path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129011222/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.count()
code
129011222/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt import plotly.graph_objects as go from plotly.subplots import make_subplots
code
129011222/cell_36
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots fig = make_subplots(rows=1, cols=2, column_titles = ["Train Data", "Test Data",], x_title = "Missing Values") fig.show()
code
72120326/cell_13
[ "text_html_output_1.png" ]
from sklearn.metrics import mean_absolute_error from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = test[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) my_model = XGBRegressor(n_estimators=1, learning_rate=0.05, n_jobs=5) my_model.fit(X_train, y_train) predictions = my_model.predict(X_valid) mae = mean_absolute_error(predictions, y_valid) test_predictions = my_model.predict(X_test) print(test_predictions)
code
72120326/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = test[my_cols].copy() X_train.head()
code
72120326/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) train.columns
code
72120326/cell_11
[ "text_html_output_1.png" ]
from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = test[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) my_model = XGBRegressor(n_estimators=1, learning_rate=0.05, n_jobs=5) my_model.fit(X_train, y_train)
code
72120326/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72120326/cell_14
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = test[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) my_model = XGBRegressor(n_estimators=1, learning_rate=0.05, n_jobs=5) my_model.fit(X_train, y_train) predictions = my_model.predict(X_valid) mae = mean_absolute_error(predictions, y_valid) test_predictions = my_model.predict(X_test) test_predictions = test_predictions.mean() print(test_predictions)
code
72120326/cell_12
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = categorical_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_test = test[my_cols].copy() X_train = pd.get_dummies(X_train) X_valid = pd.get_dummies(X_valid) X_test = pd.get_dummies(X_test) my_model = XGBRegressor(n_estimators=1, learning_rate=0.05, n_jobs=5) my_model.fit(X_train, y_train) predictions = my_model.predict(X_valid) print(predictions) mae = mean_absolute_error(predictions, y_valid) print(mae)
code
72120326/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_filepath = '../input/30-days-of-ml/train.csv' test_filepath = '../input/30-days-of-ml/train.csv' submission = '../input/30-days-of-ml/sample_submission.csv' train = pd.read_csv(train_filepath) test = pd.read_csv(test_filepath) train.head()
code
122258112/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df sensors = ['pm25', 'pm10', 'co', 'no2'] def plot_subplots(df, col_name, sensors): fig, ax = plt.subplots(2, 2, figsize=(10, 10)) ax = ax.ravel() for i, sensor in enumerate(sensors): chart = df.groupby(col_name)[sensor].mean() chart.plot(kind='bar', ax=ax[i], title=f'Sensor {sensor}') plt.tight_layout() plt.show() plot_subplots(df, 'zabrana', sensors)
code
122258112/cell_6
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df
code
122258112/cell_2
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df
code
122258112/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122258112/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df sensors = ['pm25', 'pm10', 'co', 'no2'] def plot_subplots(df, col_name, sensors): fig, ax = plt.subplots(2, 2, figsize=(10, 10)) ax = ax.ravel() for i, sensor in enumerate(sensors): chart = df.groupby(col_name)[sensor].mean() chart.plot(kind='bar', ax=ax[i], title=f'Sensor {sensor}') plt.tight_layout() plt.show() plot_subplots(df, 'month', sensors)
code
122258112/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df sensors = ['pm25', 'pm10', 'co', 'no2'] def plot_subplots(df, col_name, sensors): fig, ax = plt.subplots(2, 2, figsize=(10, 10)) ax = ax.ravel() for i, sensor in enumerate(sensors): chart = df.groupby(col_name)[sensor].mean() chart.plot(kind='bar', ax=ax[i], title=f'Sensor {sensor}') plt.tight_layout() plt.show() plot_subplots(df, 'year', sensors)
code
122258112/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['UTC1'] = pd.to_datetime(df['UTC'], format='%m/%d/%Y %H:%M') df['year'] = df['UTC1'].dt.year df
code
122258112/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df sensors = ['pm25', 'pm10', 'co', 'no2'] def plot_subplots(df, col_name, sensors): fig, ax = plt.subplots(2, 2, figsize=(10, 10)) ax = ax.ravel() for i, sensor in enumerate(sensors): chart = df.groupby(col_name)[sensor].mean() chart.plot(kind='bar', ax=ax[i], title=f'Sensor {sensor}') plt.tight_layout() plt.show() plot_subplots(df, 'covid', sensors)
