path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
105206399/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
def check(df):
l = []
columns = df.columns
for col in columns:
dtypes = df[col].dtypes
nunique = df[col].nunique()
sum_null = df[col].isnull().sum()
l.append([col, dtypes, nunique, sum_null])
df_check = pd.DataFrame(l)
df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null']
return df_check
check(df_cars) | code |
105206399/cell_45 | [
"text_html_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train) | code |
105206399/cell_49 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train)
rid.score(x_train, y_train)
rid.score(x_test, y_test)
rid.intercept_
rid.coef_ | code |
105206399/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.isnull().sum()
df_cars.duplicated().sum()
df_cars.columns
df_cars.drop('car_ID', axis=1, inplace=True)
df_cars.CarName.unique() | code |
105206399/cell_59 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train)
from sklearn import linear_model
lass = linear_model.Lasso(alpha=0.6)
lass.fit(x_train, y_train)
lass.score(x_train, y_train)
lass.score(x_test, y_test)
lass.intercept_ | code |
105206399/cell_58 | [
"image_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train)
from sklearn import linear_model
lass = linear_model.Lasso(alpha=0.6)
lass.fit(x_train, y_train)
lass.score(x_train, y_train)
lass.score(x_test, y_test) | code |
105206399/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.head() | code |
105206399/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.isnull().sum()
df_cars.duplicated().sum()
df_cars.columns
df_cars.drop('car_ID', axis=1, inplace=True)
df_cars.hist(bins=40, figsize=(20, 15), color='b') | code |
105206399/cell_38 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_train, y_train)
reg.score(x_test, y_test)
reg.intercept_
reg.coef_ | code |
105206399/cell_47 | [
"image_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train)
rid.score(x_train, y_train)
rid.score(x_test, y_test) | code |
105206399/cell_35 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_train, y_train) | code |
105206399/cell_43 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
def check(df):
l = []
columns = df.columns
for col in columns:
dtypes = df[col].dtypes
nunique = df[col].nunique()
sum_null = df[col].isnull().sum()
l.append([col, dtypes, nunique, sum_null])
df_check = pd.DataFrame(l)
df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null']
return df_check
check(df_cars)
df_cars.isnull().sum()
df_cars.duplicated().sum()
df_cars.columns
df_cars.drop('car_ID', axis=1, inplace=True)
df_cars.CarName.unique()
df_cars.CarName.unique()
categorical_cols = df_cars.select_dtypes(include=['object']).columns
c = df_cars.corr()
cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']]
x = cars.drop('price', axis=1).values
y = cars['price'].values
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_train, y_train)
reg.score(x_test, y_test)
reg.intercept_
reg.coef_
pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients'])
y_pred_1 = reg.predict(x_test)
df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1})
plt.figure(figsize=(10, 8))
plt.plot(df_1[:50])
plt.legend(['Actualy', 'predicted']) | code |
105206399/cell_46 | [
"text_html_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train)
rid.score(x_train, y_train) | code |
105206399/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.isnull().sum()
df_cars.duplicated().sum()
df_cars.columns | code |
105206399/cell_22 | [
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.isnull().sum()
df_cars.duplicated().sum()
df_cars.columns
df_cars.drop('car_ID', axis=1, inplace=True)
df_cars.CarName.unique()
df_cars.CarName.unique()
categorical_cols = df_cars.select_dtypes(include=['object']).columns
for i in categorical_cols:
print(i, 'unique values')
print('-----------------------------------')
print(df_cars[i].unique())
print('-----------------------------------------------------------------------------') | code |
105206399/cell_53 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
def check(df):
l = []
columns = df.columns
for col in columns:
dtypes = df[col].dtypes
nunique = df[col].nunique()
sum_null = df[col].isnull().sum()
l.append([col, dtypes, nunique, sum_null])
df_check = pd.DataFrame(l)
df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null']
return df_check
check(df_cars)
df_cars.isnull().sum()
df_cars.duplicated().sum()
df_cars.columns
df_cars.drop('car_ID', axis=1, inplace=True)
df_cars.CarName.unique()
df_cars.CarName.unique()
categorical_cols = df_cars.select_dtypes(include=['object']).columns
c = df_cars.corr()
cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']]
x = cars.drop('price', axis=1).values
y = cars['price'].values
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_train, y_train)
reg.score(x_test, y_test)
reg.intercept_
reg.coef_
pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients'])
y_pred_1 = reg.predict(x_test)
df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1})
from sklearn import linear_model
rid = linear_model.Ridge(alpha=0.9)
rid.fit(x_train, y_train)
rid.score(x_train, y_train)
rid.score(x_test, y_test)
rid.intercept_
rid.coef_
pd.DataFrame(rid.coef_, cars.columns[:-1], columns=['coeficients'])
y_pred_2 = rid.predict(x_test)
df_2 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_2})
df_2.head(10) | code |
105206399/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.isnull().sum() | code |
105206399/cell_37 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_train, y_train)
reg.score(x_test, y_test)
reg.intercept_ | code |
105206399/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df_cars = data.copy()
df_cars.isnull().sum()
df_cars.duplicated().sum() | code |
105206399/cell_36 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn import linear_model
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import RobustScaler
ro_scaler = RobustScaler()
x_train = ro_scaler.fit_transform(x_train)
x_test = ro_scaler.fit_transform(x_test)
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_train, y_train)
reg.score(x_test, y_test) | code |
33108902/cell_2 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33108902/cell_15 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import mean_absolute_error
final_model = RandomForestClassifier(max_leaf_nodes=7, random_state=0)
y_pred = final_model.fit(x_treino, y_treino)
accuracy = final_model.score(x_teste, y_teste)
print(accuracy) | code |
33108902/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_absolute_error
from sklearn.tree import DecisionTreeRegressor
def get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y):
model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0)
model.fit(train_X, train_y)
preds_val = model.predict(val_X)
mae = mean_absolute_error(val_y, preds_val)
return mae
candidate_max_leaf_nodes = [5, 25, 30, 40, 50, 100, 250, 500]
best_value = 0
controle = 0
for max_leaf_nodes in candidate_max_leaf_nodes:
my_mae = get_mae(max_leaf_nodes, x_treino, x_teste, y_treino, y_teste)
if best_value == 0:
controle = my_mae
best_value = max_leaf_nodes
elif controle > my_mae:
controle = my_mae
best_value = max_leaf_nodes
best_tree_size = best_value
best_tree_size | code |
33108902/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
import numpy as np
arquivos_de_treino = pd.read_csv('/kaggle/input/titanic/train.csv')
arquivos_de_teste = pd.read_csv('/kaggle/input/titanic/test.csv')
arquivos_de_treino = arquivos_de_treino.replace(np.nan, 0)
arquivos_de_teste = arquivos_de_teste.replace(np.nan, 0)
arquivos_de_treino.head() | code |
324947/cell_13 | [
"text_plain_output_1.png"
] | from collections import Counter
import numpy as np
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
print('Player Y value: # of instances in database (home players)')
Counter(Y) | code |
324947/cell_23 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
df = pd.read_sql(sql='SELECT {} FROM Match'.format('id, country_id, league_id, season, stage, ' + 'date, home_team_api_id, away_team_api_id, ' + 'home_team_goal, away_team_goal'), con=conn)
df.head() | code |
324947/cell_30 | [
"text_plain_output_1.png"
] | from collections import Counter
import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
Counter(Y)
EA_stats = {'player': ', '.join(['overall_rating']), 'goalie': ', '.join(['gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'])}
def getTeamScores(match_id, team, EA_stats, printout=False, group='forward_mid_defense_goalie'):
""" Return the cumulative average team scores for
a given EA Sports FIFA statistic. If particular EA
stats are not in the database that stat is taken as
the overall player rating. If any positional stat is
unavailable (i.e. no goalie information) that stat is
taken as the average of the others for that team.
team : str
'home' or 'away'
EA_stat : dict
Names of statistics to cumulate for goalie and players.
e.g. {'player': 'overall_rating, heading_accuracy',
'goalie': 'gk_diving, gk_handling'}
printout : boolean
Option to print out debug information,
defaults to False.
