real,I_P45.real,I_M45.real,alphaPlus,alphaMinus,alphaZ else: # Return the variable names mentioned in the outputs list of strings # the strings in outputs must exactly match the local variable names here! return [locals()[output_str] for output_str in outputs]
5,346,127
def get_device_components(ralph_device_id): """Yields dicts describing all device components to be taken in assets""" try: ralph_device = Device.objects.get(id=ralph_device_id) except Device.DoesNotExist: raise LookupError('Device not found') else: components = ralph_device.get_components() for processor in components.get('processors', []): yield { 'model_proposed': processor.model.name, } for memory in components.get('memory', []): yield { 'model_proposed': memory.model.name, } for storage in components.get('storages', []): yield { 'model_proposed': storage.model.name, 'sn': storage.sn, } for ethernet in components.get('ethernets', []): yield { 'model_proposed': unicode(ethernet), 'sn': ethernet.mac, } for fibrechannel in components.get('fibrechannels', []): yield { 'model_proposed': fibrechannel.model.name, }
5,346,128
def clear(): """Set all LEDS to 0/off""" all(0)
5,346,129
def resolve_resource_file(res_name, root_path=None, config=None): """Convert a resource into an absolute filename. Resource names are in the form: 'filename.ext' or 'path/filename.ext' The system wil look for ~/.mycroft/res_name first, and if not found will look at /opt/mycroft/res_name, then finally it will look for res_name in the 'mycroft/res' folder of the source code package. Example: With mycroft running as the user 'bob', if you called resolve_resource_file('snd/beep.wav') it would return either '/home/bob/.mycroft/snd/beep.wav' or '/opt/mycroft/snd/beep.wav' or '.../mycroft/res/snd/beep.wav', where the '...' is replaced by the path where the package has been installed. Args: res_name (str): a resource path/name config (dict): mycroft.conf, to read data directory from Returns: str: path to resource or None if no resource found """ if config is None: from ovos_utils.configuration import read_mycroft_config config = read_mycroft_config() # First look for fully qualified file (e.g. a user setting) if os.path.isfile(res_name): return res_name # Now look for ~/.mycroft/res_name (in user folder) filename = os.path.expanduser("~/.mycroft/" + res_name) if os.path.isfile(filename): return filename # Next look for /opt/mycroft/res/res_name data_dir = os.path.expanduser(config.get('data_dir', "/opt/mycroft")) filename = os.path.expanduser(os.path.join(data_dir, res_name)) if os.path.isfile(filename): return filename # look in ovos_utils package itself found = resolve_ovos_resource_file(res_name) if found: return found # Finally look for it in the source package paths = [ "/opt/venvs/mycroft-core/lib/python3.7/site-packages/", # mark1/2 "/opt/venvs/mycroft-core/lib/python3.4/site-packages/ ", # old mark1 installs "/home/pi/mycroft-core" # picroft ] if root_path: paths += [root_path] for p in paths: filename = os.path.join(p, 'mycroft', 'res', res_name) filename = os.path.abspath(os.path.normpath(filename)) if os.path.isfile(filename): return filename return None
5,346,130
def writeDotGraph(taskInfoFile, taskStateFile, workflowClassName) : """ write out the current graph state in dot format """ addOrder = [] taskInfo = {} headNodes = set() tailNodes = set() # read info file: for (label, namespace, ptype, _nCores, _memMb, _priority, _isForceLocal, depStr, _cwdStr, _command) in taskInfoParser(taskInfoFile) : tid = (namespace, label) addOrder.append(tid) taskInfo[tid] = Bunch(ptype=ptype, parentLabels=getTaskInfoDepSet(depStr)) if len(taskInfo[tid].parentLabels) == 0 : headNodes.add(tid) tailNodes.add(tid) for plabel in taskInfo[tid].parentLabels : ptid = (namespace, plabel) if ptid in tailNodes : tailNodes.remove(ptid) for (label, namespace, runState, _errorCode, _time) in taskStateParser(taskStateFile) : tid = (namespace, label) taskInfo[tid].runState = runState dotFp = sys.stdout dotFp.write("// Task graph from pyflow object '%s'\n" % (workflowClassName)) dotFp.write("// Process command: '%s'\n" % (cmdline())) dotFp.write("// Process working dir: '%s'\n" % (os.getcwd())) dotFp.write("// Graph capture time: %s\n" % (timeStrNow())) dotFp.write("\n") dotFp.write("digraph %s {\n" % (workflowClassName + "Graph")) dotFp.write("\tcompound=true;\nrankdir=LR;\nnode[fontsize=10];\n") labelToSym = {} namespaceGraph = {} for (i, (namespace, label)) in enumerate(addOrder) : tid = (namespace, label) if namespace not in namespaceGraph : namespaceGraph[namespace] = "" sym = "n%i" % i labelToSym[tid] = sym attrib1 = DotConfig.getRunstateDotAttrib(taskInfo[tid].runState) attrib2 = DotConfig.getTypeDotAttrib(taskInfo[tid].ptype) namespaceGraph[namespace] += "\t\t%s [label=\"%s\"%s%s];\n" % (sym, label, attrib1, attrib2) for (namespace, label) in addOrder : tid = (namespace, label) sym = labelToSym[tid] for plabel in taskInfo[tid].parentLabels : ptid = (namespace, plabel) namespaceGraph[namespace] += ("\t\t%s -> %s;\n" % (labelToSym[ptid], sym)) for (i, ns) in enumerate(namespaceGraph.keys()) : isNs = ((ns is not None) and (ns != "")) dotFp.write("\tsubgraph cluster_sg%i {\n" % (i)) if isNs : dotFp.write("\t\tlabel = \"%s\";\n" % (ns)) else : dotFp.write("\t\tlabel = \"%s\";\n" % (workflowClassName)) dotFp.write(namespaceGraph[ns]) dotFp.write("\t\tbegin%i [label=\"begin\" shape=diamond];\n" % (i)) dotFp.write("\t\tend%i [label=\"end\" shape=diamond];\n" % (i)) for (namespace, label) in headNodes : if namespace != ns : continue sym = labelToSym[(namespace, label)] dotFp.write("\t\tbegin%i -> %s;\n" % (i, sym)) for (namespace, label) in tailNodes : if namespace != ns : continue sym = labelToSym[(namespace, label)] dotFp.write("\t\t%s -> end%i;\n" % (sym, i)) dotFp.write("\t}\n") if ns in labelToSym : dotFp.write("\t%s -> begin%i [style=dotted];\n" % (labelToSym[ns], i)) # in LR orientation this will make the graph look messy: # dotFp.write("\tend%i -> %s [style=invis];\n" % (i,labelToSym[ns])) dotFp.write(DotConfig.getDotLegend()) dotFp.write("}\n") hardFlush(dotFp)
5,346,131
def _CommonArgs(parser, api_version): """A helper function to build args based on different API version.""" messages = apis.GetMessagesModule('compute', api_version) flags.MakeResourcePolicyArg().AddArgument(parser) flags.AddCommonArgs(parser) flags.AddGroupPlacementArgs(parser, messages) parser.display_info.AddCacheUpdater(None)
5,346,132
def lambda_handler(event, context): """Sample pure Lambda function Parameters ---------- event: dict, required Input Event doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------ dict """ command = event['command'] res = subprocess.check_output(command.split(' ')) return { "statusCode": 200, "body": res }
5,346,133
def calculate_seat_district(district_deputy_number, parties, votes): """ Calculate seats for each party in list of parties for a district Params: - district_deputy_number: the number of seats for this district - parties: list of parties - votes: list of votes for each party in this district Assume that parties and votes parameters have the same size Return: - A tuple represents number of seats for each party. This tuple has same size with parameter 'parties' """ party_count = len(parties) # Each party has been initially allocated 0 seat # Initialize a list with initial value is 0 # For example, if party_count = 5 # seats will be seats = [0, 0, 0, 0, 0] seats = [0] * party_count # N value for each party # N= V/(s + 1) # Init N as a copy of votes list N = votes[:] while sum(seats) < district_deputy_number: # Get the maximum value in list of N value and the index of that maximum value # Note: this below line uses the Python's builtin operator max_index, max_value = max(enumerate(N), key=operator.itemgetter(1)) # Update the seats list # increase the seat of the party that has maximum by 1 seats[max_index] += 1 # Update the lagest N with new value # using the formal: N= V/(s + 1) N[max_index] = votes[max_index] / (seats[max_index] + 1) # return as tuple # Note: It can be returned as list, however, the tuple is better because it's immutable return tuple(seats)