code
122258112/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df sensors = ['pm25', 'pm10', 'co', 'no2'] def plot_subplots(df, col_name, sensors): fig, ax = plt.subplots(2, 2, figsize=(10, 10)) ax = ax.ravel() for i, sensor in enumerate(sensors): chart = df.groupby(col_name)[sensor].mean() chart.plot(kind='bar', ax=ax[i], title=f'Sensor {sensor}') plt.tight_layout() plt.show() plot_subplots(df, 'day-night', sensors)
code
122258112/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df df['pm25'] = df.loc[:, ['n1-pm25', 'n2-pm25']].mean(axis=1) df['pm10'] = df.loc[:, ['n1-pm10', 'n2-pm10']].mean(axis=1) df['co'] = df.loc[:, ['n1-co-mg/m3', 'n3-co-mg/m3']].mean(axis=1) df['no2'] = df.loc[:, ['n1-no2-ug/m3', 'n2-no2-ug/m3', 'n3-no2-ug/m3']].mean(axis=1) df sensors = ['pm25', 'pm10', 'co', 'no2'] def plot_subplots(df, col_name, sensors): fig, ax = plt.subplots(2, 2, figsize=(10, 10)) ax = ax.ravel() for i, sensor in enumerate(sensors): chart = df.groupby(col_name)[sensor].mean() chart.plot(kind='bar', ax=ax[i], title=f'Sensor {sensor}') plt.tight_layout() plt.show() plot_subplots(df, 'grejna-negrejna', sensors)
code
122258112/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/airquality2022/Konvertirani_vrednosti_novi1.csv') df = df.drop(['Unnamed: 0'], axis=1) df df['day-night'] = df['hour'].apply(lambda x: 'day' if x in range(8, 20) else 'night') df['grejna-negrejna'] = df.apply(lambda x: 'negrejna' if (x['month'] > 4 or (x['month'] == 4 and x['day'] >= 15)) and (x['month'] < 10 or (x['month'] == 10 and x['day'] <= 15)) else 'grejna', axis=1) df['covid'] = df.apply(lambda x: 'no-covid' if (x['year'] < 2020 or x['year'] > 2021) or (x['year'] == 2020 and x['month'] < 3) or (x['year'] == 2021 and x['month'] > 3) else 'covid', axis=1) df['zabrana'] = df.apply(lambda x: 'nema-zabrana' if x['year'] < 2020 or (x['year'] == 2020 and x['month'] < 2) or (x['year'] == 2020 and x['month'] == 2 and (x['day'] < 10)) else 'zabrana', axis=1) df
code
74052794/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data.info()
code
74052794/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.describe()
code
74052794/cell_20
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] data = data.drop(question_dist.index) data = data.reset_index(drop=True) question_engine = data[data['Engine_capacity(cm3)'] < 200] data = data.drop(question_engine.index) data = data.reset_index(drop=True) data
code
74052794/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum()
code
74052794/cell_26
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] data = data.drop(question_dist.index) data = data.reset_index(drop=True) question_engine = data[data['Engine_capacity(cm3)'] < 200] data = data.drop(question_engine.index) data = data.reset_index(drop=True) data question_price = data[data['Price(euro)'] < 101] data = data.drop(question_price.index) data = data.reset_index(drop=True) data.sort_values(by=['Year']).head(10)
code
74052794/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) data.tail()
code
74052794/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74052794/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] data = data.drop(question_dist.index) data = data.reset_index(drop=True) question_engine = data[data['Engine_capacity(cm3)'] < 200] question_engine.describe()
code
74052794/cell_28
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] data = data.drop(question_dist.index) data = data.reset_index(drop=True) question_engine = data[data['Engine_capacity(cm3)'] < 200] data = data.drop(question_engine.index) data = data.reset_index(drop=True) data question_price = data[data['Price(euro)'] < 101] data = data.drop(question_price.index) data = data.reset_index(drop=True) data.sort_values(by=['Year']).head(10) question_year = data[data.Year < 1980] question_year.describe()
code
74052794/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data.tail()
code
74052794/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.head()
code
74052794/cell_24
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] data = data.drop(question_dist.index) data = data.reset_index(drop=True) question_engine = data[data['Engine_capacity(cm3)'] < 200] data = data.drop(question_engine.index) data = data.reset_index(drop=True) data question_price = data[data['Price(euro)'] < 101] data = data.drop(question_price.index) data = data.reset_index(drop=True) data.describe()