group : str
How to group scores:
'forward_mid_defense_goalie': output 4 values
'all': output 1 value (currently not implemented)
"""
if team == 'home':
player_cols = ', '.join(['home_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['home_player_Y' + str(i) for i in range(1, 12)])
elif team == 'away':
player_cols = ', '.join(['away_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['away_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_cols, match_id))
player_api_id = np.array(c.fetchall()[0])
if False not in [p == 0 or p == None for p in player_api_id]:
return {'F': np.array([np.nan]), 'M': np.array([np.nan]), 'D': np.array([np.nan]), 'G': np.array([np.nan])}
empty_mask = player_api_id != np.array(None)
player_api_id = player_api_id[empty_mask]
player_Y_cols = ', '.join(player_Y_cols[empty_mask])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_Y_cols, match_id))
player_Y = c.fetchall()[0]
def givePosition(Y):
""" Input the Y position of the player (as opposed
to the lateral X position) and return the categorical
position. """
if Y == 1:
return 'G'
elif Y == 3:
return 'D'
elif Y == 5 or Y == 6 or Y == 7:
return 'M'
elif Y == 8 or Y == 9 or Y == 10 or (Y == 11):
return 'F'
else:
return 'NaN'
player_pos = np.array([givePosition(Y) for Y in player_Y])
def toDatetime(datetime):
""" Convert string date to datetime object. """
return dt.datetime.strptime(datetime, '%Y-%m-%d %H:%M:%S')
c.execute('SELECT date FROM Match WHERE id={}'.format(match_id))
match_date = toDatetime(c.fetchall()[0][0])
def getBestDate(player_id, match_date):
""" Find most suitable player stats to use based
on date of match and return the corresponding row
id from the Player_Stats table. """
c.execute('SELECT id FROM Player_Stats WHERE player_api_id={}'.format(player_id))
ids = np.array([i[0] for i in c.fetchall()])
c.execute('SELECT date_stat FROM Player_Stats WHERE player_api_id={}'.format(player_id))
dates = [toDatetime(d[0]) for d in c.fetchall()]
dates_delta = np.array([abs(d - match_date) for d in dates])
return ids[dates_delta == dates_delta.min()][0]
def fill_empty_stats(stats, stat_names):
""" Input the incomplete EA player stats and corresponing
names, return the filled in stats list. Filling with
overall_rating or averaging otherwise (i.e. for goalies
where there is no overall_rating stat). """
if not np.sum([s == 0 or s == None for s in stats]):
return stats
stats_dict = {sn: s for sn, s in zip(stat_names, stats)}
try:
fill = stats_dict['overall_rating']
except:
fill = np.mean([s for s in stats if s != 0 and s != None])
filled_stats = []
for s in stats:
if s == None or s == 0:
filled_stats.append(fill)
else:
filled_stats.append(s)
return filled_stats
positions = ('G', 'D', 'M', 'F')
average_stats = {}
for position in positions:
if position == 'G':
stats = EA_stats['goalie']
else:
stats = EA_stats['player']
position_ids = player_api_id[player_pos == position]
average_stats[position] = np.zeros(len(stats.split(',')))
for player_id in position_ids:
best_date_id = getBestDate(player_id, match_date)
c.execute('SELECT {0:s} FROM Player_Stats WHERE id={1:d}'.format(stats, best_date_id))
query = np.array(c.fetchall()[0])
query = fill_empty_stats(query, stats.split(', '))
if sum([q == None or q == 0 for q in query]):
raise LookupError('Found null EA stats entry at stat_id={}'.format(best_date_id))
average_stats[position] += query
average_stats[position] /= len(position_ids)
try:
average_stats['G'] = np.array([average_stats['G'].mean()])
except:
pass
insert_value = np.mean([v[0] for v in average_stats.values() if not np.isnan(v)])
for k, v in average_stats.items():
if np.isnan(v[0]):
average_stats[k] = np.array([insert_value])
return average_stats
all_ids = c.execute('SELECT id FROM Match').fetchall()
all_ids = [i[0] for i in sorted(all_ids)]
hF, hM, hD, hG = ([], [], [], [])
aF, aM, aD, aG = ([], [], [], [])
for i in all_ids:
h_stats = getTeamScores(i, 'home', EA_stats, printout=False)
hF.append(h_stats['F'][0])
hM.append(h_stats['M'][0])
hD.append(h_stats['D'][0])
hG.append(h_stats['G'][0])
a_stats = getTeamScores(i, 'away', EA_stats, printout=False)
aF.append(a_stats['F'][0])
aM.append(a_stats['M'][0])
aD.append(a_stats['D'][0])
aG.append(a_stats['G'][0])
df = pd.read_sql(sql='SELECT {} FROM Match'.format('id, country_id, league_id, season, stage, ' + 'date, home_team_api_id, away_team_api_id, ' + 'home_team_goal, away_team_goal'), con=conn)
features = ['home_F_stats', 'home_M_stats', 'home_D_stats', 'home_G_stats', 'away_F_stats', 'away_M_stats', 'away_D_stats', 'away_G_stats']
data = [hF, hM, hD, hG, aF, aM, aD, aG]
for f, d in zip(features, data):
df[f] = d
df = df.dropna()
H = lambda x: x[0] > x[1]
D = lambda x: x[0] == x[1]
A = lambda x: x[0] < x[1]
state, result = ([], [])
for goals in df[['home_team_goal', 'away_team_goal']].values:
r = np.array([H(goals), D(goals), A(goals)])
state.append(r)
if (r == [1, 0, 0]).sum() == 3:
result.append(1)
elif (r == [0, 1, 0]).sum() == 3:
result.append(2)
elif (r == [0, 0, 1]).sum() == 3:
result.append(3)
df['game_state'] = state
df['game_result'] = result
df['date'] = pd.to_datetime(df['date'])
df['country'] = df['country_id'].map(id_country)
df['league'] = df['league_id'].map(id_league)
f = lambda x: np.mean(x)
df['home_mean_stats'] = list(map(f, df[['home_F_stats', 'home_M_stats', 'home_D_stats', 'home_G_stats']].values))
df['away_mean_stats'] = list(map(f, df[['away_F_stats', 'away_M_stats', 'away_D_stats', 'away_G_stats']].values))
df.dtypes
sns.pairplot(data=df[features])
plt.suptitle('EA Sports FIFA positional game ratings correlations', fontsize=30, y=1.02)
plt.show() | code |
324947/cell_33 | [
"image_output_1.png"
] | from collections import Counter
import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
Counter(Y)
EA_stats = {'player': ', '.join(['overall_rating']), 'goalie': ', '.join(['gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'])}
def getTeamScores(match_id, team, EA_stats, printout=False, group='forward_mid_defense_goalie'):
""" Return the cumulative average team scores for
a given EA Sports FIFA statistic. If particular EA
stats are not in the database that stat is taken as
the overall player rating. If any positional stat is
unavailable (i.e. no goalie information) that stat is
taken as the average of the others for that team.
team : str
'home' or 'away'
EA_stat : dict
Names of statistics to cumulate for goalie and players.
e.g. {'player': 'overall_rating, heading_accuracy',
'goalie': 'gk_diving, gk_handling'}
printout : boolean
Option to print out debug information,
defaults to False.
group : str
How to group scores:
'forward_mid_defense_goalie': output 4 values
'all': output 1 value (currently not implemented)
"""
if team == 'home':
player_cols = ', '.join(['home_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['home_player_Y' + str(i) for i in range(1, 12)])
elif team == 'away':
player_cols = ', '.join(['away_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['away_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_cols, match_id))
player_api_id = np.array(c.fetchall()[0])
if False not in [p == 0 or p == None for p in player_api_id]:
return {'F': np.array([np.nan]), 'M': np.array([np.nan]), 'D': np.array([np.nan]), 'G': np.array([np.nan])}
empty_mask = player_api_id != np.array(None)
player_api_id = player_api_id[empty_mask]
player_Y_cols = ', '.join(player_Y_cols[empty_mask])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_Y_cols, match_id))
player_Y = c.fetchall()[0]
def givePosition(Y):
""" Input the Y position of the player (as opposed
to the lateral X position) and return the categorical
position. """
if Y == 1:
return 'G'
elif Y == 3:
return 'D'
elif Y == 5 or Y == 6 or Y == 7:
return 'M'
elif Y == 8 or Y == 9 or Y == 10 or (Y == 11):
return 'F'
else:
return 'NaN'
player_pos = np.array([givePosition(Y) for Y in player_Y])
def toDatetime(datetime):
""" Convert string date to datetime object. """
return dt.datetime.strptime(datetime, '%Y-%m-%d %H:%M:%S')
c.execute('SELECT date FROM Match WHERE id={}'.format(match_id))
match_date = toDatetime(c.fetchall()[0][0])
def getBestDate(player_id, match_date):
""" Find most suitable player stats to use based
on date of match and return the corresponding row
id from the Player_Stats table. """
c.execute('SELECT id FROM Player_Stats WHERE player_api_id={}'.format(player_id))
ids = np.array([i[0] for i in c.fetchall()])
c.execute('SELECT date_stat FROM Player_Stats WHERE player_api_id={}'.format(player_id))
dates = [toDatetime(d[0]) for d in c.fetchall()]
dates_delta = np.array([abs(d - match_date) for d in dates])
return ids[dates_delta == dates_delta.min()][0]
def fill_empty_stats(stats, stat_names):
""" Input the incomplete EA player stats and corresponing
names, return the filled in stats list. Filling with
overall_rating or averaging otherwise (i.e. for goalies
where there is no overall_rating stat). """
if not np.sum([s == 0 or s == None for s in stats]):
return stats
stats_dict = {sn: s for sn, s in zip(stat_names, stats)}
try:
fill = stats_dict['overall_rating']
except:
fill = np.mean([s for s in stats if s != 0 and s != None])
filled_stats = []
for s in stats:
if s == None or s == 0:
filled_stats.append(fill)
else:
filled_stats.append(s)
return filled_stats
positions = ('G', 'D', 'M', 'F')
average_stats = {}
for position in positions:
if position == 'G':
stats = EA_stats['goalie']
else:
stats = EA_stats['player']
position_ids = player_api_id[player_pos == position]
average_stats[position] = np.zeros(len(stats.split(',')))
for player_id in position_ids:
best_date_id = getBestDate(player_id, match_date)
c.execute('SELECT {0:s} FROM Player_Stats WHERE id={1:d}'.format(stats, best_date_id))
query = np.array(c.fetchall()[0])
query = fill_empty_stats(query, stats.split(', '))
if sum([q == None or q == 0 for q in query]):
raise LookupError('Found null EA stats entry at stat_id={}'.format(best_date_id))
average_stats[position] += query
average_stats[position] /= len(position_ids)
try:
average_stats['G'] = np.array([average_stats['G'].mean()])
except:
pass
insert_value = np.mean([v[0] for v in average_stats.values() if not np.isnan(v)])
for k, v in average_stats.items():
if np.isnan(v[0]):
average_stats[k] = np.array([insert_value])
return average_stats
all_ids = c.execute('SELECT id FROM Match').fetchall()
all_ids = [i[0] for i in sorted(all_ids)]
hF, hM, hD, hG = ([], [], [], [])
aF, aM, aD, aG = ([], [], [], [])
for i in all_ids:
h_stats = getTeamScores(i, 'home', EA_stats, printout=False)
hF.append(h_stats['F'][0])
hM.append(h_stats['M'][0])
hD.append(h_stats['D'][0])
hG.append(h_stats['G'][0])
a_stats = getTeamScores(i, 'away', EA_stats, printout=False)
aF.append(a_stats['F'][0])
aM.append(a_stats['M'][0])
aD.append(a_stats['D'][0])
aG.append(a_stats['G'][0])
df = pd.read_sql(sql='SELECT {} FROM Match'.format('id, country_id, league_id, season, stage, ' + 'date, home_team_api_id, away_team_api_id, ' + 'home_team_goal, away_team_goal'), con=conn)
features = ['home_F_stats', 'home_M_stats', 'home_D_stats', 'home_G_stats', 'away_F_stats', 'away_M_stats', 'away_D_stats', 'away_G_stats']
data = [hF, hM, hD, hG, aF, aM, aD, aG]
for f, d in zip(features, data):
df[f] = d
df = df.dropna()
H = lambda x: x[0] > x[1]
D = lambda x: x[0] == x[1]
A = lambda x: x[0] < x[1]
state, result = ([], [])
for goals in df[['home_team_goal', 'away_team_goal']].values:
r = np.array([H(goals), D(goals), A(goals)])
state.append(r)
if (r == [1, 0, 0]).sum() == 3:
result.append(1)
elif (r == [0, 1, 0]).sum() == 3:
result.append(2)
elif (r == [0, 0, 1]).sum() == 3:
result.append(3)
df['game_state'] = state
df['game_result'] = result
df['date'] = pd.to_datetime(df['date'])
df['country'] = df['country_id'].map(id_country)
df['league'] = df['league_id'].map(id_league)
f = lambda x: np.mean(x)
df['home_mean_stats'] = list(map(f, df[['home_F_stats', 'home_M_stats', 'home_D_stats', 'home_G_stats']].values))
df['away_mean_stats'] = list(map(f, df[['away_F_stats', 'away_M_stats', 'away_D_stats', 'away_G_stats']].values))
df.dtypes
df.date.hist(bins=100)
plt.title('Frequency of games in all countries')
plot_width = (df.date.max() - df.date.min()).days
bin_width = plot_width / 100
print('bin_width = {0:.1f} days'.format(bin_width))
plt.show() | code |
324947/cell_26 | [
"text_html_output_1.png"
] | from collections import Counter
import datetime as dt
import numpy as np
import pandas as pd
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
Counter(Y)
EA_stats = {'player': ', '.join(['overall_rating']), 'goalie': ', '.join(['gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'])}
def getTeamScores(match_id, team, EA_stats, printout=False, group='forward_mid_defense_goalie'):
""" Return the cumulative average team scores for
a given EA Sports FIFA statistic. If particular EA
stats are not in the database that stat is taken as
the overall player rating. If any positional stat is
unavailable (i.e. no goalie information) that stat is
taken as the average of the others for that team.
team : str
'home' or 'away'
EA_stat : dict
Names of statistics to cumulate for goalie and players.
e.g. {'player': 'overall_rating, heading_accuracy',
'goalie': 'gk_diving, gk_handling'}
printout : boolean
Option to print out debug information,
defaults to False.