5,346,134
def dispatch(): """Run all dispatch tests""" suite = ServiceTestSuite() suite.addTest(unittest.makeSuite(TestCase, 'test_dispatch')) return suite
5,346,135
def get_mask(height, width, grid_size = 10): """ Get the location based on the image size corresponding to relu_4_2 and relu_5_1 layer for a desired grid size. """ print(height, width) x_jump = int(width/grid_size) y_jump = int(height/grid_size) x_idx = np.linspace(int(x_jump/2),int(width - x_jump/2), grid_size, dtype = np.int32) y_idx = np.linspace(int(y_jump/2), int(height - y_jump/2), grid_size, dtype = np.int32) f_mask = torch.zeros((height//(2**4),width//2**4)).byte() u_mask = torch.zeros((height//(2**3),width//2**3)).byte() for i in x_idx: for j in y_idx: f_mask[j//(2**4),i//(2**4)] = 1 u_mask[j//(2**3),i//(2**3)] = 1 return(u_mask, f_mask)
5,346,136
def arrivalTimes2TimeTraceBH(arrivalTimes, binLength): """ Convert a list of arrivalTimes to an intensity time trace I(t) =========================================================================== Input Meaning --------------------------------------------------------------------------- arrivalTimes Variable with the arrivalTimes for each detector element [of ns] binLength Duration of each bin [in ns] =========================================================================== Output Meaning --------------------------------------------------------------------------- data Vector with intensity trace vs time in bins of binLength =========================================================================== """ # calculate for each photon in which bin it should be photonBins = np.int64(arrivalTimes / binLength) # number of photon bins Nbins = np.max(photonBins) + 1 # create output vector data = np.zeros(Nbins, 'int16') for i in range(len(photonBins)): data[photonBins[i]] += 1 return data
5,346,137
def datetime_to_ts(dt): """ convert naive or aware datetime instance to timestamp in second Args: dt(datetime): datetime instance Returns: int: timestamp in second. """ epoch_dt = datetime.datetime.fromtimestamp(0, tz=pytz.utc) if not hasattr(dt, 'tzinfo') or dt.tzinfo is None: local_tz = tzlocal.get_localzone() dt = local_tz.localize(dt) delta = dt - epoch_dt ts = delta.total_seconds() return ts
5,346,138
def peaks(spectra,frequency,number=3,thresh=0.01): """ Return the peaks from the Fourier transform Variables: number: integer. number of peaks to print. thresh: float. Threshhold intensity for printing. Returns: Energy (eV), Intensity (depends on type of spectra) """ from scipy.signal import argrelextrema as pks # find all peak indices [idx], and remove those below thresh [jdx] idx = pks(np.abs(spectra),np.greater,order=3) jdx = np.where((np.abs(spectra[idx]) >= thresh)) kdx = idx[0][jdx[0]] # indices of peaks matching criteria if number > len(kdx): number = len(kdx) print("First "+str(number)+" peaks (eV) found: ") for i in xrange(number): print("{0:.4f}".format(frequency[kdx][i]*27.2114), "{0:.4f}".format(spectra[kdx][i]))
5,346,139
def load_csv(source_filepath, start_date = None, end_date = None, timestamp_index = 0, column_map = {"bidopen": "bidopen", "bidclose": "bidclose", "bidhigh": "bidhigh", "bidlow": "bidlow", "askopen": "askopen", "askclose": "askclose", "askhigh": "askhigh", "asklow": "asklow", "volume": "tickqty"}): """Loads a csv price data file Args: source_filepath (string): the full or relative filepath for csv input file start_date (string): optional filter for price data end_date (string): optional filter for price data timestamp_index (int): column index for the start of bar timestamp column_map (dict): maps the csv file columns (value) to the predefined column names (key) Returns: Pandas.DataFrame: returns the price data """ #read the csv file df = pd.read_csv(source_filepath, sep=",", index_col=timestamp_index, parse_dates=True) #convert the columns to the correct data type df["askopen"] = df[column_map["askopen"]].astype('float32') df["askclose"] = df[column_map["askclose"]].astype('float32') df["askhigh"] = df[column_map["askhigh"]].astype('float32') df["asklow"] = df[column_map["asklow"]].astype('float32') df["bidopen"] = df[column_map["bidopen"]].astype('float32') df["bidclose"] = df[column_map["bidclose"]].astype('float32') df["bidhigh"] = df[column_map["bidhigh"]].astype('float32') df["bidlow"] = df[column_map["bidlow"]].astype('float32') df["volume"] = df[column_map["volume"]].astype('int32') #reorder the columns in the correct order cols = ["askopen", "askclose", "askhigh", "asklow", "bidopen", "bidclose", "bidhigh", "bidlow", "volume"] df = df[cols] #filter on dates if required if start_date is not None: df = df[df.index >= start_date] if end_date is not None: df = df[df.index <= end_date] return df
5,346,140
def create_kernel(dim0, dim1): """Create a two-dimensional LPF kernel, with a half-Hamming window along the first dimension and a Gaussian along the second. Parameters ---------- dim0 : int Half-Hamming window length. dim1 : int Gaussian window length. Returns ------- kernel : np.ndarray The 2d LPF kernel. """ dim0_weights = np.hamming(dim0 * 2 + 1)[:dim0] dim1_weights = gaussian(dim1, dim1 * 0.25, True) kernel = dim0_weights[:, np.newaxis] * dim1_weights[np.newaxis, :] return kernel / kernel.sum()
5,346,141
def generate_fractal_noise_3d( shape, res, octaves=1, persistence=0.5, lacunarity=2, tileable=(False, False, False), interpolant=interpolant ): """Generate a 3D numpy array of fractal noise. Args: shape: The shape of the generated array (tuple of three ints). This must be a multiple of lacunarity**(octaves-1)*res. res: The number of periods of noise to generate along each axis (tuple of three ints). Note shape must be a multiple of (lacunarity**(octaves-1)*res). octaves: The number of octaves in the noise. Defaults to 1. persistence: The scaling factor between two octaves. lacunarity: The frequency factor between two octaves. tileable: If the noise should be tileable along each axis (tuple of three bools). Defaults to (False, False, False). interpolant: The, interpolation function, defaults to t*t*t*(t*(t*6 - 15) + 10). Returns: A numpy array of fractal noise and of shape shape generated by combining several octaves of perlin noise. Raises: ValueError: If shape is not a multiple of (lacunarity**(octaves-1)*res). """ noise = cp.zeros(shape) frequency = 1 amplitude = 1 for _ in range(octaves): noise += amplitude * generate_perlin_noise_3d( shape, (frequency*res[0], frequency*res[1], frequency*res[2]), tileable, interpolant ) frequency *= lacunarity amplitude *= persistence return noise
5,346,142
def getDeltaBetweenPosition(data_outVTK, wall_outVTK, cord_choice, x_p0, x_p1, Npts, Uinf=None, Rhoinf=None): """ Compute the boundary layer thickness for *Npts* equally distributed between the 2 position defined thanks to *x_p0*, *x_p1* and *cord_choice*. See the documentation of the function getDeltaAtPosition() for more information. Parameters ---------- data_outVTK : VTK output object from a VTK reader This field data MUST fulfill 2 conditions: - contain the field "U_AVG", - represent a 2D field data, as we want to extract a 1D velocity profile from it. wall_outVTK : VTK output object from a VTK reader This field is supposed to describe a curve with 1D cell type, like in getLineTangentialVector() cord_choice : integer, 0, 1 or 2 Gives the axis that is going to be used to define the point where the velocity profile is extracted. Convention : - 0 = x axis - 1 = y axis - 2 = z axis x_p0, x_p1 : float between 0 and 1 gives the bound of the line where to compute the BL thickness. Npts: integer Number of points where to compute delta wanted. Uinf : float (optional) Free stream velocity Rhoinf : float (optional) Free stream density Returns ------- pos : vector of tuple(3) the coordinates of the points where delta have been computed. delta : vector of floats The BL thickness at the *Npts* different points. deltaS : vector of floats The compressible BL displacement thickness at the *Npts* different points. theta : vector of floats The compressible BL momentum thickness at the *Npts* different points. """ # function display print '---- DAEPy::getDeltaBetweenPosition ----' delta = np.zeros(Npts) deltaS = np.zeros(Npts) theta = np.zeros(Npts) pos = np.zeros((Npts, 3)) for i in range(Npts): x_p_temp = x_p0 + (x_p1-x_p0)/(Npts-1)*i [pos[i,:], delta[i], deltaS[i], theta[i]] = getDeltaAtPosition(data_outVTK, wall_outVTK, cord_choice, x_p_temp, Uinf, Rhoinf) return [pos, delta, deltaS, theta]
