content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def test_abstract_guessing():
"""Test abstract guessing property."""
class _CustomPsychometric(DiscriminationMethod):
def psychometric_function(self, d):
return 0.5
with pytest.raises(TypeError, match="abstract method"):
_CustomPsychometric()
| 5,345,500 |
def remove_repeats(msg):
"""
This function removes repeated characters from text.
:param/return msg: String
"""
# twitter specific repeats
msg = re.sub(r"(.)\1{2,}", r"\1\1\1", msg) # characters repeated 3 or more times
# laughs
msg = re.sub(r"(ja|Ja)(ja|Ja)+(j)?", r"jaja", msg) # spanish
msg = re.sub(r"(rs|Rs)(Rs|rs)+(r)?", r"rsrs", msg) # portugese
msg = re.sub(r"(ha|Ha)(Ha|ha)+(h)?", r"haha", msg) # english
return msg
| 5,345,501 |
def _legend_main_get(project, row):
"""
forma la leyenda de la serie principal del gráfico
input
project: es el tag project del proyecto seleccionado
en fichero XYplus_parameters.f_xml -en XYplus_main.py-
row: es fila activa devuelta por select_master) de donde se
extrae el título del gráfico
return
un str con la leyenda del punto principal del gráfico
"""
legend_master = project.find('graph/legend_master').text.strip()
columns_master = project.findall('graph/legend_master/column')
if len(columns_master) == 0:
return legend_master
subs = [row[int(col1.text)-1] for col1 in columns_master]
return legend_master.format(*subs)
| 5,345,502 |
def prop_elliptical_obscuration(wf, xradius, yradius, xc = 0.0, yc = 0.0, **kwargs):
"""Multiply the wavefront by an elliptical obscuration.
Parameters
----------
wf : obj
WaveFront class object
xradius : float
X ellipse radius in meters, unless norm is specified
yradius : float
Y ellipse radius in meters, unless norm is specified
xc : float
X-center of aperture relative to center of wavefront. Default is 0.0
yc : float
Y-center of aperture relative to center of wavefront. Default is 0.0
Returns
-------
None
Multiplies current wavefront in wf object by an elliptical obscuration.
Other Parameters
----------------
NORM : bool
If set to True, the specified radii and aperure center are assumed to
be normalized to the current beam radius. Default is False.
"""
if ("NORM" in kwargs and kwargs["NORM"]):
norm = True
else:
norm = False
wf.wfarr *= wf.wfarr * proper.prop_shift_center(proper.prop_ellipse(wf, xradius, yradius, xc, yc, NORM = norm, DARK = True))
return
| 5,345,503 |
def gen_queen_moves_quiet(queen_bitboard, opponents_pieces, blockers):
"""
generate capturing queen moves
Args:
queen_bitboard (int): Bitboard of positions of queens
all_pieces (int): Bitboard of all other pieces on the board
Returns:
generator for all capturing queen moves gives 3-tuples (from, to, promote)
"""
while queen_bitboard:
queen_square = forward_bit_scan(queen_bitboard)
attack_bitboard = queen_sliding_quiet(queen_square, blockers)
queen_bitboard = unset_bit(queen_bitboard, queen_square)
attack_bitboard &= opponents_pieces
yield from yield_moveset(queen_square, attack_bitboard)
| 5,345,504 |
def contrast_jwst_num(coro_floor, norm, matrix_dir, rms=50*u.nm):
"""
Compute the contrast for a random segmented OTE misalignment on the JWST simulator.
:param coro_floor: float, coronagraph contrast floor
:param norm: float, normalization factor for PSFs: peak of unaberrated direct PSF
:param matrix_dir: str, directory of saved matrix
:param rms: astropy quantity (e.g. m or nm), WFE rms (OPD) to be put randomly over the entire segmented mirror
:return: 2x float, E2E and matrix contrast
"""
# Keep track of time
start_time = time.time()
# Parameters
nb_seg = CONFIG_PASTIS.getint('JWST', 'nb_subapertures')
iwa = CONFIG_PASTIS.getfloat('JWST', 'IWA')
owa = CONFIG_PASTIS.getfloat('JWST', 'OWA')
sampling = CONFIG_PASTIS.getfloat('JWST', 'sampling')
# Import numerical PASTIS matrix
filename = 'pastis_matrix'
matrix_pastis = fits.getdata(os.path.join(matrix_dir, filename + '.fits'))
# Create random aberration coefficients on segments, scaled to total rms
aber = util.create_random_rms_values(nb_seg, rms)
### E2E JWST sim
start_e2e = time.time()
jwst_sim = webbpsf_imaging.set_up_nircam()
jwst_sim[0].image_mask = CONFIG_PASTIS.get('JWST', 'focal_plane_mask')
log.info('Calculating E2E contrast...')
# Put aberration on OTE
jwst_sim[1].zero()
for nseg in range(nb_seg): # TODO: there is probably a single function that puts the aberration on the OTE at once
seg_num = webbpsf_imaging.WSS_SEGS[nseg].split('-')[0]
jwst_sim[1].move_seg_local(seg_num, piston=aber[nseg].value, trans_unit='nm')
image = jwst_sim[0].calc_psf(nlambda=1)
psf_jwst = image[0].data / norm
# Create DH
dh_mask = util.create_dark_hole(psf_jwst, iwa=iwa, owa=owa, samp=sampling)
# Get the mean contrast
contrast_jwst = util.dh_mean(psf_jwst, dh_mask)
end_e2e = time.time()
## MATRIX PASTIS
log.info('Generating contrast from matrix-PASTIS')
start_matrixpastis = time.time()
# Get mean contrast from matrix PASTIS
contrast_matrix = util.pastis_contrast(aber, matrix_pastis) + coro_floor # calculating contrast with PASTIS matrix model
end_matrixpastis = time.time()
## Outputs
log.info('\n--- CONTRASTS: ---')
log.info(f'Mean contrast from E2E: {contrast_jwst}')
log.info(f'Contrast from matrix PASTIS: {contrast_matrix}')
log.info('\n--- RUNTIMES: ---')
log.info(f'E2E: {end_e2e-start_e2e}sec = {(end_e2e-start_e2e)/60}min')
log.info(f'Matrix PASTIS: {end_matrixpastis-start_matrixpastis}sec = {(end_matrixpastis-start_matrixpastis)/60}min')
end_time = time.time()
runtime = end_time - start_time
log.info(f'Runtime for contrast_calculation_simple.py: {runtime} sec = {runtime/60} min')
return contrast_jwst, contrast_matrix
| 5,345,505 |
def ordinal_mapper(fh, coords, idmap, fmt=None, n=1000000, th=0.8,
prefix=False):
"""Read an alignment file and match reads and genes in an ordinal system.
Parameters
----------
fh : file handle
Alignment file to parse.
coords : dict of list
Gene coordinates table.
idmap : dict of list
Gene identifiers.
fmt : str, optional
Alignment file format.
n : int, optional
Number of lines per chunk.
th : float
Minimum threshold of overlap length : alignment length for a match.
prefix : bool
Prefix gene IDs with nucleotide IDs.
See Also
--------
align.plain_mapper
Yields
------
tuple of str
Query queue.
dict of set of str
Subject(s) queue.
"""
# determine file format
fmt, head = (fmt, []) if fmt else infer_align_format(fh)
# assign parser for given format
parser = assign_parser(fmt, ext=True)
# cached list of query Ids for reverse look-up
# gene Ids are unique, but read Ids can have duplicates (i.e., one read is
# mapped to multiple loci on a genome), therefore an incremental integer
# here replaces the original read Id as its identifer
rids = []
rid_append = rids.append
# cached map of read to coordinates
locmap = defaultdict(list)
def flush():
"""Match reads in current chunk with genes from all nucleotides.
Returns
-------
tuple of str
Query queue.
dict of set of str
Subject(s) queue.
"""
# master read-to-gene(s) map
res = defaultdict(set)
# iterate over nucleotides
for nucl, locs in locmap.items():
# it's possible that no gene was annotated on the nucleotide
try:
glocs = coords[nucl]
except KeyError:
continue
# get reference to gene identifiers
gids = idmap[nucl]
# append prefix if needed
pfx = nucl + '_' if prefix else ''
# execute ordinal algorithm when reads are many
# 8 (5+ reads) is an empirically determined cutoff
if len(locs) > 8:
# merge and sort coordinates
# question is to add unsorted read coordinates into pre-sorted
# gene coordinates
# Python's Timsort algorithm is efficient for this task
queue = sorted(chain(glocs, locs))
# map reads to genes using the core algorithm
for read, gene in match_read_gene(queue):
# add read-gene pairs to the master map
res[rids[read]].add(pfx + gids[gene])
# execute naive algorithm when reads are few
else:
for read, gene in match_read_gene_quart(glocs, locs):
res[rids[read]].add(pfx + gids[gene])
# return matching read Ids and gene Ids
return res.keys(), res.values()
this = None # current query Id
target = n # target line number at end of current chunk
# parse alignment file
for i, row in enumerate(parser(chain(iter(head), fh))):
query, subject, _, length, beg, end = row[:6]
# skip if length is not available or zero
if not length:
continue
# when query Id changes and chunk limits has been reached
if query != this and i >= target:
# flush: match currently cached reads with genes and yield
yield flush()
# re-initiate read Ids, length map and location map
rids = []
rid_append = rids.append
locmap = defaultdict(list)
# next target line number
target = i + n
# append read Id, alignment length and location
idx = len(rids)
rid_append(query)
# effective length = length * th
# -int(-x // 1) is equivalent to math.ceil(x) but faster
# this value must be >= 1
locmap[subject].extend((
(beg << 48) + (-int(-length * th // 1) << 31) + idx,
(end << 48) + idx))
this = query
# final flush
yield flush()
| 5,345,506 |
def modify_tilt(path, bin_factor, exclude_angles=[]):
"""
Modifies the bin-factor and exclude-angles of a given tilt.com file.
Note: This will overwrite the file!
Parameters
----------
path : str
Path to the tilt.com file.
bin_factor : int
The new bin-factor.
exclude_angles : List<int>
List of the tilt-angles to exclude during reconstruction. Default: ``[]``
"""
f = open(path, 'r')
content = [l.strip() for l in f]
f.close()
if not ('UseGPU 0' in content):
content.insert(len(content) - 1, 'UseGPU 0')
binned_idx = [i for i, s in enumerate(content) if 'IMAGEBINNED' in s][0]
content[binned_idx] = 'IMAGEBINNED ' + str(bin_factor)
if len(exclude_angles) > 0:
exclude_idx = [i for i, s in enumerate(content) if 'EXCLUDELIST2 ' in s]
if len(exclude_idx) == 0:
exclude_idx = len(content) - 1
else:
exclude_idx = exclude_idx[0]
content[exclude_idx] = "EXCLUDELIST2 " + str(exclude_angles)[1:-1]
f = open(path, 'w')
for l in content:
f.writelines("%s\n" % l)
print(l)
f.close()
| 5,345,507 |
def file_lines(filename):
"""
>>> file_lines('test/foo.txt')
['foo', 'bar']
"""
return text_file(filename).split()
| 5,345,508 |
def repr_should_be_defined(obj):
"""Checks the obj.__repr__() method is properly defined"""
obj_repr = repr(obj)
assert isinstance(obj_repr, str)
assert obj_repr == obj.__repr__()
assert obj_repr.startswith("<")
assert obj_repr.endswith(">")
return obj_repr
| 5,345,509 |
def read_tiff(tiff_path):
"""
Args:
tiff_path: a tiff file path
Returns:
tiff image object
"""
if not os.path.isfile(tiff_path) or not is_tiff_file(tiff_path):
raise InvalidTiffFileError(tiff_path)
return imread(tiff_path)
| 5,345,510 |
def changePassword():
"""
Change to a new password and email user.
URL Path:
URL Args (required):
- JSON structure of change password data
Returns:
200 OK if invocation OK.
500 if server not configured.
"""
@testcase
def changePasswordWorker():
try:
util.debugPrint("changePassword")
if not Config.isConfigured():
util.debugPrint("Please configure system")
abort(500)
urlPrefix = Config.getDefaultPath()
requestStr = request.data
accountData = json.loads(requestStr)
return jsonify(AccountsChangePassword.changePasswordEmailUser(
accountData, urlPrefix))
except:
print "Unexpected error:", sys.exc_info()[0]
print sys.exc_info()
traceback.print_exc()
util.logStackTrace("Unexpected error:" + str(sys.exc_info()[0]))
raise
return changePasswordWorker()
| 5,345,511 |
def parallel_for(
loop_callback: Callable[[Any], Any],
parameters: List[Tuple[Any, ...]],
nb_threads: int = os.cpu_count()+4
) -> List[Any]:
"""Execute a for loop body in parallel
.. note:: Race-Conditions
Code executation in parallel can cause into an "race-condition"
error.