group : str
How to group scores:
'forward_mid_defense_goalie': output 4 values
'all': output 1 value (currently not implemented)
"""
if team == 'home':
player_cols = ', '.join(['home_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['home_player_Y' + str(i) for i in range(1, 12)])
elif team == 'away':
player_cols = ', '.join(['away_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['away_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_cols, match_id))
player_api_id = np.array(c.fetchall()[0])
if False not in [p == 0 or p == None for p in player_api_id]:
return {'F': np.array([np.nan]), 'M': np.array([np.nan]), 'D': np.array([np.nan]), 'G': np.array([np.nan])}
empty_mask = player_api_id != np.array(None)
player_api_id = player_api_id[empty_mask]
player_Y_cols = ', '.join(player_Y_cols[empty_mask])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_Y_cols, match_id))
player_Y = c.fetchall()[0]
def givePosition(Y):
""" Input the Y position of the player (as opposed
to the lateral X position) and return the categorical
position. """
if Y == 1:
return 'G'
elif Y == 3:
return 'D'
elif Y == 5 or Y == 6 or Y == 7:
return 'M'
elif Y == 8 or Y == 9 or Y == 10 or (Y == 11):
return 'F'
else:
return 'NaN'
player_pos = np.array([givePosition(Y) for Y in player_Y])
def toDatetime(datetime):
""" Convert string date to datetime object. """
return dt.datetime.strptime(datetime, '%Y-%m-%d %H:%M:%S')
c.execute('SELECT date FROM Match WHERE id={}'.format(match_id))
match_date = toDatetime(c.fetchall()[0][0])
def getBestDate(player_id, match_date):
""" Find most suitable player stats to use based
on date of match and return the corresponding row
id from the Player_Stats table. """
c.execute('SELECT id FROM Player_Stats WHERE player_api_id={}'.format(player_id))
ids = np.array([i[0] for i in c.fetchall()])
c.execute('SELECT date_stat FROM Player_Stats WHERE player_api_id={}'.format(player_id))
dates = [toDatetime(d[0]) for d in c.fetchall()]
dates_delta = np.array([abs(d - match_date) for d in dates])
return ids[dates_delta == dates_delta.min()][0]
def fill_empty_stats(stats, stat_names):
""" Input the incomplete EA player stats and corresponing
names, return the filled in stats list. Filling with
overall_rating or averaging otherwise (i.e. for goalies
where there is no overall_rating stat). """
if not np.sum([s == 0 or s == None for s in stats]):
return stats
stats_dict = {sn: s for sn, s in zip(stat_names, stats)}
try:
fill = stats_dict['overall_rating']
except:
fill = np.mean([s for s in stats if s != 0 and s != None])
filled_stats = []
for s in stats:
if s == None or s == 0:
filled_stats.append(fill)
else:
filled_stats.append(s)
return filled_stats
positions = ('G', 'D', 'M', 'F')
average_stats = {}
for position in positions:
if position == 'G':
stats = EA_stats['goalie']
else:
stats = EA_stats['player']
position_ids = player_api_id[player_pos == position]
average_stats[position] = np.zeros(len(stats.split(',')))
for player_id in position_ids:
best_date_id = getBestDate(player_id, match_date)
c.execute('SELECT {0:s} FROM Player_Stats WHERE id={1:d}'.format(stats, best_date_id))
query = np.array(c.fetchall()[0])
query = fill_empty_stats(query, stats.split(', '))
if sum([q == None or q == 0 for q in query]):
raise LookupError('Found null EA stats entry at stat_id={}'.format(best_date_id))
average_stats[position] += query
average_stats[position] /= len(position_ids)
try:
average_stats['G'] = np.array([average_stats['G'].mean()])
except:
pass
insert_value = np.mean([v[0] for v in average_stats.values() if not np.isnan(v)])
for k, v in average_stats.items():
if np.isnan(v[0]):
average_stats[k] = np.array([insert_value])
return average_stats
df = pd.read_sql(sql='SELECT {} FROM Match'.format('id, country_id, league_id, season, stage, ' + 'date, home_team_api_id, away_team_api_id, ' + 'home_team_goal, away_team_goal'), con=conn)
df = df.dropna()
H = lambda x: x[0] > x[1]
D = lambda x: x[0] == x[1]
A = lambda x: x[0] < x[1]
state, result = ([], [])
for goals in df[['home_team_goal', 'away_team_goal']].values:
r = np.array([H(goals), D(goals), A(goals)])
state.append(r)
if (r == [1, 0, 0]).sum() == 3:
result.append(1)
elif (r == [0, 1, 0]).sum() == 3:
result.append(2)
elif (r == [0, 0, 1]).sum() == 3:
result.append(3)
df['game_state'] = state
df['game_result'] = result
df['date'] = pd.to_datetime(df['date'])
df['country'] = df['country_id'].map(id_country)
df['league'] = df['league_id'].map(id_league)
f = lambda x: np.mean(x)
df['home_mean_stats'] = list(map(f, df[['home_F_stats', 'home_M_stats', 'home_D_stats', 'home_G_stats']].values))
df['away_mean_stats'] = list(map(f, df[['away_F_stats', 'away_M_stats', 'away_D_stats', 'away_G_stats']].values))
df.dtypes | code |
324947/cell_19 | [
"text_plain_output_1.png"
] | from collections import Counter
import datetime as dt
import numpy as np
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
Counter(Y)
EA_stats = {'player': ', '.join(['overall_rating']), 'goalie': ', '.join(['gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'])}
def getTeamScores(match_id, team, EA_stats, printout=False, group='forward_mid_defense_goalie'):
""" Return the cumulative average team scores for
a given EA Sports FIFA statistic. If particular EA
stats are not in the database that stat is taken as
the overall player rating. If any positional stat is
unavailable (i.e. no goalie information) that stat is
taken as the average of the others for that team.
team : str
'home' or 'away'
EA_stat : dict
Names of statistics to cumulate for goalie and players.
e.g. {'player': 'overall_rating, heading_accuracy',
'goalie': 'gk_diving, gk_handling'}
printout : boolean
Option to print out debug information,
defaults to False.
group : str
How to group scores:
'forward_mid_defense_goalie': output 4 values
'all': output 1 value (currently not implemented)
"""
if team == 'home':
player_cols = ', '.join(['home_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['home_player_Y' + str(i) for i in range(1, 12)])
elif team == 'away':
player_cols = ', '.join(['away_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['away_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_cols, match_id))
player_api_id = np.array(c.fetchall()[0])
if False not in [p == 0 or p == None for p in player_api_id]:
return {'F': np.array([np.nan]), 'M': np.array([np.nan]), 'D': np.array([np.nan]), 'G': np.array([np.nan])}
empty_mask = player_api_id != np.array(None)
player_api_id = player_api_id[empty_mask]
player_Y_cols = ', '.join(player_Y_cols[empty_mask])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_Y_cols, match_id))
player_Y = c.fetchall()[0]
def givePosition(Y):
""" Input the Y position of the player (as opposed
to the lateral X position) and return the categorical
position. """
if Y == 1:
return 'G'
elif Y == 3:
return 'D'
elif Y == 5 or Y == 6 or Y == 7:
return 'M'
elif Y == 8 or Y == 9 or Y == 10 or (Y == 11):
return 'F'
else:
return 'NaN'
player_pos = np.array([givePosition(Y) for Y in player_Y])
def toDatetime(datetime):
""" Convert string date to datetime object. """
return dt.datetime.strptime(datetime, '%Y-%m-%d %H:%M:%S')
c.execute('SELECT date FROM Match WHERE id={}'.format(match_id))
match_date = toDatetime(c.fetchall()[0][0])
def getBestDate(player_id, match_date):
""" Find most suitable player stats to use based
on date of match and return the corresponding row
id from the Player_Stats table. """
c.execute('SELECT id FROM Player_Stats WHERE player_api_id={}'.format(player_id))
ids = np.array([i[0] for i in c.fetchall()])
c.execute('SELECT date_stat FROM Player_Stats WHERE player_api_id={}'.format(player_id))
dates = [toDatetime(d[0]) for d in c.fetchall()]
dates_delta = np.array([abs(d - match_date) for d in dates])
return ids[dates_delta == dates_delta.min()][0]
def fill_empty_stats(stats, stat_names):
""" Input the incomplete EA player stats and corresponing
names, return the filled in stats list. Filling with
overall_rating or averaging otherwise (i.e. for goalies
where there is no overall_rating stat). """
if not np.sum([s == 0 or s == None for s in stats]):
return stats
stats_dict = {sn: s for sn, s in zip(stat_names, stats)}
try:
fill = stats_dict['overall_rating']
except:
fill = np.mean([s for s in stats if s != 0 and s != None])
filled_stats = []
for s in stats:
if s == None or s == 0:
filled_stats.append(fill)
else:
filled_stats.append(s)
return filled_stats
positions = ('G', 'D', 'M', 'F')
average_stats = {}
for position in positions:
if position == 'G':
stats = EA_stats['goalie']
else:
stats = EA_stats['player']
position_ids = player_api_id[player_pos == position]
average_stats[position] = np.zeros(len(stats.split(',')))
for player_id in position_ids:
best_date_id = getBestDate(player_id, match_date)
c.execute('SELECT {0:s} FROM Player_Stats WHERE id={1:d}'.format(stats, best_date_id))
query = np.array(c.fetchall()[0])
query = fill_empty_stats(query, stats.split(', '))
if sum([q == None or q == 0 for q in query]):
raise LookupError('Found null EA stats entry at stat_id={}'.format(best_date_id))
average_stats[position] += query
average_stats[position] /= len(position_ids)
try:
average_stats['G'] = np.array([average_stats['G'].mean()])
except:
pass
insert_value = np.mean([v[0] for v in average_stats.values() if not np.isnan(v)])
for k, v in average_stats.items():
if np.isnan(v[0]):
average_stats[k] = np.array([insert_value])
return average_stats
all_ids = c.execute('SELECT id FROM Match').fetchall()
all_ids = [i[0] for i in sorted(all_ids)]
hF, hM, hD, hG = ([], [], [], [])
aF, aM, aD, aG = ([], [], [], [])
for i in all_ids:
h_stats = getTeamScores(i, 'home', EA_stats, printout=False)
hF.append(h_stats['F'][0])
hM.append(h_stats['M'][0])
hD.append(h_stats['D'][0])
hG.append(h_stats['G'][0])
a_stats = getTeamScores(i, 'away', EA_stats, printout=False)
aF.append(a_stats['F'][0])
aM.append(a_stats['M'][0])
aD.append(a_stats['D'][0])
aG.append(a_stats['G'][0]) | code |
324947/cell_7 | [
"image_output_1.png"
] | import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league | code |
324947/cell_16 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from collections import Counter
import datetime as dt
import numpy as np
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
Counter(Y)
EA_stats = {'player': ', '.join(['overall_rating']), 'goalie': ', '.join(['gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'])}
def getTeamScores(match_id, team, EA_stats, printout=False, group='forward_mid_defense_goalie'):
""" Return the cumulative average team scores for
a given EA Sports FIFA statistic. If particular EA
stats are not in the database that stat is taken as
the overall player rating. If any positional stat is
unavailable (i.e. no goalie information) that stat is
taken as the average of the others for that team.
team : str
'home' or 'away'
EA_stat : dict
Names of statistics to cumulate for goalie and players.
e.g. {'player': 'overall_rating, heading_accuracy',
'goalie': 'gk_diving, gk_handling'}
printout : boolean
Option to print out debug information,
defaults to False.