5,346,143
def get_clean_url(url): """ Get a url without the language part, if i18n urls are defined :param url: a string with the url to clean :return: a string with the cleaned url """ url = url.strip('/') url = '/' if not url else url return '/'.join(url.split('/')[1:])
5,346,144
def get_fields_from_url(): """Returns a list of fields defined in the url as expected by the RESTful standard""" return request.args.get('fields', '').split(",")
5,346,145
def get_triples_processed(dcids, limit=_MAX_LIMIT): """ Generate the GetTriple query and send the request. The response is processed into as triples strings. This API is used by the pv tree tool. """ url = API_ROOT + API_ENDPOINTS['get_triples'] payload = send_request(url, req_json={'dcids': dcids, 'limit': limit}) # Create a map from dcid to list of triples. results = collections.defaultdict(list) for dcid in dcids: # Make sure each dcid is mapped to an empty list. results[dcid] # Add triples as appropriate for t in payload[dcid]: if 'objectId' in t: results[dcid].append( (t['subjectId'], t['predicate'], t['objectId'])) elif 'objectValue' in t: results[dcid].append( (t['subjectId'], t['predicate'], t['objectValue'])) return dict(results)
5,346,146
def load_ipython_extension(ip=None): """This function is called when the extension is loaded. It accepts an IPython |ip| instance. We can register the magic with the :func:`IPython.core.magics.register_magic_function` method. Parameters ----------- ip : |ip| """ if ip is None: ip = get_ipython() if ip is None: return ip.register_magic_function("pd_csv")
5,346,147
def cid_to_date(cid): """Converts a cid to date string YYYY-MM-DD Parameters ---------- cid : int A cid as it is generated by the function ``utils.create_cid()`` Returns ------- str A string formated date (e.g. YYYY-MM-DD, 2018-10-01) """ return datetime.utcfromtimestamp( cid/10000000.0 ).strftime("%Y-%m-%d")
5,346,148
def get_listings(max_pages=10): """Returns the listings from the first max_pages of craigslist.""" page = requests.get(URL) tree = html.fromstring(page.content) listing_xpath = '//li[@class="result-row"]' listings = tree.xpath(listing_xpath) # Get total number of listings default_lpp = 120 # Default number of listings on each page num_listings = int(tree.xpath('//span[@class="totalcount"]/text()')[0]) total_pages = ceil(num_listings / default_lpp) # Get next pages for i in range(min(max_pages - 1, total_pages)): next_page = requests.get(URL + "&s=%s" % (default_lpp * i)) next_tree = html.fromstring(page.content) next_listings = tree.xpath(listing_xpath) listings.extend(next_listings) return listings
5,346,149
def remove_edge_stochastic_function(G, parameter, prob_func, prob_func_kws={}, random_seed=None, copy=True): """ Recieves a Graph and p. p is function of a defined parameter Returns a degraded Graph """ if random_seed is not None: random.seed(random_seed) if copy: G_ = G.copy() else: G_ = G lst = [G.edges[n][parameter] for n in G.edges] vmax, vmin = max(lst), min(lst) prob_func_kws['vmax'] = vmax prob_func_kws['vmin'] = vmin lst=None for edge in list(G.edges): p = prob_func(G.edges[edge][parameter], **prob_func_kws) if random.random()<=p: G_.remove_edge(*edge) return(G_)
5,346,150
def find( _, ticket_id, author=False, sort=None, reverse=False, only=None, permissions=False, utc=False, env=None, releases_only=False, ): """ What latest releases/deploys contain commits belonging to this ticket? """ # TODO: link these commits back to app releases merged_commits = get_merged_commits_from_ticket(ticket_id) all_commits = [] for repo_name, commits in merged_commits.items(): for commit in commits: all_commits.append((repo_name, commit)) num_commits = len(all_commits) utils.alert( f"Found {num_commits} commit{'s' if num_commits != 1 else ''} linked to {ticket_id}\n" ) for i, (repo_name, commit) in enumerate(all_commits, start=1): utils.alert(f"Commit {i}/{num_commits}: {repo_name}: {commit}\n") projects = list_projects( contains=commit, only=only, permissions=permissions, utc=utc, env=env, releases_only=releases_only, ) format_projects( projects, author=author, contains=True, sort=sort, reverse=reverse, permissions=permissions, )
5,346,151
def get_sh_type(sh_type): """Get the section header type.""" if sh_type == 0: return 'SHT_NULL' elif sh_type == 1: return 'SHT_PROGBITS' elif sh_type == 2: return 'SHT_SYMTAB' elif sh_type == 3: return 'SHT_STRTAB' elif sh_type == 4: return 'SHT_RELA' elif sh_type == 5: return 'SHT_HASH' elif sh_type == 6: return 'SHT_DYNAMIC' elif sh_type == 7: return 'SHT_NOTE' elif sh_type == 8: return 'SHT_NOBITS' elif sh_type == 9: return 'SHT_REL' elif sh_type == 10: return 'SHT_SHLIB' elif sh_type == 11: return 'SHT_DYNSYM' elif sh_type == 14: return 'SHT_INIT_ARRAY' elif sh_type == 15: return 'SHT_FINI_ARRAY' elif sh_type == 16: return 'SHT_PREINIT_ARRAY' elif sh_type == 17: return 'SHT_GROUP' elif sh_type == 18: return 'SHT_SYMTAB_SHNDX' elif sh_type == 19: return 'SHT_NUM' elif sh_type == 1610612736: return 'SHT_LOOS' else: print('Unable to match {} to a sh_type.'.format(sh_type)) raise ValueError
5,346,152
def run_script(): """ The main entry point of the script, as called by the client via the scripting service, passing the required parameters. """ client = scripts.client( 'Dataset_Images_To_New_Figure.py', """Use Images from a Dataset to replace those in a Figure and save the result as a new Figure, in the same group as the Images""", scripts.String( "Data_Type", optional=False, grouping="1", description="Only support Dataset", values=[rstring("Dataset")], default="Dataset"), scripts.List( "IDs", optional=False, grouping="2", description="Dataset ID. Only 1 supported").ofType(rlong(0)), scripts.List("Figure_IDs", optional=False, grouping="3", description="Figure ID").ofType(rlong(0)), ) try: conn = BlitzGateway(client_obj=client) params = client.getInputs(unwrap=True) print("params", params) msg = dataset_images_to_new_figure(conn, params) client.setOutput("Message", rstring(msg)) finally: client.closeSession()
5,346,153
def model_objectives(model): """Return a list of objectives in the model""" for obj in model.component_map(aml.Objective, active=True).itervalues(): for idx in obj: yield obj[idx]
5,346,154
def EnsureNoProprietaryMixins(errs, builder_groups, configs, mixins): """If we're checking the Chromium config, check that the 'chromium' bots which build public artifacts do not include the chrome_with_codecs mixin. """ if 'chromium' in builder_groups: for builder in builder_groups['chromium']: config = builder_groups['chromium'][builder] def RecurseMixins(current_mixin): if current_mixin == 'chrome_with_codecs': errs.append('Public artifact builder "%s" can not contain the ' '"chrome_with_codecs" mixin.' % builder) return if not 'mixins' in mixins[current_mixin]: return for mixin in mixins[current_mixin]['mixins']: RecurseMixins(mixin) for mixin in configs[config]: RecurseMixins(mixin) else: errs.append('Missing "chromium" builder_group. Please update this ' 'proprietary codecs check with the name of the builder_group ' 'responsible for public build artifacts.')