Arguments:
loop_callback(Callable): function callback running in the
loop body
parameters(List[Tuple]): element to execute in parallel
Returns:
(List[Any]): list of values
Examples:
.. example-code::
>>> x = lambda x: x ** 2
>>> parallel_for(x, [y for y in range(10)])
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
"""
with closing(multiprocessing.pool.ThreadPool(nb_threads)) as pool:
return pool.map(loop_callback, parameters)
| 5,345,512 |
def indexName():
"""Index start page."""
return render_template('index.html')
| 5,345,513 |
def on_vlc_closed(to_watch_folder, watched_folder, ml_xspf, trigger):
"""
Checks if modified event trigger was ml.xspf. If yes then finds movie in
to_watch_folder that returns true from is_movie_watched(), and calls ask_and_move
with the movie folder as source and the watched folder as destination.
"""
if os.path.exists(trigger) and os.path.samefile(trigger, ml_xspf):
logging.info('in on_vlc_closed() -> ')
for content in os.listdir(to_watch_folder):
folder_moved = False
movie_folder = os.path.join(to_watch_folder, content)
if not os.path.isdir(movie_folder):
continue
for file_ in os.listdir(movie_folder):
movie = os.path.join(movie_folder, file_)
if not os.path.isfile(movie):
continue
logging.info(f"Movie: {movie}; IsWatched: {is_movie_watched(movie)}")
if is_movie_watched(movie):
logging.info(f"Moving {movie_folder} to {watched_folder}")
ask_and_move(movie_folder, watched_folder,
message=f"Move {movie_folder} to {watched_folder}?",
success_message=f"Successfully moved {movie_folder} to {watched_folder}.",
retry_message="Unable to move folder. Retry?")
folder_moved = True
break
if folder_moved:
continue
logging.info("leaving on_vlc_close() ->")
| 5,345,514 |
def translate_http_code():
"""Print given code
:return:
"""
return make_http_code_translation(app)
| 5,345,515 |
def _def_tconst(pattern, _):
"""Temporal constraints for the energy interval abstraction pattern"""
deflection = pattern.hypothesis
pattern.last_tnet.add_constraint(deflection.start, deflection.end, DEF_DUR)
| 5,345,516 |
def delete_directory(a_dir):
""" Delete a directory tree recursively """
shutil.rmtree(a_dir, onerror=on_remove_error)
| 5,345,517 |
def test_colossus_vmax_consistency_z1():
"""
"""
try:
from colossus.cosmology import cosmology
from colossus.halo.profile_nfw import NFWProfile as ColossusNFW
except ImportError:
return
_cosmo = cosmology.setCosmology('planck15')
masses_to_check = 10**np.array((11., 12, 13, 14, 15))
conc_to_check = [5., 10., 15.]
z = 1.
nfw = NFWProfile(cosmology=Planck15, redshift=z)
for M, c in product(masses_to_check, conc_to_check):
colossus_nfw = ColossusNFW(M=M, c=c, mdef='vir', z=z)
colossus_vmax, colossus_rmax = colossus_nfw.Vmax()
halotools_vmax = nfw.vmax(M, c)[0]
msg = ("\nM = {0:.2e}, c = {1:.1f}, z = {2:.1f}\n"
"Colossus Vmax = {3:.2f}\nHalotools Vmax = {4:.2f}\n".format(
M, c, z, colossus_vmax, halotools_vmax))
assert np.allclose(colossus_vmax, halotools_vmax, rtol=0.05), msg
| 5,345,518 |
def interactive(python):
""" Main entrypoint into dbmp interactive mode """
args = ''
if not os.path.exists(HISTORY):
io.open(HISTORY, 'w+').close()
try:
while True:
pt.shortcuts.clear()
pt.shortcuts.set_title("Datera Bare-Metal Provisioner")
print("Welcome to the DBMP Interactive Session")
print(
pt.HTML("Would you like to <green>provison</green>, "
"or <red>clean</red> up or <blue>list</blue>?"))
out = session.prompt(pt.HTML(
"choices: [(<green>p</green>)rovision, "
"(<red>c</red>)lean, "
"(<blue>l</blue>)ist]> "),
default="p", lexer=pt.lexers.PygmentsLexer(WelcomeLexer),
style=dbmp_style, multiline=False, key_bindings=bindings,
completer=dbmp_interactive_completer)
out = out.strip().lower()
print()
if out in {"p", "provision"}:
args = provision()
if out in {"c", "clean"}:
args = clean()
if out in {"l", "list"}:
args = dlist()
if out in QUIT:
if args:
print(args)
app_exit(0)
if not pt.shortcuts.confirm("Are you using multipath?"):
args.append("--no-multipath")
dbmp_exe(python, args)
except KeyboardInterrupt:
app_exit(1)
| 5,345,519 |
def dose_rate(sum_shielding, isotope, disable_buildup = False):
"""
Calculate the dose rate for a specified isotope behind shielding
behind shielding barriers. The dose_rate is calculated for 1MBq
Args:
sum_shielding: dict with shielding elements
isotope: isotope name (string)
"""
t = transmission_sum(sum_shielding, isotope, disable_buildup)
energies = ps.config.get_setting(ps.ISOTOPES)[isotope][ps.ENERGY_keV]
abundance = ps.config.get_setting(ps.ISOTOPES)[isotope][ps.ABUNDANCE]
if DEBUG:
ps.logger.debug(isotope)
ps.logger.debug('t: %s', t)
ps.logger.debug('energies: %s', energies)
ps.logger.debug('abundance: %s', abundance)
rate = H10(energy_keV=energies, abundance=t * np.array(abundance))
return rate
| 5,345,520 |
def parmap(f, X, nprocs=1):
"""
parmap_fun() and parmap() are adapted from klaus se's post
on stackoverflow. https://stackoverflow.com/a/16071616/4638182
parmap allows map on lambda and class static functions.
Fall back to serial map when nprocs=1.
"""
if nprocs < 1:
raise ValueError("nprocs should be >= 1. nprocs: {}".format(nprocs))
nprocs = min(int(nprocs), mp.cpu_count())
# exception handling f
# simply ignore all exceptions. If exception occurs in parallel queue, the
# process with exception will get stuck and not be able to process
# following requests.
def ehf(x):
try:
res = f(x)
except Exception as e:
res = e
return res
# fall back on serial
if nprocs == 1:
return list(map(ehf, X))
q_in = mp.Queue(1)
q_out = mp.Queue()
proc = [mp.Process(target=_parmap_fun, args=(ehf, q_in, q_out))
for _ in range(nprocs)]
for p in proc:
p.daemon = True
p.start()
sent = [q_in.put((i, x)) for i, x in enumerate(X)]
[q_in.put((None, None)) for _ in range(nprocs)]
res = [q_out.get() for _ in range(len(sent))]
[p.join() for p in proc]
# maintain the order of X
ordered_res = [x for i, x in sorted(res)]
for i, x in enumerate(ordered_res):
if isinstance(x, Exception):
warnings.warn("{} encountered in parmap {}th arg {}".format(
x, i, X[i]))
return ordered_res
| 5,345,521 |
def is_char_token(c: str) -> bool:
"""Return true for single character tokens."""
return c in ["+", "-", "*", "/", "(", ")"]
| 5,345,522 |
def pre_commit(session_: Session) -> None:
"""Lint using pre-commit."""
args = session_.posargs or ["run", "--all-files", "--show-diff-on-failure"]
_export_requirements(session_)
poetry_install(session_)
session_.install("pre-commit")
session_.run("pre-commit", *args)
if args and args[0] == "install":
activate_virtualenv_in_precommit_hooks(session_)
_cleanup_requirements()
| 5,345,523 |
def _float_arr_to_int_arr(float_arr):
"""Try to cast array to int64. Return original array if data is not representable."""
int_arr = float_arr.astype(numpy.int64)
if numpy.any(int_arr != float_arr):
# we either have a float that is too large or NaN
return float_arr
else:
return int_arr
| 5,345,524 |
def test_bernese_koordinat_kovarians():
"""Test at den samlede løsnings kovariansmatrix læses korrekt."""
BUDP = BerneseSolution(ADDNEQ2096, CRD2096, COV2096)["BUDP"]
skalering = 0.001 ** 2
assert BUDP.kovarians.xx == 0.9145031116e-01 * skalering
assert BUDP.kovarians.yx == 0.1754111808e-01 * skalering
assert BUDP.kovarians.zx == 0.9706757931e-01 * skalering
assert BUDP.kovarians.yy == 0.1860172410e-01 * skalering
assert BUDP.kovarians.zy == 0.2230707662e-01 * skalering
assert BUDP.kovarians.zz == 0.1740501496e00 * skalering
# Kontroller at spredning bestemt fra kovariansmatrix er ens med spredning
# aflæst i ADDNEQ-filen. Vi har kun 5 decimaler til rådighed ved læsning af
# koordinatspredningerne derfor sættes abs_tol=1e-5
assert math.isclose(math.sqrt(BUDP.kovarians.xx), BUDP.koordinat.sx, abs_tol=1e-5)
assert math.isclose(math.sqrt(BUDP.kovarians.yy), BUDP.koordinat.sy, abs_tol=1e-5)
assert math.isclose(math.sqrt(BUDP.kovarians.zz), BUDP.koordinat.sz, abs_tol=1e-5)
| 5,345,525 |
def latest(scores: Scores) -> int:
"""The last added score."""
return scores[-1]
| 5,345,526 |
def get_dp_2m(wrfin, timeidx=0, method="cat", squeeze=True,
cache=None, meta=True, _key=None, units="degC"):
"""Return the 2m dewpoint temperature.
This functions extracts the necessary variables from the NetCDF file
object in order to perform the calculation.
Args:
wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \
iterable): WRF-ARW NetCDF
data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile`
or an iterable sequence of the aforementioned types.
timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The
desired time index. This value can be a positive integer,
negative integer, or
:data:`wrf.ALL_TIMES` (an alias for None) to return
all times in the file or sequence. The default is 0.
method (:obj:`str`, optional): The aggregation method to use for
sequences. Must be either 'cat' or 'join'.
'cat' combines the data along the Time dimension.
'join' creates a new dimension for the file index.
The default is 'cat'.
squeeze (:obj:`bool`, optional): Set to False to prevent dimensions
with a size of 1 from being automatically removed from the shape
of the output. Default is True.
cache (:obj:`dict`, optional): A dictionary of (varname, ndarray)
that can be used to supply pre-extracted NetCDF variables to the
computational routines. It is primarily used for internal
purposes, but can also be used to improve performance by
eliminating the need to repeatedly extract the same variables
used in multiple diagnostics calculations, particularly when using
large sequences of files.
Default is None.
meta (:obj:`bool`, optional): Set to False to disable metadata and
return :class:`numpy.ndarray` instead of
:class:`xarray.DataArray`. Default is True.
_key (:obj:`int`, optional): A caching key. This is used for internal
purposes only. Default is None.
units (:obj:`str`): The desired units. Refer to the :meth:`getvar`
product table for a list of available units for 'td2'. Default
is 'degC'.
Returns:
:class:`xarray.DataArray` or :class:`numpy.ndarray`: The
2m dewpoint temperature.
If xarray is enabled and the *meta* parameter is True, then the result
will be a :class:`xarray.DataArray` object. Otherwise, the result will
be a :class:`numpy.ndarray` object with no metadata.
"""
varnames=("PSFC", "Q2")
ncvars = extract_vars(wrfin, timeidx, varnames, method, squeeze, cache,
meta=False, _key=_key)
# Algorithm requires hPa
psfc = .01*(ncvars["PSFC"])
# Copy needed for the mmap nonsense of scipy.io.netcdf, which seems to
# break with every release
q2 = ncvars["Q2"].copy()
q2[q2 < 0] = 0
td = _td(psfc, q2)
return td
| 5,345,527 |
def fit_uncertainty(points, lower_wave, upper_wave, log_center_wave, filter_size):
"""Performs fitting many times to get an estimate of the uncertainty
"""
mock_points = []
for i in range(1, 100):
# First, fit the points
coeff = np.polyfit(np.log10(points['rest_wavelength']),
np.random.normal(points['f_lambda'], points['err_f_lambda']), deg=2) # , w=(1/points['err_f_lambda'])
# Get the polynomial
fit_func = np.poly1d(coeff)
# x-range over which we fit
fit_wavelengths = np.arange(
np.log10(lower_wave), np.log10(upper_wave), 0.001)
# Values of the points we fit
fit_points = fit_func(fit_wavelengths)
# Indexes of the values that lie in the mock filter
fit_idx = np.logical_and(fit_wavelengths > (log_center_wave -
filter_size), fit_wavelengths < (log_center_wave + filter_size))
# Average the values in the mock filter to get the mock point
mock_sed_point = np.mean(fit_points[fit_idx])
mock_points.append(mock_sed_point)
# PERCENTILE ERROR HERE?
mock_sed_point, l_err, u_err = np.percentile(mock_points, [50, 15.7, 84.3])
return mock_sed_point, u_err - mock_sed_point, mock_sed_point - l_err
| 5,345,528 |
def from_dateutil_rruleset(rruleset):
"""
Convert a `dateutil.rrule.rruleset` instance to a `Recurrence`
instance.
