path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105193696/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns
code
105193696/cell_23
[ "text_plain_output_1.png" ]
import folium import folium map = folium.Map(location=[40.672243, -73.827903]) map
code
105193696/cell_30
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.isnull().sum() df_start['year']
code
105193696/cell_33
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.isnull().sum() df_start['jockey'].value_counts()
code
105193696/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['month'].value_counts()
code
105193696/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_race.columns
code
105193696/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_start.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['year'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[0])) df_tracking['year'] df_tracking['month'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[1])) df_tracking['month'] df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.isnull().sum() df_start['year'] = df_start['race_date'].apply(lambda x: int(x.split('-')[0])) df_start['year']
code
105193696/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.info()
code
105193696/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking.head(10)
code
105193696/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['year'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[0])) df_tracking['year'] df_tracking['month'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[1])) df_tracking['month']
code
105193696/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105193696/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_2019.columns
code
105193696/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['year'].value_counts()
code
105193696/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.isnull().sum() df_start['month'].value_counts().plot(kind='bar', figsize=(16, 8))
code
105193696/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.isnull().sum()
code
105193696/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.info()
code
105193696/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv')
code
105193696/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['year'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[0])) df_tracking['year']
code
105193696/cell_31
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_start.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_tracking['year'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[0])) df_tracking['year'] df_tracking['month'] = df_tracking['race_date'].apply(lambda x: int(x.split('-')[1])) df_tracking['month'] df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.isnull().sum() df_start['year'] = df_start['race_date'].apply(lambda x: int(x.split('-')[0])) df_start['year'] df_start['month'] = df_start['race_date'].apply(lambda x: int(x.split('-')[1])) df_start['month']
code
105193696/cell_22
[ "text_plain_output_1.png" ]
pip install folium
code
105193696/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum()
code
105193696/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_start df_start.describe(include='all')
code
105193696/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_tracking.columns df_tracking.isnull().sum() df_tracking.duplicated().sum() df_tracking['track_id'].value_counts()
code
105193696/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') df_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') df_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') df_2019 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv') df_start.columns
code
17118187/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.applications.inception_v3 import InceptionV3, preprocess_input from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from keras.layers import Input, Dense, GlobalAveragePooling2D, Dropout from keras.models import Sequential, Model from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing.image import ImageDataGenerator from math import ceil from sklearn.model_selection import train_test_split import numpy as np import os import pandas as pd DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) df_train['diagnosis'] = df_train['diagnosis'].astype('str') df_train = df_train[['id_code', 'diagnosis']] if df_train['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_train['id_code'])): df_train['id_code'][index] = df_train['id_code'][index] + '.png' df_test = df_test[['id_code']] if df_test['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_test['id_code'])): df_test['id_code'][index] = df_test['id_code'][index] + '.png' train_data = np.arange(df_train.shape[0]) train_idx, val_idx = train_test_split(train_data, train_size=0.8, random_state=2019) X_train = df_train.iloc[train_idx, :] X_val = df_train.iloc[val_idx, :] X_test = df_test num_classes = 5 img_size = (299, 299, 3) nb_train_samples = len(X_train) nb_validation_samples = len(X_val) nb_test_samples = len(X_test) epochs = 50 batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, width_shift_range=0.1, height_shift_range=0.1, brightness_range=[0.5, 1.5]) val_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=X_train, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, seed=2019) validation_generator = val_datagen.flow_from_dataframe(dataframe=X_val, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, shuffle=False) test_generator = test_datagen.flow_from_dataframe(dataframe=X_test, directory=TEST_IMG_PATH, x_col='id_code', y_col=None, target_size=img_size[:2], color_mode='rgb', class_mode=None, batch_size=batch_size, shuffle=False) def get_model(file_path, input_shape, num_classes): input_tensor = Input(shape=input_shape) base_model = InceptionV3(include_top=False, weights=None, input_tensor=input_tensor) base_model.load_weights(filepath=file_path) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.25)(x) output_tensor = Dense(num_classes, activation='softmax')(x) model = Model(inputs=input_tensor, outputs=output_tensor) optimizer = Adam(lr=0.0001) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model model_path = '../input/inceptionv3/' weight_file = 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' model = get_model(file_path=os.path.join(model_path, weight_file), input_shape=img_size, num_classes=num_classes) LOG_DIR = './logs' if not os.path.isdir(LOG_DIR): os.mkdir(LOG_DIR) else: pass CKPT_PATH = LOG_DIR + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5' checkPoint = ModelCheckpoint(filepath=CKPT_PATH, monitor='val_loss', verbose=1, save_best_only=True, mode='min') reduceLROnPlateau = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-06, verbose=1, mode='min') earlyStopping = EarlyStopping(monitor='val_loss', patience=15, verbose=1, mode='min') history = model.fit_generator(train_generator, steps_per_epoch=ceil(nb_train_samples / batch_size), epochs=epochs, validation_data=validation_generator, validation_steps=ceil(nb_validation_samples / batch_size), callbacks=[checkPoint, reduceLROnPlateau, earlyStopping], verbose=2)
code
17118187/cell_9
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split import numpy as np import os import pandas as pd DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) df_train['diagnosis'] = df_train['diagnosis'].astype('str') df_train = df_train[['id_code', 'diagnosis']] if df_train['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_train['id_code'])): df_train['id_code'][index] = df_train['id_code'][index] + '.png' df_test = df_test[['id_code']] if df_test['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_test['id_code'])): df_test['id_code'][index] = df_test['id_code'][index] + '.png' train_data = np.arange(df_train.shape[0]) train_idx, val_idx = train_test_split(train_data, train_size=0.8, random_state=2019) X_train = df_train.iloc[train_idx, :] X_val = df_train.iloc[val_idx, :] X_test = df_test num_classes = 5 img_size = (299, 299, 3) nb_train_samples = len(X_train) nb_validation_samples = len(X_val) nb_test_samples = len(X_test) epochs = 50 batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, width_shift_range=0.1, height_shift_range=0.1, brightness_range=[0.5, 1.5]) val_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=X_train, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, seed=2019) validation_generator = val_datagen.flow_from_dataframe(dataframe=X_val, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, shuffle=False) test_generator = test_datagen.flow_from_dataframe(dataframe=X_test, directory=TEST_IMG_PATH, x_col='id_code', y_col=None, target_size=img_size[:2], color_mode='rgb', class_mode=None, batch_size=batch_size, shuffle=False)
code
17118187/cell_4
[ "image_output_1.png" ]
import os import pandas as pd DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) print('num of train images ', len(os.listdir(TRAIN_IMG_PATH))) print('num of test images ', len(os.listdir(TEST_IMG_PATH)))
code
17118187/cell_2
[ "text_plain_output_1.png" ]
import os import sys import numpy as np import pandas as pd import cv2 import seaborn as sns from math import ceil from tqdm import tqdm from PIL import Image from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from keras.applications.inception_v3 import InceptionV3, preprocess_input from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, Model from keras.layers import Input, Dense, GlobalAveragePooling2D, Dropout from keras.optimizers import RMSprop, Adam, SGD from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
code
17118187/cell_19
[ "text_plain_output_1.png" ]
from keras.applications.inception_v3 import InceptionV3, preprocess_input from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from keras.layers import Input, Dense, GlobalAveragePooling2D, Dropout from keras.models import Sequential, Model from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing.image import ImageDataGenerator from math import ceil from sklearn.model_selection import train_test_split from tqdm import tqdm import numpy as np import os import pandas as pd import seaborn as sns DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) df_train['diagnosis'] = df_train['diagnosis'].astype('str') df_train = df_train[['id_code', 'diagnosis']] if df_train['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_train['id_code'])): df_train['id_code'][index] = df_train['id_code'][index] + '.png' df_test = df_test[['id_code']] if df_test['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_test['id_code'])): df_test['id_code'][index] = df_test['id_code'][index] + '.png' train_data = np.arange(df_train.shape[0]) train_idx, val_idx = train_test_split(train_data, train_size=0.8, random_state=2019) X_train = df_train.iloc[train_idx, :] X_val = df_train.iloc[val_idx, :] X_test = df_test num_classes = 5 img_size = (299, 299, 3) nb_train_samples = len(X_train) nb_validation_samples = len(X_val) nb_test_samples = len(X_test) epochs = 50 batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, width_shift_range=0.1, height_shift_range=0.1, brightness_range=[0.5, 1.5]) val_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=X_train, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, seed=2019) validation_generator = val_datagen.flow_from_dataframe(dataframe=X_val, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, shuffle=False) test_generator = test_datagen.flow_from_dataframe(dataframe=X_test, directory=TEST_IMG_PATH, x_col='id_code', y_col=None, target_size=img_size[:2], color_mode='rgb', class_mode=None, batch_size=batch_size, shuffle=False) def get_model(file_path, input_shape, num_classes): input_tensor = Input(shape=input_shape) base_model = InceptionV3(include_top=False, weights=None, input_tensor=input_tensor) base_model.load_weights(filepath=file_path) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.25)(x) output_tensor = Dense(num_classes, activation='softmax')(x) model = Model(inputs=input_tensor, outputs=output_tensor) optimizer = Adam(lr=0.0001) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model model_path = '../input/inceptionv3/' weight_file = 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' model = get_model(file_path=os.path.join(model_path, weight_file), input_shape=img_size, num_classes=num_classes) LOG_DIR = './logs' if not os.path.isdir(LOG_DIR): os.mkdir(LOG_DIR) else: pass CKPT_PATH = LOG_DIR + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5' checkPoint = ModelCheckpoint(filepath=CKPT_PATH, monitor='val_loss', verbose=1, save_best_only=True, mode='min') reduceLROnPlateau = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-06, verbose=1, mode='min') earlyStopping = EarlyStopping(monitor='val_loss', patience=15, verbose=1, mode='min') history = model.fit_generator(train_generator, steps_per_epoch=ceil(nb_train_samples / batch_size), epochs=epochs, validation_data=validation_generator, validation_steps=ceil(nb_validation_samples / batch_size), callbacks=[checkPoint, reduceLROnPlateau, earlyStopping], verbose=2) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] log_dir_list = os.listdir(LOG_DIR) ckpt_list = [] for file in log_dir_list: if file.split('-')[0] == 'checkpoint': ckpt_list.append(file) loss_list = [] for file in ckpt_list: file = file.split('-')[2] file = file[:-3] loss_list.append(file) loss = ckpt_list[loss_list.index(min(loss_list))] best_model = LOG_DIR + '/' + loss model.load_weights(best_model) test_generator.reset() preds_tta = [] tta_steps = 10 for i in tqdm(range(tta_steps)): preds = model.predict_generator(generator=test_generator, steps=ceil(nb_test_samples / batch_size)) preds_tta.append(preds) preds_mean = np.mean(preds_tta, axis=0) predicted_class_indices = np.argmax(preds_mean, axis=1)
code
17118187/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import os import pandas as pd DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) df_train['diagnosis'] = df_train['diagnosis'].astype('str') df_train = df_train[['id_code', 'diagnosis']] if df_train['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_train['id_code'])): df_train['id_code'][index] = df_train['id_code'][index] + '.png' df_test = df_test[['id_code']] if df_test['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_test['id_code'])): df_test['id_code'][index] = df_test['id_code'][index] + '.png' train_data = np.arange(df_train.shape[0]) train_idx, val_idx = train_test_split(train_data, train_size=0.8, random_state=2019) X_train = df_train.iloc[train_idx, :] X_val = df_train.iloc[val_idx, :] X_test = df_test print(X_train.shape) print(X_val.shape) print(X_test.shape)
code
17118187/cell_15
[ "text_plain_output_1.png" ]
from keras.applications.inception_v3 import InceptionV3, preprocess_input from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from keras.layers import Input, Dense, GlobalAveragePooling2D, Dropout from keras.models import Sequential, Model from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing.image import ImageDataGenerator from math import ceil from sklearn.model_selection import train_test_split import numpy as np import os import pandas as pd import seaborn as sns DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) df_train['diagnosis'] = df_train['diagnosis'].astype('str') df_train = df_train[['id_code', 'diagnosis']] if df_train['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_train['id_code'])): df_train['id_code'][index] = df_train['id_code'][index] + '.png' df_test = df_test[['id_code']] if df_test['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_test['id_code'])): df_test['id_code'][index] = df_test['id_code'][index] + '.png' train_data = np.arange(df_train.shape[0]) train_idx, val_idx = train_test_split(train_data, train_size=0.8, random_state=2019) X_train = df_train.iloc[train_idx, :] X_val = df_train.iloc[val_idx, :] X_test = df_test num_classes = 5 img_size = (299, 299, 3) nb_train_samples = len(X_train) nb_validation_samples = len(X_val) nb_test_samples = len(X_test) epochs = 50 batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, width_shift_range=0.1, height_shift_range=0.1, brightness_range=[0.5, 1.5]) val_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=X_train, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, seed=2019) validation_generator = val_datagen.flow_from_dataframe(dataframe=X_val, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, shuffle=False) test_generator = test_datagen.flow_from_dataframe(dataframe=X_test, directory=TEST_IMG_PATH, x_col='id_code', y_col=None, target_size=img_size[:2], color_mode='rgb', class_mode=None, batch_size=batch_size, shuffle=False) def get_model(file_path, input_shape, num_classes): input_tensor = Input(shape=input_shape) base_model = InceptionV3(include_top=False, weights=None, input_tensor=input_tensor) base_model.load_weights(filepath=file_path) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.25)(x) output_tensor = Dense(num_classes, activation='softmax')(x) model = Model(inputs=input_tensor, outputs=output_tensor) optimizer = Adam(lr=0.0001) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model model_path = '../input/inceptionv3/' weight_file = 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' model = get_model(file_path=os.path.join(model_path, weight_file), input_shape=img_size, num_classes=num_classes) LOG_DIR = './logs' if not os.path.isdir(LOG_DIR): os.mkdir(LOG_DIR) else: pass CKPT_PATH = LOG_DIR + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5' checkPoint = ModelCheckpoint(filepath=CKPT_PATH, monitor='val_loss', verbose=1, save_best_only=True, mode='min') reduceLROnPlateau = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-06, verbose=1, mode='min') earlyStopping = EarlyStopping(monitor='val_loss', patience=15, verbose=1, mode='min') history = model.fit_generator(train_generator, steps_per_epoch=ceil(nb_train_samples / batch_size), epochs=epochs, validation_data=validation_generator, validation_steps=ceil(nb_validation_samples / batch_size), callbacks=[checkPoint, reduceLROnPlateau, earlyStopping], verbose=2) acc = history.history['acc'] val_acc = history.history['val_acc'] plt.plot(acc) plt.plot(val_acc) plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Val'], loc='upper left') plt.show()