code
74052794/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] question_dist.describe()
code
74052794/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/cars-moldova/cars.csv') data.duplicated().sum() data = data.drop_duplicates() data = data.reset_index(drop=True) question_dist = data[(data.Year < 2021) & (data.Distance < 1000)] data = data.drop(question_dist.index) data = data.reset_index(drop=True) question_engine = data[data['Engine_capacity(cm3)'] < 200] data = data.drop(question_engine.index) data = data.reset_index(drop=True) data question_price = data[data['Price(euro)'] < 101] question_price.describe()
code
128027676/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() df['sale'] = df['sale'].str.rstrip('%').astype('float') / 100.0
code
128027676/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum()
code
128027676/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df
code
128027676/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() corr = df.corr() furniture_type = df['type'].value_counts() plt.figure(figsize=(10, 15)) ax = sns.barplot(y=furniture_type.index[:10], x=furniture_type.values[:10]) for i in ax.containers: ax.bar_label(i) plt.title('The most popular furniture types', size=15) plt.show()
code
128027676/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df.info()
code
128027676/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() corr = df.corr() furniture_type = df['type'].value_counts() print(furniture_type) print(len(furniture_type))
code
128027676/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() corr = df.corr() sns.heatmap(corr, annot=True, linewidth=0.5)
code
128027676/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df
code
128027676/cell_15
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() for i in df.columns: print(f'{i:15}: {df[i].nunique()} unique values')
code
128027676/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() plt.figure(figsize=(12, 5)) sns.displot(df['rate']) plt.suptitle('Distribution of the rate') plt.show()
code
128027676/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() plt.figure(figsize=(12, 5)) sns.kdeplot(df['delivery'], color='b', shade=True) plt.suptitle('Distribution of the delivery') plt.show()
code
128027676/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() df.describe()
code
128027676/cell_22
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/furniture-price-prediction/Furniture Price Prediction.csv') df = df.drop('url', axis=1) df.isnull().sum() df = df.dropna() corr = df.corr() furniture_type = df['type'].value_counts() plt.figure(figsize=(10,15)) ax = sns.barplot(y = furniture_type.index[:10], x = furniture_type.values[:10]) for i in ax.containers: ax.bar_label(i,) plt.title("The most popular furniture types", size=15) plt.show() sns.scatterplot(x='price', y='delivery', data=df) plt.xlabel('Price') plt.ylabel('Delivery Price') plt.title('Relationship between Furniture Price and Delivery Price') plt.show()
code
72091432/cell_13
[ "text_plain_output_1.png" ]
from pyspark.ml import Pipeline from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') labelIndexer = StringIndexer(inputCol='acceptability', outputCol='label') buyIndexer = StringIndexer(inputCol='buying_price', outputCol='iBuyingPrice') id2 = StringIndexer(inputCol='maintenance_price', outputCol='iMain') id3 = StringIndexer(inputCol='number_of_doors', outputCol='iDoor') id4 = StringIndexer(inputCol='carry_capacity', outputCol='iCarry') id5 = StringIndexer(inputCol='trunk_size', outputCol='iTrunk') id6 = StringIndexer(inputCol='safety', outputCol='iSefety') indexedLabelTrain = labelIndexer.fit(train).transform(train) df2 = buyIndexer.fit(indexedLabelTrain).transform(indexedLabelTrain) df3 = id2.fit(df2).transform(df2) df4 = id3.fit(df3).transform(df3) df5 = id4.fit(df4).transform(df4) df6 = id5.fit(df5).transform(df5) df7 = id6.fit(df6).transform(df6) assembler = VectorAssembler(inputCols=['iBuyingPrice', 'iMain', 'iDoor', 'iCarry', 'iTrunk', 'iSefety'], outputCol='features') df8 = assembler.transform(df7) decission_tree_classifier_model = DecisionTreeClassifier(labelCol='label', featuresCol='features', maxDepth=10) decission_tree_classifier_model.fit(df8).transform(df8).select('car_id', 'prediction').show(2) pipeline = Pipeline(stages=[buyIndexer, id2, id3, id4, id5, id6, assembler, decission_tree_classifier_model]) testSolution = pipeline.fit(indexedLabelTrain).transform(test).select('car_id', 'prediction') labelsArray = ['unacc', 'acc', 'good', 'vgood'] testSolution = IndexToString(inputCol='prediction', outputCol='acceptability', labels=labelsArray).transform(testSolution) testSolution.show(5)