:Returns:
A `Recurrence` instance.
"""
rrules = [from_dateutil_rrule(rrule) for rrule in rruleset._rrule]
exrules = [from_dateutil_rrule(exrule) for exrule in rruleset._exrule]
rdates = rruleset._rdate
exdates = rruleset._exdate
dts = [r._dtstart for r in rruleset._rrule] + rruleset._rdate
if len(dts) > 0:
dts.sort()
dtstart = dts[0]
else:
dtstart = None
return Recurrence(dtstart, rrules, exrules, rdates, exdates)
| 5,345,529 |
def error_038_italic_tag(text):
"""Fix the error and return (new_text, replacements_count) tuple."""
backup = text
(text, count) = re.subn(r"<(i|em)>([^\n<>]+)</\1>", "''\\2''", text, flags=re.I)
if re.search(r"</?(?:i|em)>", text, flags=re.I):
return (backup, 0)
else:
return (text, count)
| 5,345,530 |
def create_user():
""" Method that will create an user .
Returns:
user.id: The id of the created user
Raises:
If an error occurs it will be displayed in a error message.
"""
try:
new_user = User(name=login_session['username'], email=login_session[
'email'], picture=login_session['picture'])
db_session.add(new_user)
db_session.commit()
user = db_session.query(User).filter_by(email=login_session['email']).one()
return user.id
except Exception as e:
flash('An error has occurred: {}'.format(str(e)), 'error')
return None
| 5,345,531 |
def store_relation(
self,
relation_name,
persist_type,
relation_persist_type,
validate = False,
force_persist = False,
raise_exception = False,
store_relations = True,
entity_manager = None
):
"""
Stores a relation with the given name in the entity
using the permissions granted by the persist type.
In case the raise exception flag is set an exception
is raise upon validation of model failure.
The storage of the relation implies previous validation
of associative permissions and so this method may change
the current entity relation in case of malicious manipulation.
:type relation_name: String
:param relation_name: The name of the relation to be saved.
This value may refer a lazy loaded relation.
:type persist_type: int
:param persist_type: The persist type mask that controls the
persistence access.
:type relation_persist_type: int
:param relation_persist_type: The pre-defined (base) persist type mask
that controls the relation persist type.
:type validate: bool
:param validate: Flag controlling if a validation should
be run in the relation model before persisting it.
:type force_persist: bool
:param force_persist: Flag controlling if the persistence
should be forced in which case the persist type mask is completely
ignored by the persistence engine.
:type raise_exception: bool
:param raise_exception: If an exception must be raised in case
a validation fails in one of the relation values.
:type store_relations: bool
:param store_relations: If the complete set of relations of the
current entity should also be persisted (chained storage).
:type entity_manager: EntityManager
:param entity_manager: The optional entity manager
reference to be used.
"""
# in case the relation is lazy loaded in the
# current entity no need to store it and so the
# control flow should be returned immediately
if self.is_lazy_loaded(relation_name): return
# starts the flag that controls in case
# an error is set
error_set = False
# retrieves the relation value from the entity and then
# converts it to an enumerable type for compatibility
# (if required by the relation type)
relation_value = self.get_value(relation_name)
relation_is_to_many = self.is_to_many(relation_name)
relation_value = not relation_is_to_many and [relation_value] or relation_value
# creates the list to store the relation values
# that are not "associable" and that so must be
# removed from the entity, to avoid malicious
# association in the data source
remove_relations = []
# iterates over all the relation values for storage
# in case a validation fails it accumulates the various
# errors around the storing procedure "soft fail"
for _relation_value in relation_value:
try:
# retrieves the id attribute value from the relation value
# to use under the relation validation check (check if they were
# previously associated)
id_attribute_value = _relation_value.get_id_attribute_value()
# sets the relation valid flag as unset by default, no relation
# validation is done by default
relation_valid = False
# in case the current persist type includes the update permission
# the relation validation must be run in order to provide extra
# relation validation permissions
if persist_type & (PERSIST_UPDATE | PERSIST_SAVE):
# in case the relation value is set and it's valid
# (not empty) it's ready for validation of relations
if _relation_value:
# validate the given entity for relation with the relation
# value in the attribute of name relation name
relation_valid = self.validate_relation(id_attribute_value, relation_name)
# otherwise the validation is not required
# the value is not valid, not set
else:
# sets the relation as (automatically) valid, it's impossible
# to check if an invalid relation is valid
relation_valid = True
# in case the relation is not valid (must remove update from
# the persist type, not safe)
if not relation_valid:
# "calculates" the new persist type based on the base persist type
# removes the update type from the persist type (it's not safe)
persist_type &= PERSIST_ALL ^ PERSIST_UPDATE
# checks if the relations is "storable" a relation is considered to be
# "storable" if the persist type of it contains either the update or the
# save permission (otherwise it's impossible to store it)
is_storable = persist_type & (PERSIST_UPDATE | PERSIST_SAVE)
# checks if the relation value is "associable", the relation value
# is "associable" in case it's going to be created (no id attribute set),
# in case the relation has just been saved (in current context), in
# case the associate "permission" is set in the persist type or in
# case the relation was previously (other transaction) set in the
# entity (relation validation)
is_associable = relation_valid or id_attribute_value == None or\
_relation_value.is_saved() or relation_persist_type & PERSIST_ASSOCIATE
# stores the relation value in the data source
# using the "propagated" persist type (only in
# case the relation is "storable")
is_storable and _relation_value.store(
persist_type,
validate,
force_persist = force_persist,
store_relations = store_relations,
entity_manager = entity_manager
)
# in case the relation is not valid it must be removed
# from the entity to avoid "malicious" association to be set
# on the data source (corrupting data from a security point)
not is_associable and remove_relations.append(_relation_value)
except exceptions.ModelValidationError:
# in case the raise exception flag is set
# the exception must be "raised again"
if raise_exception: raise
# sets the error set flag, to trigger
# the add error action at the end of
# the relation store
error_set = True
# in case there is at least one item in the relation
# that is considered not valid (to be removed) the relation
# is considered invalid and is removed from the entity
# model (provides the main data model security measure)
remove_relations and self.delete_value(relation_name)
# adds an error to the entity on the relation
# for latter usage and presentation to user
if error_set: self.add_error(relation_name, "relation validation failed")
| 5,345,532 |
def buildStartAndEndWigData(thisbam, LOG_EVERY_N=1000, logger=None):
"""parses a bam file for 3' and 5' ends and builds these into wig-track data
Returns a dictionary of various gathered statistics."""
def formatToWig(wigdata):
""" take in the read position data and output in wigTrack format"""
this_wigTracks = {}
for key in wigdata.keys():
track = wigTrack()
track.wigtype = "fixedStep"
track.chr = key
track.start = 1
track.step = 1
track.position = numpy.arange(len(wigdata[key]))+track.start
this_wigTracks[key] = track
this_wigTracks[key].data = wigdata[key]
this_wigData = wigData()
this_wigData.tracks = this_wigTracks
return(this_wigData)
if type(thisbam) is str:
thisbam = pysam.AlignmentFile(thisbam, "rb")
all_wigdata={
"fwd":{
"five_prime":{},
"three_prime":{}
},
"rev":{
"five_prime":{},
"three_prime":{}
}
}
chromSizes = dict(zip(thisbam.references, thisbam.lengths))
for key in chromSizes.keys():
for strand in all_wigdata.keys():
for end in all_wigdata[strand].keys():
all_wigdata[strand][end][key] = numpy.zeros(chromSizes[key])
counter=0
nlogs=0
for read in thisbam.fetch():
if read.is_reverse:
all_wigdata["rev"]["five_prime"][read.reference_name][read.reference_end-1]+=1
all_wigdata["rev"]["three_prime"][read.reference_name][read.reference_start]+=1
else:
all_wigdata["fwd"]["five_prime"][read.reference_name][read.reference_start]+=1
all_wigdata["fwd"]["three_prime"][read.reference_name][read.reference_end-1]+=1
counter+=1
if (counter % LOG_EVERY_N)==0:
msg = "processed {these} reads...".format(these=(nlogs*LOG_EVERY_N))
if logger is not None:
logger.info(msg)
else:
print(msg)
nlogs+=1
msg = "Processed {counted} reads...".format(counted=counter)
if logger is not None:
logger.info(msg)
else:
print(msg)
msg = "Formatting wig tracks..."
if logger is not None:
logger.info(msg)
else:
print(msg)
for strand in all_wigdata.keys():
for end in all_wigdata[strand].keys():
all_wigdata[strand][end] = formatToWig(all_wigdata[strand][end])
return(all_wigdata, chromSizes)
| 5,345,533 |
def time_series_h5(timefile: Path, colnames: List[str]) -> Optional[DataFrame]:
"""Read temporal series HDF5 file.
If :data:`colnames` is too long, it will be truncated. If it is too short,
additional column names will be deduced from the content of the file.
Args:
timefile: path of the TimeSeries.h5 file.
colnames: names of the variables expected in :data:`timefile` (may be
modified).
Returns:
A :class:`pandas.DataFrame` containing the time series, organized by
variables in columns and the time steps in rows.
"""
if not timefile.is_file():
return None
with h5py.File(timefile, 'r') as h5f:
dset = h5f['tseries']
_, ncols = dset.shape
ncols -= 1 # first is istep
h5names = h5f['names'].asstr()[len(colnames) + 1:]
_tidy_names(colnames, ncols, h5names)
data = dset[()]
pdf = pd.DataFrame(data[:, 1:],
index=np.int_(data[:, 0]), columns=colnames)
# remove duplicated lines in case of restart
return pdf.loc[~pdf.index.duplicated(keep='last')]
| 5,345,534 |
def decode_jwt(token):
"""decodes a token and returns ID associated (subject) if valid"""
try:
payload = jwt.decode(token.encode(), current_app.config['SECRET_KEY'], algorithms=['HS256'])
return {"isError": False, "payload": payload["sub"]}
except jwt.ExpiredSignatureError as e:
current_app.logger.error("Token expired.")
raise ExpiredTokenError()
except jwt.InvalidTokenError as e:
current_app.logger.error("Invalid token.")
raise InvalidTokenError()
| 5,345,535 |
def _validate_image_info(ext, image_info=None, **kwargs):
"""Validates the image_info dictionary has all required information.
:param ext: Object 'self'. Unused by this function directly, but left for
compatibility with async_command validation.
:param image_info: Image information dictionary.
:param kwargs: Additional keyword arguments. Unused, but here for
compatibility with async_command validation.
:raises: InvalidCommandParamsError if the data contained in image_info
does not match type and key:value pair requirements and
expectations.
"""
image_info = image_info or {}
md5sum_avail = False
os_hash_checksum_avail = False
for field in ['id', 'urls']:
if field not in image_info:
msg = 'Image is missing \'{}\' field.'.format(field)
raise errors.InvalidCommandParamsError(msg)
if type(image_info['urls']) != list or not image_info['urls']:
raise errors.InvalidCommandParamsError(
'Image \'urls\' must be a list with at least one element.')
checksum = image_info.get('checksum')
if checksum is not None:
if (not isinstance(image_info['checksum'], str)
or not image_info['checksum']):
raise errors.InvalidCommandParamsError(
'Image \'checksum\' must be a non-empty string.')
md5sum_avail = True
os_hash_algo = image_info.get('os_hash_algo')
os_hash_value = image_info.get('os_hash_value')
if os_hash_algo or os_hash_value:
if (not isinstance(os_hash_algo, str)
or not os_hash_algo):
raise errors.InvalidCommandParamsError(
'Image \'os_hash_algo\' must be a non-empty string.')
if (not isinstance(os_hash_value, str)
or not os_hash_value):
raise errors.InvalidCommandParamsError(
'Image \'os_hash_value\' must be a non-empty string.')
os_hash_checksum_avail = True
if not (md5sum_avail or os_hash_checksum_avail):
raise errors.InvalidCommandParamsError(
'Image checksum is not available, either the \'checksum\' field '
'or the \'os_hash_algo\' and \'os_hash_value\' fields pair must '
'be set for image verification.')
| 5,345,536 |
def show(nodes, print_groups):
"""Show generic information on node(s)."""
from aiida.cmdline.utils.common import get_node_info
for node in nodes:
# pylint: disable=fixme
#TODO: Add a check here on the node type, otherwise it might try to access
# attributes such as code which are not necessarily there
echo.echo(get_node_info(node))
if print_groups:
from aiida.orm.querybuilder import QueryBuilder
from aiida.orm.group import Group
from aiida.orm.node import Node # pylint: disable=redefined-outer-name
# pylint: disable=invalid-name
qb = QueryBuilder()
qb.append(Node, tag='node', filters={'id': {'==': node.pk}})
qb.append(Group, tag='groups', group_of='node', project=['id', 'name'])
echo.echo("#### GROUPS:")
if qb.count() == 0:
echo.echo("No groups found containing node {}".format(node.pk))
else:
res = qb.iterdict()
for gr in res:
gr_specs = "{} {}".format(gr['groups']['name'], gr['groups']['id'])
echo.echo(gr_specs)
| 5,345,537 |
def format_point(point: Point) -> str:
"""Return a str representing a Point object.