code
17118187/cell_16
[ "image_output_1.png" ]
from keras.applications.inception_v3 import InceptionV3, preprocess_input from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from keras.layers import Input, Dense, GlobalAveragePooling2D, Dropout from keras.models import Sequential, Model from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing.image import ImageDataGenerator from math import ceil from sklearn.model_selection import train_test_split import numpy as np import os import pandas as pd import seaborn as sns DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) df_train['diagnosis'] = df_train['diagnosis'].astype('str') df_train = df_train[['id_code', 'diagnosis']] if df_train['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_train['id_code'])): df_train['id_code'][index] = df_train['id_code'][index] + '.png' df_test = df_test[['id_code']] if df_test['id_code'][0].split('.')[-1] != 'png': for index in range(len(df_test['id_code'])): df_test['id_code'][index] = df_test['id_code'][index] + '.png' train_data = np.arange(df_train.shape[0]) train_idx, val_idx = train_test_split(train_data, train_size=0.8, random_state=2019) X_train = df_train.iloc[train_idx, :] X_val = df_train.iloc[val_idx, :] X_test = df_test num_classes = 5 img_size = (299, 299, 3) nb_train_samples = len(X_train) nb_validation_samples = len(X_val) nb_test_samples = len(X_test) epochs = 50 batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, width_shift_range=0.1, height_shift_range=0.1, brightness_range=[0.5, 1.5]) val_datagen = ImageDataGenerator(rescale=1.0 / 255) test_datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=X_train, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, seed=2019) validation_generator = val_datagen.flow_from_dataframe(dataframe=X_val, directory=TRAIN_IMG_PATH, x_col='id_code', y_col='diagnosis', target_size=img_size[:2], color_mode='rgb', class_mode='categorical', batch_size=batch_size, shuffle=False) test_generator = test_datagen.flow_from_dataframe(dataframe=X_test, directory=TEST_IMG_PATH, x_col='id_code', y_col=None, target_size=img_size[:2], color_mode='rgb', class_mode=None, batch_size=batch_size, shuffle=False) def get_model(file_path, input_shape, num_classes): input_tensor = Input(shape=input_shape) base_model = InceptionV3(include_top=False, weights=None, input_tensor=input_tensor) base_model.load_weights(filepath=file_path) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.25)(x) output_tensor = Dense(num_classes, activation='softmax')(x) model = Model(inputs=input_tensor, outputs=output_tensor) optimizer = Adam(lr=0.0001) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model model_path = '../input/inceptionv3/' weight_file = 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' model = get_model(file_path=os.path.join(model_path, weight_file), input_shape=img_size, num_classes=num_classes) LOG_DIR = './logs' if not os.path.isdir(LOG_DIR): os.mkdir(LOG_DIR) else: pass CKPT_PATH = LOG_DIR + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5' checkPoint = ModelCheckpoint(filepath=CKPT_PATH, monitor='val_loss', verbose=1, save_best_only=True, mode='min') reduceLROnPlateau = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-06, verbose=1, mode='min') earlyStopping = EarlyStopping(monitor='val_loss', patience=15, verbose=1, mode='min') history = model.fit_generator(train_generator, steps_per_epoch=ceil(nb_train_samples / batch_size), epochs=epochs, validation_data=validation_generator, validation_steps=ceil(nb_validation_samples / batch_size), callbacks=[checkPoint, reduceLROnPlateau, earlyStopping], verbose=2) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.plot(loss) plt.plot(val_loss) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Val'], loc='upper left') plt.show()
code
17118187/cell_5
[ "image_output_1.png" ]
import os import pandas as pd import seaborn as sns DATA_PATH = '../input/aptos2019-blindness-detection' TRAIN_IMG_PATH = os.path.join(DATA_PATH, 'train_images') TEST_IMG_PATH = os.path.join(DATA_PATH, 'test_images') TRAIN_LABEL_PATH = os.path.join(DATA_PATH, 'train.csv') TEST_LABEL_PATH = os.path.join(DATA_PATH, 'test.csv') df_train = pd.read_csv(TRAIN_LABEL_PATH) df_test = pd.read_csv(TEST_LABEL_PATH) plt.figure(figsize=(12, 6)) sns.countplot(df_train['diagnosis']) plt.title('Number of data per each diagnosis') plt.show()
code
2007531/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2007531/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression my_model = LogisticRegression() my_model.fit(train_X, train_y) my_model.score(val_X, val_y)
code
2007531/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ginf.csv') df.head()
code
73060852/cell_4
[ "text_plain_output_1.png" ]
from sklearn import neighbors from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import classification_report from sklearn.metrics import mean_absolute_error import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test_data = pd.read_csv('../input/testdata/UNSW_NB15_testing-set.csv', index_col=0) train_data = pd.read_csv('../input/testdata/UNSW_NB15_training-set.csv', index_col=0) test_data.index = test_data.index + len(train_data) (len(train_data), len(test_data)) total = pd.concat([train_data, test_data], axis=0) significant_proto = total.proto.value_counts()[:5] total.loc[~total['proto'].isin(significant_proto.index), 'proto'] = '-' total = pd.concat([total, pd.get_dummies(total['proto'], prefix='proto')], axis=1) total.drop('proto', axis=1, inplace=True) features = ['dur', 'proto_-', 'proto_arp', 'proto_ospf', 'proto_tcp', 'proto_udp', 'proto_unas', 'spkts', 'dpkts', 'sbytes', 'rate'] values = ['dur', 'spkts', 'dpkts', 'rate', 'sbytes'] total['dur'] = np.log(total['dur'] + 1) total['spkts'] = np.log(total['spkts'] + 1) total['dpkts'] = np.log(total['dpkts'] + 1) total['rate'] = np.log(total['rate'] + 1) total['sbytes'] = np.log(total['sbytes'] + 1) train_data = total.loc[train_data.index] test_data = total.loc[test_data.index] X = train_data[features] y = train_data['label'] y.count model = RandomForestRegressor() model.fit(X, y) predictions = model.predict(test_data[features]) mae = mean_absolute_error(predictions, test_data.label) X = train_data[features] y = train_data['label'] y.count model = neighbors.KNeighborsClassifier() model.fit(X, y) predictions = model.predict(test_data[features]) mae = mean_absolute_error(predictions, test_data.label) print(mae) print(classification_report(test_data.label, predictions))