group : str
How to group scores:
'forward_mid_defense_goalie': output 4 values
'all': output 1 value (currently not implemented)
"""
if team == 'home':
player_cols = ', '.join(['home_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['home_player_Y' + str(i) for i in range(1, 12)])
elif team == 'away':
player_cols = ', '.join(['away_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['away_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_cols, match_id))
player_api_id = np.array(c.fetchall()[0])
if False not in [p == 0 or p == None for p in player_api_id]:
return {'F': np.array([np.nan]), 'M': np.array([np.nan]), 'D': np.array([np.nan]), 'G': np.array([np.nan])}
empty_mask = player_api_id != np.array(None)
player_api_id = player_api_id[empty_mask]
player_Y_cols = ', '.join(player_Y_cols[empty_mask])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_Y_cols, match_id))
player_Y = c.fetchall()[0]
def givePosition(Y):
""" Input the Y position of the player (as opposed
to the lateral X position) and return the categorical
position. """
if Y == 1:
return 'G'
elif Y == 3:
return 'D'
elif Y == 5 or Y == 6 or Y == 7:
return 'M'
elif Y == 8 or Y == 9 or Y == 10 or (Y == 11):
return 'F'
else:
return 'NaN'
player_pos = np.array([givePosition(Y) for Y in player_Y])
def toDatetime(datetime):
""" Convert string date to datetime object. """
return dt.datetime.strptime(datetime, '%Y-%m-%d %H:%M:%S')
c.execute('SELECT date FROM Match WHERE id={}'.format(match_id))
match_date = toDatetime(c.fetchall()[0][0])
def getBestDate(player_id, match_date):
""" Find most suitable player stats to use based
on date of match and return the corresponding row
id from the Player_Stats table. """
c.execute('SELECT id FROM Player_Stats WHERE player_api_id={}'.format(player_id))
ids = np.array([i[0] for i in c.fetchall()])
c.execute('SELECT date_stat FROM Player_Stats WHERE player_api_id={}'.format(player_id))
dates = [toDatetime(d[0]) for d in c.fetchall()]
dates_delta = np.array([abs(d - match_date) for d in dates])
return ids[dates_delta == dates_delta.min()][0]
def fill_empty_stats(stats, stat_names):
""" Input the incomplete EA player stats and corresponing
names, return the filled in stats list. Filling with
overall_rating or averaging otherwise (i.e. for goalies
where there is no overall_rating stat). """
if not np.sum([s == 0 or s == None for s in stats]):
return stats
stats_dict = {sn: s for sn, s in zip(stat_names, stats)}
try:
fill = stats_dict['overall_rating']
except:
fill = np.mean([s for s in stats if s != 0 and s != None])
filled_stats = []
for s in stats:
if s == None or s == 0:
filled_stats.append(fill)
else:
filled_stats.append(s)
return filled_stats
positions = ('G', 'D', 'M', 'F')
average_stats = {}
for position in positions:
if position == 'G':
stats = EA_stats['goalie']
else:
stats = EA_stats['player']
position_ids = player_api_id[player_pos == position]
average_stats[position] = np.zeros(len(stats.split(',')))
for player_id in position_ids:
best_date_id = getBestDate(player_id, match_date)
c.execute('SELECT {0:s} FROM Player_Stats WHERE id={1:d}'.format(stats, best_date_id))
query = np.array(c.fetchall()[0])
query = fill_empty_stats(query, stats.split(', '))
if sum([q == None or q == 0 for q in query]):
raise LookupError('Found null EA stats entry at stat_id={}'.format(best_date_id))
average_stats[position] += query
average_stats[position] /= len(position_ids)
try:
average_stats['G'] = np.array([average_stats['G'].mean()])
except:
pass
insert_value = np.mean([v[0] for v in average_stats.values() if not np.isnan(v)])
for k, v in average_stats.items():
if np.isnan(v[0]):
average_stats[k] = np.array([insert_value])
return average_stats
avg = getTeamScores(999, 'home', EA_stats, printout=True)
avg | code |
324947/cell_17 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from collections import Counter
import datetime as dt
import numpy as np
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall()
cols = ', '.join(['home_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match'.format(cols))
Y_array = c.fetchall()
Y = np.array([a for row in Y_array for a in row])
from collections import Counter
Counter(Y)
EA_stats = {'player': ', '.join(['overall_rating']), 'goalie': ', '.join(['gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning', 'gk_reflexes'])}
def getTeamScores(match_id, team, EA_stats, printout=False, group='forward_mid_defense_goalie'):
""" Return the cumulative average team scores for
a given EA Sports FIFA statistic. If particular EA
stats are not in the database that stat is taken as
the overall player rating. If any positional stat is
unavailable (i.e. no goalie information) that stat is
taken as the average of the others for that team.
team : str
'home' or 'away'
EA_stat : dict
Names of statistics to cumulate for goalie and players.
e.g. {'player': 'overall_rating, heading_accuracy',
'goalie': 'gk_diving, gk_handling'}
printout : boolean
Option to print out debug information,
defaults to False.
group : str
How to group scores:
'forward_mid_defense_goalie': output 4 values
'all': output 1 value (currently not implemented)
"""
if team == 'home':
player_cols = ', '.join(['home_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['home_player_Y' + str(i) for i in range(1, 12)])
elif team == 'away':
player_cols = ', '.join(['away_player_' + str(i) for i in range(1, 12)])
player_Y_cols = np.array(['away_player_Y' + str(i) for i in range(1, 12)])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_cols, match_id))
player_api_id = np.array(c.fetchall()[0])
if False not in [p == 0 or p == None for p in player_api_id]:
return {'F': np.array([np.nan]), 'M': np.array([np.nan]), 'D': np.array([np.nan]), 'G': np.array([np.nan])}
empty_mask = player_api_id != np.array(None)
player_api_id = player_api_id[empty_mask]
player_Y_cols = ', '.join(player_Y_cols[empty_mask])
c.execute('SELECT {0:s} FROM Match WHERE id={1:d}'.format(player_Y_cols, match_id))
player_Y = c.fetchall()[0]
def givePosition(Y):
""" Input the Y position of the player (as opposed
to the lateral X position) and return the categorical
position. """
if Y == 1:
return 'G'
elif Y == 3:
return 'D'
elif Y == 5 or Y == 6 or Y == 7:
return 'M'
elif Y == 8 or Y == 9 or Y == 10 or (Y == 11):
return 'F'
else:
return 'NaN'
player_pos = np.array([givePosition(Y) for Y in player_Y])
def toDatetime(datetime):
""" Convert string date to datetime object. """
return dt.datetime.strptime(datetime, '%Y-%m-%d %H:%M:%S')
c.execute('SELECT date FROM Match WHERE id={}'.format(match_id))
match_date = toDatetime(c.fetchall()[0][0])
def getBestDate(player_id, match_date):
""" Find most suitable player stats to use based
on date of match and return the corresponding row
id from the Player_Stats table. """
c.execute('SELECT id FROM Player_Stats WHERE player_api_id={}'.format(player_id))
ids = np.array([i[0] for i in c.fetchall()])
c.execute('SELECT date_stat FROM Player_Stats WHERE player_api_id={}'.format(player_id))
dates = [toDatetime(d[0]) for d in c.fetchall()]
dates_delta = np.array([abs(d - match_date) for d in dates])
return ids[dates_delta == dates_delta.min()][0]
def fill_empty_stats(stats, stat_names):
""" Input the incomplete EA player stats and corresponing
names, return the filled in stats list. Filling with
overall_rating or averaging otherwise (i.e. for goalies
where there is no overall_rating stat). """
if not np.sum([s == 0 or s == None for s in stats]):
return stats
stats_dict = {sn: s for sn, s in zip(stat_names, stats)}
try:
fill = stats_dict['overall_rating']
except:
fill = np.mean([s for s in stats if s != 0 and s != None])
filled_stats = []
for s in stats:
if s == None or s == 0:
filled_stats.append(fill)
else:
filled_stats.append(s)
return filled_stats
positions = ('G', 'D', 'M', 'F')
average_stats = {}
for position in positions:
if position == 'G':
stats = EA_stats['goalie']
else:
stats = EA_stats['player']
position_ids = player_api_id[player_pos == position]
average_stats[position] = np.zeros(len(stats.split(',')))
for player_id in position_ids:
best_date_id = getBestDate(player_id, match_date)
c.execute('SELECT {0:s} FROM Player_Stats WHERE id={1:d}'.format(stats, best_date_id))
query = np.array(c.fetchall()[0])
query = fill_empty_stats(query, stats.split(', '))
if sum([q == None or q == 0 for q in query]):
raise LookupError('Found null EA stats entry at stat_id={}'.format(best_date_id))
average_stats[position] += query
average_stats[position] /= len(position_ids)
try:
average_stats['G'] = np.array([average_stats['G'].mean()])
except:
pass
insert_value = np.mean([v[0] for v in average_stats.values() if not np.isnan(v)])
for k, v in average_stats.items():
if np.isnan(v[0]):
average_stats[k] = np.array([insert_value])
return average_stats
avg = getTeamScores(999, 'home', EA_stats, printout=True)
avg
avg = getTeamScores(5, 'home', EA_stats, printout=True)
avg | code |
324947/cell_10 | [
"text_plain_output_1.png"
] | import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
c = conn.cursor()
ids = [i[0] for i in c.execute('SELECT id FROM League').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM League').fetchall()]
id_league = {i: n for i, n in zip(ids, names)}
id_league
ids = [i[0] for i in c.execute('SELECT id FROM Country').fetchall()]
names = [i[0] for i in c.execute('SELECT name FROM Country').fetchall()]
id_country = {i: n for i, n in zip(ids, names)}
c.execute('PRAGMA TABLE_INFO(Player_Stats)').fetchall() | code |
105198654/cell_6 | [
"text_plain_output_1.png"
] | import os
def convert_bytes(size):
""" Convert bytes to KB, or MB or GB"""
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
if size < 1024.0:
return '%3.1f %s' % (size, x)
size /= 1024.0
file_list = ['train_cite_inputs.h5', 'train_cite_targets.h5', 'train_multi_inputs.h5', 'train_multi_targets.h5', 'test_cite_inputs.h5', 'test_multi_inputs.h5']
for f in file_list:
f_path = f'../input/open-problems-multimodal/{f}'
f_size = os.path.getsize(f_path)
f_size_converted = convert_bytes(f_size)
print(f'{f} :', f_size_converted) | code |
105198654/cell_11 | [
"text_plain_output_1.png"
] | import h5py
import os
def convert_bytes(size):
""" Convert bytes to KB, or MB or GB"""
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
if size < 1024.0:
return '%3.1f %s' % (size, x)
size /= 1024.0
file_list = ['train_cite_inputs.h5', 'train_cite_targets.h5', 'train_multi_inputs.h5', 'train_multi_targets.h5', 'test_cite_inputs.h5', 'test_multi_inputs.h5']
for f in file_list:
f_path = f'../input/open-problems-multimodal/{f}'
f_size = os.path.getsize(f_path)
f_size_converted = convert_bytes(f_size)
train_multi_inputs = 'train_multi_inputs.h5'
f_path = f'../input/open-problems-multimodal/{train_multi_inputs}'
f = h5py.File(f_path, 'r')
group = f['train_multi_inputs']
print(list(group.keys()))
for group_key in group.keys():
print('Scanning ' + group_key + '...')