Args:
point:
Point obj to represent.
Returns:
A string representing the Point with ° for grades, ' for minutes and " for seconds.
Latitude is written before Longitude.
Example Output: 30°21'12", 10°21'22"
"""
lat = to_sexagesimal(point.latitude)
long = to_sexagesimal(point.longitude)
return f'[{lat.deg}°{lat.min}\'{lat.sec}\", {long.deg}°{long.min}\'{long.sec}\"]'
| 5,345,538 |
def handle_get_authentication_groups_db(self, handle, connection, match, data, hdr):
"""
GET /authentication/groups_db
Get user database on this runtime
Response status code: OK or INTERNAL_ERROR
Response:
{
"policies": {
<policy-id>: policy in JSON format,
...
}
}
"""
# TODO:to be implemented
pass
| 5,345,539 |
def families_horizontal_correctors():
"""."""
return ['CH']
| 5,345,540 |
def test_viewmodel():
"""Get a data manager instance for each test function."""
# Create the device under test (dut) and connect to the database.
dut = RAMSTKHardwareBoMView()
yield dut
# Unsubscribe from pypubsub topics.
pub.unsubscribe(dut.on_insert, "succeed_insert_hardware")
pub.unsubscribe(dut.on_insert, "succeed_insert_design_electric")
pub.unsubscribe(dut.on_insert, "succeed_insert_design_mechanic")
pub.unsubscribe(dut.on_insert, "succeed_insert_milhdbk217f")
pub.unsubscribe(dut.on_insert, "succeed_insert_nswc")
pub.unsubscribe(dut.on_insert, "succeed_insert_reliability")
pub.unsubscribe(dut.do_set_tree, "succeed_retrieve_hardwares")
pub.unsubscribe(dut.do_set_tree, "succeed_retrieve_design_electrics")
pub.unsubscribe(dut.do_set_tree, "succeed_retrieve_design_mechanics")
pub.unsubscribe(dut.do_set_tree, "succeed_retrieve_milhdbk217fs")
pub.unsubscribe(dut.do_set_tree, "succeed_retrieve_nswcs")
pub.unsubscribe(dut.do_set_tree, "succeed_retrieve_reliabilitys")
pub.unsubscribe(dut.do_set_tree, "succeed_delete_hardware")
pub.unsubscribe(dut.do_set_tree, "succeed_delete_design_electric")
pub.unsubscribe(dut.do_set_tree, "succeed_delete_design_mechanic")
pub.unsubscribe(dut.do_set_tree, "succeed_delete_milhdbk217f")
pub.unsubscribe(dut.do_set_tree, "succeed_delete_nswc")
pub.unsubscribe(dut.do_set_tree, "succeed_delete_reliability")
pub.unsubscribe(dut.do_calculate_hardware, "request_calculate_hardware")
pub.unsubscribe(
dut.do_calculate_power_dissipation, "request_calculate_power_dissipation"
)
pub.unsubscribe(
dut.do_predict_active_hazard_rate, "request_predict_active_hazard_rate"
)
# Delete the device under test.
del dut
| 5,345,541 |
def variable_select_source_data_proxy(request):
"""
@summary: 获取下拉框源数据的通用接口
@param request:
@return:
"""
url = request.GET.get('url')
try:
response = requests.get(
url=url,
verify=False
)
except Exception as e:
logger.exception('variable select get data from url[url={url}] raise error: {error}'.format(url=url, error=e))
text = _('请求数据异常: {error}').format(error=e)
data = [{'text': text, 'value': ''}]
return JsonResponse(data, safe=False)
try:
data = response.json()
except Exception:
try:
content = response.content.decode(response.encoding)
logger.exception('variable select get data from url[url={url}] is not a valid JSON: {data}'.format(
url=url, data=content[:500])
)
except Exception:
logger.exception('variable select get data from url[url={url}] data is not a valid JSON'.format(url=url))
text = _('返回数据格式错误,不是合法 JSON 格式')
data = [{'text': text, 'value': ''}]
return JsonResponse(data, safe=False)
| 5,345,542 |
def test_directed_valid_paths():
""" antco.ntools.getValidPaths() (directed) testing unit """
# Initial position (0) -> Valid paths: (1)
adj_matrix = np.array([
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0]], dtype=np.int8)
current_path = np.array([0], dtype=np.int64)
choices = getValidPaths(0, current_path, adj_matrix)
assert choices == [1], 'FAILED TEST: antco.ntools.getValidPaths() (directed)'
current_path = np.array([0], dtype=np.int64)
choices = getValidPaths(1, current_path, adj_matrix)
assert choices == [2, 5], 'FAILED TEST: antco.ntools.getValidPaths() (directed)'
current_path = np.array([5], dtype=np.int64)
choices = getValidPaths(1, current_path, adj_matrix)
assert choices == [2], 'FAILED TEST: antco.ntools.getValidPaths() (directed)'
current_path = np.array([5, 2], dtype=np.int64)
choices = getValidPaths(1, current_path, adj_matrix)
assert choices == [], 'FAILED TEST: antco.ntools.getValidPaths() (directed)'
print('SUCCESSFUL TEST: antco.ntools.test_valid_paths() (directed)')
| 5,345,543 |
async def select_guild_lfg_events(guild_id: int) -> list[asyncpg.Record]:
"""Gets the lfg messages for a specific guild ordered by the youngest creation date"""
select_sql = f"""
SELECT
id, message_id, creation_time, voice_channel_id
FROM
lfgmessages
WHERE
guild_id = $1
ORDER BY
creation_time ASC;"""
async with (await get_connection_pool()).acquire(timeout=timeout) as connection:
return await connection.fetch(select_sql, guild_id)
| 5,345,544 |
def ValueToString(descriptor, field_desc, value):
"""Renders a field value as a PHP literal.
Args:
descriptor: The descriptor module from the protobuf package, e.g.
google.protobuf.descriptor.
field_desc: The type descriptor for the field value to be rendered.
value: The value of the field to be rendered.
Returns:
A PHP literal for the provided value.
"""
if field_desc.label == descriptor.FieldDescriptor.LABEL_REPEATED:
if value:
return '[%s]' % ', '.join([NonRepeatedValueToString(descriptor,
field_desc, s)
for s in value])
return '[]'
return NonRepeatedValueToString(descriptor, field_desc, value)
| 5,345,545 |
def get_checkpoints(run_dir, from_global_step=None, last_only=False):
"""Return all available checkpoints.
Args:
run_dir: Directory where the checkpoints are located.
from_global_step (int): Only return checkpoints after this global step.
The comparison is *strict*. If ``None``, returns all available
checkpoints.
Returns:
List of dicts (with keys ``global_step``, ``file``) with all the
checkpoints found.
Raises:
ValueError: If there are no checkpoints in ``run_dir``.
"""
# The latest checkpoint file should be the last item of
# `all_model_checkpoint_paths`, according to the CheckpointState protobuf
# definition.
# TODO: Must check if the checkpoints are complete somehow.
ckpt = tf.train.get_checkpoint_state(run_dir)
if not ckpt or not ckpt.all_model_checkpoint_paths:
raise ValueError('Could not find checkpoint in {}.'.format(run_dir))
# TODO: Any other way to get the global_step? (Same as in `checkpoints`.)
checkpoints = sorted([
{'global_step': int(path.split('-')[-1]), 'file': path}
for path in ckpt.all_model_checkpoint_paths
], key=lambda c: c['global_step'])
if last_only:
checkpoints = checkpoints[-1:]
tf.logging.info(
'Using last checkpoint in run_dir, global_step = {}'.format(
checkpoints[0]['global_step']
)
)
elif from_global_step is not None:
checkpoints = [
c for c in checkpoints
if c['global_step'] > from_global_step
]
tf.logging.info(
'Found %s checkpoints in run_dir with global_step > %s',
len(checkpoints), from_global_step,
)
else:
tf.logging.info(
'Found {} checkpoints in run_dir'.format(len(checkpoints))
)
return checkpoints
| 5,345,546 |
def ssget_p() -> selection_result:
"""
选择上一个选择集
"""
| 5,345,547 |
def write_env_file(env_dict):
""" Write the env_file information to a temporary file
If there is any error, return None;
otherwise return the temp file
"""
try:
temp_file = tempfile.NamedTemporaryFile(mode='w')
for key in env_dict.keys():
val = env_dict[key]
if val is None or val=='':
continue
temp_file.write('%s=%s\n' % (key, env_dict[key]))
temp_file.flush()
return temp_file
except KeyboardInterrupt: # If Control-C etc, allow calling function to cleanup before halting the script
close_ignore_exception(temp_file)
return None
except Exception as e:
sys.stderr.write("Exception %s\n" % e)
close_ignore_exception(temp_file)
return None
return None
| 5,345,548 |
def __load_txt_resource__(path):
"""
Loads a txt file template
:param path:
:return:
"""
txt_file = open(path, "r")
return txt_file
| 5,345,549 |
def parse_cpu_spec(spec):
"""Parse a CPU set specification.
:param spec: cpu set string eg "1-4,^3,6"
Each element in the list is either a single
CPU number, a range of CPU numbers, or a
caret followed by a CPU number to be excluded
from a previous range.
:returns: a set of CPU indexes
"""
cpuset_ids = set()
cpuset_reject_ids = set()
for rule in spec.split(','):
rule = rule.strip()
# Handle multi ','
if len(rule) < 1:
continue
# Note the count limit in the .split() call
range_parts = rule.split('-', 1)
if len(range_parts) > 1:
# So, this was a range; start by converting the parts to ints
try:
start, end = [int(p.strip()) for p in range_parts]
except ValueError:
raise exception.Invalid(_("Invalid range expression %r")
% rule)
# Make sure it's a valid range
if start > end:
raise exception.Invalid(_("Invalid range expression %r")
% rule)
# Add available CPU ids to set
cpuset_ids |= set(range(start, end + 1))
elif rule[0] == '^':
# Not a range, the rule is an exclusion rule; convert to int
try:
cpuset_reject_ids.add(int(rule[1:].strip()))
except ValueError:
raise exception.Invalid(_("Invalid exclusion "
"expression %r") % rule)
else:
# OK, a single CPU to include; convert to int
try:
cpuset_ids.add(int(rule))
except ValueError:
raise exception.Invalid(_("Invalid inclusion "
"expression %r") % rule)
# Use sets to handle the exclusion rules for us
cpuset_ids -= cpuset_reject_ids
return cpuset_ids
| 5,345,550 |
def _IterStringLiterals(path, addresses, obj_sections):
"""Yields all string literals (including \0) for the given object path.
Args:
path: Object file path.
addresses: List of string offsets encoded as hex strings.
obj_sections: List of contents of .rodata.str sections read from the given
object file.