code
73060852/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.metrics import classification_report from sklearn import neighbors import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73060852/cell_3
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test_data = pd.read_csv('../input/testdata/UNSW_NB15_testing-set.csv', index_col=0) train_data = pd.read_csv('../input/testdata/UNSW_NB15_training-set.csv', index_col=0) test_data.index = test_data.index + len(train_data) (len(train_data), len(test_data)) total = pd.concat([train_data, test_data], axis=0) significant_proto = total.proto.value_counts()[:5] total.loc[~total['proto'].isin(significant_proto.index), 'proto'] = '-' total = pd.concat([total, pd.get_dummies(total['proto'], prefix='proto')], axis=1) total.drop('proto', axis=1, inplace=True) features = ['dur', 'proto_-', 'proto_arp', 'proto_ospf', 'proto_tcp', 'proto_udp', 'proto_unas', 'spkts', 'dpkts', 'sbytes', 'rate'] values = ['dur', 'spkts', 'dpkts', 'rate', 'sbytes'] total['dur'] = np.log(total['dur'] + 1) total['spkts'] = np.log(total['spkts'] + 1) total['dpkts'] = np.log(total['dpkts'] + 1) total['rate'] = np.log(total['rate'] + 1) total['sbytes'] = np.log(total['sbytes'] + 1) train_data = total.loc[train_data.index] test_data = total.loc[test_data.index] X = train_data[features] y = train_data['label'] y.count model = RandomForestRegressor() model.fit(X, y) predictions = model.predict(test_data[features]) mae = mean_absolute_error(predictions, test_data.label) print(mae)
code
129030086/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
df2015 = pd.read_csv('/kaggle/input/world-happiness/2015.csv') df2016 = pd.read_csv('/kaggle/input/world-happiness/2016.csv') df2017 = pd.read_csv('/kaggle/input/world-happiness/2017.csv') df2018 = pd.read_csv('/kaggle/input/world-happiness/2018.csv') df2019 = pd.read_csv('/kaggle/input/world-happiness/2019.csv')
code
128027172/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts()
code
128027172/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape
code
128027172/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape Years = df['Year'].value_counts().sort_values(ascending=False) Years.head(10)
code
128027172/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape Years = df['Year'].value_counts().sort_values(ascending=False) Years.to_frame().plot(kind='bar', color='purple', figsize=(15, 8)) plt.title('Year trends')
code
128027172/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape final.columns Genre = final.Genre.value_counts() Genre
code
128027172/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts()
code
128027172/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) JP_Sales.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_39
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape final.columns
code
128027172/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Global_Sales.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_54
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Publisher = df.groupby(['Publisher'])['Global_Sales'].sum().sort_values(ascending=False) Platform = df.groupby(['Platform'])['Global_Sales'].sum().sort_values(ascending=False) Platform.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.head()
code
128027172/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts()
code
128027172/cell_50
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Publisher = df.groupby(['Publisher'])['Global_Sales'].sum().sort_values(ascending=False) Publisher.head(5)
code
128027172/cell_52
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape final.columns Genre = final.Genre.value_counts() Genre final.Platform.value_counts().head(10)
code
128027172/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128027172/cell_45
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales.head()
code
128027172/cell_49
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape final.columns Genre = final.Genre.value_counts() Genre final.Publisher.value_counts().head(10)
code
128027172/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape Years = df['Year'].value_counts().sort_values(ascending=False) Years.tail(10).to_frame().plot(kind='barh', color='purple', figsize=(15, 8)) plt.title('10 least frequent Years')
code
128027172/cell_51
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Publisher = df.groupby(['Publisher'])['Global_Sales'].sum().sort_values(ascending=False) Publisher.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.describe()
code
128027172/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum()
code
128027172/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) EU_Sales.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape Years = df['Year'].value_counts().sort_values(ascending=False) Years.head(10).to_frame().plot(kind='barh', color='purple', figsize=(15, 8)) plt.title('10 most frequent Years')
code
128027172/cell_46
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.info()
code
128027172/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape
code
128027172/cell_53