code
72091432/cell_9
[ "text_plain_output_1.png" ]
from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') labelIndexer = StringIndexer(inputCol='acceptability', outputCol='label') buyIndexer = StringIndexer(inputCol='buying_price', outputCol='iBuyingPrice') id2 = StringIndexer(inputCol='maintenance_price', outputCol='iMain') id3 = StringIndexer(inputCol='number_of_doors', outputCol='iDoor') id4 = StringIndexer(inputCol='carry_capacity', outputCol='iCarry') id5 = StringIndexer(inputCol='trunk_size', outputCol='iTrunk') id6 = StringIndexer(inputCol='safety', outputCol='iSefety') indexedLabelTrain = labelIndexer.fit(train).transform(train) df2 = buyIndexer.fit(indexedLabelTrain).transform(indexedLabelTrain) df3 = id2.fit(df2).transform(df2) df4 = id3.fit(df3).transform(df3) df5 = id4.fit(df4).transform(df4) df6 = id5.fit(df5).transform(df5) df7 = id6.fit(df6).transform(df6) assembler = VectorAssembler(inputCols=['iBuyingPrice', 'iMain', 'iDoor', 'iCarry', 'iTrunk', 'iSefety'], outputCol='features') df8 = assembler.transform(df7) decission_tree_classifier_model = DecisionTreeClassifier(labelCol='label', featuresCol='features', maxDepth=10) decission_tree_classifier_model.fit(df8).transform(df8).select('car_id', 'prediction').show(2)
code
72091432/cell_6
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') test.show(5)
code
72091432/cell_2
[ "text_plain_output_1.png" ]
!pip install pyspark
code
72091432/cell_11
[ "text_plain_output_1.png" ]
from pyspark.ml import Pipeline from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') labelIndexer = StringIndexer(inputCol='acceptability', outputCol='label') buyIndexer = StringIndexer(inputCol='buying_price', outputCol='iBuyingPrice') id2 = StringIndexer(inputCol='maintenance_price', outputCol='iMain') id3 = StringIndexer(inputCol='number_of_doors', outputCol='iDoor') id4 = StringIndexer(inputCol='carry_capacity', outputCol='iCarry') id5 = StringIndexer(inputCol='trunk_size', outputCol='iTrunk') id6 = StringIndexer(inputCol='safety', outputCol='iSefety') indexedLabelTrain = labelIndexer.fit(train).transform(train) df2 = buyIndexer.fit(indexedLabelTrain).transform(indexedLabelTrain) df3 = id2.fit(df2).transform(df2) df4 = id3.fit(df3).transform(df3) df5 = id4.fit(df4).transform(df4) df6 = id5.fit(df5).transform(df5) df7 = id6.fit(df6).transform(df6) assembler = VectorAssembler(inputCols=['iBuyingPrice', 'iMain', 'iDoor', 'iCarry', 'iTrunk', 'iSefety'], outputCol='features') df8 = assembler.transform(df7) decission_tree_classifier_model = DecisionTreeClassifier(labelCol='label', featuresCol='features', maxDepth=10) decission_tree_classifier_model.fit(df8).transform(df8).select('car_id', 'prediction').show(2) pipeline = Pipeline(stages=[buyIndexer, id2, id3, id4, id5, id6, assembler, decission_tree_classifier_model]) testSolution = pipeline.fit(indexedLabelTrain).transform(test).select('car_id', 'prediction') testSolution.show()
code
72091432/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72091432/cell_7
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') labelIndexer = StringIndexer(inputCol='acceptability', outputCol='label') buyIndexer = StringIndexer(inputCol='buying_price', outputCol='iBuyingPrice') id2 = StringIndexer(inputCol='maintenance_price', outputCol='iMain') id3 = StringIndexer(inputCol='number_of_doors', outputCol='iDoor') id4 = StringIndexer(inputCol='carry_capacity', outputCol='iCarry') id5 = StringIndexer(inputCol='trunk_size', outputCol='iTrunk') id6 = StringIndexer(inputCol='safety', outputCol='iSefety') indexedLabelTrain = labelIndexer.fit(train).transform(train) df2 = buyIndexer.fit(indexedLabelTrain).transform(indexedLabelTrain) df3 = id2.fit(df2).transform(df2) df4 = id3.fit(df3).transform(df3) df5 = id4.fit(df4).transform(df4) df6 = id5.fit(df5).transform(df5) df7 = id6.fit(df6).transform(df6) df7.show(5)
code
72091432/cell_8
[ "text_plain_output_1.png" ]
from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') labelIndexer = StringIndexer(inputCol='acceptability', outputCol='label') buyIndexer = StringIndexer(inputCol='buying_price', outputCol='iBuyingPrice') id2 = StringIndexer(inputCol='maintenance_price', outputCol='iMain') id3 = StringIndexer(inputCol='number_of_doors', outputCol='iDoor') id4 = StringIndexer(inputCol='carry_capacity', outputCol='iCarry') id5 = StringIndexer(inputCol='trunk_size', outputCol='iTrunk') id6 = StringIndexer(inputCol='safety', outputCol='iSefety') indexedLabelTrain = labelIndexer.fit(train).transform(train) df2 = buyIndexer.fit(indexedLabelTrain).transform(indexedLabelTrain) df3 = id2.fit(df2).transform(df2) df4 = id3.fit(df3).transform(df3) df5 = id4.fit(df4).transform(df4) df6 = id5.fit(df5).transform(df5) df7 = id6.fit(df6).transform(df6) assembler = VectorAssembler(inputCols=['iBuyingPrice', 'iMain', 'iDoor', 'iCarry', 'iTrunk', 'iSefety'], outputCol='features') df8 = assembler.transform(df7) df8.show(5)