"""
next_offsets = sorted(int(a, 16) for a in addresses)
if not obj_sections:
# Happens when there is an address for a symbol which is not actually a
# string literal, or when string_sections_by_path is missing an entry.
logging.warning('Object has %d strings but no string sections: %s',
len(addresses), path)
return
for section_data in obj_sections:
cur_offsets = next_offsets
# Always assume first element is 0. I'm not entirely sure why this is
# necessary, but strings get missed without it.
next_offsets = [0]
prev_offset = 0
# TODO(agrieve): Switch to using nm --print-size in order to capture the
# address+size of each string rather than just the address.
for offset in cur_offsets[1:]:
if offset >= len(section_data):
# Remaining offsets are for next section.
next_offsets.append(offset)
continue
# Figure out which offsets apply to this section via heuristic of them
# all ending with a null character.
if offset == prev_offset or section_data[offset - 1] != '\0':
next_offsets.append(offset)
continue
yield section_data[prev_offset:offset]
prev_offset = offset
if prev_offset < len(section_data):
yield section_data[prev_offset:]
| 5,345,551 |
def distance_fit_from_transits() -> typing.List[float]:
"""
This uses the observers position from full transits and then the runway positions from all
the transit lines fitted to a
"""
((x_mean, x_std), (y_mean, y_std)) = observer_position_mean_std_from_full_transits()
transits = transit_x_axis_distances(x_mean, y_mean)
times = [v.time for v in transits]
dists = [v.distance for v in transits]
popt, pcov = curve_fit(
video_utils.polynomial_3,
times,
dists,
)
return popt
| 5,345,552 |
def collate_fn_synthesize(batch):
"""
Create batch
Args : batch(tuple) : List of tuples / (x, c) x : list of (T,) c : list of (T, D)
Returns : Tuple of batch / Network inputs x (B, C, T), Network targets (B, T, 1)
"""
local_conditioning = len(batch[0]) >= 2
if local_conditioning:
new_batch = []
for idx in range(len(batch)):
x, c = batch[idx]
if upsample_conditional_features:
assert len(x) % len(c) == 0 and len(x) // len(c) == hop_length
new_batch.append((x, c))
batch = new_batch
else:
pass
input_lengths = [len(x[0]) for x in batch]
max_input_len = max(input_lengths)
# x_batch : [B, T, 1]
x_batch = np.array([_pad_2d(x[0].reshape(-1, 1), max_input_len) for x in batch], dtype=np.float32)
assert len(x_batch.shape) == 3
y_batch = np.array([_pad(x[0], max_input_len) for x in batch], dtype=np.float32)
assert len(y_batch.shape) == 2
if local_conditioning:
max_len = max([len(x[1]) for x in batch])
c_batch = np.array([_pad_2d(x[1], max_len) for x in batch], dtype=np.float32)
assert len(c_batch.shape) == 3
# (B x C x T')
c_batch = torch.tensor(c_batch).transpose(1, 2).contiguous()
else:
c_batch = None
# Convert to channel first i.e., (B, C, T) / C = 1
x_batch = torch.tensor(x_batch).transpose(1, 2).contiguous()
# Add extra axis i.e., (B, T, 1)
y_batch = torch.tensor(y_batch).unsqueeze(-1).contiguous()
input_lengths = torch.tensor(input_lengths)
return x_batch, y_batch, c_batch, input_lengths
| 5,345,553 |
def max_(context, mapping, args, **kwargs):
"""Return the max of an iterable"""
if len(args) != 1:
# i18n: "max" is a keyword
raise error.ParseError(_("max expects one argument"))
iterable = evalwrapped(context, mapping, args[0])
try:
return iterable.getmax(context, mapping)
except error.ParseError as err:
# i18n: "max" is a keyword
hint = _("max first argument should be an iterable")
raise error.ParseError(bytes(err), hint=hint)
| 5,345,554 |
def dict_to_duration(time_dict: Optional[Dict[str, int]]) -> Duration:
"""Convert a QoS duration profile from YAML into an rclpy Duration."""
if time_dict:
try:
return Duration(seconds=time_dict['sec'], nanoseconds=time_dict['nsec'])
except KeyError:
raise ValueError(
'Time overrides must include both seconds (sec) and nanoseconds (nsec).')
else:
return Duration()
| 5,345,555 |
def gen_ex_tracking_df(subj_dir):
"""Generate subject tracking error data frames from time series CSVs.
This method generates tracking error (Jaccard distance, CSA, T, AR) data
frames from raw time series CSV data for a single subject.
Args:
subj_dir (str): path to subject data directory, including final '/'
Returns:
pandas.DataFrame mean errors (Jaccard distance, CSA, T, AR)
pandas.DataFrame standard deviation errors (Jaccard distance, CSA, T, AR)
"""
df_iou = gen_jd_vals(subj_dir)
df_csa = gen_def_err_vals(subj_dir, 'CSA')
df_t = gen_def_err_vals(subj_dir, 'T')
df_tr = gen_def_err_vals(subj_dir, 'AR')
df_iou_mean = df_iou.mean().to_frame()
df_csa_mean = df_csa.mean().to_frame()
df_t_mean = df_t.mean().to_frame()
df_tr_mean = df_tr.mean().to_frame()
df_means = df_iou_mean.copy()
df_means.rename(columns={0: 'Jaccard Distance'}, inplace=True)
df_means['CSA'] = df_csa_mean[0]
df_means['T'] = df_t_mean[0]
df_means['AR'] = df_tr_mean[0]
df_iou_std = df_iou.std().to_frame()
df_csa_std = df_csa.std().to_frame()
df_t_std = df_t.std().to_frame()
df_tr_std = df_tr.std().to_frame()
df_stds = df_iou_std.copy()
df_stds.rename(columns={0: 'Jaccard Distance'}, inplace=True)
df_stds['CSA'] = df_csa_std[0]
df_stds['T'] = df_t_std[0]
df_stds['AR'] = df_tr_std[0]
return df_means, df_stds
| 5,345,556 |
def getCentral4Asics(evt, type, key):
"""Adds a one-dimensional stack of its 4 centermost asics
to ``evt["analysis"]["central4Asics"]``.
Args:
:evt: The event variable
:type(str): The event type (e.g. photonPixelDetectors)
:key(str): The event key (e.g. CCD)
:Authors:
Carl Nettelblad ([email protected])
Benedikt J. Daurer ([email protected])
"""
getSubsetAsics(evt, type, key, map(lambda i : (i * 8 + 1) * 2, xrange(4)), "central4Asics")
| 5,345,557 |
def mse(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""Compute the MSE (Mean Squared Error)."""
return sklearn.metrics.mean_squared_error(y_true, y_pred)
| 5,345,558 |
def run_single_thread(experiment: Experiment, thread_ids: list,
distances: dict, times: dict, matchings: dict,
printing: bool) -> None:
""" Single thread for computing distances """
for election_id_1, election_id_2 in thread_ids:
if printing:
print(election_id_1, election_id_2)
start_time = time()
distance = get_distance(experiment.elections[election_id_1],
experiment.elections[election_id_2],
distance_id=experiment.distance_id)
if type(distance) is tuple:
distance, matching = distance
matching = np.array(matching)
matchings[election_id_1][election_id_2] = matching
matchings[election_id_2][election_id_1] = np.argsort(matching)
distances[election_id_1][election_id_2] = distance
distances[election_id_2][election_id_1] = distances[election_id_1][election_id_2]
times[election_id_1][election_id_2] = time() - start_time
times[election_id_2][election_id_1] = times[election_id_1][election_id_2]
| 5,345,559 |
def test_insert_empty_tree(empty_ktree):
"""Test insert into empty tree."""
empty_ktree.insert(1, None)
assert empty_ktree.root.val == 1
| 5,345,560 |
def test_ar_raw():
"""Test fitting AR model on raw data."""
raw = io.read_raw_fif(raw_fname).crop(0, 2).load_data()
raw.pick_types(meg='grad')
# pick MEG gradiometers
for order in (2, 5, 10):
coeffs = fit_iir_model_raw(raw, order)[1][1:]
assert_equal(coeffs.shape, (order,))
assert_allclose(-coeffs[0], 1., atol=0.5)
# let's make sure we're doing something reasonable: first, white noise
rng = np.random.RandomState(0)
raw._data = rng.randn(*raw._data.shape)
raw._data *= 1e-15
for order in (2, 5, 10):
coeffs = fit_iir_model_raw(raw, order)[1]
assert_allclose(coeffs, [1.] + [0.] * order, atol=2e-2)
# Now let's try pink noise
iir = [1, -1, 0.2]
raw._data = lfilter([1.], iir, raw._data)
for order in (2, 5, 10):
coeffs = fit_iir_model_raw(raw, order)[1]
assert_allclose(coeffs, iir + [0.] * (order - 2), atol=5e-2)
| 5,345,561 |
def test_known_good() -> None:
"""Test to see if known good strings pass verification."""
data = [
'HELLOW'
'TFSI4JR',
'JDLULAG',
'BMQRZPX',
'V6B4ORO',
'BMRJXQ7',
'LZYMFSV',
'7JWZVIK',
'UZI5F4A',
'AWCWP3K',
'PQCFBLJ',
'T34OQKF',
'LTEGIQO',
'LMZFORD',
'DWE67XD',
'FUGDOJR',
'O5BAULZ',
'ZP5H5MK',
'G3NZWI3',
'FKXK7GX',
'UETCW4P',
'WRJ26DM',
'VPYO6PP',
'UFUBNW2',
]
d32 = Damm32()
for word in data:
assert d32.verify(word)
| 5,345,562 |
def policy_improvement(env, V, gamma):
"""
Obtain an improved policy based on the values
@param env: OpenAI Gym environment
@param V: policy values
@param gamma: discount factor
@return: the policy
"""
n_state = env.observation_space.n
n_action = env.action_space.n
policy = torch.zeros(n_state)
for state in range(n_state):
v_actions = torch.zeros(n_action)
for action in range(n_action):
for trans_prob, new_state, reward, _ in env.env.P[state][action]:
v_actions[action] += trans_prob * (reward + gamma * V[new_state])
policy[state] = torch.argmax(v_actions)
return policy
| 5,345,563 |
def loudness_zwst_freq(spectrum, freqs, field_type="free"):
"""Zwicker-loudness calculation for stationary signals
Calculates the acoustic loudness according to Zwicker method for
stationary signals.
Normatice reference:
ISO 532:1975 (method B)
DIN 45631:1991
ISO 532-1:2017 (method 1)
The code is based on BASIC program published in "Program for
calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker
and H.Fastl, J.A.S.J (E) 12, 1 (1991).
Note that due to normative continuity, as defined in the
preceeding standards, the method is in accordance with
ISO 226:1987 equal loudness contours (instead of ISO 226:2003)
Parameters
----------
spectrum : numpy.array
A RMS frequency spectrum, size (Nfreq, Ntime)
freqs : list
List of the corresponding frequencies, size (Nfreq,) or (Nfreq, Ntime)
field_type : str
Type of soundfield corresponding to spec_third ("free" by
default or "diffuse")
Outputs
-------
N : float or numpy.array
Calculated loudness [sones], size (Ntime,).
N_specific : numpy.ndarray
Specific loudness [sones/bark], size (Nbark, Ntime).
bark_axis : numpy.array
Frequency axis in bark, size (Nbark,).
"""
if len(spectrum) != len(freqs):
raise ValueError('Input spectrum and frequency axis must have the same shape')
# Compute third octave band spectrum
spec_third, _ = noct_synthesis(spectrum, freqs, fmin=24, fmax=12600)
# Compute dB values
spec_third = amp2db(spec_third, ref=2e-5)
# Compute main loudness
Nm = _main_loudness(spec_third, field_type)
#
# Computation of specific loudness pattern and integration of overall
# loudness by attaching slopes towards higher frequencies
N, N_specific = _calc_slopes(Nm)
# Define Bark axis
bark_axis = np.linspace(0.1, 24, int(24 / 0.1))
return N, N_specific, bark_axis
| 5,345,564 |
def func(back=2):
"""
Returns the function name
"""
return "{}".format(sys._getframe(back).f_code.co_name)
| 5,345,565 |
def normU(u):
"""
A function to scale Uranium map. We don't know what this function should be
"""
return u
| 5,345,566 |
def test_save_topic_figures():
"""Writes out images for topics.
"""
model_file = join(get_test_data_path(), 'gclda_model.pkl')
temp_dir = join(get_test_data_path(), 'temp')
model = Model.load(model_file)
model.save_topic_figures(temp_dir, n_top_words=5)
figures = glob(join(temp_dir, '*.png'))
assert len(figures) == model.n_topics
# Perform cleanup
rmtree(temp_dir)
| 5,345,567 |
def exact_riemann_solution(q_l, q_r, gamma=1.4, phase_plane_curves=False):
"""Return the exact solution to the Riemann problem with initial states
q_l, q_r. The solution is given in terms of a list of states, a list of
speeds (each of which may be a pair in case of a rarefaction fan), and a
function reval(xi) that gives the solution at a point xi=x/t.
The input and output vectors are the conserved quantities.
If phase_plane_curves==True, then the appropriate Hugoniot Locus and/or
integral curve is returned for the 1- and 3-waves.