print('Shape: ' + str(group[group_key].shape)) | code |
105198654/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import h5py
import hdf5plugin
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
import lightgbm as lgbm
from lightgbm import LGBMClassifier | code |
73070388/cell_13 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
s = train.dtypes == 'object'
object_cols = list(s[s].index)
for col in object_cols:
train[col] = encoder.fit_transform(train[col])
test[col] = encoder.transform(test[col])
X = train
y = train.target
X_test = test
X.info() | code |
73070388/cell_9 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
import matplotlib.pyplot as plt
train.info() | code |
73070388/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
train.info() | code |
73070388/cell_11 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
s = train.dtypes == 'object'
object_cols = list(s[s].index)
for col in object_cols:
train[col] = encoder.fit_transform(train[col])
test[col] = encoder.transform(test[col])
train.info() | code |
73070388/cell_19 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
from xgboost import XGBRegressor
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
s = train.dtypes == 'object'
object_cols = list(s[s].index)
for col in object_cols:
train[col] = encoder.fit_transform(train[col])
test[col] = encoder.transform(test[col])
X = train
y = train.target
X_test = test
from xgboost import XGBRegressor
xgb = XGBRegressor(tree_method='gpu_hist', gpu_id=0)
xgb.fit(X, y) | code |
73070388/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
73070388/cell_7 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
import matplotlib.pyplot as plt
train.hist(bins=50, figsize=(20, 15))
plt.show() | code |
73070388/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
train.head() | code |
73070388/cell_14 | [
"image_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
s = train.dtypes == 'object'
object_cols = list(s[s].index)
for col in object_cols:
train[col] = encoder.fit_transform(train[col])
test[col] = encoder.transform(test[col])
X = train
y = train.target
X_test = test
y | code |
73070388/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
test.info() | code |
73070388/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
Sample_result = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
train.describe() | code |
130013764/cell_13 | [
"text_plain_output_100.png",
"text_plain_output_334.png",
"text_plain_output_673.png",
"text_plain_output_445.png",
"text_plain_output_640.png",
"text_plain_output_201.png",
"text_plain_output_586.png",
"text_plain_output_261.png",
"text_plain_output_565.png",
"text_plain_output_522.png",
"text_plain_output_84.png",
"text_plain_output_624.png",
"text_plain_output_521.png",
"text_plain_output_322.png",
"text_plain_output_205.png",
"text_plain_output_511.png",
"text_plain_output_608.png",
"text_plain_output_271.png",
"text_plain_output_56.png",
"text_plain_output_475.png",
"text_plain_output_158.png",
"text_plain_output_455.png",
"text_plain_output_223.png",
"text_plain_output_218.png",
"text_plain_output_264.png",
"text_plain_output_282.png",
"text_plain_output_579.png",
"text_plain_output_629.png",
"text_plain_output_396.png",
"text_plain_output_287.png",
"text_plain_output_232.png",
"text_plain_output_181.png",
"text_plain_output_137.png",
"text_plain_output_139.png",
"text_plain_output_362.png",
"text_plain_output_35.png",
"text_plain_output_501.png",
"text_plain_output_593.png",
"text_plain_output_258.png",
"text_plain_output_452.png",
"text_plain_output_130.png",
"text_plain_output_598.png",
"text_plain_output_490.png",
"text_plain_output_449.png",
"text_plain_output_462.png",
"text_plain_output_117.png",
"text_plain_output_286.png",
"text_plain_output_367.png",
"text_plain_output_262.png",
"text_plain_output_278.png",
"text_plain_output_588.png",
"text_plain_output_395.png",
"text_plain_output_617.png",
"text_plain_output_254.png",
"text_plain_output_307.png",
"text_plain_output_570.png",
"text_plain_output_674.png",
"text_plain_output_98.png",
"text_plain_output_399.png",
"text_plain_output_671.png",
"text_plain_output_236.png",
"text_plain_output_195.png",
"text_plain_output_678.png",
"text_plain_output_471.png",
"text_plain_output_219.png",
"text_plain_output_614.png",
"text_plain_output_420.png",
"text_plain_output_514.png",
"text_plain_output_485.png",
"text_plain_output_237.png",
"text_plain_output_43.png",
"text_plain_output_284.png",
"text_plain_output_187.png",
"text_plain_output_309.png",
"text_plain_output_576.png",
"text_plain_output_78.png",
"text_plain_output_143.png",
"text_plain_output_106.png",
"text_plain_output_37.png",
"text_plain_output_138.png",
"text_plain_output_670.png",
"text_plain_output_544.png",
"text_plain_output_192.png",
"text_plain_output_426.png",
"text_plain_output_184.png",
"text_plain_output_477.png",
"text_plain_output_274.png",
"text_plain_output_172.png",
"text_plain_output_664.png",
"text_plain_output_627.png",
"text_plain_output_613.png",
"text_plain_output_332.png",
"text_plain_output_147.png",
"text_plain_output_443.png",
"text_plain_output_327.png",
"text_plain_output_256.png",
"text_plain_output_90.png",
"text_plain_output_79.png",
"text_plain_output_331.png",
"text_plain_output_5.png",
"text_plain_output_642.png",
"text_plain_output_550.png",
"text_plain_output_75.png",
"text_plain_output_48.png",
"text_plain_output_388.png",
"text_plain_output_422.png",
"text_plain_output_116.png",
"text_plain_output_128.png",
"text_plain_output_30.png",
"text_plain_output_167.png",
"text_plain_output_213.png",
"text_plain_output_73.png",
"text_plain_output_126.png",
"text_plain_output_676.png",
"text_plain_output_492.png",
"text_plain_output_321.png",
"text_plain_output_272.png",
"text_plain_output_115.png",
"text_plain_output_474.png",
"text_plain_output_407.png",
"text_plain_output_482.png",
"text_plain_output_316.png",
"text_plain_output_634.png",
"text_plain_output_656.png",
"text_plain_output_355.png",
"text_plain_output_15.png",
"text_plain_output_390.png",
"text_plain_output_133.png",
"text_plain_output_651.png",
"text_plain_output_437.png",
"text_plain_output_198.png",
"text_plain_output_387.png",
"text_plain_output_555.png",
"text_plain_output_548.png",
"text_plain_output_178.png",
"text_plain_output_226.png",
"text_plain_output_154.png",
"text_plain_output_234.png",
"text_plain_output_375.png",
"text_plain_output_114.png",
"text_plain_output_659.png",
"text_plain_output_515.png",
"text_plain_output_157.png",
"text_plain_output_494.png",
"text_plain_output_317.png",
"text_plain_output_251.png",
"text_plain_output_470.png",
"text_plain_output_496.png",
"text_plain_output_423.png",
"text_plain_output_70.png",
"text_plain_output_9.png",
"text_plain_output_484.png",
"text_plain_output_44.png",
"text_plain_output_633.png",
"text_plain_output_325.png",
"text_plain_output_203.png",
"text_plain_output_505.png",
"text_plain_output_603.png",
"text_plain_output_655.png",
"text_plain_output_119.png",
"text_plain_output_546.png",
"text_plain_output_540.png",
"text_plain_output_373.png",
"text_plain_output_504.png",
"text_plain_output_86.png",
"text_plain_output_244.png",
"text_plain_output_118.png",
"text_plain_output_551.png",
"text_plain_output_583.png",
"text_plain_output_131.png",
"text_plain_output_40.png",
"text_plain_output_343.png",
"text_plain_output_123.png",
"text_plain_output_74.png",
"text_plain_output_190.png",
"text_plain_output_302.png",
"text_plain_output_604.png",
"text_plain_output_31.png",
"text_plain_output_340.png",
"text_plain_output_379.png",
"text_plain_output_281.png",
"text_plain_output_639.png",
"text_plain_output_20.png",
"text_plain_output_557.png",
"text_plain_output_273.png",
"text_plain_output_263.png",
"text_plain_output_102.png",
"text_plain_output_229.png",
"text_plain_output_111.png",
"text_plain_output_669.png",
"text_plain_output_414.png",
"text_plain_output_461.png",
"text_plain_output_510.png",
"text_plain_output_222.png",
"text_plain_output_589.png",
"text_plain_output_101.png",
"text_plain_output_530.png",
"text_plain_output_169.png",
"text_plain_output_531.png",
"text_plain_output_144.png",
"text_plain_output_161.png",
"text_plain_output_489.png",
"text_plain_output_305.png",
"text_plain_output_275.png",
"text_plain_output_301.png",
"text_plain_output_132.png",
"text_plain_output_60.png",
"text_plain_output_467.png",
"text_plain_output_502.png",
"text_plain_output_221.png",
"text_plain_output_596.png",
"text_plain_output_564.png",
"text_plain_output_552.png",
"text_plain_output_654.png",
"text_plain_output_330.png",
"text_plain_output_155.png",
"text_plain_output_638.png",
"text_plain_output_434.png",
"text_plain_output_68.png",
"text_plain_output_4.png",
"text_plain_output_65.png",
"text_plain_output_618.png",
"text_plain_output_64.png",
"text_plain_output_419.png",
"text_plain_output_215.png",
"text_plain_output_532.png",
"text_plain_output_189.png",
"text_plain_output_415.png",
"text_plain_output_637.png",
"text_plain_output_13.png",
"text_plain_output_200.png",
"text_plain_output_666.png",
"text_plain_output_107.png",
"text_plain_output_567.png",
"text_plain_output_628.png",
"text_plain_output_398.png",
"text_plain_output_312.png",
"text_plain_output_248.png",
"text_plain_output_318.png",
"text_plain_output_417.png",
"text_plain_output_52.png",
"text_plain_output_545.png",
"text_plain_output_393.png",
"text_plain_output_572.png",
"text_plain_output_594.png",
"text_plain_output_66.png",
"text_plain_output_446.png",
"text_plain_output_243.png",
"text_plain_output_611.png",
"text_plain_output_45.png",
"text_plain_output_380.png",
"text_plain_output_599.png",
"text_plain_output_442.png",
"text_plain_output_665.png",
"text_plain_output_300.png",
"text_plain_output_660.png",
"text_plain_output_257.png",
"text_plain_output_405.png",
"text_plain_output_353.png",
"text_plain_output_476.png",
"text_plain_output_277.png",
"text_plain_output_457.png",
"text_plain_output_361.png",
"text_plain_output_171.png",
"text_plain_output_518.png",
"text_plain_output_561.png",
"text_plain_output_431.png",
"text_plain_output_14.png",
"text_plain_output_159.png",
"text_plain_output_32.png",
"text_plain_output_516.png",
"text_plain_output_304.png",
"text_plain_output_88.png",
"text_plain_output_240.png",