code
72091432/cell_14
[ "text_plain_output_1.png" ]
from pyspark.ml import Pipeline from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') labelIndexer = StringIndexer(inputCol='acceptability', outputCol='label') buyIndexer = StringIndexer(inputCol='buying_price', outputCol='iBuyingPrice') id2 = StringIndexer(inputCol='maintenance_price', outputCol='iMain') id3 = StringIndexer(inputCol='number_of_doors', outputCol='iDoor') id4 = StringIndexer(inputCol='carry_capacity', outputCol='iCarry') id5 = StringIndexer(inputCol='trunk_size', outputCol='iTrunk') id6 = StringIndexer(inputCol='safety', outputCol='iSefety') indexedLabelTrain = labelIndexer.fit(train).transform(train) df2 = buyIndexer.fit(indexedLabelTrain).transform(indexedLabelTrain) df3 = id2.fit(df2).transform(df2) df4 = id3.fit(df3).transform(df3) df5 = id4.fit(df4).transform(df4) df6 = id5.fit(df5).transform(df5) df7 = id6.fit(df6).transform(df6) assembler = VectorAssembler(inputCols=['iBuyingPrice', 'iMain', 'iDoor', 'iCarry', 'iTrunk', 'iSefety'], outputCol='features') df8 = assembler.transform(df7) decission_tree_classifier_model = DecisionTreeClassifier(labelCol='label', featuresCol='features', maxDepth=10) decission_tree_classifier_model.fit(df8).transform(df8).select('car_id', 'prediction').show(2) pipeline = Pipeline(stages=[buyIndexer, id2, id3, id4, id5, id6, assembler, decission_tree_classifier_model]) testSolution = pipeline.fit(indexedLabelTrain).transform(test).select('car_id', 'prediction') labelsArray = ['unacc', 'acc', 'good', 'vgood'] testSolution = IndexToString(inputCol='prediction', outputCol='acceptability', labels=labelsArray).transform(testSolution) solutions = testSolution.select('car_id', 'acceptability') solutions.show()
code
72091432/cell_5
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession import pandas as pd import pyspark from pyspark.ml.classification import DecisionTreeClassifier from pyspark.ml.linalg import Vectors from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, VectorIndexer, StringIndexerModel, IndexToString spark = SparkSession.builder.getOrCreate() train = spark.read.format('csv').load('/kaggle/input/dataset/train.csv', header='True', inferSchema='True') test = spark.read.format('csv').load('/kaggle/input/dataset/test.csv', header='True', inferSchema='True') train.show(5)
code
1006176/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df = train_df[pd.isnull(train_df['Age']) == False] features = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) labels = train_df['Survived'] n_samples = len(train_df) n_features = len(features.columns) n_survived = labels.value_counts()[1] n_died = labels.value_counts()[0] features.head(n=20)
code
1006176/cell_6
[ "text_plain_output_1.png" ]
from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df = train_df[pd.isnull(train_df['Age']) == False] features = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) labels = train_df['Survived'] n_samples = len(train_df) n_features = len(features.columns) n_survived = labels.value_counts()[1] n_died = labels.value_counts()[0] processed_features = pd.DataFrame(index=features.index) for col, col_data in features.iteritems(): if col == 'Sex': col_data = col_data.replace(['male', 'female'], [1, 0]) if col == 'Embarked' or col == 'Cabin': col_data = pd.get_dummies(col_data, prefix=col) processed_features = processed_features.join(col_data) from sklearn.linear_model import LogisticRegressionCV from sklearn.tree import DecisionTreeClassifier from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score classifiers = [('Linear SVC', LinearSVC()), ('Decision Tree', DecisionTreeClassifier()), ('Multinomial NB', MultinomialNB())] random_score = float(max(n_survived, n_died)) / float(n_samples) print('Random score: {:.4f}'.format(random_score)) for title, clf in classifiers: score = np.mean(cross_val_score(clf, processed_features, labels, cv=5)) print('{} score: {:.4f}'.format(title, score))
code
1006176/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1006176/cell_7
[ "text_plain_output_1.png" ]