"""
rho_l, u_l, p_l = conservative_to_primitive(*q_l)
rho_r, u_r, p_r = conservative_to_primitive(*q_r)
# Compute left and right state sound speeds
c_l = sound_speed(rho_l, p_l, gamma)
c_r = sound_speed(rho_r, p_r, gamma)
ws = np.zeros(5)
wave_types = ['', 'contact', '']
if rho_l == 0:
# 3-rarefaction connecting right state to vacuum
p = 0.
rho_l_star = 0.
rho_r_star = 0.
u_vacuum_r = integral_curve_3(0., rho_r, u_r, p_r, gamma)
u = u_vacuum_r
ws[0] = 0.
ws[1] = 0.
ws[2] = 0.
ws[3] = u_vacuum_r
ws[4] = u_r + c_r
wave_types = ['contact', 'contact', 'raref']
elif rho_r == 0:
# 1-rarefaction connecting left state to vacuum
p = 0
rho_l_star = 0.
rho_r_star = 0.
u_vacuum_l = integral_curve_1(0., rho_l, u_l, p_l, gamma)
u = u_vacuum_l
ws[0] = u_l - c_l
ws[1] = u_vacuum_l
ws[2] = 0.
ws[3] = 0.
ws[4] = 0.
wave_types = ['raref', 'contact', 'contact']
elif u_l - u_r + 2*(c_l+c_r)/(gamma-1.) < 0:
# Middle states are vacuum
p = 0.
rho_l_star = 0.
rho_r_star = 0.
u_vacuum_l = integral_curve_1(0., rho_l, u_l, p_l, gamma)
u_vacuum_r = integral_curve_3(0., rho_r, u_r, p_r, gamma)
u = 0.5*(u_vacuum_l + u_vacuum_r)
ws[0] = u_l - c_l
ws[1] = u_vacuum_l
ws[2] = u
ws[3] = u_vacuum_r
ws[4] = u_r + c_r
wave_types = ['raref', 'contact', 'raref']
else:
# Check whether the 1-wave is a shock or rarefaction
def phi_l(p):
if p >= p_l: return hugoniot_locus_1(p, rho_l, u_l, p_l, gamma)
else: return integral_curve_1(p, rho_l, u_l, p_l, gamma)
# Check whether the 1-wave is a shock or rarefaction
def phi_r(p):
if p >= p_r: return hugoniot_locus_3(p, rho_r, u_r, p_r, gamma)
else: return integral_curve_3(p, rho_r, u_r, p_r, gamma)
phi = lambda p: phi_l(p)-phi_r(p)
exp = (1.-gamma)/(2.*gamma)
guess = ((c_l + c_r - (gamma-1.)*(u_r-u_l)/2.)/(c_l*p_l**exp+c_r*p_r**exp))**(-1./exp)
# Compute middle state p, u by finding curve intersection
p, info, ier, msg = fsolve(phi, guess, full_output=True, xtol=1.e-14)
# For strong rarefactions, sometimes fsolve needs help
if ier != 1:
p, info, ier, msg = fsolve(phi, guess, full_output=True, factor=0.1, xtol=1.e-10)
# This should not happen:
if ier != 1:
print('Warning: fsolve did not converge.')
print(msg)
u = phi_l(p)
ws[2] = u
# Find shock and rarefaction speeds
if p > p_l:
wave_types[0] = 'shock'
rho_l_star = rho_l*(1+beta(gamma)*p/p_l)/(p/p_l+beta(gamma))
ws[0] = (rho_l*u_l - rho_l_star*u)/(rho_l - rho_l_star)
ws[1] = ws[0]
else:
wave_types[0] = 'raref'
rho_l_star = (p/p_l)**(1./gamma) * rho_l
c_l_star = sound_speed(rho_l_star, p, gamma)
ws[0] = u_l - c_l
ws[1] = u - c_l_star
if p > p_r:
wave_types[2] = 'shock'
rho_r_star = rho_r*(1+beta(gamma)*p/p_r)/(p/p_r+beta(gamma))
ws[4] = (rho_r*u_r - rho_r_star*u)/(rho_r - rho_r_star)
ws[3] = ws[4]
else:
wave_types[2] = 'raref'
rho_r_star = (p/p_r)**(1./gamma) * rho_r
c_r_star = sound_speed(rho_r_star, p, gamma)
ws[3] = u + c_r_star
ws[4] = u_r + c_r
# Find solution inside rarefaction fans (in primitive variables)
def raref1(xi):
u1 = ((gamma-1.)*u_l + 2*(c_l + xi))/(gamma+1.)
rho1 = (rho_l**gamma*(u1-xi)**2/pospart(gamma*p_l))**(1./(gamma-1.))
p1 = p_l*(rho1/pospart(rho_l))**gamma
return rho1, u1, p1
def raref3(xi):
u3 = ((gamma-1.)*u_r - 2*(c_r - xi))/(gamma+1.)
rho3 = (rho_r**gamma*(xi-u3)**2/pospart(gamma*p_r))**(1./(gamma-1.))
p3 = p_r*(rho3/pospart(rho_r))**gamma
return rho3, u3, p3
q_l_star = np.squeeze(np.array(primitive_to_conservative(rho_l_star,u,p)))
q_r_star = np.squeeze(np.array(primitive_to_conservative(rho_r_star,u,p)))
states = np.column_stack([q_l,q_l_star,q_r_star,q_r])
speeds = [[], ws[2], []]
if wave_types[0] in ['shock','contact']:
speeds[0] = ws[0]
else:
speeds[0] = (ws[0],ws[1])
if wave_types[2] in ['shock','contact']:
speeds[2] = ws[3]
else:
speeds[2] = (ws[3],ws[4])
def reval(xi):
r"""Returns the Riemann solution in primitive variables for any
value of xi = x/t.
"""
rar1 = raref1(xi)
rar3 = raref3(xi)
rho_out = (xi<=ws[0] )*rho_l \
+ (xi>ws[0])*(xi<=ws[1])*rar1[0] \
+ (xi>ws[1])*(xi<=ws[2] )*rho_l_star \
+ (xi>ws[2]) *(xi<=ws[3])*rho_r_star \
+ (xi>ws[3])*(xi<=ws[4])*rar3[0] \
+ (xi>ws[4] )*rho_r
u_out = (xi<=ws[0] )*u_l \
+ (xi>ws[0])*(xi<=ws[1])*rar1[1] \
+ (xi>ws[1])*(xi<=ws[2] )*u \
+ (xi>ws[2] )*(xi<=ws[3])*u \
+ (xi>ws[3])*(xi<=ws[4])*rar3[1] \
+ (xi>ws[4] )*u_r
p_out = (xi<=ws[0] )*p_l \
+ (xi>ws[0])*(xi<=ws[1])*rar1[2] \
+ (xi>ws[1])*(xi<=ws[2] )*p \
+ (xi>ws[2] )*(xi<=ws[3])*p \
+ (xi>ws[3])*(xi<=ws[4])*rar3[2] \
+ (xi>ws[4] )*p_r
return primitive_to_conservative(rho_out,u_out,p_out)
if phase_plane_curves:
if wave_types[0] == 'raref':
phi1 = lambda p: integral_curve_1(p, rho_l, u_l, p_l, gamma)
elif wave_types[0] == 'shock':
phi1 = lambda p: hugoniot_locus_1(p, rho_l, u_l, p_l, gamma)
else:
phi1 = lambda p: p
if wave_types[2] == 'raref':
phi3 = lambda p: integral_curve_3(p, rho_r, u_r, p_r, gamma)
elif wave_types[2] == 'shock':
phi3 = lambda p: hugoniot_locus_3(p, rho_r, u_r, p_r, gamma)
else:
phi3 = lambda p: p
return states, speeds, reval, wave_types, (p, phi1, phi3)
else:
return states, speeds, reval, wave_types
| 5,345,568 |
def check_admin():
"""
This function prevents non-admins from accessing this page and is called on every route
"""
if not current_user.is_admin:
abort(403)
| 5,345,569 |
def show_edge_scatter(N, s1, s2, t1, t2, d, dmax=None, fig_ax=None):
"""Draw the cell-edge contour and the displacement vectors.
The contour is drawn using a scatter plot to color-code the displacements."""
if fig_ax is None:
fig, ax = plt.subplots()
else:
fig, ax = fig_ax
plt.figure(fig.number)
# Evaluate splines at window locations and on fine-resolution grid
c1 = splineutils.splevper(t1, s1)
c2 = splineutils.splevper(t2, s2)
c1p = splev(np.linspace(0, 1, N + 1), s1)
c2p = splev(np.linspace(0, 1, N + 1), s2)
# Interpolate displacements
# d = 0.5 + 0.5 * d / np.max(np.abs(d))
if len(d) < N + 1:
d = np.interp(np.linspace(0, 1, N + 1), t1, d, period=1)
if dmax is None:
dmax = np.max(np.abs(d))
if dmax == 0:
dmax = 1
# Plot results
# matplotlib.use('PDF')
lw = 1
s = 1 # Scaling factor for the vectors
ax.plot(c1p[0], c1p[1], "b", zorder=50, lw=lw)
ax.plot(c2p[0], c2p[1], "r", zorder=100, lw=lw)
# plt.scatter(c1p[0], c1p[1], c=d, cmap='bwr', vmin=-dmax, vmax=dmax, zorder=50, s1=lw)
# # plt.colorbar(label='Displacement [pixels]')
for j in range(len(t2)):
ax.arrow(
c1[0][j],
c1[1][j],
s * (c2[0][j] - c1[0][j]),
s * (c2[1][j] - c1[1][j]),
color="y",
zorder=200,
lw=lw,
)
# plt.arrow(c1[0][j], c1[1][j], s1 * u[0][j], s1 * u[1][j], color='y', zorder=200, lw=lw) # Show normal to curve
ax.arrow(
c1[0][0],
c1[1][0],
s * (c2[0][0] - c1[0][0]),
s * (c2[1][0] - c1[1][0]),
color="c",
zorder=400,
lw=lw,
)
fig.tight_layout()
return fig, ax
| 5,345,570 |
def aiobotocore_client(service, tracer):
"""Helper function that creates a new aiobotocore client so that
it is closed at the end of the context manager.
"""
session = aiobotocore.session.get_session()
endpoint = LOCALSTACK_ENDPOINT_URL[service]
client = session.create_client(
service,
region_name="us-west-2",
endpoint_url=endpoint,
aws_access_key_id="aws",
aws_secret_access_key="aws",
aws_session_token="aws",
)
Pin.override(client, tracer=tracer)
try:
yield client
finally:
client.close()
| 5,345,571 |
def get_A2_const(alpha1, alpha2, lam_c, A1):
"""Function to compute the constant A2.
Args:
alpha1 (float): The alpha1 parameter of the WHSCM.
alpha2 (float): The alpha2 parameter of the WHSCM.
lam_c (float): The switching point between the
two exponents of the double power-laws
in the WHSCM.
A1 (float): The A1 constant of the WHSCM.
Returns:
A2 (float): The A2 constant of the WHSCM.
"""
A2 = A1 * (lam_c**(alpha2 - alpha1))
return A2
| 5,345,572 |
def dark(app):
""" Apply Dark Theme to the Qt application instance.
Args:
app (QApplication): QApplication instance.
"""
darkPalette = QtGui.QPalette()
# base
darkPalette.setColor(QtGui.QPalette.WindowText, QtGui.QColor(180, 180, 180))
darkPalette.setColor(QtGui.QPalette.Button, QtGui.QColor(53, 53, 53))
darkPalette.setColor(QtGui.QPalette.Light, QtGui.QColor(180, 180, 180))
darkPalette.setColor(QtGui.QPalette.Midlight, QtGui.QColor(90, 90, 90))
darkPalette.setColor(QtGui.QPalette.Dark, QtGui.QColor(35, 35, 35))
darkPalette.setColor(QtGui.QPalette.Text, QtGui.QColor(180, 180, 180))
darkPalette.setColor(QtGui.QPalette.BrightText, QtGui.QColor(180, 180, 180))
darkPalette.setColor(QtGui.QPalette.ButtonText, QtGui.QColor(180, 180, 180))
darkPalette.setColor(QtGui.QPalette.Base, QtGui.QColor(42, 42, 42))
darkPalette.setColor(QtGui.QPalette.Window, QtGui.QColor(53, 53, 53))
darkPalette.setColor(QtGui.QPalette.Shadow, QtGui.QColor(20, 20, 20))
darkPalette.setColor(QtGui.QPalette.Highlight, QtGui.QColor(42, 130, 218))
darkPalette.setColor(QtGui.QPalette.HighlightedText, QtGui.QColor(180, 180, 180))
darkPalette.setColor(QtGui.QPalette.Link, QtGui.QColor(56, 252, 196))
darkPalette.setColor(QtGui.QPalette.AlternateBase, QtGui.QColor(66, 66, 66))
darkPalette.setColor(QtGui.QPalette.ToolTipBase, QtGui.QColor(53, 53, 53))
darkPalette.setColor(QtGui.QPalette.ToolTipText, QtGui.QColor(180, 180, 180))
# disabled
darkPalette.setColor(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,
QtGui.QColor(127, 127, 127))
darkPalette.setColor(QtGui.QPalette.Disabled, QtGui.QPalette.Text,
QtGui.QColor(127, 127, 127))
darkPalette.setColor(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText,
QtGui.QColor(127, 127, 127))
darkPalette.setColor(QtGui.QPalette.Disabled, QtGui.QPalette.Highlight,
QtGui.QColor(80, 80, 80))
darkPalette.setColor(QtGui.QPalette.Disabled, QtGui.QPalette.HighlightedText,
QtGui.QColor(127, 127, 127))
app.setPalette(darkPalette)
_apply_base_theme(app)
| 5,345,573 |
def test_contract_manager_json(tmpdir):
""" Check the ABI in contracts.json """
precompiled_path = Path(str(tmpdir)).joinpath('contracts.json')
ContractManager(contracts_source_path()).compile_contracts(precompiled_path)
# try to load contracts from a precompiled file
contract_manager_meta(precompiled_path)
| 5,345,574 |
def args_parser():
"""
Parese command line arguments
Args:
opt_args: Optional args for testing the function. By default sys.argv is used
Returns:
args: Dictionary of args.