"text_plain_output_29.png",
"text_plain_output_359.png",
"text_plain_output_529.png",
"text_plain_output_347.png",
"text_plain_output_140.png",
"text_plain_output_606.png",
"text_plain_output_376.png",
"text_plain_output_280.png",
"text_plain_output_129.png",
"text_plain_output_349.png",
"text_plain_output_242.png",
"text_plain_output_483.png",
"text_plain_output_460.png",
"text_plain_output_363.png",
"text_plain_output_289.png",
"text_plain_output_255.png",
"text_plain_output_160.png",
"text_plain_output_58.png",
"text_plain_output_680.png",
"text_plain_output_622.png",
"text_plain_output_329.png",
"text_plain_output_49.png",
"text_plain_output_63.png",
"text_plain_output_260.png",
"text_plain_output_294.png",
"text_plain_output_27.png",
"text_plain_output_392.png",
"text_plain_output_320.png",
"text_plain_output_177.png",
"text_plain_output_607.png",
"text_plain_output_386.png",
"text_plain_output_438.png",
"text_plain_output_76.png",
"text_plain_output_681.png",
"text_plain_output_333.png",
"text_plain_output_108.png",
"text_plain_output_581.png",
"text_plain_output_54.png",
"text_plain_output_142.png",
"text_plain_output_10.png",
"text_plain_output_269.png",
"text_plain_output_276.png",
"text_plain_output_6.png",
"text_plain_output_326.png",
"text_plain_output_503.png",
"text_plain_output_578.png",
"text_plain_output_153.png",
"text_plain_output_170.png",
"text_plain_output_92.png",
"text_plain_output_658.png",
"text_plain_output_57.png",
"text_plain_output_120.png",
"text_plain_output_469.png",
"text_plain_output_24.png",
"text_plain_output_357.png",
"text_plain_output_21.png",
"text_plain_output_344.png",
"text_plain_output_104.png",
"text_plain_output_270.png",
"text_plain_output_47.png",
"text_plain_output_623.png",
"text_plain_output_466.png",
"text_plain_output_568.png",
"text_plain_output_121.png",
"text_plain_output_25.png",
"text_plain_output_134.png",
"text_plain_output_523.png",
"text_plain_output_401.png",
"text_plain_output_77.png",
"text_plain_output_421.png",
"text_plain_output_288.png",
"text_plain_output_535.png",
"text_plain_output_527.png",
"text_plain_output_488.png",
"text_plain_output_18.png",
"text_plain_output_183.png",
"text_plain_output_266.png",
"text_plain_output_149.png",
"text_plain_output_208.png",
"text_plain_output_50.png",
"text_plain_output_36.png",
"text_plain_output_646.png",
"text_plain_output_383.png",
"text_plain_output_207.png",
"text_plain_output_391.png",
"text_plain_output_413.png",
"text_plain_output_96.png",
"text_plain_output_663.png",
"text_plain_output_87.png",
"text_plain_output_3.png",
"text_plain_output_217.png",
"text_plain_output_418.png",
"text_plain_output_657.png",
"text_plain_output_427.png",
"text_plain_output_180.png",
"text_plain_output_556.png",
"text_plain_output_141.png",
"text_plain_output_210.png",
"text_plain_output_112.png",
"text_plain_output_152.png",
"text_plain_output_225.png",
"text_plain_output_191.png",
"text_plain_output_609.png",
"text_plain_output_259.png",
"text_plain_output_447.png",
"text_plain_output_290.png",
"text_plain_output_506.png",
"text_plain_output_283.png",
"text_plain_output_495.png",
"text_plain_output_247.png",
"text_plain_output_113.png",
"text_plain_output_371.png",
"text_plain_output_479.png",
"text_plain_output_324.png",
"text_plain_output_22.png",
"text_plain_output_188.png",
"text_plain_output_366.png",
"text_plain_output_328.png",
"text_plain_output_81.png",
"text_plain_output_69.png",
"text_plain_output_368.png",
"text_plain_output_667.png",
"text_plain_output_372.png",
"text_plain_output_175.png",
"text_plain_output_165.png",
"text_plain_output_542.png",
"text_plain_output_146.png",
"text_plain_output_145.png",
"text_plain_output_125.png",
"text_plain_output_454.png",
"text_plain_output_487.png",
"text_plain_output_595.png",
"text_plain_output_643.png",
"text_plain_output_338.png",
"text_plain_output_575.png",
"text_plain_output_197.png",
"text_plain_output_512.png",
"text_plain_output_382.png",
"text_plain_output_315.png",
"text_plain_output_429.png",
"text_plain_output_38.png",
"text_plain_output_517.png",
"text_plain_output_433.png",
"text_plain_output_7.png",
"text_plain_output_528.png",
"text_plain_output_648.png",
"text_plain_output_214.png",
"text_plain_output_166.png",
"text_plain_output_358.png",
"text_plain_output_513.png",
"text_plain_output_314.png",
"text_plain_output_592.png",
"text_plain_output_410.png",
"text_plain_output_432.png",
"text_plain_output_645.png",
"text_plain_output_411.png",
"text_plain_output_91.png",
"text_plain_output_308.png",
"text_plain_output_245.png",
"text_plain_output_16.png",
"text_plain_output_497.png",
"text_plain_output_174.png",
"text_plain_output_212.png",
"text_plain_output_652.png",
"text_plain_output_644.png",
"text_plain_output_230.png",
"text_plain_output_265.png",
"text_plain_output_430.png",
"text_plain_output_630.png",
"text_plain_output_435.png",
"text_plain_output_378.png",
"text_plain_output_59.png",
"text_plain_output_580.png",
"text_plain_output_409.png",
"text_plain_output_206.png",
"text_plain_output_103.png",
"text_plain_output_71.png",
"text_plain_output_539.png",
"text_plain_output_8.png",
"text_plain_output_122.png",
"text_plain_output_384.png",
"text_plain_output_498.png",
"text_plain_output_211.png",
"text_plain_output_662.png",
"text_plain_output_182.png",
"text_plain_output_26.png",
"text_plain_output_601.png",
"text_plain_output_554.png",
"text_plain_output_536.png",
"text_plain_output_620.png",
"text_plain_output_406.png",
"text_plain_output_310.png",
"text_plain_output_456.png",
"text_plain_output_541.png",
"text_plain_output_558.png",
"text_plain_output_668.png",
"text_plain_output_220.png",
"text_plain_output_653.png",
"text_plain_output_543.png",
"text_plain_output_451.png",
"text_plain_output_109.png",
"text_plain_output_459.png",
"text_plain_output_238.png",
"text_plain_output_520.png",
"text_plain_output_616.png",
"text_plain_output_615.png",
"text_plain_output_41.png",
"text_plain_output_34.png",
"text_plain_output_612.png",
"text_plain_output_253.png",
"text_plain_output_346.png",
"text_plain_output_291.png",
"text_plain_output_168.png",
"text_plain_output_394.png",
"text_plain_output_204.png",
"text_plain_output_241.png",
"text_plain_output_231.png",
"text_plain_output_533.png",
"text_plain_output_345.png",
"text_plain_output_649.png",
"text_plain_output_350.png",
"text_plain_output_209.png",
"text_plain_output_185.png",
"text_plain_output_85.png",
"text_plain_output_636.png",
"text_plain_output_42.png",
"text_plain_output_110.png",
"text_plain_output_605.png",
"text_plain_output_549.png",
"text_plain_output_67.png",
"text_plain_output_508.png",
"text_plain_output_573.png",
"text_plain_output_468.png",
"text_plain_output_370.png",
"text_plain_output_297.png",
"text_plain_output_53.png",
"text_plain_output_313.png",
"text_plain_output_224.png",
"text_plain_output_635.png",
"text_plain_output_193.png",
"text_plain_output_441.png",
"text_plain_output_403.png",
"text_plain_output_23.png",
"text_plain_output_610.png",
"text_plain_output_173.png",
"text_plain_output_235.png",
"text_plain_output_151.png",
"text_plain_output_89.png",
"text_plain_output_299.png",
"text_plain_output_632.png",
"text_plain_output_51.png",
"text_plain_output_677.png",
"text_plain_output_626.png",
"text_plain_output_450.png",
"text_plain_output_252.png",
"text_plain_output_296.png",
"text_plain_output_525.png",
"text_plain_output_672.png",
"text_plain_output_28.png",
"text_plain_output_72.png",
"text_plain_output_99.png",
"text_plain_output_381.png",
"text_plain_output_571.png",
"text_plain_output_163.png",
"text_plain_output_179.png",
"text_plain_output_537.png",
"text_plain_output_162.png",
"text_plain_output_136.png",
"text_plain_output_602.png",
"text_plain_output_246.png",
"text_plain_output_2.png",
"text_plain_output_569.png",
"text_plain_output_239.png",
"text_plain_output_127.png",
"text_plain_output_559.png",
"text_plain_output_311.png",
"text_plain_output_500.png",
"text_plain_output_295.png",
"text_plain_output_279.png",
"text_plain_output_507.png",
"text_plain_output_590.png",
"text_plain_output_509.png",
"text_plain_output_337.png",
"text_plain_output_562.png",
"text_plain_output_499.png",
"text_plain_output_196.png",
"text_plain_output_342.png",
"text_plain_output_563.png",
"text_plain_output_97.png",
"text_plain_output_227.png",
"text_plain_output_453.png",
"text_plain_output_1.png",
"text_plain_output_33.png",
"text_plain_output_650.png",
"text_plain_output_150.png",
"text_plain_output_631.png",
"text_plain_output_39.png",
"text_plain_output_176.png",
"text_plain_output_584.png",
"text_plain_output_335.png",
"text_plain_output_186.png",
"text_plain_output_233.png",
"text_plain_output_228.png",
"text_plain_output_473.png",
"text_plain_output_385.png",
"text_plain_output_478.png",
"text_plain_output_55.png",
"text_plain_output_412.png",
"text_plain_output_293.png",
"text_plain_output_268.png",
"text_plain_output_436.png",
"text_plain_output_199.png",
"text_plain_output_354.png",
"text_plain_output_463.png",
"text_plain_output_360.png",
"text_plain_output_319.png",
"text_plain_output_82.png",
"text_plain_output_356.png",
"text_plain_output_202.png",
"text_plain_output_93.png",
"text_plain_output_336.png",
"text_plain_output_19.png",
"text_plain_output_439.png",
"text_plain_output_341.png",
"text_plain_output_105.png",
"text_plain_output_465.png",
"text_plain_output_80.png",
"text_plain_output_491.png",
"text_plain_output_679.png",
"text_plain_output_641.png",
"text_plain_output_94.png",
"text_plain_output_164.png",
"text_plain_output_249.png",
"text_plain_output_534.png",
"text_plain_output_444.png",
"text_plain_output_619.png",
"text_plain_output_216.png",
"text_plain_output_124.png",
"text_plain_output_17.png",
"text_plain_output_148.png",
"text_plain_output_323.png",
"text_plain_output_402.png",
"text_plain_output_424.png",
"text_plain_output_486.png",
"text_plain_output_597.png",
"text_plain_output_250.png",
"text_plain_output_11.png",
"text_plain_output_481.png",
"text_plain_output_560.png",
"text_plain_output_526.png",
"text_plain_output_400.png",
"text_plain_output_524.png",
"text_plain_output_538.png",
"text_plain_output_12.png",
"text_plain_output_267.png",
"text_plain_output_553.png",
"text_plain_output_408.png",
"text_plain_output_425.png",
"text_plain_output_591.png",