from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df = train_df[pd.isnull(train_df['Age']) == False] features = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) labels = train_df['Survived'] n_samples = len(train_df) n_features = len(features.columns) n_survived = labels.value_counts()[1] n_died = labels.value_counts()[0] processed_features = pd.DataFrame(index=features.index) for col, col_data in features.iteritems(): if col == 'Sex': col_data = col_data.replace(['male', 'female'], [1, 0]) if col == 'Embarked' or col == 'Cabin': col_data = pd.get_dummies(col_data, prefix=col) processed_features = processed_features.join(col_data) from sklearn.linear_model import LogisticRegressionCV from sklearn.tree import DecisionTreeClassifier from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score classifiers = [('Linear SVC', LinearSVC()), ('Decision Tree', DecisionTreeClassifier()), ('Multinomial NB', MultinomialNB())] random_score = float(max(n_survived, n_died)) / float(n_samples) for title, clf in classifiers: score = np.mean(cross_val_score(clf, processed_features, labels, cv=5)) scores = [] for max_depth in range(1, 10): clf = DecisionTreeClassifier(max_depth=max_depth) score = np.mean(cross_val_score(clf, processed_features, labels, cv=5)) print('Max depth of {}: {:.4f}'.format(max_depth, score)) scores.append((max_depth, score))
code
1006176/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df = train_df[pd.isnull(train_df['Age']) == False] features = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) labels = train_df['Survived'] n_samples = len(train_df) n_features = len(features.columns) n_survived = labels.value_counts()[1] n_died = labels.value_counts()[0] processed_features = pd.DataFrame(index=features.index) for col, col_data in features.iteritems(): if col == 'Sex': col_data = col_data.replace(['male', 'female'], [1, 0]) if col == 'Embarked' or col == 'Cabin': col_data = pd.get_dummies(col_data, prefix=col) processed_features = processed_features.join(col_data) from sklearn.linear_model import LogisticRegressionCV from sklearn.tree import DecisionTreeClassifier from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score classifiers = [('Linear SVC', LinearSVC()), ('Decision Tree', DecisionTreeClassifier()), ('Multinomial NB', MultinomialNB())] random_score = float(max(n_survived, n_died)) / float(n_samples) for title, clf in classifiers: score = np.mean(cross_val_score(clf, processed_features, labels, cv=5)) scores = [] for max_depth in range(1, 10): clf = DecisionTreeClassifier(max_depth=max_depth) score = np.mean(cross_val_score(clf, processed_features, labels, cv=5)) scores.append((max_depth, score)) plt.plot(scores)
code
1006176/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df = train_df[pd.isnull(train_df['Age']) == False] features = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) labels = train_df['Survived'] n_samples = len(train_df) n_features = len(features.columns) n_survived = labels.value_counts()[1] n_died = labels.value_counts()[0] print('Number of training samples: {}'.format(n_samples)) print('Number of features: {}'.format(n_features)) print('Number of survivors: {}'.format(n_survived)) print('Number of deaths: {}'.format(n_died))
code
1006176/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df = train_df[pd.isnull(train_df['Age']) == False] features = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) labels = train_df['Survived'] n_samples = len(train_df) n_features = len(features.columns) n_survived = labels.value_counts()[1] n_died = labels.value_counts()[0] processed_features = pd.DataFrame(index=features.index) for col, col_data in features.iteritems(): if col == 'Sex': col_data = col_data.replace(['male', 'female'], [1, 0]) if col == 'Embarked' or col == 'Cabin': col_data = pd.get_dummies(col_data, prefix=col) processed_features = processed_features.join(col_data) processed_features.head(n=20)
code
17103363/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) df_train.popularity.describe()
code
17103363/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) for j, k in enumerate(df_train['genres'][:5]): print(j, k)
code
17103363/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train['revenue'].min()
code
17103363/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.head()
code
17103363/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) sns.distplot(df_train.popularity)
code
17103363/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns)
code
17103363/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() for j, k in enumerate(df_train['belongs_to_collection'][:5]): print(j, k)