5,346,155
def show_warn_message(text:str, *args:str) -> str: """ Show a warning message. """ return _base("showWarningMessage", text, *args)
5,346,156
def read_gmpe_file(resid_file, period): """ Reads the gmpe residuals file and returns all the data """ gmpe_data = [] # Read residuals file and get information we need input_file = open(resid_file, 'r') # Look over header and figure out which column contains the period # we need to plot header = input_file.readline() header = header.strip() items = header.split() index = -1 for idx, item in enumerate(items): try: val = float(item) if val == period: # Found period, save index index = idx break except: pass if index < 0: # If we don't have this period, nothing to do print("Residuals file %s does not have data for period %f" % (resid_file, period)) # Close input file input_file.close() # Return empty sets return gmpe_data # Read the rest of the file # Index #2 has station name # Index #7 has distance for line in input_file: items = line.split() stat = items[2] dist = items[7] value = items[index] gmpe_data.append((stat, dist, value)) # Done reading the file input_file.close() return gmpe_data
5,346,157
def remove_sep(path, new_sep='--'): """Convert a real path into pseudo-path.""" return path.replace(os.sep, new_sep)
5,346,158
def correct_colors(im1, im2, landmarks1): """ Towards perceptual satisfaction of splicing donor image into recipient. The color of images is argubly the strongest perceptual attribute, which is ameliorated here. Note: Further work will improve on geometric distortion (cylindrical, spherical, etc.) and image intrinsics """
5,346,159
def git_commit(message, cwd): """Commit files to git server.""" cmd = ['git', 'commit', '-m', message] subprocess.check_call(cmd, cwd=cwd) return
5,346,160
def default_loggingfcn(log, time, entity): """ Default function used to log snapshots of agents' states. """ for name in entity._names: log[name].append( copy(getattr(entity, name)) )
5,346,161
def get_types(name=None): """Retrieves the list of device types in the system. Note that we actually use the "GET device-families" endpoint, as this returns a complete list in one request. """ all_types = [] all_families = get_families(name=None, includeTypes=True) for family in all_families: all_types.extend(family["types"]) return all_types
5,346,162
def read_socket(sock, buf_len, echo=True): """ Read data from socket and return it in JSON format """ reply = sock.recv(buf_len).decode() try: ret = json.loads(reply) except json.JSONDecodeError: print("Error in reply: ", reply) sock.close() raise if echo: print(json.dumps(ret)) return ret
5,346,163
def do_monitor_media_list(client, args): """List media""" kwargs = {'user_id': args.userid} medias = client.media.list(**kwargs) utils.print_list(medias)
5,346,164
def temperature_source_function( rho, district, norm, density: xr.DataArray, etemp: xr.DataArray, itemp: xr.DataArray, density_source: xr.DataArray, source_strength, source_centre=0.3, source_width=0.3, ): """ Smooth-step core power injection, mimicking Ohmic power deposition The temperature source takes into account the power from the density source, to give a constant-power source """ core_source = core_temperature_source_function( rho, district, norm, source_strength, source_centre, source_width ) total_source = xr.DataArray( core_source / density - density_source * (etemp + itemp) / density ).assign_attrs(norm=norm.Te0 / norm.tau_0) core_source = xr.DataArray(core_source / density).assign_attrs( norm=norm.Te0 / norm.tau_0 ) annular_sink = xr.DataArray( -density_source * (etemp + itemp) / density ).assign_attrs(norm=norm.Te0 / norm.tau_0) return total_source, core_source, annular_sink
5,346,165
def mock_dbt_cloud_response( monkeypatch: MonkeyPatch, dbt_manifest_file: Path, dbt_run_results_file: Path, ) -> None: """ Mock the dbt cloud response. Parameters ---------- monkeypatch : MonkeyPatch The monkey patch fixture. dbt_manifest_file : Path The path to the manifest file. dbt_run_results_file : Path The path to the run results file. """ def get(url: str, headers: dict | None = None): """Mock the requests.get method.""" response = requests.Response() if "manifest.json" in url: file = dbt_manifest_file elif "run_results.json" in url: file = dbt_run_results_file else: raise ValueError(f"Unrecognized url: {url}") with file.open("rb") as f: response._content = f.read() response.status_code = requests.codes.ok return response monkeypatch.setattr(requests, "get", get)
5,346,166
async def model_copy(request, model_id): """ route for copy item per row """ request_params = {elem: request.form[elem][0] for elem in request.form} base_obj_id = utils.extract_obj_id_from_query(request_params["_id"]) try: new_obj_key = await create_object_copy( model_id, base_obj_id, cfg.models[model_id] ) message = f"Object with {base_obj_id} key was copied as {new_obj_key}" flash_message = (message, "success") log_history_event(request, message, new_obj_key) except asyncpg.exceptions.UniqueViolationError as e: flash_message = ( f"Duplicate in Unique column Error during copy: {e.args}. \n" f"Try to rename existed id or add manual.", "error", ) except asyncpg.exceptions.ForeignKeyViolationError as e: flash_message = (e.args, "error") return await model_view_table(request, model_id, flash_message)
5,346,167
def _write_pyserini_corpus(pyserini_index_file, corpus): """Writes the in-memory corpus to disk in the Pyserini format.""" with open(pyserini_index_file, 'w', encoding='utf-8') as fOut: for doc_id, document in corpus.items(): data = { 'id': doc_id, 'title': document.get('title', ''), 'contents': document.get('text', ''), 'queries': ' '.join(document.get('queries', '')), } json.dump(data, fOut) fOut.write('\n')
5,346,168
def load_pr(fname): """Loads predicted tracks in tabular format.""" try: data = np.loadtxt(fname, delimiter=',', dtype=np.float64, ndmin=2) except (ValueError, IndexError): # Try using whitespace delim (default). data = np.loadtxt(fname, delimiter=None, dtype=np.float64, ndmin=2) # If category is not -1, then filter by pedestrian. _, num_cols = data.shape if CATEGORY_COLUMN < num_cols and not np.all(data[:, CATEGORY_COLUMN] == -1): data = data[data[:, CATEGORY_COLUMN] == POSITIVE_CATEGORY, :] return data
5,346,169
def CheckPsenac(lamada, w, k): """Check the validation of parameter lamada, w and k. """ try: if not isinstance(lamada, int) or lamada <= 0: raise ValueError( "Error, parameter lamada must be an int type and larger than and equal to 0." ) elif w > 1 or w < 0: raise ValueError("Error, parameter w must be ranged from 0 to 1.") elif not isinstance(k, int) or k <= 0: raise ValueError( "Error, parameter k must be an int type and larger than 0." ) except ValueError: raise
5,346,170
def build_affine(rotation, scale, origin): """ Compute affine matrix given rotation, scaling, and origin. Parameters ---------- rotation : np.array rotation scale : np.array scale factor Returns ------- aff : np.array [4x4] affine matrix """ aff = np.zeros((4, 4)) aff[0:3, 0:3] = rotation aff[:, 3] = np.append(origin, 1).T aff[0:3, 0:3] = np.dot(aff[0:3, 0:3], np.diag(scale)) return aff