"text_plain_output_428.png",
"text_plain_output_416.png",
"text_plain_output_625.png",
"text_plain_output_194.png",
"text_plain_output_577.png",
"text_plain_output_519.png",
"text_plain_output_62.png",
"text_plain_output_480.png",
"text_plain_output_303.png",
"text_plain_output_621.png",
"text_plain_output_377.png",
"text_plain_output_440.png",
"text_plain_output_95.png",
"text_plain_output_339.png",
"text_plain_output_458.png",
"text_plain_output_464.png",
"text_plain_output_156.png",
"text_plain_output_547.png",
"text_plain_output_298.png",
"text_plain_output_369.png",
"text_plain_output_348.png",
"text_plain_output_587.png",
"text_plain_output_448.png",
"text_plain_output_364.png",
"text_plain_output_365.png",
"text_plain_output_61.png",
"text_plain_output_585.png",
"text_plain_output_352.png",
"text_plain_output_83.png",
"text_plain_output_374.png",
"text_plain_output_647.png",
"text_plain_output_472.png",
"text_plain_output_566.png",
"text_plain_output_397.png",
"text_plain_output_600.png",
"text_plain_output_661.png",
"text_plain_output_389.png",
"text_plain_output_292.png",
"text_plain_output_351.png",
"text_plain_output_135.png",
"text_plain_output_285.png",
"text_plain_output_574.png",
"text_plain_output_582.png",
"text_plain_output_306.png",
"text_plain_output_675.png",
"text_plain_output_493.png",
"text_plain_output_46.png"
] | from keras.callbacks import EarlyStopping
from keras.layers import Dense
from keras.layers.core import Reshape, Flatten, Dropout
from keras.models import Sequential
from sklearn.preprocessing import normalize
import numpy as np
import pickle
file = open('/kaggle/input/rml2016/RML2016.10b.dat', 'rb')
Xd = pickle.load(file, encoding='bytes')
snrs, mods = map(lambda j: sorted(list(set(map(lambda x: x[j], Xd.keys())))), [1, 0])
X = []
lbl = []
for mod in mods:
for snr in snrs:
X.append(Xd[mod, snr])
for i in range(Xd[mod, snr].shape[0]):
lbl.append((mod, snr))
X = np.vstack(X)
file.close()
features = {}
features['raw'] = (X[:, 0], X[:, 1])
features['derivative'] = (normalize(np.gradient(X[:, 0], axis=1)), normalize(np.gradient(X[:, 1], axis=1)))
features['integral'] = (normalize(np.cumsum(X[:, 0], axis=1)), normalize(np.cumsum(X[:, 1], axis=1)))
def extract_features(*arguments):
desired = ()
for arg in arguments:
desired += features[arg]
return np.stack(desired, axis=1)
data = extract_features('raw')
labels = np.array(lbl)
in_shape = data[0].shape
out_shape = tuple([1]) + in_shape
np.random.seed(10)
n_examples = labels.shape[0]
r = np.random.choice(range(n_examples), n_examples, replace=False)
train_examples = r[:n_examples // 2]
test_examples = r[n_examples // 2:]
X_train = data[train_examples]
X_test = data[test_examples]
y_train = LB().fit_transform(labels[train_examples][:, 0])
y_test = LB().fit_transform(labels[test_examples][:, 0])
snr_train = labels[train_examples][:, 1].astype(int)
snr_test = labels[test_examples][:, 1].astype(int)
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=in_shape))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
model.fit(X_train, y_train, epochs=100, validation_split=0.05, batch_size=2048, callbacks=[EarlyStopping(patience=15, restore_best_weights=True)]) | code |
130013764/cell_12 | [
"text_plain_output_1.png"
] | from keras.layers import Dense
from keras.layers.core import Reshape, Flatten, Dropout
from keras.models import Sequential
from sklearn.preprocessing import normalize
import numpy as np
import pickle
file = open('/kaggle/input/rml2016/RML2016.10b.dat', 'rb')
Xd = pickle.load(file, encoding='bytes')
snrs, mods = map(lambda j: sorted(list(set(map(lambda x: x[j], Xd.keys())))), [1, 0])
X = []
lbl = []
for mod in mods:
for snr in snrs:
X.append(Xd[mod, snr])
for i in range(Xd[mod, snr].shape[0]):
lbl.append((mod, snr))
X = np.vstack(X)
file.close()
features = {}
features['raw'] = (X[:, 0], X[:, 1])
features['derivative'] = (normalize(np.gradient(X[:, 0], axis=1)), normalize(np.gradient(X[:, 1], axis=1)))
features['integral'] = (normalize(np.cumsum(X[:, 0], axis=1)), normalize(np.cumsum(X[:, 1], axis=1)))
def extract_features(*arguments):
desired = ()
for arg in arguments:
desired += features[arg]
return np.stack(desired, axis=1)
data = extract_features('raw')
labels = np.array(lbl)
in_shape = data[0].shape
out_shape = tuple([1]) + in_shape
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=in_shape))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary() | code |
32067131/cell_21 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
sns.catplot(x='Spectral Class', y='Absolute magnitude(Mv)', data=star_data, hue='Star type Decoded', order=['O', 'B', 'A', 'F', 'G', 'K', 'M'], height=9)
plt.gca().invert_yaxis() | code |
32067131/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
star_data['Star color'] = star_data['Star color'].str.lower()
star_data['Star color'] = star_data['Star color'].str.replace(' ', '')
star_data['Star color'] = star_data['Star color'].str.replace('-', '')
star_data['Star color'] = star_data['Star color'].str.replace('yellowwhite', 'whiteyellow')
star_data['Star color'].value_counts() | code |
32067131/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
star_data['Spectral Class'].value_counts() | code |
32067131/cell_25 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from xgboost import XGBClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
x = star_data.select_dtypes(exclude='object').drop('Star type', axis=1)
y = star_data['Star type']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42, stratify=star_data['Star type'])
scaler = StandardScaler()
x_train_sc = scaler.fit_transform(x_train)
x_test_sc = scaler.transform(x_test)
x_train = pd.DataFrame(x_train_sc, index=x_train.index, columns=x_train.columns)
x_test = pd.DataFrame(x_test_sc, index=x_test.index, columns=x_test.columns)
xgb = XGBClassifier(n_estimators=1000, n_jobs=-1, random_state=42)
xgb.fit(x_train, y_train)
y_pred = xgb.predict(x_test)
predictions = [round(value) for value in y_pred]
accuracy = accuracy_score(y_test, predictions)
print('Accuracy: %.2f%%' % (accuracy * 100.0)) | code |
32067131/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
star_data['Star color'].value_counts() | code |
32067131/cell_19 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
sns.pairplot(star_data.drop(['Star color', 'Spectral Class'], axis=1), hue='Star type Decoded', diag_kind=None)
plt.show() | code |
32067131/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32067131/cell_7 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum() | code |
32067131/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder, StandardScaler
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
le_specClass = LabelEncoder()
star_data['SpecClassEnc'] = le_specClass.fit_transform(star_data['Spectral Class'])
print('Encoded Spectral Classes: ' + str(le_specClass.classes_)) | code |
32067131/cell_3 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.head() | code |
32067131/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder, StandardScaler
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
star_data = pd.read_csv('../input/star-dataset/6 class csv.csv')
star_data.isnull().sum()
le_starCol = LabelEncoder()
star_data['StarColEnc'] = le_starCol.fit_transform(star_data['Star color'])
print('Encoded Star colors: ' + str(le_starCol.classes_)) | code |
74046055/cell_6 | [
"text_plain_output_1.png"
] | images = Path('/kaggle/input/blood-cells/dataset2-master/dataset2-master/images/')
data = ImageDataLoaders.from_folder(path=images, train='TRAIN', valid='TEST', seed=42, item_tfms=RandomResizedCrop(224, min_scale=0.4), batch_tfms=aug_transforms(mult=2), bs=32)
print(data.vocab) | code |
74046055/cell_2 | [
"text_plain_output_1.png"
] | import os
import os
import numpy as np
import pandas as pd
import os
import fastai
from fastai.vision.all import *
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
74046055/cell_1 | [
"text_plain_output_1.png"
] | !pip install git+https://github.com/fastai/fastai2
!pip install git+https://github.com/fastai/fastcore | code |
74046055/cell_7 | [
"text_html_output_1.png"
] | images = Path('/kaggle/input/blood-cells/dataset2-master/dataset2-master/images/')
data = ImageDataLoaders.from_folder(path=images, train='TRAIN', valid='TEST', seed=42, item_tfms=RandomResizedCrop(224, min_scale=0.4), batch_tfms=aug_transforms(mult=2), bs=32)
learn = cnn_learner(data, resnet34, metrics=error_rate)
learn.fit_one_cycle(4) | code |
74046055/cell_8 | [
"image_output_1.png"
] | images = Path('/kaggle/input/blood-cells/dataset2-master/dataset2-master/images/')
data = ImageDataLoaders.from_folder(path=images, train='TRAIN', valid='TEST', seed=42, item_tfms=RandomResizedCrop(224, min_scale=0.4), batch_tfms=aug_transforms(mult=2), bs=32)
learn = cnn_learner(data, resnet34, metrics=error_rate)
learn.fit_one_cycle(4)
interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix() | code |
74046055/cell_5 | [
"image_output_1.png"
] | images = Path('/kaggle/input/blood-cells/dataset2-master/dataset2-master/images/')
data = ImageDataLoaders.from_folder(path=images, train='TRAIN', valid='TEST', seed=42, item_tfms=RandomResizedCrop(224, min_scale=0.4), batch_tfms=aug_transforms(mult=2), bs=32)
data.train.show_batch() | code |
74057859/cell_4 | [
"text_plain_output_1.png"
] | import random
s = {('Hello', 'Hi', 'Howdy'), ('Salam', 'Namaste', 'Marhabaan')}
e3 = ('NiHao', 'Konnichiwa', 'Yeoboseyo')
s.add(e3)
import random
el = random.sample(s, 1)[0]
s.remove(el)
print(s) | code |
74057859/cell_2 | [
"text_plain_output_1.png"
] | s = {('Hello', 'Hi', 'Howdy'), ('Salam', 'Namaste', 'Marhabaan')}
e3 = ('NiHao', 'Konnichiwa', 'Yeoboseyo')
s.add(e3)
for item in s:
print(item) | code |
74057859/cell_3 | [
"text_plain_output_1.png"
] | s = {('Hello', 'Hi', 'Howdy'), ('Salam', 'Namaste', 'Marhabaan')}
e3 = ('NiHao', 'Konnichiwa', 'Yeoboseyo')
s.add(e3)
my_list = list(s)
final = [my_list[i] for i in (0, -1)]
print(final) | code |
74057859/cell_5 | [
"text_plain_output_1.png"
] | import random
s = {('Hello', 'Hi', 'Howdy'), ('Salam', 'Namaste', 'Marhabaan')}
e3 = ('NiHao', 'Konnichiwa', 'Yeoboseyo')
s.add(e3)
import random
el = random.sample(s, 1)[0]
s.remove(el)
s.remove(('Salam', 'Namaste', 'Marhabaan'))
print(s) | code |
106204184/cell_13 | [
"text_plain_output_1.png"