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) EU_Sales = df.groupby(['Name'])['EU_Sales'].sum().sort_values(ascending=False) JP_Sales = df.groupby(['Name'])['JP_Sales'].sum().sort_values(ascending=False) Global_Sales = df.groupby(['Name'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Genre_Sales = df.groupby(['Genre'])['Global_Sales'].sum().sort_values(ascending=False) Publisher = df.groupby(['Publisher'])['Global_Sales'].sum().sort_values(ascending=False) Platform = df.groupby(['Platform'])['Global_Sales'].sum().sort_values(ascending=False) Platform.head()
code
128027172/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape NA_Sales = df.groupby(['Name'])['NA_Sales'].sum().sort_values(ascending=False) NA_Sales.head(5).plot(kind='bar', color='purple', figsize=(15, 8))
code
128027172/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10)
code
128027172/cell_36
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df.sample(10) df.isna().sum() df.Name.value_counts() df.Genre.value_counts() df.Year.value_counts() df.shape final = df.dropna() final.shape Years = df['Year'].value_counts().sort_values(ascending=False) sales = pd.DataFrame(final, columns=['Rank', 'Year', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales']) sales.hist() plt.show()
code
33096468/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') recipes[['minutes', 'n_steps', 'n_ingredients']].hist()
code
33096468/cell_30
[ "text_html_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] ratings_by_recipe = interactions_l0y.groupby(['recipe_id', 'year']).agg(rating_cnt=('rating', 'count'), rating_avg=('rating', 'mean')) ratings_by_recipe.head()
code
33096468/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] print(recipes_l0y.shape) print(interactions_l0y.shape)
code
33096468/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] recipes_l0y = recipes_l0y.query('minutes < 1051200') recipes_l0y['year'] = recipes_l0y['submitted'].dt.year interactions_l0y['year'] = interactions_l0y['date'].dt.year
code
33096468/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib_venn import venn2 import matplotlib.pyplot as plt import pandas as pd import seaborn as sns veg_meat = ['#454d66', '#b7e778', '#1fab89'] sns.set_palette(veg_meat) recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] recipes_l0y = recipes_l0y.query('minutes < 1051200') ratings_by_recipe = interactions_l0y.groupby(['recipe_id', 'year']).agg(rating_cnt=('rating', 'count'), rating_avg=('rating', 'mean')) recipes_and_ratings = recipes_l0y.merge(ratings_by_recipe, left_on='id', right_on='recipe_id') recipes_and_ratings['vegetarian'] = ['vegetarian' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings['vegan'] = ['vegan' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings = recipes_and_ratings.drop(columns=['name', 'tags', 'nutrition', 'steps', 'description', 'ingredients']) vegetarian_cnt = len(recipes_and_ratings.query('vegetarian == True')) vegan_cnt = len(recipes_and_ratings.query('vegan == True')) intersect_cnt = len(recipes_and_ratings.query('vegetarian == True and vegan == True')) venn2(subsets=(vegetarian_cnt, vegan_cnt - intersect_cnt, intersect_cnt), set_labels=('Vegatarian', 'Vegan'), set_colors=('#b7e778', '#031c16', '#031c16'), alpha=1) df = recipes_and_ratings.groupby(['year', 'vegetarian']).agg(recipe_cnt=('id', 'count')).reset_index() plt.figure(figsize=(12, 6)) ax = sns.lineplot(data=df, x='year', y='recipe_cnt', hue='vegetarian', linewidth=2.5) ax.set(ylim=(0, None)) ax.set_title('Number of new recipees by year') ax
code
33096468/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') print(recipes.info()) recipes.describe()
code
33096468/cell_32
[ "text_html_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] recipes_l0y = recipes_l0y.query('minutes < 1051200') ratings_by_recipe = interactions_l0y.groupby(['recipe_id', 'year']).agg(rating_cnt=('rating', 'count'), rating_avg=('rating', 'mean')) recipes_and_ratings = recipes_l0y.merge(ratings_by_recipe, left_on='id', right_on='recipe_id') recipes_and_ratings.head(2)
code
33096468/cell_15
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') print(interactions.info()) interactions.describe()
code
33096468/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') interactions['rating'].hist()
code
33096468/cell_43
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib_venn import venn2 import matplotlib.pyplot as plt import pandas as pd import seaborn as sns veg_meat = ['#454d66', '#b7e778', '#1fab89'] sns.set_palette(veg_meat) recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] recipes_l0y = recipes_l0y.query('minutes < 1051200') ratings_by_recipe = interactions_l0y.groupby(['recipe_id', 'year']).agg(rating_cnt=('rating', 'count'), rating_avg=('rating', 'mean')) recipes_and_ratings = recipes_l0y.merge(ratings_by_recipe, left_on='id', right_on='recipe_id') recipes_and_ratings['vegetarian'] = ['vegetarian' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings['vegan'] = ['vegan' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings = recipes_and_ratings.drop(columns=['name', 'tags', 'nutrition', 'steps', 'description', 'ingredients']) vegetarian_cnt = len(recipes_and_ratings.query('vegetarian == True')) vegan_cnt = len(recipes_and_ratings.query('vegan == True')) intersect_cnt = len(recipes_and_ratings.query('vegetarian == True and vegan == True')) venn2(subsets=(vegetarian_cnt, vegan_cnt - intersect_cnt, intersect_cnt), set_labels=('Vegatarian', 'Vegan'), set_colors=('#b7e778', '#031c16', '#031c16'), alpha=1) df = recipes_and_ratings.groupby(['year', 'vegetarian']).agg( recipe_cnt = ('id', 'count') ).reset_index() plt.figure(figsize=(12,6)) ax = sns.lineplot(data=df, x='year', y='recipe_cnt', hue='vegetarian', linewidth=2.5) ax.set(ylim=(0, None)) ax.set_title('Number of new recipees by year') ax df = recipes_and_ratings.groupby(['year']).agg(total_cnt=('id', 'count'), vegetarian_cnt=('vegetarian', 'sum'), vegan_cnt=('vegan', 'sum')).reset_index() df['vegetarian_pct'] = df['vegetarian_cnt'] / df['total_cnt'] * 100 df['vegan_pct'] = df['vegan_cnt'] / df['total_cnt'] * 100 plt.figure(figsize=(12, 6)) ax = sns.lineplot(data=pd.melt(df[['year', 'vegetarian_pct', 'vegan_pct']], ['year']), x='year', y='value', palette=veg_meat[1:], hue='variable', linewidth=2.5) ax.set(ylim=(0, 100)) ax.set_title('Percent of vegetarian recipes by year') ax