5,346,171
def sample_per_group(data, group_by, ratio = None, n = None): """ :type data: DataFrame :type group_by: list of str :type ratio: float :type num_rows: int :return: """ # group the data data = data.copy() """ :type data: DataFrame """ data['__order1'] = data.index grouped = data.groupby(by = group_by) training_sets = [] test_sets = [] for name, group in grouped: if n is None: num_rows = round(group.shape[0] * ratio) else: num_rows = round(min(n, group.shape[0])) shuffled = shuffle(data=group).reset_index(drop=True) new_training_set = shuffled.iloc[:num_rows, ] if num_rows>group.shape[0]: # if all of the data ends up in training set, test set should be empty instead of an error new_test_set = shuffled[shuffled.index!=shuffled.index] else: new_test_set = shuffled.iloc[(num_rows + 1):, ] training_sets.append(new_training_set) test_sets.append(new_test_set) training = concat(training_sets) """ :type training: DataFrame """ test = concat(test_sets) """ :type test: DataFrame """ training.reset_index(drop=True, inplace=True) test.reset_index(drop=True, inplace=True) training.index = training['__order1'].values test.index = test['__order1'].values training.sort_index(inplace=True) test.sort_index(inplace=True) training.drop(axis=1, labels = '__order1', inplace=True) test.drop(axis=1, labels='__order1', inplace=True) return training, test
5,346,172
def test_mbo_cell_capa_update_pmf(dev, apdev): """MBO cellular data capability update with PMF required""" ssid = "test-wnm-mbo" passphrase = "12345678" params = hostapd.wpa2_params(ssid=ssid, passphrase=passphrase) params["wpa_key_mgmt"] = "WPA-PSK-SHA256" params["ieee80211w"] = "2" params['mbo'] = '1' hapd = hostapd.add_ap(apdev[0], params) bssid = apdev[0]['bssid'] if "OK" not in dev[0].request("SET mbo_cell_capa 1"): raise Exception("Failed to set STA as cellular data capable") dev[0].connect(ssid, psk=passphrase, key_mgmt="WPA-PSK-SHA256", proto="WPA2", ieee80211w="2", scan_freq="2412") addr = dev[0].own_addr() sta = hapd.get_sta(addr) if 'mbo_cell_capa' not in sta or sta['mbo_cell_capa'] != '1': raise Exception("mbo_cell_capa missing after association") if "OK" not in dev[0].request("SET mbo_cell_capa 3"): raise Exception("Failed to set STA as cellular data not-capable") time.sleep(0.2) sta = hapd.get_sta(addr) if 'mbo_cell_capa' not in sta: raise Exception("mbo_cell_capa missing after update") if sta['mbo_cell_capa'] != '3': raise Exception("mbo_cell_capa not updated properly")
5,346,173
def print_all_models() -> None: """ Print description of every model in this module. """ model_desc = _get_all_subclasses_from_superclass( _NonTrainableUnivariateDetector ) # model_desc.update( # _get_all_subclasses_from_superclass(_NonTrainableMultivariateDetector) # ) model_desc.update( _get_all_subclasses_from_superclass(_TrainableUnivariateDetector) ) model_desc.update( _get_all_subclasses_from_superclass(_TrainableMultivariateDetector) ) for key, value in model_desc.items(): print("-" * 80) print(key) print(value)
5,346,174
def get_base64_column(metadata_df: pd.DataFrame) -> pd.DataFrame: """ Get accession json base64 str :return: """ # Get accession json object as base64 string metadata_df['accession_json_base64_str'] = metadata_df[METADATA_PAYLOAD_COLUMNS].\ apply(lambda x: b64encode(bytes(x.to_json(), encoding='utf-8')).decode("ascii"), axis="columns") return metadata_df
5,346,175
def bible_studies_view(request): """Bible studies view.""" auth = False try: auth = request.cookies['auth_tkt'] auth_tools = request.dbsession.query( MyModel ).filter(MyModel.category == 'admin').all() except KeyError: auth_tools = [] query = request.dbsession.query(MyModel) content = query.filter(MyModel.page == 'ministries').all() main_menu = query.filter(MyModel.subcategory == 'base').all() submenu = [item for item in content if item.title == 'menu_place_holder'] topimg = [item for item in content if item.category == 'topimg'] main = [item for item in content if item.category == 'bible_studies'] return { 'auth': auth, 'main_menu': main_menu, 'submenu': submenu, 'topimg': topimg[0], 'main': main, 'auth_tools': auth_tools, }
5,346,176
def get_num_channels(inputs): """ Get number of channels in one tensor. """ return inputs.shape[1]
5,346,177
def single_face_marker(): """ Face marker with a single value. """ return np.zeros((2, 3)).astype(int)
5,346,178
def check_qmc(fname=None, archive=False, xflags=(), eqlb=(1,), reblk=(2,20,2), eqlb_flags=(), reblk_flags=(), quiet_stdout=0, force_raw=0): """Checks the QMC results (INFO file) using my stand-alone QMC inspect tools. x is the extra flags to be passed on to check_* tools.""" if fname == None: if os.path.isfile("INFO"): fname = ("INFO",) else: fname = tuple(sh.sorted_glob("part[0-9]*/INFO")) elif not hasattr(fname, "__iter__"): fname = (fname,) else: fname = tuple(fname) fname_format = {} for f in fname: if not is_qmc_output(f): if not force_raw: raise ValueError, "Not a QMC output file: " + f else: print >> sys.stderr, "Warning: assuming raw output: " + f fname_format[f] = "raw" else: fname_format[f] = "qmc" if archive: fnarch = ifelse(isinstance(archive, basestring), archive, "analysis.txt") farch = open(fnarch, "a") if quiet_stdout: def prn(x): farch.write(str(x) + "\n") else: def prn(x): sys.stdout.write(str(x) + "\n") farch.write(str(x) + "\n") else: def prn(x): sys.stdout.write(str(x) + "\n") prn("") prn("Date: " + time.strftime("%Y%m%d")) prn("Checking QMC result: " + "\n + ".join( ifelse(len(fname) > 0, [""],[]) + \ [ os.path.abspath(f) for f in fname ] )) for f in fname: if fname_format[f] == "qmc" and not is_qmc_output_finished(f): prn("Warning: calculation unfinished yet: %s" % f) prn("") # Use the formal tool names here: #sh.run("check_eqlb", (fname, "1")) if eqlb: prn("EQUILIBRATION/QMC RAW ENERGIES:") eqlb_info = tuple(map(str, eqlb)) x = tuple(xflags) + tuple(eqlb_flags) if True or len(x) > 0: prn("Flags: " + " ".join(eqlb_info + x)) prn(sh.pipe_out(("check_eqlb",) + fname + eqlb_info + x).replace('\x0c', '')) if reblk: prn("REBLOCKING:") reblk_info = tuple(map(str, reblk)) x = tuple(xflags) + tuple(reblk_flags) if True or len(x) > 0: prn("Flags: " + " ".join(reblk_info + x)) prn(sh.pipe_out(("check_reblocking",) + fname + reblk_info + ("plt", "txt") + x).replace('\x0c', '')) if archive: farch.close()
5,346,179