code
17103363/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) df_train.revenue.describe()
code
17103363/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os print(os.listdir('../input'))
code
17103363/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum()
code
17103363/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) sns.distplot(df_train.revenue)
code
17103363/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any()
code
17103363/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) sns.jointplot(x='budget', y='revenue', data=df_train, height=8, ratio=5, color='b') plt.show()
code
17103363/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) sns.jointplot(x='popularity', y='revenue', data=df_train, height=8, ratio=5, color='b') plt.show()
code
17103363/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.info()
code
17103363/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) sns.jointplot(x='runtime', y='revenue', data=df_train, height=8, ratio=5, color='b') plt.show()
code
17103363/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) df_train['logRevenue'] = np.log1p(df_train['revenue']) df_train[['release_month', 'release_day', 'release_year']] = df_train['release_date'].str.split('/', expand=True).replace(np.nan, -1).astype(int) df_train.loc[(df_train['release_year'] <= 19) & (df_train['release_year'] < 100), 'release_year'] += 2000 df_train.loc[(df_train['release_year'] > 19) & (df_train['release_year'] < 100), 'release_year'] += 1900 releaseDate = pd.to_datetime(df_train['release_date']) df_train['release_dayofweek'] = releaseDate.dt.dayofweek df_train['release_quarter'] = releaseDate.dt.quarter plt.figure(figsize=(25, 15)) sns.countplot(df_train['release_year'].sort_values()) plt.title('Movie Release count by Year', fontsize=25) loc, labels = plt.xticks() plt.xticks(fontsize=15, rotation=90) plt.show()
code
17103363/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) for j, k in enumerate(df_train['production_countries'][:10]): print(j, k)
code
17103363/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train1 = df_train.drop(['belongs_to_collection'], axis=1) df_test = df_test.drop(['belongs_to_collection'], axis=1) df_train['logRevenue'] = np.log1p(df_train['revenue']) sns.distplot(df_train['logRevenue'])
code
17103363/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') list(df_train.columns) df_train.isna().sum() df_train.isnull().any().any() df_train['revenue'].max()
code
17103363/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') print(df_train.shape, df_test.shape)
code
18111717/cell_21
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier drugTree = DecisionTreeClassifier(criterion='entropy', max_depth=4) drugTree.fit(x_train, y_train)
code
18111717/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/drug200.csv', delimiter=',') df.dropna df.head()
code
18111717/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18111717/cell_18
[ "text_html_output_1.png" ]
print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape)
code
18111717/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/drug200.csv', delimiter=',') df.dropna from sklearn.tree import DecisionTreeClassifier X = df[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']].values X
code
18111717/cell_24
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.tree import DecisionTreeClassifier drugTree = DecisionTreeClassifier(criterion='entropy', max_depth=4) drugTree.fit(x_train, y_train) y_predict = drugTree.predict(x_test) y_predict from sklearn import metrics import matplotlib.pyplot as plt metrics.accuracy_score(y_test, y_predict)
code
18111717/cell_22
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier drugTree = DecisionTreeClassifier(criterion='entropy', max_depth=4) drugTree.fit(x_train, y_train) y_predict = drugTree.predict(x_test) y_predict
code
18111717/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/drug200.csv', delimiter=',') df.dropna from sklearn.tree import DecisionTreeClassifier X = df[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']].values X X[:5]
code
18111717/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/drug200.csv', delimiter=',') df.dropna
code
105193696/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['month'].value_counts().plot(kind='bar', figsize=(16, 10))
code
105193696/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking['race_date'].value_counts()
code
105193696/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum()
code
105193696/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start
code