] | i = 0
while i < 6:
i += 2
i = 1
while True:
if i % 9 == 0:
break
print(i + 4)
i += 2 | code |
106204184/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import numpy as np
def square(a):
sq = a * a
return sq
square(6) | code |
106204184/cell_4 | [
"text_plain_output_1.png"
] | for i in range(0, 100):
print('Raiyaan') | code |
106204184/cell_6 | [
"text_plain_output_1.png"
] | for i in range(0, 100, 25):
print('RAIYAAN') | code |
106204184/cell_2 | [
"text_plain_output_1.png"
] | num = 50
if num > 50:
if num % 2 == 0:
print('No is even and greater than 50')
else:
print('No is not even and greater than 50')
elif num % 2 != 0:
print('No is odd and less than 50')
else:
print('No is not odd and less than 50') | code |
106204184/cell_11 | [
"text_plain_output_1.png"
] | fact = 1
for i in range(1, 11):
fact = fact * i
import pandas as pd
import numpy as np
def factorial(value):
fact = 1
for i in range(1, value + 1):
fact = fact * i
return fact
n = 5
r = 3
c = factorial(n) / (factorial(r) * factorial(n - r))
def fun(n, l=[]):
for i in range(n):
l.append(i * i)
print(l)
fun(2) | code |
106204184/cell_8 | [
"text_plain_output_1.png"
] | fact = 1
for i in range(1, 11):
fact = fact * i
print(fact) | code |
106204184/cell_15 | [
"text_plain_output_1.png"
] | def func(x, y):
if x > y:
return x
elif x == y:
return (x, y)
else:
return y
print(func(20, 30)) | code |
106204184/cell_14 | [
"text_plain_output_1.png"
] | string_1 = 'internshala'
for i in range(len(string_1)):
print(string_1)
string_1 = 'z' | code |
106204184/cell_10 | [
"text_plain_output_1.png"
] | fact = 1
for i in range(1, 11):
fact = fact * i
import pandas as pd
import numpy as np
def factorial(value):
fact = 1
for i in range(1, value + 1):
fact = fact * i
return fact
n = 5
r = 3
c = factorial(n) / (factorial(r) * factorial(n - r))
print('No of combination = ' + str(c)) | code |
106204184/cell_12 | [
"text_plain_output_1.png"
] | i = 0
while i < 6:
print(i)
i += 2
else:
print(0) | code |
106204184/cell_5 | [
"text_plain_output_1.png"
] | for i in range(75, 100):
print('Raiyaan') | code |
50239477/cell_42 | [
"text_html_output_1.png"
] | seed = 27912
TX_train.sample(5, random_state=seed) | code |
50239477/cell_56 | [
"text_html_output_1.png"
] | import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
seed = 27912
filepath = '../input/breast-cancer-wisconsin-data/data.csv'
indexC = 'id'
targetC = 'diagnosis'
dataC = utils.load_data(filepath, indexC, targetC)
dataC.sample(5, random_state=seed)
filepathD = '../input/pima-indians-diabetes-database/diabetes.csv'
targetD = 'Outcome'
dataD = utils.pd.read_csv(filepathD, dtype={'Outcome': 'category'})
dataD.sample(5, random_state=seed)
filepathT_train = '../input/titanic/train.csv'
filepathT_test = '../input/titanic/test.csv'
filepathT_Union = '../input/titanic/gender_submission.csv'
dataT_train = utils.pd.read_csv(filepathT_train)
dataT_test = utils.pd.read_csv(filepathT_test)
dataT_Union = utils.pd.read_csv(filepathT_Union)
dataT = pd.DataFrame(columns=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], index=range(len(dataT_test) + len(dataT_train) + 1))
w = []
for i in range(len(dataT_train)):
k = i + 1
dataT.iloc[k]['PassengerId'] = dataT_train.iloc[i]['PassengerId']
dataT.iloc[k]['Survived'] = dataT_train.iloc[i]['Survived']
dataT.iloc[k]['Pclass'] = dataT_train.iloc[i]['Pclass']
dataT.iloc[k]['Name'] = dataT_train.iloc[i]['Name']
dataT.iloc[k]['Sex'] = dataT_train.iloc[i]['Sex']
dataT.iloc[k]['Age'] = dataT_train.iloc[i]['Age']
dataT.iloc[k]['SibSp'] = dataT_train.iloc[i]['SibSp']
dataT.iloc[k]['Parch'] = dataT_train.iloc[i]['Parch']
dataT.iloc[k]['Ticket'] = dataT_train.iloc[i]['Ticket']
dataT.iloc[k]['Fare'] = dataT_train.iloc[i]['Fare']
dataT.iloc[k]['Cabin'] = dataT_train.iloc[i]['Cabin']
dataT.iloc[k]['Embarked'] = dataT_train.iloc[i]['Embarked']
for j in range(len(dataT_test)):
i = j + len(dataT_train) + 1
dataT.iloc[i]['PassengerId'] = dataT_test.iloc[j]['PassengerId']
dataT.iloc[i]['Survived'] = dataT_Union.iloc[j]['Survived']
dataT.iloc[i]['Pclass'] = dataT_test.iloc[j]['Pclass']
dataT.iloc[i]['Name'] = dataT_test.iloc[j]['Name']
dataT.iloc[i]['Sex'] = dataT_test.iloc[j]['Sex']
dataT.iloc[i]['Age'] = dataT_test.iloc[j]['Age']
dataT.iloc[i]['SibSp'] = dataT_test.iloc[j]['SibSp']
dataT.iloc[i]['Parch'] = dataT_test.iloc[j]['Parch']
dataT.iloc[i]['Ticket'] = dataT_test.iloc[j]['Ticket']
dataT.iloc[i]['Fare'] = dataT_test.iloc[j]['Fare']
dataT.iloc[i]['Cabin'] = dataT_test.iloc[j]['Cabin']
dataT.iloc[i]['Embarked'] = dataT_test.iloc[j]['Embarked']
dataT = dataT.drop([0], axis=0)
dataT = dataT.drop(['PassengerId'], axis=1)
dataT.sample(5, random_state=seed)
CX, Cy = utils.divide_dataset(dataC, target='diagnosis')
DX, Dy = utils.divide_dataset(dataD, target='Outcome')
TX, Ty = utils.divide_dataset(dataT, target='Survived')
CX_train.sample(5, random_state=seed)
Cy_train.sample(5, random_state=seed)
CX_test.sample(5, random_state=seed)
Cy_test.sample(5, random_state=seed)
dataC_train = utils.join_dataset(CX_train, Cy_train)
dataC_test = utils.join_dataset(CX_test, Cy_test)
dataC_test.sample(5, random_state=seed) | code |
50239477/cell_34 | [
"text_plain_output_1.png"
] | seed = 27912
Cy.sample(5, random_state=seed) | code |
50239477/cell_33 | [
"text_html_output_1.png"
] | seed = 27912
TX.sample(5, random_state=seed) | code |
50239477/cell_44 | [
"text_plain_output_1.png"
] | seed = 27912
Cy_train.sample(5, random_state=seed) | code |
50239477/cell_20 | [
"text_plain_output_1.png"
] | import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils
filepath = '../input/breast-cancer-wisconsin-data/data.csv'
indexC = 'id'
targetC = 'diagnosis'
dataC = utils.load_data(filepath, indexC, targetC)
filepathD = '../input/pima-indians-diabetes-database/diabetes.csv'
targetD = 'Outcome'
dataD = utils.pd.read_csv(filepathD, dtype={'Outcome': 'category'})
filepathT_train = '../input/titanic/train.csv'
filepathT_test = '../input/titanic/test.csv'
filepathT_Union = '../input/titanic/gender_submission.csv'
dataT_train = utils.pd.read_csv(filepathT_train)
dataT_test = utils.pd.read_csv(filepathT_test)
dataT_Union = utils.pd.read_csv(filepathT_Union)
len(dataT_Union)
len(dataT_test) | code |
50239477/cell_40 | [
"text_html_output_1.png"
] | seed = 27912
DX_train.sample(5, random_state=seed) | code |
50239477/cell_48 | [
"text_html_output_1.png"
] | seed = 27912
TX_test.sample(5, random_state=seed) | code |
50239477/cell_41 | [
"text_html_output_1.png"
] | seed = 27912
CX_train.sample(5, random_state=seed) | code |
50239477/cell_2 | [
"text_html_output_1.png"
] | from sklearn.dummy import DummyClassifier
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.tree import DecisionTreeClassifier
import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils | code |
50239477/cell_54 | [
"text_html_output_1.png"
] | import miner_a_de_datos_an_lisis_exploratorio_utilidad as utils
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
seed = 27912
filepath = '../input/breast-cancer-wisconsin-data/data.csv'
indexC = 'id'
targetC = 'diagnosis'
dataC = utils.load_data(filepath, indexC, targetC)
dataC.sample(5, random_state=seed)
filepathD = '../input/pima-indians-diabetes-database/diabetes.csv'
targetD = 'Outcome'
dataD = utils.pd.read_csv(filepathD, dtype={'Outcome': 'category'})
dataD.sample(5, random_state=seed)
filepathT_train = '../input/titanic/train.csv'
filepathT_test = '../input/titanic/test.csv'
filepathT_Union = '../input/titanic/gender_submission.csv'
dataT_train = utils.pd.read_csv(filepathT_train)
dataT_test = utils.pd.read_csv(filepathT_test)
dataT_Union = utils.pd.read_csv(filepathT_Union)
dataT = pd.DataFrame(columns=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], index=range(len(dataT_test) + len(dataT_train) + 1))
w = []
for i in range(len(dataT_train)):
k = i + 1
dataT.iloc[k]['PassengerId'] = dataT_train.iloc[i]['PassengerId']
dataT.iloc[k]['Survived'] = dataT_train.iloc[i]['Survived']
dataT.iloc[k]['Pclass'] = dataT_train.iloc[i]['Pclass']
dataT.iloc[k]['Name'] = dataT_train.iloc[i]['Name']
dataT.iloc[k]['Sex'] = dataT_train.iloc[i]['Sex']
dataT.iloc[k]['Age'] = dataT_train.iloc[i]['Age']
dataT.iloc[k]['SibSp'] = dataT_train.iloc[i]['SibSp']
dataT.iloc[k]['Parch'] = dataT_train.iloc[i]['Parch']
dataT.iloc[k]['Ticket'] = dataT_train.iloc[i]['Ticket']
dataT.iloc[k]['Fare'] = dataT_train.iloc[i]['Fare']
dataT.iloc[k]['Cabin'] = dataT_train.iloc[i]['Cabin']
dataT.iloc[k]['Embarked'] = dataT_train.iloc[i]['Embarked']
for j in range(len(dataT_test)):
i = j + len(dataT_train) + 1
dataT.iloc[i]['PassengerId'] = dataT_test.iloc[j]['PassengerId']
dataT.iloc[i]['Survived'] = dataT_Union.iloc[j]['Survived']
dataT.iloc[i]['Pclass'] = dataT_test.iloc[j]['Pclass']
dataT.iloc[i]['Name'] = dataT_test.iloc[j]['Name']
dataT.iloc[i]['Sex'] = dataT_test.iloc[j]['Sex']
dataT.iloc[i]['Age'] = dataT_test.iloc[j]['Age']
dataT.iloc[i]['SibSp'] = dataT_test.iloc[j]['SibSp']
dataT.iloc[i]['Parch'] = dataT_test.iloc[j]['Parch']
dataT.iloc[i]['Ticket'] = dataT_test.iloc[j]['Ticket']
dataT.iloc[i]['Fare'] = dataT_test.iloc[j]['Fare']
dataT.iloc[i]['Cabin'] = dataT_test.iloc[j]['Cabin']
dataT.iloc[i]['Embarked'] = dataT_test.iloc[j]['Embarked']
dataT = dataT.drop([0], axis=0)
dataT = dataT.drop(['PassengerId'], axis=1)
dataT.sample(5, random_state=seed)
CX, Cy = utils.divide_dataset(dataC, target='diagnosis')
DX, Dy = utils.divide_dataset(dataD, target='Outcome')
TX, Ty = utils.divide_dataset(dataT, target='Survived')
CX_train.sample(5, random_state=seed)
Cy_train.sample(5, random_state=seed)
dataC_train = utils.join_dataset(CX_train, Cy_train)
dataC_train.sample(5, random_state=seed) | code |
50239477/cell_50 | [
"text_plain_output_1.png"
] | seed = 27912
Cy_test.sample(5, random_state=seed) | code |
50239477/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
50239477/cell_45 | [
"text_plain_output_1.png"
] | seed = 27912
Ty_train.sample(5, random_state=seed) | code |
50239477/cell_49 | [
"text_plain_output_1.png"
] | seed = 27912
Dy_test.sample(5, random_state=seed) | code |
50239477/cell_32 | [
"text_html_output_1.png"
] | seed = 27912
DX.sample(5, random_state=seed) | code |
50239477/cell_51 | [
"text_plain_output_1.png"
] | seed = 27912
Ty_test.sample(5, random_state=seed) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.