code
33096468/cell_24
[ "text_html_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] Q1 = recipes_l0y['minutes'].quantile(0.25) Q3 = recipes_l0y['minutes'].quantile(0.75) IQR = Q3 - Q1 max_value = Q3 + 1.5 * IQR min_value = Q1 - 1.5 * IQR minutes_outliers = recipes_l0y[(recipes_l0y['minutes'] > max_value) | (recipes_l0y['minutes'] < min_value)] minutes_outliers.sort_values('minutes')
code
33096468/cell_14
[ "text_html_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') interactions.head()
code
33096468/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns veg_meat = ['#454d66', '#b7e778', '#1fab89'] sns.set_palette(veg_meat) recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] sns.boxplot(x=recipes_l0y['minutes'])
code
33096468/cell_10
[ "text_html_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') recipes.head()
code
33096468/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib_venn import venn2 import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] recipes_l0y = recipes_l0y.query('minutes < 1051200') ratings_by_recipe = interactions_l0y.groupby(['recipe_id', 'year']).agg(rating_cnt=('rating', 'count'), rating_avg=('rating', 'mean')) recipes_and_ratings = recipes_l0y.merge(ratings_by_recipe, left_on='id', right_on='recipe_id') recipes_and_ratings['vegetarian'] = ['vegetarian' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings['vegan'] = ['vegan' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings = recipes_and_ratings.drop(columns=['name', 'tags', 'nutrition', 'steps', 'description', 'ingredients']) vegetarian_cnt = len(recipes_and_ratings.query('vegetarian == True')) vegan_cnt = len(recipes_and_ratings.query('vegan == True')) intersect_cnt = len(recipes_and_ratings.query('vegetarian == True and vegan == True')) venn2(subsets=(vegetarian_cnt, vegan_cnt - intersect_cnt, intersect_cnt), set_labels=('Vegatarian', 'Vegan'), set_colors=('#b7e778', '#031c16', '#031c16'), alpha=1)
code
33096468/cell_36
[ "text_html_output_1.png" ]
import pandas as pd recipes = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_recipes.csv') interactions = pd.read_csv('/kaggle/input/food-com-recipes-and-user-interactions/RAW_interactions.csv') from_year, to_year = ('2008-01-01', '2017-12-31') recipes['submitted'] = pd.to_datetime(recipes['submitted']) recipes['submitted'] = recipes['submitted'].apply(lambda x: x.tz_localize(None)) recipes_l0y = recipes.loc[recipes['submitted'].between(from_year, to_year, inclusive=False)] interactions['date'] = pd.to_datetime(interactions['date']) interactions['date'] = interactions['date'].apply(lambda x: x.tz_localize(None)) interactions_l0y = interactions.loc[interactions['date'].between(from_year, to_year, inclusive=False)] recipes_l0y = recipes_l0y.query('minutes < 1051200') ratings_by_recipe = interactions_l0y.groupby(['recipe_id', 'year']).agg(rating_cnt=('rating', 'count'), rating_avg=('rating', 'mean')) recipes_and_ratings = recipes_l0y.merge(ratings_by_recipe, left_on='id', right_on='recipe_id') recipes_and_ratings['vegetarian'] = ['vegetarian' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings['vegan'] = ['vegan' in tag for tag in recipes_and_ratings['tags']] recipes_and_ratings = recipes_and_ratings.drop(columns=['name', 'tags', 'nutrition', 'steps', 'description', 'ingredients']) recipes_and_ratings.head(2)
code
105206399/cell_42
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() def check(df): l = [] columns = df.columns for col in columns: dtypes = df[col].dtypes nunique = df[col].nunique() sum_null = df[col].isnull().sum() l.append([col, dtypes, nunique, sum_null]) df_check = pd.DataFrame(l) df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null'] return df_check check(df_cars) df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns c = df_cars.corr() cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']] x = cars.drop('price', axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) reg.score(x_train, y_train) reg.score(x_test, y_test) reg.intercept_ reg.coef_ pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_1 = reg.predict(x_test) df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1}) df_1.head(10)
code
105206399/cell_9
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() df_cars.describe()
code
105206399/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns plt.figure(figsize=(30, 20)) c = df_cars.corr() sns.heatmap(c, annot=True)
code
105206399/cell_57
[ "text_html_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) from sklearn import linear_model lass = linear_model.Lasso(alpha=0.6) lass.fit(x_train, y_train) lass.score(x_train, y_train)
code
105206399/cell_56
[ "text_html_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) from sklearn import linear_model lass = linear_model.Lasso(alpha=0.6) lass.fit(x_train, y_train)
code
105206399/cell_34
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train)
code
105206399/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique()
code
105206399/cell_39
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() def check(df): l = [] columns = df.columns for col in columns: dtypes = df[col].dtypes nunique = df[col].nunique() sum_null = df[col].isnull().sum() l.append([col, dtypes, nunique, sum_null]) df_check = pd.DataFrame(l) df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null'] return df_check check(df_cars) df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns c = df_cars.corr() cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']] x = cars.drop('price', axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) reg.score(x_train, y_train) reg.score(x_test, y_test) reg.intercept_ reg.coef_ pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients'])
code
105206399/cell_48
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) rid.score(x_train, y_train) rid.score(x_test, y_test) rid.intercept_