def skew(arr, angle, dx=None, dy=None, fwd=True, fill_min=True): """ Skew the origin of successive lines by a specified angle A skew with angle of 30 degrees causes the following transformation: +-----------+ +---------------+ | | |000/ /| | input | |00/ output /0| | image | |0/ image /00| | | |/ /000| +-----------+ +---------------+ Calling skew with fwd=False will return the output image back to the input image. Skew angle must be between -45 and 45 degrees Arguments: arr: array to skew angle: angle between -45 and 45 to skew by dx: spacing of the array in the x (sample) direction (if dx=dy, or dx or dy not supplied, spacing is ignored) dy: spacing of the array in the y (line) direction fwd: add skew to image if True, unskew image if False fill_min: While IPW skew says it fills with zeros, the output image is filled with the minimum value Returns: skewed array """ if angle == 0: return arr if angle > 45 or angle < -45: raise ValueError('skew angle must be between -45 and 45 degrees') if dx is None or dy is None: dx = 1.0 dy = 1.0 nlines, nsamps = arr.shape if angle >= 0.0: negflag = False else: negflag = True angle = -angle # unequal dx/dy equivalent to changing skew angle slope = np.tan(angle * np.pi / 180.0) * (dy/dx) max_skew = int((nlines - 1) * slope + 0.5) o_nsamps = nsamps if fwd: o_nsamps += max_skew else: o_nsamps -= max_skew b = np.zeros((nlines, o_nsamps)) if fill_min: b += np.min(arr) # if skewing, first fill output array with original array if fwd: b[0:nlines, 0:nsamps] = arr o = np.arange(nlines) # positive skew angle means shifts decrease with increasing row index if not negflag: o = nlines - o - 1 offset = (o * slope + 0.5).astype(int) if not fwd: # offset values are negative shifts if unskewing offset *= -1 if fwd: b = custom_roll(b, offset) else: # assignment indexing added to ensure array shape match b[:, :] = custom_roll(arr, offset)[:, :o_nsamps] """ for line in range(nlines): o = line if negflag else nlines - line - 1 offset = int(o * slope + 0.5) if fwd: b[line, offset:offset+nsamps] = arr[line, :] else: b[line, :] = arr[line, offset:offset+o_nsamps] """ return b
5,346,180
def websocket_call(configuration, _method, url, **kwargs): """An internal function to be called in api-client when a websocket connection is required. method, url, and kwargs are the parameters of apiClient.request method.""" url = get_websocket_url(url, kwargs.get("query_params")) headers = kwargs.get("headers") _request_timeout = kwargs.get("_request_timeout", 60) _preload_content = kwargs.get("_preload_content", True) capture_all = kwargs.get("capture_all", True) try: client = WSClient(configuration, url, headers, capture_all) if not _preload_content: return client client.run_forever(timeout=_request_timeout) return WSResponse('%s' % ''.join(client.read_all())) except (Exception, KeyboardInterrupt, SystemExit) as e: raise ApiException(status=0, reason=str(e))
5,346,181
def compute_metrics(feats, pids, camids, num_query): """ Compute CMC and mAP metrics """ # query qf = feats[:num_query] q_pids = np.asarray(pids[:num_query]) q_camids = np.asarray(camids[:num_query]) # gallery gf = feats[num_query:] g_pids = np.asarray(pids[num_query:]) g_camids = np.asarray(camids[num_query:]) m, n = qf.shape[0], gf.shape[0] distmat = np.power(qf, 2).sum(axis=1, keepdims=True).repeat(n, axis=1) + \ np.power(gf, 2).sum(axis=1, keepdims=True).repeat(m, axis=1).T distmat = 1 * distmat - 2 * np.dot(qf, gf.transpose()) cmc, m_ap = eval_func(distmat, q_pids, g_pids, q_camids, g_camids) return cmc, m_ap
5,346,182
def parse_date(string_date: str) -> datetime.datetime: """ Parses input string of format 'MMM-yyyy' to datetime. :param str string_date: Date in string format 'MMM-yyyy' :return: datetime.datetime: parsed datetime """ return datetime.datetime.strptime(string_date, '%b-%Y')
5,346,183
def dpr_json_reader(file_to_read): """A simple streaming json reader. It assumes the file is well formated, which is the case of Facebook DPR data, but it cannot be used as a generic JSON stream reader, where blocks start/end at arbitrary positions (unlike Facebook DPR data). :param file_to_read: :return: yields an unparsed textual representation of all entries for one question """ current_depth = 0 buffer = [] for i, line in enumerate(map(lambda line: line.strip(), file_to_read)): if current_depth == 0 and line in ("[", "]"): continue if line == "{": current_depth += 1 if line == "}" or line == "},": current_depth -= 1 if current_depth == 0: buffer.append("}") yield "\n".join(buffer) buffer = [] else: buffer.append(line) else: buffer.append(line)
5,346,184
def test_cytoband_by_chrom(real_populated_database): """Test function that returns cytobands by chromosome dictionary""" test_cytobands = [ { "_id": "7d3c64026fd1a3ae032f9715a82eac46", "band": "p36.31", "chrom": "1", "start": "5400000", "stop": "7200000", "build": "37", }, { "_id": "b68883bc2b2b30af28d4e1958c6c9bb8", "band": "p36.33", "chrom": "1", "start": "0", "stop": "2300000", "build": "37", }, { "_id": "0fb17721ec1e60adae5775883c965ca6", "band": "p24.2", "chrom": "3", "start": "23900000", "stop": "26400000", "build": "37", }, { "_id": "56d086cf19ed191dd8be20c22412d217", "band": "p36.32", "chrom": "1", "start": "2300000", "stop": "5400000", "build": "37", }, ] # Having a database collection containing cytobands: adapter = real_populated_database adapter.cytoband_collection.insert_many(test_cytobands) # The cytobands by chromosome function should return the expected result result = adapter.cytoband_by_chrom("37") assert len(result["1"]["cytobands"]) == 3 assert len(result["3"]["cytobands"]) == 1
5,346,185
def round_vzeros(v,d=10) : """Returns input vector with rounded to zero components which precision less than requested number of digits. """ prec = pow(10,-d) vx = v[0] if math.fabs(v[0]) > prec else 0.0 vy = v[1] if math.fabs(v[1]) > prec else 0.0 vz = v[2] if math.fabs(v[2]) > prec else 0.0 return vx,vy,vz
5,346,186
async def test_fossil_energy_consumption_hole(hass, hass_ws_client): """Test fossil_energy_consumption when some data points lack sum.""" now = dt_util.utcnow() later = dt_util.as_utc(dt_util.parse_datetime("2022-09-01 00:00:00")) await hass.async_add_executor_job(init_recorder_component, hass) await async_setup_component(hass, "history", {}) await async_setup_component(hass, "sensor", {}) period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00")) period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00")) period2_day_start = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 00:00:00")) period3 = dt_util.as_utc(dt_util.parse_datetime("2021-10-01 00:00:00")) period4 = dt_util.as_utc(dt_util.parse_datetime("2021-10-31 23:00:00")) period4_day_start = dt_util.as_utc(dt_util.parse_datetime("2021-10-31 00:00:00")) external_energy_statistics_1 = ( { "start": period1, "last_reset": None, "state": 0, "sum": None, }, { "start": period2, "last_reset": None, "state": 1, "sum": 3, }, { "start": period3, "last_reset": None, "state": 2, "sum": 5, }, { "start": period4, "last_reset": None, "state": 3, "sum": 8, }, ) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } external_energy_statistics_2 = ( { "start": period1, "last_reset": None, "state": 0, "sum": 20, }, { "start": period2, "last_reset": None, "state": 1, "sum": None, }, { "start": period3, "last_reset": None, "state": 2, "sum": 50, }, { "start": period4, "last_reset": None, "state": 3, "sum": 80, }, ) external_energy_metadata_2 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "statistic_id": "test:total_energy_import_tariff_2", "unit_of_measurement": "kWh", } async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_1 ) async_add_external_statistics( hass, external_energy_metadata_2, external_energy_statistics_2 ) await async_wait_recording_done(hass) client = await hass_ws_client() await client.send_json( { "id": 1, "type": "energy/fossil_energy_consumption", "start_time": now.isoformat(), "end_time": later.isoformat(), "energy_statistic_ids": [ "test:total_energy_import_tariff_1", "test:total_energy_import_tariff_2", ], "co2_statistic_id": "test:co2_ratio_missing", "period": "hour", } ) response = await client.receive_json() assert response["success"] assert response["result"] == { period2.isoformat(): pytest.approx(3.0 - 20.0), period3.isoformat(): pytest.approx(55.0 - 3.0), period4.isoformat(): pytest.approx(88.0 - 55.0), } await client.send_json( { "id": 2, "type": "energy/fossil_energy_consumption", "start_time": now.isoformat(), "end_time": later.isoformat(), "energy_statistic_ids": [ "test:total_energy_import_tariff_1", "test:total_energy_import_tariff_2", ], "co2_statistic_id": "test:co2_ratio_missing", "period": "day", } ) response = await client.receive_json() assert response["success"] assert response["result"] == { period2_day_start.isoformat(): pytest.approx(3.0 - 20.0), period3.isoformat(): pytest.approx(55.0 - 3.0), period4_day_start.isoformat(): pytest.approx(88.0 - 55.0), } await client.send_json( { "id": 3, "type": "energy/fossil_energy_consumption", "start_time": now.isoformat(), "end_time": later.isoformat(), "energy_statistic_ids": [ "test:total_energy_import_tariff_1", "test:total_energy_import_tariff_2", ], "co2_statistic_id": "test:co2_ratio_missing", "period": "month", } ) response = await client.receive_json() assert response["success"] assert response["result"] == { period1.isoformat(): pytest.approx(3.0 - 20.0), period3.isoformat(): pytest.approx((55.0 - 3.0) + (88.0 - 55.0)), }
5,346,187
def calculation_test(): """check that the shapiro-wilk test statistic is correctly calculated because p-value should be > 0.05""" norm_values = np.random.normal(5, 2, 100) assert shapiro_wilk(norm_values)[1] > 0.05
5,346,188
def euclidean_distance_loss(params, params_prev): """ Euclidean distance loss https://en.wikipedia.org/wiki/Euclidean_distance :param params: the current model parameters :param params_prev: previous model parameters :return: float """ return K.sqrt(K.sum(K.square(params - params_prev), axis=-1))
5,346,189
def read_cloudflare_api_file(prog, file, state): """Read the input file for Cloudflare login details. Args: prog (State): modified if errors encountered in opening or reading the file. file (str): the file to read. state (ConfigState): to record config file syntax errors. Returns: list(str): returns a list of Cloudflare login parameters (email and key) where a line in the file 'X = Y' is converted to: 'X:Y'. No checks on the input to any parameters (i.e. 'Y') are done here: only the list is constructed. If ANY errors are encountered, 'None' is returned. """ try: with open(str(file), "r") as f: raw = f.read().splitlines() except FileNotFoundError as ex: prog.log.error( "cloudflare API file '{}' not found".format(ex.filename)) return None except OSError as ex: prog.log.error( "reading cloudflare API file '{}' failed: {}".format( ex.filename, ex.strerror.lower())) return None allowed_params = {'dns_cloudflare_email': 'email', 'dns_cloudflare_api_key': 'key'} errors = False ret = [] linepos = 0 for l in raw: linepos += 1 match = re.match(r'^\s*(#.*)?$', l) if match: continue match = re.match( r'\s*(?P<param>\w+)\s*=\s*(?P<input>[^#]*)(\s*|\s#.*)$', l) if match: param = match.group('param') try: inputs = shlex.split(match.group('input')) except ValueError: state.add_error(prog, "cloudflare API file '{}' has malformed expression on line {}".format(file, linepos)) errors = True continue if param in allowed_params: if len(inputs) != 1: state.add_error(prog, "cloudflare API file '{}': malformed '{}' command on line {}".format(file, param, linepos)) errors = True continue ret += [ '{}:{}'.format(allowed_params[param], inputs[0]) ] continue state.add_error(prog, "cloudflare API file '{}': unrecognized command on line {}: '{}'".format(file, linepos, param)) errors = True continue state.add_error(prog, "cloudflare API file '{}' has malformed expression on line {}".format(file, linepos)) errors = True if errors: return None return ret
5,346,190
def hash_msg(key, msg): """Return SHA1 hash from key and msg""" return b64encode(hmac.new(key, msg, sha1).digest())
5,346,191
def remove_tex_axis(ax, xtick_fmt='%d', ytick_fmt='%d', axis_remove='both'): """ Makes axes normal font in matplotlib. Parameters --------------- xtick_fmt : A string, defining the format of the x-axis ytick_fmt : A string, defining the format of the y-axis axis_remove : A string, which axis to remove. ['x', 'y', 'both'] """ if axis_remove not in ['x','y','both']: raise Exception('axis_remove value not allowed.') fmt = matplotlib.ticker.StrMethodFormatter("{x}") if axis_remove == 'both': ax.xaxis.set_major_formatter(fmt) ax.yaxis.set_major_formatter(fmt) ax.xaxis.set_major_formatter(FormatStrFormatter(xtick_fmt)) ax.yaxis.set_major_formatter(FormatStrFormatter(ytick_fmt)) elif axis_remove == 'x': ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_major_formatter(FormatStrFormatter(xtick_fmt)) else: ax.yaxis.set_major_formatter(fmt) ax.yaxis.set_major_formatter(FormatStrFormatter(ytick_fmt))
5,346,192
def insert_pattern(base, pattern, offset=None): #optional! """ Takes a base simulation field and places a given pattern with an offset onto it. When offset is None, the object is placed into the middle Parameters ---------- base : numpy.ndarray The base simulation field. Can already hold objects. pattern : numpy.ndarray The pattern to be placed. Should fit onto the simulation field offset : (offset_x, offset_y), optional offset in the x and y directions, from the middle. The default is None. Raises ------ ValueError Error is raised, if the pattern does not fit onto the simulation field. Returns ------- field : TYPE The simulation field with the pattern placed. """ #pass pattern = np.array(pattern) new_field_config = base if offset == None: offset = (0,0) #neue pos mit offset pos = (np.int(new_field_config.shape[0] / 2) + offset[0], np.int(new_field_config.shape[1] / 2 + offset[1])) #überschreibe new_field_coinfig mit pattern an gewünschter pos new_field_config[pos[0]:pos[0] + pattern.shape[0], pos[1]:pos[1] + pattern.shape[1]] = pattern return new_field_config
5,346,193
def get_specific_label_dfs(raw_df, label_loc): """ Purpose: Split the instances of data in raw_df based on specific labels/classes and load them to a dictionary structured -> label : Pandas Dataframe Params: 1. raw_df (Pandas Dataframe): - The df containing data 2. label_loc (String): - The location where the output labels are stored in 1. raw_df Returns: A dictionary structured -> label : Pandas Dataframe """ labels = list(raw_df[label_loc].unique()) # a list of dataframes storing only instances of data belonging to one specific class/label label_dataframes = {} for label in labels: label_dataframes[label] = raw_df.loc[raw_df[label_loc] == label] return label_dataframes
5,346,194