Raises:
ValueError: Raises an exception if some arg values are invalid.
"""
# Construct the parser
parser = argparse.ArgumentParser(description='NConv')
# Mode selection
parser.add_argument('--neighbor', type=int, default=2, help='the neighbors will be considered')
parser.add_argument('--machine', type=str, default="local", help='choose the training machin, local or remote')
parser.add_argument('--num-channels', type=int, help='choose the number of channels in the model')
parser.add_argument('--output_type', type=str, default="normal",
help='choose the meaning of output tensor, rgb or normal')
parser.add_argument('--args', '-a', type=str, default='', choices=['defaults', 'json'],
help='How to read args? (json file or dataset defaults)')
parser.add_argument('--exp', '--e', help='Experiment name')
parser.add_argument('--workspace', '--ws', default='', type=str, help='Workspace name')
parser.add_argument('--resume', default=None, type=str, metavar='PATH',
help='Path to latest checkpoint (default: none)')
########### General Dataset arguments ##########
parser.add_argument('--dataset-path', type=str, default='', help='Dataset path.')
parser.add_argument('--batch_size', '-b', default=8, type=int, help='Mini-batch size (default: 8)')
parser.add_argument('--train-on', default='full', type=str, help='The number of images to train on from the data.')
parser.add_argument('--sharp_penalty', default=1.5, type=float, help='penalty of sharp normal prediction')
########### KITTI-Depth arguments ###########
parser.add_argument('--raw-kitti-path', type=str, default='', help='Dataset path')
parser.add_argument('--selval-ds', default='selval', type=str, choices=['selval, selval, test'],
help='Which set to evaluate on? ' + ' | '.join(['selval, selval, test']) + ' (default: selval)')
parser.add_argument('--norm-factor', default=256, type=float,
help='Normalization factor for the input data (default: 256)')
parser.add_argument('--train-disp', default=False, type=bool,
help='Train on disparity (1/depth) (default: False)')
########### Training arguments ###########
parser.add_argument('--epochs', default=20, type=int,
help='Total number of epochs to run (default: 30)')
parser.add_argument('--optimizer', '-o', default='adam', choices=optimizers_list,
help='Optimizer method: ' + ' | '.join(optimizers_list) + ' (default: sgd)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='Initial learning rate (default 0.001)')
parser.add_argument('--momentum', default=0.9, type=float, help='SGD momentum.')
parser.add_argument('--lr-scheduler', default='step', choices=lr_scheduler_list,
help='LR scheduler method: ' + ' | '.join(lr_scheduler_list) + ' (default: step)')
parser.add_argument('--lr-decay-step', default=5, type=int,
help='Learning rate decay step (default: 20)')
parser.add_argument('--lr-decay-factor', default=0.1, type=float,
help='Learning rate decay factor(default: 0.1)')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
help='Weight decay (default: 0)')
parser.add_argument('--loss', '-l', default='l1', choices=losses_list,
help='Loss function: ' + ' | '.join(losses_list) + ' (default: l1)')
parser.add_argument('--penalty', '-pena', default=1.2, help='penalty of output value which out of range [0-255]')
########### Logging ###########
parser.add_argument('--print-freq', default=10, type=int,
help='Printing evaluation criterion frequency (default: 10)')
parser.add_argument('--tb_log', default=False, type=bool,
help='Log to Tensorboard (default: False)')
parser.add_argument('--tb_freq', default=1000, type=int,
help='Logging Frequence to Tensorboard (default: 1000)')
parser.add_argument('--save-selval-imgs', default=False, type=bool,
help='A flag for saving validation images (default: False)')
parser.add_argument('--eval_uncert', default=False, type=bool,
help='Evaluate uncertainty or not')
parser.add_argument('--angle_loss', default=False, type=bool,
help='Calculate angle loss and plot')
# Parse the arguments
args = parser.parse_args()
args = initialize_args(args)
return args
| 5,345,575 |
def _parse_seq_tf_example(example, uint8_features, shapes):
"""Parse tf.Example containing one or two episode steps."""
def to_feature(key, shape):
if key in uint8_features:
return tf.io.FixedLenSequenceFeature(
shape=[], dtype=tf.string, allow_missing=True)
else:
return tf.io.FixedLenSequenceFeature(
shape=shape, dtype=tf.float32, allow_missing=True)
feature_map = {}
for k, v in shapes.items():
feature_map[k] = to_feature(k, v)
parsed = tf.io.parse_single_example(example, features=feature_map)
observation = {}
restructured = {}
for k in parsed.keys():
if 'observation' not in k:
restructured[k] = parsed[k]
continue
if k in uint8_features:
observation[k.replace('observation/', '')] = tf.reshape(
tf.io.decode_raw(parsed[k], out_type=tf.uint8), (-1,) + shapes[k])
else:
observation[k.replace('observation/', '')] = parsed[k]
restructured['observation'] = observation
restructured['length'] = tf.shape(restructured['action'])[0]
return restructured
| 5,345,576 |
def unique_list(a_list, unique_func=None, replace=False):
"""Unique a list like object.
- collection: list like object
- unique_func: the filter functions to return a hashable sign for unique
- replace: the following replace the above with the same sign
Return the unique subcollection of collection.
Example:
data = [(1, 2), (2, 1), (2, 3), (1, 2)]
unique_func = lambda x: tuple(sorted(x))
unique(data) -> [(1, 2), (2, 1), (2, 3)]
unique(data, unique_func) -> [(1, 2), (2, 3)]
unique(data, unique_func, replace=True) -> [(2, 1), (2, 3)]
"""
unique_func = unique_func or (lambda x: x)
result = {}
for item in a_list:
hashable_sign = unique_func(item)
if hashable_sign not in result or replace:
result[hashable_sign] = item
return list(result.values())
| 5,345,577 |
def update_topics (graph, frags, known_topics, topic_id, phrase, pub_id, rank, count):
"""
update the known topics
"""
if topic_id not in known_topics:
t = {
"uuid": topic_id,
"label": phrase,
"used": False,
"pubs": []
}
known_topics[topic_id] = t
else:
t = known_topics[topic_id]
t["pubs"].append([pub_id, rank, count])
buf = [
TEMPLATE_TOPIC.format(
t["uuid"],
t["label"]
).strip()
]
buf.append(".\n")
frags[t["uuid"]] = buf
| 5,345,578 |
def airflow_runtime_instance():
"""Creates an airflow RTC and removes it after test."""
instance_name = "valid_airflow_test_config"
instance_config_file = Path(__file__).parent / "resources" / "runtime_configs" / f"{instance_name}.json"
with open(instance_config_file, "r") as fd:
instance_config = json.load(fd)
md_mgr = MetadataManager(schemaspace=Runtimes.RUNTIMES_SCHEMASPACE_ID)
# clean possible orphaned instance...
try:
md_mgr.remove(instance_name)
except Exception:
pass
runtime_instance = md_mgr.create(instance_name, Metadata(**instance_config))
yield runtime_instance.name
md_mgr.remove(runtime_instance.name)
| 5,345,579 |
def calculate_attitude_angle(eccentricity_ratio):
"""Calculates the attitude angle based on the eccentricity ratio.
Parameters
----------
eccentricity_ratio: float
The ratio between the journal displacement, called just eccentricity, and
the radial clearance.
Returns
-------
float
Attitude angle
Examples
--------
>>> from ross.fluid_flow.fluid_flow import fluid_flow_example
>>> my_fluid_flow = fluid_flow_example()
>>> calculate_attitude_angle(my_fluid_flow.eccentricity_ratio) # doctest: +ELLIPSIS
1.5...
"""
return np.arctan(
(np.pi * (1 - eccentricity_ratio ** 2)**(1/2)) /
(4 * eccentricity_ratio)
)
| 5,345,580 |
def enc_obj2bytes(obj, max_size=4094):
"""
Encode Python objects to PyTorch byte tensors
"""
assert max_size <= MAX_SIZE_LIMIT
byte_tensor = torch.zeros(max_size, dtype=torch.uint8)
obj_enc = pickle.dumps(obj)
obj_size = len(obj_enc)
if obj_size > max_size:
raise Exception(
'objects too large: object size {}, max size {}'.format(
obj_size, max_size
)
)
byte_tensor[0] = obj_size // 256
byte_tensor[1] = obj_size % 256
byte_tensor[2:2+obj_size] = torch.ByteTensor(list(obj_enc))
return byte_tensor
| 5,345,581 |
def featCompression (feats, deltas, deltas2):
"""
Returns augmented feature vectors for all cases.
"""
feats_total = np.zeros (78)
for i in range (len (feats)):
row_total = np.array ([])
feat_mean = np.mean (np.array (feats[i]), axis = 0)
delt_mean = np.mean (np.array (deltas[i]), axis = 0)
delt2_mean = np.mean (np.array (deltas2[i]), axis = 0)
feat_std = np.std (np.array (feats[i]), axis = 0)
delt_std = np.std (np.array (deltas[i]), axis = 0)
delt2_std = np.std (np.array (deltas2[i]), axis = 0)
row_total = np.hstack ((feat_mean, feat_std, delt_mean, delt_std, \
delt2_mean, delt2_std))
feats_total = np.vstack ((feats_total, row_total))
return feats_total[1:, :]
| 5,345,582 |
def _array_indexing(array, key, key_dtype, axis):
"""Index an array or scipy.sparse consistently across NumPy version."""
if np_version < parse_version('1.12') or issparse(array):
# Remove the check for NumPy when using >= 1.12
# check if we have an boolean array-likes to make the proper indexing
if key_dtype == 'bool':
key = np.asarray(key)
if isinstance(key, tuple):
key = list(key)
return array[key] if axis == 0 else array[:, key]
| 5,345,583 |
def retryable(fun: Callable[[Any], None], re_init_func: Callable[[], Any], max_tries: int, *args: Dict[str, Any]):
"""
Retries the function multiple times, based on the max_tries
:param max_tries:
max number of tries
:type max_tries: ``int``
:param fun:
main function to retry
:type fun: ``Callable[[...], None]``
:param re_init_func:
function to run after exception is raised
:type re_init_func: ``Callable``
:param args:
main function arguments
"""
for _ in range(max_tries):
try:
fun(*args)
break
except (ValueError, Exception):
re_init_func()
continue
| 5,345,584 |
def get_stock_ledger_entries(previous_sle, operator=None,
order="desc", limit=None, for_update=False, debug=False, check_serial_no=True):
"""get stock ledger entries filtered by specific posting datetime conditions"""
conditions = " and timestamp(posting_date, posting_time) {0} timestamp(%(posting_date)s, %(posting_time)s)".format(
operator)
if previous_sle.get("warehouse"):
conditions += " and warehouse = %(warehouse)s"
elif previous_sle.get("warehouse_condition"):
conditions += " and " + previous_sle.get("warehouse_condition")
if check_serial_no and previous_sle.get("serial_no"):
conditions += " and serial_no like '{}'".format(
frappe.db.escape('%{0}%'.format(previous_sle.get("serial_no"))))
if not previous_sle.get("posting_date"):
previous_sle["posting_date"] = "1900-01-01"
if not previous_sle.get("posting_time"):
previous_sle["posting_time"] = "00:00"
if operator in (">", "<=") and previous_sle.get("name"):
conditions += " and name!=%(name)s"
return frappe.db.sql("""select *, timestamp(posting_date, posting_time) as "timestamp" from `tabStock Ledger Entry`
where item_code = %%(item_code)s
and ifnull(is_cancelled, 'No')='No'
%(conditions)s
order by timestamp(posting_date, posting_time) %(order)s, creation %(order)s
%(limit)s %(for_update)s""" % {
"conditions": conditions,
"limit": limit or "",
"for_update": for_update and "for update" or "",
"order": order
}, previous_sle, as_dict=1, debug=debug)
| 5,345,585 |
def test_binary(test_data, model, criterion, batch_size, device, generate_batch=None):
"""Calculate performance of a Pytorch binary classification model
Parameters
----------
test_data : torch.utils.data.Dataset
Pytorch dataset
model: torch.nn.Module
Pytorch Model
criterion: function
Loss function
bacth_size : int
Number of observations per batch
device : str
Name of the device used for the model
collate_fn : function
Function defining required pre-processing steps
Returns
-------
Float
Loss score
Float:
Accuracy Score
"""
# Set model to evaluation mode
model.eval()
test_loss = 0
test_acc = 0
# Create data loader
data = DataLoader(test_data, batch_size=batch_size, collate_fn=generate_batch)
# Iterate through data by batch of observations
for feature, target_class in data:
# Load data to specified device
feature, target_class = feature.to(device), target_class.to(device).to(torch.float32)
# Set no update to gradients
with torch.no_grad():
# Make predictions
output = model(feature)
# Calculate loss for given batch
loss = criterion(output, target_class.unsqueeze(1))
# Calculate global loss
test_loss += loss.item()
# Calculate global accuracy
test_acc += (output.argmax(1) == target_class).sum().item()
return test_loss / len(test_data), test_acc / len(test_data)
| 5,345,586 |
def linear_imputer(y, missing_values=np.nan, copy=True):
"""
Replace missing values in y with values from a linear interpolation on their position in the array.