code
105206399/cell_61
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() def check(df): l = [] columns = df.columns for col in columns: dtypes = df[col].dtypes nunique = df[col].nunique() sum_null = df[col].isnull().sum() l.append([col, dtypes, nunique, sum_null]) df_check = pd.DataFrame(l) df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null'] return df_check check(df_cars) df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns c = df_cars.corr() cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']] x = cars.drop('price', axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) reg.score(x_train, y_train) reg.score(x_test, y_test) reg.intercept_ reg.coef_ pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_1 = reg.predict(x_test) df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1}) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) rid.score(x_train, y_train) rid.score(x_test, y_test) rid.intercept_ rid.coef_ pd.DataFrame(rid.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_2 = rid.predict(x_test) df_2 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_2}) from sklearn import linear_model lass = linear_model.Lasso(alpha=0.6) lass.fit(x_train, y_train) lass.score(x_train, y_train) lass.score(x_test, y_test) lass.intercept_ lass.coef_ pd.DataFrame(lass.coef_, cars.columns[:-1], columns=['coeficients'])
code
105206399/cell_54
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() def check(df): l = [] columns = df.columns for col in columns: dtypes = df[col].dtypes nunique = df[col].nunique() sum_null = df[col].isnull().sum() l.append([col, dtypes, nunique, sum_null]) df_check = pd.DataFrame(l) df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null'] return df_check check(df_cars) df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns c = df_cars.corr() cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']] x = cars.drop('price', axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) reg.score(x_train, y_train) reg.score(x_test, y_test) reg.intercept_ reg.coef_ pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_1 = reg.predict(x_test) df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1}) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) rid.score(x_train, y_train) rid.score(x_test, y_test) rid.intercept_ rid.coef_ pd.DataFrame(rid.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_2 = rid.predict(x_test) df_2 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_2}) plt.figure(figsize=(10, 8)) plt.plot(df_2[:50]) plt.legend(['Actualy', 'predicted'])
code
105206399/cell_60
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) from sklearn import linear_model lass = linear_model.Lasso(alpha=0.6) lass.fit(x_train, y_train) lass.score(x_train, y_train) lass.score(x_test, y_test) lass.intercept_ lass.coef_
code
105206399/cell_50
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() def check(df): l = [] columns = df.columns for col in columns: dtypes = df[col].dtypes nunique = df[col].nunique() sum_null = df[col].isnull().sum() l.append([col, dtypes, nunique, sum_null]) df_check = pd.DataFrame(l) df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null'] return df_check check(df_cars) df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns c = df_cars.corr() cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']] x = cars.drop('price', axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) reg.score(x_train, y_train) reg.score(x_test, y_test) reg.intercept_ reg.coef_ pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_1 = reg.predict(x_test) df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1}) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) rid.score(x_train, y_train) rid.score(x_test, y_test) rid.intercept_ rid.coef_ pd.DataFrame(rid.coef_, cars.columns[:-1], columns=['coeficients'])
code
105206399/cell_64
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import linear_model from sklearn import linear_model from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df_cars = data.copy() def check(df): l = [] columns = df.columns for col in columns: dtypes = df[col].dtypes nunique = df[col].nunique() sum_null = df[col].isnull().sum() l.append([col, dtypes, nunique, sum_null]) df_check = pd.DataFrame(l) df_check.columns = ['column', 'dtypes', 'nunique', 'sum_null'] return df_check check(df_cars) df_cars.isnull().sum() df_cars.duplicated().sum() df_cars.columns df_cars.drop('car_ID', axis=1, inplace=True) df_cars.CarName.unique() df_cars.CarName.unique() categorical_cols = df_cars.select_dtypes(include=['object']).columns c = df_cars.corr() cars = df_cars[['wheelbase', 'carlength', 'carwidth', 'curbweight', 'enginesize', 'boreratio', 'horsepower', 'citympg', 'highwaympg', 'drivewheel', 'fuelsystem', 'price']] x = cars.drop('price', axis=1).values y = cars['price'].values from sklearn.preprocessing import RobustScaler ro_scaler = RobustScaler() x_train = ro_scaler.fit_transform(x_train) x_test = ro_scaler.fit_transform(x_test) from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train) reg.score(x_train, y_train) reg.score(x_test, y_test) reg.intercept_ reg.coef_ pd.DataFrame(reg.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_1 = reg.predict(x_test) df_1 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_1}) from sklearn import linear_model rid = linear_model.Ridge(alpha=0.9) rid.fit(x_train, y_train) rid.score(x_train, y_train) rid.score(x_test, y_test) rid.intercept_ rid.coef_ pd.DataFrame(rid.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_2 = rid.predict(x_test) df_2 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_2}) from sklearn import linear_model lass = linear_model.Lasso(alpha=0.6) lass.fit(x_train, y_train) lass.score(x_train, y_train) lass.score(x_test, y_test) lass.intercept_ lass.coef_ pd.DataFrame(lass.coef_, cars.columns[:-1], columns=['coeficients']) y_pred_3 = lass.predict(x_test) df_3 = pd.DataFrame({'y_test': y_test, 'Y_pred': y_pred_3}) df_3.head(10)
code