def update_figure(df1, n, autoscale=False, ax=None, axis=0, grayed=None, j=0, kind=None, rx=None, ry=None, start=0, title=None): """ update_figure. Recalculates the whole plot for frame n. :param df1: pandas dataframe, required :param n: frame to render, required :param autoscale: bool, if True will adjust the scale as data is processed, else will pre-render full scale :param ax: matplotlib ax :param axis: 0 or 1 for horizontal or vertical data :param grayed: grayed out "background" data :param j: this is used to calculate if we are dealing with an even or odd data series, for color selection. :param kind: pandas plot kind :param rx: remove x axis :param ry: remove y axis :param start: will be used in 0.3 for offset :param title: optional, title for the plot :return: affects ax """ if j % 2: c0 = 'C0' c1 = 'C1' else: c0 = 'C1' c1 = 'C0' if kind is None: kind = 'line' # Just to quiet pep8 warning. 0.3 uses start, so might as well document it if start == 0: pass items = df1.shape[0] ax.cla() if title is not None: ax.set_title(title) if grayed is not None: for row in range(grayed.shape[0]-1): grayed.iloc[row].plot(ax=ax, color='k', alpha=0.25) if axis: if not autoscale: df1.iloc[items - 1:items, ].plot(ax=ax, color=c0) df1.iloc[:n, ].plot(ax=ax, color=c0, kind=kind) else: df1.iloc[0].plot(ax=ax, color=c0, alpha=0.25, kind=kind) df1.iloc[items - 1].plot(ax=ax, color=c1, alpha=0.25, kind=kind) if n >= items / 2: df1.iloc[n].plot(ax=ax, color=c1, kind=kind) else: df1.iloc[n].plot(ax=ax, color=c0, kind=kind) if title is not None: ax.legend().set_visible(False) plt.box(on=None) if rx: ax.axes.get_xaxis().set_visible(False) if ry: ax.axes.get_yaxis().set_visible(False)
5,346,195
def run(_): """ Meant for running/parallelizing training data preparation :param _: Not used :return: Runs prep() function """ return prep()
5,346,196
def extract_hcs(): """ Extract HyperCube shuffle and output hypercube shuffle only plans """ with open("q4.json") as jf: q4 = json.load(jf) assert q4["language"] == 'MyriaL' # get fragments fragments = q4["plan"]["fragments"] assert len(fragments) == 9 # store operators by its id operators = dict() for frag in fragments: for op in frag["operators"]: new_op = copy.deepcopy(op) operators[int(new_op["opId"])] = new_op if new_op["opType"] == "LeapFrogJoin": lfj = new_op stored_hcs_prefix = "q4_hcs_only_" order_bys = [] # extract hcs for i, child_id in enumerate(lfj["argChildren"]): # extract related operators order_by = operators[child_id] hcs_consumer = operators[order_by["argChild"]] hcs_producer = operators[hcs_consumer["argOperatorId"]] scan = operators[hcs_producer["argChild"]] # for later usage order_bys.append(order_by) # construct store operator store = { "opId": 4, "opName": "MyriaStore(hcs_{})".format(i), "relationKey": { "programName": "adhoc", "userName": "public", "relationName": "q4_hcs_only_{}".format(i), }, "argOverwriteTable": True, "argChild": 3, "opType": "DbInsert" } # link the operators order_by["opId"] = 3 order_by["argChild"] = 2 hcs_consumer["opId"] = 2 hcs_consumer["argOperatorId"] = 1 hcs_producer["opId"] = 1 hcs_producer["argChild"] = 0 scan["opId"] = 0 # construct plan plan = copy.deepcopy(plan_boiler_plate) frag1 = { "operators": [scan, hcs_producer] } frag2 = { "operators": [hcs_consumer, order_by, store] } plan["rawQuery"] = "hypercube shuffle of q4 - part {}".format(i) plan["plan"]["fragments"].append(frag1) plan["plan"]["fragments"].append(frag2) ofname = "q4_hc_{}.json".format(i) print "write to {}".format(ofname) with open(ofname, "wb") as ofile: json.dump(plan, ofile) # get number of relations num_rel = len(lfj["argChildren"]) # add scans and orderbys lfj_ops = [] for i in range(num_rel): rel_name = "{}{}".format(stored_hcs_prefix, i) scan = { "relationKey": { "programName": "adhoc", "userName": "public", "relationName": rel_name }, "opId": i*2, "opName": "MyriaScan({})".format(rel_name), "opType": "TableScan" } lfj_ops.append(scan) order_by = order_bys[i] order_by["opId"] = i * 2 + 1 order_by["argChild"] = i * 2 lfj_ops.append(order_by) # construct lfj op new_lfj = copy.deepcopy(lfj) new_lfj['argChildren'] = [i*2+1 for i in range(num_rel)] new_lfj['opId'] = num_rel*2 lfj_ops.append(new_lfj) # add sink root at end sink_root = { "opType": "SinkRoot", "argChild": num_rel*2, "opName": "SinkRoot", "opId": num_rel*2+1 } lfj_ops.append(sink_root) plan = copy.deepcopy(plan_boiler_plate) plan["rawQuery"] = "Local Tributary Join" plan["plan"]["fragments"] = [ { "operators": lfj_ops, "workers": [57] } ] ofname = "q4_local_tj.json" print "output {}".format(ofname) with open(ofname, "wb") as ofile: json.dump(plan, ofile)
5,346,197
def test_parse_timeframe(): """ Tests the `parse_timeframe()` method in `Rule`. """ tf_minutes = {'minutes?': False, 'm': True} tf_hours = {'hours?': False, 'h': True} tf_days = {'days?': False, 'd': True} tf_weeks = {'weeks?': False, 'w': True} tf_months = {'months?': False, 'M': True} tf_years = {'years?': False, 'y': True} test_str = '3m' assert rule_meta.Rule.parse_timeframe(test_str, tf_minutes) == 3 assert rule_meta.Rule.parse_timeframe(test_str, tf_hours) == 0 test_str = '3m 2m' with pytest.raises(TimeframeArgDupeError): rule_meta.Rule.parse_timeframe(test_str, tf_minutes) test_str = '3m2m' with pytest.raises(TimeframeArgDupeError): rule_meta.Rule.parse_timeframe(test_str, tf_minutes) test_str = '-4minute' assert rule_meta.Rule.parse_timeframe(test_str, tf_minutes) == -4 test_str = '3h-4m+2M' assert rule_meta.Rule.parse_timeframe(test_str, tf_minutes) == -4 assert rule_meta.Rule.parse_timeframe(test_str, tf_hours) == 3 assert rule_meta.Rule.parse_timeframe(test_str, tf_months) == 2 test_str = ''' 1minute 2 hour 3Day 4w,5 mONths 6 y ''' assert rule_meta.Rule.parse_timeframe(test_str, tf_minutes) == 1 assert rule_meta.Rule.parse_timeframe(test_str, tf_hours) == 2 assert rule_meta.Rule.parse_timeframe(test_str, tf_days) == 3 assert rule_meta.Rule.parse_timeframe(test_str, tf_weeks) == 4 assert rule_meta.Rule.parse_timeframe(test_str, tf_months) == 5 assert rule_meta.Rule.parse_timeframe(test_str, tf_years) == 6
5,346,198
def includeme(config): """Bind to the db engine specifed in ``config.registry.settings``.""" # Bind the engine. settings = config.get_settings() engine_kwargs_factory = settings.pop("sqlalchemy.engine_kwargs_factory", None) if engine_kwargs_factory: kwargs_factory = config.maybe_dotted(engine_kwargs_factory) engine_kwargs = kwargs_factory(config.registry) else: engine_kwargs = {} pool_class = settings.pop("sqlalchemy.pool_class", None) if pool_class: dotted_name = DottedNameResolver() engine_kwargs["poolclass"] = dotted_name.resolve(pool_class) should_bind = asbool(settings.get("basemodel.should_bind_engine", True)) should_create = asbool(settings.get("basemodel.should_create_all", False)) should_drop = asbool(settings.get("basemodel.should_drop_all", False)) if should_bind: engine = engine_from_config(settings, "sqlalchemy.", **engine_kwargs) config.action( None, bind_engine, (engine,), {"should_create": should_create, "should_drop": should_drop}, )
5,346,199