Parameters
----------
y: list or `numpy.array`
missing_values: number, string, np.nan or None, default=`np.nan`
The placeholder for the missing values. All occurrences of `missing_values` will be imputed.
copy : bool, default=True
If True, a copy of X will be created. If False, imputation will be done in-place whenever possible.
Returns
-------
`numpy.array` : array with `missing_values` imputed
"""
x = np.arange(len(y))
if missing_values is np.nan:
mask_missing = np.isnan(y)
else:
mask_missing = y == missing_values
imputed_values = np.interp(x[mask_missing], x[~mask_missing], y[~mask_missing])
if copy:
yy = np.copy(y)
yy[mask_missing] = imputed_values
return yy
else:
y[mask_missing] = imputed_values
return y
| 5,345,587 |
def dump_json(gto, k, verbose=False):
"""
Print out the json representation of some data
:param gto: the json gto
:param k: the key to dump (none for everything)
:param verbose: more output
:return:
"""
if k:
if k in gto:
print(json.dumps(gto[k], indent=4))
else:
sys.stderr.write(f"{bcolors.RED}ERROR: {k} not found.{bcolors.ENDC}\n")
else:
print(json.dumps(gto, indent=4))
| 5,345,588 |
def gap2d_cx(cx):
"""Accumulates complexity of gap2d into cx = (h, w, flops, params, acts)."""
cx["h"] = 1
cx["w"] = 1
return cx
| 5,345,589 |
def test_is_not_healthy(requests_mock):
"""
Test is not healthy response
"""
metadata = Gen3Metadata("https://example.com")
def _mock_request(url, **kwargs):
assert url.endswith("/_status")
mocked_response = MagicMock(requests.Response)
mocked_response.status_code = 500
mocked_response.text = "Not Healthy"
mocked_response.json.return_value = {}
mocked_response.raise_for_status.side_effect = HTTPError("uh oh")
return mocked_response
requests_mock.side_effect = _mock_request
response = metadata.is_healthy()
assert not response
| 5,345,590 |
def kernelTrans(X, A, kTup):
"""
通过核函数将数据转换更高维的空间
Parameters:
X - 数据矩阵
A - 单个数据的向量
kTup - 包含核函数信息的元组
Returns:
K - 计算的核K
"""
m,n = np.shape(X)
K = np.mat(np.zeros((m,1)))
if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。
elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = np.exp(K/(-1*kTup[1]**2)) #计算高斯核K
else: raise NameError('核函数无法识别')
return K #返回计算的核K
| 5,345,591 |
def getBusEquipmentData(bhnd,paraCode):
"""
Retrieves the handle of all equipment of a given type (paraCode)
that is attached to bus [].
Args :
bhnd : [bus handle]
nParaCode : code data (BR_nHandle,GE_nBusHnd...)
Returns:
[][] = [len(bhnd)] [len(all equipment)]
Raises:
OlrxAPIException
"""
# get data
res = []
vt = paraCode//100
val1 = setValType(vt,0)
for bhnd1 in bhnd:
r2 = []
while ( OLXAPI_OK == OlxAPI.GetBusEquipment( bhnd1, c_int(paraCode), byref(val1) ) ) :
if vt==VT_STRING:
r2.append((val1.value).decode("UTF-8"))
else:
r2.append(val1.value)
res.append(r2)
return res
| 5,345,592 |
def build_and_register(
client: "prefect.Client",
flows: "List[FlowLike]",
project_id: str,
labels: List[str] = None,
force: bool = False,
) -> Counter:
"""Build and register all flows.
Args:
- client (prefect.Client): the prefect client to use
- flows (List[FlowLike]): the flows to register
- project_id (str): the project id in which to register the flows
- labels (List[str], optional): Any extra labels to set on all flows
- force (bool, optional): If false (default), an idempotency key will
be used to avoid unnecessary register calls.
Returns:
- Counter: stats about the number of successful, failed, and skipped flows.
"""
# Finish preparing flows to ensure a stable hash later
prepare_flows(flows, labels)
# Group flows by storage instance.
storage_to_flows = defaultdict(list)
for flow in flows:
storage = flow.storage if isinstance(flow, prefect.Flow) else None
storage_to_flows[storage].append(flow)
# Register each flow, building storage as needed.
# Stats on success/fail/skip rates are kept for later display
stats = Counter(registered=0, errored=0, skipped=0)
for storage, flows in storage_to_flows.items():
# Build storage if needed
if storage is not None:
click.echo(f" Building `{type(storage).__name__}` storage...")
try:
storage.build()
except Exception as exc:
click.secho(" Error building storage:", fg="red")
log_exception(exc, indent=6)
red_error = click.style("Error", fg="red")
for flow in flows:
click.echo(f" Registering {flow.name!r}... {red_error}")
stats["errored"] += 1
continue
for flow in flows:
click.echo(f" Registering {flow.name!r}...", nl=False)
try:
if isinstance(flow, box.Box):
serialized_flow = flow
else:
serialized_flow = flow.serialize(build=False)
flow_id, flow_version, is_new = register_serialized_flow(
client=client,
serialized_flow=serialized_flow,
project_id=project_id,
force=force,
)
except Exception as exc:
click.secho(" Error", fg="red")
log_exception(exc, indent=4)
stats["errored"] += 1
else:
if is_new:
click.secho(" Done", fg="green")
click.echo(f" └── ID: {flow_id}")
click.echo(f" └── Version: {flow_version}")
stats["registered"] += 1
else:
click.secho(" Skipped", fg="yellow")
stats["skipped"] += 1
return stats
| 5,345,593 |
def helper_reset_page_retirements(handle, gpuId=0, reset_sbe=False):
"""
Helper function to reset non volatile page retirements.
"""
ret = dcgm_internal_helpers.inject_field_value_i64(handle, gpuId, dcgm_fields.DCGM_FI_DEV_RETIRED_DBE,
0, -30) # set the injected data to 30 seconds ago
assert (ret == dcgm_structs.DCGM_ST_OK)
if reset_sbe:
ret = dcgm_internal_helpers.inject_field_value_i64(handle, gpuId, dcgm_fields.DCGM_FI_DEV_RETIRED_SBE,
0, -30) # set the injected data to 30 seconds ago
assert (ret == dcgm_structs.DCGM_ST_OK)
| 5,345,594 |
def generate_path_to_bulk_roms(
roms: List[models.BulkSystemROMS]) -> List[models.BulkSystemROMS]:
"""Creates the absolute path to where each rom should be downloaded"""
for system in roms:
for section in system.Sections:
if not 'number' in section.Section:
path: str = os.path.join(os.getcwd(), "ROMS", section.Section)
section.Path = path
else:
path: str = os.path.join(os.getcwd(), "ROMS", system.System,
'#')
section.Path = path
return roms
| 5,345,595 |
def parse_args(args=sys.argv[1:]):
""" Get the parsed arguments specified on this script.
"""
parser = argparse.ArgumentParser(description="")
parser.add_argument(
'path_to_xml',
action='store',
type=str,
help='Ful path to tei file.')
parser.add_argument(
'omeka_id',
action='store',
type=str,
help='omeka id')
parser.add_argument(
'name',
action='store',
type=str,
help='name')
return parser.parse_args(args)
| 5,345,596 |
def send_voting_location_sms(email, phone, fields):
"""Opts-in to SMS and sends caucus/polling location address text message.
We do two Mobile Commons API calls:
1. Create or update profile, with a state-specific opt-in path.
If the number is new to our national Mobile Commons campaign,
this will subscribe the number to our national campaign and trigger a text message like:
Team Warren: Thanks for confirming your caucus location! We'll follow-up when it's time to make your voice heard for Elizabeth.
HELP4INFO/STOP2Quit/Msg&DataRatesMayApply
If the number if already on our list, this will trigger nothing and no message.
2. Send a message with caucus/polling location name and address.
"""
phone = extract_phone_number(phone)
if not phone:
logging.info("Not sending SMS with voting location; no phone number")
return
state = fields["state_cd"]
if not state:
logging.info("Not sending SMS with voting location; no state")
return
language = fields.get("language", DEFAULT_LANGUAGE)
details_for_language = VOTING_LOCATION_SMS_BY_LANGUAGE_STATE.get(
language, VOTING_LOCATION_SMS_BY_LANGUAGE_STATE[DEFAULT_LANGUAGE]
)
details_for_state = details_for_language.get(state, details_for_language["default"])
details = details_for_state.get(
fields["preferred_voting_type"], details_for_state["default"]
)
first_name, last_name = normalize_name(
fields.get("firstname", ""), fields.get("lastname", "")
)
profile_payload = {
"phone_number": phone,
"email": fields.get("email", ""),
"postal_code": fields.get("zip", ""),
"first_name": first_name,
"last_name": last_name,
"street1": fields.get("addr1", ""),
"city": fields.get("city", ""),
"state": state,
"country": "US",
"polling_location_name": fields.get("name_of_location"),
"polling_address": fields.get("polling_address"),
"polling_city": fields.get("polling_city"),
"polling_state": fields.get("polling_state"),
"polling_zip": fields.get("polling_zip"),
"polling_time": fields.get("time_of_event"),
"polling_precinct_id": fields.get("van_precinct_id"),
"opt_in_path_id": details.get("opt_in_path_id"),
}
# Don't upload null or empty fields.
keys_to_delete = [k for k, v in profile_payload.items() if not v]
for k in keys_to_delete:
del profile_payload[k]
resp = create_or_update_mobile_commons_profile(
settings.MOBILE_COMMONS_USERNAME,
settings.MOBILE_COMMONS_PASSWORD,
profile_payload,
)
logging.debug(f"Response from mobile commons profile creation: {resp.text}")
message_template = details["message"]
message = Template(message_template).render(**fields)
resp = send_sms(
settings.MOBILE_COMMONS_USERNAME,
settings.MOBILE_COMMONS_PASSWORD,
MOBILE_COMMONS_CAMPAIGN_ID,
phone,
message,
)
logging.debug(f"Response from mobile commons send: {resp.text}")
| 5,345,597 |
def creer_element_xml(nom_elem,params):
"""
Créer un élément de la relation qui va donner un des attributs.
Par exemple, pour ajouter le code FANTOIR pour une relation, il faut que le code XML soit <tag k='ref:FR:FANTOIR' v='9300500058T' />"
Pour cela, il faut le nom de l'élément (ici tag) et un dictionnaire de paramètres nommé param qui associe chaque clé à une valeur (ici
{'k':'ref:FR:FANTOIR', 'v'='9300500058T'}
:param nom_elem:
:type nom_elem: str
:param params:
:type params: dict
:return: élément XML désiré
:rtype: xml.etree.ElementTree.Element
"""
# Initialisation de l'objet XML
elem = ET.Element(nom_elem)
ajouter_atrributs_element_xml(elem, params)
return elem
| 5,345,598 |
def get_display():
"""Getter function for the display keys
Returns:
list: list of dictionary keys
"""
return data.keys()
| 5,345,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.